
UNIVERSITÉ DE LILLE
ÉCOLE DOCTORALE MADIS-631: Mathématiques,
sciences du numérique et de leurs interactions

New prediction and planning for
digital learning based on optimization

methods

Nouvelle prédiction et planification
pour l’apprentissage numérique basées

sur des méthodes d’optimisation
Mounir Hafsa

Thèse préparée et soutenue publiquement le 27/01/2023,
en vue de l’obtention du grade de Docteur en Informatique et

Applications.

Membres du jury:

Mme. Armelle Brun Prof., Université de Nancy Rapporteur
M. Jean-Charles Billaut Prof., Université de Tours Rapporteur
M. Lhassane Idoumghar Prof., Université de Haute-Alsace Examinateur
Mme. Elsa Negre MCF (HDR), Univ. Paris-Dauphine Examinateur
M. Jean-Christophe Routier Prof., Université de Lille Président de jury
Mme. Laetitia Jourdan Prof., Université de Lille Directrice de Thèse
Mme. Julie Jacques MCF, Université de Lille Co-encadrante de Thèse
Mme. Pamela Wattebled Mandarine Academy Co-encadrante de Thèse

Centre de Recherche en Informatique, Signal et Automatique de Lille
Université de Lille - Bâtiment ESPRIT - Avenue Henri Poincaré

59655 Villeneuve d’Ascq Cedex FRANCE





Acknowledgement
I’d like to begin by thanking the reviewers of my work, Armelle Brun and
Jean Charles Billaut, for providing suggestions and comments that helped
to improve my research. This appreciation extends to the other members
of my thesis jury, Lhassane Idoumghar, Elsa Negre and Jean-Christophe
Routier for their keen attention and propositions for the future of this work.

Pamela Wattebled, my company’s supervisor, for her unwavering sup-
port. Whether for life advice in difficult times or career insights when in
doubt. Most importantly, her trust and faith in me was the primary moti-
vator in overcoming the various difficulties I encountered during the thesis.

Laetitia Jourdan and Julie Jacques, my academic supervisors. I’m
grateful for their help during difficult times, especially at the start of the
thesis during the COVID-19 pandemic. Their ideas, expertise, and assis-
tance made this work much richer, particularly the weekly meetings, which
were always fruitful. I’m proud to have learned from such inspiring super-
visors and honored to have collaborated on several papers. I look forward
to working with you again in future research opportunities.

Mandarine Academy’s R&D team, led by Eddy Guerin. His technical
tips are always helpful, and his counter-strike skills are incredible. Jeremy
Morel and Anne Sophie Lesaint for their assistance with the DiLeap Logis-
tic project, as well as their insights on food, places, and history. Siegfried
Desmedt for his assistance in testing and validating our work at Mandarine
Academy and its partners to solve the timetabling problem. Tim Chevalier
and Manuel Leveugle for their technical advices, positivity, fun moments,
and love of kebab. Alan Damanti and Laurent Maurer for providing techni-
cal assistance with the recommendation system problem (Mission to Mars).

The ORKAD team at Cristal research unit, for their assistance and
academic insights, whether for experimental setups, scientific writing rec-
ommendations, or rehearsals: Weerapan Sae-Dan, Szczepanski Nicolas,
Sara Tari, Meyssa Zouambi, Yousra Badji, Adán José-García, Nesrine
Harbaoui, Thomas Feutrier, Agathe Metaireau, Clément Legrand, Lucien
Mousin, Nadarajen Veerapen, Clarisse Dhaenens, Julien Baste, Marie-
Eléonore Kessaci-Marmion.

Finally, I’d want to dedicate this work to my father’s soul, who passed
away shortly after this thesis began during the pandemic. During difficult
times, the love and support of my mother, Jamila Braham, my father,
Mohamed Hafsa who kept supporting me until his last breath, my brother,

2



Othman, and sisters, Asma and Noura, motivated me to push further.
Although we are separated by long distance, I am grateful to my family

for their emotional backing, advice, and life lessons that have enabled all
of this to happen.

My closest friends that made a positive impact on my life at various
stages: Salah Belkhiria, Nour Majdoub, Hamdi Ben Abdeljelil, Hamza
Karifa, Adam Laarif, Nader Chatti, Hosni Mansour, Ahd Khalifa, Ghassen
Ghazzeh, Abdel-Basset Chaouch, Mehdi Abdallah.

Aslihan Sumer, for bearing the burden of late nights of bibliography
preparation and code debugging. She was the one who kept rooting for
this achievement even during the most difficult parts of this thesis and the
pandemic.

I’m grateful for such friendships, whether in France, Tunisia, or any
other country, especially through tough times, losses, breakups, or when I
was down.

3



Abstract

This thesis addresses two distinct problems: the schedules of professional
training courses and recommendation systems. Both problems occur at
Mandarine Academy, a French educational technology company that spe-
cializes in innovative corporate training techniques such as personalized
online learning platforms, training logistics, web conferences, etc. We be-
gin with the scheduling problem related to managing training logistics. The
company offers a tool called "Dileap Logistic" that automatically assigns
resources (rooms, teachers, and equipment) to time slots (days and hours)
at specific locations. Previously, this was done manually, which took a
lot of time and yielded inaccurate results (wrong trainers, wrong days, or
wrong equipment). Although it is an NP-Complete problem, a mathemati-
cal formulation of the problem was developed after examining the literature
and the company’s requirements. It includes 18 constraints (hardsoft) and
5 objectives, two of which are concurrent. We evaluate 5 multi-objective
evolutionary algorithms (MOEAs) starting with the non-dominated sort-
ing genetic algorithm (NSGA II and NSGA III), the decomposition-based
multi-objective evolutionary algorithm (MOEAD), the indicator-based evo-
lutionary algorithm (IBEA), and finally the Pareto Strength evolutionary
algorithm (SPEA 2). Two customized genetic operators (for Mutation and
Crossover) have been proposed and compared to classical operators (PMX
and Swap mutation). A tuning phase involving all the algorithms men-
tioned above is performed to obtain elite configurations. Experiments are
divided by problem size (small, medium, and large instances) with 3 to 5
objectives tested. We discuss results such as the performance comparison
of each algorithm and convergence graphs.

In addition to providing solutions for training logistics, the company
creates daily online educational content (videos, quizzes, documents, etc.)
to support the digitization of work environments and follow current trends.
With over 550K users spread across 100 learning platforms, the company
faces challenges such as information overload and lack of motivation among
users. Mandarine Academy gave us access to one of its public learning
platforms to conduct our research. After an analysis of the literature and
an in-depth analysis of user data, we propose improvements to the overall
user experience and graphical interface.

The second part of this thesis addresses the problem of recommenda-
tion systems to enhance the user experience on learning platforms. We
have mathematically formulated a multi-objective optimization problem
with 5 objectives (Similarity, Diversity, Novelty, Root Mean Square Er-
ror (RMSE), and Normalized Discounted Cumulative Gain (NDCG)) and



implemented various recommendation techniques to generate initial solu-
tions. All the evolutionary algorithms mentioned above (NSGA II, NS-
GAIII, IBEA, SPEA2, and MOEAD) are evaluated in our experiments.
Real-world implicit interactions in the form of viewing time are chosen to
make predictions. Tests were run on two different groups based on user
behavior. Both groups are used in the parameter tuning phase and the
final experiments. The initial results of various objectives are promising,
considering the production mode scenarios and the choice of genetic op-
erators. We further discuss performance graphs and conclude with future
work.
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Abstract

Cette thèse aborde deux problèmes distincts : les emplois du temps des
formations professionnelles et les systèmes de recommandation. Les deux
problèmes ont lieu à Mandarine Academy, une société française de technolo-
gie éducative qui se spécialise dans les techniques de formation d’entreprise
innovantes telles que les plateformes d’apprentissage en ligne personnal-
isées, la logistique de formation, conférences Web, etc.

Nous commençons par le problème des emplois du temps lié à la ges-
tion de la logistique de formation. L’entreprise propose un outil nommé
« Dileap Logistic » qui gère automatiquement l’affectation des ressources
(salles, enseignants et équipement) aux créneaux horaires (jours et heures)
à des endroits précis. Auparavant, cela se faisait manuellement, ce qui
prenait beaucoup de temps et donnait des résultats inexacts (mauvais
formateurs, mauvais jours ou mauvais équipement). Bien qu’il s’agisse
d’un problème NP-Complet, une formulation mathématique du problème
a été élaborée après avoir examiné les ouvrages de littérature et les exi-
gences de l’entreprise. Il comprend 18 contraintes (hard/soft) et 5 objec-
tifs, dont deux sont concurrents. Nous évaluons 5 algorithmes évolutifs
multi-objectifs (AEMO) en commençant par l’algorithme génétique de tri
non dominant (NSGA II et NSGA III), l’algorithme évolutif multi-objectif
basé sur la décomposition (MOEA/D), l’algorithme évolutif basé sur des
indicateurs (IBEA) et enfin l’algorithme évolutif de Pareto Strength (SPEA
2). Deux opérateurs génétiques personnalisés (pour Mutation et Crossover)
ont été proposés et comparés à des opérateurs classiques (PMX et Swap
mutation). Une phase de réglage impliquant tous les algorithmes men-
tionnés ci-dessus est effectuée pour obtenir des configurations d’élite. Les
expérimentations sont divisées par taille de problème (petites, moyennes et
grandes instances) avec 3 à 5 objectifs testés. Nous discutons de résultats
tels que la comparaison de la performance de chaque algorithme ainsi que
des graphes de convergence.

En plus de proposer des solutions à la logistique de la formation, l’entreprise
crée quotidiennement du contenu pédagogique en ligne (vidéos, quiz, doc-
uments, etc.) pour soutenir la numérisation des environnements de travail
et suivre les tendances actuelles. Avec plus de 550K utilisateurs répartis
sur 100 plateformes d’apprentissage, l’entreprise fait face à des défis tels
que la surcharge d’information et le manque de motivation chez les utilisa-
teurs. Mandarine Academy nous a donné accès à l’une de ses plateformes
publiques d’apprentissage pour mener nos recherches. Après une analyse
de la littérature et une analyse approfondie des données d’utilisateurs, nous



proposons des améliorations à l’expérience utilisateur globale et à l’interface
graphique.

La deuxième partie de cette thèse aborde le problème des systèmes
de recommandation pour améliorer l’expérience utilisateur sur les plate-
formes d’apprentissage. Nous avons formulé mathématiquement un prob-
lème d’optimisation multi-objectif ayant 5 objectifs (Similarité, Diversité,
Nouveauté, Erreur quadratique moyenne racine (RMSE) et Gain cumulé
actualisé normalisé (NDCG)) et mis en œuvre différentes techniques de
recommandation pour générer des solutions initiales. Tous les algorithmes
évolutifs mentionnés ci-dessus (NSGA II, NSGAIII, IBEA, SPEA2 et MOEA/D)
sont évalués dans nos expériences. Les interactions implicites du monde réel
sous forme de temps de visionnage sont choisies pour effectuer des prédic-
tions. Les tests ont été exécutés sur deux groupes différents en fonction du
comportement de l’utilisateur. Les deux groupes sont utilisés dans la phase
de réglage des paramètres et les expérimentations finales. Les premiers ré-
sultats de divers objectifs sont prometteurs, compte tenu des scénarios de
mode de production et du choix des opérateurs génétiques. Nous discutons
davantage des graphes de performance et concluons avec les travaux futurs.
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Chapter 1

Industrial Context and
Motivations
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1.1 Mandarine Academy . . . . . . . . . . . . . . . . . 11

1.1.1 DiLeap-Logistic . . . . . . . . . . . . . . . . . . . 12

1.1.2 MOOC Office 365 Training . . . . . . . . . . . . 15

1.2 Motivations . . . . . . . . . . . . . . . . . . . . . . 19

1.3 Thesis Outline . . . . . . . . . . . . . . . . . . . . 20

This chapter introduces the company "Mandarine academy" and crit-
ically analyzes its products. Our thesis addresses two different problems
related to two different commercial products maintained by the company
and available for public use.

1.1 Mandarine Academy
Mandarine Academy is an Ed-Tech company created in 2008, it supports
the digital transformation of international companies by facilitating the
use of new technologies by all employees. Thanks to an exclusive approach
that combines a digital platform with personalized support and individual
meetings, Mandarine Academy offers a new way of training that is more
effective in terms of skills, capacity, time, and budget.

Mandarine Academy is committed to making digital tools accessible
to everyone. They make sure employees will be able to effectively use
the company’s tools and its best practices. Thus, they focus on client
support so that each company can achieve its goals. Currently, Mandarine
Academy has accompanied more than 3000 clients and more than 1 million
users. Multiple collaborations with the private and public sectors have
been established, like Microsoft and the French Ministry of Labor.
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Since its creation, the company has been offering video-conference train-
ing to users on their collaborative tools, office automation, telephone, or
business applications. Thanks to a custom-made logistics and training or-
ganizational tool, deploying training can be done in a matter of just 48
hours. Aside from video conferences, e-learning video content is tailored
for each client and adapted for each profession.

Within the following subsection, we showcase the products involved in
our work: DiLeap-Logistic for managing the training logistics, and MOOC-
OFFICE 365 for e-learning recommendations.

Figure 1.1 Mandarine Academy Logo.

1.1.1 DiLeap-Logistic

DiLeap is a new solution developed by Mandarine Academy that aims to
provide companies with a fully personalized SaaS training platform. It
provides a personalized platform with the integration of web conferencing
training sessions. Also, pedagogical content management with full integra-
tion of Microsoft Office 365 services and MOOCs (Massive Open Online
Courses). The platform provides access for content creation to any specific
training with an administration and reporting console. Another DiLeap
variant is in the works right now with the main purpose to manage train-
ing logistics. The new solution is called DiLeap Logistic, a shared platform
created by Mandarine Academy and used by multiple companies including
Mandarine Academy itself to handle its internal training programs.

Figure 1.2 DiLeap Logistic Logo.

DiLeap Logistic provides a decision support system that allows the plan-
ner to manage a timetable. A timetable can be described as the assignment
of a set of events (meetings, training, courses, etc..) to a certain time frame,
where an event is a combination of resources, such as people, rooms, and
equipment.
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Timetabling can be classified as a type of scheduling problem due to the
challenging large number of events that need to be scheduled and the exten-
sive constraints and preferences that need to be satisfied. It has been widely
investigated in the operational research and artificial intelligence research
communities due to its increasing difficulty. Timetabling problems belong
to the class of NP-Complete problems [87], due to the scarce resources
and the tight planning horizon in which subjects must be scheduled. That
means it is unlikely that there is a method that can find an optimal solution
in a polynomial amount of time. However, finding a feasible solution may
still be possible through various heuristics and approximation algorithms.

There are several variations on the timetabling problem in general, and
it has a wide range of applications, such as:

• In the transportation sector: train or bus schedules [2], inside or
outside the cities, confront different circumstances such as peak and
off-peak times, construction zones, and drivers’ availability. Flight
timetables, for instance, are very crucial for airline companies as well
as airports and passengers because of the tight schedules and the
various uncertain conditions airplanes operate in [137].

• In the healthcare sector: nurses’ efficiency is influenced by the quality
of the timetable they get for their shifts [73]. Also, surgeons need an
adequate schedule to perform their operations.

• In the educational sector: a large proportion of practical timetabling
research in the literature is concerned with high school and university
course and examination timetabling. Timetables are important for
students in schools and universities as they can influence grades.

Within all these categories of problems, the university timetabling problem
has gained increasing interest in the last four decades.

In DiLeap Logistic, each timetable provides information about the event’s
time, and the resources attached to each event. The tool also provides au-
tomatic alerts for trainers about their upcoming sessions. The currently
implemented scheduler reduces the time to schedule in comparison with
the manual approach. The construction of high-quality schedules within
minutes gives the planner the opportunity to improve the overall quality
and efficiency not only of the schedules but also of the whole service.

The major advantage is the possibility to provide a pending course list.
The planner can validate the propositions of the scheduler; thus, courses
will be scheduled. Another option is the planner can verify the conflicts of
pending events, this helps to decide whether an event should be planned
or not. The input data is in the form of a spreadsheet, which contains the
following parameters:
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• Course code: a unique course identifier.

• Number of sessions: The total number of times a course (Sessions)
should be planned.

• Start date: A starting date for sessions to be planned.

• End date: A date limit for the sessions to be scheduled.

• Location: The location where courses should be scheduled.

The planner transfers the spreadsheet file using the DiLeap automatic
scheduling interface and awaits the results which are shown in a timetable
with the proposed sessions. The planner needs to validate the entries for a
session to be scheduled.

Figure 1.3 Example of the input file for planning sessions in DiLeap Logistic.

Each partner using the platform has access to their own course catalog,
objectives, and constraints. Before DiLeap Logistic, timetable construc-
tion was done manually, and took an average of 3-6 weeks (30 workers) to
produce an initial timetable that covers a year of training programs. To
optimize this task, DiLeap Logistic uses a greedy algorithm that takes a list
of events to be planned with their periods and locations to automatically
create a timetable. Automating the planning process makes it easier to
rent a room, alert teachers, and employees about their upcoming sessions,
and manage the resources of the company. The planner can confirm the
software proposals, so courses will only be scheduled following the deci-
sion maker’s approval. Alerts regarding conflicts or non-compliance with
constraints are also displayed to provide the planner with a sense of what
occurred throughout the planning process.

Despite its advantages, the currently used automatic timetabling tool
in DiLeap Logistic has several serious flaws: (1) it does not follow the
owner’s defined restrictions (it can mobilize resources that are unavailable
or in the incorrect location), and (2) it does not handle multi-objectives
(only a single objective which is maximizing the number of planned training
sessions).
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1.1.2 MOOC Office 365 Training

Modern online learning platforms like Coursera, Udacity, and edX are be-
coming more popular. Millions of users from all over the world are regis-
tering for courses online, especially after the COVID-19 pandemic.

Similar to the aforementioned MOOCs, Mandarine Academy proposes
"MOOC-Office365-training" as a solution for workplaces looking for updat-
ing their employees’ knowledge. The company provides up-to-date content
that matches changes in work environments and current trends. Most con-
tent is available in more than 11 languages, which is made possible using
Microsoft Azure’s speech translation services.

1.1.2.1 Learning Materials: Types

Different types of learning materials are proposed and Table.1.1 shows the
total number of learning materials in the catalog.

• Learning Paths: A predefined set of courses to master certain skills/job.

• Courses: A collection of unordered learning resources.

• Resources: Tutorials and use cases (short format videos), quizzes,
documents, recorded web sessions, SCORM (Sharable Content Ob-
ject Reference Model), serious games, and documents.

Table 1.1 Statistics about available content in Mooc Office 365 (French and
English catalog).

Content Type Number of Active items

Learning Paths 71
Courses 304
Tutorials 3116
Use Cases 283

1.1.2.2 Learning Materials: Observations

One frequent problem found in modern platforms including MOOC-Office365-
Training is that it is becoming difficult to choose courses from many offered
content. Online learning should grant users the freedom to control their
learning environments and progresses and not be lost due to the enormous
information load. Many academic researchers have been working to solve
this problem with the help of recommender systems.

Recommender Systems play the role of consultants, as they help users
better find interesting items (items being movies to watch, text to read, and
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products to buy) without spending extra time finding them. These data-
driven systems were the product of major web services such as YouTube,
Amazon, and Netflix. Recommender systems are critical in some industries
as they can generate a huge amount of income when they are efficient or
also be a way to stand out significantly from competitors. As proof of
the importance of recommender systems, we can mention that, a few years
ago, Netflix organized a challenge (the “Netflix prize”) where the goal was to
produce a recommender system that performs better than its own algorithm
with a prize of 1 million dollars to win. According to McKinsey’s conversion
research [97], 35% percent of what consumers purchase on Amazon and 75%
of what they watch on Netflix come from product recommendations.

Resources (Tutorials and Use-cases) make up most of the catalog’s con-
tents. With the latter in an ever-increasing state, it has an impact on users,
as they must spend more time selecting the appropriate learning material,
among other issues:

• New subscribers/visitors: Newcomers may have difficulty selecting
the appropriate material, to begin with, depending on their needs
(learn a new skill or build upon existing knowledge).

• Watch next: After finishing an item, users are not given a playlist of
what to watch next. This can cause frustration and an increase in
dropout rates.

• Lack of personalization: The provided content is intended for all users
and is not tailored to a specific individual’s needs.

Initial solutions: Mandarine Academy has created an online community
(Yammer) [43] for MOOC users where they can share their thoughts and
seek help from professionals if they are having problems. This was done to
direct users to appropriate resources, share their platform experience, and
engage with trainers. Unfortunately, because most users avoid such ac-
tions, this did not work very well. The company also used Microsoft Azure
Recommender Systems in a second approach. This black-box approach to
content delivery did not provide the company with the desired diversity or
flexibility. The model only uses page views and is limited to one type of
content (courses). The company later abandoned this solution because it
provided no significant improvement to course subscriptions and required
users to complete multiple courses before receiving personalized recommen-
dations. This was impractical because users rarely follow multiple courses
at once.

Exploratory Data Analysis: Content & Interactions The more you
know about your users, the better equipped you’ll be to make informed de-
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cisions about your service. In order to gain a richer understanding of how
users interact with content, events are used to independently track users’
journeys. A typical method of providing feedback is in the form of rat-
ing methods that captures users’ preferences in explicit ways (like button,
social sharing, course/learning path registration, and bookmarks). The dis-
advantage is that users tend to avoid the burden of explicitly stating their
preferences. To overcome the shortage of explicit ratings, platforms tend
to collect users’ behavior through multiple ways (page views, percentage
of videos watched, etc). This is called implicit feedback. The advantage
is that users can trigger a lot of actions when using a service. This gener-
ates a lot of data that can be significant in some cases but shows a major
inconvenience, which is not having a ground truth. When running short
on ratings (explicit or implicit), content descriptors like (subtitles, title,
description, number of views, duration, etc.) are used as additional input
to recommender systems.

The company provided us with limited access to examine usage data of
their public MOOCs. To conduct our analysis, the public MOOC: Mooc-
Office3651 (French version) is selected. The MOOC has more than 130K
registered users and around 3.5K average monthly users. Most visitors are
using the French version (93%) while a small minority (7%) use the English
version. The data used was collected from early 2018 to late 2020 and has
the following content:

• 41 Learning Paths.

• 142 Courses.

• 1294 Tutorials and 113 Use Cases.

Mandarine Academy as well as other modern online services provide
users with multiple ways of expressing their feedback about their online
experience.

Collected data was captured from early 2018 to late 2020. Both Table
1.2 and Table 1.3 show available user events (explicit and implicit). Starting
with column % of users which indicates the percentage of users that used
the feature at least once. The difference between explicit and implicit
ratings is distinguishable. Only about 1% of users have explicitly indicated
their feedback, with social sharing being the most used. When looking at
implicit interactions, we see a different story, as more significant users are
interacting with content.

The same behavior applies with column % of content as explicit in-
teractions have a smaller number of involved content compared to implicit

1https://mooc.office365-training.com/
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ones. Furthermore, investigating implicit ratings reveals that approxi-
mately 7% of pages have never been visited and approximately 9% of videos
have never been watched. These findings are alarming, especially when a
part of the catalog is hidden from public view.

Finally, column sparsity score defines the ratio of unspecified ratings
to the total number of entries in the user-item matrix and is calculated as
follows sparsity = 1− |R|

|U |x|I| .

Table 1.2 Explicit interactions captured from Mooc-Office365 (French)
starting 2018 to late 2020.

Interaction % of users % of content Observations Sparsity

Likes/Dislikes 0.02% 0.9% 28 0.830%
Social Shares 0.66% 58.11% 2179 0.997%

Content Subscription 0.439% 40% 1202 0.996%
Bookmarks - - - -

Table 1.3 Implicit interactions captured from Mooc-Office365 (French)
starting 2018 to late 2020.

Interaction % of users % of content Observations Sparsity

Page View 21.86% 93.08% 610,956 0.985%
Video View Time 8.26% 91.57% 68,894 0.993%

1.1.2.3 Suggestions and Objectives

Observations were taken from Table 1.2 and 1.3 not only show a high
sparsity score which is normal for real-world data but also a usage gap
between both implicit and explicit interactions. Since explicit ratings are
visible to users, we suppose that other reasons besides avoiding expressing
their opinion might be possible. To confirm our hypothesis we investigate
the graphical interface available for both registered users and visitors. We
list below our findings per page.

1. Home page: The current homepage offers a list of the newest courses
and tutorials. Users/visitors are limited if they are looking to learn
about certain tools and required skills for specific jobs or certifica-
tions. What we propose for visitors is a list of items (courses and
resources) with options to select popular or newer items. Further-
more, categories (skills, jobs, certificates) should be shown at top of
the page to guide visitors efficiently. For registered users, multiple
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personalized lists of recommended items provided by combining our
approach with other common algorithms will help users find relevant
content easier.

2. Content page: Learning paths, courses, and videos (tutorials and use
cases) are presented to both users and visitors without similar items,
visible interactions, or feedback options. The like and share buttons
are provided without text, only a small icon. In case a video doesn’t
correspond to a user’s needs, they must go back to the previous page
and spend additional time looking for another one. We propose for
both users and visitors a more appealing interface with visible inter-
actions (like, dislike, social share), the addition of a "save to watch
later (Bookmark)" and "feedback" options. Different recommended
items (based on similarity or popularity) to minimize the burden of
content search and provide guidance.

Overall, Mandarine Academy is working to improve the user experience
and satisfaction on their e-learning platforms, as well as to provide relevant
content and maintain quality services to their clients. Despite the signifi-
cant changes to the platform, the company is eager to gradually improve
the learning experience, beginning with the use of recommender systems
and progressing to the graphical changes suggested in our research.

1.2 Motivations
This thesis handles two different real-world problems found at Mandarine
Academy.

1.2.0.1 Timetabling Problem

The first problem is well known in the literature under the name of ’timetabling
problems’ which has been proven to be an NP-Complete problem [87], This
means that obtaining an optimal solution in polynomial time is challeng-
ing. However, it is worth noting that exact solvers have made significant
progress in recent years, allowing for more efficient solutions to be found
in some cases. What makes this task even harder is the fact that this
is different from what is commonly found in the literature as most works
fall under the educational category and have fewer real-world constraints
and business objectives. A detailed comparison is provided in Chapter 2
between our problem and what is commonly found in the literature. The
second problem is not a scheduling one but is much more complicated.

19



1.2.0.2 Recommendation Problem

In the second part, we handle e-learning recommendations for online learn-
ers using the platform MOOC-Office365. After performing data analysis,
we found that many users are leaving the platform after viewing an average
of 4 videos. This was alarming for the company especially since the MOOC
is public and offers both free and paid options. What makes things harder
is the fact that there aren’t enough data to understand users’ opinions. Not
only that, but front-end analysis shed light on many visual problems that
may have contributed over the years to the dropout rates. To solve this
problem, we need to provide not only a mathematical model for objectives
and user profiles, but also propose graphical changes that will make our
work visible and explainable to end-users.

1.3 Thesis Outline
This thesis is organized according to the following plan. Chapter 1 intro-
duces Mandarine academy company and its different products. We provide
a critical analysis of DiLeap-Logistic and MOOC-Office365, two public on-
line services provided by the company. We highlight the different problems
concerning the two products and then we explain the motivation behind
such work.

Chapter 2 provides background on mathematical optimization techniques
such as single and multi-objective metaheuristics. We also look at the var-
ious related subjects such as parameter tuning and evaluation techniques
specific to metaheuristics. In the second part, we study the timetabling
problem found in the literature by providing a definition for each problem
type and criticizing works that resemble what we will be doing in this work.
In the third part, a state of art concerning recommendation systems and
their different types is discussed using literature works.

Chapter 3 addresses the first part of our thesis, which focuses on solving
a real-world timetabling problem using the DiLeap-Logistic tool. We begin
this chapter by introducing the various entities involved in the scheduling
process and their mathematical models. A multi-objective genetic algo-
rithm (MOGA) approach is applied, and we define different genetic struc-
tures (encoding, crossover, and mutation) that will be used to solve the
problem. A proposed experimental protocol is discussed in detail before
presenting the obtained results.

Chapter 4 in the second part of our thesis we handle recommendation
systems inside Mandarine Academy’s public MOOC. Same as in the pre-
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vious chapter, an introduction to entities and objectives is provided with
mathematical modeling. Later, a genetic representation with operators is
discussed along-with experimental protocol. We conclude this chapter by
discussing production mode integration and results.

Chapter 5 summarizes all the above chapters and identifies future im-
provements for both solutions (DiLeap-Logistic and Mooc-Office-365).
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State of the Art
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This chapter begins with an overview of combinatorial problems and
multi-objective optimization. Following that is a general introduction to
the timetabling issues that are the focus of the first part of this work. Fol-
lowing that, because it is directly related to the second part of this work, an
introduction to recommendation systems is discussed. Finally, a discussion
of related studies at the end of both the timetabling and recommendation
systems sections is provided.
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2.1 Combinatorial Optimization
Combinatorial optimization is the process of finding the best solution from
a limited set of possible solutions [26]. Each solution is evaluated during
the search process, and the solution with the best evaluation is returned
at the end. Many real-world issues can be expressed as combinatorial opti-
mization problems. For example, finding the best route for package delivery
or the best schedule to attend all college classes, and so on. Due to the
vast number of possible combinations that can result in a valid solution,
combinatorial problems are notoriously difficult to solve.

Combinatorial optimization problems can be thought of as looking for
the best element of a set of discrete items; thus, in theory, any search
algorithm or metaheuristic can be used to solve them.

2.1.1 Background on Combinatorial Optimization

Metaheuristics can be seen as a general algorithmic system that can be
applied with very few modifications to different optimization problems to
make them adapt to a particular problem. Today there are several types,
and their creation comes from different sources of inspiration [123].

Some are made by analogy to other scientific areas such as physics
(simulated annealing), biology (ant colony and evolutionary algorithms),
neurology (tabu search) and sociology (memetic algorithms, particle swarm
optimization, and multi-agent systems) [116].

Unlike exact methods, meta-heuristics deliver suitable solutions within
a reasonable period of time to tackle large-scale problem instances. There
is no guarantee that global optimal solutions can be found.

In designing a metaheuristic, two contradictory techniques must be
taken into account: the exploration of the search space (diversification)
and the exploitation of the best solutions found (intensification). In inten-
sification, the promising regions are explored more thoroughly in the hope
to find better solutions.

In diversification, non-explored regions must be visited to be sure that
all regions of the search space are evenly explored and that the search is
not confined to only a reduced number of regions.

2.1.1.1 Exact and Approximate Algorithms

Computing optimal solutions are intractable for many optimization issues
of industrial and scientific importance. Meta-heuristics represent a fam-
ily of approximate optimization strategies that gained a lot of popularity
within the past decades. They offer "good" solutions to complicated and
complex problems in a reasonable time. This explains the significant in-
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crease of interest in the meta-heuristic domain within the scientific litera-
ture.

Unlike exact optimization algorithms, metaheuristics do not guarantee
that the solutions obtained are optimal [62]. They do not describe how
close the solutions obtained are to the optimal solution. Exact approaches
can prove a solution’s optimality, whereas an approximate approach can’t.
However, exact algorithms will typically constitute a brute-force style ap-
proach. Nonetheless, for scheduling, given a huge dataset where we have
to schedule hundreds or thousands of events in a small number of rooms or
time span, exact algorithms would be poorly implemented and cannot pro-
vide a solution within an acceptable time frame. Below Figure.2.1 shows
different optimization methods.

Figure 2.1 A general overview of optimization methods [123].

Exact Methods: In the class of exact methods, one can find gener-
ally the following algorithms: Dynamic programming, Branch and X fam-
ily of algorithms (branch and bound, branch and cut, branch and price),
constraint programming, and A* search algorithms (A*, IDA* —Iterative
Deepening Algorithms) [125]. These methods can be used as algorithms
for tree search. The search is performed in the entire search space and the
problem is solved by splitting it into simpler problems (sub-problems).

Dynamic programming is based on dividing a problem recursively into
simpler sub-problems [9]. This procedure is based on the theory of Bellman
that says, "the sub-policy of an optimal policy is itself optimal". While dy-
namic programming has been applied to various problems such as knapsack
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problems, planning, and routing, its success, and efficiency depend on the
complexity of the algorithm (in terms of time and space). In some cases, dy-
namic programming can be memory-intensive and less efficient. However,
for specific problems like the shortest path problem, dynamic programming
can be an effective and efficient solution. As always, the efficiency of dy-
namic programming depends on the complexity of the algorithm in terms
of time and space requirements.

Branch & bound and A* methods are based on an implicit listing of all
approaches to the optimization problem considered. The search space is
explored by dynamically constructing a tree whose root node represents the
problem to be solved and the entire search space associated with it. The
leaf nodes are the possible solutions, and the internal nodes are the sub-
problems. The pruning of the search tree is based on a bounding function
that prunes sub-trees that do not contain any optimal solution [99].

Linear Programming is a powerful and general mathematical framework
for solving optimization problems that involve linear constraints and ob-
jective functions. It encompasses various problem-solving methods, such as
shortest path, network flow, MST, matching, assignment, etc. Most com-
mercial software like CPLEX and GUROBI implements Linear Program-
ming methods. In linear programming, constraints and objective functions
are linear and the simplex method is commonly used in practice thanks to
its reliability [9].

We deal with mixed-integer programming (MIP) problems when the
decision variables are both discrete and continuous. Hence, MIP models
generalize LP and IP models. Advanced optimization methods such as re-
laxation and decomposition approaches and cutting plane algorithms have
significantly improved lately in solving MIP problems.

Approximate Methods: Two main sub-classes of algorithms can be
differentiated within the class of approximate methods: Approximation
and Heuristic Algorithms. Heuristic algorithms can be further divided into
sub-categories, such as Greedy Algorithms

Approximation algorithms provide valuable insights into a problem’s
complexity and can help develop powerful heuristics. However, their ap-
plicability is limited due to their problem-dependent nature. Furthermore,
the quality of the solutions they produce can be significantly different from
the ideal global optimal solution in practice [72].

Typically, greedy algorithms start from scratch (empty solution) and
pick the best option at the moment, following a pre-defined rule, even if
doing so means missing better options for later on in the solution. Once
a decision is made, it is not reconsidered. This process is repeated until a
complete solution is created [131].

Greedy algorithms are very common techniques because they are sim-
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ple to design. Additionally, greedy algorithms have reduced complexity
compared to iterative algorithms in general. Despite their simple design,
they are useful when integrated into a heuristic approach. These are widely
used as part of elaborate approaches, especially in the preparation of local
search solutions (which can provide an initial solution).

Heuristics, approximation algorithms, and greedy algorithms are all re-
lated concepts, but they have some differences. Heuristics are problem-
solving techniques that find relatively "good" solutions in a reasonable
time, but they usually don’t have a guarantee of approximation on the
solutions obtained. They can be divided into two families: specific heuris-
tics, which are designed to solve a particular problem, and meta-heuristics,
which are general-purpose algorithms that can be used to solve almost any
optimization problem [123].

Approximation algorithms, on the other hand, provide provable solution
quality and provable run-time limits. They are a type of heuristic that
guarantees a certain level of approximation to the optimal solution.

Greedy algorithms are a specific type of heuristic that makes the best
choice at each step, following a pre-defined rule, without reconsidering pre-
vious decisions. While they are simple and efficient, they may not always
find the optimal solution.

In summary, greedy algorithms are a type of heuristic that makes deci-
sions based on the best option at the moment, following a pre-defined rule,
without reconsidering previous decisions. Heuristics are problem-solving
techniques that find relatively good solutions in a reasonable time, and
approximation algorithms are a type of heuristic that guarantees a certain
level of approximation to the optimal solution.

2.1.1.2 Single Solution-Based Metaheuristics

Before diving into Single Solution-Based Metaheuristics (S-Metaheuristics)
methods, we need to further grasp some concepts. We start with the neigh-
borhood and then the initial solution. The definition of the neighborhood
is a required common step for the design of any meta-heuristic. The neigh-
borhood structure plays a crucial role in the execution of a single solution-
based meta-heuristic. If the neighborhood structure is not adequate for the
problem, any meta-heuristic will fail to solve the problem. A solution s′

in the neighborhood of s is called a neighbor of s, s′ ∈ N(S). A neighbor
is generated by the application of a "move" operator m that performs a
small perturbation to the solution s. The Fitness Function (also known as
the Evaluation Function) determines how close a given solution is to the
ideal solution to the desired problem. Generally, high-fitness solutions are
selected as the best solution in each iteration of the optimization problem.

In addition to the neighborhood and initial solution, it is essential to
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understand the concept of "coding." Coding refers to the representation
of a solution in a specific format that can be easily manipulated by the
metaheuristic algorithm. This representation is crucial for the algorithm
to efficiently search the solution space and find the optimal solution. Dif-
ferent problems may require different coding schemes, and selecting an
appropriate coding method is vital for the success of the metaheuristic
algorithm.

The initial solution is developed through two main strategies: a random
approach and a greedy one. In terms of the consistency of solutions and the
computational time, there is often a trade-off between the use of random
and greedy initial solutions [120]. The best approach to this trade-off will
rely primarily on the efficiency and effectiveness of the available random
or greedy algorithm and the meta-heuristic properties. For example, the
larger the neighborhood, the less sensitive the initial solution is to meta-
heuristic performance.

Generating a random initial solution is a simple operation but it may
take a much greater number of iterations to converge with the metaheuris-
tic. A Greedy heuristic can be used to speed up the search. Indeed, greedy
algorithms have reduced polynomial-time complexity in most cases. Using
greedy heuristics also contributes to local optima being of better quality. In
general, the meta-heuristic should require fewer iterations to converge to-
wards a local optimum. This does not mean, however, that the use of better
solutions as initial solutions would always lead to better local optima.

After understanding both concepts, we list the different algorithms
found in S-Metaheuristics. Starting with Local Search (LS).

Local Search (LS) is probably the simplest method in meta-heuristics.
It finds good solutions by iteratively substituting a neighbor for the current
solution that improves the objective function [1]. The current solution is
replaced in each iteration by a solution from its neighborhood. The rule
used to select the new current solution is called a move or search strategy.
The search stops when all candidate neighbors are worse than the current
solution, meaning a local optimum is reached.

There are two common search strategies: "best improvement" and "first
improvement." In the "best improvement" strategy, also known as the
steepest descent or steepest ascent strategy, the best move from the neigh-
borhood is chosen. Meta-heuristics using this strategy are often referred to
as hill climbers. It selects the move that improves the current solution by
the smallest amount [59].

On the other hand, the "first improvement" strategy selects the first
move encountered in the neighborhood that improves the current solution.
This strategy can be more efficient in terms of computation time, as it does
not require evaluating all possible moves in the neighborhood. However, it
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may not always find the best possible improvement in each iteration.

Simulated Annealing (SA) was first described in [83]. SA is inspired
by the metallurgic annealing process. In this natural process, a material
is heated and slowly cooled under controlled conditions to increase the
size of the crystals in the material and reduce their defects. The heat
increases the energy of the atoms allowing them to move freely, and the
slow cooling schedule allows the discovery and exploitation of a new low-
energy configuration. Each configuration of a solution in the search space
represents the different internal energy of the system. Heating the system
leads to a relaxation of the acceptance criteria of the samples taken from
the search space. As the system cools down, sample acceptance criteria are
narrowed to focus on improving movements. Once the system has cooled,
the setup will represent a sample at or near a global optimum.

Tabu Search (TS) algorithm became very popular in solving optimiza-
tion problems in an approximate manner. Today it is one of the most com-
mon meta-heuristics. The use of memory, which stores search-related infor-
mation, represents the characteristic of tabu search [48]. The whole neigh-
borhood is usually explored deterministically, whereas a random neighbor
is selected in Simulated Annealing (SA). As in local search, when a better
neighbor is found, it replaces the current solution. When a local optimum is
reached, the search continues by choosing a candidate which is worse than
the current solution. The best solution in the neighborhood is selected as
the new current solution even if it is not improving the current solution.
Tabu search may generate cycles where previously visited solutions could
be selected again. To avoid cycles, TS discards the neighbors that have
been previously visited. It memorizes the recent search trajectory. Tabu
search manages a memory of the newly applied solutions or moves called
the tabu list. The approach strategy is to keep the specific changes of re-
cent moves within the search space in short-term memory and to prevent
future moves from undoing those changes.

Iterated Local Search (ILS) is widely used because of its simplicity
and efficiency. It starts the search with an initial solution. Iterated Local
Search explores a sequence of solutions that are created as perturbations
of the current best solution, resulting in an embedded heuristic [95].

1. First, a local search is applied to an initial solution.

2. Then, in each iteration, a perturbation of the obtained local optima
is carried out. Finally, a local search is applied to the perturbed solu-
tion. The generated solution is accepted as the new current solution
under some conditions.
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3. This process iterates until a given stopping criterion.

There exist several variants of ILS in the literature. Some accept worse
solutions with certain conditions. Others consider more than one type of
perturbation and apply them at specific steps of the algorithm.

Variable Neighborhood Search (VNS) The strategy for the Variable
Neighborhood Search involves iterative exploration (Randomly or system-
atically) of larger and larger neighborhoods for a given local optimum until
an improvement is located [58]. The strategy is motivated by three princi-
ples:

1. A local minimum for one neighborhood structure may not be a local
minimum for a different neighborhood structure.

2. A global minimum is a local minimum for all possible neighborhood
structures.

3. Local minima are relatively close to global minima for many problem
classes.

Numerous VNS variants can be found in the literature, namely reduced
VNS and skewed VNS.

Guided Local Search (GLS) is a deterministic meta-heuristic, applied
primarily to problems of combinatorial optimization [129]. The strategy
for the Guided Local Search algorithm is to use penalties to encourage a
Local Search technique to escape the local optima and discover the global
optima. A Local Search algorithm is run until it gets stuck in a local
optimum. The features from the local optima are evaluated and penalized,
the results of which are used in an augmented cost function employed by
the Local Search procedure. The Local Search is repeated several times
using the last local optima discovered and the augmented cost function
that guides exploration away from the discovered local optima.

2.1.1.3 Population-Based Metaheuristics

Like the Single Solution-Based Metaheuristic, some concepts need to be
cleared before exploring the P-Metaheuristic methods. This includes both
the initial population and the stopping criteria.

Population-based meta-heuristics are naturally more exploration-oriented
search algorithms due to the large diversity of initial populations, whereas
single solution meta-heuristics are more exploitation-oriented search algo-
rithms. The determination of the initial population is often disregarded
in the design of a Population-metaheuristic. Nonetheless, this step plays a
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crucial role in the effectiveness of the algorithm and its efficiency. The main
criterion to address in the generation of the initial population is diversifica-
tion. If the initial population is not well diversified there may be premature
convergence for any meta-heuristic population based [37]. For instance, this
may happen if the initial population is generated using a greedy heuristic
or a single solution-based meta-heuristic (e.g., local search, tabu search)
for each solution of the population. Many stopping criteria based on the
evolution of a population may be used. Some of them are similar to those
designed for single solution-based meta-heuristics [40].

• Static procedure: In a static procedure, the end of the search may be
known a priori. For instance, one can use a fixed number of iterations
(generations), a limit on CPU resources, or a maximum number of
objective function evaluations.

• Adaptive procedure: In an adaptive procedure, the end of the search
cannot be known a priori. One can use a fixed number of iterations
(generations) without improvement when an optimum or satisfactory
solution is reached.

Some stopping criteria are specific to population-based meta-heuristics.
They are generally based on some statistics on the current population or
the evolution of the population. Mostly, they’re related to population di-
versity. This stopping criterion deals with the stagnation of the popula-
tion. It’s useless to keep the execution of a population-based meta-heuristic
when the population stagnates. Many stopping criteria based on the evo-
lution of a population may be used. Some of them are similar to those
designed for single solution-based meta-heuristics [40]. Population-based
meta-heuristics share many common concepts. They could be viewed as
an iterative improvement in a population of solutions. A key difference
from other approaches is that there is some mechanism within the popu-
lation to exchange information between different candidate solutions [32].
First, the population is initialized. Then, a new population of solutions is
generated. Finally, some selection procedures are applied to integrate this
new population into the current one. When a given condition is met (stop
criterion), the search process is stopped. Algorithms such as Evolutionary
Algorithms (EAs), Scatter Search (SS), Estimation of Distribution Algo-
rithms (EDAs), Particle Swarm Optimization (PSO), Artificial Bee Colony
(ABC), and many others belong to this class of meta-heuristics.

Evolutionary Algorithms (EAs) Evolutionary algorithms are based
upon the simplified evolutionary biological model and natural selection [29].
They are based on the simplified biological model of evolution and natural
selection. EAs are population-based algorithms that process a whole set
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of candidate solutions simultaneously. While solving a particular problem,
the parameters of the problem create an environment in which potential
solutions can evolve, this promotes the evolution of good solutions. EAs act
on a population of possible solutions and include three steps: (1) selection,
(2) regeneration, and (3) replacement. In the selection phase: high-fitness
solutions are selected to be next-generation parents. In the regeneration
phase: two crossover and mutation operators are performed on parents who
have been selected in the selection and replacement phases: and the solu-
tions of the initial population are replaced by the newly created solutions.

2.1.1.4 Genetic Algorithms (GAs)

Genetic algorithms have been developed by J. Holland in the 1970s [63]
to understand the adaptive processes of natural systems. Then in the
1980s, they were applied to machine learning and optimization. GAs are
a hugely popular EAs class. GAs is traditionally associated with using a
binary representation but nowadays one can find GAs using other types
of representations. GA considers a solution to be a chromosome structure
that contains good and bad phenotypes. A GA usually applies a crossover
operator to two solutions that play a major role to produce new chromo-
somes called children chromosomes. The children are then mutated. The
mutated children’s fitness (quality of the solution) is then calculated, and
they are inserted into the population. While the mutation is bit flipping,
the crossover operator is based on the n-point or uniform crossover. The
population considered after crossing depends on the algorithm’s variant.
The first variant is the generational genetic algorithm (GGA) where the
population is constituted only by the new chromosomes. The second vari-
ant is the steady-state genetic algorithm (SSGA) where the children are
not inserted directly but are in competition with existing chromosomes.
Figure.2.2 presents a general flowchart of Genetic Algorithms.
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Figure 2.2 Basic scheme of a genetic algorithm [78].

Genetic Operators (Mutation & Crossover): Genetic operators are
considered a mechanism to generate evolution from one generation to an-
other generation. They are crucial for the genetic algorithm process. Note
that these operators are applications specific and different behavior is ex-
pected for each problem.

Once the initial generation (population) is created evolution takes place
by using these operators:

• Selection Operator (SX): The idea is to give preference to individ-
uals with good fitness scores and allow them to pass their genes to
successive generations. Generally, the roulette wheel and tournament
selection are used as selection operators. Examples of both operations
can be found in Figure.2.3 and Figure.2.4 respectively.
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• Crossover Operator (CX): Two individuals are selected using the
selection operator and crossover points are chosen randomly to ex-
change their genes in order to produce a new chromosome called
"children chromosome - offspring". Examples of both 1 and 2-point
crossover operators can be found in Figure.2.6.

• Mutation Operator (MX): A mutation is a change to a chromosome
that introduces variety into a population, allowing it to escape local
optima (premature convergence). An example of a ’Swap’ mutation
is illustrated in Figure.2.5.

Figure 2.3 Example of roulette wheel selection [122].

Figure 2.4 Example of tournament selection [7].
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Figure 2.5 Example ’swap’ mutation [39].

Figure 2.6 Example of 1 and 2-point crossover [75].

Swarm Intelligence (SI) Swarm intelligence is the study of collective
intelligence-inspired computational systems [15]. Collective Intelligence
emerges through large numbers of homogeneous agents working together
in the environment. Examples of this include bird flocks and ant colonies.
Such intelligence is decentralized, self-organized, and spread across an en-
vironment. Such systems are commonly used in nature to solve problems
such as effective food foraging, prey evading, or relocation to the colony.
Typically, the information is stored throughout the participating homo-
geneous agents or is stored or communicated in the environment itself,
such as by using pheromones in ants, dancing in bees, and closeness for
fish and birds. The paradigm consists of two dominant sub-fields (1) Ant
Colony Optimization investigating probabilistic algorithms inspired by ant
staggering and foraging behavior, and (2) Particle Swarm Optimization in-
vestigating probabilistic algorithms inspired by flocking and herding. Like
evolutionary computation, swarm intelligence ’algorithms’ or ’strategies’
are considered adaptive strategies and are typically applied to search and
optimization domains.
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Particle Swarm Optimization (PSO) was developed for continuous-
variable optimization. The main idea is that particles in the swarm fly
through an environment following the swarm’s fitter members and generally
biasing their movement towards historically good surrounding areas [38]. A
particle represents an individual of a group in a swarm and the solutions are
the positions (or the search places). Initially, random positions are assigned
to all particles in the space with small initial random velocities. Each
particle memorizes its current position in the search space and the best-
visited position. The best single position represents the particle’s individual
experience. The group’s experience represents the global best position the
population has found. Every particle has a movement speed that represents
the degree of change to the objective function that can occur in the next
iteration. At each iteration of the PSO algorithm, the movement speed and
the current position of an individual are updated. The movement speed
update is managed using three orientations:

1. The current speed of the particle multiplied by the inertia factor.

2. The tendency of returning to the previous individual experiences mul-
tiplied by a cognitive factor.

3. The tendency of a group’s experiences multiplied by a social factor.

Ant Colony Optimization (ACO) The Ant Colony Optimization (ACO)
algorithm is inspired by ants’ foraging behavior, specifically the communi-
cation of pheromones between ants regarding a good path between the
colony and a food source in an environment. It was first proposed by [25]
and is used for solving combinatorial optimization problems. ACO is used
to solve problems such as the problem of the traveling salesman, vehicle
routing and scheduling, and many others. Ants initially wander around
their surroundings at random. Once the food is located an ant will start
to lay pheromone in the environment. Numerous trips are undertaken be-
tween the food and the colony, and if the same route is followed that leads to
food, then an additional pheromone is set. In the environment, pheromone
decays, so older paths are less likely to be followed. The ants who choose
the shortest route randomly will be the fastest to return to the nest and
therefore this route receives pheromones earlier than other routes and then
it is more likely that ants will choose this route over others. The pheromone
trail strengthens as more ants follow the shorter path until no ants follow
the longer route. The strategy’s aim is to exploit historical and heuristic
information to build candidate solutions and fold the information learned
from building solutions into history. History is updated in proportion to
the quality of the best-known solution and decreased in proportion to the
usage of discrete solution components.
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During the search for optimal solutions, single solution-based algorithms
(e.g., local search, simulated annealing) manipulate and transform a single
solution, while a whole population of solutions is evolved in population-
based algorithms (e.g., particle swarm, evolutionary algorithms). These
two families have complementary characteristics [123]: single solution-based
meta-heuristics are exploitation oriented; they have the power to intensify
the search in local regions. Population-based meta-heuristics are explo-
ration oriented; they allow a better diversification in the whole search space.

2.1.2 Multi-Objective Combinatorial Optimization

Many industrial domains are concerned with large and complex optimiza-
tion problems involving many criteria. Indeed, optimization problems en-
countered in practice are rarely mono-objective. In general, there are many
conflicting objectives to handle. For instance, in designing a given product,
one must have to minimize its cost, maximize its quality (e.g., in terms of
physic, mechanic, or service), and minimize its environmental impact. In
fact, many diverse areas (e.g., engineering design, bio-informatics, logistics,
transportation, telecommunication, environment, aeronautics, and finance)
are concerned with multi-objective optimization problems (MOPs). In this
section, we give a brief description of Multi-Objective Combinatorial Op-
timization Problems (MOCOPs).

2.1.2.1 Definition

Multi-Objective Combinatorial Optimization can be defined as optimizing
F (x) = (f1(x), f2(x), ..., fn(x)) where x ∈ Fsol, n is number of objectives
(n ≥ 2), x being a vector of decision variables, Fsol is a set of feasible
solutions and fi(x) depicts objectives that we want to minimize/maximize
[24].

Unlike single-objective optimization, results are not a single solution but
a Pareto set [105] of optimal solutions where no improvement can be made
for an objective without sacrificing another objective. In mathematical
terms, Pareto dominance can be defined by:

A feasible solution x1 ∈ X dominates x2 ∈ X if ∀i ∈ 1, ..., k, fi(x1) ⩽
fi(x2), and ∃i ∈ 1, ..., k, fi(x1) < fi(x2) Therefore, a solution x∗ ∈ X is
called Pareto Optimal if there does not exist another solution that domi-
nates it. The set of Pareto optimal solutions denoted x∗ is called the Pareto
Front. For a multi-objective optimization problem, the front is bounded by
a nadir (worst solutions) and Ideal/Utopian solutions. This is illustrated
in Figure.2.7.
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Figure 2.7 Example of a Pareto front in a minimization problem [84].

2.1.2.2 Evaluating Multi-Objective Methods

Analyzing the performance of metaheuristic methods is a crucial task that
must be carried out fairly. This includes conducting an experimental design
process to determine which instances, parameters, and objectives to work
with first. The major difficulty in assessing multi-objective optimization
methods is that the output of the optimization process is not a single
solution but a set of solutions representing an approximation of the Pareto
front. A comparison between these sets of solutions is mandatory to identify
the best-performing approach. Before diving into metrics, there are two
concepts we need to consider. The first is convergence, which measures
the closeness of the solutions to the optimal Pareto front. The second is
diversity, which measures the spread of solutions across the set.

The first metric is the Generational Distance (GD) [142]. It works as
follows, the average overall solutions a ∈ A of the distance between solution
a and the closest solution in a reference set R:

GD(A,R) =
1

|A|

r∈R∑
a∈A

min dist(a, r) (2.1)

Where dist(a, r) is the Euclidean distance in objective space between
solution a and r. There exist another variant of the GD called Inverted
Generational Distance (IGD), which can be expressed as IGD(A,R) =
GD(R,A). Both are considered easy criteria to meet since having even
one close solution to the set yield an excellent score. Figure.2.8 shows an
example of Generation Distance calculation.
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Figure 2.8 Example of Generational Distance, Red lines show the distance
between approximation and the best approximation (Minimization) [80].

The second metric is the Epsilon indicator (ϵ) [142] which uses the
worst-case distance to the optimal Pareto front. This means if we have
multiple solutions close to the optimal Pareto front and one solution far
from it, ϵ will only consider the worst solution. The metric is harder to
meet, unlike GD. Figure.2.9 illustrates an example of the metric. The
epsilon metric of a set A with respect to a reference set R is defined as:

epsilon(A,B) = max
r∈R

min
a∈A

min
1≤i≤n

epsilon(ai, ri) (2.2)

Figure 2.9 Example of the Epsilon Indicator with the worst case distance
(Minimization) [80].

Finally, the hypervolume metric (HV ) [142] captures both convergence
and diversity. It looks at the multidimensional “volume” created by each

38



set, relative to a reference point. However, computing the hypervolume is
expensive.

HV (f ref , X) = Λ

( ⋃
Xn∈X

[
f1(Xn), f

ref
1 )

]
× · · · ×

[
fm(Xn), f

ref
m )

])
(2.3)

Where HV (f ref , X) resolves the size of the space covered by an ap-
proximation set X, f ref ∈ R refers to a chosen reference point, and Λ
refers to the Lebesgue measure. According to the example in Figure.2.10
the hypervolume metric compares a multidimensional volume determined
by the approximation (red) to the volume determined by the best-known
approximation (black), relative to a reference point.

Figure 2.10 Example of the Hypervolume Indicator (Minimization) [80].

2.1.2.3 Frameworks for Metaheuristics

This section discusses the benefits of using a framework for metaheuris-
tics. Frameworks are classified into two types: white-box frameworks and
black-box frameworks. Components in black box frameworks can be reused
together without having to worry about how they accomplish their tasks.
White box frameworks, on the other hand, necessitate a more in-depth un-
derstanding of how components work. This allows for greater customization
and freedom for users but comes with a steeper learning curve.

A framework is designed to provide a convenient testing environment
for complex problems. However, multiple criteria must be met to satisfy
the needs of developers who use the framework[123]:

• Code reuse: This minimizes introducing major changes to the existing
code base. users should be able to develop a simple problem-specific
code without needing deep knowledge of the framework.
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• Adaptability: Adding features or metaheuristics should be possible.
This is because most frameworks won’t have every metaheuristic
available to use but only the most known approaches (such as evolu-
tionary algorithms).

• Efficiency: This includes both performances in terms of time/space
complexity and also run time. Capabilities such as cross-platform
support and parallel/distributed computing are of huge advantage.

jMetalPy [10] is a Python framework for single/multi-objective opti-
mization that provides parallel computing capabilities and user-friendly
visualization tools. This framework can be used to develop custom evolu-
tionary algorithms/operators and define new problems.

We highlight jMetalPy [10], an object-oriented Python-based framework
for single/multi-objective optimization with metaheuristic techniques. It
is based on the jMetal framework (in Java) and inherits most of its fea-
tures. What makes jMetalPy special is the fact that it uses the python
ecosystem, which includes many popular libraries for data processing, anal-
ysis, visualization, and parallel computing. A wide variety of algorithms
are implemented such as local search, Genetic Algorithms, and simulated
annealing along with multi-objective Genetic Algorithms such as NSGA-
II (non-dominated sorting genetic algorithm) [121] and SPEA2 (Strength
Pareto Evolutionary Algorithm) [143]. The framework makes it simple to
create new custom problems, genetic operators, algorithms, and test in-
stances. Furthermore, known benchmark instances such as the ZDT [141]
can be used easily. Performance indicators like the hypervolume metric are
already implemented. Compared to DEAP [46] or PYMOO [12], jMetalPy
is found to be more mature. We will be utilizing the jMetalPy libraries to
implement our optimization algorithms, rather than coding the algorithms
from scratch. This approach allows us to leverage the powerful features and
capabilities provided by the jMetalPy framework, such as parallel comput-
ing and visualization tools, while focusing on the development of custom
evolutionary algorithms and problem definitions specific to our project.

2.1.2.4 Multi-Criteria Decision Making

Multi-Criteria Decision Making (MCDM) is a subset of the Operations
Research (OR) field that deals with decision problems involving multiple
decision criteria. Mathematical optimization problems with multiple objec-
tive functions are a common example. Because most real-world problems
have multiple objectives, choosing the best solution can be difficult, espe-
cially since these objectives frequently conflict with one another. We list
some of the methods used to select the best solution from a set of final
solutions.
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Compromise Programming Compromise Programming tries to find
the closest solution to the ideal point [92]. This is done by reducing the
size of best-found solutions. The decision maker must provide weights to
identify which objectives are more privileged than others. A decomposition
function is later applied to find the best solutions. An example with 2
objectives is provided below in Fig.2.11.

Figure 2.11 Example of compromise programming applied on Bi-objective
problem (Minimization) [13].

Pseudo Weights Pseudo Weights calculates the normalized distance to
the worst solution regarding each objective i [33]. Please note that for non-
convex Pareto fronts the pseudo weight does not correspond to the result
of an optimization using the weighted sum. However, for convex Pareto-
fronts the pseudo weights are an indicator of the location in the objective
space. The following equation provides the pseudo weight wi for the i-ith
objective.

wi =
(fmax

i − fi(x))/(f
max
i − fmin

i )∑M
m=1(f

max
m − fm(x))/(fmax

m − fmin
m )

(2.4)

The steps are rather simple. First, we get nadir (ideal) points from the
Pareto front. We proceed to calculate the normalized distance to the worst
solution for each objective wi. Finally, we find the closest solution to the
normalized distance.

High Trade-off Points The high trade-off method, proposed by [31]
involves selecting high trade-off points with neighboring solutions above
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an upper threshold. This threshold was defined as the average trade-off
plus twice the standard deviation using the entire Pareto-optimal set of
solutions. After several knee points (high trade-off points) are identified,
the one having the most balanced pseudo-weight vector among them is se-
lected. Figure.2.12 and Figure.2.13 show an example of 2 and 3-dimensional
solutions.

Figure 2.12 Example of High Trade-off Points applied on Bi-objective prob-
lem (Minimization) [13].
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Figure 2.13 Example of High Trade-off Points applied on 3 Objectives prob-
lem (Minimization) [13].

2.1.3 Multi-Objective Genetic Algorithms

The complexity of MOPs becomes more and more significant in terms of
the size of the problem to be solved (e.g., number of objectives, size of the
search space). Moreover, the search time for solving these problems must
be reasonable for most of the MOPs encountered in practice. The optimal
solution for MOPs is not a single solution for mono-objective optimiza-
tion problems, but a set of solutions defined as Pareto optimal solutions.
There are four classes of multi-objective metaheuristics currently used in
the literature.

• Scalar-based approaches: transforms a MOP into a mono-objective
problem by aggregating various objectives fi into a single objective
function F . These approaches require the decision maker to have
a good knowledge of his problem. Despite being simple and having
a low computational cost, these methods lack diversity and are also
sensitive to constraints.

• Criterion-based approaches: In these methods, search is performed
by treating objectives separately. Both Vector Evaluated Genetic
Algorithm (VEGA) and Ant Colony Optimization (ACO) are widely
used criterion-based approaches.
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• Dominance-based approaches: These methods use the concept of
dominance and Pareto optimality to guide the search process. The
objective vectors of solutions are scalarized using the dominance rela-
tion. Examples of dominance-based approaches include NSGA-II and
III (non-dominated sorting genetic algorithm) and SPEA2 (strength
Pareto evolutionary algorithm). In dominance-based approaches, a
solution is considered dominant if it is better than another solution
in at least one objective and not worse in any other objective. This
helps in finding a set of solutions that are not dominated by any other
solution, which is known as the Pareto front.

• Indicator-based approaches: In these methods, performance quality
indicators are used to drive the search toward the Pareto front. An
example of such an approach is IBEA (indicator-based evolutionary
algorithm). Indicator-based approaches use specific measures to eval-
uate the quality of a solution, and the search process is guided by
these measures to find the optimal solutions.

We will be using both Dominance and Indicator-based methods found in
the literature due to their proven efficiency in handling complex problems
[71, 55]. We cover each selected multi-objective metaheuristic in more detail
below:

2.1.3.1 Non-dominated Sorting Genetic Algorithm II (NSGA-
II)

The Non-dominated Sorting Genetic Algorithm (NSGA II) is implemented
based on the original design of NSGA [121]. The algorithm follows the
general outline of a genetic algorithm with a modified mating and survival
selection [34].

In NSGA-II, solutions are selected front-wise. By doing so, there will
be a situation where a front needs to be split because not all solutions are
allowed to survive. In this splitting front, solutions are selected based on
crowding distance. Figure.2.14 shows an example of multiple fronts for a
bi-objective minimization problem. The figure demonstrates the concept of
Pareto optimality, where solutions on the same front are considered equally
optimal, and solutions on a lower front are more optimal than those on a
higher front. The W (k) notation simply denotes the different fronts in the
figure, with k representing the front number.
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Figure 2.14 Example of a Bi-Objective Minimization Problem with Multiple
Pareto Fronts

The crowding distance is the Manhattan Distance in the objective space.
However, the extreme points are desired to be kept every generation and,
therefore, get assigned a crowding distance of infinity. Furthermore, to
increase some selection pressure, NSGA-II uses a binary tournament mating
selection. Each individual is first compared by rank and then crowding
distance. This process is illustrated in Figure.2.15.

Figure 2.15 Crowding distance sorting example.

Overall, NSGA-II is one evolutionary algorithm that has the following
three features:
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• It uses an elitist principle, i.e., the elites of a population are given the
opportunity to be carried to the next generation.

• It uses an explicit diversity-preserving mechanism (Crowding dis-
tance).

• It emphasizes the non-dominated solutions.

Figure 2.16 Flowchart of NSGA-II [104].

46



2.1.3.2 Non-dominated Sorting Genetic Algorithm III (NSGA-
III)

Non-dominated Sorting Genetic Algorithm III is a genetic algorithm that
solves multiple optimization problems simultaneously by applying a non-
dominated sorting technique [35]. It uses a reference points-based selection
operator to explore solution space and preserve diversity.

Most evolutionary many-objective optimization algorithms, for instance,
NSGAIII or MOEA/D, start with a description of several predefined sets of
reference points (or directions) on a unit simplex. NSGA III uses a different
selection mechanism that relies on associating solutions to reference points
before applying a niche preservation operation. A complete flowchart of
the NSGA-III is illustrated in Figure.2.17.
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Figure 2.17 Flowchart of NSGA-III [126].

The first steps are similar to the non-dominated sorting done in NSGA-
II. Figure.2.18 shows an example of a bi-objective problem with 3 fronts.
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Figure 2.18 Example of Bi-Objective minimization problem.

From the splitting front, some solutions need to be selected. NSGA-
III fills up the underrepresented reference direction first. If the reference
direction does not have any solution assigned, then the solution with the
smallest perpendicular distance in the normalized objective space is surviv-
ing. In case a second solution for this reference line is added, it is assigned
randomly. Thus, when this algorithm converges, each reference line seeks
to find a good representative non-dominated solution. This is illustrated
in Figure.2.19. There are 5 reference directions in this example, but the
number of criteria can vary depending on the problem being solved. S
refers to the set of solutions in the splitting front, and FL represents the
set of solutions in the L-th front. The figure aims to demonstrate the
process of selecting solutions in NSGA-III, where each reference direction
seeks to find a good representative non-dominated solution. The solutions
are chosen based on their perpendicular distance in the normalized objec-
tive space, and additional solutions for the same reference line are assigned
randomly.
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Figure 2.19 Solution selection in NSGA III.

2.1.3.3 Multi Objective Evolutionary Algorithm by Decomposi-
tion (MOEA/D)

MOEA/D is a multi-objective optimization algorithm [138], based on the
idea of decomposing the multi-objective function into several scalar func-
tions through aggregation functions and optimizing each objective in par-
allel with some effective evolutionary algorithms. The diversity of the pop-
ulation is controlled by the weight vector, which indicates each objective’s
importance.

MOEA/D requires an aggregation function to transform a multi-objective
optimization problem into N sub-problems. The Tchebycheff approach is
the most common in the literature due to its reliability. It’s also used in
this paper.

min gte(x|λ, z∗) = max1≤i≤m {λi|fi(x)− z∗|} subject to x ∈ Ω.
Where z∗ is the reference point and z∗i = min{fi(x)|x ∈ Ω}, i = 1, ...,m.

While λ = (λ1, ..., λm) is the weight vector. Different sub-problems in
MOEA/D have different weight vectors [51].
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2.1.3.4 Indicator-Based Evolutionary Algorithm (IBEA)

IBEA was first suggested by Zitzler et al.[142], it presents an indicator con-
cept to comprehensively evaluate the solution quality. A quality indicator
is a general function that maps k Pareto set approximations to a real num-
ber, which is an extension of the dominant relationship. The indicators
are utilized to measure the quality of solutions at each generation and to
select the solution set with better quality value than that of the previous
generation. Because the indicator is a comprehensive evaluation, IBEA
does not require an additional diversity maintenance mechanism. This is
the advantage of IBEA over MOEA/D and NSGA2 [90].

There are two typical IBEA indicators: hypervolume indicator and ad-
ditive epsilon indicator. The first one is the hypervolume indicator, which is
a comprehensive quality evaluation method of the solution set. It evaluates
coverage, homogeneity, and universality simultaneously, and then obtains
comprehensive evaluation results. A solution with a larger hypervolume
score dominates the one with a smaller indicator score. The second one
is the additive epsilon indicator [139], which is a binary quality indicator
and is defined as the minimum distance needed for a solution to dominate
another solution. Based on the distance in objective space, un-dominated
solutions can weakly dominate other solutions. The additive epsilon indi-
cator is easy to be used to compare the quality of two solutions relative to
each other because of its strong separating capacity.

2.1.3.5 Strength Pareto Evolutionary Algorithm (SPEA-2)

SPEA 2 [143] is an extension of SPEA (Strength Pareto Evolutionary Al-
gorithm) [144]. SPEA 2 first initializes a population of candidate solutions
Pk, then stores the best solutions in an explicit archive Ak, separate from
the population. To emphasize non-dominated individuals, SPEA 2 uses
a combination of the dominance count and the dominance rank methods
[82]. Each individual is assigned a raw fitness value depending on both the
number of individuals it dominates and the number of individuals by which
it is dominated. The density information is expressed as a function of the
k-th smallest Euclidean distance in the objective space to the k-th nearest
neighbor. The non-dominated individuals from the union of the archive
and the current population are then updated.

In particular, if the number of non-dominated individuals is less than the
pre-established archive size, some dominated individuals from the current
pool form part of the archive. Otherwise, some individuals are removed
from the archive using a truncation operator.

This procedure recursively removes individuals based on the nearest
neighbor Euclidean distance. If there is more than one candidate solution
with the same minimum distance, then the decision is made by considering
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the second nearest neighbor, and so forth.
The mating pool used to generate the next population Pt + 1 is filled

by the individuals of the updated archive selected on the basis of a given
selection mechanism. The off-springs are then generated by a set of varia-
tion operators as in the previously discussed algorithms like NSGA-II and
NSGA-III.

2.1.4 Parameter Tuning

Generally, the performance of evolutionary algorithms is sensitive to the
choice of hyperparameters. Hyperparameters can be defined as values we
can tune manually from the algorithm itself, like the probability of muta-
tion, crossover, learning rate, number of solutions, etc. The optimal pa-
rameter values are determined primarily by the problem and test instances
that the user wishes to solve.

Unfortunately, there is no universal parameter tuning approach that
applies to all problems; however, two distinct strategies exist:

• Off-line: The values of parameters are fixed before the execution
of the metaheuristic. This strategy does not provide real-time pa-
rameter updates, but it can incorporate all available data into its
parameter-tuning phase at the time of execution.

• Online: The values are updated adaptively during the execution of
the metaheuristic. The primary operational challenge of this strategy
is that data must be processed incrementally. Because of the amount
of computation involved in each iteration, real-time results are not
always possible and can provide lower scores.

After considering the benefits and drawbacks of each parameter opti-
mization strategy, we choose the offline method due to its robustness and
the fact that we must test on the entire dataset to account for changes in
the data state. The irace package [94] provides an automatic configuration
tool for tuning optimization algorithms given a set of instances of an op-
timization problem. It implements the iterated racing procedure, which is
an extension of Iterated F-race [11]. Figure.2.20 gives a general scheme of
how irace works.
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Figure 2.20 Flowchart of irace workflow [94].

irace operates as follows: it receives as input a parameter description file
(“parameters.txt”) that defines the parameters of the target algorithm that
will be tuned. Users can define parameter names, types, possible values,
conditions, etc.

Training and test instances for which the parameters must be tuned
are placed inside the “Instances” folder. Additional options specific to irace
can be found inside the “scenario.txt” file. This can include the time limit,
the maximum number of runs, execution file path, parallel computing,
etc. irace moves through the parameter search space in search of good-
performing algorithm configurations, for doing so irace executes the target
algorithm on different instances and different parameter configurations.

To execute the target algorithm with a specific parameter configuration
θ and instance i a "targetRunner" must be provided. The “targetRunner”
acts as an interface between the execution of the target algorithm and
irace, it receives the instance and configuration as argument and must
return the evaluation of the execution of the target algorithm. Typically,
“targetRunner” includes the path to the algorithm execution path. Note
that irace assumes minimization by default, if a user wishes to maximize
the evaluation score, they need to multiply the score by -1 within their
algorithm.

To fairly compare the performance of each algorithm, the i-race pack-
age is used to find the best-performing parameters (elite configurations)
based on the average best-chosen performance metric across different test
instances.
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2.2 Timetabling Problems
Timetabling is one of the most tedious and time-consuming tasks for any
institution, and it has consequently received considerable attention over
several decades.

Institutions and universities dispose of different environments and work-
ing places, which implies various constraints and real cases to be solved.
Researchers throughout the years tried to bring forward different solution
methods and procedures to face the increasing difficulty of these problems.
Although the problem has broad similarities across different institutions,
each use case is unique in general, because institutions have different rules
and use different terms to evaluate the quality of solutions.

Terminology Definition

Event An activity (course, training, exam, etc.) to be
scheduled.

Time slot (time period) An interval of time (with a starting and ending
date) in which events can be scheduled.

Resource
Resources required by events. Can be a class-
room or special equipment (i.e., screen projec-
tor)

Constraint
A restriction to schedule the events. Room ca-
pacity can be considered as a constraint for ex-
ample.

Conflict Two events sharing at least one common re-
source and scheduled at the same time slot.

Table 2.1 Timetabling common terminology.

For any timetabling problem, several constraints must be satisfied for
a timetable to be feasible. There are usually two main types of constraints
which are: Hard constraints consist of a set of essential requirements which
must be met in full. A timetable that meets essential constraints is feasible
and thus can be called a valid timetable. If hard constraints are broken, the
timetable is no longer valid. Hard constraints may include, for example,
forbidding trainers or classrooms from being scheduled to different courses
at the same time. Generally, the solution for most timetables is to satisfy
hard constraints. Soft constraints consist of a set of desirable requirements
which does not have to be fully met. This means that these constraints
can be violated, and the timetable will still be valid. Soft constraints can
include specific features such as personal preferences, events or resources,
and geographical location. The satisfaction of soft constraints can make one
valid timetable better than another [135]. According to Ross et al. [112],
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hard and soft constraints can be categorized into four main classes which
are listed below:

1. Unary constraints, which concern a single event. For example: “Event
A must be scheduled on a specific day”.

2. Binary constraints involve two events. For example: “Event A must
be allocated after Event B”.

3. Capacity constraints, typically involve room capacities. For example:
“Events must be scheduled in rooms that possess sufficient capacity”.

4. Event spread constraints; they handle the distribution of events within
the timetable. Events can be close (“clumping together”) or separated
(“spreading out”).

2.2.1 Educational vs Professional Timetabling

A variety of articles published in recent years address the problem of course
scheduling and many other related such as exams, conferences, universities,
and school schedules. We will discuss the difference between them and
explain why the problem we’re dealing with in this research is different.

Figure 2.21 Family of known scheduling problems. An extension from [92].

2.2.1.1 University Timetabling

University timetabling is part of the broader family of scheduling problems.
University scheduling addresses the planning of lectures and seminars at
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universities [113]. In practical terms, the goal is to assign teachers and
courses to rooms and periods.

The timetable has a huge effect on students’ and staff’s weekly sched-
ules because it restricts their other activities. Many of the resources of a
university are dedicated to teaching, both in terms of the staff time required
to prepare and produce materials, and in terms of space where universities
must assign lecture and classroom space. It is therefore necessary to build
high-quality timetables that meet the needs of students and staff and allow
efficient use of the resources. The term teachers refer to professors and lec-
turers, while the duration of a period is defined by the length of one lesson.
The planning period usually comprises one week, and the planning cycle
repeats each semester or term. A course means a group of students to be
instructed on a specific topic. Many topics are covered in several lectures
or classes and may even be given by several teachers in parallel. The first
constraint is allocating all courses to the schedule. Another straightforward
requirement is to prevent double assignments of courses or rooms (cannot
be assigned more than once in the same time period). The availability and
capacity of rooms are also considered. In addition to the feasibility of the
solutions found, a second objective addresses preferences established by the
teachers for periods as well as rooms, in most cases this preference is to be
respected as much as possible while preserving feasibility. In some cases,
this is considered a soft constraint.

2.2.1.2 School Timetabling

School scheduling addresses the planning of school lessons which involves
the assignment of teachers, subjects, and courses to rooms and periods [114].
Furthermore, in school timetabling, the assignment of rooms is only a mi-
nor problem, as every class will have a dedicated classroom. In schools,
most courses could be handled by several teachers, so the situation here
differs from that in university scheduling where teachers and courses can be
identified with each other. A course denotes a class of students. A period
represents a lesson. The planning horizon comprises a week. The results of
the planning process are valid for the complete school term. Most subjects
are taught in several courses and can be administered by several alterna-
tive teachers. Hence, in school scheduling courses, subjects, and teachers
cannot be identified with each other, so all these planning objects must be
dealt with explicitly. In addition, no concurrent events constraint is ap-
plied to the school timetable as well. A new constraint known as schedule
compactness can be found in some works where the schedule may contain
no idle periods (or empty holes).
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2.2.1.3 Professional Course Scheduling

Courses delivered in a professional environment, aim to confer expertise or
skills and thus qualify as training rather than education. They are business-
centered and goal-oriented, often preparing trainees or company employees
for evaluation or certification. Training material is therefore following a
specific learning path. This means that usually, a greater number of con-
straints and objectives will have to be dealt with in making the timetable.

The problem discussed in this work might fall in the same category of
academic timetabling but in fact, it totally differs in many aspects. To
add more clarity, the problem handled in this article falls under the “pro-
fessional course scheduling” category [52] which is separate from academic
timetabling.

Figure 2.22 Professional Course Scheduling belongs to the family of Edu-
cation Timetabling [52].

Both problem categories have common constraints related to resource
characteristics (room size, teacher’s preferred days, etc.). In professional
course scheduling, teachers can be referred to instructors, tutors, or trainers
charged with conducting the training. Several other differences are worth
pointing out:

Objectives: Most academic timetabling works are single-objective (e.g.,
maximizing planned events, minimizing empty classrooms) while the prob-
lem considered in this work has multiple competing objectives.

Planning window: Academic timetabling focuses on covering small
periods of time (typically one or two weeks) with courses that are offered
on a regular basis over a longer length of time (semester or year). We will
be dealing with longer spans of time in this article (months or years).
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Feasibility: In exam-timetabling works, most exams if not all, must be
scheduled, but in our circumstances and due to a lack of available resources,
it’s possible to find no acceptable timetable for some events.

Locations: Another key difference compared to academic timetabling
is the accessibility to resources in other sites (national/international).

Professional scheduling does not involve the assigning of employees to
classes, as the organization or the training provider handles this.

• Different teachers may follow the same course. However, some train-
ers will typically be eligible to cover only a few courses which require
advanced skills.

• Whereas the scheduling of academic courses seeks to find regular
schedules that can be replicated at regular intervals, often one week.
Professional course schedules, on the other hand, are non-repetitive
and typically span a longer planning period that can range from
months to even years.

In certain instances, longer courses are broken into small chunks, fol-
lowing a defined order. The timetable needs to include all the chunks while
acknowledging the constraints that are required by the course. For exam-
ple, a course may need a special classroom or equipment. Also, a course
may require to be scheduled in specific hours or days. Each course has its
own duration, which can range from hours to days.

Many limitations are similar to university or high school timetabling
problems (resource availability, no concurrent resource allocation). By re-
source, we mean teachers, classrooms, and equipment. Trainings often
adhere to a time frame defined by a start and end time that must be set.
One issue with educational scheduling is having one objective defined (e.g.,
maximizing scheduled courses, exams, and classrooms). Nonetheless, in-
stead of trying to find a schedule for all the subjects, which is difficult in
certain situations, we must accept the fact that some courses simply cannot
be scheduled. Therefore, the main goal isn’t to try to find a feasible solu-
tion but to also consider other objectives that can lead to a better quality
of the timetable such as an even distribution of teacher workload for ex-
ample. Furthermore, because timetables frequently need to be modified or
fully remade (e.g., school timetables are often redesigned at the beginning
of each academic year, bus timetables need to be adapted to deal with new
road configurations and bus stops, and new courses need to be arranged,
etc.), timetables will have to adapt to such changes. Nevertheless, unfore-
seen disturbances can occur, and changes may be needed. For example, if
at any time a resource is inaccessible, an alternate solution must be sought,
and the timetable must be updated.

58



2.2.2 Metaheuristic Approaches to Timetabling Prob-
lems

In recent years, the issue of Timetable Scheduling has been attracting con-
siderable attention from the scientific community. This led to the cre-
ation of a series of conferences called the PATAT (Practice and Theory
of Automated Timetabling) in 1995, which has since been held every two
years. In 2002, PATAT helped establish the International Competition of
Timetabling (ITC 2002) and the famous ITC 2007. The literature has al-
ready suggested many different methods for solving timetabling problems
such as graphs, where the events are ordered, and then assigned sequen-
tially into valid time slots [18]. Metaheuristic methods were also used, such
as Genetic Algorithms (GA) [36], simulated annealing [8], tabu search [17],
and other heuristic approaches, that tend to be inspired by nature or by
natural processes and phenomena.

2.2.2.1 Main categories of optimization algorithms for timetabling

According to Lewis et al. [89], meta-heuristic algorithms for timetabling
can be generally categorized into three main classes:

One-stage optimization algorithms: this strategy looks for a solution
that can adequately satisfy both hard and soft constraints. The violation
of both hard and soft constraints is allowed.

The major advantage of the one-stage approach is that it is compara-
tively easy to implement and change constraint weights. Typically, hard
constraints have much higher penalties when violated than soft constraints.
At the same time, the search must seek to find feasibility and optimality.

However, this approach has not been very successful at finding solutions
for complex problems, because of several disadvantages:

• The choice of weights is often arbitrary; there is no generally appli-
cable scheme for setting the weights and they are often very specific
to the problem at hand.

• A small change in the timetable often results in a large change in the
penalty score (i.e. when a hard constraint has been violated), making
the fitness landscape more difficult to navigate.

• The incorporation of soft constraints could take the solution further
away from attractive (feasible) regions of the search space.

Two-stage optimization algorithms: during the first stage, only hard
constraints are considered, after a feasible timetable has been constructed,
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the second stage aims to minimize any soft constraint violations, without
breaking the feasibility of the timetable (neighborhood operations must not
violate hard constraints).

The success of this approach depends on two criteria:

• It must be possible to find an initial feasible timetable in a short time.
If feasibility is very hard or even impossible to achieve, the algorithm
might never reach the second stage; in this case, a one-stage approach
could produce at least a solution with a suitable compromise between
hard and soft constraints violation.

• During the second stage, search space must not be strongly con-
strained otherwise neighborhood moves might find it difficult or even
impossible to reach another possible solution.

Algorithms which allow relaxations: violations of hard constraints
are prevented by relaxing the problem (e.g., adding more available days,
more available time periods). This approach relaxes the problem by either
initially leaving some events unassigned, which cannot be feasibly sched-
uled anywhere, or by opening additional time slots when an event cannot be
assigned to any of the existing time slots. The produced timetables conse-
quently never contain any hard constraint violations, but don’t necessarily
include all events or have the required number of times-lots. The goal of
the relaxation algorithms is to minimize the soft constraint violations as
well as simultaneously trying to remove all of the relaxations. Whereas the
quality of a candidate timetable during the first stage of the two-stage ap-
proach is measured by the number of hard constraint violations, the quality
of the relaxed timetable is measured by the distance to feasibility, i.e. the
number of unassigned events or the number of excess time-slots opened.

2.2.2.2 State of the art of professional course scheduling

In this part, we outline the contributions of works that address profes-
sional and educational timetabling issues in real-world settings. While the
subject we’re addressing falls within the category of "professional course
scheduling," as defined by Haase et al. [52], most techniques focus on ed-
ucational timetabling. Table.2.2 provides a summary of relevant works to
our research.
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At first glance, Table.2.2 shows that the majority of works manage
timetabling problems utilizing a two-stage technique. This is the most
common type of optimization strategy for timetabling; as we’ve seen, this
method aims to satisfy only hard constraints before applying optimization
methods to improve solutions.

Metaheuristics such as Genetic Algorithms (GAs), Tabu Search (TS),
and Simulated Annealing (SA) with other local search techniques (LS, ILS,
LNS) were applied in all of the works. This variety of options demonstrates
that the challenges are distinct and that there is no single best method that
performs better than others. While the majority of the works deal with a
single objective, certain works in the professional timetabling problem cat-
egory, such as Czibula et al. [27] and Derigs et al. [36], are multi-objective,
confirming that this category of timetabling problems is rarely expressed
in a single objective.

Moving on to popular initialization strategies, this phase is critical for
providing initial feasible timetables. We find that works are divided into
two categories: random techniques that produce many solutions that are
later fixed, and heuristics that try to only supply valid solutions while limit-
ing the time required to repair infeasible timetables. In terms of timetabling
operators, we discover a variety of genetic operators such as the Cycle
Crossover (CX), the Order Crossover (OX), and the simpler 1- or 2-point
crossover/mutation. Various local search neighborhood operators, most
notably the Swap, Kempe, and Move operators, are also utilized.

Moving on, we’ll look at how objectives are quantified, and we’ll see
that most works aggregate their objectives into a single cost function. De-
spite being a prevalent approach in the literature, this strategy does not
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provide the option to choose which objectives to focus on when picking
final solutions. Finally, studies differ in terms of the data they used to
test their techniques. While educational works emphasize both ITC2007
and historical data from schools, professional timetabling papers emphasize
their company’s historical data [36, 52, 27]. In the parts that follow, we go
through the contribution of each work in further detail.

(1) The first work resembles the problem found at Mandarine Academy,
done by Derigs et al. [36], which utilized a multi-objective genetic algorithm
to reduce expenses and increase the number of planned events at the Ford
Service Organization.

The authors developed a web-based decision support system that allows
planners to generate, analyze, and compare various timetables suggested by
the system. Their problem handles the scheduling of courses and trainers
over a period of 3 months with 8 hard constraint categories and 1 soft
constraint.

The authors define a feasible solution as a timetable that considers the
following 8 hard constraints:

1. A trainer is allowed to teach courses in which he is specialized only.

2. A trainer cannot teach more than one course at a time.

3. A trainer cannot be scheduled for a period in which he is not available.

4. At every time a room can only be assigned to at most one course.

5. For its entire duration every course is assigned exactly one suitable
trainer and one suitable room as well as the necessary units of equip-
ment.

6. Every course is scheduled without a weekend break.

7. Every course has to end before its deadline.

8. Rooms and trainers are not available during course preparation, which
is performed immediately before the start of a course. Here, a week-
end between preparation and the course is allowed.

They also defined one soft constraint:

1. For every trainer the number of teaching days should be at most 75%
of the number of potential teaching days.

Since this work deals with a real-world complex professional course
scheduling problem, three different objective functions are used:
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1. Maximize the total number of courses that are offered. In contrast
to most educational timetabling problems, not all courses can be
scheduled.

2. Maximize the weighted number of courses that are offered. For each
course, a priority is defined. Some courses are more privileged.

3. Maximize the number of teaching days.

Their work follows the two-stage optimization approach. The first stage
is a construction heuristic that starts with an empty schedule and a list of
courses to schedule ordered by a priority scheme defined by the authors.
The heuristic starts by finding a start/end time for a suitable room, then
checks for trainer availability and finally equipment. If everything is avail-
able a schedule for that course is made. Any infeasible course remains
unscheduled. The second stage involves Genetic Algorithms that aim to
provide a fair workload among trainers.

To test their approach, 2 Data-sets with historical data are used:

1. Cologne 2/2003: 96 courses, 5 trainers, and 6 rooms with 217 training
days.

2. Cologne 3/2003: 110 courses, 6 trainers, and 6 rooms with 225 train-
ing days.

Their method which takes 2 minutes of CPU time was found to be faster
and more accurate than a manual solution that takes about six weeks of
manpower. For the Cologne 2/2003 dataset, their approach was able to
schedule all courses. For the Cologne 3/2003 dataset, GAs were able to
schedule 81 courses with 150 training days. The provided solutions were
approved by an expert as valid.

(2) Matias et al. [98] tackled the university course timetabling problem
by combining a Genetic Algorithm (GA) with Guided Local Search (GLS).
The initial population of timetables is generated randomly using genetic
operators, if a solution is found unfeasible, a guided repair is employed.
Authors consider a timetable valid if it respects all defined hard constraints.
Hard and soft constraints are listed below:

1. A teacher could not attend two classes at the same time.

2. A teacher attends only one course in one room at each time slot.

3. At each daily timeslot in one classroom, only one group of students
and one teacher could attend.

4. The capacity of the classrooms should be considered.
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5. All courses required for each student must be scheduled,

6. An exact number of teaching periods of the course required in the
curriculum must be completed.

7. An uninterrupted period required for a class should be exactly as-
signed exactly on a given day.

The soft constraints are described as follows:

1. Teacher’s priority timeslots are considered.

2. Teachers might have unavailable or pre-assigned periods.

3. Teachers are limited to 4 preparations.

4. Teachers are limited to 21 or fewer units’ load.

5. Maximum teaching hours in the classroom is 4.

6. A group of students should be vacant for at least one period a day.

7. Rooms might have unavailable or pre-assigned periods.

In case some solutions are invalid, a repair operator will focus on satisfy-
ing hard constraints to make the solution feasible. Their objective function
was to reduce the number of hard and soft constraint violations (Minimiza-
tion). To evaluate their approach, the authors used a real-life dataset from
the department of information technology at Caraga State University.

The dataset comprises more than 100 courses that are needed to be
assigned to a timetable with 45 time slots corresponding to 6 days of 9
hours each.

The results show the proposed method is better compared to an older
implementation using only a simple genetic algorithm. The approach was
able to generate a timetable with a 61% fairness index (using Jain’s Fairness
Index) and no hard constraint violations, compared to a 15% fairness index
when using the older approach.

(3) Another work used Genetic Algorithms, Niknamian [103] applied
a multi-objective non-dominant sorting genetic algorithm (NSGA-II) to
schedule courses in the Department of Industries at the Islamic Azad Uni-
versity. This two-stage approach uses a random approach to generate so-
lutions that are then grouped in a weekly program and assigned to specific
time slots. The produced solutions must respect defined hard constraints
to be valid. The author considers the following hard constraints in their
work:
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1. Curriculum of lecturers based on the hours of their university atten-
dance.

2. Each lecturer cannot tutor more than one lesson during each time
period.

3. Each lecturer cannot teach for more than a specific time per day.

4. Creating provisions for all the groups of a tutorial.

5. A classroom does not have the possibility of holding more than one
tutorial at every time period.

6. Classroom Capacity.

7. Lecturers can only teach for specific periods throughout the week.

8. Obligatory attendance of a faculty member for impromptu counseling

The author considers the following soft constraints in their work:

1. The preference of engaging faculty members rather than having vis-
iting lecturers.

2. Minimizing the presentation of tutorials at the closing time period of
each day.

3. Each lecturer cannot teach for more than a specific time per day.

4. The conduction of synchronous and optional courses.

5. The excellence of lecturers.

6. Maximizing the deployment of lecturers.

7. Maximizing the utilization of a classroom by a lecturer.

Following this, NSGA-II tries to optimize solutions based on defined objec-
tives and soft constraints. Furthermore, the author introduces two custom
genetic operators that are adapted to the chosen solution’s representation.
To evaluate the quality of the proposed approach, the authors use the fol-
lowing metrics:

1. NDt: Ratio of days for the attendance of lecturers.

2. Qt: Quality level of lecturers in programming.

3. St: Ratio of simultaneous courses.

4. Rt: Ratio of lessons rendered in the final time period.
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(4) Haase et al [52] developed a construction heuristic with Local Search
for solving a professional course scheduling problem at Lufthansa Techni-
cal Training. Their objective function was to maximize the profit margin
induced by a schedule.

The author’s approach consists of a heuristic algorithm that employs a
serial scheduling scheme and uses deterministic priority rules to solve the
selection or assignment conflicts. The authors defined a total of 8 differ-
ent priority rules that govern the way courses are selected for scheduling.
Their method is essentially an iterative procedure that in each Iteration
constructs several solutions. If the best so-found solution is better than
the last best one, the search process is intensified in the surrounding re-
gions; otherwise, the procedure terminates.

For the test phase, the planning horizon was restricted to six months.
The authors compared their different priority rules to see which approach
was able to perform better. A second test was aimed at finding the perfor-
mance of the local search method.

The authors compared CPU-Time, iterations required, and the percent-
age of courses scheduled. In their final comparison, the best solution was
compared against the manual approach.

Their approach was able to maximize the total profit margin, but the
manual solution was better in terms of the average number of days and
scheduled courses. Finally, the time required to construct an operational
schedule was heavily reduced by the new approach.

(5) Lü et al. [96] applied the Tabu search algorithm to solve the uni-
versity course timetabling problem. This algorithm is ranked as one of
the five finalists for the 3rd track of the Second International Timetabling
Competition ITC–2007.

The authors presented an Adaptive Tabu Search (ATS) for solving the
curriculum-based course timetabling problem. The proposed algorithm fol-
lows a general framework composed of three phases: initialization, intensi-
fication, and diversification.

1. First stage (Initialization) concerns the initial solution, a sequen-
tial greedy heuristic starting from an empty timetable, where as-
signments are constructed by inserting one appropriate lecture into
the timetable at each time. The goal for this is to have a feasible
timetable (a timetable that respects all hard constraints).

2. Second stage (Intensification), uses a feasible timetable to optimize
the soft constraint scoring function without breaking the hard con-
straints. This is done by using two different neighborhood structures
(Simple Swap and Kempe Swap). The algorithm stops when the best
solution cannot be improved within a given number of moves.
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3. Third stage (Diversification), this stage combines tabu search with it-
erated local search (ILS) which provides diversification mechanisms to
guide the search to escape from the current local optimum and move
toward new promising regions in the solution space using Penalty-
Guided Perturbation Strategy.

(6) Mushi [101] also used Tabu Search for the academic course timetabling
problem. His work uses real-world data from the University of "Dar es-
salaam". The objective function is to minimize violated constraints. The
author also defined weights for each violation of hard (5) and soft (5) con-
straints.

For the initial timetables, a heuristic algorithm assigns each event (or-
dered from highest to lowest duration) to the earliest possible feasible time
slot and first available room. The initial solution can be completely feasible
or partially feasible.

The author used two different neighborhoods, first one is swapping ran-
dom events that belong to the same group. The second neighborhood is
assigning random time slots to random events. For the aspiration criteria,
any solution which brings an improvement by a certain degree is accepted.
The author criticized using a fixed number of iterations as a stopping con-
dition because the algorithm can run for a long time without improvement
just to complete the set number of iterations.

Instead, the algorithm stops after 1000 iterations without solution change.
To evaluate the proposed approach, a comparison between the use of the
two moves is conducted and it shows that swapping events performs much
better than randomly assigning time slots. Also, the quality of the man-
ual solution is much lower (71%) compared to the automatically generated
solution (99%).

(7) Bellio et al. [8] applied a one-stage approach using the Simulated
Annealing (SA) algorithm for the Curriculum-Based Course Timetabling
problem (CB-CTT).

In their approach they used two different neighborhoods:

1. Move Lecture (ML), which changes the period and the room of one
lecture.

2. Swap Lectures (SL), which swaps the period and the room of two
lectures of distinct courses.

For the objective function, they calculated the cost of a solution using
the weighted sum of hard and soft constraints violation. For simulated
annealing, a cut-off-based temperature cooling scheme was applied, and a
maximum number of allowed iterations was used as a stopping condition.
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The evaluation in this work shows that their approach outperformed
the results of previous works using the ITC2007 dataset. Their approach
was able to surpass multiple works on 10 instances out of an overall 21
instances. The authors explain that this was possible by just tuning the
parameters of the Simulated Annealing algorithm.

(8) Patrick et al. [106] developed a greedy Ant Colony Optimization
(ACO) strategy for the Curriculum-Based Course Timetabling problem.
Their approach uses ACO for both construction and improvement phases,
which is different from other ant systems that find a solution in a single
phase.

Two stages were presented in their work:

1. First stage is dedicated to finding an initial solution where two algo-
rithms are used.

• First algorithm is Ant Walk, which assigns time periods and
rooms to courses in a greedy approach.

• Second algorithm is Ant Colony, which minimizes constraints
violation from the generated timetable in the first algorithm.

2. the second stage is the improvement phase where Ant colony and
hill climbing strategies are used to improve found solutions. One
neighborhood move is used, Swapping two events.

To evaluate their approach, the authors compared their work against eight
other works, their approach was able to outperform some works but not
all. The dataset used was the ITC 2007.

(9) Czibula et al. [27] presented an Integer Programming (IP) approach
to solve a multi-objective timetabling problem. Their work was conducted
at Australia’s largest electricity distributor “Ausgrid”.

Despite the difficulty in solving large-scale Integer Programming (IP)-
based models, the authors started by decomposing a larger problem into
multiple sub-problems, one for the class timetabling and one for the trainer
rostering. Still, the model was too large to be solved in an acceptable time
given real-world data.

To tackle this, the authors proposed a three-stage heuristic approach.
The first stage produces an initial feasible class timetable, this is accom-
plished by successively solving the class timetabling IP model for one-course
instance at a time. The most demanding courses (longer duration, mod-
ules, and specific room and resource requirements) are selected first and
the least demanding courses are scheduled last. Authors state that start-
ing with complex courses first, resulted in a high-quality initial timetable.
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The second stage attempts to improve the class timetable produced
in the first stage by using the Large Neighborhood Search (LNS) heuris-
tic. Neighborhoods are selected by analyzing the timetable and identifying
which scheduled course instances negatively affect the objective values. The
authors used the Swap neighborhood move with LNS. The third stage al-
locates individual trainers in the timetable produced in stage 2. The IP
model for the rostering sub-problem is small thus it can produce an optimal
solution faster.

Being a large-scale real-world problem, they had multiple objectives to
consider:

• Minimize the number of expected students (not accommodated).

• Maximize the room rental revenue.

• Minimize the number of room swaps in the timetable.

The authors used IBM ILOG CPLEX and three timetable test sets with
different densities: Low (L), Medium (M), and High (H). The authors have
had success as their heuristic was able to find the optimal timetable for 13
of the 16 cases for the low-density timetable, 8 out of 16 in the medium-
density timetable, and 9 out of 16 cases in the high-density timetable.

(10) Goh et al. [49] tackled the post-enrolment course timetabling prob-
lem by using a two-stage approach that combines both Tabu Search (TS)
and Simulated Annealing (SA) algorithm.

1. First stage was dedicated to finding a feasible solution using Tabu
Search (TS) algorithm with sampling and perturbation. Two different
neighborhoods were used during this stage, Swap and Kempe chain.
The stopping condition was either:

• Finding a feasible solution that respects all hard constraints.
• Execution time exceeded a certain duration.
• Number of iterations is exceeded.

2. Second stage uses Simulated Annealing with reheating to improve
soft constraint violations. This stage relies on the cost to determine
whether the search is stuck in a local optimum. Three different neigh-
borhoods were used during this stage, transferring an event to a slot,
swap events if they didn’t break hard constraints, and finally Kempe
Chain between two events in different time slots.

Their objective was to satisfy all hard constraints and minimize soft con-
straint violations. To evaluate their approach, the authors used three dif-
ferent data sets (Socha, ITC2002, and ITC2007). The evaluation was made
in two stages.
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1. For the first stage, a comparison between using a simple Tabu Search
(TS) and using Tabu Search with Sampling and Perturbation (TSSP).
TSSP performed better than TS in all data sets.

2. Second evaluation, a comparison between the author’s approach using
Simulated Annealing with Reheating (SAR) and 18 different works
that worked with the same data sets. SAR was able to outperform
all works.

2.3 Recommender Systems

2.3.1 Objectives and Common Problems

Recommender systems aim to provide both the user and business owner
with a better experience and performance. From the user perspective, rec-
ommenders shorten the time needed to find suitable items, thus improving
user satisfaction/loyalty toward the platform. From a business owner’s per-
spective, this gives insights into what users like without putting effort into
marketing. Other benefits of using recommenders are listed below.

1. Increased product/content consumption: Recommender engines re-
duce marketing efforts by targeting users with products that might
interest them, thus boosting sales and engagement. So when users
discover new relevant content before even searching for it, they are
more likely to return to the platform.

2. Customer satisfaction: Reducing the path to content/products means
less cognitive effort for the user in order to find what they need. In-
creasing customer loyalty to the brand means increasing the proba-
bility of them returning to your platform. This improves customer
retention and improves click-through rate (CTR).

3. Personalized experience: By providing personalized content, users feel
more familiar/attached to the brand since it reacts to their interests
so the number of visits goes up while churning drops. Customization
doesn’t only affect the platform the user is using but can also include
personalized emails and notifications.

4. Relevance: Recommending relevant or interesting items to users is the
most crucial goal of a recommender system. Users are more likely to
interact with the content they deem relevant or interesting to them.
Although relevance is important, other metrics that aren’t well-known
have a significant impact on the quality of recommender systems.
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5. Novelty: Recommending content the user has not seen in the past
can be helpful especially if the user shows interest. However, unlike
novelty, serendipity is different since recommendations are genuinely
surprising to the user, rather than simply something they did not
know about before.

6. Diversity: Recommending a list of items with different types can
achieve better results than recommending a list of similar items.

Since recommender systems are basically data filtering tools, they rely
heavily on lots and lots of data. Data can be obtained from either users,
content, or other sources (context). Modern websites provide users with
multiple ways of expressing their feedback about the platform, content, or
just their experience using the service.

Implicit and Explicit feedback A typical method of providing feed-
back is in the form of a five-star rating system, like or dislike buttons, or
even numerical rating values (1-10). These rating methods that capture
users’ preferences are explicit ways used by companies. The disadvantage
is that users tend to avoid the burden of explicitly stating their prefer-
ences. To overcome the shortage of explicit ratings, platforms tend to
collect users’ behavior in multiple ways (purchase data, watching/reading
time, user mouse, and scrolling activity in addition to browsing history).
This is called implicit feedback. The advantage of implicit feedback is that
users can trigger a lot of actions when using a service. This generates a
lot of data that can be significant in some cases but shows a major incon-
venience, which is not having a ground truth (we cannot know for sure if
a user really likes a product after seeing it multiple times). Another ap-
proach, called hybrid feedback leverages explicit ratings whenever possible,
otherwise uses implicit feedback.

When ratings are not an option, businesses can use content descrip-
tors/features to provide relevant recommendations. Content descriptors
can vary from textual (summary of a video, song lyrics, movie subtitles,
titles, etc.), to numerical descriptions (year, number of views, duration,
etc.) as well as other information (time of visit, weather data, location
data, etc.).

To build an effective recommender system, many challenges need to be
overcome [79]. Some of them are detailed below.

Data sparsity and cold start problem To power up recommenders,
we usually need either rating from users towards items or item descriptors.
Ratings can be hard to obtain as most of the time it’s sparse (lacks feed-
back). This can make the recommendation process difficult since there are
not enough data to find patterns.
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The cold start problem might concern either the items or users. A user
cold start problem occurs when a new user or a group of users enters the
platform. Since this is a new user, we do not know anything yet (no ratings
are provided) which means we cannot find similar users from which to draw
insights. The item cold start problem occurs when novel items are added
to the catalog and there are not any users who rate them.

Scalability Generally, a Collaborative-filtering (CF) algorithm has a worst-
case complexity of O(MN) where M is the number of users and N is the
number of items. The CF system also must react to ratings in real time.
As the number of users and items increases, the time and memory require-
ments also increase, and the CF system suffers from scalability issues.

Trust, Privacy, and Security A user should be able to trust that his
CF provider does not sell his ratings, preferences and personal informa-
tion to a third party and a CF provider has to make sure that it detects
malicious users deliberately lowering or increasing an item’s ratings to his
advantage. Obviously, there is a need to maintain a balance between pri-
vacy and personalization.

2.3.2 Recommendation Approaches

Recommender systems mainly fall into two groups, collaborative filtering,
and content-based. The main difference between these two approaches is
the type of data used. Collaborative filtering algorithms employ user usage
data (ratings, navigation history, etc.). Content-based algorithms use item
characteristics or features which can be (metadata, textual descriptors,
price, etc.) in order to recommend similar items. A combination of both
methods is possible, and it’s called Hybrid Recommenders. As you can see
in Figure.2.23, diverse types of recommender systems are illustrated. In
the following section, we will discuss each type in depth and see what their
benefits and drawbacks are.
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Figure 2.23 Types of Recommender Systems.

2.3.2.1 Content-based Filtering (CBF)

As mentioned earlier, content-based recommender systems focus on extract-
ing knowledge from items to provide a way to describe them. Knowledge
can be manifested in keywords, attributes, or a set of values [44]. This
approach is useful for new items or items that don’t have enough ratings.

Content-based filtering leverages the user profile (items seen, rated,
liked in the past) to recommend related items (similar attributes) [107].
This approach follows the assumption that if a user likes an item, they will
also like items with similar characteristics. Thus, does not account for a
change in preference, opinion, or taste over time.

Using this approach comes with a challenge, which is finding the right
attributes to use that gives the best description for an item. Extracting
relevant information about the content can be challenging as there are
multiple attributes that can or cannot contribute to identifying a specific
item from a catalog. For example, news articles can have multiple attributes
(date of the article, genre, country, text size, title, tags, etc.). Getting good
descriptions of an item is not easy because the quality of descriptions can
vary their types (textual vs non-textual) as well.

Content-based approaches use 3 components to function properly.

• Content profile: Creates content profile or descriptors.
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• User profile: Creates a user profile, which can be a list of recently
viewed items or liked items.

• Similar items: Find items that share the same attributes as the items
found in a user’s profile.

Content-based methods have some advantages, and they are listed be-
low:

• Can work with new items that aren’t yet rated because other items
with similar characteristics might have been already rated.

• New users with no history can receive recommendations based on the
similarity of items (using their descriptors).

• Content-based approaches can recommend items for users with spe-
cific tastes.

However, Content-based methods do have several disadvantages:

• Content descriptors: It can be difficult to find relevant information
about a product.

• Over-specialization: Content-based recommenders won’t suggest items
that a user didn’t show interest in. So results can be obvious since
they rely on keywords on content. This reduces the diversity and
serendipity of recommended items.

2.3.2.2 Collaborative-based Filtering (CF)

Collaborative filtering leverages users’ activities to make recommendations.
This method relies on ratings (explicit/implicit) provided by users to pre-
dict the likelihood of a user’s liking an item [44].

Collaborative filtering assumes that if users liked the same things pre-
viously, the situation in the future won’t change. This is why one of the
methods of this type of recommender tries to group users or items in the
same group based on a pattern of ratings.

The main challenge found in collaborative filtering is the sparsity of
the ratings. Since users tend to avoid explicit ratings, many techniques
try to leverage implicit ratings to better recommend items. There are two
methods used in collaborative filtering. We explain each one in more detail
in the following section.

75



Memory Based Approaches Memory-based or neighborhood-based col-
laborative filtering tries to find either users or items that are similar to other
users/items [3]. Based on similar users or related items we can predict a
rating score a user would give to a certain item. The similarity between
items or users is calculated using multiple metrics, such as cosine similarity,
Jaccard, and Pearson correlation.

• Jaccard Similarity: Used for comparing the similarity and diversity
of sample sets. It is defined as the size of the intersection divided by
the size of the union of the sample sets.

• Cosine similarity: Measures the angle between vectors. If the angle
is 0°, then these vectors are similar and if the angle is 180°, then they
are highly dissimilar.

• Pearson Similarity (Centered-Cosine similarity): It is the ratio be-
tween the covariance of two variables and the product of their stan-
dard deviations.

Memory Based Recommender Systems can be further divided into two
groups.

User-to-User In this approach, we are looking for users similar to the
user in question. Based on their rating patterns. Similar users are called
neighbors, and their average ratings are used to predict how would the
active user rate a specific item. The recommender system then can suggest
items that similar users liked and the user in question didn’t rate it yet.
An example of User-to-User filtering is shown in Figure.2.24.

Figure 2.24 Example of User-Based Filtering. Adapted from [102]
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Item-to-Item This method aims to predict the rating a user will give an
item he did not yet see. This is done by finding a list of similar items rated
by the same user and using them to predict the rating. A drawback of this
method is that there tends to be a lower diversity in the recommendations
as opposed to user-based CF. An example of Item-to-Item filtering is shown
in Figure.2.25.

Figure 2.25 Example of Item-Based Filtering. Adapted from [102]

A general rule of thumb for deciding what approach to use is if you have
more users than items in your platform the item-to-item approach works
better, otherwise (number of items is more than users) user-to-user is the
way to go [93]. As we have seen, the pipeline of memory-based filtering
can either use user-based filtering to look at similar users or item-based
filtering, to look at similar items. We list the advantages and drawbacks of
using this method.

Advantages of Memory-based algorithms:

• Easy to implement and to add updated data.

• Obvious/Easy to explain recommendations.

• Doesn’t require content metadata/descriptors. Only Ratings.

Disadvantages of Memory-based algorithms:

• Require Ratings (Can’t handle well sparse rating matrices).

• Time and memory requirements scale significantly with the number
of users and ratings.

• Cannot recommend for new users and items (Cold start Problem).
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Model Based Approaches Machine learning and data mining meth-
ods are used to make predictions about a user’s rating [3]. This predictive
model can be a subject of the optimization process in case of multiple
parameters are present. Memory Based Filtering requires the user-item
dataset to make predictions, and Model-Based Filtering requires a fraction
of that data thanks to dimensionality reduction techniques. One common
approach for model-based CF is Matrix factorization (e.g., Singular Value
Decomposition-SVD) which was used in the Netflix Challenge. Compared
to Memory Based CF, the Model-based CF technique addresses the short-
comings of memory-based CF algorithms such as scalability, sparsity, and
performance but at the cost of model building which can be expensive.

Moving on, collaborative filtering has some drawbacks. These issues
include:

• Number of ratings: When a new item appears, the system can’t rec-
ommend it because it doesn’t have any ratings for the item. It will
take some time to get enough ratings for the system to figure out
what groups of users should be recommended the item.

• Sparsity With huge product bases, it’s difficult to make sure that
enough people explore all the options available. If some item hasn’t
been rated by a lot of people, the system won’t have data on which
to base the predictions.

• Gray sheep: To recommend items, the system has to group people
with overlapping interests (finding neighbors). Many users will fall
into these groups and enjoy the recommendations, but if some users
do not consistently agree or disagree with some group, they will not
be given high-quality recommendations.

As we have seen, collaborative filtering does not rely on content meta-
data or domain knowledge to provide recommendations. You only need the
ratings and the interactions between items. In case we have both interac-
tions and a collection of features and meta-data, we can use both in what
is called a hybrid recommender system.

2.3.2.3 Hybrid Recommenders

It is noteworthy that each different type of recommender system uses a
different type of data, whether its ratings for CF methods or features for
content-based methods. While each method has its strengths and weak-
nesses, combining multiple methods can achieve much better results while
benefiting from all the advantages each method presents. Hybrid ap-
proaches can be implemented in several ways: by making content-based
and collaborative-based predictions separately and then combining them;
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by adding content-based capabilities to a collaborative-based approach (and
vice versa); or by unifying the approaches into one model. Hybridization
presents an opportunity to overcome common problems such as cold start
and the sparsity problem. There are generally three categories of hybrid
recommender systems [74, 19]:

Monolithic hybridization design: A single algorithm that integrates
multiple approaches by preprocessing and combining several knowledge
sources. Figure.2.26 illustrates an example of monolithic hybridization.

Figure 2.26 Monolithic hybridization design [74].

Parallelized hybridization design: This method operates indepen-
dently, each approach produces its lists of recommendations which are later
combined into a final set of solutions. Figure.2.27 illustrates an example of
parallelized hybridization.

Figure 2.27 Parallelized hybridization design [74].

Pipelined hybridization design: In this approach, the output of one
engine becomes part of the input data of the next engine. This is shown in
Figure.2.28.

79



Figure 2.28 Pipelined hybridization design [74].

Recent approaches in hybridization are the use of deep learning to com-
bine multiple types of recommendations (collaborative filtering, content-
based, etc.). In Hybrid Deep Learning algorithms, users and items are
modeled using both embeds that are learned using the collaborative filter-
ing approach, and content-based features. Once embedding and features
are computed, the recommendations can also be served in real time. A
drawback of using deep learning for recommendations is that they need ex-
tensive hyper-parameter optimization to achieve better results than com-
mon techniques.

2.3.3 Evaluation Methods

Measuring the effectiveness of a recommendation algorithm is crucial when
designing the evaluation part. While collaborative filtering might need
unique metrics since it’s somewhat different from content-based methods
that rely more on text classification techniques. But before getting into
what metric to use and when we need to further explain the types of rec-
ommender system evaluations. Recommender systems can be evaluated
using either online or offline methods [61].

2.3.3.1 On-Line Evaluation

In online systems (e.g., e-commerce, MOOC, etc.) the user interactions
with the presented recommendations are measured to test the effective-
ness of the system. Interactions can be the clicks on recommended items,
buy actions or watch time of recommended items, etc. This approach is
sometimes less susceptible to bias because real users are naturally using the
system. The main disadvantage is that such systems cannot be realistically
deployed unless many users are already enrolled. Therefore, it is hard to
use this method during the startup phase. One very known method used
in the online evaluation is A/B testing which measures the direct impact
of the recommender system on the user. The basic idea of these methods
is to compare two algorithms as follows:

1. Segment the users into two groups A and B.
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2. Use one algorithm for group A and another algorithm for group B
while keeping all other conditions (e.g., the selection process of users)
across the two groups as similar as possible.

3. At the end of the process, compare the conversion rate (or another
payoff metric) of the two groups.

Another drawback that can drown here, is that online evaluation can
only be assessed on some use cases that are related to the same domain
or using the same data, thus can’t be generalized to every use case. This
can lead to mediocre performance in a different variety of settings. For this
reason, offline methods are used when evaluating recommender systems.

2.3.3.2 Off-Line Evaluation

This method leverages historical datasets (e.g., ratings) to provide measures
such as accuracy. Predictive measures address the subject of how close
ratings of recommender systems are to the user ratings. They are a good
choice for non-binary tasks. Mean Absolute Error (MAE) and Root Mean
Squared Error (RMSE) is the most popular and easy-to-interpret predictive
metrics.

Mean absolute error (MAE) is the average difference between the
value predicted by the recommender r̂ui and the actual value given by the
user rui and R̂ being the number of ratings. This is done by subtracting
the predicted rating and actual rating for each user and taking the mean
of all the errors to calculate MAE. One characteristic of this metric is if
there are outliers or large error terms, it will weigh those equally with the
other predictions.

MAE =
1∣∣∣R̂∣∣∣
∑
r̂ui∈R̂

|rui − r̂ui| (2.5)

Root Means Squared Error (RMSE) What this metric does essen-
tially finds the difference between a predicted rating and a real rating.
Having a lower error value means our model is predicting ratings similar
to what the user gave. RMSE is a well-known metric and is used widely in
the recommender systems research field. One characteristic of this metric
is its vulnerability to being affected by outliers or bad predictions.

RMSE =

√√√√ 1∣∣∣R̂∣∣∣
∑
r̂ui∈R̂

(rui − r̂ui)2 (2.6)
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Precision & Recall Classification metrics identify the degree of rele-
vance or non-relevance of recommended items to the user [44]. The task
here is adapted from the information retrieval field where we use the same
principles shown in Table.2.3.

Recommended Not Recommended
Consumed True Positive (TP) False Negative (FN)

Not Consumed False Positive (FP) True Negative (TN)
Table 2.3 Confusion matrix of recommendation results [44].

• True positive (TP)—The item recommended and consumed by the
user.

• False positive (FP)—The item was recommended but the user didn’t
consume it.

• False negative (FN)—The recommender didn’t include the item in a
recommendation and the user consumed it.

• True negative (TN)—The item wasn’t recommended and the user
didn’t consume it.

We start with the first metric which is Precision. It determines the
fraction of relevant items retrieved from the result. To calculate Precision,
we use the following equation:

Precision =
TP

TP + FP
(2.7)

The second metric is Recall, which determines the fraction of relevant
items retrieved out of all relevant items. The following equation is respon-
sible for calculating Recall.

Recall =
TP

TP + FN
(2.8)

Note that when increasing Precision, Recall decreases as a result and
vice versa. Metrics like the F1 Metric attempts to combine Precision and
Recall into a single value for comparison purposes [44].

Ranking metrics: The first item recommended is always the most im-
portant one, then the second is the second-most important, and so on.
When evaluating, this can be considered thanks to ranking metrics. A
variant of Precision exists which is Precision@k [76] where the k top ele-
ments are measured by taking the number of relevant items between the
first k items.
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One ranking metric is widely used which is the Discounted Cumulative
Gain (DCG) [6]. This is a measure of ranking quality where highly relevant
items are more useful when ranked first. Also, these metrics follow the
assumption that highly relevant items are more useful than marginally
relevant items, which are in turn more useful than non-relevant items.

nDCGp =
DCGp

IDCGp

(2.9)

With IDCGp =
∑|RELp|

i=1
reli

log2(i+1)
and DCGp =

∑p
i=1

2reli−1
log2(i+1)

. Where
RELp is a list of top p relevant items (ordered by relevance). reli is the
graded relevance of the result at position i.

Others metrics: Accuracy metrics aren’t the metrics responsible for
measuring recommenders’ performance. People intrinsically enjoy variety
and discovering things they have not seen before. In the real world, not
every recommendation is based on similarity only. The main disadvantage
of offline evaluations is that they do not measure the actual propensity of
the user to react to the recommender system in the future. For example,
the data might evolve, and the current predictions may not reflect the most
appropriate predictions for the future. Moreover, measures such as accu-
racy do not capture the important features of recommendations, such as
diversity and novelty, among other metrics listed below:

• Diversity: measures the spectrum of recommended items. Recom-
mending items of diverse types are more diverse than items of the
same type. Diversity can be based on users (how popular each item
is, in the recommended list) or items (how different is each item in
the recommended list).

• Novelty: measures how new, original, or unusual the recommenda-
tions are for the user. This sheds light on popular items being always
at the top of recommendations while most items are in the long tail
hidden by the immensity of a catalog.

• Serendipity: measures the surprise effect when finding things in your
recommendations that you love but never knew you would.

• Coverage: measures how much available content we’re covering when
recommending items. Diversity leads to coverage because the better
the diversity, the better the coverage.
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2.3.4 Metaheuristic Approaches with Recommender Sys-
tems

In the past few years, recommender systems have been thoroughly applied
to multiple domains such as e-commerce, movies and courses [41, 133, 42].
Approaches that exploit the combination of such recommendation algo-
rithms are known as Hybrid Recommenders [19]. The advantage of this
approach is that it limits the cons of each method used in the hybridization
process all while inheriting their advantages. Standalone algorithms (CF
or CBF) do not perform well when evaluated in terms of accuracy, novelty,
and diversity. However, when combined together using one of the men-
tioned hybrid techniques, we’re expecting improved and diversified results.
Other approaches exploit the Pareto efficiency concept to combine such rec-
ommendation algorithms in a way that a particular objective is maximized
without significantly hurting the other objectives. Recommender systems
and the use of metaheuristics have been the focus of many academic re-
searchers [20, 134, 132, 50]. We summarize these works in Table.2.4.

Most works, as shown in Table.2.4, combine collaborative filtering ap-
proaches (user-based, item-based, and model-based) with evolutionary al-
gorithms such as Genetic Algorithms (GAs) in single and multi-objective
modes. The most commonly handled objectives are accuracy, diversity,
and novelty, with authors attempting to either obtain a solution with equal
weights for each objective or a solution that follows user-specified weights.

A few works have mentioned the constraints discovered in the prob-
lem, and most of the time it is a single hard constraint that limits the
recommended list (solution) to a fixed length. Because most works deal
with evolutionary algorithms, we gathered information on the initializa-
tion strategies used and the genetic operators (both crossover CX and
mutation MX).

In terms of the initialization phase, most works chose a random ap-
proach in which initial solutions are generated at random from the data,
whereas others chose a different path in which existing recommendation ap-
proaches are used to generate solutions for users that are later optimized.
One-point and two-point crossover operations are the most common for
crossover operators CX, and similar findings are shown for mutation oper-
ators MX, which use one-point, random, and swap operators, sometimes
with slight modifications to include repairing functions.

Finally, most works used traditional classification evaluation metrics
such as (Precision, Accuracy, and Recall) with the Intra-List Similarity
metric (ILS) [128] for diversity measurement. The Movielens [60] dom-
inates the recommendation engine evaluation datasets. Research papers
frequently select one of several available sizes (100K, 1M, 10M, or 20M
movie ratings). We expand on these works in the following paragraph.
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(1) Alhijawi et al.,[4] applied Genetic Algorithms to collaborative filtering
in order to recommend lists of items by combining both semantic relevancy
and ratings. Their main contribution was finding a solution to cold-start
and sparsity problems by considering the individual in the population as
a potential recommendation list. In older work [5], the authors used the
same approach but with different genetic operators (one point crossover/
one point mutation) and the same testing datasets.

(2) Rahul Katarya [81] proposed the use of an Artificial Bee Colony
(ABC) to find the optimum value of center points for the KMeans algo-
rithm. KMeans is used in a collaborative filtering algorithm to recommend
movies to users. Their methodology consists of clustering users into groups
based on their rating similarity.

(3) Da Silva et al.,[28] used a genetic algorithm to find the best-performing
collaborative filtering approach. The goal is to find the lowest RMSE score.
This was accomplished in two stages: first, recommender systems (CF)
generate lists for the target user, and these lists are then fed into Genetic
Algorithms that try to find the best combination of items to suggest. The
authors proposed a possible improvement to this approach, which includes
using item descriptors (content-based approach) or popularity to improve
their relevancy.

(4) Gasmi et al.,[47] applied Genetic Algorithms to find users having
similar characteristics to a target user, combined with a collaborative fil-
tering approach to better predict users’ ratings. Their approach is based on
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contextual information gathered from user features (gender, age group, oc-
cupational category, and rating behavior). Authors indicated that choosing
the right contextual feature weight is as hard as choosing the right content
descriptors for items.

(5) Association Rules Mining (ARM) and Genetic Algorithms were com-
bined in the work of Neysiani et al., [118]. The authors were successful
in providing high-accuracy results by optimizing both support and confi-
dence (ARM parameters). Their method was compared to the MOPSO
(Multi-Objective Particle Swarm Optimization) algorithm. Despite pro-
ducing better results than MOPSO, using ARM produced slow results be-
cause each rule must be checked in the database, which is impractical in
real-world scenarios.

(6) Another multi-objective approach proposed by Chai et al.,[20]. In
their work, both collaborative filtering (model-based) and multi-objective
immune algorithm (MOIA) are combined to improve recommendation di-
versity without loss of accuracy. To generate initial recommendations, the
authors used singular value decomposition (SVD). One limiting factor in
this work is the fact that SVD can perform poorly against bigger datasets
with high sparsity.

(7) Wang et al.,[132] combined multiple collaborative filtering techniques
(item-based, user-based, and model-based) with NSGA-II. Similar to pre-
vious works, the authors aim to optimize accuracy and diversity simulta-
neously. Authors only tested their approach on 5 users from the Movielens
dataset [60].

(8) Drifting away from movie recommendation, Irfan et al.,[70] used the
NSGA-II algorithm and collaborative filtering methods to optimize two
objectives (venue preference and location proximity). As suggested by the
authors, adding more contextual features such as check-in time, user pro-
files, and interests could be a possible improvement in relevance.

(9) Xie et al.,[136] integrated a personalized approximate Pareto-efficient
recommendation on the WeChat Top Stories section for millions of users.
Their approach used reinforcement learning to find objective weights for
the target user using list representation. Five metrics were used to eval-
uate models: click-through rate CRT , dwell-time scores DW for online
evaluation and hit rate HIT@K, mean average precision MAP , and Area
under the curve AUC for offline evaluation.
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(10) Fortes et al.,[45] also adopted a similar technique, relying on user
preferences concerning objectives weights during both the decision-making
and optimization phases. Their approach aims to optimize accuracy, nov-
elty, and diversity.

(11) The use of multiple recommendation engines is also developed in
the work of Ribeiro et al.,[110], where a Pareto-efficient recommendation
approach optimizes the weights of associated engines to provide items that
are accurate, novel, and diverse.

(12) Zuo et al.,[146] proposed a multi-objective recommendation model
to balance accuracy and diversity. Their approach relies on the NSGA-
II algorithm. To reduce computing on each individual user, the authors
adapted a grouping strategy that uses the KMeans algorithm to split users
into several small clusters. These user groups receive similar recommenda-
tions.

(13) Another work by Wang et al. [134] used a Multi-objective Evo-
lutionary Algorithm Based on Decomposition (MOEA/D) to recommend
movies and jokes. Using the Movielens and jester dataset, their work suc-
cessfully optimizes four different objectives (precision, recall, diversity, and
novelty). The main recommendation approach used in item-to-item collab-
orative filtering.

(14) The work of Jugovac et al. [77] collects the tendencies of users,
based on their past behavior, to provide a personalized recommendations
list that adheres to the defined goals. Using a greedy re-ranking technique
to match items with user profiles.

2.3.4.1 Positioning and motivations

Our work addresses different aspects that are missing or under-exploited
in the aforementioned works:

• The use of multiple recommendation engines to initialize our solution
population and provide more diversity.

• Working with real-world implicit ratings to train our model.

• We propose a customized mutation operator to improve the diversity
of recommended items.

• Performance comparison of various Multi-Objective Evolutionary Al-
gorithms (MOEA).
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• Optimizing five conflicting objectives in the context of a real-world
problem.

• The use of parameter tuning to optimize algorithms depending on
user behavior and selected objectives.

• Work is being integrated into a production-ready environment.

2.4 Conclusion
We presented a brief overview of combinatorial problems and some of the
resolution techniques used in the literature in this chapter. We also pro-
vided an introduction to the timetabling issue discussed in this thesis, as
well as its differences from the literature. In the following Chapter, we
model the entire problem and provide resolution steps. In addition to
timetabling problems, a brief overview of recommender systems and their
various types is discussed, with more information available in Chapter 4.
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In previous chapters, we defined the Professional Timetabling problem,
and the problem found at Mandarine Academy. The existing timetabling
tool at Mandarine Academy, DiLeap Logistic, proposed solutions that didn’t
respect company constraints. In this chapter, we present an approach that
handles all constraints (hard and soft).

This task was done manually by a department of 30 persons, yet timeta-
bles were always invalid and took a lot of time to create (weeks) and a large
amount of paper to provide a single solution. DiLeap Logistic provided an
answer for rapid solution generation but lacked in the requirements area.
Many solutions proposed by the tool didn’t respect company constraints
or objectives.

In this chapter, we present an approach that handles all constraints
and objectives that depends on the client’s needs. This chapter has been
the subject of a publication in the IEEE Congress on Evolutionary Com-
putation (CEC 2021) [55] and in the French Association for Operational
Research and Decision Support (ROADEF-2021) [100].

The remainder of this chapter is organized as follows. Section 3.1
presents the problem definition, entities, and company guidelines. Ob-
jectives and hard/soft constraints are enumerated with their mathematical
formulation.

In section 3.2 we present our proposed solution by using multi-objective
genetic algorithms, for which we provide an encoding structure and two
genetic operators (crossover and mutation). In Section 3.3, we propose a
detailed experimental protocol that includes a description of the methods
and data used, as well as details on determining the best settings for each
algorithm and hardware configuration.

Results, given in Section 3.4, show the best parameters to use depending
on the use case. Also, our approach yields better-diversified solutions and
runs faster when compared to the manual approach.

The goal of developing a solution to such complex problems is to have
that solution actively used by customers. As a result, it is critical that Man-
darine Academy provides a production-ready environment for our model.
We provide details of end-to-end course scheduling using DiLeap Logistic
in Section 3.5.

3.1 Problem Description
We start this section by defining each entity and its relation to other actors
in the planning process. This is followed by the found constraints and
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objectives. We present the mathematical modeling in each section.

3.1.1 Entities

We identify the key entities that constitute our scheduling model. We start
with entities that have the biggest impact on the issue we’re modeling and
detail the relationships with other entities. The entities hold the data
needed to import, process, and provide a timetable. It is worth noting
that we refer to a collection of Courses as Training or Events, and we use
the symbol E to represent this. Figure.3.1 provides an overview of the
relationship between key entities in the timetabling problem.

Figure 3.1 Relationship between entities involved in the scheduling process.

Session (Planning Day) The session is the central entity since most of
the other entities exist only by and for it. It is the concrete and temporal
organization of training and mobilizes the rooms, facilitators, materials,
and trainees. In short, it is at the heart of the application. A session
is a time unit of a day maximum on which will take place all or part of
a previously selected training. This time constraint makes it possible to
refine as well as possible all the material constraints which could arise from
a training extended over several days (instructors changing from one day to
another, room available only for part of the training, etc.). It can mobilize
all the declared resources of the application. Therefore, in our problem
definition, a session to schedule is characterized by:

• Owner: A session belongs to a proprietary.

• Course: A session may be based on a course.

• Sequence: A session may be based on the sequences included in a
course.

• Trainers: A session can have one or more trainers (instructors).

• Rooms: A session can have one or more rooms.
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• Equipment: A session can have one or more equipment.

• A date with starting/ending hours.

• A location and perimeter (specific business needs).

Proprietary (Owner) Since DiLeap Logistics is a shared platform, each
proprietary has its different courses, resources, and parameters.

Skills An entity allowing the mastery of a discipline to be associated with
an instructor (Trainer) or training (Course). It is, in fact, always associated
with a mastery level.

• Associated with an instructor (Trainer), it indicates a skill that they
possess (individual skills).

• Associated with a course or a sequence, it indicates what skill is
required for these training courses to be conducted in good conditions
once they are planned.

The levels of competence that are associated are completely configurable:
they have a hierarchy that makes it possible to assess the mastery of the
competence. The skills are also associated with a type of skill, which makes
it easier to manage within different categories (e.g., a type of “office automa-
tion” skill for an Excel skill. . . ).

Trainer (Tutor or Teacher) This is a user whose role is to provide
the training sessions to which he/she is assigned: it is to him/her that
the various planning display functions are mainly dedicated, which he
can consult as a timetable. We describe Trainers (teachers) as a Set T
which can be a natural person or a training institute. For this reason, an
overload_factort ∈ Z is assigned for each event e to indicate the num-
ber of simultaneous events a trainer t can attend. A trainer may be not
available for certain days during the planning period because of different
reasons (holidays, attendance at a seminar, etc.). These periods are known
before the planning process. For each trainer t ∈ T , a type must be defined
(Internal, external, etc..) for a trainer t by using typet ∈ TT where TT
is a set of Trainer types. A trainer t can be assigned at minimum to a
perimeter (company sector) PTt ⊆ P where P is a set of Perimeters. A
trainer t can have a set of individual skills SKt ⊆ SK where SK is a set
of Skills.
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Room This entity represents a "physical" resource, which can be formally
mobilized when planning a session. We denote a set of Rooms as R and a
single room r. Because of their eminently concrete dimension, rooms have
a whole set of attributes to provide:

A Room is an entity that represents a "physical" resource, which can
be formally mobilized when planning a session. We denote a set of Rooms
as R and a single room as r. Due to their concrete dimension, rooms have
various attributes to provide:

1. Minimum and maximum capacities: denoted respectively as min_capr,max_capr ∈
N, min_capr indicates the minimal number of allocated seats re-
quired to allocate the room r, while mmax_capr indicates the max-
imal number of allocated seats that room r can support.

2. Equipment: The equipment available in the room, will be considered
during planning to offer the most relevant choices possible.

3. Overload factor: denoted as overload_factorr ∈ Z, which indicates
the number of simultaneous events a room r can hold.

4. Perimeter: PRr ⊆ P indicates the perimeter of room r (company
sector).

5. Location: locr is defined to indicate the geographical position of room
r.

6. Room type: Each room must have a type, which is useful for catego-
rizing them and can be used for initial sorting during planning. The
room type for room r is denoted by typer ∈ RT , where RT is a set
of room types (e.g., IT room, laboratory room, etc.).

7. Room configuration: A room r can come with a custom configuration
(e.g., provides special seats for babies) denoted as configr ∈ RC,
where RC is a set of room configurations.

Finally, a room can have unavailability as well. These unavailabilities
are known before the planning process.

Equipment A "physical" resource that can be formally mobilized when
planning a session. Some trainings demand certain equipment for exam-
ple a computer for an IT training. We define a set EQ of Equipment
(e.g., computer, laser pointer, etc.). Equipment can be associated with a
room (e.g., a table attached to the wall, which was not mentioned earlier
but is relevant in this context) or can be associated directly with a train-
ing course or a sequence (both of which are not defined here but can be
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understood as different types of training sessions). Each piece of equip-
ment has a type, which is valuable for categorization and can be used for
initial sorting during planning. We define for a device eq ∈ EQ a type
typeeq ∈ EQT where EQT is a set of all device types. As for the room and
the trainer, the equipment has unavailability, generated by the sessions to
which it is linked or formally created by a user (maintenance, borrowing,
etc.). This is also the reason why it has an overcapacity factor which al-
lows the application not to necessarily declare it unavailable if we want to
be able to associate it for a certain number of times over the same given
period. Like the rest of the resources, a device eq has an overload factor
defined as overload_factoreq ∈ Z that provides the maximum number of
simultaneous events it can be used at.

Each of the following resources (Trainers, Devices, or Rooms) has a list
of unavailabilities denoted as Ux, where x is a resource.

Ux = (d1, st1, et1), .., (dn, stn, etn)

where d ∈ D and st, et ∈ TS. Here d, denotes a date, D is a set of dates,
and TS is a set of timeslots with 15 minutes difference. Both st and et
denote start/end time.

Catalog Each proprietary has its own catalog, which serves as a link
between different underlying training entities. A catalog, as its name sug-
gests, is a directory of training courses, organized according to a specific
educational logic. The courses contained in a catalog are identified accord-
ing to three types: the course, the learning path, and the sequence. We
denote a set of Courses (Trainings or Events) with E.In this work, we will
use the terms "training," "course," and "event" interchangeably to refer to
the same concept. Figure.3.2 shows the relationship between a catalog, its
courses, and sequences.

Course Course: includes data specific to its creation within a session at
the time of planning. These data constitute the "Operating mode" of the
course. We denote a set of Courses (Trainings or Events) with E. A course
e has its own unique identifier along with the following details:

1. Course type: Each event or course e ∈ E has one of two types (held
in an actual room or online) denoted by typee ∈ ET where ET is a
set of course types.

2. Perimeter: PEe ⊆ P indicates the company group (perimeter) to
which this course belongs. P is a set of Perimeters.

3. A training can require certain types of resources:
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(a) Trainers: We use trainer_typee ∈ TT to indicate the required
type of trainers. Where TT is a set of trainer types.

(b) Devices: eqte ⊆ EQT indicates the preferred type of equipment
for event e and EQT is a set of equipment types.

(c) Rooms: room_typee ∈ RT or room configuration room_confige ∈
RC. RT is a set of room types and RC is a set of room config-
urations.

4. The planner provides a session_numbere that indicates the number
of sessions to be planned for a specific event e. This means that a
course can be scheduled multiple times within the event.

5. A locatione ∈ L indicates where the event e must take place, L is
a set of all locations. This is related to the rooms, as each location
holds a specific set of rooms where events might be held.

6. A starting and ending hours ste and ete ∈ TS are defined for event e
as well as a duration in (days or hours) duratione ∈ R is defined for
each course e. Hours for each event, are known beforehand.

7. Trainings can indicate preferred dates or days. SDe ⊆ D (To avoid in-
terruptions by weekends or holidays) or indicate imposed days IDe ⊆
D (ex: scheduled only on Wednesdays). We plan the events based
on the preferred dates or days, and if there are imposed days, we
schedule the events accordingly. The hours are also considered in the
scheduling process.

8. A minimal and maximal seating capacity is defined per training min_cape ∈
Z, max_cape ∈ Z. If min_cape indicates the minimal number of
registered attendees to consider training e in the scheduling progress.
max_cape indicates the maximal number of registered attendees the
training e can support. Knowing the minimal and maximal seating
capacity helps in ensuring that the scheduled events have enough at-
tendees to be considered valid (min_cape) and do not exceed the
room’s capacity (max_cape). This information is used during the
scheduling process to avoid overbooking or underbooking events.

9. Trainings can require sometimes advanced trainers, a set of skilled
trainers that are associated with event e is provided STe ⊆ T . In case
the associated skilled trainers aren’t available, trainers with specific
individual skills can be considered. These specific skills of event e are
denoted as SKe ⊆ SK where SK is a set of Skills.

10. Resources can be associated with an event e. We denote associated
devices to event e by AEQe ⊆ EQ, for rooms we use ARe ⊆ R and
trainers ATe ⊆ T . These are different from skilled trainers SK.
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11. Proprietary: The propriety to whom the course belongs.

A course might require certain skills. Thus, trainers who possess these
skills can be proposed to run the training in good conditions.

Sequence A sequence is a digital representation of educational content
that is provided by a trainer to learners. Unlike a course, a sequence is
not a uniform training unit meant to be delivered in a single time block.
Instead, it is a thematic sub-unit that must be associated with one or more
courses in order to be scheduled. This means that the same sequence can be
associated with multiple courses that may have different training objectives
but all require the inclusion of this specific training module (e.g., an "Excel
for Beginners" course and an "Office 365 Discovery" course can both have
the sequence "Discover Excel Online"). This approach helps to prevent
redundancy in declaring educational content and allows for more effective
organization of various training modules within a course. However, it is
not mandatory, and a course can be planned without having a specific
sequence.

A sequence has a structure similar to a course, which enables it to
declare a range of information that can be used for future scheduling of
the course to which it belongs. These internal procedures allow for further
refinement of what could have been stated earlier in the parent course. A
sequence has its own unique identifier along with the same details found
in a course’s "Operating mode” except for a perimeter. For each training
e ∈ E, sequences can be associated and are indicated by SEQe ⊆ SEQ.
Sequences are considered sub-events and are defined in set SEQ.

Figure 3.2 The Relation between Catalog, Trainings, and Sequences.
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3.1.2 Constraints

In the following, we summarize the constraints which have been observed
when scheduling the courses. Some constraints are standard for this kind
of problem.

Generally, constraints are broken into 2 types “hard” and "soft" con-
straints. Hard constraints assure the operational feasibility of a schedule,
there may be other constraints based on specific business rules and/or effi-
ciency criteria that reflect qualitative aspects of a schedule and which are
“softer” in nature. Solving a course scheduling problem involves finding at
least an operationally feasible schedule. The following hard constraints are
considered:

H1 Room type: Trainings may require a specific room type (IT, Lab,
etc.). Events can only be placed in rooms having the same type typer
as the event’s e room type room_typee. This constraint is ignored if
the course or sequence possesses a strongly associated room.

H2 Room location: Events must hold in rooms with the same location
locationr as the event location locatione. This constraint is ignored
if the training is of the type ’web conference’.

H3 Room capacity: Only rooms with sufficient capacity can host train-
ings. min_capr ≤ min_cape and max_capr ≤ max_cape. This
constraint is ignored if the room is in strong association with the
course.

H4 Type of equipment: Training may require specific types of equipment
(computer, board, etc.). Device types must match those indicated
by the event. This constraint is ignored if the material is in strong
association with the course.

H5 Unavailability of resources (Room, Trainer, and Equipment): Re-
sources may have unavailability dates. Thus, the timetable should
not include unavailable resources during the scheduling phase.

H6 Specific skills: A trainer can’t be chosen for training that requires
either individual skills (SKt /∈ SKe) or skilled trainers (t /∈ STe).
This constraint is ignored if a trainer is in strong association with the
course.

H7 Planning horizon: Each training must be planned within the planning
horizon indicated by the planner.

H8 Imposed days: Trainings may require specific days. For example, a
three-day course has imposed days [Monday, Tuesday]. The train-
ing must take place: Monday, Tuesday, and Monday of next week.
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Imposed days by the organizational staff for the event e are to be
followed.

H9 Starting day: Trainings may require a starting day. The purpose of
the starting day is to avoid splitting a course with a weekend between.

– Example 1: A four-day training might have imposed days [Mon-
day] and a starting day [Monday] in this case, the course is
scheduled Monday for four Weeks.

– Example 2: A three-day training might not have imposed days
but can have a starting day [Monday]. In this case, the course
is scheduled for Monday, Tuesday, and Wednesday of the same
week.

H10 No resources (Trainer, rooms, and devices) can be placed in overlap-
ping events more than their specified overload factor.

– Example: A session that begins at T1 = 8:05 and ends at T2 =
12:05 with a room R, trainer T or equipment cannot be used by
another session. Resources remain blocked from T1 to T2.

H11 Fixed start and end times: Every course or sequence has a fixed start
and end time. These hours must be respected and not changed.

H12 Sequences: Sequences are scheduled as a whole (following specific
order) or not at all. For each event e having a non-empty set of
sequences SEQe ⊆ SEQ where SEQe = {seq1, seq2} and seq2 ≻ seq1
if and only if seq2 is scheduled at after seq1. This constraint ensures
that the sequences are scheduled in the correct order.

H13 Perimeter: Only resources having the same perimeter as the event e
can be selected. The perimeter refers to a specific company group.

H14 Session Number: The number of scheduled sessions for an event e
cannot surpass session_numbere (indicated by the planner).

In this work, we consider a timetable that violates no hard constraints
as valid. The following soft constraints are considered:

S1 Room configuration: Training may require a specific configuration for
a room (school format for example).

S2 Type of trainer: A training course may require a specific type of
trainer (Internal, Associate, etc.).
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S3 Strong associations: A course or sequence may have associated re-
sources (trainers, rooms, or equipment) that indicate that these re-
sources are required for the training. To comply with the H5 con-
straint, resources, whether associated or not, must be available for
selection. For example, if a physical training takes place in Bordeaux
and has a strongly associated room in Paris, the room will not be
considered due to the geographical constraint.

S4 Trainings with a duration longer than one day must not be inter-
rupted by a weekend or long periods of days.

S5 A well-balanced event distribution is preferable. Each training should
follow a list of preferable days to achieve balance. To measure how
close a solution is to its balanced state we use the edit distance. It is
expressed as the number of operations required to transform a string
into another form [119]. The edit distance is a well-known concept in
computer science and is used to measure the similarity between two
strings. In this context, it is used to evaluate how close a solution is
to its balanced state.

Assumptions

• Trainings are to be planned between 07:45 and 18:00.

• A day has a maximum duration of 7.8 hours. A course that has a
duration equal to one day is equal to 7.8 hours. A half day is equal
to 3.7 hours.

• The scheduling is done on a 5-day period (Monday, Tuesday, Wednes-
day, Thursday, and Friday).

• There is a lunch break between 12:00 and 14:00, but some trainings
can start at those times.

• Training duration can range from half an hour to multiple days.

• The planning horizon can extend to multiple months.

The scheduling is done on a weekly basis, considering only weekdays
(Monday to Friday). However, the planning for these trainings can be
done for several months in advance. This means that while the trainings
are scheduled within a 5-day period, the overall planning can cover a longer
time frame, such as multiple months.
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3.1.3 Objectives

There are several criteria to measure the quality of a schedule. Unlike
most school timetabling problems, for instance, not all courses or sequences
offered by the planner must be performed. An obvious objective is to
maximize the number of courses as much as possible. Since the application
has multiple owners, some desire efficient utilization of trainers and a fair
distribution of workload among them.

Example: Marie and Paul have the same skills for the same courses,
but Paul teached 150 courses, and Marie only 3 courses. There is no fair
distribution in this case. To offer better flexibility, each planner can specify
which objectives to be considered before launching the scheduling process.
We are specifically looking to assign courses to days (not necessarily hours),
trainers, and rooms, and potentially decide whether or not to schedule a
particular course. The problem consists of several objectives, which can be
selected by the platform users according to their preferences. The objectives
are as follows:

(O1) Objective 1: Maximize the number of planned events:

max f(x) =
n∑

i=1

Nbsei

where Nbse is the total number of successfully scheduled sessions of event i
and n is the number of events. The variable i is used as an index to represent
each event in the summation. The objective function aims to maximize the
total number of successfully scheduled sessions across all events. The sum
is taken over all events, from event 1 to event n, and Nbsei represents the
number of successfully scheduled sessions for each specific event i.

(O2) Objective 2: Minimize the number of soft constraint violations.

min g(x) =
n∑

i=1

(NbConfnei+NbTrtnei+NbARnei+NbDistnei+NbBdne)

where n is the number of events, NbConfnei is the total number of unique
allocated rooms not having the same configuration as required by event
room_typee normalized by the total number of allocated rooms for event
e. Nbtrtnei represents the total number of unique allocated trainers not
having the same type as required by event trainer_typee, normalized by
the total number of allocated trainers for event e. NbARnei presents the to-
tal number of unique allocated resources (Trainers, rooms, and equipment)
that are not strongly associated with event e, where allocated resources
/∈ ATe, ARe, AEQe, normalized by the total number of allocated resources
for event e. NbDistnei holds the total number of days (distance) between
each instance in each session of event e, normalized by the total number of
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instances in each session of event e. NbBdne is the edit distance between
event e schedule and the preferable well-balanced schedule e, normalized
by the total number of events.

(O3) Objective 3: Minimize the number of external trainers. This
indirectly maximizes the internal trainers’ workload.

minh(x) =
n∑
e

NbuTe

where NbuTe is the total number of unique external trainers in all scheduled
sessions of event e, n is the number of events.

(O4) Objective 4: Standard deviation will measure the workload
deviations between internal trainers. To achieve a balanced workload dis-
tribution we seek to minimize the standard deviation. i denotes the index
of event e,

minσ =

√∑n
i=1(workloadti −mw)

n− 1

workloadt is the total teaching hours of trainer t having type typet =
Internal ∈ TT , n is the total number of unique internal trainers and mw
is the mean workload of all internal trainers and can be described as follows:
mw =

∑n
j=1(workloadtj )

n
.). Notice here that O3 conflicts with this objective.

(O5) Objective 5: Minimize the number of classrooms. The goal
of this objective is to reduce used classrooms, thus maximizing their uti-
lization and indirectly reducing their overall cost (rent and maintenance).
Incorporating explicit costs for each room could provide a more accurate
representation, but handling costs with multiple objectives and constraints
(soft or hard) can be challenging.

min k(x) =
n∑

i=1

NbuRei

. Where NbuRe is the total number of unique rooms in scheduled sessions
of event e, n is the number of events.

A solution to this problem is a schedule that satisfies the selected ob-
jectives while adhering to the given constraints. Users can choose any
combination of the objectives, and the platform will present the best so-
lutions based on pseudo weights techniques. These solutions can be non-
dominated solutions or Pareto fronts, depending on the user’s preferences
and the selected objectives.
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3.2 Genetic Modeling
The initial step in GAs is encoding or solution representation in which a
description of a solution’s structure is defined. We detail in the next section
the choice of encoding along with an overview of how we create our initial
population.

3.2.1 Solution Encoding

When using a genetic algorithm, it is critical to select the best way to rep-
resent the solution. In general, encoding methods can be direct or indirect
[22].

Starting with indirect methods, one example is the well-known binary
encoding. Binary representations are commonly used due to their simplicity
and memory-efficient design. However, in the real world, much effort goes
into developing proper genotype representations because it is difficult to
represent a solution with a binary string when dealing with complex prob-
lems and multiple constraints. This leads to the second encoding method,
direct encoding. In the direct encoding method, the entire solution to a
given problem is used as a chromosome. However, working with direct rep-
resentation necessitates the development of a decoding scheme as well as a
mechanism for monitoring the constraints and feasibility of solutions. It is
important to note that classic genetic operators (crossover and mutation)
can still be applied to direct encoding, but they may require adaptation to
suit the specific problem representation.

We opted for a direct representation for the MAPT (Mandarine Academy
Professional Timetabling) problem.

Each solution has a set of event sessions ES belonging to their respective
training.
Each session can have one or many session instances si where selected
resources, dates, hours, sequences, and a location are specified.

• Event session instance sie = (Re, de, ste, ete, le, seqe), where:

– Re denotes the allocated resources set (Trainers, rooms, and
devices).

– de denotes the allocated day to event session instance sie.

– ste and ete denotes the allocated start and end times to sie,
which are imposed.

– le denotes the allocated location to event session instance sie.

– seqe denotes the specific sequence of the session instance.
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• Event session ESe = {si1e, si2e, . . . , sine}, where n depend on e.

• Event session set Se = {ES1e, ES2e, . . . , ESme}, where m depend on
e.

• sol = {Se1, Se2, , . . . , Sew, }, where w depend on selected courses to be
planned. Se1 is the set of sessions for the first course e1.

3.2.2 Initializing Population

As mentioned in [120], the initial population of genetic algorithms can be
produced through a random, greedy, or heuristic approach.

We opted for a constructive heuristic with hard constraints incorporated
in its design, this approach leads to a valid initial population that doesn’t
need extra fixing.

Algorithm 1 shows the proposed heuristic that uses a priority scheme at
the start to assign courses Einput, with both 1) higher duration and 2) extra
restrictions on days (imposed or starting days) a higher priority. Starting
from the highest priority to the lowest, the heuristic selects every session
of each training and a) assigns a time slot and b) resources that respect
the defined constraints. The diversity between produced solutions is en-
sured by selecting different resources (if available) for different sessions of
the same event. Note that in case of unavailable resources/time slots, the
heuristic adapts by using an auxiliary memory to optimize the search pro-
cess. In some cases, some events will be discarded as there aren’t unlimited
resources at each location.
Algorithm 1: Initializing Population: Constructive heuristic for
MAPT problem initial solutions generation.
Data: Einput Courses Sorted by defined priority scheme.
Result: Sol (List of planned courses).

1 while still have courses to plan do
2 currentsession← 0 Edur ← Event duration (in days)

ESeqcnt ← Event sequence count while
currentsession ≤ sessionnbr do

3 while (Edur ≥ 0) ∨ (ESeqcnt ≥ 0) do
4 day ← valid days resources← valid resources

sessioninstance← day, resources
5 session← sessioninstance

currentsession← currentsession+ 1 Edur ← Edur − 1
ESeqcnt ← ESeqcnt − 1

6 course← course+ session Sol← Sol + course
7 return Sol
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3.2.3 Genetic Operators

We list the different operators used to conduct our research, starting with
the selection operator which is described in detail in Chapter 2, Section
2.1.1.4. There are two main categories of solution selection methods for
genetic algorithms [30]:

• Deterministic methods: The selection of the fittest individuals in a
population for recombination. This method can potentially lead to
a local optimum, as it focuses on the best solutions for the current
population.

• Stochastic methods: Select individuals randomly, without consider-
ing their fitness. This approach helps to maintain diversity in the
population and avoid premature convergence to a local optimum.

The roulette wheel selection is a middle way since it creates a discrete
probability distribution from which we identify the chromosomes. This
explains why it is the most common selection method used in genetic al-
gorithms. The roulette wheel selection is chosen for our experiments. For
crossover and mutation, we provide more details in the following paragraph.

Crossover Operators like Partially Mapped Crossover (PMX), Cycle Crossover
(CX) and Order Crossover (OX) are frequently used for scheduling prob-
lems [23]. To apply the aforementioned operators to the MAPT problem,
appropriate operators need to be designed. Since every solution must sat-
isfy a range of hard constraints to be feasible, the classical operators will
need to undergo modifications to produce valid solutions. We propose the
use of a crossover operator called MAPTco and adapted from [16]. This
operator was specially crafted for this problem, the pseudo-code is shown in
Algorithm 2. In addition to the MAPTco crossover operator, we have also
experimented with other crossover operators such as PMX, CX, and OX.
The results of these experiments will be presented later in the thesis, where
we compare the performance of these operators in solving the MAPT prob-
lem. Both MAPTco and PMX include company business logic, concerning
their adaptivity with the new proposed encoding.
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Algorithm 2: Pseudo code of the MAPTco crossover operator,
adapted from [16].
Data: P1, P2 (Parents)
Result: O1, O2 (Off-springs)

1 N ← total number of events.
2 E1 ← randomly select a number where E1 > 1 and E1 ≤ N .
3 E2 ← N − E1.
4 O1 ← randomly select E1 number of events from P1 and randomly

select E2 number of events from P2 not already selected from P1.
5 O2 ← randomly select E2 number of events from P2 and randomly

select E1 number of events from P1 not already selected from P2.
6 return O1, O2

The MAPTco crossover operator is designed to ensure that the off-
springs inherit some characteristics from both parents while maintaining
the feasibility of the solutions. The random selection of events from both
parents helps in exploring the search space effectively.

A possible conflict with constraints can happen for the crossover oper-
ators. The following example demonstrates. Parent 1 and Parent 2 don’t
share the same number of planned sessions per event. In the case of a
crossover operation, a child solution might end up having certain sessions
with unavailable resources since the order was changed. The child’s solu-
tion, in this case, is not valid. To overcome this, a repairing function is
implemented where the time slot/resources are changed for the invalid ses-
sions. In case when this doesn’t work (no availability) the infeasible session
is discarded.

Mutation Like crossover, the mutation is applied following a defined
probability pm. Classical operators (Bit Flip, Swap, and Random mutation)
are commonly found in the literature.

A custom operator named MAPTmo is proposed to be compared with a
classical operator. MAPTmo was adapted from [16] and the classical Ran-
dom mutation. However, MAPTmo has business logic incorporated in its
design that permits it to work on a specific catalog’s properties (resources
and time slots).

The operator selects an event session randomly and then decides whether
to generate a random valid (hard constraints) time slot or resources (new
rooms, equipment, or trainers). Two granularity of mutation can be used
with MAPTmo that impacts the solution’s state:

• Small (Default): By selecting a small granularity, changes inside a so-
lution are applied at the Event session instance sie level. this permits
changes to resources, time slots, location, etc.
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• Large: By selecting a large granularity, changes inside a solution are
applied at the Event Session ESe as a whole. This permits huge
changes to the overall schedule for a particular event e.

3.3 Experimental Design
In this section, we focus on the experimental protocol implementation used
at Mandarine Academy to tackle the timetabling problem. Figure.3.3 pro-
vides an overview of steps considered in the experimental design. In the
first step, we describe the historical data used in the experiments. We dis-
cuss the performance of using the constructive heuristic to generate initial
solutions for each test size. In order to provide a fair comparison, we also
explain how we tune the parameters of Multi-Objective Genetic Algorithms
(MOGAs) with irace both 3 and 5 objectives. The last subsection evaluates
and interprets the findings of selected metaheuristics on several runs.

Figure 3.3 Overview of the experimental protocol used in MAPT problem.

3.3.1 Dataset

As we explained before, since this problem is different from academic
timetabling, evaluating our approach using academic data sets such as
(ITC 2007 or ITC 2019) won’t be relevant, since our objectives incorpo-
rate business requirements and aren’t purely academic as the focus here is
organizational more than academic.

Rather than using synthetic data, we use historical data for experi-
ments. Mandarine Academy and its partners in DiLeap Logistic supplied
us with some historical data (2019-2020) in order to test our approach.
Problem instances were created using a total of 152 different training.
Table.3.1 offers an overview of our test instances. Note here that there
are no duplicate courses inside each test instance.

In total, 3 different problem sizes (small, medium, and large) are pro-
vided. For each problem size, the number of sessions, training, and planning
window is increased. This was implemented to simulate how the algorithms
will behave when having a larger number of events to satisfy. Note that the
duration is expressed in days and each size has 20 different test instances.
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This real-world data is published online under the title Mandarine
Academy Professional Timetabling Dataset (MAPTD)[54]. The data is
aimed at benchmarking timetabling solvers whether it is in education or
other professional sectors. There are two kinds of records in MAPTD:

• Input files that are used as testing the approach. There are 3 groups
(Small, Medium, and Large) each with 20 different instances, totaling
60 test sets, to simulate different real-world scenarios.

• Second records are training files that include the information of each
entity involved in the scheduling process. Such as courses, teachers
and rooms availabilities, locations, etc. Note that both records have
no redundant values.

Table 3.1 Characteristic of test instances used in our experiments.

Size Small Medium Large
Sessions 100 500 1050
Trainings 20 50 70
Duration 36.34 97.24 135
AvailableDays 60 152 244
Trainers 269 269 269
Rooms 230 230 230
Devices 14 14 14
TestInstances 20 20 20

3.3.2 Parameter Tuning

In order to fairly compare the performance of each algorithm, the i-race
package [94] with its elitist-iterated racing approach is used to find the best-
performing parameters. Elite configurations are returned based on their
average best hypervolume indicator (HV ) across different test instances.
More information about i-race is provided in Section 2.1.4.

The initialization of i-race consists of importing all the considered pa-
rameters with their possible values. Because the algorithms in our experi-
ments are population-based, common parameters are found, such as:

• Population size (Pop): Number of generated solutions at each gener-
ation.

• Crossover operator (Co)

• Crossover probability (Cp): Probability for parent solutions to recom-
bine.
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• Mutation operator (Mo)

• Mutation probability (Mp): Probability for a child solution to be
mutated.

For each parameter we list the possible values it can have, this is shown
in Table.3.2. Parameter values for the population size were chosen based
on the number of events in our test instances. The classical PMX crossover
operator will be compared to our proposed operator MAPTco. For muta-
tion operators, the Swap mutation is compared to our proposed operator
MAPTmo. A probability of 1.0 for both genetic operations means that
all offspring are produced by crossover or mutation. A probability of 0.0
indicates that we are mimicking the older generation. We simulate genetic
algorithms against various cases, providing low to high probability values
for mutation and crossover, to see how the performance varies.

Table 3.2 Parameters settings considered for tuning phase.

Parameters V alues
POP 50, 75, 100, 125, 150
CX PMX, MAPTco

CP 0.0, 0.1, 0.2, 0.3, 0.5, 0.8, 1.0
MX SWAP , MAPTmo

MP 0.1, 0.3, 0.5, 0.7, 0.8, 0.9, 1.0

The termination criteria chosen for the final experiments are 4, 8, and
12 hours of computing time. This is the time duration for algorithms to
execute until termination. The choice of such duration is aligned with
the company’s interest in running these heavy calculations overnight, to
provide a solution, the next day for complex problems with urgency.

3.3.3 Computational Environment

We conduct the experiments on a private cloud cluster. We use 5 virtual
machines (VM) each composed of 24 cores of 1 GHz and 100 GB RAM each.
We installed SLURM [117] an open-source, fault-tolerant, scalable cluster
management, and job scheduling system. It is responsible for allocating
access to resources (compute nodes) to users, monitoring jobs, and finally,
it is arbitrating resources by managing a queue of pending work.

109



3.4 Experimental Results
For this task, we will be using jMetalPy [10] a python framework for
single/multi-objective optimization that offers both parallel computing ca-
pabilities and easy-to-use visualization tools. The framework can be used
to develop custom evolutionary algorithms/operators and define new prob-
lems.

The initial population used in both the tuning phase as well in exper-
iments was produced by the proposed constructive heuristic. The average
number of planned sessions per test size is 100 (100%) for small instances,
498 (98%) for medium instances, and 980 (93.3%) for large instances.

3.4.1 Parameter Tuning

Elites’ configurations provided by i-race for each algorithm (NSGAII, NS-
GAIII, SPEA2, MOEA/D, and IBEA) are computed using the hypervol-
ume indicator. These algorithms are adapted from jMetalpy to our prob-
lem, and the earlier demonstrated algorithm is only used to generate valid
initial solutions using a constructive heuristic. A non-parametric test is ap-
plied to results by using Spearman’s rank correlation coefficient, Kendall’s
concordance coefficient, variance, and Friedman’s test (rank).

Table.3.3 shows the best configuration found for each algorithm on the
small problem instances using 3 objectives (O1, O2, and O4). The chosen
stopping criterion for our experiments is the elapsed computing time, which
was set to a maximum of 4 hours per instance. Note that MOEA/D has
additional parameters which are the neighbor size (NS), neighborhood
selection probability (NSP ), and max number of selected solutions (MSS).
The values for these parameters respectively are (NS: 33, NSP : 0.8, and
MSS: 16). Table.3.3 shows the best configuration found for each algorithm
on the small problem instances considering all objectives (O1, O2, O3,
O4, and O5) simultaneously to find non-dominated solutions. MOEA/D’s
additional parameter values are (NS: 15, NSP : 0.7 and MSS: 8).

Across all returned configurations MAPTmo is selected, this confirms
that it surpasses the classical Swap mutation for this specific problem.
After all, MAPTmo uses business logic to change solutions. However, this
isn’t the case for MAPTco our proposed crossover operator that wasn’t
included in the elite configurations, instead, the classical PMX operator
was chosen.

For the following sub-section, each algorithm will use its best configu-
ration against all problem sizes (small, medium, and large) and with 4, 8,
and 12 hours of computing time. This will test the configurations found
to see how the performance evolves when we let algorithms run for longer
periods against more complex problems.
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Table 3.3 I-race results (Small instances) using 4 hours as a stopping cri-
terion for 3 objectives (O1, O2, and O4) and 5 objectives.

POP CX CP MX MP

OBJ 3 5 3 5 3 5 3 5 3 5
NSGAII 125 125 PMX PMX 0.7 0.7 MAPTmo MAPTmo 0.2 0.2
NSGAIII 150 75 PMX PMX 0.8 0.8 MAPTmo MAPTmo 0.1 0.3
SPEA2 150 150 PMX PMX 0.8 0.7 MAPTmo MAPTmo 0.3 0.4
MOEA/D 125 125 PMX PMX 0.9 0.8 MAPTmo MAPTmo 0.3 0.4
IBEA 150 125 PMX PMX 0.6 0.8 MAPTmo MAPTmo 0.3 0.8

3.4.2 Small Dataset Results

We performed 30 independent runs for each algorithm using 3 objectives
(O1, O2, and O4) and 5 objectives (O1, O2, O3, O4, and O5). We show-
case the results for each problem size (small, medium, and large) with
multiple stopping conditions (4, 8, and 12 hours of computing time). The
main performance metrics used in our experiments are the Hypervolume
(HV ) [140] to maximize, the Generational Distance (GD) [127], Inverse
Generational Distance (IGD) [127] and the Epsilon-Indicator (ϵ) [145]
are to be minimized. For each metric, the average best value and the
standard deviation are provided.

We are comparing the hypervolumes in the objective space to evalu-
ate the performance of the algorithms. The Hypervolume (HV ) metric is
responsible for measuring the convergence and diversity of our solutions,
making it a better quality estimator than other indicators. We used the
Friedman Test to ensure the statistical relevance of the results. With a
p-value of p < 0.05, results are compared using only the HV metric and
not all the indicators.

Performance analysis using 3 Objectives Table.3.4 shows a perfor-
mance comparison of all algorithms on small problem instances using 3
Objectives (O1, O2, and O4). The computing time mentioned in the fol-
lowing analysis is per instance, and the experiments were conducted on
individual instances with the specified stopping criteria values.

Starting with 4 hours of computing time, better results are provided by
IBEA followed by NSGA II, SPEA2, and NSGA III in terms of the HV
metric. The difference between these algorithms is minimal. Taking into
account the other performance indicators (GD, IGD, ϵ) we clearly see no
clear advantage from any algorithm, as they all behave similarly with the
exception of MOEA/D which has the worst results compared to the rest.
After studying the previous findings, we decided to launch new experiments
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using two additional stopping criteria values, 8 and 12 hours of computing
time per instance. For 3 objectives and 4 hours of computing time, IBEA
had the top spot for HV in second place we can see NSGAII and SPEA2
having similar HV scores with NSGAIII coming in 4th place with similar
EP indicator.

When looking at the results of 5 objectives and 4 hours of computing
time per instance found in Table.3.5, we can see IBEA still in the lead,
with NSGAIII in second place followed by NSGAII and SPEA2. When
averaging their HV scores, we find that IBEA and NSGAIII are our top 2
contenders. We decided to use these two methods for the remainder of our
experiments.

Moving on, with stopping criteria of 8 hours of computing time per
instance, better results are provided by IBEA in terms of HV , NSGA III
is behind by a small difference. Considering other performance indicators
(GD, IGD, ϵ), NSGA III has better GD and IGD compared to IBEA
which was able to obtain a better ϵ aside from the hypervolume. For the
12 hours stopping condition, with a negligible difference, IBEA is still in
the lead in terms of HV . For other performance metrics, NSGA III keeps
having better results in terms of GD and IGD, while IBEA is holding its
ground with better ϵ and HV .

Convergence analysis using 3 Objectives Observations taken from
Fig. 3.4, show the evolution of the hypervolume indicator for each algo-
rithm. Starting with 4 hours stopping criterion, most algorithms were able
to converge faster, with IBEA and NSGA III in the lead. More comput-
ing time is needed as all algorithms are still converging. Notice that the
time taken to improve the quality of solutions is slower and worse using
MOEA/D which confirms its lower performance compared to the rest of
the algorithms for this specific problem. Though both algorithms start
with similar performance, IBEA was able to converge faster than NSGA
III. From 8 to 12 hours of computing time, we can clearly see NSGA III
still converging while IBEA is starting to slowly stabilize (stagnate).
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Table 3.4 Performance comparison (Meanstandarddeviation) using small in-
stances and 3 Objectives for over 30 independent runs.

Small Test Instances (3 Objectives)
T (Hours) 4
Algorithm NSGAII NSGAIII SPEA2 MOEA/D IBEA
HV 0.890.026 0.880.021 0.890.020 0.730.021 0.900.017

GD 1.510.019 1.520.011 1.510.017 1.540.017 1.550.019
IGD 1.380.041 1.410.032 1.370.034 1.500.036 1.470.026
ϵ −0.860.018 −0.86.017 −0.860.019 −0.860.014 -0.870.023

T (Hours) 8 12
Algorithm NSGAIII IBEA NSGAIII IBEA
HV 0.940.012 0.960.010 0.960.012 0.960.009
GD 1.530.020 1.670.021 1.550.023 1.680.014
IGD 1.400.040 1.580.042 1.390.035 1.610.048
ϵ −0.900.02 0.950.010 −0.930.024 -0.950.011

Table 3.5 Performance comparison (Meanstandarddeviation) using small in-
stances and 5 Objectives for over 30 independent runs.

Small Test Instances (5 Objectives)
T (Hours) 4
Algorithm NSGAII NSGAIII SPEA2 MOEA/D IBEA
HV 0.800.026 0.830.021 0.800.020 0.610.021 0.850.017

HV (3 OBJ) 0.870.016 0.880.021 0.870.015 0.680.037 0.910.014

GD 1.900.014 1.950.016 1.910.015 1.990.034 2.000.015
IGD 1.710.037 1.760.042 1.710.040 1.960.039 1.900.007
ϵ −0.830.023 −0.850.021 −0.830.021 −0.760.029 -0.880.019

T (Hours) 8 12
Algorithm NSGAIII IBEA NSGAIII IBEA
HV 0.890.029 0.910.014 0.920.018 0.910.016
HV (3 OBJ) 0.930.026 0.950.010 0.960.016 0.950.012
GD 2.010.039 2.150.030 2.050.034 2.160.020
IGD 1.790.062 2.040.077 1.840.068 2.070.083
ϵ −0.910.029 -0.950.009 −0.940.014 -0.950.010

Performance analysis using 5 Objectives Table.3.5 shows a perfor-
mance comparison of all algorithms on small problem instances using 5
Objectives.

Starting with 4 hours of computing time, better results are provided by
IBEA followed by NSGA III in second place. SPEA2 and NSGA II have
similar scores (third place). We aggregated the same 3 Objectives used
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in the previous experiment (O1, O2, and O4) to see if aggregating yields
better results than running experiments with only 3 Objectives. Results
found in HV (3OBJ) show a small difference when compared to those found
in Table.3.4.

For other performance indicators (GD, IGD, ϵ) we clearly see no clear
advantage from any algorithm, as they all behave similarly except for
MOEA/D which has the worst results compared to the rest. NSGA II
was able to hold a better GD across both experiments, similarly, SPEA 2
was able to maintain a better IGD even after switching to 5 Objectives.
The clear winner by a small margin is IBEA for both 3 and 5 Objectives
in the 4 hours time frame.

For 8 hours, NSGA III is behind IBEA by a small difference in terms
of HV . The same results are present in HV for 3 Objectives aggregated
from the total 5 Objectives. For the 12 hours experiments, better results
are provided by NSGA III even when the difference isn’t huge. This is
also true for HV (3OBJ). Considering other performance indicators (GD,
IGD, ϵ) for 8 and 12 hours, NSGA III has better GD and IGD compared
to IBEA which was able to only obtain a better ϵ.

Convergence analysis using 5 Objectives By observing the conver-
gence graph found in Fig.3.5 for 5 objectives and Fig.3.6 for 3 out of 5
objectives using small problem instances, we notice at the 4 hours mark,
that each algorithm is still converging with both IBEA and NSGA III at
the lead. The gap between IBEA and NSGA III gets wider in the middle of
the experiments (between 4-8 hours). Around 12 hours of computing time
elapsed, we clearly see IBEA’s performance stabilizing, while NSGA III is
still improving, and it surpasses IBEA at the very end of the experiments.

Seems that 8 hours of computing time already gives a good HV , so the
extra 4 hours might not be worthwhile after all. Now after seeing both
algorithms tested under different computing times, we will be testing them
with medium test instances to see if their performance will hold against
more complicated problems. (e.g., more complex instances).
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Figure 3.4 Evolution of the hypervolume indicator (Y-axis) over 12 hours of
computing time (X-axis) using the Small problem instances (30 runs) and
3 Objectives with NSGAIII (Red), IBEA (Blue), NSGAII (Black), SPEA2
(Green) and MOEA/D (Grey).

Figure 3.5 Evolution of the hypervolume indicator (Y-axis) over 12 hours of
computing time (X-axis) using the Small problem instances (30 runs) and
5 Objectives with NSGAIII (Red), IBEA (Blue), NSGAII (Black), SPEA2
(Green) and MOEA/D (Grey).
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Figure 3.6 Evolution of the hypervolume indicator (Y-axis) over 12 hours of
computing time (X-axis) using the Small problem instances (30 runs) and
3 out of 5 Objectives with NSGAIII (Red), IBEA (Blue), NSGAII (Black),
SPEA2 (Green) and MOEA/D (Grey).

3.4.3 Medium Dataset Results

Performance analysis using 3 Objectives Table.3.6 shows a perfor-
mance comparison of both NSGA III and IBEA on Medium problem in-
stances and using 3 Objectives for a duration of 4, 8, and 12 hours.

Starting with 4 hours and despite the small difference, NSGA III was
able to maintain a better HV . Even after adding more computing time (8
hours), performance from both algorithms didn’t change much. This time,
IBEA has slightly better performance than NSGA III. The final experi-
ments (12 hours) show a very small performance increase that barely jus-
tifies the additional 4 hours of computing time. IBEA dominates medium
instances experiments by having the best values for every metric (again,
with a small difference).

At first glance, and when compared to Table.3.4 that uses Small problem
instances, we clearly see that both algorithms struggle to achieve higher
performance when faced with more complex problem instances. Now, this
can be caused by multiple factors, such as both algorithms might need
to undergo a tuning phase using the medium instances to find suitable
configurations.

Convergence analysis using 3 Objectives Convergence graphs of
IBEA and NSGA III found in Fig. 3.7 for 3 Objectives and a duration of
4, 8, and 12 hours, both algorithms are still converging even after adding
extra time in between. While NSGA III kept the lead for the first 10 hours,
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it was IBEA who surpasses the latter and achieves better performance in
12 hours duration.

Table 3.6 Performance comparison (Meanstandarddeviation) using medium in-
stances and 3 Objectives for over 30 independent runs.

Medium Test Instances (3 Objectives)
T (Hours) 4 8 12
Algorithm NSGAIII IBEA NSGAIII IBEA NSGAIII IBEA
HV 0.680.003 0.670.006 0.680.004 0.700.010 0.700.005 0.730.013

GD 1.500.0008 1.500.001 1.500.001 1.490.001 1.490.007 1.480.004

IGD 1.420.034 1.380.021 1.390.021 1.340.016 1.370.025 1.330.012

ϵ −0.720.012 -0.730.006 −0.730.005 -0.740.007 -0.740.006 -0.740.008

Table 3.7 Performance comparison (Meanstandarddeviation) using medium in-
stances and 5 Objectives for over 30 independent runs.

Medium Test Instances (5 Objectives)
T (Hours) 4 8 12
Algorithm NSGAIII IBEA NSGAIII IBEA NSGAIII IBEA
HV 0.590.015 0.550.015 0.630.015 0.650.015 0.650.016 0.680.010

HV (3 OBJ) 0.660.005 0.640.002 0.700.010 0.690.012 0.710.018 0.720.011

GD 1.880.004 1.900.002 1.870.004 1.900.001 1.870.004 1.910.002
IGD 1.800.020 1.830.005 1.790.014 1.850.008 1.790.017 1.870.006
ϵ -0.700.007 −0.660.010 −0.690.009 -0.700.011 −0.690.016 -0.700.013

Performance analysis using 5 Objectives Table.3.7 shows a perfor-
mance comparison of both NSGA III and IBEA on medium problem in-
stances using 5 Objectives for a duration of 4, 8, and 12 hours.

Similar to results found using only 3 Objectives in Table.3.6, NSGA III
is maintaining superiority over IBEA in the 4-hour range and has achieved
the best results in every metric. Switching to 8 hours of computing time,
a really small increase in HV is achieved by both algorithms. While IBEA
was able to overthrow NSGA III when comparing the HV of all 5 Ob-
jectives, NSGA III has shown a slightly better HV when aggregating 3
Objectives from the overall 5 Objectives. For the remainder of the metrics,
NSGA III has the best metrics in terms of GD, IGD, and ϵ. In the final
experiments with 12 hours of computing time, we can see a slow increase in
HV for both algorithms. NSGA III has a better GD and IGD, and IBEA
has a slightly better ϵ and HV . Now, even when performance is not at the
same level as what we have seen when using both algorithms on the small
test instances, at least both algorithms are still improving.
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Convergence analysis using 5 Objectives Hypervolume evolution
graphs found in Fig. 3.8 and Fig. 3.9 for 5 and 3 out of 5 objectives
respectively, shows how IBEA was able to keep improving with time, sur-
passing NSGA III at the end. We also notice that both algorithms showcase
a similar behavior in the final half of the experiments where they slow their
improvement rate dramatically. This also indicates that both algorithms
need additional computing time as they are still converging, and thus per-
haps better performance can be achieved.
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Figure 3.7 Evolution of the hypervolume indicator (Y-axis) over 12 hours
of computing time (X-axis) using the medium problem instances (30 runs)
and 3 Objectives, with NSGAIII (Red) and IBEA (Blue).
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Figure 3.8 Evolution of the hypervolume indicator (Y-axis) over 12 hours
of computing time (X-axis) using the medium problem instances (30 runs)
and 5 Objectives, with NSGAIII (Red) and IBEA (Blue).
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Figure 3.9 Evolution of the hypervolume indicator (Y-axis) over 12 hours
of computing time (X-axis) using the medium problem instances (30 runs)
and 3 out of 5 Objectives, with NSGAIII (Red) and IBEA (Blue).

3.4.4 Large Dataset Results

Performance analysis using 3 Objectives Table.3.8 shows the per-
formance of IBEA and NSGA III using Large problem instances and 3
Objectives for a duration of 4, 8, 12, and 24 hours.
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Similar performance behavior to those found in Table.3.6 with Medium
instances. This might confirm that the performance of both algorithms is
problem-size-dependent since both algorithms use their best configurations
based on tests applied only to small instances.

On two separate occasions (4 and 12 hours) NSGA III and IBEA have
similar HV scores. For the rest of the metrics, both algorithms either
had the same values or in rare cases an edge over the other. For the 24
hours experiments, IBEA is a clear winner here in terms of HV and ϵ while
NSGA III has better GD and IGD. Even though the difference is small,
both algorithms continue to improve.

As seen before, both algorithms might need to undergo a tuning phase
using large instances in order to find elite configurations that perform well.

Convergence analysis using 3 Objectives The convergence graph of
IBEA and NSGA III for 4 hours stopping criterion wasn’t provided as both
algorithms didn’t improve their initial HV for the whole allowed computing
time, so the results found in Table.3.8 for 3 Objectives are the initial and
final scores.

Fig 3.10 shows the HV evolution of IBEA and NSGA III. Both NSGA
III and IBEA require additional computing time as they are both still
converging. While NSGA III was trying to close the gap with IBEA, this
was successful with around 12 hours of computing time, but after that,
IBEA returns to the lead and surpasses NSGA III.

Table 3.8 Performance comparison (Meanstandarddeviation) using large in-
stances and 3 Objectives for over 30 independent runs.

Large Test Instances (3 Objectives)
T (Hours) 4 8
Algorithm NSGAIII IBEA NSGAIII IBEA
HV 0.603.15e−05 0.602.75e−05 0.630.03 0.640.009

GD 1.480.0001 1.483.26e−07 1.470.008 1.470.0009

IGD 1.476.66e−16 1.476.66e−16 1.420.047 1.370.008

ϵ -0.683.61e−05 -0.683.15e−05 −0.700.021 -0.710.009

T (Hours) 12 24
Algorithm NSGAIII IBEA NSGAIII IBEA
HV 0.660.007 0.660.009 0.680.008 0.700.009

GD 1.460.002 1.470.001 1.440.01 1.450.002
IGD 1.380.016 1.360.010 1.340.01 1.330.01

ϵ -0.720.006 -0.720.006 −0.720.004 -0.730.007
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Table 3.9 Performance comparison (Meanstandarddeviation) using large in-
stances and 5 Objectives for over 30 independent runs.

Large Test Instances (5 Objectives)
T (Hours) 4 8
Algorithm NSGAIII IBEA NSGAIII IBEA
HV 0.460.07 0.391.89e−05 0.570.02 0.490.08
HV (3 OBJ) 0.610.015 0.602.91e−05 0.630.008 0.610.011
GD 1.890.006 1.907.33e−07 1.880.005 1.890.001
IGD 1.860.036 1.891.33e−15 1.810.019 1.860.027
ϵ -0.680.018 −0.662.22e−16 -0.700.008 −0.680.013
T (Hours) 12 24
Algorithm NSGAIII IBEA NSGAIII IBEA
HV 0.590.01 0.590.02 0.640.009 0.650.010

HV (3 OBJ) 0.650.008 0.690.010 0.680.009 0.690.009

GD 1.870.004 1.890.002 1.880.005 1.900.003
IGD 1.800.022 1.840.008 1.810.019 1.870.006
ϵ -0.700.008 −0.690.010 −0.6900.008 -0.6930.010

Performance analysis using 5 Objectives Table.3.9 shows a perfor-
mance comparison of both NSGA III and IBEA on Large problem instances
using 5 Objectives for a duration of 4, 8, 12, and 24 hours.

NSGA III was able to achieve the best results in terms of HV (for 4
and 8 hours) and similar results with IBEA on 12 hours of computing time.
While NSGA III dominated HV when aggregating 3 Objectives, IBEA was
able to achieve a higher HV when more computing time is available. For
the rest of the performance metrics (GD, IGD, and ϵ) NSGA III held its
first place in each experiment. For 24 hours, IBEA performs better than
NSGA in terms of HV for 5 Objectives, HV for 3 Objectives, and ϵ.

Unfortunately, the use of medium and large instances showed that our
selected elite configurations will not work optimally unless given a longer
available computing time which is impractical.

Convergence analysis using 5 Objectives Hypervolume evolution
figures found in Fig.3.11 and Fig.3.12 demonstrate both algorithms’ per-
formances. IBEA struggles to improve against NSGA III in 5 objectives
experiments and it is improving at a slow pace compared to NSGA III.
NSGA III performed way better than IBEA in terms of convergence rate
until around 10 hours, then IBEA took the lead. When looking at only 3
Objectives (aggregated from 5 objectives), NSGA III had the lead for more
than half the experiment time and kept close readings when was surpassed
by IBEA.
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Both experiments with 3 or 5 objectives showed exceptional perfor-
mance when faced with small test problems, while this was not the case
for medium and large instances, IBEA and NSGA III were able to offer
diverse and improved solutions always. Further improvement is always
possible and re-running tuning experiments with consideration for more
complex problems might show different results from what we have seen
already.

5 7.5 10 12.5 15 17.5 20 22.5 25
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Figure 3.10 Evolution of the hypervolume indicator (Y-axis) over 24 hours
of computing time (X-axis) using the large problem instances (30 runs) and
3 Objectives, with NSGAIII (Red) and IBEA (Blue).
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Figure 3.11 Evolution of the hypervolume indicator (Y-axis) over 24 hours
of computing time (X-axis) using the large problem instances (30 runs) and
5 Objectives, with NSGAIII (Red) and IBEA (Blue).
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Figure 3.12 Evolution of the hypervolume indicator (Y-axis) over 24 hours
of computing time (X-axis) using the large problem instances (30 runs) and
3 out of 5 Objectives, with NSGAIII (Red) and IBEA (Blue).

3.5 Deploying Model in Production
In this section, we will go through how to integrate the proposed approach
into DiLeap Logistic. After performing experiments on both the construc-
tion heuristic and the metaheuristic based on Genetic Algorithms. We need
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to think about how planners can use the solution in a more user-friendly
manner. We must also assist planners in comprehending the success met-
rics returned by our method. This is a section of the literature that is
rarely covered; integrating solutions for timetabling problems for school
administrations is more prevalent in literature, than for commercial usage.

The next step in the Mandarine Academy Professional Timetabling
problem is to put our approach into production. This is an important
phase since numerous factors and challenges related to the subject must be
investigated. The specifics are covered in the following sections.

3.5.1 Graphical Interfaces for Scheduling

Making the scheduling procedure accessible to the majority of users might
be difficult. Because the majority of the tests performed in this study were
done using Python code, this procedure will be translated into graphical
pages that regular users can comprehend. The suggested graphical inter-
faces are divided into 3 pages.

Problem input page : This is the page in charge of reading the input
data such as training sessions, planning periods, and the required loca-
tions. Figure.3.13 shows the graphical interface offered to DiLeap Logistic
platform operators for uploading the input spreadsheet file.

Figure 3.13 Example of input file interface in DiLeap Logistic.

Problem settings page : This is the most crucial page, as it is re-
sponsible for the algorithm’s execution behavior. While DiLeap Logistic
does not yet provide a configuration page for tweaking the current greedy
method, planners do not have the option to select constraints or objec-
tives. The suggested page would address the objective selection step first,
in which planners can choose which objectives to examine from a supplied
list, as well as whether to maximize or minimize selected objectives. Next,
during the constraint selection phase, planners can pick which constraints
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(hard and soft) to take into account during the planning process. This is
an important step since constraints determine the validity of the solutions.
Essentially, planners may choose whether or not to make a timetable valid.
Planners cannot access complex metaheuristic parameters such as genetic
operator probabilities, population size, and so on.

Performance evaluation page : The third and last page is the fi-
nal solution assessment. An interface is provided to planners for deter-
mining weights for each considered objective in order to pick a subset of
suggested Pareto solutions. Multi-Criteria Decision Making (MCDM) is
another name for this multi-objective decision-making procedure. Pseudo-
Weights are one of the solutions considered in this step [33]. This is covered
in further detail in Chapter 2 Section 2.1.2.4.

Currently, our approach shows solutions graphically, allowing the plan-
ner to accept or reject suggested sessions. This is seen in Figure.3.14. In
addition, a dashboard displaying information about planned sessions, mo-
bilized resources and pending actions makes it easier for planners to follow
updates about the overall training process. As seen in Figure.3.15 the dash-
board is far from complete as the above propositions are being studied now.
The overall architecture of the proposed Mandarine Academy Professional
Timetabling approach is shown in Figure.3.16.

Figure 3.14 Displaying planned sessions in DiLeap Logistic.
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Figure 3.15 Dashboard in DiLeap Logistic.

Figure 3.16 Proposed approach architecture.

3.5.2 Performance of Construction Heuristic and Greedy
Heuristic

We examined the design and implementation of a construction heuristic
responsible for providing timetables that adhere to defined hard constraints
in Chapter 3 Section 3.2.2. The objective of implementing a construction
heuristic was to create a solution that fulfills the predefined hard constraints
that DiLeap Logistic’s current greedy approach failed to accomplish.

The greedy approach gives planners quick results, making the process
significantly faster than the manual approach. Despite its benefits, it does
not respect predefined constraints (it can mobilize resources that are un-
available or in the incorrect location). The construction heuristic seeks to
tackle this problem because planners want to spend as little time as possible
repairing erroneous training sessions supplied by the greedy method. Time
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spent adjusting and deleting faulty timetables can be saved by delivering
valid solutions that fulfill company requirements.

The construction heuristic produced valid solutions for the Genetic Al-
gorithms employed in our last experiments. To further test the capabilities
of the construction heuristic we ran multiple tests using real-world data un-
der different settings to compare its performance with the existing greedy
algorithm within DiLeap Logisitc. Both methods are compared to vary-
ing numbers of trainings, ranging from 10 to 100 unique training. With
a maximum of 2500 training sessions and a planning time ranging from
two months to a full year. We compare the two techniques based on run
time, number of planned training sessions, number of valid planned train-
ing sessions, and number of hard constraints broken. Table.3.10 displays
the results of the described 25 runs.
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Starting with the first evaluation criterion, run time, the greedy ap-
proach (old) emerges as the obvious victor. The most complex compu-
tations occurred at test run number 25 when the greedy technique takes
around 5 minutes to produce solutions, while the construction heuristic
(new) takes 90 minutes. While both run times are significantly less than
the manual technique, the construction heuristic falls short in this case
since it must validate the correctness of offered solutions, whilst the greedy
approach does not.

The proportion of planned sessions is the second criterion. When com-
pared to the construction heuristic, the greedy technique achieves a high
number of scheduled sessions (>90%). On the other hand, the approach
falls short in terms of the percentage of valid training sessions. Starting
with test numbers 20 to 25, we see that the greedy approach plans 13%-20%
of total sessions, whereas the construction heuristic plans 35%-48% of total
sessions. While this is true for more difficult and complex settings, both
approaches can perform similarly in initial tests with a slight advantage to
the construction heuristic.

The final decision criterion is the number of hard constraints violated.
The construction heuristic passed perfectly with 0 broken constraints. This
is not the case for the greedy technique, which breaks more and more hard
constraints as test complexity increases. Overall, the construction heuristic
solves the timetabling problem more successfully than the greedy strategy.
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3.6 Conclusion
We propose a solution for the professional course timetabling problem en-
countered at Mandarine Academy by using popular multi-objective evolu-
tionary algorithms (NSGA II, NSGA III, SPEA 2, MOEA/D, and IBEA).

We proposed a mathematical formulation of our objective functions in
addition to hard/soft constraints involved in the planning process.

A constructive heuristic has been designed to produce valid timetables.
The heuristic was able to plan most of the trainings in each test instance
and provided a high-quality initial population that respects defined hard
constraints. Unfortunately, the solutions lack diversity due to the heuristic
that creates only feasible solutions.

To optimize soft constraints of valid solutions returned by the heuris-
tic, we constructed several Multi-Objective Genetic Algorithms (MOGAs),
including (NSGA II, NSGA III, SPEA2, IBEA, and MOEA/D). The ge-
netic operators for mutation and crossover have been altered to incorpo-
rate specific business logic related to the problem at Mandarine Academy.
This alteration led to the creation of two custom operators, MAPTco for
crossover and MAPTmo for mutation.

A tuning phase using all mentioned algorithms on the small problem
instances shows that our proposed mutation operator MAPTmo outper-
formed the classical Swap operator. For the crossover operator, PMX
was chosen based on its better results compared to our proposed opera-
tor MAPTco.

Experimental results show that both IBEA and NSGA III gave the
best results in terms of Hypervolume, Generational Distance, Inverse Gen-
erational Distance, and ϵ-Indicator. By using evolutionary algorithms, we
were able to obtain more diversified solutions that are significantly better
than their initial state. When observing convergence plots, a promising im-
provement can be made by considering the additional computational time
in our experiments in order for the algorithms to handle complex instances.
However, even for the research aspect alone, increasing the computational
time and resources may not always be feasible.

From a business point of view, this is infeasible as it can come at
the price of computational costs or delays to receive results. The use of
MOEA/D in our experiments turned out to be a bad investment since it
only gave the worst results. This confirms that this algorithm was not
suited for this specific problem.

For future work, a different experimental protocol that includes pa-
rameter tuning using medium and large instances and not only small test
problems will be realized. By using parameters adapted to problem size,
we might see a different winner in terms of algorithm performance. An-
other approach would also be testing random initialization instead of the
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construction heuristic to see how it might affect the planning process. This
chapter has been the subject of a publication in the IEEE Congress on
Evolutionary Computation (CEC 2021) [55] and in the French Association
for Operational Research and Decision Support (ROADEF 2021) [100].
The dataset used for the Mandarine Academy Professional Timetabling
(MAPT) problem is available online [54].
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In Chapter 1 we identified problems related to the e-learning platform
(Mooc-Office365-Training) operated by Mandarine Academy through the
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study of user ratings/behavior. The first challenge in our work is to han-
dle the cold start problem discussed in detail in Chapter 2, the problem
impacts both users and items. The second challenge includes the sparsity
problem which manifests in the lack of user data. This may be caused by
a variety of elements, such as the lack of suitable user interactions, im-
proper display of them via the User Interface (UI), or the failure of users
to express their interests clearly. Finally, the last challenge is the learner
drop-out rates which is alarming. Users view 4 videos on average before
leaving a platform, according to our research. These 3 challenges raised
questions about what can be done and led us to consider recommender
systems to increase the number of educational videos viewed by Mandarine
Academy users. In this chapter, we outline our approach for automatically
delivering content to users based on their preferences using recommender
systems. We address the cold start and the sparsity problem, 2 signifi-
cant issues arising from Mandarine Academy data. We thoroughly explore
the data used and go into detail about the entities involved in the rec-
ommendation process. This chapter has been the subject of a publication
in the Genetic and Evolutionary Computation Conference (GECCO 2022)
[56], the French Association for Operational Research and Decision Sup-
port (ROADEF) 2022 Congress [57]. The dataset used in this research was
made public for benchmarking recommender systems at Harvard Dataverse
[53].

This chapter is structured as follows. In Section 4.1, we propose a formu-
lation of the Mandarine Academy Recommender System (MARS) problem
as a Multi-Objective Optimization Problem (MOP). We describe entities
that play a crucial role in the functioning of a recommender system. In ad-
dition, mathematical modeling of hard constraints and company objectives
is presented. In Section 4.2, we cover the steps taken to model the Man-
darine Academy Recommender System problem within a Multi-Objective
Genetic Algorithm (MOGA). This includes solution encoding, initial pop-
ulation generations, and genetic operators (mutation and crossover). In
Section 4.3, we define our experimental protocol, starting with a descrip-
tion of the data used in our experiments, followed by a parameter tuning
phase of Multi-Objective Genetic Algorithms such as NSGAII, NSGAIII,
SPEA2, IBEA, and MOEA/D. Finally, in Sections 4.4 and 4.5 we compare
the performance metrics of each algorithm, discuss the choice of genetic
operators and analyze the quality of both the final solutions and optimiza-
tion process. We also compare older and newer graphical interfaces from a
user’s perspective and discuss the impact on the learning experience.
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4.1 Recommendation as a Multi-Objective Op-
timization Problem

In this section, we propose a formulation of the Mandarine Academy Rec-
ommendation Problem as a Multi-objective Optimization Problem. We
start by defining entities responsible for both the input and output of rec-
ommender systems. Followed by modeling of business goals and company
restrictions (hard constraints).

4.1.1 Entities

A description of the main entities involved in the recommendation process
is given below. This includes the data structure, data types, and statistical
information in addition to high-quality features. Recommendation systems
are extensively used for suggesting new items to users, based on their pref-
erences (ratings). We can see the major entities that play a crucial role in
our approach, which are users, items, and ratings. Figure.4.1 provides an
overview of the relation between mentioned entities.

Figure 4.1 Relationship between entities involved in the recommendation
process.

Users and Visitors This entity represents the heart of the recommend-
ing process. Users and visitors are the powering engines of the platform,
they leave behind interactions that express their feelings towards the con-
tent or the service. Using Mooc-office365 data, we found that more than
130K are registered on the platform with 92.3% using the French version
and 7.7% using the English version. Around 3.5K are monthly connected
users. Some of the attributes that describe users are Registration date,
Profile update date, Country/city, Time zone, Role, last login, Privilege,
Company codes, Job codes, Domain codes, and Partner codes. However,
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to protect users’ personal information and reinforce privacy measures, only
the user’s unique identifier and job category are used.

Resources (Tutorials, use cases) Tutorials and use cases are avail-
able in a video format with the option to choose subtitles in 11 different
languages. These short videos focus on specific software, skills, or jobs.
Typically, these resources are integrated into courses, and one resource can
be used in multiple courses. With a collection of more than 1300 tutorials
and 113 webcasts (French version), users might find it challenging to locate
relevant content. Our goal is to provide an ordered list containing resources
for users.

Table 4.1 Overview of resource features (French version of Mooc-office365-
training).

Feature Feature Desc Type Missing
Resource ID Unique identifier Int 0%
Language Content language Category 0%

Title Content title Text 0%
Description Content description Text 0%

Views Number of views Int 0%
Creation Date Content upload date Date 0%

Duration Duration in seconds Int 0%
Type Tutorial or Use Case Category 0%
Level Content difficulty Category 75.94%
Job Related professions Category 77.53%

Software Related software Category 7%
Theme Related theme Category 12.54%

Table.4.1 provides an overview of important features that describe re-
sources (Tutorials and use cases).

Courses and Learning Paths Courses aim to deliver a certain level of
skills (e.g., Beginner in Microsoft Word). They contain different types of
items, ranging from modules (structured lists of tutorials and use cases),
quizzes, SCORM, documents to read, webcasts, etc. The learning expe-
rience here is defined by the company’s pedagogical team as each step is
defined prior to course upload.

Learning paths on the other hand tend to structure multiple courses
together. They aim to deliver a path to master a suite of skills, acquire
knowledge about a certain theme/ sector or provide necessary skills for
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certain jobs. There are 41 learning paths and 146 courses currently in
Mooc-Office365 (french version). Both courses and learning paths share
the same attributes as resources. These features are presented in Table.4.2
and Table4.3 for courses and learning paths respectively.

Table 4.2 Overview of course features (French version of Mooc-office365-
training).

Feature Feature Desc Type Missing
Course ID Unique identifier Int 0%
Language Content language Category 0%

Title Content title Text 0%
Description Content description Text 0%

Views Number of views Int 0%
Creation Date Content upload date Date 0%

Duration Duration in seconds Int 0%
Level Content difficulty Category 86%
Job Related professions Category 89%

Software Related software Category 14%
Theme Related theme Category 19%

Table 4.3 Overview of learning path features (French version of Mooc-
office365-training).

Feature Feature Desc Type Missing
Path ID Unique identifier Int 0%
Language Content language Category 0%

Title Content title Text 0%
Description Content description Text 2.5%

Views Number of views Int 0%
Creation Date Content upload date Date 0%

Duration Duration in seconds Int 0%
Level Content difficulty Category 47.5%
Job Related professions Category 70%

Software Related software Category 12.5%
Theme Related theme Category 25%
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4.1.2 Constraints

Our goal is to provide an ordered list containing items for users. This list
can be the same for visitors or personalized per user. Each personalized
recommendation will be the result of an optimization process run especially
on each user to provide the best personalization levels. Since we are working
on an optimization problem, we must define our hard constraints in order
to determine if a solution is feasible or not. Hard constraints can be defined
as conditions to optimization problems that a solution must satisfy. If a
solution respects all conditions, it’s called a feasible or a valid solution.

The problem at hand exhibits combinatorial traits, as we need to select
a subset of items from a large pool of tutorials and webcasts to recommend
to each user. The combinatorial nature of the problem becomes more com-
plex when considering multiple conflicting business objectives and a large
number of users, making it an optimization problem.

• Recommended items inside a recommendation list L must be unique
and contain no duplicates.

• Length of a recommendation list L must not exceed a fixed length k.

4.1.3 Objectives

In Chapter 2 we covered offline and online evaluation metrics for recom-
mender systems. Offline methods use historical data to show how closely
predictions match actual user ratings. The majority of literary works focus
on accuracy metrics like RMSE or Precision, as seen in Table.2.4, making
the use of offline methods essential for evaluating the quality of recommen-
dations.

But as we’ve seen in Table.2.4, accuracy isn’t the only factor influenc-
ing how good recommendations are. Mandarine Academy hopes to pique
users’ interest in subjects other than what they are already studying. The
company wants to highlight the variety and novelty of recommendations to
aid users in finding potentially interesting items. Such metrics will track
how often users discover content they hadn’t previously considered looking
for but that they now find to be interesting.

The business can specify which metrics will be taken into account before
starting the recommendation process to provide greater flexibility. The
various goals that can be used by the Mandarine Academy recommender
engine are described in more detail below.

(Objective 1) Maximize similarity with user profile. This is done by
calculating the overall cosine similarity between all items in the user profile
and items in the recommended list. Cosine similarity is a widely used metric
in information retrieval and recommendation systems, measuring the cosine
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of the angle between two vectors in a multi-dimensional space. A higher
score means higher similarity. The cosine similarity between two items is
calculated as follows:

csim(a, b) =
a · b
∥a∥∥b∥

(4.1)

Where a and b are the feature vectors of the two items being compared.
The overall similarity between the recommended list and the user profile is
then calculated using the following equation:

Psim =

∑i=0
L

∑j=0
L csim(ri, uj)

L
(4.2)

Where L is the recommended list (solution) and ri is the item number i
from L. The user profile is expressed as n where uj is the item number j
from n. csim is the item-item cosine distance matrix.

(Objective 2) Maximize diversity which is responsible for how dissim-
ilar recommended items are for a user. This can be achieved by using the
Intra-List Similarity metric (ILS) [128]. In a nutshell, we are calculating
the average cosine similarity of all items in a list of recommendations. Note
that this objective is conflicting with the first objective.

Rdiv =

∑i=0
L−1

∑j=1
L csim(ri, uj)

tc
(4.3)

Where L is the recommended list (solution) and ri is the item number i
from L. The user profile is expressed as n where uj is the item number j
from n. csim is the item-item cosine distance matrix. tc is the item pairs
count.

(Objective 3) Maximize novelty. In this objective, we are trying to
recommend less popular items and focus on items having a smaller number
of views that were added recently to the catalog. A scoring function that
sums the number of views and number of days since release, returns the
median. The smaller the median, the more novel the items are.

Rnov =

∑i=0
L ns(ri)

L
(4.4)

Where L is the recommended list (solution) and ri is the item number i
from L. ns is the novelty score.

(Objective 4) Minimize Root Mean Square Error (RMSE). Refer to
Chapter 2, Section 2.3.3 for more details about RMSE. The rating predicted
by the recommender is r̂ui and the actual value given by the user is rui while
R̂ is the number of ratings.

RMSE =

√√√√ 1∣∣∣R̂∣∣∣
∑
r̂ui∈R̂

(rui − r̂ui)2 (4.5)
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(Objective 5) Maximize the Normalized Discounted Cumulative Gain
(nDCG). We will be using nDCG@5 which corresponds to the number of
relevant results among the top 5 recommended items. Refer to Chapter 2,
Section 2.3.3 for more details about nDCG.

nDCGp =
DCGp

IDCGp

(4.6)

With IDCGp =
∑|RELp|

i=1
reli

log2(i+1)
and DCGp =

∑p
i=1

2reli−1
log2(i+1)

. Where
RELp is a list of top p = 5 relevant items (ordered by relevance). reli
is the graded relevance of the result at position i.

4.2 Genetic Modeling
The previous section demonstrates the different objectives associated with
evaluating both business and prediction performance metrics. The different
objectives present a competitive behavior, this is demonstrated in objec-
tive 1 which seeks to maximize precision, while objectives 2 and 3 seek to
provide novel and diverse items which can alter the precision scores. This
brings the need for not a single solution but multiple solutions since we
don’t want to sacrifice the performance of one objective to the detriment
of others. As demonstrated, we are faced with many competing objectives
to optimize solutions of multiple unique items, which classifies this prob-
lem as a Multi-Objective Combinatorial Optimization Problem (MOCOP).
Since we’re interested in diverse solutions, both Dominance and Indicator-
based methods which have proven efficiency in handling multi-objective
problems [71, 55] are considered. These methods include algorithms such
as:

• Non-dominated Sorting Genetic Algorithm II (NSGA-II) [121].

• Non-dominated Sorting Genetic Algorithm III (NSGA-III) [35].

• Multi-Objective Evolutionary Algorithm by Decomposition (MOEA/D) [138].

• Indicator-Based Evolutionary Algorithm (IBEA) [142].

• Strength Pareto Evolutionary Algorithm (SPEA-2) [143].

A detailed review of MOCOPs and Dominance and Indicator-based
methods is provided in Chapter 2 Section 2.1.3. The above algorithms fall
under the Genetic Algorithms (GAs) category, which begins with the choice
of the chromosome encoding (solution representation) of the problem to be
solved. Following this we further expand on our initialization strategy to
provide a high-quality initial population for our experiments, followed by
genetic operators.
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4.2.1 Solution Encoding

Following the works of [4, 118, 20], we define a solution as a list of unique
item identifiers denoted by the symbol L. This list represents a set of
recommendations for a single user. With the first item being the first to
be recommended. The list will have a fixed length of k and will include
items specific to each user. This solution can be seen from the end-user
perspective as the example shown in Figure.4.2.

Figure 4.2 Encoded solution seen from a front-end perspective.

4.2.2 Initializing Population

After defining a structure that represents our solution, we proceed to gen-
erate multiple solutions for our problem. A set of solutions is called a
population.

In order to generate a good initial population that contains various rec-
ommendations for each user, we took advantage of available data (interac-
tions and content descriptors) to create multiple recommendation engines.
For our initial population, we will be using the following approaches:

• Random.

• Content-Based Filtering (CBF).

• Association Rules (FP-Growth).

• Collaborative Filtering (CF) - Item Based.

• Collaborative Filtering (CF) - User Based.

• Collaborative Filtering (CF) - Model Based (ALS, SVD, SVD++,
NMF, SlopeOne).
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Collaborative Filtering (CF) Methods: The implementation of Item/User/Model-
based collaborative filtering algorithms was facilitated by the Surprise python
library, which is specifically designed for recommender system implemen-
tation [68]. The Item and User based methods apply a k-nearest neighbor
(KNN) algorithm [108] around items or user’s profile to retrieve neigh-
bors/similar items/users. Using the Surprise library, we were able to com-
pare the performance of model-based algorithms:

• CF-Model Based (SVD): The famous Singular Value Decomposition
(SVD) algorithm [86] popularized by Simon Funk during the Netflix
Prize.

• CF-Model Based (SVD++): An optimized SVD algorithm to en-
hance the accuracy of prediction by generating implicit feedback [85].

• CF-Model Based (NMF): Based on Non-negative Matrix Factoriza-
tion [115].

• CF-Model Based (SlopeOne): Based on the SlopeOne algorithm found
in [88].

• CF-Model Based (ALS): Alternating Least Squares (ALS) [66] ma-
trix factorization implemented in PySpark and designed primarily for
implicit interactions.

The procedure follows standard machine learning steps, in which we
divide our user ratings into train and test sets, fit estimators with train-
ing data, and execute prediction and evaluation on test data. For Model
and User/Item-based methods, results are in the form of (user id, and rec-
ommended items). Item-based methods can also return (item id, related
items). Section 4.3.1 goes through the specifics of each model and the
training/testing process.

Association Rules (FP-Growth): Content-based Filtering (CBF) and
Association Rules (AR) is implemented differently than collaborative fil-
tering methods. Beginning with association rules, the algorithm attempts
to discover frequent items in historical data. The FP-Growth algorithm
[91] is implemented in our work using the Pyspark library. FP-Growth was
chosen due to its superior performance and efficiency in finding frequent
item sets when compared to older methods such as Apriori [69]. The goal
is to uncover all co-occurrence relationships, also known as associations,
between items found in historical data.

Market basket data analysis is a typical application of association rules
that tries to uncover how items purchased by clients in a supermarket (or
store) are related. Similarly to collaborative filtering approaches, we fit the
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FP-Growth model with training data and evaluate test data after splitting
user ratings. The user-specific item-sets function returns results in the
form of (user id, recommended items), while the frequent item-sets method
returns results in the form of (item id, similar items).

Content-Based Filtering (CBF): Finally, for content-based filtering,
Natural Language Processing (NLP) techniques are used to compare the
textual information (title, description, subtitles) of each item. User rat-
ings are only used here to find what a user likes. Actual predictions aren’t
based on user ratings but on item features. NLP approaches to study hu-
man languages, specifically how to process and interpret the text. NLP is
frequently used for text classification tasks, which involve providing cate-
gories to textual content.

Textual information can be transformed into numerical features that our
models can understand using NLP approaches. When combined with the
cosine similarity metric we can calculate distances between item features,
eventually creating an item-to-item similarity matrix. This permits the
selection of any item and identifies others with similar characteristics. The
following steps were taken to process and transform textual features into
numerical features:

1. Text processing: This includes removing special characters, HTML
tags, and stop-words. Only considers numbers or letters (alphanu-
meric).

2. Tokenization: The process of converting a text into a numerical data
format appropriate for machine learning. It essentially divides sen-
tences, words, and characters.

3. TF-IDF: Term Frequency-Inverse Document Frequency[109] is a very
popular text vectorization approach that combines 2 concepts, Term
Frequency (TF) and Document Frequency (DF). TF indicates how
important a specific term is in a document by counting its occur-
rences. DF indicates how common the term is.

After applying text processing and vectorization methods, our features
are transformed to meet machine learning requirements. We apply the co-
sine similarity distance on features to generate the item-to-item matrix.
Results are in the form of (user id, and recommended items) using the sim-
ilarity of items within a target user’s profile (e.g., history of seen items).
Recommendations can also come in the form of (item id, or similar items)
using the similarity matrix alone. The SpaCy library[64] was used to im-
plement the above NLP tasks. It’s an open-source Python library for pars-
ing and comprehending large amounts of text. It contains a multitude
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of efficient implementations of common algorithms, with available models
catering to specific languages (English, French, German, etc.).

From each of the above approaches, recommendation lists are generated
per user. In the event that an algorithm is unable to provide personalized
recommendations, we have defined a fallback method, which is the "Ran-
dom" approach. The random approach essentially returns a random item
from the catalog.

4.2.3 Genetic Operators

We list the different operators used to conduct our research, starting with
the selection operator which is described in detail in Chapter 2, Section
2.1.1.4. The roulette wheel provides a middle way for selecting appropriate
solutions from a population of solutions. The strategy attempts to identify
solutions that aren’t necessarily the fittest, but at the same time, also not
choosing solutions in a totally random way. For crossover and mutation,
we provide more details in the following paragraph.

Crossover Operators like One-Point and Two-Point crossover are widely
used in the literature [67, 4, 20, 118]. The idea behind such operators is
simple, the One-Point crossover selects a single point in both parents and
swaps the elements after that point, while the Two-Point crossover selects
two points and swaps the elements between those points. As a result, some
elements from parent 2 may become redundant in parent 1, requiring a
repairing mechanism to ensure a valid solution.

Mutation Random mutation is frequently found in the literature [118],
[20] along with 1-point mutation [4], 2-point mutation [132] and Uniform
mutation [4]. The idea behind this is simple, changing items inside the
solution with other items. We propose a custom mutation operator named
MARSmo to be compared to classical operators. The concept behind
MARSmo is to choose N , with (1 ≤ N ≤ k/2), elements from a can-
didate solution. The selected elements are then randomly swapped with
either (1) Similar items (Content-Based or Item-Based), (2) Random (3)
Novel (Recently added to the catalog) items. The pseudo-code of MARSmo

can be seen in Algorithm 3.

4.3 Experimental Design
This section describes the experimental protocol implementation used at
Mandarine Academy to tackle the recommendation problem. Figure.4.3 de-
picts the many steps considered in the experimental design. Our first task
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Algorithm 3: Pseudo-code of MARS custom mutation operator
MARSmo.
Input: Solution, Mutpr
Output: Solution
/* Select a method for replacing items */

1 ReplaceMethod← Random(Similarity, Random,Novelty) for
each item in Solution do

2 if Mutpr ≤ Random([0.0, 1.0]) then
/* Replace an item using a replacement method */

3 Solution(item) ← Replace Method(item)

is to collect, clean, and transform the input data that will be used through-
out experiments. We present findings and discuss the decisions made when
choosing the data and candidate recommender engines to generate the ini-
tial solutions. We chose a parameter-tuning phase where Multi-Objective
Genetic Algorithms are compared under diverse objective sets to obtain
best performing settings. The last subsection evaluates and interprets the
findings of selected metaheuristics on several runs.

Figure 4.3 Overview of the experimental protocol used in MARS problem.

4.3.1 Dataset Engineering

In this subsection, we detail the considerations taken into the data selection
process. Back in Chapter 1 Section 1.1.2, we showcase initial findings upon
investigating usage data provided by Mandarine Academy on its product
Mooc-Office3651 (French version). In the following experiments, we used
the French catalog as it’s the most accessed by a large margin (93% of
visitors). Observations were taken from early 2018 to late 2020.

Observing Table.1.2 for explicit interactions, we see that not only roughly
1% of consumers have directly given their feedback, but also a big portion
of the catalog seems unreached. Explicit ratings are insufficient to create
user profiles and if models are trained on a small number of users, the reach

1https://mooc.office365-training.com/
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of recommendations will decrease. However, Table.1.3 illustrates that im-
plicit interactions, specifically page views, have a greater reach among users
and content. Because our method focuses on resources (tutorials and use
cases), we examine both resource page visits and view portions (resource
view time). Table.4.4 includes statistical analysis for further examinations.

Figure.4.4 and Figure.4.5 illustrate a count plot of grouped viewed re-
source pages and videos per user (Avg. Count/User). Observations show
that both distributions are right-skewed (positive). Also, a high number of
pages/videos are seen by a small number of users compared to the majority
of users. A user will visit 21 resource pages on average while watching an
average of 8 items. We discovered clear evidence of outlier occurrence by
visualizing figures and calculating averages, which we handled by utilizing
the Interquartile Range (IQR) approach. It’s a commonly used rule that a
data point is an outlier if it is more than 1.5*IQR.

Figure.4.6 and Figure.4.7 illustrate the change in distribution plots and
the Avg. Count/User after conducting outlier elimination. Although both
interactions involve a limited number of items consumed by a user, there
is no ground truth that shows whether seeing a content page several times
leads to improved user satisfaction. Our assumption is that increased or
decreased page views have no effect on a user’s learning experience. Fur-
thermore, this is not true for resource view time, which can imply increased
interest as viewing duration grows. For example, let’s take some learners
who spent a certain amount of time viewing a tutorial; the longer a user
observes, the more they learn and update their knowledge. The opposite
is also true: if a user does not view enough of the video, they will not
obtain a complete comprehension of the subject. Some extreme cases, such
as advanced users watching a few portions of a video just to learn about a
small detail, aren’t considered in our hypothesis.

Table 4.4 Overview of statistical information on implicit resource ratings.

Resource Page View Resource View Time
Unique Users 28418 9789
Unique Items 1309 1287

Number of Rows 253827 68,894
Avg. Count/User 21 8

Unique Users (IQR) 18519 8652
Unique Items (IQR) 1179 1099

Number of Rows (IQR) 111000 26649
Avg. Count/User (IQR) 4 4
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Figure 4.4 Distribution of user and resource page visit count.

Figure 4.5 Distribution of user and video watch time count.
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Figure 4.6 Distribution of user and resource page visit count after outlier
removal.

Figure 4.7 Distribution of user and video watch time count after outlier
removal.
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Table 4.5 Implicit Interactions (View Portions) from Mooc-Office-365
(French) starting 2018 to late 2020.

User ID Item ID View Portion State Date

792 995 7% Not considered 2018-01-21
3475 516 30% In progress 2018-05-25
... ... ... ... ...

687 520 80% Finished 2020-08-14
542 498 45% In progress 2020-09-16

Presenting a new scoring system We investigate the different features
and values contained in the data set in Table.4.5 since we found resource
view portions to be a better fit than resource page view.

The dataset has a total of 68,894 ratings (prior to IQR) ordered from
oldest to most recent. The company uses the following states to describe
viewing events:

• (1) Not considered: View portion from 0% to 10% of the video.

• (2) In progress: View portions from 11% to 69% are considered equal.

• (3) Finished: View portions from 70% to 100% considers the user has
finished watching the item.

In the previous paragraph, we positioned our hypothesis on the degree of
viewing an item and its impact on the overall impression. The assumption
is that longer viewing times indicate a higher user interest. However, the
current scale doesn’t capture user interest and fails to correctly identify
important items. The fact that view times from 11% to 69% are considered
equal doesn’t make sense if we apply the previous example of learners.
Learning on 11% of the content is not the same as learning on 69%, hence
a new scoring system that integrates past observations must be explored
in order to better capture user behavior. We detail below a new scoring
system that builds on the previous scale but incorporates more levels of
appreciation. The new approach translates the percentages of viewing time
according to new states. The assumption is that longer viewing times
indicate a higher user interest:

• (1) No interest: viewings from 0% to 20% of the video.

• (2) Small interest: viewings from 21% to 40% of the video.

• (3) Medium interest: viewings from 41% to 60% of the video.

• (4) High interest: viewings from 61% to 80% of the video.
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• (5) Finished: viewings from 81% to 100% of the video.

This introduces 5 different levels that have varying degrees of impor-
tance and reassembles the classical 5-star rating system found in explicit
ratings. A comparison between the current and proposed scale is presented
in Fig.4.8 and Fig.4.9.

Both current and new methods reveal that the majority of visitors are
about to or have completed viewing the content. This means that the
great majority of people have finished their lectures. However, we can still
interpret small groups of users with low viewing time. Because this isn’t
a recurring occurrence, we feel it could be due to poor user experience
(UX), as consumers may stumble into irrelevant content and return to seek
something more manageable. Perhaps the title wasn’t clean enough because
descriptions aren’t always available, or the video content isn’t clear enough
for the user to understand.

Including such low-rated items in the user profile can lead to bad rec-
ommendations. Nevertheless, the use of high ratings to train our recom-
mender systems might seem a better solution. Learning from high-rated
content will provide a better-personalized learning experience for users as
the aim here will be to provide content that is most likely to match their
habits/tastes, which manifests in highly viewed items. We define a thresh-
old of 50% or more viewing time per resource for a rating to be considered
in the user’s profile.

To address the issue of making sure the user has actually stayed in
front of the video when it is considered "finished," we can add an addi-
tional metric to the scoring system that takes into account user engage-
ment during the video playback. This can be achieved by tracking user
interactions, such as pausing, rewinding, or adjusting the volume, which
can provide insights into whether the user was actively engaged with the
content. By incorporating user engagement metrics into the scoring sys-
tem, we can better determine if a user has truly finished watching a video
and remained engaged throughout its duration. However, given the cur-
rent setting and technical difficulties, such a feature is considered in future
stages of research. The dataset used in this research was made public for
benchmarking recommender systems at Harvard Dataverse [53].
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Figure 4.8 Count of implicit interactions (View Portions) per user (old
method).

Figure 4.9 Count of implicit interactions (View Portions) per user (new
method).

Initial population generation We previously selected implicit ratings,
proposed a new scale, and excluded low-rated items from the data. For
the time being, data wrangling is complete, and we can move on to train
the models we discussed in Section 4.2.2 about establishing a high-quality
initial population of solutions using several recommendation engines:

• Random.

• Content-Based Filtering (CBF).
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• Association Rules (FP-Growth).

• Collaborative Filtering (CF) - Item Based.

• Collaborative Filtering (CF) - User Based.

• Collaborative Filtering (CF) - Model Based (ALS, SVD, SVD++,
NMF, SlopeOne).

Each approach has a specific logic that uses to provide recommenda-
tions. While collaborative filtering methods take advantage of user ratings,
content-based filtering requires knowledge of item features. Further details
on the functioning of each approach are seen in Chapter 2 Section 2.3.2.
In our case, we will be picking each approach except for the Model-Based
collaborative filtering method where we will be working with both ALS and
one more candidate.

Each approach has its own logic for making recommendations. While
collaborative filtering approaches rely on user evaluations, content-based
filtering necessitates knowledge of item characteristics. More information
on how each strategy works is found in Chapter 2 Section 2.3.2. In our
scenario, we will select each method except the Model-Based CF methods,
where we will work with both ALS and one more candidate.

Since we’re using the surprise library, the best-performing model-based
approach will be chosen among candidates (SVD, SVD++, NMF, Slope-
One). Since they fall under the same category, the logic behind each al-
gorithm is similar, for this reason, we use it to compare their performance
under implicit data.

After splitting the data into dependent and independent variables. We
divide the dataset into a 20% test set and an 80% train set. 10-Fold cross-
validation technique illustrated in Figure.4.10 is utilized. Using K-fold
cross-validation, we may train and test the model on distinct subsets of the
data several times. This way, we may not only analyze the performance of
our model, but our model will also perform better because it was trained
on more data. To evaluate each run, we chose the most popular predictive
metrics for recommender systems seen in Chapter 2 Section 2.3.3, which
are Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE).
In brief, both metrics calculate the average differences between predicted
ratings and actual ratings.

The preliminary results are displayed in Figure.4.11, which compares
the performance of model-based collaborative-filtering algorithms using the
RMSE, MAE, and MSE metrics. Naturally, SVD++ achieved the best
prediction metrics, after all, it’s designed to enhance the accuracy of pre-
dictions using implicit ratings. Unfortunately, SVD++ does not have the
quickest training or prediction times. In terms of prediction metrics, the
difference between SVD++ and SVD is not significant when compared to
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fit/test times. Using SVD instead of SVD++ allows for faster model train-
ing, which speeds up the entire process. Because we are not testing in
production mode scenarios, we are considering the SVD++ method.

Users will receive personalized results using the ALS and SVD algo-
rithms, as well as other techniques (CBF, AR, Random, User/Item-Based).
Now that we’ve decided on the final recommendation engines that will be
used to generate initial solutions, we can go on to the next phase, which is
to talk about the Multi-Objective Genetic Algorithms (MOGAs) that will
be utilized to solve the optimization problem.

Figure 4.10 Experimental protocol for the initial population.

Figure 4.11 Results of running collaborative filtering approaches for initial
population generation.

4.3.2 Experiments: Performance Optimization

Table.4.4 shows insights on statistical information of resource view portions
point to a hidden potential problem. Our approach’s Objective 5 tries to
maximize the nDCG@5, which means this can only apply to people who
have seen at least 6 items. Because certain objectives are incompatible
with all users, we must partition our data before using it as input to meta-
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heuristics. Following this discovery, we divide our dataset into 2 groups
based on user profile length:

1. Group 1: Consists of 7223 users having less or equal to 5 items in
their viewing history.

2. Group 2: Consists of 2566 users having more than 5 items in their
viewing history.

Because not all objective functions can be calculated by each group, having
two groups necessitates using only a subset of all available objectives. We
adapt our method to possible future trends by assigning various objectives
to each user group. In this situation, the flexibility of objective selection
allows personalized recommendations to be delivered to both groups despite
differences in their profiles.

Choice of Multi-Objective Evolutionary Algorithms: As demon-
strated in Section 4.1.3, we are faced with many competing objectives. We
have discussed the need to apply Multi-Objective Dominance and Indicator-
Based methods due to their efficiency and ability to provide diverse solu-
tions. These methods include algorithms such as Non-dominated Sorting
Genetic Algorithm II (NSGA-II)[121], Non-dominated Sorting Genetic Al-
gorithm III (NSGA-III)[35], Indicator-Based Evolutionary Algorithm (IBEA)[142],
and Strength Pareto Evolutionary Algorithm (SPEA-2)[143]. Another pop-
ular approach is the Multi-Objective Evolutionary Algorithm by Decom-
position (MOEA/D) [138], which decomposes the original problem into a
set of subproblems and solves them simultaneously.

A detailed review of MOCOPs and Dominance and Indicator-based
methods is provided in Chapter 2 Section 2.1.3. The above algorithms fall
under the Genetic Algorithms (GAs) category.

Parameter Tuning: Instead of arbitrarily selecting predefined param-
eters and applying them to all algorithms, another protocol is utilized to
give a fair performance comparison. It employs the i-race package [94],
which implements an iterated racing strategy to automatically find op-
timal settings. The package focus on improving optimization algorithms
and machine learning models. For further details on irace please refer to
Chapter 2 Section 2.3.3.

In essence, irace operates by first receiving as input a parameter domain
definition. This contains the target algorithms that will be tuned and
parameters with possible values to be considered. For the MARS problem
Table.4.6 details different parameters with their description and ranges.
Because the algorithms in our experiments are population-based, common
parameters are found, such as:
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• Population size (Pop): Number of generated solutions at each gener-
ation.

• Crossover operator (Co)

• Crossover probability (Cp): Probability for parent solutions to recom-
bine.

• Mutation operator (Mo)

• Mutation probability (Mp): Probability for a child solution to be
mutated.

• Kappa (Kp): Fitness scaling value for indicators (IBEA).

• NSP : Neighborhood Selection Probability (MOEA/D).

• MNRS: Max Number of Replaced Solutions (MOEA/D).

• NS: Neighbor Size (MOEA/D).

Table 4.6 Parameters settings considered for tuning phase.

Parameter Possible Values

Pop 10, 50, 100, 200, 500, 1000
Cx 1-Point, 2-Point
Cxp 0.1 - 1.0
Mx Random, MARSmo

Mxp 0.1 - 1.0
Kp 0.1 - 1.0
NSP 0.1 - 1.0

MNRS 10, 50, 100, 200, 500, 1000
NS 10, 50, 100, 200, 500, 1000

Note also that we will be comparing the proposed custom mutation
operator MARSmo with the classical Swap mutation.

Performance evaluation of MOEA: Table.4.7 provides an overview of
the different parameters considered for each experiment using irace. The
first experiment will focus on a subset of objectives (O1, O2, and O3) and
will be only applied on Group 1 that concerns users having less or equal
to 5 items in their viewing history. The second experiment will focus on
all objectives (O1-O5) applied on Group 2. The fact that Group 2 has
more items in their profile is the reason for such a decision since we can
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use a portion of their history as a test to calculate O4 (RMSE) and O5
(nDCG@k).

In both experiments, a fixed computing time limit of 1 hour is defined
as a stopping criterion. This means that for each user, a total time of 1
hour is provided to look for the best recommendations. Concerning results,
k was set to 10 items (max number of recommended items per user).

Before we can assess "how good" any single run of a Multi-Objective
Evolutionary Algorithm (MOEA), we must first grasp two concepts. The
first is convergence, which indicates how “close” we come to find the best
solution. The second metric is diversity which measures if solutions are fully
spread throughout the set or are clustered together. Elite configurations
are returned based on their average best Hypervolume (HV ) metric [145]
across different test instances. The HV metric is capable of measuring
both the convergence and diversity of our solutions. The higher the HV
value, the better our solutions are.

Table 4.7 Overview of experimental configuration for parameter tuning
phase.

Experiment 1 2
Number of Objectives 3 (O1, O2 and O3) 5

User Group Group 1 Group 2
Performance Metric Hypervolume Hypervolume

K (Number of recommendations) 10 10
Time Limit 1 Hour 1 Hour

Figure 4.12 Overview of the experimental configuration of both parameter
tuning and following experiments for MARS.

155



Figure.4.12 depicts the design of experiments starting with the param-
eter tuning phase (irace) and its results (best parameters). The output of
irace will constitute the input for final experimentation where we compare
MOEA algorithms to find the best-performing approach. Despite the simi-
larities of both experiments, notice that for the second one, we are running
a total of 30 executions and calculating multiple evaluation metrics instead
of just one. The following quantitative metrics can provide an evaluation
mechanism for both convergence and diversity [145]: Hypervolume (HV )
(Max), Generational Distance (GD) (Min), Inverse Generational Distance
(IGD) (Min), Epsilon-Indicator (ϵ) (Min). Details of each evaluation mech-
anism can be found in Chapter 2 Section 2.1.4.

Computational Environment We conduct the experiments on a pri-
vate cloud cluster. We use 5 virtual machines (VM) each composed of 24
cores of 1 GHz and 100 GB RAM each. We installed SLURM [117] an
open-source, fault-tolerant, scalable cluster management, and job schedul-
ing system. It is responsible for allocating access to resources (compute
nodes) to users, monitoring jobs, and finally, it is arbitrating resources by
managing a queue of pending work.

4.4 Experimental Results

4.4.1 Results of Parameter Tuning

Starting with Table.4.8 which shows the elites configurations provided by
irace for each algorithm (NSGAII, NSGAIII, SPEA2, MOEA/D, and IBEA)
using implicit interactions for three objectives (O1, O2, and O3).

Table 4.8 Elites configurations provided by i-race using 3 objectives on
implicit dataset (Group 1).

Parameter NSGAII NSGAIII SPEA2 MOEA/D IBEA

Pop 10 10 10 500 10
Cx 1-Point 1-Point 1-Point 2-Point 1-Point
Cxp 0.3 1.0 0.9 0.7 0.1
Mx Random Random Random MARSmo Random
Mxp 1.0 0.6 1.0 0.9 0.9
Kp - - - - 0.2
NSP - - - 1.0 -

MNRS - - - 1000 -
NS - - - 500 -
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Observations indicate that the 1 − Point crossover operator has been
chosen over the 2−Point crossover operator by most algorithms. This can
be explained by the fact that the crossover operator in this test set does
not impact objectives performance, so selecting a simpler operator could
be the reason. Only MOEA/D chose MARSmo as the mutation operator,
while the rest of the algorithms used the random mutation operator. This
can be attributed to a variety of factors, including the allowed computing
time and length of solutions k aside from the number of objectives.

Table 4.9 Elites configurations provided by i-race using 5 objectives on
implicit dataset (Group 2).

Parameter NSGAII NSGAIII SPEA2 MOEA/D IBEA

Pop 10 10 10 100 100
Cx 1-Point 2-Point 2-Point 2-Point 2-Point
Cxp 0.1 0.1 0.6 0.3 0.6
Mx MARSmo MARSmo MARSmo MARSmo MARSmo

Mxp 1.0 0.8 1.0 1.0 0.9
Kp - - - - 1.0
NSP - - - 0.8 -

MNRS - - - 500 -
NS - - - 100 -

When looking at Table.4.9 for the 5-Objectives irace runs, most elite
configurations have chosen the 2−Point crossover operator over 1−Point.
This confirms our previous assumption, that crossover operators, are chosen
depending on their role in improving the objectives. Since the additional
objectives in this experiment have an interest in item ordering, a change
in elite configuration was anticipated. Similarly, all algorithms selected
MARSmo as a mutation operator, indicating that this operator has superior
performance, particularly in complex settings.

4.4.2 Performance Results of MOEAs

As indicated in Figure.4.12 the output of irace which is elite parameters
will be used as an input for the final experiment. We average the error
metrics of 30 algorithm executions. The methodology attempts to account
for the majority of situations while also providing an overall picture of how
each approach performs. In the next paragraph, we examine the results of
the first experiment that handles both Group 1 of users and 3 Objectives
(O1, O2, and O3).

157



Table 4.10 Performance comparison (average best value and the
standard deviation) using 3 Objectives for over 30 independent runs.

Algorithm HV3OBJ GD IGD EP

NSGAII 0.77 0.05 1.23 0.002 1.019 0.016 0.147 0.024
NSGAIII 0.91 0.04 1.24 0.001 1.018 0.018 0.101 0.025
SPEA2 0.80 0.03 1.24 0.0007 1.002 0.035 0.146 0.025

MOEA/D 0.68 0.07 1.23 0.013 1.076 0.059 0.233 0.042
IBEA 0.85 0.06 1.22 0.014 1.070 0.021 0.093 0.037

Results over 3 objectives for User Group 1 Table. 4.10 shows the
performance comparison of each algorithm for 30 independent runs. Start-
ing with HV3OBJ column, results show that NSGAIII has a maximum
score of (0.91). In second place IBEA followed by SPEA2 with a score
of (0.85) and (0.80) respectfully.

Taking into account other performance indicators (GD, IGD, ϵ) which
must be minimized and starting with the GD column shown in Table. 4.10.
Most algorithms obtained similar scores with IBEA achieving the lowest
score (1.22). However, looking at the IGD column, SPEA2 was able to
obtain a value of (1.002) and create a gap with the rest of the algorithms.
Note however that both GD and IGD are easier metrics to meet compared
to ϵ. For which, IBEA was able to achieve the lowest ϵ score with (0.093)
followed by both NSGAIII and SPEA2.

Table 4.11 Performance comparison (average best value and the
standard deviation) using 5 Objectives for over 30 independent runs.

Algorithm HV5OBJ HV3OBJ GD IGD EP

NSGAII 0.74 0.05 0.84 0.034 1.41 0.003 1.06 0.03 0.07 0.04
NSGAIII 0.79 0.03 0.84 0.037 1.44 0.0006 1.07 0.03 0.10 0.08
SPEA2 0.81 0.06 0.85 0.026 1.43 0.004 1.12 0.02 0.06 0.01

MOEA/D 0.47 0.02 0.57 0.029 1.45 0.03 1.31 0.07 0.29 0.02
IBEA 0.68 0.04 0.74 0.018 1.46 0.01 1.17 0.01 0.15 0.0008

Results over 5 objectives for User Group 2 In Table. 4.11 we shift
our focus to 5 Objectives performance results, starting with HV which
is shown in the HV5OBJ column. SPEA2 and NSGAIII achieved good
scores of (0.81) and (0.79) respectively.

The previous findings are compared with the results of the 3 Objec-
tives experiment in Table. 4.10. Since objectives 1, 2, and 3 are already
included, we aggregate their values. This is indicated by HV3OBJ column
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in Table. 4.11. Both SPEA2 (0.85) and NSGAIII (0.84) kept a ro-
bust performance. NSGAII obtained a score of (0.84) outperforming its
previous HV score in Table. 4.10. However, IBEA didn’t perform well
compared to the HV3OBJ experiment.

NSGAII obtained the lowest GD score (1.41) not far from other algo-
rithms. Surprisingly though, NSGAII was also able to obtain the lowest
IGD score of (1.06) followed by NSGAIII. When considering the ϵ col-
umn, SPEA2 achieved a performance similar to NSGAII with scores of
(0.06) and (0.07) respectfully.

Setting aside the HV5OBJ results, NSGAII has shown good results con-
sidering the many-objective problem setting. But, SPEA2 and NSGAIII
continued to perform marginally better, and NSGAII kept a steady per-
formance in both experiments. This makes the previous algorithms well fit
for our future experiments.

Convergence study with graphs: Moving on to discuss the evolution
of the hypervolume HV indicator for each algorithm over time. We start
with 3OBJ performance charts shown in Fig. 4.13.

Figure 4.13 Evolution of the HV indicator (Y-axis) for 3OBJ over 1 hour
of computing time (X-axis) using all algorithms (30 Executions).
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Figure 4.14 Box-plot of HV indicator for 3OBJ experiments using all al-
gorithms (30 Executions).

Each algorithm IBEA, MOEA/D, NSGAIII, NSGAII, and SPEA
has its respective colors (Red, Grey, Blue, Black, Green). Same as our
findings in Table. 4.10, NSGAIII, IBEA, and SPEA2 are in the lead
when looking at the end of the graph. NSGAIII was able to maintain
its superiority from the beginning, while both IBEA and SPEA2 lacked
behind in the first third of the experiment time. Further details that show
the distribution, skewness, and averages of convergence data of 3OBJ are
illustrated in Figure.4.14.
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Figure 4.15 Evolution of the HV indicator (Y-axis) for 5OBJ over 1 hour
of computing time (X-axis) using all algorithms (30 Executions).

Figure 4.16 Box-plot of HV indicator for 5OBJ experiments using all al-
gorithms (30 Executions).

This behavior changes when looking at the 5OBJ graph in Fig.4.15.
SPEA2 keeps the lead from the start compared to other algorithms. From
both experiments, we can see that most algorithms are not improving at the
same level as at the beginning of the experiments. This indicates a stagna-
tion state and algorithms aren’t likely to improve considerably. A summary
of convergence data for the 5OBJ experiment is depicted in Figure.4.16.

161



Examining Figure.4.13 and Figure.4.15 reveals that good results are ob-
tained in around 5 minutes of computing time for both experiments. While
most approaches continue to improve after that time, the extra computing
time is not justified. The advantage of cutting training time early is the
ability to quickly update models and serve recommendations to users.

Qualitative evaluation using real users Following the observations
on the quality of the optimization process and metaheuristic performance,
we shift focus to understanding and explaining the obtained best solutions.
We randomly picked 2 users from the test data; the details of each user
profile are provided below.

Starting with User A belonging to Group 1 which consists of 7223 users
having less or equal to 5 items in their viewing history. User A has seen
a total of 4 videos, further details are shown in Table.4.12. Note that we
are only considering highly viewed items (leq 50% of video time) in the
dataset.

Table 4.12 User A ( Group 1) profile history of seen learning videos.

Title Category Duration (minutes) Number of Views
What is OneDrive for business? One Drive 0:42 1569

Share documents One Drive 2:56 1051
How to use Outlook Online Outlook 1:51 819
Discover Outlook Interface Outlook 2:54 609

We explore the results returned to User A from each algorithm used
in previous experiments. A reminder on User A results which were eval-
uated on 3 Objectives (Similarity, Novelty, and Diversity), only the first
5 items are displayed since they will also be the first seen by a user be-
fore deciding whether to click or explore the rest of the results. Details of
recommendations tailored for User A are found in Table.4.13.
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Observations over User A profile in Table.4.12 shows interest in a small
set of tools (One Drive and Outlook), one specialized in file management on
the cloud, and the second in emails, scheduling, and organizational tasks.
The personalized recommendations are displayed in Table.4.13 shows a di-
verse selection of tools that provides a range of similar services. We start
with results returned by the best-performing approaches in this experi-
ment which are NSGAIII and IBEA. While some of the items in both solu-
tions are identical to those already present in User A’s profile ("Outlook"
and "One Drive"), we also discover other unexpected services ("Teams",
"Skype", and "Windows"). The novel and diverse results may provide a
new exploration of the catalog. It can also teach users about new services
they weren’t aware of or can be integrated into their workflow. This boosts
user productivity. Considering that both NSGA III and IBEA had the best
metrics, it’s no surprise that results exhibit a nice balance between the 3
selected objectives (Similarity, Diversity, and Novelty).

For the remaining algorithms, SPEA2 and NSGAII exhibit a simi-
lar trend. Their results are balanced between similar items ("Outlook")
and items with new tools that might complement the existing knowledge
("Shifts" and "Lists"). Lastly, MOEA/D had the most diverse content, as
none of its suggestions are comparable to any of those in User A’s profile.

Moving on to User B belonging to Group 2 which consists of 2566 users
having more than 5 items in their viewing history. User B has seen a total
of 7 items, further details on each item are shown in Table.4.14.
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Table 4.14 User B ( Group 2) profile history of seen learning videos.

Title Category Duration (minutes) Number of Views
OneDrive for Business One Drive 0:42 1569

Discovery Share Point 2:10 379
Intro to PowerApps Power Apps 1:12 526
Intro to Power BI Power BI 2:52 406

Kaizala for beginners Kaizala 1:06 193
Scheduling a team meeting Teams 1:09 330
Appointments on Outlook Outlook 0:57 455

We explore the results returned to User B from each algorithm used
in previous experiments. User B results are calculated using 5 Objectives
(Accuracy, Novelty, Diversity, RMSE, and nDCG@5), only the first 5 items
are displayed since they will also be the first seen by a user before deciding
whether to click or explore the rest of the results. Details of recommenda-
tions tailored for User B are found in Table.4.15.
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Observations of User B’s profile in Table.4.14 displays interest in a wide
range of tools without indicating any particular preference other than the
aim for introductory videos. This might indicate that the user is expanding
their knowledge on a suite of tools or the overall catalog. Both users A and
B have different learning approaches. The personalized recommendations
are displayed in Table.4.15 and show a diverse selection of tools that contain
similar items to the user profile. We begin with the SPEA2 and NSGAIII
results, which are the techniques that performed the best across 5 objective
experiments.

In comparison to other methods, SPEA2 findings demonstrate more
diversified themes (such as "Office 365" and "Microsoft Lists") and give
many more introductory videos. NSGA III shows more similarity with
User B’s profile with little diversification compared to SPEA2. Similarities
between the categories ("SharePoint," "Power-Apps," and "Teams") are
seen in results returned by IBEA, with the addition of ("Power-Point")
videos to add diversity. The 3rd element is present in the user profile, and
this indicates that the algorithm (IBEA) managed to predict that the user
will be watching the video "Intro. to Power-Apps".

Due to the fact that we train using a portion of the user profile and
evaluate nDCG@5 on the remaining portion, it is possible to find identical
items in both user profiles and recommendations. In comparison to SPEA2,
the remaining algorithms, MOEA/D and NSGAII, display similarities to
User B’s profile and place less importance on introductory videos.
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4.5 Deploying Model in Production
To provide results in a production environment where actual users utilize
the platform, the approach will be trained on selected user profiles to avoid
the extra-computing. Our goal is to optimize the hypervolume score while
reducing the model computation time because this process can take a while,
especially when there are a lot of users.

We learned in Section 4.4.2 that a reasonably good hypervolume score
can be attained within 5 minutes of computation. This is seen in both
Figure.4.13 and Figure.4.15. This means that calculations will run for a
maximum of 5 minutes per user before returning recommendations. To
prevent potential issues with model training or restricting access to users,
recommendation update times are set to hours where there is the lowest
usage rate.

In order to provide results in production scenarios, the approach will
be trained on user profiles. Because this process can take a long time,
especially with a large user base, we try to keep our runs as short as possible
while maximizing the HV metric. Examining Figure.4.13 and 4.15 reveal
that good results are obtained in around 5 minutes of computing time for
both experiments. While most approaches continue to improve after that
time, the extra computing time is not justified.

4.5.1 Graphical Improvements for Users

Back in Chapter 1 Section 1.1.2.3, we based our assumptions that lower
explicit ratings are partly due to graphical issues since it’s the only vis-
ible type of feedback input to users. We confirmed our hypothesis after
investigating the graphical interface available for both registered users and
visitors. In content pages the was a clear lack of rating methods. For the
existing interactions (like and share buttons) there was no text explaining
the function of a barely visible icon. Chen et al. [21] insist on improving
visibility and readability for users, whether for recommendation results or
the content they are viewing.

4.5.1.1 Ratings

Since explicit ratings are essential for both feedback information and also
input to the recommender system, we propose a new design for existing
and new interactions. The design is shown in Figure.4.17 where graphical
changes include more readable text font and size, in addition to informative
icons and button indications (on-hover effects).
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Figure 4.17 Proposed design for explicit interactions.

Furthermore, a "Feedback" option is provided for users who are having
difficulty with a certain item. By indicating whether there are any issues
with audio, video, or subtitles, the user can have control over the state of
the catalog. This also gives the company an early warning system if there
was unseen errors in both technical and educational matters.

The "Bookmark" feature is another addition to explicit ratings. It
enables users to save content to be viewed later. The purpose of this fea-
ture was initially to help users save videos that seemed interesting without
spending additional time looking for them in other sessions. This feature
is implemented and still in the early stage of collecting information before
assessing its importance.

The last addition is a pop-up (dialog box) after a video has finished
addressing the lack of explicit ratings related to the content. This feature
aims to collect feedback from users after they have completed their learning.
The proposed pop-up design is shown in Figure.4.18.

Figure 4.18 Design of a dialog box shown at the end of a video.
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4.5.1.2 Recommendation Placement

Graphical improvements weren’t limited to small tweaks but also major
changes in the main pages (Home and Content Page). Our propositions
take into consideration both registered users and visitors. Previously the
home page provided a limited set of the newest courses and tutorials for
both visitors and users. The current home page design is depicted in
Figure.4.19. Since the goal of the main page is to provide the shortest
possible path to learning we propose a new page design that offers a more
efficient way to access a multitude of content types. The suggested page
design is illustrated in Figure.4.20. Users/visitors can now directly select
certain tools and required skills for specific jobs or certification videos.
We took advantage of existing population generators to create standalone
recommendations for both users and visitors. This design provides the
possibility to include our popular items for visitors and personalized rec-
ommendations for registered users.

Figure 4.19 Current home page design.
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Figure 4.20 Proposed home page design.

For the content page, we improved the overall graphical interface (rat-
ings and navigation), but most importantly we try to remove an important
factor in dropout rates which is the burden of information finding. Previ-
ously users were required to go back to the content listing and search for the
next video to watch which is time-consuming, this is shown in Figure.4.21.
A playlist containing the next items to watch is generated using recom-
mender systems. This playlist guides users through their learning journey
that adapts to changing trends and behavior, this is shown in Figure.4.22.
We discuss the integration of recommender engines in both content/home
pages in detail in Section 4.5.2.
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Figure 4.21 Current content page design.

Figure 4.22 Proposed content page design.
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4.5.1.3 Quality of Life

Advanced and power users that know their way well within the platform
will benefit from improvements to the search experience. This is shown
by giving more control over item selection through filters. We considered
adding additional attributes such as "duration," "license," "quizzes," and
"bonus content." To help users better tune their results. A comparison of
Figure.4.23 with the old design and Figure.4.24 with the suggested design
reveals that the old version of filters is less visible and does not offer as
many attributes as the suggested design. More design enhancements, such
as reassembling certain graphical elements (video player, item sliders, and
search bar) to match common online services, were proposed. The goal was
is to reduce cognitive overload caused by clumsy and unfamiliar browsing
experiences, which users may encounter on occasion [130].

Figure 4.23 Existing filter design (courses).
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Figure 4.24 Proposed filter design (courses).

4.5.2 MARS Control Center

To manage the MARS parameters we propose the design of a custom dash-
board or a control center. This control center gives the platform manager
the ability to create recommendations in two modes:

1. Single-Objective: In which we select a recommendation engine and
create recommendations for specific user groups and specific web
pages.

2. Multi-Objective: In this mode, we use metaheuristics to provide rec-
ommendations to users on specific pages. The only difference is that
this approach combines multiple recommendation engines and in-
volves a multi-criteria decision-making process.
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Figure 4.25 Architecture of MARS (Single-Objective).
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Figure 4.26 Architecture of MARS (Multi-Objective).

Both Figure.4.25 and Figure.4.26 show the architecture of both modes.

4.5.2.1 Dashboard

The MARS dashboard provides an easy way to handle multiple tasks re-
lated to using recommender systems in an E-learning platform. The fol-
lowing are a subset of considered features:

Model Management: This is typically the first step in creating rec-
ommendations within a service. Here managers are provided with options
to select what recommendation approach to use (single or multi-objective)
as well as parameters related to algorithms (objectives, constraints, user
groups, evaluation, etc.).

176



Scenario Management: Scenarios give an extra layer of tuning results,
this can be described as advanced filters such as promoting paid items over
free items. Overall, here we control the behavior of displaying items.

Interaction Analysis: This interface is crucial to monitor the health of
recommendations across different models, scenarios, and pages. Here we
have access to interactions count (likes, dislikes, shares, etc), as well as
how each model is performing (clicks, average viewing time, etc). This also
includes statistics on other forms of recommendations such as mailing and
push notifications.

Alerts and emails: In this section, we define the parameters of emails
or push notifications, this includes what approach to apply, when to apply
it, and on what user group. Using recommendations in such activities can
help remind users that their actions are taken into account and build trust
between their feedback and provide results.

4.5.2.2 Online Evaluation

Back in Chapter 2. Section 2.3.3 we discussed the advantages of online eval-
uation as it provides interactions that are less susceptible to bias because
they are generated by real users using the platform. Besides, Interactions
such as clicks on recommended items, sharing, or increasing the average
watch time of recommended items can indicate that the model is working
correctly for a specific page or specific group of users. One very known
method used in the online evaluation of recommender systems is A/B test-
ing which measures the direct impact of the recommender system on the
user. AB testing campaigns are planned for both the home and content
pages to assess the effects on user behavior and satisfaction levels.

4.5.2.3 Multi-Criteria Decision Making

After obtaining a set of non-dominated solutions, one may wonder how a
decision-maker can choose which solution to serve. This multi-objective
decision-making process is also known as Multi-Criteria Decision Making
(MCDM). Pseudo-Weights is one solution among many others [33]. This
is explained in detail in Chapter 2 Section 2.1.2.4.
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Figure 4.27 Concept design for Pseudo-Weights method applied on MARS
from the decision maker perspective.

From the standpoint of the decision maker, the user will be presented
with a set of already configured profiles, as well as the option to define
custom profiles. The design shown in Figure.4.27 allows the decision maker
to choose which objectives to focus on and to set the importance of each
objective.

4.6 Conclusion
We addressed the issue of the recommender system for e-learning content
in this chapter. We took into account the Mooc-Office365-Training a real-
world e-learning platform operated by Mandarine Academy. We identify
the main problems obstructing the platform’s potential growth and adding
to drop-out rates through in-depth research of historical data as well as
graphical interfaces.

Challenges such as data sparsity and dropout rates are addressed through-
out this chapter. Our first contribution is formulating the Mandarine
Academy Recommender System (MARS) problem as a Multi-Objective
Optimization Problem (MOP). To expand, 3 different stages are consid-
ered for formulation. The first stage is entity definition. We explain how
each entity functions and its relationship to other entities. Understanding
the domain of our problem is crucial in the functioning of a recommender
system.

The second stage involves mathematically describing our business con-
straints and goals (objectives). This process entails translating key metrics
and business requirements into mathematical forms. In total, 5 objectives
are considered in this problem (Similarity, Diversity, Novelty, RMSE, and
nDCG@5). By modeling how we evaluate and check the validity of a po-
tential solution we proceed to stage 3. In this last stage, we look over
the circumstances that led to selecting genetic algorithms as a candidate
algorithm to handle the found problem at Mandarine Academy.
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Our second contribution in this chapter is the implementation of Multi-
Objective Genetic Algorithms to solve the MARS problem. This phase
included selecting an appropriate encoding structure from different can-
didate schemes found in the literature, as well as the reasons behind the
choice.

Our third contribution is the adaptation of several recommendation
strategies from the literature (Content-Based, Collaborative-Based, Asso-
ciation Rules, and Random) to the MARS problem. This is part of the
initial population generators section, where we tested several methods to
generate solutions (user recommendations) that will later be improved by
genetic algorithms.

Our fourth contribution, which is also the final phase of genetic mod-
eling, is the selection of genetic operators (mutation and crossover). For
crossover, we examine several operators used in similar works and reveal
a potential problem that might violate the company’s constraints. We en-
sure that a repairing function will fix invalid solutions when using genetic
operators. We detail the logic behind a proposed custom mutation oper-
ator named MARSmo, which will be compared to classic operators under
different settings.

We give a complete experimental methodology with numerous steps
before doing our final experiments. The initial stage in our proposed ap-
proach was to collect, clean, and transform input data (user ratings). We
compared various captured user logs and conducted exploratory data anal-
ysis to determine the significance of each event type. This involves feature
engineering to better capture user preferences. We discuss the selected
subset of data that will be used throughout the studies after analyzing
user events. Our fifth contribution was making this dataset available for
future scientific studies and engineering projects. The second stage was to
develop initial solutions for users, which were then used as input to the
parameter tuning phase. To choose the best-performing settings for use
in population generation, we compare the advantages of multiple recom-
mender systems approaches. 7 of 10 different recommendation approaches
were chosen based on their performance or capabilities (e.g., diversity of
recommendations).

The application of irace to identify optimal settings for Multi-Objective
Genetic Algorithms (NSGAII, NSGAIII, SPEA2, IBEA, and MOEA/D) is
our sixth contribution. To give a fair performance comparison, we gave
each algorithm an equal opportunity to apply its optimal parameters after
training on the data.

We began our tests after putting everything together, from genetic mod-
eling to population generation to parameter tuning. Starting with param-
eter tuning tests that revealed various modifications under two separate
settings (3 and 5 objectives). We discovered that higher and more complex
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settings (more objectives) cause significant changes in genetic operators but
had no influence on other parameters (e.g., population size). The custom
mutation operator MARSmo was chosen because it was best suited for com-
plex situations (5 objectives). Running tests using the optimal parameters
and multiple evaluation metrics (Hypervolume HV , Generational Distance
GD, Inverse Generational Distance IGD, Epsilon-Indicator (epsilon) is the
final phase in our experimental methodology.

The proposed mutation operator was selected as best suited for com-
plex settings (5 objectives). The final step in our experimental protocol is
running experiments using the best settings and different evaluation met-
rics (Hypervolume, Generational Distance, Inverse Generational Distance,
Epsilon-Indicator (ϵ)).

Similar to parameter tuning experiments, the selection of best approaches
changes when the problem settings change from 3 to 5 objectives. For 3
objective settings, both NSGA III and IBEA performed best in most of the
evaluation metrics but more importantly in the hypervolume score.

When the problem settings change from 3 to 5 objectives, the selection
of optimal techniques changes similarly to parameter tuning studies. Both
NSGA III and IBEA performed best in most evaluation measures, but
especially in the hypervolume score HV , for three objective settings. This
behavior continues in complex settings (5-Objectives) with both NSGAIII
and SPEA2 achieving the highest hypervolume score HV .

Further examination of the obtained recommendations from randomly
selected users reveals the variety of each algorithm’s solution. When look-
ing at performance graphs, we discovered that in both studies, satisfactory
results are reached in roughly 5 minutes of computation time. This greatly
simplifies the process of updating models when considering production en-
vironment scenarios.

For future experiments, we consider the addition of custom genetic op-
erators (mutation and crossover) to be compared against different objective
combinations.

Furthermore, the need to improve recommendation response times ne-
cessitates testing the suggested approach in near real-time contexts, which
will allow for the observation of changes in user taste as they occur and the
adaptation of future recommendations to those changes. Finally, business-
related objectives are being developed, with metrics such as click-through
rate (CTR) already in the works.

We want to extend the proposed graphical improvements to additional
pages of the E-learning platform for the corporate context. The planned
User Interface (UI) enhancements include updated explicit ratings and a
renewal of the browsing experience by making the user familiar with the
service’s operations and also by emphasizing readability, clarity, and feed-
back. Other considered improvements are the access to a "command cen-
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ter" or an "administrative dashboard" which makes it simpler to place
recommenders in the best-suited areas of each page. This dashboard will
empower platform owners and users. Through the adaptability of provid-
ing recommendations, the development of multiple models per user group
or web page, and finally the analysis of online performance data.

This chapter has been the subject of a publication in the Workshop of
Multi-Objective Recommender Systems (MORS’22), in conjunction with
the 16th ACM Conference on Recommender Systems, RecSys (2022) [65]
and in the Genetic and Evolutionary Computation Conference (GECCO
2022) [56], the French Association for Operational Research and Decision
Support (ROADEF) 2022 Congress [57]. The dataset used in this research
was made public for benchmarking recommender systems at Harvard Data-
verse [53].
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Chapter 5

Conclusion

Contents
5.1 Summary of the Main Contributions . . . . . . . 182

5.2 Perspectives . . . . . . . . . . . . . . . . . . . . . . 188

5.2.1 Considered Perspectives for the Timetabling Prob-
lem . . . . . . . . . . . . . . . . . . . . . . . . . . 188

5.2.2 Considered Perspectives for the Recommenda-
tion Problem . . . . . . . . . . . . . . . . . . . . 190

Solving real-world problems at Mandarine Academy was a real challenge
as considerations for real-world conditions were taken into account. Both
found problems, Professional Timetabling (MAPT) and E-learning Recom-
mender Systems (MARS) are investigated through literature reviews and
company requirements. While further improvements are still underway,
both problems were solved using Multi-Objective Genetic Algorithms, and
initial solutions returned by the proposed approaches have been approved
by corporate experts. In this chapter, we first describe the contributions
relevant to the MAPT and MARS challenges, and then we discuss perspec-
tives for future works.

5.1 Summary of the Main Contributions
After introducing the company where we did our research, we offer a
complete overview of the products operated by Mandarine Academy in
this study. The context, motivation, and objectives of the thesis are dis-
cussed in Chapter 1. This chapter introduces us to the DiLeap Logis-
tic timetabling problem and the Mooc-Office365-Training recommendation
challenges. Both platforms are intended for commercial use and are already
used daily by different companies and users.
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Our initial contribution is to identify the different aspects relevant to
both problems. This covers the initial observations directed at both plat-
forms to comprehend the current process and how it fails to give the nec-
essary outcomes desired by the company. We were able to identify the
advantages and drawbacks of current methods as well as gain a general
understanding of the problem domain. This stage demonstrated that we
were dealing with a professional timetable problem rather than a standard
academic one. Furthermore, we are working with educational content rec-
ommendations rather than entertainment-based suggestions (e.g., songs,
movies, etc.).

Our second contribution is the establishment of a state-of-the-art review
for both problems. We devoted Chapter 2 to giving further information on
the specifics of each topic. Before addressing the two problems, we present
an overview of the many resolution approaches employed in the litera-
ture to deal with similar situations. Because standard algorithms cannot
give an optimal solution to either problem (NP-Complete), we investigate
customized algorithms that quickly rule out major sections of the search
process to deliver adequate results.

In Section 2.1 of Chapter 2, we provide an overview of Combinatorial
Optimization (CO) techniques and the various strategies utilized to solve
computationally complicated problems. Sections 2.1.2 and 2.1.3 give in-
sight into the many algorithms considered in our approach, including how
they function, their advantages, applications, and evaluation criteria.

In Section 2.2, we go through timetabling problems in greater depth,
beginning by outlining each type of timetabling problem and how it differs
from others. We also compare educational and professional timetabling
cases, which are rarely discussed in the literature. This is accomplished
by examining the shared constraints and objectives and highlighting their
distinctions. Mandarine Academy’s case is characterized as professional
timetabling. Although this is a rare form of timetabling problems, we
were able to locate a few works[52, 36] that fall into the same category.
A comparison of several works that deal with educational and professional
timetabling issues is offered to highlight the contribution of comparable
works as well as their advantages and downsides.

We introduce recommender systems in Section 2.3. This covers a tech-
nical explanation of both goals as well as the many types of evaluation met-
rics utilized in the literature. We also explain how each recommendation
method operates along with the advantages and disadvantages. Finally,
a detailed comparison of diverse academic works [110, 132] dealing with
educational and non-educational recommender systems is explored. We
describe the advantages and drawbacks of each work, as well as analyze
their contributions and what our suggested strategy may offer in compari-
son to existing efforts.
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The goal of Chapter 2 is to build domain knowledge about both chal-
lenges. This gives insights into how to tackle the technical aspects of
solving both the timetabling and recommendation problems at Mandarine
Academy.

Beginning with Chapter 3, we will delve more into the timetabling case
at Mandarine Academy. We dubbed the problem MAPT, which stands for
Mandarine Academy Professional Timetabling.

We provide a summary of the problem formulation in the first part of
this chapter, which includes comprehending the entities involved, corporate
guidelines and objectives, and defined constraints. With over 14 different
hard constraints, 5 soft constraints, and 5 objectives. The objectives under
consideration are to maximize the number of scheduled trainings, minimize
soft constraint violations, reduce the number of external trainers, achieve
workload balance, and reduce the number of assigned classrooms. In order
to tackle this Multi-Objective Combinatorial Problem, we investigated the
use of Genetic Algorithms.

Section 3.2 discusses the technicalities of solving the MAPT problem us-
ing Genetic Algorithms. Overall, we suggest a direct encoding for timetable
representation, this was based on similar literature works[22]. Furthermore,
we suggest the application of a construction heuristic that has been shown
to be superior to the present greedy technique in terms of creating initial
viable schedules. A final step in this section is the definition of custom ge-
netic operators namely MAPTmo for mutation, and MAPTco for crossover.

Section 3.3 goes through the historical dataset that was utilized in our
investigations. Instead of utilizing synthetic data, we used historical plan-
ning data that the organization had previously employed. The significance
of test data is that it allows us to react to unforeseen real-world events,
longer planning windows, and stricter criteria. Mandarine Academy Pro-
fessional Timetabling Dataset (MAPTD)[54] is the title given to this real-
world data. The data is intended to assess timetabling solvers in education
and other professional areas.

MAPTD was used as input for a parameter tuning phase, which is cov-
ered in depth in Section 3.3.2. This stage uses the i-race package to discover
the best-performing genetic algorithm hyperparameters. Using the elite pa-
rameters in the experiment phase will offer each picked metaheuristic a fair
shot against the MAPT problem. Furthermore, in this stage, we compare
the proposed genetic operators (MAPTmo and MAPTco) to conventional
operators to see which might be advantageous in efficiently dealing with
this problem. This step was rarely found in literary works. Most discussed
works chose to work with either predefined configurations or copy the same
parameters used in other similar works.

We addressed the experimental findings of parameter-tuning and 30-
independent runs on selected algorithms NSGAII, NSGAIII, SPEA2, MOEA/D,
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and IBEA in Section 3.4. Beginning with the parameter tuning phase, our
suggested mutation operator MAPTmo outperformed the classic Swap op-
erator. PMX was chosen as the best crossover operator since it outper-
formed our custom operator MAPTco.

In terms of experimental runs, both IBEA and NSGA III produced
the best results under varied conditions (3 and 5 objectives). The follow-
ing metrics were used in the evaluations: Hypervolume, Generational Dis-
tance, Inverse Generational Distance, and Epsilon Indicator. Even though
our technique did not perform well as the complexity rose (larger test sets,
number of specified objectives), it beats the current DiLeap Logistic strat-
egy. The construction heuristic was able to schedule on average 35%-48%
of total sessions with 0 broken constraints in complex cases (a high number
of sessions), while the greedy technique only managed to plan 13%-20% of
all sessions, with multiple broken hard constraints.

Finally, in Section 3.5, we present a roadmap of several features that
will be introduced to DiLeap Logistic in connection with the integration
of our proposed approach. Future additions will include graphical inter-
faces that help platform administrators understand the planning process.
This also helps us to analyze and comprehend the scheduling algorithm’s
performance through metrics number of valid sessions, used resources, and
possible time conflicts. Chapter 3 has been the subject of a publication
in the IEEE Congress on Evolutionary Computation (CEC 2021) [55] and
in the French Association for Operational Research and Decision Support
(ROADEF-2021) [100].

In Chapter 4, we address the recommender system challenges found in
the company’s e-learning platform. Mandarine Academy gave us access
to Mooc-Office365-Training, a real-world public e-learning platform that
is available in both French and English. We said in Chapter 1 that con-
sumers are dropping out after learning a limited amount of content (on
average 4 videos). This was concerning for the organization, which had
made investments to improve the learning experience. In Section 4.1, we
introduce the MARS issue, which stands for Mandarine Academy Recom-
mender System. This section contains information on the many entities
involved in the recommendation process. Users, educational content, and
ratings are examples of these entities. We describe the link between these
elements and how they are used to feed recommender systems. In compar-
ison to MAPT, we are simply dealing with two hard constraints this time.
However, we are still in a many-objective context with several conflicting
optimization goals: similarity, diversity, novelty, RMSE, and nDCG@5.

Because we have multiple conflicting objectives to optimize, this is-
sue is classified as a Multi-Objective Combinatorial Optimization Problem
(MOCOP). We chose Dominance and Indicator-based techniques, which
have proved effective in dealing with multi-objective situations. NSGAII,
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NSGAIII, SPEA2, MOEA/D, and IBEA are the selected algorithms. Af-
ter deciding which metaheuristic to use, we design an encoding structure
to represent the recommendations in a form that genetic algorithms can
comprehend.

Following that, we define our first population generators, which are in
charge of generating user personalized recommendations. In this stage, we
examine many approaches to see which one performs the best. Out of 10
algorithms, 7 are picked. These methods can be classified as collaborative
filtering (item/user/model), content-based filtering, random, and associa-
tion rules models. This approach is rarely found in the discussed literature
works. The benefit of such a stage is the ability to give a diverse initial pop-
ulation of suggestions per user, which can aid in the optimization process
that will be conducted later utilizing genetic algorithms. Finally, genetic
operators for the MARS challenge are defined. Starting with mutation,
we suggest using a custom-made mutation operator called MARSmo that
contains business logic. MARSmo will be compared to a classical random
mutation to determine whether it is advantageous to our problem. We
chose the simpler 1 and 2-point operators for the crossover process.

The next stage in our work was to choose the appropriate dataset to
work with. We examined the reliability of each user data type because the
company utilizes multiple logging techniques to track user behavior on its
platforms. According to our findings, employing implicit interactions, espe-
cially video view duration, was the most reliable in capturing users’ interest
rates. Experimental data analysis revealed that explicit evaluations are in-
sufficient for creating effective recommendations for the majority of users.
To better portray degrees of importance, the selected user ratings (im-
plicit) are filtered using outlier detection techniques and translated into a
different scale. This dataset, MARSD (Mandarine Academy Recommender
System Dataset), was made public for benchmarking recommender systems
at Harvard Dataverse [53].

MARSD was employed as an input to a parameter tuning phase. De-
tails in Section 4.4 demonstrate that, rather than executing predetermined
configurations, we chose to offer fair testing grounds for each Genetic Al-
gorithm. The parameter tuning results were divided into two test settings,
3 objectives, and 5 objectives. For the 3 objectives experiments, we used a
set of users who had seen at least 5 videos from the platform. The second
category includes users who saw more than 5 items. The reasoning behind
dividing users is that some objectives (nDCG@5 and RMSE) require a por-
tion of viewing history to be estimated. We also discovered that adding
objectives caused significant changes in genetic operators’ choices but did
not influence other parameters (e.g., population size). This explains why
the custom mutation operator MARSmo was considered for 5 objective
settings instead of only 3 objectives.
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We examined experimental results from 30 independent runs on selected
algorithms NSGAII, NSGAIII, SPEA2, MOEA/D, and IBEA in Section
4.4.2. Similarly to parameter tuning, we launched experiments with 3, 5
objectives, and two user groups. We noticed that best-method selection
changes when the problem settings switch from 3 to 5 objectives. In terms
of the 3 objective settings, both NSGA III and IBEA performed best in
most evaluation metrics, but especially in the hypervolume and the epsilon
indicator scores, which indicates how quickly the algorithms converge to
finding the best feasible solutions. SPEA 2 was able to get superior re-
sults for the 5-objective experiments, followed by NSGA III, and NSGA II
converging faster.

When we examine the convergence graphs, we observe that for both
experiments, satisfactory results are attained in roughly 5 minutes of pro-
cessing time. While most techniques improved after that point, this time
period appeared to be adequate for production mode settings. Allowing
the platform managers to update and deliver recommendations faster.

Evaluations of running optimization algorithms may not accurately rep-
resent the quality of the proposed items. To validate the final solutions, we
chose two random users from different user groups, listed their most recent
videos, and compared results from each genetic algorithm we employed in
our experiment. The results were compared based on the category of seen
items, their titles, and duration. Overall, the best-chosen techniques for
both 3 (NSGA III and IBEA) and 5 (SPEA2 and NSGA III) objectives were
able to balance suggestions between similarity to the user profile and offer-
ing diverse content. Other algorithms, either focused on a particular goal
(e.g., diverse content exclusively) or did not fairly balanced recommended
content.

Finally, we explore production mode considerations in Section 4.5. We
were able to successfully develop, experiment, and test recommendation
techniques using real-world data. The next step is enabling the models to
serve recommendations in real-world environments. However, non-expert
users may find it difficult to configure the suggested approach. Platform
administrators must handle tasks like setting objectives, targeting specific
user groups, or algorithm parameters in a user-friendly way.

For this reason, we discuss the considered features to be implemented
in future updates for the MARS system. Proposals include a dashboard
that allows users to easily create individual recommendation models, tweak
their parameters and objectives, and choose a target web page or user cat-
egory. Finally, Multi-Criteria Decision Making (MCDM) methodologies
with graphical features for describing preferences are used to choose which
final solutions to display for users. Making graphical pages that can be used
to administer such a system would allow for easy monitoring of the perfor-
mance of suggestions in real-time. Platform administrators will observe the
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benefits of adopting particular approaches on certain placements across the
platform by tracking rating interactions (e.g., recommended items clicks,
shares, and view times).

Finally, whether or not recommendations are relevant is up to the end
user, but presenting recommendations at the correct time and place may
build trust and engagement. Making recommendations is one thing; dis-
playing them is quite another. The present graphical condition of the
Mooc-Office365-Training falls short in several areas, including ambiguous
explicit ratings, restricted resource exploration, and limited search mech-
anisms. We presented many web page designs to improve and correct the
existing user interface. Propositions include better visibility for explicit
ratings, recommended items, and additional filtering features for selecting
relevant items.

In addition, feedback and save-for-later buttons are currently available
on the platform. Improving the visibility of rating collectors and creating
a safe atmosphere for learners to openly communicate their opinions can
help reduce the scarcity of explicit interactions. Different recommendation
tactics, such as "popularity" models are used to alleviate the cold start
problem and draw users to initiate learning on the platform. Personal-
ized recommendation algorithms are also considered for implementation in
various parts of the platform (Home page and content pages).

5.2 Perspectives
The thesis contributions pave the way for several future studies on profes-
sional timetabling and e-learning recommendations. This section summa-
rizes the ongoing work addressed in Chapters 3 and 4, as well as the future
considerations we intend to investigate for future research.

5.2.1 Considered Perspectives for the Timetabling Prob-
lem

Our first perspective concerns the timetabling problem in DiLeap Logistic.
We have seen in Chapter 2, Section 2.2.2, multiple works [98, 8] considered
using a random approach instead of a construction heuristic. Even though
a random approach may provide invalid solutions, however in terms of per-
formance, the random approach would be quicker than the construction
heuristic. Given that we already have a repairing function that is responsi-
ble for fixing invalid solutions after a crossover or mutation process, testing
the metaheuristic with a random approach for generating initial solutions
may be a viable option given the proposed approach’s limitations, which
include a longer computing time than the greedy approach. The entire pro-
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cessing time might be greatly lowered by supplying initial solutions using a
random method and doing both repair and optimization using metaheuris-
tics.

Our second perspective concerns the experimental protocol used to solve
the timetabling problem. The preliminary experiments revealed that we are
still constrained in terms of performance. This was especially evident when
working with larger test sets. We believe that the chosen hyperparameters
have an impact on the performance of algorithms in complex scenarios. A
significant upgrade to the experimental protocol is being studied, which
includes executing an extended parameter tuning phase that comprises a
more diversified combination of objectives, test data, and execution time-
frames. Essentially, we should not limit ourselves to a single test size
or two sets of objectives. By exploring different use cases, we could see
changes concerning the choice of parameters such as genetic operators.
We anticipate that newly discovered hyperparameters will perform better,
particularly in difficult scenarios. Other minor enhancements for future
experimentation include the addition of new custom or classical genetic
operators (e.g., Cycle Crossover, Order Crossover, Scramble Mutation), as
well as additional metaheuristics such as Ant Colony Optimization (ACO)
or Particle Swarm Optimization (PSO) (PSO).

Our third perspective concerns the dataset used in the timetabling prob-
lem. The historical real-world test data is published online under the title
Mandarine Academy Professional Timetabling Dataset (MAPTD)[54]. We
consider updating this dataset with newer instances to provide a newer reli-
able dataset for benchmarking timetabling problems, whether they are ed-
ucational or professional. Both test instances and training information are
provided to serve as input data for different timetabling scenarios. MAPTD
is much more adapted to real-life use cases, for example, the timetabling
of remote trainings due to the Covid-19 pandemic is a special use case of
timetabling under urgent requirements. Keeping this dataset up to date
can give more rich use cases for future studies on timetabling issues.

Our fourth perspective focuses on the graphical interfaces designed for
DiLeap Logistic. In Chapter 3, Section 3.5.1, we discussed the different
pages examined for timetable management. While the problem input page
and analytical dashboards are already in place, other pages such as problem
settings that encompass several stages are now a top priority. This page will
allow controlling the behavior of the approaches and provide planners the
freedom to optimize the schedule depending on their requirements. Because
this is a missing feature in the present greedy approach, it seems reasonable
to prioritize its implementation in order to boost user acceptance of the
new approach and reduce wasted time spent manually adjusting invalid
solutions offered by the greedy approach in DiLeap Logistic.
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5.2.2 Considered Perspectives for the Recommenda-
tion Problem

Our fifth perspective concentrates on the recommendation problem in Mooc-
Office365-Training. Even though existing solutions are acknowledged by
domain experts. We are thinking about ways to improve our experimen-
tal methodology. This covers the initial population generators at the first
stage. More model-based collaborative filtering strategies, such as Non-
negative Matrix Factorization (NMF) and SlopeOne, are being consid-
ered. In addition to popularity-based methods that are already in pro-
duction mode to supply visitors with potentially interesting items. For
the content-based approach, we consider testing another text vectorization
technique and comparing performance to TF-IDF. Possible techniques in-
clude topic discovery models such as Latent Dirichlet allocation (LDA) [14],
word embeddings such as Word2Vec [111], and deep learning models such
as BERT [124]. One last consideration for a content-based method is pa-
rameter tweaking of the previously outlined possible models, which might
include assessing different distance measures for text similarity (e.g., Jac-
card, Euclidean, Cosine). Finally, testing with different feature weights is
also considered.

One significant adjustment considered in the initial population genera-
tion is assessing the impact of every single technique. The purpose of this
analysis is to see how different techniques affect the time it takes for the
metaheuristic to provide good solutions. Our hypothesis is based on the fact
that certain strategies can have a greater impact on prediction quality than
others. To validate these assumptions, we consider comparing the effects
of selecting different recommendation approaches on metaheuristic perfor-
mance and recommendation quality. Similar to experiments considered for
the timetabling problem discussed above, we are interested in including
more genetic operators, custom or classical (e.g., Cycle Crossover, Order
Crossover, Scramble Mutation), with additional metaheuristics such as Ant
Colony Optimization (ACO) or Particle Swarm Optimization (PSO) into
future experiments.

Our sixth perspective concerns business metrics implementation in the
MARS system. By including business objectives such as Click-Through
Rates (CTR), Conversion/Adoption Rates, and User Engagement (cus-
tomer retention). Company managers will be able to have an overview
of the performance of recommendations using metrics that are easy for
marketing and management teams to understand. However, such mea-
surements need real-time capabilities to receive data and offer adaptive
outcomes. Because the platform has a high volume of learners on a regular
basis, recommender approaches are currently trained offline and predictions
are served to users via Application Programming Interface (API) requests.
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This strategy has certain limitations, such as not accounting for changes
in user actions that occur only after the model has been changed. While
the existing technique efficiently guides users to appropriate information,
it does not account for rapid changes in the learning experience and cannot
respond to that scenario only after updates.

Collecting real-time user behaviors and delivering customized recom-
mendations based on the present learning context is considered in future
major updates. This includes suggested interactions such as bookmark
and feedback buttons, as well as current refurbished explicit ratings such
as like and share buttons. With the present strategy in place, explicit rating
adoption is likely to develop faster than previously, taking into account the
new planned User Experience (UX). Future work will include testing our
technique under other interaction types. Observing the impacts of specific
interactions on overall recommendation quality is taken into account, es-
pecially as the collaborative filtering approaches utilized in our study were
designed to perform on explicit data rather than implicit data. We want
to evaluate user adoption rates for explicit rates before and after adopting
graphical changes in future research.

Our seventh perspective concerns the dataset used to benchmark MARS.
As indicated in Chapter 4, Section 4.3.1, the dataset[53] was uploaded on
the Harvard Dataverse platform. The MARS dataset is useful for testing
recommender systems since it includes both interaction types for the same
problem. Other considerations include the consequences of the COVID-
19 pandemic on e-learning systems, where we may see differences in user
behavior before and after the lockdown periods. Such data can provide in-
sights into user learning behavior, observable learning patterns, and, most
significantly, knowledge of overall changes in the workplace-adopted tools.
For future work, we intend to keep updating the data set with additional
explicit and implicit rating data and also provide support for those who
are interested in using the data. We aspire that this dataset will benefit
the recommender systems research community in particular, as well as the
machine learning research community in general.
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