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Résumé

Le Web a connu une croissance constante depuis sa création en 1990. En parallèle de cette pro-
duction permanente de contenu, le pistage des utilisateurs est apparu rapidement et s’est développé
de manière tout aussi soutenue. Les utilisateurs sont alors suivis aussi bien entre les sites Web que
dans leur comportement sur chaque page. Pour combattre ce pistage, les développeurs de naviga-
teurs et d’extensions ont proposé différentes stratégies, de l’isolation des sites les uns par rapport
aux autres jusqu’à demander aux utilisateurs la permission d’utiliser certaines fonctionnalités sen-
sibles. Dans cette thèse, on s’intéresse à une de ces stratégies de protection côté client : le blocage
de contenu. Le blocage de contenu consiste à empêcher le chargement ou l’exécution de certaines
parties des pages Web, protégeant ainsi les utilisateurs de celles-ci. Les outils de blocage de contenu
existants reposent surtout sur des listes de filtrage qui spécifient les parties des pages à bloquer. Ce-
pendant, elles souffrent de nombreux inconvénients : elles peuvent notamment être incomplètes ou
incapables de cibler certains types de ressources. On présente quatre contributions pour améliorer
la vie privée des internautes en modifiant le contenu des pages :

1. On mesure la dépendance au JavaScript d’éléments courants des pages Web et dans quelle
mesure bloquer JavaScript permet d’améliorer la vie privée. On trouve que 43 % des pages
Web de notre échantillon ne dépendent pas strictement de JavaScript et que 67 % des pages
sont susceptibles d’être utilisables si l’on se préoccupe seulement du contenu principal de la
page.

2. En s’appuyant sur les connaissances acquises concernant la casse des pages quand JavaScript
est bloqué, on conçoit un ensemble de réparations pour corriger les cas courants de casse.
On introduit le concept de User Browsing Intent (UBI) (intention de navigation) et, en se
concentrant sur la UBI «read-only», on mesure à quel point ces réparations sont utiles dans
le cas de cette UBI.

3. On propose un système côté serveur pour remplacer les composants d’interface dépendants
généralement de JavaScript par des versions sans JavaScript, et on évalue les bénéfices de cette
substitution, notamment d’un point de vue sécurité et de réduction de la consommation des
terminaux.

4. On conçoit un algorithme de signature pour produire des signatures robustes de fonctions
JavaScript et détecter le bundling (empaquetage) de fonctions de pistage provenant de scripts
de pistage connus avec du code bénin. On trouve que 22.7 % des domaines de notre échantillon
comprennent de telles fonctions de pistage, qui contournent ainsi, de fait, les outils de blocage
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existants. On propose finalement une technique pour bloquer ces fonctions de pistage tout en
préservant les fonctionnalités du code environnant.



Abstract

The web has seen steady growth since its inception in 1990. Along with this constant production
of content, user tracking has appeared early and seen continuous development. Users are thus
followed across websites and their behavior observed on individual web pages. To combat user
tracking, browser vendors and extension developers have proposed different strategies, ranging
from site isolation to asking the user before using sensitive features. In this thesis, we focus on
one of this client-side privacy protection strategy: content blocking. Content blocking consists in
preventing unwanted parts of web pages from being downloaded or executed, thus protecting the
user from them. Existing content blocking tools mostly rely on filter lists which specify what parts
of web pages to block. They however suffer from several issues, including incomplete coverage and
being unable to target certain kinds of resources. We present four contributions for improving user
privacy by modifying page content:

1. We measure the dependency on common web page elements on JavaScript and how much
blocking JavaScript can improve user privacy. We find that 43 % of web pages from our sample
do not strictly depend on JavaScript and that 67 % of pages are likely to be usable when caring
only about the main page section.

2. Building on the acquired knowledge of page breakage when blocking JavaScript, we design
a set of repairs to repair common page breakage types. We introduce the concept of User
Browsing Intent (UBI) and, focusing on the ‘read-only’ UBI, we measure how much these
repairs are useful in the case of this UBI.

3. We propose a server-side system to substitute interface page elements usually relying on Java-
Script with noscript alternatives, and discuss the benefits of this replacement in particular in
terms of device energy savings and security.

4. We devise a signature scheme to generate robust signatures of JavaScript functions, and detect
the bundling of tracking functions from known tracking libraries with functional code. We
find that 22.7 % of domains in our sample bundle such tracking functions with functional code,
effectively circumventing existing blocking tools. We propose a technique for blocking these
tracking functions while preserving functional code.
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CHAPTER I

Introduction

I.1 Motivation

Since its inception in 1990, the web has seen steady development and adoption, totaling more than
270,000,000 active websites in 2022 [192]. This impressive growth in size and content has however
been accompanied by early and widespread use of user tracking by websites [151, 164]. Indeed,
user tracking has been deployed by websites since as early as 1996 [164] for various purposes. User
tracking is part of targeted advertising, which aims to show users advertisement relevant to their
interest to maximize the chance the users click on them. Such user tracking thus follows users across
multiples websites, using third-party trackers, to aggregate data about them and construct a profile,
then used to select advertisements to display in advertising space of websites [116, 241, 69]. Websites
also track detailed usage behavior of users, as if they were watching over the users’ shoulders, using
analytics and session replay tools. User tracking is so widespread on the web that Sánchez-Rola and
Santos have reported that 90 % of websites perform user tracking in one way or another [212].

Such tracking may have financial consequences for users—e.g., higher insurance rates due to
certain health conditions revealed by online tracking [48]—or even more serious fallout if used for
government surveillance. User profiling is also leveraged for political advertisement targeting, to
show different messages to different groups [174], sometimes very small—a practice in that case
known as micro-targeting—endangering democracy. In addition, the sense of lack of privacy on-
line may result in “chilling effects,” where users refrain from inquiring about topics they perceive
as sensitive, due to concerns of being tracked. Penney has investigated this effect and observed
reduced traffic of certain sensitive Wikipedia articles following Snowden’s disclosures [200]. Be-
fore that, Marthews and Tucker had also found that web searches for certain sensitive keywords
had also decreased after these disclosures [173]. More generally, user tracking undermines users’
privacy, which is recognized as a fundamental human right by the Universal Declaration of Human
Rights [210].

Aggressiveness and prevalence of web tracking call for effective privacy defenses that users
could employ to protect themselves when browsing the web. In this context, browser vendors
and browser extension developers have deployed numerous privacy enhancing techniques to try
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to preserve user privacy [69], while encumbering user’s browsing as little as possible, highlight-
ing the trade-off between user privacy and usability. As user tracking relies on a wide array of
technologies, multiple privacy defense techniques have been deployed. User tracking can leverage
client-side storage or try to build a unique browser fingerprint for re-identification [241]. Defenses
thus include browser state isolation, reducing the lifetime of such state, or introducing a permission
system for defeating stateful tracking. Stateless tracking protection try to break the uniqueness
or stability properties of browser fingerprinting by ensuring attribute uniformity or randomizing
these attributes. However, all these defenses are still not sufficient to protect against all forms of
user tracking, thus calling for another strategy that we explore in depth in this thesis: content block-
ing, which consists in blocking unwanted parts of webpages. One of the most common strategy for
content blocking is to rely on filter lists, detailing patterns of URLs to block. While being simple
and useful, filter lists suffer from numerous issues, including incomplete coverage [222, 218] and
being unable of blocking only parts of scripts [73]. In this thesis, we investigate other strategies to
provide stronger privacy guarantees and remedy these issues. In the course of this exploration, we
address the following research questions:

• How much are web page elements dependent on JavaScript?
• How useful is it to browse the web with JavaScript disabled from a privacy point of view?
• How viable is it to browse with JavaScript disabled?
• Can we repair common page breakage types when JavaScript is disabled and how useful can
it be for making browsing without JavaScript viable?

• How can we automatically replace interactive elements usually relying on JavaScript with
noscript versions?

• How often are tracking functions bundled with functional code, making it impossible to block
these mixed scripts?

• Can we remove these tracking functions from bundles, while preserving functional code?

While defending against web tracking is a continual cat and mouse game, we hope that the
following chapters will bring satisfying new strategies to combat tracking, along with presenting
the foundations of online tracking and privacy protections.

I.2 Contributions

I.2.1 Investigating Page when Disabling JavaScript

While JavaScript established itself as a cornerstone of the modern web, it also constitutes a major
tracking and security vector, thus raising critical privacy and security concerns. In this context,
some browser extensions propose to systematically block scripts reported by crowdsourced trackers
lists. However, this solution heavily depends on the quality of these built-in lists, which may be
deprecated or incomplete, thus exposing the visitor to unknown trackers. In this contribution, we
explore a different strategy, by investigating the benefits of disabling JavaScript in the browser. More
specifically, by adopting such a strict policy, we aim to quantify the JavaScript addiction of web
elements composing a web page, through the observation of web breakage. As there is no standard



I.2. Contributions 19

mechanism for detecting such breakage, we introduce a framework to inspect several page features
when blocking JavaScript, that we deploy to analyze 6,384 pages, including landing and internal
web pages. We discover that 43 % of web pages are not strictly dependent on JavaScript and that
more than 67 % of pages are likely to be usable as long as the visitor only requires the content
from the main section of the page, for which the user most likely reached the page, while reducing
the number of tracking requests by 85 %, on average. Finally, we discuss the viability of currently
browsing the web without JavaScript and detail multiple incentives for websites to be kept usable
without JavaScript.

I.2.2 Bridging the Gap Between the User and the Browser with User Browsing
Intent (UBI)

Content blockers are popular browser extensions to preserve the user privacy and security by block-
ing parts of web pages. However, they usually rely on filter lists, whichmay be incomplete or lagging
behind. Acknowledging that users may visit a web page with different intents, we introduce the con-
cept of User Browsing Intent (UBI), allowing us to apply more aggressive blocking strategies. We
focus on the simplest form of UBI that is devoid of interaction with the page: the ‘read-only’ UBI—
where the user only wants to read the page, and not interact with it. This allows us to provide a tool
blocking JavaScript by default, while providing a set of hand-crafted repairs, aimed at automatically
repairing common types of breakage induced by JavaScript blocking and fixable client-side. When
evaluating this tool on a sample of 30,728 pages using semi-manual sampling and labeling, we find
that (a) more than 62 % of pages are compliant with the ‘read-only’ UBI if the user only tolerates
minor information loss, and that (b) more than 77 % of pages are compliant if the user also tolerates
the loss of some non-central sections. Our in-browser repairs make more than 27 % more pages
compliant with the ‘read-only’ UBI. Reducing the mean number of tracking requests by more than
97.7 %, our tool brings significant privacy and security improvements by recognizing that the user
does not always require the whole page. If the page does not comply with the ‘read-only’ UBI, even
with our repairs, or if the user’s UBI is different, it is easy to enable back JavaScript on the page.

I.2.3 Reducing Interface Components Dependency on JavaScript Server-Side

Leveraging JavaScript (JS) for User Interface (UI) interactivity has been the norm on the web for
many years. Yet, using JS increases bandwidth and battery consumption as scripts need to be down-
loaded and processed by the browser. Plus, client-side JS may expose visitors to security vulnerabili-
ties such as Cross-Site Scripting (XSS). This contribution introduces a new server-side plugin, called
JSRehab, that automatically rewrites common web interface components with alternatives that do
not require any JavaScript. The main objective of JSRehab is to drastically reduce—and ultimately
remove—the inclusion of JS in a web page to improve its responsiveness and consume less resources.
We report on our implementation of JSRehab for Bootstrap, the most popular UI framework by far,
and evaluate it on a corpus of 100webpages. We show through manual validation that it is indeed
possible to lower the dependencies of pages on JS while keeping intact its interactivity and accessi-
bility. We observe that JSRehab brings energy savings of at least 5 % for the majority of web pages
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on the tested devices, while introducing a median on-the-wire overhead of only 5 % to the HTML
payload.

I.2.4 Detecting and Blocking Individual JavaScript Functions for Privacy

Content blockers aim to improve web privacy and security by blocking parts of web pages. However,
they are limited in the type of content they are able to target and block: they can block inline
scripts based on their text content or external scripts based on their URLs, but are currently unable
to block only parts of external scripts. With the increased usage of script bundlers—which resolve
dependency between authored JavaScript modules and generate a single script file—content blockers
have no choice but to allow these bundles, which sometimes contain tracking scripts mixed with
functional code. In this contribution, we investigate this practice by introducing a function signature
techniquemaking it possible to identify functions originating from known tracking libraries in other
external scripts. We present robust function signatures that rely on function source code, able to
detect tracking functions into existing or future scripts. With a web crawl, we collected a large set of
script bundles and generated customAST-based signatures for all JavaScript functions. By manually
classifying functions from tracking scripts that access privacy-relevant APIs, we find that 4.37 %
of unique scripts contain bundled tracking functions and that 22.7 % of domains from our sample
contain such a script. As we are able to locate the functions responsible for tracking, it becomes
possible to apply fine-grained blocking strategies, targeting specific functions within script bundles.
Leveraging this ability, we present a proposed hybrid function-blocking strategy based on function
signatures.

I.3 List of Scientific Publications

Parts of this thesis are adapted from the following publications:

[110] Romain Fouquet, Pierre Laperdrix, and Romain Rouvoy. 2022. JSRehab: Weaning Common
Web Interface Components from JavaScript Addiction. In Companion of The Web Conference
2022, Virtual Event / Lyon, France, April 25 - 29, 2022, Frédérique Laforest, Raphaël Troncy,
Elena Simperl, Deepak Agarwal, Aristides Gionis, Ivan Herman, and Lionel Médini (Eds.).
ACM, 376–382. https://doi.org/10.1145/3487553.3524227

[111] Romain Fouquet, Pierre Laperdrix, and Romain Rouvoy. 2023. Breaking Bad: Quantifying
the Addiction of Web Elements to JavaScript. ACM Trans. Internet Technol. 23, 1, Article 22
(February 2023), 28 pages. https://doi.org/10.1145/3579846

I.4 List of Tools and Prototypes

During the course of this thesis, we developed tools and prototypes to investigate our research
questions, and collect and process data. The entirety of the source code is made available to obtain
further details about the methodology and re-use these tools. The list of available artifacts is as
follows:

https://doi.org/10.1145/3487553.3524227
https://doi.org/10.1145/3579846
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• Breaking Bad: No-JS Breakage Detection Framework [14]
• Breaking Bad: Web Crawler [23]
• UBI: Repair WebExtension [36]
• UBI: Screenshot Diffing Tool [37]
• UBI: Screenshot Labeling Tool [38]
• UBI: Web Crawler [39]
• JSRehab: PostHTML Plugin Rewritting Interface Components with Noscript Alternatives [27]
• JSRehab: Bootstrap Version Detection WebExtension [26]
• JSRehab: Web Crawler [28]
• JsRipper: JavaScript Function Signature Generator [29]
• JsRipper: Web Crawler [31]
• JsRipper: Proof of Concept Blocking WebExtension [30]

I.5 Outline

This thesis is organized as follows.
We introduce the necessary background and context of this thesis in chapter II, along with the

fundamentals concepts our contributions use. We present the actors of tracking on the web and
their motives, before relaying the results of numerous studies having measured how widespread
tracking is on the web. We then detail existing web tracking protections, before focusing on content
blocking, exposing the strengths and weaknesses of current approaches. We finally revisit recent
changes in cornerstone features of browsers, which vendors have been hesitant to make changes to.

In chapter III, we present a set of heuristics to measure the breakage of elementary HTML el-
ements and constructs when JavaScript is disabled in the browser. We then leverage this set of
heuristics to quantify the dependency on JavaScript of these elements, by completely blocking Java-
Script andmeasuring the breakage of the elements. In addition, we also evaluate howmuch blocking
JavaScript can help improve user privacy by minimizing the number of certain HTTP requests.

Building on this understanding on page breakage when blocking JavaScript, we introduce in
chapter IV a new reasoning framework, that we call User Browsing Intent (UBI), to bridge the gap
between the user and the browser, acknowledging that the user does not always require the entirety
of the page to be working. This allows us to apply a more aggressive content-blocking strategy
than what current systems are allowed to apply, and we repair specific types of breakage commonly
occurring, thus making this aggressive strategy viable on more pages, hence improving user privacy.

Changing focus on server side, chapter V explores our server-side tool JSRehab, which provides
a drop-in solution to website administrators to automatically substitute Bootstrap interface compo-
nents with alternatives that do not require JavaScript for their interactivity in the browser, while
preserving accessibility. When applicable, it allows to completely remove the Bootstrap JavaScript
client-side library, improving security and decreasing device energy consumption.

Going back to the browser, chapter VI proposes a significantly more granular and content-
focused JavaScript blocking WebExtension, making it possible to target individual JavaScript func-
tions for blocking, using function signatures robust to script bundling. We leverage these function
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signatures to measure how often tracking functions originating from known tracking scripts are
bundled with functional code, effectively defeating existing blocking tools.

Lastly, chapter VII concludes this thesis by summarizing our contributions and proposing re-
search perspectives for further improving web user privacy.



CHAPTER II

Background and Context

II.1 Tracking on the Web

In 2019, theW3C’s Tracking ProtectionWorking Group introduced the following definition of track-
ing with regards to the compliance with the Do Not Track preference [252]:

Tracking is the collection of data regarding a particular user’s activity across multiple
distinct contexts and the retention, use, or sharing of data derived from that activity out-
side the context in which it occurred. A context is a set of resources that are controlled
by the same party or jointly controlled by a set of parties.

In this thesis, we expand this definition to also include re-identification of the user and record-
ings of their activity within a single context, when it is not part of the primary goal of the page
expected by the user—e.g., recording all user actions on a product page or re-identifying the user
across browsing sessions even when the user is not logged-in.

Web tracking is widespread and has been the subject of numerous studies. In this section, we
detail the actors of this industry and the reasons for web tracking. We then expand on the known
tracking vectors, client-side technologies, and mechanisms enabling such tracking.

II.1.1 Actors and Motives

Different actors employ user tracking either directly or indirectly.

II.1.1.1 Business Model

Web tracking is a main component of web advertising, as part of user profiling. Indeed, behavior-
based advertising companies, besides distributing advertisements banners, also profile users to de-
liver targeted advertisements tailored to consumer interests, therefore maximizing the probability
they will click on the banner [273, 116]. Two common pricing models of online advertisers are
CPM and CPC [116]. Cost Per Mille (CPM) pricing only depends on the number of advertisement
impressions—i.e., the number of times the advertisement is shown to a user—this is similar to how
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print advertising is usually priced: advertisement cost is fixed for a thousand impressions [279].
Having higher conversion rates—more consumers clicking on banners per impression—allows an
advertiser to charge a higher CPM. Cost Per Click (CPC), however, takes into account the number
of clicks effectively received by the banners: advertisement cost is thus defined per click. From these
pricing models, and since the available advertisement space—i.e., the number of pages embedding
the advertisement space of these companies—is limited, it ensues that advertisement companies have
an incentive to track consumers to maximize the efficiency of their advertisement delivery—i.e., to
show their advertisements to consumers who may be interested by the advertised products and may
end up clicking on the banners.

Advertisers thus build customer profiles from their web browsing behavior, potentially including
sensitive websites and search queries, leading to serious privacy harming practices.

II.1.1.2 Product Feedback and Visitor Profiling

When deploying websites, especially those with complex user interaction scenarios or where the
user experience is crucial to the company revenue—e.g., e-commerce websites—website owners em-
ploy client-side libraries to observe user interactions and even allow to completely replay the brows-
ing session on the website [144, 69, 241]—i.e., where the user clicked and typed. These aim to analyze
the recorded browsing scenarios to improve the user experience, and increase the website revenue.

Website owners also deploy analytics systems, which range from simple page view counters to
complex visitor profiling to understand who their visitors are. Counting unique visitors requires to
populate the client-side storage with some value to detect that the visitor already browsed the page
and should therefore not be counted again [208].

II.1.1.3 Government Surveillance and Hackers

Even when collected only for advertising purposes, profiling data about users may become relevant
for government surveillance agencies. It has indeed been revealed, as part of Edward Snowden’s dis-
closures, that the National Security Agency (NSA) has been leveraging Google’s tracking cookies—
initially indented for advertising—for targeting individuals to hack [114, 69]. More generally, the
NSA is known to have partial access to data stored and processed by major American Internet com-
panies with the PRISM surveillance program [115], potentially allowing it to profit from this data
collection operated by private companies.

In addition, web tracking can also be implemented or exploited by independent hackers [103],
to either follow their targets across the web or collect personal information about them.

II.1.1.4 Service Security

Finally, user tracking is also at the core of certain security systems, often to ensure the visitor is a
human and not an automated crawler. To this end, some authentication systems rely on fingerprint-
ing the user’s browser [121], with the assumption that the number of devices a user logs in from is
limited, and thus a log-in attempt from an unknown device or browser may help to detect fraudulent
log-ins, such ones from as credential stuffing attacks. For instance, Google reCAPTCHAv3 and other
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anti-bot services are believed to rely on an array of different metrics to tell humans and bots apart,
including browsing fingerprinting, previous interactions of the user with reCAPTCHAv3, and on
the presence of Google cookies [217, 61]. Many studies have also investigated how to use browser
fingerprinting (see subsubsection II.1.2.3) for strengthened authentication [45, 155, 56, 157, 99].

II.1.2 Tracking Vectors

Client-sideweb tracking can take several forms and employ awide array of technologies and browser
mechanisms, sometimes by diverting them from their primary usage.

II.1.2.1 Network Identifiers

One of the most well-known means of tracking Internet users is to rely on network identifiers. In
the case of the web, where the client and server machines are not part of the same local network,
the only available network identifier is the IP address. Depending on how the IP address of the user
device is allocated, it may be stable enough to allow to re-identify the user across browsing sessions.
Mishra et al. have indeed measured that 87 % of users from their dataset retained one of their IP
addresses for more than 30 days [178].

Because of the limited number of global IPv4 addresses, the usage of Network Address Trans-
lation (NAT) is widespread, thus effectively attributing a single IPv4 address to several users: for
instance, in a residential network context the residents likely share a single Internet connection.
This partly mitigates the uniqueness property of IP addresses that enables user tracking, but it may
remain possible to discriminate between users, possibly leading to unique identification when used
in conjunction with other tracking techniques.

Furthermore, the gradual deployment of IPv6 once again leaves users vulnerable to IP address-
based tracking, as IPv6 addresses are globally unique.

II.1.2.2 Stateful Client-Side Tracking

Beyond IP addresses, cookies are a very well known client-side technology used for user tracking.
Tracking cookies is a kind of stateful client-side tracking, as it stores a unique piece of data in the
user’s browser and expects to find it again when the user visits the website again.

HTTP cookies Many web APIs are dedicated to store data in the browser so that websites are
able to persist state client-side. The most well-known is HTTP cookies, which have been intro-
duced in 1994 [152] as the first way of having a concept of session. The cookie API is very primi-
tive, as it consists only of a single string. Websites can set cookies using either an HTTP header—
Set-Cookie [137]—or using the accessor JavaScript property document.cookie. For instance, a
page could set a cookie named foo to the value bar with the following response HTTP header:

Set-Cookie: foo=bar; Max-Age=60

or the following JavaScript statement:

document.cookie = "foo=bar;max-age=60"
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Those would set a cookie that expires after 60 s. If the Max-Age or Expires attributes are not set, the
cookie is a session cookie, and is only valid until the browser is closed (note however that modern
browsers restore the user session when restarting the browser and, therefore, session cookies may
be valid longer than expected [104, 181]).

Cookies are sent by the browser with appropriate requests, in the Cookie request header [136];
cookies to be sent are concatenated and key=value pairs are separated by a semicolon and a space.
Cookies can also be accessed with JavaScript using the document.cookie accessor property, but
only if their HttpOnly attribute is not set; this helps protect again authentication token cookie
collection with Cross-Site Scripting (XSS) attacks.

The optional Domain cookie attribute defines the host to which the cookie should be sent. If
absent, the default host used is that of the current document URL. If the Domain is set to a domain
which is not the document’s domain or a superdomain of it, the cookie is said to be a third-party
cookie.

Lastly, another notable attribute has been more recently introduced: the SameSite attribute. It
allows to limit the scope of requests the cookie is sent with, to same-site requests only. The his-
torical cookie-sending behavior is equivalent to SameSite=None, which is to send the cookies will
all requests matching the set Domain and Path attributes. SameSite allows to prevent sending the
cookies with cross-site requests [76], as an attempt to further mitigate Cross-Site Scripting (XSS)
attacks, where an attacker triggers a request from a site A to another site B where the user is au-
thenticated, and thus performs an action on this site B as the user.

Cookies have been used for tracking for almost as long as they have existed [164]. An example
of historical tracking cookie setup is the following: an advertiser A has a banner embedded on two
sites B and C; when the advertiser sends the banner on site B, it leverages the response to set a cookie
in the user’s browser—i.e., a third-party cookie—and this cookie will be sent to the same advertiser
when the user later browses the second site C, thus tracking the user between the two sites.

With the gradual blocking of third-party cookies by browsers [214, 272, 183], this tracking setup
is being replaced with other tracking mechanisms. For instance, some advertisers leverage DNS
CNAME records to masquerade their third-party processing as a first-party subdomain [96], such
circumventing the blocking of third-party cookies.

JavaScript storageAPIs Long after the introduction of cookies in browsers, starting in 2009 [182],
persistent JavaScript storage APIs have also been added to the web platform: localStorage and
IndexedDB. localStorage is a substitute for cookies for specific use cases. Indeed, it allows the
storage of several megabytes of data, while cookies are limited to 4,096 bytes [135]. In addition, as
the data is only accessed through client-side JavaScript and is not sent with every request, it avoids
sending unnecessary data on the wire, improving performance. IndexedDB was later introduced,
in 2012 [243], as a complete client-side database, which can be queried with JavaScript. Predating
these two APIs, another one, sessionStorage, was introduced in 2006 [244]. It is non-persistent
and shares the same API as localStorage.

Browser caches Besides these browser APIs dedicated to client-side storage, a number of APIs
whose aims are to improve performance and security introduce a form of client-side storage which
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can be written to and accessed by websites and can therefore be leveraged for browser tracking. For
instance, one of the most well-known performance-dedicated feature of browsers, the HTTP cache,
could result in browsing history leakage or be exploited to re-identify users across sessions [197, 65],
by first populating the cache with a unique set of pages, and later checking whether this unique set
is present in the browser cache [107, 143, 274, 166], by measuring the load time of these resources.
This was relying on the fact that the HTTP cache was single-keyed—i.e., the HTTP cache was not
partitioned by origin and all sites shared the same cache [141]. Major browsers have since deployed
double-keyed or triple-keyed caches, which mitigates this kind of attack [133, 148].

In addition to this, HTTP cache also specifies another performance mechanism which can be
leveraged for re-identifying the user across sessions: ETags. An ETag is an HTTP response header
which can be sent by an HTTP server as part of its HTTP caching strategy [85]:

ETag: "33a64df551425fcc55e4d42a148795d9f25f89d4".

The browser can then send this value when the resource is stale and it needs to check with the server
whether the resource has changed, using the following request header:

If-None-Match: "33a64df551425fcc55e4d42a148795d9f25f89d4"

As the ETag is supposed to represent the contents of the resource—e.g., it can be a hash of the
resource—the server can send the new version of the resource if it has changed, or reply with a
304 Not ModifiedHTTP status otherwise. However, this mechanism can be exploited to uniquely
re-identify users, as the ETag value is not guaranteed to actually represent the resource contents:
the server can serve a dedicated resource and send unique ETags with each response and, since the
browser will cache this value and send it back to the server as long as the resource is kept in the
browser cache, the server will be able to link the two browsing sessions together.

Some client-side security mechanisms can also be exploited for user tracking. For instance,
HTTP Strict Transport Security (HSTS) is a security feature allowing a website to indicate to the
browser that it must always use HTTPS when connecting to the website instead of HTTP, thus
preventing future downgrade attacks. A server can thus send the following HTTP header to instruct
the browser to always use HTTPS for one year:

Strict-Transport-Security: max-age=31536000

As the browser needs to store this instruction, and since website are able to measure whether their
website is loaded with HTTPS or not, HSTS can be exploited as a one-bit client-side storage [113]
for re-identifying the browser across sessions.

Numerous other browser caches can be leveraged for re-identification and tracking, such as
service workers [86], TLS 1.3 0-RTT resumption [230], or even favicons [225].

Clearly, blocking cookies is not sufficient to avoid stateful client-side tracking.

II.1.2.3 Stateless Client-Side Tracking

On top of the stateful tracking techniques expanded on in the previous section, another class of
client-side tracking techniques has emerged, which relies on the diversity of software and hardware
stacks used to browse the web: browser fingerprinting.
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Browser fingerprinting entails collecting a set of browser attributes that may vary across users
with the aim of building an identifying fingerprint of the browser. Examples of browser attributes
include HTTP headers—e.g., the User-Agent string or the Content-Language header—some sys-
tem values accessible in JavaScript—e.g., the screen resolution or the operating system—the exact
image rendered by the Canvas element given some instructions [180, 158, 157], and on the installed
browser extensions [226, 159, 224, 223]. The exact image rendered by the Canvas varies in particular
depending on the installed fonts (including the system emoji font), on the font rendering stack, in-
cluding font hinting and antialiasing [158, 157], and on hardware [154]. These attributes vary from
browser to browser and, if unique enough, may lead to the unique identification of the browser and,
thus, of the user.

Uniqueness The uniqueness of each attribute is quantified by its entropy: the higher the entropy,
the more identifying the attribute is [100]. The entropy of an attribute cannot be obtained in iso-
lation, from its definition alone. Instead, it is required to measure its actual diversity in the wild,
from which the entropy can then be derived. Multiple studies have thus set up browser fingerprint
collection web platforms, and published the results including the entropy of each studied attribute
in isolation [100, 158, 117, 165, 57]. As building a fingerprint from multiple independent attributes
greatly increases its uniqueness and its usefulness for re-identifying browsers—i.e, the joint entropy
is higher than the sum of individual attribute entropies—these studies have also reported on the
uniqueness of the whole browser fingerprint—i.e., when taking into the account the whole array of
collected attributes—and found that a large share, or even most, browser fingerprints are globally
unique.

Stability Uniqueness of browser fingerprints is not sufficient for them to be used for user tracking,
they also have to be stable enough so that the same browser instance results in the same fingerprint
in subsequent visits. Events which could lead to fingerprint instability include browser and exten-
sion installs and updates, hardware modifications, and window resizing [100]. Fingerprint stability
has also been the subject of studies [100, 195, 247, 155, 56, 57], which were mostly focused on de-
termining whether fingerprinting was suitable for increasing the security of web authentication.
They have found high disparity within their samples, where high-entropy attributes—e.g., Canvas
fingerprint—of some browser instances were stable for several months while they were changing
every few days for other browser instances [155, 57] .

Fingerprinting deployment on theweb Lastly, studies havemeasured the prevalence of browser
fingerprinting on websites, through large-scale crawls [43, 195, 42, 102, 139, 207, 62]. These works
rely either on dynamic analysis—observing access to sensitive browser APIs used for fingerprinting—
or on static analysis—detecting known scripts or script features—to detecting web pages employing
fingerprinting. The usage of browser fingerprinting reported by these studies varies between a few
percents and around 10 %, and seems more prevalent on the most popular websites.
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II.2 Web Tracking Deployment

Along with uncovering exploitable tracking vectors, previous works have also measured how wide-
spread web tracking is.

In 2009, Krishnamurthy and Wills provided the first longitudinal analysis of web tracking [151].
They observed an increase of penetration of the top 10 third-party trackers from 40 % to 70 % be-
tween 2005 and 2008 and that multiple trackers were used on the same site. They also found evi-
dence of DNS aliasing—now called CNAME cloaking—which disguises third-party servers as first-
party. Mayer and Mitchell, Roesner et al. and Tran et al. have investigated in 2012 the behavior and
dynamics of third-party tracking [176, 208]. In 2014, Acar et al. have then investigated new state-
ful and stateless tracking techniques along with cookie syncing [42]—i.e., client-side cookie sharing
between different trackers. In 2016, Englehardt and Narayanan have conducted a large-scale crawl
to obtain widespread tracking trends [102], they for instance found that news websites had the
most trackers. Lerner et al. leveraged the Wayback Machine to run a longitudinal study of track-
ing, finding trackers as early as 1996, when the Wayback Machine started archiving websites [164].
More recently, in 2018, Sánchez-Rola and Santos performed a large-scale crawl and used machine
learning techniques to recognize tracking scripts [212]. They found that more than 90 % of websites
were tracking users. Dimova et al. have conducted large-scale measurements of CNAME cloaking,
consisting in using DNS configuration to disguise third-party trackers as first-party, thus circum-
venting some blocking strategies [96]. They discovered than popular websites were more likely to
deploy this evasion technique, and that 10 % of websites from the top 10,000 Tranco were using it.
Yang and Yue and Cassel et al. have investigated the differences between mobile and desktop web
tracking and found that both mobile and desktop have their own specific features, as tracker sets of
both platforms do not completely overlap. In 2022, Dambra et al. leveraged telemetry data from an
antivirus company to study trackers from the vantage point of users: they concluded that 80 % of
websites visited by users included trackers, Google’s trackers being present on 63 % of them [91].

II.3 Web Tracking Protections

The privacy-harming nature of web tracking, along with its prominence and diversity, calls for a
wide range of web tracking protections. Recent years have seen the advent of stronger privacy
laws, in particular in Europe and in California, with the General Data Protection Regulation (GDPR)
and the California Consumer Privacy Act (CCPA). These are aimed to protect personal data, by
regulating their usage and processing, and their collection process. However, not all web tracking
methods rely on personal data, and thus are not covered by these laws. Moreover, it is not guaranteed
that these laws are enforced on the sites the users browse. Therefore, technical protections are
needed against web tracking, that users can employ to protect themselves online. The challenge
that these protections face is to defend against tracking while minimizing user friction.

Web tracking protections can be divided into a few categories depending on their action and
usage. In this section, we detail the different kinds of existing web tracking protections, built in
browsers or deployed as browser extensions. We leave the content blocking approach for the next
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Table II.1: Deployment of network and complete state partitioning in browsers; PB stands for Private
Browsing

Browser Network Partitioning State Partitioning

Firefox 2021 [101] 2021 (PB and ETP Strict mode [47]) [133], 2022 [183]
Chrome 2020 [148] 2023 (planned) [163]
WebKit (Safari) 2013 [2] 2017 [268]
Brave 2021 [239] 2021 [238]

section, as it is the main focus of this thesis. The presented protections are not mutually exclusive
and may often be used in conjunction.

II.3.1 State Isolation

One of the most powerful protection against cross-site tracking is state isolation. We have seen that
manywebAPIs store state client-side, and state isolation consists in segregating the state of different
sites in separate storage containers, to prevent the unwanted access of state stored by one party by
another party. This is a major change in the web platform compared to its historical architecture,
but major browsers have recently implemented and deployed such state isolation. Chrome has
indeed implemented HTTP cache isolation in 2020 [148] while Firefox deployed network isolation
in 2021 [101]. Firefox then implemented more complete state partitioning, including that of cookies
and JavaScript storage, first in private browsing windows in 2021 [133], then in normal windows as
well in 2022 [183]. Such state isolation—also called storage partitioning—is being standardized by
the W3C [123]. Current and planned deployment of this feature in major browsers can be found in
Table II.1.

Firefox has also introduced another concept, tab Containers, enabling users to manually isolate
browser storage at the tab level [189]. This feature was deployed in 2017 [250] as an optional Web-
Extension, and allows the user to define contexts—e.g., work, banking, etc.—and to select which
context to use when opening a new tab. Browser storage is then shared between tabs of the same
context, but isolated from other contexts.

II.3.2 Shorter-Lived State

An additional tracking protection, used in conjunction with state isolation, involves reducing the
lifetime of client-side storage, by deleting parts of their contents either periodically or when the user
chooses to do so. This can be an efficient solution against long-term tracking while avoiding page
breakage, as websites are still allowed to write to and read from the storage, making this protection
transparent from their point of view. The oldestmanifestation of this strategy is the private browsing
mode of browsers, introduced as early as 2005 in Safari [170], which keeps persistent storage in-
memory so that it is effectively cleared when all private browsing windows are closed.

Browser extensions have also implemented this concept by automatically deleting unused client-
side storage when a tab is closed. To this end, storage associated with a domain is cleared when
the last tab having a page from this domain open is closed. The Cookie AutoDelete WebExtension
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currently implements this behavior [97]; it was predated in 2013 by Self-Destructing Cookies, which
was abandoned in the switch to WebExtensions.

WebKit and Brave have implemented built-in features which limit the lifetime of storage, under
some conditions. WebKit, as part of its Intelligent Tracking Protection (ITP) system, implemented
the partitioning of third-party tracking cookies, which were then deleted at most 30 days after their
storage [268, 269, 270, 271]. Brave clears all third-party storage when the site is closed [238] and has
evaluated the web compatibility of this strategy [145].

II.3.3 Permission System

Another kind of protection is simply to ask the user before allowing a website to use a sensitive
API. As this adds an additional burden on the user and degrades the user experience, this strategy
is usually limited to the most privacy-invasive features, which also happen to be used by a small
number of websites [221], for APIs whose behavior are easily understood by users: Geolocation [78],
microphone and camera [79], and more recently third-party Storage Access [81]. When a website
wants to use one of these APIs, the browser prompts the user to allow or deny its usage, through a
browser-shown pop-up.

II.3.4 Disabling Browser Features

An additional strategy employed by browsers to reduce client-side tracking is to reduce the surface
of APIs that can be leveraged for tracking, or that the browser is currently unable to prevent them
from being used for it. For instance, Firefox, as of 2023, does not allow storing data with IndexedDB
in private browsing windows [15]. Service workers APIs are also disabled in private browsing win-
dows [16]. However, this has the downside of making the private browsing mode detectable by
websites.

II.3.5 Anti-Fingerprinting Protections

The tracking protections presented in the previous sections are mostly directed towards preventing
stateful tracking—i.e., tracking exploiting client-side storage. In this section, we detail the main
directions to reduce the risk of stateless tracking, also known as browser fingerprinting, as presented
in subsubsection II.1.2.3.

II.3.5.1 Reduced Configuration Disparity

As browser fingerprinting relies on the uniqueness property of browser fingerprints, one the pos-
sible defense strategy is to reduce the diversity of the browser fingerprints in the wild. This is a
challenging enterprise, as it collides with the desire of users to personalize their browser and to set
it up to match their needs. Indeed, reducing the potential of the browser to be fingerprinted in this
manner requires to set the same configuration for every user—e.g., the language, timezone, user-
agent string, available fonts, etc. This approach is employed by Tor Browser, which spoofs globally
unique values of attributes which could otherwise vary between users [201]. Thanks to the efforts



32 II. Background and Context

of the Tor Uplift project [3], this uniform configuration can be applied to Firefox as well, by setting
the privacy.resistFingerprinting (RFP) preference to true [46].

This configuration uniformity strategy needs to be followed with great care, as it can easily be
undermined by unintended user modifications, such as installing browser extensions whose effect
can be observed by websites, making these users stand out more.

II.3.5.2 Randomization

The other defense technique against browser fingerprinting is to try to defeat the stability property,
by randomizing extracted values of certain attributes [194, 156]. This technique makes sense for at-
tributes for which it is too difficult to reduce their possible values, or whose values are influenced by
parameters that the browser is not in control of, such as hardware or operating system differences.
This strategy is thus adopted in conjunction with the previous one, and is often applied to the Can-
vas element when deployed. For instance Firefox has implemented it in 2020, but this defense is only
enabled when using RFP [213] or in Tor Browser. Brave has also deployed this technique in 2020.
Multiple browser extensions also provide randomization [149, 191], with varying degrees of robust-
ness [92], due to their implementation as WebExtensions. Randomness can also be introduced by
browsers in the mechanisms exploited to collect attributes, such as JavaScript timers [209]; browsers
have indeed lowered the resolution of these and artificially introduced jitter to make timing attacks
more difficult.

II.4 Content Blocking

In the previous section, we have introduced different types of web tracking protections. They are
effective at varying degrees and can be used in conjunction. However, a large share of web tracking
is not addressed by the aforementioned protections—notably same-site tracking—which therefore
calls for an additional layer of protection: client-side content blocking. Content blocking involves
targeting and blocking specific web resources. In this thesis, we focus on leveraging content block-
ing for improving user privacy in the browser, therefore aiming to block content enabling or taking
part in user tracking.

Three main criteria are available for targeting content to block in the browser:

• content’s location (based on content’s URL)
• content’s contents
• content’s behavior

Currently deployed tracking protections mostly rely only on content’s location for targeting and
blocking [177].

II.4.1 Filter Lists

One of the oldest type of content blocking is filter lists [1]. Filter lists are blocklists that describe
content to block based, in particular, on their URL. They have existed for a long time for security
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purposes, especially to block malware files [169], but have also been used to block advertisement
banners and privacy-invasive content.

II.4.1.1 Syntax and Capabilities

In this section, we present the core features of the filter list syntax used by AdGuard [44], Adblock
Plus [202], and uBlock Origin [131]. The most well-known filter lists following this syntax are
EasyList (advertisement blocking) [105] and EasyPrivacy (privacy) [6]. Blocking tools also often
ship their own supplementary lists.

Network rules Network rules allow to block network requests, before they are actually sent by
the browser. Since the resource has not yet been loaded, it would be impossible to make a blocking
decision based on its content, much less from its behavior. Network rules therefore rely on the
URL, on the type of resource, and on the context of the request—e.g., is the request third-party?,
what is the domain of the first-party document? The syntax of network rules feature many wildcard
characters, to make it easier to write general rules matching only parts of URLs. For instance, the
following rule will block all outgoing requests whose URL path is /pixel.gif and having a query
string, blocking some tracking pixels:

/pixel.gif?

The following rule matches and blocks all third-party requests whose URL’s domain ends with
the string google-analytics.com; the dollar sign marks the start of optional rule options:

||google-analytics.com^$third-party

Similarly, the following rule blocks all external scripts whose URL path is /analytics/js:

/analytics/js$script

In addition, filter lists also feature exception rules, which unblock requests that would otherwise
be prevented by a blocking rule. They start with @@ and otherwise follow the same syntax. The fol-
lowing rule thus always allows scripts coming from URLs whose domain ends with adobedtm.com
and whose path contains /satellite-.

@@||adobedtm.com^*/satellite-$script

Finally, network rules can redirect requests to a local, extension-provided, benign resource: this
technique is called resource replacement. Syntax for this technique varies from rule engine to rule
engine. The following rule, from the uBlockOrigin’s list, redirects thematching advertisement script
requests to a no-operation script, provided by uBlock Origin, that does nothing:

||cloudfront.net/ads/*$script,redirect=noopjs,domain=cbs.com
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Blocking of inline scripts HTML allows to embed scripts inline, using the <script>. As these
scripts are already included in the HTML document, they will not trigger an HTTP request and,
therefore, cannot be blocked using network rules. To remedy this problem, content blocking tools
make available two different solutions: HTML filtering and script defusing.

HTML filtering processes the HTML response data and allows to remove HTML tags before the
browser engine even parses the received HTML document. Tags to remove can be targeted using
either CSS selectors or a custom selector allowing to match the inline script text contents [131].
For instance, the following HTML filtering rule deletes inline script elements whose text contains
FingerprintJS, on userscloud.com:

userscloud.com##^script:has-text(FingerprintJS)

The other available technique to defeat unwanted inline scripts is to leverage scriptlets (called
snippets by Adblock Plus) to prevent their successful execution. To this end, some content blocking
tools allow to inject in the page predefined scripts, named scriptlets or snippets, designed for specific
purposes. These tools do not allow the filter rules to contain arbitrary scripts to avoid arbitrary code
execution from filter lists. uBlock Origin thus provides scriptlets to abort the current inline script or
to abort a script when a given property is read from orwritten to [131]. Aborting the script execution
is performed by throwing a ReferenceError, effectively putting a halt to the script execution. For
example, the following rule aborts inline scripts (acis stands for “abort current inline script”) whose
text contains the string sp.blocking and accessing the $ global variable (referencing the jQuery
library):

gamespot.com##+js(acis, $, sp.blocking)

Similarly, the following rule aborts all scripts writing to the Fingerprint2 global variable, thus
preventing the definition of this fingerprinting library (aopw stands for “abort on property write”)
and thus its usage:

shink.me##+js(aopw, Fingerprint2)

Cosmetic rules Along with the previously discussed network rules, content blocking tools can
also feature cosmetic features, dedicated to hiding certain page elements. They are mostly used to
conceal advertisements banners that cannot be hidden using network rules or to hide the remaining,
empty advertisement space. However, as their name suggests, they provide no privacy benefits.
Cosmetic rules rely on CSS selectors to target page elements to hide and inject appropriate CSS to
hide the relevant elements. For instance, the following cosmetic rule hides all elements having the
class adbannerright:

##.adbannerright

II.4.1.2 Strengths

Filter lists thus have several strengths. They are indeed simple to understand and to deploy, as
browsers provide browser extension APIs making it straightforward to build WebExtensions that
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selectively block requests. Indeed, the webRequest.onBeforeRequest() [84] introduced an in-
terface that makes it easy to block individual outgoing HTTP requests before they are sent by the
browser. This method indeed takes a callback function, passing to it the URL of the request, along
with the resource type and other data, which is able to ask the browser to cancel the request.

In addition, content blocking based on filter lists is easily predictable: the requests or page
elements will be blocked if and only if they are present in one of the lists used by a user, these lists
being public and easily viewable.

Finally, the filtering process based on filter lists is relatively efficient, as it mostly rely on the
URL only, which is important as all outgoing requests need to classified.

II.4.1.3 Weaknesses

However, filter lists also suffer from several weaknesses.

Incompleteness and disparity in coverage Even though filter lists are decent enough as sug-
gested by their popularity, there is no guarantee of their completeness and other, recent studies
have also shown that a significant share of trackers is still not blocked [73] and that coverage heav-
ily depends on geographical regions and languages: regions whose language have few speakers tend
to have lower coverage [218]. This is easily explained by the fact that these filter lists are mostly
crowd-sourced [53] and are thus generally as good as the “crowd” is large. This is despite previ-
ous works which investigated the automated generation of these lists, to complement this manual
effort [124, 108, 161, 160].

List update latency Furthermore, as filter lists are updated by humans and there is no automated
watching process, filter lists are likely to be lagging behind the websites. Indeed, filter lists rely
on low-level selectors—URLs and CSS selectors—and are thus susceptible to break when websites
change, be the changes local or a complete website redesign. Studies have investigated these dy-
namics, including the lifetime of rules [140] and have found that the newest rules are significantly
less used than the oldest [222], as the latter are usually more generic.

Always-increasing size Because it is not possible to knowwhether a filter rule is still useful—i.e.,
whether the pages where the rule would be triggered on still trigger it—filter lists tend to become
“append-only” in practice, that is, rules are added but seldom removed. This may eventually hin-
der their use on mobile, where the hardware resource constraints are higher, as the lists would
become prohibitively big. This has also been brought under the spotlight recently, as Google has
announced the progressive sunset of the Manifest V2 API of WebExtension [94], replaced with Man-
ifest V3, which introduced tight limits on the number of rules filter-list-based content blocking
WebExtensions would be able to enforce [95, 222]. As of 2023, the minimum number of rules that
a browser must support according to the Manifest V3 is indeed of 30,000, smaller than the number
of rules in EasyList alone. Snyder et al. have investigated reducing the set of rules by keeping only
the most frequently used rules [222].
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Misalignment of aim andmethod Last but not least, a major underlying weakness of filter lists
is that they rely on the location of the resources to be blocked, while the motivation to block them
is because of their behavior. This misalignment of the aim—preventing certain behavior—and of the
method—blocking resources based on their location—is at the root at the brittleness of filter lists. In
particular, this makes filter lists easy to evade, as moving the resources—i.e., changing their URLs—is
enough to evade the network rules [73, 167]. Some websites also inline specific scripts which would
normally be external scripts, effectively avoiding blocking [73] by network rules.

Moreover, the unit of blocking of those filter lists is the whole resource, and it is thus impossible
to block only parts of a script.

II.4.2 Resource Replacement

Filter lists are mostly aimed at simply blocking resources. However, when these resources are scripts
that other scripts depend on, merely blocking them can introduce some forms of page breakage.
Indeed, as illustrated by Listing II.1, if a blocked script was providing a function called before some
functional code, a ReferenceError will be thrown when trying to execute that blocked function
as it is thus undefined, and the following functional code will therefore not be executed. As a
solution to this problem, content blocking tools have introduced means to inject dedicated scripts,
called shims, which replace these blocked scripts. Shims thus contain no-operation functions, that
get called in place of the original, blocked functions. uBlock Origin has introduced this solution as
part of its scriptlet injection mechanism [130], presented above: filter lists can request predefined
scripts to be inserted in the indicated websites. Firefox Enhanced Tracking Protection also injects
shims when blocking certain tracking scripts [184]. These shims are manually written, and their
contents are kept minimal while matching the exposed API of the blocked script they replace.

function() {
function_from_a_blocked_script();
functional_code();

}

Listing II.1: Example of a JavaScript function that will throw a ReferenceError if
function_from_a_blocked_script does not exist, thus preventing functional_code to be
executed.

Brave has developed an automated solution [220] to generate replacement scripts for scripts
bundling both tracking and functional code, producing scripts where browser privacy-sensitive APIs
are transiently neutralized. While being an automated and more general solution, it raises perfor-
mance and legal concerns about the distribution of these scripts, as the whole modified scripts need
to be shipped by the browser.

II.4.3 Dynamic User Rules

The previously discussed filter lists can be called static rules, as they are written once and distributed
to all users. Advanced users, however, may want to enforce their own rules on individual websites.
To this end, several content blocking tools provide graphical interfaces so that users can define
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(a) uBlock Origin pop-up in normal mode (b) uBlock Origin pop-up in advanced mode

Figure II.1: uBlock Origin pop-up in normal and advanced mode

what requests to block or allow. These tools are limited to defining rules based on the content type
and on the destination domain of the requests, not on their complete URL, as it would be difficult
to visually represent this kind of selection. uBlock Origin makes available such rules in advanced
user mode (which can enabled in the settings), as shown in Figure II.1. uMatrix provides a more
complete version [128], with the downside of being more difficult to approach (Figure II.2). Finally,
the NoScript extension (Figure II.3), shipped by default with the Tor Browser, is dedicated to blocking
scripts, hence its name.

II.4.4 Auto-Adaptive Blocking

The content blocking solutions discussed above either rely on static filter rules or on user inter-
vention to decide which content should be blocked. To overcome the limitations of each approach,
some tools have tried to provide auto-adaptive solutions, which locally observe the user browsing
and learn from it what content is tracking the user across websites. WebKit had introduced such
a system with Intelligent Tracking Protection (ITP) [268, 270] in 2017, which classified certain do-
mains as tracking and applied a stricter information sharing policy to them, but had to change this
behavior and apply a more uniform treatment of third-party domains after Google’s security team
disclosed [142] that, since this introduced a global state which could be written to and read by web-
sites, it could also be exploited for tracking or leaking parts of the browsing history. Similarly, the
Privacy Badger browser extension, developed by the Electronic Frontier Foundation (EFF), used to
provide a similar anti-tracking solution, learning tracking domains while the user browses, but had
to disable this behavior following similar disclosure [60].
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Figure II.2: uMatrix pop-up where only first-pary CSS, images, and iframes are allowed

Figure II.3: The NoScript extension allows to selectively block scripts per domain (CC BY-SA 4.0
https://noscript.net/)

https://noscript.net/
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II.4.5 Additional Benefits of Content Blocking

As this is the focus of this thesis, we mostly focused on the benefits of content blocking for privacy
so far. However, content blocking also has numerous secondary benefits, originating from the fact
that blocked content is neither downloaded or executed.

II.4.5.1 Web Security

By preventing the execution of certain scripts, content blocking can improve browser security.

Reduced attack surface By reducing the attack surface of the browser, as specific content is
blocked, it is harder to exploit browser and operating system vulnerabilities, diminishing the role
of the web browser as a major attack vector. Advertisements on otherwise innocuous websites can
indeed be used as an infection vector [147, 153]—then constituting malvertising. The NSA and CIA
have for instance made public their use of ad-blockers to mitigate this risk [89].

Cross-Site Scripting (XSS) One of the main web attacks that content blocking may help pre-
vent is one of the most widespread web attacks: Cross-Site Scripting (XSS). XSS can happen when
server-side or client-side code injects user-provided inputs directly into the HTML, without proper
validation or escaping. Successful XSS attacks allow an attacker to execute JavaScript code they
control within the victim’s web page, with the same privilege as the website owners. These attacks
can be leveraged by attackers to steal the victim’s authentication cookie, thus effectively taking con-
trol of their account. XSS can also be chained with a CSRF attack, enabling the attacker to perform
actions on another website where the victim is logged in. Although XSS is a well-known attack,
it is still the most common web attack vector according to HackerOne’s 2020 security report [126].
Preventing the execution of specific scripts helps defend against XSS in the browser.

II.4.5.2 Reduced Data Usage, Performance, and Energy Consumption

As one aspect of content blocking is to prevent some specific types of content to be downloaded by
the browser, it can lead to reductions in the amount of data transferred by the device. This there-
fore brings two other benefits. For users connecting to the Internet using metered connections, for
instance on pay-as-you-go mobile contracts, using content blockers may help reduce their phone
bill [246]. Browser performance, in particular page load speed, can benefit from blocking content,
since the blocked content will not be competing for bandwidth. Lastly, as the amount of data trans-
ferred can be diminished with content blocking, it can also reduce the energy consumption of the
device [246], thus increase its battery lifetime.

II.5 Recent Changes in Cornerstone Features of Browsers

For a long time, browser vendors seem to have been hesitant to change cornerstone features of the
client-side web platform, even when these constituted major privacy holes. Many of these earliest
features were effectively considered untouchable, for fear of breaking websites.
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II.5.1 Request HTTP Headers

Request HTTP headers have been introduced as early as 1992, in the HTTP/1.0-draft specifica-
tion [64]. This specification introduced the content negotiation headers which are still in use today:
Accept, Accept-Encoding, and Accept-Language. Along with them, two other HTTP headers
of interest are part of this specification: User-Agent and Referer (the misspelling of the Referer
header has been preserved until today, for backward compatibility).

II.5.1.1 User-Agent Header

The User-Agent header is a string sent to web servers advertising the browser vendor, product
name, and version. It has been useful when browsers were not implementing the same features,
especially when not all browsers supported framesets, as web servers could send different versions
of HTML documents to different browsers. However, now that browser compatibility has greatly
improved, this header has little use and is nonetheless a significant fingerprinting vector [117, 165].
Google is experimenting replacing this header with a set of new headers, called client hint headers,
with which browsers could send specific pieces of information when requested [240] with the hope
that the resulting entropywould be lower, while still allowing differential serving. If this experiment
is successful, the User-Agent request HTTP header may be replaced with client hints, and browsers
may stop sending it with every request, reducing their fingerprintability.

II.5.1.2 Referrer Header

The Referer header serves a completely different purpose: the browser was to optionally send it
with every request—e.g., when clicking a link or loading an image—its value being the address of
the page which provided the link to the requested resource. This header has been used for tracking,
Search Engine Optimization (SEO) and security.

As the Referer header used to always contain the complete URL, it could easily be used for
user tracking, as websites could thus learn the previous page users were on. Websites were also able
to leverage the Referer value to learn about the search engine keywords that led to their websites.
Indeed, search engines result page URLs used to contain the keywords unencrypted, which were
thus received as is by websites when following search result links. In 2013, Google has started
encrypting search keywords in URLs to avoid directly leaking them to websites in this manner [229],
and websites now have to register to Google Search Console to obtain the search keywords having
led to their websites [175].

The Referer value is also used to try to protect against Cross-Site Request Forgery (CSRF)
attacks [205]. CSRF attacks aim to leverage the fact that a user is logged into a website A to execute
actions on this site A on behalf of the user without their knowledge. A successful CSRF attack
requires a page B controlled by the attacker triggering a request to the website A and leveraging their
account—e.g., ordering a product or posting social media content—effectively impersonating them.
The Referer has been used to check whether action-performing requests were indeed originating
from the same site: since the Referer contains the origin domain, it is easy for website A to verify
that the request comes from its domain. However, relying on this method only is not robust, as not
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Figure II.4: History of HTTP cookies and their security and privacy features. Dashed boxes represent
the deployment in browsers of isolation of cookies for all users in normal windows.

all requests contain the Referer andwebsite thus have to allow requests containing no Referer. As
techniques exist for attackers to avoid sending the Referer, this defeats this security strategy [205].

Because of the privacy-invasive nature of this header, it is being replaced and gradually removed.
A new request HTTP header has indeed been introduced, Origin, which only contains the origin—
i.e., the scheme, hostname and port—that caused the request [80]. Contrary to the Referer header, it
does not contain the URL path or query string. It is in particular sent with all POST requests, allowing
to replace the Referer header for its security purpose. Deploying CSRF tokens—i.e., unguessable
values—in HTML forms, which will be submitted along with its other values and then checked by
the server, is still the recommended way of preventing CSRF.

In 2017, WebKit started to limit the Referer value to the origin only for all cross-origin re-
quests, as part of ITP; before that, it was only stripped for requests to domains classified as tracking
by ITP [270]. To be able to gradually retire the Referer, an additional response HTTP header has
been introduced, Referrer-Policy, which allows to specify whether the browser should send
the Referer header and, if so, what URL parts it should include. In 2021, Firefox, along with
other browsers, have changed the default behavior from no-referrer-when-downgrade to the
stricter strict-origin-when-cross-origin, which effectively strips the URL path and query
string from referrers of cross-origin requests [162]. Later in the same year, Firefox stopped abid-
ing by lesser strict policies, therefore ensuring that URL paths are never leaked in the referrer in
cross-origin requests [134].

While introduced very early in the history of the web, in 1992 [64], browser vendors have thus
been hesitant to change the behavior of these headers until a few years ago, even though they posed
privacy issues for every web user.

II.5.2 Cookies and Other Client-Side Storage Types

Cookies and other client-side storagemechanisms have also undergone heavy transformations since
the inception of cookies, in 1994 [152], but, as summarized in Figure II.4, these transformations only
started relatively recently.
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II.5.2.1 Cookie Sending Behavior

As we have covered in subsubsection II.1.2.2, the historical behavior was to send the cookies with
every request to the domain the cookie was set for, whose path matched the defined path, regardless
of the request resource type or whether the request was cross-site [112].

With the introduction of the SameSite attribute in 2016 [245], it became possible for websites
to restrict this behavior, and only send the cookies for same site requests using SameSite=None.
In 2020, Chromium has gradually changed the default value of SameSite to Lax for all users [74],
preventing cookies to be sent with normal cross-site requests, such as image requests. Firefox has
also been experimenting with changing the default value in 2020 [76].

This is a significant shift in the web platform, which can have a big, positive impact on user
privacy.

II.5.2.2 State Isolation

In the same vein, browsers have also rolled out anothermajor change in theweb platform: client-side
state partitioning. Historically, state—i.e., cookies, localStorage, HTTP cache, etc.—was shared
between all websites and tabs, websites could thus leverage resources loaded in the HTTP cache
by other websites. However, sharing this state made it possible for websites to observe what other
websites had, directly or indirectly, written to it, sometimes by using timimg-based attacks. For
example, a website A could purposefully trigger the loading of a resource originating from another
website B and measure its loading time; it the resource was loaded very quickly, it definitely came
from this shared local cache and website A could therefore infer that the user had recently visited
website B (and even a specific page of website B by selecting the resource on purpose), leaking part
of the user’s history [107, 141, 143, 274, 166]. To defeat this kind of attack, some browser vendors
have recently deployed thorough state partitioning, keying client-side state to the first-party domain
as well, as we have detailed in subsection II.3.1.

That is a major change in a fundamental subsystem of the client side of the web platform, and
can significantly help to reduce cross-site tracking.

II.6 Conclusion

Web tracking has seen rapid development since the inception of the web in 1990. It is now wide-
spread, as almost all websites contain third-party trackers that collect information about users and
follow them across websites. Trackers also record how visitors use web pages, as if they were
watching over the users’ shoulders. These observations and recordings are used for targeted adver-
tisements and for tailoring the websites for increased revenue. They constitute private data about
users, which can be exploited by insurance companies to learn about their consumers’ health con-
ditions, for vote manipulation using micro-targeting relying on user profiling, or even government
surveillance. The lack of online privacy can also lead to “chilling effects” and self-censorship, deter-
ring users from educating themselves about sensitive topics.

This calls for strong web tracking protections that users can employ to protect themselves when
browsing the web. Different tracking protections are already deployed in browsers and in the form
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of browser extensions, implementing different strategies such as state isolation, regular storage dele-
tion, or content blocking. As we have seen, content blocking prevents the downloading or execution
of unwanted resources. As other privacy protections are not always able to protect the user from
the effects of unwanted scripts, content blocking is a crucial part of client-side tracking solutions.
However, it still suffers from several weaknesses due to it mostly relying on filter lists. Because
these may be incomplete, lagging behind, or unable to target specific tracking mechanisms, users
are left vulnerable to certain kinds of tracking on the web.

The overarching theme of this thesis is to reduce the amount of JavaScript executed in the
browser, as JavaScript is the cornerstone of extensive tracking, and undermining this tracking vector
would greatly benefit user privacy and security.

In chapter III, we start by investigating page breakage when disabling JavaScript and measuring
the dependency on JavaScript of common web page elements. We report on the breakage rate of
various page elements when JavaScript is disabled and on how much disabling JavaScript can help
protect user privacy. Building on the knowledge acquired from this first contribution, we introduce
in chapter IV the concept of User Browsing Intent (UBI) and, focusing on the ‘read-only’ UBI, we
devise a set of repairs to make it more viable to browse the web without JavaScript by default, en-
abling JavaScript only when required. In chapter V, we switch on the server side, and propose an
automated rewriting system to replace interface components that rely on JavaScript with noscript
alternatives, and discuss the benefits, especially regarding device energy consumption and security.
Lastly, we introduce in chapter VI a signature scheme for identifying JavaScript functions and lever-
age it for detecting tracking functions from known tracking scripts bundled with functional code,
which cannot be blocked with existing content blocking tools.
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CHAPTER III

Investigating Page Breakage when Disabling JavaScript

JavaScript is one of the main client-side technologies enabling in-depth user tracking. Some users
thus would like to disable it in their browser to improve their privacy—or at least block most page
scripts—but it is unclear to them what page elements are missing or broken. These users would ben-
efit from being able to visually locate these broken elements. Moreover, we want to investigate page
breakage when JavaScript is disabled and quantify the breakage of page elements and evaluate the
commonly-encountered claim that “everything breaks when you disable JavaScript.” No standard
interface exists to detect page breakage or even the breakage of individual elements: existing litera-
ture has thus been reduced to manually evaluate page breakage when trying to reduce the amount
of client-side JavaScript for performance reasons [72, 71].

In this chapter, adapted from our paper published in TOIT [111], we propose an automated,
heuristic-based, bottom-up JavaScript framework, built in a browser WebExtension, which detects
and locates broken page features, when JavaScript is disabled. Through a large-scale web crawl, we
discover that 43 % of web pages are not strictly dependent on JavaScript and that more than 67 % of
pages are likely to be usable as long as the visitor only requires the content from the main section
of the page, for which the user most likely reached the page, and that disabling JavaScript reduces
the number of tracking requests by 85 % on average.

This contribution looks at the problem of measuring web page breakage induced by JavaScript
blocking through the following contributions:

1. Documenting HTML code and elements that require JavaScript to work properly
2. Introducing a heuristic-based framework aimed at detecting potential functionality breakage

introduced by blocking JavaScript, relying on the limited amount of information available
client-side

3. Performing a large-scale crawl of popular web pages, including internal pages, quantifying
how badly these pages are broken when JavaScript is blocked

4. Semi-manually classifying page screenshots based on visual comparison
5. Measuring the difference in request count, especially of tracking requests, when blocking

JavaScript

45
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III.1 Detecting Page Feature Breakage

In this section, we introduce our bottom-up analysis approach and detail the heuristics developed
to measure the reliance of web page elements on JavaScript.

III.1.1 Breakage Detection

To investigate the reliance of web elements on JavaScript, we introduce a client-side measurement
framework aimed at detecting potential functionality breakage when blocking JavaScript, relying
only on theDOM state after the initial page load. Thismeasurement framework is heavily unit-tested
and is then used to measure the reliance of web page elements on JavaScript.

III.1.1.1 Limited Information Available

We aim to be able to detect web elements present on the page that rely on JavaScript to function.
This is ultimately useful for users willing to browse with minimal JavaScript, to locate broken or
incomplete page features, which may not always be easily spotted visually. Thus, the detection
mechanisms are restricted to inspecting the Document Object Model (DOM) state obtained after
the page is fully loaded, with scripts completely blocked—i.e., the markup received from the server.
Since wemust only rely on the markup of the page visited by the user, we cannot compare a possibly
broken version of the page (with JavaScript blocked) with a supposedlyworking one (with JavaScript
loaded), be it using DOM or visual analysis, since the scripts would then need to be downloaded and
executed, defeating the privacy and security benefits. In this setup, there is no way of knowing,
from the markup alone, whether a script is meant to attach an event listener to an element (e.g., a
button) to handle its possible action.

As no programming interface is available to detect breakage of web elements caused by Java-
Script blocking and based on this set of restricted information, we develop a framework of heuristics,
embedded in a browser extension, that detects page features of interest and classifies them as being
either working or broken. We refrain from making any network request and from modifying the
inspected page, to make it as less intrusive as possible.

Future extensions may also leverage this framework to detect and fix broken page features re-
quired by the user.

III.1.1.2 Bottom-up Approach: Detecting Broken Elements to Detect Broken Features

HTML documents are built as a combination of basic HTML elements. Some of them—like <div>—
are not meant to be interactive elements, some others—like <a>—have a native, fully functioning
behavior without JavaScript, while others—like <canvas>—always require JavaScript to be useful.
These basic HTML elements are then combined to provide page features desired by the website
developers, such as dropdown menus and accordions. In doing so, non-interactive elements are
often used or misused to provide the desired interactive, complex page features (such as using a
<div> for a button). This makes it much harder to detect broken page features.

Adding to this impediment, there is also no general interface to detect whether basic HTML
elements are functionally broken, mostly because the definition and possible symptoms of breakage
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depend not only on the causes (e.g., blocking JavaScript), but also on the user preferences and toler-
ance to partial breakage. This means that custom heuristics, tailored to detect breakage induced by
blocking JavaScript, are required to detect broken features. In this contribution, we adopt a bottom-
up approach where, in place of trying to define possible symptoms of page breakage, we instead
focus on detecting breakage of web elements, or combination of elements, when blocking JavaScript.
Thus, breakage does not need to be defined on the whole page, only on individual web elements.

To identify possible breakage of individual web elements and of complex page features, we car-
ried out a comprehensive analysis of standard HTML elements, which can be found in Table A.1
in the appendix, and of popular web component libraries (in Table A.2), aided by the Web Accessi-
bility Initiative — Accessible Rich Internet Applications (WAI-ARIA) widget list [254] and manual
browsing. We identified their respective potential reliance on JavaScript, based on standard defini-
tions and documentation, in-the-wild observations and common knowledge of the field regarding
bad practices, and derived the custom breakage detection heuristics from this analysis. We do not
have to handle user interactions separately, as they are already part of the expected behavior of
individual elements, and thus are already covered by our heuristics.

The remainder of this section details the most relevant page features and the basics of the break-
age detection heuristics.

Images Standard <img> and <picture> elements do not require JavaScript to work properly.
The browser renders them by directly downloading the source images from the src and srcset
attributes. We can therefore objectively define the breakage of an image element as:

User-perceived breakage symptoms

Image is not rendered or a low-resolution placeholder is displayed instead.

Nonetheless, some websites implement image lazy loading in JavaScript. Instead of using the
standard source attributes, they store the image source URLs in other attributes, often using custom
data-* attributes [263, 50], accessible with the dataset IDL attribute. Then, when the image comes
close enough to the viewport, some JavaScript logic copies the URL to the appropriate src/srcset
attribute to load the image as detailed in Listing III.1, effectively deferring fetching the image until
it is actually needed, making the initial page load faster. In this scenario, if JavaScript is blocked, no
image will be rendered.

However, this behavior does not need to be implemented in JavaScript anymore since the intro-
duction of the "lazy" value of the <img> loading attribute in 2019–2020 [186], which is gradually
getting adopted [50] and implements native image lazy-loading, as shown in Listing III.2. This na-
tive behavior of the browser is disabled when JavaScript is disabled, to prevent tracking of the scroll
position [186].

Moreover, many websites implementing image lazy loading with JavaScript use a placeholder
image until the real image is loaded. This placeholder image is often a 1 × 1 px base64-encoded GIF
image supplied inline using the data scheme, thus requiring no extra request, while other websites
use a lower-resolution image and a CSS unblurring animation when the full-resolution image is
loaded.
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<img class="lazyload" data-src="image_js.jpg" alt="Image" width="300" height="90"
>

<script>
const lazyImageObserver = new IntersectionObserver((entries) => {

entries.forEach(entry => {
if (entry.isIntersecting) {

const lazyImage = entry.target;
lazyImage.src = lazyImage.dataset.src;
lazyImage.classList.remove("lazyload");
lazyImageObserver.unobserve(lazyImage);

}
});

});

Array.from(document.querySelectorAll("img.lazyload"))
.forEach(lazyImage => lazyImageObserver.observe(lazyImage));

</script>

Listing (III.1) Lazy loading images with JavaScript

<img src="image_nojs.jpg" alt="Image" loading="lazy" width="300" height="90">

Listing (III.2) Lazy loading images without JavaScript

Figure III.1: Lazy loading images

Finally, it should be noted that some websites implementing image lazy loading with JavaScript
also provide noscript fallbacks, using the <noscript> elements, which are only interpreted when
JavaScript is disabled in the browser, allowing the image to load if JavaScript is blocked.

We consider as large images all images whose height and width are both greater than or equal
to 100 px.

Forms Forms are one of the few interactive mechanisms able to operate without JavaScript when
implemented properly, by relying on server cooperation.

In this contribution, we call forms document sections delimited by <form> elements, containing
form controls. Forms are meant to collect data input by the user and to send them to a remote server
when the form is submitted. Various form controls that dictate the structure and logic of the form
are available, most of them implemented as a type of the <input> element, the others as separate
elements, namely <button>, <textarea> and <select>.

User-perceived breakage symptoms

Form cannot be submitted to the server, is not submitted to the intended API endpoint,
or some form values are not submitted.

To submit the form, the browser builds an HTTP request of the type defined by the method form
attribute (GET by default), using the URL specified as the action form attribute (the current page’s
URL by default) and the values of form controls having a name, then sends this request to the server.
For the Listing III.3, typing “test” into the search field and checking the checkbox, then clicking the
Search button, will result in a GET request with the URL ending with the following query parameters:



III.1. Detecting Page Feature Breakage 49

/search?q=test&check=on. This means that, if a form control has no name, its value will not be
sent; a form with at least one control having no name necessarily requires JavaScript to handle the
form, using another reference than their name to access the form controls and to either modify the
page accordingly or send a request to the server.

Unfortunately, one cannot guarantee that the server will take the request into account, be it
a GET or POST request. The absence of the action attribute cannot even be used to presume of
the non-handling of the form by the server, as some websites—mostly search engines—do intend to
submit these requests to the form page’s URL, which is the default when the action attribute is
absent.

Furthermore, the form submission itself can be broken without JavaScript. Indeed, two separate
mechanisms allow to submit a form: dedicated submission form controls and the implicit submission
mechanism. When some form controls (<button type="submit">, <input type="submit">,
<image type="image">) are part of a form, they will submit the form when activated. However, a
form can still be activated when none of these form controls are included in the form, using implicit
submission. Implicit submission allows to submit a form by hitting a key (usually “enter”) when a
text control is focused and the form has at most one single-line text control [264].

Otherwise, if the form cannot be natively submitted, JavaScript is required to either modify the
page according to the form data, to trigger the form submission, or to manually send a request
accordingly.

<form action="/search">
<input type="search" name="q">
<label>Check:

<input type="checkbox" name="check">
</label>
<button>Search</button>

</form>

Listing III.3: A valid form

Lone Controls In this contribution, we call lone controls all form controls that have no form
owner—i.e., that are not children of any <form>, nor are associated to a form using their form
attribute.

User-perceived breakage symptoms

Activating the control does not trigger the intended behavior.

Most of these lone controls require JavaScript to be useful: to attach an event listener to them
or to read their value. The only lone controls not necessarily requiring JavaScript are the state-
ful ones, <input type="checkbox"> and <input type="radio">, because their state can be ac-
cessed from CSS with the :checked pseudo-class, see the Disclosure Buttons feature and Listing III.5
for details.
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Empty Anchor Buttons An <a> anchor button represents a hyperlink to a destination page or
a section within a page. In this contribution, we call empty anchor buttons all <a> elements that
either:

• have no href, name or id HTML attribute1,

• have an href attribute set to the empty string,

• have an href attribute set to "#",
• have a javascript: pseudo-protocol href that is a no-operation, see Listing III.4.

They are very often used in a discouraged way to make buttons that look like other links on the
page, with the drawback that they do not convey appropriate semantics.

User-perceived breakage symptoms

Activating the anchor does not redirect to a different URL, scroll the page to the indicated
part of the document or trigger the intended custom behavior.

Thismeans they require JavaScript in the sameway a <button> element does (see Lone Controls),
except when these empty anchor buttons are actually used as standard-compliant go-to-top buttons.
HTML5 has indeed standardized the use of the empty URL fragment and the top fragment as a way
to ask the browser to jump to the top of the page [265].

Some empty anchor buttons are also not used as buttons, but only for appearance consistency
in a list of anchors, where this anchor has no target URL.

<a href="#">Button #0</a>
<a href="javascript:void(0);">Button #1</a>

Listing III.4: Empty anchor buttons

Mislinked Fragment Anchors Similarly, we define mislinked fragment anchors as all <a> ele-
ments whose fragment is not the empty fragment but targets an element that is not found in the
page—i.e., no element has the fragment as id.

User-perceived breakage symptoms

Activating the anchor does not scroll the page to the indicated part of the document or
trigger the intended custom behavior.

Some of these elements are used as buttons, in the same way as empty anchor buttons, others
are of no actual use, and would not trigger any action, even with JavaScript.

1An <a> element with no href but with a name is an obsolete, HTML4 way of marking a destination for another
anchor [251].
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Figure III.2: Examples of disclosure buttons (from the Bootstrap 5 documentation [235, 233])

Disclosure Buttons The constructs discussed above consist of a single HTML element, whose
intended use is standardized. Here, we discuss more complex page features, combining several
HTML elements.

We call disclosure buttons elements having a button appearance and intended to reveal and/or
hide other elements when actioned, possibly concealing information to the user if broken. Disclo-
sure buttons include accordion buttons and dropdown menu buttons, see Figure III.2. They are very
common features, part of most popular component libraries but are also often custom components,
specifically designed for the website.

User-perceived breakage symptoms

Activating the disclosure button does not reveal/hide the associated element.

Both accordions and dropdown menus can be built without JavaScript, but popular component
libraries do require JavaScript for these features to work [233, 235]: an event listener is attached
to the disclosure button that shows/hides the associated disclosable element when the button is
activated.

A great diversity of custom implementations can be observed in the wild, using various elements
for the disclosure button (usually a <button>, <a>, <label> or <div>) as well as different positions
of the disclosable element relatively to the disclosure button in the DOM tree (most of the time found
as the next sibling). Disclosable elements are most often a <ul> (especially for dropdown menus) or
a <div>; they are sometimes dynamically inserted in JavaScript and thus can be missing from the
initial DOM tree.

Accordions and other disclosure elements can also be createdwithout JavaScript, using a <label>
as a button toggling an <input type="checkbox">, whose checked value can be used in a CSS
selector to show the disclosable element using the :checked pseudo-class, as shown in Listing III.5.

<div class="accordion">
<input id="checkbox0" type=checkbox style="position:absolute;opacity:0">
<label class="accordion -header" for="checkbox0">Header</label>
<div id="body0" class="accordion -collapse">Body</div>

</div>
<style>

.accordion -collapse {
display: none;

}
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#checkbox0:checked ~ #body0 {
display: block;

}
</style>

Listing III.5: Accordion working without JavaScript

A simple disclosure element can also use the native element pair <details> and <summary>,
see Listing III.6: elements in the <details> are hidden by default, while the <summary> element is
shown and adjoined by an arrow suggesting some content is hidden; when clicking the <summary>
element, the hidden content visibility is toggled.

<details>
<summary>Some question</summary>
Some detailed answer that is hidden by default
and toggled by clicking the summary element.

</details>

Listing III.6: Native disclosure element

The diversity of implementations and the use of non-semantic elements make it a challenge to
reliably detect all disclosure buttons while minimizing the number of false positives. Using the CSS
class names can sometimes help to refine the classification, especially when these are from the most
popular component libraries (like .dropdown-toggle and .dropdown-menu), but this is no silver
bullet, some websites using class names in the website’s language, while others obfuscate the class
names.

Protected E-Mails

User-perceived breakage symptoms

E-mail addresses (and sometimes, other strings with an at sign) are replaced by [email
protected].

Some websites try to prevent mass harvesting of e-mail addresses by requiring JavaScript. They
embed the encoded address, often visually replaced by [email protected], which is then decoded
and displayed in place of this message. This is an example of a feature that deliberately relies on
JavaScript.

LoaderOverlays Some pages display an overlay that covers the entirety of the page until the page
is loaded. We call them loader overlays (they are also referenced as AJAX loaders or preloaders).

User-perceived breakage symptoms

The actual page content is hidden behind an overlay, which usually features a loading
spinner.
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Besides going against the flow of best practices, especially progressive loading, these overlay
elements are only removed with JavaScript when the page is done loading, meaning that, when
JavaScript is disabled, the overlay is never hidden and makes it impossible to read the page content,
actually often properly loaded, even without JavaScript.

Loader overlays usually appear as a <div> and as a direct child of the <body> element (often
being its first child) and have the id "preloader" or a class containing the word "preloader".

Page Text

User-perceived breakage symptoms

The page has no text content.

This heuristic checks whether the <body> has some text content (using the textContent and
innerHTML properties), other than whitespace.

This is particularly useful when the page is a full-page app. Full-page apps are websites where
the whole page is nested in a single element that is completely populated in JavaScript. Without
JavaScript, the page is left blank and broken.

This heuristic applies to the whole page and is an all-or-nothing heuristic.

Stylesheets Loaded

User-perceived breakage symptoms

The page has no style loaded.

Finally, this heuristic detects if the page has at least some basic stylesheet loaded by checking
font styles of a few elements, especially headers, which are almost always changed by websites.

This heuristic applies to the whole page and is an all-or-nothing heuristic as well.

III.1.2 Page Feature Relevance

A web page is composed of different sections with each their own purposes, as can be seen in Fig-
ure III.3. The header is often used to guide the navigation on a site whereas the main section offers
the bulk of the site content. In order to provide a more focused analysis of page breakage, we look
to identify these sections in the pages that we crawled.

These sections can be inferred from the DOM tree, using tag names, element ids, and class
names. In particular, HTML5 provides semantic elements for these sections: <header>, <footer>,
<aside>, and <main>. Not all websites use these semantic elements, but many do mark these sec-
tions with a combination of non-obfuscated ids and class names, which makes it possible to classify
page elements according to their position and intended purpose.

In addition, some page features may never be accepted by the user, especially tracking and
advertisement features, which do require JavaScript most of the time.
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Figure III.3: Common page structure (the sidebar can be on either side of the page)

III.2 Data Collection

This section details the crawling methodology we implemented to measure the dependency of web
page elements on JavaScript at scale.

III.2.1 Crawled Websites and Pages

We used a subset of the Hispar list [58], which provides a list of popular webpage URLs, including
landing and internal ones. The Hispar list is built using the Alexa Top 1M domain list, querying the
paid API of Google Search with the query site:𝜔 for each domain 𝜔 and storing the first 50 search
results along with their ranking, stopping as soon as the final list has 100.000URLs. The user’s
location is set to the United States and results are limited to pages in English. We used the most
recent list that was released at the end of January 2021 [59], and focused on the first three URLs
(based on Google Search rankings) of each domain, which usually include the landing page and two
internal pages. We limit the crawl to two internal pages because pages of lower ranks are very
often of the same type—e.g., product pages of a shopping website. This makes up for 6,384 pages to
crawl, from 3,774 domains (2,136Alexa base domains). Visiting internal pages is very important in
this study, since page features may be drastically different between the landing page and internal
ones—e.g., the website could feature a carousel on the landing page and forms in the internal pages.

We implemented the breakage detection heuristics detailed in subsection III.1.1 as a JavaScript
library intended to be used as part of a browser WebExtensions extension. This library detects page
elements matching features of interest and classifies them as either being working or broken.

Web crawling is then automated with Puppeteer, using Firefox Nightly 88.0a1, required for Pup-
peteer compatibility. The crawl uses two instances of Firefox running at the same time, with the
breakage-detection extension loaded: one is using default preferences while the other has the pref-
erence javascript.enabled set to false, which disables JavaScript globally for this instance, as
depicted in Figure III.4. For each page URL to crawl, the page is requested in a new tab in each
browser instance at the same time and the following steps are followed:

1. load the web page (with a 30 s timeout) then wait for 3 s,
2. inspect the loaded web page for feature breakage,
3. save a page screenshot and the current DOM state as HTML.

The browser tab is then closed and the crawl moves to the next page URL as soon as both instances
are done with the current one. We have checked, with the help of the generated screenshots, that
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Figure III.4: Dataflow diagram

3 s were enough for lazy-loaded content to be loaded. The crawl was run from our campus network,
from 2021-03-26 to 2021-03-28. If the DOMContentLoaded event (indicating the initial HTML docu-
ment has been loaded) is not fired after 10 s, the URL is skipped for this instance; if the load event
is not fired after 30 s, the URL is skipped as well. The crawl waits for 3 s to leave enough time for
asynchronous content to load, especially stylesheets and lazy-loaded images. Finally, the extension
is given 60 s for the breakage-detection inspection.

The crawl with default preferences is hereafter referred to as [plain], while the one with Java-
Script disabled as [nojs]. For both these crawls and for each page, the following data are collected:

• counts of broken and working elements for each page feature, in the main section and in the
whole page, and whether these elements are visible or not, forming a JSON feature report

• a page screenshot for further, manual analysis

• the page DOM, as an HTML file

III.2.2 Collection of Website Categories

To discover and highlight breakage disparities between website categories, we adopted the classifi-
cation from OpenDNS [198], which uses a crowdsourcing system to attribute categories to domains.
Registered users can propose domains and vote on categories. To the best of our knowledge, it is
the only website classification service that provides definitions of categories (as this is required for
crowdsourcing, definitions are available at [199]) and that can attribute several categories to each
website—i.e., categories are not disjoint. This comes with the drawback that only about 66 % of do-
mains from the dataset are covered. Some highly correlated categories are merged into new ones to
improve readability.
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Table III.1: Success statistics for each crawl step

Crawl type [plain] [nojs] both
Page

Crawled 6384 6384 6384
Loaded (1) 5875 (92 %) 6119 (96 %) 5827 (91 %)
Inspected (2) 5741 (90 %) 5966 (93 %) 5695 (89 %)
HTML saved (3) 5241 (82 %) 5610 (88 %) 4911 (77 %)

40 20 0 20 40 60 80 100
Page load speedup with JS disabled (%)

DOMContentLoaded

load

Figure III.5: Speedup when blocking JavaScript

III.3 Results

In this section, we report the results of crawling the subset of the Hispar list built above: 6,384 pages
from 3,774 domains (2,136Alexa base domains).

III.3.1 Dataset Description

Table III.1 presents the data collected during the crawl, and the result of each crawl step. Out of the
6,384 pages crawled, 5,827 pages were successfully loaded, feature breakage data was collected for
5,695 pages and the HTML was saved for 4,911 pages for the same crawl URL for both [plain] and
[nojs] crawls.

Inability to load and process some of the pages can be attributed to various factors, including
region-based blocking [242], possibly outdated URLs of the Hispar list at the time of crawl or load
and processing timeouts due to long synchronous JavaScript rendering times and heavy page Java-
Script processing.

III.3.2 Effect on Page Load Time

Blocking JavaScript brings up a significant page load speedup formost pages, as shown in Figure III.5.
In our dataset, the median load time with JavaScript enabled is 3,173ms, while it is reduced to
1,582ms when disabling JavaScript. This can be attributed to JavaScript files not being downloaded,
parsed and executed, and to some content not being loaded by JavaScript, especially lazy-loaded
images that do not provide a fallback.
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Table III.2: Ratios of pages where the following CSS selectors match at least one element

Selector Page count Ratio (%)

main 1557 27.6
main, #main, .main 2128 37.8
main, header, footer 3653 64.8
main, header, footer, aside, nav, section, article 4097 72.7
main, #main, .main, header, #header, .header, footer, #footer, .footer 4311 76.5

Some pages are however slower to load, because of the event we used to detect the page load
completion. The load event is fired by the browser as soon as the whole page is loaded, but this
does not account for content downloaded in JavaScript, such as lazy-loaded images or font files.
Moreover, as image lazy loading is not possible when JavaScript is disabled in the browser (the
loading="lazy" standard behavior is disabled by the browser to prevent tracking), image load
time is then included in this load event, explaining the higher load times measured when Java-
Script is disabled.

III.3.3 Page Section Classification

In this section, we validate the possibility of discovering the different sections of a page from the
standard, semantic metadata built in the HTML document. Notably, we look for either explicit
HTML elements, ids, or classes that relate to the structure of a page.

Table III.2 details the distribution of pages from the dataset for which we were able to identify at
least one of the specified selectors (element, #id, .class). The ratio of pages having a <main> element
matches 2021 HTTPArchive’s findings verywell [52]. Around 37 % of pages have clearly identifiable
main sections, while more than 76 % of pages mark the main section, header or footer of the page,
making it possible to recover the remaining main section. In the following, when the main section
cannot be determined, the whole page is considered as being the main section.

III.3.4 Page Feature Breakage

Then, we report about page dependency on JavaScript andwe detail observed feature breakagewhen
disabling JavaScript.

We start by introducing the quantities used to quantify feature breakage when blocking Java-
Script. First, the differential breakage (DBR) of a page feature is the difference between the counts
of broken elements with JavaScript disabled and with JavaScript enabled :

DBRfeatpage = BrokenCount[nojs]featpage
− BrokenCount[plain]featpage

(III.1)

A high, positive DBR denotes that the page has many more broken elements (of the relevant fea-
ture) when blocking JavaScript than with JavaScript enabled. The differential breakage can become
negative when the [nojs] page has less elements detected as broken than the [plain] page. This
may happen in different scenarios, including when:
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• elements that are considered as broken are dynamically added in JavaScript (e.g., in single-
page applications) and are thus not present in the [nojs] page,

• elements are hidden and only become visible with JavaScript (if the differential breakage is
restricted to visible elements only),

• the page provides noscript fallbacks which are detected as working while the [plain] page
has elements that cannot be detected as working or are actually broken.

Then, since elements are labeled as either broken or working, the total count of a feature is the
sum of their counts:

TotalCount[nojs]featpage
= BrokenCount[nojs]featpage

+WorkingCount[nojs]featpage
(III.2)

Finally, the normalized differential breakage (DBRn) can be derived from these two quantities:

DBRnfeatpage =


DBRfeatpage

TotalCount[nojs]featpage

if TotalCount[nojs]featpage
≠ 0

0 otherwise
(III.3)

III.3.4.1 Aggregated Features

To ease the interpretation of elementary page features, we define two aggregate features as the
following unions:

Interactive features = { Lone Controls, Forms, Empty Anchor Buttons, Mislinked Fragment An-
chors, Disclosure Buttons }

and
Main features = { Page Text, Stylesheets Loaded, Interactive features, Large Images, Loader Over-

lays }.
As not all the features included in the Main features have the same weight (the fact that no large

image is broken does not matter if the page has no text content), the maximum of each metric is
taken when aggregating, so that the Main features feature gives the more reasonable classification
of whether the page is broken or not.

III.3.4.2 Disparity Across Website Categories

Figure III.6 reports on the 90th percentile of differential breakage of visible elements from the main
section for each feature and across page website categories. This figure highlights the disparity of
breakage observed in the main section across website categories. In particular, e-shopping pages
have more broken interactive features in the main section than blogs have, mostly because they
contain more interactive elements in this section (25.5 interactive elements for [plain] e-shopping
pages and 8.5 interactive elements for plain blogs on average, in the main section): e-shopping
pages can have an order form and other interactive elements (to build light boxes for example) on
a product page, for instance. Figure A.1 from the appendix takes into account the whole page for
comparison.
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Figure III.6: Color represents the 90th percentile of differential breakage of visible elements in the
main section. Lighter shades denote higher differential breakage. Only categories with more than
50 pages in the dataset are plotted, to improve readability. This highlights the disparity of breakage
across website categories.

III.3.4.3 Dependency of Main Page Features on JavaScript

Reliance on JavaScript Every crawled page has at least one <script> whose type is set to
text/javascript. The page with the highest count of these tags has almost 300 of them.

Feature Breakage Report Figure III.7 reports on the proportions of pages for each page feature
possible status, indicating if these features are broken or working, or if there are no elements match-
ing this feature (which is thus not broken). It can be seen that 67 % of pages have all their main
features from the main section working, which means they are likely to be useful to the user, even
with JavaScript disabled. Even when taking the whole page into account, 43 % of pages have all their
main features still working, meaning that the whole page is likely working as intended, when block-
ing JavaScript. This difference between the main section and the whole page is easily explained
by the fact that, on many pages, interactive features are used around the main section—e.g., for
navigation— not in the actual content, as quantified in Figure III.7. However, it should also be noted
that for around 25 % of pages, at least one element from an interactive feature found in the main
section is broken, which could impede the user from using the page as intended.

Feature Implementation Consistency Figure III.8 depicts the normalized differential breakage
(DBRn) of visible elements of the main section, a high DBRn meaning that most of the elements
matching a feature are broken. Figure III.8 highlights that, when an elementary interactive feature
is at least partially broken on a page, it is actually completely broken most of the time (short tran-
sitions between 0 % and 100 % DBRn)—i.e., all elements of this feature are broken. Beyond the fact
that the main section usually contains few interactive elements, this can be attributed to the fact
that the implementation of the different elements of a feature on a given page is likely to be the
same, especially when the page is using a UI framework (e.g., Bootstrap [236]), that standardizes
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tive normalized differential breakage is not shown for readability

the implementation. In other words, for a given feature, it is very unlikely that a given page has
elements that require JavaScript while others do not.

III.3.5 Website Handling of Non-JavaScript Users

We investigate decisions made by websites that handle users with JavaScript disabled differently
than users with JavaScript enabled.

III.3.5.1 Noscript Redirects

Some websites redirect users with JavaScript disabled to a different URL using a construct similar to
<noscript> <meta http-equiv="refresh" content="0; URL=…"></noscript>, which redi-
rects to the provided URL after 0 s only when JavaScript is disabled. This behavior remains uncom-
mon: around 10 domains of our sample use this to redirect to a URL denoting the fact that JavaScript
is disabled.

III.3.5.2 Fine-Grained <noscript> Fallbacks

This does not mean other websites do not specifically handle non-JavaScript users at all, instead,
they provide fine-grained fallbacks using the <noscript> element, which is only interpreted by
the browser when JavaScript is disabled.

Out of the 5,434 pages saved for the [nojs] crawl, 3,049 pages contain at least one <noscript>
element, while the page with the highest count of them has 562 such elements. We extracted these
<noscript> elements and classified their purposes, see Table III.3.
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Table III.3: <noscript> purposes

<noscript> purpose Share of pages having <noscript> tags
featuring at least one element of the type (%) Total element count

Tracking iframe 43.1 1413
Tracking pixel 28.1 1155
Image fallback 18.1 11008
Empty tag 17.2 638
Noscript warning 14.4 519
Style element 7.1 244
Async. style fallback 4.9 263
Next.js CSS nonce 4.1 132
Other 4.0 198
Other stylesheet 3.5 112
Anchor 3.3 363
Other iframe 1.3 54
Text only 0.4 82
Embedded video iframe 0.3 38
HTML comment 0.3 20
Noscript-dedicated style 0.2 7
Meta tag 0.2 8
Video tag 0.2 14
Advertisement iframe 0.1 9
Tracking social iframe 0.1 44
IE fallback 0.1 34
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We classified the <noscript> elements by iteratively grouping them according to their children
tags, manually inspecting them, and using the EasyPrivacy list [6] as a reference for tracking pixels.
The “other” category contains elements that do not fall in any of the other categories, mostly because
they are comprised of several children and would not fit in a single category.

Tracking Elements The dominant purpose—by far—is tracking, relying on tracking pixels and
<iframe>s. Of course, much less data can be collected from the user’s browser than with JavaScript,
but these constructs are enough to at least count page views and set/read cookies, still enabling basic
user tracking. All tracking <iframe>s from the dataset connect to a Google-owned domain: either
www.googletagmanager.com, *.fls.doubleclick.net or www.google-analytics.com. Out
of the 1,821 domains having at least one page from the dataset including a <noscript> tag, 47 % of
them implement a noscript tracking <iframe> or a tracking pixel, of which 76 % use the <noscript>
tag only for these.

Lazy-Loaded Image Fallbacks The second most common purpose is to provide image fallbacks
for lazy-loaded images that require JavaScript. A few websites, including e.g. www.bbc.co.uk,
www.spiegel.de, www.heise.de and www.goal.com, still set loading="lazy" on these noscript
image fallbacks, even though it will be ignored by browsers to prevent tracking of the scrolling
position when JavaScript is disabled. The large total count of these elements is explained by the
fact that websites that bother implementing lazy-loading in JavaScript (and thus providing noscript
fallbacks) are websites that make heavy use of images (such as news and shopping sites), and thus
have a large number of noscript fallbacks per page.

Noscript Warning Message Some websites display a message inviting the user to enable Java-
Script. Among these, some of them still provide other noscript fallbacks, thus not always actually
requiring JavaScript.

<!-- Other common values for the media attribute are "none" or "only x",
which are invalid media queries -->

<link rel="stylesheet" href="..." media="print"
onload="this.onload=null;this.media='all'">

<link rel="preload" href="..." as="style"
onload="this.onload=null;this.rel='stylesheet '">

Listing III.7: Asynchronous stylesheet loading

Async-Loaded Stylesheet Fallbacks Loading a CSS stylesheet blocks page rendering, thus de-
laying the first content paint. Some websites circumvent this by inlining critical CSS—i.e., CSS
required within the initial viewport—and asynchronously loading other stylesheets when the initial
page load is completed. This is usually implemented either using constructs similar to the ones pre-
sented in Listing III.7 or using a dedicated JavaScript library, such as loadCSS [122]. At the time of
writing, there was no way of asynchronously loading stylesheets without JavaScript.
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Noscript Dedicated Stylesheet Finally, a few websites embed a dedicated stylesheet, specifically
intended to be used when JavaScript is disabled, to make the page usable. This stylesheet can be
inlined or remote, often named noscript in this case. It is a short stylesheet that makes sure content
that is normally hidden by default and then shown with JavaScript—e.g., as accordions or fade-in
elements (elements hidden by default and whose appearance is animated)—is actually visible by
default, by setting appropriate CSS properties for these elements—e.g., opacity: 1 or visibility:
visible.

III.4 Limitations

In this section, we detail the limitations of the heuristic framework and of our crawlingmethodology.

III.4.1 Measurement Framework Limitations

III.4.1.1 Limited Information Available

Since our heuristic-based measurement is intended to only rely on information available when no
JavaScript is loaded, it is limited to what is discoverable based on the initial state of the DOM only. It
is thus unable to detect the reliance on JavaScript of elements whose such reliance cannot be derived
form the markup, mostly some cases of misuse of non-semantic elements, e.g., <div>s used to build
buttons.

III.4.1.2 User Expected Feature Granularity

The heuristics that comprise the measurement framework are derived from basic HTML elements
and common components, following a bottom-up approach to detect the reliance of web elements
on JavaScript. In some cases, this might not match the level of granularity of features expected by
users, the framework being in those cases more fine-grained—e.g., only buttons of a modal would be
reported broken, not the modal itself. This limitation results from the limited information available
and from the web platform, since the relationship between elements is usually not automatically
discoverable based on static analysis—e.g., it is usually impossible to discover that a button is used
to close a modal, based on markup alone.

III.4.2 Crawl Limitations

The measurement crawl is limited to three URLs per domain, which does not cover the whole site,
but we believe this still provides reasonable insight about reliance on JavaScript, especially because
many webpages from a website actually follow the exact same template. In addition, the crawl is
run from a single location, from a single device, on desktop, but we expect few differences on mobile
since the usage of JavaScript is similar [51], except for components only shown on mobile, such as
hamburger menus. We also expect very few differences between browsers and devices, since we
browse without JavaScript, the interface of the web platform being very similar when JavaScript is
not enabled.
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III.5 Discussion

In this section, we discuss some misconceptions about current reliance on JavaScript, the viability
of JavaScript blocking, and incentives for website owners for making their websites usable without
JavaScript.

III.5.1 Manual Visual Analysis of Screenshots

To back up these results, which can seem to go against the common assumption that web pages are
utterly broken without JavaScript, we manually labeled page full-page screenshots collected during
the crawls, according to their breakage seriousness.

To this end, we first automatically compared all [plain] and [nojs] page full-page screenshots
pixel-to-pixel, automatically detecting and disregarding most of the differences due to vertical shift
of content between the two versions. Screenshots were then put into 10 %-wide bins according to
their pixel-to-pixel difference percentage. As pixel-to-pixel difference would greatly overestimate
the actual, user-perceived page difference, and, in some cases, underestimate the user-perceived dif-
ference on pages where the background takes the most room, one of the author manually labeled
150 random samples in each of the four bins with the smallest difference, according to the amount
of information lost to the user when disabling JavaScript, by visual comparison only. Missing adver-
tisements, cookie banners or presentational-only images (not bringing specific information) are not
considered information loss, while missing information-heavy images or substantial layout break-
age are.

Based on the labeling we conducted and using the pixel-to-pixel difference bins previously con-
structed, we concluded that at least 50 % of pages feature no substantial amount of information
loss—such as missing content text or figure that could mislead the user—when blocking JavaScript.
This lower bound is negatively impacted by page differences resulting in a significant pixel-to-pixel
difference percentage while actually making the page more usable when blocking JavaScript, a ma-
jor example being semi-transparent cookie-consent overlays that cover the entire viewport, which
do not appear when blocking JavaScript.

III.5.2 JavaScript Reliance of Most Visited Websites and Component Framework
Trends

The common assumption that web pages heavily depend on JavaScript may stem from the fact that
most visited websites do heavily rely on JavaScript. For instance, YouTube and other Google prod-
ucts, Twitter and Instagram are largely unusable when JavaScript is blocked: e.g., the YouTube
landing page displays only loading placeholders in that case.

Moreover, deployment of relatively recent JavaScript client-side component frameworks such
as React or Vue.JS, which may result in a blank page without JavaScript, is misrepresented by de-
veloper trends. These projects are indeed among the top 10 repositories on GitHub based on star
rankings [150], but constitute only a very small share of websites actually deployed, React and Vue.JS
accounting respectively for less than 3 % and 1 % of websites monitored by W3Techs [206].
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Table III.4: Mean request count and standard deviation for each request type with JavaScript enabled
and disabled

[plain] [nojs] Mean change (%)
M SD M SD

Request count

All 72.6 59.1 28.3 34.0 -61.0
— Non-tracking 50.9 44.1 25.1 33.0 -50.7
— Tracking 21.7 29.8 3.3 8.1 -85.0
First party 27.7 31.3 16.4 24.5 -40.8
— Image 13.3 21.7 12.3 22.2 -7.6
— Stylesheet 2.6 5.0 2.4 4.6 -6.2
— Font 1.5 2.6 1.3 2.4 -10.2
— Script 7.1 11.4 0.0 0.0 -100.0
— XHR 2.5 5.7 0.1 0.7 -97.6
Third party 44.9 49.6 11.9 26.4 -73.4
— Image 15.8 26.4 8.5 24.7 -46.3
— Stylesheet 2.1 3.6 1.4 3.5 -30.5
— Font 2.3 3.7 1.4 2.6 -38.2
— Script 16.8 19.7 0.0 0.0 -100.0
— XHR 5.5 8.6 0.0 0.2 -99.8

III.5.3 Benefits and Viability of Aggressive JavaScript Blocking

On top of the numerous privacy and security benefits introduced earlier, disabling JavaScript brings
additional changes of different natures.

III.5.3.1 Tracking Reduction Benefits

To understand the impact of disabling JavaScript on a user’s online footprint, we performed a new
crawl on the same set of URLs where we logged the number of requests triggered by each web page.
We leverage the onBeforeRequest handler [187] of Firefox to classify each URL in real-time. The
classification relies on Firefox Enhanced Tracking Protection and the built-in Disconnect lists [47]
to indicate if a URL is either first or third party and whether it is involved in tracking or not.

Table III.4 details the result of this new crawl. Considering all types of requests, blocking Java-
Script presents a mean reduction of 61 % and this percentage is even higher at 85 % for tracking
requests. This shows how beneficial disabling JavaScript can be when it comes to tracking. Looking
at the difference between first and third party requests, we can notice a difference in the type of
loaded resources. While images and stylesheets are mostly loaded in a first party context, scripts
mostly come from third parties and blocking JavaScript here has a drastic impact, as these are never
loaded in the browser. Some XHRs are also preloaded using <link rel="preload" as="fetch"
src="…">, which explains why a few XHRs are still detected with JavaScript disabled.
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III.5.3.2 Browsing Comfort

In the case where the page is usable enough without JavaScript, having it disabled can actually
improve the browsing experience by reducing the amount of aggressive page behaviors, such as
pop-up advertisements, newsletter forms or unexpected animations, resulting in less obstructed
browsing. In particular, cookie banners, that ask for user consent, are usually not shown in this
scenario since they are often completely managed with JavaScript cookie consent frameworks, that
set the cookies in JavaScript.

III.5.3.3 Reduced Data Size

Since external scripts are not loadedwhen JavaScript is disabled, this can result in a sizable reduction
of transferred data; the HTTP Archive reporting a median size of 444 kB of JavaScript per page [49].

Reducing the amount of transferred data has several benefits, including faster page loads for
most pages (see subsection III.3.2), reduced connection-related energy consumption, especially on
mobile devices, and reduced cost for users with a data cap on their mobile plan. However, in some
cases, disabling JavaScript could actually result in higher bandwidth usage, as it would prevent
loading some pieces of content only when actually needed, as with lazy-loaded images. For instance,
since all images would be loaded disregarding of the scroll position, it could happen that the user
would actually leave the page without ever reaching its bottom where images would have been
needlessly downloaded.

III.5.3.4 Reduced Client-Side Processing Load

Reducing the amount of scripts processed on the client side also reduces the processing stress on the
end device. This results in a lower consumption which, especially on mobile devices, can increase
battery life and device life span due to reduced heating and battery stress, reducing e-waste. Varvello
and Livshits have tested 15 Android browsers and found that ad blocking can offer between 20 % to
40 % of battery savings with an additional 10 % when dark mode is enabled [246].

III.5.3.5 Impediments to Non-JavaScript Browsing

Despite all these benefits and while around two thirds of web pages are likely to be satisfactorily
usable, it is currently hard to recommend browsing the web with JavaScript disabled for all websites,
as it would still significantly reduce the number of websites the user could satisfactorily browse,
besides the fact that the user may be required to use somewebsites (e.g., work-related or government
websites) that do require JavaScript.

Browser extensions such as uBlock Origin [129], NoScript [171] and the unmaintained uMa-
trix [128], allow users to selectively enable or disable JavaScript for each domain (and even in a
more fine-grained way for some of them), but they require manual action for each visited site, tech-
nical knowledge from the user and may not be easily usable on mobile because of reduced screen
size.
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III.5.4 Website Usage of JavaScript Features With No Fallback

III.5.4.1 Negative Impact of UI Frameworks

Minimum Developer Boilerplate The fact that some interactive components are not usable
without JavaScript is often due to them not being written from scratch specifically for the page
where they will be used, but instead coming from a UI framework, be it an open-source or an in-
house one. To make them easy to use, these UI frameworks rely on a set of CSS classes to apply on
elements to style and define their behavior. For instance, Bootstrap only requires a couple of classes
(.dropdown-toggle and .dropdown-menu) and a few attributes to be added to a button and a list
so that they behave as a dropdown list [235]. Unlike the implementation from Listing III.5, there
is no need for the developer to manually insert an extra <input> to keep state, since the toggle
behavior is entirely handled in JavaScript, thus requiring minimum manual boilerplate. Bootstrap
explicitly documents that its components do not fall back gracefully without JavaScript, and leaves
the implementation of noscript fallbacks to the developer [237], only hinting at displaying a no-
script warning to tell the user that JavaScript is required. The same strategy is followed by other UI
frameworks, such as ZURB Foundation [277] or Semantic UI [4].

Front-End Frameworks This trend is exacerbated by the use of front-end frameworks, which
require client-side JavaScript to deliver a significant part of the user interface. When using frame-
works such as React [138], Vue.JS [278], AngularJS [118], or Svelte [11], which all, by default, rely
on client-side JavaScript to build interface components, it may be tempting not to provide any fall-
backs since the website is very likely to be significantly broken anyway, regardless of best practices,
especially Progressive Enhancement [120], which recommends separating page semantics from in-
teractivity, while making the former as robust and accessible as possible.

Server-Side Rendering/Static Site Generation Some of these frameworks can be used as part
of an SSR stack, such as Next.js [193] (for React) or NuxtJS [7] (for Vue.JS), able to render the page
on the server, before sending it to the client, sparing it from the rendering burden and dependency
on JavaScript for rendering the components. SSG can also sometimes be used to render pages ahead
of time, when they do not depend on user data, thus reducing the server load. However, this plays
no role in providing client-side fallbacks for interactive elements, such as dropdowns, accordions,
or forms.

III.5.4.2 Search Engine Optimization Motivation

Apoint of interest for websites to provide JavaScript fallbacks, at least for basic content, is to improve
their ranking on search engines. Because it is an expensive operation, many search engines and
social media crawlers do not execute JavaScript at all [125, 88], possibly completely missing the
page content if it is not rendered without JavaScript, thus reducing the chance for the page to be
properly indexed by the search engine. Some of the most popular search engines do run JavaScript,
like Google Search (since at least 2014) [127, 119].
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III.6 Conclusion

In this contribution, we performed a crawl on 6,384 pages and quantified the use and reliance on Java-
Script of websites to provide content and features that the user was likely to expect when reaching
the page. We found that 43 % of pages were very likely to be completely working with JavaScript
disabled and that more than 67 %were likely to be usable enough, when potentially broken elements
were not part of the main section. We also observed that reliance on JavaScript was dependent on
the website category, and that it could be really low for some categories, that do not rely much on
interactive features. We finally detailed reasons for why it would be beneficial for websites to be
non-JavaScript friendly and focused on possible reasons for which websites may not currently be
supporting non-JavaScript users.

In the next chapter, we will leverage the acquired knowledge of page breakage when JavaScript
is disabled to design a set of repairs to common types of breakage, so that it is possible to keep
JavaScript disabled on a larger share of webpages and still be able to access the wanted information.

Availability

We make available the complete crawl infrastructure and all breakage detection heuristics at
https://archive.softwareheritage.org/browse/origin/https://gitlab.inria.fr/Spirals/breaking-bad.git.

https://archive.softwareheritage.org/browse/origin/https://gitlab.inria.fr/Spirals/breaking-bad.git
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CHAPTER IV

Bridging the Gap Between the User and the Browser with User
Browsing Intent

Previous works which investigated improving privacy through in-browser content blocking have
focused on making the entirety of the page work, leaving some trackers unblocked. In this con-
tribution, we claim that not all page features are required to work depending on the purpose of a
visit. Hence, we introduce the concept of User Browsing Intent (UBI), which acknowledges that
the user may visit a web page with different intents. For instance, a user may only want to read
a newspaper article, including the related illustrations. Other examples include different expected
visit frequencies: if the user only expects to visit the web page once or very occasionally, this allows
the browser to delete all (including first-party) client-side storage related to the page at the end of
its visit. On the opposite, if the user expects to browse the page regularly, the browser should avoid
encumbering the website usage—possibly adjusted by the user’s trust towards the website. In this
contribution, we focus on the ‘read-only’ UBI: the user only wants to be able to read the page, with
no interaction. Targeting this intent allows us to block more content, irrelevant in view of the UBI,
enabling a much more robust tracking-content blocking strategy.

In light of this realization, we introduce and evaluate a tool blocking JavaScript by default, bring-
ing significant privacy improvements, and applying a limited set of hand-crafted targeted repairs,
with the aim of making more pages compliant with the ‘read-only’ UBI, i.e., readable by the user,
even if interactive behaviors do not work. In the context of the ‘read-only’ UBI, the tool can be
evaluated using only page screenshots, with a semi-manual classification of these, by comparing
versions of pages where JavaScript is enabled, disabled, and disabled with our additional repairs.

We find that, using our tool, more than 62 % of web pages in our sample comply with the ‘read-
only’ UBI if the user tolerates only minor information loss, and that more than 77 % of pages are
compliant if they tolerate the loss of some non-central sections. In addition, we find that our targeted
repairs make at least 27 % more pages compliant in both cases, making it viable to browse with Java-
Script disabled by default with our repair WebExtension and to enable JavaScript only when needed.

71
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ResearchQuestions In this chapter, we address the following research questions:

RQ1 Does the concept of User Browsing Intent (UBI) help improve user privacy by blocking more
tracking content?

RQ2 To what extent a limited set of targeted repairs improves the ‘read-only’ UBI?

Contributions Answering the above research questions brings the following contributions:

1. Introducing the concept of User Browsing Intent, allowing to block more tracking content
2. Sharing the implementation of a WebExtension to block JavaScript and automatically repair

common client-side breakage
3. Evaluating this tool on a large-scale web crawl that includes landing and internal pages, with

a semi-manual classification of page screenshots

IV.1 Introducing the User Browsing Intent

In this section, we present existing content blocking strategies and motivate our approach.

IV.1.1 Current State of Content Blocking Solutions

Currently deployed content-blocking solutions mostly rely on filter lists to define content that
should be blocked [132, 188, 66]. Filter lists are an efficient way of blocking content, but they suffer
from several issues. Being crowd-sourced, they can work well on popular websites, but may be
incomplete for less popular websites, or in regions with fewer contributors [218]—e.g., in regions
whose language have few speakers. They may also be lagging behind the current website behavior,
especially if the website is regularly updated while not being heavily scrutinized. On top of this,
current filter lists are limited in the content they can target [73] and thus content blocking tools are
limited in what they can block. Indeed, JavaScript is now often bundled in a single file (or split into
a few smaller script bundles), that contains both functional and tracking content. No content block-
ing tool is currently able to selectively target and block these tracking bundle sections in a generic
manner, thus exposing the user to tracking, even when the required functional content is only used
for page functionality the user would not be using during their visit. This has led to a plateau in new
content blocking approaches, which try to complement filter lists with automated approaches [73]
or try to automatically rewrite individual scripts [220], but this latter approach currently suffers
from serious scalability issues regarding the distribution of the rewritten scripts, as noted by the
authors.

IV.1.2 More Aggressive Blocking with the User Browsing Intent

We believe that, to further improve client-side web privacy through content blocking, the current
gap between the user and the browser should be bridged so the browser can make informed content-
blocking decisions on behalf of the user, and effectively play its role as a user agent. We introduce
the concept of User Browsing Intent, to reflect the intent motivating a user to visit a given web
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page. More specifically, we focus on the ‘read-only’ UBI in this contribution: the user only wants
to read the content of a page, without interacting with it. For instance, the user wants to read a
newspaper article, a blog post, or a company website. Thus, by acknowledging that the entirety
of the page is not always required to satisfy the user, it becomes possible to block web content
more aggressively, as long as the page stays compliant with the user’s UBI. Other examples of
UBIs include visiting a web page only once or very occasionally—allowing the browser to delete all
(including first-party) client-side storage related to the page at the end of its visit—or, on the opposite,
communicate to the browser that regular visits are expected and it should avoid encumbering the
website usage—possibly adjusted by the user’s trust towards the website. As not all webpages can be
made compliant with the ‘read-only’ UBI, or when the user’s UBI is not the ‘read-only’ UBI, this more
aggressive content blocking strategy can be disabled in one click, thus bringing significant privacy
and security benefits when possible, while also only minimally increasing browsing friction.

IV.2 Blocking JavaScript and Repairing Specific Breakage Cases

This section presents the design of our WebExtension, which blocks JavaScript and repairs some
types of common breakage induced by this blocking. TheWebExtension is taskedwith the following:

1. Blocking JavaScript by injecting a Content Security Policy (CSP) header in the document
HTTP response

2. Injecting WebExtension content scripts to repair common types of breakage resulting from
the JavaScript blocking

IV.2.1 Blocking JavaScript with a WebExtension

To improve the privacy protection coverage, and in the context of the ‘read-only’ UBI, our Web-
Extension needs to block JavaScript completely. The only method available from a WebExtension is
to inject a custom Content Security Policy (CSP), similarly to what the uBlock Origin [132] and No-
Script [172] WebExtensions do. Thus, our WebExtension injects the following CSP response HTTP
header, which forbids the browser from downloading and executing any JavaScript code, including
inline scripts (scripts within <noscript> tags, in DOM1 event attributes such as onclick, or using
the javascript: pseudo-protocol in href attributes): Content-Security-Policy: script-src
'none'. The WebExtension also blocks CSP reports to avoid sending extraneous reports to website
owners and prevent additional privacy leaks.

In addition, HTML features a <noscript> tag, whose content is interpreted and rendered by
the browser only if JavaScript is disabled globally in the browser. These tags are thus not ren-
dered when JavaScript is simply forbidden using a CSP. Unlike uBlock Origin and NoScript, we
do not inject <noscript> fallbacks—i.e., inject the contents of <noscript> tags into <span> tags
so they are interpreted by the browser—as part of our JavaScript blocking process. Indeed, many
of these <noscript> tags are actually used for tracking, by either adding a tracking pixel to the
page or adding a tracking <iframe>, or show a banner asking the user to enable JavaScript. Some
<noscript> tags are however selectively injected as part of one of our repairs, see Figure IV.2.2.
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As the WebExtension is solely responsible for the blocking of JavaScript, it is able to disable the
blocking when asked by the user.

IV.2.2 Scope of Targeted Repairs

As simply blocking JavaScript breaks some page features andmay prevent content from being down-
loaded and displayed—even when caring only about the ‘read-only’ UBI—we introduce a set of tar-
geted, in-browser repairs to fix common types of client-side breakage. We selected five types of
breakage to investigate: lazy-loaded images, lazy-loaded stylesheets, fade-in elements, preloaders
and <noscript> tags. We focused on these because they could be fixed by relying only on knowl-
edge available client-side and we anticipated they would cover common breakage occurrences.

Lazy-Loaded Images

Lazy-loaded images are images whose loading is deferred after the initial page load. Even though the
HTML standard now contains a native specification of lazy-loaded images—using the loading at-
tribute set to "lazy" [266] on <img> tags—and though it is now supported by all evergreen browsers,
manywebsites still implement the lazy-loading of images using JavaScript, often leveraging an open-
source library, such as lazysizes [106].

The markup for a minimal lazy-loaded image looks like the following:

<img data-src="image.jpg">

A data-* attribute stores the image URL and a script detects when the image comes close to the
viewport and then copies the attribute value to the src IDL attribute.

When JavaScript is disabled, lazy-loaded images implemented using JavaScript are not loaded.

Lazy-Loaded Stylesheets

Lazy-loaded stylesheets are stylesheets that are loaded or applied to the document using JavaScript.
This can be useful as loading and parsing a stylesheet is synchronous: the browser will pause

parsing the HTML document until the stylesheet is downloaded, parsed, and applied, to avoid a flash
of unstyled content. Even though browsers implement a preload scanner to preemptively parse
the rest of the HTML while synchronous scripts and stylesheets are loading—so they are able to
download discovered resources, such as images or other scripts, in parallel—it may still be beneficial
in some cases to lazy-load stylesheets.

A lazy-loaded stylesheet is often implemented as follows:

<link rel="preload" as="style" onload="this.rel='stylesheet'"
href="style.css">

This asks the browser to asynchronously load the stylesheet with a high priority, then, when it is
loaded, applies it to the page by changing the rel attribute.

When JavaScript is disabled, the lazy-loaded stylesheets are not loaded and page styles (or part
thereof) are missing.
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(a) Screenshot when JavaScript is disabled (b) Screenshot when JavaScript is disabled, but
fade-in elements are repaired

Figure IV.1: Screenshots of the homepage of www.sage.com, having fade-in elements, which make
the content unreadable without JavaScript, fixed by our WebExtension

Fade-in Elements

Fade-in elements are elements initially hidden—usually by setting their opacity to zero—which are
then made visible using JavaScript when the user scrolls the page and the elements enter the view-
port. Figure IV.1 shows a page having fade-in elements with JavaScript disabled andwith our repairs.

When JavaScript is disabled, fade-in elements are not shown on screen.

Preloaders

Preloaders are elements covering the entire viewport until the page is fully loaded. The preloader,
which often features a spinner, is then hidden with JavaScript and unveils the page content it was
concealing. A page normally contains at most one preloader. Figure IV.2 presents two examples of
pages having preloaders.

When JavaScript is disabled, the page content is concealed by the preloader and thus cannot be
accessed.

<noscript> Tags

A <noscript> tag [267] is a standard HTML tag whose content is only interpreted by the browser
when JavaScript is globally disabled in the browser. It is often used to implement noscript fallbacks
of elements whose behavior implementations require JavaScript or to show a banner asking the user
to enable JavaScript because the website relies on it.

https://www.sage.com/
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(a) Screenshot of the homepage of
www.quora.com when JavaScript is disabled

(b) Screenshot of the homepage of giphy.com
when JavaScript is disabled

Figure IV.2: Screenshots of pages having preloaders, which completely prevent accessing the page
content without JavaScript

{
"preloaders": [

{ "target": "body > #preloader" },
{ "target": "body > #splash" },
{

"target": "body > div.loader",
"size": {

"mustCoverViewport": true,
"tolerance": { "value": 20, "unit": "px" }

}
}

]
}

Listing IV.1: Excerpt of the JSON repair configuration for ‘preloaders’. The target property
contains a CSS selector of elements to hide. The size of these can additionally be checked to make
sure they cover the entire viewport.

IV.2.3 Repairing Breakage Induced by JavaScript Blocking

Leveraging the identification of these repairs, this section explains how ourWebExtension proceeds
to first detect the elements to repair before effectively repairing them, using our hand-crafted declar-
ative configuration. The WebExtension injects content scripts—WebExtension scripts which run in
the context of the web pages in the browser—that detect and repair each type of breakage. Each
repair type has its own configuration, which makes it easy to update and extend the coverage of
the repairs if needed. This configuration is built using our knowledge of the causes of breakage, on
previous large-scale crawls, and on reading the documentation and source code of open-source li-
braries implementing the JavaScript mechanisms, such as lazysizes [106]; references to the libraries
and archived versions of pages featuring broken elements are added to the configuration when pos-
sible. The configuration, as part of the WebExtension, is tested using continuous integration on a

https://www.quora.com/
https://giphy.com/
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selected list of web pages, to catch possible regressions introduced when modifying it. Excerpts of
the configuration can be found in Listing IV.1, in Listing B.2 in the appendix and in the companion
repository, see section .

IV.2.3.1 Detecting Elements to Repair

The detection of elements to repair leverages a combination of CSS selectors and dedicated checking
mechanisms, relying on regular expressions and on reading the currently computed styles using
window.getComputedStyle(). The exact criteria used to detect the elements to repair are defined
in declarative JSON files which can easily be updated and could be pushed to users, similarly to filter
lists. As soon as the page is loaded, the WebExtension searches the page DOM for elements needing
to be repaired.

IV.2.3.2 Repairing Elements

Once the elements of a type of breakage have been detected, they can be repaired using the repair
methods defined in the JSON configuration. Repairs usually involve applying some CSS properties—
e.g., to force-show some hidden elements—or copying the values of some IDL attributes—e.g., to set
the value of the src <img> attribute from another attribute containing the image’s URL. As the
exact cause of breakage varies within a single type of repair—e.g., not all fade-in elements work in
the same way—each cause of breakage has its own repair method.

IV.3 Evaluating Repairs

This section details how we evaluated our WebExtension in view of the ‘read-only’ UBI.

IV.3.1 Methodology

In this contribution, we focus on the ‘read-only’ UBI, that is, the user only wants to read the page
and get a grasp of its content, but not interact with it. This means it is sufficient to visually compare
page screenshots to evaluate whether the page is compliant with this particular UBI. We thus run
a large-scale web crawl to gather the screenshots of 30,728 landing and internal pages in three
different versions: with JavaScript enabled, disabled, and with JavaScript disabled with our repairs.
We then semi-manually rated a 3,958-page sample following a visual differential analysis between
these three versions.

IV.3.1.1 List of Visited Pages

For this evaluation, we needed to crawl a set of of landing and internal pages on popular and less
popularwebsites. We selected the TRanco list, which provides a list of ranked-by-popularity domain
names, and aims to stay stable by aggregating different domain-ranking sources [204]. To obtain a
crawl sample containing popular websites aswell as less popular ones, we kept the top 5,000 domains
and added a random sample of 5,000 domains from the top 100,000 domains (excluding the already
selected top 5,000 domains).
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(a) Histogram of the pixel difference percentage between the JS
and NoJS-UBI screenshots (truncated at 150 % for readability)
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(b) CDF of the pixel difference per-
centage between the JS and NoJS-UBI
screenshots (truncated at 150 % for
readability)

Figure IV.3: Distribution of the pixel difference percentage between the JS and NoJS-UBI screenshots
in our 30,728-page sample

As the TRanco list is a list of domain names, we first visited the landing page of the website
by appending http:// before the domain name. The crawl browser then visited this page and
extracted a random sample of up to 4 URLs among the <a> tags linking to the same origin as the
current page. As not all landing pages contain 4 links to the same origin, and because not all domain
names from the TRanco list point to websites, we obtained 30,728 pages, among which 72.1 % were
internal pages.

The crawl ran on a server we host, from June 28, 2022 to July 2, 2022, using the TRanco list from
June 23, 2022.

IV.3.1.2 Data Collected

The crawler is built by automating Firefox using the WebDriver protocol. It spawns three browser
instances:

• JS: the default configuration (with JavaScript enabled)
• NoJS: JavaScript is disabled using a purpose-built WebExtension which injects CSP headers
(see subsection IV.2.1)

• NoJS-UBI: JavaScript is disabled in the same way, and our repair WebExtension is installed

JavaScript is always disabled using the aforementioned WebExtension, never globally in the
browser.

The crawler visits each URL in the three browser instances at the same time and collects the
following data:

• The count of repairs for each repair type in the NoJS-UBI browser
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• The count of cookie annoyances (e.g., cookie overlays and cookie banners) in each browser,
see below

• The HTTP requests sent by the page, including their tracking classification from Firefox En-
hanced Tracking Protection in each browser, see below

• A full-page screenshot in each browser

To detect whether a page contains cookie annoyances—e.g., cookie banners or cookie overlays—
we relied on the EasyList Cookie list [77], a crowd-sourced list containing CSS selectors matching
such cookie annoyances. We built a WebExtension using this list of CSS selectors to count the
number of cookie annoyances and send it to the crawler.

We also collect the list of HTTP requests sent by each page, including its tracking classification
from Firefox Enhanced Tracking Protection [188], using another purpose-built WebExtension.

IV.3.1.3 Analysis Methods

The main part of the evaluation consists in rating whether the NoJS-UBI version complies to the
‘read-only’ UBI and, if it is, whether the page was already compliant without our repairs. In view of
the ‘read-only’ UBI, comparing full-page screenshots of the page is sufficient to determine whether
the page is compliant with this particular UBI. We thus opted for a hybrid approach: we first auto-
matically compared full-page screenshots pixel-to-pixel, then put the pages into bins according to
their pixel-to-pixel difference, randomly sampled the bins, and manually rated the page samples.

Automated Comparison We first automatically compared the NoJS-UBI full-page screenshots
to the JS ones using a dedicated tool we built. It compares the two input screenshots pixel-to-pixel,
while discarding the differences due to vertical content shift, and outputs an image highlighting the
pixel differences, along with the pixel difference percentage. To discard differences due to vertical
content shift, it first splits the images into 16 px-high strips and detects identical strips. Pixels
from these identical strips—thus having vertically shifted—are then excluded from the pixel-to-pixel
comparison. An example of the resulting difference image can be seen in Figure B.1, in the appendix.
The pixel difference percentage between two images 𝐴 and 𝐵 is then computed as follows:

pixel diff =
#different pixels

#shortest image pixels

where:

• #different pixels is the count of pixels different between image 𝐴 and image 𝐵. If one of the
image is taller than the other, all extra pixels are counted as being different, unless they were
from a strip detected as shifted.

• #shortest image pixels is the pixel count of the image having the smallest pixel height.

The pixel difference percentage can thus be greater than 100 %, e.g., when image 𝐵 is taller than
image𝐴 and the pixel difference count is greater than the pixel count of image𝐴. The pixel difference
distribution between JS and NoJS-UBI full-page screenshots of our 30,728-page sample is shown in
Figure IV.3.
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Manual Labeling As relying only on this automated comparison would result in many false
positives—pages classified as non-compliant with the ‘read-only’ UBI although they are—we opted
for sampling the screenshot set and manually classifying them, based on the amount of information
lost between the JS and the NoJS-UBI screenshots. As the amount of information loss is not linearly
correlated to the pixel difference, we first put the screenshots into the following bins, according to
their pixel difference percentage:

[0, 1, 3, 5, 10, 20, 35, 50, 65, 80, 100, 150, 200, +∞]

We then sampled these bins, keeping 13 % of the screenshots, totaling 3,958 screenshots.
For each page, four images were displayed for the manual classification: the JS screenshot, the

NoJS screenshot, the NoJS-UBI screenshot, and the color-coded difference image computed in the
automated comparison stage, between the JS and NoJS-UBI screenshots, see Figure B.1 in the appen-
dix. The order in which pages where shown was randomized, and the pixel difference percentage
was not shown. Two grades were attributed: one for the information loss between the JS and NoJS-
UBI screenshots, and the other for the potential repairs applied, between the NoJS and NoJS-UBI
screenshots. One of the author thus labeled the 3,958 pages by following two different scales. The
scale used for grading the information loss is the following:

0. The JS or the NoJS-UBI page is an error page due to the crawl itself, and would not appear
during normal navigation—usually a bot detection page.

1. The NoJS-UBI page is utterly broken.

• Examples: The page is blank, contains only skeleton placeholders, or the page content
is concealed by a preloader that has not been hidden.

2. The NoJS-UBI page features major information loss compared to the JS page.

• Examples: The central sections of the page are missing, important images are missing:
e.g., product images in a product search result page, product screenshots are missing,
some missing search results are missing, a video that is the main page focus is missing.
The page language is incorrect. All page styles are missing.

3. A small number of non-central sections—sections considered as secondary by the page, based
on its layout—are missing from the NoJS-UBI page compared to the JS page.

• Examples: Some of the following sections are missing: homepage user reviews/Trustpi-
lot evaluation, ‘Trusted by’ section, ‘You may also like’/related posts section, embedded
Twitter feed. Numerous generic stock images are missing.

4. Some minor information is lost between the JS page and the NoJS-UBI page.

• Examples: The footer contains an [email protected]mention in footer (due to Cloud-
flare email address obfuscation [75]), some stock/generic images are missing with very
few information, a small text banner is missing, redundant text—text appearing multiple
times on the page—is missing.
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5. The NoJS-UBI page feature no information loss compared to the JS page, taking into the ac-
count the exception list below.

The following elements are not considered as participating in information loss when missing:

• advertisement banners
• cookie banners/cookie overlays
• newsletter forms
• chatbot buttons
• feedback buttons
• ‘secure’ certification button
• social network sharing buttons
• custom web fonts
• go-to-top buttons
• donation request banners

The scale used for grading the automated repairs is the following:

0. The JS, NoJS, or the NoJS-UBI page is an error page due to the crawl itself, and would not
appear during normal navigation—usually a bot detection page.

1. The repairs degraded the page, in view of the ‘read-only’ UBI.
2. The repairs did not modify the page.
3. The repairs fixed some—but not all—information loss breakage.
4. The repairs fixed all information loss breakage.

IV.3.2 Experimental Results

In this section, we report on the results obtained from the crawl and the semi-manual classification.

IV.3.2.1 Repair Frequency

Our repair WebExtension records the counts of elements repaired on each page. The shares of pages
among the 30,728 pages crawled where the repairs have been applied to at least one element are
detailed in Table IV.1. Note that the ‘lazy-loaded images’ repair may be over-reporting as it may
try to repair unbroken elements. Figure IV.4 reports on the counts of elements which have had
repairs applied to them, per page. It highlights that the targeted elements do not have the same
counts of occurrences on a page: a page has at most one preloader but can have many lazy-loaded
images. Correlation between repairs having modified at least one element is shown in Figure IV.6.
Positive correlation between ‘lazy-loaded images’ and ‘lazy-loaded stylesheets’ can be attributed to
website developers trying to defer the loading of as much content as possible. Note also that not all
<noscript> tags are injected by our repairs, on purpose, so websites may still be adding noscript
fallbacks to lazy-loaded images even though this correlation is not highlighted by the matrix.
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Table IV.1: Shares of pages among the 30,728 pages where repairs have been applied to at least one
element

Share of
internal pages (%)

Share of
homepages (%) Total share of pages (%)

Lazy-loaded images 26.12 28.14 26.58
Fade-in elements 15.62 17.37 16.01
Lazy-loaded stylesheets 8.44 7.88 8.32
Noscript tags 8.31 9.74 8.63
Preloaders 0.80 0.75 0.79
Any 44.95 48.96 45.86

100 101 102 103

Lazy-loaded images

Fade-in elements

Lazy-loaded stylesheets

Noscript tags

Preloaders
Page type

Homepage
Internal

Figure IV.4: Tukey boxplots of the counts of repaired elements per page, when at least one element
has been repaired: when a page contains a lazy-loaded image, it usually contains many of them,
unlike preloaders, which usually appear only once on a page when present.
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Figure IV.5: Bivariate plot of the manual labeling; the grades are defined in subsubsection IV.3.1.3

Table IV.2: Shares of pages compliant with the ‘read-only’ UBI and the indicated tolerance

NoJS
(%)

NoJS-
UBI
(%)

Improved by
repairs by (%)

Minor information loss (4) + (5) 49.04 62.62 27.70
Loss of some non-central sections (3) + (4) + (5) 60.54 77.14 27.43

IV.3.2.2 Validation of Targeted Repairs

Using the semi-manual rating methodology described before, we found that, with our repairs, more
than 62 % of pages were compliant with the ‘read-only’ UBI when tolerating only minor information
loss; if the user also tolerates losing some non-central sections, more than 77 % of pages of our
sample comply with the ‘read-only’ UBI, as shown in Table IV.2. The results of the manual labeling
are shown in Figure IV.5. The repairs degraded the page compared to the NoJS version (without
the repairs) for less than 1.27 % of pages. This is most often caused by the ‘fade-in elements’ repair,
which may incorrectly force-show some elements meant to stay hidden, e.g., dropdown menu lists.
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Figure IV.6: Correlation matrix of repairs modifying at least one element

IV.3.2.3 Benefits

Browsing without JavaScript, when made easier with our repair WebExtension, has multiple bene-
fits, including improving client-side privacy and security, and potentially improving the browsing
comfort.

Privacy On top of significantly reducing the browser attack surface, having JavaScript disabled
significantly improves user privacy. Indeed, as shown in Table IV.3, the number of third-party track-
ing requests, as classified by Firefox Enhanced Tracking Protection and matching the Firefox ETP
any_basic_tracking flag [190], is significantly smaller with JavaScript disabled. On each indi-
vidual page, the number of third-party tracking requests was reduced by 97.7 % on average, with
a median of 100.0 % and a standard deviation of 18.82. Remaining, unblocked trackers are mostly
tracking pixels—tiny images used to count page hits and collect some information about the user—
and tracking <iframe>s. Both do not depend on JavaScript to be sent, but the amount of data they
are able to collect is greatly reduced when JavaScript is disabled. In addition, our WebExtension can
be used in conjunction with existing filter-list-backed blocking tools, so that these requests are also
prevented.

Even though the set of tracking requests detected as such should already be blocked by content
blockers—as Firefox Enhanced Tracking Protection [188] relies on the Disconnect list for its track-
ing classification—blocking JavaScript helps protect the user privacy even further. It indeed also
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Figure IV.7: Tukey boxplots of the load time differences (measured with the ‘load’ event) when
disabling JavaScript and when applying our repairs to the NoJS pages, in our 30,728-page sample

prevents the execution of trackers unknown to filter lists and of trackers that cannot be targeted
with existing content-blocking solutions.

BrowsingComfort In addition to bringing privacy benefits, disabling JavaScript can also improve
the browsing comfort, especially page load times and the reduction of page annoyances. As the
Figure IV.7a shows, disabling JavaScript brings a median page load time speedup—measured with
the ‘load’ event—of more than 31 %, while only very rarely slowing down the loading.

Moreover, many websites rely on JavaScript to show cookie banners and cookie overlays to the
user, asking for content before processing the user’s personal data. Based on the EasyList Cookie
list, we found that 35.19 % of pages from our sample contained a cookie banner or overlay. Among
those, 53.27 % of them were not shown when JavaScript was disabled.

IV.4 Discussion and Limitations

In this section, we discuss this contribution’s limitations and possible usage.

IV.4.1 Public Pages

In this contribution, we focused on testing our repair WebExtension on public pages, including land-
ing and internal pages, but we did not evaluate it on pages requiring authentication to be accessed.
However, as these pages are likely to involve user interaction, the ‘read-only’ UBI may be less rele-
vant for those pages.

IV.4.2 Usage and Privacy–Usability Trade-off

We found that a large part of the pages are compliant with the ‘read-only’ UBI with our repairs
applied. As not all pages are compliant, the usage workflow would be the following: the browser
loads the pages with JavaScript disabled by default, with our repair WebExtension, and then, if the
page is not compliant with the ‘read-only’ UBI or if the user’s User Browsing Intent is different, the
user would enable JavaScript for this page in one click. This brings a significant privacy and security
improvement on a large share of pages, while involving only a single action on the others. Usage
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Table IV.3: Counts of third-party tracking requests with JavaScript enabled and disabled, with our
repairs. Some Script and XHR requests are still present without JavaScript because JSON objects
loaded with <script> tags and <link> preloads are classified as such.

JS NoJS-UBI
Request type

Script 229970 8
Image 195154 1588
XHR 157193 7
Iframe 50146 393
Beacon 19400 3
Stylesheet 1997 99
Font 381 7
WebSocket 348 0
Media 334 3
Image set 174 361
Other 44 33
Object 29 0
CSP report 2 1

friction could even be decreased by automatically detecting the change of the user’s UBI based on
their behavior on the page (clicking on a button or typing characters on the keyboard), which we
leave to future work. Whether JavaScript is enabled can also be remembered by the browser for each
page, avoiding having to enable JavaScript each time the user repeatedly visits a page requiring it.

IV.4.3 Unfixed Breakage and Maintenance

Breakage unfixed by our repair WebExtension we observed in our crawl can be split into two
categories: breakage that is fixable client-side and breakage that is not. To be fixable client-side,
the missing content must either (1) be present in the HTML document—e.g., ‘fade-in elements’ or
<noscript> tags—but hidden, (2) referenced by a URL extractable from the document—e.g., ‘lazy-
loaded images’ or ‘lazy-loaded stylesheets’—or (3) be standard enough to be inferred from some
content, e.g., if a client-side library uses some particular format of URLs, this external knowledge
can be leveraged to manually develop a repair. On the contrary, some types of breakage cannot
be fixed client-side without knowing the server-side infrastructure, e.g., XHR requests leveraging
some complex server API cannot be replaced.

If new occurrences of one of the breakage types covered by our WebExtension are discovered in
the future, theWebExtension configuration can easily be updated and could be distributed separately,
as filter lists currently are. Furthermore, the number of libraries used by websites and relevant to our
repairs—e.g., lazysizes [106]—is small enough to be easily monitored for change, and these libraries
rarely undergo major changes, making the maintenance burden very manageable.
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IV.5 Conclusion

In this contribution, we introduced the concept of User Browsing Intent and focused on the ‘read-
only’ UBI to propose a solution blocking JavaScript by default, while providing a limited set of
targeted targets, aimed at repairing common types of breakages fixable client-side. We evaluated
our repair WebExtension on a large page sample, semi-manually labeling the page conformance
with the ‘read-only’ UBI. We found that 77 % of pages are compliant with this particular UBI if the
user tolerates the loss of some non-central sections, and that our repair WebExtension increases
the number of compliant pages by more than 27 %. Future work should investigate improving user
privacy in the context of other User Browsing Intents.

Availability

Wemake available our repairWebExtension, including the continuous integration testing configura-
tion. We also make available the entire crawl infrastructure, with a reusable Rust crawl framework,
along with our data analysis notebook. These can be found in the following repository:
https://archive.softwareheritage.org/browse/origin/https://gitlab.inria.fr/Spirals/privacy-ubi-artifact.

https://archive.softwareheritage.org/browse/origin/https://gitlab.inria.fr/Spirals/privacy-ubi-artifact
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CHAPTERV

Reducing Interface Components Dependency on JavaScript
Server-Side

Existing development tooling and previous works have investigated the automated removal of Java-
Script code unused in a page. However, they are only able to remove dead code, i.e., code that is
shipped to the browser but not executed.

In this chapter, which extends our paper published inWWWCompanion 2022 [110], we propose
an automated server-side solution to replace common interface components with alternatives not
relying on JavaScript for their interactivity, making it possible to remove the component JavaScript
library. We show thatmost User Interface (UI) components provided by popular frameworks, such as
Bootstrap [236], can be automatically replaced by noscript alternatives. In particular, we introduce
an automated HTML rewriting technique, named JSRehab, to replace these JS components by their
noscript alternatives, hence reducing the dependency on client-side JS, even removing it in some
cases. This contribution facilitates the deployment of stricter CSP, enabling to entirely forbid client-
side scripting if the page makes no other use of JS, hence dramatically improving client-side security.
Reducing the amount of client-side JS can also bring performance improvements and energy savings,
by optimizing the amount of data transferred and of scripts processed by the browser, which can be
significant on low-end mobile devices [72]. The contributions covered by this chapter include:

1. Introducing a stateful component abstraction to implement noscript alternatives
2. Reporting on the implementation of a noscript alternative generator, currently targeting the

most popular UI framework, Bootstrap
3. Evaluating the payload overhead of these noscript alternatives
4. Measuring the energy savings on mobile devices
5. Manually validating these noscript alternatives on a corpus of 100webpages

V.1 Rewriting HTML with Noscript Alternatives

This section introduces the principles underlying noscript alternatives and their automated genera-
tion using JSRehab.

89
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V.1.1 Introducing Noscript Alternatives

We define a noscript alternative as a web structure that implements an interactive behavior equiv-
alent to the JS component it replaces. This structure may combine HTML and CSS constructs to
implement the expected interactivity with no single line of JS executed on the page. It should be
noted that, despite the naming similarity, noscript alternatives are not necessarily embedded as
<noscript> tags—which are only interpreted by the browser when JS is disabled—but can be set
up to be rendered by any user.

When rewriting a UI component as a noscript alternative, one needs to store and to update the
component’s state by only leveraging HTML and CSS constructs. For interactive components, this
state can encode for example an opened/closedmenu, clicked/focused button or checked/unchecked
checkbox. Without this state, the page cannot react to user interactions, as no component will record
the changes triggered by the associated events.

To deal with this challenge, we leverage the checkbox hack [215, 90], making it possible to record
any component state by hiding a checkbox underneath. Interestingly, checkboxes can be natively
toggled as checked or unchecked and, even if they are invisible, users can indirectly update them,
offering a perfect candidate for implementing our noscript alternatives. Listing V.1 illustrates such
an example of a checkbox hack implementing a “dropdown button” label that is visible to the user,
while the #chkbox0 element is kept hidden. The menu is not visible as its current style is set to
display:none but, as soon as the user clicks on the label, the state of #chkbox0 is toggled to
checked and the menu becomes visible with display:block.

<div class="dropdown">
<!-- dropdown state -->
<input id="chkbox0" type="checkbox"

style="position:fixed;opacity:0">
<!-- dropdown label -->
<label for="chkbox0">Dropdown button</label>
<!-- dropdown menu -->
<ul class="dropdown -menu">

<li><a href="/item0">Item #0</a></li>
<li><a href="/item1">Item #1</a></li>

</ul>
</div>
<style>

.dropdown -menu { display: none; }

.dropdown #chkbox0:checked ~ .dropdown -menu {
display: block;

}
</style>

Listing V.1: Noscript alternative of a dropdown button

More generally, implementing noscript alternatives requires to identify: (a) HTML elements
that are stateful and that the user can interact with, and (b) CSS selectors that can access the state of
these elements. By combining both, one can implement UI components without JS. We studied the
CSS Selectors specification [255] and derived the set of pseudo-classes that can be used to access the
state of HTML elements and other mechanisms without JS. Table V.1 reports on the mechanisms
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Table V.1: CSS selectors & elements/mechanisms whose state can be accessed

CSS selector HTML element/mechanism

:checked <input type="checkbox">
:checked <input type="radio">
:target Current document’s URL fragment
:focus/:focus-within Document focus
:hover Cursor position

that we leveraged in JSRehab: (1) checkboxes to record boolean states, (2) radio buttons to store
mutually exclusive boolean states, (3) target links to help page navigation, and (4) hover/focus to
notify a component of page-level user interactions.

V.1.2 Rewriting UI Components with JSReHab

V.1.2.1 Designing noscript alternatives

Thedesign of a noscript alternative for anyUI component requires to analyze: (1) the UI framework’s
documentation and source code to identify the purpose and behavior of the component, (2) the best
strategy in Table V.1 to store the component’s state. While this approach can be applied to any
UI framework, inferring the exact transformation cannot be automated: each framework includes
specificities, which may be encoded in a very specific way with a different architecture and corner-
cases. This requires each transformation to bemanually crafted in order tomake sure that everything
is appropriately tailored for the targeted UI framework.

V.1.2.2 Generating noscript alternatives

Even though the checkbox hack has been well-known for more than a decade [215], it is not widely
used on the web. This can be explained by several factors. Firstly, the implementation of noscript al-
ternatives cannot be factored out and requires to be repeated for each component instance, making it
a relatively verbose and error-prone solutionwhen hand-writing the requiredHTML and CSS. More-
over, this first point particularly stands out when compared to interface component frameworks—
such as Bootstrap [236] or ZURB Foundation [276]—which only require the web developer to add
a few classes and attributes to the UI components to enable JS behaviors. Secondly, some noscript
alternatives may suffer from corner-cases and unexpected behaviors, making their implementation
subtle, which is worsened by the first point, as their implementations cannot be factored out.

However, we believe that the above limitations can be addressed by leveraging an HTML prepro-
cessor, which makes it possible to factor out the noscript implementations as a transform function,
thus providing polished and accessible noscript alternatives. To the best of our knowledge, this work
is the first to propose using HTML rewriting rules to automatically generate noscript alternatives to
common web interface components. Using the technique detailed in subsection V.1.2, we succeeded
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Figure V.1: Intended deployment setup of JSRehab: it is meant to be used in an SSG or in an SSR
context

to implement noscript alternatives for almost all Bootstrap components: the list of Bootstrap com-
ponents and associated noscript mechanisms leveraged to replace them can be found in Table V.2
and the JSRehab plugin repository1 contains detailed documentation about each component.

We opted to use an HTML preprocessor called PostHTML [8] and create our own JSRehab
plugin to carry out the transformation, as pictured in Figure V.2. By using existing transformation
tooling, we also benefit from its integration into the web ecosystem, including bundlers, such as
Webpack [13] and rollup.js [9], and web server frameworks, such as Express [228]. We can also
generate noscript alternatives in both SSG and SSR contexts (see Figure V.1), by injecting them only
once in the former or whenever the page is rendered in the latter case.

1https://gitlab.inria.fr/jsrehab

JSRehab Plugin

PostHTML

HTML HTML

CSS

Figure V.2: JSRehab is built as a plugin for the existing PostHTML HTML preprocessor; it processes
input HTML, along with optional additional stylesheets, to produce HTML with noscript alterna-
tives

https://gitlab.inria.fr/jsrehab
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Table V.2: Bootstrap components having a built-in JavaScript behavior [232];

Bootstrap component (latest
version)

noscript alternative Noscript mechanism(s) used

Accordion (5) Yes <input type="radio">
Affix (3) Yes position: sticky
Alerts (5) Yes <input type="checkbox">
Carousel (5) Yes <input type="radio">
Collapse (5) Yes <input type="checkbox">
Dropdowns (5) Yes <input type="checkbox">
Modal (5) Yes <input type="checkbox">
Navs & tabs (5) Yes <input

type="radio">/:target
Offcanvas (5) Yes <input type="checkbox">
Popovers (5) Yes <input type="checkbox">
Scrollspy (5) No no access to viewport in CSS
Toasts (5) Yes <input type="checkbox">
Tooltips (5) Yes :hover/:focus
Typeahead (2) No cannot replicate autocomple-

tion

V.1.3 HTML & CSS Limitations

Crafting noscript alternatives requires particular care due to various default behaviors and browser
limitations, that we highlight in this section.

V.1.3.1 CSS Limitations

Some of these limitations are inherent to CSS, while others could be fixed by browsers supporting
a few more pseudo-classes. In particular, when crafting the noscript alternatives, it is often needed
to select elements based on the state of other elements, e.g., to make a dropdown menu appear
when its hidden checkbox is checked, as in Listing V.1. However, until support for :has() [256]
becomes widespread, CSS only makes it possible to select elements following other elements in
tree order [262], imposing that elements whose state should be accessed must be placed before all
elements reading their state. This constraint is taken into account in our rewriting rules, but may
exhibit some limitations in particular cases.

Other CSS limitations refer to missing features, preventing the noscript alternatives from access-
ing some information, such as whether elements are currently within the viewport—e.g., tooltips
cannot take the viewport into account to reposition themselves and make sure they are completely
visible—and it is currently impossible to implement a scrollspy component, a table of contents high-
lighting the current section being read.
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V.1.3.2 Scroll & Focus Limitations

Noscript alternatives make extensive use of <label>s associated with hidden checkboxes or radio
buttons. Current specifications indicate that <label>s are not focusable elements, hence their as-
sociated input must be hidden in a way that still makes them focusable, using opacity: 0 and a
position value that removes them from the normal document flow. When activating the <label>,
the associated input will be activated accordingly, but the input states (e.g., :checked, :focus,
:active) are not propagated back to the associated <label> [17], meaning the <label> styling of
these states must be handled by the HTML preprocessor by generating CSS similar to Listing V.2’s.
The preprocessor thus needs to be provided with the page stylesheets to be able to copy the style
that would be applied to original components to the generated <label>s. This is supported by our
JSRehab plugin, as shown in Figure V.2.

<style>
#chkbox0:active + label,
#chkbox0:focus + label {

/* Dropdown button styling when focused */
}
#chkbox0:active + label {

/* Dropdown button styling when activated */
}

</style>

Listing V.2: Styling a <label> depending on a checkbox state

In addition, browsers scroll the page when an element receives focus, so that the element is
within the viewport. This can cause undesirable scrolls when an out-of-viewport input receives
focus, if the input has been absolutely positioned to remove it from the normal document flow,
as is usually advised in “checkbox hack” guides [90]. This can fortunately be mitigated by using
position: fixed instead, as in Listing V.1, which will keep the input in the viewport at all times,
preventing unwanted scrolls.

Finally, no HTML or CSS features allow to conditionally prevent scrolling of the page back-
ground when a modal is open, nor to trap the focus within a modal or a dropdown menu.

V.1.4 About Accessibility Challenges

Web accessibility is the practice of ensuring that there are no direct barriers to interact with a web-
site for people with specific disabilities. In the case of the JSRehab plugin, we have to ensure that
our noscript alternatives are not making the web harder to browse, by providing at least as good
accessibility than the replaced frameworks, and to comply with legal requirements. Most coun-
tries having laws mandating accessibility for certain websites rely on theWCAG [257] which do not
specify implementation details, only high-level requirements, such as the Success Criterion 2.1.1 Key-
board [258], indicating only that the page must be operable with a keyboard with no time-sensitive
input.
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Figure V.3: CDF of Bootstrap’s JS usage according to website ranking; Bootstrap’s JS usage distribu-
tion is uniform, except for the very best ranked websites

As browsers already implement accessibility for standard HTML elements—e.g., spacebar tog-
gles checkboxes, and their change of state is properly announced by screen readers—noscript al-
ternatives are accessible by default, making redundant WAI-ARIA state attributes [253]—such as
aria-checked—which could not be toggled without JS.

V.2 Validating the Noscript Alternatives

This section covers the methodology we applied to validate the noscript alternatives generated by
JSRehab for Bootstrap components.

V.2.1 Validation Corpus Selection

As we focused on Bootstrap, we built a corpus of web pages that use this UI framework, so that
we can (1) obtain detailed statistics about its usage, and (2) test and validate JSRehab on them. We
crawled the Top 10 k domains from the TRanco list [203] with the following strategy: from the
landing page, up to three URLs were extracted as a random sample of <a> tags href URLs sharing
the same origin as the document’s URL, but with a different path. Thus, our measurements were
collected from up to four pages per domain: the landing page and up to three internal pages. For
each web page, we detect the use of Bootstrap through a combination of 1. detecting the version
number exposed in the global object, 2. parsing the source code to get the version number from a
banner comment, and 3. using custom heuristics when other methods cannot work. We observed
that Bootstrap’s JS is used on 20.7 % of crawled pages and that, as can be seen in Figure V.3, its
adoption is uniformly distributed across websites ranking, except for the very best ranked websites.

We alsomeasured the popularity of Bootstrap’s components by parsing the page’s HTML andwe
conclude, as can be observed on Figure V.4, that the collapse, dropdown, and modal components are
by far the most common—being found on 53 % of pages using Bootstrap, 40 %, and 31 %, respectively,
while all other components are found on less than 10 % of pages using Bootstrap.
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Figure V.4: Popularity of Bootstrap’s components; accordion and offcanvas components have only
been recently introduced with Bootstrap 5, and are not widely used

Among the 21,341 pages we crawled, 3,291 pages were using Bootstrap’s JS and included at least
one component in the crawled page. Among these, 1,372 pages were using Bootstrap 4 or 5. Vali-
dation is split into two parts: measuring rewriting statistics over the whole sample of 1,372 pages,
and empirically evaluating the interactivity and accessibility of noscript alternatives on desktop and
mobile devices on a sample of 100 pages.

V.2.2 Validation Setup

Since it would not have been possible to deploy our solution on production web servers or as a static
site generator for testing, we rather chose to implement an HTTP rewriting proxy, which applies
the HTML transformation on the fly, whenever a page is requested, see Figure V.5.

V.2.2.1 Rewriting Statistics

To collect statistics about all web pages from the validation set, the list of 1,372 pages is passed to
cURL configured to use the HTTP proxy and the Firefox user-agent header, as some websites reject
requests with no user-agent.

The HTTP proxy saves the transformation duration and the original and transformed sizes of
the compressed HTTP response body, using the same compression method as used by the website
(gzip or brotli).
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Figure V.5: Dataflow diagram of our empirical evaluation setup

Table V.3: Browser configurations used for our empirical evaluation

Browser Device Window width
(px)

Input device Screenreader JS

Firefox 93.0 Desktop (Debian) 1280 Keyboard No Yes / No
Firefox 93.0 Desktop (Debian) 720 (responsive

mode)
Keyboard No Yes / No

Firefox 92.0.1 Mobile (Android) 1440 Touchscreen Yes (TalkBack
2021-04)

No

V.2.2.2 Empirical Validation

The empirical validation is achieved by visiting the same URL three times: once in a control browser
on desktop andwith JS enabled, a second time in a browser with JS disabled by default and connected
to the HTTP proxy, and a third time with a mobile browser, as shown in Table V.3. Two viewport
widths are tested as webpages often include a hamburger menu that only appears on mobile, lever-
aging CSS media queries for responsive design.

We chose to disable JS by default in the second browser, so that the original Bootstrap’s JS and
other custom JS added on the page for component interactivity do not interfere with the noscript
alternatives; we only temporarily enable JS to be able to access some hidden components on the
page. This, however, makes it impossible to compare the page load time or the time-to-interactive
between the pages with and without noscript alternatives, as it could not be isolated from the mere
JS blocking.

50 100 150 200 250 300 350
Transformation duration (ms)

Figure V.6: Distribution of transformation durations on the corpus of tested pages
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V.2.3 Compatibility Validation

After loading the web page in the browser, we manually validated the interactivity and accessibility
of the noscript alternatives by checking the following features:

• on desktop devices:

– noscript alternatives can be activated with a pointing device,
– tab-controlled focus behave properly, and
– noscript alternatives can be activated with spacebar/arrow keys.

• on mobile devices:

– noscript alternatives can be activated with a touch device,
– noscript alternatives can be focused using screenreader navigation,
– noscript alternatives can be activated with screenreader navigation, and
– screenreader speech announces noscript alternatives appropriately (providing under-

standable navigation).

For each web page, our testing protocol is as follows:

1. we verify that the original components on the page are working with JS, but are unresponsive
without it,

2. we validate the aforementioned criteria on amodified page on both desktop andmobile devices
with all the noscript alternatives included.

To ease the validation, the HTTP proxy highlights the noscript alternatives so that they are easier to
locate and test. For components hidden by default, especially modals, which could not be shown as
JS is disabled, some additional effort is made on desktop to make them appear, so that the noscript
alternatives can be assessed.

Finally, only Bootstrap components—originally using Bootstrap’s JS—are validated, while other
components of the page are left untested.

V.3 Results

This section reports on the results we obtained by evaluating JSRehab plugin on the validation
corpus.

V.3.1 Rewriting Statistics

As noscript alternatives are injected in the HTML document, they increase its size, the difference
depending on the type and the number of components included in the page. However, as depicted
in Figure V.7, the resulting overhead on the compressed body of the HTTP response containing the
HTML document is extremely low, with a median overhead of 5 %; the overhead is lower than 15 %
for more than 75 % of tested pages.

The distribution of the rewriting delay, measured by the HTTP proxy running on a high-end
laptop for testing, can be found in Figure V.6. The median rewriting delay is lower than 125ms on
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Figure V.7: Distribution of the compressed body size overhead on the set of tested pages (some
outliers are omitted to improve readability)

the sample of tested pages. The rewriting delay mostly depends on the number of HTML nodes in
the page, as generating the noscript alternatives requires multiple tree traversals.

V.3.2 Manual Validation

Among the 100 pages manually analyzed, 79 pages were testable, and all noscript alternatives were
working in compliance with the criteria defined in the testing methodology, 19 pages had various
issues preventing complete testing, and issues effectively due to noscript alternatives were only
found on 2 pages, as detailed in Table V.4.

Pages not being fully testable include error pages, which were not the intended pages, Single
Page Applications (SPAs) leaving a blank page when JS is disabled, pages with components dynam-
ically added, which thus cannot be detected when processing the HTML document, and pages that
were updated between the initial crawl and the validation.

The two pages presenting issues included unconventionally used Bootstrap components. One
of them used collapse components with data-parent attributes on several different buttons of the
web interface. This attribute is intended to be used to build accordions [231], which are supported
by the JSRehab plugin; however, this page uses them to make the page menus mutually exclusive so
that at most one is open at any time. The other page only partially implements the markup to make
footer section headers collapse buttons on mobile, the JSRehab plugin produces collapse buttons for
these headers that are also enabled on desktop.

For all other tested pages, the JSRehab plugin produced effective noscript alternatives to original
components.

V.3.3 Preliminary Measurements of Consumption

To complement the rewriting statistics, wemeasured the energy consumption onmobile devices of a
sample ofweb pages that use Bootstrap’s JS. UsingAndroid’s built-in utility dumpsys batterystats,
which can query the device consumption on a per-app basis, we compared the consumption of
Chrome loading the unmodified page with a modified version where Bootstrap’s JS is blocked and
JSRehab is used to preserve page functionality. We focused on Chrome as it is by far the most
popular browser on Android [227].

We use a rewriting proxy similar to the one presented above, serving for each requested page:
(1) the original version with JS and (2) the version rewritten with JSRehab and blocking Bootstrap’s
JS, while still allowing other JS to load and execute. As isolating and blocking Bootstrap’s JS is
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Table V.4: Summary of our empirical evaluation observations on a sample of 100 pages

Observed behavior Count

Web page is fully interactive and all noscript alternatives are behaving correctly 79 pages
No component found in the page with JS: the page likely changed between the initial
crawl and the validation

6 pages

Error pages on web pages with JS enabled (different from the initial crawl) 4 pages
Buggy pages due to inappropriate usage of original Bootstrap 4 pages
SPAs or components dynamically added by JS 3 pages
Custom component styling that cannot be triggered by noscript alternatives and can-
not be manually bypassed for testing

2 pages

Web page is interactive, but some noscript alternatives are misbehaving 2 pages

−20 −10 0 10 20 30 40 50 60
Energy saving when using JSRehab (%)
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Figure V.8: Energy savings of mobile devices when loading web pages without Bootstrap’s JS and
rewritten with JSRehab; outliers are excluded for readability

not possible on every page, we focused on the top 31 pages that include a file bootstrap.min.js,
according to PublicWWW [19]. The proxy is configured to prevent all HTTP caching from the
browser and injects a Refresh=5 HTTP header, which forces the page to reload every 5 s. The
energy consumption for each version of the requested web page is measured for 180 s, effectively
averaging the measurements over 36 page loads, while we made sure that each page was able to
load within the 5 s timeframe. The reported measurements have been performed on two low-to-
medium-end phones, the Archos 50 Platinum 4G and the Moto Z, respectively running Chrome 50
and Chrome 96.

As depicted in Figure V.8, one can observe that replacing Bootstrap’s JS with JSRehab enabled
significant energy savings on many web pages on the tested devices; websites operators should
evaluate on a case-by-case basis the exact benefit on their own website.
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V.4 Discussion

V.4.1 Expected Benefits

V.4.1.1 Improving security and privacy

Deploying the JSRehab plugin makes it possible to remove the Bootstrap dependency, which can
then be removed from allowed JS sources in the CSP, hence contributing to reducing the attack
surface. If the web page makes no other use of JS, the execution of JS can even be forbidden in
the page by adopting a strict CSP directive, further mitigating the risk of Cross-Site Scripting (XSS).
Website owners may thus be incentivized to further reduce the amount of JS included in their web
pages, as one of the key usage of JS directly benefiting the user—component interactivity—has been
substituted.

Another strong incentive to use JSRehab is that it protects a website from yet-to-be-discovered
vulnerabilities. At the time of development, a developer can integrate the latest available version of
a UI library that may be assumed as safe. Then, weeks later, a vulnerability can be discovered, hence
requiring the dependency to be updated. With JSRehab, a website is protected as the JS code is
simply not there. This problem is widespread as 59.5 % of the crawled domains were using outdated
and vulnerable versions of Bootstrap, as the Figure V.9 highlights. This lack of security fixes can
open users to security problems.

V.4.1.2 Improving performance

Replacing JS components with their noscript alternatives can also bring performance improvements.
Indeed, noscript alternatives adding only a median 5 % overhead, and since Bootstrap’s JS is not
needed if the page only includes the supported components, the amount of data transferred on the
wire is reduced, leading to faster page loads. This point is even more significant as major browsers
have implemented HTTP cache partitioning [148, 133], preventing Bootstrap’s JS to be reused be-
tween websites when the same version was loaded from a CDN.

Moreover, the processing burden on the client is reduced as the browser does not need to parse
and execute the additional JS (Bootstrap 5’s JS weights 60 kB minified but uncompressed), which
can be significant, especially on mobile devices [72] and can extend device lifespan. The time-to-
interactive of web pages can also be reduced, thus improving page responsiveness. Typically, such
performance improvements are not achieved by JSCleaner [72], as component interactivity scripts
would be considered as essential.

V.4.2 Ease of Adoption

When using Bootstrap components as intended, the JSRehab plugin produces effective noscript
alternatives with almost no configuration. It only needs to be provided with the stylesheets used by
the page, so that it can generate matching styling. As PostHTML is already integrated into various
bundlers and web server frameworks, such as Webpack, rollup.js or Express, it is straightforward
to adopt JSRehab in an existing project, with no change in tooling; an example of configuration for
Webpack can be seen in Listing C.1, in the appendix.
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Figure V.9: Popularity of Bootstrap’s JS versions on the crawled pages; versions marked with a star
(∗) are known to be vulnerable to at least one XSS vulnerability as listed by [168]
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Furthermore, as noscript alternatives are generated for each page separately, it is possible to
progressively transition to using the JSRehab plugin and enforcing a stricter CSP.

With a median transformation delay of 125ms, JSRehab performance is compatible with a Static
Site Generation (SSG) setup, where pages are rendered once, then served as part of a static site.
Depending on the website expectations, it may currently be too slow for a Server-Side Rendering
(SSR) context, where pages are rendered on the web server upon requests. The JSRehab plugin
would need to be further optimized for this context or rewritten in a programming language more
suited to string processing.

V.4.3 Beyond Bootstrap

We specifically demonstrated the generation of noscript alternatives for replacing components from
the Bootstrap framework, but this technique can be leveraged for other component frameworks
as well, be them public or in-house, to factor out noscript alternative implementation and make
them easier to use. As many UI frameworks share a large set of components [276, 10], porting
the JSRehab plugin would mostly require updating the class names used as component identifiers,
which are specific to each framework.

Other types of components, not implemented by Bootstrap, could also be automatically replaced
with noscript alternatives, including sortable tables, image lightboxes, and data plots. Other compo-
nents could be implemented without JS if browsers were to support :has() [256] or to implement
new pseudo-classes such as :in-viewport [12].

V.5 Conclusion

In this contribution, we introduced a server-side technique to automatically replace common web
interface components implemented by UI frameworks with noscript alternatives. We implemented
this technique as a set of HTML rewriting rules that generate noscript alternatives for Bootstrap and
we discussed the key benefits and current limitations of our contribution. We also validated these
noscript alternatives on a corpus of 100webpages, and we observed that they deliver convincing
alternatives by assessing their interactivity and accessibility from both desktop and mobile devices,
while introducing only minimal overhead on the compressed HTML document and that they enable
energy savings.
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CHAPTERVI

Detecting and Blocking Individual JavaScript Functions for Privacy

Filter lists have been the subject of many previous works. However, they are still unable to block
only parts of external scripts. This raises concerns as script bundling—i.e., using a JavaScript bun-
dler to resolve the dependencies between authored scripts and automatically generate a single file
containing both first-party code and third-party libraries—has been the development best-practice
for many years. It indeed would not work to add these script bundles to filter lists, since they also
contain functional code, potentially resulting in severe page breakage. In the following, we call
‘bundles’ scripts resulting from the bundling of several scripts and containing functional code. They
may also contain bundled tracking code.

A more fine-grained blocking solution is therefore needed, able to specifically target and block
parts of external scripts. Hence, we introduce a function signature technique that makes it possi-
ble to detect tracking functions from known tracking libraries in other scripts, especially first-party
script bundles. Our function signatures are built on the function Abstract Syntax Tree (AST), where
local identifiers—e.g., local variable names—are erased, to increase signature robustness while keep-
ing chances of false positives low. Working at function level and applying this erasure transforma-
tion contribute to make the signatures robust: the tracking functions may appear at any location in
the bundle and the signatures are location-independent. Relying on a well-defined and understood
syntactic unit—functions—makes the signatures easy to reason about and limit false positives when
classifying functions that should be blocked.

Using our function signature technique with a large-scale web crawl, we were able to detect yet-
unknown scripts bundling tracking functions along with functional code. We find that at least 4.37 %
of unique scripts contain such tracking functions, in scripts unknown to filter lists, while 22.7 % of
visited domains were loading such a script on their homepage. In light of these measurements, we
propose a hybrid blocking strategy to block specific functions in downloaded scripts in the browser,
along with a list-inspired approach for scripts of significant size, thus providing a robust, future-
proof and efficient solution.

ResearchQuestions In this chapter, we address the following research questions:

RQ1 How often are tracking functions from known tracking libraries bundled in other scripts?

105
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RQ2 How to design function signatures to detect these tracking functions?

RQ3 How to leverage these function signatures for in-browser blocking?

Contributions Answering the above research questions brings the following contributions:

1. Introducing a robust function signature generation technique
2. Quantifying howmuch tracking functions from known tracking libraries are bundled in other

scripts
3. Proposing a hybrid in-browser blocking strategy leveraging the generated tracking functions

signatures

VI.1 Motivation

VI.1.1 Blocking and Usability

In order to improve their online privacy, a lot of users are turning to ad blocking solutions to limit
the number of trackers they encounter when they browse the web. By simply using an extension
or installing a browser with this type of protection built-in, web users become free from visible ads
and hidden trackers. In 2021, it was estimated that an average of 37 % of the Internet population
were using ad blocking solutions with this number growing each year [93].

While very convenient for online browsing, ad blockers may become a nuisance when visit-
ing certain webpages. Because they block scripts completely without considering their content, ad
blockers may end up blocking useful code that is needed for the webpage to behave properly. This
breakage is particularly exacerbated with modern coding practices where developers bundle differ-
ent scripts on a page in a single file. In that case, if an ad blocker wants to protect the user, it would
have to block the bundle of scripts at the risk of breaking the other libraries that may also be present
in it. As a remedy to this problem, special ‘unbreak’ filter lists [21] are being maintained to index
sites where some tracking scripts should not be blocked, but the existence of such a list shows the
limit of current approaches when it comes to ad blocking. There is a need for a more fine-grained
solution that blocks specific parts of a script and not its entire content.

VI.1.2 Related Work

In the literature, Chen et al. performed dynamic analysis of scripts running in the browser [73].
Their approach generates signatures of JavaScript behaviors based on the event loop of the Java-
Script engine. They use known tracking scripts to build a database of signatures identifying tracking
behavior. They then use these behavioral signatures to detect tracking behavior in other scripts
on the web. While their approach is successful at identifying tracking in obfuscated and bundled
scripts, their signatures are based on operations that are so low-level that it becomes hard to map
the signatures to actual code. Moreover, their study is mostly focused on detection, and it would be
difficult to leverage these signatures for in-browser blocking, since they rely on script behavior and
in particular on detecting the tracking behavior, which, therefore, has already happened when they
are able to detect it as such.
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Smith et al. developed SugarCoat [220], which aims to create safe alternatives of tracking scripts
that cannot be blocked. After analyzing the behavior of a script in the browser, SugarCoat auto-
matically injects specially crafted JavaScript statements to intercept accesses to sensitive sources
like localStorage or cookies, before restoring the original API implementation after the privacy-
sensitive accesses originating from that script, in case that API is used by other scripts. They use
existing exceptions in filter lists, maintained by the community, to focus their efforts on a smaller
and well-identified list of scripts. It also raises serious scalability and legal concerns about the distri-
bution of these scripts: the entire modified scripts (which may be as large as a few megabytes [67])
need to be distributed with the browser, and these copyrighted scripts are distributed without the
permission of the original authors.

Amjad et al. have aimed to investigate mixed scripts [54]—scripts containing both tracking and
functional code. Their classification relies on the tracking request density—i.e., the ratio of count
tracking requests over the count of functional requests—tracking requests being identified using fil-
ter lists. Even though filter lists are considered high-precision [73]—i.e., having few false positives—
thismethodology leads them to consider scriptswith a small number of tracking requests—compared
to the number of functional requests—as functional, thus making it possible to ‘dilute’ tracking with
more functional requests. They identified the need for a solution able to block individual functions
and, more specifically, to selectively block tracking functions within mixed scripts.

Amjad et al. have continued their exploration of mixed scripts and have again noted the ne-
cessity of being able to block individual functions [55]. They first dynamically locate functions
directly initiating tracking requests—as classified by filter lists. Using offline processing, they then
rename the tracking functions with a different name, so that calling these functions results in a
ReferenceError, effectively preventing the execution of the tracking functions. However, and
contrary to what they assume, this may well lead to functionality breakage, as that exception will
only be catched by the first catch block in the call stack and will terminate the JavaScript program
if none exists. This is actually what called for the deployment of shims in Firefox Enhanced Track-
ing Protection [184] and of scriplets in uBlock Origin [130]: they replace tracking scripts with no-
operations to avoid functional breakage induced by functional code calling functions from blocked
scripts. Moreover, their approach cannot translate into a solution able to block tracking functions
from unseen mixed scripts: they could only generate byte offsets of functions to rename for scripts
seen during a crawl. This limitation originates from the fact that they are not able to re-identify the
functions based on their content—i.e., their source code—and have to rely on their behavior. Fur-
thermore, as tracking scripts are very likely channeling all their requests through a single function,
only responsible for making these requests, it is unclear what the benefit of blocking these functions
is, compared to using filter lists to block the request itself.

With JsRipper, as described in more details in section VI.2, we follow in the footsteps of these
studies by identifying pieces of tracking code in any scripts on the web. We go further by intro-
ducing a signature scheme able to identify functions based on their source code only, and robust to
minification and name mangling. We then propose an in-browser, on-the-fly solution allowing to
selectively remove the functions responsible for tracking, and only them.
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VI.1.3 Bundling and Minification

In this section, we present relevant features of bundlers and minifiers which guided the design of
our function signatures, and call for specific properties to obtain robust signatures.

VI.1.3.1 Bundling Technology

A JavaScript bundler is a development tool that gathers all themodules and dependencies of a project
and outputs a single file that is optimized for network transfer, and suitable for use in a browser.
One of the most important features of a bundler is that it resolves the dependency graph and out-
puts different dependencies into one single file. Bundlers were first introduced in 2010 [24], when
browsers did not support native JavaScript modules, and they thus provided a convenient way to
use npm packages [196] in the browser, when the ecosystem was just starting to bloom. It had also
the benefit of minimizing the number of requests, before HTTP/2 decreased the overhead of issuing
numerous requests to the same host.

Before modules and bundlers existed, libraries used to expose their API as a global object, acces-
sible to every other scripts. For instance, jQuery exposes the global functions jQuery() and $().
This practice resulted in global namespace pollution and possible conflicts between libraries which
depended on different versions of other libraries.

Now, one of their most interesting features is their ability to removed unused items from de-
pendencies, a technique known as tree shaking (see below). Ultimately, the result is still the same:
functions from both functional and tracking dependencies will find themselves in the same script,
and therefore cannot be blocked with current, location-based content blocking mechanisms such as
filter lists, which treat scripts as the blocking unit. If the code features multiple entry points, some
bundlers are able to generate multiple bundles, one for each entry point, decreasing the amount of
code that need to be downloaded by the browser.

After the output file has been generated, it is processed by a minifier, which will reduce his size
for faster network transfer (see below). Depending on which bundler is used, the assembly of the
different dependencies can differ, especially as minification features vary from a minifier to another
one.

In 2023, there are five major bundling tools, namely Webpack [22], esbuild [261], Rollup [20],
Parcel [18], and Turbopack [249] with the 2022 Web Almanac [260] reporting that Webpack and
Parcel are respectively present in 15 % and 2 % of the most visited 10,000 pages. In addition, they
have also found that bundlers are mostly used on popular websites, from the top 10,000.

VI.1.3.2 JavaScript Module Types

Bundlers resolve dependencies between different JavaScript modules utilized as part of a project.
There are two major types of JavaScript used on the web today: ECMAScript (ES) modules and
CommonJS modules. CommonJS modules have been introduced by Node.js, and provide a global
function, require(), allowing to import other modules based on a file path or the name of an npm
module [109]. require() being a regular function, these imports are dynamic, making the static
analysis of these difficult. To export items, libraries use the module.exports construct, module be-
ing a magic object introduced by the execution environment. However, CommonJS modules are not
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1 // lib.js
2 function say(msg) {
3 console.log('Hello!' + msg);
4 }
5
6 module.exports = { say };
7
8 // index.js
9 import { say } from './lib.js';

10
11 say('hello');
12 say('world');

Listing (VI.1) Input files: the library file uses CommonJS module conventions to export its function, and the
application file uses ES imports to import it

1 (() => {
2 var r = {
3 992: r => {
4 r.exports = {
5 say: function(r) {
6 console.log(r)
7 }
8 }
9 }

10 },
11 e = {};
12
13 function o(t) {
14 var a = e[t];
15 if (void 0 !== a) return a.exports;
16 var n = e[t] = {
17 exports: {}
18 };
19 return r[t](n, n.exports, o), n.exports
20 }
21 o.n = r => {
22 var e = r && r.__esModule ?
23 () => r.default : () => r;
24 return o.d(e, {
25 a: e
26 }), e
27 }, o.d = (r, e) => {
28 for (var t in e) o.o(e, t) && !o.o(r, t)
29 && Object.defineProperty(r, t, {
30 enumerable: !0,
31 get: e[t]
32 })
33 }, o.o = (r, e) =>
34 Object.prototype.hasOwnProperty.call(r, e), (() => {
35 "use strict";
36 var r = o(992);
37 (0, r.say)("hello"), (0, r.say)("world")
38 })()
39 })();

Listing (VI.2) Bundle output by Webpack 5 (prettified for readability): it contains the imported function
(lines 5–7), the runtime boilerplate (lines 11–34), and the application logic (lines 36–37)

Figure VI.1: Minimal example of a bundle produced by Webpack 5 for a CommonJS module
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supported by browsers. As explained above, this has led to the initial development of bundlers, these
resolving the dependencies during the bundling stage and outputting a single bundle encompassing
all the imported modules.

Introduced with ES2015, ES modules introduced two keywords: import and export, and are
supported by browsers. Being declarative, they are easier to analyze and, because of this, were first
to be supported for tree shaking [41].

Because of the different nature of ES modules and CommonJS modules, bundlers cannot treat
them the same way. Bundlers are able to ‘inline’ items imported from ES modules and generate
a script as if the imported items—e.g., classes, functions, constants—had been written as-is in the
output file, a process referred to as ‘scope hoisting’ [33], since it removes the need for a function
surrounding the function and providing a dedicated scope for isolation. On the contrary, Com-
monJS modules require a small ‘runtime’ which exposes the module object, presented above, to
the imported script, and allow dependents to query the module. Figure VI.1 shows an example of
the runtime boilerplate inserted in the output bundle by Webpack when a CommonJS module is
imported: each export scope is wrapped in an arrow function expression which receives the magic
module object used to export items (line 3).

This example also highlights that exported items are scoped to the script within an Immediately
Invoked Function Expression (IIFE): it is therefore impossible to redefine specific functions from
outside the bundle, which was possible when dependencies were exposed as global variables.

VI.1.3.3 Tree Shaking

In its early days, Webpack included the whole dependency in the output module, even when only a
small portion of it was actually used in the dependent script. Thiswas responsible for sizable bundles,
comprised of a large part of dead code. Modern bundlers are able to detect these unused imports, and
to avoid including such dead code in the output bundle. This process is known as ‘tree shaking’, a
term popularized by Rollup [32], referring to the tree structure of the dependency graph. Regarding
the detection of bundled tracking dependencies, this means that we cannot rely on detecting entire
dependencies, but must instead run a more fine-grained analysis, at the level of individual imported
items, i.e., classes and functions, and require a signature scheme able to recognize these individual
items in isolation.

VI.1.3.4 Minification versus Obfuscation

Minification and obfuscation are often mistaken for one another, however they are very different
processes, employed with different goals in mind. Minification makes the output script as small as
possible for network transfer, and is thus concernedwith improving performance. To this end, it uses
different strategies, especially comments and whitespace removal, value rewriting—e.g., writing !0
instead of true to save two characters—equivalent syntax rewriting, and name mangling to make
identifiers shorter (see below). Minification is a normal step in the build process of any production
website, and Moog et al. have found it used on around 90 % of websites from the Alexa Top 10 k.

Obfuscation is aimed to make it hard for someone to read and understand the script behavior,
making its reverse engineering costly, sometimes at the cost of transfer and execution performance.
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Many type of obfuscation exist for JavaScript, a task made easier by the fact that JavaScript is a
dynamic language and support dynamic evaluation from a string, using eval(). Given its perfor-
mance impact and the additional build tooling required, script obfuscation is rarely found on the
web, as measured by Skolka et al. [219].

Figure VI.2 provides an example of a JavaScript function that implements the Pythagorean the-
orem with the original, minified and obfuscated versions.

VI.1.3.5 Name Mangling

Name mangling is the process of changing identifiers for shorter names, while keeping the script
functionality. For instance, local variables and functions defined and used in the same module can
be renamed to save some characters. terser [63], the minifier used by default by Webpack 5, uses
frequency analysis on the input script to determine the characters used for generating shorter names.
It will thus fist scan the input script to determine the most frequent letters, and generate short names
using these, starting with one-letter names, then two-letter names, etc. subsection D.0.1, in the
appendix, highlights this behavior.

This means that names chosen during name mangling are dynamic, therefore our function sig-
natures need to be able to handle this and recognize functions whose only local identifiers differ as
the same functions, as long as the rest of the AST of the functions is the same.

function pythagorean(sideA, sideB) {
return Math.sqrt(

Math.pow(sideA, 2) +
Math.pow(sideB, 2)

);
}

Standard

function pythagorean(n,o){return Math.sqrt(Math.pow(n,2)+Math.pow(o,2))}

Minified

function a(){var k=['2BsmQWL','5230647togUuc','210608WxJTcE','580968uHNTLF','
5165237BBYddg','81MQzJhp','30xqIxoj','1891248XukuUz','673266SpCvQg','2741010
lohNTR','sqrt','pow'];a=function(){return k;};return a();}function b(c,d){var
e=a();return b=function(f,g){f=f-0x13d;var h=e[f];return h;},b(c,d);}(

function(d,e){var i=b,f=d();while(!![]){try{var g=-parseInt(i(0x146))/0x1*(
parseInt(i(0x13e))/0x2)+parseInt(i(0x143))/0x3*(parseInt(i(0x140))/0x4)+-
parseInt(i(0x147))/0x5+-parseInt(i(0x141))/0x6+-parseInt(i(0x142))/0x7+-
parseInt(i(0x145))/0x8+-parseInt(i(0x13f))/0x9*(-parseInt(i(0x144))/0xa);if(g
===e)break;else f['push'](f['shift']());}catch(h){f['push'](f['shift']())
;}}}(a,0xd5070));function c(d,e){var j=b;return Math[j(0x148)](Math['pow'](d
,0x2)+Math[j(0x13d)](e,0x2));}

Obfuscated by [146]

Figure VI.2: JavaScript code for the Pythagorean theorem. The three pieces of code are all equivalent.
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VI.2 Building Function Signatures and Statically Detecting Track-
ing Functions

In this section, we present our function detection method and our crawl methodology. We want
to be able to recognize bundled tracking functions originating from known tracking libraries, such
as Google Analytics or Adobe Launch. This allows us to obtain a lower bound of tracking script
bundling and enables function-level blocking by substituting recognized tracking functions with
benign shims in the browser. We work at function-level because this is a well defined code unit,
small enough so that it should have a single responsibility, which makes it possible to replace it
with benign code.

VI.2.1 Generating Function Signatures

We aim to be able to recognize tracking functions bundled in other scripts. As the transformation
applied by different bundlers differs, and because the variable names given by the minification stage
may differ depending on the location within the bundle, our recognition method must ignore these
local identifiers. We thus devised a function signature generation technique to recognize these
tracking functions when bundled, while aiming to keep false positives rare so that the signatures
could be directly used for in-browser blocking.

Given the (minified) source code of a JavaScript function, its signature is generated with the
following steps:

1. Parse the function source code and generate an AST.
2. Erase the local variable identifiers.
3. Serialize the AST and hash the result.

All these steps need to be deterministic so that the same function source code generates the same
hash, making it possible to compare the function against a bank of known function signatures.

Step (1) We use the parser of SWC [98] to generate an AST of the given JavaScript function
source code.

Step (2)We then visit the resulting AST and erase identifiers of local bindings (variables and func-
tion parameters) to make the signature minifier-agnostic and location-independent, as they can vary
depending on the minifier used and the function location in the generated bundle. These identifiers
are simply replaced by the empty string so that functions having different local identifiers produce
the same result after erasure. Other identifiers are not modified. In particular, web APIs identifiers
must be retained to match functions of interest and avoid false positives, e.g., document.cookie or
localStorage APIs must be preserved during the signature generation process.

// Function from
// https://www.google-analytics.com/analytics.js
function(a) {

var b = [], c = M.cookie.split(";");
a = new RegExp("^\\s*" + a + "=\\s*(.*?)\\s*$");
for(var d = 0; d < c.length; d++){

var e = c[d].match(a);
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e && b.push(e[1]);
}
return b;

}

// Representation of the function with local identifiers
// erased (identifiers are here replaced with underscores
// for readability)
function(_) {

var _ = [], _ = M.cookie.split(";");
_ = new RegExp("^\\s*" + _ + "=\\s*(.*?)\\s*$");
for(var _ = 0; _ < _.length; _++){

var _ = _[_].match(_);
_ && _.push(_[1]);

}
return _;

}

Listing VI.3: Example of local identifier erasure within a function. The erasure is actually applied
on the AST, not on a text representation of the source code as shown here

It is unlikely in real-world scenarios that the bundling and minification processes would modify
the AST of functions beyond renaming local bindings. Other transformations include whitespace
removal, dead code elimination, and equivalent expression substitution (e.g., replacing true with
!0), but these behave similarly across bundlers and minifiers, or are ignored in the AST (e.g., whites-
pace). Moreover, Webpack is currently the most used bundler on the web [260], by far, minimizing
the risk of false negatives due to a different bundling/minification process. An example of local
identifier erasure can be found in Listing VI.3.

Step (3) Finally, we serialize the modified AST and hash the result using the SHA-256 crypto-
graphic hash function, minimizing the risk of hash collisions. The function signature of the tracking
function shown in Listing VI.3 is the following SHA-256 hash:
5772f21c0261d01ad84e68b628b752d7e2e2d0e09046d7abbcd8c74bab75fc4e.

VI.2.2 Collecting Scripts

As we want to detect tracking functions from known tracking scripts in other scripts, we need to
build a bank of tracking function signatures. We thus ran a web crawl on the top 10 k TRanco [204]
to collect these scripts. Specifically, we crawled the homepages of the top 10 k TRanco and down-
loaded all external scripts found in the page. We opted for restricting our crawl to the top 10 k as
this range of websites is the one using bundlers the most [260]. The crawler was built by automating
Firefox with WebDriver. For each homepage, we collected the list of external scripts exposed in the
document.scripts API and downloaded them in the crawler process, bypassing Firefox tracking
content blocking mechanisms and the browser Same-Origin Policy (SOP) so that we would down-
load tracking scripts which could otherwise be blocked. As the functions originating from tracking
scripts will be matched against minified scripts, collecting the tracking scripts as used in the wild
(instead of using vendor-provided versions or even upstream source code for open-source tracking



114 VI. Detecting and Blocking Individual JavaScript Functions for Privacy

libraries) allows us to easily obtain minified versions of these tracking scripts. The crawl was run
on October, 4 2022 using the TRanco list from the same day.

VI.2.3 Detecting Bundled Tracking Functions

We aimed to detect tracking functions from tracking scripts that also appear in other scripts which
cannot be blocked as a whole since they also contain functional code. Leveraging our function
signature mechanism, we employed a two-stage analysis. We first automatically detect all functions
originating from known tracking scripts in other candidate scripts, then filtered these functions
using text-based heuristics, and finally manually classified tracking functions, which can then be
found back in other candidate scripts. We focus on function declarations—functions defined with
the function keyword—and leave out arrow function expressions—defined with () => {}, since
arrow functions are used in cases whichwould not be interesting to detect or block, while potentially
increasing the function count significantly. Moreover, bundlers use function declarations instead of
arrow functions in their boilerplate for performance reasons, since the arrow functions capture their
scope, bringing an additional runtime cost.

VI.2.3.1 Signature-Based Large-Scale Automated Analysis

Having obtained the script corpus detailed in the previous section, we generated a database of signa-
tures of every function in each external script. The AST was generated for each script to discover all
functions and was reused to generate the signature of each function. We also stored the associated
source code span of the function (the byte range where the function is defined). For each script,
its SHA-256 is also stored, whether it was a first-party script in our crawl, and whether it is in the
EasyList [105] or EasyPrivacy [6] filter lists, in which case we call them tracking scripts.

We then selected the functions appearing in tracking scripts and in other first-party scripts, not
found in filter lists. As we mainly focus on bundles in this contribution, we restricted our analysis
to first-party scripts, as bundles are most likely to be served as first-party for performance reasons
(to avoid opening a connection to a different server to load the bundle, whose loading speed is often
critical). We thus obtained a list of functions from tracking scripts appearing in other scripts which
are likely bundles.

VI.2.3.2 Manual Labeling

To be able to detect tracking scripts bundled in other scripts, and to enable blocking bundled tracking
functions, we manually classified the tracking functions also appearing in first-party scripts, based
on their source code. As not all functions found in tracking are privacy-harmful, we first filtered
these functions based on their source code, looking for the specific privacy-relevant APIs [220]
listed in Table VI.1. This filtering significantly reduces the number of functions to manually classify,
while preserving functions whose blocking would significantly improve user privacy [220]. Then,
we classified functions actively taking parting in tracking, relying on our domain knowledge and
knowledge of web APIs and client-side tracking practices. The classified functions play two roles:
(1) they are then used to identify tracking scripts bundled in other scripts and (2) they can be used to
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Table VI.1: Regular expressions used to recognize privacy-relevant APIs; \b denotes a word bound-
ary

Persistent client-side storage

\.cookie\b
localStorage
\bStorage\b
Direct network access

XMLHttpRequest
\bfetch\b

build a bank of function signatures actively participating in tracking whose blocking in the browser
would improve user privacy. These functions must be distinctive enough to avoid false positives—
i.e., mis-detecting a function from a script as being a tracking function—and actively taking part in
tracking themselves, e.g., accessing privacy-relevant APIs.

VI.3 Results

This sections reports on the results of our crawl and our analysis of tracking functions bundled into
other scripts.

VI.3.1 Script Statistics

In this section, we detail various general statistics about the crawl and the analyzed scripts. When
crawling the homepages of the top 10 k TRanco as explained in the previous section, and because
not all domains in the TRanco list point to websites, we obtained the scripts of 6,702 unique domains.
In total, we collected 41,924 unique scripts, based on their content hash. Among these, 1,025 unique
scripts were found in EasyList or EasyPrivacy lists.

We then generated theAST of each script and detected every function in each, then generated the
function signature of each function, totaling 38,401,137 function signatures and 11,552,421 unique
function signatures. This indicates that some functions appear in multiple scripts on the web, but
these are mostly very short functions, constitute code boilerplate, including code generated by auto-
mated tools, such as bundlers, as seen in subsection VI.1.3. The distribution of (uncompressed) file
sizes of these unique external scripts can be seen in Figure VI.3. As scripts are compressed in-flight,
the size on-the-wire of these scripts is significantly smaller. The median file size of these individual
scripts is 20 kB, while the 90th percentile is 400 kB. Figure VI.4 shows the count of unique scripts
per domain, the median is 7 scripts. The distribution of function counts in each script can be found
in Figure VI.5, the median count of functions per script is 100 functions and the 90th percentile is
2,000 functions. The number of tracking scripts having few functions is smaller, since implementing
a tracking script requires a certain minimal count of functions. The distribution of the byte size of
function source code can be seen in Figure VI.6; when collecting functions from the AST we do not
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Figure VI.3: File size of external scripts
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Figure VI.4: Script count per page
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Figure VI.6: Source code size of functions

exclude nested functions, that is, we do keep every function declaration, including top-level IIFEs—
JavaScript function defined to be called immediately, which are useful to avoid polluting the global
namespace. This figure shows that half the functions are less than 200-byte long: they are thus very
likely to have a single responsibility—e.g., not mixing functional and tracking code—but may also
be less identifiable in themselves.

VI.3.2 Bundled Tracking Functions

After detecting the functions from tracking scripts also found in first-party scripts, we filtered these
functions based on their source code, keeping only the functions matching the regular expressions
detailed in Table VI.1, thus focusing on functions accessing privacy-relevant APIs. We call these re-
maining functions ‘candidate functions’. We then manually marked functions having self-contained
privacy-harming behaviors, e.g., storing or accessing cookies or localStorage, while making sure
the functions were distinctive enough as not tomis-detect similar non-tracking functions. We sorted
the candidate functions according to their count of appearance in other scripts and limit our manual
classification to the top 150 functions as the classification benefit rapidly diminishes.
// Function from
// https://www.google-analytics.com/analytics.js
// which is distinctive enough in isolation to be safely
// classified as tracking.
// This function returns an array of cookies built from
// the native cookie API, which exposes a string where
// key=value pairs (i.e., cookies) are separated by a
// semicolon.
function(a) {

var b = [], c = M.cookie.split(";");
a = new RegExp("^\\s*" + a + "=\\s*(.*?)\\s*$");
for(var d = 0; d < c.length; d++){

var e = c[d].match(a);
e && b.push(e[1]);

}
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Table VI.2: Tracking scripts whose tracking functions are most often bundled (truncated to top 5)

Tracking script Bundle count

https://weby.aaas.org/weby_bundle_v2.js 313
https://branch.io/js/all.js 251
https://d.mail.cafepress.com/track.v2.js 118
https://script.hotjar.com/modules.21c2ce197b1deec7582e.js 105
https://lightning.adultswim.com/launch/7be62238e4c3/22d196a3e151/

launch-2fa6614adbd9.min.js
97

https://assets.adobedtm.com/e0903a2aaadb93ceed6a5acaaacbb9b9846eaa41/
satelliteLib-88084863a26dad129e2d755e9777f20485407022.js

89

return b;
}

// Function from
// https://asg.phukienthoitranggiare.com/Cqp6VQ5.js
// which cannot marked as tracking as it is not
// distinctive enough in isolation and would cause
// false positives otherwise
function(t) {

return localStorage.getItem(t);
}

Listing VI.4: Examples of candidate functions (prettified for readability)

Listing VI.4 shows an example of function origination from a tracking script which can easily be
marked as tracking in itself and an example of another function also found in a tracking script which
cannot be classified as tracking in isolation, otherwise risking producing false positives when detect-
ing this function in other scripts or risking breaking pages if the function signature is leveraged for
in-browser blocking.

Out of the 150 functions originating from tracking scripts, we classified 47 functions as actively
participating in tracking—i.e., accessing privacy-relevant APIs—and being distinctive enough to
avoid false positives. We then queried the list of scripts having at least one function matching a
signature of a function manually marked as tracking. We found that 4.37 % of scripts unknown to
filter lists contained a function marked as tracking—totaling 978 scripts—and that 22.7 % of domains
loaded at least one script containing such functions. An excerpt of the tracking scripts the most
often found in other scripts unknown to filter lists can be found in Table VI.2. The complete list
can be found in Table D.1. Note that the URLs may not reference the ‘upstream’ tracking script,
but simply an occurrence of it in the wild. For instance, the tracking script in the fifth row of this
table is a script of Adobe Launch that the website is re-hosting. Some examples of scripts containing
functions manually marked as tracking can be seen in Table VI.3, most of these are indeed script
bundles, others are tracking scripts unknown to filter lists. Table D.2, in the appendix, also lists the
tracking scripts where the tracking functions originate from.

https://weby.aaas.org/weby_bundle_v2.js
https://branch.io/js/all.js
https://d.mail.cafepress.com/track.v2.js
https://script.hotjar.com/modules.21c2ce197b1deec7582e.js
https://lightning.adultswim.com/launch/7be62238e4c3/22d196a3e151/launch-2fa6614adbd9.min.js
https://lightning.adultswim.com/launch/7be62238e4c3/22d196a3e151/launch-2fa6614adbd9.min.js
https://assets.adobedtm.com/e0903a2aaadb93ceed6a5acaaacbb9b9846eaa41/satelliteLib-88084863a26dad129e2d755e9777f20485407022.js
https://assets.adobedtm.com/e0903a2aaadb93ceed6a5acaaacbb9b9846eaa41/satelliteLib-88084863a26dad129e2d755e9777f20485407022.js
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Table VI.3: Examples of scripts containing tracking functions, these scripts are not part of filter lists

Scripts containing tracking functions

https://tags.tiqcdn.com/utag/intuit/brand-icom/prod/utag.js
https://www.sanofi.com/.resources/sanofi-lm-platform/themes/sanofi-platform/dist/

common~2022-09-28-22-03-50-000~cache.js
https://assets.adobedtm.com/9aafaf1151ac/682bb4885835/launch-be686e885d32.min.js
https://www.infoplease.com/sites/infoplease.com/files/js/js_sSle-

sUI_xeB_8F5RW4Nq8rRQbKgBG9MDKvSNyHX8ww.js
https://www.grammy.com/_next/static/chunks/484-ed227be4db7efa1f.js
https://s1cdn.vnecdn.net/vnexpress/restruct/j/v3797/v3/production/lazyload.js
https://assets.adobedtm.com/331fbea29f79/a5b25a446515/launch-e80baf9c0255.min.js
https://assets.poetryfoundation.org/assets/scripts/vendors~main-9b6becb7b8.js
https://static.phemex.com/s/3rd/sd/sd-1.17.2.min.js
https://assets.adobedtm.com/8a93f8486ba4/5492896ad67e/launch-b1f76be4d2ee.min.js
https://metamask.io/121cd9c2bdc4dd8c8ec9ead858719809d6d18de3-a80ac18016e9cb1f8728.js

VI.4 Blocking Tracking Functions In-Browser

In this section, we present a proposed system for leveraging the function signatures for in-browser
tracking function blocking.

VI.4.1 Leveraging Function Signatures for In-Browser Blocking

We have used our detection system to discover script bundles, having functional code mixed with
tracking code originating fromknown tracking libraries. Since they contain a large part of functional
code, likely to be required for the page to work, these script bundles cannot simply be added to filter
lists.

As we have designed our tracking signatures around a syntactic unit—functions—this makes
it possible to also leverage them for blocking unwanted code execution in a fine-grained manner,
unlike previous works relying on behavioral signatures [73]. As our static analysis relies on script
source code, this allows to identify the origin of potential tracking behavior, by focusing on privacy-
relevant APIs. Indeed, it becomes possible to substitute the function body of detected tracking
functions bundled in other scripts with benign code, thus preventing the tracking behavior while
avoiding breaking the page. In addition, since the unit on which signatures work on is well-known,
they are easy to reason about, enabling to contain the number of false positives, making them a
viable ground truth for in-browser blocking.

VI.4.2 Function Substitution Strategies

VI.4.2.1 Signature-Only Blocking

We first devised a first strategy to leverage these signatures for tracking blocking where the function
signatures are used as-in in the browser. On top of making it possible to prevent tracking behaviors

https://tags.tiqcdn.com/utag/intuit/brand-icom/prod/utag.js
https://www.sanofi.com/.resources/sanofi-lm-platform/themes/sanofi-platform/dist/common~2022-09-28-22-03-50-000~cache.js
https://www.sanofi.com/.resources/sanofi-lm-platform/themes/sanofi-platform/dist/common~2022-09-28-22-03-50-000~cache.js
https://assets.adobedtm.com/9aafaf1151ac/682bb4885835/launch-be686e885d32.min.js
https://www.infoplease.com/sites/infoplease.com/files/js/js_sSle-sUI_xeB_8F5RW4Nq8rRQbKgBG9MDKvSNyHX8ww.js
https://www.infoplease.com/sites/infoplease.com/files/js/js_sSle-sUI_xeB_8F5RW4Nq8rRQbKgBG9MDKvSNyHX8ww.js
https://www.grammy.com/_next/static/chunks/484-ed227be4db7efa1f.js
https://s1cdn.vnecdn.net/vnexpress/restruct/j/v3797/v3/production/lazyload.js
https://assets.adobedtm.com/331fbea29f79/a5b25a446515/launch-e80baf9c0255.min.js
https://assets.poetryfoundation.org/assets/scripts/vendors~main-9b6becb7b8.js
https://static.phemex.com/s/3rd/sd/sd-1.17.2.min.js
https://assets.adobedtm.com/8a93f8486ba4/5492896ad67e/launch-b1f76be4d2ee.min.js
https://metamask.io/121cd9c2bdc4dd8c8ec9ead858719809d6d18de3-a80ac18016e9cb1f8728.js
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which are currently impossible to avoid without also blocking functional code, this has the addi-
tional benefit of providing a robust solution, as websites and scripts containing tracking may evolve.
Indeed, since our signatures only rely on the local source code of the tracking functions, they are
immune to bundle modifications which would change the location of these functions within the
script. In addition, not being linked to particular scripts—unlike filter lists, which commonly rely on
URLs to block—this also provides a robust solution for future scripts integrating tracking functions.

To deploy this tracking function detection and blocking strategy in-browser, it is required to be
able to generate the function signatures in the browser, by leveraging hooks to rewrite the scripts
when downloaded by the browser but before they are parsed and executed. Furthermore, as our
signature generation process involves serializing the generated AST, the in-browser signature gen-
eration must use the same parser so that the AST is exactly the same given a function source code.
As our function signature library is written in Rust, we leveraged its ability to compile toWebAssem-
bly which can then be called from JavaScript and integrated in a WebExtension, making it possible
to implement this strategy without modifying the browser. It is possible for a WebExtension, in a
browser implementing the webRequest.filterResponseData() API [83], e.g., Firefox, to hook
into the HTTP response stream and rewrite the received response. When stream chunks of anHTTP
response for a script are received, they are first concatenated in a single buffer. In the case of scripts,
this is unlikely to degrade performance, as the browser is required to check the hash of full script
content for scripts using the Subresource Integrity security feature [82]. The buffer is then parsed
using the same parser as the one used for generating the signatures, and signatures are generated
for all functions discovered in the script. If some functions matched known function signatures, dis-
tributed to the WebExtension in the same way filter lists currently are, these tracking functions can
then be substituted with benign shims, preventing the tracking behavior while preserving the page
functionality. Not all functions require shims, and their body can then simply cut out by leveraging
the byte span preserved in the AST, which makes it possible to obtain back the byte range within
the source code file. Other function bodies do need to be replaced by appropriate shims to avoid
breaking the page. Page breakage would otherwise happen when the blocked function returns a
value used by the caller function in a way that would raise an exception—thus halting the script
execution—if absent, i.e., undefined. Shims are thus required to return dummy values, e.g., an
empty array in the case of the function from Listing VI.3. As the classification of tracking functions
already requires a manual step, these shims can be hand-written at the same time and distributed
along the function signatures. We leave the automated generation of these shims, from the function
source code, to future work.

VI.4.2.2 Filter-List Inspired Strategy

Another possible deployment strategy for blocking detected tracking functions is to generate script
rewriting rules offline, substituting byte ranges with the same shims as discussed in the previous
section. This alleviates the browser from the need to parse all incoming scripts and generate func-
tions signatures for all discovered functions. However, this strategy is also more brittle and could
result in lower effective blocking coverage, as these rewriting rules need to be generated for each
individual script bundling tracking functions.
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VI.4.2.3 Hybrid Strategy

When implementing the first strategy, we have identified potential performance issues when dealing
with scripts of significant size (> 2 MB uncompressed), which result in delayed page loads, while the
script is being processed by the WebExtension. We thus propose a hybrid approach where scripts
whose size is above a specific threshold are not processed to generate function signatures but are
instead handled along the second strategy. This hybrid approach thus brings robust blocking of
tracking functions in current and future bundles while also handling scripts of significant size and
keeping the size of the rewriting list reasonable—as it requires one rule per script—since these scripts
are rare on the web as can be seen in Figure VI.3 and as measured by the Web Almanac [259].

VI.5 Limitations and Discussion

VI.5.1 Static Analysis and Obfuscation

As our analysis method is purely static, it inherits the usual limitations from statically analyzing
JavaScript source code. In particular, we assume that scripts contain functions fine-grained enough
so that tracking functions can be individually blocked. This is a safe assumption for most scripts,
particularly in the context of bundles where factory functions may be introduced as boilerplate by
bundlers, thus introducing clear boundaries at the module-level. However, this assumption can be
defeated by obfuscation techniques, by either merging functional and tracking functions, making it
impossible to block tracking at the function-level without breakage, hiding the function declarations
with dynamic techniques—e.g., using the eval() JavaScript function, allowing to execution code
from a string—or to hide the accesses to privacy-relevant APIs, as we first filter out functionswithout
these accesses, by relying on the regular expressions from Table VI.1. It should be noted that Skolka
et al. observed that less than 1 % of scripts of their 424,023-script sample were obfuscated [219],
moderating this limitation. In addition, our solution is capable of blocking parts of a bundle that
would be obfuscated, as the bundling process would segregate this obfuscated code in a function,
which is our blocking unit. It is extremely unlikely that an entire bundle be obfuscated, because of
the performance hit this would entail.

Furthermore, as our analysis works at the function level, tracking functions must be distinctive
enough in themselves so they can be safely blocked, with low risks of false positives. We did observe
such distinctiveness in the wild, during our manual classification. In particular, we observed many
different implementations of the document.cookie string parsing function shown in Listing VI.3,
confirming that implementations are diverse enough to separate functions from tracking script from
other functions. However, we did also observe functions directly accessing privacy-relevant APIs
which were not distinctive enough to be safely blocked, without risking blocking functions from
functional code, as shown in Listing VI.4. To address these cases, it would be possible to widen the
range of candidate functions, by including the functions calling these non-distinctive functions, and
considering blocking these instead.
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VI.5.2 Third-Party Scripts

During our manual classification, we restricted ourselves to functions originating from tracking
scripts that were also found in first-party scripts unknown to filter lists. This choice was moti-
vated by the fact that we specifically focused on script bundles, which we assumed to be served as
first-party scripts, for performance reasons. The tracking functions discovered, after manual classi-
fication, were then searched in every other scripts (not restricted to first-party scripts). Our analysis
methodology could be extended to consider third-party scripts as well when initially searching for
functions from tracking scripts shared in other scripts. This may discover other tracking functions
shared in other scripts, whose deployment practices are different—e.g., using caching, third-party
Content Delivery Networks (CDNs) such as CloudFront [216].

VI.5.3 Inline Scripts

In this contribution, we focused on detecting tracking functions in external scripts. This is motivated
by our focus on bundles which are the most likely to embed tracking functions with functional code.
Indeed, it is very unlikely that bundles are inserted as inline scripts—i.e., within script tags—as it
is critical for performance that bundles benefit from browser HTTP caching, to avoid loading the
same bundle across different pages of the same website. Our function signatures could still be used
to detect and block tracking functions in inline scripts, by rewriting the HTML document using the
same WebExtension hook used for script rewriting.

VI.5.4 Bundlers Usage Trend

Finally, we have shown that tracking functions are already found in other scripts unknown to filter
lists in a significant share of websites. Bundlers have been common practice for several years and
their usage should become event more prevalent as bundlers are integrated in all-in-one server-side
frameworks, such as Next.js [248] or NuxtJS [87], which automatically generate and serve script bun-
dles. This trend could eventually significantly diminish the current abilities of URL-based content
blockers, leaving users unprotected from web tracking.

VI.6 Conclusion

In this contribution, we introduced a robust function signature technique with the aim of detecting
tracking functions originating from tracking scripts known to filter-lists in other scripts, especially
script bundles. With a large-scale web crawl, we have quantified the occurrences of such tracking
functions in other scripts, and found that 4.37 % of unique scripts contained tracking functions
from known tracking libraries, and that 22.7 % of websites in our sample loaded such a script. We
finally proposed a hybrid, in-browser blocking strategy, leveraging our function signatures, making
it possible to identify tracking functions inside bundles.
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Availability

Wemake available our function signature generation library, the crawl infrastructure and our proof-
of-concept hybrid blocking strategy WebExtension. They can be found in the following repository:
https://archive.softwareheritage.org/browse/origin/https://gitlab.inria.fr/Spirals/jsripper-artifact.

https://archive.softwareheritage.org/browse/origin/https://gitlab.inria.fr/Spirals/jsripper-artifact
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CHAPTERVII

Conclusion

Web tracking has seen steady development since the inception of the web in 1990. It is now wide-
spread and leverages numerous web tracking vectors to follow users in their browsing and observe
their behavior on individual web pages. Web tracking has raised serious privacy concerns and has
called for the development of web tracking defenses that users could employ in their browsers to pro-
tect themselves. Such defenses have existed for a long time, but websites and the web platform are
always changing, leading to a cat and mouse game between web trackers and tracking protections.

In this thesis, we have focused on one kind of tracking protection: content blocking, which
entails blocking parts of web pages unwanted by users. This defense can be used in conjunction
with other protections, such as clients-side state isolation or regular storage contents deletion. It
supplements these other protections and can in particular address same-page tracking, which is
often left out by other defenses. We presented four contributions which aim to reduce the amount
of JavaScript executed client-side, thus greatly reducing the ability of web pages to track users.

VII.1 Contributions

VII.1.1 Investigating Page when Disabling JavaScript

We have investigated page breakage when browsing with JavaScript disabled. To this end, we devel-
oped a framework to detect breakage of individual page elements and common element constructs.
By crawling 6,384 pages, we leveraged that framework to quantify how much blocking JavaScript
breaks pages and impedes browsing, separating elements in the main section of the page, for which
the user is more likely to have reached the page, and elements around it. We detailed the breakage
rate of each type of studied elements in the main section and around it. We found that 43 % of web
pages are not strictly dependent on JavaScript and that 67 % are likely to be usable as long as the
user is only interested in the main section. By measuring the number of tracking requests with and
without JavaScript, we showed that browsing without JavaScript greatly improves user privacy. We
finally discussed the viability of browsing the web without JavaScript for privacy.
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VII.1.2 Bridging the Gap Between the User and the Browser with User Browsing
Intent (UBI)

Previous works regarding content blocking were mostly concerned with making the entirety of
the page work, even if that means allowing some trackers. Acknowledging that the user does not
always require the entirety of the page to be working, we introduced the concept of User Browsing
Intent (UBI), and focused on the ‘read-only’ UBI, where the user only wants to read the page content
and not interact with it. Building on the acquired knowledge about page breakage when JavaScript
is disabled, we designed a limited set of client-side repairs that target common page breakage types
to fix them without the page’s provided JavaScript. Using a semi-manual comparison of 3,958 page
screenshots with and without our repairs, we classified them based on the amount of information
lost when disabling JavaScript. We found that our in-browser repairs make more than 27 % more
pages compliantwith the ‘read-only’ UBI. More than 62 % of pages are compliantwith the ‘read-only’
UBI if the user only tolerates minor information loss, and more than 77 % of pages are compliant
if the user also tolerates the loss of some non-central sections. We also measured the number of
tracking requests disabling JavaScript with our repairs enabled, and found that 97.7 % of them are
prevented on average, bringing significant privacy improvements. If the page is not compliant with
the ‘read-only’ UBI or if the user UBI is not the ‘read-only’ UBI, it is easy to enable back JavaScript.

VII.1.3 Reducing Interface Components Dependency on JavaScript Server-Side

Switching to server-side, we proposed a server-side plugin to explore the potential benefits of re-
placing interface components that usually rely on JavaScript with noscript alternatives. We targeted
the most popular web interface component framework, Bootstrap, and developed a server-side plu-
gin that manipulates HTML as a middleware. Deploying this plugin, JSRehab, allows to remove
the Bootstrap library on the pages where all components can be replaced and, if Bootstrap was the
only piece of JavaScript used on those pages, to apply a much stricter Content Security Policy (CSP)
policy, improve security. We also measured the energy consumption on mobile devices when re-
moving the Bootstrap library and found gains of at least 5 % while introducing only a very small
size overhead to the HTML payload.

VII.1.4 Detecting and Blocking Individual JavaScript Functions for Privacy

Back to client-side, we have investigated a more fine-grained and resilient script blocking strategy
than existing filter lists. Focusing on script bundles, which result from the bundling of multiple
scripts after dependency resolution, we aimed to be able to block tracking functions bundled with
functional code. Since blocking the whole script would break the page—as this would also block
functional code—these scripts are not currently blocked by filter lists; such tracking functions are
thus currently slipping through the net. In this contribution, we have devised a JavaScript func-
tion signature scheme for detecting these bundled tracking functions: these signatures rely on the
function AST and erase the local identifiers for increased robustness. With a large-scale web crawl,
we collected 41,924 unique scripts and computed the signature of each 11,552,421 unique function
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signatures. Using common filter lists to detect known tracking scripts, along with manual classifi-
cation, we collected a set of tracking functions whose body is identifying enough in itself to avoid
false positives. Using the signatures of these tracking functions we found that 4.37 % of unique
scripts—that were not known to filter lists—contained these tracking functions and that 22.7 % of
domains of our sample contained such a script. As these function signatures allow to locate the un-
wanted functions, it becomes possible to target them for replacing with shims, effectively making
them no-operation functions and preventing their tracking behavior. We have thus finally proposed
a hybrid function-blocking strategy, relying on these function signatures.

VII.2 Future Work

VII.2.1 Keeping Filter Lists Lean

Even if filter lists suffer from several issues, they are still useful to block widespread tracking, espe-
cially on slowly changing websites, which may not be trying to evade them actively. However, as
we have seen, they tend to only grow larger and larger [222], leading to potential issues, especially
on mobile devices with limited resources and because of Google’s Manifest V3 [94] limitations. Fu-
ture work could thus further investigate keeping filter lists lean, as explored in [222]. In that work,
Snyder et al. reduced the number of filter rules by more than 90 % by crawling landing and internal
pages from 10,000 sites from the top Alexa and observing which rules were used the most [222]. It
would be useful to run this testing continuously and generate light versions of lists accordingly.

Additionally, future work could investigate the detection and removal of obsolete and redun-
dant rules. For instance, a continuous integration system could regularly check that the rules are
still useful on the page for which they have been added to the list. Such continuous integration
system would require that a browsing scenario be written for each rule, and that scenario would be
performed automatically, checking that the rule is still triggered. It could also run specific checks
to verify that the page is not broken, similarly to end-to-end website automated tests.

VII.2.2 Increasing Fine-Grained JavaScript Blocking Ability

JsRipper provides JavaScript function signatures allowing to locate unwanted functions so they can
be blocked. To this end, it relies on each function’s AST, whose local identifiers are erased for
increased robustness. Future work could investigate extending this technique to be able to target
functions that are not distinctive enough in themselves. JsRipper indeed only relies on function
bodies to identify them. Analyzing how the function is used in the script, statically or dynamically,
could be investigated to further increase the share of functions such tool is able to target for blocking.
Further processing, based on graph analysis or machine learning, could help decide whether the
function should be blocked.

VII.2.3 Assisting Shim Generation

As explained in subsection II.4.2, some content blocking tools allow to replace specific scripts with
shims, to avoid page breakage. Shims are meant to provide the same public API as the scripts they
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replace, but their functions are effectively no-operations, rendering their execution benign. Shims
provided by Firefox Enhanced Tracking Protection and uBlock Origin are hand-written, which
limits their number and thus their coverage. Smith et al. have investigated a different approach
where privacy-sensitive APIs—e.g., cookies or localStorage—are temporarily replaced with no-
operations by rewriting the scripts containing both functional and tracking code [220]. However,
this technique requires distributing the resulting, sometimes large, scripts in their entirety, which
raises concerns about the scalability of this approach, along with legal questions since the browser is
effectively distributing modified copyrighted scripts without the authors permission. Future work
could investigate automatically generating the shims which are currently hand-written, allowing
this technique to scale and could help generate the shims needed by JsRipper when swapping the
tracking function bodies with no-operations to avoid breakage.

VII.2.4 Improving the Privacy–Usability Trade-off

A more general perspective would be to investigate how to further improve the privacy–usability
trade-off, and make advanced privacy protections accessible to more people. Multiple browser ven-
dors have recently rolled out radical changes for the web platform, which significantly improve
user privacy while having a very limited negative impact on browsing, as we have presented in sec-
tion II.5. Future work could explore how to limit browsing impediment of other privacy preserving
defenses against browser fingerprinting, such as in-depth configuration uniformity. Firefox for in-
stance already ships with such in-depth defense, gated by the privacy.resistFingerprinting
preference, but enabling it inevitably results in some inconvenience, directly originating from its
behavior: for example the browser timezone is set to UTC [46] and canvas data readings are com-
pletely randomized, resulting in colored patterns if shown to the user. Exploring how to reduce
these usage barriers would drastically increase the adoption of these protections.

VII.3 Insights and Perspectives

In this section, we discuss insights gained while working on in-browser content blocking for privacy,
remaining general challenges, and what future we can envision it having.

VII.3.1 Loose Coupling between Page Elements and Behavior

One of the main underlying challenges of content blocking, especially regarding blocking scripts,
is, surprisingly, the loose coupling between the DOM elements and their scripted behavior: i.e.,
statically connecting an element—e.g., a button—to the relevant portions of scripts responsible for
its behavior is basically impossible. The markup, styling, and behavior are indeed provided by three
different languages (HTML, CSS, and JavaScript) whose design aimed for loose coupling. Loose
coupling is usually desired in computer science but, in this case, it makes it difficult for the user to
protect themselves as locating—and thus blocking—the relevant scripts or portions thereof is not
possible.

Interestingly, this loose coupling has been acknowledged as a reason for maintenance issues in
theweb development community and has stimulated the development of newmethods and tools that
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deliberately increase the coupling by keeping the markup, styling, and scripts together. Component
frameworks, like React [138] and Vue.JS [278], have pioneered this idea of keeping the markup and
behavior implementation together. More recently, the same strategy has been applied to styling, us-
ing different methods: scoped CSS [40], atomic CSS [35], and CSS-in-JS [25, 34]. Even if the methods
differ, their goals are the same: keeping styling close to other constituents of the component—thus
increasing the coupling between these. Keeping the constituents of a component closer makes it eas-
ier to reason about them as part of a single component and treat them as such. In particular, when
deleting a component, the markup, scripts, and styling of this component are all deleted, avoiding
remnants of code to be left behind and littering the codebase. This highlights the usefulness of tighter
coupling between the constituents of components for the development phase. However, informa-
tion about this coupling—i.e., what portions of scripts work with a particular markup portion—is lost
when rendering these components for distribution to clients and thus cannot be used for content
blocking in the browser.

If it were possible to recover this coupling information in the browser, it could allow fine-grained
content blocking, at the interface component level.

VII.3.2 New Resource Types and Tighter Weaving

Anothermajor challenge of content blocking is the always evolvingweb landscape and the inception
of more interleaved resources, making their individual blocking much harder. As we have seen in
chapter VI, script bundling is now common practice, even if still adopted by popular websites mostly.
As scripts responsible for differentmechanisms of the page—e.g., component rendering, interactivity,
user tracking, etc.—are now part of the same script, content blocking tools having as blocking unit
the whole script are unable to protect against unwanted portions of these scripts. We tackled with
issue with JsRipper in chapter VI, which offers promising strategies for blocking only portions of
scripts. However, interleaving of scripts and resources can only become tighter, rendering this task
even more difficult in the future.

Furthermore, new types of resources, and especially of executable resources, have appeared and
may continue to be added to the web platform which may threaten user privacy in new ways or
make their blocking harder. After asm.js, WebAssembly has been integrated into browsers with
two major goals: executing faster than JavaScript and providing a low-level format as target for
compiled programming languages such as C++ or Rust. WebAssembly being a binary format, with
low-level instructions, it is even more challenging to inspect and process to protect the user from
the potential privacy harm of its executable behavior. These could threaten user privacy in new
ways if they become the norm on the web.

VII.3.3 Non-Alignment of Interests of Producers and Consumers

User privacy, especially in the browser, has ultimately always been a cat and mouse game: website
owners deploy privacy-invasive technologies, then privacy defenses are developed and deployed
and, in turn, websites set up new strategies to circumvent these protections. As websites owners
usually have no economic incentive to respect users’ privacy and instead actually benefit from tar-
geted advertisement and privacy-invasive handling of personal data with direct financial rewards, it
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is hard to see this chase stopping anytime soon. As most client-side defenses can usually be circum-
vented by websites with enough effort, the fact that most websites did not have stronger reactions
against content blocking—e.g., rates of active evasion from filter lists have been reported to be very
low [222]—can only be explained by the current lack of pecuniary incentive—i.e., the loss of income
for these websites is currently not worth actively fighting back. However, this may be about to
change with the more generalized deployment of built-in privacy protections in browsers, and in-
creasing awareness towards online privacy. One could try to propose new web APIs for content
blocking, but it is hard to envision this as being a viable direction. Indeed, this would require some
cooperation from website owners and, since browsers are expected to preserve backward compati-
bility, websites would have no interest in embracing these APIs.

This means that, other than via regulation and its enforcement, or with financial incentives, the
ultimate privacy defense remains the user and lies with them as a consumer.
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Table A.1: JavaScript reliance of standard HTML elements [185].
(0) does not require JavaScript based on the standard, and is very unlikely to require JavaScript in
the wild,
(1) does not require JavaScript based on the standard, but sometimes legitimately uses JavaScript in
the wild, for additional features,
(1†) does not require JavaScript based on the standard, but sometimes uses JavaScript in the wild,
in a non-semantic manner,
(2) does not require JavaScript based on the standard, but requires JavaScript in some use cases,
(2*) does not require JavaScript based on the standard, but often requires JavaScript when used
outside a form,
(3) always requires JavaScript based on the standard.

Element JavaScript
re-
liance

JavaScript use cases

Main root

<html> (0)

Document metadata

<base> (0)
<head> (0)
<link> (1) Asynchronous loading
<meta> (0)
<style> (0)
<title> (0)

Sectioning root

<body> (0)
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Element JavaScript
re-
liance

JavaScript use cases

Content sectioning

<address> (0)
<article> (0)
<aside> (0)
<footer> (0)
<header> (0)
<h1>, <h2>, <h3>, <h4>,
<h5>, <h6>

(0)

<main> (0)
<nav> (0)
<section> (0)

Text content

<blockquote> (0)
<dd> (0)
<div> (1†) Non-semantic button
<dl> (0)
<dt> (0)
<figcaption> (0)
<figure> (0)
<hr> (0)
<li> (0)
<ol> (0)
<p> (0)
<pre> (0)
<ul> (0)

Table content

<caption> (0)
<col> (0)
<colgroup> (0)
<table> (0)
<tbody> (0)
<td> (0)
<tfoot> (0)
<th> (0)
<thead> (0)
<tr> (0)
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Element JavaScript
re-
liance

JavaScript use cases

Demarcating edits

<del> (0)
<ins> (0)

Inline text semantics

<a> (1†) Non-semantic button
<abbr> (0)
<b> (0)
<bdi> (0)
<bdo> (0)
<br> (0)
<cite> (0)
<code> (0)
<data> (0)
<dfn> (0)
<em> (0)
<i> (0)
<kbd> (0)
<mark> (0)
<q> (0)
<rp> (0)
<rt> (0)
<ruby> (0)
<s> (0)
<samp> (0)
<small> (0)
<span> (1†) Non-semantic button
<strong> (0)
<sub> (0)
<sup> (0)
<time> (0)
<u> (0)
<var> (0)
<wbr> (0)

Image and multimedia

<area> (0)
<audio> (1) Custom controls
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Element JavaScript
re-
liance

JavaScript use cases

<img> (1) Lazy-loading
<map> (0)
<track> (0)
<video> (1) Custom controls

Embedded content

<embed> (0)
<iframe> (0)
<object> (0)
<param> (0)
<picture> (0)
<portal> (0)
<source> (1) Lazy-loading

SVG and MathML

<svg> (1) Embedded JavaScript
<math> (0)

Scripting

<canvas> (3)
<noscript> (0)
<script> (2) May embed a script or a data

block

Forms

<button> (2*)
<datalist> (2*)
<fieldset> (0)
<form> (2) Requires JavaScript when the

form or its values cannot be sub-
mitted

<input> (2*)
<label> (0)
<legend> (0)
<meter> (2*)
<optgroup> (2*)
<option> (2*)
<progress> (2*)
<select> (2*)
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Element JavaScript
re-
liance

JavaScript use cases

<textarea> (2*)

Table A.2: JavaScript reliance of commonUI framework components, based on their documentations
and manual testing.
(0) does not require JavaScript,
(0*) does not require JavaScript in the documentation, but is likely to be used with JavaScript in the
wild,
(1) does not require JavaScript to be displayed but requires JavaScript to be dismissed, or is used to
display transient state, mainly useful with JavaScript,
(1*) does not require JavaScript based on the standard, but requires JavaScript in some use cases
(mostly when used outside a form),
(2) does not require JavaScript to be displayed, but requires JavaScript for interactive behavior,
(3) requires JavaScript and displays nothing otherwise.

Component Bootstrap 5 [234] Foundation 6 [277] Tailwind
Ele-
ments [5]

Semantic UI [4]

Accordion (2) (2) (2) (2)
Advertisement N/A N/A N/A (0)
Alerts/Message/Callout (1) (1*) (1) (1)
Badge(s) (0) (0) (0)/(1) N/A
Breadcrumb(s) (0) (0) (0) (0)
Button(s) (1*) N/A (1*) (1*)
Button group (0) N/A (0) (0)
Card(s) (0) (0) (0) (0)
Carousel/Orbit (2) (2) (0*) N/A
Charts N/A N/A (3) N/A
Chips N/A N/A (1) N/A
Checkbox/Checks (1*) N/A N/A (1*)
Close button (2) (2) N/A N/A
Collapse (2) N/A N/A N/A
Comment N/A N/A N/A (1*)
Container N/A N/A N/A (0)
Datepicker N/A N/A (3) N/A
Dimmer N/A N/A N/A (1)
Divider N/A N/A N/A (0)
Drilldow menu N/A (2) N/A N/A
Dropdown(s) (2) (2) (2) (2)
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Component Bootstrap 5 Foundation 6 Tailwind
Elements

Semantic UI

Embed N/A N/A N/A (0)
Feed N/A N/A N/A (0)
File input N/A N/A (0) N/A
Flag N/A N/A N/A (0)
Floating labels (0) N/A N/A N/A
Footer N/A N/A (0) N/A
Form validation (0)/(2) N/A (0) (3)
Input group, Layout/-
Form(s)

N/A (0) (1*) (1*)

Gallery N/A N/A (0) N/A
Grid N/A N/A N/A (0)
Headings/Header N/A N/A (0) (0)
Image(s) N/A N/A (0) (0)
Icon N/A N/A N/A (0)
Item N/A N/A N/A (0)
Form controls/In-
put(s)

N/A N/A (1*) (1*)

Label N/A (0) N/A (0)
List group/List (0) N/A (0) (0)
Menu N/A (0) N/A (0)
Media N/A (0) N/A N/A
Modal/Reveal (2) (2) (2) (2)
Multiselect N/A N/A (1*) N/A
Navs & tab-
s/Tab(s)/Pills

(2) (2) (2) (2)

Navbar/Topbar (0) (0) (0) N/A
Offcanvas/Sidebar (2) (2) N/A (2)
Pagination (0) (0) (0) N/A
Placeholder(s) (0) N/A N/A (1)
Popover(s)/Popup (2) N/A (2) (2)
Progress/Progress Bar (1) (1) (1) (3)
Radios (1*) N/A (1*) N/A
Rail N/A N/A N/A (0)
Rating N/A N/A (0) (3)
Range/Slider (1*) (2) (2) N/A
Responsive Accordion
Tabs

N/A (2) N/A N/A

Responsive Embed N/A (0) N/A N/A
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Component Bootstrap 5 Foundation 6 Tailwind
Elements

Semantic UI

Responsive Naviga-
tion

N/A (2) N/A N/A

Reveal N/A N/A N/A (0)
Scrollspy/Magellan (2) (2) N/A N/A
Search(s) N/A N/A (1*) N/A
Select (1*) N/A (1*) N/A
Segment N/A N/A N/A (0)/(1)
Shape N/A N/A N/A (3)
Sidenav N/A N/A (0) N/A
Spinners/Loader (1) N/A (1) (1)
Statistic N/A N/A N/A (0)
Sticky N/A N/A N/A (2)
Switch N/A (1*) (1*)/(2) N/A
Stepper/Step N/A N/A (0) (0)
Table(s) N/A (0) (0) (0)
Thumbnail N/A (0) N/A N/A
Textarea N/A N/A (1*) N/A
Timepicker N/A N/A (1*) N/A
Toast(s) (1) N/A (1) N/A
Tooltip(s) (2) (2) (2) N/A
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Figure A.1: Color represents the 90th percentile of differential breakage of visible elements in the
whole page. Lighter shades denote higher differential breakage. Only categories with more than
50 pages in the dataset are plotted, to improve readability. This highlights the disparity of breakage
across website categories.
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{
"lazyStylesheets": [

{
"target": "link[onload][rel='stylesheet'],

link[media='only x'], link[media='none'],
link[onload][as='style'],
link[onload][type='type/css']",

"applyToLoad": [
{ "prop": "rel", "value": "stylesheet" },
{ "prop": "media", "value": "all" },
{ "prop": "onload", "value": null }

]
}

],
"scriptLoaded": [

{
"target": "head > script",
"regexp": "loadCSS\\s*\\(\\s*[\"']([^\"']+)[\"']",
"usedBy": [

"https://github.com/filamentgroup/loadCSS/"
]

}
]

}

Listing B.1: Excerpt of the JSON repair configuration for ‘lazy-loaded stylesheets’. Two types of
lazy-loaded stylesheets can be handled: those using a <link> element and those using a script in
the <head>. In both cases, the target property contains a CSS selector of elements to consider. In
the former case, the applyToLoad property lists the IDL attributes to set for the stylesheets to be
loaded. In the latter case, the script is parsed using a regular expression to extract the stylesheet
URL to load, which is then loaded by injecting a <link> element.
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{
"fadeinElements": [

{
"target": "div:not(:empty), header, footer, section,

article, main, .js-fadein, .js-fadein-hero,
.fade, .fadein, .appear",

"fadeinStyle": [
{ "prop": "opacity", "test": "===",

"value": "0" },
{ "prop": "display", "test": "!==",

"value": "none" },
{ "prop": "z-index", "test": "===",

"value": "auto" },
{

"or": [
{

"prop": "transition", "test": "!==",
"value": "all 0s ease 0s"

},
{

"prop": "animation",
"test": "!==",
"value":

"0s ease 0s 1 normal none running none"
}

]
}

],
"showStyle": [

{ "prop": "opacity", "value": "1" },
{ "prop": "visibility", "value": "visible" }

]
},
{

"target": ".fusion-animated , .elementor -invisible",
"fadeinStyle": [

{ "prop": "visibility", "test": "===",
"value": "hidden" }

],
"showStyle": [

{ "prop": "visibility", "value": "visible" }
]

}
]

}

Listing B.2: Excerpt of the JSON repair configuration for ‘fade-in elements’: the target property
contains a CSS selector of elements to consider, which are then filtered using the computed style
conditions found in the fadeinStyle property. The CSS styles encoded in the showStyle property
are finally applied to the remaining elements.
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Figure B.1: Screenshot of the manual labeling tool (truncated vertically for readability), from left
to right: the JS screenshot, NoJS screenshot, NoJS-UBI screenshot, and the color-coded difference
image.
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Appendices to the JSReHab Study

// Other imports
import posthtmlBootstrapNoscriptFallbacks

from "posthtml-bootstrap -noscript-fallbacks";

const config = {
// Other configuration
module: {

rules: [
// Other rules
{

test: /\.html$/,
use: [

"extract-loader",
{

loader: "html-loader",
options: { minimize: true },

},
{

loader: "posthtml -loader",
options: {

plugins: [
posthtmlBootstrapNoscriptFallbacks({

cssFiles: [
// Paths to stylesheets

],
}),

],
},

}
]

},
],

},
};
export default config;

Listing C.1: Example webpack.config.js
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Appendices to the JsRipper Study

D.0.1 Frequency Analysis in Name Mangling

function components() {
const element0 = document.createElement('div');
element0.textContent = Math.random();

const element1 = document.createElement('div');
element1.textContent = Math.random();

const element2 = document.createElement('div');
element2.textContent = Math.random();

return [element0 , element1 , element2];
}

for (const component of components()) {
document.body.appendChild(component);

}

Listing D.1: Example script containing multiple local variables

(() => {
for (const t of function() {

const t = document.createElement("div");
t.textContent = Math.random();
const e = document.createElement("div");
e.textContent = Math.random();
const n = document.createElement("div");
return n.textContent = Math.random(), [t, e, n]

}()) document.body.appendChild(t)
})();

Listing D.2: Bundle produced by webpack, minified by Terser (prettified for readability), given the
source code from Listing D.1: note the local variables t, e, n, used by Terser for being the most
frequent letters in the original source code
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function components() {
const element0 = document.createElement('div');
element0.textContent = Math.random();

const element1 = document.createElement('div');
element1.textContent = Math.random();

const element2 = document.createElement('jjjjjjjjjjjjj -jjjjjjjjjjjjjjjjjj');
element2.textContent = Math.random();

return [element0 , element1 , element2];
}

for (const component of components()) {
document.body.appendChild(component);

}

Listing D.3: Example source code where a long string of ‘j’ is introduced

(() => {
for (const j of function() {

const j = document.createElement("div");
j.textContent = Math.random();
const t = document.createElement("div");
t.textContent = Math.random();
const e = document.createElement("jjjjjjjjjjjjj -jjjjjjjjjjjjjjjjjj");
return e.textContent = Math.random(), [j, t, e]

}()) document.body.appendChild(j)
})();

Listing D.4: Bundle produced by webpack, minified by Terser (prettified for readability), given the
source code from Listing D.3: note that now the letter ‘j’ is the most frequent letter and is thus used
by Terser as the first local variable name
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Table D.1: Tracking scripts whose tracking functions are most often bundled

Tracking script Bundle count

https://weby.aaas.org/weby_bundle_v2.js 313
https://branch.io/js/all.js 251
https://d.mail.cafepress.com/track.v2.js 118
https://script.hotjar.com/modules.21c2ce197b1deec7582e.js 105
https://lightning.adultswim.com/launch/7be62238e4c3/22d196a3e151/

launch-2fa6614adbd9.min.js
97

https://assets.adobedtm.com/e0903a2aaadb93ceed6a5acaaacbb9b9846eaa41/
satelliteLib-88084863a26dad129e2d755e9777f20485407022.js

89

https://assets.adobedtm.com/dac62e20b491e735c6b56e64c39134d8ee93f9cf/
satelliteLib-6b47f831c184878d7338d4683ecf773a17973bb9.js

80

https://cdn.exitbee.com/xtb.min.js 69
https://tags.tiqcdn.com/utag/autodesk/lib-target-flicker-free/prod/utag.sync.js 68
https://sc-static.net/scevent-gtm.min.js 68
https://a.pub.network/aljazeera-com/pubfig.min.js 62
https://cdn-akamai.mookie1.com/LB/LightningBolt.js 48
https://s3.amazonaws.com/cdn.aimtell.com/trackpush/trackpush-dev.min.js 38
https://www.ezojs.com/ezoic/sa.min.js 36
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