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Abstract

In this thesis, we study some actions of the free group of rank two and of the fundamen-
tal group of the four-punctured sphere (which is isomorphic to the free group of rank three) on
Gromov-hyperbolic spaces. The aim is to investigate two subsets of representations: Bowditch rep-
resentations (introduced by Bowditch in 1998) and primitive-stable representations (introduced by
Minsky in 2010). These two spaces, already studied in the case of representations in PSL(2,C),
provide examples of open domains of discontinuity for the action of the mapping class group on
the character variety. Recently, Lee and Xu on the one hand, and Series on the other, proved that
these two classes of representations are equivalent in the case of the free group of rank two acting
in PSL(2,C). In this thesis, we examine the more general case where the action of the group is
on Gromov-hyperbolic spaces. We show the equivalence between Bowditch representations and
primitive-stable representations in this new context by an independent proof, and establish it in
the case of the free group of rank two and of the fundamental group of the four-punctured sphere.
This leads us to carry out a combinatorial study of the primitive elements of the free group of
rank two and of simple closed curves on the four-punctured sphere, and to show some redundancy
properties of these elements. We use these combinatorial arguments combined with large-scale
properties of hyperbolic spaces to show the equivalence. As a consequence, we obtain the openness
of the set of Bowditch representations in this context.
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Résumé

Dans cette thèse, on s’intéresse à certaines actions du groupe libre de rang deux ainsi que du
groupe fondamental de la sphère à quatre trous (isomorphe au groupe libre de rang trois) sur
les espaces Gromov hyperboliques. L’objectif est d’étudier deux sous-ensembles de représenta-
tions : les représentations de Bowditch (introduites par Bowditch en 1998) ainsi que les représen-
tations primitives-stables (introduites par Minsky en 2010). Ces deux espaces, déjà étudiés dans
le cas de représentations à valeurs dans PSL(2,C), fournissent des exemples d’ouverts de propre-
discontinuité pour l’action du groupe modulaire sur la variété des caractères. Récemment, Lee
et Xu d’une part, et Series d’autre part, ont montré que ces deux classes de représentations sont
équivalentes dans le cas du groupe libre de rang deux agissant sur l’espace hyperbolique usuel
de dimension trois. On s’intéresse dans cette thèse au cas plus général où l’action a lieu sur des
espaces hyperboliques au sens de Gromov. On démontre l’équivalence entre les représentations de
Bowditch et les représentations primitive-stable dans ce nouveau contexte par une preuve indépen-
dante, et on l’établie dans le cas du groupe libre de rang deux et du groupe fondamental de la
sphère à quatre trous. Cela nous conduit à mener une étude combinatoire des éléments primitifs du
groupe libre de rang deux ainsi que des courbes simples sur la sphère à quatre trous et à montrer
des propriétés de redondances de ces éléments. On utilise ces arguments combinatoires combinés
avec des propriétés de géométrie hyperbolique grossière pour montrer l’équivalence désirée. Cela
établie en conséquence l’ouverture de l’ensemble des représentations de Bowditch dans ce contexte.
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Chapter 1

Introduction

1.1 Context and motivation - open domains of discontinuity
In the general setting of a finitely generated group Γ and a topological group G, we consider the

space Hom(Γ,G) of representations from Γ to G endowed with the compact-open topology, which
is, since Γ is finitely generated, the same as the topology of pointwise convergence. This space, by
far too big from a geometric point of view, admits a quotient by the action of G by conjugation
which is called the character variety (in fact we make this quotient Hausdorff by considering its
Hausdorffization, that is the largest Hausdorff quotient of Hom(Γ,G)/G ; in particular orbits
whose closures intersect are identified). This space is denoted χ(Γ,G) = Hom(Γ,G)//G. Note
that in the literature, G is always taken to be a Lie group, which endows the character variety
with the structure of an algebraic variety and justifies the terminology. In this thesis, we will
be interested in some representations with value in G = Isom(X), where the space X will be a
δ-hyperbolic space (geodesic and proper), which need not be a Lie group in general. However,
the precise structure of χ(Γ,G) does not matter for this work and, in many interesting cases of
application, G will be a (real rank one) Lie group : SO0(n,1),SU(n,1),Sp(n,1) and F4(−20) which
are respectively the isometry group of the real hyperbolic n-space, the complex hyperbolic n-space,
the quaternionic hyperbolic n-space and the hyperbolic plane over the Cayley numbers (for details
on the classification of real Lie groups, see [Kna96]).

Let Out(Γ) = Aut(Γ)/Inn(Γ) be the outer automorphism group of Γ, that is the quotient of
the automorphism group of Γ by the inner automorphisms. There is a natural action of Out(Γ)
on the character variety by precomposition :

Out(Γ) × χ(Γ,G) Ð→ χ(Γ,G)
([ϕ], [ρ]) z→ [ϕ].[ρ] = [ρ ○ ϕ−1]

Note that even if the element ρ○ϕ−1 is not well-defined since ϕ is only defined up to inner automor-
phisms, its class [ρ ○ ϕ−1] is well-defined. Understanding the dynamics of this action and finding
subspaces of the character variety on which the group Out(Γ) acts geometrically "nicely" is a central
issue. Indeed, the character variety appears naturally to encode some geometric structures.
Example 1.1 (Teichmüller space, Γ = π1(S),G = PSL(2,R)). The starting example is the Teich-
müller space T (S). Let S be a closed oriented surface of negative Euler characteristic and π1(S)
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14 CHAPTER 1. INTRODUCTION

its fundamental group. The space T (S) is defined as the space of hyperbolic metrics up to isotopy
on S. It is a well-known fact that the Teichmüller space identifies as a connected component
of the character variety χ(π1(S),PSL(2,R)) (see Goldman [Gol88], Farb-Margalit [FM12]). The
mapping class group MCG(S) of the surface S, which is the group of isotopy classes of orientation-
preserving homeomorphisms of S, may be identified with an index two subgroup of Out(π1(S))
and acts on the Teichmüller space. Recall that the action of a group G on a topological space X
is said properly discontinuous if, for each compact K in X , the set {g ∈ G ∣ (gK)∩K ≠ ∅} is finite.
The dynamics of the action of the mapping class group on the Teichmüller space is given by the
Fricke’s Theorem :

Theorem 1.1 (Fricke). The action of MCG(S) on T (S) is properly discontinuous.

Example 1.2 (Convex-cocompact representations, Γ hyperbolic, G = SO0(n,1)). Another central
example of an open domain of discontinuity of the character variety is the set of convex-cocompact
representations : let Γ be a hyperbolic group and G = SO0(n,1) be the isometry group of the
hyperbolic n-space Hn, define CC(Γ,G) to be the subset of the character variety consisting of
representations which preserve a non-empty convex subspace of Hn on which the action is proper
and cocompact. This is equivalent to asking that the orbit map is a quasi-isometric embedding. In
particular CC(Γ,G) consists only of discrete representations. The G-orbits of such representations
in Hom(Γ,G) under conjugation are closed. It can be shown that CC(Γ,G) is open and that the
outer automorphism group Out(Γ) acts properly discontinuously on it. Hence it is natural to ask
if this domain of discontinuity is maximal for the action of Out(Γ). Are there other domains of
discontinuity ? Could they contain non-discrete representations ?

1.2 Bowditch representations
Let (X,d) be a δ-hyperbolic space, geodesic and proper and F2 be the free group of rank two.

We fix {a, b} a free generating set for F2. In this thesis, we will in particular study some represen-
tations of F2 into the isometry group of X.

We denote by ∥γ∥ the cyclically reduced word length of an element γ in F2 relatively to the set
of two generators {a, b}. Recall that the choice of the specific set of generators has no real impact
on the word length insofar as another choice of two generators would give a bi-Lipschitz equivalent
word length. When given an isometry A of the metric space X, we can consider its displacement
length, that is the non-negative real l(A) ∶= inf

x∈X
d(Ax,x). For a representation ρ ∶ F2 → Isom(X),

we will denote by lρ(γ) ∶= l(ρ(γ)) the displacement length of ρ(γ), for γ ∈ F2. We can always
compare, for any representation, the displacement length and the word length in the following
way :

∀γ ∈ F2, lρ(γ) ≤ C ′∥γ∥.

Here, C ′ is a constant that can be chosen to be the maximum C ′ ∶= max{d(ρ(a)o, o), d(ρ(b)o, o)}
with o being any basepoint of X. Indeed, for γ cyclically reduced, lρ(γ) ≤ d(ρ(γ)o, o) ≤ C ′∥γ∥ by
the triangle inequality.
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One might ask about the other inequality, that is, does there exist two constants C and D, such
that for any element γ ∈ F2, we have :

1
C
∥γ∥ −D ≤ lρ(γ) ? (1.1)

Of course this is not true in general, and it gives rise to the notion of convex-cocompact represen-
tations already mentioned in the example 1.2 above.

In the free group F2, we say that an element γ ∈ F2 is primitive if it is part of a free basis of
F2. We denote by P(F2) the set of primitive elements in F2.
Following the work of Bowditch ([Bow98]), a broader class of representations can be obtained when
considering this last inequality (1.1) only for primitive elements in F2, and this leads to the notion
of what we call a Bowditch representation.

Definition 1.1 (Bowditch representations, Γ = F2). Let ρ ∶ F2 → Isom(X) be a representation and
C ≥ 1,D ≥ 0 two constants. We say that ρ is a Bowditch representation of constants (C,D) if :

∀γ ∈ P(F2),
1
C
∥γ∥ −D ≤ lρ(γ) (1.2)

We say that ρ is a Bowditch representation if there exist two constants C ≥ 1 and D ≥ 0 such that
ρ is a Bowditch representation of constants (C,D).

Denote by BQ(F2,X) the set of Bowditch representations from F2 to Isom(X).

The original definition by Bowditch ([Bow98]) was given for representations of F2 into PSL(2,C).
He defined these representations using the traces in PSL(2,C) of the image of primitive elements,
as follows :

1. Tr(ρ([a, b])) = −2, where [a, b] denotes the commutator of two generators a and b of F2.

2. For all γ ∈ P(F2), Tr(ρ(γ)) ∉ [−2,2]

3. The set {γ ∈ P(F2) ∶ ∣Tr(ρ(γ))∣ ≤ 2} is finite.

Bowditch defines BQ to be the space of representations of F2 into PSL(2,C) (modulo conjugation)
satisfying the three previous conditions. Bowditch shows ([Bow98], Theorem 3.16), that BQ is open
in the character variety χ(F2,PSL(2,C)) and that the outer automorphism group of F2, Out(F2),
acts properly discontinuously on BQ. Hence BQ produces an open domain of discontinuity for the
action of Out(F2) on χ(F2,PSL(2,C)). In addition, Bowditch shows that ([Bow98], Theorem 2) :

for all ρ ∈ BQ, there exists a constant C > 0 such that for all γ ∈ P(F2),
1
C
∥γ∥ ≤ lρ(γ). (1.3)

Note that in this inequality, lρ(γ) makes sense because ρ(γ) is an isometry of the usual hyperbolic
space of dimension 3 (recall that PSL(2,C) = Isom+(H3)).
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The work of Bowditch was later on generalized by Tan, Wong and Zhang in [TWZ08] for repre-
sentations satisfying only conditions 2. and 3. (that is when Tr(ρ([a, b])) = τ , for any τ ∈ C).
They showed, as in the case of Bowditch where 1. also holds (Tr(ρ([a, b])) = −2), that these
representations form an open subspace of the character variety on which the outer automorphism
group acts properly discontinuously. They also showed that the inequality (1.3) holds. It is easy to
check that the converse is also true : when a representation satisfy (1.3), it automatically satisfy
conditions 2. and 3. Thus, the inequality (1.3), which does not make use anymore of the traces
of elements in PSL(2,C), can thus be generalised to Isom(X) as done in definition 1.1. Note that
the additive constant in definition 1.1 plays no major role.

1.3 Primitive-stable representations
Consider C the Cayley graph of the free group of rank two F2 with respect to the free generating

set {a, b} chosen in previous section. This graph comes equipped with the word metric, that we
denote again d (in context, there should be no ambiguity with the metric d of the metric space X)
and which satisfies : d(u, v) = ∣u−1v∣, where ∣ ⋅ ∣ is the word length. We will sometimes refer to the
vertices of C as the integer points of C. For γ ∈ F2, we denote by Lγ the axis of γ in the Cayley
graph C. Note that when γ is cyclically reduced, Lγ = ⋃

n∈Z
[γn, γn+1]. We will refer to the geodesics

Lγ with γ ∈ P(F2) as primitive-leaves.

Fix o a basepoint in X. For every representation ρ of F2 in Isom(X) we define the orbit map τρ

of ρ to be the unique ρ-equivariant map from the Cayley graph C of F2 into X such that τρ(1) = o
and each edge of C is mapped to a geodesic segment in X. Thus we have that τρ is continuous and
that for any vertex g ∈ F2, τρ(g) = ρ(g)o. Moreover, τρ is Lipschitz, with Lipschitz constant C ′,
where C ′ can be chosen to be the maximum C ′ ∶= max{d(ρ(a)o, o), d(ρ(b)o, o)} (with {a, b} the
free generating set for F2 used to define the Cayley graph C). This is, as for the inequality (1.2),
a consequence of the triangle inequality.

Before stating the definition of primitive-stable representations, we recall the definition of a
quasi-isometric embedding :

Definition 1.2. Let (X , dX ) and (Y, dY) be two metric spaces and C > 0,D ≥ 0 be two constants.
We say that a map f ∶ X → Y is a (C,D)-quasi-isometric embedding if for all points x and x′ in X ,
we have :

1
C
dX (x,x′) −D ≤ dY(f(x), f(x′)) ≤ CdX (x,x′) +D (1.4)

We now give the definition of a primitive-stable representation, as introduced by Minsky in
[Min13].

Definition 1.3 (Primitive-stable representations, Γ = F2). Let ρ ∶ F2 → Isom(X) be a represen-
tation. We say that ρ is primitive-stable if there exist two constants C ≥ 1 and D ≥ 0 such that
for any primitive element γ ∈ F2, the orbit map τρ restricted to Lγ is a (C,D)-quasi-isometric
embedding.
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Minsky defined primitive-stability for representations with values in PSL(2,C) = Isom+(H3),
but his definition generalizes directly to the more general δ-hyperbolic case.
Note that since, as mentioned above, the orbit map τρ is always Lipschitz, showing that the orbit
map is a quasi-isometric embedding (either on the Cayley graph or on primitive-leaves) reduced
to showing the left inequality of (1.4) : 1

C
d(x,x′) − D ≤ d(τρ(x), τρ(x′)). Also notice that the

primitive-stability condition only need to be verified on cyclically reduced primitive elements.

Remark that when primitive elements are sent to hyperbolic isometries via the representa-
tion, the orbit map restricted to any primitive leave Lγ is always a quasi-isometric embedding.
However, the constants may depend on the primitive element γ. Hence Minsky’s definition of
primitive-stability is really about saying that all primitive-leaves are mapped to uniform quasi-
geodesics in X.
Minsky proved, in [Min13], that the set of primitive-stable representations is open in the char-
acter variety χ(F2,PSL(2,C)), that it is invariant under the action of the outer automorphism
group Out(F2) and that this action is properly discontinuous. Hence primitive-stable representa-
tions provide an open domain of discontinuity for the action of Out(F2) on the character variety
χ(F2,PSL(2,C)). Moreover, Minsky proved that the set of primitive-stable representations strictly
contains the set of discrete and faithful convex-cocompact representations, which is the interior of
the set of discrete representation. Thus there exist non-discrete primitive-stable representations.
Denote by PS(F2,X) the set of primitive-stable representations from F2 to Isom(X).

1.4 Equivalence
Lee and Xu on one hand (in [LX19]), and Series independently (in [Ser19], [Ser20]), proved

that the set of Bowditch representations and primitive-stable representations of F2 with values in
PSL(2,C) are equal.

The aim of this thesis is to work on a generalisation of this result to the case of representations
in the isometry group of a δ-hyperbolic space. Our proof and techniques are independent of those
of Lee-Xu and Series for the case PSL(2,C).

Theorem 1.2. Let X be a δ-hyperbolic space, geodesic and proper.
Then the set of Bowditch representations and primitive-stable representations of F2 are equal.

BQ(F2,X) = PS(F2,X)

It is not hard to prove that primitive-stable representations form an open subspace of χ(F2, Isom(X)).
We give a proof of this property in section 3.2. The action of the outer automorphism group
Out(F2) is properly discontinuous on the set of Bowditch representation BQ(X) so we obtain the
following corollary :

Corollary 1.3. The set BQ(F2,X) is an open domain of discontinuity for the action of Out(F2)
on χ(F2, Isom(X)).
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1.5 The case of the four-punctured sphere
We say that a closed curve γ on a surface S is simple if there exists a representative of γ in its

homotopy class which has no self-intersection and which does not bound a disk or a once-punctured
disk. Let us denote by S(S) the set of free homotopy classes of (unoriented) simple closed curves
on S. Of course the set of simple closed curves is invariant under the action of the mapping group
of S.

Let us recall that the group F2 is the fundamental group of the once-punctured torus T.
Primitive conjugacy classes in F2 = π1(T) are in bijective correspondence with the oriented simple
closed curves on the torus. The mapping class group of the torus identifies with an index two
subgroup of the outer automorphism group Out(F2). Thus this analogy between primitive elements
in F2 and simple closed curves on the torus suggests that we consider a natural generalisation of
Bowditch representations and primitive-stable representations to fundamental groups of surfaces,
possibly with boundary. Indeed, the definition of Bowditch representations given in Definition
1.1 still makes sense when replacing F2 with π1(S) and P(F2) with S(S). In the same way,
Definition 1.3 of primitive-stable representations still makes sense when replacing F2 by π1(S) and
primitive elements by simple closed curves on S, and in this context we will call them simple-
stable representations. For the sake of completeness, we write here the definitions of a Bowditch
representation and a simple-stable representation in the context of fundamental groups of surfaces :

Definition 1.4 (Bowditch representations, Γ = π1(S)). Let ρ ∶ π1(S) → Isom(X) be a represen-
tation and C ≥ 1,D ≥ 0 two constants. We say that ρ is a Bowditch representation of constants
(C,D) if :

∀γ ∈ S(S), 1
C
∥γ∥ −D ≤ lρ(γ) (1.5)

We say that ρ is a Bowditch representation if there exist two constants C ≥ 1 and D ≥ 0 such that
ρ is a Bowditch representation of constants (C,D).

We denote by BQ(π1(S),X) the set of Bowditch representations from π1(S) to Isom(X).

Definition 1.5 (Simple-stable representations, Γ = π1(S)). Let ρ ∶ π1(S) → Isom(X) be a repre-
sentation. We say that ρ is simple-stable if there exist two constants C ≥ 1 and D ≥ 0 such that
for any simple element γ ∈ S(S), the orbit map τρ restricted to Lγ is a (C,D)-quasi-isometric
embedding.

We denote by PS(π1(S),X) the set of simple-stable representations from π1(S) to Isom(X).

Thus, in a second part of the thesis we will be interested in the case where the surface S is the
four-punctured sphere S0,4. In this new setting, we prove the equivalence between Bowditch and
simple-stable representations :

Theorem 1.4. Let X be a δ-hyperbolic space, geodesic and proper.
Then the sets of Bowditch representations and of simple-stable representations of π1(S0,4) are equal.

BQ(π1(S0,4),X) = PS(π1(S0,4),X)
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In a similar way to the case of F2, this gives the following corollary :

Corollary 1.5. The set BQ(π1(S0,4),X) is an open domain of discontinuity for the action of
MCG(π1(S0,4)) on χ(π1(S0,4), Isom(X)).

The equivalence for more general surfaces Sg,n of genus g with n punctures, remains open :

Question. Let Sg,n be a surface of genus g with n punctures.

Is BQ(π1(Sg,n),X) = PS(π1(Sg,n),X) ?
Is BQ(π1(Sg,n),X) open ?

Hence, theorem 1.2 and 1.4 provide a positive answer to the above question in the case where
Sg,n is the once-punctured torus (g = 1, n = 1) and in the case where Sg,n is the four-punctured
sphere (g = 0, n = 4).

Remark 1.6. The SL(2,C)-character variety of the four-punctured sphere has been studied by
Maloni, Palesi and Tan (see [MPT15], see also Palesi [Pal14]). In particular, they proved that the
Bowditch set BQ(π1(S0,4),H3) is an open domain of discontinuity for the action of the mapping
class group. In addition, they provide a characterization similar to the Bowditch conditions 1., 2.
and 3. Maloni, Palesi and Yang also studied the PGL(2,R) and SL(2,C) character variety of the
three-holed projective plane in [MPY21] and [MP20].
Remark 1.7. We can draw an analogy between the two Theorems 1.2 and 1.4 and a result of
Delzant, Guichard, Labourie and Mozes (see [Del+11], see also a survey of Canary [Can15]) which
says that for Γ a hyperbolic group and X a metric space, a representation ρ ∶ Γ → Isom(X) is
displacing if and only if its orbit map is a quasi-isometric embedding. By displacing, the authors
mean that the displacement length lρ(γ) grows linearly with the cyclically reduced word length ∣γ∣.
The Bowditch condition (Definition 1.1) can be seen as a restriction of the displacing condition on
primitive elements (or simple closed curves), hence we could talk about primitive-displacing (or
about simple-displacing) representations. Primitive-stability (or simple-stability) is a restriction
of the condition of quasi-isometric embedding of the orbit map on primitive leaves (or simple
leaves). Therefore Theorem 1.2 and 1.4 can be reinterpreted by saying that a representation of F2
(resp. of π1(S0,4)) is primitive-displacing (resp. simple-displacing) if and only if its orbit map is a
quasi-isometric embedding on primitive leaves (resp. simple leaves).

1.6 Outline of the thesis and strategy of the proof
Let us detail the plan of the thesis. Chapter 2 is dedicated to some generalities on δ-hyperbolic

spaces. In particular, in section 2.1 we establish a lower bound on the length of a path in a δ-
hyperbolic space which stays "far away" from a geodesic. The main result of this section is propo-
sition 2.11. In section 2.2 we gather together a few results about isometries and quasi-geodesics
in a δ-hyperbolic space. Then follows a short chapter (Chapter 3) which aims to give some basic
properties about Bowditch and primitive-stable (or simple-stable) representations : first, in section
3.1, the inclusion PS(Γ,X) ⊂ BQ(Γ,X) for Γ = F2 or π1(S0,4) which poses no difficulty (notice
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that this inclusion was already proven by Minsky in [Min13]), then, in section 3.2, the openness of
the set of primitive-stable (or simple-stable) representations.

We then divide the dissertation, which aims at proving theorems 1.2 and 1.4, into two parts :
one on the case of the free group of rank two (Part I) and the other on the case of the fundamental
group of the four-punctured sphere (Part II). Even though the general strategy of the proof is the
same for theorems 1.2 and 1.4, it relies on combinatorial properties in F2 and in π1(S0,4) which are
not exactly the same and which we prove in totally different ways.

Thus, chapter 4 and chapter 8 will be respectively dedicated to studying the structure of prim-
itive words in F2 and the structure simple closed curves in π1(S0,4). More specifically, one of the
goals is to understand the redundancy of primitive subwords within a primitive word in F2 (re-
spectively simple subwords in a simple word in π1(S0,4)). Precisely, in the case of F2, in definition
4.1 and proposition 4.3, we explain how to decompose γ (or maybe a cyclic permutation of γ) as
a concatenation of primitive subwords for different scales, which will correspond to the successive
steps in the continued fraction expansion of the slope of γ (for the reader unfamiliar with these
notions, they are recalled in the beginning of section 4). Then, in lemma 4.6, we prove that for
every primitive word γ ∈ F2, there exist some specific lengths, which we call "magic-lengths", such
that each subword of γ of one of these lengths is "nearly" primitive, in the sense that it is so up
to changing its last letter. In the case of π1(S0,4), we don’t find "magic-lengths" such that every
subwords of one of these lengths is "nearly" simple, but we find "magic-lengths" such that every
subword of one of these lengths can be found (together with its inverse) in many other places in
the word. This is Proposition 8.16.

Next comes Chapter 5 (in the case of F2) and Chapter 9 (in the case of π1(S0,4)) which discuss
two important examples of a uniform quasi-geodesicity setting which will be reused later. They
also establish some useful Lemmas on Bowditch representations using some of the combinatorial
descriptions of primitive elements in F2 resp. simple elements in π1(S0,4) given in the previous
Chapters 4 resp. 8.

Finally we want to show, starting from a Bowditch representation, that it is primitive-stable
(or simple-stable), meaning that all the geodesics Lγ (for γ primitive, or simple) are mapped by the
orbit map to uniform quasi-geodesics in X. It is almost immediate to see that under the Bowditch
hypothesis, the geodesic Lγ are mapped to quasi-geodesics, but the constants of quasi-geodesicity
might depend on γ. The main difficulty, and first step of the proof, will be to show that these
quasi-geodesics τρ(Lγ) stay in a uniform neighborhood of the axis of ρ(γ). Namely, this means
that our family of quasi-geodesics τρ(Lγ) satisfies a Morse lemma. After this major step in the
proof, done in Chapter 6 (in the case of F2) and in Chapter 10 (in the case of π1(S0,4)), there will
only be a little work left in order to show the primitive-stability of the representation ρ, and this
will be done in Chapter 7 (in the case of F2) and in Chapter 11 (in the case of π1(S0,4)).

Let us now explain what are the key ideas of the main step of the proof, which states (propo-
sition 6.3 and 10.1) that the quasi-geodesics τρ(Lγ) stay "close" to the axis of ρ(γ).
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We will proceed by contradiction and suppose that we can find a primitive (or simple) element γ
such that the associated quasi-geodesic τρ(Lγ) does not stay close to the axis of ρ(γ). Then we can
find what we will call an excursion, that is a path extracted from the quasi-geodesic that remains
"far away" from the axis of ρ(γ) (section 6.3 and 6.4 for F2 and section 10.3 for π1(S0,4)). We
will next define the notion of a quasi-loop (section 6.5 for F2 and section 10.4 for π1(S0,4)), which
will be an element u of the group such that ρ(u) does not displace the basepoint much, and prove
in lemma 6.14 that every "big" excursion corresponds to a quasi-loop. This enables us to find a
subword of the element γ which is a quasi-loop. The goal will be next to find as many disjoints
quasi-loops as possible in γ and to do so, we will use the results of section 4 and 8. Indeed, our
quasi-loop is contained in a subword of γ whose length is one of the "magic-lengths" defined in
Proposition 4.6 (case F2) or Proposition 8.16 (case π1(S0,4)), and thus this subword can be found
everywhere in γ, therefore with this process we will find our quasi-loop many times in γ. This will
ensure that some proportion of γ does not displace the basepoint much (Lemma 6.17 and Lemma
10.6). Finally, using a recursive argument on the depth of the continued fraction expansion of the
slope of γ (in Chapter 4 and 8, we will have seen how to associate a slope to a primitive element in
F2 and to a simple closed curve in π1(S0,4)), we will be able to show that we can find an arbitrarily
big proportion of the word γ that does not displace the basepoint much (Lemma 6.18 and Lemma
10.7), which will be in contradiction with the Bowditch hypothesis.
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Chapter 2

Some properties on δ-hyperbolic spaces

2.1 Length of a path in a δ-hyperbolic space
In this section, we will be interested in some properties of length of paths in hyperbolic space.

The goal is to prove the inequalities of Proposition 2.11. Part of the material of this section is
drawn from or inspired by [CDP90]. Let X be a Gromov-hyperbolic space, with hyperbolic con-
stant δ, and suppose that X is geodesic. Denote by d the hyperbolic distance of X. We will write
[x, y] for some geodesic segment with endpoints x and y in X and T = [x, y, z] for a triangle with
vertices x, y and z. Recall that we say that a triangle is δ-thin if each side of the triangle is included
in the δ-neighborhood of the other two. A metric space is δ-hyperbolic if every triangle is δ-thin.

This first lemma, which is a classical result of hyperbolic geometry, gives the existence of three
"close" points in δ-thin triangles.

Lemma 2.1. Let (X,d) be a metric space and T = [x, y, z] a δ-thin triangle of X. There exists
r ∈ [x, y], s ∈ [y, z] and t ∈ [x, z] such that d(r, s) ≤ δ and d(r, t) ≤ δ. (Hence in addition d(s, t) ≤ 2δ)

Proof. Consider :

L = {r ∈ [x, y] ∶ ∃t ∈ [x, z], d(r, t) ≤ δ}
R = {r ∈ [x, y] ∶ ∃s ∈ [z, y], d(r, s) ≤ δ}

Then :

● R and L are non-empty because x ∈ L and y ∈ R.

● R and L are closed because [x, z] and [z, y] are compact.

● We have [x, y] = R ∪L since the triangle [x, y, z] is δ-thin.

We deduce that R ∩L ≠ ∅.
Indeed, if R ∩ L = ∅, we would obtain an open cover of [x, y] with two disjoint non-empty open
sets ([x, y]/L and [x, y]/R), which would contradict the connectedness of [x, y].

23
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Thus we deduce the existence of r ∈ [x, y], s ∈ [y, z] and t ∈ [x, z] such that d(r, s) ≤ δ and
d(r, t) ≤ δ.

The following lemma generalises the notion of δ-thin triangle in δ-hyperbolic spaces and is
taken from [CDP90].

Lemma 2.2. Let X be a δ-hyperbolic geodesic space and Y = [x0, x1] ∪ [x1, x2] ∪ ⋯ ∪ [xn−1, xn] a
chain of n geodesic segments, with n ≤ 2k, where k is an integer such that k ≥ 1. Then, for any
point x in a geodesic segment [x0, xn], we have d(x,Y ) ≤ kδ.

Proof. Let us proceed by induction on k ≥ 1.

● If k = 1, that is n = 2, it is the case of a triangle. Since X is δ-hyperbolic, then the triangles
are δ-thin, so we have the requested inequality.

● Assume that the property is true for some k ≥ 1 and let us consider n geodesic segments, with
n ≤ 2k+1. After possibly artificially adding points on Y , we can assume that n = 2k+1. Let
x ∈ [x0, xn]. The triangle with vertices x0, xn

2
and xn is δ-thin which ensures the existence

of m ∈ [x0, xn
2
] ∪ [xn

2
, xn] such that d(x,m) ≤ δ. Without loss of generality, suppose that

m ∈ [x0, xn
2
]. We have n

2 ≤ 2k so by induction we can find a point m′ ∈ [x0, x1]∪⋯∪[xn
2 −1, xn

2
]

such that d(m,m′) ≤ kδ. Thus, by the triangle inequality, we obtain : d(x,m′) ≤ d(x,m) +
d(m,m′) ≤ δ + kδ = (k + 1)δ.

In particular, by the lemma 2.2, if we consider a hyperbolic quadrilateral with vertices x, y, y1, x1
(in this order), then every point of [x, y] is at a distance at most 2δ of a point of [x,x1]∪ [x1, y1]∪
[y1, y]. Thus we have the following alternative :

● ∀z ∈ [x, y], d(z, [x1, y1]) > 2δ and in this case ∀z ∈ [x, y], d(z, [x,x1] ∪ [y, y1]) ≤ 2δ

● ∃z ∈ [x, y], d(z, [x1, y1]) ≤ 2δ

Several of the following lemmas depend on this alternative. The following lemma finds three
"close" points in the quadrilateral in the first case of this alternative.

Lemma 2.3. Let X be a δ-hyperbolic geodesic space, and x,x1, y1, y ∈ X (in this order) be the
vertices of a hyperbolic quadrilateral of X. We further assume that for all z ∈ [x, y], d(z, [x1, y1]) >
2δ. Then there exists z ∈ [x, y], r ∈ [x,x1] and s ∈ [y, y1] such that d(z, r) ≤ 2δ and d(z, s) ≤ 2δ.

Proof. The proof is that same as the proof of the lemma 2.1.

By the lemma 2.2, every point z ∈ [x, y] is at a distance at most 2δ of [x,x1]∪ [x1, y1]∪ [y1, y].
But, by hypothesis, for all z ∈ [x, y], d(z, [x1, y1]) > 2δ, so for all z ∈ [x, y], there exists z′ ∈
[x,x1] ∪ [y1, y] such that d(z, z′) ≤ 2δ.
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Consider :

L = {z ∈ [x, y] ∶ ∃r ∈ [x,x1], d(z, r) ≤ 2δ}
R = {z ∈ [x, y] ∶ ∃s ∈ [y, y1], d(z, s) ≤ 2δ}

Then :

● R and L are non-empty because x ∈ L and y ∈ R.

● R and L are closed because [x,x1] and [y, y1] are compact.

● We have [x, y] = R ∪ L because, by the lemma 2.2, every point of [x, y] is at a distance at
most 2δ of [x,x1]∪ [x1, y1]∪ [y1, y], and, by hypothesis, every point of [x, y] is at a distance
at least 2δ of [x1, y1].

We deduce that R ∩L ≠ ∅.
Indeed, if R ∩ L = ∅, we would have an open cover of [x, y] in two disjoints non-empty open sets
([x, y]/L and [x, y]/R), which would contradict the connectedness of [x, y].
Thus we deduce the existence of z ∈ [x, y], r ∈ [x,x1] and s ∈ [y, y1] such that d(z, r) ≤ 2δ and
d(z, s) ≤ 2δ.

A quadrilateral [x, y, x1, y1] has thus one of two typical general shapes : the one where a point
of [x, y] is close to a point of [x1, y1] and the one where all points of [x, y] are far from [x1, y1].
The following lemma clarifies this alternative in terms of comparing the lengths of the sides of the
quadrilateral, in the more specific case where x1 and y1 are projections of x and y on a geodesic.

Lemma 2.4. Let X be a δ-hyperbolic geodesic space and l a bi-infinite geodesic of X. Let x and
y be two points in X. Let Kx = d(x, l), Ky = d(y, l) and d = d(x, y). Consider x1 and y1 two
projection of x and y on l, that is two points x1, y1 ∈ l satisfying d(x,x1) = Kx and d(y, y1) = Ky.
We denote by [x1, y1] the geodesic segment included in l with endpoints x1 and y1.

● If ∃z ∈ [x, y], d(z, [x1, y1]) ≤ 2δ, then d ≥Kx +Ky − 4δ

● If ∀z ∈ [x, y], d(z, [x1, y1]) > 2δ, then d ≤Kx +Ky + 4δ

Proof. ● Suppose that there exists z ∈ [x, y] and z1 ∈ [x1, y1] such that d(z, z1) ≤ 2δ. By
definition, x1 minimizes the distance from x to l, and z1 ∈ l so d(x, z1) ≥Kx. Then :

d(x, z) ≥ d(x, z1) − d(z, z1) ≥Kx − 2δ (2.1)

Similarly, since y1 minimizes the distance from y to l, we get :

d(z, y) ≥ d(y, z1) − d(z, z1) ≥Ky − 2δ (2.2)

Thus, since z ∈ [x, y], we obtain by combining (2.1) and (2.2) :

d = d(x, y) = d(x, z) + d(z, y) ≥Kx +Ky − 4δ
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● Suppose that for all z ∈ [x, y], d(z, [x1, y1]) > 2δ. Then by the lemma 2.3, there exists
z ∈ [x, y], r ∈ [x,x1] and s ∈ [y, y1] such that d(z, r) ≤ 2δ and d(z, s) ≤ 2δ. Hence we have on
one hand :

d(x, z) ≤ d(x, r) + d(r, z)
= d(x,x1) − d(r, x1) + d(r, z) because r ∈ [x,x1]
≤Kx + 2δ since d(r, z) ≤ 2δ.

On the other hand, we obtain in the same way :

d(z, y) ≤Ky + 2δ

and then :
d = d(x, z) + d(z, y) ≤Kx +Ky + 4δ.

The following lemma and corollary aim to bound, in the same context as in the previous lemma,
the distance between x1 and y1.

Lemma 2.5. Let X be a δ-hyperbolic geodesic space, and l a bi-infinite geodesic of X. Let x and
y be two points in X, denote Kx = d(x, l) and Ky = d(y, l). Consider x1 and y1 two projections of
x and y on l, that is two points x1, y1 ∈ l satisfying d(x,x1) = Kx and d(y, y1) = Ky. We denote
by [x1, y1] the geodesic segment included in l with endpoints x1 and y1. We let d = d(x, y) and
d1 = d(x1, y1). Then we have the following alternative :

● If ∀z ∈ [x1, y1], d(z, [x, y]) > 2δ, then d1 ≤ 8δ.

● If ∃z ∈ [x1, y1], d(z, [x, y]) ≤ 2δ, then d1 ≤ d −Kx −Ky + 12δ.

In particular, we always have the inequality d1 ≤ d + 12δ.

Proof. ● Suppose that for all z ∈ [x1, y1] one has d(z, [x, y]) > 2δ. Denote [x,x1] (respectively
[y, y1]) a geodesic segment with endpoints x and x1 (respectively y and y1), then, by the
lemma 2.3 the exists z ∈ [x1, y1], s ∈ [x,x1] and r ∈ [y, y1] such that d(z, s) ≤ 2δ and
d(z, r) ≤ 2δ. Therefore

d(x1, z) ≤ d(x1, s) + d(s, z)
≤ d(x1, s) + 2δ because d(s, z) ≤ 2δ
= d(x,x1) − d(x, s) + 2δ since s ∈ [x,x1]
≤ d(x,x1) − d(x, z) + 2δ + 2δ because d(x, z) ≤ d(x, s) + d(s, z) ≤ d(x, s) + 2δ.

But x1 is a projection of x to l and z ∈ l, so d(x,x1) ≤ d(x, z). Thus :

d(x1, z) ≤ 4δ. (2.3)
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Similarly, we show that :
d(z, y1) ≤ 4δ. (2.4)

Thus, by summing (2.3) and (2.4), we obtain :

d1 ≤ 8δ.

● Suppose that there exists z ∈ [x, y] and z1 ∈ [x1, y1] such that d(z, z′) ≤ 2δ. Consider [x, z1] a
geodesic segment with endpoints x and z1. The triangle [x,x1, z1] is δ-thin so, by the lemma
2.1 there exists r ∈ [x,x1], s ∈ [x, z1] and t ∈ [x1, z1] such that d(t, r) ≤ δ and d(t, s) ≤ δ. In
particular, d(r, s) ≤ 2δ. Thus, we have :

d(x1, t) ≤ d(x1, r) + d(r, t)
≤ d(x1, r) + δ because d(r, t) ≤ δ
= d(x,x1) − d(x, r) + δ because r ∈ [x,x1]
≤ d(x,x1) − d(x, t) + δ + δ since d(x, t) ≤ d(x, r) + d(r, t) ≤ d(x, r) + δ

But x1 is a projection of x on l and t ∈ l so d(x,x1) ≤ d(x, t). Thus :

d(x1, t) ≤ 2δ. (2.5)

Furthermore :

d(t, z1) ≤ d(t, s) + d(s, z1)
≤ δ + d(s, z1) because d(t, s) ≤ δ
= d(x, z1) − d(x, s) + δ since s ∈ [x, z1]
≤ d(x, z) + d(z, z1) − d(x, t) + δ + δ because d(x, t) ≤ d(x, s) + d(s, t) ≤ d(x, s) + δ
≤ d(x, z) + 2δ − d(x, t) + 2δ since d(z, z1) ≤ 2δ

and d(x, t) ≥ d(x,x1) =Kx, so

d(t, z1) ≤ d(x, z) −Kx + 4δ. (2.6)

Thus, combining (2.5) and (2.6), we get:

d(x1, z1) = d(x1, t) + d(t, z1) ≤ d(x, z) −Kx + 6δ (2.7)

By the same reasoning, considering the triangle [y, y1, z1], we get :

d(z1, y1) ≤ d(z, y) −Ky + 6δ (2.8)

We deduce, using (2.7) and (2.8) :

d1 = d(x1, z1) + d(z1, y1)
≤ d(x, z) −Kx + 6δ + d(z, y) −Ky + 6δ
= d(x, y) −Kx −Ky + 12δ car z ∈ [x, y]
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Thus :
d1 ≤ d −Kx −Ky + 12δ.

Thus, we deduce an upper bound on d1 depending only on the hyperbolic constant δ in the case
when d ≤ Kx +Ky + 6δ. (The choice of this particular threshold on d comes from the disjunction
made in the proposition 2.11 at the end of this section.)

Corollary 2.6. Let X be a δ-hyperbolic geodesic space, and l a bi-infinite geodesic of X. Let x
and y be two points in X, denote Kx = d(x, l) and Ky = d(y, l). Consider x1 and y1 two projections
of x and y on l, that is two points x1, y1 ∈ l satisfying d(x,x1) = Kx and d(y, y1) = Ky. Denote
d = d(x, y) and d1 = d(x1, y1). Then :

If d ≤Kx +Ky + 6δ, then d1 ≤ 18δ.

Proof. According to the lemma 2.5, we have d1 ≤max(8δ, d−Kx −Ky +12δ). But d ≤Kx +Ky +6δ,
so

d1 ≤max(8δ, d −Kx −Ky + 12δ) ≤max(8δ,18δ) = 18δ.

The following lemmas, 2.7, 2.8 and 2.10, as well as the propositions 2.9 and 2.11, aim at bound-
ing from below the length of a path remaining at a distance at least K from a given geodesic. This
first lemma, which is a first step, minimizes this length using the distance of a point z on a geodesic
connecting the extremal points of the path and a point on the path.

Lemma 2.7. Let X be a δ-hyperbolic geodesic space, l a bi-infinite geodesic of X and K > 0.
Consider f ∶ [a, b]→X a continuous rectifiable path such that :

∀t ∈ [a, b], d(f(t), l) ≥K

Let x = f(a), y = f(b) and consider [x, y] a geodesic segment with endpoints x and y. Denote
L = length(f([a, b])) and suppose L > 2δ.
Then, for all z ∈ [x, y], there exists t ∈ [a, b] such that :

L ≥ (2
d(z,f(t))

δ
−1 − 2)δ.

Proof. Since the path f([a, b]) is rectifiable, there exists a subdivision of f([a, b]) in n arcs, each
of length 2δ except possibly the last one of length smaller than 2δ (then n = ⌈ L

2δ ⌉). Denote by
y0 = x, y1,⋯, yn = y the points of this subdivision and consider Y = [y0, y1] ∪ [y1, y2] ∪⋯∪ [yn−1, yn]
the chain of n geodesic segments connecting these points.
We can therefore bound the length of the path f([a, b]) from below by the length of the first n− 1
paths of this subdivision:

L ≥ (n − 1)2δ (2.9)
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The hypothesis L > 2δ allows us to assert that n ≥ 2. Then there exists k ≥ 1 such that
2k−1 < n ≤ 2k. We deduce :

L ≥ (2k−1 − 1)2δ = (2k − 2)δ (2.10)

We can apply the lemma 2.2 to z ∈ [y0, yn] and Y : there exists p ∈ Y such that d(z, p) ≤ kδ.
Moreover, there exists i ∈ {0, n − 1} such that p ∈ [yi, yi+1], and d(yi, yi+1) ≤ 2δ (because the
distance between yi and yi+1 is in particular smaller than 2δ) so, there exists j ∈ {0, n} such that
d(p, yj) ≤ δ.
Let z ∈ [x, y]. Then, by the triangle inequality, we obtain the upper bound d(z, yj) ≤ d(z, p) +
d(p, yj) ≤ kδ + δ = (k + 1)δ from which we deduce k ≥ d(z, yj)/δ − 1. Moreover, since yj ∈ f([a, b]),
we deduce the existence of t ∈ [a, b] such that yj = f(t). Thus from the inequality (2.10) we obtain
the desired inequality:

L ≥ (2
d(z,f(t))

δ
−1 − 2)δ.

Now, we try to give a lower bound on the term d(z, f(t)) in the previous lemma 2.7. We give
two lower bounds according to the shape of the quadrilateral.

Lemma 2.8. Let X be a δ-hyperbolic geodesic space, l a bi-infinite geodesic of X and K > 0.
Consider f ∶ [a, b]→X a continuous rectifiable path such that :

∀t ∈ [a, b], d(f(t), l) ≥K.

Denote x = f(a), y = f(b), d = d(x, y),Kx = d(x, l),Ky = d(y, l) and L = length(f([a, b])). Let x1
and y1 be two projections of x and y on l.
Consider [x, y]a geodesic segment with endpoints x and y and [x1, y1] the geodesic segment included
in l with endpoints x1 and y1.
We can bound from below the distance from a point z of [x, y] to any point on the path f([a, b])
in the following two cases :

● Suppose that ∀z ∈ [x, y], d(z, [x1, y1]) > 2δ. Then :

∃z ∈ [x, y],∀t ∈ [a, b], d(z, f(t)) ≥ d2 +K −
1
2(Kx +Ky) − 4δ (2.11)

In particular, if Kx =Ky =K, we have :

∃z ∈ [x, y],∀t ∈ [a, b], d(z, f(t)) ≥ d2 − 4δ (2.12)

● Suppose that ∃z ∈ [x, y], d(z, [x1, y1]) ≤ 2δ. Then :

∃z ∈ [x, y],∀t ∈ [a, b], d(z, f(t)) ≥K − 2δ (2.13)
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Proof. ● Suppose that ∀z ∈ [x, y], d(z, [x1, y1]) > 2δ. Then, considering a quadrilateral with
vertices x,x1, y1, y (in this order), we deduce by the lemma 2.3 the existence of z ∈ [x, y], r ∈
[x,x1] and s ∈ [y, y1] such that d(z, r) ≤ 2δ and d(z, s) ≤ 2δ. Let t ∈ [a, b]. Then :

K ≤ d(f(t), l) by hypothesis
≤ d(f(t), x1) because x1 ∈ l
≤ d(f(t), z) + d(z, r) + d(r, x1) by the triangle inequality
≤ d(f(t), z) + 2δ + d(r, x1) because d(z, r) ≤ 2δ
= d(f(t), z) + 2δ + d(x,x1) − d(x, r) because r ∈ [x,x1]
≤ d(f(t), z) + 2δ +Kx − d(x, r) since x1 is a projection of x on l

≤ d(f(t), z) + 2δ +Kx − d(x, z) + d(z, r) by the triangle inequality
≤ d(f(t), z) + 2δ +Kx − d(x, z) + 2δ because d(z, r) ≤ 2δ.

We deduce :
d(x, z) +K −Kx − 4δ ≤ d(f(t), z). (2.14)

By analogous reasoning changing x to y, x1 to y1, r to s and Kx to Ky, we also get :

d(z, y) +K −Ky − 4δ ≤ d(f(t), z). (2.15)

Thus, averaging the inequalities (2.14) and (2.15), and since d = d(x, y) = d(x, z)+d(z, y) we
obtain the desired inequality :

d

2 +K −
1
2(Kx +Ky) − 4δ ≤ d(f(t), z).

● Suppose that ∃z ∈ [x, y], d(z, [x1, y1] ≤ 2δ. Then let z′ ∈ [x1, y1] such that d(z, z′) ≤ 2δ. Let
t ∈ [a, b]. We have :

K ≤ d(f(t), z′) because z′ ∈ l
≤ d(f(t), z) + d(z, z′) by the triangle inequality
≤ d(f(t), z) + 2δ because d(z, z′) ≤ 2δ

We have indeed shown that
d(f(t), z) ≥K − 2δ.

The following proposition is a direct consequence of the two previous lemmas. It gives a lower
bound on the length of a path remaining at a distance at least K from a geodesic as a function of
the distance between the extremal points of the path, the distances of the extremal points to the
geodesic and K.
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Proposition 2.9. Let X be a δ-hyperbolic geodesic space, l a bi-infinite geodesic of X and K >
0.Consider f ∶ [a, b]→X a continuous rectifiable path such that :

∀t ∈ [a, b], d(f(t), l) ≥K

Denote x = f(a), y = f(b), d = d(x, y),Kx = d(x, l),Ky = d(y, l) and L = length(f([a, b])) and
suppose that L > 2δ. Let x1 and y1 be some projections of x and y on l.
Consider [x, y] a geodesic segment with endpoints x and y and [x1, y1] the geodesic segment in-
cluded in l with endpoints x1 and y1.

● Suppose that ∀z ∈ [x, y], d(z, [x1, y1]) > 2δ. Then :

L ≥ (2
d−Kx−Ky+2K

2δ
−5 − 2)δ (2.16)

In particular, if Kx =Ky =K, then :

L ≥ (2 d
2δ
−5 − 2)δ (2.17)

● Suppose that ∃z ∈ [x, y], d(z, [x1, y1]) ≤ 2δ. Then :

L ≥ (2K
δ
−3 − 2)δ (2.18)

Proof.

● Suppose that ∀z ∈ [x, y], d(z, [x1, y1]) > 2δ.
According to the property (2.11) of the lemma 2.8 , there exists z ∈ [x, y] such that for all
t ∈ [a, b], d(z, f(t)) ≥ d

2 +K− 1
2(Kx+Ky)−4δ. Then, by the lemma 2.7, we obtain the existence

of t ∈ [a, b] such that
L ≥ (2

d(z,f(t))
δ

−1 − 2)δ.
Indeed we have :

L ≥ (2
d
2 +K− 1

2 (Kx+Ky)−4δ

δ
−1 − 2)δ = (2

d−Kx−Ky+2K

2δ
−5 − 2)δ.

● Suppose that ∃z ∈ [x, y], d(z, [x1, y1]) ≤ 2δ.
According to the property (2.13) of the lemma 2.8, there exists z ∈ [x, y] such that for all
t ∈ [a, b], d(z, f(t)) ≥ K − 2δ. Then, by the lemma 2.7, we obtain the existence of t ∈ [a, b]
such that

L ≥ (2
d(z,f(t))

δ
−1 − 2)δ.

Indeed we have :
L ≥ (2K−2δ

δ
−1 − 2)δ = (2K

δ
−3 − 2)δ.
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The following lemma gives a lower bound on the length of a path remaining at a distance at
least K from a geodesic in the specific case where the distance between the endpoints is known as
a function of the distances of the endpoints to the geodesic.
Lemma 2.10. Let X be a δ-hyperbolic geodesic, l a bi-infinite geodesic of X and K > 0. Consider
f ∶ [a, b]→X a continuous rectifiable path such that :

∀t ∈ [a, b], d(f(t), l) ≥K
Denote x = f(a), y = f(b), d = d(x, y),Kx = d(x, l),Ky = d(y, l) and L = length(f([a, b])) and
suppose that L > 2δ.
Assume that d =Kx +Ky + 6δ, then :

L ≥ (2K
δ
−3 − 2)δ

Proof. Let x1 and y1 be two projections of x and y on l.
Consider [x, y] a geodesic segment with endpoints x and y and [x1, y1] the geodesic segment
included in l with endpoints x1 and y1.
We distinguish two cases :
● If ∃z ∈ [x, y], d(z, [x1, y1]) ≤ 2δ, then the inequality (2.18) of the proposition 2.9 gives

L ≥ (2K
δ
−3 − 2)δ.

● If ∀z ∈ [x, y], d(z, [x1, y1]) > 2δ, then the inequality (2.16) of the proposition 2.9 gives :

L ≥ (2
d−Kx−Ky+2K

2δ
−5 − 2)δ

≥ (2 6δ+2K
2δ
−5 − 2)δ because d =Kx +Ky + 6δ

≥ (2K
δ
−3 − 2)δ.

The following proposition is the most important one in this section. It gives a lower bound
on the length of a path remaining at a distance at least K from a geodesic and whose extremal
points are "approximately" at distance K from this geodesic. It distinguishes two regimes : one
when the distance to the geodesic is very large compared to the distance between the extremal
points and the other in the opposite case. In the first case, the path length grows exponentially
with the distance between the extremal points and in the second case, this growth is linear, but
with a large constant.
Proposition 2.11. Let X be a δ-hyperbolic geodesic space, l a bi-infinite geodesic of X, K > 0
and C > 0 two constants. Consider f ∶ [a, b]→X a continuous rectifiable path such that :

∀t ∈ [a, b], d(f(t), l) ≥K
d(f(a), l) ≤K +C
d(f(b), l) ≤K +C

Denote x = f(a), y = f(b), d = d(x, y) and L = length(f([a, b])).
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● Suppose that d ≤ 2K + 6δ. Then, after denoting D =max(C, δ) :

L ≥ (2 d
2δ
−D

δ
−5 − 2)δ (2.19)

● Suppose that d > 2K + 6δ. Then there exists an integer n ≥ 2 such that :

{ L ≥ (n − 1)(2K
δ
−3 − 2)δ

d ≤ 18nδ + 2K + 2C (2.20)

In particular, we deduce :

L ≥ 1
18(d − 2K − 2C − 18δ)(2K

δ
−3 − 2) (2.21)

Proof. Let us first treat separately the case where L ≤ 2δ. In this case, we also have d ≤ 2δ. Then
d ≤ 2K + 6δ on one hand, and on the other hand (2 d

2δ
−6 − 2)δ ≤ (2−5 − 2)δ < 0 ≤ L, so (2.19) holds.

Let us now suppose that L > 2δ. Denote Kx = d(x, l) and Ky = d(y, l). Then by hypothesis,
Kx −K ≤ C and Ky −K ≤ C.

● Suppose that d ≤ 2K + 6δ.

– Suppose that ∀z ∈ [x, y], d(z, [x1, y1]) > 2δ. Then, according to the inequality (2.16) of
the lemma 2.9, we have :

L ≥ (2
d−Kx−Ky+2K

2δ
−5 − 2)δ ≥ (2 d−2C

2δ
−5 − 2)δ ≥ (2 d

2δ
−C

δ
−5 − 2)δ ≥ (2 d

2δ
−D

δ
−5 − 2)δ.

– Suppose that ∃z ∈ [x, y], d(z, [x1, y1]) ≤ 2δ. Then, according to the inequality (2.18) of
the lemma 2.9, we have :

L ≥ (2K
δ
−3 − 2)δ ≥ (2

d
2 −3δ

δ
−3 − 2)δ ≥ (2 d

2δ
−6 − 2)δ ≥ (2 d

2δ
−D

δ
−5 − 2)δ.

● Suppose that d > 2K + 6δ.
Let t0 ∈ [a, b] and x0 = f(t0). Let us consider :

gt0(t) = d(x0, f(t)) − d(x0, l) − d(f(t), l) − 6δ.

The map gt0 is continuous on [t0, b] and gt0(t0) = d(x0, x0)−d(x0, l)−d(x0, l)−6δ = −2d(x0, l)−
6δ < 0. Then if gt0(b) ≥ 0, there exists, by the intermediate value theorem, t1 ∈ (t0, b] such
that gt0(t1) = 0. Since ga(b) = d(x, y)−d(x, l)−d(y, l)−6δ = d−2K −6δ ≥ 0 by hypothesis, we
can find a sequence of points t0, t1,⋯, tn in [a, b] such that, denoting xi = f(ti), di = d(xi, xi+1)
and Ki = d(xi, l) we have :

– t0 = a, tn = b
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– ∀i ∈ {0, n − 2}, gti
(ti+1) = 0, namely di =Ki +Ki+1 + 6δ

– dn−1 <Kn−1 +Kn + 6δ.

Let Li = length(f([ti, ti+1])), we can use lemma 2.10 between xi and xi+1 to show that
Li ≥ (2

K
δ
−3 − 2)δ as soon as i ∈ {0, n − 2}. This justifies in particular that the number n of

points cutting the path f as above is indeed finite. Moreover, the hypothesis d > 2K + 6δ
implies that n ≥ 2.
Thus we can lower bound the length of the path f on [a, b] by :

L =
n−1
∑
i=0
Li ≥

n−2
∑
i=0
Li ≥ (n − 1)(2K

δ
−3 − 2)δ

which indeed gives us the first inequality of (2.20).

Now consider for all i ∈ {0,⋯, n}, pi a projection of xi on l (we choose in particular p0 = x1
and pn = y1). Denote d1,i = d(pi, pi+1). Since di ≤ Ki +Ki+1 + 6δ, for all i ∈ {0,⋯, n − 1}, the
corollary 2.6 states that d1,i ≤ 18δ. Therefore :

d1 = d(x1, y1) = d(p0, pn) ≤
n−1
∑
i=0
d(pi, pi+1) =

n−1
∑
i=0
d1,i ≤ 18nδ.

Thus :

d = d(x, y) by definition
≤ d(x,x1) + d(x1, y1) + d(y1, y) by the triangle inequality
= d1 + 2K + 2C
≤ 18nδ + 2K + 2C by the inequality (2.1)

which indeed gives us the second inequality of (2.20).
The inequality (2.21) is immediate using the two inequalities of (2.20).

2.2 Isometries, stable length and local-global Lemma
In this short section, we gather together a few results about isometries and quasi-geodesics in

a δ-hyperbolic space.

The fundamental result is that isometries of a δ-hyperbolic space can be classified as follows :
the elliptic ones, whose orbits are bounded, the parabolic ones, which admit a unique accumulation
point in the boundary ∂X, and the hyperbolic ones, for which, denoting A the isometry and o any
basepoint in X, the map from Z to X which send n to Ano is a quasi-isometry embedding. In
particular, when A is a hyperbolic isometry of X, it has exactly two fixed points in the boundary
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of X, one attracting and the other repelling, denoted by A+ and A− respectively.

When given any isometry A in the metric space X, we have already defined in the introduc-
tion its displacement length (see section 1.2), and this notion has been used to define Bowditch
representations (see definition 1.1). We can also consider its stable length, which is defined by

lS(A) = lim
n→∞

1
n
d(Ano, o). (2.22)

It is not hard to check that the stable length is well-defined and invariant under the choice of the
basepoint o in X. The stable length is in general distinct from the displacement length, although
in the hyperbolic n-space Hn these notions coincide. Moreover, it satisfies lS(An) = nlS(A),
whereas this equality is not true in general for the displacement length, unlike the case of Hn. The
stable length is the right notion to determine the hyperbolicity of an isometry : an isometry A is
hyperbolic if and only if lS(A) > 0, whereas this equivalence is not true in general when considering
the displacement length. Finally, we can compare the displacement and the stable length, with
the following inequality ([CDP90], Chapter 10, §6, Proposition 6.4) :

lS(A) ≤ l(A) ≤ lS(A) + 16δ (2.23)
The left inequality follows directly from the definitions, hence is true in any metric space, whereas
the right inequality is really a feature of δ-hyperbolicity.
The proofs of all these facts about the isometries of X and the stable length can be found in
[CDP90], Chapter 9 and 10.6.

Recall we defined in the introduction quasi-isometric embeddings between metric spaces (see
Definition 1.2). We now define a quasi-geodesic of a metric space X to be a quasi-isometric
embedding of R endowed with its usual distance into X. More precisely, we say that f ∶ R→X is
a (λ, k)-quasi-geodesic, if, for any t, t′ in R, we have the inequality :

1
λ
∣t − t′∣ − k ≤ d(f(t), f(t′)) ≤ λ∣t − t′∣ + k. (2.24)

There is also a notion of local-quasi-geodesics : we say that f ∶ R → X is a (λ, k,L)-local-quasi-
geodesic if, for any t, t′ in R, the above inequality (2.24) is satisfied whenever ∣t − t′∣ ≤ L.

Global-quasi-geodesics are trivially local-quasi-geodesic, for any L. The Local-Global Lemma
enables us to pass from local-quasi-geodesicity to global quasi-geodesicity, under the assumption
of hyperbolicity.

Lemma 2.12 (Local-Global, [CDP90], Chapter 3, Theorem 1.4). Let X be a geodesic δ-hyperbolic
space. For all pairs (λ, k), with λ ≥ 1 and k ≥ 0, there exists a real number L and a pair (λ′, k′)
such that every (λ, k,L)-local-quasi-geodesic is a (λ′, k′)-quasi-geodesic (global). Moreover, λ′, k′
and L only depend on δ, λ and k.
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Chapter 3

Bowditch representations and
primitive-stable representations

In this section, we gather a few properties on Bowditch and primitive-stable representations.
Here we deal with F2 and π1(S0,4) at the same time. Hence let us denote Γ = F2 or π1(S0,4) and

S(Γ) = { P(F2) if Γ = F2
S(S0,4) if Γ = π1(S0,4)

.

Let us make a brief comment on the definition of Bowditch representations (see 1.1). Since
lρ(γ) = inf

o∈X
d(ρ(γ)o, o), we immediately deduce that a Bowditch representation of constants (C,D)

satisfies, for any basepoint o ∈X :

∀γ ∈ P(F2),
1
C
∥γ∥ −D ≤ d(ρ(γ)o, o).

The latter inequality will be particularly useful in the proofs. Moreover, recall we defined in
section 2.2 the stable length (2.22), and stated in the inequality (2.23) that it is comparable to the
displacement length, then we can deduce that a Bowditch representation of constants (C,D) also
satisfies :

∀γ ∈ P(F2),
1
C
∥γ∥ −D − 16δ ≤ lS(ρ(γ)).

Thus, in definition 1.1, we could also use the stable length instead of the displacement length.

3.1 The inclusion PS(Γ,X) ⊂ BQ(Γ,X)
Recall that we defined in definitions 1.3 and 1.5 primitive-stability and simple-stability. We

prove in this section a first inclusion between primitive-stable (or simple-stable) representations
and Bowditch representations. It is quite easy to check that primitive-stable (or simple-stable)
representations are in particular Bowditch :

Lemma 3.1. Let ρ ∶ Γ → Isom(X) be a primitive-stable representation. Then ρ is a Bowditch
representation.
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Proof. Let o ∈X be a basepoint. Then, there exist two constants C and D such that ρ is primitive-
stable with constants (C,D). Let γ ∈ S(Γ) cyclically reduced and n ∈ N. The elements 1 and γn

both belong to the geodesic Lγ in the Cayley graph of Γ, therefore, by primitive-stability :

1
C
∥γn∥ −D ≤ d(τρ(γn), τρ(1)) = d(ρ(γ)no, o),

then, dividing by n, 1
C
∥γ∥ − D

n
≤ 1
n
d(ρ(γ)no, o),

and taking the limit when n→∞, 1
C
∥γ∥ ≤ lS(ρ(γ)).

Using the inequality (2.23), 1
C
∥γ∥ ≤ l(ρ(γ)).

Hence ρ is a Bowditch representation.

3.2 Openness of the set of primitive-stable representations

Here we prove that we can deform primitive-stable representations, in other words that the
set of primitive representations is open in the character variety. Recall that the primitive-stability
condition is invariant under conjugacy, then the notion of primitive-stability is well-defined in the
character variety.

Proposition 3.2. The set PS(Γ,X) is open in the character variety χ(Γ, Isom(X)).

Proof. Let ρ ∶ ΓÐ→ Isom(X) be a primitive-stable representation. Denote by (C,D) the two con-
stants of primitive-stability of ρ. We want to find an open neighborhood of ρ in Hom(Γ, Isom(X))
consisting only of primitive-stable representations. Our open set will be of the following type :
For L > 0 and ε > 0 two positive constants, define

Vρ(L, ε) = {ρ′ ∶ Γ→ Isom(X) ∣ ∀u ∈ Γ ∣u∣ ≤ L Ô⇒ d(ρ(u)o, ρ′(u)o) < ε}.

Recall that Hom(Γ, Isom(X)) is endowed with the compact-open topology, then Vρ(L, ε) is an
open subset of Hom(Γ, Isom(X)). In the following, we will use the local-global lemma, (which we
have recalled previously in Lemma 2.12).

Now let us fix ε = 1 (we could have chosen any other value for ε). The local-global lemma
gives the existence of three constants L,C ′,D′ such that any (C,D + 1, L)-local-quasi-geodesic is
a (C ′,D′)-quasi-geodesic. Consider Vρ(L,1). It is an open neighborhood of ρ. We will now show
that Vρ(L,1) consists only of primitive-stable representations. Indeed, take ρ′ ∈ Vρ(L,1), γ ∈ S(Γ)
and let u and v be two integer points on the geodesic Lγ of the Cayley graph of Γ (recall that Lγ
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is the axis of γ in the Cayley graph). Then

1
C
d(u, v) −D ≤ d(τρ(u), τρ(v)) because ρ is primitive-stable

≤ d(ρ(u)o, ρ(v)o) because u and v are integer points
≤ d(ρ(v−1u)o, o) because ρ(v−1) is an isometry
≤ d(ρ(v−1u)o, ρ′(v−1u)o) + d(ρ′(v−1u)o, o) by the triangle inequality
≤ 1 + d(ρ′(u)o, ρ′(v)o) because ∣v−1u∣ = d(u, v) ≤ L and ρ′ ∈ Vρ(L,1)

So we deduce the inequality :

1
C
d(u, v) −D − 1 ≤ d(ρ′(u)o, ρ′(v)o) (3.1)

which shows that ρ′(Lγ) is a (C,D + 1, L) local-quasi-geodesic, hence a (C ′,D′) quasi-geodesic
by the local-global lemma. This shows that ρ′ is primitive-stable and thus that Vρ(L,1) is an
open-neighborhood of ρ consisting only of primitive-stable representations. Its image under the
projection to χ(Γ, Isom(X)) is again an open neighborhood consisting of primitive-stable repre-
sentations and thus PS(Γ,X) is open.
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Part I

The free group of rank two
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Outline of Part I
The goal of this first part of the thesis is to prove Theorem 1.2. Notice that since we showed

in section 3.1 the inclusion PS(F2,X) ⊂ BQ(F2,X), we now need to prove the reverse inclusion,
which is the most difficult one.

In Chapter 4, we will develop the necessary material and some crucial lemmas about the struc-
ture of primitive elements in F2. First, we will explain how to (bijectively) associate a rational
number with a primitive element γ in F2, which we will refer to as the slope of γ. The con-
tinued fraction expansion of the slope of γ will then be particularly useful when studying the
combinatorial structure of γ. Indeed, if [n1, n2,⋯, nr] denotes the continued fraction expansion
of the slope of γ, we will define for each level i (that is, each integer 0 ≤ i ≤ r) two primitive
words wi(γ) and w′i(γ), only depending on the integers n1,⋯, ni, such that (wi(γ),w′i(γ)) is a
basis of F2 and the word γ is a positive word on wi(γ),w′i(γ). This will allow us to have an
understanding of the combinatorics of γ at different "scales" (see Definition 4.1 and Proposition
4.3). Then, in Proposition 4.6, we will prove a result that will turn out to be a major tool for
our proof : a subword of γ of length li(γ), where li(γ) is defined as the length of the primitive
word wi(γ), is, up to changing its last letter, always a cyclic-permutation of wi(γ), hence primitive.

In section 5.1 of Chapter 5, we will study a uniform quasi-geodesicity setting which will later
appear as a local uniform quasi-geodesicity property of Bowditch representations. In section 5.2,
we will show two properties on Bowditch representations. The first one will ensure that the images
of primitive elements under a Bowditch representation are always hyperbolic (Lemma 5.2). In
particular, denoting Lγ the axis of γ in the Cayley graph of F2 and τρ the orbit map of a Bowditch
representation ρ, we can deduce that τρ(Lγ) is always a quasi-geodesic. The second property
(Lemma 5.3) will state that the image of a generator of F2 by a Bowditch representation do not
exchange the fixpoints of the image of the second generator.

Finally Chapters 6 and 7 will be dedicated to proving that a Bowditch representation of F2 is
primitive-stable. In Chapter 6, we will first prove a slightly weaker statement (Proposition 6.3),
which will be the main step for proving Theorem 1.2. It states that the images of the primitive
leaves Lγ by the orbit map stay in a uniformly bounded neighborhood of the axes of the primitive
elements γ. At last, Chapter 7 will conclude the proof by showing that a Bowditch representation
of F2 satisfying the conclusion of Proposition 6.3 is primitive-stable.

Let us now detail the strategy of the proof of Proposition 6.3. We fix a Bowditch represen-
tation ρ and we want to show that the image of the orbit map restricted to primitive leaves is
contained in a uniform tubular neighborhood of the axes of the images of the primitive elements.
We proceed by contradiction and to this purpose we introduce a sequence (γn)n∈N of primitive
elements in F2 such that the image of the orbit map on the primitive leave Lγn becomes further
and further away from the axis of ρ(γn) as n increases. We will now study the continued fraction
expansion of the slope of γn which we denote by [Nn

1 ,⋯,Nn
r(n)
]. The uniform quasi-geodesicity set-

ting studied in Lemma 5.1 of Chapter 5, together with Lemma 5.3 and our hypothesis on (γn)n∈N,
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will enable us to deduce the behavior of the continued fraction expansion : the sequences (Nn
i )n

must be bounded for all i, and, as a consequence, the depth r(n) of the continued fraction expan-
sion will tend to infinity (Lemma 6.5). In particular, for all i, we will obtain a uniform control
on the lengths li(γn) previously defined in Chapter 4. We will next introduce the notion of a
K-excursion of the orbit map (section 6.3 and 6.4), which will be in particular a subpath of some
quasi-geodesic τρ(Lγ) associated to a primitive element γ which will remain at distance at least
K of the axis of ρ(γ). We will show that we can extract from the sequence (γn)n∈N a sequence of
Kn-excursions as large as we want (Kn →∞) in Lemma 6.13. We will also define the notion of an
ε-quasi-loop, which will be a subword u of γ such that ρ(u) does not displace the basepoint much
(Definition 6.4). Using the result on lengths of path in δ-hyperbolic space proven in Proposition
2.11 of Chapter 2, we will show that large excursions correspond to quasi-loop (with ε > 0 as small
as we want) in Lemma 6.14. As a consequence, we will find a quasi-loop in each γn (for large
n). Then we will be more precise and we will find a quasi-loop inside a cyclic-permutation of
wi(γn), for some i, of length at least half of the length of wi(γn) (Lemma 6.15). This will rely on
Proposition 4.6 of Chapter 4 and on the fact that once found a quasi-loop, we can find many others
of smaller lengths "inside" (this idea is based on Lemma 6.11). Then, using our understanding of
the structure of the primitive element γn at the level i studied in Chapter 4, we will deduce that
a uniformly bounded from bellow proportion of the word γn will consist of disjoint quasi-loops
(Lemma 6.17). We will repeat our argument for the remainders in γn that do not yet consist of
disjoint quasi-loops in order to find an arbitrarily large proportion of the word γn consisting of
disjoint quasi-loops (Lemma 6.18). To formalise this idea we will use a recursive argument in the
proof. This mean that we will find an arbitrarily large proportion of the word γn which does not
displace the basepoint much, and this will be in contradiction with the Bowditch’s hypothesis.



Chapter 4

Structure of primitive elements in the
free group of rank two

4.1 Constructing primitive elements
In this section, we gather some results about primitive elements in F2. Nielsen studied primi-

tivity and automorphisms of free groups (in [Nie18], [Nie24]). The reader may also refer to [Ser85]
or [GK11]. First recall that a primitive element in F2 is an element which is part of some basis of
F2. Fix once and for all {a, b} a free generating set of F2 (hence F2 = ⟨a, b⟩). Then, obviously, a and
b are primitive elements and so are for example a−1, b−1, ab, ab−1, a−1b1 and anb, for all n ∈ Z. Also
note that primitivity is invariant by conjugacy. We denote by P(F2) the set of primitive elements
of F2. We will also denote by P(Z2) the set of primitive elements of Z2, that is, again, the set of
elements of Z2 which are part of a basis of Z2 (or equivalently, the set of elements (p, q) ∈ Z2 such
that p and q are relatively prime numbers). Consider the abelianisation map :

Ab ∶ F2 Ð→ Z2

It is a surjective morphism which sends any basis of F2 to a basis of Z2 (hence primitive elements
of F2 to primitive elements of Z2). Moreover, since Z2 is abelian, the values of Ab are constant on
conjugacy classes, thus we can consider the following map :

Ãb ∶ P(F2)/ ∼ Ð→ P(Z2)/±

where the quotient on the left hand side is taken up to conjugacy and inversion.

Proposition 4.1. The map Ãb is a bijection. Equivalently, the map

Slope ∶ P(F2)/ ∼Ð→ Q ∪∞
[γ]z→ p

q
, with (p, q) = Ab(γ)

where the quotient is taken up to conjugacy and inversion, is a bijection.
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Thus we have identified primitive elements (up to conjugacy and inversion) with rational num-
bers. Every rational number has a continued fraction expansion, meaning that it can be written
in the following way :

p

q
= n1 +

1

n2 +
1

⋱ +
1
nr

with n1 ∈ Z, ni ∈ N∗ for i ≥ 2 and nr ≥ 2. Denote this expansion by [n1, n2,⋯, nr]. The continued
fraction expansion of the slope will play a central role when studying the general structure of
primitive elements. We will now give the general structure of a primitive element in F2.

Consider w ∈ F2. If w is primitive, then, w is either a word on {a, b}, on {a−1, b−1}, on {a, b−1},
or on {a−1, b}. In the first two cases, the slope of w is positive and in the two last ones, negative.
Thus up to inversion, w can be written as a word on {a, b} (positive slope), or {a, b−1} (negative
slope). For simplicity, in the following we will only consider positive slope (for negative slope, just
change b to b−1). We say that a letter s is isolated in a (cyclic) word w, if between two appearances
of s there is at least another letter. We say that a word w in {a, b}, seen as a cyclic word (not
necessarily primitive) is almost constant if the two following conditions are satisfied :

● Either the letter a or b is isolated in w

● After possibly exchanging a and b, suppose that b is isolated in w. Then the powers of a
that arise in w can only be two consecutive integers.

In this case we say that the smallest integer that arises in w as a power of a is the value of w.
In other words, a word w in a and b is almost constant of value n ∈ N if and only if there exists
s ∈ N such that, after possibly exchanging a and b and up to conjugacy and inversion, w is of the
form :

an1ban2b⋯ansb, with ni ∈ {n,n + 1}, ∀1 ≤ i ≤ s

If w is almost constant, we can consider its derived word by replacing the blocks anb by b and
the blocks an+1b by ab. The derived word is still a word on a and b and thus can be itself almost
constant or not.
We say that a word is characteristic if it can be derived arbitrarily many times, until a single letter
is obtained. The values of a characteristic word is the sequence of values of the almost constant
derived words obtained at each step.

Proposition 4.2. Let γ be an element of F2. Then γ is primitive if and only if it is characteristic.
Moreover, in this case, the values of the characteristic word γ are n1, n2,⋯, nr, where [n1, n2,⋯, nr]
is the continued fraction expansion of the slope of γ.

A proof of this fact is given by Series in [Ser85]. Using this fact, we give as explicit construction
of the (conjugacy class of) primitive elements, starting from their slope.
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Definition 4.1. Let γ be a primitive element in F2. Consider [n1(γ), n2(γ),⋯, nr(γ)(γ)] the
continued fraction expansion of the slope of γ and assume that ni(γ) ≥ 0 (that is Slope(γ) ≥ 0).
We define recursively, for 0 ≤ i ≤ r(γ) the following elements in F2 :

w0(γ) = a w′0(γ) = ab
wi(γ) = wi−1(γ)ni(γ)−1w′i−1(γ) w′i(γ) = wi−1(γ)ni(γ)w′i−1(γ)

Denote by li(γ) and l′i(γ) the word lengths of wi(γ) and w′i(γ) respectively.

As defined, the wi(γ) are the building blocks of γ. In order to reduce the amount of notation,
and when there will be no ambiguity on γ, we will omit the dependence on γ in the notation and
write r, ni,wi,w′i, li, l

′
i,. We can check the following :

Proposition 4.3. The elements wi defined previously satisfy :

1. For all 0 ≤ i ≤ r, wi and w′i are primitive and, for i ≥ 1 their continued fraction expansions
are respectively [n1,⋯, ni] and [n1,⋯, ni + 1]

2. wr = γ (up to conjugacy and inversion). In particular, γ (or its inverse) has a conjugate
which is a positive word in {wi,w′i}.

3. For all 0 ≤ i ≤ r, {wi,w′i} is a free basis of F2.

Proof. 1. For i = 0, w0 = a and w′0 = ab are both trivially primitive.

● For i = 1, w1 = an1b and w′0 = an1+1b are again both primitive and their continued fraction
expansions are respectively [n1] and [n1 + 1].
● Suppose that both wi−1 and w′i−1 are primitive and that their continued fraction ex-

pansion are respectively [n1,⋯, ni−1] and [n1,⋯, ni−1 + 1]. Then wi−1 and w′i−1 can be
derived i − 1 times, to obtain the elements a and ab (or b and ba, depending on the
parity of i). Thus, since wi and w′i are positive words on {wi−1,w′i−1}, they can also be
derived i − 1 times, and the (i − 1) − st-derived elements we obtain are anib and ani+1b
(or bnia and bni+1a). Those last ones can be derived one more time to obtain b and ba
(or a and ab) and we have proved that wi and w′i are primitive with continued fraction
expansion [n1,⋯, ni] and [n1,⋯, ni + 1].

2. It follows directly from the previous point knowing that wr and γ are both primitive with
the same slope.

3. This is an induction on i using the basic fact that if {a, b} is a basis of F2, then so are {a, ab}
and {a, ba}.

● The previous argument immediately justifies that {w0,w′0} is a basis of F2.
● Suppose that {wi−1,w′i−1} is a basis of F2, then, by the same argument as before, so

is {wi−1,wi−1w′i−1} and also, by induction {wi−1,w
ni−1
i−1 w′i−1}. Now, we deduce the same

way that {wni−1
i−1 w′i−1,w

ni
i−1w

′
i−1} is a basis of F2 and thus that {wi,w′i} is a basis of F2.
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Remark 4.4. Using the recursive definitions of wi and w′i, we draw the following equalities :

For all 2 ≤ i ≤ r and for i = 1 if n1 ≥ 1, li = (ni − 1)li−1 + l′i−1 and l′i = nili−1 + l′i−1 (4.1)
For i = 0 and for i = 1 with n1 = 0, li = 1 and l′i = 2 (4.2)

For all 1 ≤ i ≤ r, l′i = li + li−1 (4.3)
(4.4)

We deduce the following inequalities :

For all 0 ≤ i ≤ r, li < l′i using (4.3) and li−1 > 0 (4.5)
For all 1 ≤ i ≤ r and for i = 0 if n1 ≥ 1, li < li+1 using (4.1), l′i−1 > li−1 and ni ≥ 1 (4.6)

For all 2 ≤ i ≤ r and for i = 1 if n1 ≥ 1, l′i < 2li using (4.3) and li−1 < li (4.7)
For i = 0 and for i = 1 with n1 = 0, l′i = 2li using (4.2) (4.8)

For all 0 ≤ i ≤ r, i ≤ li by induction (4.9)

Then nili−1 < li ≤ (ni + 1)li−1 (using (4.1), (4.2) and li−1 < l′i−1 ≤ 2li−1), thus :

For all 1 ≤ i ≤ r, ni <
li
li−1
≤ ni + 1 . (4.10)

We also have li − li−1 ≥ l′i−1 − li−1 = li−2, but li−1 ≤ (ni−1 + 1)li−2, so li − li−1 ≥ 1
ni−1+1 li−1, and then

we deduce :

For all 2 ≤ i ≤ r, 1 + 1
ni−1 + 1 ≤

li
li−1

(4.11)

4.2 Some useful lemmas
Recall that the notation ∣u∣ stands for the word length of the element u ∈ F2. For u an element

in F2 and k an integer smaller that ∣u∣, we will denote by ↶k
u its k-th cyclic permutation, that is, if

u = s1⋯s∣u∣, the element ↶k
u = sk+1⋯s∣u∣s1⋯sk. We will also denote by pk(u) the prefix of length k

of u and sk(u) the suffix of length k of u. We have u = pk(u)s∣u∣−k(u) and ↶k
u = s∣u∣−k(u)pk(u).

Sometimes for the sake of simplicity we will no longer specify the integer k and write p(u), s(u),↶u.
Finally, we will write sw(u) to refer to a subword of u.

Lemma 4.5. Let γ be a primitive element in F2 and 1 ≤ i ≤ r(γ). In particular, up to conjugacy,
the element γ can be written on the alphabet {wi(γ),w′i(γ)} (see Proposition 4.3).

Now take
↶

wi(γ) any cyclic permutation of wi(γ). Then there exist
↶

w′i(γ) a cyclic permutation
of w′i(γ) and ↶γ a cyclic permutation of γ such that ↶γ can be written on the alphabet {

↶

wi(γ),
↶

w′i(γ)}.
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Moreover, the element
↶

wi(γ) is either a prefix or a suffix of
↶

w′i(γ).
In this case we say that the cyclic permutation

↶

w′i(γ) is adapted to
↶

wi(γ).

Proof. The case i = 0 is trivial because w0 = a and then w0 has no non-trivial cyclic permutation.
Let W be an element of F2 that can be written on the alphabet {wi,w′i}, with i ≥ 1. Then we can
write W = u1⋯ur, with uj ∈ {wi,w′i} for 1 ≤ j ≤ r. Consider the k-th cyclic permutation of wi :
↶k
wi = sli−k(wi)pk(wi).

We make the proof by distinguishing two cases :

● Case 1 : If k ≤ (ni − 1)li−1.
Recall that, because i > 0, we have the following recursive formulae :

wi = wni−1
i−1 w′i−1

w′i = wni
i−1w

′
i−1 = wni−1

i−1 wi−1w
′
i−1

Then in that case, we can say that pk(wi) = pk(w′i) and so ∀1 ≤ j, j′ ≤ r,pk(uj) = pk(uj′).
Thus :

W = u1u2⋯ur

= pk(u1)s∣u1∣−k(u1)pk(u2)s∣u2∣−k(u2)⋯pk(ur)s∣ur ∣−k(ur)
↶k

W = s∣u1∣−k(u1)pk(u2)s∣u2∣−k(u2)⋯pk(ur)s∣ur ∣−k(ur)pk(u1)
= s∣u1∣−k(u1)pk(u1)s∣u2∣−k(u2)⋯pk(ur−1)s∣ur ∣−k(ur)pk(ur)

= ↶k
u1⋯

↶k
ur

We have proved that in that case,
↶k

W can be written on the alphabet {↶k
wi,

↶k

w′i}.

Now let us show that ↶k
wi is a suffix of

↶k

w′i. We have :

↶k
wi = sli−k(wi)pk(wi)
↶k

w′i = sl′i−k(w′i)pk(w′i) = sl′i−k(w′i)pk(wi)

Since wi is a suffix of w′i and l′i − k ≥ li − k, it implies that sli−k(wi) is a suffix of sl′i−k(w′i) and

then that ↶k
wi is a suffix of

↶k

w′i.

● Case 2 : If k > (ni − 1)li−1.
Let k′ = k − (ni − 1)li−1.
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For all 1 ≤ j ≤ r, there exists εj ∈ {ni − 1, ni} such that uj = wεj

i−1w
′
i−1.

Then uj = wεj

i−1pk′(w′i−1)sl′i−1−k′(w′i−1) and so :

W = u1u2⋯ur

= wε1
i−1pk′(w′i−1)sl′i−1−k′(w′i−1) wε2

i−1pk′(w′i−1)sl′i−1−k′(w′i−1) ⋯ wεr
i−1pk′(w′i−1)sl′i−1−k′(w′i−1)

Now let kj = εjli−1 + k′.

Then kj = {
k if εj = ni − 1
k + li−1 if ε = ni

= { k if uj = wi

k + li−1 if uj = w′i
Therefore sl′i−1−k′(w′i−1)w

εj

i−1pk′(w′i−1) =
↶kj

uj . Finally :

↶k1
W = ↶k2

u2⋯
↶kr
ur
↶k1
u1

We have proved that in that case,
↶k1
W can be written on the alphabet {↶k

wi,
↶k+li−1
w′i−1 }.

Now let us show that ↶k
wi is a prefix or a suffix of

↶k+li−1
w′i . We have :

↶k
wi = sl′i−1−k′(w′i−1)wni−1

i−1 pk′(w′i−1)
↶k+li−1
w′i = sl′i−1−k′(w′i−1)wni

i−1pk′(w′i−1)

We first handle the case i = 1. In that case, w′0 = ab, l′0 = 2. There are three possibilities :

either k′ = 0, and then ↶k
wi is a prefix of

↶k+li−1
w′i , or k′ = 2, and then ↶k

wi is a suffix of
↶k+li−1
w′i , or

k′ = 1, and then ↶k
wi = bani−1a and

↶k+li−1
w′i = bania so ↶k

wi is a prefix of
↶k+li−1
w′i .

For the case i ≥ 2, we can use the recursive formulae :

wi−1 = wni−1−1
i−2 w′i−2

w′i−1 = wni−1
i−2 w

′
i−2

We distinguish two cases :

– If k′ ≤ (ni−1 − 1)li−2 : then pk′(w′i−1) is a prefix of wi−1 so ↶k
wi is a prefix of

↶k+li−1
w′i .

– If k′ > (ni−1 − 1)li−2 : then l′i−1 − k′ < l′i−1 − (ni−1 − 1)li−2 = li−2 + l′i−2. So sl′i−1−k′(w′i−1) is a
suffix of wi−2w′i−2.

∗ If ni−1 > 1, wi−2w′i−2 is a suffix of wi−1 so sl′i−1−k′(w′i−1) is a suffix of wi−1 and so ↶k
wi is

a suffix of
↶k+li−1
w′i .
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∗ If ni−1 = 1, we have wi−1 = w′i−2 and w′i−1 = wi−2w′i−2. If i > 2, we have w′i−1 =
wi−2wi−3wi−2 and so a suffix of wi−2w′i−2 is also a suffix of w′i−1wi−1, so sl′i−1−k′(w′i−1)

is a suffix of w′i−1wi−1 and so ↶k
wi is a suffix of

↶k+li−1
w′i . If i = 2, we have wi−1 = ab and

w′i−1 = aab, so w′i−1wi−1 = aabab. Moreover wi−2w′i−2 = aab so

↶k
wi = sl′i−1−k′(aab)(ab)ni−1pk′(aab)

↶k+li−1
w′i = sl′i−1−k′(aab)(ab)nipk′(aab)

And we notice that again in that case, ↶k
wi is either a prefix or a suffix of

↶k+li−1
w′i .

The following Proposition is the most important of this Chapter. It says that subwords of some
specific lengths (li(γ)) of primitive elements are themselves primitive, after a possible change of
letter.

Proposition 4.6. Let γ be a cyclically reduced primitive element of F2 and u any subword of γ
(or of a cyclic permutation of γ) of length li(γ), for 0 ≤ i ≤ r(γ). Then, after possibly changing its
last letter, u is in fact a cyclic permutation of wi(γ).

Proof. For the sake of simplicity, we omit the dependence on γ in the notations in the proof.

First of all, we deal separately with the cases i = 0 and i = 1.

● If i = 0, then u = a or u = b, and thus it is trivial.

● If i = 1, then u = an1+1 or u = akban1−k, with 0 ≤ k ≤ n1. In the first case, after changing the
last letter a into b, we obtain u = an1b = w1. In the second case, no change is needed.

From now on, we suppose that i ≥ 2. In that case, the recursive formulae wi = wni−1
i−1 w′i−1 and

w′i = wni
i−1w

′
i−1 apply.

The word γ can be written on the alphabet {wi,w′i}, and l′i ≥ li so the subword u of γ shall take
one of the following forms : s(wi)p(wi), s(wi)p(w′i), s(w′i)p(wi), s(w′i)p(w′i) or sw(w′i).
Furthermore, since w′i = wi−1wi and ∣s(w′i)∣ ≤ li, we deduce that s(w′i) = s(wi). Thus, u can actually
be reduced to one of the following three forms :

1. u = s(wi)p(wi)

2. u = sw(w′i)

3. u = s(wi)p(w′i)

We deal with each case separately.



52 CHAPTER 4. STRUCTURE OF PRIMITIVE ELEMENTS

1. The case 1 is actually immediate because ∣s(wi)p(wi)∣ = li, so ∣p(wi)s(wi)∣ = li, which requires
p(wi)s(wi) = wi and then u = s(wi)p(wi) is a cyclic permutation of wi.

2. Now let us deal with the case 2. Recall w′i = wni
i−1w

′
i−1 = wi−1w

ni−1
i−1 w′i−1 (because ni ≥ 1). Then a

subword of length li of w′i must be of the form : u = sw(w′i) = s(wi−1)wni−1
i−1 p(w′i−1). Therefore,

up to cyclic permutation we have ↶u = wni−1
i−1 p(w′i−1)s(wi−1), with ∣p(w′i−1)s(wi−1)∣ = l′i−1. More-

over, for i ≥ 2, we have s(wi−1) = s(w′i−1) and then p(w′i−1)s(wi−1) = p(w′i−1)s(w′i−1) = w′i−1.
Thus ↶u = wni−1

i−1 p(w′i−1)s(wi−1) = wni−1
i−1 w′i−1 = wi.

3. For the case 3, we use a two-step induction on i ≥ 0. More precisely, we will show by induc-
tion on i ≥ 0, that if u is a subword of γ of the form u = s(wi)p(w′i) with ∣u∣ = li, then, after
possibly changing its last letter, that is after possibly changing the last letter of p(w′i), we
obtain p̂(w′i)s(wi) = wi or p̂(w′i)s(wi) = wni

i−1wi−2 (the latter case can only occur if i ≥ 2), with
p̂(w′i) the word obtained from p(w′i) after the change of letter. Thus, we deduce that after
possibly changing its last letter, u is actually a cyclic permutation of wi.
In the following, the notation p̂(w) stands for the word obtained from p(w) by changing its
last letter.

Initial cases :
The trivial case i = 0 has already been mentioned at the beginning of the proof.
Suppose i = 1. Then s(w1) = s(an1b). If ∣s(w1)∣ ≥ 1, then there exists an integer k such
that s(w1) = akb and p(w′1) = an1−k and so p(w′1)s(w1) = an1b = w1. If ∣s(w1)∣ = 0, then
p(w′1)s(w1) = p(w′1) = an1+1. So after possibly changing the last letter of p(w′1) into b, we
have p̂(w′1)s(w1) = an1b = w1.

Induction step : We now fix i ≥ 2
Let k = ∣p(w′i)∣. Let us distinguish two cases :

(a) If k ≤ (ni − 1)li−1(= li − l′i−1) : then p(w′i) = p(wi), so as before in the proof we have
p(w′i)s(wi) = p(wi)s(wi) = wi because ∣p(wi)s(wi)∣ = li. Thus p(w′i)s(wi) = wi

(b) If k ≥ (ni−1)li−1(= li− l′i−1), then p(w′i) = wni−1
i−1 p(wi−1w′i−1) on one hand and ∣s(wi)∣ ≤ l′i−1

so s(wi) = s(w′i−1) on the other hand. Thus p(w′i)s(wi) = wni−1
i−1 p(wi−1w

′
i−1)s(w′i−1) .

We now need to understand the word p(wi−1w′i−1)s(w′i−1), with ∣p(wi−1w′i−1)s(w′i−1)∣ =
l′i−1.

i. If ∣p(wi−1w′i−1)∣ ≤ (ni−1 − 1)li−2, then p(wi−1w′i−1) = p(wni−1−1
i−2 ) = p(w′i−1), so

p(wi−1w′i−1)s(w′i−1) = p(w′i−1)s(w′i−1) = w′i−1 because ∣p(wi−1w′i−1)s(w′i−1)∣ = l′i−1. In
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this case we obtain p(wi−1w
′
i−1)s(w′i−1) = w′i−1 .

ii. If (ni−1 − 1)li−2 ≤ ∣p(wi−1w′i−1)∣ ≤ ni−1li−2, then p(wi−1w′i−1) = w
ni−1−1
i−2 p(w′i−2) on one

hand, and l′i−2 ≤ ∣s(w′i−1)∣ ≤ l′i−2 + li−2 so s(w′i−1) = s(wi−2)w′i−2 on the other hand.
Thus p(wi−1w′i−1)s(w′i−1) = w

ni−1−1
i−2 p(w′i−2)s(wi−2)w′i−2, with ∣p(w′i−2)s(wi−2)∣ = li−2.

Here we use our induction hypothesis :

● If, after possibly changing the last letter of p(w′i−2), we have p̂(w′i−2)s(wi−2) =
wi−2, then, after possibly changing the last letter of p(wi−1w′i−1),

p̂(wi−1w
′
i−1)s(w′i−1) = wni−1−1

i−2 p̂(w′i−2)s(wi−2)w′i−2 = wni−1−1
i−2 wi−2w

′
i−2 = w′i−1.

Thus, as in the previous case, p̂(wi−1w
′
i−1)s(w′i−1) = w′i−1 .

● If, after possibly changing the last letter of p(w′i−2), we have p̂(w′i−2)s(wi−2) =
wni−2

i−3 wi−4 (recall that this case can only occur if i ≥ 4, as stated at the beginning
of the induction), then, after possibly changing the last letter of p(wi−1w′i−1),

p̂(wi−1w
′
i−1)s(w′i−1) = wni−1−1

i−2 p̂(w′i−2)s(wi−2)w′i−2 = wni−1−1
i−2 wni−2

i−3 wi−4w
′
i−2

= wni−1−1
i−2 wni−2

i−3 wi−4wi−3wi−2 = wni−1−1
i−2 wni−2

i−3 w
′
i−3wi−2

= wni−1−1
i−2 w′i−2wi−2 = wi−1wi−2.

Thus, in that case, we obtain p̂(wi−1w
′
i−1)s(w′i−1) = wi−1wi−2 .

iii. If ni−1li−2 ≤ ∣p(wi−1w′i−1)∣ ≤ l′i−1, then p(wi−1w′i−1) = w
ni−1−1
i−2 p(w′i−2wi−2) on one hand

and ∣s(w′i−1)∣ ≤ l′i−2 so s(w′i−1) = s(w′i−2) on the other hand.
Thus p(wi−1w

′
i−1)s(w′i−1) = wni−1−1

i−2 p(w′i−2wi−2)s(w′i−2) with ∣p(w′i−2wi−2)s(w′i−2)∣ =
l′i−2+li−2. We still need to understand p(w′i−2wi−2)s(w′i−2) with ∣p(w′i−2wi−2)s(w′i−2)∣ =
l′i−2 + li−2.

● If ∣p(w′i−2wi−2)∣ ≥ l′i−2, then p(w′i−2wi−2) = w′i−2p(wi−2) on one hand and
∣s(w′i−2)∣ ≤ li−2 so s(w′i−2) = s(wi−2). Now we can compute p(w′i−2wi−2)s(w′i−2) =
w′i−2p(wi−2)s(wi−2) = w′i−2wi−2 and the last equality stands because
∣p(wi−2)s(wi−2)∣ = li−2. Thus p(w′i−2wi−2)s(w′i−2) = w′i−2wi−2 .

● If ∣p(w′i−2wi−2)∣ ≤ l′i−2, then we have li−2 ≤ ∣p(w′i−2wi−2)∣ ≤ l′i−2 because
∣s(w′i−2)∣ ≤ l′i−2. We also deduce that li−2 ≤ ∣s(w′i−2)∣ ≤ l′i−2.
If i = 2, then li−2 = l0 = 1, l′i−2 = l′0 = 2,w′0w0 = aba and w′0 = ab. Then
p(w′0w0)s(w′0) = aab or p(w′0w0)s(w′0) = abb. So, after possibly changing the
last letter of p(w′0w0), we have p̂(w′0w0)s(w′0) = aab = w0w′0.
If i > 2, we can write w′i−2 = w

ni−2
i−3 w

′
i−3 and so p(w′i−2wi−2) = wni−2

i−3 p(w′i−3) and
s(w′i−2) = s(wi−3)wi−2. Thus p(w′i−2wi−2)s(w′i−2) = w

ni−2
i−3 p(w′i−3)s(wi−3)wi−2 with

∣p(w′i−3)s(wi−3)∣ = l′i−3. But, as seen in the case 2, for i > 3,p(w′i−3)s(wi−3) = w′i−3.
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Then we compute p(w′i−2wi−2)s(w′i−2) = w
ni−2
i−3 p(w′i−3)s(wi−3)wi−2 = wni−2

i−3 w
′
i−3wi−2 =

w′i−2wi−2.
For i = 3, recall that wi−3 = w0 = a and w′i−3 = w′0 = ab. If ∣s(w0)∣ = 0,
then p(w′i−3)s(wi−3) = p(w′0)s(w0) = p(w′0) = w′0. Thus p(w′i−2wi−2)s(w′i−2) =
wni−2

i−3 p(w′i−3)s(wi−3)wi−2 = wni−2
i−3 w

′
i−3wi−2 = w′i−2wi−2. However, if ∣s(w0)∣ = 1,

then p(w′i−3)s(wi−3) = p(w′0)s(w0) = p(w′0)a = a2, and then, after changing the
last letter of p(w′0) from a to b, we obtain p̂(w′0)s(w0) = ba. Thus, let us now
compute p̂(w′i−2wi−2)s(w′i−2) :
p̂(w′i−2wi−2)s(w′i−2) = w

ni−2
i−3 p̂(w′i−3)s(wi−3)wi−2 = wni−2

i−3 bawi−2 = an1baw1 = w1w′1.

Thus, we conclude from those different cases that, after possibly changing the last
letter of p(w′i−2wi−2), we have either p̂(w′i−2wi−2)s(w′i−2) = w′i−2wi−2, or
p̂(w′i−2wi−2)s(w′i−2) = wi−2w′i−2. We can now compute p̂(wi−1w′i−1)s(w′i−1) :

● If p̂(w′i−2wi−2)s(w′i−2) = w′i−2wi−2, then

p̂(wi−1w
′
i−1)s(w′i−1) = wni−1−1

i−2 p̂(w′i−2wi−2)s(w′i−2) = wni−1−1
i−2 w′i−2wi−2 = wi−1wi−2.

● If p̂(w′i−2wi−2)s(w′i−2) = wi−2w′i−2, then

p̂(wi−1w
′
i−1)s(w′i−1) = wni−1−1

i−2 p̂(w′i−2wi−2)s(w′i−2) = wni−1−1
i−2 wi−2w

′
i−2 = wni−1

i−2 w
′
i−2 = w′i−1.

Thus, we showed that after possibly changing the last letter of p(wi−1w′i−1), we have
p̂(wi−1w′i−1)s(w′i−1) = w′i−1 or p̂(wi−1w′i−1)s(w′i−1) = wi−1wi−2. We are now ready to com-
pute p̂(w′i)s(wi) :
● If p̂(wi−1w′i−1)s(w′i−1) = w′i−1, then

p̂(w′i)s(wi) = wni−1
i−1 p̂(wi−1w

′
i−1)s(w′i−1) = wni−1

i−1 w′i−1 = wi.

● If p̂(wi−1w′i−1)s(w′i−1) = wi−1wi−2, then

p̂(w′i)s(wi) = wni−1
i−1 p̂(wi−1w

′
i−1)s(w′i−1) = wni−1

i−1 wi−1wi−2 = wni
i−1wi−2.

Thus, we have proven what we announced for the case 3.

Hence the lemma is proved.

We end this chapter with a short Lemma which "counts" the number of occurrences of wi(γ)
in a subword u of γ.

Lemma 4.7. Let α > 4. Let γ be a primitive element of F2 and u any subword of γ (or of a
cyclic permutation of γ). Let i ∈ {1,⋯, r(γ)} and suppose that ∣u∣ ≥ αli(γ). Let

↶

wi(γ) be any cyclic
permutation of wi(γ) and

↶

w′i(γ) a cyclic permutation of w′i(γ) adapted to wi(γ) (see lemma 4.5).
Then, there is at least α−4

2 occurrences of wi(γ) and w′i(γ) in u.
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Proof. Recall that li(γ) ≤ l′i(γ) ≤ 2li(γ). Then we have the inequality ∣u∣ ≥ α
2 l
′
i(γ).

The element u is a subword of γ and, by the lemme 4.5, γ can be written on the alphabet
{

↶

wi(γ),
↶

w′i(γ)} so u can be written in the following way : u = p(u)u1⋯urs(u), with uk ∈ {
↶

wi(γ),
↶

w′i(γ)}
for 1 ≤ k ≤ r and p(u) and s(u) being respectively a prefix and a suffix of u such that ∣p(u)∣, ∣s(u)∣ ≤
∣
↶

w′i(γ)∣ = l′i(γ). Thus ∣u∣ − ∣p(u)∣ − ∣s(u)∣ ≥ α
2 l
′
i(γ) − 2l′i(γ) = α−4

2 l′i(γ).
Furthermore ∣u∣ − ∣p(u)∣ − ∣s(u)∣ = ∑r

k=1 ∣uk∣ ≤ rl′i(γ) because ∣uk∣ ≤ l′i(γ).
We deduce r ≥ α−4

2 , hence the lemma 4.7.
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Chapter 5

Local uniform quasi-geodesicity

5.1 A first example of a uniform quasi-geodesicity setting
In this section, we are going to study a uniform quasi-geodesicity setting in the space X. The

space X is supposed to be δ-hyperbolic, geodesic and proper (proper means that closed balls are
compact). When we are given two isometries A and B, we can consider the setW(A,B) of (finite)
words on A and B. For G ∈W(A,B), we denote by ∣G∣ its word length, that is the minimal number
of letters (A and B) needed to write G. We also consider H(A,B) = {A,B}Z the set of bi-infinite
words on A and B, that is, H = (Hn)n∈Z ∈ H(A,B) if and only if for all n ∈ Z, Hn ∈ {A,B}. When
we have a bi-infinite word H = (Hn)n∈Z ∈ H(A,B), we associate to it a bi-infinite sequence of finite
words G = (Gn)n∈Z in the following way :

Gn =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

H0H1⋯Hn−1 for n > 0
Id for n = 0
H−1
−1⋯H−1

n for n < 0

Hence Gn ∈W(A,B) for all n ≥ 0 and Gn ∈W(A−1,B−1) for all n ≤ 0. Moreover, the word length of
Gn is ∣Gn∣ = ∣n∣ for all n ∈ Z and the following recursive formula holds for all n ∈ Z : Gn+1 = GnHn.
We denote by G(A,B) the set of bi-infinite sequences of finite words associate to bi-infinite words
in H(A,B).

In this section, we want to study a particular class of bi-infinite words H = (Hn)n∈Z and their
associate bi-infinite sequences of words G = (Gn)n∈Z. Let us fix an integer N ≥ 1 and define
HN(A,B) to be the subset of H(A,B) consisting of the bi-infinite words H = (Hn)n∈Z which sat-
isfy the following condition :
If n1 < n2 are two integers in Z such that Hn1 = Hn2 = B and for all n1 < n < n2, Hn = A, then
n2 − n1 − 1 ≥ N .
Thus the bi-infinite words in HN(A,B) are precisely those for which the appearances of B are iso-
lated and the powers of A are always greater than N . We denote by GN(A,B) the set of bi-infinite
sequences G = (Gn)n∈Z ∈ G(A,B) associate to bi-infinite words in HN(A,B).

57
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Fix o a basepoint in X. Starting from a bi-infinite word H = (Hn)n∈Z ∈ H(A,B) and its
associate bi-infinite sequence G = (Gn)n∈Z ∈ G(A,B), we define the sequence of points in X :
xn = Gno,∀n ∈ Z. The goal of this section is to study the uniform quasi-geodesicity of sequences of
points defined by the elements of GN(A,B), that is the existence of two reals λ > 0 and k ≥ 0 such
that for all n,m ∈ Z, we have : 1

λ ∣n −m∣ − k ≤ d(xn, xm) ≤ λ∣n −m∣ + k. The sequence (xn)n∈Z is a
(λ, k,L)-local-quasi-geodesic if we have 1

λ ∣n−m∣−k ≤ d(xn, xm) ≤ λ∣n−m∣+k whenever ∣n−m∣ ≤ L.
Precisely we prove the following lemma :

Lemma 5.1. Let X be a δ-hyperbolic space, geodesic and proper, and o ∈X any basepoint. Pick A
and B two hyperbolic isometries of X and suppose that B(A+) ≠ A−. Then, there exists λ > 0, k ≥ 0
and N ∈ N∗, such that ∀G = (Gn)n∈Z ∈ GN(A,B), the sequence of points xn = Gno is a (λ, k)-quasi-
geodesic.

Proof. ● Step 1 : Quasi-isometry on a period
The goal is at first to show that there exists two constants λ > 0 and k ≥ 0, only depending on
δ,A,B and o, such that the following inequality is satisfied :

1
λ
∣AnBAm∣ − k ≤ d(AnBAmo, o) for all n,m ≥ 0 (5.1)

By hypothesis, the two points at infinity B(A+) and A− are distinct, so we can consider a
geodesic, called Λ, with endpoints B(A+) and A−. Such a geodesic exists because the space X
is supposed to be proper. Now consider p a projection map on Λ, that is p ∶ X → Λ satisfying
∀x ∈ X,d(x, p(x)) = d(x,Λ) = inf

y∈Λ
d(x, y) (such a map exists but is not necessarily unique). Since

(A−no)n∈N is a (half) quasi-geodesic with endpoint A− and Λ is a geodesic with A− as one of
its endpoints, we have, by stability of quasi-geodesics in δ hyperbolic spaces, the existence of a
constant K1 > 0 (only depending on δ,A,B and o) such that {A−no}n∈N and the half geodesic
[p(o),A−) remain in the K1-neighborhood of each other. We deduce the following inequality :

d(A−no, p(A−no)) ≤K1, for all n ∈ N (5.2)

With the same argument, namely that the (half) geodesic (BAmo)m∈N and Λ share the same
endpoint B(A+), we deduce the existence of constant K2 > 0 (only depending on δ,A,B and o)
such that

d(BAmo, p(BAmo)) ≤K2, for all m ∈ N (5.3)
Then we can draw the following inequalities :

d(AnBAmo, o) = d(BAmo,A−no) because An is an isometry
≥ d(p(BAmo), p(A−no)) − d(p(BAmo),BAmo) − d(p(A−no),A−no)
≥ d(p(BAmo), p(A−no)) −K1 −K2 by inequalities 5.2 and 5.3

But since A−no Ð→
n→∞

A−, we also have p(A−no) Ð→
n→∞

A−, and in the same way, since BAmo Ð→
m→∞

B(A+), we deduce p(BAmo) Ð→
m→∞

B(A+). Then, for n and m sufficiently large, p(A−no) be-
longs to [p(o),A−) ∩ [p(Bo),A−) and p(BAmo) belongs to [p(o),B(A+)) ∩ [p(Bo),B(A+)). This
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shows that for n and m sufficiently large, the four points p(A−no), p(BAmo), p(Bo) and p(o) are
aligned in one of the two following orders on the geodesic Λ : p(A−no), p(o), p(Bo), p(BAmo) or
p(A−no), p(Bo), p(o), p(BAmo). In the first case

d(p(A−no), p(BAmo)) = d(p(A−no), p(o)) + d(p(o), p(Bo)) + d(p(Bo), p(BAmo))

and in the second one :

d(p(A−no), p(BAmo)) = d(p(A−no), p(o)) − d(p(o), p(Bo)) + d(p(Bo), p(BAmo))

so, in every case, for n and m sufficiently large :

d(p(A−no), p(BAmo)) ≥ d(p(A−no), p(o)) − d(p(o), p(Bo)) + d(p(Bo), p(BAmo)).

On an other hand,

d(p(A−no), p(o)) ≥ d(A−no, o) − d(A−no, p(A−no)) − d(p(o), o)
≥ d(A−no, o) −K1 − d(p(o), o) by inequality 5.2

and similarly :

d(p(BAmo), p(Bo)) ≥ d(BAmo,Bo) −K2 − d(p(Bo),Bo) by inequality 5.3.

We can now finish our sequence of inequalities :

d(AnBAmo, o) ≥ d(p(BAmo), p(A−no)) −K1 −K2

≥ d(p(A−no), p(o)) − d(p(o), p(Bo)) + d(p(Bo), p(BAmo)) −K1 −K2

≥ d(A−no, o) − d(p(o), o) + d(BAmo,Bo) − d(p(Bo),Bo) − d(p(o), p(Bo)) − 2K1 − 2K2

= d(Ano, o) + d(Amo, o) − d(p(o), o) − d(p(Bo),Bo) − d(p(o), p(Bo)) − 2K1 − 2K2

≥ (n +m)lS(A) − d(p(o), o) − d(p(Bo),Bo) − d(p(o), p(Bo)) − 2K1 − 2K2

In the last inequality, we used the basic fact that d(Ano, o) ≥ nlS(A), where lS(A) denotes the stable
length of the isometry A. Since (n+m)lS(A) = (n+m+1)lS(A)−lS(A) = ∣AnBAm∣lS(A)−lS(A), we
have proved the inequality 5.1 for n and m sufficiently large, prescribing λ = 1

lS(A)
(recall lS(A) > 0

when A is hyperbolic), and k = lS(A)+d(p(o), o)+d(p(Bo),Bo)+d(p(o), p(Bo))+2K1+2K2. But
there is only a finite number of value of AnBAm, for n and m smaller than a fixed constant, so the
inequality 5.1 is still true for all n,m ∈ N, after possibly changing the value of λ and k.

● Step 2 : From local to global quasi-isometry

We shall now conclude with the local-global lemma, given at the end of section 2.2 (Lemma
2.12).

Let L > 0 and (λ′, k′) such as in Lemma 2.12, with λ and k defined in the first step. Fix
N = ⌊L⌋+1. Then every interval of length smaller than L is of length smaller than N . Now choose
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G a sequence in GN(A,B) which is associate to a bi-infinite words H = (Hn)n∈Z ∈ HN(A,B).
Thus, the subwords of H of length smaller than L are of the form AnBAm or An, with n,m ∈ N.
Therefore, by Step 1, the sequence of points (xn)n∈Z is a (λ, k,L)-local-quasi-geodesic. So, by
the local-global lemma 2.12, there exists λ′ ≥ 1, k′ ≥ 0 (only depending on λ and k, that is on
δ,A,B and o), such that (xn)n∈Z is a (λ′, k′)-quasi-geodesic (global). Thus, the proposition 5.1 is
proved.

5.2 Some properties of Bowditch representations of F2

Let (X,d) be a δ-hyperbolic space, geodesic and proper, and o ∈X a basepoint.
We establish the useful fact that the image of primitive elements by a Bowditch representation

are hyperbolic isometries.

Lemma 5.2. Let ρ be a Bowditch representation of constants (C,D). Then, for every primitive
element γ in F2, 1

C ∥γ∥ ≤ lS(ρ(γ)).
In particular, for every primitive element γ, ρ(γ) is hyperbolic and ρ is also a Bowditch represen-
tation of constant (C,0).

Proof. Suppose that γ is cyclically reduced. The primitivity hypothesis on γ gives the existence
of another primitive element, δ ∈ F2, such that we have both {γ, δ} is a free basis of F2 and
∥γnδ∥ = n∥γ∥ + ∣δ∣. Thus, for all n ∈ N, the element γnδ is primitive. The Bowditch inequality
applied to γnδ gives :

1
C
∥γnδ∥ −D ≤ lρ(γnδ) ≤ d(ρ(γnδ)o, o) by definition of the displacement length

≤ d(ρ(γn)o, o) + d(ρ(δ)o, o) by the triangle inequality

Using that ∥γnδ∥ = n∥γ∥ + ∣δ∣, and after dividing by n, we obtain :

1
C
∥γ∥ + ∣δ∣

nC
− D
n
≤ 1
n
d(ρ(γ)no, o) + 1

n
d(ρ(δ)o, o)

Now, let n tends to infinity and use the definition of the stable length :

1
C
∥γ∥ ≤ lS(ρ(γ)).

which is indeed the desired inequality.
Thus, the stable length of ρ(γ) is positive, we deduce that ρ(γ) is hyperbolic.
At last, since the stable length is always smaller than or equal to the displacement length (see
inequality (2.23)), we also deduce the inequality 1

C
∥γ∥ ≤ lρ(γ), which finishes the proof.

Now we establish the fact that the hypothesis required by Lemma 5.1 is satisfied when the
hyperbolic isometries A and B comes from a Bowditch representation.
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Lemma 5.3. Let X be a δ-hyperbolic space, geodesic and proper, and ρ ∶ F2 → Isom(X) a Bowditch
representation. Fix {a, b} a free basis of F2 and denote by A = ρ(a),B = ρ(b) the images of the
generators by ρ.
Then B(A+) ≠ A− (where A+ and A− refer respectively to the attracting and repelling fixpoints of
A).

Proof. Before starting the proof, recall that we have shown that ρ(a) and ρ(b) are hyperbolic
isometries (because a and b are primitive elements, see lemma 5.2), therefore A+ and A− are well-
defined.
Let us chose some basepoint o ∈ X. Then, because A is hyperbolic, the sequence (Ano)n∈Z is
a quasi-isometry with repelling fixpoint A−. Furthermore, the sequence (BAmo)m∈Z is again a
quasi-isometry, with attracting fixpoint B(A+). Now suppose by absurdity that B(A+) = A−. The
stability of quasi-geodesics in δ-hyperbolic spaces then gives the existence of a constant K > 0 such
that the half-geodesics (A−no)n∈N and (BAmo)m∈N stay at a distance K of each other. Thus, we
deduce the existence, for all n ∈ N, of an integer ϕ(n) ∈ N such that d(A−no,BAϕ(n)o) ≤ K. But
the element anbaϕ(n) ∈ F2 is primitive and cyclically reduced, so by the Bowditch hypothesis, we
have the following inequality :

1
C
∥anbaϕ(n)∥ −D ≤ d(ρ(anbaϕ(n))o, o) = d(AnBAϕ(n)o, o) = d(BAϕ(n)o,A−no)

Here the right hand side of the inequality is bounded by K, and the left hand side tends to infinity
because ∥anbaϕ(n)∥ = n + ϕ(n) + 1, this is a contradiction.
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Chapter 6

From Bowditch’s hypothesis for F2 to
uniform tubular neighborhoods

The purpose of this section is to show Proposition 6.3, which is the heart of the proof that a
Bowditch representation is primitive-stable.

Before stating the proposition and starting the proof, recall that whenA is a hyperbolic isometry
of X, it defines two points in the boundary of X, A+ and A−, respectively attracting and repelling
fixpoints of the action of A on ∂X. Let’s denote by Axis(A) the union of all the geodesics of X
joining the two points A+ and A−. Since the space X is proper, this set in non-empty. When
X = Hn the usual hyperbolic space of dimension n, the geodesic joining A+ and A− is unique and
corresponds to the usual definition of the axis of the hyperbolic isometry A. The set Axis(A)
in invariant under A : indeed, for every geodesic ℓ joining A+ and A− in X, A(ℓ) is still a
geodesic because l is a geodesic and A an isometry. Now using the fact that the endpoints of ℓ
are the fixpoints at infinity of A, we deduce that the endpoints of A(ℓ) are also A+ and A−, so
A(ℓ) ⊂ Axis(A), thus Axis(A) is A-invariant. For a subset Y of X and K > 0, denote by NK(Y )
the K-neighborhood of Y , that is NK(Y ) = {x ∈X ∶ d(x,Y ) ≤K}. Fix ℓ any geodesic of X joining
A+ and A−. Then we have the following lemma :

Lemma 6.1. With the previous notations, with have the following inclusions :

● NK(ℓ) ⊂ NK(Axis(A))

● There exists a constant C(δ), depending only on the hyperbolic constant δ, such that
NK(Axis(A)) ⊂ NK+C(δ)(ℓ).

Proof. ● The first point is immediate because ℓ ⊂ Axis(A).

● The second point basically follows from the Morse lemma. Since X is δ-hyperbolic, there
exists a constant C(δ), depending only on δ, such that any two geodesics with the same
endpoints remain at a distance C(δ) of each other.
Then, if x ∈ NK(Axis(A)), there exists y ∈ Axis(A) such that d(x, y) ≤ K. But since
y ∈ Axis(A), in particular, y belongs to a geodesic with endpoints A+ and A−, let’s denote it

63
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by ℓy. Thus ℓy and ℓ remain at a distance C(δ) of each other and thus x is at distance at
most K +C(δ) of ℓ.

Moreover, in the following we will be studying the distance map to Axis(A). Here we state its
invariance under the action of A :

Lemma 6.2. Let x be a point in X and A an hyperbolic isometry of X. Then

d(x,Axis(A)) = d(Ax,Axis(A))

Proof. The proof is immediate :

d(x,Axis(A)) = d(Ax,A(Axis(A)) since A is an isometry
= d(Ax,Axis(A)) by A-invariance of Axis(A) .

Now we are going to show that the Morse lemma is satisfied for the primitive elements of
a Bowditch representation, meaning that the orbit map restricted to primitive leaves stays in a
uniform tubular neighborhood of the axis of primitive elements in X.

Proposition 6.3. Let ρ ∶ F2 → Isom(X) be a Bowditch representation. The orbit map restricted
to primitive leaves stays in a uniform tubular neighborhood of the axis of primitive elements in X.
Precisely :

∃K > 0, ∀γ ∈ P(F2), τρ(Lγ) ⊂ NK(Axis(ρ(γ)))

Recall that Lγ denotes the geodesic in the Cayley graph of F2 generated by γ, and that for any
primitive element γ in F2, ρ(γ) is hyperbolic so Axis(ρ(γ)) is well-defined.

Proof. Pick ρ a Bowditch representation and let C > 0,C ′ > 0 be two constants such that

∀γ ∈ P(F2),
1
C
∥γ∥ ≤ l(ρ(γ)) and ∀u ∈ F2, d(ρ(u)o, o) ≤ C ′∣u∣.

Note that such constants automatically satisfy CC ′ ≥ 1.
Let us proceed by contradiction and suppose there exists a sequence (γn)n∈N of cyclically reduced
primitive elements of F2 satisfying the following hypothesis :

sup{d(x,Axis(ρ(γn))) ∶ x ∈ τρ(Lγn)} Ð→n→∞
+∞ (H1)

We fix such a sequence (γn)n∈N for all that follows.

Lemma 6.4. Up to subsequence, we can assume that the elements γn are pairwise distinct and
that ∣γn∣→∞.
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Proof. Let N ∈ N. Then the set ΓN = {n ∈ N ∶ γn = γN} is finite. Indeed, if this was not
true, there would exist a subsequence (γσ(n))n∈N such that sup{d(x,Axis(ρ(γN))) ∶ x ∈ τρ(LγN

)} =
sup{d(x,Axis(ρ(γσ(n)))) ∶ x ∈ τρ(Lγσ(n)

)} and this would contradict the hypothesis (H1). Therefore
ΓN is finite for all N ∈ N and so, after passing to a subsequence, we can assume that the elements
(γn)n∈N are pairwise distinct.
For all A > 0, {γ ∈ F2 ∶ ∣γ∣ ≤ A} is finite, so, since the elements (γn)n∈N are pairwise distinct, we also
have the finiteness of the set {n ∈ N ∶ ∣γn∣ ≤ A} for all A > 0. Then for n sufficiently large, ∣γn∣ ≥ A,
hence ∣γn∣ Ð→

n→∞
∞.

6.1 Continued fraction expansion of γn

The element γn is primitive, thus correspond to a rational, and then we can write the continued
fraction expansion of its slope :

Slope(γn) = [Nn
1 ,⋯,Nn

r(n)].

Now we will prove that we can restrict our study to the case where the integers Nn
i are bounded

in n :
Lemma 6.5. Up to subsequence, r(n)→ +∞ and for all i ∈ N, (Nn

i )n∈N ∣ r(n)≥i is bounded.

Proof. Suppose there exists i ∈ N such that (Nn
i )n is defined for an infinity of n and is not

bounded. Then consider the smallest such i ∈ N. For all 1 ≤ j < i, the sequence (Nn
j )n is a

bounded sequence of integers so after passing to subsequence we assume that there exists an
integer Nj such that for all 1 ≤ j < i and for all n ∈ N such that r(n) ≥ j, Nn

j = Nj. Thus
Slope(γn) = [N1,N2,⋯,Ni−1,Nn

i ,⋯,Nn
r(n)
]. We set u = wi−1(γn) and v = w′i−1(γn) (see definition

4.1 in section 4). Therefore, Slope(u) = [N1,N2,⋯,Ni−1], Slope(v) = [N1,N2,⋯,Ni−1 + 1] (by
Proposition 4.3) and u and v do not depend on the integer n. Moreover, u and v form a free basis
of F2 such that (up to cyclic permutation and inversion) γn is a positive word on u and v (by
Proposition 4.3). Denote by U = ρ(u) and V = ρ(v) their images by ρ, then by the lemma 5.3,
we conclude V (U+) ≠ U−. Then, by considering the bi-infinite word obtained by concatenating
infinitely many copies of γn, or equivalently the bi-infinite word obtained by following the geodesic
Lγn in the Cayley graph, we can see ρ∣Lγn

as an element of G(U,V ) (the definition is given at the
beginning of section 5). Thus, we define N ∈ N∗ as in the lemma 5.1 (depending on δ,U, V and the
basepoint o) and since by hypothesis Nn

i → +∞, ρ∣Lγn
is a sequence of GN(U,V ) for n sufficiently

large. Then, using the lemma 5.1, we obtain the existence of two constants λ > 0 and k ≥ 0 (only
depending on δ,U, V and the basepoint o) such that τρ∣Lγn

is a (λ, k)-quasi-geodesic. The Morse
lemma now gives the existence of a constant K > 0 only depending on λ and k such that τρ(Lγn)
remains in the K-neighborhood of Axis(ρ(γn)). This contradicts our hypothesis (H1) on ρ for n
sufficiently large. Hence, for all i ∈ N, (Nn

i )n is bounded.
Let us now justify that r(n)→ +∞. If r(n) stays bounded, r(n) ≤ R, then for all 1 ≤ i ≤ R, (Nn

i )n
is bounded by what has been previously done and so the word length of γn is also bounded, which
is false. Thus r(n)→ +∞. In particular, we deduce that under the assumption (H1), the sequence
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(Nn
i )n is always well-defined for n sufficiently large (n such that r(n) ≥ i).

6.2 Consequence : uniform bound on the lengths li(γn)

Using the notations of the previous sections and the definition of li(γn) given in Definition 4.1, we
have, using the inequalities 4.10 and 4.11 of the section 4 together with the upper bound Nn

i ≤ Ni :

∀n ∈ N,∀1 ≤ i ≤ r(n), li(γn)
li−1(γn)

≤ Ni + 1

We deduce, since for any integer n, l0(γn) = 1, that for any integer i, there exists a positive constant
Li > 0 such that :

∀n ∈ N,∀0 ≤ i ≤ r(n), i ≤ li(γn) ≤ Li (6.1)

6.3 Excursions for real maps
Definition 6.1. An excursion is the data of two reals a ≤ b and of a map E ∶ [a, b] → R which
satisfies :

● E is continuous on [a, b]

● E(a) = E(b)

● ∀t ∈ [a, b],E(t) ≥ E(a)

We define the length of excursion of E as the non-negative real b − a.
Furthermore, the map E ∶ [a, b] → R is said to be a K-excursion if E is an excursion such that
E(a) =K.

Definition 6.2. Let E ∶ [a, b] → R be an excursion. We say that E′ is a sub-excursion of E if
there exists a subinterval [c, d] ⊂ [a, b] such that E′ = E∣[c,d] and E′ is an excursion.
Furthermore, E′ is said to be a K-sub-excursion of E if E′(c) =K.

The goal of this section is Lemma 6.11, which shows that an excursion always has sub-excursions
of any prescribed length up to a factor of 2.
Remark 6.6. Trivially, if E is an excursion, E is a sub-excursion of itself and for all c ∈ [a, b],E∣[c,c]

is also a sub-excursion of E.

Lemma 6.7. Let E ∶ [a, b] → R be an excursion. We set Kmin = minE = E(a) = E(b) and
Kmax =maxE.
Then, for all K ∈ [Kmin,Kmax], there exists a K-sub-excursion of E.
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Proof. Let Kmin ≤K ≤Kmax. Choose c ∈ [a, b] such that E(c) =Kmax. We denote XL = E−1(K) ∩
[a, c] and XR = E−1(K)∩[c, b]. The sets XL and XG are closed (by continuity of E) and non-empty
(by the intermediate value theorem) so we can consider

xK =maxXL and yK =minXR

Then E∣[xK ,yK] is a K-sub-excursion of E.

Lemma 6.8. Let l > 0 and E be an excursion of length l. Let TE be the set of all lengths of
excursion of sub-excursion of E, that is :

TE = {0 ≤ l′ ≤ l ∶ there exists a sub-excursion of E of length l′}

Then TE is a closed subset of [0, l].
Remark 6.9. By the previous remark, we always have 0 ∈ TE, l ∈ TE.

Proof. Let E ∶ [a, b] → R be an excursion of length l, which means that E is continuous, E(a) =
E(b), ∀t ∈ [a, b],E(t) ≥ E(a) and b − a = l.
Let (ln)n∈N be a sequence of TE such that ln → l∞ ∈ [0, l].
Let (an)n∈N and (bn)n∈N be two sequences of [a, b] such that E ∶ [an, bn] → R is a sub-excursion
of length ln. Up to subsequence, since [a, b] is compact, we can assume that an → a∞ ∈ [a, b]
and bn → b∞ ∈ [a, b]. Moreover, using the continuity of E, ∀n ∈ N,E(an) = E(bn) and ∀t ∈
[an, bn]E(t) ≥ E(an), we obtain E(a∞) = E(b∞) and ∀t ∈ [a∞, b∞],E(t) ≥ E(a∞). Finally, l∞ =
lim

n
ln = lim

n
(bn − an) = b∞ − a∞ so E ∶ [a∞, b∞]→ R is indeed a sub-excursion of length l∞.

Lemma 6.10. Let l > 0 and E an excursion of length l. Then there exists a sub-excursion of E
of length l′ > 0 such that l2 ≤ l

′ < l.

Proof. Let E ∶ [a, b] → R be an excursion of length l (then E is continuous, E(a) = E(b), ∀t ∈
[a, b],E(t) ≥ E(a) and b − a = l).
We distinguish two cases :

● 1st case : There exists t ∈]a, b[,E(t) = E(a) :
Then E ∶ [a, t]→ R and E ∶ [t, b]→ R are two sub-excursions of length t − a and b − t respec-
tively. But either t − a ≥ b−a

2 = l
2 or b − t ≥ b−a

2 = l
2 so one of these two sub-excursion is in fact

of length l
2 ≤ l′ < l.

● 2nd case : For all t ∈]a, b[,E(t) > E(a) :
Let c, d ∈]a, b[ such that d − c ≥ l

2 . The map E is continuous on the segment [c, d]. Denote
δ =min

[c,d]
E. Then δ > E(a). Let h = 1

2(E(a) + δ) and define :

ah =max{a′ ∈ [a, c] ∶ E(a′) = h}
bh =min{b′ ∈ [d, b] ∶ E(b′) = h}
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The set {a′ ∈ [a, c] ∶ E(a′) = h} is non-empty (because E(c) ≥ δ > h > E(a) and E is
continuous) and closed, so ah is well-defined. Likewise, bh is well-defined.
Therefore, we have :

– For all t ∈ [c, d],E(t) > h because h < δ =min
[c,d]

E

– For all t ∈ [ah, c],E(t) ≥ h : indeed, if there was t ∈ [ah, c] such that E(t) < h, then on
one hand t ∈]ah, c[, and on the other hand, since E(c) > h, by the intermediate value
theorem, there would exist a′ ∈ [t, c] such that E(a′) = h and a′ > ah, which is impossible
because of the choice of ah.

– For all t ∈ [d, bh],E(t) ≥ h : the same argument as above works.

Therefore, E ∶ [ah, bh]→ R is an excursion of length l′ = bh − ah which satisfies
l

2 ≤ d − c ≤ bh − ah = l′ < b − a = l

Lemma 6.11. Let l > 0 and E be an excursion of length l. Let TE be the set of all lengths of
excursions of E. Fix 0 < a < l

2 . Then TE ∩ [a,2a(≠ ∅.

Proof. TE ∩ [2a, l] is closed (by the lemma 6.8) and non-empty (because l ∈ TE ∩ [2a, l]). Denote
l′ = minTE ∩ [2a, l]. By the lemma 6.10, there exists l′′ ∈ TE such that l′

2 ≤ l′′ < l′. Then l′′ < 2a
because l′′ < l′ =minTE ∩ [2a, l] and l′′ ≥ l′

2 ≥ 2a
2 = a. Therefore, l′′ ∈ TE ∩ [a,2a(.

6.4 Excursions of the orbit map

Let γ be a primitive element of F2. Recall that Lγ is the geodesic of the Cayley graph of
F2 generated by γ. We want to study the following map : Eγ ∶ Lγ Ð→ R+ such that Eγ(u) =
d(τρ(u),Axis(ρ(γ))).
Lemma 6.12. The map Eγ is Lipschitz-continuous (hence continuous) and γ-invariant.

Proof. It is a general fact that the distance map to any subspace of a metric space is 1-Lipschitz-
continuous, because of the triangle inequality. Since the orbit map τρ∣Lγ is Lipschitz-continuous,
we deduce the Lipschitz-continuity of Eγ.

The γ-invariance of Eγ follows from the γ-invariance of Axis(ρ(γ)).

Eγ(γu) = d(τρ(γu),Axis(ρ(γ))) = d(ρ(γ)τρ(u),Axis(ρ(γ)))
= d(τρ(u),Axis(ρ(γ))) because Axis(ρ(γ)) is ρ(γ)-invariant
= Eγ(u)
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Since Lγ is a geodesic in the Cayley graph of F2, it is isometric to R, therefore we can think of
Eγ as a map from R to R. Thus, we can apply the language of excursions defined previously.

Definition 6.3. Let γ be a primitive element in F2. Let [u, v] ⊂ Lγ be a segment of the geodesic Lγ.
We say that [u, v] is an excursion if the map Eγ∣[u,v] is an excursion.
Let K ≥ 0. We say that [u, v] is a K-excursion if the map Eγ∣[u,v] is an excursion such that
Eγ(u) = K. In this case, we call length of excursion of [u, v] the length of excursion of Eγ∣[u,v],
that is the non-negative real dC(u, v).
At last, we say that γ has an excursion (respectively a K-excursion) if there exists [u, v] ∈ Lγ such
that [u, v] is an excursion (respectively a K-excursion).

We end this section by showing that, in our context, we can find excursions as big and as long
as we want.

Lemma 6.13. There exist two sequences of positive reals (Kn)n∈N and (ln)n∈N, such that Kn →∞,
ln →∞ and, up to subsequence, for all n ∈ N, γn has a Kn-excursion of length ln.

Proof. Let

Kmax,n = max
[1,γn]

Eγn and Kmin,n = min
[1,γn]

Eγn

In particular we have Kmax,n =maxEγn and Kmin,n =minEγn since Eγn is γn-invariant (see lemma
6.12). The hypothesis H1 on the sequence (γn)n∈N means that Kmax,n →∞.

Fact : For all Kmin,n ≤K ≤Kmax,n, γn has a K-excursion.

Proof. Indeed, γn has a Kmin,n-excursion (by γn invariance of Eγn) so by the lemma 6.7, γn has a
K-excursion.

● If (Kmin,n)n∈N is not bounded, then up to subsequence, we can assume that Kmin,n →∞. By
definition of Kmin,n, there exists un ∈ [1, γn] such that Eγn(un) = Kmin,n, and so [un, γnun]
is a Kmin,n-excursion of length ∣γn∣. By setting Kn = Kmin,n and ln = ∣γn∣, we then have
Kn →∞, ln →∞ and γn has a Kn-excursion of length ln.

● If (Kmin,n)n∈N is bounded, then there exists K > 0 such that for all n ∈ N,Kmin,n ≤ K. Let
Kn = Kmax,n

2 . Then, Kn →∞ and moreover, for n sufficiently large, Kmin,n ≤K ≤Kn <Kmax,n.
So, by the above fact, γn has Kn-excursions. Now let us justify this excursion can be chosen
in such a way that its length ln satisfies ln →∞.
Let n ∈ N, there exists un ∈ [1, γn] such that Eγn(un) = Kmax,n > Kn (Eγn is continuous), so
there exists a Kn-excursion containing un. Denote it by [vn,wn] and set ln = d(vn,wn). Now
we are going to justify that ln →∞.
Let xn = τρ(un), we have d(xn,Axis(ρ(γn))) =Kmax,n = 2Kn.
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Define ∂NKn(Axis(ρ(γn))) = {y ∈ X ∶ d(y,Axis(ρ(γn))) = Kn} and let yn be a projec-
tion of xn on ∂NKn(Axis(ρ(γn))). Then yn satisfies : yn ∈ ∂NKn(Axis(ρ(γn))) and ∀y ∈
∂NKn(Axis(ρ(γn))), d(xn, yn) ≤ d(xn, y). Since the map d(⋅,Axis(ρ(γn))) is 1-Lipschitz-
continuous, we have :

∣d(xn,Axis(ρ(γn))) − d(yn,Axis(ρ(γn)))∣ ≤ d(xn, yn),
hence Kn ≤ d(xn, yn).

In addition, because [vn,wn] is aKn-excursion, τρ(vn) and τρ(wn) belong to ∂NKn(Axis(ρ(γn)))
so 2d(xn, yn) ≤ d(xn, τρ(vn)) + d(xn, τρ(wn)). Then :

2Kn ≤ 2d(xn, yn) ≤ d(xn, τρ(vn)) + d(xn, τρ(wn))
≤ C ′d(un, vn) +C ′d(un,wn) because τρ is C ′-Lipschitz-continuous
= C ′d(vn,wn) because un ∈ [vn,wn]
= C ′ln

We conclude by using that Kn →∞.

6.5 Quasi-loops
Definition 6.4. Let ε > 0 and w ∈ F2 (not necessarily primitive). We say that w is an ε-quasi-loop
if we have the following inequality :

d(ρ(w)o, o) ≤ ε ∣w∣

Thinking of ε as very small, an ε-quasi-loop is an element that does not displace the points
much. Note that the definition of a quasi-loop depends on the representation ρ.

Let γ be a primitive element of F2 and u ∈ Lγ. We denote by ⌊u⌋ the integer point in Lγ just
before u (if u is an integer point in Lγ, ⌊u⌋ = u) and ⌈u⌉ the integer point of Lγ just after u (thus
⌊u⌋ and ⌈u⌉ are the endpoints of an edge of length 1 in the Cayley graph and u belongs to this edge).

Recall that we have fixed a (Bowditch) representation ρ ∶ F2 → Isom(X) and that the notions
of a K-excursion and of a ε-quasi-loop depend on ρ.
Lemma 6.14. Let ε > 0. There exist lε > 0 and Kε > 0 such that for all primitive elements γ, for
all K ≥ Kε, l ≥ lε, if [u, v] is a K-excursion of length l, then the element w = ⌊u⌋−1⌊v⌋ (which is a
subword of γ) is an ε-quasi-loop.

Proof. Let ε′ = ε
2 .

Let γ be a primitive element in F2 and [u, v] ⊂ Lγ such that [u, v] is a K-excursion of length l.
Then d(τρ(u),Axis(ρ(γ))) = d(τρ(v),Axis(ρ(γ))) = K, for all t ∈ [u, v], d(τρ(t),Axis(ρ(γ))) ≥ K
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and d(u, v) = l. Choose ℓγ a geodesic in X with endpoints ρ(γ)+ and ρ(γ)−, where ρ(γ)+ and ρ(γ)−
are respectively the attracting and repelling fixpoints of the hyperbolic isometry ρ(γ). Using the
lemma 6.1, we conclude that d(τρ(u), ℓγ) ≤K+C(δ) and d(τρ(v), ℓγ) ≤K+C(δ), where C(δ) is the
constant introduced in the lemma. In addition, since for all t ∈ [u, v], d(τρ(t),Axis(ρ(γ))) ≥ K,
we can also conclude from lemma 6.1 that for all t ∈ [u, v], d(τρ(t), ℓγ) ≥K.

First, let us show that for K and l large enough, d(τρ(u), τρ(v)) ≤ ε′d(u, v) = ε′l :

We denote by d = d(τρ(u), τρ(v)) and L = length(τρ([u, v])). Then, since τρ is piecewise geodesic
on [u, v], we can apply the proposition 2.11 to obtain, after denoting D(δ) =max(C(δ), δ) :

1. If d ≤ 2K + 6δ, then L ≥ (2 d
2δ
−

D(δ)
δ
−5 − 2)δ

2. If d > 2K + 6δ, then there exists an integer n ≥ 2 such that :

{ L ≥ (n − 1)(2K
δ
−3 − 2)δ

d ≤ 18nδ + 2K + 2C(δ)

On the other hand, we also have that L ≤ C ′d(u, v) = C ′l. Indeed, this is a consequence of the
C ′-Lipschitz-continuity τρ. Therefore :

1. If d ≤ 2K + 6δ, we have :

(2 d
2δ
−

D(δ)
δ
−5 − 2)δ ≤ L ≤ C ′l

so 2 d
2δ
−

D(δ)
δ
−5 ≤ C

′

δ
l + 2

then d ≤ 2δ log2 (
C ′

δ
l + 2) + 2D(δ) + 10δ

But
2δ log2(C′

δ l + 2) + 2D(δ) + 10δ
l

Ð→
l→+∞

0,

so there exists lε > 0 (depending only on C ′, δ and ε) such that :
If l ≥ lε then d ≤ ε′l.

2. If d > 2K + 6δ, we have :

(n − 1)(2K
δ
−3 − 2)δ ≤ L ≤ C ′l so l ≥ (n − 1)(2K

δ
−3 − 2) δ

C ′
.

On the other hand d ≤ 18nδ + 2K + 2C(δ),

then d

l
≤ 18nδ + 2K + 2C(δ)
(n − 1)(2K

δ
−3 − 2) δ

C′

=
18δ + 2K+2C(δ)

n

(1 − 1
n)(2

K
δ
−3 − 2) δ

C′

.

But n ≥ 2 so 1 − 1
n
≥ 1

2 and 2K + 2C(δ)
n

≤K +C(δ),

therefore d
l
≤ 2C ′

δ

18δ +K +C(δ)
2K

δ
−3 − 2

Ð→
K→+∞

0.
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so there exists Kε > 0 (depending only on C ′, δ and ε) such that if K ≥Kε, then d ≤ ε′l.

Thus we have shown that if K ≥Kε and l ≥ lε, we have in every case d ≤ ε′l.

Now, let us show that this implies that w = ⌊u⌋−1⌊v⌋ is an ε-quasi-loop.

d(ρ(w)o, o) = d(ρ(⌊u⌋−1⌊v⌋)o, o) = d(ρ(⌊u⌋)o, ρ(⌊v⌋)o) = d(τρ(⌊u⌋), τρ(⌊v⌋))
≤ d(τρ(⌊u⌋), τρ(u)) + d(τρ(u), τρ(v)) + d(τρ(v), τρ(⌊v⌋) by the triangle inequality
≤ 2C ′ + d because u and ⌊u⌋ are at a distance less than 1 in the Cayley graph
≤ 2C ′ + ε′d(u, v) by what have been previously done
≤ 2C ′ + ε′(d(⌊u⌋, ⌊v⌋) + d(⌊v⌋, v) − d(⌊u⌋, u)) because ⌊u⌋, u, ⌊v⌋, v are aligned in this order on Lγ

≤ 2C ′ + 1 + ε′∣w∣.

Let us further assume that l ≥ 2C′+1
ε′ + 1. Then in particular ∣w∣ = d(⌊u⌋, ⌊v⌋) = d(⌊u⌋, u) + d(u, v) −

d(⌊v⌋, v) ≥ l − 1 ≥ 2C′+1
ε′ . Therefore :

d(ρ(w)o, o) ≤ 2ε′∣w∣ = ε∣w∣

Thus, after possibly changing lε to max(lε, 2C′+1
ε + 1), we have shown that if l ≥ lε and K ≥ Kε,

then w is an ε-quasi-loop.

6.6 Induction step
Let n ∈ N and 0 ≤ i ≤ r(n). Recall that the notations wi(γn) and w′i(γn) have been defined in the

definition 4.1, and refer to some specific subwords of (a cyclic permutation of) γn, corresponding to
a truncation of the continued fraction expansion of the slope of γn. The integers li(γn) = ∣wi(γn)∣
and l′i(γn) = ∣w′i(γn)∣ refer to their lengths and r(n) is the depth of the continued fraction expansion
of the slope γn. In order to reduce the amount of notations, we write more simply wi(n),w′i(n)
and li(n), l′i(n).

Let
↶

wi(n) be a cyclic permutation of wi(n) and
↶

w′i(n) a cyclic permutation of w′i(n) adapted to
↶

wi(n). Recall that, by the lemma 4.5, there exists a cyclic permutation of γn that can be written
on the alphabet {

↶

wi(n),
↶

w′i(n)}. Thus, a subword u of γn can be written in the following way :

u = pw1⋯wbs

with :

● b ∈ N
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● p is a suffix of either
↶

wi(n) or
↶

w′i(n)

● s is a prefix of either
↶

wi(n) or
↶

w′i(n)

● For all 1 ≤ k ≤ b, wk ∈ {
↶

wi(n),
↶

w′i(n)}

Recall that the constants C and C ′ have been chosen at the beginning of the proof of Proposition
6.3 and satisfy :

∀γ ∈ P(F2),
1
C
∥γ∥ ≤ l(ρ(γ)), ∀u ∈ F2, d(ρ(u)o, o) ≤ C ′∣u∣ and CC ′ ≥ 1.

In the following lemma, we find an ε-quasi-loop in a cyclic permutation of wi(n) which occupy at
least half of its length. We also ask that the remainder of the cyclic permutation of wi(n) which
is not in the quasi-loop is sufficiently large (to be able later on to continue the process of finding
quasi-loop inside) and that the length of wi(n) is not too big (to be able to control the number of
wi(n) we can find).

Lemma 6.15. Let 0 < ε < 1
C

and α > 6. Fix r0 = 4 + 2ε
C ′

. Let r ≥ r0.
There exists a constant R > 0 and two integers n0 ∈ N, i ∈ N such that, for all integer n ≥ n0 the
following properties are satisfied :

1. 1 ≤ i ≤ r(n)

2. li−1(n) ≥ r

3. li(n) ≤
R

α

4. There exists a cyclic permutation of wi(n), denoted by
↶

wi(n) such that
↶

wi(n) = v1v2, with v1
and v2 two elements of F2 satisfying the following properties :

(a) v1 is an ε-quasi-loop
(b) ∣v1∣ ≥ ∣v2∣
(c) ∣v2∣ ≥ r

Proof. First of all, let’s consider two sequences (Kn)n∈N and (ln)n∈N as in the lemma 6.13. Then
Kn → ∞, ln → ∞ and for all n ∈ N, γn has a Kn-excursion of length ln. Now, let’s introduce the
constants K ε

2
and l ε

2
given by the lemma 6.14 for ε

2 . In order to simplify the notation, we still
denote by Kε and lε these two constants. Then, there exists and integer n1 ∈ N such that for all
integers n ≥ n1, we have ln ≥ lε and Kn ≥Kε. Now, let r′ = C ′r

1
C − ε

. Then, because CC ′ ≥ 1, we have

r′ = C ′r
1
C − ε

≥ CC ′r ≥ r. Let l(r′, ε) =max (r′ + 1,2lε). Since r(n)→∞ by the lemma 6.5, we deduce
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the existence of an integer n2 ∈ N such that for all integers n ≥ n2, we have r(n) ≥ l(r′, ε). Let us
consider i the smallest integer such that i ≥ l(r′, ε). Then for all n ≥ n2, we have l(r′, ε) ≤ i ≤ r(n)
(because r(n) is an integer). Since ln → ∞, we can find n3 ∈ N such that for all n ≥ n3, we have
Li < ln (recall that Li is a constant introduced in 6.2 which satisfies li(n) ≤ Li for all n ∈ N). Then,
set n0 =max(n1, n2, n3) and let’s summarise the inequalities that are true for all integers n ≥ n3 :

ln ≥ lε, Kn ≥Kε, r(n) ≥ r′ + 1, r(n) ≥ 2lε, ln > Li and l(r′, ε) ≤ i ≤ r(n).
Finally, we set R = αLi.

Now that all these constants have been introduced, we show that this choice of n0, i and R
satisfies the property requested in the lemma. Let n ≥ n0. We can easily check the first three
properties :

1.
r(n) ≥ i ≥ l(r′, ε) ≥ r′ + 1 because l(r′, ε) =max (r′,2lε − 1)

≥ r + 1 ≥ r0 because r is chosen larger than r0

> 4 because r0 = 4 + 2ε
C ′
,

hence we have 1 ≤ i ≤ r(n).

2.
li−1(n) ≥ i − 1 by the inequalities of 6.2

≥ r as already seen above

3.
li(n) ≤ Li by the inequalities of 6.2

= R
α

by definition of R

Now let us show the fourth property.

The element γn has a Kn-excursion of length ln. But li(n) ≤ Li < ln, so we can use lemma
6.11 with a = li(n)

2 to show the existence of a K ′n-sub-excursion of length l′n ∈ [a,2a(. Denote it by

[u′, v′]. Then we have d(u′, v′) = l′n, K ′n ≥Kn and li(n)
2 ≤ l′n < li(n).

Then, since Kn ≥Kε, we deduce K ′n ≥Kε. In addition :

l′n ≥
li(n)

2 ≥ i2 by the inequalities of 6.2

≥ l(r
′, ε)
2 because i ≥ l(r′, ε)

≥ 2lε
2 by definition of l(r′, ε)

= lε.
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We apply Lemma 6.14 to [u′, v′] in order to show that the subword v1 ∶= ⌊u′⌋−1⌊v′⌋ of (a cyclic
permutation of) γn is an ε

2 -quasi-loop. Let us now look at the length of v1.

We have ∣v1∣ = d(⌊u′⌋, ⌊v′⌋) = d(⌊u′⌋, u′) + d(u′, v′) − d(⌊v′⌋, v′)
Hence l′n − 1 < ∣v1∣ < l′n + 1,

so li(n)
2 − 1 < ∣v1∣ < li(n) + 1.

Then li(n)
2 − 1

2 ≤ ∣v1∣ ≤ li(n)

Note that, after possibly deleting the last letter of v1 or adding a letter at the end of v1, we can
in fact assume that the resulting word, which we denote by v1 again, satisfies li(n)

2 ≤ v1 ≤ li(n) − 1.
Indeed :

● If ∣v1∣ = li(n), write v1 = v′1s, with ∣s∣ = 1. Then ∣v′1∣ = li(n) − 1, and we also have ∣v′1∣ ≥
li(n)

2 ,
because li(n) ≥ 2 (since i ≥ 1).

● If ∣v1∣ < li(n)
2 , write v′1 = v1s, with ∣s∣ = 1. Then ∣v′1∣ = ∣v1∣+1 < li(n)

2 +1 ≤ li(n), so ∣v1∣+1 ≤ li(n)−1,
and li(n)

2 ≤
li(n)

2 + 1
2 < ∣v1∣ + 1.

Lemma 6.16. Let ε > 0. Let w ∈ F2 be an ε-quasi-loop of length ∣w∣ ≥ C′

ε . Then, after deleting the
last letter of w or adding a letter at the end of w, the resulting word is an 2ε-quasi-loop.

Proof. ● If w′ = ws, with ∣s∣ = 1, ∣w′∣ = ∣w∣ + 1 :

d(ρ(w′)o, o) = d(ρ(ws)o, o) ≤ d(ρ(ws)o, ρ(w)o) + d(ρ(w)o, o)
≤ d(ρ(s)o, o) + ε∣w∣ because w is an ε-quasi-loop
≤ C ′ + ε∣w∣ since ∣s∣ = 1
≤ 2ε∣w∣ because C ′ ≤ ε∣w∣

● If w = w′s, with ∣s∣ = 1, ∣w′∣ = ∣w∣ − 1 :

d(ρ(w′)o, o) ≤ d(ρ(w′)o, ρ(w′s)o) + d(ρ(w′s)o, o)
≤ d(ρ(s)o, o) + d(ρ(w)o, o)
≤ C ′ + ε∣w∣ because w is an ε-quasi-loop and ∣s∣ = 1
≤ 2ε∣w∣ because C ′ ≤ ε∣w∣

Thus by lemma 6.16, v1 is an ε-quasi-loop.
Since ∣v1∣ ≤ li(n) − 1 ≤ ∣γn∣, there exists a subword v3 of (a cyclic permutation of) γn of length

li(n) that can be written v3 = v1v2, with 1 ≤ ∣v2∣ ≤ ∣v3∣ = li(n). Since v3 is of length li(n), we can
again use the Proposition 4.6 to ensure that after possibly changing the last letter of v3, that is
the last letter of v2 (because v2 is non empty), v3 is in fact a cyclic permutation of wi(n). Then,
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noting again v3 and v2 after this potential change of letter, there exists a cyclic permutation of
wi(n), which we denote

↶

wi(n), such that
↶

wi(n) = v1v2. Recall that we have already shown that v1

is an ε-quasi-loop, and because ∣v1∣ ≥ li(n)
2 , we have ∣v1∣ ≥ ∣v2∣. So we still have to show that ∣v2∣ ≥ r

to finish the proof of the fourth point. We proceed as follows :

1
C
li(n) ≤ d(ρ(

↶

wi(n))o, o) by the Bowditch hypothesis, because
↶

wi(n) is primitive

≤ d(ρ(v1v2)o, o) since
↶

wi(n) = v1v2

≤ d(ρ(v1v2)o, ρ(v1)o) + d(ρ(v1)o, o) by the triangle inequality
= d(ρ(v2)o, o) + d(ρ(v1)o, o) because ρ(v1) is an isometry
≤ C ′∣v2∣ + ε∣v1∣ since v1 is an ε-quasi-loop
≤ C ′∣v2∣ + εli(n) because ∣v1∣ ≤ li(n).

Therefore ∣v2∣ ≥
1
C ′
( 1
C
− ε)li(n) ≥

1
C ′
( 1
C
− ε)r′ because li(n) ≥ r′,

≥ 1
C ′
( 1
C
− ε) C ′

1
C − ε

r = r, which finishes the proof that ∣v2∣ ≥ r

The following lemma aims, when given a sufficiently large subword of some γn, to write it as
a concatenation of subwords being either ε-quasi-loops or sufficiently large "remainders", and such
that the proportion of the word in an ε-quasi-loop is at least c, where c is a constant between 0
and 1

4 , fixed in advance. It will be used recursively in the next lemma.

Lemma 6.17. Let 0 < ε < 1
C

and 0 < c < 1
4 . Fix r0 = 4+ 2ε

C ′
and let r ≥ r0. There exists a constant

R > 0 and an integer n0 ∈ N, such that, given any integer n ≥ n0 and any subword u of γn such that
∣u∣ ≥ R, then there exists a positive integer q ∈ N∗, a subset QL ⊂ {1,⋯, q} and q words u1,⋯, uq ∈ F2
such that :

1. u = u1⋯uq

2. For all k ∈ QL, uk is an ε-quasi-loop

3. ∑
k∉QL

∣uk∣ ≤ (1 − c)∣u∣

4. For all k ∉ QL, ∣uk∣ ≥ r

Proof. Let b = 8c+2
1−4c . Then c = b−2

4b+8 and for all b′ ≥ b, we have b′−2
4b′+8 ≥ c. In addition, since 0 < c < 1

4 ,
we have b > 2. Let α = 2b + 4, we have α > 8.
Now let us introduce the constants R > 0, i and n0 given by the lemma 6.15. Let n ≥ n0 be an
integer and u a subword of γn such that ∣u∣ ≥ R. Then, the lemma 6.15 states that 1 ≤ i ≤ r(n),
li−1(n) ≥ r, li(n) ≤ ∣u∣α , and there exists a cyclic permutation of wi(n), denoted by

↶

wi(n), that
decomposes into the form

↶

wi(n) = v1v2, with v1 an ε-quasi-loop and ∣v1∣ ≥ ∣v2∣ ≥ r. Let
↶

w′i(n) be a
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cyclic permutation of w′i(n) adapted to
↶

wi(n) (see the lemma 4.5).

Then we can write a decomposition of u under the form :

u = pw1⋯wb′s

with :

● b ∈ N

● p a suffix of
↶

wi(n) or
↶

w′i(n)

● s a prefix of
↶

wi(n) or
↶

w′i(n)

● For all 1 ≤ k ≤ b′, wk ∈ {
↶

wi(n),
↶

w′i(n)}

The lemma 6.15 ensures that li(n) ≤ ∣u∣α . Therefore we can use the lemma 4.7 to conclude that
b′ ≥ α−4

2 = b > 2. Namely there is at least three central blocs in the decomposition (b′ is an integer).
Denote p′ = pw1 and s′ = wb′s. We have :

∣p′∣ ≥ ∣w1∣ because ∣p′∣ = ∣p∣ + ∣w1∣
≥ li(n) since l′i(n) ≥ li(n)
≥ li−1(n) because the sequence (li(n))i is increasing
≥ r as provided by the lemma 6.15.

We also obtain ∣s′∣ ≥ li(n) ≥ r.
Therefore the word u can be written : u = p′w2⋯wb′−1s′.

Moreover, by the lemma 4.5,
↶

wi(n)(n) is either a prefix or a suffix of
↶

w′
i(n)
(n) so there exists a

word w such that
↶

w′i(n) = w
↶

wi(n) or
↶

w′i(n) =
↶

wi(n)w. In addition,
↶

wi(n)(n) = v1v2, so
↶

w′i(n) = wv1v2

or
↶

w′i(n) = v1v2w. Then, for all k ∈ {2,⋯, b′ − 1}, wk ∈ {
↶

wi(n),
↶

w′i(n)} so wk is a concatenation of
w, v1 and v2. In addition, v1 is an ε-quasi-loop (as provided by the lemma 6.15), and we have :

∣w∣ = l′i(n) − li(n) because ∣
↶

w′i(n)∣ = ∣w∣ + ∣
↶

wi(n)∣
= li−1(n) because l′i(n) = li(n) + li−1(n)
≥ r by the lemma 6.15 ,

on the other hand, ∣v2∣ ≥ r still by lemma 6.15.

Since we have previously shown that ∣p′∣ ≥ r, ∣s′∣ ≥ r, we can indeed write a decomposition of u
into the form u = u1⋯uq (with u1 = p′ and uq = s′) such that there exists a subset QL ⊂ {1,⋯, q},
such that for all k ∈ QL,uk is an ε-quasi-loop and for all k ∉ QL, ∣uk∣ ≥ r. Moreover, #QL = b′ − 2
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since each bloc w2,⋯,wb′−1 contains the ε-quasi-loop v1 exactly once. It remains to show that
∑k∉QL ∣uk∣ ≤ (1 − c)∣u∣. In order to do so, let us find a lower bound on the total length of the
ε-quasi-loops :

∑
k∈QL

∣uk∣ = (b′ − 2)∣v1∣ since the quasi-loop v1 appears exactly b′ − 2 times in our decomposition,

≥ (b′ − 2) li(n)2 because ∣v1∣ ≥ ∣v2∣ by the lemma 6.15

But ∣u∣ = ∣p∣ +
b′

∑
k=1
∣wk∣ + ∣s∣ because u = pw1⋯wb′s

≤ ∣p∣ + b′max{l′i(n), li(n)} + ∣s∣ because wk ∈ {
↶

wi(n),
↶

w′i(n)}

≤ (b′ + 2)max{l′i(n), li(n)} since p (resp. s) is a suffix (resp. prefix) of
↶

wi(n) or
↶

w′i(n)
≤ (b′ + 2)l′i(n) because li(n) ≤ l′i(n)
≤ 2(b′ + 2)li(n) because l′i(n) ≤ 2li(n)

Therefore ∑
k∈QL

∣uk∣ ≥
b′ − 2

2 li(n) ≥
b′ − 2

4(b′ + 2) ∣u∣

≥ b − 2
4(b + 2) ∣u∣ because we have shown at the beginning of the proof that b′ ≥ b

= c∣u∣ by definition of b.

The last inequality can we rewritten as follows : ∑
k∉QL

∣uk∣ ≤ (1−c)∣u∣, which completes the proof.

6.7 Final contradiction and conclusion

Now, we are able to find a primitive element γ (from the sequence (γn)n∈N) which contains a
very large proportion of quasi-loops.
Lemma 6.18. Let 0 < ε < 1

C and 1− 1
C′ ( 1

C −ε) < λ < 1. There exists a (cyclically reduced) primitive
element γ such that γ contains ε-quasi-loops that occupy at least a proportion λ of γ.

Proof. Let 0 < c < 1
4 and r0 = 4+ 2ε

C′ . Precisely, we will show the following property by recursion on
k ∈ N :

For any integer k ∈ N, for any real r ≥ r0, there exists an integer n0 ∈ N, such that for all n ≥ n0,
there exists an integer q ∈ N∗, a subset QL ⊂ {1,⋯, q}, and some elements u1,⋯, uq ∈ F2 satisfying
the following properties :



6.7. FINAL CONTRADICTION AND CONCLUSION 79

1. γn = u1⋯uq

2. For all i ∈ QL, ui is an ε-quasi-loop

3. ∑
i∉QL

∣ui∣ ≤ (1 − c)k∣γn∣

4. For i ∉ QL, ∣ui∣ ≥ r

● For k = 0, it’s trivial, it is sufficient to choose n large enough so that ∣γn∣ ≥ r, q = 1,QL = ∅
and thus the properties are satisfied.

● Suppose that this is true for some k. Let r ≥ r0. Let us introduce the constants R > 0 and n0 ∈
N given by the lemma 6.17. Now, let us apply the recursion hypothesis to r1 = max(R, r0).
Then, there exists an integer n1 ∈ N such that for all n ≥ n1, there exists q ∈ N∗,QL ⊂ {1,⋯, q}
and u1,⋯, uq such that γn = u1⋯uq, for all i ∈ QL, ui is an ε-quasi-loop, ∑i∉QL ∣ui∣ ≤ (1−c)k∣γn∣
and for all i ∉ QL, ∣ui∣ ≥ r1 ≥ R. This is still true for all integers n ≥ max(n0, n1). Then,
since for all i ∉ QL, ui is a subword of γn, with n ≥ n0, and ∣ui∣ ≥ R, we can apply the
lemma 6.17 to each ui ∉ QL. That is, for all i ∉ QL, there exists an integer qi ∈ N∗, a subset
QLi ⊂ {1,⋯qi}, and qi elements ui,1,⋯, ui,qi

∈ F2 such that : ui = ui,1⋯ui,qi
, for all j ∈ QLi,

ui,j is an ε-quasi-loop, ∑j∉QLi
≤ (1 − c)∣ui∣ and for all j ∉ QLi, ∣ui,j ∣ ≥ r. Then we have :

1.
γn =

q

∏
i=1
{ ui if i ∈ QL
ui,1⋯ui,qi

if i ∉ QL

(here the product denotes the concatenation)
2. For all i ∈ QL,ui is an ε-quasi-loop and for all i ∉ QL, for all j ∈ QLi, ui,j is an
ε-quasi-loop.

3. We have

∑
i∉QL

∑
j∉QLi

∣ui,j ∣ ≤ ∑
i∉QL

(1 − c)∣ui∣ = (1 − c) ∑
i∉QL

∣ui∣ ≤ (1 − c)(1 − c)k∣γn∣ = (1 − c)k+1∣γn∣.

4. For all i ∉ QL, for all j ∉ QLi, ∣ui,j ∣ ≥ r

which completes the proof of the recursion.
Thus, since 0 < 1 − c < 1 and 0 < λ < 1, there exists an integer k such that (1 − c)k < 1 − λ (simply
choose k = ⌈ ln(1−λ)

ln(1−c) ⌉), which completes the proof of the lemma.

Recall that the constants C and C ′ satisfy : for all primitive elements γ, 1
C ∣γ∣ ≤ l(ρ(γ)) ≤ C ′∣γ∣.

Then, in particular CC ′ ≥ 1. Let 0 < ε < 1
C . Therefore

1
C ′
( 1
C
− ε) < 1

C ′
1
C
≤ 1 so 0 < 1 − 1

C ′
( 1
C
− ε) < 1.
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Lemma 6.19. Let 0 < ε < 1
C and 1 − 1

C′ ( 1
C − ε) < λ < 1. Let γ be a primitive element of F2 which

contains ε-quasi-loops which occupy at least a proportion λ of γ. Then

d(ρ(γ)o, o) < 1
C
∣γ∣.

Proof. Since we can find ε-quasi-loops in γ which occupy at least a proportion λ of γ, there exists
p ∈ N, I ⊂ {1,⋯, p} and some elements u1,⋯, up such that we can write γ in the following way :
γ = u1⋯up, and∀i ∈ I, ui is an ε-quasi-loop and ∑i∈I ∣ui∣ ≥ λ∣γ∣. Then we have :

∑
i∈{1,⋯,p}/I

∣ui∣ = ∣γ∣ −∑
i∈I

∣ui∣ ≤ ∣γ∣ − λ∣γ∣ = (1 − λ)∣γ∣ (6.2)

Thus :

d(ρ(γ)o, o) ≤
p

∑
i=1
d(ρ(ui)o, o) by the triangle inequality

=∑
i∈I

d(ρ(ui)o, o) + ∑
i∈{1,⋯,p}/I

d(ρ(ui)o, o)

≤∑
i∈I

ε∣ui∣ + ∑
i∈{1,⋯,p}/I

d(ρ(ui)o, o) because ∀i ∈ I, ui is an ε-quasi-loop

≤ ε∑
i∈I

∣ui∣ + ∑
i∈{1,⋯,p}/I

C ′∣ui∣ because ∀u ∈ F2, d(ρ(u)o, o) ≤ C ′∣u∣

≤ ε∣γ∣ +C ′ ∑
i∈{1,⋯,p}/I

∣ui∣

≤ ε∣γ∣ +C ′(1 − λ)∣γ∣ by the inequality (6.2)

< ε∣γ∣ + ( 1
C
− ε)∣γ∣ by the hypothesis on λ

= 1
C
∣γ∣

This finishes the proof of proposition 6.3. Indeed :
Let 0 < ε < 1

C and 1− 1
C′ ( 1

C − ε) < λ < 1. The lemma 6.18 gives the existence of a primitive element
γ and some ε-quasi-loops in γ which occupy at least a proportion λ of γ and then the lemma 6.19
ensures that d(ρ(γ)o, o) < 1

C ∣γ∣. But since γ is primitive (and cyclically reduced), the Bowditch
hypothesis (combined with Lemma 5.2) states that 1

C ∣γ∣ ≤ d(ρ(γ)o, o), which is a contradiction.



Chapter 7

From uniform tubular neighborhoods
and Bowditch’s hypothesis for F2 to
primitive-stability

This section is dedicated to finish the proof of theorem 1.2, that is that a Bowditch representa-
tion is primitive-stable. Pick once and for all a Bowditch representation ρ, with constants (C,D).
In the section 6, we prove the existence of a constant K > 0 such that for all primitive elements
γ ∈ F2, we have the inclusion τρ(Lγ) ⊂ NK(Axis(ρ(γ))). (Recall that Lγ denotes the geodesic gen-
erated by γ in the Cayley graph of F2 and Axis(ρ(γ)) the axis of the hyperbolic isometry ρ(γ).)
For every γ in P(F2), pick ℓγ some geodesic joining the two attracting and repelling point of ρ(γ),
ρ(γ)+ and ρ(γ)−. Then ℓγ ⊂ Axis(ρ(γ)) and by Lemma 6.1, there exists a constant C(δ) such
that NK(Axis(ρ(γ))) ⊂ NK+C(δ)(ℓγ). Then, noting Kδ =K +C(δ), we obtain that for all primitive
elements γ ∈ F2, we have τρ(Lγ) ⊂ NKδ

(ℓγ).
Let po be some projection of the basepoint o on ℓγ. For a point p on the geodesic ℓγ, we define
the real Hγ(p) = ±d(p, po). The sign plus or minus is determined according to which side of po the
point p is located on. Thus Hγ is an isometry between ℓγ and R sending po to 0.
We begin by the following lemma :

Lemma 7.1. Let γ be a primitive element in F2 and pick an integer 0 ≤ i ≤ r(γ). Let g, g′
and g′′ be three points on Lγ, aligned in this order, such that d(g, g′) = d(g′, g′′) = li(γ) (hence
d(g, g′′) = 2li(γ)). Denote x = ρ(g)o, x′ = ρ(g′)o, x′′ = ρ(g′′)o and choose p, p′ and p′′ respectively
projections of x,x′ and x′′ on the geodesic ℓγ.
Suppose that li(γ) > C(4C ′ + 24δ + 2Kδ +D), then p, p′ and p′′ are aligned in this order on ℓγ.

Proof. We prove this lemma by contraposition. Suppose that the points are aligned in one of the
two following orders : p, p′′, p′ or p′′, p, p′. Then the reals Hγ(p′)−Hγ(p) and Hγ(p′′)−Hγ(p′) are of
opposite signs. Without loss of generality, suppose that Hγ(p) ≤Hγ(p′) and Hγ(p′) ≥Hγ(p′′). Now
consider all the integer points on the segment [g, g′′] : g0 = g, g1,⋯, gli(γ) = g′, gli(γ)+1,⋯, g2li(γ) = g′′.
For 0 ≤ j ≤ 2li(γ), denote xj = ρ(gj)o and choose pj a projection of xj on ℓγ (choose p0 = p, pli(γ) = p′
and p2li(γ) = p′′). Therefore, because of our hypothesis on p, p′ and p′′, there exists 0 ≤ j ≤ li(γ) − 1
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such that, H(pj) ≤H(pj+li(γ)) and H(pj+1) ≥H(pj+li(γ)+1). Hence :

d(pj, pj+li(γ)) =H(pj+li(γ)) −H(pj) because H(pj) ≤H(pj+li(γ))
=H(pj+li(γ)) −H(pj+li(γ)+1) +H(pj+li(γ)+1) −H(pj+1) +H(pj+1) −H(pj)
≤ ∣H(pj+li(γ)) −H(pj+li(γ)+1)∣ + ∣H(pj+1) −H(pj)∣ because H(pj+li(γ)+1) −H(pj+1) ≤ 0
= d(pj+li(γ), pj+li(γ)+1) + d(pj+1, pj)
≤ d(ρ(gj+li(γ))o, ρ(gj+li(γ)+1)o) + 12δ + d(ρ(gj+1)o, ρ(gj)o) + 12δ by Lemma 2.5
≤ 2C ′ + 24δ because d(gj+li(γ), gj+li(γ)+1) = d(gj, gj+1) = 1.

But since d(gj, gj+li(γ)) = li(γ), we have, by the Bowditch hypothesis and the Proposition 4.6, the
inequality :

1
C
li(γ) −D ≤ d(ρ(gj)o, ρ(gj+li(γ))o) + 2C ′

Now recall that we have proven that τρ(Lγ) remains in the Kδ-neighborhood of ℓγ, then we have

d(ρ(gj)o, ρ(gj+li(γ))o) ≤ d(pj, pj+li(γ)) + 2Kδ.

Thus, we can bound li(γ) :

li(γ) ≤ C(2C ′ + 24δ + 2Kδ + 2C ′ +D)

and this finishes the proof.

We are now ready to prove that ρ is primitive-stable. By contradiction, suppose that it is not.
Then for all n ∈ N, we can find a cyclically reduced primitive element γn and two points gn and
hn on Lγn such that d(ρ(gn)o, ρ(hn)o) ≤ 1

nd(gn, hn)− 1. Let xn = ρ(gn)o and yn = ρ(hn)o. We have
that d(gn, hn) ≥ n.
We can make the assumption that the elements γn are pairwise distinct. Indeed, if the sequence
(γn)n only takes finitely many values, then, up to subsequence, we can suppose that γn = γ for
some primitive element γ. But ρ(γ) is an hyperbolic isometry so there exist two constants Cγ

and Dγ (depending on γ !) such that τρ(Lγ) is a (Cγ,Dγ)-quasi-geodesic. Then, since gn and hn

belong to Lγ, we have :

1
Cγ

d(gn, hn) −Dγ ≤ d(ρ(gn)o, ρ(hn)o) ≤
1
n
d(gn, hn) − 1

so 1
Cγ

− Dγ

d(gn, hn)
≤ 1
n
− 1
d(gn, hn)

,

then, taking the limit when n→∞, 1
Cγ

≤ 0, which is absurd.

Thus we can suppose that the elements γn are pairwise distinct and therefore ∣γn∣ → ∞. Denote
by [N1(γn),⋯,Nr(γn)(γn)] the continued fraction expansion of γn. As in the proof of the previous
section (6), we can prove the following lemma.
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Lemma 7.2. For all i ∈ N∗, there exists a constant Ci > 0 such that for all n ∈ N∗, whenever
Ni(γn) is well defined (that is r(γn) ≥ i), we have Ni(γn) ≤ Ci. Moreover, up to subsequence,
r(γn)→∞.

Proof. See proof of Lemma 6.5.

Now fix an increasing map ψ ∶ N∗ Ð→ R∗+ satisfying 1 ≤ ψ(n) ≤ n, ∀n ∈ N∗; ψ(n) Ð→
n→∞
+∞ and

ψ(n) = o(n) (for example, take ψ(n) =√n).
We set Xn ∶= {0 ≤ i ≤ r(γn) ∶ li(γn) ≤ ψ(n)}. For n ≥ 1, Xn is non-empty because we always have
0 ∈Xn. Thus the integer In =maxXn is well-defined.

Lemma 7.3. Up to subsequence, In Ð→
n→∞
+∞. Moreover, lIn Ð→n→∞

+∞.

Proof. If the sequence (In)n was to be bounded, let us fix I an integer such that IN ≤ I for all
n ∈ N∗. By the lemma 7.2, r(γn) Ð→

n→∞
+∞ then for n sufficiently large, r(γn) ≥ I + 1.

Therefore, using again lemma 7.2 and up to passing to subsequence, we can assume that there
exists N1,⋯,NI some positive integers such that for all 1 ≤ j ≤ I,Nj(γn) = Nj. As a consequence,
the sequence (lI(γn))n∈N∗ is constant, and we denote lI = lI(γn). Therefore we have for all n ∈
N∗, lI ≤ ψ(n) ≤ lI+1(γn), so lI+1(γn) Ð→

n→∞
+∞. But

lI+1(γn) = (NI+1(γn) − 1)lI + l′I ≤ (NI+1(γn) + 1)lI

so we deduce that NI+1(γn) Ð→
n→∞
+∞, contradicting the lemma 7.2.

The fact that lIn → ∞ is now immediate knowing that lIn ≥ In + 1 (see the inequalities of remark
4.4).

Now consider the segment [gn, hn] in Lγn and let us cut it out in subsegments of length lIn ,
except maybe the last segment that must be of length smaller that lIn . Precisely, consider the
Euclidean division of the integer d(gn, hn) by lIn : d(gn, hn) = qnlIn + rn, with 0 ≤ rn < lIn , and set
g0,n = gn, g1,n,⋯, gqn,n points on Lγn such that d(gk,n, gk+1,n) = lIn , d(gqn,n, hn) = rn ≤ lIn . Moreover,
since lIn ≤ ψ(n) ≤ ψ(d(gn, hn)) ≤ d(gn, hn), we conclude that qn ≥ 1. Now consider xk,n = ρ(gk,n)o
for 0 ≤ k ≤ qn the corresponding point in X and finally pk,n = p(xk,n) its projection on ℓγn , a
geodesic joining the attracting and repelling points of ρ(γn). On one hand, we have the following
inequalities :

d(x0,n, xqn,n) ≤ d(x0,n, yn) + d(yn, xqn,n) by the triangle inequality
≤ d(xn, yn) + d(ρ(hn)o, ρ(gqn,n)o) by the definitions of x0,n, xqn,n

≤ 1
n
d(gn, hn) − 1 + d(ρ(hn)o, ρ(gqn,n)o) by hypothesis on the points gn and hn

≤ 1
n
d(gn, hn) − 1 +C ′d(gqn,n, hn) because τρ is C ′-Lipschitz-continuous

≤ 1
n
d(gn, hn) − 1 +C ′lIn since d(gqn,n, hn) = rn ≤ lIn .



84 CHAPTER 7. TOWARDS PRIMITIVE-STABILITY

On the other hand, since x0,n and xqn,n belong to NKδ
(ℓγn), we have that :

d(p0,n, pqn,n) ≤ d(x0,n, xqn,n) + 2Kδ

and by Lemma 7.1, p0,n, p1,n,⋯, pqn,n are aligned in this order on lγn , hence

d(p0,n, pqn,n) =
qn

∑
k=1

d(pk−1,n, pk,n)

Combining Proposition 4.6 and the Bowditch hypothesis :

1
C
lIn −D ≤ d(ρ(gi−1,n)o, ρ(gi,n)o) + 2C ′,∀1 ≤ i ≤ qn

= d(xi−1,n, xi,n) + 2C ′,∀1 ≤ i ≤ qn

≤ d(pi−1,n, pi,n) + 2Kδ + 2C ′,∀1 ≤ i ≤ qn

Therefore, by summing :

qn

C
lIn −Dqn ≤

qn

∑
i=1
d(pi−1,n, pi,n) + qn(2Kδ + 2C ′)

qn

C
lIn ≤

qn

∑
i=1
d(pi−1,n, pi,n) + qn(D + 2Kδ + 2C ′)

≤ d(x0,n, xqn,n) + 2Kδ + qn(D + 2Kδ + 2C ′)

≤ 1
n
d(gn, hn) − 1 +C ′lIn + 2Kδ + qn(D + 2Kδ + 2C ′)

Dividing by qnlIn :

1
C
≤ 1
n

d(gn, hn)
qnlIn

+ D + 2Kδ + 2C ′
lIn

+ C
′

qn

+ 2Kδ − 1
qnlIn

(7.1)

We now verify that the right hand side on this last inequality tends to zero :

● lIn →∞ by Lemma 7.3.

● We deduce that qnlIn →∞ because qn ≥ 1.

● qn =
d(gn, hn) − rn

lIn

≥ d(gn, hn)
lIn

− 1 ≥ n

ψ(n) − 1→∞ because ψ(n) = o(n).

● d(gn, hn)
qnlIn

≤ (qn + 1)lIn

qnlIn

= 1 + 1
qn

→ 1 because qn →∞.

Therefore, taking the limit of the inequality 7.1, we obtain : 1
C
≤ 0 which is absurd. Then the

representation ρ is primitive-stable.



Part II

The four-punctured sphere
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Outline of Part II
The goal of this second part of the thesis is to prove Theorem 1.4. Notice that since we showed

in section 3.1 the inclusion PS(π1(S0,4),X) ⊂ BQ(π1(S0,4),X), we now need to prove the reverse
inclusion, which is the most difficult one.

In Chapter 8, we will develop the necessary material and some crucial lemmas about the struc-
ture of simple closed curves in π1(S0,4). We will identify the four-punctured sphere with a quotient
of the plane R2 minus the lattice Z2 in order to see the simple closed curves as quotient of straight
lines with rational slope in R2. In particular, we will obtain a (bijective) correspondence between
rational numbers and equivalence classes of simple closed curves on the four-punctured sphere
(Proposition 8.1). Again we call the rational number associated to a simple closed curve γ its slope
and its continued fraction expansion [n1,⋯, nr] will be of particular interest. Hence in section
8.3, we will try to understand the combinatorics of a simple closed curve γ at different scales,
corresponding to each level i in the continued fraction expansion of the slope of γ (that is each
integer 0 ≤ i ≤ r). In particular, Lemma 8.8 will decompose a simple closed curve γ, seen as a word
in π1(S0,4), for each level i as a concatenation of words which will only depend on the integers
n1,⋯, ni. Then, the rest of this Chapter will be dedicated to the statement and the proof of the
"Magic-lengths" Proposition (8.16), which will be a major tool for our proof of Theorem 1.4. Our
approach will be geometric, and so in section 8.4 we will first need to introduce some generalities
about tilings of R2 adapted to a lattice of R2, set up our notations and state a few facts needed
in the following. Then section 8.5 will provide a short reminder about Farey neighbours. After
these preliminaries, we will state the "Magic-lengths" Proposition (8.16) in section 8.6 : take γ
a simple closed curve and w a subword of γ of length li(γ) − 5 (where li(γ) will only depend on
[n1,⋯, ni]), then we can find a uniformly bounded from bellow proportion of the word γ consisting
only of occurrences of the words w and w−1. This will highlight the redundancy of subwords of
some special lengths of γ. The proof will start by associating to every simple closed curve γ and
every level 1 ≤ i ≤ r of the continued fraction expansion of the slope of γ a lattice Λ of R2 (section
8.6.1). This lattice will be particularly useful to understand the word γ at the level i : within
this geometric framework we can "read" the word γ in R2 by following an horizontal line and the
subwords of lengths approximately li(γ) will be easier to visualise and to understand (section 8.6.2
and 8.6.3). Finally section 8.6.4 will combine the results on lattices in R2 of section 8.4 with our
study of subwords of γ of length approximately li(γ) in section 8.6.2 and 8.6.3 to prove Proposition
8.16.

Now the rest of Part II will follow the same paths as in the case of the free group of rank two
(Part I). However, since the combinatorics of simple closed curves on the four-punctured sphere is
different and more complicated than the combinatorics of primitive elements in F2, the statements
and their proofs have to be adapted. Thus, for completeness of this outline, we would like to
remind the reader of the main steps and ideas of the rest of the proof.

In section 9.1 of Chapter 9, we will study an other uniform quasi-geodesicity setting which will
later appear as a local uniform quasi-geodesicity property of Bowditch representations of π1(S0,4).
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In section 9.2, we will show two properties on Bowditch representations. The first one will state
that the images of simple elements under a Bowditch representation are always hyperbolic (Lemma
9.2). In particular, denoting Lγ the axis of γ in the Cayley graph of π1(S0,4) and τρ the orbit map of
a Bowditch representation ρ, we deduce that τρ(Lγ) is always a quasi-geodesic. The second prop-
erty (Lemma 9.3) will ensure that the hypothesis required by Proposition 9.1 on the isometries
of the proposition is satisfied when the isometries comes from a Bowditch representation of π1(S0,4).

Finally Chapters 10 and 11 will be dedicated to proving that a Bowditch representation of
π1(S0,4) is simple-stable. In Chapter 10, we will first prove a slightly weaker statement (Propo-
sition 10.1), which will be the main step for proving Theorem 1.4. It states that the images of
the simple leaves Lγ by the orbit map stay in a uniformly bounded neighborhood of the axes of
the simple elements γ. At last, Chapter 11 will conclude the proof by showing that a Bowditch
representation of π1(S0,4) satisfying the conclusion of Proposition 10.1 is simple-stable.

Let us now detail the strategy of the proof of Proposition 10.1. We fix a Bowditch representa-
tion ρ of π1(S0,4) and we want to show that the image of the orbit map restricted to simple leaves is
contained in a uniform tubular neighborhood of the axes of the images of the simple elements. We
proceed by contradiction and to this purpose we introduce a sequence (γn)n∈N of simple elements in
π1(S0,4) such that the image of the orbit map on the simple leave Lγn becomes further and further
away from the axis of ρ(γn) as n increases. We will now study the continued fraction expansion of
the slope of γn which we denote by [Nn

1 ,⋯,Nn
r(n)
]. The uniform quasi-geodesicity setting studied

in Proposition 9.1 of Chapter 9, together with Lemma 9.3 and our hypothesis on (γn)n∈N, will
enable us to deduce the behavior of the continued fraction expansion : the sequences (Nn

i )n must
be bounded for all i, and, as a consequence, the depth r(n) of the continued fraction expansion
will tend to infinity (Lemma 10.2). In particular, for all i, we will obtain a uniform control on the
lengths li(γn) previously defined in Chapter 8. We will next introduce the notion of a K-excursion
of the orbit map (section 10.3) and show that we can extract from the sequence (γn)n∈N a sequence
of Kn-excursions as large as we want (Kn →∞) in Lemma 10.4. We will also define the notion of
an ε-quasi-loop, and exactly as in the context of F2, large excursions will correspond to quasi-loop
(Lemma 10.5). As a consequence, we will find a quasi-loop in each γn (for large n). But we will
be more precise and, using our Magic-lengths Proposition (8.16) together with the fact that once
found a quasi-loop, we can find many others of smaller lengths "inside", we will find a uniformly
bounded from bellow proportion of the word γn consisting of disjoint quasi-loops (Lemma 10.6).
We will repeat our argument for the remainders in γn that do not yet consist of disjoint quasi-loops
in order to find an arbitrarily large proportion of the word γn consisting of disjoint quasi-loops
(Lemma 10.7). To formalise this idea we will use a recursive argument in the proof. This mean that
we will find an arbitrarily large proportion of the word γn which does not displace the basepoint
much, and this will be in contradiction with the Bowditch’s hypothesis.



Chapter 8

Structure of simple closed curves on the
four-punctured sphere

8.1 The four-punctured sphere
Let S0,4 be a (topological) four-punctured sphere, that is, a sphere with four distinct points

removed.

Figure 8.1: The four punctured-sphere S0,4

We will use the following model for S0,4, and see it as the quotient of the plane minus a lattice
in the following way :

S0,4 ≃ (R2 ∖Z2)/⟨{sλ ∶ λ ∈ Z2}⟩
where sλ is the reflection of the plane across the point λ (hence we have the formula sλ(u) = 2λ−u).
Moreover, it is not hard to check that this model is equivalent to the following one :

S0,4 ≃ (R2 ∖Z2)/⟨2Z2,±⟩

The four punctures on the sphere are given by the four classes of points in Z2 given by the action
of 2Z2 on it. They are drawn in black, blue, green and red on figure 8.2. A fundamental domain
is given is figure 8.3a by identifying the edges of the triangle as illustrated in the figure. We will
refer to this triangle in the following as the fundamental triangle.
Finally, we can also see the sphere S0,4 as a quotient of the square [0,2]2 ∖ (Z2 ∩ [0,2]2) in R2 by
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identifying the opposite sides of the square and applying the reflection across the center point of
the square : (1,1) (see figure 8.3b). In this last description, we recover the classical fact that the
four-punctured sphere is the quotient of the torus minus 4 points by the hyper-elliptic involution.

  

  

  

  

  

  

  

  

Figure 8.2: The sphere as the quotient of the plane :
S0,4 ≃ (R2 ∖Z2)/(2Z2,±)

 

(a) A fundamental domain

 

(b) The sphere as the quotient of the square

Figure 8.3: Fundamental triangle and square for S0,4

8.2 Simple closed curves on the four-punctured sphere
The fundamental group of the four-punctured sphere is the free group of rank three F3. We fix

once and for all the following free generating set : π1(S0,4) = F3 = ⟨a, b, c⟩, with a,b and c the curves
corresponding to three of the four boundary components of S0,4 as described in the picture 8.4.
Note that with this convention of orientation, the element abc corresponds to the fourth boundary
component (in black in the pictures).
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a
b

c

a
b

c
a

b

c

 

Figure 8.4: The three generators of π1(S0,4) = F3 = ⟨a, b, c⟩.

Denote by A,B and C the three edges of the fundamental triangle respectively containing the
punctures represented by the homotopy class a, b and c. The puncture at the middle of each edge
defines two half-edges. There is a total of six half-edges, on which we fix alternating transverse
orientations (see figure 8.5). These transverse orientations are respected by the gluings. For ev-
ery oriented curve γ on S0,4, we can write the corresponding word in the fundamental group (up
to cyclic permutation) by following the curve γ and writing the letter a, b or c respectively each
time γ crosses the edge A,B or C, with power ±1 depending on whether or not the orientation
of γ at the intersection point agrees with the transverse orientation on the corresponding half-edge.

 

A

B
C

γ

c

a

c−1
b

a

Figure 8.5: Reading the word γ = cac−1ba in the fundamental triangle

Let us go back to the plane. We say that a point in Z2 is of type a, b, c or abc, if its class mod 2Z2

corresponds to the puncture represented respectively by the homotopy class a, b, c or abc (hence a
point is of type a, b, c or abc, if its class mod Z2 is respectively (1,0), (0,1), (1,1) or (0,0)). The
points of type a, b, c or abc are exactly the lifts of the puncture represented respectively by a, b, c
or abc. In our pictures, the points of type a are in green, the points of type b in blue, the points of
type c in red and the points of type abc in black. We will keep this convention in all the following.
Now let us denote by LA the set of horizontal lines in the plane passing through a point of type a,
LB the set of vertical lines in the plane passing through a point of type b, and LC the set of lines
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of slope −1 in the plane passing through a point of type c (hence we have LA = {{y = 2λ} ∣ λ ∈ Z},
LB = {{x = 2λ} ∣ λ ∈ Z} and LC = {{y = −x + 2λ} ∣ λ ∈ Z}). Then through a point of type a, b or
c passes exactly one line in LA ∪ LB ∪ LC whereas through a point of type abc pass exactly three
lines in LA ∪ LB ∪ LC : one in LA, one in LB and one in LC . We say that a line l is of type a, b
or c respectively if l ∈ LA, l ∈ LB or l ∈ LC . Two different lines of the same type never intersect
whereas two lines of two different types always intersect in a point of Z2 of type abc. Moreover,
each line in LA, LB and LC is a union of segments (of the same lengths) with endpoints in Z2 and
with no point of Z2 in the interior of the segments. The two endpoints of each segment are of two
different types (one endpoint is of type t ∈ {a, b, c}, where t is the type of the line, and the other
endpoint is of type abc). Those segments correspond exactly to a half-edge in the fundamental
triangle. Therefore, on each segment, we can put a transverse orientation which is just the lift of
the orientation on the corresponding half-edge in the fundamental triangle.
Now we can play in the plane the same game as in the fundamental triangle and write, for a curve
γ in S0,4, the corresponding word in the fundamental group by following a lift γ̃ of γ in R2∖Z2 and
record a, b or c each time γ̃ crosses a line in LA, LB or LC and put a sign ±1 depending on whether
or not the orientation of γ̃ at the intersection point coincides with the transverse orientation on
the segment.

  

   

   

γ̃

c

a

c−1

b

a

LA

LB
LC

Figure 8.6: Reading the curve γ = cac−1ba in the plane using the three sets of parallel lines LA, LB

and LC

In the fundamental triangle, curves on S0,4 look like arcs joining the three edges A,B and C of
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the triangle. Notice that since the two half-edges of an edge are identified by a reflection, if an arc
has an endpoint in one half-edge, this forces another arc to have one of its endpoints in the other
half-edge of the same edge, and those two endpoints must be reflected from each other across the
midpoint of the edge. An arc can possibly join the same edge, but in this case it joins two different
halves of the same edge, otherwise this arc would be trivial and could be removed by a homotopy
of the curve (corresponding to a cancellation such as aa−1 in γ).

Recall that, as defined in the introduction, we say that a closed curve γ on S0,4 is simple if
there exists a representative of γ in its homotopy class which has no self-intersection and which
does not bound a disk or a once-punctured disk, and we denote by S(S0,4) the set of free homotopy
classes of (unoriented) simple closed curves on S0,4. With a slight abuse of notation, we will write
γ ∈ S(S0,4) to refer to a (cyclically reduced) word γ in the fundamental group π1(S0,4) representing
a simple closed curve in S(S0,4), thus identifying curves on the surface S0,4 and representatives in
the fundamental group.

First notice that every line with rational slope in the plane (which avoids Z2) gives a simple
closed curve in the quotient. The converse is also true and is the main purpose of the following
classical result :

Proposition 8.1. Let γ be a simple closed curve on S0,4. Then, after homotopy, γ can be lifted
to a line of rational slope in the plane.
Therefore, there exists a well defined map Slope ∶ S(S0,4)→ Q ∪∞, which is a bijection.

Proof. Fix γ a simple closed curve on S0,4. Let us look at γ as a collection of arcs in the fundamental
triangle. This collection of arcs does not intersect, because the curve is assumed to be simple. By
a slight abuse of notation, also denote by γ the corresponding cyclically reduced word in the
fundamental group. We are going to prove the following facts :

● Fact 1 : Every letter in γ is isolated.
It suffices to show that if a word contains the pattern . . . s2 . . . , with s ∈ {a, a−1, b, b−1, c, c−1},
then the corresponding curve contains self-intersection. It is easy to see that the presence of
s2 in the word forces the existence of an arc β from an edge e of the fundamental triangle to
itself, starting and ending in two different half-edges of e. Suppose β is an innermost such
arc. Then another arc (the next one or the previous one when following the curve) has an
endpoint on e, in between the two endpoints of β. But since this new arc is not innermost,
it has to "escape" the region bordered by β ∪ e. This would create self-intersection.

● Fact 2 : There is an edge of the fundamental triangle such that every arc has an endpoint
on it.
We deduce from the previous fact that there is no arc joining an edge to itself. Note that
the only case which is not covered by the previous fact is when γ has a single arc from an
edge to itself, but in this case, this would mean that γ is in fact a, b or c, hence a boundary
curve, which is not possible because γ is a simple curve (and then it is supposed to be non-
peripheral). In other words, all the arcs join different edges. Suppose that any two distinct
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s s

β

e
Figure 8.7: The pattern ⋯s2⋯ forces intersection. (Here e = A, s = a).

edges are joined by at least an arc. Under this assumption, consider for every pair of distinct
edges of the fundamental triangle the innermost arc joining those two edges, that is, the arc
whose two endpoints are the closest to the intersection point between the two edges (which
is the puncture abc). Then these three arcs combine together to form the boundary curve
abc. We now deduce of this observation that these three arcs form a connected component of
γ, which is taken simple (hence connected), so there is no other arc in γ. Therefore γ = abc
(up to cyclic permutation and inversion) which is not possible because γ is supposed to be
non-peripheral and abc is a boundary curve.

 

a

b

c

Figure 8.8: The three arcs in black together form the boundary component abc.

● Fact 3 : The curve γ is uniquely determined by its intersection numbers with the three edges
A,B and C.
Denote by nA, nB and nC the numbers of intersection between the curve γ and the three
edges A,B and C. First notice that since the two half-edges of an edge are identified, the
three integers nA, nB and nC must be even. Then, remark that these numbers are also the
number of arcs having an endpoint on A,B and C. By fact 2, we know that there exists an
edge such that every arc has an endpoint on it. Hence we deduce that either nC = nA + nB,
or nB = nA + nC or nA = nB + nC . Without loss of generality, let us now suppose that
nC = nA + nB. In this case, every intersection point on C must be linked by an arc to an
intersection point on A ∪B. There is only one way of pairing intersection points on C and
on A ∪B without creating self-intersection, and this determines the curve γ.

● Fact 4 : After homotopy, the curve γ can be lifted to a simple closed curve on the torus
R2/2Z2.
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Case nC = nA + nB with :
nA = 4
nB = 2
nC = 6

A

B
C

Figure 8.9: Pairing the endpoints on the edge C with the endpoints on the edge A ∪B.

Suppose that we are in the case where nC = nA+nB (exchange the role of A,B and C for the
other cases). Now consider the triangle obtained as a reflection of the fundamental triangle
across the center point of the edge C. The union of the two triangles forms a square with the
opposite sides identified, thus a torus. Let us justify that any lift of the curve γ in the torus is
a simple closed curve on the torus. Choose a basepoint x on the curve γ, then it has two lifts
on the torus, one in each triangle, and let us choose one, x̃. Notice that by following the curve
γ from x, its lift γ̃ from x̃ changes triangle each time γ meets an edge of the fundamental
triangle. This happens exactly nA

2 +
nB

2 +
nC

2 times, and since nA

2 +
nB

2 +
nC

2 = nC is even, this
means that the endpoint of γ̃ lies in the same triangle as x̃, therefore is x̃. Thus the lift γ̃ is
a closed curve, and it is simple because γ is. Finally, the intersection numbers between the
lift γ̃ of the curve γ and the sides of the square are given by the numbers nA

2 ,
nB

2 . Therefore,
nA

2 and nB

2 are relatively prime and γ can be lifted to a line of slope nA

nB
in the plane. This

allows us to define the map Slope from S(S0,4) to Q ∪∞, such that Slope(γ) = nA

nB
.

 

nA

2
= 2

nB

2
= 1

A

B

C

x̃

γ̃

 

nA

2
= 2

nB

2
= 1

A

B

C

x̃

γ̃

Figure 8.10: The two lifts (in black) of the curve γ (in black and grey) in the torus.

Remark 8.2. The proof of the previous proposition allows us to have a better understanding of
simple closed curves in S0,4. We deduce the following :
Let γ ∈ S(S0,4). Then, if γ is cyclically reduced, one out of two letters in γ is, up to inversion,
always the same.
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● If this letter is c, then Slope(γ) ∈ [0,∞]. Moreover, consider the map φ from F3 to F2 such
that φ(c) = φ(c−1) = 1, φ(a) = φ(a−1) = a, φ(b) = φ(b−1) = b and φ(u) = φ(s1)⋯φ(sp), where
u = s1⋯sp, with si ∈ {a, a−1, b, b−1, c, c−1}, is cyclically reduced. Then φ(γ) is a primitive
element of F2 and its slope as an element in F2 is the same as the slope of γ : Slope(γ) =
Slope(φ(γ)).

● If this letter is a, then Slope(γ) ∈ [−∞,−1]. Moreover, consider the map φ from F3 to F2
such that φ(c) = φ(c−1) = 1, φ(a) = φ(a−1) = a−1, φ(b) = φ(b−1) = b and φ(u) = φ(s1)⋯φ(sp),
where u = s1⋯sp, with si ∈ {a, a−1, b, b−1, c, c−1}, is cyclically reduced. Then φ(γ) is a primitive
element of F2 and its slope as an element in F2 is the same as the slope of γ : Slope(γ) =
Slope(φ(γ)).

● If this letter is b, then Slope(γ) ∈ [−1,0]. Moreover, consider the map φ from F3 to F2
such that φ(c) = φ(c−1) = 1, φ(a) = φ(a−1) = a−1, φ(b) = φ(b−1) = b, where u = s1⋯sp, with
si ∈ {a, a−1, b, b−1, c, c−1}, is cyclically reduced. Then φ(γ) is a primitive element of F2 and its
slope as an element in F2 is the same as the slope of γ : Slope(γ) = Slope(φ(γ)).

Remark 8.3. Notice that the map Slope depends on the choice of a basis {a, b, c} for π1(S0,4) = F3.
The choice of another basis leads to another map Slope. However, we can link the slope map of
two different bases. Denote Slopea,b,c the slope map in the basis {a, b, c}.
Let γ ∈ S(S0,4) be such that Slopea,b,c(γ) = [n1,⋯, nr]. Fix 1 ≤ i < r and let a′, b′, c′ be another basis
of F3 such that Slopea,b,c(c′b′) = [n1,⋯, ni] and Slopea,b,c(c′a′) = [n1,⋯, ni+1]. Then Slopea′,b′,c′(γ) =
[ni+1,⋯, nr].

The Slope map only depends on the class of an element up to conjugacy and inversion. There-
fore, for an element φ in the mapping class group MCG(S0,4), even if the element φ(γ) is defined
only up to conjugacy, the rational Slope(φ(γ)) is well-defined.

Lemma 8.4. Let F3 = π1(S0,4) = ⟨a, b, c⟩. Let p
q and p′

q′ be two rational numbers such that ∣pq′ −
p′q∣ = 1. Then there exists a mapping class φ ∈ MCG(S0,4) such that Slope(φ(cb)) = p

q and
Slope(φ(ca)) = p′

q′ .

Proof. First notice that the hypothesis ∣pq′ − p′q∣ = 1 means that the two vectors (q, p) and (q′, p′)

of Z2 form a basis of Z2. This implies that the matrix M = (q q′

p p′
) belongs to SL±(2,Z), so M

preserve the lattice Z2 inside R2. The action of (2Z2,±) on R2∖Z2 is M equivariant, so M induces
a homeomorphism of the quotient (R2 ∖Z2)/(2Z2,±), which is the sphere S0,4. The line lx from x
to x+(2,0) in R2∖Z2 (here x is an arbitrary point in R2 such that lx avoids the lattice Z2) induces
a simple closed curve γ 0

1
in S0,4 represented by cb in π1(S0,4). This line is sent by M to the line

from M(x) to M(x) + 2(q, p) which induces a simple closed curve γ p
q

in S0,4 of slope p
q . Similarly,

the line from x to x+ (0,2) in R2 ∖Z2 induces a simple closed curve γ 1
0

in S0,4 represented by ca in
π1(S0,4). This line is sent by M to the line from M(x) to M(x) + 2(q′, p′) which induces a simple
closed curve γ p′

q′
in S0,4 of slope p′

q′ . Hence φ =M∗ is in the mapping class group of S0,4 and satisfies
the conditions required by the lemma.
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8.3 Constructing simple closed curves
In this section, we try to have a better understanding of the structure of the elements of S(S0,4).

Lemma 8.5. Let γ ∈ S(S0,4). Suppose that Slope(γ) ≥ 0. Denote n = ⌊Slope(γ)⌋ ∈ N. Then,

● If n is even, γ can be written (up to conjugation) as a concatenation of subwords of the form :

w(c̃, b̃) = (ca)n
2 c̃(ca)−n

2 b̃

w′(c̃, b̃,0) = (ca)n
2 c̃(ca)−n

2 −1b̃

w′(c̃, b̃,1) = (ca)n
2 +1c̃(ca)−n

2 b̃

where c̃ ∈ {c, c−1}, b̃ ∈ {b, b−1}.

● If n is odd, γ can be written (up to conjugation) as a concatenation of subwords of the form :

w(c̃, b̃,0) = (ca)n−1
2 c̃(ca)−n+1

2 b̃

w(c̃, b̃,1) = (ca)n+1
2 c̃(ca)−n−1

2 b̃

w′(c̃, b̃) = (ca)n+1
2 c̃(ca)−n+1

2 b̃

where c̃ ∈ {c, c−1}, b̃ ∈ {b, b−1}.

Before starting the proof, recall that we can see the sphere S0,4 as the quotient of the square
[0,2]2∖(Z2∩[0,2]2) by the reflection across the center point of the square (1,1). In this description,
two opposite sides of the square are identified (by a translation) and every side is identified with
itself by a reflection across its midpoint. Moreover, the diagonal from (0,2) to (2,0) is identified
with itself by a reflection across its midpoint. We can put a transverse orientation on each half-side
and on the two half-diagonals as in figure 8.6 on page 92 or figure 8.11 on page 98. This orientation
is just the lift of the orientation already chosen on the half-edges of the fundamental triangle.
Thus we can write the word in the fundamental group corresponding to a curve by following the
curve and record an a each time it crosses a horizontal side of the square, with sign ±1 depending
on whether or not the orientation of the line coincides with the transverse orientation on the
corresponding half-side, record a b each time the curve crosses a vertical side of the square, with
sign ±1 depending on whether or not the orientation of the curve coincides with the transverse
orientation on the corresponding half-side, and record a c each time the curve crosses the diagonal
from (0,2) to (2,0), with sign ±1 depending on whether or not the orientation of the curve coincides
with the transverse orientation on the corresponding half-diagonal.

Proof. Consider a line of slope p
q = Slope(γ) ≥ 0 in the plane. We can assume that this line avoids

the points of the lattice Z2. In the quotient by 2Z2, this line is a collection of parallel segments
of slope p

q joining two sides of the square. The identification between two opposite sides of the
square gives an ordering on the segments. Now we want to understand what can be read between
two b±1. Thus look at a collection of successive segments such that the first segment starts on the
left vertical side of the square, the last segment ends on the right vertical side of the square, and
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no other segment starts or ends on a vertical side. A picture is drawn on figure 8.11 on page 98.
Because γ is in particular a simple closed curve of slope p

q in the torus, we know that between two
b, we need to read n or n+ 1 times the letter a, with n = ⌊pq ⌋. Moreover, in γ, one letter out of two
is c±1, thus what we read between two b± is (c̃ã)nc̃ or (c̃ã)n+1c̃, where the notation ã means a or
a−1 (and similarly for b̃ and c̃). By following the successive segments in the square we notice that
the first segments end in the first half (the left one) of the high horizontal side of the square, so
give an a in the intersection, and the last ones in the second half (the right one), hence give a a−1.
So we can be a bit more precise and write (c̃a)n1 c̃(a−1c̃)n2 b̃, with n1 + n2 ∈ {n,n + 1}. But before
the letter a stands necessarily the letter c (since the slope is non-negative) and after the letter a−1

stands necessarily the letter c−1 (for the same reason), therefore a subword of γ read between two
letters b± is of the form (ca)n1 c̃(ca)−n2 b̃. Finally, the intersection points between the curve and the
horizontal side of the square are evenly spaced then we must also have ∣n1 − n2∣ ≤ 1. Thus :

 

n1 = 3
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

n2 = 3
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

ca
ca

ca

c−1

(ca)−1

(ca)−1

(ca)−1

b

(a) Case n1 = n2,
we read (ca)3c−1(ca)−3b

 

n1 = 3
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

n2 = 4
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

ca
ca

ca

c

(ca)−1
(ca)−1
(ca)−1
(ca)−1

b−1

(b) Case n2 = n1 + 1,
we read (ca)3c(ca)−4b−1

Figure 8.11: A line in the square between two intersections with the vertical side

● If n is even :

– If n1 +n2 = n, then necessarily n1 = n2 = n
2 , so we recover the subword w(c̃, b̃) defined in

the lemma.
– If n1 + n2 = n + 1, then necessarily {n1, n2} = {n

2 ,
n
2 + 1}, so we recover the subwords

w′(c̃, b̃,0) and w′(c̃, b̃,1) defined in the lemma.

● If n is odd :

– If n1+n2 = n, then necessarily {n1, n2} = {n−1
2 , n+1

2 }, so we recover the subwords w(c̃, b̃,0)
and w(c̃, b̃,1) defined in the lemma.

– If n1 + n2 = n + 1, then necessarily n1 = n2 = n+1
2 , so we recover the subword w′(c̃, b̃)

defined in the lemma.
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Let us now specify the previous result in the case where the slope is an integer.

Lemma 8.6. Let γ ∈ S(S0,4). Suppose that Slope(γ) = [n], with n ∈ N. Then (up to conjugation
and inversion) :

γ = { (ca)n
2 c(ca)−n

2 b if n is even
(ca)n+1

2 c−1(ca)−n−1
2 b if n is odd

Proof. Since the slope of γ is an integer n ∈ N, the letter b (or b−1) appears exactly once in the
word γ. Thus, by Lemma 8.5, the word γ (up to cyclic permutation) is one of the 24 words given
in the statement of the lemma. Moreover, since the slope is n, the letter a±1 appears exactly n
times. Then γ must be one of the following words : w(c̃, b̃),w(c̃, b̃,0),w(c̃, b̃,1).

● Suppose that n is even, then γ is (up to permutation and inversion) of the form : w(c̃, b̃) =
(ca)n

2 c̃(ca)−n
2 b̃. Up to taking the inverse, we can assume that the power on b is +1. It remains

to determine the power of the letter c in the middle of the word. Recall that we can see the
curve γ as a straight line of slope n in the square [0,2], that is, successive parallel segments
evenly spaced of slope n. It is easy to check on a drawing that if the power on b is +1 (which
means that the first segment starts on the upper-half of the left vertical side of the square
and that the last segment ends on the upper-half of the right vertical side of the square), then
the (n

2 +1)-th segment in the square must cross the diagonal in its first half. This means that
the power on the letter c in the middle is +1, hence γ = (ca)n

2 c(ca)−n
2 b (up to permutation

and inversion).

 

n
2 = 2

³¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
n
2 = 2
³¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

c

①

① (n
2 + 1)-th segment

Figure 8.12: A line of slope n = 4 in the square

● Suppose that n is odd, then γ is (up to permutation and inversion) of the form w(c̃, b̃,0) or
w(c̃, b̃,1). Up to taking the inverse, we can assume that the power on b is +1. It remains to
check that the power on (ca) is n+1

2 and that the power on the letter c in the middle is −1.
Notice that the equation of the line containing the (n+1

2 )-th segment corresponding to the
curve γ in the square is given by : y = h + n(x − 2

n
n−1

2 ) = h + nx − n + 1, where h is the real
such that the first segment starts at the point (0, h) (thus 1 < h < 2). When y = 2, we find
x = n+1−h

n , but h > 1, so x < 1, and this proves that γ is of the form (ca)n+1
2 c̃(ca)−n−1

2 b. Let
us determine the power on c. The equation of the line containing the (n+1

2 + 1)-th segment
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of the curve γ is y = h + n(x − 2
n

n+1
2 ) = h + nx − n − 1. When x = 1, we find y = h − 1 < 1, and

this proves that the power on c is −1. Hence γ = (ca)n+1
2 c−1(ca)−n−1

2 b (up to permutation and
inversion).

 

n+1
2 = 3

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
n−1

2 = 2
³¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

c−1

①

① (n+1
2 )-th segment

②

② (n+1
2 + 1)-th segment

h

Figure 8.13: A line of slope n = 5 in the square

Corollary 8.7. Let γ ∈ π1(S0,4) be a cyclically reduced element representing a simple closed curve
on S0,4. There exists two words δ1, δ2 ∈ π1(S0,4) such that for all n ∈ N, the element γnδ1γ−nδ2
belongs to S(S0,4).
Proof. First notice that if the Lemma is true for some γ, it is still true for the inverse of γ and
for a conjugate of γ. Hence, since any two elements of F3 (induced by simple closed curves) with
the same slope are equal up to conjugacy and inversion, it is sufficient to show the lemma for any
element with the same slope as γ.
Let p

q = Slope(γ). There exists another rational p′

q′ such that ∣pq′ − p′q∣ = ±1. Now use Lemma
8.4 to show the existence of a mapping class φ ∈ MCG(S0,4) such that Slope(φ(ca)) = p

q and
Slope(φ(cb)) = p′

q′ . Choose a representative of φ in Homeo(S0,4) and with a slight abuse of notation
still denote it by φ. Let η = φ(ca). Then η ∈ S(S0,4) and Slope(η) = Slope(γ). Moreover, by
Lemma 8.6, we deduce that for all n ∈ N, (ca)nc(ca)−nb ∈ S(S0,4). Then, since φ ∈ Homeo(S0,4),
we also obtain that φ((ca)nc(ca)−nb) ∈ S(S0,4) for all n ∈ N. But we have φ((ca)nc(ca)−nb) =
ηnφ(c)η−nφ(b) hence the corollary with δ1 = φ(c) and δ2 = φ(b).

We now end this section by writing any element γ in S(S0,4) as a concatenation of "building
blocks", each of them using some "approximation" γi of γ. We can approximate γ at different
levels, indexed by the integer i, corresponding to the successive steps in the continued fraction
expansion of the slope of γ.

Lemma 8.8. Let i ≥ 1 and let [n1,⋯, ni] be the continued fraction expansion of a rational number.
Then there exists a simple word γi ∈ S(S0,4) of slope [n1,⋯, ni], and two words δ1, δ2 ∈ π1(S0,4),
such that every simple word γ ∈ S(S0,4) with continued fraction expansion [n1,⋯, nr], with r > i,
can be written as a (cyclic-permutation of a) concatenation of subwords of the form :

(γi)m1 δ̃1(γi)−m2 δ̃2
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with m1,m2 ∈ {⌊ni+1
2 ⌋, ⌊

ni+1
2 ⌋ + 1} and δ̃1 ∈ {δ1, δ−1

1 }, δ̃2 ∈ {δ2, δ−1
2 }.

Moreover, if r = i + 1, that is Slope(γ) = [n1,⋯, ni, nr], then (up to conjugation and inversion) :

γ = { (γi)
nr
2 δ1(γi)−

nr
2 δ2 if nr is even

(γi)
nr+1

2 δ−1
1 (γi)−

nr−1
2 δ2 if nr is odd

Proof. By permuting the three elements of the basis, a, b, c, we can assume that the slope of γ is
non-negative.

We start by using Lemma 8.4 to obtain the existence of a mapping class φ ∈ MCG(S0,4) such
that Slope(φ(ca)) = [n1,⋯, ni] and Slope(φi(cb)) = [n1,⋯, ni + 1]. Choose a representative of
φ ∈ MCG(S0,4) ⊂ Out(F3) and with a slight abuse of notation still denote it by φ ∈ Aut(F3).
Denote a′ = φi(a), b′ = φi(b), c′ = φi(c) and γi = φ(ca). Then a′, b′, c′ is a basis of F3 since φ
is an automorphism of F3 and in this new basis the slope of γ is [ni+1,⋯, nr] (see Remark 8.3).
Hence, by the Lemma 8.5 applied to the new basis F3 = ⟨a′, b′, c′⟩, the word γ can be written as a
concatenation of subwords of the form (c′a′)m1 c̃′(c′a′)−m2 b̃′, with m1,m2 ∈ {ni+1

2 , ni+1
2 + 1} if ni+1 is

even, m1,m2 ∈ {ni+1−1
2 , ni+1+1

2 } if ni+1 is odd. But we have :

(c′a′)m1 c̃′(c′a′)−m2 b̃′ = (φi(ca))m1φ̃i(c)(φi(ca))−m2φ̃i(b) = (γi)m1φ̃i(c)(γi)−m2φ̃i(b).

Hence we obtain the first part of the lemma with δ1 = φi(c) and δ2 = φi(b).
For the second part, now suppose that r = i+1, that is Slope(γ) = [n1,⋯, ni, nr]. Then, in the new
basis F3 = ⟨a′, b′, c′⟩, the slope of γ is simply [nr] = nr ∈ N (again see Remark 8.3). Thus we can
use Lemma 8.6 to ensure that (up to permutation and inversion) :

γ = { (c′a′)nr
2 c′(c′a′)−nr

2 b′ = (φ(ca))nr
2 φ(c)(φ(ca))−nr

2 φ(b) if nr is even
(c′a′)nr+1

2 c′−1(c′a′)−nr−1
2 b′ = (φ(ca))nr+1

2 φ(c)−1(φ(ca))−nr−1
2 φ(b) if nr is odd

= { (γi)
nr
2 δ1(γi)−

nr
2 δ2 if nr is even.

(γi)
nr+1

2 δ−1
1 (γi)−

nr−1
2 δ2 if nr is odd.

8.4 Some generalities about lattices in R2

In section 8.6, we will prove the main proposition of this chapter (Proposition 8.16), which
studies the redundancy of subwords of some specific lengths in a simple word. We will adopt a
geometric approach using lattices in R2. Thus, in this section, we need to set up some notations
and to state a few facts about the geometry of lattices in R2 that will be useful for us in the
following.

8.4.1 Rectangles adapted to a basis of a lattice and tiling of R2

Let us fix Λ a lattice in R2. We consider R2 both endowed with its usual euclidean structure
and frame and with the lattice Λ. Let (u, v) be a basis of Λ and x ∈ Λ.
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In coordinates, write x = (x1, x2), u = (u1, u2) and v = (v1, v2). Let us assume that the basis (u, v)
satisfies u1 > 0, v1 > 0 and u2 < 0 < v2. In particular this requires that Slope(u) = u2

u1
< 0 < v2

v1
=

Slope(v). Let us now define :

S(x,u, v) = [x1, x1 + u1 + v1] × [x2 + u2, x2 + v2]. (8.1)

Thus, S(x,u, v) is the only rectangle with horizontal and vertical sides containing on each of its
sides exactly one point of the set {x,x + u,x + v, x + u + v}. Note the important fact that since
(u, v) is a basis of Λ, there is no other point of Λ in S(x,u, v). In particular, there is no point of Λ
in the interior of S(x,u, v).

x

x + u

x + v

x + u + v

u

v

Figure 8.14: The rectangle S(x,u, v).

We will also need to consider the same square without its right vertical side. Then we choose
the following notation :

S∗(x,u, v) = [x1, x1 + u1 + v1[×[x2 + u2, x2 + v2]. (8.2)

In the same way that we had previously defined the type of a point of Z2 as its equivalence
class modulo 2Z2, we can now define the type of a point in Λ as its equivalence class modulo 2Λ.
Hence they are 4 types of points. Note that the four points x,x+u,x+v and x+u+v of the lattice
Λ are all of different types. If t is a type, we define the (u, v)-opposite type of t as the type of the
point x+u+ v, where x is any point of type t (this definition does not depend on the choice of the
point x of type t). We denote by Λ(t) the set of points in Λ of type t.

We now want to cover the plane R2 with the rectangles S(x,u, v), for x ∈ Λ(t) ∪ Λ(t). The
situation will not be the same according to the signs of Slope(u + v) and Slope(v − u). When
Slope(u + v) and Slope(v − u) are of the same sign, the rectangles S(x,u, v), for x ∈ Λ(t) ∪ Λ(t)
cover the whole R2. However, there is some overlap. This is the purpose of the following lemma :

Lemma 8.9. Assume that Slope(u + v) ≠ 0,Slope(v − u) ≠ +∞ and Slope(u + v) and Slope(v − u)
are of the same sign.
Let t be a type and t its (u, v)-opposite type. Then :

R2 = ⋃
x∈Λ(t)∪Λ(t)

S(x,u, v)

Moreover,
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● if x,x′ ∈ Λ are of (u, v)-opposite type, then S(x,u, v) ∩ S(x′, u, v) ≠ ∅ if and only if x′ =
x ± (v − u) or x′ = x ± (u + v) and in this case S(x,u, v) and S(x′, u, v) only intersect along
one of their sides. Thus, for all x ∈ Λ(t), x′ ∈ Λ(t), S∗(x,u, v) ∩ S∗(x′, u, v) = ∅.

● if x,x′ ∈ Λ are of the same type, then we distinguish according to the sign of Slope(u+v) and
Slope(v − u) :

– If Slope(u + v) > 0 and Slope(v − u) > 0, then there exists N ∈ N such that :
S(x,u, v) ∩ S(x′, u, v) ≠ ∅ if and only if x′ = x ± 2ku, with ∣k∣ ≤ N . In this case :

S(x,u, v)⋂( ⋃
1≤k≤N

S(x + 2ku, u, v)) = [x1 + 2u1, x1 + u1 + v1] × [x2 + u2, x2 + 2u2 + v2]

S(x,u, v)⋂( ⋃
1≤k≤N

S(x − 2ku, u, v)) = [x1, x1 − u1 + v1] × [x2 − u2, x2 + v2]

– If Slope(u + v) < 0 and Slope(v − u) < 0, then there exists N ∈ N such that :
S(x,u, v) ∩ S(x′, u, v) ≠ ∅ if and only if x′ = x ± 2kv, with ∣k∣ ≤ N . In this case : :

S(x,u, v)⋂( ⋃
1≤k≤N

S(x + 2kv, u, v)) = [x1 + 2v1, x1 + u1 + v1] × [x2 + u2 + 2v2, x2 + v2]

S(x,u, v)⋂( ⋃
1≤k≤N

S(x − 2kv, u, v)) = [x1, x1 + u1 − v1] × [x2 + u2, x2 − v2]

Proof. Since the fundamental quadrilateral (x,x+u,x+v, x+u+v) of R2/Λ is contained in S(x,u, v),
then the rectangles S(x,u, v), for x ∈ Λ, tile R2 (we mean that R2 = ⋃

x∈Λ
S(x,u, v)). So we need to

show that, if x ∈ Λ ∖ Λ(t) ∪ Λ(t), we can cover S(x,u, v) by a union of rectangles S(y, u, v), with
y ∈ Λ(t) ∪Λ(t). It is easy to check that, when Slope(u + v) and Slope(v − u) are of the same sign,
we have :

S(x,u, v) ⊂ S(x − u,u, v) ∪ S(x + u,u, v) ∪ S(x + v, u, v) ∪ S(x − v, u, v)

as represented in figure 8.15 on page 104. But notice that when x ∈ Λ ∖ Λ(t) ∪ Λ(t), the points
x + u,x − u,x + v and x − v all four belong to Λ(t) ∪Λ(t), hence the claim.

Now, we investigate the intersection between rectangles. Let x ∈ Λ. Let us determine which
rectangles intersects S(x,u, v). For S(y, u, v) to intersect S(x,u, v), the point y must be contained
in Z = [x1 − u1 − v1, x1 + u1 + v1] × [x2 + u2 − v2, x2 + v2 − u2]. Let t be the type of x. See figure 8.16
on page 104.

● The only points of the lattice Λ of type t which are contained in Z are x+u+v, x−u−v, x+v−u
and x− v + u. Moreover, the rectangle S(x,u, v) intersect S(x+ u+ v, u, v) only along one of
their side, and ditto for S(x − u − v, u, v), S(x + v − u,u, v) and S(x − v + u,u, v).
Therefore S∗(x,u, v) ∩ S∗(x + u + v, u, v) = S∗(x,u, v) ∩ S∗(x − u − v, u, v) = ∅.

● The only points of the lattice Λ of type t which can be contained in Z are of the form x+2ku
and x + 2kv, for k ∈ Z.
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x

x − u

x + u

x − v

x + v

S(x, u, v)

S(x − v, u, v)

S(x + v, u, v)
S(x − u, u, v)

S(x + u, u, v)

Figure 8.15: The rectangle S(x,u, v) is covered by rectangles of type t and t.

x

x − 2u

x − 4u

x + 2u

x + 4u

x + u + v

x + v − u

x − u − v

x + u − v

S(x, u, v)

Z

points of type t

points of type t

Figure 8.16: Rectangles of type t and t (in grey) which intersect S(x,u, v) (in the center). In this
case, Slope(u + v) > 0 and N = 2.

– If Slope(u + v) > 0 and Slope(v − u) > 0, then 0 < u1 < v1 and 0 < −u2 < v2. So we
deduce that x + 2kv ∈ Z if and only if k = 0. Therefore we deduce the existence of an
integer N ∈ N such that the only points of the lattice Λ of type t which are contained
in Z are of the form x + 2ku, with ∣k∣ ≤ N . We also deduce that for 1 ≤ k ≤ N ,
S(x,u, v)∩S(x+2ku, u, v) ⊂ S(x,u, v)∩S(x+2u,u, v) and S(x,u, v)∩S(x−2ku, u, v) ⊂
S(x,u, v) ∩ S(x − 2u,u, v), hence the formula for the intersection.

– If Slope(u + v) < 0 and Slope(v − u) < 0, then 0 < v1 < u1 and 0 < v2 < −u2. So we do
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the same reasoning as in the previous case exchanging u and v to obtain the analogous
result.

Let us denote :

S+(x,u, v) = { S(x,u, v) ∩ S(x + 2u,u, v) if Slope(u + v) ≥ 0 and Slope(v − u) ≥ 0
S(x,u, v) ∩ S(x + 2v, u, v) if Slope(u + v) ≤ 0 and Slope(v − u) ≤ 0

S−(x,u, v) = { S(x,u, v) ∩ S(x − 2u,u, v) if Slope(u + v) ≥ 0 and Slope(v − u) ≥ 0
S(x,u, v) ∩ S(x − 2v, u, v) if Slope(u + v) ≤ 0 and Slope(v − u) ≤ 0

and S±(x,u, v) = S+(x,u, v) ∪ S−(x,u, v).

Hence S±(x,u, v) is the subset of the tile S(x,u, v) in which the overlap occurs.

S(x,u, v)
S+(x,u,v)

S−(x,u,v)

x

x + u x + 2u

x − 2u
x + v

x + u + v
S(x − 2u,u, v)

S(x + 2u,u, v)

Figure 8.17: The rectangles S(x,u, v), S(x − 2u,u, v), S(x + 2u,u, v) and their intersections
S−(x,u, v) and S+(x,u, v).

Let us now deal with the case where Slope(u+v) and Slope(v−u) are of opposite signs. In this
case, the rectangles S(x,u, v) for x ∈ Λ of type t or t do not cover the whole plane R2. We have to
add some "rest", which we define below and denote by R(x,u, v) (see figure 8.18 on page 106).

R(x,u, v) = { [x1, x1 + u1 − v1] × [x2 − v2, x2 + u2] if Slope(u + v) ≥ 0 and Slope(v − u) ≤ 0
[x1, x1 − u1 + v1] × [x2 + v2, x2 − u2] if Slope(u + v) ≤ 0 and Slope(v − u) ≥ 0

(8.3)

R∗(x,u, v) = {
[x1, x1 + u1 − v1[×[x2 − v2, x2 + u2] if Slope(u + v) ≥ 0 and Slope(v − u) ≤ 0
[x1, x1 − u1 + v1[×[x2 + v2, x2 − u2] if Slope(u + v) ≤ 0 and Slope(v − u) ≥ 0

(8.4)
In this context, there will be no overlap. Now we can state the corresponding lemma :
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Lemma 8.10. Assume that Slope(u+v) ≠ 0, Slope(v−u) ≠∞ and that Slope(u+v) and Slope(v−u)
are of opposite signs.
Let t be a type and t its (u, v)-opposite type. Then :

R2 = ⋃
x∈Λ(t)∪Λ(t)

(S(x,u, v) ∪R(x,u, v)).

Moreover, any two rectangles of this tiling can only intersect along one of their sides.

Proof. As in the proof of Lemma 8.9, first remark that the rectangles S(x,u, v), for x ∈ Λ, tile
R2 (we mean that R2 = ⋃

x∈Λ
S(x,u, v)). So we need to cover S(x,u, v), when x ∉ Λ(t) ∪ Λ(t), by a

union of rectangles S(y, u, v) and R(y, u, v), with y ∈ Λ(t) ∪ Λ(t). It is easy to check that, when
Slope(u + v) and Slope(v − u) are of opposite signs, we have :

S(x,u, v) ⊂ S(x + u,u, v) ∪ S(x − u,u, v) ∪ S(x + v, u, v) ∪ S(x − v, u, v) ∪R(x + v, u, v)

x

x − u

x + u

x − v

x + v

R(x+v,u,v)

S(x − v, u, v)

S(x + v, u, v)
S(x − u, u, v)

S(x + u, u, v)

Figure 8.18: The rectangle S(x,u, v) is covered by rectangles S(y, u, v) and R(y, u, v) of type t
and t

We conclude by noting, as for the proof of Lemma 8.9, that when x ∈ Λ ∖ (Λ(t) ∪ Λ(t)), the
points x + u,x − u,x + v and x − v all four belong to Λ(t) ∪Λ(t), hence the claim.

Now we investigate the intersection between rectangles. Let x ∈ Λ. As in the proof of Lemma
8.9, for S(y, u, v) to intersect S(x,u, v), we have that the point y must belong to the rectangle
Z = [x1 − u1 − v1, x1 + u1 + v1] × [x2 + u2 − v2, x2 + v2 − u2]. Let t be the type of x.

● Again as in the proof of Lemma 8.9, we note that the only points of the lattice Λ of type
t in Z are x + u + v, x − u − v, x + v − u and x − v + u, and the rectangle S(x,u, v) intersects
S(x + u + v, u, v) only along one of its sides, and ditto for S(x − u − v, u, v), S(x + v − u,u, v)
and S(x − v + u,u, v).
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x

S(x, u, v)

S(x + u + v, u, v)

S(x − u − v, u, v)

S(x + v − u, u, v)

S(x − v + u, u, v)

Z

points of type t

points of type t

①

②

③

④

① R(x + v − u, u, v)
② R(x + 2v, u, v)
③ R(x, u, v)
④ R(x + u + v, u, v)

Figure 8.19: The tiling of R2 by tiles S(y, u, v) and R(y, u, v), with y ∈ Λ(t) ∪Λ(t).

● Again as in the proof of Lemma 8.9, we note that the only points of the lattice Λ of type t
in Z are of the form x + 2ku and x + 2kv. But using our hypothesis on the slopes of u + v
and v − u, we obtain that either 0 < u1 < v1 and 0 < v2 < −u2 or 0 < v1 < u1 and 0 < −u2 < v2.
From these inequalities we deduce that x+ 2ku belongs to Z if and only if k = 0 and x+ 2kv
belongs to Z if and only if k = 0. Therefore S(x,u, v) intersects no other rectangle S(y, u, v)
of type t.

At last, note that by construction, R(x,u, v) intersects only S(x,u, v), S(x−u−v, u, v), S(x−2v, u, v)
and S(x + u − v, u, v), and the intersection occurs only along one of their sides.

Notice that since (u, v) is a basis of Λ, so are (u,u + v) and (u + v, v). The next lemma, in
the case where Slope(u + v) and Slope(v − u) are of opposite signs, aims at showing that an hori-
zontal segment of length l =max(u1, v1) is necessarily included in some S(x,u, v), S(x,u, u+ v) or

S(x,u + v, v). Denote (u′v′) = { (u,u + v) if Slope(u + v) ≥ 0
(u + v, v) if Slope(u + v) ≤ 0 ,

S′(x,u, v) = S(x,u′, v′) S′∗(x,u, v) = S∗(x,u′, v′) and S′±(x,u, v) = S±(x,u′, v′).
See figure 8.20 on page 108 for S′(x,u, v), in the case Slope(u + v) ≥ 0 and Slope(v − u) ≤ 0.

Now in this case (Slope(u + v) and Slope(v − u) of opposite signs), denote :

T (x,u, v) = { [x1 + v1, x1 + 2u1] × [x2 + u2, x2 + u2 + v2] if Slope(u + v) ≥ 0 and Slope(v − u) ≤ 0
[x1 + u1, x1 + 2v1] × [x2 + u2 + v2, x2 + v2] if Slope(u + v) ≤ 0 and Slope(v − u) ≥ 0

(8.5)
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S′(x, u, v)x
u

v

u+v

x + u

x + u + v

x + 2u + v

Figure 8.20: The rectangle S′(x,u, v) in the case Slope(u + v) ≥ 0 and Slope(v − u) ≤ 0.

T∗(x,u, v) = {
[x1 + v1, x1 + 2u1[×[x2 + u2, x2 + u2 + v2] if Slope(u + v) ≥ 0 and Slope(v − u) ≤ 0
[x1 + u1, x1 + 2v1[ × [x2 + u2 + v2, x2 + v2] if Slope(u + v) ≤ 0 and Slope(v − u) ≥ 0

(8.6)
See figure 8.21 on page 108. Remark that we have :

T (x,u, v) ⊂ S′(x,u, v) (8.7)
T∗(x,u, v) ⊂ S′∗(x,u, v) (8.8)
S′±(x,u, v) ⊂ S′(x,u, v) ∖ T (x,u, v) (8.9)

T (x,u, v)
S′+(x,u,v)

S′−(x,u,v)

x

x + u
x + 2u

x − 2u
x + u + v

x + 2u + v
S′(x − 2u,u, v)

S′(x,u, v)

S′(x + 2u,u, v)

Figure 8.21: The rectangle T (x,u, v) is included in S′(x,u, v) and disjoint from S′±(x,u, v).

We now deduce that the rectangles T (x,u, v) are disjoints :

Lemma 8.11. Assume that Slope(u + v) and Slope(v − u) are of opposite signs. Let t ∈ Λ/2Λ be
a type and t its (u, v)-opposite type. Let x, y ∈ Λ(t) ∪ Λ(t). Then the rectangles T (x,u, v) and
T (y, u, v) are disjoints : T (x,u, v) ∩ T (y, u, v) = ∅.

Proof. First notice that since T (x,u, v) ⊂ S′(x,u, v) and T (y, u, v) ⊂ S′(y, u, v) (see (8.7)), inter-
section between T (x,u, v) and T (y, u, v) can only occur when S′(x,u, v) and S′(y, u, v) intersect
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and then T (x,u, v) ∩ T (y, u, v) ⊂ S′(x,u, v) ∩ S′(y, u, v). But S′(x,u, v) ∩ S′(y, u, v) ⊂ S′±(x,u, v),
so by (8.9), T (x,u, v)∩T (y, u, v) ⊂ S′(x,u, v)∖T (x,u, v), which implies that T (x,u, v)∩T (y, u, v)
is empty.

The last lemma of this section shows that every horizontal segment of some prescribe length is
included in a rectangle S(x,u, v) or T (x,u, v).

Lemma 8.12. Assume that Slope(u+v) and Slope(v−u) are of opposite signs. Let l =max(u1, v1)
(thus l = u1 if Slope(u + v) ≥ 0 and l = v1 if Slope(u + v) ≤ 0) and I be an horizontal segment of
length l in R2 which does not intersect the lattice Λ.

Then, there exists x ∈ Λ such that I ⊂ S∗(x,u, v) or I ⊂ T∗(x,u, v).

Proof. We write the proof in the case where Slope(u + v) ≥ 0. Thus Slope(v − u) ≤ 0 and l = u1.
The other case is identical (up to a reflection across the horizontal axis).
Let y = (y1, y2) be the point in R2 such that I is the segment which joins y to (y1 + u1, y2). Then,
by Lemma 8.10, there exists a point x ∈ Λ such that y ∈ S∗(x,u, v) or y ∈ R∗(x,u, v).

● If y ∈ S(x,u, v), then we have x1 ≤ y1 < x1 + u1 + v1 and x2 + u2 ≤ y2 ≤ x2 + v2. We distinguish
according to the zone to which y belong, represented in the figure 8.22 on page 109. The
proof for each case is illustrated on figure 8.23, page 110.

①
②③

④ ⑤

x

Figure 8.22: The five cases in the proof of Lemma 8.12.

1. If y ∈ ①, that is x1 ≤ y1 < x1+v1, then x1+u1 ≤ y1+u1 < x1+u1+v1, and so I ⊂ S∗(x,u, v).
2. If y ∈ ②, that is x1 + u1 ≤ y1 < x1 + u1 + v1 and x2 + u2 ≤ y2 ≤ x2 + u2 + v2, then notice

that y ∈ S∗(x + u,u, v) with x1 + u1 ≤ y1 < x1 + u1 + v1, so by the previous case we have
I ⊂ S∗(x + u,u, v).

3. If y ∈ ③, that is x1 + v1 ≤ y1 < x1 + u1 and x2 + u2 ≤ y2 ≤ x2 + u2 + v2, then we have
x1 + u1 + v1 ≤ y1 + u1 < x1 + 2u1, and then we deduce that I ⊂ T∗(x,u, v).

4. If y ∈ ④ or y ∈ ⑤, that is x1 + v1 ≤ y1 < x1 + u1 + v1 and x2 + u2 + v2 ≤ y2 ≤ x2 + v2, then
notice that y ∈ S∗(x + v, u, v) with x2 + u2 + v2 ≤ y2 ≤ x2 + v2 and then, if y ∈ ④, that is
y1 < x1 + 2v1, we use the first case to deduce that I ⊂ S∗(x+ v, u, v), and if y ∈ ⑤, that is
x1 + 2v1 ≤ y1 < x1 + u1 + v1, then we use the third case to deduce that I ⊂ T∗(x + v, u, v)
with I ∩ S±(x + v, u, u + v) is at most a point.
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I

x

S(x, u, v)

(a) Case ①

I
x

S(x + u, u, v)

(b) Case ②

I
x

S′(x, u, v)

S′(x − 2u, u, v)

S′(x + 2u, u, v)

(c) Case ③

I

x

S(x + v, u, v)

(d) Case ④

I

x

S′(x + v, u, v)

(e) Case ⑤

Figure 8.23: Illustration of the proof of Lemma 8.12 : The segment I is included in a rectangle.

Hence we have covered every case.

● If y ∈ R∗(x,u, v), recall that R∗(x,u, v) ⊂ S∗(x−v, u, v), so y ∈ S∗(x−v, u, v) and then we can
use what we have previously done. (We can even be a bit more precise : if y ∈ R∗(x,u, v),
then y ∈ S∗(x − v, u, v) with x1 ≤ y1 < x1 + u1 − v1 and x2 − v2 ≤ y2 ≤ x2 + u2, so we are in the
third case : I ⊂ T∗(x − v, u, v)).
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8.4.2 Segments at height h in the rectangles S(x,u, v) and R(x,u, v)
This section is intended to apply the "tilings" obtained above to decompose an horizontal seg-

ment into sub-segments.

Let 0 < h < 1 and consider the horizontal segment at height h in S(x,u, v) (that is the segment
from the point (x1, x2 + u2 + h) to the point (x1 + u1 + v1, x2 + u2 + h)). Denote it by IS(x,u, v, h)
and note that IS(x,u, v, h) is a segment of length u1 +v1. Similarly, let 0 < h < u2 +v2 and consider
the horizontal segment at height h in R(x,u, v) (that is the segment from the point (x1, x2−v2+h)
to the point (x1 + u1 + v1, x2 − v2 + h)). Denote it by IR(x,u, v, h) and note that IR(x,u, v, h) is
a segment of length ∣u1 − v1∣. Finally, we also define the type of a segment IS(x,u, v, h) (resp.
IR(x,u, v, h)) as the type of the point x.

h

IS(x, u, v, h)

S(x, u, v)

x

x + u

x + v

x + u + v

(a) Segment of height h in S(x, u, v)

h IR(x, u, v, h)

R(x, u, v)
x

x + u

x − v

x + u − v

(b) Segment of height h in R(x, u, v)

Figure 8.24: Segment at height h, IS(x,u, v, h) and IR(x,u, v, h)

We now decompose any horizontal segment I of any length using the tiling in the case where
Slope(u + v) and Slope(v − u) are of opposite signs.

Lemma 8.13. Assume that Slope(u+v) ≠ 0, Slope(v−u) ≠∞ and that Slope(u+v) and Slope(v−u)
are of opposite signs.
Let t be a type and let I be a horizontal segment which does not intersect the lattice Λ.
There exist p ∈ N such that for all 0 ≤ j ≤ p + 1, there exists a point xj ∈ Λ(t) ∪ Λ(t) and a real
0 < hj < 1 such that,

I = I0 ∪ I1 ∪⋯ ∪ Ip ∪ Ip+1

with :

● Either I0 ⊂ IS(x0, u, v, h0) or I0 ⊂ IR(x0, u, v, h0), and either Ip+1 ⊂ IS(xp+1, u, v, hp+1) or
Ip+1 ⊂ IR(xp+1, u, v, hp+1).

● For 1 ≤ j ≤ p, either Ij = IS(xj, u, v, hj) or Ij = IR(xj, u, v, hj).

● If Ij = IR(xj, u, v, hj), then Ij+1 = IS(xj+1, u, v, hj+1) with xj+1 = {
xj + u − v if Slope(u + v) > 0
xj − u + v if Slope(u + v) < 0 .

● If Ij = IS(xj, u, v, hj) and Ij+1 = IR(xj+1, u, v, hj+1), then xj+1 = xj + u + v.

● If Ij = IS(xj, u, v, hj) and Ij+1 = IS(xj+1, u, v, hj+1), then xj+1 = xj + u + v.
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x0

x1

x2

x3

x4
h0

h1 h2

h3

h4

I0 I1 I2 I3 I4

Figure 8.25: Decomposition of a horizontal segment

Moreover, suppose j < j′, then Ij ∩ Ij′ ≠ ∅ if and only if j′ = j + 1 and in this case Ij ∩ Ij+1 is a
point (which is the endpoint of Ij and the starting point of Ij+1).

See figure 8.25 on page 112 for an illustration of Lemma 8.13.

Proof. This lemma follows directly from Lemma 8.10. Lemma 8.10 gives a tiling of R2 using the
rectangles S(x,u, v) and R(x,u, v) for x ∈ Λ(t)∪Λ(t). Then we consider the intersection of I with
this tiling, and this gives the decomposition I = I0 ∪ I1 ∪⋯ ∪ Ip ∪ Ip.
The third point comes from the fact that a rectangle R(x,u, v) is surrounded by four rectangle of
the form S(y, u, v), so a segment of the form IR(x,u, v, h) cannot be followed by a segment of the
form IR(x′, u, v, h′).

We easily deduce from Lemma 8.13 the following properties :

Corollary 8.14. With the notations of the previous Lemma, we have :

1. #{j ∈ {1,⋯, p} ∣ Ij = IS(xj, u, v, hj)} ≥#{j ∈ {1,⋯, p} ∣ Ij = IR(xj, u, v, hj)}

2. The type of xj is alternating. Precisely : if x0 is of type t, then xj is of type t if j is even
and of type t if j is odd, and if x0 is of type t, then xj is of type t of j is even and of type t
if j is odd.

Finally, we decompose any horizontal segment I using the tiling in the case where Slope(u+ v)
and Slope(v − u) are of the same sign.
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Lemma 8.15. Assume that Slope(u+v) ≠ 0, Slope(v−u) ≠∞ and that Slope(u+v) and Slope(v−u)
are of the same sign.
Let t be a type and let I be a horizontal segment which does not intersect the lattice Λ.
There exist p ∈ N such that for all 0 ≤ j ≤ p + 1, there exists a point xj ∈ Λ(t) ∪ Λ(t) and a real
0 < hj < 1 such that :

I = I0 ∪ I1 ∪⋯ ∪ Ip ∪ Ip+1

with

● I0 ⊂ IS(x0, u, v, h0) and Ip+1 ⊂ IS(xp+1, u, v, hp+1).

● For all 1 ≤ j ≤ p, Ij = IS(xj, u, v, hj).

● Either xj+1 = xj + u+ v, and in this case Ij ∩ Ij+1 is a point (which is the right endpoint of Ij

and the left endpoint of Ij+1),

● Or xj+1 = {
xj + 2u if Slope(u + v) > 0
xj + 2v if Slope(u + v) < 0 , and in this case Ij ∩ Ij+1 = Ij ∩ S+(xj, u, v).

x0

x1

x2

x3
x4

x5

h0
h1

h2

h3
h4 h5

I0 I1 ³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
I2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
I3

I4 I5

Figure 8.26: Decomposition of an horizontal segment

Proof. This Lemma follows directly from Lemma 8.9. Lemma 8.9 gives a "tiling" of R2 (the term
is improper in this context because the tiles can intersect in their interiors) using the rectangles
S(x,u, v) for x ∈ Λ(t)∪Λ(t). Then we consider the intersection of I with this tiling, and this gives
the desired decomposition I = I0 ∪ I1 ∪⋯ ∪ Ip ∪ Ip+1.
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8.5 A few reminders about Farey neighbours

In the next section, we will in particular consider a lattice in R2 defined using the continued
fraction expansion of a rational corresponding to a slope of a curve. Then we now need to say a
few things about fractions, Farey neighbours and the link with continued fraction expansion.

In this section, we will consider fractions p
q

, and we will always assume that they are written
as irreducible fractions (which means that p and q are coprime) with non-negative denominator.
By convention, we also consider the fraction 1

0 which we will sometimes refer to as +∞.

We say that two distinct fractions p
q

and p′

q′
, are Farey neighbours whenever ∣pq′ − pq∣ = 1. This

is equivalent to saying that the two vectors (q, p) and (q′, p′) form a basis of Z2. In this case, we
denote by p

q
⊕ p

′

q′
the Farey sum of the two fractions p

q
and p′

q′
, which is defined by p

q
⊕ p

′

q′
= p + p

′

q + q′
(note that this last fraction is automatically irreducible with positive denominator). The fractions
p

q
and p

q
⊕ p

′

q′
are also Farey neighbours, and so are p

′

q′
and p

q
⊕ p

′

q′
. Suppose that qq′ ≠ 0 and p

q
≤ p

′

q′
.

Then we have :
p

q
≤ p
q
⊕ p

′

q′
≤ p

′

q′
.

Now define p
q
⊖ p

′

q′
= p − p

′

q − q′ . The fractions p
q
⊖ p

′

q′
and p

q
are Farey neighbours, and so are p

q
⊖ p

′

q′

and p′

q′
. Note that with this definition ⊖ is commutative.

We have either (p
q
⊖ p

′

q′
)⊕ p

′

q′
= p
q

or (p
′

q′
⊖ p
q
)⊕ p

q
= p

′

q′
.

Link with continued fraction expansion.
Let n1 ∈ Z, n2,⋯, nr ∈ N∗ with nr ≥ 2. Denote p

q
= [n1,⋯, nr],

p0

q0
= 1

0 and for all 1 ≤ i ≤ r,
pi

qi

= [n1,⋯, ni]. Then, it is not hard to check that for all 1 ≤ i ≤ r, pi

qi

and pi−1

qi−1
are Farey-

neighbours. We can compute their Farey sum and Farey difference and we obtain :

pi

qi

⊕ pi−1

qi−1
= [n1,⋯, ni + 1]

pi

qi

⊖ pi−1

qi−1
=
⎧⎪⎪⎪⎨⎪⎪⎪⎩

[n1,⋯, ni − 1] if ni ≥ 2 or i = 1
[n1,⋯, ni−2] if ni = 1 and i ≥ 3

1
0 =∞ if ni = 1 and i = 2

[n1,⋯, ni − 1]

Notice that in this case we always have (pi

qi

⊖ pi−1

qi−1
)⊕ pi−1

qi−1
= pi

qi

.
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Let us make two observations :
pi

qi

⊕ pi−1

qi−1
≠ p
q

(8.10)
pi

qi

⊖ pi−1

qi−1
= −1 if and only if i = 1 and ni = 0 (8.11)

Moreover, since p
q
= [n1,⋯, nr], we either have [n1,⋯, ni+1] ≤ [n1,⋯, nr] ≤ [n1,⋯, ni] or [n1,⋯, ni] ≤

[n1,⋯, nr] ≤ [n1,⋯, ni + 1], that is :

either pi

qi

⊕ pi−1

qi−1
≤ p
q
≤ pi

qi

or pi

qi

≤ p
q
≤ pi

qi

⊕ pi−1

qi−1
.

● If pi

qi

⊕ pi−1

qi−1
≤ p
q
≤ pi

qi

, this forces pi−1

qi−1
≤ pi

qi

⊕ pi−1

qi−1
≤ pi

qi

and so pi

qi

⊖ pi−1

qi−1
≥ pi

qi

≥ p
q

.

Hence pi

qi

⊕ pi−1

qi−1
≤ p
q
≤ pi

qi

⊖ pi−1

qi−1
.

● If pi

qi

≤ p
q
≤ pi

qi

⊕ pi−1

qi−1
, this forces pi

qi

≤ pi

qi

⊕ pi−1

qi−1
≤ pi−1

qi−1
and so pi

qi

⊖ pi−1

qi−1
≤ pi

qi

≤ p
q

.

Hence pi

qi

⊖ pi−1

qi−1
≤ p
q
≤ pi

qi

⊕ pi−1

qi−1
.

Thus, in every case, the rationals pi

qi

⊖ pi−1

qi−1
and pi

qi

⊕ pi−1

qi−1
are on either side of p

q
.

pi−1
qi−1

pi

qi
⊕ pi−1

qi−1

p

q

pi

qi

pi

qi
⊖ pi−1

qi−1

pi−1
qi−1

pi

qi
⊕ pi−1

qi−1

p

q

pi

qi

pi

qi
⊖ pi−1

qi−1

Figure 8.27: The rational p
q

and its approximants pi

qi

,
pi−1

qi−1
,
pi

qi

⊕ pi−1

qi−1
and pi

qi

⊖ pi−1

qi−1
ordered on the

real line.
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8.6 Magic-lengths Proposition
For γ a primitive element in F2 of slope [n1(γ),⋯, nr(γ)(γ)], recall that we have defined the

lengths li(γ) and l′i(γ), for 0 ≤ i ≤ r(γ), in Definition 4.1 : li(γ) and l′i(γ) are respectively
the (cyclically reduced) lengths of any primitive element in F2 of slope [n1(γ),⋯, ni(γ)] and
[n1(γ),⋯, ni(γ) + 1]. For γ a simple closed curve in π1(S0,4) of slope [n1(γ),⋯, nr(γ)(γ)], we
define for all 0 ≤ i ≤ r(γ), li(γ) and l′i(γ) to be the lengths of any primitive element in F2 of
slope [n1(γ),⋯, ni(γ)] and [n1(γ),⋯, ni(γ) + 1] respectively. Then, the length of γ ∈ S(S0,4) is
∣γ∣ = 2lr(γ)(γ), and more generally, for all 0 ≤ i ≤ r(γ), the length of any simple closed curve of S0,4
of slope [n1(γ),⋯, ni(γ)] is 2li(γ). Notice that, for γ ∈ P(F2) or for γ ∈ S(S0,4), li(γ) only depends
on the slope of γ (and of the integer i).

In Lemma 4.6, we proved that subwords of some specific lengths (precisely the lengths li(γ))
of primitive elements γ in F2 are themselves primitive (up to a change of letter). In the context
of the four-punctured sphere, we do not prove the same result but we prove that subwords of
some specific lengths (precisely li(γ) − 5) of γ ∈ S(S0,4) are redundant in the sense that they and
their inverses can be found many other times in the word γ. This is the purpose of the following
proposition :

Proposition 8.16. Set α = 1
30 .

Let γ ∈ S(S0,4). Consider Slope(γ) = [n1(γ),⋯, nr(γ)(γ)] the continued fraction expansion of
Slope(γ). Fix 0 ≤ i ≤ r(γ) such that li(γ) ≥ 10 (in particular, note that by (4.9), this condition is
fulfilled whenever i ≥ 10).
Let W ∈ F3 be a subword of (a cyclic-permutation of) γ (or its inverse) such that ∣W ∣ ≥ 3(l′i(γ) +
li(γ)+1) and w ∈ F3 be a subword of (a cyclic-permutation of) γ (or its inverse) of length li(γ)−5.
Then we can write the word W as a concatenation as follow :

W = u1⋯uq

such that there exists a subset I ⊂ {1,⋯, q} satisfying the following :

1. For all k ∈ I, uk ∈ {w,w−1}.

2. ∑
k∈I

∣uk∣ ≥ α∣W ∣.

We will prove Proposition 8.16 in section 8.6.4. For this purpose, given a simple closed curve
γ ∈ S(S0,4) and a fixed integer 0 ≤ i ≤ r(γ), we will define in section 8.6.1 a lattice Λ of R2 together
with a basis (u, v) of Λ which will be particularly convenient for studying subwords of γ of length
li(γ). This will allow us to "read" the word γ by following a horizontal line in R2 (section 8.6.2)
and then we will consider for this specific choice of Λ and (u, v) the tiles S(x,u, v) of R2 defined in
section 8.4 to study some specific subwords of γ : the one read in the rectangle S(x,u, v), which
will be of lengths approximately l′i(γ) (section 8.6.3).
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8.6.1 A tiling of R2

In this section, we associate to a simple closed curve γ ∈ S(S0,4) and an integer 1 ≤ i ≤ r(γ) a
lattice Λ of R2.

Fix γ ∈ S(S0,4) a simple closed curve. Let us assume that Slope(γ) ≥ 0 and write [n1,⋯, nr] =
Slope(γ) the continued fraction expansion of Slope(γ). For 1 ≤ i < r, we write pi

qi

= [n1,⋯, ni] and

for i = 0, p0

q0
= 1

0 . Now we fix 1 ≤ i < r for all this section and if i = 1, we assume that ni ≠ 0.
Denote u = (qi, pi) ∈ Z2 and v = (qi−1, pi−1) ∈ Z2. Notice that, because of the assumption i < r, we
have Slope(u) ≠ Slope(γ) and Slope(v) ≠ Slope(γ). After possibly exchanging u and v, suppose
that Slope(u) < Slope(v). Then, we have :

1. Slope(u) < Slope(γ) < Slope(v).

2. (u, v) form a basis of Z2

Moreover, using the equalities (8.10) and (8.11) of section 8.5 and the hypothesis (i, ni) ≠ (1,0),
we have :

3. Slope(u + v) = pi

qi

⊕ pi−1

qi−1
≠ Slope(γ)

4. Slope(v − u) = pi

qi

⊖ pi−1

qi−1
≠ −1

Let us write as irreducible fractions :
p

q
= Slope(γ), pi

qi

= Slope(u), p′i
q′i
= Slope(v)

The map fγ,u,v.
Consider fγ,u,v an element of GL(2,R) which sends the lines of slope Slope(γ) in R2 to the lines
of slope 0 and the lines of slope −1 in R2 to the lines of slope +∞. Choose fγ,u,v such that
fγ,u,v preserves the orientation, and scale it so that the abscissa of the vector fγ,u,v(u + v) is 1
and the ordinate of the vector fγ,u,v(v − u) is also 1 (such a map always exists). Let us give
fγ,u,v explicitly. The map fγ,u,v is the product of a diagonal matrix D with a matrix M which
sends lines of slope −1 to lines of slope +∞ and lines of slope p

q
to lines of slope 0. Therefore

for M we can choose the inverse of the matrix (q −1
p 1 ) which gives M = 1

p + q (
1 1
−p q

). Then

Mu = 1
p + q (

pi + qi

−pqi + qpi
) and Mv = 1

p + q (
p′i + q′i
−pq′i + qp′i

) and in order to get the right rescaling we

need to impose : D = (p + q)(
1

pi+qi+p′i+q′i
0

0 1
p(qi−q′i)−q(pi−p′i)

). Hence we obtain :

fγ,u,v = (
1

pi+qi+p′i+q′i

1
pi+qi+p′i+q′i

−p
p(qi−q′i)−q(pi−p′i)

q
p(qi−q′i)−q(pi−p′i)

) (8.12)
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Also note that (pi + qi, p′i + q′i) ∈ {(li(γ), li−1(γ)), (li−1(γ), li(γ))} and then pi + qi + p′i + q′i = li(γ) +
li−1(γ) = l′i(γ). Now we can compute fγ,u,v(u) and fγ,u,v(v) :

fγ,u,v(u) = (
pi + qi

pi + qi + p′i + q′i
,

−pqi + qpi

p(qi − q′i) − q(pi − p′i)
)

fγ,u,v(v) = (
p′i + q′i

pi + qi + p′i + q′i
,

−pq′i + qp′i
p(qi − q′i) − q(pi − p′i)

)

We deduce :

max((fγ,u,v(u))1, (fγ,u,v(v))1) =
max(pi + qi, p′i + q′i)
pi + qi + p′i + q′i

= max(li(γ), li−1(γ))
l′i(γ)

= li(γ)
l′i(γ)

(8.13)

Since we have Slope(u) < Slope(γ) < Slope(v), we deduce that Slope(fγ,u,v(u)) < 0 < Slope(fγ,u,v(v)).
We had also noticed that Slope(u+ v) ≠ Slope(γ) and Slope(v −u) ≠ −1, hence we can also deduce
that

Slope(fγ,u,v(u + v)) ≠ 0 (8.14)
Slope(fγ,u,v(v − u)) ≠∞ (8.15)

Note also that the slope of fγ,u,v(u + v) and fγ,u,v(v − u) are of opposite signs. Indeed, before
applying the map fγ,u,v, the slope of u + v is pi

qi

⊕ pi−1

qi−1
and the slope of v − u is pi

qi

⊖ pi−1

qi−1
. By

the result of the end of section 8.5, the rationals pi

qi

⊕ pi−1

qi−1
and pi

qi

⊖ pi−1

qi−1
are on either side of p

q
,

(with p

q
the slope of γ), hence after applying the map fγ,u,v, we deduce that these two slopes are

of opposite signs, since the slope p
q

is sent to 0 by fγ,u,v.

The map fγ,u,v sends the lattice Z2 to another lattice in R2, denote it by Λ = fγ,u,v(Z2). Hence
2Λ = fγ,u,v(2Z2). Recall that we had defined the type of a point in Z2, we can then also define the
type of a point in Λ as the type of the corresponding point in Z2. We obtain four types of points
in Λ given by the four classes of the elements of Λ mod 2Λ. We had also defined three sets of
lines : LA, LB and LC so we can look at their images by fγ,u,v. Since the lines in LC have slope
−1, the lines in fγ,u,v(LC) have slope +∞. Also note that a line of slope Slope(γ) has for image a
line of slope 0. Thus the lines in fγ,u,v(LA) have a negative slope and the lines in fγ,u,v(LB) have
a positive slope (recall that the lines in LA have slope 0 and the lines in LB have slope +∞). Two
non parallel lines in fγ,u,v(LA) ∪ fγ,u,v(LB) ∪ fγ,u,v(LC) always intersect in a point of Λ.

In order to simplify the notation, from now on we simply denote by LA, LB, LC , u, v the images
of LA, LB, LC , u, v by fγ,u,v.

Now that the lattice Λ is fixed as well as the basis (u, v) of Λ satisfying Slope(u) < 0 < Slope(v),
we can use the notations of section 8.4 to talk about the rectangle S(x,u, v) and R(x,u, v), for a
point x ∈ Λ.
Note that, by the choice of the scaling of fγ,u,v, the lengths of the sides of S(x,u, v) are 1.
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8.6.2 Reading the word γ and its subwords
We can still read the word corresponding to γ in the fundamental group π1(S0,4) using the

lattice Λ and the three new sets of lines LA, LB and LC : Follow a line l0 of slope 0 in R2 which
avoids the lattice Λ and record a, b or c each time the line l0 crosses a line l of LA, LB or LC

with power ±1 depending on the transverse orientation of l at the intersection point with l0. To
obtain the full word γ (more precisely a cyclic permutation of γ or its inverse), we have to follow
l0 between two points which are identified by an element of 2P(Λ), that is between two points x
and y on l0 such that y = x+2λ, with λ ∈ P(Λ) (here P(Λ) denotes the set of primitive elements in
Λ, that is the elements in Λ which can be completed to a basis of Λ). More generally, by following
l0 along a segment I ⊂ [x, y] ⊂ l0, we read a subword of γ (or a subword of a cyclic-permutation
of γ or its inverse). We denote by W (I) this subword. We are now interested in the link between
the length of the segment I and the word length of the word W (I) we read by following I. More
precisely, we need the following lemma :

Lemma 8.17. Let W be a subword of γ (or more generally a subword of a cyclic permutation of
γ or its inverse). There exists a horizontal segment I in the plane R2 such that we read W by
following I and, denoting l(I) the length of the segment I and ∣W ∣ the word length of W , we have :

∣W ∣ − 3 ≤ l(I)l′i(γ) ≤ ∣W ∣ + 1

Remember that the integer i which appears in this Lemma 8.17 has been fixed at the beginning
of section 8.6.1. Everything that has been defined using i, therefore depends on it : the map fγ,u,v,
the lattice Λ, the three sets of lines LA, LB and LC , etc... We have chosen not to index these
objects by i in order to reduce the amount of notation.

Proof. Let us start by computing the spacing between two consecutive lines in LC , and denote it
by EC . Recall that LC consists of parallel lines of slope +∞ which are the images of the lines of
equations y = −x+ 2k, k ∈ Z, under the map fγ,u,v. Then, since the point (x, y) = ( 2q

p+q ,
2p

p+q) belongs
both to the line of equation y = −x+2 and to the line of equation y = p

qx, its image by fγ,u,v belongs
both to the line of equation y = 0 and to the line of equation x = EC . We compute fγ,u,v(x, y) and
we obtain ( 2

l′i(γ)
,0). Hence EC = 2

l′i(γ)
.

Now, since W is a subword of γ, we can read it somewhere following a subsegment I of l0, that is
a horizontal segment. Now remember that since Slope(γ) ≥ 0, the letters of γ alternate between
letters in {c, c−1} and letters in {a, a−1, b, b−1}. This means that I crosses exactly one line in
LA ∪LB between two lines in LC . Denote nC the number of intersection points between I and LC ,
or equivalently the number of c and c−1 in W .

● If ∣W ∣ is even, then ∣W ∣ = 2nC , and we can choose I such that :

(nC − 1)EC ≤ l(I) ≤ nCEC , which is equivalent to (∣W ∣ − 2)EC ≤ 2l(I) ≤ ∣W ∣EC .

● If ∣W ∣ is odd and ∣W ∣ = 2nC + 1, then we can choose I such that :

(nC−1)EC ≤ l(I) ≤ (nC+1)EC , which is equivalent to (∣W ∣−3)EC ≤ 2l(I) ≤ (∣W ∣+1)EC .
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● If ∣W ∣ is odd and ∣W ∣ = 2nC − 1, then we can choose I such that :

l(I) = nCEC , which is equivalent to 2l(I) = (∣W ∣ + 1)EC .

Therefore, in every cases we have

(∣W ∣ − 3)EC ≤ 2l(I) ≤ (∣W ∣ + 1)EC

and using the previously calculated value of EC , we obtain the required inequality.

8.6.3 Subwords associated to a square
By the previous construction, following l0 along the segment I gives (a cyclic permutation of)

the word γ (or its inverse). Hence by following a subsegment of I, we obtain a subword of γ.
Recall that Slope(u+ v) and Slope(v − u) are of opposite signs. We will now look at the subwords
of γ that we obtain by crossing a square S(x,u, v) and a rectangle R(x,u, v), that is by following
the intervals IS(x,u, v, h) and IR(x,u, v, h).

Now assume that the real h (∈ (0,1)) is such that the segment IS(x,u, v, h) (respectively
IR(x,u, v, h)) does not intersect the lattice Λ and therefore, let us define WS(x,u, v, h) (respectively
WR(x,u, v, h)) to be the subword of γ read when following IS(x,u, v, h) (respectively IR(x,u, v, h)).
There is a small ambiguity that we must resolve : if one of the endpoints of IS(x,u, v, h) (resp.
IR(x,u, v, h)) is an intersection point of IS(x,u, v, h) (resp. IR(x,u, v, h)) with a line in LA∪LB∪LC ,
then we record the corresponding letter in WS(x,u, v, h) (resp. WS(x,u, v, h)). Now let us make
a simple but important observation : because of the invariance of our setting by the action of
2Λ, if x and x′ are two points of Λ of the same type, then WS(x,u, v, h) = WS(x′, u, v, h) and
WR(x,u, v, h) = WR(x′, u, v, h). Hence the subword of γ read in a square or a rectangle only de-
pends on the type of the square and the height h. So if t ∈ Λ/2Λ is the type of a point, we will
write WS(t, u, v, h) and WR(t, u, v, h) without ambiguity.

The following lemma states that the subwords of γ read in some square (resp. rectangle) are
the inverses of the subwords read in a square (resp. rectangle) of opposite type :

Lemma 8.18. Let t ∈ Λ/2Λ be a type and t its (u, v)-opposite type. Let 0 < h < 1 and 0 < h′ < u2+v2
such that if x is a point of Λ of type t, then IS(x,u, v, h) and IR(x,u, v, h′) does not intersect the
lattice Λ. Then IS(x + u + v, u, v,1 − h) and IR(x + u + v, u, v, u2 + v2 − h′) does not intersect the
lattice Λ and :

WS(t, u, v, h) =WS(t, u, v,1 − h)−1

WR(t, u, v, h′) =WR(t, u, v, u2 + v2 − h′)−1

Proof. Let x be a point of Λ of type t. Consider the reflection of the square S(x,u, v) (resp.
rectangle R(x,u, v)) across the point x+u+ v (resp. x+u). This gives the square S(x+u+ v, u, v)
(resp. rectangle R(x+u+v, u, v)), and then this square (resp. rectangle) is of type t. Now consider
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x

IS(x, u, v, h)
IS(x + u + v, u, v, 1 − h)

h 1 − h

Figure 8.28: Proof of Lemma 8.18

the segment IS(x,u, v, h) in S(x,u, v) (resp. IR(x,u, v, h′) in R(x,u, v)) with its orientation from
left to right. Then its reflection across the point x + u + v (resp. x + u) is the segment IS(x +
u + v, u, v,1 − h) in S(x + u + v, u, v) (resp. IR(x + u + v, u, v, u2 + v2 − h′) in R(x + u + v, u, v))
with the reverse orientation : from right to left. Since our setting is invariant under a reflection
across a point of the lattice Λ, we deduce that the subword read by following IS(x,u, v, h) (resp.
IR(x,u, v, h′)) from left to right is the same as the subword read by following IS(x+u+v, u, v,1−h)
(resp. IR(x + u + v, u, v, u2 + v2 − h′)) from right to left, thus it is the inverse of the subword read
by following IS(x + u + v, u, v,1 − h) (resp. IR(x + u + v, u, v, u2 + v2 − h′)) from left to right. Hence
the lemma.

Now we want to investigate the dependence on the height h of the word WS(t, u, v, h). Precisely,
we want to show that, up to changing a few letters at the beginning and at the end of the word
WS(t, u, v, h), it does not depend on the height h.

Lemma 8.19. Let t ∈ Λ/2Λ be a type and h,h′ be two heights. Then, up to adding a letter at the
beginning of WS(t, u, v, h), or removing the first letter of WS(t, u, v, h), or changing the two first
letters of WS(t, u, v, h), and up to adding a letter at the end of WS(t, u, v, h), or removing the last
letter of WS(t, u, v, h), or changing the two last letters of WS(t, u, v, h), we have :

WS(t, u, v, h) =WS(t, u, v, h′)

Proof. Let x be a point of type t in Λ. We will work in the square S(x,u, v). We want to
understand the intersection of lines in LA ∪LB ∪LC which occurs in the square S(x,u, v). Let us
prove the following fundamental observations :

1. If two lines of LA∪LB∪LC intersect in S(x,u, v), then they intersect in {x,x+u,x+v, x+u+v}.

2. If a line of LA ∪LB ∪LC crosses the left side of the square S(x,u, v), then it passes through
the point x.

3. If a line of LA∪LB ∪LC crosses the right side of the square S(x,u, v), then it passes through
the point x + u + v.
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Proof of the observations. 1. Two lines of LA ∪ LB ∪ LC can only intersect in a point of the
lattice Λ. But recall that the only points of the lattice Λ contained in S(x,u, v) are the four
points x,x + u,x + v and x + u + v. Hence the first observation.

2. Consider L∞ the set of vertical lines (of slope ∞) which passes through a point of Λ. Of
course LC ⊂ L∞. Now note that if l ∈ L∞ and l′ ∈ LA∪LB, then the intersection point between
l and l′ belongs to the lattice Λ : l ∩ l′ ⊂ Λ. Since x ∈ Λ, we deduce that the left vertical
side of the square S(x,u, v) is included in a line l ∈ L∞. Therefore any line of LA ∪LB which
crosses the left side of the square S(x,u, v) intersects it in a point of Λ. We conclude by
recalling that x is the only point of the lattice Λ on the left vertical side of S(x,u, v). To
finish the proof, note that if a line of LC crosses the left side of the square S(x,u, v), it is
trivial that it passes through the point x, since in that case the line would be vertical and
hence would contained the left side of the square S(x,u, v).

3. The proof is exactly the same as for the previous point, since the point x+u+v of the lattice
Λ belongs to the right side of S(x,u, v) and is the only point of the lattice Λ on the right
side of S(x,u, v).

From these three observations we can deduce the Lemma 8.19. Let us first draw a picture. Figure
8.29 on page 123 shows the square S(x,u, v) together with the lines of LA ∪LB ∪LC that cross it.
Lines in LA are in green in the figure : they have negative slope and are regularly spaced. Lines
in LB are in blue in the figure : they have positive slope and are regularly spaced. Lines in LC

are in blue in the figure : they are vertical and regularly spaced. Note that between two lines in
LA ∪LB there is always exactly one line in LC .
Consider two heights h and h′ and IS(x,u, v, h) and IS(x,u, v, h′) the corresponding segments in
S(x,u, v). Let l and l′ be two lines of LA ∪ LB ∪ LC which cross the square S(x,u, v) but cross
neither the left side nor the right side of S(x,u, v). Then l and l′ do not intersect in the interior
of the square S(x,u, v). Therefore, by following the segments IS(x,u, v, h) and IS(x,u, v, h′) from
left to right, we cross l and l′ in the same order. Moreover, there is no point of the lattice Λ in
the intersection of l and the interior of S(x,u, v). So the segments IS(x,u, v, h) and IS(x,u, v, h′)
cross the line l with the same orientation. We deduce that the only differences between the words
W (t, u, v, h) and W (t, u, v, h′) must occur at the beginning and at the end of these words (and
correspond to lines of LA∪LB ∪LC which passes through x and x+u+v). Indeed, suppose h > −u2
and h′ < −u2, and let us distinguish according to the type of x, which is t :

● If t = a, then there is exactly one line of LA ∪ LB ∪ LC passing through x and it is a line of
LA. Since the slope of the lines in LA is negative, we deduce that we must add a letter at
the beginning of WS(x,u, v, h) (which will be a−1) to obtain the same beginning as the word
WS(x,u, v, h′).

● If t = b, then there is exactly one line of LA ∪ LB ∪ LC passing through x and it is a line of
LB. Since the slope of the lines in LB is positive, we deduce that we must add a letter at
the beginning of WS(x,u, v, h′) (which will be b) to obtain the same beginning as the word
WS(x,u, v, h).
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● If t = c, then there is exactly one line of LA ∪ LB ∪ LC passing through x and it is a line of
LC . Since the slope of the lines in LC is infinite, we deduce that we must change the sign
of the first letter of WS(x,u, v, h′) (which will be c−1) to obtain the same beginning as the
word WS(x,u, v, h).

● If t = abc, then there is exactly three lines of LA ∪ LB ∪ LC passing through x : one in LA,
one in LB and one in LC . Then we deduce that after changing the sign of the first letter of
WS(x,u, v, h′) (which will be c) and changing the second letter of WS(x,u, v, h′) (from a to
b−1), we recover the beginning of the word WS(x,u, v, h).

Now suppose that h > v2 and h′ < v2. By making the same distinction as before but this time on
the type of x+u+v (which is t), we deduce as above that after possibly adding or removing a letter
at the beginning of WS(t, u, v, h), or after possibly changing the two last letters of WS(t, u, v, h),
the end of the word WS(t, u, v, h) is the same as the end of the word WS(t, u, v, h′).

−u2

v2x

x + u

x + v

x + u + v

WS(t, u, v, h1)

WS(t, u, v, h2)

WS(t, u, v, h3)

WS(t, u, v, h1) = c−1b−1 (c̃b−1 c̃̃bc̃ac̃̃b) c.

WS(t, u, v, h2) = c−1b−1 (c̃b−1 c̃̃bc̃ac̃̃b) c−1.

WS(t, u, v, h3) = ba (c̃b−1 c̃̃bc̃ac̃̃b) c−1.

Figure 8.29: Proof of Lemma 8.19. Reading the subword WS(t, u, v, h) in the square S(x,u, v).
Lines in LA are in green, lines in LB in blue and lines in LC in red. We draw the case where x is
of type abc, x + u of type a, x + v of type b and x + u + v of type c. Up to changing the two first
letters and inverting the last one, the word W (t, u, v, h) does not depend on the height h.

In fact, our poof gives a more precise version of Lemma 8.19 by actually computing the first
and last letters of WS(u, v, h) depending on the type of t and t (and of course on the height h).
We leave it here as a remark.
Remark 8.20. For all type t and for all 0 < h < 1, there exists VS(t, u, v) which does not depend on
h such that :

1. If t = abc and t = c (see figure 8.30a) :

● If max(−u2, v2) < h < 1, then WS(t, u, v, h) = c−1b−1VS(t, u, v)c.
● If min(−u2, v2) < h <max(−u2, v2), then WS(t, u, v, h) = c−1b−1VS(t, u, v)c−1.
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(a) Case t = abc and t = c (b) Case t = abc and t = a (c) Case t = abc and t = b

(d) Case t = c and t = a (e) Case t = c and t = b (f) Case t = a and t = b

Figure 8.30: Reading WS(t, u, v, h) in S(x,u, v) : the six cases of Remark 8.20. Only the lines
passing through a point of {x,x + u,x + v, x + u + v} are represented on the pictures. The type of
x is t, and the type of x + u + v is t.

● If 0 < h <min(−u2, v2), then WS(t, u, v, h) = caVS(t, u, v)c−1.

2. If t = abc and t = a (see figure 8.30b) :

● If max(−u2, v2) < h < 1, then WS(t, u, v, h) = c−1b−1VS(t, u, v)a.
● If min(−u2, v2) < h <max(−u2, v2), then WS(t, u, v, h) = c−1b−1VS(t, u, v).
● If 0 < h <min(−u2, v2), then WS(t, u, v, h) = caVS(t, u, v).

3. If t = abc and t = b (see figure 8.30c) :

● If max(−u2, v2) < h < 1, then WS(t, u, v, h) = c−1b−1VS(t, u, v).
● If min(−u2, v2) < h <max(−u2, v2), then WS(t, u, v, h) = c−1b−1VS(t, u, v)b−1.
● If 0 < h <min(−u2, v2), then WS(t, u, v, h) = caVS(t, u, v)b−1.

4. If t = c and t = a (see figure 8.30d):
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● If max(−u2, v2) < h < 1, then WS(t, u, v, h) = cVS(t, u, v)a.
● If min(−u2, v2) < h <max(−u2, v2), then WS(t, u, v, h) = cVS(t, u, v).
● If 0 < h <min(−u2, v2), then WS(t, u, v, h) = c−1VS(t, u, v).

5. If t = c and t = b (see figure 8.30e):

● If max(−u2, v2) < h < 1, then WS(t, u, v, h) = cVS(t, u, v).
● If min(−u2, v2) < h <max(−u2, v2), then WS(t, u, v, h) = cVS(t, u, v)b−1.
● If 0 < h <min(−u2, v2), then WS(t, u, v, h) = c−1VS(t, u, v)b−1.

6. If t = a and t = b (see figure 8.30f):

● If max(−u2, v2) < h < 1, then WS(t, u, v, h) = VS(t, u, v).
● If min(−u2, v2) < h <max(−u2, v2), then WS(t, u, v, h) = VS(t, u, v)b−1.
● If 0 < h <min(−u2, v2), then WS(t, u, v, h) = a−1VS(t, u, v)b−1.

Remark 8.21. Note that, using Lemma 8.18, we can deduce the six other cases (which are (t, t) ∈
{(c, abc), (a, abc), (b, abc), (a, c), (b, c), (b, a)}) by taking the inverses of the subwords found above.

Now we would like to write (a cyclic permutation of) γ (or its inverse) as a concatenation of
words of the form WS(x,u, v, h),WR(x,u, v, h). However, there is a small technical issue to fix
here. Since the rectangles S(x,u, v) and S(x+u+ v, u, v) intersect along one of their vertical sides
(the right vertical side of S(x,u, v) and the left vertical side of S(x + u + v, u, v), the word read
by following a horizontal line in S(x,u, v) ∪ S(x + u + v, u, v) could not be the concatenation of
WS(x,u, v, h) then WS(x+u+v, u, v, h′) (for the corresponding heights h and h′). In order to resolve
this, let us consider I∗S(x,u, v, h) (respectively I∗R(x,u, v, h)) the segment at height h in S∗(x,u, v)
(respectively in R∗(x,u, v)) and W ∗

S (x,u, v, h) (resp. W ∗
R(x,u, v, h)) the word read by following

I∗S(x,u, v, h) (resp. I∗R(x,u, v, h)). Recall that S∗(x,u, v) and R∗(x,u, v) have been defined re-
spectively in (8.2) and (8.4). Of course we also have that W ∗

S (x,u, v, h) (resp. W ∗
R(x,u, v, h))

does not depend on the type of the point x and thus we write W ∗
S (t, u, v, h) (resp. W ∗

R(t, u, v, h))
for t a type without ambiguity. Similarly, we consider ∗S(x,u, v) (resp.∗R(x,u, v)) the rectangle
obtained by deleting the left vertical side of S(x,u, v) (resp. R(x,u, v)) and we write ∗IS(x,u, v, h)
(resp.∗IR(x,u, v, h)) for the segment at height h in ∗S(x,u, v) (resp.∗R(x,u, v)) and ∗WS(x,u, v, h)
(resp. ∗WR(x,u, v, h)) the word read by following ∗IS(x,u, v, h) (resp. ∗IR(x,u, v, h)).

Now let us specify the lengths of subwords read in rectangles :

Lemma 8.22. Let t be a type and 0 < h < 1 a height. We have the following inequalities :

1. l′i(γ) − 1 ≤ Length(W ∗
S (t, u, v, h)) ≤ l′i(γ) + 1 and

l′i(γ) − 1 ≤ Length(∗WS(t, u, v, h)) ≤ l′i(γ) + 1

2. Length(W ∗
R(t, u, v, h)) ≤ l′i(γ) + 1 and

Length(∗WR(t, u, v, h)) ≤ l′i(γ) + 1
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Denote

(u′, v′) = { (u,u + v) if Slope(u + v) ≥ 0
(u + v, v) if Slope(u + v) ≤ 0

3. l′i(γ) + li(γ) − 1 ≤ Length(W ∗
S (t, u′, v′, h)) ≤ l′i(γ) + li(γ) + 1 and

l′i(γ) + li(γ) − 1 ≤ Length(∗WS(t, u′, v′, h)) ≤ l′i(γ) + li(γ) + 1

4. Length(W ∗
R(t, u′, v′, h)) ≤ l′i(γ) + li(γ) + 1 and

Length(∗WR(t, u′, v′, h)) ≤ l′i(γ) + li(γ) + 1

Proof. 1. Let max(−u2, v2) < h1 < 1, min(−u2, v2) < h2 <max(−u2, v2) and 0 < h3 <min(−u2, v2)
be three heights. In order to simplify the notation, let us denote (see figure 8.31 on page
126):

Wj(t) =WS(t, u, v, hj) Wj(t) =WS(t, u, v, hj)
W ∗

j (t) =W ∗
S (t, u, v, hj) Wj(t) =W ∗

S (t, u, v, hj)
∗Wj(t) = ∗WS(t, u, v, hj) ∗Wj(t) = ∗WS(t, u, v, hj)

W1(t)

W2(t)

W3(t)

W1(t)

W2(t)

W3(t)

Figure 8.31: The six words W1(t),W2(t),W3(t),W1(t),W2(t),W3(t).

We have, using the property on inverses of Lemma 8.18 :

W1(t)−1 =W3(t) W2(t)−1 =W2(t) W3(t)−1 =W1(t)
W ∗

1 (t)−1 = ∗W3(t) W ∗
2 (t)−1 = ∗W2(t) W ∗

3 (t)−1 = ∗W1(t)
∗W1(t)−1 =W ∗

3 (t) ∗W2(t)−1 =W ∗
2 (t) ∗W3(t)−1 =W ∗

1 (t)
(8.16)

The key point is that the word W ∗
1 (t)W ∗

1 (t) corresponds to a simple closed curve of slope
pi

qi

⊕ pi−1

qi−1
, hence it is of length 2l′i(γ).

Length(W ∗
1 (t)) + Length(W ∗

1 (t)) = 2l′i(γ) (8.17)
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y

y + 2(u + v)

W ∗
1 (t)

W ∗
1 (t)

I

Figure 8.32: Reading the word of slope pi

qi

⊕ pi−1

qi−1

Indeed, consider as in the figure 8.32 on page 127 the segment I from y to y + 2(u + v),
where y is a point on the left vertical side of S(x,u, v), with x of type t, and such that
y2 > x2. Then in the quotient by (2Λ,±), this segment is a simple closed curve of slope
Slope(f−1

γ,u,v(u))⊕ Slope(f−1
γ,u,v(v)). Moreover, by following the segment I, we read the word

W ∗
1 (t)W ∗

1 (t).
Let us now distinguish according the type (t, t) :

● If (t, t) = (abc, c), then we have, using remark 8.20 :

Length(W ∗
1 (t)) = Length(W ∗

2 (t)) = Length(W ∗
3 (t))

=Length(∗W1(t)) = Length(∗W2(t)) = Length(∗W3(t))

from which we can deduce

Length(W ∗
1 (t)) = Length(W ∗

2 (t)) = Length(W ∗
3 (t))

=Length(∗W1(t)) = Length(∗W2(t)) = Length(∗W3(t))

Therefore we can deduce :

Length(W ∗
1 (t)) = Length(∗W3(t)) = Length(∗W3(t)−1) = Length(W ∗

1 (t))

so we can conclude, using (8.17) :

Length(W ∗
1 (t)) = Length(W ∗

1 (t)) = l′i(γ)

and we also obtain :

Length(W ∗
2 (t)) = Length(W ∗

2 (t)) = l′i(γ)
Length(W ∗

3 (t)) = Length(W ∗
3 (t)) = l′i(γ).

Finally, using (8.16) or noticing that this choice of t and t implies ∗Wj(t) =W ∗
j (t), we

also have :
Length(∗W1(t)) = Length(∗W1(t)) = Length(∗W2(t)) = Length(∗W2(t))
=Length(∗W3(t)) = Length(∗W3(t)) = li(γ).

(8.18)
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● If (t, t) ∈ {(abc, a), (c, a)}, then we have, using remark 8.20 :

Length(W ∗
1 (t)) = Length(W ∗

2 (t)) + 1 = Length(W ∗
3 (t)) + 1

= Length(∗W1(t)) + 1 =Length(∗W2(t)) + 2 =Length(∗W3(t)) + 2

and

Length(W ∗
1 (t)) = Length(W ∗

2 (t)) = Length(W ∗
3 (t)) − 1

= Length(∗W1(t)) − 1 =Length(∗W2(t)) − 1 =Length(∗W3(t)) − 2

Therefore we can deduce :

Length(W ∗
1 (t)) = Length(∗W3(t)) + 2 = Length(∗W3(t)−1) + 2 = Length(W ∗

1 (t)) + 2

so we can conclude, using (8.17) :

Length(W ∗
1 (t)) = l′i(γ) + 1, Length(W ∗

1 (t)) = l′i(γ) − 1,
Length(W ∗

2 (t)) = l′i(γ), Length(W ∗
2 (t)) = l′i(γ) − 1,

Length(W ∗
3 (t)) = l′i(γ), Length(W ∗

3 (t)) = l′i(γ).

Finally, using (8.16) or noticing that this choice of t and t implies ∗Wj(t) = W ∗
j (t) − 1

and ∗Wj(t) =W ∗
j (t) + 1, we have :

Length(∗W1(t)) = l′i(γ), Length(∗W1(t)) = l′i(γ),
Length(∗W2(t)) = l′i(γ) − 1, Length(∗W2(t)) = l′i(γ),
Length(∗W3(t)) = l′i(γ) − 1, Length(∗W3(t)) = l′i(γ) + 1.

● If (t, t) ∈ {(abc, b), (c, b)}, the proof is completely similar to the previous case. We
obtain :

Length(W ∗
1 (t)) = l′i(γ), Length(W ∗

1 (t)) = l′i(γ),
Length(W ∗

2 (t)) = l′i(γ) + 1, Length(W ∗
2 (t)) = l′i(γ),

Length(W ∗
3 (t)) = l′i(γ) + 1, Length(W ∗

3 (t)) = l′i(γ) − 1.

Finally, using (8.16) or noticing that this choice of t and t implies ∗Wj(t) = W ∗
j (t) − 1

and ∗Wj(t) =W ∗
j (t) + 1, we have :

Length(∗W1(t)) = l′i(γ) − 1, Length(∗W1(t)) = l′i(γ) + 1,
Length(∗W2(t)) = l′i(γ), Length(∗W2(t)) = l′i(γ) + 1,
Length(∗W3(t)) = l′i(γ), Length(∗W3(t)) = l′i(γ).
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● If (t, t) ∈ (a, b), the proof is again similar to the previous cases. We obtain :

Length(W ∗
1 (t)) = l′i(γ) − 1, Length(W ∗

1 (t)) = l′i(γ) + 1,
Length(W ∗

2 (t)) = l′i(γ), Length(W ∗
2 (t)) = l′i(γ),

Length(W ∗
3 (t)) = l′i(γ) + 1, Length(W ∗

3 (t)) = l′i(γ) − 1.

Finally, using (8.16) or noticing that this choice of t and t implies ∗Wj(t) =W ∗
j (t), we

have :

Length(∗W1(t)) = l′i(γ) − 1, Length(∗W1(t)) = l′i(γ) + 1,
Length(∗W2(t)) = l′i(γ), Length(∗W2(t)) = l′i(γ),
Length(∗W3(t)) = l′i(γ) + 1, Length(∗W3(t)) = l′i(γ) − 1.

Note that we have covered all the possible cases, and thus for all heights h and all types t,
we have l′i(γ)− 1 ≤ Length(W ∗

S (t, u, v, h)) ≤ l′i(γ)+ 1 and l′i(γ)− 1 ≤ Length(∗WS(t, u, v, h)) ≤
l′i(γ) + 1.

2. We use the fact that R(x,u, v) ⊂ { S(x − v, u, v) if Slope(u + v) ≥ 0
S(x − u,u, v) if Slope(u + v) ≤ 0 .

Then W ∗
R(x,u, v, h) is a subword of W ∗

S (x−v, u, v, h′) or W ∗
S (x−u,u, v, h′) for some height h′.

But by the previous point Length(W ∗
S (x−v, u, v, h′)) ≤ l′i(γ)+1 and Length(W ∗

S (x−u,u, v, h′)) ≤
l′i(γ) + 1, (for all h′). Hence the second inequality.

3. The proof is the same as above, working this time in the rectangle S(x,u′, v′) = S′(x,u, v)
and using the fact that the slope of f−1

γ,u,v(u′) + f−1
γ,u,v(v′) is pi

qi

⊕ 2pi−1

qi−1
(and l′i(γ) + li(γ) =

pi + qi + 2pi−1 + 2qi−1).

4. Same as above, using the previous point.

At last, we end this section by giving a decomposition of γ, or more generally of any subword
of γ, as a concatenation of words read in S(x,u, v) and R(x,u, v).

Lemma 8.23. Let t ∈ Λ/2Λ be a type and t its (u, v)-opposite type. Let W be a subword of (a
cyclic-permutation of) γ or its inverse.
There exists an integer p ∈ N such that for all 0 ≤ j ≤ p + 1, there exists a real 0 < hj < 1 and a
type tj ∈ {t, t} such that we have the following decomposition of W :

W = s(W0)W1⋯Wpp(Wp+1)

with, for all 0 ≤ j ≤ p+1, either Wj =W ∗
S (tj, u, v, hj) or Wj =W ∗

R(tj, u, v, hj), and s(W0) is a suffix
of W0, p(Wp+1) is a prefix of Wp+1. Moreover :

1. If Wj =W ∗
R(tj, u, v, hj), then Wj+1 =W ∗

S (tj+1, u, v, hj+1).
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2. The types tj are alternating. Precisely : if t0 = t, then tj = {
t if j is even
t if j is odd ,

and if t0 = t, then tj = {
t if j is even
t if j is odd .

Proof. There exists a horizontal segment I in R2 such that the word we read following I is W .
Now the proof is direct by applying Lemma 8.13 to I. Since the segments Ij of this lemma can
only intersect in a point, we deduce that W is the concatenation of the words Wj, where Wj is the
word read by following Ij, that is W ∗

S (tj, u, v, hj) or W ∗
R(tj, u, v, hj).

● The first point of Lemma 8.23 comes from the third point of Lemma 8.13.

● The second point of Lemma 8.23 comes from the second point of Corollary 8.14.

8.6.4 Proof of Proposition 8.16 (magic-lengths)
Proof of Proposition 8.16.

First note that without loss of generality, we can assume that W is a subword of a cyclic-
permutation of γ : indeed, if it is a subword of a cyclic-permutation of γ−1, just take the inverse
of the concatenation obtained for W −1 (which is a subword of a cyclic-permutation of γ). We can
also assume that w is a subword of a cyclic-permutation of γ : indeed, if w is a subword of a
cyclic-permutation of γ−1, w−1 is a subword of a cyclic-permutation of γ of the same length, and
thus the same decomposition for W holds.

Also remark that if i = 0, then li(γ) = 1 < 10 and if i = 1 and n1 = 0, then li(γ) = 1 < 10.
Moreover, if i = r(γ), then we have ∣W ∣ ≥ 3(l′

r(γ)
(γ) + lr(γ)(γ) + 1) > 2lr(γ)(γ) = ∣γ∣ and this is

impossible since W is supposed to be a subword of (a cyclic-permutation of) γ (or its inverse).

Therefore let us fix 1 ≤ i < r(γ), such that if i = 1, then n1 ≠ 0, and assume that li(γ) ≥ 10.

Fix W a subword of (a cyclic permutation of) γ (or its inverse) of length ∣W ∣ ≥ 3(l′i(γ)+li(γ)+1)
and w a subword of (a cyclic permutation of) γ (or its inverse) of length ∣w∣ = li(γ) − 5.
Now that the integer i is fixed, we can consider the map fγ,u,v as well as the lattice Λ and its basis
(u, v) which have been defined in section 8.6.1 (note that as in this section, we still denote by
(u, v) the image of the basis of Z2 after applying the map fγ,u,v). Recall that with our definition,
we automatically have that Slope(u + v) and Slope(v − u) are of opposite signs.

Consider w′ the subword of γ obtained from w by adding two letters on the left and two letters
on the right. Thus, we can write w′ = pws, such that pws is reduced, ∣p∣ = 2, ∣s∣ = 2, and w′ is a
subword of (a cyclic-permutation of) γ or its inverse of length ∣w′∣ = li(γ) − 1. By Lemma 8.17,
there exists a horizontal segment Iw′ such that we read w′ by following Iw′ , and such that, denoting
l(Iw′) the length of Iw′ , we have : l(Iw′)l′i(γ) ≤ ∣w′∣ + 1. So l(Iw′) ≤ li(γ)

l′i(γ)
. Then we can consider a
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horizontal segment I of length li(γ)
l′i(γ)

containing Iw′ ⊂ I. But recall, by the computation (8.13), that
max(u1, v1) = li(γ)

l′i(γ)
. Therefore, we can apply Lemma 8.12 and find a point x ∈ Λ such that :

1. Either I ⊂ S∗(x,u, v)

2. Or I ⊂ T∗(x,u, v).

(Recall that S∗(x,u, v) and T∗(x,u, v) have been defined respectively in (8.2) and (8.6)).

We treat the two cases separately.

1. Suppose that I ⊂ S∗(x,u, v).
We use Lemma 8.23 to ensure that we can write W in the following way :

W = s(W0)W1⋯Wpp(Wp+1) (8.19)

with, for all 0 ≤ j ≤ p + 1, either Wj = W ∗
S (tj, u, v, hj) or Wj = W ∗

R(tj, u, v, hj), and tj and
hj as defined in the Lemma. Recall that s(W0) and p(Wp+1) denote respectively a suf-
fix of W0 and a prefix of Wp+1. Set J = {j ∈ {1,⋯, p} ∣ Wj = W ∗

S (t, u, v, hj)},J = {j ∈
{1,⋯, p} ∣ Wj = W ∗

S (t, u, v, hj)} and K = {j ∈ {1,⋯, p} ∣ Wj = W ∗
R(tj, u, v, hj)}. Of course we

have {1,⋯, p} = J ⊔J ⊔K.

(a) Let us show that w is a subword of Wj, for all j ∈ J , and that w−1 is a subword of Wj,
for all j ∈ J :

Recall that by construction of the horizontal segment I, we have Iw′ ⊂ I, so by our
hypothesis I ⊂ S∗(x,u, v), we also have Iw′ ⊂ S∗(x,u, v). Then we deduce that w′ is a
subword of W ∗

S (t, u, v, h), for a well chosen 0 < h < 1 and t the type of x. In addition,
Lemma 8.19 ensures that for all j ∈ J , Wj and WS(t, u, v, h) are equal up to adding or
deleting a letter at the beginning or at the end of Wj, and up to changing its first two or
last two letters. Then the subword w′, up to the previous changes, is always a subword
of Wj, for j ∈ J . But these changes affect at most the first two letters of w′ and the last
two letters of w′ (in fact, never all four at the same time but this detail doesn’t matter
here), and since w′ = pws, with ∣p∣ = ∣s∣ = 2 (this decomposition is cyclically reduced),
we deduce that these changes can only affect p and s. Therefore, we can conclude that
w is a subword of Wj, for all j ∈ J .
A similar argument applies for w−1. Since w′ is a subword of W ∗

S (t, u, v, h), we deduce
by Lemma 8.18 that w′−1 is a subword of WS(t, u, v,1 − h). Thus, as before, using
Lemma 8.19, we deduce that for all j ∈ J , Wj and WS(t, u, v,1 − h) are equal up to
some changes of letters affecting at most the first two letters and the last two letters.
Since w′−1 = s−1w−1p−1, with ∣s−1∣ = ∣p−1∣ = 2, we deduce that w−1 is itself a subword of
Wj, for all j ∈ J .
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(b) Decomposition of W and proof of point 1 of Proposition 8.16 :

Let q = #J +#J . By letting u2, u4,⋯, u2q by the occurrences of w and w−1 in Wj, for
j ∈ J ∪ J , guaranteed by the previous point, we deduce that u2, u4,⋯, u2q are pairwise
disjoint. Also let u1, u3,⋯, u2q+1 be the remainders in between in the word W , then we
can write :

W = u1u2⋯u2q+1 (8.20)

Moreover, by construction, for all k ∈ 2{1,⋯, q}, uk is either equal to w or equal to w−1.
Thus point 1 of Proposition 8.16 is proved, setting I = 2{1,⋯, q}.

(c) Let us show that max(#J ,#J ) ≥ 1 :

By contradiction, if #J = #J = 0, then, since a subword of the form W ∗
R(ti, u, v, hi) is

necessarily followed by a word of the form W ∗
S (ti+1, u, v, hi+1), we must have #K ≤ 1 and

then p ≤ 1. Therefore ∣W ∣ ≤ ∣s(W0)∣ + ∣W1∣ + ∣p(Wp+1)∣. But we also know, by Lemma
8.22, that for all 0 ≤ j ≤ p + 1, ∣Wj ∣ ≤ l′i(γ) + 1. Then we deduce :

∣W ∣ ≤ 3(l′i(γ) + 1) < 3(l′i(γ) + li(γ) + 1) (8.21)

and this contradicts our hypothesis on the length of W . In particular, we proved :

#J +#J ≥ 1 (8.22)

(d) Proof of point 2 of Proposition 8.16 :

On one hand we have :

∑
k∈I

∣uk∣ =∑
k∈I

∣w∣ =#I ∣w∣ = q∣w∣ = (#J +#J )(li(γ) − 5) ≥ (#J +#J )12 li(γ) (8.23)

and the last inequality holds because li(γ) ≥ 10.

On the other hand, using (8.19), we have :

∣W ∣ = ∣p(W0)∣ + ∣s(Wp+1)∣ +∑
j∈J

∣Wj ∣ +∑
j∈J

∣Wj ∣ +∑
j∈K

∣Wj ∣.

In addition, we know, by Lemma 8.22, that for all 0 ≤ j ≤ p + 1 : ∣Wj ∣ ≤ l′i(γ) + 1. Then
we deduce :

∣W ∣ ≤ 2(l′i(γ) + 1) + (#J +#J +#K)(l′i(γ) + 1)
≤ 4li(γ) + 2(#J +#J +#K)li(γ) using l′i(γ) + 1 ≤ 2li(γ)
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Moreover, recall that a subword of the form W ∗
R(ti, u, v, hi) is necessarily followed by a

subword of the form W ∗
S (ti+1, u, v, hi+1), then if j ∈ K ∩ {1,⋯, p − 1}, then j + 1 ∉ K and

so we deduce that #K ≤#J +#J + 1. Therefore :

∣W ∣ ≤ 4li(γ) + 2(2(#J +#J ) + 1)li(γ) = 4(#J +#J )li(γ) + 6li(γ)
≤ 10(#J +#J )li(γ) by (8.22)
≤ 20∑

k∈I

∣uk∣ by (8.23)
(8.24)

This last inequality finishes the proof of point 2 of Proposition 8.16 in the case where
I ⊂ S∗(x,u, v).

2. Suppose that I ⊂ T∗(x,u, v). In particular, since T∗(x,u, v) ⊂ S′∗(x,u, v) (see (8.8)), we have
I ⊂ S′∗(x,u, v). Let us denote :

(u′, v′) = { (u,u + v) if Slope(u + v) ≥ 0
(u + v, v) if Slope(u + v) ≤ 0

Then we have S′∗(x,u, v) = S∗(x,u′, v′) and S′±(x,u, v) = S±(x,u′, v′).
Recall that inequality (8.14) ensures that : Slope(u + v) ≠ 0. Then we have :

Slope(u′) < 0 < Slope(v′).

We now distinguish according to the signs of Slope(u′ + v′) and Slope(v′ − u′).

● Suppose that Slope(u′ + v′) and Slope(v′ − u′) are of opposite signs.
We will then proceed in exactly the same way as in the first case, changing (u, v) to
(u′, v′). The proof is then completely unchanged, except that we no longer have the
inequality ∣Wj ∣ ≤ l′i(γ)+1, but instead ∣Wj ∣ ≤ l′i(γ)+li(γ)+1 (see point 3 and 4 in Lemma
8.22). The inequalities change as follow :

(c) Let us show that max(#J ,#J ) ≥ 1 :
Suppose that #J =#J = 0, then, similarly to (8.21), we can bound ∣W ∣ :

∣W ∣ ≤ 3(l′i(γ) + li(γ) + 1)

and this is a contradiction with our hypothesis on the length of W .

(d) Proof of point 2 of Proposition 8.16 :
Equation (8.23) doesn’t change :

∑
k∈I

∣uk∣ ≥ (#J +#J )12 li(γ). (8.25)
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Then, similarly to computation (8.24), we can bound ∣W ∣ :

∣W ∣ ≤ 2(l′i(γ) + li(γ) + 1) + (#J +#J +#K)(l′i(γ) + li(γ) + 1)
≤ 6li(γ) + 3(#J +#J +#K)li(γ) using l′i(γ) + li(γ) + 1 ≤ 3li(γ)
≤ 6(#J +#J )li(γ) + 9li(γ) since #K ≤#J +#J + 1
≤ 15(#J +#J )li(γ) because #J +#J ≥ 1
≤ 30∑

k∈I

∣uk∣ by (8.25)

● Suppose now that Slope(u′+v′) and Slope(v′−u′) are of the same sign. Notice that our
choice of u, v and u′, v′ imposes that Slope(u′, v′) ≠ 0 and Slope(v′ −u′) ≠∞, we deduce
in particular that S′(x,u, v) ∖ T (x,u, v) has non-empty interior.
We are going to do almost the same procedure as in the previous cases, but we need to
be a little more careful since the rectangles S(y, u′, v′) for different y intersect, hence
the occurrences of w might not be disjoint. Denote by t the type of x and t its (u′, v′)-
opposite type.
Let IW be an horizontal segment such that we read W by following IW . By Lemma
8.15, there exist x0,⋯, xp+1 ∈ Λ and h0,⋯, hp+1 some heights such that we can write IW

as a union of segments :
IW = I0 ∪ I1 ∪⋯ ∪ Ip ∪ Ip+1 (8.26)

satisfying :
– I0 ⊂ IS(x0, u′, v′, h0), Ip+1 ⊂ IS(xp+1, u′, v′, hp+1)
– For all 1 ≤ j ≤ p, Ij = IS(xj, u′, v′, hj)
– For all 0 ≤ j ≤ p + 1, xj is of type t or t
– inf Ij < inf Ik when j < k (this is a consequence of the third point of Lemma 8.15)

For all j ∈ {0,⋯, p + 1}, let us denote Wj the subword read by following Ij. Therefore
for all 1 ≤ j ≤ p, Wj = WS(xj, u′, v′, hj) and W0 and Wp+1 are subwords respectively of
WS(x0, u′, v′, h0) and WS(xp+1, u′, v′, hp+1). Notice that the intervals Ij for 0 ≤ j ≤ p + 1
might have non-empty intersection, hence the subwords Wj are not necessarily disjoint
in W . Set J = {j ∈ {1,⋯, p} ∣ Wj = WS(t, u′, v′, hj)}, J = {j ∈ {1,⋯, p} ∣ Wj =
WS(t, u′, v′, hj)}. Of course we have {1,⋯, p} = J ⊔ J . Also denote W ∗

j the subword
read by following I∗S(xj, u′, v′, hj).
(a) Let us show that w is a subword of Wj for all j ∈ J and that w−1 is a subword of

Wj for all j ∈ J :

The proof is the same as in the first case 1a changing the basis (u, v) to (u′, v′). We
recall here the main steps : we have Iw′ ⊂ I ⊂ S′∗(x,u, v) = S∗(x,u′, v′), so w′ is a
subword of W ∗

S (t, u′, v′, h), for some well chosen 0 < h < 1. In addition, Lemma 8.19
ensures that for all j ∈ J , Wj and WS(t, u′, v′, h) are equal up to some change of
letters which affect at most the first two letters of w′ and the last two letters of w′.
Since w′ = pws, with ∣p∣ = ∣s∣ = 2, we deduce that w is a subword of Wj, for all j ∈ J .
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By noticing, using Lemma 8.18, that w′−1 is a subword of WS(t, u′, v′, h′), for some
well chosen h′, we deduce in the same way that w−1 is a subword of Wj, for all j ∈ J .

(b) Decomposition of W and proof of point 1 of Proposition 8.16 :

Let q = #J +#J and u2, u4,⋯, u2q be the occurrences of w and w−1 in Wj, for j ∈
J ∪ J = {1,⋯, p}, guaranteed by the previous point. The key point is to justify
that the subwords u2, u4,⋯, u2q are disjoint in W . For j ∈ {1,⋯, p}, let Iu2j

⊂ Ij be
a horizontal segment such that the subword read by following Iu2j

is u2j. Then,
since Iw′ ⊂ I ⊂ T∗(x,u, v) by hypothesis, we deduce that Iu2j

⊂ T∗(xj, u, v). But
recall that by Lemma 8.11, all the rectangles T∗(xj, u, v) for j ∈ J ∪J are disjoint.
Therefore we deduce that the segments Iu2j

for j ∈ {1,⋯, p} are disjoint, then so are
the subwords u2j in W . Now the rest of the proof follows as in 1b : let u1, u3,⋯, u2q+1
be the remainders in between in the word W , so we can write :

W = u1u2⋯u2q+1 (8.27)

and by construction, for all k ∈ 2{1,⋯, q}, uk is either equal to w or to w−1. Thus
point 1 of Proposition 8.16 is proved, setting I = 2{1,⋯, q}.

(c) Let us show that p ≥ 1 :

By contradiction, if p = 0, then

∣W ∣ ≤ ∣W ∗
0 ∣ + ∣W ∗

1 ∣ ≤ 2(l′i(γ) + li(γ) + 1) using Lemma 8.22
< 3(l′i(γ) + li(γ) + 1)

which is a contradiction with our hypothesis on the length of W .

(d) Proof of point 2 of Proposition 8.16 :

On the one hand we have :

∑
k∈I

∣uk∣ =∑
k∈I

∣w∣ = p(liγ − 5) ≥ p2 li(γ) (8.28)

and the last inequality holds because li(γ) ≥ 10.

On the other hand, using the equality (8.26), we have :

∣W ∣ ≤ ∣W ∗
0 ∣ + ∣W ∗

p+1∣ +
p

∑
j=1
∣W ∗

j ∣ ≤ (p + 2)(l′i(γ) + li(γ) + 1) by point 3 in Lemma 8.22

≤ 3(p + 2)li(γ) since l′i(γ) + 1 ≤ li(γ)
≤ 9pli(γ) using p ≥ 1
≤ 18∑

k∈I

∣uk∣ by (8.28).
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This last inequality finishes the proof of point 2 of Proposition 8.16 in the case
where I ⊂ T∗(x,u, v).



Chapter 9

Local uniform quasi-geodesicity

9.1 A first example of a uniform quasi-geodesicity setting
Let (X,d) be a δ-hyperbolic space, geodesic and proper.

Fix G,D1 and D2 three isometries of X. We can consider the set W(G,D1,D2) of (finite) words
on the alphabet A = {G,G−1,D1,D−1

1 ,D2,D−1
2 }. For W ∈ W(G,D1,D2), we denote by ∣W ∣ its

word length (W is seen as a word on the alphabet A). We also consider H(G,D1,D2) the set of
bi-infinite (reduced) words on the alphabet A, that is, H = (Hn)n∈Z ∈ H(G,D1,D2) if and only if
for all n ∈ Z, Hn ∈ A and Hn ≠ H−1

n+1. When we have a bi-infinite word H = (Hn) ∈ H(G,D1,D2),
we associate to it a bi-infinite sequence of finite words W = (Wn)n∈Z in the following way :

Wn =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

H0H1⋯Hn−1 for n > 0
Id for n = 0
H−1
−1⋯H−1

n for n < 0

Hence Wn ∈W(G,D1,D2) for all n ∈ Z. Moreover, the word length of Wn is ∣Wn∣ = ∣n∣ for all n ∈ Z
and the following recursive formula holds for all n ∈ Z : Wn+1 =WnHn. We denote by G(G,D1,D2)
the set of bi-infinite sequences of finite words associate to bi-infinite words in H(G,D1,D2).

In this section, we want to study a particular class of bi-infinite words H = (Hn)n∈Z and their
associate bi-infinite sequences of words W = (Wn)n∈Z. Let us fix an integer N ≥ 1 and define
HN(G,D1,D2) to be the subset of H(G,D1,D2) consisting of the bi-infinite words H = (Hn)n∈Z
which satisfy the following condition :
If n1 < n2 are two integers in Z such that Hn1 ,Hn2 ∈ {D1,D−1

1 ,D2,D−1
2 } and for all n1 < n < n2,

Hn ∈ {G±1}, then :

● If Hn1 ∈ {D±1
1 }, then Hn2 ∈ {D±1

2 }, for all n1 < n < n2, Hn = G−1 and n2 − n1 − 1 ≥ N .

● If Hn1 ∈ {D±1
2 }, then Hn2 ∈ {D±1

1 }, for all n1 < n < n2, Hn = G and n2 − n1 − 1 ≥ N .

Thus, the bi-infinite words in HN(G,D1,D2) are those of the form :

⋯D±1
1 G−1⋯G−1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

≥N

D±1
2 G⋯G²

≥N

D±1
1 G−1⋯G−1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

≥N

D±1
2 G⋯G²

≥N

D±1
1 ⋯

137
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We denote by GN(G,D1,D2) the set of bi-infinite sequences W = (Wn)n∈Z ∈ G(G,D1,D2) associate
to bi-infinite words in HN(G,D1,D2).

Fix o a basepoint in X. Starting from a bi-infinite sequence W = (Wn)n∈Z ∈ G(A(G,D1,D2)),
we define the sequence of points in X : xn =Wno,∀n ∈ Z. The goal of this section is to study the
uniform quasi-geodesicity of sequences of points defined by the elements of GN(G,D1,D2), that
is the existence of two reals λ > 0 and k ≥ 0 such that for all n,m ∈ Z, we have : 1

λ ∣n −m∣ − k ≤
d(xn, xm) ≤ λ∣n −m∣ + k. We also say that (xn)n∈Z is a (λ, k,L)-local-quasi-geodesic if we have
1
λ ∣n −m∣ − k ≤ d(xn, xm) ≤ λ∣n −m∣ + k whenever ∣n −m∣ ≤ L. Precisely we prove the following
lemma :
Proposition 9.1. Let X be a δ-hyperbolic space, geodesic and proper, and o ∈ X any basepoint.
Pick G a hyperbolic isometry and D1,D2 two isometries of X. Suppose that D1(G−) ≠ G− and
D2(G+) ≠ G+. Then, there exists λ > 0, k ≥ 0 and N ∈ N∗, such that for all bi-infinite sequence
W = (Wn)n∈Z ∈ GN(G,D1,D2), the sequence of points xn =Wno is a (λ, k)-quasi-geodesic.
Proof. ● Step 1 : Quasi-isometry on a half-period
The goal is at first to show that there exist two constants λ > 0 and k ≥ 0, only depending on
δ,G,F1,F2 and o, such that the two following inequalities are satisfied :

1
λ
∣GnD1G

−m∣ − k ≤ d(GnD1G
−mo, o) for all n,m ≥ 0 (9.1)

1
λ
∣G−nD2G

m∣ − k ≤ d(G−nD2G
mo, o) for all n,m ≥ 0 (9.2)

By hypothesis, the two points at infinity D1(G−) and G− are distinct, so we can consider a
geodesic, called Λ, with endpoints D1(G−) and G−. Such a geodesic exists because the space X
is supposed to be proper. Now consider p a projection map on Λ, that is p ∶ X → Λ satisfying
∀x ∈ X,d(x, p(x)) = d(x,Λ) = inf

y∈Λ
d(x, y) (such a map exists but is not necessarily unique). Since

(G−no)n∈N is a (half) quasi-geodesic with endpoint G− and Λ is a geodesic with G− as one of
its endpoints, we have, by stability of quasi-geodesics in δ hyperbolic spaces, the existence of a
constant K1 > 0 (only depending on δ,G,D1 and o) such that {G−no}n∈N and the half geodesic
[p(o),G−) remain in the K1-neighborhood of each other. We deduce the following inequality :

d(G−no, p(G−no)) ≤K1, for all n ∈ N (9.3)

With the same argument, namely that the (half) geodesic (D1G−mo)m∈N and Λ share the same
endpoint D1(G−), we deduce the existence of a constant K2 > 0 (only depending on δ,G,D1 and
o) such that

d(D1G
−mo, p(D1G

−mo)) ≤K2, for all m ∈ N. (9.4)
Then we can write the following inequalities :

d(GnD1G
−mo, o) = d(D1G

−mo,G−no) because G−n is an isometry
≥ d(p(D1G

−mo), p(G−no)) − d(p(D1G
−mo),D1G

−mo) − d(p(G−no),G−no)
≥ d(p(D1G

−mo), p(G−no)) −K1 −K2 by inequalities 9.3 and 9.4.
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But since G−no Ð→
n→∞

G−, we also have p(G−no) Ð→
n→∞

G−, and in the same way, since D1G−mo Ð→
m→∞

D1(G−), we deduce p(D1G−mo) Ð→
m→∞

D1(G−). Then, for n andm sufficiently large, p(G−no) belongs
to [p(o),G−) ∩ [p(D1o),G−) and p(D1G−mo) belongs to [p(o),D1(G−)) ∩ [p(D1o),D1(G−)). This
shows that for n and m sufficiently large, the four points p(G−no), p(D1G−mo), p(D1o) and p(o) are
aligned in one of the two following orders on the geodesic Λ : p(G−no), p(o), p(D1o), p(D1G−mo)
or p(G−no), p(D1o), p(o), p(D1G−mo). In the first case

d(p(G−no), p(D1G
−mo)) = d(p(G−no), p(o)) + d(p(o), p(D1o)) + d(p(D1o), p(D1G

−mo))

and in the second one :

d(p(G−no), p(D1G
−mo)) = d(p(G−no), p(o)) − d(p(o), p(D1o)) + d(p(D1o), p(D1G

−mo))

so, in every case, for n and m sufficiently large :

d(p(G−no), p(D1G
−mo)) ≥ d(p(G−no), p(o)) − d(p(o), p(D1o)) + d(p(D1o), p(D1G

−mo)). (9.5)

On the other hand,

d(p(G−no), p(o)) ≥ d(G−no, o) − d(G−no, p(G−no)) − d(p(o), o)
≥ d(G−no, o) − 2K1 by inequality (9.3) (9.6)

and similarly :

d(p(D1G
−mo), p(D1o)) ≥ d(D1G

−mo,D1o) − 2K2 by inequality (9.4). (9.7)

We can now finish our sequence of inequalities :

d(GnD1G
−mo, o) ≥ d(p(D1G

−mo), p(G−no)) −K1 −K2

≥ d(p(G−no), p(o)) − d(p(o), p(D1o)) + d(p(D1o), p(D1G
−mo)) −K1 −K2 by (9.5)

≥ d(G−no, o) + d(D1G
−mo,D1o) − d(p(o), p(D1o)) − 3K1 − 3K2 by (9.6) and (9.7)

= d(Gno, o) + d(Gmo, o) − d(p(o), p(D1o)) − 3K1 − 3K2

≥ (n +m)lS(G) − d(p(o), p(D1o)) − 3K1 − 3K2

In the last inequality, we used the basic fact that d(Gno, o) ≥ nlS(G), where lS(G) denotes the sta-
ble length of the isometry G. Since (n +m)lS(G) = (n +m + 1)lS(G) − lS(G) = ∣GnD1G−m∣lS(G) −
lS(G), we have proved the inequality (9.1) for n and m sufficiently large, prescribing λ = 1

lS(G)

(recall lS(G) > 0 when G is hyperbolic), and k = lS(G) + d(p(o), p(D1o)) + 3K1 + 3K2. Since there
is only a finite number of values of GnD1G−m, for n and m smaller than a fixed constant, the
inequality (9.1) is still true for all n,m ∈ N, after possibly changing the values of λ and k.

In order to prove the inequality (9.2), we change D1 to D2 and G to G−1 and use the hypothesis
D2(G+) ≠ G+.
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● Step 2 : From local to global quasi-isometry

We shall now conclude the proof of Proposition 9.1 using the local-global lemma, given at the
end of section 2.2 (Lemma 2.12).

Let L > 0 and (λ′, k′) such as in Lemma 2.12, with λ and k defined in the first step. Fix
N = ⌊L⌋ + 1. Then every interval of length smaller than L is of length smaller than N . Now
choose W a sequence in GN(G,F1,F2) which is associate to a bi-infinite words H = (Hn)n∈Z ∈
HN(G,D1,D2). Thus, the subwords of H of length smaller than L are all either of the form Gn,
G−n, GnD1G−m, GnD−1

1 G−m, GnD2G−m, or GnD−1
2 G−m, with n ≥ 0,m ≥ 0. The sequence (Gno)n∈Z

is a quasi-isometry (since G is hyperbolic), so there exist two constants λ1 > 0, k1 > 0 such that
1
λ1
∣Gn∣ − k1 ≤ d(Gno, o) = d(G−no, o) for all n ≥ 0. Moreover, we have just proven in step 1 that

there exists two constants λ2 > 0, k2 > 0, such that 1
λ2
∣GnD1G

−m∣ − k2 ≤ d(G−nD2G
mo, o), for all

n ≥ 0,m ≥ 0. Notice that we still have the same inequalities when replacing D1 by D−1
1 and D2

by D−1
2 (take the inverse of GnD1G−m and G−nD2Gm and note that the word length and the

displacement of the basepoint are unchanged). Therefore, the sequence of points (xn =Wno)n∈Z is
a (λ, k,L)-local-quasi-geodesic. So, by the local-global lemma 2.12, there exists λ′ ≥ 1, k′ ≥ 0 (only
depending on λ and k, that is on δ,G,F1,F2 and o), such that (xn)n∈Z is a (λ′, k′)-quasi-geodesic
(global). Thus, Proposition 9.1 is proved.

9.2 Properties on Bowditch representations of π1(S0,4)
Let (X,d) be a δ-hyperbolic space, geodesic and proper, and o ∈X a basepoint.

We establish the useful fact that the image of simple closed curves by a Bowditch representation
are hyperbolic isometries. This result is similar to Lemma 5.2 for F2 but uses the combinatorics
of S(S0,4) studied in section 8.3 which is a little more complicated than in the case of F2.

Lemma 9.2. Let ρ ∶ π1(S0,4) → Isom(X) be a Bowditch representation with constant C,D and
γ ∈ S(S0,4). Then 1

C
∥γ∥ ≤ lS(ρ(γ)) and ρ(γ) is hyperbolic.

Proof. We assume (without loss of generality) that γ is cyclically reduced.
We introduce δ1, δ2 ∈ π1(S0,4) given by Corollary 8.7. Therefore, by this corollary, for all n ∈ N,
the word γnδ1γ−nδ2 is simple. In order to apply the Bowditch hypothesis to γnδ1γ−nδ2, we want
to study the cyclically reduced word length of γnδ1γ−nδ2. The word γnδ1γ−nδ2 is not necessarily
reduced, but the key point is that δ1 and δ2 only depend on γ and not on n, so the possible
simplifications in the word γnδ1γ−nδ2 are independent of n, for n large enough. For completeness,
let us write the details :
Consider two integers n1 and n2 satisfying n1∣γ∣ > ∣δ1∣ and n2∣γ∣ > ∣δ2∣. Denote δ′1 = γn1δ1γ−n1 and
δ′2 = γ−n2δ2γn2 . The elements δ′1 = γn1δ1γ−n1 and δ′2 = γ−n2δ2γn2 may have some simplifications,
but because of the assumptions on n1 and n2 (and the fact that γ is cyclically reduced), the
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simplifications are "bounded" in the sense that δ′1 and δ′2 are non empty (in fact they have at least
two letters) and the following hold :

● the first letter of δ′1 is equal to the first letter of γ,

● the last letter of δ′1 is equal to the inverse of the first letter of γ,

● the first letter of δ′2 is equal to the inverse of the last letter of γ,

● the last letter of δ′2 is equal to the last letter of γ.

Moreover, for all n ∈ N we have :

γnδ1γ
−nδ2 = γn2γn−n1−n2γn1δ1γ

−n1γ−n+n1+n2γ−n2δ2

so the element γn−n1−n2δ′1γ
−n+n1+n2δ′2 is a cyclic permutation of γnδ1γ−nδ2. Now notice that the

observations made above on the first and last letters of δ′1 and δ′2 imply that for all n ≥ n1 + n2 + 1
the word γn−n1−n2δ′1γ

−n+n1+n2δ′2 is cyclically reduced (here we write δ′1 and δ′2 as reduced word). In
other words, for all n ∈ N∗, γnδ′1γ

−nδ′2 is simple and cyclically reduced.

Then, we use the Bowditch hypothesis on γnδ′1γ
−nδ′2 to write the following inequalities :

1
C
∥γnδ′1γ

−nδ′2∥ −D ≤ d(ρ(γnδ′1γ
−nδ′2)o, o)

≤ d(ρ(γn)o, o) + d(ρ(δ′1)o, o) + d(ρ(γ−n)o, o) + d(ρ(δ′2)o, o)

But since γnδ′1γ
−nδ′2 is cyclically reduced, we have ∥γnδ′1γ

−nδ′2∥ = 2n∣γ∣+∣δ′1∣+∣δ′2∣ = 2n∥γ∥+∣δ′1∣+∣δ′2∣
(the last equality holds since γ is supposed cyclically reduced), so after dividing by n :

2
C
∥γ∥ + ∣δ

′
1∣ + ∣δ′2∣
nC

− D
n
≤ 2
n
d(ρ(γn)o, o) + 1

n
(d(ρ(δ′1)o, o) + d(ρ(δ′2)o, o))

And then by taking the limit when n→∞ (and dividing by 2):

1
C
∥γ∥ ≤ lS(ρ(γ)) by definition of the stable length,

which is the desired inequality.
Hence, for every simple word γ, lS(ρ(γ)) > 0, thus ρ(γ) is hyperbolic.

Now we establish the fact that the hypothesis required by Lemma 9.1 is satisfied when the
isometries D1, D2 and G comes from a Bowditch representation. Again, this result is similar to
Lemma 5.3 in the case of F2 but uses the combinatorics of S(S0,4).

Lemma 9.3. Let ρ ∶ π1(S0,4) → Isom(X) be a Bowditch representation with constants C,D and
γ ∈ S(S0,4). Let δ1, δ2 ∈ π1(S0,4) such that γnδ1γ−nδ2 is simple for an infinite number of n ∈ N.
Denote D1 = ρ(δ1),D2 = ρ(δ2) and G = ρ(γ). Then D1(G−) ≠ G− and D2(G+) ≠ G+.
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Before starting the proof, recall that we have shown that G = ρ(γ) is an hyperbolic isometry
(since γ is simple, see Lemma 9.2), therefore G− and G+ are well-defined.

Proof. First notice that γnδ1γ−nδ2 is not necessarily supposed cyclically reduced. However, in
the same way as in the beginning of the proof of the previous Lemma (9.2), we can assume that
γnδ1γ−nδ2 is cyclically reduced after possibly conjugating δ1 and δ2 by a power of γ (independent
of n). This change does not affect the conclusion of the lemma : indeed, if D1(G−) ≠ G−, the same
non-equality holds when changing D1 to a conjugate of D1 by any power of G (because G− is a
fixed point of G), and the same is true for the non-equality D2(G+) ≠ G+. Thus in the following,
we will assume that γnδ1γ−nδ2 is cyclically reduced.

Choose a basepoint o ∈X and consider the two sequences of points in X define by xn = G−no and
yn = D1G−no for all n ∈ N. By contradiction, assume that D1(G−) = G−. Under this assumption,
we want to show that the distance d(xn, yn) is bounded. Let lG− be any geodesic with G− as
an endpoint. Because G is a hyperbolic isometry, the sequence (G−no)n∈Z = (xn)n∈Z is a quasi-
isometry with attracting fixpoint G−. Furthermore, (D1G−no)n∈Z = (yn)n∈Z is also a quasi-isometry
with attracting fixpoint D1(G−). Thus, under this assumption D1(G−) = G−, the sequences (xn)n∈Z
and (yn)n∈Z are both quasi-geodesics with the same attracting fixpoint, G−. Hence, the stability
of quasi-geodesic in δ-hyperbolic spaces gives the existence of a constant K > 0 such that (xn)n∈N
and (yn)n∈N both stay at a distance at most K of lG− . Now consider a projection p ∶ X → lG−
on the geodesic lG− . By definition of the projection we have that for all n ∈ N, d(xn, p(xn)) ≤
K,d(yn, p(yn)) ≤K. Then we deduce :

d(xn, yn) ≤ d(p(xn), p(yn)) + 2K (9.8)

Moreover, because p(xn), p(yn) and p(o) all belong to the same geodesic lG− , we can write :

d(p(xn), p(yn)) = ∣d(p(xn), p(o)) − d(p(yn), p(o))∣. (9.9)

Using again that (xn)n∈N and (yn)n∈N both stay at a distance at most K of lG− , we obtain the two
following inequalities :

d(xn, o) − 2K ≤ d(p(xn), p(o)) ≤ d(xn, o) + 2K
d(yn, o) − 2K ≤ d(p(yn), p(o)) ≤ d(yn, o) + 2K

from which we deduce :

∣d(p(xn), p(o)) − d(p(yn), p(o))∣ ≤ ∣d(xn, o) − d(yn, o)∣ + 4K. (9.10)

Finally, we bound ∣d(xn, o) − d(yn, o)∣ using the triangle inequality :

∣d(xn, o) − d(yn, o)∣ = ∣d(G−no, o) − d(D1G
−no, o)∣

= ∣d(D1G
−no,D1o) − d(D1G

−no, o)∣
≤ d(D1o, o)
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and then, together with (9.8), (9.9) and (9.10), we conclude that d(xn, yn) is bounded. But by
hypothesis, γnδ1γ−nδ2 is simple for an infinite number of n ∈ N, so we can conclude using the
Bowditch inequality that, for an infinite number of n :

1
C
∥γnδ1γ

−nδ2∥ −D ≤ d(ρ(γnδ1γ
−nδ2)o, o) = d(G−no,D1G

−nD2o)

≤ d(G−no,D1G
−no) + d(D1G

−no,D1G
−nD2o)

= d(xn, yn) + d(D2o, o)

Hence the right hand side of this inequality is bounded in n whereas the left hand side is not (recall
that γnδ1γ−nδ2 is supposed cyclically reduced), this is a contradiction. From this contradiction we
deduce that D1(G−) ≠ G−.
Finally notice that if γnδ1γ−nδ2 is simple, so is γ−nδ2γnδ1. Thus using what has been previously
done we also have that D2((G−1)−) ≠ (G−1)−. Since (G−1)− = G+, the lemma is proved.
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Chapter 10

From Bowditch’s hypothesis for π1(S0,4)
to uniform tubular neighborhoods

The purpose of this section is to show Proposition 10.1 which is, as in the case of F2, the
heart of the proof that a Bowditch representation of the fundamental group of the sphere S0,4 is
simple-stable.

Proposition 10.1. Let X be a δ-hyperbolic space, geodesic and proper.
Let ρ ∶ π1(S0,4)→ Isom(X) be a Bowditch representation. The orbit map restricted to simple leaves
stays in a uniform tubular neighborhood of the axes of simple elements in X. Precisely :

∃K > 0, ∀γ ∈ S(S0,4), τρ(Lγ) ⊂ NK(Axis(ρ(γ)))

Recall that Lγ denotes the geodesic in the Cayley graph of π1(S0,4) = F3 generated by γ, and
that for any element γ ∈ S(S0,4), we prove in Lemma 9.2 that ρ(γ) is hyperbolic so Axis(ρ(γ)) is
well-defined.

Proof. Pick ρ ∶ π1(S0,4) → Isom(X) a Bowditch representation of π1(S0,4), o ∈ X a basepoint and
let C,C ′ > 0 be two constants such that :

∀γ ∈ S(S0,4),
1
C
∥γ∥ ≤ l(ρ(γ)) and ∀u ∈ π1(S0,4), d(ρ(u)o, o) ≤ C ′. (10.1)

Recall that the existence of the constant C comes from the hypothesis that the representation is
Bowditch and Lemma 9.2 and the existence of the constant C ′ is true for any representation of a
finitely generated group. Note that such constants automatically satisfy CC ′ ≥ 1.

Let us proceed as in the case of F2 by contradiction and suppose that there exists a sequence
(γn)n∈N of simple elements in S(S0,4) satisfying the following hypothesis :

sup{d(x,Axis(ρ(γn))) ∣ x ∈ τρ(Lγn)} Ð→n→∞
+∞ (H2)

Such a sequence in now fixed.
We can assume that the elements γn are pairwise distinct and that ∣γn∣ → ∞. The proof of this
fact is exactly the same as in the case of the group F2, see Lemma 6.4.
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10.1 Continued fraction expansion of γn

The element γn is simple, thus by Proposition 8.1 corresponds to a rational, and then we can write
the continued fraction expansion of its slope :

Slope(γn) = [Nn
1 ,⋯,Nn

r(n)].

Now we will prove that we can restrict our study to the case where the integers Nn
i are bounded

in n :

Lemma 10.2. Up to subsequence, r(n)→∞ and for all i ∈ N, (Nn
i )n∈N ∣ r(n)≥i is bounded.

Proof. Suppose there exists k ∈ N such that (Nn
k )n is defined for infinitely many values of n

and is not bounded. Then consider the integer 0 ≤ i such that (Nn
i+1)n Ð→n→∞

∞ (after passing
to subsequence) and for all 1 ≤ j ≤ i, the sequence (Nn

j )n is bounded. Therefore, again after
passing to subsequence we assume that for all 1 ≤ j ≤ i there exists an integer Nj such that for
all n ∈ N such that r(n) ≥ j, Nn

j = Nj. Thus Slope(γn) = [N1,⋯,Ni,Nn
i+1,⋯,Nn

r(n)
]. Now, use

Lemma 8.8 to deduce the existence of a simple word γi ∈ S(S0,4) of slope [N1,⋯,Ni] and two
words δ1, δ2 ∈ π1(S0,4), such that for all n ∈ N , γn can be written as a (cyclic-permutation of a)
concatenation of subwords of the form :

(γi)m1(n)δ̃1(γi)−m2(n)δ̃2,

with m1(n),m2(n) ≥ Nn
i+1−1

2 , δ̃1 ∈ {δ1, δ−1
1 } and δ̃2 ∈ {δ2, δ−1

2 }.
Now set G = ρ(γi),D1 = ρ(δ1) and D2 = ρ(δ2). Then, by considering the bi-infinite word obtained
by concatenating infinitely many copies of γn, or equivalently the bi-infinite word obtained by
following the geodesic Lγn in the Cayley graph, we can see ρ∣Lγn

as an element of G(G,D1,D2)
(the definition is given at the beginning of section 9). Let us introduce the constants λ > 0, k ≥ 0
and N ∈ N∗ as defined in Lemma 9.1. For n sufficiently large, m1(n) ≥ N and m2(n) ≥ N because
m1(n),m2(n) ≥ Nn

i+1−1
2 , and by hypothesis Nn

i+1 Ð→n→∞
∞. Hence, ρLγn

is an element of GN(G,D1,D2)
for n sufficiently large. Let us now use the second part of Lemma 8.8 to justify that for all
n ∈ N, the word (γi)nδ1(γi)−nδ2 is simple. Then, by Lemma 9.3, we obtain that D1(G−) ≠ G−
and D2(G+) ≠ G+. Now we can apply Proposition 9.1 to justify that τρ(γn) are uniform (in n)
quasi-geodesic in X.
This contradicts our hypothesis (H2) on ρ for n sufficiently large. Hence, for all i ∈ N, (Nn

i )n is
bounded.
Let us now justify that r(n)→ +∞. If r(n) stays bounded, r(n) ≤ R, then for all 1 ≤ i ≤ R, (Nn

i )n
is bounded by what has been previously done and so the word length of γn is also bounded, which
is false. Thus r(n)→ +∞.
In particular, we deduce that under the assumption (H2), the sequence (Nn

i )n is always well-defined
for n sufficiently large (n such that r(n) ≥ i).



10.2. CONSEQUENCE : UNIFORM BOUND ON THE LENGTHS li(γn) 147

10.2 Consequence : uniform bound on the lengths li(γn)

As in section 6.2, we introduce the constants Ni such that Nn
i ≤ Ni for all integer n and we obtain

the following uniform bound on the lengths li(γn) :

∀n ∈ N,∀1 ≤ i ≤ r(n), li(γn)
li−1(γn)

≤ Ni + 1. (10.2)

We deduce for every integer i the existence of constants Li > 0 such that :

∀n ∈ N,∀0 ≤ i ≤ r(n), i ≤ li(γn) ≤ Li. (10.3)

10.3 Excursions of the orbit map
As in the section 6.4, we now want to define and study the excursions of the orbit map.

Let γ be a cyclically reduced simple element in S(S0,4). Recall that Lγ is the axis of γ in the
Cayley graph of π1(S0,4) = F3. We introduce the map : Eγ ∶ Lγ Ð→ R+ such that Eγ(u) =
d(τρ(u),Axis(ρ(γ))).

Lemma 10.3. The map Eγ is Lipschitz-continuous (hence continuous) and γ-invariant.

Proof. The proof is exactly the same as in Lemma 6.12.

Now recall that, since Lγ is isometric to R, we can therefore think of Eγ as a map from R to
R and thus, we can apply the language of excursions defined in section 6.3.
Here we recall the definition of an excursion for the orbit map already introduced in the context
of F2 in Definition 6.4.

Definition 10.1. Let γ be a simple element in S(S0,4). Let [u, v] ⊂ Lγ be a segment of the
geodesic Lγ. We say that [u, v] is an excursion if the map Eγ∣[u,v] is an excursion.
Let K ≥ 0. We say that [u, v] is a K-excursion if the map Eγ∣[u,v] is an excursion such that
Eγ(u) = K. In this case, we call length of excursion of [u, v] the length of excursion of Eγ∣[u,v],
that is the non-negative real d(u, v).
At last, we say that γ has an excursion (respectively a K-excursion) if there exists [u, v] ∈ Lγ such
that [u, v] is an excursion (respectively a K-excursion).

We end this section by showing that, as in the context of F2, there exists excursions as large
and as long as we want.

Lemma 10.4. There exist two sequences of positive reals (Kn)n∈N and (ln)n∈N, such that Kn →∞,
ln →∞ and, up to subsequence, for all n ∈ N, γn has a Kn-excursion of length ln.

Proof. The proof is exactly the same as in the context of F2, see Lemma 6.13.
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10.4 Quasi-loops

We introduce quasi-loops, as in the context of F2. Here again, nothing is changed.

Definition 10.2. Let ε > 0 and w ∈ π1(S0,4) = F3 (not necessarily simple). We say that w is an
ε-quasi-loop if we have the following inequality :

d(ρ(w)o, o) ≤ ε ∣w∣

Let γ be a simple element in S(S0,4) and u ∈ Lγ. We denote by ⌊u⌋ the integer point in Lγ just
before u (if u is an integer point in Lγ, ⌊u⌋ = u) and ⌈u⌉ the integer point of Lγ strictly just after
u (thus ⌊u⌋ and ⌈u⌉ are the endpoints of an edge of length 1 in the Cayley graph and u belongs to
this edge).

As in the context of F2, by considering very large excursions we obtain quasi-loops.

Lemma 10.5. Let ε > 0. There exist lε > 0 and Kε > 0 such that for all simple elements γ ∈ S(S0,4),
for all K ≥Kε, l ≥ lε, if [u, v] is a K-excursion of length l, then the element w = ⌊u⌋−1⌊v⌋ (which is
a subword of γ) is an ε-quasi-loop.

Proof. The proof is exactly the same as in the context of F2, see Lemma 6.14, and relies mainly
on the geometry of large uniform neighborhoods of geodesics in X.

10.5 Induction step

We are now going to show the equivalent of Lemma 6.17 for the four-punctured sphere.

Lemma 10.6. Let β = 1
480(= α

16 , where α is the constant introduced in Proposition 8.16).
Let 0 < ε < 1

C
and r > 0. There exists a constant R > 0 and an integer n0 ∈ N, such that, given any

integer n ≥ n0 and subword u of γn such that ∣u∣ ≥ R, there exists a positive integer q ∈ N∗, a subset
QL ⊂ {1,⋯, q} and q words u1,⋯, uq ∈ F2 such that :

1. u = u1⋯uq

2. For all k ∈ QL, uk is an ε-quasi-loop

3. ∑
k∈QL

∣uk∣ ≥ β∣u∣

4. For all k ∉ QL, ∣uk∣ ≥ r

Proof. Let us first introduce the constants Kε and lε defined by Lemma 10.5. Now we choose
and fix for the rest of the proof an integer i satisfying i ≥ max(10,2r + 7,2lε + 5). Recall that
the constant Li has been introduced in (10.3). Let us also introduce the sequences (Kn)n∈N and
(ln)n∈N of Lemma 10.4. Since Kn → +∞ and ln → +∞, we can find an integer n0 such that for
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all n ≥ n0, we have Kn ≥ Kε, ln ≥ lε and Li − 5 < ln. We also set α to be the constant defined in
Proposition 8.16 (α = 1

30 , but its precise value does not matter, as long as it is a universal con-
stant). Finally, we fix R such that R ≥ 3Li

α . Note that due to the value of the constant α, we also
automatically have R ≥ 9Li. Now let us show that with this choices for R and n0, the lemma is true.

Let n ≥ n0 and u be a subword of (a cyclic-permutation of) γn (or its inverse) such that ∣u∣ ≥ R.
By Lemma 10.4, γn has a Kn-excursion of length ln. Moreover, we have li(γn) ≤ Li by (10.3)
so in particular li(γn) − 5 < ln. Therefore, we can use Lemma 6.11 to ensure the existence of a
K ′n-excursion of length l′n, with li(γn)−5

2 ≤ l′n < li(γn) − 5 and K ′n ≥ Kn. Denote it by [x, y] ⊂ Lγn .
But then we have

l′n ≥
li(γn) − 5

2 ≥ i − 5
2 by (10.3)

≥ lε by the definition of i
and K ′n ≥Kn ≥Kε,

so we can apply Lemma 10.5 to ensure that the element v = ⌊x⌋−1⌊y⌋ (which is a subword of γ) is
an ε-quasi-loop. Let is compute the length of v :

We have ∣v∣ = d(⌊x⌋, ⌊y⌋) = d(⌊x⌋, x) + d(x, y) − d(y, ⌊y⌋)
so d(x, y) − 1 < ∣v∣ < d(x, y) + 1

and l′n − 1 < ∣v∣ < l′n + 1 since d(x, y) = l′n

then li(γn) − 5
2 − 1 < ∣v∣ < li(γn) − 5 + 1

and finally li(γn) − 7
2 ≤ ∣v∣ ≤ li(γn) − 5 because ∣v∣ and li(γn) are integers. (10.4)

Now consider w the subword of γn of length li(γn)− 5 such that v is a prefix of w and let us write
w = vv′, with ∣w∣ = li(γn) − 5.

We are now going to use Proposition 8.16 for the subword u of γn and w. This is possible
because we have :

● chosen i such that li(γn) is sufficiently large : li(γ) ≥ i ≥ 10,

● chosen w of the right length : ∣w∣ = li(γn) − 5,

● fix u sufficiently large :

∣u∣ ≥ R ≥ 9Li by definition of R
≥ 9li(γn) = 3(2li(γ) + li(γ)) ≥ 3(l′i(γn) + 1 + li(γ)) by inequality (4.7).

Then we can write u = u1⋯uq such that there exists a subset I ⊂ {1,⋯, q} satisfying :

1. For all k ∈ I, uk ∈ {w,w−1}.
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2. ∑
k∈I

∣uk∣ ≥ α∣u∣.

But recall that w = vv′, so the inverse is w−1 = v′−1v−1. Then for all k ∈ I, we can write uk = vv′
or uk = v′−1v−1. Therefore, the word u can be written as a concatenation of the subwords uk for
k ∉ I and v, v′, v−1, v′−1, with at least #I terms of the form v or v−1. Thus, by denoting vk these
#I appearances of v and v−1 and by combining together all successive terms that are not v or v−1

(that is all successive terms of the form uk for k ∉ I, v′, v′−1) into factors called v′k, we can write
the following concatenation of u :

u = v′1v1v
′
2v2⋯v′pvpv

′
p+1

satisfying :
● p =#I

● For all k ∈ {1,⋯, p}, vk ∈ {v, v−1}.
Now let us show the four points of Lemma 10.6 :

1. If p is odd, we combine the previous terms together as follows :

u = v′1v1v
′
2´¹¹¹¹¸¹¹¹¹¶
v2 v

′
3v3v

′
4´¹¹¹¹¸¹¹¹¹¶
⋯vp−1 v

′
pvpv

′
p+1

´¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¶
u = v′′1 v2 v′′3 ⋯vp−1 v′′p (10.5)

If p is even, we combine the previous terms together as follows :

u = v′1v1v
′
2´¹¹¹¹¸¹¹¹¹¶
v2 v

′
3v3v

′
4´¹¹¹¹¸¹¹¹¹¶
⋯vp−2 v

′
p−1vp−1v

′
pvpv

′
p+1

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
u = v′′1 v2 v′′3 ⋯vp−2 v′′p−1 (10.6)

and this will be our decomposition of u, with q = p if p is odd and q = p−1 if p is even, uk = v′′k
if k is odd and uk = vk if k is even, and QL = {1 ≤ k ≤ p − 1 ∣ k is even} .

2. Let k ∈ {1,⋯, p}, then vk ∈ {v, v−1}. But recall that by construction, v is an ε-quasi-loop,
then so is v−1, hence vk is always an ε-quasi-loop.

3. Let us start by showing that p ≥ 3.

pLi ≥ pli(γn) by definition of Li

≥#I(li(γn) − 5) =∑
k∈I

∣uk∣ since p =#I and ∣uk∣ = ∣w∣ = li(γn) − 5

≥ α∣u∣ using point 2 of Proposition 8.16
≥ αR by hypothesis on u

≥ α3Li

α
= 3Li since R is fixed such that R ≥ 3Li

α
and thus we deduce p ≥ 3.
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This ensures that in our previous decomposition (10.5) and (10.6), there is at least one term
vk. Indeed, recall that QL = {1 ≤ j ≤ p − 1 ∣ j is even}. In particular we have :

p = { 2#QL + 1 if p is odd
2#QL + 2 if p is even

so in any cases p ≤ 2#QL + 2. (10.7)
and therefore 1 ≤#QL. (10.8)

Let us show that ∑
k∈QL

∣vk∣ ≥ β∣u∣ :

∣u∣ ≤ 1
α
∑
k∈I

∣uk∣ by point 2 of Proposition 8.16

≤ 1
α

#I ∣w∣ by point 1 of Proposition 8.16

≤ 1
α
p(li(γn) − 5) since #I = p and ∣w∣ = li(γn) − 5

≤ 1
α
(2#QL + 2)(li(γn) − 5) by the inequality (10.7)

≤ 4
α

#QL(li(γn) − 5) by the inequality (10.8)

≤ 4
α

#QL(2∣v∣ + 2) using (10.4)

In addition :

∣v∣ ≥ li(γn) − 7
20 ≥ i − 7

2 ≥ 10 − 7
2 ≥ 1

Then

∣u∣ ≤ 4
α

#QL × 4∣v∣ ≤ 16
α
∑

k∈QL

∣vk∣ since vk ∈ {v, v−1}

and thus we have the desired inequality with β = α

16(=
1

480).

4. Finally, let k ∉ QL, and let us compute the length of v′′k :
∣v′′k ∣ ≥ ∣v′kvkv

′
k+1∣ (and there is in fact equality unless p is even and k = p − 1)

≥ ∣vk∣ = ∣v∣ by definition of vk

≥ li(γn) − 7
2 by (10.4)

≥ i − 7
2 by inequality (10.3)

≥ r since i has been chosen such that i ≥ 2r + 7.
And this finishes the proof.
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10.6 Final contradiction and conclusion

Once we have Lemma 10.6, the end of the proof of Proposition 10.1 is the same as in the case of
F2.
For completeness, we recall the last steps.

We are now able to find a simple word γ (from the sequence (γn)n∈N) which contains a very
large proportion of quasi-loops.
Lemma 10.7. Let 0 < ε < 1

C and 1 − 1
C′ ( 1

C − ε) < λ < 1. There exists a simple word γ such that γ
contains ε-quasi-loops that occupy at least a proportion λ of γ.

Proof. The proof is the same as the proof of Lemma 6.18, using Lemma 10.6.

Then we show that if such an element exists, we obtain an inequality on the displacement of
the basepoint o.
Lemma 10.8. Let 0 < ε < 1

C and 1− 1
C′ ( 1

C −ε) < λ < 1. Let γ be a simple word in F2 which contains
ε-quasi-loops which occupy at least a proportion λ of γ. Then

d(ρ(γ)o, o) < 1
C
∣γ∣.

Proof. The proof is the same as in the proof of Lemma 6.19.

And thus this inequality contradicts the Bowditch hypothesis (10.1), so we found a contradic-
tion. Proposition 10.1 is proved.



Chapter 11

From uniform tubular neighborhoods
and Bowditch’s hypothesis for π1(S0,4) to
simple-stability

11.1 A few complements on continuous maps
Before starting the last step of the proof of Theorem 1.4, we need to state a few Lemmas on

continuous map. They are analogous to those of section 6.3.

Lemma 11.1. Let x < y be two reals and f ∶ [x, y] → R be a continuous map. Let ε > 0. Denote
l = ∣y − x∣. Let us define :

Lf,ε = {l′ ∈ [0, l] ∣ ∃(x′, y′) ∈ [x, y]2, l′ = ∣y′ − x′∣ and ∣f(y′) − f(x′)∣ ≤ ε∣y′ − x′∣}

Then the set Lf,ε is a closed subset of [0, l].

Proof. Let (ln)n∈N be a sequence of Lf,ε such that ln → l∞ ∈ [0, l]. Let (xn)n∈N and (yn)n∈N be two
sequences of [x, y] such that ∣f(yn)−f(xn)∣ ≤ ε(yn−xn) and yn−xn = ln. Up to subsequence, since
[x, y] is compact, we can assume that xn → x∞ ∈ [x, y] and yn → y∞ ∈ [x, y]. Then by continuity,
we obtain ∣f(y∞) − f(x∞)∣ ≤ ε(y∞ − x∞) and thus l∞ ∈ Lf,ε.

Lemma 11.2. Let x < y be two reals and f ∶ [x, y] → R be a continuous map. Let ε > 0 such
that ∣f(y) − f(x)∣ ≤ ε∣y − x∣. Denote l = ∣y − x∣. There exists two reals x′, y′ ∈ [x, y] such that
l

2 ≤ ∣y
′ − x′∣ < l and ∣f(y′) − f(x′)∣ ≤ ε∣y′ − x′∣.

Proof. Let us define s = f(y) − f(x)
y − x . Then by hypothesis on f we have ∣s∣ ≤ ε.

● Suppose that there exists x < z < y such that f(z) = f(x)+s(z−x). Then both f(z)−f(x) =
s(z − x) and f(y) − f(z) = s(y − z). Moreover either z − x ≥ y − x2 = l2 or y − z ≥ y − x2 = l2 ,
and thus the claim is proved by setting l′ = z − x or l′ = y − z.

153



154 CHAPTER 11. TOWARDS SIMPLE-STABILITY

● Now suppose that for all x < z < y, f(z) ≠ f(x) + s(z − x). Then by continuity, we have
that for all x ≤ z ≤ y, f(z) ≥ f(x) + s(z − x) or for all x ≤ z ≤ y, f(z) ≤ f(x) + s(z − x). We
set g(z) = f(z) − s(z − x). Thus either the map g or the map −g is an excursion of length l
in the sense of the definition 6.1. Then Lemma 6.10 gives the existence of a sub-excursion
of length l′ satisfying l

2 ≤ l′ < l, which is exactly saying that there exists x′ < y′ such that
l

2 ≤ ∣x
′ − y′∣ < l and f(y′) − f(x′) = s(y′ − x′), hence ∣f(y′) − f(x′)∣ ≤ ε∣y′ − x′∣.

Lemma 11.3. Let x < y be two reals and f ∶ [x, y] → R a continuous map. Let ε > 0 and assume
that ∣f(x) − f(y)∣ ≤ ε∣x − y∣.
Denote l = ∣x − y∣. Then, for all 0 < a < l, there exists two reals x′ < y′ such that x ≤ x′ < y′ ≤ y
satisfying :

● a

2 ≤ ∣x
′ − y′∣ < a

● ∣f(x′) − f(y′)∣ ≤ ε∣x′ − y′∣

Proof. Define Lf,ε as in Lemma 11.1 :

Lf,ε = {l′ ∈ [0, l] ∣ ∃(x′, y′) ∈ [x, y]2, l′ = ∣y′ − x′∣ and ∣f(y′) − f(x′)∣ ≤ ε∣y′ − x′∣}.

Then Lf,ε ∩ [a, l] is closed (by Lemma 11.1) and non-empty (because l ∈ Lf,ε ∩ [a, l]). Denote
l′ = min Lf,ε ∩ [a, l]. By Lemma 11.2, there exists l′′ ∈ Lf,ε such that l′

2 ≤ l′′ < l′. Then l′′ < a
because l′′ < l′ =min Lf,ε ∩ [a, l] and l′′ ≥ l′

2 ≥ a
2 . Hence the Lemma.

11.2 End of the proof
This section is dedicated to finishing the proof of theorem 1.2, which states that a Bowditch

representation is simple-stable. Pick once and for all a Bowditch representation ρ, with constants
(C,D). In the section 10, we prove the existence of a constant K > 0 such that for all simple
elements γ ∈ S(S0,4), we have the inclusion τρ(Lγ) ⊂ NK(Axis(ρ(γ))). (Recall that Lγ denotes
the geodesic generated by γ in the Cayley graph of F3 = π1(S0,4) and Axis(ρ(γ)) the axis of the
hyperbolic isometry ρ(γ).) For every γ in S(S0,4), pick ℓγ some geodesic joining the two attracting
and repelling points of ρ(γ), ρ(γ)+ and ρ(γ)−. Then ℓγ ⊂ Axis(ρ(γ)) and by Lemma 6.1, there
exists a constant C(δ) such that NK(Axis(ρ(γ))) ⊂ NK+C(δ)(ℓγ). Then, noting Kδ =K +C(δ), we
obtain that for all simple word γ ∈ π1(S0,4), we have τρ(Lγ) ⊂ NKδ

(ℓγ).
Let us choose a projection map pγ on ℓγ, that is a map pγ ∶ X → ℓγ such that for all x ∈ X,
pγ(x) ∈ ℓγ and for all y ∈ ℓγ, we have d(x, pγ(x)) ≤ d(x, y).
Let o ∈ X be some basepoint. For a point p on the geodesic ℓγ, we define the real Hγ(p) =
±d(p, pγ(o)). The sign plus or minus is determined according to which side of p(o) the point p is
located on. Thus Hγ is an isometry between ℓγ and R sending p(o) to 0. We also define Eγ ∶ Lγ → R
such that for all x ∈ Lγ, we have Eγ(x) =Hγ(pγ(τρ(x))).
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Lemma 11.4. Let γ ∈ S(S0,4) and x, y ∈ Lγ. Then we have :

d(τρ(x), τρ(y)) − 2Kδ ≤ ∣Eγ(x) −Eγ(y)∣ ≤ d(τρ(x), τρ(y)) + 2Kδ

Proof. We have ∣Eγ(x) −Eγ(y)∣ = d(pγ(τρ(x)), pγ(τρ(y))), then, by the triangle inequality :

∣Eγ(x) −Eγ(y)∣ ≤ d(pγ(τρ(x)), τρ(x)) + d(τρ(x), τρ(y)) + d(τρ(y), pγ(τρ(y)))
≤ 2Kδ + d(τρ(x), τρ(y)) because τρ(Lγ) ⊂ NKδ

(ℓγ)

and on the other hand :

d(τρ(x), τρ(y)) ≤ d(τρ(x), pγ(τρ(x))) + d(pγ(τρ(x)), pγ(τρ(y))) + d(τρ(y), pγ(τρ(y)))
≤ 2Kδ + ∣Eγ(x) −Eγ(y)∣ because τρ(Lγ) ⊂ NKδ

(ℓγ)

Note that Eγ is not necessarily continuous. (This comes from the fact that the projection map
pγ is itself not necessarily continuous. Indeed, such a projection may not be unique). Since we will
need to use the results of the previous section on continuous map (and in particular Lemma 11.3),
we are going to consider a continuous approximation of Eγ. Thus we define Ẽγ to be the map from
the Cayley geodesic Lγ to R such that, on every integer point x ∈ Lγ, Ẽγ(x) = Eγ(x) and between
two integer points, we do a linear interpolation, that is : Ẽγ(x) = tEγ(⌊x⌋) + (1 − t)Eγ(⌈x⌉), with
t ∈ [0,1] such that d(⌊x⌋, x) = 1 − t and d(⌈x⌉, x) = t. The map Ẽ is continuous. The next Lemma
aims to compare Eγ and Ẽγ.

Lemma 11.5. For all x, y ∈ Lγ, we have :

∣Eγ(x) −Eγ(y)∣ − (4C ′ + 8Kδ) ≤ ∣Ẽγ(x) − Ẽγ(y)∣ ≤ ∣Eγ(x) −Eγ(y)∣ + 4C ′ + 8Kδ

Proof. ● We first prove that for all x ∈ Lγ :

∣Eγ(x) −Eγ(⌊x⌋)∣ ≤ C ′ + 2Kδ (11.1)

Indeed, by Lemma 11.4, we have ∣Eγ(x)−Eγ(⌊x⌋)∣ ≤ d(τρ(x), τρ(⌊x⌋))+2Kδ. But d(x, ⌊x⌋) ≤ 1
and τρ is C ′-Lipschitz, hence the inequality is true.

● We secondly prove that for all x ∈ Lγ :

∣Ẽγ(x) − Ẽγ(⌊x⌋)∣ ≤ C ′ + 2Kδ (11.2)
Indeed :

∣Ẽγ(x) − Ẽγ(⌊x⌋)∣ = ∣tEγ(⌊x⌋) + (1 − t)Eγ(⌈x⌉) −Eγ(⌊x⌋)∣ by definition of Ẽγ

= ∣1 − t∣∣Eγ(⌊x⌋) −Eγ(⌈x⌉)∣
≤ d(τρ(⌊x⌋), τρ(⌈x⌉)) + 2Kδ by Lemma 11.4
≤ C ′ + 2Kδ because d(⌊x⌋, ⌈x⌉) ≤ 1
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● We deduce that for all x, y ∈ Lγ, we have :

∣Eγ(⌊x⌋) −Eγ(⌊y⌋)∣ − (2C ′ + 4Kδ) ≤ ∣Eγ(x) −Eγ(y)∣ ≤ 2C ′ + 4Kδ + ∣Eγ(⌊x⌋) −Eγ(⌊y⌋)∣ (11.3)

Indeed, by the triangle inequality we have :

∣Eγ(x) −Eγ(y)∣ ≤ ∣Eγ(x) −Eγ(⌊x⌋)∣ + ∣Eγ(⌊x⌋) −Eγ(⌊y⌋)∣ + ∣Eγ(⌊y⌋) −Eγ(y)∣
≤ 2C ′ + 4Kδ + ∣Eγ(⌊x⌋) −Eγ(⌊y⌋)∣ by (11.1)

and on the other hand

∣Eγ(⌊x⌋) −Eγ(⌊y⌋)∣ ≤ ∣Eγ(x) −Eγ(⌊x⌋)∣ + ∣Eγ(x) −Eγ(y)∣ + ∣Eγ(⌊y⌋) −Eγ(y)∣
≤ 2C ′ + 4Kδ + ∣Eγ(x) −Eγ(y)∣ again by 11.1

● Similarly, we deduce using (11.2) and the fact that Ẽγ(⌊x⌋) = Eγ(⌊x⌋), Ẽγ(⌊y⌋) = Eγ((⌊y⌋),
that for all x, y ∈ Lγ, we have :

∣Eγ(⌊x⌋) −Eγ(⌊y⌋)∣ − (2C ′ + 4Kδ) ≤ ∣Ẽγ(x) − Ẽγ(y)∣ ≤ 2C ′ + 4Kδ + ∣Eγ(⌊x⌋) −Eγ(⌊y⌋)∣ (11.4)

● Finally, the desired inequality follows from (11.3) and (11.4)

Let us now prove that ρ is simple-stable. By contradiction, suppose that it is not. Then for
all n ∈ N, we can find a simple element γn ∈ S(S0,4) together with two integer points xn and yn on
Lγn such that

d(τρ(xn), τρ(yn)) ≤
1
n
d(xn, yn) − 1 (11.5)

In particular, we have that d(xn, yn) ≥ n. We can make the assumption that the elements γn

are pairwise distinct. Indeed, if the sequence (γn)n only takes finitely many values, then, up to
subsequence, we can suppose that γn = γ for some simple word γ. But ρ(γ) is a hyperbolic isometry
so there exist two constants Cγ and Dγ (depending on γ !) such that τρ(Lγ) is a (Cγ,Dγ)-quasi-
geodesic. Then, since xn and yn belong to Lγ, we have :

1
Cγ

d(xn, yn) −Dγ ≤ d(ρ(xn)o, ρ(yn)o) ≤
1
n
d(xn, yn) − 1

so 1
Cγ

− Dγ

d(xn, yn)
≤ 1
n
− 1
d(xn, yn)

,

then, taking the limit when n→∞, 1
Cγ

≤ 0, which is absurd.

Thus we can suppose that the elements γn are pairwise distinct and therefore ∣γn∣ → ∞. Denote
by [N1(γn),⋯,Nr(γn)(γn)] the continued fraction expansion of the slope of γn. As in the proof of
the previous section (10), we can prove the following lemma.
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Lemma 11.6. For all i ∈ N∗, there exists a constant Ci > 0 such that for all n ∈ N∗, whenever
Ni(γn) is well defined (that is r(γn) ≥ i), we have Ni(γn) ≤ Ci. Moreover, up to subsequence,
r(γn)→∞.

Proof. The proof is the same as the proof of Lemma 10.2, and the contradiction is this time on
inequality 11.5 (in both Lemmas, the sequence (γn)n∈N is chosen in order to contradict simple-
stability).

As in section 10.2, we deduce for all integer i the existence of constants Li > 0 such that :

∀n ∈ N,∀0 ≤ i ≤ r(n), i ≤ li(γn) ≤ Li (11.6)

Then, as in the proof of the existence of uniform tubular neighbourhoods (Proposition 10.1),
we are able to find a lot of quasi-loops inside a sufficiently large subword of γ :

Lemma 11.7. Let β = 1
168(= α

8 , where α is the constant introduced in Proposition 8.16).
Let 0 < ε < 1

C
and r > 0. There exists a constant R > 0 and an integer n0 ∈ N, such that, given any

integer n ≥ n0 and any subword u of γn such that ∣u∣ ≥ R, there exists a positive integer q ∈ N∗, a
subset QL ⊂ {1,⋯, q} and q words u1,⋯, uq ∈ F2 such that :

1. u = u1⋯uq

2. For all k ∈ QL, uk is an ε-quasi-loop

3. ∑
k∈QL

∣uk∣ ≥ β∣u∣

4. For all k ∉ QL, ∣uk∣ ≥ r

The proof of this lemma is similar to the proof of Lemma 10.6, except that is this context we
find quasi-loops directly using our hypothesis on the sequence (γn)n∈N (equation (11.5)), and that
this time we need to consider the map Eγn and its continuous approximation Ẽγn to control the
length of the quasi-loops we consider.

Proof. We start by fixing an integer i such that i ≥ max(10,2r + 7). Then, we choose an integer
n0 satisfying n0 ≥ max (4

ε
,
8Kδ

ε
,
2
ε
(6C ′ + 10Kδ) + 2, Li) (recall that the constant Li are defined in

11.6). Finally, let R ≥max (3Li

α
,9Li).

Now we fix n ≥ n0 and u a subword of γn such that ∣u∣ ≥ R.

The first step is to find an ε-quasi-loop of length comprise between li(γn) − 7
2 and li(γn) − 5.

First observe that, by (11.5), and since n ≥ n0 ≥ 4
ε , we have :

d(ρ(xn)o, ρ(yn)o) ≤
ε

4d(xn, yn) (11.7)
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so we deduce that :

∣Eγn(xn) −Eγn(yn)∣ ≤ 2Kδ + d(ρ(xn)o, ρ(yn)o) by inequality (11.4)

≤ 2Kδ +
ε

4d(xn, yn) by inequality (11.7)

but on another hand we have

d(xn, yn) ≥ n ≥ n0 ≥
8Kδ

ε
by our initial choice on n0,

hence ∣Eγn(xn) −Eγn(yn)∣ ≤
ε

2d(xn, yn).

Recall that xn and yn were taken to be integer points in Lγn . So Ẽγn(xn) = Eγn(xn) and Ẽγn(yn) =
Eγn(yn), therefore :

∣Ẽγn(xn) − Ẽγn(yn)∣ ≤
ε

2d(xn, yn).

Now notice that we have :

0 < li(γn) − 5 ≤ Li − 5 < n0 ≤ n ≤ d(xn, yn)

so, by continuity of Ẽγn , we can use Lemma 11.3 to find x′n, y
′
n ∈ Lγn such that the two following

hold :
li(γn) − 5

2 ≤ d(x′n, y′n) < li(γn) − 5 (11.8)

∣Ẽγn(x′n) − Ẽγn(y′n)∣ ≤
ε

2d(x
′
n, y

′
n) (11.9)

Now let v = ⌊x′n⌋−1⌊y′n⌋.
Let us show that v is an ε-quasi-loop.

d(ρ(v)o, o) = d(ρ(⌊x′n⌋)o, ρ(⌊y′n⌋)o) by definition of v
≤ 2C ′ + d(ρ(x′n)o, ρ(y′n)o) since d(x′n, ⌊x′n⌋) < 1, d(y′n, ⌊y′n⌋) < 1
≤ 2C ′ + 2Kδ + ∣Eγn(x′n) −Eγn(y′n)∣ by inequality (11.4)
≤ 2C ′ + 2Kδ + ∣Ẽγn(x′n) − Ẽγn(y′n)∣ + 4C ′ + 8Kδ by Lemma (11.5)

≤ 6C ′ + 10Kδ +
ε

2d(x
′
n, y

′
n) by (11.9)

≤ 6C ′ + 10Kδ +
ε

2(∣v∣ + 1)

≤ 6C ′ + 10Kδ +
ε

2 +
ε

2 ∣v∣

but on an other hand, since n0 ≥
2
ε
(6C ′ + 10Kδ) + 2, we have

∣v∣ = d(⌊x′n⌋, ⌊y′n⌋) ≥ d(x′n, y′n) − 1 ≥ n − 1 ≥ n0 − 1 ≥ 2
ε
(6C ′ + 10Kδ) + 1

and then d(ρ(v)o, o) ≤ ε∣v∣,
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which ensures that v is an ε-quasi-loop.

Note that we have the following inequality on the length of v :

d(x′n, y′n) − 1 < ∣v∣ < d(x′n, y′n) + 1

so li(γn) − 7
2 < ∣v∣ < li(γn) − 4 by (11.8)

then li(γn) − 7
2 ≤ ∣v∣ ≤ li(γn) − 5 since ∣v∣ is an integer

The rest of the proof is exactly the same as for Lemma 10.6. We consider w the subword of γn

of length li(γn) − 5 such that v is a prefix of w. Then we can apply Proposition 8.16 to u and w
(since we have imposed R ≥ 9Li) and we verify the four points of Lemma 11.7. Indeed :

1. comes directly from Lemma 8.16.

2. is true since we proved that v is an ε-quasi-loop.

3. is true since we fixed R such that R ≥ 3Li

α .

4. is true since we fixed i such that i ≥ 2r + 7.

Once we have Lemma 11.7, the procedure for the end of the proof of simple-stability is the
same as for Proposition 10.1.
For completeness, we recall the last steps.

We are now able to find a simple element γ (from the sequence (γn)n∈N) which contains a very
large proportion of quasi-loops.

Lemma 11.8. Let 0 < ε < 1
C and 1 − 1

C′ ( 1
C − ε) < λ < 1. There exists a simple element γ such that

γ contains ε-quasi-loops that occupy at least a proportion λ of γ.

Proof. The proof is the same as the proof of Lemma 6.18, using Lemma 11.7 instead of Lemma
6.17.

Then we show that if such an element exists, we obtain an inequality on the displacement of
the basepoint o.

Lemma 11.9. Let 0 < ε < 1
C and 1 − 1

C′ ( 1
C − ε) < λ < 1. Let γ be a simple word of π1(S0,4) which

contains ε-quasi-loops which occupy at least a proportion λ of γ. Then

d(ρ(γ)o, o) < 1
C
∣γ∣.

Proof. The proof is the same as in the proof of Lemma 6.19.

And thus this inequality contradicts the Bowditch hypothesis, so we found a contradiction and
then Theorem 1.4 is proved.
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