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Abstract
The aim of this manuscript is to study the recently-introduced category P of

polynomial superfunctors in characteristic p. That is the Z/2Z-graded version of its
older and better-known relative P, introduced to help computing the cohomology of
rational modules over a scheme. A particular interest lies within superfunctors that
are twisted, i.e. obtained via precomposition by the Frobenius twist I(r)0 . Only few
of their Ext-groups in P had been computed so far. We were able to conjecture a
general formula for them, surprisingly similar to the known one in P, and managed
to prove it true in many interesting cases. Depeding on situations, the results were
pursued both in by direct approches and by more technical ones involving spectral
sequences. Finally, the existence of an interesting cohomology class is pointed out
as a possible waypoint towards the total comprehension of the subject.

Résumé
Le but de ce manuscrit est d’étudier la catégorie P des superfoncteurs polynô-

miaux en caractéristique p. Celle-ci a été introduite récemment en tant que version
Z/2Z-graduée de la plus ancienne P, à son tour introduite comme instrument pour
calculer la cohomologie des représentations rationnelles sur un schéma. Un intérêt
particulier réside dans les superfoncteurs tordus, i.e. obtenus en précomposant par
le twist de Frobenius I(r)0 . À la base, on ne connaît que quelqu’un des groupes Ext
rélatifs à ces foncteurs. La contribution de cette thèse est de conjecturer une for-
mule générale pour leur calcul, étonnamment similaire à celle connue pour P, et
d’en démontrer positivement plusieurs cas particuliers. Selon les divers cas, tels ré-
sultats ont été obtenus par d’approches soit directes soit plus techniques à l’aide de
suites spectrales. Enfin, on met le doigt sur l’apparition d’une classe cohomologique
spéciale, qui pourrait servir de passage vers la maîtrise totale du sujet.
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Chapter 0

Introduction

Strict polynomial functors were introduced by Friedlander and Suslin in their paper [FS97]
as a tool to prove the finite generation of H∗(G,k) where G is a finite group scheme over a
field k of positive characteristic p. Informally, a strict polynomial functor is a functor from
the category of vector spaces to itself, such that the maps between Hom-spaces given by this
functor are polynomial. It is homogeneous of degree d if so are the latter maps. An example of
d-homogeneous strict polynomial functor is given by the symmetric powers Sd, i.e. the functor
defined by V 7→ Sd(V ) on objects and by ϕ 7→ ϕd on morphisms. In particular there is the
identity functor I. The category of strict polynomial functors with their natural transformations
is noted P. It is closely related to the category of rational GLn-modules. There is indeed an
exact functor P → GLn-mod, F 7→ F (kn) which induces an isomorphism

Ext∗P(F,G)
'−−→ Ext∗GLn(F (kn), G(kn))

if n is big enough [FS97, Cor 3.13]. Hence, Ext-computations for rational modules can be replaced
by Ext-computations in P, which often happen to be easier. The authors take advantage of
this fact in the very same paper, as they pass through the computation of Ext∗P(I(r), I(r)) to
prove the existence of a family of nonzero classes in H2pr−1

(GLn, gl
(r)
n ). Here the −(r) index

denotes, for r ≥ 1, the r-th Frobenius twist of a module or of a polynomial functor1. In the
literature, starting from [FS97], various computations of Ext between twisted functors have
been made [FFSS99, Cha05, Tou13] until the most general one, which provides a graded natural
isomorphism

Ext∗P(F (r), G(r)) ' Ext∗P(F,GEr ) (0.1)

where the right-hand side is graded by the total degree. Here Er := Ext∗P(I(r), I(r)) and GEr
denotes the parametrised functor G(Er ⊗−) (cf. §2.3.3 or [Tou12] for details about parametri-
sation).

The Frobenius twist and its behaviour with respect to Ext are in fact the main topic of
this manuscript. Recently, Axtell [Axt13] introduced a generalisation of the theory of strict
polynomial functors in a Z/2Z-graded way. Throughout all this manuscript, the word super will
always be short for “Z/2Z-graded”. In this sense one speaks of super vector spaces, superalgebras
etcetera, until one gets to define the main object of our work: the strict polynomial superfunctors.
They can then be seen as an enhanced version of the objects of P. Following Drupieski’s spirit
[Dru16], the “super” version of an object will be very often denoted by the same symbol in
boldface. For example, the category of strict polynomial superfunctors will be noted by P . The
Ext in this category are theirselves super vector spaces. The Frobenius twist functor I(r) admits

1Conventionally F (0) = F , i.e. the 0-th twist is the identity. In the manuscript we will mostly ignore this
extreme case since, as we are going to see in Chapter 2, some nice properties of the Frobenius twist do not extend
to the r = 0 case.

3



4 CHAPTER 0. INTRODUCTION

a super-counterpart I(r). It has the remarkable property of decomposing as the direct sum of
two subfunctors I(r)

0 and I(r)
1 , which are respectively concentrated in even and odd superdegrees.

These subfunctors have in turn another notable property: one can precompose a strict polynomial
functor (not superfunctor!) F ∈ P by I(r)

0 or I(r)
1 and obtain a strict polynomial superfunctor,

denoted respectively F (r)
0 and F (r)

1 . Some Ext-computations have been successfully performed
in P on this kind of objects (for example in [Dru16, DK22]) showing as many analogies as
differences compared to the analogous computations in P.

One of the main purposes of this PhD thesis is to study an analogue of the isomorphism (0.1)
in P . Set Er := Ext∗P(I(r)

0 , I(r)
0 ). Our main conjecture is then the following.

Conjecture 0.1. Let F,G be strict polynomial functors and let r be a positive integer. Then
the superspace Ext∗P(F

(r)
0 , G

(r)
0 ) is purely even and there is a graded natural isomorphism

Ext∗P(F
(r)
0 , G

(r)
0 ) ' Ext∗P(F,GEr )

where GEr = G(Er ⊗−) and the right-hand side is Z-graded by the total degree.

We do not know if Conjecture 0.1 is true in general but we have very interesting partial
results in this direction.:

• The first general assertion is true. Even more generally, for all `,m ∈ {0, 1} the superspace
ExtP(F

(r)
` , G

(r)
m ) is concentrated in even superdegree (Theorem 4.1.3).

• Conjecture 0.1 is true if F or G are additive (Corollary 3.0.2).

• Conjecture 0.1 is true if F is projective or, dually, if G is injective (Theorem 4.2.5).

• In general, we have proved a nontrivial inclusion of a big direct summand of Ext∗P(F,GEr )

into ExtP(F
(r)
0 , G

(r)
0 ). Theorem 4.4.10 reads indeed:

Theorem 0.2. Let r ≥ 1 and let F,G be homogeneous polynomial functors of degree d.
The purely even space Ext∗P(F

(r)
0 , G

(r)
0 ) contains a copy of Ext∗P(F (r), G(r)) as well as, for

each k ≥ 1, a copy of Ext<2pr

P (F (r), G(r)) with cohomological degree shifted by 2dkpr.

The key for this last computation is the construction of certain universal classes, which in
some sense embody the “real” new content of the super theory in comparison to the classical
(=ungraded) one. For a future perspective, in Problem 4.4.12 we conjecture the existence of
a finer family of classes, which could give precious extra information and play a role in future
improvements of the results.

Our results admit remarkable generalisations if we replace the Frobenius twists I(r)
0 , I(r)

1 by
a general additive superfunctor A. We managed indeed to prove a complete classification of the
additive objects of P (Theorem 2.3.5) which can be resumed in the following statement.

Theorem 0.3. Let A be a homogeneous additive polynomial superfunctor. Then A has degree
pr for some r ≥ 0 and it is isomorphic:

• to a sum of copies of I and Π if r = 0;

• to a sum of copies of I(r)
0 , I(r)

1 , I(r)
0 ◦Π, I

(r)
1 ◦Π if r ≥ 1.

Thanks to this fact, we can define more generally a superfunctor of the form F ◦ A, where
F ∈ P and A is additive, and investigate its homology. That leads to generalising Conjecture
0.1 in the following way.
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Conjecture 0.4. Let A,B be additive homogeneous superfunctors of degree strictly greater than
1 and let F,G be strict polynomial functors. There is a graded isomorphism, natural in all
variables:

Ext∗P(F ◦A,G ◦B) ' Ext∗P(F,GExt∗P (A,B))

where the right-hand side is graded by the total degree.

Note that the Ext appearing on the left-hand side of Conjecture 0.4 is a super vector space,
while the Ext on the right-hand side is a priori only a vector space. In Section 2.3.4 we explain
how to define a superdegree on the right-hand side in a natural way (using the super structure
of Ext∗P(A,B)) and we prove that, if the isomorphism of the conjecture holds, then it must be
an isomorphism of graded super vector spaces.

We will show that Conjecture 0.4 has positive response in the following cases:

• If F is also additive (Corollary 3.0.2);

• In degree zero: there is a natural isomorphism

HomP(F,GHomP (A,B)) ' HomP(F ◦A,G ◦B)

proved in Theorem 2.3.33;

• If F is projective or, dually, if G is injective (Theorem 4.2.5).

We also prove at the end, in a similar (but weaker) way as in Theorem 0.2, that there is an
actual inclusion of a big direct summand of Ext∗P(F,GExt∗P (A,B)) into Ext∗P(F ◦A,G ◦B).

0.1 Contents of the manuscript
Chapter 1 is intended to introduce the reader to our objects of interest, the strict polynomial
superfunctors. In first instance, we describe all our “super” framework. Notably we give the
definition of super vector space and superlinear category. This will be the base to generalise
classical polynomial functors [FS97] to their super counterparts. Once these are defined, we
speak about their main basic properties and manipulations. In particular, we explain how the
category P admits a set of (co)generating projectives (injectives) which allow to perform Ext-
computations in P .

In Chapter 2 we introduce the operation on (super)functors which will concern all our com-
putations: the Frobenius twist. In characteristic p, such notion of twist of a vector space yields
a strict polynomial functor I(1) of degree p [FS97, Pir03]. Iterating the construction, one gets
the r-th twist I(r). In particular, given a functor F , one can then obtain by precomposition
a new functor F (r) := F ◦ I(r). These constructions are replicable in the super context in
more than one way. As we anticipated before, there are three super analogues of I(r), and by
consequence at least three ways of twisting (cf. [Dru16]). In both contexts, the homological
properties of a twisted (super)functor are different from the ones of F . For example, the functor
(−)(r) : P → P, as well as its super analogue, is exact and fully faithful, but does not preserve
projectives/injectives. Computation of Ext spaces between classical twisted functors has been
performed by finding an explicit injective coresolution [Tro05, Tou12] or using the De Rham and
Koszul complexes [FS97, Pir03]. Unfortunately, both ways are not quite direct to generalise. For
example, the explicit injective coresolution found in [Tro05] is not easily replicable in the super
context, as we explain in detail in Section 2.4. The latter is a short excursus about this very
topic, and has the double goal of performing some known computations in a more optimal way
and, as anticipated, showing why the super Ext are generally not computable in the same way
as the classical ones.

A first fundamental result in Chapter 2 is the classification of all additive polynomial super-
functors. Generalising the classical result [Tou17] which states that the only additive polynomial
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functors are sums of copies of I(r), we prove (Theorem 2.3.5) that the only additive polynomial
superfunctors are sums of copies of four different types if r ≥ 1 (and two types if r = 0). Specif-
ically, the ones of degree > 1 are all obtained by Frobenius twist superfunctors. We can then
investigate, in greater generality, the homological algebra of a superfunctor of the form F ◦ A
where A is additive.

In this direction, Chapters 3 and 4 contain the main computations of the thesis. They are
meant to give an answer to Conjecture 0.4. We start by assuming that one of the two functors,
for example F , is additive. By Touzé’s classification of additive polynomial functors [Tou17,
Prop. 3.5] we can furtherly assume that F = I(r). Write Ext∗P(A,B)(r) for the Frobenius twist
(degree-wise) of the space Ext∗P(A,B). In Chapter 3 we are able to build an explicit map

ΨA,B : Ext∗P(I(r), G)⊗ Ext∗P(A,B)(r) → Ext∗P(I(r) ◦A,G ◦B)

and prove that it is an isomorphism. In the formalism of parametrised functors, this says exactly
that Conjecture 0.4 is true whenever at least one between F and G is additive (cf. Corollary
3.0.2).

In complete generality, things become more difficult. We focus on the case where F and
G are homogeneous of the same degree d.2 The approach developed in Chapter 4 consists in
approaching Ext∗P(F ◦A,G ◦B) via the twisting spectral sequence:

IIs,t2 := ExtsP(F, (GExt∗P (A,B))
t)⇒ Exts+tP (F ◦A,G ◦B) .

The isomorphism of Conjecture 0.4 is then formally equivalent to the collapsing of this sequence.
Such collapsing is unfortunately not easy to prove either. We then specialise into more explicit
cases, starting from A = B = I(r)

0 which gives Conjecture 0.1. By means of a restriction
morphism res0 : P → P, which sends F (r)

0 7→ F (r) for all F ∈ P, we find a morphism between
our twisting spectral sequence and its classical counterpart, that is completely known [Tou13].
In this way we get to prove that Conjecture 0.4 holds in low degrees (Theorem 4.3.4). A nearly
equivalent and equally suggestive form of this result is given just before (Theorem 4.3.3) and
says that

res0 : ExtnP(F
(r)
0 , G

(r)
0 ) −→ ExtnP(F (r), G(r))

is an isomorphism for all n < 2pr. However, this bound is small and independent of d, so not
completely satisfying. In order to find more information, we pass to the case A = I(r)

0 , B = I(r)
1 .

The interesting thing is that, in this case, there is no extension of degree less than dpr and,
additionally, we deduce the existence (not trivial at all) of a nonzero class cG ∈ Extdp

r

P (G
(r)
0 , G

(r)
1 ).

For G = I, this class corresponds to the generating class of Extp
r

P (I(r)
0 , I(r)

1 ). We make use of
this class to build a morphism between two twisting spectral sequences, in order to propagate
as much as possible the information we already found. This results in the announced Theorem
0.2, ensuring an inclusion of a big summand into Ext∗P(F

(r)
0 , G

(r)
0 ). This inclusion is given by a

formula which only involves res0 and the product by a certain class εG ∈ Ext2dpr

P (G
(r)
0 , G

(r)
0 ) built

from cG. In particular, it is natural with respect to F and G. In conclusion, Ext∗P(F
(r)
0 , G

(r)
0 )

contains (at least) an infinite sum of copies of a subspace of Ext∗P(F (r), G(r)), shifted in higher
and higher cohomological degree. Despite being significantly weaker than Conjecture 0.4, this
result points out a nice phenomenon of periodicity about the Ext in P , as well as a lower bound
for its dimension in infinitely many degrees.

For general additive functors A and B, this last result can be generalised, provided that we
know the dimension of Ext∗P(A,B) (which is easy, for example, when we know the decomposition
of A and B). The space Ext∗P(F ◦A,G ◦B) will then contain several copies of Ext∗P(F (r), G(r))
and its shiftings, with super-degrees encoded by the information about Ext∗P(A,B) (cf. Theorem
4.5.6).

2This is harmless to the computations, as explained in Convention 1.5.5 and in §1.5.1.
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We leave space to an open question. Our universal class εG is supposed to somehow play
the role of the known class (er)

p ∈ Ext2pr

P (I(r)
0 , I(r)

0 ). The latter is the lowest-degree class that
restricts to zero in Ext∗P(I(r), I(r)) and is in fact the one that generates all Ext∗P(I(r)

0 , I(r)
0 ) as

a module over Ext∗P(I(r), I(r)). For this reason, the class er embodies the truly original and
mysterious ingredient of the super theory. It is then natural to wonder if, for example, εG
admits a p-th root in general. We give a partial response in Problem 4.4.12, showing that this is
the case if G is injective. The response for a generic G is not clear and would make an interesting
point in the future development of the subject.

0.2 Conventions
Throughout all this manuscript, k is a field of characteristic p ≥ 3 (in characteristic 2 there are
no signs, hence the super theory coincides with the classical one). If not specified otherwise,
all algebraic structures (vector spaces, algebras...) will be over k, as well as all unadorned
tensor products. If A is an algebra, A − mod denotes the category of finite-dimensional left
modules over A. Finally, to be short, we will usually drop the word “strict” next to “polynomial
(super)functor”.
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Chapter 1

Strict polynomial functors and
superfunctors

1.1 Classical theory

Before introducing the super objects, we start by recalling the classical theory that we are going
to generalise. For brevity, in this section some details are omitted: we will treat them more
carefully in the super case. We start by setting some notation.

Notation 1.1.1. If V,W are vector spaces over a field k, we will write:

• Hom(V,W ) for the space of k-linear morphisms from V to W .

• V ⊗W for their tensor product over k.

• V ∨ := Hom(V,k) for the linear dual of V .

• If E∗ =
⊕

i∈ZE
i is a graded vector space, the linear dual (E∨)∗ will always intended to

be the restricted dual
⊕

i∈Z(Ei)∨.

All unadorned Hom and ⊗ symbols will be assumed to be over k. We will also say linear instead
of k-linear when no ambiguity about k is possible.

Notation 1.1.2. We denote by vec the category of vector spaces and linear morphisms, and by
V the full subcategory of vec formed by finite-dimensional vector spaces.

They are an example of linear categories, i.e. enriched over vec.

Definition 1.1.3. Let C and D be two linear categories. A functor F : C → D is called linear
if so are the structure maps HomC(c1, c2)→ HomD(Fc1, F c2).

Example 1.1.4. For any linear category C, the identity functor IdC is linear. For all vector spaces
W , the endofunctor −⊗W : vec→ vec is linear. On the other side, for example, the symmetric
power functor V 7→ S2(V ) is not.

We recall that, for V a vector space, Sn(V ) and Γn(V ) are defined respectively as the
coinvariants and invariants of V ⊗n under the action of the symmetric group Σn which permutes
the tensors. They are respectively called n-th symmetric and divided powers. Summing over
n, we obtain two algebras: the symmetric power algebra S∗(V ), equipped with concatenation
of tensors, and the divided power algebra Γ∗(V ) equipped with the shuffle product1. We will
sometimes use the following explicit presentation of the classical divided power algebra Γ∗V .

1We will give more details about these structures in the next section.

9
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Proposition 1.1.5. Let V be a vector space. Γ∗(V ) is generated as an algebra by the symbols
γn(v), as n runs in N and v ∈ V , subject to the relations:

γn(λv) = λnγn(v)

γn(v) · γm(v) =

(
m+ n

m

)
γn+m(v)

γn(v + w) =

n∑
i=0

γi(v) · γn−i(w)

γn(γm(v)) =
(mn)!

(m)!nn!
γmn(v) .

Proof. A possible reference is [Pir03, §1.5].

Remark 1.1.6. For all d ≥ 0 and all vector spaces V,W the linear isomorphism

V ⊗d ⊗W⊗d −→ (V ⊗W )⊗d

(v1 ⊗ ...⊗ vd)⊗ (w1 ⊗ ...⊗ wd) 7−→ (v1 ⊗ w1)⊗ ...⊗ (vd ⊗ wd)
is Σd-equivariant if on the left-hand side we consider the diagonal permutation action of Σd.
This implies that ΓdV ⊗ ΓdW is naturally a subspace of Γd(V ⊗W ). In particular, if A is an
algebra, this induces a map

ΓdA⊗ ΓdA −→ Γd(A⊗A) −→ ΓdA

which equips ΓdA with the structure of algebra.

Definition 1.1.7. For d ≥ 0, define ΓdV as the category with the same objects as V and
morphisms HomΓdV(V,W ) := ΓdHom(V,W ). One way to define composition in ΓdV is to use
the isomorphism

ΓdHom(V,W ) ' HomkΣd(V ⊗d,W⊗d)

(which is proved in a more general version in Lemma 1.3.16) and pass to the standard composition
of equivariant maps.

Remark 1.1.8. ΓdV is a linear category.

Definition 1.1.9. A d-homogeneous strict polynomial functor is a linear functor F : ΓdV → V.

The symbol Pd denotes the category of d-homogeneous strict polynomial functors with their
natural transformations. The product

∏
d≥0 Pd of all these categories is denoted P.

Example 1.1.10. A strict polynomial functor of degree 0 is a constant functor. Strict polynomial
functors of degree 1 are just linear functors from V on itself: for example Hom(V,−) and V ⊗−,
where V is any fixed vector space of finite dimension. In particular there is the identity functor
I. More generally ⊗d, Sd,Γd,Λd can be viewed as strict polynomial functors of degree d (the
argument is the same as in Example 1.5.7).
Remark 1.1.11. Let F ∈ Pd, G ∈ Pe. Then F ⊕ G ∈ P (non-homogeneous), F ⊗ G ∈ Pd+e,
while F ◦G ∈ Pde.

The divided and symmetric power functors play a quite important role in P. For a finite-
dimensional vector space V , let

Γd,V := ΓdHom(V,−)

SdV := Sd(V ⊗−)

which are polynomial functors of degree d, since they are the composition of Γd (resp. Sd) with
Hom(V,−) (resp. V ⊗−).
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Theorem 1.1.12 (Yoneda lemma). There is a linear isomorphism, natural in F ∈ Pd and
V ∈ ΓdV:

HomPd(Γd,V , F ) ' F (V ) .

As a consequence, Γd,V is a projective object of Pd. Moreover, the associated natural trans-
formation Γd,V ⊗ F (V ) → F given by f ⊗ v 7−→ (Ff)(v), is surjective whenever dim(V ) ≥ d
[Fri03, Prop. 3.11]. So, the collection of Γd,V forms a set of projective generators for Pd. We now
end the section with a description of Pd as a category of left modules. Remember by Remark
1.1.6 that ΓdA is an algebra whenever A is.

Definition 1.1.13. For any n, d ≥ 1, the Schur algebra is defined as S(n, d) := ΓdEnd(kn).

If F ∈ Pd, then F (kn) is a left S(n, d)-module via

S(n, d)⊗ F (kn)→ F (kn)

ϕ⊗ v 7−→ (Fϕ)(v) .

In addition, for all T ∈ HomP(F,G), Tkn is a S(n, d)-equivariant map. Thus evaluation at kn
defines a functor

Pd −→ S(n, d)−mod (1.1.1)

where the notation A − mod stands for the category of finite-dimensional left modules over an
algebra A.

Theorem 1.1.14 ([Fri03, Thm 3.12]). If n ≥ d, the functor (1.1.1) gives rise to an equivalence
of categories

Pd ' S(n, d)−mod

with quasi-inverse provided by M 7→ Γd,k
n ⊗S(n,d) M .

1.2 The super world
Definition 1.2.1. A super vector space is a Z/2Z-graded vector space, that is, a vector space
V together with a decomposition V = V0 ⊕ V1. Here V0 is called the even part of V , while V1 is
called the odd part.

By definition, all elements of V decompose uniquely as the sum of an even and an odd one,
i.e. of a vector belonging to V0 and V1 respectively. The overbarred symbol v stands for the
Z/2Z-degree (or super degree) of v. Hence, v = 0 if v ∈ V0 and v = 1 if v ∈ V1.

Notation 1.2.2. In our vocabulary, super will always mean Z/2Z-graded. In contrast, the adjec-
tive classical will denote the ungraded version of an object or a result (ex: vector spaces are the
classical version of super vector spaces).

Notation 1.2.3. We would be supposed to put the bar over 0 and 1 as well, to mark them as
elements of Z/2Z. In order to lighten notation, we will drop it. Whenever they appear explicitly
as super degrees of an element or as subscripts of V , they are to be intended modulo 2, as well
as all operations involving them.

Convention 1.2.4. When making definitions on graded objects (in particular on super vector
spaces) which involve explicit formulas, we will nearly always write them for homogeneous ele-
ments. In words this means that if a degree symbol, e.g. v , appears in a definition, we are always
assuming that v is homogeneous in order for the formula to make sense, and tacitly extending
the definition by linearity.

Definition 1.2.5. The superdimension of a super vector space V is the pair of non-negative
integers sdim(V ) := (dimV0,dimV1).
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If V1 = 0, we say that V is purely even; if V0 = 0, it is purely odd. If W is a vector space,
we can see it as a purely even super vector space W ⊕ 0. Abusing notation, we will still denote
it by W . We can also see it as a purely odd super vector space 0 ⊕ W , in which case we
will denote it ΠW . In particular, a super vector space of superdimension (n,m) identifies with
kn|m := kn⊕Πkm. In general, the letter Π denotes a parity change operation, as in the following
definition.

Definition 1.2.6 (Parity change). If V = V0⊕V1, then ΠV := V1⊕V0 is the same vector space
with interchanged homogeneous components. If v ∈ V is a homogeneous vector, πv will stand
for the same vector seen in ΠV . In particular (by construction) πv = v + 1.

The general notion of linear morphism is the same as in the ungraded case. The symbol Hom
with no subscript will always stand for Homk, i.e. the space of linear morphisms between two
super vector spaces.

Definition 1.2.7. A linear morphism f : V → W between two super vector spaces is called
even if f(Vi) ⊂Wi, odd if f(Vi) ⊂Wi+1, i = 0, 1.

Informally speaking, an even morphism preserves the grading while an odd morphism inverses
it. Since by definition every super vector space decomposes (uniquely) as the sum of its even
and odd parts, it follows that any linear morphism f : V → W decomposes uniquely into the
sum of an even and an odd morphism:

Hom(V,W ) = Hom0(V,W )⊕Hom1(V,W ) .

In particular, this gives Hom(V,W ) itself the structure of a super vector space. We keep track
of an identity, which is just a rephrasing of the definition of even/odd morphism: for all homo-
geneous f ∈ Hom(V,W ) and any v ∈ V ,

f(v) = f + v .

Using this identity one can readily verify, for example, that if f, g are two homogeneous com-
posable morphisms, then

f ◦ g = f + g .

We recall how classical operations on vector spaces generalise on two super vector spaces V,W .

• Direct sum: V ⊕W is a super vector space, its even (resp. odd) part being V0 ⊕W0

(resp. V1 ⊕W1).

• Linear dual: V ∨ = Hom(V,k) comes as a special case of Hom(V,W ) above, with k
considered as purely even. In particular, its super decomposition is V ∨ = V ∨0 ⊕ V ∨1 . If
f : V →W is a linear map, its transpose f∨ : W∨ → V ∨ is given by the formula

< f∨ϕ, x >:= (−1)f ϕ < ϕ, f(x) >

which implies that (f ◦ g)∨ = (−1)f g g∨ ◦ f∨.

• Tensor product: The super structure on V ⊗W can be induced by the previous ones
via the isomorphism V ⊗ W ' Hom(V ∨,W ). Explicitly, this gives the following super
decomposition:

(V ⊗W )0 = V0 ⊗W0 ⊕ V1 ⊗W1

(V ⊗W )1 = V0 ⊗W1 ⊕ V1 ⊗W0



1.3. SUPERALGEBRAS 13

Remark 1.2.8. Nearly all classical isomorphisms have their super version. For example there is
an isomorphism, which is natural with respect to the super vector space V :

V
'−−→ (V ∨)∨

v 7−→ evv
(1.2.1)

where evv acts on a function f ∈ V ∨ by f 7→ (−1)f v f(v) .

Definition 1.2.9. The interchange or twisting map of the tensor product of two super vector
spaces V,W is defined as

V ⊗W −→W ⊗ V
v ⊗ w 7−→ (−1)v w w ⊗ v .

(1.2.2)

Definition 1.2.10 (Tensor product of maps). Let f : V →W and g : V ′ →W ′ be linear maps
between super vector spaces. The tensor product map f ⊗ g : V ⊗ V ′ →W ⊗W ′ is defined by

(f ⊗ g)(v ⊗ v′) = (−1)g v f(v)⊗ g(v′) .

This operation is associative, hence one can define recursively the tensor product of any number
of maps.

Remark 1.2.11. Composition is compatible with tensor product of maps up to a Koszul sign.
Using the definition, one checks indeed that

(f ⊗ g) ◦ (h⊗ l) = (−1)g h (f ◦ h)⊗ (g ◦ l)

for any two pairs of composable morphisms (f, h) and (g, l).

1.3 Superalgebras

Definition 1.3.1. A superalgebra is the data (A, u, ·) of a super vector space A with a unit
u : k → A and an associative, unital product · : A ⊗ A → A which is even linear as a map of
super vector spaces.

All superalgebras appearing in the manuscript are associative and unital, so we drop these
two adjectives from now on. Last condition means in words that Ai ·Aj ⊂ Ai+j for i, j ∈ {0, 1}.
Equivalently, for all homogeneous a, b ∈ A, a · b = a + b . When there is no risk of confusion,
we will drop the symbol · of the product. A morphism of superalgebras is simply a morphism
of the underlying algebras. Given two superalgebras A and B, their tensor product A ⊗ B is
considered with the signed product

(a⊗ b)(c⊗ d) := (−1)b c ac⊗ bd . (1.3.1)

These conventions produce the following.

Lemma 1.3.2. Let A,B be superalgebras. The twisting map (1.2.2) commutes with the product
(1.3.1), hence defines an isomorphism of superalgebras.

Proof. Call τ the twist map (1.2.2). Then

τ(a⊗ b) · τ(c⊗ d) = (−1)a b+c d (b⊗ a)(d⊗ c)

= (−1)a b+c d+a d (bd⊗ ac)
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and on the other side

τ((−1)b c (ac⊗ bd)) = (−1)b c+ac bd (bd⊗ ac)

= (−1)b c+(a+c )(b+d )(bd⊗ ac)

= (−1)a b+c d+a d (bd⊗ ac)

so the two images coincide.

The map (1.2.2) will be our notion of twist by default. Consequently, in our glossary a
superalgebra will be said commutative if multiplication commutes with (1.2.2), i.e. if ab =

(−1)a b ba for all a, b homogeneous.

Definition 1.3.3. A graded superalgebra is a superalgebra A which additionally bears a Z-
grading that is preserved by the product. The Z-degree of a Z-homogeneous element a ∈ A will
be denoted by |a|. The condition on the product is then |a·b| = |a|+|b| for all a, b Z-homogeneous.

Let A,B be graded superalgebras. There is more than one definition for the tensor product
of A and B. The symbol A ⊗ B will denote the graded superalgebra with the same product
(1.3.1), which then ignores the Z-degrees. Alternatively, one can define the graded tensor product
A⊗g B, which has still A⊗B as underlying graded super vector space but a product that takes
account of both gradings:

(a⊗ b) · (c⊗ d) := (−1)b c+|b||c| ac⊗ bd .

The proof of Lemma 1.3.2 generalises without problems to the following:

Lemma 1.3.4. There is a graded even isomorphism of graded superalgebras

A⊗g B −→ B ⊗g A

a⊗ b 7−→ (−1)a b+|a||b|b⊗ a .
(1.3.2)

As above, a superalgebra will be said graded-commutative if it is graded and its product
commutes with the graded twist (1.3.2). It will be just commutative if it is so as an ungraded
superalgebra.

Definition 1.3.5. A supercoalgebra is the data (C, η,∆) of a super vector space C with a counity
η : C → k and a coassociative counital map ∆ : C → C ⊗C (coproduct) which is even linear as
a map of super vector spaces.

A supercoalgebra is cocommutative if the coproduct is compatible with the twist (1.2.2).
A graded supercoalgebra is a supercoalgebra bearing a Z-grading preserved by ∆. It is graded
cocommutative if the coproduct is compatible with the graded twist (1.3.2). We provide some
basic examples, which are the super version of well known (co)algebras.

Example 1.3.6. Let V be a finite-dimensional super vector space. The tensor superalgebra on V
is T ∗(V ) :=

⊕
n V
⊗n equipped with the standard concatenation product

(v1 ⊗ ...⊗ vn)⊗ (v′1 ⊗ ...⊗ v′m) 7−→ v1 ⊗ ...⊗ vn ⊗ v′1 ⊗ ...⊗ v′m .

In fact, T ∗(V ) is free in the category of superalgebras. If we take its restricted dual, we obtain
an isomorphic vector space equipped with the deconcatenation coproduct

∆(v1 ⊗ ...⊗ vn) =

n∑
i=1

(v1 ⊗ ...⊗ vi)⊗ (vi+1 ⊗ ...⊗ vn)
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which is the cofree conilpotent object in the category of supercoalgebras. Thanks to the
(co)freeness, we can equip both with a structure of a superbialgebra. Define the shuffle product
as the unique supercoalgebra morphism µ : T ∗(V ) ⊗ T ∗(V ) → T ∗(V ) described in degree 1
by µ(v ⊗ 1) = µ(1 ⊗ v) = v. Its dual, the shuffle coproduct (or deshuffle, as we will call it
to be shorter) is the only superalgebra morphism ∆′ : T ∗(V ) → T ∗(V ) ⊗ T ∗(V ) such that
∆′(v) = v ⊗ 1 + 1⊗ v. By construction we have that

T ∗1(V ) := (T ∗(V ), concatenation, deshuffle)
T ∗2(V ) := (T ∗(V ), shuffle, deconcatenation)

provide two structures of superbialgebras on T ∗ that are dual to each other, i.e.

(T ∗1(V ∨))∨ ' T ∗2(V )

and vice-versa. Moreover, T ∗2(V ) (resp. T ∗1(V )) is commutative (resp. cocommutative), while
the other one is obviously not.
Remark 1.3.7. There is a general explicit description for the shuffle product, which justifies also
its name. Let Sm,n ⊂ Σm+n be the subset of (m,n)-shuffles, i.e. the permutations σ such that
σ(1) < ... < σ(n) and σ(n+ 1) < ... < σ(n+m). The shuffle product is then given at each level
(⊗n)⊗ (⊗m)→ ⊗n+m by the map

∑
σ∈Sm,n

(−) · σ. A similar description holds for the deshuffle.

Example 1.3.8. Consider the right action of the symmetric group Σn on V ⊗n determined by
transpositions of the form (i, i+ 1) in the following way:

(v1 ⊗ · · · ⊗ vn) · (i, i+ 1) := (−1)vi vi+1(v1 ⊗ · · · ⊗ vi+1 ⊗ vi ⊗ · · · ⊗ vn) . (1.3.3)

The super divided power ΓnV is defined as the invariants of this action; the super symmetric
power SnV as its coinvariants. Set Γ∗V =

⊕
n Γ

nV and S∗V =
⊕

n S
nV . They are both

commutative superalgebras. The product (coproduct) on S∗ is given by concatenation (deshuf-
fle), while on Γ∗ by shuffle (deconcatenation). In other words, S∗(V ) is a quotient bialgebra of
T ∗1(V ), while Γ∗(V ) is a sub-bialgebra of T ∗2(V ).
Remark 1.3.9. Let d ≥ 0 and let V,W be super vector spaces. Similarly to the classical case
(Remark 1.1.6), the isomorphism V ⊗d ⊗W⊗d → (V ⊗W )⊗d induced by the super twist (1.2.2)
is Σd-equivariant, once the left-hand side is endowed with the diagonal action of Σd. Hence
ΓdV ⊗ ΓdW is naturally a subspace of Γd(V ⊗ W ). In particular, if A is a superalgebra, a
superalgebra structure is induced on ΓdA.
Example 1.3.10. Consider the action of Σn which modifies (1.3.3) by a minus sign, i.e. determined
on transpositions (i, i+ 1) by

(v1 ⊗ · · · ⊗ vn) · (i, i+ 1) := −(−1)vi vi+1(v1 ⊗ · · · ⊗ vi+1 ⊗ vi ⊗ · · · ⊗ vn) .

The super alternating power AnV is defined as the invariants of this action; the super exterior
power ΛnV as its coinvariants. Here V is considered as a Z-graded super vector space concen-
trated in Z-degree 1. Set A∗V =

⊕
nA

nV and Λ∗V =
⊕

nΛ
nV . As above, Λ∗(V ) inherits the

structure of bialgebra from T ∗1(V ), while A∗(V ) from T ∗2(V ).
Remark 1.3.11. All products and coproducts defined on S∗(V ), Γ∗(V ), Λ∗(V ) and A∗(V ) are
manifestly natural with respect to V . Moreover, S∗(V ) and Γ∗(V ) are commutative and cocom-
mutative, while Λ∗(V ) and A∗(V ) are graded- commutative and graded-cocommutative.
Remark 1.3.12. Let G be a group andM be a G-module. The linear dualM∨ is also a G-module
via (gf)(m) := f(g−1m). In this sense, there is a natural isomorphism (M∨)G ' (MG)∨. In our
case this means that, as graded super vector spaces,

Γ∗(V ∨) ' (S∗V )∨, A∗(V ∨) ' (Λ∗V )∨

where we recall that (S∗V )∨ and (Λ∗V )∨ denote the restricted duals. We will see later that
these are in fact natural isomorphisms of bialgebras.
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Remark 1.3.13. The functor S∗, resp. Λ∗, is left adjoint to the forgetful functor from the
category of commutative (resp. graded-commutative) superalgebras to the category of super
vector spaces (resp. Z-graded super vector spaces). In particular they respect coproducts. Since
the coproduct in the category of (graded-)commutative superalgebras is given by ⊗, this means
that there exist natural isomorphisms

S∗(V ⊕W ) ' S∗(V )⊗ S∗(W )

Λ∗(V ⊕W ) ' Λ∗(V )⊗Λ∗(W )

of which we a give an explicit formula in the next proposition.

Proposition 1.3.14 (Exponential property). For all finite-dimensional super vector spaces V,W
there are isomorphisms of graded superbialgebras

S∗V ⊗ S∗W ' S∗(V ⊕W )

Λ∗V ⊗Λ∗W ' Λ∗(V ⊕W )

induced respectively by concatenation product and shuffle coproduct. The dual operations induce
natural isomorphisms of graded superbialgebras

Γ∗V ⊗ Γ∗W ' Γ∗(V ⊕W )

A∗V ⊗A∗W ' A∗(V ⊕W ).

Proof. We only treat the case of S∗ and Λ∗, the proof for the other two following entirely by the
duality of Remark 1.3.12. Let us start by S∗. Call µ the concatenation map S∗(V )⊗ S∗(W )→
S∗(V ⊕ W ). It is clearly surjective by the bilinear property of the tensor product, hence by
dimension reasons it is a natural isomorphism of super vector spaces. We have just to verify that
it is compatible with the product and coproduct of S∗. Let v, v′ ∈ S∗(V ) and w,w′ ∈ S∗(W ). As
defined in (1.3.1), the product (v⊗w)·(v′⊗w′) in S∗(V )⊗S∗(W ) equals (−1)w v

′
vv′⊗ww′, which

is sent by µ to (−1)w v
′
vv′ww′. But this is equal to the product of vw and v′w′ in S∗(V ⊕W ),

since interchanging w and v′ brings a sign (−1)w v
′ . Thus µ((v⊗w)·(v′⊗w′)) = µ(v⊗w)µ(v′⊗w′).

To prove that it respects the coproduct ∆′ amounts to verifying the commutativity of the diagram

S∗(V )⊗ S∗(W ) S∗(V )⊗ S∗(V )⊗ S∗(W )⊗ S∗(W )

S∗(V )⊗ S∗(W )⊗ S∗(V )⊗ S∗(W )

S∗(V ⊕W ) S∗(V ⊕W )⊗ S∗(V ⊕W )

∆′⊗∆′

µ

1⊗τ⊗1

µ⊗µ

∆′

where τ is the twist map (1.2.2). Since ∆′ is determined by the product and by its expression
in degree 1 (see Example 1.3.6), it will suffice to prove the commutativity of the diagram for an
element of the form v ⊗ 1 ∈ S1(V ) ⊗ S0(W ). We have ∆′(µ(v ⊗ 1)) = v ⊗ 1 + 1 ⊗ v. On the
other hand, ∆′ ⊗∆′ takes it onto (v ⊗ 1 + 1 ⊗ v) ⊗ (1 ⊗ 1) = v ⊗ 1 ⊗ 1 ⊗ 1 + 1 ⊗ v ⊗ 1 ⊗ 1,
then 1 ⊗ τ ⊗ 1 onto v ⊗ 1 ⊗ 1 ⊗ 1 + 1 ⊗ 1 ⊗ v ⊗ 1 and finally µ ⊗ µ onto v ⊗ 1 + 1 ⊗ v. The
verification is thus completed for S∗. Let now u : Λ∗(V ⊕W ) → Λ∗(V ) ⊗ Λ∗(W ) be the only
morphism of superalgebras that restricts in degree 1 to v + w 7→ v ⊗ 1 + 1 ⊗ w. It respects
the multiplication by definition, and a verification similar to the above shows that it respects
the coproduct as well. It is only left to show that it is an isomorphism. Again, for dimensions
reasons, it suffices to prove that it is a surjection. We will provide a preimage of a generic
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element (v1 ∧ ... ∧ vn) ⊗ (w1 ∧ ... ∧ wm) ∈ Λn(V ) ⊗ Λm(W ). The case n = m = 0 is trivial.
Otherwise

(v1 ∧ ... ∧ vn)⊗ (w1 ∧ ... ∧ wm) = ±[(v1 ∧ ... ∧ vn−1)⊗ (w1 ∧ ... ∧ wm−1)] · [vn ⊗ wm]

thus the existence of a preimage follows by induction and by the multiplicativity of u.

Applying the exponential isomorphisms on the decomposition V = V0⊕V1 and studying the
actions on each homogeneous component, one finds Z-graded isomorphisms of the underlying
algebras

S∗V ' S∗(V0)⊗ Λ∗(V1) (1.3.4)
Γ∗V ' Γ∗(V0)⊗ Λ∗(V1) (1.3.5)
A∗V ' Λ∗(V0)⊗g Γ∗(V1) (1.3.6)
Λ∗V ' Λ∗(V0)⊗g S∗(V1) (1.3.7)

The first two become isomorphisms of superalgebras by placing Vi in super degree i on the right.
The last two become isomorphisms of graded superalgebras by doing the same and placing V
in Z-degree 1. Note that the decomposition of V in even and odd part is not natural, because
of the odd morphisms that switch them. Hence a fortiori the displayed isomorphism are not
natural in V .
Remark 1.3.15. Let V be a super vector space. Then S∗(V0),Γ∗(V0),Λ∗(V1) (with Vi in Z-
degree i) are bicommutative superbialgebras, since they are sub-superbialgebras of S∗(V ) or
Γ∗(V ). Similarly, Λ∗(V0), S∗(V1),Γ∗(V1) are graded-bicommutative because sub-superbialgebras
of Λ∗(V ) or A∗V .

We give a useful interpretation of divided powers as a kind of equivariant mapping space.
Remember the sign convention of Definition 1.2.10 for the tensor product of two linear maps.

Lemma 1.3.16. Let V,W be super vector spaces and let the symmetric group Σn act on
Hom(V ⊗n,W⊗n) by (f · σ)(−) := (f(− · σ−1)) · σ. Then the map

Hom(V,W )⊗n −→ Hom(V ⊗n,W⊗n)

f1 ⊗ ...⊗ fn 7−→ f1 ⊗ ...⊗ fn

is a Σn-equivariant isomorphism. In particular, it restricts to an isomorphism

ΓnHom(V,W ) ' HomkΣn(V ⊗n,W⊗n) .

Proof. Since the product ⊗ of maps is defined recursively, for the first assertion it suffices to
treat the case n = 2. Let σ be the non-identity element of Σ2. The equivariance amounts then
to prove, for all f, g ∈ Hom(V,W ), v1, v2 ∈ V , that:

(f ⊗ g)((v1 ⊗ v2) · σ) · σ = (−1)f g (g ⊗ f)(v1 ⊗ v2) .

By definition of ⊗, the right-hand side equals

(−1)f g +f v1 g(v1)⊗ f(v2)

while the left-hand side is equal to

((−1)v1 v2 (f ⊗ g)(v2 ⊗ v1)) · σ = ((−1)v1 v2 +g v2 f(v2)⊗ g(v1)) · σ

= (−1)v1 v2 +g v2 +f(v2) g(v1) g(v1)⊗ f(v2)

= (−1)v1 v2 +g v2 +(f +v2 )(g +v1 )g(v1)⊗ f(v2)

= (−1)f g +f v1 g(v1)⊗ f(v2)
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so the two expressions are equal as wanted. This proves that the map is equivariant. It is clearly
injective and the source has the same dimension as the target, so it is an isomorphism. The
second isomorphism follows from the first by taking invariants.

Definition 1.3.17 (Supermodules). Let A be a superalgebra. A left supermodule over A is a
super vector space V together with a left action A ⊗ V → V that is linear and even as a map
of super vector spaces. The category of finite-dimensional left A-supermodules and equivariant
morphisms (in the usual sense) will be noted by A− smod.

As for superalgebras, last condition means in formulas that a · v = a+v for all a ∈ A, v ∈ V . A
morphism of left A-supermodules is a linear map ψ : V →W such that ψ(a·v) = (−1)ψ a a·ψ(v).
The notion of right A-supermodule is defined similarly, except for morphisms: a morphism of
right A-supermodules is simply a morphism of the underlying A-modules, i.e. there is no sign
involved in the compatibility condition.

1.4 Superlinear categories
Now that we have introduced super objects, we want to generalise the notion of linear category.
We have seen that the super structures propagate via elementary operations (Hom, tensors...),
which means that our categories will often be enriched. We start by the larger and most impor-
tant ones for us.

Notation 1.4.1. We denote by svec the category of super vector spaces and linear morphisms,
and by V the full subcategory of svec with finite-dimensional objects.

Definition 1.4.2. A category is superlinear if it is enriched over svec.

Any linear category is trivially superlinear. In particular, vec, V and the two categories
appearing above are superlinear. In fact, V and V are enriched over themselves.

Definition 1.4.3. Let C and D be two superlinear categories. A functor F : C → D is called
linear (resp. even linear) if the structure maps HomC(c1, c2) → HomD(Fc1, F c2) are linear
(resp. even linear).

Example 1.4.4. An obvious example of even linear functor is Idsvec. There is also the parity
change functor Π : svec → svec defined by V 7→ ΠV and f 7→ (−1)f f . Since Π is manifestly
an involution, it defines an equivalence of categories. In particular there is a chain of even
isomorphisms Hom(ΠV,W ) ' ΠHom(V,W ) ' Hom(V,ΠW ).

Definition 1.4.5. Let F,G : C → D be two even linear functors. A homogeneous natural
transformation T : F → G is a collection of linear maps TV ∈ HomD(FV,GV ) such that TV is
independent of V (and noted by T ) and, for all homogeneous morphisms ϕ ∈ HomC(V,W ),

Gϕ ◦ TV = (−1)T ϕ TW ◦ Fϕ .

A natural transformation is by definition the sum of an even and an odd one.

Remark 1.4.6. By construction, if T = T0 + T1 is such a natural transformation, its even and
odd part are the collections of maps (for V ∈ C)

(T0)V = (TV )0

(T1)V = (TV )1.

Definition 1.4.7. Let C be a superlinear category. Then

• Cev is the category with the same objects but just the even morphisms.
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• C− is the category with same objects and morphisms but the composition law ◦− changed
by a sign:

ϕ ◦− ψ := (−1)ϕ ψ ϕ ◦ ψ .

• C0 and C1 are the full subcategories generated by the purely even objects, resp. purely odd
objects.

In particular C0, C1 are full subcategories of Cev. Moreover, there is an equivalence of categories
C ' C− which is the identity on objects and sends a morphism f onto f− defined by f−(v) :=

(−1)v f f(v).

Example 1.4.8. There are equivalences of categories svec0 ' vec ' svec1 and V0 ' V ' V1.
Moreover, svecev ' svec0 × svec1 and Vev ' V0 × V1.

1.4.1 The Yoneda Lemma
In this section we are going to state the fundamental result known as Yoneda Lemma, in the con-
text of superlinear categories and in two slightly different formulations. Later, we will specialise
all this to our specific category of functors.

Let C be a superlinear category and set F := Func(C, svec) the category of even linear
covariant functors C → svec. The following fact is nothing but a consequence of the definition
of natural transformation.

Lemma 1.4.9. F is a superlinear category.

We can then state a superlinear version of the Yoneda lemma. For an object C ∈ C, consider
the representable functor hC := HomC(C,−) ∈ F .

Theorem 1.4.10 (Yoneda Lemma). There is an even linear isomorphism, natural with respect
to F ∈ F and to C ∈ C

HomF (hC , F ) ' F (C) .

Proof. There is a set map sending each natural transformation T : hC → F to the element
TC(IdC) ∈ F (C). In the opposite way, there is a set map sending an element v ∈ F (C) to the
natural transformation defined by ϕ 7→ (Fϕ)(v). It is easy to verify that these two maps are
inverse to one another. They are also linear and even, since TC(IdC) = T + IdC = T because
identities are always even. This proves the assertion.

It can be sometimes useful to reformulate this result on Fev. If T = T0 + T1 is the super
decomposition of a natural transformation T , we are in the position to define the following
functor:

F −→ Fev

F 7−→ F ⊕ (Π ◦ F )

T 7−→
(
T0 T1

T1 T0

)
This functor is left adjoint to the canonical inclusion Fev ⊂ F . Indeed, for all F,G ∈ F there is
an even isomorphism

HomF (F,G) ' HomFev (F ⊕ Π ◦ F, G)

given by T 7→ T0 ⊕ T1, that is natural with respect to both variables. If we take F = hC and
compose this isomorphism with the one provided by the Yoneda lemma, we obtain the following.

Corollary 1.4.11. There is an even linear isomorphism

HomFev (hC ⊕Π ◦ hC , G) −→ G(C)

T 0 ⊕ T 1 7−→ (T 0
C + T 1

C)(IdC) .
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1.5 Strict polynomial superfunctors
We now introduce the main protagonist of our manuscript. The objects of interest will be the
functors F : V → V such that the morphism-level map FV,W : Hom(V,W ) → Hom(FV, FW )
is polynomial. In this fashion, superlinear functors appear as the special case where FV,W is
homogeneous of degree 1. Let Hompol(A,B) = S∗(A∨)⊗B denote the super space of polynomial
maps between two super spaces A and B. Then we are asking

FV,W ∈ Hompol(Hom(V,W ),Hom(FV, FW ))

= S∗(Hom(V,W )∨)⊗Hom(FV, FW )

' (Γ∗Hom(V,W ))∨ ⊗Hom(FV, FW )

' Hom(Γ∗Hom(V,W ), Hom(FV, FW ))

where the first isomorphism comes from Remark 1.3.12. We have then found a linear way to
define a polynomial superfunctor, at the price of changing the source and hence the category.

Definition 1.5.1. For n ≥ 0, let ΓnV be the category having the same objects as V but
morphism spaces HomΓnV(V,W ) := ΓnHom(V,W ). The composition law is defined using the
linear isomorphism of Lemma 1.3.16

ΓnHom(V,W ) ' HomkΣn(V ⊗n,W⊗n) (1.5.1)

and thus makes ΓnV into a superlinear category.

Remark 1.5.2. Recall that Γ0V ' k for all super vector spaces V . Hence, in the category Γ0V ,
between any two objects there is precisely one morphism along with its k-multiples.

Remark 1.5.3. We want to point out a compatibility property of the composition law in ΓnV
(which here we will note ◦) with respect to the product · in Γ∗. First, one can easily check that,
if f, g are composable morphisms,

γn(f) ◦ γn(g) = γn(f ◦ g) .

But more in general

(γn(f) · γm(g)) ◦ γn+m(h) = γn(f ◦ h) · γm(g ◦ h) .

Definition 1.5.4. A homogeneous strict polynomial superfunctor of degree n is a linear even
functor F : ΓnV → V . The category consisting of these objects and their natural transformations
is noted Pn.

Set P =
∏
nPn. This means that all strict polynomial superfunctors, i.e. elements of P ,

write uniquely as the sum of its homogeneous components.

Convention 1.5.5. Remark that, if F,G are homogeneous superfunctors, then HomP(F,G) can
only be nonzero if they are of the same degree d, and in that case HomP(F,G) = HomPd(F,G).
For that reason, we feel free to interchange the notation HomP and HomPd based on whether
we want to emphasize the degree or not. The same convention applies to P.

We summarise the standard operations that one can perform on polynomial superfunctors.
Given F ∈ Pn, G ∈ Pm, we can make:

• Direct sum: F ⊕G is given by (F ⊕G)(V ) = F (V )⊕G(V ) on objects and the obvious
sum on morphisms.

• Tensor product: F ⊗G ∈ Pm+n is given on objects by (F ⊗G)(V ) = F (V )⊗G(V ). To
define it on morphisms, remark that the inclusion of groups Σn × Σm ⊂ Σm+n induces a
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canonical inclusion Γn+mV ⊂ ΓnV ⊗ΓmV for all super vector spaces V . Then the action
on morphisms is given by the even linear composition

Γn+mHom(V,W ) ΓnHom(V,W )⊗ ΓmHom(V,W )

Hom(F (V ), F (W ))⊗Hom(G(V ), G(W ))

Hom(F (V )⊗G(V ), F (W )⊗G(W )) .

F⊗G

⊗

• Composition: F ◦ G ∈ Pnm is given by (F ◦ G)(V ) = F (G(V )) on objects. On mor-
phisms, use the inclusion of groups Σ×nm ⊂ Σnm. It induces an inclusion ΓnmHom(V,W ) ⊂
Γn(ΓmHom(V,W )) which is used similarly to above to build a morphism

ΓnmHom(V,W ) Γn(ΓmHom(V,W ))

ΓnHom(G(V ), G(W ))

Hom(F (G(V )), F (G(W ))) .

ΓnG

F

Remark 1.5.6. (F ⊗G) ◦H = (F ◦H)⊗ (G ◦H) for all superfunctors F,G,H.

Example 1.5.7. Superfunctors of degree 0 are just constant functors. For all super vector spaces
V , examples of superfunctors of degree 1 are Hom(V,−) and V ⊗−. In particular, we have the
identity2 I and the parity changeΠ defined in Example 1.4.4. More generally, ⊗n,Sn,Γn,Λn,An

are all superfunctors of degree n. To see it, note by F any of them. Any Σn-equivariant map
f : V ⊗n →W⊗n induces then a well-defined map Ff : F (V )→ F (W ). Composing with (1.5.1)
we have a morphism

ΓnHom(V,W )
'−→ HomkΣn(V ⊗n,W⊗n)→ Hom(FV, FW )

which makes F into a n-homogeneous polynomial superfunctor.

Remark 1.5.8. Sometimes, to be concise we will use the notation Πn to indicate the superfunctor
Π ◦ ... ◦Π composed n times. This coincides with Π if n is odd, with I if n is even. For all
F1, ..., Fn ∈ P there is the identity

(Π ◦ F1)⊗ ...⊗ (Π ◦ Fn) = Πn ◦ (F1 ⊗ ...⊗ Fn) .

1.5.1 Basic properties of P
We introduce the projective and injective objects of our category. First note that P and its
subcategories of homogeneous degree are not abelian: in fact not even svec is, since there is
no natural Z/2Z-grading for the (co)kernel of a non-homogeneous linear map. This obstruction
is removed in Pev by the absence of odd morphisms. Hence, we say that an object F ∈ P
is projective (resp. injective) if the functor HomP(F,−) : Pev → svecev (resp. HomP(−, F ) :
Pev → svecev) is exact.

2We use a bold symbol to distinguish it from the classical identity I ∈ P and from other identity functors
appearing hereafter, which will be noted Id.
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Definition 1.5.9. For a non-negative integer d and a finite-dimensional super vector space V ,
define:

Γd,V := ΓdHom(V,−)

SdV := Sd(V ⊗−) .

They are both homogeneous polynomial superfunctors of degree d, as they are obtained by
composing Γd resp. Sd with Hom(V,−) resp. V ⊗ −. Note that Γd,V = HomΓdV(V,−) by
definition. In particular, Theorem 1.4.10 specialises as follows.

Theorem 1.5.10 (Yoneda lemma in P). There is an isomorphism of super vector spaces

HomPd(Γd,V , F ) ' F (V )

which is natural with respect to V ∈ ΓdV and F ∈ Pd.

As a consequence, Γd,V is a projective object in the category Pd. The Yoneda morphism

Γd,V ⊗ F (V ) −→ F

f ⊗ x 7−→ Ff(x)
(1.5.2)

is surjective under mild hypotheses on the superdimension of V . We are actually going to give a
stronger result, which generalises Theorem 1.1.14 to the super context. For the next definition,
recall by Remark 1.3.9 that ΓdA is a superalgebra whenever A is. Recall also the notation km|n
for a super vector space of superdimension (m,n).

Definition 1.5.11. Letm,n, d ≥ 1. The Schur superalgebra is defined as S(m|n, d) := ΓdEnd(km|n) .

If F ∈ Pd, then F (km|n) has the structure of a finite-dimensional left S(m|n, d)-supermodule
via

S(m|n, d)⊗ F (km|n) −→ F (km|n)

ϕ⊗ v 7−→ Fϕ(v) .

Moreover, if T ∈ HomP(F,G), then Tkm|n is a S(m|n, d)-equivariant map. So, evaluation at
km|n defines a functor

Pd −→ S(m|n, d)− smod . (1.5.3)

Theorem 1.5.12 ([Axt13, Thm 4.2]). Let m,n, d be positive integers such that m,n ≥ d. Then
(1.5.3) gives an equivalence of categories

Pd ' S(m|n, d)− smod

a quasi-inverse being provided by M 7−→ Γd,k
m|n
⊗S(m|n,d) M .

As anticipated, this gives the following important consequence:

Corollary 1.5.13. If m,n ≥ d, Γd,k
m|n

is a projective generator for Pd.

Proof. The Yoneda morphism (1.5.2) coincides with the composite

Γd,k
m|n
⊗ F (km|n) � Γd,k

m|n
⊗S(m|n,d) F (km|n) −→ F

and the right arrow is an isomorphism by Theorem 1.5.12. In particular, the composition is a
surjection.
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1.5.2 Alternative versions of the Yoneda lemma

We now apply the results of Section 1.4 to rewrite the Yoneda lemma in Pev:

Theorem 1.5.14 (Yoneda lemma (II)). The isomorphism of Theorem 1.5.10 rewrites as an
even linear isomorphism

Hom(Pd)ev
(Γd,V ⊕ Π ◦ Γd,V , F ) ' F (V )

where the even part, resp. odd part, of the left-hand side is the summand Hom(Pd)ev (Γd,V , F ),
resp. Hom(Pd)ev (Π ◦ Γd,V , F ).

Proposition 1.5.15 ([Axt13, Prop A.1]). If m,n ≥ d, then Γd,k
m|n
⊕Π◦Γd,k

m|n
is a projective

generator of (Pd)ev.

Besides making explicit the even and odd part of the isomorphism of the Yoneda lemma, this
formulation is also going to be useful later for the definition of extensions in P .

Corollary 1.5.16. The Yoneda morphism (1.5.2) rewrites as

(Γd,V ⊕Π ◦ Γd,V )⊗ F (V ) −→ F

(f + πg)⊗ v 7−→ Ff(v0) + Fg(v1)
(1.5.4)

where v0, v1 are the even and odd part of v.

We give a last, very useful version of the Yoneda lemma at the level of weights. We recall
some basic concepts about representation theory, which the reader can find in detail for example
in [Wat79] and [FS97, §2].

Definition 1.5.17. An algebraic group scheme over k - in the following, simply a scheme - is a
representable covariant functor from the category of commutative k-algebras to the category of
groups. It is hence by definition of the form

G = Hom k−alg(A,−)

for some (unique) algebra A, which is said to represent G. A morphism of schemes ρ : G → H
is a natural transformation between G and H, i.e. a collection of group homomorphisms ρ(A) :
G(A)→ H(A) natural with respect to A.

Definition 1.5.18. If G and H are schemes represented respectively by algebras A and B, the
direct product G×H is defined by (G×H)(A′) := G(A′)×H(A′) and is represented by A⊗B.

Let V be a vector space of dimension n. A classical example of scheme is the general linear
group GL(V ), represented by k[xi,j ,det(xi,j)

−1]1≤i,j≤n. The extreme case n = 1 gives the
multiplicative group Gm := GL1.

Let now G be any algebraic group scheme. A rational representation of G (or rational G-
module) is the data of a finite-dimensional vector space M and a morphism of schemes G −→
GL(M). This is equivalent to giving a collection of k-linear actions

G(A)⊗ (M ⊗A)→M ⊗A

which is natural with respect to A. A rational G-module is simple if it has no nontrivial G-
submodules, semisimple if it decomposes as the direct sum of its simple submodules. There is
the following well-known example.

Theorem 1.5.19. All rational G×nm -modules are semisimple (n ≥ 1).
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We can describe the nontrivial submodules of a rational Gm-module M . In fact, all simple
Gm-submodules of M are of the form

Mr := {m⊗ a ∈M ⊗A such that λ · (m⊗ a) = m⊗ λra} .

for some r ∈ Z. This submodule is rational if and only if r ≥ 0. Therefore, Theorem 1.5.19 states
that M =

⊕
r≥0M

r. Here r is called weight of the representation and Mr is the associated
weight space. Generalising, the weights of G×nm are compositions, i.e. n-uples λ = (λ1, ..., λn) of
non-negative integers, and the weight spaces are of the form

Mλ = {m⊗ a ∈M ⊗A : diag(a1, ..., an+m) · (m⊗ a) = m⊗ (aλ1
1 · · · aλnn )a}

and, again by Theorem 1.5.19, M decomposes into the direct sum
⊕

λM
λ. Note that a weight

space Mλ can possibly be the zero space.

Convention 1.5.20. We will say “λ is a weight of M ” if the weight space Mλ is nonzero.

We specialise that to the context of polynomial superfunctors. Given F ∈ Pd and a finite-
dimensional super vector space V , the super vector space F (V ) is naturally endowed with a
structure of ΓdEnd(V )-supermodule. Equivalently, F induces a morphism of schemes End(V )→
End(F (V )), which restricts to GL(V )→ GL(F (V )). Set now (n,m) = sdim(V ). Then there is
an inclusion of schemes G×n+m

m ⊂ GL(V ). Composing it with the previous morphism, we get a
morphism of schemes G×n+m

m → GL(F (V )). Then F (V ) can be given the structure of a rational
G×n+m
m -module.

Remark 1.5.21. Let us make two little abuses of notation, first by identifying a diagonal matrix
ϕ with γd(ϕ) and secondly by hiding the dependence on an algebra A from the definition of
weight space. Then, if V ' kn|m

F (V )λ = {x ∈ F (V ) | F (diag(a1, ..., an+m))(x) = aλ1
1 · · · a

λn+m

n+m x} . (1.5.5)

Definition 1.5.22. A composition of d in n parts is a composition (λ1, ..., λn) such that λ1 +
...+ λn = d. The set of such elements is denoted by Λ(n, d).

Lemma 1.5.23. Let F ∈ Pd and suppose that λ = (λ1, ..., λn+m) is a weight of F (kn|m). Then
λ1 + ...+ λn+m = d.

Proof. We have γd(diag(a, ..., a)) = adγd(IdV ) by the relations of Γ∗ (Proposition 1.1.5). Con-
sequently

F (γd(diag(a, ..., a)) = ad IdF (V )

by linearity and functoriality of F . Hence, if 0 6= x ∈ F (V )λ, by (1.5.5) we obtain the identity
aλ1+...+λn+mx = adx arbitrarily on a, which gives the assertion.

Example 1.5.24. The weights of the representation kn|m are the 1-compositions εi = (0, ..., 0, 1, 0, ..., 0)
with 1 in position i, for 1 ≤ i ≤ n+m. More generally, the weights of Sd(kn|m) are the compo-
sitions of d in n+m parts.

Definition 1.5.25. Let Λ(n|m, d) := Λ(n + m, d) as a set. For a composition λ ∈ Λ(n|m, d),
set:

Γλ := Γλ1 ⊗ ...⊗ Γλn ⊗ (Γλn+1 ◦Π)⊗ ...⊗ (Γλn+m ◦Π) .

Sλ := Sλ1 ⊗ ...⊗ Sλn ⊗ (Sλn+1 ◦Π)⊗ ...⊗ (Sλn+m ◦Π) .

Given an ordered homogeneous basis {e1, ..., en+m} of kn|m, the one dimensional space
Sλ(kn|m) = k eλ1

1 ...e
λn+m

n+m is exactly the λ-weight space of the representation of Example 1.5.24.
The presence of Π in the definition of Γλ and Sλ is the reason why we put a bar in the notation
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Λ(n|m, d): one should remember to distinguish between the first n and the last m components
of λ. Let V = kn|m. By the exponential property, Γd,V and SdV split then into direct sums

Γd,V '
⊕

λ∈Λ(n|m,d)

Γλ

SdV '
⊕

λ∈Λ(n|m,d)

Sλ .

We are in position to state the “weighted” version of the Yoneda lemma, on the model of [FS97,
Cor. 2.12].

Theorem 1.5.26 (Weighted Yoneda lemma). Let V ' kn|m and F ∈ Pd. Consider the decom-
position of the rational G×n+m

m -module F (V )

F (V ) =
⊕

λ∈Λ(n|m,d)

F (V )λ .

Then, for all λ ∈ Λ(n|m, d), the isomorphism of Theorem 1.5.10 restricts to an isomorphism

HomPd(Γλ, F ) ' F (V )λ .

Proof. Consider a natural transformation T : Γd,V → F . Let {e1, ..., en+m} be an ordered
homogeneous basis of kn|m (i.e. such that the first n elements are even and the last m are
odd). Then the element γd(IdV ) ∈ ΓdEnd(V ) corresponds via the exponential isomorphism
(Proposition 1.3.14) to the element∑

µ∈Λ(n|m,d)

γµ1
(e1)⊗ ...⊗ γµn+m

(en+m) ∈
⊕

µ∈Λ(n|m,d)

Γµ(V ) .

As a consequence, the restricted transformation T |Γλ is sent onto TV (γλ1(e1)⊗...⊗γλn+m(en+m))
by the isomorphism of Theorem 1.5.10. Call this element x. Using the naturality of T , we have

F (diag(a1, ..., an+m))(x) = TV (F (diag(a1, ..., an+m))(γλ1(e1)⊗ ...⊗ γλn+m(en+m)))

= TV ( aλ1
1 ...a

λn+m
n+m (γλ1(e1)⊗ ...⊗ γλn+m(en+m)))

= aλ1
1 ...a

λn+m
n+m x

thus the Yoneda isomorphism maps HomPd(Γλ, F ) into F (V )λ, which proves the theorem.

1.5.3 Kuhn duals
Definition 1.5.27. Let F ∈ Pn. The Kuhn dual of F is the superfunctor F# ∈ Pn defined on
objects by F#(V ) = F (V ∨)∨ and on morphisms by the composition

ΓnHom(V,W ) ' ΓnHom(W∨, V ∨)
F−→ Hom(F (W∨), F (V ∨))

' Hom(F (V ∨)∨, F (W∨)∨) .

The definition extends to F ∈ P by applying the Kuhn dual to each homogeneous component
of F .

Proposition 1.5.28. Kuhn duality commutes with finite direct sums, tensor products and com-
positions. In particular, the functor ⊗n is self-dual.
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Example 1.5.29. Let V be a finite-dimensional super vector space. Using the binatural isomor-
phism

V ∨ ⊗W ' Hom(V,W )

it is immediate to check that the two 1-homogeneous functors V ⊗ − and Hom(V,−) are the
Kuhn duals of each other.

Proposition 1.5.30. Kuhn duality is involutive. Furthermore, (−)# : P → (P−)op is an
equivalence of categories.

Proof. Note by iV : V
'−→ (V ∨)∨ the natural isomorphism (1.2.1). It gives rise to a natural

isomorphism i : I→ I#. For all F ∈ P , the composite

F = I ◦ F ◦ I F◦i−−→ I ◦ F ◦ I# i◦F−−→ I# ◦ F ◦ I# = F##

shows that F## ' F . Moreover, given T ∈ HomP(F,G), its dual transformation is T#
V :=

(TV ∨)∨. By the definitions on linear duals, if U ∈ HomP(G,H), then (U ◦ T )# = (−1)T U T# ◦
U#. That gives the stated category equivalence.

In particular, if F# ' G it follows automatically that G# ' F .

Proposition 1.5.31. Let V ∈ V. Then Γd,V and SdV are the Kuhn duals of each other.

Since Kuhn duality commutes with composition of functors, by Example 1.5.29 it will be
enough to show that Γd and Sd are the Kuhn dual of each other. In the next section we are
actually going to prove a stronger result (Proposition 1.5.39). As in many different contexts, the
proof happens to be carried out much more easily by summing over d and using the bialgebra
structure of these superfunctors. Meanwhile we give an immediate corollary.

Corollary 1.5.32. If m,n ≥ d, Sdkm|n is an injective cogenerator for Pd.

1.5.4 P-algebras
Definition 1.5.33. A P-algebra is a superfunctor A ∈ P endowed with even natural maps
u : k→ A and m : A⊗A→ A which satisfy the usual associativity and unitarity properties.

In other words, (u,m) make A into a P-algebra if and only if (uV ,mV ) make A(V ) into a
superalgebra for all V . A is graded if there is a decomposition A =

⊕
dA

d with respect to which
m is homogeneous.
Remark 1.5.34. Any P-algebra can be seen as a graded P-algebra by its polynomial grading,
i.e. Ad ∈ Pd being its d-th degree part. Indeed, the restriction m : Ad ⊗ Ae → Af can only be
nonzero if f = d+ e.

We say that A is (graded-)commutative if each A(V ) is. A morphism of P-algebras is a
natural map which commutes with u and m.

Definition 1.5.35. A P-coalgebra is a superfunctor A ∈ P endowed with natural maps η :
A→ k and ∆ : A→ A⊗A who satisfy the usual coassociativity and counitarity properties.

As above, a P-coalgebra C is graded if there is a decomposition C =
⊕

d C
d with respect

to which ∆ is homogeneous. Let A ⊗g B be the graded tensor product introduced in Section
1.3. Then a graded P-bialgebra is both a P-algebra and P-coalgebra such that ∆ : A→ A⊗g A
is a morphism of P-algebras. If A is concentrated in even Z-degrees, we speak simply of a
P-bialgebra.
Example 1.5.36. Recalling the notation from Example 1.3.6, T ∗1 and T ∗2 are both P-bialgebras.
In particular so are Γ∗, S∗, Λ∗ and A∗, since they are all sub-bialgebras or quotient bialgebras
of one of them. Specifically, Γ∗ and S∗ are commutative and cocommutative, while Λ∗ and A∗

are graded-commutative and graded-cocommutative.
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Proposition 1.5.37. If A is a P-algebra (resp. coalgebra), then A# is a P-coalgebra (resp.
algebra). Moreover, A is commutative if and only if A# is cocommutative.

Proof. Follows from the fact that Kuhn dual is an equivalence of categories P → (P−)op (Propo-
sition 1.5.30) and that product and coproduct are even maps, hence no sign appears in the
commutative diagrams involving them.

Remark 1.5.38. T ∗1 ' (T ∗2)# as P-bialgebras and vice-versa.
We now show our main couple of Kuhn duals, namely S∗ and Γ∗.

Theorem 1.5.39. S∗ ' (Γ∗)# as P-bialgebras.

Proof. By Proposition 1.5.30, Kuhn dual takes natural injections onto surjections and vice-versa.
Remember by the definitions that Γ∗ is a sub-bialgebra of T ∗2, hence (Γ∗)# is a quotient bialgebra
of T ∗1. Moreover, by Proposition 1.5.37, (Γ∗)# is commutative and cocommutative. It follows
that the quotient map T ∗1 � (Γ∗)# factors through S∗:

T ∗1 (Γ∗)#

S∗
α

and α is a surjective morphism of bialgebras, since the other two are. By Remark 1.3.12 the
source and target of α have equal superdimension when evaluated on a super space V , thus α is
an isomorphism.

1.6 Homological algebra in P
Recall that P is not abelian. The following definition is motivated by the discussion at the
beginning of §1.5.1.

Definition 1.6.1. If F is a polynomial superfunctor, Ext∗P(F,−) is defined as the right derived
functor of HomP(F,−) : Pev → svecev.

In particular Ext0
P(F,−) = HomP(F,−). In the same spirit of Convention 1.5.5, for d-

homogeneous superfunctors F,G we will sometimes write Ext∗Pd instead of the equivalent Ext∗P
just to emphasize the degree.
Example 1.6.2. Set for brevity Ext>0

P (−,−) :=
⊕

i>0 ExtiP(−,−). Then

Ext>0
P (Γd,V ,−) = 0 = Ext>0

P (−,SdV )

for all finite dimensional super vector space V . That comes by the injectivity of SdV , resp.
projectivity of Γd,V .

Extensions inPev are purely even spaces. To distinguish between “even” and “odd” extensions,
we remember of the superdegree distinction made in Proposition 1.5.14 to have:

Ext∗P(F,G)0 ' Ext∗Pev (F,G)

Ext∗P(F,G)1 ' Ext∗Pev (F,Π ◦G) ' Ext∗Pev (Π ◦ F,G) .

Remark 1.6.3. By construction, postcomposition with Π comes out of the Ext:

Ext∗P(F,Π ◦G) ' Π(Ext∗P(F,G)) ' Ext∗P(Π ◦ F,G)

Lemma 1.6.4. The space ExtiP(F,G) is finite-dimensional for all homogeneous superfunctors
F,G and for all i ≥ 0.
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Proof. Say d := degF = degG. Let P∗ be a projective resolution of F . Since by definition strict
polynomial superfunctors take finite-dimensional values, each Pi is a direct factor of a finite
sum of terms like Γd,V . This implies by Theorem 1.5.10 that HomP(Pi, G) is finite-dimensional,
whence in particular its subquotient ExtiP(F,G).

When computing Ext, it is sometimes useful to use conjugation.

Definition 1.6.5. If F ∈ P , we define its conjugate to be FΠ := Π ◦ F ◦Π.

Remark 1.6.6. The operation −Π : Pev → Pev is exact and preserves projectives. Hence for
all F,G ∈ P it induces an even isomorphism Ext∗P(F,G)

'−→ Ext∗P(Π ◦ F ◦ Π, Π ◦ G ◦ Π).
The image of an extension e via this map will be similarly denoted by eΠ. Since conjugation is
involutive, (eΠ)Π = e.

1.6.1 Yoneda product
Let F,G,H ∈ P and let P∗, resp. Q∗, be a projective resolution of F , resp. G. Identify an
element of ExtsP(F,G) with a cocycle Ps → G. By the lifting property of projective objects,
such a cocycle gives rise to a chain map Ps+∗ → Q∗, so in particular to a map Ps+t → Qt.
Composing the latter with a cocycle Qt → H, we obtain a new cocycle Ps+t → H. That yields
a well-defined map

ExtsP(G,H)⊗ ExttP(F,G)
·−−→ Exts+tP (F,H) (1.6.1)

linear and associative, called the Yoneda product. In particular Ext∗P(F, F ) is a superalgebra,
called the Yoneda superalgebra associated to F .
Notation 1.6.7. If ϕ : HomP(G,H) is fixed, the map

Ext∗P(F,G)
ϕ·−−−−→ Ext∗P(F,H)

will be sometimes denoted as Ext(F,ϕ) depending on convenience.
As in the classical case, there is a link between Ext∗P(F,G) and the “extensions of G by F ”.

Precisely, define an n-extension of G by F as an exact sequence E : 0 → G → E1 → ... →
En → F → 0 in which each morphism is homogeneous. Define the parity |E| as the sum of
their degrees modulo 2. Consider the equivalence relation ∼ such that E ∼ E′ if there is a
morphism of complexes E → E′ that is the identity on F and G and whose components are all
homogeneous. Such relation preserves the parity of extensions.

Definition 1.6.8. For n ≥ 1 denote by YextnP(F,G) the super vector space generated by the
equivalence classes of n-extensions of G by F . The superdegree of an element E is given by the
parity |E|. Set by convention Yext0

P(F,G) := HomP(F,G).

Proposition 1.6.9 ([Dru16, Prop. 3.5.1]). There is an even isomorphism of graded super vector
spaces

Ext∗P(F,G) ' Yext∗P(F,G)

under which the Yoneda product (1.6.1) corresponds to the concatenation of extensions.

1.6.2 Cross and cup products
Given superfunctors F1, G1, F2, G2 there is a graded natural map

× : Ext∗P(F1, G1)⊗ Ext∗P(F2, G2) −→ Ext∗P(F1 ⊗ F2, G1 ⊗G2) (1.6.2)

given by tensoring cocycles or equivalently (via Proposition 1.6.9) by tensoring extensions seen
as cochain complexes. This operation is called cross product of extensions. It commutes with
the supertwist in the same way as in the classical situation, as the following lemma shows.
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Lemma 1.6.10. Let F1, G1, F2, G2 ∈ P and let T be the supertwist map (1.2.2). The following
diagram

ExtsP(F1, G1)⊗ ExttP(F2, G2) Exts+tP (F1 ⊗ F2, G1 ⊗G2)

ExttP(F2, G2)⊗ ExtsP(F1, G1) Exts+tP (F2 ⊗ F1, G2 ⊗G1)

×

T Ext(T,T )

×

commutes up to a sign (−1)st.

Proof. Let P∗ → F1 and Q∗ → F2 be projective resolutions and take cocycles f : Ps → G1, g :
Qt → G2. The unique map P∗ ⊗ Q∗ → Q∗ ⊗ P∗ which lifts T at the level of resolutions is
explicitly given by

(−1)ab T : Pa ⊗Qb → Qb ⊗ Pa
for all a, b ≥ 0. Therefore the proof amounts to verifying the identity

T ◦ (f ⊗ g) ◦ T = (−1)f g g ⊗ f .

We do it by inspection on an element p⊗ q ∈ Ps ⊗Qt :

[T ◦ (f ⊗ g) ◦ T ] (p⊗ q) = (−1)p q [T ◦ (f ⊗ g)] (q ⊗ p)
= (−1)p q +g q T (f(q)⊗ g(p))

= (−1)p q +g q +(f +q )(g +p ) g(p)⊗ f(q)

= (−1)f (g +p ) g(p)⊗ f(q)

=
[
(−1)f g g ⊗ f

]
(p⊗ q)

which gives the desired verification.

The cross product behaves well with respect to the Yoneda product · just defined. This is
the content of the following lemma, which is an adaptation of [Yon58, Prop. 1] to the super
framework.

Lemma 1.6.11. Let e ∈ ExtnP(G1, H1), e′ ∈ Extn
′

P (F1, G1), f ∈ ExtmP(G2, H2) and f ′ ∈
Extm

′

P (F2, G2). Then:

(e · e′)× (f · f ′) = (−1)n
′m+e′ f (e× f) · (e′ × f ′) .

If A is a P-algebra, one can apply cross product and multiplication and obtain a map

Ext∗P(C,A)⊗ Ext∗P(C,A) −→ Ext∗P(C ⊗ C,A) (1.6.3)

and, similarly, if C is a P-coalgebra, do the same with comultiplication to have a map

Ext∗P(C,A)⊗ Ext∗P(C,A) −→ Ext∗P(C,A⊗A) . (1.6.4)

Finally, if both conditions on A and C are satisfied, there is a third notion of product

Ext∗P(C,A)⊗ Ext∗P(C,A) −→ Ext∗P(C,A) (1.6.5)

which is associative and hence endows Ext∗P(C,A) with the structure of a graded superalgebra.
When there is no risk of confusion, we will use the same symbol ∪ for (1.6.3), (1.6.4) and
(1.6.5). The following proposition (which can be found in [Dru16, Lemma 3.4.1] and follows
easily from Lemma 1.6.10) shows that the type of commutativity of (1.6.5) depends just on the
commutativity of C and A, other than the cohomological sign. To be concise, set ε(A) = 0 if A
is commutative, ε(A) = 1 if A is graded-commutative, and dually for the cocommutativity of C.

Proposition 1.6.12. Let C be a P-coalgebra and A a P-algebra. Let e ∈ ExtsP(Ci, Ai), f ∈
ExttP(Cj , Aj). Then

e ∪ f = (−1)st+e f + ε(C)·ij+ ε(A)·ij f ∪ e .
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Chapter 2

Additive superfunctors

2.1 The Frobenius twist
We start by recalling the classical version of the Frobenius twist, for which the reader can refer
to [FS97]. Let V be a finite-dimensional vector space and r ≥ 1 an integer fixed throughout.
Let ϕr : k→ k be the pr-th power map.

Definition 2.1.1. The Frobenius twist of V is V (r) := k ⊗ϕr V , i.e. the base change of V along
ϕr. Its elements of the form 1⊗ v are shortly denoted by v(r).

Equivalently, V (r) is the vector space generated by symbols {v(r), v ∈ V } subject to the
relations

(v + w)(r) = v(r) + w(r)

(λv)(r) = λp
r

v(r) .

If {e1, ..., en} is a basis of V , the map ei 7→ e
(r)
i (i = 1, ..., n) defines a non-natural isomorphism

V ' V (r). Frobenius twist commutes with direct sums, duals and tensor products; in particular
Hom(V,W )(r) ' Hom(V (r),W (r)). The latter isomorphism is given explicitly by the formula

Hom(V,W )(r) '−−→ Hom(V (r),W (r))

f (r) 7−→ fr

where by definition fr(v(r)) := (f(v))(r).

Remark 2.1.2. The inclusion V (r) ↪→ Sp
r

(V ), v(r) 7→ vp
r

is linear.

This observation shows how to make the Frobenius twist into a strict polynomial functor.
Namely, at the level of objects it is given by V 7→ V (r), while the structure map on morphisms
is given by the composition

Γp
r

Hom(V,W )→ Hom(V,W )(r) ' Hom(V (r),W (r))

where the first map is the Kuhn dual of the inclusion of Remark 2.1.2.

Definition 2.1.3 (Frobenius twist functor). The polynomial functor just defined is denoted
I(r). It is by construction homogeneous of degree pr.

One of our protagonists is the super version of the Frobenius twist. If V is a super vector
space, the definition of V (r) as an ungraded space is exactly the same as the classical one. If V =

V0⊕V1 is the decomposition in even and odd parts, then V (r)
0 and V (r)

1 are respectively the even

31
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and odd parts of V (r). For all V,W ∈ V , the isomorphism Hom(V (r),W (r)) ' Hom(V,W )(r)

is even. The same formula as in the classical context gives a linear map i : V (r) → Sp
r

(V ).
Therefore, as above, one can define a polynomial superfunctor which is given on objects by
V 7→ V (r) and on morphisms by the composition of even linear maps:

Γp
r

(Hom(V,W ))
i∨−→ Hom(V,W )(r) ' Hom(V (r),W (r)) (2.1.1)

where i∨ is the linear dual of the map i.

Definition 2.1.4 (Frobenius twist superfunctor). The polynomial superfunctor just defined is
denoted I(r) and is homogeneous of degree pr.

The equation (2.1.1) hides a special feature. If v = v0 + v1 is the decomposition of v
into even and odd components, then vp

r

= (v0)p
r

+ (v1)p
r

by the Newton formula. But since
S∗(V1) = Λ∗(V1) (1.3.4), we have (v1)p

r

= 0 and by consequence vp
r

= (v0)p
r

. So the image
of i is contained in the subspace Sp

r

(V0). Dually, this means that i∨ vanishes anywhere but on
Γp

r

(V0), in particular its image is contained in V (r)
0 . This fact implies that (2.1.1) has image in

the even subspace Hom0(V (r),W (r)) = Hom(V
(r)
0 ,W

(r)
0 ) ⊕ Hom(V

(r)
1 ,W

(r)
1 ). Thanks to that,

the formulas
I(r)
0 (V ) = V

(r)
0 , I(r)

1 (V ) = V
(r)
1 ,

define actual polynomial sub-superfunctors of I(r) such that I(r) = I(r)
0 ⊕ I(r)

1 .

Lemma 2.1.5. I(r), I(r)
0 and I(r)

1 are self-dual.

Proof. Straightforward, since the Frobenius twist commutes with linear dual.

The following fact is an easy verification.

Lemma 2.1.6. There are isomorphisms of polynomial superfunctors

Π ◦ I(r)
0 ' I(r)

1 ◦Π , Π ◦ I(r)
1 ' I(r)

0 ◦Π .

2.2 Frobenius precomposition
In §1.5 we saw the general recipe to compose two polynomial superfunctors (which is formally
the same for classical polynomial functors). Thanks to the special features of the Frobenius
twist, we can now perform a hybrid kind of composition: it makes indeed sense to postcompose
I(r)
0 or I(r)

1 by a classical polynomial functor. To see how, we first extend the definition of the
pr-th power map i of the previous subsection.

Notation 2.2.1. The pr-th power map induces a superalgebra homomorphism

S∗(V (r))→ S∗(V )

that we denote i∗. It decomposes into the sum of maps in : Sn(V (r)) → Snp
r

(V ), in particular
i1 = i. We have in particular a dual map i∨∗ : Γ∗(V )→ Γ∗(V (r)) which decomposes as the sum
of i∨n : Γnp

r

(V )→ Γn(V (r)).

The assertions in the next lemma are proven in [Dru16, §2.7].

Lemma 2.2.2. i∨∗ is an algebra homomorphism determined on generators by

i∨∗ (z) =

{
γpe−r (v) if z = γpe(v) for some e ≥ r and v ∈ V0

0 otherwise.
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As a consequence, i∨∗ has image in the even subspace of Γ∗(V (r)). This implies in particular
that I(r)

0 and I(r)
1 have image in the category V0 and V1 respectively (the full subcategories on

purely even, resp. purely odd spaces). This enables us to make the following definition.

Definition 2.2.3. For F ∈ Pd, the polynomial superfunctors F (r)
0 and F (r)

1 are defined in the
following way:

F
(r)
0 : Γdp

r

V
i∨d,0−−→ ΓdV0 ' ΓdV F−→ V ' V0 ⊂ V (2.2.1)

F
(r)
1 : Γdp

r

V
i∨d,1−−→ ΓdV1 ' ΓdV F−→ V ' Vd ⊂ V . (2.2.2)

where:

• i∨d,` : Γdp
r

V → ΓdV is the functor defined, for ` ∈ {0, 1}, by V 7→ V
(r)
` on objects and by

i∨d on Hom.

• Vd := V0 if d is even and V1 if d is odd. The reason for this distinction will be clear later
on.

Observe that one can optionally compose (2.2.1) and (2.2.2) by Π, which gives sense to the
precomposition of F by respectively I(r)

0 ◦Π and I(r)
1 ◦Π.

Remark 2.2.4. This definition is more strongly related to the general recipe of composition in
§1.5 than it seems. If F is a super functor of degree n, we could form the composite

F (r) : Γnp
r

V i∨n−→ ΓnV F−→ V (2.2.3)

as above (but without the restrictions to ΓnV0 or ΓnV1). We claim that this coincides with the
original definition of F (r) = F ◦ I(r). There is indeed an evident commutative diagram

Snp
r

(V ) Sn(Sp
r

(V ))

Sn(V (r))

Sn(i)
in

where the top map is multiplication. Note that the latter coincides with the map induced by the
inclusion Σ×npr ⊂ Σprn at the level of coinvariants. This gives by duality a commutative diagram

Γnp
r

(V ) Γn(Γp
r

(V ))

Γn(V (r))

i∨n
Γn(i∨)

where the above arrow is induced by the inclusion Σ×npr ⊂ Σprn at the level of invariants. But
the right-down path on Hom spaces is exactly what appears in the composition defined in §1.5.
Therefore, it coincides with (2.2.3) as stated.

Example 2.2.5. Apply the exponential isomorphisms (1.3.4)-(1.3.7) to a twisted space V (r) =

V
(r)
0 ⊕ V

(r)
1 . In this case, since r ≥ 1, such decomposition is natural with respect to V , as
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explained at the end of §2.1 (this is a rephrasing of the fact that there exist superfunctors I(r)
0

and I(r)
1 ). As a consequence, we have isomorphisms of P-algebras:

S∗ ◦ I(r) ' S∗(r)0 ⊗ Λ
∗(r)
1 ,

Γ∗ ◦ I(r) ' Γ
∗(r)
0 ⊗ Λ

∗(r)
1 ,

Λ∗ ◦ I(r) ' Λ
∗(r)
0 ⊗g S∗(r)1 ,

A∗ ◦ I(r) ' Λ
∗(r)
0 ⊗g Γ

∗(r)
1 .

Moreover, the following relations can be verified straightforwardly: if d is odd,

S
d(r)
1 ' Π ◦ Sd(r)

0 ◦Π,

Λ
d(r)
1 ' Π ◦ Λ

d(r)
0 ◦Π,

Γ
d(r)
1 ' Π ◦ Γ

d(r)
0 ◦Π,

(2.2.4)

while if d is even

S
d(r)
1 ' Sd(r)

0 ◦Π,

Λ
d(r)
1 ' Λ

d(r)
0 ◦Π,

Γ
d(r)
1 ' Γ

d(r)
0 ◦Π.

(2.2.5)

In the notation of Remark 1.5.8, this can be rewritten more concisely as

S
d(r)
0 ◦Π ' Πd ◦ Sd(r)

1 (2.2.6)

and similarly for Λ and Γ.
This interchangeability between twist and parity shifts is actually true for any classical func-

tor.

Proposition 2.2.6. Let F ∈ Pd and ` ∈ {0, 1}. Then there is a natural isomorphism

F
(r)
` ◦Π ' Πd ◦ F (r)

`−1

where Πd = Π ◦ ... ◦Π for d times, as in Remark 1.5.8.

Proof. By (2.2.4) and (2.2.5) this is the case if F = Sd. Thanks to Remarks 1.5.6 and 1.5.8 we
deduce the validity of the statement for F = Sλ with λ a composition. Hence, it is true for all
injectives. Since the two sides are exact functors with respect to F , the result follows by taking
injective coresolutions.

2.2.1 Vanishing property
We saw that the Frobenius superfunctors all have a particular behaviour on morphisms, namely
they vanish on a big part of them. It could be useful to understand if they keep this property
when post-composed with a polynomial functor.

Definition 2.2.7. Let V ∈ V , d ≥ 0 and recall the decomposition ΓdV '
⊕d

a=0 Γd−a(V0) ⊗
Λa(V1). For a ∈ {0, ..., d}, an element belonging to the a-summand is said to be of parity a.

By definition, reducing this Z-grading modulo 2 gives the Z/2Z-grading that was introduced
in Section 1.3.

Proposition 2.2.8. Let F ∈ Pd and A ∈ {I(r)
0 , I(r)

1 , I(r)
0 ◦Π, I

(r)
1 ◦Π}. If f ∈ Γdp

r

Hom(V,W )
has parity > 0, then (F ◦A)(f) = 0.
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Proof. For all the listed A, by definition (F ◦ A)(f) = F (i∨d (f)) where we recall that i∨d :

Γdp
r

(Hom(V,W )) → Γd(Hom0(V,W )(r)) is the dual of the pr-th power map. If f has parity
0 < a ≤ dpr, by (1.3.5) it can be written as a sum of terms of the form

γs1(f1) · ... · γas(sd−a) · g1 · ... · ga
with g1, ..., ga ∈ Hom1(V,W ). But Lemma 2.2.2 says that i∨∗ kills g1, ..., ga and commutes with
products. Hence i∨(f) = 0 and in particular (F ◦A)(f) = 0.

2.2.2 Fully faithfulness
In this subsection we prove that the Frobenius precomposition functors are fully faithful. Set:

Φr := − ◦ I(r)
0 : P −→ P

Φr := − ◦ I(r)
1 : P −→ P .

By Convention 1.5.5, we may restrict our attention to homogeneous functors.

Theorem 2.2.9 (Fully faithfulness of Φr). Let F ∈ Pd and λ ∈ Λ(n, d). There is a chain of
even isomorphisms (where the left-hand side is considered as purely even)

HomPd(F, Sλ)
'−→ HomPdpr (F

(r)
0 , S

λ(r)
0 )

'−→ HomPdpr (F
(r)
0 ,Sp

rλ) (2.2.7)

the first one being induced by Φr and the second by the inclusion S
λ(r)
0 ↪→ Sp

rλ. Hence, Φr is
fully faithful: for all F,G ∈ P it induces an isomorphism

HomPd(F,G) ' HomPdpr (F
(r)
0 , G

(r)
0 ) . (2.2.8)

Proof. We prove first the injectivity of (2.2.8). Let T ∈ HomPd(F,G) be such that Φr(T ) = 0:
in other words, this means that TV is zero whenever V = W

(r)
0 for some finite-dimensional super

vector space W . It means in particular that TV (r) = 0 for all finite-dimensional vector spaces V .
Consider now a (non-natural) isomorphism ϕ : V

'−−→ V (r). Then γd(ϕ) ∈ HomΓdV(V, V (r)) is
an isomorphism, hence so are F (γd(ϕ)) and G(γd(ϕ)). By naturality of T , the diagram

F (V ) G(V )

F (V (r)) G(V (r))

TV

F (γd(ϕ)) G(γd(ϕ))

T
V (r)

commutes. Since the vertical arrows are isomorphisms and the lower arrow is zero by hypothesis,
by arbitrariness of V we deduce that T = 0. This proves that (2.2.8) is injective, i.e. Φr is faithful.
In particular, the first map of the composition (2.2.7) is an inclusion.

The second map is induced by the pr-th power map S
λ(r)
0 ↪→ Sp

rλ. Since the latter is an
inclusion, the induced map is an inclusion as well by left exactness of HomP(F

(r)
0 ,−).

Therefore the whole composition is injective. By Theorem 1.5.26 we know that the first and
last Hom space are of the same superdimension - namely sdim(F#(kn)λ) - thus the composition
is an isomorphism as stated. In particular, this proves that (2.2.8) is an isomorphism whenever
G is injective. For a general G, take a coresolution G ↪→ J∗ and form the commutative diagram

HomP(F,G) HomP(F
(r)
0 , G

(r)
0 )

HomP(F, J∗) HomP(F
(r)
0 , J

∗(r)
0 ) .

Φr

Φr
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By the previous part of the proof, the lower arrow is an isomorphism in each degree. Note
that, even if the coresolution J∗(r)0 is not injective, we have nevertheless H0HomP(F

(r)
0 , J

∗(r)
0 ) '

HomP(F
(r)
0 , G

(r)
0 ). Hence the upper arrow is an isomorphism as well.

Theorem 2.2.10 (Fully faithfulness of Φr). Let F ∈ Pd and λ ∈ Λ(n, d). There is a chain of
isomorphisms

HomPd(F, Sλ)
'−→ HomPdpr (F

(r)
1 , S

λ(r)
1 )

'−→ HomPdpr (F
(r)
1 ,Π ◦ Sp

rλ ◦Π) (2.2.9)

the first one being induced by Φr and the second one having parity equal to d+ 1 mod 2. Hence,
Φr is fully faithful: for all F,G ∈ P it induces an isomorphism

HomPd(F,G) ' HomPdpr (F
(r)
1 , G

(r)
1 ) . (2.2.10)

Proof. By a similar argument to that used in the proof of Theorem 2.2.9, one proves that (2.2.10)
is injective, hence in particular that the first map in (2.2.9) is an inclusion. Now let us consider
the second map of (2.2.9). By (2.2.6), applying conjugation to the even inclusion Sλ(r)

0 ↪→ Sp
rλ

produces an even inclusion Π ◦Sλ(r)
0 ◦Π ↪→ Π ◦Sp

rλ ◦Π. We want to rewrite the source. Using
Remarks 1.5.6 and 1.5.8, as well as (2.2.6), we have

Π ◦ Sλ(r)
0 ◦Π = Πn+1 ◦

[
(Π ◦ Sλ1(r)

0 ◦Π)⊗ ...⊗ (Π ◦ Sλn(r)
0 ◦Π)

]
' Πn+1 ◦

[
(Πλ1+1S

λ1(r)
1 )⊗ ...⊗ (Πλn+1S

λn(r)
1 )

]
= Πn+1 ◦Π

∑n
i=1(λi+1) ◦ Sλ(r)

1

= Πd+1S
λ(r)
1

since
∑n
i=1(λi+1) = n+d. This means that conjugation induces an inclusion Sλ(r)

1 ↪→ Π◦Sp
rλ◦Π

of parity d+ 1, as asserted. Now, since the functor HomP(F
(r)
1 ,−) is left exact, the second map

of the composition is an inclusion, hence the whole (2.2.10) is an inclusion. Remembering that
S∗ ◦Π = S∗Πk, we have by the Yoneda lemma

sdim(HomP(F
(r)
1 ,Π ◦ Sp

rλ ◦Π)) = sdim(HomP(Π ◦ F (r)
1 ,Sp

rλ
Πk ))

= sdim(ΠF#(kn(r))p
rλ)

= sdim(ΠF#(kn)λ)

= sdim(ΠHomP(F, Sλ)) .

In particular the source and target of (2.2.10) have the same dimension as ungraded spaces.
This is enough to deduce that the composite is an isomorphism. In particular so is Φr. This
proves fully faithfulness when G is injective. The general case follows as in the proof of Theorem
2.2.9.

As a corollary, we have an interesting vanishing lemma. We say that a composition µ ∈
Λ(m|n, d) is purely even is λm+1 = ... = λm+n = 0 and that it is purely odd if λ1 = ... = λm = 0.

Corollary 2.2.11. Let µ ∈ Λ(m|n, d).

• If µ is not divisible by pr or is not purely even, then HomP(F
(r)
0 ,Sµ) = 0.

• If µ is not divisible by pr or is not purely odd, then HomP(F
(r)
1 ,Sµ) = 0.
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Proof. By the Yoneda lemma, the super vector space HomP(F, Sdkm) has the same superdi-
mension as HomP(F

(r)
0 ,Sdp

r

km|n), namely equal to sdim(F#(km)). Decomposing both via the
exponential property and computing the superdimensions, we deduce that∑

λ∈Λ(m,d)

sdim(HomP(F, Sλ)) =
∑

µ∈Λ(m|n,dpr)

sdim(HomP(F
(r)
0 ,Sµ)) .

On the other hand, the isomorphism (2.2.7) implies in particular that∑
λ∈Λ(m,d)

sdim(HomP(F, Sλ)) =
∑

λ∈Λ(m|0,dpr)

sdim(HomP(F
(r)
0 ,Sp

rλ))

which forces HomP(F
(r)
0 ,Sµ) to vanish whenever µ is not a pr-multiple of a composition in

Λ(m, d). This proves the first statement. The second one follows by an analogous reasoning
from Theorem 2.2.10.

2.2.3 An exponential formula on Ext

In this subsection we prove a super analogue of [FS97, Prop. 5.2]. It is a result that allows
to compute the extensions between a tensor product of superfunctors and twisted symmetric
powers. We first state a key lemma about the weights of a twisted functor.

Lemma 2.2.12. Let F ∈ Pd and m,n ≥ 0.

• The weights of F (r)
0 (km|n) = F (km(r)) are purely even and divisible by pr.

• The weights of F (r)
1 (km|n) = F (kn(r)) are purely odd and divisible by pr.

Proof. By Theorem 1.5.26 and Kuhn duality, G(V )λ ' HomP(G#,Sλ) for any G ∈ P and any
composition λ. The result follows then by Corollary 2.2.11.

Theorem 2.2.13. Let F,G be strict polynomial superfunctors of degree s, t respectively, such
that s+ t = dpr. Then

• Ext∗P(F ⊗G, (SdV )
(r)
` ) = 0 if s, t are not divisible by pr.

• If s = prs′ and t = prt′ there is a isomorphism

Ext∗P(F ⊗G, (SdV )
(r)
` ) ' Ext∗P(F, (Ss

′

V )
(r)
` )⊗ Ext∗P(G, (St

′

V )
(r)
` )

induced by cup product, in particular natural in all variables.

Proof. By Proposition 2.2.6, it suffices to treat the case ` = 0. We first prove the assertion for
F,G projective, say F = Γλ and G = Γµ for λ ∈ Λ(m|n, s) and µ ∈ Λ(m′|n′, t). In particular
F ⊗G is again projective, so that the Ext isomorphism reduces to a Hom isomorphism. Define
now (λ, µ) ∈ Λ(m+m′|n+ n′, s+ t) as the composition

(λ, µ) := (λ1, ..., λm, µ1, ..., µm′ , λm+1, ..., λm+n, µm′+1, ..., µm′+m′) .

Note that F ⊗G ⊂ Γdp
r,km+m′|n+n′

is the direct factor corresponding to (λ, µ). By the Weighted
Yoneda lemma (Theorem 1.5.26) we have an isomorphism

HomP(F ⊗G, (SdV )
(r)
0 ) ' Sd(V ⊗ km+m′(r))(λ,µ) .

The action of G×m+m′+n+n′

m on Sd(V ⊗ km+m′(r)), has only weights divisible by pr (Lemma
2.2.12). As a consequence, both s and t are forced to be multiples of pr or the Hom space is
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zero. This proves the first point. Suppose then λ = prλ′, µ = prµ′. Again by the Weighted
Yoneda lemma, there are isomorphisms fitting in a commutative diagram

HomP(F, (SsV )
(r)
0 )⊗HomP(G, (StV )

(r)
0 ) Sλ

′
(V ⊗ km(r))⊗ Sµ′(V ⊗ km′(r))

HomP(F ⊗G, (SdV )
(r)
0 ) Sd(V ⊗ km+m′(r))(λ,µ)

'

'

'

where the right map is the multiplication m and the left map is, by direct inspection, equal to
m ◦ (−1 ⊗ −2). But the latter is exactly the definition of cup product at the Hom level, hence
the second point follows. If F,G are general superfunctors, take P∗, Q∗ projective resolutions.
Then P∗ ⊗ Q∗ is a projective resolution of F ⊗ G. Since the cup product of extensions comes
from tensoring cocycles, if we apply the previous computations to HomP(P∗ ⊗Q∗, (SdV )

(r)
0 ) the

result follows.

Corollary 2.2.14. Let `,m ∈ {0, 1} and X = Γ or S. Cup product induces then a natural
isomorphism

Ext∗P(X
λ(r)
` , (SdV )(r)

m ) '
⊗
i

Ext∗P(X
λi(r)
` , (SλiV )(r)

m ) .

2.3 Additive superfunctors
In this section we describe a class of superfunctors containing Frobenius twists.

Definition 2.3.1. A homogeneous polynomial superfunctor F is additive if there is an isomor-
phism F (V ⊕W ) ' F (V )⊕ F (W ) natural in V,W .

It is sometimes useful to make such isomorphism explicit. The next lemma shows that it is
always possible. Let iV : V ↪→ V ⊕W and iW : W ↪→ V ⊕W denote the canonical inclusions.

Lemma 2.3.2. A homogeneous polynomial superfunctor F is additive if and only if the natural
transformation (a priori injective)

F (V )⊕ F (W )
F (iV )+F (iW )−−−−−−−−−→ F (V ⊕W )

is an isomorphism.

Proof. The “if” part is obvious. To prove the other one, suppose that F is additive and call
ΘV,W the isomorphism of Definition 2.3.1. Its naturality gives commutative diagrams

F (V )⊕ F (W ) F (V ⊕W )

F (V ) F (V )

ΘV,W

iF (V )

ΘV,0

F (iV )

F (V )⊕ F (W ) F (V ⊕W )

F (W ) F (W )

ΘV,W

iF (W )

Θ0,W

F (iW )

which together yield a commutative triangle

F (V )⊕ F (W ) F (V ⊕W )

F (V )⊕ F (W ) .

ΘV,W

ΘV,0+Θ0,W

F (iV )+F (iW )
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By hypothesis, the two left-most arrows of this last diagram are isomorphisms. Hence F (iV ) +
F (iW ) is an isomorphism too, as we had to show.

Example 2.3.3. I andΠ are the easiest examples of additive superfunctors. One sees immediately
that so are the Frobenius twists I(r)

0 , I(r)
1 and I(r). In the next section we will prove the fact

(absolutely nontrivial) that any additive superfunctor is built from these ones.

Additive superfunctors have an important homological property, often referred to as Pi-
rashvili’s vanishing lemma, since it was first proved [Pir88] by Pirashvili in the context of non-
strict functors.

Lemma 2.3.4. [Dru16, Fri03] Let A := P or P. Let A,F,G ∈ A be such that A is additive and
F,G are reduced, i.e. F (0) = G(0) = 0. Then

Ext∗A(A,F ⊗G) = Ext∗A(F ⊗G,A) = 0 .

2.3.1 Classification of additive superfunctors

We dedicate this section to a theorem that classifies all additive superfunctors as sums of inde-
composable ones. The theorem is precise: we know completely such indecomposables as well as
their occurrence in the decomposition.

Theorem 2.3.5. Let A be an additive homogeneous superfunctor of degree d. Then d = pr for
some r ≥ 0 and

1. if r = 0, then A decomposes as a direct sum of copies of the superfunctors I and Π;

2. if r > 0 then A decomposes as a direct sum of copies of the superfunctors I(r)
0 , I(r)

1 , I(r)
0 ◦Π

and I(r)
1 ◦Π.

Moreover, the number of copies of I(r)
0 (resp. I(r)

0 ◦Π, I(r)
1 ◦Π, I(r)

1 ) in the decomposition is equal
to the dimension of the vector space A(k)0 (resp. A(k)1, A(Πk)0, A(Πk)1, where Πk := k0|1).
For r = 0 the number of copies of I (resp. Π) is equal to the dimension of A(k)0 (resp. A(k)1).
In particular, the decomposition of A is unique up to isomorphism.

The proof of this result will pass through several steps. We follow the approach used in
[Tou17] to classify the additive functors in P. We start by pointing out a useful property of
additive superfunctors. For the rest of the section, we keep the already introduced notation
Πk = k0|1.

Proposition 2.3.6. Let F,G ∈ P be superfunctors and suppose that F is additive (resp. that G
is additive). Let ϕ : F → G be a natural transformation between them. Then ϕ is a monomor-
phism (resp. epimorphism) if and only if ϕk : F (k) → G(k) and ϕΠk : F (Πk) → G(Πk) are
monomorphisms (resp. epimorphisms).

Proof. One implication is obvious. For the other one, we only treat the case of a monomorphism,
the other one being dual. We have then to check that ϕV : F (V ) → G(V ) is injective for any
V ∈ V . Choose a homogenous basis to identify V ' km|n. Then, by naturality of ϕ and
additivity of F , we can factor ϕV by

F (V ) ' F (km|n) ' F (k)⊕m ⊕ F (Πk)⊕n ↪→ G(k)⊕m ⊕G(Πk)⊕n ↪→ G(V )

where the middle arrow is a sum of ϕk and ϕΠk, which are by hypothesis monomorphisms,
and the final inclusion is given by functoriality on the inclusions k,Πk ⊂ V . The assertion
follows.
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Corollary 2.3.7. Let F,G ∈ P be additive and let ϕ : F → G be a natural transformation.
Then ϕ is an isomorphism if and only if ϕk : F (k)→ G(k) and ϕΠk : F (Πk)→ G(Πk) are.

Set now d ≥ 1. Let Qd denote the superfunctor defined as the cokernel of the natural map
induced by multiplication in Γd

d−1⊕
k=1

Γk ⊗ Γd−k −→ Γd . (2.3.1)

Note that Q1 = I, since in that case Γ1 = I and the direct sum is equal to zero.

Lemma 2.3.8. 1. Qd is an additive superfunctor.

2. Qd = 0 if d is not a power of p.

3. Qpr (k) ' k for all r ≥ 0.

4. Qd(Πk) ' Πk if d = 1 and zero otherwise.

Proof. We start by point (4): it follows from the fact that Q1 = I and Γd(Πk) = Λd(k) = 0
if d > 1. Let us now prove point (1). By Remark 1.3.14 multiplication induces a natural
isomorphism

⊕d
k=0 Γ

k(V ) ⊗ Γd−k(W ) ' Γd(V ⊕W ). Since (2.3.1) is also the multiplication
map, the cokernel lets only survive the first and last direct summands, giving then a natural
isomorphism Qd(V ⊕W ) ' Qd(V )⊕Qd(W ). To prove points (2) and (3), recall that Γi(k) ' k
for any i, so that the composite

k ' Γk(k)⊗ Γd−k(k)
mult−−−→ Γd(k) ' k

is equal to multiplication by
(
d
k

)
by Proposition 1.1.5. Then Qd(k) is the quotient k/ndk where

nd = gcd1≤k≤d
(
d
k

)
. It is known [Tou17, Lemma 3.14] that nd = 1 if d is not a prime power,

hence in this case Qd(k) = 0. Using point (4) and additivity, Qd = 0. Otherwise, if d is a prime
power, nd is equal to p. That completes the proof.

Let F be a superfunctor of degree d. Recall that Γd,k = Γd and Γd,Πk ' Γd ◦Π, so that the
Yoneda maps (1.5.4) yield morphisms

(Γd ⊕Π ◦ Γd)⊗ F (k) −→ F ,

(Γd ◦Π⊕Π ◦ Γd ◦Π)⊗ F (Πk) −→ F ,
(2.3.2)

which can be decomposed into four morphisms

Γd ⊗ F (k)0 −→ F ,

Π ◦ Γd ⊗ F (k)1 −→ F ,

(Γd ◦Π)⊗ F (Πk)0 −→ F ,

(Π ◦ Γd ◦Π)⊗ F (Πk)1 −→ F .

(2.3.3)

Now evaluate the first two ones on k and the second two ones on Πk. By the explicit formula
in (1.5.4), the direct factor Γd(k) ⊗ F (k)0 is mapped onto the even part F (k)0 ⊂ F (k), and
similarly for the other ones:

Γd(k)⊗ F (k)0 −→ F (k)0 ,

Π ◦ Γd(k)⊗ F (k)1 −→ F (k)1 ,

Γd(k)⊗ F (Πk)0 −→ F (Πk)0 ,

Π ◦ Γd(k)⊗ F (Πk)1 −→ F (Πk)1 .

(2.3.4)
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Since Γd(k) ' ΓdEnd(k) is spanned by the identity, the morphisms (2.3.4) are immediately
isomorphisms due to the explicit formula of the Yoneda maps (1.5.4).

Suppose from now that F is additive. Let us go back for a moment to the natural maps
(2.3.3). Precompose them by the multiplication map (2.3.1), duly composed with Π where
needed. The composite map is zero by Lemma 2.3.4, thus the morphisms (2.3.3) factor through
natural maps

Qd ⊗ F (k)0 −→ F ,

Π ◦Qd ⊗ F (k)1 −→ F ,

(Qd ◦Π)⊗ F (Πk)0 −→ F ,

(Π ◦Qd ◦Π)⊗ F (Πk)1 −→ F .

(2.3.5)

As we did before, evaluate the first two ones on k and the second two ones on Πk to get

Qd(k)⊗ F (k)0 −→ F (k)0 ,

Π ◦Qd(k)⊗ F (k)1 −→ F (k)1 ,

Qd(k)⊗ F (Πk)0 −→ F (Πk)0 ,

Π ◦Qd(k)⊗ F (Πk)1 −→ F (Πk)1 .

(2.3.6)

The morphisms (2.3.6) are isomorphisms because they are the factorisation of the isomorphisms
(2.3.4) through the quotient map Γd(k)→ Qd(k).

Proposition 2.3.9. Let F be an additive superfunctor of degree d > 1. Then there is a natural
isomorphism

F ' Qd ⊗ F (k)0 ⊕ (Π ◦Qd)⊗ F (k)1

⊕ (Qd ◦Π)⊗ F (Πk)0 ⊕ (Π ◦Qd ◦Π)⊗ F (Πk)1 .

Proof. The candidate isomorphism is the sum of the four natural morphisms (2.3.5). Lemma
2.3.8 and isomorphisms (2.3.6) imply that it is an isomorphism when evaluated on k and Πk,
thus the assertion follows from Corollary 2.3.7.

The analogous statement of Proposition 2.3.9 for functors of degree 1 requires a slight mod-
ification. We need the following:

Lemma 2.3.10. Let F be a strict polynomial superfunctor of degree 1. Then there exists an
odd isomorphism F (k) ' F (Πk).

Proof. By hypothesis F is defined on morphisms by an even linear map

FV,W : Hom(V,W ) −→ Hom(F (V ), F (W )) .

Let π : k→ Πk, π′ : Πk→ k be the parity change maps. Clearly π′ ◦ π = Idk and π ◦ π′ = IdΠk.
Since F is by definition even as a functor V → V , by functoriality F (π) : F (k) → F (Πk) is an
odd isomorphism with inverse F (π′).

Proposition 2.3.11. Let F be an additive superfunctor of degree 1. Then there is a natural
isomorphism

F ' I⊗ F (k)0 ⊕ Π⊗ F (k)1 .

Proof. The natural morphism is given by the sum of the first two ones in (2.3.5) (recall that
Q1 = I). It is clearly an isomorphism when evaluated on k, and it is also when evaluated on Πk
by Lemma 2.3.10. Thus it is an isomorphism by Corollary 2.3.7.
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We now handle the case of additive superfunctors of any degree. The only thing left is to
identify Qd.

Proposition 2.3.12. Qd = 0 if d is not a power of p. If d = pr, then Qd ' I(r)
0 .

Proof. If d is not a power of p, Lemma 2.3.8(1) ensures that Qd = 0. Otherwise, if d = pr,
simply note that I(r)

0 vanishes on purely odd spaces and sends k onto itself (up to isomorphism).
The statement follows then by applying Proposition 2.3.9 to F = I(r)

0 .

We can finally gather the results of the section to prove the classification theorem.

Proof of Theorem 2.3.5. Propositions 2.3.9 and 2.3.12 imply in particular that a nonzero additive
superfunctor has degree pr. If r = 0, it is isomorphic to a direct sum of copies of I and Π by
Proposition 2.3.11; if r > 0, it is isomorphic to a direct sum of copies of I(r)

0 , Π ◦ I(r)
0 , I(r)

0 ◦Π
and Π◦I(r)

0 ◦Π by Proposition 2.3.9. The statement follows then by the isomorphisms Π◦I(r)
1 '

I(r)
0 ◦Π (Lemma 2.1.6) and Π ◦Π = I.

Theorem 2.3.5 is a powerful tool: whenever one makes a statement about an additive super-
functor, it is enough to prove it for the indecomposable superfunctors {I(r)

0 , I(r)
1 , I(r)

0 ◦Π, I
(r)
1 ◦Π}

and to show that its validity is preserved by direct sums. For example we have the following
easy fact.

Lemma 2.3.13. Additive superfunctors are self-dual. In particular, for all additive A,B we
have Ext∗P(A,B) ' Ext∗P(B,A).

Proof. I and Π are manifestly self-dual, while I(r)
0 and I(r)

1 by Lemma 2.1. Moreover, Kuhn
dual commutes with the direct sum of superfunctors. The assertion follows then from Theorem
2.3.5.

For deeper applications, we introduce the precomposition by an additive superfunctor.

2.3.2 Precomposition by a general additive superfunctor

We are in condition to define precomposition by a general additive (homogeneous) superfunctor
A of degree strictly greater than 1. To explain that, we start by a more general definition that
we will use all along the manuscript. Consider the category V∗ of finite dimensional Z-graded
vector spaces and morphisms which preserve the gradings. If E∗ ∈ V∗ and F ∈ P, one can define
F (E∗) ∈ V∗ in the following way [Tou12, §2.5].

Definition 2.3.14. Let E∗ be a finite-dimensional graded vector space and F ∈ P. We define
F (E∗) this way:

• F (E∗) := F (E) as an ungraded vector space;

• To put the grading, let the multiplicative group Gm act on E∗ with weight i on Ei. Then
by functoriality there is an action of Gm on F (E∗) and the latter decomposes in its weight
spaces by semisimplicity. We let then F (E∗)i be the i-th weight space with respect to this
action.

If f : E∗ → E′∗ is a morphism in V∗, then Ff sends each F (E∗)i on F (E′∗)i, hence it is a
morphism in V∗ too. In this way F becomes a linear functor Γ∗V∗ → V∗.
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Example 2.3.15. Fix d = degF and E∗ =
⊕n

i=0 kei with deg(ei) = εi. Then F (E∗) =⊕
λ∈Λ(n,d) F

λ as in Definition 1.5.5. Set the degree of a composition to be |λ| :=
∑n
i=0 εiλi.

Then the Z-grading of Definition 2.3.14 on F (E∗) is induced by the degree of compositions:

F (E∗)i =
⊕
|λ|=i

Fλ .

This is very intuitive if one thinks of the special case F = Sd.

A super vector space can be seen as a Z-graded vector space with V0 in degree 0, V1 in
degree 1 and zero elsewhere. This gives an inclusion of categories Vev ⊂ V∗, as well as a functor
V∗ → Vev reducing gradings modulo 2. In particular we can restrict this construction to make
F into a linear functor ΓdVev → Vev.

Now let A be an additive superfunctor of degree > 1. By Theorem 2.3.5, its degree is pr for
some r > 0 and it can be written as a direct sum of copies of I(r)

0 , I(r)
1 and their precomposition

by Π. From this and (2.1.1) we deduce that the image of A is contained in Vev. Hence the
following even linear composition makes sense:

F ◦A : Γdp
r

V → ΓdVev
F−→ Vev ⊂ V

where the first map is given by A at the object level and by

Γdp
r

Hom(V,W ) ⊂ Γd(Γp
r

Hom(V,W ))
Γp
r
A−−−→ ΓdHom(A(V ), A(W ))

at the morphism level. Note that, by Remark 2.2.4, this composition consists of a sum of copies
of i∨d . Summing up, we have the following.

Proposition 2.3.16. Let A be an additive superfunctor of degree pr, r > 0. Then A restricts to
a superlinear functor Γp

r

V → Vev. In particular, precomposition by A yields an exact functor

− ◦A : Pd → (Pdpr )ev . (2.3.7)

We call ΦA this precomposition functor. Explicitly, at the level of objects, F (A(V )) is
computed by considering A(V ) as an ungraded space. Let then π : V → V be the automorphism
v → (−1)v v. Then the Z/2Z-grading on F (A(V )) is defined by setting in superdegree i the
(−1)i-eigenspace of the action of F (γd(Aπ)) : F (A(V )) → F (A(V )). At the morphisms level,
one just applies (2.1.1) to each indecomposable factor of A (possibly composing by Π). In
particular, using Theorem 2.3.5 one can generalise Proposition 2.2.8.

Proposition 2.3.17. Let F ∈ Pd and let A ∈ Ppr be an additive superfunctor. If a morphism
f ∈ Γdp

r

Hom(V,W ) has parity > 0 (according to Definition 2.2.7), then (F ◦A)(f) = 0.

Such property gives an easier access to many proofs. In first instance, we show that, for
a fixed F ∈ Pd, postcomposition by F yields a functor from the full subcategory of additive
superfunctors to P .

Lemma 2.3.18. Let F ∈ Pd. Let A,B ∈ Ppr be additive and T : A → B be an even natural
transformation. Then the collection of maps

(FT )V := F (γd(TV )) : F (A(V ))→ F (B(V ))

defines an even natural transformation FT : F ◦ A → F ◦ B. This construction is compatible
with composition of transformations.
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Proof. Compatibility with composition is explicit by the defining formula, so our goal is to prove
the naturality. In words, we have to prove the identity

(FT )W ◦ (F ◦A)(f) = (F ◦B)(f) ◦ (FT )V

for all V,W ∈ V and all f ∈ Γdp
r

Hom(V,W ). By Proposition 2.3.17 we can assume that f has
parity 0, i.e. f ∈ Γdp

r

Hom0(V,W ). By Theorem 1.1.5, we can write f as a sum of terms of the
form γa1(f1) · ... · γas(fs) for some s ≥ 0 and f1, ..., fs ∈ Hom0(V,W ). By Lemma 2.2.2 we can
further suppose that the ai-s are all powers of p, i.e. we can rewrite

f = γpb1 (f1) · ... · γpbs (fs)

for some b1, ..., bs ≥ r. Since A acts like a sum of i∨d , we have

(F ◦A)(f) = F (γpb1−r (Af1) · ... · γpbs−r (Afs))

whence we obtain by functoriality

(FT )W ◦ (F ◦A)(f) =F (γd(TW )) ◦ F (γpb1−r (Af1) · ... · γpbs−r (Afs))

F (γd(TW ) ◦
[
γpb1−r (Af1) · ... · γpbs−r (Afs)

]
) .

Since T is natural, TW ◦Ag = Bg ◦ TV for any morphism g. Therefore, using Remark 1.5.2, the
last member of the equation is equal to

F (
[
γpb1−r (Bf1) · ... · γpbs−r (Bfs)

]
◦ γd(TV ))

F (γpb1−r (Bf1) · ... · γpbs−r (Bfs)) ◦ F (γd(TV )) = (F ◦B)(f) ◦ (FT )V

which ends the proof.

An immediate and interesting application of Lemma 2.3.18 is the following generalisation of
[Dru16, Lemma 2.7.1].

Lemma 2.3.19. Let A ⊂ B be an inclusion of additive superfunctors and let F ∈ P. Then
F ◦A is a direct summand of F ◦B.

Proof. Denote by i : A→ B the natural even inclusion which we have by hypothesis. By Theorem
2.3.5, A is necessarily a direct summand of B, so there exists a natural transformation p : B → A

such that p ◦ i = IdA. By Lemma 2.3.18 there exist Fi, Fp such that F ◦A Fi−→ F ◦B Fp−−→ F ◦A
is the identity. Hence F ◦A is a direct summand of F ◦B.

Proposition 2.3.20. For all nonzero additive A, the functor ΦA is faithful.

Proof. By Theorem 2.2.9 and 2.2.10, ΦA is fully faithful when A is I(r)
0 , I(r)

1 ,I(r)
0 ◦Π or I(r)

1 ◦Π
(since (−) ◦Π is an equivalence of categories). Otherwise, choose an additive indecomposable
subfunctor A′ ⊂ A, which exists in view of Theorem 2.3.5. By Lemma 2.3.19, F ◦A′ is a direct
summand of F ◦A for any F ∈ P. Since A′ is indecomposable, one can form the composition

HomP(F ◦A,G ◦A)→ HomP(F ◦A′, G ◦A′)→ HomP(F,G)

where the first arrow is induced by the inclusion of F ◦A′ and G ◦A′ as direct summands, while
the second one is the inverse of ΦA′ which exists by the first part of the proof. If we show that
this arrow is a left inverse of ΦA at the Hom level, we are done. Let then T ∈ HomP(F,G), and
write for short TA := ΦA(T ) ∈ HomP(F ◦ A,G ◦ A). Denote by i : A′ → A the inclusion and
p : A → A′ the projection, so that p ◦ i = IdA′ . With this notation, what we have to prove is
that Gp ◦ TA ◦ Fi = TA′ . But this follows immediately by the identity TA ◦ Fi = Gi ◦ TA′ that
we have by naturality of T .
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Remark 2.3.21. If A is decomposable, it is easy for ΦA to be faithful but not fully faithful. For
example HomP(I, I) ' k while HomP(I(1), I(1)) ' HomP(I(1)

0 , I(1)
0 )⊕HomP(I(1)

1 , I(1)
1 ) ' k2.

Remark 2.3.22. If we change the source from P to P , the precomposition Φr := (−)◦I(r)
0 : P →

P fails even to be faithful. A counterexample is provided by F = I(r)
1 : indeed, HomP(F, F ) 6= 0

but Φr(F ) = 0.

We end the section by generalising Theorem 2.2.13.

Corollary 2.3.23. Let A ∈ Ppr additive and let F ∈ Ps, G ∈ Pt such that s+ t = dpr. Then

• Ext∗P(F ⊗G,SdV ◦A) = 0 if s, t are not divisible by pr.

• If s = prs′ and t = prt′ there is a natural isomorphism induced by cup product

Ext∗P(F ⊗G,SdV ◦A) ' Ext∗P(F, Ss
′

V ◦A)⊗ Ext∗P(G,St
′

V ◦A) .

Proof. We know that the statement is true when A = I(r)
0 , I(r)

1 (Theorem 2.2.13). It follows for
the two other indecomposables by moving the Π from one argument to the other in the Ext.
By Theorem 2.3.5, we can proceed inductively and write A = A′ ⊕ A′′ with A′, A′′ additive
superfunctors on which the corollary is true. As in the proof of Theorem 2.2.13, we can reduce
to the case where F and G are projective, say F = Γs,W , G = Γt,Z , so that we only have a Hom
isomorphism to prove. By the Weighted Yoneda lemma and additivity of A′, A′′ we have

HomP(F ⊗G,SdV ◦ (A′ ⊕A′′)) ' [SdV (A′(W )⊕A′(Z)⊕A′′(W )⊕A′′(Z))](s,t)

where (s, t) indicates the 2-composition of d. Since A′ and A′′ satisfy the statements by hypoth-
esis, s and t must be multiple of pr for this weight space to be nonzero. If this is the case, the
weight space coincides with

Ss
′

V (A′(W )⊕A′′(W ))⊗ St
′

V (A′(Z)⊕A′′(Z))

which is isomorphic via multiplication on S∗ to

HomP(F, Ss
′

V ◦ (A′ ⊕A′′))⊗HomP(G,St
′

V ◦ (A′ ⊕A′′))

again by Yoneda lemma and additivity of A′, A′′.

Corollary 2.3.24. Let X = Γ or S. Cup product defines a natural isomorphism

Ext∗P(Xλ ◦A,SdV ◦B) '
⊗
i

Ext∗P(Xλi ◦A,SλiV ◦B)

for all additive superfunctors A and B.

2.3.3 The adjoints of ΦA
We devote this section to the explicit computation of the adjoints of ΦA. For our purposes, we
focus mainly on the right adjoint.

Convention 2.3.25. Although we defined the precomposition functor ΦA with target in the cate-
gory Pev, from now we will consider it as a functor P → P by means of the inclusion Pev ⊂ P .
Remember that the adjoint of the such inclusion is H → H ⊕ (Π ◦H) (cf. the end of Section
1.4) which allows to retrieve the even and odd parts in the computations. This is similar to the
discussion on Ext-spaces in P in §1.6. For reasons that will be clear later, we make such slightly
counter-intuitive but equivalent choice for practical reasons that will appear later (together with
a vademecum in Section 2.3.4 to read the superdegrees).
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In order to compute the adjoint, we are going to make use of Theorems 1.5.12 and 1.1.14
which realise P and P as categories of (super)modules. To be short, just in this section we
will call them equivalence theorems. Working in a category of (super)modules is very convenient
when it comes to compute adjoints. So, from now on, let pr = degA and fix n,m ≥ dpr. By
direct inspection, ΦA corresponds via the equivalence theorems to the functor

S(n, d)−mod −→ S(m|n, dpr)− smod

M 7−→ Γd,k
n

(A(km|n))⊗S(n,d) M

whose right adjoint is given by a well-known general formula

S(m|n, dpr)− smod −→ S(n, d)−mod

N 7−→ HomS(m|n,dpr)(Γ
d,kn(A(km|n)), N) .

Going back up again through the equivalence theorems, we arrive to an expression of the right
adjoint of (2.3.7):

Pdpr −→ Pd
G 7−→ Γd,k

n ⊗S(n,d) HomS(m|n,dpr)(Γ
d,kn(A(km|n)), G(kn|m)) .

(2.3.8)

This last formula is quite weighty, but we can relieve it. Indeed, by the proof of Theorem 1.1.14,
for any functor H ∈ Pd with d ≤ n the canonical map

Γd,k
n ⊗S(n,d) H(kn) −→ H

is an isomorphism of functors. Moreover, by the same theorem, the evaluation functor is fully
faithful. Thanks to these two facts we can rewrite

Γd,k
n

⊗S(n,d) HomS(m|n,dpr)(Γ
d,kn(A(km|n)), G(kn|m))

' Γd,k
n

⊗S(n,d) HomPdpr (Γd,k
n

◦A, G)

' HomPdpr (Γd,− ◦A, G)

which gives the computation we wanted:

Proposition 2.3.26. The right adjoint ρA : Pdpr −→ Pd of the precomposition functor ΦA is
given by

ρA(H) := HomPdpr (Γd,− ◦A, H) .

As a corollary we obtain the left adjoint too.

Corollary 2.3.27. The left adjoint of ΦA is given by

sA(F ) := HomPdpr (Sd− ◦A,F )# .

Proof. By the properties of Kuhn dual (§1.5.3), we have

HomPdpr (F,G ◦A) ' HomPdpr (G# ◦A#, F#)

and the latter, by Proposition 2.3.26, is isomorphic to

HomPd(G#, ρA#(F#)) = HomPd(G#,HomPdpr (Γd,− ◦A#, F#)) .

Since Γd,V and SdV are (for any V ) the Kuhn dual of each other, this is naturally isomorphic to
HomPd(HomPdpr (Sd− ◦A,F )#, G) as we had to show.
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Remark 2.3.28. One should recall that the Hom space in the formula of Proposition 2.3.26 is to
be seen as a classical vector space by forgetting the Z/2Z-grading (remember that it is supposed
to define a classical polynomial functor).

When A is additive, we are able to compute the explicit value of ρA on an important collection
of superfunctors. For that, we need to introduce the concept of parametrisation.

Definition 2.3.29 (Parametrised functor). Let E∗ be a Z-graded vector space, finite-dimensional
in each degree, and let F ∈ Pd.

1. If E∗ is finite-dimensional, we define a graded functor FE∗ ∈ Pd by FE∗(V ) := F (E∗⊗ V )
with the grading introduced in Definition 2.3.14.

2. If E∗ is infinite-dimensional, we define the lower parametrisation FE∗ by

FE∗ = colim
E′∗⊂E∗

FE′∗ ,

where the colimit is taken over the poset of finite dimensional graded vector subspaces E′∗

of E∗, ordered by inclusion.

3. The upper parametrisation of F by E∗ is defined as

FE
∗

:= F(E∨)∗

where (E∨)∗ denotes as usual the restricted dual of E∗.

The lower parametrisation will be our default one, so that we drop the adjective lower. It is
clear that there is no ambiguity in the definition, since if E∗ has finite dimension then the poset
E′
∗ ⊂ E∗ has E∗ as final object, so the colimit equals the first definition of FE∗ . Write P∗d for

the category of Z-graded d-homogeneous strict polynomial functors. Then FE∗ , FE
∗ ∈ P∗d and

they have the following properties.

Proposition 2.3.30. 1. Lower and upper parametrisations by E∗ define exact functors Pd →
P∗d . Moreover, both operations are natural with respect to E∗.

2. Assume that E∗ is degreewise finite-dimensional and zero in negative degrees. For all
degrees i, let E∗≤i be the graded subspace of E∗ which is equal to E∗ in degrees less or
equal to i and zero in degrees higher than i. Then the inclusion E∗≤i ↪→ E∗ induces a
monomorphism FE∗≤i → FE∗ which is an isomorphism in degrees less or equal to i.

3. Make the same hypothesis on E∗ as in point (2). Then there are bigraded isomorphisms,
natural in F , G and E∗:

Ext∗P(FE
∗
, G) ' Ext∗P(F,GE∗) .

Proof. (1) follows from [Tou12, Lemma 2.8] and exactness of filtered colimits.
To prove (2), the graded monomorphism τi : FE∗≤i ↪→ FE∗ is simply the one induced by

functoriality by the canonical inclusion E∗≤i ↪→ E∗. Moreover, the hypothesis implies that
each E∗≤i has finite total dimension. Since any finite-dimensional subspace of E∗ is included in
E∗≤n for some n, FE∗ is equal to the colimit of the chain of inclusions FE∗≤0 ⊂ FE∗≤1 ⊂ · · · ⊂
FE∗≤n ⊂ . . . , i.e. to the quotient of

⊕
d≥0 FE∗≤d obtained by identifying all components of the

same degree. In particular, the components of degree less than i have all representants in FE∗≤i .
Then the source and the target of τi have the same dimension in degrees less than i, making τi
an isomorphism in that case.

Let us prove (3). By point (2) it is sufficient to provide bigraded isomorphisms

Ext∗P(FE
∗≤i
, G) ' Ext∗P(F,GE∗≤i)
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for all i ≥ 0. In other words, we may suppose that E∗ is of finite total dimension and use the
explicit description of point (1). Denote by V ∨ = Hom(V,k) the dual of a (possibly graded)
vector space. One has

(Γd,V )E
∗
(W ) = Γd,V ((E∗)∨ ⊗W ) = ΓdHom(V, (E∗)∨ ⊗W )

' ΓdHom(E∗ ⊗ V,W ) = Γd,E
∗⊗V (W )

giving an isomorphism (Γd,V )E
∗ ' Γd,E

∗⊗V natural in V and E∗. In particular, in each degree,
(Γd,V )E

∗
is a projective object in Pd. A double application of Yoneda lemma gives then for each

G
HomP((Γd,V )E

∗
, G) ' G(E∗ ⊗ V ) ' HomP(Γd,V , GE∗)

which respects the gradings by [FS97, Cor. 2.12]. By projectivity of Γd,V and (Γd,V )E
∗
, the

isomorphism on the Ext∗ follows at once for F = Γd,V . For a general F , take a projective
resolution P∗ → F . By exactness of the parametrisation and by the fact that each Pn is a sum
of Γd,V , (P∗)

E∗ is a projective resolution of FE
∗
degreewise. Then from the previous case we

deduce

Ext∗P(FE
∗
, G) ' H∗HomP((P∗)

E∗ , G) ' H∗HomP(P∗, GE∗) ' Ext∗P(F,GE∗)

as we had to show.

We will mostly use the lower parametrisation, also in force of Proposition 2.3.30. We will then
suppress the adjective lower if it creates no confusion. In order to state many important results
of the manuscript, starting by the following, we have to enlarge our definition of parametrised
functor.

Definition 2.3.31. Let E∗ be a Z-graded super vector space, finite-dimensional in each degree,
and let F ∈ Pd. The parametrised functor FE∗ is defined via Definition 2.3.29 by forgetting the
super-grading on E∗.

Lemma 2.3.32. Let A,B ∈ Ppr be additive and G ∈ Pd. Then there is an isomorphism of
polynomial functors, natural in all variables:

ρA(G ◦B) ' GHomP (A,B) .

Proof. Consider the even natural transformation ηA,B given by

ηA,B(V ) : HomP(A,B)⊗A(V )→ B(V )

T ⊗ v 7−→ TV (v).

and apply Lemma 2.3.18 to obtain an even natural transformation

Gη = GηA,B : GHomP (A,B) ◦A −→ G ◦B .

Define then ΘA,B to be the composite

GHomP (A,B) ' HomP(Γd,−, GHomP (A,B)) HomP(Γd,− ◦A,GHomP (A,B) ◦A)

HomP(Γd,− ◦A,G ◦B)

ρA(G ◦B).

◦A

(Gη)∗

Our goal is to prove that ΘA,B is an isomorphism. Since ρA(− ◦ B) is left exact, it is enough
to prove that for G injective. First we handle the case where A and B are indecomposable
additives. Note that in that case ηA,B is either an isomorphism or zero. We prove this claim
examining case by case, starting from the pairs (A,B) such that HomP(A,B) = 0. For these
pairs ηA,B = 0, thus ΘA,B = 0. For ΘA,B to be an isomorphism, we have then to prove that
ρA(G ◦B) = 0. Let then ` ∈ {0, 1} and m = `− 1.
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A = I(r)
` , B = I(r)

m : we know by [DK22, Thm 5.1.2] that HomP(Γ
d(r)
` , S

d(r)
m ) = 0. By a double application of

Corollary 2.2.14 we can deduce that ρA(SdV ◦B) = HomP(Γd,V ◦A,SdV ◦B) = 0 for all V .

A = I(r)
` ◦Π, B = I(r)

m ◦Π: follows by the previous point and fully faithfulness of − ◦Π.

A = I(r)
` , B = Π ◦ I(r)

m : by Lemma 2.1.6 and (2.2.4) (tensoring with a purely even space V changes nothing)

SdV ◦B = SdV ◦Π ◦ I
(r)
m ' (SdV )

(r)
` ◦Π

is isomorphic to Π ◦ (SdV )
(r)
m or (SdV )

(r)
m depending on the parity of d. So, up to a parity

change, HomP(Γd ◦A,SdV ◦B) ' HomP(Γ
d(r)
` , (SdV )

(r)
m ) which is zero by the previous point.

This means that ρ(G ◦B) = 0 whenever G is injective.

We pass to other pairs (A,B), for which ηA,B is an isomorphism.

A = B = I(r)
` : then HomP(A,B) ' k and ΘA,B = Φr or Φr, which are isomorphisms by Theorem 2.2.9

and 2.2.10.

A = B = I(r)
` ◦Π: follows as above by fully faithfulness of − ◦Π.

A = I(r)
` , B = Π ◦ I(r)

` : as in the previous point, SdV ◦B ' (SdV )
(r)
m if d is even and Π ◦ (SdV )

(r)
m if d is odd. In both

cases, since ρA(SdV ◦B) is viewed as un ungraded space, ρA(SdV ◦B) ' HomP((Γd,−)
(r)
` , (SdV )

(r)
` )

which is naturally isomorphic to SdV by the first point of the proof. Since HomP(A,B) ' Πk
and by definition (SdV )Πk = SdV , we conclude that ΘA,B is an isomorphism for all G injec-
tive.

We now pass to the case where only A is indecomposable. By making induction on the number
of indecomposable summands of B, there exists two additives B′, B′′ such that B ' B′ ⊕ B′′
and such that ΘA,B′ ,ΘA,B′′ are isomorphisms. We have then to show that ΘA,B′⊕B′′ is an
isomorphism too. Since source and target are left exact with respect to G, we can restrict to the
special case G = SdV . For the first case, ΘA,B⊕B′ decomposes as

(SdV )HomP (A,B′⊕B′′)

d⊕
a=0

(Sd−aV )HomP (A,B′) ⊗ (SaV )HomP (A,B′′)

d⊕
a=0

HomP(Γd−a,−, (Sd−aV )HomP (A,B′))⊗HomP(Γa,−, (SaV )HomP (A,B′′))

d⊕
a=0

HomP(Γd−a,− ◦A,Sd−aV ◦B′)⊗HomP(Γa,− ◦A,SaV ◦B′′)

d⊕
a=0

HomP(Γd,− ◦A,Sd−aV ◦B′ ⊗ SdV ◦B′′)

HomP(Γd,− ◦A,SdV ◦ (B′ ⊕B′′)) .

'

'

∑
(ηA,B′◦ΦA)⊗(ηA,B′′◦ΦA)

∪

'
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The cup product map is an isomorphism by Corollary 2.3.23 and the middle map is an isomor-
phism by the first part of the proof. Theorem 2.3.5 implies then that ΘA,B is an isomorphism
whenever A is indecomposable. A symmetric argument, using again Corollary 2.3.23 and the
exponentiality of Γ∗, completes the proof that ΘA,B is an isomorphism for all A,B additive.

The isomorphism we just proved implies by definition the following one between Hom spaces.
It is worth remarking that it is in fact the degree-zero case of an Ext-isomorphism that we will
state in Chapter 4 (Conjecture 4.1.5).

Theorem 2.3.33. Let A,B be additive superfunctors. There is an isomorphism, natural in
F,G:

HomP(F ◦A,G ◦B) ' HomP(F,GHomP (A,B)) .

2.3.4 How to read superdegrees in classical formulas
We end the section with a short discussion. One may protest because Definition 2.3.31 deliber-
ately loses the information about the superdegrees of the parameter. By consequence, the one
of Theorem 2.3.33 is itself just an isomorphism of ungraded spaces, since the right-hand side is a
priori ungraded. This is harmless for the dimensional computations we are going to perform; it
just may not be clear how to recover the superdegrees from a “classical” term like the right-hand
side. There is, actually, a Z/2Z-grading on a space of the form HomP(F,GE) which does the
job. Recall the parity automorphism πV : V → V, v 7→ (−1)v v.

Definition 2.3.34 (Supergrading on G(E)). Let G ∈ Pd and let E be a (possibly Z-graded)
super vector space. The supergrading on G(E) is defined by declaring the even (resp. odd)
subspace to be the +1 (resp. −1) eigenspace for the action of G(γd(π)) : G(E)→ G(E).

It is important to remark that this definition is just formal and does not yield a polynomial
superfunctor, an obstruction being made by the odd morphisms in ΓdV (unless E = V (r) for
some V , which is the definition of G(r) given at the beginning of Section 2.3.2). Hence this is
not in conflict with the GE ∈ P of Definition 2.3.31. Whenever we write GE , we refer to the
latter polynomial functor.
Remark 2.3.35. If E is purely even, then so isG(E). If E is purely odd, thenG(E) is concentrated
in degree degG mod 2.

The Definition 2.3.34 induces the following one.

Definition 2.3.36. A natural transformation T : F → GE is declared even (resp. odd) if, for
all V ∈ V, the map TV has image in the even (resp. odd) subspace of G(E∗ ⊗ V ). In that case
we baptise T = 0 or 1 respectively.

Equivalently, T = i if and only if the diagram

F GE

GE

T

T
G
(
γd(π⊗−)

)

commutes up to a sign (−1)i. If F = Γd we retrieve the supergrading of Definition 2.3.34. The
strong link between this “artificial” supergrading and the real one is the following.

Lemma 2.3.37. Let E be a Z-graded super vector space and F,G ∈ Pd. Let A ∈ P be additive.
Then the graded natural map HomP(F,GE) → HomP(F ◦ A,GE ◦ A) given by precomposition
is an even map of super vector spaces, as soon as the left-hand side is Z/2Z-graded according to
Definition 2.3.36.
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Proof. Recall that (T ◦ A)V = TAV : F (AV ) → G(E ⊗ AV ) with AV considered without
superdegrees. Set by T ∈ {0, 1} the super degree of Definition 2.3.34. Let x ∈ F (AV ). Remark
that Definition 2.3.34 can be summed up in the implicit relation F (A(πV ))(x) = (−1)x x for a
homogeneous x ∈ F (AV ) (we suppress the γd everywhere for briefness). We then have to show
that [

G(γd(πE⊗AV )) ◦ TAV
]
(x) = (−1)T +x TAV (x)

since that will imply T ◦A = T as desired. Consider the following diagram:

G(E ⊗AV )

F (AV ) G(E ⊗AV ) G(E ⊗AV )

F (AV )

G(πE⊗1)
G(πE⊗AV )TAV

TAV

F (A(πV ))

G(1⊗πAV )

TAV

The inferior triangle is commutative because T is a natural transformation. The up-left triangle
commutes up to a sign (−1)T by definition. The up-right is trivially commutative. Hence[

G(γd(πE⊗AV )) ◦ TAV
]
(x) = (−1)T

[
TAV ◦ F (A(πV ))

]
(x)

= (−1)T +x TAV (x)

which is what we needed.

Thanks to this lemma, the map ΘA,B(V ) in the proof of Lemma 2.3.32 is an even map
of super vector spaces. Hence we can update the statement by saying that the isomorphism
ρA(G ◦B) ' GHomP (A,B) respects the superdegrees.

There is an analogous supergrading for Ext∗P(F,GE) that is induced by the one for Hom via
passage to the derived functors. In particular:

• If E∗ is purely even, then so is Ext∗P(F,GE). This concerns the majority of cases we
are interested in. We will see indeed that most of the time E∗ will be a subspace of
Ext∗P(I(r), I(r)).

• If E∗ is purely odd, then Ext∗P(F,GE) is concentrated in superdegree degF mod 2. This
is for example the case when E∗ is (a subspace of) Ext∗(I(r), I(r) ◦Π). Note that, when in
presence of a Frobenius twist precomposed by Π, one can workaround by using Proposition
2.2.6. This gives a result that is in accord with this last definition.

2.4 Exponential superfunctors and super Troesch complex
In this section (which is an excursus and may be skipped with no consequence for the compre-
hension of the next chapters) we provide a first good application of the classification of additive
superfunctors. Namely, we study the basic properties of superfunctors equipped with an ex-
ponential structure. A good feature of such objects is that, when they form complexes via a
compatible differential, the exponential structure passes to cohomology, which makes its compu-
tation much more accessible. In classical literature, such complexes happen to provide explicit
resolutions of twisted functors. Indeed, a construction which was performed first [LSF94] in
characteristic 2 and then generalised by Troesch [Tro05] in odd characteristic provides an injec-
tive coresolution of the twisted symmetric power algebra S∗(1). This coresolution has turned out
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to be very handy for computations: for example, Touzé used it in [Tou12] to compute spaces
Ext∗P(F (r), Sµ(r)) for all polynomial functors F and all compositions µ.

Our main goal is to investigate the cohomology of the “superized” version of Troesch complex,
which was introduced and studied by Drupieski and Kujawa [DK22]. Thanks to the theory of
exponential superfunctors and our Theorem 2.3.5, we are able to perform a special case of their
computations with nearly no effort. Namely, we prove that the cohomology of the super Troesch
complex is isomorphic in a graded way to S∗(1). Unfortunately, unlike the classical case, this
does not yield a coresolution of S∗(r)0 as hoped, because many more pieces of cohomology appear
in positive degrees. It turns out to be quite difficult to get rid of them and build an explicit
coresolution. The direct computation of Ext∗P(F

(r)
0 , S

µ(r)
0 ) seems then still inaccessible, which is

the reason why in Chapter 4 we switch to different methods.
Although exponential functors can be treated in a more general context [Tou19], we will focus

for our purposes only on polynomial superfunctors all along. In particular, one can retrieve all
the definitions and statements for classical polynomial functors by restricting to the subcategory
V0 ' V.

2.4.1 Exponential superfunctors
Definition 2.4.1. An exponential superfunctor is a triple (F, e, u) such that F =

⊕
d F

d ∈ P
is a graded polynomial superfunctor and e, u are natural isomorphisms

eV,W : F (V ⊕W ) ' F (V )⊗ F (W )

u : k ' F (0)

that are associative and unital.

By the evident analogy with the property of “taking sums into products”, we refer to eV,W
as the exponential isomorphism.
Remark 2.4.2. If F,G are two exponential superfunctors, then so is their tensor product F ⊗G.
If F is exponential and H is additive, then F ◦H is exponential.
Remark 2.4.3. Let F :=

⊕
d F

d an exponential superfunctor. For reasons that will be clear
later on, we call F d the component of weight d of F , instead of “degree” d. The exponential
isomorphism restricts then to

F d(V ⊕W ) '
⊕
a+b=d

F a(V )⊗ F b(W ) . (2.4.1)

Example 2.4.4. If A is a P-algebra1 satisfying some additional properties (which we will speak
about shortly), its grading as an exponential superfunctor is the same as the polynomial grading,
i.e. A =

⊕
dA

d with Ad ∈ Pd.

Definition 2.4.5. Let (F, e, u), (G, e′, u′) be two exponential superfunctors. An exponential
morphism is a natural transformation T ∈ HomP(F,G) which commutes with the exponential
structure, i.e. such that the following diagrams commute:

F (V ⊕W ) G(V ⊕W ) k F (0)

F (V )⊗ F (W ) G(V )⊗G(W ) G(0)

TV⊕W

eV,W e′V,W

u

u′
T0

TV ⊗TW

We denote then by Pexp the category formed by exponential superfunctors and exponential
morphisms.

1Recall the definition in §1.5.4.
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Let σV : V ⊕ V → V be the sum map. One can easily turn an exponential superfunctor
(F, e, u) into a P-algebra (F, µ, η) by setting for each V multiplication and unit

µV : F (V )⊗ F (V )
eV,V−−−→ F (V ⊕ V )

F (σV )−−−−→ F (V )

ηV : k u−→ F (0)
F (0)−−−→ F (V ) .

The definitions imply that (F, µ, η) satisfies the following properties:

(I) η0 : k→ F (0) is an isomorphism.

(II) For all V,W the following composition is an isomorphism (where iV , iW are the inclusions
of V and W in V ⊕W ):

F (V )⊗ F (W )
F (iV )⊗F (iW )−−−−−−−−−→ F (V ⊕W )⊗2 µV⊕W−−−−→ F (V ⊕W ) .

Vice-versa, as stated in the next proposition, a P-algebra with these properties is always built
like that by an exponential superfunctor. This fact is a troubleless generalisation of [Tou19,
Lemma 2.7].

Proposition 2.4.6. Let Palg denote the category of P-algebras and let P̃alg be its full subcat-
egory whose objects satisfy (I)-(II). Then the map (F, e, u) 7−→ (F, µ, η) defines an equivalence
of categories Pexp

'−−→ P̃alg.

Example 2.4.7. In virtue of Proposition 1.3.14, examples of such P-algebras (and then of expo-
nential superfunctors) are S∗,Γ∗,Λ∗,A∗.

A first indication of the utility of the exponential structure is the following.

Proposition 2.4.8. Let T : F −→ G be an exponential transformation. Then T is an iso-
morphism (monomorphism, epimorphism) if and only if Tk : F (k) → G(k) and TΠk : F (Πk) →
G(Πk) are.

Proof. One sense is trivial. The other one follows by decomposing any super vector space V into
the sum of its one-dimensional subspaces and using the hypothesis iteratively.

Proposition 2.4.9. Let F be an exponential superfunctor and F d its component of weight d.
Then

1. F 0(0) ' k and F d(0) = 0 for all d > 0.

2. Let m be the minimum strictly positive weight such that Fm 6= 0. Then Fm is an additive
functor.

Proof. Since F (0) is one-dimensional, there is exactly one component F d such that F d(0) does
not vanish and is isomorphic to k. Since by (2.4.1) F 2d(0) ' F d(0) ⊗ F d(0) ' k, the only
possibility is d = 0. For the second point, use again (2.4.1) for d = m. The hypothesis and
the first point imply that, on the right side of the formula, the only nonzero terms are the ones
corresponding to (a, b) = (0,m) and (m, 0), alias respectively Fm(V ) and Fm(W ). That means
Fm(V ⊕ W ) ' Fm(V ) ⊕ Fm(W ) naturally in both variables, as it has to be for Fm to be
additive.

The natural framework where we are going to use exponential objects is the one of p-
complexes, which are generalisation of cochain complexes and which we introduce in the next
subsection.
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2.4.2 p-complexes

We start in full generality, following the work of Troesch [Tro05]. Let C be a monoidal abelian
category.

Definition 2.4.10. Let p ≥ 2 a prime. A p-complex in C is the data of:

• a graded object C∗ :=
⊕

d≥0 C
d of C,

• a family of morphisms δ = {δn ∈ HomC(C
n, Cn+1)}n such that δp = 0.

A map like δ is called p-differential. When p = 2 we retrieve the usual complexes.

Example 2.4.11. Let q ≤ p − 1. A sequence of q isomorphisms 0 → C1
'−→ C2

'−→ ...
'−→ Cq

'−→
Cq+1 → 0 is a p-complex.

There are several ways to produce a complex out of a p-complex. For each 1 ≤ s ≤ p − 1,
the sequence

C∗[s] := ...
δp−s−−−→ Cn

δs−→ Cn+s δp−s−−−→ Cn+p δs−→ ...

is indeed a complex, called the s-contraction of C∗.

Definition 2.4.12. Let C∗ be a p-complex and 1 ≤ s ≤ p − 1. The s-th cohomology group of
C∗ is defined as the cohomology of C∗[s], i.e.

Hi
[s](C) =

Ker(δs : Ci → Ci+s)

Im(δp−s : Ci−p+s → Ci)
.

We call s-cocyles, resp. s-coboundaries, the elements of the numerator, resp. denominator.
We have then a family of p − 1 cohomology groups. In general, there is no reason for them to
be equal, as the following basic example shows.

Example 2.4.13. Let p = 3 and C∗ : 0 → C
'−→ C → 0 be a 3-complex consisting of two copies

of C in degrees 0, 1 and an isomorphism between them. Then H0
[1](C) = 0, while H0

[2](C) ' C.

Theorem 2.4.14 (Kapranov [Kap96]). Let C∗ be a p-complex and suppose that there is s ∈
{1, ..., p− 1} such that H∗[s](C) = 0. Then H∗[t](C) = 0 for all t ∈ {1, ..., p− 1}.

It makes then some sense to define a notion of acyclicity. A p-complex which satisfies the
hypothesis of Kapranov is called p-acyclic. For example, a chain of p − 1 isomorphisms is p-
acyclic.

In general, for integers 1 ≤ s ≤ t < p, there are inclusions Ker(δs) ⊂ Ker(δt) and Im(dp−t) ⊂
Im(dp−s). In particular, there are well-defined maps

H∗[s](C)→ H∗[t](C) . (2.4.2)

Definition 2.4.15. A p-complex is called normal if (2.4.2) is an isomorphism for all 1 ≤ s ≤
t < p.

Hence in a normal p-complex C∗ all cohomologies are the same; we note them under the
same notation H∗(C). By Kapranov Theorem, a p-acyclic p-complex is normal.

Definition 2.4.16. Let (C∗, δC) and (D∗, δD) be two p-complexes. Their tensor product C∗⊗D∗
is also a p-complex when equipped with the p-differential defined on x⊗ y ∈ Ca ⊗Dt by

x⊗ y 7−→ δC(x)⊗ y + (−1)ax⊗ δD(y) .
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Clearly, if x, y are 1-cocyles so is x ⊗ y. If moreover one of them is a 1-coboundary, say
x = δp−1

C x′, then

δp−1(x′ ⊗ y) =

p−1∑
k=0

(
p− 1

k

)
δkCx

′ ⊗ δp−1−k
D y = δp−1

C x′ ⊗ y = x⊗ y

(since δD(y) = 0), so x⊗ y is also a 1-coboundary. The following map is thus well defined:

H∗[1](C)⊗H∗[1](D) −→ H∗[1](C ⊗D)

[x]⊗ [y] 7−→ [x⊗ y] .
(2.4.3)

Unfortunately, no analogue for the Kunneth formula is known for general p-complexes, firstly
because it is not clear how the different cohomologies should interact. Nevertheless, it has been
proved that when C∗ and D∗ are normal there is no obstruction.

Theorem 2.4.17 ([DK22, Thm 3.2.1]). Let C∗, D∗ be normal p-complexes. Then C∗ ⊗D∗ is
also normal and (2.4.3) defines an isomorphism

H∗(C)⊗H∗(D) ' H∗(C ⊗D) .

We want now to generalise the notion of exponential superfunctor to the context of p-
complexes, and see if similar results on its cohomology still hold.

Definition 2.4.18. A p-differential graded exponential superfunctor (from now, p-dg-EF ) is a
tuple (F, e, u, δ) such that:

i. (F, e, u) is an exponential superfunctor;

ii. (F, δ) is a p-complex;

iii. δ is compatible with the exponential structure, i.e. the following diagrams are commutative:

F (V ⊕W ) F (V ⊕W ) k F (0)

F (V )⊗ F (W ) F (V )⊗ F (W ) F (0)

δ

eV,W eV,W

u

u δ

δ⊗1+1⊗δ

where one should remember the sign convention of Definition 1.2.10 when looking at the map
δ ⊗ 1 + 1⊗ δ.

If we see F as a P-algebra, condition (iii.) is equivalent to δ being a derivation. This condition
ensures a nice structure-preserving property at the level of cohomology. For that we need to
recall a standard but fundamental result, that the reader can find for example in [Mac12, Thm
10.1] (in a more general formulation than the one we need).

Theorem 2.4.19 (Kunneth formula). Let A∗, B∗ be (usual) cochain complexes in the category
of super k-vector spaces. Then H∗(A⊗B) ' H∗(A)⊗H∗(B).

We say that a p-dg-EF is normal if its underlying p-complex is. As we saw, for objects with
such property there is a well-defined notion of “cohomology”. That is what the following result
is about.

Theorem 2.4.20. If C∗ is a normal p-dg-EF, then H∗(C) is an exponential superfunctor. In
particular, its first positive cohomology group that does not vanish is an additive superfunctor.
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Proof. The commutative square in Definition 2.4.18 (iii.) yields an isomorphismH∗(F (V ⊕W )) '
H∗(F (V ) ⊗ F (W )) and Theorem 2.4.19 yields H∗(F (V ) ⊗ F (W )) ' H∗(F (V )) ⊗ H∗(F (W )).
This shows that H∗(C) is exponential. The last assertion comes from Proposition 2.4.9.

Remark that H∗(C) a double grading: the cohomological degree Hi(C), which we simply
call degree, and the weight. The weight-d component of H∗(C) is H∗(Cd). That is why we chose
a different name for this latter one. In the next section we are going to apply this machinery to
a specific p-complex.

2.4.3 The super Troesch p-complex

Let B∗ be the polynomial superfunctor defined on every V ∈ V by

B∗(V ) := S∗(V )⊗p .

As a tensor product of exponential superfunctors, it is exponential. We denote its summands as
Sλ := Sλ0 ⊗ ...⊗ Sλp−1 .

Definition 2.4.21. Let x ∈ Sλ. The weight of x is
∑p−1
i=0 λi, while its degree is

∑p−1
i=0 iλi.

One can define B∗ in the following equivalent way. Let E∗ be the graded even vector space
with basis {e1, ..., ep} such that deg(ei) = i − 1. Then B∗(V ) ' S∗(E∗ ⊗ V ) as a graded super
space. As explained when we introduced parametrisation in Section 2.3.3, B∗ = S∗E decomposes
into the sum of Sλ as λ runs through the p-uples of positive integers. This explains the definition
of weight.

Consider now the linear map α : E∗ → E∗ such that α(ei) = ei+1 for 1 ≤ i ≤ p − 1 and
α(ep) = 0. By a little abuse, use the same name for the natural transformation induced on the
functor IdE . Set

∂n : SnE
∆n−1,1−−−−−→ Sn−1

E ⊗ IE
Id⊗α−−−→ Sn−1

E ⊗ IE
µ−−→ SnE

where ∆n−1,1 is the component of the coproduct ∆ which has the indicated target. Then
∂ :=

∑
n ∂n : B∗ → B∗ raises degrees by one and has p-th power zero. It hence endows B∗ with

the structure of a p-complex. For detailed proofs of that, see [DK22, §3.3].

Remark 2.4.22. The map ∂ preserves weights by construction. Therefore B∗ decomposes as the
direct sum of its homogeneous (with respect to the weight) components B∗n.

Remark 2.4.23. We are going to make the differential explicit. Let δ = (δi,j)i,j≥0 be the following
map:

Si(V )⊗ Sj(V ) −→ Si−1(V )⊗ Sj+1(V )

v1 · · · vi ⊗ w1 · · ·wj 7−→
i∑

k=1

(−1)vk (vk+1 +...+vi )v1 · · · v̂k · · · vi ⊗ vkw1 · · ·wj

where the hat notation v̂ indicates that v has been removed. Now replace tensors by bars and
let v0, ..., vp−1 ∈ S∗(V ) denote some symmetric tensors. The formula for ∂ is then given by

∂(v0 | ... | vp−1) =

p−2∑
k=0

(v1 | ... | δ(vk | vk+1) | ... | vp−1) .

Proposition 2.4.24 ([DK22, Thm 3.4.1]). B∗ is a normal p-complex.

We can thus speak of the cohomology H∗(B) and apply Theorem 2.4.20.

Proposition 2.4.25. B∗ is a p-dg-EF. As a consequence, H∗(B) is an exponential superfunctor.
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We may thus start the machinery to compute H∗(B). First, remark that B∗1 = 0 → I →
... → I → 0 is a chain of p − 1 isomorphisms, therefore p-acyclic. Thus, by Theorem 2.4.20 the
first non-trivial cohomology group is additive. In force of Theorem 2.3.5, it has to be in weight
at least p. Let us check H∗(Bp) to see if it is zero or not. Since it is in any case an additive
superfunctor, we can completely retrieve it from its value on a one-dimensional super space. If
V is a purely even space, then B∗(V ) coincides with the classical Troesch p-complex and its
cohomology is known [Tro05, Thm 3.1.2], namely H∗(Bp(k)) ' k(1) if ∗ = 0 and zero otherwise.
On the other hand, B∗p(Πk) vanishes everywhere but on the term

⊗p
(Πk) ' Πk which is in

degree
(
p
2

)
. In particular, H∗(Bp(Πk)) is also isomorphic to Πk placed in degree

(
p
2

)
. Putting

all together and using Theorem 2.3.5, we conclude the following:

Lemma 2.4.26. • H∗(Bn) = 0 for 0 < n < p.

• H∗(Bp) ' (I(1)
0 )[0] ⊕ (I(1)

1 )[(p2)].

The higher cohomology groups are no longer additive, hence not that easy to compute directly.
However, we will not need to do that. We are rather going to find them all at once thanks to the
information of Lemma 2.4.26 and the superalgebra structure on H∗(B). To lighten notation, we
make a little abuse until the end of this section and consider I(1) as a graded functor with I(1)

0 in
degree 0 and I(1)

1 in degree
(
p
2

)
. Hence Lemma 2.4.26 says that there is an isomorphism of graded

superfunctors I(1) ' H∗(Bp). This and the inclusion B∗p ⊂ B∗ induce a graded morphism

I(1) −→ H∗(B) (2.4.4)

which can be extended, by the universal property of S∗, to a unique morphism of P-algebras

S∗(1) −→ H∗(B) . (2.4.5)

Proposition 2.4.27. The map (2.4.5) is a graded isomorphism.

Corollary 2.4.28. There is an isomorphism of graded polynomial superfunctors H∗(B) ' S∗(1),
where the grading on the right side is induced by considering I(1)

0 in degree 0 and I(1)
1 in degree(

p
2

)
. In terms of weights, the isomorphism reads in the following way:

H∗(Bn) = 0 if n is not divisible by p,

H∗(Bpm) '
⊕

0≤`≤m

(S
m−`(1)
0 ⊗ Λ

`(1)
1 )[`(p2)] .

Proof of Proposition 2.4.27. Since the exponential structures on source and target are induced
by the product on S∗, (2.4.5) is compatible with them by construction. We can then apply
Proposition 2.4.8 and reduce ourselves to prove that it is an isomorphism when evaluated on k
and Πk. The first case is covered from the classical computation in [Tro05]. On the other hand,
Bn(Πk) = 0 in weights n > p. This and Lemma 2.4.26 imply thatH∗(B(Πk)) ' k[0]⊕(Πk(1))[(p2)]

(the first k being in weight zero). This is equivalent to writing H∗(B(Πk)) ' Λ∗((k(1))[(p2)]) with

k(1) placed in odd Z/2Z-degree. But the latter is exactly equal to the source of (2.4.5) evaluated
on Πk.

Remark 2.4.29. We did not need it for our purposes, but a simple explicit expression for the
map (2.4.4) can be the following:

I(1) −→ H∗(Bp)

v 7−→ [vp] if v = 0

v 7−→ [v⊗p] if v = 1
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It is immediate to verify that vp and v⊗p are indeed cocycles. We have to check that the map
is linear. Take homogeneous vectors v ∈ V, w ∈ W . If v 6= w , the two are sent on distinct
summands of H∗(B(V ⊕W )) so the verification is trivial. If v = w = 0, linearity follows by the
identity (v+w)p = vp+wp that holds in characteristic p. For the last case v = w = 1 we have to
show that [(v+w)⊗p] = [v⊗p]+[w⊗p], which is a little trickier. Consider the odd sub-vector space
W := kv⊕kw. The classes [v⊗p], [w⊗p] and [(v+w)⊗p] can be seen as elements of H(p2)(Bp(W )).
By Lemma 2.4.26 this has dimension 2, and by the exponential property {[v⊗p], [w⊗p]} is a basis
(one can obviously discard the extreme case v = w ∈ V = W , where the verification is trivial.).
So there exist a, b ∈ k, independent of the choice of V and W , such that

[(v + w)⊗p] = a[v⊗p] + b[w⊗p] .

As a consequence of their independence, one can take alternatively v = 0 and w = 0 to deduce
a = b = 1, that ends our verification.



Chapter 3

Extensions between additive
compositions

We get started with the main interest of this manuscript, which is making Ext computations
in P . As declared at the beginning (Conjecture 0.4), our goal is to study extensions between
classical polynomial functors precomposed by an additive superfunctor. In this chapter, we
treat the special case where one of the two classical functors is additive too. Since all additive
polynomial functors are direct sums of I(r) [Tou17, §3.1], we are then reduced to computing

Ext∗P(I(r) ◦A,G ◦B)

where A and B are additive homogeneous polynomial superfunctors of the same degree ps, s ≥ 1,
and G is a polynomial functor of degree pr. The hypothesis s ≥ 1 is needed in order for the
compositions to make sense, as we explained in Section 2.3.2. Moreover, in force of Theorem
2.3.5, we control all additive superfunctors by mean of the indecomposable ones, namely the
Frobenius twists and their parity shifts. We can then start by studying extensions between
Frobenius-twisted functors. The result we are going to prove at the end of the chapter is the
following.

Theorem 3.0.1. Let G ∈ Ppr and let A,B ∈ Pps (s ≥ 1) be additive. There is a graded
isomorphism, natural in G,A,B:

Ext∗P(I(r) ◦A,G ◦B) ' Ext∗P(I(r), G)⊗ Ext∗P(A,B)(r) .

Remembering the definition and properties of parametrisation (§2.3.3) this result leads to a
positive answer to a special case of Conjecture 0.4.

Corollary 3.0.2. Conjecture 0.4 is true if F or G is additive.

Proof. Since Kuhn duality preserves additivity, it is enough to treat the case where F is additive.
An additive polynomial functor is isomorphic to a sum of copies of I(r) [Tou17, Prop. 3.5], so we
can suppose F = I(r). Recall that for any graded super vector space E∗ there is an isomorphism
(I(r))E

∗ ' I(r)⊗ E(r) ∗. Moreover, Ext∗P(A,B)(r) is finite-dimensional in each degree by Lemma
1.6.4. So by Proposition 2.3.30(3) we have

Ext∗P(I(r), GExt∗P (A,B)) ' Ext∗P((I(r))Ext∗P (A,B), G) ' Ext∗P(I(r), G)⊗ Ext∗P(A,B)(r)

which, together with Theorem 3.0.1, proves the statement.

59
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3.1 The Yoneda superalgebra
We start by recollecting the general structure of the fundamental Ext spaces between Frobenius
twists. Our reference for that is [Dru16]. Set:

E∗r := Ext∗P(I(r), I(r)),

Er
∗ := Ext∗P(I(r)

0 , I(r)
0 ) ' Ext∗P(I(r)

1 , I(r)
1 ),

Er
∗

:= Ext∗P(I(r)
0 , I(r)

1 ) ' Ext∗P(I(r)
1 , I(r)

0 ).

To make notation more agile, we will drop the index ∗. Recall that the Yoneda product described
in (1.6.1) makes Er into a superalgebra and Er into a Er-supermodule. In the classical case,
the analogous product makes Er into an algebra.

Theorem 3.1.1 ([FS97, Cor. 4.8]).

Esr '

{
k if s < 2pr is even
0 otherwise.

As a commutative algebra, Er is generated by elements {ε1,r, ..., εr,r}, with deg(εi,r) = 2pi−1,
subject to relations εp1,r = ... = εpr,r = 0.

Theorem 3.1.2 ([Dru16, Cor. 4.5.5]).

Er
s '

{
k if s is even
0 if s is odd.

Er
s '

{
k if s ≥ pr is odd
0 otherwise.

Remark 3.1.3. Using the classification of additive superfunctors together with Remark 1.6.3,
we can deduce from Theorem 3.1.2 all the Ext spaces between indecomposable additive super-
functors. In particular, for all additive superfunctors A,B, Ext∗P(A,B) is a sum of copies of
Er,Er,ΠEr and ΠEr.

The superalgebra structure of Er is similar to the one of Er, but with one striking difference.

Theorem 3.1.4 ([Dru16, Thm 4.7.1]). We have the following descriptions:

• Er is the commutative graded superalgebra generated by even elements {e1,r, ..., er,r}, with
deg(ei,r) = 2pi−1, subject to relations ep1,r = ... = epr−1,r = 0.

• Er is the free Er-supermodule on one even generator cr of degree pr.

The first glaring difference between Er and its super counterpart Er is, at a merely dimen-
sional level, the infiniteness of the latter one. Examining the algebra structures, we see that the
reason lies in the presence of a non-nilpotent generator, namely er,r ∈ Er

2pr−1

, which is absent
in Er. This one class is hence responsible for the existence of all the nonzero classes in Er of
degree greater than 2pr.

From Theorem 3.1.4 we also deduce the following important remark, which makes another
substantial difference between the classical theory and the super theory.

Remark 3.1.5. For all r ≥ 1, the classical twist defines a morphism of algebras Er → Er+1

which is injective (see for example [Tou12, Lemma 5.2]). This is no longer the case in the super
context. Indeed, by Theorem 3.1.2, as graded super vector spaces all the Er are the same,
regardless of r. Therefore the twist map Er → Er+1 cannot be injective, otherwise it would
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yield an isomorphism of superalgebras which would contradict Theorem 3.1.4. In equivalent but
more explicit terms, the kernel of the twist map is generated as an ideal by the nonzero class
(er,r)

p. Such class is thus responsible for the actual qualitative difference between classical and
super twist. The general computations investigated in Chapter 4 rely largely on this mysterious
class.

We will also need the description of the more general spaces

Ej,r
∗ := Ext∗P(I(r)

0 , S
pr−j(j)
0 ) ' Ext∗P(I(r)

1 , S
pr−j(j)
1 )

Ej,r
∗

:= Ext∗P(I(r)
0 , S

pr−j(j)
1 ) ' Ext∗P(I(r)

1 , S
pr−j(j)
0 )

for 0 ≤ j ≤ r (the isomorphisms come from Proposition 2.2.6). Note that Er,r
∗ = Er

∗ and
Er,r

∗
= Er

∗
. As graded spaces we have [Dru16, Thm 4.5.1]:

Ej,r
s '

{
k if s ≡ 0 mod 2pr−j

0 otherwise

Ej,r
s '

{
k if s ≡ pr mod 2pr−j and s ≥ 2pr

0 otherwise

Theorem 3.1.6 ([Dru16, Prop. 4.6.4]). For 0 ≤ j ≤ r, the canonical morphism I(r)
` → S

pr−j(j)
`

induces surjective maps

Er −→ Ej,r

Er −→ Ej,r

whose kernels are the right Er-supermodules generated respectively by the family {e1,r, . . . , er−j,r}
and {cr · e1,r, . . . , cr · er−j,r}.

3.2 The Ext computation

We dedicate to the proof of Theorem 3.0.1 by first inspecting the cases where A,B are inde-
composable. Throughout the rest of the chapter, ` ∈ {0, 1} and ` := ` + 1 mod 2. We recall
that y ·x denotes the Yoneda product (1.6.1) of two extensions x, y. If V =

⊕
i≥0 V

i is a graded
vector space, we also recall that V (r) := I(r)(V ) is graded by

(V (r))d =

{
(V i)(r) if d = pri

0 otherwise

in accordance with Definition 2.3.14. Finally, we keep in mind the notation ei,r and cr of Theorem
3.1.4 for the generators of Er

∗ and Er
∗
.

Convention 3.2.1. As explained in Convention 1.5.5, it is not restrictive to only consider Ext
spaces between homogeneous (super)functors. In what follows, G will be always assumed to be
homogeneous of degree pr and A,B homogeneous of degree ps (s ≥ 1). This assumption being
fixed throughout, we suppress the degrees from the notations ExtP and ExtP in order to make
them lighter.
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3.2.1 The case A = B = I(r)`
Proposition 3.2.2. There is a morphism of superalgebras determined on generators by

σ : Es
(r) → Er+s

e
(r)
i,s 7−→ er+i,r+s

which is graded injective.

Proof. It is graded because deg(e
(r)
i,s ) = pr deg(ei,s) = 2pr+i−1 = deg(er+i,r+s). Moreover, if

i < s then r+ i < r+ s, hence epr+i,r+s = 0. This means that σ respects the relations on the two
superalgebras and is then well defined. To see that σ is injective, consider a nonzero element
e(r) ∈ Es

(r). By Theorem 3.1.4, e is a sum of terms of the form

ed11,s · ... · edss,s

with d1, ..., ds−1 < p. Therefore by definition σ(e(r)) is equal to the sum of the corresponding
terms

ed1r+1,r+s · ... · e
ds
r+s,r+s

each one being nonzero because d1, ..., ds−1 < p. So σ(e(r)) 6= 0.

Notation 3.2.3. For an extension x ∈ Ext∗P(F,G), denote by x[s]
` the extension in Ext∗P(F

(s)
` , G

(s)
` )

obtained by precomposing x with I(s)
` .

We define then a graded map, natural in G:

Ψ : Ext∗P(I(r), G)⊗Es
(r) −→ Ext∗P(I(r+s)

` , G
(s)
` )

x⊗ e(r) 7−→ x
[s]
` · σ(e(r)) .

Proposition 3.2.4. Ψ is an isomorphism for all G.

Proof. We carry out the proof in two steps.

• Step 1: assume G injective. It is enough to consider the case G = Sµ, since all injective
are direct factors of sums of such functors. Let us treat first the case µ = (pr). Then
Ext∗P(I(r), Sp

r

) is only nonzero in degree 0, where it is one-dimensional and generated by
the twisted pr-th power map ϕ : I(r) → Sp

r

. Denote ϕs := ϕ ◦ I(s)
` : I(r+s)

` → S
pr(s)
` . Thus

Ψ identifies to the composition

Es
(r) σ−−→ Er+s

ϕs·−−−−→ Es,r+s .

By Theorem 3.1.6, the right map is a surjection and its kernel is generated as a super
vector space by the classes {e1,r+s, . . . , er,r+s}. On the other side, σ is an injection on all
the other generators of Er+s, so the composition is an isomorphism as desired. In the case
where µ 6= (pr), then Sµ and Sµ(s)

` are both tensor products of reduced functors. Hence the
source and the target of Ψ are zero by Lemma 2.3.4, so that Ψ is trivially an isomorphism.

• Step 2: we make the proof for a general G by a spectral sequence argument. As a first
step, we construct a lifting of our map Ψ on the level of chain (bi)complexes. To be more
specific, we choose an injective coresolution J∗ of F , a projective resolution P∗ of I

(r+s)
` ,

and we consider the bicomplexes (the bicomplex Bm,n has trivial vertical differentials)

Bm,n = HomP(I(r), Jm)⊗ ExtnP(I(s)
` , I(s)

` )(r) ,

Cm,n = HomP(I(r), Jm)⊗HomP(Pn, I
(r+s)
` ) ,

Dm,n = HomP(Pn, Jm ◦ I(r)
` ) .
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The homology of the total complexes of these bicomplexes are given by

H∗(TotB) = Ext∗P(I(r), G)⊗ Ext∗P(I(s)
` , I(s)

` )(r) ,

H∗(TotC) = Ext∗P(I(r), G)⊗ ExtP(I(r+s)
` , I(r+s)

` ) ,

H∗(TotD) = Ext∗P(I(r+s)
` , G

(s)
` ) .

We choose a basis of the graded space Ext∗P(I(s)
` , I(s)

` ) and for each element b of this basis
we choose a cocyle z(b) representing σ(b) in the complex HomP(P∗, I

(r+s)
` ). This induces

a morphism of bicomplexes
z : Bm,n → Cm,n

such that H∗(Totz) : H∗(TotB)→ H∗(TotC) is equal to id⊗σ. We also define a morphism
of bicomplexes φ : Cm,n → Dm,n as the composition

Cm,n → HomP(I(r+s)
` , Jm ◦ I(s)

` )⊗HomP(Pn, I
(r+s)
` )→ Dm,n

where the first map is induced by precomposition by the functor I(s)
` and the second one

by the composition of morphisms in P . By construction, the map H∗(Totφ) sends x⊗ e(r)

to x[s]
` · e(r). Thus H∗(Tot(φ ◦ z)) coincides with Ψ.

Let us now consider the first quadrant spectral sequences associated to the bicomplexes
Bm,n and Dm,n:

Em,n1 (B) = HomP(I(r), Jm)⊗ ExtnP(I(s)
` , I(s)

` )(r) ⇒ Hm+n(TotB) .

Em,n1 (D) = ExtnP(I(r+s)
` , Jm ◦ I(s)

` )⇒ Hm+n(TotD) .

The morphism of bicomplexes φ ◦ z induces a morphism of spectral sequences, which is
equal to Ψ on the abutment. Thus to prove that Ψ is an isomorphism, it suffices to prove
that Em,n∞ (φ ◦ z) is an isomorphism. But by construction Em,∗1 (φ ◦ z) = Ψ on each column
of indexm. Since Jm is injective, we deduce by Step 1 that Em,∗1 (φ◦z) it is an isomorphism
on the first pages. Therefore Em,n∞ (φ ◦ z) is an isomorphism, as we had to show.

3.2.2 The case A = I(r)` , B = I(r)
`

The idea is to perform the same construction but for two twists of different parities. More
precisely, we will construct a morphism analogous to Ψ but having Ext∗P(I(r+s)

` , G
(s)

`
) as target.

First we start by defining a counterpart of the morphism σ of Proposition 3.2.2. Recall that Es

is the free Es-supermodule on the generator cs (Proposition 3.1.4). Note also that σ endows
Er+s, thus also Er+s, with the structure of an Es

(r)-supermodule.

Proposition 3.2.5. There is a morphism of graded Es
(r)-supermodules determined by

σ′ : Es
(r) → Er+s

c(r)s 7−→ cr+s

which is graded injective.

Proof. By construction, σ′(c(r)s · e(r)) = cr+s · σ(e(r)) and this determines σ′ completely. In
particular σ′ is injective, since σ is. Moreover deg(c

(r)
s ) = pr deg(cs) = pr+s = deg cr+s, which

shows that σ′ is graded.
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Define, as above, a graded map natural in G:

Ψ′ : Ext∗P(I(r), G)⊗Es
(r) −→ Ext∗P(I(r+s)

` , G
(s)

`
)

x⊗ e(r) 7−→ x
[s]

`
· σ′(e(r))

Proposition 3.2.6. Ψ′ is a graded isomorphism for all G.

Proof. The proof is conceptually similar to the one of Proposition 3.2.4. When G = Sµ is an
injective cogenerator, the assertion follows in the same way by Theorem 3.1.6 if µ = (pr) and
from Lemma 2.3.4 otherwise. For an arbitrary G, take the very same P∗ and J∗ and form
bicomplexes

Bm,n = HomP(I(r), Jm)⊗ ExtnP(I(s)
` , I(s)

`
)(r) ,

Cm,n = HomP(I(r), Jm)⊗HomP(Pn, I
(r+s)

`
) ,

Dm,n = HomP(Pn, J
m ◦ I(r)

`
) .

Take a basis of ExtP(I(s)
` , I(s)

`
) and to any element b of this basis associate a cocycle z′(b)

representing σ′(b) in HomP(Pn, I
(r+s)

`
). It induces a morphism of bicomplexes z′ : Bm,n → Cm,n

such that H∗(Totz′) = id ⊗ σ′. Then define a morphism ϕ′ as in the previous proof, replacing
` by ` everywhere in the composition. The map H∗(Totϕ′) sends x ⊗ e(r) to x

[s]

`
· e(r), so

H∗(Tot(ϕ′ ◦ z′)) is equal to Ψ′. In the second step, the spectral sequence associated to these
new B∗,∗ and D∗,∗ are exactly the source and the target of Ψ′. The rest of the proof is a
word-for-word repetition.

3.2.3 Parity shifted twists

Half work is done for indecomposable additives. We now have to treat the shifted ones, i.e.
additives of the form Π ◦ I(s)

` .

Proposition 3.2.7. Let πs denote the generator of Hom(Π◦I(s)
` , I(s)

` ). Then there are injective
morphisms of graded super vector spaces

τ : Ext∗P(Π ◦ I(s)
` , I(s)

` )(r) → Ext∗P(Π ◦ I(r+s)
` , I(r+s)

` )

τ ′ : Ext∗P(Π ◦ I(s)
` , I(s)

`
)(r) → Ext∗P(Π ◦ I(r+s)

` , I(r+s)

`
)

which fit in diagrams

Ext∗P(Π ◦ I(s)
` , I(s)

` )(r) Ext∗P(Π ◦ I(r+s)
` , I(r+s)

` )

Ext∗P(I(s)
` , I(s)

` )(r) ExtP(I(r+s)
` , I(r+s)

` )

τ

σ

(−)·π(r)
s

(−)·πr+s

Ext∗P(Π ◦ I(s)
` , I(s)

`
)(r) Ext∗P(Π ◦ I(r+s)

` , I(r+s)

`
)

Ext∗P(I(s)
` , I(s)

`
)(r) ExtP(I(r+s)

` , I(r+s)

`
)

τ ′

σ′

(−)·π(r)
s

(−)·πr+s



3.2. THE EXT COMPUTATION 65

Proof. By Remark 1.6.3, the vertical arrows in both diagrams are (odd) isomorphisms. Hence
the existence of such injective τ and τ ′ is straightforward.

We now have two sister maps of Ψ,Ψ′, namely:

Ω : Ext∗P(I(r), G)⊗ Ext∗P(Π ◦ I(s)
` , I(s)

` )(r) → Ext∗P(Π ◦ I(r+s)
` , G

(s)
` )

x⊗ e(r) 7−→ x
[s]
` · τ(e(r))

Ω′ : Ext∗P(I(r), G)⊗ Ext∗P(Π ◦ I(s)
` , I(s)

`
)(r) → Ext∗P(Π ◦ I(r+s)

` , G
(s)

`
)

x⊗ e(r) 7−→ x
[s]

`
· τ ′(e(r))

Proposition 3.2.8. Ω and Ω′ are isomorphisms for all G.

Proof. Since τ fits in the diagram of Proposition 3.2.7, by its definition Ω fits in a commutative
diagram

Ext∗P(I(r), G)⊗ Ext∗(Π ◦ I(s)
` , I(s)

` )(r) Ext∗(Π ◦ I(r+s)
` , G

(s)
` )

Ext∗P(I(r), G)⊗ Ext∗P(I(s)
` , I(s)

` )(r) ExtP(I(r+s)
` , G

(s)
` )

Ω

Ψ

id⊗(−)·π(r)
s

(−)·πr+s

but Ψ is an isomorphism by Proposition 3.2.4 and the vertical arrows are isomorphisms, then so
is Ω. The proof for Ω′ is analogous.

3.2.4 General computation

We have computed extensions of the form Ext∗P(I(r) ◦ A,G ◦ B) by inspecting the possibilities
for A,B indecomposable. Now it is time to generalise our computations to arbitrary additive
A,B ∈ P . For that, we will make use of a technical lemma.

Convention 3.2.9. If A,B are additive categories and H : A → B is a functor, we say that H
is additive if there exists a binatural isomorphism H(A⊕ B) ' H(A)⊕H(B). In other words,
we generalise Definition 2.3.1. Since the content of Lemma 2.3.2 is entirely valid in this context,
the definition is equivalent if moreover we require the isomorphism to be the one induced via H
by the canonical inclusions A,B ⊂ A⊕B. This allows us to make a little abuse in the following
proof, where we identify H(A⊕B) with H(A)⊕H(B).

Lemma 3.2.10. Let A,B be additive categories and H,L : A → B two additive functors. Let
I be a full subcategory of A such that every object of A can be written as a finite direct sum of
copies of objects in Ob(I). Denote by i : I ↪→ A the canonical inclusion. Then:

1. Every natural transformation T : H ◦i→ L◦i extends uniquely to a natural transformation
T̃ : H → L.

2. T̃ is an isomorphism (monomorphism, epimorphism) if and only if T is.

Proof. Let us first prove uniqueness. Suppose that there are two natural transformations T̃ , T̃ ′
with the required properties. For an object A, choose an isomorphism ϕ : A '

⊕
i∈I Ai with

Ai ∈ Ob(I) and I a finite set. Since T̃ and T̃ ′ are both natural and lift T , in the following
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diagram

H(A) L(A)

⊕
iH(Ai)

⊕
i L(Ai)

H(A) L(A)

T̃A

Hϕ Lϕ⊕
i TAi

Hϕ−1 Lϕ−1

T̃ ′A

both squares are commutative, hence so is the whole diagram. But the vertical composition are
identities, so T̃A = T̃ ′A for all A, which shows that T̃ = T̃ ′.

We now prove the existence part. For an object A, consider the same data {(Ai)i∈I , ϕ} as
above and define:

T̃A : H(A)
⊕

iH(Ai)

⊕
i TAi−−−−−→

⊕
i L(Ai) L(A) .'

Hϕ

'
Lϕ−1

Claim: if B is another object, ψ : B '
⊕

j∈J Bj a decomposition with Bj ∈ Ob(I) and
f ∈ HomA(A,B), then the following diagram commutes:

H(A)
⊕

iH(Ai)
⊕

i L(Ai) L(A)

H(B)
⊕

j H(Bj)
⊕

j L(Bj) L(B)

Hϕ

'

Hf

⊕
i TAi Lϕ−1

'

Lf

Hψ

' ⊕
j TBj Lψ−1

'

(3.2.1)

Once we have proved the claim, we can conclude that:

• T̃A does not depend on the choice of the decomposition of A (by posing B = A and
f = IdA);

• T̃ is a natural transformation;

• Statement (2) holds (by the explicit definition of T̃ ).

We proceed then check the commutativity of (3.2.1). By the universal property of the direct sum,
for all i ∈ I and j ∈ J there exist morphisms fij : Ai → Bj such that the matrices H̃f = (Hfij)

and L̃f = (Lfij) provide arrows which fill the two outer squares of (3.2.1). We are then reduced
to check that the resulting central square

⊕
iH(Ai)

⊕
i L(Ai)

⊕
j H(Bj)

⊕
j L(Bj)

⊕
i TAi

H̃f L̃f

⊕
j TBj

(3.2.2)

commutes. First, we have L̃f ◦ (
⊕

i TAi) =
(
Lfij ◦TAi

)
i,j
. Now, since each fij is a morphism in

the subcategory I and by hypothesis T = T̃ ◦ i is natural, the latter is equal to
(
TBj ◦Hfij

)
i,j

=

(
⊕

j TBj ) ◦ H̃f , which proves commutativity of (3.2.2) and then of (3.2.1) as wanted.

Let s be a positive integer, let A be the full subcategory of Pps consisting of additive super-
functors with finite dimensional values, and let I be the full subcategory of A on the objects
{I(s)

0 , I(s)
1 ,Π ◦ I(s)

0 Π ◦ I(s)
1 }. It follows from Theorem 2.3.5 that A and I satisfy the hypothesis

of Lemma 3.2.10. We keep this notation for the proof of the following proposition.
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Proposition 3.2.11. Let A and B be two additive superfunctors of degree ps (s ≥ 1). There is
an injective morphism of graded super vector spaces

σA,B : Ext∗P(A,B)(r) → Ext∗P(I(r) ◦A, I(r) ◦B)

natural with respect to A and B, determined by the following conditions:

1. When A = B = I(s)
` , σA,B equals the map σ of Proposition 3.2.2.

2. When A = I(s)
` and B = I(s)

`
, σA,B equals the map σ′ of Proposition 3.2.5.

3. When A = Π ◦ I(s)
` and B = I(s)

` , σA,B equals the map τ of Proposition 3.2.7.

4. When A = Π ◦ I(s)
` and B = I(s)

`
, σA,B equals the map τ ′ of Proposition 3.2.7.

5. There is a commutative square

Ext∗P(A,B)(r) Ext∗P(I(r) ◦A, I(r) ◦B)

Ext∗P(A ◦Π, B ◦Π)(r) Ext∗P(I(r) ◦A ◦Π, I(r) ◦B ◦Π).

σA,B

◦Π' ◦Π'

σA◦Π,B◦Π

Proof. Whenever A and B are as in (1)-(4) set

σA◦Π,B◦Π(e(r)) := (σA,B(e(r) ◦Π)) ◦Π

which gives by construction commutativity of the diagram in (5). Hence, σA,B is completely
determined by (1)-(5) when A,B are in I. We want to conclude by invoking Lemma 3.2.10 with
A and I as above, B the category of Z-graded vector spaces of finite dimension degree-wise,
H = Ext∗P(A,−)(r) (resp. Ext∗P(−, B)(r)) and L = Ext∗P(I(r) ◦ A, I(r) ◦ −) (resp. Ext∗P(I(r) ◦
−, I(r) ◦B)) for a fixed A (resp. B) in A. The only thing to verify is that H and L are additive
in either definition. For both this is automatic from biadditivity of Ext∗P(−,−), additivity of
the twist and additivity of the operation I(r) ◦ −.

Let now xB := x ◦B for an extension x. Define the graded map

ΨA,B : Ext∗P(I(r), G)⊗ Ext∗P(A,B)(r) → Ext∗P(I(r) ◦A,G ◦B)

x⊗ e(r) 7−→ xB · σA,B(e(r)) .

Theorem 3.0.1 can now be proved in its generality.

Theorem 3.2.12. For all additive homogeneous superfunctors A,B of degree ps and for all
homogeneous strict polynomial functor G of degree pr, ΨA,B is an isomorphism.

Proof. When A and B are of the forms in (1)-(4) of the previous proposition, ΨA,B is an iso-
morphism by respectively Propositions 3.2.4, 3.2.6 and 3.2.8. Then condition (5) of Proposition
3.2.11 implies that it is an isomorphism for all A,B ∈ I. To conclude, we want to invoke Lemma
3.2.10. Take the same categorical settings as the previous proof and, for a fixed A, set:

H = Ext∗P(I(r), G)⊗ Ext∗P(A,−)(r)

L = Ext∗P(I(r) ◦A,G ◦ −)

resp. for a fixed B:
H = Ext∗P(I(r), G)⊗ Ext∗P(−, B)(r)
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L = Ext∗P(I(r) ◦ −, G ◦B) .

We have to prove that all these functors are additive. The only non straightforward case is L in
its first definition, i.e. L = Ext∗P(I(r) ◦ A,G ◦ −). Let then C,C ′ ∈ P be additive. Let us first
consider the case G = Sp

r

V . Recall that

Sp
r

V ◦ (C ⊕ C ′) '
⊕

a+b=pr

SaV ◦ C ⊗ SbV ◦ C ′.

Apply now Ext∗P(I(r) ◦ A,−) to the last direct sum. Since I(r) ◦ A is additive, by Pirashvili’s
vanishing lemma (2.3.4) the only terms which survive are the ones corresponding to a = 0 and
b = 0, that is,

Ext∗P(I(r) ◦A,Sp
r

V ◦ (C ⊕ C ′)) ' Ext∗P(I(r) ◦A,Sp
r

V ◦ C) ⊕ Ext∗P(I(r) ◦A,Sp
r

V ◦ C
′)

which proves that L is additive for G = Sp
r

V . For an arbitrary G, take an injective coresolution
G ↪→ J∗ and form the spectral sequences

Es,t1 = ExttP(I(r) ◦A, Js ◦ C ⊕ Js ◦ C ′)⇒ Exts+tP (I(r) ◦A,G ◦ C ⊕ G ◦ C ′)
F s,t1 = ExttP(I(r) ◦A, Js ◦ (C ⊕ C ′))⇒ Exts+tP (I(r) ◦A,G ◦ (C ⊕ C ′))

The inclusions C,C ′ ⊂ C ⊕ C ′ induce a morphism

ψ : Exts+tP (I(r) ◦A,G ◦ C ⊕ G ◦ C ′)→ Exts+tP (I(r) ◦A,G ◦ (C ⊕ C ′))

as well as a morphism of spectral sequences ϕ : E∗,∗ → F ∗,∗ which equals ψ on the abutment.
But we know that ϕ is an isomorphism on the first page, since the Js are injective. Then ψ is
an isomorphism and the theorem is proved.



Chapter 4

Extensions between twisted functors

In the previous chapter (Corollary 3.0.2) we positively solved Conjecture 0.4 with the additional
assumption that the first functor F is additive. Dropping this hypothesis forces us to change
completely approach. The idea that we develop in this chapter is to approach Ext∗P(F ◦A,G◦B)
by means of a spectral sequence, which identifies to Ext∗P(F,GExtP (A,B)) at the second page.
Our conjecture can thus be reformulated in terms of the collapsing of this spectral sequence
(Conjecture 4.1.5). We mainly focus on the cases A = B = I(r)

0 and A = I(r)
0 , B = I(r)

1 , which
are expected to tell the greatest part of the story . Since a priori we know nothing about the
differentials of the spectral sequence, we start by comparing it to its classical counterpart which
is completely understood [Tou13]. It is furthermore possible to compare it with itself, by means
of morphisms induced by cup product with special classes (Proposition 4.3.16 and 4.4.1). In fact,
deducing the existence and the properties of such classes is in some sense the real new content
of the theory. At the end, we will be able to come out with a partial (but satisfying) response
to our original question.

4.1 The twisting spectral sequence

As anticipated in the introduction, the graded isomorphism that we desire is meant to come
from the study of a spectral sequence that we introduce in this section. Its construction is
highly standard, as we see in the next proposition, but having found an explicit formula for the
right adjoint of the twisting functor is fundamental to extract information from it. The reader
can refer to [Wei94] for the generalities about spectral sequences.

Proposition 4.1.1. Let A,B be abelian k-linear categories with enough projectives and injec-
tives, c1, c2 : A → B two k-linear functors, with c1 exact. Denote by ρ1 the right adjoint of c1
and by R∗ρ1 its right derived functor. Then, for all F,G ∈ A, there is a cohomological spectral
sequence

Es,t2 = ExtsA(F,Rtρ1(c2G))⇒ Exts+tB (c1F, c2G) . (4.1.1)

Proof. Let P∗ be a projective resolution of F and J∗ an injective coresolution of c2G. Con-
sider the bicomplex Es,t0 := HomB(c1Ps, J

t). Since c1 is exact, the homology of its total-
ization computes Ext∗B(c1F, c2G), which is then the abutment of the associated spectral se-
quence. Now, by adjunction HomB(c1Ps, J

t) ' HomA(Ps, ρ1J
t) so the first page is isomorphic to

HomA(Ps,Rtρ1(c2G)). By consequence, the second page identifies to ExtsA(F,Rtρ1(c2G)).

It is then a first quadrant spectral sequence with the differential going right-downwards. Since
the Ext-groups are by hypothesis k-vector spaces, its collapsing is controlled by the following
criterion.

69
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Proposition 4.1.2. Suppose that ExtiB(c1F, c2G) is finite-dimensional for all i. Then the spec-
tral sequence (4.1.1) collapses at the second page if and only if there is a graded isomorphism
(not necessarily natural) with respect to total degree on the right side

Ext∗B(c1F, c2G) ' Ext∗A(F,R∗ρ1(c2G)) .

When B = Pd (d ≥ 0), the criterion of Proposition 4.1.2 applies in the same way even if Pd

is k-superlinear (and not abelian). That is because the Ext in Pd are computed by passing to an
abelian subcategory of Pd, as explained in §1.5.1. The same formal transition to Pev is made in
order for the right derived functor R∗ρA to make sense (since in our computations we consider
it as a functor P → P). Finally, the hypothesis of finiteness in Proposition 4.1.2 is ensured in
Pd by Lemma 1.6.4.

We can then apply this machinery to our context. Fix from now r ≥ 1, d ≥ 0. Set A = Pd,
B = Pdpr and take F,G ∈ Pd. For additive superfunctors A,B ∈ Ppr , set c1 = ΦA, c2 = ΦB the
precomposition functors defined in §2.3.2. We will drop the cryptic notation ϕA(F ) in favor of
the explicit F ◦A. With these settings, the spectral sequence of Proposition 4.1.1 reads

IIs,tA,B := ExtsPd(F,RtρA(G ◦B))⇒ Exts+tPdpr (F ◦A,G ◦B) . (4.1.2)

The existence alone of such a spectral sequence implies a general but very interesting fact.

Theorem 4.1.3. For all F,G ∈ Pd and `,m ∈ {0, 1} we have the following:

• Ext∗P(F
(r)
` , G

(r)
m ) is a purely even superspace.

• ExtP(F
(r)
` ◦ Π, G(r)

m ) and ExtP(F
(r)
` , G

(r)
m ◦ Π) are purely even (resp. odd) if d is even

(resp. odd).

Proof. By the discussion in Section 2.3.4, the Ext at the second page bears a superdegree that
is exactly the one specified in the respective cases. In particular, the abutment is concentrated
in the same respective superdegrees.

The right derived functor appearing in the formula is easily computed thanks to Proposition
2.3.26.

Lemma 4.1.4. Let A ∈ Ppr be additive and let H ∈ Pdpr . Then R∗ρA(H) is the graded
d-homogeneous classical polynomial functor defined by

V 7−→ Ext∗Pdpr (Γd,V ◦A,H)

where the Ext is seen as an ungraded space.

We will prove later (Proposition 4.2.6) that, if G is a classical polynomial functor and B is
an additive polynomial superfunctor, then R∗ρA(G ◦B) ' GExt∗P (A,B) naturally with respect to
G. In view of this and of Prop 4.1.2, we can reformulate Conjecture 0.4 as follows.

Conjecture 4.1.5. For all F,G ∈ Pd the spectral sequence (4.1.2) collapses at the second page.
In particular, there is a graded isomorphism (a priori not natural)

Ext∗Pdpr (F ◦A,G ◦B) ' Ext∗Pd(F,GExt∗P (A,B)) .

Convention 4.1.6. As in Chapter 3, we suppress from now the polynomial degree from the
notations ExtP and ExtP in order to be short. Nevertheless, for the reasons explained in
Convention 1.5.5, our (super)functors will still be assumed to be homogeneous all along: F,G
of degree d and A,B of degree pr, r ≥ 1.
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4.2 The right derived functor of ρA
A crucial step to study the twisting spectral sequence is to compute the right derived functor
R∗ρA in an explicit form. This will be equivalent to proving the validity of Conjecture 4.1.5
when G is injective. We start to do this by assuming, in addition, G to be injective. Consider
the transformation, natural in A,B, V,W ,

(Ext∗P(A,B)⊗ V ⊗W )⊗d ' (Ext∗P(A⊗W∨, B ⊗ V ))⊗d → Ext∗P(Γd,W ◦A,SdV ◦B) (4.2.1)

induced by additivity of A and B and by cup product.

Lemma 4.2.1. The cup product (4.2.1) factors through a map

ηA,B(V,W ) : Sd(Ext∗P(A,B)⊗ V ⊗W ) −→ Ext∗P(Γd,W ◦A,SdV ◦B) . (4.2.2)

Proof. Since the parameters V,W do not affect the cup product, the essential of the proof carries
out the same if we suppose V = W = k. It is also enough to treat the case d = 2. With these
assumptions, let us start from the case where A,B are indecomposable. Taken e ∈ ExtsP(A,B)
and f ∈ ExttP(A,B), we have to prove that e∪ f = f ∪ e (with no sign: note that we are taking
Sd - not Sd - and everything here lives in even superdegree). We treat case by case and to
conclude we always use Proposition 1.6.12 (with i = j = 1). Remember that S∗(r)0 and Γ

∗(r)
0 are

bicommutative superbialgebras, while S∗(r)1 and Γ
∗(r)
1 are graded-bicommutative (cf. Remark

1.3.15). First let us consider the cases where e = f = 0, which are the following ones.

• A = B = I(r)
0 : in this case s, t are even (since Er is concentrated in purely even cohomo-

logical degrees). Moreover, in the notation of Proposition 1.6.12, ε(S∗(r)0 ) = ε(Γ
∗(r)
0 ) = 0.

Hence by the latter proposition we conclude e ∪ f = f ∪ e.

• A = B = I(r)
1 : s, t are still even, but ε(S∗(r)0 ) = ε(Γ

∗(r)
0 ) = 1. Nonetheless, Proposition

1.6.12 gives again e ∪ f = f ∪ e.

• A = I(r)
0 , B = I(r)

1 : here ε(Γ∗(r)0 ) = 0 and ε(S∗(r)1 ) = 1. In contrast, s, t are odd because Er

is concentrated in odd cohomological degrees. Hence there are two signs −1 in the formula
of Proposition 1.6.12 which cancel, giving e ∪ f = f ∪ e as desired.

• A = I(r)
1 , B = I(r)

0 : symmetric to the previous one.

We invoke the same Proposition for the other cases where e = f = 1. Remark also that
ε(A ◦Π) = ε(A) for any P-(co)algebra A.

• A = I(r)
0 , B = I(r)

1 ◦ Π: here Ext∗P(A,B) ' ΠEr, hence s, t are even. Since ε(Γ∗(r)0 ) =

0, ε(S
∗(r)
1 ◦Π) = 1, we obtain e ∪ f = f ∪ e.

• A = I(r)
0 , B = I(r)

0 ◦Π: same conclusion, since now Ext∗P(A,B) ' ΠEr, hence s, t are odd
and ε(Γ∗(r)0 ) = 0, ε(S

∗(r)
0 ◦Π) = 0.

These two cases are also symmetrical in A,B. Finally, the cases where both A,B are twists
precomposed by Π follow from the even isomorphism Ext∗P(F,G) ' Ext∗P(F ◦Π, G ◦Π). We
conclude that the lemma is true whenever A and B are indecomposable. To deal with the general
case, by an argument of induction and Kuhn duality we are reduced to study the cases where
A = I(r)

0 and B = I(r)
` ⊕ I(r)

m for `,m ∈ {0, 1}.

• If ` = m = 0, then S∗ ◦B ' S∗(r)0 ⊗ S∗(r)0 is commutative.

• If ` = m = 1, then S∗ ◦B ' S∗(r)1 ⊗g S∗(r)1 is graded-commutative.
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In either case we can conclude again using Proposition 1.6.12. We are just left with the case
` = 0,m = 1 (the other one being symmetric) i.e. B = I(r). Remark that S∗ ◦ B ' S

(r)
0 ⊗ S(r)

1

contains S(r)
0 and S(r)

1 as sub-superalgebras. Take now e ∈ ExtsP(I(r)
0 , I(r)), f ∈ ExttP(I(r)

0 , I(r)).
Since Ext∗P(I(r)

0 , I(r)) = Er ⊕Er, there are in turn three possibilities:

• s, t are even: then e, f belong to Er, hence e∪ f ∈ Exts+tP (Γ
2(r)
0 , S

2(r)
0 ). We then conclude

that e ∪ f = f ∪ e using Proposition 1.6.12 and the commutativity of S∗(r)0 .

• s, t are odd: then e, f belong to Er, hence e∪ f ∈ Exts+tP (Γ
2(r)
0 , S

2(r)
1 ). We conclude using

Proposition 1.6.12 and the graded-commutativity of S∗(r)1 .

• s is even and t is odd: the e ∈ Er and f ∈ Er. In this case st is even and the following
diagram commutes

I(r)
0 ⊗ I(r)

1

S2(I(r)
0 ⊕ I(r)

1 )

I(r)
1 ⊗ I(r)

0

m

T

m

whence we deduce that e ∪ f equals f ∪ e as an element of Exts+tP (Γ
2(r)
0 , S2(I(r)

0 ⊕ I(r)
1 )).

That completes the proof.

Hence we have a natural transformation of polynomial functors

ηA,B(V,−) : (SdV )Ext∗P (A,B) −→ R∗ρA(SdV ◦B) (4.2.3)

which we are going to show to be an isomorphism. The basic case where V = k and A,B are
Frobenius twists is exhausted by the following result.

Theorem 4.2.2 ([DK22, Thm 5.1.2]). For all `,m ∈ {0, 1}, the cup product map (4.2.2) yields
a graded natural isomorphism

Sd(Ext∗P(I(r)
` , I(r)

m ))
'−−→ Ext∗P(Γ

d(r)
` , Sd(r)

m ) .

Starting from this result, we are able to prove that (4.2.2) - and therefore (4.2.3) - is an
isomorphism for all A,B, V .

Proposition 4.2.3. The map (4.2.3) is a graded natural isomorphism

(SdV )Ext∗P (A,B) ' R∗ρA(SdV ◦B)

for all V and all A,B.

Proof. We prove in steps that ηA,B(V,W ) is an isomorphism for all V,W .

• Step 1: proof for V = W = k. Call ηA,B = ηA,B(k,k). If A = I(r)
` and B = I(r)

m ,
`,m ∈ {0, 1}, then we know from Theorem 4.2.2 that ηA,B is an isomorphism. If one
between A,B or both are precomposed by Π, the assertion follows from Proposition 2.2.6.
Hence all cases where A,B are indecomposables are settled. To conclude, we have to show
that ηA⊕A′,B is an isomorphism whenever ηA,B and ηA′,B are (and the same for ηA,B⊕B′ ,
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whose proof is entirely symmetric). This follows from the fact that ηA⊕A′,B equals the
composition

Sd(Ext∗P(A⊕A′, B))

⊕d
a=0 S

d−a(Ext∗P(A,B))⊗ Sa(Ext∗P(A′, B))

⊕d
a=0 Ext∗P(Γd−a ◦A,Sd−a ◦B)⊗ Ext∗P(Γa ◦A′, Sa ◦B)

⊕d
a=0 Ext∗P(Γd−a ◦A ⊗ Γa ◦A′, Sd ◦B)

Ext∗P(Γd ◦ (A⊕A′), Sd ◦B)

'

∑
a ηA,B⊗ηA′,B

'(∗)

'

where (∗) is induced by cup product and is an isomorphism by Corollary 2.3.23.

• Step 2: proof for W = k. Then ηA,B(V,k) factors through the composition

Sd(Ext∗P(A,B)⊗ V ) '
⊕

λ∈Λ(dimV,d)

Sλ(Ext∗P(A,B))

⊕
λ∈Λ(dimV,d)

⊗
i Ext∗P(Γλi ◦A,Sλi ◦B)

⊕
λ∈Λ(dimV,d)

Ext∗P(Γd ◦A,Sλ ◦B)

Ext∗P(Γd ◦A,SdV ◦B)

∑
λ(ηA,B)⊗ dimV

'

'

where the first vertical arrow is an isomorphism by Step 1 and the second one by Corollary
2.3.23 again.

• Step 3: we assert that, for all composition λ of length n, there is a graded isomorphism
Sλ(Ext∗P(A,B) ⊗ V ) ' Ext∗P(Γλ ◦ A,SdV ◦ B) induced by ηA,B(V,k)⊗n and cup product.
Indeed, Step 2 provides such isomorphism for λ = (d). Generalisation to any composition
comes from Corollary 2.3.24.

• Step 4: conclusion. Analogously to Step 2, ηA,B(V,W ) decomposes as the sum of the
restrictions

ηA,B(V,k)⊗ dimW : Sλ(Ext∗P(A,B)⊗ V ) −→ Ext∗P(Γλ ◦A,SdV ◦B)

for λ ranging through Λ(dimW,d). Each one is an isomorphism in force of Step 3. It
follows that so is ηA,B(V,W ).

This concludes the proof.

For later use, we keep track of the following special case treated explicitly in the proof.
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Corollary 4.2.4. For any finite composition λ, cup product induces a natural isomorphism

Sλ(Ext∗P(A,B)⊗ V ) ' Ext∗P(Γλ ◦A,SdV ◦B)

and in particular
(Ext∗P(A,B)⊗ V )⊗d ' Ext∗P(⊗d ◦A,SdV ◦B) . (4.2.4)

In particular, Proposition 4.2.3 says that Conjecture 4.1.5 is true whenever F is projective
and G is injective. Using this very same computation, we will now be able to extend the result
to any polynomial functor F . Explicitly, we want to compute Ext∗P(F ◦A,SdV ◦B). Denote by t
the grading on the parametrised functor (SdV )Ext∗P (A,B) = SdV⊗Ext∗P (A,B). Thanks to Proposition
4.2.3, the spectral sequence (4.1.2) for G = SdV reads at the second page:

ExtsP(F, (SdV⊗Ext∗P (A,B))
t)⇒ Exts+tP (F ◦A,SdV ◦B) .

Since SdV⊗Ext∗P (A,B) is injective in each degree, the sequence is concentrated in a row and hence
collapses at the second page. This proves Conjecture 4.1.5 when G = SdV . We prove an even
stronger assertion in the following theorem.

Theorem 4.2.5. There is a graded isomorphism, natural in all variables

F#(Ext∗P(A,B)⊗ V ) ' Ext∗P(F ◦A,SdV ◦B) (4.2.5)

which, in the case F = Γd,W , coincides with the cup product (4.2.3).

Proof. Since the spectral sequence is concentrated in a single row, the edge homomorphisms
induce a natural isomorphism

Ext∗P(F ◦A,SdV ◦B) ' HomP(F,R∗ρA(SdV )) .

If we call again ηA,B(V ) := ηA,B(V,−) the mentioned cup product map, the isomorphism (4.2.5)
is then induced by

HomP(F, ηA,B(V )) : HomP(F, SdV⊗Ext∗P (A,B))→ HomP(F,R∗ρA(SdV ))

and by Yoneda lemma

HomP(F, SdV⊗Ext∗P (A,B)) ' F
#(Ext∗P(A,B)⊗ V ) .

Finally, set F = Γd,W in all these morphisms. Since Yoneda lemma is natural in all variables,
the map HomP(Γd,W , ηA,B(V )) identifies with ηA,B(V,W ) : Sd(W ⊗ V ⊗ Ext∗P(A,B)) −→
Ext∗P(Γd,W ◦A,SdV ◦B), as stated.

Our next step is using (4.2.5) to identify R∗ρA(G ◦B) for all G ∈ Pd.

Proposition 4.2.6. There is a natural graded isomorphism of polynomial functors

R∗ρA(G ◦B) ' GExt∗P (A,B) .

Proof. Dualise and use (4.2.5) to get

R∗ρA(G ◦B) (V ) = Ext∗P(Γd,V ◦A,G ◦B) ' Ext∗P(G# ◦B,SdV ◦A)

' HomP(G#, SdExt∗P (B,A)⊗V ) ' G(Ext∗P(B,A)⊗ V )

natural in G and V . Since Ext∗P(B,A) ' Ext∗P(A,B) by Lemma 2.3.13, the formula follows.
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We make a very short detour to point out a remark that will be important later. Call by
mSA the multiplication map (W ⊗A)⊗d → SdW ◦A and define the morphism

Ext∗P(SdW ◦A,SdV ◦B) Ext∗P((W ⊗A)⊗d, SdV ◦B)

(W∨ ⊗ Ext∗P(A,B)⊗ V )⊗d

−·mSA

'

where the vertical isomorphism is the inverse of (4.2.4). By Proposition 1.6.12, this is Σd-
invariant and thus factors into a morphism

Ext∗P(SdW ◦A,SdV ◦B) −→ Γd(W∨ ⊗ Ext∗P(A,B)⊗ V ) . (4.2.6)

Lemma 4.2.7. (4.2.6) is an isomorphism and coincides with (4.2.5) in the special case F = SdW .

Proof. Naturality of the isomorphism (4.2.5) applied with respect to the multiplication map
mSA : (W ⊗A)⊗d → SdW ◦A gives a commutative diagram

Ext∗P(SdW ◦A,SdV ◦B) Ext∗P((W ⊗A)⊗d, SdV ◦B)

Γd(W∨ ⊗ Ext∗P(A,B)⊗ V ) (W∨ ⊗ Ext∗P(A,B)⊗ V )⊗d

−·mSA

''

where the two vertical arrows are (tautologically) the ones given by (4.2.5) in the respective
cases F = SdW and F = (W ⊗ I)⊗d. The right one coincides with the cup product map (4.2.4):
this follows from Theorem 4.2.5, since ⊗d is a direct summand of Γd,k

d

. We then conclude that,
by construction, the left one is exactly (4.2.6).

4.3 The isomorphism in low degrees
We keep in mind the notation introduced at the beginning of Chapter 3:

E∗r := Ext∗P(I(r), I(r)),

Er
∗ := Ext∗P(I(r)

0 , I(r)
0 ) ' Ext∗P(I(r)

1 , I(r)
1 ),

Er
∗

:= Ext∗P(I(r)
0 , I(r)

1 ) ' Ext∗P(I(r)
1 , I(r)

0 )

where again we will drop the symbol ∗ if no explicit reference to the grading is needed. Since
r is fixed at this point, the notation ei,r for the generators of Er (cf. Theorem 3.1.4) will be
shortened into ei.

4.3.1 First case: same parity twists
In this section we prove a weak version of Conjecture 4.1.5. In fact, we will prove it in low
degrees but, in exchange, we gain naturality of the isomorphism. We specialise for the moment
to the case A = B = I(r)

0 , which by conjugation yields the parallel result for A = B = I(r)
1 .

Applying Proposition 4.2.6, the spectral sequence (4.1.2) becomes:

IIs,t := IIs,t
I(r)0 ,I(r)0

= ExtsP(F, (GEr )t)⇒ Exts+tP (F
(r)
0 , G

(r)
0 ) . (4.3.1)

Our work in this section is based on the comparison of our spectral sequence with the classical
one of same type. More precisely, this sequence is given for all F,G ∈ P by Proposition 4.1.1
applied to the classical setting:

IIs,t := ExtsP(F, (GEr )
t)⇒ Exts+tP (F (r), G(r)) . (4.3.2)
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It is known that this sequence collapses at the second page [Tou13, Cor. 5], but there is a
stronger result that can be found for example in [Cha15, Cor. 3.7]:

Theorem 4.3.1. There is a graded natural isomorphism Ext∗P(F (r), G(r)) ' Ext∗P(F,GEr ) .

In order to compare II∗,∗ and II∗,∗ we will make use of a restriction morphism. Set i0 :
V → V , i0(V ) = V ⊕ 0 and u : V → V the functor which forgets the Z/2Z-grading.

Definition 4.3.2. For a polynomial superfunctor F , define res0F := u ◦ F ◦ i0. This operation
defines an exact functor Pev −→ P .

In words, restricting a superfunctor means just to evaluate it on purely even spaces and
consider the result as an ungraded space. The theorem we are going to prove can be stated in
two nearly equivalent fashions. The first one gives an immediate comparison between the super
and classical twists, while the second one is really related to the Conjecture 4.1.5. Both proofs
will be given at the end of the section.

Theorem 4.3.3. For all n < 2pr, the restriction morphism

res0 : ExtnP(F
(r)
0 , G

(r)
0 ) −→ ExtnP(F (r), G(r))

is an isomorphism.

Theorem 4.3.4. For all n ≤ 2pr + 1, the spectral sequence (4.3.1) induces an isomorphism

ExtnP(F
(r)
0 , G

(r)
0 ) '

⊕
s+t=n

ExtsP(F, (GEr )t)

which is natural in F,G if n < 2pr.

Let us start by some simple properties of res0. Firstly, it maps Pd onto Pd. Moreover, it is
immediate from the definition that the restricted functor res0 : Pev → P is exact.

Lemma 4.3.5. 1. For all G ∈ P , res0(G
(r)
0 ) = (res0G)(r).

2. For all F ∈ P, res0(F
(r)
0 ) = F (r).

3. For all G,H ∈ P, res0(G⊗H) ' res0(G)⊗ res0(H).

Proof. For (1), evaluate on V ∈ V to have (res0(G
(r)
0 )) (V ) = G

(r)
0 (V ⊕ 0) = G(V (r) ⊕ 0) =

(res0G)(V (r)) = (res0G)(r)(V ). The verification for (2) is analogous, while (3) is immediate
from the definition of tensor product of polynomial superfunctors.

Since it is an exact functor, res0 induces for all F,G ∈ P a morphism Ext∗P(F,G) →
Ext∗P(res0F, res0G). In the following proposition we make res0 into a morphism between our two
spectral sequences. To make no confusion, note by πr the particular restriction res0 : Er → Er.
Remark that, as a map of graded spaces, it is the projection on the first 2pr − 1 degrees.

Proposition 4.3.6. There exists a morphism of spectral sequences II∗,∗ → II∗,∗ that identifies

• with G(πr)∗ : Ext∗P(F,GEr )→ Ext∗P(F,GEr ) on the second pages,

• with res0 on the abutments.

Proof. We have to manipulate the explicit construction of our spectral sequences, namely the one
made in general in the proof of Proposition 4.1.1 and its classical counterpart. Let J∗ ←↩ G(r)

0

be an injective coresolution and P∗ � F be a projective resolution. Then the spectral sequence
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II∗,∗ is induced by the bicomplex1 HomP((Ps)
(r)
0 , J t). We proceed to define our restriction

morphism of spectral sequences. Take K∗ an injective coresolution of G(r) in P. Since res0(J∗)
is a (not injective) coresolution of G(r), there exists a morphism of complexes res0(J∗) → K∗

lifting the identity. Define the restriction morphism at the page zero by the composite

HomP((P∗)
(r)
0 , J∗)

res0−−−→ HomP(P
(r)
∗ , res0(J∗))→ HomP(P

(r)
∗ ,K∗) . (4.3.3)

Note that the right-most bicomplex gives rise to II∗,∗. The morphism (4.3.3) identifies to the
restriction of extensions between the abutments

Ext∗P(F
(r)
0 , G

(r)
0 )→ Ext∗P(F (r), G(r))

and between the first pages

ExttP((Ps)
(r)
0 , G

(r)
0 )→ ExttP((Ps)

(r), G(r)) . (4.3.4)

Now by (4.2.5) there is an isomorphism

Ext∗P((Ps)
(r)
0 , G

(r)
0 ) ' HomP(Ps, GEr ) (4.3.5)

by which we compute the second page. In the classical case, there is an analogous isomorphism

Ext∗P(P (r)
s , G(r)) ' HomP(Ps, GEr ) . (4.3.6)

Hence, to conclude we have to verify the commutativity of the following square:

ExttP((Ps)
(r)
0 , G

(r)
0 ) ExttP((Ps)

(r), G(r))

HomP(Ps, (GEr )t) HomP(Ps, (GEr )
t) .

(4.3.4)

(4.3.5) (4.3.6)

G(πr)∗

First note that, for any polynomial functor H and any natural transformation T : G → H, the
diagram

G(Er ⊗−) G(Er ⊗−)

H(Er ⊗−) H(Er ⊗−)

G(πr)

TEr TEr

H(πr)

commutes (by definition of naturality). This implies that, if G is not injective, one can argue by
taking an injective coresolution, since all sides of the diagram are exact with respect to G. We
then assume G injective. Let us then suppose Ps := Γd,W and G := SdV . In this case, by Theorem
4.2.5, the isomorphism Sd(W ⊗V ⊗Er) ' HomP(Γd,W , (SdV )Er ) ' Ext∗P((Γd,W )

(r)
0 , (SdV )

(r)
0 ), as

well as its classical analogue, is provided explicitly by the cup product e1 · · · ed 7−→ e1 ∪ ... ∪ ed.
Moreover, Lemma 4.3.5(3) implies that res0 commutes with the cup product. Hence (4.3.4)
identifies to the morphism SdV (Er) → SdV (Er) given by e1 · · · ed 7→ res0(e1) · · · res0(ed), which
is by definition SdV (πr).

The restriction morphism gives us a good tool to compare the two sequences. Since II∗,∗
collapses at the second page, we have that G(πr)∗ ◦ δ = 0 for any differential δ at any page

1For convenience, we do not pass immediately to the right adjoint ρ as we did in the proof of Proposition
4.1.1.
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of II∗,∗. What we want to study is then the kernel of G(πr)∗. Let us make some definitions.
Consider the set of unbounded compositions of the integer d:

Λ(∞, d) = {λ = (λi)i∈N | λi ≥ 0,
∑
i≥0

λi = d}

and define the weight of λ to be |λ| :=
∑
i≥0 2iλi (this makes sense because λ can only have

finitely many nonzero components). In this sense, there is a graded decomposition

GEr =
⊕

λ∈Λ(∞,d)

Gλ

such that (GEr )t =
⊕
|λ|=tG

λ.

Remark 4.3.7. Since |λ| is always even, (GEr )t = 0 if t is odd. In particular, the odd rows in
II∗,∗ are all zero.

Call λ n-bounded if it zero in all components λi for i ≥ n. Then

G(πr)|Gλ =

{
isomorphism on the image if λ is pr-bounded
0 otherwise

thus the same holds for the push forward G(πr)∗. The property of being bounded is partially
controlled by the weight:

Lemma 4.3.8. If |λ| < 2n, then λ is n-bounded.

Proof. The non-n-bounded composition with minimal weight is

(d− 1, 0, . . . , 0, 1, 0, . . . )

with 1 in place n. Its weight is 2n, which proves the assertion.

Corollary 4.3.9. If t < 2pr, the restriction of G(πr) : (GEr )t → (GEr )
t is an isomorphism.

Proof. (GEr )t =
⊕
|λ|=tG

λ, so the hypothesis implies that all the compositions λ in the sum
have weight < 2pr. By Lemma 4.3.8 they are all pr-bounded, hence the restriction of res0 is an
isomorphism on its image. But the image is the sum of the Gλ with λ pr-bounded of weight t,
which coincides with (GEr )

t.

Proposition 4.3.10. The elements lying in the strip {II∗,t, t < 2pr} survive.

Proof. IIs,t = ExtsP(F, (GEr )t) is sent by G(πr)∗ onto IIs,t = ExtsP(F, (GEr )
t). Recall that the

differentials in the latter sequence are all zero in consequence of [Tou13, Cor. 5]. Therefore, if ∂ is
any differential landing somewhere in the strip Tr := {t < 2pr} ⊂ II∗,∗, then G(πr)∗ ◦ ∂ = 0. In
force of Corollary 4.3.9, G(πr)∗ is an isomorphism on Tr, which forces ∂ = 0. In particular (recall
that our differentials go right-downwards) nonzero differentials can neither land nor depart from
Tr. This means that all the elements in the strip survive.

Proof of Theorem 4.3.3. It follows by Corollary 4.3.9 that the morphism

G(πr)∗ : Ext∗P(F, (GEr )t)→ Ext∗P(F, (GEr )
t)

is an isomorphism for all t < 2pr. By Proposition 4.3.6, it comes from a spectral sequence
morphism that identifies to res0 : Ext∗P(F

(r)
0 , G

(r)
0 )→ Ext∗P(F (r), G(r)) between the abutments.

Hence, the latter is also an isomorphism in degrees strictly less than 2pr, as stated.
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Figure 4.1: The “critic” strip of II∗,∗.

We are now ready to prove that II∗,∗ collapses in low total degrees, as announced in Theorem
4.3.4 at the beginning of the section. Formally, this might be proved as a direct consequence
of Proposition 4.3.10, but that would not assure any naturality. In order to gain this extra
information, we carry out a slightly less direct proof. One may find help in Figure 4.1.

Proof of Theorem 4.3.4. In degrees strictly less than 2pr (considering the total degree on the
two rightmost spaces) we have a chain of natural isomorphisms

Ext∗P(F
(r)
0 , G

(r)
0 ) ' Ext∗P(F (r), G(r)) ' Ext∗P(F,GEr ) ' Ext∗P(F,GEr )

the first one coming from Theorem 4.3.3, the second one from Theorem 4.3.1 and the last one
being G(πr)

−1
∗ . Since they are all natural, this concludes the proof for degrees strictly less than

2pr. In addition, looking at the spectral sequence II∗,∗, we observe that all differentials departing
from the line t = 2pr fall into the critical strip {II∗,t, t < 2pr}, thus vanish by Proposition 4.3.10.
In particular, the terms II0,2pr and II1,2pr survive, since by geometric reasons they can receive
no nontrivial differential either. Moreover, II0,2pr+1 = 0 because II∗,∗ vanishes in odd strips.
This forces the sequence to collapse in degrees 2pr and 2pr + 1 as well.

4.3.2 Second case: different parity twists

We now handle the case where A and B are Frobenius twists of different parity. By conjugation
we can reduce to the case A = I(r)

0 , B = I(r)
1 and consider the special case of the spectral sequence

(4.1.2):

II
s,t

:= IIs,t
I(r)0 ,I(r)1

= ExtsP(F, (GEr
)t)⇒ Exts+tP (F

(r)
0 , G

(r)
1 ) (4.3.7)

about which we are going to prove the following statement.
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Theorem 4.3.11. For all n ≤ (d+2)pr+1, the spectral sequence (4.3.7) induces an isomorphism

ExtnP(F
(r)
0 , G

(r)
1 ) '

⊕
s+t=n

ExtsP(F, (GEr
)t)

which is natural in F,G for n < (d+ 2)pr.

We recall (Theorem 3.1.4) that Er
∗
is isomorphic to the free Er

∗-supermodule with one even
generator cr placed in degree pr. In particular, as a super vector space

Er
s '

{
k s ≥ pr odd
0 otherwise.

The idea is to replicate such sort of shifting isomorphism on the spectral sequence II
∗,∗

. We
start with an easy fact.

Lemma 4.3.12. Let G ∈ Pd. Then the functor GEr
is only nonzero in degrees greater or equal

than dpr, and (GEr
)dp

r

= G.

Proof. Let λ be a composition in Λ(∞, d) and Gλ ⊂ GEr
the corresponding subfunctor. By the

explicit structure of Er, we see that Gλ is in degree∑
k≥0

(pr + 2k)λk = dpr +
∑
k

2kλk

which is in particular at least dpr. The last statement comes from the fact that the only com-
position of weight dpr is λ = (d, 0, 0, ...) and G(d,0,0,...) = G.

Corollary 4.3.13. Let F,G ∈ Pd. Then:

1. ExtnP(F
(r)
0 , G

(r)
1 ) = 0 for all n < dpr.

2. There is an isomorphism

Extdp
r

P (F
(r)
0 , G

(r)
1 ) ' HomP(F,G) (4.3.8)

natural in F,G.

3. For all G there exists a unique nonzero class in Extdp
r

P (G
(r)
0 , G

(r)
1 ) corresponding to the

identity IdG via (4.3.8).

Proof. Lemma 4.3.12 implies that the lower horizontal strip t < dpr of the spectral sequence
II
∗,∗

is identically zero, which implies a fortiori its collapsing in total degrees < dpr, hence the
first point. As a consequence, II

0,dpr

= HomP(F, (GEr
)dp

r

) = HomP(F,G) is the only nonzero
term of total degree dpr and survives. By these reasons we have the desired natural isomorphism
Extdp

r

P (F
(r)
0 , G

(r)
1 ) ' HomP(F,G). The last point follows immediately.

We give a name to this nonzero class, which will play a remarkable role.

Definition 4.3.14. For all G, we denote by cG the class introduced in point (3) of Corollary
4.3.13.

Lemma 4.3.15. 1. cG⊕H = cG + cH for all polynomial functors G,H.

2. For all natural transformations T ∈ HomP(G,H) the following identity holds:

T
(r)
1 · cG = cH · T (r)

0 .
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3. The class cSdV ∈ Extdp
r

P ((SdV )
(r)
0 , (SdV )

(r)
1 ) satisfies the following relation:

cSdV ·mS0
= mS1

· (1V ⊗ cr)×d

where mS` denotes the multiplication map (V ⊗ I(r)
` )⊗d → (SdV )

(r)
` .

4. cI is equal to cr (the generating class of Er as an Er-supermodule).

Proof. 1. Since the isomorphism (4.3.8) is natural in either variable, the inclusion Extdp
r

P (G,G)⊕
Extdp

r

P (H,H) ↪→ Extdp
r

P (G⊕H,G⊕H) corresponds via (4.3.8) to the inclusion HomP(G,G)⊕
HomP(H,H) ↪→ HomP(G⊕H,G⊕H). The latter sends IdG + IdH onto IdG⊕H . Hence,
by definition the sum of cG and cH must equal cG⊕H .

2. Using again naturality of (4.3.8), there is a commutative diagram

Extdp
r

P (G
(r)
0 , G

(r)
1 ) HomP(G,G)

Extdp
r

P (G
(r)
0 , H

(r)
1 ) HomP(G,H)

Extdp
r

P (H
(r)
0 , H

(r)
1 ) HomP(H,H)

T
(r)
1 ·−

'

T∗

'

−·T (r)
0 T∗

'

and the desired identity comes by following the paths of IdG and IdH .

3. By the proof of Lemma 4.2.7, we have a commutative diagram

Ext∗P((SdV )
(r)
0 , (SdV )

(r)
1 ) Ext∗P((I(r)

0 ⊗ V )⊗d, (SdV )
(r)
1 )

Γd(End(V )⊗Er) (End(V )⊗Er)⊗d

−·mS0

' '

where the right vertical arrow is given by cup product. Restrict this diagram in degree
dpr. Then by Lemma 4.3.12 (Γd(End(V ) ⊗ Er))dp

r

= Γd(End(V ) ⊗ kcr) generated by
γd(1V ⊗ cr). In fact, in the isomorphism

HomP(SdV , S
d
V ) ' (Γd(End(V )⊗Er))dp

r

the identity of SdV corresponds exactly to γd(1V ⊗cr). Thus, by definition, cSdV is the image
of γd(1V ⊗cr) via the left vertical map. It follows that γd(1V ⊗cr) goes onto cSdV ·mS0

by the
left-most path of the diagram. The other path sends it by definition onto mS1

·(1V ⊗cr)×d,
which proves the statement.

We use this class to construct a morphism between the spectral sequence (4.3.7) and the
already treated one (4.3.1). It is visualised in Figure 4.2.

Proposition 4.3.16. There is a morphism of spectral sequences ϕ∗,∗ : II∗,∗ → II
∗,∗

of bidegree
(0, dpr) (with d = degF = degG) that identifies

• with G(cr · −)∗ : Ext∗P(F,GEr )→ Ext∗P(F,GEr
) on the second pages,

• with Yoneda product by cG on the abutments.
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Figure 4.2: The morphism ϕ∗,∗ of Proposition 4.3.16.

Proof. Similarly to the proof of Proposition 4.3.5, take

P∗ � F projective resolution
G

(r)
0 ↪→ J∗ injective coresolution

G
(r)
1 ↪→ K∗ injective coresolution

and form the bicomplexes

As,t := HomP((Ps)
(r)
0 , J t),

A
s,t

:= HomP((Ps)
(r)
0 ,Kt).

They give rise respectively to II∗,∗ and II
∗,∗

. Identify cG with a homotopy class of a morphism
J∗ → K∗[dpr] and define a morphism of bicomplexes A∗,∗ → A

∗,∗+dpr
by push forward. This

identifies with cG ·(−) between the abutments and between the first pages Ext∗P((Ps)
(r)
0 , G

(r)
0 )→

Ext∗P((Ps)
(r)
0 , G

(r)
1 ). The latter identifies via (4.2.5) to a morphism

Hom(Ps, GEr )→ Hom(Ps, GEr
) (4.3.9)

that we must show to be the push-forward by G(− · cr). In first instance, we can suppose
Ps := Γd,W and G injective, since otherwise one can take an injective coresolution of G and
conclude with the help of Lemma 4.3.15 (2). Furthermore, by Lemma 4.3.15 (1), the case
G = SdV is sufficient. Our goal is then to show the commutativity of the following diagram

Ext∗P((Γd,W )
(r)
0 , (SdV )

(r)
0 ) Ext∗P((Γd,W )

(r)
0 , (SdV )

(r)
1 )

Sd(V ⊗W ⊗Er) Sd(V ⊗W ⊗Er)

c
Sd
V
·(−)

SdV⊗W (cr·−)

' ' (4.3.10)

where the upper vertical arrows are (4.2.5) composed with the Yoneda lemma, i.e. cup product
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(by Theorem 4.2.5). To do that, we split it into a diagram

Ext∗P((Γd,W )
(r)
0 , (SdV )

(r)
0 ) Ext∗P((Γd,W )

(r)
0 , (SdV )

(r)
1 )

Ext∗P((Γd,W )
(r)
0 , (I(r)0 ⊗ V )⊗d) Ext∗P((Γd,W )

(r)
0 , (I(r)1 ⊗ V )⊗d))

(V ⊗W ⊗Er)⊗d (V ⊗W ⊗Er)⊗d

Sd(V ⊗W ⊗Er) Sd(V ⊗W ⊗Er)

c
Sd
V
·(−)

(1V ⊗cr)×d·(−)

mS0 ·− mS1 ·−

'

(1V ⊗1W⊗(cr·−))⊗d

'

SdV⊗W (cr·−)

' '

where the middle vertical arrows are given by cup product and the curved arrows are exactly the
vertical ones of (4.3.10). In particular, the outer perimeter coincides indeed with (4.3.10). First,
remark that the outer semi-spheres are commutative by definition of the two cup products. The
upper square is commutative by Lemma 4.3.15 (3). Commutativity of the middle square comes
from the identity

(cr · −1)× ...× (cr · −d) = c×dr · (−1 × ...×−d)

which holds by Lemma 1.6.11 (no sign appears because all extensions in Er are of even coho-
mological degree). The lower square is trivially commutative. All this shows that (4.3.10) is
commutative, which concludes the proof.

Proof of Theorem 4.3.11. Since G(− · cr) is an isomorphism of degree dpr and since the first
dpr − 1 lines of II

∗,∗
are zero by Lemma 4.3.13, it follows that ϕ∗,∗ yields an isomorphism of

bidegree (0, dpr) on the second pages, hence a natural isomorphism on the abutments

Ext∗P(F
(r)
0 , G

(r)
0 ) ' Ext∗+dp

r

P (F
(r)
0 , G

(r)
1 ) . (4.3.11)

The result follows then by this and by Theorem 4.3.4.

4.4 A weaker version in any degree
We now make some sort of iteration process out of Proposition 4.3.16. First, remembering
Remark 1.6.6, consider the conjugate extension cΠG ∈ Extdp

r

P (G
(r)
1 , G

(r)
0 ). Via conjugation, one

can repeat the procedure of the proposition to construct a morphism of spectral sequences
II
∗,∗ → II∗,∗, again of bidegree (0, dpr), which identifies to G(cΠr · −) at the level of second

pages and to cΠG·− on the abutments. In particular, by composition one obtains an endomorphism
of II∗,∗ of bidegree (0, 2dpr).

Proposition 4.4.1. There is a morphism of spectral sequences ψ∗,∗ : II∗,∗ → II∗,∗ of bidegree
(0, 2dpr) which identifies

• with G((er)
p · −) : Ext∗P(F,GEr )→ Ext∗P(F,GEr ) on the second pages,

• with Yoneda product by cΠG · cG on the abutments.

Proof. The only thing left to prove is the identification on the second pages. That follows by
the relations on Ext∗P(I(r), I(r)) [Dru16, Thm. 4.7.1] which say that cΠr · cr = (er)

p is nonzero
and generates Er

2pr .
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Figure 4.3: The endomorphism of Proposition 4.4.1 and its iterations.

Unfortunately G(− · (er)p), and consequently ψ∗,∗, is not an isomorphism. This is because,
while cr ·− : Er → Er is an isomorphism, cΠr ·− : Er → Er is not. Its image includes just classes
of degree at least 2pr. In particular, Yoneda product with (er)

p is not an isomorphism of Er on
itself. Such loss of information can only get worse as d gets bigger. For example, (SdEr

)0 is equal
to one copy of Sd - corresponding to the composition (d, 0, . . . ) - while (SdEr

)2dpr contains at least
a copy of Sd and a copy of Sd−1⊗S1 - corresponding respectively to compositions (0, . . . , d, 0, . . . )
with d in pr-th position and (d − 1, 0, . . . , 1, . . . ) with 1 in dpr-th position. Anyway, the good
news is that ψ∗,∗ is still injective. We want then to identify the its image.

Definition 4.4.2. Let λ ∈ Λ(∞, d) and m an integer. The associated m-shifted composition is
defined as

(λ[m])i :=

{
λi−m if i ≥ m
0 otherwise

It is immediate to check that λ[m] ∈ Λ(∞, d) and that |λ[m]| = |λ|+ 2dm.

Proposition 4.4.3. The morphism ψ∗,∗ of Proposition 4.4.1 is an isomorphism on its image,
which coincides (as a vector space) with

Im(ψ) =
⊕

λ∈Λ(∞,d)

Ext∗P(F,Gλ[pr ]).

Proof. Since − · (er)p : Er → Er is an isomorphism on its image, so is G(− · (er)
p). It is now

immediate to see that the latter sends Gλ onto Gλ[pr ] .

Corollary 4.4.4. All the elements of the form

ExtsP(F,Gλ[pr ]) with s+ |λ| ≤ 2pr + 1

survive in II∗,∗.
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Proof. The map ψ sends the critical strip Tr := {II∗,t, t < 2pr} on the strip {2dpr ≤ t <
2(d+ 1)pr}, more precisely on the subspace

A := {ExtsP(F,Gλ[pr ]) : |λ| < 2pr, s ≥ 0} .

If a differential ∂ departs from A, then it can be precomposed by ψ and ∂ ◦ ψ = 0, since the
differentials in Tr are zero. We conclude that no nonzero differential departs from A. Now, let
A′ be the subspace of A containing only the elements of total degree < 2(d + 1)pr. Explicitly,
this means that

s+ |λ[pr]| < 2(d+ 1)pr

which, since |λ[pr]| = |λ|+ 2dpr, means that

A′ = {ExtsP(F,Gλ[pr ]) : s+ |λ| < 2pr} .

For geometric reasons, differentials landing on A′ must come from the second quadrant, thus are
trivially zero. Resuming, we have proved that no differential departs from or lands on A′. This
shows the surviving of all elements of the asserted form, for s+ |λ| < 2pr. Now consider

A′′ = {ExtsP(F,Gλ[pr ]) : s+ |λ| = 2pr or 2pr + 1} .

As in the proof of Theorem 4.3.4, they receive no nontrivial differential for geometrical reasons,
thus they survive as well.

By applying ψ ad libitum (as depicted in Figure 4.3) one can make induction on the previous
result and get the following.

Proposition 4.4.5. For all k ≥ 1, the elements of the form

ExtsP(F,Gλ[kpr ]) with s+ |λ| ≤ 2pr + 1

survive in II∗,∗.

Visually, what we have proved to survive is the lowest strip {t < 2pr} and infinite copies of
the leftmost flag {s + t ≤ 2pr + 1}. Namely, there is one copy for each k ≥ 1, each one living
in the strip {2dkpr ≤ t ≤ 2(kd + 1)pr + 1}. Now we want to gather such family of surviving
elements to state a weak version of Conjecture 4.1.5. We do that in the following (quite heavy)
proposition, which we next translate in a more readable and suggestive theorem.

Proposition 4.4.6. Let F,G ∈ Pd. For a composition λ ∈ Λ(∞, d), denote by Gλ the corre-
spondent weight space of GEr . Then there is an inclusion

Ext∗P(F
(r)
0 , G

(r)
0 ) ⊇

⊕
0≤t≤2pr+1

Ext∗P(F, (GEr )t)⊕
⊕
k≥1

s+|λ|≤2pr+1

ExtsP(F,Gλ[kpr ]) .

Proof. The first summand comes from Theorem 4.3.4 and the second ones are the surviving
elements of Proposition 4.4.5.

Notation 4.4.7 (Cohomological shifting). Let V ∗ be a Z-graded vector space and n an integer.
The n-shifted space (V[n])

∗ is defined by (V[n])
i := V i−n.

Notation 4.4.8. Set for briefness Ext<2pr

P (−,−) :=
⊕

0≤s<2pr
ExtsP(−,−).

Definition 4.4.9. For all G ∈ P, set εG := cΠG · cG ∈ Ext2dpr (G
(r)
0 , G

(r)
0 ) where cG is the class

of Definition 4.3.14.
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Theorem 4.4.10. Let F,G ∈ Pd. The map
∑
k≥0(εG)k · res−1

0 induces an even graded natural
inclusion

Ext∗P(F (r), G(r))⊕
⊕
k≥1

(
Ext<2pr

P (F (r), G(r))
)∗

[2dkpr]
⊆ Ext∗P(F

(r)
0 , G

(r)
0 )

where the left-hand side is placed in superdegree 0.

Proof. Let us look at Proposition 4.4.6 and pick only the summands of the right-hand side such
that, respectively, t < 2pr and s + |λ| < 2pr. By Theorem 4.3.1, the first one is naturally
isomorphic to Ext∗P(F (r), G(r)) and by Theorem 4.3.3 it is included in Ext∗P(F

(r)
0 , G

(r)
0 ) via

res−1
0 . The second terms are just shiftings of this one via ψ∗,∗, which is a natural injection in

force of Proposition 4.4.3. By Proposition 4.4.1, ψ∗,∗ identifies here with −· εG. Therefore, each
k-summand is isomorphic to a copy of Ext<2pr

P (F (r), G(r)) shifted by 2kdpr, and is included in
Ext∗P(F

(r)
0 , G

(r)
0 ) via res−1

0 composed with − · (εG)k. The result follows.

With an application of (4.3.11) we immediately get the analogous result for twists of different
parity.

Theorem 4.4.11. Let F,G ∈ Pd. Then there is an even graded natural inclusion

Ext∗P(F
(r)
0 , G

(r)
1 ) ⊇

(
ExtP(F (r), G(r))

)∗
[−dpr ]

⊕
(⊕
k≥1

Ext<2pr

P (F (r), G(r))
)∗
[(2k−1)dpr ]

where the right-hand side is in superdegree 0 and the bracket [−] denotes a shifting of cohomo-
logical degree.

Problem 4.4.12. One might wonder if the extension εG := cΠG · cG writes always as a p-th power.
This is the case for G = I, as pointed out at the beginning of the section. We can show that the
answer is positive for any G injective. Let us consider first the case G = ⊗d. Indeed, thanks to
Theorem 4.2.5

Ext∗P(⊗d(r)
0 ,⊗d(r)

1 ) ' HomP(⊗d,⊗d
Er

) ' Er
⊗d ⊗ kΣd

which implies in particular that Extdp
r

P (⊗d(r)
0 ,⊗d(r)

1 ) is generated by the set {σ∗(c×dr ), σ ∈ Σd}.
Therefore, c⊗d is by construction a multiple of c×dr . Applying Lemma 4.3.15 (2)-(3) on the
multiplication map ⊗d → Sd, one sees that in fact c⊗d = c×dr . Inverting cross product and
Yoneda product with Lemma 1.6.11, one concludes that e⊗d := cΠ⊗d · c⊗d = (cΠr )×d · c×dr =

(cΠr · cr)×d = ((er)
p)×d = (e×dr )p. So e⊗d admits a p-th root. Let us now prove the case G = SdV .

Since adding a parameter is harmless, we suppose V = k to lighten notations. From the previous
discussion and Lemma 4.3.15, we can deduce an implicit relation eSd · mS0

= mS0
· (e×dr )p.

Moreover, the functor Ext∗P(−(r)
0 ,⊗d(r)

0 ) is exact as a consequence of Theorem 4.2.5, hence we
have an exact sequence

0→ Ext∗P(S
d(r)
0 ,⊗d(r)

0 )
−·mS0−−−−→ Ext∗P(⊗d(r)

0 ,⊗d(r)
0 )→

⊕
σ∈Σd

Ext∗P(⊗d(r)
0 ,⊗d(r)

0 )

where the second map is
∑
σ∈Σd

Ext∗(σ − Id,⊗d(r)
0 ). Since e×dr is manifestely in its kernel, by

exactness there exists e′r ∈ Ext2dpr−1

P (S
d(r)
0 ,⊗d(r)

0 ) such that e×dr = e′r ·mS0
. In particular, by

the previous relation

eSd ·mS0
= mS0

· (e×dr )p = mS0
· (e′r ·mS0

)p = (mS0
· e′r)p ·mS0

where the last equality is simply associativity of the Yoneda product. Note now that mS0
· e′r

is an element of Ext2dpr−1

P (S
d(r)
0 , S

d(r)
0 ). By exactness of the short sequence, that implies eSd =
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(mS0
·e′r)p i.e. we have found a p-th root of eSd . In particular, since the class εG is additive with

respect to G, we can conclude that εG is a p-th power whenever G is injective. On the other hand,
we do not know if the same holds for non-injective G. The general existence of such 2dpr−1-
extension would lead to a consistent improvement of Theorem 4.4.10. In a slightly different
and more ambitious perspective, it might also provide a “universal class” similar to the ones
used by Chałupnik [Cha15] in order to construct by hand an isomorphism Ext∗P(F

(r)
0 , G

(r)
0 ) '

Ext∗P(F,GEr ).

4.5 Generalisation to all additives
The goal now is to generalise the results we have found to the case of general A and B. In-
vestigating the case of Frobenius twists, we have found isomorphisms in bounded degrees, with
a bound that unfortunately depends on the parity of the two twists. So, to compactify the
statements, we start by introducing the following definition.

Definition 4.5.1. Let A,B be indecomposable additive superfunctors of degree pr. Define the
quantity εA,B according to the following table:

I(r)
0 I(r)

1 I(r)
0 ◦Π I(r)

1 ◦Π
I(r)
0 0 pr pr 0
I(r)
1 pr 0 0 pr

I(r)
0 ◦Π pr 0 0 pr

I(r)
1 ◦Π 0 pr pr 0

The value of ε on any pair of additives is determined by the additional axiom:

εA⊕A′,B = εB,A⊕A′ = min(εA,B , εA′,B) .

Lemma 4.5.2. εA,B is the lowest degree where Ext∗P(A,B) is nonzero.

Proof. For the indecomposables, this is known (Theorem 3.1.2). For a sum of indecomposables,
the assertion follows by the biadditivity of Ext and the last axiom of the definition.

Corollary 4.5.3. If εA,B = pr, then Ext∗P(A,B) is isomorphic to a sum of copies of Er and
ΠEr.

We can now state the main result. Recall the general spectral sequence II∗,∗A,B introduced in
(4.1.2).

Theorem 4.5.4. Let F,G ∈ Pd and let A,B ∈ Ppr additive. Then:

1. ExtnP(F ◦A,G ◦B) = 0 for all n < d · εA,B.

2. Ext
d·εA,B
P (F◦A,G◦B) contains a sum of copies of HomP(F,G). In particular, Ext

d·εA,B
P (G◦

A,G ◦B) 6= 0.

3. If εA,B = pr, then for all n there is an isomorphism

Extn−dp
r

P (F ◦A,G ◦ (Π ◦B ◦Π)) ' ExtnP(F ◦A,G ◦B)

' Extn−dp
r

P (F ◦ (Π ◦A ◦Π), G ◦B) .

Proof. 1. In force of Lemma 4.5.2, GExtP (A,B) is zero in degrees strictly less than d · εA,B .
By consequence, the second page of II∗,∗A,B is all zero in the lowest d · εA,B − 1 rows, so the
abutment vanishes in degrees strictly less than d · εA,B , as stated.



88 CHAPTER 4. EXTENSIONS BETWEEN TWISTED FUNCTORS

2. Continuing of the proof of the first point, we see that in II∗,∗A,B there is only one nonzero
element of total degree d · εA,B , namely

II
0,d·εA,B
A,B ' HomP(F, (GExtP (A,B))

d·εA,B )

which survives for trivial geometric reasons. But (GExtP (A,B))
d·εA,B contains a sum of

copies of G, so in particular II0,d·εA,B
A,B contains a sum of copies of HomP(F,G).

3. We only prove the first isomorphism, the other one being a consequence of it by means
of Kuhn duality. By hypothesis and Corollary 4.5.3, Ext∗P(A,B) is a sum of copies of
Er and ΠEr. Since εA,Π◦B◦Π = 0, we deduce that Ext∗P(A,Π ◦ B ◦Π) is a sum of the
same number of copies of, respectively, Er and ΠEr. Therefore, there is a linear map
fA,B : Ext∗P(A,Π ◦B ◦Π)→ Ext∗P(A,B), namely a diagonal matrix consisting of Yoneda
product by cr or πcr, where cr is the generator of Er

pr

. It is by construction a map of
degree pr which is an isomorphism on its image. Now, consider by point (2) a nonzero class
cB,G ∈ Extdp

r

P (G ◦ (Π ◦ B ◦Π), G ◦ B) corresponding to a sum of identities. Repeating
the process of Proposition 4.3.16, one can construct a morphism of spectral sequences
II∗,∗A,Π◦B◦Π → II∗,∗A,B of bidegree (0, dpr), which identifies to the pushforward by G(fA,B)
between the second pages and to (−) · cB,G between the abutments. Now, G(fA,B) is an
isomorphism on its image as well. In force of this discussion and of point (1), we get on
the abutments the desired isomorphism

ExtnP(F ◦A,G ◦B) ' Extn−dp
r

P (F ◦A,G ◦ (Π ◦B ◦Π)) .

To state the general form of the inclusions of Theorems 4.4.10 and 4.4.11, we need a little
more notation. If A,B are indecomposable, then Ext∗P(A,B) is concentrated in either even or
odd superdegree. Set δA,B to be 0 in the first case and 1 in the second case.

Proposition 4.5.5. Let F,G ∈ Pd and A,B be indecomposable additives (Frobenius twists and
their parity shifts). If εA,B = 0, there is a natural inclusion

Ext∗P(F ◦A,G ◦B) ⊇ Ext∗P(F (r), G(r))⊕
⊕
k≥1

(
Ext<2pr

P (F (r), G(r))
)∗
[2dkpr ]

with the right-hand side in superdegree d · δA,B mod 2. If εA,B = pr, there is a natural inclusion

Ext∗P(F ◦A,G ◦B) ⊇
(

ExtP(F (r), G(r))
)∗
[−dpr ]

⊕
⊕
k≥1

(
Ext<2pr

P (F (r), G(r))
)∗
[(2k−1)dpr ]

again with the right-hand side in superdegree d · δA,B mod 2.

Proof. By Proposition 2.2.6, the case A = B = I(r)
0 is sufficient for the first part and the case

A = I(r)
0 , B = I(r)

1 for the second one, with δA,B taking account of the superdegrees as explained.
In these two cases, we retrieve the content of Theorems 4.4.10 and 4.4.11.

As a consequence of Theorem 2.3.5, for any additive pair A,B the superspace Ext∗P(A,B) is
a sum of copies of Er,Er,ΠEr and ΠEr. Knowing how many copies of each there are, we can
apply Proposition 4.5.5 multiple times to get the following.

Theorem 4.5.6. Let F,G ∈ Pd and let A,B ∈ Ppr be additive. Let n,m, n′,m′ be positive
integers such that

Ext∗P(A,B) = Er
⊕n ⊕ΠEr

⊕n′ ⊕Er
⊕m ⊕ΠEr

⊕m′
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and define the graded super vector space

Ω∗ := Ext∗P(F (r), G(r))⊕
⊕
k≥1

(
Ext<2pr

P (F (r), G(r))
)∗

[2dkpr]
.

Then Ext∗P(F ◦A,G ◦B) contains, in a natural way with respect to F and G:

• n copies of Ω∗ in superdegree zero;

• n′ copies of Ω∗ in superdegree d mod 2;

• m copies of (Ω[−dpr])
∗ in superdegree zero;

• m′ copies of (Ω[−dpr])
∗ in superdegree d mod 2.

Proof. By Lemma 2.3.19, for all A,A′ additives, F ◦ (A⊕A′) contains F ◦A and F ◦A′ as direct
summands. The statement follows then by induction on n,m, n′,m′ with Proposition 4.5.5 as
base case for all of them.
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