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Abstract

Vibration monitoring plays a crucial role in ensuring the safety, reliability, and performance of
mechanical structures such as bridges and wind turbines. It involves the continuous or periodic
measurement and analysis of vibrations to assess the structure state, detect anomalies, and
trigger maintenance decisions. Vibration monitoring systems are generally composed of vibration
sensors such as accelerometers, a data acquisition device, and a software for data analysis.
Because classical contact vibration sensors require complicated setup, this thesis focuses on
video-based vibration analysis. Video-based methods perform remote measurements and provide
vibration data at each pixel of the video frames. The operational modal analysis from these data
determines the structure mechanical properties.

In this doctoral work conducted with EOMYS Engineering company, we investigate video
motion estimation methods. We especially focus on phase-based methods that rely on the
analysis of the space–frequency decomposition of video frames into complex subbands. These
methods provide a dense motion estimation of the scene. A multi-subband approach, based on
the phase fusion of the full space-frequency decomposition, is proposed and compared with the
state of the art.

As motion can be estimated at every pixel of each frame, the amount of data is not suited to
classical operational modal analysis. Thus, a new video-based operational modal analysis, based
on a data reduction technique, is proposed and compared with a state-of-the-art video-based
method.

The experimental comparisons are first conducted on synthetic videos of a vibrating cantilever
beam, with different motion characteristics. Two experimental setups of straight and bent
cantilever beams are finally studied to assess the performances of the methods on real video
data acquired by a high-speed camera in controlled conditions.
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Résumé

La surveillance vibratoire joue un rôle crucial pour garantir la sécurité, la fiabilité et les perfor-
mances de structures mécaniques. Elle implique la mesure et l’analyse, continue ou périodique,
des vibrations afin d’évaluer l’état des structures, de détecter leurs anomalies et d’éclairer les dé-
cisions de maintenance. Les systèmes de surveillance des vibrations sont généralement composés
de capteurs de vibration tels que les accéléromètres, d’un dispositif d’acquisition de données et
d’un logiciel pour l’analyse des données. Comme les capteurs de vibration par contact peuvent
être complexes à mettre en place, cette thèse se concentre sur l’estimation des vibrations basée
sur une analyse de vidéos de la scène. Ces méthodes par vidéo permettent une mesure sans
contact et fournissent des données de vibration en chaque pixel de l’image. L’analyse modale
opérationnelle de ces données fournit des informations sur les propriétés mécaniques de la struc-
ture.

Ce travail doctoral, en collaboration avec l’entreprise EOMYS Engineering, porte sur l’étude
des méthodes d’estimation du mouvement par analyse de vidéos. Elle met l’accent sur les
méthodes basées sur la phase issue de filtres complexes. Ces méthodes s’appuient sur l’analyse
de la décomposition spatio-fréquencielle des images de la vidéo en sous-bandes complexes. Elles
fournissent une estimation dense du mouvement de la scène. Une méthode multi-échelle, basée
sur une décomposition spatio-fréquencielle des images en sous-bandes, est mise en œuvre. Les
performances de la méthode sont comparées à celles de l’état de l’art.

Comme l’estimation du mouvement peut être réalisée en chaque pixel de l’image, la quantité
de données n’est pas adaptée aux méthodes classiques d’analyse modale opérationnelle. Une
nouvelle méthode basée sur la vidéo, réduisant les données d’entrée de l’analyse modale, est
donc proposée et comparée à une méthode de l’état de l’art utilisant la même approche.

Les comparaisons sont d’abord effectuées sur des vidéos synthétiques d’une poutre en porte-
à-faux vibrant avec différentes caractéristiques de mouvement. Les analyses opérationnelles de
deux poutres en porte-à-faux, l’une droite et l’autre pliée, sont finalement réalisées à l’aide de
vidéos acquises par une caméra haute cadence qui opère en conditions contrôlées, pour évaluer
les performances des méthodes.

iv



Remerciements

Je tiens tout d’abord à remercier Jean pour m’avoir fait confiance tout au long de ce projet.
La vie d’une petite entreprise est souvent riche et nos échanges m’ont permis de garder le cap
durant ces trois années.

Je remercie vivement Ludovic, Olivier et Benjamin pour vos conseils, votre écoute et votre
bienveillance tout au long de la thèse. Merci pour votre disponibilité et votre souci du détail,
j’ai énormément appris grâce à vous et travailler à vos côtés fut un réel plaisir.

Je remercie ensuite tous les membres du jury de thèse. Merci aux Pr. Olivier Alata et Pr. Fab-
rice Meriaudeau pour vos rapports et vos questions lors de la soutenance. Merci également à la
Pr. Catherine Achard pour avoir présidé la soutenance ainsi que pour vos retours et vos questions
lors de celle-ci.

Je remercie aussi tous les membres de l’équipe d’EOMYS. Bien qu’ayant un sujet à la marge
des activités de l’entreprise, je me suis toujours senti à ma place grâce à nos échanges, et c’est
avec plaisir que je continue l’aventure. Spéciale dédicace à Martin pour avoir répondu à mes
questions tout au long de ces trois années et pour la démonstration d’analyse modale à toute
l’équipe du laboratoire.

Mes remerciements vont ensuite aux autres membres du laboratoire CRIStAL, avec qui j’ai
pû échanger. Merci à Anis, Félix ainsi qu’à toute l’équipe 3D SAM pour ces discussions. Merci
également aux membres du conseil de l’école doctorale, auquel j’ai pris part avec plaisir durant
deux années.

Pour finir, je remercie ma famille, en commencant par mes parents pour m’avoir accompagné
dans toutes mes tergiversations académiques et pour leur présence lors de la soutenance. Et
enfin, ma compagne, pour son soutien indéfectible durant l’entiereté de mes études.

v





Nomenclature

Multidimensional variables are indicated in bold font.

p Pixel coordinates

x Horizontal pixel coordinate

y Vertical pixel coordinate

z Beam curvilinear coordinate in scene or frame

k Frame number

t Time

f Frequency

ω Angular frequency

g Euler–Bernoulli cantilever beam function

h Impulse response function

j Imaginary unit

s Laplace complex frequency variable

fi Natural frequency of the ith mode

ζi Damping ratio of the ith mode

ϕi Mode shape of the ith mode

r Spatial filter scale

θ Spatial filter orientation

Nx Number of horizontal pixels

Ny Number of vertical pixels
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Nomenclature

Np Number of pixels

Nk Number of frames

Nr Number of spatial filter scales

Nθ Number of spatial filter orientations

NPoI Number of pixels of interest

Nm Number of physical modes in the frequency range

I[p; k] Gray level of pixel p in frame k

Gr,θ Spatial Gabor filter associated with subband (r, θ)

ωr,θ =
(
ωh
r,θ, ω

v
r,θ

)⊺
Central spatial frequency of the filter

Sr,θ Complex response of the filtered frame

ρr,θ Complex response amplitude of the filtered frame

φr,θ Complex response phase of the filtered frame

ω̃r,θ Local spatial frequency of the complex response

δ[p; k] Displacement at pixel p in frame k

δh[p; k] Horizontal displacement at pixel p in frame k

δv[p; k] Vertical displacement at pixel p in frame k

δ̂[p; k] Estimated displacement at pixel p in frame k

δ̂[z; k] Estimated displacement at pixel of interest z in frame k

Re Real part

Im Imaginary part

⌊.⌉ Round operator

⌈.⌉ Ceiling function

Ja, bK Interval of all integers between a and b included

∇ Spatial gradient operator
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Introduction

Vibration monitoring

Mechanical structures can be subjected to various types of vibrations, including ambient vibra-
tions from environmental factors (e.g., wind and traffic), operational vibrations from equipment
and machinery (e.g., rotor of wind turbine), and dynamic vibrations during seismic events.

Vibration monitoring plays a crucial role in ensuring the safety, reliability, and performance of
mechanical structures such as bridges and wind turbines. It involves the continuous or periodic
measurement and the analysis of structural vibrations to assess their state and detect anomalies.
Thus, it is a core component of structural health monitoring (SHM), which is the process of
continuously assessing the integrity of mechanical structures.

SHM systems use several sensors to collect data on structural vibrations, which are analyzed
to characterize the structure state. By continuously monitoring vibrations, engineers can detect
state changes in the structure. These changes can be indicative of damages or deterioration,
such as cracks, corrosion, or fatigue [29]. It contributes to assess the resilience of the structure
and can trigger safety alerts.

Vibration monitoring systems are typically composed of vibration sensors, a data acquisition
device, and a software for data analysis. The sensors are strategically placed on or within the
structure to collect relevant data. The acquired vibration data are processed to extract mean-
ingful information. They are used by experimental modal analysis, when forces applied to the
structure are measured, or by operational modal analysis (OMA), when the structure that runs
in operational conditions, is subject to unknown forces.

Generally, contact sensors such as accelerometers are attached to the structure. However,
they can alter the system’s behavior or require invasive installation. Therefore, remote sensors
such as laser vibrometers, have been used to acquire vibration data.

In the last decade, video-based modal analysis methods have emerged. Indeed, cameras can
capture vibrations without any physical contact with the structure. This is beneficial for moni-
toring structures in hard-to-reach environments, such as industrial facilities. Furthermore, cam-
eras offer full-field measurements, providing a global view of how vibrations propagate within the
structure. However, as the vibration frequencies are high, videos should be acquired with a high
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frame rate, which often limits spatial resolution. Therefore, as vibration produces small pseudo-
periodic motion whose amplitude is lower than the spatial pixel resolution, it is represented by
motion at the subpixel scale.

Different state-of-the-art strategies have been proposed to perform video-based modal analysis.
They combine video vibration estimation with modal analysis. As a vibration can be considered
as a pseudo-periodic motion at different scales, frequency representation is exploited thanks
to complex filtering. Phased-based motion estimation (PME) methods provide dense subpixel
estimation of motion from the video.

Addressed challenges

Although there is a subsequent number of research works about video-based operational modal
analysis [51], many challenges remain open. This industrial doctoral work, conducted at EOMYS
Engineering company1 and CRIStAL laboratory2, addresses two key challenges.

The first one is the determination of the space–frequency subbands to estimate the subpixel
motion. Indeed, PME methods rely on the phase analysis of a space–frequency subband decom-
position. Different strategies exist to estimate motion, from the processing of a single subband
phase to the fusion of the full space–frequency decomposition. However, no study has been
conducted to compare these strategies or to study the influence of the decomposition. Our first
contribution is the development of a new two-dimensional single-subband phase-based motion
estimator [31]. For each pixel, this method selects the subband with the highest amplitude in a
reference frame, and thus adapts the method to the local properties of the frame.

Furthermore, we show that multi-subband methods are more robust against gray level noise
than single-subband ones [32]. Our second contribution is the development of a new two-
dimensional multi-subband phase-based motion estimator. This method is based on the phase fu-
sion of the full space–frequency decomposition, and provides estimations that are robust against
additive intensity noise.

The second challenge concerns the high number of observations for modal analysis. Indeed,
modal analysis is classically conducted with a few sensors. However, dense video-based methods
estimate motion for every pixel in each frame and provide a huge number of observations. The
third contribution of this work consists in a new video-based OMA method that combines a
dimension reduction step and a state-of-the-art OMA method [30].

1www.eomys.com
2www.cristal.univ-lille.fr
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Thesis structure

The thesis is divided into four chapters.
Chapter 1 deals with the monitoring of mechanical structures. The aim of this chapter is to

provide an overview of the classical vibration monitoring systems. For this purpose, the theo-
retical basis of modal analysis is detailed. The different motion sensors are presented and an
overview about motion estimation from videos is given.

Chapter 2 presents the main phase-based subpixel motion estimation methods. The concept
of frame space–frequency decomposition into subbands is introduced. Then, state-of-the-art
PME methods are detailed, and two new methods are presented. The different PME methods
are experimentally compared on synthetic videos of a cantilever beam, with different motion
characteristics.

Chapter 3 details the modal basis identification. Different classical OMA method are presented
and a state-of-the-art video-based OMA method is detailed. A new OMA procedure suited to
videos is developed, and its performances are compared with those of a state-of-the-art method
on synthetic videos. Different PME methods are tested to study their influence on modal basis
estimation. A preprocessing step is proposed to improve the OMA performances.

Chapter 4 assesses the performances reached by the developed video-based OMA method
on experimental videos, acquired with a high-speed camera, of cantilever beams that vibrate
according to subpixel motion amplitude. A first study is conducted on a straight beam that
is equipped with accelerometers. The video-based OMA is then compared with accelerometer-
based OMA. Then, a bent beam is observed by the camera to determine vibrations along several
directions.
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1 Mechanical structure monitoring

1.1 Introduction

Vibration monitoring plays a critical role in ensuring the safety and reliability of mechanical
structures. For this purpose, their dynamic behavior should be studied. Modal analysis is a
scientific field that studies the dynamic characteristics of a mechanical structure, including its
natural frequencies, damping ratios, and mode shapes. These characteristics can be estimated
using finite element analysis (FEA) of numerical models. However, models are based on ideal
hypotheses and may be inaccurate for real systems. Indeed, measurement-based estimations are
often needed to fit the FEA model.

Different modal testing methods have been developed to measure the behavior of mechani-
cal structures. Experimental modal analysis (EMA) is an advanced technique to extract the
dynamic characteristics of mechanical structures based on measured vibration data. In experi-
mental conditions, the input forces applied to the structure are also measured.
Unlike traditional modal testing, operational modal analysis (OMA) does not require a controlled
input to excite the structure. Instead, it relies on the operating vibrations of the structure, in-
duced by external and uncontrolled sources such as wind, traffic, or other environmental factors.
OMA can be performed while the structure runs in its normal operating conditions, which makes
it well suited to structural health monitoring [34]. It is widely used in civil engineering to mon-
itor bridges, buildings, and other structures [24, 28].

In this chapter, we first introduce the theoretical bases of EMA and OMA. Secondly, the
theoretical characterization of systems with single and multiple degrees of freedom are detailed.
Then we introduce different contact and remote sensors used to perform modal testing. A focus
is finally given on the different video-based methods, including available commercial solutions.

1.2 Modal analysis

1.2.1 Introduction

The displacements of a mechanical system excited by a force do not only depend on the mag-
nitude and direction of the force, but also on its temporal frequency. Thus, it is important
to estimate the vibratory responses of the system. To do so, a mechanical system can be dis-
cretized in a given number of masses linked by springs and dampers [11]. A given force applied
to a given mass influences the whole structure. This influence is characterized by frequency
response functions (FRFs), generically denoted as H(ω), with ω the angular frequency. An FRF
is a representation of the relationship between the input and output of a system at different
frequencies (see Fig. 1.1). It describes how a system responds to sinusoidal inputs of varying
frequencies, and is typically represented in terms of amplitude and phase. The amplitude com-
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1.2 Modal analysis

ponent indicates how much the input signal is amplified or attenuated by the system. The phase
component represents the time shift between the input force and output response signals.

H(ω)Excitation Response
Γ(ω) U(ω)

Figure 1.1: Frequency response function H(ω) =
U(ω)

Γ(ω)
.

EMA is a technique to estimate FRFs of a system using measurements of its responses ac-
cording to excitation forces. Sensors are fixed on the structure to measure the system response
when a controlled excitation force is applied to a point of the structure using an impact hammer
or a shaker. Multiple measurements are recorded for a single point force, and measurement
noise is reduced by averaging results. Then forces are applied to other points to measure other
FRFs. Fig 1.2 illustrates the EMA of a cantilever beam whose FRFs are measured at three
points, denoted as 1, 2, and 3. For instance, a force is applied to a point a using an impact
hammer, and the response of the structure is measured at point 3 to estimate the FRF (denoted
as H3a). As the relation is symmetric between two points, applying the force at a given point
a and measuring the response at a point b provides the same result when a and b are switched.
Once FRFs have been estimated, the modes that form the modal basis can be estimated by a
modal analysis method. Each mode i is defined by a natural frequency fi in Hz (or the equiva-
lent natural angular frequency ωi = 2π · fi in rad · s−1), a damping ratio ζi, and an associated
shape ϕi. The natural frequency fi corresponds to the frequency at which the mode resonates.
The damping ratio ζi characterizes how the mode contribution vanishes through time when the
excitation stops. The shape ϕi is the structure deflection shape induced by the mode.

In Fig. 1.2, three modes are captured and each peak in an FRF amplitude highlights the
contribution of a mode. The second mode is not visible on the FRF H32 because point 2 is on a
static node of the mode shape ϕ2. The system complex response can then be decomposed into
a combination of three simple mode responses (see Fig 1.3).

OMA only analyzes output response measurements to estimate FRFs. To do so, the input
spectrum is commonly assumed to be a white noise whose spectrum is constant, so that the
response spectrum is approximately the FRF. As the excitation amplitudes are not measured,
FRFs are only estimated relatively to each other, without any knowledge of their actual ampli-
tude. Fig. 1.4 shows an example of such spectra with a white noise as input.

7



1 Mechanical structure monitoring

Figure 1.2: FRF measurements of a cantilever beam discretized with three points [1].

Figure 1.3: First three mode shapes of a cantilever beam.

1.2.2 Single degree of freedom

The equation of motion of a mass-spring-damper system (see Fig. 1.5), which is a single degree
of freedom (SDoF) system, is:

m1 · ü(t) + d1 · u̇(t) + k1 · u(t) = γ(t), (1.1)

with u(t) the displacement response (m) and γ(t) the input force (N). The physical parameters
are the mass m1 (kg), the viscous damping d1 (kg ·s−1), and the spring stiffness k1 (N ·m−1) [11].

Assuming u(t) = U · es·t, with s ∈ C, and γ(t) = 0, Eq. (1.1) becomes:

(
m1 · s2 + d1 · s+ k1

)
· U = 0, (1.2)

8



1.2 Modal analysis

Figure 1.4: Spectrum example of an OMA with white noise input excitation.

m1

k1

d1

γ(t)

u(t)

Figure 1.5: Single DoF mechanical system.

which implies:

m1 · s2 + d1 · s+ k1 = 0 ⇔ s2 +
d1
m1

s+
k1
m1

= 0 ⇔ s2 + 2 · ζ · ω1 · s+ ω2
1 = 0, (1.3)

with ω1 =
√

k1
m1

the undamped natural frequency (rad · s−1) and ζ = d1
2
√
k1·m1

< 1 the relative
damping (unitless). The form of the general solution u(t) is:

u(t) = U · e−ω1·ζ·t · ej·
(
ω1·
√

1−ζ2
)
·t
. (1.4)

1.2.2.1 Impulse response function

When the system is excited by a continuous input force γ(t), the system response u(t) is defined
as:

u(t) :=

+∞∫

0

h(τ) · γ(t− τ) dτ , (1.5)

9



1 Mechanical structure monitoring

where h(t) is the impulse response function (IRF) that characterizes how a system behaves when
it is excited by a Dirac function at time t = 0. The IRF of a single mass-spring-damper system
is expressed as:

h(t) =
1

m1 · ω1 ·
√
1− ζ2

· e−ω1·ζ·t · sin
(
ω1 ·

√
1− ζ2 · t

)
. (1.6)

The sinusoid frequency ωd = ω1 ·
√
1− ζ2 is called the damped frequency. An example of IRF

is represented in Fig. 1.6 (a).

The so-called transfer function is the Laplace transform of the impulse response function.

1.2.2.2 Frequency response function

The frequency response function (FRF), denoted as H(f), characterizes how a system responds
to a given input force with temporal frequency f (Hz). The FRF can also be defined with respect
to the angular frequency ω (rad · s−1) and is then denoted H(ω) for the sake of simplicity. It is
the transfer function H(s) processed at the imaginary values s = j ·ω, with ω = 2π ·f the angular
frequency. The transfer function is computed by taking the Laplace transform of Eq. (1.1):

(
m1 · s2 + d1 · s+ k1

)
· U(s) = Γ(s), (1.7)

H(s) =
U(s)

Γ(s)
(1.8)

=
1

m1 · s2 + d1 · s+ k1
. (1.9)

(1.10)

The FRF is then computed as:

H(ω) =
U(ω)

Γ(ω)
(1.11)

=
1

m1

(
−ω2 + d1

m1
j · ω + k1

m1

) (1.12)

=
1

m1

(
−ω2 + 2j · ω · ζ · ω1 + ω2

1

) (1.13)

=
1

k1

(
−
(

ω
ω1

)2
+ 2j · ζ · ω

ω1
+ 1

) , (1.14)

H(f) =
1

k1

(
−
(

f
f1

)2
+ 2j · ζ · f

f1
+ 1

) , (1.15)
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1.2 Modal analysis

with f1 =
ω1

2π
. Examples of FRFs for different values of the damping ratio ζ are represented in

Fig. 1.6 (b). The lower the damping ratio is, the larger the FRF amplitude is. Furthermore, as
the FRF amplitude peak is located at the frequency fmax = f1

√
1− 2ζ2, the peak locations of

the represented FRF amplitudes depend on the damping ratio ζ and are thus slightly different.

0.00 0.02 0.04 0.06 0.08

Time t (s)

−0.010

−0.005

0.000

0.005

0.010

h
(t

)
( m
·N
−

1
)(a)

0 100 200 300 400 500

Frequency f (Hz)

10−6

10−5

10−4

|H
(f

)|
( m
·N
−

1
)(b)

ζ = 0.05 ζ = 0.2 ζ = 0.4

Figure 1.6: Response function of a single DoF system. (a) Impulse response function, (b) Frequency
response function amplitude.

1.2.3 Multiple degrees of freedom

1.2.3.1 Equation of motion

The equation of motion of a N mass-spring-damper system, that form a multiple DoF (MDoF)
system, is:

M · ü(t) +D · u̇(t) +K · u(t) = γ(t), (1.16)

with u(t) ∈ RN the displacement responses of the N masses, γ(t) ∈ RN the forces applied to
the N masses, M ∈ RN×N the mass matrix, D ∈ RN×N the damping matrix, and K ∈ RN×N
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1 Mechanical structure monitoring

the stiffness matrix.
Figure 1.7 shows an example with N = 2 masses and the following equation of motion:
(
m1 0

0 m2

)(
ü1(t)

ü2(t)

)
+

(
d1 + d2 −d2
−d2 d2 + d3

)(
u̇1(t)

u̇2(t)

)
+

(
k1 + k2 −k2
−k2 k2 + k3

)(
u1(t)

u2(t)

)
=

(
γ1(t)

γ2(t)

)
.

(1.17)

m1 m2

k1 k2 k3

d1 d2 d3

γ1(t)

u1(t)

γ2(t)

u2(t)

Figure 1.7: Multiple mass-spring-damper system.

Let us first consider zero excitation, i.e., γ(t) = 0, and assume a solution with the following
form:

u(t) = U · es·t. (1.18)

Substituting Eq. (1.18) into (1.16) gives:

(
s2 ·M + s ·D +K

)
·U = 0. (1.19)

This system has 2N solutions {si,ϕi} that arise in complex conjugate pairs, with si an eigenvalue
of the coefficient matrix of the system described by Eq. (1.19) and ϕi the associated eigenvector,
that is a mode shape. Denoting ϕH

i the conjugate transpose (a.k.a. the Hermitian transpose)
of a given vector ϕi, the form of an eigenvalue si is:

si = −ωi · ζi + j · ωi ·
√

1− ζ2i , (1.20)
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1.2 Modal analysis

where:

ωi =

√
k̃i
m̃i

, (1.21)

ζi =
d̃i

2
√
k̃i · m̃i

, (1.22)

m̃i = ϕ
H
i ·M · ϕi, (1.23)

d̃i = ϕ
H
i ·D · ϕi, (1.24)

k̃i = ϕ
H
i ·K · ϕi. (1.25)

The displacement response u(t) is a superposition of single DoF solutions (see Eq. (1.4)):

u(t) =
N∑

i=1

((
e−ωi·ζi·t · ej·ωi·

√
1−ζ2i ·t

)
· ϕi +

(
e−ωi·ζi·t · e−j·ωi·

√
1−ζ2i ·t

)
· ϕ∗

i

)
, (1.26)

with ϕ∗
i the conjugate of ϕi. This superposition principle is important because it states that

the mechanical behavior of a complex structure can be expressed as that of a sum of simple
mass-spring-damper systems.

1.2.3.2 Continuous state-space formulation

Each element of a multiple DoF FRF matrix expresses the relationship between the force applied
at one DoF and the response of another DoF. It is a key of vibration analysis and is often
estimated before the modal basis. To formulate it, Eq. (1.16) must be recast into a continuous
state-space problem:

(
D M

M 0N

)

︸ ︷︷ ︸
A

(
u̇(t)

ü(t)

)

︸ ︷︷ ︸
ẋ(t)

+

(
K 0N

0N −M

)

︸ ︷︷ ︸
B

(
u(t)

u̇(t)

)

︸ ︷︷ ︸
x(t)

=

(
γ(t)

(0)

)

︸ ︷︷ ︸
γ(t)

, (1.27)

with x(t) ∈ R2N the state vector, A and B ∈ R2N×2N , 0N ∈ RN×N a matrix of zeros, and
(0) ∈ RN a vector of zeros.

Each eigenvector of the coefficient matrix of the system described by Eq. (1.27) without input

force are of the form ψi =

(
ϕi

si · ϕi

)
, i = 1, . . . , 2N , with si the associated eigenvalue of the
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1 Mechanical structure monitoring

same form as in Eq. (1.20). The solutions arise as N pairs of complex conjugates. The matrices
A and B respect the following orthogonal properties:

ψ⊺
iAψj :=M

A
ij =




αi := ϕ

⊺
i (D + 2si ·M)ϕi if i = j,

0 otherwise,
(1.28)

ψ⊺
iBψj :=M

B
ij =




βi := ϕ

⊺
i

(
K − s2i ·M

)
ϕi if i = j,

0, otherwise,
(1.29)

with MA called the modal A matrix, MB the modal B matrix, and MA
ij being the element of

MA on row i and column j.

Furthermore, the 2N eigenvalues are si = −
βi
αi

.

1.2.3.3 Frequency response function

Assuming x(0) = 0, the Laplace transform of the state-space formulation given by Eq. (1.27) is:

(s ·A+B) ·X(s) = Γ(s), (1.30)

which can be used to compute the state-space FRF G(s) as:

G(s)−1 = (sA+B) ∈ R2N×2N (1.31)

Ψ⊺G(s)−1Ψ = Ψ⊺(sA+B)Ψ (1.32)

Ψ⊺G(s)−1Ψ =
(
sMA +MB

)
(1.33)

G(s) = Ψ
(
sMA +MB

)−1

︸ ︷︷ ︸
Ξ

Ψ⊺, (1.34)

where Ψ is the state-space mode shape matrix, whose ith column corresponds to ψi, and Ξ is
the diagonal matrix defined by:

diag(Ξ) =

{
1

s · α1 + β1
, . . . ,

1

s · α2N + β2N

}
. (1.35)
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1.2 Modal analysis

The FRF H(ω) is the block matrix composed of the N first rows and columns of the state-space
FRF G(s) evaluated at the imaginary value s = j · ω:

Hpq(ω) =
N∑

i=1




ΦpiΦqi

αi ·
(
ζi · ωi + j

(
ω − ωi

√
1− ζ2i

)) +
Φ∗

piΦ
∗
qi

α∗
i ·
(
ζi · ωi + j

(
ω + ωi

√
1− ζ2i

))


,

(1.36)
with Φ the mode shape matrix, whose ith column corresponds to mode shape ϕi. Φpi indicates
the value of DoF p in the mode shape ϕi and Hpq(ω) corresponds to the FRF matrix element
on row p and column q. An example of FRF of a system with N = 2 DoFs is given in Fig. 1.8.
The FRF matrix H is symmetric, i.e., Hpq(ω) = Hqp(ω). Its peaks characterize resonances.
Around ω = 12 rad·s−1, the FRF amplitude |H11|, that characterizes the response of the first
mass to a force applied on it, is really low. This is called an antiresonance. When the first mass
is excited by a force with the antiresonance frequency, this mass is static and only the other
moves. We can see that the antiresonance frequency of the second mass is different from that
of the first one.
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Figure 1.8: Frequency response function amplitudes of a 2-DoF system.
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1.2.3.4 Operating deflection shape

Operating deflection shape (ODS) analysis is a simpler analysis than OMA. It consists in dis-
playing the operational response of the studied system at a certain frequency or in a frequency
range [39]. This quick analysis is useful to analyze the frequency behavior of a system without
identifying the modal basis. For this purpose, a given DoF r is selected as that where the si-
nusoidal force γr(ω) of angular frequency ω is applied. The N ODS of DoF q = 1, . . . , N are
computed using inverse fast Fourier transform (FFT) as:

ODSq(t) = FFT−1{Hqr(ω) · γr(ω)}. (1.37)

As the modal basis is not identified, the ODS is a combination of the mode shapes. When
natural frequencies of modes are distant from each other, the ODS displayed at an FRF peak
frequency will be close to the corresponding mode shape. However, when natural frequencies
are close from each other, the ODS will represent a mix of mode shapes.

In Fig. 1.9, the two modal contributions are represented together with the FRF. As the natural
frequencies are distant from each other, the contribution of the second mode at the first natural
frequencies is negligible compared to the first mode contribution. The ODS at this frequency
will be close to the first mode. One can also note that antiresonance in H11 and H22 occur at
frequencies where modal contribution have the same amplitude. This means that their directions
are opposite, i.e., their phases differ by π.

Figure 1.10 represents the FRFs of the third DoF of a 3-DoF system. The natural frequencies
of two modes are close to 18.5 rad/s and the amplitude of first and second modal contributions
are close. Thus, ODS at this frequency will represent a mix of the first two modes. In that
case, the individual mode contributions and the associated mode shapes can be only identified
by modal analysis.

1.2.4 Discrete state-space formulation

In experimental conditions, measurements are discrete in time and space. Furthermore, the
number N of modes that can be extracted is unknown. Assuming Np observations and white
noise input, the problem described by Eq. (1.16) can be recast in a continuous state-space form:

(
u̇(t)

ü(t)

)
=

(
0N IN

−M−1K −M−1D

)(
u(t)

u̇(t)

)
+w(t), (1.38)

y(t) = C

(
u(t)

u̇(t)

)
+ v(t), (1.39)
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Figure 1.9: FRF amplitudes of the same 2-DoF system as in Fig. 1.8, with amplitude contributions of
each mode.
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Figure 1.10: FRF amplitudes and modal contributions of a 3-DoF system with close modes.

with C ∈ RNp×2N the output matrix, y(t) ∈ RNp the observation vector, w(t) ∈ R2N

and v(t) ∈ RNp the input and observation white noise vectors. Denoting the state vector
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x(t) =

(
u(t)

u̇(t)

)
∈ R2N , and the continuous state-space matrix Ac ∈ R2N×2N , the state-space

formulation becomes:

ẋ(t) = Ac x(t) +w(t), (1.40)

y(t) = C x(t) + v(t). (1.41)

The continuous-time state-space system described by Eqs. (1.40) and (1.41) can be discretized
as:

x[k + 1] = Ad x[k] +w[k], (1.42)

y[k] = C x[k] + v[k], (1.43)

with x[k] := x(k∆t) the discrete state vector, ∆t the time step between two successive mea-
surements, y[k] := y(k∆t) the discrete observation vector, Ad := eAc∆t the discrete state-space
matrix, and w[k] := w(k∆t) and v[k] := v(k∆t) the input and observation noise vectors [23].

For given observations y[k] and model order N , discrete state-space Ad and observation C
matrices are estimated by the methods that will be detailed in Sec. 3.3.

Then, from the eigenvalue decomposition Ad = χSχ−1 with S = diag(λi), i ∈ J1, 2NK,
natural frequencies fN

i , damping ratios ζNi , and mode shape matrix ΦN can be computed as:

fN
i =

1

2π

∣∣∣∣
log λi

∆t

∣∣∣∣, (1.44)

ζNi =
Re(λi)

|λi|
, (1.45)

ΦN = Cχ. (1.46)

The 2N modes come as N complex conjugate pairs and only N positive frequencies are kept.

Measurements in y can refer to displacement, velocity and/or acceleration. They are provided
by sensors that can be split into two categories: contact and remote sensors. A brief summary
of existing sensors is given in the next two sections.

1.3 Contact vibration sensing

Vibration analysis is classically performed thanks to contact sensors, with a high accuracy for
frequency analysis up to kHz orders. Contact sensors specifically measure either acceleration,
velocity, or displacement. As velocity can be obtained by integration of acceleration with respect
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to time or by derivation of displacement, sensors of different types can be used simultaneously
to perform vibration analysis in acceleration, velocity, and/or displacement.

1.3.1 Accelerometer

Mass

Piezoelectric crystal

Precompression spring

Housing

Figure 1.11: Schematic of a standard accelerometer.

The accelerometer is among of the most popular vibration sensors. It is a contact transducer
that measures acceleration. It consists of a mass attached to a piezoelectric crystal, such as
a quartz, which generates an electric charge proportional to the acceleration of the mass (see
Fig. 1.11). The accelerometer is fixed to a structure using either adhesive, magnet, or probe tip.
It delivers analog signals to a data acquisition system that converts them into digital signals.
Those output signals are then processed using Fourier transform or power spectral density (PSD)
to estimate the system FRF.

Depending on the application, the temporal acquisition frequency ranges from 0.1Hz to
20 kHz. For this range, the Nyquist theorem states that the frequency analysis may be up
to 10 kHz.

Accelerometers can be monoaxial, biaxial, or triaxial to measure acceleration in one, two, or
three directions. Each axis of an accelerometer generates a signal and can be considered as a
DoF for the modal analysis.

1.3.2 Linear variable differential transformer

A linear variable differential transformer (LVDT) is a transducer that allows for the measurement
of displacement along one direction. It is composed of a body and a ferromagnetic shaft. The
body has a primary coil and a pair of secondary coils on either side (see Fig 1.12). As the LVDT
shaft is fixed to the structure, its displacement generates an induced current in the secondary
coils. This analog signal is then sampled and stored by a data acquisition system. Its typical
temporal frequency ranges from 1Hz to 10 kHz.
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Primary coil
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Figure 1.12: Linear variable differential transformer.

1.3.3 Contact sensor drawbacks

As contact sensors must be positioned on the structure, setting them up in operational conditions
may be complicated. Maintaining such data acquisition devices for long-term monitoring is also
time-consuming. Moreover, because of the mass they add to that of the structure, the estimated
modal basis may be different from the structure’s modal basis without mass loading.
Furthermore, each aforementioned sensor is a single-point measurement device. Experimental
setup may therefore require many such sensors to get spatially dense mode shapes, which may
increase the measure complexity and cost.

Different remote sensors have emerged to overcome contact sensor weaknesses.

1.4 Remote vibration sensing

1.4.1 Laser Doppler vibrometer

A basic laser Doppler vibrometer (LDV) is an axial contactless sensor that measures velocity.
A laser reference beam with frequency f0 is split to be directed both onto a photodetector and
an element of the surface of interest (see Fig. 1.13). The scattered light reflected by the surface,
whose Doppler frequency shift fd is induced by the out-of-plane surface velocity, is projected
onto the photodetector. The frequency shift is thus computed with the photodetector interfered
signal to deduce the point out-of-plane velocity. The typical frequency working range of this
device is (0Hz, 20+MHz], with stand-off distances up to 200m.

As the basic LDV measures the velocity of a single point of the surface, scanning laser Doppler
vibrometers (SLDVs) have been developed to measure that of multiple points [4]. A camera is
used to display the scene, so that the user defines different points of interest in the image plane.
The laser measures the velocity point by point.
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1.4 Remote vibration sensing

In-plane laser vibrometers have also been developed to measure velocity within the plane
normal to the laser. Furthermore, systems combining three SLDVs allow for the measurement
of velocity along three orthogonal directions.

The point-by-point asynchronous measurement is a downside of such sensors. In experimental
conditions, an automatic impact hammer is able to ensure that the same force is applied for each
point measurement. However, input forces are not controlled in operational conditions. Thus,
an additional fixed sensor is needed as a reference for OMA.

Moreover, the measurement distance is limited by the structure reflection properties of the
signal that goes back to the LDV.

Laser

f0 → Beam splitter Bragg cell
f0 + fb →

Beam splitter

Mirror Beam splitter Photo detector

Target

f0 + fb →

← f0 + fb + fd

f0 + fb + fd →

f0 →f0 →

Reference beam ↑ ↑ f0 ↑ f0 + fb + fd

Test beam →

Figure 1.13: Laser Doppler vibrometer schematic1.

1.4.2 Digital video camera

Alternatively, a digital camera acquires video frames of a scene with potential high spatial reso-
lution. Each pixel can then be considered as a remote sensor to provide dense 2D displacement
measurements in the plane orthogonal to the optical axis.

Any video-based experiment must respect several conditions to measure the displacement
of a remote structure. First, the camera must be fixed without occlusion of the structure of
interest. Secondly, the structure must be adequately illuminated with constant brightness to
avoid external changes of brightness that would be interpreted as displacements. Without scene
depth information, the structure surface of interest must also be in the plane orthogonal to the
camera optical axis to correctly estimate relative displacement amplitudes.

The working temporal frequency range is limited by the camera frame rate. Indeed, the highest
structure vibration frequency must be at most half of the camera frame rate to avoid spectral

1Basic schematic of a laser Doppler vibrometer: https://en.wikipedia.org/wiki/File:LDV_Schematic.png
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1 Mechanical structure monitoring

aliasing. However, with multiple acquisitions at different frame rates, this frequency range can
be improved [53]. Standard industrial cameras can record videos with a spatial resolution of
720× 540 px and a frame rate of 539 fps (frame per second)2. Furthermore, high-speed cameras
can increase the acquisition frame rate up to 2 457 000 fps at a resolution of 640×32 px3. Due to
the bitrate of the interface between camera and computer, the designer chooses a relevant trade-
off between frame rate and frame size. As frame rate is generally high to study vibrations with
a high temporal frequency, small motions can be accurately estimated by subpixel approaches.

Moreover, an additional camera that is properly calibrated enables to extend the measure-
ments to three dimensions using stereo vision processing [36].

1.5 Video-based vibration measurements

Structure vibrations can be measured by the analysis of Nk successive frames in a video. Let
I[p; k] be the intensity at pixel p with spatial coordinates (x, y) in frame k ∈ J0, Nk − 1K, and δ
be the displacement field, specified at a pixel p within frame k by its coordinates along horizontal
and vertical directions:

δ[p; k] =

(
δh[p; k]

δv[p; k]

)
∈ R2. (1.47)

The displacement δ is defined relatively to frame 0 and represents the structure displacement
projected in the image plane. The intensity associated to a specific surface element, represented
by a pixel p and that moves according to displacement δ[p; k], is assumed to be constant.
Furthermore, when the scene is assumed to be free from any occlusion and illuminated with a
spatially uniform and spectrally constant over time lighting, the intensity at pixel p in frame 0

is the same as that of pixel p+ δ[p; k] in frame k:

I[p; 0] = I[p+ δ[p; k]; k]. (1.48)

This property is exploited to estimate displacement.

1.5.1 Image matching

Image matching techniques detect keypoints in frames using descriptors and try to match them
using a specific distance. One of the most used methods is the scale invariant feature transform
(SIFT) [26]. This method detects keypoints in each frame and compute descriptors using the
following steps:

2TIS DMK 33UX287: https://www.theimagingsource.com/en-fr/product/industrial/33u/dmk33ux287/
3Photron Model E9 80S : https://photron.com/pharsighted/
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1.5 Video-based vibration measurements

1. Decompose the frame into different scales using difference of Gaussians,

2. Detect scale-space extrema pixels by comparing a pixel level with those of its neighbors in
the previous, current, and next scales,

3. Eliminate low-contrast scale-space extrema by setting a threshold on maxima value of the
keypoint refined by quadratic interpolation,

4. Eliminate edge responses by setting a threshold on the ratio of curvature along and per-
pendicular to the edge,

5. Assign an orientation to each keypoint using the orientation histogram in its neighborhood,

6. Create an invariant descriptor vector for each keypoint by computing orientation his-
tograms in sub-neighborhoods of the keypoint relative to its orientation.

Then, the keypoints extracted from the frames are matched using the nearest neighbor rule
based on the Euclidean distance between their descriptors.

There are other popular keypoint descriptors based on the same principle, such as speeded-up
robust features (SURF) [2] and oriented FAST and rotated BRIEF (ORB) [40]. SURF is faster,
but cannot estimate subpixel displacements.

As this family of methods automatically detects keypoints, high-contrast patterns must be
located on the mechanical structure to ensure that features are adequately detected at desired
places to compute the mode shape. Thus, this method can be difficult to apply when the
structure is not easily accessible by an operator.

1.5.2 Image correlation

Image correlation considers a square template Tp centered at each pixel p. It determines the
spatial offset between the template in frames 0 and k. For a given pixel p, the template matching
method searches for the best integer displacement ∆p = (∆x,∆y) that maximizes a correlation
measure between the two templates, such as the zero-mean normalized cross-correlation:

δ̂[p; k] = argmax
∆p

∑
q∈Tp

(
I[p+∆p+ q; k]− Ī[p+∆p; k]

)
·
(
I[p+ q; 0]− Ī[p; 0]

)

√ ∑
q∈Tp

(
I[p+∆p+ q; k]− Ī[p+∆p; k]

)2 · ∑
q∈Tp

(
I[p+ q; 0]− Ī[p; 0]

)2 ,

(1.49)
where Ī[p; k] is the mean level of the template Tp [41].

A subpixel refinement can be performed by finding the maximum of the interpolated cross-
correlation with quadratic surface fitting [56].
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These methods are efficient when targets are fixed on the observed mechanical structure [25].
To obtain dense vibration estimations, these methods require that a speckle pattern is projected
onto the structure of interest [8]. Thus, it may be difficult to apply them for monitoring of large
outside structures.

1.5.3 Subpixel optical flow

Assuming constant brightness, the optical flow equation states that intensities are translated
from one frame to another according to:

I(p; t) = I(p+∆p; t+∆t). (1.50)

In this section, equations are formulated in continuous time-space to define spatial and temporal
derivatives. Those derivatives are estimated by finite difference scheme or derivative filters.
The Taylor expansion at order 1 of I(p+∆p; t+∆t) is:

I(p+∆p; t+∆t) = I(p; t) +∇I(p; t) ·∆p+ ∂tI(p; t) ·∆t+O
(
∥(∆p,∆t)∥2

)
, (1.51)

with ∂tI the intensity time derivative and ∇I the intensity spatial gradient. Truncating Eq. (1.50)
at order 1 and injecting it into Eq. (1.51) gives:

∇I(p; t) ·∆p+ ∂tI(p; t) ·∆t = 0. (1.52)

Denoting the velocity vector as V [p] =
(
V h[p], V v[p]

)⊺, Eq. (1.52) can be reformulated in terms
of velocity by dividing by ∆t:

∇I(p; t) · V [p] = −∂tI(p; t). (1.53)

1.5.3.1 Lucas-Kanade

The Lucas and Kanade method [27] proposes to solve a weighted least-square problem to com-
pute the velocity V at pixel p. The authors assume that the velocity is constant in a local
neighborhood Nσ[p] defined by the standard deviation σ, such that for all q ∈ Nσ[p],

∇I(q; t) · V [p] = −∂I(q; t)

∂t
. (1.54)
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1.5 Video-based vibration measurements

Each equation in this set is weighted by a Gaussian window Gσ so that the weight decreases
with respect to the spatial distance between q and p. Solving this problem in the least-square
sense provides the velocity vector:

(
V h[p]

V v[p]

)
=




∑
q
Gσ[q] · ∂xI[q]2

∑
q
Gσ[q] · ∂xI[q] · ∂yI[q]

∑
q
Gσ[q] · ∂xI[q] · ∂yI[q]

∑
q
Gσ[q] · ∂yI[q]2




−1

−∑

q
Gσ[q] · ∂xI[q] · ∂tI[q]

−∑
q
Gσ[q] · ∂yI[q] · ∂tI[q]


.

(1.55)

1.5.3.2 Gradient-based optical flow

The gradient-based optical flow method assumes that the displacement is along the direction
of the spatial gradient [21]. Temporal derivative is approximated by the following first order
forward finite difference scheme:

∂tI(p; t) =
I(p; t+∆t)− I(p; t)

∆t
. (1.56)

Injecting this approximation into Eq. (1.52) gives:

∇I(p; t) ·∆p = I(p; t)− I(p; t+∆t). (1.57)

Assuming that motion ∆p is along the spatial gradient direction, the equation becomes:

|∇I(p; t)| · |∆p| = I(p; t)− I(p; t+∆t), (1.58)

|∆p| = I(p; t)− I(p; t+∆t)

|∇I(p; t)| . (1.59)

Assuming small motion in the whole video, the spatial gradient is only computed within the first
frame, which provides its amplitude |∇I[p; 0]| and direction ∠∇I[p;0]. Furthermore, instead of
computing the displacement in frame k relative to the previous frame (k−1), it can be computed
relatively to frame 0. The motion at pixel p in frame k is thus computed from Eq. (1.59) as:

δ[p; k] =
I[p; 0]− I[p; k]

|∇I[p; 0]|

(
cos(∠∇I[p;0])

sin(∠∇I[p;0])

)
. (1.60)

1.5.4 Phase-based subpixel motion estimation

Phase-based methods are optical flow methods that operate on the phase φ of a complex filter
S. For this purpose, the scene brightness is supposed to be constant, and the intensity I of
a given surface element is assumed to be constant through time and space. Furthermore, the
intensity is assumed to be a sparse local combination of cosines. To illustrate the principle
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of the method, Fig. 1.14 (a) shows the intensity level of a pixel row that follows the function
I(x, t) = 100 + 100 · cos (0.04 · 2π · (x− 2 · t)). Frames 1 (t = 1) and 4 (t = 4) are translated
versions of frame 0 (t = 0) with a global displacement to the right of 2 and 8 px respectively.
This global displacement is encoded by the frame Fourier transform phase. In this example, the
signal is composed of a single frequency 0.04 px−1. The frame Fourier transform amplitude is
equal to 0 at every frequency except 0 px−1, where its value is the signal mean, and 0.04 px−1 (see
Fig. 1.14 (b)). As Fourier transform amplitudes are the same for the two frames, their analysis
cannot determine the displacement. However, the phases are different and only meaningful at
the signal frequency (see Fig. 1.14 (c)). Furthermore, the phase shifts between frames 0 and 1 and
frames 0 and 4 are proportional to the displacements in frames 1 and 4. Thus, the displacement
is encoded by the phase shift at this frequency. Moreover, reconstructing a new frame with
amplified phase shift allows for small motion amplification.
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Figure 1.14: Pixel intensity phase as a motion encoder, on a single-row image.

This simple example exposes the relationship between motion and phase. For complex signals
composed of different frequencies with local motion, local spatial frequency should be analyzed.
For this purpose, each frame is decomposed into different oriented frequency bands, and local
phase shift is computed to estimate the displacement.

Several state-of-the-art methods, that will be detailed in chapter 2, analyze the spatial local
frequency. These methods amplify small motions in the video by raising the phase shift between
the current frame and the unwrapped phase temporal mean [49]. ODS can thus be directly

26



1.5 Video-based vibration measurements

displayed in the video by temporal frequency band-pass filtering. This method of motion esti-
mation is the ground of several commercial software products that perform video-based modal
analysis.

1.5.5 Video-based industrial products

Different commercial solutions exist to achieve video-based modal analysis. They are generally
composed of an acquisition system and a software that amplifies motion in videos at certain
frequencies to display ODS. As far as we know, the commercial offer is composed of the products
detailed in Tab 1.1.

Company Product Motion estimation

RDI Technologies4 RDI Acquisition Phase-based optical flow
Mechanical Solutions, Inc.5 VibVue Phase-based optical flow

Erbessd Instruments6 DragonVision Image matching
MotionScope7 MotionScope Tracker Intensity-based optical flow

Vibrant Technology8 MEscope ODS Videos Intensity-based optical flow
Gfai tech GmbH9 WaveCam Intensity-based optical flow

Table 1.1: Commercial video-based vibration analysis solutions.

In addition to standard digital cameras, event cameras have been used to perform vibration
analysis [10]. Event cameras are composed of pixels that are independently activated when a
time variation of brightness is perceived. This sparse information provides the ability to study
features only where motion occurs, with an equivalent frame rate above 10 kHz.

Such methods are out of the scope of this work that focuses on classical, and widespread
digital cameras.

4https://rditechnologies.com/
5https://www.mechsol.com/products/vibvue
6https://www.erbessd-instruments.com/dragon-vision/
7https://www.motion-scope.com/visual-modal-analysis
8https://www.vibetech.com/
9https://www.gfaitech.com/products/structural-dynamics/vibration-analysis-with-wavecam
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1.6 Conclusion

In this chapter, we explain how the dynamics of complex mechanical systems can be expressed
in temporal and frequency domains. The roots of modal basis estimation are developed. The
discrete state-space formulation is expressed to link the system modal basis with motion mea-
surements, which can be displacement, velocity, and/or acceleration. The different types of
contact and remote motion sensors are detailed with their respective drawbacks. For dense re-
mote motion measurements, video-based analysis achieves a trade-off between frame rate and
spatial definition. The main video-based motion measurement approaches are detailed, and, as
vibration produces pseudo-periodic small motion whose amplitude is lower than the spatial pixel
resolution, the phase-based subpixel methods are introduced.

In chapter 2, we provide details about the state-of-the-art phase-based methods, and propose
two ways to improve such methods. Performances are then compared on synthetic videos of a
cantilever beam.
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2 Phase-based subpixel motion estimation

2.1 Introduction

To determine motion from a video, phase-based motion estimation (PME) methods are optical
flow ones that analyze the phase and amplitude of complex filter responses. Such methods
provide a dense subpixel motion estimation. This chapter is dedicated to the different PME
methods.

First, the frame representation model is developed in Sec. 2.2. Secondly, different decompo-
sition strategies of spatial frequency are introduced in Sec. 2.3. Then, state-of-the-art single-
subband PME methods are detailed in Sec. 2.4, and a new method is proposed. Existing multi-
subband approaches are presented in Sec. 2.5, and a new method is derived to combine existing
strategies by the fusion of several subbands.

To compare the performances of the studied methods, synthetic videos of a cantilever beam
are generated, as detailed in Sec. 2.6. Finally, Sec. 2.7 provides a comparison of the performances
reached by the methods for different motion amplitudes and additive gray level noises.

2.2 Frame representation

Let I[p; k] be the intensity at pixel p with spatial coordinates (x, y) in frame k ∈ J0, Nk − 1K,
and δ[p; k] be the displacement field (in pixels) along horizontal and vertical directions within
frame k:

δ[p; k] =

(
δh[p; k]

δv[p; k]

)
∈ R2. (2.1)

The link between the global motion of a sinusoidal intensity and its discrete Fourier transform
(DFT) phase has been illustrated in Fig. 1.14. For a single sinusoidal component, such motion is
only encoded by the phase at the signal spatial frequency. However, real video frames are two-
dimensional signals composed of several components with local motions. To analyze the global
motion, 2D DFT phase at relevant spatial frequencies could be used. Yet, industrial applications
require identifying different vibrations in local frame areas. To estimate local motion, a spectral
analysis is performed within the neighborhood of each pixel.

For this purpose, the scene is supposed to be under uniform and constant lighting without
occlusion. Therefore, the intensity at pixel p associated to a specific surface element that moves
according to a displacement δ[p; k], is assumed to be constant:

I[p; 0] = I[p+ δ[p; k]; k]. (2.2)

To estimate the local displacement field δ, each frame is decomposed into a spatial-frequency
representation. The spatial frequency domain is divided into subbands centered at central fre-
quency ωr,θ = (ωh

r,θ, ω
v
r,θ)

⊺ = (ωr cos(θ), ωr sin(θ))
⊺. These subbands correspond to different
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scales r = 1, . . . , Nr and orientations θ = 0, . . . , (Nθ − 1)π/Nθ, where Nr and Nθ are the num-
bers of scales and orientations. An example of such decomposition is represented in Fig. 2.1.

ωh

ωv

Figure 2.1: Ideal spatial frequency plane decomposition, with Nr = 3 scales and Nθ = 4 orientations. The
yellow and blue parts respectively correspond to the complex filters Ĝ2,0 and Ĝ1,π4

amplitude
supports. The bottom light gray part is redundant with the upper part and is thus not
processed. The dark gray part is the low-frequency residual.

Each subband (r, θ) is characterized by a complex response Sr,θ, that is computed using either
a spatial filter Gr,θ or its equivalent Ĝr,θ in the frequency domain. Such a filter is a band-pass
filter characterized by a central frequency ωr,θ and a standard deviation σr,θ.

Additionally, it is assumed that the intensity I[p; k] at pixel p in frame k is a combination of
local cosines with sparse local spatial frequencies ω̃r,θ[p]:

I[p+ δ[p; k]; k] =
∑

r,θ

ρω̃r,θ
[p; k] · cos (ω̃r,θ[p]

⊺ · (p− δ[p; k])), (2.3)

where ω̃r,θ[p] is in the subband centered at ωr,θ, and ρω̃r,θ
[p; k] is the amplitude of the corre-

sponding cosine.

Hence, the complex response Sr,θ = Gr,θ ∗ I whose magnitude at p in frame k is ρr,θ[p; k] =

|Sr,θ[p; k]| and phase is φr,θ[p; k] = arctan(Im(Sr,θ[p; k])/Re(Sr,θ[p; k])), is expressed by:

Sr,θ[p; k] = ρr,θ[p; k] · exp(j · φr,θ[p; k]) (2.4)

= ρr,θ[p; k] · exp(j · (ω̃r,θ[p]
⊺ · (p− δ[p; k]))), (2.5)

with ρr,θ[p; k] ≈ ρω̃r,θ
[p; k] and |ω̃r,θ[p] − ωr,θ[p]| < σr,θ. The complex response phase φr,θ is

thus:
φr,θ[p; k] = ω̃r,θ[p]

⊺ · (p− δ[p; k]). (2.6)

Assuming that there is no motion in the first frame (i.e., δ[p; 0] = 0 whatever p), Eq. (2.6) yields
the following for each subband (r, θ), pixel p, and frame k:

φr,θ[p; 0]− φr,θ[p; k] = ω̃r,θ[p]
⊺ · δ[p; k]. (2.7)
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This fundamental equation links the displacement δ to the local spatial frequency ω̃r,θ and the
phase φr,θ.

The phase at each pixel in each frame is computed from the complex response Sr,θ. As phase
is wrapped within (−π, π], it is first temporally unwrapped, such that any successive phase
difference is never greater than π, to avoid that a phase jump gets interpreted as a displacement
in the wrong direction. Therefore, Eq. (2.7) is rewritten:

φr,θ[p; 0]− unwrap(φr,θ[p; k]) = ω̃r,θ[p]
⊺ · δ[p; k]. (2.8)

As displacement and local frequency are assumed to be locally constant, their spatial gradients
are equal to 0: ∣∣∇δh[p; k]

∣∣ =
∣∣∇δv[p; k]

∣∣ =
∣∣∇ω̃h

r,θ[p]
∣∣ =

∣∣∇ω̃v
r,θ[p]

∣∣ = 0. (2.9)

By deriving Eq. (2.6) with respect to p, local spatial frequency is thus equal to the phase spatial
gradient:

∇φr,θ[p; k] = (x− δh[p; k]) ·∇ω̃h
r,θ[p] + (y − δv[p; k]) ·∇ω̃v

r,θ[p]

+ ω̃r,θ[p]− ω̃h
r,θ[p] ·∇δh[p; k]− ω̃v

r,θ[p] ·∇δv[p; k]
(2.10)

(2.9)
= ω̃r,θ[p]. (2.11)

Hence, from Eq. (2.8) and Eq. (2.11), motion δ[p; k] is linked to φr,θ according to:

φr,θ[p; 0]− unwrap(φr,θ[p; k]) = ∇φr,θ[p; k]
⊺ · δ[p; k]. (2.12)

To avoid phase wrapping and discontinuity problems, the phase spatial gradient can be computed
from Eq. (2.4) using Fleet and Jepson’s formulation [12]:

φr,θ[p; k] = Im(log (Sr,θ[p; k])), (2.13)

∇φr,θ[p; k] = ∇Im(log (Sr,θ[p; k])) (2.14)

= Im(∇ log (Sr,θ[p; k])) (2.15)

= Im

(
∇Sr,θ[p; k]

Sr,θ[p; k]

)
(2.16)

=
Im
(
S∗
r,θ[p; k] ·∇Sr,θ[p; k]

)

|ρr,θ[p; k]|2
, (2.17)

with S∗
r,θ the complex conjugate of the filter response.
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2.3 Spatial frequency decomposition

2.3 Spatial frequency decomposition

In Eq. (2.12), the local motion δ[p; k] only depends on the local phase φr,θ[p; k] computed from
the spatial frequency decomposition. However, spatial frequency decomposition cannot reach
high resolution in both space and frequency, a phenomenon known as the uncertainty relation.
Indeed, on the one hand, when a local Fourier transform is computed with a large support,
frequency resolution is high, but localization of these frequencies is poor. On the other hand,
when a short support is used to compute the local Fourier transform, localization is good, but
frequency resolution is poor.

2.3.1 Gabor filters

A one-dimensional Gabor filter is a quadrature complex filter composed of a sinusoid, with a
given central frequency, weighted by a Gaussian window. Such a filter reaches the lower bound
of the uncertainty relation. This lower bound can be formulated in terms of standard deviation
of the power distribution of the signal [12]. As an example, for a 1D signal g(x) ∈ L2(R) such
that ∥g∥2 = 1 and its Fourier transform ĝ(f), the uncertainty relation states that σx · σf ≥ 1

2

where σ2
x =

∫
x2·|g(x)|2 dx∫
|g(x)|2 dx and σ2

f =
∫
f2·|ĝ(f)|2 df∫
|ĝ(f)|2 df .

For a two-dimensional Gabor filter, a direction θ is specified for the sinusoid and Gaussian
window, and another Gaussian window is applied along the orthogonal direction. The Gabor
filter expression is given by:

Gr,θ(p;ωr, θ, σ, γ) = exp

(
−x′2 + γ2 · y′2

2σ2

)
· exp

(
j · ωr · x′

)
, (2.18)

with ωr the central spatial frequency radius, θ the filter main direction, σ the standard deviation
along θ, γ the aspect ratio between the main and orthogonal directions, and (x′, y′) =

(
p⊺ ·

(
cos (θ), sin (θ)

)⊺
,p⊺ ·

(
− sin (θ), cos (θ)

)⊺) the pixel coordinates rotated by angle θ. An example

of 2D filters is provided in Fig. 2.2 with central frequency radius ωr =
π

2r
, standard deviation

σ =
3

ωr
, and aspect ratio γ = 1. The support of such a filter, with size (6σ + 1) × (6σ + 1),

increases with respect to the scale r. As the standard deviation σ is inversely proportional to
the central frequency, the convolution can thus be time-consuming for low frequencies.

2.3.2 Complex steerable pyramid

The complex steerable pyramid (CSP) is an architecture that performs a fast space–frequency
decomposition [37, 43]. The frequency spectrum is divided into octave pieces. To do so, the
frame is first split into two parts corresponding to high and low frequencies. The first scale
subbands are calculated by convolving the low-frequency part with band-pass filters (e.g., G1,θ
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Figure 2.2: Gabor filters at scale r = 1, for Nθ = 4 orientations.

in Fig. 2.2) in each direction θ. Then the low-frequency part is low-pass filtered another time
and subsampled in each direction by a factor 2. The frame representation at next scale is
computed using the same band-pass filters on the subsampled low-pass filtered frame. The last
two operations are repeated recursively to represent the frame at subsequent scales. Finally,
the last low-frequency part is also low-pass filtered and subsampled to get the low-pass residual.
The initial frame can be reconstructed with low error by recursively upsampling the low-pass
residual and summing with the band-passed subbands. A schematic of the iterative process
is represented in Fig. 2.3, with H, B, and L being high-pass, band-pass, and low-pass filters
respectively.

2.4 Single-subband motion estimation

On each subband (r, θ), motion can be estimated from Sr,θ using Eq. (2.12). In this section, we
present different simple single-subband strategies that use a given scale r or subband (r, θ) to
estimate the displacement field δ.

2.4.1 Given scale associated to local frequency (GSLF)

Chen et al. [6] assume that constant phase over time corresponds to the displacement field:

φr,θ[p+ δ[p; k]; k] = φr,θ[p; 0]. (2.19)
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Figure 2.3: Complex steerable pyramid decomposition. The yellow rectangle is recursively applied to the
bottom circle.

Furthermore, assuming small displacements in frame k, second and higher orders of the Taylor
expansion can be omitted, which gives:

φr,θ[p+ δ[p; k]; k] = φr,θ[p; k] +∇φr,θ[p; k]
⊺ · δ[p; k]. (2.20)

Plugging Eq. (2.20) into (2.19) yields:

∇φr,θ[p; k]
⊺ · δ[p; k] = φr,θ[p; 0]− φr,θ[p; k]. (2.21)

Both hypotheses on constant intensity (see Eq. (2.2)) and phase (see Eq. (2.19)) lead to the same
equation.

The phase is again temporally unwrapped to handle displacements larger than
π

|∇φr,θ[p; k]|
.

This method independently estimates horizontal and vertical components of motion. Indeed,
when θ = 0, the central spatial frequency of Gr,0 is horizontal with ωv

r,0 = 0. Therefore, assuming
that the local frequency is close to the central frequency, the phase vertical partial derivative
∂φr,0

∂y
is negligible, so that the left-hand side of Eq. (2.21) only depends on δh and

∂φr,0

∂x
. A

similar assumption holds for θ =
π

2
, so that

∂φr,π
2

∂x
≈ 0. The following estimators are then

obtained from Eq. (2.21):

δ̃h[p; k] =

(
∂φr,0

∂x
[p; k]

)−1

· (φr,0[p; 0]− unwrap(φr,0[p; k])), (2.22)

δ̃v[p; k] =

(
∂φr,π

2

∂y
[p; k]

)−1

· (φr,π
2
[p; 0]− unwrap(φr,π

2
[p; k])). (2.23)
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2 Phase-based subpixel motion estimation

Computing the 2D motion δ from these equations requires only two subbands, computed at
a single scale r̃ and two orientations (θ = 0 and θ = π

2 ). The scale is set arbitrarily (e.g.,
r̃ = 4), each frame being low-pass filtered and subsampled r̃ − 1 times. A high scale focuses
on frame content with low spatial frequency. The higher the scale is, the coarser the motion
field estimation is because of the successive subsamplings. Chen et al. use the scale r̃ = 4 to
increase the signal-to-noise ratio [6]. The two orientation subbands are computed using separable
quadrature band-pass complex filters (see Fig. 2.4) on the low-passed and subsampled frames.
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Figure 2.4: Spatial quadrature convolution filter pair.

Pixels where spatial derivative
∂φr̃,0

∂x
[p; k] or

∂φr̃,π
2

∂y
[p; k] is close to zero are removed to avoid

irrelevant estimated motion [7].

In Eqs. (2.22) and (2.23), displacement δ̃ is estimated relatively to the first frame. To re-
duce the influence of the latter, displacement can be computed relatively to an equilibrium by
removing the estimated displacement mean over all frames:

δ̂h[p; k] = δ̃h[p; k]− 1

Nk

Nk−1∑

i=0

δ̃h[p; i]. (2.24)
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2.4 Single-subband motion estimation

Assuming constant phase partial derivative,
∂φr̃,0

∂x
[p; i] ≈ ∂φr̃,0

∂x
[p; k] for all i ∈ J0, Nk − 1K,

displacement is computed relatively to an equilibrium as:

δ̂h[p; k]
(2.22)
=

(
∂φr̃,0

∂x
[p; k]

)−1

·
(
φr̃,0[p; 0]− unwrap(φr̃,0[p; k])

− 1

Nk

Nk−1∑

i=0

(φr̃,0[p; 0]− unwrap(φr̃,0[p; i]))
)
,

(2.25)

=

(
∂φr̃,0

∂x
[p; k]

)−1

·
(

1

Nk

Nk−1∑

i=0

unwrap(φr̃,0[p; i])

︸ ︷︷ ︸
φ̄r̃,0[p]

−unwrap(φr̃,0[p; k])

)
, (2.26)

with φ̄r̃,0[p] the unwrapped phase temporal mean. Vertical displacement can be computed

relatively to an equilibrium by following the same decomposition with
∂φr̃, π2
∂y [p; i].

2.4.2 Given scale associated to central frequency (GSCF)

Yang et al. [52] study the motion of a vertical cantilever beam and assume that vertical dis-
placement δv[p; k] is negligible. The authors estimate horizontal displacement using horizontal
response Sr̃,0. To do so, the phase spatial gradient, which is equal to local frequency ω̃r̃,0 (see
Eq. (2.11)), is approximated by the filter central frequency ωr̃,0 in Eq. (2.22). Indeed, filters
Gr̃,0 are spatial band-pass filters with central frequency ωr̃,0 = (ωh

r̃,0, 0)
⊺, and local frequency

given by Eqs. (2.11) and (2.17) is assumed to be in the filter frequency extent. Displacement is
computed relatively to the estimated equilibrium as follows:

δ̂hr̃ [p; k] =
φ̄r̃,0[p]− unwrap(φr̃,0[p; k])

ωh
r̃,0

. (2.27)

In Yang et al.’s work, vertical displacement is close to zero and thus not computed. However, it
can be computed using the vertical filter response:

δ̂vr̃ [p; k] =
φ̄r̃,π

2
[p]− unwrap(φr̃,π

2
[p; k])

ωv
r̃,π

2

. (2.28)

Although displacement can be estimated using Eq. (2.27), only phase differences are computed
in the article. Indeed, OMA only needs relative displacement measurements.
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2 Phase-based subpixel motion estimation

2.4.3 Maximum amplitude subband (MAS)

To avoid that scale is given by the analyst (see Secs. 2.4.1 and 2.4.2), we propose a new method
based on pixel-wise subband selection [31]. The first frame is decomposed into a space–frequency
representation using Gabor filters. For each pixel p, the retained subband (rp, θp) is that with
maximum amplitude within the first frame subbands {Sr,θ[p; 0]}Nr,(Nθ−1)·π/Nθ

r=0,θ=0 :

(rp, θp) = argmax
r,θ

ρr,θ[p; 0]. (2.29)

Decomposing local frequency in polar coordinates ω̃rp,θp [p] = |ω̃rp,θp [p]|·
(
cos (∠ω̃rp,θp [p]

)

sin (∠ω̃rp,θp [p]
)

)
, and

assuming that motion δ[p; k] is collinear with ω̃rp,θp [p], i.e., δ[p; k] = |δ[p; k]|·
(
cos (∠ω̃rp,θp [p]

)

sin (∠ω̃rp,θp [p]
)

)
,

Eq. (2.8) becomes:

φrp,θp [p; 0]− unwrap(φrp,θp [p; k]) = |ω̃rp,θp [p]| · |δ[p; k]|. (2.30)

Displacement can thus be estimated using the selected subband (rp, θp) either relatively to the
first frame as:

δ̃[p; k] =
φrp,θp [p; 0]− unwrap(φrp,θp [p; k])

|ω̃rp,θp [p]|
·
(
cos (∠ω̃rp,θp [p]

)

sin (∠ω̃rp,θp [p]
)

)
, (2.31)

or to the equilibrium by replacing φrp,θp [p; 0] in the above equation by φ̄rp,θp [p].

At each pixel p, the local spatial frequency within the selected subband (rp, θp) must be
determined in order to estimate motion according to Eq. (2.31). For this purpose, the local
frequency ω̃r,θ is assumed to be temporally constant and is computed with Eqs. (2.11) and
(2.17) using the first frame or a temporal mean.

2.5 Multi-subband motion estimation

In opposition to single-subband strategies, multi-subband methods estimate motion using all
subbands deduced from the space–frequency decomposition. These methods consider the phase
associated with each subband as an estimator. However, phase is inconsistent for subbands
with low energy. The following methods present different strategies to fuse relevant subband
estimators.
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2.5 Multi-subband motion estimation

2.5.1 Weighted least-square (WLS)

The first method, introduced by Wadhwa et al. [48], uses a weighted least square estimator to
merge subband phases, where each subband phase φr,θ is weighted by its squared amplitude ρ2r,θ
and a local spatial Gaussian weight G:

δ̂[x, y; k] = argmin
δ[x,y;k]

∑

r

∑

θ

9∑

c=−9

9∑

ℓ=−9

G[c, ℓ] · ρ2r,θ[x+ c, y + ℓ; k]

·
[
ω⊺
r,θ · δ[x, y; k]−

(
φr,θ[x+ c, y + ℓ; 0]− unwrap(φr,θ[x+ c, y + ℓ; k])

)]2
.

(2.32)

In this formulation, the local spatial frequency ω̃r,θ is approximated by the central spatial
frequency ωr,θ.
The squared amplitude weight reduces the influence of inconsistent phases. Indeed, the phase is
meaningful only when the local spatial frequency is a component of the signal. For instance, the
phase in the 1D global motion example in Fig. 1.14 is only meaningful at frequency 0.04 px−1,
where the DFT amplitude is high.
The local spatial Gaussian weight G considers the phase values in a local neighborhood of
p = (x, y)⊺, thus smoothes the estimator spatially. Its support is defined by a standard deviation
σ, which is a parameter of the method. In their work, Wadhwa et al. set σ = 3 and compute
phases from a CSP with Nr = 2 scales and Nθ = 4 orientations.

To solve the weighted least square problem of Eq. (2.32), the following system is constructed
for each pixel (x, y)⊺:

X · δ[x, y; k] = Y , (2.33)

where

X =




∑
r,θ,c,ℓ

(
ωh
r,θ

)2
· G[c, ℓ] · ρ2r,θ[x+ c, y + ℓ; k]

∑
r,θ,c,ℓ

ωh
r,θ · ωv

r,θ · G[c, ℓ] · ρ2r,θ[x+ c, y + ℓ; k]

∑
r,θ,c,ℓ

ωh
r,θ · ωv

r,θ · G[c, ℓ] · ρ2r,θ[x+ c, y + ℓ; k]
∑

r,θ,c,ℓ

(
ωv
r,θ

)2
· G[c, ℓ] · ρ2r,θ[x+ c, y + ℓ; k]




(2.34)

and

Y =




∑
r,θ,c,ℓ

ωh
r,θ · G[c, ℓ] · ρ2r,θ[x+ c, y + ℓ; k] ·

(
φr,θ[x+ c, y + ℓ; 0]− φr,θ[x+ c, y + ℓ; k]

)

∑
r,θ,c,ℓ

ωv
r,θ · G[c, ℓ] · ρ2r,θ[x+ c, y + ℓ; k] ·

(
φr,θ[x+ c, y + ℓ; 0]− φr,θ[x+ c, y + ℓ; k]

)


.

(2.35)
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2 Phase-based subpixel motion estimation

2.5.2 Phase confidence based estimator (PC)

As phases of low-energy subbands can be inconsistent, large phase shifts in such subbands may
significantly increase the estimation error, even with squared amplitude weight.

2.5.2.1 Phase instability of a one-dimensional signal

To remove these low-energy subbands, Zhou et al. [57] propose to compute a weighted mean
estimator, with a weight composed of the squared amplitude and a mask based on a phase
confidence indicator. The phase confidence indicator is derived from Jepson and Fleet’s work
on phase stability [22]. These authors notice that phase is unstable when amplitude is low and
when local frequency is far from the central frequency of interest. To come to this conclusion,
they study a one-dimensional signal and define two criteria to exclude the subband thanks to a
given threshold τr:

|ω̃r − ωr| > τr, (2.36)
∣∣∣∣
dxρr[x]

ρr[x]

∣∣∣∣ > τr, (2.37)

with ωr the central frequency, ω̃r the local frequency, ρr[x] the amplitude, and dxρr[x] its
derivative. The first criterion thresholds the absolute difference between local and central spatial
frequencies. The second one states that the response amplitude ρr must be high and spatially
constant (i.e., dxρr ≈ 0). It is thus based on the ratio between the response amplitude spatial
derivative and the response amplitude. The threshold is normalized using the filter spatial
standard deviation for both criteria.

An example is provided in Fig. 2.5, the signal composed of several frequencies being represented
in Fig. 2.5 (a). A subband is computed from a Gabor filter with central frequency ωr = 0.314 rad·
px−1 whose amplitude and temporally unwrapped phase are shown in Figs. 2.5 (b) and 2.5 (c),
respectively. For the considered pixel coordinates, the amplitude drops to zero at four locations.
The unwrapped phase increases linearly, except at the same four locations, where some jumps
can be observed. The two criteria are displayed in Figs. 2.5 (d) and 2.5 (e), with a threshold
τr = 5

σr
normalized by the filter spatial standard deviation σr. The two criteria are above the

threshold for the subband with ωr = 0.314 rad · px−1 over the four locations, which highlights
subband phase instability. Finally, the signal phase is represented in the space–frequency plane.
The two criteria bounds are represented and correspond to locations with unstable phase.
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Figure 2.5: Example of phase instability, τr = 5
σr

. (a) Intensity profile along a row, (b) amplitude at
central frequency ωr = 0.314 rad · px−1, (c) phase at central frequency ωr, (d) criterion on
local frequency at central frequency ωr, (d) criterion on amplitude at central frequency ωr,
(e) phase frequency–space domain, with ωr = 0.314 rad · px−1 as dashed line.
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2 Phase-based subpixel motion estimation

In their work, Zhou et al. focus on horizontal motion and use a single criterion with the same
two key ideas as Jepson and Fleet about local frequency and amplitude ratio. The phase of
horizontal subband is considered as unstable if:

∣∣∣∣∣
∂xρr,0[p; k]

ρr,0[p; k]
− j
|ω̃h

r,0[p; k]− ωh
r,0|

ωh
r,0

∣∣∣∣∣ > τ , (2.38)

with ω̃h
r,0 = ∂xφr,0[p; k] the local frequency. The threshold τ does not take the filter standard

deviation σr,0 into account, but has the same given value for every scale. From this confidence
measurement indicator, a binary maskMr is defined for the given threshold τ :

Mτ
r [p; k] =


(
1 + exp

[
−α
(
τ −

∣∣∣∣∣
∂xρr,0[p; k]

ρr,0[p; k]
− j
|ω̃h

r,0[p; k]− ωh
r,0|

ωh
r,0

∣∣∣∣∣

)])−1



, (2.39)

with α the steepness of the logistic function. Note that parameter α can be discarded because
the logistic function is rounded. This mask is efficient to remove phase singularities.

2.5.2.2 Confidence-based horizontal displacement estimator

The horizontal displacement is then estimated using a mean over scales, weighted by the squared
response amplitude and the mask described previously:

δ̂h[p; k] =

∑
r
ρ2r,0[p; k] · Mτ

r [p; k] · δ̂hr,0[p; k]
∑
r
ρ2r,0[p; k] · Mτ

r [p; k]
, (2.40)

the horizontal motion being estimated at each scale r as:

δ̂hr,0[p; k] =
φr,0[p; 0]− unwrap(φr,0[p; k])

ω̃h
r,0

. (2.41)

2.5.2.3 Extension to 2D estimator

In this part, we propose an extension of Zhou et al.’s method to both horizontal and vertical
directions. The same fusion strategy as for the sole horizontal direction can be applied to
estimate 2D displacement as:

δ̂[p; k] =

∑
r,θ

ρ2r,θ[p; k] · Mτ
r,θ[p; k] · δ̂r,θ[p; k]

∑
r,θ

ρ2r,θ[p; k] · Mτ
r,θ[p; k]

, (2.42)
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2.5 Multi-subband motion estimation

with δ̂r,θ the motion estimated on each subband (r, θ). For this purpose, we assume that motion
is along the phase spatial gradient direction ∠∇φr,θ[p; k]

:

δ̂r,θ[p; k] =
∣∣∣δ̂r,θ[p; k]

∣∣∣ ·


cos

(
∠∇φr,θ[p; k]

)

sin
(
∠∇φr,θ[p; k]

)

, (2.43)

with ∇φr,θ[p; k] estimated using Eq. (2.17). The amplitude can be then deduced from Eq. (2.12):

∣∣∣δ̂r,θ[p; k]
∣∣∣ = φr,θ[p; 0]− unwrap(φr,θ[p; k])

|∇φr,θ[p; k]|
. (2.44)

Finally, we assume that phase gradient is approximately temporally constant so that:

δ̂r,θ[p; k] =
φr,θ[p; 0]− unwrap(φr,θ[p; k])

|∇φr,θ[p; 0]|
·


cos

(
∠∇φr,θ[p; 0]

)

sin
(
∠∇φr,θ[p; 0]

)

. (2.45)

To extend the phase confidence mask to the two directions, we assume that the spatial gradient
of the response amplitude ρr,θ must be small along the direction of the local frequency ω̃r,θ. The
criterion on the phase linearity thus becomes:

∣∣∣∣
∇ρr,θ[p; k]

⊺ · ω̃r,θ[p; k]

ρr,θ[p; k] · |ω̃r,θ[p; k]|

∣∣∣∣ > τ . (2.46)

The criterion about local frequency is kept as it, such that the phase confidence mask M τ
r,θ in

subband (r, θ) is defined as:

Mτ
r,θ[p; k] =

⌊(
1 + exp

[
−
(
τ −

∣∣∣∣
∇ρr,θ[p; k]

⊺ · ω̃r,θ[p; k]

ρr,θ[p; k] · |ω̃r,θ[p; k]|
− j
|ω̃r,θ[p; k]− ωr,θ|

|ωr,θ|

∣∣∣∣
)])−1

⌉
. (2.47)

2.5.3 Weighted spatial mean based on phase confidence (SMPC)

The estimator in Eq. (2.42) only accounts for the local phase at p. However, motion of mechanical
structures can be considered as spatially continuous. Therefore, we assume that the estimated
motion should be spatially smooth. In order to account for the neighborhood of p, we thus
propose to introduce a spatial Gaussian kernel G with standard deviation σ and support Nσ in
the estimator of Eq. (2.42):

δ̂[p; k] =

∑
r,θ

∑
q∈Nσ

G[q] · ρ2r,θ[p+ q; k] · Mτ
r,θ[p+ q; k] · δ̂r,θ[p+ q; k]

∑
r,θ

∑
q∈Nσ

G[q] · ρ2r,θ[p+ q; k] · Mτ
r,θ[p+ q; k]

. (2.48)
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2 Phase-based subpixel motion estimation

2.6 Synthetic videos of a cantilever beam

To test the performances of the motion estimation methods presented above, we generate syn-
thetic videos of a cantilever beam. These videos are based on the Euler–Bernoulli beam equa-
tion [44], which models the deflection of a cantilever beam according to its physical properties
and the force applied to it. This equation models the center line of a 1D beam. The borders of
the beam are computed using the normal to the center line at each point. Then each frame is
generated using a pinhole camera model.

2.6.1 Euler–Bernoulli cantilever beam model

The physical parameters of the beam are its length L (m), Young modulus E (Pa), cross-section
area A (m2), moment of inertia J (m4), and volumic mass density ρ (kg·m−3). First, the model is
considered without force. The center line of the beam is defined by a function g(z, t), z ∈ [0, L],
t ≥ 0, as:

∂2

∂z2

(
EJ

∂2g

∂z2
(z, t)

)
+ ρA

∂2g

∂t2
(z, t) = 0, (2.49)

EJ

ρA︸︷︷︸
c2

∂4g

∂z4
(z, t) +

∂2g

∂t2
(z, t) = 0. (2.50)

To solve this equation, the variables of the function g are separated by assuming that g(z, t) =

ϕ(x) · q(t), where ϕ encodes spatial information and q encodes temporal information. Multiple
solutions ϕi exist whose forms are:

ϕi(z) = cosh(βiz)− cos(βiz) +
sinh(βiL)− sinh(βiL)

cos(βiL) + cosh(βiL)
· (− sinh(βiz) + sin(βiz)) , (2.51)

with βi solution of cos (βiL) · cosh (βiL)+1 = 0, which can be solved numerically. The first four
mode shapes are represented in Fig. 2.6.

The modal contribution qi associated to ϕi is solution of:

∂2qi(t)

∂t2
+ ω2

i qi(t) =
1

ρA

L∫

0

ϕi(z)γ(z, t) dz , (2.52)
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Figure 2.6: First four mode shapes of an Euler–Bernoulli cantilever beam clamped to the left end.

with ωi = β2
i · c, and γ(z, t) the input force applied to the beam. For a given input force, the

central line coordinate is thus computed by summing each contribution:

g(z, t) =
∞∑

i=1

ϕi(z) · qi(t). (2.53)

More details about how to solve Eq. (2.50) are provided in Appendix A.

2.6.2 Frame generation

To generate each frame, the central line position is computed using Euler–Bernoulli beam model.
The beam borders are computed as a 2D polygon by taking the normal to the central line at
each point. This polygon is then projected on the image plane using a simple pinhole camera
model. To do so, we assume that the beam moves in a plane parallel to the image plane so that
its size in the frame is only defined by the ratio between its distance to the camera lens and the
focal length. Finally, each pixel value is computed as the proportion of its surface occupied by
the beam, and quantized on Nb = 8bits. An example of generated frame is provided in Fig. 2.7
for a beam with the following parameters: L = 0.9m, E = 210 · 109 Pa, A = 1.8 · 10−4 m2,
J = 5.4 · 10−10 m4, and ρ = 7850 kg·m−3.
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Figure 2.7: Frame of a synthetic video of a cantilever beam clamped at its bottom end: full frame (left)
and top detail (right).

2.7 Estimated motion from synthetic videos

To compare the methods defined in Secs. 2.4 and 2.5, we use a synthetic video of a cantilever
beam generated using the method described in Sec. 2.6. We simulate a hammer impact at the
free end of the beam by setting the input force γ(z, t) as a Dirac function in time and space:

γ(z, t) =




0.64N if z = L and t = 0,

0N otherwise.
(2.54)

Only the first four modes are taken into account for the beam displacement, with the theo-
retical natural frequencies and damping ratios detailed in Tab. 2.1.

Mode m 1 2 3 4
fm (Hz) 6.19 38.79 108.60 212.82
ζm (×102) 0.11 1.13 0.29 0.13

Table 2.1: Beam theoretical natural frequencies and damping ratios.

The video frame rate is set to 436 fps to be twice larger than the highest natural frequency
(212Hz), and thus avoid temporal frequency aliasing. The video lasts 1 s so that it is composed
of 436 frames.
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2.7 Estimated motion from synthetic videos

As the video is generated with a vertical cantilever beam, vertical displacement is close to zero.
The video is rotated with an angle of 78.75° so that both vertical and horizontal displacements
are studied. Each frame is thus a square of 1000 × 1000px where the beam clamped end is
located in the bottom right corner. A region of interest is defined on a pixel line at the center of
the beam, as represented in Fig. 2.8. Motion is estimated in each frame and the horizontal and
vertical components of each pixel of interest are extracted to get δ̂[z; k], with z the curvilinear
coordinate of pixels of interest along the beam in the frame. Note that the pixel at z = 1

represents the beam clamped end.
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Figure 2.8: Motion extraction process of a cantilever beam. (a) Frame of a synthetic video. (b) Focus on
pixels of interest in red with z ∈ J539, 567K. (c) Estimated motion δ̂h[z; k] in the focus view.
(d) Estimated motion δ̂h[z; k] at the pixels of interest.

We denote each of the six estimators as δ̂i, i corresponding to one of the following methods:

1. Given scale with local frequency (GSLF) [6] described in Sec. 2.4.1,

2. Given scale with central frequency (GSCF) [52] described in Sec. 2.4.2,

3. Our maximum amplitude subband (MAS) described in Sec. 2.4.3,

4. Weighted least-square (WLS) [48] described in Sec. 2.5.1,

5. Phase confidence (PC) [57] described in Sec. 2.5.2,
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2 Phase-based subpixel motion estimation

6. Our weighted spatial mean based on phase confidence (SMPC) described in Sec. 2.5.3.

To compare the performances reached by the methods, each frame is decomposed using the
Gabor filters defined in Sec. 2.3.1 with Nr = 5 scales and Nθ = 8 orientations. For GSLF (δ̂1)
and GSCF (δ̂2) methods, the third scale is used. The standard deviation of the Gaussian kernel
of WLS (δ̂4) and our SMPC (δ̂6) methods is set to 3 px. The phase confidence threshold τ is set
to 0.5 for PC (δ̂5) and SMPC (δ̂6) estimators.

The methods are applied to the 436 frames of the video. The values obtained at the NPoI = 686

pixels of interest are extracted and compared with the theoretical displacement of the Euler–
Bernoulli model. To do so, the theoretical displacements are converted from the scene coor-
dinates to the frame coordinates to match the pixels of interest. The methods are assessed
qualitatively by visually comparing the obtained estimations with the theoretical displacements.
In Fig. 2.9, horizontal and vertical components of theoretical and estimated displacements at the
middle of the beam are represented along the first 101 frames. Regarding vertical displacement,
the six estimators seem to be consistent with the theoretical displacement. Their amplitudes are
quite different, but the temporal frequency content seems to be correctly captured. δ̂v2 provides
the best estimation of the motion amplitude. δ̂v3 , δ̂v5 , and δ̂v6 overestimate the displacement while
δ̂v1 and δ̂v4 underestimate it. Regarding horizontal displacement, the single-subband estimators
δ̂h1 and δ̂h2 are not consistent with the theoretical displacement. This is due to the fact that the
frequency content of the horizontal subband is poor because the beam is almost horizontal. The
other estimators seem to be consistent and slightly overestimate or underestimate the amplitude
in the same way as for vertical displacement.
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Figure 2.9: Comparison of theoretical and estimated displacements at the middle of the beam along the
first 101 frames.
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2.7 Estimated motion from synthetic videos

As this figure only analyzes the displacement estimations at one pixel, we propose to represent
the relative absolute error (RAE) in the space–time domain (see Fig. 2.10). To do so, horizontal
and vertical estimations are studied separately, and the RAE of a given estimator δ̂i is computed
relatively to the maximum theoretical displacement as:

RAEh(δ̂i)[z; k] = 100·

∣∣∣δ̂hi [z; k]− δh[z; k]
∣∣∣

max
z̃,k̃
|δh[z̃; k̃]|

and RAEv(δ̂i)[z; k] = 100·

∣∣∣δ̂vi [z; k]− δv[z; k]
∣∣∣

max
z̃,k̃
|δv[z̃; k̃]|

, (2.55)

with z the pixel of interest. The values above 100% are set to 100 to avoid that large errors
hide smaller ones.

Figure 2.10 shows the RAEs of the six estimators, revealing the same behaviors as for a single
pixel (see Fig. 2.9). The two single-subband estimators δ̂1 and δ̂2 fail to estimate horizontal
displacement, which confirms that these methods require an assumption about the main direction
of the structure in the video. The four other methods provide relatively low errors, with vertical
patterns that highlight amplitude error. At the free end of the beam, the pixelwise subband
estimator δ̂3 has a higher error than multi-subband methods. This may be due to the fact
that the highest frequency content at this location is horizontal, and that the hypothesis on
the displacement in the direction of the local frequency is not correct in this region. Regarding
horizontal displacement estimation, the weighted least-square method δ̂4 error seems to be less
smooth than other methods as z varies. This suggests that errors are not only due to the
amplitude.
To further compare the methods quantitatively, we compute the cosine similarity (CS) that
measures the similarity between theoretical and estimated displacements:

CS(δ̂, δ) =

∑
z

∑
k

(δ̂h[z; k] · δh[z; k] + δ̂v[z; k] · δv[z; k])
√∑

z

∑
k

(δ̂h[z; k]2 + δ̂v[z; k]2)
√∑

z

∑
k

(δh[z; k]2 + δv[z; k]2)
. (2.56)

This measure ranges from −1 to 1 and does not account for the signal amplitudes (CS between
two proportional signals is 1). This is adequate because for vibration analysis (and OMA more
specifically), displacements have only to be estimated relatively to each others. This means
that if a method overestimates or underestimates displacement in the same way throughout the
video, the results will not be affected.

2.7.1 Sensitivity study against motion amplitude

As subpixel motion can be small in videos, we assess the methods with different motion ampli-
tudes. To do so, we generate three other videos with input force γ(L, 0) ∈ {0.08, 0.16, 0.32} (N),
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Figure 2.10: Horizontal (top row) and vertical (bottom row) RAEs of the beam (%) for the six tested
estimators.

then we follow the same process as before to estimate displacement. Finally, we compute the
CS of the six methods for each video. From the results shown in Tab. 2.2, we can see that
CS decreases with respect to the input force (hence the motion amplitude) for all methods.
Furthermore, our SMPC estimator δ̂6 provides slightly better results than δ̂3, δ̂4, and δ̂5.

Force γ(L, 0)
Method GSLF

δ̂1

GSCF
δ̂2

MAS
δ̂3

WSL
δ̂4

PC
δ̂5

SMPC
δ̂6

0.64N (δmax = 0.26 px) 0.940 0.940 0.999 0.999 0.999 0.999
0.32N (δmax = 0.13 px) 0.857 0.857 0.998 0.998 0.998 0.998
0.16N (δmax = 0.06 px) 0.713 0.713 0.992 0.992 0.992 0.993
0.08N (δmax = 0.03 px) 0.542 0.542 0.971 0.971 0.972 0.973

Table 2.2: Cosine similarity of the methods for different input forces γ(L, 0). Bold indicates the best
result in each row.

Figure 2.11 compares the displacements estimated at the middle of the beam for the video
generated with input force γ(L, 0) = 0.08N (about 0.01 px amplitude). Irrelevant horizontal
values outside the interval [−0.002, 0.002]px are truncated. We can see that the estimated
displacements are quantized with a few numbers of levels. This suggests that the methods could
give better results with more quantization bits Nb in the video.

To confirm this hypothesis, the same video has been regenerated with Nb = 12 quantization
bits. The displacements obtained at the middle of the beam represented in Fig. 2.12 are more
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Figure 2.11: Comparison of theoretical and estimated displacement at the middle of the beam in the first
101 frames of the video with input force γ(L, 0) = 0.08N.

consistent than that determined from the video with Nb = 8 quantization bits. The CS for the
two videos is listed in Tab. 2.3 and confirms that more quantization bits improves estimation of
small subpixel motion. It also shows that the SMPC method (δ̂6) provides the best results in
both cases, even if several methods reach the same first rank when Nb = 12bits.

Nb

Method GSLF
δ̂1

GSCF
δ̂2

MAS
δ̂3

WSL
δ̂4

PC
δ̂5

SMPC
δ̂6

8 bits 0.542 0.542 0.971 0.971 0.972 0.973
12 bits 0.938 0.938 0.998 0.998 0.998 0.998

Table 2.3: Cosine similarity of the methods for different video quantization bits. Bold indicates the best
result in each row.

2.7.2 Sensitivity study against gray level noise

To assess the robustness of the methods against gray level noise, we add synthetic noise to
the frames before estimating motion from the video with γ(L, 0) = 0.64N. Once the (already
quantized) video file is loaded, a centered Gaussian noise with standard deviation σnoise is added,
then the real-valued video is re-quantized on 8 bits. Note that this method is fast but suboptimal
because noise should have been added before the analog–digital conversion step to accurately
represent a noise caused by sensors. Displacement are then estimated using the six methods,
and CS values with theoretical displacement are computed and gathered in Tab. 2.4. We can see
that the CS decreases when noise increases for all estimators, particularly for δ̂1 and δ̂2. This
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Figure 2.12: Comparison of theoretical and estimated displacement at the middle of the beam in the first
101 frames of the video with 12 quantization bits and input force γ(L, 0) = 0.08N.

lack of robustness of δ̂1 and δ̂2 against noise is confirmed by a study on horizontal motion in
[32], where we compare δ̂h1 , δ̂h2 , and δ̂h4 on synthetic videos of a vertical cantilever beam. As for
robustness against input force, our SMPC method (δ̂6) provides the best results, even for strong
noise.

σnoise

Method GSLF
δ̂1

GSCF
δ̂2

MAS
δ̂3

WSL
δ̂4

PC
δ̂5

SMPC
δ̂6

0 px 0.940 0.940 0.999 0.999 0.999 0.999
1 px 0.415 0.415 0.998 0.996 0.998 0.999√
2px 0.314 0.314 0.997 0.993 0.998 0.998
2 px 0.091 0.091 0.994 0.986 0.997 0.997

2
√
2 px 0.072 0.072 0.989 0.973 0.995 0.995

4 px 0.030 0.030 0.979 0.946 0.990 0.991

Table 2.4: Cosine similarity of the methods for different noise standard deviation σnoise.

Figure 2.13 shows the displacements at the middle of the beam obtained for the six methods.
All the estimators capture the main frequency of vertical motion, but only δ̂h3 , δ̂h5 , and δ̂h6 are
close to the theoretical horizontal displacement.

2.8 Conclusion

In this chapter, we give details about different phase-based subpixel motion estimation methods.
Three single-subband and three multi-subband methods are derived.
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Figure 2.13: Comparison of theoretical and estimated displacement at the middle of the beam in the first
101 frames with Gaussian noise standard deviation σnoise = 4px.

To compare the performances reached by these methods, we generate synthetic videos of a
cantilever beam based on Euler–Bernoulli beam equation and a pinhole camera model. This
model is very simple and does not take any point spread function or optical distortion into
account. Furthermore, as the cantilever beam displacement is in a plane parallel to the image
plane, the displacement is linearly projected. It could be rendered in 3D thanks to a computer
graphics software such as Blender1 to study the impact of the camera position.

Finally, the estimated motions are compared with theoretical displacements for different mo-
tion and noise amplitudes using cosine similarity. Our SMPC method based on a weighted
spatial mean with phase confidence mask provides the best results in every video.

In this chapter, the focus is given on subpixel motion estimation from video analysis. Chapter 3
details the state-of-the-art and video-specific modal identification algorithms. The methods are
then compared on the synthetic videos by evaluating the quality of the estimated modal basis.

1https://www.blender.org/
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3 Video based operational modal analysis

3.1 Introduction

Operational modal analysis (OMA) estimates the modal basis of a structure from vibration
measurements. The modal basis is composed of a set of vibration modes. Each estimated mode
is defined by its natural frequency, damping ratio and shape. The theoretical foundations of
OMA are presented in Sec. 1.2 of the first chapter. Many OMA methods exist and are split into
two categories, temporal and frequency methods. Temporal methods estimate the modal basis
directly from the vibration measurements. Frequency methods analyze the temporal-frequency
space built from frequency response functions (FRFs).

In this chapter, we focus on the modal basis estimation methods. First, the estimation of
FRFs is described in Sec. 3.2. Secondly, different state-of-the-art OMA methods are detailed in
Sec. 3.3. Since the phase-based analysis provides a dense motion estimation, two video-based
modal analysis methods are introduced in Sec. 3.4. The video-based methods are then compared
on a synthetic video and the influence of the phase-based motion estimation method is studied
in Sec. 3.5. A preprocessing step based on a smoothing of the estimated motion is proposed in
Sec. 3.6, and the performances reached by modal analysis combined with the preprocessing are
assessed against additive gray level noise and mode shape amplitude. Finally, the performances
of motion estimators detailed in chapter 2 combined with the video-based OMA methods are
compared on synthetic videos of a cantilever beam.

3.2 Frequency response function estimation

In modal analysis, measurements can be affected by noise. To reduce the noise of measurements,
stochastic tools such as cross-correlation and spectral densities are used to estimate the FRFs.
In the context of OMA, the cross-correlation of two stationary signals x and y is defined by:

Rxy(τ) = E[x(t) · y(t+ τ)]. (3.1)

The associated cross-spectral density (CSD) is the Fourier transform of the cross-correlation
function that is expressed as:

Sxy(ω) =
1

2π

∞∫

−∞

Rxy(τ) · e−j·ω·τdτ , (3.2)

where ω is the angular frequency. Assuming that data have been acquired over a very long
period, the CSD has the following property:

Sxy(ω) = X̂∗(ω) · Ŷ (ω), (3.3)
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3.3 Classical OMA methods

with X̂ and Ŷ the Fourier transform of x and y, respectively. The auto-correlation and power
spectral density (PSD) of signal x are denoted as Rxx(ω) and Sxx(ω).

For given measured input force γ and response y, the FRFs can be estimated from the in-
put/output CSDs and PSDs by:

Ĥ1(ω) =
Sγy(ω)

Sγγ(ω)
, (3.4)

Ĥ2(ω) =
Syy(ω)

Syγ(ω)
. (3.5)

In operational conditions, as the input force vector γ(t) is unknown, the FRFs cannot be
estimated. Thus, the output cross-correlation matrix Ryy(τ) and the PSD matrix Syy(ω) are
computed. Assuming the input force is a white noise, the two matrices behave respectively like
the impulse response function and FRF matrices [19, 33].

In practice, the PSD is estimated using Welch’s method [50]. This method splits the response
y into overlapping time intervals. The response on each interval is windowed with the Hann
window to compute the discrete Fourier transform (DFT). Finally, the PSD is estimated by
computing the mean of the DFT squared modulus of each windowed interval response.

3.3 Classical OMA methods

Different OMA methods exist to determine the modal basis from cross-correlation or PSD values
of observations. These methods can be subdivided into two categories, according to the number
of degrees of freedom (DoFs) they consider. Single DoF methods assume that modes are well
separated in frequency and that they can be determined by studying narrow frequency bands
independently. On the other hand, multiple DoF methods can estimate modes that are close in
frequency space. This section provides details about a simple peak-picking single DoF method
and two multiple DoF methods called least-square complex frequency and stochastic subspace
identification.

3.3.1 Peak-picking (PP) and Operational deflection shape (ODS)

The peak-picking method is a single DoF method which assumes that, in a given narrow fre-
quency band, the response is only due to one single mode. The influence of other modes in this
narrow frequency band is supposed to be negligible.
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3 Video based operational modal analysis

Around the peak corresponding to the ith mode, the FRF amplitude follows the form:

|H(f)| = 1

ki ·



√(

1−
(

f
fi

)2)2

+
(
2 · ζi · f

fi

)2



, (3.6)

with f = ω
2π the frequency (Hz), fi the natural frequency, ζi the damping ratio of the mode,

and ki the stiffness associated to the mode.

The FRF amplitude expressed by Eq. (3.6) is maximized at the frequency fmax = fi·
√
1− 2 · ζ2i .

For a low damping ratio ζi ≪ 1, the natural frequency can be approximated by the peak fre-
quency fmax.

According to the half-power method [11], the damping ratio can be estimated by:

ζi =
f2
up − f2

low

4 · f2
i

, (3.7)

with flow and fup the half-power frequencies such that |H(flow)| = |H(fup)| = |H(fmax)|√
2

and
flow < fmax < fup. For this purpose, the FRF is interpolated in the frequency domain. Figure 3.1
displays a close view of an FRF with the frequencies flow, fup and fmax associated to a peak.

flow fmax fup
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(f

)|
( m
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1
) |H(fmax)|

√
2

|H(fmax)|

Figure 3.1: Peak-picking and half-power methods

The mode shape can be approximated by the operational deflection shape (ODS) computed
at the selected frequency fmax. For this purpose, a given line i of the FRF (or PSD) matrix is
selected, and every component is set to zero except for ω = 2π · fmax. For every DoF j ∈ J1, NK,
the corresponding ODS is obtained by computing the inverse Fourier transform of FRF Hij(ω).

The uncertainty of this method is directly linked to the frequency resolution of the FRF and
the interpolation method. Furthermore, if several modes are close together, the assumption
about single DoF (one mode in a narrow frequency band) is not valid.
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3.3.2 Least-square complex frequency (LSCF)

The least-square complex frequency method [13] is a multiple DoF frequency method that aims
to fit the FRF (resp. the SD) matrix. As seen in Sec. 1.2 (see Eq. (1.36)), the FRF components
follow the form:

Hpq(ω) =

N∑

i=1




ΦpiLqi

ζi · ωi + j
(
ω − ωi

√
1− ζ2i

) +
Φ∗

piL
∗
qi

ζi · ωi + j
(
ω + ωi

√
1− ζ2i

)


, (3.8)

with Lqi =
Φqi

αi
, and the ith mode being defined by its natural frequency ωi, its damping ratio

ζi, and its mode shape ϕi (the ith column of Φ).

Within the frequency band of interest, the measured FRFHm
pq is assumed to have the following

form:

Hm
pq(ω) =

N∑

i=1




ΦpiLqi

ζi · ωi + j
(
ω − ωi

√
1− ζ2i

) +
Φ∗

piL
∗
qi

ζi · ωi + j
(
ω + ωi

√
1− ζ2i

)


+Ru

pq −
Rl

pq

ω2
,

(3.9)
with Ru

pq and Rl
pq the upper and lower residuals matrices [15].

The method fits the estimated FRFs with a function Ĥ of the same form as in Eq. (3.9). For
this purpose, the difference between the measured and the estimated FRFs at angular frequency
ω is defined by:

epq(ω) =H
m
pq(ω)− Ĥpq(ω). (3.10)

The total squared error to minimize is:

E =
∑

p

∑

q

∑

ω

epq(ω) · e∗pq(ω). (3.11)

For each unknown parameter {ωi, ζi,Φpi,Lqi,R
u
pq,R

l
pq}, the following set of equations ∂E

∂ωi
=

∂E
∂ζi

= ∂E
∂Φpi

= ∂E
∂Lqi

= ∂E
∂Ru

pq
= ∂E

∂Rl
pq

= 0 minimizes the error. This set of equations is non-linear
and is solved iteratively using first-order approximations. As this problem is sensitive to initial
values, it is used in practice to refine a model that is coarsely estimated by another method such
as Ibrahim’s time-domain method [17].
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3 Video based operational modal analysis

3.3.3 Stochastic subspace identification (SSI)

The covariance-driven stochastic subspace identification is a time-domain method based on a
multiple DoF state space formulation. As detailed in Sec. 1.2.4, the multiple DoF problem can
be recast into a discrete-time state space form:

x[k + 1] = A · x[k] +w[k], (3.12)

y[k] = C · x[k] + v[k], (3.13)

with x[k] =

(
u(k∆t)

u̇(k∆t)

)
∈ R2N the state vector containing displacement u and velocity u̇ vectors,

∆t the time step between two successive frames, y[k] ∈ RNo the observation vector, A ∈ R2N×2N

the state-space matrix, and C ∈ RNo×2N the observation matrix. Vectors w[k] ∈ R2N and
v[k] ∈ RNo are the input and observation zero-mean white noise vectors.

The objective of stochastic subspace identification (SSI) is to get estimates Â and Ĉ only
from the observations {y[k]}Nk−1

k=0 (columns of δ̂h and δ̂v, in our case) to obtain the modes [35].
For this purpose, a set of covariance matrices are defined as follows:

• Λi = E[y[k + i] · y[k]⊺] ∈ RNo×No the output covariance matrix,

• G = E[x[k + 1] · y[k]⊺] ∈ R2N×No the next-state covariance matrix.

These matrices are linked by:
Λi = C ·Ai−1 ·G. (3.14)

Given a parameter R < Nk/2, each output covariance matrix can be estimated by:

Λi =
1

Nk − 2R− 1

Nk−2R−2∑

k=0

y[k + i] · y[k]⊺. (3.15)

These matrices are used to form a block Toeplitz matrix of R block rows as:

T1:R =




ΛR ΛR−1 · · · Λ1

ΛR+1 ΛR · · · Λ2

...
...

. . .
...

Λ2R−1 Λ2R−2 · · · ΛR



∈ RR·No×R·No . (3.16)
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3.3 Classical OMA methods

This block Toeplitz matrix can be decomposed using Eq. (3.14) to give:

T1:R =




C

CA
...

CAR−1




︸ ︷︷ ︸
OR

·
(
AR−1G AR−2G . . . AG G

)

︸ ︷︷ ︸
CR

. (3.17)

For a given model order N , the generalized observability matrix OR ∈ RR·No×2N and the
generalized reversed controllability matrix CR ∈ R2N×R·No [46] can be estimated using the
singular value decomposition (SVD) of the Toeplitz matrix that is written as:

T1:R =
(
U2N U2N

)
·
(
Σ2N 0

0 Σ2N

)
·
(
V ⊺
2N

V ⊺
2N

)
, (3.18)

≈ U2N ·Σ2N · V ⊺
2N . (3.19)

MatricesU2N and V2N are both orthonormal, i.e., U2N ·U⊺
2N = U⊺

2N ·U2N = I2N and V2N ·V ⊺
2N =

V ⊺
2N ·V2N = I2N . The matrix Σ2N is diagonal and composed of singular values. From Eqs. (3.17)

and (3.19), the observability and reversed controllability matrices can be estimated by:

OR = U2N ·Σ1/2
2N . (3.20)

CR = Σ
1/2
2N · V

⊺
2N . (3.21)

Matrix C is estimated by taking the first No rows of OR. To estimate A, the Toeplitz matrix
T2:R+1 is constructed such that:

T2:R+1 = OR ·A ·CR, (3.22)

Â = O†
R · T2:R+1 ·C†

R (3.23)

= Σ
−1/2
2N ·U⊺

2N · T2:R+1 · V2N ·Σ−1/2
2N , (3.24)

with O†
R and C†

R the Moore-Penrose pseudoinverse matrices of OR and CR.
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3 Video based operational modal analysis

Then, from the eigenvalue decomposition Â = ΨSΨ−1 with S = diag(λi), i ∈ J1, 2NK, natural
frequencies, damping ratios, and mode shapes can be computed as:

fN
i =

1

2π

∣∣∣∣
log λi

∆t

∣∣∣∣, (3.25)

ζNi =
Re(λi)

|λi|
, (3.26)

ΦN = ĈΨ. (3.27)

The 2N modes come as N complex conjugate pairs and only N positive frequencies are kept.

In practice, the number Nm of modes in the frequency band of interest is not known. Therefore,
the method is run with different model orders N . For a given model order, N poles

{
pNi
}N
i=1

are
obtained, each with its natural frequency fN

i , its damping ratio ζNi , and its mode shape ϕN
i .

3.4 Video-based OMA methods

Let NPoI be the number of pixels of interest where displacement is estimated along Nk frames.
The observation matrix y ∈ RNo×Nk is composed of horizontal and vertical displacements stacked
with No = 2NPoI. The specificity of video-based modal analysis is the number of observations,
which can be very high due to dense motion estimation. Thus, the two following methods first
reduce the dimension of the observation matrix before running a modal analysis.

3.4.1 Principal component analysis and complexity pursuit (PCA+CP)

The objective of principal component analysis (PCA) and complexity pursuit (CP) [52] is to
decompose the displacement matrix y as:

y = Φ · q, (3.28)

where Φ ∈ RNo×N and q ∈ RN×Nk are the mode shape and modal coordinate matrices, re-
spectively. The method proceeds in two steps. First, PCA is used to reduce the number of
displacement matrix rows from No to a given model order N . Then, the modal coordinates are
separated from mode shapes using a blind source separation by CP algorithm.

When NPoI is high, video-based modal analysis may examine a high-dimensional displacement
matrix. To reduce its size, it is factorized by SVD:

y =
(
U U

)( Σ 0

0 Σ

)(
V

V

)
. (3.29)
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3.4 Video-based OMA methods

The displacement matrix is projected by PCA upon the first N vectors gathered in U ∈ RNo×N ,
whose transpose provides the reduced displacement matrix η ∈ RN×Nk that is defined as:

η = U⊺ · y. (3.30)

Assuming that η can be decoupled into modal coordinates q according to:

q =W · η , (3.31)

where W ∈ RN×N is the demixing matrix to retrieve, this blind source separation problem is
solved using CP [54]. This method assumes that the modal coordinates q are the signals with
the lowest Kolmogorov complexity. To extract them, the method estimates each row wi of W
so that each qi := wi · η ∈ RNk , i ∈ J1, NK, has the highest temporal predictability, that is
defined as:

P (qi) = log

(∑Nk−1
k=0 (q̄i[k]− qi[k])

2

∑Nk−1
k=0 (q̌i[k]− qi[k])2

)
, (3.32)

where q̄i and q̌i are the long and short exponential moving averages of qi.

For a given model order N , natural frequencies are estimated as the frequencies that maximize
the discrete Fourier transform of modal coordinates:

fN
i = argmax

f

∣∣DFT{qi}[f ]
∣∣ . (3.33)

Each damping ratio ζNi is estimated from qi using the logarithmic decrement method [18]. Each
mode shape ϕN

i is a column of the mode shape matrix ΦN that is computed as:

ΦN = UW−1 . (3.34)

Yang et al. [52] estimate the displacement at each scale of the complex steerable pyramid (see
Sec. 2.3.2) and apply this technique to determine a modal basis at each scale.

3.4.2 Fast SSI (FSSI)

In the state-of-the-art SSI method (see Sec. 3.3.3), the size R ·No×R ·No of the Toeplitz matrix
may be huge for video-based modal analysis. To reduce the number of observations, we propose
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3 Video based operational modal analysis

to use a similar projection as in Eq. (3.30). The displacement matrix is first decomposed by
SVD, then projected on the first P vectors to obtain a reduced observation matrix y̌ ∈ RP×Nk :

y =
(
UP UP

)( ΣP 0

0 ΣP

)(
VP

VP

)
, (3.35)

y̌ = U⊺
P · y. (3.36)

Given a value of P , SSI is performed on y̌ with N and R as parameters. The Toeplitz matrix
Ť1:R ∈ RR·P×R·P is constructed to obtain the natural frequencies {fN

i }Ni=1 and damping ratios
{ζNi }Ni=1, and a reduced mode shape matrix Φ̌N . The mode shape matrix ΦN on the No pixels
can then be computed as:

ΦN = UP · Φ̌N . (3.37)

3.5 Operational modal analysis on synthetic videos

To assess the performances reached by video-based modal analysis methods, we consider the
displacements estimated from the synthetic videos used in chapter 2 as observations. To do so,
a line of NPoI = 686 pixel of interest is defined on the synthetic cantilever beam rotated by
78.75° (see Figs. 3.2 (a) and 3.2 (b)). Then, motion is estimated in each frame k and extracted
for each pixel of interest with curvilinear coordinate z (see Figs. 3.2 (c) and 3.2 (d)) to estimate
δ[z; k].

3.5.1 Qualitative comparison of video-based OMA methods

To compare the performances reached by PCA+CP and FSSI methods, the video generated with
input force γ(L, 0) = 0.64N and without additive gray level noise (σnoise = 0px) is analyzed
by the SMPC method (see Sec. 2.5.3) to extract displacements. For FSSI, the observations are
reduced by keeping the P = 10 first principal components, and the block Toeplitz matrix is
constructed with R = 40 block rows.

3.5.1.1 Stability analysis

As the number Nm of modes in the frequency range of interest is not known, a stability analysis
is performed to estimate the modal basis. For this purpose, PCA+CP and FSSI are run with
several increasing values of model order. Indeed, irrelevant models produce spurious poles that
can be discarded by a stability analysis. This analysis consists in the construction of a stabi-
lization diagram with the poles obtained for each model order N [45]. Physical poles tend to be
stable between successive model orders, while spurious ones tend to be unstable (in frequency,
damping, and/or mode shape).
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Figure 3.2: Motion extraction process of a cantilever beam. (a) Frame of a synthetic video. (b) Focus on
pixels of interest in red with z ∈ J539, 567K. (c) Estimated motion δ̂h[z; k] in the focus view.
(d) Estimated motion δ̂h[z; k] at the pixels of interest.

For a pole pNi , i ∈ J1, NK of order N with fN
i , ζNi , and ϕN

i its natural frequency, damping
ratio, and mode shape, the stability criterion is based on the following predicate:

S
(
pNi
)
= ∃pN−1

j

[(
|fN

i − fN−1
j |

fN−1
j

< 0.01

)
∧
(
|ζNi − ζN−1

j |
ζN−1
j

< 0.05

)
∧
(
MAC(ϕN

i ,ϕN−1
j ) > 0.98

)
]
,

(3.38)

with the modal assurance criterion (MAC) between any two mode shapes being defined by:

MAC(ϕ, ϕ̃) =
(ϕ⊺ϕ̃)2

(ϕ⊺ϕ)(ϕ̃⊺ϕ̃)
. (3.39)

The stabilization diagram is thus built by representing the stable and unstable poles with
different colors, in the frequency and model order plane. The main idea is that spurious modes
occur randomly and are not stable at two consecutive model orders. Contrarily, successive stable
poles around the same frequency are a good indicator of a physical mode.

An example of stabilization diagram is provided in Fig. 3.3 (a) with model order N ∈ J2, 50K
and a frequency band of interest from 0 to 50Hz for a mass-spring-damper system with 12

masses. In this example, the Nm = 12 modes can be identified thanks to vertical series of stable
poles, each vertical series corresponding to one mode. The number of identified poles increases
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3 Video based operational modal analysis

with respect to the model order N . However, when N is larger than the number Nm of modes,
most of the poles are unstable.

In real experimentation, the stabilization diagram may be difficult to analyze. To help identify
modes, the complex mode indicator functions (CMIFs) may also be shown in the diagram [42].
These functions are the squared eigenvalues of the estimated FRF matrix at each frequency,
sorted in descending order. The first CMIF is the most important, and each of its peaks indicates
the presence of a mode at the associated frequency. Figure 3.3 (b) shows the same stabilization
diagram as in Fig. 3.3 (a), together with the first CMIF.
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Figure 3.3: Example of stabilization diagram with 12 modes (a), with CMIF (b).

3.5.1.2 Stabilization diagrams of video-based OMA methods

To compare PCA+CP and FSSI methods qualitatively for video-based OMA, the stabilization
diagrams of both methods with N ∈ J4, 50K are shown in Fig. 3.4 for our cantilever beam
video. The PCA+CP method provides stable poles close to the theoretical natural frequencies
of Tab. 3.1. However, the close view between 6 and 7Hz shows that the poles are doubled and
relatively far from the natural frequency f1 = 6.19Hz of the first mode. Furthermore, a vertical
series of stable poles around 18Hz does not correspond to any theoretical natural frequency. On
the contrary, the four modes can be easily identified on the diagram deduced from FSSI, that
provides relevant modes.
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Figure 3.4: Stabilization diagrams provided by PCA+CP and FSSI methods on synthetic video of the
cantilever beam.

3.5.2 Quantitative comparison of video-based OMA methods

The stabilization diagram of each OMA method is processed to estimate the modal basis. For
each theoretical natural frequency fi, the stable poles with a relative frequency error lower than
1% are gathered and their natural frequencies, damping ratios, and mode shapes are averaged
to estimate the mode {f̂i, ζ̂i, ϕ̂i}. To compare the methods quantitatively, the relative errors
with respect to theoretical values recalled in Tab. 3.1 are computed as:





ϵ{f̂i} = 100 ·

∣∣∣f̂i − fi

∣∣∣
fi

ϵ{ζ̂i} = 100 ·

∣∣∣ζ̂i − ζi

∣∣∣
ζi

ϵ{ϕ̂i} = 1−MAC(ϕ̂i,ϕi)

, (3.40)

and are gathered in Tab. 3.2.

Mode i 1 2 3 4
fi (Hz) 6.19 38.79 108.60 212.82
ζi (×102) 0.11 1.13 0.29 0.13

Table 3.1: Beam theoretical natural frequencies and damping ratios.
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3 Video based operational modal analysis

Because the frequency estimated by PCA+CP is shifted by more than 1% for the first mode,
all the stable poles around 6.89Hz are selected to estimate its characteristics. The FSSI-based
modal basis is overall more accurate than PCA+CP, particularly for natural frequencies and
damping ratios, with errors lower than 1% and 8%, respectively. The estimated mode shapes
are represented in Fig. 3.5. The largest mode shape errors are located near the clamped end of
the beam, where motion amplitude is the smallest. The methods provide similar mode shapes,
with mode shape errors below 0.1.

Criterion Frequency relative error (%) Damping ratio relative error (%) Mode shape error (1-MAC)
Error ϵ{f̂1} ϵ{f̂2} ϵ{f̂3} ϵ{f̂4} ϵ{ζ̂1} ϵ{ζ̂2} ϵ{ζ̂3} ϵ{ζ̂4} ϵ{ϕ̂1} ϵ{ϕ̂2} ϵ{ϕ̂3} ϵ{ϕ̂4}

PCA + CP 11.370 0.908 0.354 0.020 > 100 78.157 > 100 > 100 0.002 0.005 0.012 0.078
FSSI 0.018 0.018 0.000 0.007 2.677 1.919 2.663 7.389 0.001 0.007 0.011 0.028

Table 3.2: Modal basis estimation errors on synthetic video for PCA+CP and FSSI methods.
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Figure 3.5: Theoretical and estimated mode shapes for PCA+CP (a) and FSSI (b).

In this study, FSSI provides better results than PCA+CP, and is therefore retained in the
next experiment. This is confirmed by a more complete study in [30], where we show that FSSI
always performs better than PCA+CP by comparing the modes provided by these methods
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3.5 Operational modal analysis on synthetic videos

on synthetic videos with different motion amplitudes, different additive gray level noises, and
different Gaussian blurs.

3.5.3 Sensitivity against motion estimation quality

In chapter 2, the phase-based motion estimation (PME) methods are assessed by computing
the cosine similarity between theoretical and estimated motions (see Eq. (2.56)). To study the
influence of motion estimation quality on the performances of the OMA, let now FSSI analyze
the motion estimated by different PME methods. For this purpose, the video is generated with
input force γ(L, 0) = 0.64N and gray level noise standard deviation σnoise = 2

√
2. Gray levels are

corrupted by additive noise because this modifies the performances reached by PME methods.
For FSSI method, the same parameter values as before are used to construct the stabilization
diagram and estimate the modal basis automatically.

The stabilization diagrams of modal analysis based on GLSF, GSCF, and WLS (see Secs 2.4.1,
2.4.2, and 2.5.1) are not shown here because they do not retrieve the four modes. Three modes
are missing for GLSF and GLCF, and the last one is missing for WLS. These three methods
obtain the lowest cosine similarity (namely 0.072 for GLSF and GLCF, and 0.973 for WLS).
Oppositely, MAS, PC, and SMPC (see Secs 2.4.3, 2.5.2, and 2.5.3) methods retrieve the four
modes and their cosine similarity reaches 0.989, 0.995, and 0.995, respectively. This shows that
high cosine similarity is required to correctly estimate the modal basis.

The modal basis estimation errors obtained using Eq. (3.40) when MAS, PC, and SMPC are
used as motion estimation methods are gathered in Tab. 3.3. The results show that the SMPC
method provides the best results for 6 among the 12 cases. However, the error on the fourth
mode shape is quite high (above 0.2) for the three methods (see Fig. 3.6). For MAS, the fourth
mode is completely uncorrelated with the theoretical mode, since the mode shape error reaches
0.689. For PC and SMPC, the fourth mode roughly correlates with the theoretical mode, but
suffers from a lack of local consistency. Indeed, the fourth mode provides the lowest contribution
to the beam motion and is thus harder to estimate. The motion estimation of quality of MAS
method is not sufficient to estimate the mode shape correctly.

Criterion Frequency relative error (%) Damping ratio absolute error (×102) Mode shape error (1-MAC)
Error ϵ{f̂1} ϵ{f̂2} ϵ{f̂3} ϵ{f̂4} ϵ{ζ̂1} ϵ{ζ̂2} ϵ{ζ̂3} ϵ{ζ̂4} ϵ{ϕ̂1} ϵ{ϕ̂2} ϵ{ϕ̂3} ϵ{ϕ̂4}
MAS 0.053 0.107 0.055 0.117 > 100 1.296 3.360 79.478 0.001 0.077 0.242 0.689
PC 0.046 0.051 0.043 0.075 15.364 8.485 10.690 15.783 0.001 0.065 0.090 0.275

SMPC 0.044 0.057 0.049 0.094 15.972 9.702 7.526 7.358 0.001 0.061 0.089 0.246

Table 3.3: Modal basis estimation errors on synthetic video obtained by FSSI analysis with three phase-
based motion estimation methods.
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Figure 3.6: Comparison of the shapes of the fourth mode obtained by FSSI analysis with MAS, PC, and
SMPC phase-based motion estimation methods.

3.6 Estimated motion smoothing

Video-based operational modal analysis can suffer from poorly estimated motion. As the studied
object is continuous, its displacement projected in the frame plane is supposed to be continuous.
For this purpose, we propose to preprocess the estimated motion before modal basis determina-
tion in order to reduce the number of spurious modes and improve the modal analysis accuracy.

3.6.1 Estimated motion smoothing in the frame plane

For this purpose, the flattened estimated motion at the NPoI pixels of each frame are spatially
smoothed by a Gaussian filter Gsmooth with standard deviation σsmooth (see Fig. 3.7). First, each
vector δ̂h and δ̂v is spatially padded with the mean of the ⌈σsmooth⌉ values close to the beam
boundaries (z = 1 and z = 686). Then the padded vector is convolved with Gsmooth to give new
estimators δ̃h[z; k] = δ̂h[z; k] ∗Gsmooth and δ̃v[z; k] = δ̂v[z; k] ∗Gsmooth.

To assess the improvement brought by this preprocessing, we apply it after SMPC motion
estimation and before FSSI modal analysis. We use the video generated with γ(L, 0) = 0.64N
and gray level noise standard deviation σnoise = 2

√
2 px studied in Sec. 3.5.3. The Gaussian

filter standard deviation is set to σsmooth = 30px, which is approximately equal to the standard
deviation of the Gabor filters at the last scale. The smoothing result is represented in Fig. 3.8
with respect to space and time. This preprocessing improves both the spatial and the temporal
consistency of the estimated motion.

The stabilization diagrams obtained without and with our preprocessing are compared in
Fig. 3.9 We can see that the stabilization diagram with preprocessing still contains a relevant
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3.6 Estimated motion smoothing

Figure 3.7: Smoothing process (of the estimated horizontal motion).

number of stable poles near each natural frequency. Furthermore, the spurious series of stable
poles seem to be largely removed thanks to the preprocessing. The respective errors are listed
in Tab. 3.4. The frequency and damping errors obtained with preprocessing are close to those
obtained without preprocessing, except for the damping ratio of the first mode. Finally, the
preprocessing noticeably improves the mode shapes, the fourth mode error being divided by
more than 3 (see Fig. 3.10).

Criterion Frequency relative error (%) Damping ratio relative error (%) Mode shape error (1-MAC)
Error ϵ{f̂1} ϵ{f̂2} ϵ{f̂3} ϵ{f̂4} ϵ{ζ̂1} ϵ{ζ̂2} ϵ{ζ̂3} ϵ{ζ̂4} ϵ{ϕ̂1} ϵ{ϕ̂2} ϵ{ϕ̂3} ϵ{ϕ̂4}

Without 0.044 0.057 0.049 0.094 15.972 9.702 7.526 7.358 0.001 0.061 0.089 0.246
With 0.021 0.045 0.084 0.119 71.217 11.323 8.043 13.272 0.001 0.029 0.056 0.075

Table 3.4: Modal basis estimation errors without and with estimated motion preprocessing.
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Figure 3.9: Stabilization diagrams obtained without and with preprocessing of the SMPC estimated
motion.
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Figure 3.10: Mode shapes obtained without (a) and with (b) preprocessing of the SMPC estimated
motion.
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3.6.2 Sensitivity against additive noise

To further assess the improvement brought by the preprocessing, we study the fourth mode,
which has the lowest amplitude, for different additive gray level noise standard deviation σnoise.
For this purpose, we compute the natural frequency, damping ratio, and mode shape error with
respect to the noise level. The results gathered in Fig. 3.11 show that the natural frequency
errors are below 0.3% with or without smoothing. The damping ratios errors with smoothing
are lower than those without smoothing for three of the six noise levels. For some cases, these
errors are significant because they are computed relatively to the low damping value of the
fourth mode (1.3 · 10−3). Finally, the mode shape error increases with respect to σnoise but
preprocessing the estimated motion reduces it whatever the noise level.
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Figure 3.11: Fourth mode errors for natural frequency (a), damping ratio (b), and mode shape (c) with
respect to noise standard deviation σnoise.

3.6.3 Sensitivity against mode amplitude

To assess the sensitivity of video-based modal analysis against motion amplitude, four noiseless
videos with respective input force γ(L, 0) ∈ {0.08, 0.16, 0.32, 0.64} (N) are generated. For each
input force, the displacement amplitude of each mode is reported in Tab. 3.5. From each video,

Force γ(L, 0)
Mode

1 2 3 4

0.64N 0.22759 0.02244 0.00830 0.00384
0.32N 0.11380 0.01122 0.00415 0.00192
0.16N 0.05690 0.00561 0.00208 0.00096
0.08N 0.02845 0.00280 0.00104 0.00048

Table 3.5: Displacement amplitude (px) of each mode in function of input force.

the motion is estimated by SMPC, and the modal analysis is performed by FSSI. Each mode
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3.7 Conclusion

is automatically estimated thanks to the stabilization diagram, as described in Sec. 3.5.1. The
mode shape errors obtained with or without preprocessing are plotted with respect to the mode
amplitude in Fig. 3.12. None of the two methods finds the last mode when the input force is
γ(L, 0) = 0.08N. Indeed, the maximum amplitude of 4.8 · 10−4 px in the video is too small to
detect the beam vibration. The figure also shows that the error with preprocessing is lower than
0.05 when mode amplitude is larger than 0.003 px. Furthermore, our preprocessing systemat-
ically reduces the error for all the considered mode amplitudes. However, the last mode with
a maximum amplitude of 9.6 · 10−4 px is not retrieved when the preprocessing is applied. The
small motion associated to this mode is removed by the Gaussian smoothing.
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Figure 3.12: Mode shape error with respect to its amplitude.

3.7 Conclusion

In this chapter, we describe different modal analysis methods. State-of-the-art methods based
on assumptions about single and multiple degrees of freedom are presented, and two dense
video-based methods are detailed. The first one, PCA+CP, uses principal component analysis
to reduce dimension of measurements and performs blind source separation using complexity
pursuit. The second one, FSSI, is an adaptation of the stochastic subspace identification that
also uses a reduction of the observation dimension.

The performances reached by the two methods are compared on a synthetic video of a can-
tilever beam, generated as detailed in chapter 2. The methods estimate the system poles for
different modal orders in order to build a stabilization diagram. Stable poles are automatically
extracted from this diagram, which requires the knowledge of the theoretical natural frequencies.
When the latter are unavailable, the poles can be extracted by using automatic parameter-less
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3 Video based operational modal analysis

clustering methods [38]. Our FSSI method provides a better stabilization diagram with less
spurious modes, and gives better estimation of the modal basis.

We also compare the performances of FSSI operational modal analysis when different phase-
based motion estimation methods are used. The tested methods are those described in chapter 2.
This confirms that our SMPC method provides the best results.

A preprocessing based on a Gaussian smoothing of the estimated motion is then proposed.
This improves modal analysis performances and reduces the mode shape error by up to 70%.

To highlight the limits of the approach, the robustness against additive noise of the video gray
levels and against motion amplitude is assessed. The proposed method is robust against strong
noise and successfully estimates modes whose amplitude is higher than 0.003 px in the video.

In this chapter, video-based modal analysis is assessed on synthetic videos of a vibrating
cantilever beam. Chapter 4 details the experimental study of a real cantilever beam and a bent
beam whose vibrations are observed by a high-speed camera in controlled conditions.
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4 Application to cantilever beam monitoring

4.1 Introduction

In the previous chapters, phase-based motion estimation and video-based modal analysis are
assessed on synthetic videos of a cantilever beam excited by an impact hammer. This chapter
is dedicated to the operational modal analysis (OMA) of two cantilever beams observed in con-
trolled conditions and excited by a shaker that provides a white noise input force spectrum. First,
the experimental setup of a straight beam is presented in Sec. 4.2.1. To provide ground truth
data, an accelerometer-based OMA is conducted, and the estimated mode shapes are compared
with the Euler–Bernoulli theoretical ones in Sec. 4.2.2. Among the different subpixel phase-
based motion estimation methods tested on synthetic videos, the SMPC method (see Sec. 2.5.3)
provides the best results. It is thus retained as our phase-based OMA method in Sec. 4.2.3
and is compared to the simple and state-of-the-art optical flow method (see Sec. 1.5.3.2). This
intensity-based method quickly estimates subpixel motion and provides good results for modal
identification on noisy videos [20]. The motion estimated by the two video-based methods are
compared with accelerometer data in the frequency domain, and their modal basis errors are
assessed with regard to the accelerometer-based ones. Finally, as the beams studied so far are
straight, they move along one single main direction. A similar study is thus performed on a bent
beam in Sec. 4.3 to test the methods on a video with several object motion directions.

4.2 Modal analysis of a cantilever straight beam

To assess the video-based modal analysis, an experimental study with a straight beam observed
under controlled conditions is conducted in this section. The modal basis of the cantilever beam is
first estimated using accelerometers to get ground truth data. The modal basis is then estimated
using our video-based method and is thus compared to that obtained with accelerometers.

4.2.1 Experimental setup

In our experimental setup, a steel beam with rectangular section is clamped at its bottom using
a vice such that the free part of the beam measures 0.930 × 0.030 × 0.006m (see Fig. 4.1).
Eight monoaxial accelerometers1 are fixed to the beam with adhesive wax at the locations 0.09,
0.22, 0.34, 0.47, 0.59, 0.71, 0.83, and 0.91 m to get ground-truth vibration values. The beam is
excited punctually at 0.18m from the clamped end using an electromagnetic vibration generator
as shaker2. The shaker and the eight accelerometers are connected to a data acquisition system3

that generates the input white noise of the shaker with 2V input voltage and converts analog

1Brüel & Kjaer DeltaTron accelerometer Type 4517
2Frederiksen 218500
3Dewesoft SIRIUS-HS-ACC8
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4.2 Modal analysis of a cantilever straight beam

acceleration values into digital data. We assume that the frequency response of the shaker is
constant and that the beam is thus excited by a white noise.

In front of the scene, a camera4 equipped with a lens of 8mm focal length is positioned at
1.6m from the beam. Three mainstream LED bulbs, with a color temperature of 2700K, are
placed close to the beam so that sufficient light energy can be integrated by the camera sensor
with low integration time. To ensure that the main beam motion is linearly projected onto the
focal image, the camera is oriented such that the image plane is parallel to the face of the beam
that measures 0.930×0.006m. The camera is rotated along the optical axis by an angle of 9.65 °
to be close to the conditions of the synthetic videos generated in Sec. 2.7. The camera sensor
contains 720× 540 pixels whose size is 6.9 · 10−6× 6.9 · 10−6 m. The size of the region of interest
is set to 720× 140 px and the frame rate to 500 fps so that the frequency band of interest ranges
from 0 to 250Hz. The pixels of interest (PoI) are selected as a straight line of pixels on the
beam (see Fig. 4.2). To facilitate the analysis, the video is processed thanks to a user interface
that has been developed during this work, whose main features are summarized in AppendixB.

Figure 4.1: Experimental setup for the straight beam with camera (purple arrow), beam (red arrow),
accelerometers (blue arrow), and vibration shaker (green arrow).

4.2.2 Accelerometer-based modal analysis

The sampling frequency of the accelerometers is set to 1400Hz so that the frequency band of
interest ranges from 0 to 700Hz. To estimate the modal basis, the acceleration values recorded

4TIS DMK 33UX287
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Figure 4.2: Frame from the acquired video of the straight beam (left) and pixels of interest displayed as
red (right).

by the eight accelerometers are used as observations. The stochastic subspace identification
(SSI) method detailed in Sec. 3.3.3 is performed with the number R of block rows set to 40 and
the model order N ∈ J2, 50K.

A stability analysis (see Sec. 3.5.1) is conducted to estimate the modal basis manually. For
this purpose, a stabilization diagram is built, on which the first complex mode indicator function
(CMIF) is shown (see Fig. 4.3).

0 200 400 600

Frequency (Hz)

0

10

20

30

40

50

M
od

el
or
de
r
N

−80

−60

−40

−20

0

C
M
IF

(d
B
)

Unstable pole Stable pole CMIF

Figure 4.3: Stabilization diagram of the accelerometer-based OMA of the straight beam.

In Fig. 4.3, seven peaks can be identified from the CMIF at frequencies around 5, 31, 97,
188, 308, 462, and 647 Hz. Furthermore, there is a vertical series of stable poles indicating the
presence of a mode close to each of these frequencies, except at 5 Hz. A frequency is selected
manually by zooming in on the stabilization diagram, and all the stable poles around this
frequency (±1%) are automatically extracted. The mode is then estimated by computing the
mean of the extracted poles in terms of natural frequencies, damping ratios and mode shapes.
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4.2 Modal analysis of a cantilever straight beam

The first mode (close to 5Hz) cannot be estimated because no stable pole is sufficiently close to
this frequency. This is because the accelerometers do not provide any reliable data below 10Hz.
Hence, the first mode frequency is estimated by computing the peak location of the first CMIF
interpolated thanks to cubic spline. The obtained natural frequencies and damping ratios are
listed in Tab. 4.1.

Mode i 1 2 3 4 5 6 7
fi (Hz) 5.361 30.451 96.834 186.839 308.037 463.040 646.117
ζi (×102) – 3.311 1.003 0.578 0.335 0.164 0.087

Table 4.1: Natural frequencies and damping ratios of the straight beam modes obtained from the
accelerometer-based OMA.

To ensure that the accelerometer-based OMA provides a reliable modal basis, it is compared
to the Euler–Bernoulli model detailed in Sec. 2.6.1. As the theoretical model does not consider
any damping and requires the unknown Young modulus of the beam material to estimate natural
frequencies, only the mode shapes can be computed. Figure 4.4 shows a comparison between
the six mode shapes obtained from the accelerometer-based OMA and the theoretical ones from
the Euler–Bernoulli model. As mode shapes are defined up to a factor, they are normalized with
their L2-norm to be compared with similar amplitudes. The mode shapes obtained with data
acquired by accelerometers are close to the theoretical ones.
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Figure 4.4: Comparison between Euler–Bernoulli theoretical mode shapes and accelerometer-based ones
for the straight beam.
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4 Application to cantilever beam monitoring

To quantify the mode shape errors, both theoretical mode shapes ϕi and experimental ones
ϕ̂i ∈ R8, i ∈ J1, 7K, are extracted at the accelerometer locations, and the shape errors are
computed as:

ϵ{ϕ̂i} = 1−MAC(ϕ̂i, ϕi), (4.1)

with the modal assurance criterion (MAC) defined by Eq. (3.39). The mode shapes errors,
listed in Tab. 4.2, are lower than 0.05. These values are close to the mode shape stability
criterion ϵ{ϕ̂i} < 0.02 of the stabilization diagram, which highlights the strong correlation
between accelerometer-based and theoretical mode shapes. The errors can be attributed to the
inaccurate position and orientation of accelerometers. Thus, the accelerometer-based modal
basis can be considered as ground truth data to assess the performances of the video-based
methods.

Mode i 1 2 3 4 5 6 7
Error ϵ{ϕ̂i} – 0.031 0.004 0.011 0.021 0.032 0.046

Table 4.2: Accelerometer-based mode shape errors for the straight beam.

4.2.3 Video-based modal analysis

A video of the experimental scene is recorded during 8 s at 500 fps. To estimate the beam
motion from this video, each of the 4000 frames is decomposed using Gabor filters with Nr = 5

scales and Nθ = 8 orientations. The SMPC method detailed in Sec. 2.5.3 is then performed to
estimate the motion with a phase confidence threshold τ = 0.5 and a spatial Gaussian kernel G
with standard deviation of 3px.

4.2.3.1 Gradient-based optical flow (GOF)

To compare our phase-based method with an intensity-based method, we also estimate motion
thanks to the gradient-based optical flow (GOF) method [21] (see Sec. 1.5.3.2) by:

δ̂[p; k] =
¯̃I[p]− Ĩ[p; k]

|∇ ¯̃I[p]|
·


cos

(
∠∇ ¯̃I[p]

)

sin
(
∠∇ ¯̃I[p]

)

, (4.2)

with Ĩ[p; k] the filtered gray level intensity computed by the spatial 3 × 3 average filter, ¯̃I[p]

the temporal mean of the filtered gray level intensity, and ∇ ¯̃I[p] its spatial gradient with angle
∠∇ ¯̃I[p]

. The method is low time-consuming and produces satisfying subpixel estimations for
modal identification in noisy videos [20]. As this method only provides relevant results for
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4.2 Modal analysis of a cantilever straight beam
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Figure 4.5: Accelerometer axis (yellow) and estimated and projected motion at the pixel of interest (blue)
in the image plane.

region with sufficient intensity gradient, its pixels of interest are shifted vertically with respect
to SMPC ones to cover the border of the beam.

In each frame k, the motion estimated by both methods is extracted at the curvilinear co-
ordinate z of the pixel of interest to obtain δ̂[z; k]. The smoothing preprocessing detailed in
Sec. 3.6 is applied to both horizontal and vertical components of δ̂ with a standard deviation
σsmooth = 30px to obtain our SMPC estimated motion δ̃[z; k]. The subpixel displacement am-
plitude estimated by SMPC at the free end of the beam is 0.218 px, which is approximately that
obtained on the synthetic video with γ(L, 0) = 0.64N (see Sec. 2.7).

To estimate motion from our straight beam video, the GOF and SMPC respectively require
11.65 s and 4671.72 s on a computer equipped with an Intel(R) Xeon(R) Silver 4216 CPU and
64 GB of RAM. The simple GOF method is thus 400 times faster than SMPC. Note that both
method implementations could be speeded up by computing the motion only at the pixels of
interest and by taking advantage of processing parallelization.

4.2.3.2 Video-based motion fidelity to accelerometer-based motion

For a first comparison between the video-based estimated displacement and accelerometer data,
we focus on the value at the closest pixel of interest from the accelerometer that is located at
the free end of the beam, where the motion is the largest. As the accelerometer is monoaxial,
the horizontal and vertical components of the estimated displacement at this pixel are projected
on the accelerometer axis in the frame plane (see Fig. 4.5). Then, the obtained displacement is
temporally derived twice to get acceleration. Assuming that the accelerometer axis is in a plane
parallel to the image plane, the accelerometer data are finally converted from m · s−2 to px · s−2

to be comparable with the video-based acceleration. The conversion multiplication factor is the
pixel resolution, i.e., the ratio between the length of the beam in the frame and the actual beam
length.
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4 Application to cantilever beam monitoring

Because video and accelerometer data are not synchronized and are acquired according to
different sampling frequencies, we compare their accelerations in the frequency domain via their
power spectral density (PSD) (see Fig. 4.6). The SMPC- and accelerometer-based amplitudes
are similar, with peaks at four different frequencies indicated by green arrows. The GOF PSD
fits the accelerometer-based PSD at frequencies below 98Hz but suffers from intensity frequency
perturbation at 100 and 200Hz (indicated by red arrows).
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Figure 4.6: Comparison of acceleration power spectral density at the free end of the straight beam ac-
cording to accelerometer-based data, video-based SMPC, and video-based GOF.

To identify the cause of this perturbation, we extract the PSD of the displacement along the
direction normal to the beam, by rotating the displacement components back according to the
angle of the camera at each curvilinear coordinate z, for GOF and SMPC methods. As shown
at the bottom of Fig. 4.7 for SMPC, four physical mode shapes and their corresponding nodes
can be identified by the four vertical lines with high PSD amplitude and low amplitude at the
nodes (in dotted circles). However, at 100 and 200Hz, the PSD amplitude is high (indicated
by red arrows) for pixels z ∈ J200, 300K. These pixels correspond to the surface elements of the
beam that are close to the light bulb visible in the video, as in Fig. 4.2. For GOF PSD (see top
of Fig. 4.7), the first three mode shapes are identifiable, but the fourth is barely visible. The
spurious peaks at 100 and 200Hz are present for every pixel, which suggests that GOF is less
tolerant than SMPC to flickering intensity perturbation.

To further investigate the cause of the perturbation, the gray level intensity at a pixel between
the light bulb and the beam is displayed in time and frequency in Fig. 4.8. The same two peaks
at 100 and 200Hz are present in the frequency domain. This confirms that the perturbation
is caused by the flickering frequency of the light bulb. Indeed, such flickering generates gray
level variations in the frame pixel values that are interpreted as motion. This phenomenon is
mentioned by other works as a limit of video-based methods [5, 9].
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Figure 4.7: Power spectral density amplitude of the video-based motion estimations at each pixel of
interest of the straight beam.

4.2.3.3 Modal basis accelerometers vs video

The motion estimated by each method is the input of the FSSI video-based modal analysis
procedure detailed in Sec. 3.4 to estimate the modal basis. First, the dimension reduction is
performed by keeping the P = 10 first principal components and the block Toeplitz matrix is
constructed with R = 40 block rows. The stabilization diagram is built with the same model
order range N ∈ J2, 50K as for the accelerometers. The GOF and SMPC stabilization diagrams
are represented in Fig. 4.9. The diagrams on the left correspond to the standard stabilization
diagrams with all poles, and those on the right only contain the stable poles retained for the
modal basis estimation.

The CMIF deduced from the GOF method has four peaks at the frequencies: 5, 30, 100, and
200Hz. A small peak of the CMIF and a series of stable pole is also present at 97Hz, suggesting
the presence of a mode. Furthermore, a series of stable poles is present at 186Hz and is thus
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Figure 4.8: Intensity gray level (b) and its Fourier transform amplitude (c) at the pixel represented in
red (a).

studied to compare it with SMPC results. On the stabilization diagram constructed with the
preprocessed SMPC method, six CMIF peaks are identifiable at the frequencies: 5, 30, 97, 100,
186, and 200Hz. There is a vertical series of stable poles at each of these frequencies, suggesting
the presence of a mode. As 100 and 200Hz correspond to the light bulb perturbation frequencies,
they are discarded. For each frequency of interest, a stable pole is manually selected, and the
modal basis is determined by the same procedure as for accelerometer-based data.

To assess the performances reached by the video-based OMA methods, the four physical mode
shapes obtained in the frequency range [0, 250]Hz are compared with the accelerometer modal
basis. The natural frequencies and damping ratios deduced from GOF and SMPC are compared
with accelerometer-based ones in Tab. 4.3. The GOF and SMPC mode shapes are compared
with Euler–Bernoulli theoretical mode shapes in Fig. 4.10. We can see that the FSSI modal
analysis with preprocessed SMPC provides a good estimation of the four modes. The last mode
shape provided by FSSI with preprocessed GOF is strongly biased, which again suggests that
GOF motion estimation method is less robust against perturbations.

Criterion Natural frequency (Hz) Damping ratio (×102)
Method f̂1 f̂2 f̂3 f̂4 ζ̂1 ζ̂2 ζ̂3 ζ̂4

Accelerometer 5.361 30.451 96.834 186.839 – 3.311 1.003 0.578
GOF 5.275 30.812 96.903 186.296 0.397 3.470 1.085 0.906
SMPC 5.276 30.691 97.010 186.416 0.453 2.673 1.057 0.538

Table 4.3: Accelerometer- and video-based natural frequencies and damping ratios of the straight beam
modes.

The video-based OMA performances are objectively assessed by quantitatively comparing
the modal basis. For this purpose, we compute the video mode shape error with respect to
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4.2 Modal analysis of a cantilever straight beam
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Figure 4.9: Stabilization diagrams of the video-based OMA methods for the straight beam. All poles are
shown in the left column and only selected stable poles are shown in the right column.

theoretical ones using Eq. (4.1) and the frequency and damping ratios relative errors with respect
to accelerometer-based ones as follows:





ϵ{f̂i} = 100 ·

∣∣∣f̂i − fi

∣∣∣
fi

ϵ{ζ̂i} = 100 ·

∣∣∣ζ̂i − ζi

∣∣∣
ζi

. (4.3)

The errors are reported in Tab. 4.4. Both methods provide good estimators of natural frequencies
with relative errors below 2%. Furthermore, the errors of damping values are below 21%. The
FSSI with preprocessed GOF successfully determines the first three shapes but fails to estimate
the fourth mode with an error of about 0.6. Finally, the four mode shapes determined by the
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Figure 4.10: Comparison between Euler–Bernoulli theoretical model and video-based mode shapes for
the straight beam.

FSSI with preprocessed SMPC are close to the theoretical mode shapes, with errors lower than
0.06. The FSSI with preprocessed SMPC thus provides the best results.

Criterion Frequency relative error (%) Damping ratio relative error (%) Mode shape error (1-MAC)
Method ϵ{f̂1} ϵ{f̂2} ϵ{f̂3} ϵ{f̂4} ϵ{ζ̂1} ϵ{ζ̂2} ϵ{ζ̂3} ϵ{ζ̂4} ϵ{ϕ̂1} ϵ{ϕ̂2} ϵ{ϕ̂3} ϵ{ϕ̂4}
GOF 1.612 0.076 0.071 0.291 – 4.209 12.333 20.515 0.003 0.031 0.036 0.596
SMPC 1.666 0.317 0.189 0.190 – 20.786 5.383 6.944 0.003 0.040 0.025 0.058

Table 4.4: FSSI modal basis estimation errors with GOF and SMPC motion estimation methods for the
straight beam.

The SMPC video-based method provides a coarse estimation of the modal basis. Indeed, most
of the errors are above the classical acceptability criteria, namely:

• frequency relative error below 1%,

• damping ratio relative error below 5%,

• mode shape error below 0.02.

The frequencies are well estimated, the first one being probably due to the poor reference es-
timation from coarse accelerometer data. However, all the damping ratio errors range between
5 and 21%, and the shape errors of three modes are above 0.02. The estimation could poten-
tially be improved by acquiring a longer video. Indeed, the SSI method is based on correlation
estimation, which is improved when the duration of the data acquisition is increased.
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4.3 Modal analysis of a cantilever bent beam

4.3 Modal analysis of a cantilever bent beam

In the first experimental study, the performances of video-based OMA methods are assessed on
an experimental video of a straight cantilever beam. However, the motion of such a structure is
one-directional and the direction is known.

Let us now consider a realistic case with several motion directions. For this purpose, accelerometer-
and video-based OMAs of a beam with a bend are compared. Indeed, the bend introduces a
second main direction of motion. Moreover, the direction strongly varies in the region close to
the bend. Furthermore, the camera frame rate is increased comparatively to the previous study
to extend the frequency range and capture more modes. Our phase-based motion estimation
method is once again compared with the intensity-based motion estimation method.

4.3.1 Experimental setup

The cantilever beam properties are the same as in the previous section, but it is bent such that
it forms an angle of 143 ° (see Fig. 4.11). The bend is located at 0.43m from the bottom clamped
end.

Eight accelerometers are fixed on the beam to serve as ground-truth vibration data. They
are located at 0.10, 0.20, 0.30, 0.40, 0.46, 0.61, 0.76, and 0.90 m from the clamped end of the
beam, and oriented to measure the normal acceleration of the beam. Their sampling frequency
is still set to 1400Hz. As in Sec. 4.2.1, the beam is excited by a shaker fixed at 0.18m from the
clamped end and the data acquisition system is configured to deliver white noise with 2V input
voltage to the shaker.

The camera is located at 1.6m from the beam and observes its thin side. A region of interest
of 720 × 260 px is selected and 628 PoI are defined along the beam to extract the estimated
motion (see Fig. 4.12). The beam bend is located at the PoI z = 315. The video lasts 8 s with a
frame rate of 1000 fps, so that the frequency band of interest is [0, 500]Hz and Nk = 8000 frames
are acquired.

The same video-based motion estimation methods as in the previous section are compared,
namely the state-of-the-art GOF intensity-based method and our SMPC phase-based method.
This GOF intensity-based method provides two-dimensional subpixel motion estimations by
assuming that motion occurs along the direction of the local intensity gradient at each pixel.
The PoI represented in Fig. 4.12 are slightly shifted vertically for this method to match the beam
edge characterized by higher gradient values.

As in the previous study, the phase-based SMPC method is retained because it provides
the best results for motion estimation of the synthetic videos of a cantilever beam (see Sec. 2.7).
Furthermore, this method analyzes several subband orientations and is thus well-suited for multi-
directional motion analysis.
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4 Application to cantilever beam monitoring

Figure 4.11: Experimental setup for the bent beam, with camera in purple, beam in red, accelerometers
in blue, and vibration shaker in green.
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Figure 4.12: Frame from the experimental video of the bent beam (left) and pixels of interest in
red (right).

The estimated motion along the curvilinear coordinate z is extracted and spatially smoothed
as detailed in Sec. 3.6. The GOF method is once again approximately 400 times faster than
SMPC (41.65 s vs. 16402.25 s for the 8000 frames). At the free end of the beam, the maximum
displacement amplitude of our SMPC motion estimation method is 0.278px (corresponding to
0.380 · 10−3 m), which confirms a subpixel motion.
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4.3 Modal analysis of a cantilever bent beam

4.3.2 Video-based motion fidelity to accelerometer-based motion

To compare the video-based estimated motion with accelerometer-based data, the displacement
orthogonal to the beam is extracted at the closest pixel to the accelerometer near the free
end of the beam, where the motion is the largest. This extracted displacement is temporally
derived twice to get acceleration in px · s−2. For the sake of comparison, the acceleration of the
corresponding accelerometer is converted in the image plane from m · s−2 to px · s−2.

The PSD amplitude of the accelerometer-based and the two video-based accelerations are
represented in Fig. 4.13. The PSD amplitude of the accelerometer data contains six main physical
peaks, indicated by green arrows. These peaks seem to correspond to the six first natural
frequencies of the beam. These natural frequencies are unknown but close to the straight beam
ones.

For the preprocessed GOF, the PSD amplitude is high at the first four physical peak fre-
quencies of the accelerometer, suggesting that the method can identify the first four modes.
However, peaks at multiples of 100Hz caused by the light bulb flickering frequency still occur in
the PSD amplitude. The last two physical peaks are not detectable on the preprocessed GOF
PSD amplitude. The harmonic perturbation at the flickering frequency may hide the peak of
the last two modes.

The PSD amplitude of the preprocessed SMPC acceleration fits the accelerometer one below
200Hz, with four physical peaks. Beyond this frequency, there is only a small peak at 305Hz,
suggesting that the amplitude of the fifth mode is sufficiently high to be detected. Only the sixth
peak is not detectable from the SMPC PSD amplitude. Furthermore, as no 100Hz harmonic
peak is present in SMPC PSD, it confirms that this method is more robust than GOF against
such intensity temporal perturbation.
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Figure 4.13: Comparison of acceleration power spectral density at the free end of the bent beam according
to accelerometer-based data, video-based SMPC, and video-based GOF.
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4 Application to cantilever beam monitoring

To spatially compare the video-based estimated motions, we compute the PSD of the dis-
placement orthogonal to the beam at each pixel of interest using Welch’s method [50]. The
log-amplitude of the PSDs of GOF and SMPC motion estimations are represented in Fig. 4.14.
The SMPC PSD is sparse in frequency, with low amplitude except around five frequencies. At
these five frequencies, the drop in the PSD amplitude at some pixels correspond to the nodes of
the modes (in dotted circles). The GOF PSD is much less sparse than SMPC ones. For every
pixel, peaks occur at harmonics caused by the light bulb frequencies. The peaks corresponding
to the physical modes are less detectable than in SMPC PSDs because of the flickering light
perturbation (see red arrows). Furthermore, two low-amplitude horizontal lines at z ≈ 125 and
z ≈ 200 have no physical cause linked to the beam itself. We explain the error at z ≈ 125 by
the low contrast between the beam and the shaker stem.

1

315

628

z
(p
x)

Preprocessed GOF

0 100 200 300 400 500

Frequency (Hz)

1

315

628

z
(p
x)

Preprocessed SMPC

−20

−18

−16

−14

−12

−10

−8

Lo
g-
am

pl
it
ud

e

Figure 4.14: Power spectral density amplitude of the video-based estimated motion at each pixel of
interest of the bent beam.
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4.3 Modal analysis of a cantilever bent beam

4.3.3 Modal basis accelerometers vs video

As no theoretical model is available for the bent beam, we directly compare the accelerometer-
based and video-based modal bases. For this purpose, the accelerations provided by the ac-
celerometers are used as observations to determine the ground truth modal basis. The SSI
method detailed in Sec. 3.3.3 is used with R = 40 block rows for the block Toeplitz matrix. The
two video-based modal bases are determined thanks to the FSSI method detailed in Sec. 3.4.
The P = 10 first principal components are used to reduce the dimension of observations, and
the block Toeplitz matrix is still constructed with R = 40 block rows. These parameter values
are the same as in chapter 3 because they produce satisfying results. However, the influence of
parameter adjustment on results is not studied here.

The stabilization diagram of each method is still built with a model order N in the range
J2, 50K. The frequency band of interest of accelerometers is set to [0, 500]Hz to match the video
one. The stabilization diagrams are fully shown in the left column of Fig. 4.15.

Six peaks are detectable on the accelerometer-based CMIF. However, due to the poor sensi-
tivity of accelerometers below 10Hz, no stable pole is sufficiently close to the peak at 5Hz on the
stabilization diagram. Each CMIF peak at frequency above 10Hz is represented by a vertical
series of stable poles, suggesting the presence of a physical mode.

The GOF stabilization diagram is difficult to interpret. Indeed, the CMIF is corrupted by
the intensity frequency perturbation, and peaks above 100Hz correspond to frequencies of the
harmonics. Furthermore, many vertical series of stable poles are present above 100Hz. The three
first modes can be selected using the three first peaks. However, as stable poles are present at
frequencies associated to the fourth and fifth frequency peaks of accelerometer CMIF, we also
estimate the modes at the corresponding frequencies.

The SMPC CMIF shows five peaks whose frequencies match those of the first five accelerometer
CMIF peak frequencies. A vertical series of stable poles is also present at each CMIF peak
frequency.

To determine the modal basis, the stable poles at each identified frequency of interest are
automatically selected (see right column of Fig. 4.15). For a given frequency, the mode is de-
termined by computing the mean natural frequency, damping ratio, and mode shape of selected
stable poles.

The natural frequencies and damping ratios of the six modes are listed in Tab. 4.5 and their
shapes are represented in Fig. 4.16. The accelerometer + SSI method identifies five modes
from the second to the sixth. As the first mode is not identified from the accelerometer data,
we estimate its frequency as the location of the first CMIF peak. Both video-based methods
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Figure 4.15: Stabilization diagrams of the accelerometer-based and video-based OMA methods for the
bent beam. All poles are shown in the left column and selected stable poles are shown in
the right column.
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4.3 Modal analysis of a cantilever bent beam

identify the five first modes. However, the preprocessed SMPC + FSSI method provides a
cleaner stabilization diagram than that of preprocessed GOF + FSSI.

Criterion Natural frequency (Hz) Damping ratio (×102)
Method f̂1 f̂2 f̂3 f̂4 f̂5 f̂6 ζ̂1 ζ̂2 ζ̂3 ζ̂4 ζ̂5 ζ̂6

Accelerometer 5.683 26.880 96.603 168.885 304.693 433.641 – 3.940 1.142 1.081 0.299 0.050
GOF 5.695 27.016 96.783 169.297 305.327 – 1.864 3.725 0.983 1.201 0.397 –
SMPC 5.662 27.105 96.730 169.042 305.267 – 2.148 3.312 0.927 1.197 0.383 –

Table 4.5: Accelerometer- and video-based natural frequencies and damping ratios of the bent beam
modes.
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Figure 4.16: Accelerometer- and video-based mode shapes of the bent beam.

Both video-based modal bases are quantitatively compared to the accelerometer-based one
by computing the errors (see Tab. 4.6). Both methods provide good estimations of natural
frequencies and damping ratios with errors below 1% and 20%, respectively. Our preprocessed
SMPC + FSSI method provides better mode shapes than the preprocessed GOF + FSSI method,
with errors lower than 0.08. However, GOF-based mode shapes fit SMPC-based ones over most
pixels of interest. Figure 4.16 shows that the GOF errors mainly lie between z = 100 and
z = 250, probably because the estimated motion is strongly corrupted at these locations. Indeed,
the contrast between the beam and background pixel intensities is low in this area, but GOF
requires high contrast to produce accurate estimations [21].

Furthermore, neither of the two video-based OMA methods estimates the sixth mode at
433.641Hz, because no peak is detectable at this frequency in the PSD of Fig. 4.14.
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4 Application to cantilever beam monitoring

Criterion Frequency relative error (%) Damping ratio relative error (%) Mode shape error (1-MAC)
Method ϵ{f̂1} ϵ{f̂2} ϵ{f̂3} ϵ{f̂4} ϵ{f̂5} ϵ{ζ̂2} ϵ{ζ̂3} ϵ{ζ̂4} ϵ{ζ̂5} ϵ{ϕ̂2} ϵ{ϕ̂3} ϵ{ϕ̂4} ϵ{ϕ̂5}
GOF 0.210 0.556 0.358 0.272 0.225 8.374 11.496 2.200 3.292 0.213 0.233 0.645 0.226
SMPC 0.365 0.884 0.303 0.121 0.205 18.531 5.105 1.859 6.745 0.072 0.028 0.051 0.075

Table 4.6: FSSI modal basis estimation errors with GOF and SMPC motion estimation methods for the
bent beam.

The SMPC method provides a coarse estimation of the modal basis for the beam along sev-
eral directions. Indeed, natural frequencies are well estimated with relative errors below 1%.
However, damping ratios and mode shapes are above the standard acceptation criteria, with
damping relative errors between 5 and 20% and shape errors larger than 0.02. The errors are
similar for both the straight and the bent beam (see Tabs. 4.4 and 4.6), which indicates that
the performances of our video-based OMA method do not depend on the motion direction. The
high mode shapes errors can be explained by the coarse location of accelerometers, fixed by
hand with adhesive wax. Furthermore, the phase-based motion estimation is corrupted by gray
level perturbation, which alters the estimation. The last mode is not retrieved since no motion
is detected. One of the cause could be that motion amplitude at this frequency is too low.
Therefore, the experimental setup should be modified so that the spatial resolution of the scene
is increased.

4.4 Conclusion

In this chapter, we conduct the modal analysis of a cantilever straight beam and a cantilever
bent beam observed in controlled conditions. Two video-based OMA methods are tested. The
first one combines a state-of-the-art intensity-based motion estimation method (GOF) with our
modal analysis method, dedicated to video (FSSI). The second one estimates the motion with our
phase-based SMPC method. The performances of the video-based OMA methods are compared
to the accelerometer-based OMA for both beams. First, the video-based estimated motions are
converted into accelerations and compared with accelerometer data in the frequency domain.
For each method, a stabilization diagram is then constructed, and the stable poles are identi-
fied in order to determine the modal basis. Finally, the video-based estimated modal bases are
compared with that determined with accelerometers.

In the first experimental study, the four modes in the frequency band of interest are retrieved
by the phase-based video OMA. The experiment is close to the study conducted in Sec. 3.5
on synthetic videos, with similar motion amplitudes, camera frame rate, and motion direction.
The four modes are compared with ground-truth accelerometer data with respect to natural
frequencies and damping ratios, and with the Euler–Bernoulli theoretical model with respect to
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4.4 Conclusion

mode shapes. The study shows that SMPC provides better motion estimation than GOF. The
motion estimated by GOF is more corrupted by the intensity flickering dure to light bulb than
SMPC. Both video-based OMA methods determine the four modes in the frequency range of
interest, but our SMPC-based method outperforms the GOF-based method for the last mode
shape. The SMPC-based natural frequencies are close to the accelerometer-based ones, but the
damping ratios and mode shapes are above the classical criteria of acceptance.

The second study focuses on a bent cantilever beam with multiple directions of motion. For
this study, the camera frame rate is increased so that there are six modes in the frequency range
of interest. The accelerometer-based OMA method correctly estimates five modes but fails to
retrieve the lowest frequency mode. On the other hand, both video-based methods determine
five modes, but do not retrieve the highest frequency mode. This study confirms that our SMPC
method is more robust against flickering intensity perturbation than GOF method, with cleaner
stabilization diagrams. Moreover, the mode shapes obtained with GOF are unsatisfying in low-
contrast parts of the video. As the GOF method is rather simple, the SMPC method could
be compared with a more robust intensity-based motion estimation method. The errors of the
subpixel SMPC-based modal basis are close to the criteria of acceptance, which confirms that
phase-based methods are promising but improvements are still needed.

Several strategies could be investigated to improve the results. First, longer videos could be
studied to get better correlations estimations in the video-based OMA. The influence of the
method parameters on performances should be assessed. The performances variability could be
studied by running the analysis several times with different videos and estimating the mean and
standard deviation of estimated modal basis values. A different camera could be used with a
sensor fitted with more pixels to identify smaller motion. Finally, a stabilized lighting could be
used to illuminate the scene to avoid light bulb flickering perturbation.
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Conclusion

Synthesis

The main objective of this thesis is to develop a video-based operational modal analysis (OMA)
method to extract vibration characteristics of mechanical structures. The work can be synthe-
sized into two main contributions.

As vibrations of structures are acquired by a camera with limited spatial resolution, motion
must be estimated at subpixel scales. Furthermore, structures may vibrate along several unpre-
dictable directions. Therefore, we propose a new two-dimensional subpixel motion estimation
method called weighted spatial mean based on phase confidence (SMPC). This phase-based mo-
tion estimation (PME) method analyzes the phase obtained from the decomposition of video
frames into space–frequency complex subbands. The subbands with irrelevant phase are dis-
carded thanks to a confidence indicator and the phase of the remaining ones are fused to obtain
one single estimated motion. The performances of SMPC are compared with state-of-the-art
methods on synthetic videos of a vibrating cantilever beam. SMPC is time-consuming in com-
parison with other methods, but provides estimations that are more robust against additive
intensity noise.

Classical methods of operational modal analysis (OMA) are designed for a low number of
sensors. However, video-based methods can potentially estimate motion at each pixel of each
frame. To adapt the classical methods to a high number of pixels, a dimension reduction method
is proposed to first decrease the size of video-based observations before they are fed into a clas-
sical OMA procedure. The method is compared with a state-of-the-art video-based OMA on
synthetic videos of a cantilever beam. A preprocessing step based on a spatial smoothing of the
estimated motion is also proposed to improve the quality of the determined modal basis. The
proposed method outperforms the state-of-the-art method on synthetic videos. Furthermore,
the method successfully estimates modes whose amplitude is larger than 0.003 px for noiseless
synthetic videos with high contrast between the beam and background.
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Conclusion

Finally, we conduct the OMA of two different cantilever beams observed by a high-speed
camera in controlled conditions, with both accelerometer-based and video-based methods. A
straight cantilever beam is first observed to provide videos whose characteristics are close to the
synthetic ones. Then, the OMA of a bent cantilever beam is conducted to study vibration along
several unknown directions.

For both experiments, our SMPC method is compared with a state-of-the-art optical flow-
based method. We show that our phase-based SMPC method experimentally performs better
than the intensity-based optical flow one. Furthermore, SMPC determines all the modes of the
straight beam and only misses one mode of the bent beam in the frequency range of interest.
However, the modal bases are somewhat coarsely estimated comparatively to accelerometer-
based ones, with relative errors that are slightly above the classical criteria of acceptance.

Perspectives

Although this work contains several contributions, further research is required to design an
automatic and robust video-based vibration monitoring system. Indeed, the video-based OMA
method detailed in this thesis produces promising results, but still needs to be improved to
respect the acceptability criteria.

First, the influence of parameters on the performances reached by our SMPC method should
be assessed. Indeed, the method relies on several parameters such as the number of scales and
orientations of the space–frequency decomposition, the threshold of the phase confidence mask,
and the standard deviation of the Gaussian weight kernel. All these parameters have been
adjusted using a trial-and-error approach. Furthermore, they depend on the characteristics
of the videos and should be defined by considering the video properties, such as the spatial
frequencies of its frames. Moreover, an in-depth study about the robustness of performances of
our SMPC method should be studied, by analyzing the variability of the results with several
videos.

In addition, the comparison of our subpixel phase-based method with an intensity-based
method should be extended to more complex methods. Indeed, the gradient-based optical flow
method to which we compare ours is rather simple and does not fully emphasize the perfor-
mances of SMPC.

Our video-based OMA method also requires to adjust several parameters, namely the size
of the reduced observations, as well as the number of block rows and the model order of the
stochastic subspace identification. In this work, these parameters are also set manually. Their
influence on the quality of the determined modal basis should be studied. Futhermore, vibration
monitoring of mechanical structures requires accurate modal basis to detect faults. The vari-
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ability of the results with respect to the video settings and the stochastic subspace identification
parameters should also be explored.

Exploiting stabilization diagrams requires that the operator is experienced enough to accu-
rately determine the modal basis. It would be useful to develop an automatic analysis of stabi-
lization diagram to reduce the human errors during this step and to simplify monitoring [55].

This work only presents experimental studies in controlled conditions. Since most of mechani-
cal structures are located outdoor, an experimental study of such structures should be conducted
in uncontrolled conditions to assess the influence of light variations and of occlusions in the scene.

To improve the determination of the modal basis, the OMA could be performed using es-
timated motion in two videos of close views of the structure. However, an overlapping area
between the two videos would be necessary to serve as reference. On the other hand, another
setup with several synchronized cameras with a focus on different parts of the structure could
also be assessed to improve the spatial resolution, hence the estimated motion accuracy.

Our SMPC method estimates the motion projected in the frame plane, and thus the mode
shapes according to two directions. However, many mechanical structures are complex and re-
quire estimations in three dimensions. Therefore, it would be interesting to combine two cameras
to estimate 3D vibrations thanks to stereo-vision.

The developed approaches are based on a theoretical model of vibration. It should be finally
interesting to investigate how free-model approaches, based on supervised machine learning, can
identify the modal basis of mechanical systems. As vibrations can be decomposed into a finite
sum of modes for a given frequency range, videos with subpixel vibrations could be represented
by a few number of components. Thus, it could be interesting to train an autoencoder with the
video to learn its representation and to perform the modal analysis in the latent space.
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[44] Andrĕı Nikolaevich Tikhonov and Aleksandr Andreevich Samarskii. Equations of mathe-
matical physics. Courier Corporation, 2013.

[45] H. Van der Auweraer and B. Peeters. “Discriminating physical poles from mathemati-
cal poles in high order systems: use and automation of the stabilization diagram”. In:
Proceedings of the 21st IEEE Instrumentation and Measurement Technology Conference
(IMTC’04). Vol. 3. Como, Italy, May 2004, pp. 2193–2198. doi: 10.1109/imtc.2004.1351525.

[46] Peter VanOverschee and Bart L. R. De Moor. Subspace identification for linear systems:
Theory – Implementation – Applications. Boston: Kluwer Academic Publishers, 1996. doi:
10.1007/978-1-4613-0465-4.

[47] Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler Reddy, David
Cournapeau, Evgeni Burovski, Pearu Peterson, Warren Weckesser, Jonathan Bright, Sté-
fan J. van der Walt, Matthew Brett, Joshua Wilson, K. Jarrod Millman, Nikolay Mayorov,
Andrew R. J. Nelson, Eric Jones, Robert Kern, Eric Larson, C J Carey, İlhan Polat, Yu
Feng, Eric W. Moore, Jake VanderPlas, Denis Laxalde, Josef Perktold, Robert Cimrman,
Ian Henriksen, E. A. Quintero, Charles R. Harris, Anne M. Archibald, Antônio H. Ribeiro,
Fabian Pedregosa, Paul van Mulbregt, and SciPy 1.0 Contributors. “SciPy 1.0: Fundamen-
tal Algorithms for Scientific Computing in Python”. In: Nature Methods 17 (2020), pp. 261–
272. doi: 10.1038/s41592-019-0686-2.

[48] Neal Wadhwa, Justin G. Chen, Jonathan B. Sellon, Donglai Wei, Michael Rubinstein,
Roozbeh Ghaffari, Dennis M. Freeman, Oral Büyüköztürk, Pai Wang, Sijie Sun, Sung
Hoon Kang, Katia Bertoldi, Frédo Durand, and William T. Freeman. “Motion microscopy
for visualizing and quantifying small motions”. In: Proceedings of the National Academy of
Sciences 114.44 (Oct. 2017), pp. 11639–11644. doi: 10.1073/pnas.1703715114.

[49] Neal Wadhwa, Michael Rubinstein, Frédo Durand, and William T. Freeman. “Phase-based
video motion processing”. In: ACM Transactions on Graphics 32.4 (July 2013), pp. 1–10.
doi: 10.1145/2461912.2461966.

[50] P. Welch. “The use of fast Fourier transform for the estimation of power spectra: A method
based on time averaging over short, modified periodograms”. In: IEEE Transactions on
Audio and Electroacoustics 15.2 (June 1967), pp. 70–73. doi: 10.1109/TAU.1967.1161901.

[51] Yan Xu and James M. W. Brownjohn. “Review of machine-vision based methodologies
for displacement measurement in civil structures”. In: Journal of Civil Structural Health
Monitoring 8.1 (Jan. 2018), pp. 91–110. doi: 10.1007/s13349-017-0261-4.

107

https://doi.org/10.1109/ICIP.1995.537667
https://doi.org/10.1109/imtc.2004.1351525
https://doi.org/10.1007/978-1-4613-0465-4
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1073/pnas.1703715114
https://doi.org/10.1145/2461912.2461966
https://doi.org/10.1109/TAU.1967.1161901
https://doi.org/10.1007/s13349-017-0261-4


Bibliography

[52] Yongchao Yang, Charles Dorn, Tyler Mancini, Zachary Talken, Garrett Kenyon, Charles
Farrar, and David Mascareñas. “Blind identification of full-field vibration modes from video
measurements with phase-based video motion magnification”. In: Mechanical Systems and
Signal Processing 85 (Feb. 2017), pp. 567–590. doi: 10.1016/j.ymssp.2016.08.041.

[53] Yongchao Yang, Charles Dorn, Tyler Mancini, Zachary Talken, Satish Nagarajaiah, Gar-
rett Kenyon, Charles Farrar, and David Mascareñas. “Blind identification of full-field vibra-
tion modes of output-only structures from uniformly-sampled, possibly temporally-aliased
(sub-Nyquist), video measurements”. In: Journal of Sound and Vibration 390 (Mar. 2017),
pp. 232–256. doi: 10.1016/j.jsv.2016.11.034.

[54] Yongchao Yang and Satish Nagarajaiah. “Blind modal identification of output-only struc-
tures in time-domain based on complexity pursuit”. In: Earthquake Engineering & Struc-
tural Dynamics 42.13 (May 2013), pp. 1885–1905. doi: 10.1002/eqe.2302.

[55] Xijun Ye, Peili Huang, Chudong Pan, and Liu Mei. “Innovative stabilization diagram for
automated structural modal identification based on ERA and hierarchical cluster analysis”.
In: Journal of Civil Structural Health Monitoring 11.5 (Aug. 2021), pp. 1355–1373. doi:
10.1007/s13349-021-00514-8.

[56] Dashan Zhang, Jie Guo, Xiujun Lei, and Changan Zhu. “A High-Speed Vision-Based
Sensor for Dynamic Vibration Analysis Using Fast Motion Extraction Algorithms”. In:
Sensors 16.4 (Apr. 2016), p. 572. doi: 10.3390/s16040572.

[57] Jiwen Zhou, Wendi Zhang, Yun Li, Xiaojian Wang, Li Zhang, and Hongguang Li. “Phase-
Based Displacement Sensor With Improved Spatial Frequency Estimation and Data Fusion
Strategy”. In: IEEE Sensors Journal 22.4 (Feb. 2022), pp. 3306–3315. doi: 10.1109/JSEN.

2022.3141110.

108

https://doi.org/10.1016/j.ymssp.2016.08.041
https://doi.org/10.1016/j.jsv.2016.11.034
https://doi.org/10.1002/eqe.2302
https://doi.org/10.1007/s13349-021-00514-8
https://doi.org/10.3390/s16040572
https://doi.org/10.1109/JSEN.2022.3141110
https://doi.org/10.1109/JSEN.2022.3141110


A Open-source synthetic video generation

A.1 Euler–Bernoulli solution

The spatial and temporal partial derivatives in Eq. (2.50) can be developed to give:

c2

ϕ(z)

∂4ϕ

∂z4
(z) = − 1

q(t)

∂2q

∂t2
(t), ∀z ∈ [0, L], t ∈ [0,∞), (A.1)

c2

ϕ(z)

∂4ϕ

∂z4
(z) = − 1

q(t)

∂2q

∂t2
(t) = ω2. (A.2)

Hence, 



∂4ϕ

∂z4
(z)− β2ϕ(z) = 0 with β2 = ω

c ,
∂2q

∂t2
(t) + ω2q(t) = 0.

(A.3)

Functions ϕ and q have the following forms:

ϕ(z) = C1 cosh (βz) + C2 sinh (βz) + C3 cos (βz) + C4 sin (βz), (A.4)

q(t) = A cos (ωt) +B sin (ωt). (A.5)

where A, B, C1, C2, C3, and C4 are constants.

A.1.1 Mode shapes

The constants of ϕ can be computed by adding some boundary conditions. For a cantilever
beam, the bottom boundary (i.e., z = 0) is clamped and the top boundary (i.e., z = L) is free:

g(0, t) = 0 ∀ t ∈ [0,∞), (A.6)
∂g

∂z
(0, t) = 0, ∀ t ∈ [0,∞), (A.7)

∂2g

∂z2
(L, t) = 0, ∀ t ∈ [0,∞), (A.8)

∂3g

∂z3
(L, t) = 0, ∀ t ∈ [0,∞). (A.9)
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Relationship between constants can be determined using these conditions:

C1 + C3
(A.6)
= 0,

C3 =− C1, (A.10)

and,

C2 + C4
(A.7)
= 0,

C4 =− C2. (A.11)

Furthermore, combination of those relationship and free end boundary condition gives:

C1 cosh (βL) + C2 sinh (βL)− C3 cos (βL)− C4 sin (βL)
(A.8),(A.10),(A.11)

= 0,

C1(cosh (βL) + cos (βL)) + C2(sinh (βL) + sin (βL)) = 0, (A.12)

and,

C1 sinh (βL) + C2 cosh (βL) + C3 sin (βL)− C4 cos (βL)
(A.9)–(A.11)

= 0,

C1(sinh (βL)− sin (βL)) + C2(cosh (βL) + cos (βL)) = 0,

C2 = C1
sin (βL)− sinh (βL)

cos (βL) + cosh (βL)
. (A.13)

Finally, Eqs (A.12) and (A.13) can be combined to get the following equation:

C1 ·
(
cosh (βL) + cos (βL) +

sin (βL)− sinh (βL)

cos (βL) + cosh (βL)
(sinh (βL) + sin (βL))

)
= 0,

⇔ C1 ·
(
cosh (βL)2 + cos (βL)2 + 2 cosh (βL) cos (βL) + sin (βL)2 − sinh (βL)2

)
= 0,

⇔ C1 · (cos (βL) cosh (βL) + 1) = 0. (A.14)

Non-trivial infinity of solutions are found to exist only if cos (βiL) · cosh (βiL) + 1 = 0. This
nonlinear equation can be solved numerically. For each solution βi, there is a corresponding

modal contribution qi with natural frequency of vibration ωi = β2
i

√
EI

ρA
and a mode shape ϕi

of the form:

ϕi(z) = Ci ·
(
cosh(βiz)− cos(βiz) +

sinh(βiL)− sinh(βiL)

cos(βiL) + cosh(βiL)
(− sinh(βiz) + sin(βiz))

)
(A.15)
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A.1 Euler–Bernoulli solution

As the modes are given relatively to a constant Ci, it is set to normalize the mode such that:

∥ϕi(z)∥L2 = 1 . (A.16)

These modes are orthogonal to one another:

L∫

0

ϕr(z) · ϕs(z) dx = 0 ∀ r ̸= s (A.17)

Indeed, ∀r ∈ N,

∂4ϕr(z)

∂z4
= β4

rϕ(z)⇒
L∫

0

∂4ϕr(z)

∂z4
· ϕs(z) dx =

L∫

0

β4
r · ϕ(z) · ϕs(z) dx (A.18)

Furthermore,

L∫

0

∂4ϕr(z)

∂z4
· ϕs(z) dx = −

L∫

0

∂3ϕr(z)

∂z3
· ∂ϕs(z)

∂z
dx+

[
∂3ϕr(z)

∂z3
· ϕs(z)

]L

0

, (A.19)

=

L∫

0

∂2ϕr(z)

∂z2
· ∂

2ϕs(z)

∂z2
dx−

[
∂2ϕr(z)

∂z2
· ∂ϕs(z)

∂z

]L

0

, (A.20)

=

L∫

0

∂2ϕr(z)

∂z2
· ∂

2ϕs(z)

∂z2
dx, (A.21)

=

L∫

0

ϕr(z) ·
∂4ϕs(z)

∂z4
dx. (A.22)
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Hence,

L∫

0

∂4ϕr(z)

∂z4
· ϕs(z) dx−

L∫

0

ϕr(z) ·
∂4ϕs(z)

∂z4
dx = 0, (A.23)

β4
r

L∫

0

ϕ(z) · ϕs(z) dx− β4
s

L∫

0

·ϕ(z) · ϕs(z) dx = 0, (A.24)

ρA

EJ
(ωr − ωs)

L∫

0

ϕ(z) · ϕs(z) dx = 0, (A.25)

L∫

0

ϕ(z) · ϕs(z) dx = 0 ∀ r ̸= s. (A.26)

A.1.2 Modal contribution

The modal contribution qi(t) corresponding to the mode shape ϕi(z) depends on initial condition
g(z, 0) and force γ(z, t) applied to the beam. It can be computed for each mode using the mode
shapes orthogonality:

EJ
∂4g

∂z4
(z, t) + ρA

∂2g

∂t2
(z, t) = γ(z, t), (A.27)

L∫

0

ϕi(z)EJ
∂4g

∂z4
(z, t) dx+

L∫

0

ϕi(z)ρA
∂2g

∂t2
(z, t) dx =

L∫

0

ϕi(z)γ(z, t) dx, (A.28)

EJ

L∫

0

ϕi(z)
∞∑

r=0

∂4ϕr(z)

∂z4
qr(t) dx+ ρA

L∫

0

ϕi(z)
∞∑

r=0

ϕr(z)
∂2qr(t)

∂t2
dx =

L∫

0

ϕi(z)γ(z, t) dx, (A.29)

EJ
∞∑

r=0

qr(t)

L∫

0

ϕi(z)
∂4ϕr(z)

∂z4
dx+ ρA

∞∑

r=0

∂2qr(t)

∂t2

L∫

0

ϕi(z)ϕr(z) dx =

L∫

0

ϕi(z)γ(z, t) dx, (A.30)

EJ
∞∑

r=0

β4
r qr(t)

L∫

0

ϕi(z)ϕr(z) dx+ ρA
∞∑

r=0

∂2qr(t)

∂t2

L∫

0

ϕi(z)ϕr(z) dx =

L∫

0

ϕi(z)γ(z, t) dx, (A.31)

EJβ4
i qi(t) + ρA

∂2qi(t)

∂t2
=

L∫

0

ϕi(z)γ(z, t) dx, (A.32)

ω2
i qi(t) +

∂2qi(t)

∂t2
=

1

ρA

L∫

0

ϕi(z)γ(z, t) dx. (A.33)
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B Video-based OMA user interface

During this work, a video processing user interface (UI) has been developed to facilitate the
video-based modal analysis. The UI is available at the following link: https://zenodo.org/record/

8376571. The program is written in Python using high-performance open source projects such
as: NumPy [14], SciPy [47], Matplotlib [16], OpenCV [3], and strid1.

The UI allows the user to load and play a video, select regions or pixels of interest, and denoise
the video. The video-based modal analysis can be run by selecting a phase-based method and
a video-based OMA procedure. Finally, the stabilization diagram and the mode shapes can be
viewed in the UI. The UI is also coupled with the TIS DMK 33UX287 camera API to acquire
high-speed videos.

1https://doi.org/10.5281/zenodo.6540518
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