
Université de Lille, Faculté des sciences et technologies

École doctorale MADIS Lille

An Interactive Debugging Approach
Based on Time-traveling Queries

Une Approche de Débogage Interactive basée sur des

Time-traveling Queries

THÈSE

présentée et soutenue publiquement le 21 novembre 2023

pour l’obtention du

Doctorat de l’Université de Lille

(spécialité informatique)

par

Maximilian Ignacio Willembrinck Santander

Composition du jury

Président : Walter Rudametkin Professeur – Université de Rennes

Rapporteurs : Elisa Gonzalez Boix Professeure – Vrije Universiteit Brussel
Christophe Dony Professeur – Université de Montpellier

Examinateur : Éric Le Pors Docteur – Thales

Directrice de thèse : Anne Etien Professeure – Université de Lille

Co-Encadrant de thèse : Steven Costiou Chargé de recherche – Inria

Centre de Recherche en Informatique, Signal et Automatique de Lille — UMR 9189
Centre Inria de l’Université de Lille

EvreffervE

i

Copyright © 2023 by Maximilian Ignacio Willembrinck Santander

This work is licensed under a Creative Com-
mons “Attribution-NonCommercial-ShareAlike 3.0
Unported” license.

https://creativecommons.org/licenses/by-nc-sa/3.0/deed.en
https://creativecommons.org/licenses/by-nc-sa/3.0/deed.en
https://creativecommons.org/licenses/by-nc-sa/3.0/deed.en
https://creativecommons.org/licenses/by-nc-sa/3.0/deed.en

Acknowledgments

In the following lines, I would like to express my gratitude to everyone who played
a crucial role in this challenging yet enriching experience.

First and foremost, I would like to thank and acknowledge the hard work put
in by my supervisors, Anne Etien and Steven Costiou. Responsible for most of
what I have learned and guiding me during this process, supporting me anytime,
all the time, and without hesitation. Thanks to Stéphane Ducasse for his help and
for kindly accepting me to be part of the wonderful Evref (former RMoD) team. I
would like to thank the thesis reviewers and members of the jury Elisa Gonzalez
Boix and Christophe Dony. Thank you for reading this dissertation and giving me
valuable feedback. I would like to thanks the jury members Éric Le Pors and Walter
Rudametkin for accepting to be part of my Ph.D. committee.

Now, the Evref team. Friendly people, always willing to help and share their
expertise in the Pharo language. Thanks to the new and old members of the
team for helpful exchanges: Adrien, Aless, Christophe, Clotilde, Esteban, Gabriel,
Guillermo, Honoré, Iona, Marcus, Milton, Nahuel, Nicolas, Nour, Oleksandr,
Pablo, Pierre, Santiago, Sebastián, Soufyane, Théo, Valentin, and Younoussa.
Special thanks to Larisa Safina for her invaluable support during these difficult
last months.

I would like to acknowledge the special people who made this endeavor possible.
Manuel Valenzuela, and María Cecilia Rivara. Without their support and faith in
me, this thesis would have never occurred. Thanks to Carolina Hernández, who
started it all. I am here thanks to you. You tutored me and played a key role in my
thesis and Pharo journey, for which I am forever grateful.

Last but not least, there is my family. My parents, Marcelo Willembrinck and
María Cristina Santander, and my brothers Christian and Arnold.

Dear parents and brothers,

This work is for you.

Abstract

Debugging is an indispensable part of software development, often consuming a
significant amount of time and resources. Efficiently debugging a program requires
program comprehension. To acquire it, developers explore the program execution,
a task often performed using interactive debuggers. Unfortunately, exploring a
program’s execution through standard interactive debuggers is a tedious and costly
task.

We propose Time-traveling Queries (TTQs) to ease interactive program
exploration. TTQs is a mechanism that automatically explores program executions
using a time-traveling debugger to collect execution data. This mechanism enables
a new debugging approach, where the collected data is used to time-travel through
execution states, facilitating the exploration of program executions. We built a set
of key TTQs based on typical questions developers ask when trying to understand
programs. We conducted a user study with 34 participants to evaluate the impact
of our queries on program comprehension activities. Results show that, compared
to traditional debugging tools, TTQs significantly improve developers’ precision
while reducing the time and effort required to perform program comprehension
tasks, allowing for a more efficient debugging process.

While our TTQs-based debugging approach shows promising results in
improving interactive debugging problems, it requires a time-traveling debugger
to operate. However, debuggers of such kind are not available in all systems. In
systems where multiple programs run in shared memory, time-traveling debuggers
face the challenge of precisely scoping time-travel operations. This presents
a critical difficulty that limits the applicability of time-traveling debuggers to
these systems. To investigate this difficulty, we study the essential properties
required to apply time-traveling solutions to this type of system. From these
properties, we introduced two time-traveling debuggers for Pharo, a shared
memory system. We evaluated the importance of these properties through two
experiments, demonstrating their significance in performing precise time-traveling
operations. Furthermore, we analyze existing solutions to assess their applicability
to shared memory systems.

Keywords: Debugging, Time-traveling Debuggers, Reversible Debuggers,
Reverse and Replay, Time-traveling Queries

Résumé

Le debugging est une activité incontournable du développement logiciel. Il s’agit
d’une tâche ardue qui nécessite une grande quantité de temps et de ressources,
et elle exige que les développeurs aient une compréhension approfondie de leurs
programmes. Pour ce faire, les développeurs explorent l’exécution de leurs
programmes à l’aide de debuggers interactifs. Cependant, cette activité est souvent
répétitive et coûteuse.

Afin de simplifier l’exploration interactive des programmes, nous proposons
les Time-traveling Queries (TTQs). TTQs est un mécanisme qui explore
automatiquement les exécutions de programmes en utilisant un Time-traveling
Debugger pour recueillir des données d’exécution. Ce mécanisme permet une
nouvelle approche de debugging, où les données collectées permettent de voyager
dans le temps à travers les états d’exécution, facilitant ainsi l’exploration des
exécutions de programmes. Nous avons élaboré un ensemble de questions clés
basées sur des questions typiques que les développeurs se posent lorsqu’ils essaient
de comprendre les programmes. Pour évaluer l’impact de nos requêtes sur les
activités de compréhension des programmes, nous avons mené une étude empirique
impliquant 34 utilisateurs. Nos résultats montrent que, par rapport aux outils de
debugging traditionnels, les TTQs améliorent considérablement la précision des
développeurs tout en réduisant le temps et les efforts nécessaires pour mener à bien
les tâches de compréhension des programmes.

Malgré les résultats prometteurs que notre approche a montrés, elle présente
une exigence cruciale: elle nécessite l’utilisation d’un Time-traveling Debugger
pour être opérationnelle. Cependant, il est important de noter que les debuggers
de ce genre ne sont pas disponibles pour tous les systèmes. Dans les systèmes
où plusieurs programmes sont exécutés dans une mémoire partagée, les Time-
traveling Debuggers se heurtent à la complexité de délimiter les effets en mémoire
causés par les opérations de voyage dans le temps. Pour résoudre ce problème,
nous avons mené une étude approfondie des propriétés essentielles requises pour
adapter les solutions de voyage dans le temps à ce type de système. En utilisant
ces propriétés comme guide, nous avons introduit deux Time-traveling Debuggers
spécifiquement conçus pour Pharo, un système qui repose sur une mémoire
partagée. Nous avons ensuite évalué l’importance de ces propriétés au travers de
deux expériences, démontrant ainsi leur rôle crucial dans la réalisation d’opérations
précises de voyage dans le temps. Enfin, nous avons procédé à une analyse
approfondie des solutions existantes pour évaluer leur applicabilité dans le contexte
des systèmes à mémoire partagée.

Mots-clés: Debugging, Time-traveling Debuggers, Debuggers Réversibles,
Inverser et Rejouer, Time-traveling Queries

Contents

Introduction 1

1 Introduction 3
1.1 Context . 3
1.2 Problems Statement . 5

1.2.1 Motivation: Problems in debugging and live exploration of
program executions . 5

1.2.2 Summarized main research problems 8
1.2.3 Research questions . 8

1.3 Our Proposition: Time-traveling Queries 9
1.3.1 Time-traveling queries, in a nutshell 9
1.3.2 Improving the debugging process 9

1.4 Contributions . 10
1.5 Publications and Awards . 10
1.6 Thesis Outline . 12
1.7 Conclusion . 13

2 Background and State of the Art 15
2.1 Debugging in Software Development 15

2.1.1 Tools for debugging software: Debuggers 15
2.1.2 Debugging approaches offered by debuggers 16
2.1.3 Debugging by exploring executions history 17

2.2 Time-traveling Debuggers . 18
2.3 State-of-the-art Time-traveling Techniques 19

2.3.1 Techniques used for reversal 19
2.3.2 Techniques used for replay 20

2.4 Complementary Debugging Capabilities 21
2.4.1 Scriptable debugging . 21
2.4.2 Query-based debugging 22

2.5 Comparison of Debuggers’ Features 23
2.6 Conclusion . 25

I Time-travel Debugging in Shared Memory Systems 27

3 Selective Time-travel in Shared Memory 29
3.1 Introduction . 29
3.2 Motivation . 31
3.3 Problems of Imprecise Memory Scoping In Reversal Operations . 33

x Contents

3.3.1 Side effects . 33
3.3.2 Towards selective time-travel 33

3.4 Properties for Selective Time-travel 34
3.5 A Selective Time-travel Back End 35

3.5.1 Time-travel back end overview 36
3.5.2 Back end components and properties support 36

3.6 Conclusion . 38

4 Implementation 39
4.1 The Standard Pharo Debugger: An Overview 39
4.2 Seeker: A Time-traveling Debugger for Single-threaded Programs 41

4.2.1 Seeker, in a nutshell . 41
4.2.2 GUI Mode: Time-travel for the standard debugger 42
4.2.3 Debugging programmatically in headless mode 44
4.2.4 Seeker implementation 45
4.2.5 Components of the time-travel back end 47
4.2.6 Seeker time-travel operations explained 51
4.2.7 Configurable properties support 53

4.3 Executor: A Time-traveling Debugger for Multithreaded Programs 54
4.3.1 Executor implementation 54
4.3.2 Configurable properties support 55

4.4 Implementation Discussion . 55
4.4.1 Recorded data overview 55
4.4.2 Validation of the selectiveness of our implementation . . . 56
4.4.3 Reversal by full-replay 58
4.4.4 System calls logging . 59
4.4.5 Limitations . 59
4.4.6 System stability assumption 60

4.5 Conclusion . 60

5 Evaluation 61
5.1 Experiment Goals and Research Question 61
5.2 Evaluation of the Properties for Single-threaded Executions 62

5.2.1 Experiments general procedure 63
5.2.2 Evaluation of the properties on a crafted program 65
5.2.3 Evaluation on multiple programs running real code 69

5.3 Evaluation of the Properties for Multithreaded Executions 72
5.3.1 Experiment procedure 74
5.3.2 Experiment results and analysis 74

5.4 Results Conclusion . 76
5.5 Threats to Validity . 77
5.6 Related Work . 78

5.6.1 Properties support in time-traveling debuggers 78

Contents xi

5.6.2 Properties support in time-travel techniques 80
5.7 Conclusion . 81

II A New Debugging Approach 83

6 Time-traveling Queries:
Improving Interactive Debugging 85
6.1 Improving on Interactive Debuggers Problems 85
6.2 Time-traveling Queries . 86

6.2.1 Time-traveling Queries definition and execution 86
6.3 Off-the-shelf Time-traveling Queries 88

6.3.1 Key Time-traveling Queries 89
6.3.2 Executing queries . 90

6.4 Time-traveling Queries Implementation 92
6.4.1 Time-traveling queries requirements 92
6.4.2 Query implementation 93
6.4.3 ProgramStates class . 96
6.4.4 Modifications of Seeker to support Time-traveling Queries 96
6.4.5 Implementation of key Time-traveling Queries 97
6.4.6 User-defined time-traveling queries 100

6.5 Conclusion . 100

7 Evaluation of the TTQ-based Debugging Approach 101
7.1 Empirical Evaluation . 101

7.1.1 Objectives of the experiment 102
7.1.2 Experimental design . 103

7.2 Results and Discussion . 106
7.2.1 Experiment results . 106
7.2.2 Post-study survey . 109
7.2.3 Discussion on participant’s experience impact on the results 110
7.2.4 Threats to validity . 111

7.3 Conclusion . 112

8 Time-traveling Queries for Specialized Debugging 113
8.1 Specialized Debugging Tools . 113
8.2 A Real World Scenario: Debugging a Meta Compiler 114
8.3 Identifying False Positives in String-Symbol Comparisons 115
8.4 Domain-Specific Queries for the Moose Platform 118
8.5 Queries of Object-centric Debugging 120
8.6 Reproducing the Moldable Debugger Experiments 125
8.7 Conclusion . 129

xii Contents

Thesis Conclusion 131

9 Conclusion and Future Work 133
9.1 Conclusion . 133
9.2 Future Work . 135

9.2.1 Enhancing performance in our time-travel solution 135
9.2.2 Leveraging our proposed debugging approach 136

Bibliography 139

List of Figures

1.1 The iterative process of debugging. 4
1.2 Exploring an execution by using breakpoints and stepping. 6
1.3 Breakpoints scripted as automatic sequences of steps. 7

2.1 Time-traveling and back-in-time debuggers. 17

3.1 Debugger state is lost when revering in shared memory. 31
3.2 Time-travel back end for multithreaded executions in shared memory. 36
3.3 The TCU stepping pipeline. 38

4.1 The Pharo StDebugger main GUI elements. 40
4.2 Seeker GUI. 43
4.3 Integration of Seeker as an extension plug-in of the StDebugger. . 46
4.4 Seeker implementation. 47

6.1 Time-traveling query collecting execution data. 88
6.2 Exploring an execution using time-traveling queries results. 89
6.3 Integration of time-traveling queries into the debugger GUI. . . . 91
6.4 Scripting pane in Seeker to write time-traveling queries. 91
6.5 Class diagram of the Time-traveling Queries mechanism. 94

7.1 Debugger UI layout of used for the experiment. 102
7.2 Participant scores. 107
7.3 Participants time. 107
7.4 Participants debugging actions. 108
7.5 Experiment results. 109
7.6 Histogram of participants’ years of experience in Pharo. 111

8.1 Example of inspecting a query result item. 117
8.2 Visualization of the detected string/symbol equality. 117
8.3 Seeker UI showing object-centric operations. 123
8.4 Object-centric time-traveling queries menu of the enhanced inspector.124

List of Tables

2.1 Debuggers features comparison. 24

4.1 Seeker debugging API . 45
4.2 Seeker initialization API . 46
4.3 The CurrentState API. 48
4.4 CurrentState API methods for obtaining message-sends data . . . 49
4.5 CurrentState API methods for obtaining assignments data. 50

5.1 Experiment 1 criteria approval summary. 67
5.2 Experiment 1 measurements: step number. 67
5.3 Experiment 1 measurements: program counter and instruction code. 68
5.4 Experiment 1 measurements: local variable value. 68
5.5 Experiment 1 measurements: global value. 69
5.6 Experiment 2 results. 71
5.7 Experiment 3 measurements for configurations 1 to 8. 75
5.8 Experiment 3 measurements for configurations 9 to 16. 76
5.9 Time-traveling debuggers comparison 79

7.1 Tasks in the controlled experiment. 105
7.2 H0 rejection table with Wilcoxon signed-rank test values. 109
7.3 Tool reception rating of the post-study survey. 109
7.4 Participants’ confidence in their answers. 110
7.5 Participants’ perceived difficulty of each sequence. 110
7.6 Results according to the experiment order. 112

Introduction

CHAPTER 1

Introduction

Contents
1.1 Context . 3

1.2 Problems Statement . 5

1.3 Our Proposition: Time-traveling Queries 9

1.4 Contributions . 10

1.5 Publications and Awards . 10

1.6 Thesis Outline . 12

1.7 Conclusion . 13

Efficiently debugging a program requires program comprehension. To acquire
it, developers explore the program execution, a task often performed using
interactive debuggers. Unfortunately, exploring a program’s execution through
standard interactive debuggers is a tedious and costly task. In this chapter, we
present our proposal for addressing the challenges of using interactive debuggers
and provide an overview of our thesis.

1.1 Context
In software development, the process of identifying and fixing program errors is
known as debugging. Debugging is an iterative process: developers first make
an observation and then formulate a hypothesis about the cause of the failure
(Figure 1.1). To test their hypotheses, they try to reproduce the bug by observing
data and behavior supporting such hypotheses. Facing a wrong hypothesis forces
developers to formulate new, more refined ones, iteratively narrowing down the
possible cause [Barr 2014, O’Dell 2017, Phang 2013, Spinellis 2018, Zeller 2009].

Formulating hypotheses requires understanding programs. Typically, develop-
ers ask themselves questions about the execution of their program [Sillito 2008],
e.g., why is this variable in an incorrect state? Then, they try to answer these
questions by exploring that execution.

Exploring program executions is important to produce good hypotheses,
especially when facing unfamiliar bugs [O’Dell 2017], and it is commonly

4 Chapter 1. Introduction

performed using interactive debuggers. However, it is not an easy task.
Traditionally, this is done by selectively stepping executions, instruction by
instruction. It is a manual operation, and there is a risk of stepping too far and,
therefore, missing a critical piece of information [Barr 2014]. In addition, stepping
is a generic operation that does not directly translate questions asked by developers
to test a hypothesis into a stepping sequence (i.e., how many steps should we
perform to find that information?). To enhance program execution exploration and,
thus, debugging, we argue that we need a mechanism that transforms a question
formulated by the developer into a debugging action that collects relevant execution
data of a program.

Error Formulate
hypothesis

Test the
hypothesis

Fixed? DoneNo Yes

Repeat

Figure 1.1: The iterative process of debugging.

To this end, we propose Time-traveling Queries (TTQs). TTQs are expressions
that ask for specific information about a program execution. The time-traveling
debugger answers the query by executing the program instructions, one at a time,
automatically traversing all its states while retrieving the required execution data.
The queried data is collected to produce a query result set. The produced results
are then used by developers to time-travel, i.e., advance or reverse the execution
of the program to the point in the execution history where the result data were
retrieved. TTQs would provide direct access to relevant debugging data and would
also enable the creation of more specialized TTQ-based debugging tools.

To conduct our investigation in this thesis, we utilized the Pharo programming
language [Black 2009]. Pharo provides strong reflective capabilities, which is
advantageous for building sophisticated debugging tools, allowing us to inspect
and modify the language itself and essentially any object of the system.

Terminology: Execution and time-travel
We use the term execution to refer to the execution of a list of instructions.
Therefore, a thread execution is the execution of the instructions of a thread, and
a program execution is the execution of the program’s threads. That is, a program
execution encompasses the execution of all instructions of its threads.

We consider program executions as sequences of program states. A program
state "consists of the values of the program variables, as well as the current

1.2. Problems Statement 5

execution position (formally, the program counter). Each state determines
subsequent states, up to the final state..." [Zeller 2009]. The program state includes
both: the state of the execution’s dynamically allocated memory - commonly
known as the heap - and the state of the execution stack (the state of all the program
threads).

We use the term execution state as a synonym of program state.
To simplify our explanations, we observe and analyze program executions at

a bytecode level granularity, breaking down executions into individual bytecode
instructions and stepping through them.

The term execution step or step refers to the execution of one instruction of a
program, and a step advances the execution from one state to another.

We use the term time-travel to refer to the features provided by debuggers that
allow developers to advance or reverse the state of a program to specific points of
its execution history. These features include operations such as step-back, which
restores the program to the state it was before executing the last instruction, and
completely reversing a program to its initial state. For these debuggers, we also
consider forward-stepping (advancing the program state by performing steps) as a
time-travel operation.

1.2 Problems Statement
Next, we outline the specific problems that arise when using standard interactive
debuggers and identify the primary research problems addressed in this thesis.

1.2.1 Motivation: Problems in debugging and live exploration
of program executions

The simplified scientific method [Zeller 2009, Spinellis 2018] is a common
debugging method. It consists in formulating hypotheses regarding the cause of
a bug. Then, developers selectively observe their program execution to confirm or
discard those hypotheses. Ultimately, the correct hypothesis is confirmed, and the
bug is found. It is an iterative process in which developers systematically test and
observe their program to understand it better. The more they understand, the more
they clarify their hypotheses and the more they narrow down the cause of the bug.

The most standard tools and techniques shipped with every debugger are
breakpoints and instruction stepping (Figure 1.2). Developers use breakpoints to
break the execution, then observe the state of the interrupted program. They decide
to either resume the execution until the next breakpoint or to step forward one
program instruction to observe the evolution of the program state [Zeller 2009].
They repeat these operations until they find the information they were looking for
or until the program ends.

These debugging tools present the following problems:

6 Chapter 1. Introduction

1 2 … ?

b b b b s s s b

s: step b:breakpoint hit

program
start

program
stopmissed

sb

sb: step-backi : program state (i)

Figure 1.2: Exploring an execution with breakpoints and manual backward and forward
stepping.

• P1. Debugging questions translation difficulty. Developers’ debugging
questions cannot be easily translated into sequences of breakpoints and
stepping actions.

• P2. Require prior knowledge of the program. Choosing efficiently where
to put breakpoints requires already understanding parts of the program.
Developers, therefore, have to perform preliminary investigations of the
program [Ressia 2012], e.g., through source code reading.

• P3. Manual/Tedious. Developers have to manually choose where to put
breakpoints and to step the execution when it breaks. They manually advance
through many irrelevant breakpoint hits and then perform numerous stepping
operations until reaching the point of interest.

• P4. Missing critical points. It is common to miss a critical point in
the execution [Barr 2014], e.g., the missed program state in Figure 1.2.
Developers have to restart and explore the execution again to look for the
information they missed.

With time-traveling debuggers, developers travel backward and forward in
their program execution. For example, in Figure 1.2 a step-back operation allows
developers to travel back in time to observe an execution point they missed with
the standard stepping. Because of that, if developers stepped one step too far
and missed an important piece of information, they can immediately step back
and observe that information. However, looking for a piece of information by
stepping back and forth in a recorded execution is also a manual operation. Without
additional means to explore recorded executions, it is as tedious as standard
breakpoints and stepping.

Using scriptable debuggers (Figure 1.3), developers program sequences of
steps to automatically explore an execution and build problem-specific debugging
tools [Dupriez 2019]. Every state of the execution can be attained, but what to do
for each state (observing, collecting data...) must be specified in the scripts. This

1.2. Problems Statement 7

implies that developers already gathered a sufficient understanding of the program
to know what to look for to write scripts. On top of that, they must translate their
debugging questions into debugging scripts. Developers must also understand
and reason within several abstraction domains, including the program itself, the
scripting API, etc.

When developers seek answers to debugging questions using conventional
tools, they face the challenge of translating their questions into sequences of
debugging actions. This process of translation is not straightforward and creates
an abstraction gap To alleviate this issue, domain-specific debugging tools offer
debugging actions that are closely aligned with the application domain [Chiş 2014].
However, this specialization comes with a trade-off: it sacrifices versatility,
demanding tailored debugging tools for each unique domain. Furthermore,
debugging tools’s implementations are inflexible, as they are not typically designed
to be extended. We summarize these challenges in the following problem

• P5. Generic and inflexible debugging tools. Extending or creating new
specialized debugging tools to address domain-specific issues is challenging
due to the inflexible architecture of debugging tools.

1 2 …

program
start

program
stop

as as as as as as as as as as as as as as as
as: scripted

automatic step
cb: custom

scripted break

cb cb cb cb

i : program
 state (i)

Figure 1.3: Breakpoints scripted as automatic sequences of steps.

We argue that an approach that combines time-traveling debuggers and
queries would improve all listed problems. Debugging can be made easier by
using specialized queries derived from debugging questions. The time-traveling
debugger would take the query and automatically collect the relevant debugging
data to answer the question. This approach can lead to new program exploration
capabilities by automating tedious and error-prone tasks and providing direct
access to pertinent debugging data.

Specialized queries would not only close the abstraction gap but would
facilitate the creation of new domain-specific debugging tools, as debugging tools
using this approach could be extended simply by defining new queries.

8 Chapter 1. Introduction

Since time-traveling debuggers are the cornerstone of this dissertation, having
such a debugger is a critical requirement. Certain programming languages
such as Lisp [McCarthy 1960], Pharo [Black 2009], Python [Python 2023],
SELF [Ungar 1987], and Smalltalk [Goldberg 1984], run programs within a shared
memory framework. Developers using these languages or working with similar
shared memory systems will find an obstacle while trying to make use of a time-
traveling debugger, as to the best of our knowledge, there are no solutions that
completely support these systems. This introduces the following problem:

• P6. Absence of time-traveling debuggers for shared memory systems.
There are no dedicated time-traveling debuggers for shared memory systems,
and this problem is not addressed in the literature.

1.2.2 Summarized main research problems
From the described set of problems, we state our two research problems (RPs) of
this thesis. We list them in the order we addressed them, each one in its dedicated
part of this dissertation:

RP1, addressed in Part 2: There is no time-traveling debugger available for
shared memory systems, and this problem is not addressed in the literature
(From P6).

RP2, addressed in Part 3: Accessing specific program execution data to answer
debugging questions is difficult when using interactive debuggers (From
P1, P2, P3, P4, P5).

1.2.3 Research questions
Therefore, in the scope of our work, we investigate the following research questions
(RQs):

RQ1: What properties a time-traveling debugger should possess to support shared
memory systems? (Addressing P6) (Chapters 3, 4, 5)

RQ2: Can we express debugging questions as queries over programs executions
to obtain relevant debugging information? (Addressing P1, P2, P3, P4)
(Chapter 6)

RQ3: How does this query-based mechanism improve the debugging experience?
(Chapter 7)

RQ4: Is this new debugging mechanism extensible to tackle domain and problem-
specific debugging scenarios? (Addressing P5) (Chapter 8)

1.3. Our Proposition: Time-traveling Queries 9

1.3 Our Proposition: Time-traveling Queries
We propose combining time-traveling debugging with scriptable debugging
techniques to express program comprehension questions as queries over program
executions. We call these queries Time-traveling Queries (TTQs), which introduce
a novel TTQ-based debugging approach and tools.

1.3.1 Time-traveling queries, in a nutshell
A TTQ is a query over a program execution, a mechanism that automatically
explores program executions to selectively collect execution data. This data is
used to time-travel through execution states, facilitating the exploration of program
executions by granting direct access to program states which are relevant to the
query.

TTQs are defined based on developer debugging questions and are integrated
into debuggers. Developers can write personalized queries for their particular
debugging and program exploration needs, enabling new debugging tools.

TTQs and TTQs-based debugging tools introduce a new interactive debugging
approach that closes the gap between expressing developer questions and finding
relevant debugging data during a standard online debugging workflow.

1.3.2 Improving the debugging process with TTQs and TTQs-
based tools

TTQs explore the whole program execution to extract execution information.
This information is presented to developers, who are able to time-travel, in the
program execution, to the point where that information was obtained. There,
developers can observe the information in its original context. They can deepen
their understanding of the execution by time-traveling to another result or by
performing standard forward or backward steps.

We argue that TTQs will enable the creation of new debugging tools for
in-depth live program exploration. Developers will directly use pre-existing
queries available on the shelves for general-purpose debugging or express their
own questions as programmatic queries. New specialized debugging tools will
integrate and bring ready-to-use specialized TTQs completely tailored to different
debugging needs. Program exploration will require less preliminary investigation
and consequently improve developers’ debugging efficiency.

10 Chapter 1. Introduction

1.4 Contributions
This dissertation presents the following main contributions.

1. A time-traveling debugger solution for shared memory systems. We
identified essential properties that time-traveling debuggers require to support time-
travel operations in shared memory systems.

2. Time-traveling Queries. A debugging mechanism that enables a novel
interactive program exploration approach. It allows developers to jump directly
to relevant program states during their debugging sessions, helping them to find
answers to their debugging questions. We present a list of key ready-to-use TTQs,
based on common debugging questions, to improve the debugging experience and
an evaluation based on a controlled experiment. We present a set of new specialized
debugging tools based on TTQs as well.

3. A TTQ-enhanced time-traveling debugger for Pharo. A time-traveling
debugger for Pharo, enhancing the standard Pharo debugger with TTQs capabilities
and enabling the creation of new TTQ-based debugging tools.

1.5 Publications and Awards
In this section, we list the publications and achievements attained in the context of
this thesis.

Publications

Time-Traveling Debugging Queries: Faster Program Exploration.
[Willembrinck 2021] - Conference Paper
Maximilian Willembrinck, Steven Costiou, Anne Etien, Stéphane Ducasse.
International Conference on Software Quality, Reliability, and Security, Dec 2021,
Hainan Island, China.
https://inria.hal.science/hal-03463047.

Time-Traveling Queries for Faster Debugging and Program Comprehension.
[Willembrinck 2022a] - Poster
Maximilian Willembrinck, Steven Costiou, Anne Etien, Stéphane Ducasse.
Journées Nationales du Génie de la Programmation et du Logiciel 2022, Jun 2022,
Vannes, France.
https://inria.hal.science/hal-03738585.

https://inria.hal.science/hal-03463047
https://inria.hal.science/hal-03738585

1.5. Publications and Awards 11

Towards Object-Centric Time-Traveling Debuggers.
[Willembrinck 2022b] - Conference Paper
Maximilian Willembrinck, Steven Costiou, Adrien Vanègue, Anne Etien.
International Workshop on Smalltalk Technologies: IWST 22, Aug 2022, Novi
Sad, Serbia.
https://inria.hal.science/hal-03825736.

Time-Traveling Queries: Extensible Tools for Faster Program
Comprehension.
Maximilian Willembrinck, Valentin Bourcier, Adrien Vanègue, Stéphane Ducasse,
Anne Etien, Steven Costiou.
Submitted 15/09/2023 to Journal of Object Technology.

Reverse and Replay Debugging in Shared Memory Systems.
Maximilian Willembrinck, Steven Costiou, Guillermo Polito, Anne Etien.
Submitted 16/09/2023 to Journal of Computer Languages.

Time-Traveling Object-Centric Breakpoints.
Valentin Bourcier, Steven Costiou, Maximilian Willembrinck, Adrien Vanègue,
Anne Etien.
Submitted 16/09/2023 to Journal of Computer Languages.

Awards

Best poster award:
Time-Traveling Queries for Faster Debugging and Program Comprehension.
Journées Nationales du Génie de la Programmation et du Logiciel 2022, Jun 2022,
Vannes, France.
https://gdr-gpl.cnrs.fr/node/502

1st place in the Innovation Technology Awards 17th Edition:
Time-Traveling Queries for Faster Debugging And Program Comprehension.
Innovation Technology Awards 17th Edition, at Esug 2022, August 2022, Novi
Sad, Serbia.
https://esug.github.io/2022-Conference/awardsSubmissions.html

https://inria.hal.science/hal-03825736
https://gdr-gpl.cnrs.fr/node/502
https://esug.github.io/2022-Conference/awardsSubmissions.html

12 Chapter 1. Introduction

1.6 Thesis Outline
This dissertation is structured as follows:

• Introduction.

– In Chapter 1, we described the difficulties of exploring a program
execution using standard debugging methods and proposed a novel
debugging and program exploration approach based on TTQs. Then,
we listed the research questions addressed in this dissertation. We
concluded by listing our publications and outlining the contents of the
dissertation.

– In Chapter 2, we explore the background of our work, including time-
traveling debuggers and the current state of the art.

• Part I - Time-travel in Shared Memory Systems.

– Chapter 3 presents a comprehensive analysis of the challenges in
applying conventional time-traveling debugging solutions to shared
memory systems. We identify 4 essential properties that debuggers
must possess to overcome those challenges, and we propose a time-
travel solution based on these properties.

– Chapter 4 describes our time-traveling debugger implementations based
on the identified properties.

– In Chapter 5, we use our implementations to evaluate the importance of
the identified properties for time-traveling debuggers in shared memory
systems.

• Part II - A New Debugging Approach.

– Chapter 6 describes our solution to the second research problem:
We introduce Time-traveling Queries and our proposed debugging
approach based on TTQs. We describe the implementation of our
solution and its integration with our time-traveling debugger.

– In Chapter 7, we present the evaluation of TTQs, where we show the
results of our user study that measures how a TTQs-based debugging
approach improves the debugging experience vs. a standard one.

– In Chapter 8, we describe our explorations on the extensibility and
applications of TTQs. We show how we used them to create new TTQ-
enhanced specialized and domain-specific debugging tools.

• Thesis Conclusion.

– In Chapter 9, we conclude this dissertation and discuss future work.

1.7 Conclusion
In this chapter, we provided an overlook of our endeavor to improve the debugging
landscape. We have described the research problems at hand and presented
our proposed solutions. Our efforts are concentrated on two primary areas:
enabling time-traveling debugging for shared memory systems, addressed in Part
I, and improving the interactive debugging experience, in Part II. Additionally,
we outlined the dissertation chapters that delve deeper into challenges in each
respective area.

CHAPTER 2

Background and State of the Art

Contents
2.1 Debugging in Software Development 15

2.2 Time-traveling Debuggers . 18

2.3 State-of-the-art Time-traveling Techniques 19

2.4 Complementary Debugging Capabilities 21

2.5 Comparison of Debuggers’ Features 23

2.6 Conclusion . 25

In this chapter, we present the surrounding context and different domains
covered by our work. We explain the landscape of debugging tools while
defining the terms we use throughout the discourse. We describe debuggers and
implemented techniques. Then, we summarize by comparing debuggers in terms
of the important aspects related to the subjects addressed in this thesis.

2.1 Debugging in Software Development
In the complex world of software development, the process of detecting and
resolving errors remains crucial. Errors within a program can hinder its intended
functionality and disrupt the user experience. These errors are commonly known
as bugs, and the process of identifying and fixing bugs is known as debugging.

In this section, we discuss the importance of debugging tools and the different
approaches that these tools offer. We then explore examples of debuggers following
these approaches and provide definitions to contextualize our work in time-
traveling debugging.

2.1.1 Tools for debugging software: Debuggers
Debugging is a difficult and costly activity, in some cases accounting for 50%
of development time [McConnell 2004, Spinellis 2018, Tassey 2002, Zeller 2009].
Therefore, tools that assist in debugging are extremely valuable. To gain insight
into a program, developers can make use of several tools that provide access

16 Chapter 2. Background and State of the Art

to a great deal of static and dynamic program data [Phang 2013, Pothier 2007,
Sillito 2008].

While static analysis tools help uncover potential issues before running
programs’ code, they are not designed to actively debug and fix runtime errors
or investigate the behavior of a program during execution. Developers make use
of dynamic analysis tools such as debuggers to debug and investigate a program’s
runtime behavior.

2.1.2 Debugging approaches offered by debuggers
Debuggers offer two main distinct debugging approaches: post-mortem and
interactive. The post-mortem debugging approach consists of analyzing a
program’s execution after its conclusion. Debuggers offering this approach are
known as post-mortem debuggers or offline debuggers. In contrast, the interactive
debugging approach consists of analyzing a running program while controlling its
execution. Debuggers offering this approach are known as interactive debuggers
or online debuggers.

2.1.2.1 Post-mortem debuggers

Post-mortem debuggers work with recorded program data after a program has
completed its execution, such as crash dumps or execution logs. These debuggers
are valuable for post-mortem analysis to understand the causes of crashes or
failures that have already occurred. They do not provide real-time interaction with
the running program but instead help developers analyze the state of the program
at the time of the crash or the events leading to the failure [Hofer 2006, Ko 2008,
Lewis 2003, Lienhard 2008, Lienhard 2009, Pothier 2007].

These debuggers offer an important advantage over standard interactive
debuggers when dealing with hard-to-find bugs. If the program under investigation
behaves non-deterministically, then restarting the debug process and the program
to investigate the causes of the bug might not reproduce the failure. Furthermore,
other errors might manifest that are different than the initial one that prompted
the debug session [Engblom 2012]. With post-mortem debuggers, the execution
is finished and recorded, making it easier for developers to investigate this type of
bug.

2.1.2.2 Interactive debuggers

Interactive debuggers, which our thesis centers on, enable developers to control the
execution of a running program and inspect its internal state. With these debuggers,
developers can set breakpoints, navigate through code, and analyze variables and
data structures to gain insight into how a program operates and to identify potential
errors.

2.1. Debugging in Software Development 17

Interactive debuggers come in various forms, such as the ones included
in integrated development environments (IDEs), command-line debuggers, and
graphical user interface (GUI) debuggers.

Nowadays, many popular programming languages and environments are
shipped with an interactive debugger as the default debugging tool. Examples
include Gdb [Richard Stallman 2003] (GNU Debugger) for C/C++ programs, the
Java debugger [Oracle 2023], Chrome’s debugger for Javascript [Google 2023],
the Pharo debugger [Black 2009], Pdb [PDB 2023] for Python, and Visual Studio’s
debugger [Microsoft 2023] for various programming languages.

2.1.3 Debugging by exploring executions history
We call exploring execution history (EEH) to the capability provided by certain
debuggers to explore program executions and observe program states in their
execution history. To the best of our knowledge, there is no consensus
in the literature on the specific meaning of key terminology related to the
aforementioned capability. To set a clear and precise foundation for explanations,
we present the following definitions, which we will utilize throughout this
dissertation (Figure 2.1).

 EEH-capable Debuggers

Post-mortem debuggersInteractive debuggers

Complete execution history view

Event-specific execution history view

Can reverse and replay
Back-in-time
debuggers

Event-specific
post-mortem
debuggers

Can not reverse and replay
Interactive debuggers

with access to complete
execution logs

Time-traveling
debuggers

Interactive debuggers
with access to event-

specific logs

Figure 2.1: Graphical representation of our definitions of time-traveling and back-in-time
debuggers based on capabilities and debugging approaches.

We use the term back-in-time debuggers when referring to post-mortem
debuggers that provide the EEH capability. Back-in-time debuggers logs contain
all the data required to allow developers to see a complete view of the state of the
program at any point in its execution history. Examples of these debuggers, often

18 Chapter 2. Background and State of the Art

named omniscient debuggers in the literature, include [Lewis 2003, Pothier 2007,
Pothier 2011]. Other post-mortem debuggers [Ko 2004,Ko 2008,Lauwaerts 2023],
in contrast to our definition of back-in-time debuggers, do not provide a complete
view of all the states of an execution, specializing instead on logging specific
program events to observe particular program behaviors.

We use the term time-traveling debuggers when referring to interactive
debuggers providing the EEH capability. The main distinction with back-in-time
debuggers is that time-traveling debuggers allow developers to control and reverse
the running debugged execution. This way, developers can access and explore all
the program states of the running execution following an interactive debugging
workflow.

As our thesis centers on interactive debuggers, from here on, our discussions
will gravitate around time-traveling debuggers primarily.

2.2 Time-traveling Debuggers

These tools offer developers the ability to reverse a debugged program to any point
in its execution history, which helps to find the cause of a failure. Time-traveling
debuggers enable the reproduction of subtle bugs by guaranteeing the execution of
otherwise non-deterministic ones [Arya 2017].

Main characteristics defining time-traveling debuggers

In the world of time-traveling debuggers, there are numerous variations that differ
in their specialized debugging features and inner mechanisms.

We state what we consider to be the main common aspects that define a time-
traveling debugger. In this dissertation, we consider that time-traveling debuggers
present the following specific characteristics:

1. They are interactive.

2. They are able to reverse a program to a previous point in their execution
history.

3. They are able to replay a program deterministically: On every replay of the
program, the program is stepped through the same executed instructions. The
program goes through the same program states during each replay.

While solutions presenting only one or two of these points deviate from
our definition of time-traveling debuggers, we nonetheless examine them when
discussing the corresponding characteristics in the dissertation.

2.3. State-of-the-art Time-traveling Techniques 19

2.3 State-of-the-art Time-traveling Techniques

Different time-traveling debugger solutions implement a variety of techniques
for time-traveling. These techniques depend on many factors, including the
target programming language of the debugged program, the runtime, the operative
system, and the target abstraction level the debugger operates (software level,
hardware level, and combinations). Despite the multitude of variations addressing
these factors, these techniques often share a common base. We describe the base
techniques commonly used by current time-traveling debuggers.

2.3.1 Techniques used for reversal

We refer as reversal to the feature of time-traveling debuggers that allows
developers to step backward in the execution history of a program to examine its
past states and diagnose issues. To achieve this, time-traveling debuggers record
program data during the execution of the debugged program. Then, the debugger
uses these records to reconstruct the target program state [Engblom 2012]. We
identify the following reconstruction techniques used to implement the reversal
feature.

Snapshot-based execution reconstruction

Process snapshotting i.e., capturing a process’ state, is a commonly used reversal
technique. It is used as part of the reversal mechanism in many time-traveling
solutions [O’Callahan 2017, Phang 2013, UDB 2023, Vilk 2018]. These solutions
rely on the capability of the system to create snapshots of the debugged processes.

To create snapshots, the debugged process is suspended, and forked i.e., a copy
of the suspended process is made, and then it is stored by the debugger. Each
snapshot captures the entire application state (i.e., both heap and the stack) of the
debugged program. The application state can then be returned to a previous state
by resuming the process of one of the stored snapshots.

[Barr 2014, Barr 2016] takes advantage of managed runtimes features to
distinguish application memory from the rest of the runtime. This allows them to
scope down the snapshotted elements, avoiding taking snapshots of the complete
process (which would include the runtime itself) and instead only include the
crucial application state.

Replay-based execution reconstruction

Replay-based execution reconstruction consists of reconstructing a past state by
executing forward from some saved state [Engblom 2012]. This prevents the need
to create snapshots of every state of the program.

20 Chapter 2. Background and State of the Art

Depending on the implementation, debuggers choose to sparsely capture
snapshots on specific program events (e.g., method calls), repeatedly after a certain
amount of time has passed, or both [Engblom 2012, UDB 2023]. Since not all
execution states are recorded (i.e., there is no snapshot taken after each step), to
reverse an execution to a point a few steps forward after the state captured in
a snapshot, the execution is advanced deterministically from that snapshot, thus
reconstructing the target execution state.

This reconstruction technique only needs to record the information that cannot
be reconstructed from loading the past state. This diminishes the need for snapshots
and allows for smaller logs in comparison to a record-all approach.

In practice, most implementations follow this approach [Arya 2017,
Barr 2014,Barr 2016,King 2005,Montesinos 2008,O’Callahan 2017,Phang 2013,
Pothier 2011, UDB 2023, Vilk 2018].

2.3.2 Techniques used for replay
When debugging a program by exploring its execution back and forth, the program
under investigation is required to be deterministic. However, there are many factors
that can introduce non-determinism into program executions, such as system calls
e.g., obtaining the system time or generating random numbers. In such a situation,
attempting to reproduce an error by rerunning the program is unlikely to work
(i.e., not reproducing the bug), or even encountering different errors than the initial
one [Engblom 2012].

Each time-traveling debugger has a particular implementation to achieve the
deterministic replay of a program. However, most implementations [Arya 2017,
Barr 2014,Barr 2016,King 2005,Montesinos 2008,O’Callahan 2017,Phang 2013,
Pothier 2011, UDB 2023, Vilk 2018] adhere to the following base technique:

• When executing the debugged program, the debugger logs the result of the
functions that introduce non-deterministic behavior in the program. Then,
during replay, the recorded functions are not executed, and their results are
synthesized from the logs [Arya 2017, Barr 2014, Barr 2016, King 2005,
Montesinos 2008, O’Callahan 2017, Phang 2013, Pothier 2011, UDB 2023,
Vilk 2018].

• To address non-determinism in multithreaded or multiprocess programs,
the debuggers enforce lock-based synchronization. This is typically
implemented with a shared lock for synchronization [Arya 2017, Barr 2014,
Barr 2016, King 2005, Montesinos 2008, O’Callahan 2017, Phang 2013,
Pothier 2011, UDB 2023, Vilk 2018]. Parallel and concurrent executions
are forced to execute their instructions in a sequential manner. Then, the
debugger records this sequential order. During replay, the debugger enforces
the recorded order.

2.4. Complementary Debugging Capabilities 21

Next, we describe different works that, while not consisting of debuggers,
propose mechanisms for deterministic execution replay. [Devietti 2009,
Montesinos 2008, Hammond 2004, Herlihy 1993, Huang 2013] propositions focus
on the techniques and schemes that could be used to implement deterministic replay
features for debuggers.

Delorean [Montesinos 2008] offers a scheme to reproduce executions
efficiently. Their proposition uses an approach that achieves the deterministic re-
execution of every instruction block (chunk) for a time-travel operation in all the
recorded threads, respecting the order of execution of these chunks.

CLAP [Huang 2013] achieves a deterministic final output of computations on
every replay by preserving the causality of actions. The approach only records the
interleaving events that, if replayed in a different order, would affect the outcome
of computations.

Transactional Memory [Hammond 2004, Herlihy 1993] is a transaction-based
alternative to lock-based synchronization. It is used to make multiprocess execu-
tions behave similarly to deterministic serialization while keeping parallelism. This
technique is used by the work presented in DMP [Devietti 2009]. DMP handles
multiprocessing non-determinism differently by performing deterministic thread
or process interleaving upfront (during the first execution of the program) without
the need to record logs or force processes to execute instructions one at a time.

2.4 Complementary Debugging Capabilities
Debuggers often offer specialized debugging capabilities. As described in
Chapter 1, our proposition to improve interactive debugging problems involves
combining time-traveling, scripting, and querying capabilities. In this section, we
focus on the latter ones: scripting and querying.

2.4.1 Scriptable debugging
We refer to debuggers possessing scripting capabilities as scriptable debuggers.

These debuggers are tools that provide the capability for developers to automate
and customize the debugging process using scripts. Scriptable debuggers offer
an interface that allows developers to write scripts or code that interact with the
debugger’s functionality, enabling them to perform complex debugging tasks and
analyses without manual intervention.

Using scriptable debuggers, developers can automate repetitive debugging
tasks. This includes tasks such as setting up breakpoints, analyzing data, and
running tests in a specific sequence. Developers can use scripting to perform
analyses on program execution, identify patterns, extract specific information from
the program’s state, and perform custom actions when certain conditions are met.
We describe next a few examples of scriptable debuggers.

22 Chapter 2. Background and State of the Art

GDB [Richard Stallman 2003] (GNU Debugger) allows developers to script
and automate debugging tasks using the Python and GUILE1 programming
languages. LLDB (Low-Level Debugger), commonly used on macOS and certain
Linux platforms, supports scripting using the Python programming language.
Sindarin [Dupriez 2019] for Pharo offers a scripting API for the Pharo debugger
that eases the expression and automation of different strategies developers pursue
during their debugging sessions. Visual Studio is an IDE that supports various
programming languages and provides its own debugger. By using the Development
Tools Environment (DTE) libraries, developers can write programs or debugger
extensions to automate certain debugging actions. WinDbg is a debugger for
Windows and supports scripting using JavaScript.

2.4.2 Query-based debugging

Query-based debugging, also known as interrogative debugging, refers to
using querying mechanisms to obtain specific insights about the program’s
execution [Ko 2004, Lencevicius 1997, Phang 2013, Torres Lopez 2021]. We
describe next work that uses queries in the context of debugging.

[Lencevicius 1997, Lencevicius 1999, Lencevicius 2003] present query-based
debugging solutions for verifying relationships among objects. [Lencevicius 1997]
is built for the SELF programming language and [Lencevicius 1999, Lencevi-
cius 2003] for Java. [Lencevicius 1997] defines a querying notation that is then used
in [Lencevicius 1999, Lencevicius 2003]. The queries are used to express object
relationships of a debugged program. When the expressed relationship is violated,
the debugger breaks the execution, starting an interactive debugging session.

Expositor [Phang 2013] is a time-traveling debugger with querying support.
One of their main contributions is their abstraction of the execution trace, which
is a time-indexed sequence of program state views. Programmers can manipulate
traces as if they were simple lists with operations such as map and filter. Queries
are written using their own DSL.

STIQ [Pothier 2011] is a back-in-time debugger for Java that provides a
scalable solution that is able to deal with large execution traces. The querying part
of the work focuses on efficiently building and indexing the trace, which is used for
querying execution data. There is no specialized query expressing mechanism in
the proposal. To query program data, developers are required to programmatically
iterate through the trace elements to find the debugging information they need.

[Goldsmith 2005] introduces PTQL, a SQL-like query language over program
traces, and PARTIQLE, a special Java compiler. In their work, given a PTQL query
and a Java program, PARTIQLE instruments the program to execute the query on
the running program. Queries are used to log events when the query condition is

1More information available at gdb site https://sourceware.org/gdb/onlinedocs/gdb/
Extending-GDB.html

https://sourceware.org/gdb/onlinedocs/gdb/Extending-GDB.html
https://sourceware.org/gdb/onlinedocs/gdb/Extending-GDB.html

2.5. Comparison of Debuggers’ Features 23

met or to break and debug the program execution. The queries in this solution
are executed independently without requiring a specialized debugger. The Java
debugger is mentioned as a complementary tool that is open when certain query
conditions are met.

Whyline [Ko 2004, Ko 2008] work presents post-mortem debuggers that
provide contextual queries to aid in program comprehension for developers.
These queries help with hypothesis formulation by taking the query-writing
burden off of the developer. However, Whyline implementations are tailored to
specific debugging targets (Alice [Alice 2004] and Java [Oracle 2023]), making it
challenging to apply the solution in a different context.

[Torres Lopez 2021] presents a combination of interactive and query-based
debugging to support finding concurrency bugs on actor-based programs. Their
solution, like in Whyline, aims to fill the gap between the developers’ interpretation
of a failure and speculations of where the root cause of the bug is. Developers select
questions from a set of predefined questions about the code and the program’s
execution. The questions were designed based on concepts of the actor model,
i.e., actors, turns, messages, and promises. The debugger then computes the
answers by analyzing a recorded trace of events about the program execution.

2.5 Comparison of Debuggers’ Features
Throughout this chapter, we have provided an overview of various debuggers that
offer different debugging capabilities and debugging approaches. Although even
more numerous solutions exist in the research landscape regarding these topics, we
chose to focus on reviewing the ones that best represent the crucial aspects of this
thesis.

In this section, we analyze the previously reviewed debuggers based on their
features and their relevance to the two research problems outlined in Chapter 1.
Regarding the first research problem, we investigate the suitability of time-traveling
debuggers for shared memory systems. For the second problem, we have briefly
introduced our proposed solution to enhance interactive debugging by combining
time-traveling debugging, scripting, and querying capabilities. Therefore, in
Table 2.1, we compare the reviewed debuggers in terms of the following debugging
features: time-traveling, scripting, and querying. For time-traveling debuggers, we
also include their compatibility with shared memory systems.

About compatibility with shared memory systems, [Arya 2017, Barr 2014,
Barr 2016, King 2005, O’Callahan 2017, Phang 2013, UDB 2023, Vilk 2018] time-
traveling debuggers are not designed for such a system (Table 2.1). The debugger in
[Lencevicius 1997] runs in a shared memory system (SELF). However, it does not
have time-traveling capabilities. In the same manner, Sindarin [Dupriez 2019] runs

24 Chapter 2. Background and State of the Art

Debugger Time-traveling Scripting Querying
Compatible
with Shared

Mem. Systems
Expositor [Phang 2013] 3 3 3 7

FReD [Arya 2017] 3 3 7 7
Jardis [Barr 2016] 3 7 7 7

[Lencevicius 1997] 7 7 3 N/A
[Lencevicius 2003] 7 7 3 N/A
McFly [Vilk 2018] 3 7 7 7

RR [O’Callahan 2017] 3 3 7 7
Sindarin [Dupriez 2019] 7 3 7 N/A

STIQ [Pothier 2011] 7 3 3 N/A
Tardis [Barr 2014] 3 7 7 7

[Torres Lopez 2021] 7 7 3 N/A
TTVM [King 2005] 3 7 7 7

UDB [UDB 2023] 3 3 7 7
Whyline 2004 [Ko 2004] 7 7 3 N/A
Whyline 2008 [Ko 2008] 7 7 3 N/A

Table 2.1: Debuggers features comparison. We compare the reviewed debuggers in terms
of the following debugging features: time-traveling, scripting, and querying. For time-
traveling debuggers, we include their compatibility with shared memory systems.

in a shared memory system (Pharo). However, it has no time-traveling capabilities.
In this thesis, we aim to fill this void by presenting our time-traveling debugging
solution for shared memory systems in Part I.

In the subject of scripting, [Arya 2017, Dupriez 2019, O’Callahan 2017,
Phang 2013,Pothier 2011,UDB 2023] provide their own scripting API. While these
debuggers allow for the automatization of debugging tasks, developers still need to
learn their specific scripting API.

Regarding querying, the mechanism provided by [Lencevicius 1997, Lence-
vicius 2003, Phang 2013, Pothier 2011] involves expressing queries through DSL
expressions. [Ko 2004, Ko 2008, Torres Lopez 2021] offer a different approach
where the debugger suggests queries instead of developers expressing them. While
easy to use and specialized for specific debugging scenarios, the approach does
not allow developers to express new queries. In this thesis, we aim to improve
on these aspects, seeking to minimize querying expression complexities due to the
introduction of new DSLs while allowing developers to express new queries, which
is addressed in Part II.

In terms of combined features, [Arya 2017, Barr 2016, O’Callahan 2017,
UDB 2023] time-traveling debuggers offer scripting but not querying capabilities.
Expositor is the only time-traveling debugger that combines time-traveling,
scripting, and querying. Expositor combines scripting and time-travel debugging

2.6. Conclusion 25

to allow programmers to automate complex debugging tasks. Expositor uses
UDB [UDB 2023] as an execution logging backend, which grants time-traveling
capabilities. The querying mechanism allows developers to abstract from the
scripting API and logs implementation. Developers use common list operations
such as map and filter to obtain specific execution data. However, as discussed,
developers still require knowledge of Expositor APIs and their queries DSL to
write them.

2.6 Conclusion
To improve the debugging landscape, our thesis addresses two research problems
(Chapter 1). First, we pointed out the lack of time-traveling debuggers for shared
memory systems and set it out as our first objective to settle. Table 2.1 shows that
none of the reviewed solutions are applicable to these kinds of systems.

Secondly, we pointed out the many difficulties of using standard interactive
debuggers. We described how debugging features such as scripting, time-traveling,
and querying can each be used to improve these problems. We briefly outlined our
proposition, time-traveling queries, to solve these difficulties by combining these
features. While Table 2.1 shows that there are debuggers presenting some of these
helpful features, only one of them combines them all (Expositor). However, as we
mentioned, developers still require knowledge of Expositor APIs and their queries
DSL to write them. In our Time-traveling Queries proposal, we aim to improve on
this issue.

Part I

Time-travel Debugging in Shared
Memory Systems

CHAPTER 3

Selective Time-travel in Shared
Memory

Contents
3.1 Introduction . 29

3.2 Motivation . 31

3.3 Problems of Imprecise Memory Scoping In Reversal Operations 33

3.4 Properties for Selective Time-travel 34

3.5 A Selective Time-travel Back End 35

3.6 Conclusion . 38

Time-traveling debuggers are important tools for program comprehension and
debugging. They allow developers to roll back a program execution to specific
points in its past, helping them to reproduce subtle bugs and understand the causes
of failures. However, implementations suffer from reversal imprecision in the
presence of shared memory. In shared-memory systems, where multiple programs
live in the same memory space, these imprecisions can lead to the reversal of
excessive or insufficient memory. This hinders the applicability of time-traveling
debuggers in these systems.

In this chapter, we present a comprehensive analysis of the problems
encountered when applying conventional approaches to shared memory systems.
We identify the properties of time-travel back ends that allow for precise scope
reversal of executions in shared-memory systems and their deterministic replay. We
propose a back end where the support for each property can be optionally enabled
or disabled.

3.1 Introduction
A key challenge for time-traveling debuggers in shared memory systems is
identifying a precise scope for time-traveling operations (Section 3.2). State-
of-the-art time-traveling solutions scope the reversal to an entire process or
system. These solutions rely on the capability of the system to create snapshots

30 Chapter 3. Selective Time-travel in Shared Memory

of the debugged processes to implement checkpoints [Barr 2016, Barr 2014,
O’Callahan 2017, Phang 2013, UDB 2023]. Therefore, they cannot be applied to
a subset of the system execution, e.g., individual threads running in the shared
memory (Section 3.3).

Snapshots capture the entire application state (i.e., both heap and thread state)
and produce over-reversals when restored, i.e., the reversal of more memory
elements other than the ones of the debugged program. Moreover, attempts to
reduce the reversal scope by manually or automatically anticipating which parts
of the system state (e.g., packages, classes, objects) are affected by an execution
would produce under-reversals, i.e., the reversal of fewer memory elements than
the ones required to reproduce the program behavior.

In this chapter, we investigate the essential properties that a time-travel back
end must possess to enable selective time-traveling, ensuring the precise scoping
of reverse operations in shared-memory systems (Section 3.4). To this end,
we designed a time-travel back end where the support for each property is
configurable (Section 3.5).

Terminology

We define shared memory systems as systems or environments that act as hosts
running multiple executions (i.e., multiple programs) interacting with each other
and using a shared memory environment provided by those hosts [Black 2009,
Goldberg 1983, Ingalls 2008, Python 2023, Ungar 1987]. For example, Pharo’s
runtime [Black 2009] is used by developers to build and run all their programs
in the same shared memory. The Pharo IDE, its libraries, tools, and end-user
programs run in the same shared memory. Any program might read and write
shared state and refer to objects from everywhere in the system.

We use the term snapshot to refer to a serialization of a complete operative
system (OS) process, or a serialization of memory regions within the process,
depending on the surrounding context. In object-oriented languages, this would
correspond to the serialization of object graphs. A snapshot of a shared memory
system process includes the complete state of the system, i.e., it includes its heap
and the stack of its runtime.

We define reversal operation as an operation that restores a program’s state
back to a past point in its execution history. We define replay operation as
an operation that steps a program’s execution, ensuring a deterministic and
reproducible behavior. A time-travel operation consists of a combination of reverse
and replay operations, and we use these terms without implicating any particular
implementation or technique.

We use the term time-travel back end to refer to the underlying mechanism and
its components that enable the time-travel functionality. It is essentially the part of
the debugger that handles the reverse and replay of program executions.

3.2. Motivation 31

3.2 Motivation
In this section, we present our motivation for a selective time-traveling solution by
illustrating the problems of snapshot-based implementations in a shared memory
system.

Time-travel debugging in shared memory systems
Let us consider the following example, illustrated in Figure 3.1. We debug a test
case in Pharo, where the debugged program and the debugger run in the same
memory space. We open the debugger and see the debugged program state.

A

B

0 10
The script is lost on reversal

114 141

Legend

Reversed by
stepping back.

Stepping from A to B.

Unwanted reversal
side effect.

Figure 3.1: Debugger state before/after some manual steps. We write debugging scripts
to obtain execution data and step the execution from PC 114 to 141, and with our script,
we observe that the size of the collection changed from 0 to 10. While stepping back, the
snapshot-based reversal mechanism reverses not only the debugged program but also the
debugger state, erasing our debugging script.

To observe how the program evolves, we step through its instructions and write
a script in the debugger (scripting area enclosed in red in Figure 3.1) to obtain

32 Chapter 3. Selective Time-travel in Shared Memory

execution data. Then, we decide to step back the execution to observe a past
execution state.

State-of-the-art time-traveling debuggers often rely on snapshots [Barr 2016,
Barr 2014, Devietti 2009, King 2005, Montesinos 2008, O’Callahan 2017,
Phang 2013, Pothier 2011, UDB 2023, Vilk 2018], but these snapshot-based
solutions are non-selective. This means that when using them, the reversal
operation reverses everything. Without the ability to selectively choose what to
reverse, the debugger state is also reversed. In that case, we lose our debugging
script, as the state of the scripting pane (and everything performed by the script) is
also reversed by the snapshot.

This effect extends to any program running in Pharo. When reloading a
snapshot, everything done in the system after that snapshot is reversed to the
state captured by that snapshot. If breakpoints were placed during this debugging
session, they would be lost. If we were listening to music with a multimedia player
in Pharo, the current song would be interrupted, and the music player would reverse
back to the song playing at snapshot time. If we made changes to the source code,
they would be reversed as the code editor is also a program running within Pharo.

Therefore, using snapshot-based solutions, the state of the debugged program
is always synchronized with the state of all programs running in shared memory
systems. While this is a desirable property for some systems [Arya 2017], in
Pharo (and in shared memory systems in general), we lose the power of our tools
and programs, whose state cannot be separated from the state of the debugged
program in snapshots. This means that snapshot-based solutions are not applicable
in practice for implementing and using time-traveling debuggers in shared memory
systems.

We need to be able to time-travel the execution of a debugged program
while preserving the state of non-related programs running in the same system.
Consequently, we require a back end that allows developers to:

1. Reverse the state of the thread of a particular execution and its effects while
controlling undesired side effects of reversal operations, i.e., having an
appropriate scope for selecting and restoring memory state.

2. Perform deterministic replay of the thread to reproduce the debugged
execution behavior consistently.

To the best of our knowledge, there are currently no time-traveling solutions
designed specifically for shared memory systems. Our work explores this subject
and suggests a solution that is tailored to meet the requirements of these particular
systems. Furthermore, we discuss the key requirements for the development of
such solutions.

3.3. Problems of Imprecise Memory Scoping In Reversal Operations 33

3.3 Problems of Imprecise Memory Scoping In
Reversal Operations

Without a precise memory scope for reversing an execution, reversal operations
affect memory state in the system unrelated to the debugged program, producing
side effects. In this section, we identify these undesired effects and describe how
our work addresses scoping problems in shared memory.

3.3.1 Side effects

Over-reversing (OR) is a scoping problem that occurs when reversal operations
reverse more than the required state. Consequently, the operation ends up affecting
other elements in the shared memory system. This issue typically happens if a
snapshot-based reversal approach is used since process restoration would affect all
threads and memory elements.

Modifying memory used by other programs will introduce alterations in their
execution, risking unexpected system behaviors (as in the example in Section 3.2)
and potentially breaking their executions completely. The greater the excess of
unrelated memory modified, the more alterations are introduced. Therefore, a
reversal operation should restrict the scope of affected memory to the memory
related to the debugged execution.

Under-reversing (UR) is a scoping problem that occurs when a thread reversal
operation does not reverse enough state. The execution effects of the thread are not
totally undone, which leads to an incomplete reversal. This happens, for example,
if the reversal solution would reverse only the program counter of a stack frame.

An incomplete reversal scope will not reverse parts of the debugged program
state. Consequently, when developers go backward, they reach a different past
state than the one that happened. For example, when debugging a program that
consumes a stream, if the reversal operation does not reverse the state of the stream,
developers would be unable to correctly reproduce the program behavior as the
execution would restart with the stream already consumed.

3.3.2 Towards selective time-travel

The premise of snapshot-based time-travel solutions is that debugged executions’
dedicated memory is isolated from the rest system and contained within OS
processes [Arya 2017, King 2005, O’Callahan 2017, Phang 2013, Savidis 2021,
Wallaby.js 2023]. Such memory isolation for executions is not present in shared
memory systems. To reverse a program to a previous state, snapshots are usually
taken prior to the program’s execution. Without clear isolation of a program’s
memory, any prediction of the affected system state made during snapshot creation
may not be accurate due to the unpredictable changes performed by the program

34 Chapter 3. Selective Time-travel in Shared Memory

execution. This applies indifferently whether it is a manual selection made by the
developers or produced by a programmatic process. There is always the risk that
the debugged execution will modify memory outside the selected snapshotted state,
and the risk of not including all the appropriate state in the snapshot, which would
lead to an incomplete reversal.

By our definition, a selective reversal scope ensures the reversal of the exact
changes performed by a particular thread execution without producing OR or
UR. To identify the precise scope for reversal operations, one could monitor
every change in memory performed by the debugged program. This allows the
reversal operation to affect precisely the changes made by the debugged program.
Therefore, to overcome snapshot-based scoping imprecisions, we track all writings
performed by the debugged program and ensure that reversal operations only affect
memory within the scope.

However, this writing-tracking approach relates closely to implementation
concerns and does not explain why other solutions cannot perform selective
reversal operations. The approach also does not relate directly to the deterministic
replay of a program, which is also an essential part of time-travel operations. Our
work aims to define a basic framework that will enable us to connect these issues
closely together. To this end, we followed the writing-tracking approach to identify
the precise scope for operations as a starting point of our study. From there, we
identified and studied a set of properties that time-travel solutions must possess
to support selective time-traveling in shared memory systems. The properties are
agnostic of the used approach or implementation details. These properties cover
all aspects of time-traveling, including reversal and replay operations, on programs
running in shared memory systems.

3.4 Properties for Selective Time-travel
In this section, we identify the essential properties that a time-travel back end
must expose to support execution reversal and replay of single-threaded and
multithreaded programs running in shared memory systems.

There are three distinct actions involved in time-traveling operations: reversing
the state of the execution threads, restoring the changes made by their execution
in the shared memory, and reproducing the same program behavior. To solve
snapshot-based solution limitations, selective time-traveling operations require the
back end to perform these actions on individual threads, e.g., reversing the state of
a thread should not reverse another thread’s state. From these actions, we defined
three properties required for selective time-traveling operations on single-threaded
executions, and an additional one to support also multithreaded executions.

Property 1: Thread State Reversal (TSR). The time-travel back end is able to
restore the state of a specific thread. This implies that other threads in the system

3.5. A Selective Time-travel Back End 35

are left unaffected.
The time-travel back end must be able to recover the execution stack of a thread,

i.e., the thread state. For instance, reverting a thread’s state to the beginning of a
stack frame (i.e., to the beginning of a function call) by restoring the local variables
to their default initial value and the program counter of the stack frame.

Property 2: Execution Effects Reversal (EER). The time-travel back end is
able to track changes in memory and undo the effects of the execution of a specific
thread.

The execution of a thread performs modifications on the shared memory, having
effects on the system memory. These effects must be reverted when performing a
reversal operation.

Property 3: Non-Determinism Sources (NDS) Handling. The time-travel back
end is able to enforce the deterministic replay of every instruction of a thread,
reproducing the same thread execution behavior on every replay, considering a
consistent initial state.

We consider instructions that potentially behave differently when being
replayed as NDS. Replaying an execution that contains NDSs will produce
program behaviors that follow different execution paths on each replay, making
it non-reproducible. This impairs the capability to debug hard-to-reproduce
failures [O’Callahan 2017]. Examples of NDS include typical system calls such
as obtaining the system time, generating random numbers, and reading from a file
or a socket.

Property 4: Deterministic Context Switching (DCS). The time-travel back
end is able to execute every instruction of the concurrent threads of the debugged
execution in a consistent order on every replay.

In concurrent systems running multiple threads, the interleaving of threads,
and hence the execution order of the instructions of a multithreaded program, is
usually non-deterministic. The host system decides the scheduling order to execute
threads, which can create race conditions in the debugged program execution. This
non-determinism source is a factor external to the instructions of the debugged
execution. However, it must be handled by the time-travel back end to ensure
deterministic execution replay.

3.5 A Selective Time-travel Back End
In this section, we propose a back end that supports selective time-travel for
multithreaded programs. We designed a time-travel back end that allows for
enabling or disabling support for each property individually. This configurable

36 Chapter 3. Selective Time-travel in Shared Memory

design allows us to perform experiments to evaluate the impact of these properties
on time-travel operations.

3.5.1 Time-travel back end overview
Our design comprises two types of components: The Execution Control Unit
(ECU) and the Thread Control Unit (TCU). TCUs provide individual thread time-
travel capabilities. There is one TCU for each thread of the debugged program’s
execution. A single ECU manages and coordinates the TCUs to enable time-travel
operations on particular multithreaded execution.

Figure 3.2 illustrates a shared memory system running multiple executions. In
this example, Program 1 execution corresponds to the execution of the time-travel
back end, and Program 2 is the debugged program. The ECU controls Program
2 execution by monitoring its corresponding threads (Thread1 and Thread2) with
individual TCUs. The figure also shows other programs running in the system,
which are not monitored by the back end.

Shared Memory System

Legend

Program 1: Time-traveling back end execution

Execution Control Unit (ECU)

 : Component handling Property 4
 Deterministic Context Switching

Program 2 Execution Program 3 Execution

Thread Control Unit
(Thread1)

Thread Control Unit
(Thread2)

Thread1 Thread2

Writings
Thread1 (Eff)

Writings
Thread2 (Eff)

Thread3

Recorded
System Calls

Thread1 (NDS)

Recorded
System Calls

Thread2 (NDS)

Thread States
Thread1 (Dyn)

Thread States
Thread2 (Dyn)

monitors monitors

TSR TSR

NDSNDS

EER EER

DCS
Program 4 Execution

Thread4

Thread5

…

Program N Execution

…

TSR : Component handling Property 1
 Thread State Reversal

EER : Component handling Property 2
 Execution Effects Reversal
 : Component handling Property 3
 NDS Handling

NDS

DCS

 : Clearly delimited memory
 elements

 : Grouping of memory elements
 without delimited boundaries

Figure 3.2: Back end design supporting multithreaded programs in shared memory
systems. The figure shows which components support each one of the identified properties
that enable selective time-traveling operations.

3.5.2 Back end components and properties support
The Execution Control Unit is the main component of the time-travel back end. To
provide support for reverse and replay of multithreaded programs, it performs 3
essential tasks:

3.5. A Selective Time-travel Back End 37

1. It generates and provides a program timestamp that serves to unambiguously
identify the precise moment in the program execution history when events
take place.

2. It enforces the order of thread interleaving (DCS support).

3. It coordinates actions required by each TCU to perform reverse and replay
operations (TSR, EER, and NDS support).

The back end exhibits two distinct stepping behaviors based on whether the
debugged program is being executed for the first time or during any subsequent
replay. To control multithreaded program executions, during the first time
executing the program, the ECU decides and logs which TCU will execute the
next instruction. During replays, the interleaving order is reproduced from the
logs, providing support for the Deterministic Context Switching property. When
the support for DCS is disabled, no logs are produced.

During the first execution of the debugged program, the TCUs record program
data. At each step, they capture and store execution data, including thread states,
writing operations, and system calls returned values. All recorded data is logged
along with the program timestamp corresponding to the moment of the capture.
For each step performed by any TCU, the ECU updates the program timestamp,
allowing every record to have a unique timestamp corresponding to an instruction
of the program. During subsequent replays of the program, the TCUs synthesize
parts of the execution using the recorded data. This synthesis process allows for
precise and consistent execution replay, even in scenarios involving system calls.

For each step of the debugged program thread executed by the TCU, the current
instruction is analyzed and processed following the stepping pipeline (Figure 3.3).
Instructions processed by the pipeline will trigger the activation of corresponding
back end components. First, for any instruction identified as a writing operation,
the component handling EER records information to enable the capability of
reversing the writing action. Then, if the instruction is recognized as a system
call, the NDS component records information to allow for consistent replay.

The TCU enables the reversal and deterministic replay of a particular thread
execution by coordinating the actions of its components, which we named after the
properties they provide support for:

1. TSR: Provides support for the Thread State Reversal property. When
enabled, this component stores the thread’s state (i.e., the execution stack
of a thread) of a program during its execution, and restores the thread’s state
when a reversal operation is performed. When disabled, there is no recording
of the thread’s state, and the reversal leaves the thread unmodified.

2. EER: Provides support for the Execution Effects Reversal property. When
enabled, this component logs and undoes writing operations performed

by the thread. When disabled, no writing operations are logged during
execution, and consequently, writings are not undone during reversal
operations.

3. NDS: Provides support for the NDS Handling property. When enabled, this
component logs system calls executed by the thread, registering their return
value so they can be deterministically replayed. When disabled, no logs are
produced.

component

component

NDS

EER

Instr. is a Writing
Operation?

AND
Is first execution?

Record writing
data

start

end

Instr. is
System
Call?

Execute it
normally

1st execution: record return;
Replays: synthesize from record

Update program
timestamp

Yes

No

No Yes

Figure 3.3: The TCU Stepping Pipeline. To offer the required time-traveling capabilities,
the TCU advances a thread execution one instruction at a time i.e., performing a step.
For every step, the stepping pipeline is applied to ensure the appropriate reversal of the
execution effects (EER) and deterministic replay of the execution (NDS).

3.6 Conclusion
Time-traveling debuggers are already part of the software industry. However,
existing solutions are limited in their applicability, specifically when it comes to
systems that involve multiple executions within a shared memory environment.
This limitation arises due to the inherent reliance on snapshots as a fundamental
component of the reversal mechanism.

In this chapter, we identified 4 properties that a time-travel back end should
possess to overcome the challenging aspects of scoping reversal operations and for
deterministic replay. From these properties, we proposed a selective time-travel
back end design that is able to reverse and deterministically replay multithreaded
program executions in shared memory systems while controlling the side effects
on the rest of the system.

CHAPTER 4

Implementation

Contents
4.1 The Standard Pharo Debugger: An Overview 39

4.2 Seeker: A Time-traveling Debugger for Single-threaded Programs 41

4.3 Executor: A Time-traveling Debugger for Multithreaded
Programs . 54

4.4 Implementation Discussion . 55

4.5 Conclusion . 60

In this chapter, we present Seeker, a new time-traveling debugger for single-
threaded executions in shared memory systems, and Executor, a time-traveling
debugger prototype for multithreaded program executions.

We developed our time-traveling debuggers in Pharo, a shared memory system.
We followed an incremental development process, starting with the creation of
Seeker. Its time-travel back end is specifically designed for single-threaded
programs. It includes a user-friendly graphical user interface (GUI) and scripting
capabilities. Our second implementation, Executor, is built upon Seeker. Reusing
Seeker’s time-travel back end to handle each thread of a multithreaded execution,
Executor serves as a prototype debugger for multithreaded programs in shared
memory systems.

In the upcoming sections, we begin with an overview of the standard Pharo
debugger to provide context for our implementations. Then, we will present the
details of our implementations and how they meet the properties for selective time-
travel for single and multithreaded programs.

4.1 The Standard Pharo Debugger: An Overview
In this section, we describe the standard debugging features, workflow, and the
debugger user interface to contextualize our implementations.

The StDebugger (Figure 4.1) is an interactive debugger for Pharo programs.
To start debugging and exploring a program, developers use breakpoints to
automatically break the program at certain points in its execution. When a

40 Chapter 4. Implementation

breakpoint is hit, the StDebugger obtains control of the program execution, and
its GUI is shown.

The debugger shows the Stack (Figure 4.1 a), a visual representation of what,
in general terminology, is known as the execution call stack. Developers manually
step through the execution by using the commands (Figure 4.1 b). After any
debugging action, the code presenter (Figure 4.1 c) is updated and highlights the
source code that will be executed in the next step. Developers observe execution
data using the inspector (Figure 4.1 d) in addition to the stack.

a
b

c

d

Figure 4.1: The Pharo StDebugger main GUI elements. Composed by the stack (a), the
debugging commands toolbar (b), the code presenter (c), and the debugger inspector (d).

Standard debugging commands of the StDebugger
The debugging commands offered by the StDebugger in the commands
toolbar (Figure 4.1 b) are the following ones:

Proceed: Resumes the normal execution of the debugged process until a new
breakpoint is hit or the program is finished.

Into: Steps into method invocations. Interprets the bytecode instructions of the
program until a message is about to be sent, a method is activated (i.e., after

4.2. Seeker: A Time-traveling Debugger for Single-threaded Programs 41

the message send), a method is about to return, or an assignment is about to
be performed.

Over: Steps through the code, avoiding entering method invocations or closure
evaluations. Interprets the bytecode instructions of the program. Stops
only for the following conditions in the current Context1 or its sender
context: until a message is about to be sent, a method is about to return,
or an assignment is about to be performed.

Through: Steps through the code, avoiding entering method invocations. It enters
BlockClosures2 defined in the current activated method. Interprets the
bytecode instructions of the program. Stops when a message is about
to be sent, a method is about to return, or an assignment is about to be
performed in specific contexts. These contexts are: the current context, any
BlockClosure context originating from the current context, or its sender
context.

RunTo: Executes instructions up to the code under the caret or until the current
method returns.

Restart: Goes back to the start of the context currently selected in the stack,
typically the current executing one, reinitializing its local variables.

4.2 Seeker: A Time-traveling Debugger for Single-
threaded Programs

In this section, we describe our time-traveling debugger that integrates into the
standard Pharo debugging workflow while adding support for selective reversal
and deterministic replay for single-threaded programs.

4.2.1 Seeker, in a nutshell

Seeker is an interactive scriptable time-traveling debugger for Pharo. It integrates
seamlessly with the standard debugger, allowing developers to debug live program
executions using new time-travel capabilities. With Seeker’s scriptable API,
debugging tasks can be automated, eliminating the need for many time-consuming
manual actions.

1In Pharo, a Context is an object representing what is commonly known as a stack frame,
containing data of the execution state of a method and a pointer to the calling frame (the sender
Context)

2In Pharo, a BlockClosure is an object that represents closures, used as anonymous functions
or code blocks.

42 Chapter 4. Implementation

Seeker can be executed embedded in the standard debugger GUI Mode or
as a standalone programmatic debugger Headless Mode. GUI Mode provides
a graphical interface that is complementary to the standard debugger, granting
access to the new time-travel features. Headless Mode allows developers to
programmatically control the debugger, enabling scripting and automatization of
repetitive debugging tasks.

4.2.2 GUI Mode: Time-travel for the standard debugger
As the standard debugger for Pharo, the StDebugger is the main debugging
tool available for Pharo developers. StDebugger users are already familiarized
with its GUI and usage, and therefore, we wanted to include the new features
without disrupting their usual debugging workflow. For this, we added Seeker
GUI (Figure 4.2) using the Pharo debugger extension system.

4.2.2.1 Seeker enhanced debugging commands

Our reversal mechanism relies on the recorded data of a program i.e., a trace,
to perform reversal operations. This trace contains records of writing operations
performed by an execution. The trace remembers values before assignments or
methods that perform writing so the modified values can be restored later. The
standard debugging commands advance the program without generating such a
trace. Consequently, Seeker rewrites these commands, ensuring that the trace
is produced when the execution is advanced. These are the differences over the
standard debugging commands.

Proceed (Overridden): In addition to the original behavior, it also deletes
recorded program data produced by the time-travel mechanism.

Into, Over, Though (Overridden): They show the original behavior. In addition,
and transparently to the user, the debugger steps the bytecodes one by one.
On each step, the trace is created, and a timestamp is generated by counting
the number of executed bytecodes.

RunTo (Overridden): In addition to the original behavior, the enhanced RunTo
can also target code that was already executed. Developers time-travel
backward in time by placing the caret on any visible code in any of the
contexts in the stack.

Restart (Overridden): In addition to the original behavior, the enhanced Restart
also adjusts the counter of executed bytecodes and reverts any changes
performed by the execution since the activation of the selected context. This
includes reverting any changes performed by the debugged program on the
method arguments, objects instance variables, globals, etc.

4.2. Seeker: A Time-traveling Debugger for Single-threaded Programs 43

4.2.2.2 New time-travel debugging commands

Figure 4.2: Seeker GUI as an extension of the standard Pharo debugger (a). The GUI
includes the new time-travel commands (b), and the scripting panel (c).

Seeker includes a new set of time-travel debugging features, which are also
included in the GUI (Figure 4.2 b):

1. Back 1: Reverses the execution state to the state it was before the execution
of the last executed bytecode.

2. Adv. 1: Interprets one bytecode instruction of the program and stops.

3. Adv. Statement: Advances the execution until reaching a different
statement in the current context.

4. Prev. Statement: Reverses the execution to the previous statement in the
current context.

5. Reset: Executing a Reset command is equivalent to performing a Restart
command while selecting the program’s initial context. Reverses the
execution by restarting the initial context of the program while undoing all
the changes performed by the execution. Resets the counter of executed
bytecodes to 0.

44 Chapter 4. Implementation

6. ToEnd: Automatically steps through the bytecodes, stopping right before
the step that would terminate the execution.

7. STOP: A fail-safe mechanism to interrupt debugging scripts that take too
long to complete or that might never finish. If developers write and execute
a debugging script with an infinite loop of steppings or time-travels, they
can press the STOP button. A flag is then set to stop stepping iterations
forcefully. With this feature, developers can regain control of the debugger
without the need for more extreme measures, such as closing and reopening
the debugger or manually terminating the process.

4.2.2.3 The scripting panel

Seeker includes a code presenter where developers can write their debugging
scripts (Figure 4.2 c).

The code presenter offers the seeker variable, which is bound to the
SeekerDebugger object, and developers use it to programmatically manipulate
the debugger during their usual GUI-based debugging workflow.

4.2.3 Debugging programmatically with Headless Mode
All debugging commands and features of GUI mode are also available in headless
mode.

Developers use headless mode to code routines to automate debugging tasks, as
they do with typical scriptable debuggers. The difference is that Seeker offers the
means to reverse executions and their effects on the global state, giving developers
the tools to observe programs behavior and their effects on the system at any point
in their execution history.

1 observedObject := Smalltalk globals at: #aGlobalObject.
2 seeker := SeekerDebugger headlessDebugBlock: myProgramBlock.
3 [seeker executionIsFinished] whileFalse: [
4 (seeker currentState isMessageSend and: [
5 seeker currentState messageReceiver == observedObject]) ifTrue: [
6 transcript show: ’method called for observed object: #’ ,
7 seeker currentState methodAboutToExecute name;cr]. "prints the method name"
8 seeker stepBytecode]
9 seeker restart "reverses the execution and its effects"

Listing 4.1: Example of using the headless mode to debug a program. We use the debugger
to automatically step the program while printing a message when any method of a particular
object is called. Then, we reverse all changes performed by the program.

In the example in Listing 4.1, we want to observe how a program interacts
with a particular object. First, we store the object in a local variable (Line 1).
myProgramBlock is a closure with a program that calls methods of the object.

4.2. Seeker: A Time-traveling Debugger for Single-threaded Programs 45

We start a programmatic debugging session by initializing Seeker to debug the
program in headless mode (Line 2). To observe how the program interacts with the
object, we write a debugging script to list the called methods (Lines 3 to 8). We
use the currentState object to acquire execution data of the program. If the
program state is a message-send (Line 4) and the receiver of the message is our
observed object (Line 5), we log the method name (Lines 6 and 7). Then, we step
the execution once (Line 8), and the script is repeated until the program ends. After
listing the information, we restart the program by using the restart method
(Line 9). This reverts the changes produced by the execution of the program,
leaving the debugger and the program ready to replay the execution. This allows
developers to run more debugging scripts to collect additional execution data.

4.2.4 Seeker implementation
We describe our debugger main class and its integration with the StDebugger.
Finally, we describe how we implemented each component of the selective time-
travel back end design.

SeekerDebugger is the main class of our debugger. It provides an API to
perform programmatic time-travel debugging operations on a program process
(Table 4.1).

Method Description

currentState()
Returns a CurrentState object, which is used to
obtain execution data of the debugged process.

restart() Performs the restart operation.
stepInto() Performs a stepInto operation.

stepOneBytecode()
Executes the next bytecode of the debugged process,
advancing the debugged program.

stepOver() Performs a stepOver operation.
stepThrough() Performs a stepThrough operation.

stepUnitConditionIsTrue:(Block)
Automatically steps the program until the argument
block evaluates to true.

timeTravelToStepNumber:(int)
Performs a time-travel (reversing or advancing the
program) to the specified step number.

Table 4.1: Methods of the debugging API of SeekerDebugger, the main object of our time-
traveling debugger implementation.

SeekerDebugger class is used in both modes: Headless and GUI. To
initiate a headless session, developers initialize the debugger object using any of its
initialization methods (Table 4.2). For GUI mode sessions, Seeker uses the plug-ins
system of the Pharo debugging framework to embed itself in the StDebugger view,
and its integration is accomplished by the SeekerDebuggerPresenter class
(Figure 4.3).

46 Chapter 4. Implementation

Class-side Method Description

headlessDebug:(Process)
Returns a SeekerDebugger object to debug the
execution of the suspended process in the argument.

headlessDebugBlock:(Block)
Returns a SeekerDebugger object to debug the
execution of the block argument.

headlessDebug:selector:withArgs:
(Object, Symbol, Array)

Returns a SeekerDebugger object to debug the
execution of a method call of a specific object with
the specified selector and the provided arguments.

Table 4.2: Class side methods of the initialization API of SeekerDebugger.

1

-

SeekerDebugger

restart(void)
stepInto()
stepOver()
stepOneBytecode()
…

StDebugger

-

SeekerDebuggerPresenter

updateUI()
doAndUpdaterUIAfter:(Block)
initiliazePresenter()
initializeToolbar()
…

Tracer

1
tracer 1

seeker

1
presenter

seeker

1debugger

DbgFW-

StDebuggerActionModel

clearDebugSession(void)
restartContext()
runToSelection:inContext:
 (Interval,Context)
stepInto()
stepOver()
stepThrough()
…

-

SeekerStDebuggerActionModel

clearDebugSession(void)
restartContext()
runToSelection:inContext:
 (Interval,Context)
stepInto()
stepOver()
stepThrough()

DbgFW

1
actionModel

TStDebuggerExtension
DbgFW

uses trait

SpPresenter

DbgFW : Part of the
 Pharo debugging
 framework.
: Part of the
 standard Pharo
 packages.
: Seeker classes.

Figure 4.3: Integration of Seeker as an extension plug-in of the StDebugger. DbgFW:
Classes belonging to the Pharo debugging framework in the standard packages.

SeekerDebuggerPresenter defines the graphic elements of the user
interface (i.e., the toolbar with the new time-travel commands and scripting panel)
and its integration in the StDebugger graphic interface.

The debugger initialization events take place in sequence. When the
StDebugger is initialized, it initializes a SeekerDebuggerPresenter object.
Then, the presenter creates a SeekerDebugger object initialized to perform
time-travel debugging operations on the same debugged process handled by the
StDebugger.

We ensure that the UI is always synchronized with the actual debugging session
state. Whenever a debugging operation is performed (e.g., a time-travel or pro-
gram restart), SeekerDebugger notifies the SeekerDebuggerPresenter
object. Then, the presenter notifies the StDebugger that the display needs to be

4.2. Seeker: A Time-traveling Debugger for Single-threaded Programs 47

refreshed.
SeekerStDebuggerActionModel is the class we implemented to

override the standard debugging commands and make them compatible with the
time-travel mechanism, as described in 4.2.2.1.

While SeekerDebugger exposes the public API to access time-travel
functionalities, the time-travel logic is contained in the classes composing the time-
travel back end, which we describe next.

4.2.5 Components of the time-travel back end
We describe here in detail the implementation of the time-travel back end and how
each component provides support for the identified properties for selective time-
travel of single-threaded executions.

Tracer: In Seeker implementation (Figure 4.4), the Tracer corresponds to the
main class of the Thread Control Unit described in Chapter 3, Section 3.5.

currentStatetracer

/debuggedProcess : Process

CurrentState

node() : RBNode
context() : Context
method() : CompiledMethod
…

/currentState : CurrentState

SystemCallsHandler

currentInstructionIsSystemCall() : Boolean
interpretOrHandle:(BlockClosure)

NDS

undoBlocks : Dictionary<int, BlockClosure>
/currentState : CurrentState

ExecutionReverser

currentInstructionIsWritingOperation() : Boolean
createAndStoreUndoBlock()
evaluateUndoBlocks()
undoBlockForAssignment:(CurrentState) : BlockClosure
undoBlockForAtPut:(CurrentState) : BlockClosure
undoBlockFor… (One method for each writing operation)

EER

debuggedProcess : Process
initialContext : Context
stepNumber : int
instantiatedObjects :
 Dictionary<int,obj>

Tracer

restart()
stepOneBytecode()
timeTravelToStepNumber:(int)

TSR

SeekerDebugger
seeker
1

1
tracer

/currentState : ProgramState
/mapper : ExecutionMapper
/reverser : ExecutionReverser
/systemCallsHandler : SystemCallsHandler

Stepper

stepOneBytecode()

1/currentState : CurrentState
initialContext : Context
endReachedBlock : BlockClosure

ExecutionMapper

isEndReaced() : Boolean

1

tracer
1

stepper

1tracer 1

1

1

tracer

tracer

systemsCallsHandler

11
mapper

reverser

1

Figure 4.4: The time-travel back end of Seeker, where the Tracer is the TCU
controlling the other components. TSR: component handing Thread State Reversal.
EER: component handing Execution Effects Reversal. NDS: component handling Non-
Determinism Sources.

As the main object of the back end, the Tracer coordinates the other TCU
components to create a program trace whose records are used to reverse the
debugged program and also to perform the deterministic replay of the program.

48 Chapter 4. Implementation

During Seeker initialization, the Tracer object is instantiated and initialized.
When initialized, it stores the debugged process in an instance variable. It
also stores a reference to the top Context of the suspended process in the
initialContext variable. Additionally, it sets the stepNumber (which is
used as a timestamp) to zero.

CurrentState: CurrentState objects offer a high-level and uniform API to
access execution data (Table 4.3, Table 4.5, and Table 4.4).

Method Description

arguments() : Array
Returns an array containing the objects in the arguments of
the current activated method.

context() : Context
Returns the suspended Context object, i.e., the context of the
activated method at the top of the stack of the debugged process.

isAssignment() : Boolean
Returns true if the current bytecode instruction is an assignment,
false otherwise.

isMessageSend() : Boolean
Returns true if the bytecode instruction is a message send,
false otherwise.

method() : CompiledMethod Returns the CompiledMethod of the suspended context.

node() : RBProgramNode
Returns the AST node corresponding to the current bytecode
instruction of the suspended context.

receiver() : Object
Returns the receiver object of the current activated method
context in the top of the stack.

receiverClass() : Class Returns the class of the receiver object.
receiverClassName() : Symbol Returns the name of the class of the receiver object.
receiverPackage() : RPackage Returns the object representing the package of the receiver class.

selector() : Symbol
Returns the selector of the activated method of
the suspended context.

willCreateBlock() : Boolean
Returns true if the current bytecode instruction
will create a BlockClosure.

willReturn() : Boolean Returns true if the current bytecode is a return instruction.

Table 4.3: Methods of the CurrentState API to obtain general execution data of the
debugged program.

The execution data available through the CurrentState API is obtained from the
debugged process using Pharo reflective methods, as shown in Listing 4.2. The
context method (Lines 1 and 2) returns the suspended Context object, i.e.,
the context of the activated method at the top of the stack of the debugged process.
The rest of the listed methods use internally the context method to obtain other
execution information.

4.2. Seeker: A Time-traveling Debugger for Single-threaded Programs 49

1 CurrentState >> context
2 ^ debuggedProcess suspendedContext
3

4 CurrentState >> method
5 ^ self context method
6

7 CurrentState >> node
8 ^ self method sourceNodeForPC: self context pc
9

10 CurrentState >> selector
11 ^ self method selector
12

13 CurrentState >> receiver
14 ^ self context receiver

Listing 4.2: Code extract of the implementation of the CurrentState class, showing how the
debugged program data is retrieved from the debugged Process object.

CurrentState objects simplify the task of retrieving execution data by offering
a selection of simple accessor methods that hide most of the complexities of
Pharo reflective API. Developers using CurrentState do not need to know the
complex and lower-level internals of the interpretation model. For example, if the
debugged program is about to execute a method, to obtain the method that will be
executed, developers invoke CurrentState » methodAboutToExecute
(Table 4.4), which will return the corresponding compiled method. To achieve the
same without using CurrentState, developers need to write knowledge-demanding
routines such as the one in the code described in Listing 4.3, Lines 8 to 14.

Method Description

isInstantiationMessage : Boolean
Returns true if the method about to execute is an
instantiation primitive.

methodAboutToExecute() : CompiledMethod
Returns the CompiledMethod that will be executed
by the message-send.

messageReceiver() : Object Returns the object that will receive the message.
messageSelector() : Symbol Returns the selector of the message being sent.
messageArguments() : Array Returns an array with the arguments of the message.

classAboutToBeInstantiated() : Class
Returns the class of the object that will be
instantiated by the instantiation message.

Table 4.4: Methods of the CurrentState API to obtain instruction-specific program
execution data related to message-sends.

The CurrentState API prevents developers from writing repetitive and error-
prone code. For example, to access the receiver object of a message-send without
using CurrentState, developers need to calculate the offset of the object position in
the context, as it is done in Listing 4.3, Line 5. The calls in such a line of code do
not effectively portray the operation the code is trying to achieve, risking the usage
of heuristics or incorrect method calls, producing a wrong result.

50 Chapter 4. Implementation

1 CurrentState >> isMessageSend
2 ^ self node isMessage
3

4 CurrentState >> messageReceiver
5 ^ self context at: self context basicSize − self node arguments size
6

7 CurrentState >> methodAboutToExecute
8 | methodAboutToExecute msgNode messageReceiverClass |
9 msgNode := self node."a RBMessageNode"

10 messageReceiverClass := self messageReceiver class.
11 msgNode receiver isSuperVariable ifTrue: [
12 messageReceiverClass := messageReceiverClass superclass].
13 methodAboutToExecute := messageReceiverClass lookupSelector: node selector.
14 ^ methodAboutToExecute

Listing 4.3: Code extract of the CurrentState class, showing the implementation of methods
to obtain execution data related to message-sends.

The CurrentState API also exposes methods to obtain program execution data
related to assignment instructions (Table 4.5).

Method Description

assignmentVariable() : Variable
Returns the Variable object in the left side
of the assignment.

assignmentVariableName() : Symbol Returns the name of the assignment variable.

assignmentCurrentValue() : Object
Returns the current value of the assignment
variable, i.e., before the assignment occurs.

assignmentNextValue() : Object Returns the value about to be assigned to the variable.

Table 4.5: Methods of the CurrentState API to obtain instruction-specific program
execution data related to assignments.

Stepper: The Stepper controls the ExecutionReverser to revert the
effects of execution. The stepper also uses the SystemCallsHandler
component to enforce deterministic replay. This corresponds to the implementation
of the stepping pipeline described in Chapter 3, Section 5.

ExecutionMapper: Provides a safety mechanism to prevent performing steps
that would terminate the execution.

Since the debugger can only reverse the state of live executions, we need to
ensure that the steps we perform will not terminate the process. If an execution
is advanced carelessly, it might produce the termination of the debugged process.
For example, in Pharo, the origin context of a DoIt execution evaluates the selected
code first and then evaluates code that terminates the process. When our debugger
detects a DoIt execution, the ExecutionMapper creates a block that evaluates to
true if the next instruction is the one that terminates the process. This block, named

4.2. Seeker: A Time-traveling Debugger for Single-threaded Programs 51

isEndReached, is used by the Stepper to decide if steps can be performed or
not.

Additionally, the ExecutionMapper provides a safety mechanism to prevent
restarting an execution from an unsafe context. We consider safe initial context as
the ones that will not trigger the termination of the process on restart, due to Pharo
BlockClosure»ensure: and unwinding mechanisms. When developers start
a time-travel debugging session, the ExecutionMapper ensures that a safe initial
context is chosen as a restart point for the debugged program. If an unsafe context
is detected, the execution mapper automatically takes a few steps forward until it
detects a safe context at the top of the stack and sets it as the new initial context.
When the execution mapper updates the initial context this way, it also updates the
isEndReached block to prevent returning from the new safe initial context.

ExecutionReverser: Its role is to reverse the effects of a thread execution,
which corresponds to the writings performed by writing operations. Writing
operations consist of assignments, writing primitives, and specific other writing
methods (e.g., file system writing). When a writing operation is detected during
a stepping operation, the ExecutionReverser component creates and stores
BlockClosures that, when evaluated, they undo the change performed by the
writing. We call these closures UndoBlocks.

Not all writing operations are recorded. We register only writings to objects
that were not instantiated by the debugged thread. We avoid logging writings
performed to local variables of the thread stack, and to objects instantiated by the
debugged process. As our implementation reversal always restarts the execution
from the beginning, local variables always have the default value and objects are
also initialized with default values during replay.

4.2.6 Seeker time-travel operations explained
In the following, we describe how the components of the back end execute
deterministic time-travel operations.

4.2.6.1 Performing an execution reversal

To reverse the state of the debugged process, all contexts are popped off from the
execution stack until the initial context reaches the top of the stack. Afterward,
the initial context is reset to its default values. As a result, the process state is
reinitialized with the reinitialized initial context on top of the stack, which satisfies
property 1 (Thread State Reversal). The effects of the process execution are
reversed by undoing writing operations recorded by the ExecutionReverser.

Undoing writing operations: To undo the effects of an execution, the
ExecutionReverser evaluates the stored undo blocks in reverse order. This

52 Chapter 4. Implementation

undoes all the thread execution effects, which satisfies property 2 (Execution
Effects Reversal).

Creating undo blocks for writing operations: We create undo blocks
dynamically when a writing operation is executed. Our implementation supports
assignments and writing primitives. Each primitive and each specific writing
method are handled as a different case.

For each different writing case, we developed a specific method that creates an
undo block for that case. When we detect a writing operation, the corresponding
specific method is executed before the writing is performed, and uses execution
data to build an undo block to revert the writing operation.

To illustrate how the undoing works, let us consider the following example that
shows how a particular writing operation is undone. We will focus on the writing
primitive Object»at:put:, which stores a value in the receiver at the indicated
indexable element position (similar to performing receiver[anIndex] =
aValue assignments on arrays in many languages).

Let obj be an object and its fourth indexable element value is 0. The debugged
program is about to execute the writing operation obj at:4 put:2, which is
detected by our back end.

Listing 4.4 shows the method that builds UndoBlocks when the
Object»at:put: writing primitive is executed. The method takes as a
parameter a CurrentState object to access the current execution data of the writing
operation (Line 1). From that execution data, we recover the receiver that will be
written to (Line 3), the memory index to which a new value will be written (Line
4) and the original value located at that memory index before writing (Line 5). In
our example, these values are obj, 4 and 0 respectively.

We then create an undo block (Line 6) that writes back the original value to
the memory index. On a reversal operation, the ExecutionReverser evaluates the
produced undo block, which performs obj at:4 put:0, reversing the writing.

1 ExecutionReverser class >> undoBlockForAtPut: programState
2 | receiver index originalValue |
3 receiver := programState messageReceiver.
4 index := programState messageArgumentAt: 1.
5 originalValue := receiver at: index.
6 ^ [receiver at: index put: originalValue] "<-undo block"

Listing 4.4: Undo block creation method for Object»at:put: writing primitive. The
creation method is executed before the writing is performed.

4.2.6.2 Performing deterministic replay

We explain here how our implementation provides deterministic replay by handling
system calls, satisfying property 3 (NDS Handling).

4.2. Seeker: A Time-traveling Debugger for Single-threaded Programs 53

Identifying NDS: We manually identified a set of methods that can introduce a
NDS. When going through the stepping pipeline, each instruction is analyzed to
detect calls to these methods.

Enforcing deterministic replay: Whenever a system call is about to be executed,
two courses of action can be taken depending if the program is running for the first
time or if the program is replaying that first execution:

1. When running the first time: the instruction is executed, and its return value
is logged.

2. When replaying: the instruction is skipped by increasing the program counter
of the current context, pointing to the instruction immediately following the
message-send. The return value is synthesized by writing the logged value to
the current context at the position where the real return value should be set.

Instantiation primitives and non-deterministic object identities: When Pharo
objects are instantiated, they are assigned an identity hash by the VM. Re-executing
instantiation instructions creates objects with new identity hashes on every replay.
Because identity hashes are non-deterministic, certain data structures (e.g., identity
sets) that collect these objects will store them in a different order on each replay.
This problem then manifests as an NDS when these data structures are iterated.

We handle this NDS as a particular system call. During the first play, all
instantiated objects are registered by the TCU, and we add an entry to the NDS
Handling log. This entry is composed of the instantiation timestamp and of
a closure that, when evaluated after an instantiation, will enforce the recorded
identity on the new instantiated object. During replay, if an instantiation instruction
is detected, it is executed as usual, generating a new instance with a non-
deterministic identity hash. Then, we evaluate the logged closure to enforce the
object identity to match the one recorded from the first execution.

4.2.7 Configurable properties support
To provide configurable support of properties, each responsible component
possesses a slot named enabled. Disabled components will not produce any
records of the program, prevent any reversal action of the component, and will
always perform the first execution behavior, even during replays. In particular,
when support for TSR is disabled, the Tracer will not perform the reversal of the
debugged process for reversal operations. When support for EER is disabled,
the ExecutionReverser will not produce writing logs and will not execute any
undo block for reversal operations. When support for NDS is disabled, the
SystemCallsHandler will not produce logs and, during replay, will always execute
the system calls.

54 Chapter 4. Implementation

4.3 Executor: A Time-traveling Debugger for Multi-
threaded Programs

Executor is a prototype time-traveling debugger for shared memory systems,
designed specifically for multithreaded programs. Executor does not incorporate a
graphical user interface and therefore is used programmatically.

4.3.1 Executor implementation

Executor re-uses the totality of the classes of Seeker. It introduces a new
Executor class and adds a new slot to the Tracer class. The class Executor
corresponds to the ECU of the design to support multithreaded program.

Executor controls each thread of a multithreaded program with a dedicated
TCU. While each TCU contains its individual stepNumber (thread instruction
counter), Executors’s timestamp is a shared counter that is increased when any
of the TCU step number is increased.

4.3.1.1 Executor in action

To debug programs, Executor exposes an API to perform essential time-
travel debugging operations through the methods: step, restart, and
timeTravelTo:.

At the time of writing, our prototype does not support programs that
dynamically create threads. As a result, developers must manually create TCUs
for each thread in the debugged program in order to start a debugging session using
Executor.

When developers call the step method, Executor performs one step (a single
bytecode instruction) in only one of the TCUs. This ensures that the instructions in
the threads are executed sequentially.

During a stepping operation, Executor randomly selects a TCU to advance by
one instruction, assuming equal priority for all threads. The index of the chosen
thread is recorded in the logs of Executor for the current timestamp. This
selection process occurs only during the first execution of the debugged program.
During replay, the choice of which thread to advance is retrieved from the logs,
adhering to the property of Deterministic Context Switching (Property 4).

On every Executor step, the timestamp is increased by one, and only the
stepped TCU increases its step number by one. Additionally, we adapted the Tracer
class to hold additional data that is required by Executor for multithreaded time-
travel operations. The Tracer now registers on each step, the correspondence of
its step number and the ECU timestamp.Invoking the restart method resets the
execution of the debugged multithreaded program. It resets the ECU timestamp
and utilizes each TCU to reverse their respective thread states and execution effects.

4.4. Implementation Discussion 55

The TCUs thread state reversal is performed in the same manner as in Seeker.
However, the execution effects reversal is handled differently. To reverse the effects
of a multithreaded execution, Executor makes a new list of undo blocks by merging
the blocks of every TCU. These undo blocks are then sorted by their corresponding
ECU timestamp. As each TCU labels its undo block using the TCU step number,
Executor uses the logged correspondence of the TCUs step number to find the
corresponding ECU timestamp. Then, Executor evaluates the undo blocks of the
merged list in reverse order, reversing the effects of the multithreaded execution.

The timeTravelTo: method is implemented by first invoking the
restart method of Executor, followed by stepping Executor until the target
program timestamp is reached.

4.3.2 Configurable properties support
To provide configurable support of properties, the same behavior described in
Subsection 4.2.7 is applied to every TCU. When support for DCS is disabled,
Executor will not record the interleaving order of threads and, during replay, will
always decide the interleaving order randomly.

4.4 Implementation Discussion
In this section, we provide further notes to complement our implementation
description. We elaborate on the decisions we made during the implementation
process, including considerations and alternatives. Furthermore, we address the
limitations of our prototypes.

4.4.1 Recorded data overview
This is the summary of the data logged by our implementations.

• Thread interleaving order: Recorded by the ECU to enforce deterministic
context switching.

• No thread state recorded: Once a TCU is initialized, we store only a
reference to the initial Context. We use the Context API to reset it,
recovering its local variables initial values.

• Instantiated objects by each thread: Each TCU registers instantiated object
identities and the corresponding instantiation timestamp to enforce their
deterministic replay. The registered identities are also used to identify if
the object was instantiated by the thread and decide if a writing operation
should generate or not an UndoBlock.

56 Chapter 4. Implementation

• UndoBlocks: For every writing operation to objects instantiated by
other threads, an UndoBlock is registered by the TCU along with the
corresponding timestamp.

• Non-deterministic system calls: We log non-deterministic system calls
return value and the corresponding timestamp for deterministic replay.

4.4.2 Validation of the selectiveness of our implementation
We argue that our implemented reversal mechanism is selective i.e., it does not
produce Over-reversal or Under-reversal. To the best of our knowledge, there is no
standard conclusive mechanism to prove such a statement. Instead, we support
this claim by explaining and providing evidence on how our implementation
does not produce over or under-reversal within the boundaries of its limitations
(Subsection 4.4.5).

To address OR concerns, we show that our reversal mechanism does not affect
unnecessary state i.e., state that was not modified by the program execution.
To address UR concerns, we show that the scope of our reversal mechanism
is the minimum that includes all the state affected by the program execution
i.e., excluding anything else from the scope would lead to an incomplete reversal
since some state modified by the program would not be reversed.

As discussed in Section 3.4, the reversal operation involves reverting the thread
state, and the execution effects (i.e., writings to the global state). We analyze both
of these actions individually in terms of OR and UR concerns.

4.4.2.1 No OR for thread state reversal.

To avoid OR, the reversal operation scope should include the state modified by the
process execution or less. To address this concern, we list all the elements affected
by the thread state reversal operation and then verify that they were all modified
by the execution.

In Pharo, the thread state is the state of the Process object that is executing
the program. Process objects contain the following slots: effectiveProcess,
env, level, myList, name, priority, suspendedContext, and
terminating.

In 4.2.6.1, we outlined how our implementation reverses the thread state.
This is achieved by calling the popTo: method of the debugged process and
passing the initial context stored by the Tracer as an argument. As a result, the
suspendedContext of the process is set back to the initial context. Therefore,
suspendedContext is the only slot of the process affected by the reversal
operation.

Afterward, the method privRefresh of the initial context is called, which
reinitializes the context to default values. Context objects contain the following

4.4. Implementation Discussion 57

slots: sender, pc, stackp, method, closureOrNil, and receiver. The
execution of the program modifies only the pc and stackp slots of the initial
context, and for reversal, calling the privRefresh method of the context resets
the values of these slots, and does not affect anything else.

In summary, our thread state reversal mechanism reverses specifically the
suspended context slot of the process and the aforementioned slots of the initial
context. Since all these elements are modified by the execution, there is no OR.

4.4.2.2 No OR for execution effects reversal

In a similar manner to the previous point, to address this concern, we list all the
elements affected by the execution effects reversal operation and verify that they
were all modified by the execution.

Our implementation steps through every bytecode instruction of the debugged
program. If a writing operation is performed by the program, the instruction will go
through the stepping pipeline. We manually identified a set of writing operations
in Pharo, which are detected during the pipeline.

We detect these writing operations, producing and registering actions to undo
each particular change. This means that by construction, there is no potential OR
as the undo actions write back exactly what was written in the first place by the
debugged program. The complete code of the undo actions is publicly available
in our debugger project repository 3 where the reader can verify that these actions
write back the same state that was originally modified.

Although identifying Pharo’s writing operations manually can be prone to
errors, it is not a concern for OR. If we had missed any writing operations, there
would be even fewer undo actions performed during reversal. Consequently, there
is no OR.

4.4.2.3 No UR for thread state reversal

To avoid UR, the reversal operation scope should include at least all the state
modified by the process execution. To address this concern, we first list all memory
elements of the thread state that are written by the debugged execution and show
that our mechanism reverses all these elements.

From the 8 slots of Process described in 4.4.2.1, we list whether these slots of
the process running the debugged program are modified and how they are reversed.
The slots effectiveProcess, env, name are not modified, and therefore,
they do not require to be reversed.

The slot level is used by Pharo instrumentation libraries (MetaLink), a case
of our listed limitations on reflective programs. In non-instrumented programs,
level is left unmodified, and there is no need to reverse it.

3Thesis GitHub repository:
https://github.com/Willembrinck/2023-Selective-Time-Traveling-Thesis

https://github.com/Willembrinck/2023-Selective-Time-Traveling-Thesis

58 Chapter 4. Implementation

The myList slot holds a semaphore that is modified when the process is
suspended or resumed. In our implementation, the debugged process (debuggee)
is always held suspended, and it is advanced by interpreting its instructions by
the debugger. The debugger does not change the debuggee suspension state at any
point. The debuggee can still attempt to suspend itself (e.g., the debugged program
invokes a wait operation). However, as a result of the Pharo code interpretation
mechanism, it is the debugger process that is suspended and not the debuggee.
Resuming the debuggee resumes the debugger process instead, and in practice, the
debuggee suspended state remains unaffected. Consequently, as myList slot is
never changed due to the execution of the debugged program, there is no need to
reverse it.

The debugged program itself can change its own priority slot. In such
a case, it would be registered as a writing operation, and the change would be
reversed.

Our debugger prevents stepping instructions that will terminate the process, so
the terminating slot remains constant.

The only process slot that requires to be modified during the thread state
reversal is suspendedContext. To this end, the reversal mechanism assigns
back the initial context.

The initial context itself is also modified due to the execution of the program,
and therefore, any change on it requires to be reversed. The initial context slots
closureOrNil, method sender, and receiver remain constant during the
program execution, so no there is no need to reverse them.

Only the pc and stackp slots are modified by the execution, and they are
both reversed, as we explained previously. Consequently, as all the modified slots
are reversed, there is no UR.

4.4.2.4 No UR for execution effects reversal

We reverse all necessary writings. Our implementation detects all writings the
debugged program performs based on a list of identified writing operations. This
can be verified from the provided code. However, and to the best of our knowledge,
the list of Pharo primitives that perform writing is not officially documented. This
means that we can not categorically assess the completeness of our list. Should the
list be incomplete, it is not a concern for our proposed design but an implementation
detail. For example, if an official list is released, it would be only a matter of
expanding our list of identified writing operations without incurring any change to
our propositions.

4.4.3 Reversal by full-replay
For our reversal mechanism, we do not store any thread state. Instead, we only
store a reference to the initial context. To recover the initial thread state, we use the

4.4. Implementation Discussion 59

Context class API, particularly the reset method. Then, we reverse the effects
of the execution by evaluating all recorded undo blocks. This completely restarts
the execution. Then, we replay the program instructions deterministically from the
beginning to reach intermediate states.

This full-replay decision simplifies the implementation, as we do not need to
store intermediate thread states or decide when to capture them. We do not require
to manipulate the execution stack manually to restore stored contexts. Additionally,
we do not have to calculate which undo blocks should be evaluated and do not need
to update TCUs step numbers to match the target timestamp. The trade-off is that
without intermediate checkpoints, each time-travel operation, especially targeting
a timestamp near the end of the program execution, will incur an overhead that
negatively impacts the debugger performance.

4.4.4 System calls logging

Our implementation does not log the number of instructions performed by the
system call. In Pharo, calls to primitives can fail, executing application-level code
instead, comprising an arbitrary quantity of instructions and potentially performing
more system calls. We solve that by registering primitives as system calls. When
any system call is detected, we increase the tracer step number by one, as if every
system call invocation takes one step to complete, and we create a log entry. These
logged entries comprise the step number of the call and a closure that captures the
system call returned value and returns this value when evaluated.

4.4.5 Limitations

Our prototype implementations present the following limitations:

1. Similarly to current time-travel solutions, our implementation cannot detect
changes in the shared memory originating from unmonitored external
threads. Such changes might interfere with the reverse-replay operations if
they modify parts of the shared memory used by the monitored threads.

2. Although our prototype handles many commonly used system calls
(including random number generation, system time, and objects’ identities),
the total number of covered system calls is not complete.

3. Not all reflective operations are supported, and their support is a work-
in-process. Currently, programs that directly modify their process could
interfere with the precision of the reversal mechanism.

4.4.6 System stability assumption
While our implementation is designed to perform reverse and deterministic replay,
the deterministic aspect of replays also relies on the stability of the system. For
example, replaying an execution will unavoidably create new instances of objects.
Since there is no explicit memory management in Pharo, a replay operation risks
errors such as running out of memory under certain system conditions. Therefore,
we assume that the system remains stable, where no events external to the debugged
program or reverse-replay debugger will interfere with the debugging session.

4.5 Conclusion
In this chapter, we described Seeker and Executor, our implementations based on
our proposed time-travel back end design. We explained in detail how Seeker and
Executor provide configurable support for the identified properties. In the next
chapter, we use these implementations to evaluate the significance of the properties
for selective time-travel by performing experiments. In these experiments, we
explore the potential outcomes of utilizing time-travel back ends that support and
that do not support each property in terms of deterministic replay of programs in
shared memory.

CHAPTER 5

Evaluation

Contents
5.1 Experiment Goals and Research Question 61

5.2 Evaluation of the Properties for Single-threaded Executions . . . 62

5.3 Evaluation of the Properties for Multithreaded Executions . . . 72

5.4 Results Conclusion . 76

5.5 Threats to Validity . 77

5.6 Related Work . 78

5.7 Conclusion . 81

In previous chapters, we explored the challenges that time-traveling debuggers
encounter regarding shared memory systems, where multiple programs run
concurrently in the same memory space. We identified four properties required for
effective scoping of reversal operations, three for single-threaded programs and an
additional one to support multithreaded programs. Building upon these properties,
we proposed a selective time-travel back end design and two implementations:
Seeker and Executor. In this chapter, we evaluate the effects of the identified
properties for selective time-traveling in shared memory systems, report our
findings, and discuss related work.

5.1 Experiment Goals and Research Question
In this section, we introduce our experiments focused on exploring the significance
of the identified properties in attaining selective time-travel in shared memory
systems. Our aim is to determine the potential consequences if time-travel back
ends lack any of these properties. Specifically, we want to investigate whether a
debugger can accurately reverse program execution without these properties and if
a debugged program can display deterministic replay behavior without them. To
accomplish this, we begin by defining the terminology we used in this experiment.

We consider that a replayed program behaves deterministically if given a
fixed initial state, in each replay, the program always executes the same number
of instructions in the same order and produces the same output. We consider

62 Chapter 5. Evaluation

that a time-travel operation is correct if the operation reaches program states
deterministically. Correct time-travel operations allow the time-travel back end
to replicate a program’s behavior during replay, while incorrect operations would
introduce inconsistent replay behavior.

We investigated the following research question:

RQ: What is the impact of the selective time-travel properties on the correctness
of time-travel operations for program executions in shared memory systems?

To study this question, we performed three experiments. In experiments #1
and #2, we used Seeker to evaluate the properties 1 TSR, 2 EER, and 3 NDS
and their impact on the deterministic reproduction of executions of single-threaded
programs. Then, in experiment #3, we used Executor to evaluate the impact of
all properties on the deterministic reproduction of executions of multithreaded
programs.

5.2 Evaluation of the Properties for Single-threaded
Executions

We performed two experiments to analyze the impact of the properties on
the correctness of time-travel operations of single-threaded programs in shared
memory systems. With these experiments, we aim to observe if debuggers without
support for any of the properties allow for correct time-travel operations.

In our first experiment, we performed controlled time-travel operations on
a crafted program that modifies local and shared memory. We check for the
correctness of time-travel operations with 8 property configurations, each enabling
all, part, or none of the properties. Our results show that selective time-travel
operations are always correct when all properties are enabled and incorrect
otherwise.

In our second experiment, we reuse our 8 property configurations to perform
controlled time-travel operations on 119 unit tests from the Pharo system. Contrary
to the first experiment, these 119 unit tests execute real code. We ran the experiment
100 times to tame potential non-deterministic effects, e.g., that could make time-
travel operations randomly correct or incorrect. Our results also show that time-
travel operations are always correct for all programs when all properties are enabled
and that disabling any property would produce incorrect time-travel operations on
many programs.

Both experiments’ results show that selective time-travel operations are correct
only when all properties are enabled. We argue that time-travel back ends failing
to support any of these properties would produce incorrect time-travel operations.

5.2. Evaluation of the Properties for Single-threaded Executions 63

5.2.1 Experiments general procedure
For experiments with single-threaded programs, we use Seeker, our selective
time-traveling debugger, to run the programs. However, for experiments with
multithreaded programs, we use Executor instead. To observe how each property
affects the deterministic behavior of the program, we configure the debugger to
toggle support for individual properties. To determine if the execution behaves
deterministically under support for specific properties, we compared data collected
during the initial program execution with the data from its replay. We collect
experiment-specific data by taking measurements of variables within the execution
and objects within the global state. If the collected data from the replay are equal
to the collected data from the initial execution, then the execution behavior is
considered deterministic. In such a case, the configuration of enabled and disabled
properties allowed for correct time-travel operations.

To collect measurements and results for each experiment, we first declare
the debugger configurations to be evaluated. Configurations specify the specific
properties that the debugger will support for the evaluation. For example, a
configuration labeled as (110) enables support of property 1 (TSR) and property
2 (EER) but disables the support of property 3 (NDS) in the debugger.

We studied all possible combinations: C1: (111), C2: (110), C3: (101), C4:
(100), C5: (011), C6: (010), C7: (001), C8: (000). For each configuration, we
followed these steps:

1. We initialize the debugger with the control program.

2. Set up the initial state of the observed global state.

3. Perform a sampling run (the original run), in which we collect measurements
of the debugged program at different points of its execution.

4. Reverse the program according to the support of TSR and EER properties
defined by the configuration.

5. Perform a new sampling run (referred to as the replay run) enabling support
for NDSs, as defined by the configuration.

6. Compare the collected measurements obtained from the original and replay
runs.

For the analysis of results, we define the following criteria for a correct time-
travel operation:

1. Execution Reversal: The program can be reversed to a target past execution
state, reverting modifications in the global state. The execution reversal
criterion is evaluated by testing the equality of measurements of the

64 Chapter 5. Evaluation

debugged program and the observed global state at the beginning of the
first execution with measurements obtained after reversing the program
execution.

2. Deterministic Replay (DR): The program is replayed deterministically after
reversal. The deterministic replay criterion is evaluated by testing the
equality of measurements of the debugged program taken at different points
during its first execution, compared to measures taken at the same points
during replay.

General control measures To ensure a controlled evaluation of the properties,
we ran the experiments on programs that alter known global state and whose NDSs
are accounted for by the time-travel back end.

We define the global state as all the objects of the system that are not
instantiated by the debugged execution. We consider the debugger as part of the
global state. We refer to the objects instantiated by the debugged execution as local
objects.

When observing changes occurring in local objects and objects of the global
state, there is ambiguity in knowing if the change occurred due to the debugged
program execution or external executions. We explain how we solved this
ambiguity by first explaining the possible writing interactions.

There are 4 writing interactions that can occur when debugging a program in a
shared memory system.

1. The debugged execution modifies local objects.

2. The debugged execution modifies objects of the global state.

3. The executions different from the debugged one modify local objects of the
debugged execution.

4. The executions different from the debugged one modify objects of the global
state.

For each experiment, we need to observe changes in the global state introduced
by the debugged execution and time-travel operations, which corresponds to
interaction (2). However, global state objects can be created and modified by
executions in the system other than the debugged one, i.e., by interaction (4). This
problem makes observation unreliable as we cannot tell from the measurements if
the change observed in one of these objects occurred due to the debugged execution
or another execution in the system.

To control this issue, we define a subset of objects of the global state for each
experiment that we are certain will not be altered by any other execution. We call
these objects the observed global state. By focusing only on these objects, we

5.2. Evaluation of the Properties for Single-threaded Executions 65

rule out changes produced by interaction (4). This allows us to observe changes
produced exclusively by interaction (2).

Tracking changes in local objects is of no concern since there is no ambiguity.
Changes in these objects are always performed by interaction (1), and interaction
(3) is ruled out. This is by design, as we did not introduce any other execution that
affects objects local to the debugged execution. In addition, a fair assumption to
make is that the Pharo runtime does not modify random objects’s instance variables
at arbitrary moments.

5.2.2 Evaluation of the properties on a crafted program

In our first experiment, our objective is to closely observe and understand the
impact of the properties (or their absence) on the behavior of a specific and
comprehensible program.

Specific control measures We implemented control measures to observe
changes in the global state and designed a program that introduces a non-
deterministic behavior.

The observed global state consists of a unique control object, which is
instantiated before each experiment and is passed as a parameter to the program
that modifies its value.

The control program (Listing 5.1) we created involves modifying local and
global state (i.e., the variable in the control object of the observed global state),
and performing system calls (such as object instantiation and obtaining random
numbers) to introduce non-deterministic behavior. To explain the program, we
break down the code into 4 segments.

In the first segment (Lines 1 to 6), the debugged program performs initialization
actions on the local and global state. The debugged program receives an object of
the global state as an argument (Line 1). Then, the debugged program initializes
a local variable and increases the value stored in the global object by 1 (Lines
4 and 5). We use special methods to mark the end of each segment, which we
call marker methods (Lines 6, 11, and 17). These methods do not perform any
action, and we use them to identify the moments to take measurements of the
debugged execution. When our experiment framework detects that any of these
marker methods is invoked, a measurement is taken and logged.

In the second segment (Lines 7 to 11), the program makes modifications to local
and global state based on a non-deterministic system call. The program generates
a random number invoking a non-deterministic method (Lines 7 and 8). Then, the
program modifies local and global state increasing stored values by the obtained
random number (Lines 9 and 10)

In the third segment (Lines 12 to 16), the program produces a random number
based on instantiation-related non-determinism. First, one object is created (Line

66 Chapter 5. Evaluation

12), whose identity hash is non-deterministic. Then, 100 objects are instantiated
and added into a set, along with the first object (Lines 13 to 14). In Line 16, we
obtain a number that is non-deterministic since sets internally store objects in a
particular order based on their identity hash.

In the fourth segment (Lines 17 to 20), the local and global state is modified
according to the non-deterministic number obtained in segment 3.

1 TtdValidationProgram class >> runWithGlobal: global
2 | localVar randomNumber set obj number |
3 localVar:=1.
4 localVar := localVar + 1.
5 global val: global val + 1.
6 self firstMarker. "Start of segment 2"
7 randomNumber := SharedRandom globalGenerator
8 nextInteger: 9999.
9 localVar:= localVar + randomNumber.

10 global val: global val + randomNumber.
11 self secondMarker. "Start of segment 3"
12 obj := Object new.
13 set := IdentitySet new.
14 1 to: 100 do: [:i| set add: Object new].
15 set add: obj.
16 number := set asArray indexOf: obj.
17 self thirdMarker. "Start of segment 4"
18 localVar := localVar + number.
19 global val: global val + number.
20 ^ {localVar . global} "program end"

Listing 5.1: Control program for the experiment. Markers methods (Lines 6, 11, 17) are
used to trigger the collection of measurements of the execution state.

5.2.2.1 Data collection

We take measurements of the execution state by registering the following values:

1. The current program counter of the debugged thread,

2. the number of steps performed by the debugger,

3. the source code of the current instruction,

4. the observed global state value and

5. the value of the local variable of the program.

We collect measurements on the following points in the program execution:
the program start, invocation of firstMarker, secondMarker and
thirdMarker methods, and at the end. We compare the measurements taken
at each marker during the original run with those of the replay run, checking for
equality.

5.2. Evaluation of the Properties for Single-threaded Executions 67

5.2.2.2 Experiment results and analysis

To report the experiment results, we provide first a summary of these results
followed by a more detailed explanation.

Overall, the only configuration performing a correct reversal and deterministic
replay of the debugged program is C1 (all properties support is enabled), where
there is no criterion violation, as shown in Table 5.1.

Criterion C1
(111)

C2
(110)

C3
(101)

C4
(100)

C5
(011)

C6
(010)

C7
(001)

C8
(000)

1. Execution Reversal 3 3 7 7 7 7 7 7
2. Deterministic Replay 3 7 7 7 7 7 7 7

Table 5.1: Criteria approval summary. We observe that the absence of support for any
property led to a criterion violation, producing incorrect time-travel operations.

Table 5.2 shows the replay behavior of the step number measured at each
marker for the original execution (o_ prefix) and its replay (r_ prefix). Table 5.3
shows the replay behavior of the measured instruction program counter and the
corresponding source code. Table 5.4 shows the replay behavior of the measured
local variable value. Table 5.5 shows the replay behavior of the measured global
value.

Measure
Label

C1
(111)

C2
(110)

C3
(101)

C4
(100)

C5
(011)

C6
(010)

C7
(001)

C8
(000)

o_start 1 1 1 1 1 1 1 1
r_start 1 1 1 1 1 1 1 1

o_firstMrk 18 18 18 18 18 18 18 18
r_firstMrk 18 18 18 18 1 1 1 1
o_secMrk 163 163 163 163 163 163 163 163
r_secMrk 163 163 163 163 1 1 1 1

o_thirdMrk 8175 8150 7688 7652 7300 7489 7413 7673
r_thirdMrk 8175 7548 7688 7177 1 1 1 1

o_end 8194 8169 7707 7671 7319 7508 7432 7692
r_end 8194 7567 7707 7196 1 1 1 1

Table 5.2: Step number measured for each configuration at every execution marker. Red
values show that, for some configurations, the markers are reached in a different step
number after restarting the program.

For all configurations without support for property 1 TSR (C5, C6, C7, C8), the
reversal operation does not affect the thread state, violating criterion 2.

• Table 5.2 shows that the reversal operation reverted the step number to 1,
but the replay did not perform any step. This is observed by comparing the
measures taken during the first execution (labeled with prefix o_) against
their counterpart measured during replay (labeled with prefix r_).

68 Chapter 5. Evaluation

C1 to C4
(111),(110),(101),(100)

C5 to C8
(011),(010),(001),(000)Measure

Label pc code pc code
o_start 153 localVar:=1 153 localVar:=1
r_start 153 localVar:=1 241 ^{localVar . global}

o_firstMrk 167 self firstMarker 167 self firstMarker
r_firstMrk 167 self firstMarker 241 ^{localVar . global}
o_secMrk 186 self secondMarker 186 self secondMarker
r_secMrk 186 self secondMarker 241 ^{localVar . global}

o_thirdMrk 224 self thirdMarker 224 self thirdMarker
r_thirdMrk 224 self thirdMarker 241 ^{localVar . global}

o_end 241 ^{localVar . global} 241 ^{localVar . global}
r_end 241 ^{localVar . global} 241 ^{localVar . global}

Table 5.3: Program counter and corresponding code measured at every execution marker
for all configurations. The table shows in red that configurations where TSR is disabled
(C5 to C8) remained in the ending state of the first execution and were not able to reverse
or replay the thread.

Measure
Label

C1
(111)

C2
(110)

C3
(101)

C4
(100)

C5
(011)

C6
(010)

C7
(001)

C8
(000)

o_start nil nil nil nil nil nil nil nil
r_start nil nil nil nil 36 42 38 69

o_firstMrk 2 2 2 2 2 2 2 2
r_firstMrk 2 2 2 2 36 42 38 69
o_secMrk 27 6 5 32 32 32 32 48
r_secMrk 27 6 5 12 36 42 38 69

o_thirdMrk 27 6 5 32 32 32 32 48
r_thirdMrk 27 6 5 12 36 42 38 69

o_end 31 10 11 44 36 42 38 69
r_end 31 27 11 24 36 42 38 69

Table 5.4: Local variable value measured for each configuration at every execution marker.
Red values show that, for some configurations, the value behaves non-deterministically
after restarting the program.

• Table 5.3 also shows that the execution did not reverse the thread state.
This is observed by comparing first execution measurements against the
replay measurements of the pc and code. These measurements show that
the execution remained in the last instruction of the first run, and the reversal
and replay operations had no effect.

• Similarly, Table 5.4 also shows that the local variable value remained
constant after the first execution.

• Finally, Table 5.5 shows that even when configuration C5 and C6 reversed

5.2. Evaluation of the Properties for Single-threaded Executions 69

Measure
Label

C1
(111)

C2
(110)

C3
(101)

C4
(100)

C5
(011)

C6
(010)

C7
(001)

C8
(000)

o_start 0 0 0 0 0 0 0 0
r_start 0 0 10 43 0 0 37 68

o_firstMrk 1 1 1 1 1 1 1 1
r_firstMrk 1 1 11 44 0 0 37 68
o_secMrk 26 5 4 31 31 31 31 47
r_secMrk 26 5 14 54 0 0 37 68

o_thirdMrk 26 5 4 31 31 31 31 47
r_thirdMrk 26 5 14 54 0 0 37 68

o_end 30 9 10 43 35 41 37 68
r_end 30 26 20 66 0 0 37 68

Table 5.5: Global value measured for each configuration at every execution marker. Red
values show that, for some configurations, the global value behaves non-deterministically
after restarting the program.

the global value to 0, it remained constant during replay.

These results show that the reversal operation and replay did not produce the re-
execution of the debugged program.

In configurations without support for property 2 EER (C3, C4, C7, C8), the
value of the global object was compromised. We observe that the initial global
object value of the replay run corresponds to the ending value of the original run
(Table 5.5), violating criterion 1. The global keeps incrementing during the replay
run, which violates criterion 2.

In configurations without support for property 3 NDS (C2, C4, C6, C8), the
local variable of the program, the number of steps, and the global value were
compromised. In Table 5.4, the measured local variable values are different for
the original and the replay runs. This happens because the local variable value is
increased by values produced by non-deterministic system calls (During the second
and third segments of the control program). The global variable in Table 5.5 is the
same. Even though configurations C2 and C6 correctly reverted the global value
for replay (which is observed in labels o_start and r_start in Table 5.5),
the subsequent modifications of the value behaved non-deterministically. Finally,
due to the effect of NDS in the program, the step number registered is different
for the replays under the configurations C2, C4, C6, and C8. Therefore, these
configurations violate criterion 2.

5.2.3 Evaluation on multiple programs running real code

To improve the generalization of our results, we performed a second experiment on
realistic debugging scenarios. In this experiment, we study the overall effects of the
properties across multiple programs based on real code from the Pharo codebase.

70 Chapter 5. Evaluation

These control programs are extracted from the Pharo tests suite, which covers the
standard packages commonly utilized by Pharo developers. By taking code from
real Pharo tests, our results are not limited to isolated or ad-hoc examples and
are more representative of the code frequently encountered in user programs in
real-world scenarios.

Specific control measures In Pharo, test cases are designed to initialize state
through the setUp method and then execute the test case itself using the
performTest method. Before running each experiment, our experiment
framework instantiates these test cases and executes the setUp method, which
sets the test’s instance variables to an initial value. Then, for each experiment, we
create a new debugged program execution that invokes the performTestmethod
of the test case. As neither the test instance nor its instance variable are created by
the debugged program, we use them to simulate the global state of the debugged
program. In this experiment, we scope the observed global state to the instance
variables of the instantiated test case.

We selected multiple test cases from the standard packages, aiming to maximize
the number of collected results while preventing possible bias introduced by the
filtering process. From all the test cases of the Pharo standard packages, we chose
tests that define and modify instance variables. To obtain a set of tests that can
be executed multiple times in a short period, we excluded tests that took more
than 5 seconds to complete when run with Seeker. We randomly selected 150 of
these tests. Then, from these tests, we excluded the ones that involved known
unsupported cases (since the debugger is still a prototype), such as tests that create
new processes, perform reflective operations, use sockets, or involve file system
writing. Additionally, we discarded tests that exhibited unhandled exceptions or
erratic behavior, as they could interfere with the execution of the experiment. The
final selection consists of 119 test cases to experiment on.

To tame potential non-deterministic effects, e.g., that could make time-travel
operations randomly correct or incorrect, we ran the experiment 100 times.

5.2.3.1 Experimental procedure

In this experiment, we followed the first experience procedure (5.2.2.1) while
implementing the following actions for each program.

We take measurements at the start and the end of their execution (i.e., the
start and end of the execution of the performTest method). In contrast to the
first experiment, we do not take measurements on intermediate execution states
because there are no common points in their executions to be considered execution
markers to perform these measurements. The measured execution data is the step
number and the observed global state, i.e., the test instance variables. After each
configuration is executed for the program, we register in our result the name of
the test case, the configuration, and 3 booleans expressing: If the test presented a

5.2. Evaluation of the Properties for Single-threaded Executions 71

deterministic step number, if the global state is reversed, and if the observed global
state exhibited deterministic replay.

To measure the observed global state, we create a dictionary whose keys are
the names of the instance variables of the tests, and the values correspond to a copy
of the variable’s value. To make a copy, we use the method veryDeepCopy of
the Object API, which makes a copy of an object and the entire tree of objects it
points to. Simply put, we consider that two object trees match if their root objects
have the same identity or are of the same class and their slots contain matching
object trees.

5.2.3.2 Experiment results and analysis

Table 5.6 shows that for the measured executions, the property NDS had little
impact on the overall correctness of time-travel operations (C1 vs. C2 presenting
a decrease in the correctness of 6%, and C3 vs. C4 differing for only 1%). This
is expected since tests are typically designed to reproduce the same output every
time, i.e., to present an assertion-free execution, in a controlled setup. Therefore,
their implementation is biased toward deterministic behavior.

Incorrectness mainly resulted from not undoing effects on the global state (C1
vs. C3 presenting a decrease in the correctness of 61% and C2 vs. C4 dropping by
54%).

Config. Det. Step
Number

Global
Reversed

Det.
Global Correct

C1 (111) 11900 (100%) 11900 (100%) 11900 (100%) 11900 (100%)
C2 (110) 11129 (94%) 11900 (100%) 11200 (94%) 11129 (94%)
C3 (101) 8400 (71%) 5000 (42%) 10100 (85%) 4700 (39%)
C4 (100) 7887 (66%) 4900 (41%) 9500 (80%) 4752 (40%)
C5 (011) 0 (0%) 11900 (100%) 5000 (42%) 0 (0%)
C6 (010) 0 (0%) 11900 (100%) 4900 (41%) 0 (0%)
C7 (001) 0 (0%) 5000 (42%) 11900 (100%) 0 (0%)
C8 (000) 0 (0%) 4900 (41%) 11900 (100%) 0 (0%)

Table 5.6: Experiment results showing the number of program executions presenting
deterministic behavior on the measured values. The last column shows the overall
correctness of time-travel operations for each configuration. We ran 119 tests for
each configuration and repeated the experiment 100 times, resulting in 11900 program
executions in total.

72 Chapter 5. Evaluation

5.3 Evaluation of the Properties for Multithreaded
Executions

In this experiment, we evaluate the 4 properties needed for selective time-travel
and how they affect the deterministic behavior of a crafted multithreaded program.

Specific control measures We next explain our control multithreaded program
and why it serves to evaluate the properties.

We created a program that executes two threads (Listing 5.2). Each thread
attempts concurrently to increment a shared counter several times. Without any
time-travel back end, our crafted program behaves non-deterministically due to a
race condition and non-deterministic thread interleaving.

1 Experiment3 >> controlRun
2 | sharedCounter program |
3 sharedCounter := 0 .
4 2 timesRepeat: [| threadBlock |
5 threadBlock := [
6 "Increment the sharedCounter 1000 times"
7 1000 timesRepeat: [
8 | temp1 |
9 temp1 := sharedCounter. "We introduce a race condition"

10 self busywaitMilliseconds: 5.
11 sharedCounter := temp1 + 1]].
12 "Start the execution of the block in a concurrent thread"
13 threadBlock fork].
14 self busywaitMilliseconds: 20000."Wait enough so all threads are finished"
15 ^ sharedCounter
16

17 Experiment3 >> busywaitMilliseconds: ms
18 | targetTime |
19 targetTime := ms + Time millisecondClockValue.
20 [Time millisecondClockValue >= targetTime] whileFalse: [#doNothing]

Listing 5.2: Control multithreaded program for the experiment and a waiting mechanism.
The program creates two threads, each executing the same method that increases a shared
counter concurrently. The race condition occurs due to Lines 9 to 11, during which other
threads can alter the value of the shared counter.

The program creates two threads using a 2 timesRepeat: loop (Line 4) to
define and start each thread. The code executed by each thread is defined in Lines
5 to 11. Then, each thread is started (Line 13), executing concurrently.

When the program is executed, both threads of the program attempt to increase
the value of a shared variable concurrently. To increase the shared counter, the
program threads first make a local copy of the value (Line 9). Then, the thread
waits for 5 milliseconds (Line 10). Once the wait is finished, the thread assigns to
the shared counter the local value plus 1 (Line 11). This incrementing process is

5.3. Evaluation of the Properties for Multithreaded Executions 73

repeated a thousand times.

If the program had performed the increments as atomic operations and without
using local copies of the shared counter, then the output of this program running
two threads would be 2000. However, the program does not include atomic
operations or use synchronization mechanisms, introducing a race condition.
Both threads executed concurrently create a local copy of the shared counter
and then wait. Consequently, any increment produced by one thread can be
overridden by the other, which affects the output of the program. In our
exploratory tests, the program executed this way outputs random values close to
1000 (e.g., 1021, 1013, 1010, 1049) as most increments of one thread are overridden
by the other.

The randomness of the output values occurs due to the non-deterministic order
in which the threads execute their instructions, i.e., their interleaving. Making
the interleaving deterministic would still produce a resulting value near 1000.
However, the output would remain consistent on each replay.

We consider that this program offers a fitting scenario to evaluate the impact of
property 4 DCS, as the consequences of non-deterministic interleaving are easily
observable. We expect that when support for property 4 DCS is enabled, the
program outputs consistently the same result on each replay.

Additionally, the program threads perform system calls (calling Time
millisecondClockValue, inside the busywaitMilliseconds:
method, in Lines 21 and 22). This makes it appropriate to evaluate property 3
NDS, which addresses non-determinism introduced by system calls. The program
also modifies shared state, corresponding to the shared counter variable (in Line
3), which we use to evaluate property 2 EER. Finally, property 1 TSR can also be
evaluated since the program execution modifies the threads’ state.

We implemented the busywaitMilliseconds: method (Listing 5.2, Line
19) because our prototype does not yet support synchronization primitives. This
waiting mechanism does not rely on Semaphores or other not yet-supported calls,
and we use it in our program to make threads wait for a number of milliseconds.

Loading the program in Executor required us to modify the code related to
the creation and execution of its threads. (Listing 5.3) shows how we initialized
Executor with the program.

To initialize Executor, we first define the code of the program threads (Lines
5 to 9). Then, we used SeekerDebugger to provide TCUs for each thread of the
debugged program (Line 10).

74 Chapter 5. Evaluation

1 Experiment3 >> loadExecutorWithProgram
2 | sharedCounter threadBlocks |
3 sharedCounter := 0 .
4 threadBlocks := 1 to: 2 collect: [:i | "collects 2 blocks"
5 ["a block that increments the sharedCounter 1000 times"
6 1000 timesRepeat: [| temp1 |
7 temp1 := sharedCounter.
8 self busywaitMilliseconds: 5.
9 sharedCounter := temp1 + 1]] .

10 ^ Executor newFor: (threadBlocks collect: [:tb | SeekerDebugger headlessDebugBlock: tb])

Listing 5.3: Initialization of Executor with the program. We use SeekerDebugger to
provide the TCUs for Executor.

The modified version of the program retains the same characteristics that made
the original one fit for the evaluation of the properties. We verified this by running
the new program with Executor, with all properties support disabled, and obtaining
the same behavior with resulting shared counter values close to 1000.

An important difference in this modified program is that the shared counter is
not part of the debugged execution. The debugged program consists only of the
execution of the threads (Lines 5 to 9), and the shared counter is defined in the
external scope (Line 3). Therefore, the shared counter is not a local variable of the
debugged program (it is already defined before the debugged program starts). This
change is crucial because it allows us to use this variable as the observed global
state for measurements.

5.3.1 Experiment procedure
In this experiment, the debugger configurations include the 4 properties, e.g., a
configuration labeled as (1101) enables support of properties 1 (TSR), 2 (EER),
and 4 (DCS) but disables support of property 3 (NDS) in the debugger. We studied
all 16 possible configurations C1: (1111), C2: (1110), C3: (1101), C4: (1100),
C5: (1011), C6: (1010), C7: (1001), C8: (1000), C9: (0111), C10: (0110), C11:
(0101), C12: (0100), C13: (0011), C14: (0010), C15: (0001), C16: (0000).

We performed the general procedure and took measurements at the start and
end of the initial execution, at the start after reversal, and at the end after replaying.
We measured the following values: the shared counter, Executor timestamp, the
TCU#1 step number, and TCU#2 step number.

5.3.2 Experiment results and analysis
Overall, the only configuration performing correct time-travel operations on
the debugged program is C1 (all properties support is enabled), where all the
measurements show deterministic behavior on the reversal and during replay, as
shown in Table 5.7.

5.3. Evaluation of the Properties for Multithreaded Executions 75

Sample Label C1
(1111)

C2
(1110)

C3
(1101)

C4
(1100)

C5
(1011)

C6
(1010)

C7
(1001)

C8
(1000)

o_start 0 0 0 0 0 0 0 0
shared r_start 0 0 0 0 999 997 1002 1003
counter o_end 995 1003 999 993 999 997 1002 1003

r_end 995 1004 999 999 1998 2002 2000 1999
program o_start 1 1 1 1 1 1 1 1
time r_start 1 1 1 1 1 1 1 1
stamp o_end 481302 487254 510606 539646 461454 502422 509934 513990

r_end 481302 487254 543726 537558 461454 502422 526182 540414
TCU#1 o_start 1 1 1 1 1 1 1 1
step r_start 1 1 1 1 1 1 1 1
number o_end 240735 243351 255495 269823 230679 251943 255351 256191

r_end 240735 243351 272319 267687 230679 251943 262791 269607
TCU#2 o_start 1 1 1 1 1 1 1 1
step r_start 1 1 1 1 1 1 1 1
number o_end 240567 243903 255111 269823 230775 250479 254583 257799

r_end 240567 243903 271407 269871 230775 250479 263391 270807

Table 5.7: Sampled values taken from the multithreaded program for configurations C1 to
C8. Red numbers highlight samples that behave non-deterministically after the reversal
and during replay.

For all configurations without support for property 1 TSR (C9 to C16 in
Table 5.8), the reversal operation does not affect the threads state, and the program
cannot be replayed. Consequently, we will not include these configurations in the
rest of the analysis, and we will exclusively focus on the results shown in Table 5.7.

Configurations without support for property 2 EER (C5, C6, C7, C8) did not
reset the shared counter on reversal. As a consequence, the counter behaved
non-deterministically, nearly doubling the final value produced by the other
configurations during replay.

In configurations without support for property 3 NDS (C3, C4, C7, C8), the
number of performed steps behaves non-deterministically. This was expected
because our busywait implementation relies on the system clock to define the
condition that ends the wait. In C3, where all property support is enabled except
for property 3, the shared counter presented deterministic behavior. However, this
(false) positive outcome corresponds to a sampling issue. In this configuration,
a replay operation will attempt to enforce the determinism of the interleaving
registered from the first execution. However, since there is no support for property
3 NDS, system calls can introduce non-deterministic behavior in each respective
thread. These system calls alter the number of steps that each thread take to finish,
making them take fewer or more steps to complete when replayed. Since the
logs register the order of interleaving along with a timestamp, if during replay
the program takes more steps to complete than the last record of the log, any step
performed after the last registerd step do not have interlaving order records. This

76 Chapter 5. Evaluation

makes the execution to perform the last steps with a non-deterministic interleaving.
As a result, even if property 4 DCS support is enabled, there is still a possibility
of randomness being caused by interleaving due to the lack of property 3 NDS,
which can impact the shared value. However, the risk is significantly reduced as
the randomness only occurs in the step numbers out of the interleaving records.

Configurations without support for property 4 DCS (C2, C4, C6, C8) produced
non-deterministic behavior of the shared counter. Our results show that when
support for properties 1, 2, and 3 is enabled but support for property 4 is disabled
(configuration C2), the shared counter presented a non-deterministic behavior due
to interleaving randomness and the race condition, even if each thread performed
the same number of steps during replay.

Sample Label C9
(0111)

C10
(0110)

C11
(0101)

C12
(0100)

C13
(0011)

C14
(0010)

C15
(0001)

C16
(0000)

o_start 0 0 0 0 0 0 0 0
shared r_start 0 0 0 0 1001 1000 997 1001
counter o_end 1006 996 1003 1002 1001 1000 997 1001

r_end 0 0 0 0 1001 1000 997 1001
program o_start 1 1 1 1 1 1 1 1
step r_start 1 1 1 1 1 1 1 1
number o_end 460349 473837 491021 523829 469253 494765 535013 554837

r_end 1 1 1 1 1 1 1 1
TCU#1 o_start 1 1 1 1 1 1 1 1
step r_start 1 1 1 1 1 1 1 1
number o_end 229095 237183 247071 262479 235719 247695 267711 277167

r_end 1 1 1 1 1 1 1 1
TCU#2 o_start 1 1 1 1 1 1 1 1
step r_start 1 1 1 1 1 1 1 1
number o_end 231255 236655 243951 261351 233535 247071 267303 277671

r_end 1 1 1 1 1 1 1 1

Table 5.8: Sampled values taken from the multithreaded program for configurations C9 to
C16. Red numbers highlight samples that behave non-deterministically after the reversal
and during replay.

5.4 Results Conclusion
Enabling or disabling specific properties support of the time-travel back end
impacted the ability to achieve correct time-travel operations. Answering our
experiment research question, only time-travel back ends with support for all
properties are able to perform correct time-travel operations, allowing the debugged
programs to present a deterministic reversal and replay behavior. Back ends
failing to support any of the properties risk non-deterministic reversal and replay
of programs, hindering the ability to reproduce the program behavior.

5.5. Threats to Validity 77

• A back end not supporting property 1 TSR produces an under-reversal which
completely denies the ability to replay an execution.

• A back end not supporting property 2 EER produces an under-reversal by not
reversing changes in the global state, which in most of our tested programs,
lead to a non-deterministic replay, even in the absence of system calls.

• A back end not supporting property 3 NDS would replay executions non-
deterministically in the presence of system calls, even if the execution and
its effects on the global state were effectively reversed.

• Finally, a back end not supporting property 4 DCS would replay
multithreaded executions non-deterministically in the presence of race
conditions.

5.5 Threats to Validity
Threats to construct validity. We only test for determinism after one reversal
and replay cycle. In real scenarios, determinism must be maintained throughout
multiple time-travel operations. However, as backed up by our results on multiple
programs, we argue that a correct reversal operation followed by a deterministic
replay would always yield the same program behavior, and as the execution is
completely reproduced, so will future reversal operations.

Threats to internal validity. The experiment includes a limited number of
measurements for each configuration. This implies that the intermediate states of
the program are not observed, making it difficult to draw definitive conclusions
about the behavior of time-traveling debuggers. However, this is mitigated as
in our results, non-determinism effects carried over for the rest of the execution,
suggesting that if we had missed a compromised intermediate state, it would have
shown up in the subsequent states. Not all global state is observed, which might
imply that we missed some under or over-reversal effects. To detect the reversal of
the global state, we scoped our observations to the state of particular objects, as it is
not feasible to anticipate which system state is modified by the debugged programs
and which system state is modified by the experiment framework program itself.
To reduce this threat, we chose to use tests. Tests are typically designed in
favor of avoiding changing global state, trying instead to modify only the test’s
instance variables or the objects these variables contain. This way, we were able
to determine which state was altered by the debugged program by focusing on the
test instance variables before and after running the program.

Threats to external validity. The experiments only look at a selection of Pharo
programs, so they do not take into account all the complexities and variations found

78 Chapter 5. Evaluation

in real-world software. This could imply that the findings might not apply well to
different kinds of programs or programming languages. However, this is mitigated
as the Pharo programming language shares many similarities with most object-
oriented programming languages, and the test cases cover code commonly used
by Pharo developers in their real software. We discarded several tests from the
test suite that use reflective computations and perform systems calls unsupported
by our current implementation. We do not see this as a significant threat, as we
are evaluating the correctness of the properties and not the completeness of our
implementation (which remains a prototype). We evaluated the properties mostly
on tests, which are not proper real programs. However, tests provide reproducible
executions that can be used as oracles of comparison. Everything can be replicated
and is provided to the reader1.

Threats to conclusion validity. The results we obtained will vary depending
on the selected programs. The correctness percentages are not inherent to the
evaluated properties and only reflect the impact of the time-travel operations on the
selected programs. For example, and as we mentioned in 5.2.3.2, tests are designed
with a bias toward deterministic replay. Experiment 2 results reflect the little impact
of the properties in the selected tests. Programs introducing more system calls will
undoubtedly be more affected by the property support. Such is the case of our
crafted programs used for Experiments 1 and 3. As the results depend on the used
programs, drawing definitive conclusions on each property might be considered a
flawed approach. However, the main conclusion, where we state that the absence
of support for any of the properties would yield incorrect time-travel operations, is
consistent both in the theory and in the numerous results.

5.6 Related Work
In this section, we study different time-traveling debuggers from the state of the
art and analyze them with respect to the properties proposed in this paper. We
summarize how each debugger supports each property and outline the technique
used. If a property is not supported, we discuss what is missing to satisfy it.

5.6.1 Properties support in time-traveling debuggers

Selective thread state reversal (TSR). State-of-the-art debuggers [Arya 2017,
Barr 2014,Barr 2016,King 2005,Montesinos 2008,O’Callahan 2017,Phang 2013,
UDB 2023, Vilk 2018] are not able to reverse selectively the state of particular
threads within a process as they rely on snapshots or system memory checkpoints

1Complete implementation code and experiment replication instructions available at
https://github.com/Willembrinck/2023-Selective-Time-Traveling-Thesis

https://github.com/Willembrinck/2023-Selective-Time-Traveling-Thesis

5.6. Related Work 79

Time-traveling
Debugger

Reversal
Mechanism

Multi-
thread

Support

Prop 1.
Selective

TSR

Prop 2.
Selective

EER

Prop 3.
NDS

Handling

Prop 4.
DCS

Executor TS+LU 3 3 3 3 3
Expositor [Phang 2013] Snapshot 3 7 7 3 3

FReD [Arya 2017] Snapshot 3 7 7 3 3
Jardis [Barr 2016] Snapshot 7 7 7 3 7

McFly [Vilk 2018] Snapshot 7 7 7 3 7
RR [O’Callahan 2017] Snapshot 3 7 7 3 3

Seeker TS+LU 7 3 3 3 7
Tardis [Barr 2014] Snapshot 7 7 7 3 7

TTVM [King 2005] Snapshot 7 7 7 3 7
UDB [UDB 2023] Snapshot 3 7 7 3 3

Table 5.9: Time-traveling debuggers comparison. TSR: Thread State Reversal. EER:
Execution Effect Reversal. NDS: Non Determinism Source. DCS: Deterministic Context
Switching. TS+LU: Thread state snapshots, plus logging and undoing.

that comprise at least the whole application space. Adding support for this property
in these solutions would require their time-travel back ends to serialize single
thread state, so they can be later recovered individually.

Selective execution effects reversal (EER). State-of-the-art debuggers such as
[Arya 2017, Barr 2014, Barr 2016, King 2005, Montesinos 2008, O’Callahan 2017,
Phang 2013, UDB 2023, Vilk 2018] are not able to selectively reverse the effect of
the execution of particular threads within a process, because they rely on snapshots
to produce system memory checkpoints. To support this feature selectively, these
debuggers would need to log writing events performed by each thread and then use
this log to undo these writings. UDB [UDB 2023] does log necessary information
for the application of this property, i.e., which thread performed each change.
That information is available to be queried by the developer, but it is not used
for reversing particular threads.

Non-deterministic sources handling (NDS) By our definition of time-traveling
debuggers, they all support NDS handling. Our implementations present a
generic approach to support NDS handling, and other time-traveling debugger
implementations present a variation of the same generic approach. For example,
UDB [UDB 2023] logs system calls and on replay, those system calls are
synthesized from the logs. RR [O’Callahan 2017] uses ptrace2, a system call
from Unix-like operative systems, to log system calls of debugged executions.

2ptrace is a system call found in Unix and several Unix-like operating systems. This feature
allows a parent process to monitor and control the execution of another process, as well as examine
and modify its core image and registers. https://www.unix.com/man-page/linux/2/ptrace/

https://www.unix.com/man-page/linux/2/ptrace/

80 Chapter 5. Evaluation

To replay, it places breakpoints in logged system calls and uses ptrace to run
the program until hitting these breakpoints. Once hit, the back end advances
the program counter and applies the recorded register and memory changes.
Overall, many time-travel solutions implement their own variation to handle NDS
[Barr 2016, Barr 2014, King 2005, Phang 2013, Vilk 2018].

Deterministic context switching (DCS). Debuggers that can debug multithread-
ing programs [Arya 2017, Devietti 2009, Montesinos 2008, O’Callahan 2017,
Phang 2013, UDB 2023] support DCS. They use different techniques to reproduce
the same execution order of instructions in multithreaded programs.

Some debuggers [O’Callahan 2017, UDB 2023] enforce concurrent execution
and the interleaving of the debugged program threads.

UDB [UDB 2023] does it through binary instrumentation and using a global
mutex. RR [O’Callahan 2017] uses ptrace to enforce one-at-time thread execution
and preemptive thread switches.

5.6.2 Properties support in time-travel techniques

We discuss works that, while not consisting of debuggers, propose techniques
and schemes that could be used to implement mechanisms for reversal and
deterministic replay in debuggers.

The technique proposed in Delorean [Montesinos 2008] includes a system
checkpointing support, i.e., a hardware-level rollback recovery mechanism for
shared memory multiprocessors which stores the system memory state. There is no
proposition for single-thread reversal, which makes it not compliant with properties
TSR and EER.

Reversible computing [Aman 2020, Ulidowski 2020] is one alternative to
snapshots as a reversal technique. For sequential systems, reversibility can
be understood as recursively undo the last action [Lanese 2018], i.e., undoing
computation actions starting from the last one until the first. Any implementation
following this technique is able to comply with properties TSR and EER as they
would allow the reversal of specific thread actions.

In the context of deterministic concurrent replay, CLAP [Huang 2013] achieves
the same output of computations on every replay by preserving the causality of
actions. The approach only records the interleaving events that, if replayed in a
different order, would affect the outcome of computations. Such an approach does
not comply with property 4 DCS, as it compromises the deterministic replay order
of intermediate events i.e., attempting to time-travel to one of these intermediate
states would end up in a potentially different application state.

Transactional Memory [Hammond 2004, Herlihy 1993] is a transaction-based
alternative to lock-based synchronization for achieving deterministic concurrent
replay. It is used to make multiprocess executions behave similarly to

5.7. Conclusion 81

deterministic serialization while keeping parallelism. This technique is used by
the work presented in DMP [Devietti 2009], which offers different approaches
for deterministic interleaving for replay. Their proposal handles multiprocessing
non-determinism in shared memory by enforcing deterministic thread/process
interleaving for transactions upfront without the need to record logs or force
processes to execute their instructions one at a time. Implementations based on
transactional memory are unable to comply with property 4 DCS, as the technique
only enforces the ordering of transactions at most, and intermediate instructions of
parallel threads have no relative ordering constraints.

5.7 Conclusion
We conducted experiments to evaluate the impact of the identified properties for
selective time-travel operations. We ran three experiments: one over a crafted
program in which we carefully control reversal and replay effects, a second
one over a suite of 119 unit tests executing real code, and a third one over a
multithreaded execution.

The results show that to achieve selective time-travel operations, back ends
must possess the three first properties to support single-threaded programs and
expose all 4 properties to support multithreaded programs.

These properties cover all aspects of time-traveling, including reversal and
replay operations, and served as a helpful analysis tool for existing time-travel
solutions and their applicability on shared memory systems.

Part II

A New Debugging Approach

CHAPTER 6

Time-traveling Queries:
Improving Interactive Debugging

Contents
6.1 Improving on Interactive Debuggers Problems 85

6.2 Time-traveling Queries . 86

6.3 Off-the-shelf Time-traveling Queries 88

6.4 Time-traveling Queries Implementation 92

6.5 Conclusion . 100

Efficiently debugging a program requires program comprehension. To acquire
it, developers explore the program execution, a task often performed using
interactive debuggers. However„ exploring a program execution through standard
interactive debuggers is a tedious and costly task. To ease program exploration, we
propose Time-traveling Queries (TTQs). TTQs is a mechanism that automatically
explores program executions to collect execution data related to debugging
questions. This data is used to time-travel through execution states, enabling a
new debugging approach that facilitates the interactive exploration of program
executions. In this chapter, we define TTQs and their implementation.

6.1 Improving on Interactive Debuggers Problems
After acknowledging the issues associated with interactive debuggers outlined in
Chapter 1, it would be helpful to have a mechanism that bridges the gap between the
questions asked during debugging and obtaining the debug data needed to answer
those questions. As a first step of our investigation toward improving the interactive
debugging experience, we study the following research question:

RQ: Can we express debugging questions as queries over program executions
to facilitate the obtention of relevant debugging information?

In the following sections, we investigate this question, proposing a novel
mechanism to improve the debugging experience and explaining how it addresses
the listed problems of interactive debuggers described in Chapter 1.

86
Chapter 6. Time-traveling Queries:

Improving Interactive Debugging

6.2 Time-traveling Queries
We propose to combine time-traveling debugging with scriptable debugging
techniques to express program comprehension questions as queries over program
executions. We call these queries Time-traveling Queries (TTQs).

TTQs bridge the programmatic gap between developers’ program comprehen-
sion questions and the search for their answers in program executions. TTQs
explore the whole program execution to extract information answering these
questions (addressing problems 1 and 3). This information is presented to
developers, who are able to time-travel in the program execution, to the point where
that information was obtained. There, developers can observe the information
in its original context. They can deepen their understanding of the execution by
time-traveling to other results or by performing standard forward or backward
steps. Like this, developers do not need to restart the debugging processes to see
information about the program’s past states (Addressing problems 2 and 4).

We argue that TTQs enable in-depth live program exploration. Developers
will directly use pre-existing off-the-shelves queries or express their questions
as programmatic queries. Program exploration will require less preliminary
investigation and consequently improve developers’ debugging efficiency.

In this section, we provide a high-level description of TTQs. We describe how
to define a query, how to execute that query, and how to time-travel in that query’s
results. To be consistent with our implementation (Section 6.4) and our evaluation
(Chapter 7), we write our examples in the Pharo language.

6.2.1 Time-traveling Queries definition and execution
We consider program executions as sequences of program states, as described in
Chapter 1. A TTQ is a query over a program execution that selectively collects
information from every program state. It is then possible to time-travel to the
execution context from which information was collected.

Defining queries. A time-traveling query is an object specifying a data source, a
selection predicate, and a projection function.

The data source is an iterable object that represents a sequence of program
states, from where to select (i.e., filter) and collect (i.e., transform) data. In
the following Pharo script, we instantiate a query that will iterate over all the
program states of a program execution (Listing 6.1). In this code, the sequence
of program states is referred to as programStates and should be generated by
the underlying debugger.

1 query := Query from: programStates

Listing 6.1: Instantiation of a Query object.

6.2. Time-traveling Queries 87

The instantiated query object is just an object containing the query definition
and is not executed yet. Next, we will manipulate this query to specify which
program states we are interested in, and the program data we desire to collect from
those states. We do this by setting the query’s selection predicate and projection
function respectively.

The selection predicate is a closure that is evaluated for each item of the data
source (in the same way as the OCL selection clause). This predicate is a condition
to decide if a program state is of interest for a given query. When evaluated,
this condition returns true if the program state should be selected and false
otherwise.

In the script (Listing 6.2), we define a selection predicate, obtaining a query to
select program states corresponding to message-sends.

2 query := query select: [:state | state isMessageSend].

Listing 6.2: We create a more refined query with a selection predicate that finds all states
corresponding to message-sends.

The projection function is a closure that is evaluated for each item of the data
source selected by the selection predicate. For each selected program state, the
function collects specific execution data in a form specified by the developer.

In the script (Listing 6.3), we define a projection function, obtaining a query
that collects the class of the receiver, the selector of the message sent, and its
arguments.

3 query := query collect: [:state |
4 {(#receiverClass −> state receiverClass).
5 (#selector −> state msgSelector).
6 (#args −> state arguments)} asDictionary].

Listing 6.3: We create a more refined query with a projection function that records every
message-send data (receiver class, selector, and arguments).

In our examples, we decomposed the query definition into several steps for
illustrative purposes. However, queries can be defined in a single expression, as
shown in Listing 6.4:

1 query := Query from: programStates
2 select: [:state | state isMessageSend]
3 collect: [:state |
4 {(#receiverClass −> state receiverClass).
5 (#selector −> state msgSelector).
6 (#args −> state arguments)} asDictionary]

Listing 6.4: A Query defined in a single expression. The query retrieves specific execution
data of all the message-sends performed by a program.

The messages select: and collect: return a new query instance with a new
selection predicate or projection function. They do not execute the query. Queries

88
Chapter 6. Time-traveling Queries:

Improving Interactive Debugging

are executed by calling the query’s asOrderedCollection method, which
triggers the iteration of the program states and the production of results. We
elaborate further on this in Subsection 6.4.2.

TTQ execution. When a query is executed (Figure 6.1), the time-traveling
debugger restarts and executes the program, instruction by instruction, advancing
from program state to program state. For each state, the query tests its selection
predicate over that state. If the state is selected, the debugger collects the data as a
result item by applying the projection function to that state.

1 2 A… B C …

program
start

program
stop

i : state at time-index i
 that passes the
 selection predicate

…

i : program state (i) : automatic step

A B C …

{ , , , , }A B C …:producing
result item from
a selected state query results

Figure 6.1: Time-traveling query collecting time-indexed data from the program states of
a program execution.

Time-traveling from query results. From any result item, and at any moment
when debugging, developers are free to time travel. Time-traveling to a result item
restores a program execution to the program state denoted by the time-index (a
timestamp) from which that item was collected (Figure 6.2). After a time travel,
they can continue navigating the execution with conventional tools and techniques
(e.g., stepping, breakpoints, etc.) or time-travel to another result item.

6.3 Off-the-shelf Time-traveling Queries

In this section, we present a list of key queries that we elaborated from the
literature. We propose these queries as a standard library for developers to explore
their program execution. We describe how we implement a representative selection
of these queries using the formalism described in Section 6.2.

6.3. Off-the-shelf Time-traveling Queries 89

1 2 … A B C …
program
start

program
stop

i : state at time-index i from
 where a query result item
 was collected

tt: time-travel

tt tt tt tt tt
{ , , , , }A B C …

query results

i : result item
collected at
time-index i

ssb

s: step
sb: step-back

Figure 6.2: Exploring an execution by time-traveling from the result items of a query. After
a time travel, developers can perform conventional stepping or another time travel.

6.3.1 Key Time-traveling Queries
We studied the key program comprehension questions that are important for
developers [Sillito 2008]. We focus on questions developers ask in object-oriented
programming [Kubelka 2014]. We selected 6 questions, for which we use the same
numbering as in [Sillito 2008]:

13. When during the execution is this method called?

14. Where are instances of this class created?

15. Where is this variable or data structure being accessed?

19. What are the values of these arguments at run time?

20. What data is being modified in this code?

32. Under what circumstances is this method called, or an exception is thrown?

We analyzed these questions and defined 12 TTQs, organized into 4 categories,
that aim to support answering those questions. We provide these queries so that
developers do not need to write them manually to find answers to their program
comprehension questions:

I. Queries over messages (Questions 13, 32)

I.1 Find all messages sent during the execution.

I.2 Find all messages sent with a given selector.

I.3 Find all received messages by any object.

90
Chapter 6. Time-traveling Queries:

Improving Interactive Debugging

II. Queries over instances creation (Questions 14, 32)
II.1 Find all instance creations.

II.2 Find all instance creations of a class with a given name.

II.3 Find all instance creations of exceptions.

III. Queries over assignments (Questions 15, 19, 20)
III.1 Find all assignments of any variable.

III.2 Find all assignments of variables with a given name.

III.3 Find all assignments of instance variables for instances of a given class.

IV. Queries over assignments for a specific object (Questions 15, 19, 20)
IV.1 Find all assignments of instance variables for the receiver of the currently

executed method.

IV.2 Find all assignments of instance variables for a particular object.

IV.3 Find all assignments of a given instance variable for the receiver of the
currently executed method.

6.3.2 Executing queries
We enhanced our Time-traveling debugger, Seeker (Chapter 4.3), with Time-
traveling queries capabilities, adding a new context menu offering the key
TTQs (Figure 6.3 a), and a Query results panel (Figure 6.3 b).

There are two ways to execute queries: by selecting an off-the-shelf query
from the debugger menu or by writing a query directly in Seeker’s scripting tab
(Figure 6.4). Once a query is executed, the results are shown in the Query Result
panel, from where the developer can directly see the queried debugging data, time-
travel to the step number of any result, or perform more TTQs in the results context
menu (Figure 6.3 c).

6.3.2.1 Executing queries from the debugger menu

The debugger queries menu is populated with queries defined from different
sources. For the off-the-shelf query library (Section 6.3), we populate the menu
from code in the query library. Alternatively, developers define user queries, which
are automatically included in the UserTTQ submenu.

Seeker debugger opens with the standard debugger view on the left and the
time-traveling queries view on the right (Figure 6.3).

6.3. Off-the-shelf Time-traveling Queries 91

Figure 6.3: Time-traveling queries integration in the debugger. (a) Debugger queries menu.
(b) Query results panel. (c) Results context menu.

Scripting pane

Figure 6.4: Scripting pane in Seeker to write time-traveling queries on the fly.

92
Chapter 6. Time-traveling Queries:

Improving Interactive Debugging

The code presenter (on the left) exposes a contextual SeekerQueries menu. In
this menu, users will find queries from the query library proposed in Section 6.3
and all user-defined queries.

Some queries require parameters from the execution context. These parameters
are obtained from the selected code in the debugger. For example, II.2 Find all
instance creations of a class with a given name has a parameter to specify the
class name of interest. To execute this query from the debugger’s queries menu,
developers first select the text containing the name of the class from the code pane,
and then the debugger automatically assigns the selection to the query parameter.

Query results are displayed on the right pane of the debugger (Figure 6.3). The
results are displayed according to the projection function of the executed query. In
the results table, the first column labeled step serves as a timestamp to control time-
traveling operations. When clicking on the step of a query result line, the debugger
time-travels to the moment at which the associated instruction was executed and
updates the debugger views (e.g., code, stack) accordingly. From there, developers
can perform more debugging actions (such as stepping forward and backward),
time-travel again, or execute another query.

6.3.2.2 Writing Time-traveling Queries in the scripting presenter

The scripting presenter is available in the right pane of the debugger (Figure 6.4).
There, developers can write and execute queries on the fly directly in the debugger.
Developers can therefore ask new questions when they arise while exploring an
execution, either from conventional steps or by browsing the results of a query.

To write queries in the debugger, developers have access to a variable named
programStates, which represents the collection of all possible program states
of the debugged program execution. Developers then write queries by using
the programStates variable as the data source for the query. Figure 6.4
and Listing 6.4 show examples of scripts that use the programStates of the
scripting presenter and define the selection predicate and projection function in a
single expression.

6.4 Time-traveling Queries Implementation
In this section, we describe the implementation details of TTQs.

6.4.1 Time-traveling queries requirements
TTQs require a time-traveling debugger back end that provides the following
features:

1. The debugger is able to restore a program execution state to any given time
index.

6.4. Time-traveling Queries Implementation 93

2. An iterable object that represents the sequence of program states of an
execution.

3. A unique time index for every executed instruction (bytecode, opcode,
abstract syntax tree...), that the debugger records.

4. To support concurrent executions, the sequence of program states is well
ordered:

(a) The back end must control the execution of concurrent instructions and
order their associated program state with unique and sequential time
indexes.

(b) The back end must enforce the deterministic order of the instructions
of an execution during replay.

To implement our solution, we used Seeker (Section 4.2), which fulfills all
listed requirements for single-threaded executions (requirements 1, 2, and 3)
and already integrates with the Pharo debugger. We used CurrentState
objects (Described in detail in 4.2.5) to access program execution data. We
next describe only the code required to support TTQs, while the rest of the API
and implementation of our time-traveling debugger are available in full detail in
Chapter 4.

6.4.2 Query implementation
Query objects (Figure 6.5) define the query parameters and an iteration routine
comprising three instance variables:

1. fromSource: Can be any iterable object (i.e., responds to do: message
in Pharo).

2. selectionPredicate: A block that takes a CurrentState object as an
argument and returns true or false.

3. projectionFunction: A block that takes a CurrentState object as an
argument and returns an object.

The selection predicate and projection function can alternatively use custom
objects instead of blocks. Any object that responds to the value: message can
be used as long as the method respects the parameter and the return.

The Query class implements the API to write selection and projection
functions and for executing queries.

To create Query objects, there are 2 constructors. The first constructor
(Listing 6.5) is used by developers to quickly create custom queries during their
debugging sessions.

94
Chapter 6. Time-traveling Queries:

Improving Interactive Debugging

fromSource

—

Iterable

 do:(BlockClosure)

selectionPredicate : BlockClosure
projectionFunction : BlockClosure

Query

asOrderedCollection() : OrderedCollection
collect:(BlockClosure) : Query
do:(BlockClosure)
newSelectionPredicate() : BlockClosure
newProjectionFunction() : BlockClosure
select:(BlockClosure) : Query
from:(Iterable) : Query
from:select:collect:(Iterable,
 BlockClosure, BlockClosure) : Query

—

ProgramStates

currentState() : CurrentState
do:(BlockClosure)

—

SeekerDebugger

executeQuery:(Query)
programStates() : ProgramStates
// Rest of the API described in Chapter 4

currentState

1debugger

1

—

UserTTQ

newSelectionPredicate() : BlockClosure
newProjectionFunction() : BlockClosure

debuggedProcess : Process

CurrentState

debuggedProccess() : Process
// API described in Chapter 4

currentState 1

1
programStates

1

Figure 6.5: Class diagram of the Time-traveling Queries mechanism. To make TTQs,
Query objects use Seeker’s time-traveling features to iterate over the states of a program.
The new methods added to Seeker to enable support for TTQs are written in blue.
Underlined method are defined class-side.

1 Query class >> from: aDataSource select: selectionPredicate collect: projectionFunction
2 ^ self new fromSource: aDataSource;
3 selectionPredicate: selectionPredicate;
4 projectionFunction: projectionFunction;
5 yourself.
6

Listing 6.5: Main constructor of the Query class.

1 Query class >> from: aDataSource
2 | query |
3 query := self new fromSource: aDataSource; yourself.
4 query selectionPredicate: query newSelectionPredicate;
5 query projectionFunction: query newProjectionFunction;
6 ^ query

Listing 6.6: Single-argument constructor, used by subclasses.

The second constructor (Listing 6.6) is reserved for subclasses of Query.
This constructor sets the selection predicate and projection function defined
in the instance of the query subclass (Lines 4 and 5). The methods
newSelectionPredicate and newProjectionFunction are overridden

6.4. Time-traveling Queries Implementation 95

by developers when creating Query subclasses. We elaborate further into the
subject of creating Query subclasses in Subsection 6.4.5.

Query execution and results production

The iteration routine of a query is defined in the do: method (Listing 6.7).

1 Query >> do: aBlock
2 fromSource do: [:srcItem | (selectionPredicate value: srcItem) ifTrue: [
3 aBlock value: (projectionFunction value: srcItem)]
4

Listing 6.7: Query» do: method iterate over the items of the fromSource object. The
method evaluates the block argument on each selected and projected item.

The iteration of a query is performed by iterating over the items of fromSource,
evaluating the do: argument block using the projection of the items that test
positive for the selection predicate.

Our Query system follows a deferred execution design1. Therefore, the items
defined by the query are computed only when required. In our implementation, the
do: (Listing 6.7) method is the main method triggering such computation.

Since query objects only define the querying operation, the method
asOrderedCollection (Listing 6.8) is provided for developers to obtain a
computed set of results stored in an OrderedCollection object. This method
internally uses the do: method (Line 4), which triggers the computation of the
query results.

1 Query >> asOrderedCollection
2 | result |
3 result := OrderedCollection new.
4 self do: [: item | result add: item].
5 ^ result

Listing 6.8: Query » asOrderedCollection method executes a query, producing
an OrderedCollection as a result.

To populate the resulting collection, inside the do: method call (Listing 6.8,
Line 4), the query iterates over the items of the fromSource (As described
in Listing 6.7). Still inside the do: method, the query evaluates the
selectionPredicate for each item. If the predicate evaluation returns true,
the projectionFunction is applied to the item, and the projected output is
added to the result collection as defined in the do: argument block (Listing 6.8,
Line 4).

1Deferred execution is a programming concept where an operation or computation is not
executed immediately but is delayed until it is explicitly requested or required. For example, Java
stream operations like map, filter, and reduce are performed only when a terminal operation
is invoked, such as forEach or collect. Other similar examples include LINQ expressions in
.Net and Python Generator expressions.

96
Chapter 6. Time-traveling Queries:

Improving Interactive Debugging

6.4.3 ProgramStates class
ProgramStates objects are used as data sources for queries, and they use Seeker’s
time-traveling features to iterate over all the states of a program execution. We list
the most important methods in Listing 6.9.

1 "Constructor"
2 ProgramStates class >> newFrom: aSeekerDebugger
3 ^ self new debugger: aSeekerDebugger;
4 currentState: aSeekerDebugger currentState);
5 yourself.
6

7 "Iteration logic"
8 ProgramStates >> do: aBlock
9 [debugger isExecutionFinished] whileFalse: [

10 aBlock value: currentState.
11 debugger stepBytecode]

Listing 6.9: Code extract of the implementation of the ProgramStates class. To make
ProgramStates an iterable, it defines the method do:, which encapsulates the debugger
stepping logic to traverse all the states of a program.

The constructor newFrom: is used by Seeker to return a program states object
(Listing 6.10, Lines 9 and 10).

Calling the do: method of a ProgramsStates object will evaluate the block,
passed as an argument, over every execution state of the program (Lines 8 to 11).

6.4.4 Modifications of Seeker to support TTQs
To enable the integration of TTQs in the debugger, we modified the
SeekerDebugger class. In Listing 6.10, we show the most relevant methods added:

1 SeekerDebugger >> executeQuery: aQuery
2 | presentStepNumber result |
3 presentStepNumber : = self stepNumber.
4 self restart.
5 result := aQuery asOrderedCollection.
6 self timeTravelTo: presentStepNumber.
7 self showInQueryResultsTab: result.
8

9 SeekerDebugger >> programStates
10 ^ ProgramStates newFrom: self
11

12 SeekerDebugger >> showInQueryResultsTab: aCollection
13 "Populates the table in the view with the data in aCollection"

Listing 6.10: New methods of SeekerDebugger to enable support for TTQs.

The listed code is a simplified version of the original, where we removed UI
updating and other accessory code to improve clarity.

6.4. Time-traveling Queries Implementation 97

As Listing 6.10 shows, when we execute a query, the debugger restarts the
execution from the first step (Line 4). The query is executed to produce results
(Line 5). To produce results, the query internally uses the ProgramStates object
to step over the entire program execution and collect the results (As described in
Listing 6.8). To prevent losing the progress of our program exploration, caused
by the ProgramStates stepping over all the states of the program, the debugger
returns the execution to the same step number that was present before the query was
executed (Line 6). Finally, the collected results are displayed in the UI (Line 7).

6.4.5 Implementation of key Time-traveling Queries

Each one of our Key TTQs is defined in a dedicated class. To implement
these specialized queries, we subclass the Query class and override the
newSelectionPredicate and newProjectionFunctionmethods. This
way, when the single-parameter constructor is used (Listing 6.6), the Query
subclass instance is initialized with the overridden selection predicate and
projection functions.

In the following, we describe how we implemented two representative queries
of our library from Section 6.3.1: Query III.3 (Section 6.4.5.1) and query I.2
(Section 6.4.5.2). In each example, we first outline the procedure and then describe
the details of their selection predicate and projection function.

6.4.5.1 Finding all assignments to the instance variables of a class

This query finds all assignments to instance variables of any instance of
a target class. We first subclassed the Query class with a new class
QueryAssignmentsOfInstVarsOfClassName. This subclass also defines
an instance variable named targetClassName, used to specify the target class
name for logging assignments. Then, we defined a new selection predicate to filter
all program states, selecting only the ones corresponding to assignments. Finally,
we defined a new projection function that outputs a dictionary with information
extracted from the filtered assignments. During the query initialization, we store
the selected text from the code presenter into the query’s targetClassName
variable.

The selection predicate. To implement the selection predicate, we override the
method newSelectionPredicate of Query (Listing 6.11). Instead of
returning a block with the definition of the selection predicate, this time, the method
returns a new dedicated object that encapsulates the definition (Lines 2 to 4).

98
Chapter 6. Time-traveling Queries:

Improving Interactive Debugging

1 QueryAssignmentsOfInstVarsOfClassName >> newSelectionPredicate
2 ^ SelectionForQueryAssignmentsOfInstVarsOfClassName new
3 targetClassName: targetClassName;
4 yourself

Listing 6.11: Overriding the newSelectionPredicate method for the key query
III.3 QueryAssignmentsOfInstVarsOfClassName.

This new dedicated object acts as a block, for which it needs to implement the
value: (Listing 6.12), and also stores the targetClassName in an instance
variable. In the predicate defined in the value: method, we first use the
CurrentState API (Chapter 4.2) to determine if a program state corresponds to
an instance variable assignment (Lines 2 and 3). If that is the case, we compare
the class name of the receiver (the object owning the instance variable) with the
targetClassName stored in the instance variable (Line 4).

1 SelectionForQueryAssignmentsOfInstVarsOfClassName >> value: state
2 ^ state isAssignment and: [
3 state assignmentVariable isInstanceVariable and: [
4 state receiverClass name == targetClassName]]

Listing 6.12: Definition of the selection predicate in a dedicated class for the key query
III.3 QueryAssignmentsOfInstVarsOfClassName.

Projection function. To implement the projection function, we override the
newProjectionFunction. In a similar manner to the selection predicate, the
overridden newProjectionFunction returns a dedicated object that defines
the projection function instead of a block.

1 QueryAssignmentsOfInstVarsOfClassName >> newProjectionFunction
2 ^ ProjectionForAssignmentsOfInstVarsOfClassName new

Listing 6.13: Overriding the newProjectionFunction method for the key query
III.3 QueryAssignmentsOfInstVarsOfClassName.

The new dedicated object defines the projection logic in the value:
method (Listing 6.14). We map specific fields of the program states into a
dictionary. We use the CurrentState API to collect various information about the
assignment, such as the method, class, and package where it occurs, the variable
name, its current value, and the new value being assigned. Additionally, we collect
a technical field named bytecodeIndex, which corresponds to the step number
of the instruction. This field is used by the time-travel back end to navigate to
the execution point where the assignment took place. For example, when the user
clicks the step number of the result line, the debugger performs a time-travel to the
step number registered in the result.

6.4. Time-traveling Queries Implementation 99

1 ProjectionForQueryAssignmentsOfInstVarsOfClassName >> value: state
2 ^ { (#selector −> state methodSelector).
3 (#class −> state receiverClass).
4 (#package −> state receiverPackage).
5 (#varName −> state variableName).
6 (#currentValue −> state readVariableValue).
7 (#newValue −> state assignmentValue).
8 (#bytecodeIndex −> state bytecodeIndex)} asDictionary

Listing 6.14: Definition of the projection function in a dedicated class for the key query
III.3 QueryAssignmentsOfInstVarsOfClassName.

6.4.5.2 Finding all sendings of a specific message

This query finds all occurrences of a specific message-send, represented by a
selector given by the developer. When the query is initialized, we store the selected
text from the code presenter into the query’s selector variable.

We created a Query subclass QueryAllMessagesSentWithSelector,
along with its selection predicate and projection function following the same
methodology as in the previously described query.

The selection predicate. In the selection predicate (Listing 6.15), we first check
if the current program state corresponds to a message-send (Line 3). In such a case,
we return the result of the comparison between the message selector with the one
stored in the instance variable selector of the query.

1 SelectionForQueryAllMessagesSentWithSelector >> value: state
2 ^ state isMessageSend and: [state messageSelector == selector]

Listing 6.15: Definition of the selection predicate for the key query I.2
QueryAllMessagesSentWithSelector.

In the projection function (Listing 6.16), we collect information about the
selected message-sends. Similarly, as in Listing 6.14, we collect and return this
information in the form of a dictionary.

1 ProjectionForQueryAllMessagesSentWithSelector >> value: state
2 ^ { (#selector −> state messageSelector).
3 (#arguments −> state messageArguments).
4 (#receiver −> state messageReceiver).
5 (#bytecodeIndex −> state bytecodeIndex) } asDictionary

Listing 6.16: Definition of the projection function for the key query I.2
QueryAllMessagesSentWithSelector.

6.4.6 User-defined time-traveling queries
When developers require a specialized query that is not available in the key TTQs
collection, they can create their own user-defined query. Developers add new user
queries to the debugger queries menu by subclassing the UserTTQ class. The
new subclasses require overriding the methods newSelectionPredicate and
newProjectionFunction in the same manner we showed for implementing
the key TTQs. UserTTQs subclasses are automatically added to the UserTTQs
submenu of the debugger queries menu during the debugger initialization.

6.5 Conclusion
In this chapter, we introduced a new debugging mechanism to address standard
interactive debugger problems. This new mechanism, which we named Time-
traveling Queries, combines time-traveling debuggers and queries to bring novel
debugging capabilities. We have provided a description of what TTQs are. We
explained how they support the debugging activity and the benefits they bring.
Then, we described in depth their implementation and how they integrated them
into Seeker and into the interactive debugging workflow. Finally, we presented
examples of how new queries can be created by developers.

CHAPTER 7

Evaluation of the TTQ-based
Debugging Approach

Contents
7.1 Empirical Evaluation . 101

7.2 Results and Discussion . 106

7.3 Conclusion . 112

In previous chapters, we explored the problems of using standard debugging
techniques, and we proposed a new debugging approach based on Time-traveling
Queries. In this chapter, we evaluate our proposition by conducting a controlled
experiment and report our findings.

7.1 Empirical Evaluation

To measure how our proposed TTQ-based debugging approach helps to improve
the debugging process by supporting program comprehension, we investigated the
following research question:

RQ: Can we express general program comprehension questions as queries
over program executions, and does that improve program exploration regarding
developers’ efforts, time spent, and precision?

We ran a quantitative evaluation [Elmqvist 2015], following a repeated-
measures design [Seltman 2015] with 34 participants. We asked participants to
solve a set of program comprehension tasks with standard debugging tools (i.e., the
most common tools shipped with development environments) and another set of
similar tasks using our set of queries defined in Chapter 6. For each participant,
we measured for each task the time taken to solve that task, the precision of the
participant’s answer, and the number of debugging actions. We then compared
measures using TTQs and standard debugging tools.

102 Chapter 7. Evaluation of the TTQ-based Debugging Approach

7.1.1 Objectives of the experiment

Our objective is to investigate if assisting program exploration with TTQs improves
program comprehension compared to using standard debugging tools (abbreviated
in the following as SDT). As we investigate the RQ along three dimensions - time,
precision, and debugging actions - we have derived three Experimental Research
Questions:
ERQ1: Do TTQs improve the precision of answers of program comprehension
tasks compared to SDT?
ERQ2: Do TTQs reduce the time employed to answer program comprehension
tasks compared to SDT?
ERQ3: Do TTQs reduce the number of actions performed to answer program
comprehension tasks compared to SDT?

Result of a query on the current execution

Predefined Time-Traveling Queries

Default Pharo debugger

St
ac

k
C

od
e

O
bj

ec
t i

ns
pe

ct
or

Figure 7.1: UI layout of the debugger supporting TTQs used for the experiment. The
queries menu contains only the key queries. For the experiment, solely the query result
panel is displayed. Stepping and scripting were disabled.

7.1. Empirical Evaluation 103

7.1.2 Experimental design
Our experiment has two parts. First, a task-solving portion following a repeated
measures design, and immediately after that, a survey.

Experimental setup. We asked 34 participants to perform two sets of tasks
with Pharo 9 under an informal time limit of 90 minutes. Participants performed
the experiment remotely without supervision. A pilot participant also performed
the same sets of tasks prior to the 34 subjects.

We informed participants that the Pharo images they received were
instrumented to log their actions. However, they were not informed what was going
to be measured, such as the number of actions they performed to resolve a task
or their employed time. We suggested participants use queries during the TTQs
tasks without hinting which ones and without enforcing their usage. Participants
did not have to manually write or compose queries: the default debugger menu
exposed queries. Figure 7.1 shows the integration of time-traveling queries and
their results in the default Pharo debugger, used specifically for the experiment.
Since the queries menu and the results are embedded in the debugger window,
participants did not have to leave the debugger screen to perform debugging actions
and navigate the results.

Each task is a program comprehension question for which participants must
provide an answer. To solve a task, participants had to open a debugger on a unit
test and answer 1 or 2 program comprehension questions.

The two sets of tasks are:

• The control set is composed of 5 tasks. We asked participants to provide an
answer using exclusively standard Pharo debugging tools.

• The TTQ set is composed of 5 tasks. We asked participants to provide an
answer using TTQs in addition to the standard Pharo debugging tools.

Each task in a set has a similar counterpart in the other set i.e., we ask a similar
question in an equally difficult task between the control and the TTQ sets.

The pilot first performed the tasks following the {control, TTQ} order and
reported a carryover effect. The pilot reported that starting with the control set
seemed to help to understand what to look for in the TTQ set when answering
similar tasks. To limit this learning effect, we randomly assigned 50% of the
participants to the {control, TTQ} order and the other 50% to the opposite {TTQ,
control} order.

Participants. We gathered 34 participants and 1 pilot. Most of them are Pharo
developers with experience ranging from a few months to 20 years (Figure 7.6).
Some of them have Pharo development experience but work outside of the Pharo
world. Participants had no previous experience with TTQs, and thus discovered it
during the experiment. We provided them with a two-minute video on TTQs and
their usage, along with TTQs reference material consisting of a 5 slide presentation.

104 Chapter 7. Evaluation of the TTQ-based Debugging Approach

Tasks. We defined 14 tasks (Table 7.1) based on the questions described in
Chapter 6.

We made sure that each question we asked was connected to what participants
saw when opening the associated test with a debugger. We also made sure that
participants would not have to write too much text as an answer, e.g., hundred of
values.

We distributed the 14 tasks in different task groups, each group containing
5 pairs of tasks. Each pair of tasks contained one control task and one TTQ
task of equivalent difficulty, both tasks targeting the same program comprehension
question. We made sure that, within the groups, every task was equally distributed
as a control and as a TTQ task. We then randomly assigned a task group to each
participant, with an experiment order ({control, TTQ} or {TTQ, control}).

Metrics and measurements. To answer ERQ1, 2 and 3, we defined three
metrics: Score (precision), Time, and Debugging Actions. We measured (through
execution logs) and calculated these metrics 2 times for each participant: for
control and TTQ tasks. Participants had no knowledge of the measured metrics,
and data was collected anonymously. All participants gave their consent for the
collection of the experimental data.

The score is the number of tasks with correct answers. It is an integer value
between 0 and 5, calculated as the count of tasks with 100% answer correctness.
The correctness C of a task t of a participant p is calculated as: C(p, t) =
(cv(p, t)/ev(t)) where cv(p, t) is the number of correct values provided in the
participant’s answer for task t, and ev(t) is the number of expected values for task t.
To reach 100% correctness, a participant’s answer needs to include all the expected
values. To define the list of expected values, we first performed all tasks using
TTQ and recorded the results. We then compared participants’ answers to this list
of results. If an answer differed from our list, we analyzed it to understand why
the participant arrived at that conclusion. If it could be due to a reasonable level of
ambiguity of the question, then we registered it as an additional accepted correct
value of the answer. Finally, tasks for which no answer was provided (e.g., the
participant failed to answer or did not have enough time) are counted as 0%.

Time corresponds to the time in minutes a participant took to answer a task. It is
the chronological time span (obtained from logs) from the beginning of a task until
it is answered. The beginning of a task corresponds to the moment a participant
starts that task. Participants were not able to see a task description before manually
starting it through a graphical control. The end of a task corresponds to the moment
a participant provides an answer for that task. We considered that the time to
write an answer did not affect our measurements. Finally, we removed periods of
inactivity > 5 minutes. For example, if the mouse of a participant did not move
for 15 minutes, we considered that the participant was idle for 10 minutes. 2
participants fell in that case, e.g., one participant had a 10 hours period without
any event.

7.1. Empirical Evaluation 105

T Test Method and Question SQ

1
RSMonitorEventsTest >> testNoTarget

S32
From which domain method is the exception signaled?

2
STONJSONTest >> testUnknown

S32
From which domain method is each exception signaled

3
MetacelloVersionNumberTestCase >> testApproxVersion02

S13
How many times is asMetacelloVersionNumber called and from which method?

4
GeneratorTest >> testAtEnd

S13
How many times is Generator >> atEnd called and from which methods?

5
MicToPillarBasicTest >> testHeader

S14
How many instances of PRHeader are created? and from which methods?

6
MicToPillarBasicTest >> testCodeBlock

S14
How many instances of PRCodeblock are created? and from which methods?

7
MicOrderedListBlockTest >> testSingleLevelList2

S14*
Which classes from the Microdown package are instantiated?

8
HiRulerBuilderTest >> testCycle

S14*
Which classes from the Hiedra package are instantiated

9
NSPowScaleTest >> testSqrt

S19
What are the classes of every object receiving the scale: message?
What are the values of the arguments in each message?

10
RSNormalizerTest >> testBasic

S19
What are the classes of every object receiving the color: message?
What are the values of the arguments in each message?

11
RSCameraTest >> testPosition

S20
What instance variables of the RSCanvas object are modified during this test?

12
RSAttachPointTest >> testVerticalAttachPoint

S20
What instance variables of RSBox b1 are modified during this test?

13
OCPragmaTest >> testPragmaAfterBeforTemp

S15
What are the different values assigned to the instance variables: pragmas source
and keywordsPositions of aRBMethod object, during the execution?

14
ContextTest >> testSteppingReturnSelfMethod

S15*
What are the different values of the pc instance variable of the newContext
object during this test?

Table 7.1: Tasks in the controlled experiment. To complete a task, developers were asked
to debug the execution of a test case and answer the corresponding question. T is the task
id, SQ refers to the question types of [Sillito 2008] selected in Chapter 6. (*): The task
question is a variation of the original SQ.

Debugging Actions is an integer representing the sum of program exploration
actions performed by a participant to answer a given task. We considered the
following actions: configuring breakpoints, modifying methods, executing code,
opening debuggers, stepping in the debugger, executing TTQs, time-traveling, and
filtering TTQs results.

Post-study survey. We requested participants to fill out a survey after they
performed the experiment. First, we gathered factual information such as the
participants’ professional background and programming experience. Second, we
gathered subjective information through the following questions:

106 Chapter 7. Evaluation of the TTQ-based Debugging Approach

• TTQ: do you find TTQs useful?

• TTQ: do you find TTQs intuitive?

• Control: what is your confidence level for your answers?

• Control: what would be your perceived difficulty level for completing the
tasks?

• TTQ: what is your confidence level for your answers?

• TTQ: what would be your perceived difficulty level for completing the tasks
with TTQs?

Our objective in gathering these subjective data is to put in contrast how
participants perceived and trusted TTQs in regards with their measured efficiency
during the experiment.

7.2 Results and Discussion

In this section, we analyze the data collected from the experiment1 and their
statistical significance. We then analyze the data collected from the post-study
survey.

7.2.1 Experiment results

From the experiment data, we rejected the results of two participants who did not
follow the experimental protocol. Logs show these participants did not use TTQs
at all. One of them also loaded external advanced tools to perform the tasks. This
makes any comparison unreliable. The following analysis is, therefore, based on
results from 32 participants out of the 34 who performed the experiment.

Figures 7.2, 7.3, and 7.4 show the differences for each participant respectively
for the score, time, and debugging action metrics. For example, in Figure 7.2, 24
participants, over the 32, have a greater score with TTQs than with SDT, 6 have
the same score, and only 2 a lower with TTQs. Compared to standard debugging
tools, most participants using TTQs seem to reach a better score in less time and
by performing fewer debugging actions.

Figure 7.5 shows the averages over all participants for each one of these metrics.
On average and compared to standard debugging tools, participants using TTQs
obtained a 39% higher score, invested 28% less time, and performed 38% less
debugging actions.

1The anonymized data are publicly available at https://github.com/willembrinck/2021-TTQs

https://github.com/willembrinck/2021-TTQs

7.2. Results and Discussion 107
pa

rti
cip

an
t-0

1
pa

rti
cip

an
t-0

2
pa

rti
cip

an
t-0

3
pa

rti
cip

an
t-0

4
pa

rti
cip

an
t-0

5
pa

rti
cip

an
t-0

6
pa

rti
cip

an
t-0

7
pa

rti
cip

an
t-0

8
pa

rti
cip

an
t-0

9
pa

rti
cip

an
t-1

0
pa

rti
cip

an
t-1

1
pa

rti
cip

an
t-1

2
pa

rti
cip

an
t-1

3
pa

rti
cip

an
t-1

4
pa

rti
cip

an
t-1

5
pa

rti
cip

an
t-1

6
pa

rti
cip

an
t-1

7
pa

rti
cip

an
t-1

8
pa

rti
cip

an
t-1

9
pa

rti
cip

an
t-2

0
pa

rti
cip

an
t-2

1
pa

rti
cip

an
t-2

2
pa

rti
cip

an
t-2

3
pa

rti
cip

an
t-2

4
pa

rti
cip

an
t-2

5
pa

rti
cip

an
t-2

6
pa

rti
cip

an
t-2

7
pa

rti
cip

an
t-2

8
pa

rti
cip

an
t-2

9
pa

rti
cip

an
t-3

0
pa

rti
cip

an
t-3

1
pa

rti
cip

an
t-3

2

Figure 7.2: Participants scores. In the horizontal axis, participants are sorted in ascending
order by their years of experience in Pharo.

pa
rti
cip

an
t-0

1
pa

rti
cip

an
t-0

2
pa

rti
cip

an
t-0

3
pa

rti
cip

an
t-0

4
pa

rti
cip

an
t-0

5
pa

rti
cip

an
t-0

6
pa

rti
cip

an
t-0

7
pa

rti
cip

an
t-0

8
pa

rti
cip

an
t-0

9
pa

rti
cip

an
t-1

0
pa

rti
cip

an
t-1

1
pa

rti
cip

an
t-1

2
pa

rti
cip

an
t-1

3
pa

rti
cip

an
t-1

4
pa

rti
cip

an
t-1

5
pa

rti
cip

an
t-1

6
pa

rti
cip

an
t-1

7
pa

rti
cip

an
t-1

8
pa

rti
cip

an
t-1

9
pa

rti
cip

an
t-2

0
pa

rti
cip

an
t-2

1
pa

rti
cip

an
t-2

2
pa

rti
cip

an
t-2

3
pa

rti
cip

an
t-2

4
pa

rti
cip

an
t-2

5
pa

rti
cip

an
t-2

6
pa

rti
cip

an
t-2

7
pa

rti
cip

an
t-2

8
pa

rti
cip

an
t-2

9
pa

rti
cip

an
t-3

0
pa

rti
cip

an
t-3

1
pa

rti
cip

an
t-3

2

Figure 7.3: Participants total time per sequence, in minutes. In the horizontal axis,
participants are sorted in ascending order by their years of experience in Pharo.

108 Chapter 7. Evaluation of the TTQ-based Debugging Approach
pa

rti
cip

an
t-0

1
pa

rti
cip

an
t-0

2
pa

rti
cip

an
t-0

3
pa

rti
cip

an
t-0

4
pa

rti
cip

an
t-0

5
pa

rti
cip

an
t-0

6
pa

rti
cip

an
t-0

7
pa

rti
cip

an
t-0

8
pa

rti
cip

an
t-0

9
pa

rti
cip

an
t-1

0
pa

rti
cip

an
t-1

1
pa

rti
cip

an
t-1

2
pa

rti
cip

an
t-1

3
pa

rti
cip

an
t-1

4
pa

rti
cip

an
t-1

5
pa

rti
cip

an
t-1

6
pa

rti
cip

an
t-1

7
pa

rti
cip

an
t-1

8
pa

rti
cip

an
t-1

9
pa

rti
cip

an
t-2

0
pa

rti
cip

an
t-2

1
pa

rti
cip

an
t-2

2
pa

rti
cip

an
t-2

3
pa

rti
cip

an
t-2

4
pa

rti
cip

an
t-2

5
pa

rti
cip

an
t-2

6
pa

rti
cip

an
t-2

7
pa

rti
cip

an
t-2

8
pa

rti
cip

an
t-2

9
pa

rti
cip

an
t-3

0
pa

rti
cip

an
t-3

1
pa

rti
cip

an
t-3

2

Figure 7.4: Participants total debugging actions. In the horizontal axis, participants are
sorted in ascending order by their years of experience in Pharo.

To check if the differences between participants are significant, we formulate
the null hypotheses corresponding to our experimental research questions ERQ1,
ERQ2, and ERQ3:

H01 for ERQ1: The precision of program comprehension tasks is the same
with or without TTQs.

H02 for ERQ2: The time employed solving program comprehension tasks
is the same with or without TTQs.

H03 for ERQ3: The number of debugging actions to solve program
comprehension tasks is the same with or without TTQs.

Due to the relatively small data sample, we cannot make assumptions about the
distribution of the data. Therefore, we performed the nonparametric Wilcoxon
signed-rank test to compare the paired differences of the two measurements
(control and TTQ). We applied the same methodology for every formulated null
hypothesis, considering the differences TTQ − control per participant for each
metric (Table 7.2). All p-values are < 0.05, we therefore reject all null hypotheses.

We conclude that to answer program comprehension questions, our TTQs
improves program exploration regarding developers’ efforts, time spent, and
precision compared to standard debugging tools.

7.2. Results and Discussion 109

Figure 7.5: Experiment results of each research dimension, averaged.

N Z-value p-value
H0 EQ1 - Score 26 -4.178 <0.001
H0 EQ2 - Time 32 -2.4496 0.014
H0 EQ3 - Debugging Actions 32 -2.3748 0.018

Table 7.2: H0 rejection table with Wilcoxon signed-rank test values.

7.2.2 Post-study survey
Tables 7.3, 7.4, 7.5 summarize the results of the post-study survey. Most
participants found that TTQs were useful and of intuitive usage 7.3. Most
participants were more confident in the precision of their answers with TTQs than
with standard debugging tools 7.4. Most participants perceived the tasks as less
difficult with TTQs than with standard debugging tools 7.5. This is a positive
reception, considering the fact that participants were not exposed to the tool before
the experiment. This suggests that to answer program comprehension questions,
our tool is easy to learn and easier to use than standard debugging tools.

TTQ Reception
Rating (More

is Better) Usefulness Intuitive
Usage

Poor: 1 6% 3%
Fair: 2 6% 0%

Satisfactory: 3 25% 18%
Very good: 4 44% 28%
Excellent: 5 19% 50%

Table 7.3: TTQ Reception rating of the post-study survey. Participants evaluated the
usefulness of the tool (Debugger with TTQs) and its intuitive usage.

110 Chapter 7. Evaluation of the TTQ-based Debugging Approach

Participants’ confidence
in their answers

Rating (More
is Better) Control TTQ

Not sure at all: 1 6% 6%
2 34% 3%
3 28% 19%
4 19% 41%

They are for sure
the correct ones: 5 12% 31%

Table 7.4: Participants’ confidence in their answers, according to the post-study survey.
Participants evaluated their confidence in the correctness of their answers when using TTQs
and when not.

Perceived difficulty
of sequence

Rating (Less
is Better) Control TTQ

Easy: 1 0% 38%
2 12% 28%
3 22% 25%
4 41% 9%

Difficult: 5 25% 0%

Table 7.5: Participants’ perceived difficulty of each sequence, according to the post-study
survey. Participants evaluated the task difficulty when using TTQs and when not.

7.2.3 Discussion on participant’s experience impact on the
results

The question of the impact of participants’ previous debugging habits and
experience has to be discussed. Indeed, if participants had all one or two years
of development experience in Pharo, the results could be less significative in the
sense that, for someone not used to debug a program or used to a given debugger,
a new tool can be as easy/difficult than a traditional one.

The participant population described in Figure 7.6 ensures that we do not have
such bias. Figure 7.6 presents the years of experience in Pharo of the participants.
It shows that we have nearly an equal number of participants with 0 to 4 years
than 4 to 25 years of development with Pharo and related environments such as
Squeak (the ancestor of Pharo). Pharo is not taught at the University close to
the place where our experience happened. Therefore, having 4 or more years of
Pharo developing experience exhibits a solid experience with the system, including
familiarity with the standard debugging tools and debugging in general.

7.2. Results and Discussion 111

0

5

10

15

20

0.00 4.00 8.00 12.00 16.00 20.00
Years of experience using Pharo

Fr
eq

ue
nc

y

Figure 7.6: Histogram of participants’ years of experience in Pharo.

Post-survey results showed that the debugging tool was trusted by most
participants. However, some experienced Pharo developers manifested that to
trust the tool result, they would had to validate the results using other tools, but
in doing so, they would break the experiment protocol. This puts the participant
in a problematic situation, which can potentially affect the experiment results. As
stated in Section 7.2.1, we discarded one participant’s results for this reason. We
acknowledge the need to minimize these scenarios for future experiences.

7.2.4 Threats to validity

Answers correctness. The list of expected correct values, used to decide if a task
answer was correct, was produced using TTQs in addition to participant answers in
an iterative process. We tested each listed value by manually finding them in their
respective test case, and consequently, we consider them as correct. However, it is
not possible to prove the completeness of these lists.

Carryover effect on the experiment order. We balanced the order of the
experiment ({control, TTQ} or {TTQ, control}) to avoid a learning effect between
the control and the TTQ tasks. However, the data suggest a learning effect in favor
of the control tasks. Table ?? presents the means of the score, time and debugging
actions metrics for the two experiment orders. Participants performed better on
all metrics in their control tasks with the {TTQ, control} order. In particular,
they are almost 2 times faster while obtaining a slightly better precision (score)
and performing slightly fewer debugging actions. This suggests a learning effect:
Participants learned while doing the TTQ tasks first and, therefore, were more
efficient during the following control tasks. Participants were not familiar neither
with the comprehension tasks nor with the TTQs. Starting with the TTQ set, they
learned both during the first part of the experiment. In the {control, TTQ} order,
they have two learning phases, one per experiment.

Metric Sequence Sequence Order
Control→TTQ TTQ→Control

Score
Overall 5.62 6.88
Control 2.13 2.63

TTQ 3.5 4.25

Time
Overall 90.4 69.2
Control 59.9 32.9

TTQ 30.5 36.3

Debugging
Actions

Overall 307.8 342.6
Control 206.7 192.7

TTQ 101.1 149.9

Table 7.6: Results according to the experiment order.

Tasks equivalence. Every control task has an equivalent TTQ task in terms of
difficulty. This makes it possible to compute per-participant means over the control
tasks and over the TTQ tasks and then compute the means difference. However,
we assessed this difficulty equivalence based on our own development experience.
Formally proving this equivalence is not possible in practice. Comparing per-task
means suggests this equivalence (score, time, and debugging actions). Still, there
are not enough samples for each task individually to tell if this equivalence is
statistically significant.

Remote participation modality. Participants went through the experience
remotely. They performed the experiment in full autonomy, using their own
equipment and in their own environment. We accounted for inactivity time longer
than 5 minutes, but we did not monitor participants for small interruptions and
distractions that might affect the results.

7.3 Conclusion
In this chapter, we described the controlled experiment we conducted to evaluate
how queries help to answer common program comprehension questions. Results
show that with TTQs, developers perform program comprehension tasks more
accurately, faster, and with less effort than with standard debugging tools. This
answers our research question. The positive feedback regarding the tool indicates
that it is easy to learn and use for program comprehension compared to standard
debugging tools.

CHAPTER 8

Time-traveling Queries for
Specialized Debugging - TTQs

Applications

Contents
8.1 Specialized Debugging Tools . 113

8.2 A Real World Scenario: Debugging a Meta Compiler 114

8.3 Identifying False Positives in String-Symbol Comparisons 115

8.4 Domain-Specific Queries for the Moose Platform 118

8.5 Queries of Object-centric Debugging 120

8.6 Reproducing the Moldable Debugger Experiments 125

8.7 Conclusion . 129

Time-traveling Queries (TTQs) offer a new perspective on debugging by
enabling developers to easily traverse program execution history and use problem-
specific queries for specialized debugging.

In this chapter, we explore the versatility of the TTQs mechanism. We show
examples of how TTQs are used to solve debugging problems that are difficult to
approach by using conventional tools. Then, we showcase the development of a
suite of specialized debugging tools that address a selection of problem-specific
scenarios.

8.1 Specialized Debugging Tools
As described in Chapter 1, developers face an abstraction gap when using
traditional debugging tools to find answers to their debugging questions. To address
this challenge, domain-specific debugging tools provide debugging actions that are
closely aligned with the application domain, thereby reducing the gap. However,
crafting specialized debugging tools for each specific domain or extending existing
ones is a difficult task, which hinders the availability of these tools to address
problem-specific scenarios.

114 Chapter 8. Time-traveling Queries for Specialized Debugging

In light of these concerns, we look for an approach that helps to address
problem-specific debugging scenarios or that facilitates the creation of new
specialized debugging tools.

We claim that TTQs offer a flexible solution for problem-specific debugging
concerns. New specialized queries can be used to answer developers’ problem-
specific debugging questions. TTQs would also facilitate creating new or extending
existing specialized debugging tools. To study our claim, we investigate the
research question:

RQ: Are TTQs extensible and customizable to tackle domain and problem-
specific debugging scenarios?

To conduct our investigation, we first examine how TTQs are used to solve real
and specific debugging problems that are difficult to approach with conventional
tools. Then, we study existing work from the literature that addresses domain and
problem-specific debugging problems [Ressia 2012,Chiş 2014]. From these works,
we replicated a portion of their proposals using our TTQs mechanism.

In the following sections, we describe:

1. How Seeker and TTQs were used to debug a meta compiler problematic case.

2. How we built problem-specific queries for MicroDown [Ducasse 2020], a
parser and text formatter, to understand aspects of its execution and make
design decisions.

3. How we built domain-specific queries for Moose [Anquetil 2020], a
software analysis platform whose developers have recurring domain-specific
questions.

4. How Seeker provides object-centric [Ressia 2012] debugging capabilities
through TTQs.

5. How we use TTQs to reproduce experiments done by the Moldable
Debugger [Chiş 2014], a framework to build domain-specific debuggers.

8.2 A Real World Scenario: Debugging a Meta
Compiler using TTQs

Seeker has been used by the developers of Druid1, a meta-compiler. When
compiling, Druid uses an intermediate representation in the form of a Control Flow
Graph (CFG). During the compilation process, Druid runs many optimizations
and changes that CFG. Sometimes, an optimization or a combination of multiple
optimization breaks the CFG and produces a compiling error. Most of the time,
we cannot easily determine which optimization breaks the CFG, because when

1https://github.com/Alamvic/druid

https://github.com/Alamvic/druid

8.3. Identifying False Positives in String-Symbol Comparisons 115

we observe the error, it is already too late. The guilty optimization was applied
at some point, followed by other destructive optimizations until the effects of the
guilty optimization become visible.

This is tedious to debug with conventional tools. First, developers do not know
which optimization introduces the bug. They have to put a lot of breakpoints and go
through all of them until they find the guilty optimization. This happens even with
more specialized breakpoints, such as conditional breakpoints. Second, applying
optimization has effects on the CFG, and those effects are potentially destructive.
This means developers cannot evaluate safely the same optimization many times
during the same debugged execution. Therefore, if the developers miss the exact
point where that guilty optimization is applied, e.g., if they do not put the correct
breakpoint or if they step too far in the debugger, they have to restart the whole
debugging process.

Using our time-traveling queries library, the Druid developers accessed the
history of operations applied to the CFG. They were able to travel between states,
before and after each optimization. They found the point where the error appeared,
and this information told them exactly where to search in the code.

In this scenario, the TTQs come as a complementary tool to the standard
debugger to obtain important knowledge about a bug. In general, any time-
traveling debuggers could help avoid restarting the debug process while exploring
the program execution. However, this experience shows that our off-the-shelf
queries offer a more practical program exploration approach by listing the relevant
states.

Seeker proved to be useful for this debugging case. We developed Seeker as an
extension of the standard Pharo debugger, providing new debugging capabilities
based on time-traveling (Chapter 4) and TTQs (Chapter 6) mechanisms. This
experience also shows that by enhancing the standard Pharo debugger with TTQs,
we were able to create a new specialized tool that assists developers in finding
answers to their debugging questions.

8.3 Identifying False Positives in String-Symbol
Comparisons

In Smalltalk, symbols are unique objects. Two symbols with the same
representation are the same objects and share the same identity. For example, the
code snippet #aSymbol == #aSymbol will always return true. Conversely,
strings are normal objects, and two strings with the same representation do not
share the same identity. The code snippet ’aSymbol’ == ’aSymbol’ will
always return false. In Pharo and Squeak, contrary to proprietary Smalltalk
implementations, strings are equal to symbols. A string and a symbol with the
same representation share the same identity. For example, ’aSymbol’ ==

116 Chapter 8. Time-traveling Queries for Specialized Debugging

#aSymbol or ’aSymbol’ = #aSymbol will always return true. There is
an important consequence when migrating proprietary Smalltalk code to Pharo:
Any equality check between strings and symbols with the same representation will
answer true while some programs’ semantics wrongly expect that it would return
false.

MicroDown [Ducasse 2020] is a text parser and formatter whose implemen-
tation compares tables of symbols with strings parsed from user inputs. The
parser makes decisions depending on equality checks between these symbols and
strings. When a string matches a symbol, that string is then used by the parser as
equal to that symbol. However, symbols and strings do not answer to the same
protocol. This can be a source of bugs because the parser assumes it uses a symbol
while manipulating a string. To avoid this problem, the MicroDown developers
systematically convert symbols to strings. This can be dangerous for identity-based
data structures where the type of the object matters (i.e., Symbol or String).
This is why MicroDown developers needed to identify code locations where strings
and symbol equality are mixed and in which data structures.

To solve this problem, we built a query that finds all comparison instructions
that compare a string with a symbol. This query uses the selection predicate
described by Listing 8.1. We select all program states corresponding to message-
sends (Line 4) with the selector #= and one argument (Line 6). This means we
compare two objects with the = method. We then consider two cases: the receiver
is a symbol and the argument it is compared to is a string, or vice versa (Lines 9
and 10). We select all program states that satisfy one of these two cases (Line 11).

1 SelectionForQueryAllStringSymbolEquality>> value: state
2 | selector args rcvClass argClass case1 case2 |
3 (state isMessageSend) ifFalse:[^ false].
4 selector := state messageSelector.
5 args := state messageArguments.
6 (selector = #= and: [args size = 1]) ifFalse: [^false].
7 rcvClass := state messageReceiver class.
8 argClass := arguments first class.
9 case1 := rcvClass = ByteSymbol and: [argClass = ByteString].

10 case2 := rcvClass = ByteString and: [argClass = ByteSymbol].
11 ^ case1 or: [case2]

Listing 8.1: Selection predicate to find all strings and symbols equality checks.

We executed our query automatically on the MicroDown test suite, composed
of 472 unit tests and with code coverage of 66%. The query returned 7 unique
cases of string-symbol comparisons in the scope of the MicroDown code covered
by tests. Because we executed the query programmatically on a test suite, the
query results are not shown in a debugger. We, therefore, programmatically collect
and then inspect the query results. We built a projection function to define the
information collected in the results. For each one of the equalities detected,
the query then creates a result item consisting of a dictionary with the collected

8.3. Identifying False Positives in String-Symbol Comparisons 117

Figure 8.1: Example showing the inspection of a result item of the query that finds all
strings and symbols equality.

Figure 8.2: Visualization showing the method of a detected string/symbol equality check
instruction. The visualization highlights the equality instruction and is accessed by
inspecting the node value of the query result item (Figure 8.1).

118 Chapter 8. Time-traveling Queries for Specialized Debugging

information. Figure 8.1 shows one of the result items with this information.
Each query result item corresponds to a comparison instruction where a symbol is
matched with a string. In the results, we collect the method and class in which the
comparison was detected, the instruction for which the string-symbol comparison
was detected, and the values of the compared string and symbol (receiver and
operand). For each incriminated instruction, developers can inspect the projected
dictionaries and observe the instruction in a source code editor (Figure 8.2).

From these results, MicroDown developers can make design decisions. They
can identify data structures using strings or symbols that are compared to parsed
inputs and study how they want to improve their code. They could choose to
make sure their data structures all use either strings or symbols and make their
parser assume it always manipulates objects of the chosen type. This experiment
only aims at helping developers obtain dynamic data from their parser that would
be difficult to obtain otherwise. Because the test suite does not cover all the
MicroDown code, we cannot guarantee that the queried execution will find all
possible string/symbol comparisons. Our query has the merit of being simple to
implement and detecting that these comparisons exist in the MicroDown code base.

8.4 Domain-Specific Queries for the Moose Platform

Moose is an extensive platform for software and data analysis2 [Anquetil 2020].
It relies on the Famix metamodel [Ducasse 2011] to represent software systems as
models. The main activity in Moose is to navigate models or to write Moose queries
on these models, e.g., to identify deprecated methods still in use in a program.

In Moose, once a model representing a software system is built, very few
entities are created or modified. Most Moose actions consist of navigating that
model. Consequently, existing TTQs over instance creations or assignments are
not suitable. TTQs over messages could be used, but Moose domain experts do
not think in these terms since there is only model navigation and no behavioral
execution.

8.4.1 Navigating a Moose model

To analyze programs, the first step is to abstract them as models. In the context
of object-oriented programs, these models consist of entities (such as classes,
variables, or methods) and associations between them (e.g., invocation between
methods, inheritance between classes, or access between a method and a variable).
One common concern for domain experts is to understand which associations have
been navigated during the execution of a Moose query. To help Moose experts, we
developed a domain-specific TTQ to retrieve all navigated associations.

2https://modularmoose.org

8.4. Domain-Specific Queries for the Moose Platform 119

The query uses a selection predicate whose code is detailed in Listing 8.2.
At the implementation level, associations are reified as interfaces implemented
by objects. An association is navigated when certain navigational slots of these
association objects are accessed. Therefore, we look for readings of these slots.

1 SelectionForQueryAllAssocsMoose >> value: state
2 | msgRcv msgRcvClass selector rcvClass |
3 state isMessageSend ifTrue: [
4 msgRcv := state messageReceiver.
5 msgRcvClass := msgRcv class.
6 (msgRcvClass usesTrait: FamixTAssociation) ifFalse: [^ false].
7 "Reflective accesses to navigational slots"
8 selector := state messageSelector.
9 (selector = ’perform:’) ifTrue: [

10 ^ self slotsNames includes: state firstArg].
11 "...Other reflective access cases..."
12 "Calls to accessors"
13 ^ self slotsNames includes: selector].
14 "Direct slot reading"
15 state node isVariable ifFalse: [^ false].
16 rcvClass := state receiver class.
17 (rcvClass usesTrait: FamixTAssociation) ifFalse: [^ false].
18 ^ self slotsNames includes: state varName

Listing 8.2: Selection predicate that selects all associations navigation of a Moose model.

In the selection predicate, we select all program states that correspond to an
association navigation. These program states must contain an object that reifies
an association, i.e., whose class implements the association interface (Lines 6 and
17)3. Then, we detect accesses to navigational slots. These particular slots are
pre-defined by Moose experts in the slotNames method. A navigational slot can
be accessed in different manners:

• Reflective accesses (Lines 9-10)4. The perform: message sends to its
receiver the message corresponding to the selector passed as a parameter. If
that selector corresponds to the name of one of the navigational slots, then a
reflective accessor call for that slot is being performed.

• Calls to accessors, whose selectors are identical to slot names (Line 13). If
the name of the message being sent (selector) corresponds to the name
of one of the navigational slots, then the message-send corresponds to a call
to a navigational slot accessor.

3In Pharo, the receiver (Line 16) represents the object executing a method whose instructions
are executed, e.g., reading variables or sending messages. The messageReceiver (Line 4) is
the object receiving the message of a message-send instruction that is executed within the body of
a method.

4For simplicity, other cases of reflective accesses are not reported in this script.

120 Chapter 8. Time-traveling Queries for Specialized Debugging

• Direct slot reading, i.e., instructions reading a variable pointing to the slot
(Lines 15-18). If the name of the variable being read corresponds to the
name of one of the navigational slots, then the slot is being read directly.

We wrote an object-centric version of this query for finding specific
associations navigation. These queries are examples of non-trivial domain-specific
queries, for which we needed to sit with domain experts to understand what
questions they want to answer to about their Moose execution, and to understand
what we needed to extract and compare from a Moose execution to implement the
queries.

8.4.2 Querying a Moose model
In the Moose terminology, querying a model consists of navigating this model,
selecting some specific elements satisfying the Moose query and putting these
elements in a Moose query result. This result can be of two different
types depending on the executed Moose query, either a MooseGroup or a
MooseQueryResult. For domain experts, it is a recurrent question to find
out when and what elements are added to a Moose query result. We, therefore,
created two TTQs: one to find each time an element is added to one of these
two types of collections or of their subclasses. These two queries execute the
selection predicate described in Listing 8.3. The selection predicate object defines
an accessor modelClass which returns the type of the Moose result that the
query is interested in, i.e., MooseGroup to find all modifications of Moose groups
and MooseQueryResult to find all modifications of Moose query results. The
main selection function (Listing 8.3) uses these methods to select message-sends
corresponding to modifications of instances of these model classes. First, we
only consider message-sends (Line 3). Then, we check if the message selector
corresponds to a Moose collection modifier (Lines 4 and 5). Finally, we check if
the receiver is one of the Moose model classes we are interested in (Line 6).

1 FindAllModificationsSelection >> value: state
2 | selector |
3 (state isMessageSend) ifFalse: [^ false].
4 selector := state messageSelector.
5 (self mooseCollectionModificationSelectors includes: selector) ifFalse: [^ false].
6 ^ state messageReceiver isKindOf: self modelClass

Listing 8.3: Selection predicate to find modifications of a Moose collection.

8.5 TTQs for Object-centric Debugging
Object-centric debugging [Ressia 2012] aims at facilitating the debugging of
object-oriented programs by focusing debugging operations on specific objects.

8.5. Queries of Object-centric Debugging 121

In this section, we describe the problems of object-centric debuggers and how our
solution improves these problems. Then, we describe the TTQ-powered object-
centric debugging features provided by Seeker.

8.5.1 Problems of object-centric debugers

To debug their programs, developers use debuggers, which traditionally provide
a set of standard debugging operations. Some of these debugging operations
(e.g., breakpoints) are defined for a class (e.g., in a method) and apply to all
instances of that class. Meanwhile, object-centric debugging is a technique
proposed to improve the debugging of object-oriented systems by scoping object-
centric debugging operations to specific objects [Ressia 2012, Costiou 2020]. This
helps debugging by reducing user interactions to understand bugs [Ressia 2012,
Corrodi 2016], and by exposing and hot fixing buggy objects [Costiou 2018].

However, in practice, object-centric debugging is difficult to use. Developers
have to manually explore their executions to find objects to debug. This is
tedious and error-prone. Developers have to repeat many times the same program
exploration process.

Object-centric debugging operations also generate false positives. For example,
an object-centric breakpoint might halt the system many times for a single object.
Developers then need to go through numerous haltings until they find useful
information for debugging. This is as tedious as manually stepping an execution
with a standard debugger.

8.5.2 Our proposition: Enhancing object-centric debugging
with TTQs

We claim that enhancing object-centric debugging by time-traveling mechanisms
would enable new debugging tools that would improve the debugging of object-
oriented programs. To investigate this, we explore the application of TTQs in
the context of object-centric debugging. We first use our TTQs mechanism to
automatically and systematically explore an execution to find objects. Once objects
are found, we define and offer time-traveling debugging operations on them.

8.5.3 Identifying particular objects is challenging: A running
example

In the following, we illustrate the difficulties developers go through when they
try to comprehend objects’ behavior during debugging. We explain how object-
centric debugging and time-traveling debugging support these challenges and their
limitations. As an example, we use a test method from the Pharo 11 code base:

122 Chapter 8. Time-traveling Queries for Specialized Debugging

1 SplitJoinTest >> testSplitOrderedCollectionOnOrderedCollection
2 self assert: (((1 to: 10) asOrderedCollection) splitOn: ((4 to: 5) asOrderedCollection))
3 equals: {(1 to: 3) asOrderedCollection. (6 to: 10) asOrderedCollection} asOrderedCollection

Listing 8.4: The split-join test of collections in Pharo 11.

In this test, an OrderedCollection of 10 elements is split by another
OrderedCollectionwith two elements. This operation is expected to produce
a new OrderedCollection containing both left and right sides of the split
operation (each side of the split is an OrderedCollection). The developer,
trying to understand this execution, wants to obtain information about the behavior
and state of instances of OrderedCollection during the execution of the
test. The standard procedure is to step the execution until the desired object
is instantiated. This potentially requires numerous and carefully executed steps
before the observation of the desired object can take place. Moreover, the execution
of this test produces several instances of OrderedCollection, and these
instantiation calls are not immediately visible in the test code. It is difficult to
track each object, as none of them seems to be stored in a variable. This makes
such a manual approach even more tedious.

Using an object-centric debugger, developers can improve over such an
approach by using specific breakpoints that halt the execution whenever a class is
instantiated. With this technique, developers need to halt a certain number of times
to reach the OrderedCollection of interest. Once the object of interest has
been reached, developers can use object-centric breakpoints to observe the object’s
behavior and the evolution of its state. One downside of this technique is that it
might take many halts to reach the object of interest in the first place and then
several other object-centric breakpoints to observe a piece of relevant information.
If the developer accidentally misses that relevant information, then the procedure
has to be restarted from scratch.

By using a time-traveling debugger, we can improve this approach by
navigating back and forth in the execution. If developers miss the observation
of one of the collections, or if they pass it and want to observe it again, they reverse
the execution and look for that collection without the need to redo everything from
the beginning.

Object-centric debugging and time-traveling debugging both provide enhance-
ments over standard debugging tools on their own. We argue that they can
complement each other to improve debugging further. In the following, we explore
how these techniques can benefit from each other. Then, we describe what is
required to enable this new joint approach and how we materialize this approach
into a tool.

8.5. Queries of Object-centric Debugging 123

8.5.4 Debugging objects through time with TTQs

Next, we present our debuggers’ object-centric capabilities and explain how TTQs
are used to implement object-centric operators.

8.5.4.1 Debugging with object-centric time-traveling queries

Figure 8.3: Seeker interface, showing object-centric operations. To the left, the Time-
traveling queries menu(a), available in the code presenter. To the right, the query results
table(b) and its context menu that includes object-centric debugging commands(c).

Seeker includes specific queries to ease the task of identifying and tracking
objects. These queries are available in the Seeker Queries menu (Figure 8.3(a)).

Figure 8.3 shows our debugger opened at the beginning of the execution of the
code from Listing 8.4. To find all collections created during the execution of that
code, we first select the OrderedCollection text in the code presenter. Then
we we execute the query All instances creation of class named as selection from
the context menu (Figure 8.3(a)). Once the query has been executed, the results are
displayed in a table (Figure 8.3(b)). These results contain the complete list of all
the OrderedCollection objects that are instantiated during the execution of
the debugged program.

From the results table, we effortlessly have access to each one of these objects.
We access these objects by right-clicking the result row and choosing the command
inspect object about to be instantiated (Figure 8.3(c)). This command opens an
inspector on the object corresponding to the selected result row. The list of objects
in the results includes all the objects that were instantiated during the previous steps
of the execution. However, the results also list the objects that will be instantiated
during the remaining steps of the execution. As these latter objects are not yet
instantiated, if we choose to inspect them, the debugger automatically advances
the execution until the object is instantiated.

124 Chapter 8. Time-traveling Queries for Specialized Debugging

Every result entry of a TTQ includes the step number of every registered
event. Clicking in the step column of any result item will advance or reverse
the execution, time-traveling to the registered step number. This feature makes
query results act as bookmarks of an execution, providing a practical and precise
alternative to using breakpoints and tedious stepping operations for program
exploration.

8.5.4.2 The Enhanced Inspector: A Promising Object-centric Querying Hub

Pharo traditionally offers a graphical utility for object inspection — a view
that displays information about the state of an object, its API, and other useful
information. During a Seeker debugging session, inspecting any object of the
debugged execution will open an enhanced version of the Pharo Inspector.

Figure 8.4: Object-centric time-traveling queries menu of the enhanced inspector, offering
practical access to relevant object-centric TTQs.

This specialized inspector synchronizes with the time-traveling debugger to
keep an updated view of the inspected object. Stepping the execution forward or
backward triggers the update of the displayed information. This inspector contains
a menu for object-centric operations and queries available for the inspected object
(Figure 8.4):

• Time travel to instantiation instruction.

• List all messages sent to the inspected object.

• Submenu Specific message...: displays every message selector that the object
responds to. Clicking any particular listed selector launches a query of the
type: List all messages sent with that specific selector to the inspected object.

• List all assignments to the instance variables of the inspected object.

• Submenu Specific instance variable...: displays every instance variable of the
object. Clicking any particular listed variable name launches a query of the

8.6. Reproducing the Moldable Debugger Experiments 125

type: List all assignments to that specific instance variable of the inspected
object.

• Find all readings of self.

8.5.5 Related Work
Object-centric debugging and time-traveling debugging have been the subject of
research in recent years. However, and to the best of our knowledge, they have
never been combined. Here, we discuss how some of these works relate to ours.

Object Miners [Costiou 2020] is a set of object-centric tools to acquire, capture
and replay objects from specific expressions of a program. Developers select
(sub)expressions from the program from which objects are automatically captured
and debugged during the execution. Specific objects’ state can be recorded, then
replayed and traversed to observe the evolution of that state. While the tool
allows for exploring the past state of an object, it does not support time-traveling
operations.

Other works [Lienhard 2006, Lienhard 2008] keep track of changes in objects
during the execution of programs. Developers can visualize past states of objects
and their behavior. This is a post-mortem approach without time-traveling
capabilities.

Expositor [Phang 2013] combines scripting and time-travel debugging to allow
programmers to automate complex debugging tasks. From an execution, Expositor
generates traces that developers manipulate as lists with operations such as map
and filter. Our query model provides a similar behavior, where execution traces
can be created, operated, and evaluated to generate results. However, Expositor
does not provide a tool to visualize and exploit results. Furthermore, Expositor
does not support object-centric operations.

Whyline [Ko 2004,Ko 2008] offers contextual queries for program comprehen-
sion. It offers certain object-centric queries, but they are difficult to extend. In
contrast, TTQs are extensible through user-defined TTQs, giving developers the
means to create new specialized queries.

8.6 Reproducing the Moldable Debugger Experi-
ments

The Moldable Debugger [Chiş 2014] is a framework to build debuggers that adapt
their views and actions to the developers’ domain. Therefore, when developers
debug their programs, they use a debugger that provides them domain-specific
views and actions. The intention is to close the gap between generic debuggers
and the domain abstractions that developers use to reason about their program
execution, e.g., to ask program comprehension questions.

126 Chapter 8. Time-traveling Queries for Specialized Debugging

Each domain-specific debugger, in the sense of moldable debugging, is a
composition of:

• A set of predicates that detects particular events in the execution (e.g., the
reception of a particular event),

• domain-specific actions associated with predicates (e.g., stepping until the
next occurrence of a particular event),

• a domain-specific view, i.e., a specialization of the debugger views adapted
for the domain,

• a set of activation predicate, i.e., conditions to detect the presence of specific
domain code and activate the corresponding domain-specific debugger,

• and a debugger model specialization whose implementation supports the
aforementioned points.

The Seeker debugger can be extended to reproduce Moldable Debuggers.
Predicates of moldable debuggers become Seeker selection predicates5 of domain-
specific queries over program states. Domain-specific actions are simulated
by time-traveling through queries’ results. Views are customizable exactly as
the Moldable Debugger ones because we built Seeker with the same Moldable
UI [Chis 2016] framework. Activation predicates are equivalent to running queries,
and the debugger model specialization is unnecessary as the TTQ implementation
is all that is necessary to execute queries.

In the following, we show how we reproduce two Moldable Debugger
experiments [Chiş 2014], namely the Announcement Debugger and an adaptation
of the PetitParser Debugger by reusing the predicates described in [Chiş 2014] and
their implementation.

8.6.1 Reimplementing the Announcement Debugger with TTQs
In Pharo, Announcement is an implementation of the publisher-subscriber pattern.
A subscriber is an object that registers to an announcer (i.e., a publisher) for a
type of announcement (i.e., an event). For each subscriber, the announcer stores
a subscription, which defines an action to perform. When an event occurs, each
announcer finds all their subscriptions corresponding to that event and executes the
action of these subscriptions. Executing a subscription’s action is called delivering
the subscription.

Code with announcements is notoriously hard to debug, as standard stack-based
debugging tools are not adapted to debug event-based programs [Chiş 2013]. The
Announcement Debugger is a domain-specific debugger that centers the debugging
perspectives on announcements rather than on call stacks.

5To avoid ambiguity, we use the complete term selection predicate when referring to Seeker’s.

8.6. Reproducing the Moldable Debugger Experiments 127

Hereafter, we reimplement the Announcement Debugger [Chiş 2014] using
Time-Traveling Queries. Since we have access to the original implementation6, we
can directly reuse the code of the original predicates. The announcement debugger
defines 2 predicates:

• Detect when any subscription is (about to be) delivered. Listing 8.5 shows
the original implementation. The authors filter the execution context by
checking if the receiver is a subscription (Line 2) and if the message
selector corresponds to the #deliver: method selector (Line 3). This
method is used by subscriptions to deliver their announcements to their
subscribers. The debugger then checks this predicate against all message-
sends of the debugged execution. Listing 8.6 shows our selection predicate
that implements the same predicate. First, we check if our program state
corresponds to a message-send (Line 2). Then, we check if we are using a
delivering selector (Line 3), and finally, we check if the receiver is an instance
of a class susceptible to delivering announcements (Lines 4 to 7).

1 self session createPredicateForBlock: [:aContext |
2 aContext receiver isSubscription and: [
3 aContext selector = #deliver: and: [
4 aContext closure notNil]]]

Listing 8.5: Original predicate to detect when a subscription is delivered.

1 SelectionForQueryAllSubscriptionsDeliveries >> value: state
2 ^ state isMessageSend and: [
3 (state messageSelector asString = #deliver:) and: [
4 {SubscriptionRegistry.
5 AnnouncementSubscription.
6 WeakAnnouncementSubscription } includes:
7 state messageReceiver class]]

Listing 8.6: Selection predicate to select all subscription deliveries.

• Detect when a particular subscription is (about to be) delivered to its
subscriber. This predicate requests an action from the developer, who has
to select a particular subscription and then ask to step until the delivery of
that subscription. Listing 8.7 shows the original implementation. First, the
subscription object is obtained from the context (Line 3). Then, the predicate
checks if the current receiver executing the current method on the stack is the
subscriber (Line 5), i.e., the object that subscribed to the target subscription.
Finally, the predicate checks if the selector of the currently executing method
on the stack corresponds to the selector defined by the subscription’s action
(Line 6).

6http://smalltalkhub.com/AndreiChis/AnnouncerCentricDebugger/

http://smalltalkhub.com/AndreiChis/AnnouncerCentricDebugger/

128 Chapter 8. Time-traveling Queries for Specialized Debugging

Listing 8.8 shows our selection predicate that implements the same predicate.
First, we check if our program state corresponds to a message-send (Line 2).
Then, as in the original implementation, we check if the unique identifier
of the receiver is the same as the subscriber’s (Line 3) and if the current
context selector is the same as the subscriber’s (Line 4). The unique
object identifier method (receiverOid) and context selector method
(messageSelector) are provided by the program state’s API. They are
checked against instance variables of the query’s selection predicate, i.e.,
messageReceiverOid and messageSelector, that are populated by
Seeker when developers select the subscription in the debugger.

1 subscriptionDelivery
2 | aSubscription |
3 aSubscription := self interruptedContext receiver.
4 ^ self createPredicateForBlock: [:aContext |
5 aContext receiver == aSubscription subscriber and: [
6 aContext method selector = aSubscription action selector]

Listing 8.7: Original predicate to detect when a particular subscription is delivered to its
subscriber.

1 SelectionForQueryAllOccurrencesOfDeliverSelection >> value: state
2 ^ state isMessageSend and: [
3 state receiverOid = messageReceiverOid and: [
4 state methodSelector = messageSelector]

Listing 8.8: Selection predicate to find all occurrences of a particular subscription being
delivered to its subscriber.

In the original Announcement debugger, domain-specific actions rely on the
predicates to step until the next subscription delivery or to step until a specific
subscription is delivered to a specific subscriber. The debugger has a domain-
specific view to help navigate between the domain-specific steps. With our queries,
we reproduce this result but with a different approach. Instead of a domain-specific
view, the queries return, e.g., the list of all subscription deliveries. Developers are
free to navigate back and forth between them using the time-traveling debugger.

8.6.2 Reproducing the PetitParser Debugger

The PetitParser Debugger [Chiş 2014] is a domain-specific debugger for a
parser named PetitParser [Kurš 2013]. The debugger provides parser-specific
actions with their corresponding predicates, such as stepping to the next parsing
event. We partially reproduced this debugger by creating generic queries
(corresponding to the domain-specific action) and their selection functions
(implementing the predicate) that apply to any kind of parser. In Pharo, there is

8.7. Conclusion 129

the STON parser [Caekenberghe 2012], the MicroDown parser [Ducasse 2020],
PetitParser [Kurš 2013] libraries. All these libraries have parsing similarities: they
consume streams, have methods with very similar signatures (e.g., parse:), and
they require a grammar. Our queries allow for asking domain-specific questions
for all parsers sharing these similarities. As for the Announcement Debugger,
the original PetitParser Debugger only allowed for stepping until the next domain-
specific event, while our queries allow for exploring the whole execution and time-
travel between parser events.

8.7 Conclusion
We compiled experiences and performed experiments to investigate the capabilities
of TTQs to address specialized debugging concerns. Our finding shows that TTQs
are extensible and customizable to tackle domain and problem-specific debugging
scenarios. In each case, TTQs were able to express and collect the execution data
relevant to each specific scenario. This indicates that TTQs present a promising
approach to improving debugging tools by facilitating answering developers’
problem-specific debugging questions.

Thesis Conclusion

CHAPTER 9

Conclusion and Future Work

Contents
9.1 Conclusion . 133

9.2 Future Work . 135

In this chapter, we conclude by bringing together the results of our research and
presenting perspectives on our work.

9.1 Conclusion
In this dissertation, we proposed solutions that aim to increase the applicability of
time-traveling debuggers and improve the interactive debugging experience. In the
following lines, we summarize the research problems discussed in this thesis and
our contributions.

In Part I, we addressed our first research problem regarding the lack of time-
traveling solutions for shared memory systems.

(Chapter 3)

• We provided a comprehensive analysis of the problems that current time-
travel solutions face when applied to shared memory systems.

• We identified important properties of selective time-travel back ends for
shared memory.

(Chapter 4)

• We built two time-traveling debuggers with configurable support of the
identified properties for Pharo, a shared memory system.

– We presented Seeker, a time-traveling debugger for single-threaded
programs that enhances the standard Pharo debugger with time-
traveling capabilities.

– We introduced Executor, a prototype time-traveling debugger for
multithreaded programs.

134 Chapter 9. Conclusion and Future Work

(Chapter 5)

• We conducted experiments to study how programs’ behavior is affected by
time-travel operations in debuggers exposing or lacking these properties.

• The results of the experiments showed that implementations not possessing
one of the properties will not be able to produce correct time-traveling
operations, hindering the capability of reproducing program behaviors.

Concluding Part I, the properties we identified provided us with a basic
framework that enabled us to connect the different topics of time-traveling in
shared memory. These properties cover reversal operations, memory scoping
issues, deterministic replay, and support for single and multithreaded programs.
The properties served not only to design our own time-traveling solution but also
as a helpful analysis tool for existing solutions and their applicability to shared
memory systems.

In Part II, we addressed our second research problem regarding the difficulties
that developers face when using standard interactive debuggers.

(Chapter 6)

• We introduced a new debugging mechanism, Time-traveling Queries
(TTQs), that leverages time-travel debugging features to support program
exploration and comprehension.

• We proposed a new debugging approach based on TTQs to enhance the
interactive debugging experience.

• We described our implementation of TTQs and how we used Seeker to
integrate TTQs into the Pharo interactive debugging workflow.

(Chapter 7)

• We evaluated how this new mechanism helps improve program comprehen-
sion by conducting a controlled experiment.

• Our results show that answering debugging questions using TTQs is faster,
more accurate, and requires less effort compared to using standard debugging
tools.

(Chapter 8)

• We explored TTQs versatility by showing how TTQs were used to address
problem-specific debugging scenarios.

• We reported experiences showing that TTQs are suitable for addressing
problematic debugging scenarios that are difficult to approach using standard
debugging tools.

9.2. Future Work 135

• We conducted experiments replicating problem-specific debugging solutions
in the literature, showing that TTQs can be used to produce specialized
debugging tools.

Concluding Part II, our proposed Time-traveling Queries mechanism enabled a
new interactive debugging approach. TTQs showed promising results in improving
debugging efficiency by facilitating program comprehension and exploration
tasks. Moreover, they showed to be versatile, capable of addressing problematic
debugging scenarios, and able to match specialized operations of problem-specific
debugging tools.

9.2 Future Work
In this section, we list prospective subjects pushing forward our work.

9.2.1 Enhancing performance in our time-travel solution
Faster selective execution reversal

Improving the efficiency of selective execution reversal should be explored further.
To the best of our knowledge, snapshotting is known as the most efficient
approach to perform execution reversals. However, as we discussed, snapshotting
is not a viable option for shared memory systems. Conversely, our prototype
implementation is slow because it observes each step of the debugged program,
controlling its execution and tracking state changes. We speculate that this kind of
solution is generally avoided in favor of snapshotting techniques for performance
reasons.

In practice, our Pharo implementation is fast enough to debug unit tests.
This already enables the full potential of time-travel debugging for understanding
complex pieces of code involved in unit tests. However, it does not scale for longer
executions involving many calculations. Studying how to improve the performance
aspect of our solution would enable the production of a prototype usable in the
general case. Furthermore, exploring other approaches that could be used as an
alternative to snapshotting for time-traveling in shared memory systems could
produce interesting and potentially faster solutions.

Instrumentation-based implementations to improve performance

Our time-traveling debuggers follow an interpreter-based approach to advance
debugged executions and to produce the time-traveling recorded program data.
This approach is arguably slower than instrumentation-based ones, such as
[O’Callahan 2017, UDB 2023]. Changing our implementations to follow an
instrumentation approach would bring a faster solution. However, we have not

136 Chapter 9. Conclusion and Future Work

explored how to do this yet. Studying how a solution with equivalent features
can be implemented using instrumentation would produce an implementation with
improved performance.

9.2.2 Leveraging the TTQs-based debugging approach

Exploring new TTQs applications for program comprehension

Program comprehension is gained by performing static analysis of a program
code and dynamic analysis of its execution [Richner 2002, Richner 1999,
Cornelissen 2007]. Several tools and techniques offer support for these activities.
Nowadays, popular IDEs are shipped with interactive debuggers, and developers
use them to perform program comprehension tasks. Our contribution seeks
to support the interactive debugging workflow by enabling dynamic analysis
capabilities. TTQs can be used to produce trace information to feed dynamic
analysis techniques and visualizations, incorporating their advantages within an
interactive debugging workflow. We already explored interesting applications
in Chapter 8. However, we are certain that there are many new and exciting
applications to discover.

Enabling time-traveling queries for echo debugging

Echo-debugging [Dupriez 2020] supports the detection of regression bugs by
comparing the executions of two different versions of a program. In the echo-
debugging approach, the two versions of the program (the failing version and
a previous working one) are loaded and executed simultaneously in separate
environments. Developers explore the executions, which are run in parallel,
following an interactive approach. During this, the debugger detects and reports
the differences in the programs’ control flow. As we have described in Chapter
3, system calls can introduce non-deterministic program behavior, which would
affect the comparison of the programs’ executions. This problem is discussed in
their work as a limitation of their solution. To solve such a problem, and as their
prototype is built in Pharo, our time-travel back end presents a promising solution.
In our work, our implementation enforces the deterministic replay of the execution
of a program. However, if a new different time-travel session is started, i.e., a
new execution of the same program, the program will not necessarily follow the
expected control flow during its first execution of the session, as there are no logs
yet in the back end to enforce program behavior. Therefore, investigating how
to extend our time-travel solution to support enforcing behavior among different
executions would solve the determinism problems in echo debugging. Ultimately,
this would allow TTQs to be used in the context of echo debugging, generating
opportunities to investigate new specialized queries.

9.2. Future Work 137

Evaluating new time-traveling queries

In our TTQs evaluation experiment, the proposed tasks were designed based
on a subset of common questions developers ask while debugging a program.
They do not cover the complete set of problems developers face during their
debugging sessions. Even though the experiment result validates the TTQs
approach, the specific measures improvements are significant only in the context
of these questions. In Chapter 8, we showed that TTQs can be applied to a
variety of problem-specific debugging scenarios. However, it is interesting to know
precisely how much TTQs help in those scenarios. New focused evaluations are
required to investigate if TTQs improve the debugging experience in such problem-
specific debugging scenarios. Moreover, new evaluations could be performed on
debugging scenarios related to a different set of debugging questions or requiring
more complex debugging actions.

Bibliography

[Alice 2004] Alice. The Alice Project. http://www.alice.org, 2004.

[Aman 2020] Bogdan Aman, Gabriel Ciobanu, Robert Glück, Robin Kaarsgaard,
Jarkko Kari, Martin Kutrib, Ivan Lanese, Claudio Antares Mezzina,
Łukasz Mikulski, Rajagopal Nagarajanet al. Foundations of reversible
computation. In International Conference on Reversible Computation,
pages 1–40. Springer, Cham, 2020.

[Anquetil 2020] Nicolas Anquetil, Anne Etien, Mahugnon Honoré Houekpetodji,
Benoît Verhaeghe, Stéphane Ducasse, Clotilde Toullec, Fatija Djareddir,
Jèrôme Sudich and Mustapha Derras. Modular Moose: A new generation
of software reengineering platform. In International Conference on
Software and Systems Reuse (ICSR’20), numéro 12541 de LNCS,
December 2020.

[Arya 2017] KAPIl Arya, Tyler Denniston, Ariel Rabkin and Gene Cooperman.
Transition Watchpoints: Teaching Old Debuggers New Tricks. The Art,
Science, and Engineering of Programming, vol. 1, no. 2, July 2017.

[Barr 2014] Earl T. Barr and Mark Marron. TARDIS: Affordable Time-Travel
Debugging in Managed Runtimes. In Proceedings of International
Conference on Object-Oriented Programming Systems, Languages, and
Applications (OOPSLA’14), volume 49, pages 67–82. ACM, oct 2014.

[Barr 2016] Earl Barr, Mark Marron, Ed Maurer, Dan Moseley and Gaurav Seth.
Time-travel debugging for JavaScript/Node.js. In Proceedings of the
International Symposium on Foundations of Software Engineering, pages
1003–1007, nov 2016.

[Black 2009] Andrew P. Black, Stéphane Ducasse, Oscar Nierstrasz, Damien
Pollet, Damien Cassou and Marcus Denker. Pharo by example. Square
Bracket Associates, Kehrsatz, Switzerland, 2009.

[Caekenberghe 2012] Sven Van Caekenberghe. Smalltalk Object Notation
(STON), 2012.

[Chiş 2013] Andrei Chiş, Oscar Nierstrasz and Tudor Gîrba. Towards a Moldable
Debugger. In Proceedings of the 7th Workshop on Dynamic Languages
and Applications, 2013.

[Chiş 2014] Andrei Chiş, Tudor Gîrba and Oscar Nierstrasz. The Moldable
Debugger: A Framework for Developing Domain-Specific Debuggers. In
Software Language Engineering, pages 102–121. Springer, 2014.

http://dx.doi.org/10.1007/978-3-030-64694-3_8
http://dx.doi.org/10.1007/978-3-030-64694-3_8
http://dx.doi.org/10.1007/978-3-030-64694-3_8
http://dx.doi.org/10.1007/978-3-030-64694-3_8
http://dx.doi.org/10.22152/programming-journal.org/2017/1/16
http://dx.doi.org/10.22152/programming-journal.org/2017/1/16
http://dx.doi.org/10.22152/programming-journal.org/2017/1/16
http://dx.doi.org/10.1145/2950290.2983933
http://dx.doi.org/10.1145/2950290.2983933
http://dx.doi.org/10.1145/2950290.2983933
http://dx.doi.org/10.1145/2489798.2489801
http://dx.doi.org/10.1145/2489798.2489801
http://dx.doi.org/10.1145/2489798.2489801
http://dx.doi.org/10.1145/2489798.2489801
http://dx.doi.org/10.1007/978-3-319-11245-9_6
http://dx.doi.org/10.1007/978-3-319-11245-9_6
http://dx.doi.org/10.1007/978-3-319-11245-9_6
http://dx.doi.org/10.1007/978-3-319-11245-9_6

140 Bibliography

[Chis 2016] Andrei Chis. Moldable tools. PhD thesis, University of Bern, 2016.

[Cornelissen 2007] Bas Cornelissen. Dynamic Analysis Techniques for the
Reconstruction of Architectural Views. In Proceeding of Working
Conference on Reverse Engineering (WCRE). IEEE, 2007.

[Corrodi 2016] Claudio Corrodi. Towards Efficient Object-Centric Debugging
with Declarative Breakpoints. In SATToSE 2016, 2016.

[Costiou 2018] Steven Costiou. Unanticipated behavior adaptation : application
to the debugging of running programs. PhD thesis, Université de Bretagne
occidentale - Brest, November 2018.

[Costiou 2020] Steven Costiou, Mickaël Kerboeuf, Clotilde Toullec, Alain Plantec
and Stéphane Ducasse. Object Miners: Acquire, Capture and Replay
Objects to Track Elusive Bugs. Journal of Object Technology, vol. 19,
no. 1, pages 1:1–32, July 2020.

[Devietti 2009] Joseph Devietti, Brandon Lucia, Luis Ceze and Mark Oskin.
DMP: Deterministic shared memory multiprocessing. In Proceedings
of the 14th international conference on Architectural support for
programming languages and operating systems, pages 85–96, 2009.

[Ducasse 2011] Stéphane Ducasse, Nicolas Anquetil, Usman Bhatti, Andre
Cavalcante Hora, Jannik Laval and Tudor Girba. MSE and FAMIX 3.0: an
Interexchange Format and Source Code Model Family. Rapport technique,
RMod – INRIA Lille-Nord Europe, 2011.

[Ducasse 2020] Stéphane Ducasse, Laurine Dargaud and Guillermo Polito.
Microdown: a Clean and extensible markup language to support Pharo
documentation. In Proceedings of the 2020 International Workshop on
Smalltalk Technologies, 2020.

[Dupriez 2019] Thomas Dupriez, Guillermo Polito, Steven Costiou, Vincent
Aranega and Stéphane Ducasse. Sindarin: A Versatile Scripting API for
the Pharo Debugger. In International Symposium on Dynamic Languages
(DSL’19), pages 67–79. ACM, 2019.

[Dupriez 2020] Thomas Dupriez, Steven Costiou and Stéphane Ducasse. First
Infrastructure and Experimentation in Echo-debugging. In Proceedings of
the 2020 International Workshop on Smalltalk Technologies, 2020.

[Elmqvist 2015] Niklas Elmqvist and Ji Soo Yi. Patterns for visualization
evaluation. Information Visualization, vol. 14, no. 3, pages 250–269, 2015.

[Engblom 2012] Jakob Engblom. A review of reverse debugging. In System,
Software, SoC and Silicon Debug Conference (S4D), 2012, 2012.

http://dx.doi.org/10.5381/jot.2020.19.1.a1
http://dx.doi.org/10.5381/jot.2020.19.1.a1
http://dx.doi.org/10.5381/jot.2020.19.1.a1
http://dx.doi.org/10.1145/3359619
http://dx.doi.org/10.1145/3359619
http://dx.doi.org/10.1145/3359619
http://dx.doi.org/10.1145/3359619

Bibliography 141

[Goldberg 1983] Adele Goldberg and David Robson. Smalltalk 80: the language
and its implementation. Addison Wesley, Reading, Mass., May 1983.

[Goldberg 1984] Adele Goldberg. Smalltalk 80: the interactive programming
environment. Addison Wesley, Reading, Mass., 1984.

[Goldsmith 2005] Simon Goldsmith, Robert O’Callahan and Alex Aiken. Rela-
tional Queries over Program Traces. In Proceedings of Object-Oriented
Programming, Systems, Languages, and Applications (OOPSLA’05),
pages 385–402, New York, NY, USA, 2005. ACM Press.

[Google 2023] Google. Chrome Javascript Debugger. https://www.google.com/
chrome/, 2023.

[Hammond 2004] Lance Hammond, Vicky Wong, Mike Chen, Brian D Carlstrom,
John D Davis, Ben Hertzberg, Manohar K Prabhu, Honggo Wijaya,
Christos Kozyrakis and Kunle Olukotun. Transactional memory coherence
and consistency. ACM SIGARCH Computer Architecture News, vol. 32,
no. 2, page 102, 2004.

[Herlihy 1993] Maurice P. Herlihy and J. Eliot B. Moss. Transactional Memory:
Architectural Support For Lock-Free Data Structures. In Proceedings of
the 20. Annual International Symposium on Computer Architecture, pages
289–300, 1993.

[Hofer 2006] Christoph Hofer, Marcus Denker and Stéphane Ducasse. Design
and Implementation of a Backward-In-Time Debugger. In Proceedings
of NODE’06, volume P-88 of Lecture Notes in Informatics, pages 17–32.
Gesellschaft für Informatik (GI), September 2006.

[Huang 2013] Jeff Huang, Charles Zhang and Julian Dolby. Clap: Recording
local executions to reproduce concurrency failures. Acm Sigplan Notices,
vol. 48, no. 6, pages 141–152, 2013.

[Ingalls 2008] Daniel Ingalls, Krzysztof Palacz, Stephen Uhler, Antero Taivalsaari
and Tommi Mikkonen. The lively kernel a self-supporting system on a web
page. In Workshop on Self-sustaining Systems, pages 31–50. Springer,
2008.

[King 2005] Samuel T King, George W Dunlap and Peter M Chen. Debugging
operating systems with time-traveling virtual machines. In Proceedings of
the 2005 USENIX Technical Conference, pages 1–15, 2005.

[Ko 2004] Andrew J. Ko and Brad A. Myers. Designing the whyline: a debugging
interface for asking questions about program behavior. In Proceedings
of the 2004 conference on Human factors in computing systems, pages
151–158. ACM Press, 2004.

https://www.google.com/chrome/
https://www.google.com/chrome/
http://dx.doi.org/10.1145/985692.985712
http://dx.doi.org/10.1145/985692.985712
http://dx.doi.org/10.1145/985692.985712
http://dx.doi.org/10.1145/985692.985712

142 Bibliography

[Ko 2008] Andrew J. Ko and Brad A. Myers. Debugging Reinvented: Asking and
Answering Why and Why Not Questions about Program Behavior. In In
Proceedings of the 30th International Conference on Software Engineering,
ICSE 08, 2008.

[Kubelka 2014] Juraj Kubelka, Alexandre Bergel and Romain Robbes. Asking and
Answering Questions During a Programming Change Task in the Pharo
Language. In Proceedings of the 5th Workshop on Evaluation and Usability
of Programming Languages and Tools, PLATEAU ’14, pages 1–11, New
York, NY, USA, 2014. ACM.

[Kurš 2013] Jan Kurš, Guillaume Larcheveque, Lukas Renggli, Alexandre Bergel,
Damien Cassou, Stéphane Ducasse and Jannik Laval. PetitParser: Building
Modular Parsers. In Deep Into Pharo, page 36. Square Bracket Associates,
September 2013.

[Lanese 2018] Ivan Lanese. From reversible semantics to reversible debugging.
In Reversible Computation: 10th International Conference, RC 2018,
Leicester, UK, September 12-14, 2018, Proceedings 10, pages 34–46.
Springer, 2018.

[Lauwaerts 2023] Tom Lauwaerts, Carlos Rojas Castillo, Elisa Gonzalez Boix and
Christophe Scholliers. Out-of-Place Debugging on Constraint Devices
with the EDWARD Debugger. In Proceedings of the 1st ACM International
Workshop on Future Debugging Techniques, pages 3–4, 2023.

[Lencevicius 1997] Raimondas Lencevicius, Urs Hölzle and Ambuj K. Singh.
Query-Based Debugging of Object-Oriented Programs. In Proceedings
of International Conference on Object-Oriented Programming Systems,
Languages, and Applications (OOPSLA’97), pages 304–317, New York,
NY, USA, 1997. ACM.

[Lencevicius 1999] Raimondas Lencevicius, Urs Hölzle and Ambuj Kumar Singh.
Dynamic Query-Based Debugging. In R. Guerraoui, editeur, Proceedings
of European Conference on Object-Oriented Programming (ECOOP’99),
volume 1628 of LNCS, pages 135–160, Lisbon, Portugal, June 1999.
Springer-Verlag.

[Lencevicius 2003] Raimondas Lencevicius, Urs Hölzle and Ambuj K Singh.
Dynamic query-based debugging of object-oriented programs. Automated
Software Engineering, vol. 10, pages 39–74, 2003.

[Lewis 2003] Bill Lewis. Debugging Backwards in Time. In Proceedings of the
Fifth International Workshop on Automated Debugging (AADEBUG’03),
October 2003.

http://dx.doi.org/10.1145/2688204.2688212
http://dx.doi.org/10.1145/2688204.2688212
http://dx.doi.org/10.1145/2688204.2688212
http://dx.doi.org/10.1145/2688204.2688212
http://dx.doi.org/10.1145/2688204.2688212
http://dx.doi.org/10.1145/263698.263752
http://dx.doi.org/10.1145/263698.263752
http://dx.doi.org/10.1145/263698.263752
http://dx.doi.org/10.1145/263698.263752

Bibliography 143

[Lienhard 2006] Adrian Lienhard, Stéphane Ducasse, Tudor Gîrba and Oscar
Nierstrasz. Capturing How Objects Flow At Runtime. In Proceedings
International Workshop on Program Comprehension through Dynamic
Analysis (PCODA’06), pages 39–43, 2006.

[Lienhard 2008] Adrian Lienhard, Tudor Gîrba and Oscar Nierstrasz. Practical
Object-Oriented Back-in-Time Debugging. In Proceedings of the 22nd
European Conference on Object-Oriented Programming (ECOOP’08),
volume 5142 of LNCS, pages 592–615. Springer, 2008. ECOOP
distinguished paper award.

[Lienhard 2009] Adrian Lienhard, Julien Fierz and Oscar Nierstrasz. Flow-
Centric, Back-In-Time Debugging. In Objects, Components, Models and
Patterns, Proceedings of TOOLS Europe 2009, volume 33 of LNBIP, pages
272–288. Springer-Verlag, 2009.

[McCarthy 1960] John McCarthy. Recursive Functions of Symbolic Expressions
and Their Computation by Machine, Part I. CACM, vol. 3, no. 4, pages
184–195, April 1960.

[McConnell 2004] Steve McConnell. Code complete. Pearson Education, 2004.

[Microsoft 2023] Microsoft. Visual Studio IDE. https://visualstudio.microsoft.
com/vs/, 2023.

[Montesinos 2008] Pablo Montesinos, Luis Ceze and Josep Torrellas. Delorean:
Recording and deterministically replaying shared-memory multiprocessor
execution efficiently. ACM SIGARCH Computer Architecture News,
vol. 36, no. 3, pages 289–300, 2008.

[O’Callahan 2017] Robert O’Callahan, Chris Jones, Nathan Froyd, Kyle Huey,
Albert Noll and Nimrod Partush. Engineering record and replay for de-
ployability: Extended technical report. arXiv preprint arXiv:1705.05937,
2017.

[O’Dell 2017] Devon H O’Dell. The Debugging Mindset: Understanding the
psychology of learning strategies leads to effective problem-solving skills.
Queue, vol. 15, no. 1, pages 71–90, 2017.

[Oracle 2023] Oracle. Java. https://www.java.com/en/, 2023.

[PDB 2023] Python PDB. PDB. https://docs.python.org/3/library/pdb.html, 2023.

[Phang 2013] K. Y. Phang, J. S. Foster and M. Hicks. Expositor: Scriptable
time-travel debugging with first-class traces. In 2013 35th International
Conference on Software Engineering (ICSE), pages 352–361, may 2013.

https://visualstudio.microsoft.com/vs/
https://visualstudio.microsoft.com/vs/
https://www.java.com/en/
https://docs.python.org/3/library/pdb.html
http://dx.doi.org/10.1109/ICSE.2013.6606581
http://dx.doi.org/10.1109/ICSE.2013.6606581
http://dx.doi.org/10.1109/ICSE.2013.6606581
http://dx.doi.org/10.1109/ICSE.2013.6606581

144 Bibliography

[Pothier 2007] Guillaume Pothier, Éric Tanter and José Piquer. Scalable
Omniscient Debugging. Proceedings of the Conference on Object-Oriented
Programming Systems, Languages and Applications (OOPSLA’07),
vol. 42, no. 10, pages 535–552, 2007.

[Pothier 2011] Guillaume Pothier and Éric Tanter. Summarized trace indexing and
querying for scalable back-in-time debugging. In European Conference on
Object-Oriented Programming, pages 558–582. Springer, 2011.

[Python 2023] Python. Python. http://www.python.org, 2023.

[Ressia 2012] Jorge Ressia, Alexandre Bergel and Oscar Nierstrasz. Object-
Centric Debugging. In Proceeding of the 34rd international conference
on Software engineering, ICSE ’12, 2012.

[Richard Stallman 2003] Stan Shebs Richard Stallman Roland Pesch. Debugging
with gdb. Gnu Press, 2003.

[Richner 1999] Tamar Richner and Stéphane Ducasse. Recovering High-
Level Views of Object-Oriented Applications from Static and Dynamic
Information. In Hongji Yang and Lee White, editeurs, Proceedings of
15th IEEE International Conference on Software Maintenance (ICSM’99),
pages 13–22, Los Alamitos CA, September 1999. IEEE Computer Society
Press.

[Richner 2002] Tamar Richner. Recovering Behavioral Design Views: a Query-
Based Approach. PhD thesis, University of Bern, May 2002.

[Savidis 2021] Anthony Savidis and Vangelis Tsiatsianas. Implementation of Live
Reverse Debugging in LLDB. arXiv preprint arXiv:2105.12819, 2021.

[Seltman 2015] Howard J Seltman. Experimental design and analysis. Retrieved
from, 2015.

[Sillito 2008] J. Sillito, G.C. Murphy and K. De Volder. Asking and Answering
Questions during a Programming Change Task. IEEE Transactions on
Software Engineering, vol. 34, no. 4, pages 434–451, jul 2008.

[Spinellis 2018] Diomidis Spinellis. Modern Debugging: The Art of Finding a
Needle in a Haystack. Commun. ACM, vol. 61, no. 11, pages 124–134,
October 2018.

[Tassey 2002] Gregory Tassey. The economic impacts of inadequate infrastructure
for software testing. National Institute of Standards and Technology, 2002.

http://dx.doi.org/10.1145/1297105.1297067
http://dx.doi.org/10.1145/1297105.1297067
http://dx.doi.org/10.1145/1297105.1297067
http://dx.doi.org/10.1145/1297105.1297067
http://www.python.org
http://dx.doi.org/10.1109/ICSE.2012.6227167
http://dx.doi.org/10.1109/ICSE.2012.6227167
http://dx.doi.org/10.1109/ICSE.2012.6227167
http://dx.doi.org/10.1109/ICSE.2012.6227167
http://dx.doi.org/10.1109/ICSM.1999.792487
http://dx.doi.org/10.1109/ICSM.1999.792487
http://dx.doi.org/10.1109/ICSM.1999.792487
http://dx.doi.org/10.1109/ICSM.1999.792487
http://dx.doi.org/10.1109/ICSM.1999.792487
http://dx.doi.org/10.1109/TSE.2008.26
http://dx.doi.org/10.1109/TSE.2008.26
http://dx.doi.org/10.1109/TSE.2008.26
http://dx.doi.org/10.1109/TSE.2008.26
http://dx.doi.org/10.1145/3186278
http://dx.doi.org/10.1145/3186278
http://dx.doi.org/10.1145/3186278

Bibliography 145

[Torres Lopez 2021] Carmen Torres Lopez, Louise Van Verre and Elisa Gonza-
lez Boix. What’s the problem? interrogating actors to identify the root
cause of concurrency bugs. In Proceedings of the 11th ACM SIGPLAN
International Workshop on Programming Based on Actors, Agents, and
Decentralized Control, pages 24–36, 2021.

[UDB 2023] UDB. UDB Time Travel Debugger. http://undo.io/, 2023.

[Ulidowski 2020] Irek Ulidowski, Ivan Lanese, Ulrik Pagh Schultz and Carla
Ferreira. Reversible computation: extending horizons of computing:
selected results of the cost action ic1405. Springer Nature, 2020.

[Ungar 1987] David Ungar and Randall B. Smith. Self: The Power of Simplicity.
In Proceedings OOPSLA ’87, ACM SIGPLAN Notices, volume 22, pages
227–242, December 1987.

[Vilk 2018] John Vilk, Emery D Berger, James Mickens and Mark Marron. McFly:
Time-Travel Debugging for the Web. arXiv preprint arXiv:1810.11865,
2018.

[Wallaby.js 2023] Wallaby.js. Wallaby.js Time Travel Debugger for Javascript.
https://wallabyjs.com/docs/intro/time-travel-debugger.html, 2023.

[Willembrinck 2021] Maximilian Willembrinck, Steven Costiou, Anne Etien and
Stéphane Ducasse. Time-Traveling Debugging Queries: Faster Program
Exploration. In International Conference on Software Quality, Reliability,
and Security, Hainan Island, China, December 2021.

[Willembrinck 2022a] Maximilian Willembrinck, Steven Costiou, Anne Etien
and Stéphane Ducasse. Time-Traveling Queries for Faster Debugging
and Program Comprehension. Journées Nationales du Génie de la
Programmation et du Logiciel 2022, June 2022. Poster, https://inria.hal.
science/hal-03738585.

[Willembrinck 2022b] Maximilian Willembrinck, Steven Costiou, Adrien
Vanègue and Anne Etien. Towards Object-Centric Time-Traveling
Debuggers. In International Workshop on Smalltalk Technologies : IWST
22, Novi Sad, Serbia, August 2022. ACM Digital Libraries.

[Zeller 2009] Andreas Zeller. Why programs fail: a guide to systematic
debugging. Elsevier, 2009.

http://undo.io/
http://dx.doi.org/10.1145/38765.38828
http://dx.doi.org/10.1145/38765.38828
https://wallabyjs.com/docs/intro/time-travel-debugger.html
https://inria.hal.science/hal-03738585
https://inria.hal.science/hal-03738585

	Title
	Abstract
	Résumé
	Contents
	List of Figures
	List of Tables
	Chapter 1 : Introduction
	Context
	Problems Statement
	Motivation: Problems in debugging and live exploration of program executions
	Summarized main research problems
	Research questions

	Our Proposition: Time-traveling Queries
	Time-traveling queries, in a nutshell
	Improving the debugging process

	Contributions
	Publications and Awards
	Thesis Outline
	Conclusion

	Chapter 2 : Background and State of the Art
	Debugging in Software Development
	Tools for debugging software: Debuggers
	Debugging approaches offered by debuggers
	Debugging by exploring executions history

	Time-traveling Debuggers
	State-of-the-art Time-traveling Techniques
	Techniques used for reversal
	Techniques used for replay

	Complementary Debugging Capabilities
	Scriptable debugging
	Query-based debugging

	Comparison of Debuggers' Features
	Conclusion

	Part I : Time-travel Debugging in Shared Memory Systems
	chapter 3 : Selective Time-travel in Shared Memory
	Introduction
	Motivation
	Problems of Imprecise Memory Scoping In Reversal Operations
	Side effects
	Towards selective time-travel

	Properties for Selective Time-travel
	A Selective Time-travel Back End
	Time-travel back end overview
	Back end components and properties support

	Conclusion

	Chapter 4 : Implementation
	The Standard Pharo Debugger: An Overview
	Seeker: A Time-traveling Debugger for Single-threaded Programs
	Seeker, in a nutshell
	GUI Mode: Time-travel for the standard debugger
	Debugging programmatically in headless mode
	Seeker implementation
	Components of the time-travel back end
	Seeker time-travel operations explained
	Configurable properties support

	Executor: A Time-traveling Debugger for Multithreaded Programs
	Executor implementation
	Configurable properties support

	Implementation Discussion
	Recorded data overview
	Validation of the selectiveness of our implementation
	Reversal by full-replay
	System calls logging
	Limitations
	System stability assumption

	Conclusion

	Chapter 5 : Evaluation
	Experiment Goals and Research Question
	Evaluation of the Properties for Single-threaded Executions
	Experiments general procedure
	Evaluation of the properties on a crafted program
	Evaluation on multiple programs running real code

	Evaluation of the Properties for Multithreaded Executions
	Experiment procedure
	Experiment results and analysis

	Results Conclusion
	Threats to Validity
	Related Work
	Properties support in time-traveling debuggers
	Properties support in time-travel techniques

	Conclusion

	Part II : A New Debugging Approach
	Chapter 6 : Time-traveling Queries:Improving Interactive Debugging
	Improving on Interactive Debuggers Problems
	Time-traveling Queries
	Time-traveling Queries definition and execution

	Off-the-shelf Time-traveling Queries
	Key Time-traveling Queries
	Executing queries

	Time-traveling Queries Implementation
	Time-traveling queries requirements
	Query implementation
	ProgramStates class
	Modifications of Seeker to support Time-traveling Queries
	Implementation of key Time-traveling Queries
	User-defined time-traveling queries

	Conclusion

	Chapter 7 : Evaluation of the TTQ-based Debugging Approach
	Empirical Evaluation
	Objectives of the experiment
	Experimental design

	Results and Discussion
	Experiment results
	Post-study survey
	Discussion on participant's experience impact on the results
	Threats to validity

	Conclusion

	Chapter 8 : Time-traveling Queries for Specialized Debugging
	Specialized Debugging Tools
	A Real World Scenario: Debugging a Meta Compiler
	Identifying False Positives in String-Symbol Comparisons
	Domain-Specific Queries for the Moose Platform
	Navigating a Moose model
	Querying a Moose model

	Queries of Object-centric Debugging
	Problems of object-centric debugers
	Our proposition: Enhancing object-centric debugging with TTQs
	Identifying particular objects is challenging: A running example
	Debugging objects through time with TTQs
	Related Work

	Reproducing the Moldable Debugger Experiments
	Reimplementing the Announcement Debugger with TTQs
	Reproducing the PetitParser Debugger

	Conclusion

	Chapter 9 : Conclusion and Future Work
	Conclusion
	Future Work
	Enhancing performance in our time-travel solution
	Leveraging our proposed debugging approach

	Bibliography

