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par leur présence et leur soutien, à faire de ces trois années de thèse une aventure
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sans la présence de la formidable équipe de doctorants du DTIS ! Merci partic-
ulièrement aux doctorants (trop vite envolés) de 2 et 3ème années Camille, Ali,
Enzo, Esteban, Clément. . . pour votre accueil chaleureux à l’ONERA, entre deux
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Abstract

This thesis falls within the scope of layout optimization, which is an important stage
in the design of complex multidisciplinary engineering systems such as aerospace ve-
hicles. Optimal layout problems (OLPs) involve finding the best arrangement of a
set of components within a single- or multi-container system or space to meet specific
objectives (cost reduction, performance enhancement, etc.) while satisfying various
constraints (geometrical, functional, etc.). Dealing with OLPs is challenging both in
terms of their formulation and their efficient and effective resolution. Actually, OLPs
are often highly constrained and involve many mixed decision variables (continuous,
discrete/categorial) which may be fixed or conditional. Conditional variables are
highly useful to define different design choices when the set of components to be
arranged is variable and dynamic. Consequently, their resolution requires the use
of advanced optimization algorithms combining different classes of (mixed-variable)
methods including metaheuristics and Bayesian optimization.

The overall objective of the thesis is to investigate OLPs, their formulation in
different contexts, their resolution using various optimization methods and their hy-
bridization, and their validation within the framework of aerospace vehicle design.
The contributions of the thesis are organized in two parts corresponding to two types
of OLPs. In the first (resp. second) part, the set of components to be arranged is
fixed (variable or conditional) involving fixed search space OLPs or FSS-OLPs (resp.
conditional search space OLPs or CSS-OLPs). In both cases, the system/space in
which the components are arranged is considered single- or multi-container.

In the first part, a survey of constrained mixed-variable FSS-OLPs is proposed
including their generic formulations, applications and resolution methods with a
particular focus on quasi-physical methods and population-based metaheuristics.
Based on a virtual force system (VF) quasi-physical algorithms emulate the princi-
ple of physical laws in system dynamics and deal efficiently with highly constrained
problems. A variant (namely CSO-VF) of these algorithms is devised for solving
single-container FSS-OLPs. In CSO-VF, the positions and orientations of the com-
ponents are evolved using VF. To deal with multi-container systems, CSO-VF is
combined with a Genetic Algorithm (GA) in a two-stage algorithm that assigns the
components to the containers and optimizes their layout. These single- and multi-
container algorithms are assessed considering satellite module FSS-OLPs that are
representative benchmarks.

In the second part, a survey of constrained mixed-variable CSS-OLPs is pro-
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posed in the same way than in the first part. Conditional variables involve more
complex OLPs. Actually, for instance, in the context of aerospace concept design,
a given amount of fuel could be included in a container in either one large tank or
two smaller ones. Therefore, as the number of components to position is not the
same in both cases the number of design variables as well as constraint functions
vary during the optimization process. To deal with single-container CSS-OLPs, two
approaches have been investigated: the first one is a GA revisited considering hidden
variables, leading to variable-geometry OLPs (in objective and constraint functions).
The second approach is a two-stage surrogate guided-CSO-VF algorithm combining
Bayesian Optimization with CSO-VF. Bayesian Optimization selects the compo-
nents with are considered by CSO-VF for layout optimization. This latter approach
has been extended with a GA in a three-stage algorithm to tackle multi-container
CSS-OLPs. Finally, all the algorithms are evaluated and compared based on their
application to CSS variants of satellite module OLPs.

Keywords: Optimal Layout, Conditional Search Space, Quasi-Physical Approach,
Bayesian Optimization, Hybridization.
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Résumé

Cette thèse s’inscrit dans le cadre de l’optimisation d’agencement, une étape im-
portante dans la conception de systèmes multidisciplinaires complexes tels que les
véhicules aérospatiaux. Les problèmes d’agencement optimal (OLPs) consistent à
trouver la meilleure disposition d’un ensemble de composants dans un système ou
un espace, afin d’atteindre certains objectifs (réduction des coûts, amélioration des
performances, etc.) tout en satisfaisant diverses contraintes (géométriques, fonc-
tionnelles, etc.). Le traitement des OLPs est encore un défi aujourd’hui, tant en
termes de formulation que de résolution. En effet, les OLPs sont souvent très con-
traints et impliquent de nombreuses variables d’optimisation (continues, discrètes,
catégorielles), qui peuvent être fixes ou conditionnelles. Les variables condition-
nelles sont utiles pour définir différents choix de conception qui doivent être faits
en même temps que l’optimisation de l’agencement des composants. Ainsi, la
résolution des OLPs nécessite l’utilisation d’algorithmes d’optimisation avancés com-
binant différentes catégories de méthodes, comme par exemple les métaheuristiques
et l’optimisation Bayésienne.

L’objectif global de la thèse est d’étudier les OLPs, leur formulation dans différents
contextes, leur résolution à l’aide de diverses méthodes d’optimisation et hybrida-
tions, ainsi que la validation de ces méthodes dans le cadre de la conception de
véhicules aérospatiaux. Les contributions de la thèse sont organisées en deux parties
correspondant à deux types d’OLPs. Dans la première (respectivement deuxième)
partie, la liste de composants à agencer est fixe (resp. variable), impliquant des OLPs
à espace de recherche fixe ou FSS-OLPs, (resp. des OLPs à espace de recherche con-
ditionnel ou CSS-OLPs). Dans les deux cas, le système/l’espace dans lequel les
composants sont agencés est considéré comme mono ou multi-contenant. Dans la
première partie, une étude des FSS-OLPs est proposée, incluant leurs formulations
génériques, leurs applications et méthodes de résolution, avec un focus particulier sur
les méthodes quasi-physiques et les métaheuristiques. Basés sur un système de force
virtuelle (VF), les algorithmes quasi-physiques simulent les lois de la dynamique
et traitent efficacement les problèmes fortement contraints. Une variante (nommée
CSO-VF) de de ces algorithmes est developpée afin de résoudre les FSS-OLPs à
un seul contenant. Dans le CSO-VF, la position et l’orientation des composants
évoluent grâce au VF. Pour traiter les systèmes multi-contenants, le CSO-VF est
hybridé à un algorithme génétique (GA) dans un algorithme à deux étages qui as-
signe les composants aux contenants puis optimise leur disposition dans chacun des
contenants. Ces deux algorithmes sont évalués grâce à des problèmes d’agencement
de satellites.
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Dans la deuxième partie, une étude des CSS-OLPs est proposée de la même
manière que dans la première partie. Les variables conditionnelles engendrent des
OLPs plus complexes. Par exemple, dans le contexte de la conception aérospatiale,
une quantité donnée de carburant peut être incluse dans le système, soit dans un
grand réservoir, soit dans deux plus petits. Par conséquent, le nombre de com-
posants à positionner n’est pas le même dans les deux cas et le nombre de variables
de conception et de contraintes varient donc au cours du processus d’optimisation.
Deux approches ont été développées pour traiter les CSS-OLPs à un seul contenant
: la première est un GA modifié pour introduire des variables cachées dans les
chromosomes. La seconde est une approche bi-niveaux combinant optimisation
bayésienne et l’algorithme CSO-VF. L’optimisation bayésienne sélectionne les com-
posants et le CSO-VF optimise leur agencement. Cette dernière approche a été
hybridée avec un GA dans un algorithme tri-niveaux afin de traiter les CSS-OLPs
multi-contenants. Enfin, tous les algorithmes sont évalués et comparés grâce à des
problèmes d’agencement de satellites.

Mots clés : Optimisation d’Agencement, Espace de Recherche Conditionnel,
Méthodes Quasi-Physiques, Optimisation Bayésienne, Hybridation.
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Chapter 1

Introduction

1.1 Optimal Layout Problems

General context and issues. The creation of complex engineering systems en-
compasses multiple stages, from initial concept development to the realization of
that concept. Each subsequent phase consists in numerous analyses and optimiza-
tions. This enables designers to determine the most suitable design(s) with respect
to the system’s objective(s) in the limits of the accuracy of the used models. More-
over, in realistic industrial settings, complex systems are often made up of numerous
couplings between the several disciplines that are required for their design [Der+08].
For instance, in the field of aerospace engineering, the preliminary sizing frequently
integrates the coupling between vast fields such as aerodynamics, propulsion, struc-
ture and/or flight mechanics. While a number of those engineering fields are often
tightly integrated at the early design stage, the design of the internal layout of future
systems is, however, often set aside and is rarely part of a fully integrated design
process.

The internal layout refers to the task of finding the most efficient and effective
arrangement of internal components, structures, or devices within the given designed
space or system [CSY02]. This problem seeks to optimize the spatial organization
of these elements so as to achieve specific objectives, such as maximizing capacity,
minimizing costs, improving accessibility, or enhancing the overall system perfor-
mance. In fact, internal layout problems are often solved by hand or by a set of
simple heuristic rules (e.g., expert system) able to mimic the cognitive process of
experts. By the fact that this process is performed in the last steps of the design
procedure, it does not guarantee that an overall optimal solution has been identified
at preliminary design stages. Indeed, the arrangement of components often has a
first-order impact on the performance of the system (e.g., for flying qualities of an
aircraft, power efficiency of an electronic chip, etc.) and can thus be critical to the
feasibility of a concept. The main concern is thus the automated optimal design of
the internal layout of complex systems that makes it compatible with the inclusion
in multidisciplinary design processes.

Examples of optimal layout problems. Optimal Layout Problems cover a large
spectrum of applications: packing, facility layout, wind farms, power plants, cover-
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age, complex systems layout problems, etc. An overview of these various application
cases is given in the following paragraphs.

Packing problems [CH06; LRP22; He+13] are a class of operational research
and combinatorial optimization problems which involve arranging a set of items or
objects within one or several container(s), such as bins, boxes, freight holds, etc.
The objective is to find a packing arrangement that optimizes a number of user-
defined criteria, which may include maximizing space utilization, minimizing wasted
space, and/or satisfying specific constraints like weight limits or item orientations.
These problems have diverse applications like for instance logistics, manufacturing,
transportation in which packing problems have practical implications in optimizing
resource allocation, minimizing costs, and enhancing the utilization of available
space. In an operational research context, they come in various forms, including
the bin packing problem, the knapsack problem, and the cutting stock problem.
Figure 1.1 illustrates some existing packing problems.

(a) (b) (c)

Figure 1.1: Examples of packing problems: (a) car trunk loading [Jac10], (b) con-
tainer loading [Jac10], (c) strip packing for cutting stock problems [PAO18].

Facility layout problems [ASE12; Has+17; Pen+18] involve optimizing the lay-
out of facilities or resources within a given space to enhance efficiency and reduce
operational costs. These problems arise in a wide range of contexts, including man-
ufacturing plants, warehouses, healthcare facilities, offices, and service centers. The
aim is to design layouts that streamline operations, improve work processes and, ulti-
mately, increase plant performance, making them indispensable to the various fields
seeking operational efficiency. Figure 1.2 illustrates existing facility layout problems.

Wind farms layout problems [FS14; GA16; Wan+17] refer to optimization prob-
lems in the field of renewable energy. These problems involve determining the op-
timal arrangement and placement of wind turbines within a designated area, often
subject to geographical and environmental constraints. The aim is to maximize
energy production and minimize costs. Key objectives include maximizing energy
capture by positioning turbines in areas with favorable wind conditions, minimizing
wake effects that can reduce efficiency, and considering factors like land use, envi-
ronmental impact, and infrastructure costs. Figure 1.3 illustrates wind farm layout
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(a) (b) (c)

Figure 1.2: Examples of facility layout problems: (a) boat cabin equipment layout
[MSK21], (b) shelter layout [Ben+11], (c) hospital layout [THU20].

problems.

Wind 
velocity

[m/s]

(a) (b)

Figure 1.3: Examples of wind farms layout problems: (a) [FS14], (b) [GA16].

Coverage problems [Pha+17; Som+19; Zha+22b] involve determining how to
efficiently cover or reach certain specified locations, regions, or points of interest
within a given area. The primary objective is to optimally deploy a limited set
of resources or sensors to ensure coverage while minimizing redundancy and cost.
These problems have applications in various fields, including telecommunications,
sensor networks, environmental monitoring, surveillance, etc. Coverage problems
can take on different forms, such as area coverage, target coverage, or barrier cov-
erage, depending on the specific context and objectives. Figure 1.4 illustrates some
existing coverage problems.

Finally, in the field of complex systems design, internal optimal layout problems
[MTK96; ST03; XXA07c] consist in optimizing the arrangement of components (e.g.,
various equipment, structure elements, electronics) within the internal structure or
physical space of a complex system. These systems can encompass a wide range of
domains, including but not limited to manufacturing plants, automotive vehicles,
aircraft, buildings, and electronic devices. The primary goal of addressing internal
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(a) (b) (c)

Figure 1.4: Examples of coverage problems: (a) telecommunication antenna coverage
[Pha+17], (b) sensor coverage for damage detection [Som+19], (c) wireless sensor
networks coverage [Zha+22b].

layout problems is to achieve an arrangement that optimizes various criteria, such
as space utilization, operational efficiency, accessibility, and workflow. Figure 1.5
illustrates existing complex systems layout problems.

(a) (b) (c)

Figure 1.5: Examples of complex systems layout problems: (a) vehicle layout prob-
lem [Sta+13], (b) chip layout problem [Ege03], (c) satellite layout problem [YH09].

Definitions of optimal layout problems. Optimal layout problems are defined
in terms of objective and constraint functions and the aim of the optimization process
is to find the values of the design variables that lead to the best value of the objective
function(s) while satisfying all of the constraint(s) [CSY02]. The layout may be
solved in 2-dimensions or in 3-dimensions and the components can either be identical
(homogenous shapes) or of dissimilar geometries (heterogenous shapes). Single-
container or multi-container configurations can be addressed, and the container(s)
might not have predetermined dimensions.

The design variables of a generic optimal layout problem are the positions and
orientations of the components to be incorporated into the system and and thus they
could either be continuous or discrete. For example, the positions of the components
can be continuous and the orientation may be restricted to a set of predetermined
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values (0°,90°) [CZa19; ST03]. In case of the multi-container configuration, other
design variables must be added in order to assign the components to a container.

optimal layout problems are often characterized by one or several objective func-
tion(s) depending on the system at hand. For example, most packing problems
involve minimizing the occupied volume of the container [He+13], whereas facility
layout problems often minimize total handling costs [ASE12], and the design of com-
plex systems mainly involves optimizing certain performance metrics or mechanical
characteristics, such as maximizing power production or minimizing overall inertia
[WTS09b].

Finally, some specifications regarding the design of the system may be converted
to constraints [SJ00]. For example, the most obvious specification might be that
a feasible optimal layout must not contain any overlapping components [CSY02].
Another constraint may be based on the radiation level within an aerospace systems
[CZa19]. Depending on the complexity of the considered system, several dozens or
even hundreds of constraints can be added to the problem definition in order to
account for all of the design requirements, making the optimal layout problem at
hand highly-constrained. The layout resolution can be considered as dynamic or
static depending whether or not the time variable is taken into account in the objec-
tive and constraint functions. The problem at hand is referred to as constrained
mixed-variable optimal layout problem.

Short overview of existing methods. The first range of techniques are exact
methods which guarantee the optimality of the solution. Among them, the CPLEX
solver [BBL14], the Branch and Bound algorithm [ChL13; KYS08; XS08] and Dy-
namic Programming [Cin+08; CH06; FLS17] have been used to solve Quadratic
Assignment Problem [KB57] and Mixed Integer Linear Programming [Mon90] for-
mulations.

Heuristics have then been developed in order to provide good quality results in a
more reasonable computational time in comparison to exact methods. They mainly
consist in construction [BHS20; CE91; Des+16] and improvement-based algorithms
[BME94; LKM17; PRR14].

Over the past 20 years, the most used methods for optimal layout problems
are the metaheuristic algorithms. They are problem-independent techniques which
aim at exploring more thoroughly the search space than previously used heuris-
tic methods and thus often provide better solutions. Among them, Simulated
Annealing [BG01; BR84; MB96; Tam92a], Tabu Search [CCC14; KM97; LC08],
Genetic Algorithm [Bor06; Pen+18; ST03; YK13], Particle Swarm Optimization
[AWT16; Liu+18; XXA07b], Covariance Matrix Adaptation-Evolution Strategy
[AWT16; Wag+11], etc, have been used to solve various forms of optimal layout
problems. Those techniques have also been hybridized between themselves [LL02;
LC12b; LPK17] or with heuristic methods [Che+18; XXA07c] in order to take advan-
tage of the strengths of different algorithms and improve their overall computational
performance.

Another range of techniques are quasi-physical methods which are techniques
having roots in both physics and mathematics and which aim at mimicking the
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laws of physics. Most of the time, they correspond to energy [He+18; HY11a] or
force-based algorithms [He+13; HY11b; Wan+02].

Finally, recently, machine learning methods have been applied to layout opti-
mization problems even if they remain less investigated as of now [BWH21]. For
instance, Bayesian Optimization [SL22], Neural Networks [TBT96] or Reinforcement
Learning [Vas+20] have been used to solve optimal layout problems.

Figure 1.6 sums up the different characteristics of optimal layout problems as
well as the different application fields and the existing resolution approaches.

Problem definition

Resolution approaches

Applications

Figure 1.6: Taxonomy of optimal layout problems.

1.2 Conditional Search Space Problems

General context. As introduced in the previous section, the set of components
to position within a container is usually defined during the design process stages
that precede the optimal layout process. Consequently, the number of design vari-
ables related to each of the components (and associated constraints) remain fixed
during the whole optimization process. The typology of the optimization problem
(i.e., design variables, constraints, objective function) is completely defined before
the resolution and does not evolve. This type of problems is referred to as fixed
search space optimal layout problems or fixed-size design space optimal layout
problems [Abd13].
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In the early phases of the design process of most real-world engineering systems
(e.g., complex systems like aerospace vehicles but also electronic devices, facility
dispersion or even settings of complex algorithms), some architecture choices can
not be made beforehand and must be defined together with the optimal layout pro-
cess. For example, in the context of the decarboniation of aeronautical systems, new
configurations such as hydrogen powered aircraft are under investigation. For these
aircrafts, due to the lower density of hydrogen, the layout of tanks can be deemed
very challenging and subject to a large number of options: in the fuselage, in the
wings, etc. In addition to their layout within the system itself, designers must take
decisions regarding the number and sizes of these aircraft’s tanks [Sil+19]. Another
example is the optimal layout of wind farms which often consists in maximizing the
power produced by wind turbines positioned in the farm [Sam13]. The number of
wind turbines has thus a strong influence on the power produced and can be con-
sidered as a variable in the optimization process [Gon+11].

Considering a variable number of items to position will make the number of
design variables vary from one subproblem of the optimal layout problem to an-
other, as well as the number and type of constraints. Therefore, the most naive
approach could be to optimize the layout of the system for each of the possible
architecture definitions [Fra+18]. Considering the wind farm optimal layout prob-
lem, this approach would consist in optimizing the layout of the wind farms for all
possible numbers of wind turbines and choose the best one in terms of their power
production. However, depending on the complexity of the system at hand, several
thousands of architecture definitions can be considered and this approach may be
very time consuming and in some cases unfeasible. Consequently, the layout must
be optimized simultaneously with some of the design variables which define it, and
the number of components as well as constraints may vary during the optimiza-
tion process. Allowing the number of components to vary during the optimization
may provide a better solution at the end. The choices related to the architecture
definition (i.e., the choice of the components to be integrated to the system) can
be represented with categorical or qualitative variables in the optimization problem
formulation. The values of these additional variables influence the number and types
of continuous and discrete variables defining the layout as well as the number and
type of the constraint functions. These variables are named conditional variables
[Swe+14]. Therefore, the resulting optimal layout problem is referred to as a con-
ditional search space problem [LPS05; NAO15]. It is also sometimes referred to
as variable-size design space problem [GA11].

Examples of conditional search space problems. Conditional search space
problems encompass several application cases: Full Model Solving, optimal trajec-
tory problems, launch vehicle design, as well as some optimal layout problems. Some
details are given for each of them in the following paragraphs.

Full Model Solving, also known as Combined Algorithm Selection and Hyper-
parameter Optimization (CASH) problem [Tho+13], refers to the task of jointly
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determining the best machine learning algorithm and its corresponding hyperpa-
rameter settings for a given dataset and learning tasks. It involves simultaneously
selecting the most suitable algorithms from a set of candidates and optimizing the
hyperparameters of the chosen algorithms. It belongs to the CSS class of problems
because the settings of the hyperparameters directly rely on the choices of the algo-
rithm.

The problem of optimal design of a multi-gravity-assist space trajectory consists
in minimizing the trajectory cost of a space mission for a spacecraft to travel from the
departure planet to the target planet [GA11]. The spacecraft benefits from as many
as needed swing-bys of other planets as well as deep space maneuvers (DSMs). This
problem belongs to the category of conditional search space optimization problems
as the design variables related to the trajectory (e.g., number of DSM, departure
and arrival dates, flight directions, etc) depends on the number of swing-bys. Figure
1.7 illustrates a multi-gravity-assist space trajectory from Earth to Saturn with 3
swing-bys (Mercury, Mars and Jupiter) and four DSMs.

Figure 1.7: Illustration Trajectory mission [GA11].

In the field of aerospace concepts design, the multi-stage launch vehicle architec-
ture optimization problem [Pel+21] requires to simultaneously determine the opti-
mal number of stages characterizing the system (e.g., 2 or 3) and determine the most
suitable type of propulsion (e.g., solid or liquid) for each stage in order to minimize
the Gross Lift-Off Weight. Given that each propulsive alternative is characterized
by different continuous and discrete design variables as well as different constraints,
the resulting optimization problem presents a conditional search space. Figure 1.8
represents the possible launch vehicle architectures of the CSS multi-stage launch
vehicle architecture problem [Pel+21].

Some conditional search space optimal layout problems have also been defined.
Among them, conditional search space wind farms layout problems consist in opti-
mizing both the number and locations of the turbines on the given domain [Rye+17].

8
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Figure 1.8: Possible launch vehicle architectures (S: Solid propulsion, L: Liquid
propulsion) [Pel+21].

In the same way, conditional search space wireless sensor coverage problems opti-
mizes both the number of sensors and their positions in the covered area [Rye+17].
The two aforementioned problems belong to the category of conditional search space
optimal layout problems because the number and types of layout variables to op-
timize (i.e., the coordinates of the turbines and sensors) as well as the constraint
depends on the single conditional variable that specifies how many turbines or sen-
sors are positioned in the given area.

Short overview of existing methods for conditional search space problems.
Dealing with conditional search space (CSS) problems gives rise to additional chal-
lenges notably because of the introduction of conditional variables and the ensuing
conditional complexity (i.e., the number of subproblems linked to the architecture
choices defined by the conditional variables). Then, dedicated methods have been
developed to handle them.

First of all, the most direct method is the exact exploration of the conditional
search space. The subproblems of the CSS problem at hand which correspond
to each combination of the conditional variables are then optimized independently
[AHD23; Fra+18].

The previous techniques can become inefficient or even unfeasible for complex
CSS problems characterized either by a large number of combinations of conditional
variables or by computationally expensive functions. Thus, other methods have been
developed. Among them, direct search algorithms allow to explore such subprob-
lems’ space thanks to mesh-based or pattern search frameworks [AAD07; AD01;
AD06; KAD01].

Moreover, metaheuristic methods have been extended in order to take advan-
tage from their global exploration abilities as well as the variety of generic frame-
works that can be used. Most of these techniques differ from classical metaheuris-
tic method in the implementation of the chromosome (or list of design variables).
Among them, variable-length evolutionary algorithms [Rye+17], dynamic-size mul-
tiple populations genetic algorithms [AG12], structured genetic algorithm [NAO15]
and hidden-genes genetic algorithm or differential evolution [Abd13; GA11] have
been developed.
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More recently, Bayesian Optimization using Gaussian Processes has been ex-
tended for CSS optimization problems [AHD23; HO13a; Pel+21; ZH18b].

Finally, CSS problems have also been formulated as two nested optimization
problems which can be solved thanks to bilevel approaches [Pel20; SMD17]. Those
methods often involve two dedicated methods at each level which explore the condi-
tional search space at the upper level and the fixed search space of the subproblems
at the lower level.

1.3 Objectives and contributions of the thesis

As shown in the previous section, although conditional search space problems en-
compass quite a large number of application cases, they have rarely been extended
to optimal layout problems. Furthermore, the existing conditional search space
problems are defined with a limited number of conditional variables, resulting in a
handful of subproblems (or combinations of conditional variables) [Rye+17]. Like-
wise, in the aforementioned conditional search space wind farms and sensor coverage
optimal layout problems, the items to position (turbines or sensors) are identical
and therefore, a single conditional variable, which corresponds to the number of
considered components to position, is required [Rye+17]. However, in real-world
applications, optimal layout problems often involve different types of components.
For instance, in the design of a vehicle, two requirements might be to include a
certain volume of fuel as well as to provide a certain battery power. Therefore, the
fuel requirement could be achieved by placing either a single large fuel tank inside
the vehicle or by using two smaller tanks derived from the original one. In the same
way, different sizes and types of batteries can be integrated to the system to meet
the battery power requirement. Consequently, one conditional variable is needed
for each different type of components. The primary focus of this thesis is thus to
develop algorithms dealing with conditional search space optimal layout problems.

In order to address conditional search space optimal layout problems, this thesis
first aims at solving fixed search space optimal layout problems which correspond
to the subproblems of the main conditional search space optimal layout problems.
Also, problems involving single-container and multi-container configurations are ad-
dressed. Subsequently, conditional search space optimal layout problems with single
and multi-container configurations are defined and addressed.

This thesis aims to develop algorithms for fixed search space and condi-
tional search space optimal layout problems, with single or multi-container
configurations and heterogenous types of components.

Thesis objective

Toward this goal, five key contributions were made:

• Design and implementation of a Component Swarm Optimization
algorithm based on a Virtual-force System (CSO-VF) for single-
container fixed search space optimal layout problems. This algorithm
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framework was developed to ensure that the fixed search space subproblems
of the conditional search space of the main problem are dealt with properly in
terms of constraints handling, convergence accuracy, robustness, etc.

• Design and implementation of a two-stage approach combining ge-
netic algorithm and the CSO-VF algorithm for multi-container fixed
search space optimal layout problems. This algorithm was developed in
order to enhance the CSO-VF algorithm framework with the ability to deal
with multi-container configurations.

• Design and implementation of a hidden-variable mechanism for ge-
netic algorithm for solving the conditional search space optimal lay-
out problems at hand. As the metaheuristic algorithms are the most em-
ployed methods in the literature for this typology of problems, an extension
to hidden genes genetic algorithms is proposed to handle the problems tackled
in the present work.

• Design and implementation of a bilevel approach combining Bayesian
Optimization and the aforementioned CSO-VF algorithm for solving
single-container conditional search space optimal layout problems.
This algorithm framework has been developed in order to improve the explo-
ration of the conditional search space and the constraint handling aspects in
comparison to the previous metaheuristic approach.

• Design and implementation of a tri-level approach combining bayesian
optimization, genetic algorithm and the CSO-VF algorithm for multi-
container conditional search space optimal layout problems. This last
algorithm is developed in order to enhance the previous bilevel approach and
include multi-container configurations.

In this thesis, satellite layout problems are employed as a case study to evaluate
the efficiency of each algorithm. While this serves as a focused context, one should
note that the utility of those algorithms may be relevant to a much wider range of
problems as discussed earlier. The simplified model of the telecommunication satel-
lite INTELSAT-III described for instance in [Liu+18; WTS09b; ZTS08] is used as a
performance benchmark. Indeed, it corresponds to a representative optimal layout
problem which has been widely tackled in the literature.

The structure of this manuscript is organized in two parts. The first part is
devoted to fixed search space (FSS) optimal layout problems and is made up of
three chapters. Chapter 2 provides an overview of the existing methods for solving
FSS optimal layout problems, with a focus on the methods identified as promis-
ing. Chapter 3 describes the proposed CSO-VF algorithm for single-container FSS
optimal layout problems as well as the two-stage approach combining genetic al-
gorithm and the CSO-VF algorithm for multi-container configurations. The two
algorithms are evaluated in Chapter 4 with applications to satellite module optimal
layout problems.
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The second part of this manuscript is dedicated to conditional search space (CSS)
optimal layout problems and is composed of four chapters. Chapter 5 provides an
overview of the existing methods for solving CSS optimal layout problems, with a
focus on the methods identified as promising in the context of this work. Chapter
6 describes both algorithms developed to handle CSS single-container optimal lay-
out problems: the hidden-variables for genetic algorithm and the bilevel approach
combining Bayesian Optimization and the CSO-VF algorithm. Both algorithms are
evaluated in Chapter 7 based on their application to CSS satellite module optimal
layout problems. Finally, Chapter 8 is devoted to the development and assessment
of the tri-level approach combining Bayesian Optimization, Genetic Algorithm and
the CSO-VF algorithm in order to deal with CSS multi-container satellite module
layout problems.

Figure 1.9 represents the thesis structure.
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Chapter goals

2.1 Introduction

The first part of this thesis is devoted to fixed search space optimal layout problems
(OLPs). This chapter of literature-review serves as an introduction to the generic
formulation of OLPs and to the existing methods to handle them. More precisely,
the mathematical definition of constrained mixed-variable fixed search space OLPs
is presented, the issues related to the defined problems are raised and discussed, and
the existing techniques developed to handle them are surveyed. In the first section,
fixed search space OLPs are defined. A general overview of the existing methods
adapted to handle them is established in the second section which encompass exact,
heuristic, metaheuristic, hybrid, quasi-physical and machine learning approaches.
The third section is devoted to the techniques identified as promising and which will
be considered throughout this thesis.

2.2 Formulation of fixed search space optimal

layout problems

In this section, fixed search space (FSS) OLPs are detailed and mathematically
defined.
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2.2. Formulation of fixed search space optimal layout problems

2.2.1 General problem definition

In general, single-objective constrained mixed-variable FSS optimization problems
are mathematically defined as follows:

min
x,z

fobj(x, z)

w.r.t. x ∈ Fx ⊆ Rnx , z ∈
nz∏
d=1

Fzd

s.t. h(x, z) = 0

g(x, z) ≤ 0

(2.1)

where:

• fobj corresponds to the objective function to minimize;

• x corresponds to the vector of nx continuous design variables;

• z corresponds to the vector of nz discrete or categorical design variables;

• h stands for the equality constraints;

• g stands for the inequality constraints.

The design variables, objective function and constraints are specified in the case of
OLPs in the following subsections.

2.2.2 Design variables

In the case of generic OLPs, the design variables are detailed as follows:

• Continuous variables: x
They are real numbers defined within given intervals. They can correspond to
the centers of inertia and angular orientations of the components.

• Discrete variables: z
Discrete variables can be quantitative i.e., integers defined within given in-
tervals, or qualitative i.e., non-relaxable variables defined within a given set
of choices. They are also referred to as categorical variables. In this thesis,
quantitative and qualitative discrete variables are grouped together as discrete
variables. For specific problems, due to engineering constraints, one or several
coordinates of the centers of inertia of the components as well as their ori-
entations can be considered as discrete variables [Jac+09; ZTS08]. In case of
multi-container problems, discrete variables can also correspond to the number
of the container in which each component is positioned [CZa19].

17



Chapter 2. FSS Optimal Layout Problems Statements and Related Works

2.2.3 Objective function

Several objective functions can be considered and some of them are listed below:

• Minimize the occupied volume of the components in the container, for example
in packing problems [Bor06; He+13; LRP22];

• Minimize the global inertia of the system, for example in complex systems
design [CZa19; ST03; ZTS08];

• Minimize the distance between the center of gravity of the system and its
geometrical center, for example in packing problems or complex systems design
[Jac+09];

• Minimize or maximize any system performance as for instance power emission
or consumption for example in wind farms, power plants or containers terminal
OLPs [Hou+19; Wan+19a; Wei+10];

• Minimize or maximize any cost related to the system layout as for instance
handling or manufacturing costs, for example in facility layout [MB96; Rip+13;
SS06].

2.2.4 Constraints

Equality and inequality constraints h and g can be split into two categories:

• Geometrical constraints
These constraints traduce geometric specifications on the layout which only
depend on geometric and masses considerations. For instance, no overlap
between the components is allowed [CSY02], the components must fully belong
to the container [CSY02], the global center of mass must be placed at the
geometrical center of the container also referred to as balancing or equilibrium
constraints [He+13], etc.

• Functional constraints
These constraints do not only depend on geometric consideration of the layout,
but also on system-level specification (e.g., incompatibility between two types
of components - fuel and power, radiative level on the container in several
zones, etc.). A variety of functional constraints can also be added to the
problem formulation via the use of special components that induce further
restrictions on the feasibility of the layout. It includes for instance proximity
or minimal distance requirements between components [CZa19].

2.3 Overview of methods for fixed search space

optimal layout problems

This section aims to review the main algorithms that are proposed in the literature in
order to solve the aforementioned OLPs. They are classified into different categories:
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exact methods, heuristic methods, metaheuristics, hybrid approaches, quasi-physical
methods and machine learning techniques.

2.3.1 Exact methods

The exact methods guarantee the optimality of the solution. In that respect, many
exact methods have been deployed in order to solve the mathematical models de-
veloped to define several OLPs.

The very first approach to layout problems is the Quadratic Assignment Prob-
lem (QAP) model first introduced in [KB57]. QAP is developed in order to find
the optimal positions of equal-area items (i.e., components, facilities, departments,
etc.) on discrete locations. Many facility layout problems have been formulated
as QAP models [KH87; Zho+17]. A more recent and alternative way to formulate
layout problems is the Mixed Integer Linear Programming (MILP) first introduced
in [Mon90]. The MILP model uses a continuous/discrete representation and is thus
more realistic and accurate than the QAP model. It has been mainly explored in
the field of facility layout problems as in [BMN02; Geo+99; PP02] where the fa-
cility layout MILP models are solved thanks to dedicated solvers as the General
Algebraic Modeling System (GAMS) [BM04] and the CPLEX optimization package
[BBL14]. Branch and Bounds (B&B) resolution methods have also been used in or-
der to solve the aforementioned mathematical formulations and successfully applied
to circular packing problems as well as multi-floor facilities layout problems [ChL13;
KYS08; XS08]. Finally, Dynamic Programming (DP) techniques have been used in
order to solve cutting or packing problems [Cin+08; CH06; FLS17], or designing
interconnection networks [SSS19; TDT15].

Even if exact methods aim at systematically finding the optimal solutions, they
are computationally expensive and can thus tackle only small-size instances [Fes14].
Moreover, the MILP formulation assumes the linearity of the objective and con-
straint functions which is not always a valid hypothesis. Finally, the introduction
of complex constraints can pose challenges for most of the exact methods. Non-
linear or non-convex constraints can induce difficulties to determine bounds and for
instance generate subproblems for the B&B, limiting the effectiveness of the algo-
rithms. Thus, with the increase in the complexity and number of items to position,
constraints or objectives, most of the real-world OLPs are not solvable using exact
methods [Fes14].

2.3.2 Heuristic methods

In order to obtain good quality results in a reasonable computational time in com-
parison to exact methods, a lot of research focused on heuristic methods. Heuristic
algorithms do not provide a guarantee of optimality but are dedicated to the search
of good quality solutions.

One of the oldest heuristics is the Construction Method. The principle of
construction-type heuristics is to build a single solution from scratch by iteratively
selecting and locating the items until the layout is complete. The items are either
randomly selected or selected based on heuristic measure. They are then posi-

19



Chapter 2. FSS Optimal Layout Problems Statements and Related Works

tioned based upon a heuristic scoring scheme related to the items already located
in the layout. Two representative construction-based heuristic algorithms are the
CORELAP and the ALDEP algorithms (Automated Layout Design Program). In
[Lee67], the CORELAP algorithm (Computerized Relationship Planning) is intro-
duced which aim is to construct layout by locating rectangular-shaped departments.
It is a deterministic construction adjacency-based algorithm which uses the total
closeness rating as a heuristic measure (the sum of the numerical values assigned
to the closeness relationships between one item and the others) and which has been
widely studied and applied to various cases [HI15; JRS20; Sem+18]. Another similar
heuristic algorithm is the ALDEP algorithm introduced in [SE67]. It is also a con-
struction adjacency-based method but including randomness and proposing many
layouts instead of a single one. It has been successfully used for various facility
layout application cases [BHS20; CE91; Des+16]. Other well-known construction-
based algorithms for OLPs have been proposed such as the PLANET algorithm
(Plant Layout ANalysis and Evaluation Technique) [VB66], the FLAG algorithms
(Facilities Layout Algorithm using Graphics) [KM84] as well as the SHAPE algo-
rithm [HHS86].

The other category of heuristic mechanisms corresponds to the Improvement
algorithms which are the most popular heuristics. The principle of such algorithms
is to start with an initial feasible layout and then try to improve it with exchanging
items. The most widely used improvement-based heuristic procedure is the CRAFT
(Computerized Relative Allocation of Facilities Technique) algorithm [AB63]. It
computes the items locations and returns an estimation of the total interaction costs
for the initial layout. Then, the algorithm chooses pairs of similar or adjacent items
to be switched and evaluates the effect of the switch on the global interaction cost.
The procedure terminates when no improving switches are available. Many variants
and improvements of the CRAFT algorithm have been published over the years and
have been successfully applied to many different facility layout problems [Joh82;
LKM17; PRR14]. Other improvement-based algorithms have been developed in
order to improve the CRAFT procedure that performs well only in case of equal-
area facilities layout. Among them, the MULTIPLE algorithm (Multiple-floor Plant
Layout Evaluation) [BME94] is based on spacefilling curve representation and allows
to exchange items not restricted to rectangular shapes and not only adjacent.

The aforementioned improvement-based algorithms use a discrete representa-
tion. Some construction and improvement heuristics have been developed based
upon continuous representation. In [KK00], the authors used a mixed integer pro-
gramming model to define equal-area facility layout problems and then proposed
a two-phase algorithm to solve it combining a construction phase and an improve-
ment phase. In [FS22], the authors developed a two-level heuristic called hierarchical
hyper-heuristic in order to position irregular polygons into squared or rectangular
container. Finally, in [APT08], [DGR04] and [LC12a], greedy randomized adaptive
search procedure (GRASP) is applied to several packing problems. GRASP is an
iterative procedure combining a constructive phase and an improvement phase. Dur-
ing the constructive phase, the layout is constructed step by step thanks to a greedy
function dynamically adapted. In the following improvement phase, a local search is
usually implemented in order to substitute some items to produce an overall better
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solution [FR95].
Table 2.1 sums up the main constructive and improvement-based heuristic algo-

rithms. Those algorithms have later been combined in order to take advantage of
the strength of both construction and improvement phases.

Table 2.1: Heuristic algorithms for OLPs.

Reference Name of the algorithm Type
[Lee67] CORELAP Construction
[SE67] ALDEP Construction
[EGH70] MAT Construction
[Blo78] FATE Construction
[KM84] FLAG Construction
[WW84] CREATE Construction
[BM85] FLING Construction
[Kon85] PLANET Construction
[HHS86] SHAPE Construction
[KH87] INLAYT Construction
[MRG87] MATCH Construction
[WC87] MICROLAY Construction

[AB63] CRAFT Improvement
[Hil63] H-63 Improvement
[HC66] HC-66 Improvement
[Vol68] COL Improvement
[Kha73] FRAT Improvement
[TR76] COFAD Improvement
[FR78] DA Improvement
[Joh82] SPACECRAFT Improvement

[Emm+92] STORM Improvement
[BME94] MULTIPLE Improvement

Globally, heuristics may lack of global search capacities which lead to convergence
to local optimum instead of the global optimum and are often over computation-
ally expensive especially in case of highly dimensional and constrained problems
[Des+15; QL16]. Finally, most of the heuristic algorithms highly depend on the
problem at hand. Even if they take full advantage of the particularities of the
problem, they lack of genericity and versatility. For these reasons, heuristic meth-
ods might be inadequate in case of complex search space characterized by a large
number of design variables and constraints.

2.3.3 Metaheuristic methods

Metaheuristics are problem-independent techniques which aim at exploring more
thoroughly the search space than heuristic methods and thus often provide better
solutions. Consequently, during the past 20 years, mostly metaheuristic algorithms
have been developed in order to solve OLPs. In [SS06], Singh et al. reviewed
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methods that have been applied to facility OLPs which are mainly metaheuristic
techniques. In [Sia16], Siarry detailed the main metaheuristics and some of their ap-
plications. In this section, single-solutions metaheuristics are first considered: Sim-
ulated Annealing, Tabu Search and Variable Neighborhood Search. Subsequently,
population-solutions metaheuristics are introduced: Genetic Algorithms, Particle
Swarm Optimization, Differential Evolution, Covariance Matrix Adaptation Evo-
lution Strategy, Ant Colony Optimization, Scatter Search and Quality-Diversity
algorithms. All the aformementioned metaheuritic approaches have been used to
solve OLPs. Thus, in the following sections, brief descriptions of metaheuristics are
provided with emphasis on the application to layout problems. The metaheuristics
that will be used in this manuscript are then detailed in Section 2.4.

2.3.3.1 Single-solutions metaheuristics

Simulated Annealing. One of the first metaheuristic techniques that has been
developed and applied to OLPs is the Simulated Annealing (SA) algorithm which
is inspired by annealing in metallurgy [KJV83]. It iteratively explores the solution
space by accepting better solutions and occasionally worse solutions with a decreas-
ing probability determined by a cooling schedule. This allows the algorithm to
escape local optima and converge towards better global solutions. One advantage
of SA algorithms is that they only rely on one hyperparameter corresponding to the
initial temperature and is thus easy to configure. SA algorithms have been adapted
and applied to many OLPs [BG01; BR84; MB96; Tam92a]. Even if SA is able to
handle mixed-variables problems [ZW93], it is known to have a slow convergence
[Dee92; RSS96], which makes it not suitable for highly dimensional and constrained
problems which are characterized by a complex search space.

Tabu Search. Other metaheuristic methods have been explored to solve OLPs.
Tabu Search (TS) algorithms have been developed for OLPs [Glo86]. TS is a meta-
heuristic algorithm initially developed for combinatorial optimization dealing with
discrete variables. It explores neighboring solutions, evaluates them, and maintains
a tabu list to prevent revisiting recent solutions. It balances intensification and di-
versification by selectively allowing moves that improve the current best solution.
TS is known to be relatively fast [CGM21] due to its intrinsic characteristics as well
as a good trade-off between intensification and diversification capabilities and has
thus been sometimes considered as an alternative to other metaheuristic methods for
OLPs [CCC14; KM97; LC08]. In [LC08], the authors developed a TS algorithm en-
hanced with intensification and diversification procedures for various facility OLPs.
Carrabs et al. [CCC14] used TS in order to solve the widely studied circular bin
packing problem which consists in positioning circular items in the smallest circu-
lar container as possible. They enhanced the TS approach with some improvement
strategies that simulate the movements of circles in the circumference of the con-
tainer and try to free some space in the circumference to allow a reorganization of
the circles and to produce better solutions.
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Variable Neighborhood Search. One last metaheuristic technique reviewed in
this manuscript is the Variable Neighborhood Search (VNS) technique which pro-
ceeds by performing local changes to improve an initial solution until a local optimum
is found [MH97]. The VNS algorithm provides a flexibility in the neighborhood de-
sign making it adaptable to different problem types and neighborhood structures.
This flexibility enables effective exploration of the search space based on the spe-
cific problem characteristics and contributes to its ability to escape local optima by
switching between neighborhoods to continue exploring the search space and seek
better solutions. Many variants of this algorithm have been developed in order to
solve OLPs [CP13; HCD21; Rip+13]. However, exploring multiple neighborhoods
and executing multiple iterations can increase the time complexity of the algorithm
especially in case of high dimensional problems [Oua+20]. VNS is also very sensitive
to the definition of the neighborhood and thus, insufficiently effective local search
can limit VNS’s ability to find high-quality solutions [TZ19].

2.3.3.2 Population-solutions metaheuristics

Genetic Algorithms. Among all the metaheuristic algorithms, Genetic Algo-
rithms (GAs) received the most attention. GAs are inspired by Darwin’s theory of
natural evolution and is based on natural selection in order to repeatedly improve
a population of solutions [Gol89; Hol92]. GAs are often effective in exploring the
entire search space even in case of complex design search space. Moreover, they
can be used to solve a wide variety of optimization problems, whether they are con-
tinuous, discrete, mixed-variables, unconstrained or constrained, single-objective or
multi-objective and have thus been widely used for OLPs, even if studies show that
the constraint satisfaction can be a bottleneck for such algorithms [KS05; MC11;
Sal09]. In [Tam92b], Tam proposed a coding scheme design for the use of GAs
to solve facility layout problems. In [TS95], a GA is applied to the QAP class of
problems and provided better results compared to several heuristic counterparts.
In [Jac+09], Jacquenot et al. proposed a placement algorithm based on a GA en-
hanced by a separation algorithm in order to facilitate the treatment of overlapping
constraints and deal with polygonal items. In general, genetic algorithms have been
used to solve various application cases like packing problems [Bor06; Jak96; LRP22;
Qui+15], facility layout problems [ASE12; El-04; Pen+18], complex system design
[MTK96; ST03; XXA07c], facility dispersion [EN10; MO04; TMX09; YK13], etc. As
used in Chapter 3 and Chapter 8 of this manuscript, this algorithm will be detailed
in Section 2.4.1.1.

Particle Swarm Optimization. Particle Swarm Optimization (PSO) is a population-
based optimization algorithm inspired by the social behavior of bird flocks or fish
schools [KE95]. It initializes a swarm of particles (corresponding to a potential so-
lution of the problem at hand) in a search space and updates their velocities and
positions based on personal and global bests. Through iterative exploration and in-
teraction, particles converge towards solutions by balancing individual exploration
and social cooperation. PSO algorithms are known to be easily implementable and
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to have often provide good convergence speed thanks to its ability to exploit rapidly
promising areas of the search space [EHG05; Esp+11; Has+05]. In [Liu+18], Liu
et al. described a multi-objective PSO algorithm to address facility layout prob-
lems including a mutation heuristic, a local search and an objective space division
method. In [XXA07b], a SA and PSO-based algorithms are developed to solve cir-
cular bin packing problems with equilibrium constraints and outperformed previous
algorithms. However, PSO algorithms are initially proposed for continuous optimiza-
tion problems and additional challenges arise when dealing with mixed-variables.
PSO algorithms have been proposed in case of discrete design variables exclusively
[KE97; SAA02; SH06], but more rarely for mixed-variable problems [WZZ21].

Differential Evolution. Storn et al. [SP97] introduced Differential Evolution
(DE) algorithm which generates trial solutions by perturbing and combining indi-
viduals based on the differences between randomly selected individuals. These trial
solutions are then compared to the current population, and if they are better, they
replace the corresponding individuals. DE has the advantage of relying on very few
hyperparameters and have been used and adapted for OLPs. Wang et al. [Wan+17]
addressed the wind farm layout problems by means of a DE algorithm with a new en-
coding mechanism considering each wind turbine as an individual in order to reduce
the dimension of the search space as well as the number of hyperparameters. Zhao
et al. [Zha+17] used the DE approach in order to design and position obstacles for
panic evacuations to obtain a minimum leaving time for all the pedestrians. Their
approach proved to improve the design and layout obtained by human intelligence
and provided a good robustness of the results.

Covariance Matrix Adaptation-Evolution Strategy. Hansen [HO01] pro-
posed a Covariance Matrix Adaptation-Evolution Strategy (CMA-ES) which is par-
ticularly effective for handling problems with complex or noisy fitness landscapes.
CMA-ES generates population according to a multivariate normal law and fits its
parameters (mean and covariance matrix) in order to explore the search space in
promising regions. The same application case than in [Wan+17] is considered in
[Wag+11] and tackled by a CMA-ES to position up to 1000 wind turbines. In
[AWT16], improved CMA-ES, GA and PSO algorithms are applied to unequal-area
continuous facility layout problems and compared, giving advantage to the CMA-ES
algorithm. As CMA-ES is based on continuous probability distribution, handling
discrete variables is not inherent to the algorithm and several enhancements have
been proposed [Ham+22].

Ant Colony Optimization Dorigo et al. [DBS06] developed Ant Colony Opti-
mization (ACO) algorithms to solve optimization problems by simulating the behav-
ior of ants searching for food. ACO uses a population of artificial ants that construct
and follow paths through a graph-based problem representation. Each ant proba-
bilistically chooses its next move based on pheromone trails, which represent the
quality of the paths. The pheromone levels are updated based on the quality of
the solutions found. ACO effectively balances exploration and exploitation, as the
pheromone trails guide the ants towards promising regions while allowing exploration
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of new paths. ACO is originally developed to solve combinatorial problems. It has
been adapted for solving continuous problems [She+07] and subsequently, variants
have been proposed to handle mixed-variables formulations [Lia+13]. In [Has+17],
ACO methods for facility layout problems are classified and their performance are
analyzed and compared to other metaheuristic techniques. In [LD04], pure ACO and
ACO enhanced with local search are used to solve bin packing and cutting stock
problems. They proved that the pure ACO approach can compete with existing
evolutionary methods, whereas the ACO-based memetic approach can outperform
the best-known hybrid evolutionary solution methods for certain problem classes.
Even if ACO has good performance when solving continuous or discrete problems,
the convergence speed of the algorithm can slow down and the convergence accuracy
might decrease in case of high-dimensional problems [YYL21].

Scatter Search. Scatter Search (SS) combines solutions from diverse regions of
the search space to find optimal solutions [LM03]. It starts by generating a diverse
set of initial solutions, called the reference set. The algorithm then iteratively ex-
plores the search space by combining pairs of solutions from the reference set to
create new solutions. The new solutions are evaluated, and a subset of the best
solutions is selected to update the reference set. This process continues until a
termination condition is met. SS effectively balances exploration and exploitation
by maintaining diversity in the reference set and combining promising solutions
[MLG06; Glo86]. Kothari et al. [KG14] proposed four SS algorithms for the single
row facility layout problem using different diversification techniques to generate an
initial population containing good quality and diverse permutations. In [WST09],
the authors addressed the circular bin packing problem with equilibrium constraints
by improving a SS algorithm. A gradient descent algorithm and a simplex algorithm
[BT97] are adopted to improve the trial solution generated in the SS framework, en-
hancing the trade-off between exploration and exploitation.

Quality-diversity algorithms. Recently, a new type of evolutionary algorithms
has emerged, qualified as quality-diversity (QD) algorithms [LS11; MC15; PSS16].
These algorithms were designed to tackle complex optimization problems where
finding a single optimal solution may not be sufficient or even feasible. Instead,
they focus on discovering a set of diverse and high-quality solutions that cover dif-
ferent regions of the problem space. QD algorithms typically employ a two-step
approach: first, they generate a diverse set of candidate solutions where diversity
is quantified through additional functions called ”features”, and then they evaluate
and refine these solutions based on a predefined quality measure. By promoting
both quality and diversity, these algorithms can produce a rich set of solutions that
offer alternatives to traditional single-solution optimization approaches. Among QD
various approaches, MAP-Elites (Multi-dimensional Archive of Phenotypic Elites)
algorithms have been developed and applied to OLPs [Gal+21; NDN22; Zha+23].
MAP-Elites focus on exploring and mapping the diversity of solutions across multiple
dimensions by gradually building a map of the problem space, revealing the diver-
sity of solutions that exists across different feature combinations [MC15]. Galanos
et al. developed a QD algorithm called ARCH-Elites for urban design [Gal+21]. It
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corresponds to a MAP-Elites implementation that can reconfigure large-scale urban
layouts at real-world location. In [NDN22], two MAP-Elites algorithms are derived
in order to tackle knapsack problems. Zhang et al. also used MAP-Elites algorithms
to optimize the warehouse layouts in order to coordinate hundreds of robots in large
automated warehouses, with the objective of maximizing the throughput produced
by a multi-agent path finding-based robot simulator while diversifying a set of user-
defined measures, such as travel distances of the robots and the distribution of the
shelves [Zha+23].

Table 2.2 sums up the metaheuristic methods applied to OLPs and their prin-
cipal characteritics: discrete (D) or continuous (C) variables representation, single
(S) or multi-objective (M), the maximum number of items (dimension), the consid-
ered constraints: boundary constraints (B), overlapping constraints (O), equilibrium
constraints (E), functional constraints (F) and finally the case study: facility lay-
out problems (FLP), quadratic assignment problems (QAP), packing problems (P),
complex systems design (CS), wind farms and coverage layout problems (WF/C).

It must be noted that other metaheuristic methods exist and may have also been
applied to OLPs like Artificial Bee Colony [SLZ11], Gray Wolf [LRP22] or Harmony
Search [KC17] methods. As they are less frequent in the literature, they are not
properly reviewed here for summary and clarity purposes.

Table 2.2: Metaheuristic methods for OLPs

[BG01] SA D S 30 B FLP

[BR84] SA D S 36 B QAP

[Dow93] SA C M 20 B P

[Tam92a] SA D S 30 B FLP

[BAZ15] TS D S 30 B FLP

[CCC14] TS D S 50 B/O P

[LC08] TS D S 28 B FLP

[CP13] VNS D S 26 B/F WF/C

[HCD21] VNS D S 50 B FLP

[Rip+13] VNS D S 15 B FLP

[ASE12] GA D M 20 B FLP

[Bor06] GA C S 5000 B P

[El-04] GA D S 26 B FLP

[EN10] GA D S 39 B WF/C

[Jac+09] GA C/D M 11 B/O P

[Jak96] GA D S 50 B P

[LRP22] GA C S 133 B/O P

Reference Method Variables Objective Dimension Constraints Case study

Continued on next page
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Table 2.2: Metaheuristic methods for OLPs (Continued)

[MO04] GA D S 30 B CS

[Pen+18] GA D S 125 B FLP

[ST03] GA C S 53 B/O/E CS

[Tam92b] GA D S 30 B FLP

[TS95] GA D S 36 B QAP

[XXA07c] GA C M 55 B/O/E CS

[YK13] GA C S 100 B WF/C

[Liu+18] PSO C M 62 B/O FLP

[XXA07b] PSO C M 55 Overlap P

[ZL17] PSO C S 20 O/B CS

[Wan+17] DE C S 100 B/F WF/C

[WLW22] DE C S 50 B/F WF/C

[Zha+17] DE C S 3 B Other

[AWT16] CMA-ES C S 20 B/O FLP

[Wag+11] CMA-ES C S 1000 B/F WF/C

[Has+17] ACO D S 20 B FLP

[CK04] ACO D S 200 B/O FLP

[LD04] ACO D S 1000 B P

[KG14] SS D S 80 B FLP

[WST09] SS C S 40 B/O/E P

[Gal+21] QD C S 1000 B/F Other

[NDN22] QD C S 200 B/O Other

[Zha+23] QD C S 200 B/F Other

Reference Method Variables Objective Dimension Constraints Case study

2.3.4 Hybrid approaches

With the increase in the number of design objectives, constraints or design vari-
ables, other techniques have been proposed in order to improve the computational
performance of the previously mentioned algorithms. Among them, cooperative co-
evolutionary algorithms (CCEAs) first introduced by Potter and De Jong [Pot+94]
and based on the divide-and-conquer method along with the biological model of
co-evolution of cooperating species have been developed. CCEAs allow to tackle
complex optimization problems by decomposing it into multiple subproblems, each
solved with evolutionary algorithms. A complete problem solution is constructed
by merging the representative members of each subpopulation (associated to one
subproblem) through cooperative co-evolution mechanisms. Ma et al. recently pro-
posed a survey on CCEAs [MLa18]. Those algorithms were successfully applied to
optimal layout optimization [CZa19; DRW03; WTS09a]. Cooperative techniques
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have also been introduced within the frameworks of other algorithms. For instance,
Mansour et al. introduced a cooperative version of a local search algorithm based
on quality indicator for multi-objective knapsack problems [MBS18].

Metaheuristics have also often been hybridized between themselves. The goal
is to take advantage from the strengths of several metaheuristic techniques to find
improved global solutions with lower computational resources. In [LL02], the au-
thors combined the ability of TS and SA algorithms to find local solutions rapidly to
enhance GA’s capabilities to find a global solution with lower computational efforts.
The same idea was employed in [LPK17], where a GA has been hybridized with
differential evolution, artificial bee colony (ABC) and PSO in order to optimize lay-
outs for multi-robot cellular manufacturing systems and accelerate the convergence
toward the global optimum. In [LC12b], the authors proposed a hybrid swarm intel-
ligence based particle-bee algorithm (PBA) for construction site layout optimization.
PBA integrates the ABC global search ability with the local search advantages of
PSO and proved to perform better than non-hybridized ABC and PSO.

Metaheuristics have also been hybridized with exact methods and heuristic tech-
niques. In [Che+18], the authors improved the convergence speed and robustness of
DE by integrating a sequential quadratic programming technique to accelerate the
local search during the DE process and solve satellite module layout problems. The
OLPs were sometimes reformulated as two-stage problems, each stage addressed us-
ing both EAs and heuristic techniques. For instance, in [XXA07c], a GA optimizes
the order of the items to place within a container while a greedy algorithm based
on the order-based positioning technique and heuristic rules constructs the layout
component by component thereafter. Then, the same authors then extended the
placement heuristic rules to parallelepipedic items in [Xu+10].

2.3.5 Quasi-physical methods

Quasi-physical (QP) methods are techniques having both physical and mathematical
roots and which aim is to mimic physical laws. Most of the time, they correspond to
energy or force-based algorithms. In [HY11a], a quasi-physical global optimization
method is described. A local search strategy based on an energetic and physical
modeling of the circles has been coupled with a basin-hopping procedure to es-
cape from local optimum traps. This quasi-physical strategy has been extended
in [He+18] using a modified Broyden–Fletcher–Goldfarb–Shanno algorithm and a
new basin-hopping strategy to solve unequal circular bin packing problems. Guo et
al. developed an evolutionary approach for spatial architecture layout including a
multi-agent finding system based on physical interactions between agents [GL17].

Another algorithm inspired from physical laws is the Gravitational Search algo-
rithm (GSA). GSAs are population-based algorithms based on the law of gravity
and mass interactions introduced by Rashedi et al. in [RNS09]. In GSAs, individ-
uals of the population are modeled as virtual objects with a virtual mass. Thus,
the heavier the individuals, the better the solution. According to the gravitational
law of physics, the individuals attract each other by the gravity force which leads
to a global movement of all objects towards the objects with heavier masses. To
ensure the exploitation ability of the algorithm, heavy masses move more slowly
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than lighter ones. GSAs also belong to the population-based metaheuristic cate-
gory of algorithms. In [SR17], a discrete GSA is developed for solving the knapsack
problem. For this purpose, a new approach was introduced for discretely updating
individuals’ positions in the GSA. In addition, a new proper fitness function for 0–1
knapsack was introduced to improve the quality of the optimum. Abdessamia et
al. proposed a strategy for virtual machine placement based on GSA to find the
optimal energy consumption [AZT20].

Finally, one other quasi-physical approach is referred to as virtual-force method
and consists in applying forces to the items in order to make them virtually move
thanks to dynamic physical laws. Thus, the forces aim either at minimizing the
objective functions or satisfying the constraint functions which could lead to an
improved convergence speed. This approach is used in the field of robotics in order,
for instance, to control a swarm of robots moving in a given area with one or several
objectives (e.g, reaching a target destination), as well as hard constraints (e.g., avoid
collisions and forbidden zones) [Bra+13; KB86]. This approach is often referred to as
Artificial Potential Field (APF) method for robot path planning [OMS19; Pat+19;
VTM00]. Virtual-force systems-based methods have also been applied to coverage
and packing problems, where elastic models resulting in virtual forces are applied
to the items to position in order to satisfy the overlapping or balancing constraints
[He+13; HY11b; Wan+02].

2.3.6 Machine Learning techniques

Recently, Machine Learning (ML) methods have been applied to layout optimization
problems even if they are less investigated. Burggräf et al. conducted a study on
the use of machine learning as resolution techniques for facility layout problems in
[BWH21]. Unsupervised learning, supervised learning and reinforcement learning
(RL) have been explored to solve these problems. More specifically, Tsuchiya et
al. [TBT96] focused on a neural network (NN) approach to optimize the layout of
N components on N2 locations. Despite the small amount of articles using RL to
tackle aerospace vehicles OLPs, some recent ones use this method to address chip
floorplanning which is similar to a layout problem. In [Vas+20], a cyclic combination
of RL and SA is proposed to solve integrated circuit placement. This cyclic appli-
cation of RL and SA is used to provide a better initialization for SA. In [Mir+21],
the authors developed a deep RL approach capable to learn from its experience of
achieving the layout of the chip in order to become better and faster. A trained agent
places the macros one by one on the chip and by the end obtains a reward which
is function of the wirelength, the congestion and the density of the chip. Moreover,
the authors created a neural network architecture in order to predict reward on new
lists of components and use it as the encoder layer of their policy. In [CY21], a joint
learning method for solving both placement and routing problems is detailed. It
integrates reinforcement learning with a gradient-based optimization scheme. As in
[Mir+21], a policy network learns how to maximize the rewards.

Bayesian Optimization has been also applied to OLPs [Des+22; ONY22; SL22].
This technique has the advantage of requiring few iterations in order to converge
due to the fact that each evaluated point is carefully chosen thanks to an inherent
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optimization process [Sha+15]. Indeed, this method is particularly suitable in case
of blackbox expensive-to-evaluate functions. As OLPs are often characterized by
this type of functions, BO algorithms have been applied to this class of problems.
In [ONY22], BO has been used for speeding up the thermal design optimization of
an electronic circuit board layout with transient heating chips. The authors demon-
strated that using BO instead of metaheuristic methods such as GA or PSO helped
to divide the CPU time required to reach the optimum by 4 to 5. In [Des+22],
the authors applied two BO algorithms dedicated to permutation spaces for opti-
mal layout benchmarks (QAP and circuit integrated layout). They used kernels
dedicated to the permutation spaces referred to as the Kendall and Mallows kernels
[JV15] and adapted the acquisition function and their optimization thanks to heuris-
tic searches. Sajedi et al. proposed a Deep generative BO for sensor placement in
structural health monitoring [SL22]. They combined the BO framework with adap-
tive basis regression with deep neural network instead of classical Gaussian Process
in order to enhance the convergence speed of the algorithm. Additionally, they
developed an explorative local search algorithm in order to optimize the Expected
Improvement acquisition function. They showed that their algorithm outperformed
GA with the same number of function evaluations.

2.3.7 Literature summary

Table 2.3 sums up all the methods which have been surveyed for solving fixed search
space OLPs. When possible, for each approach, the very first reference to this
method or at least a representative reference is given as well as the main references
dealing with OLPs from the present survey. First of all, exact and heuristic methods
often require too much computational efforts to solve complex design space OLPs.
To overcome this, population-based metaheuristic algorithms are the most employed
techniques during the past 20 years, as they generally provide good global search
capabilities as well as exploitation toward the most promising areas. Thus, a further
description and analysis of these methods are provided in the next section.

Moreover, when it comes to highly dimensional and constrained OLPs, one key
aspect of every algorithm is the choice of a constraint-handling technique. Conse-
quently, quasi-physical techniques are also promising techniques as they provide an
inherent way to handle the constraints thanks to dedicated forces or operators. Thus,
these approaches have good convergence speed in comparison to most metaheuristic
techniques and an extensive description of quasi-physical techniques is given in the
following section.
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Table 2.3: Summary of the literature reviews.

Approaches Algorithms Definition Main ref.

Exact
GAMS/CPLEX [BM04;

BBL14]
[BMN02; Geo+99;
PP02]

B&B [ER66] [ChL13; KYS08;
XS08]

DP [Edd04] [Cin+08; CH06;
FLS17]

Heuristic
Construction [Lee67;

SE67]
[BHS20; HI15;
Des+16]

Improvement [AB63;
BME94]

[Joh82; LKM17;
PRR14]

Metaheuristic

SA [KJV83] [BG01; BR84;
Tam92a]

GA [Joh82] [Jac+09; Tam92b;
TS95]

TS [Glo86] [CCC14; LC08]
SS [LM03] [BT97; KG14;

WST09]
PSO [KE95] [Liu+18; XXA07b]
DE [SP97] [Wan+17; Zha+17]
CMA-ES [HO01] [AWT16; Wag+11;

Wan+17]
ACO [DBS06] [Has+17; LD04]
VNS [MH97] [CP13; HCD21;

Rip+13]
QD [LS11;

MC15;
PSS16]

[Gal+21; NDN22;
Zha+23]

Hybrid
Coevolution [Pot+94] [CZa19; DRW03;

MBS18]
M+M* [LL02; LC12b;

LPK17]
M+E*/M+H* [Che+18; XXA07c;

Xu+10]

QP
GSA [RNS09] [AZT20; SR17]
Energy-based [He+18; HY11a]
Virtual-force [GC02; Ji+22;

ZC03]

ML
NN [Law93] [TBT96]
RL [KLM96] [CY21; Mir+21]
BO [Sha+15] [Des+22; ONY22;

SL22]
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2.4 Focus on promising methods for solving

fixed search space optimal layout problems

2.4.1 Population-based Algorithms

In this section, a brief description is given for the main population-based algorithms.
The generic flowchart of population-based algorithms is as follows:

1. Initialization of the population: A population of individuals is randomly gen-
erated as an initial solution to the problem at hand. Each individual represents
a potential solution.

2. Evaluation of the population: Each individual in the population is evaluated
thanks to the objective function and is assigned a fitness score (most of the
time corresponding to the value of the evaluation of the objective function).

3. Generation of the new population: In this step, new individuals (offspring) are
created by combining genetic information from the current individuals (par-
ents). The offsprings generated in the previous step replace some individuals
in the current population. The replacement strategy can vary, but a common
approach is to replace individuals with poor fitness scores, thus allowing the
population to evolve towards better solutions over time.

4. Termination: The algorithm continues iterating through the previous steps of
evaluating the current population and generating a new population until a
termination condition is met. This condition can be a maximum number of
generations, a stagnation of the convergence, or a predefined time limit.

By repeatedly applying the aforementioned steps, population-based algorithms
explore and refine the population over generations, gradually converging towards
better solutions to the problem at hand. Figure 2.1 shows a classification of population-
based metaheuristic algorithms.

Figure 2.1: Classification of population-based metaheuristics.

In the following sections, three representative population-based metaheuristics
are detailed: GA, PSO and CMA-ES.
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2.4.1.1 Genetic Algorithms

GAs are the most used Evolutionary Algorithms for solving OLPs. They are based
on different methods to encode the solution providing an easy way to perform re-
production operations through crossover and mutation. A solution is encoded as a
chromosome were each gene corresponds to a design variable. The bit string repre-
sentation or the real-value representation are the two main ways to encode a solution.
Figure 2.2 illustrates the GA encoding of a population of solutions with a bit string
representation. The encoding of solutions allows to perform evolutionary operators

1 0 1 1 1 1 0

0 0 0 1 0 1 0

0 1 0 0 0 0 0

1 0 0 0 0 0 1

0 0 0 0 0 0 0

Gene

Chromosome

Population

Figure 2.2: Encoding of a population of 5 individuals with 7 genes in GAs, with bit
string representation.

in an easy way. In [Tal09], classical initialization, selection, crossover, mutation and
replacement operators are detailed. They are illustrated in the case of GAs solution
encoding in the following paragraphs.

Initialization First of all, different techniques exist in order to initialize the popu-
lation. Usually, the population is initialized randomly [Tal09], but other techniques
can be used such as sequential diversification [Dig83], parallel diversification [Tal09]
or any heuristic rules. The initialized individuals are then evaluated in terms of
objective function and constraints.

Selection Then, the selection mechanism aims at choosing the individuals that
will be part of the reproduction process. Usually, the better is an individual (in terms
of fitness value), the higher its chance to become a parent in order to lead the pop-
ulation toward better individuals. The most common strategy is the roulette wheel
selection [LL12]. Other selection mechanisms can be employed such as tournament
selection [Bli00] in which k individuals are selected randomly and a tournament is
applied to the k members of the tournament group to select the best one, or even
rank-based selection [Gre00].

In GAs, the reproduction step is usually performed using a crossover operator
and a mutation operator which are detailed in the following paragraphs.
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Crossover. The role of crossover is to inherit some characteristics of the two
selected parents in order to generate offsprings. The design of a crossover operator
depends on the encoding of the solutions and must answer two points:

• Heritability: the offsprings must inherit of the genetic material of both parents;

• Validity: the crossover operator should produce new valid solutions (which is
not always possible in case of constrained problems).

The crossover operators rely on a crossover probability Pc, Pc ∈ [0, 1] which is a
hyperparameter of the GA and characterizes the proportion of parents on which a
crossover operator will act.

The most simple crossover operator is the 1-point crossover and its generalized
form is the n-point crossover [SJ91] which are originally developed for the binary
representation. In the 1-point crossover, a uniform random distribution is used
to select a crossover point within the parents chromosomes. The offsprings are
obtained by recombination of the segments before and after the chosen point. Figure
2.3 illustrates a 1-point and a 2-point crossover operations. Other mechanisms for
binary representation exist such as the uniform crossover.

Parents Offsprings

1 0 1 1 1 0 0

0 0 0 1 0 1 0

1 0 1 1 0 1 0

0 0 0 1 1 0 0

1-point

1 0 1 1 1 0 0

0 0 0 1 0 1 0

1 0 0 1 0 0 0

0 0 1 1 1 1 0

2-point

Figure 2.3: 1-point and 2-point crossover operator.

For the real-number representation some crossover operators have been devel-
oped. The most employed one is the Simulated Binary Crossover (SBX) [DA95].
Other crossover operators can be used with real-number representation like the uni-
modal normal distribution crossover [OK97], the half uniform crossover [Bue13] or
the parent-centrix crossover [DJ02].

Mutation. The mutation operator corresponds to a small change in some selected
individuals of the population. As for the crossover operator, the mutation probabil-
ity Pm, Pm ∈ [0, 1] is a hyperparameter and defines the probability to mutate each
gene of the chromosome. The design of a mutation operator depends on the chosen
representation and must rely on three points:

• Ergodicity: All individuals of the population might be reached;

• Validity: The mutation operator must produce valid individuals (it may not
be possible when it comes to constrained problems);
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• Locality: The mutation should produce a minimal change.

For binary representation, the most employed mutation operator is the flip operator:
A randomly selected gene of a chromosome is flipped from 0 to 1 or from 1 to 0
[Tal09]. For real-value representation, one of the most employed operator is the
Polynomial Mutation (PM) [Deb01]. Other mutation operators exist such as uniform
random mutation or normally distributed mutation [Tal09].

Replacement. Finally, a strategy must be chosen in order to withdraw half of
the parents and offsprings as the size of the population must remain constant. The
most employed technique is the Non-Dominated Truncating [Deb+02] which con-
sists in keeping the best individuals among the parents and offsprings populations.
Other strategies exist such as the generational replacement [Hol92] where the off-
springs systematically replace the parents, or the steady-state replacement [LHC09]
in which the best offspring replaces the worst parent.

GAs are often effective in exploring the entire search space even in case of com-
plex design search space. Moreover, they can be used to solve a wide variety of
optimization problems, whether they are continuous, discrete, variable-mixed, un-
constrained/constrained, single or multi-objective. They have thus been widely used
for OLPs as reviewed in Section 2.3.

2.4.1.2 Particle Swarm Optimization

In Particle Swarm Optimization (PSO), a solution i is encoded as a particle defined
by its position pi (vector composed of the values of the design variables) and its
speed vi. The goal is thus to evolve the population as a coordinated behavior using
local movements without any central control. At each iteration, each particle moves
from one position to another in the search space with its associated velocity using
no gradient information. The updated positions are influenced by their own success
and the success of the other particles. Indeed, two factors are taken into account:

• The best position reached by the particle itself pbest
i ;

• The best position reached by the whole swarm gbest.

A each iteration t, the velocity of each particle i is updated as follows:

vt
i = ωvt−1

i + ρ1C1(p
best
i − pt−1

i ) + ρ2C2(g
best − pt−1

i ) (2.2)

where ρ1 and ρ2 are random numbers between 0 and 1 and ω, C1 and C2 are hyper-
parameters of the algorithm.

Then, the position of each particle is updated as:

pt
i = pt−1

i + vt
i (2.3)

Finally, the pbest
i vectors as well as the gbest vector are updated. Figure 2.4

illustrates the update of the position of a particle from step t-1 to step t.
The PSO algorithm has the advantage of being easily implementable and provides

good global search exploration abilities [EHG05; Esp+11; Has+05]. Consequently,
PSO have been widely used for solving OLPs as described in Section 2.3.3.1.
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Best particle position, 𝐩𝑖
𝑏𝑒𝑠𝑡

Best swarm position, 𝐠𝑏𝑒𝑠𝑡
Particle position at 
t-1, 𝐩𝑖

𝑡−1

Particle position at t, 𝐩𝑖
𝑡

𝐯𝑖
𝑡−1

(𝐩𝑖
𝑏𝑒𝑠𝑡 − 𝐩𝑖

𝑡−1)

(𝐠𝑏𝑒𝑠𝑡 − 𝐩𝑖
𝑡−1)

Figure 2.4: Illustration of a step of PSO algorithm [Tal09].

2.4.1.3 Covariance Matrix Adaptation-Evolution Strategy

Covariance Matrix Adaptation-Evolution Strategy (CMA-ES) optimizes the objec-
tive function through generation of a population using a multi-variate Normal dis-
tribution. This distribution is parameterized by its mean and covariance matrix.
CMA-ES is a second order approach estimating a positive definite matrix within
an iterative procedure. The key idea of this algorithm is to dynamically adapt
the covariance of the candidate distribution to better explore the search space and
converge faster to optimal solutions [HO01]. The covariance matrix defines the
pairwise dependencies between the variables in the distribution. Adaptation of the
covariance matrix is based on learning a second-order model of the target objective
function, which is reduced to the approximation of the inverse Hessian matrix in the
quasi-Newton method, a traditional method in continuous optimization.

At each generation of CMA-ES, λ offspring solutions are generated from µ par-
ents. In order to select new µ parents at the next generation, a (λ, µ)-selection is
used in which the µ best offspring candidates are chosen based on their ranking ac-
cording to their fitness value. The multivariate normal distribution is characterized
by an ellipsoid delimiting a probable search hypervolume. Throughout the itera-
tions, the search hypervolume is updated in order to converge and to shrink around
the global optimum. CMA-ES generates the population by sampling a multivariate
normal distribution, a iteration t:

xt
i ∼mt−1 + σt−1N (0,Ct−1), for i ∈ {1, ..., λ} (2.4)

where xt
i is an offspring candidate generated from a mean vector mt−1, a step size

σt−1 and a multivariate normal distributionN (0,Ct−1) with 0 mean and a covariance
matrix Ct−1. The update of the covariance matrix incorporates dependence between
the past generations and between the µ best solutions from the previous generation.
The mean vector characterizes the center of the next population and is determined
by a combination process through the weighting of the µ best solutions. A more
detailed description of the selection and update mechanisms can be found in [HO01].
Figure 2.5 gives the steps of CMA-ES.

CMA-ES is particularly effective in handling problems with complex, non-linear
landscapes and is very competitive for continuous optimization problems and does
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Initialize covariance matrix 𝐂0 =
𝐈, the step size 𝜎0 and the 

selection parameters

Initialize the mean vector 𝐦0 to a 
random candidate

Is termination
criterion met ?

Generate 𝜆 new offsprings
candidates thanks to the 
multivariate distribution 

𝒩(0, 𝐂𝑡−1), the mean vector
𝐦𝑡−1, the step size 𝜎𝑡−1

Evaluate candidates and rank
them

Determine the mean vector given
the weighting coefficients of the 

𝜇 best candidates

Update covariance matrix 𝐂𝑡 and 
step size 𝜎𝑡

No

Yes
End

Figure 2.5: CMA-ES flowchart.

not require any parameters tuning. Then, it has been used for solving OLPs as
described in Section 2.3.3.1.

2.4.1.4 Analysis of constraint-handling in population-based
metaheuristic algorithms

For population-based metaheuristics, one key aspect is the choice of constraint han-
dling techniques especially in case of highly constrained OLPs that may involve
hundreds of non linear constraints.
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Penalty-based approaches. The most employed approaches are the penalty-
based approaches which consist in modifying the objective function by adding a
penalty term which depends on the weighted constraint functions [Lag+23]. Many
penalization techniques have been developed like death penalty [CC99], static penalty
[HQL94], dynamic penalty [JH94] or adaptive penalty [HB97]. Different studies aim
at comparing them on different benchmarks [HGR21; MMT03; Rah+23]. Globally,
penalty-based approaches are easy to implement but require a precise weight tuning,
even if some penalty techniques are parameters-free [MVV13; SBL11]. They often
lack of precision toward the global optimum and lead to premature convergence.
They can also be over time consuming [Rah+23].

Separation between objective and constraints. Alternative techniques con-
sist in separating the objective and the constraints. Among them, the dominance-
based constraint handling which is inspired from multi-objective evolutionary al-
gorithms [Deb00]. The idea is thus to transform a constrained single-objective
optimization problem into an unconstrained multi-objective problem, where each
constraint represents a new criterion to be minimized. The following principles are
used in a tournament [CM02]:

• An infeasible solution is dominated by a feasible one;

• If two individuals are feasible, the one with the worst objective function is
dominated;

• If two individuals are infeasible, the one with greatest constraint violation is
dominated.

Constraint-dominance techniques can be easy to implement [Agu+04; SR97; ZLK03].
However, they can restrict the diversity among the population as they promote con-
vergence towards feasible solutions from the beginning of the search, which are
not necessarily the most promising individuals. In order to overcome this trend,
Stochastic Ranking was developed to add stochasticity in the constraint-dominance
process and sometimes favors individuals with worse constraint violation but better
objective function [RY00].

Retaining the infeasible individuals. In methods based on retaining the in-
feasible individuals in the population, the constraints are usually treated as an
additional objective. Therefore, many infeasible solutions are saved during the evo-
lution process [PLG17; Ray+09]. Ning et al. [Nin+17], proposed a mechanism in
which the individuals with low Pareto rank and low rank of the constraint violation
are selected. These methods make use of infeasible solutions which can increase the
diversity of the population. However, a huge number of infeasible individuals in the
population may cause low convergence speed of feasible solutions.

Repairing approach. Another constraint-handling technique consists in repair-
ing infeasible solutions to obtain feasible ones [Arn11; Koc+15; Sal09]. Usually, the
repairing strategy corresponds to repairing heuristics which are specific to the opti-
mization problem at hand. Most of them are greedy heuristics. Then, the success
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of this strategy will depend on the availability of such efficient heuristics and might
be very time consuming.

Hybrid approaches. Finally, hybrid methods can combine several constraint-
handling techniques such as in [LDD18; Fan+19; QS11]. Hybrid methods may
benefit from the strengths of each chosen technique. However, implementation chal-
lenges may arise and improper integration may cause low convergence speed.

It must be noted that in the case of the CMA-ES algorithm, a (1+1)CMA-ES
algorithm which corresponds to a simplified version of the (µ, λ)CMA-ES algorithm
has been proposed by Arnold and Hansen in [AH12] in order to deal with constrained
optimization problems. However, this algorithm is inefficient for high dimensional
optimization problems [AH12].

In general, handling constraints is often complicated for metaheuristics and re-
mains a challenge for large constrained optimization problems [CM02]. As the
constraint-handling technique is a key aspect in the resolution of highly-constrained
OLPs, the following section focuses on quasi-physical methods and more precisely
virtual-force-based methods which provide an inherent way to handle the con-
straints.

2.4.2 Virtual-force systems-based methods

Virtual-force systems-based methods refer to quasi-physical methods in which forces
are applied in order to virtually move items and solve the optimization problems
at hand [He+13]. More specifically, the forces aim at solving the constraints and
converge toward the objective even with a large number of constraints. Algorithms
based on a virtual-force system are used for robots path planning in order to move
a swarm of robots toward a target and satisfying hard constraints as for instance
avoiding obstacles [Bra+13; KB86]. This strategy has also been adapted in the
literature for OLPs. More particularly, this technique has mostly been used for
coverage problems as well as packing problems [He+13; ZC03; ZC04]. Thus, in this
section, three virtual-force systems are detailed for robots path planning, coverage
problems and packing problems.

2.4.2.1 Virtual-force systems for robots path planning

In [GC02], Ge et al. proposed an Artificial Potential Field (APF) method for mobile
robot motion planning in a dynamic environment where both the target and obsta-
cles are moving. The potential functions take into account the relative positions of
the robot with respect to the target as well as the relative velocities of the robot
with respect to the target and obstacles. Accordingly, the virtual force is defined
as the negative gradient of the potential with respect to both position and velocity.
The motion of the mobile robot is then determined by the total virtual force through
the Newton’s Law of Motion. Figure 2.6 shows the forces defined in [GC02].

Figure 2.6a defines the attractive force Fatt dedicated to following the moving tar-
get which consists of two components: while the first component, Fatt1(pR(t), pT (t))
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Figure 2.6: Illustration of the virtual-force system employed in [GC02] for mobile
robot path planning.

which depends on both positions of the robot and the target pR(t) and pT (t), pulls
the robot to the target and shortens the distance between them, the second compo-
nent, Fatt2(vR(t), vT (t)) which depends on both velocities of the robot and the target
vR(t) and vT (t), tries to drive the robot to move at the same velocity of the target.
Figure 2.6b defines the repulsive force Frep dedicated to avoid moving obstacles and
depends on the positions of both robot and obstacles, pR(t) and pO(t), as well as
their velocities vR(t) and vO(t) . The repulsive force component Frep1 will keep the
robot away from the obstacle while the repulsive force component Frep2 will act as
a steering force for detouring. The magnitude of each component of the forces is
defined based on attractive and repulsive potential functions defined as functions of
the relative position and velocity of the target with respect to the robot.

2.4.2.2 Virtual-force systems for coverage problems

In [ZC03; ZC04], the authors proposed a virtual-force system in order to optimize the
layout of cluster-based sensor network architectures. Attractive and repulsive forces
are applied to the sensors in order to optimize the coverage of the sensor layout. In
[Ji+22], Ji et al. improved previous virtual-force systems by adding a vortex force
in order to enhance the exploration capabilities of robots maximizing the coverage
within unknown environments. They compared their algorithm with several previous
virtual-force algorithms [RR16; Xie+19; ZC03]. Figure 2.7 illustrates the forces
defined for the coverage problems in [Ji+22].

The repulsive forces are of three types: a repulsive force between sensors Fi,j
RA

in case of overlap of the coverage zones of sensors i and j, a repulsive force from
obstacles Fi

RO in case of overlap between the coverage zone of sensor i and an obstacle
and a repulsive force from the border Fi

RB in case of overlap between the coverage
zone of sensor i and the border. The vortex forces (in dotted lines on Figure 2.7)
are of two types: a vortex force from obstacles Fi

V O which can be oriented toward
the two directions along the obstacle in case of overlap between the coverage zone
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Figure 2.7: Illustration of the virtual-force system employed in [Ji+22] for sensors
coverage problems.

of sensor i and an obstacle, and a vortex force from the border Fi
V B which can be

oriented toward the two directions along the border in case of overlap between the
coverage zone of sensor i and the border. The magnitudes of the repulsive forces
are proportional to the relevant overlapping areas and the magnitudes of the vortex
forces are proportional to the magnitude of the corresponding repulsive forces.

2.4.2.3 Virtual-force systems for packing problems

Mostly circular bin packing problems have been addressed using virtual-force system
[HY11b; Wan+02]. In [He+13], the authors addressed the circular bin packing prob-
lems with equilibrium constraints using a coarse-to-fine virtual-force-based method.
The objective of the packing problem is to minimize the container radius. The con-
sidered constraints are: no overlapping between the circles is allowed, no overlapping
between the circles and the container is allowed and the centroid of the weighted
circles must be in a tolerance zone centered at the geometrical center of the con-
tainer. The optimal radius is searched by dichotomy and for each tested radius, two
quasi-physical models are proposed, respectively dedicated to the overlapping con-
straints and to the balancing constraint. The algorithm consists in the application
of the two quasi-physical models to guide the system to local minima combined with
a basin hopping with tabu method to find new promising areas.

Radius Search. The optimal radius search is performed using a dichotomy pro-
cess:

1. Set lower and upper bounds for the container radius such that the circles have
to overlap with the lower radius Rlow and can be put in the container without
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overlapping with the upper radius Rup.

2. Set Rmid = (Rlow + Rup)/2 and try to solve the bin packing problem with a
container of radius Rmid.

3. If a feasible solution have been found, set Rup = Rmid. If no feasible solution
has been found then set Rlow = Rmid.

4. Repeat the two previous steps until Rlow and Rup are close enough. The
solution of the circular bin packing problem is Rup.

Figure 2.8 illustrates the radius search process.
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Figure 2.8: Illustration of the radius search process.

Quasi-physical model for overlapping constraints. This model considers the
circles as elastic. A deformation degree dij is defined as the maximal distance of
intersection between the overlapping disks i and j (or between a circle and the
container). Then an elastic force Fel

ij is defined as follows:

Fel
ij = kedij

rij
||rij||

(2.5)

where ke is a spring constant of the circles and rij denotes a vector from the center
of j to that of i.

The total elastic force applied on one circle is defined as the sum of each force
acting on this circle.

42



2.5. Conclusion

Quasi-physical model for the balancing constraint. The model to address
the balancing constraint is a pull model based on the assumption that there exists
an elastic rope connecting the centroid of the weighted circles (xc, yc) and the center
of the container (xe, ye) = (0, 0). If the centroid of the weighted circles does not
coincide with the center of the container a pull force Fpull is applied to the centroid
and thus to all the circles:

Fpull = kp
(−xe,−ye)
||(xe, ye)||

(2.6)

where kp is a spring constant of the imagined elastic rope. It must be noted that the
balancing constraint is sometimes relaxed by considering the centroid of the circles
as the geometrical center of the container [Wan+19b].

Algorithm description. The main steps of the algorithm are summarized as
follows:

1. The circles are randomly put within the container.

2. The elastic and pull models are applied to move the circles as:

rti = rt−1
i + heF

el,t−1
i + hpF

p,t−1 (2.7)

where he is a parameter for the step length under the elastic force, hp is a
parameter for the step length under the pull force, and rti is the vector of the
positions of circles i.

3. When the circles do not move any more, if the final layout is feasible then
it is considered as an acceptable solution. Otherwise, a new configuration is
generated by using a basin hopping strategy [He+13].

To sum up, virtual-force systems often rely on similar forces: attractive, repul-
sive or specific forces (e.g., gradient-based or vortex forces). Those forces are related
to a function of the problem and a dynamical law allows the system to explore the
search space and to converge [GC02; He+13; ZC03; ZC04]. As illustrated by the
three detailed examples, the virtual-force system depends on the characteristics of
the problem at hand but rely on a common framework. Moreover, the forces rely
on simple operations and are easily implementable as well as often compatible with
GPU computation which promotes reasonable resolution times even for high num-
bers of items to lay out, constraints and objective functions. Therefore, virtual-force
system-based methods are versatile enough with strong convergence capabilities and
are promising when it comes to deal with highly constrained OLPs.

2.5 Conclusion

In this chapter, the mathematical formulation of fixed search space design space
OLPs is presented as well as the existing methods allowing to handle them. The
survey of the methods allowed to identify two promising categories of methods in
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order to solve highly dimensional and constrained OLPs: evolutionary algorithms
and virtual-force systems-based methods. Evolutionary algorithms provide various
frameworks that can be easily adapted to the problems at hand and benefit from
a large number of references in the literature. Virtual-force systems-based methods
are versatile methods which provide an inherent way to handle the constraints and
are thus promising candidate techniques to solve highly constrained problems.

In this chapter, the formulation of OLPs remains very generic. Thus, in the fol-
lowing chapter, the OLPs addressed in this thesis are specified in terms of geometry,
design variables, objective function and constraint functions. In particular, single
and multi-container configurations are considered. Moreover, the limits of existing
virtual-force systems for solving the formulated OLPs are outlined and a Compo-
nent Swarm Optimization algorithm based on a Virtual-Force system is developed
for solving the single-container OLPs and overcome the outlined limits. This algo-
rithm is then hybridized with a genetic algorithm in order to address multi-container
configurations.
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• Formulation of the generic fixed search space (FSS) single and multi-
container optimal layout problems.

• Development of the Component Swarm Optimization algorithm based
on Virtual-Force system (CSO-VF) devised to solve for FSS single-
container optimal layout problems.

• Development of the two-stage approach based on Genetic Algorithm
and the CSO-VF algorithm devised to solve for FSS multi-container
optimal layout problems.

Chapter contributions

3.1 Introduction

Most often, optimal layout problems (OLPs) can be characterized by the presence
of single or multiple containers [HH09; TTi+16]. First of all, single-container OLPs
involve optimizing the layout of a given set of components in one container while
satisfying geometrical and functional constraints. As mentioned in Chapter 2, quasi-
physical techniques have been developed for packing problems which consist in po-
sitioning non-overlapping circles in the smallest circular container with or without
balancing constraints [He+13; HY11b].

In this chapter, those aforementioned packing problems are extended in order to
take into account some specificities related to more realistic OLPs. Indeed, polyg-
onal components and containers are considered, exclusion zones are added to the
container, functional constraints are defined and the objective function is general-
ized to any possible function. Limitations of previous virtual-force systems used in
classical packing problems with respect to the single-container OLPs are highlighted
and a quasi-physical approach which consists in a Component Swarm Optimization
algorithm based on a Virtual-force System (CSO-VF) is developed.

When the components must be laid out within several containers, the OLP is
referred to as a multi-container problem. In this case, an assignment task is added
to the layout task in order to assign each component to one of the containers. The
assignment scheme of the components to the appropriate containers has a critical
impact on the performance of the system. Indeed, a poor-quality assignment scheme
might lead to non feasible or suboptimal layouts. Multi-container OLPs have several
industrial applications. For instance, the multi-container loading problems consist
in loading several containers like trucks with pallets or cartons of different sizes.
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The numbers and types of loaded cartons as well as their layouts within each as-
signed truck both influence its dynamical features i.e., mass, stability, intertia, etc.
[Alo+19; CLS95; TTi+16]. Multi-floor layout problems which require to optimally
place departments, storage and elevators within a high-rise building, as means to
reduce costs, is yet another frequent application [HLG21; IES14; MIY14]. Finally,
multi-module satellite OLPs consist in positioning components within different com-
partments or surfaces of a satellite module in order to optimize dynamic or space
requirements [CSY02; CXW18; Ten+09]. All these test cases involve similar features
that are an assignment task in order to assign items to a container and an underlying
layout task. In this chapter, an algorithm framework based on the aforementioned
quasi-physical algorithm and enhanced by a genetic algorithm is proposed to handle
this category of problems.

Then, the rest of the chapter is organized as follows: in the first section, generic
single-container OLPs are formulated and the CSO-VF algorithm devised to handle
them is subsequently detailed. In the second section, the GA-assisted CSO-VF algo-
rithm framework for solving previously formulated multi-container OLPs is defined.
In each section, the formulation of the OLP is proposed, followed by the descrip-
tion of the proposed approaches. The application of the proposed methods will be
introduced in Chapter 4.

3.2 CSO-VF: a quasi-physical approach for

solving single-container optimal layout

problems

3.2.1 Generic single-container optimal layout problems

3.2.1.1 Definition of the container and components

• The N components to position in the container can be of any shape: circles,
rectangles, squares, polygons, etc.;

• The container corresponds to the available zone in which components must be
positioned. In the same way, it could take on any shape. Moreover, exclusion
zones can be added to the container. They correspond to areas where compo-
nents cannot be positioned (e.g., electric buses in complex systems, structural
beams in facility layout problems).

Figure 3.1 illustrates different layout configurations.
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Figure 3.1: Illustration of various layout configurations. The redder the components,
the heavier their corresponding masses. The white crosses correspond to the centers
of inertia of the components.

3.2.1.2 Design variables

The design variables to optimize are:

• The positions of the center of inertia of each component which are considered
as continuous variables in this thesis: xp = {xp,i}, for i ∈ {1, ..., N}, where
xp,i = {xx,i, xy,i};

• The orientations of non-circular components. According to the problem spec-
ifications, orientations may either be continuous or discrete variables: xα =
{xα,i} or zα = {zα,i}, for i ∈ {1, ..., N}.

3.2.1.3 Objective functions

The objective functions that can be optimized are for instance:

• Any dynamical requirements (e.g., overall mass, inertia or stability of the
system);

• Any costs related to the layout (e.g., manufacturing or handling costs);

• Any performance of the layout (e.g., power consumption or emission).

3.2.1.4 Constraints functions

The constraints that can be considered are listed and illustrated as follows:

• Overlapping constraints. They encompass three non-overlapping require-
ments: 1) A component must not overlap any other component 2) the com-
ponents must all be contained within the container (i.e, they must be fully
overlapping the container) 3) The components must not overlap the exclusion
zones. Figure 3.2 illustrates these overlapping constraints.

• Balancing constraint. One or several coordinates of the center of gravity of
the layout configuration must be positioned within a tolerance zone centered
about a chosen position of reference.
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• Functional constraints. Some components must be close or far from each
other for functional reasons (e.g., radiative tolerance of the components). Fig-
ure 3.4 illustrates the functional constraints. On the one hand, some com-
ponents must be close from each other. A proximity zone is defined around
one component and the other corresponding functional components must be
positioned inside the proximity zone. On the other hand, some components
must be spaced apart from each other. In the same way, a distancing zone is
defined around one component and the other incompatible components must
be situated outside of the distancing zone.

• Any additional constraints related to the geometry of the layout configuration
or the functionality of the components can be added.

Overlapping
constraint satisfied

Overlapping
constraint violated

Figure 3.2: Illustration of the overlapping constraints. Components violating the
overlap constraints are striped in red and the components that satisfy the overlap-
ping constraints are striped in green.

xX

Tolerance zone

Center of gravity
of the whole system

x

X

Figure 3.3: Illustration of the balancing constraints.
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Figure 3.4: Illustration of the functional constraints. Components submitted to the
proximity functional constraint are highlighted in blue while components submitted
to the distancing functional constraint are highlighted in green.

3.2.2 Limits of existing virtual-force systems

Previous quasi-physical approaches based on virtual-force systems have been devel-
oped to solve packing problems. However, the virtual-force systems may present
some limits for solving the OLPs described in the previous sections, for the main
following reasons:

• Geometry of the components: Most of the existing virtual-force systems
deal with circular components [He+13; HY11b; Wan+02; Xie+19]. Thus,
polygonal components might not be directly laid out because the forces only
act on the positions of their centers of inertia. Consequently, their orientations
can not be updated.

• Objective function(s): The objective function of conventional packing prob-
lems tackled by existing virtual-force system (VFS) algorithms consists in
minimizing the radius of the enclosing container. Moreover, this objective
function is not optimized directly by the VFS. Indeed, the VFS optimizes the
layout of the items within a fixed container and its size is decreased step by
step (most of the time by dichotomy) if a feasible solution is found [He+13;
HY11b; Wan+02]. Thus, existing VFSs do not encompass the minimization of
the objective function. Then, they may be ineffective when it comes to mini-
mizing objective function like for instance the global inertia of the system, the
position of the center of gravity, any costs or power performance, etc.

• Balancing constraint: Most of the time, in existing quasi-physical ap-
proaches based on VFSs, the balancing constraint is tackled by relaxation
[He+13; Wan+02]. In other words, the container is translated to the center of
gravity of the components at the end of each iteration which ensures an auto-
matic satisfaction of the balancing constraint. However, this technique can not
be used when exclusion zones (e.g., fixed components) belong to the container.
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Indeed, a ”shift” of the container to the center of gravity of the components is
impossible as it also shifts the exclusion zones and may consequently results in
the violation of the overlapping constraints between components and exclusion
zones, at each iteration. Then, the existing VFSs [He+13; Wan+02] do not
provide a balancing constraint satisfaction mechanism when exclusion zones
are accounted for.

• Other constraints: Mostly overlapping constraints are considered in existing
VFSs for packing problems [He+13; Wan+02]. They may not allow to tackle
directly any constraint functions.

Given the aforementioned limits, a new quasi-physical approach based on a VFS
is needed to solve the problems defined in Section 3.2.1. The following sections detail
the proposed Component Swarm Optimization algorithm based on a Virtual-Force
System which allows to overcome the previous VFS limitations and thus allows to
tackle the formulated single-container OLPs.

3.2.3 Component Swarm Optimization algorithm based on
a Virtual-Force System (CSO-VF)

The proposed quasi-physical approach for solving the described optimal layout prob-
lems is the Component Swarm Optimization algorithm based on a Virtual-Force
system (CSO-VF). The main focus of the algorithm is to define dedicated operators
for the evolution of a dynamical system of the components based on the fundamen-
tal principle of dynamics to efficiently satisfy the constraints while minimizing the
objective function. In the CSO-VF algorithm, each component is assumed to be a
particle in a swarm. At each iteration of the algorithm, depending of the virtual
forces that are applied to the particle, each of them moves within the container until
the objective function is minimized and all constraints are satisfied.

It is important to note that this type of algorithm differs from classical Particle
Swarm Optimization (PSO) algorithms. Indeed, in the CSO-VF algorithm, each
particle of the swarm corresponds to a single component and thus, to a subset of the
entire solution while in PSO algorithms, a particle corresponds to an entire solution
i.e., an entire layout.

3.2.3.1 Virtual-force system

In the CSO-VF algorithm, each component i is described by its dynamic features:

• Its translational and rotational accelerations ai and Li;

• Its translational and rotational speeds vi and ωi;

• Its position xp,i and orientation xα,i.

NF forces (Fk
i , k ∈ {1, ..., NF}, for component i) with a resultant Fi as well as NT

torques (Tk
i , k ∈ {1, ..., NT}, for component i) with a resultant Ti are applied to the

component in order to move it at each iteration as illustrated on Figure 3.5. It must
be noted that torques are applied to non-circular components only.
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Figure 3.5: Definition of a component.

By the end of an iteration, the resulting force Fi and torque Ti are calculated
for each component using Equations 3.1 and 3.2. The Fundamental Principles of the
Dynamics of rotation and translation are applied in order to update the positions
and orientations of the swarm of components at step t + 1 (separated from step t
by ∆t which corresponds to a time unit) according to Equations 3.3, 3.4 and 3.5
(detailed for component i with mass mi and solid inertia Ii).

Fi =



NF∑
k=1

Fk
i if

∥∥∥∥∥
NF∑
k=1

Fk
i

∥∥∥∥∥ ≤ Fmax∑NF

k=1F
k
i∥∥∥∑NF

k=1F
k
i

∥∥∥Fmax otherwise.

(3.1)

Ti =



NT∑
k=1

Tk
i if

∥∥∥∥∥
NT∑
k=1

Tk
i

∥∥∥∥∥ ≤ Tmax∑NT

k=1T
k
i∥∥∥∑NT

k=1T
k
i

∥∥∥Tmax otherwise.

(3.2)

where Fmax and Tmax are hyperparameters corresponding to the maximum value
of the norm of the resulting force and torque vectors, respectively.
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ai,t+1 =
Fi

mi

(3.3)

vi,t+1 = vi,t + ai,t+1∆t (3.4)

xp,i,t+1 = xp,i,t + vi,t+1∆t (3.5)

Li,t+1 =
Ti

Ii
(3.6)

ωi,t+1 = ωi,t + Li,t+1∆t (3.7)

xα,i,t+1 = xα,i,t+1 + ωi,t+1∆t
(3.8)

Each of the forces and torques of the VFS aims at solving for the constraints
and optimizing the objective function(s). If the objective or constraint functions
take as arguments the positions of the components, a force is applied. If they take
as arguments the orientations of the components, a torque is applied.

The forces and torques applied to a component i are employed to:

• Minimize an objective function: force Fobjective
i and torque Tobjective

i ;

• Solve for the overlapping constraints between components i and j: force
Foverlap

ij and torque Toverlap
ij ;

• Solve for the overlapping constraints between component i and an exclusion
zone (EZ): force Foverlap

i/EZ and torque Toverlap
i/EZ ;

• Solve for the overlapping constraints between component i and the container:
force Fcontainer

i and torque Tcontainer
i ;

• Solve for the functional constraints between two components i and j: force
Ffunctional

i and torque Tfunctional
i ;

• Solve for the balancing constraint: force FCG
i (CG stands for center of gravity);

• More generally, to solve for any constraint function: force Fconstraint
i and torque

Tconstraint
i .

Generally speaking, any force or torque can be added to the VFS in order to address
additional constraints or objective functions.

The forces and torques of the virtual-force system are detailed and formulated
as follows (for a component i):

• The overlapping constraint force and torque between two compo-
nents: If two components i and j are overlapping each other, repulsive forces
Foverlap

ij and Foverlap
ji are applied to each of them as illustrated in Figures 3.6

and 3.7. The overlap force is expressed as:

Foverlap
ij =

−
xp,j − xp,i

∥xp,j − xp,i∥+ ϵ
vmax − vi if ∆Sij(xp,i,xp,j) ̸= 0,

0 otherwise.

(3.9)

where vmax is a hyperparameter corresponding to the maximum value of the
norm of the speed vector, ϵ ensures numerical stability and 0 = (0, 0) is the
null vector. ∆Sij is the area of intersection between components i and j.
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Moreover, similar to [SCL22], additional torques are applied to non-circular
components in order to solve the overlapping constraint as illustrated on Figure
3.6.
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Figure 3.6: Definition of the overlapping forces and torques.

The overlapping forces are initially applied to the Oint point which corre-
sponds to the geometrical center of the polygon of intersection between the
two components. Then, the mechanical action torsors for components i and j
calculated at the center of inertia of each component Oi and Oj are expressed
as:

{Ti} =
{

Foverlap
ij

0

}
i/Oint

=

{
Foverlap

ij

Toverlap
ij = OiOint ∧ Foverlap

ij

}
i/Oi

(3.10)

{Tj} =
{

Foverlap
ji

0

}
j/Oint

=

{
Foverlap

ji

Toverlap
ji = OjOint ∧ Foverlap

ji

}
j/Oi

(3.11)

where ||OiOint|| = Di and ||OjOint|| = Dj.

Then, the resulting torque applied at point Oi is given by:

Toverlap
ij = OiOint ∧ Foverlap

ij (3.12)

• The overlapping constraint force and torque between a component
and an exclusion zone: If a component is overlapping an exclusion zone,
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a repulsive force Foverlap
i/EZ is applied to the component as illustrated in Figure

3.7. This force is expressed as:

Foverlap
i/EZ =

−
xp,EZ − xp,i

∥xp,EZ − xp,i∥+ ϵ
vmax − vi, if ∆Si/EZ(xp,i,xp,EZ) ̸= 0,

0 otherwise.
(3.13)

where xp,EZ corresponds to the position vector of the considered exclusion
zone. ∆Si/EZ is the intersection area between component i and the exclusion
zone. Similarly to the previous constraint, the related torque is calculated as
follows:

Toverlap
i/EZ = OiOint ∧ Foverlap

i/EZ (3.14)

where Oi is the center of inertia of component i and Oint is the geometrical
center of the polygon of intersection between component i and the exclusion
zone.

• The overlapping constraint force and torque between a component
and the container: If a component is not fully overlapping the container,
then an attractive force Fcontainer

i is applied to the component as illustrated in
Figure 3.7. The container force is expressed as:

Fcontainer
i =


xp,C − xp,i

∥xp,C − xp,i∥+ ϵ
vmax − vi, if ∆Si/C(xp,i,xp,C) < Si,

0 otherwise.

(3.15)

where xp,C corresponds to the position vector of the geometrical center of
the container. ∆Si/C is the intersection area between component i and the
exclusion zone and Si is the surface of component i. The related torque is
calculated as follows:

Tcontainer
i = OiOout ∧ Fcontainer

i (3.16)

where Oi is the center of inertia of component i and Oout is the geometrical
center of the area of component i situated outside the container.

• The functional constraint force and torque between two components:
If a component i is too close to an incompatible component j, a repulsive force
Ffunctional

i is applied to component i as illustrated on Figure 3.8. The functional
force acts as an overlapping force between component i and the influence zone
of component j. Then, the functional force is expressed as:

Ffunctional
i =

−
xp,j − xp,j

∥xp,j − xp,i∥+ ϵ
vmax − vi, if ∆Si/SZj(xp,i,xp,j) ̸= 0,

0 otherwise.
(3.17)

where ∆Si/SZj is the intersection area between component i and the functional
security zone surrounding component j.

55



Chapter 3. Quasi-Physical Approach for Optimal Layout Problems

x

x

x

𝐅12
𝑜𝑣𝑒𝑟𝑙𝑎𝑝

𝐅21
𝑜𝑣𝑒𝑟𝑙𝑎𝑝

1

2

3

4

𝐅3/𝐸𝑍
𝑜𝑣𝑒𝑟𝑙𝑎𝑝

𝐅4
𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟

𝐓4
𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟 𝐓3/EZ

𝑜𝑣𝑒𝑟𝑙𝑎𝑝

𝐓12
𝑜𝑣𝑒𝑟𝑙𝑎𝑝

𝐓21
𝑜𝑣𝑒𝑟𝑙𝑎𝑝

Figure 3.7: Illustration of the forces and torques to solve overlapping constraints
between two components, between a component and an exclusion zone and between
a component and the container.

The related torque is calculated as follows:

Tfunctional
i = OiOzj ∧ Ffunctional

i (3.18)

where Oi is the center of inertia of component i and Ozj is the geometrical
center of the area of component i overlapping the functional security zone
surrounding component j.

• The balancing constraint force: In order to position the center of mass of
the components in a tolerance zone centered at the geometrical center of the
container, gradient-based forces are applied along the opposite of the gradient
of the position of the global center of mass according to the position of the
center of inertia of each component. This force is named FCG

i . It is illustrated
in Figure 3.9. The balancing force is expressed as:

FCG
i =

{
− αCG∇hF

CG(xp,i), if
√
(xCG − xe)2 + (yCG − ye)2 ≤ δCG,

0 otherwise.
(3.19)

where αF
CG is a step-size hyperparameter of the algorithm and ∇hCG(xp,i) cor-

responds to the gradient of the position of the center of gravity of the compo-
nents with respect to the position of the considered component i. {xCG, yCG}
are the coordinates of the current center of gravity, {xe, ye} are the coordinates
of the position of reference on which the tolerance zone defined by δCG is cen-
tered at. This type of force is inspired by gradient-based descent algorithms.
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Figure 3.8: Illustration of the functional force and torque.
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Figure 3.9: Illustration of the balancing forces. The green area corresponds to the
tolerance zone where the current center of gravity must be positioned. The red cross
is the current center of gravity of the components.
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• The differentiable constraint function force and torque: Generally, any
differentiable constraint function (DF) can be addressed thanks to gradient-
based forces and torques, expressed as:

FDF
i = −αF

DF∇hDF (xp,i) (3.20)

TDF
i = −αT

DF∇hDF (xα,j) (3.21)

for constraints expressed as g(·) ≤ 0 and where αF
DF and αT

DF are ”step-size”
hyperparameters of the algorithm. ∇hDF (xp,i) corresponds to the gradient
of any differentiable constraint function with respect to the position of the
considered component i. ∇hDF (xα,j) corresponds to the gradient of any dif-
ferentiable constraint function with respect to the orientation of the considered
component i.

• The objective function forces and torques: To minimize one objective
function f , a gradient-based force and torque can be applied. The objective
function force and torque are expressed as:

Fobj
i = −αF

obj∇fobj(xp,i) (3.22)

Tobj
i = −αT

obj∇fobj(xα,i) (3.23)

where αF
obj and αT

obj are ”step-size” hyperparameters of the algorithm. ∇fobj(xp,i)
corresponds to the gradient of the objective function with respect to the posi-
tion of the considered component i and ∇fobj(xα,i) corresponds to the gradient
of the objective function with respect to the orientation of the considered com-
ponent.

It must be noted that in the case where the orientation variables are defined as
discrete (i.e., non-cylinder components taking orientation values in a defined sub-
set), they are handled as relaxed continuous orientations. The updated orientation
is calculated as a continuous variable and a threshold is set to define the discrete
orientation from the subset. For instance, in the case where the non-cylinder compo-
nents take their orientation in the subset (0°,90°), if the positive updated continuous
orientation is greater (respectively lower) than 45° the updated discrete orientation
is 90° (respectively 0°).

3.2.3.2 Swap operator

In [FHL13; Wan+19b; Zen+16], swap operators are proposed when solving packing
problems. They mainly consist in exchanging the positions of items with similar
dimensions with a certain probability when convergence reaches a plateau, that is,
when the algorithm stagnates as a result of, perhaps, opposing forces. The swap
operator introduced in the CSO-VF is an extended version of the previous swap
operators. The swap operator exchanges the positions of a pair of components after
a given number of iterations if it is improving the objective function(s) or decreasing
the violation of some selected constraint(s). Thus, the swap operator can be used
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to find promising configurations in terms of constraint satisfaction and objective
function and therefore, does not necessarily need the configuration to be somewhat
stuck in order to be employed in CSO-VF algorithm. For instance, the swap operator
can be used to exchange components such that the global center of gravity of the
system quickly enters the given tolerance zone as illustrated on Figure 3.10.

SWAPx x

x

x

x

x

Figure 3.10: Example of the swap operator employed to improve the balancing
constraint. The green area is the tolerance zone in which the current center of
gravity of the components, illustrated thanks to the red cross, must be placed.
The redder the components, the heavier their corresponding masses. The swapped
components are highlighted in yellow.

Similarly, exchanging two components at any time of the convergence can im-
prove the global inertia as illustrated in Figure 3.11. In this figure, two swaps occur
allowing to position heavier components closer to the geometrical center of the mod-
ule and therefore leading to a smaller global inertia of the layout.

Thus, the swap operator implemented in the CSO-VF algorithm has the following
characteristics:

• The swap operator can exchange all the components by pairs, not only similar
ones;

• Two components are swapped if the swap leads to an improvement of the
objective function or a decrease in the violation of some chosen constraint(s),
while not deteriorating the other constraint(s) from a relaxation factor r;

• The swap operator is called straight from the first iteration. Then, it can occur
throughout the optimization process.

The swap operator is called at a frequency depending on the convergence status.
Indeed, the swap operator induces a reconfiguration. Consequently, too frequent
swaps might prevent the layout from converging. On the contrary, too spaced swaps
might lead to configurations being stucked for too many iterations and thus to a
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Figure 3.11: Example of the swap operator employed to improve the global inertia
of the layout.

stagnating or slow convergence rate. The minimal step between two iterations during
which the swap is called is smin and the maximum step is smax. Each time the swap
operator is used, it can only be applied at a subsequent iteration which is calculated
based on smin and smax, following the procedure:

• While no feasible layout is found, the step is fixed to smin. Then, at any
current iteration tc during which the swap operator is employed, the next
swap iteration noted tswap is calculated as:

tswap = tc + smin (3.24)

Consequently, the swap operator is called at a lower frequency and help finding
a feasible solution.

• Once a feasible solution is found, each time the swap operator is called, the
convergence curve is interpolated and the next iteration of the swap operator
is calculated as:

tswap = t+ (1− γ)smin + γsmax (3.25)

where γ is a factor characterizing the convergence state as:

γ = −
arctan

(
dfinterp(t)

dt

∣∣∣
t=tc

)
π/2

(3.26)

where finterp is the interpolation function of the convergence curve. Therefore,
at the beginning of the convergence, the derivative of the convergence curve
might be high and γ close to 1 and thus the step size close to smax. On the
contrary, when the convergence stagnates, the factor γ may be close to 0 and
the swap is called more frequently. Consequently, as soon as a feasible solution
is found, the swap operator is employed to explore new configurations when
convergence is stagnating and when the layout is not improving anymore.
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Algorithm 3.1: gives the pseudo code of the swap operator in the case where the
swap operator is used to improve the objective function fobj to minimize. It can
be summarized as follows: if the current iteration corresponds to tswap, the swap
operator is called. If the objective function is improved and if the corresponding
constraint violation CVSwap of the Ncst constraints functions (gk for k ∈ {1, ..., Ncst})
remains lower than or equal to the previous constraint violation CVNoSwap times the
relaxation factor r, then the swap between the two components occurs.

Algorithm 3.1: The Swap Operator

Input: tswap, r, p
Output: new vector of positions p
if t is tswap then
for i = 0 to N do
for j = i+ 1 to N do
xp,swap ← xp with xp,i and xp,j exchanged.
CVSwap ← 0
CVNoSwap ← 0
for k = 0 to Nk do
CVSwap = CVSwap + gk(xp,swap) #Constraint violation if the swap occurs

CVNoSwap = CVNoSwap + gk(xp) #Constraint violation if not
end for
if fobj(xp,swap) < fobj(xp) and CVSwap ≤ r × CVNoSwap then
xp ← xp,swap

end if
end for

end for
Update tswap

end if

3.2.3.3 Initialization

As the CSO-VF algorithm locally refines a solution for non-convex problems with
multiple local minima, the initialization of the design variables might have a crit-
ical impact on the optimization process. Rather than a random initialization of
the positions and orientations of the components, optimized Latin Hypercube Sam-
pling (LHS) is employed [DCI13; Li+17; PM12]. In its original formulation, LHS
distributes N (i.e., the number of components) sample points within equiprobable
intervals of the search space [Loh96]. LHS techniques have been improved by min-
imizing a space filling criterion. Among existing space filling criteria, the centered
L2-discrepancy called C2 [FLS06] is considered and is minimized using a Simulated
Annealing method. Figure 3.12 shows an optimized LHS and random initializations
of 10 samples within a two-dimensional square domain in the range [0, 10].

Thus, the LHS distributes the samples in a more uniform way in the search
space. In the case of the optimal layout problems, this technique should improve
the constraint resolution as well as providing a feasible solution in more rapidly i.e.,
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Figure 3.12: Optimized LHS and random initializations of 10 samples.

in less iterations than would otherwise be necessary with a random initialization.

Moreover, as each instance of the algorithm depends on the initialization, a
multi-start technique is employed. Indeed, Nstart independent initializations are run
and the output of the CSO-VF algorithm corresponds to the best layout obtained
out of the Nstart initializations.

3.2.3.4 Hyperparameters

The hyperparameters of the CSO-VF algorithm are provided below:

• Dynamic features: maximum values of the norm of the force and torque vectors
Fmax and Tmax as well as maximum values of the norm of the translational
and rotational speed vectors vmax and ωmax;

• The gradient-based forces and torques scale. Their total number depends on
the virtual-force system;

• The swap operator parameters: r, smin, smax;

• The number of multistarts Nstart.

Figure 3.13 describes one instance of the CSO-VF algorithm.
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Figure 3.13: The CSO-VF algorithm.

3.3 Two-stage approach combining Genetic

Algorithm and CSO-VF for multi-container

optimal layout problems

3.3.1 Generic multi-container optimal layout problems

Multi-container OLPs consist in assigning N components to n containers along with
optimizing their layout in the assigned containers. In other words, two tasks must
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be solved in order to obtain an optimal layout: the assignment task and the layout
task. The assignment task consists in assigning each component to a container. The
layout task consists in optimizing the layout of the assigned components in each
container. The following sections are dedicated to the description and formulation
of such problems.

3.3.1.1 Geometry of the components and containers

Multi-container OLPs involve:

• A set of N components of any shape;

• A set of n containers of any shape.

In this manuscript, it is considered that all the components can be positioned in
the containers. In other words, the areas of all the components is smaller than the
available area of all the containers. This condition is translated mathematically as
follows:

N∑
i=1

Acomp
i ≤

n∑
j=1

Acont
j (3.27)

where Acomp
i is the area of component i and Acont

j is the area of container j.

Figure 3.14 illustrates the multi-container OLPs.
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2 4 6N components

n containers

1 3 5

1 2

2 4 6

Assignment task

Layout task2

Assignment list = {2,1,1,1,2,2}

Figure 3.14: Illustration of the multi-container OLPs.
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3.3.1.2 Design variables

The design variables that require to be optimized are the following:

• The index of the container assigned to each component, which corresponds
to discrete unordered variables i.e., categorical variables, zc = {zc,i} with
zc,i ∈ {1, ..., n} for i ∈ {1, ..., N};

• The positions of the center of inertia of each component in its assigned con-
tainer which are considered as continuous variables xp;

• The orientations of the components whose shape is not circular. According to
the problem specifications, design variables relative to components orientations
can correspond either to continuous variables or to discrete variables. For
illustrative purposes, orientations are considered continuous variables in this
section: xα.

If N components must be laid out in n containers, and that there are Ncyl

cylinders among the components, the number NDV of design variables is:

NDV = 3Ncyl + 4(N −Ncyl) (3.28)

Indeed, cylinders are defined by their assigned container and their position coordi-
nates within the container which results in 3 design variables while the orientations
of non-circular components must also be optimized resulting in 4 design variables
instead.

3.3.1.3 Formulations of multi-container optimal layout problems

Multi-container OLPs can be split into different categories depending on their math-
ematical formulation. Two cases are considered:

• Case 1: In various multi-container OLPs, the assignment and layout tasks
are not separable. In other words, both tasks are solved simultaneously by op-
timizing an unique objective function taking as arguments all design variables.
For instance, in [WA19], the authors studied the multi-floor warehouse layout
problem taking into consideration the assignment of the cross-dock door at
the warehouse location. They presented an integrated mixed-integer program-
ming model that solves the warehouse layout problem and cross-dock door
assignment decisions simultaneously to minimize the total material handling
cost. In [HLG21], a multi-floor hospital facility layout problem with a double-
row layout on each floor has been solved. The problem has been addressed
in an unique optimization process with two objectives: minimizing the to-
tal movement distance of patients and maximizing the total closeness rating
score. Ahmadi et al. [APJ17] provided a review on multi-floor OLPs. Among
the reported techniques, the single-stage algorithms encompass the methods
in which all decisions are taken at one phase, including the assignment of
departments to floors and specifying their locations [BT04; Hos+14; LRJ05].
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Therefore, the optimization process is defined thanks to the global objective
function written fglobal(xp,xα, zc). The equality and inequality constraints re-
lated to the assignment are written hassignment(xp,xα, zc), gassignment(xp,xα, zc)
and the equality and inequality constraints functions related to the layout are
written hlayout(xp,xα, zc), glayout(xp,xα, zc). The assignment constraints can
for instance correspond to maximum occupation rates of the container [AJ16].
Functional constraints can also be considered if some components must be po-
sitioned in the same container for functional reasons or on the contrary be as-
signed to different containers [KSN22]. The layout constraints can correspond
to all the constraints defined for single-container OLPs in Section 3.2.1.4. The
problem at hand can then be mathematically formulated as follows:

min
xp,xα,zc

fglobal(xp,xα, zc)

w.r.t. xp ∈ Fxp ⊆ Rnxp ,xα ∈ Fxα ⊆ Rnxα , zc ∈ Fzc ⊆ Nnzc

s.t. hassignment(xp,xα, zc) = 0

gassignment(xp,xα, zc) ≤ 0

hlayout(xp,xα, zc) = 0

glayout(xp,xα, zc) ≤ 0

(3.29)

• Case 2: In other multi-container OLPs, the assignment and layout tasks can
be solved in two different optimization processes. Indeed, the additional de-
sign variables and constraints of such problems induce a more complex design
space than single-container problems. For N components to be laid out in
n containers, there are nN possible assignment schemes. Solving both the
assignment task and the n containers corresponding layouts in the same op-
timization process might result in poor resolution performance in terms of
ability to solve the constraints, convergence speed and convergence accuracy
due to the highly dimensional, combinatorial and constrained characteristics
of the problem [APJ17]. Thus, another possible approach consists in decom-
posing the problem into two optimization processes dealing with respectively
the assignment task (i.e. the upper stage) and the layout task (i.e. the lower
stage). The problem can then be defined as bi-objective with two sets of
constraints related to each task. Two formulations can be derived from the
multi-objective definition:

– Case 2.1: Nested formulation.

The layout optimization process is defined using objective and constraint
functions which depend on the assignment scheme as well as the xp, xα de-
sign variables optimized in this lower level: flayout(xp,xα, z

∗
c), hlayout(xp,xα, z

∗
c),

glayout(xp,xα, z
∗
c). In the previous notations, the * exponent is employed

to highlight the design variables which are not optimized in the corre-
sponding optimization process. Considering the assignment task level,
the objective and constraint functions are written fassignment(x

∗
p,x

∗
α, zc),

hassignment(x
∗
p,x

∗
α, zc), gassignment(x

∗
p,x

∗
α, zc). Then, the mathematical for-
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mulation is written:

min
zc

fassignment(x
∗
p,x

∗
α, zc)

s.t. hassignment(x
∗
p,x

∗
α, zc) = 0

gassignment(x
∗
p,x

∗
α, zc) ≤ 0

w.r.t. zc ∈ Fz ⊆ Nnzc

{x∗
p,x

∗
α} = argmin flayout(xp,xα, zc)

w.r.t. xp ∈ Fxp ⊆ Rnxp ,xα ∈ Fxα ⊆ Rnxα

s.t. hlayout(xp,xα, zc) = 0

glayout(xp,xα, zc) ≤ 0

(3.30)

The two optimization processes are therefore solved sequentially. Algo-
rithms like the surrogate assisted-CSO-VF algorithm developed in Chap-
ter 6 can then be used to address this kind of problem formulation.

– Case 2.2: Two-stage formulation.

In most of the cases addressed in the literature, the assignment and layout
tasks can be fully separated. Consequently, the objective function related
to the assignment only relies on the design variables of the assignment
scheme, while the layout objective function takes as argument the xp and
xα layout design variables as well as the assignment scheme found by the
upper loop and described by the zc variables.

The corresponding mathematical formulation is as follows:

min
zc

fassignment(zc)

s.t. hassignment(zc) = 0

gassignment(zc) ≤ 0

h∗
layout(x

∗
p,x

∗
α, zc) = 0

g∗
layout(x

∗
p,x

∗
α, zc) ≤ 0

w.r.t. zc ∈ Fz ⊆ Nnzc

{x∗
p,x

∗
α} = argmin flayout(xp,xα, zc)

w.r.t. xp ∈ Fxp ⊆ Rnxp ,xα ∈ Fxα ⊆ Rnxα

hlayout(xp,xα, zc) = 0

glayout(xp,xα, zc) ≤ 0

(3.31)

where fassignment, hassignment and gassignment are respectively the objective
function, the equality and the inequality constraints functions related to
the assignment taking as argument only the zc design variables. flayout
is the objective function related to the layout and taking as arguments
all design variables. h∗

layout and g∗
layout ensures that a feasible layout has

been found by the lower loop.

Ahmadi et al. [APJ17] reviewed multi-stage formulations of multi-floor
facility layout problems in which the first stage was dedicated to the
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assignation of each facility to one floor and the subsequent levels were
dedicated to the layout of the floors as well as other details (e.g. de-
termining the number of elevators or the dimensions of certain facilities)
[AJ16; BA12; CL06]. Other recent multi-floor facility layout problems
decomposed in two- or three-stage optimization processes are proposed
in [KSE17; KSN22; MB97]. In the field of aerospace concepts design,
multi-container (i.e., multi-module) OLPs have also been decomposed
in two stages in order to solve the assignment of components and the
layout of each module sequentially. For instance, in [CZa19; Tia+23;
Zha+22a; ZXT19; XZT19] multi-container satellite module OLPs are
addressed thanks to two-stage approaches. Each component is first allo-
cated to one module in an upper stage and the layout of the modules are
then optimized subsequently in a lower stage.

Figure 3.15 sums up the aforementioned categories of multi-container optimal
layout problems.

Multi-container 
optimal layout

problems

Case 1
Single-objective 

formulation

Case 2
Multi-objective 

formulation

𝑓𝑔𝑙𝑜𝑏𝑎𝑙(𝐱𝑝, 𝐱𝛼 , 𝒛𝑐)

𝑓𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡 𝐱𝑝
∗ , 𝐱𝛼

∗ , 𝒛𝑐
𝑓𝑙𝑎𝑦𝑜𝑢𝑡(𝐱𝑝, 𝐱𝛼 , 𝒛𝑐)

𝑓𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡 𝒛𝑐
𝑓𝑙𝑎𝑦𝑜𝑢𝑡(𝐱𝑝, 𝐱𝛼,𝒛𝑐)

Case 2.1
Nested

formulation

Case 2.2
Two-stage 

formulation

Figure 3.15: Formulations of multi-container OLPs.

In the following, the considered multi-container OLPs are similar to the two-
stage class of problems for instance considered in [APJ17; AJ16; CZa19; KSN22;
Zha+22a; ZXT19] i.e. the case 2.2 formulated with Equations 3.31. The following
section aims at developing a two-stage algorithm framework for such category of
problems. Subsequently, in Chapter 4, a multi-container satellite module OLP will
be described and the global inertia along with the 3-dimensional axes is used as
objective function to minimize. The analysis of the inertia equations allows to
formulate the problem as a two-stage problem.

3.3.2 Two-stage algorithm based on Genetic Algorithm
and CSO-VF for multi-container optimal layout
problems

To address the formulation detailed in Equations 3.31, a two-stage algorithm is pro-
posed. Each of the upper and lower stage aims at solving respectively the assignment
task and the layout task. Each stage is described as follows.
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3.3.2.1 Upper stage

The upper stage solves the assignment task. It takes as input the list of geometrical
features of the components and the containers (dimensions, masses, exclusion zones).
The output of the upper stage consists in an archive of NAS assignment schemes
corresponding to NAS lists of assigned containers to each component. Thus, the
design variables to optimize are: zc = {zc,i}i∈{1,...,N} where zc,i ∈ {1, ..., n}. The
problem to solve is a constrained categorical combinatorial problem. The size of the
design space is nN . Metaheuristics have been widely employed to solve this kind
of problems [BAS12]. Among them, Genetic Algorithms are chosen because they
benefit from good global exploration ability when it comes to multi-modal objective
functions and can deal with a high number of variables unlike other methods like
Bayesian Optimization. Moreover, they have been widely employed to solve highly
combinatorial problems and can inherently deal with categorical variables in com-
parison to other metaheuristic techniques like PSO. Finally, they do not require the
definition of a neighborhood structure in the design space unlike SA, TS or VNS for
instance, which makes arising additional challenges in a categorical search space.

3.3.2.2 Lower stage

The lower stage solves the layout task. This stage takes as input the assignment
list optimized by the upper stage. The outputs are the lists of positions and orien-
tations of each component in its assigned container. It is considered in this thesis
that the layout of each container can be solved independently. In other words, the
constraints functions are defined for each container, no constraint function requires a
simultaneous resolution of the containers layouts. The CSO-VF algorithm described
in the first section of this chapter is chosen and is run for each container.

3.3.2.3 Algorithm framework

The algorithm proceeds as follows: the upper stage optimizes the assignment list
using a GA. The output corresponds to an archive with NAS assignment schemes
corresponding to the NAS final best solutions, sorted based on their objective func-
tion values. Subsequently, the CSO-VF algorithm is called to optimize the layout
of each of the containers for the first assignment scheme of the archive. If a final
feasible layout is found, the output corresponds to the best obtained layout. If the
lower level does not lead to a feasible solution, the CSO-VF algorithm is called
to optimize the layout of the containers with the second assignment scheme of the
archive, and so on. The termination criterion is defined as a maximum number of
sequential resolutions i.e., the size NAS of the archive given by the upper level. The
algorithm framework is illustrated on Figure 3.16.
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UPPER STAGE: Assignment task

Input: components, containers (geometric features)
Output: archive of 𝑁𝐴𝑆 assignment schemes

Optimize 𝑓𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡(𝒛𝑐)

LOWER STAGE: Layout task

Input: components, containers, assignment list
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Assignment schemes archive

Figure 3.16: Two-stage algorithm framework for solving multi-container OLPs.

3.4 Conclusion

In this chapter, generic single and multi-container OLPs have been formulated and
two algorithms have been devised to handle them.

It has been highlighted that existing VFSs might be limited for solving single-
container OLPs which involve polygonal components, various objective and con-
straint functions differentiable with respect to the design variables, as well as bal-
ancing constraint along with exclusion zones in the container. Thus, a new quasi-
physical approach based on a VFS, named CSO-VF algorithm, has been developed
for solving generic OLPs corresponding to extended packing problems which have
been previously tackled in the literature by similar methods. The new VFS encom-
passes gradient-based forces designed to deal with all possible differentiable objective
and constraint functions, as well as torques allowing to update the orientations of non
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circular components based on the fundamental principle of the dynamics of rotation.
Subsequently, a swap operator has been introduced which allows to exchange the
positions of components with the aim of either improving the objective function or
to decrease some constraints violations. The swap operator call frequency depends
on the convergence state. As the CSO-VF algorithm is a local search algorithm and
locally improves the non convex objective function, the initialization of the layout
may have a critical impact on the final obtained layout and the convergence speed.
Thus, LHS initialization and multistart are employed.

Thereafter, generic multi-container OLPs have been described and formulated.
As they involve an assignation task responsible for the distribution of the compo-
nents in the appropriate containers, existing quasi-physical approaches as well as
the proposed CSO-VF algorithm can not be used directly. Moreover, solving both
assignment and layout tasks in the same optimization process may suffer from poor
convergence capabilities due to the high number of additional design variables and
constraints related to the assignation tasks which induce a very highly combinatory
design space. Thus, a two-stage algorithm framework was proposed in order to solve
both assignment and layout tasks sequentially, in the case where the design variables
related to the assignment and to the layout are separable. The assignment task is
solved thanks to a Genetic Algorithm in an upper stage. Subsequently, the layouts
of each container are optimized thanks to the CSO-VF algorithm as they correspond
to single-container OLPs.

In the next chapter, both algorithms are applied to single and multi-container
satellite module layout problems. Their configuration and setups are discussed and
their global performance are analyzed in comparison to other existing counterparts.
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• Formulation of the single-container and multi-container satellite mod-
ule layout problems.

• Description and analysis of the CSO-VF algorithm settings, and com-
parison of its global performance to GAs and CMA-ES for single-
container satellite module layout problems.

• Application of the GA assisted-CSO-VF algorithm, analysis of its per-
formance and comparison of the obtained results with previous pub-
lished results for multi-container satellite module layout problems.

Chapter contributions

4.1 Introduction

The optimal layout of the simplified model of the international commercial com-
munication satellite module (INTELSAT-III) is considered in this thesis as a repre-
sentative application case of optimal layout problems (OLPs). Indeed, it allows to
take into account the specifities of OLPs introduced in Chapter 3 like for instance
the exclusion zones in the containers, the highly dimensional or highly constrained
aspects (i.e., overlapping, balancing, functional constraints). Those problems are re-
ferred to as Satellite Module Layout Problems (SMLP) and are widely employed as a
benchmark for optimal layout methods [CXW18; CZa19; Ten+09; ZTS08]. Mosltly
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metaheuristic methods have been employed in order to solve the SMLP. Among
them, methods based on Simulated Annealing [FT16; LLC10], Particle Swarm Op-
timization [ZTS08], Genetic Algorithm [Liu12; ZTS08], Ant Colony Optimization
[ST03; Xu+10], etc. More recently, with the increase in the number of variables and
constraints, cooperative coevolutionary evolutionary strategies have been employed
[CXW18; CZa19; HT09; Ten+09; ZWT13]. Other techniques have also been used
such as neural networks [ZTS08], Wang-Lau strategy [Liu+16b] or human-computer
cooperation approaches [LT08; ZWT13].

In this chapter, two configurations of the INTELSAT-III satellite module are
considered:

• Single-container configuration: the container to be laid out corresponds to
a one-sided plate. Two exclusion zones are considered: a central bus and a
rectangular bus as illustrated in Figure 4.1a;

• Multi-container configuration: the container to be laid out corresponds to the
top and bottom surfaces of two bearing plates as illustrated in Figure 4.1b. A
central bus corresponds to exclusion zones on each surface.

Figure 4.1 shows the single and multi-container configurations of the INTELSAT-III
satellite module. In these benchmark configurations, the containers are supposed
circular and the components are cuboids or cylinders, but this is not mandatory to
assess the algorithms developed in Chapter 3.

x

y

O

(a) Single-container configuration

y

z

x

O

(b) Multi-container view

Figure 4.1: Illustrations of the single and multi-container configurations of the sim-
plified model of the INTELSAT-III satellite module. Light grey areas correspond to
fixed components (i.e., exclusion zones). The redder the components, the heavier
their corresponding masses.

The algorithms detailed in Chapter 3 and dedicated to both single and multi-
container optimal layout problems are applied in this chapter to the single and
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multi-container SMLP in order to assess their performance.

The rest of the chapter is organized as follows: Section 4.2 is devoted to the
single-container SMLPs. In this section, the problem at hand is described and
mathematically formulated. The CSO-VF algorithm configuration is subsequently
detailed and examined. Finally, the global performance of the algorithm is analyzed
and compared to the one obtained with GAs and CMA-ES. Section 4.3 is devoted
to multi-container SMLPs and follows the same organization than Section 4.2. The
problem at hand is formulated and the GA assisted-CSO-VF algorithm is configured.
The obtained results are compared with those published in the literature.

4.2 Single-container satellite module optimal

layout problems

4.2.1 Problem formulation

The fixed search space SMLPs involves positioning N components within a container
in order to minimize the global inertia of the module. Several constraints must
also be satisfied such as geometrical ones(e.g., overlapping constraints, balancing
constraints) or functional ones (e.g., constraints relative to functional compatibility
between components due to electromagnetic or heat radiations threshold within the
container).

4.2.1.1 Definition of the container and components

In the single-container configuration, the container is a one-sided bearing plate de-
fined by its outer radius Rout. Two exclusion zones are defined as follows:

• A central circular exclusion zone defined by its radius Rin and centered at the
geometrical center of the plate;

• A rectangular exclusion zone defined by its dimensions (Lbus, lbus) and its po-
sitions on the plate in the cylindrical system of coordinates (rbus, θbus).

Figure 4.2a illustrates the geometrical definition of the module.

The components, Ncyl cylinders andNcub cuboids, are defined by their dimensions
and masses. They are considered as rigid bodies of homogeneous density and are
located thanks to the position of their centers of inertia. They are of three types:

• Fuel components;

• Energy components;

• Other components.

Cylinders are defined using their radius ri, height hi and mass mi. Cuboids
components are defined using their base dimensions ai, bi, their height and their
mass.
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Figure 4.2b illustrates the components. All dimensions as well as the list of the
components considered for the fixed search space single-container SMLP configura-
tion are reported in Table A.1 in Appendix A.

𝑦

(a) Geometrical definition of the con-
tainer.

x

x

𝑖 𝑗

𝑚𝑖

𝑚𝑗

ℎ𝑖
ℎ𝑗

𝑟𝑖

𝑎𝑗 𝑏𝑗

(b) Geometrical definition of the compo-
nents.

Figure 4.2: Geometrical definition of the container and the components for the FSS
single-container SMLP configuration.

4.2.1.2 Design variables

In the single-container configurations, the design variables are:

• The positions of the centers of inertia of the components considered as con-
tinuous variables (xx,i, xy,i), i ∈ {1, ..., N}.

• The orientations of all cuboids components considered as continuous variables,
xα,i, i ∈ {1, ..., Ncub}.

Thus, the number of design variables nvar is given by:

nvar = 2Ncyl + 3Ncub (4.1)

4.2.1.3 Objective function

One of the most popular objective functions to minimize in OLPs is the inertia of
the whole module [CZa19; Ten+09; ZTS08]. In this section, the inertia is calculated
for the single-container configuration. Two systems of coordinates are adopted in
order to calculate the global inertia of the module at the geometrical center of the
plate:

• O”x”y”z”: the local coordinate system attached to each component. O” cor-
responds to the center of inertia of the component and the axes are defined by
the symmetry axes of the components;
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• Oxyz: the global coordinates system attached to the container. O is the
geometric center of the container and the axes are its symmetry axes.

The two coordinate systems are illustrated in Figure 4.3.

z’’

x’’

y’’

x

y

z

O
O’’

x

𝑥𝛼,𝑖

𝑖

𝑗

Geometrical center of the container

Center of inertia of the container

Center of inertia of component 𝑖

Figure 4.3: Sketch of the coordinates systems.

The total inertia is calculated in the Oxyz system of coordinates and is defined
as:

Itot(x) = Ix(x) + Iy(x) + Iz(x) (4.2)

where x corresponds to the continuous design variables. The x vector encompasses
the positions of the centers of inertia of all the components as well as their orienta-
tions.

Each component has a solid inertia which depends on its shape and is expressed
in its O”x”y”z” coordinates system. The inertia along the three axes are denoted
Ix”,i, Iy”,i and Iz”,i and are derived for each possible geometry of the components
(i.e., cylinders or cuboids) in Appendix B. Thus, the inertia of the component in
the system of coordinates Oxyz is:

Ix,i = Ix”,i cos(xα,i)
2 + Iy”,i sin(xα,i)

2 + mi(x
2
y,i + x2

z,i) (4.3)
Iy,i = Iy”,i cos(xα,i)

2 + Ix”,i sin(xα,i)
2 + mi(x

2
x,i + x2

z,i) (4.4)
Iz,i = Iz”,i + mi(x

2
x,i + x2

y,i) (4.5)

where mi is the mass of the component i, xx,i, xy,i, xz,i are the coordinates of
its center of inertia in the system of coordinates Oxyz and xα,i its orientation. N
components have to be laid out in the container. Consequently, the inertias of the
module along each axis calculated at the point O are expressed as follows:

Ix =

N+NEZ∑
i=1

Ix,i (4.6)

Iy =

N+NEZ∑
i=1

Iy,i (4.7)
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Iz =

N+NEZ∑
i=1

Iz,i (4.8)

where NEZ is the number of exclusion zones that are fixed components and thus
have a mass and a solid inertia.

4.2.1.4 Constraint functions

The constraints considered in this thesis fall into 2 categories: geometrical con-
straints and functional constraints. Geometrical constraints that are considered are
listed below:

• Overlapping constraints between the components: no overlapping be-
tween the components is allowed. Figure 4.4 shows two different layouts. On
the leftmost layout, the overlapping constraint between two components is vi-
olated as they are clearly overlapping. The rightmost layout depicts a case in
which the overlapping constraint is, on the contrary, fully satisfied. With the
same formalism as in Section 4.2.1.3, the overlapping constraint is expressed
as:

hC
overlap(x) =

N−1∑
i=1

N∑
j=i+1

∆AC
ij(x) (4.9)

where ∆AC
ij is the area of intersection between the 2-dimensional projections

of components i and j, and is function of the positions of the centers of inertia
of the components and their orientations.

𝑖 𝑗 𝑖
𝑗

(a) (b)

Figure 4.4: Overlapping constraint between the components (a) violated (b) satis-
fied.

• Overlapping constraints between the components and the exclusion
zones: no overlapping between the components and the exclusion zones is
allowed. Figure 4.5 shows two layouts where the overlapping constraint is re-
spectively violated and solved. With the same formalism introduced in Section
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4.2.1.3, this overlapping constraint is expressed as:

hE
overlap(x) =

N∑
i=1

∆AE
i (x) (4.10)

where ∆AE
i is the area of intersection between the 2-dimensional projections of

a component and the exclusion zones, and is a function of the positions of the
centers of inertia and orientation of each component (as well as the position
and shape of each exclusion zones).

𝑖

𝑖

𝑗

𝑗

(a) (b)

𝑗

Figure 4.5: Overlapping constraint between the components and the exclusion zones
(a) violated (b) satisfied.

• Balancing constraints: the center of gravity (CG) of the whole container
must be positioned within a tolerance zone centered at the geometric center of
the container. Figure 4.6 illustrates two layouts where the balancing constraint
is respectively violated because the CG is not accurately positioned, and solved
because the CG is in the tolerance zone. Using the same formalism as before,
this constraint can be expressed as:

gCG(x) =
√

(xx,c − xx,e)2 + (xy,c − xy,e)2 − δ (4.11)

where (xx,c, xy,c) are the coordinates of the current CG of the whole module
and (xx,e, xy,e) are the expected coordinates of the CG. It is considered to be
the geometric center of the container (0, 0) in this thesis. δ represents a small
tolerance which corresponds, in this thesis, to a circle centered about the ori-
gin of the Oxyz coordinates system and whose radius is set to 1% of the outer
radius of the container, without loss of generality.
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Figure 4.6: Balancing constraint (a) violated (b) satisfied.

A series of functional constraints can also be added to the problem formu-
lation via the use of special components that introduce further restrictions on the
feasibility of the layout. The existence of specific components may involve some
restrictions in the layout. For example, in this thesis, fuel components and energy
components must be kept at a certain distance from each other for functional rea-
sons such as not exceeding a radiation (e.g., heat, electromagnetic) threshold at
any point of the module. Figure 4.7 illustrates the functional constraint. Each
functional component has thus a forbidden zone that must not be violated by in-
compatible components. This zone is represented by the dotted lines. Figure 4.7
shows two layouts where the functional constraint is respectively violated because
the energy and fuel components are too close to each other and solved because
the minimal distance between them is respected. With the same formalism as be-
fore, considering a layout with NE energy components and NF fuel components, the
functional constraint is expressed as:

hfunctional(x) =

NE∑
i=1

NF∑
j=1

∆AEF
ij (x) + ∆AEF

ji (x) (4.12)

where ∆AEF
ij corresponds to the area of intersection between the 2-dimensional

projections of the forbidden zone of component i and the component j, and ∆AEF
ij

corresponds to the area of intersection between the 2-dimensional projections of the
forbidden zone of component j and the component i.

4.2.1.5 Occupation rate

The occupation rate OR of the container is defined as:

OR =

∑N
i=1Ai

Acontainer

(4.13)

where Ai is the area of each component i and Acontainer is the area of the container.
The performance of the proposed CSO-VF algorithm will be studied for four in-
creasing values of the occupation rate: 30%, 40%, 50% and 60%. The occupation
rate is a critical specificity of the problem. Indeed, the higher the occupation rate,
the more difficult it is to satisfy the constraints.
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Figure 4.7: Functional constraint (a) violated (b) satisfied. Dotted lines correspond
to the forbidden zones of energy or fuel components.

4.2.1.6 Mathematical formulation

The fixed search space single-container SMLPs described in the previous sections
are mathematically defined as follows:

min
x

Itot(x)

w.r.t. x ∈ Fx ⊆ Rnvar

s.t. hC
overlap(x) = 0

hE
overlap(x) = 0

hfunctional(x) = 0

gCG(x) ≤ 0

(4.14)

4.2.2 Parameter settings of CSO-VF

4.2.2.1 Virtual-force system

With respect to the previous problem formulation, the virtual-force system is defined
with the following forces and torques:

• Force Foverlap
ij and torque Toverlap

ij are used to solve for the overlapping con-
straints between components i and j;

• Force Foverlap
i/EZ and torque Toverlap

i/EZ are used to solve for the overlapping con-
straints between components i and an exclusion zone;

• Force Fcontainer
i and torque Tcontainer

i are used to solve for the overlapping
constraints between components i and the container;

• Force Ffunctional
i and torque Tfunctional

i are used to solve for the functional
constraints between two components i and j;
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• The force FCG
i is used to solve for the balancing constraint;

• Force Finertia
i and torque Tinertia

i are used to minimize the inertia of the system.

4.2.2.2 Swap operator

The swap operator defined in Chapter 3 is used in order to improve both the bal-
ancing constraints and the objective function. In other words, two components
are allowed to exchange their positions if the swap improves either the position of
the center of gravity or the global inertia, in a limit of additional overlapping and
functional constraints violation defined by a hyperparameter denoted r.

Figure 4.8 illustrates the effect of the swap operator on the objective function
for a 30% occupation rate configuration. The figure shows three consecutive feasible
configurations with decreasing objective function values and with two successive
calls of the swap operator. The first swaps contribute to separate the incompatible
fuel and energy components located at the bottom of the container which allows
to bring closer the energy components. The second swaps notably enable the two
heavy fuel components to be relocated closer to the center of the container which
contributes to improve the global inertia.

Iteration 578 Iteration 797 Iteration 1316

Swap Swap 

𝐼𝑡𝑜𝑡 = 1.71𝑒7 𝐼𝑡𝑜𝑡 = 1.67𝑒7 𝐼𝑡𝑜𝑡 = 1.59𝑒7

Figure 4.8: Illustration of the swap operator on an example for a 30% occupation
rate. The swapped components are highlighted in blue.

4.2.2.3 Initialization

As described in Chapter 3, an optimized Latin Hypercube Sampling strategy [DCI13;
Li+17; PM12] is used to initialize both the positions and orientations of the compo-
nents. Moreover, as the objective function corresponds to the global inertia of the
module, an additional heuristic rule is introduced: the components are distributed
on the generated positions following the principle that the heaviest components oc-
cupy the closest generated positions to the center of the plate (and thus the lightest,
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the farthest). Figure 4.9 illustrates the evolution between an initialized 40% occu-
pation rate configuration and the corresponding optimal layout obtained using the
CSO-VF algorithm.

Initialization Optimal Layout

CSO-VF

Figure 4.9: One initialization and the corresponding optimal layout for a 40% oc-
cupation rate configuration.

4.2.2.4 Hyperparameters

The 10 hyperparameters of the described CSO-VF algorithm are:

• The four dynamical hyperparameters: maximum force Fmax, torque Tmax,
translation speed vmax, rotational speed ωmax;

• The gradient-based forces and torques stepsizes: αF
CG for the balancing force,

αT
inertia and αF

inertia for the inertia force and torque;

• The swap operator parameters: the minimum and maximum steps smin, smax

and the relaxation factor r.

4.2.3 Analysis of the settings of the CSO-VF algorithm

In this section, the single-container SMLP is used in order to analyze the CSO-VF
algorithm settings: the hyperparameters settings, the choice in the search space
of the orientation variables, the initialization and swap operators, as well as the
computational cost.

4.2.3.1 Analysis of the hyperparameters settings

In this section, a sensitivity analysis is performed over the hyperparameters listed
in Section 4.2.2.4 and for an intermediate occupation rate of 40% of the container.

The principle of estimating sensitivity indices using Sobol’s method is to simu-
late two samples from the input quantities (i.e., estimate the objective function of
the layout configuration obtained thanks to hyperparameters samples) and then to
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estimate the conditional variance with respect to each input quantity by combining
these two samples. The advantage of sensitivity analysis with Sobol’s method is
that it doesn’t make any assumptions about the properties of the studied function
(i.e., the objective function corresponding to a layout configuration obtained with
the sampled hyperparameters), and is suitable whatever the model.

It must be noted that the Sobol’s method requires a sufficiently large sample size
to ensure convergence of the indices according to the complexity of the measurement
model. For this reason, the model inputs are generated using Saltelli’s extension
of the Sobol’ sequence. The Sobol’ sequence is a widely employed quasi-random
low-discrepancy sequence used to generate uniform samples of input space [Sob01].
Saltelli’s scheme extends the Sobol’ sequence in a way to reduce the error rates in
the resulting sensitivity index calculations [Sal02; Sal+10].

Figure 4.10 shows the first-order and total-order Sobol’s indices for each hyper-
parameter [Sob01] over the final objective function. The hyperparameters samples
are generated using the Saltelli sampler of the SALib python library [HU17], result-
ing in 6144 samples. The bounds defined for each hyperparameter have been set
using a parametric study and are reported in Appendix C.

Fmax Tmax
vmax ωmax αF
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Figure 4.10: First-order (S1) and total-order (ST) Sobol’s indices for the hyperpa-
rameters.

The αF
CG parameter has the most influence on the final layout. Indeed, if this

parameter is too small, the resulting balancing force will be smaller than the other
constraint forces and the center of gravity may never reach the tolerance zone. Con-
sequently, no feasible solution will be found for inadequate settings of this parameter.
The maximum translation speed also has a strong impact on the results. Indeed, if
vmax is set to a too small value, the components will not move fast enough within
the container. Consequently, either no feasible layout is found during the maximum
number of iterations or a suboptimal layout may be reached. On the contrary, if
vmax is set to a too large value, the components move too fast to solve the constraints
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and no stabilized feasible solution will be found. It can be observed that the other
parameters have a smaller yet similar effect on the final results.

In the following, the hyperparameters are optimized for each occupation rate of
the container using Bayesian Optimization [Sha+15]. Indeed, Bayesian Optimiza-
tion has been widely employed to tune hyperparameters of algorithms [AL21; VM21;
Wu+19] and provides fast convergence when it comes to expensive-to-evaluate black-
box objective functions.

To do so, a bilevel algorithm is defined combining Bayesian Optimization with
Gaussian Process surrogate modeling at the upper level and the CSO-VF algorithm
at the lower level. The design variables of the upper level correspond to the hyper-
parameters of the lower level and the objective function is the output of the lower
level i.e., the final objective function. The algorithm process is as follows: the upper
level output is a list of hyperparameters that is given to the lower level as an input.
The lower level solves the optimal layout problem with the CSO-VF algorithm em-
ployed with multi-start (with a number of starts Nstart = 10). The best objective
function obtained corresponds to the output of the lower level which is returned to
the Bayesian Optimization level in order to refine the Gaussian Process surrogate
modeling and propose the new most promising list of hyperparameters in terms of
final objective function of the layout configuration. The hyperparameter list is re-
fined sequentially with a given budget of an initial training data set of NDoE = 50
samples and Nit = 100 iterations. The bounds of each hyperparameter value were
defined using a parametric analysis.

4.2.3.2 Note on the geometry of the components

Even if the aforementioned application case is restricted to cylinders and cuboids
components, the CSO-VF algorithm can handle various shapes of components as
shown on Figure 4.11.

Figure 4.11: Example of feasible layout with various shapes of components.
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4.2.3.3 Analysis of the choice of the orientation parametrization

In most of the studies addressing the SMLP problem, the orientations of the compo-
nents are set as discrete variables [CXW18; CZa19; Ten+09; ZTS08]. This section
aims at comparing the choice between discrete and continuous orientations in terms
of final obtained layouts. The CSO-VF algorithm is performed over 50 random
initializations and over 5000 iterations for each orientation configuration and four
occupation rates: 30%, 40%, 50% and 60%. Table 4.1 sums up the obtained numer-
ical results in terms of:

• The number of successful runs i.e., whether or not a feasible solution is found
at the end of the optimization process;

• The median of the final objective function value;

• The interquartile range (IQR) of the final objective function value;

• The best run in terms of final objective function;

• The mean of the iteration providing the first feasible solution i.e., the iteration
from which all the constraints have been simultaneously solved.

Figure 4.12 shows the best final layout for each discrete and continuous orienta-
tion configuration and the four occupation rates.

OR Dicrete Continuous

Nb of successful runs
(a feasible solution is
found)

30% 50 50
40% 50 50
50% 39 50
60% 4 31

Final objective
function (median)

30% 1.635e7 1.641e7
40% 2.238e7 2.192e7
50% 2.759e7 2.731e7
60% - 3.311e7

Final interquartile
range (IQR)

30% 1.142e6 1.040e6
40% 1.487e6 1.261e6
50% 1.975e6 1.741e6
60% - 2.421e6

Best layout (objective
function)

30% 1.414e7 1.432e7
40% 1.990e7 1.971e7
50% 2.500e7 2.444e7
60% 2.937e7 3.019e7

Generation of
first feasible solution
(mean)

30% 191.14 199.28
40% 420.82 416.2
50% 1413.15 1361.56
60% - 2512.56

Table 4.1: Numerical results obtained for the four configurations of initialization
and swap operator and for the three occupation rates.
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30% 40% 50%

Discrete

Continuous

60%

Figure 4.12: Best layout obtained for both fixed and free orientations and the 4
studied occupation rates.

First of all, it can readily be shown that when the occupation rate is increased,
there are less and less successful runs. That is even more so for the discrete ori-
entation whose performance starts deteriorating from an occupation rate of 50%.
Indeed, the constraints become increasingly difficult to solve as observed in Fig-
ure 4.12. However, considering the highest occupation rate i.e., 60%, the discrete
configuration enables to provide 4 successful runs over the 50 instances against 31
for the continuous configuration. As there are only 4 final results for the discrete
configuration, the statistical metrics i.e., the median of the final result, the IQR of
the final results and the mean of the iterations providing the first feasible solution
are not computed in this case. It must be due to the fact that continuous orienta-
tions provide a wider search space which allows to solve more easily the constraints
than discrete orientations that often lead to blocked configurations in case of high
occupation rates.

Regarding the other metrics, both configurations seem to provide similar per-
formance. The continuous configuration provides very slightly better median and
IQR values over the final successful for occupation rates greater or equal than 40%.
Moreover, no trend is observed in terms of the best obtained layout. Finally, the
first feasible solutions are reached at similar iterations for both configurations with
a slight advantage for the continuous configuration from the 40% occupation rate.

Then, due to the ability of the continuous configuration to find feasible solutions
even for high occupation rates, this configuration is used in the following studies.
Furthermore, to the author’s best knowledge, this configuration has rarely been
studied when it comes to SMLP benchmarks.

4.2.3.4 Analysis of the swap and initialization operators

In this section, the influence of the initialization and of the swap operators on the
constraint resolution and final layouts are studied. For this purpose, two configura-
tions are compared for the four occupation rates:
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• Random initialization and no swap operator (R);

• The LHS and heuristic rule initialization and the swap operator (LS).

Figure 4.13 illustrates initialized layouts obtained randomly or with the LHS and
Heuristic rule (LHS+Heuristic) technique for the four occupation rates.

30% 40% 50%

Random

LHS+Heuristic

60%

Figure 4.13: Initial layouts obtained randomly or with the LHS+Heuristic technique
for four occupation rates.

As predicted, the LHS+Heuristic initialization allows to distribute the compo-
nents in a more homogeneous way than the random initialization. Consequently, it
is observed that the initial total constraint violation of the initial layouts is smaller
for the LHS+Heuristic initialization than the random one.

50 randomly initialized instances of the CSO-VF algorithm are run for each
configuration, for the four occupation rates and during 5000 iterations.

Constraint resolution Figure 4.14 reports the mean of the first iteration from
which each of the following constraints are either independently solved or simulta-
neously solved:

• Overlap: It encompasses the 3 overlapping constraints, i.e. the overlapping
between the components, between the components and the exclusion zones
and between the components and the container;

• CG: The balancing constraint;

• Functional: The functional constraint;

• All: All the previous constraints are solved, i.e. a feasible solution is found.

As shown in the previous section, the more the occupation rate increases, the
more iterations it takes to solve the constraints and reach a feasible solution. The
LHS initialization in addition to the swap operator helps to provide first feasible
solutions faster than the random and no swap configuration, and this for all the
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Figure 4.14: Constraints resolution.

occupation rates. Indeed, the relative improvements related to the first iteration
providing a feasible solution are respectively 85.2%, 75.7%, 48.3% and 20.4% from
the 30% to the 60% occupations rates configurations. Moreover, Figure 4.14 shows
that for the CSO-VF algorithm enhanced with the LHS initialization and the swap
operator, the functional constraint is the first constraint to be satisfied, followed by
the balancing constraints and finally the overlapping constraints. For the random
initialized and no swap CSO-VF algorithm, the balancing constraint is the last con-
straint to be satisfied. This is due to the fact that the LHS initialization distributes
the components in more homogeneous way than the random initialization, which
favors the placement of the global center of gravity. Moreover, the first calls of
the swap operator also helps to satisfy this constraint. When it occurs, the swap
operator might add some overlapping constraints violations which is consequently
the last constraint to be solved.

It must be noted that the number of maximum iterations allocated should be
adapted to the occupation rate of the container. Indeed, for the 60% occupation rate,
the first feasible solution is provided around the 2500th iteration which corresponds
to half of the optimization process. On the contrary, the 30% occupation rate
provides a first solution in a few hundreds of iterations.

Final numerical results. Table 4.2 sums up the numerical results corresponding
to the final obtained layouts.

The numerical results first show that the CSO-VF algorithm enhanced with
the LHS initialization and the swap operator allows to improve the success rate in
comparison to the randomly initialized and no swap CSO-VF configuration. Indeed,
from the 40% occupation rate, the success rate is improved respectively by 8%, 22%
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OR R LS

Nb of successful runs
(a feasible solution is
found)

30% 50 50
40% 46 50
50% 39 50
60% 18 31

Final objective
function (median)

30% 1.665e7 1.641e7
40% 2.234e7 2.192e7
50% 2.770e7 2.736e7
60% 3.335e7 3.221e7

Final interquartile
range (IQR)

30% 9.759e5 1.040e6
40% 1.379e6 1.261e6
50% 1.678e6 1.715e6
60% 1.729e7 2.421e6

Best layout (objective
function)

30% 1.527e7 1.464e7
40% 1.990e7 1.971e7
50% 2.491e7 2.425e7
60% 3.107e7 3.019e7

Table 4.2: Numerical results obtained for the four configurations of initialization
and swap operator and for the three occupation rates.

and 53%. It is due to the fact that with the random initialization, the first feasible
solution is reached later than the other configuration. Since higher occupation rates
increase the difficulty to solve the constraints, less feasible solutions might be reached
during the given maximum number of iterations. Moreover, the median of the final
objective function as well as the best obtained layout are all better for the LHS
initialization and swap configuration. The interquartile range is however mostly
smaller for the random initialization and no swap CSO-VF algorithm configuration.

In Appendix A, successive feasible layout throughout the iterations are shown,
for one instance of the CSO-VF algorithm, using the 40% occupation rate and the
LS configuration.

4.2.3.5 Analysis of the computing time

The CSO-VF algorithm relies on the computation of forces and torques which num-
ber of operations directly depends on the number of components to be laid out. The
swap operator has also an impact on the computing time as it loops over all the
pairs of components. However, because its call frequency depends on the current
convergence state and therefore on the initialization, it might be difficult to quantify
its influence on the computing time. 50 randomly initialized instances of the CSO-
VF algorithm are run for 10 to 50 components and 1000 to 10000 iterations. The
occupation rate do not influence the computing time and is kept constant equal to
40% for all the instances. The routines are implemented in Python language, and
executed on a PC with an Intel Core i7, 16 GB of RAM and Windows operating
system. The means of the computing time for each configuration are reported (in
minutes) in Figure 4.15.

91



Chapter 4. Applications to Satellite Module Optimal Layout Problems

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

·104
0

2

4

6

Iterations

C
om

p
u
ti
n
g
ti
m
e
(m

in
)

N = 10
N = 20
N = 30
N = 40
N = 50

Figure 4.15: Mean of the computing time for N = 10 to N = 50 components and
1000 to 10000 iterations.

It is observed that the computing time tends to vary linearly with the number
of components and the number of iterations. Moreover, the computing times of
the CSO-VF instances are only a few minutes long with the allocated numerical
resources. For example, instances with 30 components and 5000 iterations are solved
in less than 2 minutes. It must be noted that the computing time strongly depends
on the implementation language used as well as the numerical resources allocated
and is therefore hardly comparable with other computing times from the literature.
Furthermore, the CSO-VF algorithm is compatible with GPU programming that
would considerably improve the computing time. However, from an industrial point
of view, the effective computing times remain reasonable.

4.2.4 Global performance of the CSO-VF algorithm

This section aims at analyzing the global performance of the CSO-VF algorithm in
comparison to other metaheuristic algorithms: Genetic Algorithm (GA) [Joh82] and
Covariance Matrix Adaptation-Evolution Strategy (CMA-ES) [HO01]. Indeed, as
outlined in Chapter 2, metaheuristics are the most employed techniques for OLPs.
Moreover, they provide generic framework that can be easily adapted to the problems
at hand. Finally, GA and CMA-ES are two different strategies which allow to handle
constrained problems with a potential large number of variables.

4.2.4.1 Experimental setups

Increasing occupation rates from 30% to 60% are studied. For each occupation rate,
the experimental setups are defined and the following parameters are set:

• Computational budget of objective function evaluations: for each oc-
cupation rate, a maximum number of objective function evaluations is set. As
mentioned in the previous section, the higher the occupation rate, the harder
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it is to satisfy the constraints. Thus, the number of objective function evalua-
tions is increased along with the occupation rate. The computational budgets
are summarized in Tables 4.3, 4.4, 4.5 and 4.6.

• Population size: for each occupation rate, three population sizes are studied.
For the CSO-VF algorithm the population size corresponds to the number of
independent starts as explained in Chapter 3. For each occupation rate, the
CSO-VF configuration with only one start i.e., with no multistart employed
and two configurations employing multistart with increasing number of starts
are studied. For the GAs, three increasing population sizes are studied. More-
over, the population sizes are globally increased along with the occupation
rate, for the same reason than for the budget settings. For CMA-ES, the
population size follows the recommendations found in the literature [HO01;
Var+18]. It must be noted that the maximum number of iterations Nit of
each configuration is set based on the budget and population size parameters
P as:

Nit =
Budget

P
(4.15)

The studied population sizes are summarized in Tables 4.3, 4.4, 4.5 and 4.6.

• Number of simulations: each configuration, defined by an occupation rate,
an algorithm and a population size, is run over 50 independent initializations.
It must also be noted that each simulation of the CSO-VF and GA algorithms
are initialized using the same initialized design variables.

• Configuration of operators and hyperparameters: The CSO-VF con-
figuration has been detailed in the previous section. The GA’s appropriate
operators are chosen on the basis of a parametric analysis: Tournament se-
lector, SBX crossover operator, PM mutation operator. The hyperparameters
of both algorithms are optimized using Bayesian Optimization. The (1 + λ)
CMA-ES parameters are set using standard settings detailed in the literature
[Var+18].

Tables 4.3, 4.4, 4.5 and 4.6 sum up the experimental setups for each studied
occupation rate.

Algorithm Budget=200000 Nb of simulations HP settings

CSO-VF P1=1,P2=10,P3=50 50 Optimized with BO
GA P1=10,P2=50,P3=100 50 Optimized with BO

CMA-ES P=24 50 Standard settings

Table 4.3: Experimental setups for the 30% occupation rate configurations. P1, P2
and P3 stand for different number of individuals.
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Algorithm Budget=350000 Nb of simulations HP settings

CSO-VF P1=1,P2=25,P3=50 50 Optimized with BO
GA P1=25,P2=50,P3=150 50 Optimized with BO

CMA-ES P=24 50 Standard settings

Table 4.4: Experimental setups for the 40% occupation rate configurations. P1, P2
and P3 stand for different number of individuals.

Algorithm Budget=500000 Nb of simulations HP settings

CSO-VF P1=1,P2=50,P3=100 50 Optimized with BO
GA P1=50,P2=100,P3=200 50 Optimized with BO

CMA-ES P=24 50 Standard settings

Table 4.5: Experimental setups for the 50% occupation rate configurations. P1, P2
and P3 stand for different number of individuals.

Algorithm Budget=750000 Nb of simulations HP settings

CSO-VF P1=1,P2=100,P3=150 50 Optimized with BO
GA P1=100,P2=150,P3=250 50 Optimized with BO

CMA-ES P=24 50 Standard settings

Table 4.6: Experimental setups for the 60% occupation rate configurations. P1, P2
and P3 stand for different number of individuals.

4.2.4.2 Results and analysis

In order to analyze the performance of each algorithm, the following metrics are
adopted:

• Median of convergence curves: For each occupation rate, Figures 4.16a,
4.19a, 4.22a and 4.25a show the median of convergence curves of the 50 simu-
lations for each configuration characterized by an algorithm and a population
size.

• Best run: For each occupation rate, Figures 4.16b, 4.19b, 4.22b and 4.25b
show the convergence curves of the simulation leading to the best layout i.e.
the smaller final inertia, for each configuration.

• Iterations to best median (mean): For each occupation rate, Figures
4.17, 4.20, 4.23 and 4.26 show the mean of iterations needed by each median
convergence curve to reach 25%, 20%, 15%, 10% and 5% of the best final
obtained median over the configurations (defined by the different algorithms
and population sizes). This metric characterizes both the convergence speed
and the relative margin between each configuration and the best one in terms
of median convergence curve.

• Successful runs to target: For each occupation rate, Figures 4.18, 4.21, 4.24
and 4.27 show the number of simulations of each configurations (among the 50)
which manages to reach 25%, 15%, 10%, 5%, 3% and 1% of the best obtained
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median. This metric characterizes the success rate and the robustness of each
configuration.

• Ranks of the algorithms: Figure 4.28 indicates for each occupation rate
the number of times each algorithm ranked from first to seventh place in terms
of final objective function value for the 50 simulations.

Table 4.7 sums up the numerical results obtained for each configurations i.e.
occupation rate, algorithm and population sizes. The metrics are:

• The success rate, i.e. the number of simulations providing a feasible solution;

• The median of the final objective function values;

• The interquartile range of the final objective function values;

• The best objective function values over the 50 simulations;

• The mean of the iteration for which a feasible solution is reached for the first
time.

Finally, Figure 4.29 shows the best obtained layouts for each occupation rates.
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Figure 4.16: Median and best convergence curves for the 30% occupation rate.
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Figure 4.17: Function evaluations to percentages of the median target, OR = 30%.
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Figure 4.18: Success rate to percentages of the median target, OR = 30%.
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Figure 4.19: Median and best convergence curves for the 40% occupation rate.
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Figure 4.20: Function evaluations to percentages of the median target, OR = 40%.
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Figure 4.21: Success rate to percentages of the median target, OR = 40%.
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Figure 4.22: Median and best convergence curves for the 50% occupation rates.
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Figure 4.23: Function evaluations to percentages of the median target, OR = 50%.

25% 15% 10% 5% 3% 1%

0

20

40

50 50 50 50

40

20

50 50 50 50 50

36

50 50 50 50 49

25
29

13

0 0 0 0

30

10

5
1 0 0

38

27

6

0 0 0

33

26

17
13

1 0

Percentage to target

N
u
m
b
er

of
ru
n
s

CSO1

CSO50

CSO100

GA50

GA100

GA200

CMA-ES

Figure 4.24: Success rate to percentages of the median target, OR = 30%.
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Figure 4.25: Median and best convergence curves for the 60% occupation rate.
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Figure 4.26: Function evaluations to percentages of the median target, OR = 60%.
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Figure 4.27: Success rate to percentages of the median target, OR = 60%.
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Table 4.7: Numerical results for the three algorithms, different sizes of population
and the four occupation rates. Bold values indicate best algorithm.
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Figure 4.28: Ranks of each algorithm over the 50 runs and the four occupation rates.
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30% 40%

50% 60%

Figure 4.29: Best obtained layouts for the four occupation rates (all of them obtained
by CSO-VF algorithm).

Success rate. Table 4.7 shows that all the CSO-VF algorithms have a success rate
of 100% for all the occupation rates. In other words, for each occupation rate, all
50 trials provide a feasible solution. In contrast, the higher the occupation rate, the
lower the success rate for the GAs and the CMA-ES algorithm, reaching between
30% and 40% of success rate for the 60% occupation rate.

Convergence accuracy. For all the occupation rates, the 3 configurations of
the CSO-VF algorithm have a better final median than the GAs and CMA-ES.
Indeed, the best CSO-VF algorithm allows to improve the final median by respec-
tively 24.4%, 21.9%, 19.4%, 14.2% in comparison to the best GAs configuration for
increasing occupation rates. They are improved respectively by 14%, 12.4%, 18%,
8.1% in comparison to the CMA-ES algorithm and increasing occupation rates. In
terms of best run, i.e. the simulation providing the best final layout in terms of
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final objective function values, the trends are similar to the median observations.
Indeed, all 3 CSO-VF algorithms provide the 3 best runs in terms of final objective
function values and this for all the occupation rates.

Figure 4.28 ranks the values of the final objective function obtained by each
algorithm over the 50 instances, for each occupation rates. It is observed that the
CSO-VF algorithms practically always rank first to third while the GA and CMA-ES
algorithms generally rank among the last ones. CMA-ES algorithms have generally
better ranks than the GA algorithms but this trend is less pronounced for high
occupation rates.

It is shown that the CSO-VF algorithm configuration employing multistart with
the less starts but the more iterations, i.e. CSO-P2, performs better than the CSO-
VF configuration with no multistart and than the CSO-VF configuration with more
starts but less iterations (i.e., CSO-P3) in terms of final median of the objective
function and best layouts, from the 40% to the 60% occupation rates. Indeed, one
initialization of the CSO-VF is not enough as the algorithm depends on the initial-
ization and too many starts tend to reduce the number of iterations (as the number
of objective function evaluations is fixed) and prevent each start from converging.
This trend is also observed on Figure 4.28 showing that the CSO-P2 configuration al-
ways has the smallest ranks in comparison to the two other CSO-VF configurations.
Consequently, a balance between the number of starts employed in the multistart
and the number of iterations must be found.

The trends are more mixed for the GAs. Indeed, in terms of final median of the
objective function no real trend can be drawn as the GAs configurations provide
close values giving no advantage to one in particular. However, the intermediate
configuration (i.e GA-P2) always provides the best run in terms of final objective
function values. Thus, for the GAs a balance between the size of the population and
the number of iterations should be considered.

Convergence speed. The third metric shows how many function evaluations are
needed in order to reach certain percentages of the best final median obtained i.e.
the final median of the CSO-VF algorithm with the lowest number of starts. It
is observed that the GAs reach only 25% to 15% of this value according to the
occupation rates. Moreover, the number of function evaluations needed to reach
this value are globally higher than the three CSO-VF algorithms. CMA-ES performs
better than the GAs as it reaches 15% to 10% of the target value.

The CSO-VF algorithm configuration with no multistart and more iterations
i.e. CSO-1, provides the highest convergence speed for the three lower occupation
rates. Indeed, the multistart configuration implies a multiplication of the number
of evaluation functions at each iteration. For the 60% occupation rate, CMA-ES is
faster until 15% of the target value and the CSO-P1, i.e. CSO-1 configuration is
then faster because CMA-ES reached its convergence.

Robustness. For each occupation rate, Figures 4.18, 4.21, 4.24 and 4.27 show the
number of runs among the 50 trials that reach a certain percentages of the best final
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median value i.e., the target value. For all the occupation rates, all the 50 CSO-VF
instances reach at least 5% of this target value. On the contrary, the GAs have at
least 20% of the runs that do not reach 25% of the target values and only a very
few runs reach 5% of the target value. The CMA-ES algorithm has better results
than the GAs. Indeed, from 1 to 15 runs reach 5% of the target value depending on
the occupation rate. It can be concluded that the CSO-VF algorithms have a better
robustness with respect to the number of runs reaching the target value than the
other GA and CMA-ES counterparts. This conclusion can be confirmed in Table
4.7 that reports the final interquartile range for each algorithm, each population
size and each occupation rate. The best IQR obtained by the CSO-VF algorithms
is respectively improved by 76%, 77.7%, 71%, 64.9% in comparison to the best IQR
obtained by the GAs for increasing occupation rates. It is respectively improved
by 79.8%, 71.3%, 89.7%, 64.1% in comparison to IQR obtained by the CMA-ES
algorithm, for increasing occupation rates.

The final IQR values also show that the CSO-VF configurations that employ
multistart have better robustness than the CSO-1 configurations that do not employ
multistart. Indeed, the CSO-VF with multistart configurations improve the final
IQR by respectively 20.1%, 70.7%, 59.5% and 39.9% in comparison to the CSO-1
configuration and the four occupation rates.

First feasible solution. Finally, the CSO-VF algorithms provide a first feasi-
ble solution in less function evaluations than the GAs and CMA-ES. The GAs and
CMA-ES are population-based algorithms while the CSO-VF is based on multi-
starts. Thus, the number of function evaluations needed to reach a feasible solution
for GAs and CMA-ES is calculated as the iteration at which the first feasible solu-
tion is observed times the size of the population. However, the first feasible solution
obtained for one run (i.e., with P multiple starting points) of the CSO-VF corre-
sponds directly to the number of function evaluations as the starts of the CSO-VF
are independent. It must be noted that for all algorithms, the number of function
evaluations needed to provide a feasible solution increases with the occupation rate
due to the increasing difficulty to solve the constraints.

Generally, the CSO-VF algorithm provides better global results in terms of suc-
cess rate, convergence accuracy, robustness with respect to the final dispersion,
convergence speed and ability to solve the constraints in comparison to the GA
and CMA-ES algorithm counterparts. This is due to the fact that the CSO-VF
algorithm provides dedicated operators to solve each of the constraints using the
virtual-force system and the swap operator. Population-based algorithms dealing
with the constraints with penalization or constraint-dominance have less ability to
deal with the constraints. Indeed, during the optimization process, solutions with
less constraint violations are favored in the population. However, the initialized lay-
outs with larger initial constraint violation are not necessarily the most promising
configuration in terms of objective function. On the other hand, CSO-VF optimizes
all the initialized layouts which allows to identify more accurately and robustly the
promising initializations using multistart. Moreover, the multistart allows CSO-VF
to provide first feasible solutions in less function evaluations than population-based
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counterparts as the runs are independent. Finally, the swap operator allows to find
new and better configurations by inducing a reconfiguration of the layout when
one configuration has converged, while the studied population-based algorithms do
not provide sufficiently effective reconfiguration operator when its population has
converged.

The results also highlighted that the CSO-VF should be employed with multi-
start in order to improve the convergence accuracy and the robustness. However, a
balance must be found between the number of starts and the number of iterations as
too many starts lead to too few iterations and prevent the algorithm from converg-
ing. Moreover, it should be noted that for identical number of objective function
evaluations, the CSO-VF algorithm employing multistarts contributes to reduce the
computing time in comparison to the CSO-1 configuration as the starts can be run
in parallel.

4.3 Multi-container Satellite Module Optimal

Layout Problem

The multi-container configuration corresponds to the SMLP studied for instance in
[CXW18; CZa19; Ten+09; ZTS08].

4.3.1 Problem formulation and configuration

4.3.1.1 Geometry of the container and the components

The container corresponds to two bearing plates defined by their radius Rout and
their thickness Hp. They are disposed at the heights H1 and H2 in a cylindrical
module of height H3. Thus, four surfaces Sk, k ∈ {1, 2, 3, 4} are laid out. A central
column of radius Rin results in circular exclusion zones centered at the z axis on each
surface. The whole module is characterized by its mass msat and its geometrical
inertias along each axis: Ix,sat, Iy,sat, Iz,sat resulting in a global inertia defined as
Isat = Ix,sat + Iy,sat + Iz,sat. The empty module has its center of gravity positioned
in (xx,sat, xy,sat, xz,sat). Figure 4.30 illustrates the multi-container configuration.

The N = 60 components to be positioned are Ncub cuboids and Ncyl cylinders
and are initially proposed in [Ten+09]. They are listed in Table A.2 in Appendix
A as well as the numerical values of the dimensions and dynamical features of the
container.

4.3.1.2 Design variables

In the multi-container configuration, the components must be assigned to one of
the four surfaces and be laid out on the corresponding surface, therefore the design
variables are:

• For each component, the number of its assigned surface zi, i ∈ {1, ..., N}
defined as unordered discrete variables;
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Figure 4.30: Geometrical definition of the multi-container configuration.

• The positions of the center of inertia of each component on the assigned surface
considered as continuous variables (xx,i, xy,i), i ∈ {1, ..., N};

• The orientations of cuboid components on the assigned surface are considered
as discrete variables with values 0° or 90°, zα,i, i ∈ {1, ..., Ncub}.

Thus, the number of design variables nvar is defined as:

nvar = N + 2Ncyl + 3Ncub = 3Ncyl + 4Ncub (4.16)

4.3.1.3 Objective function

As for the single-container configuration, the objective function to minimize is the
total inertia of the module. Three systems of coordinates are considered:

• Ox”y”z”: the local coordinates’ system related to each component. O” corre-
sponds to the center of inertia of the component and the axes are defined with
the symmetry planes of the components;

• O′x′y′z′: the coordinates system related to the system of components. O′

represents the current centroid of the system of components and the axes are
defined with the symmetry planes of the module;

• Oxyz: the coordinates system related to the module. O is the geometric center
of the container and the axes are defined using its symmetry planes.

The three systems of coordinates are illustrated in Figure 4.30.
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The global inertia Itot to minimize is calculated in the O′x′y′z′ system of coordi-
nates as proposed in [CZa19; Ten+09; ZTS08] and defined as:

Itot(x, z) = Ix′x′(x, z) + Iy′y′(x, z) + Iz′z′(x, z) (4.17)

With the same formalism as the previous section, the solid inertia specific to
each component with relation to their system of coordinates O”x”y”z” are written
Ix”,i, Iy”,i and Iz”,i.

The inertia of the module along each axis of the Oxyz system of coordinates are
written:

Ixx(x, z) = Ix,sat +
N∑
i=1

Ix”,i cos(zα,i)
2 + Iy”,i sin(zα,i)

2 +mi(x
2
y,i + x2

z,i)(4.18)

Iyy(x, z) = Iy,sat +
N∑
i=1

Iy”,i cos(zα,i)
2 + Ix”,i sin(zα,i)

2 +mi(x
2
x,i + x2

z,i)(4.19)

Izz(x, z) = Iz,sat +
N∑
i=1

Iz”,i +mi(x
2
x,i + x2

y,i) (4.20)

where (xx,i, xy,i, xz,i) are the coordinates of component i in the Oxyz system of
coordinates. Then, the inertia are calculated along the axes of the O′x′y′z′ system
of coordinates using the Huygens theorem:

Ix′x′(x, z) = Ixx(x, z) − (x2
y,c + x2

z,c)mtot (4.21)
Iy′y′(x, z) = Iyy(x, z) − (x2

x,c + x2
z,c)mtot (4.22)

Iz′z′(x, z) = Izz(x, z) − (x2
x,c + x2

y,c)mtot (4.23)

where (xx,c, xy,c, xz,c) are the coordinates of the center of gravity of the module in

the Oxyz system of coordinates and mtot = (msat +
∑N

i=1mi) is the mass of the
whole module.

4.3.1.4 Constraints functions

As for the single-container configuration, geometrical and functional constraints are
considered:

• Overlapping constraints between components: no overlapping between
components is allowed on each surface. As in [CZa19; Ten+09; ZTS08], the
plates are supposed to be sufficiently spaced to avoid any overlapping between
components positioned on the surfaces S2 and S3. The overlapping constraint
between components is formulated as follows:

hC
overlap(x, z) =

Ns∑
k=1

Nk−1∑
i=1

Nk∑
j=1

∆AC
ij,k(x, z) (4.24)

where Ns = 4 is the number of surfaces, Nk is the number of components on
surface k and ∆AC

ij,k corresponds to the 2-dimensional projections (along the
z axis) of components i and j on surface k and is function of the components
centers of inertia and orientations.
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• Overlapping constraints between the components and the exclusion
zones: no overlapping between the components and the exclusion zones is
allowed on each surface. The overlapping constraint is expressed as:

hE
overlap(x, z) =

Ns∑
k=1

N∑
i=1

∆AE
i,k(x, z) (4.25)

where ∆AE
i,k is the are of intersection between the 2-dimensional projections

(along the z axis) of a component and the exclusion zone on the surface k,
and is function of the components centers of inertia and orientations (as well
as the positions and shapes of the exclusion zones).

• Balancing constraints: the center of gravity (CG) of the whole laid out
module must be positioned within a zone of tolerance located at the center of
gravity of the empty module, along the x and y axes. Then, the balancing
constraint can be formulated as follows:

gCG(x, z) =
√

(xx,c − xx,sat)2 + (xy,c − xy,sat)2 − δCG (4.26)

where (xx,c, xy,c, xz,c) are the coordinates of the current CG of the whole mod-
ule also referred to as O′ in the Oxyz system of coordinates, (xx,sat, xy,sat, xz,sat)
are the coordinates of the empty satellite module in the Oxyz system of coor-
dinates and δCG represents a tolerance which corresponds to a sphere centered
at the empty satellite module center of gravity and set to the numerical value
of 3.0.

• Angles-of-inertia constraints: in the multi-container configuration, a ge-
ometrical constraint corresponding to the angles of inertia is added. The
constraint relative to the angles of inertia is defined as follows:

gAI(x, z) =
√

θx′y′(x, z)2 + θy′z′(x, z)2 + θy′z′(x, z)2 − δAI (4.27)

where θx′y′ , θx′y′ , θy′z′ are the angles of inertia, defined as:

θx′y′(x, z) = arctan

(
− 2Ix′y′(x, z)

(Iy′y′(x, z)− Ix′x′(x, z))

)/
2 (4.28)

θx′z′(x, z) = arctan

(
− 2Ix′z′(x, z)

(Ix′x′(x, z)− Iz′z′(x, z))

)/
2 (4.29)

θy′z′(x, z) = arctan

(
− 2Iy′z′(x, z)

(Iy′y′(x, z)− Iz′z′(x, z))

)/
2 (4.30)

where the inertias Ix′y′ , Iy′z′ and Iy′z′ are expressed as:

Ix′y′(x, z) =
N∑
i=1

mixx,ixy,i +

Ix”i +mi(x
2
y,i + x2

z,i)

− Iy”i −mi(x
2
x,i + x2

z,i)

2
sin(2xα,i)


− xx,cxy,cmtot

(4.31)
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Ix′z′(x, z) =
N∑
i=1

mixx,ixz,i − xx,cxz,cmtot (4.32)

Iy′z′(x, z) =
N∑
i=1

mixy,ixz,i − xy,cxz,cmtot (4.33)

• Functional constraints are also defined in terms of incompatibility between
several components. A heat as well as electromagnetic thresholds are defined
such that some components responsible for heat or electromagnetic fields must
be spaced away at given distances. More precisely, a set CH of pairs of incom-
patible heat components {i, j} ∈ CH and a set CE of pairs of incompatible
electromagnetic components {i, j} ∈ CE are defined. Thus, the heat functional
constraint is defined as:

gH(x, z) =

Card(CH)∑
k=1

dH − dk(x, z) (4.34)

where Card(CH) is the cardinal of the set CH corresponding to the list of
incompatible pairs of heat components, dk is the distance between the two
components of pair k if positioned on the same surface and dH is the minimal
distance between the two components of each pairs of CH .

With the same formalism, the electromagnetic functional constraint is defined
as:

gE(x, z) =

Card(CE)∑
k=1

dE − dk(x, z) ≤ 0 (4.35)

where Card(CE) is the cardinal of the set CH corresponding to the list of
incompatible pairs of electromagnetic components, dk is the distance between
the two components of pair k if positioned on the same surface and dE is the
minimal distance between the two components of each pairs of CE. The list of
heat and electromagnetic incompatible components is specified in Appendix
A.

4.3.1.5 Mathematical formulation

Thus, fixed-size search space multi-module satellite optimal layout problems are
mathematically defined as follows:

min
x,z

Itot(x,z)

w.r.t. x ∈ Fx ⊆ Rnx , z ∈ Fz ⊆ Nnz

s.t. hC
overlap(x, z) = 0

hE
overlap(x, z) = 0

gCG(x, z) ≤ 0

gAI(x, z) ≤ 0

gH(x, z) ≤ 0

gE(x, z) ≤ 0

(4.36)
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Remarks on the inertia equations. In all the papers dealing with the SMLP
[CXW18; CZa19; Liu12; Liu+18; Ten+09; ZTS08], the inertia are calculated along
with the axes of the O′x′y′z′ system of coordinates corresponding to the system of
coordinates linked to the current centroid of the whole module. It is obtained by
calculating the inertia in the Oxyz system of coordinates and then by applying the
the Huygens theorem which leads to Equations 4.21, 4.22 and 4.23. However, as the
objective function is to minimize the sum of the three aforementioned equations, it
will also lead to a maximization of the three positive second terms:

(x2
y,c + x2

z,c)mtot

(x2
x,c + x2

z,c)mtot

(x2
x,c + x2

y,c)mtot

Thus, the formulation of the inertia also contributes to maximize the coordinates of
the global center of gravity of the module. As the balancing constraint (Equation
4.25) bounds these coordinates to a tolerance zone, the optimization process will
lead to a positioning of the center of gravity to the boundaries of the balancing
constraint. However, the goal of the optimization process would rather be to min-
imize the inertia along with positioning the center of gravity as close as possible
to a position of reference, which often corresponds to the geometrical center of the
module or to the center of gravity of the empty module if different.

Moreover, the first terms of the inertia equations are calculated in the Oxyz sys-
tem of coordinates which is linked to the bottom of the satellite. Minimizing these
quantities includes minimizing the terms mix

2
x,i, mix

2
y,i but also mix

2
z,i. Then, the

optimization process based on these inertia equations might overload the bottom
surfaces S3 and S4 which leads to an unbalanced satellite module.

Consequently, in order to avoid the two aforementioned issues, the inertia equa-
tions should be written in the system of coordinates linked to the position of reference
where the center of gravity has to be positioned, as developed in Appendix B. The
equations have been corrected for the single-container configuration. However, for
the present multi-container configuration, the equations employed in the literature
i.e., Equations 4.21, 4.22 and 4.23 are used in the following experiments in order to
rigorously compare the results from the previous papers to the present study.

4.3.2 Algorithm configuration and experimental setups

The performance of the GA-assisted CSO-VF algorithm is compared with results
obtained in previous papers [CZa19; Ten+09] regarding the problem detailed in last
section. For this purpose, the experimental setups of the two stages of the proposed
algorithm in Chapter 3 are detailed.

4.3.2.1 Upper stage settings

The upper stage solves the assignment task. In order to minimize the global in-
ertia, the components should be distributed among the containers such that their
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center of gravity along the z axis is centered at the center of gravity of the empty
module. Then, the assignment objective function consists in minimizing the terms
of the global inertia equations depending on the xz,i variables while positioning the
center of gravity of the components along the z axis in a tolerance zone centered
at the empty module center of gravity and while not exceeding a 65% occupation
rate per container. Indeed, higher occupation rates might lead to unfeasible layout
configurations. The corresponding optimization problem is formulated as follows:

min
z

N∑
i=1

mi(xz,i(z)− ze)
2

w.r.t. z ∈ Fz ⊆ {1, 2, 3, 4}N

s.t. gCG(z) ≤ 0

gjO(z) ≤ 0 for j ∈ {1, 2, 3, 4}

(4.37)

where xz,i are the positions of the center of inertia of the components of mass mi

depending on the assignment list z. ze is a position of reference which is taken as the
center of gravity of the empty module. The inequality constraints are respectively:

• The balancing constraint:

gCG(z) =

∣∣∣∣∣
∑N

i=1mixz,i∑N
i=1 mi

− ze

∣∣∣∣∣− 3.0 (4.38)

• The occupation rate constraints defined for each surface j:

gjO(z) =
Acomponents

j

Acontainer
j

− 0.65 (4.39)

where Acomponents
j is the total area of the components assigned to container j

and Acontainer
j is the area of container j.

The operators of the GA are set using a parametric study and the hyperparam-
eters are optimized using Bayesian Optimization following the procedure explained
in Section 4.2.3.1.

4.3.2.2 Lower stage settings

The lower stage solving the layout task for each container corresponds to the CSO-
VF algorithm. For each container, P = 10 independently initialized instances solves
the corresponding single-container optimal layout problem. It is configured as fol-
lows:

• Virtual-force system: The defined forces and torques are: forces and torques
to solve all overlapping constraints, gradient-based forces for the balancing
constraint, gradient-based forces and torques for the angle of inertia constraints
and forces and torques to solve the functional constraints.
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• Additional operators: The LHS and heuristic rule initialization as well as
the swap operator are used.

• Number of iterations: As highlighted during the analysis of the single-
container optimal layout problems experiments, the number of iterations should
be adapted along with the occupation rate of the container. Consequently, the
maximum number of iterations allocated for each containers is a function of
its occupation rate determined by the assignation of the components to the
container. The number of iterations varies linearly with the occupation rate
and is calculated as follows:

Nit(OR) = 15000 ·OR (4.40)

where Nit is the number of iterations and OR is the occupation rate from 0 to
1.

• Hyperparameters: The hyperparameters are also set as functions of the
occupation rates. Indeed, the hyperparameters have been optimized using
Bayesian Optimization for the 30%, 40%, 50% and 60% occupation rates dur-
ing the settings of CSO-VF for the single-container SMLP. For each container,
one of the four lists of hyperparameters is selected according to its occupation
rate.

The CSO-VF instances dedicated to each container are launched in parallel.
Then, all the possible combinations of laid out containers are compared in terms of
feasibility and objective function values and the combination leading to the smaller
global inertia corresponds to the output of the algorithm. In the specific case where
no feasible combination is found, another assignment list is proposed and the con-
tainers layout are optimized once again. In this study, the maximum number of
attempts is set to 1 i.e., the algorithm must find a solution in one attempt. Figure
4.31 illustrates the proposed algorithm.
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UPPER STAGE: Assignment task

GA
Input: components, containers, operators and parameters

Output: the archive of 𝑁𝐴𝑆 assignment schemes

LOWER STAGE: Layout tasks

Input: components, containers, assignment scheme
Output: positions and orientations of the components

Is the stopping criterion
reached ?

Yes

No

S2S1 S3 S4

𝑃 = 10 𝑃 = 10 𝑃 = 10 𝑃 = 10

𝑁𝑖𝑡 = 𝑓(𝑂)

HP settings

𝑁𝑖𝑡 = 𝑓(𝑂)

HP settings

𝑁𝑖𝑡 = 𝑓(𝑂)

HP settings

𝑁𝑖𝑡 = 𝑓(𝑂)

HP settings

For all containers configurations: 
Check feasibility

Calculate global inertia

CSO-VF CSO-VF CSO-VF CSO-VF

Input: components, containers

Ouput: best laid out containers

𝐴𝑆1 𝐴𝑆2 𝐴𝑆𝑘 𝐴𝑆𝑁𝐴𝑆−1 𝐴𝑆𝑁𝐴𝑆
……

Assignment schemes archive

𝑘 = 𝑖 + 1

𝑘 = 𝑖

Figure 4.31: The GA assisted-CSO-VF algorithm for the multi-container SMLP.

4.3.3 Experimental results

The previous detailed algorithm is applied to the described multi-container SMLP
and the results are compared to those published in:

• [Ten+09]: a dual-system cooperative co-evolutionary algorithm (called Oboe-
CCEA) is developed for the multi-container SMLP based on both Potter’s co-
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evolutionary framework [Pot+94] and the variable-grain model [ND02]. How-
ever, the assignment is an input of the algorithm i.e., it is not optimized but
taken from [ZTS08] and based upon human experience. It must be noted that
this study does not consider the functional constraints gH and gE. The rest
of the mathematical formulation remains identical.

• [CZa19]: a two-stage algorithm called Dynamic FS is developed to solve both
assignment and layout tasks of the multi-container SMLP. Heuristic rules are
used to assign the components. They are mathematically translated into a
multi-objective optimization problem and a NSGA-II algorithm is employed to
solve it. The assignment list is then determined using a fuzzy decision making
method. The layout task is performed using the NDCCDE/DPSO algorithm
[CXW18] which corresponds a to dual-system cooperative co-evolutionary al-
gorithm.

4.3.3.1 Analysis of the assignment algorithm

This section aims at analyzing the upper stage performance. Table 4.8 reports the
total masses of each container for the fixed assignment list [Ten+09], the best assign-
ment list obtained using the Heuristic+NSGA-II algorithm proposed in [CZa19] and
the best assignment list obtained using the algorithm detailed in Section 4.3.2.1 of
this manuscript. Table 4.9 reports the coordinate of the center of gravity along the
z axis considering only the components or the whole module i.e., the components in
addition to the empty module, and for the three aforementioned assignment lists.

Reference Surface 1 Surface 2 Surface 3 Surface 4

Fixed [Ten+09] 150.63 231.18 235.22 198.42
Heuristic+NSGA-II [CZa19] 88.33 314.20 317.29 95.63

GA (This manuscript) 85.95 289.02 326.67 113.78

Table 4.8: Masses distributions on surfaces.

zCG Fixed [Ten+09] Heuristic +
NSGA-II [CZa19]

This manuscript

Components 543.02 562.9 550.92
Whole
module

547.38 559.03 552.01

Table 4.9: Center of gravity along z axis without and with the empty module.
Coordinate along z axis of the center of gravity of the empty module:

553.56.

For the three assignment schemes, it can be noticed that the surfaces 2 and 3
are always the heaviest. This contributes to minimize the global inertia along the
z axis. Then, the bottom plate i.e., surfaces S3 and S4, is more loaded than the
top plate i.e., surfaces S1 and S2. Indeed, the geometrical center between the two
plates is situated at the coordinate of 565 along the z axis, but all the assignment
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schemes have centers of gravity located lower. The assignment scheme proposed
in [CZa19] has the most balanced two plates. This is due to the fact that the
heuristic assignment rules described in this paper impose that the two plates are
both balanced (with a delta) in terms of mass and component area. This results in
positioning the center of gravity of the components close to the geometrical center
of the two plates i.e., close to coordinate 565. However, as the two plates are not
centered at the geometrical center of the empty module in the INTELSAT-III model,
this results in pulling away the center of gravity of the components from the center
of gravity of the empty module. Then, the assignment task resolution proposed in
this thesis results in the positioning of the components on the two plates such that
both center of gravity of the components and of the empty module coincide. This
should provide a better global inertia in the end as well as more balanced satellite
module.

Figure 4.32 shows the median and IQR of 50 independently initialized conver-
gence curves of the upper level.
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Figure 4.32: Median and IQR of convergence curves of the upper level for 50 inde-
pendant runs.

It is notably observed that the IQR remains low during all the optimization
process which characterizes a good robustness of the upper level with respect to the
final interquartile range.

4.3.3.2 Analysis of the results of the two-stage algorithm

The algorithm detailed in Section 4.3.2 is run over 50 independently initialized
instances. The obtained results are compared with those published in [CZa19] and
[Ten+09] according the following indicators and reported in Table 4.11:

• The mean of the final obtained layout objective functions i.e. their global
inertia;

• The standard deviation (STD) of the final obtained layout inertia;

• The best layout obtained in terms of inertia (among the 50 repetitions);
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• The worst layout obtained in terms of inertia (among the 50 repetitions);

• The success rate i.e., the percentage of runs leading to a feasible layout.

Table 4.10 reports the allocated budget in terms of number of objective function
evaluations for the assignment and layout tasks and for the three compared algo-
rithms. Figure 4.33 shows the best obtained layout using the Oboe-CCEA algorithm
[CZa19] and the proposed algorithm. Figure 4.34 shows the best obtained layout
using the Dynamic FS algorithm [CZa19] and the proposed algorithm. On both fig-
ures, the functionally incompatible components are highlighted in orange and blue
for the heat constraints and orange for the electromagnetic constraint. Moreover,
the redder the components, the heaviest their corresponding masses.

Oboe-CCEA [Ten+09] Dynamic FS [CZa19] GA+CSO-VF

Assignment x 1e6 1.75e5
Layout 1e6 1e6 2.7e5

Table 4.10: Allocated budget in terms of function evaluations for the assignment
and layout tasks and the three compared algorithms. ”x” is written when the metric
is irrelevant and ”-” is written when the data is unavailable.

Metrics Oboe-CCEA
[Ten+09]

Dynamic FS
[CZa19]

GA+CSO-VF

Mean of final
inertia

718.93 694.06 682.96

STD of final
inertia

2.64 2.96 2.73

Best layout 712.99 689.00 676.75
Worst layout 726.59 700.37 688.45
Success rate 60% 80% 100%

Table 4.11: Numerical results for the multi-container SMLP obtained thanks to the
three compared algorithms.

The proposed algorithm allows to improve the average final inertia by respec-
tively 5% and 1.6% in comparison to the Oboe-CCEA algorithm with the fixed
component assignment scheme based on human experience and to the Dynamic FS
algorithm with optimized assignment schemes. It also improves the best obtained
layout by respectively 5.08% and 1.78% in comparison with the two same algo-
rithms. Moreover, it must be highlighted that the worst layout obtained using the
GA assisted-CSO-VF algorithm remains lower i.e., better than the best layouts ob-
tained by both Oboe-CCEA and Dynamic FS algorithms. The success rate reaches
100% for the proposed algorithm against 80% for the Dynamic FS algorithm and
60% for the Oboe-CCEA algorithm. In other words, each of the 50 runs provides
a feasible solution corresponding to one optimized assignment list of given by the
upper stage of the proposed algorithm. However, the Oboe-CCEA has the smaller
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standard deviation which is increased by 12.1% by the Dynamic FS algorithm and
3.1% by the proposed algorithm.

Furthermore, Table 4.10 shows that the proposed algorithm has a lower com-
putational budget in terms of number of objective function evaluations for both
assignment and layout tasks than the two other algorithms. The routines are im-
plemented in Python language, and when executed on a PC with an Intel Core i7,
16 GB of RAM and Windows operating system the upper level lasts 3 to 4 minutes
and the lower level a dozen of minutes. Therefore, the computational time of one
instance of the GA assisted-CSO-VF algorithm is approximately 15 minutes.

The proposed GA assisted-CSO-VF provides general better performance than
the Oboe-CCEA and Dynamic FS algorithm regarding two aspects:

• The assignment scheme: The proposed assignment task resolution allows to
position the components such that their center of gravity coincides with the
center of gravity of the empty module which contributes to a better global
inertia.

• The layout: As highlighted in the sections dedicated to single-container SMLP,
the CSO-VF outperforms the population-based counterparts like GAs thanks
to its ability to solve the constraints with dedicated operators. Indeed, Figure
4.34 shows that the CSO-VF algorithm systematically positions the heavier
components closer to the center of the surfaces which contributes to minimize
the global inertia of each container. On the contrary, it is observed that
the Dynamic FS algorithm sometimes positions small and light components
around the central bus.
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Figure 4.33: Best final layouts obtained with the Oboe-CCEA algorithm [Ten+09]
and the proposed algorithm. The redder the components, the higher their corre-
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Figure 4.34: Best final layouts obtained with the Dynamic FS algorithm [CZa19] and
the proposed algorithm. The redder the components, the higher their corresponding
masses.
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4.4 Advantages and limitations of the proposed

algorithms

4.4.1 CSO-VF algorithm

The main advantages of the CSO-VF algorithm are summarized as follows:

• The constraints are handled in an inherent way thanks to dedicated operators
like the virtual-force system, the swap operator and the initialization strategy.

• The CSO-VF algorithm performance is independent from the number of com-
ponents i.e., from the number of design variables, thanks to its inherent de-
centralized aspect.

• The CSO-VF algorithm only relies on the computation of the forces and
torques which are simple mathematical operations and makes it compatible
with GPU programming. Thus, it generally provides reasonable computing
time.

Despite these strengths, some limitations are highlighted:

• The CSO-VF algorithm is a local search algorithm and locally improves the
non convex objective function. Consequently, initialization of the layout has
a critical impact on the final obtained layout and the convergence speed.

• The number of hyperparameters depends on the virtual-force system and es-
pecially on the number of gradient-based forces and torques stepsizes. Highly
constrained problems can then lead to a high number of hyperparameters.

• The CSO-VF algorithm as described in Chapter 3 and Chapter 4 does not
allow to tackle the multi-container configuration. On the one hand, it can-
not deal with the assignment task. On the other hand, it cannot deal with
constraints defined on several containers at the same time (e.g., overlapping
between components on surfaces facing each other, functional constraints de-
fined in 3-dimensions, etc.). The virtual-force system should be extended to
deal with these specificities.

4.4.2 Two-stage algorithm combining Genetic Algorithm
and CSO-VF

The strengths of the two-stage algorithm are listed below:

• The two-stage (GA+CSO-VF) algorithm allows to tackle each of the assign-
ment and layout tasks separately using dedicated methods. This facilitates
the constraints solving as well as the exploration of the search spaces related
to each task.

• As the upper stage provides an archive of assignment schemes, no sequential
resolution is needed which tends to decrease the computational budget.
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• The combination of the genetic algorithm and the CSO-VF algorithm allows
to deal with a high number of components as both algorithms can deal with
several hundreds of design variables.

Some limitations are nonetheless identified:

• The structure of the algorithm requires that the assignment and layout tasks
can be addressed separately. This is not necessarily the case for all multi-
container optimal layout problems.

• The upper stage also supposes that the assignment task can be mathematically
formulated which might involve problem specific knowledge.

• In its current formulation, the algorithm is unable to deal with some con-
straints that involve several surfaces as their layouts are solved in independent
optimization processes. For instance, overlapping constraints between com-
ponents positioned on facing surfaces as well as functional constraints with
3-dimensional safety zones could not be handled.

4.5 Conclusions of the first part

This first part of the manuscript was devoted to fixed search space (FSS) optimal
layout problems. In Chapter 2, a survey of existing methods for solving FSS op-
timal layout problems has been conducted. The advantages and limitations of the
methods have been highlighted, which lead to particularly focus on quasi-physical
approaches based on virtual-force systems. This range of methods seemed promis-
ing in order to address highly dimensional and highly constrained optimal layout
problems. Virtual-force systems-based existing algorithms in the field of optimal
layout problems were developed for solving circular packing problems. However, the
formulation of such problems did not encompass all the geometrical configurations,
all the constraints and all the objective and constraints functions that are considered
in this thesis.

Consequently, Chapter 3 focused on formulating the optimal layout problems
at hand and detailed a quasi-physical approach based on a virtual-force system.
The Component Swarm Optimization algorithm based on a Virtual-Force system
is designed for solving single-container optimal layout problems. It allows to deal
with all shape of components and containers with the introduction of torques in its
virtual-force system. It permits to deal with any constraint or objective functions
differentiable with respect to the design variables using gradient-based forces and
also allows to deal with the balancing constraints in the case were exclusion zones
belong to the container and that no relaxation of this constraint is possible. A swap
operator has been introduced which contributes to provide first feasible solutions in
less iterations and to propose new configurations of the layout in case of stagnation
of the convergence for example due to antagonist forces.

Then, the single-container optimal layout problems statement has been extended
to multi-container configurations. Such problems require to assign each component
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to a container while optimizing the layout of each container and thus have a high
combinatorial design space in addition to the high dimensional and constrained
characteristics. A two-stage GA assisted-CSO-VF algorithm has been proposed for
solving the assignement and layout tasks using two dedicated algorithms. The upper
stage is a discrete Genetic Algorithm solving the assignation task and the CSO-VF
algorithm is employed to solve the layout of each container in a lower stage.

Finally, Chapter 4 proposed application cases to evaluate the performance of the
algorithms described in the previous chapter. Satellite Module Layout Problems
were formulated as representative benchmarks of optimal layout problems. A single-
container derived from the multi-container satellite module layout problem has been
formulated and used for analyzing both the configuration of the CSO-VF algorithm
and its global performance in comparison with GAs and a CMA-ES algorithm and
for several occupation rates of the container. As a result, the CSO-VF algorithm
provides better performance in terms of success rate, convergence accuracy, robust-
ness, convergence speed and ability to solve the constraints in comparison to the GA
and CMA-ES algorithm counterparts. Indeed, the dedicated operators for handling
each of the constraints provided by the virtual-force system and the swap operator
allow the CSO-VF algorithm to outperform population-based counterparts for the
same number of evaluations of the objective function. It must also be noted that
the CSO-VF algorithm relies on simple operations i.e., the forces equations which
is compatible with GPU programming and thus provides reasonable computational
times.

The multi-container SMLP has been detailed in order to evaluate the perfor-
mance of the two-stage GA assisted-CSO-VF algorithm in comparison with previ-
ous published results. The GA upper stage responsible for the assignation task has
been configured using an analysis of the objective function equations. This same
analysis allowed to identify some deficiencies in the present inertia equations which
should be corrected in future experiments. The CSO-VF was employed as a lower
stage to solve the layout of the components within the four assigned surfaces. The
proposed algorithm outperforms the previously published results in terms of suc-
cess rate, convergence accuracy and best layout obtained in less objective function
evaluations. The analysis of the equations and the aforementioned strengths of the
CSO-VF algorithm allowed to find both satisfying assignment scheme and layouts.

Finally, the CSO-VF algorithm has also been adapted and applied to balanced
circular bin packing problems [He+13]. In Appendix E, the algorithm, its settings
and the assessment of its performance using balanced circular bin packing bench-
marks are detailed.

In this part of the manuscript, only optimal layout problems with fixed search
space have been addressed. However, as described in the Introduction of the manuscript,
optimal layout problems can more generally involve architectural choices that must
be defined together with the optimal layout process. This can be translated by
conditional search space optimal layout problems which have an additional task
corresponding to the choice of the list of the components to integrate to the system
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in addition to the optimization of its layout. Thus, in the following part of the
thesis, the fixed search space problems considered in this first part are extended to
conditional search Space optimal layout problems.
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Conditional Search Space Optimal
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Chapter goals

5.1 Introduction

In the first part of the thesis, fixed search space optimal layout problems (OLPs)
have been addressed. A fixed set of components was defined such that the number
and type of design variables and constraint functions remained constant throughout
the optimization process.

However, as mentioned in the introduction of this manuscript, some architecture
choices cannot be made beforehand and must be defined together with the optimal
layout process. For instance, considering the optimal layout of wind farms which
consists in maximizing the power produced by wind turbines positioned in the farm
as well as wake effect limitation [Sam13], the number of wind turbines has a strong
influence on the power produced as well as on the wake effect and can thus be
considered as a variable in the optimization process [Gon+11; Rye+17].

Considering a variable number of items to position makes the number and type
of design variables vary from one subproblem to another, as well as the number
and type of constraints. The choices related to the architecture definitions (i.e., the
choice of the components to be integrated to the system) can be represented with
categorical or qualitative variables in the optimization problem formulation. These
variables are named conditional variables [Swe+14] as they influence the number and
type of continuous and discrete variables defining the layout, as well as the number
and type of constraint functions. They are also called metavariables [Rye+17], di-
mensional variables [Pel+21], etc. Therefore, the resulting problems are referred to
as conditional search space problems [LPS05]. They are also sometimes referred to
as variable-size design space problems [NAO15; Pel+21].

The most naive approach to this type of problems could be to optimize the
subproblems for each of the possible architecture definitions [Fra+18]. Considering
the wind farm optimal layout problem, this approach would consist in optimizing
the layout of the wind farms for all possible numbers of wind turbines and choose
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the best one with relation to their power production. However, depending on the
complexity of the system at hand, several thousands of architecture definitions can
sometimes be considered and this approach may be very time consuming and in
some cases unfeasible. Consequently, the layout of the system must be optimized
simultaneously with some of the design variables which define it. Allowing the
number of components to vary during the optimization process may provide a better
solution in the end.

Conditional search space (CSS) problems belong to the NP-hard class of prob-
lems and are therefore not solvable using classical optimization methods [WTS09b].
Dealing with CSS problems arises additional challenges notably because of the in-
troduction of conditional variables and the ensuing conditional complexity (i.e., the
number of subproblems linked to the architecture choices defined by the conditional
variables). Considering such variables requires to extend the approaches presented
in the previous part.

The objectives of this chapter are to present the mathematical definition of CSS
problems, to specify the formulation in the case of OLPs, to raise and discuss the
issues related to both defined problems as well as to provide reviews of the existing
techniques developed to handle them. In the first section of this chapter, CSS
problems are mathematically formulated and specified in the case of OLPs. Then,
the existing methods adapted to handle CSS problems are reviewed in the second
section. These methods are then summarized and discussed in the two last sections
of this chapter which allows to highlight the need for the methods developed in this
second part of the manuscript.

It must be noted that, in the literature, very few OLPs integrate a conditional
search space [Gon+11; Rye+17]. Thus, in this chapter, all application cases are
considered in order to review the existing methods for solving CSS problems which
could possibly be used in case of CSS OLPs.

5.2 Conditional search space problems

formulation

The formulation of fixed search space (FSS) problems formulation presented in
Chapter 1 is extended in order to add the conditional search space (CSS) aspect. In
this section, CSS problems are defined and specified in the case of OLPs.

5.2.1 Generic mathematical formulation

A generic CSS optimization problem can be defined using three types of design
variables, listed and detailed as follows:

• Continuous variables: x
As defined for FSS problems, continuous variables correspond to real numbers
defined within given intervals.
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• Discrete variables: z
As for FSS problems, discrete variables can be quantitative i.e. integers defined
within given intervals, or qualitative i.e. non-relaxable variables defined within
a given set of choices.

• Conditional variables: w
These variables are non-relaxable variables defined among a finite set of pos-
sibilities. According to their values, the number and type of continuous and
discrete variables that have to be optimized in the problem may vary, the
considered constraints as well. These variables, specific to the formulation of
conditional search space problems, often correspond to different architectural
choices. According to the number of conditional variables as well as their val-
ues, the number of FSS subproblems of the problem corresponding to each
of the architecture definition varies. Each subproblem is defined by a set of
continuous and discrete variables to optimize as well as constraint functions.
Thus, the number and values of the design variables as well as the constraints
vary during the optimization process. Those variables are also referred to as
meta variables, as in [AHD23] in which a general mathematical framework
to integrate meta and categorical variables is proposed. They can also be re-
ferred to as dimensional variables as in [Pel+21]. Finally, the term hierarchical
variables can also be met [Bus+21].

As a result, a conditional variable vector w has a dimension of nw while continu-
ous and discrete variable vectors x and z have respectively dimensions of nx(w) and
nz(w) depending on the values taken by the conditional variables. Therefore, con-
tinuous and discrete variables will sometimes be referred to as depending variables
[AHD23]. Thus, similarly to what is proposed in [LP04; LPS05; Pel+21], a generic
conditional search space problem can be formulated as follows:

min
x,z,w

f(x, z,w)

where x ∈ Fx(w) ⊆ Rnx(w), z ∈ Fz(w) ⊆ Nnz(w),w ∈ Fw

s.t. h(x, z,w) = 0

g(x, z,w) ≤ 0

(5.1)

where f is the objective function, and h and g correspond respectively to equality
and inequality constraints. They take as arguments: continuous variables x which
search space is named Fx(w), discrete variables z which search space is Fz(w) and
conditional variables w which search space corresponds to Fw, as described previ-
ously.

5.2.2 Conditional search space optimal layout problems

Considering conditional search space (CSS) OLPs as representative CSS problems,
the general mathematical formulation given in the previous section is specified in
this case. In most of the OLPs tackled in the literature, the set of components to
position in a container is fixed at the beginning of the optimization process. They
correspond to fixed search space (FSS) problems described in Chapter 1.
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In this thesis, in the case of CSS OLPs, a catalogue of components is defined at
the beginning of the optimization process and thus, the main concern is to optimize
the list of the components among the given catalogue as well as their layout in
the container. Indeed, some design requirements can be met using several sets of
components. For instance, a same amount of fuel can be loaded to a vehicle using
one large tank of fuel but also two smaller ones. Another example would be to
integrate a required battery power using different batteries with varying power.

Design Variables. The design variables of a CSS optimal layout problem are
listed as follows:

• Continuous variables x: As for FSS problems considered in the first part of
the thesis, continuous variables can correspond to the centers of inertia and
angular orientations of the components.

• Discrete variables z: As for FSS problems considered in the first part of the
thesis, discrete variables can correspond to one or several coordinates of the
centers of inertia of the components as well as their orientations depending on
the problem specifications [ST03]. They can also correspond to the geometry
of the items (round, square, rectangle). In case of multi-container problems,
discrete variables can also correspond to the the container index in which each
component is positioned [CZa19].

• Conditional variables w: The conditional variables stand for the choice of
components to be included within the system at hand. When all items are
similar, the conditional variables can merely correspond to the number of
components to be included to the system. For instance, in the case of CSS
wind farms OLPs, the wind turbines are identical. Then, only one conditional
variable taking the value of the number of turbines can be used [Gon+11].
However, in case of various shapes, sizes and types of components, several
conditional variables are needed to express the choice of components. In this
thesis, conditional variables correspond to the different possible subdivisions of
each family of components that are listed in the catalogue of components. For
example, in the case of an aircraft design, a requirement might be to include a
certain amount of fuel to the system. A family of components ”Tanks of fuel”
is thus needed and a catalogue with different subdivisions of tanks is given
allowing to include this amount of fuel with several different components that
can be chosen. The same goes for the battery. Figure 5.1 gives an example of
the possible values of conditional variables for different numbers of hydrogen
tanks of fuel integrated within an aircraft [Kha+13].

Depending on the value ofw, the number of components to position in the con-
tainer varies and consequently the number of continuous and discrete variables
characterizing the layout vary as well.

If N components must be positioned in the container and each of them has ni

possible subdivisions (i ∈ {1, N}), then the number of possible architecture con-
figurations (i.e., the number of different possible lists of components) corresponds
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w=1 w=2

Figure 5.1: Example of conditional variables for two possible subdivisions of hydro-
gen tanks of fuel (7 tanks or 4 tanks) positioned within an aircraft [Kha+13].

to the cardinality of the set of achievable values of w, Fw, and is mathematically
defined as:

Card(Fw) =
N∏
i=1

ni (5.2)

Objective Function and Constraints. The possible objective and constraint
functions remain similar to those detailed in the case of CSS OLPs in Chapter 1.

The objective function to minimize can correspond to: the occupied volume of
the components within the system, mechanical characteristics like for instance the
global inertia of the system or the position of the center of gravity, any performance
of the system as for example the power production, any costs related to the layout
of the system, etc.

The possible constraint functions are also briefly summarized:

• Geometrical constraints: For instance, no overlapping between the compo-
nents, no overlapping between the components and the container, balancing
constraints (i.e., the global center of mass must be positioned at the geomet-
rical center of the container), etc.

• Functional constraints: For instance, proximity or minimal distance re-
quirements between components for functional exigencies. This can be radia-
tive threshold (e.g., electromagnetic compatibility).

The number and type of constraints depend on the conditional variables w. For
instance, the number of overlapping constraints depend on the number of compo-
nents chosen thanks to the conditional variables. In the same way, the number and
type of functional constraints depend on the number and type of functional compo-
nents integrated to the system.
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5.3 Review of methods for conditional search

space problems

As mentioned in Section 5.1, the aforementioned formulation of CSS optimization
problems has only been applied very rarely to OLPs in the literature. Therefore, this
section reviews and details the different existing approaches for CSS optimization
problems in general, independently from their experimental case studies.

5.3.1 Exact exploration of the conditional search space

The first existing approach consists in optimizing independently the subproblems of
the CSS problem at hand which correspond to each combination of the conditional
variables. Therefore, the optimization is performed over the relevant depending
continuous and discrete variables for every FSS subproblems defined by a unique
combination of the fixed conditional variables. This approach allows to fully explore
the conditional search space and can theoretically provide a consistent convergence
towards the global optimum of the CSS problem in case of robust convergence to-
wards global optimum of all FSS subproblems. Using the previous formalism, this
approach can be mathematically formulated as follows [AHD23; Pel20]:

min
x,z

f(x, z,ws) ∀ ws ∈ Fw

where x ∈ Fx(ws), z ∈ Fz(ws)

s.t. h(x, z,ws) = 0

g(x, z,ws) ≤ 0

(5.3)

An example of the approach is given in [Fra+18]. Frank et al. developed a
methodology in order to explore large multi-architecture design space in the context
of optimal design of aerospace vehicles. A systematic process was developed in order
to generate architectures. Each of these architectures is subsequently optimized
using a metaheuristic multi-objective optimization algorithm. Finally, the Pareto
fronts obtained for each architecture are merged in order to perform a global analysis
of their performance.

It must be noted that the ability of the approach to deal with mixed-variable
problems and to handle the constraints depends on the chosen algorithm to optimize
the subproblems. Nonetheless, even if this approach allows to fully explore the
relevant search space, it can become inefficient or even unfeasible for complex CSS
problems characterized either by a large number of combinations of conditional
variables or by computationally expensive functions.

5.3.2 Direct search methods for conditional search space

In [AHD23], Audet et al. defined a generic mathematical framework to both for-
malize the subproblems definition and the exploration of such subproblems based
on direct search techniques [AAD07; AD01; AD06; KAD01]. The framework used
corresponds to Pattern Search (PS) algorithms, also referred to as mesh-based algo-
rithms. PS algorithms are direct search methods that do not require any gradient
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information of the objective and constraints functions and can be thus applied to dis-
continuous or non-differentiable functions [Tor97]. In PS algorithms, the objective
function is evaluated at a finite number of points on a mesh at any given iteration,
in order to find one that yields a decrease in the objective function value. Each
iteration begins with the incumbent solution point and the construction of a mesh
which is explored in two sequential phases. First, a user-defined search phase ex-
plores many points and aims at improving the incumbent. If it fails, the poll phase is
called corresponding to a potentially exhaustive local search of the mesh around the
incumbent solution point. PS algorithms have been extended for mixed-variables
problems and used in [Abr+09; AAD07; AD01; KAD01; LVM05].

In [AHD23], a new user-defined neighborhood is mathematically formulated for
exploring the conditional search space. Indeed, conditional variables are often de-
fined as qualitative discrete (i.e., categorical variables), which do not possess intu-
itive neighborhoods nor directions of exploration. The user-defined neighborhood
is then used in a direct search framework. The authors also proposed to solve each
FSS subproblem with the MADS (Mesh Adaptive Direct Search) algorithm [AD06;
ADT19] as it enables to treat simultaneously discrete and continuous variables with
the constraint-handling technique proposed in [AD09]. It must be noted that any
technique allowing to tackle FSS mixed-variables can be employed for solving the
FSS subproblems of the global CSS problem.

Even if the mathematical framework proposed in [AHD23] formally models the
conditional search space and its exploration, no computational experiments has yet
been carried out with this mathematical framework [AHD23].

5.3.3 Extension of metaheuristic methods

In order to deal with conditional search space (CSS) problems, metaheuristic meth-
ods have been extended in order to take advantage from their global exploration
abilities as well as the variety of generic frameworks that can be used.

5.3.3.1 Particle Swarm Optimization

In [EMS09], Escalante et al. used PSO with the original particle implementation
to solve the Full Model Solving (FMS) problem. FMS consists in optimizing a
combination of processing methods, one feature selection and one learning method
as well as their hyperparameters in order to solve classification tasks. This problem
is thus a CSS problem as the number and type of hyperparameters depend on the
selected algorithms. The authors implemented the FMS with a classical particle
mixed-variable representation. Variables are needed for:

• The choice of a combination of preprocessing method(s) and the corresponding
hyperparameters settings;

• The choice of the feature selection algorithm and the corresponding hyperpa-
rameters settings;

• The choice of the classification algorithm and the corresponding hyperparam-
eters settings.
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The full-models are built using The Challenge Learning Object Package (CLOP)
which is a machine learning toolbox [SG06]. Figure 5.2 sums up the different pos-
sible objects in the CLOP environment for each component (preprocessing, feature
selection and learning algorithms) of the full-models.

Object name Hyperparameters
1 Normalization Center
2 Standardization Center 
3 Shift-scale 𝑡𝑎𝑘𝑒𝑙𝑜𝑔

Object name Hyperparameters
1 Ftest 𝑓𝑚𝑎𝑥 ,𝑤𝑚𝑖𝑛,𝑝𝑣𝑎𝑙 ,𝑓𝑑𝑟𝑚𝑎𝑥

2 Ttest 𝑓𝑚𝑎𝑥 ,𝑤𝑚𝑖𝑛,𝑝𝑣𝑎𝑙 ,𝑓𝑑𝑟𝑚𝑎𝑥

3 aucfs 𝑓𝑚𝑎𝑥 ,𝑤𝑚𝑖𝑛,𝑝𝑣𝑎𝑙 ,𝑓𝑑𝑟𝑚𝑎𝑥

4 odds-ratio 𝑓𝑚𝑎𝑥 ,𝑤𝑚𝑖𝑛,𝑝𝑣𝑎𝑙 ,𝑓𝑑𝑟𝑚𝑎𝑥

5 relief 𝑓𝑚𝑎𝑥 ,𝑤𝑚𝑖𝑛, 𝑘𝑛𝑢𝑚
6 rffs 𝑓𝑚𝑎𝑥 ,𝑤𝑚𝑖𝑛

7 svcrfe 𝑓𝑚𝑎𝑥

8 Pearson 𝑓𝑚𝑎𝑥 ,𝑤𝑚𝑖𝑛,𝑝𝑣𝑎𝑙 ,𝑓𝑑𝑟𝑚𝑎𝑥

9 Zfilter 𝑓𝑚𝑎𝑥 ,𝑤𝑚𝑖𝑛

10 gs 𝑓𝑚𝑎𝑥

11 s2n 𝑓𝑚𝑎𝑥 ,𝑤𝑚𝑖𝑛

12 pc-extract 𝑓𝑚𝑎𝑥

Object name Hyperparameters
1 zarbi none
2 naive none
3 klogistic none
4 gkridke none
5 logitboost Units number, shrinkage,depth
6 neural Units number, shrinkage, maxiter, balance
7 svc Shrinkage, kernel parameters (coef0,degree,gamma)
8 kridge Shrinkage, kernel parameters (coef0,degree,gamma
9 rf Units number, balance, mtry
10 lssvm Shrinkage, kernel parameters (coef0,degree,gamma) 

Preprocessing objects Feature selection objects

Learning objects

Figure 5.2: Preprocessing, feature selection and learning objects available in the
CLOP environment as well as their hyperparameters.

Then, for the FMS problem tackled in [EMS09] each particle is composed of
16 variables both continuous or discrete. To be evaluated, the particles are then
decoded using the CLOP toolbox. If an object has less hyperparameters than the
maximum number of possible hyperameters for its type of objects, then only a part
of the hyperparameters variables are used to build the full-model.

Thus, this formulation allows to use classical metaheuristic frameworks as well
as classical evolution operators. However, the depending variables corresponding to
the hyperparameters of each component of the full-model are here grouped under
shared variables. Indeed, for each component of the full-model (preprocessing, fea-
ture selection and learning algorithms), the number of variables dedicated to the
hyperparameters settings corresponds to the maximum number of hyperparameters
of such component. Therefore, if the hyperparameters of several algorithms share
design variables but are of different types and take values from different ranges of the
continuous search space, such an implementation will lead to suboptimal solutions
as well as very low convergence rates. Moreover, this implementation is not always
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extendible to other application cases especially in case of complex conditional search
space where the depending variables are very different from one subproblem to the
other in terms of number, types and values.

To sum up, as the choice of conditional variables result in various numbers of
depending continuous and discrete design variables, classical linear variable vector
implementations can often not be used directly with metaheuristic frameworks and
need to be adapted as well as the classical evolution operators. The following sections
are dedicated to metaheuritics in which the encodings of the individuals of the
population have been modified to allow a conditional search space.

5.3.3.2 Variable-length metaheuristic algorithms

In this approach, all the variables (sometimes referred to as metavariables) of the
genotype are used in the phenotype i.e., all the variables of each individual are used
to compute the objective and constraint functions. Saraf et al. reviewed various
metaheuristic algorithms with variable-length searching [SFT23]. Variable-length
representations have mostly been included into GA frameworks [CML19; DKB18;
LBE18] as well as PSO frameworks [KŠ18; Moh+21; TXZ18]. For the sake of con-
ciseness, only variable-length GAs are detailed in this section. In [Rye+17], Ryerkerk
et al. introduced metameric GA using a variable-length representation and adapted
GA operators to deal with this representation. This variable-length approach is
applied to 3 application cases: sensor coverage, wind farm layout and laminate
stacking. Even if selection and replacement operators can remain the same as for
usual GA chromosomes representation, crossover and mutation operators must be
adapted.

In the following sections, in order to illustrate the evolutionary operators, the ith

gene of the jth parent chromosome is denoted pji . The children obtained from the
parents chromosomes correspond to recombination and mutation of the aforemen-
tioned parents genes.

Crossover. First of all, the most used variable-length crossover operator is the
cut-and-splice crossover which is a n-point crossover operator in which the crossover
points do not have to match between the two parents. As a result, the parents
and the offspring do not have necessarily the same length. Figure 5.3 illustrates
the cut-and-splice crossover operator for two parents chromosomes with the same
length (i.e, 7 variables pji , j ∈ {1, 2} and i ∈ {1, ..., 7}) and with fully independent
variables.

Some additional challenges may arise when the design variables are not indepen-
dent. For instance, in the case of OLPs, a component is located by its coordinates
corresponding to two continuous design variables. Then, those two variables must
be recombined together from parents to children. Consequently, crossover points
must be chosen carefully. Other crossover operators for variable-length chromo-
somes have been developed like the spatial recombination [CP06] and the synapsing
variable-length crossover [HW07].
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Parents Children

𝒑𝟏
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Cut-and-
splice

Figure 5.3: Cut-and-splice recombination operator on an example, for independent
genes.

Mutation. Different kinds of mutations were introduced in addition to classical
mutation operators occurring on the metavariables. For instance, the insertion mu-
tator involves inserting a new sequence of genetic material into the genome at a
random point while the deletion mutator removes a section of the genetic material
at a random point [BM05]. Figure 5.4 illustrates the insertion and deletion muta-
tors for the same parents chromosomes introduced in the previous paragraph: two
parents with seven independent genes are considered.

Parents Children

Insertion
𝒑𝟏
𝟏 𝒑𝟐

𝟏 𝒑𝟑
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𝟐 𝒑𝟕
𝟐

Figure 5.4: Insertion and deletion mutation operators for variable-length chromo-
somes representation on an example, for independent genes.

As for the variable-length crossover operators, difficulties arise when performing
those mutations in order to preserve a coherent structure of the variable chromo-
somes (i.e. that the sequence of variables in a chromosome always corresponds to a
combination of conditional variables). Other mutation operators exist like the swap
or the parameter mutations [BM05].

The ability of this algorithm to handle the mixed-variables aspect and the con-
straints depends on the chosen metaheuristic algorithm as well as the chosen oper-
ators and constraint handling techniques.

5.3.3.3 Dynamic-Size Multiple Populations Genetic Algorithms

In [AG12], Abdelkhalik et al. described a Dynamic-Size Multiple Populations GA
(DSMPGA) which follows a decomposition principle: initial subpopulations corre-
sponding to sub-problems are generated. Thus, the members in each subpopulation
will have the same chromosome length while different subpopulations will have dif-
ferent chromosome lengths. Subsequently, classical GA operators are applied to all
subpopulations in parallel during a certain number of generations called a stage of
generations. The individuals are then evaluated by the end of each stage and a
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selection operator is applied independently from the length of the individuals. As
a result, the size of subpopulations with more interesting solutions increases while
the size of less interesting solutions subpopulations decreases. Figure 5.5 illustrates
the DSMPGA algorithm on an example with 4 initial subpopulations and 3 stages
of generations. On the figure, for clarity purpose, the subpopulations are denoted
with the letters A to D and are highlighted in blue, orange, yellow and green. In
each subpopulation, the number of letters A to D corresponds to the size of the pop-
ulation. Thus, at the initial stage, all four subpopulations are the same size (i.e.,
5 individuals on the example). Subsequently, the sizes of each subpopulation vary
throughout the stages of generations. Moreover, each subpopulation is assigned a
gray level which characterizes the fitness value of the best individual in the subpop-
ulation. The darker is the gray level, the higher (i.e., the better) is the best value
of the fitness in the subpopulation.

This DSMPGA algorithm has been successfully applied to the optimization of
trajectory of interplanetary missions where conditional variables correspond to the
number of swing-bys and the planets to swing by resulting to appearance and dis-
appearance of variables describing the orbital maneuvers. 140 subpopulations were
necessary to solve the problem resulting in 2800 individuals in the whole population.
As the number of initial subpopulations depends on the number of combinations of
conditional variables, this method may not be suitable for problems characterized by
a large number of combinations of conditional variables as well as computationally
expensive functions.

5.3.3.4 Structured Genetic Algorithm

Nyew et al. [NAO15] proposed a Structured GA with a more complex but theo-
retically more efficient chromosome implementation than previous adaptations. In
the Structured GA, multilayer chromosomes are implemented depending on a hi-
erarchical representation rather than a linear one. In this framework, the genes in
the chromosomes are classified with dependency rules. Certain variables exist in the
depending space only if some other variables (the conditional variables) take spe-
cific values. These dependencies are translated into the hierarchical representation.
Figure 5.6 shows the multilayer chromosome representation [NAO15]. The same
formalism as in Section 5.3.3.2 is employed to denote the genes of the chromosome.
On Figure 5.6, a standard representation of a chromosome is shown, where genes
are stacked together in one string. The genes are not linked and thus, the number
of genes is independent from the value of any gene in the chromosome. The multi-
layer chromosome structure is also shown, where the genes are organized in different
layers. In this representation, the value of gene p12 determines how many genes exist
in the second layer (two genes p14 and p15).

Classical crossover and mutation operators cannot be applied in case of a Struc-
tured GA due to the new representation of the chromosomes and are detailed in the
following.

138



5.3. Review of methods for conditional search space problems

A
A
A
A
A

A
A
A
A
A

A
A
A
A

A
A
A
A

A
A
A

A
A
A

B
B
B
B
B

B
B
B
B
B

C
C
C
C
C

D
D
D
D
D

D
D
D

D
D
D

C
C
C
C
C

D
D
D
D
D

D
D

D
D

B
B
B
B
B
B

B
B
B
B
B
B

B
B
B
B
B

B
B
B
B
B

C
C
C
C
C
C
C

C
C
C
C
C
C
C

C
C
C
C
C
C
C
C
C
C

C
C
C
C
C
C
C
C
C
C

Initial Stage Intermediate Stage Final Stage

Low 
Fitness

High 
Fitness

Figure 5.5: Illustration of the Dynamic-Size Multiple Populations GA on an example
[AG12].
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Figure 5.6: Structured GA multilayer chromosome representation compared to the
standard representation [NAO15].
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Crossover. In [NAO15], the proposed crossover operator exchanges genes which
are of identical types. Indeed, the recombination operators must guarantee a se-
mantically correct crossover and provide meaningful children. Figure 5.7 illustrates
the crossover operator. At the initial stage, the first parent chromosome contains
6 genes from ν1 to ν6 to and the second parent chromosome contains 4 genes ν ′

1 to
ν ′
4. The genes that have the same letter have the same type. A certain number of
exchanges, for instance 3, then occurs between the genes of the same type of the two
parents genetic material, layer from layer. In case of exchange between genes having
dependent variables, all the dependent variables of the genes are swapped. They are
still candidate for other exchanges when it will be their layer’s turn of exchanges.
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Figure 5.7: Crossover operator for Structured GA on an example [NAO15].

Mutation. The mutation operation allows a gene to take a new value. Each gene
has a predefined mutation probability and when a gene is selected for mutation, the
algorithm makes sure that the randomly generated new value is consistent with the
gene’s type (e.g., continuous, discrete or categorical). The generated value must
fall between the lower and upper bounds provided for the gene. The genes are mu-
tated from the highest layer to the lowest layers. Therefore, if the mutated gene
has dependent genes, then the dependent genes are created or deleted in a way that
ensures semantic correctness.

Transformation for Structured DE. In [NAO15], the authors also developed
a Structured DE algorithm and defined a new transformation operator encompass-
ing crossover and mutation operations. Transformation starts by selecting a tar-
get chromosome ptarget = {ptargetj }, for j ∈ {1, ..., N target

DV } and three other chro-
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mosomes (p1 = {p1j}, for j ∈ {1, ..., N1
DV }, p2 = {p2j}, for j ∈ {1, ..., N2

DV } and
p3 = {p3j}, for j ∈ {1, ..., N3

DV }), and it uses two steps to generate a child. The first

step is to create a temporary chromosome ptemp = {ptemp
j }, for j ∈ {1, ..., N temp

DV }
as follows:

ptemp = p1 + γ(p2 − p3) (5.4)

where γ is the differential weight that adjusts the influence of (p2 − p3) in the new
chromosome. The final step is to generate the offspring by crossover from the target
chromosome ptarget and the newly generated chromosome ptemp [NAO15].

The algorithm was efficiently applied to the optimization of trajectories of in-
terplanetary missions and in [Gen+19], the same implementation was used to solve
satellite tracking problems.

Such a method proved to be efficient to represent and implement complex op-
timization problems as multilayer chromosomes. However, this encoding is more
complex than all the other chromosome implementations described in this section.
Moreover, during the mutation operations, the mutations of conditional variables
may lead to the appearance of additional dependent variables and it is necessary
to ensure that a correct structure of the chromosome is preserved. Finally, the en-
coding of multilayers chromosome may often requires problem-specific knowledge in
order to be efficiently implemented.

5.3.3.5 Hidden-Genes Genetic Algorithms

Abdelkhalik et al. [GA11] developed a Hidden-Genes GA (HGGA). In this algo-
rithm, the chromosomes encompass all the genes of all subproblems corresponding
to the choice of all the possible combinations of conditional variables. Thus, all
chromosomes have the same length. However, not all the genes are taken into ac-
count when computing the values of objective and constraint functions. In order to
choose which genes are considered or not, activation genes directly related to the
conditional variables are introduced. One way to implement the activation genes
is to attach a tag vector to each chromosome of the population such that a tag
value is assigned to each gene of the chromosome. If the value of the tag is 0, then
the corresponding gene will not participate in the objective function evaluation and
reciprocally. Figure 5.8 illustrates the chromosome encoding with the tag vectors.

This representation has the advantage of allowing classical reproduction opera-
tors to be applied on design variables vectors as well as on tag vectors. Similar or
different crossover and mutation operators can be used for both the chromosome
and its associated tag vector. This encoding has the advantage of being intuitive
and easily implementable and generic to different problems. However, as all the
possibly present variables are encoded within all the chromosomes, the number of
genes may become considerably large and therefore inefficient memory-wise in case
of complex problems characterized by either a large number of combinations of con-
ditional variables or a large number of depending continuous and discrete variables
in each subproblem. It has been mostly applied to the optimization of interplan-
etary mission trajectories [Abd13; DA18; EAE22] but also for coverage and wind
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Figure 5.8: Chromosome representation in HGGA.

farm optimal layout [Rye+17].

In this section, different population-based algorithms are revisited in order to deal
with conditional search space problems have been reviewed. Mostly evolutionary
algorithms as well as PSO have been studied. They often consist in modifying the
implementation of the design variables in order to take into account the additional
conditional variables and their connections to depending variables. Other techniques
than metaheuristics have been adapted for conditional search space problems as for
instance, Bayesian Optimization introduced in the next section.

5.3.4 Bayesian Optimization

A machine learning technique that can be used for solving conditional search space
problems is Bayesian Optimization (BO) using Gaussian Processes (GP) which has
recently been applied for optimal design of various devices and systems especially in
case of black-box and computationally expensive objective functions [Sha+15]. GP
surrogate modeling is a technique for modeling complex and expensive-to-evaluate
systems using GP regression. It involves a GP to approximate the relationship
between inputs and outputs of a system (e.g., a black-box function), based on a
limited set of observations of the system. The GP model is then used as a surrogate
for the system, allowing for predictions at new input points without the need to run
the expensive simulation or evaluation of the black-box function. GP also provides
uncertainty models along with the prediction model. Figure 5.9 illustrates the GP
prediction and uncertainty models on an example [RCM20]. On the figure, a true
function (i.e., the black-box studied function) is shown by an orange dotted line.
Five observed values are illustrated in blue dots and are used by the GP in order
to build a mean predicted function illustrated by a blue line, as well as a confidence
interval shown with a light blue zone.

GP is then enriched during the optimization process in order to converge to the
optimum. The enrichment process involves an auxiliary optimization process of an
infill criterion in order to find the best valuable candidate to be evaluated at the
lower value of the criterion. Most of the surrogate modeling techniques as well as
Bayesian Optimization algorithm frameworks have been developed to model and
optimize continuous problems [JMW98]. However, they have lately been adapted

142



5.3. Review of methods for conditional search space problems

to deal with mixed-variable problems. The most naive approach consists in relaxing
discrete variables into continuous variables and rounded them afterward [GH20].
More advanced mixed continuous/discrete surrogate modeling techniques have been
developed and are reviewed in [BZ17], [Mec+01], [Pel+20] and [Swi+14]. Lately,
BO frameworks have also been adapted to deal with CSS optimization problems
[AHD23; Pel20]. In the following subsections, the BO frameworks using GP for
mixed-variables and then for CSS problems are detailed.

x

y

Observed values

True function

Mean of GP

Confidence interval

Best observed value

Figure 5.9: Illustration of the Gaussian Process surrogate prediction and uncertainty
models on an example [RCM20].

5.3.4.1 Bayesian Optimization for mixed-variables problems

Gaussian Process Surrogate Modelling. A surrogate model is created by gen-
erating a training data set T of n samples defined by their continuous and discrete
variables xi and zi as well as its corresponding objective function evaluation yi:
{xi, zi, yi} with i ∈ {1, n}. T is defined as follows:

T = {X = {x1, ...,xNDoE
} ∈ Fx,Z = {z1, ..., zNDoE

} ∈ Fz, y = {y1, ..., yNDoE
} ∈ Fy}

(5.5)
where X is the matrix containing the NDoE vectors of continuous variables, Z is the
matrix containing the NDoE vectors of discrete variables both constituting the train-
ing data set (with definition domain Fx and Fy), and y is the vector containing the
corresponding functions evaluations i.e., objective and constraints functions (with
definition domain Fy). A generic Gaussian Process Y(x, z) is defined by its mean
function µ and its covariance function also called kernel function Cov between two
samples {x, z} and {x′, z′}:

µ(x, z) = E[Y(x, z)] (5.6)

Cov(Y(x, z),Y(x′, z′)) = E[(Y(x, z))− µ(x, z))(Y(x′, z′)− µ(x′,y′))] (5.7)
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Thus, the GP describing the generic black-box function f(·) is defined as:

f(·) ∼ GP(µ(·), Cov(·)) (5.8)

It must be noted that the covariance function is often written k(·) such that:

Cov(Y(x, z),Y(x′, z′)) = k({x, z}, {x′, z′}) (5.9)

The GP predicts the function value ŷ at position {x∗, z∗} using a Gaussian
distribution described by the mean and kernel functions, and conditioned by the
training data set T . In that respect, the kernel function is a core component of the
GP surrogate modeling and is defined as an input space dependent parameterized
function. The predicted value f ∗ of this function at an unmapped location {x∗, z∗}
is then computed under the form of a Gaussian distribution conditioned on the data
set [RW06]:

f ∗|x∗, z∗,X,Z,y ∼ N (ŷ(x∗, z∗), ŝ(x∗, z∗)) (5.10)

where ŷ(x∗, z∗) and ŝ(x∗, z∗) are respectively the mean and standard deviation of
the function prediction. Expressions can be found in [RW06].

Kernels. Generally speaking, the kernel is a mathematical function that defines
the similarity between pairs of input points following the Reproducible Kernel
Hilbert Space (RKHS) formalism [RW06]. Consequently, it has a significant im-
pact on the performance of the GP (e.g., its prediction capabilities). In order for a
function k(·) to represent a valid covariance, there are two main requirements: k(·)
must be symmetric and positive semi-definite [Aro50]. To deal with mixed-variables
optimization problems, a popular approach to define valid kernels is to combine in-
dependent kernels defined in the continuous conditional space and kernels defined
in the discrete conditional space, as is proposed by Roustant et al. [Rou+20]:

k({x, z}, {x′, z′}) = kx(x,x
′)× kz(z, z

′) (5.11)

where kx(·) is a kernel defined with respect to the continuous variables and kz(·)
is a kernel defined with respect to the discrete variables. Examples of continuous
kernels can be found in [RW06]. Popular ones comprise Squared Exponential and
Matèrn.

Some discrete kernels have been developed in the literature. The most simple
one is the Compound Symmetry (CS) characterized by a single covariance value
for any non-identical pair of inputs [Rou+20]. A particular case of the CS kernel
is obtained by considering the covariance in the mixed continuous discrete search
space to be spatially dependent as a function of the so-called Gower distance, as is
proposed by Halstrup [Hal16]. In the Gower distance [Gow71], the coordinates of
the two samples that are being considered are compared dimension-wise. For the
continuous dimensions, the distance is proportional to the Euclidean distance, while
for the discrete dimensions the distance is the Hamming distance dH [ASN14].

Another noteworthy discrete kernel is the Latent Variable (LV) kernel proposed
by Zhang et al. [Zha+19]. Other discrete kernels exist such as the Hypersphere
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decomposition kernel [ZQZ11] or the Coregionalization kernel [ARL12]. Recently,
Saves et al. developed a class of kernels for GP models that extends the exponential
continuous kernels to the mixed-categorical setting. The authors showed that the
class of kernels generalizes Gower distance and continuous relaxation based kernels
[PSa+23].

Bayesian Optimization Algorithm. Each iteration of the Bayesian Optimiza-
tion process can be subdivided into two main phases: the first phase consists in
creating a GP based surrogate model of the objective and constraint functions from
the data set T . During the second phase, the algorithm minimizes or maximizes
an acquisition function whose aim is to determine the next promising location in
the design search space. The most employed acquisition function is the Expected
Improvement (EI) function [JSW98]. The EI function represents the expected value
of the improvement in terms of the objective function value and with respect to
the data set. It notably depends on the minimum of the objective value within the
data set at the given iteration and the mean and variance of the objective function
prediction. The EI acquisition function for mixed-variable formulations is expressed
as follows:

E[I(x∗, z∗)] = E[max(ymin − Y(x∗, z∗), 0)] (5.12)

E[I(x∗, z∗)] = (ymin−ŷ(x∗, z∗))Φ

(
ymin − ŷ(x∗, z∗)

ŝ(x∗, z∗)

)
+ŝ(x∗, z∗)ϕ

(
ymin − ŷ(x∗, z∗)

ŝ(x∗, z∗)

)
(5.13)

where ymin is the minimum feasible value present within the data set at the given
BO iteration, ŷ(x∗, z∗) and ŝ(x∗, z∗) are the mean and standard deviation of the
objective function prediction Y(x∗, z∗), Φ(·) is the cumulative distribution function
of the Normal distribution and ϕ(·) is the probability function of the Normal distri-
bution. The EI function thus provides a trade-off between the exploitation of the
search space, driven by the first member of Equation 5.13 and the exploration of
the search space, driven by the second member of the equation.

Other acquisition functions exist and are for instance reviewed in [PWG13].
Among other notable acquisition functions, the Upper Confidence Bound (UCB)
acquisition function [Sri+09] is expressed as follows:

UCB(x∗, z∗, λ) = ŷ(x∗, z∗) + λŝ(x∗, z∗) (5.14)

With UCB, the trade-off between exploration is tuned via the parameter λ. Indeed,
UCB is a weighted sum of the expected value captured by ŷ, and of the uncer-
tainty ŝ, captured by the standard deviation of the GP. When λ is small, BO will
favor solutions that are expected to be high-performing. On the contrary, when λ
is large, BO rewards the exploration of currently uncharted areas in the search space.

For the chosen acquisition function, an optimization process is needed to deter-
mine the most promising point (i.e., the point maximizing the acquisition function)
at each iteration. The acquisition function is expected to have a large number of
local optima between the locations of the data set samples. The search space of the
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acquisition function corresponds to the search space of the optimization problem at
hand. Then challenges arise when dealing with mixed-variables search space due to
the introduction of discrete or categorical variables. A possible approach consists in
optimizing the acquisition function in each category of the mixed-variables problem
(i.e., optimize the continuous variables for each value of the discrete variables). The
optimizations are then purely continuous and can be performed using exact or global
optimization techniques. This approach tends to become computationally inefficient
when it comes to large numbers of categories. Another approach then consists in
optimizing the acquisition function with the help of a mixed-variables optimization
methods like for example adapted GA [Pel+21; SNB98]. It must be noted that
those optimizations can be computationally expensive as they are performed on the
metamodels.

Then, at each iteration, the most promising point (i.e., the point maximizing
the acquisition function) is evaluated and added to the data set. At the next step,
the GP surrogate model is updated with this new added point. This process is
repeated until a stopping criterion is met. Figure 5.10 schematically describes the
BO framework. For clarity purpose, figures are integrated to the framework in order
to illustrate each step. They correspond to the first iteration of the process and to
a continuous search space.

Evaluation of the data set

0

Addition of the most 
promising point to the 
data set

Optimization of the infill 
criterionTraining of the GP model

Stopping 
criterion 

?

Initial training data set

Optimization of the 
infill criterion

End

Newly added pointInitial samples

Mean of 
Prediction

Variance of 
Prediction

Maximum of Acquisition Function

Value of Acquisition Function

True value of unknown function

No

Yes

Figure 5.10: Description of the Bayesian Optimization framework. The figures are
shown for the first iteration of the process and the illustrations correspond to a
continuous function.
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Constraint-handling in Bayesian Optimization framework. Different tech-
niques have been developed in order to handle the constrained optimization prob-
lems within BO frameworks as discussed in [DMB16], [PBD19] and [Sas02]. Among
them, the Probability of Feasibility (PoF) [SWJ98] and the Expected Violation (EV)
[Aud+00] approaches are the most employed.

The PoF approach consists in computing the acquisition function as the product
of the EI function formulation and the probability of feasibility which is defined as
the probability that all constraints of the problem are satisfied at the unmapped
location {x∗, z∗}:

PoF (x∗, z∗) =

Ng∏
i=1

P(Gi(x
∗, z∗) ≤ 0) (5.15)

where Gi(x
∗, z∗) is the GP prediction of the inequality constraint i (among Ng

inequality constraints) at the location {x∗, z∗}. Under the assumption that the GP
prediction follows a normal distribution of mean ĝi and standard deviation ŝgi i.e.,
Gi(x

∗, z∗) ∼ N (ĝi(x
∗, z∗), ŝgi(x

∗, z∗)), then Equation 5.15 can be written:

PoF (x∗, z∗) =

Ng∏
i=1

Φ

(
0− ĝi(x

∗, z∗)

ŝgi(x
∗, z∗)

)
(5.16)

The new infill criterion can thus be computed as:

IC(x∗, z∗) = E[I(x∗, z∗)]PoF (x∗, z∗) (5.17)

Finally, the location of the new infill point to be evaluated at a given BO iteration
is determined through the optimization of the following unconstrained problem:

max
x,z

IC(x, z)

w.r.t. x ∈ Fx ⊂ Rnx

z ∈ Fz ⊂ Nnz

(5.18)

Alternatively, the EV criterion can be used to handle the constraints in the BO
framework. The EV represents the expected value of the violation of a given con-
straint i.e., the difference between the predicted value and the maximum acceptable
value usually set to 0:

Vi = max(Gi(x
∗, z∗)− 0, 0) (5.19)

Then, the EV for a given inequality constraint gi is defined in a similar way to the
EI acquisition function:

E[Vi(x
∗, z∗)] = E[max(Gi(x

∗, z∗)− 0, 0)]

= (ĝi(x
∗, z∗)− 0)Φ

(
ĝi(x

∗, z∗)− 0

ŝgi(x
∗, z∗)

)
+ ŝgi(x

∗, z∗)ϕ

(
ĝi(x

∗, z∗)− 0

ŝgi(x
∗, z∗)

)
(5.20)
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Then, considering the EI function as the infill criterion, the location of the new
infill point to be evaluated at a given BO iteration is determined through the opti-
mization of the following constrained problem:

max
x,z

E[I(x, z)]

w.r.t. x ∈ Fx ⊂ Rnx

z ∈ Fz ⊂ Nnz

s.t. E[Vi(x, z)] ≤ δi for i ∈ {1, ..., Ng}

(5.21)

where δi is the maximum accepted violation for the constraint i.
Then, it must be noted that the two approaches lead to either an infill criterion

unconstrained optimization problem in the case of the PoF approach or to an infill
criterion constrained optimization problem in the case of the EV approach. Then,
it has to be taken into consideration when choosing an appropriate algorithm to
handle them [Pel+21].

5.3.4.2 Bayesian Optimization for conditional search space

Mixed-variable Bayesian Optimization frameworks were again extended to tackle
CSS problems. In [AHD23], the authors proposed a general mathematical frame-
work to model constrained mixed-variable optimization problems in a blackbox op-
timization context including metavariables and categorical variables. Their notation
supports main blackbox mixed-variable optimization approaches including surrogate
model-based techniques. As a result, specific kernels are required to handle CSS
as: the Arc [HO13a], Indefinite Conditional [ZH18b], Imputation [ZH18b], Wedge
[Hor+19], Budget Allocation Strategy [Pel+21], Sub-Problem-Wise (SPW) Decom-
position [Pel+21] and Dimensional Variable-Wise (DVW) Decomposition [Pel+21]
kernels. They are detailed in the following paragraphs.

Extended Square Exponential Kernels. A standard GP model does not incor-
porate information about a variable’s activity state (i.e., if a variable is relevant in
the conditional category at hand). The idea proposed in [HO13b; Swe+14; ZH18a]
is to integrate that knowledge into the kernel function. Thus, the Arc, Indefinite
Conditional, Imputation and Wedge kernels are based on the square exponential
kernel in which the distance has been modified following the principles of Hutter et
Osborne [HO13b] regarding the requirements to be met by kernels designed for CSS
problems.

Budget Allocation Strategy. The Budget Allocation Strategy is based on the
decomposition of the CSS problem into mixed-variable fixed search space subprob-
lems [Pel+21]. The underlying idea is to rely on the information provided by the
surrogate models of each subproblem objective and constraint functions along the
optimization process in order to determine which subproblems are more likely to con-
tain the global optimum. At each iteration of the process, this information provided
by the various subproblems surrogate models is exploited in order to allocate a dif-
ferent computational budget to each subproblem (in terms of infilled data samples)
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proportionally to how promising it is. Moreover, in order to further optimize the
usage of the overall computational budget, the subproblems least likely to contain
the global optimum can also discarded during the process.

Subproblem-Wise Decomposition Kernel. An alternative way of defining a
kernel in a conditional search space consists in separately computing the within-
subproblem covariance (e.g., covariance between samples belonging to the same
subproblem) and the between-subproblems covariance (e.g., covariance between data
samples belonging to different subproblems [Pel+21]). By definition, the within-
subproblem covariance can be represented through a mixed-variable kernel. The
between-subproblems covariance, instead, can be represented as a discrete kernel
defined on the search space of the (combinatorial) conditional variables w. The
global variable-size design space kernel can then be computed as the sum between
the within-subproblem and between-subproblems covariances.

Dimensional Variable-Wise Decomposition Kernel. Another alternative variable-
size design space kernel can be defined by considering a separate and independent
kernel for each conditional variable (e.g., subproblem) and the continuous and dis-
crete variables which depend on it [Pel+21]. In fact, it can be noticed that each
conditional variable related to a number of possibly active continuous and discrete
design variables depending on its value is equivalent to a CSS problem character-
ized by a single conditional variable, and can therefore be modeled through the
SPW decomposition kernel described in the previous paragraph. Thus, the DVW
Decomposition kernel is then computed as a product of nw SPW kernel (e.g., one
for each conditional variable).

The previous sections described the Bayesian Optimization process and its exten-
sions to mixed-variable and conditional search space problems which mostly occur
during the kernels functions definitions. Generally speaking, Bayesian Optimization
can often converge in less objective function evaluations than other algorithm coun-
terparts like metaheuristic-based algorithms, making this approach highly compet-
itive particularly for expensive-to-evaluate functions problems. However, Bayesian
Optimization can originally only handle a few dozens of variables and may be thus
limited in case of complex formulation of real-world optimization problems. Re-
search studies are currently conducted in order to deal with large-scale BO also
referred to as high-dimensional BO [LI+18; Ran+17; Sav+22].

Among the benchmarks used in order to assess the Bayesian Optimization for
conditional search space problems, the Combined Algorithm Selection and Hyper-
parameter optimization problem is one of the most employed. Therefore, the next
section aims at briefly describing this problem and the BO-based methods used for
solving it.
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5.3.4.3 The Combined Algorithm Selection and Hyperparameter
optimization problem

The Combined Algorithm Selection and Hyperparameter Optimization (CASH)
problem, sometimes also called Full Problem or Model Selection [EMS09; SPM12],
refers to the task of jointly determining the best machine learning algorithm and
its corresponding hyperparameter settings for a given dataset and learning task. It
involves simultaneously selecting the most suitable algorithms from a set of candi-
dates and optimizing the hyperparameters of the chosen algorithms. It has been
introduced in [Tho+13] and belongs to the category of CSS problems. Indeed, the
settings of the hyperparameters directly rely on the choices of the algorithm and
some algorithms may have categorical hyperparameters (i.e., some parameters need
only be specified if another parameter is active or has a certain value).

In order to deal with the CASH (or FMS) problem, Section 5.3.3.1 reviewed the
use of a classical PSO algorithm [EMS09]. Alternatively, mostly BO-based methods
have been proposed. Considering BO based on GPs surrogate modelling, the afore-
mentioned kernels can be used to deal with the CASH problem. For instance, in
[Swe+14] proposed the Arc-kernel in order to optimize the structure of neural net-
works with unknown numbers of layers. However, Feurer et al., in [FH19], stated that
alternative models for BO would be more suitable in case of large, categorical and
conditional configuration spaces than standard GPs, like for instance random forests
[Bre01; HHK11; Jen+17] in which the probabilistic regression model is an ensemble
of regression trees and which, by their structure, allow the use of conditional vari-
ables. Thus, the Sequential Model-based Algorithm Configuration (SMAC) method
is introduced in [HHK11] and corresponds to a random forests-based Bayesian Op-
timization framework. It is used in the automated machine learning (AutoML) tool
designed to simplify the process of algorithm selection and hyperparameter opti-
mization which is called Auto-WEKA [Tho+13]. Auto-WEKA is built on top of
the machine learning software WEKA (Waikato Environment for Knowledge Anal-
ysis) and aims to provide a user-friendly and automated approach of the CASH
problem. An alternative method to the GPs and random forests model is the Tree
Parzen Estimator (TPE) [Ber+11; Spa+15; ZL18]. TPE uses Parzen estimators
organized in trees in order to model two distributions depending on whether the
objective function values are below or above specified quantile. Other techniques
than Bayesian Optimization have nevertheless been investigated like for instance a
deterministic RBF Surrogate [Ili+17], the hyperband algorithm [Li+18], a spectral
approach [HKY17].

All the previous described techniques optimize the conditional and depending
variables in an unique optimization process. A last technique discussed in this
chapter corresponds to bilevel approaches that can be used in order to deal with
conditional and depending variables in two nested optimization processes.
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5.3.5 Bilevel approaches

5.3.5.1 General overview

Bilevel approaches aim at solving complex problems described by two optimization
problems which rely on each other in nested structures [Bar13; Dem02; VC94]. More
in details, a bilevel problem is a mathematical optimization problem where the set of
all design variables are partitioned between two vectors x1,x2 (with respective search
space X1 and X2) which are optimized within two leveled optimization problems.

Initially proposed by Stackelberg in the context of game theory [Sin+13; Sta52],
a bilevel problem can be mathematically formulated as follows [Bar13; Dem02;
MPV13]:

min
x1∈X1

fup(x1,x2)

s.t. hup(x1,x2) = 0

gup(x1,x2) ≤ 0

min
x2∈X2

flow(x1,x2)

s.t. hlow(x1,x2) = 0

glow(x1,x2) ≤ 0

(5.22)

where fup, hup and gup are respectively the objective function and constraint func-
tions of the upper level and flow, hlow and glow are respectively the objective
function and constraint functions of the lower level.

As stated in [Bar13], the terminology surrounding the field of bilevel program-
ming may be ambiguous. Thus, as in [Bar13], a relaxed view is adopted in this
thesis and the terms of bilevel problems, optimization and algorithms are used to
refer to nested problems described by Equation 5.22. In a general context, bilevel or
two-level problems refer to various kinds of problems exhibiting a hierarchical struc-
ture. Then, the upper level determines the optimal values of its design variables
so as to minimize its objective. Those upper optimal values subsequently become
parameter values for the lower level which minimizes its objective function taking
as arguments a second set of depending design variables and the aforementioned
parameter values.

5.3.5.2 Hierarchical approaches for conditional search space problems

Bilevel optimization can be used in order to handle separately conditional and de-
pending design variables. This approach is composed of two loops: the outer loop
which specifies the values of the conditional variables and the inner loop which opti-
mize the depending continuous and discrete variables. The bilevel approach applied
to conditional search space (CSS) problems can be mathematically formulated as
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follows [Pel20; SMD17]:

min
w

f(x∗, z∗,w)

w.r.t. w ∈ Fw

{x∗, z∗} = argmin f(x∗, z∗,w)

w.r.t. x ∈ Fx(w), z ∈ Fz(w)

s.t. h(x∗, z∗,w) = 0

g(x∗, z∗,w) ≤ 0

(5.23)

A bilevel optimization algorithm framework in the case of CSS problems can be
illustrated as shown on Figure 5.11.

Upper level Lower level

w*

x*, z*min     f (x*, z*,w)
w.r.t.   w ∈ 𝐹𝑤
s.t.       h(x*, z*,w)= 0

g(x*, z*,w)≤ 0

min     f (x, z, w*)
w.r.t.   x ∈ 𝐹𝑥 𝐰∗ , 𝐳 ∈ 𝐹𝑧 𝐰

∗

s.t.       h(x, z, w*)= 0
g(x, z, w*)≤ 0

Optimization of the 
conditional variables w

Optimization of the 
depending continuous and 

discrete variables x,z

Figure 5.11: Nested algorithm frameworks schematically formulated.

The above formulations can be generalized including continuous and discrete
variables in the upper level. Moreover, the upper objective function and the lower
objective function can eventually differ. Many nested algorithms structures have
been developed in the literature exploring various techniques as upper and lower
levels which correspond to CSS optimization problems.

Upper level. The upper level is responsible for optimizing the conditional vari-
ables. Exact methods can be employed if the combinations of the conditional vari-
ables can be explored in an exhaustive way [HL04]. Then, any metaheuristic (or
specific heuristic) can be used to solve the upper level problems. Among them,
GA [LR21; MPA94; MPA00], PSO [HM06; ZW19], DE [AKB13; Koh07; ZYW06],
etc. have been used. Lately, other techniques have been used as upper levels as
BO [DP22; Kie+21; Yin+22]. BO often provides better convergence speed in fewer
iterations than metaheuristic methods and thus constitutes a relevant approach in
order to reduce the computational cost of bilevel algorithms especially in case of
computationally expensive functions problems.
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Lower level. As for the upper level, various techniques can be embedded as lower
levels depending on the difficulty of the lower problem. Exact algorithms like for
instance branch and bound techniques [KAA10; Yin+22] can be used in case of
low complexity. Otherwise, metaheuristic methods are often preferred. They can
be identical to the solution selected à for the upper level in homogeneous nested
approaches [LR21; ZW19].

Table 5.1 reviews contributions using different techniques for both levels and
validating their approach with various application cases.

Table 5.1: Some bilevel algorithms, their structure and application cases. *SI:
Swarm Intelligence.

Reference Upper level Lower level Application cases

[DTS08] GA Path Enumeration Road network design
[Zuo+10] GA Exact method Road costing problems
[Kap+19] GA Heuristic Production system design
[LR21] GA GA Assembly line design
[Ma+22] GA GA Energy storage systems sizing
[SPM12] GA PSO Full-model selection problem
[HM06] PSO PSO Chemical systems optimization
[ZW19] PSO PSO Benchmark functions
[LZW18] VNS SS Infrastructure location strategy
[Tho+21] SI* SI Energy storage systems sizing
[KAA10] TS Branch and Bound Facility Location
[Koh07] DE Gradient descent Network design
[PC11] SA Fast gradient descent Highway network design
[SS17] ACO GA Traffic signal optimization

[Kie+21] BO SQP Benchmark functions
[Yin+22] BO Branch and bound Network design

5.4 Literature summary

Table 5.2 sums up all the methods which have been reviewed for solving both CSS
problems formulated in Section 5.2. When possible, for each approach, the very first
reference or at least a representative reference is given as well as the main references
from the present review.
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Table 5.2: Summary of the literature reviews.

Approaches Algorithms Definition Main ref.

Exact exploration [Fra+18] [Fra+18]
Direct search [AHD23] [AHD23;

AD06; ADT19]

Metaheuristic

PSO [EMS09] [EMS09]
Variable-length [SFT23] [CML19;

Rye+17;
TXZ18]

DSMPGA [AG12] [AG12]
Structured GA [NAO15] [NAO15;

Gen+19]
HGGA [GA11] [Abd13; DA18;

EAE22]
Bayesian Optimization [Sha+15] [AHD23;

HO13a;
Pel+21]

Bilevel [Bar13;
Dem02]

[Ma+22;
SPM12;
Yin+22]

5.5 Literature review synthesis

In the previous sections, different algorithms allowing to solve conditional search
space problems are presented and discussed. It can be noticed that the CSS problems
formulation has only rarely been applied to OLPs. Such problems often present a
large discrete and conditional search space as well as being often highly constrained.
A lot of methods previously discussed tend to rely on the specific nature of the
problem and it may be challenging to generalize their functioning to any conditional
search space (CSS) problem without including problem specific knowledge. More-
over, several approaches depend on the definition of a distance metric in order to
define the neighborhood of a candidate solution like BO or PS algorithms [AHD23].

Furthermore, CSS problems can often be high dimensional and require methods
allowing to deal with several hundreds of variables and constraints as well as a
complex conditional search space. Many methods such as exact methods or BO
are not suitable for high dimensional problems [Pel+21]. Therefore, most of the
previous methods used to directly tackle CSS problems with hundreds of dimensions
and constraints rely on metaheuristic frameworks. Thus, a GA-based algorithm will
be developed as a first approach for solving CSS OLPs in this thesis.

A last limit which can be identified is the computational cost of the optimiza-
tion. Exact methods, heuristic, metaheuristic and direct search techniques tend to
require a large number of function evaluations in order to converge due to their
necessity of exploring a large part of the design space. Furthermore, it has been
highlighted in [KS05; MC11; Sal09] that pure metaheuristic techniques may present
some weaknesses for solving problems with complex combinatorial spaces or high
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number of constraints. In order to overcome these issues, hybridizations and partic-
ularly bilevel approaches can be used in order to take advantage of several methods.
Moreover, Bayesian Optimization is known to converge in less function evaluations
than most of the other technique discussed [Pel+21]. For this reason, bilevel ap-
proaches using Bayesian Optimization will be considered in this thesis as a second
approach for dealing with CSS OLPs.

5.6 Conclusion

In this chapter, the mathematical formulation of conditional search space optimal
layout problems (CSS OLPs) is presented as well as the existing methods allowing
to handle them. In more detail, the optimization problem resulting from the inclu-
sion of technological and architectural choices within the system design framework
is presented. Those technological choices are included in the mathematical formula-
tion under the form of conditional variables which can modify the search space as a
function of their values, in terms of number and type of design variables the problem
functions depend on. In the same way, they can also influence the number and type
of constraints, and by consequence the feasibility domain. Then, the existing opti-
mization algorithms allowing to optimize the resulting CSS problems are described
and discussed. The literature review about CSS optimization problems first shows
that the CSS formulation has rarely been applied to OLPs. Moreover, both literature
reviews about FSS OLPs and CSS problems show that most of the techniques do
not seem to simultaneously provide a generic framework able to deal with hundreds
of variables, with a sufficiently efficient constraints-handling technique (to guarantee
a trade-off between exploration of the feasible design space and exploitation toward
the optimum without loss in precision), as well as a sufficiently fast convergence (in
terms of function evaluations) toward the global optimum. They are thus not viable
solutions when it comes to computationally intensive combinatorial and constrained
system design problems.

For this reason, the objective of rest of this part of the manuscript is to develop
optimization methods for CSS OLPs relying both on GA frameworks and on nested
approaches combining different techniques as Bayesian Optimization and the CSO-
VF algorithm (i.e., a virtual-force system-based method) presented in the previous
part of the manuscript. The objective is thus to provide algorithm frameworks
for high-dimensional and constrained CSS OLPs which can improve the constraints
handling as well as reduce the amount of function evaluations required to find the
problem optimum.

The rest of the second part of the manuscript is organized into three chap-
ters. Chapter 5 develops both proposed algorithms for CSS OLPs. The first one is
based on a hidden-genes GA framework and the second one is based on a bilevel
structure combining Bayesian Optimization and the CSO-VF algorithm proposed
in Chapter 2. In Chapter 6, both algorithms are applied to benchmark problems
composed of single-container satellite module OLPs and their global performance
are compared. Finally, Chapter 7 aims at addressing CSS OLPs enhanced with an
assignment task in order to solve multi-container CSS OLPs. A tri-level approach
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combining Bayesian Optimization, GA and CSO-VF is proposed and applied to a
multi-container satellite module layout problem.
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Algorithms for Conditional Search
Space Optimal Layout Problems
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• Extension of fixed search space optimal layout problems to conditional
search space optimal layout problems.

• Development of two different approaches: a hidden-variables mech-
anism for Genetic Algorithm and a surrogate assisted-Component
Swarm Optimization algorithm based on a Virtual-force system ap-
proach.

Chapter contributions

6.1 Introduction

In this chapter, conditional search space optimal layout problems (CSS OLPs) are
addressed. As stated in Chapter 5, few CSS OLPs have been defined in the litera-
ture. In [Gon+11; Rye+17], wind farms and sensor coverage CSS optimal layouts
have been studied. In those papers, all the components to position i.e., the wind
turbines or the sensors are identical and thus, the conditional search space is de-
fined by a unique conditional variable corresponding to the number of components
to position. The number of subproblems directly corresponds to the number of
values that can be reached by this conditional variable and is usually less than a
dozen. However, in many real-world engineering design problems, the components
to position are not identical. For instance, considering the design of an aerospace
concept, a possible choice would either be to place a single tank or to split it into
two smaller tanks. Another possible choice would either be to place in the container
two small batteries or a big one for the same power generation requirement. Then,
architecture choices have to be made for each type of components. Consequently,
the purpose is to provide a catalogue of all the components which can possibly be
chosen to be part of the system layout and let an optimization algorithm find both
the best combinations of components and their positions in the container. Allowing
the number of components to vary during the optimization process may provide a
better solution at the end.
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In Chapter 5, two approaches have been identified as promising in order to ad-
dress the aforementioned CSS OLPs. The first one is a hidden-variable mechanism
for GA while the second one corresponds to the hybridization of the CSO-VF algo-
rithm developed and assessed in Chapter 3 and Chapter 4 of the manuscript with
Bayesian Optimization.

Then, the rest of the chapter is organized as follows: in the first section, generic
conditional search space OLPs are described and formulated. In Section 2, the
hidden-variable mechanism for GAs is described while Section 3 is devoted to the
surrogate assisted-CSO-VF algorithm.

6.2 Formulation of conditional search space

optimal layout problems

In the present thesis, in the case of CSS OLPs, a catalogue of components is defined
at the beginning of the optimization process and the main concern is to optimize
the list of the components among the given catalogue as well as their layout in
the container. Indeed, some design requirements can be met using several sets of
components.

6.2.1 Design variables

The design variables of a CSS OLP are listed as follows:

• Continuous variables x: As for fixed search space (FSS) problems considered
in Part I, continuous variables can correspond to the positions of the centers
of inertia and angular orientations of the non-cylinder components.

• Discrete variables z: Similarly to [ST03], the components could also be posi-
tioned on a grid and their orientations could be restricted to take on a set of
specific values (e.g., 0° and 90°). In this particular case, the design variables
are discrete. In the context of multi-container problems, discrete variables
can also be used to represent the index of a given container within which the
component should be located [CZa19].

• Conditional variables w: The conditional variables are used to describe the
choice of components that must be included within the system. When all
items are identical, the conditional variables can merely correspond to the
number of components to be included in the system. For instance, in the case
of CSS wind farms layout problems, the wind turbines are identical. Then,
only one conditional variable taking the value of the number of turbines can
be used [Gon+11]. However, in the case of various shapes, sizes and types
of components, several conditional variables are needed to express the choice
of components. In the present work, conditional variables are used to define
all possible subdivisions of all the components listed in the catalogue. For
instance, in aircraft design, a given amount of fuel should be carried. A tank
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is thus required to accommodate the volume of fuel that is necessary for the
aircraft to perform its mission. A number of tank architectures would thus be
specified as alternative design options as a means to distribute the fuel over
different regions of the aircraft such as its wing or in the rearmost part of
the aircraft. Figure 6.1 gives an example of the possible values of conditional
variables for one cylindrical component that can be subdivided into either two
smaller cylinders or four even smaller ones.

Depending on the value of w, the number of components to position in the
container varies and consequently the number of continuous and discrete vari-
ables characterizing the layout vary as well. Mathematically, these variables
are qualified as categorical.

w=1 w=2 w=3

Figure 6.1: Example of conditional variables for three possible subdivisions of one
cylindrical component positioned in a rectangular container. The redder the cylin-
ders, the higher their corresponding masses.

Thus, if N components must be positioned in the container and each of them has
ni possible subdivisions (i ∈ {1, ..., N}), then the number of possible architecture
configurations (i.e., the number of different possible lists of components) corresponds
to the cardinality of the set of achievable values of w, Fw, and is mathematically
defined as:

Card(Fw) =
N∏
i=1

ni (6.1)

6.2.2 Objective function

The possible objective and constraints functions remain similar to those detailed in
the case of FSS OLPs in Chapter 2. The objective functions that can be optimized
are for instance:

• Any dynamical requirements (e.g., overall mass, inertia or stability of the
system);
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• Any costs related to the layout (e.g., manufacturing or handling costs);

• Any performance of the layout (e.g., power consumption or emission).

6.2.3 Constraint functions

The possible constraint functions are split into two categories:

Constraints relative to the choice of components. Some constraints are spe-
cific to the choice of the components. They can involve for instance a maximum
value of total mass or a maximum value of occupation rate.

The layout constraints functions. The layout constraints functions rely on the
layout of the chosen components. They are similar to those defined for the FSS
OLPs and are briefly summarized as follows:

• Geometrical constraints: These constraints translate geometric specifica-
tions on the layout which only depend on geometric and mass considerations
such as no overlapping between the components, the full inclusion components
in the container, balancing constraints (i.e., the global center of mass must be
positioned at the geometrical center of the container), etc.;

• Functional constraints: These constraints do not only depend on geomet-
ric considerations, but also on system-level specifications. One example is for
instance proximity or minimal distance requirements between components for
functional requirements (e.g., radiative constraints).

To sum up, as for the multi-container FSS OLPs, the single-container CSS OLPs
involve two tasks:

• The ”choice of components” task: selecting a set of components from a cata-
logue;

• The layout task: positioning the selected components into the container.

Figure 6.2 illustrates the CSS single-container OLPs.

6.2.4 Mathematical formulation of the problem

The problem described in the previous sections is mathematically formulated as
follows:

min
x,z,w

fobj(x, z,w)

w.r.t. x ∈ Fx ⊆ Rnx(w), z ∈ Fz ⊆ Nnz(w),w ∈ Fw ⊆ Nnw

s.t. hcomponent(x, z,w) = 0

gcomponent(x, z,w) ≤ 0

hlayout(x, z,w) = 0

glayout(x, z,w) ≤ 0

(6.2)

161



Chapter 6. Algorithms for Conditional Search Space Optimal Layout Problems

where fobj is the objective function which can correspond to FSS OLPs objective
functions. hcomponent and gcomponent correspond respectively to equality and inequal-
ity constraint functions only related to the choice of the components. hlayout and
glayout correspond respectively to equality and inequality constraint functions related
to the layout of the set of components.

A container

The components 
choices task

The layout task

𝑤1 = 2 𝑤2 = 1

𝑤3 = 2 𝑤4 = 2

Component 1

Component 2

Component 3

Component 4

or or

or

or

or or

𝑤1 = 1 𝑤1 = 2 𝑤1 = 3

𝑤2 = 1 𝑤2 = 2

𝑤3 = 1 𝑤3 = 2 𝑤3 = 3

𝑤4 = 1 𝑤4 = 2

A catalogue of 
components

Figure 6.2: Illustration of the CSS single-container OLPs. The redder the compo-
nents, the heavier their corresponding masses.
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Algorithms

6.3 First approach: derivation of

hidden-variables mechanism for Genetic

Algorithms

6.3.1 Overall description of the proposed mechanism

In order to solve OLPs as formulated above, an adaptation of an hidden-variables
mechanism initially described in [GA11] is proposed in this thesis and is integrated in
a Genetic Algorithm (GA). This mechanism consists in modifying the encoding of the
design variables in comparison to the implementation of classical GA chromosomes.
Indeed, all the design variables are implemented so that all the individuals (e.g.,
the chromosomes) in the population have the same length. However, some of the
variables are hidden, meaning that they will not take part in the objective and
constraints evaluations. For the aforementioned OLP, the hidden variables represent
the design variables x and z for the components of the subdivisions that are not
selected by the conditional variables w to be part of the current layout. On the
contrary, the expressed design variables correspond to the variables relative to the
components selected to be in the container.

Thus, this method allows to tackle the CSS aspect of optimization problems
while ensuring that all the chromosomes (i.e., the individuals of a population) have
the same length which enables the use of many existing evolutionary operators. This
method should thus be suitable for the problems at hand. Indeed, it is well suited for
the large number of design variables unlike Bayesian Optimization (if used to deal
with all the variables of the problem) or the Dynamic-Size Multiple Population Ge-
netic Algorithm [AG12], especially in case of high combinatorial conditional search
space. It is a flexible and generic mechanism limiting the introduction of expert
knowledge during the implementation process unlike the Structured GA solution
[NAO15] and relatively simple to be implemented. In addition, it allows to keep
an entire freedom of choice for the evolutionary operators unlike some techniques
which do not guarantee the same number of design variables for all individuals of
the population [Rye+17].

Two methods are derived in order to hide variables and those methods will be
applied to a GA. Depending on the method used to hide the variables, some of the
evolutionary operators must nevertheless be adapted. Those methods as well as the
resulting adaptations are detailed in the following section.

6.3.2 Implementations of the hidden-variables mechanism
with a genetic algorithm

Different methods exist for the implementation of the hidden-variables mechanism.
Two of them are described in the following sections.

6.3.2.1 First encoding method: additional design variables

The first possibility to hide variables is to implement conditional variables as addi-
tional design variables. More specifically, conditional variables responsible for the
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choice of hidden or expressed variables are added to the set of design variables.
Before evaluating the objective function and the constraints, the conditional vari-
ables are read for each candidate solution and their values indicate which design
variables of the candidate solution must be taken into account (and by extension,
which must be ignored) to calculate both the objective and constraints. Figure 6.3
provides an illustration of this method on an example. In the example, two alterna-
tive subdivisions of a component can be chosen between one cylindrical component
or two smaller ones. As only two configurations of the layout are considered, a
unique conditional variable taking binary values is enough to describe this feature.
If the conditional variable value is 0 then the first subdivision is chosen and the
corresponding dependent design variables are expressed. On the contrary, if the
conditional variable value is set to 1, then the second subdivision is chosen and the
other set of design variables are accounted for. It is worth noting that there exists
various ways to define conditional variables in order to describe the possible config-
urations.

𝑥𝑥,1 𝑥𝑦,1 𝑥𝑥,2 𝑥𝑦,2 𝑥𝑥,3 𝑥𝑦,3

𝑥𝑥,1 𝑥𝑦,1 𝑥𝑥,2 𝑥𝑦,2 𝑥𝑥,3 𝑥𝑦,3

𝑧𝛼,1 𝑧𝛼,2 𝑧𝛼,3

𝑧𝛼,2 𝑧𝛼,3𝑧𝛼,1 𝑤1 = 0

𝑤1 = 1𝑥𝑥,2 𝑥𝑦,2 𝑥𝑥,3 𝑥𝑦,3

𝑥𝑥,1 𝑥𝑦,1 𝑧𝛼,1Individual 1

Individual 2 3

Continuous
variables

Discrete
variables

Conditional
variables

Architecture

Figure 6.3: Illustration of the implementation of the hidden-variables mechanism
using conditional variables. Red variables are the expressed variables while grey
ones are the hidden ones.

If a catalogue is composed of N generic subdivisible components for a total of
Ntot available components (amongst which Ncyl cylinders), the chromosome length
Lchr is given by:

Lchr = N + 2Ncyl + 3(Ntot −Ncyl) (6.3)

For this chromosome implementation, classical evolutionary operators can be
used without any adaptation.

6.3.2.2 Second method: tags

Another possible way to deal with conditional search spaces is to introduce tags as
proposed in [GA11]. In this method, a tag vector is attached to each chromosome
of the population such that a tag value is assigned to each gene of the chromosome.
If the value of the tag is 0, then the corresponding gene will not participate in the
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objective and constraints functions evaluations and reciprocally. This mechanism is
shown in Figure 6.4a. The tags are a direct translation of the conditional variables:
their role is to choose which variables will be expressed or not during the fitness
evaluation as well as the corresponding constraints to activate. Figure 6.4b illus-
trates the adaptation on the same example as in the previous section. If the second
subdivision of the component is chosen to be part of the layout, the tag vector will
activate all the design variables (coordinates of the center of mass and orientation
if needed) to be part of the objective function and constraints evaluations.

𝐺2 𝐺4𝐺1 𝐺3 𝐺5Chromosome

Tag 1 0 1 0 1

Hidden genes

(a) Definition of the tags.

𝑥𝑥,1 𝑥𝑦,1 𝑥𝑥,2 𝑥𝑦,2 𝑥𝑥,3 𝑥𝑦,3𝑧𝛼,1 𝑧𝛼,2 𝑧𝛼,3𝑥𝑥,2 𝑥𝑦,2 𝑥𝑥,3 𝑥𝑦,3Chromosome

3

0 1Tag

Architecture

(b) Adaptation of the tag method.

Figure 6.4: Illustration of the tag mechanism.

With the same formalism as before, the chromosomes length Lchr as well as the
tags length Ltag are computed as follows:

Lchr = N + 2Ncyl + 3(N −Ncyl) (6.4)

Ltag = N (6.5)

As the chromosomes are extended by tags, the operators of the GA must be
compatible with the tags which will take part in the evolution process. The chro-
mosomes and tags will undergo independent operators of crossover and mutation as
proposed in [GA11]. Crossover and mutation operators are detailed in the following
paragraphs.

Crossover operator for tags
For the chromosomes that encompass continuous and discrete variables related

to the layout, the crossover operator can be chosen among all the available opera-
tors used in genetic algorithms [Tal09]. The operators considered in this thesis are
detailed in Section 6.3.3.1. For the tags, a n-points crossover operator is chosen,
without any loss of generality [Tal09]. This mechanism must be adapted as not
all the points of the tag vector can be crossover points because of the fact that the
design variables are not independent from each other. The crossover operator on the
tags must provide a feasible configuration of subdivisions. Figure 6.5 illustrates the
principle of the n-points crossover on the tags adapted for the subdivisions of the
components. On the example, two components able to subdivide themselves into
two smaller components are considered so that there are four possible configurations
of components in the container. For each component, only one of the two subdi-
visions can be present in the container and so in the tag vector, among the three
points that may be considered as crossover points only one (indicated in orange)
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guarantees the fact that the crossover operation leads to feasible individuals.

𝑥𝑥,1 𝑥𝑦,1 𝑥𝑥,2 𝑥𝑦,2 𝑥𝑥,3

0 1Tag A

𝑥𝑦,3 𝑥𝑥,4 𝑥𝑦,4 𝑧𝛼,4 𝑥𝑥,5 𝑥𝑦,5 𝑧𝛼,5

1 2 3

0 1

4 5 6

𝑥𝑥,6 𝑥𝑦,6 𝑧𝛼,6

Subdivision 1 Subdivision 2 Subdivision 1

Chromosome A

Tag B

1 2 3 4 5 6

Subdivision 1 Subdivision 2 Subdivision 1 Subdivision 2
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0 1 1 0

1 0 0 1

PARENTS

CHILDREN

Tag C

Tag D

𝑥𝑥,1 𝑥𝑦,1 𝑥𝑥,2 𝑥𝑦,2 𝑥𝑥,3 𝑥𝑦,3 𝑥𝑥,4 𝑥𝑦,4 𝑧𝛼,4 𝑥𝑥,5 𝑥𝑦,5 𝑧𝛼,5 𝑥𝑥,6 𝑥𝑦,6 𝑧𝛼,6𝑥𝑥,2 𝑥𝑦,2 𝑥𝑥,3 𝑥𝑦,3 𝑥𝑥,5 𝑥𝑦,5 𝑧𝛼,5 𝑥𝑥,6 𝑥𝑦,6

1 0 10 1 0 1

1 0 1 00 0

2 3 4 5 6

Subdivision 2

Figure 6.5: Crossover operator for the tags on an example. The orange dots corre-
spond to the crossover location.

Mutation operator for tags
For the mutation operator, again the mechanism differs according to the chromo-

somes or tags. For the chromosomes, the mutation operator can be chosen amongst
all the operators available from ”classical” genetic algorithms. The mutation oper-
ators studied in this thesis are detailed in Section 6.3.3.2. For the tags, a bit flip
operator can be applied [Tal09]. Like the crossover operator, it must be adapted
for the subdivision case to provide feasible solutions. The bit flip consists in fact
in flipping the subdivision chosen. Hence the tags cannot be flipped randomly as
for each component only one tag must be equal to one in order to select a unique
subdivision among the possible ones. Figure 6.6 illustrates the mutation operator
designed for the tags. Only a few mutations are possible to guarantee the feasibility
of the solution.

6.3.3 Evolutionary operators

The conditional search space aspect of the problems at hand induces a more complex
and wide search space than fixed search space problems and thus, evolutionary
operators should be carefully chosen in order to promote diversity in the population
along with the generations in order to avoid premature convergence towards local
optima.

In the following paragraphs, the parents and children involved in the crossover
operators are respectively denoted p and c. In the case of mutation operator, the
mutated gene obtained from a child gene c is denoted c′. More specifically, the ith

gene of th jth parent (resp. child) is denoted pji (resp. cji ). The same formalism is
employed for the mutated genes.

166



6.3. Derivation of hidden-variables mechanism for Genetic Algorithms

1 0 0 1

POSSIBLE MUTATIONS

0 1 1 0
1 0 1 0

EXAMPLES OF IMPOSSIBLE MUTATIONS 

1 1 0 1
1 0 0 0

Subdivision 2

0 1Tag A

1 2 3

0 1

4 5 6

Subdivision 1 Subdivision 2 Subdivision 1

1 0 10 1 0 1

2 3 4 5 6

Figure 6.6: Mutation operator for the tags on an example.

6.3.3.1 Crossover operators

Two crossover operators are considered:

• Simulated-Binary Crossover (SBX) [DA95]: The SBX operator is one of
the most employed crossover operators for the recombination of real-coded
chromosomes. It simulates the operation of a single-point binary crossover
directly on real variables. The ith genes of the two children involved in the
crossover operator, c1i and c2i , are obtained from the corresponding ith genes of
the two parents, p1i and p2i , as follows:

c1i = p̄i −
1

2
βi(p

2
i − p1i ) (6.6)

c2i = p̄i +
1

2
βi(p

2
i − p1i ) (6.7)

where p̄i =
1
2
(p1i +p2i ) and βi is obtained thanks to the probability distribution:

P (β) =

{
0.5(η + 1)βη

i , if βi ≤ 1,

0.5(η + 1)β
1

η+2

i , otherwise.
(6.8)

where η is the distribution index.

• Uniform Crossover (UX) [Dan+16]: For each gene, the UX operator swaps
the parents genetic material with a certain probability α. In other words, for
each of the NDV genes, a uniformly distributed random variable in the range
[0, 1] r is generated. The genetic materials are exchanged if r is greater than
the given probability α as represented on Figure 6.7.
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Figure 6.7: Illustration of the UX crossover operator on an example.

6.3.3.2 Mutation operators

Two mutation operators are considered:

• Polynomial Mutation (PM) [Deb01]: The genes of the mutated child c′i are
computed thanks to the genes of the original child ci as follows:

c′i = ci + δi(c
U
i − cLi ) (6.9)

where cUi and cLi are respectively the upper and lower bounds for ci and δi is
obtained thanks to the probability distribution:

P (δ) = 0.5(ηm + 1)(1− |δ|ηm) (6.10)

δi =

{
(2ri)

1
ηm

+1 − 1, if ri ≤ 0.5,

1− (2(1− ri))
1

ηm+1 , otherwise.
(6.11)

where ηm is the distribution index and ri is a uniformly distributed random
variable in the range [0, 1].

• Uniform random Mutation (UM) [Tal09]: The UM operator goes through
the genes and replaces the value uniformly (randomly) with one between the
upper and lower values of the corresponding gene.

6.3.3.3 Selection operators

Two selection operators are compared in this thesis. For both operators, the ith

selected individual is denoted si.
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• Selection based on Tournament and Constraint-dominance [Deb00]:
In the current population, k individuals are chosen randomly. The winner of
the tournament is determined thanks to Constraint-dominance rules [Deb00].
The rules are based on the comparison of the individuals objective function
values and/or constraints violation values. The constraints violation value
of a selected individual si is denoted CVi. In case of N g

cst inequality con-
straints denoted g = {gk}k∈{1,...,Ng

cst
} and Nh

cst equality constraints denoted
h = {hk}k∈{1,...,Nh

cst
}, the constraints violation CVi of the individual si is com-

puted as:

CVi =

Ng
cst∑

k=1

max(gk(si), 0) +

Nh
cst∑

k=1

|hk(si)| (6.12)

Algorithm 6.1: describes the routine used to compare two individuals with
Constraint Dominance.

Algorithm 6.1: Constraint Dominance

Input: Individual 1: objective function fobj,1, constraint violation CV1 ; Individ-
ual 2: objective function fobj,2, constraint violation CV2.
Output: Dominating solution: Individual 1 or 2.
if CV 1 < CV 2 then
Individual 1 dominates.

else if CV 2 < CV 1 then
Individual 2 dominates.

else
if fobj,1 < fobj,2 then
Individual 1 dominates.

else if fobj,2 < fobj,1 then
Individual 2 dominates.

else
Choose one individual randomly.

end if
end if

• Selection based on Tournament and Stochastic Ranking (SR) [RY00]:
The Stochastic Ranking is based on bubble sort and gives infeasible solutions
or solutions with higher constraints violations a chance to survive during the
selection operator. This operator should thus lead to a more diverse population
throughout the generations than more elitist operators. The SR operator is
as follows: 1) the population is ranked according to dominance rules following
the routine described by Algorithm 6.2:, 2) the ranked population is truncated
such that m individuals are considered for reproduction, 3) the Tournament
operator is applied on the truncated ranked population to select the parents
according to their ranks.

The stochastic ranking of the population detailed in Algorithm 6.2: works as
follows: a number of sweeps NS is defined as well as a SR probability PSR. The
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individuals of the population are ranked by comparing adjacent individuals in
at least NS sweeps following the procedure: if both solutions are feasible, they
are ranked according to their objective values. However, if at least one solution
is infeasible, there is a probability PSR that they are also ranked according to
their objective function so that infeasible solution or solutions with higher
constraints violations have a chance to survive and be part of the crossover
and mutation operations and thus increase the diversity of the population.

Algorithm 6.2: Stochastic Ranking

Input: Population of N individuals, SR probability PSR, NS number of sweeps.
Output: Ranked population.
for i = 0 to NS do
for j = i to N − 1 do
Sample r uniformly in the range [0,1]
if CVj = CVj+1 = 0 or r < PSR then
if oj > oj+1 then
Swap the ranks of individuals j and j + 1 in the population.

end if
else
if CVj > CVj+1 then
Swap the ranks of individuals j and j + 1 in the population.

end if
end if

end for
if no swap done then
break

end if
end for

6.3.3.4 Replacement operators

Two replacement operators are studied:

• Non-dominated truncating (NDT) [Deb+02]: The current population is
expanded with the generated children population, sorted according to their
objective function values and truncated at the population size.

• Replacement based on Deterministic Crowding (DC) [Mah92; Mah94]:
in order to increase diversity during the replacement phase for the next genera-
tion the Deterministic Crowding method compares the parents to their children
according to the distance between their genotypes. The distance is defined as
a mean between the Euclidean distance between tags and the euclidean dis-
tance between the genes. If the genotypes are close, either the parent or the
child is chosen to integrate the next population based on the dominance rules
chosen for the selection operator [Mah92; Mah94]. Algorithm 6.3: gives the
pseudo-code of the DC routine.
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Algorithm 6.3: Deterministic Crowding

Input: 2 parents p1, p2 and their 2 children c1, c2, a distance measure d, a
dominance method.
Output: 2 individuals chosen to be part of the next population.
if d(p1, c1) + d(p2, c2) ≤ d(p1, c2) + d(p2, c1) then
if c1 dominates p1 then
Replace p1 with c1

end if
if c2 dominates p2 then
Replace p2 with c2

end if
else
if c2 dominates p1 then
Replace p1 with c2

end if
if c1 dominates p2 then
Replace p2 with c1

end if
end if

In Chapter 7, a Taguchi’s plan of experiments compares the aforementioned
operators in order to find the best combination of evolutionary operators.

6.3.4 Algorithm framework

Figure 6.8 illustrates the framework of the resulting algorithm, for both implemen-
tations of the hidden-variable mechanism. The steps specific to the hidden-variables
mechanisms are highlighted in orange. In this thesis, the stopping criterion corre-
sponds to a given number of objective function evaluations.
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Figure 6.8: GA enhanced with hidden-variable mechanism framework. Steps related
specifically to the hidden-variables mechanism are highlighted in orange.

6.4 Second approach: surrogate

assisted-CSO-VF algorithm

The second proposed approach to the conditional search space (CSS) single-container
OLPs is a bilevel algorithm combining the strength of the CSO-VF algorithm and
a discrete Bayesian Optimization algorithm purposely adapted to tackle the dimen-
sional aspect of this problem.
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6.4.1 Mathematical formulation of the problem

The mathematical formulation defined in Section 6.2.4 by Equations 6.2 is refor-
mulated in this Section. Indeed, the conditional search space problems involve
conditional and dependent variables that allow to write the problem as a nested
mathematical formulation, without discarding any solutions. The nested mathe-
matical formulation of the CSS single-container OLP is written as follows:

min
w

fobj(x
∗, z∗,w)

s.t. hcomponent(x
∗, z∗,w) = 0

gcomponent(x
∗, z∗,w) ≤ 0

h∗
layout(x, z,w) = 0

g∗
layout(x, z,w) ≤ 0

w.r.t. w ∈ Fz ⊆ Nnw

{x∗, z∗} = argmin fobj(x, z,w)

w.r.t. x ∈ Fx ⊆ Rnx(w), z ∈ Fz ⊆ Rnz(w)

(6.13)

where fobj is the objective function which can correspond to fixed search space OLPs
objective functions. hcomponent and gcomponent correspond respectively to equality and
inequality constraint functions only related to the choice of the components. The
design variables denoted with a star exponent (i.e., x∗ and z∗) are referred to as the
design variables optimized in the lower level and which are thus fixed in the upper
level. In the same way, the constraints denoted with a star exponent (i.e., h∗

layout(·)
and g∗

layout(·)) are referred to as the equality and inequality constraints handled in
the lower level but which must ensure the feasibility of the layout for the list of
components defined by w at the upper level.

6.4.2 General structure of the algorithm

The proposed algorithm consists in solving the nested aforementioned problem for-
mulation which leads to optimizing the conditional variables w separately from the
continuous and discrete variables x, z. More specifically, the upper stage of the al-
gorithm is responsible for the choice of the components to be integrated into the
system, while the lower stage is responsible for the optimization of the layout of
the chosen set of components. The two optimization processes can thus be handled
using specific methods. The methodology embedded within each of the two stages
of the algorithm is introduced below:

• Lower level: Component Swarm Optimization based on a Virtual-force sys-
tem (CSO-VF) algorithm described in Chapter 3 and illustrated in Chapter
4. This algorithm is designed to solve fixed search space OLPs;

• Upper level: Bayesian Optimization (BO) used to deal with the conditional
variables [Pel+21].

Figure 6.9 illustrates the structure of the bilevel algorithm and both levels are de-
tailed in the following sections.
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Figure 6.9: Structure of the surrogate assisted-CSO-VF algorithm.

6.4.3 Lower level: CSO-VF algorithm

The lower level optimizes the layout of the set of components that is given by the
upper level. The design variables optimized by this level consequently correspond to
the x and z continuous or discrete design variables vectors defining a layout i.e., the
positions of the centers of inertias of the components as well as their orientations for
non-cylindrical components. To do so, the CSO-VF algorithm described in Chapter
3 is employed. More precisely, Nstart instances of the CSO-VF algorithm are run in
parallel over Nit iterations for a given set of components corresponding to the input
of the lower level. The best objective function obtained using the Nstart CSO-VF
instances is the output of this level.

6.4.4 Upper level: Bayesian Optimization for categorical
variables

6.4.4.1 General description of the upper level

The goal of this level is to optimize the list of the components chosen among the
given catalogue. More precisely, the design variables optimized by this level corre-
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spond to the w vector of conditional categorical design variables which characterizes
the choices of components among the possible subsets. Then, if N generic compo-
nents must be positioned and each of them have ni possible subsets (i.e., possible
subdivisions), then the vector w of categorical variables is expressed as:

w = {wi}i∈{0,...,N} where wi ∈ {1, ..., ni} (6.14)

The wi corresponds to categorical variables as there is no relation of order be-
tween the possible choices of subdivisions. In other word, considering the ith com-
ponent which can be divided among ni subdivisions, a subdivision k is not greater
nor lower than another subdivision k + 1, for k ∈ {1, ..., ni − 1}.

The goal of the upper level is then to find the best sequence of components that
lead to the best possible layout in terms of the objective function considered in the
lower level. In order to solve this problem, Bayesian Optimization based on Gaussian
Process (GP) surrogate modeling is employed. Indeed, Bayesian Optimization is
particularly efficient when it comes to optimizing black-box expensive-to-evaluate
fitness functions as described in Chapter 5. In this chapter, a limited budget of
function evaluations is considered. Moreover, the fitness function corresponds to
the lower level and is expensive-to-evaluate. Bayesian Optimization should hence
be an appropriate method [BCf10; Fra18; WHD18].

6.4.4.2 Gaussian Process surrogate modeling

The Bayesian Optimization process involves using a GP to approximate the rela-
tionship between inputs and outputs of the black-box function, based on a limited
set of observations of the system. In the case of conditional search space OLPs, the
goal is thus to approximate the relationship between the set of components and the
quality of the optimized layout obtained with the lower level.

Training data set. A training data set T of NDoE samples {wj, yj} with j ∈
{1, ..., NDoE}. T is generated and defined as follows:

T = {W = {w1, ...,wNDoE
} ∈ Fw, y = {y1, ..., yNDoE

} ∈ Fy} (6.15)

where W is the matrix containing the NDoE vectors of conditional variables consti-
tuting the training data set (with definition domain Fw), and y is the vector con-
taining the corresponding function evaluations resulting from CSO-VF algorithm
(with definition domain Fy).

Depending on the definition of the catalogue of N components and thus to the
available values ni for the w vector defined by Equation 6.14 in the problem at hand,
thousands of possible components lists might be considered. The problem that is
solved by the upper level can thus be highly combinatorial and consequently, the
choices of the training data sets’ points to evaluate have a critical impact on the GP
modeling and hence on the Bayesian Optimization process global performance.

Therefore, the training data set is generated using discrete Latin Hypercube
Sampling (LHS) [Tra+22]. Indeed, the LHS technique allows to distribute the values
of the NDoE w vectors over the available search space and might provide better GP
process inputs than, for instance, random techniques.
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GP surrogate modeling definition. A generic Gaussian Process Y(w) is de-
fined by its mean function µ and its covariance function also called kernel function
k:

µ(w) = E[Y(w)] (6.16)

k(w,w′) = E[(Y(w)− µ(w))(Y(w′)− µ(w′))] (6.17)

Thus, the GP describing the function f(w) is defined as:

f(w) ∼ GP(µ(w), k(w,w′)) (6.18)

In the present algorithm, the GP predicts the objective function value of the lower
level y∗ for a given components set w∗ using a Gaussian distribution described by
the mean and kernel functions, and conditioned by the aforementioned training data
set T . In that respect, the kernel function is a core component of the GP surrogate
modeling and is defined as an input space dependent parameterized function. In
order to model functions taking as argument categorical variables, continuous kernels
must be adapted or new kernels must be developed.

6.4.4.3 Kernels for categorical variables

Generally speaking, the kernel is a mathematical function that defines the similar-
ity between pairs of input points following the Reproducible Kernel Hilbert Space
(RKHS) formalism. Consequently, it has a significant impact on the performance of
the GP (e.g., its prediction capabilities). A large number of kernels can be used for
handling categorical variables. In this manuscript, following the recommendations
given in [Pel+21], two kernels are considered:

• Compound Symmetry (CS) kernel [Rou+20]. The CS kernel function
can be defined as follows:

k(w,w′) = σw exp(−θd(w,w′)) (6.19)

where σw and θ are hyperparameters of the CS kernel and d stands for a mean-
ingful distance in the search space between the two dimensional variables w
and w′. Most of the time the Euclidean distance is considered (the correspond-
ing kernel is the well-known Squared Exponential Kernel [RW06]). However,
as the considered categorical variables do not have any direct relationship of
order, other distances must be used. Two alternative distances are considered:

– Hamming Distance [ASN14]: the Hamming distance counts the mis-
matches between two categorical variables vectors. Let δ(i, j) be the
Kronecker delta function:

δ(i, j) =

{
1 if i = j
0 if i ̸= j

(6.20)

The Hamming distance between two conditional variables w and w′ is
computed as follows:

dH(w,w
′) = 1− δ(w,w′) (6.21)
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The corresponding kernel has been used with the Bayesian Optimization
based on GP surrogate modeling framework to deal with discrete or cate-
gorical variables [HO13a; Zae18; ZH18b]. Considering the above detailed
OLP, the Hamming distance computed on two distinct lists of compo-
nents characterizes the dissimilarity between the chosen subdivisions.

– Distance based on the number of components: another possible metric
that can be used in the precise case of the OLP is based on the number of
components resulting from the chosen subdivisions. Indeed, the number
of components to position in the container characterizes the difficulty to
solve the constraints and thus, a distance can be computed from this
specificity. If C(w) corresponds to the number of components resulting
from a chosen subdivision of a component, then the components distance
is computed as:

dC(w,w
′) = (C(w)− C(w′))2 (6.22)

• Latent Variable (LV) kernel [Zha+20]. In the LV kernel, the categori-
cal variables are first transformed into a lower-dimensional space, where they
are modeled as continuous latent variables. In other words, the categorical
variables levels (i.e., the l reachable values for each categorical variable) are
mapped onto a 2-dimensional Euclidean space. This transformation is math-
ematically defined as:

ϕ(w) : F l
w −→ R2

ϕ(w = wm) = [θm,1, θm,2]
T ,m ∈ {1, l}

(6.23)

where θ1,m and θ2,m are the hyperparameters corresponding to the continuous
coordinates in the 2-dimensional Euclidean space onto which the level m of
the categorical variable w is mapped. Then, an equivalent continuous kernel
k̃ can be used in order to define a valid kernel on the categorical search space:

k(w,w′) = k̃(ϕ(w), ϕ(w′)) = σ2
w exp(∥ϕ(w)− ϕ(w′)∥22) (6.24)

It must be noted that as the CSO-VF algorithm depends on the initialization, a
noisy data modeling of the kernels functions is considered, translated by the defini-
tion of a nugget [RW06].

6.4.4.4 Category-wise and level-wise categorical kernels

In the previous paragraphs, the kernels are formulated for one-dimensional categor-
ical vectors. However, nearly all of the considered CSS OLPs depend on multiple
categorical variables in order to describe the choice of multiple components subdivi-
sions. In this case, two different approaches can be considered [Pel+20]: level-wise
kernels and category-wise kernels. The first approach treats each dimension inde-
pendantly while the second one defines the kernels on the combinatorial categorical
search space. Thus, the appropriate approach must be chosen according to the char-
acteristics of the categorical variables of the problem at hand. In the case of the
defined CSS OLPs and without loss of generality, the number of categorical variables
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as well as the number of available values for each categorical variable might result
in thousands of categories i.e., the possible lists of components, which would make
the category-wise kernels inoperable. Moreover, the assumption can reasonably be
made that the components’ subdivisions can be chosen independently of each other.
Consequently, the level-wise kernels approach might be generally more suitable for
the CSS OLPs considered in this manuscript. The kernels are then defined as:

k(w,w′) =

Nd∏
d=1

k(wd, w
′
d) (6.25)

where Nd is the dimensionality of the problem.

6.4.4.5 Optimization of the kernels hyperparameters

The kernels detailed in Section 6.4.4.3 rely on a certain number of hyperparameters
which could influence the value returned by the kernel function, independently from
the input data samples. Thus, to ensure that the GP delivers the most precise pre-
diction of the underlying modeled function along with a valid associated error model,
it is essential to optimize the value for each hyperparameter of the aforementioned
kernels. This procedure is commonly referred to as GP training. Several methods
and criteria can be used for the training of the GP: the cross-validation [CW78], the
marginal likelihood optimization [RW06] or the restricted likelihood optimization
[DO91]. In this work, the marginal likelihood optimization technique is employed.
Therefore, the set of kernels hyperparameters referred to as θ is optimized by max-
imizing the log marginal likelihood as follows:

max
θ

log p(Y|W,θ) (6.26)

This optimization problem is solved in this thesis using the Adam Optimizer
[KB]. The Adam Optimizer algorithm is particularly known for its computational
efficiency, its little memory requirement and its ability to handle large problems in
terms of parameters [HA21; KB; YAJ20].

6.4.4.6 Bayesian Optimization process

The GP model defined in the previous sections is then used as a surrogate for the
system, allowing for predictions at new input points (i.e., new components lists)
without the need to run the expensive simulation or evaluation of the CSO-VF al-
gorithm. GP is then enriched during the optimization process in order to converge
to the optimum. The enrichment process involves an auxiliary optimization process
of an infill criterion in order to find the best valuable candidate (i.e., components
list) to be evaluated using the CSO-VF algorithm at the lower value of the criterion.
Most of the surrogate modeling techniques as well as Bayesian Optimization algo-
rithm frameworks have been developed to model and optimize continuous problems
[JMW98]. However, those techniques have recently been adapted to handle mixed
continuous-discrete problems. They are reviewed in [BZ17; Swi+14; Mec+01]. At
each iteration, the most promising point (i.e., the w vector minimizing the infill
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criterion) is evaluated and added to the data set. At the next step, the GP surro-
gate model is updated with this new added point. This process is repeated until a
stopping criterion is met.

Infill Criterion. At each iteration of the Bayesian Optimization process, the algo-
rithm minimizes an acquisition function whose aim is to determine the next promis-
ing location in the design search space. Several infill criteria can be chosen [CK20].
Among them, the Expected Improvement (EI) function [JSW98] is one of the most
used infill criteria and notably depends on the minimum of the objective value within
the data set at the given iteration and the mean and variance of the objective func-
tion prediction. EI provides a good balance between exploration and exploitation
[JSW98] and is hence used in this thesis.

Feasibility oriented infill criterion. To consider the existence of constraints
in the CSS problem at hand and, as a result, generate feasible final designs, the
objective function-oriented infill criterion mentioned in the preceding section needs
to be integrated with an auxiliary criterion.

Considering the CSS OLPs at hand in this thesis, the main constraint which has
to be considered during the BO process is the feasibility or non-feasibility of the
layout regarding the chosen input set of components. In other words, the Bayesian
Optimization process has to predict if a set of components may or may not lead to
a feasible layout in addition to the prediction of the quality of the feasible layout in
terms of objective function (i.e., the outputs of the CSO-VF algorithm) in order to
infill a priori feasible points.

As detailed in Chapter 5, two main ways are used in order to deal with the con-
straints during the Bayesian Optimization process: the Probability of Feasibility and
the Expected Violation techniques. Both techniques rely on the GP prediction of
the constraint at unmapped locations. Thus, as the GP must fit heaviside functions
with probable flat regions, both techniques might encounter troubles to predict the
layout feasibility or unfeasibility of the unmapped sets of components.

Therefore, another technique is employed in this thesis. First of all, the value
1 is assigned to the lists of components which lead to infeasible layouts while the
value 0 is assigned to the lists of components leading to feasible layouts. The pre-
diction of the layout feasibility or unfeasibility is then performed using a neural
network classifier trained on the data set. The employed neural network classifier is
a Multi-layer Perceptron (MLP) algorithm that trains using backpropagation [GB10;
He+15; RHW86]. Moreover, the constraint of layout feasibility is integrated to the
optimization process of the infill criterion. Thus, the next set of components i.e., at
which the the actual objective and constraint functions of the considered problem
are evaluated at a given Bayesian Optimization iteration is determined through an
auxiliary optimization process mathematically formulated as follows:
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min
w

EI(w)

w.r.t. w ∈ Fw

s.t. hpredict,NN(w) = 0

(6.27)

where EI is the chosen infill criteria which depends on the objective function as
follows:

E[I(w)] = (fmin
obj − f̂obj(w))Φ

(
fmin
obj − f̂obj(w)

ŝ((w)

)
+ ŝ(w)ϕ

(
fmin
obj − f̂obj(w)

ŝ((w)

)
(6.28)

In Equation 6.28, fmin
obj is the minimum feasible value present within the data set

at the given Bayesian Optimization iteration, f̂obj(w) and ŝ(w) are the mean and
standard deviation of the objective function prediction, Φ(·) is the cumulative dis-
tribution function of a normal distribution and ϕ(·) is the probability function of a
normal distribution.

Moreover, in Equation 6.27, hpredict,NN is the equality constraint corresponding
to the prediction of the neural network classifier regarding the feasibility of the
unmapped set of components w, and trained on the current mapped locations. It is
related to the layout constraints defined in Equations 6.13 as follows:

hpredict,NN(w) =

{
0, if h∗

layout(x
∗, z∗,w) = 0 and g∗

layout(x
∗, z∗,w) ≤ 0

1, otherwise
(6.29)

with the same formalism as in Equations 6.13, the star exponent characterizes the
design variables and constraints functions handled in the lower level. The layout
constraints h∗

layout(·) and g∗
layout(·) ensure the feasibility of the layout for the list

of components w using the predictions of the neural network. Therefore, the for-
mulation of the Bayesian Optimization problem written with Equations 6.27 is a
translation of the upper stage of the nested formulation (i.e., Equations 6.13), spec-
ified with the Bayesian Optimization features.

Infill criterion optimization. To determine the location for infilling new data
samples in each iteration of the Bayesian optimization algorithm, an auxiliary op-
timization process is needed, as formulated in the previous section. It is worth
noting that the evaluation of acquisition functions may require significantly less
time when compared to the computation of the main problem’s objective and con-
straint functions. Therefore, common optimization algorithms can be employed for
this purpose.

In the case of CSS OLPs, the acquisition function must be optimized in a cate-
gorical search space. The chosen technique must be able to deal with such category
of design variables.

In this work, the infill criterion is optimized using a Genetic Algorithm (GA)
able to deal with categorical variables as well as employing constraint dominance
selection criterion, similar to the one described by Stelmack [SNB98]. The choice
of specific parameters for this GA, such as mutation and crossover probabilities, as
well as the number of generations and population size, varies depending on the test
cases and is adapted to the size and characteristics of the specific problem being
addressed.
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6.4.5 Algorithm framework

Then, the surrogate assisted-CSO-VF algorithm process is as follows: a training
data set of NDoE lists of components is generated at the upper level and evaluated
using the lower level. The Gaussian Process (GP) surrogate model is created using
the data set. The neural network classifier is trained on the mapped location in
order to predict the feasibility of an unmapped set of components. The Bayesian
Optimization process optimizes the infill criteria and the output point corresponding
to the most promising feasible list of components is evaluated at the lower level by
performing the CSO-VF algorithm on the list of components. This point is added to
the data set which is then used at next iteration to create an enriched GP surrogate
model. The upper and lower level are hence performed sequentially until a stopping
criterion corresponding to the maximum number of iterations is met.

Figure 6.10 illustrates the surrogate assisted-CSO-VF algorithm framework.

Initialization of the 
training data set

Evaluation of the initial 
training data set with
CSO-VF algorithm

GP creation for the 
objective function

MLP classifier training 
for the constraint

prediction

Optimization of the 
infill criterion

Evaluation of the objective 
and constraint functions at 
the infilled location with

CSO-VF algorithm

Addition of the sample
to the training data set

Stopping
criterion ?

End

Yes

No

Figure 6.10: Surrogate assisted-CSO-VF algorithm framework. The steps related to
the upper and lower level are respectively highlighted in blue and orange.

6.5 Conclusion

In this chapter, two algorithms are developed in order to deal with conditional
search space optimal layout problems. These latter consist in optimizing the list
of the components to include in the system along with their layout. The choice of
components introduces categorical design variables to optimize that are responsible
for the number and types of the continuous and discrete variables.

The first approach is based on GA enhanced with a hidden-variable mechanism
(HVM for GA). This HVM for GA modifies the implementation of the chromosomes
in order to reveal or hide some of the genes that are respectively taken or not taken
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into account for the objective or constraint functions evaluations. Thus, this method
allows to tackle all categorical, continuous and discrete design variables in a single
optimization process.

The second approach consists in a bilevel surrogate assisted-Component Swarm
Optimization based on Virtual-Force (CSO-VF) algorithm. It combines the strength
of the CSO-VF algorithm developed and evaluated in Part I, and a discrete Bayesian
Optimization algorithm framework purposely adapted to tackle the categorical as-
pect of this problem. This second approach thus consists in two nested optimization
processes dealing respectively with the optimization of the set of components (i.e.,
the categorical conditional variables) and with the optimization of the corresponding
layout (i.e., the continuous and discrete variables).

These two algorithms are configured, assessed and compared in Chapter 7 by
their application to conditional search space single-container satellite module layout
problems.
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Applications of Hidden-variable
Mechanism for Genetic Algorithm
and Surrogate Assisted-CSO-VF
Algorithm to Single-container
Satellite Optimal Layout Problems
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• Extension of fixed search space satellite layout problems to conditional
search space optimal layout problems.

• Assessment of the performance of the hidden-variable mechanism for
GA and the surrogate assisted-CSO-VF algorithm on the satellite ap-
plication cases.

• Comparison of the two approaches in terms of global performance.

Chapter contributions

7.1 Introduction

In this chapter, the performance of the algorithms developed in Chapter 6 are as-
sessed on a a conditional search space optimal layout application case. The optimal
layout of the simplified model of the international commercial communication satel-
lite module (INTELSAT-III) is considered as a representative application case of
optimal layout problems and without loss of generality [CXW18; CZa19; Ten+09;
ZTS08]. The fixed search space formulation of the problem detailed in the Chapter
4 is extended to conditional search space problems. As detailed in Chapter 6, a cat-
alogue of components is defined and the algorithms have to determine the optimal
set of components among this catalogue as well as the corresponding optimal layout.
The hidden-variable mechanism for Genetic Algorithm and the surrogate assisted-
Component Swarm Optimization based on a Virtual-force system algorithm are first
configured and used to solve the benchmark problem. Their global performance are
subsequently compared.

The rest of this chapter is organized as follows: Section 1 is devoted to the formu-
lation of conditional search space single-container satellite module layout problems.
The hidden-variable mechanism for Genetic Algorithm and the surrogate assisted-
CSO-VF algorithms are respectively configured and assessed in Section 2 and 3.
Finally, a comparison of the global performance of the two methods is conducted in
Section 4.
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7.2 Conditional search space single-container

satellite module layout problems

In this section, conditional search space (CSS) single-container optimal layout prob-
lems are specified in the case of satellite module layout problems. The problem at
hand is extended from the fixed search space (FSS) single-container satellite lay-
out problem defined in Chapter 4. It involves positioning N generic components,
each having ni (i ∈ {1, ..., N}) possible subdivisions, within a container in order to
minimize the global inertia of the module. Several constraints must be satisfied.
These constraints can be either geometrical (e.g., overlapping constraints, balanc-
ing constraints) or functional (e.g., constraints of functional compatibility between
components for instance due to electromagnetic or heat radiations threshold within
the container).

7.2.1 Geometry of the container and the components

Container. Similarly to the single-container configuration of the FSS satellite
layout problem formulation, the container is a one-sided bearing plate defined by its
outer radius Rout and two exclusion zones which are defined as follows:

• A central circular bus defined by its radius Rin and centered at the geometrical
center of the plate;

• A rectangular bus defined by its dimensions (Lbus, lbus) and its positions on
the plate in the cylindrical system of coordinates (rbus, θbus).

Components. All components are defined using their dimensions and masses.
They are considered as rigid bodies of homogeneous density and are located using
the position of their centers of inertia. They are of three types:

• Fuel components;

• Energy components;

• Other diverse components (i.e., components with no functional constraints).

Each component is identified by:

• The index of its corresponding generic component, i, for i ∈ {1, ..., N};

• The index of the subdivision it belongs to, j, for j ∈ {1, ..., ni};

• The index of the component from the subdivision, k, for k ∈ {1, ..., nsubdiv
i,j }.

Indeed, the number of components nsubdiv
i,j in each subdivisions depends on how

is subdivided the corresponding generic components and thus depends on the
indices i and j.
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The geometrical attributes of the kth component of the jth subdivision of generic
component i, i.e., component {i, j, k}, are thus written: Rj,k

i for the radius in case
of a cylinder, aj,ki , bj,ki for the rectangular base of a cuboid, hj,k

i for its height and
mj,k

i for its mass.

Figure 7.1 illustrates the definition of the subdivisions of one generic cylinder
component i with three possible subdivisions.

𝒊,1,1

𝒊,2,1
𝒊,3,1

𝒊,2,2
𝒊,3,2 𝒊,3,3

Generic component 𝑖
Subdivision 1 Subdivision 2 Subdivision 3

OROR

𝑅𝑖
1,1, ℎ𝑖

1,1, 𝑚𝑖
1,1 𝑅𝑖

2,1, ℎ𝑖
2,1, 𝑚𝑖

2,1
𝑅𝑖
2,2, ℎ𝑖

2,2, 𝑚𝑖
2,2 𝑅𝑖

3,1, ℎ𝑖
3,1, 𝑚𝑖

3,1 𝑅𝑖
3,2, ℎ𝑖

3,2, 𝑚𝑖
3,2

𝑅𝑖
3,3, ℎ𝑖

3,3, 𝑚𝑖
3,3

Figure 7.1: Definition of the subdivisions of the components on an example.

In this chapter, three assumptions are made, for the sake of simplicity and with-
out loss of generality:

• The geometry of each generic component (i.e., cylinder or cuboid) remains
identical for all the components from its subdivisions;

• The total area of the components of each subdivisions of a same generic com-
ponent is conserved. It is mathematically translated as follows:

nsubdiv
i,j∑
k=1

Aj,k
i =

nsubdiv
i,j+1∑
k=1

Aj+1,k
i , ∀i ∈ {1, ..., N}, for j ∈ {1, ..., ni − 1} (7.1)

where Aj,k
i is the area of component {i, j, k};

• The total mass of the components of each subdivisions of a same generic
component is conserved. It is mathematically translated as follows:

nsubdiv
i,j∑
k=1

mj,k
i =

nsubdiv
i,j+1∑
k=1

mj+1,k
i , for i ∈ {1, ..., N}, for j ∈ {1, ..., ni − 1} (7.2)

The configuration designed for the application case consists in 12 generic com-
ponents that can be divided so that a maximum of 28 components are positioned in
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the container. Overall, it corresponds to 3888 possible different lists of com-
ponents. The details of the generic components and their subdivisions used in this
chapter are reported in Table A.4 in Appendix A.

Moreover, as for the fixed search space satellite module layout problems, the
dimensions of the components are modified in order to study four increasing different
occupation rates of the container, from 30% to 60%. The higher the occupation rate
of the container, the more difficult it is to satisfy the constraints.

7.2.2 Design variables

In the conditional search space single-container satellite optimal layout configura-
tion, the design variables are:

• The chosen subdivisions of the generic components, considered as conditional
categorical variables w = {wi} where i ∈ {1, ..., N} and wi ∈ {1, ..., ni};

• The positions of the centers of inertia of the chosen components, considered as
continuous variables, xp. The length of vector xp depends on the conditional
variables and is denoted nxp(w);

• The orientations of the chosen cuboid components considered as continuous
variables, xα. The length of vector xα depends on the conditional variables
and is denoted nxα(w).

It must be noted that the x vector of continuous variables introduced in Chap-
ter 6 corresponds to x = {xp,xα}. In addition, the layout variables are considered
continuous here, but the overall problem formulation is easily adaptable if discrete
variables are introduced (e.g., if the orientation of non-cylinder components is con-
sidered discrete).

Thus, the number of variables to optimize depends on the values of the condi-
tional variables wi, i ∈ {1, ..., N}. The maximum number of design variables nvar

used to define a layout is defined as:

nvar = N +
∑

i∈CY L

2max
j

(nsubdiv
ij ) +

∑
i∈CUB

3max
j

(nsubdiv
ij ) (7.3)

where CY L and CUB respectively referred to as the i indices of cylinder and cuboid
components. In other words, for i ∈ {1, ..., N}, i ∈ CY L if component i is a cylinder
or i ∈ CUB if component i is a cuboid.

7.2.3 Objective and constraints functions

Objective function. The objective function to minimize is the global inertia of
the module Itot which is mathematically formulated in Chapter 4. In this chap-
ter, the inertia function takes as arguments the positions and orientations of the
components selected by the conditional variables w.
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Constraints functions. The constraints functions are identical to the ones listed
and mathematically defined in Chapter 4. They are briefly summarized:

• Overlapping between the components, hComp
overlap;

• Belonging of the components within the container, hCont
overlap;

• Overlapping between the components and the exclusion zones, hE
overlap;

• Balancing constraint, gCG;

• Functional constraints of distance between fuel and energy components, hfunctional.

In this chapter, the constraints functions take as arguments the positions and
orientations of the components selected by the conditional variables w.

7.2.4 Mathematical formulations

As in Chapter 6, two cases are considered:

Case 1. The conditional variables w responsible for the choices of the components
are optimized simultaneously with the variables xp,xα related to the corresponding
layout, in a single optimization process. Thus, it is formulated mathematically as
follows:

min
xp,xα,w

Itot(xp,xα,w)

w.r.t. xp ∈ Fxp ⊆ Rnxp (w),xα ∈ Fxα ⊆ Rnxα (w),w ∈ Fw ⊆ Nnw

s.t. hComp
overlap(xp,xα,w) = 0

hCont
overlap(xp,xα,w) = 0

hE
overlap(xp,xα,w) = 0

hfunctional(xp,xα,w) = 0

gCG(xp,xα,w) ≤ 0

(7.4)

This formulation is used for the hidden-variable mechanim for Genetic Algorithm.

Case 2. A nested formulation is proposed in order to optimize the conditional
variables and the depending variables in two sequential optimization processes:
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min
w

Itot(x
∗
p,xα

∗,w)

s.t. hComp
overlap(x

∗
p,x

∗
α,w) = 0

hCont ∗
overlap(x

∗
p,x

∗
α,w) = 0

hE ∗
overlap(x

∗
p,x

∗
α,w) = 0

h ∗
functional(x

∗
p,x

∗
α,w) = 0

g ∗
CG(x

∗
p,x

∗
α,w) ≤ 0

w.r.t. w ∈ Fw ⊆ Nnw

{x∗
p,xα

∗} = argmin Itot(xp,xα,w)

w.r.t. xp ∈ Fxp ⊆ Rnxp (w),xα ∈ Fxα ⊆ Rnxα (w)

hCont
overlap(xp,xα,w) = 0

hE
overlap(xp,xα,w) = 0

hfunctional(xp,xα,w) = 0

gCG(xp,xα,w) ≤ 0

(7.5)

The design variables denoted with a star exponent (e.g., x∗) referred to as the design
variables optimized in the lower level and which are thus fixed in the upper level. In
the same way, the constraints denoted with a star exponent (e.g., h∗(·)) referred to
as the constraints handled in the lower level but which must ensure the feasibility
of the layout for the list of components defined by w at the upper level.

This formulation is used for the surrogate assisted-CSO-VF algorithm.

7.3 Configuration of the hidden-variable

mechanism for Genetic Algorithm

The hidden-variables mechanism for Genetic Algorithm (HVM for GA) addresses
the first mathematical formulation of the problem given by Equations 7.4. The
following sections aims to configure and analyze the global performance of the HVM
for GA using the problem described in Section 7.2 and for three occupation rates:
30%, 50% and 70%.

7.3.1 Configuration of the hidden-variable mechanism for
genetic algorithm

In order to configure the HVM for GA, the operators detailed in Chapter 6 are
tested and compared thanks to a test campaign.

Design of a test campaign. Given the combinatorial dimension of the problem,
operators that promote diversity in order to prevent premature convergence are
privileged. The considered operators which have been described in Chapter 6 are
briefly summarized below:
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• For selection and constraint handling, a tournament with either 5 or 15 individ-
uals (T5 or T15) as well as Constraint Dominance (CD) [Deb00] or Stochastic
Ranking (SR) [RY00] are considered;

• For the crossover operator on chromosomes either Simulated Binary Crossover
(SBX) [DA95] or Uniform Crossover (UX) [Dan+16] is used. The crossover
on tags is described in Chapter 6 and is not recalled here for the sake of
conciseness;

• The mutation on chromosomes is Polynomial Mutation (PM) [Tal09] or Uni-
form Mutation (UM) [Tal09]. In the same way, the mutation on tags is de-
scribed in Chapter 6 and is not recalled here for the sake of conciseness;

• The replacement scheme is either the non-dominated truncating (NDT) [Deb+02]
or the deterministic crowding (DC) [Mah92; Mah94].

In order to analyze in depth the performance of the algorithm with the previ-
ously described operators and to choose an operator configuration, two Taguchi’s
experiment plans are adopted [Roy10]:

• In the first set of Taguchi’s experiments, summarized in Table C.2 in Appendix
C, a focus is made on the crossover and mutation operators;

• In the second set of Taguchi’s experiments, summarized in Table C.3 in Ap-
pendix C, a focus is made on the selection and the replacement operators.

The hyperparameters of the algorithm are set for all the schemes using a parametric
study. The Taguchi’s plans are run for the tag implementation of the chromosomes
detailed in Chapter 6. The aim is to find the best combination of operators to get
the best balance between exploration and exploitation using analysis criteria defined
in Appendix C.

Best obtained configuration. The following sequence of operators as well as
hyperparameters are selected after the test campaigns:

• Constraint handling: Stochastic Ranking with probability Pf = 0.45;

• Selection: Tournament with 15 individuals;

• Crossover design variables: Simulated Binary Crossover (SBX), with prob-
ability P g

c = 0.9;

• Crossover dimensional variables (for GA-DV): SBX with probability
PDV
c = 0.9;

• Crossover tags (for GA-tags): 1-point, with probability P t
c = 0.9;

• Mutation: Polynomial Mutation (PM) with probability Pm = 0.2;

• Replacement: Non-Dominated Truncating (NDT).
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7.3.2 Global performance of the hidden-variable
mechanism for genetic algorithm

The aforementioned operators and hyperparameters configuration are used to study
the global performance of the HVM for GA for the two chromosomes implementa-
tions detailed in Chapter 6:

• The implementation of the conditional variables as design variables (HVM-
DV);

• The implementation of the conditional variables as tag vectors (HVM-TAG).

The HVM-DV and HVM-TAG methods are run 50 times for four different occu-
pation rates: 30%, 40%, 50%, 60%. For each occupation rate, the algorithms are
randomly initialized, even though those initializations are the same between the two
methods so that they are comparable. The computational budget is set to 5 × 106

objective function evaluations, distributed as follows: 500 individuals in the popu-
lations and 10,000 generations.

In order to compare the performance provided by the HVM for GA with both
proposed conditional variables implementations, the following metrics are adopted:

• Median of convergence curves: for each occupation rate, Figures 7.2a,
7.5a, 7.8a and 7.11a show the median of convergence curves of the 50 simula-
tions for the HVM-DV and HVM-TAG implementations.

• Best run: for each occupation rate, Figures 7.2a, 7.5a, 7.8a and 7.11a also
shows the convergence curves of the simulation leading to the best layout i.e.,
the smallest final inertia, for each algorithm.

• Ranks of the algorithms: Figures 7.2b, 7.5b, 7.8b and 7.11b indicate for
each occupation rate the number of times each algorithm ranked first or second
in terms of final objective function value for the 50 simulations. This metric
characterizes the convergence accuracy of both algorithms.

• Iterations to best median (mean): for each occupation rate, Figures 7.3,
7.6, 7.9 and 7.12 show the mean of iterations needed by each median conver-
gence curve to reach 25%, 20%, 15%, 10% and 5% of the best final obtained
median. This metric characterizes both the convergence speed and the rela-
tive margin between each configuration and the best one in terms of median
convergence curve.

• Successful runs to target: for each occupation rate, Figures 7.4, 7.7, 7.10
and 7.13 show the number of simulations of each configurations (among the 50)
which manage to reach 25%, 15%, 10%, 5%, 3% and 1% of the best obtained
median. This metric characterizes the success rate and the robustness of each
configuration.

• Explored configurations: Figure 7.14 shows the number of reached config-
urations i.e., lists of components, by both algorithms and the four occupation
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rates. This metric characterizes their ability to explore the conditional search
space.

Table 7.1 sums up the numerical results obtained for each chromosome imple-
mentations of the HVM for GA. The metrics are:

• The success rate i.e., the number of simulations providing with a feasible
solution;

• The median of the final objective function values;

• The interquartile range of the final objective function values;

• The best objective function values over the 50 randomly initialized repetitions;

• The mean of the iteration for which a feasible solution is reached for the first
time.
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Figure 7.2: Convergence curves and ranks for the 30% occupation rate.
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Figure 7.4: Success rate to percentages of the median target, OR = 30%.
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Figure 7.5: Convergence curves and ranks for the 30% occupation rate.
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Figure 7.6: Function evaluations to percentages of the median target, OR = 40%.
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Figure 7.7: Success rate to percentages of the median target, OR = 40%.
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Figure 7.8: Convergence curves and ranks for the 50% occupation rate.
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Figure 7.9: Function evaluations to percentages of the median target, OR = 50%.
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Figure 7.10: Success rate to percentages of the median target, OR = 50%.
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Figure 7.11: Convergence curves and ranks for the 60% occupation rate.
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Figure 7.12: Function evaluations to percentages of the median target, OR = 60%.
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Figure 7.14: Number of configurations reached by both algorithms.

OR HVM-DV HVM-TAG

Success rate

30% 50 50
40% 50 50
50% 50 49
60% 43 35

Final objective
(median)

30% 1.429e7 1.486e7
40% 1.773e7 1.857e7
50% 2.182e7 2.273e7
60% 2.554e7 2.724e7

Final IQR

30% 9.190e5 1.384e6
40% 1.327e6 1.593e6
50% 1.646e6 2.073e6
60% 1.140e6 1.856e6

Best layout

30% 1.277e7 1.315e7
40% 1.626e7 1.609e7
50% 2.014e7 2.028e7
60% 2.235e7 2.439e7

First iteration
leading to feasible
solution (mean)

30% 15.10 43.8
40% 29.48 89.24
50% 87.48 352.53
60% 1247.2 2590.6

Table 7.1: Numerical results for the two implementation of the HVM for GA. Bold
values indicate best algorithm.

First of all, Figures 7.2a to 7.14 and Table 7.1 highlight that both methods allow
to find feasible solutions to the conditional search space satellite layout problem.
As a matter of fact, an appropriately set up Genetic Algorithm enhanced with
the proposed mechanism provides a layout of the satellite module among the 3888
possible configurations of components, and manages to solve the constraints for all
occupation rates.
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Success rate. Table 7.1 shows that until the 50% occupation rate, almost 100%
of the runs find a feasible solution from random initializations. However, for the
highest occupation rate, respectively 14% and 30% of the runs do not provide any
feasible solution for the HVM-DV and HVM-TAG approaches. Indeed, the more
the occupation rate of the container increases, the more the constraints are difficult
to solve.

Convergence accuracy. The HVM-DV method reaches a better objective func-
tion median for all the occupation rates. Indeed, the HVM-DV algorithm allows to
improve the final median by respectively 3.8%, 4.5%, 4.0% and 6.2% in comparison
to the HVM-TAG configuration for increasing occupation rates. Moreover, regard-
less of the occupation rate, the HVM-DV algorithm almost always provides the best
final inertia (an exception occurs for the 40% occupation rate).

Figure 7.2b, 7.5b, 7.8b and 7.11b rank the values of the final objective function
obtained by each algorithm over the 50 instances, for each occupation rate. It is
observed that the HVM-DV approach ranks first 31 to 43 times over 50, for all the
occupation rates showing better convergence accuracy.

Convergence speed. The third metric shows how many generations are needed
in order to reach certain percentages of the best final median obtained (i.e., the
final median of the HVM-DV algorithm for all the occupation rates). It is observed
that the HVM-DV approach always reaches smaller percentage of the median target
in less generations than the HVM-TAG method. Moreover, the HVM-TAG method
does not reach 5% of the median target for the 60% occupation. This last observation
is consistent with the relative differences between final median objective function
values calculated in the previous paragraph. It can be concluded that the HVM-DV
method has a higher convergence speed toward the optimum than the HVM-TAG
method.

Robustness. For each occupation rate, Figures 7.4, 7.7, 7.10 and 7.13 show the
number of runs among the 50 repetitions that reach a certain percentages of the best
final median value i.e., the target value. For all the occupation rates, the HVM-DV
approach has more runs reaching smaller percentage of the target value in comparion
to the HVM-TAG method. It can be concluded that the HVM-DV algorithm has a
better robustness with respect the initialization because it leads to a larger number
of repetitions reaching the target value than the HVM-TAG method.

Moreover, the final interquartile ranges (IQR) obtained for both HVM chromo-
some implementations and reported in Table 7.1 allow to quantify the dispersion
of the final results in terms of objective function values. The HVM-DV algorithm
allows to improve the final IQR by respectively 35.6%, 16.7%, 20.6% and 38.6% in
comparison to the HVM-TAG configuration for increasing occupation rates. Over-
all, it can be concluded that the HVM-DV has a better robustness to initialization
in terms of objective function.

First feasible solution. The generations providing the first feasible solution are
reported in Table 7.1. First of all, it is observed that it takes more and more time
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for both algorithms to find a first feasible solution as the occupation rate raises due
to the increasing difficulty to solve the constraints by GA. Moreover, the HVM-DV
algorithm always find a feasible solution in less generations than the HVM-TAG
algorithm.

Exploration of the conditional search space. Figure 7.14 shows that among
all individuals of their populations, the HVM-TAG methods explores approximately
two to three times more configurations of the conditional search space (i.e., lists of
components) than the HVM-DV method. Those results balance the general con-
clusions drawn in the previous paragraphs. Indeed, even if a better convergence
accuracy, speed and robustness to initialization trends were highlighted in favor of
the HVM-DV method, the better exploration capacities of the HVM-TAG method
must be underlined. It can be explained by the presence of evolutionary opera-
tors dedicated to the tag vector responsible for the choices of configurations. On
the contrary, the conditional variables of the HVM-DV methods undergo evolution-
ary operations as part of the chromosome. However, they represent only 9 genes
over 129 which may explain the lack of diversity observed in the conditional search
space. This may also explain the convergence accuracy and speed lower performance
of the HVM-TAG method which explore more in depth the conditional search space.

To conclude, the performance of the HVM for GA method has been assessed
using its application to the proposed conditional search space single-container satel-
lite layout problem. The various metrics used in the previous section allow to draw
the conclusion that despite the ability of the HVM-TAG chromosome implementa-
tion to explore the conditional search space, the HVM-DV implementation provides
better performance in terms of convergence accuracy, convergence speed, robustness
to initialization and speed in finding feasible solutions, with respect to the given
computational budget.

7.4 Configuration of the surrogate

assisted-CSO-VF algorithm

The surrogate assisted-CSO-VF algorithm (BO+CSO-VF) addresses the second
mathematical formulation of the problem given by Equations 7.5. The following
sections aims to configure and assessed the BO+CSO-VF algorithm. It is compared
with the HVM for GA in Section 7.5.

7.4.1 Performance analysis on a toy case

As the conditional search space single-container satellite layout problem defined
in Section 7.2 has 3888 possible lists of components, a toy case with a smaller
number of categories is first designed in order to better understand the different
component configurations and to assess the functioning of the surrogate assisted-
CSO-VF algorithm.

199



Chapter 7. Application to CSS Single-container Satellite Layout Problems

7.4.1.1 Definition of the toy case

The toy case is defined as follows.

Container. The container is identical as the container defined in Section 7.2 i.e.,
a one-sided bearing plate with the two exclusion zones.

Components. Three generic components and their respective subdivisions are
defined:

• A fuel cylinder component, which can be subdivided in one to four smaller
components;

• An energy cuboid component, which can be subdivided in one to four smaller
components;

• A diverse cylinder component, which can be subdivided in one to four smaller
components.

Thus, 64 different lists of components can be positioned in the container. Figure
7.15 illustrates the components that can be chosen to be part of the layout.
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DIVERSE

F F F

F F

F F F
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Figure 7.15: Toy case components definition. The redder the components, the
heavier their corresponding mass.

Objective and constraint functions. The objective and constraints functions
remain identical than the ones detailed in Section 7.2.
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7.4.1.2 Toy case analysis

As the conditional search space is composed of 64 lists of components, the layout
of all possible lists of components can be optimized using the CSO-VF algorithm.
Multistart is employed with 5 instances of the algorithm run over 3000 iterations.
The hyperparameters are set using a parametric study.

The goal of this section is to analyze the final obtained inertias (the output),
with respect to the 64 lists of components (the input). Figure 7.16 shows the rela-
tion between the output and the input with color maps. The final inertia of each
subdivision is shown thanks to a blue colorbar (the lighter is the blue, the smaller is
the inertia) with respect to the number of components of each type. In other words,
each colormap corresponds to a fixed number of diverse components(i.e., 1 to 4
components corresponding to the subdivisions of the generic diverse component).
Subsequently, on each colormap, the x and y axes respectively correspond to the
number of energy and fuel components. Moreover, some optimal layouts are shown.
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Figure 7.16: Colormaps showing the final inertia values obtained using the CSO-VF
algorithm with respect to the number of components of each type, for each of the
64 subdivisions.

It can be seen that the more the diverse components are subdivided, the lighter
the overall colormaps. This is due to the fact that when more but smaller com-
ponents are positioned in the container, the empty space between the components
can be reduced, leading to better inertias. Moreover, for a fixed number of diverse
components, the inertia is smaller when the fuel and energy components are in-
termediately subdivided (i.e., around 2 components). This is due to the fact that
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when the fuel and energy components are too subdivided, the functional exclusion
zones around them space the components apart and thus, the corresponding inertia
increases.

As a result, the lists of components leading to the best inertias are those for
which the fuel and energy components are intermediately subdivided, and the diverse
components fully subdivided.

7.4.1.3 Algorithm configuration for the toy case

The surrogate assisted-CSO-VF algorithm is applied to the aforementioned toy case
in order to assess its ability to find the promising areas of the conditional search
space that is completely known. To do so, the same CSO-VF algorithm than in
the previous section is used at the lower level, and standard settings obtained by
a parametric analysis are used for Bayesian Optimization at the upper level. They
are summarized as follows:

• Computational budget: The Bayesian Optimization process is run with an
initial training data set of NDoE = 10 samples and Nit = 10 iterations;

• Kernel: The categorical Hamming kernel is used;

• Kernel approach: The level-wise categorical kernel approach is used;

• Noisy data modeling: The noisy data modeling is used and a nugget with
a value of 0.1 is set;

• Gaussian Process training: The Adam Optimizer, run over 50000 itera-
tions, is used for the GP training;

• Infill criteria: The Expected Improvement (EI) infill criterion is used;

• Optimization of the infill criteria: a Genetic Algorithm whose settings
are obtained using a parametric study is used.

7.4.1.4 Assessment of the algorithm on the toy case

The surrogate assisted-CSO-VF algorithm with the configuration detailed in the
previous section is run 50 times on the toy case. Figure 7.17 shows the median
and interquartile range of the convergence curves of the Bayesian Optimization
process. It must be noted that the curves are convergence ones with respect to the
optimization of the conditional variables w. Each point of the curves supposes that
the other variables (i.e., depending on continuous and/or discrete variables related
to the layout) have been optimized by the lower level. Figure 7.18 shows on the
colormaps which subdivisions the 50 instances of the algorithm have converged to.
Finally, Table 7.2 sums up the numerical results.
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Figure 7.17: Median and interquartile range of the convergence curves of the
Bayesian Optimization process (50 repetitions).

Metric Value

Final median 3.557e6
Final IQR 3.760e4
Best run 3.461e6

Best component list Fuel = 2 ; Energy = 2 ; Diverse =4

Table 7.2: Numerical results for the toy case (50 repetitions).

First of all, the proposed surrogate assisted-CSO-VF algorithm allows to solve
the problem at hand. The median convergence curve shows that the algorithm
globally converges in 10 iterations (with respect to an initial training data set of 10
samples). Moreover, the algorithm almost always finds one of the three component
lists that provides the best inertia values. They correspond to lists with the fuel and
energy components intermediately subdivided. Consequently, the conclusion can be
drawn that the proposed surrogate assisted-CSO-VF algorithm can be used in order
to solve the conditional search space optimal layout problems defined in Section 7.2.

In the following sections, the surrogate assisted-CSO-VF algorithm is thus config-
ured and assessed on the application case detailed in Section 7.2 with 3888 possible
component lists.
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Figure 7.18: Optimal subdivisions found (50 repetitions). The red numbers corre-
spond to the number of times the algorithm converges toward the corresponding
subdivision.

7.4.2 Configuration of the surrogate assisted-CSO-VF
algorithm

The two levels of the surrogate assisted-CSO-VF algorithm are configured in this
section. As the application case detailed in Section 7.2 has a more complex condi-
tional search space than the toy case, both levels are carefully configured.

7.4.2.1 Lower level configuration

The following settings are used to configure the CSO-VF algorithm:

• For each conditional variable set given by the upper level, following the con-
clusions drawn in Chapter 4, multistart is employed in order to improve the
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robustness of the algorithm. Five independent initializations are run in paral-
lel.

• Each instance of the CSO-VF algorithm is run with 5000 iterations.

• The hyperparameters of the CSO-VF algorithm are optimized using Bayesian
Optimization on representative subdivisions.

7.4.2.2 Upper level configuration

Choice of kernels. In order to configure the Bayesian Optimization algorithm
as the upper level, a kernel must be chosen. The three kernels described in Chap-
ter 6 are compared with respect to their prediction capabilities (CS C: Compound
Symmetry kernel with components based distance, CS H: CS kernel with Ham-
ming distance, LV: Latent Variable kernel). To do so, 20 training data sets of
NDoE = {50, 100} conditional variables’ vectors (i.e., sets of components) are gener-
ated and evaluated thanks to the lower level. A training data set is mathematically
denoted as follows:

T = {WT = {wT
1 , ...,w

T
NDoE
} ∈ F T

w , yT = {yT1 , ..., yTNDoE
} ∈ F T

y } (7.6)

For each training data set, the Gaussian Process (GP) surrogate models with the
3 different kernels are trained. In order to evaluate the modeling errors, a validation
data set composed of NV S = 500 conditional variables vectors is also generated and
evaluated. The validation data set is denoted as follows:

V = {WV = {wV
1 , ...,w

V
NV S
} ∈ F V

w , yV = {yV1 , ..., yVNV S
} ∈ F V

y } (7.7)

The goal is thus to compare the GP predicted values for the validation data set
and the real evaluated values. Two metrics are used to evaluate the modeling errors:

• The Root Mean Squared Error (RMSE) [CD14] (the smaller the better) to
assess the validity of the GP prediction. The RMSE metric is calculated as
follows:

RMSE =

√√√√ 1

NV S

NV S∑
i=1

(ŷ(wV
i )− y(wV

i )) (7.8)

where ŷ(wi) is the predicted value of the black-box function i.e., the predicted
value of the inertia of the layout configuration for a set of components wi, by
the GP surrogate modeling. The actual evaluated value is denoted y(wi).

• The Mean Negative Log-Likelihood (MNLL) [War08] (the smaller the better)
to assess the validity of the GP uncertainty model. The MNLL metric is
calculated as follows:

MNLL = − 1

NV S

NV S∑
i=1

log p(ŷ(wV
i )|WT ,YT ,wV

i ) (7.9)

205



Chapter 7. Application to CSS Single-container Satellite Layout Problems

For 30% and 50% occupation rates, Figures 7.19a and 7.20a show the RMSE
values for both studied training data set sizes. In the same way, for both occupation
rates, Figures 7.19b and 7.20b show the MNLL values for both studied training data
set sizes.
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Figure 7.19: RMSE and MNLL for the 30% occupation rate and the 20 repetitions.
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Figure 7.20: RMSE and MNLL for the 50% occupation rate and the 20 repetitions.

First of all, as might be expected, it is observed for all occupation rates that the
larger the size of the training data set, the better are the GP predictions and uncer-
tainty models. Moreover, similar trends are observed between the two occupations
rates. The LV kernel has a larger dispersion then the other kernels for NDoE = 50
due to the fact that the kernel has more hyperparameters than the CS kernels and
the training data set must be large enough for the LV kernel to be trained correctly.
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The CS C and CS H kernels have similar results in terms of their modeling errors.
However, the CS H kernel has generally either a smaller median value or a slightly
smaller interquartile range for NDoE = 50 regarding the two modeling error metrics.
Consequently, the CS H kernel is chosen and the initial number of samples in the
training data set is set to NDoE = 50.

Chosen configuration. In addition to a kernel function, some complementary
configuration choices are made:

• Category-wise and level-wise categorical kernels: as explained in Chapter 6,
the best approach must be chosen according to the characteristics of the con-
ditional (i.e., categorical) variables of the problem at hand. In the case of
the detailed single-container satellite optimal layout problem, 12 categorical
variables leading to 3888 categories (i.e., different list of categorical variables)
are considered. Thus, the category-wise kernels are in this case inoperable due
to the large number of categories. Moreover, the assumption is reasonably
made that the components can be chosen independently from each other. The
level-wise approach is hence chosen;

• As concluded in Chapter 4, the CSO-VF algorithm outputs depend on the
initialization. Consequently, a noisy data modeling approach is considered
as detailed in Chapter 6 which require the definition of a nugget. Using a
parametric analysis, the nugget value is set to 1× 10−1 which corresponds to
the standard deviation of the dispersion of CSO-VF algorithm;

• The Adam Optimizer responsible for the GP training is run during 50000
iterations;

• The EI infill criterion is considered;

• The settings of Genetic Algorithm responsible for the infill criterion optimiza-
tion are determined using a parametric analysis: population of 200 individuals,
500 generations, probability of crossover: 0.9, probability of mutation: 0.1.

7.4.3 Application of the surrogate assisted-CSO-VF
algorithm to the global layout problem

In this section, the bilevel approach combining Bayesian Optimization and the CSO-
VF algorithm is applied to the conditional search space satellite layout problem.
Four occupation rates are studied: 30%, 40%, 50% and 60%. For each occupation
rate, the algorithm is run 50 times. Figure 7.21 shows the medians and interquartile
ranges of the convergence curves of the Bayesian Optimization process (i.e., the up-
per level) for the four occupation rates. It must be noted that the convergence curves
illustrate only the convergence with respect to the conditional variables. Indeed, the
convergence with respect to the depending continuous and discrete variables related
to the layout aspect i.e., the convergence curves of the lower levels cannot be seen
on the Bayesian Optimization convergence curves. Thus, each point of the upper
level convergence curves has already optimized continuous and discrete variables.
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Figure 7.21: Median and interquartile ranges of the convergence curves obtained
with the BO+CSO-VF algorithm for the four studied occupation rates (50 repeti-
tions).

Figure 7.21 shows that for all studied occupation rates, the proposed approach
converges toward lists of components that provide feasible layouts and contribute to
decrease the global inertia.

Furthermore, it must be noted that the algorithm has an exploration ability of
the conditional search space which is completely fixed by the computational budget
of the upper level. This computational budget is distributed between the number of
initial samples in the training data set, NDoE, and the number of iterations of the
Bayesian Optimization process, Nit. Therefore, in this case, 200 lists of components
are evaluated over the 3888 possible ones which corresponds approximately to 5% of
the conditional categorical search space. This remains a small number of evaluations
in the conditional search space, in spite of the fact that the initial samples are
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generated using discrete optimized LHS and that the Bayesian Optimization process
aims to optimize the next samples to evaluate.

For the sake of conciseness, further analysis on the surrogate assisted-CSO-VF
algorithm is conducted in the next section devoted to the comparison between the
hidden-variable mechanism for GA and the present approach.

7.5 Comparison of both algorithms

The global performance of the two following algorithms are compared in this section:

• The hidden-variable mechanism for GA with the design variables implemen-
tation of chromosomes (HVM-DV) that provided better performance in terms
of convergence accuracy, convergence speed, robustness to initialization than
the HVM for GA with tags in Section 7.3.2;

• The surrogate assisted-CSO-VF algorithm (BO+CSO-VF) with the configu-
ration determined in the previous section.

In Section 7.3.2 and Section 7.4.3, the HVM-DV and BO+CSO-VF methods have
both been run 50 times for four different occupation rates: 30%, 40%, 50%, 60%.
They have been run with the same computational budget: 5× 106 function evalua-
tions, distributed as follows according to the algorithm:

• HVM-DV: 500 individuals in the populations and 10,000 generations;

• BO+CSO-VF: for the upper level, a training data set of NDoE = 50 samples
and Nit = 150 iterations. For the lower level: Nstart = 5 instances of the
CSO-VF algorithm over Nit,CSO = 5000 iterations.

In order to compare the performance provided by the HVM for GA and the
surrogate assisted-CSO-VF algorithm, the following metrics are adopted:

• Median of convergence curves: for each occupation rate, Figures 7.22a,
7.25a, 7.28a and 7.31a show the median of convergence curves of the 50 simu-
lations for each algorithm. It must be noted that the convergence curves are
plotted from the moment the Bayesian Optimization process of the BO+CSO-
VF algorithms starts (i.e., after the evaluation of the initial training data sets).
Thus, the curves begin from 1.25×106 function evaluations (which correspond
to the 2500th generations of the HVM-DV algorithm).

• Best run: for each occupation rate, Figures 7.22a, 7.25a, 7.28a and 7.31a also
show the convergence curves, in dotted lines, of the simulation leading to the
best layout i.e., the smaller final inertia, for each algorithm,. As mentioned
for the previous metric, the best runs are thus also plotted from 1.25 × 106

function evaluations.

• Ranks of the algorithms: Figures 7.22b, 7.25b, 7.28b and 7.31b indicate
for each occupation rate the number of times each algorithm ranked first or
second in terms of final objective function value for the 50 simulations.
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• Successful runs to target: for each occupation rate, Figure 7.23, 7.26, 7.29
and 7.32 show the number of simulations of each algorithm (among the 50)
which manages to reach 25%, 15%, 10%, 5%, 3% and 1% of the best obtained
median.

• Number of components: Figures 7.24, 7.27, 7.30 and 7.33 indicate the
average number of each type of components (i.e., fuel, energy and diverse)
obtained in the final 50 layouts of both algorithms and the four occupation
rates. The minimum and maximum numbers of components of each type is
indicated in square brackets (e.g., Fuel [3-7] indicates that from 3 to 7 fuel
components can be chosen and positioned in the container).

Moreover, Figure 7.34 show the optimal layouts obtained for each occupation rate
and each algorithm. Finally, Table 7.3 sums up the numerical results obtained for
each algorithm. The metrics are:

• The success rate i.e., the number of simulations providing a feasible solution;

• The median of the final objective function values;

• The interquartile range of the final objective function values;

• The best objective function values over the 50 simulations;

• The average number of explored lists of components over the 50 simulations.
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Figure 7.22: Convergence curves and ranks for the 30% occupation rate.
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Figure 7.23: Success rate to percentages of the median target, OR = 30%.
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Figure 7.24: Number and types of components (mean), OR = 30%.
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Figure 7.25: Convergence curves and ranks for the 40% occupation rate.
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Figure 7.26: Success rate to percentages of the median target, OR = 40%.
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Figure 7.27: Number and types of components (mean), OR = 40%.
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Figure 7.28: Convergence curves and ranks for the 50% occupation rate.
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Figure 7.29: Success rate to percentages of the median target, OR = 50%.
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Figure 7.30: Number and types of components (mean), OR = 50%.
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Figure 7.31: Convergence curves and ranks for the 60% occupation rate.
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Figure 7.32: Success rate to percentages of the median target, OR = 60%.
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Figure 7.33: Number and types of components (mean), OR = 60%.
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Figure 7.34: Best optimal layouts obtained for both algorithms and the four occu-
pation rates.
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OR HVM-DV BO+CSO-VF Relative
difference

Success
rate

30% 50 50 -
40% 50 50 -
50% 50 50 -
60% 43 50 -14%

Final
objective
(median)

30% 1.429e7 1.170e7 -18.12%
40% 1.773e7 1.477e7 -16.98%
50% 2.182e7 1.845e7 -15.44%
60% 2.554e7 2.258e7 -11.59%

Final IQR

30% 9.190e5 8.954e4 -90.25%
40% 1.327e6 1.435e5 -89.19%
50% 1.646e6 1.719e5 -89.56%
60% 1.140e6 3.711e5 -67.44%

Best layout

30% 1.277e7 1.144e7 -10.42%
40% 1.626e7 1.465e7 -9.90%
50% 2.014e7 1.809e7 -10.18%
60% 2.235e7 2.185e7 -2.24%

Explored
subdivisions

30% 473 200 -57.72%
40% 483 200 -58.59%
50% 472 200 -57.63%
60% 477 200 -58.07%

Table 7.3: Numerical results for the HVM for GA and the BO+CSO-VF algorithm
and the four occupation rates. Bold values indicate best algorithm.

Success rate. Table 7.1 shows that until the 50% occupation rate, both methods
allow 100% of the runs to find a feasible solution to the problem. However, for the
higher occupation rate, 14% of the runs do not provide any feasible solution for the
HVM-DV while the BO+CSO-VF approach maintains a 100% success rate.

Convergence accuracy. The BO+CSO-VF algorithm reaches a better objective
function median for all occupation rates. Indeed, as reported in Table 7.3, the
BO+CSO-VF algorithm allows to improve the final median by respectively 18.12%,
16.98%, 15.44% and 11.59% in comparison to the HVM-DV approach, for increasing
occupation rates. Moreover, regardless of the occupation rate, the BO+CSO-VF
algorithm always provides the best final inertia allowing to improve the best inertia
by respectively 10.42%, 9.90%, 10.18% and 2.24%, for increasing occupation rates.

Figure 7.22b, 7.25b, 7.28b and 7.31b rank the values of the final objective func-
tion obtained by each algorithm over the 50 instances, for each occupation rates. It
is observed that the BO+CSO-VF approach always ranks first for the three smaller
occupation rates. For the 60% occupation rates it ranks first 98% of the time.

Robustness. For each occupation rate, the third figure shows the number of runs
among the 50 trials that reach a certain percentages of the best final median value
i.e., the target value. For all the occupation rates, the BO+CSO-VF approach has
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100% of its repetitions that reach 3% of its final median value, while the HVM-
DV approach barely reaches 10% of this same value. It can be concluded that the
BO+CSO-VF algorithm has a better robustness with respect to the number of runs
reaching the target value than the HVM-DV method.

Moreover, the final interquartile ranges (IQR) obtained for both approaches and
reported in Table 7.3 allow to quantify the dispersion of the final results in terms
of objective function values. The BO+CSO-VF algorithm allows to improve the
final IQR by respectively 90.25%, 89.19%, 89.56% and 67.44% in comparison to the
HVM-DV algorithm, for increasing occupation rates. Overall, it can be concluded
that the BO+CSO-VF has a better robustness to initialization.

Exploration of the conditional search space. The last metric from Table
7.3 reports the number of explored subdivisions. In the case of the HVM for GA
approach, this corresponds to the number of different lists of components that are
evaluated in the population over the generations. In the case of the BO+CSO-VF
approach, this value is completely fixed by the computational budget of the upper
level distributed between the number of samples in the initial training data set
and the number of infilled samples during the Bayesian Optimization process (i.e.,
NDoE = 50 and Nit = 150 leading to a total number of 200 samples evaluations).
As mentioned in the previous section, this means exploring approximately 5% of the
conditional search space while the HVM for GA explore approximately 12% of the
conditional search space. However, in addition to the Bayesian Optimization process
that optimizes the evaluated lists of components, the structure of the BO+CSO-VF
algorithm provides information about the quality of each list of components in terms
of final layout. Indeed, the continuous and discrete design variables are optimized for
each list of components that is being studied. On the other hand, when a subdivision
is reached by the HVM-DV algorithm, the other design variables related to the layout
are not optimized yet and some subdivisions can be quickly discarded in case of high
constraints violations (related to continuous and discrete variables) because of the
constraint-dominance rules. Then, the subdivisions providing the lower violations of
constraints at a given time, are likely to be promoted in the population while they
do not necessarily correspond to the most promising list of components in the end.

Furthermore, Figures 7.24, 7.27, 7.30 and 7.33 as well as the illustrations of the
plates shown on Figure 7.34 demonstrate that the BO+CSO-VF algorithm con-
verges toward subdivisions providing more components to be laid out, for a same
occupation rate. Indeed, for all types of components, the BO+CSO-VF algorithm
leads to a larger number of components positioned in the container. This is also due
to the fact that for the HVM for GA algorithm, the Constraint-Dominance tends to
give priority to individuals involving easily solved constraints i.e., individuals with
few components. On the other hand, the two-level structure of the BO+CSO-VF
algorithm does not give an a priori priority to certain subdivisions.

Convergence speed. It must be noted that unlike the other algorithms studied in
this thesis, the convergence speed is not properly studied in this section. In Chapter
4 or in Section 7.3.2 of the present chapter, the iterations providing the first feasible
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solutions are reported and compared, as well as the number of iterations (or number
of function evaluations) needed to reach percentages of the best final median value.
However, the BO+CSO-VF algorithm does not really lend itself to the study of these
metrics because of its inherent structure. Indeed, the iterations of the Bayesian Op-
timization process begin after the evaluation of the initial training data set which
already corresponds to function evaluations without being part of the convergence
per se. Moreover, as the design variables are optimized in two distinct optimization
processes, a metric based on the number of function evaluations is difficult to de-
fine. However, it is worth noting that for the 30% to 50% occupation rates, all the
samples from the initial training data set as well as the samples evaluated during
the iterations of Bayesian Optimization provide feasible layouts. For the 60% occu-
pation rate, on average 5% to 10% of the samples from the 50 initial training data
set provide unfeasible solutions. Despite this, 100% of the infilled samples during
the Bayesian Optimization processes provide feasible solutions. Finally, the metrics
used to study the convergence speed of the HVM for GA are reported and analyzed
in Section 7.3.2.

In summary, the performance of tje surrogate assisted-CSO-VF algorithm have
been assessed using its application to the proposed conditional search space single-
container layout problem. The various used metrics allow to draw the conclusion
that this approach provides better performance in terms of convergence accuracy,
convergence speed, robustness to the initialization, with respect to the given compu-
tational budget. Moreover, even if the HVM for GA algorithm reaches more lists of
components during its convergence process, the BO+CSO-VF algorithm has better
ability to identify promising lists of components in terms of final layout objective
function. These trends can be due both to the Bayesian Optimization technique
which optimizes the choice of the components lists to be evaluated, as well as to
the virtual-force system and operators of the nested lower level of the BO+CSO-
VF algorithm which provide dedicated techniques to address the constraints easier
than for the hidden-variables method in which the constraints are handled using
Constraint-Dominance rules.

7.6 Advantages and limitations of the algorithms

7.6.1 Hidden-variables mechanism for Genetic Algorithm

The main advantages of the hidden-variables mechanism for Genetic Algorithm
(HVM for GA) are as follows:

• This method is generic and versatile and allows to deal with a large range of
conditional search space optimal layout problems;

• The classical GA evolutionary operators can directly be used in the case where
the conditional variables are implemented as design variables (i.e., the HVM-
DV configuration). When tags are used to implement the conditional variables
(i.e., the HVM-TAG configuration), some adaptations are needed in order to
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provide semantically correct recombinations and mutations. Few hyperpa-
rameters are required and correspond to the hyperparameters of each GA
evolutionary operator;

• In theory, the algorithm is not limited in the number of components it can
handle. Moreover, it could also deal with multi-container configurations, in
which depending categorical variables related to the assignment of the chosen
components to the containers would be implemented as hidden or revealed dis-
crete variables. However, the length of the chromosome as well as the number
of constraints would increase which is likely to alter the global performance of
the algorithm.

Some limitations have been identified:

• Even if the length of the chromosome is not theorically limited, all the design
variables related to all the components from the given catalogue are imple-
mented in the chromosome. This can lead to very long chromosomes in case
of a large number of generic components and number of subdivisions which
can affect the global performance of the HVM for GA.

• The main drawback of the approach is the constraint handling based on
constraint-dominance rules. The constraint-dominance promotes individuals
with low constraints violation values among the population and thus does
not allow to explore sufficiently the conditional search space and to identify
promising lists of components.

7.6.2 Surrogate assisted-CSO-VF algorithm

The main advantages of the surrogate assisted-CSO-VF algorithm (BO+CSO-VF)
approach are as follows:

• The BO+CSO-VF, because of its bilevel inherent structure, allows to study
each list of components in depth and to identify the area of the conditional
search space proving the most promising lists of components in terms of final
layout objective function.

• It benefits from the advantages of the Bayesian Optimization technique at
the upper level and particularly its ability to converge quickly even in case of
expensive black-box functions.

• It also benefits from the advantages of the CSO-VF algorithm at the lower level
and particularly its ability to solve the constraints even for a large number of
components using dedicated operators.

Some limitations are also identified:

• In its original form, the Bayesian Optimization technique is limited in terms
of number of design variables that can be handled. The number of generic
components that are subdivided are thus limited to a few dozens. Recent
enhancements of the Bayesian Optimization technique for dealing with more
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conditional variables need to be used (e.g., the Kriging model with Partial
Least Squares [Sav+22]) in case of more generic components. It must be
noted that on the contrary, the number of components does not affect the
CSO-VF algorithm subsequently because of its decentralized inherent aspect.

• The conditional search space exploration ability of the algorithm is completely
fixed by the given computational budget (number of samples in the initial
training data set and then infilled during the Bayesian Optimization process).

• The algorithm relies on a quite large number of settings and hyperparameters
because it uses two dedicated algorithms at each level.

• It should also be noted that the bilevel BO+CSO-VF algorithm cannot deal
with multi-container configurations of the problem. Indeed, such problems add
depending categorical design variables characterizing the assignment of the
chosen components to the containers. However, the CSO-VF cannot deal with
multi-container configurations. Moreover, if both conditional and depending
variables are optimized in the upper level by the Bayesian Optimization tech-
nique, kernels for conditional search space must be employed [Hor+19; HO13a;
Pel+21; ZH18b], as well as scalability related enhancements of the Bayesian
Optimization [Sav+22].

7.7 Conclusion

In this chapter, the fixed search space single-container satellite layout problem de-
scribed in Chapter 4 was extended in order to integrate a conditional search space
(CSS). This proposed benchmark was used to assess the performance of the algo-
rithms described in Chapter 6.

First, the hidden-variables mechanism for GA (HVM for GA) has been configured
and assessed. The list of operators was defined using Taguchi’s plans of experiments
and both proposed implementations of the chromosomes have been compared using
their applications to the proposed CSS single-container satellite layout benchmark.
As a result, both implementations of the algorithm solve the problem at hand.
When conditional variables are implemented as design variables (i.e., the HVM-DV
configuration), the algorithm provides better performance in terms of convergence
accuracy, convergence speed and robustness to the initialization. However, the tag-
based implementation of the conditional variables has more abilities in exploring the
conditional search space.

Subsequently, the surrogate assisted-CSO-VF (BO+CSO-VF) algorithm has been
configured and assessed. A toy case characterized with 64 possible different lists of
components has been devised and the performance has been illustrated using this
toy case. It has then been configured for the satellite benchmark characterized with
3888 possible lists of components. The global performance of the HVM for GA and
the BO+CSO-VF algorithm have been compared using their application to the CSS
satellite benchmark. As a result, the BO+CSO-VF algorithm provides better per-
formance notably in terms of success rate, convergence accuracy and robustness to
initialization in comparison to the HVM for GA, for a given computational budget.
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Indeed, the bilevel structure of the BO+CSO-VF algorithm combines the strength
of both dedicated algorithms. The Bayesian Optimization at the upper level helps
to efficiently explore the conditional search space while the CSO-VF algorithm at
the lower level provides quality layouts by efficiently solving the constraints.

However, the surrogate assisted-CSO-VF algorithm cannot deal with multi-
containers satellite layout problems. Thus, the next chapter is devoted to the defini-
tion of conditional search space multi-container satellite layout problems and to the
development and assessment of a tri-level approach based on Bayesian Optimiza-
tion, Genetic Algorithm and the CSO-VF algorithm for solving the aforementioned
problems.
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• Design of the conditional search space multi-container layout prob-
lems.

• Development of a tri-level approach combining Bayesian Optimiza-
tion, Genetic Algorithm and the CSO-VF algorithm.

• Assessment of the performance of the proposed tri-level algorithm on
a conditional search space multi-container satellite layout problem.

Chapter contributions

8.1 Introduction

In Chapter 7, the satellite benchmarks are limited to single-container satellite con-
figurations. Therefore, the objective of this chapter is to extend the application
cases tackled in the previous chapters to conditional search space multi-container
satellite layout problems and to develop a method to handle them. The proposed
approach is a tri-level approach combining the previous techniques proposed in this
manuscript: Bayesian Optimization for the choices of components, Genetic Algo-
rithm for the assignment of the chosen components to containers and the CSO-VF
algorithm for the layout of the chosen components in their assigned containers.

The rest of the chapter is organized as follows: Section 1 is devoted to the for-
mulation of conditional search space multi-container optimal layout problems. The
tri-level approach is described in Section 2. Section 3 is dedicated to the assessment
of the method using a satellite module layout benchmark.

8.2 Formulation of conditional search space

multi-container optimal layout problems

Conditional search space multi-container optimal layout problems (OLPs) consist in
assigningN generic components, each having ni possible subdivisions (i ∈ {1, ..., N},
to n containers along with optimizing their layout in the assigned containers. In
other words, three tasks must be solved in order to obtain an optimal layout: the
choice of the components, their assignment to containers and their layout optimiza-
tion within their containers. The following sections are dedicated to the description
and formulation of such problems.
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8.2.1 Geometry of the components and containers

Multi-container OLPs involve:

• A set of N generic components of any shape, each having ni possible subdivi-
sions;

• A set of n containers of any shape.

Figure 8.1 illustrates the problem at hand, decomposed in three tasks: the choice
of components, the assignment and layout tasks.

Several containers
The layout task

The assignment task

Component 1

Component 2

Component 3

Component 4

or or

or

or

or or

𝑤1 = 1 𝑤1 = 2 𝑤1 = 3

𝑤2 = 1 𝑤2 = 2

𝑤3 = 1 𝑤3 = 2 𝑤3 = 3

𝑤4 = 1 𝑤4 = 2

A catalogue of 
components

The components 
choice task

𝑤1 = 2 𝑤2 = 1

𝑤3 = 2 𝑤4 = 2

Figure 8.1: Illustration of the CSS multi-container satellite layout problem on an
example.
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8.2.2 Design variables

The design variables that require to be optimized are the following:

• The selected subdivision of each generic component, which correspond to con-
ditional categorical variables w = {wi} with wi ∈ {1, ..., ni} for i ∈ {1, ..., N};

• The index of the container assigned to each component, which corresponds to
dependent discrete unordered variables i.e., categorical variables, zc = {zc,i}
with zc,i ∈ {1, ..., n} for i ∈ {1, ..., N};

• The positions of the center of inertia of each component in its assigned con-
tainer which are considered as dependent continuous variables xp;

• The orientations of the components whose shape is not circular. According to
the problem specifications, design variables relative to components orientations
can correspond either to continuous variables or to discrete variables. For
illustrative purposes, orientations are considered continuous variables in this
section: xα.

8.2.3 Objective function

The objective functions that can be optimized are for instance:

• Any dynamical requirements (e.g., overall mass, inertia or stability of the
system);

• Any costs related to the layout (e.g., manufacturing or handling costs);

• Any performance of the layout (e.g., power consumption or emission).

8.2.4 Constraint functions

The constraint functions can be split into three categories:

Constraints relative to the choice of components. Some constraints are spe-
cific to the choice of the components. They can involve for instance a maximum
value of total mass or a maximum value of occupation rate.

Constraints relative to the assignment of the chosen components to the
containers. Some constraints are specific to the assignment of the components
to the containers. They can involve for instance balancing constraints along one
axis, a maximum value of occupation rate of one or several containers, functional
constraints that position compatible or incompatible components in respectively the
same or distinct containers for functional reasons, etc.
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Constraints relative to the layout. The layout constraints rely on the posi-
tioning of the chosen components. They are similar to those defined for the FSS
OLPs and are briefly summarized as follows:

• Geometrical constraints: These constraints translate geometric specifica-
tions on the layout and only depend on geometric and masses considerations
such as no overlapping between the components, the total inclusion of the
components into the container, balancing constraints (i.e., the global center
of mass must be positioned at the geometrical center of the container), etc.;

• Functional constraints: These constraints do not only depend on geomet-
ric considerations, but also on system-level specifications. One example is, for
instance, proximity or minimal distance requirements between components for
functional requirements (e.g., radiative constraints).

8.2.5 Mathematical formulation

As in Chapter 6 and Chapter 7, two cases are considered herein:

Case 1. The conditional variables w responsible for the choices of the components
are optimized simultaneously with the dependent variables zc, xp,xα related to the
corresponding assignment and layout, in a single optimization process. Thus, it is
formulated mathematically as follows:

min
xp,xα,zc,w

fobj(xp,xα, zc,w)

w.r.t. xp ∈ Fxp ⊆ Rnxp (w),xα ∈ Fxα ⊆ Rnxα (w),

zc ∈ Fzc ⊆ Nnzc (w),w ∈ Fw ⊆ Nnw

s.t. hchoice(xp,xα, zc,w) = 0

gchoice(xp,xα, zc,w) ≤ 0

hassignment(xp,xα, zc,w) = 0

gassignment(xp,xα, zc,w) ≤ 0

hlayout(xp,xα, zc,w) = 0

glayout(xp,xα, zc,w) ≤ 0

(8.1)

where fobj is the objective function, hchoice,gchoice are the equality and inequality
constraints relative to the choice of the components, hassignment,gassignment are the
equality and inequality constraints relative to the assignment of the components
to their containers and hlayout,glayout are the equality and inequality constraints
relative to the layout of the components in the containers.

Case 2. The previous formulation is written as a nested formulation coupled with a
two-stage formulation. This problem formulation is proposed so as to optimize both
the conditional variables and the dependent variables in two sequential optimization
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processes as in Chapter 6 and Chapter 7, and the dependent variables in a two-stage
process as in Chapter 3 and Chapter 4.

min
w

fobj(x
∗∗
p ,x∗∗

α , z∗c ,w)

w.r.t. w ∈ Fw ⊆ Nnw

s.t. hchoice(w) = 0

gchoice(w) ≤ 0

h∗
assignment(z

∗
c ,w) = 0

g∗
assignment(z

∗
c ,w) ≤ 0

h∗∗
layout(x

∗∗
p ,x∗∗

α , z∗c ,w) = 0

g∗∗
layout(x

∗∗
p ,x∗∗

α , z∗c ,w) ≤ 0

{zc∗} = argmin fassignment
obj (zc,w)

w.r.t. zc ∈ Fzc ⊆ Nnzc (w)

s.t. hassignment(zc,w) = 0

gassignment(zc,w) ≤ 0

{xp
∗∗,xα

∗∗} = argmin fobj(xp,xα, zc,w)

w.r.t. xp ∈ Fxp ⊆ Rnxp (w),xα ∈ Fxα ⊆ Rnxα (w)

s.t. hlayout(xp,xα, zc,w) = 0

glayout(xp,xα, zc,w) ≤ 0

(8.2)

The design variables denoted with a star exponent (e.g., x∗) referred to as the
design variables optimized in the lower level and which are thus fixed in the upper
level. In the same way, the constraints denoted with a star exponent (e.g., h∗(·))
referred to as the constraints handled in the lower level but which must ensure the
feasibility of the layout for the list of components defined by w at the upper level.

It must be noted that other formulations can be proposed, for instance consid-
ering either the choices of the components and the assignment tasks in the same
optimization process, or the assignment and the layout tasks in the same optimiza-
tion process. However, these cases have been indirectly discarded in Chapter 3 in
which the two-stage approach for the assignment and layout tasks has been chosen.
Thus, they are not detailed here, for conciseness purposes.

In the following, the second formulation (i.e., Equations 8.2) is chosen. Indeed,
the first formulation could be addressed using the hidden-variable mechanism for
Genetic Algorithm proposed in Chapter 6 and by adding the zc variables as de-
pending hidden or revealed genes. As concluded in Chapter 7, it appears that this
technique provided reduced performance when compared to its surrogate assisted-
CSO-VF algorithm counterpart relying on a nested formulation, notably in terms
of constraint satisfaction, convergence accuracy and robustness to initialization. As
the former conditional search space single-container layout problems are enhanced
with the multi-container peculiarities, which includes additional design variables
and constraints, the search space become even more complex. Consequently, the
second formulation which arises from the nested formulation proposed in Chapter
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Component Swarm Optimization based on a Virtual-force system algorithm

6 and Chapter 7 for the choices of the components and the layout tasks, as well as
that from the two-stage formulation proposed in Chapter 3 and Chapter 4 for the
assignment and layout tasks is considered.

8.3 Tri-level approach combining Bayesian

Optimization, Genetic Algorithm and

Component Swarm Optimization based on a

Virtual-force system algorithm

In this section, the tri-level approach developed to handle the chosen mathematical
formulation is developed.

8.3.1 General description

The proposed tri-level algorithm is designed to solve the conditional search space
multi-container satellite module layout problem formulated as a combination of a
nested and a two-stage approaches. Three levels aim to handle each optimization
process with the help of three dedicated algorithms:

• Upper level: it addresses the choices of the components task, using Bayesian
Optimization;

• Intermediate level: addresses the assignment of the chosen components on the
different containers, using Genetic Algorithm;

• Lower level: it addresses the layout of the chosen components, with the help
of the CSO-VF algorithm described and assessed in Chapter 3 and Chapter 4.

The tri-level algorithm is thus a combination of the two-stage approach which
combines the use of a Genetic Algorithm with the CSO-VF algorithm for solv-
ing fixed search space multi-container OLPs (Cf. Chapter 3 and Chapter 4), and
the surrogate assisted-CSO-VF algorithm used for solving conditional search space
single-container OLPs (Cf. Chapter 6 and Chapter 7). Figure 8.2 describes the
tri-level algorithm and the three levels are described in the following sections.
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INTERMEDIATE STAGE: Assignment task
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Figure 8.2: Tri-level algorithm description.

8.3.2 Upper level: Bayesian Optimization for categorical
variables

The Bayesian Optimization framework used to deal with the conditional categorical
variables is similar to the one employed in Chapter 7 for CSS single-container layout
problem. The configuration is summarized:

• Computational budget: the size of initial training data set is NDoE = 50
and the number of iterations is Nit = 100;
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• Kernel: the categorical Hamming kernel is employed;

• Category-wise and level-wise categorical kernels: for the same reasons
as the CSS single-container satellite layout problem, the level-wise approach
is chosen;

• Noisy-Modeling is employed as the two-stage GA+CSO-VF algorithm out-
puts depend on the initialization of both intermediate and lower stages. The
noisy data modeling approach requires the definition of a nugget set to 10;

• Gaussian Process training: it is handled using the Adam Optimizer run
during 50000 iterations;

• Infill criteria: the EI infill criteria is considered;

• Infill criteria optimization: it is handled with the help of a Genetic Algo-
rithm which settings are determined by a parametric analysis: population of
200 individuals, 500 generations, probability of crossover: 0.9, probability of
mutation: 0.1.

8.3.3 Intermediate level: Genetic Algorithm

The intermediate level is dedicated to assigning the chosen components to one of
the containers. The corresponding mathematical problem at hand is the same as
the one solved for fixed search (FSS) multi-container OLPs and detailed in Chap-
ter 3 and Chapter 4. Genetic Algorithm is used for the same reasons as for the
aforementioned FSS application cases. The Genetic Algorithm output is NAS = 10
assignment schemes (i.e., the NAS best different individuals of the GA, sorted by
objective function values). The settings of the Genetic Algorithm are optimized
using Bayesian Optimization. In the FSS multi-container satellite problem, the as-
signment schemes were sequentially used until the lower level returned a feasible
layout. In this chapter, all the NAS assignment schemes are laid out thanks to the
lower level. The best overall layout in terms of final objective function corresponds
to the output of the two-stage part of the algorithm. It must be noted that this
level is not computationally expensive especially because very few constraints are
solved at this stage.

8.3.4 Lower level: CSO-VF algorithm

The lower level solves the layout task taking as inputs the list of the chosen compo-
nents given by the upper level and the corresponding current assignment scheme of
the archive of the intermediate level. This stage takes as an input the assignment list
optimized by the upper stage. The outputs are the lists of positions and orientations
of each component in its assigned container. It is considered in this thesis that as
for the fixed search space multi-container OLPs, the layout of each container can
be solved independently. The CSO-VF algorithm described in Chapter 3 is chosen.
Multistart is employed in order to increase the robustness to the initialization of the
approach, as described in Chapter 4. 10 CSO-VF instances are run in parallel for
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each assignment scheme. Moreover, as described in Chapter 4, the hyperparameters
as well as the number of iterations depend on the occupation rate of the container.
As mentioned in the previous section, the output is the best obtained layout in terms
of objective function value.

The global stopping criteria of the tri-level algorithm corresponds to the compu-
tational budget of the Bayesian Optimization (BO) process and thus to the given
number of BO iterations.

8.3.5 Algorithm framework

Figure 8.3 illustrates the proposed tri-level algorithm framework. The steps related
to the upper level and thus to the Bayesian Optimization process are highlighted in
blue. The orange frame highlights the two-stage parts of the algorithm.
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Figure 8.3: Tri-level algorithm framework.
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8.4 Application to conditional search space

multi-container satellite module layout

problem

8.4.1 Conditional search space multi-container satellite
module layout problem formulation

In this section, the conditional search space (CSS) single-container OLPs detailed in
Chapter 7 are derived in the case of a multi-container configuration. The problem
at hand involves positioning N generic components, each having ni (i ∈ {1, ..., N})
possible subdivisions, within nc containers in order to minimize the global inertia
of the whole module. Several constraints must be satisfied that can be either ge-
ometrical (e.g., overlapping constraints, balancing constraints) or functional (e.g.,
constraints of functional compatibility between components).

8.4.1.1 Geometry of the container and the components

Container. In the multi-container configuration and similarly to the fixed search
space satellite layout problem formulation, the container corresponds to the sim-
plified module of the INTELSAT-III satellite introduced in Chapter 4 [CZa19;
WTS09b; ZTS08]. Two two-sided bearing plates (i.e., four surfaces in total) are
defined by their outer radius Rout and a cylindrical exclusion zone (e.g., meant to
represent a central bus) is defined by its radius Rin and centered at the geometrical
center of the plates.

Components. The generic components, Ncyl cylinders and Ncub cuboids, are de-
fined by their dimensions and masses. They are considered as rigid bodies of ho-
mogeneous density and are located with the help of the position of their centers of
inertia. For each generic components, ni subdivisions are defined. In this chapter,
three assumptions are made:

• The geometry of the generic component (i.e., cylinder or cuboid) is conserved
for all the corresponding subdivisions;

• The total area of the components of each subdivisions of a same generic com-
ponent is conserved. It is mathematically translated as follows:

nsubdiv
i,j∑
k=1

Aj,k
i =

nsubdiv
i,j+1∑
k=1

Aj+1,k
i , for i ∈ {1, ..., N}, for j ∈ {1, ..., ni − 1} (8.3)

where Aj,k
i is the area of component {i, j, k}.

• In this chapter, the total mass of the components is not conserved. Indeed,
in order to describe more realistically the problem, the assumption is made
that when the size of the components is subdivided, the mass of cylindrical
(resp. cuboids) components is penalized of 10% (resp. 15%) with respect to
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a conservation of the mass assumption. As a consequence, the more a generic
components is subdivided, the heavier is the total mass.

The configuration designed for the application case consists in N = 37 generic
components. Among them, Ns = 7 components can be subdivided so that a max-
imum of 60 components are positioned in the container. It must be noted that
the configuration with 60 components i.e., the configuration corresponding to the
maximum number of subdivisions, corresponds to the list of components used for
the fixed search space multi-container satellite configuration addressed in Chapter 4.
Overall, it corresponds to 1728 possible different lists of components. More-
over, due to the assumption of non-conservation of mass between the subdivisions
of a same generic component, the total mass of the components vary between 764.7
and 815.5 kg.

The details of the generic components and their subdivisions as well as the
containers dimensions and geometrical features used in this chapter are reported
in Table A.5 in Appendix A.

8.4.1.2 Design variables

In the conditional search space multi-container satellite configuration the design
variables are:

• The chosen subdivisions of the generic components considered as conditional
categorical design variables w = {wi} where i ∈ {1, ..., N} and wi ∈ {1, ..., ni};

• The positions of the centers of inertia of the chosen components by the condi-
tional variables, considered as continuous variables, xp. The length of vector
xp depends on the conditional variables, nxp(w);

• The orientations of the chosen cuboids components considered as discrete vari-
ables zα. The length of vector zα on the conditional variables, nzα(w);

• The attributed plates to each chosen component considered as discrete, cat-
egorical variables, zc. The length of vector zc depends on the conditional
variables, nzc(w)

Thus, the number of variables to optimize depends on the values of the condi-
tional variables wi, i ∈ {1, ..., N}. The maximum number of design variables nvar

used to define a layout is defined as:

nvar = Ns +
∑

i∈CY L

3max
j

(nsubdiv
ij ) +

∑
i∈CUB

4max
j

(nsubdiv
ij ) (8.4)

where CY L and CUB respectively referred to as the i indices of cylinder and cuboid
components. In other words, for i ∈ {1, ..., N}, i ∈ CY L if component i is a cylinder
or i ∈ CUB if component i is a cuboid.

For instance, in the case of the most subdivided components, N = 60 components
must be positioned on the four bearing surfaces, Ns = 7 components are subdivided
in 36 cylinders and 24 cuboids. This corresponds to 211 design variables.
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8.4.1.3 Objective and constraints functions

Objective function. The objective function to minimize is the global inertia of
the module Itot which is mathematically defined in Chapter 4 for the fixed search
space multi-container satellite layout problem. In this chapter, the inertia is func-
tion of the positions and orientations of the components selected as a result of the
conditional variables as well as the corresponding assigned surfaces.

Constraints functions. The constraints functions are identical to the ones listed
and mathematically defined in Chapter 4 and can be split into two categories: the
constraints respectively related to the assignment and to the layout tasks. No par-
ticular constraints are considered for the choices of the component task. The as-
signment constraints are briefly summarized:

• Balancing constraint along the z-axis, gzCG;

• Occupation rate constraint for each surface, gjO (j ∈ {1, ..., 4}).

The layout constraints are also briefly summarized:

• Overlapping between the components, hComp
overlap;

• Overlapping between the components and the container, hCont
overlap;

• Overlapping between the components and the exclusion zones, hE
overlap;

• Balancing constraint, gCG;

• Angle of inertia constraint, gAI ;

• Functional constraint of distance between fuel and energy components, hfunctional.

In this chapter, the constraint functions take as arguments the positions and
orientations of the selected components based on the conditional variables as well
as the corresponding assigned surfaces.

8.4.1.4 Mathematical formulations

As written with Equations 8.2, a combination of a nested and two-stage formulations
is proposed in order to deal with the choices of the components, the assignment and
the layout tasks in three sequential optimization processes. The nested formulation
is used in Chapter 6 and Chapter 7 to deal with the choice of components and layout
tasks while the two-stage formulation is used in Chapter 3 and Chapter 4 to deal
with the assignment and layout tasks.
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min
w

Itot(x
∗∗
p , z∗∗α , z∗c ,w)

w.r.t. w ∈ Fw ⊆ Nnw

s.t. gz ∗
CG(z

∗
c ,w) ≤ 0

gj ∗
O (z∗c ,w) ≤ 0 for j ∈ {1, 2, 3, 4}
hComp ∗∗
overlap (x∗∗

p , z∗∗α , z∗c ,w) = 0

hCont ∗∗
overlap (x

∗∗
p , z∗∗α , z∗c ,w) = 0

hE ∗∗
overlap(x

∗∗
p , z∗∗α , z∗c ,w) = 0

h∗∗
functional(x

∗∗
p , z∗∗α , z∗c ,w) = 0

g∗∗AI(x
∗∗
p , z∗∗α , z∗c ,w) ≤ 0

g∗∗CG(x
∗∗
p , z∗∗α , z∗c ,w) ≤ 0

{zc∗} = argmin Iassignment
tot (zc,w)

w.r.t. zc ∈ Fzc ⊆ Nnzc (w)

s.t. gzCG(zc,w) ≤ 0

gjO(zc,w) ≤ 0 for j ∈ {1, 2, 3, 4}
{xp

∗∗, zα
∗∗} = argmin Itot(xp, zα, zc,w)

w.r.t. xp ∈ Fxp ⊆ Rnxp (w), zα ∈ Fzα ⊆ Nnzα (w)

s.t. hComp
overlap(xp, zα, zc,w) = 0

hCont
overlap(xp, zα, zc,w) = 0

hE
overlap(xp, zα, z

∗
c ,w) = 0

hfunctional(xp, zα, zc,w) = 0

gAI(xp, zα, zc,w) ≤ 0

gCG(xp, zα, zc,w) ≤ 0

(8.5)

The design variables respectively denoted with a two-star exponent and a one-
star exponent (e.g., x∗∗ and x∗) referred to as the design variables respectively
optimized in the lower and intermediate levels and which are thus fixed in the
upper level. In the same way, the constraints respectively denoted with a two-
star exponent and a one-star exponent (e.g., h∗∗(·) and h∗(·)) referred to as the
constraints respectively handled in the lower and intermediate levels but which must
ensure the feasibility of the layout for the list of components defined by w at the
upper level.

8.4.2 Application of the tri-level algorithm to the
multi-container satellite layout problem

The tri-approach is run over 20 independent training data sets. Figure 8.4 shows
the median and interquartile range of the convergence curves for the 20 repetitions
and Table 8.1 reports the numerical results. Figure 8.5 shows the optimal layout of
the four surfaces.
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Figure 8.4: Median and interquartile range (IQR) of the Bayesian Optimization
convergence curves (20 repetitions).

Metric Value

Final median 663.48
Final interquartile range 3.55

Best run 661.91
Worst run 668.45

Mean of number of components 42

Table 8.1: Numerical results.

It is observed that the proposed algorithm converges toward lists of components
that provide feasible layouts and contribute to decrease the global inertia. It is
worth noting that the computational budget of the Bayesian Optimization upper
level leads to evaluate 150 lists of components over the 1728 possible ones. This cor-
responds to explore less than 10% of the conditional search space. Thus, increasing
the computational budget should improve the convergence abilities of the approach.

The advantage of the proposed tri-level algorithm is that it deals separately
with each type of design variables (i.e., conditional categorical variables, dependent
categorical variables related to the assignment task and depending continuous and
discrete variables related to the layout task) thanks to three adapted techniques that
have been selected throughout this thesis. The algorithm was successfully applied to
the complex benchmark of conditional search space multi-container satellite layout
problem.

The main limitation is consequently that this approach is limited to OLPs in
which the aforementioned variables can be handled separately in different optimiza-
tion process. More generally, this algorithm benefits from the advantages of the
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three techniques used at each level but also possesses the same limitations.

8.5 Conclusions of the second part

This second part of the manuscript was devoted to conditional search space optimal
layout problems (CSS OLPs). In Chapter 5, a survey of existing methods for solving
CSS OLPs has been conducted. The advantages and limits of the methods have been
highlighted, which lead to particularly focus on approaches based on metaheuristics,
Bayesian Optimization as well as bilevel techniques. This range of methods seemed
promising in order to address conditional search space OLPs characterized by a large
number of possible conditional variables vectors.

Consequently, Chapter 6 focused on formulating the CSS OLPs at hand. Two
approaches have been devised for solving this type of problems. First of all, a
derivation of a hidden-variable mechanism for Genetic Algorithm has been adapted.
This algorithm allows to deal with the CSS aspect of the problem with the help
of two proposed implementations of conditional variables which reveal or hide the
depending variables that are respectively used or ignored to compute the objective
and constraint functions.

The second approach is a bilevel surrogate assisted-CSO-VF algorithm which
involves an hybridization of the CSO-VF algorithm described and assessed in Chap-
ter 3 and Chapter 4 with categorical Bayesian Optimization to deal with the CSS
aspect of the problem. In this approach, the conditional and depending variables
are handled in two nested optimization processes. The upper level consists in op-
timizing the list of components using categorical Bayesian Optimization based on
Gaussian Process surrogate modeling while the CSO-VF algorithm is responsible of
optimizing the layout of the input lists of components at a lower level.

Chapter 7 extended the fixed search space single-container Satellite Module Lay-
out Problems used as a benchmark in Part I of the manuscript in order to integrate
the choices of the components task and consequently a conditional search space.
This benchmark has been used in order to configure both algorithm and assess their
functioning. Their global performance was subsequently compared. As a result, the
surrogate assisted-CSO-VF algorithm provides better performance notably in terms
of success rate, convergence accuracy, robustness to initialization in comparison to
the hidden-variable mechanism for Genetic Algorithm. Indeed, the Bayesian Opti-
mization technique at the upper level has strong ability to identify the promising
areas of the conditional search space while the CSO-VF algorithm at the lower level
provides good quality layouts thanks to constraints handling dedicated operators.

Finally, the aforementioned benchmark problem was extended to multi-container
configurations in the opening Chapter 8. A tri-level approach combining Bayesian
Optimization, Genetic Algorithm and the CSO-VF algorithm has been devised for
solving the CSS multi-container satellite layout problem. It has been successfully
applied to the benchmark at hand, drawing on the strength of each of the dedicated
methods chosen for each level throughout this thesis.
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S1
S2

S3
S4

Figure 8.5: Best final layout obtained with the tri-level algorithm. The redder the
component, the higher their corresponding masses. The dotted lines correspond to
functional safety zones that must not be violated by the components highlighted in
the same color.
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Chapter 9

Conclusions and perspectives

9.1 Conclusions

This thesis is focused on the development of algorithms for optimal layout prob-
lems (OLPs). In the first part of the thesis, OLPs characterized by a fixed set
of components referred to as fixed search space problems are addressed. Methods
are devised for solving mixed-variable highly constrained fixed search space OLPs
with both single-container and multi-container configurations. In the second part
of the thesis, the aforementioned OLPs are extended in order to take into account
the choice of components during the optimization process. As a result, the number
of components and thus the number and type of design variables and constraints
vary during the optimal layout process. Approaches are developed in order to deal
with those problems referred to as conditional search space OLPs, also characterized
by both single and multi-container configurations. This thesis focused on different
types of algorithms, such as evolutionary, quasi physical and Bayesian optimization
in order to efficiently solve the OLPs. These algorithms have also been hybridized
in order to tackle specific challenges of this problem such as the presence of numer-
ous constraints or mixed variables. The contributions related to both category of
problems are summarized in the following paragraphs.

The first part of the thesis is devoted to fixed search space optimal layout prob-
lems (FSS OLPs). In Chapter 2, existing methods for FSS OLPs are reviewed and
some techniques were identified as promising for solving mixed-variable constrained
fixed search space OLPs. Among them, quasi-physical algorithms based on virtual-
force systems are techniques having dedicated operators for constraint handling as
well as an inherent decentralized system which allows to deal with a high number
of components.

Then, in Chapter 3, a new quasi-physical approach based on a virtual-force sys-
tem, named Component Swarm Optimization based on Virtual-Force system (CSO-
VF) algorithm, has been devised for solving generic OLPs corresponding to extended
packing problems which have been previously tackled in the literature by similar
methods. The proposed virtual-force system and operators of the algorithms allow
to deal with OLPs characterized with up to several hundreds of heterogeneous com-
ponents leading to several hundreds or thousands of design variables and constraints.
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It has been applied to satellite module layout problems in Chapter 4, which consti-
tute representative benchmarks of OLPs, as well as balanced circular bin packing
problems in Appendix E. These application cases are notably characterized by prob-
lems with 10 to 300 components (i.e., up to 600 design variables), a high number
of constraints (e.g., overlapping, balancing, functional, etc.) and different objective
functions (i.e., size of the container, inertia of the system). Different occupation
rates up to 60% of the container have been studied in order to progressively raise
the difficulty to solve the constraints.

The CSO-VF algorithm has been published in an international conference com-
munication :

Gamot, J., Wuilbercq, R., Balesdent, M., Tremolet, A., Melab, N., & Talbi, E.
G. (2022, October). Component Swarm Optimization Using Virtual Forces for
Solving Layout Problems. In International Conference on Swarm Intelligence
(pp. 292-299). Cham: Springer International Publishing.

However, the CSO-VF algorithm described in this thesis only allows to deal with
single-container OLPs. Sometimes, OLPs encompass a multi-container configuration
in which the given components must be positioned in several containers. Therefore,
the components need to be assigned to a container while optimizing the containers’
layout. Solving both assignment and layout tasks in the same optimization process
may suffer from poor convergence capabilities due to the high number of additional
design variables and constraints related to the assignation tasks which induce a very
highly combinatory design space. Consequently, in this thesis, a two-stage algo-
rithm framework was proposed in order to solve both assignment and layout tasks
sequentially, in the case where the design variables related to the assignment and
to the layout are separable. The assignment task is solved thanks to a Genetic Al-
gorithm in an upper stage. Subsequently, the layout of each container is optimized
thanks to the CSO-VF algorithm as they correspond to single-container OLPs. This
algorithm has been successfully applied to multi-container satellite module layout
problems characterized with 60 components (i.e., 276 mixed design variables), 460

possible assignment schemes and hundreds of constraints. The main obtained ex-
perimental results outperformed previously published results.

In a second part of this manuscript, conditional search space optimal layout prob-
lems (CSS OLPs) are addressed. Specifically, the choice of the components must be
optimized along with the layout of the chosen components. The choice of compo-
nents introduces conditional categorical variables. The design variables related to
the layout of chosen components are depending continuous and discrete variables. In
Chapter 5, existing methods for CSS problems are reviewed. It has been highlighted
that very few OLPs included a conditional search space. Some techniques were iden-
tified as promising for solving CSS OLPs. Among them, derivations of metaheuristic
techniques are the most employed and often provide a generic framework. Moreover,
Bayesian Optimization generally benefits from a high convergence speed. Finally,
the inherent structure of bilevel approaches allows to deal with conditional and de-
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pending variables with two adapted sequential optimization processes.

Subsequently, based on the previous reviews, two approaches have been devel-
oped for solving CSS OLPs. The first approach is a derivation of a hidden-variable
mechanism for Genetic Algorithm (HVM for GA). The HVM for GA modifies the
implementation of the chromosomes in order to reveal or hide some of the depend-
ing genes that are respectively taken or not taken into account for the objective or
constraint functions evaluations depending on the conditional variables. Thus, this
method allows to tackle all design variables in a single optimization process. This
method provides a generic and versatile framework, requires few hyperparameters
and few adaptations of the classical evolutionary operators. The HVM for GA ap-
proach has been the subject of an international journal paper :

Gamot, J., Balesdent, M., Tremolet, A., Wuilbercq, R., Melab, N., & Talbi,
E. G. (2023). Hidden-variables genetic algorithm for variable-size design space
optimal layout problems with application to aerospace vehicles. Engineering
Applications of Artificial Intelligence, 121, 105941.

The second approach consists of a bilevel surrogate assisted-Component Swarm
Optimization based on Virtual-Force (CSO-VF) algorithm. It combines the strength
of the CSO-VF algorithm developed in Part I, and a discrete Bayesian Optimiza-
tion algorithm framework purposely adapted to tackle the categorical aspect of this
problem. This surrogate assisted-CSO-VF algorithm thus consists in two nested
optimization processes dealing respectively with the optimization of the set of com-
ponents (i.e., the conditional variables) and with the optimization of the correspond-
ing layout (i.e., the depending variables). This algorithm benefits from its inherent
bilevel structure which allows to study each selected list of components in depth and
to identify the area of the conditional search space proving the most promising lists
of components in terms of final layout. It also benefits from the strength of each
algorithm purposely chosen at each level: the convergence abilities of the Bayesian
Optimization and the constraint handling abilities of the CSO-VF algorithm. The
surrogate assisted-CSO-VF approach has been the subject of an international con-
ference communication :

Gamot, J., Balesdent, M., Wuilbercq, R., Tremolet, A., Melab, N., & Talbi, E.
G. (2023, July). Two-Level Algorithm Combining Bayesian Optimization and
Swarm Intelligence for Variable-Size Optimal Layout Problems. In Proceedings
of the Companion Conference on Genetic and Evolutionary Computation (pp.
139-142).

Both algorithms have been configured and assessed thanks to a single-container
satellite layout problem benchmark, extended to take into account the CSS aspect.
This benchmark is notably characterized with 3888 possible lists of components.
As a result, both approaches show abilities to solve the problem. However, the
surrogate assisted-CSO-VF algorithm provides better performance notably in terms
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of success rate, convergence accuracy and robustness to initialization in comparison
to the HVM for GA, for a given computational budget.

The surrogate assisted-CSO-VF algorithm cannot deal with multi-container con-
figurations of the problem. Indeed, such problems add depending categorical design
variables which characterize the assignment of the chosen components to the con-
tainers. However, the CSO-VF cannot deal with multi-container configurations.
Consequently, the last approach developed in this thesis is a tri-level algorithm com-
bining Bayesian Optimization, Genetic Algorithm and the CSO-VF algorithm for
solving multi-container CSS OLPs. This approach combines the nested formulation
of the surrogate assisted-CSO-VF algorithm developed in Chapter 6 with the two-
stage formulation of the two-stage algorithm combining Genetic Algorithm and the
CSO-VF algorithm developed in Chapter 3. As a result, the upper level deals with
the choice of components task thanks to Bayesian Optimization, the intermediate
level addresses the assignment of the chosen components to the containers thanks
to Genetic Algorithm and the lower level solves the layout of the chosen compo-
nents within the assigned containers thanks to the CSO-VF algorithm. The tri-level
algorithm has been applied to a CSS multi-container satellite layout benchmark
characterized with 1728 possible lists of components, 436 to 460 possible assignment
schemes (depending on the selected components), as well as several hundreds of
mixed variables and constraints. The algorithm shows ability to solve the problem,
drawing on the strength of each of the dedicated methods chosen for each level
throughout this thesis.

Figure 9.1 sums up the search space and container configuration addressed by
the five algorithms devised in this thesis, as well as the Chapters related to each of
them. The algorithms are summarized as follows:

• The Component Swarm Optimization algorithm based on a Virtual-force sys-
tem (CSO-VF);

• The two-stage approach combining Genetic Algorithm and the CSO-VF algo-
rithm (GA+CSO-VF);

• The hidden-variable mechanism for Genetic Algorithm (HVM for GA);

• The surrogate assisted-CSO-VF algorithm (BO+CSO-VF);

• The tri-level algorithm combining Bayesian Optimization, Genetic Algorithm
and CSO-VF algorithm (BO+GA+CSO-VF).
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CSO-VF
Two-stage 

GA+CSO-VF
HVM for GA

Bilevel
BO+CSO-VF

Tri-level
BO+GA+CSO-

VF

Search space
Fixed Search Space X X

Conditional Search Space X X X

Container 
configuration

Single-container X X X

Multi-container X X X

Chapters 3 and 4 3 and 4 6 and 7 6 and 7 8

Part I Part II

Figure 9.1: Algorithms and characteristics of the problem solved.

9.2 Perspectives

Different improvements and extensions of the approaches developed in this thesis
can be identified.

First of all, the CSO-VF algorithm can only deal with single-container config-
urations. Indeed, the algorithm is based on a virtual-force system which does not
take into account the categorical assignment design variables. It could therefore be
interesting to extend the proposed virtual-force system in order to give the algorithm
the ability to assign the components to several containers.

Moreover, in this thesis, the actual algorithm devised to deal with multi-container
configurations is a two-stage algorithm combining Genetic Algorithm and the CSO-
VF algorithm. Thus, the optimization process is sequential and it could be interest-
ing to try a nested approach inspired from the surrogate assisted-CSO-VF algorithm
devised for conditional search space. However, in its original form, Bayesian Opti-
mization allows to deal with only a few dozens variables and the satellite benchmark
problem considered in order to assess the method involves 60 components and thou-
sands of combinations. Consequently, if the Bayesian Optimization technique is
chosen as an upper level to deal with the assignation of the components to the
containers, it should be, beforehand, enhanced with kernels allowing for large-scale
problems [Sav+22].

Additionally, the CSO-VF algorithm has been applied to satellite module layout
problems and to balanced circular bin packing problems. It could be interesting to
extend the virtual-force systems for solving other category of problems such as wind
farms layout problems, facility layout problems, coverage problems, etc.

Furthermore, one current limit of the surrogate assisted-CSO-VF algorithm deal-
ing with CSS OLPs is the number of design variables handled by the Bayesian
Optimization process which is restricted to a few dozens. It could be interesting
to enhance the actual upper level of the method with large-scale kernels solutions
[Sav+22] in order to deal with up to a hundred categorical variables. As many com-
ponents could be addressed.
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Moreover, the described algorithms are currently devoted to early design layout
in which simplified descriptions and models of the concept are used. It would be
interesting to test the proposed methods on more advanced concepts in terms of
design process. A greater variety of components along with additional requirements
could be introduced in order to improve the realism level of the layout. The algo-
rithms could then be adapted for instance through extensions of the virtual-force
system of the CSO-VF algorithm.

Then, the bilevel structure of the surrogate assisted-CSO-VF algorithm could be
extended to other conditional search space application cases. Indeed, the Bayesian
Optimization technique at the upper level of the proposed algorithm is used in or-
der to explore efficiently the conditional search space. Subsequently, the dependent
variables are handled at the lower level where any technique adapted to the problem
at hand can be used. Consequently, this structure could be applied to any con-
ditional search space problems as long as the depending variables (i.e., the fixed
search space subproblems) can be optimized thanks to a dedicated technique which
would be implemented into the lower level.

Finally, it could be interesting to investigate other techniques or hybridizations
for solving various optimal layout application cases, as for instance Reinforcement
Learning [Mir+21], in order to overcome some limitations of the previous algorithm
as for instance the lack of genericity of some of the proposed approaches with respect
to the application cases.
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Appendix A

Components configurations

A.1 Components in fixed search space optimal

layout problems

A.1.1 Single-container configuration

The components used for fixed search space single-container satellite layout bench-
mark (Chapter 4) are listed in Table A.1. Dimension 1 corresponds to the radius of
cylinder components. Dimension 1 and 2 correspond to the dimensions of the basis
of the cuboid components.

Index Geometry Type Dimension 1 Dimension 2 Height Mass

1 Cylinder Fuel 100 240 20
2 Cylinder Fuel 100 240 15
3 Cylinder Fuel 50 240 8
4 Cuboid Energy 100 75 200 7.5
5 Cuboid Energy 100 75 200 7.5
6 Cuboid Energy 125 160 200 10
7 Cuboid Energy 125 160 200 10
8 Cuboid Diverse 150 50 200 5
9 Cuboid Diverse 150 50 200 5
10 Cuboid Diverse 100 50 200 6
11 Cuboid Diverse 150 50 200 5
12 Cuboid Diverse 150 150 200 12
13 Cuboid Diverse 200 100 200 15
14 Cylinder Diverse 50 240 5
15 Cylinder Diverse 75 240 8
16 Cuboid Diverse 100 120 200 10

Table A.1: Components for the fixed search space single-container satellite bench-
mark. Dimensions are in mm, masses in kg.
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A.1.2 Multi-container configuration

The components used for fixed search space multi-container satellite layout bench-
mark (Chapter 4) are listed in Table A.2.

Table A.2: Components for the fixed search space multi-container
satellite benchmark.

1 Cuboid 250 150 250 28.13

2 Cuboid 250 150 250 28.13

3 Cuboid 250 150 250 28.13

4 Cuboid 250 150 250 28.13

5 Cuboid 250 150 250 28.13

6 Cuboid 250 150 250 28.13

7 Cuboid 250 150 250 28.13

8 Cuboid 250 150 250 28.13

9 Cuboid 200 160 200 19.2

10 Cuboid 200 160 200 19.2

11 Cuboid 200 160 200 19.2

12 Cuboid 160 120 250 15.36

13 Cuboid 160 120 250 15.36

14 Cuboid 160 120 150 8.64

15 Cuboid 160 120 150 8.64

16 Cuboid 160 120 150 8.64

17 Cuboid 150 100 100 5.40

18 Cuboid 150 100 100 5.40

19 Cuboid 150 100 100 5.40

20 Cuboid 150 100 100 5.40

21 Cuboid 150 100 100 5.40

22 Cuboid 150 100 100 5.40

23 Cuboid 150 100 100 5.40

24 Cuboid 150 100 100 5.40

25 Cylinder 100 250 23.56

26 Cylinder 100 250 23.56

27 Cylinder 100 250 23.56

28 Cylinder 100 250 23.56

29 Cylinder 100 250 23.56

30 Cylinder 100 250 23.56

Index Geometry Dimension 1 Dimension 2 Height Mass

Continued on next page
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Table A.2: Components for the fixed search space multi-container
satellite benchmark. (Continued)

31 Cylinder 100 250 23.56

32 Cylinder 100 250 23.56

33 Cylinder 100 200 18.85

34 Cylinder 100 200 18.85

35 Cylinder 100 200 18.85

36 Cylinder 100 160 15.08

37 Cylinder 100 160 15.08

38 Cylinder 100 160 15.08

39 Cylinder 75 160 8.48

40 Cylinder 75 160 8.48

41 Cylinder 75 160 8.48

42 Cylinder 75 160 8.48

43 Cylinder 75 150 7.95

44 Cylinder 75 150 7.95

45 Cylinder 75 150 7.95

46 Cylinder 75 150 7.95

47 Cylinder 75 150 7.95

48 Cylinder 75 150 7.95

49 Cylinder 60 150 5.09

50 Cylinder 60 150 5.09

51 Cylinder 60 150 5.09

52 Cylinder 60 150 5.09

53 Cylinder 60 150 5.09

54 Cylinder 60 150 5.09

55 Cylinder 60 150 5.09

56 Cylinder 60 150 5.09

57 Cylinder 60 150 5.09

58 Cylinder 60 150 5.09

59 Cylinder 60 150 5.09

60 Cylinder 60 150 5.09

Index Geometry Dimension 1 Dimension 2 Height Mass

The functional constraint imposes that pairs of components must be positioned
apart from a certain distance. The indices of the pairs of components, their types
and the minimal distance between them is reported in Table A.3.
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Index 1 Index 2 Type Distance

25 56 Heat 200
25 60 Heat 200
29 49 Heat 200
29 55 Heat 200
37 55 Electromagnetic 300
37 58 Electromagnetic 300

Table A.3: Functional constraint for the fixed search space multi-container satellite
benchmark.

The geometrical and dynamical features of the container illustrated in Figure
A.1 are summarized below.

x

O

O’
𝑅𝑜𝑢𝑡

𝑅𝑖𝑛

z z’

x

x’

𝐻1

𝐻2

𝐻3
𝐻𝑝𝑆1

𝑆2

𝑆3

𝑆4

Figure A.1: Geometry of the satellite
module.

H1 = 300mm (A.1)

H2 = 830mm (A.2)

H3 = 1150mm (A.3)

Hp = 20mm (A.4)

Rin = 100mm (A.5)

Rout = 500mm (A.6)

Moreover, the empty module is defined by:

• Its mass: 576.53 kg;

• Its center of mass located at: (0, 0, 553.56) in the Oxyz system of coordinates;

• Its matrix of inertia:

I0 =

352.2 0 0
0 352.2 0
0 0 106.8


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A.2 Components in conditional search space

optimal layout problems

A.2.1 Single-container configuration

The components used for conditional search space multi-container satellite layout
benchmark (Chapter 7) are listed in Table A.4.

Index Type Geometry Dim. 1 Dim. 2 Height Mass Subdivisions

1 Fuel Cylinder 100 240 15 [1,2,3]
2 Fuel Cylinder 100 240 8 [1,2]
3 Fuel Cylinder 50 240 4 [1,2]
4 Energy Cuboid 200 200 200 10 [1,2,3]
5 Energy Cuboid 150 100 200 10 [1,2]
6 Diverse Cuboid 100 100 200 8 [1,2,4]
7 Diverse Cuboid 150 100 200 10 [1,2]
8 Diverse Cuboid 150 150 200 12 [1,2,4]
9 Diverse Cuboid 200 100 200 15 [1,2,3]
10 Diverse Cuboid 100 75 200 6 [1]
11 Diverse Cuboid 75 50 200 2 [1]
12 Diverse Cuboid 200 100 200 15 [1]

Table A.4: Components for the conditional search space single-container satellite
benchmark.

The subdivisions are written as [i,j,k] meaning that the generic component can
be subdivided in three different ways: in i components or j components or k com-
ponents. The dimensions of those sub-components are obtained such that the area
and mass of the initial component are conserved.

A.2.2 Multi-container configuration

The components used for conditional search space multi-container satellite layout
benchmark (Chapter 8) are listed in Table A.5.

Table A.5: Components for the conditional search space multi-container satellite
benchmark.

1 Cuboid 250 150 250 28.13 [1]

2 Cuboid 250 150 250 28.13 [1]

3 Cuboid 250 150 250 28.13 [1]

4 Cuboid 250 150 250 28.13 [1]

5 Cuboid 250 150 250 28.13 [1]

Index Geometry Dimension 1 Dimension 2 Height Mass Subdivisions

Continued on next page
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Table A.5: Components for the conditional search space multi-container satellite
benchmark. (Continued)

6 Cuboid 250 150 250 28.13 [1]

7 Cuboid 250 150 250 28.13 [1]

8 Cuboid 250 150 250 28.13 [1]

9 Cuboid 200 160 200 19.2 [1]

10 Cuboid 200 160 200 19.2 [1]

11 Cuboid 200 160 200 19.2 [1]

12 Cuboid 160 120 250 15.36 [1]

13 Cuboid 160 120 250 15.36 [1]

14 Cuboid 207.85 207.85 200 20.09 [1,3]

15 Cuboid 198.27 177.34 137.37 15.61 [1,2,4]

16 Cuboid 198.27 177.34 137.37 15.61 [1,4]

17 Cylinder 100 250 23.56 [1]

18 Cylinder 100 250 23.56 [1]

19 Cylinder 100 250 23.56 [1]

20 Cylinder 100 250 23.56 [1]

21 Cylinder 100 250 23.56 [1]

22 Cylinder 100 250 23.56 [1]

23 Cylinder 100 250 23.56 [1]

24 Cylinder 100 250 23.56 [1]

25 Cylinder 173.21 200 48.07 [1,3]

26 Cylinder 126.49 200 25.64 [1,2]

27 Cylinder 100 160 15.08 [1]

28 Cylinder 150 160 27.48 [1,2,4]

29 Cylinder 129.90 150 20.27 [2,4,6]

30 Cylinder 120 150 16.288 [1,4]

31 Cylinder 103.92 150 12.98 [1,3]

32 Cylinder 60 150 5.09 [1]

33 Cylinder 60 150 5.09 [1]

34 Cylinder 60 150 5.09 [1]

35 Cylinder 60 150 5.09 [1]

36 Cylinder 60 150 5.09 [1]

Index Geometry Dimension 1 Dimension 2 Height Mass Subdivisions

The functional constraint imposes that pairs of components must be positioned
apart from a certain distance. The indices of the pairs of components, their types
and the minimal distance between them is reported in Table A.6.
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Index 1 Index 2 Type Distance

17 34 Heat 200
17 36 Heat 200
21 32 Heat 200
21 33 Heat 200
27 33 Electromagnetic 300
27 35 Electromagnetic 300

Table A.6: Functional constraint for the conditional search space multi-container
satellite benchmark.
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Appendix B

Inertia equations

B.1 Solid inertias

This appendix is devoted to the equations used to compute the solid inertias of
cylinder and cuboids components in their local systems of coordinates.

Cylinders. For a cylinder component i, the following formalism is used: the radius
is denoted ri, the height hi, the mass mi, as illustrated on Figure B.1.

𝑂"

𝑧"

𝑦"

𝑥"

ℎ𝑖

𝑟𝑖

𝑚𝑖

Figure B.1: Cylinder component i geome-
try.

With the formalism used on Figure B.1,
the solid inertias in the local system of co-
ordinates O”x”y”z” are calculated as fol-
lows:

Ix”,i =
mi

12
(3r2i + h2

i ) (B.1)

Iy”,i =
mi

12
(3r2i + h2

i ) (B.2)

Iz”,i =
1

2
mir

2
i (B.3)

Cuboids. For a cuboid component i, the following formalism is used: the dimen-
sions of the basis are denoted ai, bi, the height hi, the mass mi, as illustrated on
Figure B.2.
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Figure B.2: Cylinder component i geome-
try.

With the formalism used on Figure B.2,
the solid inertia along the three axis of
the local system of coordinates O”x”y”z”
are calculated as follows:

Ix”,i =
mi

12
(b2i + h2

i ) (B.4)

Iy”,i =
mi

12
(a2i + h2

i ) (B.5)

Iz”,i =
mi

12
(a2i + b2i ) (B.6)

B.2 Correction of inertia equations

As explained in Chapter 4, the actual inertia equations are expressed in the system
of coordinates attached to the current centroid of the system. However, it has been
shown that the equations should rather be expressed in the system of coordinates
attached to either the theoretical centroid of the system or to the geometrical center
of the container if no balancing constraints are considered.

With the simplified model of the INTELSAT-III considered as a benchmark
in this thesis, the inertia should then be expressed in the system of coordinates
with origin the center of mass of the empty module and denoted Osatxsatysatzsat as
illustrated on Figure B.3.

O

𝑂𝑠𝑎𝑡
𝑅𝑜𝑢𝑡

𝑅𝑖𝑛

z,z’

x

𝐻1

𝐻2

𝐻3

𝐻𝑝𝑆1

𝑆2

𝑆3

𝑆4

𝑥𝑠𝑎𝑡

𝑧𝑠𝑎𝑡

x
x𝑂′ 𝑥′

Figure B.3: Simplified model of the INTELSAT-III satellite module.

Thus, the inertia equations for a component i in the Osatxsatysatzsat system of
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coordinates are expressed as follows:

Ixsat,i = Ix”,i cos(xα,i)
2 + Iy”,i sin(xα,i)

2 + mi(x
2
y,i + x2

z,i) (B.7)
Iysat,i = Iy”,i cos(xα,i)

2 + Ix”,i sin(xα,i)
2 + mi(x

2
x,i + x2

z,i) (B.8)
Izsat,i = Iz”,i + mi(x

2
x,i + x2

y,i) (B.9)

where {xx,i, xy,i, xz,i} are the coordinates of the ith component’s center of inertia, in
the Osatxsatysatzsat system of coordinates. xα,i corresponds to its orientation.

If N components have to be laid out in the container, the inertia of the module
along each axis calculated at the point Osat are expressed as follows:

Ix = Ixsat,0 +
N∑
i=1

Ixsat,i (B.10)

Iy = Iysat,0 +
N∑
i=1

Iysat,i (B.11)

Iz = Izsat,0 +
N∑
i=1

Izsat,i (B.12)

where Ixsat,0, Iysat,0, Izsat,0 are the inertia of the empty module calculated in its local
system of coordinates which coincides with Osatxsatysatzsat.
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Configuration of algorithms

C.1 Configuration of the CSO-VF algorithm

C.1.1 Sensitivity analysis study

The sensitivity analysis study with the Sobol’s index is reported in Chapter 4. Table
C.1 sums up the bounds used for each hyperparameter of the CSO-VF algorithm.

Hyperparameter Lower bound Upper bound

Fmax 150 500
Tmax 10 100
vmax 1 20
ωmax 10 100
αF
CG 10 1000
αF
I 10 1000

αT
I 0.01 10

pmin 10 100
pmax 50 500
r 1 10

Table C.1: Upper and lower bounds for the CSO-VF hyperparameters’ sensitivity
analysis with Sobol’s indices.

C.2 Configuration of surrogate assisted-CSO-VF

algorithm

C.2.1 Taguchi’s plans of experiments

As described in Chapter 7, two Taguchi’s plans of experiments are conducted in
order to choose the best sequence of operators.

Definition of the Taguchi’s plans of experiments. Table C.2 and Table C.3
report the operators used for each scheme of both Taguchi’s plans of experiments.
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Scheme Constraint
Handling

Selection Crossover
genes

Crossover
tags

Mutation Replace-
ment

1 CD T5 SBX 1 point PM NDT
2 CD T5 SBX 2 points UM NDT
3 CD T15 HUX 1 point PM NDT
4 CD T15 HUX 2 points UM NDT
5 CD T5 HUX 1 point UM NDT
6 CD T5 HUX 2 points PM NDT
7 CD T15 SBX 1 point UM NDT
8 CD T15 SBX 2 points PM NDT

Table C.2: Taguchi table of the first set of schemes to run (10 runs each).

Scheme Constraint
Handling

Selection Crossover
genes

Crossover
tags

Mutation Replace-
ment

9 CD T15 SBX 1 point PM NDT
10 SR T15 SBX 1 point PM NDT
11 CD T15 SBX 1 point PM DC
12 SR T15 SBX 1 point PM DC

Table C.3: Table of second set of schemes to run (10 runs each).

The Taguchi’s plans are run for 3 different occupation rates: 30%, 50% and 70%
of the occupied container. This represents 36 schemes and so 360 optimizations to
run on the whole.

Results of the Taguchi’s plans of experiments. Some analysis criteria to
either quantify the exploitation or the exploration are defined in order to conclude
on the performance of the operators:

• The final fitness value of the best individual of the last generation;

• The generation where the best individual fitness value of the current genera-
tion is at 10% of the final fitness value. It gives a valuable indicator on the
convergence speed;

• The generation where the first feasible solution appears;

• The generation where the last non-feasible solution disappears;

• The number of tags explored amongst all the solutions (feasible or not);

• The number of tags explored amongst feasible solutions;

• The maximum number of tags which are different amongst one generation.
Those tags information gives an idea of the exploration faculties of the algo-
rithm.
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Appendix D

Illustrations of the layout obtained
thanks to the CSO-VF algorithm

Figures D.1 and D.2 show the feasible layouts obtained throughout one instance of
the CSO-VF algorithm for a 40% occupation rate of the container.

Initialization Iteration 323 Iteration 349 Iteration 378

Iteration 402 Iteration 458 Iteration 482 Iteration 506

Iteration 645Iteration 531 Iteration 557 Iteration 585

Figure D.1: Feasible layouts throughout convergence with occupation rate 40%, part
1.
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Appendix D. Illustrations of the layout obtained thanks to the CSO-VF algorithm

Iteration 753 Iteration 868 Iteration 953

Iteration 2024 Iteration 5074 Iteration 5149 Iteration 5179

Iteration 5633Iteration 5319 Iteration 5383 Iteration 5536

Iteration 716

Iteration 6604Iteration 5699 Iteration 5939 Iteration 6505

Iteration 6628 Iteration 6647 Iteration 7118

Figure D.2: Feasible layouts throughout convergence with occupation rate 40%, part
2.
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Appendix E

CSO-VF algorithm for solving
balanced circular bin packing
problems

The CSO-VF algorithm have been used to solve balanced circular bin packing prob-
lems. An article has been published on Arxiv:

Gamot, J., Balesdent, M., Wuilbercq, R., Tremolet, A., Melab, N., & Talbi, E.
G. (2023). A Virtual-Force Based Swarm Algorithm for Balanced Circular Bin
Packing Problems. arXiv preprint arXiv:2306.01021.

The introduction of the paper as well as the state of the art section are not
reported.

E.1 Formulation of the problem

The two-dimensional balanced circular bin packing problem considered in this paper
is formulated as follows: pack a set of non-overlapping circles with given radii and
masses, in the smallest circular container as possible, such that the center of gravity
of the circles is located at the geometrical center of the container [XXA07a; TT99].
Let Ci, i ∈ {1, N} be a set of N circles of radius rci and mass mi. Each circle Ci is
located thanks to the coordinates of its center of inertia (xi, yi). The vectors x and
y encompass the 2D cartesian coordinates of all the circles. The balanced circular
bin packing problem can be mathematically formulated as follows:

min
x,y

r(x,y) = max
i∈{1,N}

(√
x2
i + y2i + rci

)
where x = {x1, ..., xN} ∈ RN ,y = {y1, ..., yN} ∈ RN

s.t. hoverlap(x,y) = 0

hCG(x,y) = 0

(E.1)

where r corresponds to the objective function i.e., minimize the container ra-
dius, x,y are the vectors of continuous coordinates of the circles and hoverlap(x, y),
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hCG(x, y) are respectively the overlapping and balancing constraints with CG the
center of gravity of the circles. The constraints are mathematically expressed as:

hoverlap(x,y) =
N−1∑
i=1

N∑
j=i+1

∆Sij(xi, xj, yi, yj) (E.2)

where ∆Sij is the area of intersection of two circles i and j.

hCG(x,y) =

√√√√(∑N
i=1 mixi∑N
i=1mi

)2

+

(∑N
i=1miyi∑N
i=1mi

)2

(E.3)

To sum up, the problem is to solve is a 2N -dimensional continuous, single-
objective and constrained optimization problem.

E.2 Swarm Intelligence algorithm for balanced

circular bin packing problems

The proposed approach is a component swarm optimization algorithm based on a
virtual-force system (CSO-VF), adapted from [Gam+22] for solving the balanced
circular bin packing problem. Similar approaches are mainly used in the field of
robotics in order, for instance, to control a swarm of robots moving in a given
area with one or several objectives (e.g, reaching a target destination), as well as
hard constraints (e.g., avoid collisions and forbidden zones) [Bra+13; KB86]. This
strategy is adapted in this paper in order to optimize the layout of various items
in a container and is in line with quasi-physical models developed for instance in
[He+13; Liu+16a]. The main focus of the approach is to define dedicated operators
for the evolution of a dynamical system of the components (i.e., the circles) based
on the fundamental principle of dynamics to satisfy the constraints and minimize
the objective function in order to ensure an efficient resolution of the constraints as
well as optimization capabilities. In this algorithm, each component is assumed to
be a particle in a swarm. At each iteration of the algorithm, depending of the virtual
forces that are applied to the particle, each of them evolves in the container in order
to minimize the objective function and solve the constraints. It is important to note
that this type of algorithm is different from classical particle swarm optimization.
Indeed, in the CSO-VF algorithm, each particle of the swarm corresponds to a
single circle and so to a part of the entire solution while in classical particle swarm
optimization a particle corresponds to an entire solution.

E.2.1 The virtual-force system

In the CSO-VF algorithm, each circle i is described by its dynamic features: its ac-
celeration ai, its speed vi and its position pi = {xi, yi}. Forces (Fk

i , k ∈ {1, ..., NF},
for circle i) with a resultant Fi are applied to the circle in order to move it at each
iteration as illustrated on Figure E.1a. Each of the forces of the virtual-force system
aims at solving the constraints as well as optimizing the objective function. Con-
sequently, the forces Fk

i applied to the circle i are of three types: Foverlap
ij to solve
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E.2. Swarm Intelligence algorithm for balanced circular bin packing problems

the overlapping constraints between the circles i and j, FCG
i to solve the balancing

constraint and Fradius
i to minimize the objective function.

By the end of an iteration, the resulting force Fi is calculated for each circle
thanks to Equation E.4 and the fundamental principle of dynamics is applied in
order to update the position of the swarm of circles at step t + 1 (separated from
step t by ∆t which corresponds to a time unit) according to Equations E.5, E.6 and
E.7 (detailed for circle i).

Fi =



NF∑
k=1

Fk
i if

∥∥∥∥∥
NF∑
k=1

Fk
i

∥∥∥∥∥ < Fmax∑NF

k=1 F
k
i∥∥∥∑NF

k=1 F
k
i

∥∥∥Fmax otherwise.

(E.4)

where Fmax is a hyperparameter corresponding to the maximum value of the
norm of the resulting force vector.

ai,t+1 =
Fi

mi

(E.5)

vi,t+1 = vi,t + ai,t+1∆t (E.6)

pi,t+1 = pi,t + vi,t+1∆t (E.7)

The three forces of the virtual-force system are detailed and formulated as follows
(for a circle i):

• The overlap constraint forces: If two circles i and j are overlapping each
other, repulsive forces Foverlap

ij and Foverlap
ji are applied to each of them as

illustrated on Figure E.1b. The overlap forces are expressed as:

Foverlap
ij =

−
pj − pi

∥pj − pi∥+ ϵ
vmax − vi if ∆Sij(pi,pj) ̸= 0

0 otherwise.

(E.8)

where vmax is a hyperparameter corresponding to the maximum value of the
norm of the speed vector, ϵ ensures numerical stability and 0 = (0, 0) the null
vector.

• The balance constraint forces: In order to position the center of mass of
the circles on the geometrical center of the container, gradient-based forces
are applied along the opposite of the gradient of the position of the global
center of mass according to the position of the center of inertia of each circle.
This force is named FCG

i . It is illustrated on Figure E.1b with circle k. The
balancing forces are expressed as:

FCG
i = −α∇hCG(pi) (E.9)

where α is a ”step-size” hyperparameter of the algorithm and ∇hCG(pi) cor-
responds to the gradient of the position of the center of gravity of the circles
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with respect to the position of the considered circle i. This type of force is
inspired from gradient-based descent algorithms.

• The objective function forces: To minimize the radius of the container,
the container is initialized to a given radius which decreases along with the
iterations as described in Section E.2.2. The circles must be contained by the
container and thus, an attractive force directed toward the geometrical center
of the container is applied to each of the circles which does not belong to the
container. This force is named Fradius

i and is illustrated on Figure E.1b with
circle l. The radius forces are expressed as:

Fradius
i =


pc − pi

∥pc − pi∥+ ϵ
vmax − vi if ∆Si,container(pc,pi) < Si

0 otherwise.

(E.10)

where ∆Si,container corresponds to the area of intersection of circle i with the
container, Si to the area of circle i, pc = (0, 0) corresponds to the position’s
vector of the geometrical center of the container and ϵ ensures numerical sta-
bility.
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(a) Definition of a circle.

x

x

𝐅𝑖𝑗
𝑜𝑣𝑒𝑟𝑙𝑎𝑝

x
𝑖

𝑗

x

𝐅𝑙
𝑟𝑎𝑑𝑖𝑢𝑠

𝑘

x 𝑘
𝐅𝑘
𝐶𝐺

𝑘
𝑙

𝐅𝑗𝑖
𝑜𝑣𝑒𝑟𝑙𝑎𝑝

(b) Definition of the virtual-force system
for four circles i, j, k and l.

Figure E.1: Definition of the circles’ dynamic features and the associated virtual-
force system.

E.2.2 The evolution of the container’s radius

In order to minimize the radius of the container and consequently to maximize the
occupation rate of the circles in the container, the radius of the container is initialized
as described in Section E.2.3 and then decreases along with the iterations. Indeed, at
each iteration (i.e., timestep in the evolution of the dynamical system), if a feasible
solution has been found (i.e., all the constraints are satisfied), the current radius
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E.2. Swarm Intelligence algorithm for balanced circular bin packing problems

of the container rt−1 is updated to a target container radius r∗t (where * stands for
target), until a new feasible solution is found and the new actual container radius rt
corresponding to the enclosing circle of the items centered on their center of gravity
is calculated, and so on. The container is centered on the center of gravity of the
circles to ensure that the center of gravity constraint (Equation E.3) is automatically
satisfied. The proposed law of evolution of the target container radius r∗t is expressed
as follows:

r∗t = rt−1 − st (E.11)

st = smin + (smax − smin) exp

(
t ln

(
1

1 + c
Nit

))
(E.12)

where Nit is the maximum number of iterations, smin and smax are respectively the
minimum and maximum radius steps, and c is an hyperparameter characterizing
the speed of evolution of the container radius along with the iterations. Figure E.2
shows the influence of the hyperparameter c on the law of evolution of the step st
along with the number of iterations.
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Figure E.2: Influence of the hyperparameter c on the evolution of the container’s
radius step size along with the iterations for: 1000 iterations, smax = 10, smin = 0.1.

Moreover, if a stagnation of the convergence of the container’s radius is observed
during at least 10% of the total number of iterations (i.e., no feasible solution is
found, at least one constraint is not satisfied), st is set to smin. Indeed, a stagnation
of the convergence of the container’s radius might be due to a too large step of the
container’s radius with respect to the convergence step.
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E.2.3 Initialization of the algorithm

E.2.3.1 Initialization of the container

The radius of the container is initialized such that the occupation rate of the circles
is equal to 15%. The occupation rate O of a layout is defined as:

O =

∑N
i=1 Si

Scontainer

(E.13)

where Si is the surface of the circle i and Scontainer the surface of the container.

E.2.3.2 Initialization of the positions of the circles

The initialization of the circles is computed in two steps: The circles are grouped
according to their masses in order to be positioned separately and each group is then
positioned in the container thanks to a Latin Hypercube Sampling. This promotes
an homogeneous distribution of the circles in the container according to their masses.
Figure E.3 shows the evolution between an initialized layout of the container, an
intermediate layout and the corresponding optimal layout obtained with the CSO-
VF algorithm for 100 unequal circles. The redder the circles, the heavier their
corresponding masses.

𝑙

Optimal layoutInitialization
Intermediate state 

of convergence

Figure E.3: Evolution between an initialized container, an intermediate layout and
the corresponding optimal layout found by the CSO-VF algorithm. The blue cross
stands for the center of gravity of the circles. The black dotted circle stands for the
container, centered on the center of gravity of the circles. The redder the circles,
the heavier their corresponding masses.

E.2.4 The hyperparameters

The 6 hyperparameters of the proposed CSO-VF algorithm are:

• Dynamic features hyperparameters: maximum value of the norm of the force
vector Fmax and speed vector vmax;
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• Balancing force hyperparameter: α;

• Radius law hyperparameters (in Equations E.11, E.12): maximum and mini-
mum radius steps smax and smin, speed evolution hyperparameter c.

Figure E.4 describes the CSO-VF algorithm.

Initialization 

Set target container radius 𝑟∗

Calculate overlap forces

Calculate CG forces

Calculate radius forces

Dynamic law
Update positions

Calculate container radius r

IIs a feasible layout
found ?

Yes

No

IIs termination
criteria reached ?

Final optimal layout

No

Yes

Figure E.4: Steps of the CSO-VF algorithm.

E.3 Experimentations and results

In this section, the CSO-VF algorithm is applied to two benchmarks of balanced
circular bin packing problems of growing complexity, with respectively 10 and 3 prob-
lems taken from [XXA07a] and [Rom+22]. The best obtained results are shown and
analyzed, and a complementary study on the robustness of the CSO-VF algorithm
is conducted on the most complex benchmark of problems.
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E.3.1 First benchmark of balanced circular bin packing
problems

The first benchmark of balanced circular bin packing is initially described in [XXA07a].
This consists of 10 different sets of balanced circular bin packing problems from 10
to 55 circles of various sizes and masses, fully reported in Table E.5 in E.5.1. Ta-
ble E.1 sums up the maximal and minimal radii and masses of the circles for each
problem of the benchmark.

Pb. Number of circles Radii Masses

1 10 8-23 20-93
2 15 8-24 12-98
3 20 8-24 11-94
4 25 6-24 11-96
5 30 6-24 12-96
6 35 7-24 12-99
7 40 6-23 12-99
8 45 6-24 11-99
9 50 5-24 11-99
10 55 6-24 13-99

Table E.1: Minimum and maximum radii and masses of the circles for each problem
of the benchmark (Pb.). They are detailed in E.5.1.

The CSO-VF algorithm is applied to the 10 problems of this first benchmark
with 100 repetitions each from different initializations using the process described
in Section E.2.3. The hyperparameters are set thanks to a parametric study.
The results are outlined as follows:

• The best obtained layouts’ radii are reported on Table E.2 and compared
with those published in [XXA07a] obtained with the PSO algorithm described
in [ZGG05], those obtained in [XXA07a] with a compaction algorithm based
on gradient search and SA (Comp.+SA), those obtained in [XXA07a] with
a compaction algorithm based on gradient search and PSO (Comp.+PSO)
and those from [Liu+15] obtained with a combination of the energy landscape
paving method and local search procedure (IELP-LS);

• Figure E.5 characterizes the speed of convergence: it shows the number of
iterations necessary to reach 10%, 5%, 1%, 0.5% and 0.1% of the final value
for the best run of all the 10 problems;

• Figure E.6 shows the best obtained layout for each of the 10 problems. The
redder the circles, the heavier they are;

• In Section E.5.3, Table E.6 reports the CPU time necessary to run 20000
iterations with the allocated numerical resources for each benchmark problem.
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Pb.
PSO

[ZGG05]

Comp. +
SA

[XXA07a]

Comp. +
PSO

[XXA07a]

IELP-LS
[Liu+15]

Proposed
CSO-VF
algorithm

Relative
Improve-
ment (%)
wrt best
method

1 61.32 60.96 59.93 59.92 59.85 0.12%
2 76.58 68.77 67.65 67.39 67.07 0.47%
3 89.15 83.09 83.06 82.99 82.58 0.49%
4 106.31 83.97 84.24 82.98 82.84 0.17%
5 136.88 99.58 99.89 98.97 98.77 0.20%
6 148.39 102.86 102.71 102.32 101.52 0.78%
7 165.79 115.15 115.58 115.00 113.53 1.28%
8 172.69 120.63 119.67 119.07 117.99 0.90%
9 189.89 125.82 126.19 124.98 124.30 0.54%
10 200.82 138.22 138.89 136.13 135.99 0.10%

Table E.2: Results for the first benchmark of 10 problems (Pb.): best container’s
radius obtained in [ZGG05; XXA07a; Liu+15] and with the CSO-VF algorithm.
Best results are indicated in bold.
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Figure E.5: Number of iterations to reach 10%, 5%, 1%, 0.5% and 0.1% of the final
obtained values for the best runs of the 10 benchmark problems.

The proposed strategy allows to solve all the benchmark problems. It enables
to improve the final best radius of all the problems, from 0.1% to 1.28% in compar-
ison to the results from the literature obtained with various techniques [XXA07a;
Liu+15; ZGG05]. This relative improvement tends to increase with the problem
number (i.e., with the number of circles) except for the last one. This might be
explained by the fact that the CSO-VF algorithm is provided with dedicated forces
to solve each of the constraints and thus, remains consistent in its ability to resolve
constraints from 10 to 55 circles.
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Figure E.5 shows that for all 10 problems less than 5000 iterations are necessary to
reach 5% of the final best value. This represents from 43 seconds (problem 1, 10
circles) to 3.5 minutes (problem 10, 55 circles) thanks to Table E.6. Figure E.5 also
highlights that the speed of convergence until 5% of the final value seems not linked
to the number of circles of the benchmark problems. However, problems 7, 8 and 9
(i.e., 40, 45 and 50 circles) seem to require more iterations to converge to 0.1% of
their final value.

1 2 3 4

5 6 7 8

9 10

Figure E.6: Obtained final best layout for the first benchmark of problems with the
CSO-VF algorithm.

E.3.2 Second benchmark of balanced circular bin packing
problems

The second benchmark of problems is initially proposed in [Rom+22]. This consists
of 3 problems with 100, 150 and 300 circles, in which the radius of each circles is
equal to its mass. Table E.3 lists the number of circles and dimensions for each
problem of the benchmark.

The hyperparameters are set using a parametric analysis and the CSO-VF algo-
rithm is applied to the 3 problems of this second benchmark with 100 repetitions
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Pb.
1 2 3

Number
of

circles

Radii,
masses

Number
of

circles

Radii,
masses

Number
of

circles

Radii,
masses

Circles

40 10 50 10 100 10
30 20 40 20 80 20
20 30 30 30 60 30
10 40 20 40 40 40

10 50 20 50
Total

number of
circles

100 150 300

Table E.3: Configuration of the 3 benchmark problems (Pb.): Number of circles,
dimensions (radii equal to masses) and total number of circles for each problem.

each from different initializations using the process described in Section E.2.3.
The results are outlined as follows:

• The best obtained layouts are reported on Table E.4 and compared with those
obtained in [Rom+22] with a sequential algorithm based on a variant of the
Shor’s r-algorithm [Sho+03; Ste17];

• Figure E.7 characterizes the speed of convergence: it shows the number of
iterations necessary to reach 10%, 5%, 1%, 0.5% and 0.1% of the final value
for the best run of all the benchmark problems;

• Figure E.8 characterizes the robustness of the algorithm on each problem: it
shows the numbers of repetitions that reach 10%, 5%, 1% and 0.5% of the best
layout for all the benchmark problems;

• Figure E.9 shows the best obtained layout for each problem of this benchmark.
The redder the circles, the heavier their corresponding masses;

• In Section E.5.4, Table E.7 reports the CPU time necessary to run 15000 iter-
ations with the allocated numerical resources for all the benchmark problems.

The results are reported in Table E.4 and compared with the results obtained
in [Rom+22]. Figure E.9 shows the best obtained layout for each problem of the
benchmark.

Pb.
Results from
[Rom+22]

Proposed CSO-VF
algorithm

Relative
Improvement (%)

1 257.19 247.93 3.60%
2 368.40 357.97 2.83%
3 520.56 504.11 3.16%

Table E.4: Results for the second benchmark of problems (Pb.): best container’s
radius obtained in [Rom+22] and with the CSO-VF algorithm.
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Figure E.7: Number of iterations to reach 10%, 5%, 1%, 0.5% and 0.1% of the
obtained value for the best run of the 3 problems of the benchmark.

1 2 3

0

50

100
100 100 100100 100 100

45

64

100

12
19

42

Benchmark problems

N
u
m
b
er

of
ru
n
s

10% 5% 1% 0.5%

Figure E.8: Number of runs (amongst 100) to reach 10%, 5%, 1% and 0.5% of the
obtained value for the best run of the 3 problem of the benchmark.

Table E.9 and Figure E.9 show that the algorithm succeeds in finding feasible
layouts for balanced circular bin packing problems up to 300 circles. It provides
better container’s radii from 2.83% to 3.60% compared to the best known layouts
proposed in [Rom+22]. Figure E.7 shows that for all 3 problems of the benchmark,
around 5000 iterations are necessary to reach 5% of the final value. Moreover,
Figure E.7 shows that the number of iterations needed to reach less than 1% of the
final best value increases along with the total number of circles in each benchmark
problem. However, for all three problems, 5% of their best final value is reached
in about 5000 iterations. Figure E.8 characterizes the robustness of the CSO-VF
algorithm. It shows that for the 3 bin packing problems of the benchmark, all the
runs manage to converge to at least 5% of the final best layouts. Furthermore,
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the robustness of the algorithm increases along with the total number of circles of
each problem. Indeed, for the 300-circles benchmark problem (i.e., the third one),
the CSO-VF algorithm achieves 100% of repetitions reaching 1% of the best radius
obtained in Table E.4, and more than 40% of repetitions reaching 0.5% of the best
radius obtained in Table E.4.

1 2 3

Figure E.9: Obtained final best layout for the second benchmark of problems with
the CSO-VF algorithm.

E.3.3 Summary of the results for the two benchmarks

The CSO-VF algorithm provides better optimal layouts for all 13 problems where 10
to 300 circles had to be positioned in comparison with several techniques from the
literature. It has been shown that the CSO-VF algorithm solves all the benchmarks
problems with similar convergence speed. As the number of circles increases from
100 to 300 circles, the algorithm appears to be more robust and able to achieve up
to 0.5% of the best final value. It might be due to the fact that problems with fewer
circles are more sensitive to the initialization than problems with several hundreds
of circles and especially if they are uniform in terms of dimensions and masses. The
virtual-force system of the CSO-VF algorithm uses dedicated operators to solve each
of the constraints as well as minimize the objective function. Therefore, the CSO-
VF algorithm provides constant and efficient optimization capabilities regardless of
the considered number of circles.

E.4 Conclusions and future works

This paper describes a quasi-physical approach in order to solve balanced circular
bin packing problems which aim is to pack weighted circles into as smallest balanced
container as possible. The proposed algorithm consists in a swarm intelligence based
on a virtual-force system which provides dedicated operators to solve each of the
constraints as well as optimize the objective function. It has been successfully
applied on various benchmark problems from 10 to 300 circles. The reported results
show that this strategy allows to improve the results obtained for the considered
benchmark problems compared to other various counterparts from the literature. In
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the future, the following perspectives will be investigated. Firstly, the evolution of
the container’s radius step law will be improved to increase the robustness of the
method. Secondly, the algorithm will be extended in order to tackle 3-dimensional
bin packing problems.

E.5 Further materials

E.5.1 First benchmark problems configurations

Table E.5 details the dimensions of the circles of the first benchmark of problems
addressed in Section E.3.1.
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Inst Size Radii Masses

I1 10
{20, 22, 17, 17, 7, 21, 11, 5, 23,

8}
{35, 61, 49, 89, 68, 80, 93, 82, 70,

20}

I2 15
{8, 14, 8, 15, 11, 17, 21, 16, 6, 18,

24, 13, 20, 10, 15}
{75, 29, 36, 58, 75, 32, 98, 52, 76,

85, 59, 18, 85, 36, 12}

I3 20
{20, 24, 8, 11, 13, 7, 7, 15, 24, 18,
15, 17, 17, 14, 16, 18, 5, 21, 21,

13}

{86, 72, 81, 54, 29, 94, 92, 41, 57,
77, 40, 67, 31, 47, 39, 61, 73, 83,

11, 20}

I4 25
{24, 16, 19, 7, 14, 24, 15, 6, 16,
16, 23, 10, 9, 10, 18, 22, 7, 9, 7,

13, 14, 8, 18, 6, 8}

{16, 80, 52, 21, 42, 86, 67, 96, 61,
79, 57, 62, 32, 38, 20, 75, 80, 11,

53, 32, 41, 68, 85, 53, 71}

I5 30
{14, 15, 11, 19, 9, 6, 23, 9, 23, 13,
24, 12, 24, 24, 10, 8, 9, 8, 6, 11, 6,
16, 24, 12, 9, 19, 13, 24, 21, 18}

{24, 52, 37, 17, 12, 19, 51, 67, 23,
46, 14, 96, 55, 84, 21, 92, 69, 65,
72, 36, 73, 83, 83, 97, 73, 81, 30,

46, 49, 51}

I6 35

{10, 20, 13, 19, 19, 10, 14, 14, 24,
11, 20, 15, 7, 18, 22, 10, 13, 12,
21, 14, 9, 10, 9, 7, 8, 18, 8, 8, 23,

14, 13, 21, 23, 16, 10}

{44, 46, 14, 32, 70, 31, 95, 24, 75,
99, 99, 79, 10, 79, 69, 64, 12, 47,
41, 62, 17, 85, 43, 70, 43, 63, 44,
57, 62, 20, 17, 80, 47, 68, 19}

I7 40

{6, 12, 20, 6, 14, 19, 9, 20, 10, 13,
12, 14, 23, 17, 16, 19, 15, 10, 12,
18, 21, 6, 20, 17, 13, 20, 17, 6, 21,
15, 12, 9, 14, 20, 23, 16, 23, 9, 23,

18}

{74, 48, 16, 35, 19, 58, 87, 90, 17,
29, 32, 63, 46, 76, 26, 88, 71, 49,
89, 14, 68, 94, 41, 53, 36, 67, 14,
88, 99, 46, 66, 14, 21, 44, 73, 72,

72, 37, 82, 12}

I8 45

{13, 8, 11, 21, 9, 20, 24, 20, 17,
21, 7, 13, 24, 7, 6, 8, 18, 15, 12,
18, 17, 21, 8, 23, 22, 15, 10, 17,
24, 8, 14, 6, 16, 14, 6, 10, 19, 21,

20, 6, 16, 14, 6, 19, 11}

{91, 95, 96, 47, 63, 37, 56, 96, 84,
70, 36, 41, 48, 12, 86, 43, 70, 71,
56, 89, 52, 49, 53, 82, 42, 35, 11,
82, 88, 58, 74, 16, 91, 57, 26, 39,
48, 68, 72, 69, 27, 44, 25, 99, 96}

I9 50

{9, 17, 5, 15, 24, 23, 12, 9, 5, 13,
7, 18, 19, 21, 7, 18, 18, 24, 12, 23,
22, 13, 5, 6, 17, 21, 7, 18, 14, 17,
10, 15, 18, 8, 8, 16, 7, 18, 24, 6,
20, 10, 21, 11, 22, 24, 12, 7, 14,

11}

{19, 85, 60, 19, 88, 18, 28, 55, 66,
47, 49, 69, 93, 94, 35, 43, 93, 34,
27, 61, 20, 52, 51, 41, 98, 85, 82,
89, 54, 43, 54, 94, 80, 99, 41, 41,
63, 28, 19, 53, 11, 78, 65, 10, 98,

43, 78, 24, 84, 16}

I10 55

{17, 23, 17, 13, 18, 21, 23, 22, 7,
9, 8, 13, 20, 11, 10, 19, 10, 14, 12,
22, 19, 10, 17, 11, 21, 8, 15, 16,

19, 21, 17, 19, 8, 6, 13, 13, 14, 19,
18, 23, 20, 24, 24, 13, 13, 19, 7, 6,

10, 8, 8, 10, 24, 19, 24}

{97, 62, 28, 36, 97, 58, 13, 21, 40,
97, 79, 90, 62, 47, 64, 23, 23, 95,
99, 44, 71, 79, 52, 59, 47, 60, 41,

47, 90, 95, 81,98, 70, 47, 90, 13, 93,
50, 21, 80, 17, 52, 96, 73, 88, 16,
91, 97, 40, 52, 50, 90, 19, 69, 14}

Table E.5: Geometrical configuration of each problem: total number of circles (size),
their radii and masses.

E.5.2 CPU time of resolution

The routines are implemented in Python language, and executed on a PC with an
Intel Core i7, 16 GB of RAM and Windows operating system. The CPU time of
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resolution for each benchmark problem is reported and analyzed in the following
sections.

E.5.3 First benchmark of problems

Pb. 1 2 3 4 5 6 7 8 9 10
Time (min) 1.75 3.62 4.05 5.37 6.12 8.43 10.6 12.35 13.14 13.89

Table E.6: Mean of CPU time for 20000 iterations for the ten benchmark problems
(Pb.). Implementation: Python language, Execution: PC with an Intel Core i7, 16
GB of RAM, Operating system: Windows.

E.5.4 Second benchmark problems

Benchmark Problems 1 2 3
CPU time (min) 20.9 42.1 98.7

Table E.7: Mean of CPU time for 15000 iterations for the three problems. Imple-
mentation: Python language, Execution: PC with an Intel Core i7, 16 GB of RAM,
Operating system: Windows.

E.5.5 Analysis

Table E.6 and E.7 show that the CPU time needed to solve the problems of each
benchmark evolves linearly with respect to the number of circles to pack. Indeed, the
more circles to position, the more forces to calculate within the virtual-force system
of the CSO-VF algorithm. The required CPU time with the allocated numerical
resources remains lower than 13.89 minutes for the first benchmark of problems
(obtained for 55 circles) and lower than 98.7 minutes for the second benchmark of
problems (obtained for 300 circles). It must be noted that the CPU time strongly
depends on the implementation language used as well as the numerical resources
allocated and is therefore hardly comparable with other CPU time from the litera-
ture. Furthermore, the CSO-VF algorithm is compatible with GPU programming
that would considerably improve the computing time. However, from an industrial
point of view, the effective computing times remain reasonable.
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[Gon+11] J.S. González et al. “Overall design optimization of wind farms”. In:
Renewable Energy 36(7) (2011), pp. 1973–1982.

[Gow71] J.C. Gower. “A general coefficient of similarity and some of its prop-
erties”. In: Biometrics 27(4) (1971), p. 857.

[Gre00] J. Grefenstette. “Rank-based selection”. In: Evolutionary Computation
1 (2000), pp. 187–194.

[GL17] Z. Guo and B. Li. “Evolutionary approach for spatial architecture lay-
out design enhanced by an agent-based topology finding system”. In:
Frontiers of Architectural Research 6(1) (2017), pp. 53–62.

[HB97] A. Ben Hadj-Alouane and J. C. Bean. “A genetic algorithm for the
multiple-choice integer program”. In:Operational Research 45(1) (1997),
pp. 92–101.

[HA21] S.H. Haji and A.M. Abdulazeez. “Comparison of optimization tech-
niques based on gradient descent algorithm: A review”. In: PalArch’s
Journal of Archaeology of Egypt/Egyptology 18(4) (2021), pp. 2715–
2743.

[HI15] I.M. Hakim and V. Istiyanti. “Improvement of layout production facil-
ities for a secondary packaging area of a pharmaceutical company in
Indonesia using the CORELAP method”. In: International Journal of
Technology 6(6) (2015), pp. 1006–1016.

[Hal16] M. Halstrup. “Black-Box Optimization of Mixed Discrete-Continuous
Optimization Problems”. In: Ph.D. Thesis, TU Dortmund (2016).

[HM06] W. Halter and S. Mostaghim. “Bilevel optimization of multi-component
chemical systems using particle swarm optimization”. In: In: World
Congress on Computational Intelligence (WCCI 2006) (2006), pp. 1240–
1247.

[Ham+22] R. Hamano et al. “CMA-ES with margin: Lower-bounding marginal
probability for mixed-integer black-box optimization”. In: In Proceed-
ings of the Genetic and Evolutionary Computation Conference (2022),
pp. 639–647.

[HO01] N. Hansen and A. Ostermeier. “Completely Derandomized Self-Adaptation
in Evolution Strategies”. In: Evolutionary Computation 9(2) (2001),
pp. 159–195.

[Has+17] R.A. Hasan et al. “A comprehensive study: Ant colony optimization
(ACO) for facility layout problem”. In: 16th RoEduNet conference:
networking in education and research (RoEduNet) IEEE (2017), pp. 1–
8.

289



Bibliography

[HHS86] M.M. Hassan, G.L. Hogg, and D.R. Smith. “SHAPE: a construction
algorithm for area placement evaluation”. In: International Journal of
Production Research 24(5) (1986), pp. 1283–1295.

[Has+05] R. Hassan et al. “A comparison of particle swarm optimization and the
genetic algorithm”. In: In 46th AIAA/ASME/ASCE/AHS/ASC struc-
tures, structural dynamics and materials conference (2005), p. 1897.

[HKY17] E. Hazan, A. Klivans, and Y. Yuan. “Hyperparameter optimization:
A spectral approach”. In: arXiv preprint arXiv:1706.00764 (2017).

[He+13] K. He et al. “A coarse-to-fine quasi-physical optimization method for
solving the circle packing problem with equilibrium constraints”. In:
Computers & Industrial Engineering 66(4) (2013), pp. 1049–1060.

[He+15] K. He et al. “Delving deep into rectifiers: Surpassing human-level per-
formance on imagenet classification”. In: In Proceedings of the IEEE
international conference on computer vision (2015), pp. 1026–1034.

[He+18] K. He et al. “An efficient quasi-physical quasi-human algorithm for
packing equal circles in a circular container”. In: Computers & Oper-
ations Research 92 (2018), pp. 26–36.

[HU17] J. Herman and W. Usher. “SALib: An open-source Python library for
sensitivity analysis”. In: Journal of Open Source Software 2(9) (2017),
p. 97.

[HCD21] A. Herrán, J.M. Colmenar, and A. Duarte. “An efficient variable neigh-
borhood search for the space-free multi-row facility layout problem”.
In: European Journal of Operational Research 295(3) (2021), pp. 893–
907.

[Hil63] F.S. Hillier. “Quantitative tools for plant layout analysis”. In: Journal
of Industrial Engineering 1 (1963), pp. 33–40.

[HC66] F.S. Hillier and M.M. Connors. “Quadratic assignment problem al-
gorithms and the location of indivisible facilities”. In: Management
Science 13(1) (1966), pp. 42–57.

[HGR21] J.G. Hobbie, A.H. Gandomi, and I. Rahimi. “A comparison of con-
straint handling techniques on NSGA-II”. In: Archives of Computa-
tional Methods in Engineering (2021), pp. 1–16.

[Hol92] J.H. Holland. “Genetic Algorithms”. In: Scientific american 267(1)
(1992), pp. 66–73.

[HQL94] A. Homaifar, C. X. Qi, and S. H. Lai. “Constrained optimization via
genetic algorithms”. In: Simulation 62(4) (1994), pp. 242–253.

[Hor+19] D. Horn et al. “Surrogates for hierarchical search spaces: the wedge-
kernel and an automated analysis”. In: In Proceedings of the genetic
and evolutionary computation conference (2019), pp. 916–924.

[Hos+14] S.S. Hosseini et al. “Multi-floor facility layout improvement using sys-
tematic layout planning”. In: Advanced Materials Research 845 (2014),
pp. 532–537.

290



Bibliography

[Hou+19] P. Hou et al. “A review of offshore wind farm layout optimization
and electrical system design methods”. In: Journal of Modern Power
Systems and Clean Energy 7(5) (2019), pp. 975–986.

[HL04] B. Huang and N. Liu. “Bilevel programming approach to optimizing a
logistic distribution network with balancing requirements”. In: Trans-
portation Research Record 1894(1) (2004), pp. 188–197.

[HH09] W. Huang and K. He. “A caving degree approach for the single con-
tainer loading problem”. In: European Journal of Operational Research
196(1) (2009), pp. 93–101.

[HY11a] W. Huang and T. Ye. “Global optimization method for finding dense
packings of equal circles in a circle”. In: European Journal of Opera-
tional Research 210(3) (2011), pp. 474–481.

[HY11b] W. Huang and T. Ye. “Global optimization method for finding dense
packings of equal circles in a circle”. In: European Journal of Opera-
tional Research 210(3) (2011), pp. 474–481.

[HLG21] J. Huo, J. Liu, and H. Gao. “An NSGA-II algorithm with adaptive local
search for a new double-row model solution to a multi-floor hospital
facility layout problem”. In: Applied Sciences 11(4) (2021), p. 1758.

[HT09] J.Z. Huo and H.F. Teng. “Optimal layout design of a satellite module
using a coevolutionary method with heuristic rules”. In: Journal of
Aerospace Engineering 22 (2009), pp. 101–111.

[HW07] B. Hutt and K. Warwick. “Synapsing variable-length crossover: mean-
ingful crossover for variable-length genomes”. In: IEEE Transaction
Evolution Computation 11(1) (2007), pp. 118–131.

[HHK11] F. Hutter, H. Hoos, and K.Leyton-Brown. “Sequential model-based
optimization for general algorithm configuration”. In: In Coello, C.
(ed.) Proceedings of the Fifth International Conference on Learning
and Intelligent Optimization (LION’11). Lecture Notes in Computer
Science. Springer. 6683 (2011), pp. 507–523.

[HO13a] F. Hutter and M.A. Osborne. “SA kernel for hierarchical parameter
spaces”. In: arXiv preprint arXiv:1310.5738 (2013).

[HO13b] F. Hutter and Michael A. Osborne. “A Kernel for Hierarchical Param-
eter Spaces”. In: Technical Report arXiv:1310.5738. arXiv (2013).

[Ili+17] I. Ilievski et al. “Efficient Hyperparameter Optimization for Deep Learn-
ing Algorithms Using Deterministic RBF Surrogates”. In: In Proceed-
ings of the AAAI conference on artificial intelligence 31(1) (2017).

[IES14] N. Izadinia, K. Eshghi, and M.H. Salmani. “A robust model for multi-
floor layout problem”. In: Computers & Industrial Engineering 78
(2014), pp. 127–134.
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