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Résumé en français

Au sein du domaine de la statistique fonctionnelle appliquée à l’environnement, l’accent de cette
recherche est mis sur l’analyse de données présentées sous forme fonctionnelle. La statistique fonction-
nelle explore un secteur de la statistique dédié à la manipulation de données fonctionnelles, fournissant
des méthodes pour la réduction de dimension, l’apprentissage supervisé et non supervisé, tout en
prenant en compte les dépendances temporelles et/ou spatiales inhérentes à ces données. L’essor des
technologies modernes a rendu ces types de données de plus en plus accessibles, en particulier dans des
domaines tels que les sciences de l’environnement. Un exemple concret d’application de la statistique
fonctionnelle réside dans les techniques d’acoustique des pêches, qui permettent d’obtenir des échan-
tillons spatiaux et temporels d’organismes marins à différentes profondeurs et échelles spatiales, sans
nécessiter d’intrusion.

Au sein de cette recherche, un ensemble de données acoustiques multi-fréquences, extraites par
des échosondeurs scientifiques halieutiques, a été minutieusement analysé pour explorer la structure
spatiale des agrégations d’organismes marins micronectoniques, communément désignées sous le terme
de couches diffusantes et en anglais de "Sound Scattering Layers" (SSL). L’examen des caractéristiques
de ces entités biologiques complexes, telles que leur épaisseur, leur densité relative, et leur profondeur,
a été réalisé en corrélation avec leur environnement pélagique. La représentation fine de cet envi-
ronnement a été rendue possible grâce à l’utilisation d’un système multiparamétrique tracté derrière
le navire (ScanFish). Dans cette démarche, nous avons initié l’analyse en recourant à des méthodes
standards de statistique multivariée, pour ensuite exploiter des techniques de l’analyse de données
fonctionnelles, avec ou sans prise en compte de la dimension spatiale.

Dans notre première analyse exploratoire, l’Analyse en Composantes Principales Fonctionnelle
multivariée a fourni des informations précises sur la variation des paramètres le long des profondeurs,
contrairement à l’Analyse en Composantes Principales classique. Dans le cadre des tâches de régression,
nos analyses, qu’elles intègrent ou non la dimension spatiale, ont mis en évidence des interactions entre
les caractéristiques des SSL et les variables environnementales clés à l’échelle spatiale. Des distinctions
géographiques significatives ont été constatées entre les SSL de notre jeu de données, i.e. entre les
zones septentrionales et méridionales, ainsi qu’entre ceux des zones côtières et hauturières au cours de
cette étude. Ces conclusions demeurent pertinentes dans la seconde partie de la thèse, où une méthode
d’apprentissage supervisé récente est employée, exploitant la notion de signatures extraites des données
environnementales. La dernière contribution, plutôt méthodologique, introduit une nouvelle approche
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d’analyse en composante principale pour les données fonctionnelles multivariées spatiales. Comparée à
l’analyse en composante principale fonctionnelle multivariée classique, cette méthodologie est adaptée
à l’exploration et à la réduction de la dimension des données spatiales dépendantes.

Les conclusions de la thèse mettent en lumière l’importance cruciale de l’analyse statistique spatiale-
fonctionnelle dans les recherches écologiques portant sur des entités spatialement complexes. Ces
résultats mettent en évidence la valeur ajoutée de la prise en compte de la dimension spatiale dans
l’analyse de ces phénomènes biologiques complexes.

Au-delà de notre étude de cas spécifique, l’application de l’analyse de données fonctionnelles ouvre
des perspectives prometteuses pour un large éventail d’études écologiques impliquant des données
spatiales massives.
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Abstract

In the field of functional statistics applied to the environment, the focus of this research lies in the
analysis of data presented in functional form. Functional statistics explores a sector of statistics
dedicated to handling functional data, providing methods for dimension reduction, supervised and
unsupervised learning, while taking into account the temporal and/or spatial dependencies inherent
in such data. The rise of modern technologies has made these types of data increasingly accessible,
especially in fields such as environmental sciences. A concrete example of the application of functional
statistics lies in fisheries acoustics techniques, which enable the collection of spatial and temporal
samples of marine organisms at different depths and spatial scales, without requiring intrusion.

Within this research, a set of multi-frequency acoustic data, extracted by scientific fishery echosounders,
has been meticulously analyzed to explore the spatial structure of aggregations of micronektonic ma-
rine organisms, commonly referred to as "Sound Scattering Layers" (SSL). The examination of the
characteristics of these complex biological entities, such as their thickness, relative density, and depth,
was conducted in correlation with their pelagic environment. The detailed representation of this en-
vironment was made possible through the use of a multiparametric system towed behind the vessel
(ScanFish). In this approach, we initiated the analysis using standard multivariate statistical meth-
ods, and then exploited techniques of functional data analysis, with or without consideration of spatial
dimension.

In our initial exploratory analysis, multivariate Functional Principal Component Analysis provided
precise information about parameter variation along depths, unlike classical Principal Component Anal-
ysis. In the context of regression tasks, our analyses, whether integrating spatial dimension or not,
revealed interactions between SSL characteristics and key environmental variables on a spatial scale.
Significant geographical distinctions were observed among SSLs in our dataset, i.e., between northern
and southern zones, as well as between coastal and offshore zones during this study. These conclusions
remain relevant in the second part of the thesis, where a recent supervised learning method is used,
leveraging the concept of signatures extracted from environmental data. The final, more methodolog-
ical contribution introduces a new approach to principal component analysis for multivariate spatial
functional data. Compared to multivariate functional principal component analysis, this methodology
is suited for exploring and reducing the dimensionality of dependent spatial data.
The thesis findings highlight the crucial importance of spatial-functional statistical analysis in ecological
research involving spatially complex entities. These results underscore the added value of considering
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spatial dimension in the analysis of these complex biological phenomena.
Beyond our specific case study, the application of functional data analysis opens promising avenues

for a wide range of ecological studies involving massive spatial data.
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Introduction

The oceans, constituting one of the main reservoirs of biodiversity in the world and occupying 71%
of the earth’s surface, are considered to be one of the most important natural resources for humans
(Costanza, 1999). They make a major contribution to global climate regulation by absorbing about
25-30% of total anthropogenic carbon dioxide (CO2) emissions (Le Quéré et al., 2018; Gruber et al.,
2019; Sabine et al., 2004), while producing almost half of the world’s oxygen. The complex nature
of marine ecosystem functioning, combined with the inaccessibility and invisibility of the majority of
their goods and services, calls for more appropriate and robust approaches to evaluate these resources.
It should be noted that including consideration of fine-scale depth structure in biogeographic partitions
and ecosystem models, allows to better understand the role of micronektonic communities in pelagic
food webs (Proud et al., 2017) and their effect on climate change (Mouget et al., 2022). To establish
models for exploiting marine resources and monitoring stocks, it is necessary to obtain fishing statistics
over a wide spatial and temporal range, which is often difficult and time-consuming using conventional
fishing methods (Brehmer et al., 2020). It is in this context that researchers have turned their attention
to alternative methods, including the hydroacoustic methods, which are non-invasive and enable large
volumes of water to be sampled rapidly (Simmonds and MacLennan, 2005; Stequert and Gerlotto,
1977; Guillard et al., 2023). Hydroacoustic methods have considerably developed in recent years and
are increasingly used to acquire a wide variety of information on the aquatic ecosystem, providing a
unique way of perce living in the marine environment (Brehmer et al., 2003; Guillard, 2016), and have
become in recent years a major tool for monitoring the marine environment (Brehmer et al., 2019)
and assessing stocks of marine species, allowing multiple types of applications such as transmission,
measurement, detection, location of targets or obstacles, knowledge of predator-prey relationships etc.
(Josso, 2010; Le Gall, 2015; Lurton, 2002; Marchal et al., 1996). They allow the collection of robust,
high-resolution quantitative data on a large spatio-temporal scale (Brehmer et al., 2006), to assess
the biomass and size distribution of detected biological targets (Burgos and Horne, 2008; Jean et al.,
2011; Kim et al., 2018). Acoustic techniques allow not only to cover large geographical areas but also
to study areas not suitable for conventional fisheries sampling, while avoiding harm to the marine
environment. Underwater acoustics is a technique based on the properties of sound in water (Lurton,
2002). The principle of echolocation consists of emitting a sound pulse into the water at a certain
frequency by using an antenna or transducer, which propagates, reflects off any obstacles encountered
and returns to the emitting source. This impulse propagates in the form of waves at a speed that

1



INTRODUCTION

depends on the physical properties of the environment such as pressure, salinity and temperature
Guillard and Colon (1998) and creates local pressure variations which represent a flow of energy per
unit time, thus indicating the intensity of the wave. These acoustic waves are subject to distortions,
changes in amplitude and phase Mours (2017) and are reflected as echoes by any object encountered
(bottom, plankton, fish, wreckage, etc.). The intensity of the echo depends particularly on the size
of the obstacle, the intensity emitted and its power of reflection. The use of echosounders to locate
schools of fish (Brehmer et al., 2002) has made it possible to detect planktonic organisms (Cushing and
Richardson, 1956). These are much smaller organisms than fish, which are close together in the water
column and whose echoes are produced as " sound scattering layers" (SSL) on the echograms Remond
(2015). Recognising and interpreting the echoes of these micro-organisms has become essential for
scientists and managers, as plankton form the basis of aquatic food chains and generally mark the
boundaries of water bodies. The SSL, essentially composed of zooplanktons and micronectons (Kloser
et al., 2002; Béhagle et al., 2017), organisms generally migrate to the surface at night in search of
prey and descend to deeper waters during the day to avoid predators, a process known as diel vertical
migration (DVM)(Aksnes et al., 2017; Behrenfeld et al., 2019; Longhurst and Harrison, 1988). Even if
they are different in size, they are the first animal levels in the marine food web (macro-zooplankton
from 2 mm to 2 cm, meso-zooplankton from 0.2 to 2 mm and micro-zooplankton from 20 µm to 0.2
mm and micronekton typically range in size from 2mm to 20 cm, but there is no strict size range that
defines micronekton). Zooplanktons play a crucial role in aquatic ecosystems, transporting matter
and energy to higher trophic levels and influencing nutrient dynamism. Zooplankton communities are
highly sensitive to fluctuations in environmental parameters and are therefore an excellent indicator of
change in aquatic systems (Molinero et al., 2005; Siokou-Frangou et al., 1998). Micronekton is a term
used to describe a diverse group of small marine organisms that occupy the midwater or mesopelagic
zone of the ocean. These organisms are typically larger than plankton but smaller than many larger
fish and marine animals. As zooplankton, micronekton play a fundamental role in the marine food web
by linking primary consumers to top predators, forming the prey of marine predators such as tuna,
whose populations are heavily exploited by fisheries, as well as birds and marine mammals. The spatio-
temporal variations of these abiotic factors can alter the abundance of zooplankton and in particular
cause a reduction in fishery resources. It has been noted that a high biomass of fish is observed in areas
with high plankton production. This is why, in the context of optimising resources, it is necessary to
study the impact of environmental parameters on the organisms responsible for these diffusing layers
(the SSL) at a fine spatial scale in order to gain a better understanding of how aquatic ecosystems
function.

In this perspective, researchers from IRD (Senegal, France), along with various partners, collected
acoustic and environmental data in the West African region from various spatial units, covering an
ordered grid of depth points within a finite length range. To conduct a comprehensive analysis of this
data, taking into account its spatial and functional nature, it is natural to employ spatio-functional
statistical methods.

In recent years, Functional Data Analysis (FDA) has gained popularity within the international
scientific community, as evidenced by numerous studies in this field (Clarkson, 2005; Genin and Ahmed,
2019; Giraldo et al., 2018; Bouzebda and Nemouchi, 2020; Diogoul et al., 2020),...
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To our knowledge, the studies conducted in the Senegal region on sound scattering layers in relation
to environmental parameters by Diogoul et al. (2020) are the only ones in the region. However, these
studies did not take into account the spatial and functional aspects of the data.

This thesis contributes to the study of the effects of environmental parameters on the descriptors
of acoustic layers in West Africa. It utilizes statistical methods of functional data analysis to assess
the similarities among spatial units at sea in terms of environmental variables while examining their
impact on sound scattering layers, taking spatial aspects into consideration. Few works have been
conducted in this specific context.

The remainder of the document is organized as follows: Chapter 1 describes the geographical
and biological context of the study area. Chapter 2 deals with fundamental concepts and provides
a state-of-the-art overview of the statistical models and methods used. Chapter 3 presents an initial
contribution to the study of the effects of environmental parameters on the descriptors of acoustic layers
in West Africa, using methods and models such as Principal Component Analysis (PCA), clustering,
and functional regression models, while comparing them to classical multivariate methods used in the
study by Diogoul et al. (2020). Chapter 4 explores a novel regression method based on the theory
of signatures to analyze functional data based on the data examined in Chapter 3. In Chapter 5,
we propose a new principal component analysis method for multivariate spatial functional data and
investigate its finite sample properties on space-time sea-surface temperature data.
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Chapter 1
Biological framework of the study

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 General concept of underwater acoustics . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.1 Sound wave . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2.2 Energy and sound intensity in acoustic signal . . . . . . . . . . . . . . . . . . . 6
1.2.3 Acoustic backscatter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3 What is a Sound Scattering Layers (SSL)? . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.1 Introduction

Senegal is a maritime country located in the extreme west of Africa with 700 km of coastline (Theodore,
1993; Thiao, 2009). Its maritime frontage of 240 nautical miles of latitude oriented in the N-S direc-
tion, is comprised between 12°30 and 16°20 (Rebert, 1982). This façade is separated by the Cap Vert
peninsula into two sectors with different topographical characteristics (Roy, 1990).
The northern zone or Grande Côte, which extends over the regions of Dakar, Thies, Louga and Saint-
Louis with 180 km long (Camara, 2008), constitutes the most unstable section of the coastline, par-
ticularly with the presence of a strong swell and a narrow and steep continental shelf (Niang, 2009).
Generally oriented North-West, it generates a drift of the coastline towards the south (Niang Diop,
1995) because of the breaking waves arriving on the shore (Seck, 2014).
The southern zone or small coastline (Niang, 2009), between Dakar and the Sangomar point(Diaw
et al., 1993), extends over nearly 110 km (Camara, 2008). With a wider continental shelf with a gentle
slope (Teisson, 1983) that avoids the formation of large bars, the small coast is relatively more pro-
tected from the swell phenomenon than the large coast (Niang, 2009). It is also subject to a process
of deep-water resurgence called upwelling, which is more frequent in this area.
Coastal upwelling is a physical phenomenon (Diankha et al., 2015), which results in the resurgence
of deep waters, compensating under the action of the northward wind, for the drift of surface waters
towards the high sea (Ndoye, 2016; Roy, 1991). This upwelling process of cold deep waters causes
a supply of mineral salts (Croquette, 2007), thus favouring the development and maintenance of an
important biological production in this area (Roy, 1991).
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1 Biological framework of the study

Figure 1.1: Map of the study area, Sénégal (West Africa).

1.2 General concept of underwater acoustics

The propagation of sound in water has always been widely used by many marine organisms to com-
municate, navigate, survive and locate prey in the ocean. The use of acoustic waves as a means of
observing the oceans is relatively recent, even if the first attempts dating back to the end of the XV th

century when Leonardo da Vinci listened to the underwater noises of distant ships by plunging a tube
into the water and sticking his ear to the end. Unlike electromagnetic waves, sound waves propagate
very well in the marine environment and over long distances (Simmonds and MacLennan, 2005). For
a better understanding of this study, only the key elementary notions of acoustics will be described to
better understand the data we have used along the doctoral thesis. To do so we have mainly used the
works of Lurton (2002); Simmonds and MacLennan (2005) for the basis of fisheries acoustics and also
other works as Levenez et al. (2006); Leif et al. (2017) or Diner and Marchand (1995) a book on the
applications of acoustics to maritime fishing for students.

1.2.1 Sound wave

A sound wave results from the propagation of a mechanical disturbance characterized by a vibration
of the molecules of the material environment (air, water, gas or solid) around their equilibrium posi-
tions. It therefore corresponds to a succession of oscillations represented by phases of compression and
expansion of the particles in this environment. It is described by several parameters that determine
the characteristics of the sound produced (Lurton, 2002).

• The amplitude A is proportional to the maximum distance a vibrating particle can be moved
from rest. It is transmitted from near to near to the particles in the environment in question.
The greater the amplitude, the more intense the sound heard. It is the most commonly used
parameter and is expressed in Pascal.

• The period T indicates the time taken for one of the phenomena of a wave to reproduce itself,
i.e. the time elapsed between two similar positions or states of the source or fluid. The period
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1 Biological framework of the study

is expressed in seconds.

• The frequency F represents the number of oscillations or vibrations of the wave particles
per second. It is expressed in Hertz (Hz) representing the number of cycles per second. The
frequency is equivalent to the inverse of the period, defined as follows: F = 1/T . In fisheries
acoustics, the frequency range used extends from 10 to 500 kHz.

• The wavelength λ represents the distance travelled by the wave during one period. In a given
area, the wavelength is linked to the frequency and the sound speed by the following formula :
λ = c/f = c ∗ T . It is expressed in meters. The sound speed depends neither on the amplitude
nor the frequency of the sound, but on the mechanical characteristics of the propagation area in
particular sea temperature and salinity.

Low 

pressure
wavelength High 

pressure

Wave propagation

Particle displacement

Wave

fronts

Figure 1.2: Sound waves. (Top): the pressure varies like a sine wave. (Middle): the displace-
ment of the particles is out of phase with the pressure. (Bottom): the wave fronts
corresponding to the maximum pressure (Simmonds and MacLennan, 2005).

1.2.2 Energy and sound intensity in acoustic signal

The propagation of an acoustic wave creates local variations in pressure in the environment, which
corresponds to a flow of energy per unit of time, thus determining the acoustic intensity. Noted I, it
is defined as the average quantity of energy per unit area and time. It is expressed in W/m2 and is
related to pressure by:

I =
P

2

ρc
(1.1)

with P2, the average acoustic pressure expressed in µPa; c is the celerity in m/s and ρ represents the
density of water (in kg/m3); the term ρc denotes the acoustic impedance of the environment which
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1 Biological framework of the study

characterises the resistance of the environment to the passage of this wave.
Due to their significant range (difference between the weakest and strongest values), the decibel (dB)
is the unit used to logarithmically quantify acoustic quantities, enabling the representation, within a
limited range of values, of intensity variations that span multiple orders of magnitude on the arithmetic
scale. It is a dimensionless unit and corresponds to 10 times the base 10 logarithm of the ratio of the
acoustic intensity to a reference intensity.

dB = 10 ∗ log10(I/I0) (1.2)

1.2.3 Acoustic backscatter

Using echosounder to detect and locate biological organisms involves insonifying a known volume of
water, i.e. emitting sound waves that are transmitted and received in a well-defined beam. When a
sound wave emitted by a transducer and propagating in an environment reaches a target with a density
different from that of the propagation environment (e.g. wrecks, bottom, fish, plankton), it is scattered
by the target in all directions in space and particular part of the energy is backscattered towards the
emitting source, thus constituting the sound echo (Diner and Marchand, 1995). The intensity of this
echo depends in particular on the size of the obstacle, the intensity emitted and its power of reflection.
As a general rule, for an organism to reflect acoustic energy, its acoustic impedance must differs from
that of the transmission medium, i.e. water. The higher the impedance, the more significant the
backscattered energy.When the size of the target is considerably smaller than the wavelength (L≪ λ),
the target is completely insonified and backscatter occurs in all directions. In this case, it is the volume
of the target rather than its shape that determines the nature of the backscatter. On the other hand,
if the size of the target is significantly larger than the wavelength (L≫ λ) only the part of the object
within the insonified volume reflects the signal, in a privileged direction. (Doray, 2006).

Scattered wave
Small target

Incident wave

A)

Incident wave

Reflected wave

Large target

B)

Figure 1.3: A) Backscatter from a small underwater target. The incident wave propagates in
all directions; B) from a large target. The wave is reflected in a privileged direction
(Simmonds and MacLennan, 2005).
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Each target or reflecting object has an acoustic parameter called the reflection index or Target
Strength (TS) expressed in decibels (unit of measurement used to express the relative intensity or power
of the acoustic signal i.e. sound). This is a logarithmically quantified measurement, and corresponds
to the proportion of incident energy backscattered by a target.

TS = 10log(Ir/Ii) (1.3)

Ii and Ir correspond to the intensity of an incident sound wave (reaching one or more targets) and the
intensity of the reflected sound wave (by one or more targets),respectively. The unit of the TS is the
dBm2. This reflection index has an arithmetic equivalent called the acoustic reflecting cross section or
backscattering cross section, expressed in units of area (Bertrand, 1999).

σbs = R2(Ir/Ii) (1.4)

with R, the distance between the target and transducer (in meter).

The TS is an essential parameter for assessing the biomass of species, but unfortunately, it is one
of the most difficult factors to estimate because it depends on several parameters such as the presence
or absence of the species’ swim bladder, its size, its orientation in the acoustic beam and the frequency
used.We have not used it this work because of the lake of species identification by fishing operation.
The backscattering of at least 90% of the acoustic energy of many marine species is mainly due to
the presence of a sac located in the abdomen of their anatomy, called the swim bladder, which is
full of nitrogen and oxygen, and whose usefulness is, among other things, to enable them to adjust
their buoyancy (Foote, 1980; Ona, 1990; Salvetat et al., 1990). When a group of individual targets
are in a volume of insonified water, their echoes combine to form a continuous signal that varies as a
function of amplitude. It is then no longer possible to consider the energy backscattered by a target
but rather an acoustic response per unit volume and surface area. Echo-integration techniques are
used to estimate the acoustic densities of marine organisms recorded at a well-defined frequency. It
consists of incorporating energy from targets contained in an echointegration cell by setting a threshold,
below which echoes are not taken into account. The size of these echointegration cells (or Elementary
Sampling Unit: ESU) is chosen by the user (Doray, 2006). Echo-integration techniques have made it
possible to obtain two acoustic measurements.

• The volume backscattering coefficient, denoted sv (m−1), corresponds to the sum of the backscat-
tering from all targets contained within the volume and is obtained by the formula

sv =
∑

(σbs/V0) (1.5)

with V0, the sampled volume and σbs is the equivalent reflecting surface and the sum is obtained
over all the targets contributing to the echoes of V0. Its equivalent in logarithmic scale is
expressed in dB re 1 m−1 and noted

Sv = 10log(sv) (1.6)
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The principle of linearity translates into this equation, which states that the density of insonified
organisms can be quantified as a function of acoustic intensity, which is proportional to the
number of targets sampled in the acoustic beam (Doray, 2006).

• The area backscattering coefficient, denoted Sa, is defined as the integral of the sv values over a
depth range.

Sa =

∫ z2

z1

sv dz (1.7)

Converting Sa into nautical miles, it becomes the surface backscatter index per nautical mile
(SA) or Nautical Area Scattering Coefficient (NASC, m2 nmi−2) (MacLennan et al., 2002).

SA = 4π(1852)2 Sa (1.8)

Acoustic methods can therefore be applied in ecology to estimate the density of marine species in order
to assess the availability of resources and study the process of diel migrations and the distribution of
these species on a spatial scale.

1.3 What is a Sound Scattering Layers (SSL)?

Sound Scattering Layers (SSL) have long been perceived as noise when interpreting acoustic data for
the study of marine ecosystems (Ballón et al., 2011). Moreover, echoes from schools of fish have often
been extracted or even filtered from acoustic backscatter data for better analysis (Cabreira et al.,
2011; Korneliussen and Ona, 2002). SSL are defined as a group of organisms in the water column that
appear on the echogram of an echo sounder and can extend horizontally over tens or even thousands
of kilometres (Kloser et al., 2009). The first observations of these layers were made around the 20th

century with the detection, via naval echo sounders, of signals that were initially thought to be echoes
from the seabed but which were in fact of biological origin (Brierley, 2014). The SSL are generally
grouped into two groups: those detected from the surface to a depth of 200 m (epipelagic zone the
uppermost layer of the ocean also known as the euphotic zone) and those found between 200 and
1000 m (mesopelagic zone, sunlight does not penetrate, so it is also known as the "twilight zone"
because there is very little to no natural light) (Gjøsæter et al., 2020; Ariza et al., 2016) .We can note
the existence of the bathypelagic Zone (1000-4000 meters), it is also known as the "midnight zone"
because it is entirely devoid of sunlight, and the environment is pitch black (note considered in our
work, out of range of the acoustic devices used as well as of sampling area considered). Containing a
wide range of species with different sizes, the study of the specific composition of these SSL requires the
acquisition of backscatter data at several frequencies (Lawson et al., 2004). It is difficult to determine
the exact specific composition of the SSL, but the most dominant groups of species are zooplankton
and micronekton. In our study area the copepod was the main species in biomass (Diogoul et al., 2020,
2021).
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General mathematical concepts
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2.4 Spatial Functional Principal Component Analysis (SFPCA) for geostatistical data . . . 23

This chapter gives a general introduction and state of art on the main contributions of this thesis
on the two fundamental concepts; Functional Data Analysis (FDA) and Spatial Statistics.

2.1 Functional data analysis (FDA)

Large and complex data with a dynamic component of space and/or time abound in many fields, in
particular in the description of atmospheric, hydrological and oceanological systems, where the study
of relationships between variables made up of high dimensional vectors and/or functional components
is of prime importance for understanding the functioning of these natural systems. The application
of classical multivariate analysis methods for the treatment of these types of data comes up against
certain major problems such as the weakness of the sample size in relation to the dimension of the
variable, in addition they do not take into account the continuity of the ordered character of the dis-
cretization (Zullo, 2016). Functional Data Analysis (FDA) transforms very high dimensional data into
functional data, i.e. objects such as curves, shapes, images or any more complex mathematical object,
thought as realisations of a stochastic process (Ramsay and Silverman, 1997).
FDA has become very popular and applied in many fields. For example, on measurements or images
collected by satellites, methods from functional statistics have been applied. We can mention among

10



2 General mathematical concepts

others Dabo-Niang et al. (2004, 2007) who are interested in classifying curves collected by the satellite
at different locations in the Amazon, Cardot et al. (2003a) which study the evolution of vegetation us-
ing satellite data. In econometrics, FDA methods can model the volatility of financial markets (Müller
et al., 2011; Alva et al., 2009), the evolution of online auction prices (Wang et al., 2008), the study
of the relationship between unmet basic needs and gross domestic product (Pineda-Ríos et al., 2019).
Functional modelling is very well suited to the study of climatological phenomena, as the individuals
observed generally exhibit spatio-temporal variability. Fraiman et al. (2014) study trends in Antarctic
temperature time series using FDA methods, Suhaila (2021) proves that the functional framework is
more flexible in representing the climate phenomenon El Niño in its entirety. In the medical field,
functional data analysis methods for modelling and forecasting data on a range of health and demo-
graphic issues have considerable advantages for better understanding the relationships between risk
factors and the effectiveness of preventive measures (Hyndman and Ullah, 2007; Erbas et al., 2007).
For more details and recent references on FDA, we refer to the monographs of (Ramsay and Silverman,
1997; Ferraty and Vieu, 2006a; Kokoszka and Reimherr, 2017; Bosq, 2000) and the review of Koner
and Staicu (2023).

2.1.1 From discrete data to functions

Let (Ω,A,P) be a space of probability, F a space of functions (e.g. a separable Banach space).
A functional random variable is a variable

X = {X(t), t ∈ T} : Ω → F

taking values in F (of eventually infinite dimension).
A functional data is an observation of the functional random variable X.

If T ⊆ R then X is a curve while an image may be considered as a functional data in the case where
T ⊆ R2. If T ⊆ Rd (d > 2), X has a more complex structure. The commonly used functional space is
L2(T,RP ), P ≥ 1; the space of P -dimensional vector-valued square-integrable functions on T.
In practice, we only have discrete data at a finite number of points (Delsol, 2008) of the form:

xi(tl), tl ∈ T, i = 1, . . . , n l = 1 . . . , L

Then, a first step is to transform the xi(tl) as n observations {Xi(t), t ∈ T} of the functional random
variable {X(t), t ∈ T}, valued in a functional space (an Hilbert (e.g., L2(T,RP )) or a Banach space).

The most used approach is to express the curves in a space of finite dimension generated by a basis
of functions. If we consider a functional random variable X(t) evolving in an infinite-dimensional space
with a countable basis ϕk(t), then we can find a sequence of real ck such as:

X(t) =

∞∑
k=0

ckϕk(t), t ∈ T (2.1)

The functional object can be approximated by a linear combination of the first K elements of the
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chosen basis:

X(t) ≈
K∑
k=1

ckϕk(t), t ∈ T (2.2)

We thus obtain an approximation belonging to a finite dimensional subspace K of F. The choice of
ϕk depends on the assumptions about the variable to be studied. The function bases can be grouped
into two groups:

• Fixed bases consisting of functions defined on a grid of nodes.
− The trigonometric or Fourier basis is probably the best known of the Hilbertian bases, and
the most appropriate for approximating random curves with periodic behaviour (Ramsay and
Silverman, 2002a).
− The basis of polynomial functions defined on sub-intervals of R called B-spline. A flexible base
suitable for curve smoothing (Cardot et al., 2003b).
− The wavelet basis (Antoniadis and Sapatinas, 2003) used for signal dimension reduction.
Wavelets combine the advantages of the Fourier basis and splines (localised bases).

• The basis built from the information provided by the data.

− The functional principal components which constitute a basis of functions constructed using
sequential projections onto subspaces of L2(T,Rp).

− Functional Partial Least Squares (FPLS) (Cardot and Sarda, 2005).

2.1.2 Functional Principal Component Analysis (FPCA)

Functional principal component analysis is one of the first methods used for dimension reduction in
FDA. It was introduced by Rao (1958) in order to compare growth curves by applying the Karhunen-
Loève expansion (Karhunen, 1946) to these data. FPCA allows the covariance structure to be explored,
revealing the main sources of variation in the dataset (Ramsay and Silverman, 2005b). A more complete
mathematical framework for studying the asymptotic properties of these estimators has been developed
by (Dauxois et al., 1982; Kleffe, 1973). Suppose we have a sample of n realizations i.i.d (X1, ....., Xn)

of a functional random variable X valued in L2(T,R) = L2(T ) with mean function µ(t) = E(X(t))

and covariance function Γ(s, t) = E [(X(s)− µ(s))(X(t)− µ(t))] (s, t ∈ T which is an finite compact
interval ∈ R), Γ(s, t) may admit a spectral decomposition of the shape:

Γ(s, t) =
∑
k≥1

λkϕk(s)ϕk(t), (2.3)

where λ1 > λ2 > .... > 0, represent eigenvalues and ϕk are the orthogonal eigen-functions.

λk =

∫
T
ϕk(s)Γ(s, t)ϕk(t)dsdt (2.4)
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with
∫
T ϕ

2
k(t) dt = 1 and

∫
T ϕkϕi(t) dt = 0 (i < k). Then the Karhunen-Loève expansion of Xi is

written as:
Xi(t) = µ(t) +

∑
k≥1

ξikϕk(t) (2.5)

where ξik =
∫
T (Xi(t)−µ(t))ϕk(t)dt refers to the functional principal component score with E(ξik) = 0

and V ar(ξik) = λk (ξik are uncorrelated accross k and independant across i). From equation (2.5),
note that:

suptE[Xi(t)− µ(t)−
K∑
k≥1

ξikϕk(t)] −→
K→+∞

0

The larger K, the better the approximation of Xi by

Xi,K(t) ≈ µ(t) +
K∑
k≥1

ξikϕk(t) (2.6)

makes it easier to reduce the dimension (see Ramsay and Silverman (2002a) and Shang (2014) for more
details in FPCA).
In matrix form (Ramsay and Silverman, 2005b), taking X = (X1, ...., Xn)

⊤as a vector valued function
and the vector valued function ϕ = (ϕ1, ...., ϕn)

⊤ the equation (2.6) may be rewritten:

X = ξϕ, (2.7)

where ξ is an n ×K coefficient matrix. In the literature, there are various methods for choosing K.
we have the Akaike information criterion (AIC) and Bayesian information criterion (BIC) (Yao et al.,
2005; Li et al., 2013), Hall and Vial (2006) uses bootstrap techniques. Scree plot or the fraction of
variation explained (FVE) by first principal component is also used (Chen and Müller, 2012; Dai,
2018).

2.1.3 Principal Component Analysis for multivariate functional data

(MFPCA)

Principal component analysis has been extended to the functional multivariate case (Ramsay and
Silverman, 2005b; Berrendero et al., 2011). A significant portion of the current research in multivariate
functional data analysis is centered on processes that are defined within the confines of a same one-
dimensional domain (Di et al., 2009; Schmutz et al., 2020; Carroll et al., 2021; Zhang et al., 2019;
Chiou et al., 2014; Jacques and Preda, 2014). Some studies focus on processes observed on different
domains (Happ and Greven, 2018; Wong et al., 2019).

Let X = (X1, . . . , XP )
⊤ be a vector-valued stochastic process with P ≥ 1 an integer. For 1 ≤

p ≤ P , let Ip be a compact set in R, with finite (Lebesgue-) measure and such that Xp : Ip −→ R is
assumed to belong to L2(Ip,R) = L2(Ip) (space of square integrable functions in Ip. We denote by
I := I1 × · · · × IP , the P -Fold Cartesian product of Ip. So, X is a multivariate functional random
variable indexed by t = (t1, · · · , tP ) ∈ I and taking values in the P -Fold Cartesian product space
H := L2(I1)× · · · × L2(IP ).
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Let the inner product ⟨⟨·, ·⟩⟩ : H ×H → R ,

⟨⟨f, g⟩⟩ :=
P∑

p=1

⟨fp, gp⟩ =
P∑

p=1

∫
Ip

fp(tp)gp(tp)dtp, f, g ∈ H.

Then, H is a Hilbert space with respect to the scalar product ⟨⟨·, ·⟩⟩ (Happ and Greven, 2018).

2.1.3.1 Multivariate Karhunen-Loève representation

We assume that E [X(t)] := (E[X1(t1)], . . . ,E[XP (tP )]) = 0, ∀ t ∈ I. Let C denote the P × P

matrix-valued covariance function which, for s, t ∈ I, is defined as

C(s, t) := E[X(s)X(t)T],

where the (p, q)th element of the matrix C(s, t), for 1 ≤ p, q ≤ P , is the covariance function between
the p-th and the qth components X:

Cp,q(sp, tq) := E[Xp(sp)Xq(tq)] = Cov(Xp(sp), Xq(tq)), sp ∈ Ip, tq ∈ Iq.

In particular, Cp,q(·, ·) belongs to L2(Ip × Iq)

Let Γ : H → H denotes the covariance operator of X on the Hilbert space H, where for f ∈ H and
t ∈ I, the qth component of Γf(t) is given by

(Γf)(q)(tq) := ⟨⟨C·,q(·, tq), f(·)⟩⟩ =
P∑

p=1

∫
Ip

Cp,q(sp, tq)fp(sp)dsp, tq ∈ Iq, f ∈ H.

By the theory of Hilbert-Schmidt operators, there exists a complete orthonormal basis {ϕj , j =

1, 2, . . .} ⊂ H and a sequence of real numbers λ1 ≥ λ2 ≥ . . . ≥ 0 such that

Γϕj = λjϕj and λj → 0 as j → ∞.

The λj ’s are the eigenvalues of the covariance operator Γ and the ϕj ’s are the associated eigenfunctions.
The multivariate version of the Karhunen-Loève’s representation is:

X(t) =

∞∑
j=1

ξjϕj(t), t ∈ I,

with zero mean random variables ξj = ⟨⟨X,ϕj⟩⟩ and Cov(ξj , ξl) = λl1{j=l}.
Let J ≥ 1 and assume that the first J eigenvalues are nonzero, i.e. λ1 ≥ λ2 ≥ . . . ≥ λJ ≥ λJ+1.

Up to a sign, the elements of the MFPCA basis are characterized by:
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ϕ1 = argmax
ϕ

⟨⟨Γϕ, ϕ⟩⟩ such that ϕ = 1,

ϕ2 = argmax
ϕ

⟨⟨Γϕ, ϕ⟩⟩ such that ϕ = 1 and ⟨⟨ϕ, ϕ1⟩⟩ = 0,

...

ϕJ+1 = argmax
ϕ

⟨⟨Γϕ, ϕ⟩⟩ such that ϕ = 1 and ⟨⟨ϕ, ϕl⟩⟩ = 0, ∀l ≤ J.

Then, the truncated Karhunen-Loève expansion of the process X is

X⌈J⌉(t) =
J∑

j=1

ξjϕj(t), t ∈ I, J ≥ 1; (2.8)

and the truncated univariate Karhunen-Loève expansion of the pth component of X is

Xp,⌈Jp⌉(tp) =

Jp∑
j=1

cp,jψp,j(tp), tp ∈ Ip, Jp ≥ 1, 1 ≤ p ≤ P, (2.9)

where {ψp,j , j = 1, 2, . . .} is the univariate FPCA basis associated to the covariance operator Γp of
Xp and the scores are cp,j = ⟨Xp, ψp,j⟩. (Happ and Greven (2018), Prop.5, p.7) derived a direct re-
lationship between the truncated representations (2.9) of the single elements Xp and the truncated
representation (2.8) of the multivariate functional data X.

The principal component elements are in general, not known and have to be estimated from a
sample that are possibly observed on different sparse grid points. These elements are the eigenvalues
{λj}j≥1, the eigenfunctions {ϕj}j≥1 and the scores {ξj}j≥1.
Given a sample of n spatial observations X(1), . . . ,X(n) of X at s1, ..., sn stations, the estimation
procedure for MFPCA consists:

• For each element Xp, estimate a univariate FPCA based on the observations X(1)
p , . . . , X

(n)
p by

an estimation of the variance-covariance function of Xp:

K̂p(s, t) =
1

n− 1

n∑
i=1

X(i)
p (s)X(i)

p (t)

This results in univariate estimated eigenfunctions ψ̂p,j and scores ĉ(i)p,j , i = 1, . . . , n, j = 1, . . . , Jp

for a given truncation integer Jp.

• Define the matrix Ξ ∈ Rn×J+ with J+ =
∑P

p=1 Jp, where each row
(ĉ

(i)
1,1, . . . , ĉ

(i)
1,J1

, . . . , ĉ
(i)
P,1, . . . , ĉ

(i)
P,JP

) contains the estimated scores for the P components of the
i-th observation. Let’s consider the matrix Z ∈ RJ+×J+ consisting of blocks Z(pq) ∈ RJp×Jq with
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entries
Z

(pq)
jk = Cov(cp,j , cq,k), j = 1, . . . , Jp, k = 1, . . . , Jq, p, q = 1, . . . , P.

An estimate Ẑ ∈ RJ+×J+ of the matrix Z is given by

Ẑ =
1

n− 1
ΞTΞ

• Perform a matrix eigen-analysis for Ẑ resulting in eigenvalues λ̂j and orthonormal eigenvectors
v̂j.

• Elements of the estimated multivariate eigenfunctions are given by

ϕ̂p,j(tp) =

Jp∑
k=1

[v̂j]p,kψ̂p,k(tp), tp ∈ Ip, j = 1, . . . , J+

and the corresponding multivariate scores can be calculated via

ξ̂
(n)
j =

P∑
p=1

Jp∑
k=1

[v̂j]p,k ĉ
(n)
p,k = Ξn,.v̂j

The estimated eigen-values and functions are derived under the assumption of a finite sample size
n and a finite Karhunen-Loève representation for each univariate function Xp. They are relevant in
practice with an appropriate choice of the truncation orders.

2.1.4 Regression for functional data

Functional modelling is very often used to describe the relationship between a response variable (Y )
and predictor variables (X) when at least one of the variables is functional (Ferraty and Vieu, 2006b;
Horváth and Kokoszka, 2012; Cuevas, 2014).

• Y scalar and functional X: the functional linear model (FLM) is the most studied form of
regression, it is introduced by Ramsay and Dalzell (1991) then described by Hastie and Mallows
(1993) :

Yi = β0 +

∫
Xi(t)β(t)dt+ ϵi, i = 1, ....., n (2.10)

were here for simplicity we consider, β ∈ L2(T ), Xi ∈ L2(T ) are i.i.d with E∥Xi∥2 < ∞,
E(ϵi) = 0 and Xi independent of ϵi.
Generally, the estimation of β is done using functional principal component analysis, Hilbert
space approaches, penalised B-splines. Cardot et al. (1999) proposed an estimator of FLM using
functional principal component analysis and gives some statistical inferences. For responses with
a non-gaussian distribution, we have the Generalized FLM (GFLM) introduced by Marx and
Eilers (1999):

g{E(Yi)} = β0 +

∫
Xi(t)β(t)dt+ ϵi (2.11)
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Müller and Stadtmüller (2005) proposed an GFLM based on the reduction of the dimensions of
functional predictors with a truncated Karhunen-Loève development.
McLean et al. (2014) extend the generalised additive model of Hastie and Tibshirani (1986) in
the functional framework:

g{E(Yi)} = β0 +

∫
f{Xi(t), t}dt+ ϵi(t) (2.12)

where β0 is the intercept, g is a known link function (exponential family) and f(x, t) is an un-
specified smooth function to be estimated.

The functional linear model has been extended to non-linear or non-parametric models in order to
take into account the case where the relationship between the response and predictor variable is
not linear (Ferraty and Vieu, 2009). In the framework where the relationship between the scalar
response and the functional predictor is non-linear Yao and Müller (2010) define a quadratic
regression functional of the form:

Yi = β0 +

∫
Xi(t)β1(t)dt+

∫ ∫
β2(s, t)Xi(s)Xi(t)dsdt+ ϵi, i = 1, ..., n, (2.13)

where β0 is an intercept. The linear part is the same as equation (2.10) and we have the
quadratic part added. James and Silverman (2005) extend generalized linear models (GLM),
generalized additive models (GAM) and projection pursuit regression (PPR) using the non-
parametric version of FLM called functional adaptive model estimation (FAME):

g{E(Yi)} = β0 +
K∑
k=1

fk

{∫
Xi(t)βk(t)

}
dt (2.14)

The parameters βk(.), Xi(.) and fk(.) were represented using cubic splines and the model has
been extended to deal with multiple functional predictors. In the semi-parametric framework,
we have the functional GAM between a real response Yi and multivariate functional variable Xi

expressed as follows:

E(Yi | Xi) = g−1

β0 + p∑
j=1

fj(X
j
i )

 (2.15)

The estimation of fj is based on the spectral decomposition of the covariance operator of the Xi

and from the scores, namely fj(X
j
i ) :=

∑K
k=1 f

k
j (ξ

k
j,i), where ξkj,i are the PCA scores of Xj

i . This
method is called Generalized Spectral Additive Model (GSAM) (Müller and Yao, 2008) due to
the use of the spectral decomposition of the covariance operator of the process X.

• Y and X functionals and function-on-function regression (Ramsay and Silverman, 1997) : the
relationship between the response variable and functional predictors is expressed by integrating
the functional predictor weighted by an unknown bivariate coefficient function:
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Yi(t) = β0(t) +

∫ 1

0
β(s, t)Xi(s)ds+ ϵi(t), i = 1, ...., n, (2.16)

where β(s, t) defines a Hilbert-Schmidt integral operator.

Extensions of these models to various directions have been proposed in the literature (Chowdhury and
Chaudhuri, 2019; Zhou and Lin, 2016) and the recent review on FDA of Koner and Staicu (2023).

2.2 Spatial data analysis

Spatial statistics is concerned with the study of phenomena observed in a spatial domain S ∈ Rd, d > 1.
It is applied in many fields, notably in the environmental sciences, in econometrics (LeSage and Pace,
2008), in ecology, in epidemiology (Guttmann, 2014), in real estate studies (Srikhum, 2012), etc. Con-
trary to time series whose models are based on the notion of past and future, spatial statistics uses
non-causal methods because there is no order in Rd. Knowledge of the distribution of observations in
space is essential in the study of spatial data. This distribution is designated by location information
that allows the distance between observations to be determined, which is necessary to analyse spatial
dependencies. Technological advances have allowed geo-located data to grow, then becoming more
accessible and available in several formats (Moraga and Baker, 2022), leading the scientific community
to develop new spatial analysis approaches to take into account the structure of spatial dependency.
These methods include spatial regression, which takes account of spatial dependence (Anselin, 2009;
Ward and Gleditsch, 2018; Chi and Zhu, 2008; Cherry, 1997; Ternynck, 2014). There are also spatial
interpolation methods such as kriging, which makes it possible to predict the value of a spatial variable
at unsampled sites on the basis of data observed at neighbor sites (Baillargeon, 2005; Matheron, 1969;
Mateu and Giraldo, 2021; Giraldo et al., 2011).
Spatial data are modelled as observations of a family of random variables X = {Xs, s ∈ S} indexed by
S. The variable Xs, qualified as regionalized, describes a phenomenon that unfolds in space more or
less regularly with a certain structure. Generally, the location of a point s ∈ S is geographical (S ∈ R2

or S ∈ R3). Three main types of spatial data according to the nature of S are distinguished (Gaetan
and Guyon, 2010; Cressie, 1993):

• Point patterns: the domain S is a point process belonging to Rd, d ≥ 1. In this case, it is the
distribution of the set of points (or sites) s that is random. The objective of these processes is
to know if this distribution is regular, random or presents aggregates. They can be generalised
to marked point processes, if one associates one or more characteristics (called marks) to the
points. These points can represent trees, disease status, robberies, crimes, birds’ nests, etc.
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Figure 2.1: Examples of spatial point data: A) Locations of pine saplings in a Swedish forest
represented as points; B) Locations and diameters of 584 Longleaf pine trees (the
points have extra information called marks attached to them). Source: Swedish-
pines and longleaf data set available on the spatstat.data package of R

• Lattice data : the process is only observed on a countable collection of zones (postal codes,
regions, departments, countries,...) included in S ∈ R2. The location sites s ∈ Zd, generally
represent geographical units arranged in a regular, discrete manner. To analyse this kind of data,
it is usual to define the notion of neighbourhood and the influence exerted by an observation i

on its neighbour j.

Raw birth rate per 

1000 over one year

Figure 2.2: Example of lattice data; birth rate in Africa. Source: Actualitix

• Geostatistical data: the process is observed in n continuous points (s1, ..., sn) ∈ S (continuous
subspace of Rd), deterministic (usually, latitude and longitude). The distribution of this points
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can be either regular or not. These data can be found in the fields of the environmental (mea-
surements of air pollution in various stations (Cameletti et al., 2013), heavy metal concentrations
etc.) or in oceanography (Assunção et al., 2020).
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Figure 2.3: Example of geostatistical data. Topsoil lead concentrations at locations sampled in
a flood plain of the river Meuse. Source: Meuse river data set available on the sp
package of R

In the case of geostatistical processes, the locations in the area of interest can be chosen arbitrarily
to obtain information, unlike point processes where these locations are given a priori.
In this thesis, we are interested in spatial geostatistical or lattice data.
Unlike inference in classical statistics, which assumes that observations are independent and identically
distributed, the analysis of spatial data requires to take account a potential spatial dependency between
observations and to assume that the data are spatially auto-correlated. Exploring spatial structure
involves defining either spatial covariance (when the process is supposed weak stationary) or spatial
weighting matrix noted W (in case of lattice data) that describes the auto-correlation or dependency
between different locations.
Statistical methods and techniques for independent or time-series data have been extended to spatial
data. A key spatial method of interest in our work describe in the following is spatial principal
component analysis for areal of geo-statistical data.

2.3 Spatial Principal Component Analysis for areal real-

valued data (sPCA)

Spatial PCA for areal data is mainly based on a weight matrix. There are various ways of constructing
this matrix. (Griffith, 2020; Getis and Aldstadt, 2004).

2.3.1 Specification of the spatial weight matrix

The spatial weight matrix related to n locations s1, ..., sn of observations of a spatial process is an n∗n
positive, non stochastic, non-negative and symmetric matrix with the values wij at location si, sj . wi,j
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represents the weights for each pair of locations. They are defined by rules which define the spatial
relations among locations and, therefore, determine the spatial autocorrelation, by convention, wii = 0

(diagonal elements) (Zhou and Lin, 2008) i.e a location does not impact on itself directly:

W =


w11 w12 · · · w1n

w21 w22 · · · w2n

...
...

. . .
...

wn1 wn2 · · · wnn


Two main approaches are used to construct such weight matrix: weight based on boundary or

contiguity and weight based on distance.

• Contiguity spatial weight matrix
In this type of spatial weight, the allocation of weights depends on whether or not there are
common boundaries or vertices between pairs of locations si and sj . There are three types of
spatial contiguity including common border (rook), common vertices adjacency (bishop) and
either common border or vertices adjacency (queen). A typical specification of contiguity weight
matrix is:

wij =

1, if si and sj are contiguous

0, if si and sj not contiguous

• Geographical distance spatial weight matrix
These weight matrices define spatial connections based on the geographical proximities between
locations and the intensity of their interaction depends on the distance between their centroids
(Le Gallo, 2002). There are various ways of specifying this matrix, but they are all based on the
same intuition.

– k-Nearest Neighbour weights

wij =

{
1 if sj ∈ Nk(si),

0 Otherwise,
where Nk(si) is the set of the k closest units or locations to si for k ∈ {1, ..., n− 1}

– Inverse Distance
wij = d−α

ij ; for si ̸= sj

where dij =
√
(xi − xj)2 + (yi − yj)2 represent the euclidean distance calculated by using

the geographic coordinates x and y of locations si and sj ; α represent the distance friction
coefficient and generally α = 1 or α = 2.

– Radial distance

wij =

{
1 if 0 ≤ dij ≤ ϵ,

0 if dij > ϵ,
where dij is the euclidean distance between units si and sj , and ϵ is a critical distance
(threshold distance or bandwidth) beyond which there is no direct spatial interaction be-
tween locations, and it should be able to guarantee that each location has at least one
neighbour. This threshold is determined by a statistic derived from the distribution of
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distances in the sample.

– Exponential Distance Decay weights

wij =

{
exp(−αdij) if 0 ≤ dij ≤ ϵ,

0 if dij > ϵ,

– Double-Power Distance weights

wij =

{
[1− (dij/ϵ)]

k if 0 ≤ dij ≤ ϵ,

0 if dij > ϵ

2.3.2 The Moran’s index

One of the main methods of spatial data analysis is to determine whether there is spatial dependence
between the values of a variable in different locations of the study area. Spatial autocorrelation
measures have been developed, the most widely used in the literature is the Moran index. First
introduced by Moran (1948, 1950) and developed by Cliff and Ord (1973, 1981), it generalises Pearson’s
correlation coefficient. The values of this index range from −1, indicating negative autocorrelation, to
1 indicating positive autocorrelation (neighbouring locations have similar values of the variable). When
it is zero, there is no spatial autocorrelation. Consider n observations Xi at locations si, i = 1, ..., n of
the spatial process X. The Moran index is defined as follows:

I =
n∑n

i=1

∑n
j=1wij

∑n
i=1

∑n
j=1wij(Xi − X̄)(Xj − X̄)∑n

i=1(Xi − X̄)2
(2.17)

where wij derived from a spatial weight matrix W , describes the neighboring relation between two
locations (si and sj), X̄ is the empirical mean of the Xi. In matrix notation, we have:

I(X) = I =
n∑n

i=1

∑n
j=1wij

XTWX

XTX
, (2.18)

with X = (X1, ..., Xn)
⊤.

2.3.3 Spatial principal component analysis using Moran index

As said before, principal Component Analysis (PCA) is one of the most widely used dimension reduction
methods in the literature (Duby and Robin, 2006; Bro and Smilde, 2014; Kherif and Latypova, 2020).
When calculating the scores of the principal components, classical PCA does not take account of
spatial information. A spatial principal component analysis based on a Moran index was introduced
by Jombart et al. (2008) and considered on this contribution. Consider the vector X of n observations
Xi of a spatial process valued in Rp. Let

V (X) =
1

n
(X⊤X)I(X) =

1

n
X⊤WX

It is highly positive when X has a large variance and shows a global spatial structure and is negative
in a situation with high variance and gives a local structure.
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The purpose of this spatial principal component (SPCA) proposed in Jombart et al. (2008) is
based on scaled Rp vectors u (loadings) (∥u∥=1) such that the n raw vectors χ = Xu are scattered
and spatially autocorrelated. In other words, the aim is to find the extreme values (Jombart et al.,
2008) of

C(u) = V (Xu) =
1

n
u⊤X⊤WXu (2.19)

The solutions (Jombart et al., 2008) are the eigenvectors uk of 1
2nX

⊤(W +W⊤)X associated with
the largest and smallest eigenvalues αk = var(χk)Ĩ(χk) (where χk = Xuk, var(χk) the variance of
χk). Note that some eigenvalues αk may be negative since Ĩ is not always positive.

Based on a positive covariance matrix, the classical PCA provides positive eigenvalues whereas the
SPCA may give positive and/or negative eigenvalues, thus defining global and local spatial structures.
Dray et al. (2008) proposes an equivalent approach, which is a multivariate spatial analysis (generaliza-
tion of Multivariate Spatial Correlation Analysis of Wartenberg (1985)) based on the Moran index and
finds a compromise between the relations among many variables (multivariate analysis) and their spa-
tial structure (autocorrelation). Considering D as a scalar product of Rn, and Q a scalar product of Rp,
Dray et al. (2008) intoduces the spatial weight matrix in the analysis of the triplet (X,Q,D) associated
to the PCA of X. This approach seek to maximize the scalar product between a linear combination
of original variables ( a1 = XQu1) and a linear combination of lagged variables ( ã1 = WXQu1).
This spatial PCA for multivariate data has been extended to functional data by Ali Hassan (2021) to
examine spatial auto-correlation of mortality rates for 28 European countries.
In our contribution, we have applied the functional spatial PCA (Ali Hassan, 2021).

2.4 Spatial Functional Principal Component Analysis (SF-

PCA) for geostatistical data

Recent studies have extended the FPCA methods to take into account geo-spatially indexed functional
data (Winzenborg, 2011; Li and Guan, 2014; Kuenzer et al., 2021; Liu et al., 2017a). Winzenborg
(2011) extends the non-parametric version of FPCA to spatial data and applies it to real data from the
medical field. Li and Guan (2014) and Liu et al. (2017a) proposed an FPCA for processes that are both
spatially and temporally dependent. This thesis focuses on the work of Kuenzer et al. (2021), where
a dimension reduction technique applicable to a univariate functional data, associated with spatial
locations on a grid is introduced.

We consider that at n spatial units located on a region D ⊂ ZN , N > 1, representing a rectangular
grid, we observe a univariate spatial functional process {Xs(.)}, where s ∈ D, Xs = {Xs(t), t ∈ T}.
Let T be a compact set in R, with finite (Lebesgue-) measure and such that Xs : T −→ C is assumed
to belong to L2(T,C), the space of complex square-integrable functions on T. Let L2(T,C) = L2(T).
Kuenzer et al. (2020) proposed a spatial principal component analysis, we briefly sum-up.
With Xs being a functional random variable taking values in H := L2(T), let the inner product
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⟨⟨·, ·⟩⟩ : H ×H → R, for f, g ∈ H:

⟨f, g⟩ =
∫
T

f(t)g(t)dt

Then, H is a Hilbert space with respect to the scalar product ⟨·, ·⟩

Let the observations of the spatial process on n sites s1, ..., sn ∈ D denoted by X =

(
Xs1 , ..., Xsn

)
.

Let’s suppose that each {Xs} is a weakly stationary functional process. Let the covariance operator
C := E[(Xs − µ) ⊗ (Xs − µ)] (where µ is the mean curve define by µ(t) = EXs(t) with t ∈ T) with
kernel c(t, s) = cov(Xu(t), Xu(s)) (t, s ∈ T). We have:
(i) E(Xs(t)) = E(X0(t)) = µ(t), t ∈ T with 0 the null vector in RN

(ii) for all s,h ∈ D, and t, s ∈ T; ch(t, s) := Cov

(
Xh(t), X0(s)

)
= Cov

(
Xs+h(t), Xs(s)

)
The integral operator defined by the autocovariance kernel ch is denoted Ch and defined by

(Chf)(t) =

∫
T

ch(s, t)f(s)ds, f ∈ L2(T), t ∈ T

Let us denote the spectral density operator of Xs by Fθ with the following kernel:

fθ(t, s) :=
1

(2π)N

∑
h∈ZN

ch(t, s) exp(−ih⊤θ), (2.20)

t, s ∈ T, θ ∈ [−π, π]N , i =
√
−1,

where θ is the spatial frequency. We define L2
U ([−π, π]

N ) as the space of measurable mappings x :

[−π, π]N → U satisfying
∫
[−π,π]N ∥x(θ)∥

2dθ < ∞, with U the Hilbert space of all Hilbert–Schmidt
operators from L2(T) to L2(T) (see Kuenzer et al. (2020) for further explanation). The operator Fθ is
understood as element of the space L2

U ([−π, π]
N ) and is defined by

(FθGθ) (t) =

∫
Tj

fθ(s, t)Gθ(s)ds,

with Gθ ∈ L2
U ([−π, π]

N ) and t ∈ Tj

Considering some assumptions (Kuenzer et al., 2020), Fθ is a Hilbert-Schmidt operator (positive,
self-adjoint) and admits a spectral decomposition that is used by these authors to build a spatial PCA.
This spatial analysis has been extended in the last contribution to the multivariate case.
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3.1 Abstract

In this study, we conducted an analysis of a multifrequency acoustics dataset acquired from scientific
echosounders in the West African water. Our objective was to explore the spatial arrangement of
marine organism aggregations. We investigated various attributes of these intricate biological entities,
such as thickness, relative density, and depth, in relation to their surroundings. These environmen-
tal conditions were represented at a fine scale using a towed multiparameter system. This study is
closely intertwined with two key domains: Fisheries acoustics techniques and functional data analysis.
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Fisheries acoustics techniques facilitate the collection of high-resolution spatial and temporal data con-
cerning marine organisms at various depths and spatial scales, all without causing any disturbance. On
the other hand, spatial-functional data analysis is a statistical approach for examining data character-
ized by functional attributes distributed across a spatial domain. This analysis encompasses dimension
reduction techniques, as well as supervised and unsupervised methods, which take into consideration
spatial dependencies within extensive datasets.
We began by applying multivariate statistical techniques and subsequently employed Functional Data
Analysis (FDA). In the modeling section, we introduced the spatial dimension with the spatial coordi-
nates as covariates in the General Additive Model (GAM) and Functional Generalized Spectral Additive
Model (FGSAM) models, aiming to underscore its relevance in those contexts. In an exploratory phase,
Multivariate Functional Principal Component Analysis provided detailed insights into the variations of
parameters at different depths, a capability not offered by traditional Principal Component Analysis.
When it came to regression tasks, we explored the interactions between descriptors of Sound Scattering
Layers and key environmental variables, both with and without considering spatial dimensions. Our
findings revealed significant distinctions between northern and southern Sound Scattering Layers, as
well as between coastal and high-sea regions. The use of the spatial locations enhanced the performance
of GAM and FGSAM, particularly in the case of salinity, reflecting the influence of water mixing and
seawater temperature. The multifaceted effects of environmental variations on Sound Scattering Lay-
ers underscore the importance of spatial-functional statistical analysis in ecological studies involving
complex, spatially functional objects. Beyond the scope of this specific case study, the application of
functional data analysis shows promise for a wide array of ecological studies dealing with extensive
spatial datasets.

3.2 Introduction

Advances in fisheries acoustics allow to observe various targets, over a wide range of depths and spatial
scales (Brehmer et al., 2019; Simmonds and MacLennan, 2005). Among other underwater targets, the
Sound Scattering Layers (SSL) represent a key biomass in the world ocean (Mair et al., 2005; Proud
et al., 2019). These SSL are mainly composed of zooplankton and micronekton. Zooplanktonic and
micronektonic species provide the main trophic link between primary producers and higher trophic
levels. A large amount of energy passes through zooplankton and micronekton (Steele et al., 2007).
One of the characteristics of macrozooplanktonic and micronekton organisms is their Diel Vertical
Migrations (DVM) (Klevjer et al., 2016). This behavior is a globally observed phenomenon (Bianchi
et al., 2013; Bianchi and Mislan, 2016) and is primarily attributed to the need to evade visual predators
during the day while engaging in surface feeding at night (Haney, 1988; Bianchi et al., 2013; Lehodey
et al., 2015). This vertical movement and associated metabolic activities significantly impact the
carbon cycle (Bianchi et al., 2013), making zooplankton and micronekton indispensable actors in
marine ecosystems. Furthermore, SSLs have been correlated with an array of environmental factors
that profoundly influence their spatial distribution. These factors encompass temperature, dissolved
oxygen levels, primary production, light intensity, density, and wind-induced mixing, as demonstrated
by Hays et al. (2005), Bianchi et al. (2013), ?Proud et al. (2017), Klevjer et al. (2016), and Aksnes
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et al. (2017). Considering the challenges posed by global change and the decline in fisheries resources, it
becomes increasingly imperative to gain a comprehensive understanding of these organisms distribution
in relation to environmental conditions.

Usually, the studies conducted on zooplanktonic communities did not take into account the spatial
dimension of all the physical and biomass measurements collected with different sampling techniques
i.e. fisheries acoustics (Diogoul et al., 2020) or using nets (Blanluet et al., 2019). The high dimensional
structure of environmental variables (seawater temperature, salinity, fluorescence, and turbidity) com-
bined with multifrequency fisheries acoustics measurements is a rich source of information. Analyzing
such massive spatial data requires sophisticated techniques as proposed by Functional Data Analysis
(FDA) (Ariza et al., 2022b), able to take into account the functional and spatial nature of the data.
FDA transforms high dimensional data within a continuum into functional data, i.e. data objects, such
as curves, shapes, images, or more complex mathematical objects, thought of as smooth realizations
of a stochastic process mainly valued in a Hilbert space. Statistical methods for functional data have
received a lot of attention from the scientific community (Ramsay and Silverman, 2005a; Silverman and
Ramsay, 2002) over the last decade. Li et al. (2022) and Koner and Staicu (2023) reviewed recently
some of the fundamental concepts of the FDA, their recent advances, and their impact on practical
cases. FDA is an alternative to the use of diverse and heterogeneous datasets (Pauthenet et al., 2017,
2019) of functional, shape or more complex structure. Here we studied the relationships between the
SSL spatial structuration and the pelagic environment to take advantage of all the information avail-
able in the data. Previous work by Diogoul et al. (2020), among others, has been done on aggregated
features from the original data. Classical multivariate biostatistical analyses such as Principal Com-
ponent Analysis (PCA), clustering, and analysis of covariance (Zar, 2010) were performed on these
aggregated data. In this context, our primary goal is to conduct a through and comprehensive analysis
of the aggregated data. After initially conducting classical multivariate analysis, we adopt two distinct
approaches. First, we incorporate the spatial dimension of the data into our statistical analysis, and
second, we utilize both the spatial and functional characteristics of the data. These methods allow
us to evaluate the significance of each approach and to determine the additional insights that can be
obtained through functional data analysis.
There is an increasing interest in ecology concerning the application of FDA, as evident from several
recent works. Henderson (2006) utilized FDA to explore trends in ecological variables of South Queens-
land Water’s ambient dam water quality monitoring program. Embling et al. (2012) investigated the
relationship between the behavior of North Sea prey species and a vulnerable surface-foraging preda-
tor, analyzing fine scale tidally driven changes in biophysical characteristics using Functional Principal
Components Analysis (FPCA). FDA clustering techniques have been employed to classify temperature
and salinity profiles in the ocean in various studies (Nerini et al., 2010; Reyes et al., 2015; Pauthenet
et al., 2017; Pauthenet, 2018; Pauthenet et al., 2019). Bayle et al. (2015) applied a functional linear
model to predict chlorophyll-a concentration profile from light data. Gong et al. (2015) used functional
principal component analysis to study a surface water temperature dataset from Lake Victoria. Sierra
et al. (2017) investigated FDA methods to examine particle-size distributions in a beach/shallow ma-
rine sedimentary environment in Gijón Bay (NW Spain). Acar-Denizli et al. (2018) applied a functional
linear regression model to remote sensing data, enabling them to predict total suspended solids con-

PhD Thesis Yoba KANDE 27



3 Study of the impact of environmental variables on scattering layers using functional
additive regression models

centration in the coastal zone of the Guadalquivir estuary. Tarrío-Saavedra et al. (2020) classified the
seabed in coastal environments by employing FDA approaches on acoustic curves. Godard (2021) em-
ployed FDA to study high-frequency physical, biological, and behavioral data from electronic recorders
deployed on marine predators, particularly southern elephant seals. Nonparametric functional spatial
regression has been explored for mapping the presence of demersal coastal fish of Senegal in stud-
ies by Ndiaye et al. (2022, 2020). Yarger et al. (2022) utilized a spatio-temporal functional kriging
methodology to predict temperature and salinity functions with depth from the Argo dataset at a
fixed location, while Korte-Stapff et al. (2022) applied a multivariate functional-data mixture model to
Argonaut oceanographic data in the Southern Ocean to predict oxygen concentration. Assunção et al.
(2020) characterized the thermohaline structure in the tropical southwest Atlantic using hydrographic
profiles, FPCA and functional hierarchical clustering. Ariza et al. (2022a) explored the variation of
acoustic backscatter using functional PCA, and further applied FDA to classify the acoustic seascapes
of the southwest tropical Atlantic into biogeographical regions. Ariza et al. (2022b) further investigated
the variation of acoustic backscatter using functional PCA. In this paper, we assume that the environ-
mental data correspond to functions in space (depending on the depth points), expressed by a basic
system (bspline, Fourier, polynomial). By using FDA methods such as functional PCA, the dimension
of the basic system is reduced and a better reconstruction of the variables is achieved. We also per-
formed clustering based on the PCA scores to identify homogeneous profile groups. To the best of our
knowledge, there is no functional methodology for functional multivariate spatial PCA and clustering
in this framework. We apply these methods from the univariate spatial and multivariate non-spatial
functional literature to our original dataset (Happ and Greven, 2018). By reconstructing the data using
FDA techniques, we can effectively analyze, at a fine scale, the relationship between environmental
data and marine organism aggregation. Specifically, we employ regression methods for functional data,
such as functional generalized spectral additive models, to gain insights into the intricate ecological
patterns and associations. Our findings convincingly illustrate the significance and advantages of FDA
in our ecological studies when compared to classical biostatistics methods. Through this research, we
aim to shed light on the potential of spatial-functional statistical analysis and emphasize its relevance
in addressing ecological questions, particularly pertaining to the effects of environmental variation on
micronektonic layers.

3.3 Materials and method

3.3.1 Materials

The Hydroacoustics AWA sea survey was carried out in the West African waters. The survey was
conducted with the research vessel (R/V) Thalassa (Ifremer) during the upwelling season (Tiedemann
et al., 2017; Tiedemann and Brehmer, 2017) from February 24 to March 14, 2014. We used a remotely
operated towed vehicle a Scanfish (Brown et al., 1996; Farrell et al., 2012) operated from the R/V Tha-
lassa and hull-mounted multifrequency echosounders (Korneliussen and Ona, 2002). Three contrasted
radials (ID1, 2 and 2’) were used in this study (Figure 3.2). ID1 was carried out over the continental
shelf of the Grande Côte in the north of Senegal (Balde et al., 2019) during the night, sunrise, and day.
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The radial 2 carry out in southern Senegal was divided into two parts: ID2’ in the shallow continental
shelf (0 - 100 m; sampled during the night, sunrise and day) and ID2 in the high sea (bottom depth >
500 m; sampled during sunset and night). The Scanfish was towed continuously from the R/V between
the surface to 100 m depth, while the R/V insonified the water column continuously at four frequencies
in continuous wave mode (CW) (Diogoul et al., 2020).

• Fisheries acoustics data were recorded continuously using multi-frequency echo sounders
(operating at 38, 70, 120 and 200 kHz) at a pulse length of 1 ms and with a Time Varied Gain
(TVG) function set in 20 log R (R the range in m). Two acoustic variables were measured:
(i) the volume backscattering strength noted Sv (dB re 1 m−1) (MacLennan et al., 2002) is a
measure of the amount of sound reflected towards the echosounder from a target in the water
column. It quantifies the scattering characteristics of biological organisms or other scatterers
in the acoustic field. It provides information about the density and distribution of scatterers
within the water column; (ii) Nautical Area backscattering coefficient sA (m2nmi−2) translates
the acoustic energy received by the echosounder for one nautical mile, hereafter relative density.

The Sv are represented in two dimensions : vertically, i.e., depths, and horizontally per Ele-
mentary Sampling Unit (ESU) in distance (here 0.1 nmi) travelled by the the R/V (Figure A2).
Matecho allows visual observation of the SSL and extraction of their characteristics (Perrot et al.,
2018). We have used three SSL descriptors (depth in meter, thickness in meter (maximum depth
(dmax) − minimum depth (dmin)), and relative SSL density (mean sA) using Matecho (Perrot
et al., 2018). The bottom depth is obtained from the bottom line extraction at 38 kHz using
Matecho.

• Environmental variables , i.e., seawater temperature (Temp in °C), fluorescence (Fluo in
ml l−1; proxy of chlorophyll-a concentration), turbidity (TU in NTU) and salinity (Sal in psu),
were acquired every second using the Scanfish along the path of the vessel (Figure A2). These
parameters are averaged for each echointegration cell (Perrot et al., 2018), allowing them to
be matched at a fine scale (vs CTD probe collected during oceanographic surveys) with the
SSL descriptors (Mouget et al., 2022). The fluorescence allows to measure the concentration of
Chlorophyll-a, a proxy of marine primary productivity. The georeferenced positions (latitude
(LatEsu) and longitude (LonEsu), in decimal degrees) were obtained from the onboard Global
Positioning System (GPS). The environmental variables were matched with the acoustic variables
using the matlab code available in Annexe 1. The data, which has a size of 2.61 GB, was stored
in MATLAB format.

3.3.2 Method

The research unfolded in three key steps: (i) Raw data extraction from the echosounders and the Scan-
Fish, followed by the computation of Sound Scattered Layers ’SSL’ characteristics and the integration
of all data.
(ii) Comparative analysis of SSL characteristics against diel periods, involving classical PCA (principal
component analysis), clustering, and GAM (Generalized Additive Model) without spatial dimensions,
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then with spatial dimensions. This step showcases the relevance of Spatial-Functional Statistical Anal-
ysis in marine ecological studies, exemplified through environmental variations in SSL.
(iii) Application of a Functional Analysis, encompassing Multivariate Functional Principal Component
Analysis (MFPCA) and clustering. Subsequently, the relationship between SSL and physical param-
eters is modeled using FGSAM (Functional Generalized Spectral Analysis Model) initially without
spatial dimensions and then incorporating spatial dimensions. The analysis and modeling explicitly
explore the relationship between SSL descriptors (thickness, depth, density), treating them as obser-
vations of a real-valued spatial process.
Namely, we analysed and modelled (see Figure 3.1) the relationship between the SSL descriptors (thick-
ness, depth, density) (considered as observations of a real-valued spatial process {Ys}s∈R2 at the sites
s1, ..., sn) and the characteristics of the pelagic environment i.e the physical parameters (considered as
observations of a functional spatial processes (see Figure A3){Xs(t), t ∈ [ds,min, ds,max]}s∈R2 , where
t is the depth and s = (s1, s2) a spatial site where the data was collected). The peculiarity of the
proposed methodology lies in the assumption that the raw measurements xs,j,t are noisy observations
of a random variable X = (X1, ..., Xp) valued in a multivariate functional space. Namely Xj ∈ L2(Tj),
j = 1, ..., p where L2(Tj) is the space of squared integrable functions on Tj = [Tj,min,Tj,max]. In
other words xs,j,t = µj(t) +Xj

s (t) + ϵs,j,t, with µj(.) the mean function of the parameter j. The func-
tional variable Xj

s is centred and square integrable, while ϵs,j,t are centred (real-valued) Gaussian i.i.d
variables of finite variance.
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Figure 3.1: Flow chart depicting the study methodology. The research unfolded in three key
steps: (i) Raw data extraction from the echosounders and the ScanFish, followed by
the computation of Sound Scattered Layers ’SSL’ characteristics and the integra-
tion of all data; (ii) Comparative analysis of SSL characteristics against diel periods,
involving classical PCA (principal component analysis), clustering, and GAM (Gen-
eralized Additive Model) without spatial dimensions, then with spatial dimensions.
This step showcases the relevance of Spatial-Functional Statistical Analysis in ma-
rine ecological studies, exemplified through environmental variations in SSL; (iii)
Application of a Functional Analysis, encompassing Multivariate Functional Princi-
pal Component Analysis (MFPCA) and clustering. Subsequently, the relationship
between SSL and physical parameters is modeled using FGSAM (Functional Gen-
eralized Spectral Additive Model) initially without spatial dimensions and then
incorporating spatial dimensions. The analysis and modeling explicitly explore the
relationship between SSL descriptors (thickness, depth, density), treating them as
observations of a real-valued spatial process.
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3.3.2.1 Aggregated data modelling

To compare with the benchmark work Diogoul et al. (2020), we first modelled the layer descriptors by
the environmental data, aggregating them through the mean. The aggregated variables are:

Xj
s =

1

Ds

Ds∑
p=1

Xj
s (tp), (3.1)

where Ds is the number of depth where data are available and s ∈ (s1, ..., sn).

3.3.2.1.1 Non-spatial analysis
We performed a principal component analysis (Jolliffe, 2005) followed by a hierarchical clustering
(Rokach and Maimon, 2005) in order to identify homogeneous groups that are similar in terms of all
environmental parameters. We were also interested in the implementation of the Generalized Additive
Model (GAM) with the aggregated covariates Xj

s .
The GAM (Hastie and Tibshirani, 1990) postulates that

g(Ys) =

p∑
j=1

fj(X
j
s ) + ϵs, (3.2)

where g is the link function, fj is in a family of functions (linear, splines, etc.), ϵs being the centered
i.i.d (independent and identically distributed) error terms with finite variance. The estimation of fj
is based on splines nonparametric smoothing technique. This representation is chosen to minimise the
root mean square error (RMSE) and mean absolute error (MAE).

3.3.2.1.2 Spatial analysis
We have introduced geographical coordinates as spatial covariates (s = (s1, s2)) in the GAM model:

g(Ys) =

p∑
j=1

fj(X
j
s ) + g(s) + ϵs, (3.3)

where s = (s1, s2) is the vector of patial coordinates and g is like fj in a family of functions (linear,
splines,etc.).

3.3.2.2 Functional data modeling

3.3.2.2.1 Non-Spatial analysis
Instead of aggregating the data, we use in this section models that are able to analyse the space-time
dynamic of the data, the framework of Functional Data Analysis (Ramsay and Silverman, 1997). We
first represent the discrete measures into functional data. For that smoothing an expansion in a basis
function has to be done. After this preliminary FDA step, the second step is to resume the functional
data by means of Functional Principal Component Analysis (FPCA). The theoretical basis of FPCA is
the Karhunen-Loève theorem (Ash and Gardner, 1975). When dealing with several functional variables
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like in our case study, multivariate FPCA has been used thanks to Happ and Greven (2018). To identify
groups with homogeneous characteristics on the basis of the multivariate functional data, we perform
an hierarchical clustering based on the FPCA scores constructed using MFPCA. The principle of the
adopted functional PCA method can be described by the following steps, setting p = 1 (with p number
of principal components of the PCA) to simplify the notations:

1. Dimension reduction by principal component analysis (PCA)
The first step is to express raw data to functions using

Xj
s (t) = Xs(t) =

P∑
m=1

cs,j,mbm(t) (3.4)

where b1(t), ....., bP (t) represents the collection of first P basis functions (Fourier, Spline, etc).

Let us recall some FDA notions useful for PCA. The empirical functional mean of Xj
s (.) is:

X̄j,n(t) =
1

n

∑
s∈(s1,...,sn)

Xj
s (t) (3.5)

and the empirical covariance function:

ĉj,n(t, u) =
1

n− 1

∑
s∈(s1,...,sn)

(Xj
s (t)− X̄j,n(t))(X

j
s (u)− X̄j,n(u)) (3.6)

Karhunen−Loeve’s expansion (Ash and Gardner, 1975) is then used:

Xj
s (t) = µj(t) +

K∑
k=1

βj,k,sϕj,k(t) (3.7)

where ϕj,k are the eigenfunctions (principal component functions; PCFs) associated with the
variance-covariance operator (see Happ and Greven (2018) for more details) and λ1,j > λ2,j , ..... >

λK,j are the eigenvalues, in theory K = ∞. The functional principal component scores βj,k,s =∫
Xj

s (t)ϕj,k(t) dt are assumed to be centered random variables. In practice, ĉj,n(., .) is decom-
posed by:

ĉj,n(t, u) =

K∑
k=1

λ̂k,jϕ̂j,k(t)ϕ̂j,k(u). (3.8)

To determine eigenvalues and eigenfunctions, a number of works in the literature are proposed
particularly in the context of univariate independent (Ramsay and Silverman, 2005a) or mul-
tivariate independent (Happ and Greven, 2018) or univariate spatially as well as temporally
dependent (Hörmann et al., 2015; Winzenborg, 2011; Liu et al., 2017a; Kuenzer et al., 2021).
We first use the estimated functional principal components (FPC) ϕ̂j,k (by assuming that the
data at the ESU are independent, Ramsay and Silverman (1997); Happ and Greven (2018)) to
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approximate Xj
s in a finite dimensional functional space:

Xj
s (t) ≈ X̄j,n(t) +

K∑
k=1

β̂j,k,sϕ̂j,k(t) (3.9)

When p > 1, univariate basis expansions for each element of the multivariate functional data
Xs = (X1

s , ...., X
p
s ) are performed for each of the p functional components and the PCA scores

are derived (Happ and Greven, 2018; Happ-Kurz, 2020).

2. Clustering
When the functional PCA is done, we conduct hierarchical clustering on the MPCA scores β̂k,s.

3. Functional GAM (FGAM) models
The functional PCA (R version 4.1.0; package MFPCA) carried out allowed the dimension
reduction of the explanatory variables . We then used the functional generalized additive model
(FGAM) (McLean et al., 2014) as a more flexible alternative to the functional linear model
(FLM) for regressing a scalar on functional predictors. The FLM first introduced by Ramsay
and Dalzell (1991) and defined by:

Ys = β0 +

p∑
j=1

∫
Tj

βj(t)X
j
s (t) dt+ ϵ (3.10)

has been extensively studied (see Cardot et al. (1999, 2003b), Crambes and Mas (2013), Yao
et al. (2005)). Let Xs = (X1

s , ..., X
p
s ), we have the functional GAM expressed as follows:

E(Ys | Xs) = g−1

β0 + p∑
j=1

fj(X
j
s )

 (3.11)

The estimation of fj is based on the spectral decomposition of the covariance operator of Xs and
from the scores of PCA of Xs, namely fj(X

j
s ) :=

∑K
k=1 f

k
j (ξ

k
j,s), where ξkj,s are the PCA scores

of Xj
s . This method is called Generalized Spectral Additive Model (GSAM) (Müller and Yao,

2008) and is more flexible because the independence of the scores for each functional covariate
avoids problems of concurrency in the estimation of the partial functions associated with this
covariate.

The Functional Generalized Spectral Additive Model (FGSAM), which aims to estimate the
functional beta parameters using the R package fda.usc, selects the number of basis functions for
the independent functional predictors and parameters that minimize the RMSE and MAE crite-
ria. These criteria are used for model selection and help to ensure a better fit of the model to the
data. The dataset was divided into training (75 %) and test (25 %) samples for the Generalized
Additive Model (GAM) as well as for spatial Generalized Additive Model (GAMs), the Func-
tional Generalized Spectral Additive Model (FGSAM) and the spatial Functional Generalized
Spectral Additive Model (FGSAMs).
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3.3.2.2.2 Spatial analysis
In addition to the functional covariate, we add the geographical coordinates as spatial co-variates in
the FGSAM model:

E(Ys | Xs) = g−1

β0 + p∑
j=1

fj(X
j
s ) + g(s)

 , (3.12)

where s = (s1, s2) is the vector of spatial coordinates.

3.4 Results

We first present the results of classical biostatistics methods and then those of functional methods.

3.4.1 Classical methods

3.4.1.1 Elementary statistics of SSL descriptors per frequencies

The analysis of SSLs decriptors reveals interesting patterns in the thickness and depth of SSLs across
the different frequencies, with distinct variations according to the diel period.
Over the southern Senegalese continental shelf (Figure 3.4), the SSLs were thicker during the night
while during the day, the SSL are almost thin. At all frequencies, SSLs were deeper at night than at
sunrise except at 200 kHz where we reported the opposite. In the high sea of southern Senegal, at 70,
120, and 200 kHz, the SSLs were thicker at night than at sunset, in contrast to those detected at 38
kHz. The SSLs were deeper at sunset than at night for all frequencies. In northern Senegal, the SSLs
were thicker during daytime and sunrise at 70, 120, and 200 kHz while at 38 kHz the SSLs were thicker
during the sunrise. In addition, the SSLs were deeper during sunrise and day than during the night
for all frequencies.

3.4.1.2 Principal Components Analysis (PCA) and clustering on Environmental
parameters

Clustering is performed on the principal components of the mean environmental parameters between
the minimum and maximum depths of the SSL (Figure 3.7), i.e., where the SSL were present in the
water column. On the southern Senegalese continental shelf, at 38 kHz, we identified two classes.
Class 1 is characterised by ESUs sampled during nighttime and sunrise. They were deeper and more
saline compared to the Class 2 sampled during the daytime, which were warmer, more turbid, and
more fluorescent. We observed the same results at the three other frequencies. In the Senegalese high
sea, the results were similar at 38, 70, and 120 kHz. Class 1 was characterised by night-sampled ESUs
that were shallower, warmer, less saline, less turbid, and less fluorescent compared to Class 2 sampled
during sunset. Only at 200 kHz, the diel period did not influence the class distribution. Class 1 was
characterised by shallower, less warm, less turbid, and fewer fluorescence ESUs compared to Class 2.

In the northern Senegalese shelf at 38 and 200 kHz, Class 1 was sampled during sunrise and daytime
period and was deeper, less warm, less saline, and lower in fluorescence compared to Class 2. At 70
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and 120 kHz, Class 1 is characterised by sunrise and daytime period that were deeper and more turbid
compared to Class 2, which were warmer, more saline, and with higher fluorescence.

3.4.1.3 Spatial Generalised Additive Model (GAMs)

GAMs results showed that on the continental shelf, environmental parameters influenced the thick-
ness and depth of the Sound Scattering Layer (SSL) more during nighttime and sunrise compared to
daytime, across all frequencies (Tables 3.1, 3.2; see Tables A1, A2 for more details). Factors such as
local depth, sea temperature, salinity, fluorescence, turbidity, and geographical coordinates exhibited
varying effects on SSL thickness and depth at different frequencies and periods. Similar patterns were
observed in the southern Senegalese high sea, where bottom depth, temperature, salinity, fluorescence,
turbidity, and geographical coordinates influenced SSL characteristics during sunset and nighttime. In
the northern Senegal shelf, bottom depth, temperature, salinity, fluorescence, turbidity, and geograph-
ical coordinates played a role during sunrise and daytime. The analysis revealed both positive and
negative effects of these environmental factors on SSL thickness and depth, underscoring the complex-
ity of their interactions. However, the fit quality for SSL density (SA) was found to be inadequate.
Overall, the study highlights the significance of spatial statistical analysis in understanding the multiple
effects of environmental variation on SSL in ecological studies. Overall, the GAMs analysis highlights
the complex relationships between environmental variation and SSL, emphasizing the importance of
spatial-functional statistical analysis in ecological studies.

3.4.2 Functional methods

3.4.2.1 Multivariate Functional Principal Component Analysis (MFPCA)

The results of the multivariate functional principal component (MFPCA) analysis on the environmental
parameters show the variation of the components along the depths (Figure 3.10). It appears that the
first component of each variable generally groups together ESUs with either high or low values at a
particular depth range, while the second component groups together ESUs with high or low values
at a different depth range (Table A3). This suggests that there are multiple factors influencing the
distribution of these ESUs in the water column.

3.4.2.2 Clustering

Clustering was performed on the scores derived from the functional principal components (PC1 and
PC2) (Figure 4.2). On the continental shelf of southern, at 38 kHz, class 1 was characterized by the
second component while the first characterises Class 2. At 70 kHz, Class 2 was characterised by the first
component, while Class 1 was characterized by the second component. At 120 kHz, class 1 contains low
values of the first component, while Class 2 contains the opposite. At 200 kHz, Class 1 contains low
values of the first component, while Class 2 contains the opposite. In the high sea southern Senegalese
coast, at 38 kHz, Class 1 was characterised by low values of the first component, while Class 2 has the
opposite. At 70 kHz, Class 2 was characterised by high values of the first component while Class 1
has the opposite. At 120 kHz, Class 1 was characterised by low values of the first component, while
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Class 2 has the opposite. At 200 kHz, Class 1 has low values of the first component while Class 2 has
the opposite Over the northern Senegalese shelf, at 38 kHz, Class 1 was characterised by low values of
the first component, while at Class 2 we observe the opposite. At 70 kHz, Class 1 was characterised
by low values of the first component, while at Class 2 the opposite was observed. At 120 kHz, Class 2
was characterised by high values of the first component, while Class 1 was the opposite. At 200 kHz,
class 1 contains low values of the first component, while Class 2 had the opposite.

3.4.2.3 Spatial Functional Generalized Spectral Additive Model (FGSAMs)

The results of the FGSAMs performed on the SSL descriptors provided estimated β̂ parameters of the
functional covariates that varied with depth (Figure 3.19). On the southern continental shelf, only
temperature has an overall negative effect on SSL thickness at 38 kHz while in the southern Senegal
high sea, fluorescence has an overall positive effect on thickness at 70 and 120 kHz. For SSL depth,
fluorescence has an overall negative effect in these two areas at 200 kHz. For the other parameters,
positive and negative effects are recorded along the depths (Table 3.4; see Table A4 for more details).

3.5 Discussion

3.5.1 Analytical approaches: multivariate and functional biostatistics

methods, with or without spatial considerations

PCA was used to visualize correlations between environmental variables and to identify homogeneous
groups of ESU in a two-dimensional space (Abdi and Williams, 2010; Chatfield and Collins, 1980;
Granato et al., 2018; Demšar et al., 2013). The drawback of such statistical analysis was that it did
not take into account the shape of the variation of the data along the depth because it is performed
on aggregated data. In our case study, the analyses were based on aggregated dataset where each ESU
is associated with a single mean value of sea temperature, fluorescence, salinity, and turbidity. On the
one hand, the functional multivariate PCA (Happ and Greven, 2018) was free of this aggregated aspect
and showed in our case study, the similarities between the ESU through the high or low peaks of the
parameters observed on given depth points. It allowed the study of the shape variation of the data
along the water column. The GAM using continuous georeferenced positions (latitude and longitude)
with a bivariate smoothing function as spatial covariates showed overall the best performance (lower
RMSE and MAE; Table 3.5). Spatial dependence was modelled in the systematic part of the model,
which has improved the goodness of fit. The GAM were powerful exploratory tools because they
offered great flexibility in data analysis by introducing nonparametric and/or parametric functions.
Its main advantage is that it did not require making assumptions about the form of the relationship
between the SSL descriptors and environmental parameters. Its application allowed to specify of the
error model, to adjust the shape of the distribution of the data and thus has lower and more reliable
p-values (Hastie and Tibshirani, 1990). The FGSAM offers also great flexibility and helps to avoid
the curse of dimensionality (Febrero-Bande and González-Manteiga, 2013). The results obtained by
the FGSAM showed that the effect of environmental parameters on the descriptors of SSL appeared
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complex and cannot be modeled by a functional linear model. Overall, multivariate biostatistics are
suitable for analyzing datasets with a relatively small number of variables and can provide valuable
insights into correlations (Diogoul et al., 2020). However, they may lack the ability to capture fine-
scale variations and account for temporal or spatial dependencies in the data. In contrast, functional
methods, whether spatialized or not, are specifically designed to handle functional data and excel
in capturing complex patterns along a continuum as it is the case in our dataset. They offer more
flexibility and are particularly useful when dealing with high-dimensional, spatial, or temporal datasets.

3.5.2 Diel vertical migration: Varied SSL patterns in Senegalese wa-

ters

The analysis of SSL descriptors demonstrates the significant impact of the diel period on SSL thickness
and depth, revealing distinct patterns influenced by the diel cycle. Over the southern Senegalese
continental shelf, nighttime SSL exhibit greater thickness and depth compared to daytime SSL can
be attributed to the widely recognized diel vertical migration (DVM) patterns displayed by numerous
marine species. DVM is a behavioral mechanism generally characterized by an ascent towards the
surface of zooplanktonic and micronektonic organisms during the night to feed and a descent during
the day to avoid predation by visual predators. This type of migration is known as DVM type I
(Bianchi et al., 2013; Lehodey et al., 2015). In northern Senegal, a different set of patterns emerged.
SSL were thicker during the daytime and sunrise, consistently exhibiting greater depth during both
sunrise and the day compared to the night. This SSL thickness and depth pattern reflects an inverse
DVM. Indeed, some zooplanktonic organisms perform an inverse DVM (type II), ascending in the
morning and descending in the evening, which is the reverse pattern generally observed with vertically
migrating animals (Cushing, 1951; Ohman et al., 1983). In the Southern Senegalese continental shelf ,
the sampling was mainly achieved during the daytime, which may have biased the observed DVM type
II. Nevertheless, Tiedemann and Brehmer (2017) also reported such inverse DVM for ichthyoplankton,
which confirms the trophic relationship between ichthyoplankton and copepod, as Diogoul et al. (2022)
showed that the SSL are mainly composed of copepods.

3.5.3 Effect of the pelagic environment on the spatial structure of the

micronektonic layer (SSL)

PCA analysis allowed the physicochemical characterization of the water masses. The dataset was
organized into two distinct ESU classes. Through PCA, we identified patterns and similarities within
these classes, enabling a statistical distinction between shallow, cold areas and deeper, warmer regions.
The application of PCA allowed for a nuanced exploration of the physicochemical attributes associated
with each ESU class. The analysis not only facilitated the identification of common features but
also provided a statistical foundation for characterizing the differences between the two classes. In
particular, the distinction between shallow and cold conditions versus deeper and warmer environments
became evident through the derived statistical insights. This approach enhances our understanding of
water mass characteristics, and is in line with current knowledge (Ndoye et al. (2014); Tiedemann and
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Brehmer (2017)). On the southern Senegalese continental shelf, the 38 and 70 kHz observations give
similar results on SSL due to their somewhat similar acoustic responses (Guillard et al., 2004). The
Class 2 ESU were shallower closest to the coast, where SSL were seldom as expected by Diogoul et al.
(2020) who explain this by the turbulence in the water column generated by the upwelling phenomenon
occurring at the time of the survey. The upwelling phenomenon occurs on the Senegalese coast between
November and May (Faye et al., 2015; Balde et al., 2019) and is mainly determined by favourable
meridional wind, topography, and density stratification (Estrade et al., 2008). Coastal upwelling is an
oceanographic process that brings cold and nutrient-rich waters to the ocean surface from depth (Ndoye
et al., 2017). Upwelled coastal waters are cold and rich in nutrients, which is favourable to increase
primary production and thus chlorophyll-a concentration (Auger et al., 2016), while the offshore zone
is characterised by warm and less nutrient-rich waters (Tiedemann and Brehmer, 2017). The Class 2
ESU water were warmer and the SSL were more at the surface during daytime (due to low bottom
depth in Class 2 ESU). The Class 1 ESU were deeper because they were closer to the continental slope
than the Class 2 ESU, which were onshore and characterized by waters that are more turbid. In the
southern Senegalese high sea, at 38, 70, and 120 kHz, the results were similar. Class 2 ESU were
warmer, more turbid, deeper, and richer in chlorophyll-a concentration. In the northern Senegalese
shelf, the 38 and 200 kHz Class 2 SSL during the night were found upper in the water column and
more onshore. The Class 2 surface waters were also warmer due to solar radiation and were more
turbid and richer in chlorophyll-a concentration i.e. due to the effect of the Senegal River waters.
At 70 and 120 kHz, the Class 2 ESU sampled at night were warmer than Class 1 because their SSL
were near the surface. The utilization of GAM has enabled the recognition of factors that affect SSL
vertical distribution (thikness and depth), highlighting the importance of variables like temperature,
chlorophyll-a concentration, turbidity. In the GAMs results, the low values of RMSE obtained with the
introduction of geographical positions could be due to the spatial autocorrelation between the sample
points.The vertical distribution of the SSL is influenced by the geographical position (longitude and
latitude), which, in turn, aligns with the local bathymetry. The coastal SSL (both North and South)
exhibited shallower depths compared to those in the open sea. On the southern Senegalese continental
shelf, the SSL thickness increased at low latitude (south) and longitude (offshore) but on the southern
Senegalese high sea and northern shelf the direction of variation was irregular. On the southern
Senegalese continental shelf, the GAMs showed that the SSL thickness increases with bottom depth
during the night and sunrise. The bottom depth and diel period were the main parameters influencing
the SSL thickness in Senegal (North and South) shelf and high sea. Bathymetry is described as one of
the physical factors that control the SSL depth in the water column in the shelf north and south and
high sea. In Senegal, Diogoul et al. (2020) also reported a strong effect of bottom depth and diel period
on both SSL thickness and depth. The distribution of SSL is often linked to the hydrographic structure
of the water column (Berge et al., 2014). The vertical distribution of SSLs and their thickness are linked
to strong vertical gradients of temperature, chlorophyll-a concentration, and salinity. In the daytime
ESU, the SSL had a small thickness or is sometimes non-existent due to the unstable conditions of the
water column (Diogoul et al., 2020), and in this southern zone, the gradients are less marked, which can
explain the no significance of the parameters during the day on the thickness. The depth of the SSL
frequently showed associations the thermocline (Yoon et al., 2007; Diogoul et al., 2020). We showed
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a significant effect on SSL depth attributable to sea temperature and chlorophyll-a concentration
during the night, as well as turbidity during both night and sunrise. This reveals the complexity
of the dynamics of SSL responses subjected to the influence of different parameters, emphasizing the
importance of considering the diel period. The SSL are located in areas of strong vertical gradients and
at chlorophyll-a concentration peaks i.e. a high phytoplankton production. The relationship between
chlorophyll-a concentration and SSL thickness (mainly zooplankton (Diogoul et al., 2020)) at night
is explained by the presence of a trophic relationship between phytoplankton and zooplankton which
appeared to expend SSL size in vertical. Turbidity also affects the SSL, it is a parameter that was
often linked to chlorophyll-a concentration in the high sea (Dall’Olmo and Gitelson, 2005; Cui and Lv,
2014). However, in Senegal, we note a negative correlation between water turbidity and chlorophyll-a
concentration in the North, while observing a positive correlation in the South. The presence of the
Casamance River is believed to contribute to this contrasting relationship. On the high sea of southern
Senegal, the bottom depth affects the SSL depth and thickness. During sunset, the SSLs tend to be
deeper and thinner (except at the 38 kHz). In contrast, during the night, SSLs become shallower and
thicker (except at the 38 kHz) as organisms migrate towards the surface for feeding. In the North of
Senegal, the nighttime ESU closer to the coast compared to the daytime and sunrise ones, have thicker
and deeper SSL, which can bias the interpretation and call for additional data before to conclude.

The clustering performed on the MFPCA scores provided also homogeneous groups similarly on
the southern Senegalese sea. At 38 kHz, SSL were thicker and found at deeper locations (Class 2),
while few SSL was found in coastal domain (Class 1) due to more turbulent oceanographic conditions
(Diogoul et al., 2020). High chlorophyll-a concentration and turbidity are observed in coastal areas.
The depth and location of SSL vary, with Class 2 typically found closer to the 100 m isobath at 38
and 200 kHz and closer to the coast at 70 and 120 kHz, where SSL are shallower. On the high sea
of southern Senegal on the 38 and 200 kHz frequency. On the 70 and 120 kHz frequency, Class 2 is
found further offshore where the observed SSL were deeper and physical parameters were measured
to a certain depth in contrast to Class 1. In the North of Senegal, homogeneous classes were not
found, which reflects a more homogeneous environment than in the two southern study areas, where
the Casamance river influence the shallow part of the shelf (Thiam and Singh, 2002).
In the FGSAM results, complex effects of sea temperature on SSL depth and thickness with positive
and negative effects were observed at different depth and frequency (Table 2, S3). This relationship has
been observed in other regions (Diogoul et al., 2020; Kang et al., 2021). Warmer sea temperatures often
lead to increased thermal stratification, reducing vertical mixing (Somavilla et al., 2017) and potentially
causing a decrease in SSL thickness (Diogoul et al., 2020; Proud et al., 2017). Phytoplankton biomass
(Chlorophyll-a concentration), exhibits effects on SSL thickness and depth, varying with depth and
frequency used (Receveur et al., 2020; Song et al., 2022). In some depth ranges, higher phytoplankton
biomass was associated with a positive effect on SSL thickness, suggesting increased biological activity
and biomass. However, using FDA we observed that beyond certain depth ranges, a negative effect on
SSL thickness may be observed, possibly indicating changes in scattering components and the presence
of different marine organisms. Species identification through biological sampling has been highlighted
as an important step in understanding the composition of the SSL (Kloser et al., 2009; Blanluet et al.,
2019). Regarding SSL depth, at lower frequencies a positive effect of phytoplankton biomass was
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often shown, indicating the presence of organisms with trophic relations on phytoplankton, such as
macrozooplankton. However, at higher frequencies, a negative effect might be observed, suggesting the
presence of different organisms or scattering components not strongly linked to phytoplankton, such
as diatoms (Strom et al., 2001). That underlines both interest in the multifrequency approach and the
application of the FDA for fine-scale observations. The spatial FDA has allowed investigation of the
fine-scale effects of turbidity on SSL thickness and depth. Our findings suggest that turbidity generally
has a negative effect on SSL thickness within certain depth ranges, indicating reduced scattering
and potentially lower biomass or decreased presence of scattering organisms. Klevjer et al. (2016)
reported that under high dissolved oxygen conditions, weighed mean depth of SSL decreased with
increasing turbidity. However, beyond those depth ranges, turbidity can have a positive effect on SSL
thickness, indicating increased scattering and potentially higher biomass or the presence of different
types of scattering organisms. Similar to the influence of phytoplankton biomass and turbidity, the
effect of salinity on SSL thickness and depth depend also on frequency and depth. As with seawater
temperature, Salinity provides useful indications of water mixing (Ndoye, 2016). The effects can be both
negative and positive within specific depth ranges. Further study must be encouraged on linking SSL
behavior mechanistically to salinity with so low amplitude of variation. In the Arctic Ocean, salinity is
one of the factors that affect the SSL distribution (La et al., 2015). The effects of environmental factors
on SSL descriptors also showed regional variations, as evidenced by the FDA in the three Senegalese
studied areas. These variations indicate that the relationships between environmental factors and SSL
descriptors were influenced by local conditions and ecosystem dynamics. Assunção et al. (2020) using
FPCA also confirmed the interest of the FDA to discriminated regional variation as Ariza et al. (2022b)
Further research and validation are necessary to identify remotely the marine organism acoustically
and then better understand the underlying mechanisms driving the observed effects.

3.6 Conclusion

In this study, we analyzed a multifrequency acoustics dataset acquired from scientific echosounders
in the West African waters using FDA, both with and without the incorporation of spatial dimen-
sions. Additionally, we compared the outcomes of this analysis with multivariate methods. The FDA
methodology provides valuable insights into the variations of parameters at various depths, insights
that are not accessible through traditional multivariate methods.

The combination of data obtained from multifrequency echosounders with the Scanfish remotely
operated towed vehicle enabled to establish finely detailed relationships between aggregating marine
organisms within Sound Scattering Layers (SSL) and their pelagic environment. These complex rela-
tionships, which are not observable through conventional multivariate statistical methods, emphasize
the frequency-dependent aspects of micronektonic SSL detection. We underscore the importance of
transitioning towards broadband data acquisition, as recommended by Blanluet et al. (2019).

Our study highlights the significant advantage of employing FDA in comparison to traditional
multivariate statistical methods when investigating the impact of environmental variations on SSL.
Leveraging our original biogeographical three-dimensional datasets, we have demonstrated the capacity
of FDA to capture nuanced parameter variations and enhance the spatial characterization of SSL by
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incorporating geographic variables. Through the application of FDA techniques, we have showed
intricate patterns and variations across different variables at various depths and frequencies, providing
insights that are beyond the reach of multivariate statistics.

This approach has enabled us to categorize variables into ecologically meaningful components,
yielding valuable insights into the multifactorial impacts of both biotic and abiotic factors on SSL.
The substantial enhancements in model representations achieved through the FDA mark a pivotal
methodological advancement for ecological studies. This discovery encourages further applications of
the FDA in examining the influence of climate change and seasonal fluctuations on marine organisms.
Understanding these dynamics is essential for comprehending the catchability of exploited fish resources
and the role of SSL in the ocean’s biological pump, which aids in carbon sequestration.

Beyond the scope of our specific case study, the adoption of FDA holds promise for a broad
spectrum of ecological studies involving extensive spatial data. Embracing this approach can lead to a
deeper comprehension of complex ecological processes and can inform more effective conservation and
management strategies aimed at preserving the delicate balance of marine ecosystems.

Our research strongly advocates for FDA as a powerful tool for unraveling ecological intricacies and
promoting sustainable practices in marine conservation efforts and beyond. By embracing innovative
statistical methodologies, we can better address pressing environmental challenges and safeguard the
biodiversity and health of our planet’s marine resources.
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Table 3.1: Results of Generalized additive model (GAM) between sound scattering layers
(SSLs) and oceanographic conditions (sea temperature (Temp), salinity (Sal), tur-
bidity (Turb), fluorescence (Fluo)), diel period (day, sunset, night and sunrise),
bottom depth (Bottom) and geographical positions (latitude (Lat) and longitude
(Lon)) to predict (1) SSL thickness and (2) SSL Depth and (3) SSL density, spread
over three geographical areas (A: southern continental shelf; B: southern high sea
and C: northern continental shelf) as observed during the AWA sea survey. AIC
(Akaike’s Information Criterion); BIC (Bayesian Information Criterion); Log Likeli-
hood (log-likelihood value of a model); Deviance (goodness-of-fit metric for statisti-
cal model); Deviance explained ( proportion of the total deviance explained by the
current model); R2 (Adjusted R-Squared); GCV score (Generalised Cross-Validation
score); Num.obs. (number of observations); Num. smooth terms (Number of smooth
terms).

① (A)
Non-Spatial Spatial

38 kHz 70 kHz 120 kHz 200 kHz 38 kHz 70 kHz 120 kHz 200 kHz
(Intercept) 13.48∗∗∗ 4.32 3.17 6.86 14.33∗∗∗ 5.45 4.27 5.93∗∗

(1.23) (3.35) (6.27) (8.78) (2.24) (3.44) (3.43) (2.16)
s(Bottom):Night 3.15∗∗ 2.51∗∗ 4.86∗∗∗ 3.39∗∗∗ 3.86∗∗∗ 2.63∗ 4.41∗∗∗ 5.09∗∗∗

(3.27) (2.95) (5.34) (3.85) (3.98) (3.09) (4.91) (5.46)
s(Bottom):Sunrise 2.88∗∗∗ 5.76∗∗∗ 1.00∗∗∗ 4.04∗∗∗ 3.11∗∗∗ 3.90∗ 3.28∗ 4.14∗

(3.07) (6.14) (1.00) (4.79) (3.31) (4.53) (3.92) (4.78)
s(Bottom):Day 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

(1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00)
s(Temp):Night 3.84∗∗∗ 3.97∗∗ 1.00∗ 1.00∗ 3.89∗∗∗ 4.74∗∗∗ 1.00∗∗ 2.14∗∗∗

(3.97) (4.50) (1.00) (1.00) (3.99) (5.12) (1.00) (2.62)
s(Temp):Sunrise 2.18 3.29∗∗ 6.55∗∗∗ 2.78∗∗∗ 1.00 5.10∗∗∗ 1.00∗ 1.00∗∗∗

(2.63) (4.07) (7.40) (3.44) (1.00) (6.07) (1.00) (1.00)
s(Temp):Day 1.00∗∗∗ 1.00 1.00 1.00 1.00∗ 1.00 1.00 1.00

(1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00)
s(Sal):Night 3.52∗∗∗ 2.00 2.66 2.41 3.60∗∗∗ 2.54∗∗ 3.69∗∗ 2.63

(3.85) (2.41) (3.22) (2.92) (3.89) (3.01) (4.26) (3.16)
s(Sal):Sunrise 1.12 2.29 1.00∗ 1.00 1.00 2.10∗∗ 1.00 1.00

(1.24) (2.89) (1.00) (1.00) (1.00) (2.66) (1.00) (1.00)
s(Sal):Day 1.00 1.00 1.00 1.00 1.00∗ 1.00 1.00 1.00

(1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00)
s(Fluo):Night 1.78∗∗∗ 3.04∗∗∗ 3.20∗ 2.29∗∗ 1.80∗∗∗ 3.08∗∗∗ 4.31∗∗∗ 1.00∗∗

(1.98) (3.54) (3.82) (2.74) (2.00) (3.57) (4.91) (1.00)
s(Fluo):Sunrise 1.22 1.00∗∗ 4.40∗∗∗ 4.14∗∗∗ 1.36∗ 2.31 2.10 1.00

(1.40) (1.00) (4.95) (4.65) (1.58) (2.76) (2.54) (1.00)
s(Fluo):Day 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

(1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00)
s(Turb):Night 1.65 1.82 1.00 1.84∗ 1.00∗∗∗ 1.95∗∗∗ 1.00 1.00∗∗∗

(1.71) (1.92) (1.00) (1.92) (1.00) (1.98) (1.00) (1.00)
s(Turb):Sunrise 1.00∗∗ 2.37∗∗ 1.00 4.60∗∗∗ 2.39 3.65∗∗ 3.63 2.75

(1.00) (2.95) (1.00) (5.14) (2.70) (4.28) (4.31) (3.43)
s(Turb):Day 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

(1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00)
s(Lon,Lat) 2.66∗∗∗ 24.90∗∗∗ 24.85∗∗∗ 25.48∗∗∗

(2.85) (27.28) (27.32) (27.82)
AIC 999.93 1001.16 909.55 1049.94 890.68 706.41 804.57 853.40
BIC 1105.99 1135.30 1034.71 1180.98 1007.53 949.49 1019.80 1055.34
Log Likelihood −468.84 −461.21 −418.04 −486.51 −411.05 −281.86 −339.11 −367.43
Deviance 874.91 817.07 554.76 1025.20 521.04 163.56 273.33 352.35
Deviance explained 0.98 0.93 0.87 0.75 0.99 0.99 0.94 0.91
Dispersion 4.49 4.32 2.91 5.41 2.72 1.02 1.64 2.08
R2 0.97 0.91 0.85 0.70 0.98 0.98 0.92 0.89
GCV score 494.03 492.90 452.39 513.97 441.06 385.69 421.92 444.04
Num. obs. 223 223 223 223 223 223 223 223
Num. smooth terms 15 15 15 15 16 16 16 16
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(B)
Non-Spatial Spatial

38 kHz 70 kHz 120 kHz 200 kHz 38 kHz 70 kHz 120 kHz 200 kHz
(Intercept) 64.04∗∗∗ 49.68∗∗∗ 34.41∗∗∗ 31.70∗∗∗ 65.53∗∗∗ 48.90∗∗∗ 29.44∗∗∗ 28.75∗∗∗

(0.55) (0.88) (0.61) (0.52) (1.00) (0.96) (0.98) (0.71)
s(Bottom):Night 8.57∗∗∗ 8.36∗∗∗ 8.76∗∗∗ 8.66∗∗∗ 5.57 4.98∗∗∗ 1.01 1.00

(8.93) (8.85) (8.96) (8.94) (6.55) (6.00) (1.01) (1.00)
s(Bottom):Sunset 1.00 1.85∗∗∗ 1.99∗∗∗ 1.94∗∗∗ 1.00∗∗∗ 1.95∗∗∗ 1.92∗∗ 1.00∗∗∗

(1.00) (1.96) (2.01) (2.00) (1.00) (1.99) (1.99) (1.00)
s(Temp):Night 1.00∗∗∗ 4.53∗∗∗ 1.96∗∗∗ 4.59∗ 3.73∗∗∗ 5.32∗∗∗ 3.00∗∗∗ 6.95∗∗∗

(1.01) (5.46) (2.56) (5.72) (4.63) (6.25) (3.93) (8.00)
s(Temp):Sunset 3.70∗∗∗ 4.00∗∗∗ 1.00∗∗ 3.88∗∗∗ 2.69∗∗∗ 5.11∗∗∗ 3.08 3.69

(4.53) (4.94) (1.00) (4.75) (3.34) (6.16) (3.88) (4.55)
s(Sal):Night 3.63∗∗∗ 3.08∗∗∗ 2.04∗∗ 6.77∗∗∗ 1.00∗∗∗ 1.00∗∗ 1.00∗∗∗ 4.78

(4.51) (3.88) (2.64) (7.63) (1.00) (1.00) (1.00) (5.86)
s(Sal):Sunset 1.49 2.22 3.87 1.00 3.18 3.76∗ 1.10 1.00

(1.82) (2.84) (4.71) (1.00) (3.93) (4.65) (1.18) (1.00)
s(Fluo):Night 6.40∗∗∗ 5.68∗∗∗ 7.51∗∗∗ 6.54∗∗∗ 3.63∗∗ 1.01 6.16∗∗∗ 4.24∗∗

(7.37) (6.57) (8.48) (7.68) (4.59) (1.02) (7.47) (5.36)
s(Fluo):Sunset 1.00 5.16∗∗∗ 2.97∗∗∗ 5.08∗∗∗ 4.24∗ 4.51 4.46∗∗∗ 4.16∗∗∗

(1.00) (6.15) (3.71) (6.05) (5.09) (5.39) (5.44) (5.04)
s(Turb):Night 4.26∗∗∗ 3.75 7.15∗∗∗ 3.04 4.03∗∗ 5.03∗∗ 7.57∗∗∗ 2.82

(5.31) (4.70) (8.19) (3.99) (5.01) (5.98) (8.47) (3.70)
s(Turb):Sunset 4.27 1.00 1.00∗∗∗ 1.01 6.53∗∗∗ 4.65∗∗∗ 1.00∗ 1.00

(5.35) (1.00) (1.00) (1.01) (7.41) (5.60) (1.00) (1.00)
s(Lon,Lat) 25.96∗∗∗ 25.31∗∗∗ 26.73∗∗∗ 26.99∗∗∗

(27.96) (27.63) (28.54) (28.61)
AIC 3811.84 3820.00 3822.70 3776.45 3471.41 3459.43 3479.46 3397.44
Deviance explained 0.79 0.86 0.83 0.82 0.89 0.93 0.91 0.91
R2 0.77 0.85 0.82 0.81 0.88 0.92 0.90 0.90
Num. obs. 602 602 602 602 602 602 602 602
Num. smooth terms 10 10 10 10 11 11 11 11
∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05
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(C)
Non-Spatial Spatial

38 kHz 70 kHz 120 kHz 200 kHz 38 kHz 70 kHz 120 kHz 200 kHz
(Intercept) −5.44 22.09∗∗∗ 18.21∗∗∗ 13.32∗∗∗ 18.62∗ 23.48∗∗∗ 23.50∗∗∗ 4.30

(8.22) (6.15) (2.38) (3.70) (8.66) (4.10) (4.55) (6.23)
s(Bottom):Night 4.48∗∗∗ 6.68∗∗∗ 6.38∗∗∗ 6.14∗∗∗ 2.19 1.00 1.00 1.00

(5.28) (7.13) (6.93) (6.76) (2.59) (1.00) (1.00) (1.00)
s(Bottom):Sunrise 1.00 3.70∗ 1.00 1.00 4.57∗∗∗ 1.00 1.00 4.10∗∗∗

(1.00) (4.34) (1.00) (1.00) (5.18) (1.00) (1.00) (4.80)
s(Bottom):Day 1.00 2.89∗∗∗ 3.12∗∗∗ 1.12 1.00 3.02∗∗∗ 1.00 1.71

(1.00) (3.45) (3.69) (1.22) (1.00) (3.67) (1.00) (2.01)
s(Temp):Night 1.65 4.43∗∗∗ 6.14∗∗∗ 4.82∗ 2.08 4.20∗∗∗ 6.28∗∗∗ 4.75∗∗∗

(1.98) (5.23) (6.90) (5.65) (2.57) (5.09) (7.02) (5.72)
s(Temp):Sunrise 7.39∗∗∗ 6.62∗∗∗ 5.96∗∗∗ 7.86∗∗∗ 2.12∗∗ 7.64∗∗∗ 6.54∗∗∗ 8.57∗∗∗

(7.78) (7.58) (6.91) (8.51) (2.60) (8.35) (7.38) (8.90)
s(Temp):Day 1.41 1.00 1.00 1.00 1.00 1.00 2.21 1.00

(1.64) (1.00) (1.00) (1.00) (1.00) (1.00) (2.76) (1.00)
s(Sal):Night 2.78 1.00 1.00 1.00 3.19 1.00 1.44 1.00

(3.41) (1.00) (1.00) (1.00) (3.86) (1.00) (1.73) (1.00)
s(Sal):Sunrise 4.91∗∗∗ 6.77∗∗∗ 6.67∗∗∗ 8.16∗∗∗ 1.00 6.51∗∗∗ 7.00∗∗∗ 8.41∗∗∗

(5.91) (7.60) (7.35) (8.58) (1.00) (7.43) (7.71) (8.84)
s(Sal):Day 1.00 1.01 1.00 1.00 1.00 1.00 1.00 1.00

(1.00) (1.01) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00)
s(Fluo):Night 1.00∗ 6.07∗∗∗ 5.39∗ 2.98 3.76∗∗∗ 4.45∗ 4.33∗ 1.00

(1.00) (7.15) (6.47) (3.77) (4.64) (5.49) (5.38) (1.00)
s(Fluo):Sunrise 6.63∗∗∗ 3.72∗ 2.91∗∗∗ 7.16∗∗∗ 2.61∗∗∗ 5.49∗∗∗ 4.35∗∗ 1.00

(7.01) (4.57) (3.62) (7.86) (3.16) (6.47) (5.23) (1.00)
s(Fluo):Day 1.00 1.50 1.00 1.99∗ 1.00 1.00 1.00 1.00

(1.00) (1.68) (1.00) (2.15) (1.00) (1.00) (1.00) (1.00)
s(Turb):Night 4.33∗∗∗ 2.56 2.08 2.96 4.75∗ 3.38∗∗ 1.00 1.67

(5.29) (3.13) (2.56) (3.67) (5.75) (4.07) (1.00) (2.08)
s(Turb):Sunrise 5.50∗∗∗ 5.94∗∗∗ 5.67∗∗∗ 4.28∗∗∗ 4.51∗∗∗ 5.67∗∗∗ 4.35∗∗∗ 4.31∗∗∗

(5.99) (6.41) (6.45) (4.90) (5.09) (6.20) (5.22) (4.96)
s(Turb):Day 1.06 1.00∗∗ 1.00∗∗∗ 3.16∗∗∗ 1.63 1.00 1.00 3.15∗

(1.10) (1.00) (1.00) (3.63) (1.98) (1.00) (1.00) (3.67)
s(Lon,Lat) 26.08∗∗∗ 25.28∗∗∗ 23.23∗∗∗ 26.73∗∗∗

(27.96) (27.65) (26.31) (28.43)
AIC 2934.35 2537.17 2502.36 2527.95 2605.35 2373.69 2394.55 2315.45
Deviance explained 0.76 0.84 0.85 0.84 0.91 0.91 0.90 0.92
R2 0.73 0.81 0.82 0.82 0.89 0.88 0.87 0.90
Num. obs. 371 371 371 371 371 371 371 371
Num. smooth terms 15 15 15 15 16 16 16 16
∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05
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3 Study of the impact of environmental variables on scattering layers using functional
additive regression models

Table 3.5: Comparison of non-spatial (GAM and FGSAM) and spatial models (GAMs and
FGSAMs) for (1) SSL thickness and (2) SSL depth, as detected using four different
echosounder frequencies (in kHz; denoted as suffix after statistical model abbrevia-
tions) and spread over three Senegalese geographical areas (A) southern continental
shelf, (B): southern high sea and (C): northern continental shelf (during the AWA
fisheries acoustics sea survey). R2_ajusted (Adjusted R-Squared); R2 ( R-Squared);
RMSE_Train (Root Mean Square Error in training set ); MAE_Train (Mean Ab-
solute Error in training set); RMSE_Test (Root Mean Square Error in test set);
MAE_Test (Mean Absolute Error in test set).

① (A)

R²_ajusted R² RMSE_Train MAE_Train RMSE_Test MAE_Test
GAM38 0.97 0.98 1.98 1.36 3.37 2.26
GAMs38 0.98 0.99 1.53 1.01 2.77 1.61
FGSAM38 0.98 0.99 1.46 1.00 2.46 1.58
FGSAMs38 0.99 0.99 1.01 0.69 1.82 1.19
GAM70 0.91 0.93 1.91 1.25 2.41 1.59
GAMs70 0.98 0.99 0.86 0.54 1.88 1.08
FGSAM70 0.88 0.89 2.31 1.62 2.74 1.86
FGSAMs70 0.97 0.97 1.17 0.77 1.89 1.20
GAM120 0.85 0.87 1.58 1.03 2.41 1.53
GAMs120 0.92 0.94 1.11 0.68 1.64 0.99
FGSAM120 0.90 0.92 1.28 0.77 2.27 1.31
FGSAMs120 0.90 0.92 1.25 0.75 2.24 1.28
GAM200 0.70 0.75 2.14 1.55 3.10 2.28
GAMs200 0.89 0.91 1.26 0.94 1.75 1.24
FGSAM200 0.72 0.75 2.12 1.52 3.30 2.33
FGSAMs200 0.82 0.85 1.64 1.11 2.67 1.72

(B)

R²_ajusted R² RMSE_Train MAE_Train RMSE_Test MAE_Test
GAM38 0.77 0.79 5.34 4.20 5.50 4.33
GAMs38 0.88 0.89 3.83 3.03 4.21 3.39
FGSAM38 0.70 0.74 5.92 4.39 6.20 4.68
FGSAMs38 0.88 0.90 3.63 2.88 4.19 3.24
GAM70 0.85 0.86 5.34 4.25 5.51 4.35
GAMs70 0.92 0.93 3.79 2.95 4.39 3.47
FGSAM 70 0.81 0.84 5.77 4.19 7.21 5.22
FGSAMs70 0.85 0.88 5.11 3.83 6.77 5.03
GAM120 0.82 0.83 5.37 4.29 5.33 4.09
GAMs120 0.90 0.91 3.90 3.11 4.53 3.57
FGSAM120 0.87 0.89 4.36 3.38 5.47 4.20
FGSAMs120 0.89 0.91 3.92 3.09 4.97 3.70
GAM200 0.81 0.82 5.13 3.97 4.86 3.81
GAMs200 0.90 0.91 3.64 2.75 4.12 3.03
FGSAM200 0.85 0.87 4.37 3.30 5.08 3.96
FGSAMs200 0.90 0.92 3.53 2.65 4.43 3.33
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(C)

R²_ajusted R² RMSE_Train MAE_Train RMSE_Test MAE_Test
GAM38 0.73 0.76 10.96 7.80 13.41 9.19
GAMs38 0.89 0.91 6.67 4.62 7.16 5.02
FGSAM38 0.80 0.84 8.99 6.56 12.12 8.99
FGSAMs38 0.90 0.92 6.44 4.65 8.23 6.05
GAM70 0.81 0.84 6.22 4.30 9.96 6.02
GAMs70 0.88 0.91 4.75 3.42 8.24 4.97
FGSAM70 0.83 0.86 5.81 3.80 11.90 7.30
FGSAMs70 0.84 0.87 5.50 3.78 10.38 6.45
GAM120 0.82 0.85 6.02 3.93 6.94 4.11
GAMs120 0.87 0.90 4.95 3.12 5.70 3.35
FGSAM120 0.85 0.87 5.52 3.93 7.62 5.16
FGSAMs120 0.91 0.93 4.02 2.81 5.51 3.38
GAM200 0.82 0.84 6.17 4.03 11.25 6.29
GAMs200 0.90 0.92 4.44 2.98 6.25 3.96
FGSAM200 0.79 0.83 6.49 4.52 7.33 5.48
FGSAMs200 0.90 0.93 4.24 2.72 4.93 3.60

② (A)

R²_ajusted R² RMSE_Train MAE_Train RMSE_Test MAE_Test
GAM38 0.92 0.93 2.60 1.44 3.97 2.19

GAMs38 0.95 0.96 2.06 1.03 3.09 1.63
FGSAM38 0.92 0.93 2.53 1.73 4.09 2.43

FGSAMs38 0.95 0.96 1.88 1.22 3.05 1.86
GAM70 0.82 0.84 3.65 2.33 4.10 2.62

GAMs70 0.96 0.97 1.68 5.08 2.52 1.32
FGSAM70 0.84 0.87 3.35 2.42 3.55 2.66

FGSAMs70 0.96 0.97 1.60 1.07 2.37 1.67
GAM120 0.84 0.86 3.74 2.44 4.08 2.57

GAMs120 0.93 0.94 2.39 1.43 3.35 1.82
FGSAM120 0.90 0.92 2.86 1.89 3.37 2.26

FGSAMs120 0.93 0.94 2.46 1.52 3.20 1.89
GAM200 0.65 0.69 4.10 2.72 6.06 4.22

GAMs200 0.81 0.85 2.82 1.86 4.23 2.78
FGSAM200 0.70 0.75 3.68 2.77 5.25 3.74

FGSAMs200 0.79 0.82 3.10 2.07 4.53 2.85

(B)

R²_ajusted R² RMSE_Train MAE_Train RMSE_Test MAE_Test
GAM38 0.88 0.89 2.58 2.05 2.44 1.93
GAMs38 0.94 0.95 1.78 1.43 1.91 1.54
FGSAM38 0.83 0.86 2.86 2.17 3.40 2.47
FGSAMs38 0.92 0.93 1.96 1.51 2.33 1.84
GAM70 0.91 0.92 2.53 1.95 2.79 2.20
GAMs70 0.96 0.96 1.75 1.39 2.08 1.65
FGSAM70 0.84 0.86 3.35 2.41 3.79 2.58
FGSAMs70 0.86 0.89 3.01 2.16 3.50 2.47
GAM120 0.90 0.91 2.81 2.13 3.16 2.32
GAMs120 0.94 0.95 2.21 1.72 2.80 2.16
FGSAM120 0.89 0.91 2.88 2.06 3.70 2.66
FGSAMs120 0.91 0.93 2.54 1.86 3.48 2.50
GAM200 0.93 0.93 2.70 2.08 2.63 2.07
GAMs200 0.96 0.96 2.03 1.58 2.35 1.79
FGSAM200 0.70 0.75 5.18 3.30 6.47 4.19
FGSAMs200 0.73 0.77 4.96 3.22 6.23 4.02
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3 Study of the impact of environmental variables on scattering layers using functional
additive regression models

Figure 3.2: Map with the 100 m isobath of Senegalese coastline (represented by a curve), (West
Africa). The vessel has covered three radials collecting simultaneously acoustics and
environmental variables at high resolution (sea survey AWA). The radial (dotted
lines) 1 was carried out over the continental shelf in northern Senegal (in blue color)
and radial 2 in southern Senegal split into two parts, on-shore (continental shelf:
ID2’ in black color) and off-shore (high sea: ID2 in red color).
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①

②

Figure 3.3: (1) Echogram representing the acoustic intensities (in Sv backscatter coefficient)
reverberated by the aggregated marine organisms structured in layer (i.e. here
sound scattering layer) as detected by echosounders at four frequencies (38, 70,
120 and 200 kHz) in three dimensions (2D + time). (2) The contour plots of
key physicochemical parameters of seawater temperature, salinity, turbidity and
fluorescence over the three acoustic radials studied. A): southern continental shelf;
B): southern high sea and C): northern continental shelf. Data obtained from AWA
sea survey on-board FRV Thalassa of Senegal coastline.

PhD Thesis Yoba KANDE 53



3 Study of the impact of environmental variables on scattering layers using functional
additive regression models

Figure 3.4: Boxplot (minimum, maximum, and median) of sound scattering layer (SSL) descrip-
tors (SSL thickness (m), SSL density (expressed in m2 nmi−2), and SSL depth (m))
grouped by diel period (Night, Sunrise, Day and Sunset) over Senegalese waters
(A: southern continental shelf; B: southern high sea and C: northern continental
shelf) as observed by the echosounders during the AWA sea survey at four different
frequencies (kHz).
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(C)

R²_ajusted R² RMSE_Train MAE_Train RMSE_Test MAE_Test
GAM38 0.95 0.96 7.59 5.53 9.09 6.40
GAMs38 0.97 0.98 5.24 3.90 6.42 4.87
FGSAM38 0.77 0.80 16.40 11.16 17.43 11.90
FGSAMs38 0.84 0.86 13.74 8.96 14.72 10.61
GAM70 0.81 0.84 6.22 4.30 50.66 35.05
GAMs70 0.98 0.99 4.93 3.24 11.30 5.65
FGSAM70 0.91 0.93 11.58 8.21 20.01 12.94
FGSAMs70 0.97 0.97 6.86 4.37 15.74 8.39
GAM120 0.98 0.98 5.38 3.13 18.38 6.64
GAMs120 0.99 0.99 4.38 2.44 8.06 4.09
FGSAM120 0.91 0.93 10.71 7.76 15.86 11.21
FGSAMs120 0.97 0.98 6.07 4.36 8.89 6.16
GAM200 0.97 0.98 6.52 4.08 9.97 5.76
GAMs200 0.99 0.99 4.29 2.72 8.66 4.78
FGSAM200 0.92 0.94 10.69 7.79 16.63 11.63
FGSAMs200 0.99 0.99 3.89 2.88 8.84 6.07
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3 Study of the impact of environmental variables on scattering layers using functional
additive regression models

Figure 3.7: Principal Component Analysis (PCA: PC1 on x-axis and PC2 on y-axis) followed
by classification (CAH) (red: Cluster 1; blue: Cluster 2) of the mean environmental
parameters (sea temperature, fluorescence, turbidity, and salinity) measured within
the minimum and maximum depths of the sound scattering layer (SSL) at different
frequencies; 38, 70, 120, and 200 kHz and bottom depth, grouped by diel period
(day, sunset, night and sunrise) over Senegalese waters (A: southern continental
shelf; B: southern high sea and C: northern continental shelf) during the AWA sea
survey.
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3 Study of the impact of environmental variables on scattering layers using functional
additive regression models

A)

B)

C)

Figure 3.10: Multivariate Functional Principal Component Analysis (MFPCA) of oceano-
graphic condition ( sea temperature (in °C), salinity (in psu), fluorescence (in
ml l−1), turbidity (in NTU)) along the depths) measured between the minimum
and maximum depths of the layers at four frequencies. Representation of the two
main functional components (black : first component (PC1); red : second com-
ponent (PC2)) over Senegalese waters (A: south continental shelf; B: south high
sea and C: north continental shelf of the AWA sea survey), observed at various
frequencies: (a) 38 , (b) 70 ,(c) 120 and (d) 200 kHz.
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A)

B)
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3 Study of the impact of environmental variables on scattering layers using functional
additive regression models

C)

Figure 3.13: Classification of functional principal component scores (derived from Multivariate
functional principal component analysis MFPCA) (black: Cluster 1; red: Cluster
2) over Senegalese waters (A: south continental shelf; B: south high sea and C:
north continental shelf of the AWA sea survey), observed at various frequencies:
(a) 38, (b) 70, (c) 120 and (d) 200 kHz.

① A)
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B)

C)

② A)

B)
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3 Study of the impact of environmental variables on scattering layers using functional
additive regression models

C)

Figure 3.19: Estimated oceanographic condition parameters (sea temperature, fluorescence,
salinity and turbidity) resulting from the functional model for (1) SSL thickness
and (2) SSL depth with the spatial dimension (spatial Functionnal Generalized
Spectral Additive Model (FGSAMs)) over three different areas (A: southern con-
tinental shelf of Senegal; B: southern high sea of Senegal; C: northern Senegal)
and as expect at various echosounder frequencies (a) 38, (b) 70, (c) 120 and (d)
200 kHz.
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Study of the impact of environmental variables
on scattering layers using signature-based
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4.1 Abstract

Here we explore a new way of representing environmental data using the path signature (a collection
of all the iterated integrals), which faithfully represents the form of variation of each environmental
parameter. It offers understandable features and produces a vector of fixed length, regardless of the
number of input points or their sampling depth. Furthermore, the product of two elements in a path
signature can be represented as the summation of higher order terms that can encode a complex func-
tion of the parameter shape. The signatures were truncated to a finite order for the purposes of the
analyses. A spatial principal component analysis was performed on these truncated signatures, reveal-
ing global spatial structures and strong spatial autocorrelation. The application of neural networks to
the signature terms, taking into account the spatial aspect, gave good results in terms of mean square
error.

4.2 Introduction

Oceanographic data collected over a wide spatio-temporal scale can be analysed using functional data
analysis (FDA) methods. In recent years, this field has expanded considerably, as shown by the work
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of Ramsay and Silverman (1997), Ferraty and Vieu (2006a), Yao et al. (2005), Mateu and Giraldo
(2021), Wynne and Duncan (2022), Koner and Staicu (2023) among others.
The principle of FDA is to express discrete observations as a function using a set of basic functions
such as Fourier basis, splines, wavelets etc and then derive modelling information from a collection of
functional data by applying statistical concepts from multivariate data analysis.

In this work, we focus on a new approach to functional modelling based on the notion of signature.
The principle consists in representing a functional data (here an environmental parameter) by its
signature, defined as an infinite sequence of its iterated integrals (Fermanian, 2022; Lyons and Qian,
2002), a nonlinear transformation of paths. Signatures originate from the work of Chen (1958) in the
1960s and were further developed in the 1990s as key parameters of rough path theory. It uniquely
characterises the path over a fixed interval up to temporal reparametrisation and tree equivalences
(Hager, 2021). It is a non-parametric method for extracting characteristic features from data which are
converted into a multi-dimensional path using various algorithms. In machine learning tasks, signature
methods are increasingly used in several areas. These include (Morrill et al., 2019; Perez Arribas et al.,
2018; Ghosh et al., 2021; Morrill et al., 2019) medicine and (Graham, 2013; Yang et al., 2015) character
recognition. The aim of this chapter is to analyse the effect of environmental parameters represented
using signatures methods on the characteristics of sound layers, which are essentially composed of
micronekton and zooplankton. These parameters were sampled over a large spatial scale and measured
at different depths.

4.3 Signature-based neural network regression

4.3.0.0.1 Concept of signature: This part introduces the concept of paths with finite variation
and their signatures within a compact interval. The signature represents the integral of tensor products
of differentials of the path, and it can be truncated to a desired order for analysis.

Let’s consider a compact interval denoted as T, and within this interval, we have a path represented
as a p-dimensional function:

X : T → E

t→ (X
(1)
t , ..., X

(p)
t )

This means that for each point in time t within T, our path X maps to a vector in E, with each
component of the vector denoted as X(i)

t for i ranging from 1 to p.
We define a set of functions on T that have finite variation with respect to a parameter m, denoted

as BVm(T, E). This set consists of functions X : T → E where the total variation of X with respect
to m is finite.

The total variation of X with respect to m, denoted as ∥X∥TV,m, is calculated as the supremum
(or the maximum value) over all finite partitions I of T. Within each partition, we sum the mth power
of the Euclidean norm of the differences between consecutive points, i.e., ∥Xti −Xti−1∥m. This entire
expression is then raised to the power of 1/m.

Now, we define a specific set, Cm(T, E), which consists of continuous paths X : T → E with finite
m-variation. These paths are both continuous and have bounded variation.
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Suppose we have a path X that belongs to Cm(T, E). The signature of this path, denoted as
Sig(X), is represented as a sequence:

Sig(X) = (1,X1, . . . ,Xd, . . . )

Where the integral Xd is a meaningful expression and can be computed as follows:

Xd =

∫
· · ·
∫

t1<···<td
t1,...,td∈T

dXt1 ⊗ . . .⊗ dXtd ∈ E⊗d.

The truncated signature of order D is represented as SigD(X) = (1,X1, . . . ,XD), and this can be
computed for any integer D ≥ 1.

In the context we are considering, we assume that the vector space E is Rp, and the path X belongs
to the set of continuous paths with finite 1-variation on the compact interval T. It’s important to note
that the assumption that X is in C1(T,Rp) is actually less restrictive than requiring X to be in the
L2 space on T with values in Rp. Furthermore, the space C1(T,Rp) is equipped with a specific norm
denoted as ||X||C, which is defined as the sum of the total 1-variation of X and the maximum absolute
value of X.

To work with these concepts effectively, let by convention (Rp)⊗0 = R, we define T ((Rp)) the tensor
algebra space by

T ((Rp)) := {(a0, a1, . . . , ad, . . . )|∀d ≥ 0, ad ∈ (Rp)⊗d}

and T d((Rp)) the dth truncated tensor algebra space

T d((Rp)) :=

d⊕
i=0

(Rp)⊗i.

As a result, the signature Sig(X) of the path X is an element of the tensor algebra space T ((Rp)),
and the truncated signature of order D, denoted as SigD(X), belongs to the D-th truncated tensor
algebra space TD((Rp)).

Let the set denoted as A∗, which contains multi-indexes with entries in the range from 1 to p. For a
multi-index J in A∗ with a length of d, we can express J as a sequence of components J = (i1, . . . , id),
where each ij is an integer within the range from 1 to p, for every j in the range from 1 to d.

Let’s consider the canonical orthonormal basis of the vector space E, which is Rp. This basis is
represented by (ei)

p
i=1. For any positive integer d, the tensor product space E⊗d is isomorphic to a free

vector space generated by all possible words of length d using multi-indices from A∗. In this space, the
basis is formed by vectors of the form (ei1 ⊗ · · · ⊗ eid), where each component is selected from the set
{1, 2, . . . , p} for every ij in the range from 1 to d.

Given this framework, we can express the signature of the path X (as defined in Levin et al. (2013))
in a different form. It can be rewritten as:

Sig(X) = 1 +

∞∑
d=1

∑
(i1,...,id)

S(i1,...,id)(X)ei1 ⊗ · · · ⊗ eid ∈ T ((E)).
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where
S(i1,...,id)(X) =

∫
· · ·
∫

t1<···<td
t1,...,td∈T

dX(i1)
t1

. . . dX(id)
td

∈ R.

This representation allows us to express the signature of the path X in terms of its coefficients
S(i1,...,id)(X) and the tensor product of the canonical orthonormal basis vectors ei1 ⊗ · · · ⊗ eid , be-
longing to the tensor algebra space T ((E)).

We define two vectors to represent the signature coefficients of the path X. The first vector,
denoted as S(X), contains all the signature coefficients and is structured as follows:

S(X) = (1, S(1)(X), S(2)(X), . . . , S(p)(X), S(1,1)(X), S(1,2)(X), . . . , S(i1,...,id)(X), . . . )

Additionally, we define the truncated signature coefficients vector at order D for X, denoted as
SD(X). This vector includes the first D terms of the signature coefficients:

SD(X) = (1, S(1)(X), S(2)(X), . . . , S(p,...,p)(X))

As an aside, it’s important to note that the dimension of the truncated signature coefficients vector
at order D, denoted as sp(D), can be calculated as the sum of a geometric series:

sp(D) =

D∑
d=0

pd =
pD+1 − 1

p− 1

This formula provides the dimension of the truncated signature coefficients vector when considering
D terms.

In the present study, we do not observe a complete continuous path but a stream of environmental
data sampled at different depth points. As in the previous chapter, we deal with four predictors
(temperature, salinity, fluorescence and turbidity) leading to a p = 4 dimensional path. Considering
Xs, be the corresponding 4 dimensional random variable measured at different locations s and different
depth points u ∈ [T1, T2] then the truncated coefficients signature SD(Xs) summarise the small-scale
changes of Xs in [T1, T2]. By convention, the first term of the signature is always equal to 1. We
have used iisignature (Reizenstein and Graham, 2018) which is a Python package that calculates
iterated integral signatures at a fixed level D = 2, a high value of D increases the length of the
signature (Reizenstein, 2017) and was very time consuming. We obtain a path signature of the form
S=[1, (Temp), (Sal), (Fluo), (Turb), (Temp,Temp), (Temp,Sal), (Temp,Fluo), (Temp,Turb), (Sal,Temp
), (Sal,Sal), (Sal,Fluo), (Sal,Turb), (Fluo,Temp), (Fluo,Sal), (Fluo,Fluo), (Fluo,Turb), (Turb,Temp),
(Turb,Sal), (Turb,Fluo), (Tur,Turb)]. The 1st order terms (for example (Temp)) correspond to the
increments from the start to the end of the path temperature. The term (Temp, Fluo) corresponds to
the case where the temperature increases quickly relative to the fluorescence.

We analyse the effect of predictor variables on layer descriptors using the following methods.

4.3.0.0.2 Spatial principal component Analysis and clustering: We apply the areal
spatial PCA (Jombart et al., 2008) on the path coefficients SD(Xsi), i = 1, ..., n using Gabriel graph

PhD Thesis Yoba KANDE 66



4 Study of the impact of environmental variables on scattering layers using
signature-based regression

weight matrix. Clustering has been done on the scores of the spatial PCA.

4.3.0.0.3 Principal Component Regression (PCR) (Jolliffe, 2002): A linear regression
with covariate as PCA scores of the signature coefficients SD(Xsi), i = 1, ..., n of dimension n ∗D; and
response is the vector of the n descriptors Ysi .
The number of PCA components has been chosen based on the explained variance (Jolliffe, 2002).

4.3.0.0.4 The ridge model (Hoerl and Kennard, 1970): . Let the linear model defined
by:

Y = Xβ + ϵ (4.1)

where X is an matrix of the signature coefficients SD(Xsi), i = 1, ..., n of dimension n ∗ (D + 1); Y is
the vector of the n descriptors Ysi ; ϵ the vector of centered and i.i.d error terms (with variance σ2) and
β = [β1, ...., βD + 1]′ the vector of parameters to be estimated. The ridge parameter estimator is

β̂ridge = (X′X+ λIp)
−1X′Y (4.2)

The case where λ = 0, the usual linear model has also been considered.

4.3.0.0.5 Multi-Layered neural networks (Shanmuganathan, 2016; Hastie et al.,
2009): they are regression models (consisting of an input layer, one or multiple hidden layers and an
output layer) inspired by the functioning of biological neurons in the human brain. The input layer,
not performing any calculations, is made up of several neurons of dimension p with p the number of
explanatory variables while the output layer contains the prediction and the hidden layers where the
calculations are made link them together. A weight wi is assigned to each input and the neuron’s task
is to multiply Xsi by wi. The output is as follows:

Ysi = f

(
p∑

i=1

wiXsi + b

)
, i = 1, ..., n, (4.3)

where f is the activation function (sigmoid, hyperbolic tangent, ReLU, softplus, identity etc).

We use the python library, SHAP (SHapley Additive exPlanations) to explain the outputs of the
neural model (Lundberg and Lee, 2017). It calculates the impact of each predictor variable on the
target variable.

4.4 Results

In the spatial PCA, we selected first 5 components that explain at least 90% of the total variance (see
Figure 4.1). The results of the spatial PCA showed that there is only global structures and therefore
positive autocorrelation. The Moran’s I statistics calculated based on these principal components show
significant spatial autocorrelation for the principal components reported in Table 4.2.
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On the southern continental shelf of Senegal:

• At 38 kHz, principal axis 1 is positively correlated with the signatures coefficients related to (Sal,
Turb), (Fluo, Temp),(Fluo, Fluo), (Fluo, Turb) and (Turb, Turb) and negatively correlated with
the variables (Fluo), (Turb) and (Turb, Fluo); axis 2 is positively correlated with (Sal, Fluo)
and negatively correlated with (Turb, Temp), (Fluo, Sal) and (Turb, Sal) ; axis 3 is positively
correlated with the (Temp,Temp) and bottom variables and negatively correlated with the Temp
variable; axis 4 is positively correlated with the (Sal) variable and negatively correlated with the
(Temp, Fluo), (Temp,Turb) and (Sal,Sal), while axis 5 is positively correlated with the (Temp,
Sal) and negatively correlated with the (Sal,Temp) variable.

• At 70 kHz, axis 1 is positively correlated with the variables (Fluo, Temp), (Fluo, Fluo), (Fluo,
Turb), (Turb, Temp), (Turb, Fluo) and (Turb, Turb) and negatively correlated with the variables
(Fluo), (Turb) and (Fluo, Sal); axis 2 is positively correlated with the (Sal) and (Sal, Sal) and
negatively correlated with (Temp,Sal), (Turb, Sal) and bottom ; axis 3 is positively related
to (Temp) and negatively related to the variables (Temp, Temp) and (Turb, Sal) while axis 4
is positively related to the variable (Sal, Temp) and negatively related to the variable (Temp,
Turb); axis 5 has a negative correlation with (Temp, Fluo), (Sal, Fluo) and (Sal, Turb).

• At 120 kHz, axis 1 correlated positively with (Temp, Fluo), (Sal,Turb), (Fluo, Fluo) and
(Fluo,Turb) and negatively with (Turb, Fluo), while axis 2 correlated positively with the vari-
ables (Sal,Temp), (Turb, Temp) and (Turb, Sal) and negatively with the variable (Temp, Sal);
axis 3 is positively correlated with the (Fluo) and (Temp, Temp) and negatively correlated with
the (Temp), (Fluo, Temp) variables, while axis 4 is positively correlated with the (Sal) and
(Turb,Turb) and negatively correlated with the bottom, (Sal,Sal) and (Sal, Fluo); axis 5 is pos-
itively correlated with the (Temp, Turb) variable and negatively with (Turb) and (Fluo, Sal).

• 200 kHz, axis 1 is positively related to the variables (Fluo), (Sal,Sal) and (Turb,Fluo) and nega-
tively related to the variables (Sal), (Sal,Turb), (Fluo,Fluo) and (Fluo,Turb) while axis 2 is pos-
itively related to the variables (Sal,Temp) and (Sal,Fluo) and negatively related to the variables
(Turb,Temp) and (Turb,Sal) while axis 3 is positively related to the variables (Fluo,Temp) and
(Fluo,Sal) ; axis 4 is positively linked to the variables (Temp,Temp), (Temp,Sal), (Temp,Turb)
and (Turb,Turb) and negatively to the variables (Temp) and (Turb), while axis 5 is positively
linked to the variable bottom and negatively to (Temp,Fluo). For more details, see Annexe 3.

Clustering of the spatial component scores showed more homogeneous classes on southern conti-
nental shelf of Senegal (Figure 4.2). For all frequencies, the 1st component is more characteristic of the
classes . At 38kHz Class 1 is characterised by low values of signatures coefficients related to (Sal,Turb),
(Fluo, Temp),(Fluo, Fluo), (Fluo, Turb) and (Turb, Turb), while class 2 has the opposite effect. At
70 kHz Class 1 is characterised by low values of signatures coefficients related to (Fluo, Temp), (Fluo,
Fluo), (Fluo,Turb), (Turb, Temp), (Turb, Fluo) and (Turb, Turb), while class 2 has the opposite effect.
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At 120 kHz Class 1 is characterised by low values of signatures coefficients related to (Temp, Fluo),
(Sal,Turb), (Fluo, Fluo) and (Fluo,Turb), while class 2 has the opposite effect. At 200 kHz, Class 2 is
characterised by low values of (Temp, Fluo), (Sal,Turb), (Fluo, Fluo) and(Fluo,Turb), while Class 1
has the opposite effect (see Annexe3 for more details).

In the supervised analysis, we conducted PCR, linear, ridge and neural network regression models
with and without spatial coordinates as covariates. We are interested in estimating a regression model
between the four environmental parameters and SSL thickness and SSL depth in different part of
the Senegalese region. Train and test samples have been used, mean square errors and coefficient of
adjustment are computed on the two samples.
The neural network model with geographical coordinates based on layer descriptors produced better
results overall than those obtained with the others (low RMSE values, see Table 4.1).

The results of the model on the thickness (Figure 4.3) showed that on the continental shelf of
southern Senegal, at 38 and 70 kHz, the bottom depth is one of the most important variables with
a positive effect on thickness, while the opposite effect is noted for the geographical coordinates. At
120 and 200 kHz, the geographical coordinates are among the most important in the model, and as
they increase, the thickness decreases, as does (Temp, Sal), while the opposite effect is noted for the
variable (Sal).
With regard to the SSL depth model, for all frequencies, geographical coordinates are among the most
important variables, and as they increase, SSL depth decreases.

On the high sea of the southern Senegal, at 38 kHz, the variables (Temp, Sal) and (Sal,Turb) are
among the most important in the model, as they increase, the thickness decreases, while the opposite
effect is observed for the variables (Sal,Sal) and (Temp,Temp). At 70 kHz, the period is the most
important variable, followed by (Fluo), whose increase leads to greater thickness, while the opposite
effect is noted for (Turb). At 120 kHz, as the variables (Turb,Temp), longitude and (Temp) increase,
so does the thickness, with the opposite effect noted for latitude. At 200 kHz, as (Fluo,Fluo) and
(Temp,Temp) increase, so does the thickness, with the opposite effect noted for bottom depth.

In terms of the model for SSL depth, at 38 kHz, as the variables (Sal,Turb) and (Temp,Sal) increase,
layer depth decreases. The same effect is observed at 70 kHz with the variables (Turb) and (Fluo,Fluo)
and at 120 kHz with the variables (Sal,Sal) and (Fluo,Turb). At 200 kHz, as (Turb,Fluo) increases,
the depth of the layers decreases, while the opposite effect is noted for (Fluo,Fluo).

In northern continental shelf, at 38 kHz, the period is the most important variable in the model for
thickness, and as the variables (Sal,Temp) and (Fluo,Temp) increase, thickness decreases, while the
opposite effect is noted for latitude. At 70 and 200 kHz, as longitude increases so does thickness, while
the opposite effect is noted for latitude. At 120 kHz, as the variables (Temp,Temp) and (Temp,Turb)
increase, so does the thickness, while the opposite effect is noted for (Fluo,Sal) and (Sal,Sal).

For the SSL depth, at 38 kHz, as the latitude increases the depth decreases while the opposite
effect is noted for the variable (Fluo,Fluo). At 70 and 200 kHz, the geographical coordinates are the
most important in the model, as they increase, the depth decreases, except for the longitude for the
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depth of the 200 kHz SSL, where the opposite effect is noted. For the depth of the 120 kHz SSL, the
more the longitude and the variable (Temp) increase, the more the depth decreases.

4.5 Discussion

Traditional principal component analysis is a dimension-reduction technique that explores the main
sources of variation in a table of data (Jolliffe, 2002). However, it does not take spatial dependency into
account when transforming multidimensional data. Applying spatial Principal Component Analysis
(sPCA) shows the presence of spatial autocorrelation and reveals spatial global patterns i.e. the
values of the environmental parameters observed in neighbouring ESUs tended to be similar. On
the continental shelf of southern Senegal, we find a cluster of esus closer to the 100m isobath unlike
another cluster which was shallower because it contains esus closer to the coast where SSLs were
seldom as expected by Diogoul et al. (2020) who explains this by the turbulence in the water column
generated by the upwelling phenomenon. This explains the higher values of certain environmental
parameters such as temperature, fluorescence and turbidity measured in this class. The path signature
was used to encode the interactions between the environmental parameters in order to predict the
characteristics of the scattering layers. The regression coefficients acquired through the signature neural
model possess a geometric interpretation, which is frequently beneficial for practical applications. In
contrast to the coefficients in conventional functional linear models, these coefficients represent global
measures of interaction between coordinates (Fermanian, 2022). Sugiura and Hosoda (2020) uses this
method to encode non-linear interactions and functions in argo profiles in addition to the usual linear
term before applying machine learning methods. On the continental shelf of southern Senegal the
characteristics of the layers (depth and thickness) diminish at higher latitudes and longitudes, as they
are closer to the coast. On the high sea, for the 38 kHz thickness model, values of the (Temp,Temp)
signature terms correspond to the variation in temperature according to the depth and the SSLs are
linked to strong vertical gradients of this parameter (Berge et al., 2014). For other frequencies, the
signature terms (Fluo) and (Fluo,Fluo) also correspond to the variation in fluorescence (or chlorophyll-
a concentration) according to the depth (last value minus initial value) and have an impact on SSl
thickness because there are linked to the presence of a trophic relationship between the zooplankton
and phytoplankton. In northern continental shelf, the value (Fluo,Temp) is the area under the curve
(Fluorescence, Temperature). Its corresponding coefficient, therefore, contains information about the
importance of the joint evolution of fluorescence and temperature to predict SSL features.

4.6 Conclusion

We examine the application of the signature method in a learning context on our environmental anal-
ysis. The use of signatures is based on the representation of discretely sampled data in the form of
continuous paths. The signature method is a versatile approach for creating a set of features from
sequential data, and is currently attracting a great deal of interest in the scientific community. Indeed,
it produces results that are competitive with functional analysis methods, while being computationally
efficient and capable of handling multidimensional series. This method captures the geometric proper-
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ties of the process underlying the data and does not depend on a basis (fourier, bspline etc) expansion.
The results for RMSE, as shown in Table 4.1, clearly demonstrate the significant enhancement in
performance achieved by incorporating the spatial aspect.

Table 4.1: Comparison of non-spatial (NN (Neural Network), R (Ridge) and PCR (Principal
Component Regression)) and spatial models (NNs (Spatial Neural Network), Rs
(Spatial Ridge), PCRs (Spatial Principal Component Regression), NNspca (Neural
Network on spatial principal component scores) and LRspca (Linear Regression on
spatial principal component scores)) for (1) SSL thickness and (2) SSL depth, as
detected using four different echosounder frequencies (in kHz; denoted as suffix after
statistical model abbreviations) and spread over three Senegalese geographical areas
(A) southern continental shelf, (B): southern high sea and (C): northern continental
shelf (during the AWA fisheries acoustics sea survey). R2 (R-Squared); RMSE_Train
(Root Mean Square Error in training set); RMSE_Test (Root Mean Square Error
in test set).

① (A)

RMSE_Train R2 RMSE_Test

NN38 1.943 0.979 3.855
NN70 1.991 0.926 2.412
NN120 0.674 0.980 1.196
NN200 0.004 1.000 2.188

R38 5.221 0.850 4.458
R70 3.779 0.735 4.103
R120 2.365 0.751 1.918
R200 3.272 0.469 3.298

PCR38 6.167 0.790 5.658
PCR70 4.474 0.628 3.974
PCR120 2.534 0.714 2.158
PCR200 3.462 0.405 3.118

NNs38 1.781 0.983 3.553
NNs70 1.673 0.948 1.986
NNs120 0.587 0.985 1.147
NNs200 0.005 1.000 2.015

Rs38 5.003 0.862 4.339
Rs70 3.019 0.831 5.378
Rs120 2.243 0.776 1.951
Rs200 2.834 0.602 3.034

PCRs38 5.512 0.833 5.132
PCRs70 4.019 0.700 3.695
PCRs120 2.472 0.728 2.122
PCRs200 3.299 0.460 3.051

NNspca38 0.005 1.0 3.539
NNspca70 0.006 1.0 2.525
NNspca120 0.008 1.0 2.836
NNspca200 0.004 1.0 2.842

LRspca38 9.490 0.504 7.414
LRspca70 5.452 0.448 5.115
LRspca120 2.726 0.669 2.498
LRspca200 3.513 0.388 3.201

(B)
RMSE_Train R2 RMSE_Test

NN38 3.096 0.931 4.333
NN70 2.899 0.963 6.238
NN120 2.069 0.975 5.450
NN200 1.324 0.988 4.113

R38 9.059 0.410 7.605
R70 9.674 0.583 11.122
R120 8.825 0.549 9.392
R200 8.899 0.447 9.457

PCR38 9.441 0.359 8.393
PCR70 11.280 0.433 13.107
PCR120 10.618 0.347 11.864
PCR200 9.420 0.381 10.125

NNs38 2.357 0.960 3.731
NNs70 2.056 0.981 5.650
NNs120 1.316 0.990 5.166
NNs200 1.439 0.986 3.808

Rs38 8.951 0.424 7.345
Rs70 9.424 0.604 10.918
Rs120 8.379 0.594 8.771
Rs200 8.840 0.455 9.406

PCRs38 9.477 0.354 8.408
PCRs70 11.301 0.431 13.133
PCRs120 10.312 0.384 11.362
PCRs200 9.331 0.392 10.017

NNspca38 1.056 0.992 4.106
NNspca70 1.772 0.986 7.622
NNspca120 0.835 0.996 5.922
NNspca200 1.461 0.985 4.468

LRspca38 10.890 0.147 8.757
LRspca70 11.350 0.426 12.828
LRspca120 10.782 0.327 12.207
LRspca200 9.452 0.377 10.200
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(C)

RMSE_Train R2 RMSE_Test

NN38 1.574 0.996 6.214
NN70 1.658 0.989 4.780
NN120 1.246 0.993 2.853
NN200 1.240 0.994 5.079

R38 19.377 0.366 17.933
R70 11.778 0.441 10.602
R120 11.616 0.423 11.688
R200 12.032 0.441 12.671

PCR38 21.123 0.246 18.941
PCR70 12.698 0.351 11.334
PCR120 13.032 0.273 11.837
PCR200 13.687 0.276 12.558

NNs38 1.190 0.998 4.560
NNs70 0.672 0.998 4.415
NNs120 1.834 0.986 3.115
NNs200 2.584 0.974 4.957

Rs38 19.320 0.370 18.085
Rs70 11.272 0.488 10.517
Rs120 11.282 0.455 11.119
Rs2000 11.597 0.481 11.937

PCRs38 20.785 0.270 19.231
PCRs70 12.725 0.348 11.156
PCRs120 13.230 0.251 12.130
PCRs200 13.814 0.263 12.639

NNspca38 0.974 0.998 6.960
NNspca70 0.976 0.996 6.662
NNspca120 0.768 0.997 5.652
NNspca200 5.228 0.894 6.852

LRspca38 21.729 0.203 19.208
LRspca70 12.849 0.335 11.389
LRspca120 13.598 0.209 12.376
LRspca200 14.324 0.208 12.766

② (A)

RMSE_Train R2 RMSE_Test

NN38 0.005 1.000 3.086
NN70 3.626 0.847 4.800
NN120 1.242 0.985 2.457
NN200 0.005 1.000 1.607

R38 3.950 0.842 3.246
R70 4.876 0.724 6.253
R120 5.564 0.694 4.780
R200 5.861 0.454 5.142

PCR38 4.259 0.816 4.180
PCR70 6.403 0.524 5.828
PCR120 6.450 0.588 5.561
PCR200 6.512 0.326 4.794

NNs38 0.006 1.000 1.529
NNs70 2.644 0.919 2.307
NNs120 0.006 1.0 1.426
NNs200 0.009 1.000 1.454

Rs38 3.822 0.852 2.983
Rs70 3.753 0.836 3.620
Rs120 3.982 0.843 3.906
Rs200 4.910 0.617 4.055

PCRs38 3.934 0.843 3.821
PCRs70 5.129 0.695 4.760
PCRs120 5.971 0.647 5.072
PCRs200 6.279 0.374 4.673

NNspca38 0.004 1.0 2.931
NNspca70 0.039 1.0 4.803
NNspca120 3.185 0.9 2.829
NNspca200 0.006 1.0 2.242

LRspca38 6.216 0.608 4.565
LRspca70 7.188 0.400 6.708
LRspca120 7.234 0.482 5.860
LRspca200 3.513 0.388 3.201
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(B)

RMSE_Train R2 RMSE_Test

NN38 0.190 0.999 2.683
NN70 1.853 0.960 3.575
NN120 1.167 0.985 2.562
NN200 0.892 0.993 4.597

R38 5.516 0.485 4.659
R70 6.473 0.508 6.507
R120 5.074 0.712 6.395
R200 9.244 0.239 7.453

PCR38 5.653 0.460 4.958
PCR70 7.607 0.321 7.450
PCR120 5.592 0.650 7.367
PCR200 9.955 0.118 8.466

NNs38 1.370 0.968 2.017
NNs70 1.384 0.978 3.483
NNs120 0.038 1.0 2.849
NNs200 0.813 0.994 4.334

Rs38 5.357 0.515 4.378
Rs70 6.207 0.548 6.283
Rs120 5.061 0.713 6.385
Rs200 9.218 0.244 7.391

PCRs38 5.653 0.460 4.875
PCRs70 7.576 0.327 7.428
PCRs120 5.631 0.645 7.406
PCRs200 9.956 0.118 8.464

NNspca38 0.686 0.992 2.452
NNspca70 1.673 0.967 3.960
NNspca120 1.609 0.971 3.153
NNspca200 0.899 0.993 5.344

LRspca38 6.278 0.334 5.002
LRspca70 7.694 0.305 7.568
LRspca120 5.654 0.642 7.329
LRspca200 9.971 0.115 8.403

(C)
RMSE_Train R2 RMSE_Test

NN38 2.136 0.997 7.215
NN70 1.136 0.999 11.866
NN120 1.054 0.999 8.299
NN200 2.431 0.997 9.868

R38 29.311 0.360 29.596
R70 29.372 0.556 30.474
R120 29.617 0.525 30.546
R200 29.990 0.526 31.612

PCR38 30.999 0.284 32.074
PCR70 31.792 0.480 32.738
PCR120 34.079 0.371 33.917
PCR200 36.443 0.301 36.476

NNs38 3.678 0.99 7.05
NNs70 1.600 0.999 7.075
NNs120 1.188 0.999 5.461
NNs200 2.133 0.998 6.538

Rs38 22.453 0.624 21.597
Rs70 19.716 0.800 19.222
Rs120 22.428 0.727 20.359
Rs200 19.103 0.808 19.073

PCRs38 24.475 0.554 24.899
PCRs70 24.974 0.679 26.459
PCRs120 28.823 0.550 27.675
PCRs200 28.386 0.576 29.179

NNspca38 1.075 0.999 10.707
NNspca70 0.086 1.000 8.346
NNspca120 3.171 0.995 5.679
NNspca200 0.583 1.000 10.486

LRspca38 33.331 0.172 34.043
LRspca70 33.372 0.427 32.924
LRspca120 35.072 0.334 34.736
LRspca200 36.893 0.283 36.142
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Figure 4.1: Spatial Principal Component Analysis ((l1): PC1 on x-axis and PC2 on y-axis,(l2):
PC3 on x-axis and PC4 on y-axis, (l3): PC4 on x-axis and PC5 on y-axis) of signa-
tures coefficients of the environmental parameters (sea temperature, fluorescence,
turbidity, and salinity) at different frequencies; (a) 38, (b) 70, (c) 120, and (d) 200
kHz and bottom depth over Senegalese waters (A: southern continental shelf; B:
southern high sea and C: northern continental shelf) during the AWA sea survey.
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Figure 4.2: Classification of the esus based on the spatial functional principal component
(SPCA) scores (black: Cluster 1; red: Cluster 2) over Senegalese waters (A: south
continental shelf; B: south high sea and C: north continental shelf of the AWA sea
survey), observed at various frequencies: (A) 38, (B) 70, (C) 120 and (D) 200 kHz.

(A)

(B)

PhD Thesis Yoba KANDE 80



4 Study of the impact of environmental variables on scattering layers using
signature-based regression

(C)

Figure 4.3: SHAP summary graph in which the contribution of each variable to the neural
model ((1): Thickness and (2): Depth) is displayed taking into account all the values
of each of the environmental parameters signatures (sea temperature, fluorescence,
turbidity and salinity) and geographical coordinates (Longitude (X) and latitude
(Y)). The color indicates the SHAP value (importance) of the variable (red is high,
blue is low). The x-axis indicates that the samples are sorted by their SHAP values
and the y-axis indicates that the variables are sorted by their mean absolute SHAP
values over Senegalese waters (A: south continental shelf; B: south high sea and
C: north continental shelf of the AWA sea survey), observed at various frequencies:
(a) 38, (b) 70, (c) 120 and (d) 200 kHz.
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5.1 Abstract

This chapter is dedicated to dimension reduction techniques for multivariate geo-spatial functional
data. We introduce an innovative method named Spatial Multivariate Funtional Principal Component
Analysis (SMFPCA), which stands for principal component analysis for multivariate spatial data. Un-
like the conventional Multivariate Karhunen-Loève approach, SMFPCA excels at effectively capturing
spatial dependencies among multiples functions. SMFPCA conducts spectral functional component
analysis on multivariate spatial data, encompassing data points located within a regular grid. The
methodological framework and algorithm for SMFPCA have been developed to address the challenges
posed by the lack of suitable methods for handling such data. The efficiency of the proposed methodol-
ogy has been substantiated through comprehensive assessments of its performance using and simulated
datasets and sea-surface temperature of interest in fisheries analysis, providing valuable insights into
the properties of multivariate spatial functional data within a finite sample.
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5 Principal Component Analysis of Multivariate geo-spatial Functional Data

5.2 Introduction

Analysis of complex data structures, such as multivariate and spatially indexed functional data, has
become more prevalent in recent years. Spatial functional data constitute a data type in which each
observation located a spatial location is represented by a function rather than a conventional vector of
values. These data are eventually of infinite dimension, as it is defined across the entire continuum of
points.

Principal component analysis (PCA) is a technique used for exploratory data analysis. It is com-
monly employed to reduce the multidimensional space, where the information is not easily interpretable,
into a space of reduced dimension. Furthermore, PCA allows us to derive more informative attributes
from the data, identify hidden patterns in a dataset, and discover correlations among variables.

Within the realm of spatially indexed functional data analysis, the data are measured over space.
This could include, for example, temperature measurements taken at different locations in a geographic
region or hyperspectral image analysis. One of the most common uses of principal component analysis
on functional spatial data (SFPCA) is in studies where the functional spatial data consists of spatially
distributed objects, such as environmental measurement sampling sites, watersheds, administrative
districts, etc. The value of spatial analysis is to understand and explore the interrelationship between
the spatial positioning of objects, phenomena, and their characteristics (Feuillet et al., 2018). The
analysis of spatially indexed functional data serves two purposes. Firstly, it enables the identification
of spatial patterns inherent in the data. These patterns provide valuable insights into the underlying
spatial structure and dynamics of the phenomena being studied. Secondly, the analysis facilitates
the development of models that can be utilized for making predictions or drawing conclusions about
the spatial distribution of the data. In the literature, Delicado et al. (2010) provided a useful in-
troduction to selected methods for geostatistical functional data; Aristizabal et al. (2019) developed
extending ANOVA techniques to analyze spatially correlated functional data. Gromenko et al. (2012)
and Gromenko et al. (2017) used a spatially indexed functional data framework to solve space physics
problems. Aston et al. (2017) and Constantinou et al. (2017) developed spatial-temporal separability
tests for functional data. Liu et al. (2017b) considered tests of anisotropy using Karhunen-Loève ex-
pansion but with a semiparametric estimation procedure custom-developed for their objectives. The
work of Bernardi et al. (2017) is an example of a substantive application of spatial functional modeling
to a problem of practical importance. Kuenzer et al. (2020) proposed a dimension reduction tech-
nique suitable for functional data indexed by spatial locations on a regular grid. They developed the
mathematical foundations for the spectral analysis of such data, including spectral theory for linear
spatial filters. In our work, employing the spectral analysis approach, our focus has been directed
towards situations where multiple variables can be investigated, all of which are defined within the
same spatial-temporal domain. For example, to study the co-variability of temperature within a par-
ticular region over a specific time period, we have positioned ourselves within this framework to seek
a viable solution. The objective of this study is to introduce a novel approach that enables spectral
functional PCA on multivariate spatial data, defined within both the same and different domains, all
structured on a regular grid. We refer to this approach as SMFPCA. Its aim is to address limitations
identified in previous works related to MFPCA Happ (2017) and SFPCA Kuenzer et al. (2020). To
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our knowledge, no previous work has employed multivariate spectral FPCA on spatial and temporal
variables within the same and different domain. We apply spectral spatial univariate FPCA, and the
results can be used to estimate multivariate functional principal components, eigenvalues, and scores
based on their univariate equivalents. Spectral decomposition is a powerful method for analyzing func-
tional spatial data. It is based on the spectral density operator, which describes the spatial dependence
structure of the data by separating it into distinct frequencies. The advantage of this approach is that
it allows the identification of dominant frequencies that drive the variation in the spatial dependence
structure of the data. These dominant frequencies can then be used to define the functional principal
components (FPCs), providing insights into the underlying stochastic processes contributing to the
data’s variation. Thus, spectral decomposition is an excellent tool for a better understanding of the
complex spatial dependence structure. We conducted a test of our method on multivariate and spa-
tially indexed environmental data. SMFPCA facilitates the integration of this type of data within a
unified analytical framework. This approach effectively captures and elucidates the variations between
variables as well as the inherent spatial variations present in the data. The SMFPCA technique also
possesses the capability to extract latent information from functional multivariate spatial data, un-
covering previously unobserved latent dimensions. This, in turn, explains variations in the data and
reveals spatial-temporal patterns. As a result, SMFPCA provides valuable insights into the underlying
mechanisms driving the observed data.

This part is structured as follows: In Section 3, we describe the SMFPCA methodology; in Section
4, we present Numerical experiments. Section 5 give the conclusion and some perspectives.

5.3 Spectral principal component analysis of multivariate

spatial functional data

This section describes the proposed methodology and the mathematical model for conducting a mul-
tivariate spectral PCA on spatial-functional data. The methodology is based on the principles of
Karhunen-Loève theory, incorporating spectral analysis and Functional Principal Component Analy-
sis (FPCA). Additionally, key properties and concepts are derived from the works of Kuenzer et al.
(2020), Ramsay and Silverman (2005c), Ramsay and Silverman (2002b), and Happ (2017). The ap-
proach specifically targets a multivariate spatial-functional phenomenon observed on a regular grid and
defined within both the same and different domains.

In section 5.3.1, we delve into the mathematical model employed in our approach. We provide def-
initions for various components, including the spatial multivariate functional data model, covariance
operator, spectral density operator, eigenfunctions (representing functions that characterize significant
variations or dominant modes within the functional data), eigenvalues (corresponding to the weights
assigned to each eigenfunction and quantifying the total variance explained), and scores (represent-
ing the projections of the original data onto the basis functions). Once these elements are clearly
established, we proceed to outline the subsequent steps of SMFPCA in section 5.3.3.
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5.3.1 Multivariate Spatial Functional Data

We consider that at n spatial units located on a region D ⊂ ZN , N > 1, representing a rectangular
grid, we observe a multivariate spatial functional process {Xs(.) = (X

(1)
s (.), ..., X

(p)
s (.))⊤}, p ≥ 1,

where s ∈ D, X(j)
s = {X(j)

s (tj), tj ∈ Tj}. For 1 ≤ j ≤ p, let Tj be a compact set in R, with finite
(Lebesgue-) measure and such that X(j)

s : Tj −→ C is assumed to belong to L2(Tj ,C), the space of
complex square-integrable functions on Tj . In the following let L2(Tj ,C) = L2(Tj). Note that the
special case p = 1 corresponds to the univariate spatial-functional case Kuenzer et al. (2020).
We denote by T := T1 × · · · × Tp, the p-Fold Cartesian product of the Tj . So, Xs is a multivariate
functional random variable indexed by t = (t1, · · · , tp) ∈ T and taking values in the p-Fold Cartesian
product space H := L2(T1)× · · · × L2(Tp). Let the inner product ⟨⟨·, ·⟩⟩ : H ×H → R, for f, g ∈ H:

⟨⟨f, g⟩⟩ :=
p∑

j=1

⟨fj , gj⟩ =
p∑

j=1

∫
Tj

fj(tj)gj(tj)dtj

Then, H is a Hilbert space with respect to the scalar product ⟨⟨·, ·⟩⟩ (Happ, 2017).
For each component X(j)

s , let’s define the functions observed on n sites s1, ..., sn ∈ D by:

X(j) =

(
X

(j)
s1 , ..., X

(j)
sn

)
, j = 1, . . . , p

5.3.2 Univariate spatial functional PCA

We independently consider each of the spatial functional univariate sample X(j), to compute a uni-
variate SFPCA. To achieve this, we apply the univariate spatial FPCA Kuenzer et al. (2020). Let
X(j) ∈ L2(Tj) possesses a covariance operator Cj := E[(X(j)−µj)⊗ (X(j)−µj)] (where µj is the mean
curve define by µj(t) = EX(j)(t) with t ∈ Tj) with kernel cj(t, s) = cov(X(j)(t), X(j)(s)) (t, s ∈ Tj).
Then, the integral operator Cj is defined by

(Cjf)(t) =

∫
Tj

cj(s, t)f(s)ds, f ∈ L2(Tj), t ∈ Tj .

Let’s suppose that each {X(j)
s } is a weakly stationary functional process. We have:

(i) E(X(j)
s (t)) = E(X(j)

0 (t)) = µj(t), t ∈ Tj with 0 the null vector in RN

(ii) for all s,h ∈ D, and t, s ∈ Tj ; cj,h(t, s) := Cov

(
Xj

h(t), X
j
0(s)

)
= Cov

(
Xj

s+h(t), X
j
s (s)

)
The integral operator defined by the autocovariance kernel cj,h is denoted Cj,h and defined by

(Cj,hf)(t) =

∫
Tj

cj,h(s, t)f(s)ds, f ∈ L2(Tj), t ∈ Tj .

The following assumptions have been made about the process X(j)
s i.e. it is weakly stationary and has
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mean zero. We suppose the autocovariance operators are absolutely summable:∑
h∈D

∥Cj,h∥ <∞. (5.1)

Let us denote the spectral density operator of X(j)
s by FX(j)

θ with the following kernel:

fX
(j)

θ (t, s) :=
1

(2π)N

∑
h∈ZN

cj,h(t, s) exp(−ih⊤θ) (5.2)

t, s ∈ Tj , θ ∈ [−π, π]N , i =
√
−1,

where θ is the spatial frequency. We define L2
U ([−π, π]

N ) as the space of measurable mappings x :

[−π, π]N → U satisfying
∫
[−π,π]N ∥x(θ)∥

2dθ < ∞, with U the Hilbert space of all Hilbert–Schmidt
operators from L2(Tj) to L2(Tj) (see Kuenzer et al. (2020) for further explanation). The operator
FX(j)

θ is understood as element of the space L2
U ([−π, π]

N ) and is defined by

(
FX(j)

θ Gθ

)
(t) =

∫
Tj

fX
(j)

θ (s, t)Gθ(s)ds,

with Gθ ∈ L2
U ([−π, π]

N ) and t ∈ Tj .

Considering the condition (5.1) and the assumptions previously defined for the process weakly
stationary X(j)

s , FX(j)

θ is a Hilbert-Schmidt operator (positive, self-adjoint) and admits a decomposition
Kuenzer et al. (2020):

FX(j)

θ =
∑
m≥1

λj,m(θ)φj,m(θ)⊗ φj,m(θ), (5.3)

where λj,m(θ) ≥ λj,m(θ) ≥ ... ≥ 0 are eigenvalues (continuous functions of θ), and φj,m(θ) are
associated eigenfunctions. Let φj,m(t|θ) be the value of the eigenfunction φj,m(θ) at t ∈ Tj . The
Fourier coefficients are

ϕ
(j)
m,l(t) :=

1

(2π)N

∫
[−π,π]N

φj,m(t|θ) exp(−il⊤θ)dθ, (5.4)

t ∈ Tj and the corresponding expansion of φj,m(t|θ) is

φj,m(t|θ) =
∑
l∈ZN

ϕ
(j)
m,l(t) exp(−il

⊤θ). (5.5)

With the property (5.1) and the assumptions previously defined for the process weakly stationary
{X(j)

s }, we define the mth spatial functional principal component (SFPC) score by:

ξ
(j)
m,s :=

∑
l∈D

〈
X

(j)
s−l, ϕ

(j)
m,l
〉

(5.6)
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where ϕ(j)m,l is defined by (5.4). The corresponding SFPC filter are (ϕ
(j)
m,l)l∈ZN .

We deduce that

• ξ
(j)
m,s converges in mean square with :

E[ξ(j)m,s] = 0, E[(ξ(j)m,s)
2] =

∑
l∈ZN

∑
k∈ZN

〈
CX(j)

l−k ϕ
(j)
m,l, ϕ

(j)
m,k
〉

.

• If X(j)
s is real then ϕ(j)m,l and ξ(j)m,s are also real.

• if CX(j)

h = 0 then ∀ h = 0, ξ(j)m,s coincides with the scores of the FPCA.

• ∀ m ̸= m′ and s ̸= s′ ∈ D the SFPCA scores ξ(j)m,s and ξ(j)m′,s′ are uncorrelated.

The spatial Karhunen–Loève expansion of X(j)
s is given by

X
(j)
s (t) =

∞∑
m=1

X
(j)
m,s(t) t ∈ Tj ,with (5.7)

X
(j)
m,s(t) :=

∑
l∈ZN

ξ
(j)
m,s+lϕ

(j)
m,l(t).

In practice, the spectral density operator is unknown and has to be estimated using the sample
X(j) observed on the grid D = {s = (s1, ..., sN ), 1 ≤ si ≤ ni, i = 1, ..., N}, the sample size is then
n =

∑N
i=1 ni, and we use the notation n = (n1, n2, . . . , nN ).

The spectral density operator is estimated by:

F̂X(j)

θ :=
1

(2π)N

∑
|h|≤q

w(h/q)Ĉj,he
−ih⊤θ (5.8)

where w represents a weight function and the vector q = (q1, q2, ..., qN ) consists of positive coordinates,
the sample autocovariance operators are estimated as follows:

Ĉj,h :=
1

n

∑
s∈Mh,n

(
X

(j)
s+h − X̄(j)

)
⊗
(
X

(j)
s − X̄(j)

)
(5.9)

with Mh,n =
{
s ∈ ZN : 1 ≤ si, si + hi ≤ ni ∀1 ≤ i ≤ N

}
. If the set Mh,n is empty, we set Ĉj,h = 0.

5.3.3 Spatial Multivariate Funtional Principal Component Analysis

Methodology

In this subsection, we present the methodology for computing SMFPCA. The methodology is divided
into two parts.

The first part relies on the univariate SFPCA of Kuenzer et al. (2020). This involves considering
a spectral analysis on X(j), following the subsequent steps:

1. Compute the spectral covariance operator.
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2. Decompose the spectral covariance operator to obtain the estimated eigenfunctions φ̂j,m(θ),
involving SFPC filters (ϕ̂

(j)
m,s)s∈D, and λ̂j,m(θ), the estimated eigenvalues associated with the

spectral variability, where m = 1, . . . ,Mj for suitably chosen truncation lags Mj .
The estimator of the filter function ϕ(j)m,s is given by

ϕ̂
(j)
m,s(t) :=

1

(2π)N

∫
[−π,π]N

φ̂j,m(t|θ) exp(−is⊤θ)dθ,

where the functions φ̂j,m(t|θ) are the eigenfunctions of the spectral density operator estimator
F̂X(j)

θ .

3. Finally, the X(j) are projected onto the spectral eigenfunctions, yielding the estimated scores
ξ̂
(j)
m,s, defined by:

ξ̂
(j)
m,s :=

∑
∥l∥∞≤L

〈
X

(j)
s−l, ϕ̂

(j)
m,l
〉
,

assuming that 1 + L ≤ si ≤ ni − L for all 1 ≤ i ≤ N , where L is an integer-valued truncation
parameter.

In the second part, the scores and SFPC filters of X(j) are utilized to compute the multivariate
eigen elements, following the steps:

5. Define the matrix E ∈ Rn×M+ of rows (ξ̂
(1)
1,s , . . . , ξ̂

(1)
M1,s, . . . , ξ̂

(p)
1,s , . . . , ξ̂

(p)
Mp,s), s ∈ D consists of all

the scores estimated from the Spectral PCA on each X(j), with M+ =M1 + . . .+Mp.
Let’s consider the matrix Z ∈ RM+×M+ (Prop.5., p.7 (Happ and Greven, 2018)) consisting of
blocks Z(jk) ∈ RMj×Mk with entries

Z
(jk)
ml = Cov(ξ̂(j)m,s, ξ̂

(k)
l,s ),

m = 1, . . . ,Mj , l = 1, . . . ,Mk, j, k = 1, . . . , p.

An estimate Ẑ ∈ RM+×M+ of the matrix Z is given by Ẑ = (n− 1)−1ETE .

6. Perform a matrix eigen-analysis for Ẑ resulting in eigenvalues ν̂m and orthonormal eigenvectors
ĉm.

7. The multivariate eigenfunctions applied for each operator of each variable are obtained as follows:

ψ̂
(j)
m,s(tj) ≈

Mj∑
l=1

[ĉm]
(j)
l ϕ̂

(j)
l,s (tj), (5.10)

tj ∈ Tj , s ∈ D, m = 1, ...,M+

where [ĉm](j) ∈ RMj denotes the j-th block of the (orthonormal) eigenvector ĉm of Ẑ.
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Furthermore, multivariate scores are calculated as:

ρ̂m,s =

p∑
j=1

Mj∑
l=1

[ĉm]
(j)
l ξ̂

(j)
l,s . (5.11)

We can deduce a sample version of the spatial Karhunen–Loève expansion for each univariate
component:

X
(j)
s (tj) ≈

Mj∑
m=1

X̂
(j)
m,s(tj), tj ∈ Tj ,

with X̂
(j)
m,s(tj) :=

∑
∥l∥∞≤L

ξ̂
(j)
m,s+lϕ̂

(j)
m,l.

assuming 1 + 2L ≤ si ≤ ni − 2L for 1 ≤ i ≤ N .

5.4 Numerical experiments

In this section, we applied the SMFPCA procedure to simulated and real data. We compare the
results of the proposed PCA methodology with MFPCA results. The experimentation for this study
was conducted using the RStudio on a machine with the following specifications: a 64-bit Intel Core i5
processor and 12 GB of RAM. The principal libraries employed in our approach include fsd and fda.
These libraries were instrumental in implementing the necessary functionalities for our analysis.

5.4.1 Simulation Study

In this subsection, we extend the simulation context of Kuenzer et al. (2020) to a multivariate case.
We consider N = 2 and simulate SFARMA process {Xj

s,t(.)} defined by:

Xj
s,t =A10X

j
s−1,t +A01X

j
s,t−1 + εs,t +B10εs−1,t

+B01εs,t−1 +B11εs−1,t−1, t = 1, 2, . . . 50,
(5.12)

where (Akl)k,l∈P and (Bkl)k,l∈Q are Hilbert–Schmidt operators, P and Q two finite index sets valued in
ZN ; the errors ϵt,s are i.i.d gaussian variables. To assess the effectiveness of integrating the spatial and
multivariate aspects through SMFPCA, it is common to reconstruct the original functional data from
the already computed scores and filters. For each instance, we employ both the novel SMFPCA and the
conventional MFPCA. Figure 5.2 presents the SFPCA filters and the functional principal components
in the case of a single simulated sample. We assess the effectiveness of dimension reduction using the
metric known as the normalized mean squared error (NMSE) for each univariate component, as defined
by:
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NMSE(Mj) =

∑
s∈Dn

∥∥∥X(j)
s −

∑Mj

m=1 X̂
(j)
m,s

∥∥∥2∑
s∈Dn

∥∥∥X(j)
s

∥∥∥2 , (5.13)

Dn represents a region where the average is calculated (Dn = {s ∈ ZN : 1 ≤ si ≤ ni 1 ≤ i ≤ n})
Another alternative is to compute the error defined in equation (5.13) using the component eigen-

values λ̂j,m of the spectral density operator F̂X
θ :

NMSE∗
spat (Mj) = 1−

∑
m≤Mj

∫
[−π,π]N λ̂j,m(θ)dθ∑

m≥1

∫
[−π,π]N λ̂j,m(θ)dθ

(5.14)

This measure assesses the quality of the approximation without being influenced by grid’s bound-
ary effects unlike the NMSE, where the approximation of X(j)

s is less accurate at the boundary.

The experiments are conducted in 4 setting:

1. The first setting involves generating within the same domain Tj ∈ [0, 1] with j = 1, 2, two
simulated functional variables following (5.12), denoted SIM1 and SIM2 with 10 and 14 Fourier
basis functions respectively.

2. In setting two, we simulate variables defined in the first configuration and introduce errors
following a normal distribution.

3. The third setting involves generating two SFARMA variables (denoted SIM1 and SIM2) in
distinct domains, with T1 ∈ [0, 1] and T2 ∈ [2, 4]. We use a set of 14 and 10 Fourier basis
functions for SIM1 and SIM2 respectively.

4. In the fourth setting, we simulate two functional variables as in the third configuration and
introduce errors following a normal distribution.

After obtaining the spatial functional data, a centering step is performed, followed by the applica-
tion of univariate SFPCA for each variable. In the configuration utilized for each setting, we need to
define two tuning parameters q and L.

These two parameters are selected with the automatic routine function defined by Kuenzer et al.
(2020), we designate for the two components q = (18, 17). The parameter L is 12, 10, 12, and 10 for
the four settings respectively.

Then we proceed with describing steps in procedure 5.3.3, and compute 4 multivariate principal
components to capture more than 80% of variability.

After performing SMFPCA, we conducted a comparative assessment of the reconstructed functional
data. We applied equations (5.13) and (5.14), and the corresponding results are shown in Tables
5.1, 5.2, 5.3, and 5.4. We can observe the performance of SMFPCA compare to the conventional
MFPCA approach, which does not account for spatial considerations. Using the first configuration as
an illustrative example, as depicted in Table 5.1, the results emphasize that the enhancement in NMSE
and NMSE∗ quality is linked to the number of functional principal components. This phenomenon
is attributed to the fact that when the first three FPCAs are considered, they collectively account
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for approximately 80% of the total variance. The measure NMSE∗, which describes the quality of
the approximation with no boundary effects, shows better result compare to NMSE. Regarding the
outcomes depicted in Tables 5.2, 5.3, and 5.4, even when considering data defined in various domains
and adding errors measurements, a similar trend can be observed in the results.

Table 5.1: NMSE and NMSE∗ results obtained by SMFPCA and MFPCA considering the vari-
ables SIM1 and SIM2 in different domain [0,1] and [2,4].

Cumulative PCA PC1 PC2 PC3
Spatial consideration Spatial Ordinary Spatial Ordinary Spatial Ordinary

NMSE SIM1 0.5473 0.5877 0.3882 0.5807 0.2214 0.5659
NMSE∗ SIM1 0.4366 0.5811 0.2350 0.3924 0.1369 0.2425
NMSE SIM2 0.5448 0.9078 0.3798 0.6036 0.3621 0.3712
NMSE∗ SIM2 0.4253 0.6039 0.2336 0.3710 0.1303 0.2419

Table 5.2: NMSE and NMSE∗ results obtained by SMFPCA and MFPCA considering the vari-
ables SIM1 and SIM2 in different domain [0,1] and [2,4] with introduced errors.

Cumulative PCA PC1 PC2 PC3
Spatial consideration Spatial Ordinary Spatial Ordinary Spatial Ordinary

NMSE SIM1 0.4500 0.4591 0.3359 0.4589 0.2006 0.4503
NMSE∗ SIM1 0.3617 0.4590 0.2007 0.2927 0.1193 0.1859
NMSE SIM2 0.5764 0.9882 0.3305 0.5005 0.3123 0.3137
NMSE∗ SIM2 0.3527 0.5005 0.1929 0.3136 0.1099 0.1941

Table 5.3: NMSE and NMSE∗ results obtained by SMFPCA and MFPCA considering the vari-
ables SIM1 and SIM2 in domain [0,1].

Cumulative PCA PC1 PC2 PC3 PC4
Spatial consideration Spatial Ordinary Spatial Ordinary Spatial Ordinary Spatial Ordinary

NMSE SIM1 0.6347 0.7171 0.4298 0.6040 0.4294 0.6034 0.2593 0.3840
NMSE∗ SIM1 0.4729 0.6040 0.2705 0.3844 0.1542 0.2481 0.0904 0.1631
NMSE SIM2 0.5566 0.7071 0.4465 0.6257 0.2645 0.4002 0.2643 0.3993
NMSE∗ SIM2 0.4702 0.6258 0.2340 0.4002 0.1330 0.2532 0.0788 0.1644

Table 5.4: NMSE and NMSE∗ results obtained by SMFPCA and MFPCA considering the vari-
ables SIM1 and SIM2 in domain [0,1] with introduced errors.

Cumulative PCA PC1 PC2 PC3 PC4
Spatial consideration Spatial Ordinary Spatial Ordinary Spatial Ordinary Spatial Ordinary

NMSE SIM1 0.5753 0.8565 0.4199 0.6079 0.4174 0.5540 0.2526 0.3707
NMSE∗ SIM1 0.4612 0.6080 0.2618 0.3710 0.1517 0.2433 0.0896 0.1577
NMSE SIM2 0.5922 0.6404 0.4383 0.6234 0.2674 0.3932 0.2671 0.3897
NMSE∗ SIM2 0.4655 0.6247 0.2375 0.3903 0.1348 0.2456 0.0793 0.1629
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5.4.2 Application to real data

Following the application of the SMFPCA method to simulated data, we proceed to assess its per-
formance on real data. The data we use in this part concerns sea surface temperature (SST) data
(Kuenzer et al., 2020), from the NOAA Optimum Interpolation Sea Surface Temperature dataset.
The dataset exhibiting typical spatial dependence characterized by an exponential decay. The SST
dataset is obtained through the aggregation of satellite observations and in-situ measurements from
ships and buoys (Kuenzer et al., 2020). It provides daily observations on a global grid with a resolution
of 0.25, covering the entire sea area. The temperature data has been recorded since 1982, spanning a
period of 33 years. The dataset exhibits annual quasi-periodicity and represents a spatially indexed
functional random field. A subset extracted from the Indian Ocean area (60 to 93E longitude and
15 to 44S latitude) is chosen for its homogeneity and lack of significant oceanic currents. To address
strong correlation among nearby observations, the grid resolution is reduced to 0.75, reducing com-
putational load and supporting condition (5.1) where slight differences at the 0.25 grid lead to slow
spatial autocorrelation decay. Figure 5.1 illustrates a snapshot of this extensive dataset.

For our analysis, we use two representative sea surface temperature variables, namely TMP −
2000 and TMP − 2001, which correspond to the years 2000 and 2001 respectively, which represent a
multivariate aspect. To verify the efficiency of our methodology, we aim to conduct a comprehensive
evaluation and analysis with three variables of TMP − 1996, TMP − 1998 and TMP − 1999, which
represent the sea surface temperature data for the respective years 1996, 1998, and 1999.

Figure 5.1: Indian Ocean ranging approximately from 60 to 93E longitude and 15 to 44S lati-
tude.

We apply the SMFPCA and ordinary MFPCA on NOAA data, and illustrate the performance
estimation procedure in two setting:

1. Application SMFPCA and ordinary MFPCA on two NOAA variables TMP −2000 and TMP −
2001.
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2. Application SMFPCA and ordinary MFPCA on three NOAA variables TMP − 1996, TMP −
1998 and TMP − 1999.

We begin with the first configuration. The starting step of the SMFPCA algorithm involves com-
puting the functional data. We transform the TMP − 2000 and TMP − 2001 into spatial function
data using 15 Fourier basis functions, this projection yields functions denoted as X(j)

s,u(.), where the
indices s, u, and j represent longitude, latitude, and year, respectively. The time domain is Tj , it
represents the intra-year time and is scaled to the unit interval [0, 1]. Then we perform univariate
SFPCA on these variables with a spatial parameter L = 22 and q = (18, 17) for the TMP − 2000

variable, and L = 22 and q = (19, 19) for the TMP − 2001 variable. We estimate the first 15 principal
components to capture the total variation present in the functional data. Figures 5.2 and 5.3 show
the first three principal components, which account for more than 80% of the total data variation.
Notice that the results corresponding to position 0 represent an ordinary FPCA without considering
the spatial parameter.

At this step, we have applied the initial part of our methodology, which involves conducting separate
functional spectral analyses on the TMP − 2000 and TMP − 2001. Once the functional spatial filters
have been computed, we obtain the resulting scores and spatial filter operators as shown in Figures 5.2
and 5.3. Subsequently, we proceed to the second part of the methodology, wherein the multivariate
aspect is considered, following the guidelines specified in procedure 5.3.3. We have chosen to compute
4 multivariate spatial FPCA to capture more than 80% of the total variation.

Table 5.5 displays the percentage of variance explained by the principal components obtained
through the application of SMFPCA to the variables TMP − 2000 and TMP − 2001. Additionally,
Figures 5.4 and 5.5 show the filter operators presented in Table 5.5.

Table 5.5: Cumulative percentage (CP) of explained variance of principal components obtained
by SFPCA considering the variables TMP − 2000 and TMP − 2001.

CP PC1 PC2 PC3
TMP − 2000 56.43 74.02 83.34
TMP − 2001 49.38 72.89 83.20

In a manner similar to the simulated section, we assess the efficacy of dimensionality reduction
through the evaluation of the Normalized Mean Square Error (NMSE) for each univariate component.
We apply equation (5.13), and the outcomes are detailed in Table 3. Additionally, we employ the
NMSE∗ metric as defined in equation (5.14), which characterizes the quality of approximation while
accounting for boundary effects.

Table 5.7 shows the explained cumulative variance of the FPCA after application of the SMFPCA
to the variables TMP − 2000 and TMP − 2001. The SFPCA integrate functional, multivariate,
and spatial information, effectively capturing variations between TMP − 2000 and TMP − 2001

variables on marine surfaces and spatial models. We can observe that the first FPCA accounts for the
largest variation in the data, which represents 58.80%. Furthermore, the 4 first components capture a
significant amount of the overall variation, which represents 87.33% of the total variation.

The results presented in Table 5.6 provide strong evidence that the incorporation of the spatial
aspect consistently leads to improved performance in the context of Normalized Mean Squared Error
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Figure 5.2: Evolution of three functional spatial filters of TMP − 2000 variable over the lag.

Figure 5.3: Evolution of three functional spatial filters of TMP − 2001 variable over the lag.

(NMSE), we observe also that with NMSE∗. The NMSE and NMSE∗ results exhibit a decreasing trend
as the cumulative number of principal components increases, which is consistent with the cumulative
variance explained by the FPCA. In other words, as more variance is accounted for by the FPCA, the
NMSE and NMSE∗

spat values decrease.
In setting 2, supplementary tests were conducted using sea surface temperature data to examine

the performance of the SMFPCA algorithm on three variables. We randomly selected the NOAA
variables representing the years 1996, 1998 and 1999, considering both the spatial and non-spatial
aspects. We projected the data onto 15 Fourier basis functions, and we performed univariate SFPCA
with the spatial parameters L = 22 and q defined as:
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Table 5.6: NMSE and NMSE∗ results obtained by SMFPCA and MFPCA considering the vari-
ables TMP − 2000 and TMP − 2001.

Cumulative PCA PC1 PC2 PC3
Spatial consideration Spatial Ordinary Spatial Ordinary Spatial Ordinary

NMSE 2000 0.4796 0.5416 0.3396 0.5147 0.2103 0.3749
NMSE∗ 2000 0.4356 0.5156 0.2596 0.3342 0.1664 0.2695
NMSE 2001 0.5178 0.6016 0.3665 0.4121 0.3578 0.3627
NMSE∗ 2001 0.5061 0.6021 0.2709 0.3788 0.1678 0.2686

Table 5.7: Cumulative percentage (CP) of explained variance of principal components obtained
by SMFPCA and MFPCA considering the variables TMP −2000 and TMP −2001.

CP PC1 PC2 PC3 PC4
SMFPCA 58.80 69.97 79.72 87.33
MFPCA 37.59 52.11 63.78 68.63

Figure 5.4: Evolution of three functional spatial filters of TMP − 2000 variable over the lag
after SMFPCA application.

• 1996 : q = (15, 14)

• 1998 : q = (22, 22)

• 1999 : q = (19, 18)

Then we proceed with describing steps in procedure 5.3.3 for both settings, and compute the first
4 multivariate principal components to capture more than 80% of variability.

After computing SMFPCA, we performed a comparative assessment of the reconstructed functional
data with ordinary MFPCA, and the corresponding results are shown in Table 5.8. The NMSE and
NMSE∗ results exhibit a decreasing trend as the cumulative number of principal components increases,
which is consistent with the cumulative variance explained by the FPCA. In other words, as more
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Figure 5.5: Evolution of three functional spatial filters of TMP − 2001 variable over the lag
after SMFPCA application.

variance is accounted for by the FPCA, the NMSE and NMSE∗ values decrease. This test confirms
favorable outcomes, even when considering three or more variables.

Dimensionality reduction of multivariate functional spatial data shown in Figures 5.4 and 5.5, is
achieved by identifying the principal directions of variation among the functional variables. Conse-
quently, the data is succinctly represented through a restricted number of FPCA, facilitating simplified
analysis and interpretation of two or more functional spatial variables. Additionally, this approach en-
hances the visualization and comprehension of results by enabling the identification of spatial patterns,
structures, and trends within the data.

Table 5.8: NMSE and NMSE∗ results obtained by SMFPCA and MFPCA considering the vari-
ables TMP − 1996, TMP − 1998, and TMP − 1999.

Cumulative PCA PC1 PC2 PC3
Spatial consideration Spatial Ordinary Spatial Ordinary Spatial Ordinary

NMSE 1996 0.5090 0.6364 0.5069 0.5215 0.3223 0.5029
NMSE∗ 1996 0.4523 0.5358 0.2786 0.3772 0.1794 0.2851
NMSE 1998 0.6980 0.7111 0.3418 0.5812 0.3026 0.5069
NMSE∗ 1998 0.4476 0.5791 0.2624 0.3855 0.1640 0.2837
NMSE 1999 0.4377 0.4762 0.3053 0.3941 0.2758 0.3237
NMSE∗ 1999 0.4254 0.4744 0.2739 0.3520 0.1889 0.2778
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5.5 Conclusion

In this work, we are interested to dimension reduction for multivariate spatial functional data. Within
this domain, we have introduced a novel method known as SMFPCA (Spatial Multivariate Functional
Principal Component Analysis). In the literature, the majority of existing methods are primarily
based on Karhunen–Loève methodologies. In the existing literature, there is an absence of methods
for processing multivariate spatial data using spectral functional analysis. In this context, we have
developed methodologies and mathematical properties for conducting spectral FPCA on multivariate
functional spatial data sampled on a regular grid, both within the same domain or different domains.

We initially conducted tests on simulated variables, implementing our methodology without con-
sidering the spatial dimension. This allowed us to make a comparison with the results obtained from
the data that had spatial indexing. We evaluated our approach by using the Normalized Mean Squared
Error (NMSE), which involves reconstructing data based on the calculated scores and filters. Further-
more, we assessed the quality of the approximation without any boundary effects using the NMSE∗

measure. The results for NMSE and NMSE∗ presented in Tables 5.6, 5.8, and 5.1, clearly demonstrat-
ing the substantial performance improvement achieved through the inclusion of the spatial aspect. In
addition, we conducted supplementary tests on NOAA data, this data showed a low spatial depen-
dency. We selected sea surface temperature variables for the years 2000 and 2001 as representative
examples of the spatially indexed multivariate aspect. Furthermore, we performed supplementary tests
on data from three NOAA variables taken from different years.
SMFPCA enhances data visualization by revealing spatial patterns and trends. This approach unveils
spatial-temporal patterns, and provides valuable insights.
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Conclusion and perspectives

The research conducted in this thesis represents a crucial and fundamental step towards a better
understanding of the functioning of the pelagic ecosystem in West Africa. This thesis allowed for
the examination of the impact of environmental factors on the characteristics of scattering layers.
The conducted studies have highlighted an organization of the vertical and horizontal distributions
of scattering layers, influenced by environmental conditions. The presented modeling framework uses
FDA to analyzing acoustics data gathered periodically from various locations over time. FDA offers a
range of tools to examine spatio-temporal patterns at a fine scale like in the data of interest. Combining
FDA with marine data (multifrequential fish acoustics and environmental data) collected continuously
from the different location surveyed over diurnal cycles has proven highly effective for indentifying
fine-scale mechanisms and has wide-ranging applicability for coupling marine physical variables with
"Sound Scattering Layers " caracteristics (thikness, depth and density).
In the first part of this thesis, we utilize traditional multivariate statistical unsupervised and supervised
methods followed by FDA methods with or without spatial considerations. During the exploratory
analysis, multivariate Functional Principal Component Analysis provides detailed insights into the
variation of parameters along depths, in contrast to the conventional Principal Component Analysis.
For regression tasks, we examine the interactions between Sound Scattering Layers descriptors and
crucial environmental variables, both with and without spatial dimensions. We identify significant
differences between Sound Scattering Layers in the northern and southern regions, as well as in coastal
areas compared to open sea regions. The inclusion of spatial variables enhances the performance of
the General Additive model, Functional Generalized Spectral model and signature-based PCR, linear,
ridge and neural network models. The last contribution is proposing a multivariate functional principal
component analysis for functional geostatistical data. The primary motivation for developing such
methods relies on its capacity to take into account spatial dependency in the analysis.
Regarding the first contribution, the spatial dimension has been taken into account by using the spatial
coordinates are covariates in the regression modeling. We may consider in the following more spatial
modeling like geographical regression models. The use of weight matrices in the spatial principal
component analysis of the second contribution may be improved by the geostatistical PCA as the
one developed in the last contribution. The choice of weight matrices is also a hot point, weight
matrices based on ecological distances would be relevant. The principal component analysis proposed
in the last contribution has not been applied to the acoustic data. Using this methodology compare
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CONCLUSION AND PERSPECTIVES

to the PCA based on Moran index would be considered in the future. Furthermore, we have plans to
develop a software package on the last contribution in both the R and Python programming languages.
This would significantly expand the applicability and usability of the methodology, enabling more
comprehensive analyses across a wider range of data structures.
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Appendix A
Appendix

A.1 Appendix 1: matlatb code; association of Scanfish
Data with echosounder echointegration cell

Matlatb code for averaging in for each echointegration cell (allowing them to be matched with the SSL
descriptors), the environmental variables, i.e., seawater temperature (Temp in °C), fluorescence (Fluo in
ml l−1 ), turbidity (Turb in NTU), and salinity (Sal in psu; obtained from conductivity measurement),
acquired every second using the Scanfish along the path of the vessel.

Idfreq =2;
load('DataScanFishEcho_RadialXX.mat');
IdEsu=dataek(Idfreq).EIIndexEsu;
IdDepth=dataek(Idfreq).EIIndexDepth;
ei=matfile('Echointegration ');
EI_sf=ei.Sv_surface(IdDepth , IdEsu ,Idfreq);
MeanEsuDuration=mean(diff(dataek(Idfreq).EITime));
MeanPingDuration =(diff(dataek(Idfreq).Time));
%Temperature
PingTime=dataek(Idfreq).Time; EsuTime=dataek(Idfreq).EITime;

MeanEsuDuration=mean(diff(EsuTime));
PingDepth=dataek(Idfreq).Depth; EsuDepth=dataek(Idfreq).EIDepth;

EIHeight=mean(diff(EsuDepth));
for kesu =1: length(EsuTime)

idesu=find(PingTime >= EsuTime(kesu)-MeanEsuDuration /2 &
PingTime <= EsuTime(kesu)+MeanEsuDuration /2);

for kdep =1: length(EsuDepth)
iddep=find(PingDepth >= EsuDepth(kdep)-EIHeight /2 &

PingDepth <EsuDepth(kdep)+EIHeight /2);
TemperatureforEI(kdep ,kesu)=nanmean(nanmean(Temperature(

iddep ,idesu)));
end

end
%Fluorescence
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PingTime=dataek(Idfreq).Time; EsuTime=dataek(Idfreq).EITime;
MeanEsuDuration=mean(diff(EsuTime));

PingDepth=dataek(Idfreq).Depth; EsuDepth=dataek(Idfreq).EIDepth;
EIHeight=mean(diff(EsuDepth));

for kesu =1: length(EsuTime)
idesu=find(PingTime >= EsuTime(kesu)-MeanEsuDuration /2 &

PingTime <= EsuTime(kesu)+MeanEsuDuration /2);
for kdep =1: length(EsuDepth)

iddep=find(PingDepth >= EsuDepth(kdep)-EIHeight /2 &
PingDepth <EsuDepth(kdep)+EIHeight /2);

FluorescenceforEI(kdep ,kesu)=nanmean(nanmean(Fluorescence
(iddep ,idesu)));

end
end
%Turbidity
PingTime=dataek(Idfreq).Time; EsuTime=dataek(Idfreq).EITime;

MeanEsuDuration=mean(diff(EsuTime));
PingDepth=dataek(Idfreq).Depth; EsuDepth=dataek(Idfreq).EIDepth;

EIHeight=mean(diff(EsuDepth));
for kesu =1: length(EsuTime)

idesu=find(PingTime >= EsuTime(kesu)-MeanEsuDuration /2 &
PingTime <= EsuTime(kesu)+MeanEsuDuration /2);

for kdep =1: length(EsuDepth)
iddep=find(PingDepth >= EsuDepth(kdep)-EIHeight /2 &

PingDepth <EsuDepth(kdep)+EIHeight /2);
TurbiditeforEI(kdep ,kesu)=nanmean(nanmean(Turbidity(iddep

,idesu)));
end

end

%Salinity
PingTime=dataek(Idfreq).Time; EsuTime=dataek(Idfreq).EITime;

MeanEsuDuration=mean(diff(EsuTime));
PingDepth=dataek(Idfreq).Depth; EsuDepth=dataek(Idfreq).EIDepth;

EIHeight=mean(diff(EsuDepth));
for kesu =1: length(EsuTime)

idesu=find(PingTime >= EsuTime(kesu)-MeanEsuDuration /2 &
PingTime <= EsuTime(kesu)+MeanEsuDuration /2);

for kdep =1: length(EsuDepth)
iddep=find(PingDepth >= EsuDepth(kdep)-EIHeight /2 &

PingDepth <EsuDepth(kdep)+EIHeight /2);
SaliniteforEI(kdep ,kesu)=nanmean(nanmean(Salinity(iddep ,

idesu)));
end

end
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Figure A1: A flowchart outlining the main research process
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Figure A2: (1) Echogram representing the acoustic intensities (in Sv backscatter coefficient)
reverberated by the aggregated marine organisms structured in layer (i.e. here
sound scattering layer) as detected by echosounders at four frequencies (38, 70,
120 and 200 kHz) in three dimensions (2D + time). (2) The contour plots of
key physicochemical parameters of seawater temperature, salinity, turbidity and
fluorescence over the three acoustic radials studied. A): southern continental shelf;
B): southern high sea and C): northern continental shelf. Data obtained from AWA
sea survey on-board FRV Thalassa of Senegal coastline.

①

②
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A.2 Appendix 2: Study of the impact of environmental
variables on scattering layers using functional additive
regression models

A.2.1 Spatial Generalized additive model (GAMs)
A.2.1.1 Descriptive results on the continental shelf delivered by the GAMs

On the continental shelf, the spatial GAM results (Tables A1 and A2) showed that the environmental
parameters influence the SSL descriptors (thickness and depth) more during nighttime and sunrise
than during daytime for all frequencies.
Local depth affects SSL thickness at night (negative effect on SSL thickness at 70 kHz and positive
effect on SSL thickness of the other three frequencies) and at sunrise (positive effect for SSL thickness
at 38 kHz and negative effect for SSL thickness for the other three frequencies) at all frequencies. The
sea temperature also has an effect on thickness at nighttime (negative effect on SSL thickness for all
frequencies) and sunrise for all frequencies except at 38 kHz where it was not significant during sunrise
(negative effect on SSL thickness at 120 and 200 kHz and positive effect for SSL thickness at 70 kHz),
salinity affects thickness at night except at 200 kHz (positive effect on SSL thickness at 38 and 70
kHz and negative effect at 120 kHz), during sunrise it only affects the 70 kHz SSL thickness (positive
effect), and salinity during the day only affects thickness at 38 kHz (negative effect). Fluorescence
affects thickness at nighttime at all frequencies (negative effect) and during sunrise, fluorescence only
affects SSL thickness at 38 kHz (positive effect). Turbidity affects thickness at night for all frequencies
except 120 kHz (negative effect on SSL thickness at 70 kHz and positive for the SSL thickness of
the two others), while sunrise turbidity only affects 70 kHz thickness (positive effect). Geographical
coordinates have a negative effect on SSL thickness for all frequencies.
For SSL depth, bottom depth had an effect at 38 and 70 kHz during the night (negative effect), while
during sunrise an effect is observed only the 120 and 200 kHz (negative effect). Temperature affects
SSL depth during sunrise at all frequencies except 38 kHz (positive effect on SSL depth at 120 kHz and
negative effect for the two others), while nighttime sea temperature only affects the SSL depth at 70
and 38 kHz (negative effect) and daytime temperature only at 38 kHz (negative effect). Salinity only
affects depth during sunrise at 120 (negative effect) and 200 kHz (positive effect). Turbidity affects
the SSL depth at all frequencies except at 200 kHz during sunrise (positive effect). Geographical
coordinates have a negative effect on SSL depth for all frequencies. For SSL density (Sa), the goodness
of fit obtained is not satisfactory.

A.2.1.2 Descriptive results in the southern Senegalese high sea delivered by the
GAMs

In the southern Senegalese high sea, bottom depth influences the SSL thickness at all frequencies
during sunset (positive effect for SSL thickness at 38 and 200 kHz and negative effect for the SSL
thickness of the two others ) while at night SSL thickness is only influenced at 70 kHz (negative effect).
Temperature influences SSL thickness during nighttime at all frequencies (positive effect only in SSL
thickness at 200 kHz), whereas during sunset it only affects SSL thickness at 38 and 70 kHz (negative
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effect). Salinity affects SSL thickness for all frequencies at night except 200 kHz (negative effect) and
during sunset, it only affects the thickness at 70 kHz (positive effect). Fluorescence affects thickness
during sunset (negative effect on SSL thickness at 120 kHz and positive effect on SSL thickness at
38 and 200 kHz) and night (negative effect on SSL thickness at 200 kHz and positive effect on SSL
thickness at 38 and 120 kHz) for all frequencies except 70 kHz while turbidity has no effect at 200
kHz (positive effect on SSL thickness at the three frequencies during sunset and only positive effect
at 70 kHz during night). Geographical coordinates have an effect on SSL thickness for all frequencies
(positive effect of latitude on SSL thickness and positive effect of longitude on only SSL thickness at
120 kHz).
For the SSL depths, bottom depth affects 38 and 70 kHz at night (negative effect), while during sunset
bottom depth affects the SSL depth at 120 and 200 kHz (positive effect). The sea temperature is highly
significant at all frequencies (positive effect only on SSL depth at 200 kHz during sunset and negative
for the three others) and also fluorescence is significant for all frequencies (positive effect on SSL depth
during the night for all frequencies except at 120 kHz where we have a negative effect. During sunset,
negative effects were recorded on SSL depth for all frequencies) while salinity has no effect at 70 kHz
at night (negative effects were recorded on SSL depth for the three frequencies during the night and
negative effect only at SSL depth of 120 kHz during sunset). Turbidity has an effect on all SSL depths
during these two period except at 200 kHz during sunset (positive effect on SSL depth at 38, 70, and
120 kHz during sunset and negative effect on SSL depth for all frequencies during the night). Latitude
has a positive effect on SSL depth for all frequencies while longitude has a positive effect only at SSL
depth at 120kHz.

A.2.1.3 Descriptive results in the the northern Senegal delivered by the GAMs

In the northern Senegal shelf, bottom depth affects the SSL thickness at 38 and 200 kHz during sunrise
(positive effect) while the daytime bottom depth increase only the thickness at 70 kHz. Temperature
is significant for all frequencies during sunrise (positive effects were recorded on SSL thickness at 38
and 120 kHz while negative effects were recorded on SSL thickness at 70 and 200 kHz), while at night
it does not affect the SSL thickness at 38 kHz (negative effect). Salinity only affects the SSL thickness
at 70, 120, and 200 kHz during sunrise (positive effect). Fluorescence affects the 38, 70, and 120 kHz
SSL thickness at night (negative effect only on SSL thickness at 38 kHz contrary to the two others)
and sunrise (negative effect on SSL thickness for these three frequencies), while turbidity at sunrise
has significant effects on all frequencies (positive effect), and turbidity at night affects only the 38 and
70 kHz SSL thickness (positive effect). Geographic coordinates have positive effects on the thickness
at 38 and 200 kHz and negative effects on the thickness at the other frequencies.
Bottom depth affects the SSL depth at all frequencies during the day, except 200 kHz (positive effect)
and sunrise (positive effect). Temperature affects SSL depth at all frequencies during sunrise (positive
effect only on SSL depth at 120 kHz compared to the others) while at nighttime temperature did not
affect the 70 and 120 kHz depth SSL (negative effect on SSL depth at 38 kHz and positive effect on
SSL depth at 200 kHz) and daytime temperature affects only SSL depth at 200 kHz (positive effect).
Salinity affects the SSL depth at 38, 70, and 120 kHz during sunrise. During daytime sea salinity
affects SSL depth at 38 and 70 kHz (positive effect), and salinity only affects the 38 and 120 kHz SSL
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depth during nighttime (positive effect on SSL depth at 38 kHz and negative effect on SSL depth at 120
kHz). Turbidity affects SSL depth during sunrise for all frequencies (positive effect) and fluorescence
affects SSL depth during sunrise for all frequencies (negative effect). Turbidity affects only SSL depth
at 38 kHz during the night (positive effect). Fluorescence did not affect the 200 kHz SSL depth during
daytime (negative effect on SSL depth at 38, 70, and 120 kHz) while at nighttime fluorescence does not
affect the 120 kHz SSL depth (positive effects were recorded only on SSL depth at 70 kHz compared to
the 38 and 200 kHz). Geographic coordinates have negative effects on the SSL depth for all frequencies.
For the SSL density (Sa), their fit qualities were low.

A.2.2 Multivariate Functional Principal Component analysis (MF-
PCA)

A.2.2.1 MFPCA results on the continental shelf of southern Senegal

On the continental shelf of southern Senegal (Figure 3.10), sea temperature data obtained at 38 kHz
revealed a low peak between 20 and 30 meters, and a high peak between 40 and 50 meters in the first
component. Similar observations were recorded for the second component. The salinity data showed
a high peak between 40 and 50 meters in the first component, followed by a low peak between 50 and
60 meters. The second component exhibited a low peak between 20 and 30 meters, followed by a high
peak between 40 and 50 meters. Fluorescence data at 38 kHz revealed a low peak between 10 and 20
meters in the first component, followed by a high peak at 30 meters. The second component displayed
a low peak between 20 and 30 meters. Turbidity data at 38 kHz showed a weak peak between 10 and
20 meters in the first component, followed by a high peak at 30 meters. The second component was
characterized by a high peak between 30 and 40 meters.
At 70 kHz frequency, the first component of sea temperature showed a low peak between 20 and
30 meters, and a high peak between 35 and 40 meters. The second component exhibited similar
observations. The salinity data displayed a weak peak at 25 meters in the first component, and a
weak peak between 20 and 25 meters in the second component. Fluorescence data showed a high peak
between 10 and 15 meters in the first component, followed by a low peak between 25 and 30 meters.
The second component displayed a low peak between 15 and 20 meters. Turbidity data in the first
component was characterized by a high peak between 10 and 15 meters, followed by a low peak at 20
meters. The second component exhibited a low peak between 15 and 20 meters, followed by a high
peak between 20 and 25 meters.
At 120 kHz frequency, sea temperature data displayed a low peak at 25-30 meters in the first component
and a high peak at 40 meters. The second component exhibited a low peak at 25 meters, and a high
peak at 40-45 meters. The salinity data showed a low peak at 25 meters in the first component and a
high peak at 35 meters. The second component displayed a low peak at 25 meters. Fluorescence data
revealed a low peak between 25 and 30 meters in the first component, and a low peak at 25 meters
in the second component. Turbidity data exhibited a high peak between 15 and 20 meters in the first
component, followed by a low peak between 40 and 45 meters. The second component displayed a high
peak at 20 meters.
At 200 kHz frequency, sea temperature data displayed a high peak between 20 and 25 meters in the first
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component, and a low peak at 35 meters. The second component showed a low peak between 20 and
25 meters. The salinity data exhibited a high peak between 15 and 20 meters in the first component,
followed by a low peak between 30 and 35 meters. The second component displayed a low peak between
20 and 25 meters. Fluorescence data showed a high peak at 40 meters in the first component, and a
low peak between 20 and 25 meters in the second component. Turbidity data displayed a low peak
at 20 meters in the first component, followed by a high peak between 30 and 35 meters. The second
component exhibited a low peak at 20 meters.

A.2.2.2 MFPCA results on the southern Senegalese high sea

The paragraph describes how different variables are grouped at different depth levels on the southern
Senegalese high sea, using different frequencies. At 38 kHz, temperature ESUs with low values between
25 and 50 m are grouped in the first component, while those with high values at 50 m are grouped in the
second component. Salinity ESUs with higher values at 25 m are grouped in the first component, while
those with higher values between 50 and 62 m are grouped in the second component. Fluorescence
ESUs with low values between 25 and 50 m are grouped in the first component, while those with higher
values at 50 m are grouped in the second component. Turbidity showed similar variations.
At 70 kHz, temperature ESUs with higher values between 25 and 50 m are grouped in the first
component, while those with high values at 50 m and low values between 25 and 37 m are grouped
in the second component. Salinity ESUs with higher values between 50 and 62 m are grouped in the
first component, with a similar peak in the second component. Fluorescence ESUs with higher values
at 37 m are grouped in the first component, while those with higher values at 50 m are grouped in the
second component. Turbidity ESUs with higher values at 37 m are grouped in the first component,
while those with lower values between 25 and 37 m and higher values at 50 m are grouped in the second
component.
At 120 kHz, temperature ESUs with higher values between 30 and 40 m are grouped in the first
component, while those with higher values between 40 and 50 m are grouped in the second component.
Salinity ESUs with low values between 20 and 30 m are grouped in the first component, while those
with high values in the same range are grouped in the second component. Fluorescence ESUs with
higher values between 30 and 40 m are grouped in the first component, while those with lower values
between 20 and 30 m are grouped in the second component. Turbidity shows similar observations.
At 200 kHz, temperature ESUs with lower values at 50 m and higher values between 75 and 87 m are
grouped in the first component, while those with low values between 25 and 37 m and high values at 62
m are grouped in the second component. Salinity ESUs with high values at 25 m are grouped in the first
component, while those with higher values between 25 and 37 m are grouped in the second component.
Fluorescence ESUs with low values between 37 and 50 m are grouped in the first component, while
those with high values at 75 m are grouped in the second component. Turbidity ESUs with low values
at 37 m are grouped in the first component, while those with low values between 25 and 37 m and
high values at 50 m are grouped in the second component.
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A.2.2.3 MFPCA results in the northern Senegalese shelf

The study conducted over the northern Senegalese shelf (Figure S2), revealed distinct patterns in
the acoustic response of the ecosystem at different frequencies. At 38 kHz, the first component of
temperature grouped ESUs with low values between 50 and 62 m, with similar observations made on
the second component. The first component of salinity grouped ESUs with low values between 50 and
75 m, while the second component grouped those with low values at 75 m. The first component of
fluorescence grouped ESUs with low values between 12 and 25 m, while the second component grouped
those with high values between 25 and 50 m. The first component of turbidity grouped ESUs with
high values between 37 and 50 m, while the second component grouped those with high values between
25 and 50 m.
At 70 kHz, the first component of temperature grouped ESUs with high values between 25 and 75 m,
while the second component grouped those with low values between 50 and 62 m. The first component
of salinity grouped ESUs with high values between 50 and 62 m, while the second component grouped
those with low values at 62 m. The first component of fluorescence grouped ESUs with high values
between 25 and 37 m, while the second component grouped those with high values between 37 and
50 m. The first component of turbidity grouped ESUs with high values at 87 m, while the second
component grouped those with low values at this depth.
At 120 kHz, the first component of temperature grouped ESUs with low values between 25 and 37 m,
while the second component grouped those with low values at 50 m. For salinity, the first component
grouped ESUs with low values between 62 and 75 m, while the second component grouped those with
low values between 50 and 62 m. The first component of fluorescence grouped ESUs with low values
at 25 m, while the second component grouped those with high values between 25 and 37 m. The first
component of turbidity grouped ESUs with high values at 37 m, while the second component grouped
those with high values between 25 and 37 m.
Finally, at 200 kHz, the first component of temperature grouped ESUs with high values at 37 m, while
the second component grouped those with low values between 50 and 62 m. For salinity, the first
component grouped ESUs with high values at 62 m, while the second component grouped those with
low values between 50 and 62 m. The first component of fluorescence grouped ESUs with high values
between 12 and 25 m, while the second component grouped those with high values at 25 m. The first
component of turbidity grouped ESUs with low values at 37 m, while the second component grouped
those with high values at this depth.

A.2.3 Spatial functional generalized spectral additive model (FGSAMs)
A.2.3.1 Descriptive results on the southern continental shelf delivered by the

FGSAMs

On the southern continental shelf (Figure 3.19 and Table A4), at 38 kHz, fluorescence has a positive
effect on SSL thickness between 10 and 30m and a negative effect beyond. Temperature has an overall
negative effect while turbidity has a negative effect between 10 and 30 and a positive effect beyond
that. The same observations are done for salinity.
For SSL thickness, at 70 kHz fluorescence has a negative effect between 10 and 20, positive between
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20 and 35, and negative beyond. The temperature has a positive effect between 10 and 20m, negative
between 20 and 30, and positive beyond, while turbidity has a negative effect between 10 and 20m,
positive between 20 and 30, and negative beyond. Salinity has a negative effect between 10 and 20 m,
a positive between 20 and 30, and a negative beyond.
On the 120 kHz SSL thickness, fluorescence has a negative effect between 10 and 20m and positive
beyond, while temperature has a positive effect between 10 and 35 and negative beyond. Turbidity has
a negative effect between 10 and 25 and a positive effect beyond. Salinity has a positive effect between
10 and 25 and negative between 25 and 35 and a positive one beyond.
Fluorescence has a negative effect on the 200 kHz SSL thickness at depths below 15 and a positive
effect between 15 and 25 and a negative effect beyond. The temperature has a positive effect between
10 and 25, a negative between 25 and 40, and a positive beyond. Turbidity has a positive effect between
10 and 25, a negative between 25 and 35, and a positive beyond. Salinity has a negative effect between
10 and 25, a positive between 25 and 40, and a negative beyond.
For SSL depth, on the 38 kHz frequency, fluorescence has a positive effect between 10 and 30, negative
between 30 and 45, and positive beyond. The temperature has a positive effect between 10 and 35,
a negative between 35 and 55, and a positive beyond, while turbidity has an overall positive effect.
Salinity has a positive effect between 10 and 30 and a negative effect beyond.
For the 70 kHz depth, fluorescence has a negative effect between 10 and 20, a positive between 20 and
35, and a negative beyond. The temperature has a negative effect below 12m, positive between 12 and
35, and negative beyond. Turbidity has a negative effect between 10 and 30m, positive between 30
and 37m, and negative beyond. Salinity has a positive effect at depths below 12m, negative between
12 and 30, and positive beyond.
At 120 kHz, fluorescence has a negative effect between 10 and 20 m, positive between 20 and 40, and
negative beyond. The temperature has a negative effect between 10 and 25, a positive between 25 and
40, and a negative beyond. Turbidity has a positive effect between 10 and 25 and a negative beyond.
Salinity has a negative effect between 10 and 25, a positive between 25 and 40, and a negative beyond.
Fluorescence has an overall negative effect on the depth of the 200 kHz SSL. The temperature has a
positive effect at depths below 20m, a negative effect between 20 and 35, and a positive effect beyond.
Turbidity has a positive effect between 10 and 25, a negative between 25 and 35, and a positive beyond.
Salinity has a negative effect between 10 and 35, a positive between 35 and 47, and a negative beyond.

A.2.3.2 Descriptive results in the southern Senegal high sea delivered by the
FGSAMs

In the southern Senegal high sea, at 38 kHz, fluorescence has a positive effect on SSL thickness, between
10 and 70 m and negative beyond. The Sea temperature has a positive effect between 10 and 50 m
and a negative beyond. The water turbidity has a negative effect between 10 and 90 m and positive
beyond while salinity has a negative effect between 10 and 50 m and positive beyond.
At 70 kHz, fluorescence has a positive effect, temperature has a negative effect between 10 and 40 m
and positive beyond, turbidity has a negative effect beyond 10 m while salinity has a positive effect
between 10 and 40 m and negative beyond.
At 120 kHz, fluorescence has an overall positive effect on thickness, the temperature has a negative
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effect between 10 and 50 m and a positive effect beyond, turbidity has a positive effect between 10 and
about 37 m and then a negative effect between 37 and 80 m and a positive effect beyond while salinity
has a negative effect between 10 and 50 m and a positive effect beyond.
At 200 kHz, fluorescence has a negative effect between 10 and 40 m, positive between 40 and 120 m
and negative beyond, the temperature has a negative effect at 10 m and positive beyond, turbidity has
a negative effect between 10 and 80 m and positive beyond and salinity has a negative effect between
10 and 110 m and positive beyond.
For the 38 kHz fluorescence has a positive effect between 10 and 80 m on SSL depth and negative
thereafter, temperature has a negative effect between 10 and 20 m and positive between 20 and 80 m
and negative thereafter, turbidity has a negative effect between 10 and 90 m and positive thereafter
while salinity has a negative effect between 10 and 50 m and positive thereafter.
On the 70 kHz, fluorescence has a positive effect on SSL depth between 10 and 70 m then slightly
negative between 70 and 90 m then positive beyond, temperature has a negative effect between 10 and
50 m then positive between 50 and 90 m, and negative beyond, turbidity has an overall negative effect
while salinity has a positive effect between 10 and 50 m and negative beyond.
At 120 kHz, fluorescence has a positive effect between 10 and 60 m and negative thereafter, temperature
has a negative effect between 10 and 50 m, positive between 50 and 80 m, and negative thereafter,
turbidity has a negative effect at depths below 20 m, positive between 20 and 50 m and negative
thereafter, while salinity has a negative effect between 10 and 50 m and positive to 80 m and negative
thereafter.
At 200 kHz, fluorescence has an overall negative effect on depth, the temperature has a negative effect
between 10 and 50 m and a positive effect beyond that, turbidity has a negative effect between 10 and
80 m and a positive effect beyond that, while salinity has a negative effect between 20 and 110 m and
a positive effect beyond that.

A.2.3.3 Descriptive results in northern Senegalese shelf sea delivered by the FGSAMs

In northern Senegalese shelf, at 38 kHz, fluorescence has a negative effect on SSL thickness between
10 and about 80 m and positive beyond, the temperature has a positive effect between 10 and 30 m,
negative between 30 and 90 m and positive beyond, turbidity has a positive effect between 10 and 30
m, negative between 30 and 90 m and positive beyond, while salinity has a positive effect at depths
less than 20 m, negative between 20 and 60 m and positive beyond.
At 70 kHz, fluorescence has a negative effect between 10 and 90 m and a positive effect beyond,
temperature has a positive effect between 10 and 50 m and a negative effect beyond, turbidity has
a positive effect between 10 and 30 m, a negative effect between 30 and 110 m and a positive effect
beyond while salinity has a positive effect between 10 and 30 m, a negative effect between 30 and 110
m and a positive effect beyond.
At 120 kHz, fluorescence has a negative effect between 10 and 90 m and a positive effect beyond,
temperature has a positive effect between 10 and 50 m and a negative effect beyond, turbidity has
a negative effect between 10 and 20 m, a positive effect between 20 and 110 m and a negative effect
beyond and salinity has a positive effect between 10 and 40 m, a negative effect between 40 and 90 m
and a positive effect beyond.
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At 200 kHz, fluorescence has a negative effect between 10 and 30 m, positive between 30 and about 120
m, and negative beyond, temperature has a positive effect between 10 and 30 m, negative between 30
and 50 m, positive between 50 and 120 m and negative beyond, turbidity has a positive effect between
10 and 20 m, negative between 20 and about 60 m, positive between 60 and 120 m and negative beyond
while salinity has a negative effect between 10 and 80 m and positive beyond.
For SSL depth at 38 kHz, fluorescence has a negative effect between 10 and 90 m and a positive effect
beyond, temperature has a negative effect between 10 and 50 m and a positive effect beyond, turbidity
has a positive effect between 10 and 30 m, a negative effect between 30 and 90 m and a positive effect
beyond and salinity has a positive effect between 10 and 120 m and a negative effect beyond.
At 70 kHz, fluorescence has a negative effect between 10 and 60 m, positive between 60 and 100 m and
negative thereafter, temperature has a positive effect between 10 and 50 m, negative between 50 and
110 m and positive thereafter, turbidity has a positive effect between 10 and 30 m, negative between 30
and 80 m and positive thereafter while salinity has a negative effect between 10 and 90 m and positive
thereafter.
At 120 kHz, fluorescence has negative and zero effects between 10 and 90 m and then positive beyond,
the temperature has a positive effect between 10 and 20 m, negative between 20 and 110 m and then
positive beyond, turbidity has a positive effect between 10 and 20 m, negative between 20 and 70 m,
positive between 70 and 120 m and then negative beyond while salinity has a positive effect between 10
and about 37 m, negative between 37 and 57 m, positive between 57 m and 120 m and then negative
beyond.
At 200 kHz, fluorescence has a negative effect between 10 and about 22 m, positive between 22 and 117
m and negative thereafter, temperature has a positive effect between 10 and 60 m, negative between
60 and 120 m and positive thereafter, turbidity has a negative effect between 10 and 60 m, positive
between 60 and 120 m and negative thereafter, while salinity has a negative effect between 10 and 22
m, positive between 22 and 100 m and negative thereafter.
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Table A1: Results of Generalized additive model (GAM) between sound scattering layers
(SSLs) and oceanographic conditions (sea temperature (Temp), salinity (Sal), tur-
bidity (Turb), fluorescence (Fluo)), diel period (day, sunset, night and sunrise),
bottom depth (Bottom) and geographical positions (latitude (Lat) and longitude
(Lon)) to predict (1) SSL thickness and (2) SSL Depth and (3) SSL density, spread
over three geographical areas (A: southern continental shelf; B: southern high sea
and C: northern continental shelf) as observed during the AWA sea survey. AIC
(Akaike’s Information Criterion); BIC (Bayesian Information Criterion); Log Likeli-
hood (log-likelihood value of a model); Deviance (goodness-of-fit metric for statisti-
cal model); Deviance explained ( proportion of the total deviance explained by the
current model); R2 (Adjusted R-Squared); GCV score (Generalised Cross-Validation
score); Num.obs. (number of observations); Num. smooth terms (Number of smooth
terms).

① (A)
Non-Spatial Spatial

38 kHz 70 kHz 120 kHz 200 kHz 38 kHz 70 kHz 120 kHz 200 kHz
(Intercept) 13.48∗∗∗ 4.32 3.17 6.86 14.33∗∗∗ 5.45 4.27 5.93∗∗

(1.23) (3.35) (6.27) (8.78) (2.24) (3.44) (3.43) (2.16)
s(Bottom):Night 3.15∗∗ 2.51∗∗ 4.86∗∗∗ 3.39∗∗∗ 3.86∗∗∗ 2.63∗ 4.41∗∗∗ 5.09∗∗∗

(3.27) (2.95) (5.34) (3.85) (3.98) (3.09) (4.91) (5.46)
s(Bottom):Sunrise 2.88∗∗∗ 5.76∗∗∗ 1.00∗∗∗ 4.04∗∗∗ 3.11∗∗∗ 3.90∗ 3.28∗ 4.14∗

(3.07) (6.14) (1.00) (4.79) (3.31) (4.53) (3.92) (4.78)
s(Bottom):Day 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

(1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00)
s(Temp):Night 3.84∗∗∗ 3.97∗∗ 1.00∗ 1.00∗ 3.89∗∗∗ 4.74∗∗∗ 1.00∗∗ 2.14∗∗∗

(3.97) (4.50) (1.00) (1.00) (3.99) (5.12) (1.00) (2.62)
s(Temp):Sunrise 2.18 3.29∗∗ 6.55∗∗∗ 2.78∗∗∗ 1.00 5.10∗∗∗ 1.00∗ 1.00∗∗∗

(2.63) (4.07) (7.40) (3.44) (1.00) (6.07) (1.00) (1.00)
s(Temp):Day 1.00∗∗∗ 1.00 1.00 1.00 1.00∗ 1.00 1.00 1.00

(1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00)
s(Sal):Night 3.52∗∗∗ 2.00 2.66 2.41 3.60∗∗∗ 2.54∗∗ 3.69∗∗ 2.63

(3.85) (2.41) (3.22) (2.92) (3.89) (3.01) (4.26) (3.16)
s(Sal):Sunrise 1.12 2.29 1.00∗ 1.00 1.00 2.10∗∗ 1.00 1.00

(1.24) (2.89) (1.00) (1.00) (1.00) (2.66) (1.00) (1.00)
s(Sal):Day 1.00 1.00 1.00 1.00 1.00∗ 1.00 1.00 1.00

(1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00)
s(Fluo):Night 1.78∗∗∗ 3.04∗∗∗ 3.20∗ 2.29∗∗ 1.80∗∗∗ 3.08∗∗∗ 4.31∗∗∗ 1.00∗∗

(1.98) (3.54) (3.82) (2.74) (2.00) (3.57) (4.91) (1.00)
s(Fluo):Sunrise 1.22 1.00∗∗ 4.40∗∗∗ 4.14∗∗∗ 1.36∗ 2.31 2.10 1.00

(1.40) (1.00) (4.95) (4.65) (1.58) (2.76) (2.54) (1.00)
s(Fluo):Day 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

(1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00)
s(Turb):Night 1.65 1.82 1.00 1.84∗ 1.00∗∗∗ 1.95∗∗∗ 1.00 1.00∗∗∗

(1.71) (1.92) (1.00) (1.92) (1.00) (1.98) (1.00) (1.00)
s(Turb):Sunrise 1.00∗∗ 2.37∗∗ 1.00 4.60∗∗∗ 2.39 3.65∗∗ 3.63 2.75

(1.00) (2.95) (1.00) (5.14) (2.70) (4.28) (4.31) (3.43)
s(Turb):Day 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

(1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00)
s(Lon,Lat) 2.66∗∗∗ 24.90∗∗∗ 24.85∗∗∗ 25.48∗∗∗

(2.85) (27.28) (27.32) (27.82)
AIC 999.93 1001.16 909.55 1049.94 890.68 706.41 804.57 853.40
BIC 1105.99 1135.30 1034.71 1180.98 1007.53 949.49 1019.80 1055.34
Log Likelihood −468.84 −461.21 −418.04 −486.51 −411.05 −281.86 −339.11 −367.43
Deviance 874.91 817.07 554.76 1025.20 521.04 163.56 273.33 352.35
Deviance explained 0.98 0.93 0.87 0.75 0.99 0.99 0.94 0.91
Dispersion 4.49 4.32 2.91 5.41 2.72 1.02 1.64 2.08
R2 0.97 0.91 0.85 0.70 0.98 0.98 0.92 0.89
GCV score 494.03 492.90 452.39 513.97 441.06 385.69 421.92 444.04
Num. obs. 223 223 223 223 223 223 223 223
Num. smooth terms 15 15 15 15 16 16 16 16
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(B)
Non-Spatial Spatial

38 kHz 70 kHz 120 kHz 200 kHz 38 kHz 70 kHz 120 kHz 200 kHz
(Intercept) 64.04∗∗∗ 49.68∗∗∗ 34.41∗∗∗ 31.70∗∗∗ 65.53∗∗∗ 48.90∗∗∗ 29.44∗∗∗ 28.75∗∗∗

(0.55) (0.88) (0.61) (0.52) (1.00) (0.96) (0.98) (0.71)
s(Bottom):Night 8.57∗∗∗ 8.36∗∗∗ 8.76∗∗∗ 8.66∗∗∗ 5.57 4.98∗∗∗ 1.01 1.00

(8.93) (8.85) (8.96) (8.94) (6.55) (6.00) (1.01) (1.00)
s(Bottom):Sunset 1.00 1.85∗∗∗ 1.99∗∗∗ 1.94∗∗∗ 1.00∗∗∗ 1.95∗∗∗ 1.92∗∗ 1.00∗∗∗

(1.00) (1.96) (2.01) (2.00) (1.00) (1.99) (1.99) (1.00)
s(Temp):Night 1.00∗∗∗ 4.53∗∗∗ 1.96∗∗∗ 4.59∗ 3.73∗∗∗ 5.32∗∗∗ 3.00∗∗∗ 6.95∗∗∗

(1.01) (5.46) (2.56) (5.72) (4.63) (6.25) (3.93) (8.00)
s(Temp):Sunset 3.70∗∗∗ 4.00∗∗∗ 1.00∗∗ 3.88∗∗∗ 2.69∗∗∗ 5.11∗∗∗ 3.08 3.69

(4.53) (4.94) (1.00) (4.75) (3.34) (6.16) (3.88) (4.55)
s(Sal):Night 3.63∗∗∗ 3.08∗∗∗ 2.04∗∗ 6.77∗∗∗ 1.00∗∗∗ 1.00∗∗ 1.00∗∗∗ 4.78

(4.51) (3.88) (2.64) (7.63) (1.00) (1.00) (1.00) (5.86)
s(Sal):Sunset 1.49 2.22 3.87 1.00 3.18 3.76∗ 1.10 1.00

(1.82) (2.84) (4.71) (1.00) (3.93) (4.65) (1.18) (1.00)
s(Fluo):Night 6.40∗∗∗ 5.68∗∗∗ 7.51∗∗∗ 6.54∗∗∗ 3.63∗∗ 1.01 6.16∗∗∗ 4.24∗∗

(7.37) (6.57) (8.48) (7.68) (4.59) (1.02) (7.47) (5.36)
s(Fluo):Sunset 1.00 5.16∗∗∗ 2.97∗∗∗ 5.08∗∗∗ 4.24∗ 4.51 4.46∗∗∗ 4.16∗∗∗

(1.00) (6.15) (3.71) (6.05) (5.09) (5.39) (5.44) (5.04)
s(Turb):Night 4.26∗∗∗ 3.75 7.15∗∗∗ 3.04 4.03∗∗ 5.03∗∗ 7.57∗∗∗ 2.82

(5.31) (4.70) (8.19) (3.99) (5.01) (5.98) (8.47) (3.70)
s(Turb):Sunset 4.27 1.00 1.00∗∗∗ 1.01 6.53∗∗∗ 4.65∗∗∗ 1.00∗ 1.00

(5.35) (1.00) (1.00) (1.01) (7.41) (5.60) (1.00) (1.00)
s(Lon,Lat) 25.96∗∗∗ 25.31∗∗∗ 26.73∗∗∗ 26.99∗∗∗

(27.96) (27.63) (28.54) (28.61)
AIC 3811.84 3820.00 3822.70 3776.45 3471.41 3459.43 3479.46 3397.44
Deviance explained 0.79 0.86 0.83 0.82 0.89 0.93 0.91 0.91
R2 0.77 0.85 0.82 0.81 0.88 0.92 0.90 0.90
Num. obs. 602 602 602 602 602 602 602 602
Num. smooth terms 10 10 10 10 11 11 11 11
∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05
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(C)
Non-Spatial Spatial

38 kHz 70 kHz 120 kHz 200 kHz 38 kHz 70 kHz 120 kHz 200 kHz
(Intercept) −5.44 22.09∗∗∗ 18.21∗∗∗ 13.32∗∗∗ 18.62∗ 23.48∗∗∗ 23.50∗∗∗ 4.30

(8.22) (6.15) (2.38) (3.70) (8.66) (4.10) (4.55) (6.23)
s(Bottom):Night 4.48∗∗∗ 6.68∗∗∗ 6.38∗∗∗ 6.14∗∗∗ 2.19 1.00 1.00 1.00

(5.28) (7.13) (6.93) (6.76) (2.59) (1.00) (1.00) (1.00)
s(Bottom):Sunrise 1.00 3.70∗ 1.00 1.00 4.57∗∗∗ 1.00 1.00 4.10∗∗∗

(1.00) (4.34) (1.00) (1.00) (5.18) (1.00) (1.00) (4.80)
s(Bottom):Day 1.00 2.89∗∗∗ 3.12∗∗∗ 1.12 1.00 3.02∗∗∗ 1.00 1.71

(1.00) (3.45) (3.69) (1.22) (1.00) (3.67) (1.00) (2.01)
s(Temp):Night 1.65 4.43∗∗∗ 6.14∗∗∗ 4.82∗ 2.08 4.20∗∗∗ 6.28∗∗∗ 4.75∗∗∗

(1.98) (5.23) (6.90) (5.65) (2.57) (5.09) (7.02) (5.72)
s(Temp):Sunrise 7.39∗∗∗ 6.62∗∗∗ 5.96∗∗∗ 7.86∗∗∗ 2.12∗∗ 7.64∗∗∗ 6.54∗∗∗ 8.57∗∗∗

(7.78) (7.58) (6.91) (8.51) (2.60) (8.35) (7.38) (8.90)
s(Temp):Day 1.41 1.00 1.00 1.00 1.00 1.00 2.21 1.00

(1.64) (1.00) (1.00) (1.00) (1.00) (1.00) (2.76) (1.00)
s(Sal):Night 2.78 1.00 1.00 1.00 3.19 1.00 1.44 1.00

(3.41) (1.00) (1.00) (1.00) (3.86) (1.00) (1.73) (1.00)
s(Sal):Sunrise 4.91∗∗∗ 6.77∗∗∗ 6.67∗∗∗ 8.16∗∗∗ 1.00 6.51∗∗∗ 7.00∗∗∗ 8.41∗∗∗

(5.91) (7.60) (7.35) (8.58) (1.00) (7.43) (7.71) (8.84)
s(Sal):Day 1.00 1.01 1.00 1.00 1.00 1.00 1.00 1.00

(1.00) (1.01) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00)
s(Fluo):Night 1.00∗ 6.07∗∗∗ 5.39∗ 2.98 3.76∗∗∗ 4.45∗ 4.33∗ 1.00

(1.00) (7.15) (6.47) (3.77) (4.64) (5.49) (5.38) (1.00)
s(Fluo):Sunrise 6.63∗∗∗ 3.72∗ 2.91∗∗∗ 7.16∗∗∗ 2.61∗∗∗ 5.49∗∗∗ 4.35∗∗ 1.00

(7.01) (4.57) (3.62) (7.86) (3.16) (6.47) (5.23) (1.00)
s(Fluo):Day 1.00 1.50 1.00 1.99∗ 1.00 1.00 1.00 1.00

(1.00) (1.68) (1.00) (2.15) (1.00) (1.00) (1.00) (1.00)
s(Turb):Night 4.33∗∗∗ 2.56 2.08 2.96 4.75∗ 3.38∗∗ 1.00 1.67

(5.29) (3.13) (2.56) (3.67) (5.75) (4.07) (1.00) (2.08)
s(Turb):Sunrise 5.50∗∗∗ 5.94∗∗∗ 5.67∗∗∗ 4.28∗∗∗ 4.51∗∗∗ 5.67∗∗∗ 4.35∗∗∗ 4.31∗∗∗

(5.99) (6.41) (6.45) (4.90) (5.09) (6.20) (5.22) (4.96)
s(Turb):Day 1.06 1.00∗∗ 1.00∗∗∗ 3.16∗∗∗ 1.63 1.00 1.00 3.15∗

(1.10) (1.00) (1.00) (3.63) (1.98) (1.00) (1.00) (3.67)
s(Lon,Lat) 26.08∗∗∗ 25.28∗∗∗ 23.23∗∗∗ 26.73∗∗∗

(27.96) (27.65) (26.31) (28.43)
AIC 2934.35 2537.17 2502.36 2527.95 2605.35 2373.69 2394.55 2315.45
Deviance explained 0.76 0.84 0.85 0.84 0.91 0.91 0.90 0.92
R2 0.73 0.81 0.82 0.82 0.89 0.88 0.87 0.90
Num. obs. 371 371 371 371 371 371 371 371
Num. smooth terms 15 15 15 15 16 16 16 16
∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05
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② (A)
Non-Spatial Spatial

38 kHz 70 kHz 120 kHz 200 kHz 38 kHz 70 kHz 120 kHz 200 kHz
(Intercept) 20.91∗∗ 9.64 12.11 22.52 25.55∗∗ 19.14∗∗ 20.50∗ 21.94∗∗∗

(6.97) (12.70) (11.64) (13.38) (7.88) (6.16) (9.09) (6.15)
s(Bottom):Night 2.28 1.00 1.00 1.00 1.00∗ 1.00∗ 1.00 1.00

(2.67) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00)
s(Bottom):Sunrise 3.07∗∗∗ 2.85∗∗∗ 3.80∗∗∗ 1.00 1.00 2.34 3.65∗ 4.04∗

(3.82) (3.57) (4.54) (1.00) (1.01) (2.82) (4.20) (4.58)
s(Bottom):Day 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.39

(1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.55)
s(Temp):Night 3.06∗ 1.00 1.00 1.00 2.69∗∗ 1.00∗ 1.00 1.00

(3.72) (1.00) (1.00) (1.00) (3.28) (1.00) (1.00) (1.00)
s(Temp):Sunrise 1.00 1.00∗∗∗ 7.41∗∗∗ 4.57∗∗∗ 1.00 3.68∗∗∗ 6.87∗∗∗ 4.22∗∗∗

(1.00) (1.00) (7.90) (5.49) (1.00) (4.53) (7.44) (5.01)
s(Temp):Day 1.34∗ 1.00 1.00 1.00 1.00∗∗ 1.00 1.00 1.00

(1.54) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00)
s(Sal):Night 1.77 1.00 1.00 1.00 1.67 1.47 1.00 1.00

(2.20) (1.00) (1.00) (1.00) (2.07) (1.79) (1.00) (1.00)
s(Sal):Sunrise 1.00 1.00 1.00∗∗ 3.80∗∗ 1.00 1.00 1.08∗∗ 3.80∗

(1.00) (1.00) (1.00) (4.70) (1.00) (1.00) (1.15) (4.67)
s(Sal):Day 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

(1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00)
s(Fluo):Night 2.02∗∗ 1.73 1.26 1.27 1.00 1.00 1.00 1.00

(2.42) (2.11) (1.47) (1.48) (1.00) (1.00) (1.00) (1.00)
s(Fluo):Sunrise 1.00 4.14∗∗∗ 3.42∗∗ 4.11∗∗∗ 1.00 1.00 1.28 1.00

(1.00) (4.62) (3.98) (4.70) (1.00) (1.00) (1.45) (1.00)
s(Fluo):Day 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

(1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00)
s(Turb):Night 1.18 1.00 1.00 1.00 1.71 1.65 1.00 1.00

(1.30) (1.00) (1.00) (1.00) (1.90) (1.86) (1.00) (1.00)
s(Turb):Sunrise 4.65∗∗∗ 4.11∗∗ 4.02∗ 1.00 4.53∗∗∗ 4.12∗∗∗ 4.33∗∗ 3.74

(5.24) (4.71) (4.68) (1.00) (5.13) (4.72) (4.91) (4.40)
s(Turb):Day 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

(1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00)
s(Lon,Lat) 20.04∗∗∗ 23.72∗∗∗ 20.60∗∗∗ 21.66∗∗∗

(24.37) (26.87) (24.53) (25.31)
AIC 1122.71 1266.56 1290.21 1320.44 1054.94 972.39 1132.36 1209.56
BIC 1231.44 1361.97 1407.97 1420.49 1224.48 1158.40 1322.09 1405.56
Log Likelihood −529.45 −605.28 −610.54 −630.85 −477.71 −431.60 −510.49 −547.25
Deviance 1506.72 2974.34 3118.14 3741.18 947.34 626.49 1271.20 1767.63
Deviance explained 0.93 0.84 0.86 0.69 0.96 0.97 0.94 0.85
Dispersion 7.70 15.01 16.23 18.97 5.25 3.58 7.30 10.21
R2 0.92 0.82 0.84 0.65 0.95 0.96 0.93 0.81
GCV score 539.71 607.98 628.73 633.21 511.06 484.72 559.92 592.63
Num. obs. 223 223 223 223 223 223 223 223
Num. smooth terms 15 15 15 15 16 16 16 16
∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05
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A Appendix

(B)
Non-Spatial Spatial

38 kHz 70 kHz 120 kHz 200 kHz 38 kHz 70 kHz 120 kHz 200 kHz
(Intercept) 42.89∗∗∗ 36.84∗∗∗ 30.92∗∗∗ 31.64∗∗∗ 43.53∗∗∗ 36.20∗∗∗ 30.94∗∗∗ 32.09∗∗∗

(0.27) (0.47) (0.28) (0.27) (0.48) (0.47) (0.63) (0.56)
s(Bottom):Night 8.62∗∗∗ 8.49∗∗∗ 8.11∗∗∗ 8.40∗∗∗ 5.09∗ 6.46∗∗ 4.84 5.62

(8.94) (8.90) (8.68) (8.85) (6.14) (7.31) (5.82) (6.63)
s(Bottom):Sunset 1.00∗∗∗ 1.90∗∗∗ 1.29∗∗∗ 1.89∗∗∗ 1.00 1.00 1.86∗∗∗ 1.89∗

(1.00) (1.97) (1.48) (1.99) (1.00) (1.00) (1.96) (1.97)
s(Temp):Night 1.00∗∗∗ 4.82∗∗∗ 2.14∗∗∗ 5.52∗∗∗ 3.11∗∗∗ 5.98∗∗∗ 4.83∗∗∗ 6.41∗∗∗

(1.00) (5.76) (2.80) (6.69) (3.91) (6.82) (5.97) (7.53)
s(Temp):Sunset 5.27∗∗∗ 5.12∗∗ 8.00∗∗∗ 6.45∗∗∗ 4.77∗∗∗ 6.05∗∗∗ 7.70∗∗∗ 6.11∗∗∗

(6.27) (6.28) (8.66) (7.35) (5.73) (7.16) (8.45) (7.06)
s(Sal):Night 3.64∗∗∗ 3.30∗∗∗ 3.94∗∗∗ 6.10∗∗∗ 1.00∗∗∗ 1.00 3.74∗∗∗ 1.01∗

(4.53) (4.14) (4.87) (7.11) (1.00) (1.00) (4.66) (1.01)
s(Sal):Sunset 4.63∗∗∗ 4.27∗∗∗ 3.73∗∗∗ 8.03∗∗∗ 4.18∗∗ 5.22∗∗∗ 3.68∗∗∗ 8.38∗∗∗

(5.57) (5.20) (4.58) (8.54) (5.04) (6.21) (4.51) (8.77)
s(Fluo):Night 6.52∗∗∗ 5.73∗∗∗ 6.45∗∗∗ 6.96∗∗∗ 4.42∗∗∗ 3.97∗ 5.74∗∗∗ 4.70∗∗∗

(7.48) (6.60) (7.64) (8.03) (5.48) (4.90) (7.01) (5.86)
s(Fluo):Sunset 5.05∗∗∗ 6.67∗∗∗ 2.29 1.00 5.70∗∗∗ 6.54∗∗∗ 3.50∗ 2.65∗∗∗

(5.98) (7.44) (2.89) (1.00) (6.49) (7.34) (4.33) (3.27)
s(Turb):Night 3.75∗∗∗ 4.71∗ 5.00∗ 4.01 3.09∗∗ 3.89∗∗ 6.11∗∗∗ 3.23∗∗∗

(4.76) (5.67) (6.20) (5.15) (3.94) (4.83) (7.29) (4.18)
s(Turb):Sunset 1.00∗∗ 6.26∗∗∗ 4.71∗∗ 7.58∗∗∗ 5.09∗∗∗ 6.27∗∗∗ 4.85∗∗ 5.04

(1.00) (7.16) (5.68) (8.38) (6.06) (7.16) (5.85) (6.11)
s(Lon,Lat) 26.58∗∗∗ 25.69∗∗∗ 25.51∗∗∗ 26.57∗∗∗

(28.23) (27.86) (27.79) (28.29)
AIC 2941.41 2945.36 3065.03 3030.08 2548.67 2542.51 2830.61 2723.37
Deviance explained 0.89 0.92 0.91 0.93 0.95 0.96 0.95 0.96
R2 0.88 0.91 0.90 0.93 0.94 0.96 0.94 0.96
Num. obs. 602 602 602 602 602 602 602 602
Num. smooth terms 10 10 10 10 11 11 11 11
∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05
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A Appendix

(C)
Non-Spatial Spatial

38 kHz 70 kHz 120 kHz 200 kHz 38 kHz 70 kHz 120 kHz 200 kHz
(Intercept) 63.15∗∗ 19.35∗ 25.49∗∗∗ 14.29 92.97∗∗∗ 43.44∗∗∗ 26.50∗∗∗ 39.40∗∗∗

(21.65) (9.68) (7.47) (10.01) (20.62) (8.98) (7.37) (10.33)
s(Bottom):Night 4.40∗∗∗ 5.84∗∗∗ 5.81∗∗∗ 6.12∗∗∗ 2.82 1.00 1.00 1.00

(5.21) (6.55) (6.50) (6.74) (3.30) (1.00) (1.00) (1.00)
s(Bottom):Sunrise 5.08∗∗∗ 4.99∗∗∗ 5.38∗∗∗ 5.19∗∗∗ 4.58∗∗ 4.27∗∗∗ 5.06∗∗∗ 4.19∗∗∗

(5.50) (5.53) (5.89) (5.64) (5.05) (4.88) (5.62) (4.76)
s(Bottom):Day 1.44∗ 1.00∗∗∗ 2.49∗∗∗ 3.35∗ 1.00∗∗ 1.00∗∗∗ 1.00∗∗ 3.10

(1.73) (1.00) (2.94) (3.90) (1.00) (1.00) (1.00) (3.62)
s(Temp):Night 6.11∗∗∗ 1.00∗∗∗ 2.61 4.20∗ 6.43∗∗∗ 3.97 2.02 4.72∗∗∗

(6.73) (1.00) (3.21) (4.94) (7.00) (4.83) (2.54) (5.54)
s(Temp):Sunrise 7.68∗∗∗ 6.99∗∗∗ 7.92∗∗∗ 6.03∗∗ 7.10∗∗∗ 8.09∗∗∗ 7.69∗∗∗ 8.05∗∗∗

(7.94) (7.88) (8.60) (6.95) (7.56) (8.62) (8.38) (8.54)
s(Temp):Day 1.00 1.00 1.00 2.94 1.00 1.00 1.00 3.62∗∗∗

(1.00) (1.00) (1.00) (3.34) (1.00) (1.00) (1.00) (3.89)
s(Sal):Night 5.40∗∗∗ 4.21∗∗ 5.09∗ 2.18 5.03∗∗∗ 1.00 5.26∗∗∗ 2.86

(6.05) (5.00) (5.91) (2.72) (5.74) (1.00) (6.13) (3.56)
s(Sal):Sunrise 5.08∗∗∗ 6.85∗∗∗ 8.60∗∗∗ 6.95∗∗∗ 4.93∗∗ 7.40∗∗∗ 8.53∗∗∗ 4.87

(6.08) (7.70) (8.89) (7.54) (5.87) (8.16) (8.84) (5.79)
s(Sal):Day 2.58 1.00 1.32 1.00 2.89∗∗ 2.66∗∗∗ 1.00 1.00

(2.98) (1.00) (1.50) (1.00) (3.31) (2.96) (1.00) (1.00)
s(Fluo):Night 4.87∗∗∗ 2.22∗∗∗ 3.88 3.92 5.29∗∗∗ 5.13∗∗∗ 1.00 6.19∗∗

(5.91) (2.80) (4.82) (4.88) (6.36) (6.21) (1.00) (7.17)
s(Fluo):Sunrise 6.43∗∗∗ 4.70∗∗∗ 8.40∗∗∗ 6.64∗∗∗ 6.27∗∗∗ 8.32∗∗∗ 7.44∗∗∗ 7.42∗∗∗

(6.77) (5.68) (8.84) (7.43) (6.64) (8.74) (8.20) (8.07)
s(Fluo):Day 1.00∗∗∗ 2.16∗∗∗ 5.00∗∗∗ 1.00 1.00∗∗ 1.00∗ 5.11∗∗∗ 1.00

(1.00) (2.36) (5.56) (1.00) (1.00) (1.00) (5.67) (1.00)
s(Turb):Night 1.56∗ 2.27 1.00 1.00 1.00∗ 1.56 1.00 1.20

(1.92) (2.79) (1.00) (1.00) (1.01) (1.92) (1.00) (1.36)
s(Turb):Sunrise 3.83∗∗∗ 6.00∗∗∗ 6.23∗∗∗ 5.74∗∗∗ 6.87∗∗∗ 6.34∗∗∗ 3.34∗∗∗ 6.35∗∗∗

(4.50) (6.44) (6.82) (6.19) (7.17) (6.74) (4.19) (6.77)
s(Turb):Day 1.00 1.00 1.47 2.43 1.00 1.00 1.79 2.82

(1.00) (1.00) (1.76) (2.96) (1.00) (1.00) (2.19) (3.30)
s(Lon,Lat) 24.04∗∗∗ 24.83∗∗∗ 25.14∗∗∗ 22.28∗∗∗

(26.66) (27.38) (27.49) (25.59)
AIC 2689.73 2673.54 2451.26 2580.09 2465.45 2412.89 2323.17 2319.48
Deviance explained 0.96 0.97 0.98 0.98 0.98 0.99 0.99 0.99
R2 0.95 0.96 0.98 0.97 0.97 0.98 0.99 0.99
Num. obs. 371 371 371 371 371 371 371 371
Num. smooth terms 15 15 15 15 16 16 16 16
∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05
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A Appendix

③ (A)
Non-Spatial Spatial

38 kHz 70 kHz 120 kHz 200 kHz 38 kHz 70 kHz 120 kHz 200 kHz
(Intercept) −355.57 62.86 −12.24 −773.82 330.45 694.83 886.00 380.21

(1215.52) (1112.02) (951.35) (1108.95) (1257.77) (1383.81) (971.35) (1086.23)
(Bottom):Night 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

(1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00)
s(Bottom):Sunrise 1.01 4.13 4.43∗ 3.86∗ 1.00 2.27 2.15∗ 1.97∗

(1.01) (4.91) (5.21) (4.67) (1.00) (2.75) (2.77) (2.54)
s(Bottom):Day 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

(1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00)
s(Temp):Night 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

(1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00)
s(Temp):Sunrise 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

(1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00)
s(Temp):Day 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

(1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00)
s(Sal):Night 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

(1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00)
s(Sal):Sunrise 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

(1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00)
s(Sal):Day 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

(1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00)
s(Fluo):Night 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

(1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00)
s(Fluo):Sunrise 4.53∗∗∗ 4.86∗∗∗ 4.83∗∗∗ 4.52∗∗∗ 4.50∗∗∗ 4.58∗∗∗ 4.83∗∗∗ 4.54∗∗∗

(4.85) (5.18) (5.16) (4.96) (4.83) (4.90) (5.19) (5.01)
s(Fluo):Day 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

(1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00)
s(Turb):Night 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

(1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00)
s(Turb):Sunrise 6.42∗∗∗ 5.14∗∗∗ 5.48∗∗∗ 5.40∗∗∗ 6.41∗∗∗ 4.80∗∗∗ 5.31∗∗∗ 5.05∗∗∗

(6.67) (5.48) (5.82) (5.84) (6.67) (5.20) (5.67) (5.53)
s(Turb):Day 1.00 1.00 1.00 1.25 1.00 1.00 1.00 1.58

(1.00) (1.00) (1.00) (1.46) (1.00) (1.00) (1.00) (1.96)
s(Lon,Lat) 2.00 10.12 2.00∗∗ 2.00∗∗∗

(2.00) (13.90) (2.00) (2.01)
AIC 3053.96 3138.70 3022.89 3132.03 3052.99 3133.92 3021.19 3124.12
BIC 3144.37 3239.50 3125.73 3233.99 3150.10 3272.77 3122.16 3226.50
Log Likelihood −1500.44 −1539.77 −1481.26 −1536.09 −1498.00 −1526.20 −1480.96 −1532.01
Deviance 9121706.49 12979044.80 7680023.36 12558234.92 8923868.89 11492746.05 7659412.69 12107392.14
Deviance explained 0.66 0.52 0.56 0.43 0.66 0.58 0.56 0.46
Dispersion 46058.95 66266.42 39333.02 64087.13 45510.36 61056.24 39138.43 61820.40
R2 0.61 0.46 0.50 0.36 0.62 0.50 0.51 0.38
GCV score 1448.39 1485.52 1432.51 1479.85 1431.56 1463.47 1412.05 1456.46
Num. obs. 223 223 223 223 223 223 223 223
Num. smooth terms 15 15 15 15 16 16 16 16
∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05
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A Appendix

(B)
Non-Spatial Spatial

38 kHz 70 kHz 120 kHz 200 kHz 38 kHz 70 kHz 120 kHz 200 kHz
(Intercept) 28.90∗∗∗ 19.25∗∗∗ 15.57∗∗∗ 15.00∗∗∗ 27.99∗∗∗ 18.00∗∗∗ 14.58∗∗∗ 14.39∗∗∗

(0.81) (0.68) (0.69) (0.50) (1.69) (1.21) (1.15) (0.80)
s(Bottom):Night 8.50∗∗∗ 8.35∗∗∗ 7.83∗∗∗ 7.62∗∗∗ 1.00∗ 1.57∗∗ 1.00 1.00

(8.91) (8.85) (8.54) (8.46) (1.00) (1.95) (1.00) (1.00)
s(Bottom):Sunset 1.00∗∗∗ 1.00∗∗ 1.15∗∗∗ 1.62∗∗∗ 1.00 1.00 1.00 1.00

(1.00) (1.00) (1.27) (1.81) (1.00) (1.00) (1.00) (1.00)
s(Temp):Night 1.00 1.84∗ 1.00 1.01 2.16 1.12 1.00 1.00

(1.00) (2.33) (1.00) (1.01) (2.76) (1.24) (1.00) (1.00)
s(Temp):Sunset 1.00 1.00 1.00 1.92 1.00 1.00 1.00 1.00

(1.00) (1.00) (1.00) (2.38) (1.00) (1.00) (1.00) (1.00)
s(Sal):Night 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

(1.00) (1.01) (1.00) (1.01) (1.00) (1.00) (1.00) (1.00)
s(Sal):Sunset 1.00 1.00 1.01 1.00 1.00 1.00 1.00 1.00

(1.00) (1.00) (1.01) (1.01) (1.00) (1.00) (1.00) (1.00)
s(Fluo):Night 1.00∗ 1.00∗∗ 2.17∗∗ 1.04∗∗∗ 1.96 1.00 1.00 2.60

(1.00) (1.00) (2.75) (1.07) (2.55) (1.00) (1.00) (3.29)
s(Fluo):Sunset 2.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

(2.48) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00)
s(Turb):Night 1.51∗ 1.28∗∗ 4.29∗∗∗ 4.98∗∗∗ 1.00 1.00 1.32 3.05

(1.89) (1.50) (5.30) (6.09) (1.00) (1.00) (1.57) (3.85)
s(Turb):Sunset 1.00 1.92 1.00 1.00 1.89 1.00 1.00 1.00

(1.00) (2.39) (1.00) (1.00) (2.40) (1.00) (1.00) (1.00)
s(Lon,Lat) 25.50∗∗∗ 26.21∗∗∗ 25.53∗∗∗ 24.50∗∗∗

(28.05) (28.35) (28.10) (27.53)
AIC 4453.14 4311.72 4235.92 3972.48 4354.37 4192.21 4132.82 3887.44
Deviance explained 0.39 0.36 0.33 0.40 0.52 0.51 0.46 0.51
R2 0.38 0.34 0.31 0.38 0.49 0.47 0.43 0.48
Num. obs. 602 602 602 602 602 602 602 602
Num. smooth terms 10 10 10 10 11 11 11 11
∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05
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(C)
Non-Spatial Spatial

38 kHz 70 kHz 120 kHz 200 kHz 38 kHz 70 kHz 120 kHz 200 kHz
(Intercept) 20.58 26.64 13.41 40.78∗∗∗ 29.02 346.35 520.74 59.44∗∗∗

(11.23) (82.38) (96.24) (11.80) (16.44) (229.78) (279.30) (17.66)
s(Bottom):Night 2.72 1.00 1.01 4.99∗∗∗ 1.00 1.00 1.00∗ 1.00

(3.30) (1.00) (1.02) (5.88) (1.00) (1.00) (1.00) (1.00)
s(Bottom):Sunrise 1.54 1.00 1.00 1.52 1.00 1.00 1.00 1.00

(1.89) (1.00) (1.00) (1.84) (1.00) (1.00) (1.00) (1.00)
s(Bottom):Day 1.44∗∗∗ 1.00 1.00 1.00 1.98∗∗ 1.00 1.00 1.00

(1.75) (1.00) (1.00) (1.00) (2.39) (1.00) (1.00) (1.00)
s(Temp):Night 1.00∗ 1.00 1.00 1.00 1.92 1.00 1.00 1.00

(1.00) (1.00) (1.00) (1.00) (2.44) (1.00) (1.00) (1.00)
s(Temp):Sunrise 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

(1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00)
s(Temp):Day 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

(1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00)
s(Sal):Night 1.00 7.95∗∗∗ 8.82∗∗∗ 1.00 1.00 7.95∗∗∗ 8.83∗∗∗ 1.00

(1.00) (8.05) (8.97) (1.00) (1.00) (8.05) (8.97) (1.00)
s(Sal):Sunrise 1.00 1.00 1.00 4.19∗∗ 1.00 1.00 1.00 1.00

(1.00) (1.00) (1.00) (5.12) (1.00) (1.00) (1.00) (1.00)
s(Sal):Day 1.00∗ 1.00 1.00 1.00 1.00 1.00 1.00 1.00

(1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00)
s(Fluo):Night 1.04 1.00 1.00 3.85 1.00 1.00 1.00 4.19

(1.08) (1.00) (1.00) (4.75) (1.00) (1.00) (1.00) (5.12)
s(Fluo):Sunrise 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

(1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00)
s(Fluo):Day 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.97∗

(1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (2.20)
s(Turb):Night 4.59∗∗ 1.00 1.00 2.74∗ 4.71∗∗ 1.00 1.00 2.67

(5.60) (1.00) (1.00) (3.38) (5.73) (1.00) (1.00) (3.27)
s(Turb):Sunrise 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

(1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00)
s(Turb):Day 2.33 1.00 1.00 2.94 2.91 1.00 1.00 3.43

(2.85) (1.00) (1.00) (3.51) (3.51) (1.00) (1.00) (3.88)
s(Lon,Lat) 5.17 2.00 2.00 16.70∗∗∗

(6.93) (2.00) (2.00) (20.98)
AIC 4189.26 5667.89 5779.16 4136.79 4183.99 5669.16 5778.41 4106.43
Deviance explained 0.30 0.39 0.43 0.34 0.33 0.39 0.44 0.43
R2 0.25 0.35 0.40 0.28 0.27 0.35 0.40 0.36
Num. obs. 371 371 371 371 371 371 371 371
Num. smooth terms 15 15 15 15 16 16 16 16
∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05
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Figure A3: Variation of physical parameters along depths over three contrasted Senegalese
areas: (A) southern continental shelf; (B) southern high sea and (C) northern
continental shelf) during the AWA sea survey.

A)

B)

C)
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Figure A4: The smooth terms resulting from the spatial GAM (GAMs) model between oceano-
graphic condition parameters (sea temperature, fluorescence, salinity and turbidity)
grouped by diel period (the variable is called nightEsu in the model) (day, sunset,
night and sunrise) and SSL descriptors: (1) SSL thickness and (2) SSL depth over
three different areas (A: southern continental shelf of Senegal; B: southern high sea
of Senegal; C: northern Senegal).

①
A)
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A.3 Appendix 3: Study of the impact of environmental
variables on scattering layers using signature-based re-
gression

A.3.1 Spatial PCA results

On high sea of southern Senegal

• At 38, kHz axis 1 is positively correlated with the variables (Temp, Sal), (Sal,Sal), (Fluo, Temp),
(Fluo, Sal), (Fluo, Fluo), (Turb,Temp) and (Turb,Sal) and negatively correlated with the vari-
ables (Sal) and (Fluo) while axis 2 is positively correlated with the variables (Temp,Turb),
(Sal,Turb), (Fluo,Turb) and (Turb,Turb) and negatively correlated with the variable (Turb) ;
axis 3 is positively correlated with the (Sal,Temp) and (Temp) variables and negatively corre-
lated with the (Temp,Temp) and (Temp,Fluo) variables, while axis 4 is negatively correlated
with the bottom variable; axis 5 is positively correlated with the (Turb,Fluo), (Sal,Fluo) and
(Turb,Fluo) variables.

• At 70 kHz, axis 1 is positively correlated with the (Fluo,Fluo), (Fluo,Turb), (Turb,Fluo) and
(Turb,Turb) variables and negatively correlated with the (Fluo) and (Turb) variables, while axis
2 is positively correlated with the (Sal,Fluo) and (Sal,Turb) variables; axis 3 is positively corre-
lated with the (Sal) and (Turb,Temp) variables and negatively correlated with the (Temp,Sal),
(Sal,Sal), (Fluo,Sal) and (Turb,Sal) variables, while axis 4 is positively correlated with the
(Temp) variable and negatively correlated with the (Temp,Temp), (Sal,Temp) and (Fluo,Temp)
variables; axis 5 is positively correlated with the bottom variable and negatively correlated with
the (Temp,Fluo) and (Temp,Turb) variables.

• At 120 kHz, axis 1 is positively correlated with the variables (Temp,Turb), (Sal,Fluo), (Sal,Turb),
(Fluo,Temp), (Fluo,Turb), (Temp,Fluo), (Turb,Fluo) and (Turb,Turb) and negatively corre-
lated with the variable (Turb), while axis 2 is positively correlated with the variables (Temp),
(Temp,Fluo), (Fluo,Fluo) and (Turb,Temp) and negatively correlated with the variables (Fluo)
and (Temp,Temp); axis 3 is negatively correlated with the (Temp,Sal), (Sal,Sal), (Fluo,Sal) and
(Turb,Sal) variables, while axis 4 is negatively correlated with the (Sal,Temp) and axis 5 is
negatively correlated with bottom and positively with (Sal) .

• At 200 kHz, axis 1 is positively correlated with the variables (Fluo,Temp), (Fluo,Sal), (Fluo,Fluo)
and (Fluo,Turb) and negatively correlated with the variables (Fluo) and (Sal,Fluo) while axis 2
is positively correlated with the variable (Sal,Sal) and negatively correlated with the variables
(Sal), (Temp,Sal), (Temp,Fluo) and positively correlated with the variable (Sal,Sal) ; axis 3 is
positively correlated with the variables (Turb,Sal), (Turb,Fluo) and (Turb,Turb) and negatively
correlated with the variable (Turb), while axis 4 is positively correlated with the variable (Temp)
and negatively correlated with the variable (Temp,Temp); axis 5 is positively correlated with
the variables (Turb,Temp) and bottom and negatively correlated with the variables (Sal,Temp),
(Temp,Turb) and (Sal,Turb).
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In northern Senegal

• At 38 kHz , axis 1 is positively correlated with the variables (Temp,Temp), (Temp,Sal), (Sal,Temp),
(Sal,Sal), (Fluo,Temp) and negatively correlated with the variables (Temp) and (Sal), while axis
2 is positively correlated with the variables (Turb,Temp), (Turb,Sal) and (Turb,Fluo) and nega-
tively correlated with the variable (Turb) ; axis 3 is positively correlated with the (Temp,Fluo),
(Sal,Fluo) and (Fluo,Fluo) variables and negatively correlated with the (Fluo) variable, while
axis 4 is positively correlated with the (Turb,Turb) variable and negatively correlated with the
(Temp,Turb) and (Sal,Turb) variables; axis 5 is negatively correlated with the (Fluo,Turb) and
bottom variables and positively with (Fluo,Sal).

• At 70 kHz, axis 1 is positively correlated with the (Temp,Temp), (Temp,Sal), (Temp,Turb),
(Sal,Temp), (Sal,Sal) and (Sal,Turb) variables and negatively correlated with the (Temp), (Sal)
and (Turb) variables, while axis 2 is positively correlated with the (Fluo) variable and negatively
correlated with the (Fluo,Temp), (Fluo,Sal) and (Fluo,Fluo) variables; axis 3 is positively corre-
lated with the variable (Turb,Fluo) and negatively correlated with the variables (Temp,Fluo) and
(Fluo,Turb), while axis 4 is positively correlated with the variables (Sal,Fluo), (Turb,Temp) and
(Turb,Sal); axis 5 is positively correlated with the variable (Turb,Turb) and negatively correlated
with bottom.

• At 120 kHz, axis 1 is positively correlated with the variables (Temp,Temp), (Temp,Sal), (Sal,Temp)
and (Sal,Sal) and negatively correlated with the variables (Temp) and (Sal), while axis 2 is pos-
itively correlated with the variables (Turb,Temp), (Turb,Sal) and (Turb,Fluo) and negatively
correlated with the variable (Temp,Fluo) ; axis 3 is positively correlated with the variables
(Temp,Turb), (Sal,Fluo), (Sal,Turb) and (Fluo,Turb) and negatively correlated with the vari-
ables (Turb), (Fluo,Temp), (Fluo,Sal) and (Turb,Turb), while axis 4 is negatively correlated with
the variable (Fluo) and positively correlated with the variable (Fluo,Fluo); axis 5 is positively
correlated with the variable bottom.

• At 200 kHz , axis 1 correlates positively with the variables (Temp,Temp), (Temp,Sal), (Sal,Temp)
and (Sal, Sal) and negatively with the variables (Temp) and (Sal), while axis 2 correlates pos-
itively with the variables (Turb,Temp), (Turb,Sal) and (Turb,Fluo) and negatively with the
variables (Turb) and (Turb,Turb); axis 3 is correlated with the (Fluo) and (Temp,Turb) vari-
ables and negatively with the (Fluo,Temp), (Fluo,Sal) and (Fluo,Fluo) variables, while axis 4 is
negatively related to the (Temp,Fluo) and (Sal,Fluo) variables; axis 5 is positively related to the
bottom variable and negatively related to the (Sal,Turb) and (Fluo,Turb) variables.

A.3.2 Clustering results

• On high sea of southern Senegal
For all frequencies also, the 1st component is more characteristic of the classes. At 38kHz, Class
1 is characterised by low values of signatures coefficients related to (Temp, Sal), (Sal,Sal), (Fluo,
Temp),(Fluo, Sal), (Fluo, Fluo), (Turb,Temp) and (Turb,Sal), while Class 2 has the opposite
effect. At 70 kHz Class 1 is characterised by low values of signatures coefficients related to
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(Fluo,Fluo), (Fluo,Turb), (Turb,Fluo) and(Turb,Turb), while Class 2 has the opposite effect. At
120 kHz Class 1 is characterised by low values of signatures coefficients related to (Temp,Turb),
(Sal,Fluo), (Sal,Turb),(Fluo,Temp), (Fluo,Turb), (Temp,Fluo), (Turb,Fluo) and (Turb,Turb),
while Class 2 has the opposite effect. At 200 kHz, Class 1 is characterised by low values of
(Fluo,Temp), (Fluo,Sal), (Fluo,Fluo)and (Fluo,Turb), while Class 2 has the opposite effect.

• In northern Senegal
For all frequencies also, the 1st component is more characteristic of the classes. At 38kHz, Class
1 is characterised by low values of signatures coefficients related to (Temp,Temp), (Temp,Sal),
(Sal,Temp),(Sal,Sal), (Fluo,Temp), while Class 2 has the opposite effect. At 70 kHz Class 1
is characterised by low values of signatures coefficients related to Temp,Temp), (Temp,Sal),
(Temp,Turb),(Sal,Temp), (Sal,Sal) and (Sal,Turb), while Class 2 has the opposite effect. At 120
kHz Class 1 is characterised by low values of signatures coefficients related to (Temp,Temp),
(Temp,Sal), (Sal,Temp)and (Sal,Sal), while Class 2 has the opposite effect. At 200 kHz, Class
1 is characterised by low values of (Temp,Temp), (Temp,Sal), (Sal,Temp)and (Sal, Sal), while
Class 2 has the opposite effect.
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