
Université de Lille

Doctoral School MADIS

University Department Inria Lille

Thesis defended by Claire Soyez-Martin

Defended on 14th December, 2023

In order to become Doctor from Université de Lille

Academic Field Computer science
Speciality Theoretical computer science

Thesis Title

From semigroup theory to vectorization:

recognizing regular languages
Thesis supervised by Sylvain Salvati Supervisor

Michaël Hauspie Co-Supervisor
Charles Paperman Co-Monitor

Committee members

Referees Sylvain Schmitz Professor at Université Paris
Cité

Damien Pous Senior Researcher at CNRS
Examiners Sophie Tison Professor at Université de

Lille
Tatiana Starikovskaya Associate Professor at ENS

Ulm
Pierre Senellart Professor at ENS Ulm Committee President

Supervisors Sylvain Salvati Professor at Université de
Lille

Michaël Hauspie hdr Associate Professor at
Université de Lille

Charles Paperman Associate Professor at Univer-
sité de Lille

Rectangle

FreeText
Referees

FreeText
Examiners

FreeText
Supervisors

FreeText
Comonitor

Université de Lille

Doctoral School MADIS

University Department Inria Lille

Thesis defended by Claire Soyez-Martin

Defended on 14th December, 2023

In order to become Doctor from Université de Lille

Academic Field Computer science
Speciality Theoretical computer science

Thesis Title

From semigroup theory to vectorization:

recognizing regular languages
Thesis supervised by Sylvain Salvati Supervisor

Michaël Hauspie Co-Supervisor
Charles Paperman Co-Monitor

Committee members

Referees Sylvain Schmitz Professor at Université Paris
Cité

Damien Pous Senior Researcher at CNRS
Examiners Sophie Tison Professor at Université de

Lille
Tatiana Starikovskaya Associate Professor at ENS

Ulm
Pierre Senellart Professor at ENS Ulm Committee President

Supervisors Sylvain Salvati Professor at Université de
Lille

Michaël Hauspie hdr Associate Professor at
Université de Lille

Charles Paperman Associate Professor at Univer-
sité de Lille

Rectangle

FreeText
Referees

FreeText
Examiners

FreeText
Supervisors

FreeText
Comonitor

Université de Lille

École doctorale MADIS
Unité de recherche Inria Lille

Thèse présentée par Claire Soyez-Martin

Soutenue le 14 décembre 2023

En vue de l’obtention du grade de docteur de l’Université de Lille

Discipline Informatique
Spécialité Informatique théorique

Titre de la thèse

De la théorie des semigroupes à la
vectorisation : valider les langages

réguliers

Thèse dirigée par Sylvain Salvati directeur
Michaël Hauspie co-directeur
Charles Paperman co-encadrant

Composition du jury

Rapporteurs Sylvain Schmitz professeur à l’Université Paris
Cité

Damien Pous directeur de recherche au
CNRS

Examinateurs Sophie Tison professeure à l’Université de
Lille

Tatiana Starikovskaya mcf à l’ENS Ulm
Pierre Senellart professeur à l’ENS Ulm président du jury

Directeurs de thèse Sylvain Salvati professeur à l’Université de
Lille

Michaël Hauspie mcf hdr à l’Université de
Lille

Charles Paperman mcf à l’Université de Lille

Rectangle

FreeText
Rapporteurs

FreeText
Examinateurs

FreeText
Directeurs de thèse

FreeText
Encadrant de thèse

vii

There is always another secret.

Kelsier

viii

Remerciements

Je tiens à remercier Damien Pous et Sylvain Schmitz pour avoir accepté de rapporter ma
thèse. Leurs retours détaillés ont permis d’améliorer ce manuscrit, et permettront de l’améliorer
encore pour la version finale qui sera diffusée. Merci également à Pierre Senellart, Tatiana
Starikovskaya et Sophie Tison, qui me font l’honneur d’être membres du jury de soutenance.

Merci à mes encadrants, ne serait-ce que pour m’avoir supportée trois ans. Merci à Michaël
Hauspie, avec qui il a été possible de parler technique, et qui nous a proposé d’utiliser Rust.
Merci à Charles Paperman, Seigneur du Chaos et Éminence Grise, qui a proposé en moyenne une
dizaine d’idées par jour (parfois il devait dormir, il paraît, ça baisse la moyenne ; mais ce n’est
peut-être qu’une légende) et a fait le lien avec l’administration. Merci à Sylvain Salvati, chef
d’équipe et Lambdaborn, qui a permis de créer de l’ordre à partir du chaos des idées. J’aimerais
aussi remercier tous les membres de l’équipe LINKS pour leur soutien et leurs conseils.

Cette thèse n’aurait pas eu la même ambiance sans le formidable bureau des doctorants.
Pour cette raison, merci à Oliver, le nouveau Chief Hapiness Manager de l’équipe, à Corentin,
partenaire indispensable au duo avec Oliver, et à Nicolas, le meilleur contrepoint au chaos
ambiant. Merci aussi à Paul et Momar, les anciens doctorants du labo, qui m’ont permis de
prendre mes marques.

Enfin, je remercie ma famille et mes amis, à qui je dédie cette thèse. Merci à Steve pour sa
présence et son soutien constants, y compris lorsque l’on était dans le même Titanic de rédaction
de thèse. Merci à Timothée, Vincent, Jofrey et Simon, garder contact avec moi ce n’est pas
franchement facile, ça mériterait une médaille. Mais surtout, merci de me rappeler pourquoi
c’est important de continuer d’avancer. Merci à Quentin, capable de traverser régulièrement
la moitié de la France pour revoir des amis. Je ne comprendrai jamais comment tu fais pour
tenir. Merci à Antoine, sans qui ne ne serait pas arrivée jusque là. Et bien sûr, merci à vous
qui lisez cette thèse !

ix

x Remerciements

Abstract xi

From semigroup theory to vectorization: recognizing regular languages
Abstract

The pursuit of optimizing regular expression validation has been a long-standing challenge, spanning
several decades. Over time, substantial progress has been made through a vast range of approaches,
spanning from ingenious new algorithms to intricate low-level optimizations.
Cutting-edge tools have harnessed these optimization techniques to continually push the boundaries
of efficient execution. One notable advancement is the integration of vectorization, a method that
leverages low-level parallelism to process data in batches, resulting in significant performance en-
hancements. While there has been extensive research on designing handmade tailored algorithms for
particular languages, these solutions often lack generalizability, as the underlying methodology cannot
be applied indiscriminately to any regular expression, which makes it difficult to integrate to existing
tools.
This thesis provides a theoretical framework in which it is possible to generate vectorized programs
for regular expressions corresponding to rational expressions in a given class. To do so, we rely on the
algebraic theory of automata, which provides tools to process letters in parallel. These tools also allow
for a deeper understanding of the underlying regular language, which gives access to some properties
that are useful when producing vectorized algorithms. The contribution of this thesis is twofold.
First, it provides implementations and preliminary benchmarks to study the potential efficiency of
algorithms using algebra and vectorization. Second, it gives algorithms that construct vectorized
programs for languages in specific classes of rational expressions, namely the first order logic and its
subset restricted to two variables.

Keywords: regular expression, algebraic theory of automata

De la théorie des semigroupes à la vectorisation : valider les langages réguliers
Résumé

L’évaluation efficace des expressions régulières constitue un défi persistant depuis de nombreuses dé-
cennies. Au fil du temps, des progrès substantiels ont été réalisés grâce à une variété d’approches,
allant de nouveaux et ingénieux algorithmes à des optimisations complexes de bas niveau.
Les outils de pointe de ce domaine utilisent ces techniques d’optimisation, et repoussent constamment
les limites de leur efficacité. Une avancée notoire réside dans l’intégration de la vectorisation, qui
exploite une forme de parallélisme de bas niveau pour traiter l’entrée par blocs, entraînant ainsi
d’importantes améliorations de performances. Malgré une recherche approfondie sur la conception
d’algorithmes sur mesure pour des tâches particulières, ces solutions manquent souvent de généricité,
car la méthodologie sous-jacente à ces algorithmes ne peut pas être appliquée de manière indiscriminée
à n’importe quelle expression régulière, ce qui rend difficile son intégration dans les outils existants.
Cette thèse présente un cadre théorique permettant de générer des programmes vectorisés particuliers
capables d’évaluer les expressions régulières correspondant aux expressions rationnelles appartenant
à une classe logique donnée. L’intérêt de ces programmes vectorisés vient de l’utilisation de la théorie
algébrique des automates, qui offre certains outils algébriques permettant de traiter les lettres en pa-
rallèle. Ces outils permettent également d’analyser les langages réguliers plus finement, offrent accès
à des optimisations des programmes vectorisés basées sur les propriétés algébriques de ces langages.
Cette thèse apporte des contributions dans deux domaines. D’une part, nous présentons des implé-
mentations et des benchmarks préliminaires, afin d’étudier les possibilités offertes par l’utilisation de
l’algèbre et de la vectorisation dans les algorithmes d’évaluation des expressions régulières. D’autre
part, nous proposons des algorithmes capables de générer des programmes vectorisés reconnaissant
les langages appartenant à deux classes d’expressions rationnelles, la logique du premier ordre et sa
restriction aux formules utilisant au plus deux variables.

Mots clés : expression régulière, théorie algébrique des automates

Inria Lille
40, avenue Halley - Bât A - Park Plaza, 59650 Villeneuve d’Ascq - France

xii Abstract

Contents

Remerciements ix

Abstract xi

Contents xiii

Introduction 1

1 Preliminaries 7
1.1 Automata theory . 8
1.2 Algebra . 15
1.3 Characterization of some known classes of languages 24
1.4 Boolean circuits . 30

2 Experimenting on regex validation 37
2.1 Regexes: concept and usage . 39
2.2 Compile-time optimization of automata execution 49
2.3 Simple sequential algorithms . 61
2.4 Semigroups and parallel algorithms . 66

3 Vectorial circuits 87
3.1 Bit-level parallelism . 88
3.2 Validating regexes over chunks of letters . 94
3.3 Classes of vectorial circuits . 100
3.4 Streaming with circuits . 113

4 From semigroups to vectorial circuits 117
4.1 Evaluation programs . 118
4.2 Compilation procedure of semigroups in Ap 126
4.3 Compilation procedure of semigroups in DA 133

Conclusion and future prospects 139
Contributions . 139
Future prospects . 140

A Supplementary benchmarks 143
A.1 Benchmark on Intel processors . 143
A.2 Benchmark on an AMD processor: the node chiclet 150

xiii

xiv Contents

Bibliography 153

Contents 159

Introduction

In recent years, there has been a growing demand for high-performance software systems that
can handle vast amounts of data efficiently. Online resources such as websites need to dif-
ferentiate between normal traffic, which can be heavy, and denial-of-service (DoS) attacks.
Bioinformatics deal with large DNA sequences that need to be efficiently handled in order to
find patterns, search for particular properties, or compare sequences. Data crawling has become
pervasive and demanding on the systems, as databases grow in size, and as larger XML or Json
documents need to be parsed. One critical aspect of building such systems is data validation,
ensuring that input data meets specific criteria before processing. Often, these criteria are
specified using regular expressions. Regular expressions allow developers to specify complex
patterns that the input data must adhere to, enabling the validation of email addresses, phone
numbers, and other structured data formats effectively. As of today, regular expressions can
be complex, using groups, backreferences and lookaheads. Because of the increasingly complex
operations used by regular expressions and the increasing amounts of data to process, run-
time data validation can be computationally expensive, leading to potential bottlenecks during
program execution. To avoid these bottlenecks, the state-of-the-art tools for processing regu-
lar expressions use optimized programs depending on the complexity of the input expressions.
The complete set of regular expressions is difficult to handle, yet a subset of expressions is
directly related to rational expressions, which are a way of modelling the structure of regular
languages. This link allows for a formalization of a subset of data validation using regular
languages. Therefore, creating efficient algorithms that recognize regular languages is crucial
for the development of softwares that need to validate large amounts of data.

Algorithms recognizing regular languages have evolved with time, going from simple (some-
times not so simple) string matching algorithms [11, 42, 18, 6, 55, 34, 54] to pattern-matching
algorithms capable of recognizing any regular language [5], to approximate pattern-matching
algorithms [79, 53, 78], which are able to match words against a given pattern with a bounded
number of mismatches. Each of these kinds of algorithms has found application in real-world
tools, such as the famous grep. These tools, especially grep, have evolved alongside the re-
search on regular languages recognition, as both the complexity of the syntax and the efficiency
of the algorithms (and their implementation) increased. These algorithms can also be split into
categories depending on the data structures they use: some directly reason on the structure of
the regular expressions (notably backtracking algorithms), some build a nondeterministic finite
automaton then determinize it on the fly [74], others explicitly determinize that automaton to
execute it in linear time. As of today, the state-of-the-art tools that perform data validation
use a combination of algorithms depending on the structure of the regular expression given to
them. In particular, they avoid looking at every character of the input data by skipping most
characters [31]. Indeed, looking sequentially at each character is often not necessary and leads
to performance issues, and so it must be avoided as much as possible. Thus, modern tools are
experts at skipping most of the data to look only at the interesting parts.

1

2 Introduction

How do these programs know what parts of the data are interesting to look at? The short
answer is they don’t really know. Some algorithms are used to decompose the regexes and find
the sub-patterns that can be processed to skip characters, but usually these sub-patterns are just
strings of characters, that can be optimized using the Boyer-Moore algorithm [11]. But, aside
from strings of characters, very few sub-patterns are actually optimized in a regular expression.
One reason behind that sad reality is that most tools (and the underlying algorithms) are
designed to be general: they must be able to process any regular expression, that is not known
in advance. No optimization is possible before knowing the regular expression to be matched
against data, and thus any specific optimization must be made at runtime, which rapidly
becomes too costly, as the time taken to optimize the data structures outweighs the gain from
these optimized structures.

Therefore, one possible path to explore in order to produce even more efficient programs than
the state of the art is to suppose that the regular expressions are known in advance. Currently,
this approach is mostly used by parsers such as lex or Flex. Aside from that, extensive
research has been conducted in order to produce efficient programs for given languages, such as
UTF-8 encoding [40], and have led to implementations in some popular libraries (notably the
SimdJSON library [45]). The programs produced take into account the properties of the studied
languages and use them to optimize the search, which leads to impressive results. However, little
to no research has been done on generalizing the work done for these specific languages. One
of the challenges of this generalization is the fact that automatically tailoring a data validation
algorithm for any given language is vastly different from tailoring a data validation algorithm
for a specific chosen language. Depending on the properties of the language, different kinds of
optimizations might be more adapted. This thesis attempts at following the lead of lex and
Flex, by considering some of these possible optimizations.

One broad kind of optimization consists in producing branch-free programs, which avoid con-
ditional statements during the execution of the program. This leads to more efficient programs,
as conditional statements tend to slow them down, especially when they are mispredicted.
While complete avoidance of conditional statements is not always achievable, the emphasis is
placed on minimizing their usage. The exact structure of such programs varies depending on
the regular expression, but the core principle of this kind of optimization is to perform compu-
tations that do not depend on the ongoing search state. One common strategy in this line of
optimization consists in leveraging lookup tables to simulate automaton-like behavior without
branching depending on the state of the search and the value of the data characters. Instead,
the state of the search is updated using the lookup tables’ entries corresponding to the current
state of the search. Another optimization strategy consists in processing larger portions of the
input data in one CPU cycle. The most common example is data parallelism, where the data is
divided into segments, which are then concurrently processed by individual CPU cores. Thus,
in one CPU cycle, as many characters as the number of cores are processed, which increases
efficiency by a similar factor.

These two optimization approaches can be effectively used together within a single algo-
rithm. One method to combine them is to use vectorization, a technique that relies on a
particular form of parallelism called bit-level parallelism. This form of parallelism consists in
using particular operations, that we refer to as bit-level parallel operations. In practice, these
theoretical operations are implemented as SIMD (Single Instruction Multiple Data) instruc-
tions. This name denotes the ability of bit-level parallel operations to handle a batch of data,
also called a vector, in one CPU cycle, contrary to usual instructions which only handle a
single character per cycle. Several models have been developed to study bit-level parallelism.
Notably, Pratt et al. [62] introduced a restricted model of RAM called vector machines, which

Introduction 3

relies on bitwise boolean operations and shifts. This paper, along with some others [32, 69],
led to the formulation of a parallel computation thesis by Goldschlager in his thesis [30]. When
vectorization is employed for data validation, the data is divided in batches, the size of which is
equal to that of a computer word. These batches are processed by performing a given sequence
of vectorized operations on each batch, which computes some information, notably a vector,
which is then used to update the state of the search. This approach can be seen as a general-
ization of lookup table concepts applied to parallelism, as it handles batches of data without
conditional statements to update the state of the search.

When used for data validation, vectorized algorithms are not constructed directly from the
automaton of the considered language. Indeed, an automaton is inherently sequential. There
is no obvious way to accommodate this kind of sequentiality to processing data by batches.
In order to construct a vectorized algorithm equivalent to a given automaton, it is necessary
to go through some intermediary steps to convert the automaton into a data structure more
adapted to vectorization. When considering a given fixed language, it is possible to construct
a data structure tailored to the properties of the regular language to recognize. However, it is
hard to generalize that method to any language, since it would require to automatically detect
the properties of a given language. The strategy considered in this thesis uses semigroups, a
tool from the algebraic theory of automata, to study some of these properties. Semigroups
are linked to regular languages, as it is always possible to compute the syntactic semigroups
of a regular language. Using this connection, we can use semigroups to study the properties
of the languages. This area of research has been extensively studied, and numerous classes of
semigroups have been defined using some interesting properties. Consequently, the goal of this
thesis is to study the following question:

How can we leverage the algebraic theory of automata to produce, given any
regular language in a fixed class, an efficient vectorized program that recognizes

the language?

Semigroups are particularly useful for vectorization. Indeed, their algebraic properties are
amenable to parallel computations methods such as map/reduce. We can map each letter of
a word to its corresponding semigroup element, then compute in parallel pairwise products
and recursively evaluate the value of the whole input. This method of computation can be
implemented with SIMD instructions on each batch that is processed. Taking advantage of
properties of particular semigroups, this kind of parallel computation can be further optimized
with SIMD instructions. For example, a sequence of well-chosen products can then be translated
into a small vectorized program. In this case, it is then possible to produce vectorized programs
capable of calculating the product of an entire sequence of semigroup elements.

Such a vectorized program can be used for data validation. Indeed, for a given input word,
it is possible to compute the corresponding sequence of elements of the syntactic semigroup.
From there, using a vectorized program that computes the product of any sequence of elements
in that semigroup, we can obtain the element to which the input word evaluates. The value of
that element then determines whether the initial word belongs to the language.

Among the various semigroup classes, two classes are the focus of this thesis, because of
their numerous characterizations and properties. First, the class Ap of aperiodic semigroups
has been the main drive in this work. This class of semigroups corresponds to the class of lan-
guages FO[<], the first-order logic equipped with the order relation. It is of particular interest,
as a remarkable result of Serre [67] establishes the equivalence between the class Ap and a
class of programs characterized by a limited set of operations, all of which are bit-level parallel

4 Introduction

operations. This result completes the one proved by Bergeron and Hamel [8], who stated that
any language in Ap can be recognized by what they called a vector algorithm. However, these
algorithms have some strong pre-requisites: Serre’s result assumes access to Linear Temporal
Logic (LTL) formulas capable of recognizing the target languages. Unfortunately, those formu-
las introduce some challenges, as they are hard to compute from a given regular expression,
as shown by a result of Wilke [77]. As a consequence, generating programs based on these
formulas becomes laborious, potentially demanding an extensive runtime.

The second class of semigroups studied in this thesis is DA, which is equivalent to the
logical class FO2[<] of first-order formulas that use at most two variables. This class is a subset
of Ap, and so all the results in that class can be applied to DA. However, to find a class of
programs equivalent to DA, it is necessary to restrict the available operations. Among the
numerous characterizations of DA, the class has been shown to be equivalent to a class of
programs called turtle programs, which can be recognized using bit-level parallel operations.
Yet, turtle programs introduce a significative complexity, as proofs showing the equivalence
with FO2[<] are indirect and not constructive [19, 73]. They are of no use to actually compile
automata into formulas or vectorized programs, but suggest that the size of those programs
may be significantly large.

To summarize, both the classes Ap and DA have properties making them ideal to be
handled with vectorized programs but, with the current results, either those vectorized programs
are too large to be usable in practice, or there is no known direct algorithm to construct them.
This thesis provides two general algorithms that compute vectorized programs: the first one,
given a semigroup in Ap, produces a vectorized program that computes the product of any
sequence of elements of that semigroup. The second one has a similar outcome for a given
semigroup in DA. In order to generalize the formalization of these two algorithms, we introduce
a global framework using what we call evaluation programs.

In order to measure the efficiency of the vectorized programs presented in this thesis, a
testing framework has been developed, using the programming language Rust. This code gave
some interesting results shown in the benchmarks presented in the thesis, giving insights on
what the use of vectorization and semigroups can offer in terms of speedup. It initiates a
practical study of the effective efficiency of those tools, and shows that efficiently encoding the
programs presented in the main results of this thesis could be interesting.

Structure of the thesis. We now give an overview of the contents of this thesis. The
document in divided in five chapters. Chapter 1 gives the preliminary definitions and results
essential for the rest of the thesis. It encompasses automata theory, algebra and boolean
circuits, which form the core areas of our research. In particular, this chapter defines the two
classes of languages that are the subject of our two main results.

Chapter 2 serves as an initial benchmarking stage, offering insights into the potential en-
hancements that algebra can bring to existing regular expressions processing algorithms. The
first section introduces regular expressions, which are used for defining languages, notably
through standards such as IEEE Posix. This section provides an overview of the existing types
of algorithms used to process them. The rest of the chapter is dedicated to benchmarks. The
second section describes the methodology, along with the specificities of the chosen framework.
The third section describes the standard algorithms that have been implemented in the bench-
mark’s framework, and gives the results obtained for these algorithms. The fourth section
describes new algorithms that leverage algebra in an attempt to improve the results of the
usual algorithms. It also presents variations of those algorithms that could be more efficient.
Benchmark results are presented for each of those algorithms.

Introduction 5

Chapter 3 introduces bit-level parallelism and a circuit-based model known as vectorial cir-
cuits. The first section defines bit-level parallelism, with a focus on the specific form considered
in this thesis, streaming bit-level parallelism, which was first introduced by Lamport [44]. The
second section formalizes streaming bit-level parallelism as an automaton whose alphabet is a
set of words of fixed size. A few implementations of regular expressions using SIMD are given,
along with a small benchmark of these implementations. The third section introduces vectorial
circuits as an alternative formalization of streaming bit-level parallelism, which is more adapted
to represent the SIMD implementations. Two particular classes of circuits are defined in this
section: ADD-vectorial circuits and Sweeping-vectorial circuits. These two classes will be the
main focus of chapter 4. Before that, the fourth section of the chapter discusses some potential
methods for adapting circuits to streaming. The adaptation of vectorial circuits presented in
this section is inspired by an article by Murlak et al. [51].

Chapter 4 presents and proves the two theoretical contributions of this thesis. The first
contribution introduces an algorithm that, given a language in the class Ap, constructs an
ADD-vectorial circuit recognizing the language. The second contribution introduces a similar
algorithm which, given a language in the class DA, constructs a Sweeping-vectorial circuit
recognizing that language.

6 Introduction

Chapter1
Preliminaries

Outline of the current chapter
1.1 Automata theory 8

1.1.1 Notations . 8
1.1.2 Words . 8
1.1.3 Automata . 8
1.1.4 Rational expressions . 11
1.1.5 First-order logic . 12

1.2 Algebra 15
1.2.1 Semigroups and monoids . 15
1.2.2 Languages and semigroups . 16
1.2.3 Green’s relations . 20
1.2.4 Cayley graphs . 23

1.3 Characterization of some known classes of languages 24
1.3.1 FO[<] . 24
1.3.2 FO2[<] . 27

1.4 Boolean circuits 30
1.4.1 Definitions . 30
1.4.2 Classes of boolean circuits . 32

This thesis makes a connection between regular languages and a variation of boolean circuits,
following the work of Bergeron, Hamel [8], and Serre [67]. To do so, languages are characterized
through their algebraic properties, which lead to the generation of programs optimized for some
classes of languages. Before detailing that work, we need to define all those terms. This chapter
gives the background needed in logics and algebra to read the rest of this thesis.

We begin by talking about automata, which define regular languages. In section 1.1, we
define automata, along with some other characterizations. We also introduce first-order logic,
defining the class of languages on which this thesis is focused. Then, in section 1.2, we give
definitions for the algebraic tools that are needed. Using the definitions from both of these
sections, we give in section 1.3 the characterizations of the two classes that are used in this
thesis: FO[<] and FO2[<]. Finally, we define boolean circuits, which form the basis on which
vectorial circuits will be defined (see section 3.3) and we present various circuit classes.

7

8 CHAPTER 1. Preliminaries

1.1 Automata theory
This thesis relies on the algebraic theory of automata in order to recognize regular languages.
Indeed, some algebraic properties are useful to take into account the intricacies of the studied
languages. This section presents various logical formalisms that describe classes of regular
languages, notably first order logic over finite words, as all the contributions of this thesis focus
on fragments of this logic.

1.1.1 Notations
For any n ∈ N, we write [n] for the set {0, . . . , n − 1}. Given a set S, we denote by |S| its
cardinality. For the sake of conciseness, a singleton is denoted by its unique element when the
context makes it clear that it is a set: given an element u, the singleton {u} is denoted by u.

1.1.2 Words
Let Σ be an alphabet, i.e. a set of elements called letters. Given an integer n ∈ N, a finite
word of size n on the alphabet Σ is a sequence a0a1 · · · an−1 such that, for any index i ∈ [n],
ai ∈ Σ. A word a0 · · · an is the concatenation of the letters a0 to an. The concatenation of two
words w1 and w2 can be denoted either by w1w2 or, more explicitly, by w1 ·w2. We denote the
empty word of Σ∗ by ε. We use the exponent notation to denote repetition: for any letter a
and any integer n > 0, an denotes the word a · · · a of size n. We also define a0 = ε. The union
of all possible exponents of a is denoted by a∗; formally a∗ =

⋃
n∈N a

n. These notations can be
extended to sets. Given a set A ⊆ Σ of letters, An is the set of words of size n that can be
obtained by concatenating n letters of A; formally, An = {a0 · · · an−1 | ∀i ∈ [n], ai ∈ A}. We
also set A0 = {ε}. Similarly, A∗ is the set of any word that can be formed by concatenating
any number of letters of A: A∗ =

⋃
n∈NA

n.
A word v = v0 · · · vn is an infix (also called factor or subword) of another word w = w0 · · ·wm

if there exists an index i < m−n such that the words v and wi · · ·wi+n are equal. This amounts
to saying that there exist words x, y ∈ Σ∗ such that w = xvy. Similarly, v is a prefix (resp.
suffix) of w if there exists a word x ∈ Σ∗ such that w = vx (resp. w = xv).

Example 1.1. The words apple, a and app are prefixes of the word apple. The word le is one
of its suffixes.

1.1.3 Automata
Definition 1.1

A language is a subset of Σ∗, for any alphabet Σ. A language is said to be regular if it is
recognized by a tool named an automaton.

An automaton is a quintuple A = (Σ, Q, I, δ, F), where

• Σ is the input alphabet, i.e. the set of letters that can be read by the automaton.

• Q is the automaton’s finite set of states.

• I ⊆ Q is the set of possible input states.

1.1. Automata theory 9

• δ : Q× Σ→ 2Q is the transition function.

• F ⊆ Q is the set of accepting states.

The transition function δ can be partial, meaning that, for some pairs (q, a) ∈ Q × Σ,
δ(q, a) is not defined. For any of these pairs, we consider that the automaton rejects the
word, regardless of the rest of the input. It amounts to considering a sink state qsink such that
qsink 6∈ F , δ(q, a) = {qsink} and, for any letter b ∈ Σ, δ(qsink, b) = {qsink}.

In some particular cases, we allow automata to have particular transitions called ε-transitions.
An ε-transition is a transition labeled by ε, in which case there exists a state q ∈ Q such that
δ(q, ε) is defined. These transitions make the automaton change its current state without read-
ing any letter of the input word.

A finite path in an automaton A = (Σ, Q, I, δ, F) is a sequence of transitions of the form
(q0, a0, q1)(q1, a1, q2) · · · (qn−1, an−1, qn) such that, for any i ∈ [n], qi+1 ∈ δ(qi, ai). The word
a0 . . . an−1 is the label of the path. An accepting path is a path (q0, a0, q1) · · · (qn−1, an−1, qn)
such that q0 ∈ I and qn ∈ F .

A word w is accepted by the automaton A if there exists an accepting path in A such that
w is its label. The set of all the words accepted by A is the language accepted by A. We denote
it by L(A).

An automaton A = (Σ, Q, I, δ, F) is deterministic if |I| = 1 and, for each pair (q, a) ∈ Q×Σ,
|δ(q, a)| ≤ 1. If an automaton is deterministic and has a finite set of states Q, it is called a
deterministic finite automaton (DFA for short). If a finite automaton is not deterministic, it is
called a non-deterministic finite automaton (NFA for short). It is always possible to consider
a deterministic automaton, as every finite automaton is equivalent to a deterministic one.
This property can be proved using a standard method called the powerset construction [63],
introduced by Rabin and Scott in 1959.

The powerset construction consists in considering the automaton which states are all the
possible sets of states in the NFA. The transitions are defined as follows: given two sets of states
q = {q0, . . . , qn} and q′ = {q′0, . . . , q′m}, and a letter x in the alphabet, there is a transition from
q to q′ labeled by x in the powerset DFA if and only if⋃

qi∈q

δ(qi, x) ⊆ q′

Then, the DFA is trimmed by keeping only the states that are reachable.

Example 1.2. Consider the regular language (a+b)∗a(a+b)(a+b), which is the set of all words
of the alphabet {a, b} of size at least 3 such that the antepenultimate letter is an occurrence of
a. The naive automaton recognizing this language is a simple NFA, shown in Figure 1.1.

0 1 2 3

a, b

a a, b a, b

Figure 1.1 – The naive NFA recognizing (a+ b)∗a(a+ b)(a+ b)

To compute the powerset automaton corresponding to that NFA while trimming the sets
that are not reachable, we begin by considering the initial state, and associating a new initial

10 CHAPTER 1. Preliminaries

state in the DFA. Thus, we define the first state of the DFA, which corresponds to the set {0}
of states of the NFA. In the NFA, if the letter a is read from the state 0, the automaton either
goes to 0 or 1, so we define the second state of the DFA, which corresponds to the set {0, 1}
of states of the NFA, and we add a transition from 0 to 1 labeled by a. If the letter b is read
from the state 0 of the NFA, it stays in the state 0, so we add a loop over the state 0 of the
NFA, labeled by b. Then, we consider the transitions that begin at the state {0, 1} of the DFA:
if the NFA is in state 0 or 1 and the letter a is read, it can go to any state among 0, 1 or 2.
Thus, we define the third state of the DFA, which corresponds to the set {0, 1, 2}, and we add
a transition from state {0, 1} to state {0, 1, 2}, labeled by a. Using this algorithm, we obtain
the DFA shown in Figure 1.2. This DFA does not contain all the possible sets of states of the
NFA, as the ones not shown would not be reachable. Note that the DFA we obtained here is
minimal, but that is not always the case, and it is often necessary to minimize the DFA.

{0, 2}

{0, 3}

{0, 1}

{0, 1, 3}

{0, 2, 3}

{0}

{0, 1, 2, 3}

{0, 1, 2}

b

a

a

b

a
b

a

b

ab

a

b

a

b

a

b

Figure 1.2 – The minimal DFA recognizing (a+ b)∗a(a+ b)(a+ b)

The powerset construction has notably been used by Thompson in [74], where he gives
an implicit algorithm to determinize a nondeterministic automaton. This algorithm, called
on-the-fly determinization, takes an NFA (Σ, Q, I, δ, F) and executes it on the input word by
maintaining a set of current states. This is done as follows: at the beginning of the algorithm,
the set of states C is equal to I. Then, given a set C of current states and the next letter a ∈ Σ
of the input word, the next set C ′ is computed by considering each state q in turn and adding
to C ′ the states q′ that can be reached from q by reading a. In symbols, C ′ = {q′ ∈ Q | ∃q ∈
C, q′ ∈ δ(q, a)}. The input word is accepted if and only if the final set of states contains an
accepting state.

Example 1.3. Consider the regular language a(baa+bcc∗)c, which is the set of words composed
of abaac and all the words of the form abcc · · · c, with at least two occurrences of c. This language
can be translated into the equivalent NFA given in Figure 1.3. Now, consider the input text

1.1. Automata theory 11

abccc. An NFA-based algorithm on this input maintains a set of current states as follows: the
initial set is {0}, as 0 is the only input state. When reading the first letter of the input, an a,
the algorithm follows the unique transition labelled by a beginning at state 0. Therefore, the
new set of states is {1}. Then, the algorithm reads a b. This time, there are two transitions
to consider: the one from 1 to 2 and the one from 1 to 3. So, the new set of states is {2, 3}.
Thus, when reading the next letter, a c, the algorithm considers the transition beginning at 2
and the one beginning at 3. There is no transition labelled by c beginning at 2, so this path
fails, but there is a transition labelled by c beginning at 3, so the computation continues with
the set {6}. Once more, there are two transitions beginning at 6 and labelled by c, which gives
the set of states {6, 7}. The next two letters lead to the same set of states, so the accepting
state 7 is in the final set of states. Thus, the input word is accepted.

0 1

2

3

4 5

6

7
a

b

b

a a
c

c
c

c

Figure 1.3 – An NFA recognizing the language a(baa+ bcc∗)c

Considering static deterministic automata (as opposed to the DFAs constructed on the fly)
instead of nondeterministic ones has its advantages and inconvenients. Indeed, the execution
of a deterministic automaton can be done in linear time, as each pair (state, letter) has at
most one successor state, whereas in a nondeterministic automaton such a pair may have the
set Q as set of successors, and thus can only be run in time O(|w| × |Q|). On the other hand,
the construction of a deterministic automaton can be costly, as the number of states can be
exponential in the number of states of the nondeterministic automaton. The bound 2|Q| is
tight [50], as some languages have been proved to have no deterministic automaton with less
than 2|Q| states. As an example of simple NFA equivalent to a large DFA, one can consider the
language (a|b)∗a(a|b){n − 1}, where the last group (a|b) is repeated n − 1 times: there is no
deterministic automaton of size less than 2n recognizing that language [3].

Not only is the bound 2|Q| on the size of determinized DFAs tight, but it is also common
to obtain a large DFA when using determinization, even when the minimal DFA recognizing
the language is rather small. In these cases, it can be useful to minimize the obtained DFAs.
Several algorithms exist, notably Hopcroft’s algorithm [33], which is the most known. In this
thesis, the algorithm used was Brzozowski’s [12]. This algorithm takes an NFA and returns the
minimal equivalent DFA. It consists in four steps: reversing all the transitions of the input NFA,
determinizing the new NFA, reversing once more the transitions, and finally determinizing the
obtained automaton.

In this thesis, the expression ”deterministic automaton” always references a deterministic
finite automaton (DFA), and the expression ”nondeterministic automaton” always references a
nondeterministic finite automaton (NFA).

1.1.4 Rational expressions
An automaton is one way to define a regular language, but there is another tool to do so. In
some contexts, this tool is called a regular expression, which links it tightly to regular languages.

12 CHAPTER 1. Preliminaries

However, the term regular can be a source of confusion as it has different meanings depending
on the context. For this reason, this thesis refers to this tool as its standard name, rational
expression. Rational expressions are formal expressions defined recursively as follows: given an
alphabet Σ,

• {} and {ε} are rational expressions.

• For any letter a ∈ Σ, a is a rational expression.

• For any two rational expressions e and e′, e+ e′, e · e′ and e∗ are rational expressions.

A rational expression defines a language as follows: for any letter a ∈ Σ, the rational expression
a represents the language {a}. Then, for any two rational expressions e and e′ representing
respectively the languages L1 and L2, e+ e′ represents L1 ∪L2, e · e′ represents L1 ·L2 = {w ∈
Σ∗ | ∃w1 ∈ L1,∃w2 ∈ L2, w = w1 · w2} and e∗ represents L∗

1 = {w∗ | w ∈ L1}.
There is a strong correspondence between rational expressions and automata. One funda-

mental result, proved by Kleene [41] in 1956, is the following:

Theorem 1.1: Kleene’s theorem

The set of languages definable by rational expressions is exactly the set of languages such
that there exists an automaton recognizing the language.

Example 1.4. On any alphabet Σ, the set of words of odd length can be written as (Σ2)∗Σ.
On the alphabet Σ = {a, b, c}, the expression (ac∗b + c)∗ is a rational expression that

represents the regular language of words that do not have an infix of the form ac · · · ca or
bc · · · cb and such that an a is always followed by a b. Formally, that regular language is the
one recognized by the automata in Figure 1.4.

a

b

c c

Figure 1.4 – The minimal DFA recognizing (ac∗b+ c)∗

1.1.5 First-order logic
Among regular languages, the ones definable with first-order logic (FO for short) form a well-
known class of languages, and the one considered in this thesis.

Syntax. Given a set E of functions on integers, we define the syntax of FO[E] formulas
as based on the following logical symbols: ∨ (or), ∧ (and), ¬ (not), = (equality test), the
implication ⇒, the symbols corresponding to the relations in E , the existential quantifier ∃
and the universal quantifier ∀. It uses true and false as base formulas and has access to an
unbounded number of variable names (x, y, z, x0, . . .). Given an alphabet Σ, it has access to
the predicate a(x) for any letter a ∈ Σ.

1.1. Automata theory 13

We say that a variable x is bound in a FO[E] formula φ if all the occurrences of x in φ are
in the scope of a quantifier (∃ or ∀). On the contrary, if there exists at least one occurrence of
x in φ that is not in the scope of a quantifier, we say that x is a free variable of φ. A formula
without free variables is called a sentence. With these definitions, we can define recursively the
syntax of an FO[E] formula for an alphabet Σ:

• true and false are FO[E] formulas.

• For a letter a ∈ Σ, and any two variable names x and y, a(x) and x = y are FO[E]
formulas.

• For any n-ary function f ∈ E and any variable names x0, . . . , xn−1, f(x0, . . . , xn−1) is an
FO[E] formula.

• For any two FO[E] formulas φ and ψ, ¬φ, φ ∨ ψ, φ ∧ ψ and φ⇒ ψ are FO[E] formulas.

• For any FO[E] formula φ and any variable x of φ, ∃x, φ and ∀x, φ are FO[E] formulas.

Semantics. The semantics of FO[E] associate a truth value to any sentence according to a
structure, which gives a domain for the bound variables. Formally, a structure on a set L of
non-logical symbols (relation, function and constant symbols) is defined by a domain D, which
is a nonempty set, and an assignment which maps the symbols in L to relations, functions and
constants: each n-ary relation symbol is mapped to an n-ary relation defined on D, each n-ary
function symbol is mapped to an n-ary function defined on D, and each constant symbol is
mapped to an element of D.

Given this structure, we can define the valuation of an FO[E] formula, which will allow us
to give a truth value to the sentences of FO[E]. Given a domain D, a valuation is a map ν from
the set of variables to the domain D. This definition can be extended to obtain a map from
the set of terms over L to D, using the following rule: for any n-ary relation R ∈ E and any
terms t0, . . . , tn−1, ν(R(t0, . . . , tn−1)) := R(ν(t0), . . . , ν(tn−1)). We use this valuation to define
a relation ”(w, ν) satisfies φ in the structure S”, where w ∈ Σ∗ is a word. To do this, we need
one more notation that will allow us to assign values to bound variables: given a valuation ν
and n an element of D, we define ν

(
n
x

)
to be the valuation such that ν

(
n
x

)
(x) = n and, for any

variable y 6= x, ν
(
n
x

)
(y) = ν(y).

Now, for an alphabet Σ, a word w = w0 · · ·wn−1 ∈ Σ∗, an FO[E] formula φ and a valuation
ν on a domain D ⊆ [n], we can define the expression ”the pair (w, ν) satisfies the formula φ”,
written as (w, ν) |= φ, using an induction based over φ with the following rules:

• For any letter a ∈ Σ, (w, ν) |= a(x) if and only if wν(x) is the letter a.

• (w, ν) |= t1 = t2 if and only if ν(t1) = ν(t2).

• For any f ∈ E , (w, ν) |= R(t0, . . . , tn−1) if and only if f(ν(t1), . . . , ν(tn−1)).

• (w, ν) |= ¬φ if and only if (w, ν) 6|= φ.

• (w, ν) |= φ ∨ ψ if and only if (w, ν) |= φ or (w, ν) |= ψ.

• (w, ν) |= φ ∧ ψ if and only if (w, ν) |= φ and (w, ν) |= ψ.

• (w, ν) |= φ⇒ ψ if and only if (w, ν) 6|= φ or (w, ν) |= ψ.

14 CHAPTER 1. Preliminaries

• (w, ν) |= ∃x, φ if and only if there exists n ∈ D such that (w, ν
(
n
x

)
) |= φ.

• (w, ν) |= ∀x, φ if and only if, for each n ∈ D, (w, ν
(
n
x

)
) |= φ.

Note that, according to these rules, the valuation ν affects only the value of the free variables
of φ. Thus, the satisfiability of a sentence is independent of the chosen valuation. In this case,
we may say that a word w satisfies the sentence φ if (w, ν) |= φ, for any valuation ν. Now, we
present two fragments of the first-order logic, FO[<] and FO2[<].

FO[<]. In this thesis, we consider only the set E = {<}, where < is the order on positions.
In the rest of this thesis, FO[<] is simply called first-order logic.

Example 1.5. ∃x,∀z, x < y ⇒ (x = z)∨¬(x > z) is an FO[<] formula with one free variable:
y. Both x and z are bound since all their occurrences are in the scope of the quantifiers over
them.

The formula ∃x, a(x) ∧ z < x⇒ ∀y, z < y is also an FO[<] formula with one free variable,
which is z. Indeed, the first occurrence of z is not in the scope of a quantifier over z.

In FO[<], the set L of relations on variables contains only the letter predicates and the
binary relation symbol <. This symbol designates the usual order relation on a set of integers.
The domain of this relation can be either N, Z or a subset of one of these sets, and will be
easy to determine depending on the context. Thus, we say that (w, ν) |= t1 < t2 if and only
if ν(t1) < ν(t2). Moreover, the letter predicates are mapped to the indicator functions of
their respective letters: for any letter a ∈ Σ, the relation symbol a is mapped to the function
1a : D → {true, false}, which returns true if and only if the input index is associated with a
letter a.

Example 1.6. The word w = aaaacba satisfies the sentence ∃x, c(x) ∧ (∀y, y < x ⇒ a(y)).
Indeed, if we assign the value 4 to x, we can observe that w4 is the letter c and that all the
letters before it hold a letter a.

The word w = aaacabccbabbbbb and the valuation ν such that ν(x) = 3 satisfy the formula
∃y, ∀z, (z < x⇒ a(z)) ∧ (y < z ⇒ b(z)). Indeed, if we assign the value 9 to y, we can observe
that all the letters before w3 are occurrences of a and all the letters after w9 are occurrences of
b.

FO2[<]. FO2[<] is the subclass of FO[<] that uses at most two distinct variable names in its
formulas. Note that this does not mean that these formulas can only consider two positions of
a word, but two positions at the same time, which limits the possible comparisons between the
positions.

Example 1.7. ∃x,∃y, x < y is an FO2[<] sentence that describes the set of words of size at
least 2.
∃x, a(x) ∧ ∃y, (x < y ∧ ∃x, (b(x) ∧ y < x)) is an FO2[<] sentence that describes the set of

words of size at least 3 that have an a and a b separated by at least one position, which can hold
any letter in the alphabet, including an a or a b. For example, on the alphabet Σ = {a, b, c}, the
word w = cabbcc satisfies that sentence, because we can choose x = 1 for the first occurrence
of the variable x, y = 2 and x = 3 for the second occurrence of the variable x. Note that the
two occurrences of x can have different values, since they are not bound by the same symbol ∃.

1.2. Algebra 15

1.2 Algebra

Now that the basics of automata theory have been covered by section 1.1, we can move on to
the main tools used in this thesis: semigroups. These tools, provided by the algebraic theory
of automata, can represent a rational language, and their structure allows for a more refined
analysis of the properties of the languages. This section presents semigroups, their link to
rational languages, and some tools used to manipulate them.

1.2.1 Semigroups and monoids

A semigroup is a pair consisting of a set S and an associative binary operation ·S on S, called
the inner operation of S. We usually write that the set S is a semigroup. A monoid is a triple
(M, ·M , 1), where (M, ·M) is a semigroup and 1 ∈M is an identity (or a neutral element) of ·M .
We usually write that the set M is a monoid. We only work with finite semigroups and monoids.
We thus designate finite semigroups (resp. finite monoids) when we mention semigroups (resp.
monoids).

Given a semigroup S, any element e of S satisfying e ·S e = e is called an idempotent. In
a finite semigroup S, any element s of S admits an idempotent power, which is an element
πS(s

n) (where n > 0 is an integer) that is idempotent, where sn denotes the concatenation
of n occurrences of s. We use the usual notation sω to denote the idempotent power of s (ω
is the minimum integer such that, for any element s ∈ S, sω is the idempotent power of s).
Given a semigroup S, we define S1 = S ∪ 1 as the monoid formed by the semigroup to which
an identity is added if necessary. For any subsets X and Y of S, we denote by X ·S Y the set
{x ·S y | x ∈ X, y ∈ Y }. Similarly, for any x ∈ S and Y ⊆ S, we write x ·S Y and Y ·S x
respectively for {x}·S Y and Y ·S {x}. Given a finite set Σ, we call Σ+ the free semigroup over Σ
with the concatenation as the associative binary operation. This is the only infinite semigroup
that we consider. Given a semigroup S, S+ denotes the free semigroup with the underlying set
S as alphabet.

Given a semigroup S and a subset G ⊆ S, we say that G generates S if the smallest sub-
semigroup T ⊆ S that contains G is S itself. Such a set G is called a set of generators, and is
usually chosen to be minimal.

Canonical morphism. We denote concatenation implicitly: given two words u, v, their
concatenation is written uv. For instance, taking two elements x, y of S, xy denotes a word of
S+ of length 2. This notation must not be confused with x ·S y that denotes the element of S
obtained by multiplying x and y with the inner operation of S. We never use concatenation to
mark the product within S. However, we relate words of the free semigroup S+ to their value
in S by means of the canonical morphism: πS : S+ → S. It is the unique associative morphism
verifying both the following properties: for every x ∈ S, πS(x) = x and, for every u, v ∈ S+,
πS(uv) = πS(u) ·S πS(v).

Quotients and division. Let S1 and S2 be two semigroups. S1 is said to be a quotient of
S2 if there exists a surjective morphism from S2 to S1. S1 is said to divide S2, and we write
S1 4 S2, if S1 is a quotient of a sub-semigroup of S2.

16 CHAPTER 1. Preliminaries

1.2.2 Languages and semigroups
Syntactic semigroup. A link can be established between logics and semigroups by taking
the syntactic semigroup of a language. This semigroup is defined as follows:

Definition 1.2

Given a language L on an alphabet Σ, the syntactic congruence of L in Σ∗ is the relation
∼L defined on Σ∗ such that, for any words u, v ∈ Σ∗, u ∼L v if and only if, for all words
x, y ∈ Σ∗, xuy ∈ L⇔ xvy ∈ L.

Definition 1.3

The syntactic semigroup of L is the quotient Σ+/∼L, and the syntactic monoid of L is the
quotient Σ∗/∼L.

When talking about the syntactic semigroup of a language, it is necessary to choose a way
to represent the equivalence classes that form its elements. In this thesis, two options are used.
The first one consists in representing each element by an arbitrary word in the corresponding
equivalence class. The other one consists in choosing other arbitrary representatives, for exam-
ple by associating numbers to the elements. This thesis favors this approach, as it is the one
used in the code presented in chapter 2.

Given the syntactic semigroup S of a language L over an alphabet Σ, the set G = {g ∈ S |
∃a ∈ Σ, a ∈ g} generates S, as any element of S corresponds to a word over Σ. In the rest of
this thesis, the set G is used as the canonical set of generators of S, and its elements are simply
called the generators of S.

The link between logics and semigroups has already been well studied and gave birth to very
nice algebraic characterizations of some well-known classes of languages. For more information
on this topic, see the survey [72] along with the books [70] and [60]. Notably, the class FO[<],
which is also the class of star-free languages (see section 1.3.1 for the formal definition) is
equivalent to the variety Ap of aperiodic semigroups, the semigroups satisfying an equation
of the form xω+1 = xω, for any x ∈ S. We can also mention the class FO2[<], which is
equivalent to the variety DA of semigroups, the semigroups satisfying an equation of the form
πS((xy)

ωx(xy)ω) = πS((xy)
ω), for any x, y ∈ S.

Because of this strong link between semigroups and logics, it is important to define a notion
of recognizability for semigroups.

Definition 1.4

A language L on an alphabet Σ is recognized by a monoid M (resp. a semigroup S) if there
exists a monoid (resp. semigroup) morphism φ : Σ∗ →M (resp. φ : Σ+ → S) and a subset
P ⊆M (resp. P ⊆ S) such that

L = φ−1(P)

Note that, by definition, the syntactic monoid of a language L recognizes it, and its syntactic
semigroup recognizes L \ {ε}.

1.2. Algebra 17

Transition semigroup. Another link can be established between logics and semigroups by
considering the automata recognizing the languages defined by a logical fragment. The link
with semigroups is then established by considering the transitions of the automata.

Definition 1.5

Let A = (Σ, Q, I, δ, F) be an automaton (DFA or NFA) without any ε-transition. We
define the transition of a word w ∈ Σ∗ to be the function trw : Q→ 2Q defined recursively
as follows:

• For any letter a ∈ Σ, and for any state q ∈ Q such that δ(q, a) is defined, tra(q) =
δ(q, a). Otherwise, tra(q) = ∅.

• For any word w ∈ Σ+ such that w = w′ · b, where b ∈ Σ is the last letter of w then,
for any state q ∈ Q, trw(q) = {trb(q′) | q′ ∈ trw′(q)}.

With this definition, we can define the transition monoid of an automaton:

Definition 1.6

Let A = (Σ, Q, I, δ, F) be an automaton (DFA or NFA). The transition monoid of A is the
monoid MA defined as follows. First, the set of elements of the monoid is {trw | w ∈ Σ∗}.
Then, the inner product of the monoid is such that, for any two elements m1,m2 ∈ MA

such that m1 = trw1 and m2 = trw2 for some words w1, w2 ∈ Σ, then πMA
(m1m2) = trw1w2 .

Example 1.8. Consider the alphabet Σ = {a, b} and the automata presented in Figure 1.5.
The transitions of the letters are as follows:

tra(q0) = {q0, q1} trb(q0) = {q0}
tra(q1) = {q2} trb(q1) = {q2}
tra(q2) = ∅ trb(q2) = ∅

q0 q1 q2
a a, b

a, b

Figure 1.5 – An NFA recognizing (a|b)∗a(a|b)

With these transitions, we can build the transition semigroup of the automaton. To do so,
we build the transitions of words of increasing size until all the words of the same size have a
transition that we have already seen. First, consider the words of size 2, which are aa, ab, ba
and bb. Their transitions are as follows:

traa(q0) = {q0, q1, q2} trab(q0) = {q0, q2}
traa(q1) = ∅ trab(q1) = ∅
traa(q2) = ∅ trab(q2) = ∅

trba(q0) = {q0, q1} trbb(q0) = {q0}
trba(q1) = ∅ trbb(q1) = ∅
trba(q2) = ∅ trbb(q2) = ∅

18 CHAPTER 1. Preliminaries

All these transitions are different, and so they are distinct elements of the transition semi-
group. We could go on to compute the transitions of the words of length 3. However, note that
the state q0 is necessarily in the transition of any word from the state q0. Moreover, the tran-
sition of any word of length at least 2 from a state other than q0 is necessarily empty. Taking
these facts into account, we can observe that the transition of any word of length at least 2 is
necessarily equal to one of the transitions of the words of length 2. For example, the transition
of aba is equal to the transition of ba. Consequently, the transitions that we computed this far
are exactly all the elements of the transition semigroup of the automaton in Figure 1.5.

To complete the computation of the transition semigroup, we need to give its inner product.
By definition, we have the following:

πM(tratra) = traa
πM(tratrb) = trab
πM(trbtra) = trba
πM(trbtrb) = trbb
If we compute the transitions of the words of length 3, we obtain the following:
πM(traatra) = πM(tratraa) = traa
πM(traatrb) = πM(tratrab) = trab
πM(trabtra) = πM(tratrba) = trba
πM(trabtrb) = πM(tratrbb) = trbb
πM(trbatra) = πM(trbtraa) = traa
πM(trbatrb) = πM(trbtrab) = trab
πM(trbbtra) = πM(trbtrba) = trba
πM(trbbtrb) = πM(trbtrbb) = trbb
With this, we have the entire description of the semigroup.

Note that the transition semigroup (or transition monoid) of a finite automaton is necessarily
finite, as there can only be finitely many functions of the form Q→ 2Q.
Remark 1.1. If we consider a DFA then, for any word w ∈ Σ∗, the function trw is actually of
the more usual form Q→ Q. In that case, it is partial, as there may be some state q and letter
a such that δ(q, a) is not defined.

Using the transition semigroup of a language is equivalent to using its syntactic semigroup,
as pointed out by Proposition 1.1.

Proposition 1.1

Let L be a language. There is an isomorphism between the transition semigroup of the
minimal automaton recognizing L and the syntactic semigroup of L.

For a proof of this property, see [60], chapter 1, section 4.3. The idea of this proof is to
show that the syntactic semigroup necessarily divides any semigroup recognizing L, including
the transition semigroup, then to show that the transition semigroup divides the syntactic
semigroup.

Transition matrices. There are several equivalent definitions of the transition monoid of an
automaton. One of these uses matrices to describe the transitions. This definition is the one
we use in our implementation.

1.2. Algebra 19

Definition 1.7

Let A = (Σ, Q, I, δ, F) be an automaton (DFA or NFA) without any ε-transition, and let
(q0, . . . , qn−1) be an arbitrary ordering of Q. For any letter a ∈ Σ, the transition matrix
of a is the n by n matrix Ta = t0,0, . . . , t0,n−1, t1,0, . . . , tn−1,n−1 such that, for any pair of
integers i, j ∈ [n], ti,j = 1 if and only if δ(qi, a) is defined and qj ∈ δ(qi, a). Otherwise,
ti,j = 0.

We can extend this definition to obtain a matrix equivalent to the transition of any word
over Σ.

Definition 1.8

Let A = (Σ, Q, I, δ, F) be an automaton (DFA or NFA), and let (q0, . . . , qn−1) be an
arbitrary ordering of Q. For any word w = w0 · · ·wn−1 ∈ Σn, where n > 0, the transition
matrix of w is the n by n matrix Tw = Tw0 × · · · × Twn−1 .

The transition of a word is equivalent to its transition matrix, as shown by the following
lemma:

Lemma 1.1

Let A = (Σ, Q, I, δ, F) be an automaton (DFA or NFA), and let (q0, . . . , qn−1) be an
arbitrary ordering of Q. For any word w ∈ Σ+, if Tw = t0,0, . . . , t0,n−1, t1,0, . . . , tn−1,n−1

is the transition matrix of w then, for any pair of indices i, j < n, ti,j = 1 if and only if
qj ∈ trw(qi).

Proof. We prove the result by induction of the length of w. If |w| = 1, then w is composed of
only one letter a ∈ Σ. By definition, for any pair of indices i, j < n, the set tra(qi) contains the
state qj if and only if there is a transition from qi to qj labelled by a, or more formally, if and
only if δ(qi, a) is defined and qj ∈ δ(qi, a). Also by definition, ti,j = 1 if and only if δ(qi, a) is
defined and qj ∈ δ(qi, a). This implies the result.

Now suppose that the result holds for any word of length at most n, and consider a word w =
w0 · · ·wn ∈ Σn+1. By definition, Tw = Tw0 · · ·Twn = Tw0···wn−1 × Twn and trw = trwn ◦ trw0···wn .
We denote by ui,j and vi,j the elements of respectively Tw0···wn−1 and Twn . Now, let i, j ∈ [n+1]
be two indices. Then, ti,j = 1 if and only if there exists some index k ∈ [n + 1] such that
ui,k = vkj = 1. By induction hypothesis, this is equivalent to the following property: there
exists an index k ∈ [n + 1] such that qk ∈ trw0···wn−1(qi) and qj ∈ trwn(qk). By definition of
the transition of a word, this is equivalent to saying that qj ∈ trw(qi), which concludes our
proof.

As a consequence of this lemma, we can construct the transition monoid of an automaton
using the transition matrices of the words over Σ. To do so, we proceed similarly to what we
do with the transitions of the words:

Corollary 1.1

Let A = (Σ, Q, I, δ, F) be an automaton (DFA or NFA). The transition monoid of A is
equivalent to the monoid M defined as follows. First, the set of elements of the monoid

20 CHAPTER 1. Preliminaries

is {Tw | w ∈ Σ∗}. Then, the inner product of the monoid is such that, for any two
elements m1,m2 ∈ M such that m1 = Tw1 and m2 = Tw2 for some words w1, w2 ∈ Σ, then
πM(m1m2) = Tw1w2 .

Remark 1.2. When the automaton is deterministic, only one element per line of the transition
matrices can be set to 1. Consequently, it is possible to represent those transition matrices
in a more concise way, using vectors of integers instead of matrices of bits. In that case, the
transition of a word w ∈ Σ∗ would be the vector v0 · · · vn−1 such that, for any index i ∈ [n],
vi = −1 if the (i+ 1)th line of the matrix Tw contains no bit set to 1. Otherwise, vi = j, where
j is the unique index such that ti,j = 1. Informally, vi is the index of the unique state qvi , if it
exists, that can be reached from qi by reading the word w.

1.2.3 Green’s relations
Consider a function F : S → P(S), where P(S) denotes the powerset of S. We write x F y when
F (x) = F (y); x ≤F y when F (x) ⊆ F (y); and x <F y when x ≤F y and F (x) 6= F (y). The
relation F is an equivalence relation and ≤F is a pre-order. We also write F(x) = {y | y F x},
the F-class of x. We say that a semigroup is F-trivial when F(x) is a singleton for any element
x ∈ S. Green’s relations are defined with the following functions: R : x 7→ x·SS1, L : x 7→ S1·Sx,
J : x 7→ S1 ·S x ·S S1, H : x 7→ R(x) ∩ L(x). Note that the respective relations obtained from
R, L, J and H are denoted by R, ≤R, <R, L, ≤L, <L, J , ≤J , <J ,H, ≤H and <H. In
finite semigroups, the relation J is equal to the relation D, which is the union of L and R.
From this relation D comes the name of the class DA, which indicates the class of semigroups
whose regular D-classes are aperiodic semigroups (see Proposition 1.2 for a characterization of
aperiodic semigroups). An F -class F , for F any of Green’s relations, is said to be regular if
some element s ∈ F is idempotent, i.e. s ·S s = s.

Example 1.9. Consider a finite semigroup S and four distinct elements s, t, u, v ∈ S that have
the following properties:

• There exist two elements a, b ∈ S such that s ·S a = t and t ·S b = s.

• There exist two elements c, d ∈ S such that u ·S c = v and v ·S d = u.

• There exist two elements e, f ∈ S such that e ·S s = u and f ·S u = s.

With these properties, we can deduce some relations between the four elements. First, we have
sRt. Indeed, the sets R(s) and R(t) are equal. This is due to the fact that it is possible to
obtain t from s and s from t by multiplying them on the right with another element of S.
Formally, this equality is shown by proving the two inclusions. We have R(t) ⊆ R(s) since, for
any element t′ ∈ R(t) = t·SS1, there exists an element x ∈ S such that t′ = t·Sx. Consequently,
we have t′ = s ·S (a ·S x), which implies that t′ ∈ R(s). Similarly, R(s) ⊆ R(t) since, for any
element s′ ∈ R(s) = s ·S S1, there exists an element y ∈ S such that s′ = s ·S y. Consequently,
we have s′ = t ·S (b ·S y), which implies that s′ ∈ R(t). This proves that R(s) = R(t), and so
we have sRt. The same reasoning can be applied to u and v to obtain uRv.

Now, a similar reasoning gives us sLu, since it is possible to obtain u from s and s from
u by multiplying them on the left with another element of S. We can indeed show that
L(s) ⊆ L(u), and the other inclusion result follows with the same arguments. For any element
s′ ∈ L(S) = S1 ·S s, there exists an element z ∈ S such that s′ = z ·S s. Consequently, we have

1.2. Algebra 21

s′ = (z ·S f) ·S u, which implies that s′ ∈ L(u). With the other inclusion obtained the same
way, we have sLu.

We showed that sRt and sLu, which implies that sDt, sDu and tDu, since the relation D
is the union of R and L. Moreover, S is finite, so the relation D is equal to J , and we have
tJ u. This can be show by the same means as above, and here we show that J(t) ⊆ J(u). For
any element t′ ∈ J(t) = S1 ·S t ·S S1, there exist two elements x, y ∈ S such that t′ = x ·S t ·S y.
Consequently, we have t′ = x ·S s ·S a ·S y = (x ·S f) ·S u ·S (a ·S y), which implies that t′ ∈ J(u).
Consequently, we have J(t) ⊆ J(u), and the other inclusion can be shown the same way.

Since uRv, the element v belongs to the same D-class and J -class as u. Consequently, the
elements s, t, u and v all belong to the same D-class and J -class.

A D-class can be represented using an egg-box, where each row constitutes an R-class
and each column constitutes an L-class. Consequently, each cell represents an H-class. This
representation is due to Green’s Lemma, which establishes a multiplicative link between the
elements of a given D-class.

Lemma 1.2: Green’s Lemma

Let S be a semigroup. Let a, b ∈ S be such that aRb. Then there exists u, v ∈ S1 such
that au = b and bv = a. Let ρu and ρv be the right translations defined by xρu = xu and
xρv = xv. Then ρu and ρv preserve the H-classes, i.e. for each pair of elements x, y ∈ L(a)
(resp. L(b)), xHy if and only if xρuHyρu (resp. xρvHyρv).

Figure 1.6 – The syntactic semigroup of (ac∗b+ c)∗

Example 1.10. The syntactic semigroup of the language (ac∗b + c)∗ is represented in exam-
ple 1.10. The idempotent elements are represented in red. Note that, in this semigroup, each
H-class is trivial, and so each of the boxes representing an H-class contains only one element.
In this figure, the set of elements of the semigroup is separated into three sets, that are the
three D-classes (and also the three J -classes, since the relations D and J are equal in finite
semigroups). One D-class contains only the element c, which is a neutral element. Thus, this
semigroup is also a monoid. Another D-class contains the element corresponding to the words
that cannot be extended, by adding letters at the beginning or at the end, to form a word in

22 CHAPTER 1. Preliminaries

the language; this element is bb, and corresponds to all the words of the form ac∗a or bc∗b. The
third D-class is more interesting, as it contains four elements:

• a represents all the words of the form (ac∗b+ c)∗ac∗,

• b represents all the words of the form (bc∗a+ c)∗bc∗,

• ab represents all the words of the form (ac∗b+ c)∗,

• ba represents all the words of the form (bc∗a+ c)∗

All these words either belong to the language or can be extended to form words in the lan-
guage. More interestingly, they can all be extended to form a word represented by any of the
four elements, which is why the four elements all belong to the same J -class. These poten-
tial extensions are described in more details with the separation into R-classes and L-classes,
respectively the lines and the columns of the box representing that D-class. For example, the
elements a and ab are on the same line, meaning they belong to the same R-class. Similarly, a
and ba belong to the same L-class. Green’s Lemma then tells us that we can obtain equalities
that describe the relations between these elements. For this D-class, we obtain the following
equalities: ab ·S a = a, ba ·S b = b, a ·S b = ab, and b ·S a = ba.

We can obtain respectively ab and a from the other one by multiplying them on the right
with some semigroup element, and so they belong to the same R-class. Similarly, we can obtain
respectively ba and b from the other one by multiplying them on the left with some semigroup
element, and so they belong to the same L-class.

For more details on this lemma and the properties of the egg-box, see [61]. The consequences
of this lemma are often used implicitly throughout this document.

The J -depth of a semigroup. Let S be a semigroup. The J -depth of a J -class is the length
of a maximal strictly decreasing sequence of J -classes to it. Formally, given a semigroup S and
a J -class J , we say that J is of J -depth i if there exist i J -classes J1 >J J2 . . . >J Ji such
that Ji = J , but there exists no decreasing sequence J ′

1 >J J ′
2 . . . >J J ′

i+1 such that J ′
i+1 = J .

The J -depth of a semigroup is the maximum J -depth of its J -classes. For any semigroup,
there exists a unique J -class of maximum J -depth. Given d the J -depth of S, for each integer
i such that 1 ≤ i ≤ d, we denote by Di(S) the union of all the J -classes of depth i and we
denote by Qi(S) the sub-semigroup1 composed exactly of all the elements of S of J -depth at
least i.

Using the J -depth, it is possible to represent a finite semigroup as its egg-box representation,
since the relations D and J are equal for finite semigroups. This representation is composed
of the egg-boxes of all the D-classes, arranged in layers. Each layer is associated with a depth,
increasing from top to bottom, and contains the egg-boxes of the D-classes associated with that
depth.

J -constant words. Let S be a semigroup. A word s0 · · · sk in S+ is left J -constant if, for
any index i such that 0 ≤ i ≤ k, we have πS(s0 · · · si)J s0. Symmetrically, s0 · · · sk is right
J -constant if, for any index i such that 0 ≤ i ≤ k, πS(si · · · sk)J sk. Finally, a word in S+ is
J -constant if it is both left and right J -constant. The latter property is equivalent to being a
left J -constant word s0 · · · sk such that s0J sk.

1The notation uses the letter Q because Qi(S) is a quotient of S.

1.2. Algebra 23

1.2.4 Cayley graphs
One possible way to represent a semigroup is through its left and right Cayley graphs. These
two graphs have the same set of states, where each state corresponds to an element of the
semigroup. The edges are labeled by the generators of the semigroup and represent a specific
action of those generators on the elements of the semigroup. Namely, the left Cayley graph
represents the results of the products of the form g ·S s, and the right Cayley graph represents
the results of the products of the form s ·S g, where g is a generator of the semigroup and s is
an element.

Definition 1.9

Let S be a semigroup and G a set of generators of S. The left Cayley graph of S with the
generator set G is the tuple (G,Q, δ), where G is the alphabet, Q = {qs | s ∈ S} is the set
of states, and the function δ : Q×G→ Q is the transition function of the graph, defined
such that, for any generator g ∈ G and any element s ∈ S, δ(qs, g) = qπS(gs).

Definition 1.10

Let S be a semigroup and G a set of generators of S. The right Cayley graph of S with
the generator set G is the tuple (G,Q, δ), where G is the alphabet, Q = {qs | s ∈ S} is
the set of states, and the function δ : Q × G → Q is the transition function of the graph,
defined such that, for any generator g ∈ G and any element s ∈ S, δ(qs, g) = qπS(sg).

Example 1.11. Consider the monoid M = {1, a, b, c, d, e} with the generators a and b, and
the following inner product: πM(aa) = e, πM(bb) = e, πM(ab) = c, πM(ba) = d, πM(ac) = e,
πM(ad) = a, πM(bc) = b, πM(bd) = e and, for any element m ∈ M , πM(me) = πM(em) =
e. The left Cayley graph of M is represented in Figure 1.7, and the right Cayley graph is
represented in Figure 1.8.

1

qa

qd

qc

qb

qe

a

b

a

b a
b

a

ba

b

a, b

Figure 1.7 – The left Cayley graph

24 CHAPTER 1. Preliminaries

1

qa

qd

qc

qb

qe

a

b

a

b

a

b

a b

a

b

a, b

Figure 1.8 – The right Cayley graph

1.3 Characterization of some known classes of languages
This thesis focuses on two classes of rational languages: the languages in the first-order logic
equipped with the order relation, and its subset composed of the languages that can be ex-
pressed using only two variables. These two classes of languages admit numerous equivalent
characterizations and properties, some of which are presented in this section.

1.3.1 FO[<]

For the definition of FO[<], see section 1.1.5. The class FO[<] has been extensively studied
and admits a wealth of equivalent classes. We present some of them in this section. For a full
exposition of this subject, we refer to [19]. The equivalent characterizations of this class are
summarized in the following theorem:

Theorem 1.2

Let Σ be an alphabet and L ⊆ Σ∗ be a language. The following propositions are equivalent:

• L ∈ FO[<].

• L is star-free.

• L ∈ LTL.

• The syntactic semigroup of L is aperiodic.

The star-free languages. For any finite alphabet Σ, the set of star-free languages of Σ∗ is
the smallest set R ⊆ Σ∗ such that:

• R contains ∅, {ε} and, for each a ∈ Σ, {a}.

• R is closed under finite union, finite product and complement.

1.3. Characterization of some known classes of languages 25

The class of star-free languages is the union of the sets of the star-free languages of all possible
alphabets.

By definition, every star-free language can be written as an expression using only the letters
of the alphabet, the empty word ε, the empty set ∅, and the three operators union, product
and complement.

In [48], McNaughton et al. showed that the set of star-free languages is exactly the class
FO[<].

LTL. The linear temporal logic (LTL for short) is a modal temporal logic. Given an alphabet
Σ, a formula in LTL is defined as follows:

• For each a ∈ Σ, the atomic proposition pa is a formula.

• Given φ and ψ two well-formed LTL formulas, φ ∨ ψ, φ ∧ ψ and ¬φ are LTL formulas.

• Given φ and ψ two well-formed LTL formulas, Xφ (read as ”next φ”) and φ U ψ (read as
”φ until ψ”) are LTL formulas.

The semantics of LTL formulas are defined by induction on these formation rules. Given
a word w ∈ Σ+ and an index i ∈ [|w|], we define the relation ”(w, i) satisfies the formula φ”,
written (w, i) � φ by induction on φ, according to the following rules:

• Given a ∈ Σ, (w, i) � pa if the ith letter of w is an a.

• Given two formulas φ and ψ, (w, i) � φ ∨ ψ (resp. φ ∧ ψ, resp. ¬φ), if (w, i) � φ or
(w, i) � ψ (resp. (w, i) � φ and (w, i) � ψ, resp. ¬((w, i) � φ)).

• Given a formula φ, (w, i) � Xφ if i+ 1 < |w| and (w, i+ 1) � φ.

• Given a formula φ, (w, i) � φ U ψ if there exists an index j such that i ≤ j < |w|,
(w, j) � ψ and, for each index k such that i ≤ k < j, (w, k) � φ

Given φ an LTL formula, we say that a word w satisfies φ if (w, 0) � φ. Then, the language
of φ is defined to be the set {w | (w, 0) � φ}.

For readability purposes, we define additional operators:

• The logical operator true is such that, for any atomic proposition pa, true ≡ pa ∨ ¬pa.

• The operator F (”finally”) is defined by Fφ ≡ true U φ.

Example 1.12. Consider the LTL formula φ = pa ∧ X(pc U (pb ∧ Xfalse)). This formula
recognizes words that start with an occurrence of a, and then have only occurrences of c until
the last letter, which is a b. This is equivalent to the rational expression ac∗b. Thus, the formula
φ recognizes the words ab and acccb, but not the word acacb.

In his thesis, Kamp proved that LTL is as expressive as FO[<] on Dedekind-complete
orderings [39]. That result was later improved by Gabbay et al. [24], who showed that the
languages in LTL are exactly the languages in FO[<].

With this construction, LTL is sometimes called Forward LTL, as its operators use only
information from the future parts of the word to give the result. Other temporal operators can
be added to change that:

• Given a formula φ, (w, i) � Yφ (read as ”yesterday φ”) if i− 1 ≥ 0 and (w, i− 1) � φ.

26 CHAPTER 1. Preliminaries

• Given a formula φ, (w, i) � φ S ψ (read as ”φ since ψ”) if there exists an index j such
that 0 ≤ j ≤ i, (w, j) � ψ and, for each index k such that j < k ≤ i, (w, k) � φ

The temporal logic that uses only the boolean operators and the temporal operators ”yes-
terday” and ”since” is called Past-time Linear Temporal Logic (Past LTL for short), and the
temporal logic that uses both past-time and future-time temporal operators is called TL. Note
that, for Past LTL formulas, the condition to satisfy the formula must change to match the
change of direction of the formula. Thus, given φ a Past LTL formula, we say that a word w
satisfies φ if (w, |w| − 1) � φ. As a global rule, this acceptance condition depends on the first
operator of the formula. Adding past-time operators does not increase the expressivity. Indeed,
Gabbay et al. [24, Theorem 2.3] showed that any formula in TL is equivalent to a Boolean
combination of formulas in the union of Past LTL and Forward LTL. This result implies that
Forward LTL and TL are exactly the same class. Indeed, given such a boolean combination, we
can re-write it as a boolean combination of formulas in Forward LTL. To do so, we just need
to remark that each formula in Past LTL, just like the formulas in Forward LTL, introduces
an order on some particular letters of the words. The difference is that a Past LTL formula
uses the order from right to left, when a Forward LTL formula uses it from left to right. Thus,
using that order, it is possible to write an equivalent Forward LTL formula.

Example 1.13. Consider the Forward LTL formula φ = pa ∧ X(pc U (pb ∧ Xfalse)). It is
equivalent to the rational expression ac∗b. That rational can also be recognized by a Past LTL
formula, which is ψ = pb ∧ Y(pc S (pa ∧ Yfalse)).

Aperiodic semigroups. The class of aperiodic semigroups, called Ap, is the variety of
semigroups satisfying an equation of the form πS(x

ω+1) = πS(x
ω), for any x ∈ S. This variety

verifies the following characterization:

Proposition 1.2

Let S be a semigroup. The following conditions are equivalent (see [65]):

• S is aperiodic.

• There exists an integer ω such that for all s ∈ S, πS(sω) = πS(s
ω+1).

• All H-classes of S are trivial.

Thanks to this property, when considering an aperiodic semigroup, we only need to know
the H-class of an element to precisely characterize that element. This fact will be extensively
used in the proofs of our main results.

In [65], Schützenberger proved that the rational languages which syntactic monoids are
finite and aperiodic are exactly the star-free languages.

The class Ap admits an interesting property that is used in the proofs of section 4.2. The
property states that the product of a J -constant word is equal to the product of its first and
last letters, which allows for some products to be computed quicker.

Lemma 1.3

Let S be an aperiodic semigroup. Suppose that u = s0 · · · sk ∈ S+ is a J -constant word.
Then, πS(u) is the unique element of R(s0) ∩ L(sk). If k > 0, this also implies that

1.3. Characterization of some known classes of languages 27

πS(u) = πS(s0 · sk).

Proof. Since S is aperiodic, and thanks to Proposition 1.2, we know that πS(u) is the unique
element of R(u) ∩ L(u), so we only have to find R(πS(u)) and L(πS(u)). By hypothesis, u
is J -constant, so J(πS(u)) = J(s0) = J(sk). By definition of R and L, this implies that
R(πS(u)) = R(s0) and L(πS(u)) = L(sk). Thus we have that πS(u) is the unique element
of R(s0) ∩ L(sk). If k > 1, then s0 and sk are separate occurrences of elements of S, so
πS(u) = πS(s0 · sk), which is the unique element of R(s0) ∩ L(sk).

1.3.2 FO2[<]

The class FO2[<] has been extensively studied and admits a wealth of equivalent classes. We
present some of them in this section. For a full exposition of this subject, we refer to [71]. The
equivalent classes are summarized in the following theorem:

Theorem 1.3

Let Σ be an alphabet and L ⊆ Σ∗ be a language. The following propositions are equivalent:

• L ∈ FO2[<].

• L ∈ UTL.

• The syntactic semigroup of L is in DA.

• There exists a turtle program that recognizes L.

UTL. Unary Temporal Logic (UTL for short) is the fragment of LTL which uses only two
operators, that are restricted versions of the Until and Since temporal operators. Given an
alphabet Σ, a formula in UTL is defined as follows:

• For each a ∈ Σ, the atomic proposition pa is a formula.

• Given φ and ψ two well-formed LTL formulas, φ ∨ ψ, φ ∧ ψ and ¬φ are LTL formulas.

• Given φ a well-formed LTL formulas, Fφ (read as ”finally φ”) and Pφ (read as ”past φ”)
are LTL formulas.

The semantics of UTL formulas are defined by induction on these formation rules. The
operators F and P are defined from U and S as follows: Fφ ≡ true U φ and Pφ ≡ true S φ.
Thus, given a word w ∈ Σ+ and an index i ∈ [|w|], we define the relation (w, i) � φ as follows:

• Given a ∈ Σ, (w, i) � pa if the ith letter of w is an a.

• Given two formulas φ and ψ, (w, i) � φ ∨ ψ (resp. φ ∧ ψ, resp. ¬φ), if (w, i) � φ or
(w, i) � ψ (resp. (w, i) � φ and (w, i) � ψ, resp. ¬((w, i) � φ)).

• Given a formula φ, (w, i) � Fφ if there exists an index j such that i < j < |w| and
(w, j) � φ.

• Given a formula φ, (w, i) � Pφ if there exists an index j such that 0 ≤ j < i and
(w, j) � φ.

28 CHAPTER 1. Preliminaries

It is easy to build an FO2[<] formula equivalent to a given UTL formula, as shown in
example 1.14.

Example 1.14. Consider the UTL formula φ = (pc ∨ pa) ∧ (F(pb) ∧ (P(¬pd) ∧ F(pc))). This
formula expresses the following property: the first letter must be an occurrence of either c or
a, followed at some future index by an occurrence of b. That occurrence of b must be preceded
by an occurrence of d, which itself must be followed by an occurrence of c. This is equivalent
to the FO2[<] formula (c(0) ∨ a(0)) ∧ ∃i, (0 < i ∧ d(i) ∧ ∃j, (i < j ∧ b(j)) ∧ ∃j, (i < j ∧ c(j))).

Etessami et al. [20, Theorems 1 and 2] showed that UTL is equivalent to FO2[<] by proving
that it is possible to build a UTL formula equivalent to any given FO2[<] formula. However,
it is important to note that they also showed that there is necessarily an exponential blow-up
between FO2[<] and UTL. Indeed, they gave a sequence φn of FO2[<] formulas such that the
shortest equivalent UTL formulas are of size 2Ω(n).

DA. The class DA is the variety of semigroups satisfying the equation πS((xyz)ωy(xyz)ω) =
πS((xyz)

ω). This is equivalent to saying that any semigroup S is in DA if and only if any
regular D-class D of S is an aperiodic semigroup.

In our proofs involving semigroups in DA, we will rely on some classical equivalent charac-
terizations of the variety DA.

Proposition 1.3

Let M be a monoid. The following conditions are equivalent:

• M is in the variety DA.

• If J is a regular J -class of M , then J is an aperiodic semigroup.

• ∀x, y, z ∈ M, (xyz)ωy(xyz)ω = (xyz)ω (we will refer to this as the algebraic charac-
terization of DA) (see [71, Theorem 2.]).

By definition, any semigroup in DA is aperiodic, so we will also be able to use the charac-
terizations presented in Proposition 1.2.

One of the interesting properties of DA is that, in a D-class, if any element is idempotent,
then all the elements in that class are idempotent.

Proposition 1.4

Let S be a finite semigroup in DA and D a D-class of S. If D is regular then, for any
element s ∈ D, s is idempotent.

Proof. To prove this property, suppose that D is regular. Let s be an element of D. Thanks
to proposition 1.3, we know that D is an aperiodic semigroup. As a consequence of proposi-
tion 1.2, for some integer ω ≥ 1, πS(sω+1) = πS(s

ω), and so πS(s2ω) = πS(s
ω). Thus, πS(sω)

is idempotent. Moreover, s ·S πS(sω−1) = πS(s
ω) and πS(s

ω−1) ·S s = πS(s
ω), so s ≥R πS(s

ω)
and s ≥L πS(s

ω). Finally, since D is a semigroup composed of only one D-class, sω is in the
same D-class as s, so sRπS(sω) and sLπS(sω), which is equivalent to sHπS(sω). This allows us
to conclude, as D is an aperiodic semigroup, so proposition 1.2 implies that its H-classes are
trivial, which in turn gives us that s = πS(s

ω). Since πS(sω) is idempotent, this concludes the
proof.

1.3. Characterization of some known classes of languages 29

Thérien and Wilke [73] showed that DA is equivalent to FO2[<]. Moreover, the class DA
admits the following nice property that is used in the proofs of section 4.3.

Lemma 1.4

Let S be a semigroup in DA and R an R-class of S. Then there exist two sets T,K ⊆ S
such that S = T]K and, for all x ∈ R, we have

• ∀s ∈ T, xsRx

• ∀s ∈ K, xs <J x

Moreover, both T and K are sub-semigroups of S such that, if we denote by J the J -class
containing R, then J ⊆ T if R is regular and J ⊆ K otherwise. It follows that if S is a
monoid, then T is also a monoid.

Proof. First, we prove that the sets T and K exist and are well defined. Consider s ∈ S and
x, y ∈ R. We need to prove that xsRx ⇔ ysRy. Note that, since xRy, there exist p, q ∈ S
such that xp = y and yq = x. Suppose that xsRx. Then, we want to prove that ysRy. By
definition, ys ≤R y, so we only need to find some element z ∈ S such that ysz = y. Since
xsRx, ∃r ∈ S, xsr = x. Thus, yqsrp = y and y(qsrp)ω = y. Since S is in DA, we have
(qsrp)ω = (qsrp)ωs(qsrp)ω, so we have y(qsrp)ωs(qsrp)ω = y. Since y(qsrp)ω = y, this implies
that ys(qsrp)ω = y, which proves that ysRy. Since x and y have symmetric roles, the converse
follows directly. Thus, the set T exists and is well defined, and the set K = S \ T is such that,
∀s ∈ K, ∀x ∈ S, ¬(xsRx). By definition of the J -classes, we necessarily have xs ≤J x, so
xs <J x, which shows that the set K has the wanted property.

Now, we prove that T is a sub-semigroup of S: let a and b be two elements of T . By definition
of T , for any x ∈ R, xaRx and xbRx; thus there exist p, q ∈ S such that xap = x and xbq = x.
So, xapbq = x and x(apbq)ω = x. Since S is in DA, it is aperiodic, so x(apbq)ω = x(apbq)ω+1.
Then, we can get one letter a out of the parentheses as follows: x(apbq)ω+1 = xa(pbqa)ωpbq.
Now, we can isolate a letter b: since S is in DA, we have xa(pbqa)ωpbq = xa(pbqa)ωb(pbqa)ωpbq.
To summarize our results so far, we have x = xa(pbqa)ωb(pbqa)ωpbq. Now, remember that
xapbq = x. Thus, xapbqa = xa, and xa(pbqa)ω = xa. This way, we can get rid of the leftmost
factor (pbqa)ω in our result and obtain the following equality: x = xab(pbqa)ωpbq. This proves
that xabRx. Consequently, ab is also in T and T is a semigroup. To prove that K is a
sub-semigroup of S, we remark that, for any elements x ∈ R, s ∈ K and t ∈ S, we have
πS(xst) ≤J πS(xs) <J x. Thus, the set K is an ideal of S, and so it is a sub-semigroup.

Finally, thanks to Proposition 1.4, we know that if R is regular, then all the elements of its
J -class are idempotent, so J ⊆ T . On the contrary, if R is not regular, then no element of J
can be idempotent, so J ⊆ K.

Turtle programs. Turtle programs were introduced by Schwentick et al. to characterize the
expressive power of FO2[<]. A turtle instruction on an alphabet Σ is a pair (d, a), for any
direction d ∈ {→,←} and any letter a ∈ Σ. For readability purposes, we use the notations Xa

and Ya respectively for (→, a) and (←, a). A turtle program is a sequence of turtle instructions
starting either at the beginning or the end of a word.

We use the symbol ⊥ to denote an undefined position in a word. Given an alphabet Σ, a
word w ∈ Σ∗ and two letters a1, a2 ∈ Σ, we define the effect of the turtle instructions Xa1 and
Ya2 as follows:

30 CHAPTER 1. Preliminaries

• For any position i ∈ {−1, . . . , |w| − 1}, Xa1(w, i) is the unique pair (w, j) such that j > i
or j = ⊥ and, if j 6= ⊥, then wj = a1 and, for each index k ∈ {i+ 1, . . . , j − 1}, wk 6= a1.

• For any position i ∈ {0, . . . , |w|}, Ya2(w, i) is the unique pair (w, j) such that j ∈
{0, . . . , i−1}∪{⊥} and, if j 6= ⊥, then wj = a2 and, for each index k ∈ {j+1, . . . , i−1},
wk 6= a2.

• Xa1(w,⊥) = Ya2(w,⊥) = (w,⊥)

In other words, from a position (w, i), the instruction Xa1 jumps to the first position (w, j)
on the right such that wj = a1, or to (w,⊥) if that position does not exist. Similarly, the
instruction Ya2 jumps to the first position (w, j) on the left such that wj = a2, or to (w,⊥) if
that position does not exist.

Given a turtle program P = I1 · · · In and a word w ∈ Σ∗, we define P (w) to be

• In(. . . I1(w,−1) . . .) if I1 is of the form (→, a)

• In(. . . I1(w, |w|) . . .) if I1 is of the form (←, a)

Note that this definition ensures that we start at the beginning of the word if the turtle in-
struction I1 goes from left to right, and at the end of the word if it goes from right to left.

A word w is said to be accepted by a turtle program P if P (w) 6= ⊥. We define L(P) to be the
set of all words accepted by P . In [66], Schwentick et al. showed that the set of languages which
syntactic monoids are in DA is exactly the set of languages that can be recognized by boolean
combinations of turtle programs. We denote the set of all possible boolean combinations of
turtle programs as TL[Xa, Ya].

1.4 Boolean circuits
The goal of this thesis is to use the algebraic theory of automata to produce vectorized algo-
rithms, which would process input words using a form of parallelism. The vectorized algorithms
presented in this thesis are inspired from boolean circuits, which are a theoretical tool used to
describe algorithms, and notably to represent which parts of these algorithms may be performed
in parallel.

1.4.1 Definitions
A boolean circuit is a directed acyclic graph, where the nodes are called gates. The input gates
are the source nodes of the graph, while the output gates are its sink nodes. The edges of
the graph are called wires. Each gate, except for the input gates, is associated with a boolean
function f : {0, 1}r → {0, 1}, where r is the fan-in of the gate, which is the number of
edges that enter the gate. Boolean functions can be represented by their truth table, which
exhaustively list all possible inputs to the function and their corresponding outputs. In cases
where the function f is not symmetric, an order on these edges is required.

Example 1.15. The circuit represented by Figure 1.9 has four input gates: b0, b1, b2 and b3. It
has only one output gate, which is the one labelled ∧. The boolean functions associated with
the gates are as follows:

1.4. Boolean circuits 31

• The gate labelled by ∨ is of fan-in 3, and is associated with the function f∨ : {0, 1}3 →

{0, 1} defined by f(b0, b1, b2) = b0 ∨ b1 ∨ b2 =

{
1 if bi = 1 for some i ∈ {0, 1, 2}
0 otherwise

• The gate labelled by ¬ is of fan-in 1, and is associated with the function f¬ : {0, 1} →

{0, 1} defined by f(b) = ¬b =

{
1 if b = 0

0 otherwise

• The gate labelled by ∧ is of fan-in 2, and is associated with the function f∧ : {0, 1}2 →

{0, 1} defined by f(b0, b1) = b0 ∧ b1 =

{
1 if b0 = b1 = 1

0 otherwise

Note that all the boolean functions used here are symmetric.

b0 b1 b2 b3

∨ ¬

∧

Figure 1.9 – A simple boolean circuit

The size of a circuit refers to the number of non-input gates it contains, while the depth is
defined as the length of the longest oriented path within the circuit. Additionally, the fan-out
of a gate represents the number of edges exiting that gate.

Example 1.16. The circuit in Figure 1.9 is of size 3 and of depth 2. All the gates in that
circuit are of fan-out 1.

In a circuit with n input gates labeled by booleans b0, . . . , bn−1, each gate g can be associated
with a function Fg : {0, 1}n → {0, 1}, mapping the inputs of the circuit to the output of the
gate. That function is defined by induction on the depth of the gate g. For the base case, each
input gate g labelled by bi is associated with the function Fg such that Fg(b0, . . . , bn−1) = bi. In
other words, the output of the gate g is equal to the corresponding boolean input. Any other
gate g of fan-in r is associated with Fg such that

Fg(b0, . . . , bn−1) = fg(Fg0(b0, . . . , bn−1), . . . , Fgr−1(b0, . . . , bn−1))

This recursive definition enables the computation of the output of any gate within the
circuit. Therefore, a circuit with n input gates and m output gates is associated with a function
F : {0, 1}n → {0, 1}m. When m = 1, we say that the circuit accepts any input b0 · · · bn−1 such
that F (b0, . . . bn−1) = 1. Such circuits recognize the set of all the accepted inputs.

Example 1.17. The circuit in Figure 1.9 computes the function F∧ : {0, 1}4 → {0, 1} such
that F∧(b0, b1, b2, b3) = (b0 ∨ b1 ∨ b2) ∧ ¬b3. Thus, that circuit recognizes the set of words
{b0b1b2b3 ∈ {0, 1}4 | (b0 ∨ b1 ∨ b2) ∧ ¬b3 = 1}, which is the set of words of length 4 such that
the last bit is 0, and at least one of the first three bits is 1.

32 CHAPTER 1. Preliminaries

In our boolean circuits, we also authorize the use of constant gates. A constant gate is an
input gate with a constant value assigned to it, regardless of the values of the inputs. Thus,
our circuits can use the constant values 0 and 1.
Remark 1.3. Constant gates do not impact the expressivity of the circuits, as they can be
obtained from any input value with a circuit of constant size. Indeed, for any boolean b,
b ∨ ¬b = 1 and b ∧ ¬b = 0. In boolean circuits, constant gates only provide a convenient way
of drawing more readable circuits.

Extending circuits to arbitrary alphabets. It is possible to consider more general circuits.
Given a fixed alphabet Σ, we say that a boolean circuit C recognizes a set of words in Σn when
it has a unique output gate and there is a bijection between the letters a0, . . . , ap−1 of Σ and
the input gates b0, . . . , bq−1. For example, we can represent the alphabet Σ = {a, b, c} by three
booleans ba, bb and bc, which are equal to 1 if the letter is equal to, respectively, a, b, or c. This
is called the one-hot encoding: a variable with n possible states is encoded on n bits, among
which only one at a time can be equal to 1. We could then represent a word of size n by 3n
booleans: ba,0, bb,0, bc,0, . . . , ba,n−1, bb,n−1, bc,n−1. As a shorthand, we write enc(u) for the tuple of
booleans encoding the input word u, and thus C(enc(u)) for the output of C corresponding to
the input enc(u).

Boolean circuits can also represent functions f from Σn to a finite domain E. It suffices to
consider circuits C which have not only a bijection between their input gates and the letters of
Σ, but also a bijection between the elements e0, . . . , er−1 of E and their output gates e0, . . . , es−1.

1.4.2 Classes of boolean circuits
One circuit with n input gates can only accept words of length n. Thus, to recognize a given
language L, we need a family of circuits, where no two circuits have the same number of inputs.
In such a family of circuits, the circuit with n inputs recognizes the language L ∩ {0, 1}n.

Example 1.18. It is possible to generalize the circuit in Figure 1.9 to recognize the language of
words of any size such that the last bit is 0 and at least one of the others is 1. In symbols, this
is the language L = {b0 · · · bn−1 ∈ {0, 1}+ |

∨n−2
i=0 bi = 1 and bn−1 = 0}. If we allow ourselves to

use gates of arbitrary fan-in, this can be done easily, as it suffices to replace the gate labelled ∨
by another gate ∨ of appropriate fan-in. Then, the circuit in Figure 1.10 recognizes L∩{0, 1}4,
the words of length 4 in the language, and the circuit in Figure 1.10 recognizes L ∩ {0, 1}6.

b0 b1 b2 b3 b4 b5

∨ ¬

∧

Figure 1.10 – The circuit for words in L ∩ {0, 1}6

Families of circuits can be studied through circuit complexity, which has been introduced
by Shannon [68]. Circuit complexity categorizes families of circuits depending on the relations
between the index of a circuit in a family and parameters such as the number of gates, the
number of wires, or the depth. This leads to a hierarchy of circuits classes, some of which are

1.4. Boolean circuits 33

presented in this section. But before presenting these classes, let’s talk about another feature
of circuit families, which separates each class of circuits in two significantly different classes:
uniformity.

Uniformity. A family of circuits (Cn)n≥0 can be arbitrary. Notably, if we have a set of
integers N ⊆ N, we can recognize the language L = {w ∈ {0, 1}∗ | |w| ∈ N} using the
following family (Cn)n∈N:

• C0 is the constant gate equal to 1 if 0 ∈ N , and to 0 otherwise.

• For each n ∈ N+, if we denote the input by b0 · · · bn−1, Cn is the circuit bn−1 ∨ ¬bn−1 if
n ∈ N , and the circuit bn−1 ∧ ¬bn−1 otherwise.

This way, we can recognize a non-recursive language using a family of circuits of constant
depth. The goal of defining uniform circuit families is to avoid such behavior and make the
complexity of those families closer to the complexity of Turing machines. The idea is that
the circuits of a uniform family, including their complexity, should depend on the value of the
index n, following some rule or algorithm that ensures all circuits in the family to have the same
structural properties. Thus, a circuit family is uniform if there exists a deterministic algorithm
that, for each n ∈ N, provides an explicit description of the nth circuit of the family.

Various notions of uniformity can be used by restricting the resources required by the
algorithm generating the circuits. One classical notion requires the circuit to be generated
by a deterministic Turing machine running in logarithmic time, while other definitions require
the circuits’ wires to be described in some logical formalisms. We refer to [75] for a complete
description of the various notions of uniformity.

NC1. NC 1 is the class of functions that can be computed by a family (Cn)n≥0 of circuits
following some conditions. First, all the circuits Cn are built from gates labelled only by the
boolean functions ¬, ∨ and ∧. The fan-in of these gates is as follows: one for ¬, and two for
∨ and ∧. For each n ≥ 0, the circuit Cn has n input boolean values. Moreover, there exists
k > 0 such that, for any n ≥ 0, the depth of the circuit Cn is less than k · log2(n). Finally,
there exists a polynomial P such that, for any n ≥ 0, the number of wires of the circuit Cn is
less than P (n).

For the particular case of functions of the form f : {0, 1}∗ → {0, 1}, this is equivalent to
saying that NC1 is the class of languages that can be recognized by a family (Cn)n≥0 of circuits
such that the following conditions are true. For each n ≥ 0, the circuit Cn has n input boolean
values, one output gate, and is built from gates labelled only by the boolean functions ¬, ∨
and ∧. The fan-in of these gates is as follows: one for ¬, and two for ∨ and ∧. Finally, there
exists k > 0 such that, for any n ≥ 0, the depth of the circuit Cn is less than k · log2(n).

Example 1.19. The parity function outputs 1 if the number of bits set to 1 in the input is odd,
and outputs 0 otherwise. For example, for an input word w = 10101101, the parity function
would output 1 because there are an odd number of 1s in the sequence.

To compute the parity function using circuits in NC1, we can construct a family of circuits
with ⊕ gates. These circuits repeatedly use ⊕ gates to compute the parity of adjacent pairs
of bits until a single bit representing the overall parity is obtained. To do so, they operate as
follows:

• Split the input sequence into pairs of adjacent bits: for example, the input 1010110 is
split as 10 · 10 · 11 · 0.

34 CHAPTER 1. Preliminaries

• For each pair, use a ⊕ gate to compute the XOR of the two bits. This will yield a new
word where each bit represents the parity of the corresponding pair of bits in the original
word.

• Repeat the two first steps until there is only one bit left, which will be the parity of the
entire input word. Thus, the circuit outputs 1 if and only if the input has an odd number
of bits set to 1.

Since the size of the word is divided by two at each step, the depth of the circuits is logarithmic
in the size of the input word. Also note that the ⊕ gate can be implemented using ∧, ∨, and ¬
gates, which are allowed in NC1 circuits. Therefore, the family of circuits computing the parity
function is a valid example of a family of circuits in NC1. This family recognizes the language
of words that have an odd number of bits set to 1.

b0 b1 b2 b3 b4

⊕ ⊕

⊕

⊕

Figure 1.11 – The circuit computing the parity function for inputs of size 5

The set of languages recognized by circuits in NC1 is characterized by the following theorem:

Theorem 1.4: Folklore

If a language is regular, then it can be recognized by a family of boolean circuits in NC1.

This theorem is taken from folklore, and is stated by Straubing in his book [70, Theorem
IX.1.1].

AC0. AC 0 is the class of functions that can be computed by a family (Cn)n≥0 of circuits such
that the following conditions are met. For each n ≥ 0, the circuit Cn has n input boolean values
and is built from gates labelled only by the boolean functions ¬, ∨ and ∧. The gate ¬ is still
of fan-in one, but ∨ and ∧ are of unbounded fan-in. Moreover, there exists k > 0 such that,
for any n ≥ 0, the depth of the circuit Cn is less than k. Finally, there exists a polynomial P
such that, for any n ≥ 0, the number of wires of the circuit Cn is less than P (n).

Example 1.20. For any alphabet Σ containing the letters a and c, it is possible to recognize
the language of words Σ∗ac∗aΣ∗, i.e. the language of words that have an infix of the form
ac · · · ca with a family of circuits in AC0. To do so, we need to check each infix of length at
least 2 of the input word w. The alphabet Σ is dealt with by representing the input word w
with the set of booleans li | l ∈ Σ, i ∈ [|w|], where li = 1 if and only if the letter of index i is the
letter l. With this set of booleans as input, the circuit is constructed as follows: for each pair of
indices (i, j) such that 0 ≤ i ≤ j − 1 ≤ |w| − 2, the circuit has an ∧ gate of fan-in 2 connected
to the booleans ai and aj. These ∧ gates are meant to verify that we have an a both at the
beginning and at the end of the infix. We also need to verify that the letters between these
positions are occurrences of c, which is done using an ∧ gate connected to all the booleans ck

1.4. Boolean circuits 35

such that i + 1 < k < j − 1 (if there is no such position, no gate is needed). Then, we use an
∧ gate connected to the results of the two other ∧ gates. The result of this ∧ gate is 1 if and
only if the considered infix is of the form ac∗a. Thus, it suffices to add an ∨ gate connected to
the third ∧ gate for each infix. The result of that gate is 1 if and only if the input word is in
the language. The circuits constructed this way are of constant depth, and have a quadratic
number of gates, so the family is in AC0.

c1 c2 a0 a1 a2 a3

∧ ∧ ∧

∧ ∧ ∧ ∧

∧ ∧ ∧

∨

Figure 1.12 – The circuit recognizing words in Σ∗ac∗aΣ∗ ∩ Σ6

Furst et al. [23] showed that it is impossible to build a family of circuits (Cn)n∈N+ in AC0

such that, for each n ∈ N+, the circuit Cn outputs 1 if and only if the number of boolean inputs
set to 1 is even (the parity function presented in example 1.19). Later, Barrington et al. [7]
gave a characterization of the regular languages in AC0: those are exactly the languages in the
class FO[C], where C contains the predicates of FO[<] and all the unary predicates of the form
Cr
d , where Cr

dx is interpreted as x ≡ r mod d.

LAC0. LAC 0, also called linear AC 0 is the class of languages in AC0 that can be recognized
by a family (Cn)n≥0 of circuits such that the size of Cn is O(n).

Example 1.21. Given an input word of the form a0 · · · an−1b0 · · · bn−1, we can build a circuit
in LAC0 that outputs 1 is and only if a0 · · · an−1 = b0 · · · bn−1. To do so, we use n ⊕ gates in
parallel to check whether a0 = b0, …, an−1 = bn−1. The result of these gates if 0 if and only if
the equality is true, so we want all these results to be 0. This is checked by an ∨ gate on all
the outputs of the ⊕ gates. The result of the ∨ gate is 0 if and only if a0 · · · an−1 = b0 · · · bn−1,
so we add a ¬ gate to invert the result.

From this construction, we can define the family of circuits (Cn)n∈N such that, if n is even,
Cn is built as explained above, and otherwise Cn is the trivial circuit that outputs 0. This
family of circuits recognizes the set of words w = b0 · · · b2n−1 such that b0 · · · bn−1 = bn · · · b2n−1.
The circuit that processes inputs of size 6 is showed in Figure 1.13. This family of circuits is
of constant depth, and the number of gates grows linearly with the size of the input words, so
this family is in the class LAC0.

Chaudhuri and Radhakrishnan [16] showed that LAC0 is strictly included in AC0. Then,
an exact logical characterization was given when Kouckỳ et al. [43] showed that the class of
languages LAC0 is exactly the class FO2[arb], the fragment of first-order logic that uses at most
two variable names and has access to any arbitrary predicate.

36 CHAPTER 1. Preliminaries

a0 a1 a2b0 b1 b2

⊕ ⊕ ⊕

∨

¬

Figure 1.13 – The circuit that recognizes the words of size 6

WLAC0. WLAC0 is the class of languages in AC0 that can be recognized by a family (Cn)n≥0

of circuits such that the number of wires of Cn is O(n).

Example 1.22. It is possible to recognize the language of words of the form 101010 · · · using
a family of circuits in WLAC0. To do so, we take advantage of the fact that a word is in this
language if and only if all the bits at even indices are set to 1 and all the others are set to 0.
Thus, the circuit that recognizes the words of size n in the language is constructed as follows:
it uses an ∧ gate of unbounded fan-in on all the bits of even index to verify that all these bits
are set to 1. An ∨ gate is used on all the bits of odd index to check that there is no bit set to
1 among those. Then, a ¬ gate is used on the result of the ∨ gate to obtain a 1 if and only if
all the bits of odd index are set to 0. Finally, the output gate of the circuit is an ∧ gate, which
inputs are the outputs of the first ∧ gate and the ¬ gate. This gate outputs 1 if and only if
the bits of even index are set to 1 and the bits of odd index are set to 0, which is exactly the
definition of the language. The circuit that processes inputs of size 5 is showed in Figure 1.14.
This family of circuits uses a constant number of gates, and the number of wires grows linearly
with the size of the input words, so this family is in the class WLAC0.

b0b1 b2b3 b4

∧∨

¬

∧

Figure 1.14 – The circuit that recognizes the word 10101

Having more gates than wires is not of much use, so WLAC0 ⊆ LAC0. In [43], Kouckỳ
et al. gave a function that can be computed by a family of circuits in LAC0, but cannot be
computed by any family of circuits in WLAC0, so the inclusion is strict. However, the question
is still open when we restrict the classes to regular languages:

Open problem 1.1. Do LAC0 and WLAC0 contain the same regular languages?

The class WLAC0 does not have a characterization as a fragment of first-order logic, but
Cadilhac and Paperman [13] showed that the regular languages in WLAC0 are exactly the class
FO2[<,mod], the fragment of first-order logic that uses at most two variable names and has
access to the order relation < and the relation x ≡ 0 mod m, for any integer m > 0.

Chapter2
Experimenting on regex validation

Outline of the current chapter
2.1 Regexes: concept and usage 39

2.1.1 From rational to regular expressions 39
2.1.2 Usage of the extended regular expressions 43
2.1.3 Existing regex processing algorithms 46

2.2 Compile-time optimization of automata execution 49
2.2.1 Rust’s specificities . 50
2.2.2 Challenges brought by the framework 52
2.2.3 General methodology . 54
2.2.4 Inputs of the benchmarks . 57
2.2.5 Hardware and implications . 60

2.3 Simple sequential algorithms 61
2.3.1 A baseline for sequential execution 61
2.3.2 Benchmark results . 65

2.4 Semigroups and parallel algorithms 66
2.4.1 Common methodology for the algorithms using semigroups 67
2.4.2 The algorithms . 70
2.4.3 Benchmark results . 72
2.4.4 Propositions of potential improvements 75
2.4.5 Benchmark results . 83

As presented in the introduction, the goal of this thesis is to produce efficient programs rec-
ognizing regular languages by leveraging vectorization and the algebraic theory of automata.
The challenge of recognizing regular languages can take several forms, which share a common
basis. This basis is the principle: a program is said to recognize a regular language if, when
given an input text and a regular language, it decides correctly whether the input text belongs
to the language. Depending on the cases, the text or the language can be supposed to be
known in advance, which allows for some optimizations before running the program. In this
thesis, we suppose that the languages are known in advance, which places us in the domain
of online pattern matching, as opposed to offline pattern matching, where the input text is
known in advance and is processed using different techniques such as indexing. Consequently,

37

38 CHAPTER 2. Experimenting on regex validation

the programs presented in this thesis are built so that the regex must be given at compile-time
instead of runtime, which allows for some complex optimizations during compile-time that can
increase the efficiency at runtime. On the contrary, the text is given only at runtime.

In order to measure the actual efficiency of our algorithms, we implemented them (see the
repositories [58, 59]). In order to make the most use of the possibilities offered by vectorization,
we consider that the structures used to recognize a language – in our case, algorithms leveraging
vectorization – are produced at compile-time. This allows our programs to build optimized data
structures to recognize languages, which can then be optimized by a generic purpose compiler.
We could produce equivalent programs at runtime by choosing the right vectorial instructions
depending on the context, notably the progress already made in the validation, which can be
the state reached in an automaton, the element computed in a semigroup, or the R-class of
that element. However, this dependency would force us to use conditional statements to choose
the instructions to execute. This would significantly slow down our programs, as in practice
conditional statements lead to branch prediction, and sometimes branch misprediction. In
order to avoid this problem and produce more efficient programs, we process the automata at
compile-time, where we choose the right vectorial instructions and assemble them depending on
the properties of the language. The conditional statements are then used only at compile-time,
allowing us to produce optimized, almost branch-free programs which can then be used as many
times as needed.

Since these compiled programs can be used as many times as necessary without re-compiling
them, reducing the time the code takes to run on the input text is more important to us than
reducing the theoretical complexity of the algorithm that constructs the data structure (such
as an automaton) to be executed on the input text. This allows us to build more complex data
structures that may take more time to be compiled, but might be more efficient at runtime.
Moreover, we can rely on the optimization phase of the compiler to improve the execution
engine that we produce, which may increase efficiency.

This choice of compile-time processing makes it more or less meaningless to compare our
implementation to the state-of-the-art tools, as they process the languages at runtime, which
is desirable for these tools since the languages are not always known in advance. Consequently,
though we run our benchmark on one of these state-of-the-art tools, we needed another baseline
for programs which process the languages at compile time. To the best of our knowledge, only
the tools lex, flex and Yacc could serve as baseline for this kind of computation. However, some
experiments on flex showed that this tool is not well adapted to the needs of this thesis (see
remark 2.4), and so we tried to implement our own baseline. We wrote several algorithms: one
for a baseline using a classical algorithm based on an NFA, and several others to experiment
on the possible uses of the algebraic theory of automata and estimate the feasibility of using
algebra to produce parallel algorithms, which is a first step toward vectorization.

In our implementation, we considered regular expressions to represent regular languages.
Regular expressions, that we present in this chapter, are a practical tool meant to manipulate
texts, notably to validate that the input text is a word in a given regular language. However,
they are significantly more expressive than regular languages, despite the similarities between
the two names, as they include features such as backreferences. Thus, we consider only a
fragment of the regular expressions, which is equivalent to the regular languages. In this chapter,
we present the choices made for the implementation, such as the structure that represents an
NFA. We also present the algorithms chosen as baseline to have an idea of what performance
can be expected in our setting. This setting is particular, as it is chosen considering that we
want to use vectorized programs, which led us to process the regular expressions at compile
time to produce optimized programs that can then be run multiple times on the input texts.

2.1. Regexes: concept and usage 39

2.1 Regexes: concept and usage
In section 1.1.4, we defined the set of rational expressions, which are used to define sets of words
over a given alphabet. Though rational expressions are theoretical tools, a similar syntax is used
in practice in various tools. These tools, which include algorithms for pattern matching and
text processing, need to recognize languages in order to operate properly. Therefore, they were
built using a syntax close to rational expressions, syntax which evolved with time to become
more compact and more expressive, in order to meet the needs of a growing number of users.
In this thesis, the formulas built using this concrete syntax will be called regular expressions,
while the term rational expression will solely denotes the theoretical variant.

Regular expressions are used to describe patterns in text and thus form a domain-specific
language (DSL). In other words, they are specifically designed for defining languages, i.e. sets
of words. As other DSLs, they are built with their own syntax. In this section, we present a
brief introduction on regular expressions and their syntax, but we focus mainly on a fragment
of regular expressions which is exactly as expressive as rational expressions. We also present
some of the algorithms used by existing regex manipulation tools.

2.1.1 From rational to regular expressions
It is possible to see regular expressions (regexes for short) as a extension of rational expressions
(introduced in section 1.1.4) which uses more operations, including some that are more expres-
sive than rational expressions. In this section, we define the fragment of regexes which we will
focus on in the next chapters. This fragment uses more operations than rational languages, but
these operations do not make it more expressive.

Note on the alphabet. Similarly to rational expressions, regexes rely on a fixed alphabet.
In practice, this alphabet is often among a few concrete alphabets used in the context of text
manipulation, notably ASCII and the various encodings of Unicode (among which UTF-8 and
UTF-16). When considering a regex, it is crucial to carefully consider the alphabet to use.
Indeed, regexes admit operations such as ., which recognizes any letter in the alphabet, and
a complement operator which recognizes any letter outside a given set. These operators have
different meanings depending on the chosen alphabet, and this can lead to sets of words of
significantly different sizes. Thus, their concision highly depends on the alphabet (see exam-
ple 2.1).

Example 2.1. Consider the regex .*[^a].* (the complement operator ^ is defined later in
this section). If we denote the alphabet by Σ, then the language represented by this regex is⋃
b∈Σ\aΣ

∗bΣ∗. This union can be significantly large depending on the alphabet: in the case
where Σ is unicode, the size may vary. As of the writing of this thesis, the last standard version
of unicode is the 15.0 version, which has 149 186 characters. In the case where the chosen
alphabet is ASCII, the size of the union is much more reasonable, with only 255 characters.

The operations of rational expressions. The fragment of regexes we are interested in
notably uses the same operations as rational expressions, unfortunately with some shuffling of
symbols. The empty set and the set containing the empty word are not represented by dedicated
symbols, however they can be recognized using the tools described in the rest of this section.
The letters of the chosen alphabet still represent themselves, except when one of those letters
is also a metacharacter. In that case, classical escaping can be used, relying on the backslash

40 CHAPTER 2. Experimenting on regex validation

\, as escape symbol (see example 2.2 for an example). Furthermore, the concatenation is used
but is always implicit: for two regexes r1 and r2, the regex r1r2 represents the concatenation of
r1 and r2. Notably, the union is denoted by the metacharacter | instead of +. The star is used
in the same way as in rational expressions, though it is not written as an exponent. Finally,
the symbol . is used to denote the entire alphabet, whatever that alphabet may be, instead
of Σ, which denotes an alphabet fixed in advance in the case of rational expressions. These
operations define the expressivity of the fragment we consider, but this fragment admits more
operations meant to improve the readability and concision of the regexes.

Operations for concision (and readability). Rational expressions can be quite tedious
to write in some cases. As regexes are meant for a practical use, they include operations that
are syntactic sugar, as they can be written with regexes using only the operations defined
above. These operations are mainly used to denote specifications on a number of repetitions.
Their syntax is as follows: given a regex R, the expressions R+, R{i,j} (for two integers i ≤ j
written as their representation in base 10) and R? are regexes in our fragment. We call +, {i,j}
and ? concision operators. R+ denotes the expression repeated one or more times and is thus
equivalent to the regex RR*. R{i,j} denotes the expression R repeated between i and j times
(both bounds are included), and is thus equivalent to

R...R︸ ︷︷ ︸
i times

+...+ R...R︸ ︷︷ ︸
j times

= Ri(1 + R + · · ·+ Rj−i)

Finally, R? denotes the expression written 0 or 1 times. The equivalent regex is R|^$, using the
two symbols known as anchors. For any regex R that does not contain an anchor, the expressions
^R, R$ and ^R$ are regexes. The anchors are metacharacters that denote the beginning of the
text (^) and its end ($). They can also denote the beginning and end of a line when the regex
is used in multiline mode.

Aside from repetition operators and anchors, our fragment factorizes regexes by using char-
acter classes. These are written in several possible ways. First, any string of literal characters
(escaped if necessary) between square brackets denotes the union of all those characters. For in-
stance, the regex [cat] is equivalent to c|a|t. This is useful for classes of characters which are
not adjacent in the lexicographical order of the alphabet. Otherwise, another notation exists to
denote such classes. Given any two literal characters c1 and c2, the regex [c1-c2] represents
the class of all characters between c1 and c2 in the lexicographical order of the alphabet. For
instance, the regex [c-f] is equivalent to c|d|e|f. To denote significantly big classes of char-
acters, it is also possible to use the complement operator (^): any string of literal characters
between square brackets and preceded by the complement operator denotes the complement of
the class of characters denoted by that string of characters. For instance, the regex [^aeiouy]
denotes the union of all the characters in the alphabet, except for the vowels a, e, i, o, u and y.

These operators allow for much more concise regular expressions, and therefore the rational
expressions equivalent to the regular expressions written with these operators are significantly
larger. For more details on the size of these rational expressions, see Lemma 2.1.

Definition 2.1

We define the size of a regex R, denoted by |R|, to be its number of characters except for
the escape characters (this includes both literal characters and metacharacters).

2.1. Regexes: concept and usage 41

Lemma 2.1

Let R be a regex without concision operators. Then, we have the following properties on
the sizes of regexes when adding a single concision operator:

• There exists a regex without concision operators that is equivalent to R+ and is of
size Θ(|R|).

• There exists a regex without concision operators that is equivalent to R? and is of
size Θ(|R|).

• Given two integers i ≤ j, there exist a regex without concision operators that is
equivalent to R{i,j} and that is of size O((j2 − i2 + j)|R|).

Proof. As defined above, R+ is equivalent to RR*, which is a regex without concision operators
of size 2|R|+ 1 = Θ(|R|).

Similarly, R? is equivalent to R|^$, which is a regex without concision operators of size
|R|+ 3 = Θ(|R|).

For the last result, given the regex R{i,j}, by definition we already have an equivalent
regex without concision operators, the regex

R...R︸ ︷︷ ︸
i times

+...+ R...R︸ ︷︷ ︸
j times

that is of size
j∑
k=i

k|R| = (j − i+ 1)(i+ j)

2
|R| = Θ((j2 − i2 + j)|R|)

Remark 2.1. The regex R{i,j} is particular as, for some values of the pattern R, it is equivalent
to R. This is notably the case when R is of the form S*, for any S. However, there exist patterns
R such that any regex without concision operators that are equivalent to R{i,j} are of size
Ω((j2 − i2 + j)|R|), as shown in the next lemma.

Lemma 2.2

For any integer n, there exist a regex of size Θ(n) such that any equivalent rational ex-
pression is of size Ω(2n).

Proof. Consider a fixed integer n and the corresponding integer m = 10n. We claim that the
smallest rational expression equivalent to the regex a{m,m} is

a...a︸ ︷︷ ︸
m=10n times

which is of size 10n. This regex can directly be translated into the rational expression a . . . a,
with m occurrences of the letter a. To prove this, we show by induction on the structure of
the expression that, for any rational expression that recognizes a regular language containing

42 CHAPTER 2. Experimenting on regex validation

exactly one word, it is possible to construct an equivalent rational expression of size at most
equal and that does not use any operator beside the concatenation.

First, if the rational expression is a single letter, it does not use any operator and there is
nothing to do.

Now, consider a rational expression R, and suppose that R represents to a language L of
size 1. If R is of the form R = R1 +R2, then there are two possible cases. In the first case, one
of the two languages L1 and R2 represented respectively by R1 and R2 is empty, and the other
contains exactly one word. Since the union is commutative, we can suppose that R2 is empty.
Then the expression R1 is equivalent to R, as they necessarily represent the same singleton.
Consequently, it is possible to remove the union operator and obtain an equivalent rational
expression of size at most equal. By induction hypothesis, we can find a rational expression
R3 equivalent to R1, of size at most equal, that does not use either the star or the union,
which concludes the proof in this case. In the second case, none of the two rational expressions
recognizes the empty language. The language L contains exactly one word, so L1 and L2 must
also contain exactly one word, and that word must be the same, as otherwise the language L
would not be a singleton. Consequently, L = L1 = L2, and the expression R is equivalent to
R1. As before, since R1 recognizes only one word, there exists an equivalent expression R3 of
size at most equal and that does not use either the star or union.

If R is of the form R = R∗
1, then the language L1 represented by R1 must be equal to {ε}.

Otherwise, it would contain a non-empty word w. In that case, the words w · w and w · w · w
would be distinct, and both would belong to the language L represented by R, which would
contradict the hypothesis saying that L is a singleton. Thus, L = L1 = {ε}, and R1 is equivalent
to R. As before, R1 represents a singleton, so it admits an equivalent rational expression R3 of
size at most equal and that does not use the union or the star.

Finally, if R is of the form R = R1 · R2, then the two languages L1 and L2 represented
respectively by R1 and R2 are necessarily singletons, since their concatenation is a singleton.
Consequently, it is possible to apply the induction hypothesis and obtain two rational expres-
sions R3 and R4 that are equivalent to the expressions R1 and R2, that do not use the star or
the union and that are of size at most equal. This way, we obtain an expression R′ = R3 · R4

that is equivalent to R, of size at most equal, and that uses only the concatenation operator.
This concludes the proof of this intermediary result.

This result shows that the smallest rational expression that recognizes a single word uses
only the concatenation operator. This implies that the smallest rational expression equivalent
to the regex a{m,m} is

a...a︸ ︷︷ ︸
m=10n times

To conclude, we only need to observe that m = 10n, in decimal notation, is written with
log10(m) = n characters. Thus, the size of the regex a{m,m} is Θ(n), and the smallest equivalent
rational expression is of size 10n = Θ(2n), which proves our claim.

Common shortcuts. Some classes of characters are so commonly used that they obtained
a shortcut to denote them. For instance, the regex \w denotes the set of alphanumerical
characters, which is the set composed of all the letters of the usual alphabet and all the digits.
Thus, this regex is equivalent to [a-z]|[A-Z]|[0-9]. Other shortcuts denote a property on
a position instead of representing characters or words. For instance, in the PCRE syntax, the
shortcut \b (resp. \B) expresses the property ”the current position is the beginning of a word”
(resp. ”the current position is the end of a word”), where ”word” is to be taken in the linguistic

2.1. Regexes: concept and usage 43

sense. These shortcuts may vary depending on the syntax used and on the chosen alphabet.

Example 2.2. The regular expression ^(0|\+33)[1-9]([0-9]{2}){4}$ recognizes any pos-
sible french phone number. It works as follows:

• The anchors ^ and $ ensure that the expression is executed on the entirety of the data.

• The prefix (0|\+33) of the expression recognizes either a 0 or the prefix +33, which
allows to call french numbers internationally. It is followed by the character range [1-9]
to complete the prefix of the number.

• The sub-expression ([0-9]{2}) recognizes any word of three characters that begins with
a space, followed by any two digits. This expression is followed by {4} to be matched
four times. Thus, the suffix ([0-9]{2}){4} recognizes four pairs of digits separated by
a single space, including one at the beginning.

For example, this regex recognizes the words ”06 11 22 33 44” and ”+337 55 66 77 88”.

2.1.2 Usage of the extended regular expressions
The general set of regular expressions has a wide range of applications in various domains,
including text processing, data validation, search and replace operations, and pattern matching.
In this thesis, we are only interested in data validation, however the other applications played an
important part in motivating the addition of more expressive operations to regular expressions,
to represent more than the rational expressions.

Expressiveness beyond rational expressions: capturing and backreferences. Among
the usual operations of regular expressions that are not included in our fragment are the group-
ing and capturing operations. These operations are meant to be used together to remember (or
”capture”) a part of the input text satisfying the captured part of the regex, either to output
it directly, or to try and match the exact same text part elsewhere in the text. These opera-
tions work as follows: parentheses are used for grouping and capturing parts of the matched
text. Then, the back-reference \n, where n is a single digit, matches the substring previously
matched by the nth parenthesized subexpression of the regular expression. This is significantly
more expressive than what can be done with rational expressions, as these operations allow
to match a particular string seen previously in the text without knowing in advance its exact
properties, as shown in example 2.3.

Example 2.3. The regex ((ac*b|c)*)(\w+)+\3\1 matches words of the form w0w
+
1 w1w0,

where w0 belongs to the language defined by the rational expression (ac∗b + c)∗ and w1 is
composed only of alphanumerical characters. The backreferences allow us to reuse the words
w0 and w1 even though they are not precisely defined in the regex. This is not doable with any
regex equivalent to a rational expression.

Note that other advanced mechanics that will not be discussed in this thesis further enhance
the expressivity of regular expressions. However, backreferences are more than enough to show
the difference of expressivity, which motivates the fragment defined in section 2.1.1.

44 CHAPTER 2. Experimenting on regex validation

Data Validation. We saw in section 2.1.1 that regular expressions are related to rational
expressions, and that a fragment of regexes is equivalent to the set of all rational expressions.
Thus, it is natural that regexes can be used in a similar way to rational expressions, to recognize
languages. Indeed, regexes allow the user to define rules for validating user input or data files.
The goal here is to check whether the data verifies the properties expressed in the regex, without
any more information. This can be related to the recognition of languages by seeing the data
as a word. Checking that the data verifies some properties is equivalent to checking if the word
formed by the data belongs to some language that expresses these properties. For instance, it
is possible to use regexes to ensure that an email address follows a specific format, to validate a
password for complexity requirements, or to check if a string matches a specific pattern before
accepting it as valid input.

Example 2.4. Recall that the regular expression ^(0|\+33)[1-9]([0-9]{2}){4}$ recog-
nizes any possible french phone number. If we use it for data validation, it will be executed on
the data and its return will only indicate whether the data matches the regex. For example,
the text ”+331 99 00 11 22” is matched by the regex, whereas the texts ”00 11 22 44 55” and
”Phone : 05 99 88 77 66” are not matched.

Pattern Matching. More generally, regular expressions allow the user to search for specific
patterns within a given text or document. In this case, the goal is not to check whether the
entire document verifies some properties, but to find all the text parts in the document that
verify those properties. For example, one can use a regex to find all email addresses in a block
of text, extract phone numbers from a dataset, or identify dates in a string. Formally, regexes
represent any substring that matches the patterns. However, in practice, regexes do not allow
for the search of every occurrence of a pattern in a text, as it is rarely what the user needs
and the complexity of that operation would induce slow searches. Indeed, the occurrences of a
pattern can overlap, as shown in example 2.5.

Example 2.5. Consider the regex \w+, which recognizes any word composed of alphanumerical
characters. If matched against the text ”Tocallthepolice, dial911”, we usually want it to return
the words ”To”, ”call”, ”the”, ”police”, ”dial”, and ”911”. However, each of these words leads
to several matches of the regex. For example, in that text, the regex \w+ matches the words
”all”, ”oli” and ”91”, even though they are not maximal words matching the regex. In total,
the text contains 56 matches of the regex, 21 of which are contained in the word ”police”.

Therefore, the search for all occurrences is reserved to spanners [21], theoretical objects
meant for this application but not often used in practice because of their complexity (and
because regexes suffice in practice). To avoid overlapping occurrences, when using regexes for
pattern matching, the ambiguous repetition operators are used with a behavior that makes
them choose what occurrences to match. This behavior is always deterministic.

There are three usual behaviors for repetition operators: greedy, possessive and lazy. By
default, the repetition operators operate in a greedy way, matching as many characters as
possible (see example 2.6) to match the entire pattern. Note that this does not mean that it
will always match all the possible characters, as shown by the last example in example 2.6.

Example 2.6. The operator + in the regex a+ is greedy be default. Thus, on the text
”aaaaaaa”, it will match only one occurrence, which is the entire text.

Now, consider the regex <p>.*</p>. If we use this regex for pattern matching in the text
”<p>This is the first paragraph.</p><p>This is the second paragraph.</p>”, then it will

2.1. Regexes: concept and usage 45

return only one match composed of the entire text, since the greedy sub-pattern .* can match
any number of any characters, including the end tag ”</p>”. The match does not fail after
the first end tag, so it continues to match the whole text.

Now, consider the regex [aeiouy]+ei. If we use the regex for pattern matching in the text
”siouyeia”, the greedy + can match ”iouyeia”, but the end of the regex does not have anything
left to match. The greedy operator allows for matching less characters if needed to get a match,
which leads to a single match for [aeiouy]+, the infix ”iouy”, as it is the only string of vowels
followed by the infix ”ei”. Thus, the regex matches the infix ’iouyei’.

This is the difference introduced by the possessive variants of the operators, that match as
many characters as possible, without taking into account the rest of the pattern, which can lead
to not match some occurrences (see example 2.7). This variant is, in some tools such as PCRE,
indicated with a + after the operator: a++ matches one or more occurrences of the letter a in a
possessive way. As indicated by the documentation of PCRE, this behavior can be much more
efficient and run faster than the greedy version, even when the two lead to equivalent regexes,
as it does not have to check if backtracking in the text is needed.

Example 2.7. Let’s come back to the last example of example 2.6, which is the regular ex-
pression [aeiouy]+ei. If we make the + possessive instead of greedy, we obtain the regex
[aeiouy]++ei. If we take the same text, ”siouyeia”, the sub-pattern [aeiouy]++ matches
necessarily the infix ”iouyeia” and cannot let go of some characters to allow for a match. Thus,
the regex does not lead to a match on this text.

Finally, the lazy variant of the repetition operators, indicated with an additional ? in most
tools, is the opposite of the greedy behavior, matching as few characters as possible, as shown
in example 2.8.

Example 2.8. If we consider the regex a+?, the operator +? is the lazy variant of +. Thus, on
the text ”aaaa”, it leads to four matches, each composed of a single letter ”a”.

Let’s come back to the second example of example 2.6, the regex <p>.*</p>. If we use the
lazy variant of *, we obtain the regex <p>.*?</p>. This regex matches the text as one could
naturally expect.

On the text ”<p>Thisisthefirstparagraph.</p> <p>Thisisthesecondparagraph.</p>”
it leads to two matches, made of the two paragraphs: ”<p>This is the first paragraph.</p>”
and ”<p>This is the second paragraph.</p>”.

Note that the behavior is set for only one operator at a time, so it is possible to design
complex regexes that have operators with the three types of behaviors. For more details on the
behaviors of repetition operators, see [4].

Text Processing. Pattern matching allows to find all occurrences of a pattern in a text.
These occurrences can then be treated in order to change the text. In this context, regular
expressions enable the user to perform operations such as finding and replacing specific pat-
terns, removing unwanted characters or formatting, and extracting relevant information from
unstructured text. This use of regular expressions may need to capture groups in order to
modify the data.

Example 2.9. Suppose that you have a text and you want to change the phone numbers in
that text to replace the spaces by hyphens. This can be done by searching for all occurrences
of the pattern (0|\+33)[1-9](()[0-9]{2}){4} and replace each group corresponding to a
space (the third group captured by the regex) by a hyphen.

46 CHAPTER 2. Experimenting on regex validation

2.1.3 Existing regex processing algorithms
The history of algorithms for processing regular expressions dates back several decades and has
evolved alongside the development of computer science and programming languages. The first
algorithms processing regular expressions were used to match text strings, but now the entirety
of the regular expressions defined in section 2.1.1 is supported in well-optimized algorithms.
In this section, we will explore the various existing algorithms commonly used for processing
regular expressions (regexes), along with their history.

The early algorithms: backtracking algorithms. Initially, regular expressions only rep-
resented regular languages [41] and did not include grouping, capturing, or any of the other
advanced features. They were executed as-is, without pre-processing. Therefore, those that
included alternations or the possibility to match an unknown number of characters required
the algorithms using them to be able to go back in the text to try a different way to match
the expression if the first way failed. This led to backtracking algorithms. Backtracking algo-
rithms explore all possible paths in the search space to find a match. They attempt different
combinations of matching patterns and backtrack when a match is not found. More formally, a
backtracking algorithm without optimizations proceeds by considering sequentially each letter
of the input text. Once it finds a letter that is matched by the beginning of the regex, it
begins the search for a match starting at this letter, and advances both in the regex and in
the input text. When it encounters an ambiguous pattern in the regex, such as a*, it has to
make a non-deterministic choice and to remember the position in the input where it made the
choice. This way, if the search fails, the algorithm goes back (backtracks) to the last position
where it had another choice that has not yet been explored, and changes its choice there to
continue the search. If no more choices are left, the entire search fails for that position in the
input, and the algorithm starts again at the next position. Consequently, in the worst case
where there is no match but many partial matches, the algorithm might read the entire suffix
of the input text several times for each position in that text. The number of times the suffix
is read is at most the number of ambiguous choices the regex can induce, which is about the
number of operators among the following: *, +, | between patterns that have common prefixes,
the repetition operator {i,j} if i 6= j, and ?. Thus, if we consider the regex to be fixed, the
complexity of backtracking is quadratic in the size of the input, which does not appear to be
horrible in theory, but is an important drawback of the method in practice.

Example 2.10. Consider the regular expression .* White|Black|Calico that could be used
to find some information about cat colors in a text. Also consider the following text:

- Name: Mr Whiskers, Color: Black
Age: 2 years
Very friendly

- Name: Willow, Color: Calico
Age: 5 years
Nervous cat that needs a lot of affection

Let’s consider a naive backtracking algorithm executing the regex on this text for pattern
matching. It considers the beginning of the text letter by letter until it finds a space followed
by the letter W in the name of the first cat. This ”W” matches the beginning of ”White” so,
depending on the choice it makes, the algorithm may try to match that word, which fails on the

2.1. Regexes: concept and usage 47

third letter. Thus, the algorithm goes back to reading the space before the first W of the text
and makes the other possible choice, matching it with the dot instead of the space. Similarly,
when it gets to the actual color of the cat, it might try to match it with the dot and search for
the word ”White” after that, which will fail when getting to the end of the line, causing the
algorithm to backtrack and finally match the color ”Black”.

Backtracking-based approaches offer flexibility for handling complex regex patterns but can
be inefficient for certain cases due to redundant exploration. Notably, they are vulnerable to
regex bombing, a type of DoS attack that exploits the way certain regex patterns are processed.
It occurs when a crafted input causes a regex pattern to exhibit exponential time complexity,
resulting in excessive CPU usage or long processing times. An attacker can take advantage of
that by providing a specifically crafted input that triggers extensive backtracking, leading to
the regex engine spending an inordinate amount of time evaluating the pattern and potentially
causing a system or application to become unresponsive.

Example 2.11. For example, a vulnerable regex pattern that can be exploited for regex bomb-
ing might be (a+)+b. If an attacker supplies a string like ”aaaaaaaaaaaaaax”, the regex engine
will spend an exponentially increasing amount of time exploring all possible permutations of a
before realizing that there is no match. This can consume a significant amount of computational
resources, causing a denial-of-service condition.

The text editor ed, one of the first developed parts of the First Edition Unix (1971), relied
on backtracking. Later, the well-known command-line tool grep was created and integrated
in the Fourth Edition Unix (1973). It was notably inspired from ed, and initially also used
a backtracking algorithm. In these tools, the relatively low efficiency of backtracking was
balanced by the fact that the supported regular expressions were not very expressive, including
only one nondeterministic operation: the star, ignoring the alternation and parentheses [64].

NFA-based algorithms. Backtracking algorithms being non-linear, they cause some prob-
lems when using things like a cache or branch prediction. More importantly, they are vulnerable
to attacks, other solutions had to be developed to improve the naive execution of the NFAs
done by the backtracking algorithms. In 1968, Thompson [74] proposed a new approach that
solved the issues of backtracking by using the NFAs in a deterministic manner. His algorithm
considers each letter only once and sequentially, comparing it to a set of possible letters that
match the regex and building the next set depending on the match found (see example 1.3).
This approach essentially consists in building an NFA equivalent to the regex, then executing it
deterministically on the text. This was the first NFA-based algorithm. NFA-based algorithms
avoid being vulnerable to regex bombing by using the powerset construction: they maintain a
set of current states, and thus never go back in the input. The name ”NFA-based algorithm”
comes from the fact that these algorithms build an NFA that they determinize on the fly, in-
stead of building a DFA. This should not be confused with some NFA-based approaches which
build an NFA and execute it using parallel algorithms that deal with the non-determinism.

Note that an algorithm to construct an NFA from a regular expression had already been
proposed by Gluskkov in 1961 [29]. Though his NFAs used ε-transitions differently, they have
been proved to be the same automata as Thompson’s once those ε-transitions are removed.
However, Thompson was the first to provide an efficient algorithm to run NFAs on words. He
also proposed the first implementation of an NFA-based algorithm on the PDP-11. Later, the
NFA-based approach was included in grep [35].

48 CHAPTER 2. Experimenting on regex validation

DFA-based algorithms. In practice, the NFA-based approach uses a DFA by determinizing
the NFA on the fly. This avoids going back in the input when a mismatch occurs but it has a
big inconvenient: at each state, which is a set of states of the NFA, it has to consider all the
transitions going out of this state to compute the next one, which slows down the computation.
As the NFA-based algorithms consider sets of states from the NFA, they are close to computing
the powerset of the NFA and create an actual DFA. Thus, there have been some attempts at
creating DFA-based algorithms, which compute a DFA equivalent to the regex, then run it on
the input text. McNaughton and Yamada [49] gave in 1960 an algorithm to compute a DFA
equivalent to what they called a restricted regular expression, which could not use intersection,
negation, the empty word, or the empty language.

DFA-based algorithms have the advantage of running in linear time in the size of the input,
regardless of the size of the DFA. However, the DFAs can be of size exponential in the size of
the equivalent NFAs, and thus they can take as much time to be constructed from the regular
expression. Thus, they are especially interesting if it is possible to construct a small DFA from
the regex, or if the input is particularly long.

In some cases, it is possible to observe that not all the transitions in the DFA are used, or
at least not used a lot. This led to an optimization which consists in avoiding to construct the
entire transition table. This technique is called the lazy transition evaluation [3]. The idea is to
compute a transition only when it is needed, and to store it in a cache to retrieve it if needed
later. Once this cache is full, some transitions (preferably the less used ones) are removed from
it. This technique is close to Thompson’s on-the-fly determinization of the NFA, the main
difference being that it does not remember all the transitions that it computes.

In the Seventh Edition Unix (1975), Aho introduced the command egrep, for an extended
version of grep which included both the alternation and grouping. This command relied on a
DFA, which made it twice as efficient as grep on simple regexes, but slower on more complex
ones [35]. One of the early versions of egrep’s algorithm is explained in [3], section 3.9. In
1983, Aho replaced the construction of the DFA by a lazy transition evaluation.

Hybrid and optimized algorithms. Optimizations for these algorithms have been studied
over the years, and gradually added to the tools using those algorithms. In 1980, Aho published
an article summarizing some algorithms that could be useful for this purpose [1]. He notably
talks about the Boyer-Moore algorithm [11], which searches for a string in a text and skips
the parts of the text that cannot lead to a match. This algorithm can be integrated in regex
processing algorithms, by considering the sub-expressions of the regexes that are strings and
that are mandatory to lead to a match (the strings in alternations can be tricky to deal with).
By first searching for such a string with Boyer-Moore, it is possible to narrow down the parts
of the input text on which a full pattern matching algorithm is needed. As Boyer-Moore avoids
looking at every character, this can be significantly beneficial. This technique has been used in
egrep by Hume [35], improving its performance by a factor of 8.

Backtracking is not the best idea in general, but is unavoidable when advanced operators are
allowed in regexes, such as backreferences. This forced people to be creative in their algorithms,
to avoid backtracking as much as possible and mitigate the vulnerability when it is unavoidable,
notably by looking for patterns that are likely to be used for regex bombing.

Runtime processing and compile-time processing. All the tools mentioned in this sec-
tion process the regular expressions at runtime, which means that the regexes are processed
dynamically during program execution. If some compiled form of the regex is produced before

2.2. Compile-time optimization of automata execution 49

processing the input text (an automaton, for example), then it is also produced during the
execution, leading to an overhead that depends on the complexity of this pre-processing. In
exchange, this allows for more flexibility, as the regexes can come from data produced at run-
time, such as files or user input. Another approach consists in processing the regexes at compile
time: all the pre-processing that needs to be done on the regex is done during the compilation
of the program, which puts the overhead in the compilation instead of the execution. As the
compiled program can be re-used, this can be a significant improvement, but this forces the
regular expressions to be known at compile time, thus reducing the flexibility of the programs.

2.2 Compile-time optimization of automata execution

In section 2.1.1, we presented the fragment of regular expressions that we consider in this the-
sis. Recall that our goal here is to explore implementations that efficiently recognize regular
languages, which are exactly our fragment of regexes. Consequently, from this point on, the
thesis focuses on data validation, setting aside the more general problem of pattern match-
ing. Now, we can give some details about our algorithms manipulating these regexes and the
implementation we wrote. As we saw in section 2.1.3, there are many ways of matching a
regular expression against an input text, each algorithm having its complexity, its advantages
and inconvenients. As our goal is to leverage the algebraic theory of automata, we focus on
an approach that initially uses automata to represent the regexes. With this approach, we
consider the properties of these automata to produce optimized regex matching algorithms. In
this section, we present our choices when implementing our algorithms, and we describe those
that we use as baseline for our choice of processing regexes at compile time.

We saw in section 2.1.3 that several algorithms exist to match texts with a given regex.
Here is a reminder of their complexity: backtracking algorithms are quadratic in the size of the
text and vulnerable to attacks. NFA-based approaches such as Thompson’s algorithm build an
NFA of size linear in the size of the pattern in linear time and execute it in time O(nm), where
n is the size of the text and m the number of states of the NFA. DFA-based approaches build
a DFA of size at most exponential in the size of the pattern in time at most exponential and
execute it in time linear in the size of the input text. We could just present a new algorithm and
compare its complexity to these usual algorithms. However, these are the theoretical bounds,
which are often not met and that do not take into account the potentially large alphabet, or
the cost of concrete representation of the automaton.

Our implementation of baseline algorithms allows us to measure the practical impact of
the implementation choices such as the two examples given above. However, the main goal of
this baseline is to give a point of comparison for our vectorized algorithms, which process the
regexes at compile time.

As indicated above, we focus on the regexes in a fragment of regexes that is equivalent to the
set of rational expressions, so we focus on automata-based approaches, using simple automata
that go sequentially through the input without any memory other than a representation of the
current state of the automaton. This way, we can study the regexes as automata that we want
to execute as efficiently as possible.

Remark that we focus on text validation, ignoring completely the other possible uses pre-
sented in section 2.1.2. This narrowed scope allowed us to tailor our algorithms to the specific
needs of text validation, optimizing their complexity accordingly.

50 CHAPTER 2. Experimenting on regex validation

2.2.1 Rust’s specificities
The implementation is written in Rust and takes advantages of some tools the language offers.

A pre-existing parser. One of the technicalities involved when producing an implementa-
tion of regexes is the necessity to parse an input regex to get a structure that can be used to
process the input text, for example a structure that represents an automaton. Rust’s devel-
opment provides the crate (a.k.a. package) regex, which gives tools to process regexes, as a
module which includes an autonomous parser within a dedicated crate called regex-syntax.

This parser allows us to obtain a structure that represents an NFA. That structure is close to
the one used by Cox in re1 [17], as it is a sequence of instructions, among which some represent
a transition labeled by a letter, some represent an intermediary state which has two ε-transitions
leaving it, and others represent an accepting state which has no transition leaving it. However,
the structure computed by regex-syntax’s parser is more general, as it has transitions labeled
by unions of classes of letters. The structure is a sequence of instructions, each associated with
its index in the sequence. The structure of the crate regex changed during the thesis, which
resulted in two similar versions of the code. The first to be implemented used the following set
of instructions:

• Char(a, goto), for any unicode character a and any valid index goto, represents a transi-
tion labeled by a. The next instruction is the one associated with the index goto.

• Ranges(classes, goto), represents a transition labeled by a set of unicode characters. That
set is defined by the argument classes, which is a set of disjoint character classes. The
next instruction is the one associated with the index goto.

• Bytes(start, end, goto) represents a transition labeled by a class of bytes. This class
is the set of bytes whose decimal value is comprised between start and end. The next
instruction is the one associated with the index goto.

• Split(goto1, goto2) represents a pair of ε-transitions leading to the states associated with
the indices goto1 and goto2.

• Match() represents an accepting state. Note that this state has no transition leaving it.
The input is recognized if and only if the NFA reaches a Match instruction exactly at the
end of the input.

Remark 2.2. The structure produced by regex-syntax’s parser has more types of instruc-
tions meant to deal with the more expressive features of regexes, such as backreferences. Our
definition is restricted to the instructions that are used in our implementation.

The second, more recent, implementation uses a similar set of instructions, with a few key
changes. The most important one is that the most recent version of the crate regex is focused
on dealing with strings of bytes instead, where the older version could handle explicitly strings
of both unicode characters and bytes. Thus, instead of the instructions Char, Ranges and
Bytes, the most recent version has only one instruction called ByteRange, which is equiva-
lent to the Bytes instruction. Moreover, the Split instruction was refined in the new versions,
leading to two instructions, one equivalent to Split, dealing with a non-deterministic choice
between exactly two paths, and one that generalizes Split, dealing with a non-deterministic
choice between an arbitrarily large number of paths. This led to a few changes between the two
implementations of the code processing the regexes. Note that the most recent implementation

2.2. Compile-time optimization of automata execution 51

has been developed near the end of the thesis, which left only time to perform the benchmarks
and not to analyze the differences properly.

In order to manipulate that structure without dealing with the technicalities it induces, we
propose a formalization in the form of automata which transitions can be labeled by unions of
ranges of characters.

Definition 2.2

Let Σ = {a0, . . . , an−1} be an alphabet ordered by the relation< such that, for any i, j ∈ [n],
ai < aj if and only if i < j. An ordered ranges automaton is a tuple (Σ, Q, I, δ, F) where Q is
the set of states, I is the initial state, F is the set of final states, and δ : Q×(Σ∪R(Σ))→ 2Q

is the transition function, where R(Σ) is the set of all possible ranges {ai, ai+1, . . . , aj},
where i < j.

With this definition, we can manipulate the structures without changing it depending on
the alphabet. However, this comes with some disadvantages. First, it hides the fact that, for
unicode characters, the transitions can be labeled by disjoint unions of ranges (in the Ranges
instructions) whereas, for byte characters, they can be labeled by only one range of characters
(for Bytes instructions). The other disadvantage is that it hides the number of Split instructions
necessary to implement n transitions coming out of a state of the automaton. The following
two lemmas give an idea of how to represent the structures from regex-syntax with ordered
ranges automata.

Lemma 2.3

Given a program composed of c Char instructions, r Ranges instructions, and some Split
and Match instructions, we can build an ordered ranges automaton of size O(c + r) that
recognizes exactly the same words over the unicode alphabet. Moreover, the number of
transitions of that automaton is O(c+ rn), where n is the maximal size of the sets in the
Ranges instructions.

The actual proof involves a lot of technical, uninteresting details, so we give only an idea
of proof. Each Char instruction can be replaced by a transition labeled by the same character.
That transition must be between two existing states, so it might involve creating an intermedi-
ary state, as the instructions directly after the Char instruction might not have created a state.
Similarly, each Ranges instruction Ranges(I,goto) can be replaced by |I| parallel transitions,
each bearing one of the intervals in I. Each Match instruction is handled by making the current
state an accepting state. Finally, each Split instruction is handled by creating two paths from
the current state of the automaton, one for each index indicated by the instruction. These paths
are only initiated here, as, at this point, we do not know what the labels of the transitions will
be. For each of these paths, if the next instruction is a Char or a Ranges instruction, then
the path starts by constructing a transition following the rules for that instruction. If it is a
Split instruction, the path is split in two again, and those new paths are constructed recursively.

Note that the number of Split instructions does not factor at all in the size of the ordered
ranges automata. This lemma implies the next one, which deals with the structures produced
by the second implementation, which can be seen as automata on the alphabet of bytes.

52 CHAPTER 2. Experimenting on regex validation

Corollary 2.1

Given a program composed of b ByteRanges instructions and some Split and Match instruc-
tions, we can build an ordered ranges automaton of size O(b) that recognizes exactly the
same words over the byte alphabet. Moreover, the number of transitions of that automaton
is also O(b).

Processing the regexes at compile time. As explained in the introduction of this chapter,
we focus on processing the regexes at compile time. This approach has already been used by
existing tools, called Yacc (Yet Another Compiler Compiler) and Bison, a forward-compatible
Yacc replacement which includes more features. The two tools are parser generators, which
take as input a file containing the description of a programming language’s grammar and syntax
and return a parser for that programming language. The approach is very similar, as these
tools take a set of rules, which can be assimilated as a regular expression, and create a program
capable of interpreting a text based on these rules. We do not interpret the input text, but we
validate it, which requires a similar kind of algorithm.

Rust offers many tools to execute code during compilation. The tool we are interested
in is called a procedural macro. Procedural macros will not be presented in details here,
but informally a procedural macro takes some code –any code– as input and executes some
predefined user code –any user code– on it. The strength of these macros compared to the
other kinds of macros is that they allow to study precisely the input code and to use parts of it
in the code executed at compile time. More precisely, we use procedural macros the following
way in our implementation: the input of the macro is the text of the regex. This text is
processed at compile time, notably using the parser provided by regex-syntax, to obtain an
efficient structure. This structure is then turned into code. The general look of this code is a
function which can be executed on some input text to process it and return a boolean indicating
whether the text belongs to the language represented by the regex.

2.2.2 Challenges brought by the framework
As explained above, Rust offers a convenient tool to build code from other parts of code
at compile time. This tool, called the procedural macros, can execute any code during the
compilation to return a new code to be executed at runtime, which allows to build optimized
programs. However, this tool is not easy to handle, which delayed the results. The main
hurdles that were encountered are detailed here, in hopes of helping some people avoid some of
them in the future. Note that what is explained here about Rust is what I understood during
the development: it is linked to the version of Rust at the time this thesis was written, and
some tools might have helped with the problems described here, but I was not aware of their
existence.

Before even starting to write a macro, it is important to think about the context in which
it will be used. A macro can indeed return any kind of code, but that code must be usable.
The problem with that is the fact that any function defined in a macro technically exists, but
cannot be called if the user does not do something to assure Rust that the function exists.
Therefore, writing a function foo that is exclusively defined in the macro and trying to call
that function in some code that calls the macro will result in Rust not compiling and telling
that the function is unknown. This influenced greatly the design of the macros in [58] and [59]
which is admittedly quite unusual. In that code, if a user needs to use a macro foo on some

2.2. Compile-time optimization of automata execution 53

regular expression, and then see if some input word belongs to the language defined by that
regex, they need to write the following code:

use macro_traits::CompiledU8;
let structure = foo!("This is the regex");
return structure.execute(input_word);

The crate macro_traits exists only to define traits, which give templates of the methods
defined by the macro. It contains a few traits, including CompiledU8, which ensures that the
structures implementing this trait has a method called execute, which takes as input a vector
of bytes and returns a boolean. Without this trait, the call to execute would not compile.
Consequently, whatever code returned by the macro must be some kind of structure that
implements the trait CompiledU8. The choice that was made, in part because there seemed to
be no other choice, was to return code that defined a struct implementing the right trait and
that returned an instance of that struct. This allows to build a structure on which the user
can call the method execute.

Note that, in the example of user code above, the regex is given as a literal string. This is
the only way to use macros, as variables do not give their values as parameters of the macro.
All a macro can see is the literal text given as parameter. It knows if a variable is given to it,
but cannot identify its value. Thus, it is impossible to write a script like this one:

use macro_traits::CompiledU8;
let regex = "This is the regex";
let structure = fooone!(regex);
let structure = footwo!(regex);
return (structure.execute(input_word), structure.execute(input_word));

For each call to a macro, the regex must be explicitly written. This is why the main files
used to call the macros in the repositories are so lengthy: it seems there is no other option.

Now that we covered the restrictions on the external calls to the macros, let’s talk about
the internal encoding of those macros. The parameter taken by any procedural macro is the
literal text given inside the parenthesis, that is interpreted by Rust as Rust code. In order to
use that, it is necessary to parse the structure of that code, called the Abstract Syntax Tree
(AST for short). As Rust uses some complex types and structures, the AST is quite complex
to understand and to parse searching for a pre-defined kind of input. Even for the use made
in this thesis, in which the macros accept only literal strings, getting those strings from the
AST is not obvious1. For that purpose, a deep dive into the documentation of the crate syn is
required.

The last challenge encountered in the development of the code was returning the output
code. When that code is simple, then it is rather straightforward, as it suffices to use the macro
quote to turn text into an AST that can then be returned by the macro. However, if the output
code is produced by parts that must be assembled, it becomes trickier. Indeed, although it is
possible to combine some ASTs to create a new one, there are rules, that are hard to find. The
general rule is the following: two ASTs can only be combined if Rust can guarantee that this
combination produces valid Rust code. Meaning that it is impossible to directly concatenate
two ASTs or insert one in another. In order for Rust to find the guarantees it needs, those ASTs

1A curious reader will find the function get_regex, constructing from the input text the string that represents
the regex, in the file regex-macros/src/lib.rs of the repository [58].

54 CHAPTER 2. Experimenting on regex validation

must be parsed as more specialized parts of an AST, such as functions or variable names. Then
these specialized structures must be placed in some code where their type can be expected. For
example, a variable name can be placed as parameter of a function.

In summary, Rust’s procedural macros are difficult to master, as each step requires a deep
dive in a documentation that, although well made, is quite extensive. Maybe other languages
could have been more adapted, as Rust is not the only language offering compile-time meta
programming. See notably Template Haskell and OCaml’s Pre-Processor eXtensions, which
seem to offer tools similar to procedural macros. However, these tools seem to not be more
user-friendly than procedural macros, maybe even less. Moreover, Rust has the advantage of
offering tools adapted to regex processing, such as the crate regex. It also offers easy access to
low-level instructions, contrary to OCaml, which enabled the comparison of all algorithms in
the same language. For these reasons, Rust might be the best language available for measuring
the efficiency of regex processing algorithms, some of which written with low-level instructions.

2.2.3 General methodology
To represent the process of running automata on words, various choices of data structures and
algorithms can be made. In this section, we discuss our choices and provide justifications for
their usage.

As explained in section 2.2.1, the general process followed by our implementation consists
in taking a regex, giving it to regex-syntax to obtain a structure representing an NFA with
ε-transitions, then compile that structure to obtain a function that can then be used to check
whether some text is matched by the regex. In this section, we detail the compilation from the
NFA to the matching function.

Inputs and outputs. Once the alphabet is fixed, we need to specify the kind of data structure
that we call a word, that is the input text of our algorithm. As one of our goals is to produce
algorithms suitable for streaming, one could assume that our input text is a stream of data, that
is a sequence of elements made available sequentially at different point in time. In our case,
these elements could be letters (characters or bytes) or batches of letters. However, considering
a stream would require to deal with Input/Output (I/O) overhead. It introduces computations
that should not be considered when measuring the efficiency of an algorithm, which takes up
CPU computation power and can consume significant memory resources. In order to focus on
the actual efficiency of our algorithms, we chose to use data stored in memory. Thus, in this
thesis, an input word is a memory segment, that is a contiguous block of memory allocated
for storing data. This memory segment can be used to simulate streaming by considering the
elements by batches.

Thus, our algorithms will always take some memory segment as input. As we focus on text
validation, the output will only be a boolean, indicating whether the input is accepted by the
regex.

UTF-8 encoding and performance. When it comes to implementing an automaton, it is
necessary to specify the alphabet considered by that automaton. It is particularly important
when the automaton represents a regex and could be run on different kinds of inputs. The
most intuitive choice would be the usual set of characters that can be represented visually, i.e.
unicode.

This choice of alphabet gives a simple and immediate correspondence between the characters
used by the regexes (supposing these are written with unicode characters) and the characters

2.2. Compile-time optimization of automata execution 55

of the alphabet. It also has the advantage of being independent of the encoding of those
characters. However, that advantage comes with some significant drawbacks. Indeed, this
approach needs the encoding of those characters to be valid, and may require to validate that
encoding in addition to matching the regex. For example, if the input text is extracted from a
file, we would need to validate the encoding to convert the file from bytes to unicode characters.
This choice of alphabet supposes all the characters to be equivalent in terms of size in memory
which, in practice, requires to allocate for each character as much memory as needed for the
character which takes the most space in memory. For example, if we consider characters written
as UTF-8, 32 bits are required for the largest encoding, so 32 bits would be allocated for each
character, including those that can be written on only 8 bits. Thus, this choice of alphabet is
not optimal in terms of memory use.

In order to address these problems, it is possible to change the alphabet to take the encoding
into account. Thus, we chose to consider the alphabet composed of all possible bytes. Some
of these bytes are considered incorrect, as they cannot be found in a valid UTF-8 encoding
of a text, and others are only valid in certain contexts. This may require more computations
to check whether some ”letters” are valid, but we show later that this is not an issue in our
setting. However, this multiplies the size of the alphabet by a factor of approximately 4, which
can impact performance. Notably, the automata based on this alphabet can be significantly
larger than the ones based on the character alphabet, as shown in example 2.12.

Example 2.12. Consider the automaton shown in Figure 2.1. This automaton uses any uni-
code character as letter: for example, U+1F642, whose UTF-8 encoding is four bytes long, is
treated as one letter.

ü

u, ŵ
, U+1F

642

x, ē

ü

ŵ

Figure 2.1 – An automaton using letters from the unicode alphabet

If the alphabet is changed to the alphabet of bytes, we obtain an automaton that must
differentiate the unicode characters by the length of their UTF-8 encoding. Thus, any transition
labeled by U+1F642 must be replaced by four consecutive transitions, each one bearing one of
the four bytes of the encoding \xF0 9F 99 82.The same rule applies to all the unicode characters:
if their UTF-8 encoding is longer than one byte, the transition labeled by that character must
be transformed into several successive transitions. Consequently, we obtain the automaton
shown in Figure 2.2, which is significantly larger than the automaton in Figure 2.1.

In order to measure that impact, the benchmarks presented in this thesis include both
versions: one with the intuitive alphabet of unicode characters, and one with the alphabet of
all bytes. Both are obtained using tools from the crate regex, although some are no longer
available in the most recent version, which motivated the separation of the implementations in
two git repositories.

56 CHAPTER 2. Experimenting on regex validation

\x 70

\xC5

\x
B
5

\xF
0

\x 9
F

\x 9
9

\x 8
2

\x 78

\xC4

\x 93

\xC3

\xBC

\xC3\xBC

\xC
5

\xB
5

Figure 2.2 – An automaton using letters from the byte alphabet

Determinization and minimization. The NFAs produced by the crate regex can be large
due to their implementation. Moreover, using NFAs implies that the transitions of the letters
cannot be represented with boolean vectors. If we stick with boolean vectors, it is necessary
to use boolean matrices, which are often mostly empty. This, in turn, can lead to a significant
increase in compilation time. Although compilation time is not our primary focus, we tried to
improve it by determinizing and minimizing the automata that we obtained. The structures,
notably the semigroups, obtained via this method, can be quite different from the ones obtained
from the NFAs, so the efficiency of each algorithm is measured for both the NFA version and
the determinized version.

To minimize the NFAs, the first step taken in the code is to remove all ε-transitions using
their transitive closure. Then, using Brzozowski’s algorithm (see [12]) on the resulting NFA,
the code computes the minimal DFA. This algorithm notably needs to determinize NFAs, and
does so using the powerset construction. The resulting algorithms ultimately manipulate DFAs,
whose transitions can be represented using vectors instead of matrices. This could lead to some
performance improvements when the NFA has significantly more transitions than the minimal
DFA. However, the languages considered in our benchmark do not have that property.

The practical baseline: the crate regex. In order to evaluate the performance of our
implementation, we compare it to the crate regex, which handles regexes for both data val-
idation and pattern matching. In the benchmark results, this version is called ”base”. One
substantial difference between the regex-processing functions of regex and the algorithms in-
troduced in this chapter is that it pre-processes the regex at runtime. Although this part of
the computation does not count into the time measured for the benchmark results, it means
that the pre-processing is limited to be tractable at runtime, which can impact performance.
However, existing benchmarks [38, 25] show that the crate regex can perform quite well, even

2.2. Compile-time optimization of automata execution 57

though programs in C and C++ have a greater potential. The crate includes several optimiza-
tions, including literal optimizations that allow it to search for literals using bit-level parallel
instructions (see section 3.1 for a definition of bit-level parallel instructions) inspired from the
project Hyperscan [76], as described in [26]. These optimizations allow skipping unimportant
characters, resulting in a well-optimized tool on the regular expressions used in practice. Con-
sequently, it can make a good baseline, as comparing the algorithms presented in this thesis
to regex gives an idea of where these algorithms can be placed in the hierarchy of existing
regex-processing tools.

2.2.4 Inputs of the benchmarks
In our benchmarks of this chapter, we consider four regular languages. These languages and
the words used to benchmark our algorithms on each of them are described below.

Languages in Ap. The language acstara = Σ∗ac∗aΣ∗, where Σ is the alphabet of unicode
characters, is in the class Ap, and represents the set of words on the alphabet Σ that contain
an infix of the form ac · · · ca, with zero or more occurrences of c. The minimal DFA for that
language is given in Figure 2.3a, and the egg-box representation of its syntactic monoid in
Figure 2.3b (the elements represented in red are idempotent).

a

Σ \ {a, c}

a

Σ \ a c Σ

(a) Minimal DFA for Σ∗ac∗aΣ∗

(b) Syntactic monoid of Σ∗ac∗aΣ∗

Figure 2.3 – Characterization of Σ∗ac∗aΣ∗

For this language, there is only one input word, named last, composed of 109 random bytes,
followed by the infix aca. The word is processed so that the first 109 bytes do not contain any
infix of the form ac∗a.

The language abstar = (ac∗b + c)∗, in the class Ap, represents the set of words on the
alphabet Σ = {a, b, c} such that the first letter different from c is an occurrence of a, the last
letter different from c is an occurrence of b, and for any pair of occurrences of a (resp. b), there
is an occurrence of b (resp. a) between the two. The minimal DFA for that language is given
in Figure 2.4a, and the egg-box representation of its syntactic monoid in Figure 2.4b.

For this language, there are three input words, all belonging to the language, whose density
of occurrences of a and b varies.

• The word dense is composed of 5.108 occurrences of the word ab, to which 107 occurrences
of c have been added at random indices.

58 CHAPTER 2. Experimenting on regex validation

a

b

c c

(a) Minimal DFA for (ac∗b+ c)∗

(b) Syntactic monoid of (ac∗b+ c)∗

Figure 2.4 – Characterization of (ac∗b+ c)∗

• The word average is composed of 109 letters, among which 106 have been randomly
selected to be occurrences of a and b. The letters at the selected positions alternate
between a and b, the others being occurrences of c.

• The word sparse is built on the same algorithm as average, except that only 103 letters
are occurrences of a or b.

Languages in DA. LDA = (a+ b+ c)∗b(a+ b+ c)∗d(a+ b+ c+ d)∗c(a+ d)∗ is in the class
DA, and represents the set of words in the alphabet Σ = {a, b, c, d} in which there is at least
one occurrence of b before the first d, which itself is before the last occurrence of c. Moreover,
there must be no occurrence of b after that last occurrence of c. The minimal DFA for that
language is given in Figure 2.5a, and its syntactic monoid in Figure 2.5b.

For this language, there are three input words, all belonging to the language, in which the
positions of the first d and the last c vary.

• The word balanced is composed of 25.107 letters randomly chosen among a, b or c, followed
by an occurrence of b, then again 25.107 letters randomly chosen among a, b or c. This
is followed by an occurrence of d, 25.107 letters randomly selected among a, b, c or d, an
occurrence of c, and 25.107 letters randomly chosen among a or d.

• The word increase is composed of 107 letters randomly chosen among a, b or c, followed
by an occurrence of b, then 2.107 letters randomly chosen among a, b or c. This is followed
by an occurrence of d, 3.107 letters randomly selected among a, b, c or d, an occurrence
of c, and 4.107 letters randomly chosen among a or d.

• The word decrease is composed of 4.107 letters randomly chosen among a, b or c, followed
by an occurrence of b, then 3.107 letters randomly chosen among a, b or c. This is followed
by an occurrence of d, 2.107 letters randomly selected among a, b, c or d, an occurrence
of c, and 107 letters randomly chosen among a or d.

2.2. Compile-time optimization of automata execution 59

d

b
d

c

b

a, c

a, b, c, d

a, b, c a, b, d a, c, d

(a) Minimal DFA for LDA

(b) Syntactic monoid of LDA

Figure 2.5 – Characterization of LDA

R-trivial languages. This thesis focuses on languages in Ap and DA. However, inside DA,
another class of languages deserves to be studied: the class ofR-trivial languages. Indeed, those
languages are much simpler than other languages in DA, which gives us an additional tool to
study the impact of the complexity of languages on the algorithms presented in this chapter.

LR = (a+b+c)∗d(b+c+d)∗ is a simpleR-trivial language, which represents the set of words
in the alphabet Σ = {a, b, c, d} in which there is no occurrence of a after the first occurrence of
d. Its minimal DFA is given in Figure 2.6a, and its syntactic monoid in Figure 2.6b.

For this language, there are three input words, all belonging to the language, in which the
position of the first occurrence of d varies.

• The word first is composed of an occurrence of d as first letter, and 109 letters randomly
selected among b, c and d.

• The word last is composed of 109 letters randomly selected among a, b and c, and an
occurrence of d as last letter.

• The word middle is composed of 5.108 letters randomly selected among a, b and c, an
occurrence of d in the middle, and 5.108 letters randomly selected among b, c and d.

Remark 2.3. The words that have been selected for the benchmarks all belong to the corre-
sponding languages. Indeed, the goal is to measure the efficiency of the algorithms in the worst

60 CHAPTER 2. Experimenting on regex validation

d

a, b, c b, c, d

(a) Minimal DFA for LR

(b) Syntactic monoid of LR

Figure 2.6 – Characterization of LR

case, when the computation necessarily goes through the whole word to check that it belongs
to the language. The algorithms were also tested on words that do not belong to the languages
and the results were not interesting, as they were either equivalent to the ones presented here,
or much faster as the computation was stopped. This is due to the fact that, for some lan-
guages, the compiler notices the parts of the code that correspond to sink states (in the NFA)
or elements (in the semigroup), and optimizes these parts by making the computation stop as
soon as they are reached.

2.2.5 Hardware and implications
The results presented in this chapter have been obtained using grid5000, and more precisely
the machine troll-3. At the time when this thesis is written, the machines troll each have two
CPUs Intel Xeon Gold 5218, on the architecture x86_64. Each of these CPUs has 16 cores.
The version of rustc used was rustc 1.72.1 (d5c2e9c34 2023-09-13), and the version of cargo
was cargo 1.72.1 (103a7ff2e 2023-08-15). This offers the possibility to compare the algorithms
on that kind of hardware, but it leaves out that hardware’s impact on the efficiency. Indeed, it
impacts the way the code is compiled, and thus its efficiency. Consequently, additional results
on three other machines, two with Intel hardware and one with AMD hardware, are provided
in appendix A.

Each of the results has been measured as a mean of twenty runs of the same command.
The standard deviation was measured but was negligible in all cases. However, the algorithms’
efficiency may vary depending on a surprising amount of factors. These factors notably include
the hardware, the version of Rust, and the order of the instructions in some functions.2 Con-
sequently, comparing which algorithm is better than another with all these factors fixed is not

2The order of these instructions notably depends on the hashing algorithm chosen for some tools used in the
code. In the repository, the hashing algorithm that was used always gives the same order for the instructions,
which is useful for getting consistent results. Indeed, if another algorithm is used, the results may significantly
change.

2.3. Simple sequential algorithms 61

particularly significant. The results presented in this chapter are separated in four categories,
depending on their throughput:

• The particularly slow runs, with a throughput below 0.1 GB/s, are not the most common
case in our results but their lack of efficiency stands out.

• The average runs, with a throughput usually between 0.1 and 0.7 GB/s, include the runs
of the baseline on most of the inputs used for the benchmark.

• The above average runs include some attempts of optimization presented in this chapter
and have a throughput around 1 GB/s.

• The fast runs, with a throughput of at least 2 GB/s, include only runs of the parallel
algorithms and one run of the baseline in a case where its optimizations can shine.

In this thesis’ tables, the results are separated into two broad categories: the ones obtained
in the repository [58], using algorithms on unicode characters, and the ones obtained in the
repository [59], using algorithms on bytes. This distinction is important to keep in mind, as the
algorithms based on the unicode alphabet manipulate unicode characters, called char, which
Rust stores using four bytes, even when only one is needed.

2.3 Simple sequential algorithms
Our implementation is meant to explore new possibilities of implementation using algebraic
methods. In order to evaluate these possibilities, we compare their performance to the crate
regex, as presented in section 2.2.3. However, this crate differs greatly from our implemen-
tation. Indeed, it processes the regexes at runtime and can handle the extended syntax of
regexes, including backreferences, which it can use for both data validation and pattern match-
ing. Therefore, we added to our implementation some algorithms based on the classical ap-
proaches. Even though they are not nearly as well optimized as the state of the art, they give
a baseline of what can be achieved when processing the regexes at compile time to produce
efficient code. In this section, we describe our attempts at a baseline algorithm and present the
results of the chosen algorithm on our benchmark.

2.3.1 A baseline for sequential execution
Executing an automaton involves a straightforward and sequential algorithm that verifies
whether an input word belongs to a particular language. We implemented two algorithms
which execute the automaton in two different ways. The first one relies on a backtracking
approach and is not usable in practice, and the second one is based on Thompson’s algorithm
(see example 1.3 for an example of execution).

The naive sequential execution of the automaton. The first algorithm we implemented
produced code that executes the naive sequential run of the non-deterministic automaton, using
backtracking. However, the chosen framework enforces some constraints that prevented us from
testing it. Indeed, the naive run is a depth-first run of the automaton, which selects one possible
transition at each non-deterministic choice, and goes back if that choice does not lead to an
accepting state. That requires us to be able to go back to one of the states where we made a
choice. The only way to do this without a stack in our framework in a sequential program is to

62 CHAPTER 2. Experimenting on regex validation

use function calls, with one function per state, which rapidly results in a stack overflow when
we consider long inputs.

Example 2.13. The sequence of instructions obtained from regex-syntax, after removing the
instructions that are of no interest to us, is the following:

0 Split(1, 3)
1 'a'
2 'b' (goto: 0)
3 Match(0)

Note that this program corresponds to the minimal automaton of (ab)∗, which is given in
Figure 2.7. The code obtained from the naive algorithm has as many helper functions as there

a

b

Figure 2.7 – The minimal automaton recognizing (ab)∗

are instructions in the program. The structure of the returned code is shown in algorithm 1.

Example 2.14. Consider the regex (a|b)+x(a|b|c)*|(a|b|c)(a|b|c)+. The naive algo-
rithm will execute the naive NFA shown in Figure 2.8, and will first try to go to state 1, to
match the sub-regex (a|b)+x(a|b|c)*. Thus, if it fails to find an x when in the state 1, it has
to go back to the beginning of the word, as it is the index in which it was before leaving state
0. Thus, it may go back arbitrarily far in the input when backtracking.

0

1

2

3

a, b

a, b, c

x

a, b

a, b, c

a, b, c

Figure 2.8 – A naive automaton for (a+ b)+x(a+ b+ c)∗ + (a+ b+ c)(a+ b+ c)+

One of our goals is to avoid backtracking, so the impossibility to test the naive algorithm

2.3. Simple sequential algorithms 63

is not a grave concern.
Algorithm 1 : The code produced by the naive algorithm for (ab)∗

Function Start(word, index):
out← Checka(word, index)OR Match(word, index);
return out;

Function Checka(word, index):
if index < word.len() then

if word[index] = a then
return Checkb(word, index+ 1);

else
return false;

end
else

return false;
end

Function Checkb(word, index):
if index < word.len() then

if word[index] = b then
return Start(word, index+ 1);

else
return false;

end
else

return false;
end

Function Match(word, index):
return word.len() ≤ index;

Function Main(word):
return Start(word, 0);

The determinized ”on the fly” version. The other simple algorithm in our implementa-
tion is what we call the determinized version. Indeed, this algorithm is based on Thompson’s
algorithm (see section 2.1.3 for a more formal definition of the algorithm). First, it computes an
NFA without ε-transition by taking the transitive closure of the ε-transition, then it produces
the returned function by writing the execution of Thompson’s algorithm on that automaton.
This algorithm determinizes the automaton on the fly: it maintains a set of current states, and
each time a letter is read, it constructs the new set of states by following all the possible transi-
tions labeled by that letter and starting in a state from the current set. In our implementation,
the new set is constructed with a series of conditional statements which compare the current
letter read from the input to the intervals labelling the edges of the NFA, and enabling these
edges only if the current state is their starting point.

Before determinizing the NFA on the fly, the algorithm removes the ε-transitions using their
transitive closure (the automaton obtained for (ab)∗ is given in example 2.15).

Example 2.15. Consider the program shown in example 2.13, which recognizes the language
(ab)∗. When we remove the ε-transitions, we remove the Split instruction, but not the Match,

64 CHAPTER 2. Experimenting on regex validation

as keeping the Match instructions simplifies the rest of the computation. Thus, we obtain
the NFA shown in Figure 2.9. Note that the accepting state of that NFA has an acceptance
condition: it accepts the input word if and only if the state is reached with the last letter of
the word.

Char(a) Char(b) Match
a

b

b

Figure 2.9 – The NFA obtained by removing the ε-transitions from the program corresponding
to (ab)∗

Example 2.16. Let’s consider once more the language (ab)∗. The program built by regex-
syntax is given in example 2.13. In the determinized algorithm, we use a vector to keep track of
the current states reached by that program. We keep the two Char instructions and the Match
instruction as states: the Char instruction that checks if the current letter is an a becomes
the state of index 0 in the code. The Char instruction that checks if the current letter is a
b becomes the state of index 1. Finally, the Match instruction becomes the state of index 2.
The code written by the determinized algorithm is given in algorithm 2. Note that the state of
index 2 is useful only when the end of the word is reached.

Algorithm 2 : The code produced by the determinized algorithm for (ab)+

Function Transition(letter, state):
out_state← [false, false, false];
if state[0] AND letter = a then

out_state[1] = true;
end
if state[1] AND letter = b then

out_state[2] = true;
end
if state[1] AND letter = b then

out_state[0] = true;
end
return out_state;

Function Main(word):
state← [true, false, true];
for index← 0 to word.len() do

state←Transition(word[index], state);
end
if state[3] then

return true;
end
return false;

Using the determinized algorithm, we have a base version to test a sequential algorithm
in our framework. However, if we want to consider more efficient algorithms, we need to

2.3. Simple sequential algorithms 65

exploit some kind of parallelism, automata become unsuitable as they are inherently sequential,
therefore such algorithms necessitate the use of alternative tools that are better suited for these
purposes, yet capable of characterizing the same language classes. In the benchmark results, this
version is called ”determinize”, and the variant where the automaton is explicitly determinized
and minimized is called ”deter-mini”.

2.3.2 Benchmark results
The results are given in table 2.1. The algorithms working on unicode characters cannot be
tested on the input last of the language Σ∗ac∗aΣ∗, as this input contains sequences of bytes
that are invalid UTF-8. The corresponding results are marked with an X.

Most of the results presented here fall in the category of average runs. The most notable
exception is the execution of the baseline algorithm (Rust’s crate regex) on the word last
in the language acstara = Σ∗ac∗aΣ∗, which is a fast run, ten times faster than on the other
inputs and languages. The most probable cause of this considerable speed-up is the language
itself: since Σ can match any byte, the algorithm can skip characters using simple bit-level
parallel instructions to find the ones that are important to recognize the language. In that
case, it searches for an a or the end of the input. Since the input is randomly generated with a
uniform probability on all bytes, there are few occurrences of these important characters, and
the algorithm skips most of the input, leading to this fast run. Consequently, this gives an
upper bound on the throughput reachable with the baseline algorithm.

Another set of non-average runs comes from the execution of the minimized and deter-
minized algorithm (”deter-mini”) on the words that belong to abstar = (ac∗b+ c)∗, which give
above average runs with a throughput of almost 1 GB/s. Note that it is the case for both
versions of the algorithm, the one on unicode characters and the one on bytes. Although we
could expect this version to always be at least as fast as the non minimized variant (”deter-
minize”), it is only the case for these inputs. There is no obvious explanation for this, and our
best guess is that, in the cases where it is less efficient, the minimization changes the structure
of the automaton in a way that is less efficiently handled by the compiler. This phenomenon
probably also explains the fact that this algorithm is significantly more efficient of these input
words.

The last set of above average runs comes from the execution of the determinized algorithm
on the words that belong to the language LR = (a|b|c)∗d(b|c|d)∗. Again, the efficiency on this
particular words could be due to the optimizations performed by the compiler. What’s really
interesting about this particular set of runs is that it is efficient only on unicode characters: on
the node troll, the version on bytes is three times slower that the version on unicode characters.
In this table, this is the only case that differentiate the two kinds of algorithms, as the other
runs give strikingly similar results. The structure of the code is mostly the same, so we have
no idea of what can cause that.

We can also compare the average results obtained on the node troll, although this might not
be as relevant for the general case. It is interesting to note that the baseline (the crate regex) is
significantly faster (with a multiplicative factor of approximately two) on bytes than on unicode
characters, although each character of the input words is an ASCII character, encoded with
only one byte. This is probably due to the fact that, when considering unicode characters,
the baseline validates the UTF-8 encoding of the input, which requires more computation and
more branching. This is not the case of the other algorithms, determinize and its minimized
variant. In these algorithms, the validation of the encoding is included in the automaton. That
automaton is very similar in both versions, since the only characters leading to states other

66 CHAPTER 2. Experimenting on regex validation

than the non-accepting sink states are ASCII characters. It would be interesting to run this
benchmark on input words belonging to other languages, that accept words containing non-
ASCII characters, in order to see the impact of the validation of UTF-8 on performance. With
these ASCII inputs, the algorithms on bytes can be even slower than the unicode versions.

Lang. Word
Algorithm

Char (Gchar/s) Bytes (GB/s)
base determinize deter-mini flex base determinize deter-mini

acstara last X X X X 7.0 0.42 0.26

abstar
dense 0.31 0.52 0.91 0.24 0.64 0.53 0.97
average 0.31 0.52 0.91 0.24 0.64 0.53 0.97
sparse 0.31 0.52 0.91 0.24 0.64 0.53 0.97

LDA

balanced 0.31 0.47 0.26 0.24 0.64 0.41 0.26
decrease 0.31 0.47 0.26 0.24 0.64 0.41 0.26
increase 0.31 0.47 0.26 0.24 0.64 0.41 0.26

LR

first 0.31 0.87 0.60 0.24 0.64 0.23 0.60
last 0.31 0.87 0.60 0.24 0.64 0.32 0.60

middle 0.31 0.87 0.60 0.24 0.64 0.26 0.60

Table 2.1 – The results of the sequential algorithms - troll

Remark 2.4. As shown in table 2.1, the tool flex performs poorly compared to Rust’s regex-
syntax crate, even though the latter processes the regex at runtime an thus cannot allow itself
to optimize it as much as could be. This is one of the reasons why flex has not been chosen as
baseline. It is due to the nature of the tool, which produces complex structures that are not
well adapted for data validation. Notably, the regex is translated into a kind of transducer,
in order to perform pattern matching on the input. The output is computed from the string
that matches the regex and, in our setting, it can span the whole text. The resulting memory
management dooms the performance of flex when compared to programs that only validate
data and do not require unbounded memory for output handling. Indeed, although the tools
provided by regex-syntax are meant for pattern matching, they are also optimized for data
validation, which can be performed on its own, without the complex computations necessary
for pattern matching. This gives regex-syntax a significant advantage over flex. Moreover,
when we attempted to run flex on the language acstara = Σ∗ac∗aΣ∗, it seemed to struggle,
and the computation did not finish in one full hour. Thus, it seems that this kind of regex
antagonizes flex in some way, where they are especially well handled by regex-syntax. This
makes flex less versatile, giving us one more reason to avoid choosing it as baseline.

2.4 Semigroups and parallel algorithms
In section 2.3, we presented our baseline which produces an NFA at compile time and runs
it on the input at runtime using Thompson’s algorithm. This algorithm executes the NFA
without much more processing, and thus runs sequentially through the input text. In order
to obtain a more efficient algorithm, we need to get rid of this sequential way of processing.
As we saw in section 1.2, semigroups have the advantage of having an associative product and

2.4. Semigroups and parallel algorithms 67

they are directly linked to regular languages. Therefore, in this section, we try to leverage the
associativity of semigroups to design efficient algorithms to recognize regular languages, while
still computing the necessary data structure – in this case, semigroups and their properties –
at compile time. We present several algorithms used in our implementation. Most of these
algorithms are still sequential and aim at evaluating the performance cost of using semigroups
instead of an automaton. One algorithm that we present is parallel and leverages as much
as possible the inherent parallelism offered by the associative product. We also present some
potential improvements to the sequential algorithms that use semigroups. These potential
improvements are based on observation and our limited knowledge of hardware, but are still
interesting to consider. Both the basic algorithms and their tweaked variants are evaluated in
benchmarks given in this section.

2.4.1 Common methodology for the algorithms using semigroups
All the algorithms presented in this section have in common the conversion from an automaton
to a semigroup associated with this automaton. The code produced at compile time is also of
a similar shape in every algorithm, even though the specific contents differ. In this subsection,
we present these common parts of the algorithms, which are computed at compile time.

The transition semigroup. As presented in section 1.2.2, there are two links between reg-
ular languages and semigroups that we can use: the transition semigroup of an automaton
or the syntactic semigroup of a language. Both the syntactic and transition semigroups (or
monoids) organize letters and words based on their impact on the associated automaton, but
the transition semigroups are more directly linked to the structure of the automata, so we chose
to focus solely on the transition semigroups, setting aside the syntactic semigroups.

Given an NFA on the unicode alphabet or the byte alphabet, each algorithm computes
its associated transition semigroup by removing the ε-transitions using their transitive closure
(the automaton obtained for (ab)∗ is given in example 2.15), then computing the transition
semigroup of the resulting NFA as presented in the next two paragraphs.

The generators of the transition semigroup. To compute the transition semigroup, each
algorithm begins by computing the generator elements of that semigroup. These generators are
the elements corresponding to the letters of the chosen alphabet. In most of the algorithms,
we chose to use boolean matrices for the elements of the semigroup. In these algorithms, for
each letter (unicode character or byte) present in the automaton, we compute the transition
matrix of that letter, as defined in definition 1.7. See example 2.17 for the computation of the
generators corresponding to (ab)∗. Note that the automaton considered for this computation is
not necessarily the minimal automaton that recognizes the language, and thus the transition
matrices may be different.

Example 2.17. Consider again the program shown in example 2.13, which recognizes the
language (ab)∗. In that program, there are only two letters explicitly used: a and b. Thus,
we compute only the transition matrices of these two letters, as the others’ transitions are all
equal to the constant function that leads to an implicit sink state. As explained in the previous
paragraph, we removed the ε-transitions, so there are only three states left in the automaton
(see Figure 2.9), which correspond to the two Char instructions and the Match instruction.
Consequently, the transition matrices we compute are of size 3 × 3. Now, consider the effects
of the letters on that NFA: the letter a allows the program to go from the state Char(a) to

68 CHAPTER 2. Experimenting on regex validation

Char(b), and the letter b allows a nondeterministic choice from the state Char(b) to either
Char(a) or Match. Thus, the transition matrices are as follows:

Ta =

0 1 0
0 0 0
0 0 0

 and Tb =

0 0 0
1 0 1
0 0 0

Note that we do not compute the transition matrix of each letter in the alphabet. This is

due to the fact that letters not present in the automaton necessarily lead to the null transition
matrix, which is always a non-accepting and idempotent semigroup element. This is dealt with
without computing the transition matrices.

If two letters have the same transition matrix, they are equivalent in the automaton. We
keep only one representative letter, but we keep the others in memory. In practice, we construct
a bijection from the set of representative letters to their transition matrices, and a bijection
from the set of representative letters to the sets of letters represented by each of them. Using
these two bijections and the sets I and F of the initial and final states, we can construct the
transition semigroup associated with the NFA without ε-transitions.

Constructing the transition semigroup. With the previous step completed, we already
have the generators of the transition semigroup. Indeed, as a word is a sequence of letters,
we can multiply the transition matrices of the letters to obtain the transition matrix of the
word as defined in definition 1.8. Thus, we only need to multiply the generator elements
until we cannot obtain any new element by multiplying old ones with the generators. During
this process, we construct a bijection from some representative words (which letters are the
representative letters) to their transition matrices. To this end, we use a queue in which we
initially store all the generator matrices. As long as this queue is not empty, we remove one
matrix from the queue and multiply it with each generator matrix. If one of the products is a
matrix not yet seen, we add it to the bijection and to the queue. Once the queue is empty, the
bijection contains all the matrices which are elements of the semigroup.
Example 2.18. In example 2.17, we showed that the generators of the transition semigroup
computed by our algorithms for (ab)∗ are

Ta =

0 1 0
0 0 0
0 0 0

 and Tb =

0 0 0
1 0 1
0 0 0

With this, we compute the transition semigroup by multiplying matrices until we reach a fixed
point. In this case, we initiate the queue where the first element is Ta and the second one is
Tb. We start by retrieving the first element of the queue, which is Ta, and we multiply it by
both Ta and Tb. We begin by computing Taa = T 2

a , which is the null matrix of size 3× 3. This
matrix is not equal to Ta or Tb, so we keep it as an element of the semigroup and we add it to
the queue. Then we compute Tab = TaTb, and we obtain

Tab =

1 0 1
0 0 0
0 0 0

This matrix is different from the three that we have seen so far, so we keep it as a new element,
which we add to the queue. We finished dealing with Ta, so we retrieve again the first element

2.4. Semigroups and parallel algorithms 69

of the queue, which is Tb, and we proceed the same way. We first compute Tba = TbTa, and we
obtain

Tba =

0 0 0
0 1 0
0 0 0

This matrix is different from the three that we have seen so far, so we keep it as a new element,
which we add to the queue. Then, we compute Tbb = T 2

b , and we obtain Tbb = Taa, which is not
a new element. So, we directly retrieve the next element of the queue, which is Taa. We obtain
TaaTa = TaaTb = Taa, so there are no new elements to add to the queue. The next element is
Tab, and we obtain TabTa = Ta and TabTb = Taa. Again, we have no new elements. With the
next element in the queue, Tba, we obtain TbaTa = Taa and TbaTb = Tb. Now there are no more
elements in the queue, so the semigroup is composed of five elements: Ta, Tb, Taa, Tab and Tba.

Each product made during the construction of the semigroup is stored, which constructs
the right Cayley graph of the semigroup (see section 1.2.4 for the definition of the two Cayley
graphs). We will use this graph in our algorithms to compute products of elements of the
semigroup, instead of re-computing the product each time. This also allows us to assign indices
to the matrices and compute the product of the semigroup’s elements using only these indices
instead of storing possibly large boolean matrices.

Example 2.19. In example 2.18, we saw the transition semigroup obtained from the program
that regex-syntax computes for (ab)∗. During the computation of that semigroup, we also
computed the information necessary to build the right Cayley graph, since we computed the
product of each element with each generator. Using that information, we obtain the graph
shown in Figure 2.10.

Tb

Ta

Tba

Tab

Taa

Ta

Tb

Ta

Tb Tb

Ta

Ta

Tb

Ta, Tb

Figure 2.10 – The right Cayley graph for the transition semigroup of (ab)∗

The final function. Since we are working with semigroups, the function returned by our
algorithms always has some key components, namely two helper functions to get the elements
corresponding to the letters of the input and to multiply elements, and the main body of the
function which articulates the two helper functions. The helper function which returns the
element corresponding to a given letter is mostly the same in all the tested algorithms: a

70 CHAPTER 2. Experimenting on regex validation

series of conditional statements which compare the input letter to the ranges of letters that are
generators in the semigroup. An attempt was made at replacing these conditional statements
by some pattern matching using match statements, but this did not change the performance,
and thus these versions are no longer present on the repository. The product, however, is
handled differently depending on the chosen algorithm. The details are given in the respective
descriptions of the algorithms. The articulation between the two can change a bit, but the idea
stays the same: use the first helper function to convert letters into the corresponding semigroup
elements, then use the second helper function to compute the product of the obtained elements.
In every algorithm, if the input is empty, it is accepted if and only if the empty word is accepted
by the original NFA (this piece of information is stored in the semigroup).

2.4.2 The algorithms
The properties of the semigroups lead us to consider three base algorithms, more or less naive.
Two of these algorithms return a function that runs sequentially through the input word and
stores the current element to multiply it with each new generator obtained from the letters.
These algorithms are not meant to be used in practice, but they allow us to measure the impact
of using a semigroup on the performance, and to experiment with possible improvements based
on the semigroups’ properties. These two algorithms have led to variations meant to improve
the actual computation time, and will be detailed in section 2.4.4. The last algorithm computes
the generator elements and their product using parallelism.

The naive sequential use of the semigroup. Before using the semigroups for parallelism,
we produced a basic sequential algorithm, which is meant to be compared to the sequential
algorithms presented in section 2.3.1. That sequential algorithm works as follows: if the input
is not empty, it initializes a variable to the element corresponding to the first letter. Then, it
sequentially reads each letter of the input, computes the corresponding element of the semi-
group, and computes the product with the stored element to obtain the next element to store.
This product is done using conditional statements which depend on the values of the stored
element and the generator corresponding to the input letter.

Example 2.20. Let’s get back to the language (ab)∗. The corresponding program built by
regex-syntax is shown in example 2.13. We build the output code based on the transition
semigroup of that program (see example 2.18) and its right Cayley graph (see example 2.19).
In order to represent the elements in a concise way, we use integers instead of the matrices.
The elements are numbered according to the order in which they were computed. In this
example, the element Ta is represented by 0, Tb is represented by 1, Taa is represented by 2,
Tab is represented by 3, and Tba is represented by 4. The output code is composed of several
functions, among which the most important is the product function presented in the function
Multiply below. It is important to note that the order of the conditional statements in that
function is not necessarily the one presented here.

The code produced is composed of this product function and the functions presented in
algorithm 3, which are

• The ElementFromLetter function, which returns the index of the element corresponding
to the current letter.

• The IsAccepted function, which returns true if and only if the input index indicates an
element corresponding to an accepting path in the original automaton.

2.4. Semigroups and parallel algorithms 71

Fonction Multiply(element, generator), the product function produced by the naive
semigroup algorithm (”stamp”) for (ab)∗

Input : element, generator
Output : element× generator
if element = 0 AND generator = 0 then

return 2;
end
if element = 0 AND generator = 1 then

return 3;
end
. . .

if element = 4 AND generator = 1 then
return 2;

end
return 2;

• The Main function, which articulates the three others to compute the element associated
with the input word and determine if the word is accepted.

In the benchmark results, this version is called ”stamp”, and the variant where the automa-
ton is explicitly determinized and minimized before the construction of the semigroup is called
”stamp-mini”.

Using a table for the semigroup multiplication. This version is a variation of the previ-
ous one, where the product of the stored element and the generator corresponding to the next
letter is done by looking in a table instead of matching the values.

Example 2.21. Let’s continue with the example of (ab)∗. The algorithm is mostly the same as
the previous one, except for the product function, which uses a table to compute the product.
This function is called Multiply, as before, and is given below.

Fonction Multiply(element, generator), the product function that uses a table for
the transition semigroup of (ab)∗

Input : element, generator
Output : element× generator
product_table← [2, 3, 2, 4, 2, 2, 2, 2, 2, 0, 2, 2, 2, 1, 2];
return product_table[element× 3 + generator]

The rest of the code is the same as given in algorithm 3.

This algorithm, along with those presented in section 2.4.4, allows us to measure the impact
on performance of the algorithm and structures used to compute the products of elements.
Using a table avoids branching that depends on the values of the elements, instead relying on
lookups. This is meant to reduce the delay linked to branches and branch mispredictions, and
thus increase the efficiency of the implementation.

In the benchmark results, this version is called ”table”, and the variant where the automaton
is explicitly determinized and minimized before the construction of the semigroup is called
”table-mini”.

72 CHAPTER 2. Experimenting on regex validation

Algorithm 3 : The code produced by the naive semigroup algorithm for (ab)∗

Function ElementFromLetter(word, index):
if word[index] = a then

return 0;
end
if word[index] = b then

return 1;
end
return 2;

Function IsAccepted(element):
if element = 3 then

return true;
end
return false;

Function Main(word):
if word.len() = 0 then

return true;
end
product← ElementFromLetter(word,0);
for index← 1 to word.len()− 1 do

generator ← ElementFromLetter(word,index);
product← Multiply(product,generator);

end
return IsAccepted(product);

Performing products in parallel. Finally, we implemented a parallel algorithm. This
version computes in parallel the elements corresponding to all the letters, then computes in
parallel the product of all these elements by regrouping them by pairs. This regrouping is left
to a heuristic and thus is not fixed in the algorithm, as we use the Rust crate named rayon to
perform computations in parallel (see [47] for the original idea behind rayon). However, the
product function has to deal with the product of any two elements in the semigroup, not just
the product of an element and a generator. Therefore, the number of branches in the product
function is greater than in the two other versions.

In the benchmark results, this version is called ”parallel”, and the variant where the au-
tomaton is explicitly determinized and minimized before the construction of the semigroup is
called ”parallel-mini”.

2.4.3 Benchmark results
The algorithms described in the previous sections have been tested on the same languages and
words as the other benchmarks in this chapter (see section 2.2.4 for a detailed description).

2.4. Semigroups and parallel algorithms 73

Ta
bl

e
2.

2
–

T
he

re
su

lts
of

th
e

se
m

ig
ro

up
-b

as
ed

al
go

rit
hm

s
-t

ro
ll

La
ng

.
W

or
d

A
lg

or
ith

m
C

ha
r

(G
ch

ar
/s

)
B

yt
es

(G
B

/s
)

ba
se

st
am

p
st

am
p-

m
in

i
ta

bl
e

pa
ra

lle
l(
32

co
re

s)
ba

se
st

am
p

st
am

p-
m

in
i

ta
bl

e
ta

bl
e-

m
in

i

a
cs
ta
ra

la
st

X
X

X
X

X
7.
0

0.
15

0.
16

0.
25

0.
22

a
bs
ta
r

d
en
se

0.
31

0.
20

0.
56

0.
63

12
.0

0.
64

0.
33

0.
51

0.
55

0.
64

a
v
er
a
g
e

0.
31

0.
32

0.
51

0.
63

12
.0

0.
64

0.
39

0.
39

0.
55

0.
64

sp
a
rs
e

0.
31

0.
20

0.
60

0.
64

13
.0

0.
64

0.
13

0.
43

0.
55

0.
64

L
D

A

ba
la
n
ce
d

0.
31

0.
04
8

0.
08
7

0.
55

7.
9

0.
64

0.
03
8

0.
07
6

0.
15

0.
17

d
ec
re
a
se

0.
31

0.
04
5

0.
09
1

0.
54

7.
4

0.
64

0.
03
4

0.
08
3

0.
15

0.
17

in
cr
ea
se

0.
31

0.
05
0

0.
08
3

0.
55

8.
5

0.
64

0.
04
2

0.
06
9

0.
16

0.
17

L
R

f
ir
st

0.
31

0.
11

0.
18

0.
54

7.
5

0.
64

0.
20

0.
20

0.
26

0.
24

la
st

0.
31

0.
09
7

0.
18

0.
54

8.
5

0.
64

0.
25

0.
20

0.
25

0.
25

m
id
d
le

0.
31

0.
09
2

0.
18

0.
55

8.
0

0.
64

0.
24

0.
19

0.
26

0.
24

Pa
ne

lA
:R

es
ul

ts
of

th
e

se
qu

en
tia

ls
em

ig
ro

up
ve

rs
io

ns
,a

nd
th

e
pa

ra
lle

lv
er

sio
n

on
ch

ar
ac

te
rs

La
ng

ua
ge

W
or

d
A

lg
or

ith
m

(G
B

/s
)

ba
se

st
am

p
pa

ra
lle

l
pa

ra
lle

l-m
in

i
32

co
re

s
16

co
re

s
8

co
re

s
4

co
re

s
32

co
re

s
16

co
re

s
8

co
re

s
4

co
re

s

a
cs
ta
ra

la
st

7.
0

0.
15

3.
1

1.
9

1.
2

0.
62

3.
6

2.
6

1.
4

0.
67

a
bs
ta
r

d
en
se

0.
64

0.
33

7.
5

5.
4

3.
1

1.
7

8.
0

6.
6

4.
1

2.
1

a
v
er
a
g
e

0.
64

0.
39

5.
7

4.
5

2.
7

1.
5

8.
9

6.
5

4.
1

2.
1

sp
a
rs
e

0.
64

0.
13

5.
6

4.
3

2.
6

1.
3

8.
4

6.
3

3.
6

2.
0

L
D

A

ba
la
n
ce
d

0.
64

0.
03
8

2.
6

1.
7

0.
98

0.
50

2.
9

1.
9

0.
98

0.
52

d
ec
re
a
se

0.
64

0.
03
4

2.
8

1.
6

0.
96

0.
50

2.
7

1.
8

0.
94

0.
49

in
cr
ea
se

0.
64

0.
04
2

3.
0

1.
7

1.
0

0.
53

3.
1

1.
8

1.
0

0.
53

L
R

f
ir
st

0.
64

0.
20

4.
2

2.
5

1.
6

0.
81

3.
8

2.
4

1.
5

0.
74

la
st

0.
64

0.
25

4.
0

2.
5

1.
4

0.
73

3.
8

2.
3

1.
4

0.
74

m
id
d
le

0.
64

0.
24

4.
3

2.
5

1.
5

0.
76

3.
4

2.
7

1.
4

0.
76

Pa
ne

lB
:R

es
ul

ts
of

th
e

pa
ra

lle
lv

er
sio

ns
on

by
te

s
de

pe
nd

in
g

on
th

e
m

ax
im

um
nu

m
be

r
of

co
re

s
us

ed

74 CHAPTER 2. Experimenting on regex validation

Unicode versus byte algorithms. Recall that the results are separated into the ones using
algorithms on unicode characters, and the ones using algorithms on bytes, which may impact
the results, as the algorithms based on the unicode alphabet manipulate unicode characters,
called char, which Rust stores using four bytes, even when only one is needed. However, in
table 2.2, it seems that using the unicode alphabet does not lead to a significant decrease in
throughput with respect to the algorithms using the byte alphabet. Indeed, the results of both
versions fall in the same categories, or close to them. The few cases where the byte version
has a greater throughput have a negligible difference with the corresponding unicode version.
In fact, the algorithms on the unicode alphabet tend to be better than the ones on the byte
alphabet. This is especially noticeable with the runs of the ”table” algorithm on the words
in LDA = (a + b + c)∗b(a + b + c)∗d(a + b + c + d)∗c(a + d)∗ and the ”parallel” algorithm, in
particular on the words in LDA. Indeed, even though the results fall in the same categories,
the unicode versions can be almost three times faster than their byte counterparts. We have
no clue as to why that is.

Another notable difference between the algorithms on unicode characters and the ones on
bytes lies within the executions of the ”table” algorithm. This algorithm uses a table to compute
the products of successive elements of the semigroups, which removes most of the conditional
branching. This should lead to results that barely depend on the language (given that the
semigroups are of similar sizes). This is the case for the version on unicode characters, but
not the other one, which seems to improve the basic ”stamp” algorithm but still depends on
the language. In order to explain this, we rely on the tool perf stat to measure the number of
branches and the number of mispredicted branches. The results allow for an educated guess:
both versions indeed have much less conditional branches, but the version on unicode characters
mispredicts very few branches, almost none for most input words, whereas the version on bytes
fails to predict a significant amount for the languages LDA and LR (around 12% for words in
LDA and 8% for words in LR), leading to this change of performance. In this algorithm, most
of the conditional branching happens when the semigroup element corresponding to a character
is computed. Thus, it is probable that the order of the instructions used for this computation
depends on the version of the algorithm and heavily influences the results: in the version dealing
with unicode characters, the order of instructions is probably ideal for the branch predictor,
contrary to the version on bytes, which antagonizes it.

Particularly slow runs. Among these results, some fall in the category of particularly slow
runs. This is notably the case of the ”stamp” and ”stamp-mini” algorithms on the words
belonging to LDA, even if the ”stamp” algorithm is not particularly efficient on the words of
LR either. In general, these two algorithms are the less efficient ones, but they are especially
slow on the words in LDA. This could be due to the complexity of the language itself, though
the syntactic semigroup is still rather small. One probable cause of this lack of efficiency
lies within the structure of the language as, once the semigroup reaches the J -class with the
greatest J -depth, it circles a lot between the H-classes of bd and bdc until it reaches the last
occurrence of c of the input words. This can antagonize the branch predictor and lead to poor
performances. This can explain why all algorithms are less efficient on the words of LDA than
on the others.

To verify this, we used the tool perf stat. This gave us more insight, as the execution of the
”stamp” and ”stamp-mini” algorithms on the words in LDA, both the unicode and byte versions,
has significantly more branches than on the words in (ac∗b + c)∗ or in LR (approximately six
times for ”stamp” and three times for ”stamp-mini”). More importantly, a non-negligible
percentage of these branches was mispredicted: around 1% for stamp, and around 3% for

2.4. Semigroups and parallel algorithms 75

”stamp-mini”, against almost none for the language (ac∗b+ c)∗ and 5% for the language LR in
both variants of the algorithm. A larger proportion of the branches were mispredicted for LR
but, since this language leads to significantly less branches, this results in more mispredicted
branches for LDA (nearly twice as much as for LR). This helps explain the performance gaps
between these languages.

Determinization. As for the results shown in table 2.1, the results of the ”determinize”
algorithm are not as good as one could hope. Essentially, this variant of the algorithms can
slightly improve the efficiency, but does not bring significant speedups. This was to be expected
since the languages used here are quite simple, and the NFAs produced by the crate regex are
very close to DFAs. Consequently, determinization does not change significantly the structure
of the automaton from which the semigroup is built.

Fast runs. Finally, the only fast runs, except for the execution of the baseline on the word
of Σ∗ac∗aΣ∗, are the results of some execution of the ”parallel” or ”parallel-mini” algorithms.
We can note that the throughput scales nicely between the versions on four and eight cores,
but not as well afterward. This is probably due to the cost of the communication between the
two CPUs of the machine.

2.4.4 Propositions of potential improvements
When experimenting with the programs using conditional statements or pattern matching to
compute the products in semigroups, we observed that the order of the statements greatly
impacts the performance. Thus, we tried different approaches to try to optimize the order and
improve the performance.

Factorizing the code of the product. The products in the base versions are done by
matching the values of the stored element and the generator corresponding to the new letter.
A way to improve that is to regroup some cases that have similar properties. In this version,
given G the set of generators of the semigroup, we treat the following cases in order:

• If the semigroup has an identity element e, we regroup all the products of the form e.Sg,
where g is a generator element.

• If the semigroup has an identity e which is also a generator, we regroup all the products
of the form s.Se, where s is an element of the semigroup.

• For each element s of the semigroup, we find one element t such that |{g ∈ G | s.Sg = t}|
is maximal, and we regroup all the products of the form s.Sg = t. The statement obtained
from these products is a default statement that depends only on the left element of the
product, and is put at the end of the code for the product.

Example 2.22. Consider the rational language L = (ac∗b + c)∗ and its syntactic semigroup
S = {0, 1, 2, 3, 4, 5}, where 0 corresponds to the letter a, 1 corresponds to the letter b, 2
corresponds to the letter c, 3 corresponds to ab, 4 ba, and 5 to aa (5 corresponds to the non-
accepting sink state of the automaton). The inner product of S is such that πS(01) = 3,
πS(10) = 4, πS(30) = 0, πS(41) = 1 and, for any element s ∈ S, πS(s2) = πS(2s) = s and
πS(s5) = πS(5s) = 5. All the other products have 5 as a result.

76 CHAPTER 2. Experimenting on regex validation

If we process the semigroup S with the naive semigroup algorithm, we obtain many redun-
dant conditional statements. Instead, we can use the factorization algorithm. That algorithm
first looks for an identity element, and finds 2, since, for any element s ∈ S, πS(s2) = πS(2s) = s.
It regroups all the products of the form 2.Sg, where g ∈ {0, 1, 2}, in one conditional statement,
and puts that statement at the beginning of the multiplication function. Then, it searches for
an identity element which is also a generator, and finds again 2. Consequently, it regroups
all the remaining products of the form s.S2, where s ∈ S, in one conditional statement, and
puts that statement at the beginning of the multiplication function, just after the previous
one. Finally, for each element s ∈ S, it tries to regroup as many of the remaining products of
the form s.Sg as possible to obtain one single statement that is put at the end of the function
to obtain a default case which does not need to check the value of the generator used in the
product. This can have multiple results depending on the way it is treated. For example, it
can result in the multiplication function FactorizedMultiply.

Remark 2.5. The function FactorizedMultiply presented here could be factorized further, by
regrouping the statements that return the element 5. To do this, we could add new factor-
ization rules, which would factorize sinks and elements frequently occurring in the statements.
However, it requires careful crafting, as it can interfere with the ”default” cases introduced by
the third rule.

Regrouping as many statements as possible diminishes the number of statements. Even
though it probably does not optimize the order, it might avoid some unnecessary computations
and some branch mispredictions.
Remark 2.6. Our factorization algorithm can modify the order of the statements, which in
turn can impact the performance, therefore factorization does not even guarantee that the
performance will not decrease. This remark applies to all the algorithms using factorization.

The factorization algorithm orders the statements by putting them in three lists: the list
containing the products that leave the left element as is, the list containing the products that
the algorithm cannot factorize, and the list containing the factorized products. The lists are
then concatenated in the order given by the previous sentence.

In the benchmark results, this version is called ”facto”, and the variant where the automaton
is explicitly determinized and minimized before the construction of the semigroup is called
”facto-min”.

Ordering the product by R-classes. In this version, we keep track of the R-class of the
stored element and use it, through pattern matching, to call two functions meant to compute
only the products of pairs of elements such that the left element is in one given R-class. The
first function computes the product if and only if the result is in the same R-class as the
left element of the pair being multiplied, and the second one, called only if the first one fails,
computes the product if and only if it is not in the same R-class as the left element.

Example 2.23. Consider again the syntactic semigroup S of (ac∗b+c)∗, given in example 2.22.
If, instead of factorizing the product, we regroup it depending on the R-class of the current
element, then we first have to determine what the R-classes are. There are four of them: one
trivial class containing only the identity element 2 (which corresponds to the neutral letter
c), one containing the non-accepting sink element 5 (which corresponds to the word aa), one
containing the elements 0 and 3, and one containing 1 and 4.

Thus, we obtain eight functions, two for each of theseR-classes. The main product function,
which articulates the other eight, is shown in algorithm 4. It calls helper functions depending

2.4. Semigroups and parallel algorithms 77

Fonction FactorizedMultiply(element, generator), the product function that factor-
izes the products in the transition semigroup of (ac∗b+ c)∗

Input : element, generator
Output : element× generator
if element = 2 then

return generator;
end
if generator = 2 then

return element;
end
if element = 0 AND generator = 0 then

return 5;
end
if element = 1 AND generator = 1 then

return 5;
end
if element = 3 AND generator = 1 then

return 5;
end
if element = 4 AND generator = 0 then

return 5;
end
if element = 0 then

return 3;
end
if element = 1 then

return 4;
end
if element = 3 then

return 0;
end
if element = 4 then

return 1;
end
if element = 5 then

return 5;
end

on the R-class of the last computed element. For example, if that class is 1, the function tries
to call ProductStaysInROne, which returns the product if and only if that product is in the
R-class 1. If that function fails, then ProductFallsOutROne is called. That helper function
computes the product if and only if that product is in a different R-class, which is necessarily
the case here.

Doing this regroups the statements by R-class. Since we only use the stored element as the
left element of the products, either the product is in the same R-class as the stored element,
or its J -depth is strictly greater (by definition of an R-class). Thus, the same function will

78 CHAPTER 2. Experimenting on regex validation

Algorithm 4 : The product function produced by the semigroup algorithm regrouping
the products by R-class for (ac∗b+ c)∗

Function Multiply(product,generator,class):
if class = 0 then

if ProductStaysInRZero(product,generator)=Some(element) then
return (element,0);

else
return ProductFallsOutRZero(product,generator);

end
end
. . .

if class = 3 then
if ProductStaysInRThree(product,generator)=Some(element) then

return (element,3);
else

return ProductFallsOutRThree(product,generator);
end

end

Function Main(word):
if word.len() = 0 then

return true;
end
(product,class)← ElementAndClassFromLetter(word,0);
for index← 1 to word.len()− 1 do

generator ← ElementFromLetter(word,index);
(product,class)← Multiply(product,generator,class);

end
return IsAccepted(product);

be called successively multiple times, as long as the stored product is in the corresponding
R-class. Each one of the functions that compute the product if and only if it is not in the same
R-class as the left element can be called only once. Consequently, we hoped that regrouping the
products that stay in the same R-class, and separating them from the products that increase
the J -depth, could improve the performance.

Example 2.24. Consider again the syntactic semigroup S of (ac∗b+c)∗, given in example 2.22,
and the text ccaccccbacbccabcccccaa. If we associate each letter with its corresponding semi-
group element, we obtain the word 2202222102122012222200. When computing the sequential
product of that word, we start with the element 2, in the first R-class. The first products also
give the element 2, until we reach the first occurrence of 0. Then, we obtain the element 0,
which is in the R-class composed of the elements 0 and 3. From there, the successive products
will stay in that R-class until the last letter is reached, where the new R-class will be the one
containing only the element 5.

When the semigroup has few R-classes with respect to the length of the input word, the
series of elements obtained with sequential products necessarily stays in the same R-class for
a long time, at least once. This supports the idea of trying to regroup the products inside the

2.4. Semigroups and parallel algorithms 79

different R-classes to accelerate the products computed in the long infixes that stay in the same
R-class.

In the benchmark results, this version is called ”R-stamp”, and the variant where the
automaton is explicitly determinized and minimized before the construction of the semigroup
is called ”R-stamp-mini”.

Ordering by R-classes and staying as much as possible in the same small function.
The above version does not use efficiently the fact that we might stay a long time inside any
R-class. As explained above, there can be only a finite number of changes of R-class, number
bounded by the depth of the semigroup, so each function computing the products that stay in
the same R-class can be called numerous times, adding an overhead in performance to search
for the right product function when it is assured to often be the same. We might be able to
get rid of this overhead by having one function by R-class, in which we stay as long as the
current element is in that R-class. This avoids some function calls and we hoped that it would
help the compiler. Thus, the program begins by finding the R-class of the first letter, then
calls the corresponding function. That function will in turn make the calls to the two product
functions as long as the current element is in the right R-class. If the R-class changes, a call
to the corresponding function is made.

Example 2.25. Consider again the syntactic semigroup S of (ac∗b+c)∗, given in example 2.22.
This alternative version of the algorithm regrouping the products by R-class uses intermediary
functions, one for each R-class. For the semigroup S, we obtain four intermediary functions,
in addition to the ones that actually compute the product. These additional functions replace
the pattern matching that calls the product functions depending on the current R-class, and
call only the right product functions. For example, the function dealing with the R-class that
contains 0 and 3 is the following:

Fonction ProcessClassOne(word, element, index), the product function that orders
theR-classes and uses intermediary functions for the transition semigroup of (ac∗b+c)∗

Input : word, element, index
Output : element× word[index]
for i← index to word.len()− 1 do

generator ← ElementFromLetter(word,i);
if ProductStaysInROne(element,generator)=Some(new_el) then

element← new_el;
else

(element,class)← ProductFallsOutROne(element,generator);
if class = 3 then

return ProcessClassThree(word,element,i+ 1);
end

end
end
return element;
Note that, since the only other R-class reachable from the R-class 1 is the class 3, that

class is the only one considered by the function ProcessClassOne. This way, we might be able
to reduce delays due to branching by considering only the reachable classes, contrary to what
is done in the previous algorithm. With these intermediary functions, we do not need to return

80 CHAPTER 2. Experimenting on regex validation

to the main function before reaching the end of the input word. Thus, the main function is the
following:

Fonction Main(word), the main function of the algorithm that orders the R-classes
and uses intermediary functions
element← ElementAndClassFromLetter(word,0);
if class = 0 then

product← ProcessClassZero(word,element,1);
else

. . .

if class = 3 then
product← ProcessClassThree(word,element,1);

end
end
return IsAccepted(product);

In the benchmark results, this version is called ”R-ord”, and the variant where the automa-
ton is explicitly determinized and minimized before the construction of the semigroup is called
”R-ord-mini”.

Factorizing, ordering, and separating the product. This version has the same structure
as the previous one: the main function calls the function associated with the R-class of the
first letter of the input, and that function only calls the two product functions that multiply
an element of the R-class with a generator, until the product is not in the R-class anymore,
in which case the function associated with the new R-class is called. The difference with the
previous version is that this one factorizes the products in the functions computing the product
by R-class, using similar factorization rules as the factorized algorithm. These rules, given a
semigroup S, an R-class R of S and a set of products which left element is in that R-class (be
it the products that stay in the class or the ones that fall out of it), are as follows:

• If there is a generator g such that, for any element s ∈ R, πS(sg) = s, we regroup all the
products of the form s.Sg, where s is an element of the R-class.

• For each element s ∈ R, we find one element t such that |{g ∈ G | s.Sg = t}| is maximal,
and we regroup all the products of the form s.Sg = t.

The factorization is less efficient than it can be when we factorize the complete product table,
and there may be more cases to handle overall, but these cases are separated by R-class, which
can reduce delays due to branching.

Example 2.26. On the syntactic semigroup of (ac∗b + c)∗, this algorithm is not much more
efficient than the previous one, since there is little to factorize inside the functions of the form
ProductStaysInRX and ProductFallsOutRX (with X the number of the R-class). The program
is mostly the same. We can note that the function ProductStaysInRThree, which deals with
the products staying in the non-accepting sink class, is reduced to one conditional statement.
Indeed, since this class is a sink and contains only one element, the function ProductStaysIn-
RThree can be factorized to return the only element of the class.

However, if we consider a semigroup with large R-classes with a large number of products
leading to the same elements, we can gain potentially a lot by using this algorithm, since it
allows us to factorize these products. For it to be interesting, the semigroup needs to have

2.4. Semigroups and parallel algorithms 81

enough generators which have similar effects on some R-class. For example, suppose that
we have a semigroup S and an R-class of S containing three elements, and three generators.
Let’s denote the generators by 0, 1, 2, and the elements by 3, 4, and 5. Suppose that the
products in this R-class are the following: πS(30) = 4, πS(31) = πS(32) = 5, πS(40) = 5,
πS(41) = πS(42) = 3, πS(50) = 3, πS(51) = πS(52) = 5. Then, the function ProductStaysInRX
(where X is the identifier of the class) will factorize these products and have six conditional
statements.

Fonction ProductStaysInRX(element, generator), the product function that com-
putes the products staying in the R-class R in the algorithm ”ord-facto”

Input : element, generator
Output : element× generator
if element = 3 AND generator = 0 then

return 4;
end
if element = 4 AND generator = 0 then

return 5;
end
if element = 5 AND generator = 0 then

return 3;
end
if element = 3 then

return 5;
end
if element = 4 then

return 3;
end
if element = 3 then

return 5;
end

We hoped that this version would be more efficient than the previous one, as each small
product function is at least as small as in the previous version of the algorithm.

In the benchmark results, this version is called ”ord-facto”, and the variant where the
automaton is explicitly determinized and minimized before the construction of the semigroup
is called ”ord-facto-min”.

Factorizing and ordering the product without separating. Once more, this algorithm
is a variation of the previous one: it also has one main function per R-class, which deals with
the products as long as they stay in the associated class and calls the appropriate function
if the class changes. The variation lies in the product itself, which is not separated into two
functions as in the previous algorithm. In this version, the main function associated with an
R-class can only call one product function, which computes the product of an element and a
generator and the class of that product. This function is factorized with the same algorithm
as before, which might factorize more statements, as this time all the products in an R-class
are dealt with in the same function.

82 CHAPTER 2. Experimenting on regex validation

Example 2.27. Consider again the syntactic semigroup S of (ac∗b+c)∗, given in example 2.22.
Once again, this algorithm regroups the products by R-class and uses intermediary functions,
one for each R-class. The difference is that, this time, each R-class is associated with only one
product function. For example, the function dealing with the R-class that contains 0 and 3 is
the following:

Fonction ProcessClassOne(word, element, index), the product function that orders
theR-classes and uses intermediary functions for the transition semigroup of (ac∗b+c)∗
in the algorithm ”assembled”

Input : word, element, index
Output : element× word[index]
for i← index to word.len()− 1 do

generator ← ElementFromLetter(word,i);
(element,class)← ProductFromROne(element,generator);
if class = 3 then

return ProcessClassThree(word,element,i+ 1);
end

end
return IsAccepted(element);

The function ProductFromROne is obtained by taking all possible products s.Sg, where s
is in the R-class and g is a generator element, and factorizing them using the two rules defined
above. Several orderings are possible, including the one given below.

Fonction ProductFromOne(element, generator), the factorized product function that
computes the products from the R-class of 0 and 3

Input : element, generator
Output : element× generator
if generator = 2 then

return element;
end
if element = 0 AND generator = 0 then

return 5;
end
if element = 3 AND generator = 0 then

return 0;
end
if element = 0 then

return 1;
end
if element = 3 then

return 5;
end

In the benchmark results, this version is called ”assembled”, and the variant where the
automaton is explicitly determinized and minimized before the construction of the semigroup
is called ”assembled-min”.

2.4. Semigroups and parallel algorithms 83

Remark 2.7. All the algorithms presented in this section could be improved by detecting the
semigroup elements from which no accepting element can be reached, and cutting the execution
there. However, these versions are kept as they are in order to measure their efficiency on the
totality of the inputs.

2.4.5 Benchmark results
The algorithms described in the previous sections have been tested on the same languages and
words as the other benchmarks in this chapter (see section 2.2.4 for a detailed description).
The results are shown in table 2.3.

The case of LDA. These results, though only preliminary, show how much room there is to
improve pattern matching algorithms, and how complicated it is to optimize an algorithm for
all cases. Indeed, the efficiency of the algorithms on the languages abstar = (ac∗b + c)∗ and
LR = (a+b+c)∗d(b+c+d)∗ varies significantly, but all algorithms struggle to process the words
in the language LDA = (a+ b+ c)∗b(a+ b+ c)∗d(a+ b+ c+ d)∗c(a+ d)∗. All of them manage
to fall into the category of average runs, but barely, and the results do not vary significantly
between algorithms. They fail to optimize the evaluation of this particular language, which
shows that there is still a lot of work to be done. However, some interesting speedups can be
found.

The effect of ordering the product. Although the ”facto” algorithm, the ”R-stamp”
algorithm and their minimized variants fail to optimize the evaluation of the inputs, the others
can lead to runs that are above average. First, both the ”R-ord” algorithm and its minimized
variant perform well on the words in LR. This was to be expected, as this language is R-trivial:
each R-class contains exactly one element, which makes the product trivial as long as it stays
in the same R-class. Thus, the compiler manages to optimize it and skip most characters.
This does not happen in the R-stamp algorithm, even though it was planned to do so, since
the function that computes the product takes the R-class as parameter and it verifies its value
at each new character. This unnecessary layer of conditional branching is the main difference
between the two algorithms. It slows down the program, probably by confusing the compiler,
which does not see the trivial products and cannot optimize the evaluation.

The effect of factorization: the ”ord-facto” algorithm. The ”ord-facto” algorithm and
its minimized variant are based on this algorithm, and so they have similar performances in
most cases. They tend to be faster, as the products inside eachR-class are factorized. However,
”R-ord” is twice as fast as ”ord-facto” and on the word named last in the language LR. The use
of perf stat shows that the number of branches and of mispredicted branches is roughly the same.
However, the number of instructions per cycle is nearly multiplied by two for the execution of
”R-ord”. This indicates that, during the execution of ”R-ord”, the compiler executed much
more instructions in parallel. It seems that, in this case, the factorization performed by ”ord-
facto” re-orders the instructions in a way that antagonizes the compiler, preventing it from
seeing the optimizations it could perform. A similar phenomenon happens for the executions
of ”R-ord” and ”R-ord-min” on the word first in the language LR, although the results are
less impressive: the minimization of the automaton changes the structure of the code and
prevents the compiler from seeing some optimizations. On the contrary, this minimization can
lead to a more efficient execution. This what happens with the execution of ”ord-facto-min”:

84 CHAPTER 2. Experimenting on regex validation

the program has a bit less branches than the one for ”ord-facto”, but this does not suffice to
explain the gap in performance, as it executes much more executions in parallel (around 1.5
times more per cycle). In all these cases, the minimization in itself does not really influence
the results, but it changes the structure of the code. This change of structure then impacts the
compilation, leading to more optimizations in some cases, and less in others. More in-depth
research is needed to understand the subtleties of this compilation process.

The ”assembled” algorithm. Finally, the algorithm ”assembled” and its mininimized vari-
ant perform much less efficiently than expected. The phenomena involved here are similar to
the ones discussed above. The first one is linked to the structure of the algorithm: the idea was
to have only one product function per R-class, instead of separating the products depending
on whether the result stayed in the same R-class. This allows for more factorization, which
may impact positively the results in some cases, but hinders the efficiency in others. This is the
case of the words first and middle in the language LR. The optimization discussed previously
for the algorithm ”R-ord” is not seen by the compiler, as it does not detect the fact that the
product can only get out once of an R-class. Thus, it does not skip characters like ”R-ord”
does, and causes much more conditional branching, many of which are not correctly predicted.
However, on the language abstar = (ac∗b + c)∗, an interesting phenomenon happens. If we
compare the algorithms ”assembled-min” and ”ord-facto-min”, we can note that the first one
is more efficient on the words with a higher density of occurrences of a and b, and that it is
the complete opposite for the second one. This due to the phenomenon discussed for ”R-ord”
versus ”ord-facto”. Indeed, all the runs of both algorithms have the same number of instruc-
tions, branches and mispredicted branches, but the number of instructions executed in parallel
is different: on the words dense and average, ”assembled-min” execute much more instructions
per CPU cycle, and the opposite happens on the word sparse.

2.4. Semigroups and parallel algorithms 85

La
ng

.
W

or
d

A
lg

or
ith

m
(G

B
/s

)
ba

se
st

am
p

fa
ct

o
fa

ct
o-

m
in
R

-s
ta

m
p
R

-s
ta

m
p-

m
in

a
cs
ta
ra

la
st

7.
0

0.
15

0.
20

0.
19

0.
16

0.
16

a
bs
ta
r

d
en
se

0.
64

0.
33

0.
43

0.
47

0.
52

0.
36

a
v
er
a
g
e

0.
64

0.
39

0.
43

0.
43

0.
55

0.
50

sp
a
rs
e

0.
64

0.
13

0.
43

0.
43

0.
51

0.
47

L
D

A

ba
la
n
ce
d

0.
64

0.
03
8

0.
14

0.
15

0.
13

0.
12

d
ec
re
a
se

0.
64

0.
03
4

0.
14

0.
15

0.
12

0.
12

in
cr
ea
se

0.
64

0.
04
2

0.
15

0.
16

0.
13

0.
13

L
R

f
ir
st

0.
64

0.
20

0.
24

0.
27

0.
20

0.
19

la
st

0.
64

0.
25

0.
23

0.
29

0.
19

0.
20

m
id
d
le

0.
64

0.
24

0.
24

0.
29

0.
19

0.
20

La
ng

.
W

or
d

A
lg

or
ith

m
(G

B
/s

)
R

-o
rd
R

-o
rd

-m
in

or
d-

fa
ct

o
or

d-
fa

ct
o-

m
in

as
se

m
bl

ed
as

se
m

bl
ed

-m
in

a
cs
ta
ra

la
st

0.
19

0.
19

0.
21

0.
21

0.
22

0.
24

a
bs
ta
r

d
en
se

0.
54

0.
73

0.
81

1.
3

0.
81

0.
80

a
v
er
a
g
e

0.
39

0.
89

0.
77

1.
2

0.
65

0.
97

sp
a
rs
e

0.
72

0.
54

0.
64

0.
78

0.
77

1.
3

L
D

A

ba
la
n
ce
d

0.
14

0.
16

0.
18

0.
17

0.
17

0.
18

d
ec
re
a
se

0.
13

0.
15

0.
18

0.
16

0.
16

0.
18

in
cr
ea
se

0.
14

0.
16

0.
17

0.
17

0.
17

0.
17

L
R

f
ir
st

1.
3

0.
97

1.
7

1.
3

0.
25

0.
22

la
st

1.
9

1.
9

0.
97

1.
9

1.
9

1.
9

m
id
d
le

1.
3

1.
3

1.
3

2.
1

0.
45

0.
46

Ta
bl

e
2.

3
–

T
he

re
su

lts
of

th
e

ad
va

nc
ed

se
m

ig
ro

up
-b

as
ed

al
go

rit
hm

s
-t

ro
ll

86 CHAPTER 2. Experimenting on regex validation

Chapter3
Vectorial circuits

Outline of the current chapter
3.1 Bit-level parallelism 88

3.1.1 The example of memchr . 88
3.1.2 Streaming bit-level parallelism . 89
3.1.3 The shift-or algorithm . 92

3.2 Validating regexes over chunks of letters 94
3.2.1 Formalization . 94
3.2.2 Benchmark . 96

3.3 Classes of vectorial circuits 100
3.3.1 Definitions . 100
3.3.2 ADD-vectorial circuits . 107
3.3.3 Sweeping-vectorial circuits . 111

3.4 Streaming with circuits 113
3.4.1 Propagating information . 113
3.4.2 Adapting vectorial circuits to streaming 114

In chapter 2, we presented a fragment of regular expressions and some algorithms to recognize
the regular languages represented by these regexes. Among those algorithms, the one leveraging
the algebraic theory of automata to obtain a parallel algorithm is by far the most efficient.
In this chapter, we present another kind of parallelism called bit-level parallelism. Algorithms
using this kind of parallelism use particular operations which process chunks of data of fixed size
in parallel. Using bit-level parallelism, we can produce algorithms that are almost branch-free,
which can greatly increase performance. Notably, Myers, when introducing the use of bit-level
parallelism for approximate string matching [52], obtained significantly faster programs which
had a great impact on stringology and DNA processing. From that point, numerous projects
have been developed using bit-level parallelism, such as projects to improve parsing [45, 46],
others to query JSON [37, 28, 27], or some projects that explicitly handle regular expressions.
For example, Cameron et al. [14] used bit-level parallelism for regex matching and applied it
to grep, rediscovering the possible uses of binary addition presented by Serre in [67]. Also of
note is the project Hyperscan [76], which is an attempt at writing a regex engine relying on
vectorization, and which has inspired the Rust regex crate. To study the complexity of those

87

88 CHAPTER 3. Vectorial circuits

bit-level algorithms, several models have been introduced [62, 9]. Among these different models,
we rely on the most recent to our knowledge, which is the model of vectorial circuits. These
vectorial circuits generalize boolean circuits by considering bit words instead of booleans. We
focus on two distinct classes of vectorial circuits by limiting them to certain gates. Notably, in
one of our classes, inspired from Serre’s PTL-algorithms [67], we use the binary addition, which
allows to transmit some information along the vectors. This operation’s expressive power allows
us to recognize languages in FO[<]. The other class that we focus on uses the prefix and suffix
operations to recognize the languages in FO2[<]. As these circuits already process inputs by
chunks, they can be used for streaming by adding a feedback loop. In this chapter, we present
bit-level parallelism and its application to data validation. Then, we formalize bit-level parallel
algorithms by defining vectorial circuits, and we present a method to convert vectorial circuits
to adapt them to streaming.

3.1 Bit-level parallelism
The previous chapter explored some approaches that leverage the algebraic theory of automata
to produce (hopefully) efficient algorithms which recognize regular languages. The goal was
to produce a parallel algorithm taking advantage of the inherent parallelism of semigroups.
While the results showed that this approach significantly outperforms the naive algorithms,
alternative approaches also exist which can lead to even more impressive results.

One of these approaches consists in processing data chunks with operations that simul-
taneously manipulate all elements within a chunk. We call this form of parallelism bit-level
parallelism, which, in practice, relies on processors equipped with the ability to efficiently han-
dle long machine words. Among the numerous works on bit-level parallelism, there have been
several propositions on integration of bit-level parallelism in the context of regular expressions
processing. In this section, we present some of these propositions. However, in the rest of this
thesis, we only focus on the most common approach, which consists in splitting the input words
into chunks, then process each chunk sequentially using bit-level parallel operations.

3.1.1 The example of memchr
Before talking about the general case, we focus on one example taken from the standard C
library, which is the function called memchr. This function takes a word w and a letter a, and
returns the index of the first occurrence of a in w, if it exists. The underlying automaton of
this function is showed in Figure 3.1. The most naive implementation for this function is a for
loop over the letters of w which stops at the first letter a and returns the corresponding index.

a

Σ \ a

Figure 3.1 – The minimal DFA behind memchr

The program using that naive sequential algorithm is quite slow, much slower than the
memchr function from the standard library, even when optimized by the compiler (on our
machines, we obtain a factor of 4.5 between the two).

3.1. Bit-level parallelism 89

This speedup is due to the fact that the function from the standard library uses bit-level
parallelism to avoid looking at every letter sequentially. More specifically, it separates the word
w into chunks the size of a computer word and uses particular operations on each chunk to see
if there is an a in that chunk. These operations are called bit-level parallel, as they process
an entire chunk at once. If the function does not find an a, it continues to the next chunk.
Otherwise, it goes sequentially through the chunk to find its exact position. Using bit-level
parallel instructions on the chunks allows to obtain the information needed without looking
separately at each letter, instead processing each chunk in parallel.

In order to know if there is an a in a chunk, the function compares it to another chunk of
the same size containing only occurrences of a using the bitwise equality. This bit-level parallel
operation is defined as follows: given two words v = v0 · · · vn−1 ∈ Σ∗ and w = w0 · · ·wn−1 ∈ Σ∗,
we define v = w to be the binary word b0 · · · bn−1 ∈ {0, 1}∗ such that, for each index i ∈ [n],
bi = 1 if and only if vi = wi. Using this operation, each chunk v of the input word is compared
to a word a · · · a of the same size. We denote that specific operation by 1a, which computes
the indicator vector of a in its input vector (see definition 3.1 for the formal definition of an
indicator vector). The binary word obtained as output contains a 1 if and only if v contains
an occurrence of a, and the occurrences of 1 are at the same indices as the occurrences of a.
Thus, the program checks if there is a 1 using a bit-level parallel operation. If there is no 1, it
starts again on the next chunk. Otherwise, it uses the naive for loop to go through the chunk
to find the exact index of the first occurrence of a.

Algorithm 5 : The code used by memchr to find the first occurrence of a letter
Input : word ∈ Σ∗, letter ∈ Σ
index← 0;
for chunk in word do

indicator ← 1letter(chunk);
if indicator 6= 0 then

for chunk_index← 0 to chunk.len()− 1 do
if indicator[chunk_index] = 1 then

return index+ chunk_index;
end

end
end
index← index+ chunk.len();

end
return −1;

The algorithm used by memchr uses bit-level parallel operations to process a word split in
chunks. This kind of algorithm is said to rely on streaming bit-level parallelism, which is the
most frequent application of bit-level parallelism.

3.1.2 Streaming bit-level parallelism
As presented above, streaming bit-level parallelism consists in splitting the input into chunks,
then processing them with bit-level parallel operations, which are operations processing an
entire chunk at once. The operations used in streaming bit-level parallelism operate at bit-level
and often process the bits of the chunk separately. Therefore, we define a chunk of data to be

90 CHAPTER 3. Vectorial circuits

a binary word. In practice, the chunks of data can be more complex, but it is always possible
to reduce the problem to binary words. Thus, the base operations on chunks of data are the
bitwise logical operations, such as ∨, ∧ and ¬, which process each bit independently from the
others. Streaming bit-level parallelism was first introduced by Lamport [44], who used bit words
to represent the data, and processed them using vectorial operations. The programs considered
in this thesis are similar to Lamport’s, as they also mostly deal with bit words and use vectorial
operations. In this part, we introduce indicator vectors, which allow to obtain bit words from
words on any alphabet, and we define the vectorial operations that are used in this thesis.

Indicator vectors. Lamport’s paper considers bit words, but tools such as the memchr func-
tion deal with larger alphabets than {0, 1}. To do so, they compare the chunks to other chunks
of the same size containing only occurrences of one given letter. We formalize this using the
vectorial indicator functions 1a, defined as follows:

Definition 3.1

Given an alphabet Σ and a letter a ∈ Σ, we define the vectorial indicator function 1a to
be the function 1a : Σ∗ → {0, 1}∗ such that, for any input word w = w0 · · ·wn−1 ∈ Σn,
1a(w) = b0 · · · bn−1, with bi = 1 if and only if wi = a, for any index i ∈ [n]. We call the
binary word 1a(w) the indicator vector of w.

We can extend the domain of that definition to sub-alphabets of Σ:

Definition 3.2

Given an alphabet Σ and a set B ⊆ Σ, we define the vectorial indicator function 1B to
be the function 1B : Σ∗ → {0, 1}∗ such that, for any input word w = w0 · · ·wn−1 ∈ Σn,
1a(w) = b0 · · · bn−1, with bi = 1 if and only if wi ∈ B, for any index i ∈ [n]. We call the
binary word 1B(w) the indicator vector of w.

This definition is useful for the proofs of this thesis, and is justified by the existing SIMD
operations. Indeed, SIMD operations do not handle only the equality between bytes, but also
the order (>). With the order, the equality, and the negation, we can compute the indicator
vector of any interval of characters in the byte alphabet. By taking boolean combinations of
these intervals, we can compute the indicator vector of any sub-alphabet of the byte alphabet,
and thus of any alphabet it represents.

Example 3.1. Consider the word babcaadaca. The indicator vectors of the letters a and c
are respectively 1a = 0100110101 and 1c = 0001000010. From these vectors, we can build the
indicator vector of the set B = {a, c} by computing the bitwise OR of the two vectors.

1B = 1a ∨ 1c = 0101110111

Vectorial operations. The following vectorial operations are used by Lamport in his paper.
Some of them constitute the core of the set of operations used in this thesis.

• The unary negation ¬ = (¬n)n∈N+ is such that, for each n ∈ N+ and any binary word
v = v0 · · · vn−1 of size n, the binary word ¬nv = w0 · · ·wn−1 is such that, for any index
i ∈ [n], wi = ¬vi = 1− vi.

3.1. Bit-level parallelism 91

• The binary disjunction ∨ = (∨n)n∈N+ is such that, for each n ∈ N+ and any two binary
words v = v0 · · · vn−1 and u = u0 · · ·un−1 of size n, the binary word v ∨n u = w0 · · ·wn−1

is such that, for any index i ∈ [n], wi = vi ∨ ui = max(0,min(vi + ui, 1)).

• The binary conjunction ∧ = (∧n)n∈N+ is such that, for each n ∈ N+ and any two binary
words v = v0 · · · vn−1 and u = u0 · · ·un−1 of size n, the binary word v ∧n u = w0 · · ·wn−1

is such that, for any index i ∈ [n], wi = vi ∧ ui = max(0, vi + ui − 1).

• The binary addition + = (+n)n∈N+ is such that, for each n ∈ N+ and two binary words
v = v0 · · · vn−1 and u = u0 · · ·un−1 of size n, the binary word u+n v = w0 · · ·wn−1 is such
that w0 = (u0 ∧ ¬v0) ∨ (¬u0 ∧ v0) and, for any index i ∈ [n− l],

wi = ((ui ⊕ vi) ∧ ¬carryi) ∨ (((ui ∧ vi) ∨ (¬ui ∧ ¬vi)) ∧ carryi)

where a⊕ b = (a∧¬b)∨ (¬a∧ b), and the binary word carry = carry0 · · · carryn−1 is such
that carry0 = 0 and, for any index i such that 1 ≤ i < n,

carryi =
i−1∨
j=0

(uj ∧ vj ∧
i−1∧

k=j+1

(uk ∨ bk))

• The l-bit left shift lshiftl = (lshiftl,n)n∈N+ is such that, for each n ∈ N+, for any integer l <
n and any binary word v = v0 · · · vn−1 of size n, the binary word lshiftl,n(v) = w0 · · ·wn−1

is such that, for any index i ∈ [n−l], wi = vi+l and, for any index i such that n−l ≤ i < n,
wi = 0. If l ≥ n, we define lshiftl,n(v) to be the binary word 0 · · · 0.

• The l-bit right shift rshiftl = (rshiftl,n)n∈N+ is such that, for each n ∈ N+, for any integer
l < n and any binary word v = v0 · · · vn−1 of size n, the binary word rshiftl,n(v) =
w0 · · ·wn−1 is such that, for any index i such that l ≤ i < n, wi = vi−l and, for any index
i ∈ [l], wi = 0. If l ≥ n, we define rshiftl,n(v) to be the binary word 0 · · · 0.

Example 3.2. If we take two binary numbers with 5 bits, the bitwise operation ∧ processes the
5 indices separately and returns a binary number with 5 bits, where each of the bits is the result
of the conjunction of the two corresponding bits in the inputs. The table 3.1 gives an example
by showing the application of the bitwise ∧ to n1 = 011112 = 15 and n2 = 110012 = 25.

n1 0 1 1 1 1
n2 1 1 0 0 1

n1 ∧ n2 0 1 0 0 1

Table 3.1 – Performing the bitwise ∧ of two binary integers

The table 3.2 shows the addition of the binary words u and v, along with the carry that is
produced during the computation.

Several researchers have independently rediscovered the interest of the binary addition as an
operation over machine words for data processing. Myers, in his seminal paper [52], illustrated
the potential applications of carry-propagation, and used it to speed up approximate regular
expression matching. These applications were later rediscovered by Cameron et al. [14], who
efficiently compiled regular expression of the shape A∗, with A being a subset of the alphabet.

92 CHAPTER 3. Vectorial circuits

u 1 1 0 1 1 1 1
v 0 1 0 1 0 1 1

u+ v 1 0 1 0 0 1 1
carry 0 1 0 1 1 1 1

Table 3.2 – Example of addition

The vectorial operators presented above are now common in the context of bit-level paral-
lelism [14, 45, 76, 40]. Our vectorial algorithms will also use most of them, as they are inspired
from bit-level parallelism. More specifically, our vectorial circuits (defined in definition 3.3) use
these operations to label their gates.

In his paper, Lamport gives a general method to produce a program using bit-level paral-
lelism for any binary operator returning a boolean (for example, an equality test). This method
has some common traits with our work, so we give some details about it. Lamport’s method,
applied to a relation p, produces a masking function mp : ({0, 1}k)2 → {0, 1}k, where k is
the chosen size of the computer words. The words are separated into small chunks of n bits,
each of those corresponding to a letter in the input text. Thus, the function mp is defined
by the following: let v = v0 · · · vk−1 and w = w0 · · ·wk−1 be two input bit masks1, and let
x = mp(v, w) = x0 · · ·xk−1. For each index i which is a multiple of n, xi · · ·xi+n−1 = 1n if and
only if p(vi · · · vi+n−1, wi · · ·wi+n−1) = true. Otherwise, xi · · ·xi+n−1 = 0n. This definition can
notably serve for an acceptance condition as defined later in definition 3.4. More generally,
such bit masks can be used to select some parts of the input, either for pattern matching or for
text processing.

Example 3.3. We can write a simple program for the equality test = and produce a method
m= as defined by Lamport. To do so, we note that two bit-words a and b of the same size n are
equal if and only if a⊕ b = 0n. Thus, we can define m= to be such that, for any input binary
words v and w, m=(v, w) = ¬(v⊕w) (the negation was mentioned by Lamport as a useful but
not necessary operation).

The masking functions mp can be applied to any computer word. Thus, the idea is to
separate the input text into as many computer words as necessary to obtain a sequence of
words, then to apply the masking functions to obtain a sequence of masks as output.

This separation of the input text into words manageable with bit-level parallelism is the
main use that is made of this kind of parallelism, and it is the one that we focus on in the rest
of this thesis.

3.1.3 The shift-or algorithm
In this thesis, we focus on streaming bit-level parallelism, but other applications of bit-level
parallelism exist. Notably, one of the early applications of bit-level parallelism is a pattern
matching algorithm called the shift-or algorithm, introduced in [5]. This algorithm considers
regexes using only literal characters, the symbol representing the alphabet (. in our case),
characters classes, and complements of character classes. This is necessary for this approach,
as the state of the search is represented by a finite set of bits of fixed size, and thus the regex

1Lamport’s definition included implementation details that are not considered here

3.1. Bit-level parallelism 93

must match only words of a given size. The shift-or algorithm assembles those bits into a word
and modifies them using instructions that are typical of bit-level parallelism.

More specifically, for a regex reg that matches only words of size n, the shift-or algorithm
uses a word of size n to represent the state of the search. We denote this word as q = q0 · · · qn−1.
The search goes sequentially through the input word, without backtracking or skipping letters,
so each letter is considered exactly once. At step i of the algorithm, the ith letter of the input
text is considered, and the state q is updated. That state is to be interpreted as follows: each
bit qj of q is equal to 0 if and only if the n − j last seen letters of the input match the n − j
first characters or classes of the regex. Thus, q0 = 0 if and only if the last n seen characters of
the input match the regex.

Example 3.4. Consider the regex baba and the text abacbabbabac. The regex recognizes only
infixes of size 4, so the state of the search is represented by 4 bits, in the word q = q0q1q2q3.
After reading the fourth letter of the text, the last 4 letters are abac, so the state q must be
equal to 1111, as the last seen letter is not equal to any letter of the pattern. After reading
the seventh letter, the last 4 letters are cbab. The last 3 letters of this infix match the first 3
letters of the pattern, and the last letter matches the first letter of the pattern, so the state q
must be equal to 1010. However, when reading the eighth letter, there is a mismatch, as the
fourth letter of the pattern is an a, and the letter in the text is a b, so we do not obtain a
state beginning with 0. Instead, the state q must now be equal to 1110. The next three letters
match the rest of the pattern, and when reading them we must successively obtain the states
1101, 1010, and 0101, which corresponds to a match since q0 = 0.

In order to update the state q, the algorithm relies on a table T which associates each letter
of the alphabet to a bit word of size n, which will allow to update the entire state at once.
Formally, for any letter a in the alphabet, T [a] = t0 · · · tn−1 where, for each index i < n, ti = 0
if and only if the letter a matches the (n− i)th character or class of the regex. Using this table,
we can update the state q as follows. At each step, if the new letter is a, the state q is shifted
to the left by 1 to represent the progress in the input, then the bitwise OR of that shifted word
and T [a]. In symbols, if we denote by q′ the new state:

q′ = lshift1(q) ∨ T [a]

Example 3.5. If we consider the same regex as in the previous example, baba, and the alphabet
Σ = {a, b, c}, we obtain the table T such that T [a] = 0101, T [b] = 1010, and T [c] = 1111. Now,
consider again the text abacbabbabac. After reading the fourth letter, the state q is equal to
lshift3(T [a]) ∨ lshift2(T [b]) ∨ lshift1(T [a]) ∨ T [c] = 1111. Then, for each new letter, the state
changes as follows:

• At the index 4, q = lshift1(q) ∨ T [b] = 1110.

• At the index 5, q = lshift1(q) ∨ T [a] = 1101.

• At the index 6, q = lshift1(q) ∨ T [b] = 1010.

• At the index 7, q = lshift1(q) ∨ T [b] = 1110.

• At the index 8, q = lshift1(q) ∨ T [a] = 1101.

• At the index 9, q = lshift1(q) ∨ T [b] = 1010.

• At the index 10, q = lshift1(q) ∨ T [a] = 0101, which indicates a match.

94 CHAPTER 3. Vectorial circuits

• At the index 11, q = lshift1(q) ∨ T [c] = 1111.
This algorithm can be compared to Thompson’s NFA-based algorithm, as it runs an NFA

on the text without backtracking by considering a state made of several bits, which resembles
the powerset used for determinization.

3.2 Validating regexes over chunks of letters
Now that we defined bit-level parallelism, we can see how to use these algorithms for data
validation and how well they can perform. This section consists in a benchmark on some
hand-written bit-level parallel algorithms and a formalization which allows us to study bit-level
parallel algorithms recognizing regular languages by comparing them to a particular kind of
automata whose transitions are labeled by words of fixed size.

3.2.1 Formalization
Bit-level parallelism allows to build efficient programs for data validation. We propose a rather
natural formalization of the programs based on bit-level parallel operations. This formalization
comes from the fact that the kind of bit-level parallelism introduced by Lamport processes an
input word sequentially, similarly to an automaton, but by chunks of fixed size. Thus, when we
apply bit-level parallelism to data validation, we obtain algorithms that process the input by
chunks and return a boolean indicating whether the input is accepted. This can be represented
by a particular kind of automaton, which considers a chunk of letters at a time instead of only
one letter. Now, we show how to represent a bit-level parallel algorithm with an automaton
A = (Σn, Q, I, δ, F), where Σ is the alphabet of the inputs and n is the size of the chunks.

Computation of the automaton. The algorithms using streaming bit-level parallel op-
erations for data validation need some memory to propagate information from one chunk to
another. For example, if we want to accept any word that does not have more than p occur-
rences of the letter a, we need to remember how many occurrences (up to p) have been seen
in the previous chunks. In this thesis, we restrict ourselves to constant space bit-level parallel
algorithms. Because of the constant space these algorithms require, they can be considered as
automata, whose states are the possible states of the memory to propagate between chunks,
and whose letters are possible values of the chunks.

Formally, given a constant space bit-level parallel algorithm that operates on chunks of size
k and that uses m bits of memory b0, . . . , bm−1, the automaton A = (Σk, Q, I, δ, F) representing
that algorithm is constructed as follows:

• Q = {qi | i ∈ [2m]}, where each state qi corresponds to the state of memory in which the
bit word b0 · · · bm−1 is the binary representation of the integer i.

• The set I contains only one initial state qi, which is the state associated with the initial
state of the memory.

• The set F contains all the states qi such that, if the algorithm has the memory associated
with qi when it finishes processing the input, then it accepts it.

• δ : Q× (Σk)→ Q is such that for any state qi and any chunk a0 · · · ak−1, δ(qi, a0 · · · ak−1)
is the state qj associated with the memory b′0, . . . , b

′
m−1 that the algorithm obtains if it

processes the chunk a0 · · · ak−1 with the memory b0, . . . , bm−1 associated with qi.

3.2. Validating regexes over chunks of letters 95

Note that the size of the input words may not always be a multiple of k. Consequently, we
need a way to fill the last chunk to obtain the right size. This can be done using a padding
symbol that does not belong to the alphabet Σ. In this thesis, we ignore this part of the problem
and we consider that the size of the words is always a multiple of k.

The automaton’s size. The automata defined above have a number of states which is
exponential in the space used by the bit-parallel algorithm. However, it is difficult to give
a relation between a language and the memory necessary for a bit-level parallel algorithm
recognizing that language. Moreover, the number of transitions in δ depends on the exact
operations used in the bit-level parallel algorithm. So, in order to study the complexity of
these automata, we consider the automata on the alphabet of chunks of size k that can be
constructed from the automata that recognize given regular languages.

Lemma 3.1

Given a DFA A = (Σ, Q, I, δ, F) and a integer k, we can build an equivalent DFA Ak =
(Σk, Qk, Ik, δk, Fk) that processes k letters at once. Moreover, the set {(q1, w, q2) ∈ Qk ×
Σk ×Qk | δ(q1, w) = q2} is of size O(|Q| · |Σ|k), a bound that is tight.

Proof. Since Ak processes k letters at once, we replace paths of length k in A by transitions
in Ak. To do this, we can use the same set of states, so we set Qk = Q, Ik = I and Fk = F .
Now, we only have to build the transition function δk : Qk × (Σk)→ Qk. To do so, we replace
each path of length k in A by a transition labeled by the word formed when concatenating the
labels of the path. Formally, for any state q ∈ Q and any word w = w0 · · ·wk−1 ∈ Σk, if there
exist k states q1, . . . , qk ∈ Q such that (q, w0, q1) · · · (qk−1, wk−1, qk) is a path in A, then we set
δk(q, w) = qk. Otherwise, δ(q, w) is not defined.

Ak is equivalent to A for all inputs whose size is a multiple of k. Indeed, given a word
w = w0 · · ·wlk−1 ∈ Σlk, there is path (Ik, w0 · · ·wk−1, q1) · · · (ql−1, wl(m−1) · · ·wlk−1, ql) in Ak
such that δ(I, w) = ql in A. Thus, w is accepted by Ak if and only if it is accepted by A.

The number of transitions defined by δ is the number of paths of length k in A formed by
the transitions, as one transition in Ak is constructed from a path of length k in A. The size
of the set {(q1, w, q2) ∈ Qk × Σk × Qk | δ(q1, w) = q2} then follows from the fact that there
are at most |Q| · |Σ|k paths of length k in the DFA A. That bound is tight, and it is reached
even in simple examples. For instance, consider the alphabet Σ = {a, b, c} and the automaton
A with only one state q and the following transitions: (q, a, q), (q, b, q), (q, c, q). The automata
Ak obtained from this DFA all have only one state, and exactly 3k distinct transitions, labeled
by all the words of size k formed with the alphabet Σ.

As shown in the proof, the number of states of Ak and A is the same. However, the number
of transitions can be significantly greater, as Ak has as many transitions as there are distinct
paths of length k in A, which gives a bound of O(|Q| · |Σ|k).

It is possible to implement directly such automata by using a table to represent the transi-
tions. However, with the exponential number of transitions we can obtain when constructing
these automata, the table can be too large for the program to be efficient. In these cases,
we need another way of implementing the automaton. One of the possible solutions consists
in using bit-level parallel operations to compute the transitions without having all of them in
memory. In the next subsection, we give a few examples of programs that apply this solution,
along with their performance.

96 CHAPTER 3. Vectorial circuits

Example 3.6. Take the automaton for (a+ b)∗a(a+ b)∗. Formally the automaton Ak obtained
by the construction above will have two states q0 and q1. From the state q0, there is one
transition δk(q0, b

k) = q0 and 2k − 1 transitions δk(q0, u) = q1 for all the other words u (which
all contain an a). From the state q1, there are 2k transitions (any chunk of size k) looping over
q1.

Note that storing all these transitions separately is not very efficient, since most of them
have the same start and end states. Indeed, it is possible to describe concisely these transitions,
by remarking that the transition from q0 to q1 should be labeled by every word of (a+b)k except
bk, and the loop over q1 should be labeled by (a+ b)k. This description is of size constant with
respect to k, contrarily to the description of δk in which we separate the effects of all the words.
However, to use this concise description of the automaton, we need a more general model which
can label transitions by sets of letters instead of individual ones.

3.2.2 Benchmark
In section 2.3, we gave a benchmark of some algorithms used as a baseline for the algorithms
processing the regular expressions at compile time. In section 2.4, we gave a benchmark of some
algorithms whose goal was to leverage the algebraic theory of semigroups to try to produce
algorithms more efficient than the baseline, ultimately by producing a parallel algorithm. In
section 3.1, we presented bit-level parallelism, which is a different kind of parallelism. Now,
we give a benchmark for a few handwritten algorithms based on bit-level parallelism, in order
to show examples of programs that implement the automata on chunks without using a table
to represent the transitions. Our goal being to leverage the algebraic theory of automata to
produce efficient vectorized algorithms based on bit-level parallel operations, this also serves as
a baseline for handwritten programs using bit-level parallel operations.

Methodology. The implementation produced for the benchmark is written in Rust and can
be found in the branch with_bench_simd of [59]. Contrary to the benchmarks of chapter 2, we
focused on a few languages instead of trying to deal with the general case. For each one of these
languages, a handwritten function has been added to the framework. These functions take a
word in the form of a vector of bytes, split it in chunks, and process each chunk sequentially
using SIMD instructions. Each time a chunk is processed, the functions retrieve the information
previously stored, and once the chunk is processed, they store the information they need to
propagate to the next one.

For each chunk, the indicator vectors (defined in definition 3.1) of some letters are computed
using SIMD instructions, the exact letters depending on the language. These indicator vectors
are then processed to obtain the information needed to determine if the input belongs to the
language.

The languages and the corresponding algorithms. We considered the same languages
as the ones presented in section 2.2.4 in order to compare the bit-parallel algorithms to the
sequential ones.

Σ∗ac∗aΣ∗ The language acstata = Σ∗ac∗aΣ∗, on the alphabet of bytes, includes all the
words that contain two occurrences of a separated only by occurrences of c. This language can
be recognized using the bit trick defined in the addition lemma (see Lemma 4.7): we can detect
any occurrence of a that is at the end of an infix of the form ac∗a using the binary addition.

3.2. Validating regexes over chunks of letters 97

The only information stored in this algorithm is the carry of that addition, which is initially
equal to 0.

When processing a chunk, the algorithm computes the indicator vectors of a and c, then
performs the following binary addition:

(add_result, carry) = 1a + (1a ∨ 1c) + carry

Then, a new vector is computed, which keeps only the bits set to 1 that indicate occurrences
of a:

result = add_result ∧ 1a
Each bit set to 1 in the vector result indicates an occurrence of a which is at the end of an
infix of the form ac∗a, as shown in example 3.7.

Example 3.7. Consider the word abbaccbcabcaacaa, and suppose that the chunk size is 4.
Then, the computation proceeds as shown in the table below.

carry 0 1 0 1
1c 0000 1101 0010 0100
1a 1001 0000 1001 1011

1a ∨ 1c 1001 1101 1011 1111
1a + (1a ∨ 1c) + carry 0100 0011 0110 1011

(1a + (1a ∨ 1c) + carry) ∧ 1a 0000 0000 0000 1011

When processing the last chunk, we obtain a vector that is different from 0 since there are
infixes aa and aca whose second occurrence of a is in that chunk. Thus, the word is in the
language.

(ac∗b + c)∗ The language abstar = (ac∗b+ c)∗, on the alphabet of bytes, includes all the
words on the alphabet {a, b, c} that alternate occurrences of a and b, beginning with an a and
ending with a b. Those words can contain occurrences of c anywhere. This language can be
recognized using the bit trick defined in the addition lemma (see Lemma 4.7), similarly as for
Σ∗ac∗aΣ∗: we can detect any occurrence of a that is at the end of an infix of the form ac∗a
using the binary addition, as well as any occurrence of b that is at the end of an infix of the
form bc∗b. Any word that contains such infixes cannot be in the language. All that remains is
to verify that the first letter other than a c is an a and that the last letter other than a c is
a b. All this can be done with a few instructions. As for the language Σ∗ac∗aΣ∗, the vector
add_result and the corresponding carry are computed as follows:

(add_result, carry) = 1a + (1a ∨ 1c) + carry

The vector add_result is used to detect any factor of the form ac∗a or bc∗b. For infixes of the
form ac∗a, the following vector is computed:

result_a = add_result ∧ 1a

This vector marks exactly each occurrence of a which is at the end of a factor ac∗a, so it must
be equal to 0 for the word to belong to the language. Then, infixes of the form ac∗b are dealt
with by computing the following vector:

result_b = add_result ∧ 1b

98 CHAPTER 3. Vectorial circuits

This vector marks each occurrence of b that is at the end of an infix of the form ac∗b. It must
mark all the occurrences of b for the word to belong to the language, so it suffices to verify that
it is equal to 1b. Note that it also verifies that the first b is after the first a. Finally, in order to
verify that the last letter other than c is a b, it suffices to check, at the end of the computation,
that the carry from the binary addition is null, which means that it has been absorbed by an
occurrence of b. The only information stored in this algorithm is the carry of that addition,
which is initially equal to 0. An example of computation is shown in example 3.8.

Example 3.8. Consider the word abcaccbcacccccbb, and suppose that the chunk size is 4. Then,
the computation proceeds as shown in the table below.

carry 0 1 0 1
1b 0100 0010 0000 0011
1a 1001 0000 1000 0000

1a ∨ 1c 1011 1101 1111 1100
add_result 0110 0011 0000 0010

result_a 0000 0000 0000 0000
result_b 0100 0010 0000 0010

For each chunk, the vector result_a is null, so there are no infixes of the form ac∗a.
However, when processing the last chunk, we obtain a vector result_b that is different from
1b since there is an infix bb in that chunk (and so, the second b of that infix is not marked by
result_b). Thus, the word is not in the language.

(a + b + c)∗d(b + c + d)∗ The language LR = (a+ b+ c)∗d(b+ c+d)∗, on the alphabet of
bytes, includes all the words on the alphabet {a, b, c, d} such that the last occurrence of a, if it
exists, is before the first occurrence of d. This language can be recognized by finding the first
occurrence of d and verifying that there is no occurrence of a after it. To do so, the algorithm
proceeds in two loops: the first one advances in the input until it finds an occurrence of d. The
second one verifies that there is no letter a after the chunk containing that occurrence of d.
Between the two loops, the algorithm verifies that there is no occurrence of a after the first d
in the same chunk as that d.

(a + b + c)∗b(a + b + c)∗d(a + b + c + d)∗c(a + d)∗ The language LDA = (a+b+c)∗b(a+
b+ c)∗d(a+ b+ c+d)∗c(a+d)∗, on the alphabet of bytes, includes all the words on the alphabet
which have at least one occurrence of b, c and d such that the first occurrence of d is after the
first occurrence of b and before the last occurrence of c, which itself is after the last occurrence
of b. To recognize this language, the algorithm proceeds in two loops: the first one advances in
the input until it finds an occurrence of d, and verifies that there is at least one occurrence of b
before it by storing a vector which accumulates the information of the relative positions of the
occurrences of b. The second loop verifies that there is no letter b after the last occurrence of
c, and that this c is after the first occurrence of d. To do so, it stores a vector acc and uses it
to propagate the necessary information. Thus, the vector acc is equal to 10 · · · 0 if before the
current chunk there was a c, and there has been no occurrence of b since that c. Otherwise,
acc is null.

The results have been obtained using grid5000, and more precisely the machine chiclet-4.
At the time when this thesis is written, the machines chiclet each have two CPUs AMD EPYC
7301, on the architecture x86_64. Each of these CPUs has 16 cores. All the results have been
measured as a mean of twenty runs of the same command.

3.2. Validating regexes over chunks of letters 99

Results. The results are given in table 3.3. As for the results of section 2.3.2, the performance
of the baseline is very stable, except for the word in Σ∗ac∗aΣ∗, on which the baseline is about ten
times faster than on the other languages. As explained before, this is due to the properties of
the language, which allow the baseline algorithm to skip most characters using simple bit-level
parallel instructions.

Even on the language Σ∗ac∗aΣ∗, the baseline is slower than the bit-level parallel algorithm.
This indicates that there is room for improvement in the general tools such as this baseline,
which could be improved using more bit-level parallel instructions. It is particularly clear for
the languages other than Σ∗ac∗aΣ∗, on which the handmade bit-level parallel algorithm is more
than ten times faster than the baseline, which considers each character sequentially. However,
the speed-up provided by the bit-level parallel algorithms is in part due to the fact that they
are designed for one language only, which allows them to be as good as possible. Consequently,
these results only provide some kind of upper bound on the potential speed-ups that could be
obtained by using bit-level parallelism to recognize a more general set of languages.

Language Word Algorithm
base (GB/s) SIMD (GB/s)

abstar
dense 0.45 9.5
average 0.45 9.5
sparse 0.45 7.7

acstara last 5.5 14

LDA

balanced 0.45 15
decrease 0.45 15
increase 0.45 16

LR

first 0.45 13
last 0.45 14

middle 0.45 14

Table 3.3 – The results of the SIMD algorithms compared to the baseline

Generalization. The programs presented in this section are handwritten and optimized for
the corresponding languages. When seeing such programs, it is difficult to generalize them and
obtain a general method to produce a program using bit-level parallel operations to recognize
any given regular language. This has been studied in particular cases, such as the projects
Hyperscan [76] and Parabix [46]. However, to the best of our knowledge, none of the existing
projects using vectorized instructions in a general context uses it for the kind of optimization
presented in section 3.2.2, which require a deep knowledge of the underlying structure of the
language represented by the regex. Auto-vectorization, the most common form of vectorization
in the tools currently available, focuses on optimizing simple loops, notably regular nested loop
kernels operating on arrays. The project Hyperscan decomposes the regexes and uses a variant
the shift-or algorithm presented in section 3.1.3, representing the state of an NFA search by
a bit-vector that is updated using table lookups and SIMD instructions instead of conditional
statements. Parabix is more similar to what is presented in this thesis: it processes the input
by batches, and each character of the input is associated with a character class. The program
computes the indicator vectors of these classes using low-level vectorial instructions. These
indicator vectors are then processed with low-level vectorial instructions. However, in that
first article, Parabix aims only at parsing XML documents, which means that it only handles

100 CHAPTER 3. Vectorial circuits

string matching. In a second paper [14], a primitive similar to the addition lemma presented
in Lemma 4.7 is introduced. This primitive uses the binary addition, which thanks to Serre’s
work [67], is known to be expressive enough to recognize any first-order language, but the
primitive is only used to speed up the processing of sub-regexes of the form B∗, where B is a
subset of the alphabet.

In order to try and introduce a generalization of vectorized algorithms benefitting from the
optimizations enabled by the structure of the language, we need to formalize these programs
relying on bit-level parallelism. To do so, we chose to use vectorial circuits, which manipulate
vectors. A vector can represent a chunk but, as we saw in the programs used in the benchmark,
the memory used is composed only on the carries of the additions and the bits shifted out of
the chunk and carried to the next one. This memory is meant to compute the bit-level parallel
operations as if they operated on the entire input word. Thus, in the next section, we represent
the input word by a single vector.

3.3 Classes of vectorial circuits
In the previous section, we presented a formalization of bit-level parallel algorithms using
automata. Although this formalization gives us an idea of the complexity of the algorithms, it
is not well adapted to represent efficient implementations. Indeed, we saw that implementing
the automata using tables to represent the transitions could lead to tables of exponential size
and thus to inefficient programs. Thus, we need another, more detailed formalization which
represents bit-level parallel operations. In section 1.4, we presented boolean circuits, which are
good candidates since they allow us to represent the parallelism inherent to a given algorithm.
However, bit-level parallel algorithms process words by chunks, which are treated as atomic
entities, and thus we want our circuits to manipulate entire words instead of splitting them into
separate bits. Therefore, we consider vectorial circuits, which are a generalization of boolean
circuits on bit words instead of only booleans. These circuits are designed to be independent
of the size of the bit words, so that each vectorial circuit represents a family of circuits that
process bit words of a given size. This way, we can consider only uniform families of circuits,
which better represent the practical bit-level parallel algorithms that we want to study. In this
section, we define vectorial circuits and the operations that we consider for labeling the gates
of these circuits. With these operations, we define two families of vectorial circuits that we will
focus on in the rest of this thesis, and we give a link between them and the usual complexity
of boolean circuits. The first class of vectorial circuits, meant to recognize the languages in
FO[<], has been studied in previous works, notably by Olivier Serre [67], while the second one,
to the best of our knowledge, has not been formalized before.

3.3.1 Definitions
Our goal is to write vectorized algorithms that can take advantage of bit-level parallel instruc-
tions. Thus, we would like our circuits to manipulate a mathematical equivalent to vectors of
booleans instead of just booleans. Informally, a vectorial circuit is a circuit whose gates are
associated with functions that manipulate sequences of booleans.

A boolean vector is a word on the alphabet {0, 1}. We denote the names of the vector in
bold face to distinguish the word x from the vector x. The dimension of a vector x is its length
|x|. We let 1n and 0n respectively denote the sequence of n 1’s and the sequence of n 0’s. When
n is irrelevant or obvious for the context, we write 1 and 0.

3.3. Classes of vectorial circuits 101

A vectorial circuit is a directed acyclic graph. The difference with boolean circuits is that
the input gates bear boolean vectors instead of booleans, and the functions associated with the
gates operate on boolean vectors of some dimension which is the same for all the vectors in
a given circuit. The vocabulary for vectorial circuits is the same as for boolean circuits: the
nodes are called gates, the source nodes are called input gates, the sink nodes are called output
gates, the edges are called wires.

In order to recognize languages, we consider functions that manipulate vectors of any dimen-
sion. Therefore, vectorial circuits can be seen as circuit templates that, for each n, instantiate
a concrete circuit working on vectors of dimension n. Once the dimension is fixed to n, associ-
ating vectors of dimension n to the input gates and flowing the values through the gates (where
the right function operating on vectors of dimension is used) yields output values in the output
gates.

To precisely define vectorial circuits, we need to define the notion of sharing, which is
essential to our results.

Sharing. In our circuits, all gates can have an arbitrary fan-out, independently of the asso-
ciated function. This allows us to share the output value of a gate between several parts of a
circuit without having to compute it several times. This model is closer to the actual programs
that can be built from our circuits, and gives a more accurate description of their complexity.

Example 3.9. The vectorial circuit in Figure 3.2a uses three times the result of the gate in
red. If we want to draw the same circuit without sharing any variable, we need to duplicate the
sub-circuit that computes the result of that gate, to obtain the same result in three different
gates. This gives the circuit in Figure 3.2b, where the gates in red all have the same result as
the red gate in Figure 3.2a.

v0 v1v2v3

¬

¬ ∨ ∧∨

∧ ∧ ∨

∨

(a) A simple vectorial circuit
v0 v1v2v3

¬ ¬ ¬

¬ ∨ ∧∨ ∨ ∨

∧ ∧ ∨

∨

(b) The same vectorial circuit without sharing

Figure 3.2 – A vectorial circuit with and without sharing

102 CHAPTER 3. Vectorial circuits

Vectorial circuits. Now, we can define vectorial circuits formally.

Definition 3.3

A vectorial circuit is a directed acyclic graph whose gates are labelled by sequences of
functions (fn)n∈N+ such that, for each n ∈ N+, fn is of the form fn : ({0, 1}n)r → {0, 1}n,
where r ∈ N is the fan-in of the gate. The fan-out of each gate can be arbitrary, as sharing
is authorized in vectorial circuits.

The basic operations in our vectorial circuits are the bitwise boolean operations. These
are constructed from the usual boolean operations. Notably, we consider the three basic bit-
wise boolean operators ∨, ∧ and ¬ defined in section 3.1.2. The circuits given in Figure 3.2
demonstrate how to use these sequences, with or without sharing.

We define a class of vectorial circuits as the maximum set of vectorial circuits that use only
gates labelled by the operations in a given set.

Vectorial circuit naturally compute functions of the form f : ({0, 1}+)r → ({0, 1}+)q. In
order to recognize languages, we need to add a condition on the image of that function.

Definition 3.4

In a vectorial circuit, an acceptance condition is a function of the form f : ({0, 1}+)r →
{0, 1}.

Definition 3.5

Let C be a vectorial circuit that computes a function of the form ({0, 1}+)r → ({0, 1}+)q,
and let f : ({0, 1}+)q → {0, 1} be an acceptance condition. We say that the pair (C, f)
accepts a word w ∈ ({0, 1}+)r is f(C(w)) = 1.

Now, we define our acceptance condition for the circuits in the main results of this thesis
(the ADD-vectorial circuits and the Sweeping-vectorial circuits).

Definition 3.6

Given C an ADD-vectorial circuit (see definition 3.7) or a Sweeping-vectorial circuit (see
definition 3.8) with output vectors out0, . . . ,outk−1, the acceptance condition of the circuit
C is the function f : ({0, 1}+)k → {0, 1} such that, for any word w ∈ Σ∗, f(C(w)) = 1 if
and only if the vector ∨

i∈[k]

outi

is of the form 0 · · · 01 · · · 1 with at least one occurrence of 1, that is, it belongs to the
language 0∗1+.

Term notation. The circuits with exactly one output gate can be advantageously denoted
by terms built with operations (respecting their arity) and input gates. For example, the
term (v1 ∧ ¬v2) ∨ (¬v3 ∧ v4) represents the left-most circuit of Figure 3.3. Allowing gates

3.3. Classes of vectorial circuits 103

to have several occurrences in terms gives access to some limited kind of sharing. This is
exemplified with the central and right-most circuits of Figure 3.3. So as to fully capture such
sharing capabilities with the term notation, we use equations: a term t that is to be shared is
associated to a gate v with the equation v = t and, when v is used in another term, this refers
to the shared circuit t. For example, we write v = ¬v1 ∧v2, (¬v∧v3)∨ (v∧v4) to denote the
third circuit in Figure 3.3.

∨

∧

v1

¬

v2

∧

¬

v3 v4

∨

∧

v1

¬

v2

∧

¬

∨

∧

¬

∧

¬

v1 v2 v3

∧

v4

Figure 3.3 – Graph representation of terms: (v1 ∧¬v2)∨ (¬v3 ∧ v4); (v1 ∧¬v2)∨ (¬v1 ∧ v2);
and v = ¬v1 ∧ v2, (¬v ∧ v3) ∨ (v ∧ v4)

Extending circuits to arbitrary alphabets. Given a fixed alphabet Σ, we say that a
vectorial circuit C recognizes a set of words in Σ+ when it has a unique output gate and there
is a bijection between the letters a0, …, ap−1 of Σ and its input gates a0, …, ap−1. We consider
a particular bijection: given a word u of length n, we write 1a(u) for the vector x of dimension
n so that, for every i in [n], xi = 1 if and only if ui = a. We say that u is accepted or recognized
by the circuit when C(1a1(u), . . . ,1ap(u)) 6= 0. As a shorthand, we write enc(u) for the tuple
(1a1(u), . . . ,1ap(u)) and thus C(enc(u)) for C(1a1(u), . . . ,1ap(u)).

Vectorial circuits can also represent functions f from Σ+ to a finite domain E. It suffices to
consider circuits C which have a bijection between their input gates and the letters of Σ, but
also a bijection between the elements e0, …, er−1 of E and their output gates e0, …, er−1. We
say that C represents f when for every u, the output (z0, . . . , zr−1) = C(enc(u)) is such that,
for every i in [r], zi 6= 0 if and only if f(u) = ei.

Link with boolean circuit classes. There is a tight link between vectorial circuits and
boolean circuit families, as one vectorial circuit can be seen as a uniform family of circuits
which manipulate vectors of fixed dimensions (see [36, Section 5]). If we can give boolean
circuits computing all the functions used in a vectorial circuit, we then have an equivalence
with a family of boolean circuits. There is a similar property for classes of vectorial circuits:

Proposition 3.1

Let P be a set of operations on vectors and FC a functional class of boolean circuits.
Let V be the class of vectorial circuits parametrized by P . If any function in P can be
computed using a family of boolean circuits in FC , then all the functions computed by
the class V are in the class FC .

104 CHAPTER 3. Vectorial circuits

Proof. We prove the result by induction on the depth of the circuits. Consider an arbitrary
vectorial circuit C in V . Let f : ({0, 1}+)q → ({0, 1}+)r be the function computed by the
circuit C. For the base case, suppose that C is of depth 0. Therefore, C has only one layer
of input gates, some of which are output gates. That vectorial circuit can be transformed
into a family (Cn)n∈N+ of boolean circuits of depth 0 by splitting the input gates into separate
booleans: each circuit Cn has n × q input gates, which corresponds to q vectors of dimension
n. This family of circuits is of constant depth and has no wires, and thus is necessarily in FC .

Now, suppose that C is of depth n+1, for n ∈ N and that any function computed a circuit
of depth n in V is in FC . We can transform the vectorial circuit C into into a family (Cn)n∈N+

of boolean circuits in FC . To do so, let C ′ be the circuit obtained from C by removing the
gates of depth n+1. C ′ is of depth n, so by induction hypothesis there exists a family (C ′

n)n∈N+

of boolean circuits in FC that computes the same function as C ′. Moreover, any function in
P can be computed using a family of boolean circuits in FC , thus we can replace each output
gate by the corresponding circuit and add those to the circuits C ′

n by connecting them to the
output gates of the circuits. This gives the family (Cn)n∈N+ , which by construction is in the
class FC .

What about constant gates?. The circuits that we present in this thesis use only input
gates that depend solely on the input vectors. It is also possible to consider constant gates, as a
generalization of the constants 0 and 1 in boolean circuits. In the context of vectorial circuits,
we define a constant gate to be an infinite sequence of binary words C = (Cn ∈ {0, 1}n)n∈N.
This is equivalent to another characterization, where a constant gate is a language L ⊆ {0, 1}+
such that, for any n ∈ N+, |L ∩ {0, 1}n| = 1. Note that in our case we consider only regular
languages and thus, as a result of Theorem 3.2 of [22], we can suppose the language L to be
regular, since a constant gate C can be seen as a numerical monadic predicate. However, in
the general case, constant gates allow to define circuits that recognize non-regular languages.

Example 3.10. Consider the language of all the binary words such that a bit is set to 1 if and
only if its position is a power of 2. It is not possible to recognize this language with a vectorial
circuit that uses only the addition, the prefix and suffix operations, and the usual bitwise
boolean operations, since these circuits are the ADD-vectorial circuits defined in section 3.3.2,
and we prove that these circuits form a subclass of AC0. However, if we define the constant
gate Cpower2 as the set of constant vectors such that any bit is set to 1 if and only if its index
is a power of 2, then we can build a vectorial circuit of constant depth that outputs a vector
different from 0 if and only if the input word is in the language. Moreover, we need no complex
operations to do so, as we only need to compare the input vector w with Cpower2 , which can be
done using ⊕. The word belongs to the language if and only if the result after the ⊕ gate is 0,
so we add a ¬ gate, which allows us to recognize the language with our acceptance condition.

w Cpower2

⊕

¬

Figure 3.4 – A vectorial circuit recognizing the language of binary words where the positions
set to 1 are exactly the ones that are powers of 2

3.3. Classes of vectorial circuits 105

As in boolean circuits, constant vectors equal to 0 and 1 can be obtained from any input
vector using a circuit of constant size. Thus, these can be used anywhere as constant gates
without changing the expressive power of the circuit class, as long as the basic boolean opera-
tions are available in said class. However, more complex constants cannot be obtained from any
input vector. Adding these constant vectors as gates in a circuit class can drastically change
its expressive power, even among the regular languages.

Example 3.11. Consider the language L = (ab)+ on the alphabet {a, b}, which is the language
of all words that alternate between a and b, start by a and end by b. To recognize this language,
we need to verify that the word starts with the letter a, ends with b, and that no infix of the
input word is equal to aa or bb. To do so with a vectorial circuit which does not use arbitrary
constants, it is necessary to be able to move information at least locally, using a shift instruction
or the binary addition for example, to test the infixes of length 2. However, it is possible to
use the constants first = 10 · · · 0 and last = 0 · · · 01. Indeed, both can be obtained from
the trivial constant 1 = 1 · · · 1 and the left and right shifts: we have first = ¬rshift1(1) and
last = ¬lshift1(1). In Figure 3.5, we give the vectorial circuit using the right shift rshiftk.

first1a 1b last

rshift1 rshift1

∧∧ ∧ ∧

¬ ¬

∧

Figure 3.5 – A vectorial circuit recognizing (ab)+ without constant gates

If we allow ourselves to use constant gates, we only need the basic boolean operations,
as shown in Figure 3.6. Thus, adding the two constants shown in this circuit increases the
expressivity of the circuit to the point where we can get rid of the shift operation, though it
has a significant expressivity.

a b(10)+ (01)+

∧ ∧

∨

Figure 3.6 – A vectorial circuit recognizing (ab)+ with constant gates

Now that we defined vectorial circuits and their general properties, let’s talk about the
particular choices that were made in this thesis.

The base operations labelling the gates. In this thesis, we restrict ourselves to a few
operations. First, we use the bitwise boolean operations defined in section 3.1.2: the unary
negation ¬ and the binary operations ∧ and ∨, respectively the bitwise conjunction and dis-
junction.

106 CHAPTER 3. Vectorial circuits

We also use the prefix and suffix operations, which allow to mark respectively a suffix and
a prefix of some word. Given a function f : {0, 1}+ → {0, 1}, we define the unary operation
pref-f (resp. suf-f): given a vector x = b0 . . . bn−1 of dimension n, with b0, …, bn−1 in {0, 1},
pref-f(x) (resp. suf-f(x)) is the vector z = c0 . . . cn−1 where for each i ∈ [n], ci = f(b0 · · · bi)
(resp. ci = f(bi · · · bn−1)). In this thesis, we use the unary operations pref-∨, suf-∨, pref-∧ and
suf-∧, that we call respectively prefix-or, suffix-or, prefix-and, and suffix-and.
Example 3.12. pref-∨(00101110) = 00111111
suf-∨(00101110) = 11111110
pref-∧(00101110) = suf-∧(00101110) = 00000000
pref-∧(11101010) = 11100000

The binary addition, defined in section 3.1.2, might be the most important operation that
we use. This function performs the usual binary addition, but from left to right, and does not
keep the highest bit of the result if the length exceeds the dimension of the input vectors.

We use two more incidental operations, called LSB (Least Significant Bit) and MSB (Most
Significant Bit). The two unary operations replace by 0 respectively the left-most 1 and right-
most 1 of their argument vector. For these two operations, when the argument vector is 0n,
the resulting vector is also 0n. These operations can be simulated using the addition and the
prefix and suffix operations, but one of the circuit classes that interests us does not have access
to addition. Thus, we define them as part of our base gate functions. Defining LSB and MSB
as base operations is not devoid of sense, as processors have access to instructions giving the
positions of the first and last bit set to 1.

Circuit composition. We can compose vectorial circuits: given two circuits C1 and C2

associated with some functions F1 : ({0, 1}+)n → ({0, 1}+)m and F2 : ({0, 1}+)m → ({0, 1}+)p,
we can compose C1 and C2 to produce a circuit associated with the function F2 ◦ F1.

This composition translates well in term notation. We adopt a notation that denotes
parametrized circuits: c(v1, . . . ,vn) := t where t is a term built with the gates v1, . . . ,vn.
For circuits t1, …, tn, we write c(t1, . . . , tn) for the circuit described by the term obtained by
replacing v1, …, vn respectively with t1, …, tn in t. For example, we define the bitwise exclusive-
or as v1 ⊕ v2 := (v1 ∧ ¬v2) ∨ (¬v1 ∧ v2). See example 3.13 for a more complete example of
circuit composition.
Example 3.13. The circuit given in Figure 3.5 can be seen as the composition of two simpler
circuits. For example, the first of these circuits could take the vectors 1a and 1b as input
and output the tuple (v1,v2,v3,v4), where v1 = 1a ∧ first, v2 = 1a ∧ rshift1(1a), v3 =
1b ∧ rshift1(1b) and v4 = 1b ∧ last. This circuit is shown in Figure 3.7a. In that case, the
second circuit, shown in Figure 3.7b, takes as input four vectors v1, v2, v3 and v4, and returns
the vector equal to ¬v1 ∧ ¬v2 ∧ v3 ∧ v4.

If we denote respectively by C, C1 and C2 the circuits in Figure 3.5, Figure 3.7a, and Fig-
ure 3.7b, we denote the link between them by C(1a,1b) := C2 ◦ C1(1a,1b).

With circuit composition, we can construct complex circuits. We use this to define some
circuits that will be used a lot in our results. Notably, for our Sweeping-vectorial circuits, we
will often use the operation NotZero, which returns 1 if the input has at least one bit set to 1,
and 0 otherwise.
Example 3.14. NotZero(01001) = 11111
NotZero(0000000) = 0000000
NotZero(1000) = 1111

3.3. Classes of vectorial circuits 107

first 1a 1b last

rshift1 rshift1

∧ ∧ ∧ ∧
(a) The first circuit composing Figure 3.5

v1 v2 v3 v4

¬ ¬

∧
(b) The second circuit composing Fig-
ure 3.5

Figure 3.7 – The two circuits composing Figure 3.5

In the Sweeping-vectorial circuits, this operation is defined as follows: for any vector v,
NotZero(v) := pref-∨(suf-∨(v)). This notably allows the circuits to keep the value of a vector
if and only if some vector is not null. In particular, we define the operation Eq such that,
for any two vectors u and v of the same dimension, Eq(u, v) is equal to 1 if and only if
u = v. Otherwise, it is equal to 0. In the Sweeping-vectorial circuits, we set Eq(u, v) :=
¬NotZero(u ⊕ v). We also define the operation Thr2 such that, for any vector u, Thr2(u) is
equal to 1 if and only if u has at least two bits set to 1. Otherwise, it is equal to 0. In the
Sweeping-vectorial circuits, we set Thr2(u) := NotZero(LSB(u)). The last operation we need
to define using NotZero is IfThenElse. Given three vectors u, v and w which have the same
dimension, IfThenElse(u,v,w) is equal to v if and only if u is not null. Otherwise, it is equal
to w. In the Sweeping-vectorial circuits, we set IfThenElse(u,v,w) := (x ∧ v) ∨ (¬x ∧ w),
where x := NotZero(u).

In the next parts, we present in more details the vectorial circuits that are used in the
results shown in chapter 4, namely the ADD-vectorial circuits, used to recognize languages in
FO[<], and Sweeping-vectorial languages, used to recognize languages in FO2[<].

3.3.2 ADD-vectorial circuits
In the class of vectorial circuits defined in this section, we use the constant gate End = 0 · · · 01.
Formally, End = (Endn)n∈N, where Endn = 0n−11.

Definition 3.7

An ADD-vectorial circuit is a vectorial circuit built only with ∧, ∨, ¬, +, and the constant
gate End.

Example 3.15. The vectorial circuit in Figure 3.8 is an ADD-vectorial circuit and computes
the term (a + ¬b) ∧ a ∧ End.

A logical equivalent: the class FO[<]. We can show that the ADD-vectorial circuits are as
expressive as the class of first-order languages. More precisely, we show that they are equivalent
to FO[<], thus adding a new tool to the list of classes equivalent to that well-known class (see
Theorem 1.2 for a non-exhaustive list of these equivalent classes).

108 CHAPTER 3. Vectorial circuits

ab c End

¬

+ ∧

∧

∧

Figure 3.8 – The ADD-vectorial circuit computing (a + ¬b) ∧ a ∧ End

Theorem 3.1

Let Σ be an alphabet and L ⊆ Σ∗ be a language. Then, L is definable in LTL if and only
if there exists an ADD-vectorial circuit that recognizes L.

Proof. First, suppose that L is definable in LTL. Since LTL is as expressive as Past LTL, there
exists a Past LTL formula φ that recognizes L. We can construct an ADD-vectorial circuit
equivalent to the formula φ by induction on the structure of φ. Given an atomic proposition pa
with a ∈ Σ, we replace it with the gate 1a bearing the indicator vector of a. For the induction
step, we replace the usual boolean operators ∨, ∧ and ¬ by their vectorial counterparts. If φ =
Y ψ, by induction hypothesis we can consider an ADD-vectorial circuit Cψ that recognizes ψ.
Then, the ADD-circuit Cψ+Cψ recognizes φ. This is a consequence of the addition lemma (see
Lemma 4.7), with x = z = 1 and y = Cψ. Finally, if φ = ψ1 S ψ2, we use the addition lemma
(see Lemma 4.7): by definition of Successor, we have Cφ = Successor (Cψ1 ∨ Cψ2 , Cψ2 ,¬Cψ1),
and thus Cφ = (Cψ2 + (Cψ1 ∨Cψ2))∧ (Cψ1 ∨Cψ2). In order to satisfy our acceptance condition,
we want to obtain a vector of the form 0∗1+ if and only if the input word belongs to L. By
definition of formulas in LTL, the output vector of the circuit we built ends with a bit set
to 1 if and only if the input word belongs to the language. Thus, we consider the function
f : {0, 1}∗ → {0, 1}∗ defined by f(Cφ(w)) = 1 if and only if Cφ ∧ End is not null. With this
acceptance condition, the circuit Cφ recognizes the language L.

Now, suppose that we have an ADD-vectorial circuit CL that recognizes L. Suppose that
CL does not use sharing (by definition, it is always possible to build a circuit without sharing
from a circuit that uses it). We can construct by induction on the structure of the circuit an
LTL formula which recognizes L (i.e. it is true for the first position of a word w if and only if
w ∈ L). We replace any gate 1a by an atomic proposition pa. We replace the constant End
by the formula Xfalse, which is true only for the last letter of a word. For the induction step,
we replace the bitwise gates ∨, ∧ and ¬ by their boolean counterparts. Finally, if the circuit is
of the form CL = C1 + C2, where C1 and C2 are two ADD-vectorial circuits equivalent to two
LTL formulas ψC1 and ψC2 , then the formula φCL

= ψC1 ⊕ ψC2 ⊕Y((ψC1 ∧ ψC2 S (ψC1 ∨ ψC2)))
is equivalent to CL. This equivalence is proved in Coq,2 and the code can be found in the
repository [56].

2The proof uses an inverted addition, which goes from right to left, and thus states the equivalence with the
formula obtained by replacing the since operator by until, and the yesterday operator by next. The formula
given here is the same but reversed, going from left to right

3.3. Classes of vectorial circuits 109

A note on Serre’s result. Serre [67] proved a similar equivalence result with a slightly
different object. He considered vectorial circuits that use

• The indicator vectors 1a of the letters in the alphabet,

• The boolean operations ∨, ∧ and ¬,

• The binary addition,

• And the right shift ↑i, for i ∈ {0, 1}, such that, for any vector w = w0 · · ·wn−1, ↑i w =
iw0 · · ·wn−2

These are called PTL-vectorial algorithms. A PTL-vectorial algorithm recognizes a language
L if, given a word w, it returns a binary vector of dimension |w| such that the index i of
that vector holds a 1 if and only if w0 · · ·wi ∈ L. Serre’s result states that the set of PTL-
vectorial algorithms recognizes exactly the languages in FO[<]. However, there is an important
difference between this class and the ADD-vectorial circuits, which lies in the output vectors
and the acceptance condition: our circuits recognize a language L if, given a word w, it returns
a binary vector of dimension |w| that is of the form 0∗1+ if and only if w ∈ L. This difference
in the acceptance condition is the reason why we introduced the vector End, which allows us
to mark the end of the input word, where PTL-vectorial programs do not need this.

Example 3.16. Consider the language Σ∗a, where a ∈ Σ. As a result of Serre’s paper, there
exists a PTL-vectorial algorithm P which takes a word w ∈ Σ∗ as input and returns the binary
vector of dimension |w| such that the index i of that vector holds a 1 if and only if w0 · · ·wi ∈
Σ∗a. For example, if w = youlostthegameha, the output vector must be 0000000000010001.
This vector is exactly the indicator vector of a; indeed, a word belongs to Σ∗a if and only if its
last letter is an a, and so each prefix of the form w0 · · ·wi−1a is in the language. This means
that the output vector must always be equal to the indicator vector of a, which gives a simple
PTL-vectorial algorithm that recognizes Σ∗a.

In order to build an ADD-vectorial circuit that recognizes Σ∗a, we need to keep only the
bit corresponding to the last letter, since we want the output vector to be of the form 0∗1+ if
the input is accepted, and 0 otherwise. To keep only the last bit, we use the constant vector
End. This way, we can recognize the language Σ∗a with the ADD-vectorial circuit 1a ∧ End:
the output vector is equal to End if and only if the last letter is an a, and otherwise it is equal
to 0.

Another difference lies in the use Serre makes of the right shifts ↑0 and ↑1. We do not need
those operations in the ADD-vectorial circuits. Indeed, ↑0 can be emulated using the binary
addition, and ↑1 is not useful to recognize languages in FO[<], as it does not appear in Serre’s
proof of the fact that any star-free language can be recognized using a PTL-vectorial algorithm.
If we want our circuits to be able to perform this operation, we need to allow the use of one
more constant vector, equal to Start = 10 · · · 0, to introduce a 1 at the beginning of the shifted
vector.

Using this constant, we can prove that any PTL-vectorial algorithm can be converted into
an equivalent ADD-vectorial circuit. The result is trivial for the gates bearing the boolean op-
erations or the binary addition. We now need to construct an ADD-vectorial circuit equivalent
to the right shift. We claim that, for any boolean vector x,

↑0 x = x + x

110 CHAPTER 3. Vectorial circuits

This is obvious when considering that boolean vectors are the binary representation of
integers. As a consequence of this claim, we can deduce a circuit equivalent to ↑1, since we only
need to force the first bit of the vector to be equal to 1, which we can do using Start.

↑1 x = (x + x) ∨ Start

In order to satisfy our acceptance condition, we compute the bitwise AND of the constant
End and the output vector obtained with the ADD-vectorial circuit equivalent to the PTL-
vectorial algorithm.

Now, we can try to prove that any ADD-vectorial circuit can be translated into an equivalent
PTL-vectorial algorithm. The result is trivial for the gates bearing the boolean operations or
the binary addition.

To prove the equivalence between PTL-vectorial algorithms and ADD-vectorial circuits, we
would need to prove that adding the constant vectors End = 0 · · · 01 and Start = 10 · · · 0 does
not increase the expressivity beyond that of PTL-vectorial algorithms. We do not give a formal
proof of that fact, however we remark that both the languages 0∗1 and 10∗ belong to the class
FO[<], and so they cannot increase the expressivity beyond that class.

A subclass of AC0. Since the ADD-vectorial circuits with our acceptance condition are
equivalent to the class FO[<], they form a subclass of AC0. It is possible to show that without
going through FO[<]. Indeed, the binary addition of two integers, which is the most expressive
operation in our circuits, can be computed using a family of boolean circuits of constant depth,
with gates of unbounded fan-in, and having a polynomial number of wires. Straubing gave an
explicit construction of these circuits in his book [70]. We give a similar construction for the
sake of completeness. Let A = a0 · · · an−1 and B = b0 · · · bn−1 be the binary representations of
the two integers to be added (the most significant bit being the rightmost one). We represent
the truncated sum as c0 · · · cn−1. In order to compute it, we first compute the carry at each
index of the inputs: for each index i such that 1 ≤ i ≤ n− 1, we define the bit carryi as follows

carryi =
i−1∨
j=0

((aj ∧ bj) ∧
i−1∧

k=j+1

(ak ∨ bk))

Using this carry, we can compute the sum of the inputs using a circuit of depth 3.

c0 = a0 ⊕ b0

for 1 ≤ i ≤ n− 1, ci = ((ai ⊕ bi) ∧ ¬carryi) ∨ ((ai ⊕ ¬bi) ∧ carryi)

Therefore, the binary addition belongs to the class AC0. However, we can prove that no wire
linear circuit in AC0 computes the addition, by using lower bounds about weak superconcentra-
tors (see Chandra et al. [15, Theorem 3.6]). Consequently, our ADD-vectorial circuits cannot
be computed with an AC0 circuit having only linearly many wires.

Finally, the constant End is trivially computable in AC0 thanks to the non-uniformity of
the boolean circuits. This proves that our circuits form a subclass of AC0. The following related
problem is open and stated in the seminal paper of Furst et al [23].

Open problem 3.1. Is the binary addition computable with a circuit of linear AC0?

3.3. Classes of vectorial circuits 111

If the answer to that open question is positive, then our ADD-vectorial circuits are also in
linear AC0. Hence, to prove that addition is not in linear AC0, it is sufficient to prove any
non-linear circuit lower bound for FO[<] definable languages.

3.3.3 Sweeping-vectorial circuits

Definition 3.8

A Sweeping-vectorial circuit is a vectorial circuit built only with the operations ∧, ∨, ¬,
pref-∨, pref-∧, suf-∨, suf-∧, LSB and MSB.

Example 3.17. The vectorial circuit in Figure 3.9 is a Sweeping-vectorial circuit and computes
the term v := pref-∨(suf-∨(v1)), (¬v ∧ v2) ∨ (v ∧ v3).

∨

∧

¬

pref-∨

suf-∨

v1 v2

∧

v3

Figure 3.9 – The Sweeping-vectorial circuit computing (¬v ∧ v2) ∨ (v ∧ v3), where v :=
pref-∨(suf-∨(v1))

A subclass of linear AC0. We can prove that the set of Sweeping-vectorial circuits with
an acceptance condition is a subclass of LAC0. Indeed, Chandra et al. showed [15, Theorem
3.4] that the prefix-or operation can be computed with a boolean circuit of constant depth and
with a linear number of wires. As a consequence of this result, the operations pref-∨, pref-∧,
suf-∨ and suf-∧ can be performed by boolean circuits in LAC0.

LSB also belongs to LAC0. Indeed, it can be built from pref-∨ as follows: given a vector
x = b0 · · · bn−1, where n is the dimension of x, and the vector pref-∨(x) = p0 · · · pn−1, we have
LSB(x) = l0 · · · ln−1, with l0 = 0 and, for each index i such that 1 ≤ i ≤ n − 1, li = bi ∧ pi−1.
Since the prefix-or operation belongs to LAC0, so does LSB. A similar result holds for MSB.
As a result of Proposition 3.1, it results that the set of Sweeping-vectorial circuits is a subclass
of LAC0.

A logical equivalent: the class FO2[<]. Sweeping-vectorial circuits are not only a subclass
of LAC0. They are, in fact, equivalent to the class FO2[<], which adds a new tool to the list
of classes equivalent to FO2[<] (see Theorem 1.3 for a non-exhaustive list of these equivalent
classes).

112 CHAPTER 3. Vectorial circuits

Theorem 3.2

Let Σ be an alphabet and L ⊆ Σ∗ be a language. There exists a Sweeping-vectorial circuit
that recognizes L if and only if L ∈ FO2[<].

To prove this, we use another class of languages that is equivalent to FO2[<]: the set
TL[Xa, Ya] of the boolean combinations of turtle programs. As presented in section 1.3.2, this
class recognizes the same languages as FO2[<], which allows us to use it in our proof.

Proposition 3.2

A language is recognized by a Sweeping-vectorial circuit if and only if it is definable in
TL[Xa, Ya].

Proof. We rely on the equivalence between FO2[<] and TL[Xa, Ya], stated in section 1.3.2, to
prove the result. First, we show that TL[Xa, Ya] is captured by Sweeping-vectorial circuits, i.e.
that any formula of TL[Xa, Ya] defines a function from words to Boolean vectors that can be
modeled by these circuits; here we interpret a formula of TL[Xa, Ya] as a function from words
to Boolean vectors, by considering the truth vector of a formula on every position of the input
word. Clearly, Boolean operations are equivalent in both models. Now, suppose that we have
a Sweeping-vectorial circuit Cα that is equivalent to a TL[Xa, Ya] formula α, i.e. given a word
u ∈ Σ+ and a vector pos (of the same dimension as u) that has a unique 1 in some position
x, we have Cα(pos, enc(u)) 6= 0 if and only if u, x |= α. Then, for any letter a ∈ Σ, the
formula β = Xaα can be modeled by the circuit Cβ defined as follows: for any word u ∈ Σ∗

and any vector pos having a unique 1, we begin by finding the first letter a strictly after the
position marked by pos, by sequentially computing the following vectors: authorizedPos =
LSB(pref-∨(pos)), next = authorizedPos∧ 1a(u) and nextPos = next⊕ LSB(next). This
gives us the new position vector to give as parameter to the new circuit. Then we can define
Cβ(pos, enc(u)) := Cα(nextPos, enc(u)), which is equivalent to β. Finally, we can model
the formula γ = Yaα using the same formulas, except for the vector authorizedPos, which is
computed as authorizedPos = MSB(suf-∨(pos)), in order to get the positions situated strictly
before the position x marked by pos. Finally, Sweeping-vectorial circuits mimic the initial
configurations and acceptance conditions of turtle programs. Indeed, while turtle programs
need two initial configurations depending on whether they start on the left or right of the input
word, it is sufficient for Sweeping-vectorial circuits to consider the entire word at the beginning
of the computation. The fact that it starts at the left or at the right of the word is handled
by the gates used to emulate the first instruction of the turtle program. For the acceptance
condition, a word is accepted by a turtle program if and only if the computation ends without
failing. This means that, when it ends, the program stopped in some valid position in the word.
Thus, a word should be accepted by the equivalent Sweeping-vectorial circuit if and only if the
output vector is not null, which can be done with a tailored acceptance condition.

Now, we prove that Sweeping-vectorial circuits are captured by formulas in FO2[<]. Since
Sweeping-vectorial circuits output a truth vector indicating if some property is true for each
position in the input word, we must consider FO2[<] formulas which can take into account
a starting position. Thus, we consider only FO2[<] formulas with one free variable, which
represents the position in which we begin to evaluate the formula in the input word.

Clearly, Boolean operations are equivalent in both models. We can also interpret pref-∨
as an FO2[<] formula: consider an FO2[<] formula ϕ with one free variable and suppose that

3.4. Streaming with circuits 113

it is computed by a circuit Cϕ. Then, the formula ϕpref-∨ with one free variable defined by
ϕpref-∨(y) := ∃x ≤ y, ϕ(x) has its truth vector equal to the output of pref-∨(Cϕ). The other
prefix and suffix operations can be dealt with in a similar way. Finally, we can interpret LSB
and MSB as FO2[<] formulas. Indeed, consider an FO2[<] formula ϕ with one free variable
and suppose that it is computed by a circuit Cϕ. Then, the formula ϕLSB with one free variable
defined by ϕLSB(y) := ϕ(y)∧∃x < y, ϕ(x) has its truth vector equal to the output of LSB(Cϕ).
MSB is equivalent to the same formula where x < y is replaced by x > y.

Remark 3.1. We can always build a vectorial circuit of size linear in the size of the equivalent
formula. Conversely, if we consider formulas with sharing of sub-formulas, we can also build an
equivalent formula of size linear in the size of the circuit. However, the link between the size
of an FO2[<] formula and the size of its minimal equivalent turtle program is unclear, as the
proofs are not constructive, and there are no known bounds on the size of turtle programs.

3.4 Streaming with circuits
Streaming refers to the continuous and real-time processing of data as it arrives or flows in
a sequential manner. It involves the analysis and extraction of patterns from a continuous
stream of input data, without the need to store or access the entire dataset at once. Streaming
is particularly valuable when dealing with large volumes of data that cannot be accommodated
in memory or when immediate processing of incoming data is necessary. Instead of loading and
processing the entire dataset, streaming algorithms and techniques are employed to process the
data incrementally, typically one element at a time or in small batches.

By this definition, streaming is a natural application of bit-level parallel algorithms. We
take this application into account in our formalization by presenting a construction which al-
lows to build a vectorial circuit that processes the input word one chunk at a time and uses
the data obtained from those chunk to process the next ones. Thus, even though the circuits
presented in this thesis are capable of processing only one complete input word, it is possible
to adapt them for streaming by using the construction presented in this section.

Although circuits are a great tool to model algorithms and study their parallel complexity,
the connection to streaming is quite recent [51]. The circuits constructed by Murlak et al. are
composed of a main circuit, a feedback loop, and an acceptor circuit, whose inputs are the
outputs of the main circuit. The main circuit takes as input the feedback, which has initially a
neutral value, and the next chunk of data. Those circuits allow to model the notion of bit-level
parallelism introduced in [44], using some circuit parameters. In their work, Murlak et al. show
that the circuit complexity of a regular language matches the streaming circuit complexity of
the language. We proceed similarly to [51] to adapt vectorial circuits to streaming by providing
for each base operation a streaming interpretation that can be composed in a streaming way.

3.4.1 Propagating information
Some of the operations we presented in section 3.1.2, such as the three usual bitwise boolean
operators, do not require any other information than the input vectors. However, that is not
the case for all the operations used for bit-level parallel algorithms. Some operations, such as
the binary addition or the left and right shifts, require to keep in memory some information
about the previous vectors that were processed. Indeed, the vectorial circuits used for streaming
must be equivalent to the ones used on the entire inputs, and so they must propagate some

114 CHAPTER 3. Vectorial circuits

information between consecutive vectors to simulate the fact that they are adjacent in the
input. For example, the usual binary addition requires to keep in memory the carry produced.3
Thus, it requires one bit of memory to propagate information between the chunks, as shown in
example 3.18.

Example 3.18. In table 3.4, we show an example of binary addition where the carry is prop-
agated through the vectors, which are of dimension 5.

v1 11 30 9
v2 18 5 19

Boolean writing of v1 11010 01111 10010
Boolean writing of v2 01001 10100 11001

Boolean writing of v1 + v2 10111 11000 10111
Memory 0 1 0
v1 + v2 29 3 29

Table 3.4 – Performing the binary addition of two vectors of integers, v1 and v2

The usual right shift rshiftk requires to keep in memory k bits, as many as it shifts out of
the vector.4 Indeed, the k bits shifted out of the vector are to be inserted into the next one, as
shown in example 3.19.

Example 3.19. In table 3.4, we show an example of right shift where the shifted bits are
propagated through the vectors, which are of dimension 5.

v1 1 10 16 27
Boolean writing of v1 10000 01010 00001 11011

Boolean writing of rshift2(v1) 00100 00010 10000 01110
Memory 00 10 01 11

rshift2(v1) 4 8 1 14

Table 3.5 – Performing the right shift rshift2 of the vector of integers v1

Note that the left shift would require the same memory. However, since it applies from right
to left and we read the chunks from left to right, this operation is not used in practice.

3.4.2 Adapting vectorial circuits to streaming
As showed above, some operations, such as the binary addition and the right shift, must
produce more information than the vector they compute as a result. If these operations are to
be executed on all vectors, this additional information must be kept and used on the subsequent
vectors to obtain the same results as if the input was not split into chunks.

Thus, to adapt our circuits to streaming, we represent the memory needed for the additional
information with a feedback loop. This feedback loop is made of wires that come out of the gates

3There are some cases in which we do not want to keep the carry, such as the shift-add algorithm presented
in [2]. This is why we talk about the ”usual” binary addition, which propagates its carry.

4The same remark applies as for the binary addition: in some cases, we do not want to keep those bits in
memory.

3.4. Streaming with circuits 115

producing additional information and get back to the beginning of the circuit by producing new
inputs. In this section, we formally describe the construction for gates labeled by the binary
addition and the right shift, as these are the only operation relevant to us. However, the general
idea is the same no matter the operation: the gates labeled by the operation must be modified
to produce two outputs: the vector that results of the operation, and a vector5 bearing the
additional information produced during the computation. The first vector is treated as in the
original circuit, and used as input for the next gates. The second one, however, is used as input
for the next chunk of data. More specifically, it is used to modify the input vectors of the gate
in order to include the additional information in the computation.

The right shift. To adapt the right shift to streaming, we need to use the bits shifted out of
the vectors to shift them in the vectors used in the computation of the next chunk. To do so,
given a gate labeled by rshiftk, we modify it to produce two output vectors: the result of the
shift, and the vector containing the bits shifted out of the input. Formally, the gate produced a
vector shifted = b0 · · · bk−10 · · · 0, where the k bits b0, . . . , bk−1 are the last k bits of the input
vector. In order to integrate this vector to the computation of the next chunk, we add an input
gate labeled shiftedi, such that the corresponding gate is the ith one labeled by a right shift.
This input gate is set to 0 at the beginning of the computation, and is used only to modify the
output of that specific gate, by computing the bitwise OR between the two vectors in order to
add the bits at the beginning of the vector.

Example 3.20. In the program written to recognize (ab)∗ in section 3.2.2, we used the bit-level
parallel formula (rshift1(1a) ∨ carrya) ∧ 1a to verify if there were two adjacent occurrences of
a. If we adapt this circuit to streaming using the above construction, we obtain the circuit
presented in Figure 3.10.

carry11a

rshift1

∨

∧

Figure 3.10 – The streaming vectorial circuit that marks infixes equal to aa

The binary addition. The binary addition produces only one bit of additional information,
which contains the carry produced at the end of the computation. Thus, there are two possible
approaches. The first one is the one used in practice by SIMD operations. It consists in
producing only a boolean instead of a vector to propagate the additional information. However,
this requires a more flexible definition of vectorial circuits to include boolean input gates in
addition to the gates bearing boolean vectors. Since this does not change the theoretical
complexity, we will only present the second approach, which consists in creating a vector carry,
whose bits are all set to 0, except the first one which bears the value of the carry. Formally,

5With particularly complex operations, more than one vector might be needed, however one is sufficient to
explain the idea of the general case.

116 CHAPTER 3. Vectorial circuits

carry = b0 · · · 0, where the bit b is the value of the carry created by the addition. In order
to integrate this vector to the computation of the next chunk, we add an input gate labeled
carryi, such that the corresponding gate is the ith one labeled by the binary addition. This
input gate is set to 0 at the beginning of the computation, and is used only as input of the
corresponding gate, which now takes three vectors: the two input vectors, and carryi.

Example 3.21. In the program written to recognize (aA∗b + A)∗ (with A = Σ \ {a, b}) in
section 3.2.2, we used the bit-level parallel formula (1a + (¬1b) + carrya)∧ 1a to verify if there
was any infix of the form a(Σ \ {a, b})∗a, i.e. if there were two occurrences of a with no b
in-between. If we adapt this circuit to streaming using the above construction, we obtain the
circuit presented in Figure 3.11.

carry1 1a1b

¬

+

∧

Figure 3.11 – The streaming vectorial circuit that marks infixes of the form a(Σ \ {a, b})∗a

Chapter4
From semigroups to vectorial circuits

Outline of the current chapter
4.1 Evaluation programs 118

4.1.1 Definition . 118
4.1.2 Waterfall evaluation programs . 119
4.1.3 Sweeping evaluation programs . 124

4.2 Compilation procedure of semigroups in Ap 126
4.2.1 Vectorial encoding of a partial evaluation of a word 126
4.2.2 Addition lemma . 127
4.2.3 The CollapseS operation . 128
4.2.4 The FallingS(s) operation . 131

4.3 Compilation procedure of semigroups in DA 133
4.3.1 An intermediary operation . 133
4.3.2 The JProdS operation . 135
4.3.3 The LProdS and RProdS operations 136
4.3.4 The LSplitS,i and RSplitS,i operations 137

The section 1.2 defined semigroups, along with Green’s relations, the tools that allow to study
the properties of the semigroups. These properties were used in benchmarks presented in sec-
tion 2.3 and section 2.4. The results showed that a clever use of the semigroups’ properties
could contribute to improve the efficiency of programs recognizing regular languages. However,
the simple parallel algorithm using semigroups outperforms all the others. In order to pro-
duce efficient programs that recognize regular languages using semigroups, taking advantage
of the inherent parallelism of semigroups is necessary. Moreover, the benchmark presented in
section 3.2 shows that vectorized programs can achieve interesting speeds. This is due to the
fact that these programs avoid conditional branching, thus helping the optimization at run-
time. This last chapter makes a step toward using algebra-based vectorized programs for data
validation. It introduces evaluation programs, which describe successive products of elements
in a word over the elements of a semigroup. This constitutes an overlay of abstraction over
the vectorized programs that compute the product of this kind of word to determine if some
text belongs to a language. The chapter then proceeds to present vectorized programs for two
classes of languages: FO[<] and FO2[<]. These vectorized programs are presented as vectorial

117

118 CHAPTER 4. From semigroups to vectorial circuits

circuits, which are defined in section 3.3, and can be easily translated into vectorized code such
as the one used in section 3.2.

4.1 Evaluation programs
In this chapter, we consider words over some semigroup S. Our goal is to compute the product
in S of the letters composing these words. For any word u ∈ S+, this amounts to computing
πS(u). This computation can be performed by vectorial circuits. Instead of directly building
these circuits, we first pay attention to evaluation strategies that we call evaluation programs.
These strategies form an overlay of abstraction over the intricacy of circuits. They are meant
to modularize the construction of vectorial circuits.

4.1.1 Definition
Given a semigroup S, an evaluation program over S transforms words in S+ by replacing some
of the factors by their values (through the canonical morphism) in S. In this section, we
consider a fixed semigroup S.

Definition 4.1

A partial evaluation step over S is a relation over S+ denoted by →S and defined as
uvw →S uπS(v)w for any v in S+ and u,w ∈ S∗. We denote by →+

S the transitive closure
of →S. We say that v is a partial evaluation of u when u→+

S v.

Note that if v is a partial evaluation of u over S, then πS(u) = πS(v). Usually, the context
makes it clear which semigroup is considered. Thus, we generally leave the semigroup implicit
and only say that v is a partial evaluation of u. Note that each word u is a partial evaluation
of itself.

Definition 4.2

A partial evaluation program over S is a partial function P : S+ → S+ such that, for any
word u ∈ S+ that is in the domain of P , P (u) is a partial evaluation of u. If the domain
of P is S+, then we say that P is total.

The function πS is an example of a partial evaluation (which is, in this case, total). Another
example is the function LProdS : S+ → S+ that performs the product of the first two elements
of the input, if there are at least two elements, and otherwise returns the input word. Similarly,
we define RProdS as the partial evaluation program which performs the product of the two last
elements, if there are at least two elements, and otherwise returns the input word. In symbols,
these partial evaluations are defined as follows:

Definition 4.3

The operation LProdS is defined by LProdS(s0) = s0 for any element s0 ∈ S, and, for any
word u = s0 · · · sn of length at least two, LProdS(u) = πS(s0s1)s2 · · · sn. Similarly, the

4.1. Evaluation programs 119

operation RProdS is defined by RProdS(s0) = s0 for any element s0 ∈ S, and, for any word
u = s0 · · · sn of length at least two, RProdS(u) = s0 · · · sn−2πS(sn−1sn).

Note that evaluation programs are closed under composition (see example 4.1).

Example 4.1. The composition of two occurrences of LProdS and one occurrence of RProdS
results in the evaluation program which takes a word and computes the products of the first
three elements and the last two elements. Consider the evaluation program P = LProdS ◦
RProdS ◦ LProdS and the words u = u0u1u2u3u4 and v = v0v1v2. If we apply P to u, the
program starts by computing the product of the first two elements, which results in the word
u′ = πS(u0u1)u2u3u4. Then it computes the product of the last two elements of u′, resulting in
the word u′′ = πS(u0u1)u2πS(u3u4). Finally, it computes the product of the first two elements
of u′′, so P (u) = πS(u0u1)πS(u2u3u4). If we apply P to v, we obtain successively the words
v′ = πS(v0v1)v2, v′′ = πS(v0v1v2) = πS(v) and P (v) = πS(v). Note that the evaluation
programs LProdS and RProdS do not commute, as P (u) would be different if we defined P as
P = LProdS ◦ LProdS ◦ RProdS.

4.1.2 Waterfall evaluation programs
In this part, we are designing a first set of specific evaluation programs. These programs work
by evaluating the semigroup in a top-down fashion (with respect to the J -order). To do so, in
this section, we consider operations that can be successively applied to all the sub-semigroups
Qi(S) (defined in section 1.2.3) of a given semigroup S. At each step, we detect the set of
maximal infixes whose product is maximal for the J -order of Qi(S), evaluate those infixes and
multiply the results with the letters that immediately follow. Then, we remove in turn each
J -maximal element by computing the product of each occurrence with the next letter on the
right. Each step computes a new word whose letters all belong to Qi+1(S), except for the last
one, which can still belong to Di(S). We deal with this letter at the end of the computation.

Definition 4.4

A word u in S+ is J -maximal falling whenever for every p, s ∈ S∗ and v, w ∈ S so that
u = pvws, we have πS(vw) ∈ Q2(S).

See example 4.2 for an example of J -maximal falling word. Note that when u is J -maximal
falling and |u| > 1, πS(u) ∈ Q2(S).

Example 4.2. Consider the syntactic semigroup of (ab)+, whose egg-box is shown in exam-
ple 4.2. This semigroup is composed of five elements: 0 corresponds to the letter a and all the
words of the form a(ba)∗, 1 corresponds to the letter b and all the words of the form b(ab)∗, 2
corresponds to all the words of the form (ab)+, 3 corresponds to all the words of the form (ba)+,
and 4 corresponds to all the words containing either aa or bb as an infix. As a consequence of
this correspondence, the inner product of that semigroups is such that πS(00) = πS(11) = 4.
The semigroup is composed of two J -classes, the class of J -depth 1 containing 0, 1, 2 and 3,
and the class of J -depth 2 containing only 4.

For this semigroup, the words u = 000000 and v = 1111 are J -maximal falling, since the
product of any infix of length 2 is equal to 4, which is of J -depth 2. However, the word
w = 00001 is not J -maximal falling, as the product of the last two letters is πS(01) = 2, an
element of J -depth 1.

120 CHAPTER 4. From semigroups to vectorial circuits

Figure 4.1 – The syntactic semigroup of (ab)+

Definition 4.5: J -maximal decomposition

Consider a semigroup S and a word u ∈ S+. If u 6∈ Q2(S)
+, let t ∈ N and some words

w0, . . . , wt+1 ∈ S∗, v0, . . . , vt ∈ S+, that define a decomposition u = w0v0w1 · · · vtwt+1.
This decomposition is called J -maximal in S if the following two conditions are satisfied:

• For any integer i such that 0 ≤ i ≤ t+ 1, wi is a word in Q2(S)
∗.

• For any integer i such that 1 ≤ i ≤ t, vi is a maximal infix of u verifying πS(vi) ∈
D1(S). More formally, if we consider the decomposition u = pavibs, with p, s ∈ S∗,
and a, b ∈ S ∪ ε (a is the letter preceding vi, if it exists, and b is the letter following
vi, if it exists) then, if a 6= ε, πS(avi) <J πS(vi) and, if b 6= ε, πS(vib) <J πS(vi).

We call t+ 1 the size of the decomposition.
If u ∈ Q2(S)

+, the J -maximal decomposition of u in S is composed of only one element
equal to u itself. In this case, the decomposition is unique and by convention of size 0.

Remark 4.1. The property of the (vi)’s implies that each vi is a word of D1(S)
+. Indeed, the

product of a word is at most J -equivalent to the letter of greatest J -depth, so all the letters
must be of J -depth 1 for the product to be in D1(S).

See example 4.3 for an example of J -maximal decomposition.

Example 4.3. Consider again the syntactic semigroup S of (ab)+, composed of five elements
such that πS(01) = πS(22) = 2, πS(10) = πS(33) = 3, πS(20) = πS(03) = 0, πS(31) =
πS(12) = 1 and, for any other pair (s, t) ∈ S × S, πS(st) = 4. Now, consider the word
u = 40100312214413201. This word admits a J -maximal decomposition of size 6, defined as
follows: w0 = 4, v0 = 010, w1 = ε, v1 = 03122, w2 = ε, v2 = 1, w3 = 44, v3 = 1, w4 = ε,
v4 = 3, w5 = ε, v5 = 201, and w6 = ε. If we use parentheses to represent this decomposition, we
obtain u = (4)(010)()(03122)()(1)(44)(1)()(3)()(201)(). All the conditions for a decomposition
to be J -maximal are fulfilled. First, each word wi is in 4∗, which is equal to Q2(S)

∗ for this
semigroup S. Moreover, the product of each word vi is of J -depth 1: πS(v0) = 0, πS(v1) = 2,
πS(v2) = 1, πS(v3) = 1, πS(v4) = 3, and πS(v5) = 2. Finally, each vi is maximal, since the
product with the letters to their left or right is equal to 4, which is in Q2(S).

Every word in S+ admits a unique J -maximal decomposition in S. This property hinges
on the Localization Theorem of Clifford and Miller [61, Proposition 1.6, page 48].

4.1. Evaluation programs 121

Lemma 4.1: Localization Theorem

Let S be a semigroup and x, y be in S. We have xyJ x if and only if there exists an
idempotent e in R(y) ∩ L(x).

We will use the following useful technical lemma.

Lemma 4.2

Let S be a semigroup. Let x, y be J -equivalent elements of S and z another element of S.

• If πS(xy)J x and πS(zxy) <J x, then πS(zx) <J x.

• If πS(xy)J x and πS(xyz) <J x, then πS(yz) <J x.

Proof. Both cases are symmetric, so we only prove the first one. Suppose that πS(zx)J x,
πS(xy)J x and πS(zxy) <J x. Lemma 4.1 implies that there is no idempotent in R(y)∩L(zx).
But, as πS(zx)J x, by definition of L, we have L(zx) = L(x). Therefore R(y) ∩ L(x) does not
contain an idempotent. Finally Lemma 4.1 entails xy <J x, a contradiction.

We are now proving the existence and uniqueness of J -maximal decomposition. The proof
works by considering a variant of J -maximal decomposition by enforcing the maximality con-
straint only at the right and showing that the two variants are actually equivalent.

Lemma 4.3

Let S be a semigroup. For any finite word u ∈ S+, there exists a unique J -maximal
decomposition of u.

Proof. We focus on proving the existence of such a decomposition. Uniqueness follows from
the proof of existence. First, note that S = D1(S)]Q2(S). Thus, for any word u ∈ S+, there
necessarily exists a unique decomposition of u of the form u = w0v0w1 · · ·wtvtwt+1 such that

• w0, wt+1 ∈ Q2(S)
∗.

• For each integer i such that 1 ≤ i ≤ t, wi ∈ Q2(S)
+.

• For each i ∈ [t+ 1], vi ∈ D1(S)
+.

Informally, this is a decomposition of u based only on the J -depth of each letter. Thanks
to remark 4.1, we know that the words wi that are not empty in any J -maximal decomposition
of u correspond exactly to the words wi of this decomposition. Thus, we only need to prove
that any word over D1(S) can be decomposed into a unique sequence of maximal infixes whose
product is in D1(S).

Consider a fixed word u ∈ D1(S)
+. We prove that there exists a decomposition of u of the

form u = v0 · · · vs, where each word vi is maximal in u such that πS(vi) ∈ D1(S).
If πS(u) ∈ D1(S), then both existence and uniqueness follow from the definition.
Suppose now that πS(u) ∈ Q2(S). Then we define a decomposition of u with weaker prop-

erties than the J -maximal decompositions, and we prove that it is a J -maximal decomposition
of u (with empty words as the (wi)’s). This decomposition is of the form u = v0v1 · · · vt for

122 CHAPTER 4. From semigroups to vectorial circuits

some integer t ∈ N and is defined from left to right such that, for each integer i ∈ [t + 1],
πS(vi) ∈ D1(S) and, for each integer i ∈ [t], πS(vixi+1) ∈ Q2(S), where xi+1 is the first letter
of vi+1. By construction, this decomposition exists and is unique. We prove that this decom-
position satisfies the properties of the (vi)’s given in definition 4.5, that is, we prove that each
word vi is maximal such that πS(vi) ∈ D1(S). To do that, we only need to prove that, for each
integer i such that 1 ≤ i ≤ t, πS(yi−1vi) ∈ Q2(S), where yi−1 is the last letter of the word vi−1.

Thus, consider some integer i ∈ [t]. We focus on the infix vivi+1 in order to prove that
πS(yivi+1) ∈ Q2(S), where yi is the last letter of vi. This fact is a consequence of Lemma 4.2.
Since we know that πS(vixi+1) ∈ Q2(S), where xi+1 is the first letter of vi+1, and that πS(vi) ∈
D1(S), Lemma 4.2 implies that πS(yixi+1) ∈ Q2(S). Thus, πS(yivi+1) ∈ Q2(S). Thus, this
decomposition is the unique J -maximal decomposition of u.

Now, we need to refine the J -maximal decomposition. Keeping the same notation for u,
and the J -maximal decomposition u = w0v0 · · · vtwt+1 of its prefix in Qi(S), we split the words
vi by setting aside their first letter and defining vi = xiv

′
i (xi ∈ S is the first letter of vi). Then,

we compute the product of the words v′i with the first letter of the words wi. To do so, we
define the evaluation program CollapseS,i.

Definition 4.6

Consider a semigroup S of J -depth d, an integer i ≤ d and a word u = u′a, with u′ ∈
Qi(S)

+ and a ∈ (S \ Qi(S)) ∪ {ε}. Let w0v0 · · · vtwt+1 be the J -maximal decomposition
of u′ in Qi(S). We set, for any 0 ≤ i ≤ t, vi = xiv

′
i, w′

i = wixi and w′
i = yiw

′′
i , so that

u′ = w′
0v

′
0y1w

′′
1 · · ·w′′

t v
′
twt+1. Then, the word CollapseS,i(u) is defined as follows:

CollapseS,i(u) = w′
0πS(v

′
0y1)w

′′
1 · · · πS(v′iyi+1)w

′′
i+1 · · ·w′′

t z

where z denotes either πS(v′ta) if wt+1 is the empty word, or πS(v′tyt+1)w
′
t+1a.

Remark that the image of any word u ∈ S+ by CollapseS,i is a word v = v′a such that v
is a J -maximal falling word (see definition 4.4). In order to be able to repeat the operation
CollapseS,i, we need to perform more products and obtain a word in Qi+1(S)

∗ × (S ∪ {ε}). To
that end, we define the partial evaluation program FallingS(s) which takes a word u = u′a ∈
Qi(S)

+ × ((S \Qi(S)) ∪ {ε}) such that u′ ∈ Qi(S)
+ is a J -maximal falling word, and returns

a partial evaluation of u in which there is no occurrence of s, except potentially for the last
letter. To that end, we first define the s-decomposition of a word u, which is the decomposition
of the form u = w0s

k0x0w1 · · · sktxtwt+1 where the ki’s are strictly positive integers, the xi’s are
non-s elements of S, except for xt which can also be equal to ε if wt+1 = ε, and the wi’s are
words without any occurrence of s. The s-decomposition of a word always exists and is unique.
With this, we can define the evaluation program FallingS(s).

Given the s-decomposition of some word u ∈ S+, keeping the same notation, we define

Definition 4.7

Consider a semigroup S of J -depth d, an integer i ≤ d, an element s ∈ Qi(S), and a
word u = u′a, where u′ ∈ Qi(S)

+ is a J -maximal falling word and a ∈ (S \ Qi(S)) ∪ {ε}.
Let u′ = w0s

k0x0w1 · · · sktxtwt+1 be the s-decomposition of u′. The partial evaluation of u

4.1. Evaluation programs 123

denoted by FallingS(s)(u) is defined as follows:

FallingS(s)(u) = w0πS(s
k1x1) · · · πS(skt−1xt−1)wtvwt+1a

′

where v and a′ are such that

• If xt 6= ε, then a′ = a and v = πS(s
ktxt).

• If xt = ε and kt > 1, then a′ = a and v = πS(s
kt).

• If xt = ε and kt = 1, then a′ = πS(sa) and v = ε.

Remark 4.2. The operations CollapseS,i and FallingS(s) defined here are similar to those pre-
sented in [57]. However, they slightly differ in order to facilitate the use of vectorial circuits
that use only operations that propagate information from left to right. The most important
difference lies in the fact that the operation FallingS(s) presented in [57] has a smaller domain,
as it is defined only on the words which last letter is in Qi+1(S), where i is the J -depth of the
element s.

Using the programs given above, we define the waterfall evaluation programs:

Definition 4.8

A waterfall evaluation program is an evaluation program built with the operations CollapseS,i
and FallingQi(S)

(s) for all 1 ≤ i ≤ d and s ∈ Di(S).

By applying successively FallingS(s) for each element s ∈ Qi(S), we can obtain a word in
Qi+1(S)

∗ × (S ∪ {ε}). Now, we can build the evaluation program πS using waterfall evaluation
programs.

Lemma 4.4

Let S be a semigroup of J -depth d. The evaluation program πS is equal to a waterfall
evaluation program obtained by composing O(|S|) evaluation programs among CollapseS,i
and FallingQi(S)

(s) for all 1 ≤ i ≤ d and s ∈ Di(S).

Proof. For any integer i such that 1 ≤ i ≤ d, we define Oi = (s1, . . . , sk) to be any enumeration
of D1(Qi(S)). Given such an enumeration, we define as follows the operation FallingQi(S)

[Oi]:

FallingQi(S)
[Oi] = FallingQi(S)

(sk) ◦ · · · ◦ FallingQi(S)
(s1)

We define an intermediate partial evaluation program fi which is a restriction of πS to the
domain Qi(S)

+ × (S ∪ {ε}). In symbols, for any word u ∈ Qi(S)
+ ∪ S, fi(u) = πS(u). Note

that f1 is equal to πS on any word of S+. We prove by induction over j = d− i with i ranging
from 0 to d− 1 that

fj = fj+1 ◦ FallingS[Oj] ◦ CollapseS,j
with the convention that fd+1 is the identity. The base case (fd+1) being fixed, we only need to
prove the result by induction on i for 0 ≤ i ≤ d− 1. We remark that the image of CollapseS,j
produces a word v = v′a, where v′ is a J -maximal falling word and a ∈ (S \ Qi(S)) ∪ {ε}.
Then, the application of FallingQi(S)

(sj) on v produces new elements which are only in Qi+1(S),

124 CHAPTER 4. From semigroups to vectorial circuits

except for the last letter, and removes all occurrences of the element sj, except for the last letter.
Hence, by applying FallingQi(S)

[Oi] we obtain a word in Qi+1(S)
∗ × (S ∪ {ε}). Since Qd+1(S)

is empty, the last word obtained contains only one letter, which is by definition equal to the
product of the input word.

Note that, as an incidental optimization, it is possible to replace the last sequence of calls
to Falling by LProd, since the last Collapse necessarily returns either one element in S, or two
elements, the first being in Dd(S), and the second in S.
Remark 4.3. Waterfall evaluation programs have some resemblance with the factorizations forest
of Simon [10]. Indeed, our programs create a factorization forest for each word they are applied
to. Moreover, the proof of the factorization forests theorem uses an induction on J -classes,
as we do for our programs. However, they are not quite the same. A waterfall evaluation
program can be applied to any word on the right alphabet, whereas the factorization forest
theorem proves the existence of a forest of bounded depth for a fixed word. This theorem is
used to prove the existence of a formula corresponding to a given semigroup in two cases: the
classes BΣ1 and Σ1. To our knowledge, there are no proofs for the class DA or the class of
aperiodic semigroups. Lastly, such proofs amount to consider all the formulas of some quantifier
depth that depends on the forest depth, a technique that resembles Wilke’s proof for DA [77,
Corollary 1] and also gives awful upper bounds.

4.1.3 Sweeping evaluation programs
Now, we introduce an evaluation program which processes words in a more lateral fashion –
from left to right or right to left. In this part, S is a semigroup of J -depth d.

In the proofs of section 4.3, we will perform evaluations that produce left (resp. right)
J -constant prefixes (resp. suffixes). We define those programs depending on the J -depth of
the semigroup that is considered. First, we introduce a left splitting higher order operation that
applies an evaluation program over a prefix of the input word defined by some constraints over
Green’s relations. Formally, for any integer i ≤ d, we define the operation LSplitS,i as follows.
Consider a word u = s0 · · · sk ∈ S+ and an evaluation program P (see definition 4.2) defined at
least on all left J -constant words of depth i. If s0 is not of J -depth i, we set LSplitS,i〈P 〉(u) = u.
Otherwise, there exist two uniquely defined words p ∈ S+, s ∈ S∗ such that u = ps, where p is
left J -constant and either s is empty or, if we denote by x ∈ S its first letter, πS(px) <J πS(p).
In this case, LSplitS,i〈P 〉(u) = P (p)s. We define similarly the symmetric operation RSplitS,i.
Finally, we define the partial function JProdS, that is the restriction of πS over words that are
J -constant. Formally, JProdS is defined only on J -constant words and, given u ∈ S+ such a
word, JProdS(u) = πS(u).

Definition 4.9

A sweeping evaluation program is an evaluation program built with the following operations:
LProdS, RProdS (see definition 4.3), the partial function JProdS, and the higher order
operations LSplitS,i and RSplitS,i for any integer i such that 1 ≤ i ≤ d.

Lemma 4.5

Let S be a semigroup. There exists a sweeping evaluation program computing πS. More-

4.1. Evaluation programs 125

over, there exists such a program that is equal to the composition of O(2d) operations.

To prove Lemma 4.5, we introduce an intermediate operation. Let i be an integer such
that 1 ≤ i ≤ d. We denote by Pi,l the left sweeping evaluation program of J -depth i, which
computes πS on the maximal prefix of J -depth at most i (included). Formally, given a word
u = s0 · · · sk ∈ S+, Pi,l(u) is equal to u if s0 is of J -depth strictly greater than i. Otherwise,
there exist p ∈ S+, q ∈ S∗ such that u = pq, where either q is empty, or x ∈ S is its first letter
and then πS(p) is of J -depth at most i and πS(px) is of J -depth strictly greater than i. In this
case, Pi,l(u) = πS(p)q. We define symmetrically Pi,r, the right sweeping evaluation program of
J -depth i.

The next lemma allows to conclude the proof of Lemma 4.5 since πS = Pd,l = Pd,r.

Lemma 4.6

For any integer i such that 1 ≤ i ≤ d, there exist sweeping evaluation programs computing
Pi,l and Pi,r.

Proof. We will prove by induction on the J -depth i that we can implement a left (resp. right)
sweeping evaluation program Pi,l (resp. Pi,r). In this proof, we consider a word u = s0 · · · sk−1

over S. For the base case, we first suppose that i = 1, i.e. we consider maximal J -classes. Thus,
if s0 is of J -depth 1, we will compute the product of the unique prefix s0 · · · sp of u such that
πS(s0 · · · sp)J s0 and πS(s0 · · · sp+1) <J s0. If sp+1 does not exist, we want to compute πS(u).
Note that s0 · · · sp is J -constant, hence we can apply JProdS to it. Thus, we can compute the
base case P1,l using the program LSplitS,1〈JProdS〉. Note that this program is well defined since
JProdS is in particular defined on all J -constant words of depth 1, which are exactly the left
J -constant words of depth 1. Symmetrically, P1,r = RSplitS,1〈JProdS〉. To prove the induction
case, we will rely on the following fact (see 1.2.3 for the definition of a left J -constant word):

Fact 4.1. For any left J -constant word v ∈ S+ of J -depth i, the word RProdS ◦ Pi−1,r(v) is
J -constant.

Proof. The result is obtained from the fact that the last element of w = RProdS ◦ Pi−1,r(v) is
necessarily of J -depth i. Indeed, by definition, the word x = Pi−1,r(v) is such that the product
of its last two elements (if there are at least two elements) is at least of J -depth i. Since we
supposed that v is left J -constant of J -depth i, it is guaranteed that this product is defined
and is exactly of J -depth i. Thus, both the first and last elements of w are of J -depth i,
as well as πS(w). Thus the product of any prefix or suffix of w will be of J -depth i, and in
the same J -class as the first and last elements of w, which corresponds to the definition of
J -constant.

For the induction step, we assume to have sweeping evaluation programs Pi,r and Pi,l for any
integer i < d. We prove the result for Pi+1,r and Pi+1,l. These two cases being symmetrical, we
only show the result for Pi+1,l. Let v = LProdS◦Pi,l(u). If |Pi,l(u)| 6= 1, we have necessarily that
the first letter of v is of J -depth strictly greater than i. Otherwise v = Pi,l(u) = πS(u). We are
going to split v with respect to the J -depth i and apply the program E = JProdS◦RProdS◦Pi,r
to the prefix. Indeed, after the split, and thanks to the previous Fact, we can apply JProdS
over the factor RProdS ◦ Pi,r(p), where p is the prefix obtained after the split. Indeed, this
factor is J -constant. To conclude, Pi+1,l = LSplitS,i+1〈E〉 ◦ LProdS ◦ Pi,l.

Thus, each Pi is defined using O(2i) operations.

126 CHAPTER 4. From semigroups to vectorial circuits

It is unclear whether this exponential behavior is avoidable or not. In this proof, the
exponential factor comes from the need to determine both the R and L-classes of the last
element computed before falling in another J -class. With this line of reasoning, it is hard
to avoid the exponential factor. However, it might be possible to design a class of vectorial
circuits equivalent to ours and that would only require an polynomial number of gates. As of
the writing of this thesis, this is still an open problem.

4.2 Compilation procedure of semigroups in Ap
In this section, we prove the following theorem by constructing circuits verifying the property:

Theorem 4.1

Let S be an aperiodic semigroup of J -depth d. We can construct an ADD-vectorial circuit
of size O(d|S|3) that computes the operation πS.

To prove Theorem 4.1, we consider a fixed aperiodic semigroup S, and we denote by d its
J -depth. Thanks to Lemma 4.4, it is sufficient to provide, for any integer i ≤ d, ADD-vectorial
circuits computing the operations CollapseS,i and FallingS(s) for any s ∈ Qi(S) over some
vectorial encoding of any partial evaluation of a word. Once we have those, we proceed as in
Lemma 4.4, in which we prove that, for any integer i such that 1 ≤ i ≤ d, πQi(S) is equal to
the composition of πQi+1(S) and O(|S|) operations among CollapseS,i and FallingS(s) (for any
s ∈ Di(S)). More precisely, the evaluation program for πS uses |S| operations of the form
FallingS(s) (where s ∈ S) and d operations of the form CollapseS,i (recall that d is the J -depth
of S). Now, we can obtain the result by using the lemmas presented in this section.

4.2.1 Vectorial encoding of a partial evaluation of a word
Our sweeping and waterfall evaluation programs perform operations on partial evaluations of a
word, so we need to provide an explanation on how we encode these partial evaluations. From
now on, a partial evaluation will always designate a partial evaluation of a word, usually the
initial word that needs to be processed with the evaluation program. Informally, a vectorial
representation of a partial evaluation is a set of vectors, each vector corresponding to a semi-
group element. The size of the vectors is equal to the size of the initial word on which we
apply the evaluation program. We need the vectors we employ to always have the same size
throughout the execution, so our definition needs to be more general than indicator vectors.
Each bit set to one denotes the presence of the element in the partial evaluation, and the order
of the bits set to one determines the order of the letters in the word.

As in the case of characteristic functions of letters, in the vector encoding of a word, vectors
in an encoding do not overlap, however their union may not cover all the positions. More
formally, a vectorial encoding of a partial evaluation is a mapping c : S → {0, 1}n, for some
integer n ≥ 1, such that we have the following constraint: for any s, t ∈ S such that s 6= t, we
have c(s)∧c(t) = 0. Note that, by definition, a word is a partial evaluation of itself, so enc(u) is
a vectorial encoding of a partial evaluation, with the additional property that

∨
a∈S 1a(u) = 1.

Given such a function c outputting vectors of dimension n, we can interpret it as a word of
length at most n by respecting the order of appearance of the bits. Formally, a word s0 · · · sk ∈
S≤n is represented by a vectorial encoding c of dimension n if, for every index j ≤ k, there exists
some integer i such that 0 ≤ i < n, c(sj)i = 1 and |{t ∈ N | t < i and

∨
s∈S c(s)t = 1}| = j− 1.

4.2. Compilation procedure of semigroups in Ap 127

We introduce two vectors that we will use extensively in our circuits: given S a semigroup
and c a vectorial encoding of a partial evaluation, we define the universe vector U =

∨
s∈S c(s).

We also define the vector marking the end of the vectors: End = ¬MSB(1).
We use only circuits of the following form: the input is a vectorial encoding of a partial

evaluation c : S → {0, 1}n (for some n ∈ N+) representing some word u ∈ S≤n, and the output
is a vectorial encoding out : S → {0, 1}n representing the partial evaluation of u obtained
by applying the operation corresponding to the circuit. To prove our theorems, we construct
vectorial circuits using this encoding that implement the partial evaluation functions we need.
Example 4.4. Consider the semigroup S = {a, b, c} with the inner multiplication as follows:
πS(ac) = πS(ca) = c, πS(bc) = πS(cb) = c, πS(aa) = b. The word w = aaabac has the vectorial
encoding a = 111010, b = 000100, c = 000001. With our circuits, if we multiply the last
two letters of w using this encoding, we will obtain the encoding a = 111000, b = 000100,
c = 000001. As expected, it represents the word w′ = aaabc: the first four elements of the
vectors are the same and still represent the word aaab, the fifth element is a 0 in all vectors so
it represents no letter, and the sixth element is a 1 in c, so it represents the letter c. Since we
started from a word of length 6, the length of the vectors is still 6 but some of the indices do
not represent a letter anymore.

4.2.2 Addition lemma
The circuits in this section heavily rely on the binary addition. Here, we define a new operation
that encapsulates the use we make of the binary addition and gives a better intuition on what
our circuits do.

Let x,y be two disjoint vectors of dimension n and z a vector of dimension n that contains
both x and y. We denote by v = Successor (x,y, z) the vector such that for all i < n, vi = 1
if and only if xi = 1, there exists j < i such that yj = 1 and, for all k ∈ N such that j < k < i,
zk = 0. In other words, Successor (x,y, z) indicates the positions marked in x that follow a
marked position of y, with no other position marked by z in-between.

Lemma 4.7: Addition lemma

Let x,y be two disjoint vectors of dimension n and z a vector of dimension n whose set
of indices {i | zi = 1} contains both {i | xi = 1} and {i | yi = 1}. Then, we have
Successor (x,y, z) := (y + (y ∨ ¬ z)) ∧ x

This lemma has a rather tedious proof. So as to relieve the reader from checking its details,
we provide a formalization and a proof of this Addition Lemma in Coq [56]. Here is a sketch of
the proof: it consists of two steps. First, we show that vectorial circuits built with the Next-
Until modality of LTL, aka XU, and logical gates, are equivalent to circuits built with addition
and logical gates. This equivalence is proved by constructing circuits based on XU and logical
gates to encode addition and circuits based on addition and logical gates to encode XU. The
intuition behind this equivalence is that carry propagation and XU both propagate information
sideways. Second, encoding XU in first order-logic and using the previous equivalence allows us
to relate the computation of the circuit of Lemma 4.7 to the specification of Successor (x,y, z)
and prove the relation correct.
Example 4.5. Consider the vectors x = 01010110101, y = 00100100000, and z = 11110110111.
Note that z contains both x and y, but is different from x ∨ y. The vector Successor (x,y, z)
is computed as in the following table:

128 CHAPTER 4. From semigroups to vectorial circuits

x 010101101001
y 001001000100
z 111101101101
¬z 000010010010

y ∨ ¬z 001011010110
y + (y ∨ ¬z) 000110110001

carry 000100100011
(y + (y ∨ ¬z)) ∧ x 000100100001

As claimed in Lemma 4.7, the vector (y + (y ∨ ¬z)) ∧ x has occurrences of 1 at exactly all
the indices that bear a 1 in x after another occurrence of 1 in y, with no occurrence of 1 in z
strictly between the two.

Remark 4.4. The formula given in the Addition Lemma is close to the one given for the
primitive MatchStar in [14]. Indeed, that primitive takes two vectors M = m0 · · ·mn−1 and
C = c0 · · · cn−1, and returns a vector V = v0 · · · vn−1 of the same dimension such that vi = 1 if
and only if the position i is preceded by a sequence of 1s in the vector C, sequence that begins
at an index j such that mj = 1. In symbols:

mi = 1 ∨ ∃j < i, (mj = 1 ∧ ∀k, j ≤ k < i⇒ ck = 1)

The formula they use for that purpose is the following:

V = (((M ∧C) + C)⊕C) ∨M

That use of the binary addition is basically the same as in the Addition Lemma, the only
difference being that MatchStar has a more specific purpose. With the Addition Lemma, it is
possible to obtain an equivalent formula, but that formula would be much more complex, as it
has not been handcrafted like MatchStar.

4.2.3 The CollapseS operation
This subsection proves the following lemma:

Lemma 4.8

For any aperiodic semigroup S of depth d and any integer i ≤ d, we can compute CollapseS,i
over any vectorial encoding of a partial evaluation in its domain with an ADD-vectorial
circuit of size O(|S|3).

Consider a word u = va, with v ∈ Qi(S)
+ and a ∈ (S\Qi(S))∪{ε}. Let w0v0 · · · vtwt+1 be the

J -maximal decomposition of v and let w′
0v

′
0y1w

′′
1 · · · v′jyj+1w

′′
j+1 · · · v′twt+1 be the refined decom-

position defined in definition 4.6. Let (c(s))s∈S be a vectorial encoding of u. Our goal is to com-
pute a vectorial encoding (out(s))s∈S of the partial evaluation u′ = w′

0πS(v
′
0y1)w

′′
1 · · · πS(v′jyj+1)

w′′
j+1 · · ·w′′

t z defined in definition 4.6 from the encoding (c(s))s∈S. To do that, we begin by
finding all the letters that belong to the infixes v′j. By definition, each v′j is exactly a maximal
block which product is in Di(S) minus its first letter (since xjv′j = vj). Thus, we will now mark
the elements of those blocks.

4.2. Compilation procedure of semigroups in Ap 129

For each pair (s, t) of elements in Di(S) such that πS(st) is in Di(S), we compute the vector
marking each occurrence of t that is preceded by an s:

Stays(s, t) = Successor (c(t), c(s),U)

where U =
∨
s∈S c(s) is the universe vector. We then aggregate those vectors to obtain, for each

element t ∈ Di(S), the vector marking the occurrences of t which product with the previous
letter in the word u is in Di(S): we define the set Et = {s ∈ Di(S) | πS(st) ∈ Di(S)}, with
which we can compute the desired vector:

Stays(t) =
∨
s∈Et

Stays(s, t)

We also compute the union of all those vectors: we define the set R = {t ∈ S | ∃s ∈
Di(S), πS(st) ∈ Di(S)}, with which we can compute the desired vector:

Stays =
∨
s∈R

Stays(s)

With this, we can find the limits of the maximal infixes which product is in Di(S), without
counting the first element, which does not belong to v′j. Note that we put that letter aside in
case we need to use it to make the product of the previous infix fall in Qi+1(S). Thus, the
vector Stays marks exactly the elements that belong to any of the infixes v′j. Then, we mark
the first letter of each v′j. These letters are exactly the elements of S that are marked by Stays
and such that the previous element marked by U is not marked by Stays. Thus, for each
element s ∈ Di(S), we compute the vector which labels the first letter of each vj with its value
if it is an s:

SecondEl(s) = Successor (Stays(s),U ∧ ¬Stays,U)

We aggregate those vectors:

SecondEl =
∨

s∈Di(S)

SecondEl(s)

Then we mark the letters yj+1, which are the elements just after the end of the infixes v′j, and
we label them by the last element of the corresponding v′j. For each element s ∈ Di(S), we
compute the vector marking each yj+1 if and only if the last letter of v′j is an s:

BlockFall(s) = Successor (U ∧ ¬Stays,Stays(s),U)

We aggregate those results:

BlockFall =
∨

s∈Di(S)

BlockFall(s)

With this, we can compute the vector which marks the limits of the infixes v′jyj+1:

Limits = SecondEl ∨BlockFall

Note that, if wt+1 is empty, this vector marks the first letter of v′t, but not its last letter.
However, if wt+1 is empty and a 6= ε, then the letter a is marked by BlockFall as the letter

130 CHAPTER 4. From semigroups to vectorial circuits

yt+1, and thus it is marked by Limits.
With these vectors, we can compute all the products πS(v′jyj+1). To this end, for each

element p ∈ Qi(S), we want to define the set of triplets (s, t, x) ∈ (Di(S))
2 × S such that, for

any word v ∈ S+ such that v begins by s, ends by t and is J -constant, the product of the
word vx is p. Note that we consider all the elements p ∈ Qi(S) because, if a 6= ε is marked
by Limits, then we also compute the product πS(v′ta). Thus, for any element p ∈ Qi(S), we
define the set

Fp = {(s, t, x) ∈ (Di(S))
2 × S | πS(α · x) = p, where α = R(s) ∩ L(t)}

This set is exactly what we need since, thanks to Lemma 4.2, we know that the product of the
infix v is only determined by s and t. Moreover, that product is not always equal to πS(st).
Indeed, the infix v can be of size 1, in which case s = t and there is only one occurrence to
consider. In the case where πS(ss) 6= s, the product of v is equal to s and not to πS(ss).
However, since S is aperiodic, we know thanks to Proposition 1.2 that the element πS(st) is
uniquely characterized by its H-class, which is equal to R(s) ∩ L(t). Thus, the set Fp defines
exactly the triplets that we need. Note that each triplet (s, t, x) ∈ (Di(S))

2×S can only appear
in at most one set Fp, so the size of the union of all these sets is only O(|Di(S)|2∗|S|) ≤ O(|S|3).

Then we use this to compute the products of the infixes. For each element p ∈ Qi+1(S), we
label each yj+1 by p if and only if there exists a triplet (s, t, yj+1) ∈ Fp such that the first letter
of v′j is an s (which can be determined using Stays(s)) and the last letter of v′j is a t (and thus
yj+1 is marked by the vector BlockFall(t)):

Prod(p) =
∨

(s,t,x)∈Fp

Successor (BlockFall(t),SecondEl(s),Limits) ∧ c(x)

Note that the union of all the vectors Prod(p) contains exactly all the elements obtained with
the products πS(v′jyj+1). With these vectors, we will be able to compute a vectorial encoding of
the word CollapseS,i(u). Before computing the output vectors, we consider the case where wt+1

is empty and a = ε. This case has not been treated yet since it implies that there is no letter
after v′t which allows us to compute the product as explained above. However, the first letter
of v′t has been marked in SecondEl. Thus, we only need to mark the last letter of the word
v′t. For each element s ∈ Di(S), we label by s the last element of u if and only if wt+1 = a = ε
and v′t begins with an s:

FirstLeftover(s) = Successor (End,SecondEl(s),Limits ∨ End) ∧ ¬
∨

t∈S\Qi(S)

c(t)

Then we compute the product of that suffix (πS(v′t)). For each element p ∈ Di(S), we define
the set Gp = {(s, t) ∈ (Di(S))

2 | πS(α) = p, where α = R(s)∩L(t)} and we compute the vector
Prod(p) which is equal to End if and only if wt+1 = a = ε, v′t starts with some s and ends
with some t such that (s, t) is in Gp:

Prod(p) =
∨

(s,t)∈Gp

FirstLeftover(s) ∧ c(t)

Now we have everything we need to compute the output vectors. To do this, we remove every
element marked by Stays (the letters of every v′j) and BlockFall (every yj+1), and we add the

4.2. Compilation procedure of semigroups in Ap 131

elements computed in the vectors Prod(s) (the elements πS(v′jyj+1) and πS(v′t) if wt+1 = a = ε).
For each element s ∈ S:

out(s) = Prod(s) ∨ (c(s) ∧ ¬(Stays ∨BlockFall))

4.2.4 The FallingS(s) operation
This subsection proves the following lemma:

Lemma 4.9

Let S be an aperiodic semigroup of J -depth d. For any element s ∈ D1(S), we can
compute FallingS(s) over any vectorial encoding of a partial evaluation in its domain with
an ADD-vectorial circuit of size O(d|S|).

Before proving lemma 4.9, we prove the following technical lemma.

Lemma 4.10

Let S be an aperiodic semigroup of J -depth d, an integer i ≤ d, and an element s ∈
Di(S). Let u = u′a be a word over Qi(S). Suppose that u′ is a J -maximal falling word.
Consider the s-decomposition of u, written as w0s

k1x1w1 · · ·wt−1s
ktxtwt. Then, we can use

an ADD-vectorial circuit of size O(|S|) which takes the vectorial encoding of u as input and
produces a vectorial encoding of the word w0s

k1−1πS(sx1) · · · skt−1πS(sxt−1)wts
ktπS(sy)v,

where y is the first letter of the infix wt+1a and yv = wt+1a.

The idea of this technical lemma is the following: by applying the lemma, we compute each
product of the form st, where t is an element distinct from s, and if the last two letters are
occurrences of s, we multiply them. Thus, we decrease by one the number of occurrences of s
in each infix of the form s · · · s.

Let (c(t))t∈S be a vectorial encoding of u. We begin by marking the elements that are
preceded by an occurrence of s and are not occurrences of s.

Last = Successor (U ∧ ¬c(s), c(s),U)

We separate these elements depending on their value: for each element t ∈ S \ s, we set

Last(t) = Last ∧ c(t)

We also have to deal with the case where the last two letters of u are occurrences of s. In that
case, we want to multiply them, but the last occurrence of s is not marked by Last. Thus, we
mark the last element of u if and only if it is an occurrence of s preceded by another occurrence
of s:

IsEnd = Successor (End ∧ c(s), c(s),U)

In order to remove the occurrences of s that will be used, we also mark the occurrences of s
that are not preceded by another occurrence of s.

First = Successor (c(s),U ∧ ¬c(s),U) ∧ ¬End

132 CHAPTER 4. From semigroups to vectorial circuits

These are not exactly the occurrences that should be removed, but each one belongs to the
same block of occurrences of s as an occurrence that is used in one of the products we will
perform, so removing them is sufficient to obtain the result we want. Moreover, by definition,
we will still obtain a valid vectorial encoding of the partial evaluation of u that we want to
obtain.

Now we can remove the occurrences of s that will be used in the products:

rm(s) = c(s) ∧ ¬First ∧ ¬IsEnd

Then we can remove the elements that are preceded by an occurrence of s: for each element
t ∈ S \ s, we set

rm(t) = c(t) ∧ ¬Last(t)

Finally, we perform the products: for each element p ∈ S, we define the set Pp = {t ∈ S \ s |
πS(st) = p} of elements t such that p is equal to πS(st). With this, we can produce the vectors
out(p):

out(p) = rm(p) ∨
∨
t∈Pp

Last(t)

Note that each element t ∈ S \ s appears in at most one set Pp, and that consequently the
computation of all the vectors out(p) requires only a circuit of size O(|S|). Finally, we add the
product of the last two elements of u if they are both occurrences of s. To do so, we consider
the element p = πS(ss) and we update out(p) if necessary:

out(p) = out(p) ∨ IsEnd

This gives us a vectorial encoding of the partial evaluation we wanted for this technical lemma.

With this technical lemma, we can prove lemma 4.9. Let u be a word of S+ and the set
(c(t))t∈S be a vectorial encoding of u. Using lemma 4.10, we can prove the result quite easily by
repeating the lemma a fixed number of times. Indeed, by applying lemma 4.10, we can reduce
by 1 the size of each of the blocks of occurrences of s. Moreover, the semigroup S is aperiodic,
so by Proposition 1.2 there necessarily exists an integer ωs such that πS(sωs+1) = πS(s

ωs) (sωs

is the idempotent power of s). Thus, if we apply lemma 4.10 ωs times, the only occurrences
of s that will be left will be either any letter s that was originally followed by at least ωs
other occurrences of s, or the last letter of the word. Since πS(sωs+1) = πS(s

ωs), we can just
forget the occurrences that are not the last letter without changing anything else. We denote
by (omega(t))t∈S the vectorial encoding of the decomposition of u obtained after applying
Lemma 4.10 sequentially ωs times. Since the products that we could compute from now on
will only remove occurrences of s without changing the other elements, we can now remove all
the occurrences of s, except for the last letter, that are left in the new partial evaluation of u.
Thus, we can set

out(s) = omega(s) ∧ End

and, for each element t 6= s,
out(t) = omega(t)

then we obtain a vectorial encoding of the partial evaluation that we wanted.
Note that, for any t ∈ S, we have ωt ≤ d, where d in the J -depth of S, so we apply

lemma 4.10 at most d times.
With this, we can conclude that πS can be computed with an ADD-vectorial circuit of size

4.3. Compilation procedure of semigroups in DA 133

O(d|S|3).

4.3 Compilation procedure of semigroups in DA
In this section, we prove the following theorem by constructing some circuits verifying the
property:

Theorem 4.2

Let S be a semigroup in DA of J -depth d. We can construct a Sweeping-vectorial circuit
of size O(2d|S|2) that computes the operation πS.

To prove Theorem 4.2, we consider a fixed semigroup S ∈ DA, and we denote by d its
J -depth. Thanks to Lemma 4.5, it is sufficient to provide Sweeping-vectorial circuits computing
the base operations over some vectorial encoding of any partial evaluation of a word. Those
operations are LProdS, RProdS, JProdS and, for each integer i such that 1 ≤ i ≤ d, the
operations LSplitS,i and RSplitS,i. Once we have those, we proceed as in Lemma 4.5, in which
we prove that πS is equal to the composition of O(2d) operations among JProdS, LProdS,
RProdS and LSplitS,i〈E〉 (for any integer i such that 1 < i ≤ d and some sweeping program E
composed of the same operations, that are taken into account in the O(2d)). To prove this, we
have πS = Pd,l = Pd,r where, for each integer i such that 1 ≤ i ≤ d, the program Pi,l computes
πS on the maximal prefix of J -depth at most i (included), and the symmetric program Pi,r
which acts on suffixes instead of prefixes. Our proof constructs Sweeping-vectorial circuits for
those programs, by induction on the depth i. Now, we can obtain the result by using the
lemmas presented in this section. The circuits presented in this section rely on the vectorial
encodings of words presented in section 4.2.1.

4.3.1 An intermediary operation
Before proving the Lemmas necessary for Theorem 4.2, we define some intermediary operations
that will allow us to decompose the functions that we want to compute. These intermediary
operations will all be of the same form: for any integer i ∈ N, we define the operation Valuei,S
that identifies the ith semigroup element that occurs in the word represented by the input
vectors. Formally, we define this operation as follows:

Definition 4.10

Let S be a semigroup in DA and let (c(s))s∈S be a vectorial encoding of some word u ∈ S+.
For each element s ∈ S and integer i ∈ N, we define the vector Valuei,S(s) as follows:

• Valuei,S(s) = 1 if and only if there exists an integer j such that the jth element of
c(s) is a 1 and the position j is the ith position of the vector U to hold a 1.

• Otherwise, Valuei,S(s) = 0.

Example 4.6. Consider the word w = abbacb, where a, b and c are three distinct elements of
some semigroup S. Then, Value0,S(a) = 1, Value2,S(b) = 1, and Value3,S(c) = 0.

134 CHAPTER 4. From semigroups to vectorial circuits

Lemma 4.11

For any integer i ≥ 1, we can compute the function Valuei,S over any vectorial encoding
of a partial evaluation with a Sweeping-vectorial circuit of size O(i+ |S|).

Proof. Given a set of input vectors I = (c(s))s∈S, Valuei,S(I) is a set of vectors (out(s))s∈S
such that, for each element s ∈ S, out(s) is computed as follows. We begin by removing the
first i− 1 bits set to 1 in the union of the inputs by defining the following vectors:

U0 = U

∀j < i− 1,Uj+1 = LSB(Uj)

Then, for each x ∈ S, we set to 0, in c(x), the i− 1 first bits set to 1 in the union of the inputs:

rm(x) = c(x) ∧Ui−1

Now, to detect the element associated to the ith bit set to 1 in U, we only need to detect the
value associated to the first bit set to 1 in

∨
x∈S

rmx, which is done as follows: for any s ∈ S, we

compute the vector out(s) that is full of ones if and only if the position of the first bit set to
1 in Ui−1 (that is the union of the vectors rm(x)) is set to 1 in the vector rm(s).

out(s) = ¬NotZero(pref-∨(rm(s))⊕ pref-∨(Ui−1))

Example 4.7. Let’s go back to example 4.6: consider the word w = abbacb, where a, b and c
are three distinct elements of some semigroup S. Suppose that the vectorial encoding of w is
such that c(a) = 1000100, c(b) = 0011001 and c(c) = 0000010 (the encoding includes an empty
space after the first occurrence of a). Then the vector U is the union of these three vectors,
and is equal to 1011111.

In order to compute Value0,S(a), we consider the vectors U0 = U and rm(a) = c(a). Then,
we verify that the first occurrence of 1 in rm(a) is in the same position as the first occurrence
of 1 in U0, by computing the following vectors:

rm(a) 1000100
U0 1011111

pref-∨(rm(a)) 1111111
pref-∨(U0) 1111111

pref-∨(rm(a))⊕ pref-∨(U0) 0000000
NotZero(pref-∨(rm(a))⊕ pref-∨(U0)) 0000000
¬NotZero(pref-∨(rm(a))⊕ pref-∨(U0)) 1111111

The last vector is the value of Value0,S(a), and is equal to 1, which indicates that a is the
first letter of the word w. Similarly, to compute Value2,S(b), we consider the vectors U2 =
LSB(LSB((U))) =0001111 and rm(b) = c(b) ∧U2 = 0001001. Then, we verify that the first
occurrence of 1 in rm(b) is in the same position as the first occurrence of 1 in U2, by computing
the following vectors:

4.3. Compilation procedure of semigroups in DA 135

rm(b) 0001001
U2 0001111

pref-∨(rm(b)) 0001111
pref-∨(U2) 0001111

pref-∨(rm(b))⊕ pref-∨(U2) 0000000
NotZero(pref-∨(rm(b))⊕ pref-∨(U2)) 0000000
¬NotZero(pref-∨(rm(b))⊕ pref-∨(U2)) 1111111

We obtain Value2,S(b) = 1, which indicates that the third letter of w is a b. Finally, to compute
Value3,S(c), we consider the vectors U3 = LSB((U2)) =0000111 and rm(c) = c(c) ∧ U3 =
0000010. Then, we verify that the first occurrence of 1 in rm(c) is in the same position as the
first occurrence of 1 in U3, by computing the following vectors:

rm(c) 0000010
U3 0000111

pref-∨(rm(c)) 0000011
pref-∨(U0) 0000111

pref-∨(rm(b))⊕ pref-∨(U2) 0000100
NotZero(pref-∨(rm(b))⊕ pref-∨(U2)) 1111111
¬NotZero(pref-∨(rm(b))⊕ pref-∨(U2)) 0000000

We obtain Value3,S(c) = 0, which indicates that the third letter of w is not a c.

4.3.2 The JProdS operation
This part proves the following lemma:

Lemma 4.12

For any semigroup S ∈ DA, we can compute JProdS over any vectorial encoding of a
partial evaluation in its domain with a Sweeping-vectorial circuit of size O(|S|2).

Let u = u0 · · ·uk be a word of S+ and the set (c(s))s∈S be a vectorial encoding of u. To
compute JProdS(u), we want to detect the first and last bits set to 1 in U in order to compute
the vectors corresponding to the word composed only of the element πS(u0uk). The first element
is directly indicated by the vectors Value1,S(s) for each element s ∈ S. Now we detect the last
element by computing the similar vectors Last(s) for each s ∈ S:

Last(s) = Eq(suf-∨(c(s)), suf-∨(U))

To complete the product we need to set to 1 the bit at the end of the word in the right vector.
To do this, we detect the position of the last bit set to 1 in the union of the inputs and store
it in the vector PosLast, which then has a unique bit set to 1.

PosLast = U ∧ ¬MSB(U)

Now we can perform the multiplication. To do this, we define, for each element s ∈ S, the
set Ms = {(t, p) ∈ S2 | R(t) ∩ L(p) = {s}}. Now, we compute the vectors out(s) for each
element s ∈ S. These vectors contain only the product of the first and last elements, or the
first element if u contains only one element. With our definition of Ms, for the same reasons as

136 CHAPTER 4. From semigroups to vectorial circuits

in the proof of Lemma 4.8, we do not need to verify that there were two elements to multiply,
since if there is only one element s, it is equal to the unique element of R(s) ∩ L(s) and thus
will stay unchanged.

out(s) = PosLast ∧
∨

(t,p)∈Ms

Value1,S(t) ∧ Last(p)

Note that, since a given pair of elements (t, p) can only belong to one set Ms, this computation
has a complexity of O(|S|2).

4.3.3 The LProdS and RProdS operations
This part proves the following lemma:

Lemma 4.13

For any semigroup S ∈ DA, we can compute LProdS and RProdS over any vectorial
encoding of a partial evaluation in their domains with Sweeping-vectorial circuits of size
O(|S|2).

The two operations are symmetrical, so we will just present the circuit for LProdS. Let
u = u0 · · ·uk be a word of S+ and (c(s))s∈S be a vectorial encoding of u. We want to detect
the first and second bits set to 1 in U in order to compute the vectors corresponding to the
word composed only of the element πS(u0u1). We can use Value1,S and Value2,S to compute
vectors that give the values of the first and second elements.

If the word u is composed of only one element, we cannot detect a second element, so the
vector Thr2((c(s))s∈S) can be used as a way to know if the vectors obtained after using Value1,S
and Value2,S have a meaning. If that vector is not null, we want to compute the product of the
elements u0 and u1. To complete the product, we need to set to 1 the bit at the position of the
second element in the vector corresponding to the value of the product. To do this, we detect
the position of the second element and store it in the vector PosSec, which has a unique 1 in
the position of the second element.

AfterSec = pref-∨(LSB(U))

PosSec = AfterSec ∧ ¬LSB(AfterSec)

Now we start to prepare the multiplication. We compute the vectors rm(x) (for each element
x ∈ S), in which we set to 0 the bits of the first two elements of the word.

Other = LSB(LSB(U))

rm(x) = c(x) ∧Other

Now we only have to add the product of the two first elements in the right vector. So, for each
element s ∈ S, we compute the vector Prod(s), in which we add the position of the second
element if that second element is an s. To do that, for each element s ∈ S, we define Ms to be
the set of pairs (t, p) such that s = πS(tp). In symbols, Ms = {(t, p) ∈ S2 | s = πS(tp)}.

Prod(s) = rm(s) ∨
∨

(t,p)∈Ms

Value1,S(t) ∧ Value2,S(p) ∧PosSec

4.3. Compilation procedure of semigroups in DA 137

Note that, since a given pair of elements (t, p) can only belong to one set Ms, this computation
has a complexity of O(|S|2). Finally, the vectors Prod(s) only have meaning if there was two
elements to multiply in the first place, so the vectors out(s) are computed as follows:

out(s) = IfThenElse(Thr2((c(s))s∈S),Prod(s), c(s))

4.3.4 The LSplitS,i and RSplitS,i operations
This part proves the following lemma:

Lemma 4.14

Let S be a semigroup in DA of J -depth d, i be an integer such that 1 ≤ i ≤ d, let P
be a sweeping evaluation program defined at least on all left J -constant words of depth
i, and suppose that we have a Sweeping-vectorial circuit of size sP that computes P over
any vectorial encoding of a partial evaluation. Then we can compute LSplitS,i〈P 〉 and
RSplitS,i〈P 〉 over any vectorial encoding of a partial evaluation in their respective domains
with Sweeping-vectorial circuits of size O(|S|2 + sP).

The two operations are symmetrical, so we will only present the circuit for LSplitS,i〈P 〉.
Let u = u0 · · ·uk be a word of S+ and the set (c(s))s∈S be a vectorial encoding of u. If u0 is
of J -depth i, we want to detect the first element ui such that πS(u0 · · ·ui) is of J -depth at
least i + 1 in order to replace the prefix of u0 · · ·ui−1 by its image through P . To do that, we
begin by checking if the first element of the word is of J -depth i. We want to have an output
different from the input if and only if u0 is of J -depth i, i.e. if u0 ∈ Di(S):

DoSmth =
∨

s∈Di(S)

Value1,S(s)

For now, suppose that DoSmth 6= 0. We can now determine the R-class of the first element.
For each R-class R of J -depth i, we compute the vector RClass(R) that is full of ones if and
only if the first element is in R:

RClass(R) =
∨
s∈R

Value1,S(s)

Now, we want to find the first position such that the product of the prefix is of J -depth at
least i + 1. To find that position, we use Lemma 1.4, which tells us that the set of elements
that make that product fall in a J -class of greater J -depth depends only on the R-class of the
prefix, which is uniquely determined by the first element, since that element is necessarily of
J -depth i. We already have the vectors indicating what R-class should be considered. Now,
for each R-class, let FR be the set of elements of S such that for any pair (r, s) ∈ R × FR,
πS(rs) 6∈ R (the set K defined in Lemma 1.4). In symbols, FR = {s ∈ S | ∀r ∈ R, πS(rs) 6∈ R}.
We want to consider only the set FR corresponding to the R-class of the first element and to
search for the first element of that set that is not the first element of the factorization. To do
this, we begin by computing, for any element a ∈ S, the vector Next(a) which allows us to
know where the first element a after the first element is:

Next(a) = pref-∨(c(a) ∧ LSB(U))

138 CHAPTER 4. From semigroups to vectorial circuits

Then we assemble those results depending on the set FR each element a belongs to. For each
R-class R of J -depth i, we compute the following vector:

BeforeFall(R) = ¬
∨
a∈FR

Next(a)

Each vector BeforeFall(R) indicates all the positions strictly before the first element s ∈ FR
that is at least the second element of the word. With this, we know that the prefix indicated by
BeforeFall(R), where R is the R-class of the first element, is the unique maximal prefix which
product belongs to R. Thus, we want to apply the circuit corresponding to the program P to
the prefix that is indicated by BeforeFall(R), where R is the R-class of the first element. Now,
we need to introduce a mask which will indicate the prefix considered in the rest of the split
operation. This mask is constructed from the vectors BeforeFall(R) for each R-class R that
belongs to the set Ri of R-classes of J -depth i, and it is equal to the vector BeforeFall(R)
corresponding to the unique vector RClass(R) that is not null:

mask =
∨
R∈Ri

RClass(R) ∧BeforeFall(R)

Now we can use the circuit CP on the set of vectors (c(s) ∧ ¬mask)s∈S. That call returns a
set of vectors (r(s))s∈S corresponding to the application of P to the prefix. Now we only have
to add back the rest of the word. For each element s ∈ S, the vector out(s) is computed as
follows:

out(s) = IfThenElse(DoSmth, r(s) ∨ (c(s) ∧ ¬mask), c(s))

Conclusion and future prospects

Contributions

This thesis’ overall goal was to study the possibility of a general application of bit-level par-
allelism to data validation. To that end, the algebraic theory of automata was chosen, as it
provides the syntactic semigroups of languages. The interest of semigroups is two-fold: they
include an inner product, which allows for efficient parallel computations, and they are able to
express some properties of languages that can be used in a vectorized algorithm.

The main theoretical contribution of this thesis consists in Theorem 4.1 and Theorem 4.2.
These two theorems give an explicit construction of vectorial circuits recognizing languages in
respectively FO[<] and FO2[<]. These vectorial circuits can then be translated into vector-
ized programs using SIMD instructions. Moreover, the constructed vectorial circuits are small
compared to what can be expected given the previous state of the art on the size of equivalent
formulas. Indeed, the circuits constructed in Theorem 4.1 are of size polynomial in the size of
the syntactic semigroup of the language, which is at most exponential in the size of the minimal
automaton recognizing the language, whereas Serre’s result, using LTL formulas, only gave a
doubly exponential upper bound in the size of the minimal automaton (this is due to a bound
given in [77]). Note that, in both cases, there is an exponential factor due to the transformation
from the automata to the semigroups. It can be removed by considering the semigroup itself as
an input of the programs, which removes the grey area surrounding that transformation, which
may be desirable as not all semigroups are of size exponential in the size of the automaton. As
another result, the circuits constructed in Theorem 4.2 are of size exponential in the size of the
syntactic semigroup of the language, where little to no explicit algorithm existed before this
thesis.

These theoretical contributions give better upper bounds on the size of the vectorized pro-
grams that can be obtained using the algebraic theory of automata, and were published in an
article [57]. However, the practical applicability of those vectorized programs remained to be
proven. This led to the implementations in [58] and [59]. The two repositories were originally
meant to host an implementation of the vectorial circuits presented in chapter 4. However,
the task is challenging as it requires to produce efficient code at compile time, and a lot of re-
search remains to be done to determine what can increase or decrease the efficiency of the code
structures presented in this thesis. Thus, the repositories served as sandboxes to measure the
efficiency of several algorithms to recognize languages, some of these using semigroups (mostly
sequentially), some using low-level instructions on vectors. This led to the benchmarks pre-
sented in chapter 2 and chapter 3, which show that it is possible to be faster than the baseline
in some cases and highlight the fact that there is a lot of room for code optimization. That
optimization is not trivial and requires more research to be understood.

139

140 Conclusion and future prospects

Future prospects
The subject of this thesis, in particular on the implementation side, shows interesting research
opportunities and, as indicated before, there is room for optimizing the implementation that
has yet to be understood. Here are some future prospects for research in this domain.

Efficient implementations
The various toy examples provided in this thesis to measure the efficiency of the various al-
gorithms implemented show that there is room for optimization, even without any bit-level
parallelism. The results also show that the potential optimizations are complex and linked
with intricate low-level phenomena. Interestingly, the efficiency of our implementation varies
greatly (with several order of magnitude) between different languages. This may be linked to
the ability of the compiler to perform efficient control-flow analysis. This analysis could it-
self depend on some algebraic properties of the underlying automata, although this hypothesis
needs to be tested.

Study more in-depth the existing algorithms. The benchmarking of the repositories [58]
and [59] was delayed by the study of the results and their implications. Indeed, the results are
full of oddities. Some of these are linked to implementation flaws, such as the lack of tabulation
of some parts of the programs. But it is not the case for all oddities, and we suspect that they
are due to some low-level phenomena for which we can provide very little insight. Notably,
it seems that the order of the products in the functions computing the inner product of a
semigroup can greatly impact the efficiency of the programs, but that may not be the case,
or simply a part of a much more complex answer. Perhaps the compiler re-arranges by itself
the order of that product in a way that is sometimes adversarial to the program’s practical
efficiency. Thus, an in-depth study of the implementations and their possible variations could
be particularly interesting.

Implement the vectorial circuits. The benchmarks presented in this thesis showed that
SIMD instructions can lead to very efficient programs for data validation, and that semigroups,
if processed cleverly, can lead to sequential programs that reach throughput values close to
the ones achieved by Rust’s regex crate. The final step, which consists in combining the
two, remains to be implemented. That combined implementation could maybe use the lessons
learned during the benchmarks presented in this thesis, as these benchmarks showed that a
naive implementation of the semigroup’s inner product is not very efficient. The repository [58]
contains a preliminary attempt in the form of the macro compile_u8_circuit, which takes
a structure representing a vectorial circuit and returns a vectorized program that corresponds
to that circuit. That implementation has neither been tested enough, nor been optimized, but
can be used as a placeholder for a future implementation which would compute the vectorial
circuit corresponding to a given language.

Extending the theory
The theoretical results presented in this thesis could be extended to obtain results that apply
to larger classes of languages.

Future prospects 141

Arbitrary constant vectors. This thesis completely ignores the possible use of arbitrary
constant vectors, as they can drastically change the expressive power of a class of vectorial
circuits. However, it could be interesting to study what drastically exactly means here. Adding
arbitrary constant vectors to vectorial circuits amounts to adding arbitrary monadic predicates
to the equivalent class of languages. This subject of arbitrary predicates has been studied by
Straubing [70], who introduced the Straubing property: a logical class F [P] has the Straubing
property if all regular languages definable in F [P] are definable in F [P ∩ Reg], where P is
a set of arbitrary predicates. The particular case of arbitrary monadic predicates has been
studied by Fijalkow and Paperman [22], who showed that any class of regular languages in
MSO[P], where P is a set of arbitrary monadic predicates, is equal to some class of languages
in MSO[P ′], where P ′ is a set of regular monadic predicates. To follow the lead of these results,
it would be interesting to precisely define the expressive power brought to the various classes
of regular languages by the arbitrary monadic predicates.

More operations. Arbitrary constant vectors are one way to increase the expressive power
of vectorial circuits. Adding operations to the possible labels of gates is another possibility.
There probably are other classes of regular languages that can be computed using a different
set of operations. Notably, it could be interesting to study the expressive power added by the
vectorial operation pref-⊕.

SIMD as a class of circuits. Finally, the goal of this thesis was to make the most of some
SIMD instructions, but what about the complete set of SIMD instructions? Does that set define
a well-known class of circuits? We conjecture that the class of vectorial circuits using the full
extend of SIMD expressive power is equal to the class TC0 of boolean circuits.

142 Conclusion and future prospects

AppendixA
Supplementary benchmarks

Outline of the current chapter
A.1 Benchmark on Intel processors 143

A.1.1 The node dahu . 143
A.1.2 The node chifflot . 147

A.2 Benchmark on an AMD processor: the node chiclet 150

The benchmark results presented in chapter 2 have all been measured on one particular machine,
on the node troll from grid5000. However, the code was run on other nodes, with different micro-
architectures, in order to get a better idea of its general efficiency. The results are presented
in this appendix. As before, the version of rustc used was rustc 1.72.1 (d5c2e9c34 2023-09-13),
and the version of cargo was cargo 1.72.1 (103a7ff2e 2023-08-15). All the results have been
measured as a mean of twenty runs of the same command.

A.1 Benchmark on Intel processors
The results presented in chapter 2 have been measured on an Intel processor, one of the most
recent available on grid5000 when the code was executed. This node is marked as exotic, which
we feared might skew the results. Thus, other benchmarks were run on other nodes with Intel
processors. These processors are a bit older, which impacts the results.

A.1.1 The node dahu
The results in this subsection have been obtained using the machine dahu-9. At the time when
this thesis is written, the machines dahu each have two CPUs Intel Xeon Gold 6130, on the
architecture x86_64. Each of these CPUs has 16 cores.

143

144 APPENDIX A. Supplementary benchmarks

Lang. Word
Algorithm

Char (Gchar/s) Bytes (GB/s)
base determinize deter-mini flex base determinize deter-mini

acstara last X X X X 6.8 0.40 0.24

abstar
dense 0.30 0.50 0.89 0.23 0.61 0.51 0.92
average 0.30 0.50 0.89 0.24 0.61 0.51 0.92
sparse 0.30 0.50 0.89 0.23 0.61 0.51 0.92

LDA

balanced 0.30 0.44 0.25 0.23 0.61 0.39 0.24
decrease 0.30 0.44 0.25 0.24 0.61 0.39 0.24
increase 0.30 0.45 0.25 0.24 0.61 0.39 0.24

LR

first 0.30 0.85 0.57 0.24 0.61 0.22 0.57
last 0.30 0.85 0.57 0.23 0.61 0.30 0.57

middle 0.30 0.85 0.57 0.23 0.61 0.25 0.57

Table A.1 – The results of the sequential algorithms - dahu

A.1. Benchmark on Intel processors 145

Ta
bl

e
A

.2
–

T
he

re
su

lts
of

th
e

se
m

ig
ro

up
-b

as
ed

al
go

rit
hm

s
-d

ah
u

La
ng

.
W

or
d

A
lg

or
ith

m
C

ha
r

(G
ch

ar
/s

)
B

yt
es

(G
B

/s
)

ba
se

st
am

p
st

am
p-

m
in

i
ta

bl
e

pa
ra

lle
l

ba
se

st
am

p
st

am
p-

m
in

i
ta

bl
e

ta
bl

e-
m

in
i

a
cs
ta
ra

la
st

X
X

X
X

X
6.
8

0.
14

0.
16

0.
23

0.
21

a
bs
ta
r

d
en
se

0.
30

0.
19

0.
53

0.
60

10
0.
61

0.
32

0.
49

0.
52

0.
61

a
v
er
a
g
e

0.
30

0.
31

0.
49

0.
60

11
0.
61

0.
37

0.
37

0.
52

0.
61

sp
a
rs
e

0.
30

0.
19

0.
57

0.
60

10
0.
61

0.
12

0.
41

0.
52

0.
61

L
D

A

ba
la
n
ce
d

0.
30

0.
04
6

0.
08
2

0.
52

7.
8

0.
61

0.
03
6

0.
07
2

0.
15

0.
16

d
ec
re
a
se

0.
30

0.
04
3

0.
08
7

0.
52

7.
3

0.
61

0.
03
2

0.
07
9

0.
14

0.
16

in
cr
ea
se

0.
30

0.
04
9

0.
07
8

0.
52

8.
3

0.
61

0.
04
0

0.
06
6

0.
15

0.
17

L
R

f
ir
st

0.
30

0.
10

0.
17

0.
52

7.
4

0.
61

0.
19

0.
19

0.
25

0.
22

la
st

0.
30

0.
09
2

0.
17

0.
52

8.
3

0.
61

0.
24

0.
19

0.
24

0.
24

m
id
d
le

0.
30

0.
08
8

0.
17

0.
52

7.
8

0.
61

0.
23

0.
18

0.
24

0.
23

Pa
ne

lA
:R

es
ul

ts
of

th
e

se
qu

en
tia

ls
em

ig
ro

up
ve

rs
io

ns

La
ng

ua
ge

W
or

d
A

lg
or

ith
m

(G
B

/s
)

ba
se

st
am

p
pa

ra
lle

l
pa

ra
lle

l-m
in

i
32

co
re

s
16

co
re

s
8

co
re

s
4

co
re

s
32

co
re

s
16

co
re

s
8

co
re

s
4

co
re

s

a
cs
ta
ra

la
st

6.
8

0.
14

3.
4

2.
1

1.
1

0.
59

3.
7

2.
1

1.
3

0.
65

a
bs
ta
r

d
en
se

0.
61

0.
32

7.
0

5.
0

3.
0

1.
4

8.
9

7.
0

3.
9

2.
0

a
v
er
a
g
e

0.
61

0.
37

6.
7

4.
6

2.
6

1.
3

7.
4

6.
8

3.
8

2.
0

sp
a
rs
e

0.
61

0.
12

6.
2

4.
5

2.
5

1.
3

8.
1

6.
6

3.
7

1.
9

L
D

A

ba
la
n
ce
d

0.
61

0.
03
6

2.
8

1.
6

0.
94

0.
48

2.
8

1.
6

0.
90

0.
49

d
ec
re
a
se

0.
61

0.
03
2

2.
8

1.
7

0.
91

0.
46

2.
7

1.
5

0.
89

0.
47

in
cr
ea
se

0.
61

0.
04
0

3.
1

1.
6

0.
96

0.
48

3.
1

1.
9

0.
98

0.
50

L
R

f
ir
st

0.
61

0.
19

4.
2

2.
6

1.
5

0.
77

3.
8

2.
3

1.
4

0.
70

la
st

0.
61

0.
24

4.
1

2.
2

1.
3

0.
69

3.
2

2.
7

1.
4

0.
72

m
id
d
le

0.
61

0.
23

4.
4

2.
3

1.
4

0.
72

4.
0

2.
3

1.
4

0.
72

Pa
ne

lB
:R

es
ul

ts
of

th
e

pa
ra

lle
lv

er
sio

ns
de

pe
nd

in
g

on
th

e
m

ax
im

um
nu

m
be

r
of

co
re

s
us

ed

146 APPENDIX A. Supplementary benchmarks
La

ng
.

W
or

d
A

lg
or

ith
m

(G
B

/s
)

ba
se

st
am

p
fa

ct
o

fa
ct

o-
m

in
R

-s
ta

m
p
R

-s
ta

m
p-

m
in

a
cs
ta
ra

la
st

6.
8

0.
14

0.
19

0.
18

0.
15

0.
15

a
bs
ta
r

d
en
se

0.
61

0.
32

0.
41

0.
44

0.
49

0.
34

a
v
er
a
g
e

0.
61

0.
37

0.
40

0.
41

0.
52

0.
49

sp
a
rs
e

0.
61

0.
12

0.
41

0.
41

0.
48

0.
45

L
D

A

ba
la
n
ce
d

0.
61

0.
03
6

0.
14

0.
14

0.
12

0.
12

d
ec
re
a
se

0.
61

0.
03
2

0.
13

0.
14

0.
12

0.
11

in
cr
ea
se

0.
61

0.
04
0

0.
14

0.
15

0.
12

0.
12

L
R

f
ir
st

0.
61

0.
19

0.
23

0.
26

0.
19

0.
18

la
st

0.
61

0.
24

0.
22

0.
28

0.
18

0.
19

m
id
d
le

0.
61

0.
23

0.
23

0.
27

0.
18

0.
19

La
ng

.
W

or
d

A
lg

or
ith

m
(G

B
/s

)
R

-o
rd
R

-o
rd

-m
in

or
d-

fa
ct

o
or

d-
fa

ct
o-

m
in

as
se

m
bl

ed
as

se
m

bl
ed

-m
in

a
cs
ta
ra

la
st

0.
18

0.
18

0.
20

0.
20

0.
21

0.
23

a
bs
ta
r

d
en
se

0.
51

0.
69

0.
77

1.
2

0.
77

0.
76

a
v
er
a
g
e

0.
37

0.
83

0.
73

1.
2

0.
61

0.
92

sp
a
rs
e

0.
69

0.
51

0.
61

0.
74

0.
74

1.
2

L
D

A

ba
la
n
ce
d

0.
13

0.
15

0.
17

0.
16

0.
16

0.
17

d
ec
re
a
se

0.
12

0.
14

0.
17

0.
15

0.
15

0.
17

in
cr
ea
se

0.
14

0.
15

0.
17

0.
16

0.
16

0.
17

L
R

f
ir
st

1.
2

0.
92

1.
6

1.
2

0.
24

0.
21

la
st

1.
8

1.
8

0.
92

1.
8

1.
8

1.
8

m
id
d
le

1.
2

1.
2

1.
2

2.
0

0.
43

0.
44

Ta
bl

e
A

.3
–

T
he

re
su

lts
of

th
e

ad
va

nc
ed

se
m

ig
ro

up
-b

as
ed

al
go

rit
hm

s
-d

ah
u

A.1. Benchmark on Intel processors 147

A.1.2 The node chifflot
The results in this subsection have been obtained using the machine chifflot-8. At the time
when this thesis is written, the machines chifflot each have two CPUs Intel Xeon Gold 6126,
on the architecture x86_64. Each of these CPUs has 12 cores.

Lang. Word
Algorithm

Char (Gchar/s) Bytes (GB/s)
base determinize deter-mini flex base determinize deter-mini

acstara last X X X X 6.9 0.37 0.29

abstar
dense 0.30 0.50 0.89 0.23 0.61 0.43 0.91
average 0.30 0.50 0.89 0.23 0.61 0.43 0.91
sparse 0.30 0.50 0.89 0.23 0.61 0.43 0.92

LDA

balanced 0.30 0.44 0.25 0.23 0.61 0.39 0.24
decrease 0.30 0.44 0.25 0.24 0.60 0.39 0.24
increase 0.30 0.44 0.25 0.23 0.60 0.39 0.24

LR

first 0.30 0.85 0.57 0.23 0.61 0.19 0.59
last 0.30 0.85 0.57 0.23 0.61 0.26 0.59

middle 0.30 0.85 0.57 0.23 0.61 0.22 0.59

Table A.4 – The results of the sequential algorithms - chifflot

148 APPENDIX A. Supplementary benchmarks

Ta
bl

e
A

.5
–

T
he

re
su

lts
of

th
e

se
m

ig
ro

up
-b

as
ed

al
go

rit
hm

s
-c

hi
ffl

ot

La
ng

.
W

or
d

A
lg

or
ith

m
C

ha
r

(G
ch

ar
/s

)
B

yt
es

(G
B

/s
)

ba
se

st
am

p
st

am
p-

m
in

i
ta

bl
e

pa
ra

lle
l

ba
se

st
am

p
st

am
p-

m
in

i
ta

bl
e

ta
bl

e-
m

in
i

a
cs
ta
ra

la
st

X
X

X
X

X
6.
9

0.
12

0.
16

0.
20

0.
22

a
bs
ta
r

d
en
se

0.
30

0.
23

0.
39

0.
60

7.
1

0.
61

0.
31

0.
57

0.
52

0.
61

a
v
er
a
g
e

0.
30

0.
41

0.
36

0.
60

7.
9

0.
61

0.
36

0.
44

0.
52

0.
61

sp
a
rs
e

0.
30

0.
28

0.
39

0.
60

7.
9

0.
61

0.
13

0.
40

0.
52

0.
61

L
D

A

ba
la
n
ce
d

0.
30

0.
04
5

0.
08
1

0.
52

5.
4

0.
61

0.
03
6

0.
07
1

0.
15

0.
16

d
ec
re
a
se

0.
30

0.
04
2

0.
08
5

0.
52

5.
2

0.
60

0.
03
2

0.
07
9

0.
14

0.
16

in
cr
ea
se

0.
30

0.
04
9

0.
07
8

0.
52

5.
6

0.
60

0.
04
0

0.
06
5

0.
15

0.
16

L
R

f
ir
st

0.
30

0.
10

0.
16

0.
52

6.
5

0.
61

0.
19

0.
19

0.
25

0.
22

la
st

0.
30

0.
09
3

0.
16

0.
52

7.
3

0.
61

0.
24

0.
19

0.
24

0.
24

m
id
d
le

0.
30

0.
08
7

0.
16

0.
52

6.
9

0.
61

0.
22

0.
18

0.
24

0.
23

Pa
ne

lA
:R

es
ul

ts
of

th
e

se
qu

en
tia

ls
em

ig
ro

up
ve

rs
io

ns

La
ng

ua
ge

W
or

d
A

lg
or

ith
m

(G
B

/s
)

ba
se

st
am

p
pa

ra
lle

l
pa

ra
lle

l-m
in

i
32

co
re

s
16

co
re

s
8

co
re

s
4

co
re

s
32

co
re

s
16

co
re

s
8

co
re

s
4

co
re

s

a
cs
ta
ra

la
st

6.
9

0.
12

3.
8

2.
0

1.
1

0.
54

4.
0

2.
5

1.
3

0.
65

a
bs
ta
r

d
en
se

0.
61

0.
31

8.
0

5.
5

2.
8

1.
5

10
4.
9

2.
8

1.
4

a
v
er
a
g
e

0.
61

0.
36

8.
5

4.
4

2.
5

1.
2

9.
1

4.
4

2.
3

1.
3

sp
a
rs
e

0.
61

0.
13

8.
2

4.
2

2.
4

1.
2

9.
1

4.
3

2.
3

1.
2

L
D

A

ba
la
n
ce
d

0.
61

0.
03
6

3.
2

1.
8

0.
90

0.
48

3.
1

1.
9

0.
98

0.
51

d
ec
re
a
se

0.
60

0.
03
2

3.
1

1.
7

0.
88

0.
47

3.
0

1.
9

0.
98

0.
49

in
cr
ea
se

0.
60

0.
04
0

3.
2

1.
8

0.
93

0.
48

3.
2

2.
0

1.
0

0.
52

L
R

f
ir
st

0.
61

0.
19

4.
5

2.
8

1.
4

0.
72

4.
5

2.
9

1.
5

0.
78

la
st

0.
61

0.
24

4.
4

2.
6

1.
4

0.
68

4.
5

2.
9

1.
6

0.
80

m
id
d
le

0.
61

0.
22

4.
5

2.
7

1.
4

0.
71

4.
5

2.
9

1.
6

0.
79

Pa
ne

lB
:R

es
ul

ts
of

th
e

pa
ra

lle
lv

er
sio

ns
de

pe
nd

in
g

on
th

e
m

ax
im

um
nu

m
be

r
of

co
re

s
us

ed

A.1. Benchmark on Intel processors 149
La

ng
.

W
or

d
A

lg
or

ith
m

(G
B

/s
)

ba
se

st
am

p
fa

ct
o

fa
ct

o-
m

in
R

-s
ta

m
p
R

-s
ta

m
p-

m
in

a
cs
ta
ra

la
st

6.
9

0.
12

0.
15

0.
20

0.
16

0.
16

a
bs
ta
r

d
en
se

0.
61

0.
31

0.
40

0.
57

0.
40

0.
39

a
v
er
a
g
e

0.
61

0.
36

0.
40

0.
45

0.
47

0.
60

sp
a
rs
e

0.
61

0.
13

0.
40

0.
52

0.
44

0.
48

L
D

A

ba
la
n
ce
d

0.
61

0.
03
6

0.
14

0.
14

0.
12

0.
12

d
ec
re
a
se

0.
60

0.
03
2

0.
13

0.
14

0.
12

0.
11

in
cr
ea
se

0.
60

0.
04
0

0.
14

0.
15

0.
12

0.
12

L
R

f
ir
st

0.
61

0.
19

0.
24

0.
24

0.
19

0.
18

la
st

0.
61

0.
24

0.
22

0.
26

0.
18

0.
19

m
id
d
le

0.
61

0.
22

0.
23

0.
25

0.
18

0.
19

La
ng

.
W

or
d

A
lg

or
ith

m
(G

B
/s

)
R

-o
rd
R

-o
rd

-m
in

or
d-

fa
ct

o
or

d-
fa

ct
o-

m
in

as
se

m
bl

ed
as

se
m

bl
ed

-m
in

a
cs
ta
ra

la
st

0.
17

0.
18

0.
21

0.
20

0.
20

0.
21

a
bs
ta
r

d
en
se

0.
47

0.
83

0.
76

0.
86

0.
77

0.
85

a
v
er
a
g
e

0.
40

0.
84

0.
73

1.
2

0.
61

0.
94

sp
a
rs
e

0.
68

0.
52

0.
63

0.
61

0.
61

0.
93

L
D

A

ba
la
n
ce
d

0.
13

0.
15

0.
17

0.
16

0.
16

0.
17

d
ec
re
a
se

0.
12

0.
14

0.
17

0.
15

0.
15

0.
17

in
cr
ea
se

0.
14

0.
15

0.
17

0.
16

0.
16

0.
17

L
R

f
ir
st

1.
2

0.
91

1.
6

1.
2

0.
24

0.
21

la
st

1.
8

1.
8

0.
91

1.
8

1.
8

1.
8

m
id
d
le

1.
2

1.
2

1.
2

2.
0

0.
43

0.
44

Ta
bl

e
A

.6
–

T
he

re
su

lts
of

th
e

ad
va

nc
ed

se
m

ig
ro

up
-b

as
ed

al
go

rit
hm

s
-c

hi
ffl

ot

150 APPENDIX A. Supplementary benchmarks

A.2 Benchmark on an AMD processor: the node chiclet
The results in this section have been obtained using the machine chiclet-8. At the time when
this thesis is written, the machines chiclet each have two CPUs AMD EPYC 7301, on the
architecture x86_64. Each of these CPUs has 16 cores.

Lang. Word
Algorithm

Char (Gchar/s) Bytes (GB/s)
base determinize deter-mini flex base determinize deter-mini

acstara last X X X X 5.5 0.27 0.23

abstar
dense 0.13 0.33 0.65 0.16 0.45 0.35 0.66
average 0.13 0.33 0.65 0.16 0.45 0.35 0.66
sparse 0.13 0.33 0.65 0.16 0.45 0.35 0.66

LDA

balanced 0.13 0.32 0.17 0.16 0.45 0.32 0.18
decrease 0.13 0.32 0.17 0.16 0.45 0.32 0.18
increase 0.13 0.32 0.17 0.16 0.45 0.32 0.18

LR

first 0.13 0.60 0.31 0.16 0.45 0.18 0.31
last 0.13 0.60 0.31 0.16 0.45 0.47 0.31

middle 0.13 0.6 0.31 0.16 0.45 0.26 0.31

Table A.7 – The results of the sequential algorithms - chiclet

A.2. Benchmark on an AMD processor: the node chiclet 151

Ta
bl

e
A

.8
–

T
he

re
su

lts
of

th
e

se
m

ig
ro

up
-b

as
ed

al
go

rit
hm

s
-c

hi
cl

et

La
ng

.
W

or
d

A
lg

or
ith

m
C

ha
r

(G
ch

ar
/s

)
B

yt
es

(G
B

/s
)

ba
se

st
am

p
st

am
p-

m
in

i
ta

bl
e

pa
ra

lle
l

ba
se

st
am

p
st

am
p-

m
in

i
ta

bl
e

ta
bl

e-
m

in
i

a
cs
ta
ra

la
st

X
X

X
X

X
5.
5

0.
12

0.
15

0.
18

0.
19

a
bs
ta
r

d
en
se

0.
13

0.
18

0.
38

0.
38

2.
9

0.
45

0.
23

0.
36

0.
34

0.
38

a
v
er
a
g
e

0.
13

0.
38

0.
49

0.
38

2.
9

0.
45

0.
53

0.
37

0.
33

0.
38

sp
a
rs
e

0.
13

0.
27

0.
51

0.
38

3.
0

0.
45

0.
14

0.
33

0.
33

0.
38

L
D

A

ba
la
n
ce
d

0.
13

0.
03
7

0.
06
7

0.
33

2.
8

0.
45

0.
02
6

0.
08
0

0.
14

0.
14

d
ec
re
a
se

0.
13

0.
03
4

0.
06
9

0.
33

2.
7

0.
45

0.
02
4

0.
08
4

0.
14

0.
14

in
cr
ea
se

0.
13

0.
03
9

0.
06
5

0.
33

2.
7

0.
45

0.
02
9

0.
07
6

0.
14

0.
14

L
R

f
ir
st

0.
13

0.
08
1

0.
12

0.
33

3.
0

0.
45

0.
17

0.
19

0.
21

0.
22

la
st

0.
13

0.
08
0

0.
12

0.
33

3.
1

0.
45

0.
17

0.
17

0.
21

0.
22

m
id
d
le

0.
13

0.
07
6

0.
12

0.
33

3.
1

0.
45

0.
18

0.
18

0.
21

0.
21

Pa
ne

lA
:R

es
ul

ts
of

th
e

se
qu

en
tia

ls
em

ig
ro

up
ve

rs
io

ns

La
ng

ua
ge

W
or

d
A

lg
or

ith
m

(G
B

/s
)

ba
se

st
am

p
pa

ra
lle

l
pa

ra
lle

l-m
in

i
32

co
re

s
16

co
re

s
8

co
re

s
4

co
re

s
32

co
re

s
16

co
re

s
8

co
re

s
4

co
re

s

a
cs
ta
ra

la
st

5.
5

0.
12

3.
6

1.
9

0.
94

0.
47

4.
0

2.
1

1.
1

0.
53

a
bs
ta
r

d
en
se

0.
45

0.
23

6.
7

3.
6

1.
8

0.
92

6.
9

3.
7

1.
9

0.
99

a
v
er
a
g
e

0.
45

0.
53

8.
7

4.
7

2.
5

1.
2

8.
5

4.
5

2.
4

1.
1

sp
a
rs
e

0.
45

0.
14

7.
9

4.
1

2.
3

1.
1

7.
4

3.
8

1.
9

0.
99

L
D

A

ba
la
n
ce
d

0.
45

0.
02
6

2.
8

1.
5

0.
74

0.
37

3.
1

1.
6

0.
80

0.
40

d
ec
re
a
se

0.
45

0.
02
4

2.
8

1.
4

0.
73

0.
36

3.
1

1.
6

0.
78

0.
39

in
cr
ea
se

0.
45

0.
02
9

2.
9

1.
5

0.
75

0.
38

3.
2

1.
6

0.
82

0.
40

L
R

f
ir
st

0.
45

0.
17

4.
1

2.
1

1.
1

0.
56

4.
2

2.
2

1.
1

0.
54

la
st

0.
45

0.
17

4.
2

2.
2

1.
1

0.
55

4.
3

2.
2

1.
1

0.
55

m
id
d
le

0.
45

0.
18

4.
1

2.
1

1.
1

0.
55

4.
2

2.
2

1.
1

0.
54

Pa
ne

lB
:R

es
ul

ts
of

th
e

pa
ra

lle
lv

er
sio

ns
de

pe
nd

in
g

on
th

e
m

ax
im

um
nu

m
be

r
of

co
re

s
us

ed

152 APPENDIX A. Supplementary benchmarks
La

ng
.

W
or

d
A

lg
or

ith
m

(G
B

/s
)

ba
se

st
am

p
fa

ct
o

fa
ct

o-
m

in
R

-s
ta

m
p
R

-s
ta

m
p-

m
in

a
cs
ta
ra

la
st

5.
5

0.
12

0.
13

0.
14

0.
13

0.
13

a
bs
ta
r

d
en
se

0.
45

0.
23

0.
32

0.
39

0.
27

0.
25

a
v
er
a
g
e

0.
45

0.
53

0.
39

0.
33

0.
35

0.
38

sp
a
rs
e

0.
45

0.
14

0.
43

0.
32

0.
36

0.
38

L
D

A

ba
la
n
ce
d

0.
45

0.
02
6

0.
10

0.
12

0.
11

0.
11

d
ec
re
a
se

0.
45

0.
02
4

0.
09
9

0.
11

0.
11

0.
11

in
cr
ea
se

0.
45

0.
02
9

0.
10

0.
12

0.
11

0.
11

L
R

f
ir
st

0.
45

0.
17

0.
18

0.
20

0.
16

0.
15

la
st

0.
45

0.
17

0.
16

0.
21

0.
13

0.
16

m
id
d
le

0.
45

0.
18

0.
17

0.
20

0.
14

0.
15

La
ng

.
W

or
d

A
lg

or
ith

m
(G

B
/s

)
R

-o
rd
R

-o
rd

-m
in

or
d-

fa
ct

o
or

d-
fa

ct
o-

m
in

as
se

m
bl

ed
as

se
m

bl
ed

-m
in

a
cs
ta
ra

la
st

0.
14

0.
17

0.
17

0.
17

0.
18

0.
18

a
bs
ta
r

d
en
se

0.
38

0.
53

0.
94

0.
87

0.
71

0.
63

a
v
er
a
g
e

0.
54

0.
54

0.
83

0.
79

0.
89

0.
89

sp
a
rs
e

0.
40

0.
51

0.
68

0.
88

0.
69

0.
89

L
D

A

ba
la
n
ce
d

0.
12

0.
11

0.
12

0.
13

0.
13

0.
13

d
ec
re
a
se

0.
11

0.
10

0.
12

0.
13

0.
12

0.
13

in
cr
ea
se

0.
12

0.
12

0.
13

0.
14

0.
13

0.
14

L
R

f
ir
st

1.
2

1.
3

1.
2

1.
3

0.
19

0.
20

la
st

1.
8

1.
3

1.
3

1.
3

1.
3

1.
8

m
id
d
le

1.
5

1.
3

1.
3

1.
3

0.
34

0.
36

Ta
bl

e
A

.9
–

T
he

re
su

lts
of

th
e

ad
va

nc
ed

se
m

ig
ro

up
-b

as
ed

al
go

rit
hm

s
-c

hi
cl

et

Bibliography

[1] Alfred V Aho. “Pattern matching in strings”. In: Formal Language Theory. Elsevier, 1980,
pp. 325–347.

[2] Alfred V Aho and Margaret J Corasick. “Efficient string matching: an aid to bibliographic
search”. In: Communications of the ACM 18.6 (1975), pp. 333–340.

[3] Alfred V Aho, Ravi Sethi, and Jeffrey D Ullman. Compilers: principles, techniques, and
tools. Vol. 1. Addison-wesley Reading, 1988.

[4] Anonymus. Mastering Quantifiers. url: https://web.archive.org/web/20230819223759/
https://www.rexegg.com/regex-quantifiers.html.

[5] Ricardo Baeza-Yates and Gaston H Gonnet. “A new approach to text searching”. In:
Communications of the ACM 35.10 (1992), pp. 74–82.

[6] Ricardo Baeza-Yates, Berthier Ribeiro-Neto, et al. Modern information retrieval. Vol. 463.
1999. ACM press New York, 1999.

[7] David A Mix Barrington et al. “Regular languages in NC1”. In: Journal of Computer and
System Sciences 44.3 (1992), pp. 478–499.

[8] Anne Bergeron and Sylvie Hamel. “Cascade decompositions are bit-vector algorithms”.
In: Implementation and Application of Automata: 6th International Conference, CIAA
2001 Pretoria, South Africa, July 23–25, 2001 Revised Papers 6. Springer. 2002, pp. 13–
26.

[9] Guy E Blelloch. Vector models for data-parallel computing. Vol. 2. Citeseer, 1990.
[10] Mikołaj Bojańczyk. “Factorization forests”. In: International Conference on Developments

in Language Theory. Springer. 2009, pp. 1–17.
[11] Robert S Boyer and J Strother Moore. “A fast string searching algorithm”. In: Commu-

nications of the ACM 20.10 (1977), pp. 762–772.
[12] Janusz A Brzozowski. “Canonical regular expressions and minimal state graphs for defi-

nite events”. In: Proc. Symposium of Mathematical Theory of Automata. 1962, pp. 529–
561.

[13] Michaël Cadilhac and Charles Paperman. “The regular languages of wire linear AC 0”.
In: Acta Informatica 59.4 (2022), pp. 321–336.

[14] Robert D Cameron et al. “Bitwise data parallelism in regular expression matching”. In:
Proceedings of the 23rd international conference on Parallel architectures and compilation.
2014, pp. 139–150.

[15] Ashok K Chandra, Steven Fortune, and Richard Lipton. “Lower bounds for constant
depth circuits for prefix problems”. In: Automata, Languages and Programming: 10th
Colloquium Barcelona, Spain, July 18–22, 1983 10. Springer. 1983, pp. 109–117.

153

https://web.archive.org/web/20230819223759/https://www.rexegg.com/regex-quantifiers.html
https://web.archive.org/web/20230819223759/https://www.rexegg.com/regex-quantifiers.html

154 Bibliography

[16] Shiva Chaudhuri and Jaikumar Radhakrishnan. “Deterministic restrictions in circuit com-
plexity”. In: Proceedings of the twenty-eighth annual ACM symposium on Theory of com-
puting. 1996, pp. 30–36.

[17] Russ Cox. “Regular expression matching can be simple and fast (but is slow in java,
perl, php, python, ruby,...)” In: URL: http://swtch. com/rsc/regexp/regexp1. html (2007),
p. 94.

[18] Maxime Crochemore and Wojciech Rytter. Text algorithms. Maxime Crochemore, 1994.
[19] Volker Diekert, Paul Gastin, and Manfred Kufleitner. “A survey on small fragments of

first-order logic over finite words”. In: International Journal of Foundations of Computer
Science 19.03 (2008), pp. 513–548.

[20] Kousha Etessami, Moshe Y Vardi, and Thomas Wilke. “First-order logic with two vari-
ables and unary temporal logic”. In: Proceedings of Twelfth Annual IEEE Symposium on
Logic in Computer Science. IEEE. 1997, pp. 228–235.

[21] Ronald Fagin et al. “Document spanners: A formal approach to information extraction”.
In: Journal of the ACM (JACM) 62.2 (2015), pp. 1–51.

[22] Nathanaël Fijalkow and Charles Paperman. “Monadic second-order logic with arbitrary
monadic predicates”. In: ACM Transactions on Computational Logic (TOCL) 18.3 (2017),
pp. 1–17.

[23] Merrick Furst, James B Saxe, and Michael Sipser. “Parity, circuits, and the polynomial-
time hierarchy”. In: Mathematical systems theory 17.1 (1984), pp. 13–27.

[24] Dov Gabbay et al. “On the temporal analysis of fairness”. In: Proceedings of the 7th ACM
SIGPLAN-SIGACT symposium on Principles of programming languages. 1980, pp. 163–
173.

[25] Andrew Gallant. Rebar. https://web.archive.org/web/20230911123902/https://github.
com/BurntSushi/rebar. 2023.

[26] Andrew Gallant. Regex engine internals as a library. 2023. url: https://web.archive.
org/web/20230903144141/https://blog.burntsushi.net/regex-internals/.

[27] Mateusz Gienieczko. “Fast execution of JSONPath queries”. Master thesis. University of
Warsaw, 2022.

[28] Mateusz Gienieczko, Charles Paperman, and Filip Murlak. rsonpath. https://web.archive.
org/web/20230411022735/https://github.com/V0ldek/rsonpath. 2022.

[29] Victor Mikhaylovich Glushkov. “The abstract theory of automata”. In: Russian Mathe-
matical Surveys 16.5 (1961), p. 1.

[30] Leslie Michael Goldschlager. Synchronous parallel computation. 1978.
[31] Mike Haertel. Why GNU grep is fast. 2010. url: https : / / web . archive . org / web /

20230709032219/https :// lists . freebsd .org/pipermail/ freebsd-current/2010-August/
019310.html (visited on 08/09/2023).

[32] Juris Hartmanis and Janos Simon. “On the power of multiplication in random access
machines”. In: 15th Annual Symposium on Switching and Automata Theory (swat 1974).
IEEE. 1974, pp. 13–23.

[33] John Hopcroft. “An n log n algorithm for minimizing states in a finite automaton”. In:
Theory of machines and computations. Elsevier, 1971, pp. 189–196.

https://web.archive.org/web/20230911123902/https://github.com/BurntSushi/rebar
https://web.archive.org/web/20230911123902/https://github.com/BurntSushi/rebar
https://web.archive.org/web/20230903144141/https://blog.burntsushi.net/regex-internals/
https://web.archive.org/web/20230903144141/https://blog.burntsushi.net/regex-internals/
https://web.archive.org/web/20230411022735/https://github.com/V0ldek/rsonpath
https://web.archive.org/web/20230411022735/https://github.com/V0ldek/rsonpath
https://web.archive.org/web/20230709032219/https://lists.freebsd.org/pipermail/freebsd-current/2010-August/019310.html
https://web.archive.org/web/20230709032219/https://lists.freebsd.org/pipermail/freebsd-current/2010-August/019310.html
https://web.archive.org/web/20230709032219/https://lists.freebsd.org/pipermail/freebsd-current/2010-August/019310.html

Bibliography 155

[34] R Nigel Horspool. “Practical fast searching in strings”. In: Software: Practice and Expe-
rience 10.6 (1980), pp. 501–506.

[35] Andrew Hume. “A tale of two greps”. In: Software: Practice and Experience 18.11 (1988),
pp. 1063–1072.

[36] Neil Immerman. “Descriptive and computational complexity”. In: Computational Com-
plexity Theory, ed. J. Hartmanis, Proc. Symp. in Applied Math. Vol. 38. 1989, pp. 75–
91.

[37] Lin Jiang and Zhijia Zhao. “JSONSki: streaming semi-structured data with bit-parallel
fast-forwarding”. In: Proceedings of the 27th ACM International Conference on Architec-
tural Support for Programming Languages and Operating Systems. 2022, pp. 200–211.

[38] Mario Juárez. Regex benchmark. https://web.archive.org/web/20230414164714/http:
//github.com/mariomka/regex-benchmark. 2021.

[39] Johan Anthony Wilem Kamp. Tense logic and the theory of linear order. University of
California, Los Angeles, 1968.

[40] John Keiser and Daniel Lemire. “Validating UTF-8 in less than one instruction per byte”.
In: Software: Practice and Experience 51.5 (2021), pp. 950–964.

[41] Stephen C Kleene et al. “Representation of events in nerve nets and finite automata”. In:
Automata studies 34 (1956), pp. 3–41.

[42] Donald E Knuth, James H Morris Jr, and Vaughan R Pratt. “Fast pattern matching in
strings”. In: SIAM journal on computing 6.2 (1977), pp. 323–350.

[43] Michal Kouckỳ, Pavel Pudlák, and Denis Thérien. “Bounded-depth circuits: separating
wires from gates”. In: Proceedings of the thirty-seventh annual ACM symposium on Theory
of computing. 2005, pp. 257–265.

[44] Leslie Lamport. “Multiple byte processing with full-word instructions”. In: Communica-
tions of the ACM 18.8 (1975), pp. 471–475.

[45] Geoff Langdale and Daniel Lemire. “Parsing gigabytes of JSON per second”. In: The
VLDB Journal 28.6 (2019), pp. 941–960.

[46] Dan Lin et al. “Parabix: Boosting the efficiency of text processing on commodity pro-
cessors”. In: IEEE International Symposium on High-Performance Comp Architecture.
IEEE. 2012, pp. 1–12.

[47] Niko Matsakis. Rayon: data parallelism in Rust. 2015. url: https://web.archive.org/web/
20230527040204/http://smallcultfollowing.com/babysteps/blog/2015/12/18/rayon-
data-parallelism-in-rust/.

[48] Robert McNaughton and Seymour A Papert. Counter-Free Automata (MIT research
monograph no. 65). The MIT Press, 1971.

[49] Robert McNaughton and Hisao Yamada. “Regular expressions and state graphs for au-
tomata”. In: IRE transactions on Electronic Computers 1 (1960), pp. 39–47.

[50] Albert R Meyer and Michael J Fischer. “Economy of description by automata, grammars,
and formal systems”. In: 12th annual symposium on switching and automata theory (swat
1971). IEEE Computer Society. 1971, pp. 188–191.

[51] Filip Murlak, Charles Paperman, and Michał Pilipczuk. “Schema validation via stream-
ing circuits”. In: Proceedings of the 35th ACM SIGMOD-SIGACT-SIGAI Symposium on
Principles of Database Systems. 2016, pp. 237–249.

https://web.archive.org/web/20230414164714/http://github.com/mariomka/regex-benchmark
https://web.archive.org/web/20230414164714/http://github.com/mariomka/regex-benchmark
https://web.archive.org/web/20230527040204/http://smallcultfollowing.com/babysteps/blog/2015/12/18/rayon-data-parallelism-in-rust/
https://web.archive.org/web/20230527040204/http://smallcultfollowing.com/babysteps/blog/2015/12/18/rayon-data-parallelism-in-rust/
https://web.archive.org/web/20230527040204/http://smallcultfollowing.com/babysteps/blog/2015/12/18/rayon-data-parallelism-in-rust/

156 Bibliography

[52] Gene Myers. “A fast bit-vector algorithm for approximate string matching based on
dynamic programming”. In: Journal of the ACM (JACM) 46.3 (1999), pp. 395–415.

[53] Gonzalo Navarro. “NR-grep: a fast and flexible pattern-matching tool”. In: Software:
Practice and Experience 31.13 (2001), pp. 1265–1312.

[54] Gonzalo Navarro and Mathieu Raffinot. “A bit-parallel approach to suffix automata: Fast
extended string matching”. In: Annual Symposium on Combinatorial Pattern Matching.
Springer. 1998, pp. 14–33.

[55] Gonzalo Navarro and Mathieu Raffinot. Flexible pattern matching in strings: practical
on-line search algorithms for texts and biological sequences. Cambridge university press,
2002.

[56] Charles Paperman, Sylvain Salvati, and Claire Soyez-Martin. Addition Lemma. Sept.
2022. url: https://hal.archives-ouvertes.fr/hal-03787033.

[57] Charles Paperman, Sylvain Salvati, and Claire Soyez-Martin. “An Algebraic Approach to
Vectorial Programs”. In: 40th International Symposium on Theoretical Aspects of Com-
puter Science. 2023.

[58] Charles Paperman and Claire Soyez-Martin. Workspace macros. 2023. url: https : / /
gitlab.univ-lille.fr/claire.soyez-martin/workspace-macros.

[59] Charles Paperman and Claire Soyez-Martin. Workspace macros u8. 2023. url: https :
//gitlab.univ-lille.fr/claire.soyez-martin/workspace-macros-u8.

[60] J.E. Pin and European Mathematical Society Publishing House ETH-Zentrum SEW A27.
Handbook of Automata Theory: Volume I: Theoretical Foundations; Volume II: Automata
in Mathematics and Selected Applications. EMS Press, 2021. isbn: 9783985470068.

[61] Jean Eric Pin. Varieties of formal languages. Vol. 184. Springer, 1986.
[62] Vaughan R Pratt, Michael O Rabin, and Larry J Stockmeyer. “A characterization of the

power of vector machines”. In: Proceedings of the sixth annual ACM symposium on Theory
of computing. 1974, pp. 122–134.

[63] Michael O Rabin and Dana Scott. “Finite automata and their decision problems”. In:
IBM journal of research and development 3.2 (1959), pp. 114–125.

[64] Dennis Ritchie. “An incomplete history of the QED text editor”. In: Report, Comput-
ing Sciences Research Center, Bell Laboratories, Murray Hill, NJ, USA, 19xx. URL
http://plan9. bell-labs. com/who/dmr/qed. html. Robbins (1995).

[65] M. P. Schützenberger. “On finite monoids having only trivial subgroups”. In: Information
and control 8 (1965), pp. 190–194.

[66] Thomas Schwentick, Denis Thérien, and Heribert Vollmer. “Partially-ordered two-way
automata: A new characterization of DA”. In: Developments in Language Theory: 5th
International Conference, DLT 2001 Wien, Austria, July 16–21, 2001 Revised Papers 5.
Springer. 2002, pp. 239–250.

[67] Olivier Serre. “Vectorial languages and linear temporal logic”. In: Theoretical computer
science 310.1-3 (2004), pp. 79–116.

[68] Claude E Shannon. “A symbolic analysis of relay and switching circuits”. In: Electrical
Engineering 57.12 (1938), pp. 713–723.

https://hal.archives-ouvertes.fr/hal-03787033
https://gitlab.univ-lille.fr/claire.soyez-martin/workspace-macros
https://gitlab.univ-lille.fr/claire.soyez-martin/workspace-macros
https://gitlab.univ-lille.fr/claire.soyez-martin/workspace-macros-u8
https://gitlab.univ-lille.fr/claire.soyez-martin/workspace-macros-u8

Bibliography 157

[69] Janos Simon. “On feasible numbers (preliminary version)”. In: Proceedings of the ninth
annual ACM symposium on Theory of computing. 1977, pp. 195–207.

[70] Howard Straubing. Finite automata, formal logic, and circuit complexity. Springer Science
& Business Media, 1994.

[71] Pascal Tesson and Denis Thérien. “Diamonds are forever: The variety DA”. In: Semi-
groups, algorithms, automata and languages. World Scientific, 2002, pp. 475–499.

[72] Denis Therien and Pascal Tesson. “Logic meets algebra: the case of regular languages”.
In: Logical Methods in Computer Science 3 (2007).

[73] Denis Thérien and Thomas Wilke. “Over words, two variables are as powerful as one
quantifier alternation”. In: Proceedings of the Thirtieth Annual ACM Symposium on The-
ory of Computing. 1998, pp. 234–240.

[74] Ken Thompson. “Programming techniques: Regular expression search algorithm”. In:
Communications of the ACM 11.6 (1968), pp. 419–422.

[75] Heribert Vollmer. Introduction to circuit complexity: a uniform approach. Springer Science
& Business Media, 1999.

[76] Xiang Wang et al. “Hyperscan: A fast multi-pattern regex matcher for modern {CPUs}”.
In: 16th USENIX Symposium on Networked Systems Design and Implementation (NSDI
19). 2019, pp. 631–648.

[77] Thomas Wilke. “Classifying discrete temporal properties”. In: Annual symposium on the-
oretical aspects of computer science. Springer. 1999, pp. 32–46.

[78] Sun Wu and Udi Manber. “Agrep–a fast approximate pattern-matching tool”. In: Usenix
Winter 1992 Technical Conference. 1992, pp. 153–162.

[79] Sun Wu and Udi Manber. “Fast text searching: allowing errors”. In: Communications of
the ACM 35.10 (1992), pp. 83–91.

158 Bibliography

Contents

Remerciements ix

Abstract xi

Contents xiii

Introduction 1

1 Preliminaries 7
1.1 Automata theory . 8

1.1.1 Notations . 8
1.1.2 Words . 8
1.1.3 Automata . 8
1.1.4 Rational expressions . 11
1.1.5 First-order logic . 12

1.2 Algebra . 15
1.2.1 Semigroups and monoids . 15
1.2.2 Languages and semigroups . 16
1.2.3 Green’s relations . 20
1.2.4 Cayley graphs . 23

1.3 Characterization of some known classes of languages 24
1.3.1 FO[<] . 24
1.3.2 FO2[<] . 27

1.4 Boolean circuits . 30
1.4.1 Definitions . 30
1.4.2 Classes of boolean circuits . 32

2 Experimenting on regex validation 37
2.1 Regexes: concept and usage . 39

2.1.1 From rational to regular expressions 39
2.1.2 Usage of the extended regular expressions 43
2.1.3 Existing regex processing algorithms 46

2.2 Compile-time optimization of automata execution 49
2.2.1 Rust’s specificities . 50
2.2.2 Challenges brought by the framework 52
2.2.3 General methodology . 54
2.2.4 Inputs of the benchmarks . 57
2.2.5 Hardware and implications . 60

159

160 Contents

2.3 Simple sequential algorithms . 61
2.3.1 A baseline for sequential execution . 61
2.3.2 Benchmark results . 65

2.4 Semigroups and parallel algorithms . 66
2.4.1 Common methodology for the algorithms using semigroups 67
2.4.2 The algorithms . 70
2.4.3 Benchmark results . 72
2.4.4 Propositions of potential improvements 75
2.4.5 Benchmark results . 83

3 Vectorial circuits 87
3.1 Bit-level parallelism . 88

3.1.1 The example of memchr . 88
3.1.2 Streaming bit-level parallelism . 89
3.1.3 The shift-or algorithm . 92

3.2 Validating regexes over chunks of letters . 94
3.2.1 Formalization . 94
3.2.2 Benchmark . 96

3.3 Classes of vectorial circuits . 100
3.3.1 Definitions . 100
3.3.2 ADD-vectorial circuits . 107
3.3.3 Sweeping-vectorial circuits . 111

3.4 Streaming with circuits . 113
3.4.1 Propagating information . 113
3.4.2 Adapting vectorial circuits to streaming 114

4 From semigroups to vectorial circuits 117
4.1 Evaluation programs . 118

4.1.1 Definition . 118
4.1.2 Waterfall evaluation programs . 119
4.1.3 Sweeping evaluation programs . 124

4.2 Compilation procedure of semigroups in Ap 126
4.2.1 Vectorial encoding of a partial evaluation of a word 126
4.2.2 Addition lemma . 127
4.2.3 The CollapseS operation . 128
4.2.4 The FallingS(s) operation . 131

4.3 Compilation procedure of semigroups in DA 133
4.3.1 An intermediary operation . 133
4.3.2 The JProdS operation . 135
4.3.3 The LProdS and RProdS operations 136
4.3.4 The LSplitS,i and RSplitS,i operations 137

Conclusion and future prospects 139
Contributions . 139
Future prospects . 140

Efficient implementations . 140
Extending the theory . 140

Contents 161

A Supplementary benchmarks 143
A.1 Benchmark on Intel processors . 143

A.1.1 The node dahu . 143
A.1.2 The node chifflot . 147

A.2 Benchmark on an AMD processor: the node chiclet 150

Bibliography 153

Contents 159

162 Contents

From semigroup theory to vectorization: recognizing regular languages
Abstract

The pursuit of optimizing regular expression validation has been a long-standing challenge, spanning
several decades. Over time, substantial progress has been made through a vast range of approaches,
spanning from ingenious new algorithms to intricate low-level optimizations.
Cutting-edge tools have harnessed these optimization techniques to continually push the boundaries
of efficient execution. One notable advancement is the integration of vectorization, a method that
leverages low-level parallelism to process data in batches, resulting in significant performance en-
hancements. While there has been extensive research on designing handmade tailored algorithms for
particular languages, these solutions often lack generalizability, as the underlying methodology cannot
be applied indiscriminately to any regular expression, which makes it difficult to integrate to existing
tools.
This thesis provides a theoretical framework in which it is possible to generate vectorized programs
for regular expressions corresponding to rational expressions in a given class. To do so, we rely on the
algebraic theory of automata, which provides tools to process letters in parallel. These tools also allow
for a deeper understanding of the underlying regular language, which gives access to some properties
that are useful when producing vectorized algorithms. The contribution of this thesis is twofold.
First, it provides implementations and preliminary benchmarks to study the potential efficiency of
algorithms using algebra and vectorization. Second, it gives algorithms that construct vectorized
programs for languages in specific classes of rational expressions, namely the first order logic and its
subset restricted to two variables.

Keywords: regular expression, algebraic theory of automata

De la théorie des semigroupes à la vectorisation : valider les langages réguliers
Résumé

L’évaluation efficace des expressions régulières constitue un défi persistant depuis de nombreuses dé-
cennies. Au fil du temps, des progrès substantiels ont été réalisés grâce à une variété d’approches,
allant de nouveaux et ingénieux algorithmes à des optimisations complexes de bas niveau.
Les outils de pointe de ce domaine utilisent ces techniques d’optimisation, et repoussent constamment
les limites de leur efficacité. Une avancée notoire réside dans l’intégration de la vectorisation, qui
exploite une forme de parallélisme de bas niveau pour traiter l’entrée par blocs, entraînant ainsi
d’importantes améliorations de performances. Malgré une recherche approfondie sur la conception
d’algorithmes sur mesure pour des tâches particulières, ces solutions manquent souvent de généricité,
car la méthodologie sous-jacente à ces algorithmes ne peut pas être appliquée de manière indiscriminée
à n’importe quelle expression régulière, ce qui rend difficile son intégration dans les outils existants.
Cette thèse présente un cadre théorique permettant de générer des programmes vectorisés particuliers
capables d’évaluer les expressions régulières correspondant aux expressions rationnelles appartenant
à une classe logique donnée. L’intérêt de ces programmes vectorisés vient de l’utilisation de la théorie
algébrique des automates, qui offre certains outils algébriques permettant de traiter les lettres en pa-
rallèle. Ces outils permettent également d’analyser les langages réguliers plus finement, offrent accès
à des optimisations des programmes vectorisés basées sur les propriétés algébriques de ces langages.
Cette thèse apporte des contributions dans deux domaines. D’une part, nous présentons des implé-
mentations et des benchmarks préliminaires, afin d’étudier les possibilités offertes par l’utilisation de
l’algèbre et de la vectorisation dans les algorithmes d’évaluation des expressions régulières. D’autre
part, nous proposons des algorithmes capables de générer des programmes vectorisés reconnaissant
les langages appartenant à deux classes d’expressions rationnelles, la logique du premier ordre et sa
restriction aux formules utilisant au plus deux variables.

Mots clés : expression régulière, théorie algébrique des automates

Inria Lille
40, avenue Halley - Bât A - Park Plaza, 59650 Villeneuve d’Ascq - France

