
Université de Lille

Doctoral School: MADIS

University Department: CRIStAL

Thesis defended by: Balyogi Mohan Dash on 7 March 2024

In partial fulfillment of the requirements for a Ph.D. degree from Université de Lille

Academic field: Automatique et Informatique Industriel

Robust Hybrid Fault Detection and Isolation by

Integrating Bond Graph and Artificial Intelligence
Application to Green Hydrogen Production

Thesis supervised by
Supervisor: Belkacem - Professor and Director of Research,

OULD-BOUAMAMA Polytech Lille, University of Lille,
Lille (France)

Co-supervisor: Komi Midzozi PEKPE - Assistant Professor,
Polytech Lille, University of Lille,
Lille (France)

Mahdi BOUKERDJA , - Assistant Professor,
Polytech Lille, University of Lille,
Lille (France)

Composition of jury
Referees: Kamal MEDJAHER - Professor,

École nationale d’Ingénieurs de Tarbes ENIT,
Tarbes Cedex (France)

Mitra FOULADIRAD - Professor, Ecole Centrale de Marseille,
Marseille (France)

Examiners: Kamal-Youcef - Professor,
YOUCEFTOUMI Massachusetts Institute of Technology,
(President of the jury) Cambridge (USA)
Arun Kumar - Professor,
SAMANTARAY Indian Institute of Technology,

Kharagpur (India)
Anne-Lise - Assistant Professor,
GEHIN Polytech Lille, University of Lille,

Lille (France)
Invited Guest: Alain RIVERO - Doctor, R&D Project Manager SNCF,

Paris (France)



Université de Lille

École Doctorale: MADIS

Département Universitaire: CRIStAL

Thèse présentée par: Balyogi Mohan Dash le 7 mars 2024

En vue de l’obtention du doctorat de l’Université de Lille

Domaine académique: Automatique et Informatique Industriel

Détection et Isolation Hybrides Robustes des Défauts

par l’Intégration du Bond Graph et de l’Intelligence

Artificielle
Application à la Production d’Hydrogène Vert

Direction de thèse
Directeur: Belkacem - Professeur et Directeur de Recherche,

OULD-BOUAMAMA Polytech Lille, Université de Lille, Lille (France)
Co-encadrant: Komi Midzodzi PEKPE - Maître de Conférences,

Polytech Lille, Université de Lille, Lille (France)
Mahdi BOUKERDJA , - Maître de Conférences,

Polytech Lille, Université de Lille, Lille (France)
Composition du jury
Rapporteurs: Kamal MEDJAHER - Professeur,

École nationale d’Ingénieurs de Tarbes ENIT,
Tarbes Cedex (France)

Mitra FOULADIRAD - Professeur, Ecole Centrale de Marseille,
Marseille (France)

Examinateurs: Kamal-Youcef - Professeur,
YOUCEFTOUMI Massachusetts Institute of Technology,
(Président du jury) Cambridge (USA)
Arun Kumar - Professeur,
SAMANTARAY Indian Institute of Technology,

Kharagpur (India)
Anne-Lise GEHIN - Maître de Conférences,

Polytech Lille, Université de Lille, Lille (France)
Invité: Alain RIVERO - Docteur, Chef de projet R&D SNCF,

Paris (France)





Abstract

This thesis addresses the critical need for effective Fault Detection and Isolation (FDI)

in green hydrogen (GH2) production, a key player in mitigating the greenhouse effect.

To tackle this challenge, this thesis introduces a hybrid strategy for FDI. Extensive

reviews of FDI algorithms reveal a gap in existing literature, emphasizing accuracy

but neglecting the need for labeled data. Additionally, explainability in Hybrid-FDI

is often overlooked. The proposed hybrid approach aims to be efficient in data usage

and explainable, leveraging physics-based models and Artificial Intelligence (AI). This

study introduces Bond Graph-Convolutional Neural Net (BG-CNN), a novel hybrid FDI

method addressing AI model training challenges for fault diagnosis. BG-CNN combines

BG residual generation and CNN-based fault classification, particularly in scenarios with

limited labeled data. Additionally, a Self-Supervised Learning (SSL) method enhances FDI

in such situations. The study also discusses Bond Graph-eXplainable AI (BG-XAI), an

occlusion-based method, emphasizing the importance of meaningful explanations for fault

predictions, showcasing its effectiveness through visualizations. The BG-CNN method

with SSL was employed for the FDI of the Proton Exchange Membrane (PEM) electrolyzer

and railway tracks, surpassing the performance of traditional methods. Comparative

analysis demonstrated the superior performance of the proposed method, particularly in

scenarios with limited labeled data, outperforming state-of-the-art SSL methods. The

BG-XAI method was used to provide explanations for predictions in accordance with

structural analysis.

Keywords – Machine Learning, Bond Graph, Self-supervised Learning, Explainable AI,

Diagnostics, Green Hydrogen
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Résumé

Cette thèse aborde le besoin critique d’une détection et d’une isolation des fautes (FDI)

efficaces dans la production d’hydrogène vert (GH2), un acteur clé dans l’atténuation de

l’effet de serre. Pour relever ce défi, cette thèse introduit une stratégie hybride pour la

détection et l’isolation des défauts. Des études approfondies des algorithmes FDI révèlent

une lacune dans la littérature existante, mettant l’accent sur la précision mais négligeant

le besoin de données étiquetées. En outre, l’explicabilité de l’FDI hybride est souvent

négligée. L’approche hybride proposée vise à être efficace dans l’utilisation des données et

expicable, en s’appuyant sur des modèles basés sur la physique et l’intelligence artificielle

(IA). Cette étude présente Bond Graph-Convolutional Neural Net (BG-CNN), une nouvelle

méthode FDI hybride qui répond aux défis de la formation de modèles IA pour le diagnostic

des défauts. Le BG-CNN combine la génération de résidus BG et la classification des

défauts basée sur le CNN, démontrant une performance supérieure en particulier dans les

scénarios avec des données étiquetées limitées. En outre, une méthode d’apprentissage

auto-supervisé (SSL) améliore l’FDI dans de telles situations. L’étude traite également de

Bond Graph-eXplainable AI (BG-XAI), une méthode basée sur l’occlusion, soulignant

l’importance d’explications significatives pour les prédictions de défauts, en montrant son

efficacité à l’aide de visualisations. La méthode BG-CNN avec SSL a été employée pour

l’FDI de l’électrolyseur Proton Exchange Membrane (PEM) et des voies ferrées, surpassant

les performances des méthodes traditionnelles. L’analyse comparative a démontré les

performances supérieures de la méthode proposée, en particulier dans les scénarios avec

des données étiquetées limitées, surpassant les méthodes SSL de pointe. La méthode

BG-XAI a été utilisée pour expliquer les prédictions conformément à l’analyse structurelle.

Mots clés – Apprentissage automatique, Bond Graph, apprentissage auto-supervisé, IA

explicable, diagnostics, Hydrogène vert
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Introduction

PhD Thesis Framework

The research presented in this PhD thesis was conducted at CRIStAL (Centre de Recherche

en Informatique, Signal et Automatique de Lille, CNRS UMR 9189), under the guidance

of Professor Belkacem Ould Bouamama, Dr. Komi Midzodzi Pekpe and Dr. Mahdi

Boukerdja. Funding and support for this research were provided by the University of Lille,

Polytech Lille, and the Hauts-de-France region. This backing includes financial assistance

for the PhD grant and the expenses associated with the experimental platform.

Context

15th January 2023 was a strange day in Germany. The winds up north were vigorous

enough to power the entire nation using the numerous wind turbines available onshore and

offshore (DW Planet A). Yet, an odd twist occurred: this surplus of economical renewable

energy could not reach where it was needed, resulting in wasted potential. Simultaneously,

in the south, where the winds were less fervent, people were urged to save energy, while

coal power plants were reactivated to meet demand. It was a paradox – one part of the

country was drowning in electricity, the other at risk of shortage. This encapsulates a key

challenge in adopting renewable energy. How can we address this intermittency of wind

and solar energies? Indeed, this is one of the main societal issues of renewable energy use.

Several technological solutions have been developed for this task.

One way is building high-voltage transmission lines, but this brings issues like property

rights and environmental impact. Another is immense battery storage, suitable for short

periods but not adequate for days or weeks of electricity storage. Here enters hydrogen,

created from excess electricity, and can be used with zero CO2 emissions. Hence, the

significance of green hydrogen production and maintenance emerges as a critical endeavor

to mitigate the intermittency of renewable energy sources. Indeed, green hydrogen is

a very promising energy vector for the future because it is derived from renewable and

inexhaustible sources, which are wind and/or solar energy. It can be stored over the long

term in high-pressure cylinders by using an electrolyzer and exploited using different clean
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Figure 0.1: Generation and application of green hydrogen

technologies for power to X (where X can be, electricity as a vector of energy or gas while

transformed into methane by methanation through a synthesis reaction with CO2).

Green Hydrogen is generated through the emission-free process of water electrolysis

(Equation. 0.1) powered by renewable electricity (Figure. 0.1) and it holds the promise of

zero greenhouse gas emissions (Kumar and Himabindu, 2019). This tantalizing prospect

extends its benefits across various sectors, as it can serve as a versatile chemical feedstock,

a source of clean heat, a key ingredient in synthetic fuel production, and even a means

of energy conversion through fuel cells (Ball and Wietschel, 2009). Furthermore, green

hydrogen’s capacity for long-term energy storage, a rarity among green technologies,

positions it as an instrumental solution for bridging seasonal energy fluctuations (Tarkowski,

2019).

H2O+ Electricity
(
237.2 kJ.mol−1

)
+ Heat

(
48.6 kJ.mol−1

)
= H2 +

1

2
O2 (0.1)

Within the framework of green hydrogen production, diverse energy elements collaborate

synergistically. These include solar panels and wind turbines, responsible for generating

electricity, as well as a battery system that ensures a consistent electricity supply to the

electrolyzer (Mazzeo et al., 2022). The electrolyzer, along with the hydrogen storage

system, constitutes essential components of this arrangement (Falcão and Pinto, 2020).

Given the intricate nature of this production system, which encompasses multiple energy

domains, the occurrence of an unnoticed flaw in any of these components could severely
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impede the overall efficiency and productivity of the entire facility (Kheirrouz et al., 2022).

In more serious scenarios, it could even lead to safety concerns. As a result, ensuring

effective surveillance and the prompt identification of any malfunctions in this green

hydrogen production system holds paramount importance not only to insure the safety of

equipment and personnel but also to ensure energy availability to the end user. This is

precisely the focus of this thesis. This PhD thesis aims to develop a robust, precise, and

reliable algorithm for identifying faults in Hybrid Renewable Energy Systems (HERS) by

merging the system’s physics with Artificial Intelligence (AI).

Research Gap

Numerous studies have been undertaken that present an exhaustive survey of diverse

Fault Detection and Isolation (FDI) algorithms (Frank, 1990; Garcia and Frank, 1997;

Samantaray and Bouamama, 2008). In accordance with a trilogy of review articles

published in 2003 (Venkatasubramanian et al., 2003c,a,b), approaches to FDI can be

classified into three categories: physics-based, data-driven/knowledge-based, and hybrid

methods.

Data-driven (Yin et al., 2012) methods involve the analysis of a system’s current behavior

using a substantial dataset of its past performance. Unlike the physics-based approach,

this method doesn’t rely on a physical system model, but it demands a significant amount

of data to function effectively. On the other hand, the physics-based method necessitates

a precise mathematical model of the system to identify faults (Chen and Patton, 2012).

Hybrid FDI, as highlighted by (Tidriri et al., 2016), has gained increasing research

attention due to the limitations inherent in individual FDI methods. This approach

involves merging data-driven and physics-based strategies to offer a more comprehensive

fault diagnosis solution. By combining the strengths of each method and offsetting their

weaknesses, this approach has shown promise.

However, existing literature on hybrid FDI often concentrates on enhancing FDI accuracy

while disregarding the necessity of faulty labeled data to achieve such accuracy (Xu et al.,

2021). This oversight is noteworthy since industries frequently encounter challenges in

obtaining sufficient or well-balanced labeled fault data. This scarcity or imbalance of

data can result in biased data-driven models. Additionally, a facet often overlooked
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in Hybrid-FDI pertains to the interpretability of the algorithms used. Frequently, AI

algorithms employed in hybrid FDI are treated as black boxes, thereby diminishing the

transparency of the entire algorithmic process (Wilhelm et al., 2021).

Considering these gaps in the scientific literature, further research is imperative to explore

novel methods of integrating physics-based and AI-based approaches. In this thesis,

both approaches are combined using a new formalism named BG-CNN. The aim should

be to decrease the reliance on labeled fault data while simultaneously enhancing the

interpretability of AI techniques.

Research Aim and Objectives

The proposed research aims to meet the above-mentioned gap by presenting a hybrid

strategy that brings together the strengths of physics-based and data-driven methods.

This approach aims to offer an FDI solution for a multi-source green hydrogen system that

is both efficient in data usage and interpretable. The hybrid method should incorporate

the advantages of physics-based methods, such as physics-based models, to capture system

dynamics, physical knowledge and generate residuals, while also harnessing the power of

data-driven methods, such as AI, to enhance the accuracy of fault diagnosis, improving

fault detection robustness and isolability index. The proposed framework has the potential

to enhance the efficiency and sustainability of green hydrogen production, which is of

significant importance for lowering costs and meeting the growing demand for clean energy.

These are the objectives of the study, which are achieved in this thesis:

• To compare the physics-based and AI-based FDI methods side by side to clearly

understand their advantages and disadvantages.

• To appropriately combine the strengths of both methods to reduce the amount of

labeled fault data required by the deep learning-based FDI.

• To develop self-supervised methods that leverage the vast amount of available

unlabeled data and the physical model of the system to further reduce the amount

of labeled data required.

• To explain the decision-making process of the black box deep learning model using

Explainable AI techniques and the physical model of the system as a backbone.
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• To develop a Hybrid FDI system, which will be applied to the hybrid multisource

platform of green hydrogen production, located at Polytech, Lille. To show the

generality of the developed methods, the application is extended FDI of rail system

including rail-wheel contact.

Contributions

The main contributions of this thesis can be summarized as follows:

Firstly, we introduce a framework called Bond Graph Convolutional Network (BG CNN),

which integrates a physics-based approach (Diagnosis Bond Graph) with an AI-based

method (Convolutional Neural Network (CNN)). This combination aims to minimize the

need for extensive labeled data during AI model training while maintaining a high level of

accuracy.

Secondly, we propose a self-supervised method, which uses a robust FDI w.r.t parameter,

based on Linear Fractional Transformation Bond Graph (LFT-BG) generated pseudo-

labels. This approach capitalizes on the abundance of unlabeled data within the industry.

By utilizing this method, we can pre-train a deep learning model and subsequently transfer

the acquired knowledge to the specific task of fault isolation, even when only a small

amount of labeled data is available.

Lastly, to enhance trust and transparency in the decisions made by the deep-learning model

through the development of the Bond Graph-eXplainable AI (BG-XAI) method. This

method provides real-time explanations by employing occlusion-based feature importance

and the fault signature matrix. The goal is to offer insights into the model’s decision-

making process, promoting better understanding and confidence in its outcomes.

Limitations of This Research

Similar to all scientific research, this study is not exempt from limitations.

Specifically, this thesis is exclusively focused on fault detection and isolation. It does not

cover the topic of estimating the severity of faults. This estimation of fault severity is

important for developing fault-tolerant systems.
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In a broader context, a hybrid method is a combination of any two or more distinct

methodologies (Wilhelm et al., 2021). However, in the context of this study, hybrid FDI

methods specifically denote the fusion of a physics-based method with a data-driven

method.

AI-based methods require faulty data to effectively learn patterns. Nonetheless, acquiring

such faulty data from real systems can be very dangerous and expensive. Thus, simulations

of the system are employed to generate data from faulty modes, although these simulations

might not completely replicate real system fault scenarios.

In this research, a supervised AI approach is employed, requiring both input and output

data for training. Consequently, if a fault mode present in the monitored system is absent

from the training data, the AI method may struggle to accurately isolate (or classify) the

fault (Lei et al., 2020). However, the physics-based method can still identify such cases.

Because physics-based FDI is utilized, a mathematical system model is essential, even

if its accuracy is limited. In complex systems, lacking a pre-established mathematical

model, the application of the proposed hybrid FDI method could prove challenging.

Thesis Outline

The subject matter of the thesis is presented in the following five chapters,

• Chapter-1 discusses the traditional FDI methods, highlighting their advantages and

limitations. A Direct Current (DC) motor is presented for clear understanding and

is used as a common thread to demonstrate the application of these conventional

methods. Additionally, an overview is provided in the subsequent chapter, which

delves into the utilization of LFT-BG among physics-based methods and artificial

neural networks among data-driven approaches for FDI, employing a DC motor model

and dataset generation, followed by a comparative analysis of their performance.

• Chapter-2, delves into an in-depth discussion of the existing literature on hybrid FDI.

The review starts with a comprehensive exploration of various hybrid FDI approaches.

It then narrows its focus to studies that aim to reduce the amount of labeled data

required by AI methods. Subsequently, the application of Self-Supervised Learning

(SSL) in FDI is examined. Following this, the chapter reviews the utilization of
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Explainable AI methods in FDI. Finally, it delves into literature specific to FDI in

electrolyzers and railway tracks. After each segment of the literature review, we

provide a synthesis to highlight the gaps present in the current body of literature.

• Chapter-3 presents an innovative approach to address challenges in training AI

models for fault diagnosis. The study introduces a novel hybrid FDI method

named BG-CNN, which combines BG residual generation and CNN-based fault

classification. The process involves utilizing residual signals from a system model

and employing a CNN for supervised learning. The effectiveness of BG-CNN is

demonstrated through real-time applications, considering various fault types and

introducing evaluation matrices like the F1-score. Comparative analysis with other

machine learning (ML) and deep learning (DL) algorithms using a DC motor FDI

example reveals BG-CNN’s superior performance, particularly in scenarios with

limited labeled data.

In addition, a SSL method is introduced to further enhance FDI using deep learning

techniques, particularly in situations with limited labeled data. The SSL process

involves two main steps: utilizing a system’s LFT-BG model to automatically

generate pseudo-labels and self-supervised training using a combination of these

pseudo-labels and a small set of actual fault labels. The section outlines the SSL

algorithm’s flow, emphasizing the pre-training and fine-tuning phases, and introduces

a hierarchical combination of LFT-BG and deep learning methods for online FDI.

Furthermore, the Explanation of the Fault Class Prediction using BG-XAI in the

context of FDI is discussed, highlighting the importance of creating meaningful

explanations for fault predictions. The section introduces BG-XAI, an occlusion-

based method that assesses the contribution of each residual signal to enhance

interpretability. The analysis extends to structural equations, incorporating Fault

Signature Matrices (FSM). The BG-XAI method is illustrated through visualizations

of residual importance in a pedagogical DC motor dataset, showcasing the model’s

consistent allocation of significance based on fault severity.

• Chapter-4 demonstrates the application of the developed hybrid algorithm for FDI

in the Proton Exchange Membrane (PEM) electrolyzer, a platform present in the

CRIStAL laboratory and used for green hydrogen production. The creation of
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the dataset is then described, incorporating fault data from the actual system and

utilizing a digital twin for additional fault scenarios. The SSL algorithm proposed

in this work is applied to the obtained dataset. It involves training a CNN using

pseudo labels generated from an LFT-BG model of the system. Remarkably, a high

F1-score of 0.83 is achieved, even with as few as 4 samples per fault class. The

predictions made by the trained CNN are further elucidated using the BG-XAI

method. Subsequently, an ablation study is conducted to investigate the impact

of various parameters on the performance of the proposed algorithm. Finally, a

comparative analysis is carried out with state-of-the-art SSL methods, revealing

superior performance by our proposed method, especially when the number of

labeled data is limited.

• Chapter-5 illustrates the practical use of the developed hybrid FDI methodology

extended in diagnosing faults in railway tracks. This application was chosen as part

of the start of a research project with the railway company to test the feasibility of

the developed algorithms in complex mechatronic systems. As in such conditions,

the use of only data-based methods showed a lack of robustness in fault detection.

Initially, we establish a mathematical model for the train track system. Subsequently,

we use this model to simulate data, incorporating faults manually. To perform

FDI, we employ the proposed BG-CNN method. Remarkably, this method achieves

an F1-score of 0.78 with only 8 samples per fault class, compared to the double

number of samples required when using only sensor measurements. Finally, the

BG-XAI method is employed to generate explanations for the predictions made by

the BG-CNN. These explanations are in line with the structural analysis of the

system.

• Chapter-6 concludes this thesis by successfully achieving all its objectives through

the combination of physics-based and AI approaches. Hybrid methods such as

BG-CNN and SSL were introduced, demonstrating their applications in PEM

electrolyzers and railway tracks. The BG-XAI method was employed to elucidate AI

predictions in alignment with structural analysis. Real-time applications effectively

showcased the methodology’s practicality. Future research directions include the

exploration of fault severity estimation, utilization of various configurations of FDI
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methods, incorporation of unsupervised learning, application of metric learning,

the establishment of standardized fault datasets, and assessment of methodology

robustness to external factors.

Results and Dissemination

The quantifiable results of the thesis were disseminated through the publications listed

below:

International Journal

• Dash, B.M., Ould Bouamama, B., Pekpe, K.M. and Boukerdja, M., Prior Knowledge-

Infused Self-Supervised Learning and Explainable Ai for Fault Detection and Isolation

in Pem Electrolyzers. (under review)

• Dash, B.M., Ould Bouamama, B., Boukerdja, M. and Pekpe, K.M., 2024. Bond

Graph-CNN based hybrid fault diagnosis with minimum labeled data. Engineering

Applications of Artificial Intelligence, 131, p.107734.

International Conferences

• Dash, B.M., Ould Bouamama, B., Boukerdja, M. and Pekpe, K.M., 2022, December.

A Comparison of Model-Based and Machine Learning Techniques for Fault Diagnosis.

In 2022 23rd International Middle East Power Systems Conference (MEPCON) (pp.

1-7). IEEE.

• Dash, B.M., Ould Bouamama, B., Pekpe, K.M. and Boukerdja, M., 2023, May.

FDI-X: An Occlusion-based Approach for Improving the Explainability of Deep

Learning Models in Fault Detection and Isolation. In 2023 International Conference

on Control, Automation and Diagnosis (ICCAD) (pp. 01-06). IEEE.

Poster Presentation

• Poster title: Unraveling the Mysteries of the Deep Learning Model in Fault Diagnosis

with BG-XAI. Journée Régionale des Doctorants en Automatique, Lille, 21/06/2023

• Poster title: Comparative Study for the Fault Detection and Isolation: LFT-Bond

Graph Vs Machine Learning. Journée Régionale des Doctorants en Automatique,

Lille, 14/06/2022
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Youtube Channel

In my YouTube channel, Intelligent Machines, I produced several videos showcasing

the replication of AI-based FDI methods. These methods were applied to open-source

data sets encompassing turbo engines, solar panels, chemical processes, and bearing faults.

The accompanying codes for these replications have been made readily available for easy

duplication.
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1 Traditional Methods for Fault Detection and

Isolation

In this chapter, some basic definitions and the traditional methods for FDI are briefly

discussed, with a focus on their advantages and limitations. Additionally, a pedagogical

example involving a DC motor is introduced to illustrate how these traditional methods

can be applied for FDI.

1.1 Introduction to FDI

According to the International Federation of Automatic Control (IFAC), a fault is described

as “An unpermitted deviation of at least one characteristic property or parameter of

the system from the acceptable/usual/standard condition.” Faults in a system can be

categorized according to their characteristics and the components they occur (Figure 1.1).

Fault diagnosis algorithms are created to find faults in a system, monitor how much the

system’s quality is dropping, and figure out what’s causing these problems (failures). This

is achieved by monitoring the physical property changes, through detectable phenomena

(Orchard and Vachtsevanos, 2009). The term fault diagnosis covers a broad range of

methods that includes fault detection, fault isolation, and fault identification (Figure 1.2).

As mentioned earlier, FDI methods fall into three primary categories: physics-based, data-

driven, and hybrid. In this section, a concise overview of physics-based and data-driven

FDI methods is provided, highlighting their respective strengths and weaknesses. For a

more comprehensive discussion of the hybrid method, please refer to Chapter-2, titled ‘The

State of the Art’. A visual representation of the taxonomy for these traditional methods

is presented in Figure 1.3. Furthermore, the rationale for selecting LFT-BG among the

physics-based methods and choosing DL-based AI among the data-driven methods for the

development of novel hybrid methods in this study will be explained.
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Faults

Nature of fault

Abrupt
Sudden, persistent faults. 

Example: Wire disconnects abruptly in 
electrical circuit.

Incipient
Gradual faults, drift-like.

Example: Resistivity slowly rises in 
electrical circuit.

Intermittent 
Faults

Quick appearing/disappearing faults.

Example: Faulty relays in electrical circuit.

Occurrence of 
fault

Actuator
Malfunctions in system actuation, like flow 
blockages or voltage problems.

Sensor
Significant measurement variations, sensor 
drift, and biases in readings.

Parametric
Alters fundamental processes, seen in system 
parameters like tank leakage or capacitor 
discharge.

Figure 1.1: Different kinds of fault

Fault Diagnosis

Fault 
IdentificationFault IsolationFault Detection

Detect abnormal 
behavior in 
monitored 

system.

Pinpoint faulty 
component(s)

Assess fault's 
nature and 

extent.

Figure 1.2: Different steps of fault diagnosis
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FDI

Physics-
based

Qualitative
Diagraph, Fuzzy logic, 

Bond graph etc.

Quantitative
Observers, Parity space, 
Parameter estimation, 

Bond Graph (ARR) etc.

Data-driven

Unsupervised
Clustering, Anomaly 
detection, PCA, ANN

etc.

Supervised
SVM, BN, Random 

forest, ANN etc.

Semi-
supervised

ANN, pseudo labeling 
etc.

Figure 1.3: Taxonomy of traditional FDI methods

1.2 Physics-based FDI Methods

The utilization of physics-based techniques necessitates a precise mathematical

representation of the system, attainable through physics-based formulations or system

identification procedures. The mathematical model depicts how the system should ideally

behave, and it is contrasted with the actual behavior of the real system to monitor its

performance. In the presence of a fault, the behavior of the real system is different from

the mathematical model. When a fault occurs, the real system’s performance deviates

from the expected behavior described by the mathematical model. This difference between

normal and faulty operation is termed as a residual. Creating these residuals is the initial

phase in physics-based approaches, followed by their evaluation, as depicted in Figure 1.4.

In normal operation, it is expected that the residuals will converge to zero. However, in a

faulty situation, the residuals exceed certain threshold values (static or adaptive).

In physics-based approaches, there exists a distinction between quantitative and qualitative

methods, based on the extent of prior knowledge accessible regarding the system.

Qualitative methods leverage the inherent structure of the system model, causal

connections, and rule-based relationships to formulate diagnostic inferences. These

inferences are then employed to convey fault-related information to potential diagnostic

13



Actuators Process Sensors

Mathematical model

Residual generation

Residual evaluation

Actuator faults Component faults Sensor faults

Diagnosis decision

Input Output

Figure 1.4: Schematic diagram of physics-based FDI

candidates. Many of these qualitative methodologies adopt graphical representations,

as seen in Diagraphs, where arcs symbolize cause-effect relationships. Other examples

include bipartite graphs, fault trees, and bond graphs (Bouamama et al., 2014). The

graphical model structure is generally flexible and can accommodate various relationships.

The properties of the system model graph can be employed to establish monitorability,

i.e., determining which part of the system can be monitored, through the study of graph

connectedness. Furthermore, structural observability and controllability can be formulated

in a general way. However, a significant drawback of these methods lies in their qualitative

nature, which limits their capacity to discriminate between different faults.

Quantitative methods prove advantageous to address the limitations of qualitative

approaches. These quantitative techniques involve the application of observers,

parity space, and parameter estimation, wherein the system is characterized through

mathematical relationships between inputs and outputs. Each of these methods is described

in brief.

The observers compare process measurements with their estimated values to create a

fault detection signal called the residual (Isermann, 2011). To improve accuracy, a

set of estimators is used, each sensitive to certain faults and resistant to noise and

uncertainties (Chen and Patton, 2012). However, observer-based methods encounter

challenges in pinpointing the fault source within the model and establishing its connection
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to the responsible component. Observers also face difficulties in achieving convergence in

non-linear processes.

On the other hand, the parity space approach ensures the consistency of system

measurements by comparing them with parity equations derived from the system model.

This technique applies to both time-domain state-space and frequency-domain input-

output models. Nonetheless, it has less sensitivity to faults and robustness against

disturbances compared with the observer-based methods (Ding, 2008). The parameter

estimation method, as outlined in Akhenak et al., employs system identification techniques

to estimate parameters using system input and output data. These estimated parameters

are then compared with reference model parameters to detect faults. However, a drawback

of this method is its reliance on continuous excitation, which can be problematic in

stationary processes.

1.2.1 LFT-Bond Graph for FDI

Upon analyzing the existing physics-based FDI methods, Bond Graph (BG) emerges as

a noteworthy option due to its inherent advantages derived from both qualitative and

quantitative aspects. One major advantage offered by the BG is the ability to create a

modular design for subsystems or components (Sood et al., 2022), which can then be

interconnected. This feature is particularly crucial in the design of multisource renewable

systems like green hydrogen production.

The BG is based on a multiphysics modeling theory that involves the power exchange

between two subsystems A and B. The power exchange is represented by a half arrow

and labeled with two power variables, effort (e) and flow (f), where the product e× f

is the exchanged power (Figure 1.5a). The BG exhibits powerful causal and structural

properties, which are represented by the position of a causal stroke (Figure 1.5b) and

result in a corresponding simulation block diagram (Figure 1.5c).

On the other hand, BG as a graphical method, streamlines the process of establishing causal

connections among different components or subsystems. This is extremely advantageous

to do the structural diagnosability analysis (Kaci et al., 2017). Additionally, the

Diagnostics Bond Graph (DBG) enables the use of quantitative FDI by generating

Analytical Redundancy Relations (ARR) through the utilization of the covering causal
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Figure 1.5: Bond graph for the modeling of multiphysics systems

path approach (Bouamama et al., 2006). ARRs can be written in terms of only known

values ARR = {U ,S, ϑ}, where U is the set of input to the system (known), S is the

sensor measurements (known) and ϑ is the set of parameter values (known). To realize

the ARRs the following steps are performed:

1. A bond graph model of the system is developed by utilizing physical laws. First of

all the BG model should be put in derivative causality.

2. The corresponding DBG model is derived by dualizing the sensors. The values

obtained from the sensors serve as inputs to the DBG model.

3. The ARRs are determined by eliminating unknown variables using the ‘covering

causal path’ approach. This graphical approach corresponds to the theory of

eliminating unknown variables.

The numerical evaluation of the ARR yields a residual signal (ri = Eval(ARRi)) that

can be monitored. r = {r1, r2, ..., rq} is the set of generated residuals. The residuals

are characterized by being close to zero in normal operation and different from zero in

the presence of faults, thereby representing the current state of the system. To ensure

robustness concerning various noises, each of the residuals in r is checked against a

corresponding ‘deterministic threshold’ to identify the potential faults.

An inherent advantage of utilizing BGs is their suitability for monitoring highly nonlinear

systems. DBG has been used for FDI of rail tracks (Silva et al., 2007), mechatronics

systems (Cauffriez et al., 2016), chemical processes (Ould-Bouamama et al., 2012) and

renewable energy systems (Abdallah et al., 2018) involving highly non-linear processes

and multiple energy domains.
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However, the parameter uncertainty is not considered by the DBG. This is crucial because

parameters are typically estimated through fitting against experimental curves. Neglecting

this parameter uncertainty can result in false alarms and reduce the overall robustness

of the FDI system. To address this concern, the Linear Fractional Transformation Bond

Graph (LFT-BG) technique is employed in this study as it handles parameter uncertainties

by offering adaptive thresholds for the residuals (Djeziri et al., 2007). In LFT-BG, all the

parameters are modeled with uncertainty: ϑ · (1 + δϑ), where δϑ is the relative uncertainty

associated with ϑ. The value of δϑ can be obtained from the manufacturer or by doing

some statistical tests. For example, in Equation 1.1, the effect exerted on the element R is

denoted as eR (which can represent voltage), while fR signifies the flow (can be current).

The element R possesses a nominal value, referred to as Rn, and an associated relative

uncertainty denoted as δR. Utilizing the LFT formalism, the total effect can be partitioned

into the effect arising from the nominal component (eRn) and the effect stemming from

the uncertain component (eδR).

eR = fR · (1± δR)Rn

eR = fRRn ± fRδRRn

eR = eRn ± eδR

(1.1)

Similarly, the residual signal obtained from the LFT-BG model of the system is divided

into a nominal part (rn = Ψ(U ,S, ϑ)) and an uncertain part (a = Ψ(S, ϑ, δϑ)). All

system parameters inherently possess some level of uncertainty. Therefore, the parameter

δϑ is computed for each system parameter. However, the magnitude of δϑ tends to be

higher for components characterized by greater uncertainty in parameter estimation. The

uncertain component of the residual signal is utilized to determine an adaptive threshold

a = {a1, a2, ..., aq}, reducing the number of false alarms. The function Ψ(β1, β2, β3) can

take the form of either a linear or nonlinear function comprising the variables β1, β2, and

β3.

By continuously checking each residual (r) against the threshold (a) an coherence vector,

C ∈ Rq can be obtained such that:
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Table 1.1: FSM using structural analysis

ARR1 ARR2 · · · ARRq

E1 γ11 γ12 · · · γ1q
E2 γ21 γ22 . . . γ2q
...

...
... . . . ...

Em γm1 γm2 · · · γmq

Ci =

 1, if |ri| > ai

0, otherwise
(1.2)

This coherence vector is matched with the Fault Signature Matrix (FSM) to isolate the

fault as given in Figure 1.6. The elements of the FSM are binary, represented as γ ∈ {0, 1}.

In this representation, each row of the FSM corresponds to a component to be monitored

(Ei), and each column represents an ARR, represented as ARRj . The component may be

an input to the system, a sensor measurement, or a system parameter. If ARRj is sensitive

to the component Ei, then γij = 1. Conversely, if ARRj is not sensitive, then γij = 0. An

example of FSM is given in Table 1.1, where q is the total number of residuals and m is

the total number of components to be monitored. Each row of the FSM gives the Fault

Signature (Fi
s ∈ Rq) for each element Ei. If the obtained coherence vector C = Fi

s then

the present fault is Ei. It may happen that two different components display the same

fault signature, making it challenging to isolate the fault solely with the BG-FDI method.

In these instances, utilizing a data-driven approach can enhance the FDI method’s ability

to isolate the fault.

1.3 AI-Based (or Data-Driven) FDI Methods

The fundamental premise of data-driven FDI is to generate an FDI model directly from

a set of historical system data (Lei et al., 2020). This eliminates all the complexity

associated with the physical model generation and calibration. Data-driven methods

encompass a wide range of techniques, including simple statistical methods, expert or

knowledge-based systems, ML, and DL approaches. In this study, the focus is exclusively

on DL approaches, referred to as AI-based methods throughout the rest of the thesis.

The schematic diagram of the AI-based method is given in Figure 1.7. In this method, a

model is initially trained using historical data. Subsequently, the trained model is utilized
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Figure 1.7: Schematic diagram of AI-based FDI method

in real-time to perform the FDI of the system.

Various categorizations exist for data-driven methods, such as those based on algorithm

complexity (statistical methods, ML, DL, expert systems), data type (time series, images,

text), and task type (regression, classification, anomaly detection). Alternatively, AI

methods can be classified based on training methods, including unsupervised learning,

semi-supervised/self-supervised learning, and supervised learning (Sahu et al., 2023). The

training of all these methods is based on the requirement of labeled data (not required for

unsupervised learning).

In the context of this study, "labeled data" refers to specific tags or labels that indicate
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Figure 1.8: Labeled and unlabeled data

the state or condition of the system under observation. To clarify this concept, consider

Figure 1.8, Ex-1, where a collection of images lacks any tags, making it unlabeled data.

However, assigning tags to these images, representing their classes transforms them into

labeled data. Labeled data offers the model precise answers, or labels, for comparison

with its predictions, facilitating parameter adjustments. This accelerates and enhances

the model’s learning process by diminishing data ambiguity and uncertainty. In the

context of fault diagnosis, Ex-2 presents a dataset comprising ‘s’ sensors. Each row of

the dataset constitutes an unlabeled data sample, representing sensor measurements at

specific times. By incorporating corresponding fault labels, as demonstrated on the right

side, this dataset becomes labeled.

The unsupervised method is particularly valuable in situations where labeled data for

the system is not available. It proves beneficial for conducting exploratory data analysis to

uncover hidden patterns within the system. Examples of these methods include clustering

algorithms, and anomaly detection. In the case of the K-means clustering algorithm, it

groups the obtained data points into distinct clusters based on the geometric distances

between them (Smith and Powell, 2019). Meanwhile, Principal Component Analysis (PCA)

is a well-known dimensionality reduction technique, which aids in process monitoring

(Ding et al., 2010). Lastly, for anomaly detection, isolation forests come into play. They
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operate on the principle that anomalous data points necessitate a greater number of splits

to be classified accurately (Jiang et al., 2022). In the literature, unsupervised learning is

mostly used for fault detection (Amruthnath and Gupta, 2018). Nevertheless, it can not

isolate the faults (root cause) and it is the biggest limitation of this method (Sahu et al.,

2023). It is also subjected to wrong classification especially when the system has several

modes of operation.

In both fault detection and fault isolation, supervised learning methods are applicable.

Sometimes, these tasks are combined into a single step. However, a key requirement for

using supervised learning is having fully labeled data. This means that not only the input

features but also the class type they correspond to must be provided. Through supervised

learning, the method learns to classify the data into different classes, including categories

like "No-fault," "Fault type 1," "Fault type 2," and so on.

Supervised learning methods, such as Support Vector Machines (SVM), Random forest,

Bayesian Networks (BN), and Artificial Neural Networks (ANN), have been employed for

fault diagnosis. SVM, for instance, operates by establishing linear decision boundaries

among multiple classes (Ibrahim et al., 2020). Nevertheless, SVM may not perform

effectively in cases involving high-dimensional data with non-linear decision boundaries.

To address non-linear data, SVM employs kernel methods for effective classification, which

is computationally expensive. Hence, Random forest can be a good choice (Guo et al.,

2021). This approach employs multiple decision trees concurrently, and the final outcome

is determined by the collective vote of each decision tree. Bagging significantly mitigates

overfitting and is well-suited for cases with non-linear decision boundaries.

Bayesian Networks, on the other hand, employ probabilistic graphical models to identify

causal relationships between variables, making them a valuable tool for real-time fault

diagnosis with high predictive accuracy, even when dealing with limited data (Sahu and

Palei, 2022). However, their limitation in FDI tasks arises from the necessity for accurate

prior probabilities and conditional dependencies, which can be challenging to obtain in

complex systems.

Artificial Neural Networks (ANN) serve as fundamental components in DL, simulating

information processing similar to the human brain. They enable the development of

powerful FDI models capable of handling substantial non-linearity (Elnour et al., 2020).
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Figure 1.9: Structure of a simple neural network

ANN offers an alternative to BN when causal properties are unknown. Nonetheless,

ANN’s drawbacks include the difficulty of optimizing network hyper-parameters, reduced

interpretability, and the demand for a significant amount of labeled data.

Semi-supervised learning for fault diagnosis is favored when obtaining a full set of

labeled data is challenging or expensive. It involves utilizing a limited amount of labeled

data in conjunction with a substantial volume of unlabeled data to construct the model

and make fault predictions (Van Engelen and Hoos, 2020). As a result, semi-supervised

learning combines elements from both supervised and unsupervised learning techniques.

To implement semi-supervised learning researchers have used ANN-based pseudo labeling

(Fan et al., 2021a), Generative Adversarial Networks (Li et al., 2021), and graph neural

networks (Li et al., 2022). On the other hand, the main disadvantage is the possibility

of reduced performance when unlabeled data is introduced, which has received limited

attention in the literature, leading to skewed perceptions of its benefits (Van Engelen and

Hoos, 2020).

1.3.1 Deep Learning Based FDI

Deep neural networks involve the connection of three or more layers to progressively learn

complex relationships between input features and target outputs. This configuration, as

shown by Li et al. (2019), enhances feature extraction efficiency compared to shallow ML

methods (SVM, BN, etc.).

22



In a simple neural network with a single hidden layer (Figure 1.9), the input, denoted as

X, yields an output, denoted as Ŷ. This output is determined through the Equation 1.3,

where σi represents the activation function (such as sigmoid, tanh, ReLU, etc.), helping

the neural network in capturing non-linearity. Additionally, W1 and b1 represent the

weights and bias connecting the input layer to the hidden layer, while W2 and b2 represent

the weights and bias between the hidden layer and the output layer.

t = σ1(W1X + b1)

Ŷ = σ2(W2t + b2)
(1.3)

These networks continually refine their performance through iterations, adjusting weights

and biases via the back-propagation method. The primary rationale for adopting deep

learning in fault diagnosis is its theoretical capacity to learn any function, irrespective

of linearity, and its versatility in learning from data in unsupervised (autoencoders),

supervised (ANN), or semi-supervised manners (Van Engelen and Hoos, 2020). Moreover,

deep learning finds applications in fault detection and isolation across various domains,

including power grids and chemical processes (Zhang et al., 2023; Hematillake et al., 2022).

For these reasons, DL has been selected as the AI-based method for developing the Hybrid

FDI method.

The fault isolation is treated as a classification task by the ANN. It aims to categorize

the system’s state into predefined fault modes using sensor measurements as inputs. In

classification tasks, the goal is to predict categories or classes, which can be represented as

integers or labels like Fault1, Fault2, or Fault3. Neural networks, however, need numeric

input. To bridge this gap, one-hot encoding is used to represent these categorical labels

as binary vectors.

For a dataset containing n samples, the column containing all the labels is denoted as

L = {L1, L2, ..., Ln}. This dataset encompasses a total of κ distinct fault labels, represented

as {Fault1, Fault2, ..., Faultκ}. Each categorical variable Li is then transformed to a

boolean vector Yi ∈ Rκ, as defined in Equation 1.4. This boolean vector is commonly

referred to as a One-Hot vector.
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Figure 1.10: Fault labels to binary vectors

Yij =

 1, if Li = Faultj

0, otherwise
(1.4)

To illustrate, consider a dataset with ten samples (n = 10) and three distinct fault classes

(κ = 3), as depicted in Figure 1.10. In this representation, the corresponding labels are

transformed into a boolean matrix, denoted as Y ∈ R10×3. This boolean matrix, Y, is

employed for training artificial neural networks (ANNs) to differentiate between various

fault classes.

The ANN-based FDI process consists of two stages, as depicted in Figure 1.11. In the

first stage, the neural network undergoes training using labeled historical data from the

system. This dataset includes both input values (Xi) and their corresponding targets

(Yi), represented as {Xi,Yi}ni=1. During this phase, the network’s weights and bias are

continually adjusted to minimize the error between the predicted (Ŷi) and actual output

values (Yi). This optimization process is achieved using the backpropagation algorithm,

as defined in Equation 1.5. Optimization methods like gradient descent iteratively adjusts

model parameters to minimize the error between predicted and actual outcomes. Adam,

an adaptive optimization algorithm, combines ideas from momentum and RMSprop,

enhancing convergence by dynamically adjusting learning rates for individual parameters.

α is the learning rate of the algorithm. The entire optimization is given in Equation 1.6,
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Figure 1.11: Stages of ANN based FDI

where, the neural network is denoted as Φ, parameterized by {Wϵ, bϵ}, taking Xi as input

and producing the predicted class Ŷi as output.

Once the network is trained, Stage II begins. In this phase, the trained ANN is utilized

to predict the class of new samples (or online data) and provides the output as predicted

probabilities for various classes. The class with the highest predicted probability is

identified as the predicted class, as illustrated in Figure 1.11.

Wϵ = Wϵ − α
∂L
∂Wϵ

bϵ = bϵ − α
∂L
∂bϵ

(1.5)

{Wϵ, bϵ} = argmin
Wϵ,bϵ

∑
(X,Y)

L(Φ(Wϵ, bϵ,X),Y) (1.6)

Nevertheless, it is crucial to acknowledge that DL models may offer unexplainable

diagnostic mechanisms. Additionally, the reliance on a substantial volume of labeled data

for training is often expensive and time-intensive to acquire in industrial FDI (Wu et al.,

2020).
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Table 1.2: Parameter values and meanings of the DC motor

Parameter Nominal
Values Meaning

Re 2.4 Ω Electrical resistance
L 0.44 H Electrical inductance
Rm 0.1 m.s/rad Mechanical resistance
J 0.08 Kg m2/rad Rotor inertia
K 0.139 Nm/amp DC motor constant

1.4 Direct Current Motor: A Pedagogical Example

This section provides in-depth insights into the DC motor example, serving as the

experimental foundation for developing, demonstrating, and validating the methods

proposed in this research. The schematic of the DC motor used in this study appears in

Figure 1.12. In the simulation of the DC motor, various types of faults are intentionally

introduced and their introduction mechanism is meticulously detailed. Consequently, a

dataset is generated, containing sensor measurements paired with corresponding fault

labels.

The values and significance of all the parameters of the DC motor are given in Table 1.2.

im and ωm are the values of measured current and measured velocity by the sensors. A

Gaussian noise is added to the sensors to simulate real-life process noises. The obtained

values from the current and velocity sensor are given in Equation 1.7. With a sampling

time (ts) of 0.1s, this DC motor simulation is performed in the MATLAB SIMULINK

platform.

im = i×N (mean = 1, variance = ∆)

ωm = ω ×N (mean = 1, variance = ∆)
(1.7)

1.4.1 Bond Graph Model of The DC Motor

The BG model for the DC motor is initially generated, with integral causality applied to

the dynamical element (as shown in Figure 1.13). Two junctions denoted as 11 and 12, are

connected by a GY element. Junction 11 corresponds to the electrical part, while junction

12 represents the mechanical part. Within this context, Df : im and Df : ωm respectively
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Figure 1.12: Schematic diagram of the DC motor with all its parameters

Table 1.3: Variables of the DC motor and their significance

Variables Significance
i Motor Current (A)
im Measured Current (A)
ω Angular velocity (rad/s)
ωm Measured angular velocity (rad/s)
Ua Input voltage (V )
Ue Back emf (V )
UL Voltage across the inductor (V )
URe Voltage across the resistor (V )
τe Motor torque (Nm)
τRm Frictional torque (Nm)
τJ Inertial torque (Nm)
τml Mechanical load torque (Nm)

refer to the current and angular velocity sensors. The GY element itself characterizes the

DC motor constant (K), which establishes the relationship between the circuit current (i)

and the torque produced by the DC motor (τe). All the variables describing the dynamics

are given in Table 1.3. The constraints (governing equations) are categorized into three

distinct types: behavioral equations denoted as Cb, measurement equations as Cm, and

structural constraints represented by Cs (Figure 1.14).

The corresponding block diagram for the DC motor is obtained using the governing

equations and the causality of the BG. This block diagram is presented as a SIMULINK

model in Figure 1.15. Inputs to the DC motor simulation are Ua and τml, while outputs
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Figure 1.13: BG model of the DC motor in integral causality

Table 1.4: Specification of the faults introduced to the DC motor

Fault No. Associated component Degree of fault Duration of fault
1 Fault in Re 0-20% 100-150s
2 Fault in Rm 0-20% 200-250s
3 Bias in current sensor (im) 0-20% 300-350s
4 Bias in velocity sensor (ωm) 0-20% 400-450s
0 Healthy mode/ no fault XXX Rest all time

are i and ω. The model’s parameters are indicated by pink triangles, and the 1/s element

signifies an integration block in Simulink, initialized with zero initial conditions.

The DC motor simulation provides noise-free output variables {i, ω}. The simulation’s

response to a 5V step input voltage (Ua) and a fixed mechanical load (τml) of -0.1Nm

is depicted in Figure 1.16. For a realistic simulation, parameter uncertainty of 2% is

introduced, along with a Signal to Noise Ratio (SNR) of 40 in sensor measurements. The

resulting measured data for current (im) and angular velocity (ωm) is presented in Figure

1.17.

1.4.2 Mechanism of Fault Introduction

All types of faults in this study are introduced through the simulation of the DC motor

created in SIMULINK. Re, Rm, and K are taken into account to simulate parameter

faults, and im and ωm are considered in order to simulate sensor faults or sensor bias. The
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Figure 1.16: i and ω values from the DC motor simulation
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Figure 1.17: im and ωm values with parameter and measurement uncertainty
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Figure 1.18: Fault induction and data-set generation

faults are introduced in a gradual (incipient) manner. Fault specifications are outlined in

Table 1.4, with each fault being introduced gradually through a linear increase of 20% in

the nominal parameter’s value during the fault duration. During this time, the measured

values of the current and the velocity {im, ωm} are saved in a dataset including the

corresponding fault to create the labeled dataset to train the AI (Figure 1.18). Following

the fault duration, the DC motor is restored to its normal operational mode.

Figure 1.19 displays the sensor measurement’s response (im, ωm) to all faults, with fault

duration indicated in red. It is evident that the sensors exhibit high sensitivity to

introduced faults. The question arises: If visual inspection can detect faults due to sensor

sensitivity, why should complex FDI methods be employed?

The limitation of relying solely on sensor data becomes apparent when machine operating

conditions fluctuate, as seen in Figure 1.20. Here, im, ωm response is shown while Ua varies

randomly between 3-7 V within a 10-second time step. Under such conditions, identifying

faults from sensor measurements becomes notably challenging. The following section

illustrates residual generation through the use of the LFT-BG method for automated FDI.

This method adeptly handles continuously changing operating conditions.
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Figure 1.19: Sensitivity of im and ωm to the faults
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Figure 1.20: im and ωm values with variable Ua
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Figure 1.22: LFT-Bond graph of the DC motor

1.4.3 DC Motor FDI Using LFT-BG

The nominal DBG model of the concerned DC motor is constructed as shown in Figure

1.21. It consists of two different subsystems, namely the electrical part and the mechanical

part. Here the parameter uncertainties are not considered. The uncertain BG or LFT-BG

for the DC motor is shown in Figure 1.22.

Junction 11 gives the residual associated with the electrical part (rn1) and junction 12 gives

the residual associated with the mechanical part (rn2). These residuals along with their

adaptive thresholds (a1 and a2) are obtained by using the duality of sensors, derivative

causality, and covering causal path methods. Their corresponding equations are given in

(Equation 1.8,1.9).
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Table 1.5: FSM of the DC motor

ARR → ARR1 ARR2 ID IC
Faults ↓
FRe 1 0 1 1
FRm 0 1 1 1
Fim 1 1 1 0
Fωm 1 1 1 0

ARR1 : Ua − L · dim
dt
− imRe − ωm ·K = 0

a1 = |−δLL ·
dim
dt
|+ |−im · δReRe|

(1.8)

ARR2 : im ·K − ωm ·Rm − J · dωm

dt
− τml = 0

a2 = |−ωm · δRmRm|+ |−δJJ ·
dωm

dt
|

(1.9)

rni
= Eval(ARRi) (1.10)

In Figure 1.23, the response of the obtained residuals towards the faults is given. The

incipient faults are introduced for various types of faults according to Table 1.4. The

red marker indicates the upper threshold (+a) and the green marker indicates the lower

threshold (−a). As the faults are introduced, a deviation in the residual values can be

observed even though Ua varies randomly between 3-7 V within a 10-second time step.

Using LFT-BG based residuals offers a significant advantage: the generated residuals

remain relatively unaffected by changing operating conditions while maintaining high

sensitivity to faults.

Then the FSM is used to isolate the faults based on the sensitivity of the residuals.

The construction of the FSM is based on the following relations COMPS{ARR1} =

{Re, K, im, ωm} and COMPS{ARR2} = {Rm, K, im, ωm} (Equation 1.2). The FSM of

the DC motor is given in Table 1.5. The last two columns of the FSM denote fault

detectability (ID) and fault isolability (IC). It is evident from the FSM that, except for

faults Re and Rm, all other fault types are not isolable because they share the same fault

signature.

Using the residuals of LFT-BG and the FSM, Figure 1.24 displays the real-time FDI
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Figure 1.23: r1 and r2 values with variable Ua

results, showing predicted fault classes over time. The x-axis represents time in seconds,

and the y-axis represents the predicted fault class. Data points are color-coded by actual

fault class, with horizontal dashed lines at y-values 0, 1, 2, and 3 denoting reference points

for different fault classes. Notably, this plot reveals a very low false alarm rate, thanks to

the adaptive threshold. Moreover, it demonstrates excellent fault detection accuracy by

promptly identifying faults upon their introduction. However, it struggles to distinguish

between fault classes 2 and 3 because rn1 lacks sensitivity to the ωm sensor fault (see

Figure 1.23), resulting in a practical fault signature of [0, 1]—the same as the Rm fault

signature.

From this analysis, we observe two key points:

1. The fault signature provided by the theoretical FSM may differ from the practical

fault signature of the residuals.

2. The LFT-BG method does not accurately classify faults when they share identical

signatures.

Hence, AI-based pattern recognition can enhance the fault isolation capability of this FDI
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Figure 1.24: Real-time FDI using LFT-BG

method, particularly when two faults share identical signatures.

1.4.4 DC Motor FDI Using AI

In this section, AI-based methods are exclusively employed for DC motor FDI. A labeled

dataset generated from DC motor simulations is utilized to obtain sensor measurements

and fault classes. The distribution of faults within the sensor space is depicted in Figure

1.25.

Firstly, fault classes are converted into one-hot vectors using Equation 1.4, and input

values are standardized (mean=0, standard deviation=1). The dataset is then split into

training and testing sets. The training set is used to train an ANN with 2 hidden layers,

employing ‘relu’ activation in the hidden layers and ‘softmax’ activation in the output

layer. Figure 1.26 demonstrates the accuracy improvement of the ANN after training with

256 samples per fault class.

Real-time DC motor FDI using the ANN, as depicted in Figure 1.27, achieves successful

classification of all four fault classes. However, a notably high false alarm rate, coupled

with the inherent ‘Black-box’ nature of ANN, highlights the unreliability of pure AI-based

FDI methods for safety-critical systems.

To visualize the prediction made by an ANN-classifier, the use of a decision boundary
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Figure 1.27: Real-time FDI using ANN
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Figure 1.29: ANN accuracy with respect to amount of training data

is applicable in this scenario (Please note: decision boundaries can only be visualized

when the dataset has fewer than 3 features). The decision boundary for this ANN is

presented in the sensor space (Normalized) as shown in Figure 1.28. Different hyperplanes

are generated by the ANN to classify various fault classes based on the training dataset.

When making predictions, a new data point is categorized according to the im and ωm

values, determining the hyperplane it belongs to. It is observed that the obtained decision

boundary exhibits a high degree of non-linearity and complexity.

Finally, a plot illustrating the relationship between the number of training data samples

and ANN accuracy is presented (Figure 1.29). As expected, accuracy is enhanced by an

increase in training data. Nevertheless, the acquisition of labeled fault data in industrial

settings is often challenging.
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For these reasons, it is aimed in this research to combine AI-based methods with physics-

based approaches to mitigate false alarms, reduce labeled data requirements, and enhance

interpretability. This fusion is essential for the practical application of AI-based FDI in

real-life industrial scenarios.

1.5 Conclusion

In this chapter, traditional FDI methods are introduced briefly. The choice of LFT-BG is

motivated among the physics-based methods due to its dual qualitative and quantitative

nature. Similarly, among data-driven methods, deep neural networks are selected for their

universal learning capabilities. Subsequently, a simple DC motor model is introduced, and

the methodology for simulating and introducing faults to generate a dataset is outlined.

Both the LFT-BG and ANNs are independently applied to the same dataset for FDI. Based

on the results obtained, a comparison is made in Table 1.6, assessing their effectiveness

across various aspects of FDI (Dash et al., 2022). The comparison table highlights that

both methods possess their respective advantages and drawbacks. When combined, these

drawbacks can be mitigated. In the forthcoming chapter, hybrid FDI methods will be

introduced, and the various approaches for combining physics-based and AI-based methods

found in recent scientific literature will be discussed.
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Table 1.6: Comparison of Physics-Based and AI-Based Methods for FDI

Aspect Physics-Based Methods AI-Based Methods

Understanding

Rely on a mathematical model
of the system, providing a deep
understanding of the underlying
physics and dynamics.

Lack the same depth of
understanding as they do not
use explicit models but instead learn
from data patterns.

Interpretability
Highly interpretable as diagnostic
decisions are based on explicit rules
derived from the model.

Less interpretable, often working as
black boxes, which can be a concern
in safety-critical applications.

Computational
Efficiency

Generally computationally efficient,
requiring minimal computational
resources to process complex signals.

May require more computational
power, especially for deep learning
approaches.

False Alarm
Rate Low (due to adaptive threshold) High

Data
Requirements No need for historical data

Require a significant amount of
labeled training data, which may not
always be available.

Fault
Isolation Poor due to limited sensors Provide better fault isolation thanks

to the strong pattern recognition

Flexibility
Have limited flexibility and
adaptability, as they rely on
predefined models.

Offer high flexibility and adaptability,
as they can be retrained using the
new data.

Noise
robustness
(Figure 1.30)

Less robust to measurement noise More robust to measurement noise
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2 State of The Art On Hybrid FDI

The main motivation for developing hybrid frameworks is that no single method is able

to satisfy all the requirements of an accurate FDI approach (Li et al., 2020). A hybrid

method may overcome the weakness of one diagnostic method with the strength of another

method to achieve a better performance (Tidriri et al., 2016).

Combining physics-based and AI-based fault diagnosis methods presents several challenges.

Firstly, both methods come with distinct assumptions, requirements, and computational

complexities. Ensuring their compatibility during integration is crucial (Jung et al., 2018).

Secondly, obtaining an accurate mathematical model of the system for physics-based FDI

and gathering sufficient historical data from various faulty models for training AI-based

FDI can be daunting tasks (Sheibat-Othman et al., 2014). Lastly, in hybrid FDI, while

physics-based FDI can provide clear insights into system behavior, the AI-based method

lacks interpretability, making it challenging to comprehend the reasoning behind the

diagnosis. This lack of interpretability can reduce trust in the overall decision-making

process of the hybrid FDI system (Ren et al., 2019).

Incorporating a hybrid method, which combines physics-based and AI-based approaches,

can offer several advantages compared to using each method individually:

• Physics-based fault isolation can be limited by the number of sensors placed.

Combining it with data-driven methods allows for pattern analysis to effectively

isolate different fault modes.

• Physics-based methods rely on specific assumptions about the system, which may

not always hold in real-world scenarios. AI-based methods, being data-driven, adapt

better to variations and uncertainties.

• AI-based methods are often considered black boxes, but the structure of physics-based

methods can help identify critical variables and perform causality analysis.

• AI-based methods struggle when the accounted mode is absent in the training data.

physics-based methods can fill this gap by detecting faults, as their residuals are

sensitive to fault presence.

• AI-based methods face challenges when the system transitions between modes,
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altering the data distribution. In such cases, physics-based methods can be used to

generate robust features to train AI models.

• AI-based methods typically require extensive labeled data, which may be scarce in

industrial settings. Leveraging prior knowledge from physics-based methods can

reduce the labeled data needed through self-supervised learning.

The literature review on hybrid FDI is organized in an inverted pyramid structure. It

begins by addressing broader topics before delving into more specific details. Figure 2.1

provides a schematic representation of the literature review.

2.1 Categorization of Hybrid Methods

The combination of two or more FDI methods into a hybrid approach may be done in

different ways, such as parallel combination, serial combination, and mixed combination

strategy. A schematic diagram for each hybrid FDI method is given in Figure 2.2. Here,

M1, M2, and M3 can be physics-based or AI-based methods.

2.1.1 Parallel Combination

Parallel combination involves merging the results of multiple FDI methods executed

simultaneously and independently. Each FDI method addresses the problem uniquely,
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Figure 2.2: Types of combination in Hybrid FDI.

making decisions independently. This method is generally more stable and reliable,

introducing a redundancy that compensates for errors and enhances decision-making

in uncertain conditions. However, the individual methods do not help each other by

sharing features or prior information, and the interpretability of the model is reduced

when multiple methods work together.

Decision fusion methods, such as simple average or majority voting, are straightforward

to implement. These methods do not consider prior classification results, relying on basic

aggregation techniques for individual diagnosis methods.

Alternatively, some decision fusion methods incorporate prior information and evidence

from the known decision performances of each classifier. Evaluating a classifier-based

fault diagnosis method involves using a confusion matrix on a test dataset. Examples

of evidence-based fusion strategies include Bayesian-based fusion, weighted voting, and

fuzzy logic. These strategies leverage prior knowledge to enhance the accuracy of decision

fusion.

The utility-based and evidence-based decision fusion strategies were employed by Ghosh

et al. (2011). Through experiments conducted on a laboratory-scale distillation column, it

was illustrated that the hybrid method resulted in significant enhancements in monitoring

performance.
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2.1.2 Serial Combination

In serial combination, diverse FDI methods are integrated consecutively, with the output

of one method becoming the input for the next. This approach allows for the selection

of the most suitable method for each transformation stage in the process from acquiring

measurements to decision-making. While enhancing overall efficiency by enabling step-by-

step result reassessment, it requires compatibility between successive method interfaces.

Despite its benefits, it’s crucial to maintain high analysis quality, particularly in the initial

methods, as errors can propagate throughout the combination.

For instance, Zhou et al. (2019) applied serial method fusion to analyze vibration data from

rolling bearings. They utilized three integrated FDI methods: data-driven signal analysis

for feature extraction, a machine learning model for identifying fault symptoms, and a

fault diagnosis ontology with semantic mapping for reasoning and deriving maintenance

measures. This strategic combination minimizes uncertainties, improving final diagnosis

accuracy and decision-making. Slimani et al. (2018) employed a generic representation

framework to express diverse diagnosis outcomes and merge them without considering their

internal characteristics or output nature. The generic approach unfolds in two steps: the

initial step involves implementing multiple diagnosis methods with system measurements,

and the subsequent step focuses on fusing the results from various methods. Benkouider

et al. (2012) constructs a hybrid model combining the Extended Kalman Filter (EKF)

with the probabilistic neural network for FDI of chemical reactors. The EKF is used to

estimate critical parameters for the reactor, which is input for the neural network. In

another research done by Slimani et al. (2018), parity space and non-linear observers are

implemented for residual generation, followed by machine learning methods such as SVM

and ANN for decision-making using the residuals. This method requires a dynamic model

under linear state space format, a lot of labeled data, and manual preprocessing of features.

Fang et al. (2021) proposes to use the structural relations among process parameters from

the bipartite graph and then use the estimation method to obtain fault-indicative residual

signals. This method also suffers when there are two faults with the same fault signature.

For the detection of a novel fault, Jung et al. (2018) suggests using a One-SVM classifier

trained on the residuals generated by dedicated observers, which are better suited for FDI

of actuators and sensors where isolation performance requires a bank of observers. The
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residuals generated from the observers along with the sensor measurement are used by

Khorasgani et al. (2018) in an SVM classifier for the fault isolation task.

There can be little work found on the combination of bond graph with data-driven FDI

to enhance the isolability of the entire FDI framework. Such as Said et al. (2019) uses the

BG model for the detection of a fault, and PCA is used to boost the fault isolability. The

PCA used here is linear, and it becomes computationally very expensive as the size of the

data increases. In a study, Zaidi et al. (2020) combines BG with the reliability data of

the components to isolate the components with more severity when they share the same

fault signature.

2.1.3 Mixed Combination

The mixed combination benefits from a combination of serial and parallel fusion strategies.

This approach involves blending various methods, decisions, and existing knowledge

seamlessly.

By incorporating both serial and parallel combination strategies, the performance of an

FDI system can be enhanced. For instance, the fusion of two parallel fault detection

methods, utilizing data and physical models, can yield a complementary set of residuals,

thereby enhancing fault detection performance. Following this, fault symptoms can be

generated through a series of threshold functions. An illustrative example of such methods

is the application of Bayesian networks (Tidriri et al., 2018).

Synthesis-1: Even though there has been a significant amount of work done on the

hybrid FDI, certain important issues remain unresolved. The quantity of training data to

be used is an important factor when implementing an AI based method for FDI (Table

2.1). However, it was not highlighted in the previous works instead, the primary focus has

been on enhancing accuracy.
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Table 2.1: Synthesis of existing hybrid FDI methods

Reference Method-I Method-II Combination
Strategy

Quantity of
data considered

Multiple Simultaneous
Faults

Benkouider et al. (2012) EKF Probabilistic Neural Nets Serial No No
Slimani et al. (2018) Parity space, Non linear observers ANN, SVM Serial No No
Fang et al. (2021) Structural bipartite graph Parameter Estimation Serial No No
Jung et al. (2018) Residuals created using observers One-SVM Serial Yes No

Jung (2019) Structural bipartite graph RNN Serial Yes No
Khorasgani et al. (2018) Residuals from Observer SVM Serial No No

Said et al. (2019) Residuals from BG PCA Serial No No
Zaidi et al. (2020) Residuals from BG Bayesian Network Serial No No
Chen et al. (2021b) Structural analysis GCN Serial Yes No

Thanaraj et al. (2023) EKF extreme learning neuro-fuzzy Serial No No
Yang et al. (2022) Prior Knowledge Bayesian Network Serial No No
Atoui et al. (2016) Residuals from Observer T 2 statistics Parallel No No
Tidriri et al. (2018) Residuals from BG Linear Discriminant Parallel No No
Gálvez et al. (2021) Physics-based Model Simulation AdaBoost Synthetic Data Yes No

Murphey et al. (2006) Physics-based Model Simulation ANN Synthetic Data Yes No

2.2 Reducing Labeled Data Requirements in AI Model

Training

One of the primary goals of this thesis is to minimize the quantity of labeled data

necessary for the AI model. In this section, we review previous research on the same

subject categorizing literature into two classes. The first class does not incorporate the

system’s physics (pure data-based), while the second class employs a digital twin of the

actual system to produce synthetic fault data.

2.2.1 Pure Data Based Approach

The most straightforward approach involves the utilization of unsupervised learning

methods. Nevertheless, as discussed in Section 1.3, these methods exhibit limited accuracy

in the context of fault classification.

When it comes to limited labeled data, transfer learning is commonly employed (Wang

et al., 2023). This method involves pre-training a deep-learning model on a substantial

volume of source data from a similar system (or task). Subsequently, with only a small

set of labeled fault data from the target system, a reasonably accurate model can be

constructed. One prevalent technique to align the weights of the pre-trained network with

the target task is through the utilization of Maximum Mean square Discrepancy (MMD)

within the loss function. This update of weights serves to minimize the divergence between

the source and target distributions (Schwendemann et al., 2021). Another widely used

approach for learning from limited target data is domain generalization, necessitating no
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labeled data from the target domain (Hu et al., 2022). However, it is important to note

that these techniques rely on the availability of historical labeled fault data from similar

machines, a requirement that may not be met in all cases. Additionally, these methods

often recommend the use of large deep-learning networks, with training conducted across

multiple stages. This can introduce challenges when retraining is needed due to drift in

the data distribution.

2.2.2 Digital Twin Based Approach

To fulfill the need for labeled fault data, some researchers propose the creation of synthetic

fault data through a high-fidelity digital twin of the actual system (Yang et al., 2023).

In such methodologies, the system’s physics are employed to construct the digital twin,

which can take the form of a simple physical equation, a block diagram-based simulation,

or an intricately detailed finite element model.

In the initial phase, the digital twin is developed to mirror the nominal or healthy state of

the system. Subsequently, faults are manually introduced to the digital twin, leading to

the generation of a fault dataset. This dataset comprises the system’s responses to various

faults, along with corresponding fault labels for the duration of each fault occurrence.

This dataset is subsequently utilized to train an AI model for FDI tasks. The hope is

that, given the similarity between faults in the real system and those in the digital twin,

the model trained on synthetic data will exhibit robust performance on the actual system.

However, it’s crucial to acknowledge that this assumption represents the primary limitation

of this method, as the performance of the AI model can be significantly compromised if

the assumption does not hold true.

Murphey et al. (2006) developed a digital twin based on electric drive theory, simulating

normal and faulty conditions while employing a machine learning algorithm to select

representative operating points for training a Fault Diagnostic Neural Network. Gálvez

et al. (2021) followed this method to obtain fault condition data from the Matlab Simulink

model of the heating, ventilation, and air conditioning systems of a passenger train. Then,

using that data, boosted trees are trained to do the fault isolation on the real system.

Tao et al. (2023) proposed a novel modeling technique, the physics-informed temporal

convolution network, which was first developed by combining a traditional physics-based
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simulation with collected sensor signals. The DT is then used to generate simulated

signals under different operation and fault conditions to train the convolutional neural

network based data-driven FDI for a subsea control system. In another study, Tai and

Altintas (2023) introduced the spindle imbalance, and the wear of the race and ball are

incorporated into the digital model of spindle dynamics, and the resulting vibrations

at sensor locations are predicted at different speeds. A Gated Recurrent Unit Network

is trained to recognize the faults using the simulated and a few experimental vibration

spectrum data.

2.2.3 Prior Knowledge Infused Approach

These approaches leverage existing system knowledge alongside AI methods to minimize the

need for labeled data. In addressing this challenge, Chen et al. (2021b) conducted research

that introduces an innovative fault diagnosis method utilizing graph convolutional networks

(GCN). This method combines available measurements and prior system knowledge,

incorporating structural analysis for fault pre-diagnosis. The results are then transformed

into an association graph. Remarkably, this method demonstrates significantly high

accuracy, even with a limited number of labeled samples. However, it is important to note

that its applicability for real-time FDI is limited due to the transductive nature of GCN.

Jung (2019) proposes a novel approach by designing neural network-based residuals that

incorporate physical insights about the system behavior, offering a hybrid model that

achieves fault isolation and localization of unknown faults using only fault-free data,

thus mitigating the challenges associated with the time-consuming process of developing

accurate physical-based models. Due to its unsupervised nature, this method encounters

challenges in fault isolation when multiple fault possibilities exist. Thanaraj et al. (2023)

proposed a hybrid FDI model for a quadrotor UAV that integrates an extreme learning

neuro-fuzzy algorithm with a physics-based EKF for FDI. In another study, Yang et al.

(2022) established a Bayesian network through the utilization of causal relationships

among variables.
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Synthesis-2: After reviewing the literature on hybrid FDI, it is clear that the capability

of Hybrid FDI methods to detect and isolate multiple simultaneous faults has not been

thoroughly explored. Moreover, existing research predominantly concentrates on step faults,

neglecting the assessment of the Hybrid FDI approach’s performance in isolating incipient

faults.

In the past majority of publications have solely addressed the presence of single faults

during FDI. Among the few studies available on multiple simultaneous fault detection, Li

and Braun (2007) uses physics-based FDI based on the decoupling of faults using matrix

decomposition. They mostly focus on two simultaneous faults. In a new study, Hu and

Yuill (2021), the residual evaluation methods are chosen for triple and quadruple fault

isolation. It must be noted that these works do not work on Hybrid FDI methods.

In this study, an attempt was made to formulate a similar hybrid approach that integrates

prior system knowledge to reduce the amount of labeled data necessary to train the AI

model.

2.3 Self-Supervised Learning Used in FDI

In practical industrial situations, it is very difficult to obtain a sufficient amount of

labeled data, which greatly affects the performance of fault diagnosis methods based on

deep learning. In the literature, transfer learning and semi-supervised learning methods

are utilized to improve classification accuracy by leveraging both unlabeled and limited

labeled data. For example, Guarino and Spagnuolo (2021) proposed a semi-supervised

learning method for feature extraction from raw sensor data utilizing a siamese network.

Nevertheless, the reliability of semi-supervised learning significantly relies on the quality

of the available labeled data. This is because pseudo-labels are generated in the later

stages using a limited set of labeled data (Fan et al., 2021b). In cases with a severe

scarcity of labels, this approach may not be deemed dependable. For transfer learning,

the availability of data from similar systems is assumed, which may not always be the

case (Fan et al., 2022).

To address this problem, Self-Supervised Learning (SSL) is explored as an alternative

approach to traditional supervised learning in the context of FDI. The method involves
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Figure 2.3: Categorization of Pre-text tasks used in SSL.

training deep neural networks to predict part of the input data or a label derived from

it instead of relying on manually provided labels. This approach enables learning with

a limited amount of task-specific annotated data, compared to conventional supervised

learning (Ericsson et al., 2022). The effectiveness of SSL for FDI depends on the choice of

the pretext task used for defining the derived labels.

Pre-text Task: Human prior knowledge about the target problem plays a vital role in

defining a meaningful pre-text task. The various self-supervised pre-text methods in the

literature are classified into three categories (Ericsson et al., 2022): reconstruction based

(Pathak et al., 2016), prediction based (Gidaris et al., 2018) and contrastive learning (Chen

et al., 2020). Figure 2.3 illustrates the categorization of SSL through image classification.

In methods based on reconstruction, the objective is to develop a model capable of

reproducing the input data from a distorted version. In the provided example (Figure 2.3),

the aim is to recreate the masked portion or reduce noise in the image. Xie et al. (2022)

proposes an improved sparse autoencoder-based pre-training to diagnose early multiple

intermittent faults.

In contrast, Prediction-based methods make predictions about certain aspects of the input

data, such as predicting the next word in a sentence or the type of transformation applied
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to an image. In Figure 2.3, the prediction method is pre-trained using either random

rotations applied to the original image or by dividing the image into nine parts. The

objective is to predict the position of each part. In the field of FDI, the authors in (Wang

et al., 2022) use SSL to train a CNN model to predict the transformation applied to the

original signal. In this study, the prediction-based method is used as a pre-text task for

SSL.

Contrastive learning is more straightforward than others, as it compares two inputs and

predicts if they belong to the same or different classes using a binary class label instead of

a high-dimensional class vector (Chen et al., 2020). The method transforms input samples

and compares them in the representation space using a similarity function, with the goal

of bringing similar inputs closer together and pushing dissimilar inputs apart.

In recent years, researchers have successfully applied SSL methods to the task of FDI using

data-driven approaches. In Zhang et al. (2022), a method called Class-aware Supervised

Contrastive Learning (CA-SupCon) was proposed to tackle the performance degradation

in class-imbalanced scenarios where normal conditions have a large amount of data and

fault classes have small sample sizes. Ding et al. (2022) introduced the Self-Supervised Pre-

training via Contrast Learning (SSPCL) method to learn discriminative representations

from unlabeled bearing data to detect early-stage faults. Chen et al. (2021a) proposed

a unified training framework combining deep residual networks with the squeeze and

excitation module and supervised contrastive loss for improved wheel fault diagnosis

and prediction. Yan and Liu (2022) introduced SMoCo, a signal momentum contrast

for unsupervised representation learning, to improve fault diagnosis using limited and

unlabeled vibration signals. Wei et al. (2022) proposed a novel ResNet-based fault diagnosis

method that uses data transformation combinations and a self-supervised learning method

to overcome the issue of overfitting caused by limited labeled data. The above-mentioned

research works are based on contrastive learning and have some drawbacks. Despite its

success, contrastive learning in FDI can be computationally expensive and very sensitive

to data augmentation techniques (Chen et al., 2020).
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Synthesis-3: The current approach to the pretext task in FDI studies involves applying

random transformations to the original sensor signal. However, this method may not be

effective in generalizing to the target task of FDI. To address this issue, a new prediction-

based pretext task generation method is proposed in this study. The method is based on the

use of the approximate model of the system in the Linear Fractional Transformation-Bond

Graph (LFT-BG) framework, which will be further discussed in the following section.

2.4 eXplainable AI (XAI) for FDI

Substantial progress has been made in the field of FDI through the utilization of machine

learning and deep learning models, resulting in noteworthy levels of accuracy. However,

these models often fall short of offering interpretable outcomes to users. Despite their

proficiency in delivering excellent results based on historical data, the lack of explainability

renders AI models less viable for practical application in real-world situations.

Explainable AI (XAI) aims to make machine-learning models more comprehensible and can

be divided into model-specific and model-agnostic explanations, with further subcategories

such as global and local explanations as shown in Figure 2.4.

In the context of explainability, a straightforward approach involves using simple models

like logistic regression and decision trees, which are inherently easy to understand. However,

these models have a significant drawback—they struggle to achieve high accuracy on

complex tasks and may not effectively utilize large datasets. These methods offer global

explanations and are model-specific.
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Permutation feature importance is another global method, but it is model-agnostic. It

provides a direct and effective way to determine which input features are most important

in a classification task. However, a key drawback of global models is their limited utility

during FDI when explanations need to be generated for each new sample.

Local explanations are particularly valuable in FDI tasks since they provide specific

details on why the machine learning model detects a fault, thereby helping the operator

to understand the problem. Local Interpretable Model-agnostics Explanation (LIME)

(Ribeiro et al., 2016) and SHAP (Lundberg and Lee, 2017) are two common local

explanation techniques, with LIME struggling to fit a locally faithful surrogate model

in FDI tasks with multi-sensor sequence data, while SHAP is inefficient due to high

computation requirements.

Gradient-based techniques such as Gradient Class Activation Map (Grad-CAM) (Selvaraju

et al., 2017) and Layerwise Relevance Propagation (LRP) (Binder et al., 2016) can be

employed to explain complex deep-learning algorithms. Nevertheless, the application of

these methods necessitates access to the architecture of the deep learning model, and the

model should exhibit a clear gradient flow. Consequently, implementing these methods

becomes challenging for structures such as ResNet.

Synthesis-4: This creates a need for the development of an explanation approach that

can be simply applied to multi-dimensional sequential data and is independent of the model

architecture (model agnostics) for AI-based FDI.

The occlusion-based method belongs to the category of model-agnostic approaches, offering

a straightforward yet robust explanation for deep learning models. It has been applied

in previous studies to elucidate the outcomes produced by CNNs in image classification

(Chockler et al., 2021) and in the classification of biomedical signals (Resta et al., 2021).

However, it has not been applied before to generate an explanation in case of AI-based

FDI.
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2.5 PEM Electrolyzer FDI

PEM-based water electrolysis is a widely used method for GH2 production due to its high

performance and efficiency. To ensure the normal operation and safety of the system and

its surroundings, real-time detection of faults is essential.

Numerous works have been proposed in the literature for online FDI of PEM electrolysers.

Sood et al. (2022) suggested a physics-based diagnosis of PEM electrolysers using LFT-

BG. However, they noted that utilizing only a physics-based FDI makes it challenging

to pinpoint the faulty component, as many components share the same fault signatures.

Although there are limited studies on the data-driven FDI of PEM electrolysers, several

studies can be found for PEM fuel cells. Lin et al. (2020) proposed a shallow machine

learning algorithm with PCA for feature selection, while Dhimish and Zhao (2023) used

a simple neural network for fault classification, which considers the voltage and current

measurements of the PEM fuel cell. These methods did not consider the temporal

dependencies. Xiao et al. (2023) used a 1D CNN in conjunction with Xgboost to account

for temporal dependencies. Hongwei et al. (2023) proposed an interpretable deep learning

method for the degradation estimation of a PEM fuel cell. However, deep learning methods

require a large amount of labeled data for effective training.

Guarino and Spagnuolo (2021) proposed a Semi-Supervised Learning method for feature

extraction from the raw sensor data utilizing a siamese network, which is purely data-driven

and does not take advantage of the physics of the model.

Synthesis-5: No studies have been identified that specifically study the development of

a hybrid FDI method applied to an electrolyzer while aiming to minimize the reliance on

labeled training data. Additionally, there is a lack of research addressing the explainability

of deep learning within FDI. This study is presumed to be the first of its kind, to the best

of the authors knowledge.

2.6 Railway Track FDI

Over the past two decades, there has been a consistent increase in maintenance expenses

for rail tracks. Rail transport faces intense competition from faster and more flexible
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road transport. In order to stay competitive, rail transport must reduce its operational

costs, and a significant portion of these costs is attributed to track condition maintenance.

Therefore, detecting faults and identifying their types promptly is crucial for railway

companies. Consequently, there is an active effort by railway companies to develop

advanced, cost-effective, and portable track monitoring systems designed for installation

on commercial trains. The goal is to replace the current cumbersome monitoring vehicles,

which are known for their limited fault detection capabilities and dependence on operator

expertise.

Recent research conducted by the University of New York and Omnicom Balfour Beatty

highlights the potential benefits of implementing AI-based methods on commercial trains.

Their findings indicate that such methods could result in annual savings of £10 million

for rail transport companies (Clark, 2019). Despite the advantages, there are notable

drawbacks associated with relying solely on AI-based approaches. These include the need

for extensive labeled training data, susceptibility to changing environmental conditions,

and a lack of interpretability (Mohan Dash et al., 2023).

In prior work by Tsunashima (2019), an attempt was made to utilize SVM by analyzing

accelerometer signals derived from the car body axle for track fault classification. However,

optimal performance in this approach requires a substantial amount of training data.

Silva et al. (2007) adopted a physics-based strategy, employing Diagnostic Bond Graph

(DBG) to formulate the mathematical model of the train-track system. The presence

of faults is indicated by monitoring residual signals generated from the DBG model.

Nevertheless, these models are limited in their ability to isolate various types of faults

when two faults share the same signature.

Therefore, the primary objective of this study is to integrate principles from train-track

dynamics with AI-based methods. This integration aims to reduce the reliance on labeled

fault data, enhancing fault isolation performance and consequently improving overall

system reliability.
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2.7 Conclusion

This chapter comprehensively reviews various existing studies, presenting them in a

well-organized structure. The review begins with a broad examination of hybrid FDI

and progresses toward its specific applications in electrolyzers and train track systems.

Following each segment of the literature review, a synthesis is provided to underscore the

gaps existing in the current body of literature.

The primary research gap identified is the scarcity of scientific studies on the hybrid

FDI method, which specifically aims to minimize the need for labeled fault data in AI

training. Furthermore, there is a need to focus on enhancing explainability by elucidating

the decision-making process of the AI model.

The subsequent section introduces a proposed method along with experimental validation,

addressing each of the identified research gaps.
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3 Methodology

This research aims to decrease the amount of labeled data needed by the AI model through

the incorporation of prior system knowledge. The focus is on a classification task, with the

hypothesis that simpler tasks require less data for effective AI model training. Therefore,

simplifying the classification task could lead to reduced data requirements for optimal

training.

We propose a novel hybrid FDI framework called BG-CNN (Bond graph - Convolutional

Neural Network). This innovative approach merges the strengths of CNNs, renowned for

their robust feature extraction, with the versatility of Bond graph, a graphical framework

extensively used in multi-physical system modeling and FDI. Fault isolation is considered

as a classification task, leveraging the neural networks’ ability to handle complex non-linear

decision boundaries. By uniting CNN and Bond graph formalism in BG-CNN, we aim to

enhance the FDI performance, making it a promising solution to tackle FDI challenges in

practical industrial applications.

Many researchers choose CNN as a powerful feature extractor for the FDI task because

of its well-known capacity to preserve spatial information. The majority of the research

consulted in the literature uses raw sensor data as their feature input. Most of the time,

sensor data does not accurately indicate the presence of various fault types. As a result,

a more complicated mapping from the sensor data to the faults is needed. For accurate

classification, this complicated mapping requires a deeper neural network architecture

that needs more training data. If the input feature is closely related to the occurrence of

system faults, the amount of training data needed can be minimized. Based on this, it is

suggested to use fault-sensitive residuals produced by the system’s Bond graph model.

The BG method is chosen for residual generation because it is a graphical method that

exploits causal and structural properties, resulting in robust residuals that are resistant

to parameter uncertainties and are suitable for diagnosability analysis, which allows us to

determine which components can be monitored without the need for numerical calculations.

Two key advantages are associated with the use of residual signals:

1. Residual signals exhibit greater sensitivity to faults compared to sensor

measurements.
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Figure 3.1: Distribution of fault classes in (a) sensor space and (b) residual space
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Figure 3.2: Schematic diagram of the proposed BG-CNN method

2. Residual signals are less influenced by varying operating conditions.

In Figure 3.1, the distinct separation of various faults in the residual space is evident

when compared to the sensor space for DC motor faults. It is thus advisable to utilize the

residual signals as input for the AI model instead of the raw sensor signals.

The schematic representation of the proposed hybrid method is depicted in Figure 3.2.

The BG-CNN method introduces an additional step involving the acquisition of residual

signals by employing the DBG model of the system and the sensor measurements present

in the fault dataset.
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3.1 BG-CNN for FDI with Minimal Labeled Data

In this research, we discovered that training the AI model solely with the residual signals

from a specific time instance (t) fails to capture the temporal relationships of past residual

signals. Therefore, in this study, we opted for a different approach. Instead of utilizing

the residual data from a single time step, we employed a window length of data as input

to the AI model. This modification transforms the input data into a 2D format, posing a

challenge for conventional machine learning methods that are not equipped to handle this

type of data.

At first, the set of nominal residual signals rn = {r1, r2, .., rq} are obtained from the DBG

model of the system. Here q is the number of residuals. The residual signals are further

segmented into multi-channel time series data using a sliding window approach of length

w resulting in xi =


r1,t−w r2,t−w · · · rq,t−w

r1,t−w+1 r2,t−w+1 · · · rq,t−w+1

...
... . . . ...

r1,t r2,t · · · rq,t

 ∈ Rw×q. As it is a supervised

learning task, each observation has a corresponding OneHotEncoded fault label yi ∈ RM

attached to it. M is the number of fault classes including the healthy state. The CNN

model is trained in a supervised manner using a set of N input-output pairs from each

fault class. Hence the total number of samples used for training is N ×M .
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Figure 3.4: The architecture of the CNN for the fault isolation.

3.1.1 Convolutional Neural Network (CNN)

Perhaps the most well-known deep learning architecture is CNN. Because of their layered

structure, CNNs are able to learn several levels of data representation by themselves.

Many researchers have used this feature for the FDI task as well (Wen et al., 2017).

CNN is computationally efficient due to pooling operations and parameter sharing among

different layers; hence, it can be used on devices with low computational power. The

input to the CNN is a 2-dimensional tensor (x), and the output is ŷ. Figure 3.4 shows

a schematic of how CNN is applied to the residual signal obtained from the DBG. The

only notable thing is the use of Global Average Pooling (GAP) in place of fully connected

layers in CNNs. GAP layers are useful, particularly in scenarios with a restricted number

of training samples (Tong and Tanaka, 2019). It helps in reducing overfitting, preserving

spatial information, and improving the network’s generalization capabilities.

The trainable weights present in the CNN model are optimized using gradient descent

optimization by minimizing the loss function given in (Equation 3.1). N ×M is the

number of training samples to be used and the performance of the trained model will be

evaluated on the test set.

Loss = − 1

N ×M

N×M∑
i=1

yi · log(ŷi) (3.1)

Finally, a training dataset is generated with the inputs as X = {x1, x2, · · ·xn} and the

target labels Y = {y1, y2, · · · yn}.
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Figure 3.5: Schematic for the BG-CNN FDI method

3.1.2 The Hybrid FDI Approach Using BG-CNN

As depicted in Figure 3.5, the proposed BG-CNN approach is comprised of the BG residual

generation block and the CNN-based fault isolation block. The fault-sensitive residuals

are generated from the BG model and used as input to the CNN model. This method has

two phases. First, the labeled faulty residual signals are used for the offline training of

the CNN. In the second phase, real-time residual signals generated by the BG model are

used by the trained CNN model to isolate the type of fault.

3.1.3 Incipient and Step Faults

When the fault in a parameter ϑ occurs gradually at a very slow rate, it is called incipient

fault (Safaeipour et al., 2021). It is extremely difficult to diagnose during the early stages.

If these types of faults get undetected by the FDI method, then later it can lead to

catastrophic damage. The complexity of incipient fault detection is increased by its small

magnitude. On the other hand step fault or sudden fault refers to the scenario when the

value of the parameter-ϑ changes instantaneously. An example of both types of faults is

shown in Figure 3.6.

3.1.4 Multiple Simultaneous Faults

Usually, the set of faults (F = {F1, .., FM}) to be monitored is known beforehand.

The faults present in F may occur individually or in combined form. If two
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Figure 3.7: The effect of the multiple faults on the generated residual

multiple simultaneous faults are considered the set of possible faults changes to

Fmulti = {F1, ..., FM , {F1&F2}, ..., {F1&FM}..., {FM−1&FM}}, same can be extended for

any number of simultaneous faults. The impact of multiple simultaneous faults on the

residual signal is illustrated in Figure 3.7, where they occur intermittently.

3.1.5 Evaluation Metrics

In industrial FDI applications, an excessive number of false alarms can lead to issues,

as can the failure to detect critical faults. The F1-score (Equation 3.2) is selected as

the common metric to evaluate and measure the accuracy of the proposed hybrid FDI

method, along with other methods. This choice is motivated by the fact that the F1-score

considers both false alarms (FP ) and missed detections (FN). TP refers to the number

of true positives or correctly classified samples. The closer the F1 score is to 1, the more

effective the fault isolation is.
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F1-score =
TP

TP + 1
2
· (FP + FN)

(3.2)

The experiment is repeated 5 times for each setting to eliminate randomness linked to

random data sampling and neural network initialization. The mean F1-score and the

standard deviation of the F1-score are then acquired and presented in tabular form.

3.1.6 Realtime FDI Using BG-CNN

The subsection presents the pseudo-code for real-time implementation of BG-CNN-based

FDI algorithm (Algorithm.1). The algorithm uses the BG model of the system to generate

residual signals. A CNN is then trained to recognize patterns in the residuals associated

with different fault types. In real-time, the trained CNN predicts fault categories from

newly generated residuals, enabling effective FDI applications.

3.1.7 Example: DC Motor FDI

3.1.7.1 Fault Introduction to The DC Motor

All types of faults in this study are introduced through the simulation of the DC motor

created in SIMULINK. Re, Rm, and K are taken into account to simulate parameter faults,

and im and ωm are considered in order to simulate sensor faults. In a similar way, multiple

simultaneous faults are also introduced. For the demonstration, two sets of simultaneous

faults are considered, {Re&Rm} and {im&ωm}. The first set of multiple simultaneous faults

is for parameter faults whereas the second set is for the sensor faults. The corresponding

symbols used for all types of faults are given in Table 3.1. Moving forward, whenever

single faults are mentioned, it refers to the set Fsingle = {Fhealthy, FRe , FRm , FK , Fim , Fωm}

and whenever multiple simultaneous faults are mentioned it refers to the set of faults

Fmulti = {Fhealthy, FRe , FRm , FK , Fim , Fωm , FRe&Rm , Fim&ωm}. The FSM of the DC motor

is given in Table 3.2. It is very clear from the FSM that except for the Re and Rm faults

all other types of faults are not isolable as they share the same fault signature. However,

it should be emphasized that the BG residuals are extremely sensitive to faulty conditions

and can detect all types of faults. Because of this, CNN uses these residual’s data to

isolate faults in the following phase.
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Algorithm 1 Pseudo code for BG-CNN-based FDI
1: procedure Bond Graph Based Residual Generation({De}, {Df}, {Se}, {Sf}, ϑ)
2: {SSe} ← {De}
3: {SSf} ← {Df}
4: ri ← Ψ({ϑ}, {

∑
SSe}, {

∑
SSf}, {

∑
Se}, {

∑
Sf})

5: return: {ri}
6: end procedure

7: procedure Dataset Formation({ri}, w)
8: X ∈ Rn×w×q ← Sliding Window({ri}, w)
9: Y ∈ Rn×M ← OneHotEncoded fault labels

10: Xtrain, Xtest, Ytrain, Ytest ← Train Test Split(X, Y )
11: return: Xtrain, Xtest, Ytrain, Ytest

12: end procedure

13: procedure CNN Training(Xtrain, Xtest, Ytrain, Ytest)
14: Use the 2d residual time series dataset (Xtrain, Ytrain) to train the CNN model
15: Ŷtest ← CNN model(Xtest)
16: F1-score ← CNN model(Ytest, Ŷtest)
17: return: CNN model, F1-score
18: end procedure

19: procedure BG-CNN FDI({De}, {Df}, {Se}, {Sf}, ϑ,CNN model, w)
20: {ri} ← Bond Graph Based Residual Generation({De}, {Df}, {Se}, {Sf}, ϑ)
21: X ← Sliding Window({ri}, w)
22: Ŷ ← CNN model(X)
23: return: Ŷ
24: end procedure
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Table 3.1: Name of the faults to be monitored

Fault Class Parameters Values
0 Fhealthy healthy mode/ no fault
1 FRe fault in Re

2 FRm fault in Rm

3 Fim fault in im
4 Fωm fault in ωm

5 FK fault in K
6 FRe&Rm faults in Re and Rm at the same time
7 Fim&ωm faults in im and ωm at the same time

Table 3.2: FSM for the DC motor

ARR1 ARR2 ID IC
FRe 1 0 1 1
FRm 0 1 1 1
FK 1 1 1 0
Fim 1 1 1 0
Fωm 1 1 1 0
FRe&Rm 1 1 1 0
Fim&ωm 1 1 1 0

3.1.7.2 Dataset Creation from DBG Residuals

A sliding window method is performed with w = 10 on the residual signal and they are

divided into small segments. Finally, the entire dataset X = {x1, x2..., xn}, x ∈ R(n×10×2),

where n is the number of samples and its value for different scenarios are given in Table

3.3. For all these n observations the corresponding fault labels are Y = {y1, y2..., yn},

Y ∈ R(n×M), where M is the number of classes to be considered. While considering only

single faults (Fsingle), M = 6, and while considering multiple simultaneous faults (Fmulti),

M = 8. The FSM of the DC motor is given in Table 1.5. The representation of fault data

in both sensor space and residual space is depicted in Figure 3.8. It is evident from the

figure that faults are more easily distinguishable in the residual space as opposed to the

sensor space.

Table 3.3: The samples obtained from each fault condition

Fault classes → Fhealthy FRe FRm FK Fim Fωm FRe&Rm Fim&ωm Total samples
Incipient Fault Fsingle 500 500 500 500 500 500 0 0 3000

Fmulti 500 500 500 500 500 500 500 500 4000

Step Fault Fsingle 500 500 500 500 500 500 0 0 3000
Fmulti 500 500 500 500 500 500 500 500 4000
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Figure 3.8: Distribution of the faults in sensor space (left) and residual space (right)

Table 3.4: The architecture of the proposed CNN

Layer Name Specifications Activation Function
Convolution 64 Kernels of shape 3×2 ReLU
Convolution 64 Kernels of shape 3×2 ReLU
Global Average Pooling - None
Fully connected 64 neurons ReLU
Classification 8 (Number of fault classes) Softmax

3.1.7.3 CNN Architecture and Training

Seven groups of experiments are conducted to evaluate the effectiveness of each method.

The training set sizes are 4, 8, 16, 32, 64, and 128 for each group. Each experiment is

repeated 5 times to eradicate the randomness associated with the model training. The

F1-score metric is used to evaluate these performances. The architecture of the CNN

used is given in Table 3.4. No hyper-parameter tuning is done for the selection of this

architecture.

3.1.7.4 Results of FDI Using BG-CNN

The confusion matrix, displayed in Figure 3.9, illustrates the performance of the BG-CNN

model on the test dataset after being trained with 32 samples per fault class. The achieved

F1-score is 0.9132. Notably, the model encounters challenges in distinguishing fault-4

from fault-5. This difficulty arises due to the considerable overlap in the data associated

with these two classes, as depicted in Figure 3.8.
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Figure 3.9: Confusion matrix obtained with BG-CNN (N=32, w=10)

Real-time FDI is executed on the test set data, as illustrated in Figure 3.10. The x-axis

represents time, while the y-axis displays the predicted fault class by the BG-CNN method.

The color of each point corresponds to its actual fault class. Notably, the model exhibits

accurate predictions for fault-0 (healthy) throughout. However, for rest of the fault

categories, some initial miss-classifications are observed due to the incipient nature of

these faults, making them challenging to distinguish from the nominal condition at the

outset.
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Figure 3.10: Real-time FDI on test set using BG-CNN (N=32, w=10)

67



4 8 16 32 64 128
Training samples per fault class

0.70

0.75

0.80

0.85

0.90

0.95

1.00
M

ea
n 

F1
-s

co
re

Incipient Fault
Step Fault

Figure 3.11: F1-score of BG-CNN for step fault and incipient fault (w=10)

3.1.7.5 Ablation Study

In Figure 3.11, the F1-score of BG-CNN is presented concerning incipient and step faults.

It is evident that the F1-score is relatively high in detecting step faults due to their

straightforward nature. The F1-score for early-stage faults tends to be lower since, at the

onset of a fault, distinguishing it from non-fault data becomes challenging.

The performance of BG-CNN on single and multiple simultaneous faults is illustrated in

Figure 3.12. It can be observed that with a small number of training samples, BG-CNN

achieves a higher F1-score for both single faults (Fsingle) and multiple simultaneous faults

(Fmulti). Nevertheless, when the same number of training samples is considered, the

F1-score for Fmulti tends to be higher than that for Fsingle. This difference is attributed

to Fmulti encompassing a greater number of classes, thereby acquiring more training data

during the training process compared to Fsingle. For instance, when N=4, Fsingle receives

a total of 24 samples (calculated as 4× 6), whereas Fmulti receives a total of 32 samples

(calculated as 4× 8) during training.

The performance of the BG-CNN method is affected by the window length (w) of the input

residual signal, which determines the amount of information available to the model. A
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Figure 3.12: F1-score of BG-CNN for Fsingle and Fmulti (w=10)
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Figure 3.13: F1-score of BG-CNN for different window lengths (w)

larger w provides more information but at the cost of increased computation and processing

time. The effect of various window lengths on BG-CNN performance is presented in

Figure 3.13. The observed trend suggests that a greater window length results in a higher

F1-score.

To assess the effectiveness of the proposed BG-CNN method, we conducted a comparison

with several ML and DL algorithms that utilize the same residual signal as input. The

evaluation focused on Fmulti and incipient fault data, which are considered particularly

challenging scenarios.

Figure 3.14 records the F1-score value on the test-set data for various models. This
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Table 3.5: Hyper-parameters ML Methods

Parameter Value
SVM (RBF Kernel) C = 1, max_iter = 1000
Random Forest (RF) max_depth = 50, n_estimators = 20
K-Nearest Neighbor (KNN) n_neighbors = 2, Euclidean distance
Artificial Neural Network (ANN) 3 hidden layers (128, 64, 32 neurons)

Training Epochs = 200
Optimizer = Adam
Learning Rate = 0.001
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Figure 3.14: The comparison result of all the models in terms of F1-score

graph shows the number of training samples per fault class for different machine learning

algorithms, including BG-CNN, BG-KNN, BG-RF, BG-ANN, and BG-SVM. The x-axis

shows the number of training samples per fault class, ranging from 4 to 128. The y-axis

shows the F1-score, which is a measure of a model’s performance on a test set. The

hyperparameters of all the ML methods are given in Table 3.5. It is very clear from the

experimental result, that the proposed BG-CNN method can achieve excellent results with

a very small amount of labeled data. For all the algorithms the F1-score increases with an

increase in the number of training samples but for the BG-CNN method, this increase in

performance is very quick. The BG-CNN method outperforms the traditional ML-based

methods in almost every scenario. It is notably better for incipient fault detection while

considering the possibilities of multiple simultaneous faults. Only when there is enough

labeled data, does the RF algorithm have comparable performance.

The comparison between using residual signal and sensor measurement as input is shown

in Figure 3.15. The BG-CNN method shares the same architecture and training method

as the CNN method, but it uses BG residuals as input features instead of raw sensor data.
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Figure 3.15: The comparison between BG-CNN and CNN with raw sensor measurement

BG-CNN appears to achieve the highest F1 score for most training sample sizes, making

it the most robust model in this scenario.

While employing solely the residual signal and a deep learning approach, the volume of

necessary data for the deep learning model can be significantly reduced. This reduction

can be further enhanced through the utilization of self-supervised learning, allowing for

the efficient incorporation of plentiful unlabeled data.
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3.2 Self Supervised Learning

In this method, the assumption is that a substantial volume of unlabelled measurement

data from the system is already at hand, while only a small number of sensor measurements

have been assigned to their respective fault classes. This section is divided into two steps

to enhance FDI with deep learning techniques. In the initial step, the system’s LFT-BG

model is employed for generating pseudo-labels automatically. In the subsequent step,

self-supervised training is performed using a large quantity of pseudo-labels derived from

unlabeled data, along with a small number of actual fault labels.

In supervised learning, the dataset (D) consists of both the input values (X =

{x1, x2, · · · , xn}) and the corresponding targets (Y = {y1, y2, · · · , yn}), indicated as

D = {X, Y }. However, the manual labeling of the targets can limit the scalability

of supervised learning in the field of FDI due to the shortage of labeled data. To

overcome this challenge, this paper proposes a Self Supervised Learning (SSL)-based

method. In SSL, the entire dataset (D) is divided into two components: one with

labeled target values (Dl = {Xl,i, Yl,i}nlabeled
i=1 ) and another without corresponding labels

(Du = {Xu,i}nunlabeled
i=1 ). The number of samples in the labeled dataset is much smaller

compared to the unlabeled dataset, where nunlabeled >> nlabeled. The proposed SSL

method utilizes both the labeled and unlabeled datasets to train a deep learning model

(f(x) = G(H(x))). While the classifier network (G) is parameterized by θG and the

feature extractor network (H) is parameterized by θH . Depending on the task at hand,

the function H can take the form of various neural network architectures including fully

connected dense networks, Convolutional Neural Networks (CNNs), Recurrent Neural

Networks (RNNs), or Transformers. However, G is limited to the fully connected network.

3.2.1 Pre-training

In order to train the deep learning method f(x), first the H is trained by using the

abundantly available unlabeled dataset (Du). The first step in this process involves

designing a “pretext task” that is similar to the target task (Devlin et al., 2018). To achieve

this, a process denoted as P , is implemented to generate pseudo labels for each sample in the

unlabeled datasetDu. These pseudo-labels are generated programmatically, eliminating the

need for manual labeling. As a result, a new dataset is formed, D̃u = {Xu,i, Zu,i}nunlabeled
i=1 ,
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where Zu = P(Xu) = {z1, z2, · · · , znunlabeled
} signifies the corresponding pseudo labels. The

second step of the procedure involves training the parameters of the feature extractor

H using {Xu, Zu}. This is accomplished by training a pretext model K(H(·)) with the

goal of minimizing the loss function L(K(H(Xu)), Zu). Here, K is a classifier added

on top of the feature extractor, which is discarded after training on the pretext task is

completed. The entire optimization process is described in equation (Equation 3.3), where

θ⋆H represents the learned parameters of the feature extractor H. This step is also known

as pre-training.

θH, θK = argmin
θH,θK

∑
(Xu,Zu)∈D̃u

L(K (Hθ(Xu)), Zu) (3.3)

3.2.2 Fine-tuning

In the final step, a fully connected classification network, G is incorporated into the deep

learning model, resulting in f(x) = G(H(x)), for the target task. At the start of training

only the labeled dataset Dl (the unlabeled dataset Du is not used) is used, the parameters

of H are set to the values learned during the pre-training stage. The training objective

is given in (Equation 3.4). This approach is referred to as fine-tuning, and is essential

to align the learned parameters from the pre-text task with the target task (Dosovitskiy

et al., 2014). It is important to note that, during the fine-tuning phase, a very low learning

rate in the range of 10−5 − 10−4 should be maintained to prevent catastrophic forgetting.

θ⋆H, θG = argmin
θ⋆H,θG

∑
(Xl,Yl)∈Dl

L(G (H(Xl)), Yl) (3.4)

In summary, the SSL involves using unlabeled data to generate pseudo-labels for a pre-text

task as depicted in Figure 3.16. The purpose of this pre-text task is to transfer the learned

parameters to the target task of interest. The method is completed through fine-tuning

with the labeled target data. It is important to note that the design of the pre-text task

is a crucial factor in SSL and careful consideration must be given to this aspect. In the

next section, various proposed methods in the literature for designing the pre-text task

will be discussed.
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Figure 3.16: Outline of the proposed Self-Supervised Learning method for FDI.

3.2.3 Psuedo Label Generation Using LFT-BG

A LFT-BG model of the system is required to generate the pseudo labels, which describe

the physical phenomena governing the system’s dynamics. Several commercial bond-graph

software tools (e.g., 20-sim) are available for this purpose. To obtain the pseudo labels,

first, the residual signals (ri) and their adaptive thresholds (ai) must be obtained. The

ri, ai are dynamically obtained by feeding the sensor measurements St and other inputs

to the system Ut at time t as shown in Equation 3.5.

ri,t = Ψi(Ut,St, ϑ), i ∈ {1, · · · , q}

ai,t = Ψi(St, ϑ, δϑ), i ∈ {1, · · · , q}
(3.5)

From the historical sensor measurements, the corresponding residual signals are derived

through the application of Equation 3.5. However, the entirety of this derived residual

data cannot be directly input into a deep-learning model due to its potentially varying

length, spanning from months to years. Therefore, it is imperative to partition it into

smaller segments using a sliding window method with a window length denoted as w

(Figure 3.3). Each segment is an input to the deep learning model and referred to

as xu
i =


r1,t−w r2,t−w · · · rq,t−w

r1,t−w+1 r2,t−w+1 · · · rq,t−w+1

...
... . . . ...

r1,t r2,t · · · rq,t

 ∈ Rw×q and consists of q residual signals

obtained from the LFT-BG. The entire pseudo-label generation process is presented in
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Figure 3.17: Pseudo-label generation using LFT-BG model.

Figure 3.17. Xu,i encompasses w time steps, where the residual values of the last time step

are used for the generation of the coherence vector (C). This coherence vector serves as the

pseudo-label for the pretext task. As a result, w coherence vectors are generated for each

sample (Xu,i). The coherence vector at time ‘t’ is chosen as the corresponding coherence

vector for that observation. Consequently, for each observation in Du, a corresponding

coherence vector (Ci) is obtained, which functions as the pseudo-label for the pretext task.

Each pseudo-label (Zu,i = Ci ∈ Rq) is a vector containing 0s and 1s.

3.2.4 Utilizing Residual Signals and Generated Pseudo Labels in

SSL, Followed by Fine-Tuning

The diagram in Figure 3.18 illustrates the flow chart for training the deep-learning model

using the proposed SSL algorithm using pseudo labels generated from the LFT-BG. With

the dataset for the pretext task established, the next step is to train K(H(·)) by minimizing

the loss function defined in equation (3.6). This phase is known as the ‘pertaining phase’,

where the segmented residual signal Xu ∈ Du serves as the input to the deep learning

model (K(H(·))), producing the boolean incidence matrix Zu as the output.

Ẑu = K(H(Xu))

L(Zu, Ẑu) = −
1

nunlabeled

nunlabeled∑
i=1

Zu,i log(Ẑu,i) + (1− Zu,i) log(1− (Ẑu,i)
(3.6)

Upon completion of the pre-training process, The K component is discarded. Only the
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Figure 3.18: Applying the proposed SSL algorithm on a PEM electrolyzer Stack

feature extractor H(·) is retained and utilized in the subsequent training step. A new

fully-connected network G is added on top of H(·). The final stage of the SSL process

is executed as outlined in Section 3.2, with the use of a limited amount of labeled data

present in Dl. The training objective is defined in Equation 3.4, and the categorical

cross-entropy loss function (as detailed in Equation 3.7) is utilized as the training criterion.

In this function, M represents the number of distinct fault classes, and Yl ∈ RM is the

one-hot encoded fault label.

Ŷl = G(H(Xl))

L(Yl, Ŷl) = −
1

nlabeled

nlabeled∑
i=1

Yl,i log(Ŷl,i)
(3.7)

The determination of the optimal architecture for the deep-learning model is established

through performance evaluations on test data. The model’s hyperparameters are adjusted

iteratively until the desired level of accuracy is attained.

3.2.5 Hierarchical Combination for Online FDI

In order to minimize the occurrence of false alarms and enable the detection of novel faults,

both the LFT-BG and deep-learning (after training) methods are combined hierarchically

as shown in Figure 3.19. First, the sensor measurements (St) and the input sources (Ut)

are fed into the LFT-BG model to generate the residual signals as given in Equation 3.5.

Should any of these residuals surpass its adaptive threshold (ai,t), an alarm is triggered and
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Figure 3.19: The proposed hierarchical combination strategy of LFT-BG along with the
deep learning model for real-time FDI.

the subsequent step activates the deep Learning-based fault isolation. In other words, the

alarm is generated if (
∑q

i=1 Ci,t > 0). However, for as long as the residuals remain within

the adaptive threshold, the system registers a ‘no-fault’ output. Before giving the residual

signals as input to the model, they are pre-processed using the sliding window method to

generate the input at time t, xt. Then the xt is the input of the deep learning model, and

the model outputs the predicted probability for each fault class (ŷt = G(H(xt))). The

most probable fault class is selected as the final output (Equation 3.8).

Predicted fault class = argmax(ŷt) (3.8)

This hierarchical approach to FDI offers two notable advantages:

1. It helps in reducing the number of false alarms generated from the AI-based method.

2. It integrates a physics-based method, which facilitates the detection of novel faults

that can not be detected using the deep learning method alone.

3.2.6 Pedagogical Example of SSL on DC Motor

To demonstrate the efficiency of training the deep learning model through self-supervised

learning, we applied it to the DC motor fault dataset. This dataset includes multiple

simultaneous faults (total fault class = 8) introduced gradually for experimentation.

3.2.6.1 Pre-taining using pseudo labels

The dataset comprises a total of 500 samples per fault class. In the initial self-supervised

learning phase (pre-training), 400 samples per fault class are utilized to train the CNN

model. Importantly, during this phase, the corresponding fault labels are not used. Instead,
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Table 3.6: Architecture of the Pre-Training model (K(H(·)))

Layer Type Number of Neurons Activation Function Belongs to
1 Conv2D 64 filers, kernel size=(3,2) ReLU H(·)
2 Maxpooling pool size=(2,2) - H(·)
3 Conv2D 64 filers, kernel size=(3,2) ReLU H(·)
4 Maxpooling pool size=(2,2) - H(·)
5 Global Average Pooling - - H(·)
6 Dense 64 ReLU K(·)
7 Dense 2 (No. of residuals) Sigmoid K(·)

Table 3.7: Architecture of the Fine-Tuned model (G(H(·)))

Layer Type Number of Neurons Activation Function Belongs to
1 Conv2D 64 filers, kernel size=(3,2) ReLU H(·)
2 Maxpooling pool size=(2,2) - H(·)
3 Conv2D 64 filers, kernel size=(3,2) ReLU H(·)
4 Maxpooling pool size=(2,2) - H(·)
5 Global Average Pooling - - H(·)
6 Dense 64 ReLU G(·)
7 Dense 8 (No. of fault classes) Softmax G(·)

the training relies on pseudo-labels generated by the LFT-BG model of the DC motor,

represented by the incidence matrix. The architecture of CNN used for pertaining is given

in Table 3.6.

3.2.6.2 Fine-tuning using transfer learning

Following the pre-training phase, the final fully connected layers (G(·)) are removed and

replaced with new ones. During the fine-tuning phase, the parameters of H(·) remain

fixed, meaning they do not update during training. Only the weights of the newly added

fully connected layers (K(·)) are updated. The fine-tuned CNN architecture is given

in Table 3.7. In this fine-tuning stage, a limited number of labeled samples are used.

Specifically, five different numbers of samples per fault class are employed: [1, 2, 4, 8, 16].

It is also known as ‘few-shot’ learning.

3.2.6.3 Results of SSL

The results obtained through the proposed self-supervised learning method, utilizing the

LFT-BG generated incidence matrix as pseudo-labels, are illustrated in Figure 3.20. To

validate the effectiveness of this self-supervised learning method, we compare it with the

fully supervised learning approach, both employing the same CNN architecture for a fair

comparison.

The outcomes reveal that even with just 1 sample per fault class (total samples = 1×M),
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Figure 3.20: Comarision between SSL and SL for DC Motor FDI

the proposed method achieves an F1-score of 0.85. Here, M = 7 represents the number

of different fault classes present in the dataset. This score consistently improves with

an increasing number of training samples. In contrast, when fully supervised learning is

employed, the F1-score is notably lower compared to the self-supervised learning method.

Nevertheless, this gap diminishes with an increasing volume of data.

Additional results from applying the SSL method to FDI in the Proton Exchange Membrane

electrolyzer are presented in Section 4.3. This section also includes an ablation study and

a comparison with other SSL algorithms currently in use.

Reducing the quantity of labeled data during the training of a deep neural network is a

crucial task. However, the subsequent challenge in applying AI to fault diagnosis lies in

the interpretability of the model’s decisions, as deep learning models are often perceived

as black boxes. Therefore, in the following section, we introduce an Explainable AI (XAI)

method based on occlusion and theoretical FSM to offer comprehensible explanations for

the obtained results.
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3.3 Explanation of The Fault Class Prediction Using

BG-XAI

To create a meaningful explanation for a task, it is important to consider what constitutes

a reasonable explanation. In the case of deep neural networks used for computer vision,

the network should focus on distinguishing characteristics of the images being classified,

such as the shape of ears or nose for a cat vs. a dog. A similar concept can be used

to create a strong explanation for the FDI task. In physics-based fault diagnosis, the

operator continuously monitors the system’s residual signals and declares faults based

on deviations. In the proposed hybrid FDI method, these residuals serve as input to a

black box deep learning model. The model’s reliability can be affirmed if the model gives

greater attention to residuals that are sensitive to the estimated fault class.

3.3.1 Human Understandable Explanation for FDI

In this hybrid approach, the deep learning component is the fine-tuned model obtained

after pre-training and fine-tuning. It is denoted as G(H(·)), and operates as a black

box. The objective is to explain the rationale behind the fault predictions generated by

this black box model. For instance, in online FDI, the input to this black box at time t

is xt =


r1,t−w r2,t−w · · · rq,t−w

r1,t−w+1 r2,t−w+1 · · · rq,t−w+1

...
... . . . ...

r1,t r2,t · · · rq,t

, which constitutes a multivariate time series

comprising residual signals, each with a length of w. The black box yields an output

denoted as ŷt = G(H((xt)). The process of explaining the model’s decision involves

identifying the specific residual signal ri, which most contributes to the decision made by

the G(H(·)) for the input xt.

3.3.2 Occlusion-Based Explanation (BG-XAI)

An occlusion-based data augmentation method is proposed to find out the contribution

of each residual signal towards the predicted output. The method employed here has

previously been utilized to explain the results for biomedical signal classification by CNNs

(Resta et al., 2021). To evaluate the influence of residual ri on the output, these steps are
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followed:

1. Generate the prediction ŷt by passing the input xt through the deep learning model

G(H(·)).

2. Replace the values of the residual ri in the input xt with 0 (Equation 3.9) to create

an occluded input, denoted as xocc
ri

.

3. Pass this modified input with the masked residual into G(H(·)) to produce the

prediction referred to as yoccrik
(Equation 3.10).

4. Estimate the absolute error (Equation 3.11) between the initial prediction (ŷt) and

the occluded prediction (yoccrik
), representing the change in the prediction of the black

box when the residual ri is absent. This value is denoted as αri , signifying the

contribution of ri to the output.

5. Repeat the procedure q times to obtain the importance of each residual, resulting

in [αr1 , αr2 , · · · , αrq ]. Normalize these values for straightforward visualization of

relative importance.

xocc
ri

=


r1,t−w r2,t−w · · · ri,t−w = 0 · · · rq,t−w

r1,t−w+1 r2,t−w+1 · · · ri,t−w+1 = 0 · · · rq,t−w+1

...
... . . . ... . . . ...

r1,t r2,t · · · ri,t1 = 0 · · · rq,t

 (3.9)

yoccrik
= G(H(xocc

ri
)) (3.10)

αri =
v∑

k=1

|ŷk − yoccrik
| (3.11)

Figure 3.21 illustrates the application of the BG-XAI method to derive residual importance

for r2. Where, the input signal, xt, consists of 5 residuals and has a window length of 4.

The output, denoted as ŷt, encompasses 3 distinct classes. The importance assigned to r2

by the black-box model for this prediction is represented by αr2 .
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Figure 3.21: The demonstration of obtaining residual importance for r2 is presented
here.

3.3.3 Analyzing Residual Importance Through Structural

Analysis

In the conventional FDI method, residual signals are observed, and fault isolation is

performed based on the FSM as shown in Table 1.1. The consistency of the decision made

by the black box model can be verified using this approach. For instance, when the black

box model predicts a fault in component Ei, the residual signals affected by it (denoted

as {ARRj|γij = 1}) should exhibit higher contribution to the final decision compared to

the unaffected residual signals ({ARRj|γij = 0}). In contrast, if the prediction indicates

no fault, then all residual signals should contribute approximately equally to the decision.

The advantages of using residual signals as input features for deep learning, along with

their significance in generating explanations, can be listed as follows:

• Traditional sensor data, when used as input features for generating occlusion-based

explanations, suffers from the disadvantage of creating new data with no physical

meaning when values are masked to zero. This data significantly differs from the

training data, potentially leading to inconsistent outputs from the black box model.

• In contrast, when residual signals are employed as input features, masking them

does not result in the creation of new data significantly differing from the training

dataset. Additionally, it holds physical significance, indicating a no-fault condition

when the residual remains close to 0.
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Figure 3.22: Residual importance for Fault-Re having fault signature [1,0]

3.3.4 Example of BG-XAI for FDI of A Pedagogical DC Motor

BG-XAI is utilized to explain the decisions made by the deep-learning model by focusing

on residual importance. In Figure 3.22, the residual importance is presented for the fault

in Re (Fault signature [1,0]), impacting only ARR1. The red and green lines are for upper

and lower thresholds. In the depicted graph, each point’s color indicates its importance,

with bright yellow indicating the highest importance and dark blue the lowest. It is

evident that as the degree of fault increases, more importance is attributed to ARR1.

This observation strongly supports that the trained CNN model assigns significance to

relevant residual signals when predicting fault classes, consistent with the findings from

structural analysis. This enhances the reliability and trustworthiness of the CNN model.

A corresponding diagram in Figure 3.23 illustrates how the CNN reaches decisions regarding

fault class Rm (Fault signature [0,1]), specifically affecting only ARR2. Notably, the CNN

assigns greater significance to ARR2 as the severity of the fault increases.

Figure 3.24 provides the explanation for fault class im (Fault signature [1,1]), which

impacts both ARR1 and ARR2. In this case, the CNN allocates equal importance to both

residuals when predicting faults. This observation underscores the effectiveness of the

proposed BG-XAI method in consistently generating explanations across different fault

classes.
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3.4 Conclusion

In conclusion, this section proposes some novel methods to overcome challenges in training

AI models for fault diagnosis. It introduced BG-CNN, a hybrid FDI method demonstrating

superior performance, particularly in scenarios with limited labeled data. Additionally,

an SSL method is used to enhance FDI in situations with sparse labeled data. It also

explores the explanation of prediction using BG-XAI. It is an occlusion-based method that

enhances explainability by assessing the contribution of each residual signal, illustrated

using a DC motor fault dataset.

In the upcoming section, the developed methods are applied to effectively perform FDI

for electrolyzers and railway tracks. The results demonstrate the efficacy of our proposed

approach in reducing the required labeled data by integrating prior knowledge into the

algorithm. Additionally, our method generates meaningful explanations for FDI predictions

made by the AI model.
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4 Application-1: PEM Electrolyzer Stack FDI

In a PEM electrolyzer, the stack is the most crucial component. The electrolyzer stack used

in the experimental setup was commercially supplied by Heliocentric. The experimental

platform consists of one single-cell PEM electrolyzer of 300 W as shown in Figure 4.1a.

The platform is powered by two photo-voltaic panels (200 W per panel), a permanent

magnet-type wind turbine (350-400 W power), and two batteries with a 55 Ah capacity

per battery. These batteries are engaged to store excess power when the electrolyzer is

not consuming the surplus power provided by the photovoltaic panel and wind turbine.

The PEM electrolyzer cell is supplied by the water from the anode side by a constant flow

rate of 0.017 kg/s and the produced hydrogen is stored in the metallic canister (H2 bottle)

of 750 standard liter capacity. Two PLC controllers are connected to the platform. One

controller is employed for managing platform components and ensuring safe operations.

The other PLC controller serves as a data acquisition system, as illustrated in Figure

4.1b, by which measurement data necessary for validating the single-cell PEM electrolyzer

model is fed into Matlab/Simulink.

Simulating faults in the critical parameters can potentially lead to damage to the system.

Hence, a high-fidelity simulation model of the PEM electrolyzer is established in the Matlab-

Simulink environment, utilizing inputs and outputs from the actual PEM electrolyzer.

Within this high-fidelity electrolyzer model, various parameter faults are emulated to

generate a dataset comprising sensor measurements and the corresponding faults as labels.

Subsequently, this dataset is employed for training the deep-learning model through the

SSL approach.

The key parameters of the single-cell PEM electrolyzer model were initially determined

using experimental data and the nonlinear least square error optimization technique. The

optimization was performed using the built-in Matlab function ‘fminsearch’. To ensure

better convergence during the least square error optimization, parameter value bounds

were taken from the literature (Carmo et al., 2013; Bessarabov et al., 2016), while other

parameters were provided by the manufacturers. The tuned single-cell PEM electrolyzer

was validated through a comparison between the experimental polarization characteristic

curve (as shown in Figure 4.2) and the one estimated by the simulation model. The mean
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Figure 4.1: Experimental setup of the PEM electrolyzer
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Figure 4.2: The polarization curve of the PEM stack

percentage absolute error was calculated to be 4.6%, which falls within an acceptable

limit for simulation and the development of diagnostic algorithms.

4.1 Dynamic Multi-Physics Modeling of The PEM

Stack

The LFT-BG of the stack, which is an extension of the work done by Sood et al. (2022),

is briefly presented in this section. The stack can be further divided into electrochemical,

chemical, thermal, and fluidic sub-models. The LFT-BG model of the PEM stack is shown

in Figure 4.3.

Electrochemical sub-model establishes the relationship between the applied voltage to

the cell (Ecell) and the actual voltage required for electrolysis, termed as reversible voltage

(Erev). The applied voltage is always greater than the reversible voltage due to losses

such as activation losses, ohmic losses, and mass transport losses, termed as overvoltages.

These overpotential losses are modeled by two-port RS resistive elements, i.e., Rohm, Ract,a,

Ract,c, and Rmt, respectively.

Eohm = Icell ·Rohm (4.1)

Eact,k =
R · Tst

αk · n · F
· arcsinh

(
Icell

2 · I0,k

)
; k = a, c (4.2)
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Emt =
R · Tst

2 · β · F
ln

(
1 +

Icell
IL

)
(4.3)

Where αk and I0,k represent the symmetry factor and standard current exchange density

at the kth electrode, while R is the ideal gas constant and Tst is the cell/stack temperature.

β is the diffusion constant and IL is the limiting current due to mass transport. RS

elements couple electrical and thermal energy domains, with Q̇irr representing cumulative

irreversible heat rate due to losses in resistors. The Tf : 1/2F element relates the

electrical and the chemical domains by connecting reaction rate ζ̇ with cell current Icell

and thermo-dynamical potential (Erev) with Gibb’s free energy (∆GR) using Faraday’s

law. Here, n represents the number of electrons and F is Faraday’s constant.

ζ̇ =
Icell
n · F

,Erev =
∆GR

n · F
(4.4)

Chemical sub-model provides the relationship between the generated amount of

hydrogen and oxygen with the amount of consumed water. Gibb’s free energy and

the molar flow rates (ṅi) are given in the below equation. Where, Ai is the chemical

affinity and νi is the stoichiometry coefficient.

∆GR = AH2 + AO2 − AH2O

ṅi = νi · ζ̇ = νi ·
Icell
n · F

(4.5)

Fludic sub-model establishes the relationship between the mass flow rates of different

species and their partial pressures. C : Cano and C : Ccat are storage capacity and

anode and cathode side. The crossover resistances are represented by R : Rdiff,i and

Tf : neo.MH2O is the electro-osmosis drag from the anode to the cathode. The equations

of mass flow rates are given in the below equations.

ṁdiff,i =
∆Pi

Rdiff,i

(4.6)

ṁeo,H2O = neo ·MH2O · ζ̇ = neo ·MH2O ·
Icell
n · F

(4.7)
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Figure 4.3: Diagnostic Bond Graph model of the PEM stack (Sood et al., 2022)

Where ∆Pi is the difference in partial pressure between the cathode and the anode. A

0-junction is used to model the mass flow conservations at anode and cathode, where

ṁa,Osep, ṁc,Hsep and ṁrec,a, ṁrec,c, are the fluid outflows from the stack and the flow rate

of the water at anode and cathode respectively. The hydraulic resistance at the anode

and cathode are represented by Rhyst,a and Rhyst,c.

In the Thermal sub-model, the stack’s thermal capacity and dissipative resistance are

represented by C : Cst and R : Rst, respectively. The stack temperature is associated with

thermal capacity C : Cst through various enthalpy rates, such as Ḣrec,a, Ḣrec,c, Ḣa,Osep,

Ḣa,Hsep, due to water being pumped from the oxygen separator (OS) and hydrogen

separator (HS), and fluid exiting to OS and HS from the stack. Additionally, Q̇irr

represents irreversible losses, Q̇S represents entropy change in an endothermic reaction,

and Q̇st,enc represents temperature gradient between stack and enclosure. The Rc element

represents the coupling of fluidic to thermal flows. The input stack voltage to the model

is not constant but ranges between [3.6 - 5.4] V.
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Table 4.1: Equations for ARR1 to ARR6

ARRs Expression
ARR1 Erev + Eohm + Eact,a + Eact,c + Emt − Ecell = 0

ARR2
ṁa,Osep − ṁrec,a − ṁprod,O2 + ṁcons,H2O + Cano

dPano

dt
+ ṁeo,H2O − ṁdiff,H2 − ṁdiff,H2O + ṁdiff,O2 = 0

ARR3
ṁc,Hsep − ṁrec,c − ṁprod,H2 + Ccat

dPcat

dt
− ṁeo,H2O − ṁdiff,O2 + ṁdiff,H2O + ṁdiff,H2 = 0

ARR4 Pa,Osep − Pano − ṁa,Osep ·Rhyst,a = 0
ARR5 Pc,Hsep − Pcat − ṁc,Hsep ·Rhyst,c = 0

ARR6 Cst
dTst

dt
− Ḣrec,a − Ḣrec,c − Q̇irr + Q̇S + Ḣa,Osep + Ḣc,Hsep + Q̇st,enc = 0

4.2 LFT-BG Based Residual Generation

The various sensor measurements obtained from the simulation model are the input to

the LFT-BG. The highlighted circles (yellow) in Figure 4.3 are the inputs to the LFT-BG

and their adjacent junctions will provide the ARRs. In case of the PEM stack, the sensor

measurements are cell current (Icell), stack temperature (Tst), anode pressure (Pano),

cathode pressure (Pcat), mass flow from stack to oxygen separator (ṁa,Osep), and mass

flow to hydrogen separator (ṁc,Hsep). The equations of all the ARRs are given in Table

4.1.

The above-generated ARRs do not take the uncertainties of the parameters into account.

Hence, the LFT-BG technique is used to generate robust residuals by estimating adaptive

thresholds. Finally, the unknown parameters in the ARR equations (Table 4.1) are

replaced with known values, and the generated residual signals are given in Table 4.2.

The adaptive threshold for each residual ri can be given as ai = ±∆ri, which considers

the parameter uncertainty. Here ∆ri is the uncertain part of the residual.

4.2.1 Theoretical FSM of The PEM Stack

The Fault Signature Matrix (FSM) is constructed based on the sensitivity of the parameters

to the generated residuals. The last two columns in Table 4.3 shows the detectability

and isolability of the corresponding fault using structural analysis. It is clear that out

of the 9 monitored components, only faults in 3 components (Icell, ṁc,Hsep, Rst) are

unambiguously isolable. It is important to highlight that the FSM being discussed is
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Table 4.2: Equations for r1 to r6

Equation Expression

r1

E0
rev +

R.Tst

n.F
ln

(
(PH2)

νH2 (PO2)
νO2

(aH2O)
νH2O

)
+ Icell.Rohm

+
R.Tst

αa.n.F
arcsinh

(
Icell
2.I0,a

)
+

R.Tst

αc.n.F
arcsinh

(
Icell
2.I0,c

)
+

R.Tst

2.β.F
ln

(
1 +

Icell
IL

)
− Ecell

r2

ṁa,Osep − ṁrec,a −
νO2.MO2.Icell

n.F
+

νH2O.MH2O.Icell
n.F

+ Cano
dPano

dt
+

neo.MH2O.Icell
n.F

− ∆PH2

Rdiff,H2

− ∆PH2O

Rdiff,H2O

+
∆PO2

Rdiff,O2

r3

ṁc,Hsep − ṁrec,c −
νH2.MH2.Icell

n.F
+ Ccat

dPcat

dt

− neo.MH2O.Icell
n.F

− ∆PO2

Rdiff,O2

+
∆PH2O

Rdiff,H2O

+
∆PH2

Rdiff,H2

r4 Pa,Osep − Pano − ṁa,Osep.Rhyst,a

r5 Pc,Hsep − Pcat − ṁc,Hsep.Rhyst,c

r6

Cst.
dTst

dt
− ṁrec,a.CP,H2O.Trec,a − ṁrec,c.CP,H2O.Trec,c

− I2cell.Rohm −
R.Tst

αa.n.F
arcsinh

(
Icell
2.I0,a

)
.Icell

− R.Tst

αc.n.F
arcsinh

(
Icell
2.I0,c

)
.Icell −

R.Tst

2.β.F
ln

(
1 +

Icell
IL

)
.Icell

+
Icell
n.F

.Tst.∆SR + ṁa,Osep .CP,fluid.Ta,Osep

+ ṁc,Hsep.CP,fluid.Tc,Hsep +
Tst − Tenc

Rst
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Table 4.3: Theoretical FSM for the PEM stack

Phenomenon ARR → ARR1 ARR2 ARR3 ARR4 ARR5 ARR6 ID IC
Faults ↓

Electro-chemical Rohm 1 0 0 0 0 1 1 0
Ract,a 1 0 0 0 0 1 1 0
Icell 1 1 1 0 0 1 1 1

Fludic Rdiff,O2 0 1 1 0 0 0 1 0
neo 0 1 1 0 0 0 1 0
Pcat 0 0 1 0 1 0 1 0
ṁc,Hsep 0 0 1 0 1 1 1 1

Thermal Rst 0 0 0 0 0 1 1 1
Tst 1 0 0 0 0 1 1 0

termed the "theoretical FSM". In real scenarios, the sensitivity of residual signals is

significantly influenced by system parameter values. Certain faults affect some residuals

more than others, while some residuals exhibit almost negligible deviations in the presence

of faults. Therefore, a data-driven method is used to increase this isolation ability by

using minimal labeled data.

4.2.2 Utilizing The Real System and The High Fidelity Simulation

for Fault Data Generation

As previously noted, introducing parameter faults into an actual system presents significant

challenges and risks. In contrast, sensor faults can be readily generated by incorporating

a bias or slow drift during data acquisition within the Matlab-Simulink environment.

Therefore, this study acquires data from both the no-fault scenario and sensor faults from

the real system. However, data pertaining to various parameter faults, such as cross-over

resistance or thermal resistance of the stack, is obtained through the utilization of a

high-fidelity simulation model, with faults being simulated using Simulink blocks. The

entire fault data set generation is demonstrated in Figure 4.4.

In the Table 4.4, the degree of the introduced faults is specified, along with whether the

corresponding data is derived from the real system or a high-fidelity simulation. Each

component fault is given a Fault class and for the normal condition data, this Fault class

is 0. The sensitivity of residuals varies across components, so the degree of fault added

to each component is decided based on its impact on the residuals. For the components,

Rdiff,O2 and Rst the value is decreased over time, and for all the sensor faults, a ‘sine’

component is added to increase the complexity of the fault. Each fault is introduced
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Figure 4.4: The creation of the data set using both the real system and high-fidelity
simulation.

Table 4.4: Specification of all the faults

Fault Class Associated Component The Significance of the Fault Degree of Fault Source of Data
1 Rohm Membrane corrosion degradation 0 to 10 % High-fidelity simulation
2 Ract,a Catalyst layer degradation (anode side) 0 to 50 % High-fidelity simulation
3 Icell Current sensor fault 0 to 20 % Real-system
4 Rdiff,O2 Increase in crossover diffusion ∞ to 2 e9 High-fidelity simulation
5 neo Membrane flooding degradation 0 to 3000 % High-fidelity simulation
6 Pcat Pressure sensor fault (cathode side) 0 to 5 % Real-system
7 ṁc,Hsep Mass flow sensor fault (cathode side) 0 to 5 % Real-system
8 Rst Aging of stack 0 to -10 % High-fidelity simulation
9 Tst Temperature sensor fault 0 to 10 % Real-system
0 XXX No fault (Healthy) XXX Real-system

gradually over a period of 50 seconds. The high-fidelity simulation employs a sampling

rate of ts = 0.2 s, which matches the data acquisition rate of the real system.

In the absence of system faults, all residuals remain confined within the adaptive threshold,

as depicted in Figure 4.5. The initial deviation observed in ARR6 is attributed to a sudden

shift in the system state. Subsequently, Figure 4.6 illustrates the response of residuals to

the gradual emergence of a sensor fault. The behavior of the residuals aligns with the

FSM matrix, with only ARR1 and ARR6 exhibiting sensitivity to this fault. Given the

gradual nature of the fault, it takes the residual certain amount of time to detect and go

out of the threshold. And after the fault was removed at t = 70s it took the residual some

time to come back within the thresholds. This delay is a consequence of employing filters

designed to eliminate measurement noise. Both of these scenarios are obtained using the

real PEM stack’s sensor measurements.

The effect of gradual parameter fault on the obtained residual signal is demonstrated in

the Figure 4.7 for the parameter Rdiff,O2. It signifies the increase in cross-over diffusion
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Figure 4.5: The response of the residuals when there is no fault.

within the PEM stack. The sensor measurement data utilized in this analysis is obtained

from the high-fidelity simulation of the stack. It should be noted that this fault exclusively

impacts ARR2 and ARR3, aligning with the FSM.

4.2.3 Description of The Dataset

As mentioned in the previous section, the fault data set was acquired through a combination

of the real PEM stack model and a high-fidelity simulation. Data related to the

fault-free condition and sensor faults were gathered from the real system, whereas

high-fidelity simulation is used to generate parameter fault data by emulating various

critical parameter faults. The dataset was acquired, comprising six sensor measurements

([Icell, Tst, Pano, Pcat, ṁa,Osep, ṁc,Hsep]) and a corresponding fault label for each time step.

Additionally, a time column was included to record the timing of faults. These sensor

measurements and input source values to the PEM are used in an LFT-BG model to

generate six residual signals [r1, r2, r3, r4, r5, r6] and the adaptive thresholds. Initially,

such 4691 samples are obtained and the distribution of samples from each fault class is

given in Figure 4.8. In deep learning algorithms, all input features must be in a similar

range. To achieve this, the residual data is first normalized to the range [−1, 1]. Then a

sliding window (w) of 40 is used to divide this entire length of residual signals into small

segments, xi ∈ R40×6. Each sample here is a multi-variate time-series of residual signals
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Figure 4.6: The response of the residuals to Tst sensor fault.
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Figure 4.7: The response of the residuals to fault introduced in the parameter Rdiff,O2.
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Figure 4.8: Flow chart to show the data preprocessing and train-test split.

and has a corresponding fault label yi. The high number of samples in the no-fault or

class-0 compared to other classes is evident. To balance the dataset, the Fault class-0 has

been downsized to 240 samples. Within this subset, data occurring at the very beginning

of the fault has been excluded to mitigate potential confusion, as during this period, the

system’s state closely resembles normal conditions. The dataset comprises a total of 2600

samples, with 260 samples per class across 10 different faults. This dataset is subsequently

divided into training and test sets, with the training set containing 160 samples per class,

and the test set comprising 100 samples per class.

In the evaluation of semi-supervised learning (SSL) to address the scarcity of labeled fault

data, the pre-training phase employs all 160 samples per class without corresponding fault

labels. Instead, automatically generated pseudo labels are utilized. Among these, only a

specific number of samples per class, denoted as N , is assumed to possess corresponding

fault labels. In this study, N values are selected from [4, 8, 16, 32, 64, 90], derived through

random down-sampling from the training-set data. And these labeled data are only used

during the fine-tuning phase.

97



Table 4.5: Architecture of the Pre-Training model (K(H(·)))

Layer Type Parameters Activation Function Belongs to
1 Conv2D 32 filers, kernel size=3 ReLU H(·)
2 Conv2D 32 filers, kernel size=3 ReLU H(·)
3 Conv2D 32 filers, kernel size=3 ReLU H(·)
4 Conv2D 32 filers, kernel size=3 ReLU H(·)
5 Conv2D 32 filers, kernel size=3 ReLU H(·)
6 Global avg. pooling - - H(·)
7 Dense 64 ReLU K(·)
8 Dense No. of residuals (6) Sigmoid K(·)

4.3 Application of The Proposed Hybrid Method Using

The Obtained Dataset

The CNN was selected due to its capacity to manage time series data and its lower

parameter count for training (Sun et al., 2023; Chen et al., 2023). The complete architecture

of the pre-training model can be found in Table 4.5.

Throughout the pre-training phase, all training data samples, denoted as Xu,i ∈ R40×6,

and their corresponding pseudo labels Zu,i ∈ R6 generated via the LFT-BG method, were

employed. Each pseudo label is represented as an incidence matrix with Boolean values.

The training process involves utilizing this input and output data to train K(H(·)), with

the K(·) component being discarded after training. The ‘adam’ optimizer (learning rate

= 0.001) was utilized with a batch size of 128. At the end of this step, the deep-learning

model with learned parameters (θH) is obtained.

In order to transfer the knowledge learned from the pre-training task to the target task,

a new fully connected network (G(·)) is added on top of the deep-learning model. G(·)

has 10 output neurons having ‘softmax’ activation. This network is trained on a small

amount of labeled data (N per class) to align the learned representations with the target

task. The new network (G(H⋆(·)) is trained using the ‘adam’ optimizer (learning rate =

0.0001) to minimize the loss function.

4.3.1 Hierarchical Integration of LFT-BG with Deep Learning

The test-set data, unseen by the model, undergoes evaluation using the fine-tuned deep-

learning model. During test set inference, adaptive thresholds derived from the LFT-BG
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Table 4.6: Architecture of the Fine-Tuned model (G(H(·)))

Layer Type Parameters Activation Function Belongs to
1 Conv2D 32 filers, kernel size=3 ReLU H(·)
2 Conv2D 32 filers, kernel size=3 ReLU H(·)
3 Conv2D 32 filers, kernel size=3 ReLU H(·)
4 Conv2D 32 filers, kernel size=3 ReLU H(·)
5 Conv2D 32 filers, kernel size=3 ReLU H(·)
6 Global avg. pooling - - H(·)
7 Dense 64 ReLU G(·)
8 Dense No. of fault classes (10) Softmax G(·)
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Figure 4.9: The F1-score obtained on the test set is displayed here, using the proposed
hybrid FDI method with different levels of labeled data (w = 40).

model, are employed to assess each sample. Should any residual exceed the threshold, the

sample proceeds to the deep-learning model for fault isolation. Otherwise, the sample is

classified as ‘no-fault’.

4.4 Results and Discussion

In Figure 4.9, the FDI performance of the hybrid method is depicted across different

levels of labeled training data. The error bar in the plot represents the standard deviation

of the F1-score, calculated from 10 experiments. Notably, the hybrid model attains an

F1-score of 0.8813± 0.0115 even with just four labeled samples per class. Beyond N=32,

the performance gains are minimal; nevertheless, the standard deviation of the F1-score

diminishes as labeled data increases.

In order to assess the effectiveness of the proposed method, a deep-learning model trained

with only 16 labeled samples per class was utilized for fault isolation. The real-time FDI

of the hybrid method is shown in Figure 4.10, where the y-axis referees to the predicted
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Figure 4.10: Real-time FDI using the hybrid FDI method for fault class-4 (Rdiff,O2).
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Figure 4.11: Real-time FDI using the hybrid FDI method for fault class-9 (Tst).

fault class by the proposed method and the color of each point refers to its actual fault

class. The fault in Rdiff,O2 (fault class - 4) was gradually introduced, starting at t = 20s

and ending at t = 70s. Initially, the proposed method could not detect the fault due to

its small magnitude, resulting in a response similar to a non-fault condition. However, as

the fault’s intensity increased around t = 30s the hybrid model correctly identified and

isolated the fault until the end. Towards the end, some misclassification was observed,

which was attributed to the model taking some time to return to a normal state after

the fault was removed. A similar behavior is observed in Figure 4.11 when introducing

sensor fault in Tst (fault class-9 ). More misclassifications occur towards the end due to

the longer time it takes for the system to return to its normal state after this fault is

removed.

A confusion matrix is presented in Figure 4.12, which is obtained from the test-set data.

In the test data, each fault class comprises of 100 samples. The horizontal and vertical

axes respectively denote the predicted fault class by the Hybrid FDI method and the

actual fault label.

The first confusion matrix in Figure 4.12a corresponds to the pure physics-based approach,

where the residual signals from the LFT-BG are used in conjunction with FSM for fault

isolation. However, the fault isolation is not optimal, as several fault classes share the

same fault signature, making it challenging to discriminate between them. For instance,

faults 1, 2, and 3 affect the residuals similarly, leading to a comparable fault signature.
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Figure 4.12: Confusion matrix obtained on the test-set using various methods along
with their F1-scores.

Consequently, using physics-based methods, these types of faults cannot be effectively

isolated.

Figure 4.12b displays the confusion matrix for a purely supervised method that utilizes the

residual signal as input and involves the use of 8 samples per fault class during training.

The fault isolation is notably improved compared to LFT-BG; however, there may be

some misclassifications between fault classes 7 and 8.

Finally, Figure 4.12c illustrates the confusion matrix using our proposed SSL method.

This model is fine-tuned using 8 samples per fault class but provides a 20% higher F1-score

compared to the pure supervised method.

101



4.5 Ablation Study

The proposed hybrid FDI method is influenced by various factors. In the following section,

an ablation study is conducted, delving into the detailed examination of parameters like

the type of input data, the learning strategy, the deep learning algorithm type, and the

window length’s effects on FDI performance.

4.5.1 Comparison of Raw Sensor Measurements and Residual

Data

Firstly, there are two possibilities for the input to the neural network, i.e., raw sensor

measurements and residual data. Intuitively, residual data is more sensitive to faults

compared to raw sensor measurements. The FDI accuracy obtained using sensor data

with SSL and the residual signal with SSL is compared in Figure 4.13. The results suggest

that a 20% higher F1-score is achieved with the use of ‘residuals + SSL’ compared to

‘sensor + SSL’ when N = 4. However, as the number of labeled samples increases, the

difference in F1-scores between using residual or sensor measurements as input diminishes.

When N = 90, the F1-score obtained using residuals is almost the same as ‘sensor +

SSL’. Nonetheless, it is evident that when labeled samples are limited, utilizing LFT-BG

generated residual signals represents a superior input choice.

4.5.2 The Effect of Using Self-supervised Learning and Supervised

Learning

Another comparison can be made between the proposed SSL method and a completely

Supervised Learning (SL) method. From Figure 4.14, it can be observed that, for any

number of training samples, the residuals + SSL method consistently outperforms the

residuals + SL method. This showcases the effectiveness of the proposed SSL method

compared to the traditional SL method.

4.5.3 The Effect of Window Length on the FDI Performance

The performance of the deep learning method is affected by the window length parameter

(w), which determines the amount of information available to the model. A larger w
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Figure 4.13: Comparison of FDI performance using the sensor measurements and the
residual signal as inputs.
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Figure 4.14: The effect of using SSL in place of supervised learning. These results are
obtained using the 2D-CNN and w = 40.
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Figure 4.15: The effect of window length (w) on the performance of SSL. The base
model used is 2D-CNN and input is residual signals.

provides more information but at the cost of increased computation and processing time.

However, it is important to acknowledge that a larger window length does not always

guarantee improved performance. If the window length exceeds the duration of faults,

the performance may decrease. When limited labeled data is available, a larger window

length results in fewer observations. In Figure 4.15, the impact of different window lengths

on SSL performance is displayed. Due to the fault dataset containing fault durations

much greater than the window length, a consistent increase in F1-score is observed with

increment in window length.

4.5.4 The Effect of The Feature Extractor on The FDI

Performance

Finally, a comparison was made to evaluate the effects of different deep-learning algorithms

as feature extractor with the residual signal as an input following SSL. The window length

is fixed at w = 10. In data-driven FDI research, Long Short-Term Memory (LSTM)

networks are widely used. Thus, as a base model (H(·)) for comparison with the 2D-CNN

method, LSTM was selected. The results are presented in Figure 4.16. The performance

of both deep learning methods was comparable with no significant difference observed.

However, the 2D-CNN uses significantly fewer parameters, leading to quicker training and

inference. Additionally, it can be employed for parallel processing on a GPU, which is not

a feature that can be leveraged by LSTM.
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Figure 4.16: Comparison of the performance of 2-D CNN and LSTM.
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Figure 4.17: Effect of quantity of unlabeled data on the FDI

4.5.5 The Effect of The Quantity of Unlabeled Data On The FDI

The proposed approach employs SSL, which is trained in two stages. In the initial stage,

the model undergoes pre-training using a substantial volume of unlabeled data. In this

experiment, the impact of the quantity of unlabeled data on FDI performance is evaluated.

The results are presented in Figure 4.17, revealing a clear trend: as the quantity of

unlabeled data rises, there is a gradual improvement in the F1 score. In this experiment,

8 samples per fault class were employed in the fine-tuning stage, with w=40.

4.5.6 The Effect of Hierarchical Combination On FDI

Performance

In Section 3.2.5, a hierarchical combination approach is proposed. The impact of the

hierarchical combination on the overall FDI performance is investigated through an
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Figure 4.18: Performance comparison with and without hierarchical combination. The
window length is fixed at w = 40.

Table 4.7: Effect of hierarchical combination on the F1-score

Cascade ↓ 4 8 16 32 64 90
Yes 0.8673± 0.0167 0.8845± 0.0088 0.9073± 0.0158 0.9270± 0.0031 0.9168± 0.0102 0.9381± 0.0033
No 0.8449± 0.0153 0.8721± 0.0080 0.8865± 0.0133 0.9158± 0.0029 0.9044± 0.0145 0.9332± 0.0048

ablation study. A model with the hierarchical combination is compared to one without

it, as depicted in Figure 4.18 and Table 4.7. Clearly, an advantage is offered by the

hierarchical combination. Notably, the performance of the deep learning method improves

with sufficient training data. Therefore, the use of the hierarchical combination approach

is advised, especially when the amount of labeled data is minimal.

4.6 State of The Art Comparison for Pre-Text Task

In order to assess the effectiveness of the proposed SSL algorithm and pre-text task, it is

compared with recent SSL algorithms from the literature. This section provides a brief

explanation of all the state-of-the-art methods used for comparison.

4.6.1 Denoising Autoencoder (DAE)

This is a self-prediction method involving a pretext task. First, the input dataset is

subjected to random Gaussian noise corruption, and it is then fed into the DAE. The

output generated by the DAE corresponds to the original sample. By training this model to

reconstruct the original sample from its corrupted version, essential features are acquired,
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which can prove valuable for downstream tasks, such as fault isolation. The Gaussian

noise has a mean of 0.1 and a standard deviation of 0.03.

4.6.2 Value Imputation and Mask Estimation (VIME)

In this pre-text task, a mask matrix is initially generated with the same shape as the

input data, containing boolean values. Approximately 10 percent of the mask’s values

are randomly designated as zero, while the remaining remain as ones. Subsequently, the

original data is element-wise multiplied by this mask to produce the imputed data. The

primary objective of the pre-text task is to train a deep-learning model, allowing it to

receive the imputed data as input and perform the reconstruction of both the original

data and the boolean mask. The deep-learning method yields two outputs. This method

has been employed in the context of fault diagnosis, as documented in Fan et al. (2023).

4.6.3 Self-supervised Contrastive Learning (SCLR)

A Siamese network-based contrastive pre-text task is employed for the development of

pre-trained models. In this approach, each original sample is used to create two slightly

imputed versions, referred to as O1 and O2. These two versions form a positive pair.

Additionally, a randomly selected data sample is subject to slight imputation to yield

Q1, which is paired with either O1 or O2 to constitute a negative pair. The objective of

contrastive learning is to minimize the distance between positive pairs and maximize the

distance between the negative pairs within the embedding space. This is accomplished by

training a Siamese network with two inputs, both of which are compared using L1-distance

in the embedding space, followed by a binary classification layer. Notably, this pre-text

task has been applied by Guarino and Spagnuolo (2021) for the purpose of fault diagnosis.

For the sake of a fair comparison, the feature extractor (H(·)) remains consistent across

all methods specified in Table 4.5. In contrast to the conventional use of raw sensor

data as inputs in related literature, this experiment employs residual signals generated by

LFT-BG as inputs for all methods. All experiments were conducted on a system equipped

with an Intel(R) Core(TM) i7-8700 CPU and 8 GB of RAM. Python version 3.9.13 was

utilized for deep learning model training, which was facilitated through the TensorFlow

package.
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Figure 4.19: Performance comparison with various state-of-the-art methods.

Table 4.8: F1 Scores of Different Methods for Various Numbers of Labels per Fault Class

SSL Method ↓ 4 8 16 32 64 90
Proposed 0.8813± 0.0115 0.9072± 0.0057 0.9406± 0.0056 0.9416± 0.0058 0.9559± 0.0023 0.9483± 0.0021
Supervised 0.7493± 0.0167 0.8300± 0.0132 0.8734± 0.0130 0.8522± 0.0099 0.8914± 0.0133 0.8754± 0.0124
DAE 0.7514± 0.0000 0.7866± 0.0001 0.8302± 0.0002 0.9264± 0.0001 0.9392± 0.0003 0.9267± 0.0001
VIME 0.8058± 0.0006 0.8489± 0.0007 0.8919± 0.0001 0.9450± 0.0000 0.9430± 0.0002 0.9695± 0.0002
SCLR 0.6712± 0.0017 0.7968± 0.0040 0.8531± 0.0010 0.9151± 0.0000 0.9236± 0.0000 0.9212± 0.0000

The results presented in Fig. 4.19 and Table 4.8 are indicative of the proposed method’s

superior F1-score when the sample size is limited. For instance, at N = 4, the proposed

method attains an F1-score of 0.8813± 0.0115 which surpasses DAE by 18%. Notably,

the contrastive learning method (SCLR) consistently yields lower F1-scores, implying

that its pre-text task may not generalize accurately to the target task. This observation

aligns with the findings of Fan et al. (2023). However, VIME outperforms the proposed

method when a substantial amount of labeled data is available (N > 32), suggesting

that in scenarios with ample labeled fault data, the VIME-based pre-text task may be a

preferable option. However, to generate the residual data for input the LFT-BG model

will be required. Nonetheless, in low-data scenarios, the proposed method excels with

significantly higher F1-scores.

4.7 Explanations Using BG-XAI

Regardless of the FDI method’s accuracy, its effectiveness in real scenarios depends on

whether the operator trusts the model’s decisions. In this section, the BG-XAI method is

employed to elucidate the deep learning model’s decision-making process using residual

importance. An example using fault class 4 (Figure 4.10) during real-time implementation
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Figure 4.20: Real-time explanation generated by BG-XAI method for the FDI of fault
Rdiff,O2. The fault prediction is shown in Figure 4.10.

demonstrates the residual importance, as shown in Figure 4.20. In this plot, each point’s

color reflects its importance in the deep learning model’s decision-making process, with dark

blue indicating negligible importance and bright yellow signifying the highest importance.

Before introducing a fault, all residual signals possess similar importance, except for

ARR6, which consistently receives slightly higher importance. This is attributed to ARR6

being more sensitive to a greater number of faults compared to other ARR signals and

possessing the highest discriminative power to isolate between no-fault and faulty mode

(Table 4.3).

The Rdiff,O2 parameter fault was introduced between t = 20s and t = 70s. As soon as

the fault was introduced, a noticeable shift in residual importance was observed. ARR2

changed in color to bright yellow, while all other ARR values became dark blue. This

change indicates that after the introduction of the fault, the deep learning model started

prioritizing the most sensitive residual signal. One might question why, even though

both ARR2 and ARR3 are sensitive to this fault, the deep learning model assigns greater

importance to ARR2 exclusively. This is not exactly clear, however, it can be explained by

referencing the FSM (Table 4.3). The FSM illustrates that while ARR3 is sensitive to a

greater number of faults, the discrimination of the Rdiff,O2 fault depends on the activation

of both ARR2 and ARR3. Therefore, ARR2 possesses more discriminative power than

ARR3 for this fault.
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Figure 4.21: Real-time explanation generated by BG-XAI method for the FDI of fault
Tst. The fault prediction is shown in Figure 4.11.

Finally, the residual importance plot for the sensor fault - Tst is given in Figure 4.21.

Following the introduction of the fault, a shift in importance is observed by the deep

learning model, with exclusive importance placed on ARR1 and ARR6. The relatively

more importance given to ARR1 can be explained in the same manner as the previous

case. The reason is that ARR1 has more discriminative power for this fault isolation.

In summary, the integration of the occlusion method and FSM allows for an explainable

rationale for decisions provided by the deep-learning model to be conveyed to the operator,

enhancing the trust and reliability of the model’s predictions.

4.8 Conclusion

In this section, a novel hybrid FDI method is used to address the challenge of limited

labeled fault data in PEM electrolyzer stack FDI. This problem is addressed by creating an

LFT-Bond graph model of the PEM stack, capable of generating fault-sensitive residuals

and adaptive thresholds for robust fault detection. The same LFT-BG model is then

employed to generate pseudo-labels, enabling self-supervised training of a 2D-CNN-based

deep learning model. Subsequently, the trained model is fine-tuned for the target task with

a limited amount of labeled data. Additionally, a hierarchical combination of LFT-BG

and the deep learning method is proposed to reduce false alarms, resulting in an achieved

F1-score of 0.83 using just 4 labeled data points per fault class.
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To demonstrate the effectiveness of the proposed method, a comparison is made against

various state-of-the-art approaches using the same dataset, revealing the superiority of

the proposed method for FDI, especially when limited labeled data is available.

Moreover, a BG-XAI method is applied to explain the decisions made by the deep learning

model. This method employs occlusion techniques to identify the most influential features

during the decision-making process. The explanations generated are found to be consistent

with the structural equations.
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5 Application-2: Train Track FDI

To diagnose track system faults using BG, a mathematical model of the entire system is

required. In this study, we present an 8 Degrees Of Freedom (DOF) model, designed to

capture system dynamics efficiently. The model is depicted in Figure 5.2, assumes the

Train body, wheelsets, and sleepers as rigid bodies, each possessing 2 DOF (rotation and

translation). The rail beams are treated as point masses with a single DOF. The primary

suspension, rail fasteners, and ballast material are represented as massless spring-damper

systems. Finally, the wheel-rail contact is described using non-linear Hertzian contact

theory. In the BG framework, the concept of a 1-junction implies that all the bonds

connected to it share an identical flow, while in the case of a 0-junction, all bonds share

an equivalent effort.
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Figure 5.1: Schematic diagram of BG-based FDI
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Figure 5.2: The simplified 8 DOF train track model
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Figure 5.3: Bond graph modeling of wheel-rail contact using Hertzian stiffness.

5.1 Bond Graph Model of Wheel Track Interactions

The wheel and the rail beam interact through a pure metal-metal contact, which is

characterized using Hertzian contact theory Patel et al. (2023), illustrated in Figure

5.3. Following this theory, the contact force is represented as a compression spring

with stiffness denoted as Khi
, dependent on material properties and track geometry. The

contact force, denoted as Fci , is a non-linear function of deformation as defined in Equation

5.1, where xWSi
represents the wheel-set displacement, and xRBi

corresponds to the rail

beam displacement. The variable i assumes values {l, r}, indicating the left and right

sides of the train. However, the contact force becomes 0 if the wheel lifts from the track

(xWSi
− xRBi

< 0).

Fci = Khi
(xWSi

− xRBi
)
3
2 , i = {l, r} (5.1)

5.2 Residual Generation Using DBG of The Train-Track

An 8-degree-of-freedom model was utilized to simulate the train system dynamics, with

parameter values adopted from Patel et al. (2023). To detect the track fault at the

wheel-track interaction, ARRs were derived through the DBG model of the system.

The ARR generation process for the left wheel-track interaction is depicted in Figure 5.4.

The ARR originates from the 0-junction, using the principle of flow (velocity) conservation,
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Figure 5.4: ARR generation for track fault detection

as described by Equation 5.2. ẋWSl
, representing the velocity of the left wheel contact

point, is derived from the wheel’s accelerometer data. Similarly, the velocity of the left

rail beam, denoted as ẋRBl
, is determined either through laser measurements or estimated

with observer methods. The calculation of ẋKhl
is based on the contact force Fcl , measured

using a Transducer and computed through Equation 5.3. Subsequently, the residual signal

r1 is obtained by evaluating ARR1 over time. This process serves the purpose of detecting

potential faults in the track, which can change the value of Khl
and result in deviations

of r1. The identical procedure is replicated for the right-side wheel to derive r2, which

assesses the state of the track on the right side.

ARR1 : ẋWSl
− ẋRBl

− ẋKhl
= 0 (5.2)

(
1

Kh

) 2
3 d

(
F

2
3
c

)
dt

= ẋKhl
(5.3)

In this study, our focus centers on identifying faults in four components. Two parameters

Khl
and Khr—and two sensor faults—ẋWSl and ẋWSr are examined. T evaluate the

performance of the case of multiple simultaneous faults two more sets of faults are

introduced FKhr
&FKhl

and FẋWSr
&FẋWSl

. The parameter Khi
signifies alterations in the

stiffness of the train track contact, indicating potential track or wheel faults. On the

other hand, ẋWSi denotes faults in the accelerometer. The FSM corresponding to all

these 6 faults is shown in Table. 5.1. The no-fault or healthy condition is represented as
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Table 5.1: Theoretical FSM for the train-track

Fault class ARR → ARR1 ARR2 ID IC
Faults ↓

1 FKhr
0 1 1 0

2 FKhl
1 0 1 0

3 FẋWSl
0 1 1 0

4 FẋWSr
1 0 1 0

5 FKhr
&FKhl

1 1 1 0
6 FẋWSr

&FẋWSl
1 1 1 0

Training Set

8 DOF Train-track model in 20sim

Introduce Faults

𝐾ℎ ←
𝐾ℎ
20

ሶ𝑥𝑊𝑆 ← ሶ𝑥𝑊𝑆 × 3

Velocity of train: 30 m/s

Test Set

8 DOF Train-track model in 20sim

Introduce Faults

𝐾ℎ ←
𝐾ℎ
12

ሶ𝑥𝑊𝑆 ← ሶ𝑥𝑊𝑆 × 5

Velocity of train: 50 m/s

Figure 5.5: Generation of train and test set

Fault-0. The fault signature for Khl
and ẋWSl is evident from the FSM, and it is identical.

Similarly, the fault signature is shared between Khr and ẋWSr. This similarity in fault

signatures makes it challenging to differentiate between them solely using the FSM.

5.3 Fault Dataset Generation

The data set for AI training is generated using a simulation of an 8-degree-of-freedom (8

DOF) train track model. Two distinct datasets are created by simulating slightly different

operating conditions and varying degrees of faults. To generate this dataset, 6 different

types of faults are introduced into the simulation, and the system’s response in terms

of sensor measurements is recorded in the dataset along with their corresponding fault

labels.

As depicted in Figure 5.5, the training set data maintains a constant train velocity of

30 m/s. To simulate a contact fault, the Kh value is reduced by a factor of 20, and to

introduce a multiplicative sensor fault, the actual sensor measurement is increased by a
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Figure 5.6: Distribution of fault classes in (a) sensor space and (b) residual space

factor of 3. The specific values for the test set are presented in Figure 5.5. The training

set is utilized for AI model training, while the test set is employed to assess and validate

the performance of the AI model.

The scatter plots in Figure 5.6 display the scatter plot for the fault data derived from the

train-track simulation model. Each point’s color signifies its belonging fault class. Figure

5.6(a) illustrates the distribution of faults within the sensor space. Since there are six

sensor signals, Principal Component Analysis (PCA) is applied to project them into a 2D

space for ease of visualization. In the sensor space, faults appear less distinctly separated.

This lack of clear separation is due to sensor data’s inadequate representation of faults in

the system, being sensitive to changing environmental conditions.

Contrastingly, in Figure 5.6(b), the distribution of faults is showcased in the residual space,

where all fault classes are easily distinguishable. These figures suggest that utilizing the

residual signal from the DBG as input features for an AI model would be more suitable

for fault classification. The rationale is that the residual signal contains more pertinent

information about faults compared to the raw sensor data, simplifying the mapping from

the inputs to the fault class.
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Table 5.2: Architecture of the CNN model used

Layer Type Number of Neurons Activation Function
1 Conv2D 64 filers, kernel size=(3,2) ReLU
2 Maxpooling pool size=(2,2) -
3 Conv2D 64 filers, kernel size=(3,2) ReLU
4 Maxpooling pool size=(2,2) -
5 Global Average Pooling - -
6 Dense 64 ReLU
7 Dense 7 (No. of fault classes) Softmax

5.4 Data Preprocessing and AI Model

A sliding window method is performed with w = 10 on the residual signal and they are

divided into small segments. Finally, the entire dataset X = {x1, x2..., xn}, x ∈ R(n×10×2),

where n is 3500. For all these n observations the corresponding fault labels are Y =

{y1, y2..., yn}, Y ∈ R(n×M), where M is the number of classes to be considered (in this

case: 7). The efficiency of the proposed BG-CNN model is assessed by using a set of

training samples for each fault class. The model is trained with varying sample sizes per

fault class, specifically [1, 2, 4, 8, 16, 32], to evaluate its data efficiency. Subsequently, the

model undergoes evaluation using the test-set data to calculate the F1-score. The CNN

model utilized in this experiment is detailed in Table 5.2.

To mitigate the impact of randomness associated with training data sampling and neural

network weight initialization, each experiment is replicated 10 times. The resulting

plots illustrate the mean and standard deviation of the F1-score obtained across these

repetitions.

5.5 Results and Discussion

The BG-CNN method, when trained with 32 samples per fault class, achieves an f1-score

of 0.88. The confusion matrix, depicted in Figure 5.7 using test-set data, reveals instances

where the model becomes confused between fault classes sharing similar fault signatures,

such as fault-1 and fault-3, or fault-2 and fault-4.

Real-time FDI is executed on the test set data, as illustrated in Figure 5.8. The x-

axis represents time, while the y-axis displays the predicted fault class by the BG-CNN

method. The color of each point corresponds to its actual fault class. Notably, the model
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Figure 5.7: Confusion matrix obtained on the test-set

exhibits accurate predictions for fault-0 (healthy) throughout. However, for fault-1 and

fault-2, some initial miss-classifications are observed due to the incipient nature of these

faults, making them challenging to distinguish from the nominal condition at the outset.

Additionally, for fault-3, the model initially predicts it as class-2. This discrepancy is

attributed to the fact that, despite removing fault-2 from the system precisely at t=300s,

the system requires some time to return to its original state.
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Figure 5.8: Fault prediction on the test-set by BG-CNN
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Figure 5.9: Performance comparison between BG-CNN and CNN

5.6 Ablation Study

To demonstrate the effectiveness of the proposed BG-CNN method, we compared it with

the CNN method using raw sensor measurements as inputs. The CNN architecture is kept

the same for both methods. The comparison results are illustrated in Figure 5.9. When

labeled data are scarce, the BG-CNN method significantly outperforms the traditional

CNN method in terms of F1-scores. However, as the amount of labeled data used in

training increases, both models exhibit similar performance with F1 scores ranging from

0.9 to 0.93 when N=32.

Another experiment assessed the BG-CNN method’s performance in scenarios with single

faults and those with multiple simultaneous faults in the dataset. The results in Figure

5.10 indicate that the BG-CNN method performs similarly well in both scenarios.

An additional crucial parameter is the choice of window length (w), as depicted in Figure

5.11. A larger window length contributes to achieving higher F1-scores with minimal

training data. However, opting for a larger window length introduces two challenges:

increased computation time and the possibility of missing intermittent faults with durations

shorter than the window length. Interestingly, with more training data, the impact of the

window length diminishes.

To further reduce the need for labeled data, we employed the proposed SSL method in

conjunction with BG-CNN. In the initial stage, the CNN network is pre-trained using the
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Figure 5.10: Evaluation of BG-CNN method in scenarios with single and multiple
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Figure 5.12: Use of SSL to reduce labeled data (w=10)

incidence matrix generated by LFT-BG as pseudo-labels.

To assess the effectiveness of this self-supervised learning approach, we conducted a

comparison with the fully supervised learning method, utilizing the same CNN architecture

for a fair evaluation. It is depicted in Figure 5.12

The results indicate that even with just one sample per fault class (total samples = 1× 7),

our proposed method achieves an F1-score of 0.72. Here, M = 7 denotes the number of

different fault classes in the dataset. This score consistently improves with an increasing

number of training samples. In contrast, when employing fully supervised learning, the

F1-score is notably lower than the self-supervised learning method when the training data

per fault class (N) is less than 8.

5.7 Explanations Using BG-XAI

Given the significance of providing explanations in the FDI of train tracks, we employed

the BG-XAI method to generate explanations regarding the importance assigned to each

residual during fault prediction by the CNN model. In Figure 5.13, explanations are

presented for fault FKhl
with a fault signature [1 0]. The graph color-codes each point based

on its significance to the CNN model, ranging from bright yellow (highest importance) to

dark blue (lowest importance). The fault is introduced gradually after t=20s, following

a period when the system was in a healthy (nominal) state. Before the fault, the CNN
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assigned roughly equal importance to both residual signals. However, immediately after

the fault introduction, the importance shifted markedly towards ARR1. This shift aligns

with the system’s structural analysis (Table 5.1), where FKhl
specifically impacts ARR1.

Therefore, the BG-XAI method’s derived importance aligns with the structural analysis.

Likewise, in Figure 5.14, an explanation is provided for fault FKhr
(fault signature [0 1]).

This fault is introduced at t=0, affecting only ARR2. The BG-XAI-generated explanation

is consistent with this observation, indicating that the CNN assigns greater importance to

ARR2 in response to this fault.

Lastly, we consider a scenario involving multiple simultaneous faults, where faults FẋWSr

and FẋWSl
are introduced simultaneously, starting at t=0s in an incipient manner (Figure

5.15). Given that both faults impact both ARR1 and ARR2 (Table 5.1) and have a

combined fault signature of [1 1], the BG-XAI-generated explanation aligns with this

scenario. It assigns nearly equal importance to both residuals, recognizing their significance

in determining this fault class.

5.8 Conclusion

In conclusion, the proposed BG-CNN method’s ability to generalize is demonstrated by its

application to the critical task of diagnosing faults in rail tracks. Initially, a mathematical

model of the train track system is derived. This model is then employed to generate

synthetic data through simulation, with manual introduction of faults. To illustrate the

impact of simultaneous faults, two sets of such faults are introduced to the fault data set

along with four single faults. Subsequently, a diagnostic bond graph model specific to the

train track is utilized to generate residuals, which are then employed in a CNN for fault

classification.

The BG-CNN is observed to require significantly less data compared to a CNN model

utilizing raw sensor data. Finally, the BG-XAI method is applied to generate explanations

for predictions made by the BG-CNN. These explanations align with the structural analysis

of the system.
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6 General Conclusion

In conclusion, this thesis successfully met its objectives by conducting a thorough

exploration of FDI methods, and combining physics-based and artificial intelligence

(AI) approaches. The study began with an in-depth analysis of traditional FDI methods,

using a Direct Current (DC) motor example to elucidate their merits and limitations.

This set the stage for a comparative analysis of physics-based techniques, particularly

LFT-BG, and data-driven approaches such as artificial neural networks (ANNs).

Chapter 2 expanded this exploration to hybrid FDI methods, recognizing the imperative

to reduce labeled data for AI techniques and enhance their interpretability. Through

an extensive literature review, the chapter introduced the BG-CNN, a novel approach

that effectively integrates a system’s physical model with deep learning, significantly

minimizing the labeled data required for training.

The Self-supervised Learning (SSL) algorithm, detailed in Chapter 3, capitalized on

unlabeled data and the system’s LFT-BG model, achieving remarkable F1-scores even with

minimal labeled data. This success was exemplified in the applications to Proton Exchange

Membrane (PEM) electrolyzers and railway tracks in Chapter 4 and 5 respectively.

Chapter 3 also introduced the BG-XAI method, contributing to the objective of explaining

the decision-making process of black-box deep learning models by providing explanations

for AI predictions aligned with the system’s structural analysis.

The applications of the proposed hybrid FDI methodology are showcased in Chapters 4

and 5. The developed approaches were applied in real-time FDI scenarios, specifically for

a PEM electrolyzer at Ploytech Lille and the FDI of railway tracks using simulated faulty

data. This practical implementation underscores the thesis’s contribution to advancing

fault diagnosis methodologies, offering valuable insights for real-world applications in

diverse settings.

6.1 Future Research Directions

Based on the limitations of the presented work in page 5, potential areas of future research

have been summarised in the form of a list below:
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• This study specifically concentrates on fault detection and isolation. Nonetheless,

future studies can delve into fault severity estimation and prediction of the remaining

useful life of faulty components using hybrid methods.

• In this thesis, a hybrid approach was developed using only one physics-based and

one AI method. However, for future studies, multiple FDI methods can be explored

in various configurations to enhance the overall system’s fault detection and isolation

performance. It can be extended to other physics-based methods such as observer

and parity space.

• Labeled data is required for the AI models in this research, even in small amounts.

In future work, addressing this requirement can be achieved through the utilization

of either unsupervised methods or one-class classifiers, eliminating the need for a

dataset with all faults labeled to train the AI model.

• Applying metric learning and clustering techniques for data classification, utilizing

the embedding acquired during the pre-training phase. Further work on the

explainability of the AI model is necessary.

• Another crucial objective is the establishment of a standardized, openly available

dataset containing real system faults. This dataset will facilitate model development

and testing by scholars, enabling straightforward comparisons among different

approaches.

• The robustness of the developed methodology to external factors, such as

environmental changes, variations in operating conditions, or sensor degradation,

should be assessed. Strategies to enhance the system’s resilience in the face of these

challenges should be investigated.
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