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Summary

In this thesis, we investigate the phenomenon of liquid-gas phase transition for Gibbs point pro-
cesses with saturated interaction. In finite volume, the unnormalised density of the Gibbs mea-
sure with respect to a Poisson point process with activity 𝑧 is given by the Boltzmann factor
𝑒−𝛽𝐻 , where 𝛽 is the inverse temperature and 𝐻 is the Hamiltonian that encodes the interac-
tion between particles. The infinite volume Gibbs point processes are defined as solutions to the
Dobrushin-Lanford-Ruelle equations, which describe the equilibrium of the system. Saturated
interactions represent a class of models where the energy cost of adding a particle in areas of
high particle density is constant. Specifically, we examine the question of uniqueness of infinite
volume Gibbs point processes and study the discontinuities of the density with respect to 𝑧 and
𝛽.

Within this context, we prove the non-uniqueness of the infinite volume Gibbs measures for
special values of activity, provided the temperature is sufficiently low. Moreover, we demonstrate
the non-differentiability of the pressure at these critical points. Our main tool in this proof is an
adaptation of the Pirogov-Sinaï-Zahradník theory for continuous systems, that is particularly
suited for saturated interactions. The saturation property allows for easy computation of energy
in large areas with high particle density. One of the main assumption needed in this general
result is that the Hamiltonian satisfies a form of Peierls condition, indicating a surplus of energy
in areas of low density.

Subsequently, we apply our phase transition result for saturated interactions to two models.
Firstly, we study the Quermass interaction, where the Hamiltonian is defined as a linear combi-
nation of the 𝑑 + 1 Minkowski functionals of the halo of a configuration, which is the union of
closed balls of centered at the position of the particles with random radii. This family of models
is a natural extension of the Widom-Rowlinson model, which only considered the volume of the
halo. More specifically, we consider a linear combination of the volume, surface measure and
Euler-Poincaré characteristic of the halo. For a family of such linear combination with bounded
random radii and for 𝛽 sufficiently large, we demonstrate the existence of a critical activity 𝑧𝑐𝛽 at
which the liquid-gas phase transition occurs. The value of 𝑧𝑐𝛽 is not explicit, but we show that it
is asymptotically equivalent to 𝛽 at infinity.

Finally we investigate the family of diluted pairwise interactions, which is an approximation
of the usual pairwise interaction. For an integrable pair potential 𝜙, the Hamiltonian is given
by 𝐻(𝜔) = ∬ 𝜙(|𝑥 − 𝑦|)1𝐿𝑅(𝜔)(𝑥)1𝐿𝑅(𝜔)(𝑦)𝑑𝑥𝑑𝑦 where 𝐿𝑅(𝜔) is the halo with radius 𝑅. For
integrable pair potentials 𝜙 that are sufficiently repulsive in short range, we prove the liquid-gas
phase transition of the diluted pairwise interaction for 𝛽 sufficiently large. We demonstrate that
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the interaction satisfy the Peierls condition using either a local or global analysis of the energy
depending on the value of 𝑅. Again, we provide an equivalent of 𝑧𝑐𝛽 as 𝛽 tends to infinity.
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Résumé

Dans cette thèse, nous étudions le phénomène de transition de phase liquide-gaz pour des proces-
sus ponctuels de Gibbs avec interaction saturée. En volume fini, la densité non normalisée de la
mesure de Gibbs par rapport à un processus ponctuel de Poisson avec une activité 𝑧 est donnée par
le facteur de Boltzmann 𝑒−𝛽𝐻 , où 𝛽 est la température inverse et 𝐻 est l’hamiltonien qui encode
l’interaction entre les particules. Les interactions saturées représentent une classe de modèles
où le coût énergétique d’ajout d’une particule dans des zones de haute densité de particules est
constant. Les processus ponctuels de Gibbs en volume infini sont définis comme solutions des
équations de Dobrushin-Lanford-Ruelle, qui décrivent l’équilibre du système. Nous examinons
la question de l’unicité des processus de Gibbs en volume infini et étudions les discontinuités de
la fonction de densité par rapport à 𝑧 et 𝛽.

Dans ce contexte, nous prouvons la non-unicité des mesures de Gibbs en volume infini pour
des valeurs spécifiques d’activité, à condition que la température soit suffisamment basse. De
plus, nous démontrons la non-différentiabilité de la pression en ces points critiques. Notre prin-
cipal outil dans cette preuve est une adaptation de la théorie de Pirogov-Sinaï-Zahradník pour les
systèmes continus, particulièrement adaptée aux interactions saturées. La propriété de saturation
permet de calculer facilement l’énergie dans de grandes zones avec une forte densité de partic-
ules. L’une des principales hypothèses nécessaires dans ce résultat général est que l’hamiltonien
satisfait des conditions de Peierls, indiquant un surplus d’énergie dans les zones de faible densité.

Par la suite nous appliquons notre résultat de transition de phase pour les interactions saturées
à deux modèles. En tout premier lieu, nous étudions l’interaction Quermass, où l’hamiltonien
est défini comme une combinaison linéaire des 𝑑 + 1 fonctionnelles de Minkowski sur le halo
d’une configuration, qui est l’union de boules fermées centrées sur les positions des particules
avec des rayons aléatoires. Cette famille de modèles est une extension naturelle du modèle de
Widom-Rowlinson, qui ne considère que le volume du halo. Plus précisément, nous considérons
une combinaison linéaire du volume, de la mesure de surface et de la caractéristique d’Euler-
Poincaré de du halo. Pour une famille de telles combinaisons linéaires avec des rayons aléatoires
bornés et pour 𝛽 suffisamment grand, nous démontrons l’existence d’une activité critique 𝑧𝑐𝛽 à
laquelle la transition de phase liquide-gaz se produit. La valeur de 𝑧𝑐𝛽 n’est pas explicite mais
nous montrons qu’elle est proche de 𝛽 à l’infini.

Enfin nous étudions la famille des interactions par paire diluées, qui est une approximation
de l’interaction par paire habituelle. Pour un potentiel d’interaction intégrable 𝜙, l’hamiltonien
est donné par𝐻(𝜔) = ∬ 𝜙(|𝑥−𝑦|)1𝐿𝑅(𝜔)(𝑥)1𝐿𝑅(𝜔)(𝑦)𝑑𝑥𝑑𝑦, où 𝐿𝑅(𝜔) est le halo avec un rayon
𝑅. Pour les potentiels d’interaction intégrables 𝜙 suffisamment répulsifs à courte portée, nous
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démontrons la transition de phase liquide-gaz de l’interaction par paire diluée pour 𝛽 grand.
Nous démontrons que cette interaction satisfait les conditions de Peierls en analysant localement
ou globalement l’énergie en fonction de la valeur de𝑅. De nouveau, nous donnons un équivalent
de 𝑧𝑐𝛽 lorsque 𝛽 tend vers l’infini.
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Introduction

Les processus ponctuels sont des outils probabilistes et statistiques naturels pour décrire les don-
nées spatiales qui apparaissent dans de nombreux domaines tels que l’écologie, les télécommu-
nications, l’astronomie, la science des données et la physique des systèmes de particules. Le
processus ponctuel le plus populaire et le plus étudié est le processus ponctuel de Poisson [26],
où les points n’interagissent pas et sont distribués indépendamment dans l’espace. Cependant,
il est souvent plus intéressant d’étudier des points en interaction, notamment pour modéliser le
comportement des particules physiques, pour faire de l’intégration numérique avec des méth-
odes de Monte-Carlo [1], ou encore pour sélectionner des données d’entraînement suffisamment
différentes en machine learning [24]. Les interactions peuvent être de natures différentes : at-
tractives, répulsives, ou les deux mais à des échelles différentes.

Les processus ponctuels de Gibbs ont été introduits dans les années 1960 et permettent de
modéliser l’interaction entre les points, constituant ainsi le cadre théorique naturel de la physique
statistique. Un ouvrage de référence est [31] pour les fondements rigoureux de la théorie. L’objet
principal d’étude concerne les phénomènes de transition de phase, qui se caractérisent par un
changement abrupt et discontinu d’une quantité macroscopique décrivant le système. Historique-
ment, les modèles gibbsiens ont permis de démontrer des changements d’état dans des systèmes
de particules sur réseau avec spin. Notamment, le modèle d’Ising, modélisant les métaux fer-
romagnétiques, a permis d’étudier la magnétisation spontanée du métal. Ce phénomène appa-
raît lorsque la température est inférieure à un seuil critique appelé la température de Curie et
s’explique par l’alignement des moments magnétiques des atomes. À haute température, cet ef-
fet disparaît car l’agitation thermique est trop forte et compense la tendance à l’alignement des
spins.

Dans cette thèse, nous nous intéressons aux transitions liquide-gaz, qui se caractérisent par
la coexistence de deux phases fluides de densités distinctes, sans cristallisation. L’état le moins
dense correspond à l’état gazeux, tandis que l’autre correspond à l’état liquide. Dans ce contexte,
les particules ne sont plus disposées sur un réseau, ce qui s’explique par l’absence de cristalli-
sation. Cependant nous ne cherchons pas à démontrer la prédominance d’un des spins dans le
système, même si cela constitue une question intéressante et qui plus est a été grandement étudiée
dans de précédents travaux. Pour en citer quelques uns, nous avons les transitions de phase pour
le modèle de Potts continu [18] et pour le modèle de Widom-Rowlinson à couleurs multiples non
symétriques [2]. Sans considération sur les spins, nous souhaitons montrer la discontinuité de la
densité de particule en utilisant des arguments géométriques et l’agencement des particules.
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Une autre manière de voir la transition de phase vient du principe variationnel. Un système
physique à l’équilibre minimise l’énergie libre, qui est la différence entre l’énergie du système et
l’entropie. Ainsi, dans le problème de minimisation de l’énergie libre, il y a souvent un compro-
mis entre la maximisation de l’entropie et la minimisation de l’énergie. Avec un jeu de paramètres
convenable, on peut obtenir deux minimiseurs : un état avec une grande entropie, correspondant
à l’état gazeux, et un état de moindre énergie, correspondant à l’état liquide.

Un processus ponctuel surR𝑑 est un variable aléatoire à valeur dans l’espace des configura-
tions, où une configuration 𝜔 est un sous-ensemble localement fini deR𝑑 (i.e. pour tout Δ ⊂ R𝑑

borné #Δ ∩ 𝜔 < +∞). La loi d’un processus ponctuel de Gibbs dans un volume fini Δ ⊂ R𝑑 ,
noté 𝑃 𝑧,𝛽Δ est donnée par

𝑃 𝑧,𝛽Δ (𝑑𝜔) = 1
𝑍𝑧,𝛽

Δ

𝑒−𝛽𝐻(𝜔)Π𝑧Δ(𝑑𝜔)

où 𝛽 est la température inverse, 𝑧 est l’activité, 𝐻 est l’hamiltonien, Π𝑧Δ est la loi du processus
de Poisson d’intensité 𝑧 sur Δ et 𝑍𝑧,𝛽

Δ est la constante de normalisation aussi appelée fonction
de partition. Cependant, comme nous voulons étudier les quantités macroscopiques et que nous
souhaitons éviter les effets de bord, nous nous intéressons au processus ponctuel en volume in-
fini. On définit alors les processus ponctuels de Gibbs sur R𝑑 comme étant les solutions des
équations de Dobrushin-Lanford-Ruelle (DLR) qui caractérisent l’état du système à l’équilibre
thermodynamique. Ces équations donnent les lois conditionnelles des configurations dans un
volume Δ ⊂ R𝑑 fini sachant la configuration 𝜂 à l’extérieur de Δ, et dont l’expression est donnée
par

𝑃 𝑧,𝛽(𝑑𝜔Δ|𝜂) =
1

𝑍𝑧,𝛽
Δ (𝜂)

𝑒−𝛽𝐻Δ(𝜔Δ∪𝜂)Π𝑧Δ(𝑑𝜔),

où 𝜔Δ est la restriction de la configuration au volume Δ et 𝐻Δ est l’énergie locale d’une config-
uration et est définie par 𝐻Δ(𝜔) ∶= 𝐻(𝜔) −𝐻(𝜔Δ𝑐 ). L’existence et l’unicité des solutions aux
équations DLR ne sont pas toujours assurées. De plus, la non-unicité des mesures de Gibbs en
volume infini est en fait liée au phénomène de transition de phase que nous allons étudier.

Jusqu’à présent, il existe peu de résultat démontrant la non-unicité des processus ponctuels de
Gibbs à un seul type de particule (i.e. sans considération pour les spins). Le premier résultat de
transition de phase liquide-gaz a été démontré pour le modèle de Widom-Rowlinson par Ruelle
[30], Chayes, Chayes et Kotecký [3] et Giacomin, Lebowtiz, Maes [19]. L’hamiltonien pour ce
modèle est

𝐻(𝜔) = (𝐿𝑅(𝜔)), où 𝐿𝑅(𝜔) =
⋃

𝑥∈𝜔
𝐵(𝑥,𝑅)

où 𝑅 > 0, 𝐿𝑅(𝜔) est le halo des particules et  est la mesure de Lebesgue en dimension 𝑑.
Ils démontrent l’existence d’une activité critique 𝑧𝑐 telle que pour 𝛽 = 𝑧 et 𝑧 > 𝑧𝑐 on a une
transition de phase liquide-gaz pour ce modèle. Les deux preuves utilisent les symétries du
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modèle de Widom-Rowlinson à deux couleurs. Plus récemment, Dereudre et Houdebert [9] ont
complété le diagrame de phase en démontrant l’unicité de la mesure de Gibbs en volume infini
lorsque 𝑧 ≠ 𝛽 et hors d’un voisinage proche du point critique (𝑧𝑐 , 𝑧𝑐). Dans la littérature nous
avons un deuxième résultat de transition liquide-gaz de Lebowitz, Mazel et Presutti [27] pour
une interaction de Kac dont l’hamiltonien est donné par

𝐻𝛾 (𝜔) = − 1
2!

∑

{𝑥1,𝑥2}⊂𝜔
𝛾2𝑑(

2
⋂

𝑖=1
𝐵(𝑥𝑖, 𝛾−1𝑅𝑑)) +

1
4!

∑

{𝑥1,𝑥2,𝑥3,𝑥4}⊂𝜔
(

4
⋂

𝑖=1
𝐵(𝑥𝑖, 𝛾−1𝑅𝑑))

où 𝛾 > 0 est le paramètre de champ moyen. Dans leur preuve, ils font une adaptation au cadre
continu de la théorie de Pirogov, Sinaï et Zaharadnik (PSZ). De la même manière, Pulvirenti et
Tsagkarogiannis [33] ont montré que la transition de phase persiste lorsqu’on rajoute l’interaction
hardcore au hamiltonien 𝐻𝛾 .

Initialement, la théorie PSZ a été developpée pour démontrer des transitions de phases dans le
cas réseau et à basse température. C’est une généralisation de l’argument de Peierls à des modèles
où les particules sur réseau interagissent à portée finie. A basse température le comportement du
modèle peut être vu comme une perturbation du système à la température zéro absolu. A cette
température, lorsque 𝛽 = +∞, le système adopte les configurations de plus basse énergie. Si
on n’a pas unicité de ces configurations minimisant l’énergie, on retrouve à basse température
des zones où les spins sont alignés, correspondant à l’un des minimiseurs de l’énergie. Ailleurs,
les spins étant mélangés, on a un surplus d’énergie. Si ce surcoût énergétique est de l’ordre du
volume des zones de mélange, c’est-à-dire que l’interaction vérifie les conditions de Peierls, alors
on montre avec la théorie PSZ que la taille des zones d’inhomogénéité est très petite et qu’on a
un spin dominant dans le système. Nous allons adapter la philosophie de cette méthode dans
le cadre continu en nous appuyant sur les propriétés des interactions saturées. De fait, elle sera
différente de l’adaptation faite par Lebowitz, Mazel et Presutti.

Dans cette thèse, nous nous intéressons à la classe des interactions saturées. Ces modèles
présentent la bonne propriété que lorsqu’on considère une configuration suffisamment dense et
homogène, dans le sens qu’on n’a pas de trop grand espace vide de particule, le coût énergétique
pour ajouter un point est constant. On donne une définition plus détaillée d’interaction saturée
dans la Section 1.3 du Chapitre 1. Cette classe d’interaction est relativement grande et contient
des exemples intéressants. Un premier exemple est le modèle Quermass, dont l’hamiltonien est
une combinaison linéaire des 𝑑 + 1 fonctionnelles de Minkowski sur le halo des particules. En
dimension 2, l’hamiltonien du Quermass est donné par

𝐻(𝜔) = 𝑎(𝐿𝑅(𝜔)) + 𝑏(𝐿𝑅(𝜔)) + 𝑐𝜒(𝐿𝑅(𝜔)),

où 𝑎, 𝑏, 𝑐 ∈ R,  est la mesure de Lebesgue en dimension 2,  est la mesure du périmètre et 𝜒 est
la caractéristique d’Euler-Poincaré. Cette interaction est une généralisation de l’interaction volu-
mique du modèle Widom-Rowlinson. C’est un modèle qui a été introduit et étudié par Kendall,
Van Lieshout et Baddeley [23]. Ils ont montré que le processus en volume infini existe lorsque que
le rayon des boules est aléatoire mais borné. Ce résultat a été étendu par Dereudre en considérant
des rayons aléatoires mais non bornés [5]. Ce modèle Quermass a la bonne propriété d’être sat-
uré. En effet, soit Δ ⊂ R𝑑 de volume fini et 𝜔 une configuration telle que Δ⊕𝐵(0, 𝑅) ⊂ 𝐿𝑅(𝜔)
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(où ⊕ est la somme de Minkowski) alors le coût énergétique de rajouter un point en 𝑥 ∈ Δ,
ℎ(𝑥, 𝜔) ∶= 𝐻(𝜔 ∪ {𝑥}) − 𝐻(𝜔) = 0. Nous avons un deuxième exemple qui est la classe des
interactions par paire diluées dont l’hamiltonien est

𝐻(𝜔) ∶= ∬𝐿𝑅(𝜔)2
𝜙(|𝑥 − 𝑦|)𝑑𝑥𝑑𝑦

où 𝜙 est un potentiel d’interaction intégrable. Pour les mêmes raisons que le modèle Quermass,
cette interaction est saturée. De plus, elle a un intérêt tout particulier car elle constitue une
manière d’approximer les interactions par paire. En effet, on peut observer la chose suivante

lim
𝑅→0

𝐻(𝜔)
(𝐵(0, 𝑅))2

= 𝜙(0)#𝜔 + 2
∑

{𝑥,𝑦}⊂𝜔
𝜙(|𝑥 − 𝑦|).

Ainsi, obtenir des résultats de transition de phase liquide-gaz pour toute portée de dilution 𝑅
serait une bonne nouvelle dans le but de démontrer une transition de phase pour des interactions
par paire, comme pour l’interaction de Lennard-Jones dont la transition de phase a été observée
par simulation [21] mais jamais démontrée rigoureusement.

Dans le Chapitre 1, nous définissons les processus de Gibbs marqués, qui constituent un cadre
plus général permettant d’étudier des systèmes à plusieurs types de particules. Nous discutons
du phénomène de transition de phase liquide-gaz. Notamment, nous établissons le lien entre le
changement d’état et la régularité de la pression, et nous mettons en évidence le rôle des condi-
tions aux bords. Ensuite, nous définissons les interactions saturées et en exposons les propriétés.
Pour 𝛿 > 0, nous définissons 𝐸0 une fonction mesurable de l’espace des configurations dans
R ∪ {+∞} tel que

𝐻(𝜔) =
∑

𝑖∈Z𝑑
𝐸0(𝜏−𝑖𝛿(𝜔))

où 𝜏−𝑖𝛿 est la translation de vecteur −𝑖𝛿. La fonction 𝐸0 correspond à l’énergie présente dans la
case 𝑇0 =

[

− 𝛿
2 ,

𝛿
2

[𝑑 . Une fois ce découpage case par case effectué, on dit que 𝐸0 est saturée s’il
existe 𝐿 > 0 et une fonction 𝐸 deN dansR ∪ {+∞} telle que pour toute configuration 𝜔 ayant
un point dans chaque case à une distance 𝐿 de 𝑇0, on a 𝐸0(𝜔) = 𝐸(#𝜔 ∩ 𝑇0). Ainsi, l’énergie
d’une case saturée ne dépend plus de la position des particules mais uniquement de leur nombre
dans celle-ci. Dans le cadre des interactions à portée finie, nous démontrons le lemme suivant,
qui fait le lien avec l’intuition initiale de la propriété de saturation.
Lemme. Si 𝐸0 est une fonction locale sur 𝑇0 ⊕ 𝐵(0, 𝑅) avec 𝑅 > 0, alors il existe 𝐴 ∈ R et
𝐵 ∈ R ∪ {+∞} tel que

𝐸(𝑘) = (𝐴𝑘 + 𝐵)1𝑘≥1.

Pour finir, nous présentons des résultats de simulations pour différentes interactions saturées
qui sont obtenus en utilisant l’algorithme de Metropolis-Hastings. Nous illustrons les transitions

14



de phase pour les modèles Widom-Rowlinson et Quermass, ainsi que l’absence de ce phénomène
pour l’interaction de Strauss à K-voisins, mettant en évidence que la saturation seule n’est pas
suffisante.

Dans le Chapitre 2, nous introduisons les outils et objets nécessaires à la mise en oeuvre de
la théorie PSZ. Notamment, nous définissons les contours, notés 𝛾 , qui représentent les zones
connexes d’inhomogénéité créées par une configuration. Nous démontrons dans ce chapitre le
résultat de transition de phase liquide-gaz suivant.
Théorème. Soit 𝐻 une interaction saturée, telle que 𝐸0 ait de bonnes propriétés. On sait que
pour tout 𝑘 ∈ N, 𝐸(𝑘) = (𝐴𝑘 + 𝐵)1𝑘≥1 et on suppose que 𝐴 ≥ 0 et −𝐴 ≤ 𝐵 < +∞. On
suppose aussi que l’interaction vérifie les conditions de Peierls, i.e. l’interaction exhibe un sur-
plus d’énergie dans les contours qui est de l’ordre du volume du contour (voir détails dans le
Théorème 11). Pour tout 𝛽 > 0, on pose 𝑧−𝛽 et 𝑧+𝛽 de la façon suivante

𝑧−𝛽 ∶= 𝑒𝛽𝐴

𝛿𝑑
ln
(

1 + 𝑒𝛽𝐵−2
)

, 𝑧+𝛽 ∶= 𝑒𝛽𝐴

𝛿𝑑
ln
(

1 + 𝑒𝛽𝐵+2
)

et 𝑈𝛽 ∶= (𝑧−𝛽 , 𝑧
+
𝛽 ). Alors il existe 𝛽𝑐 > 0 tel que pour 𝛽 ≥ 𝛽𝑐 il existe 𝑧𝑐𝛽 ∈ 𝑈𝛽 pour lequel on a

une transition liquide-gaz. Plus précisément, on montre que la pression 𝜓 vérifie

𝜕𝜓
𝜕𝑧+

(𝛽, 𝑧𝑐) >
𝜕𝜓
𝜕𝑧−

(𝛽, 𝑧𝑐),

et on a deux mesures de Gibbs 𝑃+, 𝑃− ∈ (𝐻, 𝑧𝑐𝛽 , 𝛽) telles que

𝜌(𝑃+) ∶= 𝐸𝑃+(𝑁[0,1]𝑑 ) = 𝑧 + 𝑧
𝜕𝜓
𝜕𝑧+

(𝑧𝑐𝛽 , 𝛽) and 𝜌(𝑃−) ∶= 𝐸𝑃−(𝑁[0,1]𝑑 ) = 𝑧 + 𝑧
𝜕𝜓
𝜕𝑧−

(𝑧𝑐𝛽 , 𝛽).

Les conditions de Peierls étant souvent très difficiles à vérifier, nous donnons une méthode
simple permettant de les vérifier à l’aide de dominos. Les dominos sont constitués de cases ad-
jacentes dont l’une est vide de point et pas l’autre. Nous appliquons cette méthode au modèle
de Widom-Rowlinson à rayon aléatoire borné et démontrons un nouveau résultat de transition de
phase liquide-gaz pour ce modèle. Le reste du chapitre est dédié à la preuve du théorème présenté
ici.

Dans le chapitre 3, nous présentons deux résultats de transition de phase liquide-gaz. Ces
résultats sont des conséquences du théorème démontré dans le chapitre 2. Dans cette partie
l’objet sera de démontrer que pour les interactions considérées on vérifie effectivement les bonnes
propriétés de saturation ainsi que les conditions de Peierls.

Dans un premier temps, nous étudions la transition de phase pour le modèle Quermass à
rayon aléatoire mais borné. C’est un processus ponctuel de Gibbs marqué dans R𝑑 avec des
marques correspondant au rayon des boules constituant le halo et à valeur dans [𝑅0, 𝑅1] (avec
0 < 𝑅0 ≤ 𝑅1). L’hamiltonien qui va être considéré est

𝐻(𝜔) =

{

(𝐿(𝜔)) + 𝜃1(𝐿(𝜔)) − 𝜃2𝜒(𝐿(𝜔)) si (𝑑 = 2)
(𝐿(𝜔)) + 𝜃1(𝐿(𝜔)) si (𝑑 ≥ 3)

,
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où 𝐿(𝜔) = ⋃

(𝑥,𝑅)∈𝜔 𝐵(𝑥,𝑅) et 𝜃1 ∈ R et 𝜃2 ≥ 0. Nous montrons qu’il existe deux paramètres
critiques 𝜃∗1 = 𝑅0

𝑑
et 𝜃∗2 (𝜃1) (voir (3.4)) de telle sorte que pour 𝜃1 > −𝜃∗1 et 0 ≤ 𝜃2 < 𝜃∗2 (𝜃1) cet

hamiltonien vérifie les conditions de Peierls. En dimension 𝑑 ≥ 3, on prend toujours 𝜃2 = 0.
Ainsi nous obtenons le résultat suivant.
Théorème. Soit 𝜃1 > −𝜃∗1 et 0 ≤ 𝜃2 < 𝜃∗2 (𝜃1) (𝜃2 = 0 si 𝑑 ≥ 3). Alors il existe 𝛽𝑐(𝜃1, 𝜃2) > 0
tel que pour tout 𝛽 > 𝛽𝑐(𝜃1, 𝜃2) il existe 𝑧𝑐𝛽 > 0 pour lequel on a une transition liquide-gaz. De
plus, on sait qu’il existe 𝑐 > 0 tel que |𝑧𝑐𝛽 − 𝛽| = 𝑂(𝑒−𝑐𝛽).

Enfin, nous nous intéressons aux interactions par paire diluées avec un potentiel d’interaction
𝜙. Comme expliqué précédemment, cette famille constitue une approximation de l’interaction
par paire usuelle et est paramétrée par la portée de dilution 𝑅. Dans la section 3.2, nous démon-
trons ce dernier résultat, qui, nous l’espérons, sera notre porte d’entrée pour étudier les transitions
de phase d’interaction par paire.
Théorème. Soit 𝑅 > 0 et 𝜙 ∈ 𝐿1(R𝑑) qui est radial, de portée finie 𝑅1 et tel que 𝑅1 ≥ 𝑅0 ∶=
sup{𝑟 ∈ R+, 𝜙(𝑟) > 0} > 0. De plus, on suppose que 𝜙 vérifie

𝐶𝑑 ∫
𝐵(0,𝑅)

𝜙+𝑑𝑥 ≥

[

(

𝑅0
𝑅

)𝑑

− 1

]

∫
𝐵(0,𝑅0)∖𝐵(0,𝑅)

𝜙+𝑑𝑥 + ∫
R𝑑

𝜙−𝑑𝑥

où 𝐶𝑑 > 0 est une constante dépendant uniquement de la dimension. Alors il existe 𝛽𝑐 > 0 tel
que pour 𝛽 > 𝛽𝑐 il existe 𝑧𝑐𝛽 > 0 pour lequel on a une transition liquide gaz. De plus, on obtient
qu’il existe 𝑐 > 0 tel que

|

|

|

|

|

|

|

𝑧𝑐𝛽 − 𝛽 ∫
R𝑑

𝜙𝑑𝑥

|

|

|

|

|

|

|

= 𝑂(𝑒−𝑐𝛽).

Pour 𝜙 non-intégrable et positive à l’origine, comme par exemple le potentiel de Lennard-
Jones, pour tout 𝑅 > 0, nous pouvons tronquer le potentiel d’interaction pour obtenir 𝜙𝑅, qui
satisfait les hypothèses du théorème ci-dessus. Dans les perspectives de cette thèse, nous discu-
tons des difficultés qui devront être surmontées afin de démontrer la transition de phase pour les
interactions par paire en utilisant les interactions par paire diluées.
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Chapter 1

Gibbs point process and saturated
interaction

In this chapter, we give a general definition of a Gibbs marked point process. Initially, we define
it in finite volume where the un-normalised density with respect to the Poisson point process is
given by the Boltzmann factor 𝑒−𝛽𝐻 , with 𝛽 representing the inverse temperature and 𝐻 the en-
ergy functional, also called the Hamiltonian. Subsequently, we define the infinite volume Gibbs
point process as solution to the DLR equations, these relationships reflects the behaviour of a
system at equilibrium. In section 1.2, we discuss the conditions necessary for the existence of
the infinite Gibbs measure and explore the question of its uniqueness. We showcase the relation-
ship between solutions to the DLR equations with the minimisers of the free energy using the
variational principle. In some context, the non-uniqueness of Gibbs measures is related to the
phenomenon of Liquid-Gas phase transition. We elucidate the connection between this occur-
rence and the non-differentiability of the pressure. In section 1.3, we provide a definition of a
saturated interaction which forms the framework within which we investigate the occurrence of
the Liquid-Gas phase transition.

1.1 Gibbs marked point process

We denote by 𝑏(R𝑑) the set of bounded Borel sets ofR𝑑 with positive Lebesgue measure. For
any sets 𝐴 and 𝐵 in 𝑏(R𝑑), 𝐴⊕𝐵 stands for the Minkowski sum of these sets. We denote by 𝑆
a polish space that describe the spin state of particles. We denote by 𝐸 the state space of a single
marked point defined as R𝑑 × 𝑆. For any (𝑥, 𝑠) ∈ 𝐄, the first coordinate 𝑥 is for the location
of the point and the second coordinate 𝑠 is the mark representing the spin of a particle. For any
set Δ ∈ 𝑏(R𝑑), 𝐸Δ is the local state space Δ × 𝑆. A configuration of marked points 𝜔 is a
locally finite set in 𝐸; i.e. 𝑁Δ(𝜔) ∶= #(𝜔 ∩ 𝐸Δ) is finite for any Δ ∈ 𝑏(R𝑑). We denote by Ω
the set of all marked point configurations and by Ω𝑓 its restriction to finite configurations. For
any 𝜔 ∈ Ω, its projection in Δ ⊂ R𝑑 is defined by 𝜔Δ ∶= 𝜔 ∩ 𝐸Δ. We equip the state space Ω
with the 𝜎-algebra  generated by the counting functions on 𝐸, 𝑁Δ for Δ ⊂ R𝑑 bounded. We
consider the reference measure 𝜆 ⊗ 𝑃𝑆 onR𝑑 × 𝑆 where 𝜆 is the Lebesgue measure onR𝑑 and
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𝑃𝑆 a probability measure on the spin space 𝑆 of the particle.

1.1.1 Hamiltonian and local energy

Gibbs point process arises naturally from statistical mechanics and physical models. It describes
the physical system at equilibrium. In order to introduce Gibbs point processes we need to in-
troduce the Hamiltonian. This functional describes the interaction between the particles and can
encode the attraction or repulsion between particles at different scales.
Definition 1. The Hamiltonian or energy is a measurable function 𝐻 ∶ Ω𝑓 → R ∪ {+∞} such
that :

• 𝐻(∅) < +∞ (non-degenerate)
• ∃𝐴 ≥ 0,∀𝜔 ∈ Ω𝑓 ,𝐻(𝜔) ≥ −𝐴𝑁(𝜔) (stability)
• If 𝐻(𝜔) = +∞ ⇐⇒ ∀𝑥 ∈ 𝐸,𝐻(𝜔 ∪ {𝑥}) = +∞ (hereditary).
The stability condition means that the energy is at least linear, this assumption is natural as

it is satisfied by most physical models. The hereditary condition means that the set of forbidden
configurations is stable by addition of a new particle in the system. Finally the non-degeneracy
condition is necessary otherwise by heredity the energy is equal to infinity everywhere.

Morphological interaction

We can define an Hamiltonian that depends on the morphology of a geometric object derived
from the position of the particles. For example several interesting models are based upon a germ
grain structure, also called the halo of the particle. We define the halo of a configuration 𝜔 ∈ Ω
by

𝐿(𝜔) =
⋃

(𝑥,𝑅)∈𝜔
𝐵(𝑥,𝑅)

where 𝑅 ∈ 𝑆 ⊂ 𝑅+ and is the mark which corresponds to the size of each particle. The first
interesting example is the Area interaction, also known as the Widom-Rowlinson model, that
was introduced to model micro-emulsions or colloids with inter-penetrable particles [34] and the
Hamiltonian is given by

𝐻(𝜔) = (𝐿(𝜔)) (1.1)
where  is the Lebesgue measure on R𝑑 and thus gives the volume of the halo. This model is
popular as it is one the few models where phase transition has been proved [3, 9, 30], we will
discuss this in more detail in Section 1.2.3. If we replace the Volume functional by a linear
combination of Minkowski functionals we get the Quermass interaction like introduced in [23].
We are particularly interested in the following Hamiltonian,

𝐻(𝜔) = (𝐿(𝜔)) + 𝜃1(𝐿(𝜔)) + 𝜃2𝜒(𝐿(𝜔)) (1.2)
where (𝐿(𝜔)) is the 𝑑 −1-dimensional Haussdorf measure of the boundary 𝜕𝐿(𝜔) and 𝜒(𝐿(𝜔)
is the Euler-Poincaré characteristic of the halo. The stability assumption is not always guaranteed
in this case, especially the addition of the Euler-Poincaré characteristic can yield un-stability of
the Hamiltonian in higher dimension [23].
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Pairwise interaction

The pairwise interaction is the most common type of interaction, as it is the most natural one to
consider. For example, it includes the gravitational interaction for particles with mass and the
Coulomb interaction for charged particles. In this context, the Hamiltonian is given by

𝐻(𝜔) =
∑

{𝑥,𝑦}⊂𝜔
𝜙(|𝑥 − 𝑦|) (1.3)

where 𝜙 is called the pair potential and is a measurable function 𝜙 ∶ R+ → R ∪ {+∞}. Under
these assumptions the Hamiltonian is non-degenerate and hereditary but the stability assumption
is not always guaranteed.

We have the important class of Riesz gas models, which is currently an active domain of
research. These models describes the physics of charged particles. The pair potential is given by
𝜙(𝑟) = 𝑟−𝑠 when 𝑠 ≠ 0 and 𝜙(𝑟) = − ln(𝑟) when 𝑠 = 0. The parameter 𝑠 encodes the weights of
the interactions at long range. Usually we call the case 𝑠 > 𝑑 the short range regime and 𝑠 ≤ 𝑑
the long range regime. The case where 𝑠 = 𝑑 −2 is the Coulomb interaction. The log-gas which
is the case when 𝑠 = 0 is not stable unless we add the interaction between the particles and a
background that is used to balance the electric charges of the overall system.

Another example of pairwise interaction is the Lennard-Jones pair potential given by 𝜙(𝑟) =
𝑎𝑟−12+𝑏𝑟−6 with 𝑎 > 0 and 𝑏 ∈ R. This Hamiltonian describe the behaviour of noble gas fluids.
The stability of this interaction is not direct when 𝑏 is negative, but we can show that for 𝑑 ≤ 5
the stability is proved using Proposition 3.2.8 in [31].

The Strauss potential is another class of pair potential, given by𝜙(𝑟) = 𝑎1𝑟≤𝑅 with𝑅 > 0 and
𝑎 ∈ R ∪ {+∞}. The special case where 𝑎 = +∞ is the hardcore interaction, or non penetrable
spheres. Whenever 𝑎 ≥ 0 the potential is positive and therefore it is stable. On the contrary if
𝑎 < 0 the interaction is no longer stable. Indeed, for any configuration 𝜔 ∈ Ω𝑓 such that all the
particles are inside the ball 𝐵(0, 𝑅∕2) we have 𝐻(𝜔) = 𝑎∕2𝑁(𝜔)(𝑁(𝜔) − 1).

Approximation of pairwise interaction

There are several ways to approximate the pairwise interaction. One way to do so is to restrict the
interaction to a finite number of nearest neighbours. Let 𝑛 ∈ N, given a configuration 𝜔 ∈ Ω𝑓 ,
a point 𝑦 ∈ 𝜔 is the 𝑛-th neighbour of 𝑥 ∈ 𝜔 if #𝐵(𝑥, |𝑥 − 𝑦|) ∩ 𝜔 = 𝑛 and we denote by
𝑦 = 𝑣𝑛(𝑥, 𝜔). In case there are several points at the same distance to 𝑥 we can list these points
using the lexicographical order on the cartesian coordinate. Given a pair potential𝜙 the K-nearest
neighbour Hamiltonian is given by

𝐻𝐾 (𝜔) =

{

∑

𝑥∈𝜔
∑min(𝐾,𝑁(𝜔)−1)
𝑚=1 𝜙(|𝑥 − 𝑣𝑚(𝑥, 𝜔)|) if 𝑁(𝜔) ≥ 2

0 otherwise . (1.4)
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In this setting it is easier to obtain the stability of the Hamiltonian. For instance, let us consider
a lower bounded pair potential : i.e. ∃𝐴 ≥ 0, 𝜙 ≥ −𝐴. Therefore we obtain by direct minoration

𝐻𝐾 (𝜔) ≥ −𝐾𝐴𝑁(𝜔).

Furthermore it is clear that as 𝐾 tends to ∞ we obtain the classic pairwise interaction.

Another way to approximate the pairwise interaction is the mean of the pair potential over
the volume of each particle, where the particle is a ball of radius 𝑅 > 0. Given a pair potential
𝜙 the Hamiltonian is given by

𝐻𝑚(𝜔) =
∑

{𝑥,𝑦}⊂𝜔
∬𝐵(𝑥,𝑅)×𝐵(𝑦,𝑅)

𝜙(|𝑢 − 𝑣|)𝑑𝑢 𝑑𝑣. (1.5)

If we do a rescaling by dividing the potential by (𝐵(0, 𝑅))2 and take 𝑅 to 0 we obtain the
classical pairwise potential. In reality, this type of interaction is a pairwise interaction with a
pair potential

𝜓(𝑥, 𝑦) = ∬𝐵(𝑥,𝑅)×𝐵(𝑦,𝑅)
𝜙(|𝑢 − 𝑣|)𝑑𝑢𝑑𝑣.

This approach is used to smooth out the pair potential when it present any singularity. However
it is often more interesting to regularize a potential with singularity using a ∞ mollifier on the
unit disk, such approach has been fruitful in demonstrating a law of large number for the max of
the 2D Coulomb-gas potential [25].
Proposition 1. Let 𝜙 a pair potential such that the pairwise interaction 𝐻 is stable, then 𝐻𝑚 is
also stable.

Proof. Let 𝐴 ≥ 0 the stability constant for 𝐻 . For 𝜔 = {𝑥1,… , 𝑥𝑛} ∈ Ω𝑓 , we construct
(𝑋𝑖)1≤𝑖≤𝑛 independent random variable where 𝑋𝑖 is a uniform random variable on 𝐵(𝑥𝑖, 𝑅).
Therefore the Hamiltonian 𝐻𝑚 can be written as

𝐻𝑚(𝜔) = 𝜆(𝐵(0, 𝑅))
∑

𝑖,𝑗
𝑖≠𝑗

E
(

𝜙(|𝑋𝑖 −𝑋𝑗|)
)

= 𝜆(𝐵(0, 𝑅))E

(

∑

𝑖,𝑗
𝑖≠𝑗

𝜙(|𝑋𝑖 −𝑋𝑗|)

)

= 𝜆(𝐵(0, 𝑅))E
(

𝐻({𝑋1,… , 𝑋𝑛})
)

≥ −𝐴𝜆(𝐵(0, 𝑅))𝑁(𝜔).

Finally, another interesting way to approximate the pairwise interaction is the class of diluted
pairwise interaction. The idea is similar to the previous example but instead of interacting be-
tween balls we look at the average interaction on the halo of particles. Therefore the Hamiltonian
is given by
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𝐻(𝜔) = ∬𝐿𝑅(𝜔)2
𝜙(|𝑢 − 𝑣|)𝑑𝑢𝑑𝑣. (1.6)

If we do the same rescaling as in the previous example, we obtain the following

lim
𝑅→0

𝐻(𝜔)
(𝐵(0, 𝑅))2

= 𝑁(𝜔)𝜙(0) + 2
∑

{𝑥,𝑦}⊂𝜔
𝜙(|𝑥 − 𝑦|).

The term 𝑁(𝜔)𝜙(0) is the energy coming from the self interaction of the particles. This can be
interpreted as a modification of the activity 𝑧 of the underlying Poisson point process. With this
definition it is necessary that 𝜙 is integrable at the origin, otherwise it is not interesting since the
energy will always be equal to +∞ when we have at least one point.
Proposition 2. Let𝜙 be an integrable pair potential inR𝑑 then𝐻 is bi-stable, i.e. there is𝐶 > 0
such that

|𝐻(𝜔)| ≤ 𝐶𝑁(𝜔).

Proof. Since 𝜙 is 𝐿1(R𝑑), for any configuration 𝜔 ∈ Ω𝑓 we have

|𝐻(𝜔)| ≤ ∬
𝐿𝑅(𝜔)2

|𝜙(|𝑦 − 𝑥|)|𝑑𝑦𝑑𝑥

≤ ∫
𝐿𝑅(𝜔)

∫
R𝑑

|𝜙|𝑑𝑦𝑑𝑥

≤ (𝐿𝑅(𝜔))∫
R𝑑

|𝜙|𝑑𝑦

≤ (𝐵(0, 𝑅))𝑁(𝜔)∫
R𝑑

|𝜙|𝑑𝑦.

Definition 2. The Hamiltonian 𝐻 is said to be stationary, if for all vector 𝑢 ∈ R𝑑 and any finite
configuration 𝜔 ∈ Ω𝑓 ,

𝐻(𝜏𝑢(𝜔)) = 𝐻(𝜔)

where 𝜏𝑢 is the translation by vector 𝑢.
All the Hamiltonian presented previously are stationary. It is a way to consider a system

of particles that is free from any external potential field like for example the gravitational field.
Therefore, we are only considering the internal interaction between the particles in the system.
Another quantity of interest is the local energy of a configuration. It is a quantity of a particular
interest, as it is useful to give a description of the system through equilibrium equations known
as the Dobrushin-Lanford-Ruelle (DLR) equations.
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Definition 3. Let 𝐻 be a stable, non-degenerate and hereditary Hamiltonian and Δ ∈ 𝑏(R𝑑)
the local energy on Δ of a configuration 𝜔 ∈ Ω𝑓 is given by

𝐻Δ(𝜔) ∶= 𝐻(𝜔) −𝐻(𝜔Δ𝑐 )

with the convention ∞−∞ = 0.
Since the Hamiltonian is hereditary, the local energy is never equal to −∞. This quantity can

be interpreted as the energy cost given a configuration outside of Δ to transport particles from
infinity to 𝜔Δ.
Definition 4. An Hamiltonian has a finite range 𝑅 ≥ 0, if for any Δ ∈ 𝑏(R𝑑) the local energy
𝐻Δ is a local functional on Δ⊕𝐵(0, 𝑅) ; i.e. for any finite configuration 𝜔 ∈ Ω𝑓

𝐻Δ(𝜔) = 𝐻Δ(𝜔Δ⊕𝐵(0,𝑅)).

This definition is the richest as we will see down the road. Indeed there is another way
to define the finite range interaction through some additivity property : for any configurations
𝜔1, 𝜔2 ∈ Ω𝑓 such that 𝑑2(𝜔1, 𝜔2) > 𝑅 then 𝐻(𝜔1 ∪ 𝜔2) = 𝐻(𝜔1) + 𝐻(𝜔2). It might seems
to be a natural definition as this additivity of the Hamiltonian implies that the configurations 𝜔1
and 𝜔2 are non interacting and independent one from another. But these two definitions are not
equivalent. The first definition under the assumption that 𝐻(∅) = 0 implies the later. Indeed,
when 𝜔1 ⊂ Δ and 𝜔2 ∈ (Δ⊕𝐵(0, 𝑅))𝑐 we have

𝐻Δ(𝜔1 ∪ 𝜔2) = 𝐻Δ(𝜔1) = 𝐻(𝜔1) −𝐻(∅).

And by definition we have
𝐻Δ(𝜔1 ∪ 𝜔2) = 𝐻(𝜔1 ∪ 𝜔2) −𝐻(𝜔2).

In summary, we obtain that
𝐻(𝜔1 ∪ 𝜔2) = 𝐻(𝜔1) +𝐻(𝜔2).

On the contrary, the additivity definition does not imply the proper definition. We consider the
following interaction

𝐻(𝜔) = 𝑁𝑐𝑐(𝐿𝑅(𝜔))
where 𝑁𝑐𝑐 counts the number of connected components. This interaction satisfies the additiv-
ity definition whenever the distance between two configurations is greater than 2𝑅, but accord-
ing to the proper definition the range of this interaction is infinite. Indeed, for a configuration
𝜔 = {𝑥0,… , 𝑥2𝑛+3} ⊂ R𝑑 such that 𝑥𝑖 = (𝑖𝑅, 0,… , 0) for 𝑖 ≤ 𝑛, 𝑥𝑛+1 = (𝑛𝑅,𝑅, 0,… , 0),
𝑥𝑛+2 = (𝑛𝑅, 2𝑅, 0,… , 0) and 𝑥𝑗 = ((2𝑛+3−𝑗)𝑅, 3𝑅, 0,… , 0) for 𝑗 ≥ 𝑛+3, for any 𝑟 < (𝑛−1)𝑅
we have 𝐻[0,3𝑅]𝑑 (𝜔) = 0 whereas 𝐻[0,3𝑅]𝑑 (𝜔[0,3𝑅]𝑑⊕𝐵(0,𝑟)) = 1.

Among the examples of Hamiltonian previously cited some further condition is needed. For
example, in the case of the morphological interaction of the Quermass type. The only assumption
needed to obtain a finite range interaction is that the spin state is of the form 𝑆 = [𝑅0, 𝑅1] where
0 ≤ 𝑅0 ≤ 𝑅1. For the pairwise interaction and all the associated approximation, if the support
of the pair potential is bounded then the overall interaction has a finite range. More generally, in
this work, we consider only finite range interactions.
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1.1.2 Finite Volume Gibbs point process and DLR equations

In order to study the state of a physical system at a microscopic scale we define the Gibbs point
process in a finite volume. The law of the point process describes the state of the system of
interacting particles at equilibrium. Before that we introduce the Poisson point process which is
the most natural way to produce independent points in a marked spaceR𝑑 × 𝑆.
Definition 5. Let 𝜇 be a sigma-finite measure onR𝑑 ×𝑆. A Poisson point process with intensity
𝜇 is a point process Γ that verifies the following properties.

• For any bounded subset 𝐸 inR𝑑 ×𝑆, the random variable 𝑁𝐸(Γ) is distributed following
a Poisson distribution with parameter 𝜇(𝐸).

• For any finite sequence of disjoint bounded subsets in R𝑑 × 𝑆, 𝐸1,… , 𝐸𝑛, the random
variables 𝑁𝐸1

(Γ),… , 𝑁𝐸𝑛(Γ) are independent.
The distribution of the Poisson point process with intensity 𝜇 is denoted by Π𝜇. When the

intensity is 𝜇 = 𝑧𝜆𝑑 ⊗ 𝑃𝑆 it is the stationary Poisson point process with intensity 𝑧 > 0 and we
denote its distribution withΠ𝑧. For any measurable setΔ ⊂ R𝑑 , we denote byΠ𝑧Δ the distribution
of the Poisson point process with intensity 𝑧𝜆𝑧Δ⊗𝑃𝑆 which is also the restriction of the Poisson
point process to Δ. The Poisson point process is the model for ideal gases where the particles
are not interacting. Now we introduce the finite volume Gibbs point process to develop models
of systems of interacting particles at equilibrium.
Definition 6. Let Δ ∈ 𝑏(R𝑑), the finite volume Gibbs measure on Δ with activity 𝑧 > 0,
inverse temperature 𝛽 ≥ 0 and Hamiltonian 𝐻 is the distribution

𝑃 𝑧,𝛽Δ = 1
𝑍𝑧,𝛽

Δ

𝑒−𝛽𝐻Π𝑧Δ, (1.7)

where𝑍𝑧,𝛽
Δ , called the partition function, is the normalisation constant ∫ 𝑒−𝛽𝐻Π𝑧Δ. A finite Gibbs

point process (GPP) on Δ is a point process with distribution 𝑃 𝑧,𝛽Δ .
The distribution 𝑃 𝑧,𝛽Δ is well defined since the partition function is positive and finite. Since

the Hamiltonian is non-degenerate we have that
𝑍𝑧,𝛽

Δ ≥ 𝑒−𝛽𝐻(∅)Π𝑧Δ(∅) > 0.

On the other hand, the stability of the Hamiltonian yields

𝑍𝑧,𝛽
Δ ≤ ∫ 𝑒𝛽𝐴𝑁(𝜔)Π𝑧Δ(𝑑𝜔) = exp(−𝑧𝜆(Δ)(𝑒𝛽𝐴 − 1)).

The Gibbs measure verify DLR equations, that are due to Dobrushin Lanford and Ruelle, which
gives the local distribution of a GPP inside a bounded window Λ given the position of particles
in Λ𝑐 .
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Proposition 3 (DLR equations). For anyΛ ⊂ Δ such that 𝜆(Λ) > 0, for any bounded measurable
function 𝑓 ∶ Ω → R+ we have

∫ 𝑓 (𝜔)𝑃 𝑧,𝛽Δ (𝜔) = ∬
1

𝑍𝑧,𝛽
Λ (𝜔Λ𝑐 )

𝑓 (𝜔′
Λ ∪ 𝜔Λ𝑐 )𝑒−𝛽𝐻Λ(𝜔′

Λ∪𝜔Λ𝑐 )Π𝑧Λ(𝑑𝜔
′
Λ)𝑃

𝑧,𝛽
Δ (𝑑𝜔) (1.8)

where𝑍𝑧,𝛽
Λ (𝜔Λ𝑐 ) is the normalisation constant ∫ 𝑒−𝛽𝐻Λ(𝜔′

Λ∪𝜔Λ𝑐 )Π𝑧Λ(𝑑𝜔
′
Λ). Equivalently, the local

conditional marginal distribution of a GPP is given for 𝑃 𝑧,𝛽Δ -a.s all 𝜔Λ𝑐 by

𝑃 𝑧,𝛽Δ (𝜔′
Λ|𝜔Λ𝑐 ) =

1
𝑍𝑧,𝛽

Λ (𝜔Λ𝑐 )
𝑒−𝛽𝐻Λ(𝜔′

Λ∪𝜔Λ𝑐 )Π𝑧Λ(𝑑𝜔
′
Λ). (1.9)

Proof. By definition of the local energy 𝐻Λ and the independence of Poisson point process in
disjoint areas we have

𝑃 𝑧,𝛽Δ (𝑑𝜔) = 1
𝑍𝑧,𝛽

Δ

𝑒−𝛽𝐻(𝜔)Π𝑧Δ(𝑑𝜔)

= 1
𝑍𝑧,𝛽

Δ

𝑒−𝛽𝐻Λ(𝜔′
Λ∪𝜔Λ𝑐 )𝑒−𝛽𝐻(𝜔Λ𝑐 )Π𝑧Λ(𝑑𝜔

′
Λ)Π

𝑧
Δ⧵Λ(𝑑𝜔Λ𝑐 ).

Therefore 𝑃 (𝜔′
Λ|𝜔Λ𝑐 ) is absolutely continuous with respect to Π𝑧Λ and the conditional density is

given by
𝑃 (𝜔′

Λ|𝜔Λ𝑐 ) =
1

𝑍𝑧,𝛽
Λ (𝜔Λ𝑐 )

𝑒−𝛽𝐻Λ(𝜔′
Λ∪𝜔Λ𝑐 )Π𝑧Λ(𝑑𝜔

′
Λ).

The DLR equations can be seen as equilibrium equations of the system. It gives a way to
locally resample the GPP that preserves the overall distribution.

1.1.3 Infinite Volume Gibbs point process

In order to study a system of particles in the bulk we need the infinite volume GPP which corre-
sponds to the case where "Λ = R𝑑". The previous Definition 6 fails as the Hamiltonian for an
infinite configuration is meaningless. One way to construct the infinite volume is by considering
a sequence of stationarised finite volume GPP on Δ𝑛 = [−𝑛, 𝑛]𝑑 . The limit of such sequence, if
it exists is what we call the thermodynamic limit. We would want that the infinite volume GPP
verify the same equilibrium equations. Therefore we define the infinite process using the DLR
equations.
Definition 7. A probability measure 𝑃 on Ω is a Gibbs measure for the Hamiltonian 𝐻 , activity
𝑧 > 0 and inverse temperature 𝛽 ≥ 0 if 𝑃 is stationary in space (i.e. invariant for any translation)
and if for any Δ ∈ 𝑏(R𝑑) and any bounded measurable function 𝑓 ∶ Ω → R,

∫ 𝑓 (𝜔)𝑃 (𝑑𝜔) = ∫ ∫
1

𝑍Δ(𝜔Δ𝑐 )
𝑓 (𝜔′

Δ ∪ 𝜔Δ𝑐 )𝑒−𝛽𝐻Δ(𝜔′
Δ∪𝜔Δ𝑐 )Π𝑧Δ(𝑑𝜔

′
Δ)𝑃 (𝑑𝜔) (1.10)
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where 𝑍Δ(𝜔Δ𝑐 ) is the partition function given the outer configuration 𝜔Δ𝑐

𝑍Δ(𝜔Δ𝑐 ) = ∫ 𝑒−𝛽𝐻Δ(𝜔′
Δ∪𝜔Δ𝑐 )Π𝑧Δ(𝑑𝜔

′).

We denote by (𝐻, 𝑧, 𝛽) the set of all Gibbs measures.
This definition brings up natural questions which are the existence of such probability mea-

sure and if it exists whether if it is unique. In the setting of finite range Hamiltonian, the following
theorem proves the existence of the infinite GPP.
Theorem 1 (Theorem 1 [4] ). Let 𝐻 be a stationary and finite range Hamiltonian, then for any
𝑧 > 0 and 𝛽 ≥ 0, (𝐻, 𝑧, 𝛽) is a non-empty set.

For infinite-range interactions, significant results by Ruelle [32] demonstrate the existence
of the infinite volume GPP for pairwise interactions when the pair potential is both regular and
superstable. Recent work has extended these results by establishing the existence of the infinite
volume GPP for larger class of pairwise interaction by relaxing the superstable assumption [8].
For infinite-range morphological interactions, such as the Quermass interaction with unbounded
radii (i.e. when 𝑆 = R+), the existence of the infinite GPP has been proved under certain
assumptions on 𝑃𝑆 in [5]. The proof of Theorem 1 can be found in this introductory course on
Gibbs point process [4], and for such it will not be done here. Nonetheless, we will discuss about
the tools needed in this proof as it will be useful down the line.
Definition 8. A function 𝑓 ∶ Ω → R is a local tame function if there is a bounded set Δ ∈
𝑏(R𝑑) and a constant 𝐴 ≥ 0 such that 𝑓 (𝜔) = 𝑓 (𝜔Δ) and |𝑓 (𝜔)| ≤ 𝐴𝑁Δ(𝜔).

We define the local convergence topology as it is the setting we use to prove the existence of
accumulation point for the sequence of stationarised finite volume GPP on Δ𝑛.
Definition 9. The local convergence topology on the space of probability measures on Ω is the
smallest topology such that for any local tamed function 𝑓 the application ∶ 𝑃 → ∫ 𝑓𝑑𝑃 is
continuous. We denote by 𝜏 this topology.

In this setting of local convergence topology, we use the specific entropy to prove the tightness
of a collection of probability measures. For a stationary probability 𝑃 on Ω the specific entropy
is given by

𝐼𝜉(𝑃 ) = lim
𝑛→+∞

1
𝜆(Δ𝑛)

𝐼(𝑃
|Δ𝑛|Π

𝜉
Δ𝑛
) (1.11)

where 𝐼(𝑃
|Δ𝑛|Π

𝜉
Δ𝑛
) is the relative entropy of 𝑃

|Δ𝑛 , the marginal distribution of 𝑃 on Δ𝑛, with
respect to Π𝜉Δ𝑛 . For 𝑃 and 𝑄 two probability measures, the relative entropy or the Kullback-
Leibler divergence of 𝑃 with respect to 𝑄 is defined as

𝐼(𝑃 |𝑄) =

{

∫ 𝑓 ln(𝑓 )𝑑𝑄 if 𝑃 << 𝑄,with 𝑓 = 𝑑𝑃
𝑑𝑄

+∞ otherwise .

The limit always exists and is a consequence of a sub-additivity property of the relative entropy,
for more detail see Chapter 15 in [14]. The specific entropy verify the following properties, the
proof of which is also available in Chapter 15 of [14].
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Proposition 4. The specific entropy verify the following properties.

• For any stationary probability measure 𝑃 on Ω,

𝐼𝜉(𝑃 ) = sup
Δ∈B𝑏(R𝑑 )

1
𝜆(Δ)

𝐼(𝑃Δ|Π
𝜉
Δ).

Therefore, the specific entropy does not depend on the sequence (Δ𝑛)𝑛∈N.

• The specific entropy 𝐼𝜉 is affine.

Furthermore, we have the following fundamental proposition which essentially gives our
tightness tool.
Proposition 5 (Proposition 2.6, Georgii-Zessin [17] ). For any 𝜉 > 0 and 𝐾 ≥ 0, the set

{𝑃 ∈  , 𝐼𝜉(𝑃 ) ≤ 𝐾}

is sequentially compact for the local convergence topology, where  is the space of stationary
probability measures on Ω with finite intensity.

The finite volume Gibbs measure is not a stationary probability measure therefore it is not
suited in the local convergence topology. For Δ𝑛 = [−𝑛, 𝑛]𝑑 we construct the empirical field,
denoted by 𝑃 𝑧,𝛽Δ𝑛 , associated to the finite volume Gibbs measure on Δ𝑛. The empirical field is the
stationarised version of the finite volume GPP on Δ𝑛 and it is defined as the probability measure
on Ω such that for any test function 𝑓

∫ 𝑓 (𝜔)𝑃
𝑧,𝛽
Δ𝑛

(𝑑(𝜔)) = 1
𝜆(Δ𝑛) ∫Δ𝑛

∫Ω
𝑓 (𝜏𝑢(𝜔))𝑃

𝑧,𝛽
Δ𝑛

(𝑑𝜔)𝑑𝑢 where 𝑃 𝑧,𝛽Δ𝑛
= ⊗𝑖∈Z𝑑𝑃

𝑧,𝛽
𝜏2𝑛𝑖(Δ𝑛)

.

(1.12)
Any accumulation point of the sequence

(

𝑃
𝑧,𝛽
Δ𝑛

)

𝑛≥1
is going to be stationary by construction.

Proposition 6. The sequence
(

𝑃
𝑧,𝛽
Δ𝑛

)

𝑛≥1
is tight for the local convergence topology if there exists

𝜉 > 0 such that
sup
𝑛≥1

1
𝜆(Δ𝑛)

𝐼(𝑃 𝑧,𝛽Δ𝑛
|Π𝜉Δ𝑛) < +∞. (1.13)

Proof. We know that the specific entropy is affine, therefore we obtain that
𝐼𝜉(𝑃

𝑧,𝛽
Δ𝑛

) = 1
𝜆(Δ𝑛) ∫Δ𝑛

𝐼𝜉(𝑃
𝑧,𝛽
Δ𝑛

◦𝜏−𝑢)𝑑𝑢.

Since the specific entropy does not depend on the sequence of bounded areas, for each 𝑃 𝑧,𝛽Δ𝑛
◦𝜏−𝑢

we can choose the sequence (

𝜏−𝑢(Δ(2𝑘−1)𝑛)
)

𝑘≥1 and thus
𝐼𝜉(𝑃

𝑧,𝛽
Δ𝑛

◦𝜏−𝑢) = lim
𝑘→+∞

1
(2𝑘 − 1)𝑑𝜆(Δ𝑛)

𝐼(𝑃 𝑧,𝛽Δ𝑛|Δ(2𝑘−1)𝑛
|Π𝜉Δ(2𝑘−1)𝑛

)

= lim
𝑘→+∞

1
(2𝑘 − 1)𝑑𝜆(Δ𝑛)

(2𝑘 − 1)𝑑𝐼(𝑃 𝑧,𝛽Δ𝑛
|Π𝑧,𝛽Δ𝑛 )

= 1
𝜆(Δ𝑛)

𝐼(𝑃 𝑧,𝛽Δ𝑛
|Π𝑧,𝛽Δ𝑛 ).
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As a consequence we have
𝐼𝜉(𝑃

𝑧,𝛽
Δ𝑛

) = 1
𝜆(Δ𝑛)

𝐼(𝑃 𝑧,𝛽Δ𝑛
|Π𝑧,𝛽Δ𝑛 ).

Therefore if (1.13) is verified Proposition 5 ensures that the empirical field is tight for the local
convergence topology.

The tools presented here will be useful in proving the existence of an accumulation point for a
sequence of stationarised finite volume GPP or a sequence of infinite volume GPP. Nonetheless,
we need to prove that such limit verify DLR equations for the interaction we want to study.

1.2 Liquid-Gas Phase Transition

The uniqueness of infinite volume GPP is an old and difficult question in statistical physics. It
is related to the question of coexistence of different state of the system for the same couple of
parameters (𝑧, 𝛽). The parameters 𝑧 and 𝛽 play an important role in the description of the system
via some measurable quantities, for example the density of particles. By direct computation on
the microscopic system, i.e. on a bounded window, we have that the intensity of the finite volume
GPP is a regular function with respect to 𝑧 and 𝛽.
Proposition 7. The function 𝑧 → 𝐸

𝑃𝑧,𝛽Δ
(𝑁Δ)∕𝜆(Δ) is continuous and differentiable with derivative

𝑧 → Var
𝑃𝑧,𝛽Δ

(𝑁Δ)∕𝑧𝜆(Δ) on (0,+∞).

For the infinite volume GPP, the regularity of the intensity of the point process is not always
guaranteed. The detection of the points of discontinuity of the intensity is a way to find the precise
parameters at which different states coexist. As each state can be represented by an infinite GPP,
we have therefore a strategy to find parameters for which we have non-uniqueness of the infinite
volume Gibbs measure.
Definition 10. We say that a liquid-gas phase transition occurs for an interaction given by𝐻 and
parameters 𝑧 > 0 and 𝛽 ≥ 0 if there is 𝑃 ,𝑄 ∈ (𝐻, 𝑧, 𝛽) such that

𝜌(𝑃 ) ∶= 𝐸𝑃 (𝑁[0,1]𝑑 ) > 𝜌(𝑄). (1.14)
We also call this phenomenon a first order phase transition since the non-uniqueness of Gibbs

measure is linked with the discontinuity of the intensity. The reason we call this a liquid-gas phase
transition it is due to the fact that we only measure the jump of density between pure phases that
corresponds to the liquid state or the gas state. The state we consider still have fluid property as
we do not have crystallisation and symmetry breaking. Indeed, unlike a solid state the particles
do not arrange themselves to form a lattice and the Gibbs measure obtained are still invariant by
translation and rotation (i.e 𝑃 = 𝑃◦𝑟 and 𝑃 = 𝑃◦𝜏𝑢 for 𝑟 ∈ 𝑆𝑂(R𝑑) and 𝑢 a vector inR𝑧).

1.2.1 Variational principle

There is another point of view where the infinite volume Gibbs measure can be seen as the prob-
ability measure on Ω that solves the variational principle of statistical physics. Which state that a
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Gibbs measure should minimise the free energy, that is the sum of the energy density and the spe-
cific entropy. The minimum of the free energy is equal to minus the pressure, where the pressure
is defined as the following limit

𝜓𝑧,𝛽 ∶= lim
𝑛→+∞

1
𝜆(Δ𝑛)

ln(𝑍𝑧,𝛽
Δ𝑛

). (1.15)

In physics, we usually find that the pressure is defined via the same limit multiplied by 1∕𝛽 in
order to obtain a quantity whose unit is homogeneous to the energy per unit volume. This limit
always exists since one can prove that the sequence

(

ln(𝑍𝑧,𝛽
Δ𝑛

)
)

𝑛≥1
is sub-additive and we con-

clude using Fekete’s lemma. Furthermore the stability and the non-degeneracy hypothesis on
the Hamiltonian assures us that this limit is finite. For more detail, the proof of the existence
of the limit can be found in the proof of Lemma 1 in [6]. The energy density for 𝑃 a stationary
probability measure on Ω is given by

𝑒(𝑃 ) ∶= lim
𝑛→+∞

1
𝜆(Δ𝑛) ∫

𝐻(𝜔Δ𝑛)𝑃 (𝑑𝜔). (1.16)

The existence of this limit is not guaranteed and we need to make the assumption that this limit
exists for any stationary probability measure on Ω. Furthermore, we need the following technical
assumption on the boundary effects of the Hamiltonian. We assume that for any infinite Gibbs
measure 𝑃

lim
𝑛→+∞

1
𝜆(Δ𝑛) ∫

𝜕𝐻Δ𝑛(𝜔)𝑃 (𝑑𝜔) = 0 (1.17)
where 𝜕𝐻Δ𝑛(𝜔) = 𝐻Δ𝑛(𝜔) −𝐻(𝜔Δ𝑛).
Theorem 2 (Variational Principle, Theorem 1 [6]). For𝐻 a stationary and finite range Hamilto-
nian, 𝑧 > 0 and 𝛽 ≥ 0. We assume that (1.16) is verified for any stationary probability measure
on Ω and that the boundary effect condition (1.17) is verified for any Gibbs measure. Then for
any stationary probability measure 𝑃 on Ω with finite intensity

𝐹 (𝑃 ) ∶= 𝐼𝑧(𝑃 ) + 𝛽𝑒(𝑃 ) ≥ −𝜓𝑧,𝛽 , (1.18)
with equality if and only if 𝑃 ∈ (𝐻, 𝑧, 𝛽).

The variational principle is generally expected, but apart from the finite-range interactions,
there are only a few examples where it has been demonstrated. For instance this result has been
proved for superstable pairwise interactions [15, 16] and for the Delaunay interaction [7]. With
the variational principle in mind, we can explain the heuristic behind the behaviour of different
infinite volume GPP. Indeed, when a phase transition occurs, we have a competition between the
entropy and the energy that cannot be solved simultaneously. For some special parameters 𝑧 and
𝛽 where the infinite volume Gibbs measure is non-unique, one Gibbs measure can minimise the
energy density at the expense of the entropy of the system and another Gibbs measure will do the
opposite. Therefore if an Hamiltonian has configurations that minimise the energy and if a slight
modification of these configurations increases sharply the quantity of energy, this interaction is
promising for exhibiting phase transition.
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1.2.2 Regularity of the pressure

As we have seen previously the pressure is a quantity that is important in the description of the
state. Before going further, let us recall some properties. For a bounded set Δ ∈ 𝑏(R𝑑) and
𝑧 > 0 and 𝛽 ≥ 0 we call the finite volume pressure

𝜓𝑧,𝛽Δ ∶= 1
𝜆(Δ)

ln𝑍𝑧,𝛽
Δ .

We can re-parametrize the model. Instead of the activity 𝑧, we consider the chemical potential
𝜇 ∈ R, where the relationship between 𝜇 and 𝑧 is given 𝑧 = 𝑒−𝛽𝜇. The finite volume pressure is
a convex function with respect to 𝜇 and 𝛽. Indeed, the partition function on Δ can be written as

𝑍𝜇,𝛽
Δ = 𝑒−(𝑒

−𝛽𝜇−1)𝜆(Δ)𝐸Π1
Δ
(𝑒−𝛽(𝐻+𝜇𝑁Δ)).

Therefore the convexity of the finite volume pressure is a consequence of the Hölder inequality.
The finite volume pressure can be seen as a cumulant generating function. Therefore when Δ →
R𝑑 we have the following proposition.
Proposition 8. The pressure 𝜓𝜇,𝛽 is a convex function with respect to (𝜇, 𝛽).

In general, we cannot assume that the pressure is smooth. On the contrary, the existence of
non-regularities in the pressure is of interest to physicists, as it indicates a change in the system’s
behavior. In our case, we examine the non-differentiability of the pressure, which is referred to
as a first-order phase transition. Furthermore, we can observe that via a direct computation of
the derivative of the finite volume pressure with respect to 𝑧 we have

𝑧
𝜕𝜓𝑧,𝛽Δ
𝜕𝑧

= −𝑧 + 𝐸𝑃 𝑧,𝛽Δ

(

𝑁Δ
𝜆(Δ)

)

. (1.19)

Under the assumption of a stationary Hamiltonian we have that for the empirical field 𝑃 𝑧,𝛽Δ𝑛

𝜌(𝑃
𝑧,𝛽
Δ𝑛

) = 𝑧 + 𝑧
𝜕𝜓𝑧,𝛽Δ𝑛
𝜕𝑧

. (1.20)

If we make the assumption that the pressure 𝜓𝑧,𝛽 is differentiable, we know that due to the con-
vexity property that

lim
𝑛→+∞

𝜕𝜓𝑧,𝛽Δ𝑛
𝜕𝑧

=
𝜕𝜓𝑧,𝛽

𝜕𝑧
.

Therefore, we have for any Gibbs measure 𝑃 ∈ (𝐻, 𝑧, 𝛽) obtained by thermodynamic limit

𝜌(𝑃 𝑧,𝛽) = 𝑧 + 𝑧
𝜕𝜓𝑧,𝛽

𝜕𝑧
. (1.21)

We see here the relationship between the regularity of the pressure and liquid-gas phase transition.
Indeed, if the pressure is non-differentiable for some parameter (𝑧, 𝛽) we can hope to build two
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sequences of stationary probability measures whose thermodynamic limits 𝑃 ,𝑄 ∈ (𝐻, 𝑧, 𝛽)
verify

𝜌(𝑃 ) = 𝑧 + 𝑧
𝜕𝜓𝑧,𝛽

𝜕𝑧+
and 𝜌(𝑄) = 𝑧 + 𝑧

𝜕𝜓𝑧,𝛽

𝜕𝑧−
.

One way to create such sequence is to build GPP with different boundary conditions. Up until
now we have only considered the free boundary condition. Let us consider the setting for general
boundary conditions. Let 𝑅 > 0 and for any subset Δ ∈ 𝑏(R𝑑) we define the boundary of Δ
the set 𝜕Δ ∶= (Δ𝑐 ⊕𝐵(0, 𝑅)) ∩Δ. An event 𝐴 is said to be a boundary event on Δ if it is a local
event on 𝜕Δ, more precisely if it belongs to 𝜕Δ which is the 𝜎-algebra generated by counting
functions 𝑁𝐵 for any Borel sets 𝐵 ⊂ 𝜕Δ.
Definition 11. Let Δ ∈ B𝑏(R𝑑) and any boundary event 𝐴 ∈ 𝜕Δ such that Π𝑧Δ(𝐴) > 0. The
finite volume Gibbs measure on Δ with activity 𝑧 > 0, inverse temperature 𝛽 ≥ 0, Hamiltonian
𝐻 and boundary event 𝐴 is the distribution

𝑃 𝑧,𝛽,𝐴Δ = 1
𝑍𝑧,𝛽,𝐴

Δ

𝑒−𝛽𝐻1𝐴Π𝑧Δ (1.22)

where 𝑍𝑧,𝛽,𝐴
Δ = ∫𝐴 𝑒

−𝛽𝐻Π𝑧Δ, is the normalisation constant.
We can define the empirical field 𝑃 𝑧,𝛽,𝐴Δ as in (1.12) but with boundary condition 𝐴. With it

we can define two distinct sequences of stationary probability measure on Ω using two different
sequences of boundary event. In the following proposition, we show the existence of thermody-
namic limit.
Proposition 9. Let (𝐴𝑛)𝑛≥1 be a sequence of boundary events on Δ𝑛 and H be a stationary
and finite range Hamiltonian, then for any 𝑧 > 0 and 𝛽 ≥ 0 the sequence (𝑃

𝑧,𝛽,𝐴𝑛
Δ𝑛

)𝑛≥1 has an
accumulation point that verify DLR equations.

The proof of this proposition is similar to the proof of Theorem 1. For the moment we con-
sider 𝛿 > 0 and two boundary conditions, 𝐴𝑛 = {𝜔 ∈ Ω, 𝑁𝜕Δ𝑛(𝜔) = 0} and 𝐵𝑛 = {𝜔 ∈ Ω,∀𝑖 ∈
𝛿Z𝑑 ∩ 𝜕Δ𝑛, 𝑁[−𝛿∕2,𝛿∕2]𝑑⊕𝑖(𝜔) = 1}. We denote by 𝑃 𝑧,𝛽,𝐴 and 𝑃 𝑧,𝛽,𝐵 the thermodynamic limit
that is given by Proposition 9. In the case of unicity of the infinite Gibbs measure, we observe
that the effect of the boundary condition vanishes as the volume increases. The behaviour in the
bulk of the system tends to be more and more decorrelated from the behaviour at the boundary,
which is something we might expect in the setting of finite range Hamiltonian. However if these
different boundary conditions still have a strong influence on the behaviour in the bulk, it is a
good setting for a phase transition phenomenon. Classically the way the boundary can influence
the bulk is when there are percolation phenomenon involved as in those cases the correlation
functions does not decay exponentially with the distance. A good choice of boundary condition
is also important and for example 𝐴𝑛 and 𝐵𝑛 are prime examples. Indeed, if we prove that the
bulk behaves in the same way as the boundary, via percolation arguments or other, we have for
𝐴𝑛 a very sparse distribution of particles, thus 𝜌(𝑃 𝑧,𝛽,𝐴) << 1 and for 𝐵𝑛 mostly packed configu-
ration, thus 𝜌(𝑃 𝑧,𝛽,𝐵) ≥ 1∕𝛿𝑑 . Therefore, we will observe a liquid-gas phase transition since both
𝑃 𝑧,𝛽,𝐴 and 𝑃 𝑧,𝛽,𝐵 are infinite Gibbs measures.
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1.2.3 Known results

In the setting of continuous point process, there are several results of phase transition. Among
these we have an abundance of phase transition based on the existence of a dominant spin, where
the considered system is a mixture of different particles, represented by their spin. The Hamilto-
nian for such systems takes into account the interaction between particles of the same type and
the interaction between two different particles. If we consider only systems consisting of a single
type of particles, thus a Hamiltonian that rely only on the self arrangement, the geometry and the
density of particles, we have only a few known results. The first one being, the phase transition
of the Area interaction.
Theorem 3 (Widom-Rowlinson [34] , Ruelle [30] , Chayes-Chayes-Kotecký [3], Giacomin-Le-
bowitz-Maes [19]). For the Area interaction, there exists a critical activity 𝑧𝑐 such that for 𝑧 > 𝑧𝑐
and 𝛽 = 𝑧 the system exhibits liquid-gas phase transitions.

The underlying argument for the proof of phase transition of the Area interaction is the link
between this model and the two colour Widom-Rowlinson model. For any Δ ∈ B𝑏(R𝑑), the
distribution for the two colour Widom-Rowlinson model on Δ is given by

𝑃 𝑧𝐴,𝑧𝐵Δ (𝑑𝜔𝐴, 𝑑𝜔𝐵) = 1
𝑍𝑧𝐴,𝑧𝐵

Δ

1𝑑(𝜔𝐴,𝜔𝐵)≥𝑅Π
𝑧𝐴
Δ (𝑑𝜔𝐴)Π𝑧𝐵Δ (𝑑𝜔𝐵)

where 𝑅 > 0 is the distance of the hardcore interaction between different type of particles,
𝑧𝐴 > 0 and 𝑧𝐵 > 0 are the respective activity of particle𝐴 and 𝐵 and𝑍𝑧𝐴,𝑧𝐵

Δ is the normalisation
constant. The marginal distributions of 𝜔𝐴 and 𝜔𝐵 are given by

𝑃 𝑧𝐴,𝑧𝐵Δ,𝐴 (𝑑𝜔𝐴) = 1
𝑍𝑧𝐴,𝑧𝐵

Δ

𝑒−𝑧𝐵(𝐿𝑅(𝜔
𝐴))Π𝑧𝐴Δ (𝑑𝜔𝐴).

The marginal distributions are Gibbs measure on Δ for the Area interaction and 𝑧𝐵 (in the case of
particles A) plays the role of the inverse temperature 𝛽. This symmetry on 𝑧𝐴 and 𝑧𝐵 translates
into a symmetry of 𝑧 and 𝛽 in the behaviour of the Area interaction model and this is what we call
the duality for this model. The first proof of the phase transition for the Area interaction by Ru-
elle [30] relies on the two colour Widom-Rowlinson model and especially the symmetry for both
particles when 𝑧𝐴 = 𝑧𝐵. More specifically, the infinite volume distributions for each system of
particle 𝐴 or 𝐵 are Gibbs measures for the Area interaction with 𝛽 = 𝑧. The key element of this
proof involve adapting the classical Peierls argument from lattice systems to continuous systems,
as well as imposing boundary conditions such as the absence of particles B on the boundary.
Ruelle proves that in a cell the probability that there is at least one particle B is smaller than the
probability that there is at least one particle A.
The second proof by Chayes, Chayes and Kotecký [3] relies on the Fortuin-Kasteleyn represen-
tation for the two colour Widom-Rowlinson model. In this representation, the two color model
with parameter 𝑧 = 𝑧𝐴 = 𝑧𝐵 can be seen a as realisation of the random cluster model with activ-
ity 𝑧 and then we assign each connected component of 𝐿𝑅(𝜔) with a colour with probability 1∕2.
The random cluster model is a Gibbs point process with 𝐻(𝜔) = −𝑁𝑐𝑐(𝐿𝑅(𝜔)) and 𝛽 = ln 2,
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whose finite volume distribution for Δ ⊂ R𝑑 is given by

𝑃 𝑧,𝛽Δ (𝑑𝜔) = 1
𝑍𝑧,𝛽

Δ

2𝑁𝑐𝑐 (𝐿𝑅(𝜔))Π𝑧Δ(𝑑𝜔).

We can show that for each colour the coloured point process stochastically dominates the Poisson
point process with activity 𝑧. We know that there is a percolation threshold 𝑧𝑝𝑐(𝑅) such that for
𝑧 > 𝑧𝑝𝑐(𝑅) the Boolean Poisson model with radius 𝑅 percolates and thus the coloured point
process also percolates by stochastic domination. Furthermore we know that the unbounded
connected component is unique and thus in the two colour Widom-Rowlinson model only one
type of particle is associated to this unique infinite volume connected component. Consequently,
when we fix the boundary condition such as no particle B can be on the boundary we have fixed
that it is necessarily particles A that has the infinite volume connected component.
The phase diagram for the Area interaction has been further explored in [9]. For𝑅 > 0 the radius
of the balls around each particles, Houdebert and Dereudre proved the existence of an increasing
Lipschitz function ∶ 𝛽 → 𝑧̃𝑎𝑐 (𝛽, 𝑅). For 𝛽 = 0 we have 𝑧̃𝑎𝑐 (0, 𝑅) = 𝑧𝑝𝑐(𝑅), where 𝑧𝑝𝑐(𝑅) is the
percolation threshold of the Poisson Boolean model with balls of radius 𝑅. Moreover, there
exists 𝛽𝑅 ∈ (0,+∞) such that for 𝛽 ≥ 𝛽𝑅, 𝑧̃𝑎𝑐 (𝛽, 𝑅) = 𝛽. The quantity 𝑧̃𝑎𝑐 (𝛽, 𝑅) is the percolation
threshold for any Gibbs measure for the Area interaction, inverse temperature 𝛽 ≥ 0 and radius
𝑅 > 0.

Theorem 4 (Dereudre-Houdebert [9]). For the Area interaction with radius 𝑅 > 0 and for all
𝛽 ≥ 0 and 𝑧 < 𝑧̃𝑎𝑐 (𝛽, 𝑅) there is an unique infinite volume Gibbs measure. Moreover, by duality,
for every 𝑧 ≥ 0 and 𝛽 < 𝑧̃𝑎𝑐 (𝑧,𝑅) we have uniqueness as well.

The proof of this results uses something similar to the OSSS inequality. This inequality is
obtained using the theory of randomised tree algorithms introduced by Duminil-Copin, Raoufi
and Tassion in [10, 11, 12]. With Theorem 3 and 4, we have mostly completed the phase diagram
as we can see in figure 1.1. The only remaining part that is yet to be explored is a small area around
the critical point. It is conjectured that for the area interaction we have unicity of the Gibbs
measure everywhere except when 𝛽 = 𝑧 and 𝑧 > 𝑧𝑐 , where (𝑧𝑐 , 𝑧𝑐) is the critical point. The
techniques used to prove phase transition or not for the Gibbs point process with Area interaction
relies heavily on the symmetry of the two color Widom-Rowlinson model. The limit of such
approaches are that it is not possible to extend phase transition results when the radii of the balls
constituting the halo are stochastic.
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𝛽

𝑧𝑝𝑐(𝑅)
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𝑧𝑝𝑐(𝑅) ∙

𝑧 = 𝛽

∙ 𝑧𝑐

Non uniqueness

𝛽 → 𝑧̃𝑎𝑐 (𝛽, 𝑅)

Uniqueness

?

Figure 1.1: Uniqueness/non-uniqueness regimes for the area-interaction measures with parame-
ters 𝑧, 𝛽. picture from [9]

Another important phase transition result is due to Lebowitz, Mazel and Presutti for the fol-
lowing Hamiltonian

𝐻𝛾 (𝜔) = − 1
2!

∑

{𝑥1,𝑥2}⊂𝜔
𝛾2𝑑(

2
⋂

𝑖=1
𝐵(𝑥𝑖, 𝛾−1𝑅𝑑)) +

1
4!

∑

{𝑥1,𝑥2,𝑥3,𝑥4}⊂
(

4
⋂

𝑖=1
𝐵(𝑥𝑖, 𝛾−1𝑅𝑑)). (1.23)

It is the first time that the Pirogov-Sinaï-Zahradník (PSZ) theory has been adapted in the contin-
uous setting to prove a phase transition result.
Theorem 5 (Lebowitz-Mazel-Presutti[27]). There exists 𝛽𝑐 ∈ (0,+∞) such that for any 𝛽 > 𝛽𝑐 ,
there exists functions 𝛾0(𝛽) and 𝑧(𝛾, 𝛽) such that for 0 < 𝛾 < 𝛾0(𝛽) the interaction given by 𝐻𝛾
exhibit a liquid-gas phase transition at (𝑧(𝛽, 𝛾), 𝛽).

In the precise statement of Theorem 5, we have the existence of two distinct Gibbs measures
𝑃+
𝛾,𝛽 , 𝑃

−
𝛾,𝛽 ∈ (𝐻𝛾 , 𝑧(𝛽, 𝛾), 𝛽) such that 𝜌(𝑃+

𝛾,𝛽) > 𝜌(𝑃
−
𝛾,𝛽). Furthermore, the limit for the quantities

𝑧(𝛾, 𝛽) and 𝜌(𝑃±
𝛾,𝛽) exists when 𝛾 → 0.

The PSZ theory was originally developed for lattice systems. It has been successful in demon-
strating phase transitions by analysing the system’s behaviour at low temperatures as a pertur-
bation of the system at absolute zero. When at zero temperature, the lattice system is arranged
in configurations of lowest energy, which we call ground states, and these minimisers of the
Hamiltonian might not be unique. When the ground state is not unique we expect that at low
temperature the system would arrange itself in a way where one of the ground state is dominant.
In the continuous setting, as we have seen with the variational principle, Theorem 2, the Gibbs
states are the minimisers of the free energy. In this case, 𝛾 , which is the inverse range of the
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interaction, acts as the temperature. When at absolute zero, 𝛾 = 0, the interaction becomes a
mean field interaction and the mean field free energy has multiple minimisers. The density of
the ground states verifies

−𝜌 + 1
3!
𝜌3 + 1

𝛽
ln(𝑠) = 𝜆. (1.24)

Therefore, when 𝛽 is large enough (1.24) has 3 roots, two corresponding to the minimiser of the
free energy. When we choose 𝜆 = 𝜆(𝛽) both local minima are global and thus the mean field
interaction has two ground states. Finally, by using PSZ theory for 𝛾 << 1 we can find, via
pertubative methods, two Gibbs measure for 𝐻𝛾 with particle densities close to the densities of
the grounds states of the mean field interaction.

In the same spirit, Pulvirenti and Tsagkarogiannis, in [33], proved there are parameters for
which liquid-gas phase transition occurs when the interaction is the one presented by Lebowitz,
Mazel and Presutti with the hardcore interaction added to it, so for

𝐻𝑃𝑇 (𝜔) = 𝐻𝛾 (𝜔) +
∑

{𝑥,𝑦}⊂𝜔
𝜙(|𝑥 − 𝑦|)

where 𝐻𝛾 is defined as in (1.23) and for 𝑅 > 0

∀𝑢 ≥ 0, 𝜙(𝑢) =

{

+∞ if 𝑢 ≤ 𝑅
0 otherwise .

Theorem 6 (Pulvirenti-Tsagkarogiannis [33]). Consider the interaction given by𝐻𝑃𝑇 in dimen-
sions 𝑑 ≥ 2. For such model there are𝑅0, 𝛽𝑐,𝑅, 𝛽0,𝑅 and for any 0 < 𝑅 < 𝑅0 and 𝛽 ∈ (𝛽𝑐,𝑅, 𝛽0,𝑅)
there is 𝛾𝛽,𝑅 > 0 so that for any 𝛾 ≤ 𝛾𝛽,𝑅 there is 𝜆𝛽,𝛾,𝑅 such that : there are two distinct infinite
volume Gibbs measures 𝜇±𝛽,𝛾,𝑅 with chemical potentials 𝜆𝛽,𝛾,𝑅 and inverse temperature 𝛽 and two
different densities, 0 < 𝜌𝛽,𝛾,𝑅,− < 𝜌𝛽,𝛾,𝑅,+.

If we consider models of systems with different type of particles, i.e. with different spin,
we have an abundance of phase transition results based on the existence of a dominant spin in
the mix. For instance, we can cite the phase transition of the continuous Potts models [18] or of
the non symmetrical multiple colour Widom-Rowlinson model [2]. But if we consider liquid-
gas phase transition, the only known results are the ones that we have presented in this section.
Our goal in this thesis is to expand our knowledge on liquid-gas phase transition and prove the
existence of this type of phenomenon to the class of saturated interaction.

1.3 Saturated Interaction
In this work, we are interested in a particular set of interactions called saturated interaction. The
particularity of such interaction is that the cost of adding a single point whenever the configura-
tion is sufficiently dense and homogeneous is tractable. More specifically there is 𝑐 ∈ R such
that for any 𝑥 ∈ R𝑑 and a dense and homogeneous configuration 𝜔 ∈ Ω

ℎ(𝑥, 𝜔) = 𝐻(𝜔 ∪ {𝑥}) −𝐻(𝜔) = 𝑐.
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At this stage, we need to give to a proper definition of dense enough and homogeneous configu-
ration. In the setting we will present, we are going to encompass a larger set of interaction than
just the type of saturated interaction we just presented.

1.3.1 Coarse graining and saturation

The beginning of the approach consists in doing a coarse graining. We pave R𝑑 with tiles of
length 𝛿 > 0. For any integers 𝑖 ∈ Z𝑑 , the i-th tile is denoted by 𝑇𝑖 = 𝜏𝑖𝛿([−𝛿∕2, 𝛿∕2]) where 𝜏𝑖𝛿 is
the translation by vector 𝑖𝛿. For any Λ ⊂ Z𝑑 we denote by Λ̂ =

⋃

𝑖∈Λ 𝑇𝑖.
Definition 12. Let 𝐻 be a Hamiltonian, we say that we can do a coarse graining if there exists a
measurable function 𝐸0 ∶ Ω𝑓 → R ∪ {+∞} such that for any 𝜔 ∈ Ω𝑓

𝐻(𝜔) =
∑

𝑖∈Z𝑑
𝐸𝑖(𝜔) (1.25)

where 𝐸𝑖 = 𝐸0◦𝜏−𝑖𝛿. 𝐸𝑖 is the energy assigned to the tile 𝑇𝑖.
In order to simplify the notations, for any Λ ⊂ Z𝑑 , the total assigned energy on Λ̂ is denoted

by
𝐸Λ(𝜔) =

∑

𝑖∈Λ
𝐸𝑖(𝜔). (1.26)

It can be noted that such function 𝐸0 might not be unique. Indeed, we consider a Hamiltonian
where we take the average of the pairwise potential 𝜙 over the volume of each particle, given by

𝐻𝑚(𝜔) =
∑

{𝑥,𝑦}⊂𝜔
∫𝐵(𝑥,𝑟) ∫𝐵(𝑦,𝑟)

𝜙(|𝑢 − 𝑣|)𝑑𝑢𝑑𝑣.

At first, we can choose to have 𝐸0 such as

𝐸0(𝜔) =
1
2

∑

𝑥∈𝜔𝑇0

∑

𝑦∈𝜔⧵{𝑥}
∫𝐵(𝑥,𝑟) ∫𝐵(𝑦,𝑟)

𝜙(|𝑢 − 𝑣|)𝑑𝑢𝑑𝑣.

Indeed by doing so, when we sum over all integers we obtain
∑

𝑖∈Z𝑑
𝐸𝑖(𝜔) =

∑

𝑖∈Z𝑑

1
2

∑

𝑥∈𝜔𝑇𝑖

∑

𝑦∈𝜔⧵{𝑥}
∫𝐵(𝑥,𝑟) ∫𝐵(𝑦,𝑟)

𝜙(|𝑢 − 𝑣|)𝑑𝑢𝑑𝑣

= 1
2
∑

𝑥∈𝜔

∑

𝑦∈𝜔⧵{𝑥}
∫𝐵(𝑥,𝑟) ∫𝐵(𝑦,𝑟)

𝜙(|𝑢 − 𝑣|)𝑑𝑢𝑑𝑣 = 𝐻𝑚(𝜔).

It is also possible to consider the following assignment of the energy

𝐸0(𝜔) = ∫𝑇0 ∫R𝑑

(

𝑁𝐵(𝑢,𝑅)(𝜔)𝑁𝐵(𝑣,𝑅)(𝜔) −𝑁𝐵(𝑢,𝑅)∩𝐵(𝑣,𝑅)(𝜔)
)

𝜙(|𝑢 − 𝑣|)𝑑𝑢𝑑𝑣.
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By summing over all integers we have
∑

𝑖∈Z𝑑
𝐸𝑖(𝜔) = ∫

R𝑑 ∫R𝑑

(

𝑁𝐵(𝑢,𝑅)(𝜔)𝑁𝐵(𝑣,𝑅)(𝜔) −𝑁𝐵(𝑢,𝑅)∩𝐵(𝑣,𝑅)(𝜔)
)

𝜙(|𝑢 − 𝑣|)𝑑𝑢𝑑𝑣.

We can observe that for any 𝑢, 𝑣 ∈ R𝑑

∑

𝑥∈𝜔

∑

𝑦∈𝜔⧵{𝑥}
1𝐵(𝑢,𝑅)(𝑥)1𝐵(𝑣,𝑅)(𝑦) =

∑

𝑥∈𝜔
1𝐵(𝑢,𝑅)(𝑥)𝑁𝐵(𝑣,𝑅)(𝜔 ⧵ {𝑥})

=
∑

𝑥∈𝜔
1𝐵(𝑢,𝑅)(𝑥)

(

𝑁𝐵(𝑣,𝑅)(𝜔) − 1𝐵(𝑣,𝑅)(𝑥)
)

= 𝑁𝐵(𝑢,𝑅)(𝜔)𝑁𝐵(𝑣,𝑅)(𝜔) −𝑁𝐵(𝑢,𝑅)∩𝐵(𝑣,𝑅)(𝜔).

As a result of the previous relation and by exchanging the role of the pair (𝑥, 𝑦) and (𝑢, 𝑣) in left
part of the equation we obtain that

∑

𝑖∈Z𝑑
𝐸𝑖(𝜔) = ∫

R𝑑 ∫R𝑑

∑

𝑥∈𝜔

∑

𝑦∈𝜔⧵{𝑥}
1𝐵(𝑥,𝑅)(𝑢)1𝐵(𝑦,𝑅)(𝑣)𝜙(|𝑢 − 𝑣|)𝑑𝑢𝑑𝑣

=
∑

𝑥∈𝜔

∑

𝑦∈𝜔⧵{𝑥}
∫𝐵(𝑥,𝑟) ∫𝐵(𝑦,𝑟)

𝜙(|𝑢 − 𝑣|)𝑑𝑢𝑑𝑣 = 𝐻𝑚(𝜔).

Interestingly most properties of the Hamiltonian does not transfer naturally to 𝐸0. For ex-
ample, the stability or the finite range property of 𝐻 does not necessarily imply the equivalent
property on 𝐸0. However the non-degeneracy of the Hamiltonian 𝐻 implies that 𝐸0(∅) = 0. In
fact, under the assumption that we can do a coarse graining on 𝐻 then 𝐸0(∅) = 0 ⇐⇒ 𝐻 is
non-degenerate.
Definition 13. For an Hamiltonian 𝐻 , let 𝐸0 be an assigned energy to the tile 𝑇0. We say
that 𝐸0 has a finite range 𝑅 > 0 if for any configuration 𝜔 ∈ Ω, 𝐸0(𝜔) = 𝐸0(𝜔𝑇0⊕𝐵(0,𝑅)).Furthermore it is said to be stable if there exists 𝑐 ≥ 0 such that for all configuration 𝐸0(𝜔) ≥
−𝑐(1 +𝑁𝑇0⊕𝐵(0,𝑅)(𝜔)).
Lemma 7. If 𝐸0 has a finite range 𝑅 > 0 and is stable then the original Hamiltonian 𝐻 has a
finite range and is stable.

Proof. We consider 𝑅 > 0 and 𝑐 ≥ 0 respectively the range and the stability constant of 𝐸0. For
any Δ ⊂ R𝑑 , there exists ΛΔ ⊂ Z𝑑 the smallest subset such that Δ ⊂ Λ̂Δ. We denote by 𝜕𝑒𝑥𝑡ΛΔ
the outside border area of ΛΔ, more specifically 𝜕𝑒𝑥𝑡ΛΔ = {𝑖 ∈ Λ𝑐Δ, 𝛿𝑑(𝑖,ΛΔ) ≤ 𝑅+ 𝛿}. For any
configuration 𝜔 ∈ Ω𝑓 we have

𝐻Δ(𝜔) = 𝐸ΛΔ∪𝜕𝑒𝑥𝑡ΛΔ
(𝜔) − 𝐸ΛΔ∪𝜕𝑒𝑥𝑡ΛΔ

(𝜔Δ𝑐 ) + 𝐸Z𝑑⧵𝜕𝑒𝑥𝑡ΛΔ
(𝜔) − 𝐸Z𝑑⧵𝜕𝑒𝑥𝑡ΛΔ

(𝜔Δ𝑐 ).

Since 𝐸0 has a finite range 𝑅 > 0 and by construction we know that Λ̂𝑐Δ ⊂ Δ𝑐 therefore
𝐸Z𝑑⧵𝜕𝑒𝑥𝑡ΛΔ

(𝜔) − 𝐸Z𝑑⧵𝜕𝑒𝑥𝑡ΛΔ
(𝜔Δ𝑐 ) = 𝐸Z𝑑⧵𝜕𝑒𝑥𝑡ΛΔ

(𝜔Λ̂𝑐Δ
) − 𝐸Z𝑑⧵𝜕𝑒𝑥𝑡ΛΔ

(𝜔Λ̂𝑐Δ∩Δ
𝑐 ) = 0.
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Consequently
𝐻Δ(𝜔) = 𝐸ΛΔ∪𝜕𝑒𝑥𝑡ΛΔ

(𝜔) − 𝐸ΛΔ∪𝜕𝑒𝑥𝑡ΛΔ
(𝜔Δ𝑐 )

= 𝐸ΛΔ∪𝜕𝑒𝑥𝑡ΛΔ
(𝜔Λ̂Δ∪𝜕ΛΔ

) − 𝐸ΛΔ∪𝜕𝑒𝑥𝑡ΛΔ
(𝜔Λ̂Δ∪𝜕ΛΔ∩Δ𝑐

)

= 𝐻Δ

(

𝜔
Δ⊕𝐵

(

0,2(𝑅,
√

𝑑𝛿)
)

)

.

Therefore the interaction has a range of at most 2(𝑅+
√

𝑑𝛿). Now we prove that𝐻 is necessarily
stable. For any 𝜔 ∈ Ω𝑓 we define the set Λ(𝜔) = {𝑖 ∈ Z𝑑 , 𝜔𝑇𝑖⊕𝐵(0,𝑅) ≠ ∅}. By construction we
know that

Λ̂(𝜔) ⊂ 𝐿𝑅+
√

𝑑𝛿(𝜔), where 𝐿𝑅+
√

𝑑𝛿(𝜔) =
⋃

𝑥∈𝜔
𝐵(𝑥,𝑅 +

√

𝑑𝛿),

and thus

#Λ(𝜔) ≤
𝜆(𝐵(0, 𝑅 +

√

𝑑𝛿))
𝛿𝑑

𝑁(𝜔).

Therefore the energy for the configuration 𝜔 verify
𝐻(𝜔) =

∑

𝑖∈Λ(𝜔)
𝐸𝑖(𝜔)

≥ −𝑐
∑

𝑖∈Λ(𝜔)
1 +𝑁𝑇𝑖⊕𝐵(0,𝑅)(𝜔)

≥ −𝑐

(

#Λ(𝜔) +
∑

𝑥∈𝜔

∑

𝑖∈Λ(𝑥)
1

)

≥ −2𝑐𝜆(𝐵(0, 𝑅∕𝛿 +
√

𝑑))𝑁(𝜔).

In conclusion, 𝐻 is stable with the stability constant 𝐴 = 2𝑐𝜆(𝐵(0, 𝑅∕𝛿 +
√

𝑑)).

Since we don’t have unicity in the way we do the coarse graining, it is important to find
one such representation that is easy to compute whenever the configuration is dense enough and
homogeneous. We define two sets of locally homogeneous configurations around the tile 𝑇𝑖 for
any 𝑖 ∈ Z𝑑 ,

Ω1
𝑖,𝐿,𝛿 = {𝜔 ∈ Ω, 𝜔𝑇𝑗 ≠ ∅,∀𝑗 ∈ Z𝑑 , 𝛿‖𝑖 − 𝑗‖ ≤ 𝐿},

Ω0
𝑖,𝐿,𝛿 = {𝜔 ∈ Ω, 𝜔𝑇𝑗 = ∅,∀𝑗 ∈ Z𝑑 , 𝛿‖𝑖 − 𝑗‖ ≤ 𝐿}.

Moreover, for # ∈ {0, 1} and Λ ⊂ Z𝑑 we denote by Ω#
Λ,𝐿,𝛿 =

⋂

𝑖∈ΛΩ#
𝑖,𝐿,𝛿 and ΩΛ,𝐿,𝛿 = Ω0

Λ,𝐿,𝛿 ∪
Ω1

Λ,𝐿,𝛿. If Λ = Z𝑑 we simply denote by ΩZ𝑑 ,𝐿,𝛿 = Ω𝐿,𝛿.
Definition 14. An interaction is said to be saturated if there exists 𝐿 > 0 and 𝛿 > 0, a coarse
graining 𝐸0 ∶ Ω𝑓 → R ∪ {+∞} and a measurable function 𝐸 ∶ N→ R ∪ {+∞} such that

∀𝜔 ∈ Ω0
0,𝐿,𝛿 ∪ Ω1

0,𝐿,𝛿 , 𝐸0(𝜔) = 𝐸(𝑁𝑇0(𝜔)). (1.27)
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To simplify the notations, for any Λ ⊂ Z𝑑 , the total saturated energy on Λ̂ is denoted by
𝐸Λ(𝜔) =

∑

𝑖∈Λ
𝐸(𝑁𝑇𝑖(𝜔)). (1.28)

Lemma 8. For any saturated interaction with distance of saturation 𝐿 > 0 and 𝐸0 with a finite
range 𝑅 > 0, there is 𝐴 ∈ R and 𝐵 ∈ R ∪ {+∞} such that

𝐸(𝑘) = (𝐴𝑘 + 𝐵)1𝑘≥1.

Proof. We fix 𝑀 = max{𝐿,𝑅} and 𝑘 ∈ N∗ and we consider a configuration
𝜔 ∈ {𝑁𝑇0(𝜔) = 𝑘}

⋂

𝑖∈
[

− 4𝑀
𝛿 ,

4𝑀
𝛿

]𝑑

𝑖≠0

{𝑁𝑇𝑖(𝜔) = 1}.

This way the tiles 𝑇𝑖 where 𝑖 ∈
[

−2𝑀
𝛿
, 2𝑀
𝛿

]

are saturated. Now we consider a point 𝑥 ∈ 𝑇0 really
close to the border with an adjacent tile 𝑇𝑗 and 𝜖 ∈ R𝑑 such that 𝑥+ 𝜖 ∈ 𝑇𝑗 and any point in the
configuration 𝜔 + 𝜖 still belong to their initial tile. Now if we compute the local energy of the
point 𝑥 in the configuration 𝜔, by using finite range argument of 𝐸0 and the saturation property,
we have

ℎ(𝑥, 𝜔) ∶= 𝐻(𝜔 ∪ {𝑥}) −𝐻(𝜔) = 𝐸(𝑘 + 1) − 𝐸(𝑘).

Similarly, the local energy of 𝑥 + 𝜖 in the configuration 𝜔 + 𝜖 we have
ℎ(𝑥 + 𝜖, 𝜔 + 𝜖) = 𝐸(2) − 𝐸(1).

Moreover, by stationarity property of the Hamiltonian we have that
ℎ(𝑥, 𝜔) = ℎ(𝑥 + 𝜖, 𝜔 + 𝜖).

Therefore, we have that
𝐸(𝑘 + 1) − 𝐸(𝑘) = 𝐸(2) − 𝐸(1).

As a consequence, 𝐸 is linear starting from 1, i.e there is 𝐴 ∈ R and 𝐵 ∈ R ∪ {+∞} such that

𝐸(𝑘) =

{

𝐴𝑘 + 𝐵 if 𝑘 ≥ 1
𝐸(0) otherwise .

Furthermore, we know that 𝐸(0) = 𝐸0(∅) = 0 and thus we have the desired expression.
In general, we want that the configurations in Ω1

0,𝐿,𝛿 to be allowed by the system. If from the
beginning we have𝐸(1) = +∞, then any dense configuration that saturates an area are forbidden
by the model and the only saturation observable is the saturation by large empty spaces. This is
something we would like to avoid and therefore we would like to assume that at least 𝐵 < +∞,
in order to allow these dense configurations.
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1.3.2 Examples of saturated interaction

The class of saturated interaction is surprisingly quite large and many even unsuspected Hamilto-
nian falls into this category. A first example of such interaction that verify this saturation property
is the K-nearest neighbour Strauss interaction, where the nearest neighbour interaction is defined
in (1.4). Let 𝑎 ∈ R and 𝑅 > 0 the Hamiltonian is given by

𝐻𝐾 (𝜔) =

⎧

⎪

⎨

⎪

⎩

∑

𝑥∈𝜔

min(𝐾,𝑁(𝜔)−1)
∑

𝑚=1
𝑎1[0,𝑅](|𝑥 − 𝑣𝑚(𝑥, 𝜔)|) if 𝑁(𝜔) ≥ 2

0 otherwise
. (1.29)

In this situation, the natural choice for 𝐸0 is obviously for any configuration 𝜔 ∈ Ω𝑓

𝐸0(𝜔) =
∑

𝑥∈𝜔𝑇0

min(𝐾,𝑁(𝜔)−1)
∑

𝑚=1
𝑎1[0,𝑅](|𝑥 − 𝑣𝑚(𝑥, 𝜔)|).

Then we will fix𝐿 = 𝑅 and 𝛿 small enough such that for any 𝑥 ∈ 𝑇0, #{𝑇𝑖, 𝑇𝑖 ⊂ 𝐵(𝑥,𝑅)} ≥ 𝐾+1.
In this case whenever 𝜔 ∈ Ω1

0,𝐿,𝛿 we have

𝐸0(𝜔) = 𝑎𝐾𝑁(𝜔𝑇0) = 𝐸(𝑁(𝜔𝑇0))

and when 𝜔𝑇0 = ∅ and also for 𝜔 ∈ Ω0
0,𝐿,𝛿 we have

𝐸0(𝜔) = 0 = 𝐸(0).

Other approximation of the pairwise interaction falls under this category, among them is the
diluted pairwise interaction. We will treat this case in Section 3.2 as it seems to be a promising
avenue in proving liquid-gas phase transition for pairwise interaction.
Another example of saturated interaction is the Area interaction, if we consider the marked point
process where the mark corresponds to the radii of the balls forming the halo. If there is 𝑅1 ≥
𝑅0 > 0 such that the spin state 𝑆 = [𝑅0, 𝑅1] and 𝑃𝑆 any probability measure on 𝑆. The
Hamiltonian is given by

𝐻(𝜔) = (𝐿(𝜔)), where 𝐿(𝜔) =
⋃

{𝑥,𝑅}∈𝜔
𝐵(𝑥,𝑅).

The natural way to do the coarse graining is therefore
𝐸0(𝜔) = (𝐿(𝜔) ∩ 𝑇0)

We fix the lengths 𝛿 and 𝐿 such that √𝑑𝛿 < 𝑅0 and 𝐿 ≥ 2𝑅1 + 𝛿. Under these condition we
know that as long as 𝑁(𝜔𝑇0) ≥ 1 and therefore also for 𝜔 ∈ Ω1

0,𝐿,𝛿 we have

𝐸0(𝜔) = 𝛿𝑑 = 𝐸(𝑁(𝜔𝑇0)).
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If 𝜔 ∈ Ω0
0,𝐿,𝛿, we have that 𝐿(𝜔) ∩ 𝑇0 = ∅ and thus

𝐸0(𝜔) = 0 = 𝐸(0).

In fact, the Quermass interaction under these assumption on the spin state is saturated in the same
way even though it might not be as clear especially for the Euler-Poincaré characteristic. We will
expand further about this in Section 3.1.

Unfortunately, most pairwise interaction are not saturated or at least we have not a coarse
graining that exhibit this property. However, there is an exception to this statement which is
the pairwise hardcore interaction who is saturated. We recall that for 𝑅 > 0 the hardcore pair
potential is given by

𝜙(𝑥) = +∞1𝑥≤𝑅.

The coarse graining is the usual for such pairwise interaction i.e.
𝐸0(𝜔) =

1
2

∑

𝑥∈𝜔𝑇0

∑

𝑦∈𝜔⧵{𝑥}
𝜙(|𝑥 − 𝑦|).

If 𝑅∕2√𝑑 > 𝛿 > 0 and 𝐿 > 2(𝑅 + 𝛿) then for any configuration 𝜔 ∈ Ω0,𝐿,𝛿

𝐸0(𝜔) = 𝐸(𝑁𝑇0(𝜔))

where 𝐸(0) = 0 and 𝐸(𝑘) = +∞ for any 𝑘 ≥ 1. The pairwise hardcore interaction is a prime
example of saturated interaction that does not allow the dense configurations.

1.3.3 Phase transition heuristic in saturated interaction setting

Let 𝐻 be the Hamiltonian of a saturated interaction with 𝐸0 that has a finite range 𝑅 > 0 and a
saturation range 𝐿 > 0. We assume that for some 𝐴,𝐵 ∈ R we have 𝐸(𝑘) = (𝐴𝑘+𝐵)1𝑘≥1. We
consider two distinct distributions 𝑃 = 𝛿∅ and 𝑄 = ⊗𝑖∈Z𝑑𝑄𝑖 where

𝑄𝑖(𝑑𝜔𝑇𝑖) =
1
𝑍1
𝑒−𝛽𝐸(𝑁(𝜔𝑇𝑖 ))1𝜔≠∅Π𝑧𝑇𝑖(𝑑𝜔𝑇𝑖). (1.30)

More precisely we consider the empirical field of 𝑄 that is given by
𝑄 = 1

𝛿𝑑 ∫𝑇0
𝑄◦𝜏−𝑢𝑑𝑢.

The entropy with respect to Π𝑧
Λ̂

of 𝑃 and 𝑄 is given by
𝐼(𝑃

|Λ̂|Π
𝑧
Λ̂
) = −|Λ| ln(𝑍0)

𝐼(𝑄
|Λ̂|Π

𝑧
Λ̂
) = −|Λ| ln(𝑍1) − 𝛽

∑

𝑖∈Λ
∫Ω

𝐸(𝑁(𝜔𝑇𝑖))𝑄𝑖(𝑑𝜔)

= −|Λ| ln(𝑍1) − 𝛽|Λ|𝐸𝑄0

(

𝐸(𝑁𝑇0)
)
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where
𝑍0 = ∫ 1𝜔=∅Π𝑧𝑇0(𝑑𝜔) = 𝑒−𝑧𝛿

𝑑

𝑍1 = ∫ 𝑒−𝛽𝐸(𝑁(𝜔𝑇0 ))1𝜔≠∅Π𝑧𝑇0(𝑑𝜔) = 𝑒−(𝑧𝛿
𝑑+𝛽𝐵) (exp(𝑧𝛿𝑑𝑒−𝛽𝐴) − 1

)

.

Furthermore, if we compute the mean energy per unit volume we have for 𝑃
𝑒(𝑃 ) = lim

Λ→Z𝑑
1

|Λ|𝛿𝑑 ∫ 𝐻(𝜔Λ̂)𝑃 (𝑑𝜔)

= lim
Λ→Z𝑑

𝐻(∅)
|Λ|𝛿𝑑

= 0.

We define the boundary 𝐵(Λ) = {𝑖 ∈ Λ𝑐 , 𝛿𝑑2(𝑖,Λ) ≤ 𝑅} ∪ {𝑖 ∈ Λ, 𝛿𝑑2(𝑖,Λ𝑐) ≤ 𝐿} and thus for
𝑄 we have

𝑒(𝑄) = lim
Λ→Z𝑑

1
|Λ|𝛿𝑑 ∫ 𝐻(𝜔Λ̂)𝑄(𝑑𝜔)

= lim
Λ→Z𝑑

1
|Λ|𝛿𝑑 ∫

(

𝐸𝐵(Λ)(𝜔Λ̂) + 𝐸Λ∖𝐵(Λ)(𝜔Λ̂)
)

𝑄(𝑑𝜔)

= lim
Λ→Z𝑑

1
|Λ|𝛿𝑑 ∫ 𝐸𝐵(Λ)(𝜔Λ̂)𝑄(𝑑𝜔) +

|Λ∖𝐵(Λ)|
|Λ|𝛿𝑑

𝐸𝑄0

(

𝐸(𝑁𝑇0)
)

.

Under the assumption that
lim

Λ→Z𝑑
1

|Λ|𝛿𝑑 ∫ 𝐸𝐵(Λ)(𝜔Λ̂)𝑄(𝑑𝜔) = 0,

we have
𝑒(𝑄) = 1

𝛿𝑑
𝐸𝑄0

(

𝐸(𝑁𝑇0)
)

.

As a result the free energy of 𝑄 and 𝑃 verify
𝐹 (𝑃 ) = − 1

𝛿𝑑
ln(𝑍0) and 𝐹 (𝑄) = − 1

𝛿𝑑
ln(𝑍1).

Therefore if we can find for the absolute zero temperature, 𝛽 = +∞, an activity 𝑧∞ > 0 such that
𝑍0 = 𝑍1 and if we assume that 𝑃 and 𝑄 are the minimisers of free energy, by the variational
principle these two measures we constructed are two Gibbs measures for the Hamiltonian𝐻 . The
system needs to be somehow attractive if we hope to have 𝑄 as a minimiser of the free energy.
Heuristically, 𝑃 and 𝑄 should be the minimisers at absolute zero if the system verify a Peierls
condition i.e. we have a energy surplus per unit volume in mixing areas, where the state of each
tiles are non homogeneous. Due to this energy surplus a probability measure that put weights on
events where there are mixing areas cannot be a Gibbs measure for 𝐻 at 𝛽 = +∞ and 𝑧 = 𝑧∞.
At low strictly positive temperature, we expect to find two Gibbs measures whose behaviour is
close to the two ideal point processes. We use the PSZ theory to find these Gibbs measures with
different intensities and we can interpret them as a small perturbation of the ideal states at low
temperature.
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1.3.4 Simulations

In order to gain some intuition on the behaviour of particles and to understand the occurrence of
the liquid-gas phase transition, we conducted simulations for models with saturated interactions.
Through this numerical study, we discovered that the saturation property alone is not sufficient
for the phase transition to occur, prompting further investigation into which additional properties
are needed. We begin by presenting the numerical results obtained for the Widom-Rowlinson
model, for which we have theoretical results (see Theorem 3). Subsequently, we discuss the re-
sults of simulations for the Quermass interaction with both positive and negative contributions
of the surface measure. Finally, we present the results of simulations for the K-nearest neighbour
Strauss interaction, considering both repulsive and attractive cases.

Let us consider a finite box Λ𝐹 = [0, 𝐹 ]𝑑 with 𝐹 large enough as such we can consider that
the finite Gibbs measure on Λ𝐹 is an approximation the infinite volume Gibbs measure. As a
result, for any tame local function 𝑓 , with 𝑓 (𝜔) = 𝑓 (𝜔Δ) and Δ ⊂ Λ𝐹 we have

𝐸𝑃 𝑧,𝛽 (𝑓 ) ≈ 𝐸𝑃 𝑧,𝛽Λ𝐹
(𝑓 ), (1.31)

and particularly

𝜌(𝑃 𝑧,𝛽) = 𝐸𝑃 𝑧,𝛽 (𝑁[0,1]𝑑 ) ≈
1

𝜆(Λ𝐹 )
𝐸𝑃 𝑧,𝛽Λ𝐹

(𝑁Λ𝐹 ). (1.32)

The algorithm used to do the simulations is the Birth-death Metropolis-Hastings algorithm pre-
sented in [29] Section 7.1.2. We define the local energy of a point 𝑥 ∈ R𝑑 with in a configuration
𝜔 ∈ Ω𝑓

ℎ(𝑥, 𝜔) ∶= 𝐻(𝜔 ∪ {𝑥}) −𝐻(𝜔).

For a configuration 𝜔 in Δ ⊂ R𝑑 , we define 𝑝(𝜔) the probability for proposing a birth, 𝑞𝑏(𝜔, ⋅)
the density function of a random variable on Δ, used to propose the site of the new point, and
𝑞𝑑(𝜔, ⋅) the discrete density on 𝜔, used to propose the point to be erased from the configuration.
The birth acceptance probability is given by

𝛼𝑏(𝜔, 𝑥) = min{1, 𝑟(𝜔, 𝑥)},

with

𝑟(𝜔, 𝑥) = 𝑧𝑒−𝛽ℎ(𝑥,𝜔)
(1 − 𝑝(𝜔 ∪ {𝑥}))𝑞𝑑(𝜔 ∪ {𝑥}, 𝑥)

𝑝(𝜔)𝑞𝑏(𝜔, 𝑥)

The death acceptance probability is given by

𝛼𝑑(𝜔, 𝑥) = min{1, 𝑟(𝜔 ⧵ {𝑥}, 𝑥)−1}.
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Algorithm 1 Birth-death Metropolis-Hastings algorithm
Given 𝑌𝑛 = 𝜔 ⊂ Δ, generate 𝑌𝑛+1 as follows

1. draw 𝑈 (1)
𝑚 ∼ Uniform([0, 1]) and 𝑈 (2)

𝑚 ∼ Uniform([0, 1]);
2. if 𝑈 (1)

𝑚 ≤ 𝑝(𝜔) then generate 𝑥 ∼ 𝑞𝑏(𝜔, ⋅) and set

𝑌𝑚+1 =

{

𝜔 ∪ {𝑥} if 𝑈 (2)
𝑚 ≤ 𝑟(𝜔, 𝑥)

𝜔 otherwise ;

3. if 𝑈 (1)
𝑚 > 𝑝(𝜔), generate 𝑥 ∼ 𝑞𝑑(𝜔, ⋅) and set

𝑌𝑚+1 =

{

𝜔 ⧵ {𝑥} if 𝑈 (2)
𝑚 ≤ 𝑟(𝜔 ⧵ {𝑥}, 𝑥)−1

𝜔 otherwise ,

and if 𝜔 = ∅ then 𝑌𝑚+1 = ∅.

In practice, we will choose 𝑝(𝜔) = 1
2 , 𝑞𝑏(𝜔, ⋅) = 1

𝜆(Δ)1Δ(⋅) and 𝑞𝑑(𝜔, ⋅) = 1
𝑁(𝜔)1𝜔(⋅). By

non heredity property of the Hamiltonian 𝐻 , we know that 𝑒𝛽ℎ(𝑥,𝜔⧵{𝑥}) ≠ 0 and therefore by
Proposition 7.12 and Proposition 7.13 from [29], we know that the Markov Chain generated by
Algorithm 1 is reversible, irreducible and aperiodic. More importantly, according to Proposition
7.4 from [29] there is a unique invariant distribution which is 𝑃 𝑧,𝛽Δ and regardless of the initial
distribution and for any 𝑓 ∈ 1(𝑃 𝑧,𝛽Δ ) the ergodic averages verifies

lim
𝑛→+∞

1
𝑛

𝑛−1
∑

𝑘=0
𝑓 (𝑌𝑘)

𝑎.𝑠.
= 𝐸𝑃 𝑧,𝛽Δ

(𝑓 )

and especially for 𝑓 = 𝑁Δ. As a result, we have that

1
𝑛

𝑛−1
∑

𝑘=0
𝑁Λ𝐹 (𝑌𝑘) ≈ 𝜌(𝑃 𝑧,𝛽). (1.33)

This gives an easy way to approximate the intensity of Gibbs measures for any set of parameters
𝑧, 𝛽 provided that we are able to compute efficiently the Hamiltonian. The Quermass interaction
is one of those Hamiltonian where it is quite difficult to compute. Let us recall that in dimension
𝑑 = 2, the Quermass Hamiltonian, for 𝑅 > 0 is given by

𝐻(𝜔) =
(

 + 𝜃1 + 𝜃2𝜒
)

(𝐿𝑅(𝜔)), where 𝐿𝑅(𝜔) =
⋃

𝑥∈𝜔
𝐵(𝑥,𝑅),

with  the Lebesgue measure in R2,  the 1-dimensional Haussdorf measure of the boundary
and 𝜒 the Euler-Poincarré characteristic. The computation of such energy function is a difficult
task and to do so we implemented an algorithm based on the following proposition.
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Lemma 9 (Møller-Helisova [28]). For any configuration𝜔 ∈ Ω𝑓 , we have the following inclusion-
exclusion formula

(𝐿(𝜔)) =
∑

𝑥∈𝐼1(𝜔)
(𝐵𝑥) −

∑

{𝑥,𝑦}∈𝐼2(𝜔)
(𝐵𝑥 ∩ 𝐵𝑦) +

∑

{𝑥,𝑦,𝑧}∈𝐼3(𝜔)
(𝐵𝑥 ∩ 𝐵𝑦 ∩ 𝐵𝑧) (1.34)

and

(𝐿(𝜔)) =
∑

𝑥∈𝐼1(𝜔)
(𝐵𝑥) −

∑

{𝑥,𝑦}∈𝐼2(𝜔)
(𝐵𝑥 ∩ 𝐵𝑦) +

∑

{𝑥,𝑦,𝑧}∈𝐼3(𝜔)
(𝐵𝑥 ∩ 𝐵𝑦 ∩ 𝐵𝑧) (1.35)

where 𝐵𝑥 = 𝐵(𝑥,𝑅), 𝐼1(𝜔), 𝐼2(𝜔) and 𝐼3(𝜔) are respectively 1-cliques, 2-cliques and 3-cliques
of the Delaunay triangulation, (𝜔).

Since we don’t have any easy way to compute the Euler-Poincarré characteristic, in the sim-
ulation we will consider only the case where 𝜃2 = 0. In general, we do our simulations in the
box Λ𝐹 with 𝐹 = 50 and with 2 million iterations of the Birth-Death Metropolis-Hasting step
and the ergodic average is computed by taking 400 values in the last 20 thousand steps of the
algorithm taken with a spacing of 50 steps between them. This spacing between the taken values
is heuristically done to get decorrelations between the values taken into account in the ergodic
average and we take the last values in order to skip the burn-in period. Theoretically we should
have better rate of convergence for the ergodic average. First for the Widom-Rowlinson model,
𝜃1 = 𝜃2 = 0, and with 𝑅 = 1, in this situation, we know that a liquid-gas phase transition occurs
when 𝑧 = 𝛽 for 𝑧 large enough by Theorem 3.

(a) 𝑧 ≈ 1.68 (b) 𝑧 ≈ 1.7 (c) 𝑧 ≈ 1.72

Figure 1.2: Widom-Rowlinson model for 𝛽 = 1.7

We can clearly see that we have three distinct behaviours. We can observe in figure 1.2a that
when 𝑧 ≈ 1.68 and 𝛽 = 1.7 the particles are bunched up forming small islets. When we have
a slightly larger activity, 𝑧 ≈ 1.70 as in figure 1.2b, we observe a large cluster that takes up a
chunk of the box and we still have small islets. Finally, for z even larger 𝑧 ≈ 1.72, we observe a
single large cluster that takes up a big portion of the box as in figure 1.2c.
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Figure 1.3: Intensity graph for the Widom-Rowlinson model with 𝛽 = 1.7

The intensity presented here is given by the ergodic averages of the number of particles. If
we look at the graph of intensity with respect to the activity 𝑧, we can clearly see a sharp increase
of the density of particles at around 𝑧 = 1.7 which is consistent with the theoretical results.

(a) 𝑧 ≈ 1.68 (b) 𝑧 ≈ 1.70 (c) 𝑧 ≈ 1.72

Figure 1.4: Widom-Rowlinson model for 𝛽 = 1.7

Furthermore, if we look at the graph of evolution of the number of particles, used to control
the convergence of the Markov chain. We can observe that outside the phase transition area the
number of particles is quite stable at some point as in figures 1.4a and figure 1.4c. On the contrary,
around the liquid-gas phase transition area the number of particles struggles to stabilize even for
a big number of iteration of the Markov chain. Finally, if we plot the same intensity graph for
𝛽 ∈ {1.7, 1.8, 1.9, 2, 2.1, 2.2} and take the critical activity when the growth rate is the greatest,
we obtain the following phase diagram that is quite close to the expected results of Theorem
3. The blue dotted line is the theoretical result and the red points are the critical values of the
activity detected by our method.
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Figure 1.5: Widom-Rowlinson phase diagram

To investigate further the link between saturation and phase transition we have done simula-
tions for the Quermass interaction for two sets of parameters (𝜃1, 𝜃2) = (0.05, 0) and (𝜃1, 𝜃2) =
(−0.05, 0). By doing so we test the effect of the perimeter on the behaviour of the particles.

(a) 𝑧 ≈ 2.86, 𝜃1 = 0.05, 𝜃2 = 0 (b) 𝑧 ≈ 2.98, 𝜃1 = 0.05, 𝜃2 = 0 (c) 𝑧 ≈ 3.07, 𝜃1 = 0.05, 𝜃2 = 0

(d) 𝑧 ≈ 0.92, 𝜃1 = −0.05, 𝜃2 = 0 (e) 𝑧 ≈ 0.96, 𝜃1 = −0.05, 𝜃2 = 0 (f) 𝑧 ≈ 0.99, 𝜃1 = −0.05, 𝜃2 = 0

Figure 1.6: Quermass model for 𝛽 = 1.7

We can clearly see that we obtain the same type of configurations as for the Widom-Rowlinson
model, at low activity we have the particles bunched up in islets, figures 1.6a and 1.6d, and with
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higher activity there appear a large cluster as in figures 1.6b and 1.6e and eventually for high
activity this cluster takes up all the box as in figures 1.6c and 1.6f.

(a) 𝜃1 = 0.05, 𝜃2 = 0 (b) 𝜃1 = −0.05, 𝜃2 = 0

Figure 1.7: Intensity graph for the Quermass model for 𝛽 = 1.7

We can see that for both values of 𝜃1 we observe a sharp increase of the density of particles
at different values of 𝑧. In the case of 𝜃1 = 0.05 it occurs at 𝑧 ≈ 2.98 and for 𝜃1 = −0.05 it
is at 𝑧 ≈ 0.96. One hypothesis for why phase transition appears faster when 𝜃1 is negative, is
probably because the interaction is slightly more repulsive. Indeed, the energy cost of adding
a particle in the position 𝑥 ∈ R𝑑 to a configuration 𝜔 is lower in comparison to a positive 𝜃1.
Therefore it is easier for the Markov chain to add this particle even if it is far away for the halo
𝐿𝑅(𝜔). As a consequence, it is easier to have the halo covering the entirety of the box Λ𝐹 and
once this happen the Quermass works in its saturated state as now the cost of adding is 0. In this
saturated state it becomes easier to add points all over Λ𝐹 and it is why we obtain the liquid state
of matter.
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(a) 𝑧 ≈ 2.98, 𝜃1 = 0.05, 𝜃2 = 0 (b) 𝑧 ≈ 0.96, 𝜃1 = −0.05, 𝜃2 = 0

Figure 1.8: Quermass model for 𝛽 = 1.7

We choose the potential critical activity as being the point where we have the highest growth
rate of the the density of particles in the graph 1.7a and 1.7b. This is further corroborated when
we look into the evolution of the number of points with respect to the number of iteration of the
Markov chain, we can observe that the number of points did not stabilize which gives another
indication that a phase transition is happening at the identified critical activity. Thus we obtain
the following phase diagram for both set of parameters.

(a) 𝜃1 = 0.05, 𝜃2 = 0 (b) 𝜃1 = −0.05, 𝜃2 = 0

Figure 1.9: Quermass model phase diagram

Theses results seems to show that saturation seems to be a nice property to obtain a liquid-
gas phase transition. In order to do further exploration, we also did some simulations for the
K-nearest neighbour Strauss interaction, where the Hamiltonian is given in (1.29). As we have
seen previously it is a saturated interaction. We fix 𝐴 = 1 and with this parametrisation the
interaction is repulsive. We obtain the following results via simulations with 𝐾 = 2 and 𝐾 = 3.
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(a) 𝑧 ≈ 0.31, 𝐾 = 2, 𝐴 = 1 (b) 𝑧 ≈ 0.92, 𝐾 = 2, 𝐴 = 1 (c) 𝑧 ≈ 2.45, 𝐾 = 2, 𝐴 = 1

(d) 𝑧 ≈ 0.31, 𝐾 = 3, 𝐴 = 1 (e) 𝑧 ≈ 0.92, 𝐾 = 3, 𝐴 = 1 (f) 𝑧 ≈ 2.45, 𝐾 = 3, 𝐴 = 1

Figure 1.10: repulsive K-nearest neighbour Strauss interaction for 𝛽 = 1.5

The behaviour is completely different from the one we saw with the Quermass model. Indeed,
for repulsive K-nearest neighbour Strauss interaction at low intensity the particles does not form
small clusters and but instead are pretty well distributed in the box (see figures 1.10a, 1.10d). For
greater values of activity we can observe more and more cluster particles near one another but
we have very few large holes (see figures 1.10b, 1.10c, 1.10e, 1.10f).

(a) 𝐾 = 2, 𝐴 = 1 (b) 𝐾 = 3, 𝐴 = 1

Figure 1.11: repulsive K-nearest neighbour Strauss interaction for 𝛽 = 1.5

When we plot the density of particles with respect to the activity 𝑧, we can observe the sat-
urated behaviour of this model. In figures 1.11a and 1.11b, the green dashed line is the graph of
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𝑦 = 𝑧, that corresponds to the density of the Poisson point process with activity 𝑧, and the red
dotted line the graph of 𝑦 = (𝑧−3)𝑒−𝛽𝐾𝐴+𝜌(3), that corresponds to leading terms of the density
of𝑄𝑖 defined in (1.30) for a good choice of 𝛿. In both figures, we can see that for small values of 𝑧
the growth is linear like the Poisson point process. Then for larger values of activity the repulsive
K-nearest neighbour Strauss interaction follows the behaviour of the fully saturated interaction
𝑄𝑖 which is more obvious in figure 1.11a. For the values of 𝑧 in between, the model transition
slowly from the Poisson behaviour to the fully saturated interaction behaviour. Also we do not
observe any sharp increase of the intensity of the point process. This seems to indicate that no
liquid-gas phase transition occurs for the repulsive K-nearest neighbour Strauss interaction.

From the previous simulations, we can conclude that attractiveness is needed and therefore
we fix 𝐴 = −1. We obtain the following results for the attractive K-nearest neighbour Strauss
interaction with 𝐾 = 2 and 𝐾 = 3.

(a) 𝑧 ≈ 0.014, 𝐾 = 2, 𝐴 = −1 (b) 𝑧 ≈ 0.02, 𝐾 = 2, 𝐴 = −1 (c) 𝑧 ≈ 0.029, 𝐾 = 2, 𝐴 = −1

(d) 𝑧 ≈ 0.005, 𝐾 = 3, 𝐴 = −1 (e) 𝑧 ≈ 0.007, 𝐾 = 3, 𝐴 = −1 (f) 𝑧 ≈ 0.009, 𝐾 = 3, 𝐴 = −1

Figure 1.12: attractive K-nearest neighbour Strauss interaction for 𝛽 = 1.5

For both values of 𝐾 , we can observe the same typical configuration as for the Quermass
and Widom-Rowlinson models for smaller values of 𝑧. Indeed, the particles form small islets
as in figures 1.12a and 1.12d. However as the activity grows we do not observe the growth of a
single cluster, like for the Quermass or Widom-Rowlinson models. Instead we observe more and
bigger clusters (see figures 1.12b and 1.12e). At higher values of activity, we see that the particles
covers the whole box again like the Quermass and Widom-Rowlinson models (see figures 1.12c
and 1.12f).
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(a) 𝐾 = 2, 𝐴 = −1 (b) 𝐾 = 3, 𝐴 = −1

Figure 1.13: attractive K-nearest neighbour Strauss interaction for 𝛽 = 1.5

When we plot the intensity of the attractive K-nearest neighbour with respect to the activity,
we can observe the saturated behaviour of the model just like the repulsive case. The green
dashed line represents the density of the Poisson point process with activity 𝑧 and the red dotted
line corresponds to the leading terms of the density of 𝑄𝑖. In both figures 1.13a and 1.13b, we
can observe that the density of point of the attractive K-nearest neighbour Strauss interaction
follows the density of the Poisson at small values of 𝑧 and then it transitions to follow the density
the saturated interaction 𝑄𝑖. This transition is quite fast and is accompanied by a sharp increase
of the intensity. It is even more visible for 𝐾 = 3. This could be an indication for a possible
liquid-gas phase transition. To verify this we looked the evolution of the number of points with
respect to the number of iteration of the Markov chain at the potential critical activity.

(a) 𝑧 ≈ 0.02, 𝐾 = 2, 𝐴 = −1 (b) 𝑧 ≈ 0.007, 𝐾 = 3, 𝐴 = −1

Figure 1.14: attractive K-nearest neighbour Strauss interaction for 𝛽 = 1.5

For both cases, we observe that the number of points in the systems has stabilised quickly
and therefore the Markov chain has converged. This is something that indicates that there is no
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phase transition as the system does not hesitate between two states with different density, which
was the case for the Quermass and Widom-Rowlinson models. Even for larger values of 𝛽 the
attractive K-nearest neighbour Strauss interaction does not exhibit liquid-gas phase transition.
Even though the growth rate is steeper for larger 𝛽, the graph of intensity remains smooth. Also
the transition to the saturated behaviour happens at a lower value of activity.

From these simulations, we observed that saturation property alone is not sufficient to ex-
hibit liquid gas phase transition phenomenon. Other properties seems to be needed in order to
exhibit phase transition among those we have attractiveness of the interaction. The most impor-
tant property that seems necessary is that the global energy of unsaturated tiles are greater than
the corresponding energy these tiles are saturated, i.e. 𝐸Λ ≥ 𝐸Λ, and that this surplus of energy
is non negligible with respect to the volume of mixing areas.
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Chapter 2

Liquid-Gas Phase transition for Saturated
interaction

In this chapter, we present the main results of our work concerning the liquid-gas phase transition
for saturated interaction. Our proof is an adaptation of the PSZ theory in the continuous setting.
This method has been very successful in demonstrating phase transition phenomenon in lattice
systems. The core idea relies on a generalisation of Peierls argument, which has historically been
employed to prove spontaneous magnetisation in the Ising model. Our adaptation differs from
those made by Lebowitz, Mazel, and Presutti [27] or by Pulvirenti and Tsagkarogiannis [33], and
is more suited to saturated interactions. This saturation property allows us to investigate the object
while remaining entirely within continuous space. In contrast, in the aforementioned papers, the
authors approximate the Gibbs point process using a lattice model and use this discretisation in
order to prove the phase transition. For readers familiar with this technique, our proof follows the
general idea presented in Chapter 7 of [13] with the required adaptation to our context. Before
presenting the phase transition theorems, it is necessary to introduce the notion of contours, as it
plays a crucial role in the statement of our results.

2.1 Contours
Let 𝛿 > 0 be the length of the tiles (𝑇𝑖)𝑖∈Z𝑑 . We consider the lattice Z𝑑 underlying the tiles
(𝑇𝑖)𝑖∈Z𝑑 , where two sites 𝑖, 𝑗 ∈ Z𝑑 are connected if ‖𝑖− 𝑗‖∞ = 1. We call the spin configuration
the application

𝜎 ∶Ω𝑓 × Z𝑑 → {0, 1}

(𝜔, 𝑖) →

{

0 if 𝜔𝑇𝑖 = ∅
1 otherwise .

In the following we use the notation # for either 0 or 1.
Definition 15. Let 𝐿 > 0 and 𝜔 ∈ Ω, a site 𝑖 ∈ Z𝑑 is said to be #-correct if for all sites 𝑗 such
that 𝛿‖𝑖 − 𝑗‖ ≤ 2𝐿, we have 𝜎(𝜔, 𝑗) = #. A site 𝑖 is non-correct when it fails to be #-correct
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for any # ∈ {0, 1}. The set of all non-correct sites is denoted by Γ. We can partition Γ into its
maximum connected components that we denote by 𝛾 and we call it contour without types.

Since we are considering only finite configurations, the number of connected components is
finite and for any 𝛾 , the complementary set has a finite amount of maximum connected compo-
nents that we denote by 𝐴 and in particular we have only one unbounded connected component
and we call it the exterior of 𝛾 that we denote by 𝑒𝑥𝑡(𝛾).
Definition 16. Let Λ ⊂ Z𝑑 and 𝐿 > 0, we define the exterior boundary 𝜕𝑒𝑥𝑡Λ and the interior
boundary 𝜕𝑖𝑛𝑡Λ of Λ as

𝜕𝑒𝑥𝑡Λ = {𝑗 ∈ Λ𝑐 , 𝛿𝑑2(𝑗,Λ) ≤ 2𝐿}
𝜕𝑖𝑛𝑡Λ = {𝑖 ∈ Λ, 𝛿𝑑2(𝑖,Λ𝑐) ≤ 2𝐿 + 𝛿},

where 𝑑2 is the Euclidean distance inR𝑑 .
Lemma 10. Let 𝜔 ∈ Ω𝑓 be a finite configuration and 𝛾 any associated contour without type.
Let 𝐴 be a maximum connected component of 𝛾𝑐 , then there is an unique # ∈ {0, 1} such that for
all 𝑖 ∈ 𝜕𝑒𝑥𝑡𝐴 ∪ 𝜕𝑖𝑛𝑡𝐴, 𝜎(𝜔, 𝑖) = #. The value of the spin in the boundary is called the label of 𝐴
and is denoted by Label(𝐴).

The proof of this lemma is classical and it corresponds to Lemma 7.23 in [13]. It relies on
the fact that each set 𝜕𝑖𝑛𝑡𝐴 and 𝜕𝑒𝑥𝑡𝐴 are connected and that the sites directly in contact with the
contours are correct. Therefore there can be only one spin # ∈ {0, 1} otherwise we would have
two correct sites of opposite spin directly connected.
Definition 17. Let 𝜔 ∈ Ω𝑓 , we call a contour 𝛾 the pair (𝛾, (#𝑖)𝑖∈𝛾 ) where for all sites 𝑖 ∈ 𝛾 ,
𝜎(𝜔, 𝑖) = #𝑖. We denote by Γ(𝜔) the set of all contours that appear with the configuration 𝜔.

Furthermore for a contour 𝛾 = (𝛾, (#𝑗)𝑗∈𝛾 )we call the type of 𝛾 the label of 𝑒𝑥𝑡(𝛾), Type(𝛾) ∶=
Label(𝑒𝑥𝑡(𝛾)). And we call the interiors of a contour 𝛾 the sets

Int# 𝛾 =
⋃

𝐴≠𝑒𝑥𝑡(𝛾)
Label(𝐴)=#

𝐴 and Int 𝛾 = Int0 𝛾 ∪ Int1 𝛾.

Let𝜔 ∈ Ω𝑓 be a finite configuration, a contour 𝛾 ∈ Γ(𝜔) is said to be external when for any other
contour 𝛾 ′ ∈ Γ(𝜔), 𝛾 ⊂ 𝑒𝑥𝑡(𝛾 ′). We denote by Γ𝑒𝑥𝑡 the subset of Γ comprised only of external
contours.

Until now we have only considered collection of contours that can be achieved by a finite
configuration of points. But classically in the Pirogov-Sinaï-Zahradník theory we need to intro-
duce abstract collection of contours which are not achievable by any configuration. This is due
to the cluster expansion development of the partition function using geometrically compatible
collection of contours.
Definition 18. An abstract set of contours is a set of contours {𝛾𝑖 = (𝛾 𝑖, (#𝑗)𝑗∈𝛾𝑖), 𝑖 ∈ 𝐼 ⊂ N∗}
for which each contour 𝛾𝑖 is achievable for some configuration 𝜔𝑖. We do not assume the global
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achievability. We denote by Γ such set of contours. Moreover this set Γ is called geometrically
compatible if for all {𝑖, 𝑗} ⊂ 𝐼 , 𝑑∞(𝛾𝑖, 𝛾𝑗) > 1 and they all have the same type. Let Λ ⊂ Z𝑑 we
denote by #(Λ) the collection of geometrically compatible sets of contours of the type # such
that 𝑑∞(𝛾𝑖,Λ𝑐) > 1.

We allow the set Γ = {(∅, ∅)} to belong to the collection #(Λ) for any Λ, this corresponds to
the event where not a single contour appears in Λ. There are several interesting sub-collections
of #(Λ), one of them being the collection of sets such that all contours are external.
Definition 19. Let Λ ⊂ Z𝑑 finite, we denote by #

𝑒𝑥𝑡(Λ) ⊂ #(Λ) the sub-collection of sets Γ
where any contours 𝛾 ∈ Γ is external.

In a way, in the collection #
𝑒𝑥𝑡(Λ) we are considering sets of contours where we have only one

layer. In general, if we take a geometrically compatible abstract sets of contours Γ, a particular
contour in this set can be encapsulated in the interior of another creating layers upon layers of
contours. One method of exploration of the contours is by proceeding from the external layer
and peel each layer to discover the other contours hidden under. Another sub-collection of #(Λ)
is the collection of sets such that for all contours the size of the interior is bounded.
Definition 20. A contour 𝛾 is of the class 𝑘 ∈ N when | Int 𝛾| = 𝑘. Let 𝑛 ∈ N and Λ ⊂ Z𝑑
finite, we denote by #

𝑛 (Λ) ⊂ #(Λ) the collection of contours Γ such that ∀𝛾 ∈ Γ, 𝛾 is of the
class 𝑘 ≤ 𝑛.

2.2 Liquid-Gas phase transition theorems

In this section, we start by giving a general theorem for Liquid-Gas phase transition. Subse-
quently, we investigate into the satisfaction of certain conditions, notably the Peierls condition
2.1. We will explore easier methods to verify this assumption and derive a more accessible the-
orem. Before proceeding, we need to define the different boundaries for any subset Λ ⊂ Z𝑑 ,

𝜕Λ = {𝑖 ∈ Λ, 𝛿𝑑2(𝑖,Λ𝑐) ≤ 𝐿 + 𝛿}
𝜕−Λ = {𝑖 ∈ Λ, 𝛿𝑑2(𝑖,Λ𝑐) ≤ 𝐿}.

With these definitions in place, we are now ready to state our theorem on the liquid-gas phase
transition for saturated interactions.
Theorem 11. Let 𝐻 be a saturated interaction, such that 𝐸0 is stable with a finite range 𝑅 > 0
and that there is 𝐶 ≥ 0 such that 𝐸0 ≤ 𝐶(1 +𝑁𝑇0⊕𝐵(0,𝑅)(𝜔)

2). By Lemma 8, we know that for
any 𝑘 ∈ N, 𝐸(𝑘) = (𝐴𝑘+𝐵)1𝑘≥1 and we assume that𝐴 ≥ 0 and −𝐴 ≤ 𝐵 < +∞. Furthermore,
we suppose that the interaction verifies a Peierls-like condition, i.e. there is 𝜌0 > 0 such that for
any contours 𝛾 and any configuration 𝜔 that achieves this contour 𝛾 we have

𝐸𝛾⧵𝜕−𝛾 − 𝐸𝛾⧵𝜕−𝛾 (𝜔) ≥ 𝜌0|𝛾|. (2.1)
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In addition, we will assume that 𝜌0𝑙06 > min{𝐴,𝐴+𝐵}, where 𝑙0 is the size of the smallest contour.
For any 𝛽 > 0, we fix 𝑧−𝛽 and 𝑧+𝛽 as

𝑧−𝛽 ∶= 𝑒𝛽𝐴

𝛿𝑑
ln
(

1 + 𝑒𝛽𝐵−2
)

, 𝑧+𝛽 ∶= 𝑒𝛽𝐴

𝛿𝑑
ln
(

1 + 𝑒𝛽𝐵+2
) (2.2)

and 𝑈𝛽 ∶= (𝑧−𝛽 , 𝑧
+
𝛽 ). Then there is 𝛽𝑐 > 0, such that for 𝛽 ≥ 𝛽𝑐 there exists 𝑧𝑐𝛽 ∈ 𝑈𝛽 for which a

Liquid-Gas phase transition occurs. More specifically, we have

𝜕𝜓
𝜕𝑧+

(𝛽, 𝑧𝑐) >
𝜕𝜓
𝜕𝑧−

(𝛽, 𝑧𝑐), (2.3)

and we can find two Gibbs measures 𝑃+, 𝑃− ∈ (𝐻, 𝑧𝑐𝛽 , 𝛽) such that

𝜌(𝑃+) = 𝑧 + 𝑧
𝜕𝜓
𝜕𝑧+

(𝑧𝑐𝛽 , 𝛽) and 𝜌(𝑃−) = 𝑧 + 𝑧
𝜕𝜓
𝜕𝑧−

(𝑧𝑐𝛽 , 𝛽). (2.4)
The stability, finite range property of 𝐸0 and also the growth of 𝐸0 to be at most equal to

𝑁2 are all properties that can be easily verified for morphological interaction like the Quermass
or the pairwise interaction and all the approximations we mentioned in Chapter 1 when the pair
potential has a finite range and does not present any singularity. In this set of assumptions the
hardest to verify is surely the Peierls condition (2.1).We present here an easy way to verify this
hypothesis using dominoes which are pairs of adjacent empty and non empty tiles that we can
find in any contours. According to the following lemma the number of such pair is of the same
order as the volume of the contour.
Lemma 12. There exists 𝑟0 > 0 such that for any contour 𝛾 , the set of dominoes

𝐷(𝛾) ∶= {(𝑖, 𝑗) ∈ 𝛾2, ‖𝑖 − 𝑗‖∞ = 1, #𝑖 = 1, #𝑗 = 0}

satisfies
|𝐷(𝛾)| ≥ 𝑟0|𝛾|.

Proof. We start by choosing randomly in a contour 𝛾 a site 𝑘 such that #𝑘 = 1. Since it is in a
contour, it is non-correct, meaning that there is a site 𝑗 ∈ 𝛾 , where #𝑗 = 0 and 𝛿‖𝑘 − 𝑗‖ ≤ 2𝐿.
We choose such 𝑗 such as it is the closest to 𝑘. Forcibly we have a site 𝑖 adjacent to 𝑗 such that
#𝑖 = 1 ( at least in the direction of 𝑘). And we assign 𝑆1 = {𝑘} and 𝐷1 = {(𝑖, 𝑗)}. We repeat
the process to build 𝑆𝑛+1 and 𝐷𝑛+1 by choosing the points inside 𝛾∖⋃𝑘∈𝑆𝑛

𝐵(𝑘, 4𝐿∕𝛿). There is
𝑝 ∈ N, the number of step until the process stops because there is a finite number of sites with
the spin equal to 1 in a contour. Since we have depleted the contour, we know that 𝐷𝑝 ⊂ 𝐷(𝛾)
and that

𝛾1 ∶= {𝑖 ∈ 𝛾, #𝑖 = 1} ⊂
⋃

𝑘∈𝑆𝑝

𝐵(𝑘, 4𝐿∕𝛿) ∩ Z𝑑 .

Furthermore, by non-correctness of sites with spin 0 in the contour, we have
𝛾0 ∶= {𝑖 ∈ 𝛾, #𝑖 = 0} ⊂

⋃

𝑘∈𝑆𝑝

𝐵(𝑘, 6𝐿∕𝛿) ∩ Z𝑑 .
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In summary we have
𝛾 ⊂

⋃

𝑘∈𝑆𝑝

𝐵(𝑘, 6𝐿∕𝛿) ∩ Z𝑑 .

Therefore the cardinals verify the following inequalities
|𝛾| ≤ |𝑆𝑝||𝐵(0, 6𝐿∕𝛿) ∩ Z𝑑|.

By construction we have |𝑆𝑝| = |𝐷𝑝|. Hence we obtain the desired inequality

|𝐷(𝛾)| ≥ |𝐷𝑝| ≥ 𝑟0|𝛾| where 𝑟0 =
1

|𝐵(0, 6𝐿∕𝛿) ∩ Z𝑑|
.

Let us consider a saturated interaction such that there is 𝐶 > 0 and for any 𝑘 ≥ 1, 𝐸(𝑘) = 𝐶 ,
the energy of an non empty saturated tile is constant with respect to the number of points inside
of it. Furthermore, we assume that for any configuration we have

𝐸0(𝜔) ≥ 0 if 𝑁𝑇0(𝜔) = 0,

𝐸0(𝜔) ≥ 𝐶 if 𝑁𝑇0(𝜔) ≥ 1,

and there is 𝑒0 > 0 such that for any contour 𝛾 and any domino (𝑖, 𝑗) ∈ 𝐷(𝛾) we have
𝐸𝑗(𝜔) ≥ 𝑒0. (2.5)

This last condition (2.5) is a phenomenon we call the energy from vacuum. Under these hypothe-
ses, it is easy to show that for any contour 𝛾 we have

𝐸𝛾⧵𝜕−𝛾 − 𝐸𝛾⧵𝜕−𝛾 (𝜔) ≥ |𝐷(𝛾)|𝑒0.

Therefore, by applying Lemma 12, we obtain the desired Peierls-like with 𝜌0 = 𝑟0𝑒0. As a
result, we obtain a theorem with hypothesis that are easier to verify, as the Peierls condition is
determined through a tile-by-tile investigation.
Theorem 13. Let 𝐻 be a saturated interaction, such that 𝐸0 is stable with a finite range 𝑅 > 0
and that there is 𝐶 ≥ 0 such that 𝐸0 ≤ 𝐶(1 +𝑁𝑇0⊕𝐵(0,𝑅)(𝜔)

2). We assume that for any 𝑘 ≥ 1,
𝐸(𝑘) = 𝐸(1) > 0 . Furthermore, we suppose that for any configuration 𝜔 ∈ Ω𝑓 we have

𝐸0(𝜔) ≥ 𝐸(𝑁𝑇0(𝜔)), (2.6)
and there is 𝑒0 > 0 such that for any domino (𝑖, 𝑗) ∈ (Z𝑑)2 (i.e. ‖𝑖 − 𝑗‖∞ = 1, 𝑁𝑇𝑖(𝜔) ≥ 1 and
𝑁𝑇𝑗 (𝜔) = 0) we have

𝐸𝑗(𝜔) ≥ 𝑒0. (2.7)
Then there exists 𝛽𝑐 > 0, such that for 𝛽 ≥ 𝛽𝑐 there exists 𝑧𝑐𝛽 > 0 for which a Liquid-Gas phase
transition occurs.
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In this theorem, we simplify the Peierls-like condition into a simpler hypothesis on 𝐸0. We
handled the energy of a contour tile by tile and by doing so we proved the existence of this surplus
of energy. This approach is certainly not optimal especially compared to a global approach but it
can already yield interesting liquid-gas phase transition results not available before. For instance,
let us consider the Area interaction with bounded random radii. It is a marked point process on
R𝑑 with the spin state 𝑆 = [𝑅0, 𝑅1] where 𝑅1 > 𝑅0 > 0 and the Hamiltonian is given by

𝐻(𝜔) = (𝐿(𝜔)) where 𝐿(𝜔) =
⋃

(𝑥,𝑅)∈𝜔
𝐵(𝑥,𝑅).

In this context, the arguments using the symmetry of the two color Widom-Rowlinson does not
work any more, as for instance the one used by Ruelle [30], Chayes-Chayes-Kotecký [3] and
Giacomin-Lebowitz-Maes [19]. With our approach, we can observe that when 2

√

𝑑𝛿 ≤ 𝑅0 and
𝐿 ≥ 2𝑅1 + 𝛿 this interaction is saturated with

𝐸𝑖(𝜔) = (𝐿(𝜔) ∩ 𝑇𝑖), and ∀𝑘 ≥ 1, 𝐸(𝑘) = 𝛿𝑑 .

More interestingly we have by the size of the tile
𝐸0(𝜔) ≥ 𝐸(𝑁𝑇0(𝜔))

and for any domino (𝑖, 𝑗), since for (𝑥,𝑅) ∈ 𝜔𝑇𝑖 we have 𝑇𝑗 ⊂ 𝐵(𝑥,𝑅) and thus 𝐸𝑗(𝜔) = 𝛿𝑑 . We
can therefore apply Theorem 13 and obtain a new result.
Theorem 14 (Liquid-gas phase transition for the Area interaction with bounded random radii).
Let 𝑅0, 𝑅1 be strictly positive and 𝑅0 < 𝑅1. Let us consider the marked point process of Area
interaction model with random radii belonging to [𝑅0, 𝑅1] = 𝑆 and any probability measure
𝑃𝑆 . Then there exists 𝛽𝑐 > 0 such that for 𝛽 > 𝛽𝑐 there is 𝑧𝑐𝛽 > 0 for which a Liquid-Gas phase
transition occurs.

In section 3.1, we improve on this result by considering a larger class of interactions and
by deriving asymptotic behaviours for 𝑧𝑐𝛽 when 𝛽 tends to infinity. The rest of the chapter is
dedicated to establishing Theorem 11 and introducing the tools needed for the proof.

2.3 Cluster Expansion

In this section, we provide a concise overview of cluster expansion, presenting the necessary
tools for proving Theorem 11. For a more comprehensive understanding of this topic, we recom-
mend consulting the detailed presentation by Velenik in Chapters 5 and 7 of [13], or to Chapter
7 of Jansen’s course on Gibbsian point processes [22].

Let  be a collection of contours and for all Λ ⊂ Z𝑑 , (Λ) a sub-collection of contours 𝛾 such
that 𝛾 ⊂ Λ. For each contour 𝛾 in such collection we associate a weight 𝑤𝛾 , and we consider the
weights to be invariant by translation. We set 𝑙0 = min{|𝛾|, 𝛾 ∈ } and 𝜂(𝜏, 𝑙0) = 2 exp(−𝜏𝑙0∕3).
A set of contours Γ = {𝛾1,… , 𝛾𝑛} ∈ , is said to be geometrically compatible if for all 𝑖, 𝑗 ∈
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{1,… , 𝑛}, 𝑖 ≠ 𝑗 we have 𝑑∞(𝛾𝑖, 𝛾𝑗) ≥ 1. We define the polymer development associated to those
weights as, for all Λ ⊂ Z𝑑

Φ(Λ) =
∑

Γ∈(Λ)
geometrically compatible

∏

𝛾∈Γ
𝑤𝛾 .

A collection𝐶 = {𝛾1,⋯ , 𝛾𝑛} is said to be decomposable if the support𝐶 =
⋃

𝛾∈𝐶 𝛾 is not simply
connected. A cluster, denoted by 𝑋, is a non-decomposable finite multiset of contours such that
a same contour can appear multiple times and we define 𝑋 ∶=

⋃

𝛾∈𝑋 𝛾 . The cluster expansion
for lnΦ(Λ), if it converges, is given by

lnΦ(Λ) =
∑

𝑋∶𝑋⊂Λ

Ψ(𝑋)

where Ψ(𝑋) ∶= 𝛼(𝑋)
∏

𝛾∈𝑋 𝑤𝛾 . We have this combinatorial term 𝛼 whose expression is given
by

𝛼(𝑋) =

{

∏

𝛾∈(Λ)

1
𝑛𝑋(𝛾)!

}⎧

⎪

⎨

⎪

⎩

∑

𝐺⊂𝐺𝑛connected

∏

{𝑖,𝑗}∈𝐺
𝜁 (𝛾𝑖, 𝛾𝑗)

⎫

⎪

⎬

⎪

⎭

where 𝑛𝑋(𝛾) is the number of times a contour 𝛾 appears in the cluster 𝑋, 𝐺𝑛 = (𝑉𝑛, 𝐸𝑛) is the
undirected complete graph on 𝑉𝑛 = {1,⋯ , 𝑛} and 𝜁 is defined as

𝜁 (𝛾, 𝛾 ′) =

{

0 if 𝛾, 𝛾 ′ are geometrically compatible
−1 otherwise .

According to Theorem 5.4 in [13] (see also section 7.4.1 in [13]) a sufficient condition for the
convergence of the cluster expansion is

∑

𝛾∈
0∈𝛾

|𝑤𝛾 |𝑒
3𝑑 |𝛾| ≤ 1. (2.8)

Therefore, (2.8) holds whenever the weights𝑤𝛾 decays exponentially fast with the volume of the
contour. This leads naturally to the notion of 𝜏-stable weights.
Definition 21. For 𝜏 > 0, the weights 𝑤𝛾 ∈  are 𝜏-stable if

|𝑤𝛾 | ≤ 𝑒−𝜏|𝛾|.

Under the assumption that the weights are 𝜏-stable and if 𝜏 is large enough we have
∑

𝛾∈
0∈𝛾

𝑒−𝜏|𝛾|𝑒3
𝑑
|𝛾| ≤ 1

and therefore we have the convergence of the cluster expansion. In practice, we will take a larger
value for 𝜏 such that the stronger assumption of Lemma 15 is verified. The following lemmas
correspond to Lemma 7.30 and Lemma 7.31 in [13].
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Lemma 15. There exists 𝜏0 > 0 such that when 𝜏 > 𝜏0
∑

𝛾∈∶0∈𝛾
|𝛾|𝑑∕𝑑−1𝑒−(𝜏∕2−1)|𝛾|𝑒3

𝑑
|𝛾| ≤ 𝜂(𝜏, 𝑙0) ≤ 1. (2.9)

Lemma 16. Let us assume that the weights are 𝜏-stable for 𝜏 > 𝜏0. Then for 𝐿 ≥ 𝑙0
∑

𝑋∶0∈𝑋
|𝑋|≥𝐿

|Ψ(𝑋)| ≤ 𝑒−
𝜏𝐿
2 . (2.10)

Theorem 17. Assume that, for all 𝛾 ∈ , the weight 𝑤𝛾 is 1 in a parameter 𝑠 ∈ (𝑎, 𝑏) and that
uniformly on (𝑎, 𝑏),

𝑤𝛾 ≤ 𝑒−𝜏|𝛾|,
|

|

|

|

|

𝑑𝑤𝛾

𝑑𝑠

|

|

|

|

|

≤ 𝐷|𝛾|𝑑∕𝑑−1𝑒−𝜏|𝛾|, (2.11)
where 𝐷 ≥ 1 is a constant. Then there exists 𝜏1 = 𝜏1(𝐷, 𝑑) < ∞ such that the following holds.
If 𝜏 > 𝜏1, we define the quantity 𝑔 with the following absolutely convergent series,

𝑔 =
∑

𝑋∶0∈𝑋

1
|𝑋|

Ψ(𝑋) (2.12)

where the sum is over clusters 𝑋 made of contours 𝛾 ∈  and 𝑋 =
⋃

𝛾∈𝑋 𝛾 . Moreover,

|𝑔| ≤ 𝜂(𝜏, 𝑙0) ≤ 1

and for all Λ ⊂ Z𝑑 finite, 𝑔 provides the volume contribution to logΦ(Λ), in the sense that

Φ(Λ) = exp(𝑔|Λ| + ΔΛ) (2.13)
where ΔΛ is a boundary term :

|ΔΛ| ≤ 𝜂(𝜏, 𝑙0)|𝜕𝑒𝑥𝑡Λ|. (2.14)
Finally, 𝑔 and ΔΛ are also 1 in 𝑠 ∈ (𝑎, 𝑏); its derivative equals

𝑑𝑔
𝑑𝑠

=
∑

𝑋∶0∈𝑋

1
|𝑋|

𝑑Ψ(𝑋)
𝑑𝑠

(2.15)

and
|

|

|

|

𝑑𝑔
𝑑𝑠

|

|

|

|

≤ 𝐷𝜂(𝜏, 𝑙0),
|

|

|

|

𝑑ΔΛ
𝑑𝑠

|

|

|

|

≤ 𝐷𝜂(𝜏, 𝑙0)|𝜕𝑒𝑥𝑡Λ|. (2.16)
This theorem is similar to Theorem 7.29 in [13], the only difference being is that the following

statement is not included
|

|

|

|

𝑑ΔΛ
𝑑𝑠

|

|

|

|

≤ 𝐷𝜂(𝜏, 𝑙0)|𝜕𝑒𝑥𝑡Λ|.

We provide a short proof of this claim. Following the computations in [13] we find
𝑑ΔΛ
𝑑𝑠

=
∑

𝑖∈Λ

∑

𝑋∶𝑖∈𝑋⊄Λ

1
|𝑋|

𝑑Ψ
𝑑𝑠

(𝑋).
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Whenever 𝑖 ∈ 𝑋 ⊄ Λ we know that 𝑋 ∩ 𝜕𝑒𝑥𝑡Λ ≠ ∅ and since the weights are invariant by
translation we have

|

|

|

|

𝑑ΔΛ
𝑑𝑠

|

|

|

|

≤ |𝜕𝑒𝑥𝑡Λ| max
𝑗∈𝜕𝑒𝑥𝑡Λ

∑

𝑋∶𝑗∈𝑋

|

|

|

|

𝑑Ψ
𝑑𝑠

(𝑋)
|

|

|

|

= |𝜕𝑒𝑥𝑡Λ|
∑

𝑋∶0∈𝑋

|

|

|

|

𝑑Ψ
𝑑𝑠

(𝑋)
|

|

|

|

.

We can show that for any cluster 𝑋 we have
|

|

|

|

𝑑Ψ
𝑑𝑠

(𝑋)
|

|

|

|

≤ |Ψ(𝑋)| (2.17)
where

Ψ(𝑋) = 𝛼(𝑋)
∏

𝛾∈𝑋
𝑤𝛾 and 𝑤𝛾 = 𝐷|𝛾|𝑑∕𝑑−1𝑒−(𝜏−1)|𝛾|.

Following the same computation needed to prove (2.15) we can show that
∑

𝑋∶0∈𝑋

|Ψ(𝑋)| ≤
∑

𝛾∈∶0∈𝛾
𝑤𝛾𝑒

3𝑑 |𝛾|.

Therefore with Lemma 15 we have the desired control on the derivative of the boundary term.

2.4 Gibbs point processes with boundary conditions

2.4.1 Existence of infinite Gibbs measures with boundary conditions

Let 𝐻 be a finite range and stationary Hamiltonian that verifies the saturation property (see
Definition 14). Therefore there exists 𝛿 > 0, 𝐿 > 0 and two measurable functions 𝐸0 and 𝐸
corresponding to the coarse graining of the Hamiltonian and its behaviour when saturated by the
tiles at distance𝐿. Furthermore we assume that𝐸0 is stable with stability constant𝐶 ≥ 0 and that
𝐸0 has a finite range𝑅 ∈ (0, 𝐿). We can remark that if 𝐸0 is saturated with 𝐿 it will be saturated
with 𝐿′ > 𝐿, therefore we can always choose 𝐿 > 𝑅. Furthermore, we will consider that
𝐸(1) < +∞, in other words we make the assumption that the sufficiently dense configurations
are allowed by the system. With theses assumptions on𝐸0 and𝐸 we build two distinct families of
point processes using different boundary conditions. Let us recall the definition of these different
boundaries of any subset Λ ⊂ Z𝑑 ,

𝜕Λ = {𝑖 ∈ Λ, 𝛿𝑑2(𝑖,Λ𝑐) ≤ 𝐿 + 𝛿}
𝜕−Λ = {𝑖 ∈ Λ, 𝛿𝑑2(𝑖,Λ𝑐) ≤ 𝐿}.

Definition 22. For # ∈ {0, 1}, Λ ⊂ Z𝑑 and boundary condition (#)Λ = {𝜔 ∈ Ω,∀𝑖 ∈
𝜕𝑖𝑛𝑡Λ, 𝜎(𝜔, 𝑖) = #}, we define the distribution 𝑃 #

Λ such as
𝑃 #
Λ ∶= 1

𝑍#
Λ

𝑒−𝛽(𝐸Λ⧵𝜕Λ+𝐸𝜕Λ)1(#)ΛΠ
𝑧
Λ̂

(2.18)

where 𝑍#
Λ is the partition function and it is given by

𝑍#
Λ = ∫ 𝑒−𝛽(𝐸Λ⧵𝜕Λ+𝐸𝜕Λ)1(#)ΛΠ

𝑧
Λ̂
. (2.19)
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This probability measure is well defined. For # = 0 we have
𝑍(0)

Λ ≥ Π𝑧
Λ̂
(∅) = 𝑒−𝑧𝛿

𝑑
|Λ| > 0. (2.20)

When # = 1 and with 𝐴 = {𝜔 ∈ Ω,∀𝑖 ∈ Λ, 𝑁𝑇𝑖(𝜔) = 1} we have

𝑍(1)
Λ ≥ 𝑒−𝛽𝐸(1)|Λ|Π𝑧

Λ̂
(𝐴) = (𝑧𝛿𝑑)|Λ|𝑒−(𝑧𝛿𝑑+𝛽𝐸(1))|Λ| > 0. (2.21)

Furthermore, using the same arguments as in Lemma 7 we can show that there is 𝑐 ≥ 0 such that
for any configuration 𝜔 ∈ Ω

𝐸Λ⧵𝜕Λ(𝜔) + 𝐸𝜕Λ(𝜔) ≥ −𝑐𝑁(𝜔) (2.22)
and therefore,

𝑍#
Λ ≤ ∫Ω

𝑒𝛽𝑐𝑁(𝜔)Π𝑧
Λ̂
(𝑑𝜔) = exp(𝑧𝛿𝑑|Λ|(𝑒𝛽𝑐 − 1)) < +∞.

Now that the point process is well defined, we prove in the following proposition that 𝑃 #
Λ verifies

the same finite volume DLR equations with Hamiltonian 𝐻 when Δ is in the bulk of the box Λ̂.
Proposition 10. Let Λ ⊂ Z𝑑 and Δ ⊂ ̂Λ ⧵ 𝜕𝑖𝑛𝑡Λ such that 𝜆(Δ) > 0. Then for 𝑃 #

Λ-a.s. all 𝜔Δ𝑐

𝑃 #
Λ(𝑑𝜂Δ|𝜔Δ𝑐 ) =

1
𝑍Δ(𝜔Δ𝑐 )

𝑒−𝛽𝐻Δ(𝜂Δ∪𝜔Δ𝑐 )Π𝑧Δ(𝑑𝜂), (2.23)

where 𝑍Δ(𝜔Δ𝑐 ) is the normalisation constant given by 𝑍Δ(𝜔Δ𝑐 ) = ∫ 𝑒−𝛽𝐻Δ(𝜂Δ∪𝜔Δ𝑐 )Π𝑧Δ(𝑑𝜂).

Proof. We denote by ΛΔ = {𝑖 ∈ Λ, 𝑇𝑖 ⊕𝐵(0, 𝑅) ∩ Δ ≠ ∅} where 𝑅 > 0 is the range of 𝐸0. By
definition of 𝐻Δ we have

𝐻Δ(𝜔) =
∑

𝑖∈ΛΔ

𝐸𝑖(𝜔) − 𝐸𝑖(𝜔Δ𝑐 ).

And for 𝑖 ∈ Λ ⧵ ΛΔ by finite range property of 𝐸0 we have
𝐸𝑖(𝜔) = 𝐸𝑖(𝜔Δ𝑐 ).

Therefore we have
𝑃 #
Λ(𝑑𝜔) =

1
𝑍#

Λ

𝑒−𝛽(𝐸𝜕Λ+𝐸Λ⧵𝜕Λ)1(#)Λ(𝜔)Π
𝑧
Λ̂
(𝑑𝜔)

= 1
𝑍#

Λ

𝑒−𝛽𝐻Δ(𝜂Δ∪𝜔Δ𝑐 )𝑒−𝛽(𝐸𝜕Λ+𝐸Λ⧵(𝜕Λ∪ΛΔ)−𝐸ΛΔ )(𝜔Δ𝑐 )1(#)Λ(𝜔Δ𝑐 )Π𝑧Δ(𝑑𝜂)Π
𝑧
Λ̂⧵Δ

(𝑑𝜔).

Therefore the unnormalised conditional density of 𝑃 #
Λ(𝑑𝜂Δ|𝜔Δ𝑐 ) with respect to Π𝑧Δ is 𝜂 →

𝑒−𝛽𝐻Δ(𝜂Δ∪𝜔Δ𝑐 ) and with the proposed normalisation we obtain the desired DLR equations for
Δ ⊂ ̂Λ ⧵ 𝜕𝑖𝑛𝑡Λ.
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Now that we have proved some finite volume DLR equations with the same Hamiltonian 𝐻 ,
we demonstrate in the following proposition that using 𝑃 #

Λ we can build an infinite volume Gibbs
measure.
Proposition 11. The empirical field

(

𝑃
#
Λ𝑛

)

𝑛∈N
has an accumulation point 𝑃 # that is a Gibbs

measure for the initial Hamiltonian 𝐻 .

Proof. Using inequality (2.22) we obtain the following upper bound on the relative entropy
𝐼(𝑃 #

Λ|Π
𝜉
Λ̂
) = 𝐸𝑃 #

Λ

(

−𝛽(𝐸Λ⧵𝜕Λ + 𝐸𝜕Λ) + ln 𝑧
𝜉
𝑁Λ̂

)

+ (𝜉 − 𝑧)𝛿𝑑|Λ| − ln𝑍#
Λ

≤ 𝐸𝑃 #
Λ

(

(𝛽𝑐 + ln 𝑧
𝜉
)𝑁Λ̂

)

+ (𝜉 − 𝑧)𝛿𝑑|Λ| − ln𝑍#
Λ.

Therefore when we fix 𝜉 = 𝑧𝑒𝛽𝑐 and using either (2.20) or (2.21) we have
1

𝜆(Λ̂)
𝐼(𝑃 (0)

Λ |Π𝑧𝑒𝛽𝑐
Λ̂

) ≤ 𝑧𝑒𝛽𝑐

1
𝜆(Λ̂)

𝐼(𝑃 (1)
Λ |Π𝑧𝑒𝛽𝑐

Λ̂
) ≤ 𝑧𝑒𝛽𝑐 +

𝛽
𝛿𝑑
𝐸(1) −

ln(𝑧𝛿𝑑)
𝛿𝑑

.

Either way, by Proposition 6, the sequence
(

𝑃
#
Λ𝑛

)

𝑛∈N
is tight for the local convergence topol-

ogy and therefore there is 𝑃 # a probability measure on Ω that is an accumulation point for the
sequence. Now we consider Δ ⊂ R𝑑 and 𝑓 a bounded local function. Let us define a function
𝑓Δ as

𝑓Δ ∶ 𝜔 → ∫ 𝑓 (𝜂Δ ∪ 𝜔Δ𝑐 )
𝑒−𝛽𝐻Δ(𝜂Δ∪𝜔Δ𝑐 )

𝑍Δ(𝜔Δ𝑐 )
Π𝑧Δ(𝑑𝜂)

where 𝑍Δ(𝜔Δ𝑐 ) is the normalisation constant given by 𝑍Δ(𝜔Δ𝑐 ) = ∫ 𝑒−𝛽𝐻Δ(𝜂Δ∪𝜔Δ𝑐 )Π𝑧Δ(𝑑𝜂).Since 𝐸0 has a finite range then 𝐻 is finite range by Lemma 7. Therefore 𝑓Δ is a bounded
local function and we have

∫ 𝑓Δ(𝜔)𝑃
#
Λ𝑛
(𝑑𝜔) = 1

𝛿𝑑|Λ𝑛| ∫
Λ̂𝑛

∫ 𝑓Δ(𝜏𝑢(𝜔))𝑃 #
Λ𝑛
(𝑑𝜔)𝑑𝑢

= 1
𝛿𝑑|Λ𝑛| ∫

Λ̂𝑛

∬ 𝑓 (𝜂Δ ∪ 𝜏𝑢(𝜔)Δ𝑐 )
𝑒−𝛽𝐻Δ(𝜂𝛿∪𝜏𝑢(𝜔)Δ𝑐 )

𝑍Δ(𝜏𝑢(𝜔)Δ𝑐 )
Π𝑧Δ(𝑑𝜂)𝑃

#
Λ𝑛
(𝑑𝜔)𝑑𝑢

= 1
𝛿𝑑|Λ𝑛| ∫

Λ̂𝑛

∬ 𝑓 (𝜏𝑢(𝜂𝜏−𝑢(Δ) ∪ 𝜔𝜏−𝑢(Δ)𝑐 ))
𝑒−𝛽𝐻𝜏−𝑢(Δ)(𝜂𝜏−𝑢(Δ)∪𝜔𝜏−𝑢(Δ)𝑐 )

𝑍𝜏−𝑢(Δ)(𝜔𝜏−𝑢(Δ)𝑐 )
Π𝑧𝜏−𝑢(Δ)(𝑑𝜂)𝑃

#
Λ𝑛
(𝑑𝜔)𝑑𝑢.

We define the subset Λ̂∗
𝑛 = {𝑢 ∈ Λ̂𝑛, 𝜏−𝑢(Δ) ⊂ ̂Λ𝑛 ⧵ 𝜕𝑖𝑛𝑡Λ𝑛}, when 𝑢 ∈ Λ̂∗

𝑛 we know that 𝑃 #
Λ𝑛verify DLR equations on 𝜏−𝑢(Δ) by Proposition 10 and therefore

∬ 𝑓 (𝜏𝑢(𝜂𝜏−𝑢(Δ) ∪ 𝜔𝜏−𝑢(Δ)𝑐 ))
𝑒−𝛽𝐻𝜏−𝑢(Δ)(𝜂𝜏−𝑢(Δ)∪𝜔𝜏−𝑢(Δ)𝑐 )

𝑍𝜏−𝑢(Δ)(𝜔𝜏−𝑢(Δ)𝑐 )
Π𝑧𝜏−𝑢(Δ)(𝑑𝜂)𝑃

#
Λ𝑛
(𝑑𝜔) = ∫ 𝑓 (𝜏𝑢(𝜔))𝑃 #

Λ𝑛
(𝑑𝜔).
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Now we need to deal with the boundary terms, i.e.

𝐵1 = ∫
Λ̂𝑛⧵Λ̂∗

𝑛

∬ 𝑓 (𝜏𝑢(𝜂𝜏−𝑢(Δ) ∪ 𝜔𝜏−𝑢(Δ)𝑐 ))
𝑒−𝛽𝐻𝜏−𝑢(Δ)(𝜂𝜏−𝑢(Δ)∪𝜔𝜏−𝑢(Δ)𝑐 )

𝑍𝜏−𝑢(Δ)(𝜔𝜏−𝑢(Δ)𝑐 )
Π𝑧𝜏−𝑢(Δ)(𝑑𝜂)𝑃

#
Λ𝑛
(𝑑𝜔)𝑑𝑢

𝐵2 = ∫
Λ̂𝑛⧵Λ̂∗

𝑛

∫ 𝑓 (𝜏𝑢(𝜔))𝑃 #
Λ𝑛
(𝑑𝜔),

since 𝑓 is bounded we have

|𝐵1| + |𝐵2| ≤ 2𝑀𝜆
(

Λ̂𝑛 ⧵ Λ̂∗
𝑛

)

.

We can observe that 𝜆(Λ̂∗
𝑛) is equivalent to 𝜆(Λ̂𝑛) and thus, for some sub-sequence 𝑛𝑘, we have

∫ 𝑓Δ(𝜔)𝑃 #(𝑑𝜔) = lim
𝑘→+∞

1
𝛿𝑑|Λ𝑛𝑘| ∫Λ𝑛𝑘

𝑓Δ(𝜔)𝑃
#
Λ𝑛𝑘

(𝑑𝜔)

= lim
𝑘→+∞

1
𝛿𝑑|Λ𝑛𝑘| ∫Λ𝑛𝑘

∫ 𝑓 (𝜏𝑢(𝜔))𝑃 #
Λ𝑛𝑘

(𝑑𝜔)

= lim
𝑘→+∞∫ 𝑓 (𝜔)𝑃Λ#

𝑛𝑘
(𝑑𝜔)

= ∫ 𝑓 (𝜔)𝑃 #(𝑑𝜔),

that is the DLR equations for any subset Δ ⊂ R𝑑 and any bounded local function 𝑓 .

2.4.2 Polymer development

Now we have proved that we can obtain an infinite Gibbs measure for the saturated interaction
𝐻 via 𝑃 #

Λ, we would want to compare the partition function 𝑍#
Λ to the partition function 𝑍|Λ|

#which corresponds to the normalisation constant of the system with each tiles saturated i.e.

𝑄#
Λ = 1

𝑍|Λ|
#

𝑒−𝛽𝐸Λ1{𝜎(𝜔,𝑖)=#,∀𝑖∈Λ}Π𝑧Λ̂. (2.24)

The constants 𝑍0 and 𝑍1 are equal to

𝑍0 = 𝑒−𝑧𝛿
𝑑 and 𝑍1 =

+∞
∑

𝑘=1

(𝑧𝛿𝑑)𝑘

𝑘!
𝑒−𝛽𝐸(𝑘)𝑒−𝑧𝛿

𝑑
.

With the assumption that 𝐸0 is stable and that 𝐸(1) < +∞ we get that 0 < 𝑍1 < +∞.
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Proposition 12 (Polymer development). For any Λ ⊂ Z𝑑 finite and any # ∈ {0, 1} we have

Φ#
Λ ∶= 𝑍−|Λ|

# 𝑍#
Λ =

∑

Γ∈#(Λ)

∏

𝛾∈Γ
𝑤#
𝛾

where 𝑤#
𝛾 = 𝑍−|𝛾|

# 𝐼𝛾
𝑍#∗

Int#∗ 𝛾

𝑍#
Int#∗ 𝛾

, it is called the weight of the contour 𝛾 , with #∗ ∶= 1 − # and

𝐼𝛾 ∶= ∫ 𝑒−𝛽(𝐸𝛾⧵𝜕−𝛾 (𝜔)+𝐸𝜕−𝛾 )1(∀𝑖∈𝛾,𝜎(𝜔,𝑖)=𝜎𝑖)Π
𝑧
𝛾̂ (𝑑𝜔).

Proof. We follow a similar development done in Chapter 7 in [13] with an adaptation to the
setting of our model where the main difference is that the states of sites are random and have to
be integrated under the Poisson measure. We can decompose the partition function𝑍#

Λ according
to the external contours #

𝑒𝑥𝑡(Λ) and we have
𝑍#

Λ =
∑

Γ∈#
𝑒𝑥𝑡(Λ)

∫ 𝑒−𝛽(𝐸Λ⧵𝜕Λ+𝐸𝜕Λ)1(#)Λ1{Γ𝑒𝑥𝑡(𝜔)=Γ}Π
𝑧
Λ̂
(𝑑𝜔).

For any Γ ∈ #
𝑒𝑥𝑡(Λ) we can do a partition of Λ in the following way

Λ = Λ𝑒𝑥𝑡
⋃

𝛾∈Γ

(

𝛾 ∪ Int0 𝛾 ∪ Int1 𝛾
)

where Λ𝑒𝑥𝑡 =
⋂

𝛾∈Γ 𝑒𝑥𝑡(𝛾) ∩ Λ. By the way the contours are built, we are assured that for any
𝛾 ∈ Γ, the sites in 𝜕−𝛾 or 𝜕(𝛾𝑐) are saturated. Therefore for any configuration 𝜔 ∈ (#)Λ ∩
{Γ𝑒𝑥𝑡(𝜔) = Γ} we have

𝐸𝛾 (𝜔) = 𝐸𝜕−𝛾 (𝜔) + 𝐸𝛾⧵𝜕−𝛾 (𝜔) (2.25)
𝐸Int# 𝛾 (𝜔) = 𝐸𝜕 Int# 𝛾 (𝜔) + 𝐸Int# 𝛾⧵𝜕 Int# 𝛾 (𝜔). (2.26)

Furthermore, since𝐸0 has a finite range𝑅 < 𝐿 and using the right hand term of equations (2.25)
and (2.26), we have that the energy of the tiles in the contour 𝛾 and it’s interior depends only on
the configuration inside these areas. Concerning the energy of the tiles in Λ𝑒𝑥𝑡, theses sites are
either saturated or part of the boundary 𝜕Λ and therefore

𝐸Λ𝑒𝑥𝑡(𝜔) = 𝐸Λ𝑒𝑥𝑡(𝜔). (2.27)
As a consequence, using the independence of Poisson point process in disjoint areas we obtain

𝑍#
Λ =

∑

Γ∈#
𝑒𝑥𝑡(Λ)

𝑍|Λ𝑒𝑥𝑡|
#

∏

𝛾∈Γ
𝐼𝛾𝑍

#
Int# 𝛾

𝑍#∗
Int#∗ 𝛾

with the following convention 𝑍#
∅ = 1. Therefore we have

Φ#
Λ = 𝑍−|Λ|

# 𝑍#
Λ

=
∑

Γ∈#
𝑒𝑥𝑡(Λ)

∏

𝛾∈Γ
𝑍−|𝛾|

# 𝐼𝛾
𝑍#∗

Int#∗ 𝛾

𝑍#
Int#∗ 𝛾

Φ#
Int#∗ 𝛾

Φ#
Int# 𝛾

=
∑

Γ∈#
𝑒𝑥𝑡(Λ)

∏

𝛾∈Γ
𝑤#
𝛾Φ

#
Int#∗ 𝛾

Φ#
Int# 𝛾
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We can iterate the same computations for Φ#
Int# 𝛾

and Φ#
Int#∗ 𝛾

until we deplete the interior of the
contours. It is a process of discovering the configuration by peeling layers after layers of contours.
By doing this we obtain that

Φ#
Λ =

∑

Γ∈#(Λ)

∏

𝛾∈Γ
𝑤#
𝛾 .

We can remark that the saturation is needed to prove that the partition function has a polymer
development but a weaker condition for this exist. All we need is something we call energy
screening by the contours, i.e. for any contours 𝛾

𝐸𝛾 (𝜔) = 𝐸𝛾 (𝜔𝛾̂ ) and 𝐸𝐴(𝜔) = 𝐸𝐴(𝜔𝐴)

where 𝐴 is any maximum connected component of 𝛾𝑐 .

Before proceeding further, we need the following lemma where we use the Peierls condition
to obtain an upper bound on 𝐼𝛾 and its derivative with respect to 𝑧.
Lemma 18. Let 𝐻 be a saturated interaction, such that 𝐸0 is stable and has a finite range. We
assume that for any contours 𝛾 and any configuration 𝜔 that achieve the contour 𝛾 there exists
𝜌0 > 0 such that

𝐸𝛾⧵𝜕−𝛾 − 𝐸𝛾⧵𝜕−𝛾 (𝜔) ≥ 𝜌0|𝛾|. (2.28)
Then we have

𝐼𝛾 ≤ 𝑍|𝛾0|
0 𝑍|𝛾1|

1 𝑒−𝛽𝜌0|𝛾| (2.29)
|

|

|

|

|

𝜕𝐼𝛾
𝜕𝑧

|

|

|

|

|

≤
(

1 + 1
𝑧𝛿𝑑

𝐸𝑄(1)
0
(𝑁𝑇0)

)

|𝛾|𝛿𝑑𝑍|𝛾0|
0 𝑍|𝛾1|

1 𝑒−𝛽𝜌0|𝛾| (2.30)

where 𝑄(1)
0 is the probability measure given in (2.24).

Proof. For the proof of (2.29) we simply inject (2.28) into 𝐼𝛾 and have

𝐼𝛾 ≤ 𝑒−𝛽𝜌0|𝛾| ∫ 𝑒−𝛽𝐸𝛾1(∀𝑖∈𝛾,𝜎(𝜔,𝑖)=𝜎𝑖)Π
𝑧
𝛾̂ (𝑑𝜔)

≤ 𝑍|𝛾0|
0 𝑍|𝛾1|

1 𝑒−𝛽𝜌0|𝛾|.

For the second inequality (2.30), we need to observe that
𝜕𝐼𝛾
𝜕𝑧

= −𝛿𝑑|𝛾|𝐼𝛾 +
1
𝑧 ∫

𝑁𝛾̂ (𝜔)𝑒
−𝛽(𝐸𝛾⧵𝜕−𝛾 (𝜔)+𝐸𝜕−𝛾 )1(∀𝑖∈𝛾,𝜎(𝜔,𝑖)=𝜎𝑖)Π

𝑧
𝛾̂ (𝑑𝜔).
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We need to control the mean number of particles in the contours and for that we start by obviously
injecting (2.28) and obtain

∫ 𝑁𝛾̂ (𝜔)𝑒
−𝛽(𝐸𝛾⧵𝜕−𝛾 (𝜔)+𝐸𝜕−𝛾 )1(∀𝑖∈𝛾,𝜎(𝜔,𝑖)=𝜎𝑖)Π

𝑧
𝛾̂ (𝑑𝜔)

≤ 𝑒−𝛽𝜌0|𝛾| ∫ 𝑁𝛾̂ (𝜔)𝑒
−𝛽𝐸𝛾1(∀𝑖∈𝛾,𝜎(𝜔,𝑖)=𝜎𝑖)Π

𝑧
𝛾̂ (𝑑𝜔)

≤ 𝑒−𝛽𝜌0|𝛾|
∑

𝑖∈𝛾1
∫ 𝑁𝑇𝑖(𝜔)𝑒

−𝛽𝐸𝛾1(∀𝑖∈𝛾,𝜎(𝜔,𝑖)=𝜎𝑖)Π
𝑧
𝛾̂ (𝑑𝜔)

≤ 𝑒−𝛽𝜌0|𝛾|𝑍|𝛾0|
0 𝑍|𝛾1|

1

∑

𝑖∈𝛾1

1
𝑍1 ∫

𝑁𝑇𝑖(𝜔)𝑒
−𝛽𝐸𝑖1(𝜎(𝜔,𝑖)=𝜎𝑖)Π

𝑧
𝑇𝑖
(𝑑𝜔)

≤ |𝛾1|𝐸𝑄(1)
0
(𝑁𝑇0)𝑍

|𝛾0|
0 𝑍|𝛾1|

1 𝑒−𝛽𝜌0|𝛾|.

Using this previous upper bound and (2.29) we obtain (2.30).
At this stage of the proof, we almost have the 𝜏-stability of the weights 𝑤#

𝛾 , and find an
upper bound for ||

|

|

𝜕𝑤#
𝛾

𝜕𝑧

|

|

|

|

similar to (2.11) of Theorem 17. However, we are faced with the issue of

bounding the ratio of partition functions, 𝑍
#∗
Int#∗ 𝛾

𝑍#
Int#∗ 𝛾

, that appears in the weights and to achieve this
we introduce the truncated weights.

2.5 Truncated weights and pressures

From the weights of each contour obtained in Proposition 12 we truncate them using an arbitrary
cut-off function 𝜅 ∶ R → [0, 1] that satisfies the following properties : 𝜅(𝑠) = 1 if 𝑠 ≤ 𝛽𝜌0

8 ,
𝜅(𝑠) = 0 if 𝑠 ≥ 𝛽𝜌0

4 where 𝜌0 is a strictly positive constant and 𝜅 is 1. Therefore such cut-off
function 𝜅 satisfies ‖𝜅′‖ = sup

R
|𝜅′(𝑠)| < +∞. The construction of truncated quantities is

inductive. We start by defining the truncated pressure, for 𝑛 = 0 as

𝜓#
0 ∶=

ln𝑍#

𝛿𝑑
. (2.31)

The truncated weights for contours of class 0, 𝛾 ∈ #
0 (R

𝑑) is defined as

𝑤̂#
𝛾 = 𝑤#

𝛾 = 𝑍−|𝛾|
# 𝐼𝛾 . (2.32)

Now we suppose that the truncated weights are well defined for contours 𝛾 of class 𝑘 ≤ 𝑛. We
define Φ̂#

𝑛 with the following polymer development

Φ̂#
𝑛(Λ) ∶=

∑

Γ∈#
𝑛 (Λ)

∏

𝛾∈Γ
𝑤̂#
𝛾 .
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We can define the truncated partition function as
𝑍#
𝑛 (Λ) ∶= 𝑍|Λ|

# Φ̂#
𝑛(Λ).

With Λ𝑘 = [−𝑘∕2, 𝑘∕2]𝑑 ∩ Z𝑑 , the truncated pressure at rank 𝑛 is given by
𝜓̂#
𝑛 ∶= lim

𝑘→+∞

1
𝛿𝑑|Λ𝑘|

ln(𝑍#
𝑛 (Λ𝑘))

= 𝜓̂#
0 + lim

𝑘→+∞

1
𝛿𝑑|Λ𝑘|

ln(Φ̂#
𝑛(Λ𝑘)).

In order to prove that the limit exists we observe that for Λ,Λ′ ⊂ Z𝑑 that are finite and disjoint
we have

Φ̂#
𝑛(Λ)Φ̂

#
𝑛(Λ

′) =
⎛

⎜

⎜

⎝

∑

Γ∈#
𝑛 (Λ)

∏

𝛾∈Γ
𝑤̂#
𝛾

⎞

⎟

⎟

⎠

⎛

⎜

⎜

⎝

∑

Γ′∈#
𝑛 (Λ′)

∏

𝛾 ′∈Γ′
𝑤̂#
𝛾 ′

⎞

⎟

⎟

⎠

=
∑

Γ∈#
𝑛 (Λ)

∑

Γ′∈#
𝑛 (Λ′)

∏

𝛾∈Γ∪Γ′
𝑤̂#
𝛾 .

The contours in Γ and Γ′ cannot be the same because their support exist in different volumes
and since Γ∪Γ′ ∈ #

𝑛 (Λ∪Λ′) therefore |#
𝑛 (Λ∪Λ′)| ≥ |#

𝑛 (Λ)|+ |#
𝑛 (Λ

′)|. The missing elements
are eventually the contours that spans between Λ and Λ′. Consequently we have the following
inequality

Φ̂#
𝑛(Λ1)Φ̂#

𝑛(Λ2) ≤ Φ̂#
𝑛(Λ1 ∪ Λ2).

Furthermore, in every summation we have the empty contour 𝛾 = (∅, ∅) which by definition has
its weight equal to 1. As a consequence for all Λ ⊂ Z𝑑 , Φ̂#

𝑛(Λ) ≥ 1 and for 𝑝 = ⌊

𝑘∕𝑚⌋

1
|Λ𝑘|𝛿𝑑

ln Φ̂#
𝑛(Λ𝑘) ≥

𝑝𝑑

|Λ𝑘|𝛿𝑑
ln Φ̂#

𝑛(Λ𝑚)

lim inf
𝑘→∞

1
|Λ𝑘|𝛿𝑑

ln Φ̂#
𝑛(Λ𝑘) ≥

1
|Λ𝑚|𝛿𝑑

ln Φ̂#
𝑛(Λ𝑚)

lim inf
𝑘→∞

1
|Λ𝑘|𝛿𝑑

ln Φ̂#
𝑛(Λ𝑘) ≥ lim sup

𝑚→∞

1
|Λ𝑚|𝛿𝑑

ln Φ̂#
𝑛(Λ𝑚).

This ensures the existence of the limit and we denote it by 𝑓 #
𝑛 . Furthermore, in every summation

we have the empty contour 𝛾 = (∅, ∅) which by definition has its weight equal to 1 and Φ̂#
𝑛(Λ) ≤

Φ#
Λ by construction. Hence we have that 𝜓̂#

𝑛 ∈ [𝜓̂#
0 , 𝜓]. In addition, we can easily see that the

sequence of truncated pressure (𝜓̂#
𝑛 )𝑛∈N is increasing.

Definition 23. Given the truncated weight of contours of class 𝑘 ≤ 𝑛 (and therefore the truncated
pressure 𝜓̂#

𝑛 ), the truncated weight of a contour 𝛾 of class 𝑛 + 1 is defined by

𝑤̂#
𝛾 = 𝑍−|𝛾|

# 𝐼𝛾 𝜅
(

(𝜓̂#∗
𝑛 − 𝜓̂#

𝑛 )𝛿
𝑑
| Int#∗ 𝛾|

1
𝑑

) 𝑍#∗
Int#∗ 𝛾

𝑍#
Int#∗ 𝛾

.
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Furthermore, we define the following quantities of interest, 𝜓̂𝑛 ∶= max(𝜓̂0
𝑛 , 𝜓̂

1
𝑛 ) and 𝑎#𝑛 ∶=

𝜓̂𝑛− 𝜓̂#
𝑛 . By definition, we have 𝑎#𝑛 ≥ 0 and for all contour 𝛾 of class 𝑛+1 we have the following

implication

𝑎#𝑛𝛿
𝑑(𝑛 + 1)

1
𝑑 ≤

𝛽𝜌0
8

⇐⇒ 𝑤̂#
𝛾 = 𝑤#

𝛾 .

Since the truncated weights are defined for any class, we can define the following polymer de-
velopment for any boundary condition (#) and any Λ ⊂ Z𝑑

Φ̂#(Λ) ∶=
∑

Γ∈#(Λ)

∏

𝛾∈Γ
𝑤̂#
𝛾

and alongside it the truncated partition function
𝑍#

Λ ∶= 𝑍|Λ|
# Φ̂#(Λ) = 𝑒(𝜓̂

#
0+𝑓

#)𝛿𝑑 |Λ|+Δ#
Λ . (2.33)

Definition 24. The truncated pressure associated to the boundary # is

𝜓̂# ∶= lim
𝑛→+∞

1
𝛿𝑑|Λ𝑛|

ln𝑍#
Λ𝑛

= 𝜓̂#
0 + 𝑓 # where 𝑓# = lim

𝑛→+∞
1

𝛿𝑑|Λ𝑛|
ln Φ̂#

Λ𝑛
.

The truncated pressure 𝜓̂ is defined as
𝜓̂ ∶= max(𝜓̂ (0), 𝜓̂ (1)).

We can also obtain 𝜓̂# as the limit of the sequence of truncated pressure (𝜓̂#
𝑛 )𝑛∈N and we

define 𝑎# as,
𝑎# ∶= 𝜓̂ − 𝜓̂# = lim

𝑛→∞
𝑎#𝑛.

The following result is the key proposition in the proof Theorem 11, as we show that the truncated
weights verify the inequalities (2.11) needed to use Theorem 17. Later, we show that for some
value of 𝑧 the truncated weights and actual weights coincide.
Proposition 13. Let 𝐻 be a saturated interaction, such that 𝐸0 is stable with a finite range
𝑅 > 0. When saturated we have 𝐸 ≥ 0 and 𝐸(1) < +∞. We assume that it verifies a Peierls-like
condition, i.e. there is 𝜌0 > 0 such that for any contours 𝛾 and any configuration that achieves
this contour 𝛾 we have

𝐸𝛾⧵𝜕−𝛾 − 𝐸𝛾⧵𝜕−𝛾 (𝜔) ≥ 𝜌0|𝛾|. (2.34)
Under these assumptions, for any 𝛽 > 0 there are 𝑧−𝛽 and 𝑧+𝛽 such that for 𝑧 ∈ 𝑈𝛽 ∶= (𝑧−𝛽 , 𝑧

+
𝛽 )

we have
𝑒−2 =

𝑍0
𝑍1

(𝑧−𝛽 ) ≤
𝑍0
𝑍1

(𝑧) ≤
𝑍0
𝑍1

(𝑧+𝛽 ) = 𝑒2.

Let 𝜏 ∶= 1
2𝛽𝜌0 − 8. Then there exist 𝐷 ≥ 1 and 0 < 𝛽0 < ∞ such that for all 𝛽 > 𝛽0 there exist

𝐶1 > 0 and 𝐶2 > 0 where the following statements hold for any # and 𝑛 ≥ 0.
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1. (Bounds on the truncated weights) For all 𝑘 ≤ 𝑛, the truncated weights of each contour 𝛾
of class 𝑘 is 𝜏-stable uniformly on 𝑈𝛽 :

𝑤̂#
𝛾 ≤ 𝑒−𝜏|𝛾| (2.35)

and
𝑎#𝑛𝛿

𝑑
| Int 𝛾|

1
𝑑 ≤

𝛽𝜌0
16

⇐⇒ 𝑤̂#
𝛾 = 𝑤#

𝛾 . (2.36)
Moreover, 𝑧 → 𝑤̂#

𝛾 is 1 and uniformly on 𝑈𝛽 it verifies

|

|

|

|

|

|

𝜕𝑤̂#
𝛾

𝜕𝑧

|

|

|

|

|

|

≤ 𝐷|𝛾|
𝑑
𝑑−1 𝑒−𝜏|𝛾|. (2.37)

2. (Bounds on the partition functions) For Λ ⊂ Z𝑑 such that |Λ| ≤ 𝑛 + 1, uniformly on 𝑈𝛽 ,
we have

𝑍#
Λ ≤ 𝑒𝜓̂𝑛𝛿

𝑑
|Λ|+2|𝜕𝑒𝑥𝑡Λ|, (2.38)

|

|

|

|

|

𝜕𝑍#
Λ

𝜕𝑧

|

|

|

|

|

≤
(

𝐶1|Λ| + 𝐶2|𝜕𝑒𝑥𝑡Λ|
)

𝑒𝜓̂𝑛𝛿
𝑑
|Λ|+2|𝜕𝑒𝑥𝑡Λ|. (2.39)

Proof. Before starting this proof by induction, we need to fix the some constants and in particular
the quantity 𝛽 which has to be sufficiently large. Recall that 𝜂(𝜏, 𝑙0) ∶= 2𝑒−

𝜏𝑙0
3 , where 𝑙0 is is

the size of the smallest contour. We set 𝐷 ∶= (3 + 2‖𝜅′‖)𝐶1 + 2𝐶2 where 𝐶1(𝛽) ∶= sup𝑈𝛽 (𝑒 +

2)𝛿𝑑 − ln(𝑧𝛿𝑑 )
𝑧

+ 𝛽
𝑧
𝐸(1) and 𝐶2(𝛽) ∶= 1∕𝑧−𝛽 and we choose 𝛽 ≥ 1 sufficiently large such that

𝜏 > 𝜏0(𝑑) where 𝜏0 is defined as in Lemma 15. (2.40)
𝐷𝜂(𝜏, 𝑙0) ≤ 1 (2.41)
∀𝑘 ∈ N, 2𝑘1∕𝑑 exp (−𝜏𝑘

𝑑−1∕𝑑

2
) ≤

𝛽𝜌0
16

(2.42)
∀𝑥 > 0, 𝛿−𝑑 exp (−max{(𝛽𝜌0∕16𝛿𝑑𝑥)𝑑−1, 𝑙0}

𝜏
2
) ≤ 𝑥

2
. (2.43)

Let us prove the proposition for 𝑛 = 0. Let 𝛾 be a contour of class 0, for 𝑧 ∈ 𝑈𝛽 and using (2.29)
of Lemma 18 we have

𝑤̂#
𝛾 ≤

(

𝑍#∗

𝑍#

)

|𝛾#∗ |

𝑒−𝛽𝜌0|𝛾|

≤ 𝑒2|𝛾|𝑒−𝛽𝜌0|𝛾| = 𝑒−𝜏|𝛾|.

When computing the derivative of the truncated weights with respect to 𝑧 we have
𝜕𝑤̂#

𝛾

𝜕𝑧
=
𝜕𝑤#

𝛾

𝜕𝑧
=
(𝜕𝐼𝛾
𝜕𝑧

−
|𝛾|
𝑍#

𝜕𝑍#
𝜕𝑧

𝐼𝛾

)

𝑍−|𝛾|
# .
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Furthermore, we know that
1
𝑍#

𝜕𝑍#
𝜕𝑧

= −𝛿𝑑 + 1
𝑧
𝐸𝑄#

0
(𝑁𝑇0), (2.44)

and therefore
𝜕𝑤̂#

𝜔

𝜕𝑧
=
(𝜕𝐼𝛾
𝜕𝑧

+ |𝛾|𝛿𝑑
(

1 − 1
𝑧𝛿𝑑

𝐸𝑄#
0
(𝑁𝑇0)

)

𝐼𝛾

)

𝑍−|𝛾|
# .

Therefore using inequalities (2.29) and (2.30) of Lemma 18 we have
|

|

|

|

|

|

𝜕𝑤̂#
𝛾

𝜕𝑧

|

|

|

|

|

|

≤
(

2 + 2
𝑧𝛿𝑑

𝐸𝑄(1)
0
(𝑁𝑇0)

)

𝛿𝑑|𝛾|
𝑍#∗

𝑍#

|𝛾#∗ |
𝑒−𝛽𝜌0|𝛾| (2.45)

≤
(

2 + 2
𝑧𝛿𝑑

𝐸𝑄(1)
0
(𝑁𝑇0)

)

𝛿𝑑|𝛾|𝑒−(𝛽𝜌0−2)|𝛾| (2.46)
Since 𝐸 ≥ 0, and using the Donsker-Varadhan entropic inequality we have that

𝐸𝑄(1)
0
(𝑁𝑇0) ≤ 𝐼(𝑍(1)

0 |Π𝑧𝑇0) + ln𝐸Π𝑧𝑇0
(𝑒𝑁𝑇0 )

≤ ∫ −𝛽𝐸𝑑𝑄(1)
0 − ln𝑍1 + (𝑒 − 1)𝑧𝛿𝑑

≤ − ln𝑍1 + (𝑒 − 1)𝑧𝛿𝑑 .

Furthermore, we get that
𝑍1 ≥ 𝑒−𝛽𝐸(1)Π𝑧𝑇0(𝑁𝑇0 = 1) = 𝑧𝛿𝑑𝑒−𝑧𝛿

𝑑
𝑒−𝛽𝐸(1).

Thus, we have
𝐸𝑄(1)

0
(𝑁𝑇0) ≤ − ln(𝑧𝛿𝑑) + 𝑧𝛿𝑑 + 𝛽𝐸(1) + (𝑒 − 1)𝑧𝛿𝑑 . (2.47)

When we introduce (2.47) into (2.46) we get
|

|

|

|

|

|

𝜕𝑤̂#
𝛾

𝜕𝑧

|

|

|

|

|

|

≤ 2

(

𝑒 + 1 −
ln(𝑧𝛿𝑑)
𝑧𝛿𝑑

+
𝛽𝐸(1)
𝑧𝛿𝑑

)

𝛿𝑑|𝛾|𝑒−𝜏|𝛾| < 𝐷|𝛾|𝑑∕𝑑−1𝑒−𝜏|𝛾|. (2.48)

When |Λ| = 1, we simply have the following inequality
𝑍#

Λ = 𝑍# = 𝑒𝜓̂
#
0 𝛿

𝑑
≤ 𝑒𝜓̂0𝛿𝑑 |Λ|+2|𝜕𝑒𝑥𝑡Λ|.

Finally concerning the derivative of the partition function with respect to 𝑧 using relation (2.44)
and (2.47) we obtain

|

|

|

|

|

𝜕𝑍#
Λ

𝜕𝑧

|

|

|

|

|

=
|

|

|

|

𝜕𝑍#
𝜕𝑧

|

|

|

|

≤
(

(𝑒 + 1)𝛿𝑑 −
ln(𝑧𝛿𝑑)
𝑧

+
𝛽
𝑧
𝐸(1)

)

𝑍#

≤ 𝐶1(𝛽)|Λ|𝑒𝛽𝛿
𝑑 𝜓̂0+2|𝜕𝑒𝑥𝑡Λ|.

Now the initialisation is done, we assume that the statements have been proved up to 𝑛 and
we have to prove that they hold also for 𝑛+ 1. Before proceeding properly into the induction we
need the following lemma.
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Lemma 19. For 𝑛 ≥ 1, if for all contours of class at most 𝑛 the truncated weights are 𝜏-stable
then for any 𝑘 ≤ 𝑛

|𝜓̂#
𝑛 − 𝜓̂

#
𝑘 | ≤

1
𝛿𝑑
𝑒−

𝜏
2𝑘

𝑑−1∕𝑑
and |𝜓̂𝑛 − 𝜓̂𝑘| ≤

1
𝛿𝑑
𝑒−

𝜏
2𝑘

𝑑−1∕𝑑
. (2.49)

Proof. We have |𝜓̂#
𝑛 − 𝜓̂#

𝑘 | = |𝑓 #
𝑛 − 𝑓 #

𝑘 |. Since all contour of class at most 𝑛 are 𝜏-stable we
know that the cluster expansion for 𝑓 #

𝑘 converges for 𝑘 ≤ 𝑛. We can notice that the clusters𝑋 that
contributes to 𝑓 #

𝑛−𝑓
#
𝑘 must have at least one contour 𝛾 of class greater than 𝑘. Therefore according

to the isoperimetric inequality we have |𝛾| ≥ 𝑘𝑑−1∕𝑑 which in turn implies that |𝑋| ≥ 𝑘𝑑−1∕𝑑 . Thus
by Lemma 16 we obtain

|𝜓̂#
𝑛 − 𝜓̂

#
𝑘 | ≤

1
𝛿𝑑

∑

𝑋∶0∈𝑋
|𝑋|≥𝑘𝑑−1∕𝑑

|Ψ̂#(𝑋)| ≤ 1
𝛿𝑑
𝑒−

𝜏
2𝑘

𝑑−1∕𝑑
. (2.50)

Now we want to have the same kind of estimate for |𝜓̂𝑛 − 𝜓̂𝑘|. If 𝜓̂𝑛 = 𝜓̂#
𝑛 and 𝜓̂𝑘 = 𝜓̂#

𝑘 , we get
the same estimate since the difference is the same. In the case where 𝜓̂𝑛 = 𝜓̂#

𝑛 and 𝜓̂𝑘 = 𝜓̂#∗
𝑘 ,

where # ≠ #∗, we have on one side
𝜓̂𝑛 − 𝜓̂𝑘 = 𝜓̂#

𝑛 − 𝜓̂
#
𝑘 + 𝜓̂

#
𝑘 − 𝜓̂

#∗
𝑘 ≤ 𝜓̂#

𝑛 − 𝜓̂
#
𝑘

since by definition 𝜓̂#
𝑘 − 𝜓̂

#∗
𝑘 = 𝜓̂#

𝑘 − 𝜓̂𝑘 ≤ 0. On the other side, we have
𝜓̂𝑛 − 𝜓̂𝑘 = 𝜓̂#

𝑛 − 𝜓̂
#∗
𝑛 + 𝜓̂#∗

𝑛 − 𝜓̂#∗
𝑘 ≥ 0

since (𝜓̂#∗
𝑖 )𝑖∈N is increasing and 𝜓̂#

𝑛 − 𝜓̂
#∗
𝑛 ≥ 0 by definition. In any case, we have

|𝜓̂𝑛 − 𝜓̂𝑘| ≤
1
𝛿𝑑
𝑒−

𝜏
2𝑘

𝑑−1∕𝑑
.

We move on the proof that (2.38) holds if |Λ| = 𝑛 + 2. Note that any contour that appears
inside of Λ is at most of class 𝑘 ≤ 𝑛. We say that a contour 𝛾 is stable if

𝑎#𝑛𝛿
𝑑
| Int 𝛾|1∕𝑑 ≤

𝛽𝜌0
16

.

This property is hereditary, in the sense that for all contours 𝛾 ′ that can appear inside Int 𝛾 are
stable as well. Since, we know that all contours of class at most 𝑛 are 𝜏-stable we can apply
Lemma 19 and by (2.42) we have for any contour 𝛾 of class 𝑘 ≤ 𝑛

𝑎#𝑘𝛿
𝑑
| Int 𝛾|1∕𝑑 = 𝑎#𝑛𝛿

𝑑
| Int 𝛾|1∕𝑑 + (𝑎#𝑘 − 𝑎

#
𝑛)𝛿

𝑑
| Int 𝛾|1∕𝑑

≤ 𝑎#𝑛𝛿
𝑑
| Int 𝛾|1∕𝑑 + 2𝑘1∕𝑑𝑒−𝜏𝑘

𝑑−1∕𝑑∕2

≤ 𝑎#𝑛𝛿
𝑑
| Int 𝛾|1∕𝑑 +

𝛽𝜌0
16

.
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Therefore, when the contours are stable it implies that 𝑎#𝑘𝛿𝑑| Int 𝛾|1∕𝑑 ≤ 𝛽𝜌0∕8 and thus 𝑤̂#
𝛾 = 𝑤#

𝛾 .In contrast, we would call contours that doesn’t satisfy this condition unstable. The stability of
a contour depends on the parameter 𝑧 as it affects the value of 𝑎#𝑛. Thus we have two cases to
consider. The first case is 𝑎#𝑛 = 0. Consequently all contours are stable, therefore according to
Theorem 17 we have

𝑍#
Λ = 𝑍#

Λ = 𝑒𝜓̂
#
𝑛 𝛿

𝑑
|Λ|+ΔΛ

≤ 𝑒𝜓̂
#
𝑛 𝛿

𝑑
|Λ|+|𝜕𝑒𝑥𝑡Λ|

≤ 𝑒𝜓̂
#
𝑛+1𝛿

𝑑
|Λ|+2|𝜕𝑒𝑥𝑡Λ|

since (𝜓̂𝑖)𝑖∈N is increasing and therefore (2.38) is proved. Now let us consider 𝑎#𝑛 > 0, in this
case some contours must be unstable. Therefore we can partition the configurations that generate
among the external contours those that are unstable

𝑍#
Λ =

∑

Γ∈#
𝑒𝑥𝑡(Λ)unstable

∫ 𝑒−𝛽(𝐸𝛾⧵𝜕−𝛾 (𝜔)+𝐸𝜕−𝛾 )1(#)Λ1{Γ⊂Γ𝑒𝑥𝑡(𝜔)}Π
𝑧
Λ̂
(𝑑𝜔).

Similar to what we did in the proof for the polymer development of the partition function, we can
write each integral as a product of integrals with respect to Poisson point process distribution on
different domains due to the saturation property of the Hamiltonian. The only difference is that
we consider for the moment only unstable contours and so inside of Λ𝑒𝑥𝑡 we have to account for
stable contours. Furthermore, these stable contours cannot encircle any external unstable contour
due to the hereditary property of stable contours.

𝑍#
Λ =

∑

Γ∈#
𝑒𝑥𝑡(Λ)unstable

𝑍#
Λ𝑒𝑥𝑡,𝑠𝑡𝑎𝑏𝑙𝑒

∏

𝛾∈Γ
𝐼𝛾𝑍

(0)
Int0 𝛾

𝑍(1)
Int1 𝛾

,

where𝑍#
Λ𝑒𝑥𝑡,𝑠𝑡𝑎𝑏𝑙𝑒

denotes the partition function restricted to configurations for which all contours
are stable and by construction they are of class at most 𝑛. Since all those contours are of class at
most 𝑛 they are also 𝜏-stable therefore they can be studied using a convergent cluster expansion
according to Theorem 17 and thus

𝑍#
Λ𝑒𝑥𝑡,𝑠𝑡𝑎𝑏𝑙𝑒

= 𝑍|Λ𝑒𝑥𝑡|
# Φ̂#

𝑛,𝑠𝑡𝑎𝑏𝑙𝑒(Λ𝑒𝑥𝑡)

≤ 𝑍|Λ𝑒𝑥𝑡|
# 𝑒𝑓

#
𝑛,𝑠𝑡𝑎𝑏𝑙𝑒𝛿

𝑑
|Λ𝑒𝑥𝑡|+|𝜕𝑒𝑥𝑡Λ𝑒𝑥𝑡|

≤ 𝑒(𝜓̂
#
0+𝑓

#
𝑛,𝑠𝑡𝑎𝑏𝑙𝑒)𝛿

𝑑
|Λ𝑒𝑥𝑡|+|𝜕𝑒𝑥𝑡Λ𝑒𝑥𝑡|

where 𝑓 #
𝑛,𝑠𝑡𝑎𝑏𝑙𝑒 = lim𝑘→∞

1
|Λ𝑘|𝛿𝑑

ln Φ̂#
𝑛,𝑠𝑡𝑎𝑏𝑙𝑒(Λ𝑘). According to the induction hypothesis we have

that
𝑍(0)

Int0 𝛾
𝑍(1)

Int1 𝛾
≤ 𝑒𝜓̂𝑛𝛿

𝑑
| Int 𝛾|𝑒2(|𝜕𝑒𝑥𝑡 Int1 𝛾|+|𝜕𝑒𝑥𝑡 Int0 𝛾|)

≤ 𝑒𝜓̂𝑛𝛿
𝑑
| Int 𝛾|𝑒2|𝛾|.
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For any Γ ∈ #
𝑒𝑥𝑡(Λ) we have |𝜕𝑒𝑥𝑡Λ𝑒𝑥𝑡| ≤ |𝜕𝑒𝑥𝑡Λ| +

∑

𝛾∈Γ |𝛾|, thus we get that

𝑍#
Λ ≤

∑

Γ∈#
𝑒𝑥𝑡(Λ)unstable

𝑒(𝜓̂
#
0+𝑓

#
𝑛,𝑠𝑡𝑎𝑏𝑙𝑒)𝛿

𝑑
|Λ𝑒𝑥𝑡|𝑒|𝜕𝑒𝑥𝑡Λ|+

∑

𝛾∈Γ |𝛾|
∏

𝛾∈Γ
𝐼𝛾𝑒

𝜓̂𝑛𝛿𝑑 | Int 𝛾|𝑒2|𝛾|

≤ 𝑒𝜓̂𝑛𝛿
𝑑
|Λ|+|𝜕𝑒𝑥𝑡Λ|

∑

Γ∈#
𝑒𝑥𝑡(Λ)unstable

𝑒−(𝜓̂𝑛−𝜓̂
#
𝑛,𝑠𝑡𝑎𝑏𝑙𝑒)𝛿

𝑑
|Λ𝑒𝑥𝑡|

∏

𝛾∈Γ
𝐼𝛾𝑒

(3−𝜓̂𝑛𝛿𝑑 )|𝛾|

where we define 𝜓̂#
𝑛,𝑠𝑡𝑎𝑏𝑙𝑒 ∶= 𝜓̂#

0 + 𝑓
#
𝑛,𝑠𝑡𝑎𝑏𝑙𝑒. Furthermore when we use the following inequalities

𝜓̂𝑛 ≥ 𝜓̂#
𝑛 ≥ 𝜓̂#

0 = ln(𝑍#)
𝛿𝑑

we get that 𝐼𝛾𝑒−𝜓̂𝑛𝛿𝑑 |𝛾| ≤ 𝑒−𝜏|𝛾|. Therefore we have

𝑍#
Λ ≤ 𝑒𝜓̂𝑛𝛿

𝑑
|Λ|+|𝜕𝑒𝑥𝑡Λ|

∑

Γ∈#
𝑒𝑥𝑡(Λ)unstable

𝑒−(𝜓̂𝑛−𝜓̂
#
𝑛,𝑠𝑡𝑎𝑏𝑙𝑒)𝛿

𝑑
|Λ𝑒𝑥𝑡|

∏

𝛾∈Γ
𝑒−(𝜏−3)|𝛾|.

It remains to prove that the sum is bounded by 𝑒|𝜕𝑒𝑥𝑡Λ|. First we note that 𝜓̂𝑛 − 𝜓̂#
𝑛,𝑠𝑡𝑎𝑏𝑙𝑒 = 𝑎#𝑛 +

𝑓 #
𝑛 − 𝑓 #

𝑛,𝑠𝑡𝑎𝑏𝑙𝑒. By construction, the clusters that appear in the cluster expansion of 𝑓 #
𝑛 − 𝑓 #

𝑛,𝑠𝑡𝑎𝑏𝑙𝑒contain at least one unstable contour 𝛾 and therefore such contour verify the following

|𝛾| ≥ | Int 𝛾|𝑑−1∕𝑑 ≥
(

𝛽𝜌0
16𝑎#𝑛𝛿𝑑

)(𝑑−1)

and by Lemma 16 and (2.43)

|𝑓 #
𝑛 − 𝑓 #

𝑛,𝑠𝑡𝑎𝑏𝑙𝑒| ≤ 𝛿−𝑑 exp (−max{(𝛽𝜌0∕16𝑎#𝑛𝛿𝑑)𝑑−1, 𝑙0}
𝜏
2
) ≤

𝑎#𝑛
2
. (2.51)

In the end, we obtain

𝜓̂𝑛 − 𝜓̂#
𝑛,stable ≥

𝑎#𝑛
2
. (2.52)

Now let us define new weights 𝑤∗
𝛾 as follow

𝑤∗
𝛾 =

{

𝑒−(𝜏−5)|𝛾| if 𝛾 is unstable
0 otherwise.

We denote by Φ∗ the associated polymer development and have
𝑔∗ = lim

𝑘→∞

1
𝛿𝑑|Λ𝑘|

lnΦ∗(Λ𝑘).

For sufficiently large 𝛽 we can assure by Theorem 17 that it is a convergent cluster expansion.
Since all contours that contribute to 𝑔∗ are all unstable, we obtain an inequality similar to (2.51)

|𝑔∗| ≤ 𝛿−𝑑 exp (−max{(𝛽𝜌0∕16𝑎#𝑛𝛿𝑑)𝑑−1, 𝑙0}
𝜏
2
) ≤

𝑎#𝑛
2
. (2.53)
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Therefore with (2.52) and (2.53) we have 𝜓̂𝑛 − 𝜓̂#
𝑛 ≥ 𝑔∗ and thus

∑

Γ∈#
𝑒𝑥𝑡(Λ)unstable

𝑒−(𝜓̂𝑛−𝜓̂
#
𝑛,𝑠𝑡𝑎𝑏𝑙𝑒)𝛿

𝑑
|Λ𝑒𝑥𝑡|

∏

𝛾∈Γ
𝑒−(𝜏−3)|𝛾| ≤

∑

Γ∈#
𝑒𝑥𝑡(Λ)unstable

𝑒−𝑔
∗𝛿𝑑 |Λ𝑒𝑥𝑡|

∏

𝛾∈Γ
𝑒−(𝜏−3)|𝛾|

≤ 𝑒−𝑔
∗𝛿𝑑 |Λ|

∑

Γ∈#
𝑒𝑥𝑡(Λ)unstable

∏

𝛾∈Γ
𝑒−(𝜏−3)|𝛾|𝑒𝑔

∗𝛿𝑑 (|𝛾|+| Int 𝛾|).

By (2.53) we know that 𝛿𝑑𝑔∗ ≤ 1, and again with Theorem 17 we know thatΦ∗
Int 𝛾 ≥ 𝑒𝑔∗𝛿𝑑 | Int 𝛾|−|𝛾|

and so
∑

Γ∈#
𝑒𝑥𝑡(Λ)unstable

𝑒−(𝜓̂𝑛−𝜓̂
#
𝑛,𝑠𝑡𝑎𝑏𝑙𝑒)𝛿

𝑑
|Λ𝑒𝑥𝑡|

∏

𝛾∈Γ
𝑒−(𝜏−3)|𝛾| ≤ 𝑒−𝑔

∗𝛿𝑑 |Λ|
∑

Γ∈#
𝑒𝑥𝑡(Λ)unstable

∏

𝛾∈Γ
𝑒−(𝜏−5)|𝛾|Φ∗

Int 𝛾

= 𝑒−𝑔
∗𝛿𝑑 |Λ|Φ∗

Λ

≤ 𝑒|𝜕𝑒𝑥𝑡Λ|.

In summary, we have
𝑍#

Λ ≤ 𝑒𝜓̂𝑛𝛿
𝑑
|Λ|+2|𝜕𝑒𝑥𝑡Λ| < 𝑒𝜓̂𝑛+1𝛿

𝑑
|Λ|+2|𝜕𝑒𝑥𝑡Λ| (2.54)

which is exactly (2.38) in the case where |Λ| = 𝑛+ 2. If |Λ| ≤ 𝑛+ 1 it is sufficient to notice that
(𝜓̂#

𝑛 )𝑛∈N is increasing. Let us prove that (2.39) holds. We start with the case |Λ| = 𝑛 + 2 and by
a similar argument it is true for any smaller Λ. By a direct computation we have

𝜕𝑍#
Λ

𝜕𝑧
= −|Λ|𝛿𝑑𝑍#

Λ + 1
𝑧 ∫

𝑁Λ̂(𝜔)𝑒
−𝛽(𝐸Λ⧵𝜕Λ(𝜔)+𝐸𝜕Λ)1(#)ΛΠ

𝑧
Λ̂
(𝑑𝜔)

=
(

−|Λ|𝛿𝑑 + 1
𝑧
𝐸𝑃 #

Λ
(𝑁Λ̂)

)

𝑍#
Λ. (2.55)

Furthermore, we know by our hypothesis (2.28) and 𝐸 ≥ 0 that for any configuration 𝜔 ∈ Ω𝑓

we have 𝐸Λ⧵𝜕Λ(𝜔) + 𝐸𝜕Λ(𝜔) ≥ 𝐸Λ(𝜔) ≥ 0. By Donsker-Varadhan entropic inequality we have
the following

𝐸𝑃 #
Λ
(𝑁Λ̂) ≤ 𝐼(𝑃 #

Λ|Π
𝑧
Λ̂
) + ln𝐸Π𝑧

Λ̂
(𝑒𝑁Λ̂)

≤ ∫ −𝛽(𝐸Λ⧵𝜕Λ(𝜔) + 𝐸𝜕Λ)𝑑𝑃 #
Λ − ln𝑍#

Λ + (𝑒 − 1)𝑧𝛿𝑑|Λ|

≤ − ln𝑍#
Λ + (𝑒 − 1)𝑧𝛿𝑑|Λ|. (2.56)

Furthermore, we know that the contours which appear in |Λ| are at most of the class 𝑛. Therefore
we know that their truncated weights are 𝜏-stable and by Theorem 17

𝑍#
Λ ≥ 𝑍#

Λ ≥ 𝑒𝜓̂
#
𝑛 𝛿

𝑑
|Λ|−|𝜕𝑒𝑥𝑡Λ|. (2.57)

From inequalities (2.57) and (2.56) and by using the fact that (𝜓̂#
𝑛 )𝑛∈N is increasing we obtain

𝐸𝑃 #
Λ
(𝑁Λ̂) ≤

(

(𝑒 − 1)𝑧 − 𝜓̂#
0
)

𝛿𝑑|Λ| + |𝜕𝑒𝑥𝑡Λ|.
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And since
𝜓̂ (0)
0 = −𝑧 and 𝜓̂ (1)

0 ≥ −𝑧 +
ln(𝑧𝛿𝑑)
𝛿𝑑

−
𝛽
𝛿𝑑
𝐸(1),

we have
𝐸𝑃 #

Λ
(𝑁Λ̂) ≤

(

(𝑒 + 1)𝑧𝛿𝑑 − ln(𝑧𝛿𝑑) + 𝛽𝐸(1)
)

|Λ| + |𝜕𝑒𝑥𝑡Λ|.

When we introduce the last inequality into (2.55) we get that
|

|

|

|

|

𝜕𝑍#
Λ

𝜕𝑧

|

|

|

|

|

≤
[(

(𝑒 + 2)𝛿𝑑 −
ln(𝑧𝛿𝑑)
𝑧

+
𝛽
𝑧
𝐸(1)

)

|Λ| + 1
𝑧
|𝜕𝑒𝑥𝑡Λ|

]

𝑍#
Λ

≤
(

𝐶1(𝛽)|Λ| + 𝐶2(𝛽)|𝜕𝑒𝑥𝑡Λ|
)

𝑍#
Λ.

Therefore using (2.54) we obtain
|

|

|

|

|

𝜕𝑍#
Λ

𝜕𝑧

|

|

|

|

|

≤
(

𝐶1(𝛽)|Λ| + 𝐶2(𝛽)|𝜕𝑒𝑥𝑡Λ|
)

𝑒𝜓̂𝑛+1𝛿
𝑑
|Λ|+2|𝜕𝑒𝑥𝑡Λ|

and (2.39) is proved when |Λ| = 𝑛 + 2.

Now let us prove (2.35) which is the 𝜏-stability of truncated weights for contours of class
𝑛+ 1. We consider a contour 𝛾 of class 𝑛+ 1. First of all, we can observe that 𝑤̂#

𝛾 = 0 whenever
(𝜓̂#∗

𝑛 − 𝜓̂#
𝑛 )𝛿

𝑑
| Int#∗ 𝛾|

1∕𝑑 > 𝜌0∕4. So we can assume that

(𝜓̂#∗
𝑛 − 𝜓̂#

𝑛 )𝛿
𝑑
| Int#∗ 𝛾|

1∕𝑑 ≤
𝛽𝜌0
4
. (2.58)

Since | Int 𝛾| = 𝑛+1we can apply the induction hypothesis on the partition functions that appears
in the truncated weights particularly we can use (2.38) and have

𝑍#∗
Int#∗ 𝛾

≤ 𝑒𝜓̂𝑛𝛿
𝑑
| Int#∗ 𝛾|+2|𝜕𝑒𝑥𝑡 Int#∗ 𝛾|. (2.59)

By combining the previous inequalities (2.59) and (2.57) we have
𝑍#∗

Int#∗ 𝛾

𝑍#
Int#∗ 𝛾

≤ 𝑒(𝜓̂𝑛−𝜓̂
#
𝑛 )𝛿

𝑑
| Int#∗ 𝛾|+3|𝜕𝑒𝑥𝑡 Int#∗ 𝛾|

≤ 𝑒(𝜓̂𝑛−𝜓̂
#
𝑛 )𝛿

𝑑
| Int#∗ 𝛾|

1∕𝑑
| Int#∗ 𝛾|

(𝑑−1)∕𝑑+3|𝜕𝑒𝑥𝑡 Int#∗ 𝛾|.

Furthermore, applying hypothesis (2.58), the isoperimetric inequality and |𝜕𝑒𝑥𝑡 Int#∗ 𝛾| ≤ |𝛾| we
have

𝑍#∗
Int#∗ 𝛾

𝑍#
Int#∗ 𝛾

≤ 𝑒𝛽𝜌0∕4| Int#∗ 𝛾|
(𝑑−1)∕𝑑+3|𝜕𝑒𝑥𝑡 Int#∗ 𝛾|

≤ 𝑒(
1
4 𝛽𝜌0+3)|𝜕𝑒𝑥𝑡 Int#∗ 𝛾| ≤ 𝑒(

1
4 𝛽𝜌0+3)|𝛾|. (2.60)
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Therefore for 𝑧 ∈ 𝑈𝛽 and according to (2.29) of Lemma 18 and the previous bound on the ratio
of partition functions we have

𝑤̂#
𝛾 ≤ 𝑒−(𝛽𝜌0−2)|𝛾|𝑒(

1
4 𝛽𝜌0+3)|𝛾|

≤ 𝑒−(
3
4 𝛽𝜌0−5)|𝛾| ≤ 𝑒−𝜏|𝛾|

and as a consequence the weight 𝑤̂#
𝛾 is 𝜏-stable.

Let us prove that (2.37) holds for a contour 𝛾 of class 𝑛+1. Similar to the proof of (2.35) we
consider only the case when (𝜓̂#∗

𝑛 − 𝜓̂#
𝑛 )𝛿

𝑑
| Int#∗ 𝛾|

1∕𝑑 ≤ 𝛽𝜌0∕4. By a direct computation
𝜕𝑤̂#

𝛾

𝜕𝑧
=
(

−
|𝛾|
𝑍#

𝜕𝑍#
𝜕𝑧

𝐼𝛾 +
𝜕𝐼𝛾
𝜕𝑧

)

(

𝑍−|𝛾|
# 𝜅

𝑍#∗
Int#∗ 𝛾

𝑍#
Int#∗ 𝛾

)

+ 𝜕
𝜕𝑧

(

𝜅
𝑍#∗

Int#∗ 𝛾

𝑍#
Int#∗ 𝛾

)

𝑍−|𝛾|
# 𝐼𝛾 .

The first term of the derivative can be bounded in a similar way as in (2.48) since 𝑧 ∈ 𝑈𝛽
and using the inequalities in Lemma 18 and inequality (2.60) that controls the ratio of partition
function we have

|

|

|

|

|

−
|𝛾|
𝑍#

𝜕𝑍#
𝜕𝑧

𝐼𝛾 +
𝜕𝐼𝛾
𝜕𝑧

|

|

|

|

|

(

𝑍−|𝛾|
# 𝜅

𝑍#∗
Int#∗ 𝛾

𝑍#
Int#∗ 𝛾

)

≤ 𝐶1(𝛽)|𝛾|𝑒−𝜏|𝛾|. (2.61)

The second term that appears will yield the following bound
𝜕𝜅
𝜕𝑧
𝑍−|𝛾|

# 𝐼𝛾
𝑍#∗

Int#∗ 𝛾

𝑍#
Int#∗ 𝛾

≤
|

|

|

|

𝜕𝜅
𝜕𝑧

|

|

|

|

𝑒−𝜏|𝛾|

and regarding the derivative of 𝜅 with respect to 𝑧 we have
|

|

|

|

𝜕𝜅
𝜕𝑧

|

|

|

|

≤

(

|

|

|

|

|

𝜕𝜓̂#
𝑛

𝜕𝑧

|

|

|

|

|

+
|

|

|

|

|

𝜕𝜓̂#∗
𝑛

𝜕𝑧

|

|

|

|

|

)

𝛿𝑑| Int#∗ 𝛾|
1
𝑑
‖𝜅′‖.

Since all the contours appearing in Φ̂#
𝑛 are at most of class 𝑛, by the induction hypothesis, all these

weights are 𝜏-stable and satisfies the bound (2.37) on the derivatives. Therefore using Theorem
17 we have

|

|

|

|

|

𝜕𝑓 #
𝑛

𝜕𝑧

|

|

|

|

|

≤
𝐷𝜂(𝜏, 𝑙0)

𝛿𝑑
≤ 1. (2.62)

Using equation (2.44) and inequalities (2.47) and (2.62) we have
𝜕𝜓̂#

𝑛

𝜕𝑧
= 1
𝛿𝑑𝑍#

𝜕𝑍#
𝜕𝑧

+
𝜕𝑓 #

𝑛

𝜕𝑧

= 1
𝛿𝑑

(1
𝑧
𝐸𝑄#

0
(𝑁𝑇0) − 𝛿

𝑑
)

+
𝜕𝑓 #

𝑛

𝜕𝑧
|

|

|

|

|

𝜕𝜓̂#
𝑛

𝜕𝑧

|

|

|

|

|

≤

(

− ln(𝑧𝛿𝑑)
𝑧𝛿𝑧

+
𝛽𝐸(1)
𝑧𝛿𝑑

+ 𝑒 + 1

)

+
|

|

|

|

|

𝜕𝑓 #
𝑛

𝜕𝑧

|

|

|

|

|

≤ 1
𝛿𝑑
𝐶1(𝛽).
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As a consequence we obtain that
|

|

|

|

𝜕𝜅
𝜕𝑧

|

|

|

|

≤ 2𝐶1(𝛽)| Int#∗ 𝛾|
1
𝑑
‖𝜅′‖.

When we introduce the isoperimetric inequality we have
|

|

|

|

𝜕𝜅
𝜕𝑧

|

|

|

|

≤ 2𝐶1‖𝜅
′
‖|𝜕𝑒𝑥𝑡 Int#∗ 𝛾|

1
𝑑−1 < 2𝐶1‖𝜅

′
‖|𝛾|𝑑∕𝑑−1. (2.63)

Lastly, for the derivative of the ratio of partition functions we have
|

|

|

|

|

|

𝜕
𝜕𝑧

𝑍#∗
Int#∗ 𝛾

𝑍#
Int#∗ 𝛾

|

|

|

|

|

|

≤
|

|

|

|

|

|

𝜕𝑍#∗
Int#∗ 𝛾∕𝜕𝑧
𝑍#

Int#∗ 𝛾

|

|

|

|

|

|

+
|

|

|

|

|

|

𝜕𝑍#
Int#∗ 𝛾∕𝜕𝑧
𝑍#

Int#∗ 𝛾

|

|

|

|

|

|

𝑍#∗
Int#∗ 𝛾

𝑍#
Int#∗ 𝛾

.

We will proceed in the same way, and consider only the case where (2.58) is verified. Since
| Int#∗ 𝛾| ≤ 𝑛 + 1 we can use (2.39) and (2.57) to obtain

|

|

|

|

|

|

𝜕𝑍#∗
Int#∗ 𝛾∕𝜕𝑧
𝑍#

Int#∗ 𝛾

|

|

|

|

|

|

≤
(

𝐶1| Int#∗ 𝛾| + 𝐶2|𝜕𝑒𝑥𝑡 Int#∗ 𝛾|
)

𝑒(𝜓̂𝑛−𝜓̂
#
𝑛 )𝛿

𝑑
| Int#∗ 𝛾|+3|𝜕𝑒𝑥𝑡 Int#∗ 𝛾|

≤
(

𝐶1| Int#∗ 𝛾| + 𝐶2|𝜕𝑒𝑥𝑡 Int#∗ 𝛾|
)

𝑒𝛽𝜌0∕4| Int#∗ 𝛾|
(𝑑−1)∕𝑑+3|𝜕𝑒𝑥𝑡 Int#∗ 𝛾|

and this for any #∗ ∈ {0, 1}. Furthermore, by introducing the isoperimetric inequality and
|𝜕𝑒𝑥𝑡 Int#∗ 𝛾| ≤ |𝛾| we have

|

|

|

|

|

|

𝜕𝑍#∗
Int#∗ 𝛾∕𝜕𝑧
𝑍#

Int#∗ 𝛾

|

|

|

|

|

|

≤
(

𝐶1|𝛾|
𝑑∕𝑑−1 + 𝐶2|𝛾|

)

𝑒(1∕4𝛽𝜌0+3)|𝛾|. (2.64)

As a result, by combining (2.64) and (2.60) we have
|

|

|

|

|

|

𝜕
𝜕𝑧

𝑍#∗
Int#∗ 𝛾

𝑍#
Int#∗ 𝛾

|

|

|

|

|

|

≤ 2
(

𝐶1 + 𝐶2
)

|𝛾|𝑑∕(𝑑−1)𝑒(1∕2𝛽𝜌0+6)|𝛾|.

Therefore when we introduce inequality (2.29) of Lemme 18 we obtain

𝜅𝑍−|𝛾|
# 𝐼𝛾

|

|

|

|

|

|

𝜕
𝜕𝑧

𝑍#∗
Int#∗ 𝛾

𝑍#
Int#∗ 𝛾

|

|

|

|

|

|

≤ 2
(

𝐶1 + 𝐶2
)

|𝛾|𝑑∕(𝑑−1)𝑒−𝜏|𝛾|. (2.65)

When we combine the inequalities (2.61), (2.63) and (2.65) we get the desired upper bound,
|

|

|

|

|

|

𝜕𝑤̂#
𝛾

𝜕𝑧

|

|

|

|

|

|

≤
(

(3 + 2‖𝜅′‖)𝐶1 + 2𝐶2
)

|𝛾|𝑑∕(𝑑−1)𝑒−𝜏|𝛾|.

To finish the proof let us show that (2.36) holds at the order 𝑛 + 1. Up to this point, we have
proved that the truncated weights of class at most 𝑛 + 1 are 𝜏-stable. Therefore we can apply
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Lemma 19. Let 𝛾 of class 𝑛+ 1 if we have 𝑎#𝑛+1𝛿𝑑| Int 𝛾|1∕𝑑 ≤ 𝛽𝜌0
16 then by definition of truncated

weights we would have 𝑤̂#
𝛾 = 𝑤#

𝛾 . Now we consider a contour 𝛾 of class 𝑘 ≤ 𝑛, according to
Lemma 19 and (2.42) we have

𝑎#𝑘𝛿
𝑑
| Int 𝛾|1∕𝑑 = 𝑎#𝑛+1𝛿

𝑑
| Int 𝛾|1∕𝑑 + (𝑎#𝑘 − 𝑎

#
𝑛+1)𝛿

𝑑
| Int 𝛾|1∕𝑑

≤ 𝑎#𝑛+1𝛿
𝑑
| Int 𝛾|1∕𝑑 + 2𝑘1∕𝑑𝑒−𝜏𝑘

𝑑−1∕𝑑∕2

≤ 𝑎#𝑛+1𝛿
𝑑
| Int 𝛾|1∕𝑑 +

𝛽𝜌0
16

.

Therefore if 𝑎#𝑛+1𝛿𝑑| Int 𝛾|1∕𝑑 ≤ 𝛽𝜌0∕16 it implies that 𝑎#𝑘𝛿𝑑| Int 𝛾|1∕𝑑 ≤ 𝛽𝜌0∕8 which in turn would
imply 𝑤̂#

𝛾 = 𝑤#
𝛾 by definition of the truncated weights.

The consequence of the key proposition is that the truncated weights verify the condition of
Theorem 17 and therefore we can write the truncated pressures 𝜓̂# using a cluster expansion. In
the following lemma, we prove under some assumption that the pressure of the system does not
depend on the boundary condition # we impose.
Lemma 20. Let𝐻 be a saturated interaction such that𝐸0 is stable with has a finite range𝑅 > 0,
and that there is 𝐶 > 0 such that 𝐸0 ≤ 𝐶(1 +𝑁𝑇0⊕𝐵(0,𝑅)(𝜔)

2). In addition, we assume that the
truncated weights associated to the model are 𝜏-stable, with 𝜏 = 1

2
𝛽𝜌0 − 8 and 𝜌0 > 0, then the

pressure is independent from the boundary conditions (#). More specifically, for 𝛽 large enough
we have

𝜓 = 𝜓̂ = max{𝜓̂ (1), 𝜓̂ (0)}. (2.66)
Proof. Before we begin, we recall that the pressure for each boundary condition is given by

𝜓# ∶= lim
𝑛→+∞

ln𝑍#
Λ𝑛

𝛿𝑑|Λ𝑛|
.

We denote by 𝑝 =
⌈

𝐿
𝛿

⌉

, 𝑃𝑛 = Λ𝑛 ⧵ Λ𝑛−𝑝 and 𝐵𝑛 = Λ𝑛−𝑝 ⧵ Λ𝑛−2𝑝. Since 𝐸 has a finite range
𝑅 > 0 with 𝑅 < 𝐿, where 𝐿 is the saturation distance, we have

𝑍Λ𝑛 = ∫ 𝑒−𝛽𝐸Λ𝑛+𝑝 (𝜔)Π𝑧
Λ̂𝑛
(𝑑𝜔).

Furthermore we denote by 𝐹𝑛 the event
𝐹𝑛 =

⋂

𝑖∈𝑃𝑛∪𝐵𝑛

{𝑁𝑇𝑖(𝜔) = 1} ∩
⋂

𝑗∈𝐵𝑛−2𝑝∪𝑃𝑛−2𝑝

{𝑁𝑇𝑗 (𝜔) ≥ 1}.

For any𝜔 ∈ 𝐹𝑛 we have saturation for the tiles in𝐵𝑛 and 𝑃𝑛−2𝑝 and with it independence between
the configurations in the bulk Λ𝑛−2𝑝 and in the boundary 𝐵𝑛 ∪ 𝑃𝑛. As a consequence we obtain
the following

𝑍Λ𝑛 ≥ ∫ 𝑒−𝛽(𝐸Λ𝑛+𝑝⧵Λ𝑛−𝑝+𝐸𝐵𝑛 )𝑒−𝛽(𝐸𝑃𝑛−2𝑝+𝐸Λ𝑛−3𝑝
)
1𝐹𝑛(𝜔)Π

𝑧
Λ̂𝑛
(𝑑𝜔)

≥ 𝑍(1)
Λ𝑛−2𝑝 ∫ 𝑒−𝛽(𝐸Λ𝑛+𝑝⧵Λ𝑛−𝑝+𝐸𝐵𝑛 )1𝐹𝑛(𝜔)Π

𝑧
𝐵𝑛∪𝑃𝑛

(𝑑𝜔).
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Since 𝜔 ∈ 𝐹𝑛 we know that for any 𝑖 ∈ Λ𝑛+𝑝 ⧵ Λ𝑛−𝑝 that

𝑁𝑇𝑖⊕𝐵(0,𝑅)(𝜔) ≤ #{𝑗 ∈ Z𝑑 , 𝑇𝑖 ∩ 𝑇𝑗 +⊕𝐵(0, 𝑅) ≠ ∅}

≤
𝜆(𝐵(0, 𝑅 +

√

𝑑𝛿))
𝛿𝑑

.

As a result we have
𝐸Λ𝑛+𝑝⧵Λ𝑛−𝑝 ≤

∑

𝑖∈Λ𝑛+𝑝⧵Λ𝑛−𝑝

𝐶(1 +𝑁𝑇𝑖⊕𝐵(0,𝑅)(𝜔))

≤ 𝐶

(

1 +
𝜆(𝐵(0, 𝑅 +

√

𝑑𝛿))
𝛿𝑑

)

|Λ𝑛+𝑝 ⧵ Λ𝑛−𝑝|.

Furthermore we have for 𝜔 ∈ 𝐹𝑛

𝐸𝐵𝑛(𝜔) = 𝐸(1)|𝐵𝑛|.

Consequently, there is a constant 𝑐 > 0 such that

∫ 𝑒−𝛽(𝐸Λ𝑛+𝑝⧵Λ𝑛−𝑝+𝐸𝐵𝑛 )1𝐹𝑛(𝜔)Π
𝑧
𝐵𝑛∪𝑃𝑛

(𝑑𝜔) ≥ (𝑧𝛿𝑑𝑒−(𝑧𝛿𝑑+𝛽𝑐))|Λ𝑛+𝑝⧵Λ𝑛−2𝑝|.

By piecing everything together we obtain

ln𝑍Λ𝑛

𝛿𝑑|Λ𝑛|
≥

|Λ𝑛+𝑝 ⧵ Λ𝑛−2𝑝|
|Λ𝑛|

ln(𝑧𝛿𝑑𝑒−(𝑧𝛿𝑑+𝛽𝑐))
𝛿𝑑

+
|Λ𝑛−2𝑝|
|Λ𝑛|

ln𝑍Λ(1)
𝑛−2𝑝

𝛿𝑑|Λ𝑛−2𝑝|

and therefore we have 𝜓 ≥ 𝜓 (1). Now let us consider the event 𝐸𝑛 defined as
𝐸𝑛 =

⋂

𝑖∈𝐵𝑛∪𝑃𝑛

{𝑁𝑇𝑖(𝜔) = 1} ∩
⋂

𝑗∈Λ𝑛−2𝑝⧵Λ𝑛−5𝑝

{𝑁𝑇𝑗 (𝜔) = 0}.

For any configuration 𝜔 ∈ 𝐸𝑛 the tiles in 𝑃𝑛−3𝑝 are saturated by the empty space and we retrieve
the empty boundary condition on Λ𝑛−3𝑝. Therefore we have

𝑍(1)
Λ𝑛

≥ ∫ 𝑒−𝛽(𝐸𝑃𝑛+𝐸Λ𝑛−𝑝⧵Λ𝑛−3𝑝
)𝑒−𝛽𝐸Λ𝑛−4𝑝1𝐸𝑛(𝜔)Π

𝑧
Λ̂𝑛
(𝑑𝜔)

≥ 𝑍(0)
Λ𝑛−3𝑝 ∫ 𝑒−𝛽(𝐸𝑃𝑛+𝐸Λ𝑛−𝑝⧵Λ𝑛−3𝑝

)
1𝐸𝑛(𝜔)Π

𝑧
Λ𝑛⧵Λ𝑛−3𝑝

(𝑑𝜔).

With similar argument we can show that there exists 𝑐 > 0 such that

∫ 𝑒−𝛽(𝐸𝑃𝑛+𝐸Λ𝑛−𝑝⧵Λ𝑛−3𝑝
)
1𝐸𝑛(𝜔)Π

𝑧
Λ𝑛⧵Λ𝑛−3𝑝

(𝑑𝜔) ≥ (𝑧𝛿𝑑𝑒−(𝑧𝛿𝑑+𝛽𝑐))|Λ𝑛⧵Λ𝑛−3𝑝|.
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Therefore we have 𝜓 (1) ≥ 𝜓 (0). Finally, let us recall that (0)Λ𝑛 =
⋂

𝑖∈𝑃𝑛∪𝐵𝑛
{𝑁𝑇𝑖(𝜔) = 0} and

therefore

𝑍(0)
Λ𝑛

= ∫ 𝑒−𝛽𝐸Λ𝑛−𝑝1(0)Λ𝑛
Π𝑧
Λ̂𝑛
(𝑑𝜔)

= 𝑒−𝑧𝛿
𝑑
|𝑃𝑛∪𝐵𝑛|

∫ 𝑒−𝛽𝐻Π𝑧
Λ̂𝑛−2𝑝

(𝑑𝜔)

= 𝑒−𝑧𝛿
𝑑
|𝑃𝑛∪𝐵𝑛|𝑍Λ𝑛−𝑝 .

As a result, we have 𝜓 (0) = 𝜓 and therefore
𝜓 = 𝜓 (1) = 𝜓 (0). (2.67)

Since the truncated weights are 𝜏-stable, by Lemma 19 for any 𝑘 and 𝑛 ≥ 𝑘 we have

|𝜓̂#
𝑛 − 𝜓̂

#
𝑘 | ≤

1
𝛿𝑑
𝑒−

𝜏
2𝑘

𝑑−1∕𝑑 and |𝜓̂𝑛 − 𝜓̂𝑘| ≤
1
𝛿𝑑
𝑒−

𝜏
2𝑘

𝑑−1∕𝑑
. (2.68)

By taking the limit 𝑛→ +∞ we obtain

|𝜓̂# − 𝜓̂#
𝑘 | ≤

1
𝛿𝑑
𝑒−

𝜏
2𝑘

𝑑−1∕𝑑 and |𝜓̂ − 𝜓̂𝑘| ≤
1
𝛿𝑑
𝑒−

𝜏
2𝑘

𝑑−1∕𝑑
. (2.69)

Therefore, for any contours 𝛾 of class 𝑘 we have
𝑎#𝑘𝛿

𝑑
| Int 𝛾|1∕𝑑 = 𝑎#𝛿𝑑| Int 𝛾|1∕𝑑 + (𝑎#𝑘 − 𝑎

#)𝛿𝑑| Int 𝛾|1∕𝑑

≤ 𝑎#𝛿𝑑| Int 𝛾|1∕𝑑 + 2𝑘
1
𝑑 𝑒−𝜏𝑘

1∕𝑑∕2.

Thus for 𝛽 large enough such that 2𝑘 1
𝑑 𝑒−𝜏𝑘

1∕𝑑∕2 ≤ 𝛽𝜌0
16 , we obtain

𝑎#𝑘𝛿
𝑑
| Int 𝛾|1∕𝑑 ≤ 𝑎#𝛿𝑑| Int 𝛾|1∕𝑑 +

𝛽𝜌0
16

.

Consequently, if a contour 𝛾 verify 𝑎#𝛿𝑑| Int 𝛾| 1𝑑 ≤ 𝛽𝜌0
16 , then 𝑤̂#

𝛾 = 𝑤#
𝛾 by definition of the

truncated contours. Therefore when 𝑎# = 0 all the truncated weights are equal to the actual
weight of the model and thus for all Λ ⊂ Z𝑑 we have 𝑍#

Λ = 𝑍#
Λ and thus 𝜓̂# = 𝜓#. Then with

(2.67) we have
𝜓 = 𝜓̂ = max{𝜓̂ (1), 𝜓̂ (0)}.

As a consequence of the previous Lemma 20 we can extract properties of the pressure from
the study of the truncated pressures. The truncated pressure is a way to extend the actual pressure
of the model using cluster expansion.
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2.6 Proofs of Liquid-Gas phase transition theorems

In this section we give the proof of Theorem 11. Since 𝐸(𝑘) = (𝐴𝑘 + 𝐵)1𝑘≥1 with 𝐴 ≥ 0 and
−𝐴 ≤ 𝐵 < +∞ we have that 𝐸 ≥ 0 and 𝐸(1) < +∞. Therefore, we verify the assumptions of
Proposition 13. Thus we have that the truncated weights verify the hypothesis of Theorem 17,
provided that 𝛽 is large enough, and therefore we have

Φ̂#(Λ) = 𝑒𝑓
#𝛿𝑑 |Λ|+Δ#

Λ

where 𝑓 # and Δ#
Λ are 1 in 𝑈𝛽 . Furthermore, according to Theorem 17 we also have
|𝑓 #

| ≤ 𝜂(𝜏, 𝑙0), |Δ#
Λ| ≤ 𝜂(𝜏, 𝑙0)|𝜕𝑒𝑥𝑡Λ| (2.70)

|

|

|

|

|

𝜕𝑓 #

𝜕𝑧

|

|

|

|

|

≤ 𝐷𝜂(𝜏, 𝑙0),
|

|

|

|

|

𝜕Δ#
Λ

𝜕𝑧

|

|

|

|

|

≤ 𝐷𝜂(𝜏, 𝑙0)|𝜕𝑒𝑥𝑡Λ| (2.71)

where 𝜏 = 𝛽𝜌0𝑙0
2 − 8. For 𝑧 ∈ 𝑈𝛽 let us denote by 𝐺 the gap between the two truncated pressures

𝐺(𝑧) ∶= 𝜓̂ (1) − 𝜓̂ (0) = 1
𝛿𝑑

ln
(

𝑍1
𝑍0

)

+ 𝑓 (1) − 𝑓 (0) = 1
𝛿𝑑

ln𝑆(𝑧) + 𝑓 (1) − 𝑓 (0),

where
𝑆(𝑧) =

𝑍1
𝑍0

=
+∞
∑

𝑘=1

(𝑧𝛿𝑑)𝑘

𝑘!
𝑒−𝛽(𝐴𝑘+𝐵) = 𝑒−𝛽𝐵

(

exp(𝑧𝛿𝑑𝑒−𝛽𝐴) − 1
)

.

By definition of 𝑧−𝛽 and 𝑧+𝛽 in (2.2) and by using (2.70), we have for sufficiently large 𝛽

𝐺(𝑧−𝛽 ) ≤ − 2
𝛿𝑑

+ 2𝜂(𝜏, 𝑙0) < 0

𝐺(𝑧+𝛽 ) ≥
2
𝛿𝑑

− 2𝜂(𝜏, 𝑙0) > 0.

By direct computation and using (2.71) we have
𝜕𝐺
𝜕𝑧

(𝑧) =
𝑒−𝛽(𝐴+𝐵) exp(𝑧𝛿𝑑𝑒−𝛽𝐴)
𝑒−𝛽𝐵(exp(𝑧𝛿𝑑𝑒−𝛽𝐴) − 1)

+
𝜕𝑓 (1)

𝜕𝑧
−
𝜕𝑓 (0)

𝜕𝑧

≥ 𝑒−𝛽𝐴

1 − exp(−𝑧𝛿𝑑𝑒−𝛽𝐴)
− 2𝐷𝜂(𝜏, 𝑙0)

≥ 𝑒−𝛽𝐴

1 − exp(−𝑧+𝛽 𝛿
𝑑𝑒−𝛽𝐴)

− 2𝐷𝜂(𝜏, 𝑙0)

≥ 𝑒−𝛽(𝐴+𝐵)−2 + 𝑒−𝛽𝐴 − 4𝐷𝑒−
𝛽𝜌0𝑙0

6 + 8
3 .

Since we assumed that either 𝐴 < 𝜌0𝑙0
6 or 𝐴 + 𝐵 < 𝜌0𝑙0

6 , for sufficiently large 𝛽 and any 𝑧 ∈ 𝑈𝛽
we have

𝜕𝐺
𝜕𝑧

(𝑧) > 0.
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This ensures the existence of an unique 𝑧𝑐𝛽 ∈ 𝑈𝛽 such that

𝜓̂ =

{

𝜓̂ (0) when 𝑧 ∈ (𝑧−𝛽 , 𝑧
𝑐
𝛽]

𝜓̂ (1) when 𝑧 ∈ [𝑧𝑐𝛽 , 𝑧
+
𝛽 )

and also for all 𝑧 ∈ 𝑈𝛽 (and thus also for 𝑧 = 𝑧𝑐𝛽) we have

𝜕𝜓̂ (1)

𝜕𝑧
(𝑧) >

𝜕𝜓̂ (0)

𝜕𝑧
(𝑧). (2.72)

Therefore by Lemma 20 and (2.72) we have
𝜕𝜓
𝜕𝑧+

(𝛽, 𝑧𝑐) >
𝜕𝜓
𝜕𝑧−

(𝛽, 𝑧𝑐).

We denote Λ𝑛 = [−𝑛, 𝑛]𝑑 ∩ Z𝑑 for 𝑛 ∈ N∗, we know by direct computation that
𝜕 ln𝑍#

Λ𝑛
𝜕𝑧

= −𝛿𝑑|Λ𝑛| +
1
𝑧
𝐸𝑃 #

Λ𝑛
(𝑁Λ̂𝑛

). (2.73)

For 𝛽 large enough and 𝑧 = 𝑧𝑐𝛽 we know that 𝑎(0) = 𝑎(1) = 0 and therefore for any Λ ⊂ Z𝑑 we
have 𝑍#

Λ = 𝑍#
Λ and consequently

𝜕 ln𝑍#
Λ𝑛

𝜕𝑧
=
𝜕 ln𝑍#

Λ𝑛
𝜕𝑧

=
𝜕𝜓̂#

𝜕𝑧
𝛿𝑑|Λ𝑛| +

𝜕Δ#
Λ𝑛

𝜕𝑧
. (2.74)

Therefore by combining (2.73) and (2.74) we obtain
𝐸𝑃 #

Λ𝑛
(𝑁Λ̂𝑛

)

𝛿𝑑|Λ𝑛|
= 𝑧 + 𝑧

𝜕𝜓̂#

𝜕𝑧
+ 𝑧
𝛿𝑑|Λ𝑛|

𝜕Δ#
Λ𝑛

𝜕𝑧
.

According to Theorem 17 we know that
|

|

|

|

|

𝜕Δ#
Λ

𝜕𝑧

|

|

|

|

|

≤ 𝐷𝜂(𝜏, 𝑙0)|𝜕𝑒𝑥𝑡Λ| ⇐⇒
1

|Λ𝑛|

𝜕Δ#
Λ𝑛

𝜕𝑧
→
𝑛→∞

0.

Furthermore we know by construction that
𝐸𝑃 #

Λ𝑛
(𝑁Λ̂𝑛

) = 𝐸
𝑃
#
Λ𝑛

(𝑁Λ̂𝑛
)

and since the empirical field is stationary we have
𝐸
𝑃
#
Λ𝑛

(𝑁Λ̂𝑛
)

𝛿𝑑|Λ𝑛|
= 𝐸

𝑃
#
Λ𝑛

(𝑁[0,1]𝑑 ).
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In summary, we obtain that

𝐸
𝑃
#
Λ𝑛

(𝑁[0,1]𝑑 ) = 𝑧 + 𝑧
𝜕𝜓̂#

𝜕𝑧
+ 𝑧
𝛿𝑑|Λ𝑛|

𝜕Δ#
Λ𝑛

𝜕𝑧
. (2.75)

According to Proposition 11 both empirical fields (𝑃
#
Λ𝑛
)𝑛∈N exhibit at least one accumulation

point 𝑃 # that is a Gibbs measure. Therefore by local convergence and by taking the limit for the
correct sub-sequence in (2.75) we have

𝜌(𝑃 #) = 𝑧 + 𝑧𝛽
𝜕𝜓#

𝜕𝑧
(𝑧𝑐𝛽)

and therefore using (2.72) we have that 𝜌(𝑃 (1)) > 𝜌(𝑃 (0)).

Under the assumption of Theorem 11, we have proved the existence of a Liquid-Gas phase
transition at low temperature since 𝛽 needs to be large enough. We have demonstrated the exis-
tence of the critical activity 𝑧𝑐𝛽 at which this phenomenon occurs, although its determination is
theoretical and, in general, we cannot expect to find an explicit expression for this quantity. The
only case where this value is known is for the Area interaction with deterministic radii, where
it is obtained via other methods. In chapter 3, concerning the Quermass interaction and the di-
luted pairwise interaction, although we lack an explicit expression, we are able to elucidate the
asymptotic behaviour of 𝑧𝑐𝛽 as 𝛽 tends to infinity.
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Chapter 3

Application to Quermass and diluted
pairwise interaction

In this chapter, we present two results of liquid-gas phase transition. The first result concerns
the Quermass interaction and the second result is about the diluted pairwise interaction. The
proof of the phase transition theorems exposed in this chapter is an application of the results
obtained in Chapter 2. For each type of interaction we are giving conditions for saturation and
for them to verify Peierls condition. We are also going to investigate the behaviour of the critical
activity 𝑧𝑐𝛽 at which the phase transition happens as 𝛽 tends to infinity. Lastly, we will present
the perspectives on the work presented in this thesis.

3.1 Quermass interaction

The Quermass interaction in R𝑑 are morphological interactions whose Hamiltonian is given by
a linear combination of the 𝑑 + 1 Minkowski functionals on the halo of a configuration. It is a
generalisation of the Area interaction and in fact by Hadwiger’s characterisation Theorem [20] we
know that it encompasses any functional 𝐹 on finite union of convex compact spaces, continuous
for the Haussdorff metric, invariant under isometric transformations and additive (i.e. 𝐹 (𝐴∪𝐵) =
𝐹 (𝐴) +𝐹 (𝐵) −𝐹 (𝐴∩𝐵)). This model was introduced by Kendall, Van Lieshout, and Baddeley
[23], and for bounded random radii, they have proved that the infinite volume process exists
under some conditions on the Minkowski functionals to ensure the stability of the interaction.
This result of existence has been extended by Dereudre in dimension 2 for unbounded random
radii with some assumptions on the tail of the distribution [5]. The Gibbs point process associated
to the Quermass model is a marked point process on R𝑑 and 𝑆 = [𝑅0, 𝑅1] (with 𝑅1 ≥ 𝑅0 > 0
). In this case, for the Hamiltonian, we consider only linear combination of the volume  , the
surface measure  and the Euler-Poincaré characteristic 𝜒 (in dimension 𝑑 = 2). This restriction
is due to statistical physics considerations since we need the stability of the energy.
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Definition 25. Let 𝜃1 ∈ R and 𝜃2 ≥ 0. The energy of a finite configuration 𝜔 ∈ Ω𝑓 is given by

𝐻(𝜔) =

{

(𝐿(𝜔)) + 𝜃1(𝐿(𝜔)) − 𝜃2𝜒(𝐿(𝜔)) if (𝑑 = 2)
(𝐿(𝜔)) + 𝜃1(𝐿(𝜔)) if (𝑑 ≥ 3)

,

where
𝐿(𝜔) =

⋃

(𝑥,𝑅)∈𝜔
𝐵(𝑥,𝑅),

(𝐿(𝜔)) is the volume of 𝐿(𝜔) defined as the Lebesgue measure of 𝐿(𝜔), (𝐿(𝜔)) is the surface
of𝐿(𝜔) defined as the 𝑑−1-dimensional Hausdorff measure of the boundary 𝜕𝐿(𝜔) and 𝜒(𝐿(𝜔))
is the Euler-Poincaré characteristic of 𝐿(𝜔) defined as the difference between the number of
connected components and the number of holes in 𝐿(𝜔) (in dimension 𝑑 = 2).

The energy is parametrized with two parameters 𝜃1 and 𝜃2. We discuss below why we impose
𝜃2 to be non negative. With this choice of parameters the energy is stable which means that there
exists a constant 𝐶 ≥ 0 such that for any finite configuration 𝜔 ∈ Ω𝑓 ,

𝐻(𝜔) ≥ −𝐶𝑁(𝜔).

The volume and the surface are clearly stable since the radii are uniformly bounded. The Euler-
Poincaré characteristic is more delicate to study. In dimension 2, it is shown by Kendall et al.
[23] that for the union of N closed balls, the number of holes is bounded above by 2𝑁 − 5, and
the number of connected components is clearly bounded by 𝑁 . Therefore the Euler-Poincaré
characteristic is stable for any parameter 𝜃2 ∈ R. In higher dimension 𝑑 ≥ 3, for some configu-
rations, the maximum number of holes is of order 𝑁2 and thus the Euler-Poincaré characteristic
is not stable if 𝜃2 < 0. More generally, the stability of this statistic is not obvious even if 𝜃2 is
strictly positive. Therefore the existence of the infinite volume Gibbs point process is not well
established. It is for this reason that we impose 𝜃2 = 0 in the case 𝑑 ≥ 3.

Since the radii are uniformly bounded, we can show that the interaction has a finite range
that is equal to 2𝑅1. Indeed, using additivity of the Minkowski functionals we have for any
configuration 𝜔 ∈ Ω and any subset Δ ∈ B𝑏(R𝑑)

𝐹 (𝐿(𝜔)) ∶= ( + 𝜃1 − 𝜃2𝜒)(𝐿(𝜔))
= 𝐹 (𝐿(𝜔Δ)) + 𝐹 (𝐿(𝜔Δ𝑐 )) − 𝐹 (𝐿(𝜔Δ) ∩ 𝐿(𝜔Δ𝑐 ))
= 𝐹 (𝐿(𝜔Δ)) + 𝐹 (𝐿(𝜔Δ𝑐 )) − 𝐹 (𝐿(𝜔Δ) ∩ 𝐿(𝜔Δ⊕𝐵(0,2𝑅1))).

As a consequence we have
𝐻Δ(𝜔) = 𝐹 (𝐿(𝜔)) − 𝐹 (𝐿(𝜔Δ𝑐 ))

= 𝐹 (𝐿(𝜔Δ)) − 𝐹 (𝐿(𝜔Δ) ∩ 𝐿(𝜔Δ⊕𝐵(0,2𝑅1)))

= 𝐹 (𝐿(𝜔Δ⊕𝐵(0,2𝑅1))) − 𝐹 (𝐿(𝜔Δ⊕𝐵(0,2𝑅1)∖Δ)) = 𝐻Δ(𝜔Δ⊕𝐵(0,2𝑅1)).
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In summary, the Quermass interaction with bounded random radii and parameters 𝜃1 ∈ R and
𝜃2 ≥ 0 is stable and has a finite range. Therefore, the existence of the infinite Gibbs point process
associated to this interaction is a consequence of Theorem 1. Concerning the non-uniqueness of
such point process, it involves one or two critical parameters 𝜃∗1 and 𝜃∗2 (𝜃1), depending on the
dimension, with 𝜃∗1 = 𝑅0

(𝐵(0,1))
(𝐵(0,1)) =

𝑅0
𝑑

and for 𝜃1 > −𝜃∗1 we have an expression of 𝜃∗2 (𝜃1) which
is given further down the line in equation (3.4).
Theorem 21. Let 𝜃1, 𝜃2 be two parameters such that 𝜃1 > −𝜃∗1 and 0 ≤ 𝜃2 < 𝜃∗2 (𝜃1) (recall that
𝜃2 = 0 if 𝑑 ≥ 3). Then there exists 𝛽𝑐(𝜃1, 𝜃2) > 0 such that for all 𝛽 > 𝛽𝑐(𝜃1, 𝜃2), there exists
𝑧𝑐𝛽 > 0 for which a liquid-gas phase transition occurs. Furthermore, we know that |𝑧𝑐𝛽 − 𝛽| tends
to zero exponentially fast when 𝛽 tends to infinity.

In the rest of this section, we will demonstrate the phase transition via the saturated interaction
setting. So first, we will explicit the coarse graining and quickly prove some of the basic property
of 𝐸0 and 𝐸. Then we prove that this interaction verify the Peierls-like condition. Finally, we
will finish by studying the asymptotic behaviour of the critical activity 𝑧𝑐𝛽 .

3.1.1 Coarse graining for the Quermass interaction

We call a facet 𝐹 any non-empty intersection of closed tiles (𝑇 𝑖)𝑖∈Z. Clearly the dimension of a
facet can be any integer between 0 and 𝑑. We denote by  the set of all facets and 0 ∶= {𝐹 ∈
 , 𝐹 ∩ 𝑇0 ≠ ∅} the set of facets that touches the tile 𝑇0.
Proposition 14. The coarse graining for the Quermass interaction is given by

∀𝜔 ∈ Ω𝑓 , 𝐸0(𝜔) = (𝐿(𝜔) ∩ 𝑇0) + 𝜃10(𝐿(𝜔)) − 𝜃2𝜒0(𝐿(𝜔)), (3.1)
where

0(𝐴) =
𝑑
∑

𝑘=𝑑−1

∑

𝐹∈0
dim(𝐹 )=𝑘

(−1)𝑑−𝑘(𝐴 ∩ 𝐹 )

𝜒0(𝐴) =
𝑑
∑

𝑘=0

∑

𝐹∈0
dim(𝐹 )=𝑘

(−1)𝑑−𝑘𝜒(𝐴 ∩ 𝐹 ).

Furthermore, we have that𝐸0 has a finite range𝑅1 and there is 𝐶 > 0 such that for any 𝜔 ∈ Ω𝑓 ,

|𝐸0(𝜔)| ≤ 𝐶(1 +𝑁𝑇0⊕𝐵(0,𝑅1)(𝜔)).

Proof. As a consequence of the additivity of the Minkowski functionals we have that
∑

𝑖∈Z𝑑
𝐸𝑖(𝜔) = 𝐻(𝜔).

This ensures that 𝐸0 is a proper coarse graining of the Hamiltonian of the Quermass interaction.
It is clear that 𝐸0(𝜔) = 𝐸0(𝜔𝑇0⊕𝐵(0,𝑅1)) since for any marked point 𝑥, 𝑟 ∈ 𝜔(𝑇0⊕𝐵(0,𝑅1))𝑐 and any
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facet 𝐹 ∈ 0 we have 𝐵(𝑥, 𝑟) ∩ 𝐹 = ∅. Therefore 𝐸0 has a range of 𝑅1. Finally, we prove that
𝐸0 is at most linear. First of all the volume contribution is bounded by the volume of the tile.
Now for 0 we have that for any facet 𝐹 ∈ 0 of dimension 𝑑 or 𝑑 − 1 and any configuration 𝜔

(𝐿(𝜔) ∩ 𝐹 ) ≤ 𝑁𝑇0⊕𝐵(0,𝑅1)(𝜔)(𝐵(0, 𝑅1))

and therefore there is 𝐶𝑆 > 0 such that

|0(𝐿(𝜔))| ≤ 𝐶𝑆𝑁𝑇0⊕𝐵(0,𝑅1)(𝜔)

Now we consider that we are in dimension 2 and we look into the Euler-Poincaré characteristic. If
the facet𝐹 is of dimension 0 we have that𝜒(𝐿(𝜔)∩𝐹 ) ∈ {0, 1}. Then if𝐹 is of dimension 1, then
𝐿(𝜔) ∩ 𝐹 has no hole then 𝜒(𝐿(𝜔) ∩ 𝐹 ) = 𝑁𝑐𝑐(𝐿(𝜔) ∩ 𝐹 ) ≤ 𝑁𝑇0⊕𝐵(0,𝑅1)(𝜔). Finally, if 𝐹 = 𝑇0
Kendall et al. [23] has proved that the number of holes is at most linear. As a consequence, there
is 𝐶𝜒 > 0 such that

|𝜒0(𝐿(𝜔))| ≤ 𝐶𝜒 (1 +𝑁𝑇0⊕𝐵(0,𝑅1)(𝜔)).

Furthermore, we can observe that 𝑆𝑖(𝑇 𝑖) = 0 and 𝜒𝑖(𝑇 𝑖) = 0. This is due to the fact that for
a 𝑑 − 1-dimensional facet 𝐹 , we have (𝐹 ) = 2𝜆(𝑑−1)(𝐹 ) where 𝜆(𝑑−1) is the (𝑑 − 1) Lebesgue
measure. Therefore, for any configuration𝜔 ∈ Ω𝑓 such that 𝑇𝑖 ⊂ 𝐿(𝜔)we have𝐸𝑖(𝜔) = (𝑇𝑖) =
𝛿𝑑 . In the following proposition, we demonstrate that the Quermass interaction is saturated.

Proposition 15. For 𝛿 ≤ 𝑅0
√

𝑑
and 𝐿 > 2𝑅1 +

√

𝑑𝛿 the Quermass interaction is saturated. More
precisely, we have

𝐸(𝑘) ∶= 𝛿𝑑1𝑘≥1 (3.2)
such that

∀𝜔 ∈ Ω0,𝐿,𝛿, 𝐸0(𝜔) = 𝐸(𝑁𝑇0(𝜔)). (3.3)

Proof. First, we begin with the case where 𝜔 ∈ Ω1
0,𝐿,𝛿. We know that there is (𝑥,𝑅) ∈ 𝜔𝑇0 and

by our choice on 𝛿 we have that 𝑇0 ⊂ 𝐵(𝑥,𝑅). Therefore, we have 𝐸0(𝜔) = 𝛿𝑑 = 𝐸(𝑁𝑇0(𝜔)).

Now we consider a configuration 𝜔 ∈ Ω0
0,𝐿,𝛿. With our choice of 𝐿 we know that for any

(𝑥,𝑅) ∈ 𝜔 we have 𝐵(𝑥,𝑅) ∩ 𝑇0 = ∅. Therefore, we have 𝐸0(𝜔) = 0 = 𝐸(0).

We have demonstrated through Proposition 14 and Proposition 15 that under some good
choice of 𝛿 and 𝐿 the Quermass interaction we are studying verifies most of the assumptions of
Theorem 11 with the exception of the Peierls-like condition.
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3.1.2 Peierls condition

In order to demonstrate that the Quermass interaction verify the Peierls condition, we will use a
mix of the tile-by-tile approach and a global approach. Our goal, is to prove that in any contour
we have enough tiles that are entirely covered by the halo in order to compensate any missing
energy due to the surface or Euler-Poincaré characteristic contributions to the energy. A first way
to do so is by using the dominoes. Therefore if we have 𝛿 < 𝑅0

2
√

𝑑
, in each contour 𝛾 and each

configuration 𝜔 that achieves this contour the number of covered tiles is greater than 𝐷(𝛾). In
turn, by Lemma 12 we have that

𝐷(𝛾) ≥ 𝑟0|𝛾|, where 𝑟0 =
1

|𝐵(0, 6𝐿∕𝛿) ∩ Z𝑑|
.

Another way to find such tiles in the contour is by counting the tiles covered by the halo which
are close to the boundary of the halo. Indeed those tiles are guaranteed to be empty otherwise
the boundary would be further away.
Lemma 22. Let 𝑅0 ≥ 2𝛿

√

𝑑 > 0, and let us define 𝜃𝛿1 as

𝜃𝛿1 ∶= inf
𝜔∈Ω𝑓

𝛾∶𝛾∖𝜕−𝛾 (𝐿(𝜔))>0

{ 𝑉𝜔,𝛾,𝛿
𝛾∖𝜕−𝛾 (𝐿(𝜔))

}

and
𝑉𝜔,𝛾,𝛿 ∶= max

{

(𝑇𝐼 ), 𝐼 ⊂ 𝛾∖𝜕−𝛾,∀𝑖 ∈ 𝐼, 𝑇𝑖 ⊂ 𝜕𝐿(𝜔)⊕𝐵(0, 𝑅0) ∩ 𝐿(𝜔)
}

.

We have 𝜃𝛿1 > 0 and 𝜃𝛿1 →
𝛿→0

𝜃∗1 where 𝜃∗1 = 𝑅0
(𝐵(0,1))
(𝐵(0,1)) .

Proof. For any finite configuration 𝜔 ∈ Ω𝑓 and 𝛾 a contour that is created by this configuration
such that 𝛾∖𝜕−𝛾 (𝐿(𝜔)) > 0, we have the following inequalities

𝑉 +
𝜔,𝛾,𝛿 ≥ 𝑉𝜔,𝛾,𝛿 ≥ 𝑉 −

𝜔,𝛾,𝛿

where
𝑉 +
𝜔,𝛾,𝛿 = (𝜕𝐿(𝜔)⊕𝐵(0, 𝑅0) ∩ 𝐿(𝜔) ∩ 𝛾∖𝜕−𝛾)

𝑉 −
𝜔,𝛾,𝛿 = ((𝜕𝐿(𝜔)⊕𝐵(0, 𝑅0 − 𝛿))∖(𝜕𝐿(𝜔)⊕𝐵(0, 𝛿)) ∩ 𝐿(𝜔) ∩ 𝛾𝜕−𝛾).

The boundary of the halo 𝐿(𝜔) inside 𝛾∖𝜕−𝛾 , appearing in the computation of 𝛾∖𝜕−𝛾 (𝐿(𝜔)) , is
the union of spherical caps built via some marked points (𝑥1, 𝑟1),… , (𝑥𝑚, 𝑟𝑚) ∈ 𝜔. We denote
by 𝛼𝑖 ∈ [0, 1] the ratio of the surface of the 𝑖th spherical cap with respect to the total surface of
its sphere. Therefore, by a simple geometrical argument

𝑉 −
𝜔,𝛾,𝛿

𝛾∖𝜕−𝛾 (𝐿(𝜔))
≥ (𝐵(0, 1))

(𝐵(0, 1))

(

∑𝑚
𝑖=1 𝛼𝑖(𝑟

𝑑
𝑖 − (𝑟𝑖 − 𝑅0)𝑑)

∑𝑚
𝑖=1 𝛼𝑖𝑟

𝑑−1
𝑖

− 𝜖𝜔,𝛾 (𝛿)

)

≥ (𝐵(0, 1))
(𝐵(0, 1))

(𝑅0 − 𝜖𝜔,𝛾 (𝛿))
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where

𝜖𝜔,𝛾 (𝛿) =
∑𝑚
𝑖=1 𝛼𝑖(𝑟

𝑑
𝑖 − (𝑟𝑖 − 𝛿)𝑑 + (𝑟𝑖 − 𝑅𝑜 + 𝛿)𝑑 − (𝑟𝑖 − 𝑅0)𝑑)

∑𝑚
𝑖=1 𝛼𝑖𝑟

𝑑−1
𝑖

.

Therefore for any contours 𝛾 and any configuration 𝜔 ∈ Ω𝑓 that achieves this contour we have

lim inf
𝛿→0

𝑉𝜔,𝛾,𝛿
𝛾∖𝜕−𝛾 (𝐿(𝜔))

≥
𝑅0(𝐵(0, 1))
(𝐵(0, 1))

.

Therefore, we obtain that
lim inf
𝛿→0

𝜃𝛿1 ≥ 𝜃∗1 .

Note that for 𝜔 = {(0, 𝑅0)} we have
𝑉 +
𝜔,𝛾,𝛿

𝛾∖𝜕−𝛾 (𝐿(𝜔))
=
𝑅0(𝐵(0, 1))
(𝐵(0, 1))

.

And thus,
𝑅0(𝐵(0, 1))
(𝐵(0, 1))

≥ inf
𝜔∈Ω𝑓

𝛾∶𝛾 (𝐿(𝜔))>0

{

𝑉 +
𝜔,𝛾,𝛿

𝛾∖𝜕−𝛾 (𝐿(𝜔))

}

.

Which in turn implies that
𝜃∗1 ≥ lim sup

𝛿→0
𝜃𝛿1 .

In the following lemma we compare the contribution of the Euler-Poincaré characteristic with
the volume of the core of the contour. Indeed, the only tiles where the energy contribution of the
surface measure or the Euler-Poincaré characteristic is non equal to 0 is for tiles in 𝛾∖𝜕−𝛾 .
Lemma 23. Let 𝛿 ≤ 𝑅0∕2

√

𝑑,𝐿 ≥ 2𝑅1+
√

𝑑𝛿 and 𝑑 = 2. For any contour 𝛾 and any configuration
𝜔 that achieves this contour we have

𝜒𝛾∖𝜕−𝛾 (𝜔) ≤
|𝛾|𝛿𝑑

𝑅𝑑0(𝐵(0, 1))
.

Proof. By definition of the contours and with the conditions on 𝛿 and 𝐿 we have
𝜒𝛾∖𝜕−𝛾 (𝐿(𝜔)) = 𝜒𝛾∖𝜕−𝛾 (𝐿(𝜔𝛾̂ )) ≤ 𝑁𝑐𝑐(𝐿(𝜔𝛾̂ )).

Now the aim is to find for each connected components𝐶 of𝐿(𝜔𝛾̂ ) a single point (𝑥,𝑅) ∈ 𝜔𝛾̂ such
that the ball 𝐵(𝑥,𝑅) ⊂ 𝐶 ∩ 𝛾̂ . Note that a ball 𝐵(𝑥,𝑅) ⊂ 𝐶 is not necessarily included inside the
contour. If there exists such a ball not included in the contour, then there is 𝐴 ⊂ 𝛾𝑐 a connected
component such that 𝐵(𝑥,𝑅) ∩ 𝐴 ≠ ∅. It gives the information that the site 𝑖 ∈ Z𝑑 such that
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𝑥 ∈ 𝑇𝑖 is included inside 𝜕𝑒𝑥𝑡𝐴 and by Lemma 10 for all 𝑗 ∈ 𝜕𝑒𝑥𝑡𝐴 we have 𝜎(𝑗, 𝜔𝜔𝛾̂ ) = 1.
Therefore all balls that are in the tiles corresponding to 𝜕𝑒𝑥𝑡𝐴 belong to the same connected
component of the halo. We choose a site 𝑗 ∈ 𝜕𝑒𝑥𝑡𝐴 such that 𝑑2(𝑗, 𝐴) = ⌈

2𝑅1
𝛿
⌉ and so there

exists (𝑦, 𝑅′) ∈ 𝜔𝑇𝑗 such that 𝐵(𝑦, 𝑅′) ⊂ 𝛾̂ . Therefore we can replace the original representative
of the connected component with one that is more suitable.

With this procedure we have now built, for each connected components 𝐶 of 𝐿(𝜔𝛾̂ ), a single
point (𝑥,𝑅) ∈ 𝜔𝛾̂ such that the ball 𝐵(𝑥,𝑅) ⊂ 𝐶 ∩ 𝛾̂ . We define 𝐼(𝜔𝛾̂ ) as the set of all these
points which represent the connected components of 𝐿(𝜔𝛾̂ ). By construction for any (𝑥,𝑅) ≠
(𝑦, 𝑅′) ∈ 𝐼(𝜔𝛾̂ ), 𝐵(𝑥,𝑅) ∩ 𝐵(𝑦, 𝑅′) = ∅ and therefore we have

𝑁𝑐𝑐(𝜔𝛾̂ ) = |𝐼(𝜔𝛾̂ )| ≤
|𝛾|𝛿𝑑

(𝐵(0, 𝑅0))
.

For the following, we fix 𝐿 = 2𝑅1 +
√

𝑑𝛿, therefore the constant 𝑟0 in Lemma 12 has the
following expression

𝑟0(𝛿) =
1

|

|

|

|

𝐵
(

0, 12𝑅1
𝛿

+ 6
√

𝑑
)

∩ Z𝑑
|

|

|

|

.

Let us consider 𝜃1 > −𝜃∗1 , we define 𝜃∗2 (𝜃1) and 𝜃𝛿2(𝜃1) as

𝜃∗2 (𝜃1) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑟0

(

𝑅0

2
√

𝑑

)

(𝐵(0, 𝑅0)) when 𝜃1 ≥ 0

sup
𝛿∈

]

0, 𝑅0
2
√

𝑑

[

∶𝜃1>−𝜃𝛿1

{

𝑟0(𝛿)(𝐵(0, 𝑅0))(1 +
𝜃1
𝜃𝛿1
)
}

when 𝜃1 < 0
(3.4)

𝜃𝛿2(𝜃1) =

⎧

⎪

⎨

⎪

⎩

𝑟0

(

𝑅0

2
√

𝑑

)

(𝐵(0, 𝑅0)) when 𝜃1 ≥ 0
{

𝑟0(𝛿)(𝐵(0, 𝑅0))(1 +
𝜃1
𝜃𝛿1
)
}

when 𝜃1 < 0
.

Now let us prove that the Quermass for a large class of parameters verify the Peierls conditions.
Proposition 16. Let 𝜃1, 𝜃2 be two parameters such that 𝜃1 > −𝜃∗1 and 0 ≤ 𝜃2 < 𝜃∗2 (𝜃1) (recall
that 𝜃2 = 0 if 𝑑 ≥ 3). Then there is 𝜌0 > 0 such that for any contours 𝛾 and any configuration 𝜔
that achieves this contours we have

𝐸𝛾∖𝜕−𝛾 (𝜔) − 𝐸𝛾∖𝜕−𝛾 (𝜔) ≥ 𝜌0|𝛾| (3.5)
Proof. We detail the proof of Proposition 16 in dimension 2. In higher dimension, the proof
works in the same manner and it is even easier since we assume that 𝜃2 = 0. We know by
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Lemma 22 that for sufficiently small 𝛿 we have 𝜃1 ≥ −𝜃𝛿1 > −𝜃∗1 and 𝜃2 ≤ 𝜃𝛿2(𝜃1) < 𝜃∗2 (𝜃1). In
the case where 𝜃1 < 0 we need to consider a threshold t such that

𝜃2
𝜃𝛿1 + 𝜃1

𝛿𝑑

(𝐵(0, 𝑅0))
< 𝑡 < 1

𝜃1

(

𝜃2𝛿𝑑

(𝐵(0, 𝑅0))
− 𝑟0(𝛿)𝛿𝑑

)

.

We define the quantity 𝜌0 as such

𝜌0 =

⎧

⎪

⎨

⎪

⎩

𝑟0(𝛿)𝛿𝑑 −
𝜃2𝛿𝑑

(𝐵(0,𝑅0))
when 𝜃1 ≥ 0

min
{

(𝜃𝛿1 + 𝜃1)𝑡 −
𝜃2𝛿𝑑

(𝐵(0,𝑅0))
, 𝑟0(𝛿)𝛿𝑑 + 𝜃1𝑡 −

𝜃2𝛿𝑑

(𝐵(0,𝑅0))

}

when 𝜃1 < 0
.

With the conditions on 𝛿 and 𝑡, it guarantees that 𝜌0 > 0. We are going to start with the case
when 𝜃1 < 0. First we define for any contours 𝛾 the core of the contour with the spin equal to
1 as 𝐶1(𝛾) = {𝑖 ∈ 𝛾∖𝜕−𝛾, 𝜎𝑖 = 1}. With the condition 𝑅0 > 2𝛿

√

𝑑 we know that we have a
non negligible amount of empty tiles that are completely covered by the halo. Therefore using
Lemmas 12 and 22 we have the following two lower bounds on the energy of the contour

𝐸𝛾∖𝜕−𝛾 (𝜔) ≥

{

|𝐶1(𝛾)|𝛿𝑑 + 𝑟0|𝛾|𝛿𝑑 + 𝜃1𝛾∖𝜕−𝛾 (𝐿(𝜔)) − 𝜃2𝜒𝛾∖𝜕−𝛾 (𝐿(𝜔))
|𝐶1(𝛾)|𝛿𝑑 + (𝜃𝛿1 + 𝜃1)𝛾∖𝜕−𝛾 (𝐿(𝜔)) − 𝜃2𝜒𝛾∖𝜕−𝛾 (𝐿(𝜔))

≥
⎧

⎪

⎨

⎪

⎩

|𝐶1(𝛾)|𝛿𝑑 + 𝑟0|𝛾|𝛿𝑑 + 𝜃1𝛾∖𝜕−𝛾 (𝐿(𝜔)) − 𝜃2
|𝛾|𝛿𝑑

(𝐵(0,𝑅0))

|𝐶1(𝛾)|𝛿𝑑 + (𝜃𝛿1 + 𝜃1)𝛾∖𝜕−𝛾 (𝐿(𝜔)) − 𝜃2
|𝛾|𝛿𝑑

(𝐵(0,𝑅0))

by Lemma 23.

Depending on the value of the surface inside the contour, one lower bound will be more preferable
than the other. Since 𝜃𝛿1 + 𝜃1 > 0 and given the threshold 𝑡 that verifies our assumption we have

𝐸𝛾∖𝜕−𝛾 (𝜔) ≥
⎧

⎪

⎨

⎪

⎩

|𝐶1(𝛾)|𝛿𝑑 +
(

𝑟0𝛿𝑑 + 𝜃1𝑡 −
𝜃2𝛿𝑑

(𝐵(0,𝑅0))

)

|𝛾| if 𝛾∖𝜕−𝛾 (𝐿(𝜔)) ≤ 𝑡|𝛾|

|𝐶1(𝛾)|𝛿𝑑 + (𝜃𝛿1 + 𝜃1)𝑡|𝛾| − 𝜃2
|𝛾|𝛿𝑑

(𝐵(0,𝑅0))
if 𝛾∖𝜕−𝛾 (𝐿(𝜔)) > 𝑡|𝛾|

.

In either cases, we have the desired lower boundary on the energy of a contour and since |𝐶1(𝛾)|𝛿𝑑 =
𝐸𝛾∖𝜕−𝛾 (𝜔) we obtain

𝐸𝛾∖𝜕−𝛾 (𝜔) − 𝐸𝛾∖𝜕−𝛾 (𝜔) ≥ 𝜌0|𝛾|.

Let us turn to the second case where 𝜃1 ≥ 0. It is even easier since we can simply drop the
contribution of the surface in the energy and therefore we have

𝐸𝛾∖𝜕−𝛾 (𝜔) ≥ |𝐶1(𝛾)|𝛿𝑑 +
(

𝑟0𝛿
𝑑 −

𝜃2𝛿𝑑

(𝐵(0, 𝑅0))

)

|𝛾| = |𝐶1(𝛾)|𝛿𝑑 + 𝜌0|𝛾|.
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3.1.3 Proof of Theorem 21

We know by Proposition 14 and Proposition 16, for theses values of 𝜃1 and 𝜃2, the Quermass
interaction verify the assumption of of Theorem 11. Therefore we have already the proof of the
liquid-gas phase transition. All that is left is to find out the asymptotic behaviour of 𝑧𝑐𝛽 and for
that we need to go back to some details of the proof of Theorem 11. First of all, recall that for
the Quermass interaction we have the following

𝑍1
𝑍0

= 𝑆(𝑧) = 𝑒−𝛽𝛿
𝑑 (𝑒𝑧𝛿𝑑 − 1).

We are going to fix 𝑎(𝛽) = min{2, 𝑒−𝛽𝑐} with 0 < 𝑐 < 𝜌0𝑙0
6 and

𝑈𝛽 =

(

ln(1 + 𝑒𝛽𝛿𝑑−𝑎(𝛽))
𝛿𝑑

,
ln(1 + 𝑒𝛽𝛿𝑑+𝑎(𝛽))

𝛿𝑑

)

.

As such, we have for 𝑧 ∈ 𝑈𝛽 ,

𝑒−𝑎 ≤
𝑍1
𝑍0

≤ 𝑒𝑎

and more generally,
𝑒−2 ≤

𝑍1
𝑍0

≤ 𝑒2.

Therefore, we have𝑈𝛽 ⊂ 𝑈𝛽 . The question is whether or not 𝑧𝑐𝛽 belongs to𝑈𝛽 . For the Quermass
interaction the gap between the truncated pressures is given by

𝐺(𝑧) ∶= 𝜓̂ (1) − 𝜓̂ (0)

= 1
𝛿𝑑

ln
(

𝑍1
𝑍0

)

+ 𝑓 (1) − 𝑓 (0)

= (𝑧 − 𝛽) +
ln(1 − 𝑒−𝑧𝛿𝑑 )

𝛿𝑑
+ 𝑓 (1) − 𝑓 (0).

For 𝑧̂−𝛽 = ln(1+𝑒𝛽𝛿𝑑−𝑎)
𝛿𝑑

and 𝑧̂+𝛽 = ln(1+𝑒𝛽𝛿𝑑+𝑎)
𝛿𝑑

, which are the boundaries of𝑈𝛽 , we have for sufficiently
large 𝛽

𝐺(𝑧̂−𝛽 ) = −
𝑎(𝛽)
𝛿𝑑

+ 𝑓 (1) − 𝑓 (0) ≤ − 𝑎
𝛿𝑑

+ 2𝜂(𝜏, 𝑙0) < 0

𝐺(𝑧̂+𝛽 ) =
𝑎(𝛽)
𝛿𝑑

+ 𝑓 (1) − 𝑓 (0) ≥ 𝑎
𝛿𝑑

− 2𝜂(𝜏, 𝑙0) > 0.

Therefore, we know that 𝑧𝑐𝛽 ∈ 𝑈𝛽 . Furthermore, we can observe that

𝑧̂−𝛽 − 𝛽 = − 𝑎
𝛿𝑑

+ 1
𝛿𝑑

ln(1 + 𝑒−𝛽𝛿𝑑+𝑎) = − 𝑎
𝛿𝑑

+ 𝑜(𝑎(𝛽))

𝑧̂+𝛽 − 𝛽 = 𝑎
𝛿𝑑

+ 1
𝛿𝑑

ln(1 + 𝑒−𝛽𝛿𝑑−𝑎) = 𝑎
𝛿𝑑

+ 𝑜(𝑎(𝛽)).

93



Therefore we have that |𝑧𝑐𝛽 − 𝛽| = 𝑂(𝑒−𝑐𝛽) with 𝑐 ∈ (0, 𝜌0𝑙06 ). This proves the missing claim that
the difference |𝑧𝑐𝛽 − 𝛽| decays exponentially fast.

3.2 Diluted pairwise interaction

The diluted pairwise interaction is a class of interaction that approximates the classical pairwise
interaction. The idea behind is that we average the pair potential on the halo of the particles. In
this study, we consider the case of radial finite range and integrable pair potential. The Gibbs
point process associated to this type of interaction is a point process onR𝑑 and the Hamiltonian
is given in the following definition.
Definition 26. Let 𝜙 be a radial pair potential such that 𝜙 ∈ 𝐿1(R𝑑) and has a compact support
(there is𝑅1 such that for 𝑟 > 𝑅1, 𝜙(𝑟) = 0). The Hamiltonian for the diluted pairwise interaction
is given by

∀𝜔 ∈ Ω𝑓 , 𝐻(𝜔) = ∬𝐿𝑅(𝜔)2
𝜙(|𝑥 − 𝑦|)𝑑𝑥𝑑𝑦 (3.6)

where
𝐿𝑅(𝜔) =

⋃

𝑥∈𝜔
𝐵(𝑥,𝑅).

We have proved in Proposition 2 that the Hamiltonian is bi-stable because 𝜙 is integrable.
Furthermore, since 𝜙 has a range of 𝑅1 it is clear that𝐻 is a finite range interaction with a range
of 𝑅1 +2𝑅. As a consequence of Theorem 1, the infinite volume Gibbs measures for the diluted
pairwise interaction exists. We call the scale of the dilution the radius 𝑅 and define 𝑅0 as

𝑅0 ∶= sup{𝑟 ∈ R+, 𝜙(𝑟) > 0}.

The quantity𝑅0 is the range inside which the potential is repulsive. In this study, we will compare
𝑅 to 𝑅0 as it affects the way we prove the phase transition. For any 𝑥, 𝑧 ∈ R𝑑 with 𝑥 ≠ 𝑧 we
denote 𝐵𝑠𝑒𝑐(𝑥, 𝑧) the hyperspherical sector with polar angle 𝜋∕3, radius 𝑅, 𝑥 as the centre and
directed toward 𝑧.

𝑧

𝑥

𝐵𝑠𝑒𝑐(𝑥, 𝑧)
𝜋
3

Figure 3.1: 𝐵𝑠𝑒𝑐(𝑥, 𝑧)
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We define the constant 𝐶𝑑 , dependant on the dimension 𝑑, which corresponds to the ratio of
the volume of 𝐵𝑠𝑒𝑐(𝑥, 𝑧) and the volume of 𝐵(𝑥,𝑅) and it has the following expression

𝐶𝑑 =
∫

𝜋
3

0 sin(𝜃)𝑑−2𝑑𝜃

∫ 𝜋
0 sin(𝜃)𝑑−2𝑑𝜃

. (3.7)

In this section, we prove two liquid-gas phase transitions for the diluted pairwise interaction
depending on the scale of dilution. This first theorem proves the phenomenon when we have a
large dilution of the pair interaction (i.e 𝑅 > 𝑅0).
Theorem 24. Let 𝜙 ∈ 𝐿1(R𝑑) be a radial pair potential with +∞ > 𝑅1 ≥ 𝑅0 > 0. We assume
that 𝑅 > 𝑅0 and that 𝜙 verifies

𝐶𝑑 ∫𝐵(0,𝑅0)
𝜙+𝑑𝑥 > ∫

R𝑑
𝜙−𝑑𝑥. (3.8)

Then there is 𝛽𝑐 > 0 such that for 𝛽 > 𝛽𝑐 , there is 𝑧𝑐𝛽 > 0 for which a liquid-gas phase transition
occurs. Furthermore, we know that there is 𝑐 > 0 such that

|

|

|

|

𝑧𝑐𝛽 − 𝛽 ∫
R𝑑
𝜙𝑑𝑦

|

|

|

|

= 𝑂(𝑒−𝑐𝛽). (3.9)

The following theorem demonstrates the liquid-gas phase transition phenomenon when we
have a small dilution (i.e 𝑅 < 𝑅0).
Theorem 25. Let𝜙 ∈ 𝐿1(R𝑑) be a radial pair potential such that there are +∞ > 𝑅1 ≥ 𝑅0 > 0.
We assume that 𝑅 < 𝑅0 and that 𝜙 verifies

𝐶𝑑 ∫
𝐵(0,𝑅)

𝜙+𝑑𝑥 ≥

[

(

𝑅0
𝑅

)𝑑

− 1

]

∫
𝐵(0,𝑅0)∖𝐵(0,𝑅)

𝜙+𝑑𝑥 + ∫
R𝑑

𝜙−𝑑𝑥 (3.10)

Then there is 𝛽𝑐 > 0 such that for 𝛽 > 𝛽𝑐 , there is 𝑧𝑐𝛽 > 0 for which a liquid-gas phase transition
occurs. Furthermore, we know that there is 𝑐 > 0 such that

|

|

|

|

𝑧𝑐𝛽 − 𝛽 ∫
R𝑑
𝜙𝑑𝑦

|

|

|

|

= 𝑂(𝑒−𝑐𝛽). (3.11)

In reality, both cases are similar since the assumption (3.8) and (3.10) are the same. Indeed,
we can observe that when 𝑅 > 𝑅0 both assumptions coincides. But we chose to present it sepa-
rately since the proof in each cases differs. More specifically, the proofs of the Peierls condition
are completely different, one rely on a tile-by-tile approach when the other is done globally. Fur-
thermore, we can observe that for a pair potential repulsive and non integrable at the origin we
can always truncate near the origin such that condition (3.10) is verified. Therefore we have the
following corollary.
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Corollary 25.1. Let 𝜙 be a pair potential non integrable and positive at the origin with +∞ >
𝑅1 ≥ 𝑅0 > 0. For any 𝑅 > 0 there is 𝜖 ≤ min{𝑅0, 𝑅} for which we can build a truncated pair
potential

𝜙𝜖(𝑟) ∶=

{

𝜙(𝜖) if 𝑟 ≤ 𝜖
𝜙(𝑟) otherwise

,

such that the diluted pairwise interaction for 𝜙𝜖 exhibits a liquid-gas phase transition phe-
nomenon for 𝛽 > 𝛽𝑐(𝜖) > 0 and a critical activity 𝑧𝑐𝛽 > 0. Furthermore, we know that there
is 𝑐 > 0 such that

|

|

|

|

𝑧𝑐𝛽 − 𝛽 ∫
R𝑑
𝜙𝜖𝑑𝑦

|

|

|

|

= 𝑂(𝑒−𝑐𝛽). (3.12)
This last corollary opens a new path to study phase transition of pairwise interaction with

a strong short range repulsion, like for example the Lennard-Jones potential. In the rest of this
section, we demonstrate the basic properties of the coarse graining and also the saturation of this
interaction. Then we prove that it satisfy Peierls condition in both ways. Finally, we study the
asymptotic behaviour of the critical activity.

3.2.1 Coarse graining for the diluted pairwise interaction

In the following, we consider radial pair potentials 𝜙 ∈ 𝐿1(R𝑑) such that there are 𝑅1 ≥ 𝑅0 > 0
for which ∀𝑟 ≥ 𝑅0, 𝜙(𝑟) ≤ 0 and ∀𝑟 ≥ 𝑅1, 𝜙(𝑟) = 0. In the beginning, we consider no further
assumption on 𝑅 other than 𝑅 > 0. The coarse graining for the diluted pairwise interaction we
consider is

∀𝜔 ∈ Ω𝑓 , 𝐸0(𝜔) = ∫
𝐿𝑅(𝜔)∩𝑇0

∫
𝐿𝑅(𝜔)

𝜙(|𝑥 − 𝑦|)𝑑𝑥𝑑𝑦. (3.13)

This choice of decomposition is natural and clearly we have that for any 𝜔 ∈ Ω𝑓

𝐻(𝜔) =
∑

𝑖∈Z𝑑
𝐸𝑖(𝜔).

We demonstrate in the following proposition that this interaction is saturated .
Proposition 17. The coarse graining 𝐸0 has a finite range 𝑅1 and is bounded,

|𝐸0(𝜔)| ≤ 𝛿𝑑 ∫
R𝑑

|𝜙|𝑑𝑥.

Furthermore, for 𝛿 ≤ 𝑅
√

𝑑
and 𝐿 > 𝑅1 + 2

√

𝑑𝑅 the diluted pairwise interaction is saturated.
More precisely, we have

𝐸(𝑘) ∶= 𝛿𝑑𝐶𝜙1𝑘≥1 where 𝐶𝜙 ∶= ∫
R𝑑
𝜙𝑑𝑥 (3.14)

such that

∀𝜔 ∈ Ω0,𝐿,𝛿, 𝐸0(𝜔) = 𝐸(𝑁𝑇0(𝜔)). (3.15)
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Proof. We know that 𝜙 is integrable. Therefore for any 𝜔 ∈ Ω𝑓 we have

|𝐸0(𝜔)| ≤ ∫
𝐿𝑅(𝜔)∩𝑇0

∫
𝐿𝑅(𝜔)

|𝜙|𝑑𝑥

≤ (𝐿𝑅(𝜔) ∩ 𝑇0)∫
R𝑑

|𝜙|𝑑𝑥

≤ 𝛿𝑑 ∫
R𝑑

|𝜙|𝑑𝑥.

Furthermore, we have that𝐸0 has a range𝑅1. Indeed, by direct computation for any configuration
𝜔 ∈ Ω𝑓 we have the following

𝐸0(𝜔) = ∫
𝐿𝑅(𝜔)∩𝑇0

∫
𝐿𝑅(𝜔)∩𝐵(𝑥,𝑅1)

𝜙(|𝑦 − 𝑥|)𝑑𝑦𝑑𝑥

= ∫
𝐿𝑅(𝜔𝑇0⊕𝐵(0,𝑅))∩𝑇0

∫
𝐿𝑅(𝜔𝑇0⊕𝐵(0,𝑅1))

𝜙(|𝑦 − 𝑥|)𝑑𝑦𝑑𝑥 = 𝐸0(𝜔𝑇0⊕𝐵(0,𝑅1)).

With this choice of 𝛿, we have that for any 𝑥 ∈ 𝑇0, 𝑇0 ⊂ 𝐵(𝑥,𝑅) and with this choice of𝐿we are
assured that for 𝜔 ∈ Ω1

0,𝐿,𝛿 𝐵(𝑥,𝑅1) ⊂ 𝐿𝑅(𝜔). Consequently, for such configuration we have

𝐸0(𝜔) = ∫𝑇0 ∫𝐵(𝑥,𝑅1)
𝜙(|𝑦 − 𝑥|)𝑑𝑦𝑑𝑥

= 𝛿𝑑𝐶𝜙 = 𝐸(𝑁𝑇0(𝜔)).

On the other hand, for configurations 𝜔 ∈ Ω0
0,𝐿,𝛿, we have that 𝑇0 ⊕𝐵(0, 𝑅1) ∩ 𝐿𝑅(𝜔) = ∅ and

thus 𝐸0(𝜔) = 0 = 𝐸(0).

We have demonstrated through the previous proposition that for 𝛿 small enough, 𝐿 large
enough and 𝜙 such that 𝐶𝜙 > 0 that 𝐸0 and 𝐸 verify most of the assumptions of Theorem 11
or Theorem 13. In the following parts we are going to prove that under some assumption on 𝜙,
the interaction verifies the Peierls conditions, which we will do using either the dominoes or a
global approach.

3.2.2 Peierls condition a tile-by-tile approach

In this part, we do the proof of the existence of the liquid gas phase transition phenomenon of
Theorem 24. Our goal is to prove that with condition (3.8) and 𝑅 > 𝑅0 we verify the Peierls
condition using the dominoes.
Proposition 18. Let us have 𝑅 > 𝑅0, 𝐿 > 𝑅1 + 2

√

𝑑𝛿 and we fix 𝛿 small enough such that
𝛿 ≤ 𝑅−𝑅0

√

𝑑
. We assume that

𝑒0 ∶= 𝐶𝑑 ∫𝐵(0,𝑅0)
𝜙+𝑑𝑥 − ∫

R𝑑
𝜙−𝑑𝑥 > 0.
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Then for any configuration 𝜔 ∈ Ω𝑓 we have

𝐸0(𝜔) ≥

{

𝛿𝑑𝐶𝜙 if 𝑁𝑇0(𝜔) ≥ 1
(𝐿𝑅(𝜔) ∩ 𝑇0)𝑒0 otherwise

.

Proof. Let us start by the easy case, which is when 𝑁𝑇0(𝜔) ≥ 1. Since 𝑅 > 𝑅0 and 𝛿 ≤ 𝑅−𝑅0
√

𝑑
,

we know that for any 𝑥 ∈ 𝑇0, 𝐵(𝑥,𝑅0) ⊂ 𝐿𝑅(𝜔). Therefore we recover at least the positive part
of the pair potential and we obtain

∫𝐿𝑅(𝜔)−𝑥
𝜙(|𝑦|)𝑑𝑦 ≥ 𝐶𝜙.

This in turn leads to having
𝐸0(𝜔) ≥ 𝛿𝑑𝐶𝜙.

Now let us consider the case when 𝑁𝑇0(𝜔) = 0 and that 𝐿𝑅(𝜔) ∩ 𝑇0 ≠ ∅ (otherwise we clearly
have 𝐸0(𝜔) = 0). For any 𝑥 ∈ 𝐿𝑅(𝜔) ∩ 𝑇0 and 𝑧 ∈ 𝜔 the closest point in the configuration to 𝑥,
we know that at least we have 𝐵𝑠𝑒𝑐(𝑥, 𝑧) included in the halo. Therefore, we directly obtain the
following lower bound

∫𝐿𝑅(𝜔)−𝑥
𝜙𝑑𝑦 ≥ ∫𝐵𝑠𝑒𝑐 (𝑥,𝑧)

𝜙+𝑑𝑦 − ∫
R𝑑
𝜙−𝑑𝑦.

Since the potential is radial and that 𝑅 > 𝑅0 we have that

∫𝐵𝑠𝑒𝑐 (𝑥,𝑧)
𝜙+𝑑𝑦 = 𝐶𝑑 ∫𝐵(0,𝑅)

𝜙+𝑑𝑦 = 𝐶𝑑 ∫𝐵(0,𝑅0)
𝜙+𝑑𝑦.

As a consequence we obtain that

𝐸0(𝜔) = ∫𝐿𝑅(𝜔)∩𝑇0 ∫𝐿𝑅(𝜔)−𝑥
𝜙(|𝑦|)𝑑𝑦𝑑𝑥

≥ ∫𝐿𝑅(𝜔)∩𝑇0
𝑒0𝑑𝑥 = (𝐿𝑅(𝜔) ∩ 𝑇0)𝑒0.

In Proposition 18 we have proved that under the assumptions of Theorem 24 (which is the
case of large dilution,𝑅 > 𝑅0) the diluted pairwise interaction verify the Peierls condition via the
dominoes method. Therefore, the occurrence of a liquid-gas phase transition is a consequence
of Theorem 13. In order to finish the proof of Theorem 24 all we need to demonstrate is the
asymptotic behaviour of the critical activity, which will be done in Section 3.2.4.
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3.2.3 Peierls condition a global approach

In this part, we do the proof of the existence of the liquid gas phase transition phenomenon of
Theorem 25. We prove that with condition (3.10) and 𝑅 < 𝑅0 we verify the Peierls condition.
We will be comparing the energy in the contours with the energy as if everything behaves like it
is saturated. Before anything else we start with the following geometrical lemma.
Lemma 26. For 0 < 𝜖 < 𝑅 ≤ 𝑅0, we define 𝜃𝜖 as

𝜃𝜖 ∶= inf
𝜔∈Ω𝑓

𝛾∶𝑉𝜔,𝛾,𝜖>0

{

𝑉𝜔,𝛾,𝜖
𝑉𝜔,𝛾,𝑅0

− 𝑉𝜔,𝛾,𝜖

}

where

𝑉𝜔,𝛾,𝑟 = (𝜕𝐿𝑅(𝜔)⊕𝐵(0, 𝑟) ∩ 𝐿𝑅(𝜔) ∩ 𝛾̂).

Then we have

𝜃𝜖 =
𝜖𝑑

𝑅𝑑0 − 𝜖
𝑑
.

Proof. For any contour 𝛾 and any configuration 𝜔 that achieves this contour, we observe that
𝜕𝐿𝑅(𝜔)⊕𝐵(0, 𝑟) ∩ 𝐿𝑅(𝜔) ∩ 𝛾̂ = 𝐿𝑅(𝜔)𝑐 ⊕𝐵(0, 𝑟) ∩ 𝛾̂ if 𝑟 ≤ 𝑅,
𝜕𝐿𝑅(𝜔)⊕𝐵(0, 𝑟) ∩ 𝐿𝑅(𝜔) ∩ 𝛾̂ ⊂ 𝐿𝑅(𝜔)𝑐 ⊕𝐵(0, 𝑟) ∩ 𝛾̂ if 𝑟 > 𝑅.

We can approximate 𝐿𝑅(𝜔)𝑐 using union of open balls, so there is (

(𝑥𝑖, 𝑟𝑖)
)

𝑖∈N and 𝐾𝑛 =
⋃𝑛
𝑖=1 𝐵̊(𝑥𝑖, 𝑟𝑖) such that 𝐾𝑛 ⊂ 𝐿𝑅(𝜔)𝑐 and 𝐿𝑅(𝜔)𝑐∖𝐾𝑛 is decreasing and converges to ∅. For

a fixed 𝑛, we have


(

𝐾𝑛 ⊕𝐵(0, 𝑅0) ∩ 𝛾̂
)

=

𝑅0

∫
0

𝐻𝑑−1
(

𝜕(𝐾𝑛 ⊕𝐵(0, 𝑟)) ∩ 𝛾̂
)

𝑑𝑟

= 𝑆𝑑

𝑅0

∫
0

𝑛
∑

𝑖=1
𝛼𝑖,𝛾 (𝑟)(𝑟𝑖 + 𝑟)𝑑−1𝑑𝑟

where 𝐻𝑑−1 is the (𝑑 − 1)-Haussdorff measure, 𝑆𝑑 the surface of the unit ball and 𝛼𝑖,𝛾 (𝑟) is the
proportion of the surface of 𝐵̊(𝑥𝑖, 𝑟𝑖 + 𝑟) that appears in 𝜕(𝐾𝑛 ⊕𝐵(0, 𝑟)) ∩ 𝛾̂ ,

𝛼𝑖,𝛾 (𝑟) =
𝐻𝑑−1

(

𝜕𝐵̊(𝑥𝑖, 𝑟𝑖 + 𝑟) ∩ 𝜕(𝐾𝑛 ⊕𝐵(0, 𝑟)) ∩ 𝛾̂
)

𝐻𝑑−1
(

𝜕𝐵̊(𝑥𝑖, 𝑟𝑖 + 𝑟)
)

.

Furthermore, 𝛼𝑖,𝛾 is decreasing. Indeed, let 𝑟′ > 𝑟 for 𝑧 ∈ 𝜕𝐵̊(𝑥𝑖, 𝑟𝑖 + 𝑟′) that appears in
𝜕(𝐾𝑛 ⊕ 𝐵(0, 𝑟′)) ∩ 𝛾̂ then 𝑦 = 𝑟∕𝑟′(𝑧 − 𝑥𝑖) + 𝑥𝑖 ∈ 𝜕𝐵̊(𝑥𝑖, 𝑟𝑖 + 𝑟) would appear in 𝜕(𝐾𝑛 ⊕
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𝐵(0, 𝑟))∩ 𝛾̂ , and this even though 𝛾̂ is not convex because the contours are thick enough such that
𝑑2

(

𝜕(𝐾𝑛 ⊕𝐵(0, 𝑅)) ∩ 𝛾̂ , 𝜕𝛾
)

> 2𝑅. As such, we have


(

𝐾𝑛 ⊕𝐵(0, 𝑅0) ∩ 𝛾̂
)

= 𝑆𝑑

(

𝑅0
𝜖

)𝑑
𝜖

∫
0

𝑛
∑

𝑖=1
𝛼𝑖,𝛾

(

𝑅0
𝜖
𝑟
)(

𝜖
𝑅0
𝑟𝑖 + 𝑟

)𝑑−1

𝑑𝑟

≤ 𝑆𝑑

(

𝑅0
𝜖

)𝑑
𝜖

∫
0

𝑛
∑

𝑖=1
𝛼𝑖,𝛾 (𝑟)

(

𝑟𝑖 + 𝑟
)𝑑−1 𝑑𝑟

≤
(

𝑅0
𝜖

)𝑑


(

𝐾𝑛 ⊕𝐵(0, 𝜖) ∩ 𝛾̂
)

.

Since  is continuous and for 𝑟 ∈ {𝜖, 𝑅0},𝐾𝑛⊕𝐵(0, 𝑟)∩𝛾̂ converges to𝐿𝑅(𝜔)𝑐⊕𝐵(0, 𝑟)∩𝛾̂ with
the Hausdorff metric, we can take the limit as 𝑛 tends to infinity on both sides of the inequality
and we get

𝑉𝜔,𝛾,𝑅0
≤ 

(

𝐿𝑅(𝜔)𝑐 ⊕𝐵(0, 𝑅0) ∩ 𝛾̂
)

≤
(

𝑅0
𝜖

)𝑑


(

𝐿𝑅(𝜔)𝑐 ⊕𝐵(0, 𝜖) ∩ 𝛾̂
)

≤
(

𝑅0
𝜖

)𝑑

𝑉𝜔,𝛾,𝜖.

Using the previous inequality, we have
𝑉𝜔,𝛾,𝜖

𝑉𝜔,𝛾,𝑅0
− 𝑉𝜔,𝛾,𝜖

≥ 𝜖𝑑

𝑅𝑑0 − 𝜖
𝑑
.

We have equality for 𝐿𝑅(𝜔) = R𝑑∖{0} but 𝜔 is not a configuration as we would have an infinity
of point near the origin. But it can be obtained as a limit of configurations and therefore

𝜃𝜖 =
𝜖𝑑

𝑅𝑑0 − 𝜖
𝑑
.

Proposition 19. For 𝑅 < 𝑅0, let 𝜙 be a radial and integrable pair potential such that

𝐶𝑑 ∫𝐵(0,𝑅)
𝜙+𝑑𝑦 >

[

(

𝑅0
𝑅

)𝑑

− 1

]

∫𝐵(0,𝑅0)∖𝐵(0,𝑅)
𝜙+𝑑𝑦 + ∫

R𝑑
𝜙−𝑑𝑦. (3.16)

Then for 𝜖 close enough to 𝑅 and 𝛿 ≤ 𝑅−𝜖
2
√

𝑑
there is 𝑣0 > 0 such that for any contour 𝛾 and any

configuration 𝜔 that achieves this contour

𝐸𝛾∖𝜕−𝛾 (𝜔) − 𝐸𝛾∖𝜕−𝛾 (𝜔) ≥ 𝐶𝜙𝑣0|𝛾|. (3.17)
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Proof. For any 𝑟 > 0 and any configuration 𝜔 ∈ Ω we denote by 𝐿−𝑟
𝑅 (𝜔) ∶= 𝐿𝑅(𝜔)∖𝜕𝐿𝑅(𝜔)⊕

𝐵(0, 𝑟). Since 𝐿 > 𝑅1 ≥ 𝑅0, we know that 𝐿𝑅(𝜔)∖𝐿−𝑅0
𝑅 (𝜔) ⊂

⋃

𝛾∈Γ(𝜔) 𝛾∖𝜕−𝛾 . Now we
consider a contour 𝛾 and a configuration 𝜔 that creates this contour. For 𝑥 ∈ 𝐿−𝑅0

𝑅 (𝜔), we know
by construction that 𝐵(𝑥,𝑅0) ⊂ 𝐿𝑅(𝜔) and thus completely recover the positive part of 𝜙. As
such we have that

∫𝐿𝑅(𝜔)−𝑥
𝜙𝑑𝑦 ≥ ∫

R𝑑
𝜙𝑑𝑦 = 𝐶𝜙. (3.18)

Now for 𝑥 ∈ 𝐿−𝜖
𝑅 (𝜔)∖𝐿−𝑅0

𝑅 (𝜔), by construction we know that 𝐵(𝑥, 𝜖) ⊂ 𝐿𝑅(𝜔) and thus obtain
the following inequality

∫𝐿𝑅(𝜔)−𝑥
𝜙𝑑𝑦 ≥ ∫𝐵(0,𝜖)

𝜙+𝑑𝑦 − ∫
R𝑑
𝜙−𝑑𝑦

≥ 𝐶𝜙 − ∫𝐵(0,𝑅0)∖𝐵(0,𝜖)
𝜙+𝑑𝑦. (3.19)

At last for 𝑥 ∈ 𝐿𝑅(𝜔)∖𝐿−𝜖
𝑅 (𝜔), we know that there is 𝑧 ∈ 𝜔 the closest to 𝑥 and that 𝐵𝑠𝑒𝑐(𝑥, 𝑧) ⊂

𝐿𝑅(𝜔). Since 𝜙 is radial we have

∫𝐿𝑅(𝜔)−𝑥
𝜙𝑑𝑦 ≥ ∫𝐵𝑠𝑒𝑐(0,𝑧−𝑥)

𝜙+𝑑𝑦 − ∫
R𝑑
𝜙−𝑑𝑦

≥ 𝐶𝑑 ∫𝐵(0,𝑅)
𝜙+𝑑𝑦 − ∫

R𝑑
𝜙−𝑑𝑦. (3.20)

By combining inequalities (3.18), (3.19), (3.20), we obtain that

𝐸𝛾∖𝜕−𝛾 (𝜔) ≥ 𝐶𝜙(𝐿−𝜖
𝑅 (𝜔) ∩ 𝛾̂) +

⎛

⎜

⎜

⎝

𝐶𝑑 ∫
𝐵(0,𝑅)

𝜙+𝑑𝑦 − ∫
R𝑑

𝜙−𝑑𝑦
⎞

⎟

⎟

⎠

𝑉𝜔,𝛾,𝜖

−
(

𝑉𝜔,𝛾,𝑅0
− 𝑉𝜔,𝛾,𝜖

)

∫
𝐵(0,𝑅0)∖𝐵(0,𝜖)

𝜙+𝑑𝑦

𝐸𝛾∖𝜕−𝛾 (𝜔) ≥ 𝐶𝜙(𝐿−𝜖
𝑅 (𝜔) ∩ 𝛾̂) + 𝜃𝜖

⎛

⎜

⎜

⎜

⎝

𝐶𝑑 ∫
𝐵(0,𝑅)

𝜙+𝑑𝑦 − ∫
R𝑑

𝜙−𝑑𝑦 − 1
𝜃𝜖 ∫
𝐵(0,𝑅0)∖𝐵(0,𝜖)

𝜙+𝑑𝑦

⎞

⎟

⎟

⎟

⎠

×
(

𝑉𝜔,𝛾,𝑅0
− 𝑉𝜔,𝛾,𝜖

)

.

By Lemma 26, we know that for 1
𝜃𝜖

→ (𝑅0
𝑅
)𝑑 −1 as 𝜖 tends to 𝑅. Thus by assumption (3.16) and

for 𝜖 close enough to 𝑅 we have that
𝐶𝑑 ∫

𝐵(0,𝑅)

𝜙+𝑑𝑦 − ∫
R𝑑

𝜙−𝑑𝑦 − 1
𝜃𝜖 ∫
𝐵(0,𝑅0)∖𝐵(0,𝜖)

𝜙+𝑑𝑦 ≥ 0.
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Thus we get
𝐸𝛾∖𝜕−𝛾 (𝜔) ≥ (𝐿−𝜖

𝑅 (𝜔) ∩ 𝛾̂)𝐶𝜙.

Therefore if we compute the energy difference between the actual energy of the configuration in
the contour and the energy as if the contour acts in a saturated manner we have

𝐸𝛾∖𝜕−𝛾 (𝜔) − 𝐸𝛾∖𝜕−𝛾 (𝜔) ≥ 𝐶𝜙
(

(𝐿−𝜖
𝑅 (𝜔) ∩ 𝛾̂) − 𝛿𝑑𝐶1(𝛾)

)

where 𝐶1(𝛾) is the sites in the core of the contour with the spin equal to 1, 𝐶1(𝛾) ∶= {𝑖 ∈
𝛾∖𝜕−𝛾, 𝜎𝑖 = 1}. The difference between the volumes is at least bounded from below by the
volume of empty tiles covered by the halo of radius 𝑅 − 𝜖. Since 𝛿 ≤ 𝑅−𝜖

2
√

𝑑
, we know that for

dominoes (𝑖, 𝑗) the presence of a point in 𝑇𝑖 assures that 𝑇𝑗 ⊂ 𝐿𝑅−𝜖(𝜔) even though 𝑇𝑗 is void of
point. Therefore using Lemma 12 we know that there is 𝑟0 > 0 and 𝑣0 = 𝑟0𝛿𝑑 such that

𝐸𝛾∖𝜕−𝛾 (𝜔) − 𝐸𝛾∖𝜕−𝛾 (𝜔) ≥ 𝐶𝜙𝑣0|𝛾|.

Similarly to the tile-by-tile approach, in Proposition 19 we have proved that under the as-
sumptions of Theorem 25 (which is the case of small dilution, 𝑅 < 𝑅0) the diluted pairwise
interaction verifies the Peierls condition this time through a global approach. Therefore, the oc-
currence of a liquid-gas phase transition is a consequence of Theorem 11. In order to finish
the proof of Theorem 25 all we need to demonstrate is the asymptotic behaviour of the critical
activity which will be done in Section 3.2.4.

3.2.4 Asymptotic behaviour of the critical activity

In this part, we finish the proof of the liquid gas phase transition for the diluted pairwise in-
teraction. In the following proposition we demonstrate the asymptotic behaviour of the critical
activity when 𝛽 tends to infinity.
Proposition 20. Under the assumptions of Theorem 24 or Theorem 25, we have that |𝑧𝑐𝛽 − 𝛽𝐶𝜙|
decays exponentially when 𝛽 tends to infinity.

Proof. We know by Proposition 17 and Proposition 18 (or Proposition 19 ) that the diluted pair-
wise interaction exhibit a phase transition for 𝛽 sufficiently large and 𝑧𝑐𝛽 ∈ 𝑈𝛽 . Furthermore, we
have that

𝑍1
𝑍0

= 𝑆(𝑧) = 𝑒−𝛽𝐶𝜙𝛿
𝑑 (𝑒𝑧𝛿𝑑 − 1).

We fix 𝑎(𝛽) = min{2, 𝑒−𝛽𝑐} with 0 < 𝑐 < 𝜌0𝑙0
6 and

𝑈𝛽 =

(

ln(1 + 𝑒𝛽𝐶𝜙𝛿𝑑−𝑎(𝛽))
𝛿𝑑

,
ln(1 + 𝑒𝛽𝐶𝜙𝛿𝑑+𝑎(𝛽))

𝛿𝑑

)

.
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As such, we have for 𝑧 ∈ 𝑈𝛽 ,

𝑒−𝑎 ≤
𝑍1
𝑍0

≤ 𝑒𝑎

and thus 𝑈𝛽 ⊂ 𝑈𝛽 . Furthermore, the difference of truncated pressures is expressed as

𝐺(𝑧) = (𝑧 − 𝐶𝜙𝛽) +
ln(1 − 𝑒−𝑧𝛿𝑑 )

𝛿𝑑
+ 𝑓 (1) − 𝑓 (0).

For 𝑧̂−𝛽 = ln(1+𝑒𝛽𝐶𝜙𝛿
𝑑−𝑎(𝛽))

𝛿𝑑
, 𝑧̂+𝛽 = ln(1+𝑒𝛽𝐶𝜙𝛿

𝑑+𝑎(𝛽))
𝛿𝑑

and 𝛽 sufficiently large we have

𝐺(𝑧̂−𝛽 ) = −
𝑎(𝛽)
𝛿𝑑

+ 𝑓 (1) − 𝑓 (0) ≤ −
𝑎(𝛽)
𝛿𝑑

+ 2𝜂(𝜏, 𝑙0) < 0

𝐺(𝑧̂+𝛽 ) =
𝑎(𝛽)
𝛿𝑑

+ 𝑓 (1) − 𝑓 (0) ≥ 𝑎(𝛽)
𝛿𝑑

− 2𝜂(𝜏, 𝑙0) > 0.

Therefore, we know that 𝑧𝑐𝛽 ∈ 𝑈𝛽 and we can observe that

𝑧̂−𝛽 − 𝐶𝜙𝛽 = −
𝑎(𝛽)
𝛿𝑑

+ 1
𝛿𝑑

ln(1 + 𝑒−𝛽𝐶𝜙𝛿𝑑+𝑎(𝛽)) = −
𝑎(𝛽)
𝛿𝑑

+ 𝑜(𝑎(𝛽))

𝑧̂+𝛽 − 𝐶𝜙𝛽 =
𝑎(𝛽)
𝛿𝑑

+ 1
𝛿𝑑

ln(1 + 𝑒−𝛽𝐶𝜙𝛿𝑑−𝑎(𝛽)) =
𝑎(𝛽)
𝛿𝑑

+ 𝑜(𝑎(𝛽)).

As a consequence, we have that |𝑧𝑐𝛽 −𝐶𝜙𝛽| = 𝑂(𝑒−𝑐𝛽) when 𝛽 tends to infinity with 𝑐 ∈ (0, 𝜌0𝑙06 ).

3.3 Perspectives
In this section, we present possible avenues for extending the results presented in this thesis and
a conjecture on the liquid-gas phase transition for a pairwise interaction with strong short range
repulsion.

Extension of Theorem 11

In the setting of saturated interaction, one of the assumption needed in Theorem 11 is that𝐸(𝑘) =
(𝐴𝑘 + 𝐵)1𝑘≥1 with 𝐴 ≥ 0 and 𝐴 + 𝐵 ≥ 0. With this condition, we have 𝐸 ≥ 0. This is
an assumption needed in Proposition 13 to have a nice upper bound on 𝐸𝑃 #

Λ
(𝑁Λ̂). We believe

we can relax these assumptions considerably and still obtain a good upper bound on the mean
number of particles. Generally using the entropic inequality we have the following

𝐸𝑃 #
Λ
(𝑛Λ̂) ≤ 𝐼(𝑃 #

Λ|ΠΛ̂𝜉 ) + ln𝐸ΠΛ̂𝜉
(𝑒𝑁Λ̂)

≤ ∫

[

−𝛽(𝐸Λ⧵𝜕Λ(𝜔) + 𝐸𝜕Λ) +𝑁Λ̂ ln 𝑧
𝜉

]

𝑑𝑃 #
Λ − ln𝑍#

Λ + (𝑒𝜉 − 𝑧)|Λ|𝛿𝑑 .
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Furthermore, since we verify the Peierls condition we have that 𝐸Λ⧵𝜕Λ(𝜔) +𝐸𝜕Λ ≥ 𝐸Λ and thus
get

𝐸𝑃 #
Λ
(𝑁Λ̂) ≤ ∫

[

−𝛽𝐸Λ +𝑁Λ̂ ln 𝑧
𝜉

]

𝑑𝑃 #
Λ − ln𝑍#

Λ + (𝑒𝜉 − 𝑧)|Λ|𝛿𝑑

≤
∑

𝑖∈Λ
∫

[

−𝛽(𝐴𝑁𝑇𝑖 + 𝐵)1𝑁𝑇𝑖≥1

]

𝑑𝑃 #
Λ + ln 𝑧

𝜉 ∫
𝑁Λ̂𝑑𝑃

#
Λ − ln𝑍#

Λ + (𝑒𝜉 − 𝑧)|Λ|𝛿𝑑

≤ −𝛽𝐵
∑

𝑖∈Λ
∫ 1𝑁𝑇𝑖≥1

𝑑𝑃 #
Λ + ∫

[

−𝛽𝐴 + ln 𝑧
𝜉

]

𝑁Λ̂𝑑𝑃
#
Λ − ln𝑍#

Λ + (𝑒𝜉 − 𝑧)|Λ|𝛿𝑑

If we choose 𝜉 = 𝑧𝑒−𝛽𝐴 we can simplify and obtain

𝐸𝑃 #
Λ
(𝑁Λ̂) ≤

{

−𝛽𝐵|Λ| − ln𝑍#
Λ + (𝑒−𝛽𝐴+1 − 1)𝑧|Λ|𝛿𝑑 if 𝐵 < 0

− ln𝑍#
Λ + (𝑒−𝛽𝐴+1 − 1)𝑧|Λ|𝛿𝑑 if 𝐵 ≥ 0

We can see in these inequalities that if 𝐴 < 0 then the leading term of the upper bound is 𝑒−𝛽𝐴
as 𝛽 tends to +∞. At the moment it seems unclear how this affects the proof of Proposition 13
but we are confident that we can at least have a better lower bound on 𝐴.

More Liquid-Gas phase transition for the Quermass model

In our study of the Quermass model we focused on the contribution of the surface measure 
and the Euler-Poincaré characteristic (in dimension 2), but we could have considered any other
Minkowski functionals added to the Lebesgue measure  . We believe that the volume needs to
have a positive contribution to the Hamiltonian in order to have the Peierls conditions. Any other
functional can be added as long as it does not negate the effect of the volume in the energy of the
contours. In general the Quermass Hamiltonian is given by

𝐻(𝜔) =
𝑑
∑

𝑘=0
𝜃𝑑−𝑘𝑀

𝑑
𝑘 (𝐿(𝜔))

where 𝜃𝑘 ∈ R and 𝑀𝑑
𝑘 is the k-th Minkowski functional and we have 𝑀𝑑

𝑑 =  , 𝑀𝑑
𝑑−1 = 

and 𝑀𝑑
0 = 𝜒 . There might be some restrictions on 𝜃𝑘, and this is due to stability constraints

which is not always verified (i.e 𝜒 when 𝑑 ≥ 3 [23]). In order to generalize our results on the
Quermass, one need to be able to compare 𝑀𝑑

𝑘 , the k-th Minkowsi functional for 0 ≤ 𝑘 ≤ 𝑑 − 1,
with  =𝑀𝑑

𝑑 or the volume of the contours. More specifically, we need to be able to prove that
there is 𝑐, 𝐶 ∈ R such that for any contours 𝛾 and any configuration 𝜔 that achieves this contour
we have

𝑐(𝐿(𝜔) ∩ 𝛾̂) ≤𝑀𝑑
𝑘,𝛾 (𝐿(𝜔)) and/or 𝑀𝑑

𝑘,𝛾 (𝐿(𝜔)) ≤ 𝐶(𝐿(𝜔) ∩ 𝛾̂)

where𝑀𝑑
𝑘,𝛾 is the contribution of 𝛾 to the k-th Minkowski functional obtained via coarse graining.

Then using our approach, we can tune the parameters 𝜃𝑘 in order to verify the Peierls condition.
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Phase transition of pairwise interaction

The phase transition of pairwise interaction has long been conjectured. For instance, it has been
observed via simulation that the Lennard-Jones interaction exhibits a liquid-gas phase transition
[21]. In this thesis, we have considered approaching this question with the diluted pairwise
interaction. As we have seen with Corollary 25.1, if we consider a finite range pair potential 𝜙
that is non integrable and positive at the origin for any 𝑅 > 0 we have a truncation 𝜙𝑅 such that
the diluted pair interaction with 𝜙𝑅 exhibit a phase transition. Recall that the Hamiltonian in this
case is given by

𝐻(𝜔) = ∬𝐿𝑅(𝜔)2
𝜙𝑅(|𝑥 − 𝑦|)𝑑𝑥𝑑𝑦.

However, if we take the limit of this Hamiltonian as 𝑅 goes to 0 we get

lim
𝑅→0

𝐻(𝜔)
(𝐵(0, 𝑅))2

= 𝑁(𝜔)𝜙(0) + 2
∑

{𝑥,𝑦}∈𝜔
𝜙(|𝑥 − 𝑦|)

which is not the pairwise interaction we hoped for and since 𝜙(0) = +∞ the system with this
limiting Hamiltonian does not produce a nice physical behaviour. Therefore what we really need
to consider is the corrected diluted pairwise interaction where the Hamiltonian is given by

𝐻𝑅(𝜔) =
1

𝑅2𝑑𝑏2𝑑 ∬𝐿𝑅(𝜔)2
𝜙𝑅(|𝑥 − 𝑦|)𝑑𝑥𝑑𝑦 −𝑁(𝜔)𝜙𝑅(0)

where 𝑏𝑑 = (𝐵(0, 1)). Therefore we have naturally

𝐸0(𝜔) =
1

𝑅2𝑑𝑏2𝑑 ∫
𝐿𝑅(𝜔)∩𝑇0

∫
𝐿𝑅(𝜔)

𝜙𝑅(|𝑥 − 𝑦|)𝑑𝑥𝑑𝑦 −𝑁𝑇0(𝜔)𝜙𝑅(0)

and with a good choice of 𝛿 > 0 and 𝐿 > 0 this interaction is saturated with

𝐸(𝑘) =

(

𝛿𝑑𝐶𝜙𝑅
𝑅2𝑑𝑏2𝑑

− 𝜙𝑅(0)𝑘

)

1𝑘≥1 where 𝐶𝜙𝑅 = ∫
R𝑑

𝜙𝑅𝑑𝑥.

We can show that this interaction verify the Peierls condition. Indeed, we can observe that for
any contour 𝛾 we have

𝐸𝛾∖𝜕−𝛾 − 𝐸𝛾∖𝜕−𝛾 =
1

𝑅2𝑑𝑏2𝑑

⎛

⎜

⎜

⎜

⎝

∫
𝐿𝑅(𝜔)∩𝛾̂

∫
𝐿𝑅(𝜔)

𝜙𝑅(|𝑥 − 𝑦|)𝑑𝑥𝑑𝑦 − 𝐶𝜙𝑅|𝐶1(𝛾)|

⎞

⎟

⎟

⎟

⎠

where |𝐶1(𝛾)| counts the number of non-empty tiles in the core of the contour. Using a similar
approach as in Proposition 19, we can show that 𝜌0 = 𝐶𝜙𝑅𝑟0𝛿

𝑑 . The only problem here is that we
cannot apply Theorem 24, because in this case 𝐴 = −𝜙𝑅(0) < 0. It is why we need to improve
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on the proof of Proposition 13, in order to prove phase transition for corrected diluted pairwise
interaction.

Furthermore, there is a second difficulty with this approach. If we consider that we have a
liquid-gas phase transition for the corrected diluted pairwise interaction, then for each 𝑅 > 0
there is 𝛽𝑐(𝑅) > 0 and for any 𝛽 ≥ 𝛽𝑐(𝑅) there is 𝑧𝑐𝛽(𝑅) > 0 and the phase transition happens
for (𝛽, 𝑧𝑐𝛽). The problem is that we do not know how 𝛽𝑐(𝑅) behaves as 𝑅 tends to 0. It is totally
possible that 𝛽𝑐 → +∞ and therefore we cannot conclude on the phase transition for a finite 𝛽.
The same can be said for 𝑧𝑐𝛽(𝑅) if we admit that 𝛽𝑐(𝑅) is bounded. We need to guarantee that for
𝛽 ≥ sup{𝛽𝑐(𝑅), 𝑅 ∈ (0, 𝑅0)} the critical activity 𝑧𝑐𝛽(𝑅) is bounded.
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