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Introduction

This thesis entitled “Solution-based Knowledge Discovery in Metaheuristics for Bi-Objective Ve-
hicle Routing Problems” focuses on the integration of learning mechanisms, extracting knowledge
from solutions, within existing multi-objective algorithms. This thesis was conducted within the
ORKAD (Operational Research, Knowledge, And Data) team, in collaboration with the INOCS
(Integrated Optimization with Complex Structure) team, at the CRIStAL laboratory in Lille. Both
teams belong to OPTIMA, a large group of CRIStAL, experts in solving optimization problems
with real-life applications. The ORKAD team develops new algorithms to solve combinatorial op-
timization problems by combining established resolution methods from operational research with
artificial intelligence techniques. For example, by using data-mining techniques to understand the
behavior of the different components of an algorithm, or to focus the exploration of the algorithm
on promising regions from past explorations. In particular, the area of expertise of the ORKAD
team encompasses various domains, including single and multi-objective combinatorial optimization
problems, algorithm configuration, landscape analysis, and graph theory. The INOCS team models
and develops innovative solution methods for complex structure problems according to three types
of optimization paradigms: mathematical optimization, bilevel optimization, and robust/stochastic
optimization. Complex structure problems are pervasive. In particular, they appear in the energy
sector and supply chain management.

The machine learning field has become incredibly popular in the last decade. Machine learning
can take different forms, depending on the task performed. For example, the learning can be super-
vised or unsupervised, it can be performed online or offline, and it can be based on linear regressions,
decision trees, clustering, neural networks, or reinforcement learning among other mechanisms. In
particular, machine learning is known to share a good synergy with combinatorial optimization
problems. Such problems aim to optimize one or several objective functions, by exploring a dis-
crete (but often huge) solution space, which can not be entirely explored in practice. Hence, it
requires using heuristics (and more generally metaheuristics, which are generic optimization strate-
gies) to quickly approximate an optimal solution of the problem. Metaheuristics aim to efficiently
explore the solution space with different strategies, mixing diversification (where new regions of the
space are explored), and intensification (where the focus is made on a small region to improve the
solutions).

The notion of knowledge discovery covers the field of machine learning exploiting data that can
be extracted from solutions (and from the problem) to guide metaheuristics during the exploration of
the solution space. The knowledge discovery can be integrated at different levels in metaheuristics.
At a problem-level, the knowledge is extracted from instances of the problem to characterize them
and this knowledge can be used to adapt the strategies employed in the metaheuristic. At a low-
level, the knowledge is extracted from solutions to the problem, in order to better understand the
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2 INTRODUCTION

structure of good-quality solutions, and/or to better understand the structure of the solution space.
The knowledge can also be integrated at a high-level, meaning that feedback from other heuristics
is available for that problem, which can help the metaheuristic to select the next heuristic to apply.

Multi-objective optimization problems aim to simultaneously optimize several objective func-
tions. Considering more than one objective function is interesting to understand how the different
objectives impact the solutions found, and more precisely, to understand how the objective func-
tions interact together during optimization. In general, solving a multi-objective problem helps to
better understand the problem considered. However, in a multi-objective context, some solutions
are incomparable, meaning that they present different trade-offs between the optimized objectives,
but one solution can not be considered globally better than the other. We say that one solution
dominates another one whenever its evaluation of all objectives is better than those of the other
solution. The goal of solving a multi-objective problem is to find all non-dominated solutions (i.e.,
solutions for which there does not exist any solution dominating them). Consequently, it requires
manipulating a set of solutions instead of a single solution during the execution of the algorithm.
Usually, the objectives to optimize are in conflict with each other, meaning that they can not be
optimized simultaneously, forcing the presence of trade-off solutions.

Integrating machine learning components into existing metaheuristics has led to significant im-
provements (both in terms of performance and execution time) in single and multi-objective op-
timization. More precisely, learning from the structure of solutions is known to be efficient in a
single-objective context, since all high-quality solutions optimize the same objective. However, in
a multi-objective context, learning from the structure of solutions generated during the execution
remains a challenge due to the optimization of conflicting objectives. In particular, there exists
high-quality solutions for each objective, and a structure that is interesting for optimizing one
objective, may not be interesting for optimizing another one.

In this thesis, we focused on a vehicle routing problem with time windows (VRPTW), which finds
its application in logistics. Its aim is to determine optimized routes to deliver parcels to customers
during a precise time period, symbolized by a time window. Solving this type of problem is a
challenge for many companies. While many different objectives can be optimized in a VRPTW,
we decided to minimize the two following objectives: the total cost of transport and the total
waiting time for the delivery driver. The waiting time is caused by the driver arriving before
the start of the delivery period. Using both of these objectives is interesting in many real-life
situations, like food delivery, where the waiting time of a driver impacts the heat of the meals of
the next customers, and consequently customer satisfaction. Another typical situation concerns
the transportation of people, more precisely when a patient has a medical appointment, we do
not want them to wait too long. To solve this problem, we propose to exploit the sequences of
customers delivered consecutively within a tour. These sequences are extracted from generated
solutions during algorithm execution. The most promising sequences are then integrated into other
solutions to improve them. While learning sequences to solve this type of problem has proved
effective in single-objective settings, it remains a challenge to exploit them in a multi-objective
context. Indeed, some sequences that are interesting for one objective may prove useless for the
other. More specifically, in this thesis, we are looking at the best ways to exploit the sequences
available in solutions. In particular, this led us to ask the following questions: how to manage these
sequences in a multi-objective solver? From which solutions should we extract sequences, and into
which solutions should we inject them? At what point in the runtime should the injection and
extraction steps be carried out? The answers to these questions led us to develop a learning model
exploiting solution sequences in a multi-objective context, where knowledge groups are created to
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store sequences related to a part of the search space. This model was then integrated into two
popular algorithms: a multi-objective evolutionary algorithm based on decomposition (MOEA/D)
and a multi-objective local search MOLS, demonstrating the effectiveness of the proposed model.

This manuscript is divided into three parts. The first part (Chapter 1 and Chapter 2) intro-
duces the necessary scientific context and background to understand the work realized in this thesis.
Moreover, the VRPTW is formally introduced, as well as the objectives considered. The second part
(Chapters 3 to 5) is dedicated to the development of a knowledge discovery mechanism integrated
into MOEA/D. This mechanism is based on the construction of knowledge groups, each associated
with a region of the objective space. A knowledge group gathers sequences obtained from solutions
belonging to the associated region of the objective space. The third part (Chapters 6 and Chap-
ter 7) develops a more generic knowledge discovery mechanism, namely Solution-based Knowledge
Discovery (SKD), which is integrated into two algorithms a MOEA/D and a MOLS. In particular,
the integration of SKD is facilitated thanks to the proposition of a unified view between multi-
objective evolutionary algorithms and multi-objective local search. Finally, we conclude this thesis
by summarizing the different contributions obtained and drawing several research perspectives. In
particular, we propose perspectives to improve the knowledge groups (to make them more adaptive
to the instance solved), to improve the knowledge learned (through the update of scores), and to
better exploit what is learned.

Chapter 1 Chapter 1 presents the scientific context of the thesis. Several themes are developed,
like combinatorial optimization, multi-objective optimization, and knowledge discovery. The main
concepts related to combinatorial optimization are introduced, like the notion of objective function,
global and local optima, and neighborhood operators. The two most commonly used families of
metaheuristics to solve combinatorial problems are presented: the family of local search algorithms,
exploiting neighborhood of solutions, and the family of evolutionary algorithms. Then, multi-
objective combinatorial optimization problems are formalized. In particular, the dominance relation
between solutions is introduced, and the Pareto front, which is a set of incomparable solutions (i.e.,
representing different trade-offs between the objectives). We provide some tools to assess the quality
of the Pareto fronts returned by the algorithms. Among the most popular quality indicators, we find
the hypervolume and the generational distance. Different strategies used to solve multi-objective
problems are also described. Following that, knowledge discovery mechanisms are introduced, and
details about their integration into metaheuristics are provided. In particular, we give examples of
integration at problem-, low- and high-level. Finally, the vehicle routing problem with time windows
is formally introduced. An overview of the existing objectives that can be considered to solve the
problem is presented, leading to our choice concerning the two objectives optimized. We also
describe existing algorithms to solve this problem with existing knowledge discovery mechanisms.

Chapter 2 Chapter 2 formalizes the bi-objective vehicle routing problem with time windows
considered throughout this thesis. Solutions to this problem can be represented as permutations
of customers, but it requires the use of the split algorithm to evaluate the solutions. Common
neighborhood operators are also defined and will be used in the different local searches performed.
On the other hand, we motivate our choice of objectives by presenting the most common ones
that are optimized for this problem. In addition, we present an overview of the existing works
for the multi-objective VRPTW. Finally, we focus on a knowledge discovery mechanism, called
Pattern Injection Local Search (PILS), developed for another routing problem. However, with a
few modifications, it can be applied to our problem.
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Chapter 3 Chapter 3 presents the Multi-Objective Evolutionary Algorithm based on Decomposi-
tion (MOEA/D). The idea is to decompose the multi-objective problem into several single-objective
problems by aggregating the different objectives. There exists different strategies to aggregate the
objectives, but a common way is to define a weighted sum of the objectives. Each weight vector
produces a single-objective problem that is solved by using single-objective optimization strategies
(e.g., a local search). An optimal solution for a single-objective problem generated produces a
solution for the optimal Pareto front. Each subproblem is associated with its current best solution
found and genetic mechanisms are used to improve and generate new solutions during the execu-
tion. A discussion about its main components, and how they have been improved (using learning
mechanisms or not) is also provided.

Chapter 4 Chapter 4 focuses on our first version of the knowledge discovery mechanism for
multi-objective optimization. It introduces the notion of knowledge groups, gathering sequences of
solutions belonging to the same region of the objective space. In MOEA/D, we decided to define
a knowledge group per subproblem. However, putting together the structure of close solutions
(i.e., solutions with close objective values) requires that close solutions share similar structures.
Thus, we provide details about the structural similarity between solutions found when solving
instances of the VRPTW. Then, we propose new neighborhood exploration strategies to define a
local search adapted to the resolution of our problem. In fact, using a local search has the advantage
of generating more interesting solutions during the exploration, and it allows a faster convergence
towards local optima. Finally, we analyze the benefit of extracting sequences from local optima
only, since local optima generally contain more interesting structural information. This study shows
that learning from local optima improves the quality of the solutions returned.

Chapter 5 Chapter 5 describes an enhanced version of our knowledge discovery mechanism
introduced in Chapter 4, making it more independent from MOEA/D, but still integrated into
MOEA/D only. The enhanced version associates a representative (being a weight vector) to each
knowledge group, delimiting a specific region of the objective space. The main difference with the
former construction is the increased control we have over the groups: we can control the number of
groups defined and the region associated with a group. Moreover, intensification and diversification
strategies are introduced for extraction and injection procedures. Finally, we perform an analysis
of different parameters used by MOEA/D and our knowledge discovery mechanism by using the
irace tool.

Chapter 6 To generalize the knowledge discovery mechanism introduced in the former chapters,
it is necessary to better understand what are the main components of a multi-objective algorithm.
Thus, in Chapter 6, we decide to recall the main components of multi-objective evolutionary algo-
rithms (MOEA) and to give more details about multi-objective local search (MOLS). In particular,
a unification of MOLS is presented, to highlight its main components. The comparison of the main
components of MOEA and MOLS reveals that they both use similar intensification (generally a local
search) and diversification (perturbation) mechanisms when exploring the search space. Moreover,
they both use three main sets of solutions during the search: one keeps the best solutions found,
another one maintains a current population from which solutions are selected, and the last one
manages the selected solutions during their exploration. These considerations led us to propose
a unified view of MOEA and MOLS, in order to facilitate the integration of knowledge discovery
mechanisms in different multi-objective algorithms.
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Chapter 7 In Chapter 7, we develop a solution-based knowledge discovery (SKD) model. The
SKD model is based on three main components, being the creation of the knowledge groups, the
extraction, and the injection procedures. In particular, a new construction strategy for the knowl-
edge groups is introduced, which adapts to the current Pareto front, and more generic extraction
and injection procedures are described. The SKD model is then instantiated into a MOEA/D
and a MOLS, by using the unified view proposed in Chapter 6. Finally, the performances of the
algorithms are evaluated, showing the efficiency of our knowledge discovery mechanism, and an
additional discussion of the SKD model is provided.
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Metaheuristics and Knowledge
Discovery

Contents
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.2 Combinatorial Optimization and Metaheuristics . . . . . . . . . . . . . 10

1.2.1 Neighborhood-based Metaheuristics . . . . . . . . . . . . . . . . . . . . . 11

1.2.2 Nature-inspired Metaheuristics . . . . . . . . . . . . . . . . . . . . . . . . 15

1.3 Multi-objective Optimization . . . . . . . . . . . . . . . . . . . . . . . . 16

1.3.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.3.2 Quality Indicators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.3.3 Modelling the Multi-objective Problem by a Single-objective One . . . . . 22

1.3.4 Strategies to Approximate the Optimal Pareto Front . . . . . . . . . . . . 23

1.4 Knowledge Discovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

1.4.1 Problem-Level Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

1.4.2 Low-Level Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

1.4.3 High-Level Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

1.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

1.1 Introduction

This chapter gathers all the concepts required to clearly understand the scope of the thesis. Several
elements related to combinatorial optimization, machine learning, and routing problems are covered.

Many real-life problems (like logistic problems) can be modeled as combinatorial optimiza-
tion problems. In Section 1.2, the notions of combinatorial optimization and metaheuristics (i.e.,
algorithmic strategies adapted to the resolution of combinatorial problems) are introduced. In
particular, the concepts of local search and evolutionary algorithms are developed.

When one objective function is not enough to accurately model the problem to solve, a possible
extension is to consider several objective functions. Multi-objective combinatorial problems are

9
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defined in Section 1.3. One interest in solving a multi-objective problem is to provide to a decision-
maker, a set of non-dominated solutions representing different trade-offs between the objectives.
However, solving a multi-objective problem is more difficult than solving a single-objective problem,
and it requires the use of specific approaches. To compare the sets of solutions returned, many
quality indicators have been developed but we focus on the most common ones (e.g., hypervolume,
generational distance, and epsilon indicator). In addition, the most frequent approaches used to
solve multi-objective problems are described.

The field of machine learning has received much interest in the last few years. In particular,
recent works try to integrate machine learning elements in existing algorithms to improve their
adaptability to new problems. Using machine learning mechanisms can also help to focus on more
promising regions of the space of solutions, which may guide the algorithm towards more interesting
solutions. Section 1.4 presents the taxonomy of knowledge discovery (i.e., machine learning at the
service of optimization) and existing works in that field.

1.2 Combinatorial Optimization and Metaheuristics

Optimization is omnipresent in our lives. Every day, we optimize the time to go to work or school.
We plan events, trying to limit the cost or find trade-offs to respect a given budget. In mathematics,
the optimization field has received high interest for centuries. Thanks to the progress made in that
field, and the development of computer science, many tools are today available to solve various
optimization problems. One category of problems, known as combinatorial optimization problems,
regroups most logistic problems that have to be tackled in our society (supply chains, parcel delivery,
time-tabling conception, task planning, and many more).

More precisely, a combinatorial optimization problem is characterized by discrete decision vari-
ables and a finite search space (D), containing all feasible solutions. To solve a combinatorial
optimization problem, we look for the best solution(s) according to one (or more) criteria. The cri-
teria are often modeled through an objective function (noted f), that assigns a score to a solution,
reflecting how the solution found respects the specified criteria. Hence, the goal is to determine
(at least) one solution x∗ ∈ D that is optimum (either maximum or minimum, depending on the
problem) for f , i.e., such that ∀x ∈ D, f(x∗) ≤ f(x) (in a minimization context).

All combinatorial optimization problems are not equally difficult. There exists a field in com-
puter science, known as complexity theory [Garey and Johnson, 1979], that classifies the different
algorithmic problems according to their complexity. Two classes are widely known: P and NP. The
P (Polynomial) class contains all problems that can be solved in polynomial time on a deterministic
machine (i.e., without using randomness). The NP (Non-deterministic Polynomial) class groups
together decision problems that can be solved in polynomial time on a non-deterministic machine.
In the NP class, we find NP-hard problems, which represent the most difficult problems of the class.
A problem is said NP-hard when every other problem of the NP class can be (polynomially) reduced
to it. There exist problems in NP that are not NP-hard. Without going into the details, many com-
binatorial optimization problems are known to be NP-hard: the traveling salesman problem (TSP),
the knapsack problem (KP), the permutation flowshop scheduling problem, and in particular, all
routing problems.

Attempting to find an optimum solution to a combinatorial optimization problem by perform-
ing an exhaustive search is an impractical choice [Korte et al., 2011]. Although the field of exact
algorithms is not able to solve large instances, it remains an active and important field in the opti-
mization community. An efficient strategy used in exact algorithms is the branch-and-cut [Padberg
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and Rinaldi, 1991], which combines the branch-and-bound strategy [Lawler and Wood, 1966] and
the cutting plane method [Kelley, 1960]. Moreover, for vehicle routing problems, the state of the
art are branch-price-and-cut methods [Desrosiers and Lübbecke, 2011]. To tackle large instances,
other tools have been developed, like metaheuristics. A heuristic is an algorithmic strategy used
to generate a reasonably good solution in a short amount of time. In practice, heuristics are often
a good choice to solve a specific problem, however, they are not designed to tackle various opti-
mization problems. For example, an efficient heuristic for the TSP can not be used to solve the
KP, since the two problems are structurally too different (the TSP uses solutions represented as
permutations, while the KP uses binary solutions). A metaheuristic is generally based on a strate-
gic approach, where the components problem-specific are abstracted. Thus, a metaheuristic can be
applied to different problems but may require the implementation of problem-specific components
or heuristics. Many kinds of metaheuristics, using various strategies, have been developed, see for
example the recent survey of Hussain et al. [2019] for more details.

With the use of metaheuristics, it is possible to approximate the optimum solution of the
optimization problem considered in a reasonable amount of time. However, due to the no-free-
lunch theorem (stating that a general-purpose, universal optimization strategy is impossible), a
single metaheuristic can not be the best on all optimization problems. In the literature, we find
two main families of metaheuristics, neighborhood-based metaheuristics presented in Section 1.2.1,
and nature-inspired metaheuristics, like evolutionary algorithms, presented in Section 1.2.2.

1.2.1 Neighborhood-based Metaheuristics

This section presents the concepts related to neighborhood-based metaheuristics. Behind the con-
cept of neighborhood (formally presented in Section 1.2.1.1), hides the notion of local search. The
basic idea underlying local search (LS) is that high-quality solutions to an optimization problem
can be found by iteratively improving a solution using small (local) modifications, called moves.

To perform a local search, three key ingredients are required: an initial solution (which can be
generated randomly if the problem is not too constraint, or with a greedy algorithm), a neighborhood
to explore, and an exploration strategy (indicating when the exploration of the neighborhood stops).

The concept of neighborhood and some examples are introduced in Section 1.2.1.1. Sec-
tion 1.2.1.2 presents commonly used exploration strategies. Finally, Section 1.2.1.3 features some
neighborhood-based metaheuristics.

1.2.1.1 Concept of Neighborhood

The neighborhood of a solution is defined with a neighborhood operator (or local search operator),
op. This operator generates a set of possible moves that can be applied to a solution x. The set
of solutions that can be obtained by applying one move defined by op to a solution x is called the
neighborhood of x, noted N op(x). In Figure 1.1, a simple solution space is represented. The current
solution, x, is colored red. The neighborhood of a solution, represented in blue, contains all the
closest feasible solutions that are in the same row or column (in the figure).

In the neighboring solutions, we distinguish between two types of solutions: the improving
solutions, which are closer (in terms of the objective function) than x to the optimum solution
x∗, in green, and the non-improving solutions, which are the other ones. It is possible that the
neighborhood of a solution (for a specific operator) does not contain any improving solution, without
being the best optimum solution. In that case, the solution is called a local optimum. Formally, a
solution x is a local optimum for the operator op if ∀x′ ∈ N op(x), f(x) ≤ f(x′) (in a minimization
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context). This situation is represented in Figure 1.2, where the neighborhood is the same as defined
in Figure 1.1. Non-improving solutions are crossed in the figure.

Solution space

Figure 1.1: Neighborhood (blue dots) of a solu-
tion x (red dot). The best solution is x∗ (green
dot). In this situation, some neighboring solu-
tions are closer to the optimum solution.

Solution space

Figure 1.2: The current solution x (red dot) is
a local optimum since no neighboring solutions
(blue dots) are closer to the optimum solution
x∗ (green dot).

An important observation is that a local optimum for one local search operator is generally not a
local optimum for another one. For this reason, it is interesting to use several local search operators
in a single algorithm. However, the usage of several local search operators is only beneficial as long
as they explore different neighborhoods. In the best case, the pairwise intersections of the considered
neighborhoods are empty, i.e, given two operators op1 and op2 we have N op1(x)∩N op2(x) = ∅ for
every solution x.

1.2.1.2 Exploration Strategies

In this section, more details are given about the exploration of the neighborhood of a solution
N op(x). The exploration strategy decides which neighbor to accept.

Two classical neighborhood exploration strategies commonly adopted in the literature are the
best and the first improvement strategies [Hoos and Stützle, 2004]. The best strategy (represented
in Figure 1.3) entirely explores N op(x) to find the neighbor maximizing the improvement. This
strategy guarantees the best possible progress at each iteration of the local search but the time
allotted to the exploration may become an issue when a fast exploration is wanted. The first
strategy (represented in Figure 1.4) evaluates the neighboring solutions one by one and stops as
soon as it finds one improving (or non-deteriorating, i.e., with the same fitness) neighbor. Accepting
non-deteriorating solutions is beneficial when many solutions share the same fitness, to explore
different regions of the search space. This strategy allows a fast exploration but many improving
neighbors are set aside. Moreover, the convergence rate of the first strategy is slower than the one
of the best strategy, when the exploration is performed several times.

Finally, the two strategies can be mixed by generating first a subset of the neighborhood and
taking the best-improving neighbor from this subset. This strategy was initially proposed by Ruiz
and Stützle [2007] to create an iterative greedy heuristic for the permutation flowshop scheduling
problem. More generally, Tari et al. [2022] studied different Partial Neighborhood Local Search
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Solution space
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4

Figure 1.3: Illustration of the best exploration
strategy. All the neighboring solutions are ex-
plored. Discarded solutions are crossed. Fi-
nally, one solution maximizing the improvement
is selected.

Solution space

1

2

3

Figure 1.4: Illustration of the first exploration
strategy. The neighboring solutions are ex-
plored in a random order. Non-improving solu-
tions are crossed. The first improving solution
is selected.

techniques, which consist of adaptive walks where the moves are chosen in a random subset of the
current solution neighborhood. In particular, the balance between intensification and diversification
is controlled by a single parameter impacting the size of the subset.

1.2.1.3 Classical Neighborhood-based Metaheuristics

Many metaheuristics based on neighborhood have emerged over the years, however most of them
are based on strategies developed decades ago. Among the most popular strategies we find the
Hill Climbing, the Simulated Annealing [Kirkpatrick et al., 1983], the Tabu Search [Glover and
Laguna, 1998], the Iterated Local Search [Lourenço et al., 2003], and the Variable Neighborhood
Search [Mladenović and Hansen, 1997]. All these strategies use different trade-offs between intensi-
fication (focus on a specific region to reach a local optimum) and diversification (largely exploring
the search space).

The Hill Climbing (HC) is presented in Algorithm 1. The algorithm starts with an initial
solution x and a neighborhood operator op, entirely explores the neighborhood of x, replaces it
with the best improving solution (best strategy), and repeats the process until a local optimum is
found. Given any neighborhood operator, the HC is the fastest (in number of iterations) strategy
to reach a local optimum. This algorithm does not use any diversification strategy. Moreover, once
a local optima is reached, to pursue the search, strategies to escape local optima are required. Such
strategies may accept non-improving solutions to explore other regions of the solution space.

Contrarily to the HC, the Simulated Annealing (SA) integrates a diversification strategy since
it may accept neighboring solutions that do not improve the current solution with a probability.
The interest in accepting non-improving solutions is to avoid getting stuck in local optima. It
allows exploring other regions of the solution space, that would have been discarded with a HC.
The original SA employs the Metropolis function, which considers the fitness difference and a
temperature to decide the replacement of the current solution by a non-improving solution. The
temperature gradually decreases every iteration, according to a cooling rate, and the probability
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Algorithm 1: Hill Climbing.

Input: Initial solution x, neighborhood operator op
Output: A local optimum bestSolution

1 improved← True
2 bestSolution← x
3 while improved do
4 improved← False
5 for x′ ∈ N op(bestSolution) do
6 if f(x′) < f(bestSolution) then
7 bestSolution← x′

8 improved← True

9 return bestSolution

of accepting a non-improving solution decreases with the temperature. The neighborhood of the
solution is explored until a new solution is accepted. The algorithm stops when a local optimum is
reached or when the temperature becomes 0.

Once a local optimum is reached (for all the operators considered), it is no longer possible to
improve the solution by applying a local search. To continue the exploration of the search space,
an idea is to realize one (or more) deteriorating moves (diversification) before starting a new local
search (intensification). More generally, this step is called a perturbation step. This strategy is
called Iterated Local Search (ILS). Algorithm 2 illustrates the steps of the ILS. In particular, the
LS step can be a Hill Climbing, and the Perturbation can apply random moves.

Algorithm 2: Iterated Local Search.

Input: Initial solution x
Output: A local optimum bestSolution

1 bestSolution← x
2 currentSolution← x
3 while not termination criterion do
4 currentSolution← LS(currentSolution)
5 if f(currentSolution) < f(bestSolution) then
6 bestSolution← currentSolution

7 currentSolution← Perturbation(currentSolution)

8 return bestSolution

When multiple neighborhood operators are available, an interesting strategy is the Variable
Neighborhood Search (VNS), which returns a local optimum for all the neighborhood operators.
The idea is to change the neighborhood whenever a local optimum is reached and restart the
exploration of all the neighborhoods when an improving solution is found. The main steps of the
strategy are described in Algorithm 3. Some existing variants are presented by Hansen et al. [2019].
In general, they differ from the order of exploration of the neighborhoods, the Exploration step,
or the backtrack choice (i.e., the next neighborhood selected when an improving solution is found).
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Algorithm 3: Variable Neighborhood Search.

Input: Initial solution x, k operators op1, . . . , opk
Output: A local optimum bestSolution

1 bestSolution← x
2 currentSolution← x
3 currentNeighborhood← 1
4 while currentNeighborhood ≤ k do
5 currentSolution← Exploration(currentSolution, opcurrentNeighborhood)
6 if f(currentSolution) < f(bestSolution) then
7 bestSolution← currentSolution
8 currentNeighborhood← 1

9 else
10 currentNeighborhood← currentNeighborhood + 1

11 return bestSolution

When non-improving solutions are accepted during the search, there is a possibility to cycle
between the same solutions, preventing the algorithm to explore new regions of the solution space
and to find new better solutions. To avoid cycling between the same regions of the search space, it
is possible to associate a tabu list with specific solutions or components. This tabu list is a memory
of what has already been explored. All the solutions that do not belong to the tabu list or do not
have components in the tabu list can still be selected. This strategy is called a tabu Search. In
practice, it favors the exploration of new regions of the search space. Moreover, it is possible to
remove elements of the tabu list after some iterations.

1.2.2 Nature-inspired Metaheuristics

Nature-inspired metaheuristics emulate behaviors observed in natural systems to solve complex
problems. Many nature-inspired metaheuristics have emerged in the last decades [Yang, 2020],
but the most popular ones remain the evolutionary algorithms, and more particularly the Genetic
Algorithms (GA) introduced by Holand [1975], the Particle Swarm Optimization (PSO) [Kennedy
and Eberhart, 1995], and the Ant Colony Optimization (ACO) [Dorigo and Di Caro, 1999].

Briefly, PSO solves a problem by moving solutions, named particles, in the search space according
to a mathematical formula over the particle’s position and velocity. The movement of each particle
is influenced by its local best-known position but is also guided toward the best-known position(s)
in the search space. ACO is a multi-agent (each agent is an ant) method inspired by the behavior
of real ants, which use pheromones to indicate the best paths to follow to reach their objective (e.g.,
food). Algorithmically each ant, represented by a solution, locally explores its neighborhood, with
a bias induced by pheromones of other ants when the path is better (more chance to go there) or
worse (less chance) than the others.

Evolutionary algorithms use principles of natural selection, recombination, and mutation to
evolve a population of potential solutions. A Genetic Algorithm (GA) is a specific evolutionary
algorithm using genetic operators to evolve the population of candidate solutions [Goldberg, 1989].
Algorithm 4 details the framework of a GA. An initial population is generated using an operator
Initialize. Solutions can be randomly generated or constructed via a heuristic when it is available.
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Then, solutions are evaluated (Evaluate) to determine their fitness. Most of the time the fitness
is obtained with the objective function. If it is costly to evaluate a solution, a surrogate should be
used to approximate the objective function, so that the evaluation step remains as fast as possible.
Members of the population evolved for a maximum number of iterations (Imax), called generations
(however, we keep the term iteration, even when a genetic algorithm is considered). During each
generation, a few solutions are selected (Select) to inherit their characteristics to new solutions.
Among the most used selections, we find the elitist selection, where the best individuals are selected,
the roulette wheel selection, where the probability of being selected depends on the contribution of
the fitness of the solution to the sum of all fitnesses, and the tournament selection, where solutions
compete for two by two and the solution with the best fitness makes it to the next round. A set
of new solutions, called offspring, is created by applying a crossover mechanism (Crossover) to
the selected individuals. The crossover step tries to generate a new solution by mixing the best
components of the parents. In addition, a mutation step (Mutation) can occur to bring more
diversity to the solutions. However, the mutation step can also be used to exploit the solutions
found, i.e., intensify the search around the solutions to improve them. Note that, both crossover and
mutation steps depend on the representation of the solutions. We provide an example of crossover
and mutation in the case of solutions represented as permutations. In Figure 1.5, the Partially
Mapped Crossover (PMX) is illustrated. First, two points are selected to divide each permutation
into three fragments. The middle fragments are exchanged, but it may create redundant elements.
To repair the permutation, we use a mapping induced by the exchange of the middle fragments.
For example, the value 9 became redundant in Child 1 after the exchange, thus 9 is mapped to 3,
but 3 is already in the middle fragment, leading to a second mapping 3 to 5. The last mapping
sends 7 to 4, allowing the correction of Child 1. The process is similar for Child 2. In Figure 1.6,
the permutation swap mutation is presented, where two elements of the permutation are simply
swapped. Finally, some members of the population are replaced by the new generation of solutions
(Update). Update strategies are the same as selection strategies since the update is equivalent to
selecting M solutions in the set containing the current population and the offspring. At the end of
the execution, the best individual of the population is returned.

In the field of evolutionary computation, the term exploration (resp. exploitation) designs
diversification (resp. intensification) mechanisms. In that context, exploration means finding new
members for our current population, while exploitation means optimizing the current population
to reach the best individuals. As for neighborhood-based metaheuristics, where a good trade-
off between intensification and diversification is required to reach high-quality solutions, a good
trade-off between exploration and exploitation is necessary to obtain an efficient GA. From now
on, when we mention exploration of solution, in the context of neighborhood exploration (like in
local search), it is equivalent to an intensification mechanism (and thus to exploitation). In general,
neighborhood exploration (which is an intensification step) should not be confused with exploration
strategy (which refers to diversification mechanisms). In particular, in the second part of the thesis,
we use the term exploration for neighborhood exploration, even if it is considered as an exploitation
mechanism.

1.3 Multi-objective Optimization

Single-objective optimization is sometimes not enough to model more complex problems encoun-
tered in real life. Indeed, minimizing a single objective function may bias the search towards
solutions that are finally not such interesting in practice. By considering more objectives, it is
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Algorithm 4: Genetic Algorithm (GA).

Input: Size of the population M , maximum number of iterations Imax

Output: The best solution found
1 Population← Initialize(M)
2 Evaluate(Population)
3 I ← 0
4 while I < Imax do
5 Parents← Select(Population)
6 Offspring ← Crossover(Population)
7 Mutation(Offspring)
8 Evaluate(Offspring)
9 Update(Population,Offspring)

10 I ← I + 1

11 bestSolution← BestOf(Population)
12 return bestSolution

Parent 1

Parent 2 2 4

1 9 4

2

Child 1

Child 2

1

Figure 1.5: Partially mapped crossover (PMX).

possible to handle more aspects of the optimization problem and provide more possibilities to a
decision-maker. To turn a single-objective problem into a multi-objective problem, it is possible
to relax one or several constraints by turning them into objective functions to optimize (e.g., in
routing problems, the number of vehicles usually appears as a constraint of the problem to limit
the maximum number of vehicles used, but this constraint can be relaxed by putting the number
of vehicles as an objective function to minimize). This has the advantage of considering a less
constrained problem, whose solution space is easier to explore. Another possibility to transform a
single-objective problem into a multi-objective one is to define new objective functions considering
aspects of the original problem that were put aside (e.g., in routing problems, the fairness between
drivers, customer satisfaction, and the environmental aspect). Since it is not possible to present all
aspects of the multi-objective optimization field, we refer to the book of Deb et al. [2016] for more
detailed information.

In the following, we mainly focus on multi-objective combinatorial optimization, whose con-
cepts are presented in Section 1.3.1. We present in Section 1.3.2 various quality indicators that are
commonly used to assess the quality of the solutions returned by multi-objective algorithms. Sec-
tion 1.3.3 is dedicated to approaches used to turn a multi-objective problem into a single-objective
problem. Finally, Section 1.3.4 features resolution methods adapted to multi-objective optimization.



18 CHAPTER 1. METAHEURISTICS AND KNOWLEDGE DISCOVERY

1 2 4 5 6 7 9

1 2 4 5 6 7 9

Initial solution

Mutated solution

Figure 1.6: Permutation swap mutation.

1.3.1 Definitions

A Multi-objective Combinatorial Optimization Problem (MoCOP) is commonly formalized as fol-
lows [Coello et al., 2010]:

(MoCOP ) =

{
Optimize F (x) = (f1(x), f2(x), . . . , fn(x))

s.t. x ∈ D, (1.1)

where n ≥ 2 objective functions fi have to be optimized, x is a vector of decision variables, and
D is the (discrete) set of feasible solutions. The objective space, noted Z, is the image of F .
In particular, each solution x ∈ D is associated with a point F (x) ∈ Z. When four (or more)
objectives are considered, we talk about many-objective optimization. With such problems comes
another issue: the visualization of the Pareto front obtained.

We say that a solution x dominates a solution y, noted x ≻ y in a minimization context, if and
only if for all i ∈ {1 . . . n}, fi(x) ≤ fi(y) and there exists j ∈ {1 . . . n} such that fj(x) < fj(y). We
say that x weakly dominates y, noted x ⪰ y, if and only if for all i ∈ {1 . . . n}, fi(x) ≤ fi(y). The
ϵ-dominance [Laumanns et al., 2002] naturally extends the dominance relation: for any real ϵ > 1,
x ϵ-dominates y, noted x ⪰ϵ y, if and only if for all i ∈ {1 . . . n}, fi(x) ≤ ϵ · fi(y), in a minimization
context and assuming that all points are positive in all objectives. The dominance relation induces
a partial order in the solution space. Indeed, there exist pairs of solutions that cannot be compared
to each other. Such solutions are said incomparable. Intuitively, two solutions are incomparable
when there exists a set of objectives for which one solution is better and another set for which the
other solution is better. Figure 1.7 illustrates the different categories of neighbors of a solution
in a bi-objective context. The dominated solutions are worse than the current solution, the non-
dominated ones are incomparable, and the dominating ones are better. For example, let be three
solutions x1, x2, x3, with their corresponding bi-objective vectors F (x1) = (2, 5), F (x2) = (4, 2),
F (x3) = (5, 6). x1 and x2 dominates x3, x1 and x2 are incomparable, x2 ϵ-dominates x1 with ϵ ≥ 2.

A Pareto front (or approximation set) is defined as a set of non-dominated solutions. The set of
all approximation sets is denoted Ω. The Pareto dominance relations defined above can be extended
to relations between objective vector sets [Zitzler et al., 2003]. A set S1 dominates (resp. weakly
dominates) another set S2, noted S1 ≻ S2 (resp. S1 ⪰ S2) when: ∀x2 ∈ S2,∃x1 ∈ S1, x1 ≻ x2

(resp. ∀x2 ∈ S2,∃x1 ∈ S1, x1 ⪰ x2).
A feasible solution x∗ ∈ D is called Pareto optimal if and only if there is no solution x ∈ D such

that x ≻ x∗. Extending the notion of local optimum introduced in Section 1.2.1.1 for single-objective
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optimization, in a multi-objective context, a Pareto local optimum is a solution whose neighborhood
(for a specific operator) does not contain any dominating solution. To solve a MoCOP it is required
to find all the Pareto optimal solutions, which form together the Pareto optimal set. The image
of the Pareto optimal set by the objective function F provides the optimal Pareto front. The ideal
(resp. nadir) point associated with an optimal Pareto front is the point obtained by taking the
best (resp. worse) values, considering all the solutions of the front, for each objective. Figure 1.8
represents a small bi-objective space. The blue dots represent the optimal Pareto front. The ideal
and nadir points are represented too. Note that, they only depend on the optimal Pareto front,
and not on all the solutions of the objective space. In the remainder of the thesis, if nothing is
mentioned, the objectives are minimized by default.

Non-dominated 

solutions

Non-dominated 

solutions

Dominated 

solutions

Dominating 

solutions

Figure 1.7: The different types of neighbors of
a solution in a bi-objective context, when mini-
mizing both f1 and f2.

Ideal

Nadir

Figure 1.8: A bi-objective space in minimiza-
tion context. Each dot is associated with a so-
lution, except the nadir and ideal points which
are virtual. The blue dots represent the optimal
Pareto front.

1.3.2 Quality Indicators

Comparing the performance between different multi-objective algorithms requires metrics (or in-
dicators) to analyze the quality of the fronts returned. A unary indicator is a unary function
I : Ω 7→ R, attributing a real value to an approximation set (Ω denotes the set of all approximation
sets). Binary indicators are binary functions that directly compare two approximation sets (pro-
vided in input), by returning a real value symbolizing the difference between the two sets. Many
metrics are reviewed and ranked by Riquelme et al. [2015]. The quality of a Pareto front is based
on three characteristics: its accuracy (measuring the closeness to the optimal Pareto front), its
diversity (measuring how solutions are spread along the front), and its cardinality (measuring if
enough solutions have been found to represent the front). In the following, the cardinality of a
front S1 is noted |S1|. Given a unary indicator I, an approximation set S1 is preferable to another
approximation set S2, when I(S1) > I(S2), in a case where I has to be maximized.
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Section 1.3.2.1 presents the monotonicity property of indicators. Then, each following section
describes an indicator or a family of indicators: Section 1.3.2.2 focuses on the hypervolume, Sec-
tion 1.3.2.3 on the generational distance, and Section 1.3.2.4 on the epsilon indicator.

1.3.2.1 Monotonicity

Depending on the situation and the comparison wanted, some properties about unary indicators can
be considered. Among the most important properties, we find the monotonicity of the indicator,
and its associated computation effort. An indicator I is said to be monotonic if and only if for any
approximation set S1 that is compared to another approximation set S2, if S1 is at least as good
as S2 in terms of the weak dominance relation (S1 ⪰ S2), then the quality of S1 is at least as good
as the quality of S2, measured by I (i.e., I(S1) ≥ I(S2), when the indicator is to be maximized).
This property is formally expressed as follows:

∀S1, S2 ∈ Ω : S1 ⪰ S2 =⇒ I(S1) ≥ I(S2). (1.2)

The monotonicity guarantees that an indicator does not contradict the partial order of the set
of the approximation sets, imposed by the weak dominance relation. However, it is not enough to
guarantee a unique optimum with respect to the indicator values. In other words, an approximation
set with the same indicator value as the optimal Pareto front does not necessarily contain only
Pareto optimal solutions. To remedy this, the property of strict monotonicity is required, which is
based on Pareto dominance (instead of weak Pareto dominance), turning Property (1.2) in:

∀S1, S2 ∈ Ω : S1 ≻ S2 =⇒ I(S1) > I(S2). (1.3)

1.3.2.2 Hypervolume

The unary hypervolume (IuHV , or simply abbreviated uHV) [Zitzler et al., 2003], is the most used
metric in the literature. It is defined relatively to a reference point Zref , generally (1.001, . . . , 1.001),
and requires that the objectives of the solutions are normalized between 0 and 1. A reference point
slightly further than (1, . . . , 1) is often preferred to avoid computational issues. This indicator is
to be maximized and allows a good evaluation of the front’s accuracy, diversity, and cardinality.
Geometrically, see Figure 1.9, IuHV represents the volume of the objective space (bounded by
Zref ) covered by the members of a non-dominated set of solutions. The larger the hypervolume,
the better the set of solutions. It is possible to turn IuHV into a binary indicator IHV , by taking
two approximation sets S1 and S2 (with S2 a reference set, that may replace the optimal Pareto
front), and computing IHV (S1, S2) = IuHV (S1) − IuHV (S2). The unary hypervolume is known to
be a strictly monotonic metric, and currently this is the only metric verifying this property (i.e.,
currently, no other metric is known to be strictly monotonic). However, this metric is hard to
compute in high dimensions, and the computation cost grows exponentially with the number of

objectives. To be more precise, it requires about O(sf log sf + s
n/2
f ) comparisons [Beume et al.,

2009] with n being the number of objectives and sf the number of points in the front.

1.3.2.3 Generational Distance

The second most-used indicator is the Generational Distance (IGD). It calculates how far an ap-
proximation set (S1) is from the optimal Pareto front (or any reference set R). The value IGD(S1, R)
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0

Pareto front

Figure 1.9: Hypervolume of a Pareto front in a bi-objective minimization context. The reference
point Zref bounds the area.

is formally obtained with Equation (1.4). In practice, the value p = 1 is considered, making the in-
terpretability easier: it considers the average Euclidean distance between the members of S1 (noted
as xi) and their nearest member in the reference set R, noted dE(xi, R).

IGD(S1, R) =
1

|S1|

|S1|∑
i=1

dE(xi, R)p

1/p

. (1.4)

Note that this indicator only considers one aspect of the front: its accuracy. Moreover, this indicator
is fast to compute, since it requires O(|S1| · |R|) comparisons.

The Inverted Generational Distance (IIGD) is a commonly used indicator too. It exchanges the
roles of the approximation set and the Pareto front in the calculation of IGD. In addition to the
accuracy, IIGD is able to measure the diversity of the approximation set. The indicator IIGD is
easily computed by using the relation IIGD(S1, R) = IGD(R,S1).

The metrics IGD and IIGD can be seen as an error to be minimized. However, when a solution
x and its closest reference point z are non-dominated, moving x to z does not improve the two
objectives of x (in a bi-objective context, one is improved in the detriment of the other one). Thus,
decreasing the distance between the two solutions does not always improve the objectives of x. To
remedy this issue Ishibuchi et al. [2015] proposed to consider a metric d+, given by Equation (1.5)
(in a minimization context), to evaluate the distance between solutions. In a maximization context
the quantity max{fi(z)− fi(x), 0} is used instead of max{fi(x)− fi(z), 0}.

d+(x, z) =

√√√√ n∑
i=1

(max{fi(x)− fi(z), 0})2. (1.5)

Replacing the Euclidean distance in the (inverted) generational distance leads to metrics IGD+ and
IIGD+. The IIGD+ has the advantage of being monotonic, contrary to the metrics IGD, IIGD, and
IGD+.
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1.3.2.4 Epsilon Indicator

Finally, the third most-used indicator is the epsilon-indicator, noted Iϵ. It is a binary indicator,
whose value Iϵ(S1, S2) gives the minimum factor ϵ by which objective vector associated with S2 can
be multiplied such that the resulting transformed approximation set is weakly dominated by the
approximation set S1. Formally, let S1 and S2 two approximation sets (S2 is usually considered as
a reference set), then:

Iϵ(S1, S2) = inf
ϵ∈R
{∀y ∈ S2,∃x ∈ S1, x ⪰ϵ y} = max

y∈S2

min
x∈S1

max
1≤i≤n

ϵ(fi(x), fi(y))

where ϵ(fi(x), fi(y)) is equal to fi(x)/fi(y) in a minimization context, and fi(y)/fi(x) in a max-
imization context. In both cases, a lower value corresponds to a better approximation set. The
unary epsilon indicator (obtained by fixing the reference set for the problem), is monotonic, but not
strictly monotonic. It is cheap to compute since the runtime complexity is of order O(n · |S1| · |S2|),
with S1 the approximation set and S2 the reference set.

In the same manner, it is possible to define an additive ϵ-indicator, noted Iϵ+, with Equa-
tion (1.6). This indicator is monotonic too.

Iϵ+(S1, S2) = inf
ϵ∈R
{∀y ∈ S2,∃x ∈ S1, x ⪰ϵ+ y} (1.6)

where x ⪰ϵ+ y if and only if ∀ 1 ≤ i ≤ n, fi(x) ≤ ϵ + fi(y).

1.3.3 Modelling the Multi-objective Problem by a Single-objective One

Three main strategies exist to model multi-objective problems [Jozefowiez et al., 2008]: a priori, a
posteriori, and interactive strategies. The a priori approach is discussed in this section, while the
two other ones are discussed in Section 1.3.4.

The idea behind an a priori approach is to model the multi-objective problem as a single-
objective problem by using information provided by the decision-maker. It constrains the objective
space, allowing a more focused exploration. For example, the decision-maker may want to ponder
the different objectives to show that one objective is more important than the others, without
totally discarding the other objectives. Using weighted aggregations of objectives is a common way
to model the multi-objective problem by an a priori approach [Jin et al., 2001]. More generally,
the idea is to use mathematical transformations, scalarizations, to turn the multi-objective problem
into a single-objective problem, that is easier to solve. In particular, such transformations divide
the objective space into small regions, to approximate the Pareto front more efficiently. Although
scalarizations are not so accurate and exhaustive, they are simple to implement.

There exist many ways to generate scalar problems, but in every case, it requires a weight vector
w = (w1, . . . , wn) such that, ∀i ∈ {1, . . . , n} wi ≥ 0 and

∑n
i=1 wi = 1, where n is the number of

objectives considered. The two most commonly used scalar approaches are the weighted sum (WS)
and the Tchebycheff approach (TCH).

To define a scalar problem with a WS only a weight vector is required. The fitness associated
with a problem with n objective functions f1, . . . , fn is computed with Equation (1.7).

gWS
fit (x,w) =

n∑
i=1

wi · fi(x). (1.7)
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Concerning the Tchebycheff approach, it requires a reference point z0 in the objective space,
in addition to the weight vector to define a scalar problem. Then the fitness associated with the
problem is obtained with Equation (1.8).

gTCH
fit (x,w, z0) = max

1≤i≤n
{wi · (fi(x)− fi(z

0))}. (1.8)

Note that, the objective functions fi should be normalized if their range highly differ. Indeed,
when an objective function takes small values and another one very high values, without normal-
ization, it will not be possible to obtain evenly spread trade-offs with weights in [0, 1].

Another common scalar approach uses goal programming methods, where a goal (i.e. an objec-
tive vector) is chosen, and then a search is conducted to minimize the distance between the current
solution and the goal. Defining an interesting goal is the main difficulty of this method, but it can
be provided by the decision-maker, to represent its ideal solution.

Once the problem is reduced to a single-objective problem, any method described in Section 1.2
can be used to solve the problem. A priori approaches are relevant only when the decision-maker
knows exactly what they are looking for in terms of objectives. However, it is known that in multi-
objective optimization very different solutions can produce close objective vectors. For that reason,
we would recommend using population-based metaheuristics (like evolutionary algorithms presented
in Section 1.2.2) to maintain diversity among high-quality solutions. If several final solutions seem
interesting, the final choice can be left to the decision-maker.

1.3.4 Strategies to Approximate the Optimal Pareto Front

The a posteriori strategy is the opposite of the a priori strategy, in the sense that the problem is
solved without further information from the decision-maker. The decision-maker operates at the
end of the process to choose its preferred solution among the solutions returned [Branke et al., 2004].
An overview of the most commonly used algorithms to solve a multi-objective problem is provided
in the remainder of this section. We first introduce the concept of diversity and bounded archives
in Section 1.3.4.1. Indeed, for problems with a huge objective space and where the optimal Pareto
front is large, the notions of bounded archives and diversity of solutions have to be envisaged. More
precisely, in practice, a decision-maker can have difficulties making his/her choice if hundreds of
solutions are provided, hence the size of the Pareto set returned is often bounded. Furthermore, the
approximation set must fairly represent the optimal Pareto front, which requires diverse solutions.
Then, some nature-inspired multi-objective algorithms are presented in Section 1.3.4.2, where we
highlight the main differences with the algorithms presented in Section 1.2.2. The concept of multi-
objective local search is introduced in Section 1.3.4.3, and a few hybrid algorithms are detailed
in Section 1.3.4.4. Some of these algorithms use the notion of Pareto dominance to evaluate the
quality of a solution or to compare solutions, while others use decomposition strategies described
in the former section.

Finally, interactive approaches integrate the decision-maker in the execution process. Interactive
strategies mix a priori (to integrate the knowledge of the decision-maker, allowing the exploration
of a restrained objective space) and a posteriori (to obtain more diverse solutions or to provide an
insight of the possible solutions to the decision-maker) strategies, by giving the decision-maker an
important place in the discussions. In fact, solving a multi-objective optimization problem with
an interactive approach is a constructive process where the decision-maker discovers what kind of
solutions are available and confronts this knowledge with their preferences, which also evolve during
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the process. Such methods are not further developed in the remainder of the thesis, but we refer
to the book of Deb et al. [2016] for the interested reader.

1.3.4.1 Notions of Diversity and Bounded Archives

Since the goal of a multi-objective problem is generally not to find a single solution but a set of (non-
dominated) solutions, the question of the diversity of the returned solutions arises. We distinguish
between two kinds of diversity: the genotypic diversity, which is related to the internal structure of
the solutions (e.g., the routes for a vehicle routing problem), and the phenotypic diversity, which
refers to the observable characteristics of a solution (in general, its associated objective vector). In
other words, the goal of the multi-objective problem is to optimize the phenotype, which is obtained
by evaluating the genotype, with the corresponding objective functions. Generally, the constraints
of a problem concern the genotype (e.g., constraints over the length of a route, or the presence of
a specific pattern in the solution). It is also possible to consider constraints over the phenotype
when specific objective values have to be discarded. It is important for the decision-maker to have
access to a set of non-dominated solutions, that fairly represent the diversity of the solutions to the
problem in both phenotype and genotype.

When solving MoCOPs, it is common to limit the size of the archive to store the current Pareto
set. In the remainder of the thesis, the term archive refers to the structure storing a set of non-
dominated solutions (i.e., a Pareto front). In some multi-objective problems, the size of the optimal
Pareto front can grow exponentially with the number of objectives considered and with the size of
the instance. This is the case for instances of the bi-objective TSP (bTSP). A bTSP instance is
defined by using two distinct distance matrices, so that, allowing the evaluation of a solution in two
different manners, leading to two objective functions to be optimized. Since it is not interesting for
a decision-maker to deal with such large fronts, different techniques have emerged to limit the size of
an archive during the execution. The bounded archive has to respect some properties of the original
front, such as its convergence, its diversity, and its extreme points. To control the diversity of the
bounded archive, several methods have been proposed, and they can be classified into two categories
depending on the space considered (either the objective space or the solution space). Concerning
the methods related to the objective space, we find the adaptive grid archiving strategy suggested
by Knowles and Corne [2003] and a hypervolume archiving strategy presented by Knowles et al.
[2003]. The grid archiving strategy splits the objective space into a homogeneous grid, and when
the archive is full, to add a new non-dominated solution, one solution from the cell with the highest
density is removed. The hypervolume archiving strategy eliminates the solution that contributes
the least to the hypervolume when a new solution is added. Another strategy consists of evaluating
the density of the current population by attributing a crowding-distance attribute to each solution
reflecting how close are the closest solutions for each objective direction. The procedure is described
by Deb et al. [2002]. It requires sorting the population according to each objective function value
in ascending order of magnitude. Considering each objective function, the boundary solutions (i.e.,
with the smallest and largest function values) received an infinite distance value, ensuring they are
always kept (indeed, we do not want to lose the extremal solutions). All other intermediate solutions
received a distance value equal to the absolute normalized difference in the function values of two
adjacent solutions (the one before and the one after for the considered objective). This calculation
is performed for each objective function. Finally, the overall crowding-distance value is expressed as
the sum of individual distance values corresponding to each objective. Preferred solutions are those
with the highest crowding distance, indicating that the region of the front contains fewer solutions.
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Figure 1.10: The crowding-distance of xi is l̃i1+l̃i2,

where l̃ik is the normalized value of lik. Boundary
solutions receive an infinite crowding-distance.
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Figure 1.11: Pareto ranks of a population of so-
lutions, in a minimization context. Solutions of
rank 0 are non-dominated.

Figure 1.10 illustrates the concept of crowding-distance in a bi-objective context, although it can
be used for any number of objectives.

When considering the diversity in the solution space, new metrics are necessary to evaluate the
closeness between solutions, like the Hamming distance (which counts the number of differences
between the representation of two solutions), or operator-based distances. An operator-based dis-
tance requires a neighborhood operator that can produce any solution starting from any solution
in a finite number of applications, then it is possible to define a distance between two solutions
based on that operator, corresponding to the minimum number of times that the operator has to
be applied to go from one solution to the other one. Once a neighborhood is defined in the solution
space, leading to a measure of the decision space diversity, it is possible for example, to integrate
that measure of diversity into the hypervolume indicator to optimize both convergence and diversity
in the solutions found [Ulrich et al., 2010].

1.3.4.2 Multi-Objective Evolutionary Algorithms

Nature-inspired algorithms are population-based metaheuristics, making them a natural choice for
solving a multi-objective problem. However, since there are (in general) no best solutions, strategies
have been developed to overcome the difficulty of maintaining a good population of solutions.
Moreover, most of the time the size of the population considered is limited, requiring the use of
bounded mechanisms to keep the most interesting solutions.

One first strategy is to consider the different objectives separately. For instance, the Vector
Evaluated Genetic Algorithm (VEGA) is a genetic algorithm designed to solve multi-objective prob-
lems. The approach was proposed by Schaffer [1985]. In VEGA, at each iteration, the population
is divided into n subpopulations, where n is the number of objectives. Then, solutions from each
subpopulation are selected (with usual selection mechanisms since only one objective is considered)
and mixed to obtain a smaller population to which genetic operators are applied.
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The Non-dominated Sorting Genetic Algorithm II (NSGA-II) [Deb et al., 2002], uses Pareto
ranks to stratify the solutions found. These ranks are sequential integer values that represent the
layers of stratification in the population obtained via dominance testing. Consequently, individuals
assigned to rank 1 are non-dominated, and inductively, those of rank i + 1 are dominated by all
individuals of rank 1 through i. The concept is presented in Figure 1.11. In practice, attributing a
Pareto rank to a new solution requires a high computational effort (particularly if the population
contains many individuals). Non-dominated solutions have a rank of 0, among the remaining
solutions, the non-dominated ones have a rank of 1, and so on. In addition to the Pareto ranks,
the NSGA-II algorithm benefits from the use of the crowding distance to select the most promising
solutions for the next generation: the solutions are sorted by ascending Pareto rank, and with equal
ranks, solutions with higher crowding distance are preferred. Once the solutions are selected, the
next population is obtained by using genetic mechanisms (crossover and mutation).

Instead of evaluating each solution individually, one possibility is to evaluate the set of solu-
tions directly by using an indicator introduced in Section 1.3.2. Then, it is possible to use that
indicator to guide the search and to update the population. The GD-MOEA [Menchaca-Mendez
and Coello Coello, 2015] is a Multi-Objective Evolutionary Algorithm that uses the Generational
Distance indicator to update the population. The diversity in the decision space can be additionally
controlled by using an appropriate measure with the hypervolume indicator [Ulrich et al., 2010].

Many more evolutionary algorithms adapted to multi-objective optimization are presented in
the book of Deb [2001].

1.3.4.3 Multi-objective Local Search Algorithms

In multi-objective optimization, the notion of neighborhood remains as important as in single-
objective optimization. Indeed, using an intensification step allows algorithms to converge faster
toward non-dominated solutions. More precisely, the idea is to intensify the search in a region of a
solution previously found. This concept is exploited by Multi-Objective Local Search (MOLS) [Blot
et al., 2017]. MOLS are further developed in Chapter 6.

Briefly, a MOLS is interesting in optimizing simultaneously many solutions, allowing a better
exploration of Pareto sets. Like neighborhood-based metaheuristics, it requires defining neighbor-
hood operators to intensify the search. However, the acceptance criterion of a neighbor solution
has to be adapted to the multi-objective context. In general, one can accept a dominating solution,
or a non-dominated solution considering the current population. Among the MOLS we find the
Pareto Local Search (PLS) [Paquete et al., 2004], which starts from an initial Pareto set, explores
neighborhoods of solutions in this set, and then updates the Pareto set with new solutions found.
Liefooghe et al. [2012] proposed the concept of Dominance-based MOLS (DMLS), generalizing the
PLS.

1.3.4.4 Hybrid Algorithms

Finally, we find algorithms that solve multi-objective problems by considering decomposition strate-
gies or one objective at a time. Such algorithmic strategies can be seen as hybrid strategies.
Moreover, these strategies can also be adapted to an interactive resolution context, where the
decision-maker can provide feedback during the process.

The Multi-Objective Evolutionary Algorithm based on Decomposition [Zhang and Li, 2007],
called MOEA/D, is an algorithm widely studied in the literature [Xu et al., 2020]. MOEA/D is a
genetic algorithm approximating the Pareto front by decomposing the multi-objective problem into
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several scalar objective subproblems. MOEA/D is further detailed in Chapter 3. Briefly, instead
of using a single scalarization to model the multi-objective problem as explained in Section 1.3.3,
several scalarizations are considered (whose choice may be influenced by the decision-maker) to
approximate a region of the objective space.

We can also find lexicographic methods, where objectives are each assigned a priority value
(randomly or by the decision-maker), and the problems are solved in order of decreasing priority.
Since it is not easy to define an interesting priority between objectives, Castro-Gutiérrez et al. [2009]
proposed a dynamic strategy where the priority of each objective is adapted during the resolution.

A last common scalar approach is the ϵ-constraint method, described by Chankong and Haimes
[2008] in a bi-objective context. In this case, the focus is made on one objective function which is
optimized, while the other objective function is considered as a constraint expressed as fi(x) ≤ ϵi.
When the solution can not be further improved the constraint is updated by modifying the ϵ value
with a constant value. This method has been improved by Laumanns et al. [2006] to be used
when an arbitrary number of objectives is considered, and where the constraints are dynamically
adjusted. Epsilon constraint methods can be used as exact algorithms (if an exact solver is available
for the single-objective problem) to obtain the optimal Pareto front.

1.4 Knowledge Discovery

The machine learning field has become incredibly popular in the last decade. Moreover, it is known
that machine learning and combinatorial optimization have a good synergy [Corne et al., 2012].
For example, when performing a clustering task several criteria (like specificity and sensitivity)
can be considered to improve the classification capability [Ostaszewski et al., 2009]. In that case,
multi-objective tools are used to obtain interesting clusters. On the other side, knowledge discovery
can be beneficial to the resolution of combinatorial optimization problems. In particular, the use
of knowledge can help to speed up the search process (e.g., by detecting promising areas of the
search space to explore), improve the quality of the results (e.g., by learning characteristics of good
solutions), or tune the algorithms (i.e., choose the best parameter values for an algorithm).

Knowledge discovery mechanisms can be integrated into metaheuristics to solve optimization
problems at three levels according to Talbi [2021]: at a problem-level (Section 1.4.1), a low-level
(Section 1.4.2), and a high-level (Section 1.4.3).

Each integration can be realized either online or offline [Corne et al., 2012]. The learning is
performed online when it occurs during the execution of the algorithm. Otherwise, the learning is
said offline.

Concerning the learning mechanism itself, it is generally composed of two steps: an extraction
step, where some knowledge is extracted from something related to the problem studied (e.g.,
solutions, instances), and an injection step, where the extracted knowledge is used to guide the
algorithm towards promising solutions. In addition, we call memorization the step performed
during or after the extraction, where the knowledge is stored or updated. The analysis of different
hybridization between learning mechanisms and heuristics leads to four questions that have to be
considered: What/Where/When/How is the knowledge extracted/injected?

Question What is problem-dependent, since each problem may have specific relevant knowledge.
Question Where is algorithm-dependent, since the extraction and injection steps have to be inte-
grated into the process of the algorithm. More precisely, the position of the extraction step in the
algorithm highly influences what is learned. Question When is algorithm-dependent as well and
deals with the frequency of applying the extraction and injection steps. But it also concerns when
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the learning mechanism starts. Indeed, starting the learning mechanism too early may result in
poor learning, since initial solutions are generally of low quality. Question How corresponds to
the design of the memorization step, requiring appropriate data structures. It also considers which
knowledge is exploited during the injection step.

1.4.1 Problem-Level Integration

The idea behind a problem-level integration of knowledge is to help the heuristic to better under-
stand the problem to solve. In particular, it takes into account the characteristics of the problem
itself (e.g. the format of instances) to guide the algorithm. Knowing the characteristics of an
instance can provide additional information when tuning the algorithm if results are available on
other (similar) instances. The analysis can also help to better understand the behavior of heuris-
tics. In particular, to detect the similarity between instances, it is possible to extract features from
the problem, which depend only on the instance solved. By analyzing these features (e.g., with a
principal component analysis), useful information can be discovered about a benchmark, which may
help to generate new instances with different characteristics to complete the existing benchmarks.
In the context of routing problems, some features have been proposed by Arnold and Sörensen
[2019], to better understand the structures of good solutions depending on the instance features.
Such analyses are generally performed offline (i.e., before the resolution of the considered problem).

Problem-level approaches can also be helpful when the objective function and/or constraints
are not explicitly defined or are not easily computable (e.g., in black-box optimization problems).
Such situations arise when real-life problems are modeled. In such cases, surrogates are generated
to approximate the functions.

With a problem-level integration, one can learn to decompose a problem into several (easier) sub-
problems, considering either the decision space (e.g., to remove inter-relationship between variables)
or the objective space (e.g., to reduce the number of objectives in multi-objective optimization).

When considering dynamic problems, the concept of transfer learning can be used to speed
up the search process, since solutions of a close problem are already known. In a multi-objective
context, it can be used to approximate the new Pareto front knowing the former one [Jiang et al.,
2017a].

1.4.2 Low-Level Integration

Low-level integration of knowledge into a metaheuristic is useful to improve the components of the
metaheuristic itself (e.g., it can help with intensification and diversification). Low-level mechanisms
learn from the solutions generated when solving the problem (e.g., they can exploit the structure
of the solutions).

The first component that can be improved in a metaheuristic is the initialization procedure. By
using appropriate knowledge, it is possible to create interesting solutions from the beginning of the
executions. For example, [Joshi et al., 2019] trained a Graph Convolutional Network with valid
TSP tours to generate a heat map that represents the probability of each edge to be taken in a
TSP tour. Valid solutions can then be constructed by following the probabilities obtained, which
can serve as initial solutions. On the other hand, when many solutions are available, and when it
is possible to exploit the structure of the solutions easily, the concept of vocabulary building can
be considered [Taillard, 2023]. It consists of grouping in a dictionary pieces of solutions (called
words) and exploiting the pieces to form new solutions, based on what has already been seen. For
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routing problems, the Pattern Injection Local Search (PILS) mechanism proposed by Arnold et al.
[2021], exploits sequences of consecutive customers, recalling the concept of vocabulary building.
The PILS mechanism is further developed in Section 2.8.

Adaptive mechanisms, reacting to the search space explored, can be considered as low-level
mechanisms. For example, in adaptive variable neighborhood search, the selection of a neighborhood
operator is conditioned to its performance. With a tabu list, elements of solutions to avoid are
learned. In ant colony optimization, the ants (i.e., the solutions learn from their neighborhood).
Bandit mechanisms and Monte Carlo search can also be used to have a good trade-off between
exploration (i.e., diversification) and exploitation (i.e., intensification). Arnold and Sörensen [2019]
developed a knowledge-guide local search for the capacitated vehicle routing problem where bad
edges are detected and removed during the search to explore solutions more efficiently. In particular,
the objective function is changed periodically to penalize the bad edges.

Over the past years, reinforcement learning has been widely studied to create efficient operators
for single-objective problems such as the TSP or VRP’s [Kool et al., 2018, Xing and Tu, 2020,
Falkner and Schmidt-Thieme, 2020]. However, the training requires a lot of computational resources
(in time and memory), and for now, such methods do not overcome classical metaheuristics on large
instances.

The discovery of relevant features can also be helpful during the search phase. Knowing which
features characterize good solutions or good regions of the exploration space is the key to guiding
the algorithms toward promising areas. One can learn such features in an online manner with a
decision tree, producing rules to guide the current solution into an interesting space (or to avoid a
specific space). This approach was proposed by Lucas et al. [2020] for a routing problem.

The Estimation Distribution Algorithms (EDA) estimate the relations between the variables of a
problem by learning a probability distribution associated with each solution of the population. The
probability distribution is generally estimated by using Bayesian networks [Lozano, 2006]. More
recently, the concept has been adapted to permutation-based solutions, by using linkage genes [Guijt
et al., 2022].

Bandaru et al. [2017] review many knowledge discovery concepts used in the continuous multi-
objective optimization field. Among the concepts presented, we find the automated innoviza-
tion [Bandaru and Deb, 2013], which is an unsupervised learning algorithm that can extract knowl-
edge from multi-objective optimization sets of solutions in the form of analytical relationships
between the decision variables and objective functions. The term innovization, short for innovation
through optimization, was coined by Deb and Srinivasan [2006].

1.4.3 High-Level Integration

The interest behind a high-level approach is to design new heuristics by selecting the most relevant
operators available. In practice, we define a set of common operators used in the literature, and at
each step, we try to select the best operator to pursue optimization.

This idea has already been investigated for single-objective problems. For example, an online
integration is proposed by McClymont and Keedwell [2011]. They use hidden Markov models to
simulate the selection of operators, and then choose the one with the highest probability. An offline
integration is also proposed by Yates and Keedwell [2019]. They have data representing many
sequences of operators and the result obtained when applying the corresponding sequence. Hence,
they can learn which sequences are the most relevant to solving a given problem. Such ideas can
be extended to multi-objective optimization since it only requires operators for the problem and an
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evaluation function (e.g., the gap of one indicator presented in Section 1.3.2).

1.5 Conclusion

In this chapter, we introduced all the concepts required to fully understand the next chapters. More
precisely, we started with a description of (single-objective) combinatorial optimization problems,
which are a classical manner to formalize real-life problems. This model can be enriched by consid-
ering several objective functions together, leading to the concept of multi-objective combinatorial
optimization. Such problems require new tools to compare and evaluate the quality of the returned
solutions. In order to improve the efficiency of existing algorithms, knowledge discovery mechanisms
can be integrated. Such mechanisms use machine learning tools in algorithms to exploit specificities
of the problem (online or offline, and at different levels).
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2.1 Introduction

With the increasing demand in terms of services (transportation, delivery, storage), comes an
explosion of new challenges that have to be faced. Most of them require taking into account several
conflicting aspects (some are ecological, economical, or societal), each one characterized by an
objective function to optimize. The Vehicle Routing Problem with Time Windows (VRPTW) is a
routing problem, where vehicles have to serve customers within a precise time interval. This problem
was introduced decades ago as a case study [Solomon, 1987], and since then many objectives have
been investigated for this problem.

The Traveling Salesman Problem (TSP) is probably the simplest, yet difficult, routing problem
to solve. Given a set of N customers, the objective is to design a cycle going through all customers
exactly once (i.e., a Hamiltonian cycle) minimizing the total cost of the tour. Generally, the cost
between two customers is the Euclidean distance between them. The m-TSP variant offers the
possibility to use up to K vehicles to serve all the customers exactly once. The Capacitated Vehicle
Routing Problem (CVRP), considers, in addition, a demand for each customer, and each vehicle
has a maximum capacity that must not be exceeded when delivering all the customers of a tour.
Finally, the VRPTW adds a time window for each customer indicating when the customer should
be served.

All of these problems are known to be NP-complete (i.e., NP and NP-hard), meaning that there
currently does not exist a deterministic algorithm that finds an optimal solution to these problems
in polynomial time. In particular, an instance of size N of the TSP already contains (N − 1)!
distinct solutions (when the origin of the tour is fixed), preventing the use of a naive exhaustive
search. Using exact algorithms to solve a large instance of the VRPTW is often intractable in
practice. That is why we need to use metaheuristics to quickly approximate the optimal solutions.

The VRPTW is formally introduced in Section 2.2. Experimental benchmarks are presented in
Section 2.3. We discuss the bi-objective formulation of the problem in Section 2.4. Section 2.5 de-
scribes how solutions are represented and evaluated. The neighborhood associated with a solution is
presented in Section 1.2.1. Related works are described in Section 2.7. Finally, the Pattern Injection
Local Search (PILS) mechanism, which learns structures of solutions, is detailed in Section 2.8.

2.2 Model and Notations

The VRPTW can be formally described as follows [Toth and Vigo, 2014]. Let N denote the number
of destinations that need to be visited from one point of origin. In the following, we will use the
standard terminology and call destinations customers and the point of origin depot. Every customer
is usually identified with a non-negative integer in {1, . . . , N} and the depot with 0. The routing
problem can be modeled as a graph G = (V,A), where V denotes the set of nodes (i.e., the customers
and the depot) of size N + 1. A represents the set of arcs (usually the graph is considered complete
meaning that it is possible to visit any customer from any other one). Each arc (i, j) (reflecting
the connection between nodes i and j) is annotated with a cost c(i, j) = cij that is realized if the
arc is traversed by a vehicle. This cost usually corresponds to the Euclidean distance between two
nodes, however, it can also be replaced by any other metrics. In general, the instance is symmetric,
that is, the cost to go from i to j is the same of the cost to go from j to i. All the costs are stored
in a cost matrix C. A path in G is a sequence of adjacent arcs ((i, j), (j, k), . . .) so that all visited
nodes are distinct. A route in G is then defined as a path that starts at 0, and has an additional
edge back to 0, i.e., ((0, i), (i, j), . . . , (k, l), (l, 0)), which is also written (v0, v1, . . . , v|r|, v|r|+1) with
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v0 = v|r|+1 = 0 and |r| denotes the length of the route. In the existing literature on the VRPTW,
the number K of vehicles available to serve the customers is usually considered unlimited, which is
represented by a large value of K.

In many applications, the vehicles have to respect limitations. For instance, a truck can only
transport a given amount of parcels. Formally, these constraints are modeled by allocating a demand
qi to each customer i. The sum of the demand of all customers on a route may not exceed a certain
value Q. This limitation is commonly called capacity constraint. For instance, qi could represent
the number of parcels that have to be delivered to customer i and Q could define the limit of parcels
that can be transported in one vehicle. In particular, the fleet of vehicles is generally considered
homogeneous, meaning that all vehicles have the same capacity.

Concerning the time constraints, the service at each customer must start within an associated
time interval, called a time window. The two most frequent time windows studied in the literature
are hard and soft time windows. With hard time windows, a vehicle that arrives too early at a
customer must wait until the customer is ready to start the service. On the contrary, vehicles are
not allowed to arrive late. With soft time windows, a vehicle can violate a time window by paying
a penalty. With soft time windows, it is easier to find feasible solutions to the problem, since the
violation of the time constraint is added to the function to optimize. In the following, we only
consider hard time windows. Formally a time window [ai, bi] is associated with each customer i. In
a time window, ai, called ready date, is the earliest delivery time for customer i, and bi, called due
date, is the latest possible time to deliver customer i. Moreover, each customer i has a service time
tsi which represents the duration of the service asked (for instance the duration of the delivery, it
may estimate the time needed to get the parcel in the truck and then bring it to the customer). We
assume that the depot has a zero service time ts0 = 0. A time matrix T = (tij), where coefficient
tij denotes the time needed to go from customer i to customer j, is provided for each VRPTW
instance. Note that for some instances, we consider tij = cij .

To properly define the objective function and the constraints, the following notations are re-
quired. We define xij which is equal to 1 if the customer j is served exactly after the customer i,
and 0 otherwise. Note that according to this definition we can not have xij = 1 and xji = 1. In
addition to that, we define a time variable T r

i for each customer i and route r specifying the start
of service time at customer i when serviced by route r. A solution x, that is, a set of routes, is now
linked with a matrix M of size N + 1 such that M(x)ij = cij · xij . Hence the total transportation
cost of a solution x for the graph G is defined as follows:

f1(x) =

N∑
i=0

N∑
j=0

M(x)ij =

N∑
i=0

N∑
j=0

cij · xij (2.1)

The problem can be expressed as the following mathematical model where subtour elimination
constraints come from the Miller-Tucker-Zemlin (MTZ) formulation:



34 CHAPTER 2. VEHICLE ROUTING PROBLEM WITH TIME WINDOWS

min
x

f1(x) (2.2)

s.t.

N∑
j=0,j ̸=i

xij = 1 ∀i ∈ {1, . . . , N} (2.3)

N∑
i=0,i̸=j

xij = 1 ∀j ∈ {1, . . . , N} (2.4)

N∑
j=1

x0j ≤ K (2.5)

xij ∈ {0, 1} ∀(i, j) ∈ A (2.6)

ui − uj +Qxij ≤ Q− qj ∀(i, j) ∈ A (2.7)

qi ≤ ui ≤ Q ∀i ∈ {1, . . . , N} (2.8)

T r
i + (tsi + tij)xij ≤ T r

j + b0(1− xij) ∀r ∈ {1, . . . ,K}, (i, j) ∈ A (2.9)

ai ≤ T r
i ≤ bi ∀r ∈ {1, . . . ,K}, i ∈ V (2.10)

Constraints (2.3) and (2.4) indicate that each customer is connected to two other vertices of the
graph. Constraint (2.5) ensures that at most K vehicles are used. In constraints (2.7) the additional
variables u1, . . . , uN indicate the accumulated demand ui already distributed by the vehicle when
arriving at customer i. Constraints (2.9) premise that the service at customer j can not start before
the service at customer i is finished, if i and j are served one after the other by the same route.
Note that if xij = 0 this constraint is always verified because b0 corresponds to the closing of the
depot. The Time windows are respected with constraints (2.10). Again with these two constraints,
we prevent the creation of subtours.

Finally, solving a VRPTW instance over a complete graph G, aims to find a set of at most K
routes that serve all customers exactly once, respect capacity and time constraints, and minimize
the sum of the costs of the involved arcs.

An instance of the VRPTW is illustrated in Figure 2.1. The depot contains K = 3 vehicles,
with a capacity of Q = 10. There are N = 8 customers. Customers have their own demand and
time window. Between each customer i and j there is a cost cij = 1 and a travelling time tij = 1.
Here the service time of each customer i is set to tsi = 1. A feasible solution of this instance is
illustrated in Figure 2.2. This solution is even optimal regarding the number of vehicles and the
total transportation cost.

Many variants of routing problems have been studied over the years, most are described by La-
porte [2009], Toth and Vigo [2014], and Braekers et al. [2016]. Laporte presents 50 years of work
on routing problems and regroups all existing variants before 2009. Toth and Vigo present classical
and new routing problems, with recend advances to solve them. Braekers et al. present a taxonomy
to classify recent routing problems, so that, between 2009 and 2016. In particular, the VRPTW
can also be extended to form more complex problems, by considering, for example, more than one
depot (MDVRPTW), or multiple time windows for each customer.
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Depot

Figure 2.1: Example of VRPTW instance.

Depot

Figure 2.2: A feasible solution.

2.3 Benchmarks

In this section, we present the different benchmarks of instances used. There exist two main
benchmarks for the VRPTW, the Solomon one (Section 2.3.1) and the Gehring and Homberger one
(Section 2.3.2). A set of real-life instances is described in Section 2.3.3. Additionally, we generated
a set of instances, presented in Section 2.3.4, to perform additional experiments related to tuning
different algorithms.

2.3.1 Solomon

Solomon’s benchmark [Solomon, 1987] is a set of VRPTW instances, frequently used in the literature
to evaluate the performance of multi-objective algorithms [Ghoseiri and Ghannadpour, 2010, Qi
et al., 2015, Moradi, 2020]. The benchmark contains 56 instances, each with 100 customers, but
restrictions of 25 and 50 customers are available too. The instances are divided into three categories
according to the type of generation used: R (random), C (clustered), or RC (random-clustered). The
R category (23 instances) contains instances where customers are randomly located in a 100× 100
grid, while the instances of category C (17 instances) contain clusters of customers. The category
RC (16 instances) contains instances where half the customers are randomly located and the other
half is clustered. Each category is divided into two classes, either 1 or 2, according to the width of
time windows. Instances of class 1 have tighter time windows than instances of class 2, meaning
that instances 1 are more constrained.

2.3.2 Gehring and Homberger

The benchmark of Gehring and Homberger [Gehring and Homberger, 1999] extends Solomon’s
benchmark and considers a larger number of customers. Indeed, it contains instances of size 200,
400, 600, 800, and 1000. These instances are very close (in terms of generation) to the instances
of Solomon. Again, there are three categories R, C, and RC, and for each category, two classes
(1 or 2), depending on the width of the time windows. Contrarily to Solomon’s set, each category
of instance is equally represented, meaning that each one contains 10 instances with tight time
windows (class 1) and 10 instances with wide time windows (class 2).
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2.3.3 Real life Instances

Castro-Gutierrez et al. [2011] developed a set of instances based on data from a real-world distri-
bution company. The generator of instances is available at https://github.com/psxjpc/. Con-
cerning the generation of the time windows, five profiles are considered. In every case, the opening
time of the depot is 8 hours (i.e., 480 minutes). Three types of customers are considered. Early
customers, who want to be served in the morning. Midday customers, who want to be served at
midday. And late customers, who want to be served the latest. Each type of customer has a specific
time window, depending on the profile chosen for the instance. All the customers have the same
probability of having any of the time windows in a specific profile. Note that the service time of a
customer is randomly chosen among {10, 20, 30}. The five profiles are:

1. All the customers are available all the day: only one time window [0, 480];

2. Early customers: [0, 160], midday customers: [160, 320], and late customers: [320, 480];

3. Early customers: [0, 130], midday customers: [175, 305], and late customers: [350, 480];

4. Early customers: [0, 100], midday customers: [190, 290], and late customers: [380, 480];

5. The time window of a customer is chosen among the ten above time windows.

Locations of customers and their demands are provided by the company. It is possible to adjust
the capacity of the vehicles with a parameter in [0, 100]. With a value close to 0, the capacity of
the vehicles will be close to the maximum demand of the customers, consequently, a larger number
of vehicles will be required to satisfy the demand constraint. On the other hand, with a value close
to 100, the capacity will be close to the total demand, which may lead to the use of fewer vehicles.

Finally, 45 instances were generated in total, 15 for each possible number of customer (i.e., 50,
150 and 250). The authors showed that these instances were more realistic and challenging for
multi-objective VRPTW than the Solomon instances.

2.3.4 Generated Instances

In order to allow a fair tuning of the studied algorithms and not to bias the experimental results
obtained on Solomon and Gehring and Homberger benchmarks, we decided to generate a new set
of instances. We did not use the real-life inspired instances, since they were very different from
the two other benchmarks. We followed the generation strategy proposed by Uchoa et al. [2017]
(for the demands), with the generation strategy of Solomon [1987] (for the time windows). The
generation procedure is defined as follows.

All the customers are located in a 1000× 1000 grid. The generation of the customers is random
(R), clustered (C), or mixed (M). The random generation randomly selects the location of the
customers in the grid. The clustered generation creates clusters of customers. The number of
clusters s is randomly selected between 3 and 8. Then s customers are randomly located in the
grid, to define the centers of the clusters. A new customer is accepted only if it can be added to
one cluster. A customer v is added to the cluster of center si with probability exp(−dE(v, si)/40),
where dE is the Euclidean distance. If the customer is not added to any cluster, then it is discarded
and a new customer is generated, until the number of customers wanted is reached. For the mixed
generation, half of the customers follow the random generation, and the other half the clustered
generation.

https://github.com/psxjpc/
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The depot is located either in the center of the grid or randomly. If the strategy is not specified,
the choice is made randomly.

The width of the time window of the depot, that is b0 − a0 is either large (i.e., chosen between
2500 and 5000) or small (i.e., chosen between 1500 and 2500). For the creation of the time windows
of the customers, we consider that the time required to perform the travel between two customers
corresponds to the cost between them (i.e., the Euclidean distance). Naturally, there is no interest
in taking an upper bound of the time window exceeding the horizon of the depot, and the upper
bound can not be lower than the time required to go from the depot to the customer t (i.e., the
Euclidean distance between the depot and the customer). A time window can be either wide or
tight, which impacts its width tw. For wide time windows, the width is picked between 200 and
500, while the width is picked between 50 and 200 for tight time windows. The center tc of the time
window is chosen uniformly between 0 and the horizon of the depot. Then the due date (bi) of the
i-th customer is set as max(min(tc + tw/2), b0), (t ∗ 11)/10)). The ready date (ai) is obtained with
the width of the time window.

The service time of a customer is either long, between 100 and 200, or short, between 50 and
100. Each customer has the same probability of having a long or a short service time.

The demand of a customer is either large, between 50 and 100, or small, between 1 and 50. Each
customer has the same probability of having a large or a small demand.

To define the maximal capacity Q allowed for all vehicles, we first estimate the average number
of customers per route by picking an integer between N/15 and N/5. The value is then multiplied
by the average demand of the customers generated, and if the value obtained is lower than the
maximal demand of the customers, then the capacity is set to the maximal demand increased by
10%.

Finally, we generate 8 instances of 100 customers for each triplet of parameters containing the
generation of the customers (R, C, or M), the horizon of the depot (L or S), and the width of
time windows (W or T). It leads to the creation of 96 new instances. As an example, the instance
MLW2 is the second instance with a mixed generation of customers, a large horizon, and wide
time windows.

2.4 Additional Objectives

A wide range of objectives has already been investigated in the VRPTW context. This section
provides a broad overview of the most common objectives found in the literature. It leads to many
possibilities to solve a bi-objective problem, but our choice is to consider the total transportation
cost and the total waiting time of drivers.

Following the classification of Jozefowiez et al. [2008], these objectives are divided into three
categories according to the component of the problem they are associated with: the route (Sec-
tion 2.4.1), the node or arc activity (Section 2.4.2), and the resources (Section 2.4.3). Section 2.4.4
formally describes the total waiting time objective, and finally, the two objectives optimized are
motivated in Section 2.4.5.

2.4.1 Objectives Associated with the Route

Among the objectives related to the route, the most common is surely minimizing the cost of the
solutions generated [Schneider et al., 2017]. For instance, the cost can be the distance traveled or
the time required. It can also be something more complex, like CO2 emissions. More generally,
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minimizing cost is linked to an economic criterion. When the total cost is ignored, the makespan
(i.e., minimizing the length of the longest route) is an objective frequently minimized [Zhou and
Wang, 2014]. These objectives are motivated by the applications of the problem.

2.4.2 Objectives Associated with Nodes or Arcs

Concerning the objectives related to the node or arc activity, they often involve time windows, since
it is the most constraining part of the problem in general. When considering hard time windows
(i.e., that cannot be violated), the driver’s waiting time due to earliness can be optimized [Zhang
et al., 2019]. If we consider soft time windows (i.e., that can be violated with a penalty), the delay
time of drivers is more likely to be optimized [Zhou and Wang, 2014]. More generally, the number
of violated time windows can also be minimized [Geiger, 2003].

2.4.3 Objectives Associated with Resources

The last category of objectives concerns resources. The main resources encountered in the litera-
ture are vehicles and goods. The minimization of the number of vehicles often appears in classical
benchmarks and can be interpreted economically, in that fewer vehicles means less monetary in-
vestment. More precisely, this objective is often minimized first in Solomon’s and Gehring and
Homberger’s benchmarks [Solomon, 1987, Gehring and Homberger, 1999], since buying a truck or
hiring a driver is the most expensive part. Finally, some objectives try to erase disparities between
tours, to bring a fairness aspect into the problem. To define a balancing objective it is necessary
to define a route’s workload, which can be expressed as the number of customers visited or the
number of goods delivered [Melián-Batista et al., 2014, Baños et al., 2013].

2.4.4 Focus on the Total Waiting Time

When drivers arrive before the opening of a time window they must wait until the opening time.
It increases the time of the route for the driver and may incur satisfaction issues.

We formalize the notion of waiting time as follows. The waiting time Wi at a customer i is
given as the maximum between 0 and the difference between the opening of the time window
ai and the arrival time Ti at location i, that is Wi = max{0, ai − Ti}. Note that each route
r = (v0, v1, . . . , v|r|, v|r|+1) is associated with a feasible (i.e., consistent with traveling times and time
windows) arrival time vector Tr = (Tv0 , Tv1 , . . . , Tv|r| , Tv|r|+1

) and the total waiting time Wr(Tr)

on route r, with respect to Tr is given by Wr(Tr) =
∑|r|

i=1 Wvi . Thus the total waiting time of a
solution x = {r1, . . . , rK} on a graph G, given a time arrival vector for each route in the solution,
i.e., Tx = (Tr1 , . . . , TrK ), is given by the following formula:

f2(x) =

K∑
k=1

Wrk(Trk) (2.11)

2.4.5 Bi-objective VRPTW Considered

As presented above, there exist plenty of objectives that can be optimized when solving a VRPTW.
Originally, the VRPTW was a bi-objective problem, where the number of vehicles is minimized
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first and then the total transportation cost is minimized. Indeed, using an additional vehicle has a
bigger impact on the total cost for the company.

Castro-Gutierrez et al. [2011] studied how five common objectives (the total transportation cost,
the number of vehicles, the makespan, the total waiting time, and the total delay time in case of soft
time windows) were correlated. In particular, they showed that in Solomon’s instances, the total
transportation cost and the total waiting time were weakly correlated in clustered instances with
tight time windows and in random instances with wide time windows. In addition, the objectives
are in harmony (i.e., the minimization of one tends also to decrease the other) on clustered instances
with wide time windows, whereas they are conflicting (i.e., the minimization of one tends to increase
the other) on random instances with tight time windows. The total waiting time due to early arrival
has also been studied by Zhou and Wang [2014], where a five-objective VRPTW is solved with an
objective-wise local search.

Moreover, it seems interesting to study together two continuous objectives (here the total trans-
portation cost and the total waiting time) instead of using a discrete objective, like the number
of used vehicles. Indeed, with two continuous objectives, the fronts generated by the algorithm
contain, generally, much more non-dominated solutions, that are relevant when using knowledge
discovery methods.

As a consequence, we propose to focus on a bi-objective VRPTW (bVRPTW) where one objec-
tive has been highly studied, that is the total transportation cost, and a less studied objective, that
is, the total waiting time. Using both of these objectives is interesting in many real-life situations,
like food delivery, where the waiting time of a driver impacts the heat of the meals of the next
customers, and consequently customer satisfaction. Another typical situation concerns the trans-
portation of people, more precisely when a patient has a medical appointment, we do not want
them to wait too long.

2.5 Representation of Solutions and Evaluation

When solving a combinatorial optimization problem, the representation of a solution is a key ele-
ment. Sometimes, the naive structure adapted to a problem is not well adapted to existing operators.
In routing problems, a solution is easily represented as a set of routes, each one containing a subset
of customers, being the customers served in the route. However, the combination (by a crossover)
of two solutions with such a structure is difficult, preventing the use of genetic algorithms. The
development of the Split algorithm by Prins [2004] overcomes this difficulty and allows the rep-
resentation of a solution as a permutation of the N customers of the problem. This algorithm is
described in Section 2.5.1.

Another common issue when dealing with combinatorial optimization problems concerns neigh-
borhood evaluation. Indeed, when exploring the neighborhood of a solution, it is possible not to
entirely evaluate a neighbor, if a small move is performed. This is the idea behind the incremental
evaluation of a solution presented in Section 2.5.2.

2.5.1 Split Algorithm

The objective of the Split algorithm [Prins, 2004] is to optimally cut the given permutation of
customers, called giant tour, in a subset of routes. The problem is then reduced to a shortest path
problem between the nodes 0 and N of an acyclic graph GS = (V,AS), where V S = {0, . . . , N}
and AS contains one arc (i, j) with cost cS(i, j) = c0,i+1 +

∑j−1
k=i+1 ck,k+1 + cj,0 for any feasible



40 CHAPTER 2. VEHICLE ROUTING PROBLEM WITH TIME WINDOWS

route visiting customers i + 1 to j in the order they appear in the giant tour. The shortest path is
computed in O(NB), where B is the average out-degree of a node of GS (i.e., the average number of
feasible trips from one node of the giant tour), with a variant of Bellman’s algorithm using dynamic
programming. Split is presented in Algorithm 5. During the while iteration, the longest route
starting from t is built. The construction stops when the load on the route exceeds the capacity
Q of the vehicle. Note that, at the end of each for iteration, p[t] contains the cost of the shortest
path from 0 to t. The cost of the solution is contained in p[N ]. The value pred[i] contains the index
of the customer starting the route containing the i-th customer in the giant tour. Thus, the pred
array allows us to retrieve the routes of the solution.

Algorithm 5: Split algorithm (CVRP).

Input: A giant tour (i.e., a permutation of the N customers)
Output: The cost of the tour and the list of the cuts

1 p = [0,∞, . . . ,∞]
2 for t = 0 to N − 1 do
3 (load, i)← (0, t + 1)
4 while i ≤ N and load + qi ≤ Q do
5 load← load + qi
6 if i = t + 1 then
7 cost← c0,i

8 else
9 cost← cost + ci−1,i

10 if p[t] + cost + ci,0 < p[i] then
11 p[i] = p[t] + cost + ci,0
12 pred[i] = t

13 i← i + 1

14 return p[N ], pred

Note that the version of split presented in Algorithm 5 is only suitable in a CVRP context. In
a VRPTW context, when a customer is added to the current tour, we have to check if the time
window of the customer is violated. It can be done by using the incremental evaluation equations
from Section 2.5.2. Two conditions have to be added to l.4: TW = 0 and D + E + ti,0 ≤ b0. The
condition TW = 0 checks that the time window of the new added customer is not violated, and the
condition D+E+ ti,0 ≤ b0 ensures that adding the customer allows a return to the depot before its
closing time. Note that during the execution of Split, the additional variables of Section 2.5.2 are
iteratively computed. Moreover, the algorithm has to be also adapted when multiple objectives are
considered. In this case, p[t] contains the best objective vector. The notion of best vector should
be adapted according to the algorithm considered, e.g., in MOEA/D it is possible to consider the
best vector regarding the aggregation associated with a solution.

The Split algorithm has been improved to reach a O(N) execution in the size N of the prob-
lem [Vidal, 2016]. However, we considered the original version of Prins (adapted to a VRPTW
context) in our experimentation, since the instances solved contained at most 200 customers and
the capacity Q of the vehicles remains slower than 1000. Moreover, in a CVRP context, the length
of routes grows when the capacity increases, which may give instances where the length of a route is
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very high. In a VRPTW context, the length of a route is quite small on average, with a maximum
peak around 30 customers on a single route for bigger instances. Consequently, the use of the linear
version of Split would not significantly improve the performance of our algorithms.

2.5.2 Incremental Evaluation

Incremental evaluation should be used, whenever neighborhoods correspond to the recombination
of parts of a solution, called subsequences, and when values required to evaluate a solution are
easy to compute through recombination. In particular, it allows the evaluation of a neighbor in
constant time, after a preprocessing step in O(N2). In the following, we directly place ourselves in
a VRPTW context.

A subsequence of customers is denoted σ. For each subsequence of customers, we compute its
minimum duration D(σ), minimum time-warp use TW (σ), the earliest E(σ), and the latest L(σ)
visit to the first vertex allowing a schedule with minimum duration and minimum time-warp use.
The cumulated distance C(σ), load Q(σ) and time T (σ) are computed too. A time-warp, introduced
by Nagata et al. [2010b], is a penalty paid to reach the end of the time window, in case of late
arrival. These values are straightforward to obtain for a sequence σ0 involving only one customer vi.
Indeed, D(σ0) = tsi , TW (σ0) = 0, E(σ0) = ai, L(σ0) = bi, C(σ0) = 0, Q(σ0) = qi, and T (σ0) = tsi .

Now, knowing the characteristics of two sequences σ = (vi, . . . , vj) and σ′ = (v′i′ , . . . , v
′
j′), it

is possible to compute the characteristics of the concatenated sequence σ ⊕ σ′ with the equations
provided by Vidal et al. [2013].

D(σ ⊕ σ′) = D(σ) + D(σ′) + tvjv′
i′

+ ∆WT

TW (σ ⊕ σ′) = TW (σ) + TW (σ′) + ∆TW

E(σ ⊕ σ′) = max(E(σ′)−∆, E(σ))−∆WT

L(σ ⊕ σ′) = min(L(σ′)−∆, L(σ)) + ∆TW

C(σ ⊕ σ′) = C(σ) + C(σ′) + cvjv′
i′

Q(σ ⊕ σ′) = Q(σ) +Q(σ′)

T (σ ⊕ σ′) = T (σ) + T (σ′) + tvjv′
i′

where ∆ = D(σ) − TW (σ) + tvjv′
i′

, ∆WT = max(E(σ′) −∆ − L(σ), 0), and ∆TW = max(E(σ) +

∆− L(σ′), 0).
Note that the value T is required to compute the waiting time, and it was not considered

in [Vidal et al., 2013]. With these values, the cost of a route r is obtained with C(r) and the
waiting time associated is D(r)− T (r)− TW (r). A route is feasible if Q(r) ≤ Q and TW (r) = 0.

Each time a solution is entirely evaluated, the associated subsequences are computed and stored
in a matrix S. Coefficient Si,j contains the characteristics of the subsequence starting with i and
ending with j. When a move is applied during the neighborhood exploration, only the coefficients
involved in modified routes are updated in the matrix.

2.6 Neighborhood Operators

The neighborhood of a solution to the problem is generated by three operators: relocate (Sec-
tion 2.6.1), swap (Section 2.6.2), and 2opt* (Section 2.6.3). These operators are commonly used
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Figure 2.3: The Relocate operator transforms the two routes (0, 1, 2, 3, 0) and (0, 4, 5, 6, 7, 8, 0) into
the two new routes (0, 1, 2, 3, 4, 0) and (0, 5, 6, 7, 8, 0), where customer 4 is relocated after customer
3. The red arcs are removed, the blue arcs are added, and the green arc is reversed.

in the routing community [Vidal et al., 2013, Schneider et al., 2017] since they involve a large and
diverse neighborhood.

2.6.1 Relocate

The relocate operator moves one customer from one location to another one. The new location can
be in the same route or not. The size of the neighborhood generated is a O(N2).

More formally, if the relocation is performed in the same route, let r be the route involved
and vi the customer that is moved after the customer in position j in r. The new route r′ is:
r′ = r0,j ⊕ vi ⊕ rj+1,i−1 ⊕ ri+1,|r|, when j < i, otherwise it is r′ = r0,i−1 ⊕ ri+1,j ⊕ vi ⊕ rj+1,|r|.

If the relocation moves v1i from one route r1 after v2j in an other route r2, then it produces two

new routes r′1 = r10,i−1 ⊕ r1i+1,|r1| and r′2 = r20,j ⊕ v1i ⊕ r2j+1,|r2|.

2.6.2 Swap

The swap operator exchanges two customers from two (possibly distinct) routes. The size of the
induced neighborhood is O(N2).

If the swap exchanges the two customers vi and vj in the same route r, the new route is
r′ = r0,min(i,j)−1 ⊕ vmax(i,j) ⊕ rmin(i,j),max(i,j)−1 ⊕ vmin(i,j) ⊕ rmax(i,j),|r|

If the swap exchanges v1i from r1 and v2j from r2, then it produces the two new routes r′1 =

r10,i−1 ⊕ v2j ⊕ r1i+1,|r1| and r′2 = r20,j−1 ⊕ v1i ⊕ r2j+1,|r1|

2.6.3 2opt*

The 2opt* operator exchanges two sequences of customers, involving the extremities of two distinct
routes. It generates a neighborhood of size O(N2).

More precisely, if r1 = (0, v11 , . . . , v
1
|r1|) and r2 = (0, v21 , . . . , v

2
|r2|) are two distinct routes, then

2opt* removes the arc (v1i , v
1
i+1) from r1, the arc (v2j , v

2
j+1) from r2, and merges the beginning of r1
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Figure 2.4: The swap operator transforms the two routes (0, 1, 2, 3, 0) and (0, 4, 5, 6, 7, 8, 0) into the
two new routes (0, 1, 2, 4, 0) and (0, 3, 5, 6, 7, 8, 0), where customer 3 and 4 are swapped. The red
arcs are removed, the blue arcs are added, and the green arcs are reversed.
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Figure 2.5: The 2opt* operator transforms the two routes (0, 1, 2, 3, 0) and (0, 4, 5, 6, 7, 8, 0) into the
two new routes (0, 1, 2, 3, 6, 7, 8, 0) and (0, 4, 5, 0), where arcs (3, 0) and (5, 6) are removed to create
arcs (3, 6) and (5, 0). The red arcs are removed and the blue arcs are added.
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with the ending of r2, and the beginning of r2 with the ending of r1, which forms two new routes
r′1 = r10,i ⊕ r2j+1,|r2| and r′2 = r20,j ⊕ r1i+1,|r1|

2.7 Works Related to Multi-objective VRPTW

In the following, we provide a broad overview of the existing works concerning the multi-objective
VRPTW. Table 2.1 summarizes the existing works, each one associated with the objectives consid-
ered, the approach followed and the data set used for experimentation.

Hong and Park [1999], proposed a Goal programming approach and used heuristics to mini-
mize the total travel time and the total customer waiting times. A genetic algorithm is described
by Geiger [2001] and a Pareto approach by Geiger [2003]. The first one minimizes the total dis-
tance, the number of vehicles, and the total deviations from the time window bounds, while the
second one focuses on the minimization of the number of violations instead of minimizing the total
deviations. At the same time, an Ant colony system is developed by Barán and Schaerer [2003],
which minimizes the total traveling time, the total delivery time, and the number of vehicles. Tan
et al. [2006] developed a Pareto approach and a hybrid genetic algorithm to minimize the total
route length as well as the number of vehicles. Ombuki et al. [2006] presented a Pareto approach
and a weighted sum algorithm to minimize the same objectives. Their algorithm is quite similar to
a genetic algorithm, but the fitness is evaluated with a weighted sum of the objectives. In addition
to the fitness computed for each individual of the population, they attribute a Pareto rank (see
Section 1.3.4.2) to these solutions too. A similar approach [Ghoseiri and Ghannadpour, 2010] is
designed with Pareto ranks and weighted sums implemented in a genetic algorithm.

Another interesting algorithm is described by Baños et al. [2013]. It consists of a hybrid meta-
heuristic (a genetic algorithm and a simulated annealing), where a non-dominated set of solutions
is built. More precisely, modified solutions are accepted in accordance with a modified Pareto-
dominance criterion which considers the current temperature and the Metropolis function (i.e.,
a classical function for simulated annealing). Moreover, they initialize their solution with a time
windows-based insertion heuristic (TWIH). This heuristic sequentially constructs the routes by first
visiting those customers with the earliest time in their time windows (i.e. those available soonest)
which are inserted in the vehicles whenever the time windows and capacity constraints are fulfilled.
A Mixed-Integer Linear Programming (MILP) has been provided by Melián-Batista et al. [2014]
to minimize the total distance and balance routes. In the last years, a multi-objective memetic
algorithm based on adaptive local search chains was proposed by Zhang et al. [2019] to improve the
performances of a multi-objective local search designed for the MO-VRPTW developed by Zhou
and Wang [2014]. Briefly, the multi-objective local search is based on the use of objective-wise
operators to improve one objective at a time of a random solution from the current population.
The idea behind the adaptive local search chain is to use the solution generated during the current
local search (which aimed to optimize a specific objective) as a starting point for the next operator,
which focuses on another objective. Zografos and Androutsopoulos [2004] described an aggregation
heuristic for the VRPTW for hazardous product transportation, which is a real-life extension of
the problem, and minimized the risk in addition to the traveled distance. A recent work from Guo
et al. [2017] also investigates a real-life extension, based on environmental protection and carbon
emission. Qi et al. [2015] proposed a memetic algorithm based on MOEA/D to solve a bi-objective
VRPTW. More recently, Moradi [2020] integrated a learnable evolutionary model into a Pareto
evolutionary algorithm. The model is based on decision trees that are updated over time.



2.7. WORKS RELATED TO MULTI-OBJECTIVE VRPTW 45

A
u
th
o
rs

O
b
je
ct
iv
es

A
p
p
ro
a
ch

D
a
ta

S
et

T
o
u
r

N
o
d
e

R
es
o
u
rc
e

H
o
n
g
a
n
d
P
a
rk

[1
9
9
9
]

T
o
ta
l
T
ra
v
el

T
im

e
T
o
ta
l
W
a
it
in
g
T
im

e
-

G
o
a
l
P
ro
g
ra
m
m
in
g

S
o
lo
m
o
n

G
ei
g
er

[2
0
0
1
]

T
o
ta
l
D
is
ta
n
ce

T
o
ta
l
D
ev
ia
ti
o
n
s

N
°
o
f
V
eh

ic
le
s

G
en

et
ic

A
lg
o
ri
th
m

S
o
lo
m
o
n

G
ei
g
er

[2
0
0
3
]

T
o
ta
l
D
is
ta
n
ce

N
°
o
f
V
io
la
ti
o
n
s

N
°
o
f
V
eh

ic
le
s

P
a
re
to

A
p
p
ro
a
ch

S
o
lo
m
o
n

B
a
rá
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2.8 Presentation of the Pattern Injection Local Search

The pattern injection local search (PILS) mechanism is an optimization strategy that uses pat-
tern mining to explore high-order local-search neighborhoods. In a routing context, a pattern is
a sequence of consecutive customers on a single route. The depot is not considered inside pat-
terns since it belongs to all routes. PILS has introduced a few years ago in [Arnold et al., 2021].
They illustrated its efficiency on the CVRP by integrating the mechanism in two population-based
metaheuristics.

The idea behind the mechanism is to discover the structural properties of high-quality solutions
by extracting patterns from high-quality solutions generated during the search and then injecting
the most frequent ones to improve the quality of a solution. Indeed PILS provides an interesting
alternative to traditional local search. Instead of exhaustively exploring large neighborhoods, PILS
relies on the information of frequent patterns to select and consider fewer moves that insert a
pattern in the incumbent solution and optimally reconstruct the remaining edges to avoid large
disruptions. It recalls the vocabulary building technique presented in Section 1.4.2, but where words
are weighted with a score (being their appearance frequency) and where words are used to improve
existing solutions.

PILS is based on two main steps: pattern extraction (Section 2.8.1) and pattern injection (Sec-
tion 2.8.2). In Arnold et al. [2021], the injection phase was performed just after a perturbation step,
while the pattern extraction phase was performed, with a probability, on local optima obtained after
the local search. Since PILS was originally designed for the CVRP, it requires some changes for the
VRPTW, described in Section 2.8.3.

2.8.1 Pattern Extraction

During the extraction process, only patterns with a size between 2 and sp are considered. For
example in a route r = (v0, . . . , r|r|) starting and ending at the depot each contiguous subsequence
of (r2, . . . , r|r|−1) represents a pattern. Hence, a route (0, 1, 2, 3, 4, 5, 0) contains two patterns of size
four, that are, (1, 2, 3, 4) and (2, 3, 4, 5). Note that, in the symmetric CVRP, mirrored subsequences
are identical (e.g. (1, 2, 3, 4) = (4, 3, 2, 1)). Any route r contains max{0, |r| − 1 − l} patterns of
size l, and any solution contains O(N) patterns of a given size, where N refers to the number of
customers in the instance, such that pattern extraction can be done by iterating over the routes as
presented in Algorithm 6. An associative array monitors the extracted patterns, along with their
frequency of appearance, through the execution of the algorithm, and it is updated each time the
extraction step is performed on a solution x.

The success of PILS depends on its ability to extract diverse patterns from high-quality solu-
tions. Indeed, a pool of diverse but low-quality patterns (similar to those found in random solutions)
would mainly lead to random moves. In contrast, an overly-restricted set of patterns would lead to
few possible injections and would guide towards the same solution characteristics which will result
in a loss of diversity. To achieve a meaningful trade-off between these two extremes, the pattern
extraction is applied with probability pext on each local optimum produced by the metaheuristic
in which PILS is integrated. Moreover, the probability pext can also be useful to drive the compu-
tational effort needed for pattern extraction without changing the characteristics of the extracted
patterns. In particular, the probability was set to pext = 0.1 in the hybridization with the Hybrid
Genetic Search (HGS) of Vidal et al. [2013].
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Algorithm 6: Pattern extraction procedure.

Input: An associative array A, the maximum size of patterns sp, a solution x
Output: The array A updated with the new patterns

1 for each pattern size l ∈ {2, . . . , sp} do
2 for each route r of x do
3 for i ∈ {l + 1, . . . , |r| − 1} do
4 p = (ri−l, . . . , ri)
5 if p ∈ A then
6 Increment the frequency of p by one unit

7 else
8 Add new pattern p in A

9 return A

2.8.2 Pattern Injection

During the injection phase, Ni frequent patterns are tentatively inserted in the current solution to
define high-order local search moves. These moves are accepted only in case of improvement. The
Ni patterns to inject are randomly chosen among the Nf most frequent patterns extracted. To not
bias the injection towards smaller, more numerous, patterns, the size of the patterns injected is
randomly selected before the patterns themselves.

The injection of a pattern p into a solution x is described in Algorithm 8. Figure 2.6 illustrates
the injection of a pattern into a solution to the CVRP, where routes are not oriented. A pattern p
is injected into a solution by connecting the vertices of p and removing all other interfering edges.
This leads to the creation of different set of route fragments that need to be reconnected to obtain
a feasible solution. RBEG (resp. REND) contains fragments or routes starting (resp. ending) at the
depot. RMID contains the other fragments. RINV contains routes that are not perturbed by the
insertion of the pattern. The Best-Reconnect procedure, described in Algorithm 7, is optimized
to find the optimal reconstruction. RBEST is a global variable containing the best (current) set of
reconstructed routes. R contains complete routes. The cost c of a set of pieces of routes is the sum of
the cost of the fragments. When fragments are concatenated (operator ⊕) the attributes of the new
fragment are obtained with the associated incremental evaluation formula from Section 2.5.2 (only
total cost and total load are needed). If the optimal reconstruction does not lead to a better solution
the pattern is discarded and the next one is tentatively injected. Note that, large patterns tend to
create more fragments of route, leading to more important computational resources. Consequently,
the maximum size of the patterns extracted should not be too high (e.g., it was sp = 5 in [Arnold
et al., 2021]).

2.8.3 Modifications for the VRPTW

Since PILS was originally developed for the CVRP, some adjustments are required to use it for the
VRPTW. Reversed patterns can not be considered identical to original patterns since the routes of a
solution to the VRPTW are oriented, due to time windows. Moreover, during the Best-Reconnect

procedure of the injection step, reversed fragments are considered (l.8 of Algorithm 7). There is
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Initial solution Final solution

Disconnection Reconnection

Figure 2.6: Injection of a pattern of size three into a solution to the CVRP. The pattern is repre-
sented by red dots and orange edges.

Algorithm 7: Best-Reconnect procedure.

Input: RBEG, RMID, REND, R
1 if c(RBEG ∪RMID ∪REND ∪R) < c(RBEST) then
2 if |RBEG| = 0 then
3 RBEST = R
4 else
5 rBEG ← Select(RBEG)
6 for rMID ∈ RMID do
7 Best-Reconnect(RBEG − {rBEG} ∪ {rBEG ⊕ rMID},RMID,REND,R)
8 Best-Reconnect(RBEG − {rBEG} ∪ {rBEG ⊕ REV(rMID)},RMID,REND,R)

9 if |RBEG| ≠ 1 or |RMID| = 0 then
10 for rEND ∈ REND do
11 Best-Reconnect(RBEG−{rBEG},RMID,REND−{rEND},R∪{rBEG⊕rEND})

Algorithm 8: Pattern injection procedure.

Input: The current solution x, the number of patterns to inject Ni, the number of most
frequent patterns to consider Nf , the extracted patterns A

Output: A new solution best
1 best← x
2 l← select at random the size of the patterns injected
3 P ← select at random Ni patterns among the Nf most frequent patterns of size l in A
4 for p ∈ P do
5 if p does not occur in best then
6 (RBEG,RMID,REND,RINV)← disconnect edges adjacent to the vertices of p in best
7 x′ ← Best-Reconnect(RBEG,RMID ∪ {p},REND,RINV)

8 if c(x′) < c(best) then
9 best← x′

10 return best
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no need to consider them when solving the VRPTW since reversed fragments will probably lead
to infeasible solutions (i.e., l.8 is removed). Finally, the incremental evaluation used during the
reconnection step has to be adapted to match the VRPTW.

Furthermore, other modifications are required when considering a multi-objective problem. In
particular, considering the comparison of two (partial) solutions (l.1 of Algorithm 7 and l.8 of
Algorithm 8). When the multi-objective problem is modeled by one (or more) single-objective
problem (like in MOEA/D), there is no problem. However, with algorithms that do not use an
aggregation of objectives, like MOLS, the solution can be accepted if it dominates or if it is non-
dominated regarding the current solution.

2.9 Conclusion

In this chapter, our case study is presented. It is a VRPTW where the total transportation cost
and the total waiting time of drivers are simultaneously minimized. The problem has been formally
introduced, solutions are represented as permutations, and they can be evaluated with the split
algorithm. Moreover, the neighborhood of a solution is generated by the three operators swap,
relocate, and 2opt*. During neighborhood exploration, an incremental evaluation is performed
to be faster. We have also provided an overview of the existing works related to the problem. In
the following, we are interested in solving this problem by using knowledge discovery principles.
More precisely, by using pattern mining strategies, as the PILS mechanism exploits to solve the
capacitated vehicle routing problem in a single-objective format.



50 CHAPTER 2. VEHICLE ROUTING PROBLEM WITH TIME WINDOWS



Part II

Solution-based Knowledge
Discovery into MOEA/D

51





Chapter 3

Multi-Objective Evolutionary
Algorithm based on Decomposition
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3.1 Introduction

This chapter is dedicated to the presentation of the main algorithm used during the first part of the
thesis work, that is the Multi-Objective Evolutionary Algorithm based on Decomposition, known
as MOEA/D. This algorithm was originally introduced by Zhang and Li [2007]. It is a popular
algorithm for solving multi-objective combinatorial optimization problems, and it has been widely
studied in the literature [Xu et al., 2020]. MOEA/D is a genetic algorithm, that approximates
the Pareto front by decomposing the multi-objective problem to solve into several single-objective
subproblems. The framework allows the possibility of solving the subproblems in parallel, which is
beneficial in practice. For simplicity purposes, in the following, we only consider that the subprob-
lems are sequentially solved. The Section 3.2 presents MOEA/D and its components. Section 3.3
focuses on variants of MOEA/D in the literature, improving its main components. Section 3.4
presents variants exploiting knowledge during the execution in MOEA/D.
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aggregation

unknown front

solution

Figure 3.1: Concept of MOEA/D, in a min-
imization context, where a bi-objective prob-
lem is decomposed into five subproblems with
weight vectors w1, . . . , w5. Each subproblem is
associated with its current best solution.

aggregation

unknown front

best solution

Figure 3.2: Neighborhood (of size m = 3) of w4.
It regoups vectors w4, w3, and w5.

Our motivation concerning the choice of this algorithm was its trade-off between single-objective
and multi-objective optimization. In MOEA/D, several single-objective problems are solved, allow-
ing the use of mechanisms related to single-objective optimization. Indeed, the exploitation of
knowledge from solutions generated during the execution is known to be efficient when dealing with
a single-objective problem, but the transition to multi-objective optimization is not obvious. Conse-
quently, relying on MOEA/D facilitated the development of a first knowledge discovery mechanism
suited to multi-objective optimization.

3.2 Presentation of the MOEA/D

Algorithm 9 outlines the MOEA/D framework. The algorithm receives M weight vectors to gen-
erate the subproblems. Each weight vector is associated with a distinct subproblem, following a
decomposition strategy described in Section 1.3.3. We assume that the production of uniformly
distributed weight vectors yields a variety of subproblems sufficient to approximate accurately the
optimal Pareto front of the multi-objective problem. In particular, with a bi-objective problem,
wi = ( i−1

M−1 ,
M−i+1
M−1 ) generates the i-th subproblem. Figure 3.1 illustrates the decomposition con-

cept of MOEA/D in the particular case of a bi-objective problem, in a minimization context, where
subproblems are evenly spread.

An initial population P of solution is created with the Initialization function. The i-
th solution of the population is the current best solution associated with the i-th subproblem.
Initialization creates random solutions, generates optimized solutions, or reads an existing
Pareto front and then associates the best possible solution to each subproblem. The size of the
population does not change during the execution and remains constantly equal to M , the number
of subproblems. Moreover, inside the population, the order of the solutions is important, since the
i-th solution is always associated with the i-th subproblem.

During the execution of MOEA/D, the current best solutions from neighboring subproblems
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aggregation

unknown front

best solution

Figure 3.3: Replacement of the current best so-
lution for w3 by a better solution x4

f found dur-

ing the resolution of the subproblem with w4.
The replacement is possible because w3 belongs
to the neighborhood of w4.

Figure 3.4: Situation where not all the solutions
of the optimal Pareto front are optimal solutions
of weighted sum problems. Solution x∗

1 can be
obtained with w1, but the red solution can not
be obtained, since using w2 returns x∗

2.

can be used to generate a new starting solution for the considered subproblem, thus increasing
the exploration capacity of the algorithm. More precisely, the neighborhood, of size m ≥ 1, of a
weight vector wi is defined as the set of its m closest (for the Euclidean distance) weight vectors
among {w1, . . . , wM}. Consequently, the neighborhood Nm

i of the i-th subproblem consists of the
m subproblems defined with a weight vector belonging to the neighborhood of wi. Figure 3.2
represents the neighborhood associated with a weight vector.

The core of the algorithm consists of iteratively optimizing the subproblems until a stopping
criterion is satisfied. The stopping criterion is generally based on time, number of iterations,
or number of evaluations. Usually, a random permutation of the subproblems is defined in the
beginning so that subproblems are always solved in the same order. When the subproblem i
is optimized, two solutions from the population are selected with the Select function for the
Crossover step. The indexes of the chosen solutions belong to Nm

i . After the crossover, in order
not to change the population size, only one solution is kept. The solution can be chosen at random
or according to its fitness. Note that the crossover is applied with probability px. When it does
not occur, it is the current best solution to the problem in the population (i.e., xi) that is kept.
The remaining solution undergoes a Mutation step with probability pm, attempting to improve
the solution. Finally, the solution is added to another set P ′. If the final solution obtained has a
better fitness than xi it is replaced in P with UpdatePopulation. Moreover, at most mr solutions
of P associated with neighboring subproblems may also be updated if the final solution obtained
is better when evaluated with their weights than their current best. This situation is represented
in Figure 3.3, where during the resolution of the subproblem associated with weight w4, a better
solution (x4

f ) for the subproblem associated with weight w3 is found, thus replacing its current best
solution.

Additionally, an external (unbounded) archive A∗ is maintained throughout the execution to
track the best non-dominated solutions. After seeing all the subproblems, the UpdateArchive

procedure updates the archive with the solutions of P ′, which is emptied after that step. If the
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stopping criterion is reached A∗ is returned, otherwise another iteration starts.

Algorithm 9: Reference MOEA/D Framework (RMOEA/D).

Input: M weight vectors w1, . . . , wM . m, the size of the neighborhood of a problem. px
(resp. pm) the probability of applying Crossover (resp. Mutation)

Output: The external archive A∗

/* Initialization */

1 (A∗, P ′)← (∅,∅)

2 P = {x1, . . . , xM} ← Initialization()
3 for i ∈ {1, . . . ,M} do
4 Nm

i ← indexes of the m closest weight vectors to wi

/* Core of the algorithm */

5 while stopping criterion not satisfied do
6 for i ∈ {1, . . . ,M} do
7 (i1, i2)← Select(Ni)
8 x← Crossover(xi1 , xi2)
9 x← Mutation(x)

10 P ′ ← P ′ ∪ {x}
11 UpdatePopulation(P,Nm

i , x)

12 UpdateArchive(A∗, P ′)
13 P ′ ← ∅
14 return A∗

3.3 Improvement of MOEA/D Components

Since its creation, MOEA/D has received many interests over the years. A recent survey [Xu
et al., 2020] classifies the existing variants of MOEA/D into two categories. On the one hand, the
variants that improve the components of MOEA/D, and on the other hand, the variants that are
applied to other research fields, like many-objective optimization, being a problem where M ≥ 4
objective functions are simultaneously optimized.In this section, we present the different components
of MOEA/D that can be improved, their related issues, and how they have been enhanced in the last
few years. Section 3.3.1 is dedicated to the strategies used to decompose multi-objective problems.
An overview of the existing methods to generate weight vectors is presented in Section 3.3.2. Finally,
several evolution operators are presented in Section 3.3.3. Note that, although MOEA/D can be
used to solve both combinatorial and continuous optimization problems, we mainly focus on the
improvements suitable for combinatorial optimization.

3.3.1 Decomposition Methods

The notion of decomposition refers to the concepts introduced in Section 1.3.3. Originally, the
decomposition methods used with MOEA/D were the weighted sum, the weighted Tchebycheff,
and the penalty-based boundary intersection. The latter can be used when dealing with continuous
optimization, and will not be further developed here. Note that, like the Tchebycheff approach,
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it requires a reference point, as close as possible to the ideal point of the front. Moreover, when
the optimal Pareto front is not convex, all Pareto optimal solutions are not optimal solutions to a
subproblem obtained with a weighted sum. An example is provided in Figure 3.4, where solution
x∗
1 is optimal to the subproblem using weight w1, but the (red) solution in the middle is not optimal

using weight vector w2. Instead, it is the solution x∗
2 that is the optimal solution associated with

this weight vector. However, it is possible to find the red solution during the resolution, showing
the importance of using an external archive that contains intermediate solutions of subproblems.

A strategy to improve a decomposition method concerns the volume reduction of the improve-
ment region associated with a subproblem. According to Wang et al. [2015] the improvement region
is determined by the current best solution, the optimal solution, and the contour of the subprob-
lem. More formally, the improvement region of the solution xi, being the current best solution of
subproblem i, is the set of all the objective vectors of solutions better than xi for the subprob-
lem i. Figures 3.5 (resp. 3.6) show the improvement regions associated with a subproblem defined
by a weighted sum (resp. a Tchebycheff approach) using the weight vector wi. One can notice
that the improvement region associated with the problem defined by the Tchebycheff approach
is much smaller than the one associated with a subproblem defined by a weighted sum. With a
large improvement region, a single solution with a better fitness for one subproblem can lead to
the replacement of several old solutions for other subproblems, leading to a loss of diversity inside
the population. This issue has been addressed with many different strategies. Wang et al. [2015]
control the improvement region by constraining more the subproblems with a dedicated parameter.
Cai et al. [2017] proposed a constrained decomposition with grids, where the objective space is
divided into grids, and each subproblem is associated with one grid. Ma et al. [2017] propose to
extend the Tchebycheff decomposition strategy with a Lp norm constraint on the direction vector.
Two other strategies introduced by Jiang et al. [2017b] generalize the Tchebycheff approach. The
multiplicative scalarizing function and the penalty-based scalarizing function methods, depend on
a parameter, directly impacting the size of the improvement region of a subproblem. When the
parameter value is set to 0, then both strategies turn back to the original Tchebycheff approach.

Ideal

Figure 3.5: Improvement region associated with
a subproblem defined with a weighted sum. The
blue square is the current best solution. The red
dot is the optimal solution.

Ideal

Figure 3.6: Improvement region associated with
a subproblem defined with a Tchebycheff ap-
proach. The blue square is the current best so-
lution. The red dot is the optimal solution.
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It is known that depending on the shape of the final Pareto front, all decomposition strategies are
not equivalent. Indeed, while the Tchebycheff approach is suited to convex and non-convex Pareto
fronts, it converges slower than the weighted sum approach, which is not adapted to non-convex
fronts. The weighted mixture-style decomposition of Zheng et al. [2018] combines the advantages
of these two approaches, allowing MOEA/D to obtain more solutions. Ishibuchi et al. [2010] used
weighted sum and Tchebycheff approaches for fitness assessment.

Finally, Liu et al. [2013] proposes to base the decomposition strategy on the decomposition
of the objective space. The multi-objective problem is decomposed into several simpler multi-
objective problems, with the same objective functions, but each one is restricted to a smaller part
of the objective space. It can be achieved by constraining the subproblem or turning one objective
function into a constraint. In particular, this strategy called multiple-to-multiple, is efficient when
dealing with many-objective optimization.

3.3.2 Weight Vector Generation Methods

Most of the decomposition methods described above require the use of weight vectors to guide
the search. In the first version of MOEA/D, the weight vectors were fixed during the execution.
However, when the Pareto front is irregular or complex, it may not be a suitable strategy to use the
same weight vectors all along the execution. Li et al. [2015] propose to generate new random weight
vectors when no improvements are found after several iterations. A hierarchical structure between
subproblems is developed by Xu et al. [2017]. The subproblems are divided into two layers. The
higher-level layer contains the main search directions, while the lower-level layer can be dynamically
adjusted according to the results obtained with the higher-level layer. Indeed, the objective of the
lower-level layer is to refine the search between two subproblems from the higher-level layer.

When the structure of the Pareto front is not known, the best strategy is to consider a uniform
distribution of weight vectors to maximize the diversity of the solutions obtained. With two di-
mensions, the generation of uniformly spread weight vectors is straightforward, however in higher
dimensions mathematical strategies are required. The good lattice point strategy [Zaremba, 1966]
can be applied to generate a set of uniformly distributed weight vectors [Tan et al., 2011]. Zhang
et al. [2015] developed a uniform design method to initialize the population and generate the weight
vectors. This is done by first generating a uniform matrix with the good lattice point strategy, and
then transforming the matrix into a set of vectors over the unit simplex (i.e., vectors whose sum of
coordinates is equal to 1).

When a decision maker provides any feedback during the search process, it can be used as
an indicator to focus on a specific part of the objective space, called region of interest of the
decision maker. Particularly, Pilat and Neruda [2015] incorporates the binary preferences of the
decision maker to the individuals, to adjust the weight vectors during the execution. Ma et al.
[2016] biased the weight vectors to focus on the region of interest of the decision maker. Indeed,
when a subproblem returns solutions that are too far from the region of interest, the subproblem
is discarded and another one is generated.

3.3.3 Evolution Operators

The evolution operators concern the mating selection (i.e., at l.7 of Algorithm 9, the selection of the
solutions which undergo the crossover) of two solutions of the population, the replacement strategy
of some solutions in the population when a new solution is discovered (l.11 of Algorithm 9), and
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the reproduction operators (i.e., crossover and mutation steps in general).
It is important that the mating selection does not always favor the same solutions to bring

diversity to the next generation of solutions. Li and Zhang [2008] proposed to allow the mating
of a solution with any other population member with some probability, instead of mating only
with solutions from neighbor subproblems. Chiang and Lai [2011] decide to restrict the mating
population to individuals associated with an unresolved subproblem. A subproblem is said resolved
when its current best solution is not improved for a minimum number of generations. Note that, a
new better solution may be found for a subproblem after many iterations, thus even a subproblem
considered as resolved may become again unresolved during the execution.

The replacement strategy should not be too aggressive to avoid the loss of diversity in the
population. In particular, we would like to avoid the same solution appearing many times in the
populations (i.e., one solution that is the current best of several distinct subproblems). Wang et al.
[2014] developed a global replacement strategy. In particular, when a new solution xi

new is found
during the resolution of the subproblem i, xi

new is first associated with the best possible subproblem
j. Then the replacement set considered is the neighborhood of the subproblem j, and a maximum
number of replacements is performed like in the reference MOEA/D. One can see the replacement
process as a mutual matching between solutions and subproblems. Indeed, each solution should be
associated with the best subproblem, and inversely. However, the solution does not explicitly express
a preference for subproblems in MOEA/D. Li et al. [2013b] proposed a simple and effective stable
matching model to coordinate the association process. Each subproblem ranks all the solutions
including the current best and offspring according to its aggregation function favoring the solutions
with better function values. Additionally, each solution ranks all subproblems by considering the
distance between its objective vector and the direction vectors of the subproblems and prefers the
subproblems whose direction vectors are close to it. Finally, the model pairs each subproblem with
one solution.

It is also possible to mix improvements of mating selection and replacement strategy by using
distinct neighborhoods for each process. Ishibuchi et al. [2006] recommend using a large matching
neighborhood (e.g., the entire population), and a small replacement neighborhood for better results.

Concerning the reproduction operators, any crossover or mutation step defined in the literature
can be used, regarding the representation of the solution. Some possibilities are described in
Section 1.2.2. We recall that the crossover step is similar to an exploration (or perturbation) step,
where new (unseen) solutions are generated. The mutation often represents an exploitation step,
where solutions are improved. Many nature-based algorithms, such as particle swarm optimization,
simulated annealing, and ant colony optimization, can be combined with MOEA/D to further
improve the algorithm’s performance. For example, Ke et al. [2013] hybridized MOEA/D with
an ant colony optimization framework. Here an ant is considered as an evolution unit, aiming to
improve its best associated solution. All the ants (there are as many ants as subproblems) are
divided into groups by clustering their corresponding weight vectors. Each group is designed to
approximate a small part of the Pareto front. All the groups share a common solution pool, where
solutions are updated like in the original MOEA/D. Each ant constructs a new solution with the
pheromone matrix about itself and its neighbors (i.e., ants of the same group).

3.4 Knowledge Exploitation in MOEA/D

The components of MOEA/D described above can be further improved by using self-adaptive
mechanisms. Indeed, during the search much information can be collected about the performance
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of the operators used, the shape of the Pareto front, and, more generally, about the objective
space itself. This information is useful for adapting the strategy adopted for each component of
MOEA/D, making it more suitable to solve complex problems. The remainder of this section is
dedicated to the existing adaptive mechanisms related to each component of MOEA/D. To be more
precise, Section 3.4.1 presents different approaches to make the decomposition strategies adaptive.
Section 3.4.2 shows how weight vectors can be dynamically adjusted during the execution. Finally,
a few adaptive evolution operators are described in Section 3.4.3.

3.4.1 Adaptive Decomposition Strategy

Using an adaptive decomposition strategy can help to accelerate the convergence of the algorithm
towards the optimal Pareto front, and to obtain more widely spread solutions. An automatic
selection strategy has been developed by Ishibuchi et al. [2009] to decide if a weighted sum or
a Tchebycheff approach is better adapted to the current weight vector. Indeed, the Tchebycheff
approach is more adapted to approximate non-convex regions of the Pareto front. Since it is hard
to know if a region of the Pareto front is convex or not, the strategy used considers that the
region is non-convex when the current solution is the best solution for many different neighboring
subproblems (with its own weighted sum).

More generally, the searching ability of the family of the Lp scalarizing methods (when p = 1,
the method is a weighted sum, when p = ∞, the method is a Tchebycheff approach), has been
investigated in Wang et al. [2016]. The value of p impacts the convergence and the diversity of
the solutions obtained for a specific problem. More precisely, when p increases, the probability of
finding a better solution decreases, allowing the generation of more diverse solutions. Besides, the
impact of p decreases with the proximity of a solution to the optimal Pareto front. The better p
value is obtained when the optimal solution for that p is closer to the weight vector compared with
other p values.

Finally, a learning-to-decomposition paradigm is developed by Wu et al. [2018]. The paradigm is
composed of two modules, one is dedicated to learning, and the other to optimization. The objective
of the learning module is to learn the characteristics of the estimated Pareto front, by using the non-
dominated solutions obtained with a Gaussian process regression. The optimization module, based
on MOEA/D, adapts the decomposition method according to the model returned by the learning
module. Such a research topic shows the benefit of hybridizing MOEA/D with machine learning
algorithms (and more generally the interest in hybridizing learning and optimization processes) to
make better use of the information generated during the evolution.

3.4.2 Dynamic Adjustment of Weight Vectors

Using uniformly distributed weight vectors may not be enough to solve complex problems, or to
approximate Pareto-fronts with complex shapes (e.g., discontinuous, non-convex). The goal of
adjusting weight vectors during the search is to obtain more uniformly spread solutions along the
optimal Pareto front.

Siwei et al. [2011] proposed a Pareto-adaptive weight vectors strategy taking into account the
geometrical characteristics of the Pareto front. The generation of the weight vectors employs
Mixture Uniform Design (MUD), to evenly spread vectors in a given region. These weight vectors
intersect the optimal Pareto front in k points, and the weight vectors are adjusted to maximize the
hypervolume of the k points obtained.
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When the optimal Pareto front is irregular, fixed weight vectors may have difficulties to guide
the algorithm to obtain distributed solutions along the Pareto front. In particular, in the discon-
tinuous parts of the Pareto front, several subproblems have the same optimal solution. In the
extreme regions of a Pareto front, many objective vectors are distributed in a narrow region of the
objective space. Qi et al. [2014] developed an adaptive weight adjustment strategy, that identifies
sparse regions (avoiding discontinuous parts), adds new subproblems in sparse regions, and removes
redundant subproblems in crowded regions.

In real-world problems, different subproblems are likely to have different search complexity.
Harada et al. [2017] developed a strategy for detecting hard problems, and then these problems are
divided into several new subproblems to allocate more computational resources to the directions of
the subproblems with search difficulty.

3.4.3 Adaptive Evolution Operators

Three evolutionary operators are used in MOEA/D. The mating selection, the replacement mech-
anism, and reproduction operators. The mating selection and the replacement mechanism use the
neighborhood associated with the subproblem being solved. The size of the neighborhood is a pa-
rameter fixed at the beginning of the algorithm, however, it plays an important role in controlling
the trade-off between intensification (small neighborhood) and diversification (large neighborhood).
Zhao et al. [2012] proposed to adapt the neighborhood size of each subproblem (each subproblem
may have a different neighborhood size) during the execution of the algorithm. The new size of the
neighborhood is selected among a pool of sizes, and the probability of selecting one size depends on
its efficacy in past generations (i.e., the proportion of improving solutions kept for the next gener-
ation). Probabilities are updated at the end of a learning period, reflecting a number of successive
generations.

The reproduction operators themselves are, generally, specific to the problem solved. However,
if several operators are available, one can use a high-level integration strategy (see Section 1.4.3) to
select the best operators to apply. For example, Li et al. [2013a] proposed a bandit-based adaptive
operator selection, using fitness improvement rates to track the dynamics of the search.

3.5 Discussion

This chapter aimed to present the components related to MOEA/D, and how these have been
improved in the literature to overcome issues of the original design. We mainly focused on improve-
ments that can be used in a combinatorial context, although there exists a lot of other works in
the continuous field. Indeed, when solving continuous problems, it is often possible to exploit the
properties of the decision space. For example, it is possible to exploit the regularity of continuous
fronts, and their link with the decision space, to learn a distribution model of a current population.
A Baldwinian learning operator can use this to construct a candidate descent direction based on
the learned model and the history of individuals [Ma et al., 2014b]. On the other hand, it is also
possible to explore the decision space by using opposition-based learning principles Ma et al. [2014a]
(where a solution and its opposite are simultaneously explored to provide interesting knowledge).

However, such strategies can not be easily used in combinatorial optimization, since the decision
space can be chaotic due to the constraints of the problems. Our intention through this chapter
was to highlight the diversity of the works performed to improve MOEA/D. More importantly,
the framework has been successfully used with learning mechanisms. Although we only use the
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original MOEA/D in the remainder of the thesis, the strategies developed there can lead to further
improvements in our work. Overall, the popularity of the framework and the interest it received
over the years, make MOEA/D a good candidate for our thesis work.

The next chapter presents the first version of the hybridization between MOEA/D and our
knowledge discovery mechanism developed from PILS. In particular, it uses the single-objective
decomposition principle to mimic the behavior of PILS in a multi-objective context.
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This chapter’s contributions are linked to the following publications:

• Legrand, C., Cattaruzza, D., Jourdan, L., Kessaci, ME. 2022. Enhancing MOEA/D with
learning: application to routing problems with time windows. In Proceedings of the Genetic
and Evolutionary Computation Conference Companion (GECCO ’22). https://doi.org/

10.1145/3520304.3528909

• Legrand, C., Cattaruzza, D., Jourdan, L., Kessaci, ME. (2023). New Neighborhood Strategies
for the Bi-objective Vehicle Routing Problem with Time Windows. In: Di Gaspero, L., Festa,
P., Nakib, A., Pavone, M. (eds) Metaheuristics. MIC 2022. Lecture Notes in Computer
Science, vol 13838. Springer, Cham. https://doi.org/10.1007/978-3-031-26504-4_4.

• Legrand, C., Cattaruzza, D., Jourdan, L., Kessaci, M. E. (2024, June). Investigation of
the Benefit of Extracting Patterns from Local Optima to Solve a Bi-objective VRPTW. In
Metaheuristics International Conference (pp. 62-77). Cham: Springer Nature Switzerland.
https://www.doi.org/10.1007/978-3-031-62912-9_7

4.1 Introduction

This chapter presents the first proposition of hybridization between MOEA/D and our knowledge
discovery mechanism. Different experiments are performed to highlight the performances of our
hybridization (in terms of quality and speed-up).

For our knowledge discovery mechanism, the idea is to exploit the structure of close solutions
in the objective space. However, it can only be interesting if close solutions in the objective space
share common structures. Thus, we start by analyzing how the phenotypic proximity impacts the
genotypic proximity for our problem in Section 4.2. In this section, we define metrics to measure the
phenotypic distance and the genotypic distance, and we analyze the objective space of Solomon’s
instances. The results obtained show that, in most instances, solutions with close objective vectors
share common structures, which can be exploited by the knowledge discovery mechanism.

Consequently, the knowledge discovery mechanism proposed exploits the structure of solutions
by grouping them according to their location in the objective space. In Section 4.3, the concept of
knowledge groups is introduced to store the different patterns extracted from solutions. As a first
model, the knowledge groups are associated with the subproblems defined in MOEA/D, leading to
a first promising hybridization (see Legrand et al. [2022a]).

In order to improve the results obtained, we decided to focus on the creation of a local search
adapted to our bi-objective problem. With the use of a local search inside our algorithm, it is
possible to produce solutions of better quality, which will, hopefully, lead to the learning of better
patterns. For that local search, we use common neighborhood operators, but we define in Sec-
tion 4.4, a new neighborhood exploration strategy, called first-best. Moreover, a granular search,
which exploits both objectives optimized, is used additionally to reduce the size of the neighborhood
explored. The results presented in Legrand et al. [2022b] show the effectiveness of our strategies.

Finally, Section 4.5 investigates the benefit of learning from local optima produced by the local
search designed in the former section. Indeed, in single-objective optimization, local optima are
known to contain more relevant structures and are often preferred when structures of solutions
are learned. However, using local optima only may not be suited to a multi-objective context.
The results presented in Legrand et al. [2024] show that learning from local optima contributes to
obtaining solutions of better quality.

https://doi.org/10.1145/3520304.3528909
https://doi.org/10.1145/3520304.3528909
https://doi.org/10.1007/978-3-031-26504-4_4
https://www.doi.org/10.1007/978-3-031-62912-9_7
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4.2 Relation between Genotype and Phenotype

In this section, we provide insight into the relation between phenotype and genotype of solutions
of the bVRPTW. We recall that the phenotype of a solution refers to its objective vector and the
genotype refers to its structure. Thus, our objective is to know if solutions with a close phenotype
(i.e., solutions that are close in the objective space) also have a close genotype (i.e., share a similar
structure). First, we present in Section 4.2.1 the metrics involved in measuring the phenotypic
and genotypic distances. Our experimental protocol follows in Section 4.2.2, and the results are
presented and discussed in Section 4.2.3.

4.2.1 Phenotypic and Genotypic Distances

For the phenotypic distance dP it is possible to consider any metric defined on vectors of Rn.
We decided to consider the Euclidean distance, which is the most natural metric in the objective
space. Thus, the phenotypic distance between two solutions x and y is measured with the Euclidean
distance between their corresponding objective vectors F (x) and F (y).

The genotype of a solution to the bVRPTW is the list of the arcs involved in the routes. To
measure the structural similarity between two solutions, we can consider any metric used to measure
the similarity between two graphs. The Hamming distance, which counts the number of deletions
and insertions of arcs required to transform one solution into another, is the most simple and
intuitive metric to consider. More formally, to compute the Hamming distance between two graphs
G1 = (V,E1) and G2 = (V,E2), we generate the graph of the intersection, having the same vertices
V and the edges E1 ∩ E2. Then, the Hamming distance between G1 and G2 is expressed as the
following quantity:

dH(G1, G2) = |E1|+ |E2| − 2× |E1 ∩ E2| (4.1)

Indeed, to transform G1 into G2 it requires |E1|−|E1∩E2| deletions and |E2|−|E1∩E2| insertions.
Consequently, the genotypic distance dG between two solutions x and y is measured with the
Hamming distance between their corresponding graph representation. In addition to the Hamming
distance, we define a similarity value S between two graphs G1 and G2, with the same notations
as above, which is expressed as:

S(G1, G2) =
|E1 ∩ E2|

|E1 ∩ E2|+ dH(G1, G2)
(4.2)

Figure 4.1 provides an example of computation of the Hamming distance between two routing
solutions and the similarity value is given.

4.2.2 Experimental Protocol

For this analysis, we only focus on Solomon’s benchmark (see Section 2.3.1). The first issue is to
generate a good approximation of the objective space of an instance. To that aim, we use a multi-
objective local search, as described in Chapter 6, because such algorithms explore more largely the
objective space. During the execution, we track every solution encountered, and at the end, the
files containing the objectives and the structures of the solutions are written. Note that, because
of the large number of solutions encountered during the execution (sometimes more than 5 · 105),
we have to limit the number of solutions written by uniform sampling at most 5 · 104 solutions. We
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Figure 4.1: Graph representation of two solutions. The arcs in common are colored green. The
Hamming distance between these solutions is 9, their similarity is about 36%.

execute five runs on each Solomon’s instance, each run being executed with a different initial front.
Finally, for each instance, at least 25 · 103 and at most 25 · 104 solutions are available to represent
the associated objective space, which is enough to obtain a good representation of the solutions
that can be found when solving an instance. Moreover, dealing with more solutions will result in
computational issues for our study.

Our motivation is to highlight the presence of structural similarities between solutions with a
close phenotype. Consequently, we consider a parameter R, which controls the size of the neigh-
borhood of a solution in the objective space. Basically, the neighborhood of a solution contains its
R nearest neighbors considering the phenotypic distance. Then, for different values of R, we can
evaluate the average structural similarity between a solution and its neighborhood. We could do
this for every solution of the objective space, however, the computational overhead would be too
high, since it requires a quadratic number of operations in the number of solutions to generate all
the neighborhoods. Hence, we decided to sample uniformly 2500 solutions of the objective space,
which represents between 1% and 10% of the initial objective space.

It is possible to compute the neighborhood of each solution for different values of R (here
R ∈ {1, 2, 5, 10, 25, 50, 75, 100}) and to evaluate the average genotypic similarity between a solution
and its neighborhood, in a reasonable amount of time. Nevertheless, preliminary results suggested
that the presence of genotypic similarities may be impacted by the position of the solution in the
objective space. Indeed, converged solutions, close to the optimal Pareto front, may more likely
share structural similarities than random solutions with high objective values. By considering all
the solutions together, this phenomenon can not be highlighted. As a consequence, we decided to
compute the Pareto ranks of all the 2500 remaining solutions and to homogeneously stratify the
objective space according to the ranks of the solutions. To that aim, we define a threshold (here set
to 20%) representing the proportion of solutions that the region should contain. Since a subfront
of solutions is associated with each rank, we can simply aggregate them, by increasing rank value,
until the desired proportion of solution is reached. Moreover, we allow a slight overlapping of four
ranks between each region, i.e., if a region stops at rank k, then the next region starts at rank
k − 1, but the proportion of solutions in the new region is considered only after rank k so that
the objective space is always divided into exactly five regions. Finally, for each region and value
of R, we can compute the average genotypic similarity for each solution and the mean over all the
solutions of each region is returned, giving the average similarity of a solution in the region for the
value of R considered. We perform that evaluation over 10 runs for each instance of Solomon’s
benchmark. The results obtained are presented and discussed in the next section.
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4.2.3 Experimental Results

First, we present the average similarity of solutions according to the instance category. An overview
of the results are available in Figure 4.2. Additional tables are provided in Appendix A with the
corresponding values. One can remark that, for every category of instance, and no matter the region
of the objective space, the average similarity tends to decrease when the size of the neighborhood
increases. In particular, it indicates that considering one solution, the furthest solutions to it tend
to have less structural similarity. Moreover, it shows that the maximum genotypic similarity is
achieved for close solutions, no matter the region of the objective space. Another important point
concerns the difference of similarity between solutions to instances of category 1 (with tight time
windows) and instances of category 2 (with wide time windows). In instances of category 1 (C1, R1,
RC1) the average similarity is about 40% between a solution and its closest neighbor (i.e., about 40
arcs are in common when the size of the neighborhood is 1), and the highest similarity is generally
obtained for solutions that belong to the “r0” region (i.e., the region of the objective space that is
the closest to the optimal Pareto front, and which contains the most interesting solutions for both
objectives). In particular, it shows that the Pareto front tends to contain solutions that share a lot
of characteristics. However, it is almost the opposite in instances of category 2 (C2, R2, RC2). For
these instances, we generally have about 25% of average similarity between close solutions in the
region “r0”, while the similarity increases in region “r4” (i.e., the region of the objective space that
contains the less interesting solutions, with many random solutions). In particular, it means that
for these instances, the best solutions often share few characteristics, but many bad solutions share
a lot of structural components.

Now, we have decided to focus on a subset of particular instances. The instances R101, R201,
C106, and RC108 represent typical situations that can be encountered when dealing with multi-
objective combinatorial optimization. An approximation of their associated objective space is pro-
vided in Figures 4.3 to 4.6. The objective space of R101 contains many non-dominated solutions
(more than 1000), in R201 the objective space contains few non-dominated solutions (less than
250), the C106 contains only one non-dominated solution (minimizing both the waiting time and
the transportation cost), and the RC108 can be considered as a single-objective instance since all
solutions found in the objective space have the same value (0) for the total waiting time.

Figure 4.7 shows the average similarity between solutions for the four instances studied. Detailed
values are available in Appendix A. The remarks made above still hold. More precisely, for R101,
the maximum similarity is about 55% in the region “r0” with close solutions, and the similarity
decreases with the size of the neighborhood and also with further regions, indicating that low-
quality solutions share fewer structures in common. It is the contrary with R201, where high-
quality solutions share around 30% of arcs, and low-quality solutions share almost 70% of arcs.
Such information is useful to guide the algorithm towards more promising regions. In particular,
the results obtained for R201 show that we should avoid solutions that share a lot of arcs, and
consequently, classical neighborhoods should be discarded in favor of destroy and repair operators.
In addition, it provides an example where learning from random solutions does not help the search
process, and in this situation, it is more interesting to wait sometime until solutions with better
quality are found. Their respective objective space may also explain the difference in the evolution of
the similarity between R101 and R201. Indeed, R101 contains much more non-dominated solutions
than R201 and the region of the objective space containing low-quality solutions is more sparse in
R101 than R201. Concerning instance C106, it looks like an intermediate situation between R101
and R201. In this case, the average similarity remains almost stable through the different regions
of the objective space but decreases with the number of closest solutions considered. Finally, with
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Figure 4.2: Boxplots representing the average similarity between a solution and its neighborhood
for different neighborhood sizes (represented by the radius variable), and for different regions of the
objective space. Each row represents a different category of instance. Each column represents a
different region of the objective space.
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instance RC108 we observe a high similarity between high-quality solutions and a low similarity
between low-quality solutions. Moreover, this time the similarity highly drops between solutions of
the region “r0” and solutions of the region “r1”. As a consequence, in a single-objective context,
we find similar conclusions as those highlighted by Arnold et al. [2021], when the arcs in common
for solutions with different quality levels are studied.

Figure 4.3: Approximation of the objective space
of R101.

Figure 4.4: Approximation of the objective space
of R201.

To conclude this section, our study has highlighted the presence of common structures between
close solutions in the objective space, making relevant the notion of knowledge groups introduced
in the following section. Moreover, even if the average similarity found in some instances is not
very high, we recall that we considered only a subset of 2500 solutions in the objective space, over
10 different runs. Despite the size of the objective space, the variation over the different runs is not
significant, meaning that our observations are not highly impacted by the sample considered, and
thus that most solutions of the objective space share these properties. In practice, the similarity
between solutions should be higher due to the density of the objective space. Moreover, this study
encourages us to learn from structures of solutions in a multi-objective context.

4.3 Knowledge Groups

According to the results presented in the former section, we consider that the following assumption
is valid: close solutions in the objective space share structural similarities. That is why, gathering
the knowledge from neighboring solutions in the objective space is relevant. Hence, we introduce the
notion of knowledge groups, which is the base component for learning from structures of solutions in
a multi-objective context. Indeed, we recall that due to the optimization of conflicting objectives,
the structure of a solution that is good for one objective, may not be relevant for another objective.
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Figure 4.5: Approximation of the objective space
of C106.

Figure 4.6: Approximation of the objective space
of RC108.

For example, considering instance R201 from Solomon’s benchmark, Figure 4.8 (resp. Figure 4.9)
illustrates a solution obtained when minimizing the total transportation cost (resp. the total waiting
time). These figures highlight the structural differences between two solutions optimizing conflicting
objectives.

The remainder of this section is organized as follows. In Section 4.3.1 the concept of knowledge
groups is introduced for MOEA/D, and the integration of the knowledge discovery mechanism
is presented in Section 4.3.2. Then, the proposed algorithm is evaluated following the protocol
described in Section 4.3.3. We show and discuss the results obtained in Section 4.3.5.

4.3.1 Concept

Since MOEA/D is itself based on mechanisms that decompose the objective space, it was quite
natural to create knowledge groups that depend on the decomposition performed during MOEA/D.
The interest in using a knowledge group is to gather in the same object the most frequent structures
found when exploring a specific region of the objective space. A single knowledge group plays the
same role as the structure defined with PILS to track the frequent patterns found (see Section 2.8).

Let us consider M subproblems that would be defined at the beginning of MOEA/D. In the-
ory, each subproblem focuses on a specific region of the objective space, with minor overlapping.
Moreover, we recall that Nm

i denotes the neighborhood of the subproblem i. Then, we decide
to associate with the i-th subproblem a knowledge group Gi, that gathers the structures of the
solutions found when solving the subproblem i. Since the subproblem i may receive solutions from
subproblems in Nm

i , we decided to add also in Gi the solutions found when optimizing one neighbor
problem of the i-th subproblem. Note that with this construction, there are as many groups as
subproblems. Figure 4.10 shows an example of a knowledge group associated with its subproblem.
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Figure 4.7: Boxplots representing the average similarity between a solution and its neighborhood for
different neighborhood sizes, and for different regions of the objective space. Each row represents
a different instance. Each column represents a different region of the objective space.

In this situation, the neighborhood of a subproblem is limited to m = 3. Concerning the update
of the groups, G4 is updated with patterns from all solutions found when optimizing a subproblem
associated with w3, w4, and w5. Inversely, any solution found when optimizing the subproblem
associated with w4 contributes to knowledge groups G3, G4, and G5 as illustrated by Figure 4.11.
Indeed, the subproblem associated with w4 belongs to the neighborhood of subproblems associated
with w3, w4, and w5.

The knowledge extracted from solutions is the same as described in Section 2.8. We recall that a
parameter sp controls the maximum size of patterns extracted from a solution, and when a pattern
is added to a knowledge group, its frequency is incremented by one.

The injection remains mainly similar to the one presented in Section 2.8, the major modification
concerns the choice of the patterns injected. Suppose subproblem i is being solved and the current
solution x undergoes the injection procedure. Since all knowledge groups contain patterns that
can be injected in x, it is possible to choose the Ni patterns to inject from different groups. In
fact, it does not seem relevant to consider a subset of patterns from one group, then continue with
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Figure 4.8: Example of solution minimizing the
total transportation cost (instance R201).
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Figure 4.9: Example of solution minimizing the
total waiting time (instance R201).

patterns from another group, and so forth. Indeed, each knowledge group is specialized in a specific
region of the objective space, and by picking patterns from different groups we may unintentionally
introduce conflicting patterns, resulting in poor results during the injection. Consequently, we
decided to consider always the patterns to inject from the same group, however, the question of
selecting which group remains. We investigate two different strategies. The first strategy selects
the knowledge group associated with the current subproblem, i.e. Gi, to favor intensification by
exploring the same region of the objective space. This strategy is denoted siI . The second strategy
performs a selection uniformly at random among all the knowledge groups to favor structures from
another region of the objective space, resulting in more diversified solutions explored. This strategy
is denoted sdI . Once the group is selected, the size of the patterns injected is chosen uniformly at
random, and Ni patterns of that size are selected among the Nf most frequent patterns of the same
size in the knowledge group. We decide not to keep only the most frequent patterns, and not to
bias the selection towards always the same structures. The injection of a pattern into a solution
remains unchanged compared to the procedure in PILS. Figure 4.12 shows how the extraction and
injection steps interact together with the knowledge groups.

4.3.2 Integration into MOEA/D

The reference MOEA/D considered is the one presented through Algorithm 9. The modifications
related to the hybridization appear in red. MOEA/D is initialized, with a uniform set of weight
vectors, and a population of randomly generated solutions (Initialization). It was important
not to bias the knowledge discovery mechanism developed by considering additional information to
solve routing problems in the different operators used (selection, crossover, mutation). In particu-
lar, the Crossover is the PMX (see Section 1.2.2) applied with probability px and it is a generic
operator that does not exploit knowledge in routing problems. The selection provides two neigh-
boring subproblems, giving two solutions for the crossover. Then, the best solution of the offspring
undergoes a permutation swap mutation, with probability pm. Only one solution of the offspring is
considered to keep the size of the new population constant. The population is updated as usual, by
replacing at most mr solutions in the subproblem neighborhood. The external archive maintaining
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Figure 4.10: Example of knowledge group (G4)
associated with its subproblem. The neighboring
subproblems (in orange) contribute to G4.
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Figure 4.11: Update of knowledge groups with
patterns extracted from the final solution ob-
tained, when optimizing subproblem with w4.

the best non-dominated solutions found during the execution is unbounded.

Our hybridized MOEA/D with the concept of knowledge groups is presented in Algorithm 10.
Figure 4.13 shows the main components of the algorithm. The red blocs contain mechanisms
related to knowledge discovery. During the initialization step, each group is initialized as empty.
The injection is applied with probability pinj on the solution obtained after the crossover. The
extraction step occurs after the mutation with probability pext. Finally, the groups are updated
following the strategy described in the former section. The two possible injection strategies lead
to two hybridization models. The one using the intensification strategy siI (resp. diversification
strategy sdI) called KD1iMOEA/D (resp. KD1dMOEA/D).

4.3.3 Experimental Protocol

We compare the three algorithms presented in Section 4.3.2, a reference MOEA/D indicated with
RMOEA/D and two variants hybridized with the knowledge groups KD1iMOEA/D and KD1dMOEA/D.

In order to be fair, we tune the three algorithms with an automatic configurator tool, that is
irace [López-Ibáñez et al., 2016], to evaluate and compare the performances of their best version.
irace, Iterated Racing for Automatic Configuration, uses racing competitions to discover the best
configurations (i.e., values of parameters) to efficiently use an algorithm on a specific problem. A
user can define all the parameters wanted for tuning. Each parameter tuned must belong to one
of the following categories: integer, real, ordinal, and categorical. In practice, an ordinal parameter
often takes a finite number of values, and it is meaningful to consider a relation order between
the different values. A categorical parameter generally refers to the choice of an operator or the
strategy used in an operator (e.g., the exploration strategy in a local search). The values of a
categorical parameter are not ordered. Each parameter is associated with a domain, defining the
possible values that can be taken by the parameter. The first iteration of irace generates a set
of random configurations (ensuring diversity in the configuration space) when not enough pre-
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Figure 4.12: Patterns are extracted from solutions, and added to the corresponding knowledge
groups. The injection of a frequent pattern of size 3 into a solution is presented.
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Figure 4.13: Overview of the main components of Algorithm 10. The red blocs contain elements
related to the knowledge discovery mechanism.
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Algorithm 10: First proposition of hybridization between MOEA/D and knowledge dis-
covery (KD1MOEA/D).

Input: M weight vectors w1, . . . , wM . m, the size of the neighborhood of a problem. px
(resp. pm) the probability of applying Crossover (resp. Mutation). sI denotes the
strategy followed to select patterns for the injection.

Output: The external archive A∗

/* Initialization */

1 (A∗, P ′)← (∅,∅)

2 P = {x1, . . . , xM} ← Initialization()
3 G1, . . . ,GM ← ∅, . . . ,∅
4 for i ∈ {1, . . . ,M} do
5 Nm

i ← indexes of the m closest weight vectors to wi

/* Core of the algorithm */

6 while stopping criterion not satisfied do
7 for i ∈ {1, . . . ,M} do
8 (i1, i2)← Select(Nm

i )
9 x← Crossover(xi1 , xi2)

10 x← Injection (G, sI , x)
11 x← Mutation(x)
12 K ← Extraction(x)
13 UpdateGroup(i,K)
14 P ′ ← P ′ ∪ {x}
15 UpdatePopulation(P,Nm

i , x)

16 UpdateArchive(A∗, P ′)
17 P ′ ← ∅
18 return A∗

defined configurations are provided. The configurations are evaluated by executing the algorithm
on randomly selected instances, provided by the user as a training set. Once enough executions
are performed, the worst-performing configurations are eliminated by using statistical tests (the
Friedman test by default). A new iteration is then started, where new configurations are generated.
More precisely, the best-surviving configurations contribute to the refinement of the distribution
model of each parameter, allowing the generation of new interesting configurations to evaluate.
Figure 4.14 shows an overview of the tuning of an algorithm by using the irace tool.

The algorithms are tuned with the set of instances we generated (see Section 2.3.4). We recall
that the hybrid-MOEA/Ds contain 9 parameters: 4 are related to MOEA/D (the number of sub-
problems M , the size of the neighborhood m of each subproblem, the probabilities of crossover px
and mutation pm), and 5 are related to the learning mechanism (the maximum size of the patterns
extracted sp, the number of patterns injected Ni chosen among the Nf most frequent patterns, and
the probabilities of extraction pext and injection pinj). For the tuning phase, we need to define
a range of values for each parameter. All probabilities belong to [0, 1]. Note that, if the tuning
selects a probability of 0 the associated mechanism is disabled. For the other parameters, we de-
fined sets of integers, where N is the number of customers: M ∈ {1, . . . , 2×N}, m ∈ {1, . . . ,M},
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Figure 4.14: Synthesis of irace.

sp ∈ {2, . . . , 10}, Nf ∈ {1, . . . , 2×N}, Ni ∈ {1, . . . , Nf}.
We allocated a budget of 2000 configurations (a configuration associates each parameter with a

value) to irace. The configurations are tested over 8 iterations. The best configurations returned
by irace are presented and discussed in Section 4.3.4.

To evaluate the performances of the three algorithms, we use Solomon’s instances. Note that
instances of size 25 are discarded due to their small size. All the algorithms share the same maximum
running time allocated, which is set to 6 × N seconds, allowing hypervolume convergence for all.
The algorithms are executed 30 times on each instance. The k-th run of an instance is executed
with the seed 10×(k−1), so that, all algorithms are compared with the same seeds. To compute the
hypervolume, objectives are normalized by using the best and worst objectives found in the final
Pareto fronts returned by all the algorithms. We run the experiments on two computers “Intel(R)
Xeon(R) CPU E5-2687W v4 @ 3.00GHz”, with 24 cores each, in parallel by using slurm. The
implementation of the algorithms has been realized with the jMetalPy framework [Benitez-Hidalgo
et al., 2019]. Once all the results are obtained, the objective vectors of the solutions of the Pareto
fronts are normalized according to the best and worst objectives obtained (among all runs and
algorithms). The average hypervolume obtained is statistically compared for each instance. A
Friedman test is performed to see if all the algorithms are statistically equivalent, when it is not the
case, a pairwise Wilcoxon test with Bonferroni correction is performed. The results are reported in
Section 4.3.5.

4.3.4 Tuning Results

The best configurations obtained for each algorithm and sizes of instances are reported in Table 4.1.
First, more subproblems are considered in KD1iMOEA/D and KD1dMOEA/D than in RMOEA/D.

It means that both hybrid MOEA/Ds converge faster towards good solutions and thus require
more subproblems to diversify the Pareto front. In all algorithms the crossover occurs with a very
low probability, thus the mechanism is almost disabled. Then, concerning the other parameters
related to the reference MOEA/D, the three algorithms use similar values. It is worth noting
that, the size of the neighborhood is small even with the hybrid MOEA/Ds. It means that the
knowledge groups are efficient since a larger neighborhood implies less diverse patterns per group.
Indeed, we recall that in a knowledge group Gi, the patterns obtained from solutions generated
when optimizing neighbor subproblems of subproblem i are also added. Concerning the parameters
dedicated to the learning phase, the values are quite similar between the two hybrid MOEA/Ds.
Only the probability of extraction is significantly lower for KD1dMOEA/D on instances of size 100,
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Table 4.1: The configurations returned by irace for each variant and for both sizes of instance.

Parameters RMOEA/D KD1iMOEA/D KD1dMOEA/D

50 100 50 100 50 100

M 9 16 27 113 31 132
m 8 11 8 13 7 8
px 0.11 0.04 0.18 0.05 0.18 0.14
pm 0.58 0.71 0.65 0.46 0.70 0.27

sp - - 3 6 4 4
pext - - 0.89 0.73 0.82 0.24
Nf - - 73 187 72 190
Ni - - 8 65 12 51
pinj - - 0.50 0.91 0.76 0.24

probably because the patterns injected can come from any knowledge group, and consequently, it is
not necessary to update the groups with new patterns very often. One can also remark that more
patterns are injected in instances of size 100 than in instances of size 50. It seems, coherent since
larger instances are much more difficult to solve than smaller instances.

4.3.5 Experimental Results

The mean hypervolume obtained by each variant on each category of instance is reported in Ta-
ble 4.2. The detailed hypervolumes for each instance are given in Appendix B. For each category
of instance, the values in bold are statistically better. If two values are in bold for the same cate-
gory, then the average performance values are statistically identical. The biggest improvements are
obtained on clustered instances. The hybrid variants KD1iMOEA/D and KD1dMOEA/D always return
better hypervolumes than RMOEA/D, showing the effectiveness of the knowledge discovery mech-
anism. Moreover, both hybrid variants reach similar performances on most instances, indicating
that there is not a big interest in considering all groups during the injection step.

The results obtained highlight that the hybridizations between the knowledge discovery mech-
anism proposed and MOEA/D are efficient in solving a bi-objective VRPTW. The knowledge
discovery mechanism is mainly based on the creation of knowledge groups structuring the objec-
tive space. Each knowledge group gathers the knowledge of quality-close solutions. With this first
approach, we proved that learning from solutions in multi-objective combinatorial optimization is
successful and that it is worth spending time learning, instead of optimizing only.

Furthermore, the hybridization proposed may be improved. Indeed, many knowledge groups
are created for big instances, which may lead to the learning of redundant knowledge in close
groups. To remedy this issue, we present in Chapter 5 an improved strategy to control the number
of knowledge groups created independently from the number of subproblems. Another possible
improvement concerns the replacement of the mutation operator by a local search, to learn from
local optima, which would provide more interesting information. This aspect is investigated in the
following sections.
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Table 4.2: Average hypervolume obtained on all categories of instances. Bold results are statistically
better.

Category Size RMOEA/D KD1iMOEA/D KD1dMOEA/D

R1 50 0.755 0.968 0.974
R2 50 0.727 0.961 0.973
R1 100 0.685 0.982 0.987
R2 100 0.574 0.968 0.983

RC1 50 0.695 0.968 0.980
RC2 50 0.675 0.961 0.969
RC1 100 0.696 0.987 0.989
RC2 100 0.567 0.974 0.985

C1 50 0.673 0.989 0.995
C2 50 0.553 0.990 0.995
C1 100 0.586 0.997 0.998
C2 100 0.476 0.998 0.999

4.4 Local Search for the bVRPTW

In the former section, we hybridized a version of MOEA/D without a dedicated optimization pro-
cedure. This led to poor results for the reference algorithm. In order to be more competitive on
the problems solved, we decided to replace the mutation by a local search and we proposed neigh-
borhood strategies that are better adapted to the bVRPTW. Indeed, the mutation is commonly
replaced by a local search [Bossek et al., 2018, Knowles, 2002, Land, 1998, Ishibuchi and Murata,
1998], to intensify the search in the regions identified with the crossover. First, we present a new
strategy to explore the neighborhood of bVRPTW solutions inspired by the state-of-the-art of per-
mutation flowshop in Section 4.4.1. Second, we propose in Section 4.4.2 a pruning technique that
considers not only the distance between the clients but also their respective time windows. We
integrated the resulting local search in the hybrid variant KD1dMOEA/D, which has been presented
in the former section. We compared the new algorithm obtained with different algorithms of the
literature to solve the original VRPTW (i.e., which minimizes the number of vehicles instead of
the total waiting time). Our protocol is described in Section 4.4.4. The results are presented and
discussed in Section 4.4.5.

4.4.1 Exploration Strategy

We refer to Section 1.2.1 for the concept of neighborhood exploration and for the presentation of the
best and first strategies. In routing problems, the most commonly used neighborhood exploration
strategy is the classical best strategy [Subramanian et al., 2013, Schneider et al., 2017, Accorsi and
Vigo, 2021], where the best neighboring solution found by the application of one operator on the
current solution is selected. The operators considered for the problem are the Relocate, Swap,
and 2-opt∗ and provide a number of possible neighbors which quadratically increases with the size
of the problem (see Section 2.6 for more details). When considering large problems, it may be
necessary to speed up each neighborhood exploration. However, the first strategy does not consider
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the best move for a considered customer, but only the first neighbor found with a better fitness
than the current solution. A compromise between these two classical strategies called first-best
has been proposed in the literature for scheduling problems, particularly for permutation flow-shop
by Ruiz and Stützle [2007]. Algorithm 11 gives the pseudo-code of the first-best procedure. The
procedure requires a neighborhood operator (e.g., Swap, Relocate, or 2-opt∗), and the solution x
which undergoes the local search. For the given operator each customer (l.5) is tentatively moved to
its best location until an improving move is found (l.8). When it is the case, the customer is moved,
and a new iteration starts. The authorized moves are generated by the function generate moves

(l.6).

Algorithm 11: The first-best procedure.

Input: A solution x and a neighborhood operator N
Output: A better solution (if any)

1 customers← shuffle([1 . . . N ])
2 for customer ∈ customers do
3 moves← generate moves(customer, N )
4 x′ ← best solution obtained by applying a move from moves
5 if f(x′) < f(x) then
6 x← x′

7 break

8 return x

4.4.2 Granular Search

In routing problems, several moves may have a small chance to improve the current solution and
thus can be discarded from the exploration without high deterioration to the quality of the solution.
Most of the time these moves consider customers that are far, i.e. distant from each other and thus
have a small probability of being part of the same route. Having a method that restricts the
neighborhood to relevant moves is interesting to spare time and resources during the local search.
However, such a method requires a way to quantify the closeness between customers. In Toth and
Vigo [2003], the closeness between two customers is evaluated according to the distance between
them. If it is enough for single-objective problems, where the total transportation cost is minimized,
it might not be adapted for multi-objective problems. In particular, for our bi-objective VRPTW,
close customers can incur a long waiting time if they are visited on the same route.

For our study, we compare two different metrics. The first metric called d1, is the classical
metric used in single-objective routing problems: the distance between two customers is simply
the Euclidean distance between them. The second metric, d2, is an aggregation of two quantities,
each one linked with one of the objectives optimized. In addition, the weights used to aggregate the
quantities depend on the weight vectors used to define the subproblems in MOEA/D. Consequently,
the metric associated with a subproblem defined with a weight vector w = (w1, w2), is defined as:
dw2 (i, j) = w1 · d∗E(i, j) + w2 ·WT ∗(i, j), where d∗E (resp. WT ∗) is the normalized value (between 0
and 1) of dE (resp. WT ). Since each value is only instance-dependent, it is possible to compute the
maximum and minimum of each value in a pre-processing step at the beginning of the execution.
We recall that dE is the Euclidean distance. WT (i, j) represents the waiting time incurred by going
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to j from i. If [ai, bj ] (resp. [aj , bj ]) is the time window of customer i (resp. j), tsi the service time
of customer i and ti,j the traveling time from i to j, then WT is expressed as follows:

WT (i, j) = max(0, aj − (ai + tsi + ti,j)). (4.3)

Note that a similar formula was defined by Vidal et al. [2013] to focus on a subset of promising
arcs. In particular, an arc is considered promising, when it induces a low cost and a low waiting
time.

Once the metric between customers is selected, a natural way to prune the neighborhood asso-
ciated with a customer (i.e., the moves involving that particular customer) is to consider the moves
including only the δ nearest customers according to the metric defined. The parameter δ controls
the size of the neighborhood explored.

4.4.3 Local Search and Algorithms Considered

The local search considered is a Randomized Variable Neighborhood Descent [Subramanian et al.,
2013], where the order of the neighborhood operators is kept during descent but shuffled each time
the local search is called. During the local search, we consider two possible exploration strategies,
the classical best, and our proposition first-best. To reduce the size of the neighborhood, we use a
granularity parameter δ, where the proximity between customers is defined with metric d1 (which
is the same for all subproblems) or metric d2 (which depends on the weight vectors associated with
the subproblems).

This local search replaces the Mutation step of Algorithm 10. It leads to four variations of the
algorithm KD1dMOEA/D: KD1d,b,d1

MOEA/D, KD1d,b,d2

MOEA/D, KD1d,fb,d1

MOEA/D, KD1d,fb,d2

MOEA/D, where b (resp. fb)

denotes the best (resp. first-best) exploration strategy and d1 (resp. d2) denotes the metric used to
measure the distance between customers.

4.4.4 Experimental Protocol

We start by tuning the four algorithms KD1d,b,d1

MOEA/D, KD1d,b,d2

MOEA/D, KD1d,fb,d1

MOEA/D, KD1d,fb,d2

MOEA/D.

The protocol for the tuning is the same as the one described in Section 4.3.3. Only the parameter
related to the granularity δ is added. We set δ ∈ [0, N ]. The best configurations obtained are
displayed in Table 4.3. Compared to Table 4.1, the number of subproblems generated is lower for
instances of size 100. The probability of crossover is higher (now that the mutation is replaced, the
crossover is more important to generate new different solutions), and the probability of mutation
is lower (indeed, the local search requires more computational resources than a random mutation).

The granularity is sometimes high (value of 75 for KD1d,fb,d1

MOEA/D), but generally, it is set to values

that are coherent with the literature. Concerning the learning mechanism, the extraction and
injection steps are performed more frequently, indicating that using a local search procedure is
more beneficial for the mechanism since better quality solutions are generated.

To compare the four variants, we use each one with its best configuration returned by irace.
All the variants use the same termination criteria, being the maximum running time allowed. It
is fixed to N × 6 seconds, where N is the size of the instance. Each variant is executed 30 times
on each instance of Solomon’s benchmark (56 instances of size 50, and 56 instances of size 100).
For each algorithm, the k-th run of an instance is executed with the same seed being 10× (k − 1).
To compare the results obtained, we use the hypervolume metric. Note that, for the experiments
we use the same values to normalize the objectives of the solutions returned by all variants. These
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Table 4.3: The configurations returned by irace for each variant and for both sizes of instance.

KD1d,b,d1

MOEA/D KD1d,fb,d1

MOEA/D KD1d,b,d2

MOEA/D KD1d,fb,d2

MOEA/D

Parameters 50 100 50 100 50 100 50 100

M 13 68 31 50 42 15 29 15
m 4 26 8 15 6 4 11 4
px 0.94 0.30 0.88 0.86 0.93 0.35 0.94 0.67
δ 21 51 25 75 16 19 36 31
pm 0.06 0.05 0.42 0.55 0.05 0.06 0.11 0.21

sp 2 3 5 5 2 4 2 5
pext 0.50 0.96 0.48 0.60 0.55 0.90 0.86 0.83
Nf 73 165 74 135 52 175 66 115
Ni 33 80 17 74 10 63 18 31
pinj 0.70 0.88 0.83 0.93 0.89 0.59 0.86 0.70

values are simply the best and worst values for each objective, obtained among all the (current
and past) executions for each instance. Since the extreme values used for normalization may have
changed between the former section and the current one, the hypervolume can be lower than those
obtained in our former study, even if the front returned is better.

To complete the results obtained, the gap between the best-known and the best solution found
by each algorithm is given, as well as the average gap over the 30 runs. The optimal solutions are
available on CVRPlib.

Finally, we compare our best variant, considering the results obtained, to state-of-the-art al-
gorithms for the VRPTW: the TStw from Schneider et al. [2017] and NBD from Nagata et al.
[2010a], but also to competitive multi-objective algorithms to solve the VRPTW: the M-MOEAD
from Qi et al. [2015] and the MODLEM from Moradi [2020].

The experiments are performed on two computers “Intel(R) Xeon(R) CPU E5-2687W v4 @
3.00GHz”, with 24 cores each, in parallel (with slurm). The variants have been implemented using
the jMetalPy framework [Benitez-Hidalgo et al., 2019].

4.4.5 Experimental Results

Table 4.4 regroups the average hypervolume obtained on all classes of instances for all the variants.
Detailed results per instance are given in Appendix C. One can see that two variants stand out from
the others: KD1d,fb,d1

MOEA/D and KD1d,fb,d2

MOEA/D. Meaning that the exploration strategy has a positive

impact on the performance of the algorithm, and thus it is better than the strategy best. However,
the variant KD1d,fb,d1

MOEA/D returns slightly higher hypervolumes than KD1d,fb,d2

MOEA/D in most instances,

and clearly outperforms KD1d,fb,d2

MOEA/D in few instances (e.g. RC1 of size 50 and C1 of size 100).

Now we analyze the gaps between the best solutions returned for the total cost objective and the
best-knowns. The average gaps obtained are reported in Table 4.5. Detailed results are provided
in Appendix C. In these tables, for each variant, the first column is the gap between the best-
known and the best solution returned, while the second column is the average gap considering the
solutions returned on all 30 runs. The best solution is achieved in almost all instances of category
C, but the gap to the optimal remains important in other categories of instance. In particular,

http://vrp.galgos.inf.puc-rio.br/index.php/en/
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Table 4.4: Average hypervolume obtained with the four variants on all classes of instance of both
sizes.

Class Size KD1d,b,d1

MOEA/D KD1d,fb,d1

MOEA/D KD1d,b,d2

MOEA/D KD1d,fb,d2

MOEA/D

R1 50 0.716 0.768 0.729 0.783
R2 50 0.666 0.747 0.690 0.743
R1 100 0.773 0.842 0.720 0.833
R2 100 0.626 0.760 0.615 0.747

RC1 50 0.604 0.760 0.611 0.689
RC2 50 0.637 0.682 0.647 0.692
RC1 100 0.682 0.758 0.631 0.739
RC2 100 0.658 0.766 0.662 0.769

C1 50 0.519 0.574 0.523 0.550
C2 50 0.404 0.408 0.414 0.403
C1 100 0.881 0.945 0.846 0.882
C2 100 0.899 0.967 0.858 0.954

it indicates that the algorithm may be further improved. In addition, it is harder to reach the
optimal transportation cost, since we optimize a second objective, and the time allocated may not
be enough to reach that optimal. On the other hand, the proposed algorithms remain quite simple
with few operators, and they are able to reach good results overall. One can notice that the variants
KD1d,fb,d1

MOEA/D and KD1d,fb,d2

MOEA/D still outperform the two other variants. However, this is the variant

KD1d,fb,d1

MOEA/D which returns the best results in most instances.

Considering the results obtained above, we decided to compare the variant KD1d,fb,d2

MOEA/D to other

state-of-the-art algorithms. Table 4.6 compares the average value of the best transportation cost
obtained by different algorithms on each class of instance of size 100. We recall that, there are two
single-objective algorithms: TStw [Schneider et al., 2017] and NBD [Nagata et al., 2010a], and two
multi-objective algorithms: M-MOEA/D [Qi et al., 2015] and MODLEM [Moradi, 2020]. Note that
MODLEM integrates a learning mechanism, which is a learnable evolution model based on decision
trees. Moreover, the algorithms that solve the VRPTW, first minimize the number of vehicles and
then the traveled distance. To be fair, we add in brackets the average number of vehicles contained
in the solutions returned by our algorithm. Since our algorithm did not focus on the number of
vehicles, it seems normal that the average number of vehicles used in the solutions returned is higher
than the one found by other algorithms. However, our algorithm is able to reach competitive results
on C instances, and good results on the other instances.

Through our experiments, we showed that the first-best exploration strategy performs better
than the best strategy in MOEA/D to solve many instances of the bVRPTW. Moreover, the gran-
ular search based on the proposed metric taking into account the waiting times is able to reach
similar results to the one based on the Euclidean distance, but with smaller neighborhoods. Thus
reducing the running time of the associated local search. Finally, the performance of our algorithm
compared to state-of-the-art algorithms for the VRPTW shows the interest of our new neighbor-
hood strategies. In the next section, we investigate more precisely the impact of the solutions
returned by the local search on the learning mechanism.
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Table 4.5: Average gaps (%) obtained for the total transportation cost objective, relatively to the
best-knowns for each category of instance.

Instance Size KD1d,b,d1

MOEA/D KD1d,fb,d1

MOEA/D KD1d,b,d2

MOEA/D KD1d,fb,d2

MOEA/D

R1 50 1.9 1.4 1.8 1.3
R2 50 3.3 2.7 3.1 2.6
R1 100 5.5 4.4 6.1 4.4
R2 100 8.8 5.7 8.2 5.7

RC1 50 4.4 2.6 4.4 3.4
RC2 50 2.3 1.9 2.0 1.4
RC1 100 8.1 7.0 8.8 7.3
RC2 100 8.7 5.0 7.6 4.6

C1 50 1.3 0.4 1.1 0.8
C2 50 0.6 0.6 0.6 0.5
C1 100 3.4 2.2 5.1 3.8
C2 100 1.0 0.4 1.4 0.5

Table 4.6: Comparison of the average of the best total transportation cost obtained on instances of
size 100 between four state-of-the-art algorithms and our algorithm KD1d,fb,d2

MOEA/D. The correspond-

ing average number of vehicles used in the solutions is given in brackets.

Class NBD TStw M-MOEA/D MODLEM KD1d,fb,d2

MOEA/D

R1 1210.34 (11.9) 1220.83 (11.9) 1216.73 (12.4) 1210.40 (11.9) 1196.22 (13.8)
R2 951.03 (2.7) 959.86 (2.7) 924.18 (3.1) 916.95 (4.6) 892.85 (5.0)
RC1 1384.16 (11.5) 1392.54 (11.5) 1390.35 (11.9) 1384.17 (11.5) 1387.11 (13.8)
RC2 1119.24 (3.3) 1140.13 (3.3) 1119.93 (3.4) 1074.67 (4.0) 1015.76 (5.8)
C1 828.38 (10.0) 828.38 (10.0) 828.38 (10.0) 828.38 (10.0) 827.02 (10.0)
C2 589.86 (3.0) 589.86 (3.0) 589.86 (3.0) 589.86 (3.0) 587.38 (3.0)
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4.5 Impact of Solutions for Learning

In single-objective problems, the learning tasks are often performed on local optima [Khalil et al.,
2017, Arnold and Sörensen, 2019, Arnold et al., 2021], which tend to contain more relevant structural
information. In particular, it highlights the importance of the structure of the solutions themselves
during the learning. In the following, we investigate the benefit of extracting knowledge from local
optima in a multi-objective context and more precisely to solve a bVRPTW. To that aim, we
considered the MOEA/D hybridized with the knowledge groups, described in Algorithm 10. Note
that, in the remainder of this section, the mutation is replaced by the local search described in the
former section, with the first-best exploration strategy and the d1 metric to measure the proximity
between customers. In Section 4.5.1, we present four related variants, each one with a different
strategy for extraction (i.e., learning from all solutions or local optima only) and injection (i.e., the
siI and sdI strategies already described in Section 4.3.1). The experimental protocol is presented in
Section 4.5.2 and the results in Section 4.5.3.

4.5.1 Extraction Strategies and Compared Algorithms

The reference MOEA/D considered is the one described in Algorithm 9, where the mutation is
replaced by the local search, with the first-best exploration strategy and the metric d1, being the
Euclidean distance, to measure the proximity between customers. This algorithm is called Rfb,d1

MOEA/D

in the following.

From now we consider the hybridized version of MOEA/D described in Algorithm 10. We
recall that the injection step is applied with probability pinj and can follow two different strategies
siI and sdI . The first one is an intensification strategy, where the search is focused on a specific
part of the exploration space. In this case, only the knowledge group associated with the current
subproblem can provide patterns for the injection. The other strategy concerns diversification,
where the knowledge of all the groups can be used, to favor a larger exploration of the space. In
this case, the patterns to inject come from a knowledge group randomly chosen among all the
existing groups.

The extraction step is performed after the local search, with a probability pext. We now consider
two strategies to investigate the benefit of extracting knowledge from local optima. The first strat-
egy, called sallE , allows the extraction on the current solution at the moment where the extraction
step is applied (i.e., it is the same as before). With this strategy, any solution found can undergo
the extraction step. The second strategy, called sloE , allows the extraction on local optima solutions
only. More precisely, suppose that the current solution before the local search step is x. If x under-
goes the local search, and an improving solution x′ is returned after the local search, then x′ may
undergo the extraction step (with the associated probability). If the local search is not applied, x
can not undergo the extraction step. In other words, the extraction can be applied only if the local
search has been applied just before.

Finally, our design leads to the design of the four following variants: KD1lo,i,fb,d1

MOEA/D, KD1lo,d,fb,d1

MOEA/D,

KD1all,i,fb,d1

MOEA/D , and KD1all,d,fb,d1

MOEA/D . The term lo (resp. all) indicates that the extraction is performed

on local optima only (resp. on all solutions), and i (resp. d) indicates that the strategy siI (resp.
sdI) is followed by the injection.
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Table 4.7: The configurations returned by irace for each variant and for both sizes of instance.

Parameters Rfb,d1
MOEA/D KD1all,i,fb,d1MOEA/D KD1all,d,fb,d1MOEA/D KD1lo,i,fb,d1MOEA/D KD1lo,d,fb,d1MOEA/D

50 100 50 100 50 100 50 100 50 100

M 94 68 50 52 61 60 23 45 31 50
m 73 55 15 6 15 5 7 20 8 15
px 0.94 0.99 0.85 0.61 0.76 0.25 0.97 0.78 0.88 0.86
δ 16 67 24 66 28 60 21 73 25 75
pm 0.71 0.86 0.49 0.48 0.54 0.30 0.49 0.51 0.42 0.55

sp - - 4 6 4 5 5 6 5 5
pext - - 0.47 0.68 0.46 0.80 0.45 0.68 0.48 0.60
Nf - - 132 180 124 150 86 171 74 135
Ni - - 48 70 32 60 25 44 17 34
pinj - - 0.85 0.91 0.81 0.97 0.86 0.97 0.83 0.93

4.5.2 Experimental Protocol

As usual, the five algorithms are tuned following the same protocol as the one presented in Sec-
tion 4.4.4. The configurations obtained are available in Table 4.7. Compared to Table 4.1, the
algorithm Rfb,d1

MOEA/D uses more subproblems than RMOEA/D showing that the local search is bene-

ficial to solve more subproblems. The probability of crossover is also increased since it is the only
operator that brings diversity to the solutions explored. Concerning the hybridized variants, we find
configurations that are similar to those found in previous sections (see Table 4.1 and Table 4.3).

Moreover, we can remark that in variants learning on local optima only (i.e., KD1lo,i,fb,d1

MOEA/D and

KD1lo,d,fb,d1

MOEA/D), the number of patterns injected Ni is lower than in variants learning on all solu-

tions (i.e., KD1all,i,fb,d1

MOEA/D and KD1all,d,fb,d1

MOEA/D ). Indeed, learning from local optima may provide better

quality patterns thus it is not necessary to try injecting as many patterns to achieve good results.

In the following, three batches of experiments are considered. The first batch evaluates the
impact of the knowledge discovery mechanism, according to the different strategies followed by the
injection and the extraction steps, by comparing the hybridized variants and the reference algorithm
with the same parameters. The second batch evaluates the performance (in terms of quality) of all
the algorithms with their best parameters. The last batch analyses the speed-up of the variants
compared with Rfb,d1

MOEA/D to reach a target hypervolume. To compute the hypervolume, objectives

are normalized by using the best and worst objectives found in the final Pareto fronts returned by
all the algorithms (from previous and current experiments).

For the first batch of experiments, we define a new configuration by considering the configu-
rations obtained for all variants with irace. We take the 5 parameters of Rfb,d1

MOEA/D and for the

parameters associated with the knowledge discovery mechanism, we compute the mean of the cor-
responding parameters of the hybridized variants, and we round the result, to conserve the same
precision. Each variant is executed 30 times on each instance of Solomon’s benchmark (56 instances
of size 50, and 56 instances of size 100). For each algorithm, the k-th run of an instance is exe-
cuted with the seed 10 × (k − 1), so that, all algorithms are compared with the same seeds. The
termination criterion is fixed to N × 6 seconds, where N is the size of the instance. The results are
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Table 4.8: Average hypervolume obtained with the algorithms when they all have the same param-
eters.

Class Size Rfb,d1

MOEA/D KD1all,i,fb,d1

MOEA/D KD1all,d,fb,d1

MOEA/D KD1lo,i,fb,d1

MOEA/D KD1lo,d,fb,d1

MOEA/D

C1 50 0.558 0.827 0.825 0.825 0.825
R1 50 0.657 0.852 0.855 0.823 0.801
RC1 50 0.574 0.802 0.804 0.808 0.803

C2 50 0.514 0.574 0.571 0.577 0.576
R2 50 0.687 0.780 0.780 0.752 0.751
RC2 50 0.618 0.715 0.717 0.718 0.718

C1 100 0.337 0.935 0.941 0.940 0.940
R1 100 0.550 0.737 0.742 0.736 0.740
RC1 100 0.374 0.699 0.698 0.693 0.698

C2 100 0.637 0.981 0.979 0.976 0.978
R2 100 0.513 0.617 0.613 0.620 0.615
RC2 100 0.556 0.676 0.685 0.681 0.681

compared using the hypervolume.
For the second batch of experiments, we proceed similarly to the first batch, except that we use

the configurations returned by irace for each variant.
Finally, for the third batch of experiments, we evaluate the speed of the hybridized variants to

reach 95% of the mean hypervolume returned by Rfb,d1

MOEA/D. The termination criterion is slightly

different from the other batches since we consider the value of the hypervolume to be reached. Ex-
cept for that change, the remaining of the experiment is similar to the previous one (i.e., considering
the number of executions and the configurations). Note that, for all the experiments, we use the
same values to normalize the objectives of all variants. These values are obtained with the first
experiment and are simply the best and worst values obtained among all the executions. It allows
an easy computation of the hypervolume during the execution of the algorithm.

The following experiments are performed on two computers “Intel(R) Xeon(R) CPU E5-2687W
v4 @ 3.00GHz”, with 24 cores each, in parallel (with slurm). The variants have been implemented
using the jMetalPy framework [Benitez-Hidalgo et al., 2019].

4.5.3 Experimental Results

For all the results presented below, supplementary tables with results per instance are provided in
Appendix D. Table 4.8 shows the average hypervolume obtained with all algorithms on the different
categories of instance. First one can see that all hypervolumes returned by the KD variants are
strictly higher than the hypervolumes returned by Rfb,d1

MOEA/D. Bold results represent significantly

better performances. The improvement (regarding Rfb,d1

MOEA/D) obtained with the KD variants on

instances of class 1 is significantly better compared to the improvement obtained on instances of
class 2. We recall that instances of class 2 contain wider time windows and thus are less constrained.

Table 4.9 shows the mean hypervolume obtained when the parameters are chosen by irace for
each variant. It leads to an overall improvement of the results of Table 4.8 (except for the algorithms
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Table 4.9: Average hypervolume obtained with the algorithms when they all use their own elite
configuration returned by irace.

Class Size Rfb,d1

MOEA/D KD1all,i,fb,d1

MOEA/D KD1all,d,fb,d1

MOEA/D KD1lo,i,fb,d1

MOEA/D KD1lo,d,fb,d1

MOEA/D

C1 50 0.558 0.839 0.839 0.829 0.830
R1 50 0.657 0.852 0.855 0.823 0.801
RC1 50 0.574 0.884 0.891 0.861 0.846

C2 50 0.514 0.590 0.592 0.565 0.556
R2 50 0.687 0.780 0.780 0.752 0.751
RC2 50 0.618 0.761 0.763 0.746 0.739

C1 100 0.337 0.919 0.941 0.939 0.969
R1 100 0.550 0.824 0.865 0.862 0.868
RC1 100 0.374 0.730 0.821 0.834 0.859

C2 100 0.637 0.828 0.934 0.972 0.984
R2 100 0.513 0.673 0.728 0.741 0.753
RC2 100 0.556 0.669 0.755 0.790 0.815

learning on local optima on some C2 and R1 instances). More importantly, we see that learning

on local optima is mainly beneficial for instances of size 100 (on average the variant KD1lo,d,fb,d1

MOEA/D

returns the best results on these instances). However, it is outperformed by the other KD variants
on instances of size 50. In instances of size 50, it seems more interesting to learn from any solutions
found. Indeed the algorithm may get stuck easily on the same local optima, since the instance is
easier to solve, which does not add useful information to the mechanism.

Table 4.10 gives the gaps with the best-known solutions for the total cost objective. The
results highlight that our KD variants return much better results than Rfb,d1

MOEA/D. However, in

some instances (e.g., RC1 of size 100), the gaps obtained are still high (> 2%), meaning that in a
multi-objective context, it is harder to find the optimal value of each objective. Moreover, larger
gaps are obtained on instances of size 100, showing scalability issues. One can also notice that the
gaps obtained are slightly lower than those obtained in Table 4.5 for the instances of size 50. On
average, KD1all,d,fb,d1

MOEA/D returns the smallest gaps on instances of size 50, while KD1lo,d,fb,d1

MOEA/D returns

the smallest gaps on instances of size 100.

Table 4.11 shows the speed-up of the KD variants to reach 95% of the mean hypervolume
returned by Rfb,d1

MOEA/D. The table shows that we reach an average speed-up of 73.5% (resp. 64.1%)

on instances of size 50 (resp. 100) compared to Rfb,d1

MOEA/D, leading to a significant improvement. By

considering the results in Table 4.9, we observe that KD1all,d,fb,d1

MOEA/D reaches good results faster than

KD1lo,d,fb,d1

MOEA/D on instances of size 100, but then slows down and is outperformed by KD1lo,d,fb,d1

MOEA/D.

On instances of size 50, it is the intensification variant KD1all,i,fb,d1

MOEA/D , which is the fastest variant
on average.

The question raised and discussed in this section concerns the impact of extracting knowledge
from local optima solutions only. To that aim, four variants of MOEA/D are designed, depending
on the strategy followed during the injection step and depending on the solutions used during
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Table 4.10: Mean gap (%) obtained regarding the total cost objective. The gaps are computed with
the optimal value known for each instance.

Class Size Rfb,d1

MOEA/D KD1all,i,fb,d1

MOEA/D KD1all,d,fb,d1

MOEA/D KD1lo,i,fb,d1

MOEA/D KD1lo,d,fb,d1

MOEA/D

C1 50 10.86 0.07 0.08 0.40 0.40
R1 50 3.09 0.90 0.92 1.23 1.43
RC1 50 7.41 1.72 1.56 2.17 2.54

C2 50 2.15 0.35 0.35 0.58 0.55
R2 50 4.56 2.37 2.40 2.66 2.65
RC2 50 7.31 1.52 1.22 1.97 1.95

C1 100 35.03 5.13 3.79 4.02 2.22
R1 100 10.44 5.15 4.43 4.51 4.37
RC1 100 18.84 10.31 8.11 7.67 7.03

C2 100 5.67 2.64 1.24 0.54 0.38
R2 100 9.58 7.81 6.58 6.15 5.71
RC2 100 12.02 11.00 7.61 6.24 5.04

Table 4.11: Mean gain (%) obtained, in terms of speed-up, with respect to Rfb,d1

MOEA/D, to reach 95%

of the mean hypervolume of Rfb,d1

MOEA/D.

Class Size KD1all,i,fb,d1

MOEA/D KD1all,d,fb,d1

MOEA/D KD1lo,i,fb,d1

MOEA/D KD1lo,d,fb,d1

MOEA/D

C1 50 85.0 79.9 84.4 80.8
R1 50 73.7 70.4 76.7 74.3
RC1 50 84.7 81.7 83.5 83.9

C2 50 64.5 64.7 59.2 55.5
R2 50 65.8 58.9 65.6 63.6
RC2 50 78.6 72.6 78.9 77.9

C1 100 73.4 81.2 76.2 69.9
R1 100 55.7 65.9 62.6 54.4
RC1 100 68.1 75.6 73.5 68.6

C2 100 59.9 70.0 68.0 62.5
R2 100 53.4 58.2 56.4 46.6
RC2 100 57.0 61.9 62.7 57.0



4.6. CONCLUSION 89

extraction. In particular, the variant KD1all,d,fb,d1

MOEA/D (resp. KD1lo,d,fb,d1

MOEA/D) extracts the knowledge

from all potential (resp. local optima) solutions found, and follows a diversification strategy during
the injection, meaning that we use knowledge from all groups to favor larger exploration of space.
Some experiments were conducted on Solomon’s instances of the bi-objective VRPTW and showed
the benefit of exploiting knowledge to optimize better solutions. Additionally, extracting patterns
from local optima (KD1lo,d,fb,d1

MOEA/D), especially for larger instances, is preferable to obtain better

solutions. The investigation of the speed-up reveals that it is possible to converge faster towards
good solutions when the learning exploits the knowledge from all solutions found instead of focusing
on local optima only. More precisely, the variant KD1all,d,fb,d1

MOEA/D converges faster towards good

solutions. In practice, it means that focusing on local optima solutions only is not a necessity to
achieve quickly good performances, however exploiting local optima solutions allows convergence
to better solutions on bigger instances.

4.6 Conclusion

Through this chapter, we proposed a knowledge discovery mechanism based on knowledge groups
associated with the subproblems defined in MOEA/D. More precisely, each subproblem is associated
with a knowledge group carrying the patterns extracted from solutions discovered when optimizing
that subproblem or its neighbors. Inside each knowledge group, each pattern is linked with its
current frequency of appearance, and the most frequent patterns can be exploited during an injection
step to improve another solution. Since each knowledge group learns the most frequent structures
for each subproblem (and for the associated region of the objective space), the injection integrates
the knowledge from a region of the objective space into a solution belonging to the same region or
a different one.

The experiments performed show an interest in using such a mechanism (i.e., it increases the
performances of MOEA/D in terms of quality and speed-up). However, the mechanism remains
too dependent on MOEA/D. For example, the number of groups can not be controlled and depends
on the number of subproblems generated in MOEA/D. Suppose we decide to use a strategy that
modifies the subproblems (e.g., by modifying the associated weight vectors). In that case, the
associated knowledge groups and the patterns learned may not be exploitable anymore. Moreover,
with the current mechanism, it is not possible to consider its integration into another kind of
multi-objective algorithm, which would not use any decomposition strategy.

The next chapter presents a different construction for the knowledge groups, in order to control
the number of groups created. With this new construction, the strategies for the extraction and
the injection are modified accordingly.
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5.1 Introduction

The main issue with the concept of knowledge groups presented in the former chapter concerns its
dependency on MOEA/D. Indeed, the knowledge groups are intrinsically connected to the weight
vectors generated by MOEA/D. In particular, if the weight vectors are modified during the exe-
cution of MOEA/D, there is no guarantee to preserve the coherence of the associated knowledge
groups. More importantly, there is no control over the number of groups generated and the regions
covered by the knowledge groups (since they depend on the solutions found while optimizing the
subproblems).

In this chapter, we present an enhancement of the construction of the knowledge groups pro-
posed in the former chapter to remedy the issue mentioned above. Section 5.2 describes the new
construction, with a particular focus on the terminology adopted concerning the definition of the
regions of the knowledge groups, and strategies associated with the extraction and injection steps.
In addition to this improvement, a new hybridization with MOEA/D is proposed, which modi-
fies where (and when) the extraction step is performed. The experiments compare variants of the
hybridization with different values for the number of knowledge groups constructed and different
strategies for the injection step. The results, presented in Legrand et al. [2023b], highlight the
interest in using several knowledge groups with an intensification strategy for both extraction and
injection steps.

We push further the analysis of the hybridization in Section 5.3, where most parameter values
are left to the tuning and the influence of each (tuned) parameter is analyzed. Concerning the
strategies for extraction and injection, we only consider intensification, which is more transparent
to know where each knowledge group contributes. Moreover, using different strategies for the
extraction and the injection could bias the study of the number of knowledge groups. With this
analysis, we hope to discover that the parameters related to the knowledge discovery mechanism
positively impact the performances of the algorithms, and which values should be used to obtain
the best performances. Thanks to this work, we were able to propose more interesting domains for
each parameter, leading to more robust configurations found by irace. Finally, the results, presented
in Legrand et al. [2023a], show the efficiency of our proposed strategies.

5.2 Improvement of Knowledge Groups

In this section, we propose to improve the knowledge discovery mechanism introduced in the former
chapter. Although it is effective with MOEA/D, the mechanism is not flexible enough to be inte-
grated into other multi-objective algorithms. In particular, it is too dependent on the subproblems
defined. In practice, we would like to have a mechanism where the number of groups and their
construction can be adapted to the instance. Indeed, according to the shape of the optimal Pareto
front (when it is known) and of the objective space, we may prefer one construction to another, so
that the division of the objective space is adapted to the instance to be solved. Since in MOEA/D
there already exists plenty of methods to decompose the the objective space, we would like to make
these strategies available for the construction of the knowledge groups.

We introduce the new construction framework in Section 5.2.1 and we provide an instantiation
in the case where the objective space is divided with weight vectors. In Section 5.2.2, we discuss
the possible strategies that can be used for the extraction and injection steps. These strategies
generalize the ones used in the former chapter for the injection. Then, we present the modifications
brought to the former hybridizations and the different variants compared in Section 5.2.3. Our setup
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is described in Section 5.2.4, our protocol in Section 5.2.5, and the results obtained are presented
in Section 5.2.6.

5.2.1 Decomposition-based Knowledge Groups

To bring more flexibility to the knowledge groups, we need to associate them with a region of the
objective space. We explain how to define such regions in Section 5.2.1.1. Moreover, an example is
provided in Section 5.2.1.2 when weight vectors are used to decompose the objective space. Indeed,
using weight vectors is undoubtedly the most common strategy to decompose the objective space.

5.2.1.1 Generalized Knowledge Groups

Suppose that we want to define kG knowledge groups to store the knowledge extracted during
the execution. We propose to divide the objective space into kG regions each one representing a
knowledge group. The region can be defined explicitly or implicitly. The set of knowledge groups
is denoted as G.

We consider that a region is explicitly defined when it is defined with equations (e.g., with
curves or hyperplanes). In that case, if all regions cover entirely the objective space, it is easy to
know if a solution belongs to a specific region, however, distances to other regions may be harder to
compute. Moreover, we would recommend using simple equations to define the regions. Indeed, it
will simplify the computations required, and make easier the interpretation of the regions. Explicit
regions might be more adapted in a continuous context.

Most of the time, it is easier to consider implicitly defined regions. In that case, each region is
associated with a unique representative. The representative can be a point in the objective space, or
something else while it is possible to define a distance between the representative and the objective
vector of a solution. Given the representative gi of the region defining the knowledge group Gi, the
region of the group is defined as the set of all solutions whose closest representatives is gi. In two
dimensions, given a set of points, the region associated with one point corresponds to a Voronöı cell.
With implicit representations, the regions depend on the representatives, and modifying one repre-
sentative may impact the other regions. It was not the case with explicit representations, changing
one equation does not change the others. Moreover, in implicit representations, a solution is al-
ways associated with (at least) one knowledge group, being the one associated with the closest
representative.

In the next section, we provide an example of knowledge groups where regions are implicitly
defined, and where the representatives of groups are weight vectors.

5.2.1.2 Weight Vectors based Knowledge Groups

We describe how to use a weight vector decomposition to create the knowledge groups. With
this construction, the regions associated with the knowledge groups are implicitly defined. Let
(g1, . . . , gkG) be a set of kG weight vectors to define the corresponding kG knowledge groups. The
vectors can be uniformly spread or not, but we consider that they do not change during the execu-
tion.

Let x be a feasible solution found during the execution. To evaluate the proximity between x and
a representative gi, we compute the quantity gWS

fit (x, gi) which is exactly the fitness of the solution

obtained when gi generates a subproblem with the weighted sum approach (see Equation 1.7). The
solution is then associated with the representative gi

∗
, where i∗ verifies:
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Objective 1
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Figure 5.1: Construction of five knowledge groups based on weight vectors. Some solutions are
represented and associated with their closest knowledge groups.

i∗ = argmin
1≤i≤kG

gWS
fit (x, gi)

If the minimum fitness is attained for multiple representatives, the representative is randomly chosen
among them. In other words, the group Gi∗ is the most adapted to store the knowledge extracted
from the solution x.

Figure 5.1 shows how solutions are associated with knowledge groups defined with weight vectors.
Geometrically, the distance between one solution and a knowledge group Gi of weight vector gi is
the distance between the solution and its orthogonal projection to the line passing through 0 with
direction gi.

5.2.2 Extraction and Injection Strategies

Evolutionary algorithms use intensification and diversification mechanisms to explore the search
space more in-depth or more largely. We propose to transpose these mechanisms of intensification
and diversification to the knowledge discovery for the extraction (in Section 5.2.2.1) and injection
(in Section 5.2.2.2) mechanisms. On the one hand, we propose an intensification strategy, where
the procedure has access to a small number of groups. With this strategy, the objective is to focus
on the same region of the objective space, by exploring close regions to the current solution. In
that case, the knowledge is not widely shared between the groups. On the other hand, with a
diversification strategy, the procedure has access to a large number of groups. The diversification
aims to explore different regions of the objective space, by bringing diversity to the solutions. In
that case, the knowledge can be easily shared through all the groups.

5.2.2.1 Strategies Related to the Extraction

The strategy of the extraction defines the number of knowledge groups that are updated with the
knowledge extracted from one solution. When a few groups are updated, we consider that the
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Figure 5.2: Representation of the extraction strategy in the case de = 2 (i.e., the patterns of each
solution are sent to the two closest groups).

extraction follows an intensification strategy. Increasing the number of groups updated brings more
diversity to the extraction step.

The parameter de ∈ {1, . . . , kG} controls the number of groups updated. With de = 1, only the
closest group to the solution is updated (this situation is represented in Figure 5.1). With de = kG
all the groups are updated. Note that it is not interesting to update all groups since it is equivalent
to having only one group.

In the following, we decided to focus on the most intensive strategy only (i.e., de = 1). In fact,
in the construction of groups proposed in Chapter 4, the number of groups updated during the
extraction step was dependent on the neighborhood size of the subproblems, allowing us to already
test higher values of diversities. We remarked after the tuning steps that a small neighborhood size
is generally preferred, thus we decided to consider a low value for the diversity of the extraction,
and fixing de = 1 allows better comprehension of the knowledge learned.

5.2.2.2 Strategies Related to the Injection

The strategy of the injection defines the number of knowledge groups that can provide patterns to
inject into the current solution. Similarly to the extraction, the more groups are considered, the
higher the diversity of the mechanism.

We introduce a parameter di ∈ {1, . . . , kG} to control the strategy followed by the injection.
With di = 1, only the closest group to the solution can provide patterns to be injected. With
di = kG any existing group can be selected to provide the patterns.

In the following, we decided to consider only the two extreme strategies (i.e., di = 1 and di = kG),
which were the strategies adopted in Chapter 4. Using these two strategies allow us to compare
the new construction of groups to the results obtained previously.
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Algorithm 12: Second proposition of hybridization between MOEA/D and knowledge
discovery (KD2MOEA/D).

Input: M weight vectors w1, . . . , wM . m, the size of the neighborhood of a problem. px
(resp. pm) the probability of applying Crossover (resp. Mutation). sI (resp. sE)
denotes the strategy followed to select patterns for the injection (resp. to select
groups updated during the extraction).

Output: The external archive A∗

/* Initialization */

1 (A∗, P ′)← (∅, ∅)
2 P = {x1, . . . , xM} ← Initialization()
3 G ← CreateGroups(kG)
4 for i ∈ {1, . . . ,M} do
5 Nm

i ← indexes of the m closest weight vectors to wi

/* Core of the algorithm */

6 while stopping criterion not satisfied do
7 for i ∈ {1, . . . ,M} do
8 (i1, i2)← Select(Nm

i )
9 x← Crossover(xi1 , xi2)

10 x← Injection (G, sI , x)
11 x← Mutation(x)
12 P ′ ← P ′ ∪ {x}
13 UpdatePopulation(P,Nm

i , x)

14 UpdateArchive(A∗, P ′)
15 UpdateGroup(G, sE , P ′)
16 P ′ ← ∅
17 return A∗

5.2.3 Integration into MOEA/D

The hybridization is the one presented in Algorithm 12, where the mutation is the local search
already presented in Section 4.4, with the first-best exploration strategy and the metric d2, which
considers the Euclidean distance and the waiting time between customers to evaluate their prox-
imity. The algorithm slightly differs from Algorithm 10 (the modifications appear in red). At l.3,
a new function CreateGroups is used to initialize the kG groups, with their own representative, or
their regions. Each knowledge group object is defined during the execution of this function, and in
particular, the function evaluating the distance between a group and a solution must be defined.
Here, the construction adopted is the one described in Section 5.2.1.2. Moreover, to avoid the same
solution being added several times to the same group, each group maintains a set of already-seen
objective vectors (assuming that, there is a unique association between solutions and objective vec-
tors). This strategy is considered to avoid the bias from local optima easy-to-find (i.e., attractive
solutions).

The injection step does not change and is still performed between the crossover and the mutation.
The injection can be performed with a strategy siI (resp. sdI) where di = 1 (resp. di = kG). However,
we moved the extraction step outside the loop and inside the UpdateGroup procedure. Now, the
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Figure 5.3: Overview of the main components of Algorithm 12. The red blocs contain elements
related to the knowledge discovery mechanism.

extraction step, when applied, is performed on all solutions found during the last iteration (P ′),
which seems more coherent inside iterations. Indeed, now the knowledge groups are updated at
the end of an iteration, and considering this possibility enriches our model since we can decide to
extract the knowledge from a subset of the solutions obtained (e.g., extract from non-dominated
solutions only). This difference is highlighted in Figure 5.3, showing that the update (of the groups
and of the archive) is performed when the iteration over all subproblems has ended. The strategy
for the extraction differs from our former hybridizations since the extraction is performed in an
intensive manner (de = 1).

To evaluate the impact of the parameter kG controlling the number of knowledge groups we
decided to compare the hybridizations with different values of kG. First of all, we consider the
simplest case, where there is only one group (kG = 1). In that case, the intensification is equivalent
to the diversification, leading to only one variant, the so-called KD21MOEA/D algorithm. Using only
one group is equivalent to considering that the problem solved is a single-objective problem. In this
case, we do not consider that optimizing different objectives will give highly structurally different
solutions. However, this case remains important to show that it is not possible to exactly transpose
the learning strategies, that are effective in a single-objective context to a multi-objective context.

Naturally, when a bi-objective problem is optimized, the objective space contains three impor-
tant regions. One region is dedicated to solutions optimizing the first objective, another region to
solutions optimizing the second objective, and a third region to solutions that have an equivalent
trade-off between the objectives. In this third region, the solutions can not generally be considered
of good quality for either objective. In general, these solutions, which compose the middle of the
optimal Pareto front are the most difficult to obtain. Therefore we propose to create kG = 3 knowl-
edge groups, each focusing on a region described above, allowing the learning of relevant patterns
for each region. Here, we limit the investigation to the case where the groups are uniformly spread
along the front (i.e., whose weight vectors are uniformly spread). This design leads to two variants

using three groups: KD2
3,siI
MOEA/D (resp. KD2

3,sdI
MOEA/D), which uses the siI (resp. sdI) strategy for the
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injection.

The decomposition can be refined by creating kG = 5 (uniformly spread) groups in the objec-
tive space. The two additional groups focus on intermediary solutions between those optimizing
one objective and those having an equivalent trade-off. Similarly, Ii leads to two other variants:

KD2
5,siI
MOEA/D and KD2

5,sdI
MOEA/D.

Finally, we consider the extreme case where kG = M , creating as many groups as subproblems
like it was done in Chapter 4. In this case, each group is dedicated to one specific aggregation.
More precisely, for i ∈ {1, . . . , kG}, gi = wi, where wi is the weight vector associated with the i-th

subproblem. Hence, the last two variants are KD2
M,siI
MOEA/D and KD2

M,sdI
MOEA/D.

5.2.4 Tuning of Parameters

Each algorithm is tuned with irace to find a good setting of the parameters. To perform the tuning,
we use our set of generated instances of size 100 (see Section 2.3.4). The hybridizations contain
the following parameters. M is the number of subproblems considered and m is the size of the
neighborhood of each subproblem. The probabilities associated with each mechanism are px for the
crossover, pinj for the injection, and pm for the local search. The granularity parameter δ is used to
reduce the neighborhood during local search. The maximal size sp of the patterns extracted, and
the number Ni of patterns injected, chosen among the Nf most frequent patterns.

We decided to set some parameter values in order to reduce the size of the configuration space
explored by irace. In the following, m = 1/4 × M , Nf = 100, and pext = 1.00. The values
were chosen according to our previous experiment. Furthermore, in our studies, the size of the
subproblem’s neighborhood and the number of most frequent patterns considered did not highly
impact the performance of the algorithms. Concerning the value of the probability of the extraction,
it is more a choice of design. Indeed, it seems more coherent and reliable to control the solutions
from which patterns are extracted instead of applying the extraction with a probability. We do
not consider the number of groups kG in the tuning, because we want to highlight its influence
on the algorithm. The range of values of the remaining parameters are presented in Table 5.1).
The domain of each parameter is chosen to explore various parts of the space. Furthermore, we
discretize each domain to reduce the size of the configuration space given to irace, hoping that it
will produce more robust configurations. We granted a budget of 2000 runs over 8 iterations to
irace. The best configurations returned for each variant are presented in Table 5.2.

We can remark that the number of subproblems is always below 60, which makes sense since
small populations are often preferred in genetic algorithms. The granularity is almost always set
to 25, which is coherent with existing studies in the literature on routing problems. The maximal
size of patterns alternates between 5 and 7, which is close to the value recommended by Arnold
et al. [2021]. Moreover, the probability of applying the local search seems low, but the local search
is the most time-consuming step of the algorithm, mainly in the beginning when solutions are
not optimized. With pm = 0.10, the local search represents already 50% of the total running
time. However, it represents only 60% when pm = 0.25. The second most time-consuming step
is the injection mechanism. When pinj = 1.00, it represents around 25% of the total running
time, but this mechanism requires a constant cost during the execution contrarily to the local
search. Consequently, the probabilities chosen by irace try to balance the time allocated to each
mechanism.
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Table 5.1: Configuration space given to irace. The space contains 77175 configurations.

Parameter Domain

Number of subproblems: M (20, 40, 60, 80, 100)
Granularity: δ (10, 25, 50, 75, 100)
Probability of PMX: px (0.00, 0.10, 0.25, 0.50, 0.75, 0.90, 1.00)
Probability of LS: pm (0.00, 0.10, 0.25, 0.50, 0.75, 0.90, 1.00)
Maximum size of pattern: sp (5, 7, 10)
Number of patterns injected: Ni (20, 40, 60)
Probability of injection: pinj (0.00, 0.10, 0.25, 0.50, 0.75, 0.90, 1.00)

Table 5.2: Best elite configurations returned by irace for each variant, each represented by a pair
(number of groups, injection strategy).

Parameters (1,−) (3, siI) (3, sdI) (5, siI) (5, sdI) (M, siI) (M, sdI)

M 60 60 40 40 20 40 20
δ 50 25 25 25 25 25 25
px 0.50 0.50 0.90 0.50 0.90 0.50 0.75
pm 0.10 0.10 0.10 0.25 0.10 0.10 0.25
sp 5 5 7 7 5 5 5
Ni 60 20 40 60 60 40 40
pinj 0.75 0.75 1.00 1.00 0.90 1.00 0.90
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5.2.5 Experimental Protocol

In our experiments, we investigate how the number of groups and the strategy followed by the
injection impact the quality of the solutions returned by the different variants. Each variant is
executed 30 times on the 56 instances of size 100 of Solomon’s benchmark. For each algorithm, the
k-th run of an instance is executed with the seed 10(k − 1), to compare the algorithms with the
same seeds. The termination criterion is set to 720 seconds for all variants.

Then, for each category of instance (R, RC, and C), we compute the average uHV obtained
over the 30 runs. We recall that, for computing the hypervolume the objectives are normalized by
using the ideal and nadir points of the best approximation fronts obtained. These reference fronts
were obtained by aggregating all the results obtained in the former chapter and the results obtained
in this study. This update of the fronts may induce a variation in the hypervolumes obtained in
former experiments. We rank each variant on each instance and we compute the average rank on
all the categories. We perform a Friedman test on the average uHV, to know if all algorithms
are equivalent, and if this is not the case, we apply a pairwise Wilcoxon test with the Bonferroni
correction to know which algorithms are statistically better. We repeat the same procedure when
all results are gathered in a category All, containing all the instances.

5.2.6 Experimental Results

Table 5.3 (resp. Table 5.4) shows the average rank (resp. uHV) of each variant on each category of
instance. The detailed results for each instance are given in Appendix E. First, the hypervolumes
returned remain higher, on average, than hypervolumes returned by Rfb,d1

MOEA/D (see Section 4.5.1),

which is the reference MOEA/D considered (without the knowledge discovery mechanism). In
particular, it shows that using the new construction of groups in the knowledge discovery mechanism
is still beneficial.

The variant KD2
5,siI
MOEA/D always leads to the best average rank (1.46) and average uHV (0.828).

Moreover, the returned results are statistically better than those returned by other variants. In
particular, it shows an interest in using more than one group in this context.

Using the diversification strategy with five groups worsened a lot the returned results. More

precisely, KD2
5,sdI
MOEA/D ranks 5.73 on average, which is the second highest average rank. Only

KD2
3,siI
MOEA/D is behind with a higher average rank of 6.32. In addition, the variant using the diver-

sification strategy for the injection KD2
3,sdI
MOEA/D has also a high rank but it is slightly lower than

KD2
5,sdI
MOEA/D. As a result, using three groups is not adapted to the situation. Furthermore, consid-

ering the results obtained by KD21MOEA/D show that with only one group it is able to reach good
results. We recall that using one group is equivalent to using the extraction with a diversification
strategy. Thus, it seems that when very few groups are defined, it is better to use diversification
strategies than intensification ones.

The variants KD2
M,siI
MOEA/D and KD2

M,sdI
MOEA/D provide average uHV that are close in value. It

is 0.767 for KD2
M,siI
MOEA/D and 0.770 for KD2

M,sdI
MOEA/D. The conclusion still holds when looking at

each category separately. Hence, when many groups are used, there is not a significant difference
between intensification and diversification strategies for the injection. It was already our conclusion
in Section 4.3.
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Table 5.3: Average ranks of the variants according to their average uHV over the different categories
of instance. Bold results are statistically significant. Each variant is represented by a pair (number
of groups, injection strategy).

Category (1,−) (3, siI) (3, sdI) (5, siI) (5, sdI) (M, siI) (M, sdI)

R 2.52 6.65 4.09 1.26 5.59 4.61 3.28
RC 2.16 6.94 4.72 1.56 5.53 3.53 3.56
C 4.09 5.29 5.50 1.62 6.12 2.21 3.18

All 2.89 6.32 4.70 1.46 5.73 3.57 3.33

Table 5.4: Average uHV of the algorithms on the different categories of Solomon’s instance of size
100. Bold results are statistically significant. Each variant is represented by a pair (number of
groups, injection strategy).

Category (1,−) (3, siI) (3, sdI) (5, siI) (5, sdI) (M, siI) (M, sdI)

R 0.730 0.627 0.703 0.764 0.667 0.682 0.706
RC 0.738 0.590 0.695 0.781 0.665 0.713 0.705
C 0.889 0.848 0.848 0.959 0.831 0.934 0.919

All 0.780 0.684 0.745 0.828 0.716 0.767 0.770

Finally, it is not interesting to use a too-large or a too-small number of groups. The goal is
to provide a “good” intermediate value. Here, the best results are obtained with five groups, with
an intensification strategy for the injection and the extraction. Moreover, using a diversification
strategy for the injection does not seem interesting when considering a high (≥ 5) number of groups,
while the diversification strategy for the extraction tends to artificially reduce the number of groups.

To conclude this section, we proposed a new construction of knowledge groups, independent
from MOEA/D and allowing the use of any number of groups in a bi-objective context. Moreover,
we formalized the strategies that extraction and injection can follow, and we instantiated them
to obtain an intensification and a diversification strategy. We integrated our propositions into a
MOEA/D framework, and we tested them on a bVRPTW. Briefly, the results showed that the
variant using five knowledge groups with an intensification strategy for both the injection and
extraction was statistically better than the others. In the next section, we push further the analysis
of the components of our hybridization, by studying the impact of the values of the different
parameters (with the number of groups), when intensification is the strategy used for extraction
and injection.

5.3 Parameters Analysis of the KD MOEA/D

In the former section, we presented a new construction for the knowledge groups, as well as strategies
for the injection and extraction mechanisms. To better understand the synergy between the different
components of the hybridization developed, we propose to conduct a deep analysis of the parameters
used.
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The study considers a version of the original MOEA/D, provided in Algorithm 9, where the
mutation is a local search. Here, the strategies of the local search (the exploration strategy and
the metric defining the neighborhood of a customer) are tuned by irace too. Concerning the
hybridization, the Algorithm 12 is used. In addition to the parameters already tuned in the former
section, we consider the strategies for the local search and the number of knowledge groups created.
However, the strategies of extraction and injection are set to de = 1 and di = 1 according to
the results obtained in the former section. Indeed, by fixing the strategies we reduce the size of
the configuration space, and besides, these parameters seem highly correlated with the number
of groups constructed. Moreover, by considering the most intensive strategy, we hope to obtain
more easily explainable results. More precisely, when multiple groups are considered during the
extraction and injection steps, the algorithm may have a more chaotic behavior (i.e., it is harder to
understand from where the knowledge comes and where it is exploited the best).

As before, the tuning is supported by irace. We start with a preliminary tuning in Section 5.3.1,
where the configuration space defined is huge. The configurations obtained are studied in Sec-
tion 5.3.2 to know if they are local optima configurations for the algorithms. Moreover, the different
parameters are analyzed in parallel to examine their influence on the algorithms. Following that
study, the configuration space is reduced to refine the search, and a final tuning is performed. Fi-
nally, the performances of the tuned algorithms are compared in Section 5.3.3, where experiments
are conducted on Solomon’s benchmark with instances of size 100, and on Gehring and Homberger’s
benchmark with instances of size 200.

During this study, to compute the hypervolumes, we updated the ideal and nadir points from
our former experiments to normalize correctly the objectives of the solutions found.

5.3.1 Preliminary Tuning

Two main algorithms are tuned: the MOEA/D with a local search, indicated with RMOEA/D, and
the hybrid MOEA/D with the fixed strategies for the extraction and injection steps, indicated with
KD2MOEA/D. The tuning of RMOEA/D allows seeing which neighborhood exploration strategy and
metric are better when not performing learning steps. In addition, six variants of KD2MOEA/D

are tuned and compared. Each variant is characterized by a pair (exploration strategy, granularity
metric) defining the local search performed. We recall that (see Section 4.4) there are two explo-
ration strategies (best and first-best) and two metrics (d1 and d2). Here, we consider in addition
a third metric d3 where the weights in d2 are set to 0.5. This metric may be particularly inter-
esting when other algorithms than MOEA/D are considered, which avoids the definition of weight

vectors. Hence, it leads to the creation of the six following variants KD2fb,d1

MOEA/D, KD2fb,d2

MOEA/D,

KD2fb,d3

MOEA/D, KD2b,d1

MOEA/D, KD2b,d2

MOEA/D, KD2b,d3

MOEA/D, which are respectively shortened fbd1,

fbd2, fbd3, bd1, bd2, bd3. We had two main motivations for considering all these variants. First,
by tuning KD2MOEA/D, we obtain one of the six additional variants, which allows us to compare
the configuration obtained for KD2MOEA/D and the configuration obtained for the corresponding
additional variant. If the two configurations are similar, it assesses the robustness of irace when
more parameters are considered. The second motivation is to compare more precisely the impact
of the different strategies used for the local search (similarly to what has been done in Section 4.4).
In addition, all the returned configurations provide a set of good configurations that can be used
as a starting point to analyze the influence of the different parameters.

In Section 5.3.1.1 we present the configuration space defined in irace (i.e., the parameters tuned
and their associated domain). The results of the tuning are discussed in Section 5.3.1.2.
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Table 5.5: Configuration space given to irace. The granularity and the number of patterns injected
are expressed as a percentage of the size of the instance. The parameter representing the number
of groups is defined as a percentage of the number of subproblems (when this parameter is equal
to 1, only 1 group is created, since 0 groups is not a valid value). The space contains 388 800
configurations.

Parameter Domain

Number of subproblems: M (20, 40, 60, 80, 100)
Granularity: δ (10%, 25%, 50%, 75%, 100%)
Probability of PMX: px (0.00, 0.10, 0.25, 0.50, 0.75, 1.00)
Probability of LS: pm (0.00, 0.10, 0.25, 0.50, 0.75, 1.00)
Exploration strategy: S {best, first-best}
Granularity metric: d {d1, d2, d3}
Number of groups: kG (1, 10%, 25%, 50%, 75%, 100%)
Maximum size of pattern: sp (2, 5, 8)
Number of patterns injected: Ni (25%, 50%, 75%, 100%)
Probability of injection: pinj (0.00, 0.10, 0.25, 0.50, 0.75, 1.00)

5.3.1.1 Configuration Space and Protocol

The reference MOEA/D (RMOEA/D) uses the following parameters: M , the number of subproblems
considered, and m the size of the neighborhood of each subproblem. The probabilities associated
with each mechanism are px for the crossover and pm for the local search. The granularity parameter
δ is used to reduce the neighborhood during local search. The choice of the exploration strategy S
(either best or first-best) and the granularity metric d (either d1, d2, or d3) are left to the tuning.
The hybrid MOEA/D (KD2MOEA/D) has, in addition, the following parameters: the number of
knowledge groups created kG, the probability of injection pinj , the maximal size sp of the patterns
extracted, and the number Ni of patterns injected, chosen among the Nf most frequent patterns.
According to a preliminary study [Legrand et al., 2023a] presented in Section 5.2 and existing
works [Arnold et al., 2021], we set m = 1/4×M and Nf = 5×Ni. The domain of each remaining
parameter is presented in Table 5.5 to define the configuration space in irace. The six derived
variants from KD2MOEA/D have the same parameters, except that the exploration strategy S and
the granularity metric d are already set.

The first tuning is performed on all the variants, with the whole configuration space defined
above. A budget of 2000 runs is granted to irace, spread between 8 iterations. Among all the 96
instances generated, we kept only a subset of 20 instances (of size 100) per category (R and C) to
perform the tuning. Indeed, we remarked during the previous tuning that irace used approximately
20 instances with the budget provided. As a result, to guarantee that all training instances are
used, we decide to consider a subset of the generated instances. Moreover, we separate the tuning of
the algorithms on instances R and C, since their structure highly differ. Hopefully, this separation
allows us to obtain a more appropriate tuning for all instances, leading to better performances of
the algorithms.
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5.3.1.2 Preliminary Configurations and Discussion

The tuning performed by irace on C (resp. R) instances led to the elite configurations stored in
Table 5.6 (resp. Table 5.7). Only the best elite configuration for each variant is reported (i.e.,
the configuration of rank 1). The reference algorithm, RMOEA/D, seems more efficient with the
first-best exploration strategy on both categories of instances. The same conclusion is reached for
the hybrid one (KD2MOEA/D). Moreover, the metric d3 seems more appropriate to C instances,
and d2 to R instances, according to the results obtained for RMOEA/D and KD2MOEA/D. In fact, C
instances are, in general, more simple to solve. In this situation, the closeness between customers
is structurally integrated into the instance, thus a simplified metric, that is d3, where the waiting
time between customers discriminates easily close customers, seems enough to obtain good results.
The metric d2 is more relevant for the less structured R instances since the weights between the
distance and the waiting time vary according to the aggregation of the subproblem solved. Hence,
d2 discriminates customers according to each aggregated objective. Note that, in neither case the
metric d1 is chosen, meaning that d1 does not seem adapted to solve these instances in a bi-objective
context, as expected.

Concerning the other parameters, we remark that the local search is, in most cases, applied
with probability 0.10, which is relatively low, but it is a costly step in terms of running time. In
addition, the granularity remains high (with a value of the 50% or 75% closest customers considered
during the search), and the choice of the metric does not seem to have a great impact on it (see
the values obtained for the six sub-variants). Moreover, the local search is much more impacting
at the beginning of the algorithm, when solutions are bad, thus it may not be interesting to use it
too frequently. On the other hand, the injection is applied with a much higher probability (either
0.75 or 1.00). Indeed, the injection operator needs fewer resources and is useful throughout the
execution of the algorithms. During the injection, at least 50 patterns are tentatively injected, and
the maximal size of the extracted patterns is almost always set to 5 (surprisingly, it was set to 8 only
for the fbd2 variant on C instances). The value of 5 was already the value chosen by the authors of
PILS [Arnold et al., 2021]. The crossover operator is applied with a probability less than or equal to
0.50 when using the knowledge discovery mechanism, i.e., in all the hybrid variants (KD2MOEA/D,
fbd1, fbd2, fbd3, bd1, bd2, bd3), whereas it is applied in every iteration with RMOEA/D. Indeed, in
RMOEA/D, the crossover is the only operator that introduces diversity in the solutions, necessary to
escape local optima. It is not the case with the other variants, due to the presence of the injection
operator. The number of aggregations used is coherent with the values used in general (around 40
aggregations). Only RMOEA/D requires 80 aggregations on R instances to generate better and more
diverse solutions. Finally, the number of knowledge groups used is very variable, but at least four
groups are always created for each variant. Furthermore, in C instances fewer groups are created
than in R instances. To be more precise, at most 20 groups are created when solving clustered
instances, whereas it rises to 60 groups for random instances. Our main hypothesis concerning the
use of many groups is that the structure between two solutions (in terms of patterns extracted)
in the objective space may vary significantly, even between solutions with close objective values.
This can be verified in Figure 4.1 for Solomon’s instances. By considering the two first columns
(regions “r0” and “r1”), which represent good quality solutions, we can see a bigger dispersion of
the average similarity of a solution in R instances than in C instances. Moreover, the shape of the
optimal Pareto front may impact as well the number of groups created. More precisely, we already
remarked that Pareto fronts of C instances contain in general fewer solutions than Pareto fronts
of R instances. As a consequence, many groups are created to reduce the structural gap between
solutions in the same group.
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Table 5.6: Best elite configurations returned by irace when tuning on C instances. The symbol “-”
reflects the absence of the parameter during the tuning.

Parameter RMOEA/D KD2MOEA/D fbd1 fbd2 fbd3 bd1 bd2 bd3

M 40 40 20 40 40 20 40 40
δ (%) 50 75 50 75 50 75 50 50
px 1.00 0.50 0.50 0.25 0.25 0.50 0.10 0.25
pm 0.10 0.10 0.10 0.10 0.10 0.10 0.25 0.10
S first-best first-best - - - - - -
d d3 d3 - - - - - -
kG (%) - 50 25 10 25 100 10 50
sp - 5 5 8 5 5 5 5
Ni (%) - 100 50 50 75 50 50 75
pinj - 0.75 1.00 1.00 1.00 1.00 1.00 1.00

Table 5.7: Best elite configurations returned by irace when tuning on R instances. The symbol “-”
reflects the absence of the parameter during the tuning.

Parameter RMOEA/D KD2MOEA/D fbd1 fbd2 fbd3 bd1 bd2 bd3

M 80 40 20 60 40 40 40 20
δ (%) 75 75 50 75 75 50 50 50
px 1.00 0.50 0.50 0.50 0.25 0.50 0.25 0.50
pm 0.10 0.10 0.25 0.10 0.10 0.10 0.10 0.10
S first-best first-best - - - - - -
d d2 d2 - - - - - -
kG (%) - 100 25 100 75 100 10 100
sp - 5 5 5 5 5 5 5
Ni (%) - 100 75 75 75 75 75 75
pinj - 0.75 1.00 1.00 0.75 0.75 0.75 0.75

More generally, we observe some differences between the tuning performed for C instances and
the tuning performed for R instances. For example, the probability of injection tends to be higher
for C instances, while the number of injected patterns tends to be higher for R instances. The results
obtained validate our choice to tune separately the algorithms on instances R and C. Moreover,
many configurations are very similar when considering the same category of instance. Indeed most
of them only differ by two or three parameters and use close parameter values.

In the following, we investigate the influence of the parameters on a subset of elite configurations,
in order to see if the configurations returned are truly local optima in the configuration space
provided, and if the configurations can be improved by reducing the size of the configuration space.

5.3.2 Configuration Analysis and Influence of Parameters

In this section, we analyze the elite configurations returned for the hybrid variants. Each config-
uration is a local optimum for irace and thus should be the best configuration (statistically) in
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its close neighborhood. For each configuration, we generate all the possible configurations distant
by one (using the hamming distance). More precisely, only one parameter is changed at a time
(the possible values are the values available in Table 5.5), while keeping the values of the other
parameters unchanged. In order to check whether the configurations returned by irace are good or
not, we evaluate the generated configurations on the tuning instances (same as before), with the
same seed to be fair with the methodology of irace. Then, the average hypervolume obtained is
computed and compared.

Given an elite configuration from Table 5.6 (resp. Table 5.7), the set of its neighbors obtained
by modifying one parameter (e.g., the number of aggregations) is evaluated on the 20 generated
instances of category C (resp. R). The same seed is used for all the evaluations, which is similar
to a run performed by irace. The results are reported in Figure 5.4 (resp. Figure 5.5). The (blue)
boxplot on the row Initial represents the performances of the elite configuration as returned by
irace. In other words, it is the reference boxplot. Each boxplot on the rows below represents
the performance of the configurations obtained when the corresponding parameter is modified.
We remark that only a few parameters have a noticeable impact on the configuration. The most
impacting parameters are the exploration strategy (S) used during the local search, the probability
of applying the PMX (i.e., the crossover), and the probability of applying the injection.

The strategy only takes two values, and according to the results obtained during the tuning,
it seems coherent that changing the best strategy to the first-best strategy improves the results
obtained, while the contrary deteriorates the results.

The results obtained, when the probability of applying the local search varies, are shown in
Figure 5.6. For each possible value of the parameter, the hypervolumes obtained with the corre-
sponding configuration are represented. If there is nothing noticeable with the exploration strategy
best, with the first-best exploration strategy it seems better to consider lower values (between 0.10
and 0.25). The results obtained with the other parameters are provided in Appendix F.

Similarly, the uHV tends to increase when the probability of PMX increases until a plateau
is reached after the value of 0.75 (see Figure F.3). The influence of the crossover is even more
important with the best strategy.

Concerning the probability of injection, the average uHV increases, along with the probability.
In particular, when the injection is disabled (probability 0.0), we retrieve the fact that first-best
strategy performs better than best strategy when no learning is used. Moreover, the injection
should be applied with high probability (above 0.75) in general (see Figure F.10). For the other
parameters, there are almost no variations of the uHV when the value of the parameter changes.
In theory, it means that we could choose any possible value for the remaining parameters, without
changing the uHV too much. Moreover, it also explains why the set of elite configurations returned
by irace for one variant, contains in general very different values for those parameters. In particular,
considering the number of groups (see Figure F.7), no value seems more interesting than another
one to obtain good results. It is very dependent on the other parameters (and in particular, the
number of subproblems considered). We think, that this parameter should also depend on the
instance considered since the Pareto fronts between two instances can be very different.

The next section focuses on the reduction of the configuration space initially proposed, fol-
lowing the results presented above. Then, a new tuning is performed for the six sub-variants of
KD2MOEA/D. Finally, an experimental study is performed to compare the six variants to RMOEA/D.
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Figure 5.4: Performances of elite configurations obtained on C instances, when one parameter is
modified at a time. The (blue) boxplot refers to the elite configuration as returned by irace.
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Figure 5.5: Performances of elite configurations obtained on R instances, when one parameter is
modified at a time. The (blue) boxplot refers to the elite configuration as returned by irace.
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(a) Category C.
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(b) Category R.

Figure 5.6: Influence of the probability of the local search on instances of (a) category C and (b)
category R. The red dot represents the mean uHV.
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Table 5.8: Reduced configuration space. The parameters with a modified domain are in blue. The
space now contains 1 458 different configurations.

Parameter Domain

Number of subproblems: M (40)
Granularity: δ (25%, 50%, 75%)
Probability of PMX: px (0.25, 0.50, 0.75)
Probability of LS: pm (0.10, 0.20, 0.30)
Number of groups: kG (1, 10%, 25%, 50%, 75%, 100%)
Maximum size of pattern: sp (2, 5, 8)
Number of patterns injected: Ni (100%)
Probability of injection: pinj (0.50, 0.75, 1.00)

5.3.3 Comparison of the Tuned Variants

In this section, we use the results obtained in the former section to adapt and reduce the size of
the configuration space (Section 5.3.3.1). By reducing the size of the search space, irace should
return more accurate results. We perform a new tuning of the six variants fbd1, fbd2, fbd3, bd1,
bd2, and bd3 considering the reduced space. The training instances are those used for the first
tuning. The configurations returned are discussed in Section 5.3.3.2. Finally, the comparison of the
performances of the algorithms is presented in Section 5.3.3.3.

5.3.3.1 Reduction of the Configuration Space

As explained in the former section, some parameters do not have much influence on the performance
of the procedure. That is why we decided to set the number of patterns injected to 100% of the size
of the instance, i.e., 100 patterns are tentatively injected (we recall that a pattern is truly injected
only in case of improvement) on instances of size 100. Note that, it was the value chosen by Arnold
et al. [2021] in their own experiments. Moreover, we decided to set the number of aggregations to
40, to see if the number of groups used can be more precisely tuned. In addition, by setting this
parameter, it is easier to see how the number of groups impacts the performances of the algorithms.
According to what has been said in the previous section, we reduce the range of values for the
probability of PMX to (0.25, 0.50, 0.75), and for the probability of injection to (0.50, 0.75, 1.00),
being the most interesting values. Concerning the probability of LS, we changed the range to
(0.10, 0.20, 0.30), in order to give more adapted parameters to irace. Finally, the granularity is also
reduced to (25, 50, 75), since extreme values never belong to elite configurations. All the changes
are reported in Table 5.8.

5.3.3.2 Final Configurations

Using the reduced space of configuration, we tuned accordingly the six variants: fbd1, fbd2, fbd3,
bd1, bd2, and bd3. Indeed, RMOEA/D already had a small configuration space (it has fewer param-
eters to tune), and the elite configurations returned for KD2MOEA/D were already in the reduced
configuration space defined. The budget allocated to irace is reduced from 2000 to 1000. The best
elite configurations are reported in Table 5.9.
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Table 5.9: Best elite configurations returned by irace on instances of (a) category C, and (b) category
R, by exploring the reduced configuration space.

(a) Category C.

Param. fbd1 fbd2 fbd3 bd1 bd2 bd3

δ (%) 50 50 50 50 50 50
px 0.50 0.50 0.50 0.50 0.50 0.50
pm 0.10 0.10 0.10 0.10 0.10 0.10
kG (%) 50 50 100 100 100 100
sp 5 5 5 5 2 2
pinj 0.75 1.00 1.00 1.00 0.75 0.75

(b) Category R.

fbd1 fbd2 fbd3 bd1 bd2 bd3

75 75 75 50 50 25
0.50 0.50 0.50 0.50 0.50 0.50
0.10 0.20 0.10 0.10 0.10 0.10
50 25 50 100 100 50
8 8 8 8 8 2

1.00 1.00 0.75 0.75 1.00 0.75

At first, we notice that the differences between the two categories of instance are more important,
considering the granularity parameter (δ), and the maximum size of patterns extracted (sp). Indeed,
the granularity is always set to 50 on C instances, which seems coherent, since these instances
contain clusters of customers. The granularity tends to be slightly higher on R instances, except
for the variant bd3, which has the lowest granularity (among all tuned variants). The maximum
size of the patterns is now 8 for most of the variants on R instances, meaning that bigger patterns
are interesting when instances are not well structured. For C instances, the maximum size of the
pattern remains coherent, since smaller patterns are enough to perform interesting moves.

Another major change concerns the number of knowledge groups used during the execution of
the algorithms. With the variant being set, more groups are generated on C instances than on R
instances. In addition, more groups are generated with strategy best than with strategy first-best.

Concerning the other parameters, the probability of PMX is set to 0.50 for all variants, the
probability of LS is set to 0.10 (except for the variant fbd2 where it is 0.20), and the probability of
injection remains similar to what we saw during the first tuning (see Table 5.6 and Table 5.7).

5.3.3.3 Experimental Results

From now, RMOEA/D is used with the configurations presented in Table 5.6 and Table 5.7, and the
variants fbd1, fbd2, fbd3, bd1, bd2, and bd3 with the configurations in Table 5.9.

The first experiment is performed on Solomon’s instances of size 100 (categories R and C). Each
algorithm is executed 30 times on the instances. For each algorithm, the k-th run of an instance
is executed with the same seed, being 10(k − 1), allowing a fair comparison. We recall that the
termination criterion is set to 720 seconds (i.e., 12 minutes) for all algorithms. For each category
of instance (either R or C), we compute the average uHV obtained over the 30 runs. We perform
a Friedman test on the average uHV, to know if all algorithms are equivalent, and if this is not
the case, we apply a pairwise Wilcoxon test with the Bonferroni correction to determine the best
algorithms. A second experiment is performed on Gehring and Homberger’s instances of size 200
(on categories R and C too). We keep the same configurations as before (parameters are scaled
accordingly, in particular, the granularity and the number of patterns injected). Again, we perform
30 runs on each instance, and each algorithm is executed with the same seeds. The termination
criterion is now set to 2880 seconds (i.e., 48 minutes). We perform the same statistical tests to
compare the average uHV obtained.

The average uHV obtained through the 30 runs, for each category of instances, is shown in
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Figure 5.7. The results obtained with the first-best strategy are slightly (resp. significantly) more
robust, with smaller boxplots, than those obtained with the best one on Solomon’s benchmark
(resp. Gehring and Homberger’s benchmark). The results obtained on Solomon’s benchmarks
show that the variant fbd2 is slightly better on average than the others. However, in Gehring and
Homberger’s benchmark, we clearly see that variants using the first-best strategy outperform the
variants using the best strategy. Moreover, when the exploration strategy is set, there is almost no
change when the granularity metric is modified. One hypothesis should be that the given values
for the granularity remain too high.

Table 5.10 contains the average ranking of the different algorithms on all classes of instances.
In this table, the ranks of statistically best algorithms on a class of instances are put in bold. In
particular, considering Solomon’s benchmark, the variants fbd2 and fbd3 are statistically equivalent
on C1 instances and are better than the other variants. On C2 instances, the variants fbd1, fbd2,
fbd3, and bd2 are equivalent. It is not surprising since C2 instances are the easiest ones. Overall, the
variant KD2fb,d3

MOEA/D returns good results, explaining why this combination of exploration strategy

and granularity metric has been returned by irace in Table 5.6. On R instances, statistically, the best
overall algorithm is fbd2. However, fbd1 is equivalent to fbd2 on R1 instances. As a consequence,
the strategy first-best with the metric d2, seems to be the best combination, considering all the
classes of instances of size 100. This result has already been observed since these parameters were
selected for the configuration returned by irace for KD2MOEA/D (see Table 5.7). In addition, all
the hybrid MOEA/Ds are better than the reference RMOEA/D, which has very low uHV. In fact,
RMOEA/D gets easily stuck in local optima, and particularly when the Pareto fronts do not contain
many non-dominates solutions. Table 5.11 and Table 5.12 show more detailed results about the
convergence of the algorithms fbd2, bd2, and RMOEA/D. We can remark that, as expected, the final
uHV obtained by fbd2 is higher than the one obtained by bd2, and RMOEA/D. Moreover, fbd2 is
able to reach 80% of the uHV of the reference front significantly faster than RMOEA/D and bd2 on
many instances. When the algorithm does not reach 80% of the uHV at the end of the execution,
the maximal time allocated is used instead. It shows that using the learning mechanism with the
first-best strategy speeds up the convergence process (recalling the conclusion made in Section 4.5).

We focus now on Gehring and Homberger’s benchmark. Considering the Table 5.10, the variant
fbd3 is statistically better on instances C1 (with tight time windows), while the variants fbd2 and
fbd3 are statistically equivalent on instances C2 (with wide time windows). Moreover, these two
algorithms remain better than all the others. On R2 instances, the three variants fbd1, fbd2, and
fbd3 are statistically equivalent and the results returned by these three variants are very close.
However, it is the variant fbd1 that is statistically better on R1 instances. It is important to
notice that with a specific tuning on instances of size 200, we may have reached slightly different
conclusions. That being said, strategy first-best is always better than strategy best. Concerning
the metrics, we finally observe that they have a relatively low impact on instances of a bigger size.
We meet again the result obtained in Section 5.3.2, where the granularity metrics did not seem
to have an impact on the elite configurations. The source code, reference fronts, and additional
convergence results are publicly available1. The results associated with this benchmark are given
in Appendix F.

1https://github.com/Clegrandlixon/data_itor2023

https://github.com/Clegrandlixon/data_itor2023
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(b) Gehring and Homberger’s benchmark.

Figure 5.7: Results obtained on the different categories of instances, of (a) Solomon’s benchmark
for size 100, and (b) Gehring and Homberger’s benchmark for size 200.
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Table 5.10: Average ranking of all the algorithms on the different categories of instances. Bold
ranks are statistically equivalent.

Size 100 200

Category C R C R

Class C1 C2 R1 R2 C1 C2 R1 R2

RMOEA/D 7.0 7.0 6.8 5.3 7.0 4.8 6.8 4.0
fbd1 3.7 2.4 2.3 2.3 3.0 2.9 1.1 1.7
fbd2 2.3 2.3 1.4 1.0 1.9 1.4 2.6 1.7
fbd3 2.2 2.9 2.5 2.7 1.1 1.7 2.4 2.6
bd1 3.6 3.3 5.1 4.7 4.0 5.3 6.1 6.5
bd2 4.9 4.2 3.9 5.0 5.3 5.6 5.0 6.5
bd3 4.4 5.9 6.1 7.0 5.7 6.5 4.3 5.0

Table 5.11: Detailed results for algorithms fbd2, bd2, and RMOEA/D on Solomon’s C instances of
size 100. From left to right: the average size of the front, the average uHV, and the average time
to reach 80% of the reference uHV.

fbd2 bd2 RMOEA/D

Inst. |F | uHV Time (s) |F | uHV Time (s) |F | uHV Time (s)

C101 1.0 1.002 57.3 1.0 1.002 197.1 1.8 0.354 682.7
C102 1.1 0.988 120.7 1.0 0.980 362.6 3.2 0.033 720.3
C103 1.5 0.984 211.6 2.0 0.712 614.6 5.3 0.000 720.4
C104 1.7 0.905 316.4 2.8 0.588 702.9 4.5 0.000 720.4
C105 1.0 0.989 111.0 1.0 0.989 248.7 1.9 0.068 715.2
C106 1.0 1.002 69.0 1.0 1.002 255.5 1.9 0.208 720.4
C107 1.0 0.972 140.2 1.0 0.962 324.6 1.5 0.013 720.2
C108 1.0 0.971 158.4 1.0 0.925 424.8 1.4 0.001 720.3
C109 1.0 0.944 191.5 1.0 0.802 505.5 1.5 0.000 720.3

C201 1.0 1.002 33.8 1.0 1.002 171.0 1.2 0.948 205.0
C202 1.0 0.994 97.4 1.0 1.002 308.1 1.0 0.743 573.3
C203 1.0 0.937 106.4 1.1 0.890 404.0 1.1 0.704 529.1
C204 1.0 0.849 333.4 1.4 0.664 658.9 1.5 0.450 657.7
C205 1.0 0.990 47.2 1.0 0.973 259.8 1.1 0.865 345.0
C206 1.0 1.002 55.6 1.0 0.978 372.1 1.0 0.821 481.5
C207 1.0 1.002 49.5 1.0 0.970 332.0 1.1 0.749 487.9
C208 1.0 1.002 56.3 1.1 0.987 371.7 1.3 0.751 507.6
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Table 5.12: Detailed results for algorithms fbd2, bd2, and RMOEA/D on Solomon’s R instances of
size 100. From left to right: the average size of the front, the average uHV, and the average time
to reach 80% of the reference uHV.

fbd2 bd2 RMOEA/D

Inst. |F | uHV Time (s) |F | uHV Time (s) |F | uHV Time (s)

R101 72.2 0.915 65.0 70.6 0.911 229.7 47.7 0.907 73.4
R102 45.6 0.923 137.8 45.0 0.911 296.8 27.1 0.876 232.7
R103 23.7 0.937 277.8 23.4 0.899 457.0 20.3 0.724 721.1
R104 6.0 0.915 341.2 6.3 0.881 533.4 6.4 0.499 721.2
R105 12.3 0.941 166.2 13.9 0.906 299.6 7.7 0.862 438.6
R106 6.2 0.894 258.8 8.0 0.878 406.5 5.5 0.763 700.1
R107 6.0 0.851 496.2 5.1 0.828 602.9 6.8 0.524 720.9
R108 1.8 0.880 358.2 1.5 0.851 532.8 2.5 0.389 720.9
R109 1.2 0.915 259.5 1.4 0.877 450.8 1.5 0.727 680.3
R110 1.1 0.843 368.9 1.3 0.849 496.6 1.3 0.637 717.1
R111 1.9 0.850 423.1 1.9 0.809 583.4 2.4 0.517 720.7
R112 1.0 0.845 480.2 1.0 0.804 559.9 1.0 0.387 720.4

R201 52.1 0.854 230.3 52.2 0.843 376.4 33.6 0.814 525.9
R202 44.7 0.857 311.6 42.1 0.849 457.3 25.8 0.824 515.1
R203 34.5 0.859 338.4 31.2 0.819 600.0 21.3 0.797 613.9
R204 13.2 0.806 548.7 11.9 0.752 679.7 8.1 0.719 706.6
R205 20.6 0.839 413.7 22.3 0.833 509.6 14.4 0.798 637.2
R206 22.5 0.867 349.4 22.9 0.839 534.9 13.0 0.821 581.8
R207 19.4 0.828 467.1 16.4 0.805 622.5 10.7 0.776 680.6
R208 5.5 0.808 541.6 6.5 0.790 605.5 3.8 0.720 718.8
R209 12.0 0.808 543.2 12.6 0.776 648.0 10.0 0.755 712.1
R210 20.4 0.855 368.3 20.5 0.830 555.0 12.3 0.791 649.3
R211 1.0 0.786 548.7 1.0 0.768 618.9 1.0 0.732 673.5
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5.4 Conclusion

In this chapter, we proposed a new manner to construct knowledge groups that is independent of the
multi-objective algorithm used, for example, MOEA/D. This construction is based on weight vectors
that decompose the objective space in equally sized regions. With this construction, it is possible
to adjust the number of knowledge groups wanted, as well as the strategies for the extraction and
injection steps. We proposed a new hybridization between MOEA/D and the knowledge discovery
mechanism, taking into account the new construction. At the same time, we changed how the
extraction step was performed. Instead of applying it with a probability at the end of the resolution
of a subproblem, we add all the final solutions found to a set, and the extraction is performed on
all the solutions contained in that set, once all subproblems are considered.

The results obtained highlight the importance of the injection step, showing interest in using the
proposed knowledge discovery mechanism. Moreover, it is important to consider enough knowledge
groups to learn efficiently during the execution. In particular, the best results are obtained when
10 or 20 knowledge groups are constructed (depending on the category of instance). Concerning
the local search, we found that using the first-best exploration strategy, that we proposed, in
combination with the granularity metric d2, which considers both the distance and the waiting
time between customers, was the best combination. However, the use of d2 as a granularity metric
implies determining the neighborhood of each customer for every weight vector that is used during
the execution of the algorithm. This may not be very practical if weight vectors are dynamically
updated. That being said, the metric d3 should be preferred when weight vectors are not used or
when they are updated during the execution.

In this first part, we started with a simple, yet efficient, multi-objective algorithm, MOEA/D.
Since MOEA/D is based on the resolution of several single-objective problems, we have accordingly
extended the PILS mechanism, initially proposed to solve CVRP, to solve a bVRPTW. The re-
sulting hybridization showed good performances on a standard benchmark. To improve the results
obtained, we decided to focus on the creation of a local search adapted to the problem, which led
to the proposition of a new exploration strategy, called first-best and different granularity met-
rics to reduce the size of the explored neighborhood. Using a local search enabled us to consider
learning from local optima solutions only, improving the overall quality of the solutions returned,
to the detriment of a bit of speed. Secondly, we improved the construction of knowledge groups
by making them independent of MOEA/D, allowing us to control the number of groups created.
We proposed a second (better) hybridization and analyzed the influence of different parameters,
showing the importance of the steps related to knowledge discovery.

In the next part of the manuscript, we attempt to go one step further by presenting a knowledge
discovery-based model that can be integrated into classical multi-objective algorithms.
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This chapter’s contributions are linked to the following accepted paper:

• Legrand, C., Cattaruzza, D., Jourdan, L., Kessaci, ME. 2024. Solution-based Knowledge
Discovery for Multi-objective Optimization. International Conference on Parallel Problem
Solving from Nature (PPSN 2024). https://hal.science/hal-04639219.

6.1 Introduction

In a desire of integrating our knowledge discovery mechanism into other multi-objective algorithms,
we observed that most of classical multi-objective algorithms have more in common than it seemed
at first sight. Two families of algorithms are often used when solving multi-objective combina-
torial optimization problems: Multi-Objective Evolutionary Algorithms (MOEA), and Iterated
Multi-Objective Local Search (simply abbreviated MOLS), which are the multi-objective version of
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Iterated Local Search. These two families of algorithms have already been presented in Chapter 1.
The objective of this introductory chapter of this third part of the thesis is to show that these
algorithms share similar components. As a result, we propose a unified view of these two families
of multi-objective algorithms, allowing the integration of the knowledge discovery mechanism into
these classical algorithms.

MOEA consider evolutionary principles, like mutation and crossover operators, to evolve a pop-
ulation of solutions. The best solutions survive to the next generations, conducting the search.
Components associated with MOEA are summarised in Section 6.2. MOLS rely on neighbor-
hood exploration to find better solutions. Historically, the first MOLS were extension of single-
objective local search (like multi-objective simulated annealing [Serafini, 1994] and multi-objective
tabu search [Hansen et al., 1997]), then local search based on the Pareto dominance relation, known
as Pareto Local Search [Paquete et al., 2004], have been developed to avoid using aggregation of
objectives to measure the quality of solutions. We present in Section 6.3 the unification of MOLS
proposed by Blot et al. [2018b]. Furthermore, Iterated MOLS are MOLS with an additional per-
turbation step occurring when convergence is detected. Finally, our unified view is presented in
Section 6.4.

6.2 Components of MOEA

Here we focus only on Genetic Algorithms (GA), which are the most known and the most used
evolutionary algorithms in the literature. We recall that Algorithm 4 (see Section 1.2.2) details the
main steps of a GA in a single-objective context. In a multi-objective context, the main difference
is the output, which is the archive containing the best non-dominated solutions (instead of a single
solution corresponding to the best known found far). Note that, in multi-objective algorithms
an external archive is commonly used in addition to the current population, to store the best
non-dominated solutions. Moreover, the current population and/or the external archive may be
bounded and use diversity mechanisms as presented in Section 1.3.4.1.

With a reference to the Algorithm 4, one can observe that the steps Crossover and Evaluate

are problem-dependent and generally do not differ between single-objective and multi-objective
optimization. The Mutation step is problem-dependent too and in most cases, a standard mutation
is used. However, similarly to single-objective optimization where the mutation can be replaced by a
local search, in a multi-objective context the mutation can also be replaced by a local search. When
it is possible, the local search can be single-objective (like in MOEA/D), otherwise it is a MOLS
(without perturbation). The two remaining steps, Select and Update, naturally differ between
single-objective and multi-objective optimization since they require comparing solutions. When
a single objective is considered, several strategies have already been presented in Section 1.2.2
(elite selection, tournament selection, and roulette wheel selection). With multiple objectives,
archiving strategies must be considered. Several ones have been described in Section 1.3.4.2 and
in Section 1.3.4.1 to maintain diversity (e.g., crowding distance with Pareto ranking). In the
particular case of MOEA/D (see Chapter 3), several single-objective subproblems are generated and
iteratively solved. The Select step returns two solutions associated with neighboring subproblems
of the one being solved. Concerning the Update step, an external archive is completed with the
new solutions found, and solutions of neighboring subproblems can be replaced by better solutions
(which is specific to MOEA/D). In addition, for more complex variants of MOEA/D, the weight
vectors and the subproblems themselves can be modified during the Update step. In NSGA-II (see
Section 1.3.4.2), the Select step employs common selection strategies (e.g., elite selection), but the
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Figure 6.1: Main components
of a MOEA.
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Figure 6.2: Structure of a MOEA with two kinds of generation
strategies. An intensification strategy is performed until conver-
gence is detected, then a diversification strategy is applied to start
from a new population.

Update step is based on Pareto ranking and crowding distance.
Figure 6.1 shows the main steps of a MOEA. We recall that an important point about MOEA,

and more generally with evolutionary algorithm (EA), is the trade-off between exploitation (i.e., in-
tensification) and exploration (i.e., diversification). According to the strategies followed in Crossover

and Mutation steps, it is possible to alternate between exploitation and exploration. For example,
the solutions selected for the crossover can be close (exploitation) or far distant (exploration) in
the objective space. The mutation can be a local search (exploitation) or a random perturbation
(exploration). Hence, it is possible to apply an intensification strategy during a few generations
and, when the population has converged, switch to a diversification strategy for one generation to
create a new population. This situation is represented in Figure 6.2.

6.3 Components of MOLS

6.3.1 Overview of the History of MOLS

A MOLS is an algorithm that iteratively explores solutions selected from a current population, by
using neighborhood operators, accepts candidate solutions during the search, and then updates an
archive of non-dominated solutions. The latter is returned when a termination criterion is reached.
In the literature, we find different families of MOLS.

Originally, the first ones were extensions of single-objective local search based on the aggregation
of the objectives to exploit existing single-objective algorithms. For example in the multi-objective
simulated annealing [Serafini, 1994, Ulungu et al., 1995] (MOSA) the acceptance of a neighbor
solution is based on probabilities, which are themselves based on whether the neighbor dominates,
is dominated by, or is incomparable to the current solution. Hansen et al. [1997] proposed the
first multi-objective algorithm based on tabu search (MOTS), where the best non-tabu neighbor of
the current solution is accepted. These algorithms use a single-solution trajectory, meaning that
only one solution is considered during the execution (opposite from population-based algorithms).
However, they maintain an archive of solutions containing the current best non-dominated solutions.
Czyzżak and Jaszkiewicz [1998] extended the MOSA by using a set of current solutions instead of a
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single current solution, allowing the algorithm to converge into multiple optima at the same time.
The two-phase local search procedure (TPLS) form Paquete and Stützle [2003], developed for bi-
objective optimization, starts by generating an initial solution considering the first objective only.
Then an aggregation, more oriented towards the second objective is used to perform a local search
starting from the last solution obtained. This step is iterated until the final local search which
considers the second objective only.

Then local search techniques have been hybridized with MOEA to benefit from evolutionary
mechanisms. In particular, the multi-objective genetic local search (MOGLS) was first proposed
by Ishibuchi and Murata [1998]. MOGLS hybridizes a genetic algorithm with a single-objective
local search. Each time the local search is applied, new random weights are chosen to aggregate the
objectives. Knowles and Corne [1999] described the Pareto archived evolutionary strategy (PAES),
presented as “the simplest non-trivial approach to a multi-objective local search procedure”. PAES
is an evolutionary algorithm, without crossover, using only local search techniques. A neighbor is
accepted only if it dominates the current solution or if it belongs to a less crowded region of the
population.

Finally, we find MOLS which neither aggregate objectives nor use evolutionary mechanisms, but
instead rely on Pareto dominance to accept neighbors, like the Pareto Local Search [Paquete et al.,
2004] (PLS), where a single solution not yet considered is taken from the current archive to explore
its neighborhood, and all of its neighbors are used to update the archive (only non-dominated
solutions are kept). An indicator-based multi-objective local search is proposed by Basseur et al.
[2012]. A neighbor is accepted if by replacing one solution of the archive it improves the current
hypervolume. To escape from local optima, using restart mechanisms is a necessary step. The
Iterated PLS (IPLS) from Drugan and Thierens [2012] is a multi-restart version of the PLS, which
restarts from a new random solution when the neighborhood of all solutions of the archive has
been explored. Moreover, after a given number of iterations, IPLS applies a mutation to a solution
randomly selected from the archive, and restarts from the resulting solution. In the literature, we
already find two generalizations of the PLS algorithms: the dominance-based multi-objective local
search (DMLS) proposed by Liefooghe et al. [2012], and the stochastic Pareto local search (SPLS)
from Drugan and Thierens [2012].

6.3.2 Basic Components of MOLS

In order to unify all the existing MOLS, Blot et al. [2018b] highlighted the basic components that
are used in all of them. These components are described thereafter.

The archive is the set containing all the current best non-dominated solutions. This is the set
of solutions returned at the end of the execution. If there are many Pareto optimal solutions the
archive can be bounded, following the strategies described in Section 1.3.4.1.

The memory is a second set of solutions containing the current population of solutions, i.e.,
the solutions that can be explored. Some of these solutions may be dominated by solutions of the
archive. Similarly to the archive, bounding mechanisms can be used. However, it seems advan-
tageous to limit only the memory and keep the archive unbounded. As already seen above, the
memory can contain either a single solution or multiple solutions.

The exploration strategies describe which neighbors to accept as candidate solutions and when
the exploration stops. The acceptance criterion is related to the quality of the solution, regarding
a reference. The reference can be the current solution or a set of solutions (like the memory or
the archive). To measure the quality of a neighbor, it is possible to aggregate the objectives or
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to use Pareto dominance. When Pareto dominance is used, the neighbor can be accepted when it
dominates the reference, or when it is non-dominated (regarding the reference).

Like in single-objective optimization, the neighborhood can be fully (e.g., best improvement
strategy) or partially (e.g., first improvement strategy) explored. For example, in a multi-objective
context, the exploration can end when the first non-dominating neighbor of the current solution
is found, and all non-dominated neighbors encountered are accepted. The accepted neighbors can
be used to update directly the archive and/or the memory. When the memory contains multiple
solutions, a subset of solutions can be explored (instead of exploring all solutions), however, if the
archive or the memory is updated during exploration, the order of exploration may strongly impact
the performance.

When the memory has been explored and the archive updated with all the accepted neighbors,
the memory must be updated for the next iteration. An entire memory can be constructed by
considering solutions from the archive or only explored solutions can be replaced either by one of
their accepted neighbor or by an unexplored solution from the archive.

A natural termination criterion for the local search is reached when no more solution is to be
explored (i.e., the memory is empty). In that case, all solutions from the archive are Pareto local
optima. A possibility to force quick convergence or ensure diversification, is to remove from the
memory partially explored solutions, leading to an empty memory stopping the algorithm. A more
common termination criterion can be used like the total computational time, the total number
of iterations or evaluations, and the number of successive iterations without improvement (of the
archive, or regarding a quality indicator).

Various mechanisms have been developed to escape from local optima in single-objective opti-
mization. Similar mechanisms can be adopted in a multi-objective context when the algorithm is
trapped in sets of Pareto local optima. For example, MOSA and MOTS respectively exploit simu-
lated annealing and tabu search properties. Another possibility is to exploit an iterated local search
scheme [Drugan and Thierens, 2012]. In that case, a convergence condition is considered (e.g., a
threshold in the convergence rate) to restart from new solutions of the search space, or from close
solutions to the current or best ones, by using a kick strategy. Some solutions are selected from the
memory or the archive to undergo a given number of random moves. The resulting non-dominated
solutions form a new Pareto set from which the algorithm restarts.

6.3.3 Unification of MOLS

From the components described above, Blot et al. [2018b] defined a unified structure of MOLS
algorithms. This unification is composed of three main procedures: the main loop of the local
search, the exploration of the neighborhood of solutions (Algorithm 14), and the iterated version
(Algorithm 15).

The main loop of the local search, presented in Algorithm 13, iterates the three following steps
until the memory is empty or as soon as the stopping condition is met. For each solution of
the memory, a reference is defined (Reference), which is used to accept neighbors as candidates
(Explore), and accepted neighbors may be used to update the memory (Update). All accepted
neighbors are used to update the archive (Combine) after the exploration of all solutions of memory
or the realization of an early stopping condition. The last step updates the memory for the next
iteration (Select).

The Explore procedure is described in Algorithm 14. The neighbors of the current solution are
generated until they all have been generated or a stopping condition is met. If the neighbor satisfies



124 CHAPTER 6. UNIFICATION OF MOEA AND MOLS

the acceptance criterion (depending on the reference), it is added to the set of accepted neighbors
(Accept). Moreover, the current solution, the reference set and the archive can be directly updated
during the exploration (Update).

Likewise iterated local search, the MOLS can be iterated, until a stopping criterion is reached,
to improve the convergence of the final set obtained. An additional Pareto set archive∗ tracks the
overall non-dominated solutions found during local search iterations. By using a perturbation step,
a new memory and a new archive are created (Perturb), used as inputs of Algorithm 13. The final
archive obtained is combined with archive∗ (Combine).

Algorithm 13: Multi-Objective Local Search (MOLS) framework.

Input: memory, a set of solutions to explore, archive a Pareto set of solutions.
Output: the updated archive

1 while not local search stopping condition and memory ̸= ∅ do
2 allAccepted← ∅
3 while not iteration stopping condition and not all memory considered do
4 let current ∈ memory
5 ref ← Reference(current,memory, archive, allAccepted)
6 accepted← Explore(current, ref, archive)
7 memory ← Update(memory, current, accepted)
8 allAccepted← allAccepted ∪ accepted

9 archive← Combine(archive, allAccepted)
10 memory ← Select(memory, archive, allAccepted)

11 return archive

Algorithm 14: Explore procedure.

Input: current, a solution to explore the neighborhood, ref set of solutions to compare
neighbors with, archive a Pareto set of solutions.

Output: accepted, the set of accepted neighbors
1 while not exploration stopping condition and not all N (current) considered do
2 let neighbor ∈ N (current)
3 accepted← Accept(accepted, neighbor, ref)
4 current, ref, archive← Update(ref, accepted, current, archive, neighbor)

5 return accepted

Figure 6.3 contains a simplified overview of Algorithm 13 and Algorithm 15, representing a
MOLS. A MOLS iterates three main steps, the selection of solutions to put in the memory (SE-
LECTION), the exploration of the neighborhood of the solutions of the memory (EXPLORATION),
representing l.3-8 of Algorithm 13, and the update of the archive (UPDATE). After convergence,
a perturbation step occurs to generate a new archive (PERTURBATION), and a MOLS is applied
again until a global termination criterion is reached.
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Algorithm 15: Iterated MOLS framework.

Input: archive a Pareto set of solutions.
Output: the final archive∗ set

1 archive← MOLS(archive)
2 archive∗ ← archive
3 while not global stopping condition do
4 memory, archive← Perturb(archive, archive∗)
5 archive← MOLS(memory, archive)
6 archive∗ ← Combine(archive, archive∗)

7 return archive∗

SELECTION

MOLS

PERTURBATION

UPDATE

EXPLORATION

Best front

Initial front

Figure 6.3: Main components of a MOLS.
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Figure 6.4: The proposed unified view for
MOLS and MOEA metaheuristics.

6.4 Proposition of a Unified View for MOLS and MOEA

This section shows the structural similarities between MOLS and MOEA through a unified view,
based on the considerations made in the two former sections.

The MOLS and MOEA frameworks can be abstracted with the following four main steps:
Selection, Exploration, Update, and Perturbation. The Figure 6.4 shows how these steps
interact together. The Exploration step is used for intensification while the Perturbation one for
diversification. A cycle is defined as a succession of a fixed number of iterations of the three first
steps (i.e., Selection, Exploration, and Update). In MOLS, a cycle corresponds to an execution of
MOLS, while in MOEA, a cycle represents a number of generations where an intensification strategy
is applied to produce the best possible population. When a cycle ends and a specific condition is
met, a Perturbation occurs to update the current population before the next Selection, and so
forth, until a termination criterion is reached (generally based on time or a number of iterations).
Three sets of solutions are handled during the execution: the external archive (i.e., archive∗ in
MOLS), which is the set containing the best overall solutions found during the execution, the
(internal) archive (i.e., the current population in MOEA), which contains the Pareto set of the
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current cycle, and the selected solutions (i.e., the memory in MOLS). This is the external archive
that is finally returned. The steps are discussed below with details about their instantiation in
MOLS and MOEA.

The Selection step chooses one or several solutions to explore in the archive, initialized with
the initial front provided. This choice can be done randomly, or following a criterion to focus on
a specific region of the objective space. In MOLS, the selection is directly performed from the
archive, producing the memory. In MOEA, solutions are selected from the population to undergo
crossover and mutation steps. More precisely, in MOEA/D, the selection depends directly on the
current subproblem solved, since solutions are selected in the subproblem neighborhood.

Exploration is the intensification step of the algorithm where the search focuses on specific
regions of the search space (i.e., related to the selected solutions). During this step, a mechanism
associates the selected solutions with new better candidate solutions. Note that, during this step,
the set of selected solutions can be directly updated (e.g., replacement of the solution explored). In
MOLS, the exploration consists of accepting either non-dominated or dominating neighbors of the
selected solutions, considering a reference set. Consequently, many iterations are needed to reach
a Pareto local optima. In MOEA the exploration consists of applying the crossover and mutation
steps to improve the current population. The mutation can be replaced by a local search (which
can be single-objective in MOEA/D), producing local optima solutions.

When new solutions are found after the exploration, the Update step tentatively integrates
them into the archive (and possibly in the external archive) where only non-dominated solutions
are kept. While the archive generally relies on bounding mechanisms, the external archive remains
unbounded.

In both neighborhood-based and evolutionary algorithms, it is necessary to perturb solutions
to escape regions with local optima. The Perturbation generates new solutions to be explored
by applying random moves, destroy and repair mechanisms, or genetic operators to solutions from
the external archive. It acts like a diversification step where new regions of the search space can
be identified and then explored. After the perturbation, the solutions are used to create a new
current population, and a new cycle is started. In MOLS, the perturbation relies on local search
mechanisms. In MOEA, it corresponds to a crossover and/or a mutation.

Our unified view captures the global behavior of MOLS and MOEA metaheuristics, simplifying
the integration of the solution-based knowledge discovery mechanism into multi-objective algorithms
fitting this view.
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This chapter’s contributions are linked to the following accepted paper:
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7.1 Introduction

In this chapter we develop a unified Solution-based Knowledge Discovery (SKD) model, using the
unified view proposed in the former chapter. The SKD model is based on three main steps: the
creation of the knowledge groups, the extraction and injection procedures.
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The model is described in Section 7.2, where a focus is made on the three steps composing it.
In particular, a new construction of knowledge groups is presented. In Section 7.3, the model is
instantiated in a MOLS and a MOEA/D. Finally, the algorithms are evaluated and compared in
Section 7.4.

7.2 Unified Solution-based Knowledge Discovery Model

In this section, the SKD model is described within the unified view proposed in Chapter 6. The
SKD model integrates three additional steps. One focuses on the creation of knowledge groups
Creation, and the two other ones are Extraction and Injection, respectively related to the
extraction and injection steps.

The creation of the knowledge groups is performed at the beginning of the execution. When
an initial front is provided, the groups can directly exploit it by extracting the knowledge from
its solutions. Moreover, the region associated with each group can take into account the front
provided to directly focus on interesting part of the objective space. A strategy to create the
knowledge groups has already been proposed in Section 5.2.1 and is recalled in Section 7.2.1. In
addition, a new construction strategy is presented, which adapts to the current Pareto front.

The extraction (resp. injection) procedure is made more generic in Section 7.2.2 (resp. Sec-
tion 7.2.3) to facilitate the integration into other metaheuristics. Furthermore, it becomes easier to
change the extraction and injection strategies with the model presented.

Once the three components are described, they are integrated into the unified view in Sec-
tion 7.2.4, forming the SKD model.

7.2.1 Adaptive Knowledge Groups

This section introduces a new construction of knowledge groups, with the particularity that the
regions of the knowledge groups is adapted regarding the current Pareto front. We recall that a
knowledge group gathers structural elements of the solutions belonging to the same region of the
objective space. Our first proposition of knowledge groups, presented in Section 4.3.1 was linked
to the subproblems defined in MOEA/D, associating a knowledge group with a single subproblem.
Then, we proposed an enhanced construction, named WG in the following, defined in Section 5.2.1,
which associates each knowledge group with a region of the objective space. To define the region
of each knowledge group we used weight vectors. However, once the regions defined, they do not
change during the execution of the algorithm, which may not be appropriate to take into account
the evolution of the Pareto front during the execution.

Our new strategy, named EG, to define the representatives of the knowledge groups, is repre-
sented in Figure 7.1. In a bi-objective context, a straight line links the extreme points of the current
front, and then, kG points (including the extreme points) are regularly created on the line. Each
created point corresponds to a representative of a group. The proximity of a solution to a group
is then evaluated by the Euclidean distance between the objective vector of the solution and the
representative. When more objectives are considered, we consider the hyperplane passing through
all the extreme points of the front and kG points are sampled in the hyperplane. With this strat-
egy, it is possible to dynamically update the representatives of each group, before the extraction,
if the extreme points vary. In Figure 5.1 (from Section 5.2.1) and Figure 7.1, each solution of the
Pareto front is linked to its closest representative, which leads to different distributions for each
construction.



7.2. UNIFIED SOLUTION-BASED KNOWLEDGE DISCOVERY MODEL 129

Objective 1

Objective 2

0

Figure 7.1: Creation of five representatives, each one defining the region of a knowledge group.
The representatives are placed on the line linking the extreme points of the Pareto front. This
construction is denoted EG.

7.2.2 Interaction between Extraction and Knowledge Groups

In this section, we present the extraction procedure and its interaction with knowledge groups.
Although the extraction has already been presented in Chapter 4 and Chapter 5, the mechanism
was too dependent on the algorithm used, that is MOEA/D. Here we define the extraction as a
standalone component, with its own strategies and mechanisms.

The extraction procedure is presented in Algorithm 16. Before applying the extraction, the
representatives of the groups can be updated (if the EG construction is used) with the current
archive. For the extraction procedure, a learning set L of solutions obtained during the execution of
the algorithm is provided. This set contains solutions from which it could be interesting to learn the
structure. However, multi-objective algorithms explore plenty of solutions during their execution,
and learning from all of them would scramble the knowledge added to the groups. Consequently,
the procedure Filter generates a subset of L, containing the solutions that undergo the extraction
procedure. For example, Filter can only keep the non-dominated solutions of L. In particular,
this strategy allows the learning to focus on the most interesting solutions. Other possibilities are
also available like a random sample or a mix of dominated and non-dominated solutions, if there is
not enough non-dominated solutions.

Once L is filtered, knowledge is extracted from each remaining solution x. It is then added to
the de closest groups (function SelectGroups, l.4 of Algorithm 16) of x, following the evaluation
of the proximity between a solution and a group provided. The parameter de allows the control of
the diversification of the mechanism: smaller values correspond with fewer groups being updated,
resulting in an intensification strategy. Then, the elements of knowledge are added to the corre-
sponding groups (Update procedure), and a score (basically the frequency of appearance in our
case) reflecting the relevance of each element is updated. Moreover, we choose not to allow the
same solution to contribute more than once to a group, to avoid the bias induced by local optima.
The set L is emptied after updating the groups.

The construction of L and the function Filter used in Algorithm 16 are presented in Section 7.3
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since they are algorithm-dependent.
The functions Extract (l.3) and Update (l.5) are problem-dependent and are discussed hereafter,

in this section. Extract did not change from the beginning (see Section 2.8.3): sequences of
consecutive customers in routes (excluding the depot) are extracted. The maximum size of the
patterns extracted is controlled by the parameter sp. Concerning Update, initially all sequences
have a score of 0, and each time a sequence is added to a knowledge group its associated score is
incremented by 1. Moreover, when a threshold lf is exceeded by the score the associated sequence
is tagged frequent, meaning that it can be used during the injection procedure. In the first part
of the thesis, we did not consider such a threshold (equivalent to lf = 1), however, many patterns
are extracted only once, and should not be considered during the injection step. Moreover, this
threshold filters the patterns that can be used during injection (i.e., the candidate patterns) limiting
the choice to the most promising patterns.

Algorithm 16: Extraction procedure.

Input: A the current archive, G the knowledge groups, L the learning set, and de the
number of groups to update.

Output: The updated knowledge groups.
1 S ← Filter(L)
2 for x ∈ S do
3 K ← Extract(x)
4 G = {G1, . . . , Gde

} ← SelectGroups(G, de, x)
5 Update(G,K)

6 L← ∅
7 return G

7.2.3 Interaction between Injection and Knowledge Groups

As it was done for the extraction step, this section presents the injection procedure as a standalone,
making it independent from the algorithms used. Any solution found can undergo the injection
procedure described in Algorithm 17.

First, the knowledge to inject in the solution x must be selected. Similarly to the extraction,
a subset of di groups containing the closest groups to x is created (function SelectGroups). The
di parameter controls the diversification of the injection. The function SelectOne selects among
the di candidate groups the final group that will produce the knowledge to inject in the solution
x. The selection can be done at random, or following a specific criterion if a group is preferred.
Then, some knowledge is selected from the resulting group with the SelectKnowledge function. In
particular, the knowledge should be selected considering the scores of the elements in the group. In
that case, it is possible to select the elements with the highest score or by means of a roulette wheel
mechanism. Each element k of knowledge is tentatively injected into a solution x′ (initially x) using
the function Inject. All solutions accepted (e.g., those dominating x′) during the injection of k
are added to a set S′. Indeed, when we hybridized the knowledge discovery with MOEA/D, only
the solution with the best fitness was accepted during the injection, and more precisely, during the
reconnection step. Using algorithms that do not use an aggregation of objectives implies defining an
acceptance condition to select the next solution. The next solution x′ to undergo the injection can
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be replaced by taking one of the solutions of S′ (function SelectNextSolution). For that choice,
it is possible to select a solution at random, with a dominance criterion, or with an aggregation
when it is defined. Finally, after the injection of all the elements of knowledge, all the accepted
solutions are returned.

The functions SelectOne (l.2), SelectKnowledge (l.3), and SelectNextSolution (l.7) used in
Algorithm 17 are defined in Section 7.3 since they are algorithm-dependent. The problem-dependent
function Inject (l.6) has been described in Section 2.8.2. We briefly recall that the injection
mechanism starts by removing the arcs connected to the patterns, forming pieces of routes that
are then reconnected to create feasible solutions. Reversed patterns are discarded and in a multi-
objective context, there is possibly no best solution, then the Pareto dominance relation should be
used instead as a criterion to accept solutions and discard others.

Algorithm 17: Injection procedure.

Input: G the knowledge groups, x the current solution, and di the number of candidate
groups.

Output: Accepted solutions containing (at least) one injected pattern.
1 G = {G1, . . . , Gdi

} ← SelectGroups(G, di, x)
2 G′ ← SelectOne(G)
3 K ← SelectKnowledge(G′)
4 S ← ∅
5 x′ ← x
6 for k ∈ K do
7 S′ ← Inject(k, x′)
8 x′ ← SelectNextSolution(S′, x′)
9 S ← S ∪ S′

10 return S

7.2.4 Presentation of the SKD Model

The Solution-based Knowledge Discovery (SKD) uses knowledge groups and the procedures of ex-
traction and injection suited to multi-objective algorithms. These components have been described
in the sections above. The Unified View presented in Section 6.4 contains successive steps of intensi-
fication and diversification. The intensification is usually the core of the multi-objective algorithms
where identified regions of the search space are deeply explored using an underlying local knowledge
given by the neighborhood. In this section, we integrate the SKD into multi-objective algorithms
using our unified view in Figure 6.4. We aim to improve the diversification phase (symbolized by
the Perturbation step), by exploring larger regions of the search space with the knowledge stored
in the groups. The conception of the SKD model is presented in Figure 7.2.

At the beginning of the execution, given an initial front, the knowledge groups are created
following one strategy presented in Section 7.2.1.

It is possible to deactivate the extraction until a certain execution time is reached, to balance
low-quality and high-quality solutions. Indeed, if the initial front contains solutions of poor quality,
it should be better to wait a few iterations to learn from solutions of higher quality. In the following,
we activate the procedure with no delay, at the beginning of the execution, since an initial front



132 CHAPTER 7. UNIFIED SOLUTION-BASED KNOWLEDGE DISCOVERY MODEL
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Figure 7.2: The unified view integrating the three steps of the Solution-based Knowledge: the
Creation of knowledge groups, the Extraction, and the Injection procedures.

containing improved solutions is provided.

Applying the extraction procedure at every iteration risks biasing the knowledge groups towards
the currently explored region of the objective space. In particular, waiting a few iterations allows
the learning set to contain more interesting solutions. Hence, the Extraction step should be applied
only after the end of a cycle, on a subset of explored solutions (i.e., the learning set). Note that,
before applying the extraction, it is possible to update the representatives of the knowledge groups.

Any solution can undergo the injection phase but, like the Extraction, applying it to all the
explored solutions would waste computational resources. In addition, the Injection can be a costly
step for some problems (e.g., in routing problems). Thus, we consider that the injection should be
applied only after the end of a cycle and more precisely:

• after the Perturbation if it occurred; in that case, the injection is performed on perturbed
solutions

• after the Extraction; in that case, we recommend applying the injection on solutions from
the current population or archive.

or After the injection, a new cycle (i.e., an intensification step) is started by updating the archive
and the current population.

7.3 Instantiation of the Model for MOEA/D and MOLS

This section presents instantiations of the SKD model presented above in two multi-objective al-
gorithms. The model is integrated into a MOEA/D (Section 7.3.1), and another integration is
proposed in a MOLS (Section 7.3.2), and more precisely in a Dominance-based Multi-objective
Local Search (DMLS) [Liefooghe et al., 2012].
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7.3.1 Integration in MOEA/D

First, we provide an instantiation of the MOEA/D framework (described in Chapter 3), which is

called Rfb,d2

MOEA/D. We generate M weight vectors uniformly distributed, assuming that is enough

to obtain diverse subproblems. Each weight vector defines a scalar problem with a weighted sum
of the objectives. To generate a set of solutions to explore, a Partially Mapped Crossover (PMX)
is applied with probability px to generate a new starting solution for each subproblem (this is the
Perturbation step from Figure 6.4). In particular, only one solution is randomly chosen after
the crossover to keep the population’s size constant. When the crossover is not applied (due to
the probability), the solution associated with the subproblem is kept. Then a cycle starts, during
which all subproblems are solved starting from the solution generated before. The exploration is
ensured by the mutation, which is a local search applied with probability pm. The neighborhood
operators remain the 2-opt∗, Relocate, and Swap (described in Section 2.6). The local search
is a randomized variable neighborhood descent, where the order of the operators is kept during
descent (until a local optimum is reached) but shuffled each time the local search is applied. The
components of the local search have already been detailed in Section 4.4: the first-best exploration
strategy is used with the granularity metric d2, limiting the size of the neighborhood. We recall that
the first-best strategy explores subsets of neighboring solutions (here, one customer is considered
at a time, and all the moves involving that customer generate the subset to explore), and the
search stops once an improving move is found (i.e., it corresponds to apply the best possible move
for one customer). The granularity metric d2 assigns to each arc between two customers a value
representing the relevance of the arc (a low value increases the relevance), then some arcs can be
discarded if their value is too high. The metric proposed (d2), has the advantage of adapting the
value according to the weight vector used to solve a subproblem in MOEA/D, and the value takes
into account both objectives to optimize.

Following the model presented in Section 7.2.4, the Extraction and Injection procedures
are added to the reference MOEA/D, Rfb,d2

MOEA/D. The algorithm using the weight vectors (resp.

the extreme points of the front) to create the groups is called SKDWG
MOEA/D (resp. SKDEG

MOEA/D).
Concerning the Extraction, each solution that is tentatively added to the external archive (and to
the current population) during the Update step of Figure 6.4, is also added to the learning set. In
particular, these solutions are those obtained at the end of the resolution of a subproblem. Then,
the knowledge is extracted from non-dominated solutions of the learning set (Filter step of the
Extraction). The Injection procedure is applied to all the solutions of the current population
(i.e., the current best solution of each subproblem). The SelectOne function randomly selects the
group (among the di closest groups) that gives the knowledge to inject. For the SelectKnowledge

function, we rely on the scores (i.e., the frequency of appearance in our case) of the elements learned.
We consider Ni elements, randomly selected among the Nf elements with the highest scores, as it
was done in the former chapters. The next solution (SelectNextSolution) is the best (considering
the aggregation of the associated subproblem) accepted during the injection.

7.3.2 Integration in MOLS

To present the integration of SKD in a MOLS, we follow the scheme of the DMLS originally
introduced by Liefooghe et al. [2012]. We only consider the components related to the algorithm,
since the dominance relation and the components related to the problem have already been defined.
The algorithm starts from an initial front given by the user, which is integrated into a bounded
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archive, archive, of size Ua, representing the current population. The archive is bounded by using
the crowding distance [Deb et al., 2002] (defined in Section 1.3.4.1). Then, Um randomly selected
solutions from the archive, among the not entirely explored ones (i.e., solutions that produced
at least one accepted candidate solution during the neighborhood exploration), form the set to
explore. The DMLS algorithm iteratively explores the selected solutions. During the local search,
the neighborhood of a solution x is explored until a non-dominated solution is found (i.e., this
is a first improvement strategy), considering all solutions of archive (i.e., the reference set is the
archive) [Blot et al., 2017]. The neighborhood of a solution is obtained by shuffling the neighborhood
operators 2-opt∗, Relocate, and Swap. Note that, we do not use a granularity mechanism to reduce
the size of the neighborhood with this algorithm. If no neighboring solution is accepted, x is tagged
as explored and is no longer selected during the current cycle, moreover tagged solutions cannot be
selected during the local search. If any, the accepted solution is tentatively added to archive.

In the iterated variant, we manage a second (unbounded) archive, archive∗, containing the best
non-dominated solutions found during the execution. After lc iterations (denoting the length of a
cycle), the uHV of archive is evaluated, and the solutions of archive are integrated into archive∗.
Before starting a new cycle, if all solutions of archive are tagged as explored or the uHV has not
been increased by at least euHV after two consecutive cycles, a Perturbation step occurs. During
this step, all existing tags are removed from solutions, all elements from archive are tagged as
explored and a new archive archive is created by perturbing solutions from archive∗.

To perturb a solution x, we apply three moves of the local search, with the following acceptance
criterion: a solution y is accepted when x ⪰ϵp y, i.e., when x ϵp-dominates y, with ϵp a parameter
of the algorithm (see Section 1.3.1). We remarked during preliminary experiments that for a few
instances, the archive archive did not contain many solutions (less than ten). This point severely
impacts the performance of the algorithm since too few solutions are explored. Thus, we use an
additional set of solutions together with the archive to have access to more solutions during the
exploration phase. The additional solution set is obtained during the perturbation step and it
contains solutions generated that are not added to archive. As a consequence, the additional set
is empty at the beginning of the execution. Moreover, the solutions are selected from archive in
priority, and then from the additional set when no more solutions are available for exploration.
Another change concerns the update of the additional set after the exploration. Suppose a solution
from the additional set is explored and provides an accepted solution not added to the archive. In
that case, the explored solution is replaced by its accepted neighbor in the additional set. This
version of MOLS is called RMOLS.

Following the model presented in Section 7.2.4, the Extraction and Injection procedures are
added to RMOLS. The algorithm using the weight vectors (resp. the extrema of the front) to
create the groups is called SKDWG

MOLS (resp. SKDEG
MOLS). Concerning the Extraction procedure,

we have to define how the learning set is managed and how its elements are filtered. Every solution
tentatively added to archive after the exploration step should be added to the learning set, since
it may produce interesting knowledge to exploit. The Filter function keeps the non-dominated
solutions from the learning set. Concerning the injection procedure, it is sequentially applied to all
the solutions from archive. The functions SelectOne and SelectKnowledge are exactly the same
as described in Section 7.3.1. Finally, for the SelectNextSolution function, the initial solution is
returned (x in Algorithm 17). Indeed, since we work with a MOLS algorithm, we prefer staying
locally around the solution by attempting to inject knowledge into it rather than trying to highly
optimize the solution. Finding a better solution is interesting, but could dominate a large part of
the archive, resulting in a loss of diversity.
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7.4 Performance Analysis

In this section, we evaluate the performances of the SKD model proposed in the former chapter. The
compared algorithms are Rfb,d2

MOEA/D, SKDEG
MOEA/D, SKDWG

MOEA/D, RMOLS, SKDEG
MOLS, and SKDWG

MOLS.

The reference algorithms are Rfb,d2

MOEA/D, a version of MOEA/D, and RMOLS, a version of MOLS. Two

variants of the SKD model are integrated into each reference algorithm. The difference between the
two SKD variants concerns the construction strategy of the knowledge groups, either using weight
vectors (WG) or extreme points of the current Pareto front (EG).

The remainder of the section focuses on the experimental study performed. The value of each
parameter is discussed in Section 7.4.1. The experimental protocol is described in Section 7.4.2,
and the results obtained are presented in Section 7.4.3.

7.4.1 Choice of Parameters Value

In the first part of the thesis, in Chapter 5, we analyzed the components of a learning variant of
MOEA/D. The MOEA/D considered as a reference for this experimental study, Rfb,d2

MOEA/D, is the

same as the reference MOEA/D, RMOEA/D, described (and tuned) in Chapter 5. Although the
learning mechanism was structured differently (concerning the extraction and injection procedures,
which were directly integrated and dependent on MOEA/D), the strategy employed was similar to
the one used in our new integration (i.e., an intensification strategy was used for both extraction
and injection, the solutions used for the extraction step were identical, as well as the solutions
receiving patterns). This allows us to use the values obtained for the parameters at the end of the
first part of the thesis.

The tuning of the parameters for the Rfb,d2

MOEA/D variant comes from the tuning with irace per-

formed in Section 5.3.1.2. M = 40 subproblems are created, with m = 10 neighbors. At most 2
neighbors may have their solution replaced during the update step. The crossover is applied with
probability px = 1.00, and the local search with probability pm = 0.10. The granularity is set to
δ = 50%. Note that, for this experimental study, there are no distinctions between instances of dif-
ferent categories, thus we considered the configuration which returned the best results by testing it
on the other category of instance. Hence the configuration selected is the one reported in Table 5.6
for C instances.

For RMOLS, the parameters are chosen to be fair with Rfb,d2

MOEA/D (i.e., the size of the bounded

sets is equivalent, and the time allocated to the different components is similar). The archive is
bounded to Ua = 30 solutions, and the additional set of solutions contains up to Us = 10 solutions.
Each iteration, Um = 1 solution is explored, selected from the archive, and, if needed, from the
additional set. The perturbation occurs when the uHV does not increase by at least euHV = 10−2,
and during the perturbation, ϵp = 1.02. A cycle performs lc = 100 iterations, so that, the duration

(in seconds) of a cycle in RMOLS is similar to the average duration of a cycle in Rfb,d2

MOEA/D.

The parameters value of SKDEG
MOEA/D and SKDWG

MOEA/D (resp. SKDEG
MOLS and SKDWG

MOLS) are
similar and follow from the discussion reported in Section 5.3.3.3. Again, for the variants of
MOEA/D, we considered the configuration of fbd2 (the closest variant) from Table 5.9a, obtained
on instances of category C. With the new model introduced, there are no more probabilities related
to the injection or the extraction steps (before, the probability of injection was 1.00). The crossover
probability (for MOEA/D) becomes px = 0.50. There are kG = 20 knowledge groups (i.e., 50% of
the number of subproblems). The maximum size sp of extracted patterns is set to 8 (resp. 5) for
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Table 7.1: Parameters’ values for the MOEA/D variants. The symbol “-” reflects the absence of the
parameter in the variant. The EG-MOEAD (resp. WG-MOEAD) variant stands for SKDEG

MOEA/D

(resp. SKDWG
MOEA/D).

Parameter Rfb,d2

MOEA/D EG/WG-MOEAD

Number of subproblems: M 40 40
Subproblem neighborhood size: m 10 10
Granularity: δ (%) 50 50
Crossover probability: px 1.00 0.50
Mutation probability: pm 0.10 0.10
Exploration strategy: S first-best first-best
Granularity metric: d d2 d2
Number of knowledge groups: kG - 20
Extraction diversity: de - 1
Maximum pattern size: sp - 5 or 8
Threshold frequency: lf - 2
Injection diversity: di - 1
Number of patterns selected for injection: Ni - 100
Number of candidate patterns: Nf - 250

instances of class 2 (resp. class 1) since large (resp. short) routes are designed. Only this parameter
is modified to be more adapted to the instances solved. The knowledge is added to de = 1 group,
and the knowledge to inject is provided by at most di = 1 group. As a result, both injection and
extraction follow an intensification strategy, like in Section 5.3. Ni = 100 patterns of the same size
are tentatively injected into each solution. They are selected among the Nf = 250 most frequent
patterns of the corresponding size in the group. The threshold frequency for patterns is set to
lf = 2.

The parameters’ values are summarized in Table 7.1 (resp. Table 7.2) for MOEA/D (resp.
IMOLS) variants. The parameters related to the learning mechanism are the same for all variants,
while each reference algorithm has its own set of parameters.

7.4.2 Experimental Protocol

As we did in the first part, the experiments are run on two computers “Intel(R) Xeon(R) CPU
E5-2687W v4 @ 3.00GHz”, with 24 cores each. Our framework is implemented in the jMetalPy
framework [Benitez-Hidalgo et al., 2019]. The source code and our results are publicly available1.

We use Solomon’s benchmark (see Section 2.3.1 for details) and Gehring and Homberger’s
benchmark (see Section 2.3.2) to evaluate the performance of the algorithms.

To fairly compare the algorithms, they are all initialized with the same fronts. The strategy
to create the initial fronts is inspired from Blot et al. [2018a], who optimize solutions following
directions (like in MOEA/D). However, the directions are updated to focus on the regions of the
objective space with few solutions and the initial solution for a subproblem is the best possible (non-
dominated) solution currently found. Our strategy starts by generating a set of 12 random solutions,

1https://gitlab.univ-lille.fr/clement.legrand4.etu/skd_integration

https://gitlab.univ-lille.fr/clement.legrand4.etu/skd_integration
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Table 7.2: Parameters’ values for the IMOLS variants. The symbol “-” reflects the absence of the
parameter in the variant. The EG-IMOLS (resp. WG-IMOLS) variant stands for SKDEG

MOLS (resp.
SKDWG

MOLS).

Parameter RMOLS EG/WG-IMOLS

Size of archive: Ua 30 30
Size of additional set: Us 10 10
Size of memory: Um 1 1
Increase of uHV required not to restart: euHV 10−2 10−2

Epsilon value for perturbation: ϵp 1.02 1.02
Length of cycle: lc 100 100
Number of knowledge groups: kG - 20
Extraction diversity: de - 1
Maximum pattern size: sp - 5 or 8
Threshold frequency: lf - 2
Injection diversity: di - 1
Number of patterns selected for injection: Ni - 100
Number of candidate patterns: Nf - 250

as well as a set of 12 uniformly spread weight vectors. Each solution is randomly associated with one
weight vector and is optimized with the same local search as defined in Rfb,d2

MOEA/D (i.e., a variable

neighborhood descent with the first-best exploration strategy and the metric d2 with a granularity
of δ = 25% to obtain quick results). During the local search, the non-dominated solutions found
are added to the current Pareto set. Then during 20 iterations, for all the weight vectors, the
best possible solution in the current Pareto set is selected. If the best possible solution is the last
found (which is a local optimum), then the weight vector is replaced by a new random one. The
starting solution is a solution randomly selected from the current Pareto set and is optimized with
the local search. The final Pareto set is returned. With these parameters, it takes approximately
2 (resp. 8) minutes to generate a front for instances of size 100 (resp. 200). We generate 30 initial
fronts for each instance with this procedure, all publicly available2. In IMOLS, the initial front is
directly used as the initial archive (bounded if needed), however, in MOEA/D, each subproblem is
initialized with the best possible solution of the front.

The six algorithms are then executed over 30 seeds on each instance, each seed being associated
with a different initial front. The termination criterion for each run is set to 10 (resp. 20) minutes
for instances of size 100 (resp. 200). The average uHV obtained over the 30 runs is compared with
Pairwise Wilcoxon tests with Bonferroni correction. The reference fronts, composed of all the best
non-dominated solutions found during all the experiments performed for the thesis are publicly
available1. Moreover, to normalize the objectives we use the best ideal and nadir points found
during our experiments.
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Figure 7.3: Hypervolumes obtained by all the algorithms on the different categories of instance of
Solomon’s benchmark.
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Figure 7.4: Hypervolumes obtained by all the algorithms on the different categories of instance of
Gehring and Homberger’s benchmark.
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Table 7.3: Average uHV (×103) of the algorithms on the different categories of instances. MOEAD

(Rfb,d2

MOEA/D) and IMOLS (RMOLS) are the reference algorithms. EG-M (SKDEG
MOEA/D), WG-M

(SKDWG
MOEA/D), EG-I (SKDEG

MOLS), and WG-I (SKDWG
MOLS) are the learning variants. Gray cells

identify algorithms that are statistically better on the corresponding set of instances when compared
to the other six variants. Bold values represent the best-performing algorithms when MOEA/D
(resp. IMOLS) variants are compared together (i.e., three rows each).

Size 100 200

Categ. C R RC C R RC

Class C1 C2 R1 R2 RC1 RC2 C1 C2 R1 R2 RC1 RC2

MOEAD 833 888 805 773 776 792 703 613 755 668 733 702
WG-M 904 912 834 795 784 808 793 788 800 741 806 792
EG-M 856 902 806 778 762 792 744 740 784 723 774 765
IMOLS 923 966 850 761 837 766 822 746 754 654 758 619
WG-I 970 987 886 814 844 823 885 826 811 761 854 830
EG-I 958 986 885 807 844 814 875 835 814 751 842 814

7.4.3 Experimental Results and Discussion

Table 7.3 summarises the results obtained. Detailed results per instance are publicly available1.
Figure 7.3 (resp. Figure 7.4) illustrates the results obtained on Solomon’s (resp. Gehring and

Homberger’s) benchmark. First, RMOLS returns better results than Rfb,d2

MOEA/D except on instances

R2 and RC2 of size 100, and RC2 of size 200. Indeed, instances of category 2 are less constrained,
leading to a larger exploration space. In that case, it seems preferable to use MOEA/D rather
than IMOLS to intensify the search. However, this consideration does not apply to C2 instances,
probably due to the presence of clusters, leading to more local optima.

We can see that using SKD (no matter the strategy used to create the groups) positively impacts

RMOLS in all instances. The same conclusion holds for Rfb,d2

MOEA/D except on RC1 instances of size

100, with EG groups. Moreover, using SKD is even more beneficial in instances of bigger sizes.

In MOEA/D, using the strategy with the weight vectors to create the groups is statistically
better than using the other one. This is probably because the algorithm itself uses weight vectors
to decompose the search space. Concerning the IMOLS algorithm, both strategies are often equiv-
alent, but using the weight vectors leads to slightly better results. Thus, this strategy should be
preferred in general. Additionally, using SKD allows the creation of more diversified Pareto fronts
for MOEA/D and IMOLS. Figure 7.5 compares each algorithm’s final fronts obtained (blue dots)
on one run of instance RC2 2 6 from the Gehring and Homberger benchmark. The reference front
is represented (orange dots), and the initial front is provided too (first picture on the left). For each
front, the associated hypervolume is computed regarding the reference front, and the size of the
front (i.e., the number of non-dominated solutions) is provided. In particular, each front obtained
with a learning variant contains more solutions than a front obtained with the reference algorithm
(which does not use learning mechanisms). This highlights the capacity of the proposed mechanism
to generate new promising solutions, increasing the diversity of the solutions obtained.

2https://gitlab.univ-lille.fr/clement.legrand4.etu/skd_integration

https://gitlab.univ-lille.fr/clement.legrand4.etu/skd_integration
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(a) Reference MOEA/D and variants.

(b) Reference MOLS and variants.

Figure 7.5: Results of the execution on instance RC2 2 6 (run 6), from the Gehring and Homberger
set. The associated hypervolume and size of the final fronts (green dots) are shown, as well as the
reference front (red dots) and the initial front (blue dots).
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7.5 Conclusion

In this chapter, we have presented our SKD model, which benefits from the unified view of MOLS
and MOEA. In particular, the knowledge discovery mechanism can be integrated into algorithms
sharing the same structure. Our model requires three additional steps, which are the Creation

of the knowledge groups, by defining relevant regions of the objective space, the Extraction of
knowledge from solutions found during the Exploration step, and the Injection of knowledge
into the current population (or archive) to explore other regions of the objective space.

The integration of our model into a MOLS (RMOLS) and a MOEA/D (Rfb,d2

MOEA/D) leads to four

learning variants (there are two possible constructions for groups): SKDWG
MOEA/D, SKDEG

MOEA/D,

SKDWG
MOLS, and SKDEG

MOLS. The six algorithms were compared, showing the performance of our
model. In particular, adding SKD to a MOEA/D and a MOLS greatly contributes to the increased
quality of the returned Pareto fronts. Moreover, the gain obtained in terms of speed-up, although
the codes are executed in Python, shows the relevance of the model developed.

Furthermore, the model proposed is expected to be integrated into other metaheuristics (like
NSGA-II), and the integration should not require too many modifications to enhance the perfor-
mance of the metaheuristics. Depending on the algorithm considered, the parameters related to
the learning mechanism should be adjusted. In addition, it is possible to change and adapt the
strategies of the learning mechanism without modifying the structure of the algorithm: the major
components of SKD have been developed to be as independent as possible from the algorithm in
which it is used.



Conclusion and Research
Perspectives

Main Conclusion The main goal of this thesis was to smartly and efficiently integrate knowl-
edge discovery mechanisms into multi-objective algorithms to learn (i.e., extract knowledge) from
the solutions generated during the execution, and to exploit (i.e., inject) this knowledge in other
solutions to explore regions of the solution space that are hard to reach by exploring classical
neighborhoods. This milestone was successfully achieved during the thesis, with the emergence
of a final model, called Solution-based Knowledge Discover (SKD), that can be integrated into
different multi-objective algorithms. Moreover, we described and discussed different strategies to
instantiate the SKD model. This model was integrated into a multi-objective evolutionary algo-
rithm (MOEA/D) and a multi-objective local search, to solve a bi-objective vehicle routing problem
with time windows, where the total transportation cost and the total waiting time of drivers are
minimized. Although we have only discussed the bi-objective case, the model proposed remains
available with more objectives.

The idea of extracting sequences of customers from solutions to solve routing problems was
not entirely new, since it has already been exploited for the capacitated vehicle routing problem
(in a single-objective context), however doing it in a multi-objective context was a challenge. Our
methodology was then conducted by the questions raised in the introduction. To answer the first
one, “How to manage these sequences in a multi-objective context?”, we developed the notion of
knowledge groups, each group focusing on a specific region of the objective space. Moreover, we
based this strategy on the fact that close solutions in the objective space (i.e., with close objective
vectors) shared structural similarities.

The second question concerned the solutions used for extraction and injection: “From which
solutions should we extract sequences, and into which solutions should we inject them?”. During
our study, we tried to learn from all generated solutions, local optima only (in MOEA/D), Pareto
local optima only (in MOLS), and non-dominated solutions. The problem with (Pareto) local
optima is that it takes time to achieve such solutions, and the algorithm may not generate enough
of these solutions to learn efficiently. When we learn from all generated solutions, there are too
many solutions, and consequently, too many sequences are added to the groups, with a risk of
overfitting the mechanism towards the current solutions found (i.e., always the same sequences will
be selected, and new sequences will not be able to reach a high enough score to be selected). As a
result, learning from the current non-dominated solutions seems to be a good trade-off, and allowed
us to achieve good results. Concerning the solutions used for injection, we did not investigate
many strategies. Any solution can undergo the injection step, but it could be interesting to analyze
the performance of the injection step, depending on the solution provided in the input. In our
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final model, the injection is performed on either perturbed solutions or the current non-dominated
solutions. Overall, applying the injection on solutions that are not local optima seems preferable
since it could be easier to inject sequences in them. Indeed, the structure of local optima prevents
the improvement of the solution with a small change.

The last question raised in the introduction was “At what point in the runtime should the
injection and extraction steps be carried out?”. At the beginning of our study, extraction and
injection were both applied with a probability and finally, we removed these probabilities from our
final model. Indeed, eliminating the probabilities from the model allows a better comprehension of
it, leading, in our opinion, to a more interpretable model, in the sense that it is easier to know where
the knowledge comes from and where it is injected. As a consequence, extraction and injection steps
are performed at the end of cycle, representing a number of iterations, that can be adapted to the
algorithm used. Another important aspect concerns the start of the knowledge discovery itself. If
it is started too early, random sequences are more likely to be learned, and if it is started too late,
not enough different sequences are learned due to the convergence of the algorithm. In this study,
we always considered that the mechanism is activated from the beginning of the execution. In a
preliminary study, we remarked that learning from the very beginning was not the best strategy,
thus we generated initial fronts to not start from random solutions and still activate the mechanism
from the beginning of the execution. In addition, the impact of the initial front provided could be
further investigated.

In the following, we start by summarizing the contributions obtained during the thesis. Then,
we present research perspectives linked to our current works (short-term perspectives) and more
global research perspectives that would be interesting to investigate in future works (long-term
perspectives).

Summary of the Contributions In the second part of the thesis, we investigated the devel-
opment of a knowledge discovery mechanism suited to MOEA/D, to solve the bi-objective vehicle
routing problem considered. We described six main contributions in this part, which are: the
analysis of the genotypic similarity between solutions, the development of the concept of knowledge
groups, the development of a local search suited to our problem, the impact of extracting knowledge
from local optima, the enhancement of the concept of knowledge groups to make it independent
from MOEA/D, and finally the analysis of the different parameters used.

Genotypic Similarity vs. Phenotypic Similarity The analysis of the genotypic similari-
ties between solutions was necessary to know if it was relevant to associate each knowledge group
with a region of the objective space. In this study, we analyzed the proportion of arcs in common
between one solution and its neighborhood, when the size of the neighborhood varies. We remarked
that, with close solutions (i.e., small neighborhood), the proportion of arcs in common was rela-
tively high (at least for solutions close to the Pareto front), i.e., between 25% and 40% of arcs in
common depending on the instance. Moreover, the structural similarity decreases when the size of
the neighborhood increases.

Concept of Knowledge Groups The first milestone of the thesis was reached with the
concept of knowledge groups. Our first construction was based on the subproblems defined in
MOEA/D, where a subproblem defined a knowledge group. With the use of MOEA/D in this first
part, we were able to use existing concepts developed for single-objective optimization as a basis of
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our work. The results obtained with this first approach showed an interest in learning sequences
from solutions for our bi-objective problem.

Neighborhood Strategies In order to improve the results obtained, we replaced the random
mutation used in MOEA/D with a local search, more precisely, a variable neighborhood search
using common operators. In the literature, the two most common exploration strategies are the
first acceptance and best acceptance. Here we developed a first-best exploration strategy, which
considers the best neighbor of a subset of the entire neighborhood, based on existing works in
permutation flow-shop problems. In addition, to reduce the size of the neighborhood to explore, we
exploited the concept of granular search. It considers only moves involving close enough customers
for a metric. Thus, we introduced a metric, based on the cost and the waiting time between two
customers. Using the first-best exploration strategy with our metric in the granular search proved
its efficiency in solving the problem.

Learning from Local Optima At that point, having a local search available allowed us to
find local optima during the search, raising a natural question: should we extract sequences from
local optima only? Indeed, in single-objective optimization, local optima are known to have more
interesting structural information. We decided to investigate the benefit of extracting knowledge
from local optima in a multi-objective context. Our conclusion highlights that learning from local
optima is interesting to reach solutions of better quality, however, in terms of speed-up, it is more
interesting not to focus only on local optima since fewer are generated (compared to standard
solutions), and it requires more time to generate them.

Enhanced Knowledge Groups Following that, we decided to enhance the construction
of the knowledge groups, by making it independent from MOEA/D. At the same time, we also
introduced diversification and intensification strategies for extraction and injection steps. The new
construction was based on the generation of weight vectors to create the region of a knowledge
group. A weight vector is considered as a representative of a knowledge group, and its associated
region gathers all the closest solutions of that weight vector (in the objective space). In particular,
this construction allows us to control the number of groups created for the execution. More precisely,
the results obtained with different values of that parameter showed that using strictly more than
one group returns better results. Concerning the strategies for the extraction and the injection,
we decided to focus on intensification strategies (i.e., one solution contributes to its associated
group only and one solution receives knowledge from its associated group only), which is easier to
interpret.

Parameters Analysis Finally, we performed an analysis of the parameters used in the algo-
rithms (a reference MOEA/D and the MOEA/D exploiting sequences). The analysis is based on
the irace tool, returning a set of elite configurations (a configuration is a set containing the value
of each parameter), being the best configurations tested. The possible values for each parameter
are provided to irace to generate the configurations. The analysis of the configurations returned
highlight the benefit of the knowledge discovery mechanism.

In the third part of the thesis, the two main contributions concern the highlight of a unified
view between multi-objective evolutionary algorithms (MOEA) and multi-objective local search
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(MOLS), the development of the SKD model, integrated into the unified view, and instantiated in
a MOEA/D and a MOLS to solve the bi-objective routing problem with time windows.

Unified view of MOEA and MOLS The main issue when developing a new mechanism to
integrate into different algorithms is to make it too dependent on an algorithm. To overcome this
difficulty, we started by reviewing the literature concerning multi-objective evolutionary algorithms
and multi-objective local search, to understand what are the main components of each family.
By analyzing the structures found, we remarked that both families are based on four main steps:
select solutions, exploit the selected solutions, update the sets of solutions (current population and
archive), and perturb some solutions to favor diversity. These steps have led to the conception of a
unified view between MOEA and MOLS.

Unified SKD model Based on the unified view proposed, we developed the SKD model,
which requires three additional steps. A construction step where the knowledge groups are initial-
ized, an extraction step, extracting knowledge from a set of generated solutions, and an injection
step, exploiting the extracted knowledge in different solutions. Once the model is described, we
instantiated it into a MOEA/D and a MOLS, to compare the performances obtained with the refer-
ence algorithms. In addition, we developed another construction for the knowledge groups, adapting
to the current Pareto front, which has been compared to the static other one (using weight vectors).
The results obtained, show the efficiency of the model developed, and the relevance of the strategies
employed.

Short Term Perspectives In the following, we explicit several short-term perspectives linked
to the improvement of the knowledge groups, and more generally to the improvement of the SKD
model developed. In particular, we can investigate the use of different representatives for the
knowledge groups, we can develop new formula to update the scores associated with the sequences.
On the other hand, it could be interesting to analyze deeper the components developed.

Using Different Representatives for the Knowledge Groups In this thesis, we devel-
oped two constructions of knowledge groups, however, it could be interesting to develop other
constructions to compare the efficiency of the different constructions and to adapt the construction
according to the problem solved. For example, instead of linking the extreme points of the current
Pareto front with a straight line to generate the representatives of the knowledge groups, we could
use any other curve passing through the extreme points (like Bezier curves), to better approximate
the shape of the Pareto front. Moreover exploiting adaptive strategies to update the representative
of the groups, and consequently adapt the region of the objective space each group focuses on seems
to be promising. The number of knowledge groups could also be adapted during the execution.
New groups could be created in crowded regions, while groups containing too few solutions could
be discarded. Since it is not guaranteed that close solutions in the objective space share structural
similarities for any problem, the structural similarity to the representative could be considered in
addition to the (phenotypic) distance to the representative to measure the distance between a solu-
tion and a group. In that case, the representatives should be true solutions to the problem. When
the distance between a solution and all groups is too high, a new group could be created using that
solution as a representative.
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More Sophisticated Update of the Pattern Score Another interesting improvement for
knowledge groups that could be envisaged concerns the update of the score of the sequences. In this
thesis, we only considered the frequency of appearance of each sequence, however, this score does
not take into account the characteristics of the sequence itself. Indeed, a sequence could have a high
score and be a bad sequence, in the sense that, it does not belong to the solutions of the optimal
Pareto front. Moreover, we could receive feedback from the injection of patterns in solutions. For
example, some patterns are maybe more interesting to choose when the solution belongs to a specific
region of the objective space, while some others should be avoided. In addition, the synergy between
patterns could be investigated. For example, if a solution contains a sequence having a high score in
one group (A), and we have to select sequences from another group (B), maybe sequences belonging
in A and B should be avoided (or preferred). It could also be interesting to reduce the score of
sequences over the iterations, to give less importance to sequences found many iterations ago in
high quantity, but which have not been found anymore since.

Analysis of the Injection Procedure A deeper analysis of the results obtained after the
injection step could also help to understand which patterns should be injected. In particular,
concerning the size of the pattern to inject. For that purpose, we could analyze the improvement
gap (for all the objectives) in the function of the size of the pattern or its score. Moreover, around
100 sequences were selected each time for the injection. It could be interesting to generate more
data to know how many sequences are successfully injected in solutions. The number of successfully
injected sequences should also be put in relation to the group that gave the sequences and the group
associated with the solution undergoing the injection.

Influence of the Initial Solutions Concerning the best moment to start the knowledge
discovery, it could be interesting to analyze the impact of the initial front provided, according
to different characteristics. For example, to obtain good results with the knowledge discovery
mechanism, it may be necessary to have enough structurally diverse solutions when the mechanism
starts. Hence, many different sequences are added to the groups, leading to the creation of more
diverse solutions. Since we have already generated several initial fronts, we can record, for example,
the number of solutions in it, its average diversity (in terms of objectives and structures), and its
convergence, and compare these characteristics with the final front returned.

Analysis of the Knowledge Learned Finally, the sequences learned by each group could
be analyzed, to know if the sequences learned, with the highest scores, are similar to those that can
be found in the reference Pareto front (or even the optimal Pareto front if it is available). Knowing
the characteristics of the sequences belonging to the reference/optimal Pareto front could also help
to make a warm start of the knowledge groups, i.e., to generate the beginning sequences for each
group. In a preliminary study, we found that initializing the knowledge groups with the sequences
belonging to the reference Pareto front, and starting with randomly generated solutions, led quickly
to very good high-quality solutions. As a result, learning the good sequences from the beginning
is the key to quickly converge to good solutions. Another important point concerns the minimum
number of good sequences that are required. Obviously, the number of good sequences is very low
compared to the number of bad sequences, and we should quickly discard sequences detected as
bad. However, using bad sequences can also be important to diversify the solutions obtained.
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Long Term Perspectives In the following, we present some long-term perspectives that could
be envisaged to make hybridize our work with other research fields. For example, our model could
be adapted to solve different problems. Probabilistic models based on the sequences learned could
be interesting to generate new solutions in specific regions of the objective space. Finally, our model
could be used as a component for automatic algorithm selection.

Exploiting the Model to Solve Other Permutation Problems Our knowledge discovery
mechanism could be applied to different routing problems, to see if the SKD model remains efficient
when the problem changes (like the bi-objective TSP, a bi-objective CVRP). More generally, it could
be applied to problems where solutions can be represented by permutations (a sequence is a piece of
the permutation), like permutation flow-shop problems. For other problems it is required to define
an extraction and an injection steps adapted to the problem solved. For the extraction, it is required
to replace the sequences learned by a knowledge (which can easily be extracted from a solution)
specific to the problem solved. Concerning the injection, it is required to define a procedure for
injecting an element of knowledge from a solution into another solution.

Development of Bayesian Models At the end of the execution, the sequences stored in the
groups represent the best sequences belonging to solutions from a specific region of the objective
space. The frequencies obtained can be turned to probabilities, to generate probabilistic models.
These models could then be used to generate feasible solutions with specific trade-offs without
running the algorithm again. In particular, these models could be useful for a decision-maker, if
they want to generate quickly new solutions respecting some properties.

Adapt the Model with Automatic Algorithm Configuration In the thesis, we inte-
grated the developed model into two classical multi-objective algorithms. However, many com-
ponents and strategies have been developed in the literature to improve the algorithms used. In
particular, the choice of the best components to solve a specific problem can be left to an auto-
matic algorithm configurator (like ParamILS). The knowledge discovery components proposed in
this thesis can be proposed to a configurator to be used for solving a specific problem. Indeed, the
strategies developed for our model are independent from the algorithm used, and different strate-
gies for extraction and injection can easily be considered by a configurator to increase the possible
synergies between the knowledge discovery mechanism and the other components selected.



Appendix A

Relation between Genotype and
Phenotype

This appendix is related to Section 4.2 about the analysis of the genotype and the phenotype of
solutions to the bVRPTW. We recall that to perform this study we generated an approximation
of the solution space for all the instances, and we divided the objective into different regions, from
“r0” (best solutions) to “r4” (worst solutions). For each region, for each solution in it, we computed
its k ∈ {1, 2, 5, 10, 25, 50, 75, 100} closest neighbors and we evaluated the average similarity between
the solution and its neighbors. Summarised results are available in Section 4.2.3.

Table A.1: Average similarity between a solution and its neighborhood of different sizes on instances
of category C, R, and RC.

C1 C2

1 2 5 10 25 50 75 100 1 2 5 10 25 50 75 100

r0 39.3 38.5 37.6 37.0 36.4 35.9 35.7 35.5 26.9 25.5 24.1 23.2 22.0 21.1 20.7 20.3
r1 28.6 27.6 26.4 25.6 24.8 24.3 24.0 23.8 24.3 23.2 21.7 20.7 19.3 18.3 17.7 17.2
r2 27.6 26.3 24.6 23.6 22.4 21.7 21.3 21.0 24.5 23.5 21.9 20.9 19.4 18.2 17.4 16.9
r3 29.7 28.0 25.9 24.4 22.8 21.7 21.2 20.8 29.7 28.2 26.3 24.7 22.6 21.0 19.9 19.1
r4 38.2 36.3 33.6 31.4 28.7 26.7 25.6 24.8 40.4 38.6 35.5 33.0 29.4 26.6 25.0 23.9

R1 R2

1 2 5 10 25 50 75 100 1 2 5 10 25 50 75 100

r0 42.4 41.7 40.8 40.0 38.8 37.9 37.2 36.7 28.2 27.7 26.9 26.1 24.8 23.7 23.0 22.4
r1 32.3 31.5 30.5 29.8 28.9 28.3 28.0 27.8 18.7 18.3 17.4 16.7 15.7 14.8 14.3 13.9
r2 29.0 27.9 26.6 25.7 24.5 23.7 23.3 23.0 15.1 14.6 13.6 12.9 11.8 11.1 10.6 10.3
r3 28.8 27.7 26.2 25.1 23.7 22.5 21.9 21.4 18.7 18.1 17.0 16.1 14.8 13.8 13.1 12.6
r4 34.9 33.3 30.9 29.0 26.5 24.6 23.4 22.5 27.5 26.5 24.7 23.2 20.5 18.3 16.9 16.0

RC1 RC2

1 2 5 10 25 50 75 100 1 2 5 10 25 50 75 100

r0 46.1 45.4 44.4 43.5 42.3 41.2 40.3 39.6 27.4 27.1 26.3 25.7 24.7 23.6 22.9 22.3
r1 33.6 33.0 32.1 31.3 30.5 29.8 29.4 29.2 22.3 21.8 21.2 20.6 19.7 18.9 18.3 17.8
r2 29.5 28.6 27.3 26.5 25.4 24.7 24.2 23.9 21.9 21.5 20.7 20.1 19.1 18.1 17.3 16.8
r3 29.9 28.8 27.4 26.4 25.0 24.0 23.4 22.9 25.2 24.8 24.1 23.3 22.1 20.7 19.8 19.1
r4 34.1 32.6 30.2 28.2 26.1 24.4 23.3 22.4 35.9 35.2 33.7 32.4 30.2 28.2 26.8 25.6
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Table A.2: Average similarity between a solution and neighborhood of different sizes on R101
instance.

Size 1 2 5 10 25 50 75 100

r0 54.8 54.7 54.4 54.0 53.6 53.3 53.1 52.9
r1 49.1 49.0 48.6 48.3 47.9 47.4 47.1 46.8
r2 42.1 41.8 41.4 40.9 40.3 39.7 39.3 39.0
r3 33.4 33.1 32.5 31.9 31.2 30.4 29.8 29.3
r4 30.4 30.0 29.3 28.6 27.7 27.0 26.5 26.1

Table A.3: Average similarity between a solution and neighborhood of different sizes on R201
instance.

Size 1 2 5 10 25 50 75 100

r0 29.1 28.5 27.8 27.0 26.0 25.2 24.7 24.4
r1 21.1 20.6 19.9 19.2 18.4 17.7 17.3 16.9
r2 18.1 17.6 16.6 15.6 14.2 13.1 12.4 11.9
r3 40.3 39.5 37.7 35.8 32.8 30.1 28.4 27.2
r4 64.3 63.1 61.6 60.0 56.9 54.1 51.8 50.1

Table A.4: Average similarity between a solution and neighborhood of different sizes on C106
instance.

Size 1 2 5 10 25 50 75 100

r0 40.7 40.0 39.3 39.0 38.6 38.2 38.0 37.8
r1 29.3 28.3 27.3 26.6 25.9 25.5 25.2 25.1
r2 30.3 29.0 27.4 26.4 25.2 24.4 24.0 23.7
r3 34.2 32.8 31.2 29.9 28.1 26.8 26.1 25.6
r4 46.3 44.6 41.8 39.6 36.6 34.5 32.9 31.8

Table A.5: Average similarity between a solution and neighborhood of different sizes on RC108
instance.

Size 1 2 5 10 25 50 75 100

r0 54.8 54.9 54.6 54.0 52.5 50.5 48.5 46.6
r1 32.6 32.4 31.7 31.3 30.8 30.2 29.9 29.6
r2 27.0 26.7 26.4 26.1 25.4 24.9 24.5 24.2
r3 32.4 32.0 31.4 30.6 29.3 28.1 27.4 26.7
r4 33.3 31.8 29.7 28.0 26.0 23.9 22.3 21.0



Appendix B

First Knowledge Groups

This appendix is related to Section 4.3, where the concept of knowledge groups is introduced for
the first time. The algorithms compared are a reference MOEA/D indicated with RMOEA/D and

two variants hybridized with the knowledge groups KD1iMOEA/D and KD1dMOEA/D. Summarised
results are presented in Section 4.3.5.

Table B.1: Average hypervolume obtained on Solomon’s R instances.

Instance c KD1iMOEA/D KD1dMOEA/D

50 100 50 100 50 100

R101 0.435 0.360 0.946 0.974 0.949 0.977
R102 0.664 0.561 0.976 0.986 0.983 0.988
R103 0.773 0.708 0.973 0.985 0.979 0.992
R104 0.865 0.827 0.976 0.983 0.975 0.990
R105 0.554 0.494 0.959 0.975 0.966 0.987
R106 0.823 0.699 0.979 0.988 0.983 0.989
R107 0.848 0.802 0.971 0.986 0.976 0.994
R108 0.819 0.751 0.969 0.985 0.981 0.988
R109 0.751 0.642 0.970 0.974 0.981 0.985
R110 0.827 0.795 0.960 0.985 0.968 0.991
R111 0.841 0.756 0.971 0.981 0.978 0.984
R112 0.864 0.828 0.973 0.986 0.978 0.988

R201 0.589 0.512 0.956 0.965 0.968 0.973
R202 0.703 0.516 0.949 0.971 0.965 0.985
R203 0.739 0.586 0.960 0.957 0.964 0.975
R204 0.803 0.612 0.970 0.962 0.978 0.982
R205 0.724 0.544 0.970 0.972 0.976 0.982
R206 0.780 0.599 0.958 0.972 0.973 0.985
R207 0.806 0.666 0.965 0.960 0.977 0.985
R208 0.626 0.578 0.933 0.956 0.963 0.980
R209 0.715 0.536 0.969 0.976 0.979 0.992
R210 0.761 0.544 0.972 0.966 0.976 0.983
R211 0.759 0.626 0.977 0.991 0.987 0.993
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Table B.2: Average hypervolume obtained on Solomon’s RC instances.

Instance RMOEA/D KD1iMOEA/D KD1dMOEA/D

50 100 50 100 50 100

RC101 0.514 0.442 0.988 0.985 0.991 0.985
RC102 0.736 0.660 0.984 0.991 0.993 0.993
RC103 0.835 0.791 0.975 0.985 0.984 0.989
RC104 0.672 0.824 0.984 0.988 0.993 0.991
RC105 0.719 0.593 0.966 0.989 0.977 0.991
RC106 0.643 0.680 0.905 0.985 0.931 0.985
RC107 0.780 0.747 0.962 0.984 0.988 0.988
RC108 0.662 0.838 0.984 0.992 0.989 0.994

RC201 0.591 0.481 0.952 0.973 0.961 0.982
RC202 0.680 0.496 0.950 0.968 0.959 0.982
RC203 0.719 0.648 0.956 0.970 0.964 0.984
RC204 0.619 0.573 0.934 0.964 0.949 0.980
RC205 0.635 0.532 0.957 0.968 0.960 0.981
RC206 0.653 0.552 0.966 0.981 0.979 0.991
RC207 0.712 0.621 0.980 0.986 0.988 0.994
RC208 0.794 0.639 0.994 0.985 0.998 0.989

Table B.3: Average hypervolume obtained on Solomon’s C instances.

Instance RMOEA/D KD1iMOEA/D KD1dMOEA/D

50 100 50 100 50 100

C101 0.508 0.400 1.001 1.001 1.001 1.000
C102 0.684 0.570 0.982 1.001 0.997 1.001
C103 0.788 0.655 0.973 0.992 0.989 1.000
C104 0.731 0.620 0.959 0.981 0.975 0.989
C105 0.606 0.516 1.000 1.001 1.001 1.001
C106 0.577 0.533 1.001 1.001 1.001 1.001
C107 0.651 0.560 0.998 1.001 1.000 1.001
C108 0.761 0.643 0.998 1.001 1.001 1.001
C109 0.758 0.777 0.999 1.001 1.001 1.001

C201 0.404 0.425 0.998 1.001 0.996 1.001
C202 0.569 0.435 0.996 1.001 0.997 1.001
C203 0.540 0.523 0.973 0.997 0.991 1.000
C204 0.808 0.662 0.977 0.990 0.990 0.997
C205 0.514 0.430 0.998 1.001 0.998 1.001
C206 0.477 0.389 0.995 1.001 0.998 1.001
C207 0.597 0.487 0.987 1.001 0.994 1.001
C208 0.522 0.464 0.996 1.001 0.999 1.001



Appendix C

Local Search for the bVRPTW

This appendix is related to Section 4.4, where exploration strategies are developed to design an
efficient local search for the bVRPTW. In particular, the first-best exploration strategy is developed
to select the best move from a subset of the neighborhood. A granular search is also introduced,
requiring a metric to measure the proximity between customers. Four algorithms, using our knowl-
edge discovery mechanism, are compared: KD1d,b,d1

MOEA/D, KD1d,fb,d1

MOEA/D, KD1d,b,d2

MOEA/D, KD1d,fb,d2

MOEA/D.

When needed, they are represented by a pair (exploration strategy, granularity metric). Summa-
rized results are presented in Section 4.4.5.

Table C.1: Average hypervolume obtained on Solomon’s R instances. Each algorithm is used with
the parameters returned by irace.

50 100

Instance (b, d1) (fb, d1) (b, d2) (fb, d2) (b, d1) (fb, d1) (b, d2) (fb, d2)

R101 0.949 0.953 0.951 0.954 0.972 0.974 0.970 0.973
R102 0.975 0.978 0.976 0.978 0.981 0.986 0.979 0.984
R103 0.978 0.988 0.984 0.989 0.984 0.988 0.983 0.989
R104 0.640 0.725 0.651 0.682 0.972 0.977 0.966 0.979
R105 0.989 0.995 0.990 0.993 0.991 0.995 0.991 0.995
R106 0.675 0.657 0.658 0.710 0.987 0.989 0.986 0.990
R107 0.605 0.659 0.608 0.650 0.563 0.586 0.469 0.651
R108 0.577 0.747 0.651 0.754 0.518 0.642 0.408 0.623
R109 0.661 0.748 0.657 0.759 0.504 0.775 0.451 0.721
R110 0.454 0.511 0.482 0.532 0.615 0.800 0.438 0.738
R111 0.455 0.562 0.539 0.663 0.595 0.739 0.573 0.721
R112 0.639 0.695 0.607 0.735 0.592 0.658 0.431 0.632

R201 0.756 0.790 0.775 0.785 0.966 0.975 0.969 0.973
R202 0.714 0.762 0.745 0.760 0.737 0.803 0.741 0.806
R203 0.703 0.743 0.704 0.744 0.637 0.766 0.675 0.750
R204 0.773 0.932 0.784 0.865 0.538 0.720 0.522 0.706
R205 0.702 0.772 0.733 0.767 0.633 0.729 0.616 0.741
R206 0.641 0.678 0.643 0.681 0.651 0.753 0.626 0.695
R207 0.699 0.775 0.737 0.796 0.590 0.736 0.565 0.734
R208 0.447 0.613 0.467 0.553 0.467 0.644 0.443 0.636
R209 0.699 0.760 0.682 0.749 0.578 0.730 0.580 0.744
R210 0.738 0.800 0.771 0.800 0.575 0.720 0.612 0.701
R211 0.454 0.592 0.552 0.674 0.512 0.780 0.414 0.726

147
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Table C.2: Average hypervolume obtained on Solomon’s RC instances. Each algorithm is used with
the parameters returned by irace.

50 100

Instance (d, b, d1) (d, fb, d1) (d, b, d2) (d, fb, d2) (d, b, d1) (d, fb, d1) (d, b, d2) (d, fb, d2)

RC101 0.612 0.851 0.565 0.747 0.989 0.991 0.987 0.991
RC102 0.437 0.612 0.454 0.445 0.710 0.828 0.686 0.775
RC103 0.535 0.718 0.555 0.625 0.634 0.721 0.543 0.759
RC104 0.815 0.916 0.870 0.921 0.635 0.637 0.539 0.625
RC105 0.654 0.777 0.622 0.753 0.819 0.874 0.83 0.881
RC106 0.347 0.627 0.306 0.477 0.544 0.788 0.582 0.729
RC107 0.606 0.783 0.613 0.640 0.528 0.607 0.443 0.573
RC108 0.822 0.799 0.903 0.905 0.599 0.619 0.435 0.578

RC201 0.813 0.838 0.836 0.834 0.974 0.980 0.973 0.980
RC202 0.680 0.703 0.688 0.702 0.671 0.787 0.683 0.762
RC203 0.629 0.675 0.639 0.665 0.635 0.754 0.652 0.755
RC204 0.570 0.604 0.570 0.624 0.564 0.689 0.573 0.701
RC205 0.690 0.702 0.699 0.712 0.789 0.846 0.802 0.846
RC206 0.670 0.675 0.683 0.708 0.665 0.778 0.681 0.788
RC207 0.439 0.431 0.432 0.463 0.556 0.674 0.567 0.694
RC208 0.606 0.831 0.627 0.831 0.408 0.618 0.361 0.623

Table C.3: Average hypervolume obtained on Solomon’s C instances. Each algorithm is used with
the parameters returned by irace.

50 100

Instance (d, b, d1) (d, fb, d1) (d, b, d2) (d, fb, d2) (d, b, d1) (d, fb, d1) (d, b, d2) (d, fb, d2)

C101 0.404 0.423 0.422 0.422 0.904 1.000 1.000 1.000
C102 0.144 0.202 0.169 0.188 0.877 0.991 0.961 0.927
C103 0.851 0.938 0.910 0.906 0.919 0.944 0.865 0.896
C104 0.771 0.950 0.855 0.872 0.716 0.664 0.546 0.673
C105 0.176 0.169 0.169 0.176 0.924 1.000 0.970 0.966
C106 1.002 1.002 1.002 1.002 0.927 1.000 0.947 0.926
C107 0.443 0.506 0.464 0.506 0.833 0.985 0.777 0.818
C108 0.935 1.000 0.869 0.935 0.932 0.978 0.769 0.890
C109 0.945 0.976 0.849 0.943 0.898 0.946 0.783 0.838

C201 0.297 0.328 0.306 0.308 1.000 1.000 1.000 1.000
C202 0.267 0.264 0.266 0.263 0.935 1.000 0.935 1.000
C203 0.230 0.317 0.291 0.289 0.792 0.887 0.721 0.800
C204 0.722 0.782 0.728 0.766 0.715 0.884 0.594 0.866
C205 0.301 0.270 0.342 0.305 0.843 0.977 0.918 0.977
C206 0.309 0.341 0.342 0.341 0.969 0.999 0.902 1.000
C207 0.380 0.228 0.299 0.210 0.953 0.992 0.831 0.987
C208 0.724 0.734 0.739 0.739 0.988 1.000 0.965 1.000
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Table C.4: Gaps (%) obtained for the total transportation cost objective, relatively to the best-
known on instances of category R. For each algorithm, the first column gives the gap with the best
solution found. The second column contains the average gap over the 30 runs.

Instance Size Optimal value KD1
d,b,d1
MOEA/D

KD1
d,fb,d1
MOEA/D

KD1
d,b,d2
MOEA/D

KD1
d,fb,d2
MOEA/D

Best Avg. Best Avg. Best Avg. Best Avg.

R101 50 1044.0 0.0 0.3 0.0 0.2 0.0 0.2 0.0 0.1
R102 50 909.0 0.0 0.2 0.0 0.2 0.0 0.4 0.0 0.2
R103 50 772.9 0.0 0.9 0.0 0.3 0.0 0.9 0.0 0.2
R104 50 625.4 0.6 2.9 0.6 2.0 0.2 2.8 0.6 2.5
R105 50 899.3 0.0 0.5 0.0 0.2 0.0 0.5 0.0 0.3
R106 50 793.0 0.0 1.4 0.0 1.5 0.0 1.3 0.0 1.1
R107 50 711.1 0.4 2.5 0.0 2.0 0.6 2.5 0.1 2.2
R108 50 617.7 0.6 3.2 0.0 1.8 0.0 2.6 0.0 1.5
R109 50 786.8 0.0 1.4 0.4 1.0 0.1 1.4 0.0 1.0
R110 50 697.0 0.0 4.0 0.0 3.3 0.8 3.8 0.0 3.1
R111 50 707.2 0.6 2.4 0.0 2.0 0.6 2.0 0.5 1.5
R112 50 630.2 0.8 3.0 0.8 2.6 0.9 3.2 0.8 2.4

Mean gap 0.2 1.9 0.2 1.4 0.3 1.8 0.2 1.3

R201 50 791.9 1.0 2.9 1.0 2.3 0.0 3.0 1.0 2.7
R202 50 698.5 2.2 4.5 2.1 4.1 0.9 3.7 2.1 3.8
R203 50 605.3 1.2 3.7 0.5 3.6 1.2 4.2 0.5 3.3
R204 50 506.4 0.4 2.1 0.4 0.8 0.4 2.2 0.4 1.3
R205 50 690.1 0.9 3.4 1.2 2.9 1.5 3.3 1.6 3.0
R206 50 632.4 0.8 2.8 1.3 2.8 1.3 2.6 0.0 2.4
R207 50 575.5 0.2 3.4 0.2 2.1 0.1 2.6 0.1 1.8
R208 50 489.5 0.0 3.1 0.4 2.1 1.0 3.2 0.2 2.3
R209 50 600.6 0.0 2.9 0.0 2.5 0.8 2.9 0.0 2.7
R210 50 645.6 1.9 3.8 0.9 3.0 1.3 3.3 1.5 3.1
R211 50 535.5 1.1 4.1 1.1 3.1 0.1 3.4 0.5 2.5

Mean gap 0.8 3.3 0.8 2.7 0.8 3.1 0.7 2.6

Instance Size Optimal value KD1
d,b,d1
MOEA/D

KD1
d,fb,d1
MOEA/D

KD1
d,b,d2
MOEA/D

KD1
d,fb,d2
MOEA/D

Best Avg. Best Avg. Best Avg. Best Avg.

R101 100 1637.7 0.2 0.9 0.1 0.2 0.1 0.8 0.1 0.2
R102 100 1466.6 0.7 2.0 0.5 1.0 0.4 2.0 0.0 1.0
R103 100 1208.7 2.2 4.6 1.5 3.6 2.3 4.7 1.9 3.4
R104 100 971.5 4.7 8.4 4.8 7.5 5.3 9.2 3.6 7.2
R105 100 1355.3 0.6 2.2 0.4 1.4 0.4 2.4 0.4 1.4
R106 100 1234.6 0.9 4.1 2.3 3.6 2.6 4.2 1.3 3.4
R107 100 1064.6 1.9 6.2 2.5 6.0 4.2 7.2 3.4 5.3
R108 100 932.1 4.1 8.3 5.1 7.2 5.0 9.3 4.8 7.4
R109 100 1146.9 2.7 5.7 1.6 3.1 2.1 6.2 0.9 3.6
R110 100 1068.0 4.7 7.5 3.7 5.7 6.0 9.2 3.9 6.3
R111 100 1048.7 3.7 7.3 3.1 5.6 5.1 7.5 2.5 5.8
R112 100 948.6 4.0 8.6 4.0 7.7 4.6 10.6 3.5 8.1

Mean gap 2.5 5.5 2.5 4.4 3.2 6.1 2.2 4.4

R201 100 1143.2 4.2 9.5 2.2 5.1 3.3 6.9 2.9 4.9
R202 100 1029.6 6.2 9.6 3.8 6.5 1.5 8.6 3.1 6.0
R203 100 870.8 6.0 11.4 3.4 6.3 3.6 9.0 1.7 6.4
R204 100 731.3 3.3 9.6 3.0 5.9 1.9 9.0 3.4 5.6
R205 100 949.8 3.4 7.1 0.9 4.9 3.5 7.2 0.8 4.0
R206 100 875.9 3.4 6.8 2.6 5.3 2.7 6.9 2.3 6.2
R207 100 794.0 5.0 8.9 3.7 6.0 2.7 9.2 1.8 5.9
R208 100 701.0 4.8 8.4 3.0 6.2 3.7 8.4 2.3 6.2
R209 100 854.8 2.8 7.0 2.2 4.9 3.8 6.8 1.7 4.6
R210 100 900.5 6.1 9.6 4.1 6.6 4.2 8.4 3.0 6.7
R211 100 746.7 5.5 8.6 2.4 5.2 5.4 9.9 2.5 5.9

Mean gap 4.6 8.8 2.8 5.7 3.3 8.2 2.3 5.7
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Table C.5: Gaps (%) obtained for the total transportation cost objective, relatively to the best-
known on instances of category RC of size 50. For each algorithm, the first column gives the gap
with the best solution found. The second column contains the average gap over the 30 runs.

Instance Size Optimal value KD1
d,b,d1
MOEA/D

KD1
d,fb,d1
MOEA/D

KD1
d,b,d2
MOEA/D

KD1
d,fb,d2
MOEA/D

Best Avg. Best Avg. Best Avg. Best Avg.

RC101 50 944.0 0.0 1.0 0.0 0.0 0.0 1.2 0.0 0.5
RC102 50 822.5 2.0 2.0 0.0 1.4 0.0 1.9 2.0 2.0
RC103 50 710.9 6.1 7.1 0.2 4.3 6.0 6.8 0.4 5.8
RC104 50 545.8 0.0 1.9 0.0 0.7 0.0 1.1 0.0 0.5
RC105 50 855.3 0.0 3.0 0.0 1.6 0.0 3.2 0.0 1.9
RC106 50 723.2 6.3 13.1 0.0 7.6 6.3 13.9 0.6 10.5
RC107 50 642.7 3.3 6.2 0.0 3.4 2.0 6.1 2.3 5.6
RC108 50 598.1 0.0 1.2 0.0 1.4 0.0 0.7 0.0 0.6

Mean gap 2.2 4.4 0.0 2.6 1.8 4.4 0.7 3.4

RC201 50 684.4 0.1 0.1 0.2 0.4 0.1 0.2 0.1 0.1
RC202 50 613.6 0.0 1.3 0.0 0.8 0.0 0.4 0.0 0.2
RC203 50 555.3 0.0 7.6 1.1 3.1 0.7 6.5 0.7 5.4
RC204 50 444.2 0.0 2.9 0.0 3.4 0.6 3.2 0.0 1.7
RC205 50 630.2 0.1 0.9 0.6 1.5 0.0 1.0 0.0 0.5
RC206 50 610.0 0.0 1.6 0.3 2.7 0.0 0.6 0.0 0.6
RC207 50 558.6 0.3 1.8 1.0 2.6 0.7 2.0 0.7 1.6
RC208 50 489.1 0.0 2.4 0.0 1.0 0.0 2.3 0.0 1.0

Mean gap 0.1 2.3 0.4 1.9 0.3 2.0 0.2 1.4

Table C.6: Gaps (%) obtained for the total transportation cost objective, relatively to the best-
known on instances of category RC of size 100. For each algorithm, the first column gives the gap
with the best solution found. The second column contains the average gap over the 30 runs.

Instance Size Optimal value KD1
d,b,d1
MOEA/D

KD1
d,fb,d1
MOEA/D

KD1
d,b,d2
MOEA/D

KD1
d,fb,d2
MOEA/D

Best Avg. Best Avg. Best Avg. Best Avg.

RC101 100 1619.8 2.4 4.0 1.5 3.2 1.3 4.2 1.6 3.2
RC102 100 1457.4 2.5 4.8 2.4 3.5 2.1 5.2 2.3 4.2
RC103 100 1258.0 7.2 10.3 7.6 9.5 7.5 11.0 7.3 9.2
RC104 100 1132.3 2.7 8.9 4.9 8.9 6.6 10.5 5.5 9.1
RC105 100 1513.7 4.6 7.0 3.4 5.5 3.3 6.7 2.4 5.3
RC106 100 1372.7 5.4 8.2 3.2 5.6 4.2 7.9 3.7 6.2
RC107 100 1207.8 6.9 11.0 5.6 10.0 8.0 12.1 4.8 10.4
RC108 100 1114.2 5.9 10.3 4.3 10.0 4.8 12.8 5.5 10.7

Mean gap 4.7 8.1 4.1 7.0 4.7 8.8 4.1 7.3

RC201 100 1261.8 2.0 7.5 2.0 4.2 2.3 6.8 1.2 3.9
RC202 100 1092.3 2.4 8.7 2.0 4.0 1.6 7.7 1.4 3.8
RC203 100 923.7 5.5 11.4 2.5 5.7 4.8 9.3 2.1 5.5
RC204 100 783.5 4.1 8.3 1.3 5.0 2.1 7.0 1.5 4.3
RC205 100 1154.0 4.9 10.7 2.3 5.7 2.6 7.6 0.5 4.6
RC206 100 1051.1 3.8 8.0 2.5 5.3 2.9 7.0 2.0 4.7
RC207 100 962.9 1.3 6.9 1.0 5.2 3.5 6.7 2.9 5.0
RC208 100 776.1 4.5 7.8 2.5 5.3 5.0 8.4 0.8 5.3

Mean gap 3.6 8.7 2.0 5.0 3.1 7.6 1.5 4.6
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Table C.7: Gaps (%) obtained for the total transportation cost objective, relatively to the best-
known on instances of category C of size 50. For each algorithm, the first column gives the gap
with the best solution found. The second column contains the average gap over the 30 runs.

Instance Size Optimal value KD1
d,b,d1
MOEA/D

KD1
d,fb,d1
MOEA/D

KD1
d,b,d2
MOEA/D

KD1
d,fb,d2
MOEA/D

Best Avg. Best Avg. Best Avg. Best Avg.

C101 50 362.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
C102 50 361.4 0.0 0.0 0.0 0.2 0.0 0.2 0.0 0.0
C103 50 361.4 0.0 4.0 0.0 1.6 0.0 2.4 0.0 2.5
C104 50 358.0 0.0 6.8 0.0 1.5 0.0 4.4 0.0 3.8
C105 50 362.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
C106 50 362.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
C107 50 362.4 0.0 0.3 0.0 0.0 0.0 0.3 0.0 0.0
C108 50 362.4 0.0 0.5 0.0 0.0 0.0 1.0 0.0 0.5
C109 50 362.4 0.0 0.5 0.0 0.2 0.0 1.4 0.0 0.6

Mean gap 0.0 1.3 0.0 0.4 0.0 1.1 0.0 0.8

C201 50 360.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
C202 50 360.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
C203 50 359.8 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0
C204 50 350.1 2.3 4.6 0.0 3.5 0.9 4.4 0.0 3.8
C205 50 359.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
C206 50 359.8 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0
C207 50 359.6 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.0
C208 50 350.5 0.0 0.1 0.0 0.1 0.0 0.0 0.0 0.0

Mean gap 0.3 0.6 0.0 0.6 0.1 0.6 0.0 0.5

Table C.8: Gaps (%) obtained for the total transportation cost objective, relatively to the best-
known on instances of category C of size 100. For each algorithm, the first column gives the gap
with the best solution found. The second column contains the average gap over the 30 runs.

Instance Size Optimal value KD1
d,b,d1
MOEA/D

KD1
d,fb,d1
MOEA/D

KD1
d,b,d2
MOEA/D

KD1
d,fb,d2
MOEA/D

Best Avg. Best Avg. Best Avg. Best Avg.

C101 100 827.3 0.0 0.8 0.0 0.0 0.0 0.0 0.0 0.0
C102 100 827.3 0.0 1.7 0.0 0.2 0.0 0.6 0.0 1.0
C103 100 826.3 0.0 7.3 0.1 5.1 0.0 12.0 0.0 9.3
C104 100 822.9 0.1 10.5 1.6 12.4 0.9 16.7 0.4 12.1
C105 100 827.3 0.0 2.3 0.0 0.0 0.0 0.9 0.0 1.0
C106 100 827.3 0.0 1.4 0.0 0.0 0.0 1.0 0.0 1.4
C107 100 827.3 0.0 2.2 0.0 0.2 0.0 3.0 0.0 2.4
C108 100 827.3 0.0 1.7 0.0 0.6 0.0 5.5 0.0 2.7
C109 100 827.3 0.0 2.7 0.0 1.5 0.0 5.8 0.0 4.4

Mean gap 0.0 3.4 0.2 2.2 0.1 5.1 0.0 3.8

C201 100 589.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
C202 100 589.1 0.0 0.3 0.0 0.0 0.0 0.3 0.0 0.0
C203 100 588.7 0.0 1.4 0.0 0.8 0.0 1.9 0.0 1.4
C204 100 588.1 0.6 5.2 0.0 2.1 1.1 7.2 0.0 2.5
C205 100 586.4 0.0 0.7 0.0 0.1 0.0 0.4 0.0 0.1
C206 100 586.0 0.0 0.2 0.0 0.0 0.0 0.5 0.0 0.0
C207 100 585.8 0.0 0.1 0.0 0.0 0.0 0.2 0.0 0.0
C208 100 585.8 0.0 0.2 0.0 0.0 0.0 0.5 0.0 0.0

Mean gap 0.1 1.0 0.0 0.4 0.1 1.4 0.0 0.5
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Appendix D

Impact of Local Optima

This appendix is related to Section 4.5, where we investigate the impact of learning from local
optima only. Five algorithms are compared: Rfb,d1

MOEA/D (reference), KD1all,i,fb,d1

MOEA/D , KD1all,d,fb,d1

MOEA/D ,

KD1lo,i,fb,d1

MOEA/D, KD1lo,d,fb,d1

MOEA/D. The hybrid variants can be represented by a pair (solutions used: all

or lo, injection strategy: i or d). Three different studies are performed. The first one compares
the algorithms with the same parameters, the second one uses the configurations returned by irace,
and the last one analyzes the speed-up obtained compared to the reference. Summarized results
are available in Section 4.5.3.

Table D.1: Average hypervolume obtained on Solomon’s R instances. All variants are executed
with the same parameters.

50 100

Instance Ref. (all, i) (all, d) (lo, i) (lo, d) Ref. (all, i) (all, d) (lo, i) (lo, d)

R101 0.795 0.807 0.808 0.807 0.809 0.969 0.973 0.974 0.974 0.974
R102 0.971 0.976 0.975 0.976 0.975 0.970 0.979 0.979 0.978 0.979
R103 0.976 0.987 0.985 0.985 0.985 0.962 0.978 0.976 0.978 0.977
R104 0.475 0.710 0.776 0.726 0.775 0.591 0.741 0.746 0.740 0.761
R105 0.804 0.885 0.897 0.889 0.890 0.832 0.926 0.914 0.921 0.906
R106 0.541 0.700 0.707 0.722 0.717 0.937 0.966 0.966 0.967 0.964
R107 0.633 0.783 0.798 0.802 0.821 0.283 0.548 0.585 0.558 0.538
R108 0.518 0.800 0.762 0.796 0.801 0.211 0.566 0.545 0.572 0.572
R109 0.571 0.742 0.745 0.749 0.725 0.331 0.683 0.741 0.675 0.697
R110 0.466 0.591 0.616 0.627 0.618 0.211 0.486 0.514 0.491 0.510
R111 0.625 0.769 0.772 0.735 0.779 0.146 0.497 0.505 0.487 0.510
R112 0.513 0.730 0.709 0.708 0.704 0.154 0.501 0.463 0.489 0.489

R201 0.751 0.747 0.748 0.748 0.747 0.720 0.749 0.741 0.748 0.733
R202 0.711 0.726 0.730 0.727 0.730 0.704 0.743 0.741 0.754 0.742
R203 0.635 0.680 0.662 0.680 0.669 0.674 0.732 0.731 0.717 0.739
R204 0.862 0.898 0.916 0.928 0.923 0.393 0.517 0.482 0.544 0.506
R205 0.673 0.736 0.735 0.744 0.714 0.558 0.665 0.666 0.664 0.667
R206 0.646 0.679 0.678 0.683 0.679 0.585 0.726 0.720 0.705 0.714
R207 0.713 0.749 0.741 0.754 0.745 0.463 0.592 0.602 0.621 0.596
R208 0.621 0.711 0.697 0.704 0.677 0.256 0.361 0.389 0.394 0.342
R209 0.704 0.746 0.728 0.727 0.732 0.469 0.602 0.578 0.603 0.604
R210 0.668 0.728 0.732 0.731 0.753 0.556 0.644 0.640 0.636 0.639
R211 0.568 0.576 0.645 0.607 0.607 0.263 0.455 0.459 0.439 0.479

153
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Table D.2: Average hypervolume obtained on Solomon’s RC instances of size 50. All variants are
executed with the same parameters.

Instance Size R
fb,d1
MOEA/D

KD1
all,i,fb,d1
MOEA/D

KD1
all,d,fb,d1
MOEA/D

KD1
lo,i,fb,d1
MOEA/D

KD1
lo,d,fb,d1
MOEA/D

RC101 50 0.774 0.918 0.913 0.911 0.899
RC102 50 0.526 0.751 0.715 0.753 0.704
RC103 50 0.471 0.685 0.670 0.646 0.753
RC104 50 0.651 0.894 0.893 0.865 0.842
RC105 50 0.586 0.768 0.791 0.812 0.779
RC106 50 0.460 0.698 0.676 0.662 0.681
RC107 50 0.671 0.811 0.878 0.893 0.842
RC108 50 0.452 0.891 0.899 0.924 0.921

RC201 50 0.789 0.798 0.798 0.800 0.799
RC202 50 0.688 0.717 0.716 0.714 0.711
RC203 50 0.648 0.691 0.690 0.687 0.690
RC204 50 0.531 0.626 0.627 0.625 0.621
RC205 50 0.682 0.710 0.706 0.708 0.706
RC206 50 0.611 0.656 0.665 0.661 0.659
RC207 50 0.573 0.645 0.653 0.646 0.649
RC208 50 0.419 0.880 0.879 0.904 0.911

Table D.3: Average hypervolume obtained on Solomon’s RC instances of size 100. All variants are
executed with the same parameters.

Instance Size R
fb,d1
MOEA/D

KD1
all,i,fb,d1
MOEA/D

KD1
all,d,fb,d1
MOEA/D

KD1
lo,i,fb,d1
MOEA/D

KD1
lo,d,fb,d1
MOEA/D

RC101 100 0.724 0.867 0.856 0.858 0.859
RC102 100 0.446 0.780 0.766 0.768 0.772
RC103 100 0.530 0.795 0.802 0.793 0.801
RC104 100 0.168 0.583 0.575 0.593 0.581
RC105 100 0.578 0.815 0.810 0.820 0.795
RC106 100 0.254 0.666 0.630 0.641 0.666
RC107 100 0.170 0.553 0.574 0.542 0.573
RC108 100 0.121 0.532 0.574 0.532 0.534

RC201 100 0.866 0.894 0.894 0.892 0.891
RC202 100 0.637 0.734 0.718 0.729 0.734
RC203 100 0.571 0.647 0.642 0.651 0.658
RC204 100 0.448 0.596 0.619 0.596 0.614
RC205 100 0.774 0.810 0.805 0.809 0.802
RC206 100 0.581 0.710 0.716 0.706 0.714
RC207 100 0.379 0.555 0.590 0.594 0.564
RC208 100 0.195 0.459 0.496 0.471 0.468
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Table D.4: Average hypervolume obtained on Solomon’s C instances of size 50. All variants are
executed with the same parameters.

Instance Size R
fb,d1
MOEA/D

KD1
all,i,fb,d1
MOEA/D

KD1
all,d,fb,d1
MOEA/D

KD1
lo,i,fb,d1
MOEA/D

KD1
lo,d,fb,d1
MOEA/D

C101 50 0.419 0.427 0.428 0.428 0.427
C102 50 0.697 0.900 0.897 0.907 0.904
C103 50 0.431 0.923 0.926 0.923 0.919
C104 50 0.510 0.960 0.945 0.956 0.955
C105 50 0.754 0.925 0.925 0.925 0.925
C106 50 0.518 0.518 0.518 0.518 0.518
C107 50 0.584 0.791 0.790 0.788 0.788
C108 50 0.682 1.001 1.001 0.988 1.001
C109 50 0.424 0.998 0.997 0.990 0.990

C201 50 0.501 0.504 0.484 0.520 0.519
C202 50 0.713 0.737 0.737 0.737 0.737
C203 50 0.495 0.554 0.550 0.551 0.552
C204 50 0.481 0.748 0.750 0.736 0.754
C205 50 0.388 0.400 0.399 0.399 0.400
C206 50 0.437 0.461 0.460 0.459 0.458
C207 50 0.386 0.429 0.440 0.445 0.430
C208 50 0.713 0.761 0.751 0.766 0.761

Table D.5: Average hypervolume obtained on Solomon’s C instances of size 100. All variants are
executed with the same parameters.

Instance Size R
fb,d1
MOEA/D

KD1
all,i,fb,d1
MOEA/D

KD1
all,d,fb,d1
MOEA/D

KD1
lo,i,fb,d1
MOEA/D

KD1
lo,d,fb,d1
MOEA/D

C101 100 0.770 1.001 1.001 1.001 1.001
C102 100 0.286 0.977 0.990 0.990 0.995
C103 100 0.250 0.809 0.833 0.831 0.821
C104 100 0.173 0.667 0.665 0.650 0.685
C105 100 0.427 1.001 1.001 1.001 1.001
C106 100 0.362 1.001 1.001 1.001 1.001
C107 100 0.329 1.001 1.001 1.001 1.001
C108 100 0.281 1.001 1.001 0.997 0.993
C109 100 0.151 0.961 0.978 0.985 0.961

C201 100 1.001 1.001 1.001 1.001 1.001
C202 100 0.887 1.001 1.001 1.001 1.001
C203 100 0.405 0.966 0.970 0.949 0.968
C204 100 0.367 0.874 0.859 0.862 0.863
C205 100 0.771 1.001 1.001 1.001 1.001
C206 100 0.513 1.001 1.000 0.999 1.001
C207 100 0.646 0.999 1.001 0.998 0.999
C208 100 0.505 1.001 0.998 0.993 0.990
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Table D.6: Average hypervolume obtained on Solomon’s R instances of size 50. All variants are
executed with the configurations returned by irace.

Instance Size R
fb,d1
MOEA/D

KD1
all,i,fb,d1
MOEA/D

KD1
all,d,fb,d1
MOEA/D

KD1
lo,i,fb,d1
MOEA/D

KD1
lo,d,fb,d1
MOEA/D

R101 50 0.795 0.819 0.822 0.819 0.818
R102 50 0.971 0.981 0.98 0.979 0.979
R103 50 0.976 0.991 0.991 0.987 0.989
R104 50 0.475 0.888 0.889 0.833 0.749
R105 50 0.804 0.914 0.916 0.905 0.911
R106 50 0.541 0.783 0.773 0.740 0.735
R107 50 0.633 0.854 0.821 0.793 0.779
R108 50 0.518 0.837 0.85 0.834 0.778
R109 50 0.571 0.777 0.833 0.785 0.775
R110 50 0.466 0.720 0.710 0.676 0.590
R111 50 0.625 0.840 0.855 0.803 0.789
R112 50 0.513 0.815 0.819 0.716 0.719

R201 50 0.751 0.803 0.803 0.789 0.790
R202 50 0.711 0.771 0.776 0.766 0.764
R203 50 0.635 0.760 0.752 0.739 0.743
R204 50 0.862 0.944 0.948 0.906 0.934
R205 50 0.673 0.785 0.796 0.771 0.778
R206 50 0.646 0.738 0.721 0.701 0.704
R207 50 0.713 0.807 0.816 0.796 0.792
R208 50 0.621 0.698 0.711 0.666 0.697
R209 50 0.704 0.783 0.794 0.762 0.765
R210 50 0.668 0.789 0.797 0.780 0.793
R211 50 0.568 0.700 0.665 0.600 0.500

Table D.7: Average hypervolume obtained on Solomon’s R instances of size 100. All variants are
executed with the configurations returned by irace.

Instance Size R
fb,d1
MOEA/D

KD1
all,i,fb,d1
MOEA/D

KD1
all,d,fb,d1
MOEA/D

KD1
lo,i,fb,d1
MOEA/D

KD1
lo,d,fb,d1
MOEA/D

R101 100 0.969 0.975 0.977 0.977 0.977
R102 100 0.970 0.986 0.987 0.987 0.988
R103 100 0.962 0.986 0.991 0.989 0.989
R104 100 0.591 0.891 0.89 0.888 0.886
R105 100 0.832 0.919 0.944 0.951 0.955
R106 100 0.937 0.974 0.979 0.976 0.978
R107 100 0.283 0.702 0.771 0.752 0.733
R108 100 0.211 0.764 0.778 0.813 0.802
R109 100 0.331 0.663 0.828 0.843 0.860
R110 100 0.211 0.641 0.709 0.723 0.754
R111 100 0.146 0.706 0.779 0.738 0.789
R112 100 0.154 0.686 0.741 0.713 0.705

R201 100 0.720 0.720 0.752 0.774 0.800
R202 100 0.704 0.757 0.796 0.800 0.822
R203 100 0.674 0.745 0.781 0.805 0.823
R204 100 0.393 0.646 0.724 0.685 0.714
R205 100 0.558 0.667 0.704 0.753 0.731
R206 100 0.585 0.742 0.774 0.789 0.799
R207 100 0.463 0.649 0.707 0.744 0.758
R208 100 0.256 0.530 0.622 0.633 0.626
R209 100 0.469 0.632 0.720 0.738 0.716
R210 100 0.556 0.692 0.763 0.751 0.791
R211 100 0.263 0.626 0.668 0.676 0.698
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Table D.8: Average hypervolume obtained on Solomon’s RC instances of size 50. All variants are
executed with the configurations returned by irace.

Instance Size R
fb,d1
MOEA/D

KD1
all,i,fb,d1
MOEA/D

KD1
all,d,fb,d1
MOEA/D

KD1
lo,i,fb,d1
MOEA/D

KD1
lo,d,fb,d1
MOEA/D

RC101 50 0.774 0.953 0.949 0.949 0.958
RC102 50 0.526 0.781 0.795 0.781 0.837
RC103 50 0.471 0.822 0.787 0.764 0.718
RC104 50 0.651 0.945 0.941 0.938 0.925
RC105 50 0.586 0.923 0.919 0.891 0.867
RC106 50 0.460 0.737 0.815 0.697 0.675
RC107 50 0.671 0.929 0.931 0.909 0.861
RC108 50 0.452 0.982 0.987 0.957 0.930

RC201 50 0.789 0.803 0.804 0.794 0.800
RC202 50 0.688 0.748 0.747 0.739 0.740
RC203 50 0.648 0.722 0.735 0.705 0.708
RC204 50 0.531 0.672 0.685 0.669 0.658
RC205 50 0.682 0.744 0.742 0.732 0.731
RC206 50 0.611 0.727 0.722 0.703 0.698
RC207 50 0.573 0.716 0.712 0.690 0.694
RC208 50 0.419 0.954 0.956 0.936 0.881

Table D.9: Average hypervolume obtained on Solomon’s RC instances of size 100. All variants are
executed with the configurations returned by irace.

Instance Size R
fb,d1
MOEA/D

KD1
all,i,fb,d1
MOEA/D

KD1
all,d,fb,d1
MOEA/D

KD1
lo,i,fb,d1
MOEA/D

KD1
lo,d,fb,d1
MOEA/D

RC101 100 0.724 0.872 0.908 0.924 0.929
RC102 100 0.446 0.759 0.877 0.891 0.917
RC103 100 0.530 0.823 0.882 0.914 0.915
RC104 100 0.168 0.666 0.773 0.756 0.813
RC105 100 0.578 0.829 0.888 0.898 0.91
RC106 100 0.254 0.671 0.81 0.793 0.826
RC107 100 0.170 0.599 0.738 0.751 0.773
RC108 100 0.121 0.618 0.69 0.747 0.790

RC201 100 0.866 0.870 0.899 0.910 0.924
RC202 100 0.637 0.682 0.780 0.811 0.848
RC203 100 0.571 0.643 0.740 0.769 0.806
RC204 100 0.448 0.612 0.727 0.775 0.779
RC205 100 0.774 0.784 0.825 0.852 0.866
RC206 100 0.581 0.710 0.768 0.799 0.826
RC207 100 0.379 0.558 0.675 0.723 0.730
RC208 100 0.195 0.496 0.629 0.680 0.741
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Table D.10: Average hypervolume obtained on Solomon’s C instances of size 50. All variants are
executed with the configurations returned by irace.

Instance Size R
fb,d1
MOEA/D

KD1
all,i,fb,d1
MOEA/D

KD1
all,d,fb,d1
MOEA/D

KD1
lo,i,fb,d1
MOEA/D

KD1
lo,d,fb,d1
MOEA/D

C101 50 0.419 0.426 0.425 0.423 0.423
C102 50 0.697 0.910 0.911 0.897 0.904
C103 50 0.431 0.984 0.985 0.953 0.948
C104 50 0.510 0.993 0.992 0.970 0.973
C105 50 0.754 0.925 0.925 0.925 0.924
C106 50 0.518 0.518 0.518 0.501 0.518
C107 50 0.584 0.788 0.789 0.786 0.785
C108 50 0.682 1.002 1.002 1.002 1.002
C109 50 0.424 1.002 1.002 1.002 0.994

C201 50 0.501 0.500 0.512 0.485 0.506
C202 50 0.713 0.733 0.734 0.734 0.733
C203 50 0.495 0.527 0.527 0.532 0.525
C204 50 0.481 0.804 0.800 0.701 0.743
C205 50 0.388 0.399 0.398 0.397 0.329
C206 50 0.437 0.462 0.462 0.457 0.46
C207 50 0.386 0.518 0.53 0.446 0.384
C208 50 0.713 0.776 0.776 0.766 0.771

Table D.11: Average hypervolume obtained on Solomon’s C instances of size 100. All variants are
executed with the configurations returned by irace.

Instance Size R
fb,d1
MOEA/D

KD1
all,i,fb,d1
MOEA/D

KD1
all,d,fb,d1
MOEA/D

KD1
lo,i,fb,d1
MOEA/D

KD1
lo,d,fb,d1
MOEA/D

C101 100 0.770 1.002 1.002 1.002 1.002
C102 100 0.286 0.895 0.921 0.960 0.999
C103 100 0.250 0.818 0.86 0.859 0.928
C104 100 0.173 0.733 0.835 0.762 0.832
C105 100 0.427 0.988 0.994 0.990 1.002
C106 100 0.362 0.995 0.99 1.001 1.002
C107 100 0.329 0.971 0.941 0.99 0.998
C108 100 0.281 0.951 0.974 0.958 0.991
C109 100 0.151 0.922 0.957 0.929 0.973

C201 100 1.002 1.002 1.002 1.002 1.002
C202 100 0.887 0.85 1.002 0.979 1.002
C203 100 0.405 0.687 0.866 0.909 0.945
C204 100 0.367 0.725 0.836 0.936 0.944
C205 100 0.771 0.85 0.933 0.976 0.986
C206 100 0.513 0.871 0.923 0.985 1.0
C207 100 0.646 0.822 0.954 0.996 1.001
C208 100 0.505 0.819 0.96 0.993 0.999
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Table D.12: Average execution time needed to reach 95% of the mean hypervolume obtained with
Rfb,d1

MOEA/D on Solomon’s R instances of size 50.

Instance Size R
fb,d1
MOEA/D

KD1
all,i,fb,d1
MOEA/D

KD1
all,d,fb,d1
MOEA/D

KD1
lo,i,fb,d1
MOEA/D

KD1
lo,d,fb,d1
MOEA/D

R101 50 113.66 27.77 35.16 22.78 25.54
R102 50 38.13 16.84 15.05 11.12 10.74
R103 50 56.57 21.15 19.95 13.84 15.81
R104 50 276.28 61.0 71.22 58.46 68.86
R105 50 234.13 63.46 83.11 78.56 57.66
R106 50 253.48 45.04 52.83 41.07 41.66
R107 50 251.58 55.53 81.52 65.12 88.14
R108 50 244.63 55.47 71.86 57.8 80.93
R109 50 237.72 70.83 63.68 56.67 65.47
R110 50 233.94 45.45 53.82 35.47 51.12
R111 50 238.23 64.54 65.63 57.92 53.87
R112 50 253.81 53.36 72.67 57.36 58.74

R201 50 163.38 47.86 49.78 42.32 44.42
R202 50 185.45 48.77 60.9 39.57 44.45
R203 50 212.47 54.55 66.38 46.31 42.77
R204 50 243.15 81.57 112.17 99.63 95.51
R205 50 237.54 70.41 67.27 68.88 68.13
R206 50 233.53 72.55 108.82 121.05 89.35
R207 50 238.01 80.2 90.0 75.27 87.72
R208 50 243.07 98.98 123.8 99.38 125.43
R209 50 221.66 86.29 105.03 83.21 103.1
R210 50 226.49 69.85 73.31 63.67 55.48
R211 50 234.52 133.18 158.35 114.85 149.06

Table D.13: Average execution time needed to reach 95% of the mean hypervolume obtained with
Rfb,d1

MOEA/D on Solomon’s R instances of size 100.

Instance Size R
fb,d1
MOEA/D

KD1
all,i,fb,d1
MOEA/D

KD1
all,d,fb,d1
MOEA/D

KD1
lo,i,fb,d1
MOEA/D

KD1
lo,d,fb,d1
MOEA/D

R101 100 94.8 48.38 33.61 42.48 49.32
R102 100 104.97 54.62 40.03 45.18 53.86
R103 100 120.28 67.6 56.95 59.31 65.29
R104 100 507.08 182.86 139.5 167.5 219.54
R105 100 417.55 166.74 136.19 147.03 171.7
R106 100 115.91 100.39 74.26 54.35 57.32
R107 100 517.85 188.89 151.62 177.07 223.41
R108 100 529.36 176.93 136.19 158.71 209.27
R109 100 531.84 198.71 154.29 187.56 250.59
R110 100 528.5 191.24 148.07 187.17 232.35
R111 100 528.84 180.42 139.9 163.28 222.06
R112 100 561.27 183.67 145.15 171.63 223.26

R201 100 409.56 180.19 163.01 168.17 218.81
R202 100 436.48 189.51 170.48 190.18 234.76
R203 100 484.79 200.92 206.56 229.46 256.97
R204 100 514.52 265.52 236.61 223.87 287.1
R205 100 534.01 220.02 216.45 209.64 266.06
R206 100 490.44 232.34 212.27 217.3 247.83
R207 100 511.93 251.3 219.46 223.81 294.29
R208 100 537.5 237.13 222.93 244.16 302.03
R209 100 527.32 239.54 191.71 217.33 267.44
R210 100 503.8 253.1 239.9 215.48 256.21
R211 100 530.92 288.66 214.3 252.5 297.81
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Table D.14: Average execution time needed to reach 95% of the mean hypervolume obtained with
Rfb,d1

MOEA/D on Solomon’s RC instances of size 50.

Instance Size R
fb,d1
MOEA/D

KD1
all,i,fb,d1
MOEA/D

KD1
all,d,fb,d1
MOEA/D

KD1
lo,i,fb,d1
MOEA/D

KD1
lo,d,fb,d1
MOEA/D

RC101 50 251.22 26.74 35.22 22.69 26.05
RC102 50 248.88 26.22 36.12 41.21 24.3
RC103 50 245.07 29.21 40.75 23.09 29.7
RC104 50 215.03 41.07 44.15 55.61 44.27
RC105 50 258.35 33.29 38.79 26.02 33.59
RC106 50 255.98 57.46 56.18 72.93 66.6
RC107 50 238.45 55.98 66.25 54.46 63.14
RC108 50 251.69 27.99 39.63 24.23 26.82

RC201 50 121.09 35.1 44.17 35.19 34.93
RC202 50 168.25 37.83 50.9 38.93 41.02
RC203 50 208.45 53.4 64.73 61.22 63.29
RC204 50 241.97 48.95 62.49 48.38 46.18
RC205 50 166.8 34.37 45.31 33.44 39.41
RC206 50 195.95 32.9 42.89 30.37 31.58
RC207 50 226.69 36.55 48.58 38.62 42.47
RC208 50 225.72 45.78 56.01 33.75 35.65

Table D.15: Average execution time needed to reach 95% of the mean hypervolume obtained with
Rfb,d1

MOEA/D on Solomon’s RC instances of size 100.

Instance Size R
fb,d1
MOEA/D

KD1
all,i,fb,d1
MOEA/D

KD1
all,d,fb,d1
MOEA/D

KD1
lo,i,fb,d1
MOEA/D

KD1
lo,d,fb,d1
MOEA/D

RC101 100 459.63 171.04 118.94 123.03 139.29
RC102 100 525.67 176.14 133.28 129.55 151.57
RC103 100 491.42 162.67 122.84 131.46 160.28
RC104 100 537.93 157.5 116.54 139.31 156.38
RC105 100 504.71 159.5 132.1 135.08 166.73
RC106 100 512.99 156.78 128.07 145.97 173.86
RC107 100 536.45 170.84 128.46 146.69 179.56
RC108 100 550.81 154.19 123.81 138.51 165.56

RC201 100 321.33 150.72 139.58 120.71 127.63
RC202 100 454.12 182.46 171.28 177.57 197.99
RC203 100 494.59 226.26 183.27 191.32 212.07
RC204 100 528.63 234.94 204.57 201.65 248.29
RC205 100 393.99 184.63 171.61 167.56 177.77
RC206 100 515.3 205.34 186.87 179.9 231.36
RC207 100 536.0 222.42 200.51 190.04 239.64
RC208 100 551.53 211.24 169.04 176.2 199.39
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Table D.16: Average execution time needed to reach 95% of the mean hypervolume obtained with
Rfb,d1

MOEA/D on Solomon’s C instances of size 50.

Instance Size R
fb,d1
MOEA/D

KD1
all,i,fb,d1
MOEA/D

KD1
all,d,fb,d1
MOEA/D

KD1
lo,i,fb,d1
MOEA/D

KD1
lo,d,fb,d1
MOEA/D

C101 50 147.27 38.88 44.29 38.51 78.82
C102 50 218.45 36.31 43.93 35.63 39.63
C103 50 264.2 35.8 51.24 34.92 37.03
C104 50 242.72 27.2 40.71 22.31 28.53
C105 50 188.1 26.17 36.63 37.44 31.05
C106 50 101.68 22.44 31.1 23.73 25.59
C107 50 237.5 27.04 35.9 31.16 29.19
C108 50 240.17 25.33 37.09 25.34 27.49
C109 50 248.66 24.09 34.8 21.68 23.82

C201 50 186.71 218.44 137.42 205.02 159.9
C202 50 153.44 40.52 48.93 30.51 38.2
C203 50 223.63 59.6 73.42 53.56 49.9
C204 50 244.02 46.89 61.71 37.21 37.51
C205 50 169.62 37.16 52.65 41.52 140.36
C206 50 209.6 37.23 50.61 34.7 34.9
C207 50 229.29 74.69 88.92 215.7 206.15
C208 50 175.01 39.56 43.48 39.62 32.89

Table D.17: Average execution time needed to reach 95% of the mean hypervolume obtained with
Rfb,d1

MOEA/D on Solomon’s C instances of size 100.

Instance Size R
fb,d1
MOEA/D

KD1
all,i,fb,d1
MOEA/D

KD1
all,d,fb,d1
MOEA/D

KD1
lo,i,fb,d1
MOEA/D

KD1
lo,d,fb,d1
MOEA/D

C101 100 513.51 134.09 92.13 121.42 156.13
C102 100 553.78 144.83 104.3 125.58 158.76
C103 100 511.84 157.78 112.74 134.91 174.88
C104 100 528.38 156.24 114.93 150.93 179.05
C105 100 548.59 132.0 92.24 111.13 148.03
C106 100 555.35 136.35 94.14 121.46 156.73
C107 100 540.11 125.68 87.83 112.14 148.66
C108 100 501.1 136.18 95.62 128.09 150.14
C109 100 492.84 136.33 95.34 122.46 153.5

C201 100 99.88 85.8 62.8 55.22 45.53
C202 100 498.43 170.43 125.07 146.22 182.11
C203 100 547.72 202.82 162.64 167.17 221.86
C204 100 529.17 216.21 182.17 183.9 238.21
C205 100 499.81 148.58 108.2 132.54 159.76
C206 100 536.51 155.16 115.0 141.3 174.26
C207 100 499.89 163.65 118.62 141.11 173.07
C208 100 543.67 170.49 114.48 136.63 180.19
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Table D.18: Average gaps (%) obtained for the total transportation cost objective, relatively to the
best-known on instances of category R of size 50.

Instance Size Opt. Rfb,d1
MOEA/D KD1all,i,fb,d1MOEA/D KD1all,d,fb,d1MOEA/D KD1lo,i,fb,d1MOEA/D KD1lo,d,fb,d1MOEA/D

R101 50 1044.0 0.80 0.11 0.16 0.19 0.19
R102 50 909.0 2.19 0.00 0.05 0.06 0.19
R103 50 772.9 2.62 0.10 0.12 0.39 0.31
R104 50 625.4 4.84 1.05 0.98 1.44 2.04
R105 50 899.3 1.57 0.12 0.04 0.17 0.16
R106 50 793.0 2.86 0.94 1.26 1.55 1.52
R107 50 711.1 3.76 1.05 1.51 1.90 2.00
R108 50 617.7 4.32 1.41 1.24 1.36 1.78
R109 50 786.8 1.96 1.05 0.78 1.01 1.04
R110 50 697.0 4.23 1.77 1.85 2.18 3.31
R111 50 707.2 3.43 1.48 1.36 1.84 1.96
R112 50 630.2 4.55 1.74 1.70 2.66 2.63

R201 50 791.9 4.63 2.15 2.45 2.30 2.25
R202 50 698.5 6.68 3.93 3.79 3.75 4.11
R203 50 605.3 7.68 3.10 3.49 3.95 3.65
R204 50 506.4 1.63 0.68 0.68 1.06 0.78
R205 50 690.1 5.26 2.95 2.67 2.62 2.87
R206 50 632.4 3.79 2.03 2.27 2.77 2.74
R207 50 575.5 4.47 1.94 1.96 2.02 2.11
R208 50 492.2 2.79 1.79 1.89 2.17 2.09
R209 50 600.6 4.39 2.59 2.14 2.90 2.47
R210 50 645.6 6.13 3.09 2.96 3.24 2.98
R211 50 535.5 2.67 1.85 2.07 2.46 3.08

Table D.19: Average gaps (%) obtained for the total transportation cost objective, relatively to the
best-known on instances of class R of size 100.

Instance Size Opt. Rfb,d1
MOEA/D KD1all,i,fb,d1MOEA/D KD1all,d,fb,d1MOEA/D KD1lo,i,fb,d1MOEA/D KD1lo,d,fb,d1MOEA/D

R101 100 1637.7 1.48 0.62 0.37 0.30 0.21
R102 100 1466.6 4.04 1.44 1.20 1.25 0.96
R103 100 1208.7 9.24 4.53 3.49 3.84 3.60
R104 100 971.5 16.65 7.37 7.41 7.41 7.50
R105 100 1355.3 5.26 2.55 1.76 1.48 1.35
R106 100 1234.6 8.52 4.17 3.52 3.95 3.62
R107 100 1064.6 12.67 6.54 5.44 5.79 6.01
R108 100 932.1 17.11 7.87 7.59 7.05 7.21
R109 100 1146.9 8.39 5.05 3.36 3.17 3.06
R110 100 1068.0 12.19 7.04 6.24 6.06 5.66
R111 100 1048.7 13.07 6.56 5.68 6.16 5.58
R112 100 948.6 16.69 8.05 7.15 7.61 7.74

R201 100 1143.2 7.28 8.90 7.20 6.01 5.06
R210 100 900.5 9.90 8.81 7.34 7.30 6.56
R211 100 746.7 9.49 5.93 5.51 5.44 5.22
R202 100 1029.6 9.50 9.72 8.03 7.50 6.47
R203 100 870.8 10.39 9.66 8.22 7.46 6.34
R204 100 731.3 10.76 7.47 6.02 6.65 5.85
R205 100 949.8 8.07 6.49 5.62 4.54 4.93
R206 100 875.9 9.55 6.62 5.90 5.63 5.31
R207 100 794.0 11.42 8.59 7.35 6.41 5.96
R208 100 701.0 10.36 7.40 6.24 6.16 6.21
R209 100 854.8 8.68 6.37 4.97 4.56 4.86
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Table D.20: Average gaps (%) obtained for the total transportation cost objective, relatively to the
best-known on instances of class RC of size 50.

Instance Size Opt. Rfb,d1
MOEA/D KD1all,i,fb,d1MOEA/D KD1all,d,fb,d1MOEA/D KD1lo,i,fb,d1MOEA/D KD1lo,d,fb,d1MOEA/D

RC101 50 944.0 3.33 0.11 0.18 0.19 0.03
RC102 50 822.5 4.98 1.86 1.75 1.91 1.35
RC103 50 710.9 8.23 2.73 3.30 3.65 4.36
RC104 50 545.8 5.01 0.22 0.32 0.28 0.65
RC105 50 855.3 6.82 0.55 0.63 1.15 1.59
RC106 50 723.2 12.44 6.13 4.32 7.06 7.56
RC107 50 642.7 8.03 1.78 1.73 2.27 3.41
RC108 50 598.1 10.44 0.38 0.28 0.85 1.36

RC201 50 684.4 2.82 0.27 0.34 0.41 0.40
RC202 50 613.6 7.47 0.47 0.27 1.36 0.83
RC203 50 555.3 8.21 3.46 2.06 3.72 3.08
RC204 50 444.2 11.62 2.81 2.17 3.34 3.43
RC205 50 630.2 8.46 1.19 1.03 1.74 1.53
RC206 50 610.0 7.58 1.31 1.21 2.05 2.72
RC207 50 558.6 7.33 2.23 2.32 2.55 2.62
RC208 50 489.1 4.96 0.41 0.39 0.56 1.03

Table D.21: Average gaps (%) obtained for the total transportation cost objective, relatively to the
best-known on instances of class RC of size 100.

Instance Size Opt. Rfb,d1
MOEA/D KD1all,i,fb,d1MOEA/D KD1all,d,fb,d1MOEA/D KD1lo,i,fb,d1MOEA/D KD1lo,d,fb,d1MOEA/D

RC101 100 1619.8 10.45 5.66 4.36 3.59 3.24
RC102 100 1457.4 14.88 7.73 4.69 4.33 3.54
RC103 100 1258.0 20.82 12.31 10.55 9.53 9.51
RC104 100 1132.3 25.36 12.65 9.89 10.31 8.87
RC105 100 1513.7 13.86 7.78 6.14 5.92 5.52
RC106 100 1372.7 14.88 8.13 5.81 6.10 5.56
RC107 100 1207.8 22.31 13.52 10.69 10.42 9.96
RC108 100 1114.2 28.19 14.70 12.75 11.20 10.03

RC201 100 1261.8 8.59 10.62 7.53 5.45 4.17
RC202 100 1092.3 11.74 12.85 7.20 5.87 3.95
RC203 100 923.7 15.11 14.10 8.89 7.82 5.67
RC204 100 783.5 13.12 10.10 6.90 5.44 4.95
RC205 100 1154.0 11.39 13.32 9.67 7.08 5.68
RC206 100 1051.1 10.86 9.26 7.20 6.45 5.34
RC207 100 962.9 11.12 8.46 6.32 5.50 5.20
RC208 100 776.1 14.24 9.34 7.16 6.32 5.33
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Table D.22: Average gaps (%) obtained for the total transportation cost objective, relatively to the
best-known on instances of class C of size 50.

Instance Size Opt. Rfb,d1
MOEA/D KD1all,i,fb,d1MOEA/D KD1all,d,fb,d1MOEA/D KD1lo,i,fb,d1MOEA/D KD1lo,d,fb,d1MOEA/D

C101 50 362.4 0.00 0.00 0.00 0.00 0.00
C102 50 361.4 8.64 0.00 0.00 0.49 0.24
C103 50 361.4 21.42 0.24 0.22 1.42 1.60
C104 50 358.0 27.21 0.42 0.46 1.67 1.51
C105 50 362.4 4.98 0.00 0.00 0.00 0.00
C106 50 362.4 0.00 0.00 0.00 0.02 0.00
C107 50 362.4 7.80 0.00 0.00 0.00 0.00
C108 50 362.4 10.15 0.00 0.00 0.00 0.00
C109 50 362.4 17.57 0.00 0.00 0.00 0.24

C201 50 360.2 0.00 0.00 0.00 0.00 0.00
C202 50 360.2 0.78 0.00 0.00 0.00 0.00
C203 50 359.8 2.90 0.04 0.05 0.04 0.07
C204 50 350.1 7.31 2.68 2.67 4.23 3.50
C205 50 359.8 0.46 0.02 0.00 0.02 0.00
C206 50 359.8 1.50 0.00 0.00 0.14 0.19
C207 50 359.6 2.35 0.06 0.04 0.24 0.52
C208 50 350.5 1.87 0.00 0.00 0.00 0.08

Table D.23: Average gaps (%) obtained for the total transportation cost objective, relatively to the
best-known on instances of class C of size 100.

Instance Size Opt. Rfb,d1
MOEA/D KD1all,i,fb,d1MOEA/D KD1all,d,fb,d1MOEA/D KD1lo,i,fb,d1MOEA/D KD1lo,d,fb,d1MOEA/D

C101 100 827.3 2.63 0.00 0.00 0.00 0.00
C102 100 827.3 35.72 5.37 4.08 2.11 0.15
C103 100 826.3 50.71 12.58 9.75 9.81 5.13
C104 100 822.9 54.15 18.75 12.26 16.91 12.40
C105 100 827.3 27.95 0.67 0.41 0.57 0.00
C106 100 827.3 26.86 0.28 0.49 0.04 0.00
C107 100 827.3 35.52 1.69 3.30 0.67 0.23
C108 100 827.3 38.17 2.72 1.51 2.34 0.57
C109 100 827.3 43.53 4.12 2.34 3.75 1.49

C201 100 589.1 0.00 0.00 0.00 0.00 0.00
C202 100 589.1 0.79 1.04 0.00 0.16 0.00
C203 100 588.7 8.18 4.39 1.89 1.29 0.79
C204 100 588.1 22.64 10.01 6.01 2.40 2.11
C205 100 586.4 1.63 1.07 0.49 0.18 0.12
C206 100 586.0 4.08 1.09 0.66 0.14 0.01
C207 100 585.8 3.26 1.65 0.43 0.05 0.01
C208 100 585.8 4.77 1.84 0.43 0.09 0.03



Appendix E

Enhanced Knowledge Groups

This appendix is related to Section 5.2, where an enhancement of the knowledge groups is proposed.
In particular, with the new construction, the number of knowledge groups can be controlled and they
are more independent from MOEA/D. We compared seven algorithms using different numbers of

knowledge groups, and with different injection strategies: KD21MOEA/D, KD2
3,siI
MOEA/D, KD2

3,sdI
MOEA/D,

KD2
5,siI
MOEA/D, KD2

5,sdI
MOEA/D, KD2

M,siI
MOEA/D, and KD2

M,sdI
MOEA/D. Summarized results are presented in

Section 5.2.6.

Table E.1: Average hypervolume obtained on Solomon’s R instances of size 100. Each variant is
represented by a pair (number of groups, injection strategy).

Category (1,−) (3, siI) (3, sdI ) (5, siI) (5, sdI ) (M, siI) (M, sdI )

R101 0.892 0.878 0.878 0.893 0.879 0.884 0.884
R102 0.901 0.861 0.883 0.913 0.872 0.895 0.892
R103 0.898 0.854 0.858 0.915 0.854 0.895 0.885
R104 0.767 0.637 0.792 0.826 0.696 0.741 0.777
R105 0.882 0.757 0.801 0.883 0.750 0.818 0.830
R106 0.814 0.711 0.755 0.830 0.761 0.778 0.786
R107 0.715 0.656 0.696 0.807 0.663 0.677 0.750
R108 0.563 0.498 0.615 0.758 0.610 0.613 0.648
R109 0.771 0.496 0.711 0.777 0.570 0.648 0.564
R110 0.664 0.463 0.582 0.723 0.571 0.582 0.556
R111 0.663 0.548 0.657 0.745 0.600 0.620 0.668
R112 0.602 0.438 0.648 0.722 0.571 0.507 0.526

R1 0.761 0.650 0.740 0.816 0.700 0.721 0.730

R201 0.757 0.720 0.706 0.773 0.721 0.742 0.748
R202 0.761 0.713 0.699 0.770 0.708 0.721 0.734
R203 0.716 0.640 0.674 0.728 0.656 0.671 0.690
R204 0.646 0.541 0.592 0.663 0.591 0.611 0.654
R205 0.726 0.650 0.637 0.712 0.609 0.648 0.665
R206 0.734 0.654 0.741 0.772 0.704 0.664 0.718
R207 0.605 0.466 0.608 0.618 0.541 0.540 0.581
R208 0.629 0.496 0.663 0.654 0.591 0.564 0.648
R209 0.695 0.600 0.664 0.683 0.615 0.648 0.699
R210 0.755 0.640 0.676 0.728 0.666 0.666 0.741
R211 0.642 0.506 0.631 0.677 0.548 0.548 0.583

R2 0.697 0.602 0.663 0.707 0.632 0.638 0.678

165



166 APPENDIX E. ENHANCED KNOWLEDGE GROUPS

Table E.2: Average hypervolume obtained on Solomon’s RC instances of size 100. Each variant is
represented by a pair (number of groups, injection strategy).

Category (1,−) (3, siI) (3, sdI ) (5, siI) (5, sdI ) (M, siI) (M, sdI )

RC101 0.823 0.741 0.789 0.864 0.776 0.835 0.795
RC102 0.826 0.645 0.778 0.861 0.692 0.783 0.794
RC103 0.768 0.626 0.691 0.857 0.690 0.723 0.733
RC104 0.538 0.444 0.611 0.726 0.561 0.665 0.581
RC105 0.750 0.611 0.727 0.832 0.689 0.752 0.719
RC106 0.689 0.459 0.664 0.779 0.613 0.643 0.654
RC107 0.618 0.436 0.618 0.795 0.518 0.653 0.542
RC108 0.594 0.351 0.630 0.748 0.528 0.632 0.568

RC1 0.701 0.539 0.689 0.808 0.633 0.711 0.673

RC201 0.812 0.751 0.759 0.810 0.769 0.784 0.788
RC202 0.815 0.724 0.721 0.803 0.742 0.745 0.788
RC203 0.713 0.589 0.637 0.702 0.665 0.640 0.691
RC204 0.759 0.630 0.719 0.741 0.699 0.723 0.768
RC205 0.801 0.703 0.729 0.773 0.736 0.745 0.770
RC206 0.811 0.644 0.742 0.760 0.720 0.730 0.758
RC207 0.744 0.569 0.644 0.706 0.651 0.651 0.691
RC208 0.742 0.517 0.655 0.733 0.597 0.698 0.638

RC2 0.775 0.641 0.701 0.754 0.697 0.714 0.736

Table E.3: Average hypervolume obtained on Solomon’s C instances of size 100. Each variant is
represented by a pair (number of groups, injection strategy).

Category (1,−) (3, siI) (3, sdI ) (5, siI) (5, sdI ) (M, siI) (M, sdI )

C101 0.964 1.002 1.002 1.002 1.000 1.002 1.002
C102 0.955 0.881 0.880 0.985 0.874 0.938 0.934
C103 0.833 0.612 0.748 0.894 0.646 0.774 0.783
C104 0.788 0.601 0.794 0.857 0.736 0.805 0.749
C105 0.954 0.962 0.972 0.994 0.951 0.984 0.974
C106 0.911 0.906 0.937 1.002 0.844 0.982 0.951
C107 0.911 0.814 0.792 0.993 0.815 1.002 0.979
C108 0.926 0.851 0.851 0.987 0.808 0.948 0.923
C109 0.884 0.768 0.872 0.975 0.861 0.938 0.930

C1 0.903 0.822 0.872 0.965 0.837 0.930 0.914

C201 0.993 0.993 0.938 1.002 0.956 1.002 0.975
C202 0.913 0.844 0.868 0.885 0.774 0.894 0.927
C203 0.938 0.885 0.884 0.957 0.891 0.945 0.924
C204 0.807 0.634 0.666 0.842 0.680 0.707 0.783
C205 0.861 0.957 0.882 0.989 0.849 0.985 0.994
C206 0.857 0.925 0.796 0.985 0.824 0.999 0.929
C207 0.807 0.882 0.768 0.973 0.805 0.987 0.912
C208 0.802 0.896 0.773 0.987 0.807 0.994 0.961

C2 0.872 0.877 0.822 0.952 0.823 0.939 0.926



Appendix F

Parameters Analysis

This appendix is related to Section 5.3, where an analysis of the different parameters is performed.
The parameters studied are the number of subproblems, the granularity, the crossover probability,
the local search probability (see also Section 5.3.2), the exploration strategy, the granularity metric,
the number of knowledge groups, the maximum size of the patterns extracted, the maximum number
of patterns injected, and the injection probability. Six elite configurations returned by irace are
used. There is one configuration per pair (exploration strategy, granularity metric). The analysis
of these parameters led to a second tuning, used to generate the final tables. Summarized results
are available in Section 5.3.3.3).

Elite fbd1 Elite fbd2 Elite fbd3 Elite bd1 Elite bd2 Elite bd3
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(b) Category R.

Figure F.1: Influence of the number of subproblems on instances of category C and R.
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Figure F.2: Influence of the granularity on instances of category C and R.
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Figure F.3: Influence of the crossover probability on instances of category C and R.
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Figure F.4: Influence of the local search probability on instances of category C and R.
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Figure F.5: Influence of the exploration strategy on instances of category C and R.

Elite fbd1 Elite fbd2 Elite fbd3 Elite bd1 Elite bd2 Elite bd3

0.7 0.8 0.9 0.7 0.8 0.9 0.7 0.8 0.9 0.7 0.8 0.9 0.7 0.8 0.9 0.7 0.8 0.9

d1

d2

d3

Hypervolume

V
a
lu

e
 o

f 
th

e
 p

a
ra

m
e
te

r

(a) Category C.

Elite fbd1 Elite fbd2 Elite fbd3 Elite bd1 Elite bd2 Elite bd3

0.7 0.8 0.9 0.7 0.8 0.9 0.7 0.8 0.9 0.7 0.8 0.9 0.7 0.8 0.9 0.7 0.8 0.9

d1

d2

d3

Hypervolume

V
a
lu

e
 o

f 
th

e
 p

a
ra

m
e
te

r

(b) Category R.

Figure F.6: Influence of the granularity metric on instances of category C and R.

Elite fbd1 Elite fbd2 Elite fbd3 Elite bd1 Elite bd2 Elite bd3

0.7 0.8 0.9 0.7 0.8 0.9 0.7 0.8 0.9 0.7 0.8 0.9 0.7 0.8 0.9 0.7 0.8 0.9

1

10

25

50

75

100

Hypervolume

V
a
lu

e
 o

f 
th

e
 p

a
ra

m
e
te

r

(a) Category C.

Elite fbd1 Elite fbd2 Elite fbd3 Elite bd1 Elite bd2 Elite bd3

0.7 0.8 0.9 0.7 0.8 0.9 0.7 0.8 0.9 0.7 0.8 0.9 0.7 0.8 0.9 0.7 0.8 0.9

1

10

25

50

75

100

Hypervolume

V
a
lu

e
 o

f 
th

e
 p

a
ra

m
e
te

r

(b) Category R.

Figure F.7: Influence of the number of knowledge groups on instances of category C and R.
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Figure F.8: Influence of the maximum size of extracted patterns on instances of category C and R.
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Figure F.9: Influence of the number of patterns injected on instances of category C and R.
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Figure F.10: Influence of the injection probability on instances of category C and R.
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Table F.1: Detailed results for algorithms fbd2, bd2, and RMOEA/D on Gehring and Homberger’s
C instances of size 200. From left to right: the average size of the front, the average uHV, and the
average time to reach 80% of the reference uHV. A uHV of 0.000 means that the solutions found
are too far from the nadir of the current reference front. A uHV strictly higher than 1.002 means
that better non-dominated solutions were found (i.e., dominating the current ideal point).

fbd2 bd2 RMOEA/D

Inst. |F | uHV Time (s) |F | uHV Time (s) |F | uHV Time (s)

C1 2 1 2.0 0.990 815.3 2.1 0.875 2359.1 5.7 0.024 2882.3
C1 2 2 5.0 1.122 1235.0 6.1 0.298 2865.2 12.4 0.000 2883.2
C1 2 3 4.5 1.081 1569.7 5.2 0.108 2892.9 17.0 0.003 2883.1
C1 2 4 2.5 1.017 1849.2 2.1 0.037 2896.6 11.7 0.000 2882.4
C1 2 5 1.0 0.977 1047.0 2.3 0.680 2706.3 3.8 0.002 2882.2
C1 2 6 3.4 0.926 1605.4 4.2 0.450 2866.2 9.5 0.000 2882.5
C1 2 7 1.6 0.930 1610.4 2.3 0.393 2875.3 3.3 0.000 2882.1
C1 2 8 1.1 0.936 1333.2 1.6 0.111 2892.3 3.5 0.000 2882.1
C1 2 9 1.1 0.950 1469.7 1.4 0.062 2905.4 2.2 0.000 2881.4
C1 2 10 1.1 1.165 1118.6 1.0 0.064 2903.8 1.8 0.000 2881.7

C2 2 1 1.0 1.002 379.2 1.1 0.464 2474.6 3.2 0.625 2577.7
C2 2 2 7.0 0.929 984.0 3.7 0.165 2876.9 6.1 0.450 2882.9
C2 2 3 11.8 1.065 1167.2 4.0 0.090 2924.0 12.4 0.536 2883.0
C2 2 4 10.6 1.034 1473.4 3.5 0.064 2956.9 10.9 0.617 2804.4
C2 2 5 1.2 0.979 621.3 3.0 0.257 2822.8 6.2 0.421 2882.6
C2 2 6 3.1 0.971 869.9 2.8 0.117 2887.9 8.4 0.408 2837.0
C2 2 7 2.4 0.974 841.0 3.6 0.085 2915.6 9.7 0.379 2843.8
C2 2 8 1.2 0.955 802.4 2.8 0.087 2909.6 3.9 0.384 2881.8
C2 2 9 2.8 0.962 1160.0 2.9 0.089 2934.9 13.0 0.348 2882.1
C2 2 10 2.3 0.954 1006.9 1.8 0.017 2949.1 4.6 0.301 2882.1

Table F.2: Detailed results for algorithms fbd2, bd2, and RMOEA/D on Gehring and Homberger’s
R instances of size 200. From left to right: the average size of the front, the average uHV, and
the average time to reach 80% of the reference uHV. A uHV strictly higher than 1.002 means that
better non-dominated solutions were found (dominating the current ideal point).

fbd2 bd2 RMOEA/D

Inst. |F | uHV Time (s) |F | uHV Time (s) |F | uHV Time (s)

R1 2 1 88.3 0.883 833.1 67.5 0.855 2212.0 48.9 0.776 2886.3
R1 2 2 67.1 0.882 1269.8 43.7 0.820 2584.8 45.4 0.746 2888.6
R1 2 3 50.2 0.904 1380.1 29.7 0.781 2762.4 44.5 0.688 2888.7
R1 2 4 22.1 0.965 1552.7 13.0 0.731 2810.8 35.5 0.552 2887.5
R1 2 5 56.0 0.879 1354.0 42.5 0.845 2326.8 32.6 0.680 2888.1
R1 2 6 48.7 0.894 1423.0 32.1 0.808 2683.0 43.4 0.663 2887.0
R1 2 7 34.2 0.918 1594.1 19.4 0.802 2732.1 45.1 0.600 2885.5
R1 2 8 14.4 1.038 1643.4 8.3 0.695 2803.3 23.6 0.338 2884.8
R1 2 9 40.9 0.857 1916.2 30.9 0.828 2562.9 30.3 0.598 2888.0
R1 2 10 23.5 0.975 1438.9 14.1 0.801 2658.0 23.1 0.438 2887.0
R2 2 1 87.7 0.894 631.3 44.4 0.824 2414.6 44.4 0.864 897.6

R2 2 1 87.7 0.894 631.3 44.4 0.824 2414.6 44.4 0.864 897.6
R2 2 2 68.0 0.865 1230.0 24.5 0.727 2835.5 32.0 0.813 2256.7
R2 2 3 54.0 0.853 1595.2 18.0 0.629 2891.5 22.4 0.795 2714.0
R2 2 4 29.9 0.895 1766.0 7.4 0.453 2975.2 14.6 0.730 2870.8
R2 2 5 56.2 0.892 1154.7 24.1 0.747 2725.9 29.2 0.814 2261.6
R2 2 6 50.2 0.885 1284.2 14.1 0.612 2897.9 21.3 0.793 2654.1
R2 2 7 36.1 0.829 2258.9 12.2 0.524 2913.8 15.9 0.704 2889.3
R2 2 8 20.2 0.898 1974.6 6.7 0.456 2897.9 8.7 0.632 2877.7
R2 2 9 45.4 0.893 1160.1 21.9 0.714 2775.6 24.8 0.794 2553.1
R2 2 10 30.2 0.888 1693.8 12.1 0.594 2891.6 16.1 0.718 2836.8
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Yuichi Nagata, Olli Bräysy, and Wout Dullaert. A penalty-based edge assembly memetic algorithm
for the vehicle routing problem with time windows. Computers & operations research, 37(4):
724–737, 2010a.
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Titre : Extraction de connaissance pour les métaheuristiques à partir des solutions
appliquée aux problèmes de tournées de véhicules bi-objectif

Mots-Clés : optimisation combinatoire, optimisation multi-objectif, metaheuristiques, appren-
tissage machine, extraction de connaissance, tournées de véhicule.

Résumé : Cette thèse intitulée ≪ Extraction de connaissance pour les métaheuristiques à par-
tir des solutions appliquée aux problèmes de tournées de véhicules bi-objectif ≫ s’intéresse à
l’intégration de mécanismes d’apprentissage au sein d’algorithmes multi-objectifs existants. En
effet, l’utilisation d’apprentissage machine pour résoudre des problèmes d’optimisation combina-
toire a permis d’améliorer de manière significative (à la fois en termes de performance et de temps
d’exécution) des métaheuristiques existantes. Nous nous sommes concentrés sur un problème de
tournées de véhicules bi-objectif avec fenêtres de temps qui est un problème de logistique où l’on
cherche à optimiser la création de tournées pour livrer chaque client à une période précise, symbolisée
par une fenêtre de temps. La résolution de ce type de problèmes est un enjeux pour de nombreuses
entreprises. Les deux objectifs minimisés sont le coût total de transport et le temps total d’attente
des livreurs, provoqué par l’arrivée du livreur avant le début de la période de livraison. Pour
résoudre ce problème, nous proposons d’exploiter les séquences de clients livrés consécutivement
au sein d’une tournée. Ces séquences sont extraites lors de l’exécution de l’algorithme à partir de
solutions générées. Les séquences les plus prometteuses sont ensuite intégrées dans d’autres solu-
tions pour les améliorer. Si l’apprentissage de séquences pour résoudre ce type de problèmes s’est
révélé efficace en mono-objectif, cela reste un challenge de les exploiter dans un cadre multi-objectif,
puisque certaines séquences intéressantes pour un objectif peuvent se révéler inutiles pour l’autre
objectif. Plus précisément, dans cette thèse, nous nous interrogeons sur les manières d’exploiter au
mieux les séquences disponibles dans les solutions. En particulier cela nous a conduits à nous poser
les questions suivantes : comment gérer ces séquences dans un cadre multi-objectif ? De quelles
solutions devons-nous extraire les séquences et dans quelles solutions les injecter ? A quel moment
de l’exécution, les étapes d’injection et d’extraction doivent-elles être effectuées ? Les réponses à
ces questions nous ont menés à l’élaboration d’un modèle d’apprentissage exploitant les séquences
des solutions dans un cadre multi-objectif, où des groupes de connaissance sont créés pour stocker
les séquences relatives à une partie de l’espace de recherche. Ce modèle a ensuite été intégré dans
deux algorithmes populaires : MOEA/D et MOLS, montrant l’efficacité du modèle proposé.
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Title. Solution-based Knowledge Discovery in Metaheuristics for Bi-Objective Vehicle
Routing Problems

Keywords. combinatorial optimization, multi-objective optimization, metaheuristics, machine
learning, knowledge discovery, vehicle routing

Abstract This thesis entitled ”Solution-based Knowledge Discovery in Metaheuristics for Bi-
Objective Vehicle Routing Problems” focuses on the integration of learning mechanisms within
existing multi-objective algorithms. Indeed, the use of machine learning to solve combinatorial
optimization problems has led to significant improvements (both in terms of performance and
execution time) in existing metaheuristics. We have focused on a bi-objective vehicle routing
problem with time windows, which is a logistics problem where the aim is to optimize the creation
of routes to deliver to each customer at a precise period, symbolized by a time window. Solving
this type of problem is a challenge for many companies. The two objectives to be minimized are
the total cost of transport and the total waiting time for the delivery driver, caused by the driver
arriving before the start of the delivery period. To solve this problem, we propose to exploit the
sequences of customers delivered consecutively within a tour. These sequences are extracted from
generated solutions during algorithm execution. The most promising sequences are then integrated
into other solutions to improve them. While learning sequences to solve this type of problem
has proved effective in single-objective settings, it remains a challenge to exploit them in a multi-
objective context. Indeed, some sequences that are interesting for one objective may prove useless
for the other. More specifically, in this thesis, we are looking at ways of making the most of the
sequences available in solutions. In particular, this led us to ask the following questions: how can we
manage these sequences in a multi-objective framework? From which solutions should we extract
sequences, and into which solutions should we inject them? At what point in the runtime should the
injection and extraction steps be carried out? The answers to these questions led us to develop a
learning model exploiting solution sequences in a multi-objective context, where knowledge groups
are created to store sequences relating to a part of the search space. This model was then integrated
into two popular algorithms: MOEA/D and MOLS, demonstrating the effectiveness of the proposed
model.
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