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Résumés de la thèse
Résumé vulgarisé. L’apprentissage PAC-Bayésien est une branche de la théorie de
l’apprentissage récemment mise en avant pour ses garanties de généralisation des
réseaux de neurones profonds permettant de mieux comprendre leur performances
empiriques sur des exemples jamais vus par la machine auparavant. Cette théorie
a été initialement développée dans le cadre de la théorie de l’information, qui peut
s’avérer limitée pour comprendre précisément la capacité de généralisation des réseaux
neuronaux profonds, capacité étant acquise via un processus d’optimisation souvent
non-exploité dans les bornes PAC-Bayes. Dans cette thèse, une vision optimisatoire
de l’apprentissage PAC-Bayes est proposée et développée à travers de nombreux al-
gorithmes d’apprentissage et de bornes de généralisation, mettant en évidence les
différentes interactions entre les bénéfices de la phase d’apprentissage et la généralisation.

Résumé complet. L’apprentissage PAC-Bayésien est une branche de la théorie de
l’apprentissage récemment mise en avant pour ses garanties de généralisation des
réseaux de neurones profonds permettant de mieux comprendre leur performances
empiriques sur des examples jamais vus par la machine auparavant. Cette théorie
a été initialement développée dans le cadre de la théorie de l’information, qui peut
s’avérer limitée pour comprendre précisément la capacité de généralisation des réseaux
neuronaux profonds, capacité étant acquise via un processus d’optimisation souvent
non-exploité dans les bornes PAC-Bayes. Dans cette thèse, une vision optimisatoire
de l’apprentissage PAC-Bayes est proposée et développée à travers de nombreux al-
gorithmes d’apprentissage et de bornes de généralisation, mettant en évidence les
différentes interactions entre les bénéfices de la phase d’apprentissage et la généralisation.
En effet, l’apprentissage PAC-Bayes est classiquement développé via la théorie de
l’information, impliquant des quantités interprétées comme bayésiennes telles que la
connaissance ’a priori’. Cela peut être difficile à concilier avec l’optimisation concrète
des réseaux neuronaux profonds, qui implique l’optimisation d’un grand ensemble de
paramètres et ne fait pas appel à l’apprentissage Bayésien. Pour combler cette la-
cune, nous remettons en question les interprétations et les hypothèses du PAC-Bayes
issues de la théorie de l’information et proposons une nouvelle perspective basée sur
l’optimisation.
Plus précisément, nous présentons l’apprentissage PAC-Bayes au chapitre 1, ainsi
que notre nouvelle vision optimisatoire. Le chapitre 2 remet en question les hy-
pothèses statistiques du PAC-Bayes. Le chapitre 3 introduit l’apprentissage PAC-
Bayesien en ligne, qui permet de réduire l’impact de l’initialisation pendant le processus
d’apprentissage. Le chapitre 4 atténue l’impact de l’optimisation dans l’apprentissage
par lots en exploitant les ”minima plats”, un certain type de minima souvent at-
teint par les réseaux neuronaux profonds, ce qui permet de mieux comprendre la
généralisation dans de telles structures. Le chapitre 5 montre qu’il est possible de
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combiner l’apprentissage PAC-Bayes et le transport optimal, ce qui permet d’incorporer
directement des garanties d’optimisation dans une borne PAC-Bayes. Enfin, le chapitre
6 constitue un premier pas vers la pratique en mettant en œuvre de nouveaux algo-
rithmes PAC-Bayes en ligne et par tas pour des Diracs, ce qui n’est pas possible lorsque
la théorie de l’information est utilisée.

Thesis summaries
Lay summary. PAC-Bayesian learning is a branch of learning theory recently high-
lighted for its tight generalisation guarantees of deep neural networks, yielding a sharper
understanding of their practical efficiency on a novel, unseen example. This theory was
initially developed through information theory, which may prove to be limiting for un-
derstanding precisely the generalisation capacity of deep neural networks, acquired
through an optimisation process. Indeed, a large part of the PAC-Bayesian literature
does not dwell on the characteristics and positive impact of the learning phase to
enrich the understanding of the generalisation phenomenon observed in practice. In
this thesis, an optimisation-driven vision of PAC-Bayes learning is proposed and devel-
oped via numerous learning algorithms and generalisation bounds, highlighting various
interplays between the benefits of the learning phase and generalisation.

Full summary. PAC-Bayesian learning is a branch of learning theory recently high-
lighted for its tight generalisation guarantees of deep neural networks, yielding a sharper
understanding of their practical efficiency on a novel, unseen example. This theory was
initially developed through information theory, which may prove to be limiting for un-
derstanding precisely the generalisation capacity of deep neural networks, acquired
through an optimisation process. Indeed, a large part of the PAC-Bayesian literature
does not dwell on the characteristics and positive impact of the learning phase to
enrich the understanding of the generalisation phenomenon observed in practice. In
this thesis, an optimisation-driven vision of PAC-Bayes learning is proposed and devel-
oped via numerous learning algorithms and generalisation bounds, highlighting various
interplays between the benefits of the learning phase and generalisation.
Indeed, PAC-Bayes learning is classically developed through an information-theoretic
prism involving in particular Bayesian quantities such as prior knowledge. This may
be hard to fit with concrete optimisation procedure of deep neural networks, involving
optimisation on large parameters set without the Bayesian paradigm. To fill this gap,
we challenge the information-theoretic interpretations and assumptions disseminated
within the PAC-Bayes literature by proposing an optimisation-based perspective.
More precisely, we introduce PAC-Bayes learning in Chapter 1, as well as our novel op-
timisation view. Chapter 2 challenges statistical assumptions of PAC-Bayes. Chapter
3, introduces Online PAC-Bayes Learning, allowing to reduce the impact of the initial-
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isation during the learning process. Chapter 4 attenuates the impact of optimisation
in batch learning by exploiting ’flat minima’, a certain type of minima often reached
by deep neural networks, providing a sharper understanding of generalisation in such
structures. Chapter 5 shows that it is possible to mix up PAC-Bayes learning and opti-
mal transport, allowing to directly incorporate optimisation guarantees in a PAC-Bayes
generalisation bound. Finally, Chapter 6 is a first step towards practitioners by imple-
menting novel batch and online PAC-Bayes algorithms for Dirac distribution, which is
not possible by the information-theoretic approach of PAC-Bayes.
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tâche, là où vous tous formez cette hampe magnifique qui donne prestance, extension
et force.
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participer à ce jury, Claire Boyer et Gérard Biau que j’ai connu en tant qu’enseignants
aux prémisses de ma thèse et dont la présence dans ce comité clôt magnifiquement
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et Sophie qui sont à ce jour les dernières belles rencontres que j’ai faites. Je songe
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et Généralisation 15

Preamble: Human Learning, Machine Learning and Generalisation 19

1 PAC-Bayes Learning, a field of many paradigms 23
1.1 A brief introduction to statistical learning . . . . . . . . . . . . . . . . 23
1.2 An information-theoretic exposure of PAC-Bayes learning . . . . . . . . 25
1.3 From theory to learning algorithms . . . . . . . . . . . . . . . . . . . 29
1.4 An optimisation perspective of PAC-Bayes . . . . . . . . . . . . . . . 32

2 PAC-Bayes with Weak Statistical Assumptions: Generalisation Bounds
for Martingales and Heavy-Tailed losses 39
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.2 A PAC-Bayesian bound for unbounded martingales . . . . . . . . . . . 44
2.3 Application to the multi-armed bandit problem . . . . . . . . . . . . . 51
2.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3 Mitigating Initialisation Impact by Real-Time Control: Online PAC-
Bayes Learning 55
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.2 An online PAC-Bayesian bound for bounded losses . . . . . . . . . . . 57
3.3 An online PAC-Bayesian procedure . . . . . . . . . . . . . . . . . . . 60
3.4 Disintegrated online algorithms for Gaussian distributions. . . . . . . . 64
3.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.6 Online PAC-Bayes for heavy-tailed losses. . . . . . . . . . . . . . . . . 70
3.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

– 9 –



4 Mitigating Initialisation Impact through Flat Minima: Fast Rates for
Small Gradients 73
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.3 Reaching a flat minimum allows Poincaré posteriors generalising well . 77
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List of Notations

General

a A scalar (integer or real)
R The set of real numbers
Rd The euclidean set of dimension d
‖ · ‖ a norm of an euclidean set

dist (·, ·) A distance on a Polish space.
N The set of natural numbers
∇f the gradient of a function f : Rd → R

Statistical Learning Theory

Z Data space. In supervised learning, Z = (X ,Y) with X ,Y input and label
spaces

z A datum of Z, in supervised learning z = (x, y) with x input and y label
S Learning sample S = {zi}i≥1

DS Distribution of S
Sm Restriction of S to its m first data Sm = {zi}i=1···m

Dm Distribution of Sm
D For i.i.d. S, distribution of a single datum on Z
Dm For i.i.d. S, distribution of Sm, i.e. Dm = Dm.
T For i.i.d. S, Test set drawn from D
H The set of hypotheses
h A hypothesis h ∈ H
` Loss function ` : H×Z → R

Probability Theory
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EX∼ν [·] The expectation w.r.t. the random variable X ∼ ν

PX∼ν [·] The probability w.r.t. the random variable X ∼ ν

1 [a] Indicator function; returns 1 if a is true and 0 otherwise
(Fi)i≥1 Filtration adapted to S

Ei[·] Conditional expectation w.r.t. Fi, i.e. Ei[·] := E [· | Fi]

N (µ,Σ) Gaussian distribution on Rd with mean µ and covariance matrix Σ

PAC-Bayes framework

M(H) Set of Probability densities w.r.t. the reference measure on H
Q Posterior distribution Q ∈M(H) on H
P Prior distribution P ∈M(H) on H

KL(Q‖P) Kullback-Leibler (KL) divergence between Q and P

Dα(Q‖P) Rényi Divergence between Q and P

RD(h) Population Risk of h ∈ H w.r.t. D, i.e. RD(h) := Ez∼D [`(h, z)]

R̂Sm(h) Empirical Risk on Sm, i.e. R̂Sm(h) 1
m

m∑
i=1

`(h, zi)

∆Sm(h) Generalisation gap ∆Sm(h) := RD(h)− R̂Sm(h)

RD(Q) Expected population risk w.r.t. Q, i.e. RD(Q) := Eh∼Q [RD(Q)]

R̂Sm(Q) Expected empirical risk w.r.t. Q, R̂Sm(Q) := Eh∼Q
[
R̂Sm(Q)

]
∆Sm(Q) Expected generalisation gap w.r.t. Q, ∆Sm(Q) := Eh∼Q [∆Sm(h)]

P−f(h) Gibbs posterior associated to prior P and function f : H → R

Optimal transport

W1 The 1-Wasserstein distance
W2 The 2-Wasserstein distance

Γ(Q,P) Set of all coupling distribution on H2 whose marginals are Q and P.
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Préambule: Apprentissage
humain, Apprentissage Machine
et Généralisation

Ce manuscrit étudie la question de la capacité de généralisation des algorithmes
d’apprentissage machine. Pour comprendre la généralisation, il faut d’abord appréhender
l’apprentissage, prenons donc le luxe, pour un bref instant, d’oublier les machines pour
se concentrer sur l’apprentissage en ce qu’il a de plus humain.

Appréhender l’apprentissage humain. Un être apprenant, en premier lieu, va
se structurer autour d’expériences, vécues ou transmises par autrui et va ensuite en
bénéficier via diverses modalités. Il peut, par exemple, considérer une expérience médiée
comme vraie (le feu brûle) et agir en fonction de ce postulat alors qu’à l’opposé, la
réitération ou la négation de cette même experience peuvent être symptomatiques
d’une valeur de vérité nulle. Ces scénarios peuvent tout aussi bien apparâıtre pour
une expérience vécue (hallucinations). Cette première dichotomie quant au traitement
de l’information est intrinsèquement liée à une question clairement énoncée : est-ce
que le feu brûle? Puis-je me fier à mes sens ou ai-je halluciné ? Dans ces cas de
figure, l’apprentissage a eu lieu à travers l’assujettissement de l’expérience à sa valeur
de vérité par rapport à une question simple (ici à deux issues). Cette vision peut
facilement s’étendre à une arborescence finie de possibles pour des questions à choix
multiples. En effet, on peut étendre la question de la brûlure comme suit: quelle est
l’intensité de la brûlure en fonction de la température du feu? On peut dès lors établir
une multitude de réponses représentant divers degrés de brûlure.
Néanmoins, de nombreuses questions ne peuvent se réduire à un nombre fini de pos-
sibilités. Par exemple, qu’est-ce que le feu? Pour répondre à cette question, il est
néanmoins possible d’exploiter de multiples facettes d’expériences (feu de bois, brindille,
roche) pour proposer le feu comme étant la réaction chimique de l’oxygène de l’air avec
un matériau combustible, un apport d’énergie servant de déclencheur.
Il est alors légitime de se demander pourquoi l’apprenant a eu besoin de comprendre
la vraie nature du feu. Cette compréhension fondamentale des choses émerge de
considérations pratiques : comment ne plus avoir froid? Peut-on manger de la viande
autrement que crue pour diminuer les risques de maladie? Il faut alors de multiples
interactions avec l’environnement pour générer des expériences et ensuite apprendre
d’elles pour répondre graduellement à un besoin complexe (comment faire un feu pour
se réchauffer?).
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Ainsi, par cette analyse préliminaire, nous avons trouvé plusieurs prémices de compréhension
de l’apprentissage chez l’homme.

• Comment l’apprentissage se formalise-t-il structurellement ? L’apprenant doit
abâtardir l’expérience à des questions simples pour acquérir des certitudes pri-
maires. Ces dernières acquises, il est possible d’atteindre des questions complexes
en imbriquant de plus en plus de considérations élémentaires.

• D’où provient le besoin d’apprendre ? D’un point de vue pratique, l’émergence
de ces questions complexes dérive bien souvent d’un rapport de l’être à son
environnement, permettant d’élaborer des objectifs contextuels. L’apprenant
devient alors graduellement capable de répondre à des besoins complexes par
une succession d’actions simples.

De l’apprentissage humain à l’apprentissage machine. L’apprentissage machine
s’est structuré autour de deux approches, une première symbolique qui tire profit des ex-
trapolations humaines pour apprendre à la machine à manipuler une axiomatique et une
seconde, statistique, qui consiste à fournir bon nombre d’expériences à la machine pour
lui faire apprendre par de multiples exemples empiriques. Nous allons nous focaliser sur
la seconde approche car, elle sous-tend une large partie de la recherche moderne. Cette
méthode requiert de nombreuses expériences transmises à la machine qui en extrait les
connaissances à travers des procédures optimisatoires. Plus précisément, la connais-
sance extraite dépend de la question posée ainsi que sa traduction mathématique. Nous
pouvons alors relever des parallèles avec l’apprentissage humain décrit plus haut: il faut
des expériences et une question pour réduire le réel à quelque chose d’apprenable. Pour
aller plus loin, la variétés des scenarii d’apprentissages humain décrits au dessus ont
une correspondance dans l’apprentssage machine moderne: à la question ”Le feu brûle-
t-il?” on peut associer l’apprentissage supervisé qui traite apprend sur des questions à
choix multiples. A la question ”qu’est-ce que le feu?”, on peut associer l’apprentissage
non-supervisé qui va chercher, dans le cas du clustering (ou regroupement), des simil-
itudes non-induites par la question entre diverses expériences. Finalement, quant à
l’interaction avec l’environnement et la question ”puis-je faire un feu?”, elle est as-
sociée à l’apprentissage par renforcement qui étudie l’apprentissage d’un agent qui
interagit avec son environnement.

Comprendre la généralisation depuis l’apprentissage. La généralisation peut
être vue comme la capacité d’exploiter l’apprentissage d’une expérience au delà de cette
dernière. Cela englobe une compréhension théorique et axiomatique d’un phénomène
bien au delà de l’expérience en elle même, i.e. une extrapolation fructueuse ou bien la
capacité à exploiter la connaissance acquise pour une situation inédite, présentant des
similitudes avec divers vécus, i.e. interpoler des expériences.
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Ce double aspect de la généralisation se retrouve aussi bien chez l’homme que la ma-
chine sous diverses modalités. Les réseaux de neurones profonds, qui sont le fer de
lance de l’apprentissage machine moderne, se basent sur des espaces de dimension
finie pour apprendre, ce qui revient à dire qu’un problème peut être appris à travers
un nombre fini de principes fondateurs. Le nombre de principes pouvant être aug-
mentés autant que les capacités numériques le permettent, nous dirons alors que les
réseaux de neurones ont une puissance discrète de généralisation. Etant donné que
les méthodes d’apprentissage machine sont corrêlées à leur pendantes humaines, on
peut alors se demander si la puissance de généralisation (et même d’apprentissage)
humaine est également discrète. Cette afirmation semble cavalière, car même s’il est
possible de supposer que la part consciente de l’esprit humain raisonne à horizon finie
et a une puissance dénombrable (transmise d’ailleurs à la machine, apprenant selon
des modalités humaines), cette dimension occulte la quantité d’information sans cesse
captée et filtrée par notre cerveau ainsi que son assimilation inconsciente, relevant
autant de la pensée abstraite que du biologique peut potentiellement générer une puis-
sance de généralisation relevant d’un infini plus large et ainsi fournir une puissance
de généralisation continue (relevant davantage de la ligne que du point). Dès lors,
comment penser la généralisation chez l’homme alors que, mathématiquement, nos
intuitions les plus simples nous font défaut lorsque cette puissance continue intervient
(la boule de rayon 1 n’est pas compacte en dimension infinie, Riesz, 1955)? On peut
également se demander si l’extrapolation existe dans de telles structures ou si tout
revient à interpoler (Hasson et al., 2020).

Quid de la généralisation en apprentissage machine de nos jours? Qu’espérer
alors des réseaux de neurones artificiels et de leur capacité de généralisation rela-
tivement à l’humain? Les théorèmes d’approximations universels (voir e.g. Lu et
al., 2017; Park et al., 2021) assurent que les réseaux de neurones sont capables
d’approximer n’importe quelle fonction vivant dans un espace à la puissance du con-
tinu (e.g. l’espace de Banach des fonctions continues à support compact qui n’admet
pas de base dénombrable), faisant de ces structures des candidats prometteurs pour
appréhender les mécanismes humains de généralisation. Les approximations prodiguées
par ces machines seront, dans un avenir proche, potentiellement suffisamment puis-
santes pour donner l’illusion d’une capacité de généralisation humaine. Néanmoins, il
demeure bon de garder en tête que, si la thèse d’une inégalité fondamentale de nature
entre les puissances de généralisation humaine et machine est avérée, alors les réseaux
de neurones artificiels n’atteindront jamais pleinement les capacités de compréhension
du monde de leurs homologues biologiques. Reste que la qualité de leurs approxi-
mations font de ces structures des assistants de valeur, enrichissant les capacités de
chacun. Mieux comprendre la puissance de généralisation machine, être capable de la
quantifier, d’identifier les mécanismes qui la favorisent sont les objets de ce manuscrit.
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Preamble: Human Learning,
Machine Learning and
Generalisation

This manuscript tackles the notion of generalisation a notion built upon the general
notion of learning. For a brief moment, let’s take the luxury of forgetting about
machines and concentrate on learning at its most human.

Apprehending human learning A human being (here a learner) is structured around
experiences, either lived or passed on by others.
The learner then benefits from these experiences in various ways, for instance, by
considering a mediated experience to be true (fire burns) and acting according to
this. On the contrary, reiteration or denial of this same information may be symptoms
of zero truth value. These scenarios can just as easily appear for a lived experience
(the question of hallucinations). This first dichotomy in information processing is
intrinsically linked to a clearly stated question: does fire burn? Can I trust my senses
or have I hallucinated? In these cases, learning has taken place by reducing the intrinsic
complexity of an experience to its truth value w.r.t. a simple question (in this case
with two outcomes). This vision can easily be extended to a finite tree of possibilities
through multiple-choice questions. Indeed, we can extend the burning question as
follows: what is the intensity of the burn as a function of the temperature of the fire?
We can then establish a multitude of answers representing various degrees of burn.
However, many questions cannot be reduced to a finite number of possibilities. For
example, what is fire? To answer this question, it is nevertheless possible to exploit
multiple facets of experience (wood, twig, rock fire) to propose that fire is the chemical
reaction of oxygen in the air with a combustible material, with a supply of energy serving
as the trigger.
Then, a legitimate question is: why has mankind understood the nature of fire? This
fundamental understanding emerged from practical considerations: how can we stop
being cold? Can we eat meat other than raw to reduce the risk of illness? It then takes
multiple interactions with the environment to generate experiences and then learn from
them to gradually respond to a complex need (how to make a fire to keep yourself
warm?).
Thus, through this preliminary analysis, we have found several premises of understand-
ing human learning.
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• How is learning formalised structurally? The learner must base the experience
on simple questions to acquire primary certainties. These latter acquired, it is
possible to reach complex questions by interweaving more and more elementary
considerations.

• Where does the need to learn come from? From a practical point of view, the
emergence of these complex questions often arises from a relationship between
the being and its environment, making it possible to develop contextual objec-
tives. The learner then gradually becomes capable of responding to complex
needs through a succession of simple actions.

From human to machine learning Machine learning has been structured around
two approaches, the first is symbolic and takes advantage of human extrapolations to
teach the machine to manipulate an axiomatic, while the second is statistical, and con-
sists of providing the machine with a large number of experiments so that it learns from
multiple empirical examples. We are going to focus on the second approach because
it underpins a large part of modern research. This method requires a large number
of experiments to be transmitted to the machine, which then extracts the knowledge
through optimising procedures. More precisely, the knowledge extracted depends on
the question posed and its mathematical translation. We can see parallels with human
learning described above: you need experiments and a question to reduce reality to
something learnable. To go a step further, the variety of human learning scenarios
described above can be applied to modern machine learning: the question ”Does fire
burn?” can be associated with supervised learning, which learns from multiple-choice
questions. The question ”What is fire?” can be associated with unsupervised learning,
which, in the case of clustering, looks for similarities between numerous experiments
that are not induced by the question. Finally, the question ”Can I make a fire?” can
be linked to reinforcement learning which focuses on the evolution of an agent learning
from its interaction with the environement.

From learning to generalisation. Generalisation can be seen as the ability to exploit
learning from experience beyond that experience. This encompasses a theoretical and
axiomatic understanding of a phenomenon, i.e. a fruitful extrapolation, or the ability
to exploit the knowledge acquired for a new, yet showing similarities, situations i.e. to
interpolate experiences.
This dual aspect of generalisation can be found in both humans and machines in a
variety of ways. Deep neural networks, which are the spearhead of modern machine
learning, are based on finite-dimensional learning spaces, which means that a problem
can be learned through a finite number of founding principles. Since the number of
principles can be increased as far as numerical capacity allows, we can say that neural
networks have discrete generalising power. Given that machine learning methods are
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correlated with their human counterparts, we might then ask whether the power of
human generalisation (and even learning) is also discrete. This assertion is somewhat
bold as even it is assumable that the conscious part of the human mind reasons on
a finite horizon and has a discrete generalisation power (transmitted, moreover, to
the machine, which learns according to human methods), this dimension obscures the
quantity of information constantly captured and filtered by our brain, as well as its
unconscious assimilation, In other words, the fact that our brain is as much a part of
abstract thought as it is of biological thought can potentially generate a generalisation
power that relates to a wider infinity and thus provide a continuous generalisation power
(relating more to the line than to the point). So how can we think about generalisation
in humans when, mathematically, our simplest intuitions fail us when this continuous
power is involved (the ball of radius 1 is not compact in infinite dimension, Riesz,
1955)? We might also ask whether extrapolation exists in such structures or whether
it all boils down to interpolation (Hasson et al., 2020).

What to expect from generalisation in modern machine learning? So what
can we expect from artificial neural networks and their ability to generalise to humans?
Universal approximation theorems (see e.g. Lu et al., 2017; Park et al., 2021) ensure
that neural networks are capable of approximating any function living in a space to the
power of the continuum (e.g. the space of continuous functions with compact support
which does not admit a countable base as a Banach space), making these structures
promising candidates for partially understanding human generalisation mechanisms. In
the near future, machine approximations will potentially be powerful enough to give
the illusion of human generalisation capacity. Nevertheless, it is worth bearing in mind
that, if the thesis of a fundamental inequality in nature between the powers of human
and machine generalisation is confirmed, then artificial neural networks will never fully
attain the world-understanding capacities of their human counterparts. It is stll worth
noticing artificial neural nets ability to approximate this human intelligence makes
these structures valuable assistants, enriching the capabilities of any individual. That
being said, this manuscript aims to provide a better understanding of generalisation in
machine learning, quantifying and indentifying the mechanisms that promote it.
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1PAC-Bayes Learning, a field of
many paradigms
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1.1 A brief introduction to statistical learning
Statistical learning (Vapnik, 1999; James et al., 2013) quantifies and identifies how
learning algorithms, trained on a specific task using a finite training dataset, generalise,
i.e. being able to perform well on novel, unseen datum. More precisely, an agent has to
learn how to answer a question, formalised as a learning problem being a tuple (H,Z, `)
composed of a predictor space on which evolves the agent during the learning process, a
data space Z and a loss function being the mathematical formulation of the question.
Such a minimalistic structure is convenient to encompass a broad range of real-life
learning scenarii. To learn, the agent has access to a training dataset Sm = (zi)i=1···m.
The most classical way to learn from Sm is the empirical risk minimisation (ERM),
minimising the empirical risk defined as, for all h ∈ H as R̂Sm(h) := 1

m

∑m
i=1 `(h, zi). In

this setting, when Sm is i.i.d. (following the distributionD), two facets of generalisation
are commonly studied in statistical learning for an agent h ∈ H.

• First, the population risk RD(h) := Ez∼D[`(h, z)] focus on the average perfor-
mance of our learning agent w.r.t. any new situation z ∈ D, independent of
Sm, possibly faced by the agent. A small population risk ensure then efficient
generalisation.

• Second, the generalisation gap ∆Sm(h) := RD(h) − R̂Sm(h) evaluate the co-
herence between the empirical risk and the population one. Having a small
generalisation gap ensure that the generalisation ability of the agent has the
same magnitude than its training performance.
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Note that the population risk is a stronger notion of generalisation than the generali-
sation gap. However, a small generalisation gap (in absolute value) as well as a small
empirical risk is enough to ensure a good population risk. Given that modern optimi-
sation algorithm often yield small empirical risk, the generalisation gap has received a
particular attention in statistical learning.

Generalisation bounds. Generalisation bounds are inequalities controlling the gen-
eralisation gap (or the population risk) by various quantities depending either on H,Z
or Sm. We propose below general patterns usually involved in generalisation bounds
for an agent hSm ∈ H depending on Sm (for instance the output of the ERM).
Expected generalisation bound. For any training set Sm:

ESm [∆Sm(hSm)] ≤ f
(
Complexity, 1

m

)
. (1.1)

High-probability generalisation bounds. For any training set Sm, with probability
1− δ over the draw of Sm:

∆Sm(hSm) ≤ f
(
Complexity, 1

m
, log 1

δ

)
. (1.2)

The nature of f and the Complexity term depend on the facet of the complexity
of the learning problem we aim to focus. Celebrated examples are for instance the di-
mension of H, if euclidean, the VC dimension of H (Vapnik, 2000), the Rademacher
complexity (Bartlett and Mendelson, 2001, 2002), the stability parameter of
a learning algorithm (Bousquet and Elisseeff, 2000) or the subgaussian diame-
ter of Z (Kontorovich, 2014). Another approach relies on the Bayesian learning
paradigm, deriving posterior knowledge from data and prior modelling of the envi-
ronment. Then, the Complexity term can be borrowed from information theory
(Cover and Thomas, 2001), e.g. mutual information (Neal, 2012), or from opti-
mal transport, e.g. Wasserstein distances (Wang et al., 2019; Rodriguez-Galvez
et al., 2021).
Those two approaches have various benefits. A notable strength of expected bounds
is that they may reach fast convergence rates (i.e. faster than 1√

m
) contrary to high-

probability one, even whenH is a singleton thanks to the central limit theorem (Grun-
wald et al., 2021). However, expected bounds often involves a theoretical Complex-
ity which cannot be estimated in practice and may be hard to interpret while high
probability bounds may be fully empirical and can be considered with small confidence
parameter δ as it is attenuated by a logarithm.

How to choose the complexity term ? An introductory example. There is
no evidence proving that a certain notion of complexity is preferable to another. The
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choice of Complexity may however be driven by practical considerations, emerging
from the learning problem of interest. To illustrate this point, let us focus on the
following example, providing two learning problems which differs only from the predictor
space H and which have very different interactions with the VC dimension.

Example 1.1.1 (VC dimension of multilayer perceptrons). Consider a supervised
learning problem where Z = Rk × Y with Y = {0, 1}, k smaller than m and
with loss `(h, (x, y)) = 1{h(x) 6= y}. First, assume that H is the set of linear
classifiers; i.e. H1 := {hθ(x) = sgn(〈θ, x〉)}, where sgn(a) denotes the sign of
a. In this case, using the VC dimension may lead to non-vacuous generalisation
bounds (Vapnik, 2000).
However, in modern machine learning, deep neural networks are often considered,
let us first define a celebrated class of deep neural networks.

Definition 1.1.1 (Multlilayer perceptron). A multilayer perceptron with depth
K and architecture {N1, · · · , NK}, denoted as hw(x) := WhK(· · ·h1(x)) + b,
is composed of K layers h1(·), . . . , hK(·). W ∈ R|Y|×NK and b ∈ RNK are the
weight matrix and the bias of the last layer, and the i-th layer hi, composed
of Ni nodes, is defined by hi(x) := σi(Wix + bi), where Wi ∈ RNi×Ni−1 and
the bias bi ∈ RNi are its weight matrix and bias respectively; σi : RNi → RNi is
an activation function. The weights w = vec({W,WK , . . . ,W1, b, bK , . . . , b1})
represent the vectorisation of all parameters of the network.

Now, consider the learning problem with the same Z, ` as above, but with H2
being the set of multilayer perceptrons w.r.t. a fixed depth K and architecture
{N1, · · · , NK}. To be consistent with modern practice, assume also that we are
in the overparametrised setting, meaning that the space H2 has a dimension d far
greater than m. In this case, VC dimension fails to explain the good generalisation
ability (seen in practice) of multilayer perceptrons (Bartlett and Maass, 2003).

Understanding the generalisation ability of deep neural networks remains nowadays
a major challenge and in what follows, we focus on a modern branch of learning
theory which provided non-vacuous bounds of the generalisation ability of deep neural
networks: PAC-Bayes learning.

1.2 An information-theoretic exposure of
PAC-Bayes learning

PAC-Bayes learning is a recent branch of learning theory which emerged in the late 90s
via the seminal work of (Shawe-Taylor and Williamson, 1997; McAllester,
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1998, 1999, 2003b) and later pursued by (Catoni, 2003, 2007). Modern surveys are
available to describe the various advances in the field (Guedj, 2019; Hellström
et al., 2023; Alquier, 2024). Similarly to subfields of statistical learning described in
Section 1.1, PAC-Bayes provide generalisation bounds involving a Complexity term,
inspired here from the Bayesian learning paradigm of designing a posterior knowledge
of the learning problem based on both training data and a prior knowledge of the
considered situation.
A concrete example of Bayesian learning would be an explorer mapping an ill-known
territory. The explorer has to adapt the existing maps at its disposal before exploration
to its discoveries. Doing so, he creates an a posteriori map imbricating the benefits of
both the prior knowledge alongside its findings.
From a mathematical perspective, the Bayes approach relies on the Bayes formula,
providing an update recipe from a prior distribution P ∈ M(H) over the predictor
space H to a posterior Q ∈M(H) through a likelihood. On the contrary, PAC-Bayes,
while inspired from the Bayesian philosophy, relies historically on tools from information
theory. This general approach benefits from additional flexibility as PAC-Bayes can be
linked and applied to Bayesian learning (see Guedj, 2019) but also blurs the notion of
prior and posterior distributions, now independent of the fundamental Bayes formula.
We further develop those points through two celebrated high-probability bounds: the
McAllester and Catoni ones.

Two fundamental results
The McAllester’s bound (McAllester, 2003b) enriched with Maurer’s trick (Mau-
rer, 2004) and Catoni’s bound (Alquier et al., 2016, Theorem 4.1, being a relax-
ation of Catoni, 2007, Theorem 1.2.6) are probably the most known high-probability
PAC-Bayes bounds. We recall them in Proposition 1.2.1.

Proposition 1.2.1 (McAllester and Catoni’s bounds). Assume Sm to be i.i.d..
McAllester’s bound, (Maurer, 2004, Theorem 5). For any δ ∈ (0, 1), ` ∈
[0, 1], any data-free prior P ∈ M(H), with probability at least 1 − δ, for any
posterior Q ∈M(H),

∆Sm(Q) ≤

√√√√KL(Q,P) + ln 2
√
m
δ

2m . (1.3)

Catoni’s bound, (Alquier et al., 2016, Theorem 4.1). For any λ ∈ R/{0}, δ ∈
(0, 1), ` being σ2-subgaussian and a data-free prior P, with probability at least 1−δ
over S, for any Q ∈M(H),
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∆Sm(Q) ≤ KL(Q,P) + log(1/δ)
λ

+ λσ2

2m . (1.4)

For both results, ∆Sm(Q) denotes the expected generalisation gap w.r.t. Q and
KL denotes the Kullback-Leibler divergence.

Recall that a random variable X is σ2-subgaussian if for any λ ∈ R, E[exp(λ(X −
E[X]))] ≤ exp

(
λ2σ2

2

)
and that any loss ` ∈ [0, C] is C-subgaussian. Both McAllester

and Catoni bounds fit the general shape of (1.2). In both cases, Complexity =
KL(Q,P) and f varies. The immediate link with the Bayesian philosophy of learning
is that the prior has to be data-free. However, (1.3) and (1.4) are both valid simulta-
neously for any posterior, which is strictly more general than considering the Bayesian
posterior. Note that if λ is optimised, then Catoni’s bound would boil down to an
upgraded McAllester bound without the log(

√
m) term, but such an optimisation is

not feasible as λ has to be chosen independently of the dataset Sm. Note that this
gap has been recently filled by Dupuis and Şimşekli (2024, Theorem 33). While
the theoretical links between those two bounds are clear, they involve two different
toolboxes: McAllester’s bound heavily relies on the KL divergence between Bernoullis
alongside calculation tricks exploiting the boundedness of the loss while the original
Catoni’s bound (Catoni, 2007, Theorem 1.2.6) exploits tools from statistical physics.
The relaxation (1.4) proposed here is reachable by a few key arguments, involved in a
vast majority of PAC-Bayes proofs. We propose it below for pedagogical purpose.

Proof of Equation (1.4). Note that the first part of the proof holds for a large part
of PAC-Bayes literature.
A generic pattern for PAC-Bayes bounds. This part is designed upon two
cornerstones, retrievable in many existing results: the change of measure inequality
(Csiszár, 1975; Donsker and Varadhan, 1976 – see also Banerjee, 2006;
Guedj, 2019 for a proof) and Markov’s inequality.

Lemma 1.2.1 (Change of measure inequality). For any measurable function
ψ : H → R and any distributions Q,P on H:

Eh∼Q[ψ(h)] ≤ KL(Q,P) + log (Eh∼P[exp(ψ(h))]) .

For a given λ > 0, the change of measure inequality is then applied to a certain
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function fm : H → R, possibly involving Sm: for all posteriors Q,

Eh∼Q[fm(h)] ≤ KL(Q,P) + log (Eh∼P[exp(fm(h))]) . (1.5)

To deal with the random variable X(Sm) := Eh∼P[exp(fm(h))], our second build-
ing block is Markov’s inequality

(
P(X > a) ≤ E[X]

a

)
which we apply for a fixed

δ ∈ (0, 1) on X(Sm) with a = ESm [X(Sm)]/δ. Taking the complementary
event gives that for any m, with probability at least 1 − δ over the sample Sm,
X(Sm) ≤ ESm [X(Sm)]/δ, thus:

Eh∼Q[fm(h)] ≤ KL(Q,P) + log(1/δ) + log (Eh∼PESm [exp(fm(h))]) . (1.6)

Note that in (1.6), we swapped the two expectations in the last term thanks to
Fubini’s theorem and the fact that P is data-free.
Proving Catoni’s bound. Now, we take fm(h) = λ∆Sm and consider for any
h ∈ H, A(h) = ESm [exp(fm(h))].
Note that, given Sm is iid,

A(h) =
m∏
i=1

ESm

[
exp

(
λ

m
(RD(h)− `(h, zi))

)]
,

and thanks to Heoffding’s lemma alongside ` being σ2-subgaussian,

A(h) ≤
m∏
i=1

exp
(
λ2σ2

2m2

)
= exp

(
λ2σ2

2m

)
.

Plugging this upper bound in (1.6) and dividing by λ concludes the proof. �

The generic pattern (1.6), allows to retrieve many PAC-Bayes bounds, starting with
McAllester’s one, where fm = kl(RD(h), R̂Sm(h)), kl being the KL divergence between
Bernoullis and completing with the subtle calculations of Maurer (2004). This
pattern is also valid, for instance, for the results of Germain et al. (2009), the
Bernstein PAC-Bayesian bounds of Tolstikhin and Seldin (2013) and Mhammedi
et al. (2019) and many other results, e.g. Thiemann et al. (2017), Guedj and
Robbiano (2018), Holland (2019), and Wu and Seldin (2022). This then pins
two major points for a large part of PAC-Bayes literature:

1. Interpreting PAC-Bayes from a Bayesian point of view is legitimated by the
change of measure inequality, yet the KL divergence. More generally, this prop-
erty allows interpreting PAC-Bayes under a more general information-theoretic
paradigm, where relevant prior information is transferred to the posterior (here
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by absolute continuity to keep the KL finite). This information-theoretic vision
is also retrieved in in-expectation PAC-Bayes bounds, where mutual information
can be considered instead of KL divergence (Russo and Zou, 2016; Xu and
Raginsky, 2017; Hellström and Durisi, 2020; Steinke and Zakynthi-
nou, 2020; Grunwald et al., 2021; Hellström and Durisi, 2022).

2. The statistical properties of the learning problem are linked to the exponential
moment coming from the change of measure inequality, this often implies the
strong assumptions of Proposition 1.2.1: data-free prior, bounded or subgaussian
losses (sometimes attenuated to subexponentiality Catoni, 2004).

A theory suited for Example 1.1.1? The two previous points show that Propo-
sition 1.2.1 holds for learning problem with light-tailed losses (often bounded), i.i.d.
data, encompassing classification tasks for instance. Then, PAC-Bayes learning seems
suited to understand, on such problems, the McAllester and Catoni bounds are suited
to the learning problem (H2,Z, `) of Example 1.1.1.
However, the question of their tightness is unsolved as we do not know the behaviour
of the KL term in practice. Furthermore, the question of which distribution Q should
be taken in Proposition 1.2.1 remains open. Hopefully, PAC-Bayes bounds can be
transformed into learning algorithms.

1.3 From theory to learning algorithms
Algorithms associated to McAllester and Catoni bounds
A shared particularity of McAllester and Catoni bounds is that they are both fully
empirical. Then it is possible to minimise them in practice and thus, deriving new
theory-driven learning algorithms which are expected to have at worse, a small gener-
alisation gap and at best, a small population risk. More precisely, learning algorithms
associated to Proposition 1.2.1 are stated below:

QM := argmin
Q∈C

R̂Sm(Q) +
√

KL(Q,P)
2m . (1.7)

For any λ > 0,

QC := argmin
Q∈C

R̂Sm(Q) + KL(Q,P)
λ

. (1.8)

In both cases, C ⊆ M(H) is the class of distributions on which we optimise. The choice
of C may come from prior knowledge of the problem or from optimisation concerns to
make the KL divergence tractable.
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Knowing Catoni’s bound is a relaxation of McAllester’s one, it seems more natural
to consider QM over QC . However, the presence of a square root in (1.7) can be
challenging for practical optimisation. We illustrate this below.

Example 1.3.1 (A celebrated class of measures for PAC-Bayes algorithms). Con-
sider the case where, for a given σ > 0, C = {N (µ, σ2Id) | µ ∈ Rd}. Then the for
any P = N (µ1, σ

2Id),Q = N (µ2, σ
2Id), KL(Q,P) = ‖µ1−µ2‖2

2σ2 . Then, optimising
(1.7) in this case implies to lose the strong convexity of the KL divergence while it
is retained for (1.8).

Another practical advantage of (1.8) over (1.7) emerges when C = M(H). In this
case, Catoni’s bound admits a closed form solution, while McAllester’s one should be
numerically optimised on all the space of distributions, which is not feasible. This
closed form, extracted from Catoni (2003, Section 5.1), is recalled below.

When C =M(H), dQC(h) = exp(−λR̂Sm(h))
Eh∼P[exp(−λR̂Sm(h))]

dP(h) (1.9)

Then, QC = P−λR̂Sm
is the Gibbs posterior associated to P, λR̂Sm . By introducing

Gibbs posterior in statistical learning, Catoni (2007) draws a theoretical link between
statistical physics and learning theory. Unfortunately, Gibbs posteriors often require
Monte Carlo methods to be implemented, which can be time-consuming. Below, we
then focus on PAC-Bayes algorithms working on a subset C of M(H).

Instantiation and efficiency of PAC-Bayesian algorithms
A general pattern for PAC-Bayesian algorithms The introductory examples
(1.7),(1.8) unveil a general design for any KL-based PAC-Bayesian algorithm, sat-
isfying a trade-off between (i) the empirical risk, showing that the learner has to fit the
training dataset, and (ii) a regulariser being a function of KL(Q,P). This regulariser
ensures that, during training, the learner will not overfit on training data. This training
ensures a good generalisation ability as long as the associated generalisation bound is
small.
While the conceptual ins and outs of PAC-Bayes algorithms are getting clearer, two
unanswered questions remains:

1. How are those algorithms instantiated in practice?

2. Are these algorithms efficient and do they come with non-vacuous theoretical
guarantees?
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Instantiating a PAC-Bayes algorithm In practice, using a single prior P usually
does not work, but it remains theoretically possible to consider a finite set of priors.
Indeed, if one wants to consider k priors, then it is possible to consider k PAC-Bayes
bounds holding for each of those priors with probability at least 1− δ

k
and then consider

a union bound, such a set of priors is called a grid. This method has been widely used
in many PAC-Bayes work with clever grids, deteriorating initial bounds at the cost of
supplementary log(n) or log log(n) (divided by m), see e.g. Alquier (2024). This
can also be used, for Catoni-typed algorithms, to the parameter λ. In both cases,
considering grids allows optimising on both the prior, the posterior and possibly λ
when involved. Then, taking the closest value of those optimised parameters on the
grid to still obtain theoretical guarantees. Another technique to ensure a good prior
is to sacrifice part of the training set to pre-train P. Doing so, the prior is then data-
dependent and yields tighter bounds alongside increased performance (Perez-Ortiz
et al., 2021a,c).

Efficiency of PAC-Bayes algorithms on supervised learning problems. The
work of Dziugaite and Roy (2017) showed that optimising (1.7) when C is a class
of Gaussian measures for the weights of a deep neural network yields non-vacuous
generalisation bound, meaning that the generalisation benefits of PAC-Bayesian train-
ing on deep nets can be theoretically ensured. Note that PAC-Bayesian bounds can
also be used to quantify the generalisation ability of other learning algorithms, but
the bound value is then suboptimal. Dziugaite and Roy (2017) used the toolbox
described in the ’instantiation’ paragraph, alongside a preliminary use of Stochastic
Gradient Descent (SGD) to update Q before the PAC-Bayes training algorithm. This
promising work paved the way to various extensions, providing non-vacuous guarantees
for a wide range PAC-Bayes algorithms (Letarte et al., 2019; Rivasplata et al.,
2019; Dziugaite et al., 2021; Perez-Ortiz et al., 2021a,b,c; Biggs and Guedj,
2022a, 2023), showing that the PAC-Bayes toolbox provides elements of answer to
understand the generalisation ability of neural networks. Beyond generalisation guar-
antees, PAC-Bayes bounds are also useful to propose original training methods, even
if the associated guarantees are vacuous (Biggs and Guedj, 2021, 2022b). Another
important empirical use is to exploit PAC-Bayes bounds as correlation measures, to
see whether a decrease of the bound is related to an increased generalisation ability
of the learner. For instance Neyshabur et al. (2017) used McAllester’s bound (1.3)
as a ’flatness’ measure and showed that it correlates well with generalisation ability
for a few learning problems. This conclusion has been extended to a wider range of
problems in Dziugaite et al. (2020) and Jiang et al. (2020).

PAC-Bayes algorithms beyond supervised learning. While supervised learning is
widely used to perform experiments in PAC-Bayes (often involving celebrated datasets
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such as MNIST or CIFAR-10), the McAllester bound holds for any learning problem with
bounded loss, going beyond this setting. This theoretical flexibility has been exploited
to derive PAC-Bayesian algorithm for various learning settings reinforcement learning
(Fard and Pineau, 2010), multi-armed bandits (Seldin et al., 2011, 2012b; Sakhi
et al., 2023), meta-learning (Amit and Meir, 2018; Ding et al., 2021; Farid and
Majumdar, 2021; Rothfuss et al., 2021, 2022) to name but a few.

Is Example 1.1.1 tackled now? (Dziugaite and Roy, 2017) and following works
have provided a positive answer by obtaining non-vacuous guarantees (sometimes tight)
for (H2,Z, `) of Example 1.1.1 for various Z (being, e.g., set of images for MNIST
CIFAR-10 etc...). To obtain such guarantees, a PAC-Bayesian training needs to be per-
formed to minimise its associated theoretical bound. That being said, several questions
then legitimately emerge.

• Modern machine learning often implies learning problems where assumptions
such as bounded (or subgaussian) losses or i.i.d. data do not hold. Is PAC-Bayes
theory extendable beyond those assumptions?

• As shown in Dziugaite and Roy (2017), the PAC-Bayesian training is of-
ten combined to another procedure (e.g. ERM) to yield non-vacuous bounds.
However, PAC-Bayes bounds do not bring the theoretical understanding of such
additional methods, often outputting deterministic predictors (i.e. Dirac distri-
butions). This kind of predictor is not allowed in (1.3), (1.4). Is it possible to
obtain PAC-Bayes bounds valid for such methods?

1.4 An optimisation perspective of PAC-Bayes
The questions raised at the end of the previous part are important as they underline
a gap between the information-theoretic approach of PAC-Bayes bounds and practical
optimisation. A supplementary example of this is the grid required in practice to
optimise the prior (and/or λ in Catoni’s bound). Indeed, this hybrid solution is required
to roughly fit theory,(exploiting a single prior) and practice (optimising freely the prior
on a continuous space), while not being truly adapted to any of these settings. This
then raises the following fundamental question:

Can we think PAC-Bayes learning from an optimisation perspective?

The elements of answer to this question are multiple. First, one can mix up PAC-Bayes
argument with geometric properties of optimisation procedures to obtain generalisation
bounds designed for specific algorithms including but not limited to, SGD, Langevin
dynamics (London, 2017; Dziugaite and Roy, 2018a; Neu et al., 2021; Clerico
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et al., 2022; Haghifam et al., 2023; Zhou et al., 2023). Those works show both
convergence properties and minimax rates, showing the impact of PAC-Bayes learning
to provide a better theoretical understanding of the generalisation ability of concrete
algorithms.
A second approach consists in describing general principles that should be satisfied by
the various terms and assumptions in PAC-Bayes when looking at this through the
prism of optimisation. We propose such an analysis below.

An optimisation-driven view of PAC-Bayes

• Statistical assumptions. While ` satisfies desirable geometric properties (con-
vexity, gradient lipschitz ...), no statistical assumption is needed to have optimisa-
tion algorithms with convergence properties, one then may wonder about the gen-
eralisation ability of the reached empirical minima. It happens that the output of
two runs of a stochastic optimisation algorithm on the same training set may vary
a lot, for instance, the specific case of SGD shows that heavy-tailed behaviour
(see e.g. Şimşekli et al., 2019; Zhang et al., 2020; Gürbüzbalaban et al.,
2021) may emerge in practice. Given such behaviours, generalisation bounds,
from an optimisation point of view, should hold with weak statistical assump-
tions on the dataset, possibly at the cost of additional geometric assumptions
on the loss.

• The role of the prior. The information-theoretic approach justifies the Bayesian
view of the prior, as discussed earlier. In this spirit it is also possible to sacrifice
a part of the training set (i.e. of the available information) to enrich P. Doing
so, we accept to not understand what happens during the training of P and
thus, to explain only partially the efficiency of an information-theoretic training.
Those two visions (Bayesian prior or data-dependent prior) are not easily linked
to optimisation concerns as the first one would be linked to a ’good’ initialisa-
tion, something we cannot know in advance, while the second makes little sense
as P is obtained through a first, unexplained, optimisation process which is nec-
essary to understand the efficiency of the second part of training, outputting
Q. From an optimisation stance, we suggest assigning only two possible roles
to P: (i) the initialisation of the optimisation algorithm, then its impact should
be attenuated through the learning process and (ii) a minimum we aim to reach
through optimisation. In this case, its impact is crucial as it translates the speed
of convergence of our learning algorithms.

• The place of stochastic predictors. Involving a KL divergence as a complexity
brings a particular focus on stochastic predictors, drawn from a distribution Q.
Classical PAC-Bayes bounds usually focus on the average performance of such
a predictor (hence the expectation over Q in (1.3),(1.4)), but recent extensions
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directly proposed guarantees for a single draw over Q (Rivasplata et al., 2020;
Viallard et al., 2023a). However, involving a KL implies that Q has to be
absolutely continuous w.r.t. P, meaning that the support of Q cannot go beyond
the one of P: this excludes the case of Dirac distributions, i.e. deterministic
predictors. This is a clear limitation of the information-theoretic approach, as
many learning algorithms outputs a deterministic predictor and thus, should be
avoided to be in line with common practice in optimisation.

Those three points, while not necessarily considered explicitly through the lens of
optimisation have been recently challenged.

PAC-Bayes beyond the usual setting

Recall that according to what we saw in McAllester’s bound (1.3) and Catoni’s one
(1.4), we denote by usual setting a bound holding for i.i.d. Sm, with bounded or
subgaussian losses and involving a KL divergence as Complexity term. Many works
overcame at least one of this assumption as precised below.

Beyond i.i.d. data The work of Fard and Pineau (2010) established links be-
tween reinforcement learning and PAC-Bayes theory. This naturally led to the study
of PAC-Bayesian bound for martingales instead of i.i.d. data (Seldin et al., 2011,
2012a,b). Also, PAC-Bayesian bound for lifelong learning (Pentina and Lampert,
2014; Flynn et al., 2022) challenged also the i.i.d. assumption. We also denote that
the PAC-Bayes bound for meta learning (Amit and Meir, 2018; Ding et al., 2021;
Farid and Majumdar, 2021; Rothfuss et al., 2021, 2022) consider independent
but non-identically distributed datasets (corresponding to different tasks).

Avoiding light-tailed losses. Light-tailed losses encompass bounded, subgaussian,
subexponential losses. Deriving PAC-Bayes bound for heavy-tailed losses, starting from
Audibert and Catoni (2011) which provided PAC-Bayes bounds for least square
estimators with heavy-tailed random variables. Their results were suboptimal with re-
spect to the intrinsic dimension and was followed by further works from Catoni (2016)
and Catoni and Giulini (2017). More recently, this question has been addressed
in the works of Alquier and Guedj (2018), Holland (2019), Kuzborskij and
Szepesvári (2019), and Haddouche et al. (2021), extending PAC-Bayes to heavy-
tailed losses under additional technical assumptions.

Towards data-dependent priors. The work of (Catoni, 2007; Lever et al.,
2010, 2013) proposed priors, not directly data-dependent, but depending of the data
distribution D when i.i.d. data are considered. can be informed by the data-generating
distribution, Parrado-Hernández et al. (2012), Oneto et al. (2016), Dziugaite
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and Roy (2017), and Mhammedi et al. (2019) also obtained PAC-Bayes bound with
data-dependent priors by infusing directly data in the prior (and sacrificing a part of
the dataset). The drawback of this method is that, in practice, such a prior allows
tighter bounds, but at the cost of a reduced theoretical understanding as the prior is in
practice often learned via ERM, and the PAC-Bayes bound hardly gives insights on what
happens during this pre-training. Furthermore, if this pre-training has already made the
bound converge to a minimum generalising well, then the PAC-Bayes training has no
effect and the associated bound is no more than a test bound (the case Q = P). It has
been shown for instance in (Perez-Ortiz et al., 2021a) that when P is trained with
a consequent fraction of data, then the generalisation performance of the pre-trained
P was roughly the same as Q, obtained from P after a PAC-Bayesian training. It is
then unclear how impacting are PAC-Bayes methods compared to a test bound in this
case. To alleviate this issue, another original route (Dziugaite and Roy, 2018b)
exploits differential privacy to replace the data-free prior by a differentially private one,
making possible to consider the prior as the learning objective (in their case a Gibbs
posterior).

Beyond KL divergence. Several works allowed extending PAC-Bayes beyond KL
divergences. The most investigated route is to focus on the more general class of
f -divergence, which include, e.g., KL, χ2, Rényi divergences among others (Alquier
and Guedj, 2018; Ohnishi and Honorio, 2021; Picard-Weibel and Guedj,
2022; Viallard et al., 2023a). However, f -divergences still implies absolute conti-
nuity of Q w.r.t. P. Another route recently emerged (Amit et al., 2022), replacing
f -divergences by integral probability metrics (IPMs), finally allowing Dirac distribution
in PAC-Bayes.
These works have sometimes been explicitly driven by optimisation considerations (Dz-
iugaite and Roy, 2018b involved differential privacy to numerically tighten their
bound without sacrificing data). However, in many cases, the information-theoretic
vision of PAC-Bayes remained majority. In what follows, the contributions of this
manuscript are designed w.r.t. the optimisation view of PAC-Bayes detailed above.

Contributions of this thesis

The contributions of this manuscript are motivated by optimisation considerations and
are structured as follows:

• In Chapter 2, we propose novel PAC-Bayes bounds for martingales, batch learn-
ing, with an application to multi-armed bandits. Those bounds are anytime-
valid (i.e. for any dataset size simultaneously) and holds at the sole assump-
tion of finite order 2 moments on both the posterior and the data distribution.
Such weak statistical assumptions make these results applicable, for instance, for
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heavy-tailed SGD or many learning problems where optimisation procedure are
performed regardless of the training set noise.

• Chapter 3 introduces Online PAC-Bayes learning, proposing theoretical bounds
and learning algorithms involving a sequence of pairs (Qi,Pi), evolving through
the optimisation process. Contrary to PAC-Bayes in a batch setting, the impact
of P = P1 is attenuated during the learning process, making Online PAC-Bayes
useful when there is no prior information available, which is consistent with the
vision of P as initialisation of a learning algorithm, while being only applicable,
for now, to stochastic predictors as a KL divergence is involved.

• Chapter 4 still consider the prior as initialisation, while focusing on batch learning
algorithms. It is shown that the impact of the prior is attenuated by flat min-
ima, i.e. minima such that their neighbourhood nearly minimise the loss. More
generally, this chapter exhibits theoretical links between flat minima and gener-
alisation and thus draw links between the benefits of a successful optimisation
process (small gradients) and generalisation.

• Considering P as the learning objective allows to draw more explicit links between
optimisation and generalisation. In Chapter 5, it is shown that the convergence
guarantees of Bures-Wasserstein SGD, a SGD-like algorithm on Gaussian mea-
sure spaces, can be directly incorporated within PAC-Bayes bounds, yielding in-
terpretable results. This is possible by exploiting Wasserstein PAC-Bayes learning,
which uses as Complexity term a 1-Wasserstein distance, allowing to trade
statistical assumptions to geometric ones such as lipschitz or gradient-lipschitz
losses.

• Wasserstein PAC-Bayes learning can also be exploited when P is seen as an ini-
tialisation point. In Chapter 6, we propose Wasserstein PAC-Bayes algorithms
with associated theoretical bound for both batch and online learning. A no-
table strength of these methods is that they hold for deterministic predictors
(Dirac distributions), making PAC-Bayes in line with a large part of optimisation
algorithms.

We finally recap in Figures 1.1 and 1.2 the classical information-theoretic vision of
PAC-Bayes alongside the original optimisation view proposed above.
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PAC-Bayes from an 
Information-Theoretic 

Perspective

Strong statistical 
assumptions


(subgaussianity, iid data)

Three visions of the 
prior

Bayesian view:

 prior knowledge

 Learning 
objective

Data-dependent 
prior by 

sacrificing data

Valid for a single 
dataset size

Fast rates via 
small variance

Involves divergences 
on distribution spaces

Focus on probabilistic 
predictors

Figure 1.1. Recap of the information-theoretic vision of PAC-Bayes.
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PAC-Bayes from an 
Optimisation 
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Chapters 3,4,6

Learning objective

Chapter 5

Valid 
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Chapters 2,3,4

Possible geometric 
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gradient-lipschitz losses


Chapters 4,5,6

Fast rates via 
small gradients


Chapter 4

Allows deterministic 
predictors


Chapters 5,6

Figure 1.2. Recap of the optimisation vision of PAC-Bayes and where those views
are exploited in the manuscript.
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2PAC-Bayes with Weak
Statistical Assumptions:
Generalisation Bounds for
Martingales and Heavy-Tailed
losses

This chapter is based on the following paper

Maxime Haddouche and Benjamin Guedj. PAC-Bayes Generalisation Bounds
for Heavy-Tailed Losses through Supermartingales. Transactions on Machine Learning
Research. (2023)
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Abstract

Chapter 2 provide PAC-Bayes bounds holding with weak statistical assumptions
(finite variance, which is what we consider as heavy-tailed in this manuscript),
this is promising to encompass various learning situations involving optimisation
algorithms such as heavy-tailed SGD (Gürbüzbalaban et al., 2021) where
assumptions such as bounded or subgaussian losses do not hold. Furthermore
those results go beyond i.i.d. assumption on S and hold for all datasets (Sm)m≥1
simultaneously. Such a flexible setting is in line with various optimisation frame-
works, where new data can be available after the beginning of the learning pro-
cess and be incorporated on-the-fly to the ongoing training, regardless of their
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potential correlation with previous data. Then, the theoretical results proposed
in this chapter are a promising step toward practical settings where data may
exhibit heavy-tailed behaviours and the loss function to be unbounded.

2.1 Introduction
In Chapter 1, McAllester’s and Catoni’s bound (McAllester, 2003b; Catoni,
2007) have been presented as key theoretical results with practical repercussions through
their associated learning algorithm. However, the bounded or subgaussian assumption
on the loss makes those results limited to tackle many real-life situations. Indeed,
from an optimisation perspective, as stated in Section 1.4 of Chapter 1, generalisation
bounds should hold with weak statistical assumptions to make PAC-Bayes compatible
with heavy-tailed data. Several works already proposed routes to overcome the bound-
edness constraint: Catoni (2004, Chapter 5) already proposed PAC-Bayes bounds
for classification tasks and regressions ones with quadratic loss under a subexponential
assumption. This technique has later been exploited in Alquier and Biau (2013)
for the single-index model, and by Guedj and Alquier (2013) for nonparametric
sparse additive regression, both under the assumption that the noise is subexponential.
However all these works are dealing with light-tailed losses.1 Alquier and Guedj
(2018), Holland (2019), Kuzborskij and Szepesvári (2019), and Haddouche
et al. (2021) proposed extensions beyond light-tailed losses. This chapter stands in the
continuation of this spirit while developing and exploiting a novel technical toolbox. To
better highlight the novelty of our approach, we first present the two classical building
blocks of PAC-Bayes.

2.1.1 Understanding PAC-Bayes: a celebrated route of proof
In the following subsection, we exploit again, for the sake of pedagagogy, the general
pattern of proof for PAC-Bayes bounds described in Equation (1.4) to prove Catoni’s
bound.

2.1.1.1 Two essential building blocks for a preliminary bound

For the rest of this section, similarly to Chapter 1, we assume access to a non-negative
loss function `(h, z) taking as argument a predictor h ∈ H and data z ∈ Z (think
of z as a pair input-output (x, y) for supervised learning problems, or as a single
datum x in unsupervised learning). We also assume access to a m-sized sample Sm =
(z1, ..., zm) ∈ Zm. Sm is then used to learn a posterior distribution Q on H, from a
prior P.

1A loss ` is light(heavy)-tailed if for all h, `(h, .) is light(heavy)-tailed
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PAC-Bayesian proofs are built upon two cornerstones. The first one is the change
of measure inequality, recalled in Lemma 1.2.1. This property is applied to a certain
function fm : Zm × H → R of the data and a candidate predictor: for all posteriors
Q,

Eh∼Q[fm(Sm, h)] ≤ KL(Q,P) + log (Eh∼P[exp(fm(Sm, h))]) . (2.1)

To deal with the random variable X(Sm) := Eh∼P[exp(fm(Sm, h))], our second build-
ing block is Markov’s inequality

(
P(X > a) ≤ E[X]

a

)
which we apply for a fixed δ ∈

(0, 1) on X(Sm) with a = ESm [X(Sm)]/δ. Taking the complementary event gives that
for any m, with probability at least 1−δ over the sample Sm, X(Sm) ≤ ESm [X(Sm)]/δ,
thus:

Eh∼Q[fm(Sm, h)] ≤ KL(Q,P) + log(1/δ) + log (Eh∼PESm [exp(fm(Sm, h))]) . (2.2)

2.1.1.2 From preliminary to complete bounds

From the preliminary result of Equation (2.2), there exists several ways to obtain
PAC-Bayesian generalisation bounds, all being tied to specific choices of f and the
assumptions on the dataset Sm. However, they all rely on the control of an exponential
moment implied by Markov’s inequality: this is a strong constraint which has been at
the heart of the classical assumption appearing in PAC-Bayes learning. For instance,
McAllester’s bound (1.3) and Catoni’s bound (1.4), exploits in particular, a data-free
prior, an i.i.d. assumption on Sm and a light-tailed loss. Most of the existing results
stand with those assumptions (see e.g., Catoni, 2007; Germain et al., 2009; Guedj
and Alquier, 2013; Tolstikhin and Seldin, 2013; Guedj and Robbiano, 2018;
Mhammedi et al., 2019; Wu and Seldin, 2022). Indeed, in many of these works,
either a boundedness or a subgaussian assumption on the loss is used. Catoni (2004)
extended PAC-Bayes learning to the subexponential case. Many works tried to mitigate
at least one of the following three assumptions.

• Data-free priors. With an alternative set of techniques, Catoni (2007) ob-
tained bounds with localised (i.e., data-dependent) priors. More recently, Lever
et al. (2010), Parrado-Hernández et al. (2012), Lever et al. (2013),
Oneto et al. (2016), Dziugaite and Roy (2017), and Mhammedi et al.
(2019) also obtained PAC-Bayes bound with data-dependent priors.

• The i.i.d. assumption on Sm. The work of Fard and Pineau (2010) estab-
lished links between reinforcement learning and PAC-Bayes theory. This natu-
rally led to the study of PAC-Bayesian bound for martingales instead of iid data
(Seldin et al., 2011, 2012a,b).
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• Light-tailed loss. PAC-Bayes bounds for heavy-tailed losses (i.e., without sub-
gaussian or subexponential assumptions) have been studied. Audibert and
Catoni (2011) provide PAC-Bayes bounds for least square estimators with
heavy-tailed random variables. Their results was suboptimal with respect to
the intrinsic dimension and was followed by further works from Catoni (2016).
More recently, this question has been adressed in the works of Alquier and
Guedj (2018), Holland (2019), Kuzborskij and Szepesvári (2019), and
Haddouche et al. (2021), extending PAC-Bayes to heavy-tailed losses under
additional technical assumptions.

Several questions then legitimately arise.

Can we avoid these three assumptions simultaneously? The answer is yes: for
instance the work of Rivasplata et al. (2020) proposed a preliminary PAC-Bayes
bound holding with none of the three assumptions listed above. Building on their
theorem, Haddouche and Guedj (2022) only exploited a bounded loss assumption
to derive a PAC-Bayesian framework for online learning, requiring no assumption on
data and allowing data (history in their context)-dependent priors.

Can we obtain PAC-Bayes bounds without the change of measure inequality?
Yes, for instance Alquier and Guedj (2018) proposed PAC-Bayes bounds involv-
ing f -divergences and exploiting Holder’s inequality instead of Lemma 1.2.1. More
recently, Ohnishi and Honorio (2021) and Picard-Weibel and Guedj (2022)
developed a broader discussion about generalising the change of measure inequality for
a wide range of f -divergences. We note also that Germain et al. (2009) proposed
a version of the classical route of proof stated above avoiding the use of the change
of measure inequality. This comes at the cost of additional technical assumptions (see
Haddouche et al., 2021, Theorem 1 for a statement of the theorem in a proper
measure-theoretic framework).

Can we avoid Markov’s inequality? We mentioned above that several works
avoided the change of measure inequality to obtain PAC-Bayesian bounds, but can
we do the same with Markov’s inequality? This is of interest as avoiding Markov could
avoid assumptions such as subgaussiannity to provide PAC-Bayes bound. The answer
is yes but this is a rare breed. To the best of our knowledge, only two papers are
explicitly not using Markov’s inequality: Kakade et al. (2008) obtained a PAC-Bayes
bound using results on Rademacher complexity based on the McDiarmid concentra-
tion inequality, and Kuzborskij and Szepesvári (2019) exploited a concentration
inequality from De la Peña et al. (2009), up to a technical assumption to obtain
results for unbounded losses. Both of those works do not require a bound on an
exponential moment to hold.
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2.1.2 Originality of our approach
Avoiding Markov’s inequality appears challenging in PAC-Bayes but leads to fruitful
results as those in Kuzborskij and Szepesvári (2019).
In this work, we exploit a generalisation of Markov’s inequality for supermartingales:
Ville’s inequality (as noticed by Doob 1939). This result has, to our knowledge, never
been used in PAC-Bayes before.

Lemma 2.1.1 (Ville’s maximal inequality for supermartingales). Let (Ft) be a
filtration adapted to (Zt), a non-negative super-martingale with Z0 = 1 almost
surely, i.e. (Zt)t≥1 is a discrete process such that for any t ∈ N, E [Zt | Ft−1] ≤ Zt−1
a.s., t ≥ 1, then, for any 0 < δ < 1, it holds

P
(
∃T ≥ 1 : ZT > δ−1

)
≤ δ.

Proof. We apply the optional stopping theorem (Durrett, 2019, Thm 4.8.4)
with Markov’s inequality defining the stopping time i = inf{t > 1 : Zt > δ−1} so
that

P
(
∃t ≥ 1 : Zt > δ−1

)
= P

(
Zi > δ−1

)
≤ E [Zi] δ ≤ E [Z0] δ ≤ δ.

�

A major interest of Ville’s result is that it holds for a countable sequence of random
variables simultaneously. This point is new in PAC-Bayes and will allow us to obtain
bounds holding for a countable (not necessarily finite) dataset S.

On which supermartingale do we apply Ville’s bound ? To fully exploit Lemma
2.1.1, we now take a countable dataset S = (zi)i≥1 ∈ ZN. Recall that, because we
use the change of measure inequality, we have to deal with the following exponential
random variable appearing in Eq. (2.1) for any m ≥ 1:

Zm := Eh∼P[exp(fm(S, h))].
Our goal is to choose a sequence of functions fm : ZN ×H → R such that (Zm)m≥1
is a supermartingale. A way to do so comes from Bercu and Touati (2008).

Lemma 2.1.2 (Towards the design of a supermartingale). Let (Mm) be a locally
square-integrable martingale with respect to the filtration (Fm). For all η ∈ R and
m ≥ 0, one has:

E

[
exp

(
η∆Mm −

η2

2 (∆[M ]m + ∆〈M〉m)
)
| Fm−1

]
≤ 1,
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where ∆Mm = Mm −Mm−1,∆[M ]m = ∆M2
m and ∆〈M〉m = E [∆M2

m | Fm−1].
We define Vm(η) = exp

(
ηMm − η2

2 ([M ]m + 〈M〉m)
)
. Then, for all η ∈

R, (Vm(η)) is a positive supermartingale with E [Vm(η)] ≤ 1 where [M ]m(h) :=∑m
i=1 ∆[M ]m(h), 〈M〉m(h) := ∑m

i=1 ∆〈M〉m(h).

In the sequel, this lemma will be helpful to design a supermartingale (i.e., to choose a
relevant fm for any m) without further assumption.

2.1.3 Contributions and outline
By avoiding Markov, a key message of (Kuzborskij and Szepesvári, 2019) is
that, for learning problems with independent data, PAC-Bayes learning only requires
the control of order 2 moment on losses to be used with convergence guarantees.
This is strictly less restrictive than the classical subgaussian/subgamma assumptions
appearing in the major part of the literature.
We successfully prove this fact remains even for non-independent data: we only need
to control order 2 (conditional) moments to perform PAC-Bayes learning. We focus
in this chapter on the PAC-Bayesian framework for martingales (Seldin et al., 2011,
2012a,b). We then provide a novel PAC-Bayesian bound holding for data-free priors and
unbounded martingales. From this, we recover in PAC-Bayes bounds for unbounded
losses and iid data as a significant particular case. We also propose an extension of
Seldin et al. (2012a)’s result for multi-armed bandits.
More precisely, Section 2.2.1 contains our novel PAC-Bayes bound for unbounded
martingales and Section 2.2.3 contains an immediate corollary for learning theory with
iid data. We eventually apply our main result for martingales in Section 2.3 to the
setting of multi-armed bandit. Doing so, we provably extend a result of Seldin et al.
(2012a) to the case of unbounded rewards.
Appendix A.1 gathers more details on PAC-Bayes, we draw in Appendix A.2 a detailed
comparison between our new results and a few classical ones. We show that adapting
our bounds to the assumptions made in those papers allows recovering similar or
improved bounds. We defer to Appendix A.3 the proofs of Sections 2.2.3 and 2.3.

2.2 A PAC-Bayesian bound for unbounded
martingales

2.2.1 Main result
A line of work led by Seldin et al. (2011, 2012a,b) provided PAC-Bayes bounds for
almost surely bounded martingales. We provably extend the remits of their result to

– 44 –



2.2. A PAC-Bayesian bound for unbounded martingales

the case of unbounded martingales.

Framework Our framework is close to the one of Seldin et al., 2012a: we assume
having access to a countable dataset S = (zi)i≥1 ∈ with no restriction on the dis-
tribution of S (in particular the zi can depend on each others). We denote for any
m, Sm := (zi)i=1..m the restriction of S to its m first points. (Fi)i≥0 is a filtration
adapted to S. We denote for any i ∈ N Ei−1[.] := E[. | Fi−1]. We also precise
the space H to be an index (or a hypothesis) space, possibly uncountably infinite. Let
{X1(S1, h), X2(S2, h), · · · : h ∈ H} be martingale difference sequences, meaning that
for any m ≥ 1, h ∈ H, Em−1 [Xm(Sm, h)] = 0.
For any h ∈ H, let Mm(h) = ∑m

i=1Xi(Si, h) be martingales corresponding to the
martingale difference sequences and we define, as in Bercu and Touati (2008), the
following

[M ]m(h) :=
m∑
i=1

Xi(Si, h)2,

〈M〉m(h) =
m∑
i=1

Ei−1
[
Xi(Si, h)2

]
.

For a distribution Q over H define weighted averages of the martingales with respect
to Q as Mm(Q) = Eh∼Q [Mm(h)] (similar definitions hold for [M ]m(Q), 〈M〉m(Q)).
Main result. We now present the main result of this section where we succesfully
avoid the boundedness assumption on martingales. This relaxation comes at the cost
of additional variance terms [M ]m, 〈M〉m.

Theorem 2.2.1 (A PAC-Bayesian bound for unbounded martingales). For any
data-free prior P ∈ M(H), any λ > 0, any collection of martingales (Mm(h))m≥1
indexed by h ∈ H, the following holds with probability 1 − δ over the sample
S = (zi)i∈N, for all m ∈ N/{0}, Q ∈M(H):

|Mm(Q)| ≤ KL(Q,P) + log(2/δ)
λ

+ λ

2 ([M ]m(Q) + 〈M〉m(Q)) .

Proof lies in Section 2.2.2.
Analysis of the bound. This theorem involves several terms. The change of measure
inequality introduces the KL divergence term, the approximation term log(2/δ) comes
from Ville’s inequality (instead of Markov in classical PAC-Bayes). Finally, the terms
[M ]m(Q), 〈M〉m(Q) come from our choice of supermartingale as suggested by Bercu
and Touati (2008). The term [M ]m(Q) can be interpreted as an empirical variance
term while 〈M〉m(Q) is its theoretical counterpart. Note that 〈M〉m(Q) also appears
in Seldin et al. (2012a, Theorem 1).
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We recall that this general result stands with no assumption on the martingale dif-
ference sequence (Xi)i≥1 and holds uniformly on all m ≥ 1. Those two points are,
to the best of our knowledge, new within the PAC-Bayes literature. We discuss in
Section 2.2.3 and appendix A.2 more concrete instantiations.
Comparison with literature. The closest result from Th. 2.2.1 is the PAC-Bayes
Bernstein inequality of Seldin et al., 2012a. Our bound is a natural extension of theirs
as their result only involves the variance term (not the empirical one), but requires two
additional assumptions:

1. Bounded variations of the martingale difference sequence: ∀m,∃Cm ∈ R2 such
that a.s. for all h |Xm(Sm, h)| ≤ Cm.

2. Restriction on the range of the λ: ∀m,λm ≤ 1/Cm.

Seldin et al. (2012a) need those assumptions to ensure the Bernstein assumption
which states that for any h, E[exp(λMm(h)− λ2

2 〈M〉m(h))] ≤ 1. Our proof technique
do not require the Bernstein assumption (and so none of the two conditions described
above, which allow us to deal with unbounded martingales) as we exploit the super-
martingale structure to obtain our results. More precisely, the price to pay to avoid the
Bernstein assumption is to consider the empirical variance term [M ]m(h) and to prove
that

(
exp

(
λMm − λ2

2 ([M ]m + 〈M〉m)
))

m≥1
is a supermartingale using Lemma 2.1.1

and Lemma 2.1.2 (see Section 2.2.2 for the complete proof). A broader discussion is
detailed in appendix A.2.

2.2.2 Proof of Theorem 2.2.1
Proof of Theorem 2.2.1. We fix η ∈ R, and we consider the function fm to be for
all (S, h):

fm(S, h) := ηMm(h)− η2

2 ([M ]m(h) + 〈M〉m(h))

=
m∑
i=1

η∆Mi(h)− η2

2 (∆[M ]i(h) + ∆〈M〉i(h)),

where ∆Mi(h) = Xi(Si, h), ∆[M ]i(h) = Xi(Si, h)2, ∆〈M〉i(h) = Ei−1 [Xi(Si, h)2].
For the sake of clarity, we dropped the dependency in S of Mm. Note that, given
the definition of Mm, Mm(h) is Fm measurable for any fixed h.
Let P a fixed data-free prior, we first apply the change of measure inequality to
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obtain ∀m ∈ N,∀Q ∈M(H):

Eh∼Q[fm(S, h)] ≤ KL(Q,P) + log

Eh∼P [exp(fm(S, h))]︸ ︷︷ ︸
:=Zm

 ,
with the convention f0 = 0. We now have to show that (Zm)m is a supermartingale
with Z0 = 1. To do so remark that for any m, because P is data free one has the
following result.

Lemma 2.2.1. For any data-free prior P, any σ-algebra F belonging to the
filtration (Fi)i≥0, any nonnegative function f taking as argument the sample
S and a predictor h, one has almost surely:

E [Eh∼P[f(S, h)] | F ] = Eh∼P [E[f(S, h) | F ]] .
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Proof of Lemma 2.2.1. Let A be a F -measurable event. We want to show
that

E [Eh∼P[f(S, h)]1A] = E [Eh∼P [E[f(S, h) | F ]]1A] ,

where the first expectation in each term is taken over S. Note that it is possible
to take this expectation thanks to the Kolomogorov’s extension theorem (see
e.g. Tao, 2011, Thm 2.4.4) which ensure the existence of a probability space
for the discrete-time stochastic process S = (zi)i≥1.
Thus, this is enough to conclude that

E [Eh∼P[f(S, h)] | F ] = Eh∼P [E[f(S, h) | F ]] ,

by definition of the conditional expectation. To do so, notice that because
f(S, h)1A is a nonnegative function, and that P is data-free, we can apply
the classical Fubini-Tonelli theorem.

E [Eh∼P[f(S, h)]1A] = Eh∼P [E [f(S, h)1A]] .

One now conditions by F and use the fact that 1A is F -measurable:

= Eh∼P [E [E [f(S, h) | F ]1A]] .

We finally re-apply Fubini-Tonelli to re-intervert the expectations:

= E [Eh∼P [E [f(S, h) | F ]1A]] .

This concludes the proof of Lemma 2.2.1. �

We then use Lemma 2.2.1 with f = exp(fm) and F = Fm−1 to obtain:

Em−1[Zm] = Eh∼P [Em−1[(exp(fm(S, h))]]

= Eh∼P

[
exp(fm−1(S, h))Em−1

[
exp(η∆Mm(h)− η2

2 (∆[M ]m(h) + ∆〈M〉m(h))
]]
,

with fm−1(S, h) = ∑m−1
i=1 η(∆Mi(h))− η2

2 (∆[M ]i(h)+∆〈M〉i(h)). Using Lemma
2.1.2 ensures that for any h,

Em−1[exp(η∆Mm(h)− η2

2 (∆[M ]m(h) + ∆〈M〉m(h))] ≤ 1,
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thus we have

Em−1[Zm] ≤ Eh∼P [exp(fm−1(S, h))] = Zm−1.

Thus (Zm)m is a nonnegative supermartingale with Z0 = 1. We can use Ville’s
inequality (Lemma 2.1.1) which states that

PS
(
∃m ≥ 1 : Zm > δ−1

)
≤ δ.

Thus, with probability 1− δ over S, for all m ∈ N, Zm ≤ 1/δ. We then have the
following intermediary result. For all P a data-free prior, η ∈ R, with probability
1− δ over S, for all m > 0,Q ∈M(H)

ηMm(Q) ≤ KL(Q,P) + log(1/δ) + η2

2 ([M ]m(Q) + 〈M〉m(Q))], (2.3)

recalling that Mm(Q) = Eh∼Q[Mm(h)], and that similar definitons hold for [M ]m(Q), 〈M〉m(Q).
Thus, applying the bound with η = ±λ (λ > 0) and taking an union bound gives,
with probability 1− δ over S, for any m ∈ N, Q ∈M(H)

λ |Mm(Q)| ≤ KL(Q,P) + log(2/δ) + λ2

2 ([M ]m(Q) + 〈M〉m(Q))].

Dividing by λ concludes the proof. �

2.2.3 A corollary: Batch learning with iid data and
unbounded losses

In this section, we instantiate Theorem 2.2.1 onto a learning theory framework with iid
data. We show that our bound encompasses several results of literature as particular
cases.

Framework We consider a learning problem specified by a tuple (H,Z, `) consisting
of a set H of predictors, the data space Z, and a loss function ` : H × Z → R+.
We consider a countable dataset S = (zi)i≥1 ∈ ZN and assume that sequence is i.i.d.
following the distribution D. We also denote by M(H) is the set of probabilities on
H.

Definitions Similarly to Chapter 1, the population risk R of a predictor h ∈ H is
∀h,R(h) = Ez∼D[`(h, z)], the empirical error of h is ∀h, R̂Sm(h) = 1

m

∑m
i=1 `(h, zi)

and finally the quadratic generalisation error V of h is ∀h,Quad(h) = Ez∼D[`(h, z)2].
We also denote by generalisation gap for any h the quantity R(h)− R̂Sm(h).
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Main result. We now state the main result of this section. This bound is a corollary
of Theorem 2.2.1 and fills the gap with learning theory.

Theorem 2.2.2 (A PAC-Bayes bound for batch learning with heavy-tailed losses).
For any data-free prior P ∈M(H), any λ > 0 the following holds with probability
1− δ over the sample S = (zi)i∈N, for all m ∈ N/{0}, Q ∈M(H)

Eh∼Q[R(h)] ≤ Eh∼Q

[
R̂Sm(h) + λ

2m

m∑
i=1

`(h, zi)2
]

+ KL(Q,P) + log(2/δ)
λm

+ λ

2 Eh∼Q[Quad(h)].

Proof is furnished in Appendix A.3.

About the choice of λ. A novelty in this theorem is that the bound holds simulta-
neously on all m > 0 – this is due to the use of Ville’s inequality. This sheds a new light
on the choice of λ. Indeed, taking a localised λ depending on a given sample size (e.g.
λm = 1/

√
m) ensures convergence guarantees for the expected generalisation gap.

Doing so, our bound matches the usual PAC-Bayes literature (i.e. a bound holding
with high probability for a single m). However the novelty brought by Theorem 2.2.2 is
that our bound holds for unbounded losses for all times simultaneously. This suggests
that taking a sample size-dependent λ may not be the best answer. We detail an
instance of this fact below when one thinks of λ as a parameter of an optimisation
objective. Indeed, our bound suggests a new optimisation objective for unbounded
losses which is for any m > 0:

argminQ Eh∼Q

[
1
m

m∑
i=1

(
`(h, zi) + λ

2 `(h, zi)
2
)]

+ KL(Q,P)
λm

. (2.4)

Equation (2.4) differs from the classical objective of Catoni (2007, Thm 1.2.6) (de-
scribed in (1.8)) on the additional quadratic term λ

2 `(h, zi)
2. Note that this objective

implies a bound on the theoretical order 2 moment to be meaningful as we do not
include it in our objective. Note that this constraint is less restrictive than Catoni’s
objective which requires a bounded loss. This objective stresses the role of the pa-
rameter λ as being involved in a new explicit trade-off between the KL term and the
efficiency on training data.
Also, this optimisation objective is valid for any sample size m, this means that our
λ should not depend on certain dataset size but should be fixed in order to ensure
a learning algorithm with generalisation guarantees at all time. This draws a parallel
with Stochastic Gradient Descent with fixed learning step.
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About the underlying assumptions in this bound. Our result is empirical (all terms
can be computer or approximated) at the exception of the term Eh∼Q[Quad(h)]. This
invites to choose carefully the class of posteriors, in order to bound this second-order
moment with minimal assumptions. For instance, if we consider the particular case of
the quadratic loss `(h, z) = (h−z)2, then we only need to assume that our data have a
finite variance if we restrict our posteriors to have both bounded means and variance.
This assumption is strictly less restrictive than the classical subgaussian/subgamma
assumption classically appearing in the literature.
Comparison with literature. Back to the bounded case, we note that instantiating
the boundedness assumption in Th. 2.2.2 make us recover the result of Alquier et
al. (2016, Theorem 4.1) for the subgaussian case. We also remark that instantiating
the HYPE condition Haddouche et al. (2021, Theorem 3) allow us to improve
their result as we transformed the control of an exponential moment into one on a
second-order moment. More details are gathered in Appendix A.2. We also compare
Theorem 2.2.2 to Kuzborskij and Szepesvári (2019, Theorem 3) which is a PAC-
Bayes bound for unbounded losses obtained through a concentration inequality from
De la Peña et al. (2009). They arrived to what they denote as semi-empirical
inequalities which also involve empirical and theoretical variance terms (and not an
exponential moment). Their bound holds for independent data and a single posterior.
First, note that Theorem 2.2.2 holds for any posterior, which is strictly more general.
Note also that our bound is a straightforward corollary of Theorem 2.2.1 which holds
for any martingale (thus for any data distribution in a learning theory framework) and
so, exploits a different toolbox than Kuzborskij and Szepesvári (2019) (control
of a supermartingale vs. concentration bounds for independent data). We insist that
a fundamental novelty in our work is to extend the conclusion of Kuzborskij and
Szepesvári, 2019 to the case of non-independent data: it is possible to perform
PAC-Bayes learning for unbounded losses at the expense of the control of second-order
moments. Note also that their bound is slightly tighter than ours as their result is
Theorem 2.2.2 being optimised in λ (which is something we cannot do as the resulting
λ would be data-dependent).

2.3 Application to the multi-armed bandit problem
We exploit our main result in the context of the multi-armed bandit problem – we
adopt the framework of Seldin et al. (2012a).

Framework. Let A be a set of actions of size |A| = K < +∞ and a ∈ A be an
action. At each round i, the environment furnishes a reward function Ri : A → R
which associate a reward Ri(a) to the arm a. Assuming the Ris are iid, we denote for
any a, the expected reward for action a to be R(a) = ER1 [R1(a)]. At each round i,
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the player executes an action Ai according to a policy πi. We then set the filtration
(Fi)i≥1 to be Fi = σ ({πj, Aj, Rj | 1 ≤ j ≤ m}).

Assumptions. We suppose here that (Ri)i≥1 is an iid sequence and that at each
time i, Ai and Ri are independent and that πi is Fi−1 measurable. This means that
the player is not aware of the rewards at each round and performs its current move
w.r.t. the past.
We also add two technical assumptions. First, the order two moment of the expected
reward is uniformly bounded: supa∈A ER1 [R1(a)2] ≤ C. This assumption is strictly less
restrictive than the boundedness assumption made in Seldin et al., 2012a. Similarly to
this work, we also assume that there exists a sequence (εi)i≥1 such that infa∈A πi(a) ≥
εi. We say that (πi)i≥1 is bounded from below by (εi)i≥1.

Definitions. For i ≥ 1 and a ∈ {1, . . . , K}, define a set of random variables (Ra
i )i≥1

(the importance weighted samples, Sutton and Barto, 2018)

Ra
i :=


1

πi(a)Ri, if Ai = a,

0, otherwise.

We define for any time m: R̂m(a) = 1
m

∑t
i=1R

a
i . Observe that for all i, E [Ra

i | Fi−1] =
R(a) and E[R̂m(a)] = R(a). Let a∗ be the ”best” action (the action with the highest
expected reward, if there are multiple ”best” actions pick any of them). Define the
expected and empirical per-round regrets as

∆(a) = R (a∗)−R(a), ∆̂m(a) = R̂m (a∗)− R̂m(a).

Observe that m
(
∆̂m(a)−∆(a)

)
forms a martingale. Let

Vm(a) =
m∑
i=1

E
[(
Ra∗

i −Ra
i − [R (a∗)−R(a)]

)2
| Fi−1

]

be the cumulative variance of this martingale and

V̂m(a) =
m∑
i=1

(
Ra∗

i −Ra
i − [R (a∗)−R(a)]

)2

its empirical counterpart. We denote for any distribution Q overA, ∆(Q) = Ea∼Q[∆(a)],
Vm(Q) = Ea∼Q[Vm(a)], similar definitions hold for ∆̂m(Q), V̂m(Q). We can now state
the main result of this section – its proof is deferred to Appendix A.3.
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Theorem 2.3.1 (PAC-Bayes bounds for heavy-tailed rewards). For any m ≥ 1,
any history-dependent policy sequence (πi)i≥1 bounded from below by (εi)i≥1, we
have with probability 1− δ, for all posterior Q

∣∣∣∆(Q)− ∆̂m(Q)
∣∣∣ ≤ 2

√√√√(1 + 2K
δ

)
(log(K) + log(4/δ))
mεm

.

To the best of our knowledge, this result is the first PAC-Bayesian guarantees for multi-
armed bandits with unbounded rewards. The proposed bound is as tight as Theorem
2.3 of Seldin et al. (2012a), up to a factor (e−2) transformed into

(
1 + 2K

δ

)
(which

is a huge dependency in K) within the square root. Note that our result comes at
the price of the localisation: Theorem 2.3 of Seldin et al. (2012a) proposes a bound
holding uniformly for all time m while our approach only holds for a single time m.
We believe there is room for improvement in Th. 2.3.1. Indeed, the current approach
is naive as it consists in bounding crudely with high probability the empirical variance.
Such a naive trick impeach us to consider all times simultaneously. Indeed, in its current
form, taking an union bound on Theorem 2.3.1 is costful as we have a dependency in
1/δ in our result (instead of log(1/δ) in Seldin et al., 2012a): this would destroy
the convergence rate. The question of dealing more subtly with the empirical variance
term is left as an open question.

2.4 Conclusion
A first step towards an optimisation perspective of PAC-Bayes We showed
that it is possible to generalise the PAC-Bayes toolbox to unbounded martingales and
heavy-tailed losses (resp. learning problem with unbounded losses for batch/online
learning), the solely implicit assumption being the existence of second order moments
on the martingale difference sequence (resp. on the loss function) which is reasonable
as many PAC-Bayes bound lies on assumptions on exponential moments (e.g. the
subgaussian assumption) to work.
Current Limitations. Doing so, we made a first step towards concrete optimisation
perspective of PAC-Bayes by showing generalisation bounds are attainable with weak
statistical assumptions and thus, compatible with many practical settings where opti-
misation is performed. However, Chapter 2 still presents some strong links with the
information-theoretic approach such as: (i) the presence of a prior P in Theorem 2.2.2
which does no fit the optimisation views of the prior (see Figure 1.2), and (ii) the
presence of a KL divergence, suggesting an information-theoretic perspective of learn-
ing. Point (i) will be later developed in Chapters 3, 4 and 6 when P is seen as an
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initialisation point and in Chapter 5 when P is the learning objective. (ii) will be later
developed in Chapters 5 and 6.
Extensions of this work. The supermartingale framework presented here are ex-
tracted from Haddouche and Guedj (2023a) and has inspired many follow-up
works. Chugg et al. (2023) extended the approach of this chapter to other super-
martingales as well as reversed submartingales, allowing to recover a vast majority
of existing PAC-Bayes literature, also, Rodriguez-Galvez et al. (2023) tightened
the theorems presented here by allowing the optimisation in λ. The tools presented
in this work (e.g. Ville’s inequality) are also useful to obtain fast rate PAC-Bayes
bounds based on the coin-betting approach Jang et al. (2023) and Kuzborskij
et al. (2024). The coin-betting approach originally in online learning (Orabona and
Pál, 2016). In Chapter 3, we take a deeper focus on online learning, showing that an
online approach of PAC-Bayes is possible, and allows to consider prior distribution as
an initialisation point of a learning algorithm.
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3Mitigating Initialisation Impact
by Real-Time Control: Online
PAC-Bayes Learning

This chapter is based on the following papers

Maxime Haddouche and Benjamin Guedj. Online PAC-Bayes Learning. Ad-
vances in Neural Information Processing Systems (NeurIPS). (2022)
Maxime Haddouche and Benjamin Guedj. PAC-Bayes Generalisation Bounds
for Heavy-Tailed Losses through Supermartingales. Transactions on Machine Learning
Research. (2023)
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Abstract

While Chapter 2 showed weak statistical assumptions were reachable in PAC-
Bayes, allowing its use in a wide range of concrete optimisation settings, the role
of the prior P remains untreated. To tackle this issue, we propose here to con-
sider P as the initialisation point of a learning algorithm. Then, to attenuate its
impact in PAC-Bayes procedures, we develop Online PAC-Bayes learning, which
consider a sequence (Qi,Pi)i=1···m of pairs (posterior,prior) evolving through
time. Thus, the impact of initialisation P = P1 is attenuated through the evo-
lution of Pi during the learning phase. We develop the first Online PAC-Bayes
bounds and propose experiments showing that online PAC-Bayes outperforms
SGD in several cases.
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3.1 Introduction
Batch learning is somewhat the dominant learning paradigm in which we aim to design
the best predictor by collecting a training dataset which is then used for inference or
prediction. Classical algorithms such as SVMs (see Cristianini, Shawe-Taylor, et
al., 2000, among many others) or feedforward neural networks (Svozil et al., 1997)
are popular examples of efficient batch learning. While the mathematics of batch
learning constitute a vivid and well understood research field, in practice this might
not be aligned with the way practitionners collect data, which can be sequential when
too much information is available at a given time (e.g. the number of microtransactions
made in finance on a daily basis). Indeed, batch learning is not designed to properly
handle dynamic systems.
Online learning (OL) (Zinkevich, 2003; Shalev-Shwartz, 2012; Hazan, 2016)
fills this gap by treating data as a continuous stream with a potentially changing
learning goal. OL has been studied with convex optimisation tools and the celebrated
notion of regret which measures the discrepancy between the cumulative sum of losses
for a specific algorithm at each datum and the optimal strategy. It led to many fruitful
results comparing the efficiency of prediction for optimisation algorithms such that On-
line Gradient Descent (OGD), Online Newton Step through static regret (Zinkevich,
2003; Hazan et al., 2007). OL is flexible enough to incorporate external expert advice
onto classical algorithms with the optimistic point of view that such advices are useful
for training (Rakhlin and Sridharan, 2013a; Rakhlin and Sridharan, 2013b)
and then having optimistic regret bounds. Modern extensions also allow to compare to
moving strategies through dynamic regret (see e.g. Yang et al., 2016; Zhao et al.,
2020; Zhang et al., n.d.). However, this notion of regret has been challenged recently:
for instance, Wintenberger (2021) chose to control an expected cumulative loss
through PAC inequalities in order to deal with the case of stochastic loss functions.
While OL tackles problems beyond batch learning, it can also be used as a tool to
understand stochastic methods in a batch framework, such as SGD, where data are
picked sequentially. In the context of PAC-Bayes, it is then natural to ask whether
online learning could explain either the in-training evolution of the generalisation ability
of batch methods or provide online variants of classical algorithms (e.g. (1.7), (1.8)).
In both cases, the online paradigm allows focusing less on the prior P and more on its
evolution, being consistent with the optimisation view of the prior as an initialisation
point (see Figure 1.2).
Our contributions. Our goal is to provide a general online framework for PAC-
Bayesian learning. Our main contribution (Theorem 3.2.1 in Section 3.2) is a general
bound valid for bounded losses exploiting the generic PAC-Bayes bound of Rivas-
plata et al. (2020), later used to derive several online PAC-Bayesian results (as
developed in Sections 3.3 and 3.4). More specifically, we derive two types of bounds,
online PAC-Bayesian training and test bounds. Training bounds exhibit online pro-
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cedures while the test bound provide efficiency guarantees. We propose then several
algorithms with their associated training and test bounds as well as a short series of
experiments to evaluate the consistency of our online PAC-Bayesian approach. Our
efficiency criterion is not the classical regret but an expected cumulative loss close to
the one of Wintenberger (2021). More precisely, Section 3.3 propose a stable yet
time-consuming Gibbs-based algorithm, while Section 3.4 proposes time efficient yet
volatile algorithms. However, even if OPB requires no assumption on the data distribu-
tion, allows priors to be data-dependent and do not require any convexity assumption
on the loss (as commonly assumed in the OL framework), it still requires a bounded
loss. We circumvent this limitation in Section 3.6 that it is possible to extend OPB
results to the case of heavy-tailed losses, exploiting the supermartingale toolbox of
Chapter 2.
Outline. Section 3.2 introduces the theoretical framework as well as our main result.
Section 3.3 presents an online PAC-Bayesian algorithm and draws links between PAC-
Bayes and OL results. Section 3.4 details online PAC-Bayesian disintegrated procedures
with reduced computational time, Section 3.5 gathers supporting experiments and
Section 3.6 gathers an extension of Section 3.2 for heavy-tailed losses. We include
reminders on OL and PAC-Bayes in Appendices B.1.1 and B.3. Appendix B.2 provide
discussion about our main result. All proofs are deferred to Appendix B.4.

3.2 An online PAC-Bayesian bound for bounded
losses

We establish a novel PAC-Bayesian theorem (which in turn will be particularised in
Section 3.3) overcoming the classical limitation of data-independent prior and i.i.d.
data. We call our main result an online PAC-Bayesian bound as it allows to consider
a sequence of priors which may depend on the past and a sequence of posteriors that
can dynamically evolve as well. Indeed, we follow the online learning paradigm which
considers a continous stream of data that the algorithm has to process on the fly,
adjusting its outputs at each time step w.r.t. the arrival of new data and the past. In
the PAC-Bayesian framework, this paradigm translates as follows: from an initial (still
data independent) prior Q1 = P and a data sample Sm = (z1, ..., zm), we design a
sequence of posterior (Qi)1≤i≤m where Qi = f(Q1, ...,Qi−1, zi).
Framework. We fix a countable dataset S = (zi)i≥1, following a distribution DS , an
integer m > 0 and the training set Sm ∈ Zm, being the restriction of S to its m first
data, drawn from an unknown distribution Dm. We do not make any assumption on
DS ,Dm and we fix a filtration (Fi)i≥0 adapted to S. We set a sequence of priors,
starting with P1 = P a data-free distribution and (Pi)i≥2 such that for each i, Pi

is Fi−1 measurable. For P,Q ∈ M (H), the notation Q � P indicates that Q is
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absolutely continuous wrt P (i.e. Q(A) = 0 if P(A) = 0 for measurable A ⊂ H).
We also denote by Qi our sequence of candidate posteriors. There is no restriction on
what Qi could be. In what follows we denote by KL the Kullback-Leibler divergence
between two distributions.
We consider a predictor space H and a loss funtion ` : H×Z → R+ bounded by a real
constant K > 0. We denote by M(H) the set of all probability distributions on H.
We now introduce the notion of stochastic kernel (Rivasplata et al., 2020) which
formalise properly data-dependent measures within the PAC-Bayes framework. First,
for a fixed predictor space H, we set ΣH to be the considered σ-algebra on H.

Definition 3.2.1 (Stochastic kernels). A stochastic kernel from Zm toH is defined
as a mapping Q : Zm × ΣH → [0; 1] where

• For any B ∈ ΣH, the function Sm = (z1, ..., zm) 7→ Q(Sm, B) is measurable,

• For any Sm ∈ Zm, the function B 7→ Q(Sm, B) is a probability measure over
H.

We denote by Stoch(Zm,H) the set of all stochastic kernels from Zm to H and
for a fixed S, we set QSm := Q(Sm, .) the data-dependent prior associated to the
sample Sm through Q.

From now, to refer to a distribution QSm depending on a dataset Sm, we introduce a
stochastic kernel Q(., .) such that QSm = Q(Sm, .). Note that this notation is perfectly
suited to the case when QSm is obtained from an algorithmic procedure A. In this case
the stochastic kernel Q of interest is the learning algorithm A. We use this notion to
characterise our sequence of priors.

Definition 3.2.2 (Online Predictive Sequence). We say that a sequence of stochas-
tic kernels (Pi)i=1..m is an online predictive sequence if (i) for all i ≥ 1,Sm ∈
Zm,Pi(Sm, .) is Fi−1 measurable and (ii) for all i ≥ 2, Pi(Sm, .)� Pi−1(Sm, .).

Note that (ii) implies that for all i,Pi(Sm, .) � P1(Sm, .) with P1(Sm, .) a data-free
measure (yet a classical prior in the PAC-Bayesian theory).
We can now state our main result.

Theorem 3.2.1 (An OPB bound for bounded losses). For any distribution Dm
over Zm, any λ > 0 and any online predictive sequence (used as priors) (Pi)i=1···m,
for any sequence of stochastic kernels (Qi)i=1···m we have with probability 1 − δ
over the sample Sm ∼ Dm, the following, holding for the data-dependent measures
Qi,Sm := Qi(Sm, .),Pi,Sm := Pi(Sm, .) :
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m∑
i=1

Ehi∼Qi,Sm [E[`(hi, zi) | Fi−1]] ≤
m∑
i=1

Ehi∼Qi,Sm [`(hi, zi)]

+ KL(Qi,Sm ,Pi,Sm)
λ

+ λmK2

2 + log(1/δ)
λ

.

Remark 3.2.1. [Lighter notations for stochastic kernels] For the sake of clarity,
we assimilate in what follows the stochastic kernels Qi,Pi to the data-dependent
distributions Qi(Sm, .),Pi(Sm, .). Then, an online predictive sequence is also as-
similated to a sequence of data-dependent distributions. Concretely this leads to
the switch of notation Qi,Sm → Qi in Theorem 3.2.1. The reason of this switch
is that, even though stochastic kernel is the right theoretical structure to state our
main result, we consider in Sections 3.3 and 3.4 practical algorithmic extensions
which focus only on data-dependent distributions, hence the need to alleviate our
notations.

The proof is deferred to Appendix B.4.1. See Appendix B.2 for context and discussions.
A batch to online conversion. First, we remark that our bound slightly exceeds
the OL framework: indeed, it would require our posterior sequence to be an online
predictive sequence as well, which is not the case here (for any i, the distribution
Qi,Sm can depend on the whole dataset ). This is a consequence of our proof method
(see Appendix B.4.1), which is classically denoted as a ”batch to online” conversion
(in opposition to the ”online to batch” procedures as in Dekel and Singer, 2005).
In other words, we exploited PAC-Bayesian tools designed for a fixed batch of data
to obtain a dynamic result. This is why we refer to our bound as online as it allows
considering sequences of priors and posteriors that can dynamically evolve.
Analysis of the different terms in the bound. Our PAC-Bayesian bound formally
differs in many points from the classical ones. On the left-hand side of the bound, the
sum of the averaged expected loss conditioned to the past appears. Having such a
sum of expectations instead of a single one is necessary to assess the quality of all our
predictions. Indeed, because data may be dependent, one can not consider a single ex-
pectation as in the i.i.d. case. We also stress that taking an online predictive sequence
as priors leads to control losses conditioned to the past, which differs from classical
PAC-Bayes results designed to bound the expected loss. This term, while original in
the PAC-Bayesian framework (to the best of our knowledge) recently appeared (in a
modified form) in Wintenberger (2021, Prop 3). See Appendix B.2.2 for further
discussions.
On the right hand-side of the bound, online counterparts of classical PAC-Bayes terms
appear. At time i, the measure Qi (i.e. Qi,Sm according to Remark 3.2.1) has a
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tradeoff to achieve between an overfitted prediction of zi (the case Qi = δzi where δ
is a Dirac measure) and a too weak impact of the new data w.r.t. our prior knowledge
(the case Qi = Pi). The quantity λ > 0 can be seen as a regulariser to adjust the
relative impact of both terms.
Influence of λ. The quantity λ also plays a crucial role on the bound as it is involved
in an explicit tradeoff between the KL terms, the confidence term log(1/δ) and the
residual term mK2/2. This idea of seeing λ as a trading parameter is not new (Ger-
main et al., 2016; Thiemann et al., 2017). However, the results from Thiemann
et al. (2017) stand w.p. 1− δ for any λ while ours and the ones from Germain et al.
(2016) hold for any λ w.p. 1− δ which is weaker and implies to discretise R+ onto a
grid to estimate the optimal λ.
We now move on to the design of online PAC-Bayesian algorithms.

3.3 An online PAC-Bayesian procedure
OL algorithms (we refer to Hazan, 2016 for an introduction to the field) are producing
sequences of predictors by learning from a dynamic data stream (see Appendix B.1.1
for an example). Recall that, in the OL framework, an algorithm outputs at time i a
predictor which is Fi−1-measurable. Here, our goal is to design an online procedure
derived from Theorem 3.2.1 which outputs an online predictive sequence (which is
assimilated, according to Remark 3.2.1, to a sequence of distributions).
Online PAC-Bayesian (OPB) training bound. We state a corollary of our main re-
sult which paves the way to an online algorithm. This constructive procedure motivates
the name Online PAC-Bayesian training bound (OPBTrain in short).

Corollary 3.3.1 (OPBTrain). For any distribution Dm over Zm, any λ > 0 and
any online predictive sequences Q̂, P , the following holds with probability 1−δ over
the sample Sm ∼ Dm :

m∑
i=1

Ehi∼Q̂i+1
[E[`(hi, zi) | Fi−1]] ≤

m∑
i=1

Ehi∼Q̂i+1
[`(hi, zi)]

+ KL(Q̂i+1,Pi)
λ

+ λmK2

2 + log(1/δ)
λ

.

Here, λ is seen as a scale parameter as precised below. The proof consists in applying
Theorem 3.2.1 with for all i, Qi = Q̂i+1 and Pi. Note that in this case, our posterior
sequence is an online predictive sequence in order to fit with the OL framework.
Corollary 3.3.1 suggests to design Q̂ as follows, assuming we have drawn a dataset
S = {z1, ..., zm}, fixed a scale parameter λ > 0 and an online predictive sequence Pi:
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Q̂1 = P1, ∀i ≥ 1 Q̂i+1 = argmin
Q∈M(H)

Ehi∼Q [`(hi, zi)] + KL(Q,Pi)
λ

(3.1)

which leads to the explicit formulation
dQ̂i+1

dPi

(h) = exp (−λ`(h, zi))
Eh∼Pi [exp (−λ`(h, zi))]

. (3.2)

Thus, the formulation of Equation (3.2), which has been highlighted by Catoni
(2003, Sec. 5.1) shows that our online procedure produces Gibbs posteriors. So, PAC-
Bayesian theory provides sound justification for the somewhat intuitive online procedure
in Equation (3.1): at time i, we adjust our new measure Q̂i+1 by optimising a trade-off
between the impact of the newly arrived data zi and the one of prior knowledge Q̂i.
Notice that Q̂ is an online predictive sequence: Q̂i is Fi−1-measurable for all i as it
depends only on Q̂i−1 and zi−1. Furthermore, one has Q̂i � Q̂i−1 for all i as Q̂i is
defined as an argmin and the KL term is finite if and only it is absolutely continuous
w.r.t. Q̂i−1.

Remark 3.3.1. In Corollary 3.3.1, while the right hand-side is the reason we con-
sidered Equation (3.1), the left hand side still needs to be analysed. It expresses
how the posterior Q̂i+1 (designed from Q̂i, zi) generalises well on average to any
new draw of zi. More precisely, this term measures how much the training of Q̂i+1
is overfitting on zi. A low value of it ensures our online predictive sequence, which
is obtained from a single dataset, is robust to the randomness of Sm, hence the
interest of optimising the right-hand side of the bound. This is a supplementary
reason we refer to Corollary 3.3.1 as an OPBTrain bound as it provide robustness
guarantees for our training.

Online PAC-Bayesian (OPB) test bound. However, Corollary 3.3.1 does not say
if Q̂i+1 will produce good predictors to minimise `(., zi+1), which is the objective of
Q̂i+1 in the OL framework (we only have access to the past to predict the future).
We then need to provide an Online PAC-Bayesian (OPB) test bound (OPBTest
bound) to quantify our prediction’s accuracy. We now derive a OPBTest bound
from Theorem 3.2.1.

Corollary 3.3.2 (OPBTest). . For any distribution µ over Zm, any λ > 0, and
any online predictive sequence (Q̂i), the following holds with probability 1− δ over
the sample Sm ∼ Dm:

m∑
i=1

Ehi∼Q̂i [E[`(hi, zi) | Fi−1]] ≤
m∑
i=1

Ehi∼Q̂i [`(hi, zi)] + λmK2

2 + log(1/δ)
λ

.

– 61 –



3.3. An online PAC-Bayesian procedure

Optimising in λ gives λ =
√

2 log(1/δ)
mK2 and ensure that:

m∑
i=1

Ehi∼Q̂i [E[`(hi, zi) | Fi−1]] ≤
m∑
i=1

Ehi∼Q̂i [`(hi, zi)] +O
(√

log(1/δ)K2m
)
.

The proof consists in applying Theorem 3.2.1 with for all i, Qi = Q̂i = Pi.
Corollary 3.3.2 quantifies how efficient will our predictions be. Indeed, the left hand
side of this bound relates for all i, how good Q̂i is to predict zi (on average) which
is what Q̂i is designed for. Note that here, the involved λ can differ from the scale
parameter of Equation (3.1), it is now a way to compensate for the tradeoff between
the two last terms of the bound. The strength of this bound is that since Q̂ is an online
predictive sequence, the Kullback-Leibler terms vanished, leaving terms depending only
on hyperparameters.

Links with previous approaches
We now present a specific case of Corollary 3.3.1 where we choose as priors the online
predictive sequence Q̂ (i.e. in Theorem 3.2.1, we choose Qi = Q̂i+1,Pi = Q̂i). The
reason we focus on this specific case is that it enables to build strong links between
PAC-Bayes and OL.
We then adapt our OPBTrain bound (Corollary 3.3.1). The online procedure be-
comes:

Q̂1 = P, ∀i ≥ 1 Q̂i+1 = argminQ Ehi∼Q [`(hi, zi)] + KL(Q, Q̂i)
λ

, (3.3)

which leads to the explicit formulation

dQ̂i+1

dQ̂i

(h) = exp (−λ`(h, zi))
Eh∼Q̂i [exp (−λ`(h, zi))]

.

Links with classical PAC-Bayesian bounds. We denote that the optimal pre-
dictor in this case is such that at any time i, dQ̂i+1(h) ∝ exp(−λ`(h, zi))dQ̂i(h)
hence dQ̂m+1(h) ∝ exp (−λ∑m

i=1 `(h, zi)) dQ̂1(h). One recognises, up to a multi-
plicative constant, the optimised predictor of Catoni (2007, Th 1.2.6) which solves
argminQ Eh∼Q [ 1

m

∑m
i=1 `(h, zi)] + KL(Q,Q̂1)

λ
, thus one sees that in this case, the out-

put of our online procedure after m steps coincides with Catoni’s output. This shows
consistency of our general procedure which recovers classical result within an online
framework: when too many data are available, treating data sequentially until time
m leads to the same Gibbs posterior than if we were treating the whole dataset as a
batch.
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Analogy with Online Gradient Descent (OGD). We propose an analogy be-
tween the procedure Equation (3.3) and the celebrated OGD algorithm (see Ap-
pendix B.1.1 for a recap). First we remark that our minimisation problem is equiv-
alent to argminQ λEhi∼Q [`(hi, zi)] + KL(Q‖Q̂i). Then we assume that for any
i, Q̂i = N (m̂i, Id) with m̂i ∈ Rd and we set Li(m̂i) = Ehi∼Q̂i [`(hi, zi)] . The minimi-
sation problem becomes: argminm̂ λLi(m̂)+ 1

2‖m̂−m̂i‖2. And so using the first order
Taylor expansion, we use the approximation Li(m̂) ≈ Li(m̂i) + 〈m̂ − m̂i,∇Li(m̂i)〉
which finally transform our argmin into the following optimisation process: m̂i+1 =
m̂i − λ∇Li(m̂i) which is exactly OGD on the loss sequence Li. We draw an analogy
between the scale parameter λ and the step size η in OGD. the KL term translates the
influence of the previous point and the expected loss gives the gradient. This analogy
has been already exploited in Shalev-Shwartz (2012) where they approximated
Ehi∼qµ [`(hi, zi)] := L̄i(µ) ≈ µT∇L̄i(µi) where µ is their considered online predictive
sequence.
Finally, we remark that the optimum rate in Corollary 3.3.2 is a O(

√
m) which is

comparable to the best rate of Shalev-Shwartz (2012, Eq (2.5)) (see Proposi-
tion B.1.1).
Comparison with previous work. We acknowledge that the procedure of Equa-
tion (3.3) already appeared in literature. Li et al. (n.d., Alg. 1) propose a Gibbs
procedure somewhat similar to ours, the main difference being the addition of a surro-
gate of the true loss at each time step. Within the OL literature, the idea of updating
measures online has been recently studied for instance in Chérief-Abdellatif et
al. (2019). More precisely, our procedure is similar to their Streaming Variational
Bayes (SVB) algorithm. A slight difference is that they approximated the expected
loss similarly to Shalev-Shwartz (2012). The guarantees Chérief-Abdellatif
et al. (2019) provided for SVB hold for Gaussian priors and comes at the cost of ad-
ditional constraints that do not allow to consider any aggregation strategies contrary
to what Corollary 3.3.1 propose. Their bounds are deterministic and are using tools
and assumptions from convex optimisation (such that convex expected losses) while
ours are probabilistic and are using measure theory tools which allow to relax these
assumptions.
Strength of our result. We emphasize two points. First, to the best of our knowl-
edge, Corollary 3.3.1 is the first bound which theoretically suggests Equation (3.3) as a
learning algorithm. Second, we stress that Equation (3.3) is a particular case of Corol-
lary 3.3.1 and our result can lead to other fruitful routes. For instance, we consider
the idea of adding noise to our measures at each time step to avoid overfitting (this
idea has been used e.g. in Neelakantan et al., 2015 in the context of deep neural
networks): if our online predictive sequence (Q̂i) can be defined through a sequence
of parameter vectors µ̂, then we can define Pi by adding a small noise on µ̂i and thus
giving more freedom through stochasticity.
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Thus, we see that our procedure led us to the use of the Gibbs posteriors of Catoni.
However, in practice, Gaussian distributions are preferred (e.g. Dziugaite and Roy,
2017; Rivasplata et al., 2019; Perez-Ortiz et al., 2021a,b,c). That is why we
focus next on new online PAC-Bayesian algorithms involving Gaussian distributions.

3.4 Disintegrated online algorithms for Gaussian
distributions.

We dig deeper in the field of disintegrated PAC-Bayesian bounds, originally explored by
Blanchard and Fleuret (2007) and Catoni (2007), further studied by Alquier
and Biau (2013) and Guedj and Alquier (2013) and recently developed by Ri-
vasplata et al. (2020) and Viallard et al. (2023a) (see Appendix B.3 for a short
presentation of the bound we adapted and used). The strength of the disintegrated
approach is that we have directly guarantees on the random draw of a single predictor,
which avoids considering expectations over the predictor space. This fact is particularly
significant in our work as the procedure precised in Equation (3.2), require the estima-
tion of an exponential moment to be efficient, which may be costly. We then show that
disintegrated PAC-Bayesian bounds can be adapted to the OL framework, and that
they have the potential to generate proper online algorithms with weak computational
cost and sound efficiency guarantees.
Online PAC-Bayesian disintegrated (OPBD) training bounds. We present a
general form for online PAC-Bayes disintegrated (OPBD) training bounds. The termi-
nology comes from the way we craft those bounds: from PAC-Bayesian disintegrated
bounds we use the same tools as in Theorem 3.2.1 to create the first online PAC-
Bayesian disintegrated bounds. OPBD training bounds have the following form.
For any online predictive sequences Q̂, P , any λ > 0 w.p. 1 − δ over Sm ∼ Dm and
(h1, ..., hm) ∼ Q̂2 ⊗ ...⊗ Q̂m+1:

m∑
i=1

E[`(hi, zi) | Fi−1] ≤
m∑
i=1

`(hi, zi) + Ψ(hi, Q̂i+1,Pi) + Φ(m), (3.4)

with Ψ,Φ being real-valued functions. Ψ controls the global behaviour of Qi+1 w.r.t.
the Fi−1-measurable prior Pi. If one has no dependency on hi this behaviour is global,
otherwise it is local. Note that those functions may depend on λ, δ. However, since
they are fixed parameters, we do not make these dependencies explicit. Similarly to
Corollary 3.3.1, this kind of bound allows to derive a learning algorithm (cf Algorithm 1)
which outputs an online predicitve sequence Q̂. Finally we draw (h1, ..., hm) ∼ Q̂2 ⊗
... ⊗ Q̂m+1 (and not Q̂1 ⊗ ... ⊗ Q̂m) since an OPBD bound is designed to justify
theoretically an OPBD procedure in the same way Corollary 3.3.1 allowed to justify
Equation (3.1).
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Why focus on Gaussian measures? The reason is that a Gaussian variable h ∼
N (w, σ2Id) can be written as h = w + ε with ε ∼ N (0, σ2Id), and this expression
totally defines h (Id being the identity matrix).
A general OPBD algorithm for Gaussian measure with fixed variance We use an
idea presented in Viallard et al. (2023a) which restrict the measure set to Gaussian
on Rd with known and fixed covariance matrix σ2Id. Then we present in Algorithm 1
a general algorithm (derived from an OPBD training bound) for Gaussian measures
with fixed variance which outputs a sequence of gaussian Q̂i = N (ŵi, σ2Id) from a
prior sequence Pi = N (w0

i , σ
2Id) where for each i, w0

i is Fi−1- measurable. Because
the variance is fixed, the distribution is uniquely defined by its mean, thus we identify
Q̂i and ŵi, Pi and w0

i .

Algorithm 1: A general OPBD algorithm for Gaussian measures with fixed
variance.

Parameters : Time m, scale parameter λ
Initialisation: Variance σ2, Initial mean ŵ1 ∈ Rd, epoch m

1 for each iteration i in 1..m do
2 Observe zi, w0

i and draw εi ∼ N (0, σ2Id)
3 Update:

ŵi+1 := argminw∈Rd `(w + εi, zi) + Ψ(w + εi, w, w
0
i )

4 end
5 Return (ŵi)i=1..m+1

At each time i, Algorithm 1 requires the draw of εi ∼ N (0, σ2Id). Doing so, we
generated the randomness for our hi (because our bound holds for a single draw of
(h1, .., hm) ∼ Q̂2 ⊗ ...⊗ Q̂m+1), we then write hi = w + εi and we optimise w.r.t. Ψ
to find ŵi+1.
Bounds of interest. We present two possible choices of pairs (Ψ,Φ) derived from the
disintegrated results presented in Appendix B.3. Doing so, we explicit two ready-to-use
declinations of Algorithm 1.

Corollary 3.4.1 (Two OPB disintegrated learning algorithms). For any distribution
µ over Zm, any online predictive sequences of Gaussian measures with fixed variance
Q̂i = N (ŵi, σ2Id) and Pi = N (w0

i , σ
2Id), any λ > 0, w.p. 1 − δ over Sm ∼ Dm

and (hi = ŵi+1 + εi)i=1..m ∼ Q̂2 ⊗ ...⊗ Q̂m+1, the bound of Equation (3.4) holds
for the two following pairs Ψ,Φ:
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Ψ1(hi, ŵi+1, w
0
i ) = ||ŵi+1 + εi − w0

i ||2 − ||ε||2

2λσ2 Φ1(m) = λmK2

2 + log(1/δ)
λ

,

(3.5)

Ψ2(hi, ŵi+1, w
0
i )) = ||ŵi+1 − w0

i ||2

2λσ2 Ψ2(m) = λmK2 + 3 log(1/δ)
2λ . (3.6)

Where the notation 1, 2 denote whether the functions have been derived from
adapted theorems of Rivasplata et al., 2020; Viallard et al., 2023a recalled
in Appendix B.3 We then can use Algorithm 1 with Equation (3.5), Equation (3.6).

Proof is deferred to Appendix B.4.2. Note that in Corollary 3.4.1, we identified Q̂i to
ŵi and for the last formula, Ψ has no dependency on hi.
Comparison with Equation (3.1). The main difference with Equation (3.1) provided
by the disintegrated framework is that the optimisation route does not include an
expected term within the optimisation objective. The main advantage is a weaker
computational cost when we restrict to Gaussian distributions. The main weakness is
a lack of stability as our algorithm now depends at time i on `(h + εi, zi) so on εi
directly. We denote that Equation (3.5) is less stable than Equation (3.6) as it involves
another dependency on εi through Ψ. The reason is that Rivasplata et al., 2020
proposed a bound involving a disintegrated KL divergence while Viallard et al.,
2023a proposed a result involving a Rényi divergence avoiding a dependency on εi. We
refer to Appendix B.3 for a detailed statement of those properties.
Comparison with Hoeven et al., 2018. Theorem 3 of Hoeven et al. (2018)
recovers OGD from the exponential weights algorithm by taking a sequence of moving
distributions being Gaussians with fixed variance which is exactly what we consider
here. From these, they retrieve the classical OGD algorithm as well as its classical
convergence rate. Let us compare our results with theirs.
First, if we fix a single step η in their bound and assume two traditional assump-
tions for OGD (a finite diameter D of the convex set and an uniform bound G on
the loss gradients), we recover for the OGD (greedy GD in Hoeven et al., 2018) a
rate of D2

2σ2η
+ ησ2TG2

2 . This is, up to constants and notation changes, exactly our Ψi

(i ∈ {1, 2}). Also, we notice a difference in the way to use Gaussian distributions:
Theorem 3 of Hoeven et al. (2018) is based on their Lemma 1 which provides guar-
antees for the expected regret. This is a clear incentive to consider as predictors the
mean of the successive Gaussians of interest. On the contrary, Corollary 3.4.1 involves
a supplementary level of randomness by considering predictors hi drawn from our Gaus-
sians. This additional randomness appears in our optimisation process (Algorithm 1).
Finally, notice that Hoeven et al. (2018) based their whole work on the use of a KL
divergence while Corollary 3.4.1 not only exploit a disintegrated KL (Ψ1) but also a
Rényi α-divergence (Ψ2). Note that we propose a result only for α = 2 for the sake
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of space constraints but any other value of α leads to another optimisation objective
to explore.
OPBD test bounds. Similarly to what we did in Section 3.3, we also provide OPBD
test bounds to provide efficiency guarantees for online predicitve sequences (e.g. the
output of Algorithm 1). Our proposed bounds have the following general form.
For any online predictive sequence Q̂, any λ > 0 w.p. 1− δ over S and (h1, ..., hm) ∼
Q̂1 ⊗ ...⊗ Q̂m:

m∑
i=1

E[`(hi, zi) | Fi−1] ≤
m∑
i=1

`(hi, zi) + Φ(m), (3.7)

with Φ being a real-valued function(possibly dependent on λ, δ though it is not ex-
plicited here).
Note that our predictors (h1, ..., hm) are now drawn from Q̂1 ⊗ ... ⊗ Q̂m. Thus, the
left-hand side of the bound considers a hi drawn from an Fi−1-measurable distribution
evaluated on `(., zi): this is effectively a measure of the prediction performance.
We now state a corollary which gives disintegrated guarantees for any online predicitve
sequence.

Corollary 3.4.2 (OPB disintegrated test bounds). For any distribution µ over
Zm, any λ > 0, and any online predictive sequence (Q̂i), the following holds with
probability 1 − δ over the sample Sm ∼ Dm and the predictors (h1, ..., hm) ∼
Q̂1 ⊗ ...⊗ Q̂m, the bound of Equation (3.7) holds with :

Φ1(m) = λmK2

2 + log(1/δ)
λ

, Φ2(m) = 2λmK2 + log(1/δ)
λ

.

Where the notation 1, 2 denote whether the functions have been derived from
adapted theorems of Rivasplata et al., 2020; Viallard et al., 2023a recalled
in Appendix B.3. The optimised λ gives in both cases a O(

√
m log(1/δ)).

Proof is deferred to Appendix B.4.2.

3.5 Experiments
We adapt the experimental framework introduced in Chérief-Abdellatif et al.
(2019, Sec.5) to our algorithms. We conduct experiments on several real-life datasets,
in classification and linear regression. Our objective is twofold: check the convergence
of our learning methods and compare their efficiencies with classical algorithms. We
first introduce our experimental setup.
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Algorithms. We consider four online methods of interest: the OPB algorithm of
Equation (3.3) which update through time a Gibbs posterior. We instantiate it with
two different priors Q̂1: a Gaussian distribution and a Laplace one. We also implement
Algorithm 1 with the functions Ψ1,Ψ2 from Corollary 3.4.1. To assess efficiency, we
implement the classical OGD (as described in Alg. 1 of Zinkevich, 2003) and the
SVB method of Chérief-Abdellatif et al. (2019).

Binary Classification. At each round i the learner receives a data point xi ∈ Rd and
predicts its label yi ∈ {−1,+1} using 〈xi, hi〉, with hi = Eh∼Q̂i [h] for OPB methods
or hi being drawn under Q̂i for OPBD methods. The adversary reveals the true value
yi, then the learner suffers the loss `(hi, zi) =

(
1− yihTi xi

)
+

with zi = (xi, yi) and
a+ = a if a > 0 and a+ = 0 otherwise. This loss is unbounded but can be thresholded.

Linear Regression. At each round i, the learner receives a set of features xi ∈ Rd

and predicts yi ∈ R using 〈xi, hi〉 with hi = Eh∼Q̂i [h] for SVB and OPB methods or hi
being drawn under Q̂i for OPBD methods. Then the adversary reveals the true value
yt and the learner suffers the loss `(hi, zi) =

(
yi − hTi xi

)2
with zi = (xi, yi). This loss

is unbounded but can be thresholded.

Datasets. We consider four real world dataset: two for classification (Breast Cancer
and Pima Indians), and two for regression (Boston Housing and California Housing).
All datasets except the Pima Indians have been directly extracted from sklearn (Pe-
dregosa et al., 2011). Breast Cancer dataset (Street et al., 1993) is available here
and comes from the UCI ML repository as well as the Boston Housing dataset (Bels-
ley et al., 2005) which can be obtained here. California Housing dataset (Pace and
Barry, 1997) comes from the StatLib repository and is available here. Finally, Pima
Indians dataset (Smith et al., 1988) has been recovered from this Kaggle repository.
Note that we randomly permuted the observations to avoid learning irrelevant human
ordering of data (such that date or label).

Parameter settings. We ran our experiments on a 2021 MacBook Pro with an M1
chip and 16 Gb RAM. For OGD, the initialisation point is 0Rd and the values of the
learning rates are set to η = 1/

√
m. For SVB, mean is initialised to 0Rd and covariance

matrix to Diag(1). Step at time i is ηi = 0.1/
√
i. For both of the OPB algorithms

with Gibbs posterior, we chose λ = 1/m. As priors, we took respectively a centered
Gaussian vector with the covariance matrix Diag(σ2) (σ = 1.5) and an i.i.d. vector
following the standard Laplace distribution. For the OPBD algorithm with Ψ1, we
chose λ = 10−4/m, the initial mean is 0Rd and our fixed covariance matrix is Diag(σ2)
with σ = 3.10−3. For the OPBD algorithm with Ψ1, we chose λ = 2.10−3/m, the
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Figure 3.1. Averaged cumulative losses for all four considered datasets. ’Gibbs Gauss’
denotes OPB with Gaussian Prior, ’Gibbs Laplace’ denotes OPB with Laplace prior.
’OPBD Riva’ denotes OPBD with Ψ1, ’OPBD Via’ denotes OPBD with Ψ2.

initial mean is 0Rd and our covariance matrix is Diag(σ2) with σ = 10−2. The reason of
those higher scale parameters and variance is that Ψ from Rivasplata et al. (2020)
is more stochastic (yet unstable) than the one Viallard et al. (2023a).

Experimental results. For each dataset, we plot the evolution of the average cu-
mulative loss ∑t

i=1 `(hi, zi)/t as a function of the step t = 1, . . . ,m, where m is the
dataset size and hi is the decision made by the learner hi at step i. The results are
gathered in Figure 3.1

Empirical findings. OPB with Gaussian prior (’Gibbs Gauss’) outperforms OGD on
all datasets except California Housing (on which this method is not implemented )
while OPB with Laplace prior (’Gibbs Laplace’) always fail w.r.t. OGD. OPB methods
fail to compete with SVB on the Boston Housing dataset. OPBD methods compete
with SVB on regression problems and clearly outperforms OGD on classification tasks.
OPBD with Ψ2 (labeled as ’OPBD Via’ in Figure 3.1) performs better on the California
Housing dataset while OPBD with Ψ1 (labeled as ’OPBD Riva’) is more efficient on
the Boston Housing dataset. Both methods perform roughly equivalently on classifi-
cation tasks. This brief experimental validation shows the consistency of all our online
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procedures as we observe a visible decrease of the cumulative losses through time. It
particularly shows that OPBD procedures improve on OGD on those dataset. We refer
to Appendix B.5 for additional table gathering the error bars of our OPBD methods.

Why do we perform better than OGD? As stated in Section 3.4, OGD can be
recovered as a Gaussian approximation of the exponential weights algorithm (EWA).
Thus, a legitimate question is why do we perform better than OGD as our OPBD
methods are also based on a Gaussian surrogate of EWA? Hoeven et al., 2018 only
used Gaussians distributions with fixed variance as a technical tool when the considered
predictors are the Gaussian means. In our work, we exploited a richer characteristic of
our distributions in the sense our predictors are points sampled from our Gaussians and
not only the means. This also has consequences in our learning algorithm as at time
i of our Algorithm 1, our optimisation step involves a noise εi ∼ N (0, σ2I). Thus,
we believe that OPBD methods should perform at least as well as OGD. We write ’at
least’ as we think that the higher flexibility due to this additional level of randomness
might result in slightly better empirical performances, as seen on the few datasets in
Figure 3.1.

3.6 Online PAC-Bayes for heavy-tailed losses.
Results of Section 3.2 exploited a PAC-Bayesian theorem of Rivasplata et al. (2020)
to perform, however, we note that the OL framework, by considering non-i.i.d. data
is compatible with the supermartingale toolbox of Chapter 2. We then show that
it is possible to obtain anytime-valid OPB bounds for heavy-tailed losses, extending
our results. Note however that such an extension can have consequences in terms of
algorithmic procedures.
We now state the main theorem of this section.

Theorem 3.6.1 (An OPB bound for heavy-tailed losses). For any distribution
over the dataset S, any λ > 0 and any online predictive sequence (used as priors)
(Pi)i≥1, we have with probability at least 1 − δ over the sample S ∼ DS , the
following, holding for the data-dependent measures Pi,S := Pi(S, .) any posterior
sequence (Qi)i≥1 and any m ≥ 1:

m∑
i=1

Ehi∼Qi [E[`(hi, zi) | Fi−1]] ≤
m∑
i=1

Ehi∼Qi [`(hi, zi)]

+ λ

2

m∑
i=1

Ehi∼Qi

[
V̂i(hi, zi) + Vi(hi)

]
+

m∑
i=1

KL(Qi,Pi,S)
λ

+ log(1/δ)
λ

.
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With for all i, V̂i(hi, zi) = (`(hi, zi)− Ei−1[`(hi, zi)])2 is the empirical variance at
time i and Vi(hi) = Ei−1[V̂ (hi, zi)] is the true conditional variance.

Proof lies in Appendix B.4.3.
Analysis of the bound. This bound is, to our knowledge, the first Online PAC-
Bayes bound in literature holding for heavy-tailed losses. It is semi-empirical as the
variance and empirical variance terms have theoretical components. However, these
terms can be controlled with assumptions on conditional second-order moments and
not on exponential ones (as made in Section 3.2 where the bounded loss assumption
was used to obtain conditional subgaussianity). To emphasise our point, we consider
as in Section 2.2.3 the case of the quadratic loss `(h, z) = (h − z)2. Here, we only
need to assume that our data have a finite variance if we restrict our posteriors to have
both bounded means and variance. Also the meaning of the online predictive sequence
Pi is that we must be able to design properly a sequence of priors before drawing our
data, this can be for instance an online algorithm which generate a prior distribution
from past data at each time step.
Finally, we note that if we assume being able to bound simultaneaously all conditional
means and variance (which is strictly less restrictive than bounding the loss), then
Theorem 3.6.1 suggests a new online learning objective which is an online counterpart
to Equation (2.4).

∀i ≥ 1 Q̂i+1 = argmin
Q∈M(H)

Ehi∼Q

[
`(hi, zi) + λ

2 `(hi, zi)
2
]

+ KL(Q,Pi,S)
λ

(3.8)

While the algorithm differs from the one derived Theorem 3.2.1, we can still draw
many links with this theorem.

• If we assume our loss to be bounded, then we can upper bound our empiri-
cal/theoretical variance terms to recover exactly Theorem 3.2.1. Theorem 3.6.1
then shows that finite order two moments are sufficient to perform online PAC-
Bayes.

• Another crucial point lies on the range of our result which holds with high prob-
ability for any countable posterior sequence (Qi)i≥1, any time m and the priors
(Pi,Sm)i≥1. This is far much general than Theorem 3.2.1 which holds only for
a single m and a single posterior sequence (Qi,Sm)i=1..m. This happens because
a preliminary theorem from Rivasplata et al. (2020) has been used instead
of the change of measure inequality (Lemma 1.2.1). This preliminary theorem
has imposed conditionnal subgaussianity to deal with the exponential moment.
On the contrary, the use of the change of measure inequality alongside the su-
permartingale toolbox of Chapter 2 allowed a result holding for any posterior
sequence, and any time simultaneously.
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3.7 Conclusion
Chapter 3 bridges a gap between online learning and generalisation. As seen in Sec-
tion 3.5, considering online PAC-Bayes procedures mitigates the impact of the prior in
the learning process and thus, fit the optimisation view of the prior as in initialisation
point (Figure 1.2), yielding performances at least comparable to online gradient de-
scent. However, while Online PAC-Bayes is a promising step forward optimisation, with
time-efficient procedures (Appendix B.3), some questions remains: (i) Is it possible to
propagate the view of prior as initialisation directly for batch algorithms? (ii) Is it
possible to obtain PAC-Bayes learning algorithms directly for deterministic predictors
instead of using disintegrated results in order to be consistent with practitioners, often
avoiding stochastic predictors?
Elements of answer to (i) lie in Chapter 4, showing that flat minimum, often attained
in the context of deep neural network with much more parameters than training data,
allows to attenuate the impact of the prior through a fast convergence rate. (ii) is
tackled in Chapters 5 and 6 where the KL divergence is traded for a Wasserstein
distance.
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4Mitigating Initialisation Impact
through Flat Minima: Fast
Rates for Small Gradients

This chapter is based on the following paper

Maxime Haddouche, Paul Viallard, Umut Simsekli, and Benjamin Guedj.
A PAC-Bayesian Link Between Generalisation and Flat Minima. (2024)
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Abstract

Chapter 3 showed that a way to attenuate the impact of the prior, seen as an
initialisation, in PAC-Bayes is online learning, allowing the evolution of the prior
through time. However, a legitimate question is whether the prior could be
attenuated, even in the batch learning setting, widely used in practice. Main-
taining the vision of the prior as initialisation, we propose in this chapter to
attenuate its impact in the batch setting through convergence rate faster than
1/
√
m. The proposed results hold when a flat minimum has been reached, i.e.

a minimum whose its neighbourhood nearly minimise the loss as well. Then,
a sharper understanding of generalisation can be reached when exploiting the
benefits of a successful optimisation process. Indeed, this study is particularly
meaningful in the context of deep learning, where it has been shown that flat
minimum (also known as sharpness) correlates to a good generalisation ability.
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4.1 Introduction
Can we make the impact of the prior vanish at a faster rate than 1/

√
m in the context

of batch learning? While this is desirable from an optimisation perspective, this is not
what is proposed by classical PAC-Bayes bounds, considering all elements of M(H)
simultaneously. The challenge of this study is to obtain faster rates for a smaller class of
posteriors. Doing so, we aim to attenuate the impact of the initialisation (seen as prior)
for nonnegative heavy-tailed losses, potentially satisfying geometric assumptions such
as gradient-lipschitz, making a promising step towards concrete optimisation settings.
The practical way to do so is to obtain results holding only for posteriors distributions
focusing on flat minima, which can be seen, e.g. in deep learning, as a benefit of a
successful optimisation process.
Indeed, dating back to Hochreiter and Schmidhuber (1997), it has been hypoth-
esised that the notion of ‘flatness’ (or sometimes equivalently referred to as ‘sharpness’)
has tight links with the generalisation error: among the minima (belonging to R̂Sm)
that is found by the learning algorithm, the ‘flatter’ the minimum is, the lower is the
generalisation error. While the initial flatness notion was (vaguely) defined through low
Kolmogorov complexity, there is no single formal definition of ‘flatness’. Hence, several
flatness notions have been considered, which typically are based on the second-order
derivatives of the empirical risk around the local minimum found by the algorithm, such
as trace(∇2R̂Sm(h)), see e.g., Jastrzebski et al. (2017) and Wen et al. (2023).
While there have been several attempts to link some form of flatness to generalisation
in a mathematically rigorous way (Neyshabur et al., 2017; Petzka et al., 2021;
Andriushchenko et al., 2023; Yue et al., 2023), mainly in the framework of
‘sharpness aware minimisation’ (Foret et al., 2020), it has been recently shown that
flat minima do not always imply good generalisation. In fact, there exist scenarios
such that the flattest minima achieve the worst generalisation performance compared
to non-flat ones (Wen et al., 2023).
In this study, we aim at developing novel links between flatness and the generalisation
error from a PAC-Bayesian perspective (see e.g., Guedj, 2019; Hellström et al.,
2023; Alquier, 2024). Denoting by Q, the probability distribution of the algorithm
output h (or the output of a learning algorithm), we identify sufficient conditions on
Q such that flatness always implies good generalisation. More precisely, we make the
following contributions:

• We show that, when Q satisfies the Poincaré inequality and a technical condition
that we identify, we can obtain a ‘fast-rate’ generalisation bound that diminishes
with rate 1

m
(rather than 1√

m
) and mainly contains two terms:

(i) The flatness term: Eh∼Q
[

1
m

∑m
i=1 ‖∇h`(h, zi)‖2

]
. This term is directly

linked to the Hessian of the loss `, due to the connection between the Fisher
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information and the Hessian of the loss Bickel and Doksum, 2015. For
instance, under certain conditions, it can be shown that trace(∇2R̂Sm(h)) =
2
m

∑m
i=1 ‖∇h`(h, zi)‖2 (Wen et al., 2023, Lemma 4.1).

(ii) The classical PAC-Bayesian complexity term KL(Q,P), where KL denotes
the Kullback-Leibler divergence and P is data-independent ‘prior’ distribu-
tion.

• We then further analyse the term KL(Q,P). We show that, when Q is a Gibbs
distribution, i.e., Q(h) ∝ exp(−γR̂Sm(h))P(h) for some γ > 0 and P satisfies
a log-Sobolev inequality, the generalisation error can be controlled solely by
the term: γ2cLS(P) Eh∼Q[‖∇hR̂Sm(h)‖2], where cLS(P) denotes the log-Sobolev
constant of the prior P.

• We finally go beyond the KL divergence to link flat minima to deterministic
predictors (i.e., when Q is a Dirac distribution) through a novel Wasserstein-
based generalisation bound for gradient Lipschitz loss functions.

We provide a numerical assessment of the technical condition underlying our main
result, suggesting that it is suitable in the case of neural networks on classification
tasks, confirming the relevance of our bounds to better understand the generalisation
ability of neural networks. Our results shed further light on the impact of the flatness
of the minima over the generalisation error: when the learning algorithm ensures a
sufficiently regular distribution over the parameters, the generalisation error can be
directly controlled by the flatness of the region found by the algorithm.

4.2 Preliminaries
Framework. We consider a predictor set H ⊆ Rd equipped with a norm ‖.‖, a data
space Z and the space of distributions overH,M(H). We also consider a loss function
` : H×Z → R. We assume that we have access to a i.i.d. dataset S = (zi)i≥1 ∈ ZN

with associated distribution D. For each m ≥ 1, we define Sm := {z1, · · · , zm}.
In PAC-Bayes learning, we construct a data-driven posterior distribution Q ∈ M(H)
with respect to a prior distribution P. To assess the generalisation ability of a predictor
h ∈ H, we define the population risk to be RD(h) := Ez∼µ[`(h, z)] and for each m, its
empirical counterpart R̂Sm(h) := 1

m

∑m
i=1 `(h, zi). As PAC-Bayes focuses on elements

of M(H), we also define the expected risk and empirical risks for Q ∈ M(H) as
RD(Q) := Eh∼Q[RD(h)] and R̂Sm(Q) := Eh∼Q[R̂Sm(h)]. PAC-Bayes bounds usually
aim at controlling the expected generalisation error (or gap) for each dataset size m,
i.e., ∆Sm(Q) := RD(Q)− R̂Sm(Q).
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Background on Poincaré and log-Sobolev inequalities. In this work, we exploit
Poincaré and log-Sobolev inequalities in the PAC-Bayes framework. We first recall the
definition of Poincaré and log-Sobolev inequalities. To do so, for a fixed distribution
Q, we define the Sobolev space of order 1 on Rd as follows:

H1(Q) :=
{
f ∈ L2(Q) ∩D1(Rd) | ‖∇f‖ ∈ L2(Q)

}
,

where D1(Rd) denotes the set of derivable functions f : Rd → R.

Definition 4.2.1 (Poincaré and Logarithmic Sobolev inequalites). A measure Q
satisfies a Poincaré inequality with constant cP (Q) if for all function f ∈ H1(Q)
we have

VarQ(f) ≤ cP (Q) E
h∼Q

[
‖∇f(h)‖2

]
,

where VarQ(f) = Eh∼Q [f(h)− Eh∼Q[f(h)]]2 is the variance of f w.r.t. Q. We
then say that Q is Poincaré with constant cP (Q), or that Q is Poinc(cP ). Also, Q
satisfies a log-Sobolev inequality with constant cLS(Q) if for all function f ∈ H1(Q)
we have

E
h∼Q

[
f 2(h) log

(
f 2(h)

Eh∼Q [f 2(h)]

)]
≤ cLS(Q) E

h∼Q

[
‖∇f(h)‖2

]
,

where the term on the left hand side is the entropy of f 2, denoted as EntQ(f 2).
We then say that Q is log-Sobolev with constant cLS(Q), or that Q is L-Sob(cLS).

The class of Gaussian distributions is an important particular case of distributions
satisfying both Poincaré and log-Sobolev inequalities, this is the subject of Proposition
4.2.1.

Proposition 4.2.1. For a given pair (µ,Σ) of mean and covariance matrix in Rd,
define Q = N (µ,Σ). Then we have, for any f ∈ H1(Q):

EntQ(f 2) ≤ 2EQ [〈Σ∇f,∇f〉] , and VarQ(f 2) ≤ EQ [〈Σ∇f,∇f〉] .

Thus, Q is L-Sob(cLS) with constant cLS(Q) = 2‖Σ‖op and also Poinc(cLS) with
constant cLS(Q) = ‖Σ‖op, where ‖.‖op denotes the operator norm.

In Proposition 4.2.1, the first inequality can be derived from the classical log-Sobolev
inequality for N (0, Id) stated in Gross (1975), with a change of variable. Similarly,
the Poincaré inequality can be obtained through a change of variable from the Poincaré
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inequality for N (0, Id) which is a particular case of the Brascamp-Lieb inequality for
log-concave probability measures (Brascamp and Lieb, 1976) and is stated explicitly
in Beckner (1989, Theorem 1).
We now focus on specific posterior distributions called Gibbs posteriors, or Gibbs
distributions. For a fixed loss ` and dataset Sm, the Gibbs posterior, w.r.t. prior
P ∈ M(H), risk R̂Sm and inverse temperature γ > 0.is defined as P−γR̂Sm

such
that dP−γR̂Sm

(h) ∝ exp(−γR̂Sm(h))dP(h). Gibbs posteriors are a class of closed-
form solutions for relaxation of Catoni (2007, Theorem 1.2.6) stated, for instance, in
Alquier et al. (2016, Theorem 4.1). Proposition 4.2.2 shows that when the prior and
the loss satisfies a few properties, then the associated Gibbs posterior is L-Sob(cLS).

Proposition 4.2.2. Assume that P is a probability measure on Rd such that
dP(h) ∝ exp(−V (x)) with V a smooth function such that Hess(V ) � 2

cLS(P)Id
(We say that A � B if A − B is a positive semidefinite matrix.). Assume
that ` = `1 + `2 with `1 convex, twice differentiable and `2 bounded. Then
for any γ > 0, the Gibbs posterior Q = P−γR̂Sm

is L-Sob(cLS) with constant
cLS(Q) = cLS(P) exp (4‖`2‖∞).

Proposition 4.2.2 applies, e.g., when P is a Gaussian prior P = N (µP,ΣP). Notice
that in this case cLS(P) = 2‖ΣP‖op. This property is a straightforward application of
Chafai (2004, Corollary 2.1) with Guionnet and Zegarlinksi (2003, Property
2.6) and is stated in Appendix C.1 for completeness. Finally, notice that satisfying a
log-Sobolev inequality is stronger than satisfying a Poincaré one. This is stated for
instance in Ledoux (2006, Proposition 2.1) and properly recalled in Appendix C.1.

4.3 Reaching a flat minimum allows Poincaré
posteriors generalising well

4.3.1 Fast rate PAC-Bayes bounds for heavy-tailed losses
In order to obtain fast rates, i.e., bounds converging to zero faster than 1√

m
, we exploit

the notion of flat minimum (where the loss takes a small value in the neighbourhood
of the minimum). Indeed, in an overparametrised setting such as neural networks, it is
likely to obtain such a minimum once the optimisation phase has been performed, as
there are much more parameters than training data. We exploit this flatness property
within PAC-Bayes bounds through the gradient norm ‖∇h`(., z)‖ of the loss w.r.t. the
predictor h for any z. This is, to the best of our knowledge, the first attempt to do so
as Gat et al. (2022) focus on gradients with respect to the data ∇z` (one does not
optimise on those, as the dataset is fixed in practice).
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In this section, we consider posterior distributions Q being Poinc(cP ). This assumption
covers the important case of Gaussian measures (Proposition 4.2.1) as well as all
measures satisfying a log-Sobolev inequality (Proposition C.1.1). We focus on PAC-
Bayes bound holding for distributions Q satisfying a particular assumption involving the
data distribution D (contrary to many PAC-Bayes bounds holding for all Q). We then
define the error of Q ∈ M(H) for any datum z ∈ Z as Err(`,Q, z) := Eh∼Q[`(h, z)]
and identify Assumption 4.3.1 to later involve flat minima.

Assumption 4.3.1. We say that Q ∈ M(H) is quadratically self-bounded with re-
spect to ` and constant C > 0 (namely QSB(`, C)) if

Ez∼D
[
Err(`,Q, z)2

]
≤ CRD(Q) (= CEz∼D [Err(`,Q, z)]) .

Assumption 4.3.1 is a relaxation of boundedness, as if ` ∈ [0, C] then it is QSB(`, C).
It is an alternative to the bounded expected variance assumption in anytime-valid
PAC-Bayes bounds as in Chapter 2 and (Chugg et al., 2023). An issue with such
boundedness assumption is that it has to hold for all posteriors, including those pro-
viding poor generalisation performances. This is avoided by the QSB assumption which
intricate the properties of D, ` and Q. Such a design is in line with the conclusions
of the recent work of Gastpar et al. (2023), inviting to derive generalisation bounds
valid for specific pairs (Q,D) (and not uniformly valid for all such pairs). Finally, we
interpret C as a contraction constant attenuating, on average, the local expansion
(governed by variances of Q, and D) of the loss around the mean of Q. Exploiting the
PAC-Bayes supermartingales bounds of Chapter 2 and Chugg et al. (2023) alongside
Poincaré inequality leads to the following.

Theorem 4.3.2. For any C > 0, any 2
C
> λ > 0, any data-free prior P, any ` ≥ 0

and any δ ∈ [0, 1], we have, with probability at least 1− δ over the sample S, for
any m > 0, any Q being Poinc(cP ), QSB(`, C) and `(., z) ∈ H1(Q) for all z,

RD(Q) ≤ 1
1− λC

2

(
R̂Sm(Q) + KL(Q,P) + log(1/δ)

λm

)

+ λ

2− λC cP (Q) E
z∼D

[
E
h∼Q

(
‖∇h`(h, z)‖2

)]
.

This theorem shows that, for any posterior being QSB w.r.t. the distribution D, fast
rates are achievable as long as R̂Sm ≈ 0, and expected gradients are vanishing. While
the first condition is often involved for deep neural networks in the overparametrised
setting, the second holds if a flat minimum has been reached through the optimisation
process. Then, taking λ = 1

C
ensures an anytime-valid PAC-Bayesian bound with a
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fast rate of 1
m

. Otherwise, for a fixed m, taking λ = m−α

C
, α ∈

[
0; 1

2

]
allows to adapt

the convergence speed w.r.t. the behaviour of the gradients. In the case of constant
gradients, we recover a convergence rate of 1√

m
, matching Alquier et al. (2016,

Theorem 4.1).
On the role of flat minima in PAC-Bayes learning. Theorem 4.3.2 suggests that,
in order to attain good generalisation ability, the mean of Q has to be close from two
minima: (i) on R̂Sm in order to make R̂Sm small, and (ii) on Ez∼D[‖∇h`(h, z)‖2] to
make the gradients small. The variance of Q has to fit the flatness of those minima,
the flatter they are, the larger the variance in order to shrink the expected terms on
the right-hand-side of Theorem 4.3.2. Finally, the KL term invites, e.g. for Gaussian
distributions, to consider high variances, hence flat minima to maintain a small value
of the bound.
A focus on C. Taking λ = 1

C
in Theorem 4.3.2 attenuates the impact of the prior

distribution and amplifies the gradient term. Then, a small C is desirable when working
with flat minima to attenuate an ill-designed prior. Having a small C is reachable in
practice: we show in Section 4.6, for a classification task on MNIST, that the QSB
assumption is verified with C strictly smaller than 1 when considering neural networks.
High probability bounds with fast rates, a paradox? Grunwald et al. (2021,
page 7) showed that, for a trivial H = {h} ⊂ Rd, for any loss, any i.i.d. dataset Sm
with variance σ2, we have asymptotically, with probability at least α, for a constant Cα
depending on α and N (0, Id), we have RD(h) ≥ R̂Sm(h) + Cα

σ2
√
m

. Is it paradoxical
with Theorem 4.3.2? The answer is no: the bound in Grunwald et al. (2021) gives
an asymptotic lower bound on the convergence of R̂Sm(h) to RD(h). Theorem 4.3.2 in-
forms us on how RD is getting closer from 1

1−λ/2 R̂Sm which converges to 1
1−λ/2RD > RD

as the loss is non-negative. Theorem 4.3.2 then show the existence of a ‘transition
regime’ involving a fast rate. Once 1

1−λ/2 R̂Sm is reached, the clower bound of Grun-
wald et al. (2021) ensures an asymptotic regime with slow convergence rate. Note
that such transition regimes already appeared in the literature in Tolstikhin and
Seldin (2013) and Mhammedi et al. (2019) at the cost of additional variance terms
compared to Theorem 4.3.2. However, such fast rates have never been linked before
to flat minima (and optimisation in general), highlighting the potential of our bound
to explain the ability of deep neural networks to generalise well in the overparametrised
setting (m far smaller than the dimension of H), where flat minima are likely to be
reached, as studied, e.g., in Dziugaite et al. (2020), showing correlations between
flat minima and generalisation for various learning problems.

Proof of Theorem 4.3.2. We start from Chugg et al. (2023, Corollary 17) instan-
tiated with a single λ, i.i.d. data and a prior P. With probability at least 1 − δ,
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for any Q ∈M(H) and m > 0:

RD(Q) ≤ R̂Sm(Q) + KL(Q,P) + log(1/δ)
λm

+ λ

2

(
E
h∼Q

[
Ez∼D[`(h, z)2]

])
,

where z ∼ D is independent of S. We study the last term on the right-hand side.
First, applying Fubini’s theorem gives:

E
h∼Q

[
Ez∼D[`(h, z)2]

]
= Ez∼D

[
E
h∼Q

[`(h, z)2]
]

= E
z∼D

[
Varh∼Q (`(h, z)) +

(
E
h∼Q

[`(h, z)]
)2
]
.

As for any z, `(., z) ∈ H1, we apply Poincaré’s inequality to obtain:

≤ E
z∼D

[
cP (Q) E

h∼Q

(
‖∇h`(h, z)‖2

)
+
(

E
h∼Q

[`(h, z)]
)2
]
.

Using that Q is QSB(`, C) and re-organising the terms gives:

RD(Q) ≤ 1
1− λC

2

(
R̂Sm(Q) + KL(Q,P) + log(1/δ)

λm

)

+ λ

2− λC cP (Q) E
z∼D

[
E
h∼Q

(
‖∇h`(h, z)‖2

)]
.

�

It is possible to go beyond the QSB assumption. This comes at the cost of an upper
bound on RD as well as a supplementary Poincaré assumption on D.

Corollary 4.3.1. For any C > 0, any δ ∈ (0, 1) any 2
C
> λ > 0, any data-free

prior P, any ` ≥ 0 such that, for any z ∈ Z, we have `(., z) ∈ H1 and for any h,
the loss function `(h, .) is C1 almost everywhere on Z. If the data distribution D is
Poinc(cP ), then with probability at least 1− δ over the sample S, for any m > 0,
any posterior Q being Poinc(cP ) with RD(Q) ≤ C:

RD(Q) ≤ 1
1− λC

2

(
R̂Sm(Q) + KL(Q,P) + log(1/δ)

λm

)

+ λ

2− λC

(
cP (Q) E

z∼D

[
E
h∼Q

(
‖∇h`(h, z)‖2

)]
+ cP (D) E

z∼D

(∥∥∥∥ E
h∼Q

[∇z`(h, z)]
∥∥∥∥2
))

.
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Proof is deferred to Section C.3.1. Corollary 4.3.1 states that, if Q reached a flat min-
imum (meaning ‖∇h`‖ is small), and this minimum is robust to the training dataset
(meaning ‖∇z`‖ is small), then a fast rate is attainable while only requiring an upper
bound on RD(Q). This conclusion holds when D Poinc, encompassing the case of
Gaussian mixtures (Schlichting, 2019), which can approximate any smooth density
(as recalled in Gat et al., 2022). However, the Poincaré constant of a general mixture
is not known, and the upper bound of Schlichting (2019) scales with the number
of components, involving potentially high χ2 divergences.

Comparison with Gat et al. (2022). We compare Corollary 4.3.1 with Gat et al.
(2022, Theorems 3.5, 3.6). First, our result holds with the assumption that D follows
a Poincaré inequality, which is strictly less restrictive than assuming a log-Sobolev
inequality (Proposition C.1.1). Second, they assume a bounded loss and their result
holds only for classification problem satisfying a technical assumption on the label
repartition (see their Lemma 3.3) while ours holds for any learning problem at the sole
assumption of a bounded RD(Q), allowing ` to be non-negative. Moreover, note that
to conclude their proof, Gat et al. (2022) had to use a uniform bound on Ez[‖∇z`‖]
in their Theorem 3.5 to have a tractable bound, thus the benefits of gradient norm is
unclear. While they overcome this limitation in Gat et al. (2022, Theorem 3.6), the
explicit influence of the gradient norm appears within an exponential moment on the
losses (attenuated by a logarithm). However, a major limitation is that this exponential
moment is averaged w.r.t. P, being data-free. Thus, the associated gradients have
no apparent reason to be small, and their result cannot be linked to flat minima,
contrary to Corollary 4.3.1 involving expected gradients w.r.t. Q, being the output of
an optimisation process.

4.3.2 Towards fully empirical bound for gradient-Lipschitz
functions.

In this section, we assume the loss ` is such that, for any z ∈ Z, the gradient ∇h`(., z)
is G-Lipschitz, which is often considered for convergence bounds in optimisation. A
large part of high-probability PAC-Bayes bounds are fully empirical: this has numerous
advantages including in-training numerical evaluation of generalisation as well as novel
PAC-Bayesian algorithms, minimising such empirical bounds; see (Dziugaite and
Roy, 2017; Perez-Ortiz et al., 2021b; Viallard et al., 2023b) among others.
However, Theorem 4.3.2 and Corollary 4.3.1 are not fully empirical and thus, do not
have such desirable properties. We circumvent this issue in Theorem 4.3.3.

Theorem 4.3.3. For any C1, C2, c > 0, any data-free prior P, any ` ≥ 0 being C2

and any δ ∈ [0, 1], we have, with probability at least 1− δ over the sample S, for

– 81 –



4.3. Reaching a flat minimum allows Poincaré posteriors generalising well

any m > 0, any Q being Poinc(cP ) with constant c, QSB(`, C1), QSB (‖∇h`‖2, C2)
and `(., z), ‖∇h`‖2(., z) ∈ H1(Q) for all z,

RD(Q) ≤ 2R̂Sm(Q) + 2c
C1

E
h∼Q

[
1
m

m∑
i=1
‖∇h`(h, zi)‖2

]

+ 2
(
C1 + c

4cG2 + C2

C1

)
KL(Q,P) + log(2/δ)

m
.

Proof is deferred to Section C.3.2. Here, we showed that to attain fast rates, the QSB
assumption has to be reached for both the loss and its gradient. This suggests several
things on the flat minimum that has to be reached by Q (designed from R̂S): first,
it needs to be close from a flat minimum of RD to satisfy the QSB assumption. Sec-
ond, this minimum also ensures the contraction of the gradients. We then are able to
derive an empirical generalisation bound, involving both empirical loss and gradients.
Not only Theorem 4.3.3 yields, to our knowledge, the first PAC-Bayesian algorithm
involving gradient terms, but also can be translated to a generalisation metric in order
to understand generalisation. Such an idea has been exploited recently (Neyshabur
et al., 2017; Dziugaite et al., 2020; Jiang et al., 2020). In particular, from R̂S(Q),
Neyshabur et al. (2017) derived a notion of sharpness, stated in Equation (4.1), aim-
ing to be informative on the flatness of the reached minima for any Q = N (µQ, σ2Id).
This notion is defined by

E
ν∼N (0,σ2Id)

[
R̂Sm(µQ + ν)− R̂Sm(µQ)

]
. (4.1)

Theorem 4.3.3 enhance this notion of sharpness by involving the empirical gradients
when Q is QSB(`, C1):

Sharp σ2
C1

(Q) :=

E
ν∼N (0,σ2Id)

[(
2R̂Sm + σ2

C1
G-R̂Sm

)
(µQ + ν)−

(
2R̂Sm + σ2

C1
G-R̂Sm

)
(µQ)

]
, (4.2)

where G-R̂Sm(h) = 1
m

∑m
i=1 ‖∇h`(h, zi)‖2. This gradient term can be seen as an

empirical Fisher information, linked to the second-order moment derivative. Thus,
(4.2) involves a notion of flatness on both the loss and its gradient, contrary to (4.1).
For the sake of clarity, we particularise Theorem 4.3.3 in Corollary 4.3.2 with Gaussian
distributions and this novel notion of sharpness.
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Corollary 4.3.2. For any C1, C2 > 0, any fixed variance σ2 > 0, any data-free prior
P = N (µP, σ

2Id), any nonnegative loss ` being C2 and any δ ∈ [0, 1], we have, with
probability at least 1− δ over the sample S, for any m > 0, any Q = N (µQ, σ

2Id)
being QSB(`, C1), QSB (‖∇h`‖2, C2) and `(., z), ‖∇h`‖2(., z) ∈ H1(Q) for all z,

RD(Q) ≤2R̂Sm(µQ) + G-R̂Sm(µQ) + Sharp σ2
C1

(Q) +O
(

KL(Q,P) + log(2/δ)
m

)
.

4.4 Generalisation ability of Gibbs distributions
with a log-Sobolev prior

One limitation of the results given in Section 4.3 is that the KL divergence term
remains uncontrolled in general as its formulation depends on the nature of P and Q.
A close form exists for Gaussian distributions for instance, but this class of distribution
is limiting. Perpetrating the spirit of Catoni (2007), we go beyond the Gaussian
distributions to focus on the Gibbs posteriors which have naturally appeared in PAC-
Bayes through the use of tools from statistical physics. We show that log-Sobolev
inequalities allow us to control the KL divergence of such distributions w.r.t. their
priors.
Controlling the KL divergence when Q is a Gibbs posterior. Lemma 4.4.1
exploits the fact that the KL divergence can be formulated as an entropy w.r.t. the
prior distribution P. It then shows that the KL divergence of the Gibbs posterior
P−γR̂Sm

w.r.t. P is upper bounded by gradient terms as long as P satisfies a log-
Sobolev inequality.

Lemma 4.4.1. For any m, P being L-Sob(cLS), any ` ≥ 0 such that for any z,
`(., z) ∈ H1(P), we have, for any γ > 0:

KL
(
P−γR̂Sm

,P
)
≤ γ2cLS(P)

4 E
h∼P−γR̂Sm

[
‖∇hR̂Sm(h)‖2

]
.

Proof is deferred to Appendix C.3.3. The crucial message of this lemma is that, a
flat minimum of R̂S allows controlling the KL divergence. This message is new and
independent of Section 4.3 which focus on flat minima reached for RD. Note that
in this case, the KL divergence has an explicit formulation. However it involves to
calculate the exponential moment Eh∼P[exp(−γR̂Sm)] which is costly in practice. On
the contrary, we only need to estimate a second-order moment over P−γR̂Sm

.
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Generalisation ability of Gibbs posteriors. When Gibbs posteriors are involved, KL
divergence is controllable by a gradient term. An ideal way to conclude would be, as in
Section 4.3 to involve Poincaré inequality. However, Gibbs posterior are not necessarily
satisfying a Poincaré inequality as in Section 4.3, we then need to make supplementary
assumptions on the loss.

Theorem 4.4.1. For any C > 0, any γ > 0, any prior P being L-Sob(cLS), any
` ≥ 0 and any δ ∈ [0, 1], we have the following inequalities. If ` ∈ [0, 1], then with
probability at least 1− δ over the sample S, for any m > 0, and any Q ∈M(H):

RD(P−γR̂Sm
)

≤ 2
R̂Sm(P−γR̂Sm

) + γ2cLS(P)
4m E

h∼P−γR̂Sm

[
‖∇hR̂Sm(h)‖2

]
+ log(1/δ)

m

 .
If ` = `1 + `2 with `1 convex, twice differentiable and `2 bounded, assume that
P satisfies the conditions of Proposition 4.2.2. Then for any 2

C
> λ > 0, with

probability at least 1 − δ over the sample S, for any m > 0, such that Q is
QSB(`, C) and `(., z) ∈ H1(P−γR̂Sm

):

RD(P−γR̂Sm
)

≤ 1
1− λC

2

R̂Sm(P−γR̂Sm
) + γ2cLS(P)

4λm E
h∼P−γR̂Sm

[
‖∇hR̂Sm(h)‖2

]
+ log(1/δ)

λm


+ λe4‖`2‖∞cLS(P)

4− 2λC E
z∼D

 E
h∼P−γR̂Sm

(
‖∇h`(h, z)‖2

) .

Proof is deferred to Appendix C.3.4. Note that we could have derived analogous
to Corollary 4.3.1 at the cost of a supplementary Poincaré assumption on D. The
influence of the inverse temperature γ is quadratic: this is the price to pay to fit the
dataset and reduce the influence of the prior. This dependency is therefore attenuated
by a gradient term, small if a flat minimum on the empirical risk has been reached.
This suggests that in the case of Gibbs posteriors with log-Sobolev prior, reaching a
flat minima on R̂Sm controls not only R̂Sm(Q), but also the KL divergence and this
last point is not reachable when considering Poincaré distributions. The other gradient
term comes from Section 4.3 and requires to be close from a flat minimum on RD to
attain fast rates.
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4.5 On the benefits of the gradient norm in
Wasserstein PAC-Bayes learning

In Sections 4.3 and 4.4, we provided various generalisation bounds, benefiting from
flat minima. However, our results involve a KL divergence, implying absolute con-
tinuity of Q w.r.t. P, incompatible with the case of deterministic predictors (Dirac
distributions). To circumvent this issue, a recent line of work emerged, involving in-
tegral probability metrics, with a particular focus on the 1-Wasserstein distance as in
Chapters 5 and 6 and Amit et al. (2022). The idea behind these works is to replace
the change of measure inequality (Csiszár, 1975; Donsker and Varadhan, 1976)
by the Kantorovich-Rubinstein duality (Villani, 2009) to trade a KL for a Wasser-
stein. We go even further here by obtaining the first PAC-Bayesian bound involving
directly a 2-Wasserstein distance (see definition C.1.1), trading Lipschitz assumption
for gradient-Lipschitz one (well-suited for optimisation). To do so, we first derive a
novel change of measure inequality.

Theorem 4.5.1. AssumeH to have a finite diameter D > 0. Then for any function
f : H → R with G-Lipschitz gradients, the following holds: for all distributions
P,Q ∈M(H)2,

Eh∼Q[f(h)] ≤ G

2 W2
2(Q, P ) + Eh∼P[f(h)] +DEh∼Q[‖∇f(h)‖].

Proof is deferred to Appendix C.3.5 Theorem 4.5.1 shows it is possible when gradients
are Lipschitz, to obtain a duality formula involving the gradient of the considered
function at the price of a linear dependency on the diameter of H. Theorem 4.5.1 is
also linked to the change of measure inequality when the prior distribution satisfies a
log-Sobolev inequality.

Corollary 4.5.1. Assume that P is such that dP ∝ exp(−V )dx with V being C2

and P is L-Sob(cLS). Then, for any R > 0, any f with gradients G-Lipschitz on
B(0, R), and any distributions P,Q,

Eh∼Q [f (PR(h))]

≤ GcLS(P)
4 KL(Q,P) + Eh∼P [f (PR(h))] + 2REh∼Q [‖∇f (PR(h))‖] ,

where PR denotes the Euclidean projection on B(0, R).
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Proof is deferred to Appendix C.3.6. Corollary 4.5.1 involves a KL divergence and an
Euclidean predictor space H = Rd. This comes at the cost of approximating Q,P
by PR#Q,PR#P. Thus, R is now an hyperparameter which arbitrates a tradeoff be-
tween the quality of our approximations and the looseness of the bound (if the gradient
norm is large). A notable strength is that the smoothness assumption is relaxed on
smoothness over B(0, R).

From Theorem 4.5.1, we now derive a novel generalisation bound allowing deterministic
predictors.

Theorem 4.5.2. Let δ ∈ (0, 1) and P ∈ M(H) a data-free prior. Assume H has
a finite diameter D > 0, ` ≥ 0 and that for any m, the generalisation gap ∆Sm
is G gradient-Lipschitz. Assume that Eh∼PEz∼D[`(h, z)2] ≤ σ2, then the following
holds with probability at least 1− δ, for any m > 0 and any Q:

RD(Q) ≤ R̂Sm(Q) + G

2 W2
2(Q,P) +

√√√√2σ2 log
(

1
δ

)
m

+DEh∼Q
(∥∥∥∇hRD(h)−∇hR̂Sm(h)

∥∥∥) .

Proof is deferred to Appendix C.3.7. Theorem 4.5.2 is not the first generalisation
bound to involve a 2-Wasserstein distance (Lugosi and Neu, 2022; Lugosi and
Neu, 2023). However, those results involve infinitely smooth loss functions. Also,
results from Amit et al. (2022), Chapters 5 and 6 using 1-Wasserstein can be directly
relaxed on bounds involving the 2-Wasserstein, while still requiring a Lipschitz loss.
On the contrary, our result holds for any nonnegative gradient-Lipschitz ∆Sm , which is
well-suited for optimisation. Theorem 4.5.2 involves a slow rate of 1√

m
as we have to

control the generalisation gap w.r.t. to P. It is possible to make appear the gradients
expected over P using the QSB assumption, but we have no reason to expect those
gradients to be small, we then controlled this term uniformly by σ2. Another restriction
of our result compared to previous ones is that it holds for H having a finite diameter,
however, having a small expected ‖∇hRD −∇hR̂Sm‖ over Q (which is the case when
flat minima on both empirical and true risks are reached) allows taking D large, and
thus, having good approximations of measures on a Euclidean space through orthogonal
projections as in Corollary 4.5.1.
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4.6 An empirical study of Assumption 4.3.1 for
neural networks

In this section, we check empirically whether the QSB assumption is verified for neural
networks. This allows us to verify if Theorem 4.3.2 is useful to understand the gener-
alisation ability of neural nets.

Experimental protocol. We consider classification tasks on two datasets: MNIST (Le-
Cun, 1998) and FashionMNIST (Xiao et al., 2017). We kept the original training set
Sm and the original test set denoted by Tn (of size n). We consider the convolutional
neural network of Springenberg et al. (2015) adapted for MNIST and FashionM-
NIST. The model is composed of 4 layers containing 10 channels with a 5×5-kernel; we
set the stride and the padding to 1, except for the second layer, where it is fixed to 2.
Each of these (convolutional) layers is followed by a Leaky ReLU activation function.
Moreover, an average pooling with a 8×8-kernel is performed before the Softmax acti-
vation function. To initialise the weights of the network, we use Glorot and Bengio
(2010) uniform initializer, while the biases are initialised in [− 1√

250 ,+
1

1/
√

250 ] uniformly
(except the first layer, the interval is [−1

5 ,+
1
5 ]). Hence, in this case, H is the set of

neural networks with a fixed architecture, and parametrised with a vector w. While the
posterior distribution Q is a Gaussian measure N (w, σ2Id) centered on the parameters
w associated with the model; σ is set to 10−4. Note that this distribution respects
the Poinc(cP ) assumption; see Section 4.3.1. We train the neural network with the
(vanilla) stochastic gradient descent algorithm, where the batch size is equal to 512,
and the learning rate is fixed to 10−2. We train for at least 104 gradient steps and
finish the current epoch when this number of iterations is reached. Our loss ` is the
bounded cross-entropy loss of Dziugaite and Roy (2017, Section D).
In Figure 4.1, we report the evolution of three quantities: (i) the estimated value of
C, (ii) the test risk R̂Tn(Q) and (iii) the test risk with the 01-loss. More precisely,
for computational reasons, the risks and C are estimated by sampling one hypothesis
h ∼ Q and by computing the values on a mini-batch of Tn (with 512 examples) at
each iteration. Then, Figure 4.1 represents averaged values on 5 runs, each point of
the curve representing the average on 100 iterations of the training process (for 104

iterations we only plot 102 averaged points for clarity).

Empirical findings. Figure 4.1 illustrates that, when neural networks are involved for
two classification tasks, Q evolves during the optimisation process while maintaining
the QSB property with constant C < 1. For both MNIST and FashionMNIST, the
constant C decreases from approximately 0.55 to 0.45. We deduce two things from
this: (i) the learning phase, while optimising R̂Sm also gain in generalisation ability,
shrinking the averaged loss on new data which is translated by a smaller C; and (ii),
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Figure 4.1. Evolution of the test risks (with the 01-loss and the bounded cross-
entropy loss) and the value of C during the training phase.

having a data-free P (0 iteration) being QSB with C < 1 suggests that the architecture
of our neural network also has an influence on the QSB assumption. As precised in
Section 4.3, having C < 1 attenuates the impact of the KL term, thus P. This is
desirable as it allows the optimiser to deeply explore the predictor space when P yields
poor performances. We also note that the generalisation ability of Q on the training
loss nearly matches the performance on the 0-1 loss for MNIST but is deteriorated
for FashionMNIST, this invites to study more deeply the design of such surrogates in
future work.
Finally, the take-home message of this study is that the QSB assumption is verified for
neural networks on MNIST. Such an empirical confirmation is crucial as it is required for
our main result (Theorem 4.3.2) and thus confirms that, for neural networks, reaching
flat minima during the optimisation phase translates in increased generalisation ability.

4.7 Conclusion
This chapter showed that it is possible to exploit the benefits of a successful op-
timisation process to obtain faster rates, making a promising step forward a better
understanding of deep neural networks, whose generalisation ability correlates well to
flat minima. However, while we exploited potential benefits of optimisation process, we
still do not know whether an optimisation algorithm will reach a flat minima. This is
somewhat unconsistent as optimisation processes are often supported by deterministic
convergence guarantees. To fill this gap we show in Chapter 5 that it is possible to
incorporate directly optimisation guarantees onto PAC-Bayes bounds.
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This chapter is based on the following papers
Maxime Haddouche and Benjamin Guedj. Wasserstein PAC-Bayes Learning:
Exploiting Optimisation Guarantees to Explain Generalisation. (2023)
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Abstract

To make PAC-Bayes consistent with practical optimisation which often considers
deterministic predictors, we need to consider PAC-Bayes learning beyond the KL
divergence term which has been a cornerstone of PAC-Bayes since its emergence.
In this chapter, we develop PAC-Bayes learning with Wasserstein distances,
allowing to trade statistical assumptions for geometric ones. We also develop an
explicit bridge with optimisation by incorporating the convergence guarantees of
the Bures-Wasserstein SGD into a generalisation bound. This is possible when
considering the prior distribution as the learning objective.
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5.1 Introduction and state-of-the-art results
In Chapters 2 to 4, we challenged many information-theoretic visions of PAC-Bayes
(Figure 1.1) by limiting statistical assumptions, attenuating the impact of the prior
seen as initialisation in both batch and online settings. However, we always involved
a KL divergence term as a complexity measure of the predictor space, and this term
is strongly linked to information theory. Indeed, a KL divergence focuses on posteriors
being absolutely continuous w.r.t. the prior, meaning that it is possible to transfer in-
formation to posteriors with similar shape to the prior (and thus a finite KL divergence).
While this vision makes perfectly sense from an information theoretic perspective, it
is harder to justify such a condition from an optimisation stance. Indeed, Dirac prior
and posterior (i.e. deterministic predictors) are often considered in practice and this
makes the KL infinite. Furthermore, KL divergence suffers from limitations as it does
not satisfy classical properties such as the triangle inequality or even symmetry: it is
challenging to exploit geometric properties of the measure space and the loss function
through it. Then we might ask whether it is possible to maintain the flexibility of
PAC-Bayes by involving another complexity measure, more compatible with optimisa-
tion. In this chapter we will develop PAC-Bayes learning theory based on Wasserstein
distances, issued from optimal transport and compatible with such considerations.

PAC-Bayes learning with Wasserstein distances. A recent line of work led by
Amit et al. (2022) investigates PAC-Bayes generalisation bounds with a Wasserstein
distance rather than the KL. This idea has been simultaneously developed by Ohana et
al. (2023) for sliced adaptive Wasserstein distances. Also the recent work of Mbacke
et al. (2023) provides PAC-Bayesian bounds for adversarial generative models where
the quantity of interest is a Wasserstein distance (although the complexity measure
remains a KL divergence).
In the present chapter, we propose a major development of the emerging Wasserstein
PAC-Bayes (WPB) theory. Amit et al. (2022) provided the first high-probability WPB
bounds with explicit convergence rates (for bounded losses) only for finite predictor
classes or for linear regression problems. We extend those results to a broader frame-
work including uncountable predictor classes and unbounded losses. We first propose
a novel WPB bound valid on any compact for bounded lipschitz losses. From this, we
demonstrate that the WPB framework allows to bypass both the compactness assump-
tion on the predictor class and the bounded loss assumption: Wasserstein PAC-Bayes
only requires Lipschitz or smooth functions to be used. We obtain explicit bounds for
the case of prior and posterior distributions taken within a compact space of Gaus-
sian measures. We also extend those results to the case of data-dependent priors,
which is of interest when one compares the output of an algorithmic procedure to its
minimisation objective.
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As Wasserstein distance recently appeared as complexity measure in expected gener-
alisation bounds (see e.g. Rodriguez-Galvez et al., 2021), the high-probability
Wasserstein PAC-Bayes bounds presented here investigate deeper this lead. We also
go a step further by showing that Wasserstein PAC-Bayes allows to reap the bene-
fits of optimisation guarantees within generalisation. To the best of our knowledge,
no previous PAC-Bayes bound has achieved this goal. More precisely, we focus on the
Bures-Wasserstein SGD (Altschuler et al., 2021; Lambert et al., 2022) and show
that the output of this algorithm, with enough data, after enough optimisation steps,
is able to generalise well, independently of the quality of the initialisation point. The
take-home message is that if an optimisation method has convergence guarantees with
respect to a Wasserstein distance, then WPB theory allow us to determine, before any
training, whether the algorithmic output will generalise well.

Outline. The reminder of this chapter is structured as follows: we state in Sec-
tion 5.1.1 the framework and notation. In Section 5.1.2, we describe how current
PAC-Bayes procedures are designed and how their efficiency is evaluated, and we dis-
cuss current limitations. In Section 5.1.3, we describe our main contributions, showing
how we establish a WPB theory (using techniques which differ from those in Amit
et al., 2022) in order to exploit the optimisation results of Lambert et al. (2022).
Section 5.2 gathers results for compact predictor spaces, Section 5.3 gives WPB bounds
for Gaussian prior and posterior, Section 5.4 contains a WPB bound with a data-
dependent prior for unbounded Lipschitz losses. Section 5.5 establishes a link between
optimisation and generalisation by exploiting the results of Lambert et al. (2022) to
establish new generalisation guarantees for the Bures-Wasserstein SGD. We defer to
Appendix D.1 additional background notes and to Appendix D.2 proofs which are not
essential to the understanding of our contributions.

5.1.1 Framework
Learning theory framework. We consider a learning problem specified by a tuple
(H,Z, `) of a set H of predictors, a data space Z, and a loss function ` : H×Z → R.
We consider a finite dataset Sm = (zi)i∈{1..m} ∈ Zm and assume that sequence is i.i.d.
following the distribution D. We always assume that H ⊆ Rd, we denote by ΣH the
associated Borel σ-algebra and we denote by ||.|| the classical Euclidean norm. We
denote by M(H) the set of probability measures on H. We denote by P1(H) (resp.
P2(H)) the subspace of M(H) of with finite order 1 (resp. order 2) moments w.r.t.
||.||.

Definitions. The generalisation error RD of any predictor h ∈ H is RD(h) =
Ez∼D[`(h, z)], the empirical error of h is R̂Sm(h) = 1

m

∑m
i=1 `(h, zi). The generalisation
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gap of any h is the quantity ∆Sm(h) = RD(h) − R̂Sm(h) and, for any Q ∈ M(H),
∆Sm(Q) = Eh∼Q[∆Sm(h)]. In what follows, we let B(x, r) (resp. B̄(x, r)) denote
the ball (resp. closed ball) centered in x ∈ Rd of radius r. We define the Gibbs
posterior associated to the prior P ∈ M(H) as the measure P−λR̂Sm

such that
dP−λR̂Sm

∝ exp(−λR̂Sm(.))dP(.).
We denote by BW(Rd) ⊂ P2(Rd) the set of non-degenerate Gaussian distributions,
also known as the Bures-Wasserstein space. For a measurable function T : Rd →
Rd, and a measure P ∈ P1(Rd) we let T#P denote the measure such that for any
B ∈ ΣRd , T#P(B) = P(T−1(B)). For any R > 0, we denote by PR the projection
over B̄(0Rd , R). Finally, as we consider compact sets of BW(Rd), we define for any
0 ≤ α ≤ β,M ≥ 0 the set

Cα,β,M :=
{
N (m,Σ) ∈ BW(Rd) | ||m|| ≤M, αId � Σ � βId

}
.

5.1.2 PAC-Bayes and optimisation: limits and caveats
Optimisation in PAC-Bayes. PAC-Bayesian generalisation bounds are meant to
control how well measures derived from a learning algorithm perform on novel data.
Those bounds involves a complexity term which is typically a Kullback Leibler (KL)
divergence. A prototypic bound is as follows: with probability 1 − δ, for all measure
Q,

∆Sm(Q) ≤
√

COMP(Q)
m

,

where COMP is a complexity term involving a data-free prior P and an approximation
term 1 − δ. From an optimisation perspective, this upper bound can be seen as
a learning objective, where COMP acts as a regulariser to avoid overfitting on the
empirical risk:

Q∗ := argmin
Q∈M(H)

R̂Sm(Q) +
√

COMP(Q)
m

.

Such algorithms are build to ensure a candidate measure with a good generalisation
ability. However the convergence of the optimisation process remains unclear: as√

COMP is not necessarily convex in Q, it is unclear whether an optimisation procedure
on the previous learning objective will lead to Q̂ (or a good approximation of it). A
good introductory example is to optimise the PAC-Bayesian learning objective for the
following complexity term, holding for a loss ` being in [0, 1]:√

COMP(Q)
m

:= KL(Q,P)
λ

+ λ

2m,
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with λ being usually fine-tuned over a countable grid. This objective, linear in the KL
divergence term is optimised by the Gibbs posterior:

dQ∗(h) ∝ exp(−λR̂Sm(h))dP(h).

This distribution, while being known analytically, may be hard to compute in practice.
A class of methods dedicated to compute or approximate this posterior distribution are
the Markov Chain Monte Carlo (MCMC) methods that rely on carefully constructed
Markov chains which (approximately) converge to Q∗. However, MCMC methods can
be computationally costly and other methods were studied to obtain quickly surrogates
of Q∗. In particular, Variational Inference (VI) has been developed as a time-efficient
solution. VI algorithms aims to estimate a surrogate Q̂ of Q∗, often chosen within
a parametric class of measures such as Gaussian measures. For instance, in order to
approximate Q∗ it is natural to consider the following surrogate:

Q̂ = argmin
Q∈C

KL(Q,Q∗),

where C is a subset of M(H). When C is the set of Gaussian measures (also known
as the Bures-Wasserstein manifold), the convergence of the associated VI algorithm
has been studied (Altschuler et al., 2021; Lambert et al., 2022). This candidate
Q̂ is approximated after N optimisation steps by a measure Q̂N and is then used in
McAllester’s bound to assess its efficiency:

∆Sm(Q̂N) ≤

√√√√KL(Q̂N ,P) + log(m/δ)
2m . (5.1)

Role of the prior P. From an optimisation perspective, the conclusion of (5.1) is
that if Q̂N is a good approximation of Q̂ and if the initialisation P is well-chosen, then
the generalisation ability Q̂ is guaranteed to be high. Assuming such a condition on P
may be unrealistic. Furthermore the term KL(Q̂N ,P) acts as a blackbox as we do not
have a theoretical control on how far Q̂ and Q̂N diverge from the prior. In particular if
the prior is ill-chosen, then we could have KL(Q̂N ,P) = O(m), making (5.1) vacuous.

Data-dependent priors are not enough to explain the generalisation gain
through optimisation. As shown above, in order to have a sound theoretical control
on the generalisation ability of the algorithmic output Q̂N , it is irrelevant to compare
it to the initialisation P. Thus, it is legitimate to wonder if the existing PAC-Bayesian
techniques using data-dependent priors are enough to fill this gap. To do so, we identify
two strategies.
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1. Taking Q∗ as a ’prior’ distribution (as advised by Dziugaite and Roy, 2017)
is, at first sight, a convincing answer. However, the use of KL divergence is
problematic. Indeed, we cannot make Q̂ appear easily in Equation (5.1) which
is the relevant point of interest. Furthermore, to our knowledge, there is no VI
algorithm which guarantees that KL(Q̂N ,Q∗) is decreasing.

2. The prior is obtained from an algorithmic method on a fraction of training data.
Then, such a bound does not inform us whether the considered optimisation
method has been able to reach an optimum during the training phase: similarly
to a test bound, it mainly assesses the post-training efficiency of the output of
the learning algorithm. A relevant example is Table 3 of Perez-Ortiz et al.
(2021a) which considers data-dependent priors obtained through SGD. Then as
the performance of the prior and the posterior is roughly similar, it is hard to
determine whether the associated theoretical guarantee is more meaningful than
a test bound as the prior measure could have already converged near a local
optimum.

A strategy to replace (5.1). In order to assess whether the output of a learning
algorithm enjoys high generalisation, a PAC-Bayes bound should satisfy the following
generic form:

∆Sm(Q̂N) ≤

√√√√f(N) D(P, Q̂) + ε+ log(m/δ)
2m , (5.2)

where f is a function decreasing to 0 as N goes to infinity, which comes from the opti-
misation procedure, D is the way to measure the discrepancy between P, Q̂ (classically
it would be the KL divergence) and ε is a residual term which could contain for instance
the discrepancy KL(Q∗, Q̂) between the approximation and the true minimiser. Such
a guarantee would give theoretical evidence that the generalisation ability of Q̂N is
independent of the choice of the initialisation point P and tends to O

(√
ε+log(m/δ)

m

)
.

To the best of our knowledge, there is no work proposing an optimisation procedure
such that KL(Q̂N , Q̂) ≤ f(N) KL(P, Q̂). This lack is unfortunate but not surprising
as the KL divergence is not a distance: it is not easy to incorporate optimisation
guarantees, often based on geometric properties of the loss, into the KL divergence.

Our aims in this chapter. A legitimate question is then: is it possible to extend the
PAC-Bayes theory beyond the KL divergence in order to explain before training, with
a bound of the form of (5.2), whether the output of optimisation procedure have high
generalisation ability? We structure the present chapter to provide a positive answer
to this question. More precisely we develop a WPB bound of the form of (5.2) for the
output of the Bures-Wasserstein SGD (Lambert et al., 2022).
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5.1.3 Summary of our contributions
To make PAC-Bayes learning useful to explain the generalisation ability of minimis-
ers reached by optimisation algorithms, we develop theoretical results built around
Wasserstein distances whose definitions are recalled below.

Definition 5.1.1. The 1-Wasserstein distance between P,Q ∈ P1(H) is defined
as

W1(Q,P) = inf
π∈Π(Q,P)

∫
H2
||x− y||dπ(x, y),

where Π(Q,P) denote the set of probability measures on H2 whose marginals are
Q and P. We define the 2-Wasserstein distance on P2(H) as

W2(Q,P) =
√

inf
π∈Π(Q,P)

∫
H2
||x− y||2dπ(x, y).

Amit et al. (2022) provided a preliminary WPB bound, being explicit for the case of
finite predictor classes and linear regression problems. To do so, they exploited the
Kantorovich-Rubinstein duality (see, e.g., Remark 6.5 in Villani, 2009) of the 1-
Wasserstein distance. We exploit another duality formula (Theorem 5.10 in Villani,
2009) valid for any cost function (in the framework of optimal transport). This leads
to a WPB bound valid for uniformly Lipschitz loss functions.

Definition 5.1.2. We say that a function ` : H×Z → R is uniformly K-Lipschitz
if for any z ∈ Z, `(., z) is K-Lipschtiz. We also say that a function is uniformly
L-smooth (or simply smooth) if for any z ∈ Z, its gradient ∇`(., z) is L-Lipschitz.

A WPB bound for compact predictor classes. We first extend the PAC-Bayes
framework to the case where the discrepancy between measures is expressed through
the 1-Wasserstein distance. It is stated as follows: for uniformly K-lipschitz functions
bounded in [0, 1] with H ⊆ BR := B̄(0Rd , R), we have for any prior P ∈ M(H), with
probability at least 1− δ, for any posterior distribution Q ∈M(H)

|∆Sm(Q)| ≤ O


√√√√2K(2K + 1)

2d log
(
31+2Rm

δ

)
m

(1 + W1(Q,P)) +
log

(
m
δ

)
m

 .
This bound extends the WPB bound of Amit et al. (2022) to the case of a compact
space of predictors. The proof technique exploits covering number arguments to prove
the Lipschitzness (with high probability) of a relevant functional. The duality theorem
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of Villani (2009, Theorem 5.10) allows us to generate a local change of measure
inequality (see, e.g., Donsker and Varadhan, 1976) required to use PAC-Bayes
learning. This bound is stated in Theorem 5.2.2 and further discussed in Section 5.2.
However, this result does not cover the celebrated case of PAC-Bayes with Gaussian
priors and posteriors. We then develop the next result to address this important case.

WPB bounds with Gaussians measures for unbounded losses. Through the
calculus of the residuals of Euler’s Gamma function we obtain in Theorem 5.3.1, stated
in Section 5.3, the following result when H = Rd, for loss functions lying in [0, 1] being
uniformly K-lipschitz: for any gaussian prior P in a compact Cα,β,M ⊆ BW(Rd), with
probability at least 1− δ, for any posterior distribution Q ∈ C,

|∆Sm(Q)|

≤ O


√√√√√2K(2K + 1)

2d log
(
31+2Rm

δ

)
m

1 +
√
d

m
+ W1(Q,P)

+
log

(
m
δ

)
m

 ,
where R = O(max

√
d log(d),

√
log(m)). This shows that, using R as an hyperpa-

rameter, we are able to maintain nearly the same convergence rate than Theorem 5.2.2
at the cost of an extra factor of

√
log(dm). Interestingly, we are able to remove in

Corollary 5.3.1 the boundedness assumption to obtain a WPB bound, valid for un-
bounded uniformly K-lipschitz function with an additional boundedness assumption
on supz `(0, z). This bound is more sensitive to the dimension of the problem when
few data points are available. However, the asymptotic dependency remains (nearly)
unchanged, at the cost of an extra polynomial factor in log(dm):

|∆Sm(Q)| ≤ Õ


√√√√2K d

m
(1 + W1(Q,P)) + (1 +K2 log(m))

log
(
m
δ

)
m

 . (5.3)

Õ hides a polynomial dependency in (log(d), log(m)). This result is further discussed
ion Section 5.3. The underlying proof technique is general enough to deal with (possibly
unbounded) convex smooth loss functions. More details are gathered in Theorem 5.3.2
and Cor. 5.3.2.

A WPB bound with data-dependent prior. As we aim to intricate optimisation
guarantees with generalisation bounds, we have to overcome the Bayesian paradigm
of data-free priors which sets the prior distribution as a comparison point. Here, it is
necessary to compare the candidate posterior with the optimisation goal. To do so,
we elaborate in Section 5.4 on the idea of Dziugaite and Roy (2018b) who exploit
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differential privacy to obtain PAC-Bayesian bounds allowing to take data-dependent
priors. We show that it is possible to maintain the asymptotic convergence rate of
Corollary 5.3.1 when taking as ’prior’ a Gibbs posterior. We introduce the following
theorem holding again when H = Rd. For any gaussian prior P living in Cα,β,M , with
probability at least 1 − δ, for any posterior distribution Q ∈ Cα,β,M , we have the
following asymptotic convergence rate

|∆Sm(Q)| ≤ Õ


√√√√2K d

m

(
1 + W1(Q,P− λ

2K R̂Sm
)
)

+ (1 +K2 log(m))
log

(
m
δ

)
m

 .
We also study non-asymptotic regimes in Theorem 5.4.1. While Dziugaite and
Roy (2018b) exploited differential privacy results for the Gibbs posterior when the loss
function is bounded, we successfully extended these results to (possibly unbounded)
uniformly Lipschitz losses. This is not specific to the WPB framework and may be of
independent interest.

PAC-Bayes provides generalisation guarantees for the Bures-Wasserstein SGD.
While working on WPB theory, we notice a shift from classical assumptions due to the
KL divergence. Indeed, statistical assumptions (such as subgaussiannity, bounded vari-
ances) are transformed into geometric assumptions such as Lipschitzness and convex
smoothness when Wasserstein distances are involved. We exploit in Section 5.5 WPB
theory to provide generalisation guarantees for the Bures-Wasserstein SGD (recalled in
Algorithm 2) which approximates the best Gaussian surrogate Q̂ of Q∗ := P− λ

2K R̂Sm
(in the sense of the KL divergence, see Section 5.5 for more details). More pre-
cisely, we show that the KL divergence and Wasserstein distances are linked within the
WPB framework: the (KL-based) PAC-Bayesian learning objective of Catoni (2007),
which outputs the Gibbs posterior Q∗, can be approximated by Q̂N , the output of
the Bures-Wasserstein SGD after N optimisation steps, which is provably close from
Q̂ with respect to the 2-Wasserstein distance (see Theorem 5.5.1). Within the WPB
framework, this link is translated in Theorem 5.5.2 as a generalisation bound ensuring
that asymptotically, the minima reached by the Bures-Wasserstein SGD has a strong
generalisation ability.

Concretely, for N large enough, for uniformly K-lipschitz, convex, smooth loss func-
tions we have the following asymptotic guarantee with probability 1− δ:

|∆Sm(Q̂N)| ≤ Õ


√√√√2K d

m

(
1 + W1(Q̂,Q∗)

)
+ (1 +K2 log(m))

log
(
m
δ

)
m

 .
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Thus, the WPB framework is enough to provide an explicit convergence rate for the
generalisation gap avoiding the comparison to an arbitrary prior. Instead, this bound
shows that a (long enough) run of the Bures-Wasserstein SGD with enough data (or a
Lipschitz constant small enough) leads to a minimiser with a high generalisation ability.
Furthermore, Theorem 5.5.2 is a reformulation of (5.12) which is, to our knowledge,
the first PAC-Bayesian bound of the form (5.2) with D =

√
dW2 and

ε = O(
√
dW1(Q̂,Q∗)).

This provides elements of answer to the question listed in Section 5.1.2 and concludes
this work.

Discussion about the assumptions For the sake of clarity, we provide in Fig-
ure 5.1.3 the topography of our main results. We focus on the assumptions required
to state each of the results and doing so, we aim to give to the reader a broader vision
of when can these bounds be applied. We stress that the Lipschitzness assumption is
at the core of all results, except Theorem 5.3.2 and Cor. 5.3.2. Convexity is required
to use differential privacy and to obtain Theorem 5.4.1. Finally, we note that while the
results of Lambert et al. (2022) are usable with only smoothness and convexity, we
must add the uniform Lipschitz assumption to obtain Theorem 5.5.2. The question of
whether all these assumptions are minimal to perform WPB remains open.

5.2 PAC-Bayesian bounds for compact predictor
spaces

Here we establish WPB bounds for bounded losses when the predictor space is a
compact of Rd. To intricate the 1-Wasserstein distance within the PAC-Bayes proof,
we design a surrogate of the change of measure inequality (Donsker and Varadhan,
1976) by exploiting the uniform Lipschitz assumption on the loss. To do so we need
to exploit the notion of covering number recalled below as well as Kantorovich duality
(Villani, 2009, Theorem 5.10). This notion of duality holds for any cost function
(in an optimal transport framework) contrary to the Kantorovich-Rubinstein duality
exploited by Amit et al. (2022) which only holds when the cost function is a distance.
This result is recalled in Appendix D.1.1.

Definition 5.2.1 (Covering number). Let H ⊆ Rd. An ε-covering of H is a subset
C of H such that H ⊆ ∪x∈CB̄(x, ε). The ε-covering number of H is defined as

N(H, ε) := min{n ≥ 1 | ∃ an ε-covering of H of size n}.
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Figure 5.1. An overwiew of the assumptions required to obtain the main results.
Assumptions are stated in blue, main results are in pink boxes and the proof technique
exploited to obtain such results are within grey boxes.

We also define the ε, 1-Wasserstein to be Wε(Q,P) = ε + W1(Q,P). This cost
function is essential to the analysis. We now state the main results of this section.
Additional background is gathered in Appendix D.1.1.

5.2.1 A Catoni-type bound
We propose here a WPB bound analogous to a relaxation of Catoni (2007, Theorem
1.2.6) stated for instance in Alquier et al. (2016, Theorem 4.1).
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Theorem 5.2.1. For any ε, δ > 0, assume that ` ∈ [0, 1] is uniformly K-Lipschitz
and that H is a compact of Rd bounded by R > 0. Let P ∈ P1(H) be a (data-free)
prior distribution and assume we choose a parameter λ such that

0 < λ ≤ 1
K

√√√√ 2m
2d log(1 + 2R

ε
) + log(2

δ
)

:= λmax.

Then, with probability 1− δ , for any posterior distribution Q ∈ P1(K),

∆Sm(Q) ≤ 4Kε+ W1(Q,P) + 2ε+ log(2/δ)
λ

+ λ

2m.

Note that we assumed the loss to be bounded, although this can be relaxed to sub-
gaussiannity at no cost. In Theorem 5.2.1, the range of λ is restricted and the loss
required to be uniformly Lipschitz. Such restrictions do not exist in Alquier et al.
(2016, Theorem 4.1) which recovers a similar result with a KL divergence coming from
the change of measure inequality (Donsker and Varadhan, 1976). In WPB this
is required to have a control on ∆S which is exploited in Kantorovich duality (Theo-
rem D.1.1). Furthermore, assuming Lipschitzness on a compact space is not restrictive
as it covers, e.g., all C1 functions. Note that the smaller the Lipschitz constant K is,
the larger λmax. This is not surprising as, from an optimisation point of view, λ acts as
a learning rate which determines the influence of data with respect to the regulariser
W1(Q,P). A small K says that huge variations between data have a small influence
on the loss value, then we can give more influence to the training set without deteri-
orating much the generalisation ability of the posterior. This bound also says that it
is legitimate to consider a WPB learning objective analogous to the one derived from
Alquier et al. (2016, Theorem 4.1) (which yields Gibbs posteriors):

argminQ∈P1(H)
W1(Q,P)

λ
+ λ

2m.

Theorem 5.2.1’s proof is stated below and mixes up several arguments from optimal
transport with PAC-Bayes learning through covering numbers.

Proof of Theorem 5.2.1 Step 1: define a good data-dependent function. We
define, for any sample Sm and predictor h ∈ H,

fSm(h) = λ∆Sm(h).

This function satisfies the following lemma:
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Lemma 5.2.1. Let ε > 0 assume that 0 < λ ≤ 1
K

√
2m

log
(
N(H,ε)2

δ

) . We have, with

probability 1− δ for all h, h′ ∈ H, for any P:

fSm(h)− fSm(h′) ≤ 2(1 + 2λK)ε+ ||h− h′||.

Proof of Lemma 5.2.1. We rename here N := N(H, ε). There exists an ε-covering
C := {h1, ..., hN} of H of size N . Then for any h, h′ ∈ C2, we have:

fSm(h)− fSm(h′) = λ

m

m∑
i=1

E[`(h, z)− `(h′z)]− (`(h, zi)− `(h′, zi)) .

We know that for any h, h′, z, |`(h, z) − `(h′, z)| ≤ K||h − h′||. Then, applying
Hoeffding’s inequality for all pairs h, h′ ∈ C2 and performing an union bound gives
that with probability at least 1− δ, for all pairs (h, h′) ∈ C2 :

fSm(h)− fSm(h′) ≤

√√√√ log
(
N2

δ

)
2m λK||h− h′||.

So for any h, h′ ∈ H2 there exists h0, h
′
0 ∈ C2 such that ||h − h0|| ≤ ε and

||h′ − h′0|| ≤ ε. Thus, we have

fSm(h)− fSm(h′) = fSm(h)− fSm(h0) + fSm(h0)− f(h′0) + fSm(h′0)− fSm(h′)

≤ 2λK (||h− h0||+ ||h′ − h′0||) +

√√√√ log
(
N2

δ

)
2m λK||h0 − h′0||

≤ 4λKε+

√√√√ log
(
N2

δ

)
2m λK||h0 − h′0||.

By the triangle inequality, ||h0 − h′0|| ≤ ||h − h′|| + 2ε so we finally have with
probability at least 1− δ, for any h, h′ ∈ K2:

fSm(h)− fSm(h′) ≤ 4λKε+

√√√√ log
(
N2

δ

)
2m λK (2ε+ ||h− h′||) .

Using λ ≤ 1
K

√
2m

log
(
N2
δ

) and upper bounding concludes the proof. �

Step 2: A probabilistic change of measure inequality for fSm . We do not have for
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the Wasserstein distance such a powerful tool than the change of measure inequality.
However, we can generate a probabilistic surrogate on P1(H) valid for the function
fSm .

Lemma 5.2.2. For any ε > 0, any δ > 0, any

0 < λ ≤ 1
K

√√√√ 2m
log

(
N(H,ε)2

δ

) ,
we have with probability 1− δ over the sample Sm, for any P ∈ P1(K)(

sup
Q∈P1(K)

Eh∼Q[fSm(h)]− 2(1 + λK)ε−W1(Q,P)
)
≤ Eh∼P[fSm(h)].

Proof of Lemma 5.2.2. Firstly, we introduce the cost function cε(x, y) = ε+ ||x−
y||. From this we notice that we can rewrite the ε, 1- Wasserstein distance:

Wε(Q,P) = inf
π∈Π(Q,P)

∫
H2
cε(x, y)dπ(x, y).

Remark that because W1 is a distance, then Wε is symmetric. Furthermore, if we
fix X = Y = H and we notice that cε ≥ 0, then the condition for Kantorovich
duality is satisfied. Thus, we apply Theorem D.1.1 as follows: for all Q,P ∈ P1(H):

Wε(Q,P) = Wε(P,Q) = min
π∈Π(P,Q)

∫
K2
cε(h1, h2)dπ(h1, h2)

= sup
(ψ,φ)∈L1(Q)×L1(P)

ψ−φ≤cε

[∫
K
ψ(h)dQ(h)−

∫
K
φ(h)dP(h)

]

= sup
(ψ,φ)∈L1(Q)×L1(P)

ψ−φ≤cε

[Eh∼Q[ψ(h)]− Eh∼P[φ(h)]] .

A crucial point is that for a well-chosen λ with high probability, the pair (fSm , fSm)
satisfies the condition stated under the last supremum. It is formalised in the
following lemma.
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Lemma 5.2.3. For any ε > 0 any δ > 0, any 0 < λ ≤ 1
K

√
2m

log
(
N(H,ε)2

δ

) , we

have with probability at least 1− δ over the sample Sm that, for all measures
Q,P ∈ P1(H)2:

• fSm ∈ L1(Q), L1(P),

• for all h, h′ ∈ H2, fSm(h)−fSm(h′) ≤ cε′(h, h′) with ε′ := 2(1 + 2λK)ε.

Thus, Kantorovich duality (Theorem D.1.1) gives:(
sup

Q∈P1(H)
Eh∼Q[fSm(h)]−Wε′(Q,P)

)
≤ Eh∼P[fSm(h)],

and using Wε′ = ε′ + W1 and the definition of ε′ concludes the proof.

Proof Proof of Lemma 5.2.3. Because the space of predictors H is compact
and that for any z ∈ Z, the loss function `(., z) is K-Lipschitz on H, then
both the generalisation and empirical risk are continuous on H. Thus |fSm |
is also continuous and, by compacity, reaches its maximum MS on H. Thus
for any probability P on H,Eh∼P[|fSm(h)|] ≤ MS < +∞ almost surely. This
proves the first statement. We notice that the second statement, given the
choice of λ, is the exact conclusion of Lemma 5.2.1 with probability at least
1− δ. So with probability at least 1− δ, Kantorovich duality gives us that for
any P,Q with ε′ = 2(1 + λK)ε,

Eh∼Q[fSm(h)]− Eh∼P[fSm(h)] ≤Wε′(Q,P).

Re-organising the terms and taking the supremum over Q concludes the proof.
�

This concludes the proof of Lemma 5.2.2. �

Step 3: The PAC-Bayes route of proof for the 1-Wasserstein distance.
We start by exploiting Lemma 5.2.2: for any prior P ∈ P1(K), for

0 < λ ≤ 1
K

√√√√ 2m
log

(
2N(K,ε)2

δ

) ,
with probability at least 1− δ/2 we have(

sup
Q∈P1(K)

Eh∼Q[fSm(h)]− (2(1 + 2λK)ε−W1(Q,P)
)
≤ Eh∼P[fSm(h)].
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We then notice that by Jensen’s inequality,

Eh∼P[fSm(h)] ≤ log (Eh∼P[exp(fSm(h))]) .

Then, by Markov’s inequality we have with probability 1− δ/2

Eh∼P[fSm(h)] ≤ log
(2
δ

)
+ log (ESEh∼P [exp(fSm(h))]) .

By Fubini and Hoeffding lemma applied m times on the iid sample Sm, we have

ESEh∼P [exp(fSm(h))] = Eh∼PES [exp(fSm(h))] ≤ λ2

2m.

Taking an union bound gives us with probability 1− δ, for any posterior Q:

Eh∼Q[RD(h)] ≤ Eh∼Q[RSm(h)] + 4Kε+ W1(Q,P) + 2ε+ log(2/δ)
λ

+ λ

2m.

Finally, we know that H is bounded by R so by Proposition D.1.1 we have

N2 = N(B̄(0, R), ε)2 ≤ (1 + 2mR)2d .

Thus, we can take λ equal to

1
K

√√√√ 2m
2d log(1 + 2R

ε
) + log(2

δ
)
.

This concludes the proof.

5.2.2 A McAllester-type bound
We now move on to a McAllester-type bound, which can be tighter than Theorem 5.2.1
for large values of the 1-Wasserstein.

Theorem 5.2.2. For any δ > 0, assume that ` ∈ [0, 1] is uniformly K-Lipschitz
and that H is a compact of Rd. Let P ∈ P1(H) a (data-free) prior distribution.
Then, with probability 1− δ , for any posterior distribution Q ∈ P1(H):

|∆Sm(Q)| ≤

√√√√2K(2K + 1)
2d log

(
31+2Rm

δ

)
m

(W1(Q,P) + εm) +
log

(
3m
δ

)
m

,

with εm = 4
log( 3

δ
)

(
2 +

√
log( 3

δ )+2d log(1+2Rm)
2m

)
= O

(
1 +

√
d log(Rm)

m

)
.
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We deteriorate the bound of Amit et al., 2022 by transforming a convergence rate of√
W1(Q,P)

m

for finite predictor classes onto a
√

(KdW1(Q,P) + 1) log(m)
m

for compact classes. This
deteriorated rate is the price to pay to consider a general WPB bound for an uncount-
able number of predictors. However, notice that the dimension dependency can be
attenuated through the Lipschitz constant, with the limit rate of

O


√√√√ log

(
m
δ

)
m


which is dimension-free and is a consequence of the statistical component of PAC-
Bayes learning. Furthermore, note that this proof technique allows us to recover
the rate of Amit et al. (2022) rate when considering finite classes. The proof of
Theorem 5.2.2 involves similar arguments to the one of Theorem 5.2.1, therefore we
defer it to Appendix D.2.1.

5.3 PAC-Bayesian bounds for Gaussian
distributions

In this section we develop McAllester-type WPB bounds on an Euclidean predictor
space. Indeed, in PAC-Bayes learning, considering this predictor space is common
as PAC-Bayesian objective often focuses on Gaussian priors and posteriors (see, e.g.,
Dziugaite and Roy, 2017; Amit and Meir, 2018). Those bounds build up on
Theorem 5.2.2 and the overall conclusion is the following: when considering functions
with interesting geometric properties (i.e., Lipschitzness or smoothness) on Rd, WPB
bounds hold for Gaussian priors and posteriors over H = Rd at the cost of negligible
extra terms (Theorems 5.3.1 and 5.3.2). More importantly, we show that in this setup,
the assumption of a bounded loss is not required anymore to perform WPB: only
boundedness on a compact is needed. Thus, we propose WPB bounds for unbounded
losses (Corollaries 5.3.1 and 5.3.2).

Two sets of assumption. Previously, we assumed two assumptions on the losses:
uniform Lipschitzness (Definition 5.1.2) and boundedness (in [0, 1]) on a compact
of Rd. We provide below to novel sets of hypotheses which encapsulates previous
assumptions while allowing the loss to be unbounded on all Rd.

• (A1) ` is uniformly K-Lipschitz over H, and supz∈Z ||`(0, z)|| ≤ D < +∞.
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• (A2) For any z ∈ Z, `(., z) is continuously differentiable over H, `(., z) is also
a convex L- smooth (i.e, its gradient is L-Lipschitz) and supz∈Z ||∇h`(0, z)|| ≤
D < +∞.

Example 5.3.1. Recall that H = Rd and let φ : H → Rd. Also, let ψ : Z → Rd

such that ψ(Z) is bounded by Cφ > 0. We assume that both φ, ψ are continuously
differentiable and that ∇φ is G-Lipschitz. Note that the ||φ|| is possibly unbounded
on H. Then (A2) holds for the loss function `(h, z) = ||φ(h) − ψ(z)||2 Indeed,
∇h`(h, z) = 2(∇φ(h)−ψ(z)) so on any compactK bounded by R,∇h` is uniformly
2-Lipschitz. Also supz∈Z ||∇h`(0, z)|| ≤ 2C. Note that on Rd, `(., z) is not
necessarily Lipschitz for any z (take the case φ = IdRd) so (A1) is not satisfied.

A brief summary of the proof technique. To extend Theorem 5.2.2 to the case
H = Rd, we use the push-forward distribution PR#P where P ∈ Cα,β,M for fixed
α, β,M (notation defined in Section 5.1.1). The interest of this is to use Theo-
rem 5.2.2 by considering projections of the Gaussian prior and posterior. When con-
sidering Gaussian distributions, the gap between projected distributions and original
ones is explicitly controlled. More precisely, for any R > 0 large enough, for any
P ∈ Cα,β,M , W1(P,PR#P) is upper bounded. This is the conclusion of an important
technical lemma (Lemma D.1.2), stated with additional background in Appendix D.1.2.
We state below new WPB results with Gaussian distributions for Lipschitz functions
in Section 5.3.1 and for smooth functions in Section 5.3.2.

5.3.1 PAC-Bayesian bounds for Lipschitz losses
This section focuses on the case of Lipschitz losses. We show that when the loss is
uniformly Lipschitz, it is possible to maintain the tightness of Theorem 5.2.2 on all
Rd when the loss remains bounded. We also show that it is also possible to obtain a
WPB bound when the loss function satisfies (A1) (i.e. with an additional boundedness
assumption on supz `(0, z)), while remaining unbounded (Corollary 5.3.1).

Theorem 5.3.1. Assume that d ≥ 3, H = Rd and that the loss is uniformly
K-Lipschitz and lies in [0, 1] over H . For any δ > 0, 0 ≤ α ≤ β,M ≥ 0, let
P ∈ Cα,β,M a (data-free) prior distribution. Then, with probability 1− δ , for any
posterior distribution Q ∈ Cα,β,M :

|∆Sm(Q)|

≤ 2β
√
β

m
+

√√√√2K(2K + 1)
2d log

(
31+2Rm

δ

)
m

(W1(Q,P) + αm) +
log

(
3m
δ

)
m

,
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with R = O(max
√
d log(d),

√
log(m)) and αm = 2(M + 1)β

√
β

m
+ εm =

O
(

1 +
√

d log(Rm)
m

)
with εm defined in Theorem 5.2.2.

Theorem 5.3.1 shows that, at the cost of additional residual terms, it is possible to
maintain the convergence rate of Theorem 5.2.2 when considering Gaussian prior and
posterior within the compact Cα,β,M . The influence of α, β, γ appear in the explicit
value of R described as it is always taken in this work as the smallest value satisfying
the assumption Rad described in Appendix D.1.2. As in Theorem 5.2.2, the idea that
a small Lipschitz constant tightens the bound is still conveyed here and is of great
importance for Corollary 5.3.1 which provides a WPB bound for unbounded losses
with higher dimension dependency when few data is available.

Proof of Theorem 5.3.1. We take a specific radius R which is the smallest value
satisfying Rad. The proof starts with a straightforward application of Theo-
rem 5.2.2 on the compact B(0, R), with the prior PR#P, and with high probability,
for any posterior PR#Q with Q ∈ Cα,β,M :

|∆Sm(PR#Q)|

≤

√√√√2K(2K + 1)
2d log

(
31+2Rm

δ

)
m

(W1(PR#P,PR#P) + εm) +
log

(
3m
δ

)
m

.

From this we control the left hand-side term as follows:

|∆Sm(Q)| ≤ |∆Sm(PR#Q)|+ |∆Sm(Q)−∆Sm(PR#Q)|.

And we also have

|∆Sm(Q)−∆Sm(PR#Q)| ≤ Eh∼Q [|∆Sm(h)−∆Sm(PR(h))|]
= Eh∼Q [|∆Sm(h)−∆Sm(PR(h))|1(||h|| > R)]

≤ 2Q(||h|| > R) ≤ 2β
√

2β
m

,

the last line holding thanks to Lemma D.1.2 and because ∆S ∈ [−1, 1]. Also we
have by the triangle inequality:

W1(PR#P,PR#P) ≤W1(Q, (PR#Q)) + W1(Q,P) + W1(P,PR#P).
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Because both Q,P ∈ Cα,β,M , using again Lemma D.1.2 gives:

W1(PR#P,PR#P) ≤W1(Q,P) + 2(M + 1)β
√

2β
m

.

We then have:

|∆Sm(Q)| ≤ 2β
√

2β
m

+

√√√√2K(2K + 1)
2d log

(
31+2Rm

δ

)
m

(W1(Q,P) + αm) +
log

(
3m
δ

)
m

,

with αm = 2(M + 1)β
√
β

m
+ εm = O(1). This concludes the proof. �

A corollary for unbounded losses. We provably extend Theorem 5.3.1 to the case
of unbounded Lipschitz losses.

Corollary 5.3.1. Assume that d ≥ 3, H = Rd and that the (unbounded) loss
satisfies (A1). For any δ > 0, 0 ≤ α ≤ β,M ≥ 0, let P ∈ Cα,β,M a (data-
free) prior distribution. Then, with probability 1− δ, for any posterior distribution
Q ∈ Cα,β,M , the three following bounds holds.
Low-data regime (d ≥ m)

|∆Sm(Q)| ≤ Õ


√√√√√2Kd

3
2

m

√ d

m
+ W1(Q,P)

+ (1 +K2d)
log

(
m
δ

)
m

 .
Transitory regime (m > d, d log(d) ≥ log(m))

|∆Sm(Q)| ≤ Õ


√√√√2Kd

3
2

m
(1 + W1(Q,P)) + (1 +K2d)

log
(
m
δ

)
m

 .
Asymptotic regime (d log(d) < log(m))

|∆Sm(Q)| ≤ Õ


√√√√2K d

m
(1 + W1(Q,P)) + (1 +K2 log(m))

log
(
m
δ

)
m

 .
In all these formulas, Õ hides a polynomial dependency in (log(d), log(m)). For an
explicit formulation of the bounds, we refer to (5.5).
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The message here is that in Wasserstein PAC-Bayes, the bounded loss assumption is
not as important as in classical PAC-Bayes using KL divergence. Indeed, the geometric
constraints of WPB forced us to consider compact classes of Gaussian distribution and
Lipschitz losses. Having such geometric assumptions on the distribution space and the
loss is enough to exploit the properties of the 1-Wasserstein distance and to circumvent
the boundedness assumption. To avoid boundedness, we transformed the limit rate

O


√√√√ log

(
m
δ

)
m


of Theorem 5.2.2 into

O


√√√√(1 +K2d)

log
(
m
δ

)
m


for non-asymptotic regimes and

O


√√√√(1 +K2 log(m))

log
(
m
δ

)
m


for the asymptotic one. Thus, even when few data is available, a well constrained
(unbounded) Lipschitz loss is able to control the impact of the dimension. Note that,
in the small data regime, we have the highest dimension dependency. Note also that
the dimensionality of the learning problem is controlled by the Lipschitz constant with
the limit rate of

O


√√√√ log

(
m
δ

)
m


which is dimension-free and is a consequence of the statistical component of PAC-Bayes
learning. To the best of our knowledge, our work is the first to exploit geometric prop-
erties of the loss to propose PAC-Bayes bounds for unbounded and heavy-tailed losses
with explicit convergence rates. Indeed, the existing literature on unbounded losses
exploits either general divergence properties (Alquier and Guedj, 2018; Picard-
Weibel and Guedj, 2022), functional properties for heavy-tailed distribution (Hol-
land, 2019), uniform boundedness assumption on the loss over the data space (Had-
douche et al., 2021) or concentration inequalities as in Chapter 2 or in Kuzborskij
and Szepesvári (2019), Rivasplata et al. (2020), and Jang et al. (2023).
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Proof of Corollary 5.3.1. First, we start from Theorem 5.2.2 which gives, with
probability at least 1− δ:

|∆Sm(Q)|

≤

√√√√2K(2K + 1)
log(3

δ
) + 2d log (1 + 2Rm)

m
(W1(Q,P) + εm) +

log
(

3m
δ

)
m

.

(5.4)

This last bound holds for any uniformly Lipschitz function taking value on [0, 1]
on a compact predictor space bounded by a certain R. Let P ∈ Cα,β,M . We
now assume (A1) and consider R to be the smallest value satisfying Rad. Let
`′ = `/(D + 2KR). We note DR = D + 2KR, then on the ball B(0, R), `′
takes value in [0, 1] (because the compact is bounded by R and the loss is K-
Lipschitz) and is K/DR-Lipschitz. Applying Equation (5.4) with `′ on B(0, R)
and multiplying by DR gives, with high probability, for any Q ∈ Cα,β,M :

|∆Sm(PR#Q)|

≤ DR

√√√√2 K
DR

(2 K
DR

+ 1)
log(1

δ
) + 2d log (1 + 2Rm)

m
(W1(PR#P,PR#P) + εm) +

log
(
m
δ

)
m

=

√√√√2K(2K +DR)
log(1

δ
) + 2d log (1 + 2Rm)

m
(W1(PR#P,PR#P) + εm) +D2

R

log
(
m
δ

)
m

,

where εm = O (1) defined in Theorem 5.2.2. As in Theorem 5.3.1, we have:

W1(PR#P,PR#P) ≤W1(Q,P) + 2(M + 1)β
√

2β
m

.

We have

|∆Sm(Q)| ≤ |∆Sm(PR#Q)|+ |∆Sm(Q)−∆Sm(PR#Q)|,

And we have

|∆Sm(Q)−∆Sm(PR#Q)| ≤ Eh∼Q [|∆Sm(h)−∆Sm(PR(h))|]
= Eh∼Q [|∆Sm(h)−∆Sm(PR(h))|1(||h|| > R)] .
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And because ` is K-Lipschitz, ∆S is 2K-Lipschitz and we have:

|∆Sm(Q)−∆Sm(PR#Q)| ≤ 2KE[||h− PR(h)||1(||h|| > R)]
≤ 2KE[||h||1(||h|| > R)].

Finally, applying Lemma D.1.2 gives:

|∆Sm(Q)−∆Sm(PR#Q)| ≤ 2K(M + 1)β
√

2β
m

= O
( 1
m

)
.

Then we have:

|∆Sm(Q)| ≤ 2K(M + 1)β
√

2β
m

+√√√√2K(2K +DR)
log(1

δ
) + 2d log (1 + 2Rm)

m
(W1(Q,P) + αm) +D2

R

log
(

3m
δ

)
m

,

(5.5)

where αm = O
(

1 +
√

d log(Rm)
m

)
defined in Theorem 5.3.1. Finally we exploit

that R = O(
√
d log(d),

√
log(m)) (cf. Remark D.1.1) and DR = O(1 + K2R),

to conclude the proof for all the three regimes. �

5.3.2 PAC-Bayesian bounds for convex smooth functions
This section is focused on convex smooth loss functions, which are well suited for
many optimisation objectives. We show that under (A2), it is possible to transform
Theorem 5.2.2 into a bound for smooth functions on all Rd when the loss remain
bounded. We also show that it is possible to obtain a PAC-Bayesian bound for smooth
unbounded loss functions.

Theorem 5.3.2. Assume that d ≥ 3, H = Rd and that the loss satisfies (A2) and
lies in [0, 1] over H. For any δ > 0, 0 ≤ α ≤ β,M ≥ 0, let P ∈ Cα,β,M a (data-
free) prior distribution. Then, with probability 1− δ, for any posterior distribution
Q ∈ Cα,β,M :

|∆Sm(Q)| ≤ 2β
√

2β
m

+

√√√√2DR(2DR + 1)
2d log

(
31+2Rm

δ

)
m

(W1(Q,P) + αm) +
log

(
3m
δ

)
m

,
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with R = O
(
max

√
d log(d),

√
log(m)

)
, DR = D+LR and αm = O(1) is defined

in Theorem 5.3.1.

The key idea of the proof is to state that on a compact space, a smooth function is also
Lipschitz. Therefore, the proof follows the same route as the one of Theorem 5.3.1,
with additional technical steps. We then defer it to Appendix D.2.3. We note that,
even for bounded losses, the price to pay to consider smooth functions instead of
Lipschitz ones is an extra factor DR = O(1 + R) when D > 0. Therefore, in the
general case we lose the idea that a tight smooth function will change the convergence
rate of the problem as in general the upper bound D of supz |`(0Rd , z)| is greater than
zero. However, we are able to obtain results still useful when enough data is available.
We also show it is possible to obtain a WPB bound for unbounded convex smooth
functions.

Corollary 5.3.2. Assume that d ≥ 3, H = Rd and that the (unbounded) loss
satisfies (A2). For any δ > 0, 0 ≤ α ≤ β,M ≥ 0, we assume that R > 0 is the
smallest value satisfying Rad. We assume that supz∈Z ||`(0, z)|| = D` < +∞. Let
P ∈ Cα,β,M a (data-free) prior distribution. Then, with probability 1− δ , for any
posterior distribution Q ∈ Cα,β,M , the three following bounds holds.
Low-data regime (d ≥ m)

|∆Sm(Q)| ≤ Õ


√√√√√d

5
2

m

√ d

m
+ W1(Q,P)


 .

Transitory regime (d < m, d log(d) ≥ log(m))

|∆Sm(Q)| ≤ Õ


√√√√d

5
2

m
(1 + W1(Q,P))

 .
Asymptotic regime (d log(d) < log(m))

|∆Sm(Q)| ≤ Õ
√ d

m
(1 + W1(Q,P))

 .
In all these bounds, Õ hides a polynomail factor in (log(d), log(m)). For a complete
formulation of the bounds, we refer to (5.6).

We remark that this theorem is particularly interesting in the transitory and asymptotic

– 112 –



5.3. PAC-Bayesian bounds for Gaussian distributions

regime as, contrary to Corollary 5.3.1, we do not have a Lipschitz constant to attenuate
the impact of the dimension (indeed we have DR = D + LR and in general D > 0).
However, this bound remains of great interest when many data are available as the
smoothness assumption is often used in optimisation.

Proof of Corollary 5.3.2. Firstly, we use Theorem 5.2.2 which state that for any
prior on a compact, loss function ` ∈ [0, 1] being uniformly K-Lipschitz on this
compact gives with probability at least 1− δ:

|∆Sm(Q)| ≤

√√√√2K(2K + 1)
log(3

δ
) + 2d log (1 + 2Rm)

m
(W1(Q,P) + εm) +

log
(

3m
δ

)
m

.

Let P ∈ Cα,β,M . We fix R to be the smallest value satisfying Rad and we assume
(A2). On B(0, R), as seen in the proof of Theorem 5.3.2, ` is uniformly DR :=
D+LR-Lipschitz, so ` is bounded on this ball by CR := D`+RDR = O(1+R2).
We apply Theorem 5.2.2 on the loss function `′ = `/CR and we multiply the
resulting bound by CR. Recall that `′ takes value in [0, 1] and is DR/CR-Lipschitz.
We then have with high probability, for any Q ∈ Cα,β,M :

|∆Sm(PR#Q)|

≤

√√√√2DR(2DR + CR)
log(3

δ
) + 2d log (1 + 2Rm)

m
(W1(PR#P,PR#P) + εm) + C2

R

log
(

3m
δ

)
m

,

where εm = O (1) defined in Theorem 5.2.2. As in Theorem 5.3.1, we have:

W1(PR#P,PR#P) ≤W1(Q,P) + 2(M + 1)β
√

2β
m

.

We have:

|∆Sm(Q)| ≤ |∆Sm(PR#Q)|+ |∆Sm(Q)−∆Sm(PR#Q)|,

And we have:

|∆Sm(Q)−∆Sm(PR#Q)| ≤ Eh∼Q [|∆Sm(h)−∆Sm(PR(h))|]
= Eh∼Q [|∆Sm(h)−∆Sm(PR(h))|1(||h|| > R)] .
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We study the last gap more carefully:

|∆Sm(h)−∆Sm(PR(h))| = Ez[|`(h, z)− `(PR(h), z)|]

+ 1
m

m∑
i=1
|`(h, zi)− `(PR(h), zi)|.

And we know that for any z, because ` is convex smooth:

`(h, z)− `(PR(h), z) ≤ ∇h`(PR(h), z)T (h− PR(h)) + L

2 ||h− PR(h)||2||

≤ DR||h− PR(h)||+ L

2 ||h− PR(h)||2||.

We also have by convexity:

`(PR(h), z)− `(h, z) ≤ ∇h`(PR(h), z)T (PR(h)− h)
≤ DR||h− PR(h)||.

In any case, we have for any h, z:

|`(h, z)− `(PR(h), z)| ≤ DR||h− PR(h)||+ L

2 ||h− PR(h)||2.

Thus:

|∆Sm(Q)−∆Sm(PR#Q)| ≤ DREh∼Q [||h− PR(h)||1(||h|| > R)]

+ L

2 Eh∼Q
[
||h− PR(h)||21(||h|| > R)

]
≤ DREh∼Q [||h||1(||h|| > R)]

+ L

2 Eh∼Q
[
||h||21(||h|| > R)

]
.

And thanks to Lemma D.1.2, we finally have:

|∆Sm(Q)−∆Sm(PR#Q)| ≤
(
DR + L

2 (M + 1)
)

(M + 1)β
√
β

m
.
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Then we have:

|∆Sm(Q)| ≤
(
DR + L

2 (M + 1)
)

(M + 1)β
√
β

m
+√√√√2DR(2DR + CR)

log(3
δ
) + 2d log (1 + 2Rm)

m
(W1(Q,P) + αm) + C2

R

log
(

3m
δ

)
m

,

(5.6)

where αm = O
(

1 +
√

d log(Rm)
m

)
defined in Theorem 5.3.1. Finally, we exploit

that R = O(
√
d log(d),

√
log(m)) (cf Remark D.1.1), that DR = O(1 + R) and

CR = O(1 +R2), to conclude the proof for all the three regimes. �

5.4 Wasserstein PAC-Bayes with data-dependent
priors

In PAC-Bayes learning, obtaining results holding with data-dependent priors is a widely
studied topic. The reason behind that is that it is more meaningful to compare the
posterior distribution, usually obtained via an optimisation procedure to a competitive
one (classically the Gibbs posterior) to ensure tight generalisation bounds. A classical
way to do so is to use differential privacy as in Dziugaite and Roy (2018b). However,
their contribution relies on bounded losses to apply the exponential mechanism, a
useful tool to determine whether an algorithm is differentially private. We exploit new
theorems from Minami et al. (2016) and Rogers et al. (2016) which allow us to
exploit differentially private priors when the loss is unbounded, convex and Lipschitz.
We recall in Appendix D.1.3 elements of differential privacy.

A PAC-Bayesian bound for Lipschitz convex losses with data-dependent prior.
We now state a PAC-Bayes theorem valid for differentially private probability kernels.
The proof elaborates on Dziugaite and Roy (2018b, Theorem 4.2) and is based on
the following bound, which is a minor modification of (5.5), making it valid for any
prior (and not only Gaussian ones).

Theorem 5.4.1. Assume that d ≥ 3, H = Rd and that the loss is convex and
satisfies (A1). Let βm = O( 1√

m
) and λ ≤ √m. Let P ∈ Cα,β,M a (data-free) prior

distribution. Then, for any βm < δ < 1, with probability 1 − δ , for any posterior
distribution Q ∈ Cα,β,M and the Gibbs prior P− λ

2K R̂Sm
, the following bound holds.
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Low-data regime (d ≥ m)

|∆Sm(Q)| ≤

Õ


√√√√√2Kd

3
2

m

√ d

m
+ W1(Q,P− λ

2K R̂Sm
) + fR

(
P− λ

2K R̂Sm

)+ (1 +K2d)
log

(
m
δ

)
m

 .
Transitory regime (m > d, d log(d) ≥ log(m))

|∆Sm(Q)| ≤

Õ


√√√√2Kd

3
2

m

(
1 + W1(Q,P− λ

2K R̂Sm
) + fR

(
P− λ

2K R̂Sm

))
+ (1 +K2d)

log
(
m
δ

)
m

 .
Asymptotic regime (d log(d) < log(m))

|∆Sm(Q)| ≤

Õ


√√√√2K d

m

(
1 + W1(Q,P− λ

2K R̂Sm
)
)

+ (1 +K2 log(m))
log

(
m
δ

)
m

 ,

where R = O
(
max

√
d log(d),

√
log(m)

)
, fR(P) := W1(PR#P,P). In the above

Õ hides a polynomial dependency in (log(d), log(m)). For an explicit formulation
of the bounds, we refer to (5.11).

Note that in the asymptotic bound, the condition to get rid of fR(P− λ
2K R̂Sm

) is that λ
is a fixed constant, in particular it does not depend on m. This is essential to apply the
law of large numbers: a fixed learning rate in the Gibbs posterior is required for a bound
with only explicit terms. Furthermore, an important message is that Lipschitz functions
are well suited to the PAC-Bayes framework through Wasserstein distances. Indeed,
not only are we able to recover McAllester or Catoni-type WPB bounds, but we also
obtain WPB with data-dependent priors using the same techniques than PAC-Bayes
learning with KL divergences. Data-dependent WPB bounds have also an additional
benefit as they provide guarantees for the Bures-Wasserstein SGD of Lambert et al.
(2022) as shown in Section 5.5.
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Proof of Theorem 5.4.1. Firstly, we start from a slightly modified version of Equa-
tion (5.5) which holds for any prior distribution (and not only Gaussian ones). To
obtain it we restart from the triangle inequality W1(PR#Q,PR#P) ≤W1(PR#Q,Q)+
W1(Q,P)+fR(P). where fR(P) := W1(PR#P,P) and we apply exactly the same
route of proof than in Corollary 5.3.1. We then obtain, for any data-free prior P,
with probability at least 1− δ, for any Q ∈ Cα,β,M :

|∆Sm(Q)| ≤ 2K(M + 1)β
√

2β
m

+√√√√
CR

log(1
δ
) + 2d log (1 + 2Rm)

m
(W1(Q,P) + αm + fR(P)) +D2

R

log
(
m
δ

)
m

,

where DR = D + KR and CR = 2K(2K + DR) (D,K defined in (A1)). We
then denote by Bound(Sm,P,Q, δ) the bound:

|∆Sm(Q)| > 2K(M + 1)β
√

2β
m

+√√√√
CR

log(1
δ
) + 2d log (1 + 2Rm)

m
(W1(Q,P) + αm + fR(P)) +D2

R

log
(
m
δ

)
m

.

And for a given δ′, let

Ev(P, δ′) := {Sm ∈ Zm | ∃Q ∈ Cα,β,M s.t. Bound(Sm,P,Q, δ′) holds}

. We know that for a data-free prior P, PSm∈Dm(Sm ∈ Ev(P)) ≤ δ. To exploit
the differential privacy framework, we first assume having a differentially private
probability kernel P . We fix β > 0 and re-exploit the idea of Dziugaite and
Roy (2018b):

PSm∼Dm{Sm ∈ Ev(P(S), δ′)} ≤ eIβ∞(P;m) P
(S,S′m)∼D2m

{Sm ∈ Ev (P (S ′m))}+ β

(5.7)
≤ eIβ∞(P;m)δ′ + β = δ. (5.8)

The last line holds for any δ > β by fixing δ′ = e−Iβ∞(P;m)(δ − β). Note that
log

(
1
δ′

)
= log

(
1

δ−β

)
+ Iβ∞(P ;m), this suggests to bound the β-approximate max-

information. To do so, we need to give specific values for the pair (ε, γ). More
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concretely, let ε =
√

log(m)
m

, γ = ε
m4 . Then thanks to Proposition D.1.3, we know

that for βm := O( 1
m

), we have:

Iβ∞(P ,m) = O (log(m)) . (5.9)

The last thing to do is to prove that the probability kernel P0(Sm) := P−λ′mR̂Sm
is

(ε, γ) differentially private. This is true thanks to Proposition D.1.2 which states
that P0 satisfies differential privacy as long as λ′ ≤ λm with:

λm := 1
2K

√√√√ α log(m)
m (1− 2 log log(m) + 10 log(m)) = O

(
1√
m

)
. (5.10)

Note that α intervenes because for any prior P ∈ Cα,β,M , − logP (.) is α-strongly
convex. From now we consider λ′ = λ

2Km where λ ≤
√
m. We then have

λ′ ≤ λm. We then know, thanks to Equation (5.7) with β = βm, that for
any δ > βm, PSm∼Dm{Sm ∈ Ev(P0(Sm), δ′) ≤ δ with δ′ = e−Iβ∞(P;m)(δ − β)
Taking the complementary event and recalling that thanks to Equation (5.9),
log

(
1
δ′

)
= log

(
1

δ−βm

)
+O(log(m)) gives, for any data-free Gaussian prior P, for

any δ > βm, with probability at least 1− δ, for any Q ∈ Cα,β,M :

|∆Sm(Q)| ≤ 2K(M + 1)β
√

2β
m

+√√√√
CR

log( 1
δ−βm ) +O(log(m)) + 2d log (1 + 2Rm)

m

×
√(

W1(Q,P− λ
2K R̂Sm

) + α′m + fR(P− λ
2K R̂Sm

)
)

+

√√√√
D2
R

log
(

m
δ−βm

)
+O(log(m))
m

, (5.11)

where α′m = O(1+ d log(m)
m

) has the same analytical expression than αm (defined in
Theorem 5.3.1) but where all the occurences of δ have been replaced by δ′. Note
that in the last equation, we used

√
a+ b ≤

√
a +
√
b (a, b > 0) for the sake of

readability but we put everything within the same square root in our theorem as it
is tighter. Then, exploiting that R = O(

√
d log(d),

√
log(m)), gives us the results

for the low-data and transitory regimes.
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Also, we are able to prove that asymptotically, because R
√

log(m)→∞ when m
goes to infinity:

fR(P− λ
2K R̂Sm

) ≤ E[||X − PR(X)||] →
m→∞

0,

where X follows the Gibbs distribution P− λ
2K R̂Sm

. The convergence to zero comes
from the dominated convergence theorem. Indeed,

E[||X − PR(X)||] =
∫

Rd
gm(x)dP(x),

with gm(x) = ||x− PR(x)|| exp(−λR̂Sm (x))
EP [exp(−λR̂Sm (x))]

. Thus, bounding crudely gives:

E[||X − PR(X)||] ≤ 1
infm≥1 EP [exp

(
−λR̂Sm(x)

)
]

∫
Rd
||x− PR(x)||dP(x).

We know that infm≥1 EP [exp
(
−λR̂Sm(x)

)
] := infm≥1 EP [fm(x)] > 0 because

fm is λK - lipschitz (x → e−λx is λ-lipschitz and the loss ` is K-lipschitz) and
converges almost surely on Rd towards x → exp−λR(x). Indeed, thanks to the
law of large numbers, we know that on Qd, fm → f almost surely and using that
all the sequence is λK lipschitz extends the result to all Rd. We also notice that for
any m, fm ≤ 1 so we can use the dominated convergence theorem to conclude that
EP [fm(x)]→ EP [exp(−λR(X))] > 0. So infm≥1 EP [exp

(
−λR̂Sm(x)

)
] > 0. The

last thing to do is to use Lemma D.1.2 to ensure that ∫Rd ||x−PR(x)||dP(x)→ 0.
This allows us to get rid of fR for the asymptotic regime and then, conclude the
proof. �

5.5 Generalisation ability of the Bures-Wasserstein
SGD

For the sake of completeness, we recall (and precise) several elements already defined in
Section 5.1.2. In PAC-Bayes learning, the following learning algorithm can be derived
from a relaxation of Catoni (2007, Theorem 1.2.6), for any data-free prior P and
inverse PAC-Bayesian temperature λ > 0:

argmin
Q∈M(H)

Eh∼Q[R̂Sm(h)] + 2KKL(Q,P)
λ

.

We considered the parameter λ
2K as it was suggested by Theorem 5.4.1. A closed form

solution is given by the Gibbs posterior Q∗ := P− λ
2K

such that dQ∗ ∝ exp(−VSm(h))dh,
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with VSm(h) = λ
2K R̂Sm(h)−log(dP(h)) and dh being the Lebesgue measure. However,

such a measure can be difficult to estimate in practice. Two solutions are available.
We can estimate the Gibbs posterior through MCMC methods that rely on Markov
chains which (approximately) converge to Q∗. However, there is no clear stopping cri-
terion to obtain a good approximate of the true posterior. Otherwise, we can exploit
variational inference (VI) to produce rapidly a basic yet informative summary statistics
on a subclass of M(H). In this section, we focus on the VI approach. As Q∗ is the
result of an optimal trade-off between the empirical loss R̂Sm and the KL divergence
(weighed by λ) acting as a regulariser, we consider the closest measure of BW(Rd)
from Q∗ with respect to the KL divergence:

Q̂ = N (m̂, Σ̂) := argmin
Q∈BW(Rd)

KL(Q,Q∗).

At the cost of this approximation, can we have an optimisation algorithm with conver-
gence guarantees which goes to Q̂? Furthermore, if enough data is available, does Q̂
possess a good generalisation ability? We first state the assumptions holding through-
out the whole section.
(A3): We assume that H = Rd and

• There exists M > 0 such that ||m̂|| ≤M almost surely.

• ` is twice differentiable, and (A1), (A2) hold. In particular, ` is L-smooth,
convex and uniformly K-Lipschitz over H. We furthermore assume that L = 1.

• The prior P used in the definition of Q∗ is a Gaussian with mean 0 and covariance
matrix Σ = diag(γ), 1 ≥ γ > 0. We assume λ ≤ 2K in the definition of Q∗.

Note that under (A3), we have 0 ≺ αI � ∇2VSm � I. The work of Lambert
et al. (2022, Theorem 4) provides convergence guarantees for SGD over the Bures-
Wasserstein space when (A3) holds (in particular, they do not even requires the uni-
formly Lipschitz assumption). We first state their algorithm in Algorithm 2. Note that
Algorithm 2 is a slight adaptation of the work of Lambert et al. (2022). Indeed,
we added a projection step PM within the compact of radius M in Rd. This does
not change the convergence guarantees stated in Theorem 5.5.1 as long as we assume
(A3).

Theorem 5.5.1. Assume (A3). Also, assume that η ≤ α2

60 and that we initialize
Algorithm 2 at a matrix satisfying α

9 I � Σ0 � 1
α
I. Then, for all k ∈ N,

EW2
2

(
Q̂k, Q̂

)
≤ exp(−αkη)W2

2

(
Q̂0, Q̂

)
+ 36dη

α2 .
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Algorithm 2: Bures-Wasserstein SGD.
Parameters : Strong convexity parameter α > 0, radius M > 0; step size

η > 0, initial mean m0, initial covariance Σ0
1 Set up Q̂0 = N (m0,Σ0).
2 for k = 0..N − 1 do
3 Draw a sample Xk ∼ Q̂k.
4 Set m+

k = mk − η∇VSm(Xk).
5 Set Mk = I − η(∇V 2(Xk)− Σ−1

k ).
6 Set Σ+

k = MkΣkMk.
7 Set mk+1 = PM(m+

k ), Σk+1 = clip1/α Σ+
k .

8 Set Q̂k+1 = N (mk+1,Σk+1)
9 end

10 Return (Q̂k)k=1...N .

In particular, we obtain EW2
2

(
Q̂k, Q̂

)
≤ ε2 provided we set η � α2ε2

d
and the

number of iterations to be k & d
α3ε2 log

(
W2

(
Q̂0, Q̂

)
/ε
)

.

We want to incorporate Theorem 5.5.1 within Theorem 5.4.1. To do so, we need to
make sure that the outputs of Algorithm 2 and Q̂ lie a compact of BW (Rd). To do so
we exploit the following lemma, which sums up the work of Lambert et al. (2022)
(namely their Lemma 6 and the discussion in Section 3.3).

Lemma 5.5.1. Assume (A3) and the step-size η of Algorithm 2 is lesser than α2

60 .
Also in Algorithm 2, assume that α

9 I � Σk. Then α
9 I � Σ+

k , and so, α
9 I � Σk+1 �

1
α
I. Furthermore, I � Σ̂ � 1

α
I. Thus, if the initialisation of Algorithm 2 is such

that α
9 I � Σ0 � 1

α
I, then the sequence (Q̂k)k≥0 and Q̂ are in the compact Cα

9 ,
1
α
,M .

Using Lemma 5.5.1, we now can apply Theorem 5.4.1 and obtain the main result of
this section.

Theorem 5.5.2. Assume (A3), also assume that d ≥ 3. Let βm = O( 1√
m

) and
fix any βm < δ < 1. Assume that we perform Algorithm 2, with step size η � α2δ

d

and the number of iterations to be N & d
α3δ

log
(
W2

(
Q0, Q̂

)
/δ
)

. We also set the
initialisation such that α

9 I � Σ0 � 1
α
I, then we can upper bound the generalisation

ability of Q̂N , with probability 1− 2δ:
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Asymptotic regime (d log(d) < log(m))

|∆Sm(Q̂N)| ≤ Õ


√√√√2K d

m

(
1 + W1(Q̂,Q∗)

)
+ (1 +K2 log(m))

log
(
m
δ

)
m

 ,
where Õ hides a polynomial dependency in (log(d), log(m)). We refer to (5.12)
for a bound presenting the explicit influence of the Bures-Wasserstein SGD.

Theorem 5.5.2 is based on Equation (5.12) which answers the question stated in the
’Our aims in this chapter’ paragraph of Section 5.1.2. We successfully designed a
bound of the form of (5.2) by incorporating the optimisation guarantees of Lambert
et al. (2022) onto a statistical framework. As such, this bound is a bridge between
optimisation and PAC-Bayes learning. To the best of our knowledge, it is the first
time that PAC-Bayes is able to explain why the minimiser attained by an optimisation
procedure on a measure space is also able to generalise well. Until now PAC-Bayes
guarantees were used as a check-in procedure, which means that during the optimi-
sation phase it is possible to see whether the candidate predictor is able to generalise
well. On the contrary our bound higlights, before any training, that the output of
the Bures-Wasserstein SGD will become better at generalising, with the limit rate of√

Kd
m

W1(Q̂,Q∗) + log(m)
m

.
Let us analyse the bound: the convergence rate depends on the quality of the approx-
imation Q̂ of Q∗, this says that if Gaussian measures are not suited to approximate
well the Gibbs posterior, then we sacrifice some generalisation ability. However this
term is also controlled by the Lipschitz constant K: if K is small, then the learning
problem is easy enough to compensate both the curse of dimensionality and a possi-
bly bad approximation Q̂ of Q∗. Again, the limit convergence rate is the statistical
ersatz O

(√
log(m)
m

)
. This roughly says that we cannot hope to converge better than

a Hoeffding test bound in this setting. Finally note also that the step η of Algorithm 2
now depends on δ: this suggests that the Bures-Wasserstein SGD needs to be tuned
with a smaller step size to ensure not only convergence, but also a good generalisation
ability.

Proof Proof of Theorem 5.5.2. We start from Theorem 5.4.1, considering the
asymptotic case. We have with probability 1 − δ, for the posterior Q̂N obtained
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after N steps of Algorithm 2 distribution Q ∈ Cα,β,M and the prior Q∗:

|∆Sm(Q̂N)| ≤ Õ


√√√√2K d

m

(
1 + W1(Q̂N ,Q∗)

)
+ (1 +K2 log(m))

log
(
m
δ

)
m

 .
Then, the triangle inequality gives that W1(Q̂N ,Q∗) ≤W1(Q̂N , Q̂) + W1(Q̂,Q∗).
Finally, we exploit Theorem 5.5.1 as follows:

W1(Q̂N , Q̂) ≤
√

W2
2(Q̂N , Q̂) by Jensen

≤

√√√√2E[W2
2(Q̂N , Q̂)]
δ

by Markov

≤

√√√√2
exp(−αNη)W2

2

(
Q̂0, Q̂

)
+ 36dη

α2

δ
by Theorem 5.5.1.

Note that in the last line, we were able to apply Theorem 5.5.1 thanks to Lemma 5.5.1.
This leads to the following bound:

|∆Sm(Q̂N)|

≤ Õ


√√√√2K d

m

(
f(N, η)

√
W2

2(Q̂0, Q̂) + 1 + ε
)

+ (1 +K2 log(m))
log

(
m
δ

)
m

 ,
(5.12)

where f(N, η) =
√

exp(−αNη)W2
2(Q̂0,Q̂)

δ
and ε =

√
36dη
α2δ

+ W1(Q̂,Q∗). Finally,
using that with step size η � α2δ

d
and the number of iterations to be N &

d
α3δ

log
(
W2

(
Q̂0, Q̂

)
/δ
)

allows us to bound:
√

2 exp(−αkη)W2
2(Q̂0,Q̂)+ 36dη

α2
δ

≤ 1. This
concludes the proof. �

5.6 Conclusion

We extended the Wasserstein PAC-Bayes theory beyond the results of Amit et al.
(2022). We exploited optimisation results to explain the generalisation ability of exist-
ing algorithms and we instantiated this for the Bures-Wasserstein algorithm of Lam-
bert et al. (2022). We conclude by discussing avenues for future works.
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Can we exploit WPB for neural networks? As shown in Figure 5.1.3, we had
to assume, Lipschitzness, smoothness and convexity to reach Theorem 5.5.2. Those
assumptions are necessary in the current framework and to obtain the results of Lam-
bert et al. (2022) and thus, do not cover the important case of neural networks.
Therefore, an interesting lead to investigate would be to first, avoid smoothness to
reach convex neural networks Bengio et al. (2005) and also avoid the convexity as-
sumption to reach the broader subclass of Lipschitz neural networks (e.g Gouk et
al., 2021). The case of Lipschitz neural networks is particularly interesting as WPB
theory shows that a small Lipschitz constant is enough to attenuate the impact of
dimensionality.

Are the classical PAC-Bayesian techniques suited to WPB? In Theorems 5.2.1
and 5.2.2, we exploited a surrogate of the change of measure inequality to then exploit
the PAC-Bayesian theory. However, those techniques are developed around the control
of an exponential moment which appears naturally through the change of measure
inequality. The surrogate directly involves the true moment with respect to the prior:
an interesting direction would be to check whether tighter concentration bounds (or
other bounds exploiting weaker assumptions than a bounded loss) are accessible. Fur-
thermore, we exploited covering numbers to state that, with high probability, the loss
is close to a Lipschitz one. Those covering numbers, while crucial, involve explicitly
the dimension of the problem. This is challenging as such a dependency do not appear
explicitly in KL-based PAC-Bayes learning (although they play a role in the KL term).
We provide elements of answer to those two questions in Chapter 6, where we obtain
tractable bounds for heavy-tailed losses, yielding sound learning algorithms for neural
networks. Those benefits come at the cost of no convergence rate for the Wasserstein
term but also does not involve explicitly the dimension of H. This practical trade-off
sacrifices theoretical understanding for new efficient algorithms.
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6Wasserstein PAC-Bayes in
Practice:
Genrealisation-Driven Learning
Algorithms for Deterministic
Predictors

This chapter is based on the following paper

Paul Viallard, Maxime Haddouche, Umut Simsekli, and Benjamin Guedj.
Learning via Wasserstein-Based High Probability Generalisation Bounds. (2023)
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Abstract

While Chapter 5 proposes a theoretical study of PAC-Bayes learning with Wasser-
stein distances, we now focus on practical expansions of Wasserstein PAC-Bayes.
The optimisation view of PAC-Bayes learning is deeply exploited here: we derive
theory-driven batch and online algorithms (the online paradigm attenuates the
impact of the prior) valid for deterministic predictors (and thus consistent with
many practical optimisation algorithms) and are derived from bounds valid for
heavy-tailed lipschitz losses (weak statistical assumption and a stronger geomet-
ric one to be in line with the optimisation literature). This chapter shows that
the optimisation view of PAC-Bayes leads to efficient procedures, competing
with classical methods.
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6.1 Introduction
Chapter 5 introduced Wasserstein PAC-Bayes learning from a theoretical perspective.
Indeed, the main goal there was to incorporate the convergence guarantees of existing
algorithms onto a generalisation bound. On the contrary, we focus here on deriving
novel learning algorithms from Wasserstein PAC-Bayes bounds, circumventing many
classical limitations of KL-based PAC-Bayes, which is the major part of the literature.
Indeed, the practical use of KL divergence comes with two main limitations: (i) as
illustrated in the generative modeling literature, the KL divergence does not incorporate
the underlying geometry or topology of the data space Z, hence can behave in an
erratic way Arjovsky et al., 2017, (ii) the KL divergence and its variants require
the posterior Q to be absolutely continuous with respect to the prior P. However,
recent studies (Camuto et al., 2021) have shown that, in stochastic optimisation, the
distribution of the iterates, which is the natural choice for the posterior, can converge
to a singular distribution, which does not admit a density with respect to the Lebesgue
measure. Moreover, the structure of the singularity (i.e., the fractal dimension of Q)
depends on the data sample S (Camuto et al., 2021). Hence, in such a case, it
would not be possible to find a suitable prior P that can dominate Q for almost every
S ∼ Dm, which will trivially make KL(Q‖P) = +∞ and the generalisation bound
vacuous.
Some works have focused on replacing the Kullback-Leibler divergence with more gen-
eral divergences in PAC-Bayes (Alquier and Guedj, 2018; Ohnishi and Honorio,
2021; Picard-Weibel and Guedj, 2022), although the problems arising from the
presence of the KL divergence in the generalisation bounds are actually not specific to
PAC-Bayes: information-theoretic bounds (Goyal et al., 2017; Xu and Raginsky,
2017; Russo and Zou, 2020) also suffer from similar issues as they are based on a
mutual information term, which is the KL divergence between two distributions. In this
context, as a remedy to these issues introduced by the KL divergence, Zhang et al.,
2018; Wang et al., 2019; Rodriguez-Galvez et al., 2021; Lugosi and Neu, 2022
proved analogous bounds that are based on the Wasserstein distance, which arises from
the theory of optimal transport Monge, 1781. As the Wasserstein distance inherits
the underlying geometry of the data space and does not require absolute continuity, it
circumvents the problems introduced by the KL divergence. Yet, these bounds hold
only in expectation, i.e., none of these bounds is holding with high probability over the
random choice of the learning sample S ∼ Dm.
In the context of PAC-Bayesian learning, the recent works Chee and Loustau, 2021;
Amit et al., 2022 incorporated Wasserstein distances as a complexity measure and
proved generalisation bounds based on the Wasserstein distance. More precisely, Amit
et al., 2022 proved a high-probability generic PAC-Bayesian bound for bounded losses
depending on an integral probability metric (Müller, 1997), which contains the
Wasserstein distance as a special case. On the other hand, Chee and Loustau,
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2021 exploited PAC-Bayesian tools to obtain learning strategies with their associated
regret bounds based on the Wasserstein distance for the online learning setting while
requiring a finite hypothesis space and do not deal with generalisation.
Contributions. The theoretical understanding of the high-probability generalisation
bounds based on the Wasserstein distance is still limited. The aim of this chapter is
not only to prove generalisation bounds (for different learning settings) based on the
optimal transport theory but also to propose new learning algorithms derived from our
theoretical results.

(i) Using the supermartingale toolbox introduced in Chapter 2, we prove in Sec-
tion 6.3.1, novel PAC-Bayesian bounds based on the Wasserstein distance for
i.i.d. data. While Amit et al., 2022 proposed a McAllester-like bound for
bounded losses, we propose a Catoni-like bound (see e.g., Alquier et al.,
2016, Theorem 4.1) valid for heavy-tailed losses with bounded order 2 moments.
This assumption is less restrictive than assuming subgaussian or bounded losses,
which are at the core of many PAC-Bayes results. This assumption also covers
distributions beyond subgaussian or subexponential ones (e.g., gamma distribu-
tions with a scale smaller than 1, which have an infinite exponential moment).

(ii) We provide in Section 6.3.2 the first generalisation bounds based on Wasserstein
distances for the online PAC-Bayes framework of Chapter 3. Our results are,
again, Catoni-like bounds and hold for heavy-tailed losses with bounded order 2
moments. Previous work (Chee and Loustau, 2021) already provided online
strategies mixing PAC-Bayes and Wasserstein distances. However, their contri-
butions focus on the best deterministic strategy, regularised by a Wasserstein
distance, with respect to the deterministic notion of regret. Our results differ
significantly as we provide the best-regularised strategy (still in the sense of a
Wasserstein term) with respect to the notion of generalisation, which is new.

(iii) As our bounds are linear with respect to Wasserstein terms (contrary to those
of Amit et al., 2022 and Chapter 5), they are well suited for optimisation pro-
cedures. Thus, we propose the first PAC-Bayesian learning algorithms based on
Wasserstein distances instead of KL divergences. For the first time, we design
PAC-Bayes algorithms able to output deterministic predictors (instead of distri-
butions over all H) designed from deterministic priors. This is due to the ability
of the Wasserstein distance to measure the discrepancy between Dirac distribu-
tions. We then instantiate those algorithms in Section 6.4 on various datasets,
paving the way to promising practical developments of PAC-Bayes learning.

To sum up, we highlight two benefits of PAC-Bayes learning with Wasserstein distance.
First, it ships with sound theoretical results exploiting the geometry of the predictor
space, holding for heavy-tailed losses. Such a weak assumption on the loss extends
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the usefulness of PAC-Bayes with Wasserstein distances to a wide range of learning
problems, encompassing bounded losses. Second, it allows us to consider deterministic
algorithms (i.e., sampling from Dirac measures) designed with respect to the notion
of generalisation: we showcase their performance in our experiments.
Outline. Section 6.2 describes our framework and background, Section 6.3 contains
our new theoretical results and Section 6.4 gathers our experiments. Appendix E.1
gathers supplementary discussion, Appendix E.2 contains all proofs of our claims, and
Appendix E.3 provides insights into our practical results as well as additional experi-
ments.

6.2 Our framework
Framework. We consider a Polish predictor space H equipped with a distance d
and a σ-algebra ΣH, a data space Z, and a loss function ` : H × Z → R. In this
work, we consider Lipschitz functions with respect to d. We also associate a filtration
(Fi)i≥1 adapted to our data (zi)i=1,...,m, and we assume that the dataset S follows
the distribution DS . In PAC-Bayes learning, we construct a data-driven posterior
distribution Q ∈M(H) with respect to a prior distribution P.
Definitions. For all i, we denote by Ei[·] the conditional expectation E[ · | Fi].
In this work, we consider data-dependent priors. A stochastic kernel is a mapping
P : ∪∞m=1Zm × ΣH → [0, 1] where (i) for any B ∈ ΣH, the function S 7→ P(S, B) is
measurable, (ii) for any dataset S, the function B 7→ P(S, B) is a probability measure
over H.
In what follows, we consider two different learning paradigms: batch learning, where the
dataset is directly available, and online learning, where data streams arrive sequentially.
Batch setting. For any m, we assume the dataset Sm to be i.i.d. of size m, so
there exists a distribution D over Z such that DSm = Dm. We then define, for
a given h ∈ H, the risk to be RD := Ez∼D[`(h, z)] and its empirical counterpart
R̂Sm := 1

m

∑m
i=1 `(h, zi). Our results aim to bound the expected generalisation gap

defined by Eh∼Q[RD(h)− R̂Sm(h)]. We assume that for any m > 0, the dataset Sm is
split into K disjoint sets S1

m, . . . ,SKm . We consider K stochastic kernels P1, . . . ,PK

such that for any Sm, the distribution Pi(Sm, .) does not depend on S im.
Online setting. We adapt the online PAC-Bayes framework of Chapter 3. We assume
that we have access to a stream of data S = (zi)i≥1, arriving sequentially, with no
assumption on DS . We assume our sequence of stochastic kernels (used as priors)
(Pi)i=1···m to satisfy: (i) for all i and dataset S, the distribution Pi(S, .) is Fi−1
measurable and (ii) there exists P0 such that for all i ≥ 1, we have Pi(S, .) � P0.
Indeed, all those measures are uniformly continuous with respect to any Gaussian
distribution. This last condition covers, in particular, the case where H is an Euclidean
space and for any i, the distribution Pi,S is a Dirac mass. This is weaker than the
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condition (ii) of the stochastic kernels sequence in Chapter 3, but enough to exploit
the conditional Fubini lemma (Lemma B.4.2).
Wasserstein distance. We focus on the Wasserstein distance of order 1 introduced
by Kantorovitch, 1960 in the optimal transport literature. Given a distance d :
A × A → R and a Polish space (A, d), for any probability measures α and β on A,
the Wasserstein distance is defined by

W1(α, β) := inf
γ∈Γ(α,β)

E
(a,b)∼γ

d(a, b), (6.1)

where Γ(α, β) is the set of joint probability measures γ ∈ M(A2) such that the
marginals are α and β. The Wasserstein distance aims to find the probability measure
γ ∈ M(A2) minimising the expected cost E(a,b)∼γ d(a, b). We refer the reader to
Villani, 2009; Peyré and Cuturi, 2019 for an introduction to optimal transport.

6.3 Wasserstein-based PAC-Bayesian generalisation
bounds

We present novel high-probability PAC-Bayesian bounds involving Wasserstein dis-
tances instead of the classical Kullback-Leibler divergence. Our bounds hold for
heavy-tailed losses (instead of classical subgaussian and subexponential assumptions),
extending the remits of Amit et al., 2022, Theorem 11. We exploit the supermartin-
gale toolbox, recently introduced in PAC-Bayes framework by Chugg et al., 2023;
Haddouche and Guedj, 2023a; Jang et al., 2023, to derive bounds for both batch
learning (Theorems 6.3.1 and 6.3.2) and online learning (Theorems 6.3.3 and 6.3.4).

6.3.1 PAC-Bayes for batch learning with i.i.d. data
In this section, we use the batch setting described in Section 6.2. We state our first
result, holding for heavy-tailed losses admitting order 2 moments. Such an assumption
is in line, for instance, with reinforcement learning with heavy-tailed reward (see, e.g.,
Liu and Zhao, 2011; Lu et al., 2019; Zhuang and Sui, 2021).

Theorem 6.3.1. We assume the loss ` to be L-Lipschitz. Then, for any δ ∈ (0, 1],
for any sequence of positive scalar (λi)i∈{1,...,K}, with probability at least 1− δ over
the sample S, the following holds for the distributions Pi,S := Pi(S, .) and for any
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Q ∈M(H):

E
h∼Q

[
RD(h)− R̂Sm(h)

]

≤
K∑
i=1

2|S im|L
m

W1(Q,Pi,S)+ 1
m

K∑
i=1

ln
(
K
δ

)
λi

+ λi
2

(
E

h∼Pi,S

[
V̂|Sim|(h) + V|Sim|(h)

])
,

where Pi,S does not depend on S im. Also, for any i, |S im|, we have V̂|Sim|(h) =∑
z∈Sim (`(h, z)−RD(h))2 and V|Sim|(h) = ESim

[
V̂|Sim|(h)

]
.

The proof is deferred to Appendix E.2.1. While Theorem 6.3.1 holds for losses taking
values in R, many learning problems rely in practice on more constrained losses. This
loss can be bounded as in the case of, e.g., supervised learning or the multi-armed
bandit problem (Slivkins, 2019), or simply non-negative as in regression problems
involving the quadratic loss (studied, for instance, in Catoni, 2016; Catoni and
Giulini, 2017). Using again the supermartingale toolbox, we prove in Theorem 6.3.2
a tighter bound holding for heavy-tailed non-negative losses.

Theorem 6.3.2. We assume our loss ` to be non-negative and L-Lipschitz.
We also assume that, for any 1 ≤ i ≤ K, for any dataset S, we have
Eh∼Pi(.,S),z∼D [`(h, z)2] ≤ 1 (bounded order 2 moments for priors). Then, for
any δ ∈ (0, 1], with probability at least 1−δ over the sample S, the following holds
for the distributions Pi,S := Pi(S, .) and for any Q ∈M(H):

E
h∼Q

[
RD(h)− R̂Sm(h)

]
≤

K∑
i=1

2|S im|L
m

W1(Q,Pi,S) +
K∑
i=1

√
2|S im| ln K

δ

m2 ,

where Pi,S does not depend on S im.

Note that when the loss function takes values in [0, 1], an alternative strategy allows
tightening the last term of the bound by a factor 1

2 . This result is rigorously stated in
Theorem E.2.1 of Appendix E.2.3.
High-level ideas of the proofs. Theorems 6.3.1 and 6.3.2 are structured around
two tools. First, we exploit the Kantorovich-Rubinstein duality Villani, 2009, Re-
mark 6.5 to replace the change of measure inequality Csiszár, 1975; Donsker and
Varadhan, 1976; this allows us to consider a Wasserstein distance instead of a KL
term. Then, we exploit the supermartingales used in Chapter 2 and Chugg et al.,
2023 alongside Ville’s inequality (instead of Markov’s one) to obtain a high probabil-
ity bound holding for heavy-tailed losses. Combining those techniques provides our
PAC-Bayesian bounds.
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Analysis of our bounds. Our results hold for Lipschitz losses and allow us to con-
sider heavy-tailed losses with bounded order 2 moments. While such an assumption
on the loss is more restrictive than in classical PAC-Bayes, allowing heavy-tailed losses
is strictly less restrictive. While Theorem 6.3.1 is our most general statement, The-
orem 6.3.2 allows recovering a tighter result (without empirical variance terms) for
non-negative heavy-tailed losses. An important point is that the variance terms are
considered with respect to the prior distributions Pi,S and not Q as in Chapter 2. This
is crucial as these chapters rely on the implicit assumption of order 2 moments, holding
uniformly for all Q ∈M(H), while we only require this assumption for the prior distri-
butions (Pi,S)i=1,...,K . Such an assumption is in line with the PAC-Bayesian literature,
which often relies on bounding an averaged quantity with respect to the prior. This
strength is a consequence of the Kantorovich-Rubinstein duality. To illustrate this,
consider i.i.d. data with distribution D admitting a finite variance bounded by V and
the loss `(h, z) = |h − z| where both h and z lie in the real axis. Notice that in this
particular case, we can imagine that z is a data point and h is a hypothesis outputting
the same scalar for all data. To satisfy the assumption of Theorem 6.3.2, it is enough,
by Cauchy Schwarz, to satisfy Eh∼Pi,S ,z∼D[`(h, z)2] ≤ E[h2]+2V E[|h|]+V 2 ≤ 1 for all
Pi,S . On the contrary, Chapter 2 would require this condition to hold for all Q, which
is more restrictive. Finally, an important point is that our bound allows us to consider
Dirac distributions with disjoint support as priors and posteriors. On the contrary, KL
divergence forces us to consider a non-Dirac prior for our bound to be non-vacuous.
This allows us to retrieve a uniform-convergence bound described in Corollary E.2.1.

Role of data-dependent priors. Theorems 6.3.1 and 6.3.2 allow the use of prior
distributions depending possibly on a fraction of data. Such a dependency is crucial
to control our sum of Wasserstein terms as we do not have an explicit convergence
rate. For instance, for a fixed K, consider a compact predictor space H, a bounded
loss and the Gibbs posterior defined as dQ(h) ∝ exp

(
−λR̂Sm(h)

)
dh where λ > 0.

Also define for any i and S, the distribution dPi,S(h) ∝ exp
(
−λRS/Sim(h)

)
dh. Then,

by the law of large numbers, when m goes to infinity, for any h, both RS(h) and
(RS/Sim(h))i=1,...,m converge to RD(h). This ensures, alongside with the dominated
convergence theorem, that for any i, the Wasserstein distance W1(Q,Pi,S) goes to
zero as m goes to infinity.

Comparison with the literature. Amit et al., 2022, Theorem 11 establishes a
PAC-Bayes bound with Wasserstein distance valid for bounded losses being Lipschitz
with high probability. While we circumvent the first assumption, the second one is less
restrictive than actual Lipschitzness and can also be used in our setting. Also Amit
et al., 2022, Theorem 12 proposes an explicit convergence for finite predictor classes.
We show in Appendix E.1 that we are also able to recover such a convergence.

Towards new PAC-Bayesian algorithms. From Theorem 6.3.2, we derive a new
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PAC-Bayesian algorithm for Lipschitz non-negative losses:

argmin
Q∈M(H)

E
h∼Q

[
R̂Sm(h)

]
+

K∑
i=1

2|S im|L
m

W1(Q,Pi,S). (6.2)

Equation (6.2) uses Wasserstein distances as regularisers and allows the use of multi-
ple priors. We compare ourselves to the classical PAC-Bayes algorithm derived from
Catoni, 2007, Theorem 1.2.6 (which leads to Gibbs posteriors):

argmin
Q∈M(H)

E
h∼Q

[
R̂Sm(h)

]
+ KL(Q,P)

λ
. (6.3)

Considering a Wasserstein distance in Equation (6.2) makes our algorithm more flexible
than in Equation (6.3), the KL divergence implies absolute continuity w.r.t. the prior
P. Such an assumption is not required to use Equation (6.2) and covers the case of
prior Dirac distributions. Finally, Equation (6.2) relies on a fixed value K whose value
is discussed below.
Role of K. We study the cases K = 1, √m, and m in Theorem 6.3.2. We refer
to Appendix E.1 for a detailed treatment. First of all, when K = 1, we recover a
classical batch learning setting where all data are collected at once. In this case, we
have a single Wasserstein with no convergence rate coupled with a statistical ersatz
of
√

ln(1/δ)
m

. However, similarly to Amit et al., 2022, Theorem 12, in the case of a
finite predictor class, we are able to recover an explicit convergence rate. The case
K =

√
m provides a tradeoff between the number of points required to have good

data-dependent priors (which may lead to a small ∑√mi=1 W1(Q,Pi)) and the number
of sets required to have an explicit convergence rate. Finally, the case K = m leads
to a vacuous bound as we have the incompressible term

√
ln
(
m
δ

)
, which makes the

bound vacuous for large values of m. This means that the batch setting is not fitted to
deal with a data stream arriving sequentially. To mitigate that weakness, we propose
in Section 6.3.2 the first online PAC-Bayes bounds with Wasserstein distances.

6.3.2 Wasserstein-based generalisation bounds for online
learning

Here, we use the online setting described in Section 6.2 and derive the first online PAC-
Bayes bounds involving Wasserstein distances in Theorems 6.3.3 and 6.3.4. Online
PAC-Bayes bounds are meant to derive online counterparts of classical PAC-Bayesian
algorithms as in Chapter 3, where the KL-divergence acts as a regulariser. We show in
Theorems 6.3.3 and 6.3.4 that it is possible to consider online PAC-Bayesian algorithms
where the regulariser is a Wasserstein distance, which allows us to optimise on measure
spaces without a restriction of absolute continuity.
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Theorem 6.3.3. We assume our loss ` to be L-Lipschitz. Then, for any δ ∈ (0, 1],
with probability at least 1 − δ over the sample S, the following holds for the
distributions Pi,S := Pi(S, .) and for any sequence (Qi)i=1···m ∈M(H)m:

m∑
i=1

E
hi∼Qi

[
E[`(hi, zi) | Fi−1]− `(hi, zi)

]
≤ 2L

m∑
i=1

W1(Qi,Pi,S)

+ λ

2

m∑
i=1

E
hi∼Pi,S

[
V̂i(hi, zi) + Vi(hi)

]
+ ln(1/δ)

λ
,

where for all i, V̂i(hi, zi) = (`(hi, zi)−Ei−1[`(hi, zi)])2 is the conditional empirical
variance at time i and Vi(hi) = Ei−1[V̂ (hi, zi)] is the true conditional variance.

The proof is deferred to Appendix E.2.4. We also provide the following bound, being
an online analogous of Theorem 6.3.2, valid for non-negative heavy-tailed losses.

Theorem 6.3.4. We assume our loss ` to be non-negative and L-Lipschitz. We
also assume that, for any i,S, Eh∼Pi(.,S) [Ei−1[`(h, zi)2]] ≤ 1 (bounded conditional
order 2 moments for priors). Then, for any δ ∈ (0, 1], with probability at least 1−δ
over the sample S, any stochastic kernels sequence (used as priors) (Pi)i≥1, we have
with probability at least 1 − δ over the sample S ∼ D, the following, holding for
the data-dependent measures Pi,S := Pi(S, .) and any posterior sequence (Qi)i≥1:

1
m

m∑
i=1

E
hi∼Qi

[
E[`(hi, zi) | Fi−1]− `(hi, zi)

]
≤ 2L

m

m∑
i=1

W1(Qi,Pi,S) +

√√√√2 ln
(

1
δ

)
m

.

The proof is deferred to Appendix E.2.5.
Analysis of our bounds. Theorems 6.3.3 and 6.3.4 are, to our knowledge, the first
results involving Wasserstein distances for online PAC-Bayes learning. They are the
online counterpart of Theorems 6.3.1 and 6.3.2, and the discussion of Section 6.3.1
about the involved assumptions also apply here. The sum of Wasserstein distances
involved here is a consequence of the online setting and must grow sublinearly for
the bound to be tight. For instance, when (Qi = δhi)i≥1 is the output of an online
algorithm outputting Dirac measures and Pi,S = Qi−1, the sum of Wasserstein is
exactly ∑m

i=1 d(hi, hi−1). This sum has to be sublinear for the bound to be non-
vacuous, and the tightness depends on the considered learning problem. An analogous
of this sum can be found in dynamic online learning Zinkevich, 2003 where similar
sums appear as path lengths to evaluate the complexity of the problem.
Comparison with literature. We compare our results to existing PAC-Bayes bounds
for martingales of Seldin et al., 2012b. Seldin et al., 2012b, Theorem 4 is a PAC-
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Bayes bound for martingales, which controls an average of martingales, similar to our
Theorem 6.3.1. Under a boundedness assumption, they recover a McAllester-typed
bound, while Theorem 6.3.1 is more of a Catoni-typed result. Also, Seldin et al.,
2012b, Theorem 7 is a Catoni-typed bound involving a conditional variance, similar to
our Theorem 6.3.4. They require to bound uniformly the variance on all the predictor
sets, while we only assume averaged variance with respect to priors, which is what we
required to perform Theorem 6.3.4.
A new online algorithm. Chapter 3 derived from their main theorem, an online
counterpart of Equation (6.3), proving it comes with guarantees. Similarly, we exploit
Theorem 6.3.4 to derive the online counterpart of Equation (6.2), from the data-free
initialisation Q1

∀i ≥ 1, Qi ∈ argmin
Q∈M(H)

E
h∼Q

[`(hi, zi)] + 2LW1(Q,Pi,S). (6.4)

We highlight the merits of the algorithm defined by Equation (6.4), alongside with the
one from Equation (6.2), in Section 6.4.

6.4 Learning via Wasserstein regularisation
Theorems 6.3.2 and 6.3.4 are designed to be informative on the generalisation ability
of a single hypothesis even when Dirac distributions are considered. In particular, our
results involve Wasserstein distances acting as regularisers on H. In this section, we
show that a Wasserstein regularisation of the learning objective, which comes from our
theoretical bounds, helps to better generalise in practice. Inspired by Equations (6.2)
and (6.4), we derive new PAC-Bayesian algorithms for both batch and online learn-
ing involving a Wasserstein distance (see Section 6.4.1), we describe our experimental
framework in Section 6.4.2 and we present some of the results in Section 6.4.3. Addi-
tional details, experiments, and discussions are gathered in Appendix E.3 due to space
constraints. All the experiments are reproducible with the source code provided on
GitHub at https://github.com/paulviallard/NeurIPS23-PB-Wasserstein.

6.4.1 Learning algorithms
Classification. In the classification setting, we assume that the data space Z = X×Y
is composed of a d-dimensional input space X = {x ∈ Rd | ‖x‖2 ≤ 1} and a finite
label space Y = {1, . . . , |Y|} with |Y| labels. We aim to learn models hw : Rd → R|Y|

parameterised by a weight vector w that outputs, given an input x ∈ X , a score
hw(x)[y′] ∈ R for each label y′. This score allows us to assign a label to x ∈ X ;
to check if hw classifies correctly the example (x, y), we use the classification loss
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defined by `c(hw, (x, y)) := 1 [hw(x)[y]−maxy′ 6=y hw(x)[y′] ≤ 0], where 1 denotes
the indicator function.
Batch algorithm. In the batch setting, we aim to learn a parametrised hypoth-
esis hw ∈ H that minimises the population classification risk, namely, RD(hw) =
E(x,y)∼D `

c(hw, (x, y)) that we can only estimate through the empirical classification
risk RS(hw) = 1

m

∑m
i=1 `

c(hw, (xi, yi)). To learn the hypothesis, we start from Equa-
tion (6.2), when the distributions Q and P1, . . . ,PK are Dirac masses, localised at
hw, hw1 , . . . hwK

∈ H respectively. Indeed, in this case, W1(Q,Pi,S) = d(hw, hwi
)

for any i. However, the loss `c(., z) is not Lipschitz and the derivatives are zero for
all examples z ∈ X × Y , which prevents its use in practice to obtain such a hypoth-
esis hw. Instead, for the population risk RD(h) and the empirical risk R̂Sm(h) (in
Theorem 6.3.2 and Equation (6.2)), we consider the loss defined as `(h, (x, y)) =
1
|Y|
∑
y′ 6=y max(0, 1−η(h[y]−h[y′])), which is η-Lipschitz w.r.t. h[1], . . . , h[|Y|]. This

loss has subgradients everywhere, which is convenient in practice. We go a step further
by (a) setting L = 1

2 and (b) adding a parameter ε > 0 to obtain the objective

argmin
hw∈H

{
R̂Sm(hw) + ε

[
K∑
i=1

|S im|
m

d (hw, hwi
)
]}

. (6.5)

To (approximately) solve Equation (6.5), we propose a two-step algorithm. First, Pri-
ors Learning learns K hypotheses hw1 , . . . , hwK

∈ H by minimising the empirical
risk via stochastic gradient descent. Second, Posterior Learning learns the hy-
pothesis hw ∈ H by minimising the objective associated with Equation (6.5). More
precisely, Priors Learning outputs the hypotheses hw1 , · · · , hwK

, obtained by min-
imising the empirical risk through mini-batches. Those batches are designed such that
for any i, the hypothesis hwi

does not depend on S im. Then, given hw1 , . . . , hwK
∈ H,

Posterior Learning minimises the objective in Equation (6.5) with mini-batches.
Those algorithms are presented in Algorithm 4 of Appendix E.3. While ε is not sug-
gested by Equation (6.2), it helps to control the impact of the regularisation in practice.
Equation (6.5) then optimises a tradeoff between the empirical risk and the regulari-
sation term ε

∑K
i=1

|Sim|
m
d(hw, hwi

).
Online algorithm. Online algorithms output, at each time step i ∈ {1, . . . ,m}, a new
hypothesis hwi

. From Equation (6.4), particularised to a sequence of Dirac distributions
(localised in hw1 , · · · , hwK

), we design a novel online PAC-Bayesian algorithm with a
Wasserstein regulariser:

∀i ≥ 1, hi ∈ argmin
hw∈H

`(hw, zi) + d
(
hw, hwi−1

)
s.t. d

(
hw, hwi−1

)
≤ 1. (6.6)

According to Theorem 6.3.4, such an algorithm aims to bound the population cumu-
lative classification loss CD = ∑m

i=1 E[`c(hwi
, zi) | Fi−1]. Note that we added the

constraint d
(
hw, hwi−1

)
≤ 1 compared to Equation (6.4). This constraint ensures
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that the new hypothesis hwi
is not too far from hwi−1 (in the sense of the distance

‖ · ‖2). Note that the constrained optimisation problem in Equation (6.6) can be
rewritten in an unconstrained form (see Boyd and Vandenberghe, 2004) thanks
to a barrier B(·) defined by B(a) = 0 if a ≤ 0 and B(a) = +∞ otherwise; we have

∀i ≥ 1, hi ∈ argmin
hw∈H

`(hw, zi) + d
(
hw, hwi−1

)
+B(d

(
hw, hwi−1

)
− 1). (6.7)

When solving the problem in Equation (6.7) is not feasible, we approximate it with
a log barrier of Kervadec et al., 2022 (suitable in a stochastic gradient setting);
given a parameter t > 0, the log barrier extension is defined by B̂(a) = −1

t
ln(−a)

if a ≤ − 1
t2

and B̂(a) = ta − 1
t

ln( 1
t2

) + 1
t

otherwise. We present in Appendix E.3
Algorithm 5 that aims to (approximately) solve Equation (6.7). To do so, for each
new example (xi, yi), the algorithm runs several gradient descent steps to optimise
Equation (6.7).

6.4.2 Experimental framework
In this part, we assimilate the predictor space H to the parameter space Rd. Thus, the
distance d is the Euclidean distance between two parameters: d (hw, hw′) = ‖w−w′‖2.
This implies that the Lipschitzness of ` has to be taken w.r.t. w instead of hw.
Models. We consider that the models are either linear or neural networks (NN).
Linear models are defined by hw(x) = Wx + b, where W ∈ R|Y|×d is the weight
matrix, b ∈ R|Y| is the bias, and w = vec({W, b}) its vectorisation; the vector w
with the zero vector. Thanks to the definition of X , we know from Lemma E.3.1
(and the composition of Lipschitz functions) that the loss is

√
2η-Lipschitz w.r.t. w.

For neural networks, we consider fully connected ReLU neural networks with L hidden
layers and D nodes, where the leaky ReLU activation function ReLU : RD → RD

applies elementwise x 7→ max(x, 0.01x). More precisely, the network is defined by
hw(x) = WhL(· · ·h1(x)) + b where W ∈ R|Y|×D, b ∈ R|Y|. Each layer hi(x) =
ReLU(Wix + bi) has a weight matrix Wi ∈ RD×D and bias bi ∈ RD except for
i = 1 where we have W1 ∈ RD×d. The weights w are also the vectorisation w =
vec({W,WL, . . . ,W1, b, bL, . . . , b1}). We have precised in Lemma E.3.2 that our loss
is Lipschitz w.r.t. the weights w. We initialise the network similarly to Dziugaite
and Roy, 2017 by sampling the weights from a Gaussian distribution with zero mean
and a standard deviation of σ = 0.04; the weights are further clipped between −2σ
and +2σ. Moreover, the values in the biases b1, . . . , bL are set to 0.1, while the values
for b are set to 0. In the following, we consider D = 600 and L = 2; more experiments
are considered in the appendix.
Optimisation. To perform the gradient steps, we use the COCOB-Backprop opti-
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miser Orabona and Tommasi, 2017 (with parameter α = 10000).1 This optimiser
is flexible as the learning rate is adaptative and, thus, does not require hyperparameter
tuning. For Algorithm 4, which solves Equation (6.5), we fix a batch size of 100, i.e.,
|U| = 100, and the number of epochs T and T ′ are fixed to perform at least 20000
iterations. Regarding Algorithm 5, which solves Equation (6.7), we set t = 100 for the
log barrier, which is enough to constrain the weights and the number of iterations to
T = 10.
Datasets. We study the performance of Algorithms 4 and 5 on UCI datasets (Dua
and Graff, 2017) along with MNIST (LeCun, 1998) and FashionMNIST (Xiao
et al., 2017). We also split all the data (from the original training/test set) in two
halves; the first part of the data serves in the algorithm (and is considered as a training
set), while the second part is used to approximate the population risks RD(h) and CD
(and considered as a testing set).

6.4.3 Results
We present in Tables 6.1 and 6.2 the performance of Algorithms 4 and 5 compared
to the Empirical Risk Minimisation (ERM) and the Online Gradient Descent (OGD)
with the COCOB-Backprop optimiser. Tables 6.1a and 6.2a present the results of
Algorithm 4 for the i.i.d. setting on linear and neural networks respectively, while
Tables 6.1b and 6.2b present the results of Algorithm 5 for the online case.
Analysis of the results. In batch learning, we note that the regularisation term brings
generalisation improvements compared to the empirical risk minimisation. Indeed, our
batch algorithm (Algorithm 4) has a lower population risk RD(h) on 11 datasets for
the linear models and 9 datasets for the neural networks. In particular, notice that
NNs obtained from Algorithm 4 are more efficient than the ones obtained from ERM
on MNIST and FashionMNIST, which are the more challenging datasets. This
suggests that the regularisation term helps to generalise well. For the online case,
the performance of the linear models obtained from our algorithm (Algorithm 5) and
by OGD are comparable: we have a tighter population classification risk RD(h) on
5 datasets over 13. However, notice that the risk difference is less than 0.05 on 6
datasets. The advantage of Algorithm 5 is more pronounced for neural networks: we
improve the performance in all datasets except adult and sensorless. Hence,
this confirms that optimising the regularised loss `(hw, zi) +‖w−wi−1‖ brings a good
advantage compared to the loss `(hw, zi) only. A possible explanation would be that
OGD suffers from underfitting (with a high empirical risk CD) while we are able to
control overfitting through a regularisation term. Indeed, only one gradient descent
step is done for each new datum (xi, yi), which might not be sufficient to decrease

1The parameter α in COCOB-Backprop can be seen as an initial learning rate; see Orabona
and Tommasi, 2017.
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Table 6.1. Performance of Algorithms 4 and 5 compared respectively to ERM and
OGD on different datasets on linear models. For the i.i.d. setting, we consider ε = 1

m

and ε = 1√
m

and with K = 0.2
√
m. For each method, we plot the empirical risk

RS(h) or CS with its associated test risk RD(h) or CD. The risk in bold corresponds
to the lowest one among the ones considered. For the online case, the two population
risks are underlined when the absolute difference is lower than 0.05.
(a) Linear model –
batch learning

Algo. 4 ( 1
m) Algo. 4 ( 1√

m
) ERM

Dataset RS(h) RD(h) RS(h) RD(h) RS(h) RD(h)

adult .165 .166 .165 .167 .166 .167
fashionmnist .128 .151 .126 .148 .139 .153

letter .285 .297 .287 .296 .287 .297
mnist .200 .216 .066 .092 .065 .091

mushrooms .001 .001 .001 .001 .001 .001

nursery .766 .773 .760 .773 .794 .807
pendigits .049 .059 .050 .061 .052 .064
phishing .063 .067 .065 .069 .064 .067

satimage .144 .200 .138 .201 .148 .209
segmentation .057 .216 .164 .386 .087 .232

sensorless .129 .129 .131 .131 .134 .136
tictactoe .388 .299 .013 .021 .228 .238

yeast .527 .497 .524 .504 .470 .427

(b) Linear model – online
learning

Algo. 5 OGD
CS CD CS CD

.230 .236 .248 .248

.223 .282 .540 .548

.919 .935 .916 .926

.284 .310 .378 .397

.218 .222 .082 .087

.794 .807 .789 .805

.342 .484 .589 .600

.226 .242 .226 .220

.669 .938 .635 .888

.749 .803 .738 .893

.906 .910 .825 .830

.443 .468 .390 .303

.699 .713 .667 .708

the loss. Instead, our method solves the problem associated with Equation (6.7) and
constrains the descent with the norm ‖w−wi−1‖.
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Table 6.2. Performance of Algorithms 4 and 5 compared respectively to ERM and
OGD on different datasets on neural network models. For the i.i.d. setting, we consider
ε = 1

m
and ε = 1√

m
and with K = 0.2

√
m. For each method, we plot the empirical risk

RS(h) or CS with its associated test risk RD(h) or CD. The risk in bold corresponds
to the lowest one among the ones considered. For the online case, the two population
risks are underlined when the absolute difference is lower than 0.05.
(a) NN model – batch
learning

Algo. 4 ( 1
m) Algo. 4 ( 1√

m
) ERM

Dataset RS(h) RD(h) RS(h) RD(h) RS(h) RD(h)

adult .164 .164 .166 .165 .165 .163

fashionmnist .159 .163 .156 .160 .163 .167
letter .259 .272 .250 .260 .258 .270
mnist .112 .120 .084 .094 .119 .127

mushrooms .000 .000 .000 .000 .000 .000

nursery .706 .719 .706 .719 .706 .719

pendigits .009 .023 .021 .032 .009 .022

phishing .042 .050 .039 .054 .046 .055
satimage .132 .184 .149 .172 .141 .189

segmentation .145 .250 .189 .373 .174 .389
sensorless .076 .079 .077 .079 .075 .078

tictactoe .392 .301 .000 .038 .000 .023

yeast .679 .666 .487 .478 .644 .682

(b) NN model – online
learning

Algo. 5 OGD
CS CD CS CD

.241 .254 .248 .248

.096 .327 .397 .446

.829 .945 .958 .963

.092 .265 .470 .521

.082 .122 .202 .217

.800 .805 .793 .806

.323 .537 .871 .879

.164 .222 .331 .318

.401 .763 .626 .857

.619 .857 .739 .913

.899 .910 .622 .633

.388 .309 .397 .309

.662 .720 .702 .720

6.5 Conclusion
We derived new learning algorithms based on Wasserstein PAC-Bayes bounds. Such
remarkable empirical results shows the strengths of the optimisation perspective on
PAC-Bayes learning. Indeed, we exploited here various paradigms gathered in Fig-
ure 1.2: weak statistical assumptions with stronger geometric ones (heavy-tailed lip-
schitz losses), the use of deterministic predictors, allowed through the introduction
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of Wasserstein distance. For the online method, we also involve the vision of prior
as initialisation point, which is attenuated theoretically as the learning process goes.
Finally, note that for our batch methods to work, we involved data-dependent priors
which is an ersatz from the information-theoretic view of PAC-Bayes (Figure 1.1) cir-
cumventing this limitation, possibly by exploiting the results of Chapter 4 in the batch
learning case is a promising future lead to reach not only strong performances, but
also non-vacuous theoretical guarantees, which is not the case here.
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Conclusion
In this thesis we studied various interplays between PAC-Bayes learning and optimisa-
tion. Doing so, we challenged various prerequisites of PAC-Bayes bounds:

• Strong statistical assumptions. The main conclusion of Chapter 2 is that, in
order to perform PAC-Bayes, no assumption stronger than finite variance is re-
quired. In particular, classical bounded or subgaussian assumptions on the loss
can be replaced by bounded variance at no additional cost. Note also that in
Chapter 5, it is even possible to relax this assumption to boundedness over a
compact alongisde lipschitz or gradient lipschitz assumption. This is consistent
with optimisation which often involves such geometric assumptions. Further-
more, the supermartingale toolbox allows bounds holding for all dataset size
simultaneously, which is consistent with, e.g., online optimisation.

• The information-theoretic perspective of the prior. A major contribution has been
to formalise perspectives on the prior differing from the Bayesian view paradigm.
Indeed, by considering the prior either as an initialisation point or a learning
objective, we derived novel PAC-Bayesian bounds aiming to either reduce the
impact of the prior (Chapters 3 and 4) when seen as initialisation or highlight
it (Chapter 5) when seen as a learning objective. This drove the emergence of
Online PAC-Bayes learning and the introduction of gradient norm or convergence
guarantees in PAC-Bayes.

• PAC-Bayes is useful for stochastic predictors only.. Following the spirit of Amit
et al. (2022), we developed Wasserstein PAC-Bayes to incorporate deterministic
predictors within PAC-Bayes bounds, as such predictors are often involved in
optimisation algorithms. To obtain explicit convergence rates with such bounds
we exploited duality results from optimal transport in Chapter 5. We also in-
corporated directly convergence guarantees of the Bures-Wasserstein SGD in a
generalisation bound, at the price of an explicit impact of the dimension of the
predictor space. It is then hard to tackle the case of deep neural networks, this is
why we developed in Chapter 6, another kind of Wasserstein PAC-Bayes bounds,
with no explicit convergence rate, but yielding learning algorithm exploitable for
neural nets.
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Perspectives
This thesis left unanswered many important questions on the interplays of optimisation
and generalisation.

• Can we relax the finite variance assumption to obtain generalisation bounds? As
proven Chapter 2 and Chugg et al. (2023) it is possible to extend a large body
of generalisation bounds to the case of finite variance. An interesting question
is whether such an assumption is relaxed, this would be of interest, for instance,
to understand the case of heavy-tailed SGD (Gürbüzbalaban et al., 2021)
which may be modelled by Lévy processes, often having infinite variance.

• Can we further exploit flat minima to understand generalisation? Chapter 4 pro-
posed the first PAC-Bayes generalisation bounds exploiting flat minima. However
the QSB assumption is required to exploit those results. While we saw that such a
condition is verified by small networks, whether this condition is verified for deep
neural nets remains an open question. Furthermore, the only empirical bound we
have implies gradient lipschitz loss, a condition possibly hard to reach for deep
nets. Empirical evaluation of those results is then an interesting future lead.

• Can we reach Wasserstein PAC-Bayes bound as simple and efficient than a KL
one? As shown in Chapter 5 and Chapter 6 we did not obtain Wasserstein PAC-
Bayes bounds with explicit convergence rate and without the explicit impact of
the dimension as in KL-based PAC-Bayes bounds. An open question is whether
it is possible to obtain a Wasserstein PAC-Bayes with both these desirable prop-
erties simultaneously.

• Investigating the links between Online Learning and PAC-Bayes. Chapter 3
draws a link from PAC-Bayes toward online learning by deriving novel learn-
ing algorithms from Online PAC-Bayes bounds. Recently, the elegant work of
Lugosi and Neu (2023) has taken the opposite perspective: starting from
an online game they retrieve various generalisation bound, including KL-based
and Wasserstein-based ones. Given the direct connection between online learn-
ing and the supermartingale framework (Wintenberger, 2021), obtaining a
unifying framework encompassing Wasserstein and KL-based PAC-Bayes from
online learning for heavy-tailed losses is a promising future lead. A first step
in this direction has recently been made Viallard et al. (2024) but does not
involve online learning and holds only for bounded losses.

Investigating those leads, and then reaching a better understanding of the impact of
optimisation on generalisation are exciting questions for future work
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A.1 Some PAC-Bayesian background
We present below an immediate corollary of Seldin et al. (2012a, Thm 2.1) where
we upper bounded the cumulative by an empirical quantity (the sum of squared upper
bound of the martingale difference sequence).

Theorem A.1.1 (Seldin et al., 2012a, Theorem 2.1). Let {C1, C2, . . .} be an
increasing sequence set in advance, such that |Xi(Si, h)| ≤ Ci for all
Si, h with probability 1. Let {P1, P2, . . .} be a sequence of data-free prior distribu-
tions over H. Let (λi)i≥1 be a sequence of positive numbers such that

λm ≤
1
Cm

.

Then with probability 1− δ over S = (zi)i≥1, for all m ≥ 1, any posterior Q over
H,

|Mm (Q)| ≤
KL (Q,Pm) + 2 log(m+ 1) + log 2

δ

λm
+ (e− 2)λmVm(Q),

where Vm(Q) is defined in appendix A.2.1.
Furthermore, if we bound the variance term, we would have:

|Mm (Q)| ≤
KL (Q,Pm) + 2 log(m+ 1) + log 2

δ

λm
+ (e− 2)λm

m∑
i=1

C2
i .

Below, we use the definitions introduced in Section 2.2.3. We study here a particular
case of Alquier et al., 2016 for bounded losses which are especially subgaussian
thanks to Hoeffding’s lemma.

Theorem A.1.2 (Adapted from Alquier et al., 2016, Theorem 4.1). Let m >
0,Sm = (z1, ..., zm) be an i.i.d. sample from the same law µ. For any data-free
prior P, for any loss function ` bounded by K, any λ > 0, δ ∈]0; 1[, one has with
probability 1− δ for any posterior Q ∈M1(H)

Eh∼Q[R(h)] ≤ Eh∼Q[R̂Sm(h)] + KL(Q,P) + log(1/δ)
λ

+ λK2

2m .
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Theorem A.1.3 (Haddouche et al., 2021, Theorem 3). Let the loss ` be
HYPE(K) compliant. For any P ∈ M(H) with no data dependency, for any
α ∈ R and for any δ ∈ [0, 1], we have with probability at least 1 − δ over size-m
samples S, for any Q

Eh∼Q [R(h)] ≤ Eh∼Q
[
R̂Sm(h)

]
+

KL(Q,P) + log
(

1
δ

)
mα

+ 1
mα

log
(

Eh∼P

[
exp

(
K(h)2

2m1−2α

)])
.

A.2 Extensions of previous results
Here we gather several corollaries of our main result in order to show how our Theo-
rem 2.2.1 extends the validity of some classical results in the literature. More precisely
we show that our result extends (up to numerical factors) the PAC-Bayes Bernstein
inequality of Seldin et al. (2012a). Then, going back to the bounded case, we gen-
eralise a result from Catoni (2007) reformulated in Alquier et al. (2016) and we
also show how our work strictly improves on the bound of Haddouche et al. (2021).

A.2.1 Extension of the PAC-Bayes Bernstein inequality
Here we rename two terms for consistency with Theorem 2.1 of Seldin et al. (2012a)
(see Theorem A.1.1). For a martingale Mm(h) = ∑m

i=1Xi(Si, h), we define, at time
m, empirical cumulative variance to be V̂m(h) = [M ]m(h) = ∑m

i=1Xi(Si, h)2 and the
cumulative variance as Vm(h) = 〈M〉m(h) = ∑m

i=1 Ei−1[Xi(Si, h)2].
We provide below a corollary containing two bounds: the first one being a straight-
forward corollary of Th. 2.2.1, the second being valid for bounded martingales and
formally close to Theorem 2.1 of Seldin et al. (2012a).

Corollary A.2.1. Let {P1,P2, . . .} be a sequence of data-free prior distributions
over H. Let (λi)i≥1 be a sequence of positive numbers. Then the following holds
with probability 1 − δ over S = (zi)i≥1: for any tuple (m,λk,Pk) with m, k ≥ 1,
any posterior Q over H,

|Mm (Q)| ≤ KL (Q,Pk) + 2 log(k + 1) + log(2/δ)
λk

+ λk
2
(
V̂m(Q) + Vm(Q)

)
,

(A.1)

with V̂m(Q) = Eh∼Q[V̂m(h)], Vm(Q) = Eh∼Q[Vm(h)]. Furthermore, if we assume
that for any i, there exists Ci > 0 such that |Xi(Si, h)| ≤ Ci for all Si, h then we
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have the following corollary: with probability 1−δ over S, for any tuple (m,λm,Pm)
m ≥ 1, any posterior Q,

|Mm (Q)| ≤ KL (Q,Pm) + 2 log(m+ 1) + log(2/δ)
λm

+ λm
m∑
i=1

C2
i . (A.2)

The proof is deferred to appendix A.3. Note that Eq. (A.1) holds uniformly on all
tuples {(λk,Pk,m) | k ≥ 1,m ≥ 1} while Eq. (A.2), as well as Theorem 2.1 of
Seldin et al. (2012a) holds uniformly on the tuples {(λm,Pm,m) | m ≥ 1} which
is a strictly smaller collection. Hence our approach gives guarantees for a larger event
with the same confidence level.
Furthermore, Theorem 2.1 of Seldin et al. (2012a) involves the cumulative variance
Vm(Q) (and not its empirical counterpart). Because this term is theoretical, we bound
it in Th. A.1.1 by ∑m

i=1C
2
i which is supposedly empirical. In this context, Eq. (A.2),

recovers nearly exactly the bound of Seldin et al., 2012a with the transformation of
a factor (e− 2) into 1. Notice also that Eq. (A.2) stands with no assumption on the
range of the λi, which is not the case in Th. A.1.1.
Finally, we stress two fundamental differences between our work and the one of Seldin
et al. (2012a). First, we replace Markov’s inequality by Ville’s inequality; second, we
exploited the exponential inequality of Lemma 2.1.2 instead of the Bernstein inequality.
These allow for results for unbounded martingales for all m simultaneously.

A.2.2 Extensions of learning theory results
A.2.2.1 A general result for bounded losses

We use definitions from Section 2.2.3 and provide a corollary of our main result when
the loss is bounded by a positive constant K > 0. We assume our data are iid.

Corollary A.2.2. For any data-free prior P ∈ M(H), any λ > 0 the following
holds with probability 1 − δ over the sample S = (zi)i∈N, for all m ∈ N/{0},
Q ∈M(H)

∣∣∣Eh∼Q[R(h)]− Eh∼Q
[
R̂Sm(h)

]∣∣∣ ≤ KL(Q,P) + log(2/δ)
λm

+ λK2.

We also have the local bound: for any m ≥ 1, with probability 1 − δ over S, for
all Q ∈M(H)

Eh∼Q[R(h)] ≤ Eh∼Q
[
R̂Sm(h)

]
+ KL(Q,P) + log(2/δ)

λ
+ λK2

m
.
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The proof is deferred to appendix A.3. Remark that the second bound of Corollary
A.2.2 is exactly the Catoni bound stated in Alquier et al. (2016) (see Theorem A.1.2
in Appendix A.1) up to a numerical factor of 2.
The first bound is, to our knowledge, the first PAC-Bayesian bound for bounded losses
holding uniformly (for a given parameter λ) on the choice of Q,m and thus extends
the scope of Catoni’s bound which holds for a single m with high probability. Indeed,
if we want for instance Theorem A.1.2 to hold for any i ∈ {1..m}, we then have to
take an union bound on m events which turns the term log(1/δ) into log(m/δ) (but
with the benefit of holding for m parameters λ1, ..., λm). This point is common to the
most classical PAC-Bayesian bounds (including McAllester and Catoni’s ones (1.3),
(1.4)) and impeach us to have a bound uniformly on all m ∈ N/{0} as log(m) goes
to infinity asymptotically.

A.2.2.2 An extension of Haddouche et al. (2021)

We now focus on the work of Haddouche et al. (2021) which provides general PAC-
Bayesian bounds for unbounded losses. Their theorems hold for iid data and under
the so-called HYPE (for HYPothesis-dependent rangE) condition. It states that a loss
function ` is HYPE (K) compliant if there exists a function K : H → R+ (supposedly
accessible) such that ∀z ∈ Z, `(h, z) ≤ K(h). We provide Corollary A.2.3 to compare
ourselves with their main result (stated in Theorem A.1.3 for convenience).

Corollary A.2.3. For any data-free prior P ∈ M(H), any loss function ` being
HYPE (K) compliant, any α ∈ [0, 1],m ≥ 1, the following holds with probability
1− δ over the sample S = (zi)i∈N, for all Q ∈M(H)

Eh∼Q[R(h)] ≤ Eh∼Q

[
1
m

m∑
i=1

(
`(h, zi) + 1

2m1−α `(h, zi)
2
)]

+ KL(Q,P) + log(1/δ)
mα

+ 1
2m1−αEh∼Q[K2(h)].

Proof. The proof is a straightforward application of Th. 2.2.2 by fixing m ≥ 1
choosing λ = mα−1 (thus we localise Theorem 2.2.2 to a single m), and bounding
Quad(h) by K2(h). �

The main improvement of our bound over Theorem A.1.3 is that we do not have
to assume the convergence of an exponential moment to obtain a non-trivial bound.
Indeed, we transformed the (implicit) assumption Eh∼P

[
exp

(
K(h)2

2m1−2α

)]
< +∞ onto
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Eh∼Q[K(h)2] < +∞, which is significantly less restrictive. Furthermore, Theorem A.1.3
holds for a single choice of m while ours still holds uniformly over all integers m > 0.
Cor. A.2.3 also sheds new light on the HYPE condition. Indeed, in Haddouche
et al. (2021), K only intervenes in an exponential moment involving the prior P, while
ours considers a second-order moment on K implying the posterior Q. The difference
is major as Eh∼Q[K(h)2] can be controlled by a wise choice of posterior. Thus it can
be incorporated in our optimisation route, acting now as an optimisation constraint
instead of an environment constraint.

A.3 Proofs
A.3.1 Proof of Th. 2.2.2

Proof. Let P a fixed data-free prior, set (Fi)i≥0 such that for all i, zi is Fi mea-
surable. We also set for any fixed h ∈ H,Mm(h) := ∑m

i=1 `(h, zi) − R(h). Note
that because data are i.i.d., for any fixed h, the sequence (Mm(h))m is indeed a
martingale. We set for any m ≥ 1, h ∈ H

[M ]m(h) =
m∑
i=1

(`(h, zi)− R(h))2

and

〈M〉m(h) =
m∑
i=1

Ei−1[(`(h, zi)− R(h))2] =
m∑
i=1

Ez∼D[(`(h, z)− R(h))2].

The last equality holds because data is assumed iid. Thus, we can apply Th. 2.2.1
to obtain with probability 1− δ

|Mm(Q)| ≤ KL(Q,P) + log(2/δ)
λ

+ λ

2
(
[M ]m(Q)2 + 〈M〉m(Q)2

)
.

Now, we notice that |Mm(Q)| = m|Eh∼Q[R(h)− R̂Sm(h)]| and that for any m,h,
because ` is nonnegative

[M ]m(h) + 〈M〉m(h) =
m∑
i=1

(`(h, zi)− R(h))2 + Ez∼D[(`(h, z)− R(h))2]

≤
m∑
i=1

`(h, zi)2 + R(h)2 + Ez∼D[`(h, z)2]− R(h)2.
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Thus integrating over h gives:

[M ]m(Q) + 〈M〉m(Q) ≤
m∑
i=1

Eh∼Q[`(h, zi)2] +mEh∼Q[Quad(h)].

Then dividing by m and applying the last inequality gives

Eh∼Q[R(h)] ≤ Eh∼Q

[
1
m

m∑
i=1

(
`(h, zi) + λ

2 `(h, zi)
2
)]

+ KL(Q,P) + log(2/δ)
λm

+ λ

2 Eh∼Q[Quad(h)].

This concludes the proof. �

A.3.2 Proof of Th. 2.3.1

Proof. Let (λm)i≥1 be a countable sequence of positive scalars. As precised earlier
Mm(a) := m

(
∆̂m(a)−∆(a)

)
is a martingale. We then apply Theorem 2.2.1

with the uniform prior (∀a, P (a) = 1
K

) and λ = λm (depending possibly on m):
with probability 1− δ/2, for any tuple (m,λm) with m ≥ 1, any posterior Q,

|Mm (Q)| ≤ KL (Q,P) + 2 + log(4/δ)
λm

+ λm
2
(
V̂m(Q) + Vm(Q)

)
.

Notice that for any Q, KL(Q,P) ≤ log(K) by concavity of the log. We now fix
an horizon M > 0, we then have in particular, with probability 1 − δ/2: for any
posterior Q,

|Mm (Q)| ≤ log(K) + 2 log(k + 1) + log(4/δ)
λk

+ λm
2
(
V̂m(Q) + Vm(Q)

)
.

We now have to deal with Vk(Q), V̂k(Q) for all k ≤ m. To do so, we propose the
two following lemmas.

Lemma A.3.1. For all m ≥ 1, a ∈ A, Vm(a) ≤ 2Cm
εm

. Then, we have for any
m,Q, Vm(Q) ≤ 2Cm

εm
.
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Proof. We have

Vt(a) =
m∑
i=1

E
[([

Ra∗

i −Ra
i

]
−∆(a)

)2
| Fi−1

]

=
m∑
i=1

E
[(
Ra∗

i −Ra
i

)2
| Fi−1

]
−m∆(a)2

≤
m∑
i=1

E
[(
Ra∗

i −Ra
i

)2
| Fi−1

]

=
m∑
i=1

E

[
EAi∼πiERi

[
1

πi(a∗)2Ri(a∗)21(Ai = a∗) + 1
πi(a)2Ri(a)21(Ai = a)

]
| Fi−1

]
.

The last line holding because Ri is independent of Fi−1, Ai is independent of
Ri and π is Fi−1 measurable. We now use that for all i, a, ERi [Ri(a)2] ≤ C

=
m∑
i=1

E

[
EAi∼πi

[
1

πi(a∗)2C1(Ai = a∗) + 1
πi(a)2C1(Ai = a)

]
| Fi−1

]

=
m∑
i=1

C

(
πi(a)
πi(a)2 + πi (a∗)

πi (a∗)2

)

=
m∑
i=1

C

(
1

πi(a) + 1
πi (a∗)

)

≤ 2Cm
εm

.

�

Lemma A.3.2. Let m ≥ 1, with probability 1− δ/2, for any posterior Q, we
have

V̂m(Q) ≤ 4CKm
εmδ

.
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Proof. Let Q a distribution over A. Recall that

V̂m(Q) =
m∑
i=1

(
Ra∗

i −Ra
i − [R (a∗)−R(a)]

)2

=
∑
a∈A

Q(a)V̂m(a).

Notice that for any a, ( ˆSMa

m)m is a nonnegative random variable. We then
apply Markov’s inequality for any a, with probability 1− δ/2K

V̂m(a) ≤ 2KE[V̂m(a)]
δ

.

Noticing that E[V̂m(a)] = E[Vm(a)], we can apply lemma A.3.1 to conclude
that

E[V̂m(a)] ≤ 2Cm
εm

.

Finally, taking an union bound on thoser events for all a ∈ A gives us, with
probability 1− δ/2, for any posterior Q

Vm(Q) ≤
∑
a∈A

Q(a)V̂m(a)

≤
∑
a∈A

Q(a)4CKm
εmδ

= 4CKm
εmδ

.

This concludes the proof. �

To conclude, we apply lemmas A.3.1 and A.3.2 to get that with probability 1− δ,
for any posterior Q

|Mm (Q)| ≤ KL (Q,P) + log(4/δ)
λm

+ Cmλm
εm

(
1 + 2K

δ

)
.

Dividing by m and taking

λm =
√√√√(log(K) + log(4/δ)) εm

Cm
(
1 + 2K

δ

)
concludes the proof.

�
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A.3.3 Proof of Cor. A.2.1

Proof. Fix δ > 0. For any pair (λk, Pk), k ≥ 1, we apply Theorem 2.2.1 with

δk := δ

k(k + 1) ≥
δ

(k + 1)2 .

Notice that we have ∑+∞
k=1 δk = δ. We then have with probability 1 − δk over S,

for any m ≥ 1, any posterior Q,

|Mm (Q)| ≤ KL (Q,Pk) + 2 log(k + 1) + log(2/δ)
λk

+ λk
2
(
V̂m(Q) + Vm(Q)

)
.

Taking an union bound on all those event, gives the final result, valid with proba-
bility 1 − δ over the sample S, for any any tuple (m,λk, Pk) with m, k ≥ 1, any
posterior Q over H. This gives Equation (A.1).
To obtain Eq. (A.2), we restrict the range of Eq. (A.1) to the tuples (m,λm, Pm),m ≥
1 (the restricted set of tuples where k = m) and we bound both V̂m(Q), Vm(Q)
by ∑m

i=1 C
2
i to conclude. �

A.3.4 Proof of Cor. A.2.2

Proof. For the first bound we start from the intermediary result Eq. (2.3) of
Th. 2.2.1. Using the same marrtingale as in Th. 2.2.2 gives, for any η ∈ R,
holding with probability 1− δ for any m > 0, Q ∈M(H)

η

(
m∑
i=1

Eh∼Q[`(h, zi)]−mEh∼Q[R(h)]
)

≤ KL(Q,P) + log(1/δ) + η2

2

m∑
i=1

Eh∼Q[∆[M ]i(h) + ∆〈M〉i(h)].

Taking η = ±λ with λ > 0 gives

λm
∣∣∣Eh∼Q[R(h)− R̂Sm(h)]

∣∣∣ ≤ KL(Q,P) + log(1/δ) (A.3)

+ λ2

2

m∑
i=1

Eh∼Q[∆[M ]i(h) + ∆〈M〉i(h)]. (A.4)

Finally, divide by λm and bound ∆[M ]i(h) + ∆〈M〉i(h) by 2K2 to conclude.
For the second bound, we start from Equation (A.3) again and for a fixed m, we
now apply our result with λ′ = λ/m. We then have for any m, with probability
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1− δ, for any Q

λ
∣∣∣Eh∼Q[R(h)− R̂Sm(h)]

∣∣∣ ≤ KL(Q,P)+log(1/δ)+ λ2

2m2

m∑
i=1

Eh∼Q[∆[M ]i(h)+∆〈M〉i(h)].

Finally, dividing by λ, bounding ∆[M ]i(h) + ∆〈M〉i(h) by 2K2 and rearranging
the terms concludes the proof. �
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BAppendix of Chapter 3

B.1 Background

B.1.1 Reminder on Online Gradient Descent
For the sake of completeness we re-introduce the projected Online Gradient Descent
(OGD) on a convex set K. This is a first example of online learning philosophy. It may
be the algorithm that applies to the most general setting of online convex optimization.
This algorithm, which is based on standard gradient descent from offline optimization,
was introduced in its online form by Zinkevich, 2003. In each iteration, the algorithm
takes a step from the previous point in the direction of the gradient of the previous
cost. This step may result in a point outside of the underlying convex set. In such
cases, the algorithm projects the point back to the convex set, i.e. finds its closest
point in the convex set. We precise this algorithm works with the assumptions of a
convex set K bounded in diameter by D and of bounded gradients (by a certain G).
We also assume here to have a dataset ST = (zt)t=1..T and to be coherent with the
online learning philosophy, we assume that for each t > 0, we possess a loss function
`t depending on the points (z1, ..., zt). We present OGD in Algo. 3

Algorithm 3: Projected OGD onto a convex K with fixed step η.
Parameters : Epoch T, step-size (η)
Initialisation: Convex set K, Initial point θ0 ∈ K, T, step sizes (ηt)t

1 for each iteration t in 1..T do
2 Compute f ′(θn)
3 Play (observe) θt and compute the cost ft(θt) Update and project

ζt = θt−1 − η∇`t(θt−1)

θt = ΠK(ζt)
4 end
5 Return θT

One now defines the notion of regret which is the classical quantity to evaluate the
performance of an online algorithm.
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Definition B.1.1. One defines the regret of a decision sequence (θt) at time T
w.r.t. a point θ as:

RegretT (θ) :=
T∑
t=1

`t(θt)−
T∑
t=1

`t(θ)

Now we state a regret bound which can be found in Shalev-Shwartz, 2012, Eq
2.5 although we slightly modified the result, which uses additional hypotheses from
Hazan, 2016.

Proposition B.1.1. Assume that K has a fixed diameter D and that the gradients
of any point is bounded by G. Then for any θ ∈ K, the regret of projected OGD
with fixed step η satisfies:

RegretT (θ) ≤ D2

2η + ηTG2

B.2 Discussion about Th. 3.2.1
B.2.1 Comparison with classical PAC-Bayes
The goal of this section is to show how good Th. 3.2.1 compared to a naive approach
which consists in applying classical PAC-Bayes results sequentially. The interest of this
section is twofold:

• First, presenting a classical PAC-Bayes result extracted and adapted from Alquier
et al., 2016 which is formally close to what we propose.

• Second, showing that a naive (yet natural) approach to obtain online PAC-Bayes
bound leads to a deteriorated bound.

We first state our PAC-Bayes bound of interest.

Theorem B.2.1 (Adapted from Alquier et al., 2016, Thm 4.1). Let Sm =
(z1, ..., zm) be an i.i.d. sample from the same law D. For any data-free prior P, for
any loss function ` bounded by K, any λ > 0, δ ∈ (0, 1), one has with probability
1− δ for any posterior Q ∈M(H):

Eh∼QEz∼D[`(h, z)] ≤ 1
m

m∑
i=1

Eh∼Q[`(h, zi)] + KL(Q,P) + log(1/δ)
λ

+ λK2

2m
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Remark B.2.1. Two remarks about this result:

• Th. B.2.1 is a particular case of the original theorem from Alquier et al.,
2016 as we take the case of a bounded loss which implies the subgaussianity
of the random variables `(., zi) and then allows us to recover the factor λK2

m

• This theorem is derived from Catoni, 2007 and constitutes a good basis to
compare ourselves with as it similar formally similar.

Naive approach A naive way to obtain OPB bounds is to apply m times Th. B.2.1
(one per data) on batches of size 1 and then summing up the associated bounds. Thus
one has the benefits of classical PAC-Bayes bound without having no more the need
of data-free priors nor the iid assumption. The associated result is stated below:

Theorem B.2.2. For any distributions D1, ...,Dm over Z (such that zi ∼ Di), any
λ > 0 and any online predictive sequence (used as priors) (Pi)i=1···m, the following
holds with probability 1− δ over the sample Sm ∼ Dm for any posterior sequence
(Qi) :

m∑
i=1

Ehi∼Qi [Ezi∼Di [`(hi, zi)]] ≤
m∑
i=1

Ehi∼Qi [`(hi, zi)] + KL(Qi‖Pi)
λ

+ λmK2

2 + m log(m/δ)
λ

.

Recall that here again we assimilate the stochastic kernels Qi,Pi to the data-dependent
distributions Qi(Sm, .),Pi(Sm, .)

Proof. First of all, for any i, we apply Th. B.2.1 m to the batch {zi}. This allows
us to consider Pi as a prior as it does not depend on the current data. We then
have, taking δ′ = δ/m, for any i ∈ {1..m} with probability 1− δ/m:

Ehi∼Qi [Ezi∼Di [`(hi, zi)]] ≤ Ehi∼Qi [`(hi, zi)] + KL(Qi‖Pi)
λ

+ λK2

2 + log(m/δ)
λ

.

Then, taking an union bound on those m events ensure us that with probability
1− δ, for any i ∈ {1..m}:

Ehi∼Qi [Ezi∼Di [`(hi, zi)]] ≤ Ehi∼Qi [`(hi, zi)] + KL(Qi‖Pi)
λ

+ λK2

2 + log(m/δ)
λ

.
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Finally, summing those m inequalities ensure us the final result with probability
1− δ.

�

Comparison between Th. 3.2.1 and Th. B.2.2 Three points are noticeable be-
tween those two theorems:

• First of all, the main issue with Th. B.2.2 is that has a strongly deteriorated rate
of O

(
m log(m/δ)

λ

)
instead of the rate in O

(
log(1/δ)

λ

)
proposed in Th. 3.2.1. More

precisely, the problem is that we do not have a sublinear bound: one cannot
ensure any learning through time. This point justifies the need of the heavy
machinery exploited in Th. 3.2.1 proof as it allows a tighter convergence rate.

• The second point point lies in the controlled quantity on the left hand-side of
the bound. Th. B.2.2 controls A := ∑m

i=1 Ehi∼Qi [Ezi∼Di [`(hi, zi)]] instead of
B := ∑m

i=1 Ehi∼Qi [E[`(hi, zi) | Fi−1]].
A is a less dynamic quantity than B in the sense that it does not imply any
evolution through time, it just considers global expectations. Doing so, A does
not take into account that at each time step we have acces to all te past data to
predict the future, this may explain the deteriorated convergence rate. Thus B,
which appears to be a suitable quantity to control to perform online PAC-Bayes
(see appendix B.2.2 for additional explanations)

• Finally, an interesting point is that in Th. B.2.2 the bound, while looser, holds
unformly for any posterior sequence contrary to Th. 3.2.1 which holds only for a
specific posterior sequence. This point will have a consequence for optimisation.
We will come back later on this in appendix B.2.3.

B.2.2 A deeper analysis of Th. 3.2.1
This section includes discussion about our proof technique and why all the assump-
tions made are necessary. We also propose a short discussion about the benefits and
limitations of an online PAC-Bayesian framework as well as a deeper reflexion about
the new term our bound introduce.

Why do we need an online predictive sequence as priors? This condition is fully
exploited when dealing with the exponential moment ξm in the proof (see lemma B.4.1
proof). Indeed, the fact of having Pi being Fi−1-measurable is essential to apply
conditional Fubini (lemma B.4.2). Note that the condition ∀i, Pi−1 � Pi is not
necessary as the weaker condition ∀i, P1 � Pi would suffice here. However, note that
when we particularise our theorem, for instance if we choose in Cor. 3.3.1 Pi = Q̂i, one
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recovers the condition Q̂i � Q̂i+1 to have finite KL divergences. Hence the interest
of taking directly an online predictive sequence.

About the boundedness assumption The only moment where we invoke the
boundedness assumption is in lemma B.4.1’s proof where we apply the conditionnal Ho-
effding lemma. This lemma actually translates that the sequence of r.v. (`(., zi)i=1..m
is conditionally subgaussian wrt the past i.e for any i, hi ∈ H;λ ∈ R:

E[exp(λ˜̀
i(hi, zi)) | Fi−1] ≤ exp

(
λ2K2

2

)
where ˜̀

i(hi, zi) = E[`(hi, zi) | Fi−1]− `(hi, zi).
This condition is the one truly involved in our heavy machinery. However, we chose to
restrict ourselves to the stronger assumption of bounded loss function for the sake of
clarity. However, an interesting open direction is to find whether there exists concrete
classes of unbounded losses which may satisfy either conditional subgaussianity or
others conditions (such as conditional Bernstein condition for instance).

Reflections about the left hand side of Th. 3.2.1. We study in this paragraph
the following term

B :=
m∑
i=1

Ehi∼Qi [E[`(hi, zi) | Fi−1]]

has naturally arisen in our work as the right term to compare our empirical loss with
to perform the conditional Hoeffding lemma. Taking a broader look, we now interpret
this term as the right quantity to control if one wants to perform online PAC-Bayes
learning. Indeed this term is a ’best of both world’ quantity bridging PAC-Bayes and
online learning:

• From the PAC-Bayes point of view one keeps the control on average (cf the
conditional expectation in B) on a novel data drawn at each time step. This
point is crucial in the PAC-Bayes literature as our posteriors are designed to
generalise well to unseen data.

• From the Online Learning point of view, one keeps the control of a sequence of
points generated from an online algorithm. Because an online learning algorithm
generate a prediction for future points while having access to past data, the
conditional expectation in B translates this.

Finally this conditional expectation appears to be a good tradeoff between the classical
expectation on data appearing in the PAC-Bayes literature (see e.g. Th. B.2.1) and the
local control that we have in online learning by only dealing with the performance of
a sequence of points generated from a learning algorithm (see e.g. proposition B.1.1)
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About the interest of an Online PAC-Bayesian framework The main shift
our work does with classical online learning literature is that it does not consider
the celebrated regret but instead focuses on B which is a cumulative expected loss
conditionned to the past. This shift does not invalidate our work but put some relief
to hte guarantees Online PAC-Bayes learning can provide that Online Learning cannot
and reversely.

• Online PAC-Bayes ensure a good potential for generalisation as it deals with the
control of conditional expectation. This can be useful if one wants to deal with
a periodic process for instance.

• Online Learning through the regret compares the studied sequence of predictors
(typically generated from an online learning algorithm) and tries to compare it to
the best fixed strategy (static regret) or the best dynamic one (dynamic regret).
In this way, OL algorithms want to ensure that their predictions are closed from
the optimal solution. This point is not guaranteed by our online PAC-Bayesian
study.

• However the limitations of online learning can arise if the studied problem has
a huge variance (for instance micro-transactions in finance). In this case those
algorithms can follow an unpredictable optimisation route while PAC-Bayes still
ensure a good performance on average (knowing the past) in this case.

• Finally, we want to emphasize that PAC-Bayesian learning circumvent a problem
of memoryless learning which appears in classical OL algorithms. For instance,
the OGD algorthm (see appendix B.1.1) uses once a data and do not memorise
it for further use. This problem does not happen in Online PAC-Bayes learning.
Indeed, we take the example of the procedure Eq. (3.3) which generates Gibbs
posterior which keep in mind the influence of past data.

B.2.3 Th. 3.2.1 and optimisation
In this section we discuss about the way Thm 2.2 can be thought in the framework of
an optimisation process as we did in sections 3.3 and 3.4.

A significant change compared to classical PAC-Bayes Th. 3.2.1 holds ’for any
posterior sequence (Qi) the following holds with probability 1 − δ over the sample
Sm ∼ Dm ’ while most classical PAC-Bayesian results such that Th. B.2.1 holds ’with
probability 1 − δ over the sample Sm ∼ Dm for any posterior Q’. This change is
significant as our theorem does not control simultaneaously all possible sequences of
posteriors but only holds for one. Thus, Th. 3.2.1 has to be seen as a local or pointwise
theorem and not as a global one. In classical PAC-Bayes, this local behavior is a brake
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on the optimisation process. But as we develop below, it is not the case in our online
framework.

Th. 3.2.1 is compatible with online optimisation We first recall that classically,
an online algorithm like OGD (see appendix B.1.1) performs one optimisation step
per arriving data. Thus, at time m, such algorithm will perform m optimisation steps
and generate m predictors. Similarly the OPB algorithm of Eq. (3.1) generates m
distribution in m time steps.
We insist on the fact that, Th. 3.2.1 and all its corollaries throughout our paper
are valid for a sequence of m posteriors and not only a single one. A key point
is that whatever the number m of data, our theoretical guarantee wil still be valid for
m posterior distributions with the approximation term log(1/δ) (and not log(m/δ) as
an union bound would provide for a classical PAC-Bayes theorem).
For this reason, given an online PAC-Bayes algorithm, Th. 3.2.1 is suited for optimi-
sation. Indeed, having a bound valid for a sequence of posteriors ensures guarantees
for a single run of our OPB algorithm. This point is crucial to bridge a link with
online learning as regret bounds (e.g. proposition B.1.1) also provide guarantees for a
single sequence of predictors. In online learning however, those guarantees are mainly
deterministic (because based on convex optimisation properties) but not totally: the
recent work of Wintenberger, 2021 proposed PAC regret bounds for its general
Stochastic Online Convex Optimisation framework.
An interesting open challenge is to overcome the pointwise behavior of our theorem,
for that, we need to rethought Rivasplata et al., 2020, Thm 2.1 as this basis is
pointwise itself. Given we consider a sequence of data-dependent priors one cannot
apply the classical change of measure inequality to ensure guarantees holding uniformly
on posterior sequences.

A crucial point: having an explicit OPB/OPBD algorithm In our previous
paragraph we said that our bound were suitable for optimisation given an OPB/OPBD
algorithm. We now provide some precision about this point. All the procedures pro-
vided in the paper (i.e. Eq. (3.1), Algo. 1) take into account an update phase implying
an argmin. Luckily for our procedures, this argmin is explicit:

• For the OPB algorithm of Eq. (3.1), the argmin is solved thanks to the variational
formulation of the Gibbs posterior

• For OPBD algorithms, given the explicit choices of Ψ given in Cor. 3.4.1, argmin
becomes explicit when one has a derivable loss function.

In both cases, this explicit argmin ensure our procedure of interest generates explictly
a single posterior per time step: we have a well-defined sequence of m posteriors at
time m. Doing so the guarantees of Th. 3.2.1 holds for this sequence.
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B.3 A reminder on PAC-Bayesian disintegrated
bounds

We present two PAC-Bayesian disintegrated bounds valid with data-dependent priors
(i.e. any stochastic kernels).

• The first one is Th. 1) i) from Rivasplata et al., 2020 which provides a
disintegrated version of Th. 3.2.1.

• The second one is Thm 2. from Viallard et al., 2023a which involves Rényi
divergence instead of the classical KL. Note that this bound has originally been
stated for data-indepedent prior, which is why we revisit the proof to adapt it to
the stochastic kernel framework.

Proposition B.3.1 (Th 1) i) Rivasplata et al., 2020). Let P ∈ M(H), Q0 ∈
Stoch(Zm,F). Let f : Sm ×H → R be any measurable function. Then for any
Q ∈ Stoch(Zm,F) and any δ ∈ (0, 1), with probability at least 1 − δ over the
random draw of S ∼ P and h ∼ QSm , we have:

f(Sm, h) ≤ log
(
dQSm
dQ0
Sm

(h)
)

+ log(ξm/δ).

where ξm :=
∫
Sm
∫
H e

f(s,h)Q0
Sm(dh)P (ds) and dQSm

dQ0
Sm

is the Radon Nykodym deriva-
tive of QSm w.r.t. Q0

Sm .

Proposition B.3.2 (Adapted from Th. 2 of Viallard et al., 2023a). Let µ ∈
M(Zm), Q0 ∈ Stoch(Zm,F). Let α > 1 and f : Sm × H → R+ be any
measurable function.
Then for any Q ∈ Stoch(Zm,F) such that for any Sm ∈ Zm,QSm �
Q0
Sm , Q0

Sm � QSm and any δ ∈ (0, 1), with probability at least 1 − δ over the
random draw of Sm ∼ Dm and h ∼ QSm , we have:

α

α− 1 log(f(Sm, h)) ≤ 2α− 1
α− 1 log 2

δ
+Dα

(
QSm‖Q0

Sm

)
+ log

 E
S′m∼Dm

E
h′∼Q0

S′m

f(S ′m, h′)
α
α−1


where Dα(Q,P) = 1

α−1 log
(
E
[
Eh∼P

(
dQ
dP (h)

)α])
is the Rényi diverence of order α.

– 160 –



B.3. A reminder on PAC-Bayesian disintegrated bounds

Note that Viallard et al. original bound only stand for data-free priors and i.i.d data.
However it appears their proof works with any stochastic kernel as prior and any
distribution over the dataset. We propose below an adaptation of their proof below to
fit with those more general assumptions.

B.3.1 Proof of proposition B.3.2

Proof. For any sample Sm and any stochastic kernel Q, note that f(Sm, h) is a
non-negative random variable. Hence, from Markov’s inequality we have

P
h∼QSm

[
f(Sm, h) ≤ 2

δ
E

h′∼QSm
f (Sm, h′)

]
≥ 1− δ

2

⇐⇒ E
h∼QSm

1

[
f(Sm, h) ≤ 2

δ
E

h′∼QSm
f (S, h′)

]
≥ 1− δ

2

Taking the expectation over Sm ∼ Dm to both sides of the inequality gives

E
Sm∼Dm

E
h∼QSm

1

[
f(Sm, h) ≤ 2

δ
E

h′∼QSm
f(Sm, h′)

]
≥ 1− δ

2

⇐⇒ P
Sm∼Dm,h∼QSm

[
f(Sm, h) ≤ 2

δ
E

h′∼QSm
f(Sm, h′)

]
≥ 1− δ

2 .

Taking the logarithm to both sides of the equality and multiplying by α
α−1 > 0, we

obtain

P
Sm∼Dm,h∼QSm

[
α

α− 1 log(f(Sm, h)) ≤ α

α− 1 log
(

2
δ

E
h′∼QSm

f(Sm, h′)
)]
≥ 1− δ

2 .

We develop the right side of the inequality in the indicator function and make
the expectation of the hypothesis over Q0

Sm our ”prior” stochadtic kernel appears.
Indeed, because for any S ∈ Sm,QSm � Q0

Sm and Q0
Sm � QSm one can write

properly dQSm
dQ0
Sm

and dQ0
Sm

dQSm
=
(
dQSm
dQ0
Sm

)−1
the Radon-Nykodym derivatives. Thus we

have
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α

α− 1 log
(

2
δ

E
h′∼QSm

f(Sm, h′)
)

= α

α− 1 log
(

2
δ

E
h′∼QSm

dQSm
dQ0
Sm

(h′)dQ0
Sm

dQSm
(h′)f(Sm, h′)

)

= α

α− 1 log
(

2
δ

E
h′∼Q0

Sm

dQSm
dQ0
Sm

(h′)f(Sm, h′)
)
.

Remark that 1
r

+ 1
s

= 1 with r = α and s = α
α−1 . Hence, we can apply Hölder’s

inequality:

E
h′∼Q0

Sm

dQSm
dQ0
Sm

(h′)f(Sm, h′) ≤
[

E
h′∼Q0

Sm

(
dQSm
dQ0
Sm

(h′)
)α] 1

α
[

E
h′∼Q0

Sm

f(Sm, h′)
α
α−1

]α−1
α

.

Then, by taking the logarithm; adding log
(

2
δ

)
and multiplying by α

α−1 > 0 to both
sides of the inequality, we obtain

α

α− 1 log
(

2
δ

E
h′∼Q0

Sm

dQSm
dQ0
Sm

(h′)f(Sm, h′)
)

≤ α

α− 1 log
2
δ

[
E

h′∼Q0
Sm

(
dQSm
dQ0
Sm

(h′)
)α] 1

α
[

E
h′∼Q0

Sm

f(Sm, h′)
α
α−1

]α−1
α


= 1
α− 1 log

(
E

h′∼Q0
Sm

[
dQSm
dQ0
Sm

(h′)
]α)

+ α

α− 1 log 2
δ

+ log
(

E
h′∼Q0

Sm

f(Sm, h′)
α
α−1

)

= Dα

(
QSm‖Q0

Sm

)
+ α

α− 1 log 2
δ

+ log
(

E
h′∼Q0

Sm

f(Sm, h′)
α
α−1

)

From this inequality, we can deduce that

P
Sm∼Dm,h∼QSm

[
α

α− 1 log(f(Sm, h)) ≤ Dα

(
QSm‖Q0

Sm

)
+ α

α− 1 log 2
δ

+ log
(

E
h′∼Q0

Sm

f(Sm, h′)
α
α−1

)]

≥ 1− δ

2 . (B.1)
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Note that Eh′∼Q0
Sm
f(Sm, h′)

α
α−1 is a non-negative random variable, hence, we apply

Markov’s inequality to have

P
Sm∼Dm

[
E

h′∼Q0
Sm

f(Sm, h′)
α
α−1 ≤ 2

δ
E

S′m∼Dm
E

h′∼Q0
Sm

f(S ′m, h′)
α
α−1

]
≥ 1− δ

2 .

Since the inequality does not depend on the random variable h ∼ QSm , we have

P
Sm∼Dm

[
E

h′∼Q0
Sm

f(Sm, h′)
α
α−1 ≤ 2

δ
E

S′m∼Dm
E

h′∼Q0
Sm

f(S ′m, h′)
α
α−1

]

= E
Sm∼Dm

1

[
E

h′∼Q0
Sm

f(Sm, h′)
α
α−1 ≤ 2

δ
E

S′m∼Dm
E

h′∼Q0
Sm

f(S ′m, h′)
α
α−1

]

= E
Sm∼Dm

E
h∼QSm

1

[
E

h′∼Q0
Sm

f(Sm, h′)
α
α−1 ≤ 2

δ
E

S′m∼Dm
E

h′∼Q0
Sm

f(S ′m, h′)
α
α−1

]

= P
Sm∼Dm,h∼QSm

[
E

h′∼Q0
Sm

f(Sm, h′)
α
α−1 ≤ 2

δ
E

S′m∼Dm
E

h′∼Q0
Sm

f(S ′m, h′)
α
α−1

]
.

Taking the logarithm to both sides of the inequality and adding α
α−1 log 2

δ
give us

P
Sm∼Dm,h∼QSm

[
E

h′∼Q0
Sm

f(Sm, h′)
α
α−1 ≤ 2

δ
E

S′m∼Dm
E

h′∼Q0
Sm

f(S ′m, h′)
α
α−1

]
≥ 1−δ2 ⇐⇒

P
Sm∼Dm,h∼QSm

[
α

α− 1 log 2
δ

+ log
(

E
h′∼Q0

Sm

f(Sm, h′)
α
α−1

)
≤

2α− 1
α− 1 log 2

δ
+ log

(
E

S′m∼Dm
E

h′∼Q0
Sm

f(S ′m, h′)
α
α−1

)]
≥ 1− δ

2 . (B.2)

Combining Equation Eq. (B.1) and Eq. (B.2) with a union bound gives us the
desired result. �

B.4 Proofs

B.4.1 Proof of Th. 3.2.1
Background We first recall Rivasplata et al., 2020, Thm 2.

Theorem B.4.1. Let Dm ∈ M(Zm), Q0 ∈ Stoch(Zm,F). Let k be a positive
integer, any A : Sm×H → Rk a measurable function and F : Rk → R be a convex
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function . Then for any Q ∈ Stoch(Zm,F) and any δ ∈ (0, 1), with probability
at least 1− δ over the random draw of Sm ∼ Dm we have

F (QSm [AS]) ≤ KL
(
QSm‖Q0

Sm

)
+ log(ξm/δ).

where ξm :=
∫
Sm
∫
H e

f(s,h)Q0
Sm(dh)P (ds) and QSm [ASm ] := QSm [A(Sm, .)] =∫

HA(Sm, h)QSm(dh).

Proof of Th. 3.2.1. To fully exploit the generality of Th. B.4.1, we aim to design
a m-tuple of probabilities. Thus, our predictor set of interest is Hm := H⊗m
and then, our predictor h is a tuple (h1, .., hm) ∈ H. Throughout our study, our
stochastic kernels Q,Q0 will belong to the specific class C defined below:

C := {Q | ∃(Qi)i=1..ms.t. ∀S, Q(Sm, .) = Q1(Sm, .)⊗ ...⊗Qm(Sm, .)} . (B.3)

Thus our kernels are such that conditionally to a given sample, our predictors
(h1, ..., hm) are drawn independently.
We now apply Th. B.4.1. To do so, we consider the following function A :
Sm ×Hm → R2 such that ∀Sm = (zi)i=1..m, h = (hi)i=1..m ∈ Sm ×Hm:

A(Sm, h) =
(

m∑
i=1

E[`(hi, zi) | Fi−1],
m∑
i=1

`(hi, zi)
)

A is indeed measurable in both of its variables. For a fixed λ > 0, we set the
function F to be F (x, y) = λ(x− y) .
The only thing left to set up is our stochastic kernels. To do so, let P = (P1, ...Pm)
be an online predictive sequence, we then define Q0 ∈ C (defined in Eq. (B.3))
s.t. for any sample Sm,
Q0
Sm = P1(Sm, .)⊗ ...⊗ Pm(Sm, .). We also fix Q1, ...,Qm to be any (posterior)

stochastic kernels and similarly we define the stochastic kernel Q ∈ C such that
for any sample Sm, Q(Sm, .) = Q1(Sm, .)⊗ ...⊗Qm(Sm, .).
From now, we fix a dataset Sm and, for the sake of clarity, we assimilate in
what follows the stochastic kernels Qi,Pi to the data-dependent distributions
Qi(Sm, .),Pi(Sm, .) (i.e. we drop the dependency in Sm).
Under those choices, one has:
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QSm [ASm ] =
∫
h∈Hm

A(Sm, h)QSm(dh1, ..., dhm)

=
(∫

h∈Hm

m∑
i=1

E[`(hi, zi) | Fi−1]QSm(dh1, ..., dhm),
∫
h∈Hm

m∑
i=1

`(hi, zi)QSm(dh1, ..., dhm)
)
.

Furthermore, Q ∈ C, thus QSm(dh1, ..., dhm) = Πm
i=1Qi(dhi) so:‘

QSm [ASm ] =
(

m∑
i=1

Ehi∼Qi [E [`(hi, zi) | Fi−1]] ,
m∑
i=1

Ehi∼Qi [`(hi, zi)]
)
.

Finally:

F (QSm [ASm ]) = λ

(
m∑
i=1

Ehi∼Qi [E [`(hi, zi) | Fi−1]]−
m∑
i=1

Ehi∼Qi [`(hi, zi)]
)
.

Applying Th. B.4.1 and re-organising the terms gives us with probability 1− δ:

m∑
i=1

Ehi∼Qi [E[`(hi, zi) | Fi−1]] ≤
m∑
i=1

Ehi∼Qi [`(hi, zi)] + KL(QSm‖Q0
Sm)

λ
+ log(ξm/δ)

λ
.

Thus:
m∑
i=1

Ehi∼Qi [E[`(hi, zi) | Fi−1]] ≤
m∑
i=1

Ehi∼Qi [`(hi, zi)] +
m∑
i=1

KL(Qi‖Pi)
λ

+ log(ξm/δ)
λ

.

(B.4)

The last line holding because for a fixed Sm, QSm = Q1 ⊗ ... ⊗ Qm and Q0
Sm =

P1 ⊗ ...⊗ Pm.
The last term to control is

ξm = ES

[
Eh1,...,hm∼Q0

Sm

[
exp

(
λ

m∑
i=1

˜̀
i(hi, zi)

)]]
,

with ˜̀
i(hi, zi) = E[`(hi, zi) | Fi−1]− `(hi, zi). Hence the following lemma.
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Lemma B.4.1. One has for any m, ξm ≤ exp
(
λ2mK2

2

)
with K bounding `.

The proof of this lemma is deferred to Section B.4.1.1
To conclude the proof, we just bound ξm by the result of lemma B.4.1 within
Eq. (B.4). �

B.4.1.1 Proof of lemma B.4.1

Proof of lemma B.4.1. We prove our result by recursion: for m = 1, S1 = z1 and
one knows that P1 is F0 measurable yet it does not depend on Sm. Thus for any
h1 ∈ H, E[`(h1, z1) | F0] = E[`(h1, z1)]. We then has:

ξ1 = ES1Eh1∼P1 [˜̀1(h1, z1)]
= Eh1∼P1ES1 [˜̀1(h1, z1)] by Fubini

≤ exp λ
2K2

2

The last line holding because for any h1 ∈ H, ˜̀1(h1, z1) is a centered variable
belonging in [−K,K] a.s. and so one can apply Hoeffding’s lemma to conclude.
Assume the result is true at rank m − 1 ≥ 0. We then has to prove the result
at rank m. Our strategy consists in conditioning by Fm−1 within the expectation
over Sm:

ξm = ESm

[
Eh1,...,hm∼Q0

Sm

[
exp

(
λ

m∑
i=1

˜̀
i(hi, zi)

)]]
.

First, we use that Q0 ∈ C, thus Q0
Sm = P1 ⊗ ... ⊗ Pm (i.e. our data are drawn

independently for a given Sm):

= ES
[
Πm
i=1Ehi∼Pi

[
exp

(
λ˜̀

i(hi, zi)
)]]

.

We now condition by Fm−1 and use that Πm−1
i=1 Ehi∼Pi

[
exp

(
λ˜̀

i(hi, zi)
)]

is a Fm−1-
measurable r.v.

ξm = ES
[
Πm−1
i=1 Ehi∼Pi

[
exp

(
λ˜̀

i(hi, zi)
)]

E
[
Ehm∼Pm [exp(λ˜̀

m(hm, zm))] | Fm−1
]]
.

Now our next step is to use a variant of Fubini valid for Fm−1- measurable mea-
sures.
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Lemma B.4.2 (Conditional Fubini). Let f : H × Z → R+. For a sigma-
algebra F over Z and a measure P over H such that

• P is a F -measurable r.v.

• There exists a constant measure (a.s.) P0 such that P� P0.

Then one has almost surely, for any r.v. z over Z:

E [Eh∼P[f(h, z)] | F ] = Eh∼P [E[f(h, z) | F ]] .

The proof of this lemma lies at the end of this section.
We then fix F = Fm−1 and f(h, z) = exp(λ˜̀

i(h, z)). Furthermore, because
we assumed the sequence (Pi)i=1···m to be an online predictive sequence, Pm is
Fm−1-measurable and Pm >> P1 with P1 a data-free prior. One then applies
lemma B.4.2:

E
[
Ehm∼Pm [exp(λ˜̀

m(hm, zm))] | Fm−1
]

= Ehm∼Pm
[
E[exp(λ˜̀

m(hm, zm)) | Fm−1]
]
.

Yet, injecting this result onto ξm provides:

ξm = ES
[
Πm−1
i=1 Ehi∼Pi

[
exp

(
λ˜̀

i(hi, zi)
)]

Ehm∼Pm
[
E[exp(λ˜̀

m(hm, zm)) | Fm−1]
]]

The final remark is to notice that for any hm ∈ H, E[˜̀m(hm, zm) | Fm−1] = 0
and ˜̀

m(hm, zm) ∈ [−K,K] a.s. then one can apply the conditional Hoeffding’s
lemma which ensure us that for any λ > 0:

E[exp(λ˜̀
m(hm, zm)) | Fm−1] ≤ exp

(
λ2K2

2

)
.

One then has ξm ≤ exp
(
λ2K2

2

)
ξm−1. The recursion assumption concludes the

proof.
�

Proof Proof of lemma B.4.2. Let A be a F -measurable event. One wants to show
that

E [Eh∼P[f(h, z)]1A] = E [Eh∼P [E[f(h, z) | F ]]1A] .

Where the first expectation in each term is taken over z. This will be enough to
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conclude that

E [Eh∼P[f(h, z)] | F ] = Eh∼P [E[f(h, z) | F ]]

thanks to the definition of conditional expectation. We first start by using the
fact that P is F -measurable and that P0 � P with P0 a constant measure. This
is enough to obtain that the Radon-Nykodym derivative dP

dP0
is a F -measurable

function, thus:

E [Eh∼P[f(h, z)]1A] = E

[
Eh∼P0

[
f(h, z) dP

dP0
(h)

]
1A(z)

]
,

= E

[
Eh∼P0

[
f(h, z) dP

dP0
(h)1A(z)

]]
.

Because f(h, z) dP
dP0

(h)1A(z) is a positive function, and that P0 is fixed, one can
apply the classical Fubini-Tonelli theorem:

= Eh∼P0

[
E

[
f(h, z) dP

dP0
(h)1A(z)

]]
.

One now conditions by F and use the fact that dP
dP0

,1A are F -measurable:

= Eh∼P0

[
E

[
E [f(h, z) | F ] dP

dP0
(h)1A(z)

]]
.

We finally re-apply Fubini-Tonelli to re-intervert the expectations:

= E

[
Eh∼P0

[
E [f(h, z) | F ] dP

dP0
(h)1A(z)

]]
,

= E [Eh∼P [E [f(h, z) | F ]1A(z)]] .

This finally proves the announced results, yet concludes the proof.
�

B.4.2 Proofs of section 3.4

We prove here Cor. 3.4.1 and Cor. 3.4.2.
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B.4.2.1 Proof of Cor. 3.4.1

We fix Q̂,P to be online predictive sequences (with Q̂1,P1 being data-free priors).
Recall that we assimilated the stochastic kernels Q̂i,Pi to the their associated data-
dependent sitribution given a sample Sm Q̂i(Sm, .),Pi(Sm, .).
As in Th. 3.2.1, our predictor set of interest is Hm := H⊗m and then, our predictor
h is a tuple (h1, .., hm) ∈ H. We consider the stochastic kernel Q belonging to the
class C defined in Eq. (B.3) such that for any S ∈ Sm,Q(Sm, .) = Q̂2 ⊗ ... ⊗ Q̂m+1.
Similarly one defines Q0 ∈ C such that for any S ∈ Sm, Q0(Sm, .) = P1 ⊗ ...⊗ Pm

Proof for (Ψ1,Φ1): For λ > 0, we set our function f to be for any dataset Sm and
predictor tuple h = (h1, ..., hm),

f(Sm, h) = λ

(
m∑
i=1

E [`(hi, zi) | Fi−1]−
m∑
i=1

`(hi, zi)
)
.

We then apply proposition B.3.1 with the function f , Q,Q0 defined above. One then
has by dividing by λ with probability 1 − δ over S ∼ µ and h = (h1, ..., hm) ∼
Q̂2 ⊗ ...⊗ Q̂m+1:

m∑
i=1

E[`(hi, zi) | Fi−1] ≤
m∑
i=1

`(hi, zi) + 1
λ

log
(
dQSm
dQ0
Sm

(hi)
)

+ 1
λ

log(ξm) + log(1/δ)
λ

.

And then using the fact that S ∈ Sm,QSm = Q̂2 ⊗ ...⊗ Q̂m+1,Q0
Sm = P1 ⊗ ...⊗ Pm

gives us:

m∑
i=1

E[`(hi, zi) | Fi−1] ≤
m∑
i=1

`(hi, zi)+ 1
λ

m∑
i=1

log
dQ̂i+1

dPi

(hi)
+ 1

λ
log(ξm)+ log(1/δ)

λ
,

with ξm = ES
[
Eh1,...,hm∼QSm

[
exp

(
λ
∑m
i=1

˜̀
i(hi, zi)

)]]
and for any i, ˜̀

i(hi, zi) =
E [`(hi, zi) | Fi−1]− `(hi, zi)
Notice that, because P is an online predictive sequence, then one can apply directly
lemma B.4.1 to conclude that ξm ≤ exp

(
λ2K2m

2

)
.

We also use Viallard et al., 2023a, Lemma 11 which derives the calculation of the
disintegrated KL divergence between two Gaussians. One then has for any i, with
hi = ŵi+1 + εi:

log
dQ̂i+1

dPi

(hi)
 = ||ŵi+1 + εi − w0

i ||2 − ||ε||2

2σ2 .

Combining those facts altogether allows us to conclude.
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Proof for (Ψ2,Φ2): For λ > 0, we set our function f to be for any dataset Sm and
predictor tuple (h = h1, ..., hm),

f(Sm, h) = exp
(
λ

(
m∑
i=1

E [`(hi, zi) | Fi−1]−
m∑
i=1

`(hi, zi)
))

.

We take α = 2 and apply this time proposition B.3.2. One then has by dividing by 2λ
with probability 1− δ over S ∼ µ and h = (h1, ..., hm) ∼ Q̂2 ⊗ ...⊗ Q̂m+1:

m∑
i=1

E[`(hi, zi) | Fi−1] ≤
m∑
i=1

`(hi, zi) + 3
2λ log 2

δ

+
D2

(
QSm‖Q0

Sm

)
2λ + 1

2λ log

 E
S′m∼Dm

E
h′∼Q0

S′m

f(S ′m, h′)2

︸ ︷︷ ︸
:=ξ′m

 .

We first notice that D2
(
QSm‖Q0

Sm

)
= ∑m

i=1D2(Q̂i+1‖Pi) as our predictors are drawn
independently once Sm is given.
We also use that for any i, the Rényi divergence with α = 2 between Q̂i+1 and Pi

(two multivariate Gaussians with same covariance matrix) is ‖ŵi+1−w0
i ‖

2

σ2 (as recalled in
Gil et al., 2013).
We then remark that:

ξ′m = E
S′m∼Dm

E
h′∼Q0

S′m

exp
(

2λ
(

m∑
i=1

E [`(h′i, z′i) | Fi−1]−
m∑
i=1

`(h′i, z′i)
))

.

Thus we recover the exponential moment ξm from the Rivasplata’s case up to a factor
2 within the exponential. We then apply lemma B.4.1 with λ′ = 2λ to obtain that
ξ′m ≤ exp (2λ2K2m).
Combining all those facts allows us to conclude.

B.4.2.2 Proof of Cor. 3.4.2

We apply the exact same proof than Cor. 3.4.1. The only difference is the way to
define our stochastic kernels. We now take, for a single online predictive sequence Q̂
the following stochastic kernels:
We consider the stochastic kernel Q belonging to the class C defined in Eq. (B.3) such
that for any S ∈ Sm,Q(Sm, .) = Q̂1 ⊗ ...⊗ Q̂m and we take Q0 = Q.
This fact allows the divergence terms (Rényi or KL depending on which bound we
consider) to vanish. The rest of the proof remains unchanged.
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B.4.3 Proof of Theorem 3.6.1

Proof. We fix m ≥ 1, S a countable dataset and (Pi)i≥1 an online predictive
sequence. We aim to design a m-tuple of probabilities. Thus, our predictor set of
interest is Hm := H⊗m and then, our predictor h is a tuple (h1, .., hm) ∈ H.
Our goal is to apply the change of measure inequality on Hm to a specific function
fm inspired from Lemma 2.1.2. We define this function below, for any sample S
and any predictor hm = (h1, ..., hm)

fm(S, hm) :=
m∑
i=1

λXi(hi, zi)−
λ2

2

m∑
i=1

(V̂i(hi, zi) + Vi(hi)),

where Xi(hi, zi) = Ei−1[`(hi, zi)]− `(hi, zi). Notice that for fixed h, the sequence
(fm(S, h))m≥1 is a supermartingale according to Lemma 2.1.2.
Now for a given posterior tuple Q1, ...Qm we define Q = Q1 ⊗ ...⊗Qm and also
Pm
S = P1,S ⊗ ... ⊗ Pm,S . We can now properly apply the change of measure

inequality for any m:

m∑
i=1

Ehi∼Qi [λXi(hi, zi)−
λ2

2 (V̂i(hi, zi) + Vi(hi))] = Ehm∼Q [fm(S, hm)]

≤ KL(Q,Pm
S ) + log

(
Ehm∼PmS exp(fm(S, hm))

)
.

Noticing that KL(Q,Pm
S ) = ∑m

i=1 KL(Qi,Pi,Sm), the only remaining term to deal
with is the exponential rv.
To do so we prove the following lemma:

Lemma B.4.3. The sequence (Mm := Ehm∼PmS exp(fm(S, hm)))m≥1 is a non-
negative supermartingale.

The proof of this lemma lies at the end of this section.
Now we can apply Ville’s inequality which implies that with probability at least
1− δ, for any m ≥ 1:

Ehm∼PmS exp(fm(S, hm)) ≤ 1
δ
.

Thus we have with probability at least 1 − δ, for any posterior sequence (Qi)i≥1,
the data-dependent measures P1,S, ...,Pm,S and any m ≥ 1:
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m∑
i=1

Ehi∼Qi

[
λXi(hi, zi)−

λ2

2 (V̂i(hi, zi) + Vi(hi))
]
≤

m∑
i=1

KL(Qi,Pi,Sm) + log
(1
δ

)
.

Re-organising the terms in this bound and dividing by λ concludes the proof.
�

Proof of Lemma B.4.3. We fix m ≥ 1 and we recall that for any i, Pi,Sm is Fi−1-
measurable. We show that Em−1[Mm] ≤ Mm−1. We first recover Mm−1 from
Em−1[Mm].

Em−1[Mm] = Em−1
[
Ehm∼PmS exp(fm(S, hm))

]
= Em−1

[
Eh1,..,hm∼P1,S⊗...⊗Pm,S exp(fm(S, hm))

]
= Em−1

[
Eh1,..,hm∼P1,S⊗...⊗Pm,S

[
Πm
i=1 exp

(
λXi(hi, zi)−

λ2

2 (V̂i(hi, zi) + Vi(hi))
)]]

= Mm−1Em−1

[
Ehm∼Pm,S

[
exp

(
λXm(hm, zm)− λ2

2 (V̂m(hm, zm) + Vm(hm))
)]]

.

The last line holding because Pm−1
S = P1,S ⊗ ...⊗ Pm−1,S is Fm−1 measurable.

Now we exploit the fact that Pm,S is Fm−1 measurable to apply Lemma B.4.2.
We have:

Em−1

[
Ehm∼Pm,S

[
exp

(
λXm(hm, zm)− λ2

2 (V̂m(hm, zm) + Vm(hm))
)]]

= Ehm∼Pm,S

[
Em−1

[
exp

(
λXm(hm, zm)− λ2

2 (V̂m(hm, zm) + Vm(hm))
)]]

.

Now we can apply Lemma 2.1.2 for any hm ∈ H with ∆Mm = Xm(hm, zm),∆[M ]m =
V̂ (hm, zm) and ∆〈M〉m = Vm(hm). We then have for all hm ∈ H:

Em−1

[
exp

(
λXm(hm, zm)− λ2

2 (V̂m(hm, zm) + Vm(hm))
)]
≤ 1.

Thus Em−1[Mm] ≤Mm−1, this concludes the lemma’s proof. �
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B.5 Additional experiment
In this section we perform error bars for our OPBD methods in order to evaluate their
volatility. We ran n = 50 times our algorithms and then show in the table below
for each data set the means and the standard deviation of our averaged cumulative
losses at regular time steps. We denote for i ∈ {1, 2} ’OPBD Ψi’ to indicate that this
algorithm is our OPBD method used with thev optimisation objective Ψi.

Analysis Those tables shows the robustness of our OPBD methods to their intrinsic
randomness: we always have a decreasing mean through time as well as an overall
variance reduction. Note that for the most complicated problem (California Housing
dataset), the variance is the highest. More precisely, we notice that the standard
deviation of OPBD with Ψ1 is always greater than the one of OPBD with Ψ2 which is
not a surprise as Ψ1 involves a disintegrated KL divergence while Ψ2 is a proper Rényi
divergence. Hence the additional volatility for OPBD with Ψ1.
This fact is particurlaly noticeable on the California Housing dataset where both the
means and variance of OPBD with Ψ1 increase drastically between t=16000 and
t=20000 while the increase is more attenuated for OPBD with Ψ2. This fact is also
visible on fig. 3.1.
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means OPBD Ψ1 std OPBD Ψ1 means OPBD Ψ2 std OPBD Ψ2

t=200 0.2014 0.0034 0.1993 0.0007

t=400 0.1888 0.0030 0.1861 0.0004

t=600 0.1867 0.0023 0.1839 0.0003

t=800 0.1714 0.0020 0.1686 0.0003

t=1000 0.1760 0.0016 0.1731 0.0003

Table B.1. Error bars for the Boston Housing dataset

means OPBD Ψ1 std OPBD Ψ1 means OPBD Ψ2 std OPBD Ψ2

t=100 0.1619 0.0063 0.1601 0.0030

t=200 0.1350 0.0057 0.1361 0.0008

t=300 0.1214 0.0044 0.1241 0.0009

t=400 0.1210 0.0043 0.1238 0.0021

t=500 0.1131 0.0037 0.1159 0.0015

Table B.2. Error bars for the Breast Cancer dataset

means OPBD Ψ1 std OPBD Ψ1 means OPBD Ψ2 std OPBD Ψ2

t=150 0.7102 0.0061 0.7069 0.0007

t=300 0.6455 0.0056 0.6422 0.0007

t=450 0.6134 0.0042 0.6103 0.0007

t=600 0.5860 0.0035 0.5837 0.0008

t=750 0.5685 0.0031 0.5664 0.0008

Table B.3. Error bars for the PIMA Indians dataset

means OPBD Ψ1 std OPBD Ψ1 means OPBD Ψ2 std OPBD Ψ2

t=4000 0.9320 0.0572 0.8905 0.0003

t=8000 0.6325 0.0335 0.5947 0.0003

t=12000 0.5314 0.0254 0.4954 0.0002

t=16000 0.4967 0.0299 0.4477 0.0004

t=20000 0.5273 0.1056 0.4355 0.0030

Table B.4. Error bars for the California Housing dataset
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CAppendix of Chapter 4

C.1 Supplementary background
C.1.1 Additional details on Poincaré and Log-Sobolev

inequalities.
Proof of proposition 4.2.2.

Proof. We define P1 such that dP1(h) ∝ exp(−V (h) − γR̂Sm(h))dh, then note
that, by convexity assumption over `1, Hess(V +γR̂Sm) � 1

cLS
Id. Then, applying

Chafai (2004, Corollary 2.1), we know that P1 satisfies a Poincaré inequality with
constant cLS(P).
Finally, defining P2 such that dP2(h) ∝ exp(− γ

m

∑m
i=1 `2(h, zi)), thanks to the

boundedness of `2, we use Guionnet and Zegarlinksi (2003, Property 2.6),
which ensure that P2 = P−γR̂Sm

dP1(h) satisfies a Log-Sobolev inequality with
constant 2cLS(P) exp(4‖`2‖∞)cP (P). Noting that P2 = P−γR̂S concludes the
proof. �

Proof of Ledoux (2006, Propsition 2.1) We prove here Proposition C.1.1, stated
below, showing that Log-Sobolev implies Poincaré.

Proposition C.1.1. If Q is L-Sob(cLS), then it is also Poinc(cP ).
We then have cP (Q) = cLS(Q)

2 .

We provide the proof for completeness.

Proof. Let f ∈ H1(Q), such that EQ[f ] = 0 and E[f 2] = 1. For any ε > 0,
1 + εf ∈ H1. We then apply the Log-Sobolev inequality on 1 + εf :

EQ
[
(1 + εf)2

(
2 log(1 + εf)− log(1 + ε2)

)]
≤ cLS(Q)ε2EQ

[
‖∇f‖2

]
.

Note that, by a Taylor expansion, log(1 + εf) = εf − (εf)2

2 + o (ε2) and also that
log(1 + ε2) = ε2 + o(ε2). Then, plugging this into the previous equation gives:
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EQ
[
2εf + 3(εf)2 − ε2 + o(ε2)

]
≤ cLS(Q)ε2EQ

[
‖∇f‖2

]
.

We use that E[f ] = 0 and we then divide by ε2. Taking the limit ε→ 0 gives:

EQ
[
3f 2 − 1

]
≤ cLS(Q)EQ

[
‖∇f‖2

]
.

Using that E[f 2] = 1 gives:

1 ≤ cLS(Q)
2 EQ

[
‖∇f‖2

]
Then, for any g ∈ H1(Q) applying this proof on f = g−EQ[g]√

VarQ(g)
concludes the

proof. �

C.1.2 Wasserstein distances
We recall here the definition of Wasserstein distances, valid for any Polish space H
equipped with a distance d.

Definition C.1.1. The 1-Wasserstein distance between P,Q ∈M(H)2 is defined
as

W1(Q,P ) = inf
π∈Π(Q,P )

∫
H2
||x− y||dπ(x, y).

where Π(Q,P ) denote the set of probability measures on H2 whose marginals are
Q and P . We define the 2-Wasserstein distance on P(H) as

W2(Q,P ) =
√

inf
π∈Π(Q,P )

∫
H2
||x− y||2dπ(x, y).

C.2 PAC-Bayes bounds for Lipschitz losses through
log-Sobolev inequalities

Extending Catoni’s bound to Lipschitz losses. A well-known relaxation of Catoni
(2007, Theorem 1.2.6) (see e.g. Alquier et al., 2016, Theorem 4.1) holding for sub-
gaussian losses has been widely used in practice as a tractable PAC-Bayesian algorithm
exhibiting a linear dependency on the KL divergence. We exploit below a consequence
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of the Herbst argument as stated, e.g., in Ledoux (2006, Section 2.3), stating that a
L-Lipschitz function of a random variable following a distribution D being L-Sob(cLS)
is L

√
cLS(D) subgaussian. This yields the following corollary.

Corollary C.2.1. Let λ > 0, m ≥ 1 and a data-free prior P. Assume that for any
h ∈ H, `(h, .) is L-Lipschitz and that the data distribution D is L-Sob(cLS). Then
for with probability at least 1− δ over S, for any Q ∈M(H),

RD(Q) ≤ R̂Sm(Q) + KL(Q,P) + log(1/δ)
λ

+ 2λ2L2cLS(D)
m

.

Proof. We take f(h) = λ∆S(h) := λ(RD(Q) − R̂Sm(Q)) first use the change of
measure inequality (Csiszár, 1975; Donsker and Varadhan, 1976) to state
that, for any Q,

Eh∼Q[f(h)] ≤ KL(Q,P) + log (Eh∼P [exp (f(h))]) .

Markov’s inequality alongside Fubini’s theorem gives, with probability at least 1−δ,

Eh∼Q[f(h)] ≤ KL(Q,P) + log(1/δ) + log (Eh∼PES [exp (f(h))]) .

Now, we use that f is L-Lipschitz for all h, then the function S → ∆S(h) is 2√
m

-
Lipschitz on S for each h. As D is L-Sob(cLS) inequality, D⊗m is also L-Sob(cLS)
with identical constant (Ane et al., 2000, Corollary 3.2.3). Then, using Herbst
argument similarly as in Ledoux (2006, Section 2.3) allow us to conclude that f
is 2L

√
cLS(D)-subgaussian, thus,

log (Eh∼PES [exp (f(h))]) ≤ 2λ2L2

m
.

This concludes the proof. �

Disintegrated PAC-Bayes bounds Numerical estimation of PAC-Bayes bounds is
usually challenging as it often involves Monte-Carlo approximations of the expectation
over the posterior Q. A recent line of work developed in Chapter 3 and Rivasplata
et al. (2020) and Viallard et al. (2023a) studies disintegrated PAC-Bayes bounds
e.g., bounds holding with high-probability on both the dataset S and a single predictor
h drawn from the posterior Q. Those bounds are relevant for practitioners as they
require little computational time. However, a drawback of these bounds is that existing
disintegrated bounds do not allow the KL divergence to be used as a complexity
measure. Either disintegrated KL (Rivasplata et al., 2020) or Rényi divergences
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(Viallard et al., 2023a), which can be seen as a relaxation of the KL one, are
considered.
Using again the subgaussianity behavior of Lipschitz losses, it is possible to attain
PAC-Bayesian disintegrated bounds as long as the posterior distribution satisfies a log-
Sobolev inequality with sharp constant (achievable for instance for Gaussian distribution
with small operator norm).

Lemma C.2.1. Assume that for any z, `(., z) is L-Lipschitz and that Q is
Poinc(cP ) with cP (Q) ≤ 1/m. Then, with probability 1 − δ over the draw of
h ∼ Q:

∆Sm(h) ≤ ∆Sm(Q) +
√

2L2 log(1/δ)
m

.

This lemma states that, as long as we assume our loss to be Lipschitz w.r.t. h,
then it is possible to easily derive disintegrated PAC-Bayesian bounds. Also notice
that Lemma C.2.1 is easily completed by Corollary C.2.1 which makes appear a KL
divergence as complexity. Note also that as the loss is Lipschitz, it is also possible to
make appear 1-Wasserstein distance through the bounds of Chapters 5 and 6. Thus
Having a Log-Sobolev assumption with sharp constant on the posterior distribution
is enough to provide disintegrated PAC-Bayesian bounds involving KL or Wasserstein
terms instead of Rényi divegerences or disintegrated KL.

C.3 Proofs
C.3.1 Proof of Corollary 4.3.1
To start this proof, we first state an important intermediary theorem, holding at no
assumption on the data-distribution.

Theorem C.3.1. For any C > 0, any 2
C
> λ > 0, any data-free prior P, any

nonnegative loss function ` such that, for any z ∈ Z, `(., z) ∈ H1, and any δ ∈
[0, 1], we have, with probability at least 1 − δ over the sample S, for any m > 0,
any posterior Q being Poinc(cP ), such that RD(Q) ≤ C and such that for any
z, `(., z) ∈ H1(Q):

RD(Q) ≤ 1
1− λC

2

(
R̂Sm(Q) + KL(Q,P) + log(1/δ)

λm

)

+ λ

2− λC

(
cP (Q) E

z∼D

[
E
h∼Q

(
‖∇h`(h, z)‖2

)]
+ Varz∼D

(
E
h∼Q

[`(h, z)]
))

.
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Theorem C.3.1 exhibits the influence of the gradient norm of ∇h` on the generalisation
ability: small gradients makes the bound vanish, the remaining variance term is not
treated for now and can be assumed bounded, but we cannot then recover a fast
rate. We show next that assuming additional assumption over the data distribution
circumvent this issue.

Proof. We re-start from Chugg et al. (2023, Corollary 17), for any λ > 0, with
probability at least 1− δ, for any m > 0, any posterior Q:

RD(Q) ≤ R̂Sm(Q) + KL(Q,P) + log(1/δ)
λm

+ λ

2

(
E
h∼Q

[
Ez∼D[`(h, z)2]

])
.

Then, the last term is controlled as follows,

E
h∼Q

[
Ez∼D[`(h, z)2]

]
≤ E

z∼D

[
cP (Q) E

h∼Q

(
‖∇h`(h, z)‖2

)
+
(

E
h∼Q

[`(h, z)]
)2
]
.

We then make appear a supplementary variance term:

= E
z∼D

[
cP (Q) E

h∼Q

(
‖∇h`(h, z)‖2

)]
+ Varz∼D

(
E
h∼Q

[`(h, z)]
)

+
(

E
z∼D

E
h∼Q

[`(h, z)]
)2
.

Note that by Fubini, the last term on the right-hand side is exactly RD(Q)2, then
using that the averaged true risk is lesser than C, and re-organising the terms in
Chugg et al. (2023, Corollary 17) gives, for λ ∈

(
0, 2

C

)
:

RD(Q) ≤ 1
1− λC

2
R̂Sm(Q) + KL(Q,P) + log(1/δ)

λ
(
1− λC

2

)
m

+ λ

2− λC

(
cP (Q) E

z∼D

[
E
h∼Q

(
‖∇h`(h, z)‖2

)]
+ Varz∼D

(
E
h∼Q

[`(h, z)]
))

.

�

Now Theorem C.3.1 is proven, we only need to exploit the Poincaré assumption on the
data distribution on the variance term to obtain Corollary 4.3.1.

C.3.2 Proof of Theorem 4.3.3

– 179 –



C.3. Proofs

Proof. We start again from Theorem 4.3.2, with λ = 1/C1 then have with proba-
bility 1− δ/2:

RD(Q) ≤ 2
(

R̂Sm(Q) + 2C1
KL(Q,P) + log(2/δ)

m

)

+ cP (Q)
C1

E
z∼D

[
E
h∼Q

(
‖∇h`(h, z)‖2

)]
. (C.1)

We now remark that g(h, z) := ‖∇h`(h, z)‖2 is nonnegative. Then, given our
assumptions, we apply the route of proof of Theorem 4.3.2 on g i.e. we start
again from the (Chugg et al., 2023, Corollary 17), apply Poincaré’s inequality on
Q and use the QSB assumption on g. We then have for any λ > 0, with probability
at least 1− δ/2, any Q being Poinc(cP ), QSB (g, C2) and g(., z) ∈ H1(Q) for all
z :

E
z∼D

[
E
h∼Q

(
‖∇h`(h, z)‖2

)]
≤ E

h∼Q

[
1
m

m∑
i=1
‖∇h`(h, zi)‖2

]
+KL(Q,P) + log(2/δ)

λm

+ λcP (Q)
2 E

z∼D

[
E
h∼Q

(
‖∇hg(h, z)‖2

)]
+ λC2

2 E
z∼D

[
E
h∼Q

(
‖∇h`(h, z)‖2

)]
. (C.2)

Finally, notice that, by definition of g, ∇hg(h, z) = 2Hessh(`)(h, z)∇h`(h, z),
where Hessh(`) denotes the Hessian of `. Thus, using that `(., z) is G gradient
Lipschitz for any z gives, for any (h, z) that ‖∇hg(h, z)‖ ≤ 2G‖∇h`(h, z)‖.
Plugging this in (C.2) gives:

E
z∼D

[
E
h∼Q

(
‖∇h`(h, z)‖2

)]
≤ E

h∼Q

[
1
m

m∑
i=1
‖∇h`(h, zi)‖2

]
+KL(Q,P) + log(2/δ)

λm

+ λ

2
(
4cP (Q)G2 + C2

)
E

z∼D

[
E
h∼Q

(
‖∇h`(h, z)‖2

)]
. (C.3)

Finally, using that cP (Q) = c, taking λ = 1
4cG2+C2

and re-organising the terms in
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(C.3) gives:

E
z∼D

[
E
h∼Q

(
‖∇h`(h, z)‖2

)]
≤ 2 E

h∼Q

[
1
m

m∑
i=1
‖∇h`(h, zi)‖2

]

+ 2(4cG2 + C2)KL(Q,P) + log(2/δ)
m

(C.4)

Finally, taking an union bound and plugging (C.4) in (C.1) concludes the proof. �

C.3.3 Proof of Lemma 4.4.1
Proof. For conciseness, we rename Q := P−γR̂Sm

. We first notice that, denoting
by dQ

dP the Radon-Nikodym derivative of Q with respect to P:

KL
(
P−γR̂Sm

,P
)

= Eh∼Q

[
log

(
dQ
dP (h)

)]

= EntP

(
dQ
dP

)
= EntP [g2],

where g =
√

dQ
dP .

Recall that dQ
dP (h) = 1

Z
exp

(
−γR̂Sm(h)

)
where Z = Eh∼P

[
exp

(
−γR̂Sm(h)

)]
.

Then, g(h) = 1√
Z

exp(−γ
2 R̂Sm(h)) belongs in H1(P) as long as ` ∈ H1. Indeed, as

exp is infinitely smooth, g ∈ D1(Rd), also as the loss is nonnegative, then g ≤ 1√
Z

thus g ∈ L2(P). Finally, ∇g = −γ
2g(h)∇R̂Sm(h). As g(h) ≤ 1√

K
, we only need

to bound ‖∇R̂Sm(h)‖2 to ensure that g ∈ H1(P):

‖∇R̂Sm(h)‖2 = 1
m2

∑
1≤i,j≤m

〈∇`(h, zi),∇`(h, zj)〉

≤ 1
2m2

∑
1≤i,j≤m

‖∇`(h, zi)‖2 + ‖∇`(h, zj)‖2

As we assumed ‖∇`(., z)‖2 ∈ L2(P) for all z, we conclude that g ∈ H1.
We then can apply the log-Sobolev inequality to conlude that
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KL
(
P−γR̂Sm

,P
)
≤ cLS(P) E

h∼P
[‖∇g(h)‖2]

= γ2cLS(P)
4 E

h∼P

[
‖∇hR̂Sm(h)‖2g2(h)

]
= γ2cLS(P)

4 E
h∼P

[
‖∇hR̂Sm(h)‖2dQ

dP (h)
]

= γ2cLS(P)
4 E

h∼P−γR̂Sm

[
‖∇hR̂Sm(h)‖2

]

�

C.3.4 Proof of Theorem 4.4.1

Proof. We start again from Chugg et al. (2023, Corollary 17) instantiated with
a single λ, i.i.d. data and a prior P. Then with probability at least 1− δ, for any
posterior Q and m > 0:

RD(Q) ≤ R̂Sm(Q) + KL(Q,P) + log(1/δ)
λm

+ λ

2

(
E
h∼Q

[
Ez∼D[`(h, z)2]

])
,

where z ∼ D is independent of S.
For the first inequality, we just take λ = 1, we use that `(h, z)2 ≤ `(h, z) and
re-organise the terms. Finally, we upper bound the KL term thanks to Lemma
4.4.1.
For the second inequality, we exploit Proposition 4.2.2 to use the fact that P−γR̂Sm
is L-Sob(cLS) alongside Proposition C.1.1 which ensures that P−γR̂Sm

is Poinc(cP )
with constant equal to cLS

(
P−γR̂Sm

)
/2.

We then apply a route of proof similar to Theorem 4.3.2. We have :

E
h∼P−γR̂Sm

[
Ez∼D[`(h, z)2]

]
= E

z∼D

Varh∼P−γR̂Sm
(`(h, z)) +

 E
h∼P−γR̂Sm

[`(h, z)]
2


Applying Poincaré’s inequality then gives:
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E
h∼P−γR̂Sm

[
Ez∼D[`(h, z)2]

]

≤ E
z∼D

cP (P)e4‖`2‖∞ E
h∼P−γR̂Sm

(
‖∇h`(h, z)‖2

)
+
 E
h∼P−γR̂Sm

[`(h, z)]
2
 .

Finally, using that P−γR̂Sm
is QSB(`, C) allow us to re-organise the terms as in

Theorem 4.3.2. Combining this with Lemma 4.4.1 to bound the KL divergence
concludes the proof.

�

C.3.5 Proof of Theorem 4.5.1
Proof. We assume first G = 1. We start from the Kantorovich duality formula
(Villani, 2009, Theorem 5.10) instantiated with the cost function c(x, y) =
‖x− y‖2. We have for any Q,P, because W2 is a distance:

W 2(Q,P) = W 2(P,Q) = sup
φ,ψ

Eh∼Q[φ(h)]− Eh∼P[ψ(h)], (C.5)

where the supremum is taken over the functions φ, ψ ∈ L1(Q)× L1(P) such that
for all h, h′ ∈ H2, φ(h)− ψ(h′) ≤ ‖h− h′‖2.
We claim that if φ(h) = f(h)−D‖∇f(h)‖ and ψ(h′) = f(h′) then the pair Φ,Ψ
satisfies φ(h)− ψ(h′) ≤ ‖h−h′‖2

2 .
Indeed,

φ(h)− ψ(h′) = f(h)− f(h′)−D‖∇f(h)‖
= f ◦ g(1)− f ◦ g(0)−D‖∇f(h)‖,

where g(t) = th + (1 − t)h′. Then, by the fundamental theorem of calculus, we
have

φ(h)− ψ(h′) =
∫ 1

0
(f ◦ g)′(t)dt−D‖∇f(h)‖

=
∫ 1

0
〈∇f (th+ (1− t)h′) , h− h′〉 dt−D‖∇f(h)‖.
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We now control the last term using that ‖h− h′‖ ≤ D and Cauchy-Schwarz:

φ(h)− ψ(h′) ≤
∫ 1

0
〈∇f (th+ (1− t)h′) , h− h′〉 dt− 〈∇f(h), h− h′〉

=
∫ 1

0
〈∇f (th+ (1− t)h′)−∇f(h), h− h′〉 dt.

Then by Cauchy-Schwarz alongside Lipschitz gradient,

φ(h)− ψ(h′) ≤ ‖h− h′‖
∫ 1

0
‖∇f (th+ (1− t)h′)−∇f(h)‖ dt

≤ ‖h− h′‖
∫ 1

0
(1− t)dt ‖h− h′‖ dt

= ‖h− h
′‖2

2 .

We then conclude by applying (C.5) to the pair (2φ, 2ψ). The general case with
G 6= 1 is immediate when considering the pair ( 2

G
φ, 2

G
ψ). �

C.3.6 Proof of Corollary 4.5.1

Proof. We fix R > 0 and we start from Theorem 4.5.1 with predictor space
H0 = B(0, R), f being gradient-Lipschitz on this ball and prior and posterior
PR#Q,PR#P,

Eh∼Q [f (PR(h))] ≤ G

2 W2
2 (PR#Q,PR#P)+Eh∼P [f (PR(h))]+2REh∼Q [‖∇f (PR(h))‖] .

We first prove that W2
2 (PR#Q,PR#P) ≤W2

2(Q,P). Let π ∈ Γ(Q,P) being the
optimal transport coupling from P to Q, i.e.

W2
2(Q,P) = E(X,Y )∼π

[
‖X − Y ‖2

]
.

Then notice that if we denote by π1 = (PR,PR)#π, then π1 ∈ Γ (PR#Q,PR#P)
and so:

W2
2 (PR#Q,PR#P) ≤ E(X,Y )∼π1

[
‖X − Y ‖2

]
= E(X,Y )∼π1

[
‖PR(X)− PR(Y )‖2

]
.
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Using that PR is 1-Lipschitz gives,

W2
2 (PR#Q,PR#P) ≤ E(X,Y )∼π1

[
‖X − Y ‖2

]
= W2

2(Q,P).

Then we need to control W2
2(Q,P). To do so, we use the fact that P is L-Sob(cLS)

to affirm, through Otto-Villani’s theorem (Otto and Villani, 2000, Theorem
1) that the following holds: W2

2(Q,P) ≤ cLS(P)
2 KL(Q,P). This concludes the

proof. �

C.3.7 Proof of Theorem 4.5.2
Proof. We start from Theorem 4.5.1, using that ∆Sm is G-gradient-Lipschitz for
any m to obtain:

Eh∼Q[∆Sm(h)] ≤ G

2 W2
2(Q,P ) + Eh∼P[∆Sm(h)] +DEh∼Q[‖∇∆Sm(h)‖]

The only thing left to control is Eh∼P[∆Sm(h)]. For this, we use that P alongisde
the supermartingale concentration inequality of Chugg et al. (2023, Corollary 17)
instantiated with prior equal to posterior, i.i.d. data showing that, for any λ > 0,
with probability at least 1− δ,

Eh∼P[∆Sm(h)] ≤ log(1/δ)
λ

+ λ

2 Eh∼PEz∼D[`(h, z)2].

The last term on the right-hand side is bounded by σ2 by assumption, then, taking
λ =

√
2 log(1/δ)

σ2 gives finally Eh∼PEz∼D[`(h, z)2] ≤
√

2 log(1/δ)/m, concludes the
proof. �
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DAppendix of Chapter 5

D.1 Additional background

D.1.1 Background on optimal transport and covering numbers
We recall a basic property on covering numbers.

Proposition D.1.1. For any R, ε, N(B̄(0, R)), ε) ≤
(
1 + 2R

ε

)d
.

The following theorem is initially stated in (Villani, 2009, Theorem 5.10).

Theorem D.1.1 (Kantorovich duality). Let (X , Q) and (Y , P ) be two Polish prob-
ability spaces and let c : X × Y → R ∪ {+∞} be a lower semicontinuous cost
function, such that

∀(x, y) ∈ X × Y , c(x, y) ≥ a(x) + b(y)

for some real-valued upper semicontinuous functions a ∈ L1(Q) and b ∈ L1(P).
Then there is duality:

min
π∈Π(Q,P)

∫
X×Y

c(x, y)dπ(x, y) = sup
(ψ,φ)∈L1(Q)×L1(P)

φ−ψ≤c

[∫
Y
φ(y)dP (y)−

∫
X
ψ(x)dQ(x)

]
,

where L1(P) refers to the set of all functions integrable with respect to P and the
condition φ− ψ ≤ c means that for all x, y ∈ X × Y , φ(y)− ψ(x) ≤ c(x, y).

D.1.2 Technical background for Section 5.3
The theorems of Section 5.3 all rely on a well-chosen radius R (seen here as an
hyperparameter) verifying the following set of (non-restrictive) assumptions.
The set of assumptions Rad.
We say that R > 0 is satisfying Rad(α, β,M,m, d) (abbreviated as Rad when clear
from context) for 0 < α ≤ β and d ∈ N/{0},M > 0 if:

1. R ≥M + 1,
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2. R ≥M +
√

2β

√√√√d log
(
d
m

2
d
√
β√

πα

)
= M +

√
2β
√
d log

(
d

√
β√
πα

)
+ 2 log(m),

3. R ≥M +
√

2β
√

1 + d
2 .

Remark D.1.1. Note that R = Omax(
√
d log(d),

√
log(m)) when R is the small-

est value satisfying Rad.

We state a lemma from Panaretos and Zemel, 2020 which controls the Wasserstein
distance between a measure and its projection on a ball.

Lemma D.1.1 (Adapted from Panaretos and Zemel, 2020, Equation 2.3).
Let P ∈M(Rd) and R > 0. The 1-Wasserstein distance between P and PR#P is
controlled as follows:

W1(P,PR#P) ≤
∫
||x||>R

||x− PR(x)||dP (x) ≤
∫
||x||>R

||x||dP (x).

Lemma D.1.1 suggests to consider projected distributions and to control them through
the residual moments of the norm of gaussian vectors – which is done in the following
result.

Lemma D.1.2. For d ≥ 3, R satisfying Rad, any Q = N (µ,Σ) ∈ Cα,β,M ,

Q(||h|| > R) ≤ β
√

2β
m

.

Also, for any Q ∈ Cα,β,M :

W1(Q,PR#Q) ≤ Eh∼Q [||h|| 1(||h|| > R)] ≤ (M + 1)β
√

2β
m

.

Finally:
Eh∼Q

[
||h||2 1(||h|| > R)

]
≤ (M + 1)2β

√
2β
m

.

The proof of Lemma D.1.2 is gathered in Appendix D.2.2.
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D.1.3 Differential privacy background

Definition D.1.1 (Probability kernels). A probability kernel P from Zm toM(H)
is defined as a mapping P : Zm →M(H) .

Definition D.1.2. A probability kernel P : Zm → T is (ε, γ)-differentially private
if, for all pairs Sm,S ′m ∈ Zm that differ at only one coordinate, and all measurable
subsets B ∈ ΣH, we have

P{P(Sm) ∈ B} ≤ eεP {P (S ′m) ∈ B}+ γ.

Further, ε-differentially private means (ε, 0)-differentially private.

Remark D.1.2. Note that classically, differential privacy do not consider stochastic
kernels but randomised algorithms. Note that this is equivalent to consider prob-
ability kernels as precised in Dziugaite and Roy (2018b, footnote 3, Appendix
A).

For our purposes, max-information is the key quantity controlled by differential privacy.

Definition D.1.3 (Dwork et al. (2015), paragraph 3). Let β ≥ 0, let X and Y
be random variables in arbitrary measurable spaces, and let X ′ be independent of
Y and equal in distribution to X. The β-approximate max-information between X
and Y , denoted Iβ∞(X;Y ), is the least value k such that, for all product-measurable
events E,

P{(X, Y ) ∈ E} ≤ ekP {(X ′, Y ) ∈ E}+ β.

The max-information I∞(X;Y ) is defined to be Iβ∞(X;Y ) for β = 0. For
m ∈ N and stochastic kernel P : Zm → M(Z), the β-approximate max-
information of P , denoted Iβ∞(P ,m), is the least value k such that, for all
µ ∈ M1(Z), Iβ∞(Sm;P(Sm)) ≤ k when Sm ∼ Dm. The max-information of
P is defined similarly.

Dziugaite and Roy (2018b) exploited a boundedness assumption to control the
exponential mechanism of McSherry and Talwar (2007). This ensures that the
Gibbs posterior P(Sm) = P−λmR̂Sm

is ε-diffrentially private for ε given in Dziugaite
and Roy (2018b, Corollary 5.2). Here, we use a theorem from Minami et al. (2016)
to ensure that for uniformly Lipschitz losses (possibly unbounded), the Gibbs posterior
remain (ε, γ)-differentially private.
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Proposition D.1.2 (Minami et al. (2016), Corollary 8). AssumeH = Rd. Assume
the loss function to be convex and satisfying (A1). Finally assume that the (data-
free) distribution P is such that − logP (.) is twice differentiable and mP -strongly
convex. Let ε > 0, 0 < γ < 1. Take λ > 0 such that

λ ≤ ε

2K

√√√√ mP

1 + 2 log
(

1
γ

) .
Then the probability kernel P : Sm → P−λmR̂Sm

is (ε, γ)-differentially private.

Note that, as we mainly focus on Gaussian priors lying on the compact Cα,β,M , the
condition on P will always be satisfied with mP ≥ α. The last result in this appendix
is Theorem 3.1 of Rogers et al. (2016) which upper bounds the β-approximate max-
information of any (ε, γ) differentially private probability kernel.

Proposition D.1.3. Let P : Zn →M(H) be an (ε, γ)-differentially private prob-
ability kernel for ε ∈ (0, 1/2] and γ ∈ (0, ε). For β = e−ε

2m + O
(
m
√

γ
ε

)
, we

have
Iβ∞(P ,m) = O

(
ε2m+m

√
γ

ε

)
.

D.2 Additional proofs
D.2.1 Proof of Theorem 5.2.2
We fix λ > 0.
Step 1: define a good data-dependent function. We define, for any sample Sm and
predictor h ∈ H

fSm(h) = λ∆Sm2(h).
This function satisfies the following lemma.

Lemma D.2.1. We fix

ε = 1
m
, λ−1 = K

√
log(N2

δ
)

2m

√ log(N2

δ
)

2m + 2Kε
 ,

with N = N(H, ε) the ε-covering number of H. We then have with probability
1− 2δ for all h, h′ ∈ H:

fSm(h)− fSm(h′) ≤ εm + ||h− h′||,
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with εm = 4
log( 1

δ
)

(
2 +

√
log( 1

δ )+2d log(1+2Rm)
2m

)
= O

(
1 +

√
d
m

)
.

Proof of Lemma D.2.1. We rename N := N(H, ε). For any h, h′ ∈ H2, we have:

fSm(h)− fSm(h′) = λ (∆Sm(h)−∆Sm(h′)) . (∆Sm(h) + ∆Sm(h′)) .

The proof of Lemma 5.2.1 gives with probability at least 1− δ, for any h, h′ ∈ H2,

λ(∆Sm(h)−∆Sm(h′) ≤ 4λKε+

√√√√ log
(
N2

δ

)
2m λK (2ε+ ||h− h||) .

Thus with probability 1− δ:

fSm(h)−fSm(h′) ≤

4λKε+

√√√√ log
(
N2

δ

)
2m λK (2ε+ ||h− h||)

 .
(

2 sup
h∈K

∆Sm(h)
)

= λ

2Kε

2 +

√√√√ log
(
N2

δ

)
2m

+K

√√√√ log
(
N2

δ

)
2m ||h− h′||

 .
(

2 sup
h∈K

∆Sm(h)
)
.

Because H is compact and ` is K-lipschitz, ∆Sm is continuous so there exists hSm
such that suph∈H∆Sm(h) = ∆Sm(hSm).
We consider an ε-covering C := {h1, ..., hN} of H of size N . Thus, there exists
h0 ∈ C such that ||hSm − h0|| ≤ ε. Furthermore, because ` ∈ [0, 1], by Hoeffding
inequality applied for every h ∈ C and an union bound, we have with probability
at least 1− δ, for all h ∈ C:

∆Sm(h) ≤
√

log(N
δ

)
2m ≤

√
log(N2

δ
)

2m .

Finally using that ∆Sm is 2K-Lipschitz gives with probability at least 1− δ:

sup
h∈K

∆Sm(h) = ∆Sm(hSm) = ∆Sm(h0) + (∆Sm(hSm)−∆Sm(h0))

≤

√
log(N2

δ
)

2m + 2Kε.
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So finally, with probability 1− 2δ, we have, for any h, h′ ∈ H2:

1
λ

(fSm(h)− fSm(h′))

≤

2Kε

2 +

√√√√ log
(
N2

δ

)
2m

+K

√√√√ log
(
N2

δ

)
2m ||h− h′||

×2
√ log(N2

δ
)

2m + 2Kε
 .

Taking λ−1 = 2K
√

log(N2
δ

)
2m

(√
log(N2

δ
)

2m + 2Kε
)

gives:

fSm(h)− fSm(h′) ≤

2ε

2 +

√
log
(
N2
δ

)
2m


√

log(N2
δ

)
2m

(√
log(N2

δ
)

2m + 2Kε
) + ||h− h′||

≤ 4mε
log

(
N2

δ

)
2 +

√√√√ log
(
N2

δ

)
2m

+ ||h− h′||

≤ 4
log(1

δ
)

2 +

√√√√ log
(

1
δ

)
+ 2d log(1 + 2Rm)

2m

+ ||h− h′||.

The last line holds as N ≥ 1 and that N ≤ N(B̄(0, R)), ε) ≤
(
1 + 2R

ε

)d
thanks

to Proposition D.1.1 (ε = 1/m). This proves the lemma. �

Step 2: A probabilistic change of measure inequality for fSm . We do not have for
the Wasserstein distance such a powerful tool than the change of measure inequality.
However, we can generate a probabilistic surrogate on P1(H) valid for the function
fSm described below.

Lemma D.2.2. For any λ, εm defined as in Lemma D.2.1, any δ > 0, we have
with probability 1− 2δ over the sample Sm, for any P ∈ P1(H):(

sup
Q∈P1(H)

Eh∼Q[fSm(h)]− εm −W1(Q,P)
)
≤ Eh∼P[fSm(h)].
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Proof Proof of Lemma D.2.2. For any ε > 0, we introduce the cost function
cε(x, y) = ε+ ||x− y||. From this we notice that we can rewrite the ε, 1- Wasser-
stein distance introduced in Definition 5.1.1 the same way we did in Lemma 5.2.2.
This leads to

Wε(Q,P) = sup
(ψ,φ)∈L1(Q)×L1(P)

ψ−φ≤cε

[Eh∼Q[ψ(h)]− Eh∼P[φ(h)]] .

A crucial point is that for a well-chosen λ with high probability, the pair (fSm , fSm)
satisfies the condition stated under the last supremum. It is formalised in the lemma
below.

Lemma D.2.3. Given our choices of λ, εm, we have with probability at least
1− 2δ over the sample Sm that, for all measures Q,P ∈ P1(H)2:

• fSm ∈ L1(Q), L1(P),

• for all h, h′ ∈ H2, fSm(h)− fSm(h′) ≤ cεm(h, h′).

Thus, Kantorovich duality gives us:(
sup

Q∈P1(H)
Eh∼Q[fSm(h)]−Wεm(Q,P)

)
≤ Eh∼P[fSm(h)],

and using Wεm = εm + W1 concludes the proof.

Proof of Lemma D.2.3. Because our space of predictors is compact and that
for any z ∈ Z, the loss function `(., z) is K-lipschitz on H, then both the
generalisation and empirical risk are continuous on H. Thus |fSm| is also
continuous and, by compacity, reaches its maximum MS on H. Thus for any
probability P on K,Eh∼P[|fSm(h)|] ≤ MS < +∞ almost surely. This proves
the first statement. We notice that the second bullet, given our choice of λ,
is the exact conclusion of Lemma D.2.1 with probability at least 1 − 2δ. So
with probability at least 1− 2δ, Kantorovich duality gives us that for any P,Q

Eh∼Q[fSm(h)]− Eh∼P[fSm(h)] ≤ Wεm(Q,P).

Re-organising the terms and taking the supremum over Q concludes the proof.
�

This concludes the proof of Lemma D.2.2. �
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Step 3: The PAC-Bayes proof for the 1-Wasserstein distance.
We start by exploiting lemma D.2.2: for any prior P ∈ P1(H), for λ, εm defined as in
Lemma D.2.1, with probability at least 1− 2δ we have:(

sup
Q∈P1(H)

Eh∼Q[fSm(h)]− εm −W1(Q,P)
)
≤ Eh∼P[fSm(h)].

We then notice that by Jensen’s inequality

Eh∼P[fSm(h)] ≤ λ

2(m− 1) log
(
Eh∼P[exp(2(m− 1)∆Sm2(h))]

)
.

Then, by Markov’s inequality we have with probability 1− δ:

Eh∼P[fSm(h)] ≤ λ

2(m− 1) log
ESEh∼P

[
exp

(
2(m− 1)∆Sm2(h)

)]
δ

 .
By Fubini and Lemma 5 of McAllester (2003a), we have

ESEh∼P [exp(fSm(h))] ≤ m.

Taking an union bound and dividing by λ gives with probability 1−3δ, for any posterior
Q

Eh∼Q[∆Sm2(h)] ≤ W1(Q,P) + εm
λ

+
log

(
m
δ

)
2(m− 1) .

We also remark that we can upper bound λ:

λ−1 = 2K

√
log(N2

δ
)

2m

√ log(N2

δ
)

2m + 2K
m


≤ 2K(2K + 1)

log(1
δ
) + 2d log (1 + 2Rm)

2m .

The last line holding because 1/m ≤
√

log(N2
δ

)
2m . Also N = N(H, 1/m) ≤ (1 + 2Rm)d

thanks to proposition D.1.1. Then, bounding 1/2m, 1/(2m − 1) by 1/m gives, with
probability at least 1− 3δ, for any posterior Q

Eh∼Q[∆Sm2(h)] ≤ 2K(2K + 1)
log(1

δ
) + 2d log (1 + 2Rm)

m
(W1(Q,P) + εm) +

log
(
m
δ

)
m

.

We finally exploit Jensen’s inequality once more to remark that for any Q, Eh∼Q[∆Sm2(h)] ≥
(Eh∼Q[∆Sm(h)])2. Then, with probability at least 1− 3δ, for any posterior Q

|∆Sm(Q)| ≤

√√√√2K(2K + 1)
2d log

(
1+2Rm

δ

)
m

(W1(Q,P) + εm) +
log

(
m
δ

)
m

Taking δ′ = δ/3 concludes the proof.
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D.2.2 Proof of Lemma D.1.2

Proof of Lemma D.1.2. We denote by x a vector of Rd, by dx = dx1 ...dxd the
Lebesgue measure on Rd and fµ,Σ(x) = exp

(
1
2(xT −m)Σ−1(x−m)

)
.

First bound. First we use that ||µ|| ≤M to say that B̄(0Rd , R−M) ⊆ B̄(−m,R)
and so:√

(2π)d|Σ|.Q(||x|| > R) =
∫
||x||>R

fµ,Σ(x)dx ≤
∫
||x||>R−M

f0,Σ(x)dx

where |Σ| the determinant of Σ. We now use that because Q ∈ Cα,β,M , αId �
Σ � βId. We then have: |Σ| ≥ αd and for any x, xTΣ−1x ≥ ||x||2/β. Thus we
have:

Q(||h|| > R) = 1
√

2παd
∫
||x||>(R−M)

exp
(

1
2β ||x||

2
)
dx

We use the hyperspherical coordinate (see e.g. Blumenson, 1960) to obtain:
∫
||x||>(R−M)

exp
(

1
2β ||x||

2
)
dx =

∫ +∞

R−M
rd−1 exp

(
− r

2

2β

)
dr

≤
∫ +∞

R−M
rd+1 exp

(
− r

2

2β

)
dr

= β
√

2β
d+1 ∫ +∞

(R−M)2
2β

r
d
2 exp−r dr.

The second line holding because we assumed R−M ≥ 1 thanks to Rad. We define
the residual of Euler’s Gamma function as: Γ

(
1 + d

2 ,
(R−M)2

2β

)
:=
∫+∞

(R−M)2
2β

r
d
2 exp−r dr.

Then we use Gabcke (1979, Lemma 4.4.3, p.84) which ensure us that (because
point 3 of Rad gives (R−M)2

2β ≥ 1 + d
2):

Γ
(

1 + d

2 ,
(R−M)2

2β

)
≤ d+ 2

2 exp
(
−(R−M)2

2β

)(
(R−M)2

2β

) d
2

.

We now control this quantity through the following lemma.
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Lemma D.2.4. Let d ≥ 3, f(r) = d
2 log(r)− r Then for any r = (R−M)2

2β with
R satisfying Rad, we have :

f(r) ≤ −d2 log
√ β

πα

− log(m)− log
(
d+ 2

2

)
.

The proof of Lemma D.2.4 lies at the end of this section. We then have

exp
(
−(R−M)2

2β

)(
(R−M)2

2β

) d
2

= exp
(
f

(
(R−M)2

2β

))
≤
√
πα

β

d

× 2
d+ 2 ×

1
m
.

Hence the final bound:
Q(||h|| > R) ≤ β

√
2β
m

.

Second bound. We use lemma D.1.1 to have

W1(Q,PR#Q) ≤
∫
||x||>R

||x− PR(x)||dP (x).

By definition of the projection on a closed convex, ||x− PR(x)|| ≤ ||x||. Thus:

≤ 1√
(2π)d|Σ|

∫
||x||>R

||x||fµ,Σ(x)dx

≤ 1√
(2π)d|Σ|

∫
||x||>R

||x− µ||fµ,Σ(x)dx +MQ(||h|| > R)

≤ 1√
(2π)d|Σ|

∫
||x||>R

||x− µ||fµ,Σ(x)dx + Mβ
√

2β
m

.

The last line holding thanks to the first part of the proof, then using again that
||µ|| ≤M gives:

W1(Q,PR#Q) ≤ 1√
(2π)d|Σ|

∫
||x||>R−M

||x||f0,Σ(x)dx + Mβ
√

2β
m

.

– 196 –



D.2. Additional proofs

Then using the same arguments than in the first part of the proof gives:

W1(Q,PR#Q) ≤ 1
√

2παd
∫
||x||>R−M

||x|| exp
(
−||x||

2

2β

)
dx + Mβ

√
2β

m
.

We use the hyperspherical coordinate to obtain:
∫
||x||>R−M

||x|| exp
(
−||x||

2

2β

)
dx =

∫ +∞

R−M
rd exp

(
− r

2

2β

)
dr

≤
∫ +∞

R−M
rd+1 exp

(
− r

2

2β

)
dr

= β
√

2β
d+1 ∫ +∞

(R−M)2
2β

r
d
2 exp−r dr

= β
√

2β
d+1

Γ
(
d+ 1

2 ,
(R−M)2

2β

)
.

The second line holding because R−M ≥ 1. Then applying again Lemma D.2.4
gives:

Eh∼Q [||h|| 1(||h|| > R)] ≤ β
√

2β
√
β

πα

d

× d+ 2
2

√
πα

β

d

× 2
d+ 2 ×

1
m

+ Mβ
√

2β
m

= (M + 1)β
√

2β
m

.

Hence the final bound:

W1(Q,PR#Q) ≤ Eh∼Q [||h|| 1(||h|| > R)] ≤ (M + 1)β
√

2β
m

.

Third bound. We start again as

Eh∼Q[||h||21(||h|| > R)] = 1√
(2π)d|Σ|

∫
||x||>R

||x||2fµ,Σ(x)dx

= 1√
(2π)d|Σ|

∫
||x||>R

||x− µ||2 + 2〈µ,x− µ〉+ ||µ||2fµ,Σ(x)dx.
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Then, using that µ is the mean of Q and that ||µ|| ≤M gives:

Eh∼Q[||h||21(||h|| > R)] ≤ 1√
(2π)d|Σ|

∫
||x||>R

||x− µ||2fµ,Σ(x)dx

+ 2M 1√
(2π)d|Σ|

∫
||x||>R

||x− µ||fµ,Σ(x)dx +M2Q(||h|| > R).

Then, the first and second bounds of lemma D.1.2 give

Eh∼Q[||h||21(||h|| > R)] ≤ 1√
(2π)d|Σ|

∫
||x||>R

||x− µ||2fµ,Σ(x)dx + (M2 + 2M)β
√

2β
m

.

Finally,

Eh∼Q[||h||21(||h|| > R)]

≤ 1
√

2παd
∫
||x||>R−M

||x||2 exp
(
−||x||

2

2β

)
dx + (M2 + 2M + 2)β

√
2β
m

.

We use the hyperspherical coordinate to obtain:
∫
||x||>R−M

||x||2 exp
(
−||x||

2

2β

)
dx =

∫ +∞

R−M
rd+1 exp

(
− r

2

2β

)
dr

= β
√

2β
d+1 ∫ +∞

(R−M)2
2β

r
d
2 exp−r dr

= β
√

2β
d+1

Γ
(
d+ 1

2 ,
(R−M)2

2β

)
.

Then applying again Lemma D.2.4 gives:

Eh∼Q
[
||h||2 1(||h|| > R)

]
≤ β
√

2β
m

+ (M2 + 2M)β
√

2β
m

= (M + 1)2β
√

2β
m

.

This concludes the proof.
�
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Proof of Lemma D.2.4. First of all, f is decreasing on [d2 ,+∞). Notice that if

r0 = d log
(
d
m

2
d
√
β√

πα

)
, then r0 ≥ d

2 because d ≥ 3. Thus, r = (R−M)2

2β , with R

satisfying Rad. We then know that r ≥ r0 so f(r) ≤ f(r0). The only thing left
to prove is that

f(r0) ≤ −d2 log
√ β

πα

− log(m)− log
(
d+ 2

2

)
.

To do so, notice that:

log(r0) = log(d) + log
log

dm 2
d

√
β

πα

 .
So, multiplying by d/2 gives:

d

2 log(r0) = −d2 log
m 2

d

√
β

πα

+ r0

2 + d

2 log log
dm 2

d

√
β

πα

 .
Finally:

f(r0) = −d2 log
m 2

d

√
β

πα

− r0

2 + d

2 log log
(
dm

2
d
β

πα

)

We conclude the proof by proving

−r0

2 + d

2 log log
dm 2

d

√
β

πα

 ≤ − log
(
d+ 2

2

)
.

Note that this is equivalent to

dm
2
d

√
β

πα
−
(

1 + d

2

) 2
d

log
dm 2

d

√
β

πα

 ≥ 0.

This is true because for d ≥ 3,
(
1 + d

2

) 2
d ≤ 2 and the function R+, x → x −

2 log(x) is positive. This concludes the proof. �

D.2.3 Proof of Theorem 5.3.2
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Proof of Theorem 5.3.2. We take a specific radius R which is the smallest value
satisfying Rad. We first notice that because for all z, `(., z) is L-smooth, then on
B(0, R), the gradients of `(., z) are bounded by DR = D+LR. Thus ` is uniformly
DR-Lipschitz on the closed ball of radius R. This allow us a straightforward
application of Theorem 5.2.2 on the compact B(0, R), with the prior PR#P, and
with high probability, for any posterior PR#Q with Q ∈ Cα,β,M :

|∆Sm(PR#Q)| ≤√√√√2DR(2DR + 1)
2d log

(
31+2Rm

δ

)
m

(W1(PR#Q,PR#P) + εm) +
log

(
3m
δ

)
m

.

From this we control the left hand-side term as follows:

|∆Sm(Q)| ≤ |∆Sm(PR#Q)|+ |∆Sm(Q)−∆Sm(PR#Q)|

And we also have as in the proof of Theorem 5.3.1:

|∆Sm(Q)−∆Sm(PR#Q)| ≤ 2Q(||h|| > R) ≤ 2β
√

2β
m

.

Also we have by the triangle inequality:

W1(PR#Q,PR#P) ≤W1(Q,PR#Q) + W1(Q,P) + W1(P,PR#P).

Because both Q,P ∈ Cα,β,M , using again Lemma D.1.2 gives:

W1(PR#Q,PR#P) ≤W1(Q,P) + 2(M + 1)β
√

2β
m

.

We then have:

|∆Sm(Q)| ≤

2β
√

2β
m

+

√√√√2DR(2DR + 1)
2d log

(
31+2Rm

δ

)
m

(W1(Q,P) + αm) +
log

(
3m
δ

)
m

.

with αm = 2(M + 1)β
√
β

m
+ εm = O

(
1 +

√
d log(Rm)

m

)
. This concludes the proof.

�
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EAppendix of Chapter 6

The supplementary material is organized as follows:

1. We provide more discussion about Theorems 6.3.1 and 6.3.2 in Appendix E.1;

2. The proofs of Theorems 6.3.1 to 6.3.4 are presented in Appendix E.2;

3. We present in Appendix E.3 additional information about the experiments.

E.1 Additional insights on Section 6.3.1
In Appendix E.1.1, we provide additional discussion about Theorem 6.3.1 while Ap-
pendix E.1.2 discuss about the convergence rates for Theorem 6.3.2.

E.1.1 Supplementary discussion about Theorem 6.3.1
Haddouche and Guedj, 2023b, Corollary 10 proposed PAC-Bayes bounds with
Wasserstein distances on a Euclidean predictor space with Gaussian prior and posteriors.
The bounds have an explicit convergence rate of O(

√
dW1(Q,P)

m
) where the predictor

space is Euclidean with dimension d. While our bound does not propose such an
explicit convergence rate, it allows us to derive learning algorithms as described in
Section 6.4. A broader discussion about the role of K is detailed in Theorem 6.3.2.
Furthermore, our bound holds for any Polish predictor space and does not require
Gaussian distributions. Furthermore, our result exploits data-dependent priors and
deals with the dimension only through the Wasserstein distance, which can attenuate
the impact of the dimension.

E.1.2 Convergence rates for Theorem 6.3.2
In this section, we discuss more deeply the values of K in Theorem 6.3.2. This implies
a tradeoff between the number of sets K and the cardinal of each S im. The tightness
of the bound depends highly on the sets S1

m, . . . ,SKm .
Full batch setting K=1. When S1

m = Sm with K = 1, the bound of Theorem 6.3.2
becomes, with probability 1− δ, for any Q ∈M(H)

E
h∼Q

[
RD(h)− R̂Sm(h)

]
≤ 2LW1(Q,P) + 2

√
ln 1

δ

m
,
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where P = P1 is data-free. This bound can be seen as the high-probability (PAC-
Bayesian) version of the expected bound of Wang et al., 2019. Furthermore, in this
setting, we are able, through our proof technique, to recover an explicit convergence
rate similar to the one of Amit et al., 2022, Theorem 12. It is stated below.

Corollary E.1.1. For any distribution D on Z, for any finite hypothesis space H
equipped with a distance d, for any L-Lipschitz loss function ` : H × Z → [0, 1],
for any δ ∈ (0, 1], we have, with probability 1 − δ over the sample S, for any
Q ∈M(H):

E
h∼Q

[
RD(h)− R̂Sm(h)

]
≤ L

√√√√2 ln
(

4|H|2
δ

)
m

W1(Q,P) + 2

√√√√ ln
(

2
δ

)
m

where P is a data-free prior.

Proof. We exploit Amit et al., 2022, Equation 35 to state that with probability
at least 1− δ

2 , for any (h, h′) ∈ H2:

∣∣∣∣∣ 1
m

m∑
i=1

[` (h′, zi)− ` (h, zi)]− E
z∼D

[` (h′, z)− `(h, z)]
∣∣∣∣∣ ≤ L

√√√√2 ln
(

4|H|2
δ

)
m

d (h, h′) .

So, with high probability, we can exploit the Kantorovich-Rubinstein duality with
this new Lipschitz constant: with probability at least 1− δ/2:

E
h∼Q

[
RD(h)− R̂Sm(h)

]

≤ L

√√√√2 ln
(

4|H|2
δ

)
m

W1(Q,P) + E
h∼P

1
m

[
m∑
i=1

RD(h)− `(h, zi)
]
,

To conclude, we control the quantity on the right-hand side the same way as in
Theorem 6.3.1 and Theorem 6.3.2. We then have, with probability at least 1−δ/2,
for a loss function in [0, 1]:

1
m

m∑
i=1

RD(h)− `(h, zi) ≤ 2
√

ln K
δ

m
.

Taking the union bound concludes the proof. �
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Mini-batch setting K =
√
m. When a tradeoff is desired between the quantity of

data we want to infuse in our priors and an explicit convergence rate, a meaningful
candidate is when K =

√
m. Theorem 6.3.2’s bound becomes, in this particular case:

E
h∼Q

[
RD(h)− R̂Sm(h)

]
≤ 2L√

m

√
m∑

i=1
W1(Q,Pi) + 2

√√√√ ln
√
m
δ√
m

. (E.1)

Towards online learning: K = m. When K = m, the sets S im contain only one
example. More precisely, we have for all i ∈ {1, . . . ,m} the set S im = {zi}. In this
case, the bound becomes:

E
h∼Q

[
RD(h)− R̂Sm(h)

]
≤ 2L

m

m∑
i=1

W1(Q,Pi) + 2
√

ln m
δ
.

This bound is vacuous since the last term is incompressible, hence the need for a new
technique detailed in Section 6.3.2 to deal with it.

E.2 Proofs
The proof of Theorem 6.3.1 is presented in Appendix E.2.1. Appendices E.2.2 and E.2.3
introduce two proofs of Theorem 6.3.2. Theorem 6.3.3’s proof is presented in Ap-
pendix E.2.4. Appendix E.2.5 provides the proof of Theorem 6.3.3.

E.2.1 Proof of Theorem 6.3.1

Theorem 6.3.1. We assume the loss ` to be L-Lipschitz. Then, for any δ ∈ (0, 1],
for any sequence of positive scalar (λi)i∈{1,...,K}, with probability at least 1− δ over
the sample S, the following holds for the distributions Pi,S := Pi(S, .) and for any
Q ∈M(H):

E
h∼Q

[
RD(h)− R̂Sm(h)

]

≤
K∑
i=1

2|S im|L
m

W1(Q,Pi,S)+ 1
m

K∑
i=1

ln
(
K
δ

)
λi

+ λi
2

(
E

h∼Pi,S

[
V̂|Sim|(h) + V|Sim|(h)

])
,

where Pi,S does not depend on S im. Also, for any i, |S im|, we have V̂|Sim|(h) =∑
z∈Sim (`(h, z)−RD(h))2 and V|Sim|(h) = ESim

[
V̂|Sim|(h)

]
.
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Proof. For the sake of readability, we identify, for any i, Pi and Pi,S .

Step 1: Exploit the Kantorovich duality Villani, 2009, Remark 6.5. First
of all, note that for a L-Lipschitz loss function ` : H×Z → [0, 1], we have
∣∣∣∣∣∣
|S im|RD(h1)−

∑
z∈Sim

`(h1, z)
−

|S im|RD(h2)−
∑

z∈Sim

`(h2, z)
∣∣∣∣∣∣

≤ 2|S im|Ld(h1, h2). (E.2)

Indeed, we can deduce Equation (E.2) from Jensen inequality, the triangle inequal-
ity, and by definition that we have∣∣∣∣∣∣

|S im|RD(h1)−
∑

z∈Sim

`(h1, z)
−

|S im|RD(h2)−
∑

z∈Sim

`(h2, z)
∣∣∣∣∣∣

=

∣∣∣∣∣∣
 ∑

z∈Sim

RD(h1)−
∑

z∈Sim

`(h1, z)
−

 ∑
z∈Sim

RD(h2)−
∑

z∈Sim

`(h2, z)
∣∣∣∣∣∣

≤
∑

z∈Sim

E
z′∼D

[
|`(h1, z′)− `(h2, z′)|+ |`(h2, z)− `(h1, z)|

]
≤ E

z′∼D

∑
z∈Sim

2Ld(h1, h2)

= 2|S im|Ld(h1, h2).

We are now able to upper-bound Eh∼Q[RD(h)− R̂Sm(h)]. Indeed, we have

E
h∼Q

[
RD(h)− R̂Sm(h)

]
= 1
m

K∑
i=1

E
h∼Q

|S im|RD(h)−
∑

z∈Sim

`(h, z)


≤
K∑
i=1

2|S im|L
m

W1(Q,Pi) +
K∑
i=1

E
h∼Pi

1
m

|S im|RD(h)−
∑

z∈Sim

`(h, z)
 , (E.3)

where the inequality comes from the Kantorovich-Rubinstein duality theorem.

Step 2: Define an adapted supermartingale. For any 1 ≤ i ≤ K, we fix λi >
0 and we provide an arbitrary order to the elements of S im := {zi,1, · · · , zi,|Si|}.
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Then we define for any h:

M|Sim|(h) := |S im|RD(h)−
∑

z∈Sim

`(h, z) =
|Sim|∑
j=1

RD(h)− `(h, zi,j).

Remark that, because our data are i.i.d., (M|Sim|)|Sim|≥1 is a martingale. We then
exploit the technique Chapter 2 to define a supermartingale. More precisely, we
exploit a result from Bercu and Touati, 2008 cited in Lemma 1.3 of Chapter 2
coupled with Lemma 2.2 of Chapter 2 to ensure that the process

SM|Sim| := E
h∼Pi

[
exp

(
λiM|Sim|(h)− λ2

i

2
(
V̂|Sim|(h) + V|Sim|(h)

))]
,

is a supermartingale, where V̂|Sim|(h) = ∑|Sim|
j=1 (`(h, zi,j)−RD(h))2 and V|Sim|(h) =

ESim
[
V̂|Sim|(h)

]
.

Step 3. Combine steps 1 and 2. We restart from Equation (E.3) to exploit
again the Kantorovich-Rubinstein duality.

E
h∼Q

[
RD(h)− R̂Sm(h)

]
= 1
m

K∑
i=1

E
h∼Q

|S im|RD(h)−
∑

z∈Sim

`(h, z)


≤
K∑
i=1

2|S im|L
m

W1(Q,Pi) +
K∑
i=1

1
mλi

λi E
h∼Pi

|S im|RD(h)−
∑

z∈Sim

`(h, z)
 ,

=
K∑
i=1

2|S im|L
m

W1(Q,Pi) +
K∑
i=1

1
mλi

E
h∼Pi

[
λiM|Sim||

]
,

≤
K∑
i=1

2|S im|L
m

W1(Q,Pi) +
K∑
i=1

1
mλi

ln
(
SM|Sim|

)

+ 1
m

K∑
i=1

E
h∼Pi

[
λi
2
(
V̂|Sim|(h) + V|Sim|(h)

)]
.

The last line holds thanks to Jensen’s inequality. We now apply Ville’s inequality
(see e.g., Section 1.2 of Chapter 2). We have for any i:

P
Sim∼D|S

i
m|

(
∀|Si| ≥ 1, SM|Si| ≤

1
δ

)
≥ 1− δ.
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Applying an union bound and authorising λi to be a function of |Si| (thus the
inequality does not hold for all |S im| simultaneously) finally gives with probability
at least 1− δ, for all Q ∈M(H) :

E
h∼Q

[
RD(h)− R̂Sm(h)

]
≤

K∑
i=1

2|S im|L
m

W1(Q,Pi) +
K∑
i=1

ln
(
K
δ

)
λim

+ λi
2m E

h∼Pi

[
V̂|Sim|(h) + V|Sim|(h)

]
.

�

E.2.2 Proof of Theorem 6.3.2

Theorem 6.3.2. We assume our loss ` to be non-negative and L-Lipschitz.
We also assume that, for any 1 ≤ i ≤ K, for any dataset S, we have
Eh∼Pi(.,S),z∼D [`(h, z)2] ≤ 1 (bounded order 2 moments for priors). Then, for
any δ ∈ (0, 1], with probability at least 1−δ over the sample S, the following holds
for the distributions Pi,S := Pi(S, .) and for any Q ∈M(H):

E
h∼Q

[
RD(h)− R̂Sm(h)

]
≤

K∑
i=1

2|S im|L
m

W1(Q,Pi,S) +
K∑
i=1

√
2|S im| ln K

δ

m2 ,

where Pi,S does not depend on S im.

Proof. For the sake of readability, we identify, for any i, Pi and Pi,S .

Step 1: Exploit the Kantorovich duality Villani, 2009, Remark 6.5. First
of all, note that for a L-Lipschitz loss function ` : H×Z → [0, 1], we have
∣∣∣∣∣∣
|S im|RD(h1)−

∑
z∈Sim

`(h1, z)
−

|S im|RD(h2)−
∑

z∈Sim

`(h2, z)
∣∣∣∣∣∣

≤ 2|S im|Ld(h1, h2). (E.4)
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Indeed, we can deduce Equation (E.4) from Jensen inequality, the triangle inequal-
ity, and by definition that we have∣∣∣∣∣∣

|S im|RD(h1)−
∑

z∈Sim

`(h1, z)
−

|S im|RD(h2)−
∑

z∈Sim

`(h2, z)
∣∣∣∣∣∣

=

∣∣∣∣∣∣
 ∑

z∈Sim

RD(h1)−
∑

z∈Sim

`(h1, z)
−

 ∑
z∈Sim

RD(h2)−
∑

z∈Sim

`(h2, z)
∣∣∣∣∣∣

≤
∑

z∈Sim

E
z′∼D

[
|`(h1, z′)− `(h2, z′)|+ |`(h2, z)− `(h1, z)|

]
≤ E

z′∼D

∑
z∈Sim

2Ld(h1, h2)

= 2|S im|Ld(h1, h2).

We are now able to upper-bound Eh∼Q[RD(h)− R̂Sm(h)]. Indeed, we have

E
h∼Q

[
RD(h)− R̂Sm(h)

]
= 1
m

K∑
i=1

E
h∼Q

|S im|RD(h)−
∑

z∈Sim

`(h, z)


≤
K∑
i=1

2|S im|L
m

W1(Q,Pi) +
K∑
i=1

E
h∼Pi

1
m

|S im|RD(h)−
∑

z∈Sim

`(h, z)
 , (E.5)

where the inequality comes from the Kantorovich-Rubinstein duality theorem.

Step 2: Define an adapted supermartingale. For any 1 ≤ i ≤ K, we fix λi >
0 and we provide an arbitrary order to the elements of S im := {zi,1, · · · , zi,|Si|}.
Then we define for any h:

M|Sim|(h) := |S im|RD(h)−
∑

z∈Sim

`(h, z) =
|Sim|∑
j=1

RD(h)− `(h, zi,j).

Remark that, because our data are i.i.d., (M|Sim|)|Sim|≥1 is a martingale. We then
exploit the technique Chugg et al., 2023 to define a supermartingale. More
precisely, we exploit Chugg et al., 2023, Lemma A.2 and Lemma B.1 to ensure
that the process

SM|Sim| := E
h∼Pi

[
exp

(
λiM|Sim|(h)− λ2

i

2 L|S
i
m|(h)

)]
,
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is a supermartingale, where, because S is i.i.d., L|Sim|(h) = ES
[∑|Si|

j=1 `(h, zi,j)2
]

=
|S im|Ez∼D[`(h, z)2].

Step 3. Combine steps 1 and 2. We restart from Equation (E.5) to exploit
the Kantorovich-Rubinstein duality again.

E
h∼Q

[
RD(h)− R̂Sm(h)

]
= 1
m

K∑
i=1

E
h∼Q

|S im|RD(h)−
∑

z∈Sim

`(h, z)


≤
K∑
i=1

2|S im|L
m

W1(Q,Pi) +
K∑
i=1

1
mλi

λi E
h∼Pi

|S im|RD(h)−
∑

z∈Sim

`(h, z)
 ,

=
K∑
i=1

2|S im|L
m

W1(Q,Pi) +
K∑
i=1

1
mλi

E
h∼Pi

[
λiM|Sim||

]
,

≤
K∑
i=1

2|S im|L
m

W1(Q,Pi) +
K∑
i=1

1
mλi

ln
(
SM|Sim|

)
+ 1
m

K∑
i=1

E
h∼Pi

[
λi
2 L|S

i
m|(h)

]
.

The last line holds thanks to Jensen’s inequality. We now apply Ville’s inequality
(see e.g., section 1.2 of Chapter 2). We have for any i:

P
Sim∼D|S

i
m|

(
∀|Si| ≥ 1, SM|Si| ≤

1
δ

)
≥ 1− δ.

Applying an union bound and authorising λi to be a function of |Si| (thus the
inequality does not hold for all |S im| simultaneously) finally gives with probability
at least 1− δ, for all Q ∈M(H) :

E
h∼Q

[
RD(h)− R̂Sm(h)

]
≤

K∑
i=1

2|S im|L
m

W1(Q,Pi)

+
K∑
i=1

ln
(
K
δ

)
λim

+ λi
2m E

h∼Pi

[
L|S im|(h)

]
.

Finally, using the assumption Eh∼Pi Ez∼D[`(h, z)2] ≤ 1 gives, with probability at
least 1− δ, for all Q ∈M(H):

E
h∼Q

[
RD(h)− R̂Sm(h)

]
≤

K∑
i=1

2|S im|L
m

W1(Q,Pi) +
K∑
i=1

ln
(
K
δ

)
λim

+ λi[S im|]
2m .
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Taking for each i, λi =
√

2 ln(K/δ)
|Sim|

concludes the proof. �

E.2.3 Alternative proof of Theorem 6.3.2
We state here a slightly tighter version of Theorem 6.3.2 for bounded losses, which relies
on an application of McDiarmid’s inequality instead of supermartingale techniques.
This is useful for the numerical evaluations of our bound.

Theorem E.2.1. We assume our loss ` to be in [0, 1] and L-Lipschitz. Then, for
any δ ∈ (0, 1], with probability at least 1−δ over the sample S, the following holds
for the distributions Pi,S := Pi(S, .) and for any Q ∈M(H):

E
h∼Q

[
RD(h)− R̂Sm(h)

]
≤

K∑
i=1

2|S im|L
m

W1(Q,Pi,S) +
K∑
i=1

√
|S im| ln K

δ

2m2

where Pi does not depend on S im.

Proof. For the sake of readability, we identify, for any i, Pi and Pi,S .
First of all, note that for a L-Lipschitz loss function ` : H×Z → [0, 1], we have∣∣∣∣∣∣
|S im|RD(h1)−

∑
z∈Sim

`(h1, z)
−

|S im|RD(h2)−
∑

z∈Sim

`(h2, z)
∣∣∣∣∣∣ ≤ 2|S im|Ld(h1, h2).

(E.6)

Indeed, we can deduce Equation (E.6) from Jensen’s inequality, the triangle in-
equality, and by definition that we have∣∣∣∣∣∣

|S im|RD(h1)−
∑

z∈Sim

`(h1, z)
−

|S im|RD(h2)−
∑

z∈Sim

`(h2, z)
∣∣∣∣∣∣

=

∣∣∣∣∣∣
 ∑

z∈Sim

RD(h1)−
∑

z∈Sim

`(h1, z)
−

 ∑
z∈Sim

RD(h2)−
∑

z∈Sim

`(h2, z)
∣∣∣∣∣∣

≤
∑

z∈Sim

E
z′∼D

[
|`(h1, z′)− `(h2, z′)|+ |`(h2, z)− `(h1, z)|

]
≤ E

z′∼D

∑
z∈Sim

2Ld(h1, h2)

= 2|S im|Ld(h1, h2).
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We are now able to upper-bound Eh∼Q[RD(h)− R̂Sm(h)]. Indeed, we have

E
h∼Q

[
RD(h)− R̂Sm(h)

]
= 1
m

K∑
i=1

E
h∼Q

|S im|RD(h)−
∑

z∈Sim

`(h, z)


≤
K∑
i=1

2|S im|L
m

W1(Q,Pi) +
K∑
i=1

E
h∼Pi

1
m

|S im|RD(h)−
∑

z∈Sim

`(h, z)
 , (E.7)

where the inequality comes from the Kantorovich-Rubinstein duality theorem. Let
f(S im) = Eh∼Pi

1
m

[
|S im|RD(h)−∑z∈Sim `(h, zi)

]
, the function has the bounded

difference inequality, i.e., for two datasets S im and S ′i that differs from one example
(the k-th example, without loss of generality), we have
∣∣∣f(S im)− f(S ′i)

∣∣∣
=

∣∣∣∣∣∣ E
h∼Pi

1
m

|S im|RD(h)−
∑

z∈Sim

`(h, z)
− E

h∼Pi

1
m

|S im|RD(h)−
∑

z′∈S′i

`(h, z′)
∣∣∣∣∣∣

=

∣∣∣∣∣∣ E
h∼Pi

 1
m
|S im|RD(h)− 1

m

∑
z∈Sim

`(h, z)− 1
m
|S im|RD(h) + 1

m

∑
z′∈S′i

`(h, z′)
∣∣∣∣∣∣

=

∣∣∣∣∣∣ E
h∼Pi

 1
m

∑
z′∈S′i

`(h, z′)− 1
m

∑
z∈Sim

`(h, z)
∣∣∣∣∣∣

=
∣∣∣∣ E
h∼Pi

[ 1
m
`(h, z′k)−

1
m
`(h, zk)

]∣∣∣∣ ≤ 1
m
.

Hence, from Mcdiarmid’s inequality, we have with probability at least 1− δ
K

over
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S ∼ Dm

E
h∼Pi

1
m

|S im|RD(h)−
∑

z∈Sim

`(h, z)


≤ E
S∼Dm

E
h∼Pi

1
m

|S im|RD(h)−
∑

z∈Sim

`(h, z)
+

√
|S im| ln K

δ

2m2

= E
Sci∼D

m−|Sim|
E

Sim∼D|S
i
m|

E
h∼Pi

1
m

|S im|RD(h)−
∑

z∈Sim

`(h, z)
+

√
|S im| ln K

δ

2m2

= E
Sci∼D

m−|Sim|
E

h∼Pi

1
m

|S im|RD(h)− E
Sim∼D|S

i
m|

∑
z∈Sim

`(h, z)
+

√
|S im| ln K

δ

2m2

= E
Sci∼D

m−|Sim|
E

h∼Pi

1
m

[
|S im|RD(h)− |S im|RD(h)

]
+
√
|S im| ln K

δ

2m2

=
√
|S im| ln K

δ

2m2 .

From the union bound, we have with probability at least 1− δ over S ∼ Dm, for
any Q ∈M(H),

E
h∼Q

[
RD(h)− R̂Sm(h)

]
≤

K∑
i=1

2|S im|L
m

W1(Q,Pi) +
K∑
i=1

√
|S im| ln K

δ

2m2 ,

which is the claimed result. �

We are now able to give a corollary of Theorem E.2.1.

Corollary E.2.1. We assume our loss ` to be in [0, 1] and L-Lipschitz. Then, for
any δ ∈ (0, 1], with probability at least 1−δ over the sample S, the following holds
for the hypotheses hi,S ∈ H associated with the Dirac distributions Pi,S and for
any h ∈ H:

RD(h) ≤ R̂Sm(h) +
K∑
i=1

2|S im|L
m

d(h, hi,S) +
K∑
i=1

√
|S im| ln K

δ

2m2 .

Such a bound was impossible to obtain from the PAC-Bayesian bounds based on a
KL divergence. Indeed, the KL divergence is infinite for two distributions with disjoint
supports. Hence, the PAC-Bayesian framework based on the Wasserstein distance
allows us to provide uniform-convergence bounds from a proof technique different
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from the ones based on the Rademacher complexity Koltchinskii and Panchenko,
2000; Bartlett and Mendelson, 2001, 2002 or the VC-dimension Vapnik and
Chervonenkis, 1968, 1974. In Section 6.4, we provide an algorithm minimising such
a bound.

E.2.4 Proof of Theorem 6.3.3

Theorem 6.3.3. We assume our loss ` to be L-Lipschitz. Then, for any δ ∈ (0, 1],
with probability at least 1 − δ over the sample S, the following holds for the
distributions Pi,S := Pi(S, .) and for any sequence (Qi)i=1···m ∈M(H)m:

m∑
i=1

E
hi∼Qi

[
E[`(hi, zi) | Fi−1]− `(hi, zi)

]
≤ 2L

m∑
i=1

W1(Qi,Pi,S)

+ λ

2

m∑
i=1

E
hi∼Pi,S

[
V̂i(hi, zi) + Vi(hi)

]
+ ln(1/δ)

λ
,

where for all i, V̂i(hi, zi) = (`(hi, zi)−Ei−1[`(hi, zi)])2 is the conditional empirical
variance at time i and Vi(hi) = Ei−1[V̂ (hi, zi)] is the true conditional variance.

Proof. First of all, note that for a L-Lipschitz loss function ` : H × Z → R, we
have∣∣∣∣( E

i−1
[`(hi, zi)]−`(hi, zi)

)
−
(

E
i−1

[`(h′i, zi)]−`(h′i, zi)
)∣∣∣∣ ≤ 2Ld(hi, h′i). (E.8)

Indeed, we can deduce Equation (E.8) from Jensen inequality, the triangle inequal-
ity, and by definition that we have∣∣∣∣( E

i−1
[`(hi, zi)]−`(hi, zi)

)
−
(

E
i−1

[`(h′i, zi)]−`(h′i, zi)
)∣∣∣∣

≤ E
i−1

[
|`(hi, z′i)− `(h′i, z′i)|+ |`(hi, zi)− `(h′i, zi)|

]
≤ E

i−1
2Ld(hi, h′i) = 2Ld(hi, h′i).

From the Kantorovich-Rubinstein duality theorem Villani, 2009, Remark 6.5, we
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have
m∑
i=1

E
hi∼Qi

[
E
i−1

[`(hi, zi)]− `(hi, zi)
]

≤ 2L
m∑
i=1

W1(Qi,Pi,S) +
m∑
i=1

E
h∼Pi,S

[RD(hi)− `(hi, zi)] .

Now, we define Xi(hi, zi) := Ei−1[`(hi, zi)]− `(hi, zi). We also recall that for any
i, we have V̂i(hi, zi) = (`(hi, zi) − Ei−1[`(hi, zi)])2 and Vi(hi) = Ei−1[V̂ (hi, zi)].
To apply the supermartingales techniques of Chapter 2, we define the following
function:

fm(S, h1, ..., hm) :=
m∑
i=1

λXi(hi, zi)−
λ2

2

m∑
i=1

(V̂i(hi, zi) + Vi(hi)).

Now, Lemma 2.2.1 state that the sequence (SMm)m≥1 defined for any m as:

SMm := E
(h1,··· ,hm)∼P1,S⊗···⊗Pm,S

[
exp

(
fm(S, h1, ..., hm)

)]
,

is a supermartingale. We exploit this fact as follows:

m∑
i=1

E
h∼Qi−1

[
E
i−1

[`(hi, zi)]− `(hi, zi)
]

= E
(h1,··· ,hm)∼P1,S⊗···⊗Pm,S

[
m∑
i=1

Xi(hi, zi)
]

= 1
λ

E
(h1,··· ,hm)∼P1,S⊗···⊗Pm,S

[fm(S, h1, · · · , hm)]+λ2

m∑
i=1

E
hi∼Pi,S

[
V̂i(hi, zi) + Vi(hi)

]
≤ ln (SMm)

λ
+ λ

2

m∑
i=1

E
hi∼Pi,S

[
V̂i(hi, zi) + Vi(hi)

]
The last line holds thanks to Jensen’s inequality. Now using Ville’s inequality
ensures us that:

P
S

(
∀m,SMm ≤

1
δ

)
≥ 1
δ
.

Thus, with probability 1−δ, for any m we have ln (SMm) ≤ ln
(

1
δ

)
. This concludes

the proof. �
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E.2.5 Proof of Theorem 6.3.4

Theorem 6.3.4. We assume our loss ` to be non-negative and L-Lipschitz. We
also assume that, for any i,S, Eh∼Pi(.,S) [Ei−1[`(h, zi)2]] ≤ 1 (bounded conditional
order 2 moments for priors). Then, for any δ ∈ (0, 1], with probability at least 1−δ
over the sample S, any stochastic kernels sequence (used as priors) (Pi)i≥1, we have
with probability at least 1 − δ over the sample S ∼ D, the following, holding for
the data-dependent measures Pi,S := Pi(S, .) and any posterior sequence (Qi)i≥1:

1
m

m∑
i=1

E
hi∼Qi

[
E[`(hi, zi) | Fi−1]− `(hi, zi)

]
≤ 2L

m

m∑
i=1

W1(Qi,Pi,S) +

√√√√2 ln
(

1
δ

)
m

.

Proof. The proof starts similarly to the one of Theorem 6.3.3. Indeed, note that
for a L-Lipschitz loss function ` : H×Z → R, we have∣∣∣∣( E

i−1
[`(hi, zi)]−`(hi, zi)

)
−
(

E
i−1

[`(h′i, zi)]−`(h′i, zi)
)∣∣∣∣ ≤ 2Ld(hi, h′i). (E.9)

Indeed, we can deduce Equation (E.9) from Jensen inequality, the triangle inequal-
ity, and by definition that we have∣∣∣∣( E

i−1
[`(hi, zi)]−`(hi, zi)

)
−
(

E
i−1

[`(h′i, zi)]−`(h′i, zi)
)∣∣∣∣

≤ E
i−1

[
|`(hi, z′i)− `(h′i, z′i)|+ |`(hi, zi)− `(h′i, zi)|

]
≤ E

i−1
2Ld(hi, h′i) = 2Ld(hi, h′i).

From the Kantorovich-Rubinstein duality theorem Villani, 2009, Remark 6.5, we
have
m∑
i=1

E
hi∼Qi

[
E
i−1

[`(hi, zi)]− `(hi, zi)
]
≤ 2L

m∑
i=1

W1(Qi,Pi,S) +
m∑
i=1

E
h∼Pi,S

[RD(hi)− `(hi, zi)] .

Now, we define Xi(hi, zi) := Ei−1[`(hi, zi)]− `(hi, zi). To apply the supermartin-
gales techniques of Chugg et al., 2023, we define the following function:

fm(S, h1, ..., hm) :=
m∑
i=1

λXi(hi, zi)−
λ2

2

m∑
i=1

E
i−1

[`(hi, zi)2].
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Now, because our loss is nonnegative, Chugg et al., 2023, Lemma A.2 and Lemma
B.1 state that the sequence (SMm)m≥1 defined for any m as:

SMm := E
(h1,··· ,hm)∼P1,S⊗···⊗Pm,S

[
exp

(
fm(S, h1, ..., hm)

)]
,

is a supermartingale. We exploit this fact as follows:
m∑
i=1

E
h∼Qi−1

[
E
i−1

[`(hi, zi)]− `(hi, zi)
]

= E
(h1,··· ,hm)∼P1,S⊗···⊗Pm,S

[
m∑
i=1

Xi(hi, zi)
]

= 1
λ

E
(h1,··· ,hm)∼P1,S⊗···⊗Pm,S

[fm(S, h1, · · · , hm)]

+ λ

2

m∑
i=1

E
hi∼Pi,S

[
E
i−1

[`(hi, zi)2]
]

≤ ln (SMm)
λ

+ λ

2

m∑
i=1

E
hi∼Pi,S

[
E
i−1

[`(hi, zi)2]
]

The last line holds thanks to Jensen’s inequality. Now using Ville’s inequality
ensures us that:

P
S

(
∀m,SMm ≤

1
δ

)
≥ 1
δ

Thus, with probability 1−δ, for any m we have ln(SMm)≤ ln 1
δ
. We conclude the

proof by exploiting the boundedness assumption on conditional order 2 moments
and optimising the bound in λ. �

E.3 Supplementary insights on experiments

In this section, Appendix E.3.1 presents the learning algorithm for the i.i.d. setting.
We also introduce the online algorithm in Appendix E.3.2. We prove the Lipschitz
constant of the loss for the linear models in Appendix E.3.3. Finally, we provide more
experiments in Appendix E.3.5.

E.3.1 Batch algorithm for the i.i.d. setting

The pseudocode of our batch algorithm is presented in Algorithm 4.
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Algorithm 4: (Mini-)Batch Learning Algorithm with Wasserstein distances
1: procedure Priors Learning
2: h1, . . . , hK ← initialize the hypotheses
3: for t← 1, . . . , T do

for each mini-batch U ⊆ S do
for i← 1, . . . , K do
Ui ← U \ S im

hi ← perform a gradient descent step with ∇RUi(hi)

4: return hypotheses h1, . . . , hK

5: procedure Posterior Learning
6: h← initialize the hypothesis
7: for t← 1, . . . , T ′ do

for each mini-batch U ⊆ S do
h← perform a gradient descent step with

∇[RU(h) + ε
∑K
i=1

|Sim|
m
d(h, hi)]

8: return hypothesis h
Priors Learning minimises the empirical risk through mini-batches U ⊆ S for T
epochs. More precisely, for each epoch, we (a) sample a mini-batch U (line 4) by
excluding the set S im from U for each hi ∈ H (line 5-6), then (b) the hypotheses
h1, . . . , hK ∈ H are updated (line 7). In Posterior Learning, we perform a
gradient descent step (line 14) on the objective function associated with Equation (6.5)
for T ′ epochs in a mini-batch fashion.

E.3.2 Learning algorithm for the online setting
Algorithm 5 presents the pseudocode of our online algorithm.

Algorithm 5: Online Learning Algorithm with Wasserstein distances
1: Initialize the hypothesis h0 ∈ H
2: for i← 1, . . . ,m do

for t← 1, . . . , T do
hi ← perform a gradient step with

∇[`(hi, zi) + B̂(d(hi, hi−1)−1)] (Eq. (6.7) with B̂)
3: return hypotheses h1, . . . , hm

For each time step i, we perform T gradient descent steps on the objective associated
with Equation (6.6) (line 4). Note that we can retrieve OGD from Algorithm 5 by (a)
setting T = 1 and (b) removing the regularisation term B̂(d(hi, hi−1)−1).
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E.3.3 Lipschitzness for the linear model
Recall that we use, in our experiments, the multi-margin loss function from the Pytorch
module defined for any linear model with weights W ∈ R|Y|×d and biases b ∈ R|Y|, any
data point z ∈ X × Y

`(W, b, z) = 1
|Y| − 1

∑
y′ 6=y

max (0, f(W, b, z, y′)) ,

where f(W, b, z, y′) = 1+〈W [y′]−W [y],x〉+b[y′]−b[y], and W [y] ∈ Rd and b[y] ∈ R
are respectively the vector and the scalar for the y-th output.
To apply our theorems, we must ensure that our loss function is Lipschitz with respect
to the linear model, hence the following lemma.

Lemma E.3.1. For any z = (x, y) ∈ X × Y with the norm of x bounded by 1,
the function W, b 7→ `(W, b, z) is 2-Lipschitz.

Proof. Let (W, b), (W ′, b′) both in R|Y|×d × R|Y|, we have

|`(W, b, z)− `(W ′, b′, z)|

≤ 1
|Y| − 1

∑
y′ 6=y
|max (0, f(W, b, z, y′))−max (0, f(W ′, b′, z, y′)) |.

Note that because α 7→ max(0, α) is 1-Lipschitz, we have:

|`(W, b, z)− `(W ′, b′, z)| ≤ 1
|Y| − 1

∑
y′ 6=y
|f(W, b, z, y′)− f(W ′, b′, z, y′)|.
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Finally, notice that:

1
|Y| − 1

∑
y′ 6=y
|f(W, b, z, y′)− f(W ′, b′, z, y′)|

≤ 1
|Y| − 1

∑
y′ 6=y
|〈(W −W ′)[y′]− (W −W ′)[y],x〉|

+ 1
|Y| − 1

∑
y′ 6=y
|(b− b′)[y′]− (b− b′)[y]|

≤ 1
|Y| − 1

∑
y′ 6=y
‖(W −W ′)[y′]− (W −W ′)[y]‖ ‖x‖

+ 1
|Y| − 1

∑
y′ 6=y
|(b− b′)[y′]− (b− b′)[y]|.

Because we consider the Euclidean norm, we have for any y′ ∈ Y :

‖(W −W ′)[y′]− (W −W ′)[y]‖ =
√
‖(W −W ′)[y′]− (W −W ′)[y]‖2

≤
√

2 (‖(W −W ′)[y′]‖2 + ‖(W −W ′)[y]‖2)
≤
√

2‖W −W ′‖.

The second line holding because for any scalars a, b, we have (a− b)2 ≤ 2(a2 + b2)
and the last line holding because ‖W −W ′‖2 = ∑

y∈Y ‖(W −W ′)[y]‖2. A similar
argument gives

1
|Y| − 1

∑
y′ 6=y
|(b− b′)[y′]− (b− b′)[y]| ≤

√
2||b− b′||.

Then, using that ‖x‖ ≤ 1 and summing on all y′ gives:

|`(W, b, z)− `(W ′, b′, z)| ≤
√

2 (‖W −W ′‖+ ‖b− b′‖) .

Finally, notice that (‖W − W ′‖ + ‖b − b′‖)2 ≤ 2(‖W − W ′‖2 + ‖b − b′‖2) =
2‖(W, b)− (W ′, b′)‖2.
Thus ‖W−W ′‖+‖b−b′‖ ≤

√
2‖(W, b)−(W ′, b′)‖. This concludes the proof. �

E.3.4 Lipschitzness for neural networks
Recall that we use, in our experiments, the multi-margin loss function from the Pytorch
module defined we consider the loss `(h, (x, y)) = 1

|Y|
∑
y′ 6=y max(0, 1−η(h[y]−h[y′])),

which is η-Lipschitz w.r.t. the outputs h[1], . . . , h[|Y|]. For neural networks, h is the
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output of the neural network with input x. Note that this loss is η-lipschitz with
respect to the outputs. To apply our theorems, we must ensure that our loss function
is Lipschitz with respect to the weights of the neural networks, hence the following
lemma with associated background.
We define a FCN recursively as follows: for a vector W1 = vec({W1, b}), (i.e., the vec-
torisation of a weight matrix W1 and a bias b) and an input datum x, FCN1(W1,x) =
σ1 (W1x + b1), where σ1 is the activation function. Also, for any i ≥ 2 we define
for a vector Wi = (Wi, bi,Wi−1) (defined recursively as well), FCNi(Wi,x) =
σi (WiFCNi−1(Wi−1,x) + bi). Then, setting z = (x, y) a datum and hi(x) :=
FCNi(Wi,x) we can rewrite our loss as a function of (Wi, z).

Lemma E.3.2. Assume that all the weight matrices of Wi are bounded and that
the activation functions are Lipschitz continuous with constant bounded by Kσ.
Then for any datum z = (x, y), any i, Wi → `(Wi, z) is Lipschitz continuous.

Proof. We consider the Frobenius norm on matrices as W2 is a vector as we
consider the L2-norm on the vector. We prove the result for i = 2, assuming it
is true for i = 1. We then explain how this proof generalises the case i = 1 and
works recursively. Let z,W2,W′

2, for clarity we write FCN2(x) := FCN(W2,x)
and FCN′2(x) := FCN(W′

2,x). As ` is Lipschitz on the outputs FCN2(x),FCN′2(x).
We have

|`(W2, z)− `(W′
2, z)| ≤ η ‖FCN2(x)− FCN′2(x)‖

≤ η ‖σ2 (W2FCN1(x) + b2)− σ2 (W ′
2FCN′1(x) + b′2)‖

≤ ηKσ‖W2FCN1(x) + b2 −W ′
2FCN′1(x)− b′2‖

≤ ηKσ (||(W2 −W ′
2)FCN1(x)||+ ||W ′

2(FCN1(x)− FCN′1(x))‖+ ‖b2 − b′2‖) .

Then, we have ||(W2−W ′
2)FCN1(x)|| ≤ ||(W2−W ′

2)||F ||FCN1(x)|| ≤ Kx||(W2−
W ′

2)||F . The second inequality holding as FCN1(x) is a continuous function of the
weights. Indeed, as on a compact space, a continuous function reaches its maxi-
mum, then its norm is bounded by a certain Kx. Also, as the weights are bounded,
any weight matrix has its norm bounded by a certain KW thus ‖W ′

2(FCN1(x) −
FCN′1(x)‖ ≤ ‖W ′

2‖F‖(FCN1(x) − FCN′1(x)‖ ≤ KW‖FCN1(x) − FCN′1(x)‖. Fi-
nally, taking Ktemp = ηKσ max(Kx, KW , 1) gives:

|`(W2, z)− `(W′
2, z)|

≤ Ktemp (‖(W2 −W ′
2)‖F + ‖b2 − b′2‖+ ‖FCN1(x)− FCN′1(x)‖) .
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Exploiting the recursive assumption that FCN1 is Lipschitz with respect to its
weights W1 gives ‖FCN1(x)− FCN′1(x)‖ ≤ K1||W1 −W′

1||.
If we denote by (W2, b2) the vector of all concatenated weights, notice that

‖(W2 −W ′
2)‖F + ‖b2 − b′2‖

=
√

(‖(W2 −W ′
2)‖F + ‖b2 − b′2‖)2

≤
√

2(‖(W2 −W ′
2)‖2

F + ‖b2 − b′2‖2)
=
√

2‖(W2, b2)− (W ′
2, b
′
2)‖

(we used that for any real numbers a, b, (a+ b)2 ≤ 2(a2 + b2)). We then have:

|`(W2, z)− `(W′
2, z)|

≤ Ktemp max(
√

2, K1) (‖(W2, b2)− (W ′
2, b
′
2)‖+ ||W1 −W′

1||)
≤
√

2Ktemp max(
√

2, K1)||W2 −W′
2||.

The last line holds by reusing the same calculation trick. This concludes the
proof for i = 2. Then for i = 1 the same proof holds by replacing W2, b2,FCN2
by W1, b1,FCN1 and replacing FCN1(x),FCN′1(x) by x (we then do not need to
assume a recursive Lipschitz behaviour). Therefore the result holds for i = 1.
We then properly apply a recursive argument by assuming the result at rank i− 1
reusing the same proof at any rank i by replacing W2, b2,FCN2 by Wi, bi,FCNi

and FCN1(x),FCN′1(x) by FCNi−1(x),FCN′i−1(x). This concludes the proof. �

E.3.5 Experiments with varying number of priors
The experiments of Section 6.4 rely on data-dependent priors constructed through the
procedure Priors Learning. We fixed a number of priors K equal to 0.2

√
m.

This number is an empirical tradeoff between the informativeness of our priors and
time-efficient computation. However, there is no theoretical intuition for the value of
this parameter (the discussion of Section 6.3.1 considered K =

√
m as a potential

tradeoff; see Appendix E.1). Thus, we gather inTables E.1 to E.3 the performance of
our learning procedures for K = α

√
m, where α ∈ {0, 0.4, 0.6, 0.8, 1} (the case α = 0

being a convention to denote K = 1). The experiments are gathered below, and all
remaining hyperparameters (except K) are identical to those described in Section 6.4.
Analysis of our results. First, when considering neural networks, note that for any
dataset except segmentation, letter, the performances of our methods are similar
or better when considering data-dependent priors (i.e., when α > 0). A similar remark
holds for the linear models for all datasets except for satimage, segmentation, and
tictactoe. This illustrates the relevance of data-dependent priors. We also remark
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that there is no value of α, which provides a better performance on all datasets. For
instance, considering neural networks, note that α = 1 gives the better performance
(i.e., the smallest RD(h)) for Algorithm 4 ( 1√

m
) for the satimage dataset while,

for the same algorithm, the better performance on the segmentation dataset is
attained for α = 0.8. Sometimes, the number K does not have a clear influence: on
mnist with NNs, for Algorithm 4 ( 1√

m
), our performances are similar, whatever the

value of K, but still significantly better than ERM. In any case, note that for every
dataset, there exists a value of K and such that our algorithm attains either similar
or significantly better performances than ERM on every dataset, which shows the
relevance of our learning algorithm to ensure a good generalisation ability. Moreover,
there is no obvious choice for the parameters ε. For instance, in Table E.3, for the
segmentation dataset, the parameters K = 1, ε = 1

m
are optimal (in terms of

test risks) for both models. As K = 1 means that our single prior is data-free, this
shows that the intrinsic structure of segmentation makes it less sensitive to both
the information contained in the prior (K = 1 meaning data-free prior) and the place
of the prior itself (ε = 1/m meaning that we give less weight to the regularisation
within our optimisation procedure). On the contrary, the yeast dataset performs
significantly better when ε = 1/

√
m(K = 0.2

√
m), exhibiting a positive impact of our

data-dependent priors.

E.3.6 Experiments on classical regularisation methods
We perform additional experiments to see the performance of the weight decay, i.e.,
the L2 regularisation on the weights; the results are presented in Table E.4. Moreover,
notice that the ’distance to initialisation’ ‖w−w0‖ (where w0 is the weights initialized
randomly) is a particular case of Algorithm 4 when K = 1 (i.e., we treat the data as a
single batch, and the prior is the data-free initialisation); the results are in Table E.4.
Analysis of our results. This experiment on the weight decay demonstrates that
on a few datasets (namely sensorless and yeast), when our predictors are neural
nets, the weight decay regularisation fails to learn while ours succeeds, as shown in
tables below. In general, this table shows that, on most of the datasets, considering
data-dependent priors leads to sharper results. This shows the efficiency of our method
compared to the ’distance to initialisation’ regularisation.

– 221 –



E.3. Supplementary insights on experiments

Table E.1. Performance of Algorithm 4 for neural network models. We consider
ε = 1

m
and ε = 1√

m
, with K = α

√
m and α ∈ {0, 0.4}.

(a) K = 1

Algo. 4 ( 1
m) Algo. 4 ( 1√

m
)

Dataset RS(h) RD(h) RS(h) RD(h)

adult 0.207 0.207 0.248 0.248
fashionmnist 0.160 0.164 0.158 0.164

letter 0.258 0.269 0.268 0.280
mnist 0.116 0.123 0.085 0.096

mushrooms 0.000 0.000 0.000 0.001
nursery 0.705 0.720 0.720 0.736

pendigits 0.704 0.724 0.021 0.037
phishing 0.048 0.052 0.038 0.055
satimage 0.148 0.208 0.147 0.207

segmentation 0.141 0.176 0.248 0.385
sensorless 0.907 0.911 0.907 0.911
tictactoe 0.000 0.042 0.000 0.033

yeast 0.695 0.712 0.677 0.658

(b) K = 0.4
√
m

Algo. 4 ( 1
m) Algo. 4 ( 1√

m
)

Dataset RS(h) RD(h) RS(h) RD(h)

adult 0.167 0.166 0.164 0.164
fashionmnist 0.160 0.164 0.156 0.160

letter 0.263 0.275 0.252 0.263
mnist 0.112 0.120 0.085 0.096

mushrooms 0.000 0.000 0.000 0.000
nursery 0.705 0.720 0.706 0.719

pendigits 0.011 0.025 0.010 0.022
phishing 0.043 0.053 0.041 0.052
satimage 0.147 0.178 0.145 0.174

segmentation 0.345 0.408 0.225 0.416
sensorless 0.075 0.078 0.074 0.077
tictactoe 0.000 0.031 0.000 0.019

yeast 0.450 0.480 0.695 0.712
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Table E.2. Performance of Algorithm 4 compared to ERM on different datasets for
linear models. We consider ε = 1

m
and ε = 1√

m
, with K = α

√
m and α ∈ {0.6, 0.8}.

(a) K = 0.6
√
m

Algo. 4 ( 1
m) Algo. 4 ( 1√

m
)

Dataset RS(h) RD(h) RS(h) RD(h)

adult 0.166 0.167 0.166 0.167
fashionmnist 0.127 0.147 0.127 0.150

letter 0.288 0.296 0.286 0.296
mnist 0.067 0.092 0.067 0.093

mushrooms 0.001 0.001 0.001 0.001
nursery 0.791 0.802 0.759 0.779

pendigits 0.048 0.061 0.047 0.059
phishing 0.062 0.067 0.064 0.068
satimage 0.146 0.202 0.137 0.199

segmentation 0.058 0.215 0.058 0.204
sensorless 0.129 0.130 0.130 0.130
tictactoe 0.013 0.021 0.013 0.021

yeast 0.477 0.461 0.478 0.464

(b) K = 0.8
√
m

Algo. 4 ( 1
m) Algo. 4 ( 1√

m
)

Dataset RS(h) RD(h) RS(h) RD(h)

adult 0.166 0.167 0.166 0.167
fashionmnist 0.130 0.149 0.128 0.151

letter 0.285 0.296 0.288 0.297
mnist 0.067 0.091 0.067 0.093

mushrooms 0.001 0.001 0.001 0.001
nursery 0.771 0.787 0.758 0.778

pendigits 0.047 0.060 0.047 0.059
phishing 0.062 0.066 0.065 0.068
satimage 0.168 0.216 0.137 0.199

segmentation 0.053 0.212 0.052 0.204
sensorless 0.129 0.130 0.132 0.132
tictactoe 0.013 0.021 0.013 0.021

yeast 0.476 0.461 0.477 0.460
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Table E.3. Performance of Algorithm 4 compared to ERM on different datasets for
linear models. We consider ε = 1

m
and ε = 1√

m
, with K = α

√
m and α ∈ {1}. We

plot the empirical risk RS(h) with its associated test risk RD(h).
(a) K =

√
m

Algo. 4 ( 1
m) Algo. 4 ( 1√

m
)

Dataset RS(h) RD(h) RS(h) RD(h)

adult 0.166 0.167 0.166 0.167
fashionmnist 0.354 0.361 0.127 0.151

letter 0.287 0.296 0.288 0.298
mnist 0.068 0.092 0.065 0.092

mushrooms 0.001 0.001 0.001 0.001
nursery 0.795 0.805 0.796 0.805

pendigits 0.050 0.062 0.047 0.059
phishing 0.062 0.067 0.065 0.067
satimage 0.143 0.200 0.137 0.201

segmentation 0.055 0.210 0.055 0.212
sensorless 0.130 0.130 0.131 0.132
tictactoe 0.013 0.021 0.392 0.301

yeast 0.476 0.456 0.476 0.457

(b) ERM

Dataset RS(h) RD(h)

adult 0.166 0.167
fashionmnist 0.139 0.153

letter 0.287 0.297
mnist 0.065 0.091

mushrooms 0.001 0.001
nursery 0.794 0.807

pendigits 0.052 0.064
phishing 0.064 0.067
satimage 0.148 0.209

segmentation 0.087 0.232
sensorless 0.134 0.136
tictactoe 0.228 0.238

yeast 0.470 0.427
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Table E.4. Performance of ERM with weight decay (with the L2 regularisation) for
linear and neural network models.

(a) Linear

L2 Reg. ( 1
m) L2 Reg. ( 1√

m
)

Dataset RS(h) RD(h) RS(h) RD(h)

adult 0.207 0.207 0.248 0.248
fashionmnist 0.141 0.149 0.127 0.150

letter 0.285 0.295 0.285 0.296
mnist 0.067 0.092 0.066 0.092

mushrooms 0.001 0.001 0.000 0.000
nursery 0.788 0.799 0.796 0.804

pendigits 0.049 0.060 0.047 0.057
phishing 0.063 0.065 0.057 0.062
satimage 0.144 0.203 0.138 0.200

segmentation 0.058 0.157 0.075 0.177
sensorless 0.907 0.911 0.907 0.911
tictactoe 0.013 0.021 0.013 0.021

yeast 0.702 0.720 0.693 0.687

(b) NN

L2 Reg. ( 1
m) L2 Reg. ( 1√

m
)

Dataset RS(h) RD(h) RS(h) RD(h)

adult 0.207 0.207 0.248 0.248
fashionmnist 0.160 0.166 0.159 0.164

letter 0.261 0.275 0.256 0.269
mnist 0.116 0.125 0.084 0.095

mushrooms 0.000 0.000 0.000 0.000
nursery 0.704 0.721 0.770 0.788

pendigits 0.009 0.022 0.012 0.026
phishing 0.042 0.050 0.054 0.059
satimage 0.150 0.215 0.143 0.205

segmentation 0.141 0.216 0.198 0.371
sensorless 0.907 0.911 0.907 0.911
tictactoe 0.000 0.046 0.000 0.021

yeast 0.662 0.674 0.693 0.683
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Paris. (2000)

Cited on page 177.

Martin Arjovsky, Soumith Chintala, and Leon Bottou. Wasserstein Gen-
erative Adversarial Networks. International Conference on Machine Learning (ICML).
(2017)

Cited on page 126.

Jean-Yves Audibert and Olivier Catoni. Robust linear least squares regression.
The Annals of Statistics. (2011). url: https://doi.org/10.1214/11-AOS918

Cited on pages 34, 42.

Arindam Banerjee. On Bayesian Bounds. Proceedings of the 23rd international
conference on Machine learning. (2006)

Cited on page 27.

Peter Bartlett and Shahar Mendelson. Rademacher and Gaussian Com-
plexities: Risk Bounds and Structural Results. Conference on Computational Learning
Theory (COLT). (2001)

Cited on pages 24, 212.

Peter Bartlett and Shahar Mendelson. Rademacher and Gaussian Com-
plexities: Risk Bounds and Structural Results. Journal of Machine Learning Research.
(2002)

Cited on pages 24, 212.

Peter L Bartlett and Wolfgang Maass. Vapnik-Chervonenkis dimension of
neural nets. The handbook of brain theory and neural networks. (2003)

Cited on page 25.

William Beckner. A Generalized Poincaré Inequality for Gaussian Measures. Pro-
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André Schlichting. Poincaré and Log-Sobolev Inequalities for Mixtures. Entropy.
(2019). doi: 10.3390/e21010089. url: https://doi.org/10.3390/e21010089

Cited on page 81.

– 246 –

http://proceedings.mlr.press/v51/russo16.html
https://doi.org/10.3390/e21010089
https://doi.org/10.3390/e21010089


References
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