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Résumé français

L’objectif de ce travail est de développer de nouvelles méthodes dans le domaine de la détection
d’anomalies. Un détecteur d’anomalies a pour but d’identifier les points de données qui ont été
générés par un processus différent de celui de référence. Généralement, les détecteurs d’anomalies
sont entraînés sur un historique et ne prennent en compte que la loi de référence de l’ensemble
d’entraînement. Ou alors, le détecteur est mis à jour en temps réel à partir d’une fenêtre glissante
de longueur fixe. Aucune de ces approches ne tient compte de la dynamique réelle de la série
temporelle, ce qui conduit à générer des faux positifs lorsque la loi de référence change.

L’approche que l’on propose consiste à détecter en amont ces changements de lois à l’aide
de détecteurs de ruptures. Les anomalies sont ensuite retrouvées dans les segments homogènes
qui viennent d’être identifiés. L’intérêt de cette approche pour une entreprise comme Worldline
est de pouvoir détecter les incidents survenant sur son système informatique rapidement et en
réduisant le nombre de fausses alertes. On prend aussi soin de contrôler théoriquement le nombre
de faux positifs à travers le False Detection Rate (FDR).

Dans un premier temps, on tente de développer un nouvel estimateur de la p-valeur. Après
comparaison avec l’existant, ce nouvel estimateur s’avère trop complexe sans gain réel. Par la
suite, on travaille avec l’estimateur de la p-valeur empirique.

Puis, étudie théoriquement le problème de la détection d’anomalies sur des séries iid. On
développe ainsi une procédure permettant le contrôle du FDR d’une série de longueur infinie en
contrôlant une variante du FDR sur des sous-séries de longueur fixe. Les expériences empiriques
permettent de montrer dans quelles conditions ce contrôle est atteint en pratique.

Enfin, on introduit notre nouveau détecteur d’anomalies basé sur les ruptures pour des séries
iid par morceaux. On montre que la procédure de contrôle du FDR reste effective dans ce
nouveau contexte. L’utilisation d’un détecteur de ruptures entraîne toutefois deux difficultés
: les segments de petite longueur et les délais de détection de ruptures. Afin de traiter ces
difficultés, on introduit un score de confiance. Le détecteur est évalué empiriquement dans le
but de montrer la pertinence et les limites de notre approche.
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English Abstract

The purpose of this thesis is to develop new methods in the field of anomaly detection. An
anomaly detector should identify data points that have been generated by a process different from
the reference process. In general, anomaly detectors are trained on past data and only consider
the reference distribution given in the training set. Alternatively, the detector is updated in real
time from a fixed length sliding window. Neither approach takes into account the true dynamics
of the time series, leading to false positives when the reference distribution changes.

The proposed approach consists in detecting these distribution changes upstream, using
breakpoint detectors. Anomalies are then retrieved within the identified homogeneous segments.
The advantage of this approach for a company like Worldline is that it can quickly detect in-
cidents in its system, while reducing the number of false alarms. In addition, care is taken to
theoretically control the number of false positives through the False Detection Rate (FDR).

The first step is an attempt to develop a new estimator of the p-value. After comparison
with existing estimators, this new estimator turns out to be too complex, with no real gain. The
empirical p-value estimator is then used.

Then, the problem of anomaly detection on iid series is studied theoretically. A procedure is
developed to control the FDR of a series of infinite length by controlling a variant of the FDR
on subseries of fixed length. Empirical experiments show under which conditions this control is
achieved in practice.

Finally, our new anomaly detector based on breakpoints is introduced for piecewise iid series.
It is shown that the FDR control procedure is effective in this new context. However, the
use of a breakpoint detector leads to two difficulties: small segment length and breakpoint
detection delays. To overcome these difficulties, a confidence score is introduced. The detector
is empirically evaluated to show the relevance and limitations of our approach.
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Chapter1
Introduction

In this introduction chapter, the different important notions such as anomaly detec-
tion, breakpoint detection, and multiple testing procedures are introduced. Then,
the contributions of our thesis are positioned in relation to the literature. Finally, an
overview of the different chapters is given.

1.1 A business need at the root of a machine learning prob-
lem

The motivation for this thesis originates from the industrial needs of the Worldline company.
Worldline is a payment processor that processes transactions for numerous European banks. It
is essential for the company to guarantee uninterrupted access to its services. An outage that
prevents the delivery of payments for an extended period of time is very costly to the company
in terms of reputation. To speed up incident resolution, it is important to be able to detect the
occurrence of incidents as early as possible. To achieve this, various metrics are monitored in
real time to detect deviations that indicate a current or future failure. Traditionally, detection
thresholds are defined manually by experts and updated periodically to account for changes in
the monitored metrics. However, this task is time-consuming and error-prone.

1
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Figure 1.1: High level description of machine learning based anomaly detection.

To automate the task of setting thresholds and improve the performance of the detector, it
has been proposed to use machine learning to learn the statistical behavior of the monitored
metric from a history of data, as shown in Figure 1.1. The streamed metric is then compared
to the normal behavior. An alert is sent if the difference between what is observed and what is
predicted by the model is too large. Behind every alert that is sent, there is a team responsible for
handling it. This includes investigating the causes of the potential incident and then proposing
and implementing a procedure to resolve the incident. So it’s not only important to detect
incidents with minimal delay, but also to reduce the number of false alarms as much as possible
to avoid alarm fatigue. An additional difficulty is that the incident detection system must be able
to adapt in real time to changes in the monitored system. In the following sections, the problem of
anomaly detection in time series is explored in more detail to understand the challenges involved.

1.2 Time series data

1.2.1 Definition and main properties
A time series is used to represent a signal measured over time. Let (Ω,F ,P) be a probability
space, with Ω the set of all possible outcomes, F a σ-algebra on Ω and P a probability measure
on F . A time series of length T is a sequence of T random variables (Xt)1≤t≤T taking values in a
space noted X . The space of observations X can refer to different sets. If X = R it is a univariate
time series and if X = R

n with n > 1 it is a multivariate time series. One important property
of time series is stationarity. A time series is said to be stationary when its statistical properties
are constant over time. There are different types of stationarity [114]. Strict stationarity of order
1 is defined by all random variables in the series following the same distribution, denoted P0.
Noting PXt

the probability distribution of Xt:

∀t ∈ J1, T K, PXt
= PX1 = P0 (1.1)

This property is interesting because it reduces the number of marginal probability distributions
to be estimated to one for the entire time series. Another property that facilitates the study
of time series is ergodicity. Ergodicity refers to the property of a time series where the time
average is equal to the average over all possible realizations [114]. This property guarantees that
the statistical properties of the time series distribution, such as the mean, can be known by
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observing a single realization of the time series.

E[X1] a.s.= lim
T →∞

1
T

T∑
t=1

Xtdt (1.2)

Not all stationary time series are ergodic. For example, suppose there’s a time series in which
all points have the same value at each realization Xt = X1 ∼ B(0.5). The series is stationary
because all points follow Bernoulli’s law, but if the series is averaged over one realization, you
get either 0 or 1, and never the true mean of 0.5. If the random variables of the time series are
independent and identically distributed (iid), the series is stationary and ergodic, but this is not
a necessary property. The following shows how to deal with a time series that does not satisfy
the stationarity property.

1.2.2 Trend Seasonality decomposition
A time series may contain different patterns. Seasonal patterns occur when the time series is
affected by seasonal factors, such as the day of the week or the month of the year. Seasonal
pattern are periodic and repeat itself overtime. The trend pattern exists when the time series
increases or decreases over the long term. These phenomena are not stationary and must be
understood when analyzing a time series. An additive model describes a time series as the sum
of several components: seasonality (St), trend (Tt), and residual (Rt).

Xt = Tt + St + Rt (1.3)

Decomposing a time series makes forecasting easier. Assuming that the seasonal component does
not evolve in the short term, the seasonal component can be predicted by copying the seasonal
pattern learned from historical data.

A simple method [83] for decomposing a series involves four steps. Assume a seasonality of
length w.

1. Estimate the trend component using a moving average over a window of length w. T̂t =
1

2w

∑t+w
u=t−w Xt

2. Calculate the detrend series: X̃t = Xt − T̂t

3. By averaging all the seasons in the detrend series, an estimate of the seasonal component
over one season is obtained. This seasonal pattern is repeated identically over the entire
length of the series to construct the seasonal component.

4. Removing the seasonal component from the detrend series yields the residual. R̂t = X̃t−Ŝt.

1.2.3 Breakpoint detection
In many situations, the time series is not stationary and its properties change over time. The
breakpoint detection problem aims to find the locations of these changes, called breakpoints,
and noted (τi)1≤i≤D+1, where D is the number of segments, subseries between two consecutive
breakpoints. The convention τ1 = 1 and τD+1 = T + 1, which are not real breakpoints, are used
to simplify the notation. An advantage of this approach is that it allows the series to be split
into homogeneous sub-series that are easier to analyze. As shown in Figure 1.2, the series is
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Figure 1.2: Breakpoints in time series.

stationary between two consecutive breakpoints τi and τi+1.

PXτi−1 ̸= PXτi
= PXτi+1 = . . . = PXτi+1−1 ̸= PXτi+1

(1.4)

There are many ways to approach the problem, see for example these reviews [163, 4] for
offline breakpoint detectors and [7] for online breakpoint detectors. It will be seen later that one
of the objectives of this manuscript is to study the use of breakpoint detectors for online anomaly
detection. However, online anomaly detection can be used with an offline breakpoint detector. In
this case, the detected breakpoints are re-evaluated with each new observation. The disadvantage
of this approach is the longer calculation time, but the advantage is the improved accuracy. The
authors of [163] show that a breakpoint detector can be described as an optimization problem
using three notions.

• Cost function. A cost function C(·) measures the homogeneity of a given subseries Xt2
t1

.
With a well chosen cost function, C(Xt2

t1
) is high when there is at least one breakpoint

between t1 and t2. The cost function is low when there is no breakpoint in this subseries.

• Search method: The search method enables to explore a set of possible segmentations,
called T , of the optimization problem. Each search method is a trade-off between accuracy
and computational complexity [163].

• Penalty function: The penalty function is useful when the number of breakpoints is
unknown. It avoids overestimating the number of breakpoints by penalizing segmentations
with a large number of breakpoints. The penalty function pen(·) increases based on the
number of segments, noted as Dτ .

The segmentation returned by the breakpoint detector is the one that minimizes the penalized
cost function among the explored solutions:

τ̂ ∈ arg min
τ∈T

Dτ∑
i=1
C(Xτi+1−1

τi
) + pen(Dτ ) (1.5)
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Given the computational cost of solving the exact optimization problem, some anomaly de-
tectors propose approximate solutions. Some approximate search methods are presented in Sec-
tion 1.2.3.1-1.2.3.3, followed by the exact solution in Section 1.2.3.4. There are several difficulties
with breakpoint detection: the number of breakpoints is usually unknown, changes can occur in
any feature, not just the mean or variance, and parametric assumptions are difficult to verify.
For each method, there is a discussion of how these different problems are addressed.

1.2.3.1 CUSUM detector

CUSUM is an online breakpoint detector [66, 168] that observes data points sequentially. It relies
on calculating a cumulative sum of the deviations between an observed value and a predicted
value. Once a change has occurred, the observed deviations accumulate until they exceed a
threshold indicating that a breakpoint has been detected. To achieve this, two models fθ0 and
fθ1 are used. Under the H0 hypothesis, there are no breakpoints, the data [1, T ] are all generated
by the fθ0 model. Under theH1 hypothesis, there is a breakpoint b such that the data [1, b−1] are
generated by the model fθ0 and the data [b, T ] are generated by the model fθ1 . The test statistic
used is called the likelihood ratio [168], which is calculated as follows, assuming independence,
where C is the segment cost function defined in Eq 4.21:

Eb
t1,t2

= C(Xt2
t1

)− C(Xb−1
t1

)− C(Xt2
b ) (1.6)

Eb
0,t = log

∏b−1
t=1 fθ0(Xt)

∏T
t=b fθ1(Xt)∏T

t=1 fθ0(Xt)
(1.7)

The breakpoint location is estimated by maximizing the likelihood ratio, as follows:

E0,t = max
b

Eb
0,t (1.8)

= max
b

T∑
t=b

log fθ1(Xt)− log fθ0(Xt) (1.9)

= max(E0,t−1 + (log fθ1(Xt)− log fθ0(Xt)), 0) (1.10)

The last expression shows that it’s possible to compute E0,t sequentially, which is interesting for
an online computation. In its original version [126], f is a Gaussian distribution and the means
θ0 and θ1 are fixed in advance. The Generalized Likelihood Ration (GRL) algorithm [148, 34]
estimates θ1 using maximum likelihood. This makes it possible to apply CUSUM even if the
distribution after the breakpoint is unknown, but makes the sequential computation of E0,t more
difficult. The CUSUM algorithm can be nonparametric using a kernel based statistic [55]. The
thresholds are set to control the Average Run Length (ARL0) [168], i.e. the average time for
detecting a false breakpoint.

1.2.3.2 Window-based breakpoint detection.

Window-based breakpoint detection is another well-known search method aimed at quickly ob-
taining an approximate solution to the optimization problem. It can be used as online detector.
The time series is scanned by a window of length 2w. At each point t, the discrepancy between
the first and second half of the window is computed. Points where the discrepancy is locally
maximum indicate the position of breakpoints. This gives an approximate solution to Eq. 4.21,
as only the local cost associated with a breakpoint is considered, without taking the global cost
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into account. The discrepancy can be expressed in terms of the segment cost, as follows:

Et
t−w,t+w = C(Xt+w

t−w )− C(Xt−1
t−w)− C(Xt+w

t ) (1.11)

In practice, however, the discrepancy is usually measured by a two-sample test statistic [88].
This is a statistical test that evaluates the hypothesis that Xt−w, . . . , Xt−1 comes from the same
distribution as Xt, . . . , Xt+w. Here is a selection of statistics commonly used in breakpoint
detection.

t-test The t-test is a parametric test [107] that detects changes in the mean, assuming that
the two samples are generated according to independent Gaussians.

Et
t−w,t+w = 1

sp(
√

2/w)

∣∣∣∣∣ 1
w

t−1∑
u=t−w

Xu −
1
w

t+w∑
u=t

Xu

∣∣∣∣∣ (1.12)

With sp =
√

(w−1)σ2
1+(w−1)σ2

2
n1+n2−2 .

Generalized Likelihood Ratio (GRL) GRL [148] computes the likelihood ratio between
two models:

• under H0, the two samples are generated from the same distribution. The likelihood of
each point is calculated using ft̂heta, where t̂heta is the MLE estimator considering points
from both samples.

• Under H1, the samples are generated according different distributions. The true likelihood
of the first sample is calculated by ft̂heta1

. Where t̂heta1 is calculated by the MLE estimator
considering only the first sample. Similarly, the true likelihood of the second sample is
calculated by fθ̂2

.

When there is a breakpoint at position t, the likelihood under H1 is significantly larger than the
likelihood under H0.

Et
t−w,t+w =

∏t−1
u=t−w f(Xi|θ̂1)

∏t+w
u=t f(Xi|θ̂2)∏t+w

u=t−w f(Xi|θ̂)
(1.13)

Mean Max discrepancy GLR relies on a parametric model and the t-test can only detect
shifts in the mean. Mean Max Discrepancy [68] uses the properties of Reproducing Kernel Hilbert
Spaces (RKHS) to increase the detection power of the test while remaining non-parametric.
Instead of computing the difference between the means of each sample, it computes the difference
between the means of their projections, through a mapping function ϕ, in a high dimensional
RKHS, called HK .

Et
t−w,t+w =

∥∥∥∥∥ 1
w

t−1∑
u=t−w

ϕ(Xu)− 1
w

t+w∑
u=t

ϕ(Xu)
∥∥∥∥∥

2

HK

(1.14)

This formulation is difficult to use in practice, therefore it is preferable to define ϕ and HK

implicitly using a positive semi-definite kernel, as allowed by Mercer’s theorem. The mean max
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discrepancy is expressed directly using a kernel K is [68] as follows:

Et
t−w,t+w = 1

w2

t−1∑
u=t−w

t−1∑
v=t−w

K(Xu, Xv) + 1
w2

t+w∑
u=t

t+w∑
v=t

K(Xu, Xv)− 2
w2

t−1∑
u=t−w

t+w∑
u=t+1

K(Xu, Xv)

(1.15)

To improve the time efficiency, [42] suggests an MMD estimator that is linear in time.

1.2.3.3 Binary segmentation

Binary segmentation is another search method for quickly obtaining an approximate solution
in offline breakpoint detection. In binary segmentation, the first step is to find the point that
optimally splits the complete [0, T ] series into two subseries.

b̂ = arg min
t∈[1,T ]

C(Xt−1
1 ) + C(XT

t ) (1.16)

Where C is the segment cost function defined in Eq. 4.21.

This results in two sub-series. This method is then applied recursively to each subseries
until the desired number of breakpoints is found. The search for each single breakpoint is
generally done by maximizing a CUSUM statistic on the subseries under consideration, rather
than explicitly minimizing the cost function. For example, the article [58] uses the formulation
Eq 1.17. This formulation is similar to that of Section 1.2.3.1, as shown in [9], where the start of
the subseries is s = t−w and the end is e = t + w. Let s, e be two integers, the CUSUM statistic
associated with the subseries Xe

s and with the breakpoint in b ∈ Js, eK is calculated as follows:

Eb
s,e =

√
e− b

(e− s + 1)(b− s)

b−1∑
u=e

Xu −

√
b− s

(e− s + 1)(e− b− 1)

e∑
u=b

Xu (1.17)

The CUSUM statistic presented in Eq. 1.17 can only detect changes in the mean. Other CUSUM
statistics exist to detect other types of changes, for example [8] detects changes occurring in the
covariance. More generally, any statistic that exists for a two-sample test can be used; for
example, [124] studies the use of the Kolmogorov-Smirnov test, and [107] suggests an entropy-
based test. The number of breakpoints is chosen either by a threshold η on maxb Eb

s,e [125] or by
minimizing the penalized criterion defined in Eq. 4.21 after applying Dmax − 1 times the binary
segmentation to find Dmax segments.

1.2.3.4 Optimal Solution

The previous search methods provide approximate solutions to the optimization problem formu-
lated by Eq. 4.21 in order to limit the computational complexity. Nevertheless, once the cost
associated with a segmentation can be written as the sum of the costs associated with each
segment, it is possible to find the optimal D-segment segmentation in a relatively efficient way
using dynamic programming. The cost of the optimal segmentation in D segments can be writ-
ten as the cost of a segment adding the cost of an optimal segmentation in D− 1 segments. Let
LT,D be the cost of the optimal segmentation of XT

1 into the D segments. By noting b, the last
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breakpoint, and T D the set of all possible segmentations in D segments, it gives:

LT,D = min
τ∈T D

Dτ∑
i=1
C(Xτi+1−1

τi
) (1.18)

LT,D = min
b

Lb,D−1 + C(XT
b ) (1.19)

The associated optimal segmentation is noted τ̂D. The locations of the various breakpoints
in τ̂D can be obtained by applying Eq. 1.19 recursively. It provides an exact solution to the
optimization problem in time O(DT 2).

The number of breakpoints is obtained by minimizing the penalized criterion. If the penalty
is linear, the number of segment and their locations can be estimated directly using dynamic
programming in a single pass.

LT,D = min
b

Lb,D−1 + C(XT
b ) + β (1.20)

[91] suggests a pruning strategy to solve this optimization problem with a linear time complexity.

Otherwise, for each possible number of segments D, the positions of the breakpoints is found
with their associated cost, and then the penalty is added to estimate the number of segments.

D̂ = arg min
D

LT,D + pen(D) (1.21)

An example of a breakpoint detector that uses dynamic programming is Kernel Change Point
(KCP).

KCP KCP [6, 38] uses a kernel to define the segment cost function. If the kernel used is
“characteristic”, any kind of change can be detected [6]. The Gaussian kernel is characteristic.
For a given segmentation τ and a kernel K, the cost is given by:

R̂(τ) = 1
t

t∑
u=1

K(Xu, Xu)− 1
t

Dτ∑
i=1

1
τi+1 − τi

τi+1−1∑
u,v=τi

K(Xu, Xv) (1.22)

The penalty function is given by:

pen(τ) = r1Dτ + r2 log
(

t− 1
Dτ − 1

)
(1.23)

where the coefficients r1 and r2 are estimated by fitting the penalty function on the estimated
cost for over segmented segmentations [12].

1.3 Anomaly detection on time series

1.3.1 Definitions
An anomaly is an observation or group of observations that appears suspicious when compared
to other observations. In general, anomalies are evidence that an unexpected event has occurred
in the process that produces the observed data. For example, it could be a failure in an industrial
machine monitored by sensors, a disease detected from a patient’s test results, or a computer
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attack detected from log files... Mathematical modeling of anomalies assumes the existence of a
reference process law, called P0,t. An observation is said to be an anomaly if Xt does not follow
the reference distribution. The distribution P0,t can be constant or evolve over time. The goal
of anomaly detection is to find all data points that are abnormal.

In the literature, anomalies are classified into to three types. A point anomaly is a data point
that takes a value that the time series should never take. For example, a body temperature
of 42◦C. A contextual anomaly is a data point that takes a value that the time series should
never take according to a certain context. For example, a temperature of 30◦C in Paris during
winter. The value taken by a contextual anomaly may appear normal in other contexts, e.g.
30◦C is normal in Paris during summer. A collective anomaly refers to a collection of points that
appears suspicious. Note that each of these points may appear normal on its own. For example,
a person making a payment transaction over the Internet may not appear suspicious. However,
if the same transaction occurs several times in a short period of time, credit card fraud may be
suspected. An anomaly detector may be good at one type of anomaly, but not another. This
work focuses on punctual and contextual anomalies.

Anomaly detectors are built using machine learning. The next section discusses the different
learning contexts: supervised and unsupervised.

1.3.1.1 Supervised vs Unsupervised

A supervised detection context requires the use of a labeled training set (Xt, yt)1≤t≤q, where yt

is a boolean variable indicating whether Xt is an anomaly or not. It requires a domain expert
to indicate the location of anomalies in a data history. The anomaly detection problem becomes
a binary classification task where a model f is learned by minimizing the classification error
ℓ(f(X), y). Classification is a well-studied problem in machine learning, and many algorithms
exist [18].

However, in most cases, labeling data is a difficult and costly process. Therefore, labeled
data is rare and the majority of anomaly detectors rely on unsupervised or semi-supervised
methods. Unsupervised models learn the reference behavior of the time series from historical
data (Xt)1≤t≤q. Anomalies are detected by comparing observations with the learned reference
behavior. Models requiring to have only normal data during training are called semi-supervised.
While unsupervised detectors [143] tolerate the presence of a small number of anomalies in their
training set. Most unsupervised detectors learn an atypicity function a : X → R which assigns
each data point Xt an atypicity score st. The value of st is small when Xt looks similar to the
training data, and large when it is atypical. If the atypicity function is well chosen, anomalies
appear with a high st score. However, it is difficult to directly define a threshold on the score,
since the distribution of the reference scores is unknown. Therefore, an estimation is made of the
p-value pt associated with the st score, and then a detection threshold is defined on the p-value.

1.3.1.2 Online vs offline

A distinction is made between online and offline anomaly detection. Offline anomaly detector
uses knowledge of the entire series to determine the status of normal/abnormal points [29, 30,
106]. This framework is suitable for finding anomalies on a past recording, but not for real-time
anomaly detection. In online anomaly detection, data points are observed sequentially and their
status is evaluated in real time [29, 100]. This is a more challenging context to work in because
the future data that could help make a decision is unknown, and the constraints on computation
time are greater. Online anomaly detectors are usually trained on historical data [39]. However,
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the normal behavior of the series may change over time. Some anomaly detectors [71, 122]
therefore update their model in real time or at regular intervals.

1.3.2 Anomaly detector error
When analyzing a time series, an anomaly detector can make two types of errors.

• Type I error involves finding an anomaly where there is none.

• Type II error is the failure to detect a true anomaly.

The evaluation results of an anomaly detector are presented in the form of a confusion matrix,
as shown in Table 1.1. The rows of the matrix correspond to the true labels and the columns
correspond to the estimates of the anomaly detector. TP is the number of true positives, the
true anomalies successfully detected. FP is the number of false positives, the normal data points
detected as anomalies. FN is the number of false negatives. TN is the number of true negatives.

True label\ Prediction Anomaly Normal
Anomaly TP FN
Normal FP FN

Table 1.1: Confusion matrix for Anomaly Detection.

Various performance metrics can be calculated from the confusion matrix. Anomalies are
very rare in a data set. This means that the data is highly unbalanced, and balanced binary
classification performance criteria such as accuracy or false positive rate are of little interest.
Indeed, a detector that detects no anomalies would appear to perform well according to these
criteria.

Better performance metrics are precision and recall.

Recall = TP

TP + FN
; Precision = TP

TP + FP
(1.24)

Precision is the proportion of true anomalies among all points detected as anomalies. Recall is
the proportion of true anomalies found by the detector. The F1 criterion is the harmonic mean
of recall and precision. It varies between 0 and 1. The best possible value is 1. The disadvantage
of the F1 criterion is that it gives equal weight to both types of errors. It is also difficult to
interpret statistically.

F1 = 2 ∗ Precision ∗ Recall
Precision + Recall (1.25)

All these criteria depend on the chosen threshold, so if a performance criterion is required that
depends only on the atypicity scores, the PR curve describes the precision and recall for different
thresholds. The PR-AUC score calculates the area under the PR curve to enable comparison
between different detectors.

1Illustration coming from https://www.tuteurs.ens.fr/logiciels/latex/footnote.html

https://www.tuteurs.ens.fr/logiciels/latex/footnote.html
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Figure 1.3: PR curve and PR-AUC.1

The PR-AUC score has its limitations when it comes to evaluating an online anomaly detector.
Anomalies require a specific threshold to be detected. However, PR-AUC gives no indication of
performance at a given threshold.

1.3.3 Short review on anomaly detection in time series
This section provides a brief review of the different methods used to build an anomaly detector.
For a more detailed review, please refer to [39, 20, 143, 29].

1.3.3.1 Anomaly detection inspired from multi-dimensional data

Many anomaly detectors are not specific to time series, they detect anomalies from a list of
vectors. Time series data can be transformed into a set of vectors using the windowing method:
for each t, a vector of dimension w is built by collecting the w consecutive points. Noting
T̃ = T − w:

∀t ∈ J1, T̃ K, Xt = (Xt, Xt+1, . . . , Xt+w)T

The data set {Xt} can be treated as a multidimensional data set without temporal structure.
In fact, the structure is preserved within each vector. In this way, existing anomaly detection
methods for multidimensional data can be used. It should be noted that anomaly detection in
high-dimensional data comes with its own challenges, as described in [179].

Nearest Neighbor: Assuming that anomalies are observations that are far from the common
observations, it is natural to use the notion of distance to the k-nearest neighbor as the atypicity
score. Let XT̃

1 be a training set and d be a distance on Xw, then the atypicity score function is
defined as [131, 39]:

akNN (X) =
∑

O∈kNN(X,XT̃
1 )

d(X, O)
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The distance of each k nearest neighbor to the data point to be analyzed is summed.

Isolation-Forest: Isolation Forest [106] is an anomaly detector based on the idea that anoma-
lies are easy to isolate from the rest of the data. And that all it takes to isolate an anomalous
point is to randomly generate a few boundaries. On the other hand, to isolate a normal data
point, you need to generate more random boundaries.

The algorithm works as follows: Binary trees are randomly generated. At each step, the
feature to cut and the position of the cut are randomly chosen. Tree construction is completed
when each data point is placed on a separate leaf. The set of trees constructed in this way forms
a forest. Given a data point, the lower the average number of steps required to isolate a feature,
the higher its atypicity score. Let E(h(X)) be the average depth of X in the set of trees and
κ(n) be a constant depending only on the number of points in the data set n. The atypicity
score with Isolation Forest is computed as follows:

aIF (X, n) = 2− E(h(X))
κ(n)

Local-Outlier Factor: Density-based anomaly detectors [39] assume that anomalous points
are located in low-density regions. These approaches run into difficulties when the density varies
in the data space, for example, when high-density and low-density clusters are present in the
same data set. To overcome this difficulty, anomaly detectors [30] introduce the notion of relative
density. A point is said to be anomalous if it is located in a region of low density relative to its
nearest neighbors . Local Outlier Factor is an atypicity score that based on local density. The
Local Reach Density (LRD) is defined as the inverse of the k-nearest neighbor average of the
maximum reachable distance, defined as dk(X, O) = max(d(X, O), d(X, kNN(X, XT̃

1 )):

LRD(X) =
(∑

O∈kNN(X,XT̃
1 ) dk(X, O)

k

)−1

The atypicity score is defined as the average ratio between the local density of the data point
and the local density of its neighbors.

aLOF (X) = 1
k

∑
O∈kNN(X,XT

1 )

LRD(O)
LRD(X)

Cluster based anomaly detection In some cases, normal data are grouped into several clus-
ters corresponding to different modes of the reference distribution. Anomalies can be identified
as points that do not belong to any cluster or whose distance to the nearest cluster is large.
For example, DBSCAN [51, 36] makes a cluster of data points, and points that do belong to
any cluster are considered anomalies. The article [121] uses k-means clustering [157] to identify
the different clusters in the training data. The atypicity score is then defined as the Euclidean
distance from a point to the centroid of the nearest cluster.

Online detection These different methods were originally designed as offline anomaly de-
tectors. The analysis is performed as follows: first, the score of each point in the data set is
calculated. Then, the points with the highest atypicity scores are selected. There are several
ways to adapt these methods to online anomaly detection: for example, the training set can be
fixed, the atypicity score function can be learned once, and the score of each new data point is
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calculated as it is observed. However, if the goal is to learn normal behavior continuously, the
newly observed points must be added to the training set and the learning of the atypicity score
must be updated. In this way, the training set will contain all the points visited up to time t.
When learning the reference behavior in real time, obsolete training points must be forgotten.
This is often accomplished by using a sliding window to select the training set at time t. This can
be done simply by iteratively applying the offline algorithm to the subseries available at time t.
More advanced methods avoid this cost by updating only what is necessary. For example, Ran-
dom Cut Forest [71] is a method inspired by Isolation Forest and adapted to real time. DiLOF
[122] adapts LOF for real time.

Threshold selection The displayed scores characterize the atypicity of an observation accord-
ing to different criteria. In online anomaly detection, it is not enough to define the atypicity of a
point: you also need to make a binary decision on the status of the point: normal or abnormal.
For this reason, a threshold on the score is used beyond which the observation is considered
abnormal. To set the threshold correctly, it is necessary to know the distribution of the ref-
erence behavior scores. For example, assuming that the scores follow a Gaussian distribution,
the thresholds can be set at 3 standard deviations from the mean. The LOF score distribution
follows a gamma distribution under certain conditions [49], the threshold is set as a quantile
of this distribution. There are also agnostic approaches that make no assumptions about the
distribution of the scores, such as Conformal Anomaly Detection [100], which defines a thresh-
old on the empirical p-values of the scores. CAD has been used in particular with kNN [33] or
LOF[101].

1.3.3.2 Forecasting based method

A common approach to anomaly detection in time series is to train predictive models to learn
the normal behavior of the series. Once trained, these models can then be used to compare what
is observed in real time with what is forecast by the model representing the reference behavior.
An anomaly is an observation that deviates too far from the predictions. There is an extensive

Figure 1.4: Anomaly detection based on the comparison between the predicted and observed
values, illustration from [20].

literature on predictive models, some of which is presented here. A distinction is made between
statistical models and models based on deep learning. For more details, please refer to [83].
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ARMA An important family of statistical models for forecasting is ARMA [27, 83], which
combines an Autoregressive (AR) model and a Moving Average (MA) model. An AR model
predicts the value of a point from a linear combination of past values, as follows, with et as
Gaussian white noise and ϕ1, . . . , ϕp real coefficients:

Xt = c + ϕ1Xt−1 + ϕ2Xt−2 + . . . + ϕpXt−p + et (1.26)

Moving Average (MA) models describe time series values as a weighted average of past noise
values, as follows, where et is a Gaussian white noise and θ1, . . . , θp are real coefficients:

Xt = c + et + θ1et−1 + θ2et−2 + . . . + θqet−p (1.27)

The ARMA model describes a time series as the sum of an AR model and a MA model.

Xt =
p∑

i=1
ϕiXt−i +

q∑
i=1

θiet−i + et (1.28)

In some cases, the difference series Xt − Xt−1 is easier to predict than the original series. In
fact, this trick makes it possible to suppress some trend effects. The ARIMA model applies an
ARMA model to the finite difference series. The weights associated with these different models
are estimated by the MLE estimator. ARMA based model are used in anomaly detection by
comparing the prediction and the observed value [94, 127].

EWMA Another well-known statistical forecasting model is the Exponential Weighted Moving
Average (EWMA) [83]. In its simplest version, Xt is assumed to follow N (µt, σ). EWMA
estimates the local mean of the time series µt by taking the weighted sum of all observations
with a decay of r for each time step in the past. µ̂t =

∑t
u=1 ru(1−r)Xu. This is easy to compute

online:

µ̂t = (1− r)Xt + rµ̂t−1 (1.29)

r is a parameter that defines the importance of past values relative to present values. When
r is close to 0, the estimate of the mean is very close to the last observation. When r is close
to 1, the last observation has little influence on the estimate of the local mean. Because of
its simplicity, it’s one of the oldest ways to detect anomalies [173, 35, 29]. Since the model is
Gaussian, observations that verify |Xt − µ̂t| > kσ̂ are considered anomalies. The parameter r is
estimated by least squares on a historical data set.

The model can be made more complex by adding trend or seasonal terms, or by estimating
the variance [84, 83]. Although simple, this model is still powerful. For example, it is an essential
part of the winning submission to the M4 forecasting competition [109, 152].

Deep-Learning models in forecasting It is possible to view forecasting as a regression prob-
lem, where the goal is to estimate Xt using Xt−w, . . . , Xt−1. In this way, many machine learning
models can be trained on forecasting. In particular, deep learning methods are increasingly used
as predictive models for anomaly detection. They are especially interesting for multivariate se-
ries, where building a statistical model is more difficult. In particular, recurrent neural networks
have the advantage of using the entire series to predict the next observation. In contrast, other
architectures, such as multi-layer perceptrons and convolutional networks, can only use a subset
of the series as input. This explains their popularity, especially for LSTMs, which are better
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suited for predicting long sequences [32, 82]. However, LSTMs require a lot of data to train, and
other architectures are also used. [120] suggests using CNN as a prediction model.

A recent trend, encouraged by results obtained in the fields of NLP [31] and CV [92], is the
research of a "foundation model" [25] for time series, which, once trained on a large and varied set
of time series, should enable the prediction for other time series without the need to be trained
again [177, 116].

Offline and continuous learning Predictive models trained offline become obsolete over
time. It is therefore necessary to retrain them periodically. This is typically done by scheduling
the training of the model on more recent data at regular intervals. Training data is selected using
a sliding window containing the most recent data. More rarely, the model data can be updated
in real time as new data is observed [174]. Again, choosing the length of the window used as
the training set is a difficult problem. Although enough data is needed to learn normality, the
training process must not be biased by outdated data.

Threshold selection In many forecasting models, the prediction error is modeled, often by
a Gaussian. Thus, the quantiles of the prediction error define the thresholds of the anomaly
detector. It is particularly interesting to have a model for the prediction error when the score
distribution evolves over time. The GARCH model [50, 24] is interesting for heteroscedastic
series [118]. If the error is not modeled, the threshold can be set using the empirical p-value, as
in Section 1.3.3.1. Although less common, there are non-statistical ways to set the threshold. For
example, [82] performs unsupervised threshold learning based on the assumptions that anomalies
have a strong impact on the mean estimation and are rare.

1.3.3.3 Anomaly Detection as Breakpoint Detection

As seen in section 1.2.3, it is possible to detect changes in properties over a time series using
breakpoint detectors. These changes are associated with changes in the behavior of the underlying
process. In particular, if the properties of the series are expected to be constant over time, then
a breakpoint indicates an anomaly. Breakpoint detectors are therefore also used as anomaly
detectors. For example, the article [3] uses CUSUM to detect DoS attacks by applying CUSUM
to the number of connections received per time interval. The detection threshold is set to control
the Average Run Length, i.e. the average time to alarm assuming no change. EWMA can also
be used to detect changes in the mean µt of the time series Xt [136] beyond fixed thresholds.
These methods, known as EWMA and CUSUM control charts, were among the first to detect
anomalies in the 1950s.

Another approach is to distinguish between normal and abnormal breakpoints. For example,
the paper [167] first detects breakpoints using a binary segmentation algorithm 1.2.3.3. The law
of the mean shift between two segments is learned. Segments with an unusually high mean shift
are abnormal segments.

1.3.3.4 Anomaly Detection using Deep Learning

This section presents approaches to anomaly detection using deep learning, without mentioning
the forecast based methods introduced in Section 1.3.3.2. The survey [140] identifies different
uses of deep learning in anomaly detection and makes connections with classical methods.



16 CHAPTER 1. Introduction

Auto-encoder An auto-encoder is a multilayer neural network consisting of two components:
the encoder and the decoder. As shown in 1.5, the number of neurons per layer in the encoder
gradually decreases, as the encoder aims to build a low-dimensional representation of the input
data. The number of layers in the decoder gradually increases so that the dimension of the
output data is the same as the input data. Auto-encoders are trained end-to-end, minimizing
reconstruction error. Once trained on normal data, an auto-encoder can be used for anomaly
detection. The most common way is to use the reconstruction error as an atypicity score [165,
41, 115]. More rarely, the encoder is used to reduce the dimension of the input data, then other
anomaly detection methods are used on these embedding vectors [63].

Figure 1.5: Illustration of Anomaly detection using auto encoder, illustration from [123].

Many different architectures are used to build encoders/decoders. For example [142] uses
LSTM based auto-encoders to detect security breaches in IT infrastructures.

Generative Adversarial Network GANs[65, 43] simultaneously train two neural networks
with adversarial goals: the generator and the discriminator. The goal of the generator is to fool
the discriminator into believing that the data it generates is data from the training set. The goal
of the discriminator is to detect which data is from the generator and which is from the training
set.

In the context of anomaly detection, the generator can be a forecasting model or an auto-
encoder [62]. The purpose of the discriminator is twofold. First, it improves the training of the
forecaster/autoencoder by adding an adversarial constraint. Second, since the discriminator has
been trained to detect data that does not come from the training distribution. Anomalies can
be detected by the discriminator [62]. This is illustrated in Figure 1.6.

In Figure 1.6, the observed data x first passes through the encoder E and then through the
generator/decoder G. The E and G networks are in part trained to minimize the L2 reconstruction
error, which serves as an atypicity score on the new data. In addition, there are two discriminator
networks. Cx is adversarially trained with G to give a value close to 0 for data from the training
set and high for data from G. Cz plays the same role, but in the data space encoded by E . The
complete atypicity score is written as (without writing the renormalization constants):

aT ADGAN (Xt) = ∥Xt − G(E(Xt))∥+ Cx(Xt) + Cz(E(Xt)) (1.30)

This concludes the small review on anomaly detectors. The next section looks at controlling
false positives using multiple testing methods.
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Figure 1.6: Description of the TADGAN architecture, illustration from [62].

1.4 Multiple testing

To formalize the problem of controlling the number of false positives, anomaly detection is
described as a multiple testing problem. Let the hypothesis H0,t be verified if Xt is a point from
the reference process, i.e. it is not an anomaly.

H0,t ≡ Xt ∼ P0,t

H1,t ≡ Xt ≁ P0,t

Type I error, measured by the False Discovery Proportion (FDP), is calculated as the number of
false positives out of the number of detections. Type II error is measured by the False Negative
Proportion (FNP), and is calculated as the ratio of the number of false negatives to the number
of true anomalies. The False Discovery Rate is equal to the expected FDP. The False Negative
Rate is equal to the expected FNP.

FDRT
1 = E[FDP T

1 ] = E

[
FP

FP + TP

]
(1.31)

FNRT
1 = E[FNP T

1 ] = E

[
FN

FN + TP

]
(1.32)

The FDP and FNP are directly related to precision and recall.

FDR = 1− E[precision]; FNR = 1− E[recall] (1.33)

The aim is to control the FDR below a target value noted as α, while minimizing the value
of the FNR.
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1.4.1 Benjamini-Hochberg Procedure
A well-known multiple testing procedure is the Benjamini-Hochberg (BH) procedure [13]. Let m
be the number of hypotheses tested, m0 the number of true null hypotheses, and p1, . . . , pm the
corresponding p values. The proportion of true null hypotheses is noted as π0 = m0

m . BH ensures
FDR control at the π0α level. The BH procedure starts by ordering the p-values from smallest
to largest: p(1) ≤ p(2) ≤ . . . p(m). The smallest p-values are the most likely to be rejected. Then
the number of rejections k̂ is selected.

k̂BH = max{k : p(k) ≤ (k/m)α} (1.34)

As a result, the hypotheses related to the p-values p(1), p(2), . . . , p(k̂) are rejected. In the original
version of the theorem, BH requires independence of p-values. The theorem has since been
extended to broader conditions, as discussed in [19].

1.4.2 Storey Procedure
To improve its detection power, it would be preferable to apply Benjamini-Hochberg with α/π0
instead of α, so that the FDR is exactly at the desired level α. Storey’s procedure [158] involves
estimating π0. The estimator used is:

π̂0 = |{pi > λ}|
(1− λ)m (1.35)

The result is then injected into the BH procedure:

k̂S = max{k : p(k) ≤ (k/m)α/π̂0} (1.36)

Therefore, reject p(1), p(2), . . . , p(k̂S). However, the authors of the procedure prefer to rewrite this
inequality in order to show the FDR estimator:

k̂S = max{k :
π̂0p(k)

k/m︸ ︷︷ ︸
F̂ DR

≤ α} (1.37)

It appears that the Storey (or BH) threshold is the largest possible threshold that ensures that
some FDR estimator is smaller than α. This procedure guarantees FDR control with better
detection power than BH, but the estimation of π̂0 can make the procedure more unstable.
Moreover, in the context of anomaly detection, anomalies are generally very rare, π0 ≈ 1. The
gain is less significant.

1.4.3 Online multiple testing
In the context of online multiple testing, a sequence of p-values (pt) is observed one after another.
The decision to reject the null hypothesis must be made before a new p-value is received. It is
not possible to apply the BH or Storey procedures because they require sorting all the p-values.
A sequence of thresholds (εt) is used and compared to the sequence of p-values (pt). Hypotheses
with a p-value below the threshold are rejected. The sequence of thresholds must be chosen
carefully to control the FDR.

If all hypotheses with a p-value smaller than α are rejected, then although the type I error of
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each individual test is controlled, the FDR can be arbitrarily large. If the thresholds are defined
such that

∑
t=1 εt = α, then the probability of falsely rejecting at least one null hypothesis is

equal to α. This is an online version of the Bonferroni correction. But then εt quickly converges
to 0 and the power of the test becomes very poor. That’s why controlling the FDR is preferred.
To control the FDR, the approach used is to estimate the FDP by:

F̂DP
t

1 =
∑t

u=1 εu

|R(t)| (1.38)

with R(t), the positions of all rejected hypotheses from 0 to t. To control the FDR, the idea is to
ensure that F̂DP

t

1 ≤ α is verified at each instant. The papers [132, 87] define these ideas more
rigorously, using the alpha-investing formalism, and propose procedures to explicitly compute the
sequence (εt). As an example, the LORD procedure [87] uses two numbers w0 and b0 verifying
w0 + b0 = α and a sequence γt ∝ log(t∧2)

t exp(
√

t) to compute a threshold sequence that ensures FDR
control, as follows:

εt = γtw0 +
∑

u∈R(t)

γt−ub0 (1.39)

It can be seen that if there is no rejection, |R(t)| remains constant and therefore εt needs
to decrease to avoid breaking the condition

∑t

u=1
εu

|R(t)| ≤ α. This makes it difficult to apply this
method to anomaly detection. Indeed, the true p-values are unknown in this context and must be
estimated. To verify the super-uniformity assumption, P[p̂t ≤ u] ≤ u, required for FDR control,
it is necessary to use the conformal p-value. It is calculated as follows, with a calibration set
noted Xn

1 and an atypicity score a:

p̂t = 1
n + 1

(
1 +

n∑
i=1

1[a(X) > a(Xt)]
)

(1.40)

The problem is that p̂t ≤ 1
n+1 and εt quickly become smaller than 1

n+1 . This means that
anomalies cannot be detected unless a very large calibration set is used. As such, there are no
multiple testing procedures suitable for online anomaly detection.

1.5 Main challenges
Following this review of anomaly detection and multiple testing, a number of issues have been
identified.

1.5.0.1 Continuous learning of the reference behavior

Most anomaly detectors do not adapt to the normal behavior of the time series in real time.
Rather, the normality is learned from an offline training set. The trained model is then used
online to perform the anomaly detection. Furthermore, approaches that propose continuous
learning typically use a fixed-size sliding window, which ignores the true dynamics of the time
series and assumes that the series is locally stationary. However, as shown in Figure 1.7, the
behavior of a time series may remain the same for a long period of time before abruptly changing
to a different reference behavior. Using a sliding window of fixed size is suboptimal. The window
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should be long during the stationary period to maximize the accuracy of the learned model, as
shown in Figure 1.7a. But it should be shorter during the transition to quickly adapt to the new
behavior, as shown in Figure 1.7b.

(a) Not adaptative, before change (b) Adaptative, before change

(c) Not adaptative, after change (d) Adaptative, after change

Figure 1.7: Comparison of the evolution of the training set at the breakpoint between a non-
adaptive fixed cardinality training set and a training set adapted to the time series dynamics.

1.5.0.2 Ensuring anomaly detector performance

Anomaly detectors are evaluated on their ability to detect anomalies with few false positives.
Anomaly detector benchmarks use recall/precision criteria. However, thresholds are typically
estimated from quantiles on a distribution that is often assumed to be Gaussian. To guarantee
the performance of a model, it is necessary to be able to estimate the p-value of the scores without
knowing their true distribution and without being affected by the presence of anomalies.

PH0

PH1

Threshold

FN FP

Figure 1.8: False positive and false negative depending on the threshold.
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Furthermore, the use of quantiles is not directly interpretable in terms of precision. It gives
an idea of the frequency of alarms, but does not allow to build a detector that is precise and
alarms only when necessary. Anomaly detectors lack statistical guarantees of model performance.
It would be interesting to be able to control the number of false positives. Multiple testing
procedures are a source of inspiration for building anomaly detectors that guarantee performance
in terms of anomaly detection. For the offline context, there are solutions that control the
proportion of false discovery (FDR) [11, 110], but they are not applicable to the online context.
There is no online multiple testing method that remains reliable even when the p-values have to
be estimated, as in anomaly detection.

1.6 Contributions
The goal of this manuscript is to develop an anomaly detector with the ability to continuously
learn the normal behavior of a time series and to provide statistical guarantees of its performance.

In order to describe the evolution of the reference distribution, breakpoints are introduced
into the modeling of the time series. Let D be the number of segments and (τi) ∈ J1, T KD+1

the breakpoint locations. Between two consecutive breakpoints τi and τi+1 the series, excluding
anomalies, is assumed iid and the reference distribution is noted P0,i. Breakpoints correspond to
instants when the behavior of the series rapidly shifts toward a different reference distribution.
Anomalies are data points that do not follow the segment reference distribution. An example
of the model is shown in Figure 4.2. There are three segments, two anomalies in the second
segment between breakpoints τ2 and τ3.

Figure 1.9: Illustration of piecewise stationary time series.

Detecting anomalies in this type of model involves several steps: First, the breakpoints in
the series must be accurately identified so that the series is divided into homogeneous segments.
Then, the normal behavior of the segments is learned and an atypicity score is assigned to the
segment points. The next step is to estimate the p-value as accurately as possible. Finally,
the threshold is chosen using a data-driven procedure, which should guarantee the statistical
performance of the detector.

These different steps are developed in more detail in this manuscript as described in the
following:
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• Chapter 2: Estimating the p-value. The goal is to find an estimator p̂t that is both robust
and efficient. The approach is based on the use of the Kernel Density Estimator and
the Median of Means. The difficulty lies in choosing the right bandwidth, the one which
is adapted for estimating the p-value rather than the density. A new selection criterion
is introduced based on minimizing the error in estimating the p-value at the tail of the
distribution. An estimator based on cross-validation is built. The new selection procedure
is empirically tested against existing procedures.

• Chapter 3: Proposes a data-driven threshold selection procedure that guarantees FDR
control in online anomaly detection. To achieve this, two difficulties have to be solved:
p-values are estimated and decisions are made online, without knowledge of the complete
series. The first part focuses on understanding the relationship between the number of
points in the calibration set used to estimate the p-value and the BH performance in
FDR and FNR. In particular, this analysis allows to choose the optimal cardinal of the
calibration set. Second, it is shown that a global control of the FDR on the whole time
series can be obtained from a local control of the mFDR (modified FDR) on subseries.
This makes it possible to control the global FDR without knowing the whole series. A
local control of the mFDR is proposed by modifying the Benjamini-Hochberg procedure
to obtain a threshold selection procedure that controls the FDR of the entire series. This
multiple testing procedure is empirically evaluated on stationary time series.

• Chapter 4: This chapter develops a new anomaly detector for piecewise iid time series.
It uses breakpoint detection, in particular the KCP introduced in Section 1.2.3.4. Once
the segments are identified, scores can be learned for each segment. Second, the threshold
selection procedure developed in Chapter 3 guarantees the FDR control of the anomaly
detector. Several difficulties due to the online context had to be overcome:

– When discovering new segments there are not enough points to learn normality. It
is proposed to use information from previous segments to improve p-value estimation
and enrich decision-making.

– Online estimates of the position of breakpoints and the value of atypicity scores are
a source of error and may need to be re-evaluated. Methods for learning the level of
confidence that can be placed on decisions made in real time are being developed.

The anomaly detector is empirically evaluated in depth to assess its detection capabilities
and limitations.



Chapter2
Efficient and Robust P-value Estimation
using Kernel

This chapter is an attempt to improve the KDE-based p-value estimator. By redefin-
ing the selection criterion for the bandwidth parameter, the goal is to improve the
accuracy of the p-value estimator. Instead of choosing the bandwidth that minimizes
the density estimation error, the error in estimating the p-value at the tail of the
distribution is minimized. By combining this approach with median-of-means, the
goal is to build a robust and efficient estimator of the p-value tailored to anomaly de-
tection. In this chapter, first an estimator of the new criterion is built, which is used
to select the bandwidth parameter. Then, this procedure is empirically evaluated
against the existing approaches.

2.1 New criterion for p-value estimation
It is assumed that a time series (Xt) is observed in an online context, to which an atypicity
score st is assigned at each data point. This score cannot be interpreted by itself, but must
be compared with the scores under the reference distribution using the p-value. The p-value
is estimated using a p-value estimator, p̂, on a set of data scores called the calibration set and
denoted Scal. To simplify the notation, it is assumed throughout this chapter that st = Xt. In
the same desire for simplification, the calibration set is not specified in the p-value arguments.

p̂t = p̂(st,Scal) = p̂(Xt) (2.1)

Furthermore, the calibration set data points are assumed to be iid. This chapter focuses on
finding the best p-value estimator.

The properties required for a good p-value estimator are as follows:

• Agnosticity: It should be possible to use the p-value estimator without knowing the proba-
bility distribution of the scores. The estimate of the p-value should be accurate regardless
of the score distribution.

23
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• Robustness: Since the calibration set used to estimate the p-value may contain anomalies,
the p-value estimator must be robust to the presence of anomalies in the calibration set.
The presence of a small fraction of extreme data should not affect the p-value estimation.

• Efficiency: The goal is to maximize the precision of the estimation, even if the calibration
set contains few points.

In the literature, there are several estimators of the p-values considered. The most commonly
used p-value estimators in anomaly detection are the Gaussian estimator [32] and the empirical
p-value estimator [100, 33]. The Gaussian estimator is robust if the Gaussian parameters are
robustly estimated. Its parametric nature makes it unsuitable for non-Gaussian distributions.
The empirical estimator is distribution agnostic, but requires more data and is not robust. The
p-value can also be estimated by integrating the tail distribution of a Kernel Density Estimator
(KDE) [112]. The use of kernels smooths the estimation, reduces the variance and improves
the efficiency of the estimator[164]. In its classical version, KDE is not robust, but it can
be made robust using the Median-of-Means strategy [81]. Other estimators use extreme value
theory [149]. This guarantees that in many cases the tail distribution asymptotically follows a
generalized Pareto distribution [129, 130]. The limitation of these estimators in practice is the
lack of guarantees outside the asymptotic behavior and the absence of robust estimators of the
parameters of the generalized Pareto distribution.

The p-value estimator based on KDE is more attractive because it is agnostic to the score
distribution, more efficient than the empirical p-value estimator, and can be made robust using
strategies like MoM-KDE.

Definition 2.1 (Kernel density estimator [150]). Let Xn
1 be the calibration set generated from

the reference distribution P0. Let K be a kernel, a non-negative function whose integral is 1. Let
h be a real positive, called the bandwidth. Let Kh be the kernel dilated horizontally by h:

Kh(�) = 1
h

K
( �

h

)
(2.2)

The Kernel Density Estimator of the value x is computed as follows:

f̂(x) = 1
nh

n∑
i=1

K

(
x−Xi

h

)

= 1
n

n∑
i=1

Kh(x−Xi)

Noting IKh
(x) the kernel Kh integrated from x to +∞:

IKh
(x) =

∫ +∞

x

Kh(z)dz (2.3)
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The p-value estimation based on KDE is computed as follows.

p̂h(x) =
∫ ∞

x

f̂(z)dz

= 1
n

n∑
i=1

∫ ∞

x

Kh(z −Xi)dz

= 1
n

n∑
i=1
IKh

(x−Xi)

Definition 2.1 introduces the Kernel Density Estimator (KDE) and a p-value estimator, noted
p̂h, which integrates KDE. The KDE estimator is an efficient estimator of the density. By using
kernel that smooths the predictions, the density estimation can be accurate even when the
number of points in the calibration set is small. In this section, the kernel used is the Gaussian
kernel. Figure 2.1 illustrates the performance differences between empirical and KDE estimators
for estimating a Gaussian distribution (or p-value), using 100 data points. The x-axis represents
the value of the data points and the y-axis represents the density (or p-value). The blue dots
are the points generated by the Gaussian. They are used to estimate the true value, represented
by the black-dashed curve. The curve of the KDE estimator, in red, is smoother than the one
of the empirical estimator due to the use of kernels. This improves the performance of both the
density and the p-value estimators, even with limited data.

(a) Estimation of the density (b) Estimation of the p-value

Figure 2.1: Comparison between empirical estimator and KDE.

However, KDE is not robust, the estimation of the density and of the p-values are biased by
anomalies in the calibration set. For this reason the Median-of-Means KDE is introduced.

Definition 2.2 (Median-of-Means KDE [81]). Let Xn
1 be the calibration set generated from the

reference distribution P0. Let h be a real positive, called the bandwidth. Let S the number of
blocs and B1, . . . ,BS a partition of the calibration set.

The Median-of-Means KDE estimates the density as follows:

f̂MoM, h(x) = Median
{

1
h|B1|

∑
X∈B1

K

(
x−X

h

)
, . . . ,

1
h|BS |

∑
X∈BS

K

(
x−X

h

)}
(2.4)
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It can then be used to provide an estimation of the p-value as follows:

p̂h(x) =
∫ ∞

x

f̂MoM,h(z)dz

The median-of-means approach has been used in many areas of statistics [117, 48] and machine
learning [102, 79] to improve the robustness of an estimator. The idea is to split a set into several
blocks B, apply the non-robust estimator (e.g., the mean or KDE) to each of the blocks. Then the
final estimation is obtained by taking the median of these estimates. Thus, if a minority of the
blocks contain anomalies, a minority of the estimators are biased and do not affect the median.
The number of blocks is an important parameter in this method. It must be large enough to
ensure that a sufficient number of blocks contain zero anomalies. However, if the set is divided
into too many blocks, each block contains too few points and the estimation will be poor. [81]
gives the convergence rate of the density estimation as a function of the number of blocks and
the total number of data points. For a constant error, the required calibration set cardinality is
almost proportional to the number of blocks (error constant in Sn

log n ). If the number of anomalies
in the calibration set is known and denoted n1, then the ideal number of blocks is |B| = 2n1 + 1.
Possible alternatives to block partitioning could be to take the median of predictions obtained
by bootstrapping. However, in this case, there is no guarantee of an unbiased prediction with
2n1 + 1 resamples.

Figure 2.2 illustrates how anomalies affect the estimation of the classical KDE and the MoM-
KDE. The x-axis represents the data point value and the y-axis represents the density (or p
value). The true value to be estimated is represented by the black dashed curve. Data points
used by the estimators are represented by dots at the bottom of the plot. Red dots are anomalies
not generated by the reference Gaussian distribution. The red line, which is the estimation from
KDE, has a bump around the anomalies that biases the estimate of the density and p-value. In
contrast, the MoM-KDE is not affected by the presence of anomalies and the estimate is closer
to the true value.

(a) Estimation of the density (b) Estimation of the p-value

Figure 2.2: Comparison between the classical KDE and MoM-KDE in the presence of anomalies.

KDE performance depends on the choice of kernel Kh. According to [170, 150], the choice of
the symmetrical kernel family has no significant impact (e.g. Gaussian), compared to the choice
of the bandwidth, denoted h. In this chapter, the focus is on the case of the Gaussian kernel



2.1. New criterion for p-value estimation 27

K(x) = 1√
2π

exp
(
−x2

2

)
and on optimizing the choice of bandwidth for anomaly detection.

The classic criterion for selecting the bandwidth is to minimize the density estimation error.

Definition 2.3 (Density MISE). Let f be the true density and f̂h the KDE estimation of f with
bandwidth h.

MISEf (h) = E

∫ +∞

−∞
(f̂h(x)− f(x))2dx (2.5)

Our preliminary experiments show that this criterion gives poor results in the context of
anomaly detection. This is due to KDE’s difficulty in estimating tail of the distribution. Choosing
bandwidths that are too small results in a large number of false positives. Similar issue was
encounter by [90]. However, their solution, based on Topological Data Analysis, does not allow
the p-value to be estimated directly, and therefore requires the use of another p-value estimator
downstream of the KDE estimator.

Figure 2.3d illustrates KDE’s difficulty in estimating the tail of the distribution. The first
two figures illustrate the estimation of the density shown in Figure 2.3a and the p-value shown
in Figure 2.3b, at the center of the distribution, for data point values in [−3, 3]. The last two
figures illustrate the estimation of the density shown in Figure 2.3c, and the p-value shown in
Figure 2.3d, at the tail of the distribution, for x in [2.5, 5]. In these examples, 1000 points are
generated using a normal distribution. Then the density and p-value are estimated using KDE,
with the bandwidth selected using the "rule of thumb" method. Figure 2.3b shows that the
relative error in estimating the p-value is very low at the center of the distribution. On the other
hand, the relative estimation error is much higher in the tail of the distribution, as shown in
Figure 2.3d where the gap between the curve associated to the KDE p-value and the theoretical
curve is quite large.

To refine the criterion for selecting the bandwidth, let’s recall how the p-value is used for
anomaly detection. The last step of anomaly detection is to compare the estimated p-value p̂t

with the threshold noted as ε. A data point is detected as an anomaly if the p-value is less than ε.
To improve the anomaly detector, a better estimator of the p-value is needed. An ideal estimator
of the p-value should lead to the same decision as if the true p-value were known. This can be
written as: 1[p̂t < ε] = 1[pt < ε]. To achieve this result, the goal is to minimize the error in
estimating the p-value at the tail of the distribution, for values where the p-actual value is close
to ε. However, using the classic MISEf , the bandwidth is optimized to correctly estimate the
center of the distribution, at the expense of the tail of the distribution. The MISEp criterion,
introduced by Definition 2.4, proposes to minimize the estimation error of the p-value on the
tail of the distribution only. Indeed, in anomaly detection, errors of estimation on the center of
the distribution are less problematic, since the data are known to be normal. On the contrary,
for points whose p-value is close to ε, even a small error can change the detection result. In
addition, since the density value is not used directly in anomaly detection, the estimation error
on the density is replaced by an estimation error on the p-value.

Definition 2.4 (p-value MISE). Let p be the true p-value and p̂h the KDE estimation of p. Let
s be a real number.

MISEp(h) = E

∫ +∞

s

(p̂h(x)− p(x))2dx (2.6)

= E||p̂h − p||2s (2.7)
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(a) Density on the center of distribution (b) p-value on the center of distribution

(c) Density on the tail of distribution (d) p-value on the tail of distribution

Figure 2.3: Illustration of the difficulty to estimate the tail of the distribution.

The s parameter is used to define where the tail of the distribution begins. It has to be set by
the user. In this chapter, s is set to two standard deviations. In practice, the standard deviation
needs to be robustly estimated. The choice of s is a trade-off between having enough data to
make the estimation and being restricted to the tail of the distribution. An s that is too large
implies a high variance due to the small sample size, while an s that is too large induces a form of
bias because data from the centre of the distribution are included. The notation || � ||2s =

∫
s
(�)2dx

is not a norm, but is used to keep the notation consistent with existing literature on density
estimation.

The chapter focuses on building a procedure for selecting the bandwidth h that minimizes
the p-value MISE. In Section 2.2, a literature review is conducted in order to identify existing
procedures for minimizing the density MISE. The following sections present research on adapting
these procedures to the p-value MISE criterion. Section 2.3 presents the adaptation research
on the Asymptotic MISE (AMISE) criterion. The adaptation of the Leave-One-Out (LOO)
estimator is presented in Section 2.4. The Penalized Comparison to Overfitting (PCO) estimator
is presented in Section 2.5. Section 2.6 empirically compares the various bandwidth selection
procedure in order to determine which one minimizes the p-value criterion. Finally, the approach
taken in this chapter is discussed in Section 2.7.
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2.2 Review on strategies for bandwidth selection
To build a method for the selection of the bandwidth, let’s take inspiration from existing methods
that minimize the MISEf criterion before adapting them to MISEp. This section provides an
overview of the various selection methods available in the literature. In the Section 2.4-2.6, new
procedures are built and evaluated. The reviews presented in [89, 77] are the starting point for
the following non-exhaustive review. The various procedures are based on the minimization of
a criterion that serves as a proxy for the minimization of the unknown MISEf value. Selection
procedures are classified according to how the criterion attempts to estimate MISE.

• By simplifying the calculation of the MISE by its asymptotic value, which is called the
AMISE.

• By using resampling methods to approximate the unknown function f .

• By using a penalized criterion.

The purpose of this classification is to guide the choice of methods to be adapted to the case of
p-value MISE.

2.2.1 AMISE
Asymptotic MISE analysis is a commonly used technique to study the effect of the bandwidth
h. The MISE criterion is asymptotically approximated (n→∞) by the AMISE criterion [89].

AMISEf (h) = n−1h−1R(K) + h4R(f ′′)
(∫

y2K/2
)2

(2.8)

with ϕ ∈ {K, f ′′}, R(ϕ) =
∫ +∞

−∞ ϕ(x)2dx. And f ′′ is the second derivative of the density to
estimate.

The minimizer of the AMISE can be calculated by:

ĥAMISE =
(

R(K)
nR(f ′′)

(∫
x2K/2

)2

)1/5

(2.9)

The AMISE criterion is often a good approximation of the MISEf criterion, the ĥAMISE is an
interesting bandwidth where the only unknown value is R(f ′′). The following procedures suggest
different ways to estimate this value.

2.2.1.1 Rule-of-thumb

A simple solution and widely used solution, called the rule-of-thumb, introduced by [46], is
to replace R(f ′′) by an estimation assuming that f belongs to a parametric family, such as the
Gaussian family. When a Gaussian family is assumed, the rule-of-thumb gives ĥRT = 1.05σ̂n−1/5,
where n is the cardinality of the calibration set and σ̂ an estimation of the standard deviation.

2.2.1.2 Biased Cross-Validation

In the Biased Cross-Validation method, the unknown value R(f ′′) is replaced with R(f̂ ′′
h ) −

R(K ′′)/(mh). Where R(f̂ ′′
h ) is an estimator of R(f ′′) using the KDE of f with bandwidth. Since
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R(f̂ ′′
h ) introduces a bias equal to R(K ′′)/(mh), the term −R(K ′′)/(mh) is a bias correction term

to build an unbiased estimator [144].

2.2.1.3 Plug-in method

The “plug-in” method consists in estimating R(f ′′) by R(f̂ ′′
a ) where f̂a is a KDE of f and a

is the bandwidth, different from h. Plug-in methods provide ways to select the parameter a in
order to minimize the estimation error of R(f ′′) and plug this estimation into Eq. 2.9. There
exist different plug-in methods [146, 74].

2.2.2 Resampling

2.2.2.1 Least Squared Cross Validation

Based on the expansion of the Integrated Squared Error (ISE) criterion:

ISEf (h) =
∫

(f̂h − f)2 =
∫

f̂2
h − 2

∫
f̂hf +

∫
f2 (2.10)

Since the last term does not depend on h, ISE has the same minimizer as the first two terms.
Only the second term cannot be computed exactly. Using the definition of expectation:

∫
f̂hf =

EX∼P0 [f̂h(X)], the unbiased Leave-One-Out estimator is suggested [139, 26], with f̂h,−i being
the KDE estimator for which Xi has been removed from the calibration set.

EX∼P0 [f̂h(X)] ≈ 1
n

n∑
i=1

f̂h,−i(Xi) (2.11)

2.2.2.2 Smoothed Bootstrap method

The density function f is replaced by a KDE estimate f̂a, where a is a bandwidth that can be
chosen either by the rule of thumb or equal to h. Then the MISE can be fully expressed, where
EX∗∼f̂a

is the expectation according the bootstrap distribution f̂a and f̂∗
h is the KDE estimation

using the bootstrap data {X∗
1 , . . . , X∗

n}:

BMISE(h) = EX∗∼f̂a

∫
(f̂∗

h(x)− f̂a(x))2 (2.12)

In practice, the BMISE can be expressed more directly [161], there is no need to do the bootstrap
explicitly.

2.2.3 Penalized criterion
Birgé and Massart suggest to treat the bandwidth selection as a model selection problem in [17,
16]. The statistical tools available in the model selection literature make it possible to develop
a number of bandwidth selection procedures with solid statistical guarantees in non-asymptotic
regime. In general, these approaches consist of minimizing a penalized criterion, with Ln an
empirical risk and pen the penalty function:

Crit(h) = Ln(f̂h) + pen(h) (2.13)
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As an example the Goldenshluger-Lepski method [64] in a pairwise based procedure and
minimize the following criterion:

CritLG(h) = sup
h′

(∫
(f̂h(x)− f̂max(h,h′)(x))2dx− V1(h′)

)
+ V2(h) (2.14)

where V1 and V2 are two penalties developed in [64].

Another example is the Penalized Comparison to Overfitting developed in [97] where the
estimation f̂ is compared to the overfitted estimator f̂hmin

, where hmin is a small bandwidth
and 2

n

∫
Kh(x)Khmin

(x)dx is the penalty term:

CritP CO(h) =
∫

(f̂h(x)− f̂hmin
(x))2dx + 2

n

∫
Kh(x)Khmin

(x)dx (2.15)

2.2.4 Bandwidth selection for MoM-KDE
The Median-of-Mean KDE is less studied than classical KDE so there is less work about band-
width selection. In the article that introduces MoM-KDE [81] the authors use cross-validation
method to select the parameter h.

2.3 Derivation of asymptotic criterion

In this section it is shown that it is not possible to calculate an AMISE criterion, defined in Sec-
tion 2.2.1, for the p-value in the same way as for the density. This means that selection methods
based on this criterion cannot be adapted. Let’s follow the proof of the AMISE derivation of the
density as described in [40] and apply it to the p-value. The MISEp is decomposed in bias and
variance as follows:

MISEp(h) = E

∫ +∞

s

(p̂h(x)− p(x))2dx (2.16)

= E

∫ +∞

s

(ph(x)− p(x))2dx︸ ︷︷ ︸
B(h)

+E

∫ +∞

s

(p̂h(x)− ph(x))2dx︸ ︷︷ ︸
V a(h)

(2.17)

where ph(x) = Ep̂h(x), B(h) is the bias term and V a(h) the variance term. In this section, to
approximate the case of density, it is assumed that the cross term is 0. In the following, the
asymptotic behavior of the bias is derived and it is shown that no asymptotic behavior can be
derived for the variance.

2.3.1 Asymptotic bias
Proposition 2.1 gives the asymptotic behavior of the bias term.

Proposition 2.1 (Asymptotic bias). Let P0 be the reference distribution with f the density
function and let K be a kernel. Let b be the measure of bias associated with p-value estimation
using KDE. Assuming f is C2 and K is symmetric, then the asymptotic behavior of the bias is
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known and can be calculated as follows

B(h) = 0.25h4
(∫ +∞

−∞
y2K(y)dy

)2 ∫ +∞

s

(∫ +∞

x

f ′′(z)dz

)2

dx + o(h4) (2.18)

The formula given in Eq. 2.1 is similar to the bias in the AMISE of density formula given in
Eq. 2.8, where

∫ +∞
−∞ f ′′(z)2dz is replaced by

∫ +∞
s

(∫ +∞
x

f ′′(z)dz
)2

dx. In particular the bias is
also ∼ h4 as for the MISEf . Assuming that the same kind of results could be obtained for the
variance, the different procedures seen in section 2.3 could be adapted for the p value.

The proof is inspired from [40] and delayed to Section 2.10.1.

2.3.2 Issue for the variance

This section shows why it is impossible to obtain asymptotic results for the variance that are
similar to those obtained for the density. In the following, the same calculation steps as in the
density case, described in [40], are reproduced for the case of p-values.

At first, the definition of the variance term is used

V a(h) = E∥p̂h − ph∥2
s

= E

∫ +∞

s

(p̂h(x)− ph(x))2dx

Then, the integration order is changed, assuming Fubini’s theorem:

V a(h) =
∫ +∞

s

E(p̂h(x)− ph(x))2dx (2.19)

=
∫ +∞

s

Var(p̂h(x))2dx (2.20)

After that, the KDE estimator is written as a sum of kernels, before using the independence
property:

V a(h) =
∫ +∞

s

Var
(

1
hn

n∑
i=1

∫ +∞

x

K(z −Xi

h
)dz

)
dx (2.21)

= 1/(h2n)
∫ +∞

s

Var
(∫ +∞

x

K(z −Xi

h
)dz

)
dx (2.22)

The solution suggest by [40] to deal with the variance term is to upper bound it by the second
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moment, as follows:

V a(h) = 1/(h2n)
∫ +∞

s

Var
(∫ +∞

x

K(z −Xi

h
)dz

)
dx

≤ 1/(h2n)
∫ +∞

s

E

(∫ +∞

x

K(z −Xi

h
)dz

)2

dx

By variable substitution, z−Xi

h → y, it gives:

V a(h) ≤ 1/(n)
∫ +∞

s

E

(∫ +∞

x−X
h

K(y)dy

)2

dx

Recalling the notation IK(w) =
∫∞

w
K(y)dy is introduced, it gives:

E(IK(x−X

h
)2) =

∫ +∞

−∞
f(X)IK(x−X

h
)2dX

A variable substitution gives:

E(IK(x−X

h
)2) =

∫ +∞

−∞
f(x− hy)IK(y)2hdy

The series expansion at second order gives:

E(IK(x−X

h
)2) =

∫ +∞

−∞
(f(x)− hyf ′(x) + o(h))IK(y)2hdy

E(IK(x−X

h
)2) = hf(x)

∫ +∞

−∞
IK(y)2dy − h2f ′(x)

∫ +∞

−∞
yIK(y)2dy + o(h2)

But the term
∫ +∞

−∞ yIK(y)2 is infinite since IK(y) converges to 1 as y converges to −∞. The
only way to avoid divergence at −∞ is not to separate f and IK , which makes it impossible to
get an AMISE-type result.

2.3.3 Conclusion
It is not possible to get an exploitable variance expression for the MISEp criterion.
This prevents the use of methods developed for the MISEf criterion using AMISE. For this
reason, the focus is on approaches based on cross-validation in Section 2.4 or penalized criteria 2.5
that do not use AMISE.

2.4 Least squared error cross validation Estimator

This section presents the theoretical derivation of a selection procedure inspired by Section 2.2.2.1.
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2.4.1 Leave-One-Out estimator (LOO)

Let p be the p-value function of the score under P0 and p̂h be the KDE estimation of p. Let
ISEp(h) be the Integrated Squared Error when estimating the p-value using KDE with the
bandwidth h. MISEp(h) = E[ISEp(h)] and ISEp(h) can be decomposed into a quadratic, a
multiplier and a constant term:

ISEp(h) =
∫ +∞

s

(p̂h(x)− p(x))2dx (2.23)

=
∫ +∞

s

p̂h(x)2dx︸ ︷︷ ︸
C(h)

−2
∫ ∞

s

p̂h(x)p(x)dx︸ ︷︷ ︸
D(h)

+cste. (2.24)

The aim is to find the parameter h that minimize the ISE criterion.

ĥISE = arg min
h

ISEp(h) (2.25)

The quadratic term of Eq. 2.24 can be calculated directly since all values are known. However,
the multiplicative term, denoted by D(h), cannot be calculated directly because p is unknown.
Therefore, this term must be estimated. Proposition 2.2 allows to rewrite D(h) in a more
appropriate way to build an estimator.

Proposition 2.2. Let P0 be the reference distribution. Let (Xi)n
i=1 be the calibration set and

p̂h the KDE estimator of the p-value function p. The multiplicative term D(h) introduced in
Eq. 2.24 can be expressed as follows:

D(h) = EX∼P0

[
1[X > s]

∫ X

s

p̂h(x)dx

]

Proof of Proposition 2.2. As introduced in Eq. 2.24

D(h) =
∫ +∞

s

p̂h(x)p(x)dx

By definition of the p-value, p(x) =
∫

x
f(z)dz =

∫
1[z > x]f(z)dz, which gives:

D(h) =
∫ +∞

−∞

∫ +∞

−∞
1[x > s]1[z > x]p̂h(x)f(z)dzdx

At this point, the aim is to change the integration order, to introduce the expression EX∼P0 . To
do this, all integration limits are written as a function of z rather than x. Since x > s and z > x
is equivalent to z > s and z > x > s, this implies that

1[x > s]1[z > x] = 1[z > s]1[z > x > s]
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and then:

D(h) =
∫ +∞

−∞

∫ +∞

−∞
1[z > s]1[z > x > s]p̂h(x)f(z)dzdx

=
∫ +∞

−∞
1[z > s]

(∫ +∞

−∞
1[z > x > s]p̂h(x)dx

)
f(z)dz

The expectation of X ∼ P0 can be recognized.

D(h) = EX∼P0

[
1[X > s]

∫ +∞

−∞
1[X > x > s]p̂h(x)dx

]
= EX∼P0

[
1[X > s]

∫ X

s

p̂h(x)dx

]

The new formulation of the term D(h), introduced by Proposition 2.2, allows to build an
estimator by replacing the expectation by the sample mean.

Definition 2.5 (LOO estimator of D(h)). Let (Xi)n
1 be random variable generated from P̂0. Let

K be a kernel. The LOO estimator of D̂(h) can be written as:

D̂(h) = 1
n

n∑
i=1

1[Xi > s]
∫ Xi

s

p̂h,−i(x)dx (2.26)

D̂(h) = 1
(n− 1)n

n∑
i=1

n∑
j=1;j ̸=i

1[Xi > s]
∫ Xi

s

∫ +∞

x

K(z −Xj

h
)dzdx (2.27)

In the general case, the integrals are approximated by a trapezoidal method. In the following
section, a close form of this estimator is given in the case where the kernel used is the Gaussian
kernel.

2.4.2 Close form for the D term

The following Proposition 2.3 gives a close form for the LOO estimator D̂(h) in the case of
Gaussian kernel. Such close forms are interesting to improve the precision of the approximation
and to reduce the computation time, since no trapezoidal computation is needed.

Proposition 2.3 (Close form of D̂(h), for Gaussian Kernel). Let (Xi)n
1 be the calibration set

generated. And K the Gaussian kernel. The LOO estimator of D̂(h) stated in Definition 2.5 can
be written as:

D̂(h) = 1
h(n− 1)n

n∑
i=1

1[Xi > s]
n∑

j=1,j ̸=i

[
h2 exp

(
− (s−Xj)2

2h2

)
− h2 exp

(
− (Xi −Xj)2

2h2

)
+

+ (Xj − s)
√

π

2 h
√

2[erf(Xi −Xj

h
√

2
)− erf(s−Xj

h
√

2
)]− (Xi − s)h

√
π√
2

(
1− erf

(
Xi −Xj

h
√

2

))]
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The proof is delayed to Section 2.10.2.

2.4.3 Leave-One-Out estimator for MoM-KDE

The presence of the mean in D̂, as stated in Definition 2.5, makes the estimator sensitive to the
presence of anomalies. A way to make the estimator more robust is introduced. To make the
estimation of D(h) more robust, the expectation in Proposition 2.2 is replaced by a Median-of-
Means.

Definition 2.6 (Robust estimator LOO estimator for MoM-KDE). Let (Xi)n
1 be the calibration

set. Let K be a kernel. Let S the number of blocs and B1, . . . ,BS a partition of the calibration
set. The Median-of-Means LOO estimator D̂MoM (h) can be written as:

D̂MoM (h) = Median

 1
|B̃1|

∑
X̃∈B̃1

1[X̃ > s]
∫ X̃

s

∫
x

f̂MoM,h,\X̃(z)dzdx, . . . ,

. . . ,
1
|B̃S |

∑
X̃∈B̃S

1[X̃ > s]
∫ X̃

s

∫
x

f̂MoM,h,\X̃(z)dzdx


The blocks used to calculate D̂MoM may be different from those used to calculate f̂MoM in

Definition 2.2. In particular, if only one block is used for f̂MoM this provides a way to calculate
D̂MoM robustly with classic KDE. As for MoM-KDE, the ideal number of blocks is 2 ∗ n1 + 1,
where n1 is the number of anomalies. Unlike the mean, the median operator is not commutative
with integration, so it is not possible to obtain a close form for this estimator, and each integral
is approximated by the trapezoidal method.

2.4.4 Computation of C(h)
The second term in Eq. 2.24, labeled C(h), does not need to be estimated since all quantities
are known. However, there is no close form for C(h), even if the kernels are Gaussian.

C(h) =
∫ +∞

s

p̂h(x)2dx (2.28)

=
∑
i,j

∫ +∞

s

IKh
(x−Xi)IKh

(x−Xj)dx (2.29)

(2.30)

Thus, the value of the integral is approximated using numerical analysis methods such as the
trapezoidal rule. When approximating the value of the integral on [s, +∞[, two parameters
need to be set: the choice of the upper bound of the integral, noted xmax and the choice of the
integration step, noted δx. This approximation is written as C̃(h, xmax, δx). By reducing the
integration step size, the estimation error is reduced while the computation time is increased. A
procedure is needed to choose the two numerical integration parameters to respect a trade-off
between accuracy and speed. Since C(h) is written as a sum of Gaussians centered on Xi and
with variance h2, it is possible to get an idea of the value of these parameters. First, the tail of
a Gaussian decreases rapidly toward 0. Thus, by setting the upper bound of the integration at
4 or 5 h from the maximum value of Xi, the error committed by integrating on [s, xmax] instead
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of [s, +∞[ is small.
xmax = max

i
Xi + 5h

Moreover, h can be considered as the size of the smallest detail, on the x-axis, in the p̂2
h curve.

By taking a step size of the order of h, the error generated should be small.

δx = h

Figure 2.4a illustrates the idea behind this heuristic. A KDE estimation is shown using 10
randomly generated points and a kernel with bandwidth h = 0.1. The approximations given by
using different sampling steps are shown in different colors. The smaller the sampling step is,
the closer the approximation is to the true value. Furthermore, with a step size of 0.1, equal to
h, the approximation error is already very small. Figure 2.4b shows the same results, but on the
square of the p-value, which is needed in to calculate C(h). The approximation with a step of
0.1, equal to h, gives a very good approximation of the p-value.

(a) Density. (b) Squared p-value.

Figure 2.4: Illustration of the effect of integration step size on the approximation of the density
and of the squared p-value.

To support the validity of the heuristic, the approximation error as a function of the integra-
tion step is studied experimentally. A procedure is defined by repeating for a given bandwidth
h:

1. Generate data from normal distribution, ∀i ∈ J1, nK, Xi ∼ N (0, 1)

2. Compute the C(h) approximation for different values of the integration step δx. Dx is the
set of all values tested as the integration step.

∀δx ∈ Dx, Cδx
= C̃(h, xmax, δx)

3. Calculate the approximation error by assuming that there is no approximation error when
taking the smallest integration step δx,min = min(Dx), Cδx,min

= C(h).

∀δx ∈ Dx, rδx = Cδx − Cδx,min

The results are shown in Figure 2.5. The x-axis represents the size of the integration step in
negative logarithmic scale. The y-axis represents the value of the approximation error. The black
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curves represent the extreme error values obtained during the various tests, for each integration
step tested. The vertical blue line represents the integration step at which, according to the
heuristic, the integration error should be small.

The error decreases as the step size decreases (the value decreases to the right on a negative-
logarithmic scale). The error quickly goes to zero before it reaches the value expected by the
heuristic. The fact that the error is constant and equal to zero over a large range of data validates
the idea of approaching the approximation error with rdeltax = Cδx − Cδx,min = Cδx − C(h).

(a) h = 0.05 (b) h = 0.2

Figure 2.5: Error of approximation of the value of C(h) as a function of the integration step size,
for different bandwidths h.

2.4.5 Implementation

The complexity of the bandwidth selection algorithm, which requires calculating C̃(h) and D̂(h)
for the whole set of h, is high. Indeed, with n the number of points in the calibration set,
nx the number of step by the integration procedure and nh the number of different tested
bandwidth, the complexity is equal to n2 ∗ nx ∗ nh. Given the high cost of loops in Python, it’s
tempting to vectorize operations using the Numpy library. But this leads to too high memory
cost. Furthermore, since the median prevents the order of integration from being swapped, the
computation of D̂MoM has a higher complexity: n2 ∗ n2

x ∗ nh (note the n2
x since there are two

integrations). The implementation used in this chapter is based on the Numba [98] just-in-time
compilation library. This optimizes loop calculation without having to store all intermediate
results in vectors.

2.5 Penalized Comparison to Overfitting estimator
The goal of this section is to summarize the research efforts that have been made on adapting
the PCO [97] procedure described in Section 2.2.3 to the p-value estimation problem. First,
the difficulties encountered are shown when attempting to construct the penalty function by
searching for an upper bound of the ideal penalty, as given in the proof of Theorem 9 of [97].
Another try have been done to define penalty using Akaike’s heuristic, described in [97]. Finally,
since the introduced quantities are neither computed nor upper bounded, they are replaced by
estimators in order to construct a new procedure, described in Definition 2.7, for selecting the
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bandwidth. The last result of the section shows that this procedure is equivalent to the LOO
procedure of the Section 2.4.

2.5.1 Difficulty of extending PCO to the p-value estimation problem
The idea of PCO is to build a penalized criterion based on the comparison between p̂h and the
overfitting regime p̂hmin

, where hmin is the smallest value of the search space. The goal is to
define a criterion on the following form, where pen(h) has to be chosen such that minimizing the
criterion yields a good result with high probability:

Crit(h) = ||p̂h − p̂hmin
||2s + pen(h) (2.31)

Then h can be chosen by minimizing the penalized criterion:

ĥpco = arg min
h

Crit(h)

This implies, by definition:

||p̂ĥ − p̂hmin
||2s + pen(ĥ) ≤ ||p̂h − p̂hmin

||2s + pen(h) (2.32)

Then, some development gives:

||p̂ĥ − p||s ≤ ||p̂ĥ − p||s + (pen(h)− 2⟨p̂h − p, p̂ĥ − p⟩s)− (pen(ĥ)− 2⟨p̂ĥ − p, p̂ĥ − p⟩s)

The term ⟨p̂h − p, p̂ĥ − p⟩s plays the role of the ideal penalty, it needs to be upper bounded to
define the penalty. Expanding on this term, it gives:

⟨p̂h − p, p̂ĥ − p⟩s = ⟨p̂h − ph, p̂hmin − phmin⟩s + ⟨p̂h − ph, phmin − p⟩s
+ ⟨ph − p, p̂hmin − phmin⟩s + ⟨ph − p, p̂hmin − p⟩s

The first term can be further expressed as

⟨p̂h − ph, p̂hmin
− phmin

⟩s =∑
i,j

∫ +∞

s

(
∫ ∞

x

Kh(y −Xi)dy − ph(x))(
∫ ∞

x

Khmin
(z −Xj)dz − phmin

(x))dx

We have not managed to find an interesting expression for this term. The PCO criterion is
studied using an heuristic evaluation.

2.5.2 Heuristic evaluation of the PCO criterion
Inspired from Akaike’s heuristics in [97], given the difficulty of constructing such a penalized
criterion, a heuristic approach is attempted to define the penalized criterion. Assuming that the
average value of the penalized criterion should be equal to the MISE criterion, it gives:

E[Crit(h)] = MISEp(h) (2.33)

The term ||p̂h− p̂hmin
||2s in Eq. 2.31 can be seen as a biased estimator of the bias of the MISE

criterion. Thus, it can be deduced that the ideal penalty must add the variance term as well as
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the correction of the bias in order to reconstruct the total MISE criterion.

Indeed, the MISE criterion can be decomposed into bias and variance terms.

E||p̂h − p||2s = ||ph − p||2s + E||p̂h − ph||2s (2.34)

The bias of the “Comparison to overfitting” term is calculated as follows:

p̂h − p̂hmin
= p̂h − p̂hmin

− ph + phmin
+ ph − phmin

(2.35)
E||p̂h − p̂hmin

||2s = E||p̂h − p̂hmin
− ph + phmin

||2s + E||ph − phmin
||2s (2.36)

(2.37)

Finally the following criterion, inspired by PCO, is an unbiased estimator of MISE.

CritP CO = ||p̂h − p̂hmin ||2s − E||p̂h − p̂hmin − ph + phmin ||2s + E||p̂h − ph||2s (2.38)

The unknown of the problem is therefore the "penalty" term −E||p̂h − p̂hmin
− ph + phmin

||2s +
E||p̂h − ph||2s. All of our attempts to compute the variance and bias correction terms or to place
a tight upper bound on them have been unsuccessful.

Therefore, these quantities are estimated to construct the full MISE estimator.

2.5.3 Estimator of the penalty for PCO criterion

The estimation of the penalty term for the PCO criterion is described in this section.

The variance term, can be written as:

E||p̂h − ph||2s =
∫ +∞

s

E(p̂h(x)− ph(x))2dx (2.39)

=
∫ +∞

s

Var(p̂h(x))dx (2.40)

= 1
n

∫ +∞

s

Var(
∫

x

Kh(x−X))dx (2.41)

(2.42)

Reminding IKh
(x) denotes the Kh kernel integrated from x to +∞. The variance estimator is

computed as:

V̂ a(h) = 1
n

∫ +∞

s

(
1

n− 1

n∑
i=1

(IKh
(x−Xi))2 − 1

n(n− 1)(
n∑

i=1
IKh

(x−Xi))2

)
dx (2.43)

Notice the n− 1 term of the unbiased variance estimator. Similarly the bias correction term ∆b
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can be estimated by:

∆̂b(h) = 1
n

∫ +∞

s

(
1

n− 1

n∑
i=1

(IKh
(x−Xi)− IKhmin

(x−Xi))2 (2.44)

− 1
n(n− 1)(

n∑
i=1
IKh

(x−Xi)− IKhmin
(x−Xi))2

)
dx (2.45)

Definition 2.7 (PCO inspired bandwidth selection). Let p̂ be the p-value estimator based on
KDE. Let V̂ a(h) and ∆̂b(h) be the estimators of the variance and bias correction terms. The
PCO-based MISE estimator Ĉritpco is computed as follows:

Ĉritpco(h) = ||p̂h − p̂hmin ||2s − ∆̂b(h) + V̂ a(h) (2.46)

The PCO-based bandwidth ĥP CO is defined as:

ĥP CO(h) = arg min
h

Ĉritpco(h) (2.47)

The following proposition shows that this procedure is equivalent to the LOO procedure
described in Section 2.4. This means that both procedures always select the same values for the
bandwidth parameter.

Proposition 2.4 (PCO procedure is equivalent as the LOO procedure). Under the assumption
that IKhmin

(x) is equal to the step function 1[x < 0], then the LOO procedure and the PCO
procedures select the same bandwidth:

ĥP CO(h) = ĥLOO(h) (2.48)

The proof is delayed to Section 2.10.3. The assumption IKhmin
(x) ≈ 1[x < 0] is often verified

when hmin is small. Therefore, the PCO procedure is not considered in the empirical experiments
in this chapter to avoid duplicating the results of the LOO procedure.

2.6 Empirical results

In the previous Section 2.4, a new method for selecting the bandwidth h has been developed based
on LOO. In this section, this procedure is compared with existing p-value estimation methods in
terms of their ability to estimate correctly the p-value.

2.6.1 Precision of the p-value estimator

The accuracy of different estimators of the p-value is assessed by measuring the mean integral
squared error MISE = E

∫
s
(p̂(x)−p(x))2dx for different estimators and for different distribution

laws. In particular, different KDE-based estimators are compared by varying procedure for
selecting the bandwidth value h.
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2.6.1.1 Description of the experiment

The following notations are used: P0 is the reference distribution, n is the cardinality of the
calibration set, ĥ is the procedure selection for the bandwidth parameter and p̂ the p-value
estimator. Furthermore, the integration scheme applied to the tail is described by the following
parameters: s the lower limits of the tail, xmax the upper limit of the tail used to approximate the
integration to infinity and δx the step size of the integration approximation. These parameters
are chosen according to the heuristic described in Section 2.4.4. The experiment is described as
follows:

1. Generate the calibration set of cardinality n.

∀i ∈ J1, nK, Xi ∼ P0

2. Select the bandwidth parameter h = ĥ(Xn
1 )

3. Estimate the p-value at the tail of the distribution [s, xmax[, with an integration step equal
to δx:

∀i ∈ J1, (xmax − s)/δxK, p̂i = p̂(s + iδx, Xn
1 , h) (2.49)

4. Compute the squared integrated error, comparing the true p-value p with the estimation
p̂:

ISE =
(xmax−s)/δx∑

i=1
δx(p̂i − p(s + iδx))2 (2.50)

The same experiment is repeated 100 times to get an idea of the data distribution. To
test the agnosticity the bandwidth selection method, several reference laws P0 are considered:
N (0, 1), t(df = 5), Exp(1), and U(0, 1). To evaluate the efficiency of the p-value estimator, the
cardinality of the calibration set varies with values n ∈ {20, 100, 500}. The different smoothing
selection methods are tested: the LOO estimator introduced in Section 2.4 and the classical
LOO estimator of the density error presented in Section 2.2.2.1. To have a better understanding
of the results, an oracle version of each LOO estimator is considered, in which the true value
of the ISE criterion is minimized. To go further in the analysis, other p-value estimators are
also tested: the Gaussian estimator, the empirical estimator and the Peak over the Threshold
(POT)[149] estimator.

2.6.1.2 Results and analysis

The results are shown in Figures 2.6-2.9. In each figure, the integrated p-value estimation error,
ISEp, is plotted from (a) to (c) for different p-value estimators and for different calibration set
cardinalities. The different estimators shown are:

• KDE-p-LOO, the KDE estimator where the bandwidth was chosen by minimizing the LOO
estimator of ISEp,

• KDE-p-O, the KDE estimator where the bandwidth was chosen by minimizing the true
error ISEp,
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• KDE-f-LOO, the KDE estimator where the bandwidth was chosen by minimizing the LOO
estimator of ISEf ,

• KDE-f-O, the KDE estimator where the bandwidth was chosen by minimizing the true
value of ISEf ,

• POT : peak-over the threshold estimator,

• Emp the empirical p-value estimator and

• Gaussian the Gaussian estimator.

To distinguish statistically the performances of the different estimators, Critical Difference (CD)
diagrams [47] are shown from (d) to (f). Each estimator of the p-value is placed on the horizontal
line as a function of the MISEp. Estimators whose MISEp are not significantly different are
connected with horizontal lines. Therefore, paired permutation tests [54] are used to compare
the performance of two estimators. For each pair of estimators, the hypothesis tested is: “The
MISEp is the same using these two p-value estimators”. The Bonferroni correction is applied to
account for the large number of tests performed. The significance level is set to 0.05.

The Gaussian estimator performs well on Gaussian data, as shown in Figure 2.6 and per-
forms poorly on other types of data, as illustrated in Figure 2.8. More surprisingly, the Gaussian
estimator is not the best estimator on Gaussian data, as shown in Figure 2.6b. The POT and
KDE-p-O estimators have a lower p-value estimation error. This is probably due to the fact that
they are more tail-specific estimators. As shown in Figure 2.6c and 2.8c, the POT estimator
obtains the minimum estimation error compared to the other estimators, for Gaussian and expo-
nential data. On the contrary, the error is large for Student of degree 2, as shown in Figure 2.7c.
Note that in extreme value theory, the distribution tails of the Gaussian and exponential dis-
tributions are modeled by Gumbel distributions [130], for which the shape parameter of the
generalized Pareto distribution is zero. On the other hand, the Student distribution is Fréchet
[130], with a positive shape parameter. The POT estimator seems to be advantageous mainly
for Gumbel-type laws. The KDE-p-O estimator performs well on all data types. In particular,
its performance is significantly better compared to KDE-f-O. This shows the theoretical interest
of minimizing ISEp instead of ISEf . However, KDE-p-LOO does not significantly outperform
KDE-f-LOO and KDE-f-O, as shown in Figure 2.8c. The poor performance of the LOO estimator
prevents the gains of the MISEp minimization strategy from being exploited. The empirical
p-value estimator performs as good as kernel estimators (except KDE-f-O) when the cardinality
of the calibration set is equal to 500, as shown in Figure 2.8c. In Figure 2.8b, the kernel methods
outperform Emp when the number of points is smaller.

The results show that the kernel estimators have the best performance for estimating p-values
in the general cases while the bandwidth selection method has a little impact on the performance.
In the case of a Gumbel-type law (light tail), POT estimator improves the performance. In the
situation with a sufficient number of calibration points, the empirical p-value is able to achieve
similar results compared to KDE.

The selection strategy developed in Section 2.4 does not improve the performance of the
p-value estimator because the LOO estimator of the ISE error is not precise enough. Moreover,
as discussed in Section 2.4.5, this estimator has a high computational cost. Thus the strategy
is of no practical interest unless the LOO estimator is replaced by a better one. This analysis
is aligned with the study [166] which concludes that different bandwidth selection methods have
the same performance.
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(a) Boxplots, n = 20 (b) Boxplots, n = 100 (c) Boxplots, n = 500

(d) CD diagram, n = 20 (e) CD diagram, n = 100 (f) CD diagram, n = 500

Figure 2.6: Integrated p-values estimation error according to the p-values estimator for N (0, 1)
data, for different calibration set cardinalities (n).

(a) Boxplots, n = 20 (b) Boxplots, n = 100 (c) Boxplots, n = 500

(d) CD diagram, n = 20 (e) CD diagram, n = 100 (f) CD diagram, n = 500

Figure 2.7: Integrated p-values estimation error according to the p-values estimator for t(2) data,
for different calibration set cardinalities (n).
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(a) Boxplots, n = 20 (b) Boxplots, n = 100 (c) Boxplots, n = 500

(d) CD diagram, n = 20 (e) CD diagram, n = 100 (f) CD diagram, n = 500

Figure 2.8: Integrated p-values estimation error according to the p-values estimator for Exp(1)
data, for different calibration set cardinalities (n).

(a) Boxplots, n = 20 (b) Boxplots, n = 100 (c) Boxplots, n = 500

(d) CD diagram, n = 20 (e) CD diagram, n = 100 (f) CD diagram, n = 500

Figure 2.9: Integrated p-values estimation error according to the p-values estimator for U(0, 5)
data, for different calibration set cardinalities (n).
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2.6.2 Robustness of the estimator
This section evaluates the robustness of the p-value estimators. This is done by observing the
effect on the value of the estimation error ISE by adding anomalies to the calibration set. In
particular, the focus is on the MoM-KDE estimator and the relationship between the number of
blocks and the performance of the estimator.

2.6.2.1 Description of the experiment

The same experimental procedure is used as in Section 2.6.1.1, but anomalies are added to
the calibration set. Calibration set data are generated as follows, by noting n1 the number of
anomalies, let A be the anomaly subset of J1, nK of cardinality n1 obtained by a random draw
without replacement and ∆ the value of abnormal data points. Using a single value for anomalies
makes it possible to control in a deterministic way the level of atypicity of anomalies in a sample
that contains few of them:

∀i ∈ A, Xi = ∆
∀i ∈ J1, nK\A, Xi ∼ P0

The same experiment is repeated 100 times to get an idea of the data distribution. In order
to evaluate the impact of the anomalies on the estimation error of the p-value, n1 takes values
over {0, 5, 15, 25}. The number of blocks tested are {1, 11, 21, 31, 41, 51}. The parameter ∆ is
chosen equal to 4. These numbers are chosen so that at least one of the estimators has more
than twice as many blocks as there are anomalies in the calibration set. The KDE bandwidth is
selected using the LOO estimator introduced in Section 2.4. The bandwidth of MoM-KDE uses
a different LOO estimator, introduced in Definition 2.6, which takes into account the different
blocks. The LOO uses the same blocks as MoM-KDE. To test the agnosticity of the bandwidth
selection method, several reference laws P0 are considered: N (0, 1), t(df = 5). The parameter s
is set to 2.

2.6.2.2 Results and analysis

The results are shown as boxplots in Figure 2.10. The x-axis represents the number of anomalies
in the calibration set. The y-axis represents the integrated error of the p-value and the color
is graduated according to the number of blocks used by MoM-KDE to partition the calibration
set. When the number of blocks is 1, MoM-KDE reverts to the classic KDE. Figure 2.10a shows
the results for Gaussian data. In the case of no anomalies, the estimation error increases with
the number of blocks. However, this degradation is small compared to the one generated by
the presence of anomalies in the classical KDE. The estimation error increases rapidly with the
number of anomalies. For a constant number of anomalies, the estimation error decreases with
the number of blocks. When the number of blocks is more than twice the number of anomalies,
the estimation error of the p-value is close to that obtained without anomalies. For example, in
the presence of 15 anomalies, estimators using 1, 11 or 21 blocks see their performance degraded.
On the other hand, estimators using 31 or 41 blocks are not affected. This is consistent with
the discussion given in Section 2.1 after Definition 2.2. Furthermore, even when the number of
blocks is small and anomalies affect MoM-KDE’s estimation, the impact is much smaller than
on the classic KDE. This is probably due to the fact that the number of anomalies in each block
remains small. For KDE, on the other hand, the single block contains all the anomalies.
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For Student data the anomalies seam to have less impact on the performance of the estimator,
as shown in Figure 2.10b. This could be due to the fact that the performance of the p-value
estimators is worse on Student data than on Gaussian data. Indeed, even in the absence of
anomalies, the error of the KDE is around 0.3, compared to 0.05 in the Gaussian case. At least
15 anomalies must be added to observe the deterioration of the classic KDE. MoM-KDEs are not
affected once the number of blocks reaches 11. Therefore, although MoM-KDE performs worse
than KDE when the number of anomalies is low, it becomes advantageous when the number of
anomalies is higher. The difficulty in practice is that the number of anomalies is unknown.

(a) Gaussian data (b) Student data

Figure 2.10: Integrated p-values estimation error using the KDE p-value estimator as a function
of the number of block (nb_blocks) and the number of anomalies (nb_anoms).

2.7 FDR control using KDE p-value estimator
The approach taken in this chapter has been to minimize the p-value estimation error by optimiz-
ing the kernel bandwidth. To this end, a new selection strategy based on a LOO estimator has
been developed in Section 2.4. It was also with this objective in mind that the different p-value
estimators were compared in Section 2.6.1.1.In the general case, KDE estimates the p-value with
a lower estimation error compared to other competitors that have been tested. Moreover, the use
of the Median-of-Means principle proved their effectiveness in reducing the impact of anomalies
on the p-value estimation error. However, no significant improvement was found in the proposed
bandwidth selection approach compared to more conventional ones.

Nevertheless, estimating the p-value is only one step in anomaly detection. When a data-
driven threshold is used, these p-values are used to select the threshold. The final step is to
compare the p-value to this threshold. It is difficult to establish how an estimation error affects the
threshold and anomaly detection. In particular, it’s not clear what the p-value estimation error
should be to guarantee a given FDR [13] control or FNR level. Also, it is not known if the criterion
studied in this chapter is the best one for this purpose. In this section different bandwidth
selection procedures are experimentally compared in terms of their ability to control the FDR
[13] with a low FNR. The goal is to see if a relationship can be established between bandwidth
selection, FDR control and the various problem parameters: calibration set cardinality n, test set
cardinality m and the desired FDR level α. In this experiment, the aim is to evaluate the ability
of KDE to control the FDR in the simplest case, so no anomalies are added to the calibration
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set and MoM-KDE is not tested.

2.7.1 Experiment description
The following notations are used: P0 is the reference distribution, n is the cardinality of the
calibration set, m is the cardinality of the test set, m1 is the number of anomalies in the test set,
∆ is the shift value of the anomalies, ĥ is the procedure selection for the bandwidth parameter
and α is the desired FDR level. The experiment procedure is described as follows:

1. Generate the calibration set of cardinality n.

∀i ∈ J1, nK, Xi ∼ P0

2. Generate the test set of cardinality m with m1 anomalies.

∀j ∈ J1, m1K, Yj = ∆
∀j ∈ Jm1, mK, Yj ∼ P0

3. Select the bandwidth parameter h = ĥ(Xn
1 )

4. Estimate the p-value in the test set, using the kernel estimator with bandwidth h.

∀j ∈ J1, mK, pj = p̂h(Yj , Xn
1 , h)

5. Apply the Benjamini-Hochberg procedure to select the threshold [13].

ε̂ = ε̂BH(p̂1, . . . , p̂m)

6. Compute the FDP and FNP criteria. Note that anomalies are generated in the first m1
observations.

FDP =
∑m

j=m1
1[p̂j ≤ ε̂]∑m

j=1 1[p̂j ≤ ε̂]

FNP =
∑m1

j=1 1[p̂j > ε̂]
m1

This procedure is repeated 1000 times for each scenario with: n ∈ {50j, j ∈ J1, 20K} and the
following selection procedures:

• “minimise density-error on support”: Select the bandwidth parameter that minimizes the
density estimation error on the entire support. This is the classical LOO criterion.

• “minimise sf-error on tail”: Select the bandwidth parameter that minimizes the p-value
estimation error at the tail of the distribution. This is the LOO criterion introduced in
Section 2.4.

• “minimise density-error on tail”: Select the bandwidth parameter that minimizes the den-
sity estimation error at the tail of the distribution.
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• “minimise sf-error on support”: Select the bandwidth parameter that minimizes the p-value
estimation error on the entire support.

The classical procedure and the one introduced in Section 2.4 differ in two criteria: the error,
which is related to the p-value instead of the density, and the integration support, which is limited
to the tail of the distribution. To understand how each modification affects the performance, two
other procedures are used: “minimise density-error on tail” and “minimise sf-error on support”.

The parameter m takes value in {52, 100}, m1 takes value 2 when m = 52 and 1 when
m = 100, the value of anomalies is ∆ = 4, and α takes values in {0.02, 0.05, 0.1}. The reference
distributions tested are N (0, 1) and t(5).

2.7.2 Results and analysis
The results are shown in Figures 2.11-2.13 as a set of charts with the FDR or FNR in the y-axis
and the cardinality of the calibration set n in the x-axis. The different color lines correspond
to the different bandwidth procedures. The subfigures (a), (c) and (e) present the FDR and
the subfigures (b), (d) and (f) present the FNR. Furthermore, the subfigures (a) and (b) show
the results corresponding to the case where α = 0.02, the subfigures (c) and (d) show the
results corresponding to the case where α = 0.05 and the subfigures (e) and (f) show the results
corresponding to the case where α = 0.1. Finally, the different figures correspond to different
scenarios: Figure 2.11 where the calibration set is m = 52 and the reference distribution is
Gaussian. Figure 2.12 where the calibration set is m = 100. Figure 2.13 where the calibration
set is m = 52 and the reference distribution is Student.

The FDR decreases with the cardinality of the calibration set; if the calibration set contains
enough data points, the FDR converges to the desired FDR. For example, in Figure 2.11a,
starting with n = 800 data points, the FDR is close to the desired FDR α = 0.02. The FNR
appears to decrease as the cardinality of the calibration set increases. However, some unexpected
behavior can be noticed, for example in Figure 14.a. the FNR increases until n = 1200, where it
reaches FNR = 0.04, before dropping abruptly to FNR = 0.

When the desired FDR α is large, the FDR decreases more rapidly to α. For example, in
Figure 2.12c, where α = 0.02, the desired FDR is reached around 1600, while in Figure 2.12e,
where α = 0.1, it is reached at n = 300. More points in the calibration set are needed to control
the FDR at a lower level. A comparison of Figure 2.11 and Figure 2.12 shows the effect of the
test set cardinality on the FDR and FNR.

In Figure 2.11a, where the test set cardinality is equal to 52, n = 800 points in the calibration
set are required to control the FDR. Also, the FNR is 0.03 before n = 1250. After that, the FNR
is 0. In Figure 2.12a, where the test set cardinality is 100, the calibration set needs to contain
1600 points to enable FDR control. Also, the FNR is about 0.1 for all values of n. Thus, FDR
and FNR control becomes more difficult as the test cardinality increases.

The reference distribution generated by the calibration set affects the FDR control. For
example, the FDR control stops at n = 250 in Figure 2.11c, where the reference distribution
is Gaussian, whereas 800 points are needed in Figure 2.13c, where the reference distribution
is Student. Although the KDE estimator is nonparametric, the performance of the p value
estimation or bandwidth depends on the reference distribution. The performance of the various
bandwidth selection procedures is similar and difficult to distinguish from data noise. The
performance of the various bandwidth selection procedures is similar and difficult to distinguish
from the noise in the data. However, it seems that the FDR associated with the "minimise
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sf-error on support" method has a lower FDR than the other methods. As shown for example in
Figure 2.12c, the consequence is that FDR control can be achieved for smaller n values, but at
the same time the FNR is also higher, as shown in Figure 2.12d.

2.7.3 Conclusion of the experiment
Once again, there is little difference in performance between the different bandwidth selection
methods. FDR control requires more calibration points if the test set cardinality m is large or if
the control level α is small. Beyond qualitative judgments, it’s difficult to provide guarantees on
the control that KDE allows over the FDR. For these reasons, besides the high computational
cost of finding the bandwidth, we prefer to use the empirical p-value estimator, which is easier
to study.

2.8 Conclusion
The goal of this chapter was to build a p-value estimator which is robust and efficient. To
achieve these objectives, the idea was to develop a new procedure for selecting the bandwidth
for KDE that minimizes the prediction error of the p-value at the tail of the distribution. For
this purpose, a new leave-one-out estimator was developed. However, empirical studies show
that this new procedure does not lead to an improvement of the p-value estimation in practice
due to the high variance of the estimator. Furthermore, KDE-based p-value estimators do not
provide theoretical guarantees about the anomaly detector measured by FDR and FNR. For
these reasons, the empirical p-value estimator is preferred, even though it is less efficient and
robust, because it is easier to study theoretically. In the next chapter, the control of the FDR
with the empirical p-value is studied.



2.9. Supplement figures for Section 2.7 51

2.9 Supplement figures for Section 2.7

(a) FDR α = 0.02 (b) FNR α = 0.02

(c) FDR α = 0.05 (d) FNR α = 0.05

(e) FDR α = 0.1 (f) FNR α = 0.1

Figure 2.11: FDR and FNR on Gaussian data with m = 52.
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(a) FDR α = 0.02 (b) FNR α = 0.02

(c) FDR α = 0.05 (d) FNR α = 0.05

(e) FDR α = 0.1 (f) FNR α = 0.1

Figure 2.12: FDR and FNR on Gaussian data with m = 100.
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(a) FDR α = 0.02 (b) FNR α = 0.02

(c) FDR α = 0.05 (d) FNR α = 0.05

(e) FDR α = 0.1 (f) FNR α = 0.1

Figure 2.13: FDR and FNR on student data with m = 52.
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2.10 Proofs

2.10.1 Proof of Proposition 2.1

Proof of asymptotic bias in Section 2.1. By definition the bias is equal to:

B(h) = ||ph − p||2s (2.51)

=
∫ +∞

s

(E(p̂h(x)− p(x))2dx (2.52)

Let’s have a look at the asymptotic behavior of the term within the integral, which allows the
final result to be obtained by integration. Let x0 be a real belonging to [s, +∞[, let f be the
density associated with the reference distribution P0.

E(p̂h(x0)− p(x0) =
∫

p̂h(x0)dP(Xn
1 )− p(x0) (2.53)

E(p̂h(x0)− p(x0) =
∫ ∫ +∞

x0

1
hn

n∑
i=1

K

(
z −Xi

h

)
dzdP(Xn

1 )−
∫ +∞

x0

f(z)dz (2.54)

E(p̂h(x0)− p(x0) =
∫ +∞

−∞

∫ +∞

x0

1
h

K

(
z −X

h

)
f(X)dzdX −

∫ +∞

x0

f(z)dz (2.55)

Since
∫ +∞

x0
K
(

z−X
h

)
dz < z and then

∫ +∞
−∞

∫ +∞
x0

K
(

z−X
h

)
f(X)dzdX < 1, the Fubini’s theorem

allows to switch the order of integration:

E(p̂h(x0)− p(x0) =
∫ +∞

x0

1
h

∫ +∞

−∞
K

(
z −X

h

)
f(X)dXdz −

∫ +∞

x0

f(z)dz (2.56)

The following substitution is used: X → z − hy. Then dX → −hdy and:

E(p̂h(x0)− p(x0) =
∫ +∞

x0

(
∫ +∞

−∞
K (y) f(z − hy)dy − f(z))dz (2.57)

The series expansion at second order gives:

E(p̂h(x0)− p(x0) =
∫ +∞

x0

(
∫ +∞

−∞
K(y)(f(z) + hyf ′(z) + 0.5h2y2f ′′(z) + o(h2))dy − f(z))dz

(2.58)

Since
∫

K(y) = 1, the terms f(z) cancel each other and by symmetry of K(y)
∫

K(y)hyf ′(z)dy =
0. Then it gives

E(p̂h(x0)− p(x0) =
∫ +∞

x0

0.5h2f ′′(z)
∫ +∞

−∞
y2K(y) + o(h2)dz (2.59)

= 0.5h2
∫

y2K(y)dy

∫ +∞

x0

f ′′(z)dz + o(h2) (2.60)
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The bias is finally obtained by integrating the square of this value:

B(h) =
∫ +∞

s

(E(p̂h(x)− p(x))2dx (2.61)

=
∫

s

(1/2h2
∫ +∞

−∞
y2K(y)dy

∫ +∞

x

f ′′(z)dz + o(h2))2dx (2.62)

= 0.25h4
(∫ +∞

−∞
y2K(y)dy

)2 ∫ +∞

s

(∫ +∞

x

f ′′(z)dz

)2

dx + o(h4) (2.63)

2.10.2 Proof of Proposition 2.3

Proof of Proposition 2.3. As stated in Definition 2.5, the LOO estimator D̂ is expressed as:

D̂(h) = 1
(n + 1)n

n+1∑
i=1

n+1∑
j=1;j ̸=i

1[Xi > s]
∫ Xi

s

∫ +∞

x

K(z −Xj

h
)dzdx︸ ︷︷ ︸

Di,j(h)

(2.64)

In order to invert the two integrals, the integration limits are replaced by conditions in the
indicator function 1.

Di,j(h) =
∫ +∞

s

∫ +∞

s

1[x ≤ Xi]1[z ≥ x]K(z −Xj

h
)dzdx

After inverting the two integrals, the indicator function can be isolated from the kernel.

Di,j(h) =
∫ +∞

s

K(z −Xj

h
)
(∫ +∞

s

1[x ≤ Xi]1[z ≥ x]dx

)
dz

Using, that x ≤ Xi and x ≤ z implies x ≤ min(Xi, z) it gives:∫ +∞

s

1[x ≤ Xi]1[z ≥ x]dx = max(min(Xi, z)− s, 0)

This result will be injected into the expression of D(h) given by Eq. 2.64, in this expression it is
shown that: min(z − s, Xi − s) ≥ 0 . Then the integral is split in two, first z < Xi then z > Xi.

Di,j(h) =
∫ +∞

s

K(z −Xj

h
)(min(Xi, z)− s)dz (2.65)

=
∫ Xi

s

K(z −Xj

h
)(z − s)dz︸ ︷︷ ︸

I1

+
∫ ∞

Xi

K(z −Xj

h
)(Xi − s)dz︸ ︷︷ ︸

I2

(2.66)

In the following, each integral noted I1 and I2 is calculated in the case of the Gaussian kernel.
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It begins with a substitution: (z −Xi → z)

I1 =
∫ Xi−Xj

s−Xj

1√
2π

exp
(
− z2

2h2

)
(z − s + Xj)dz (2.67)

=
∫ Xi−Xj

s−Xj

1√
2π

exp
(
− z2

2h2

)
zdz + Xj − s√

2π

∫ Xi−Xj

s−Xj

exp
(
− z2

2h2

)
dz (2.68)

The first term of Eq. 2.68, can be integrated by recognize
∫

u′ exp u = exp u, when u =
exp(− z2

2h2 ).

For the second term, with substitution z/
√

2h→ z it gives:

∫ Xi−Xj

s−Xj

exp
(
−z2

2h2

)
dz =

∫ Xi−Xj√
2h

s−Xj√
2h

exp
(
−z2) dz (2.69)

Then using the error function, noted erf and defined as erf(x) = 2√
π

∫ x

0 exp−z2dz, it gives:

∫ Xi−Xj

s−Xj

exp
(
−z2

2h2

)
dz = (Xj − s)

√
π

2 h
√

2[erf(Xi −Xj

h
√

2
)− erf(s−Xj

h
√

2
)] (2.70)

Thus, the integral I1 can be expressed as:

I1 = h2
[
exp(−−t2

2h2 )
]s−Xj

Xi−Xj

− (Xj − s)
√

π

2 h
√

2[erf(Xi −Xj

h
√

2
)− erf(s−Xj

h
√

2
)] (2.71)

The integral I2 is calculated using the same variable substitution ((z −Xi)/(h
√

2)→ z):

I2 = (Xi − s)h
√

2
√

π2
2
√

π

∫ +∞

Xi−Xj

h
√

2

exp (−z2)dz (2.72)

= (Xi − s)h
√

2√
π

(
1− erf

(
Xi −Xj

h
√

2

))
(2.73)

By combining Eq. 2.71 and Eq. 2.73, the value of Di,j(h) is calculated as follows:

Di,j(h) = h2 exp
(
− (s−Xj)2

2h2

)
− h2 exp

(
− (Xi −Xj)2

2h2

)
+ (Xj − s)

√
π

2 h
√

2[erf(Xi −Xj

h
√

2
)− erf(s−Xj

h
√

2
)]− (Xi − s)h

√
π√
2

(
1− erf

(
Xi −Xj

h
√

2

))
Finally, the value of D(h) is obtained by summing all the Di,j

2.10.3 Proof of Proposition 2.4
Proof of Proposition 2.4. First, the PCO criterion is simplified:
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• ||p̂h − p̂hmin ||2s, decomposed as quadratics and multiplicative terms:

||p̂h − p̂hmin
||2s = ||p̂h||2s − 2⟨p̂h, p̂hmin

⟩+ ||p̂hmin
||2s (2.74)

(2.75)

Since the last term is a constant and p̂h(x) = 1
n

∑n
i=1 IKh

(x−X), then:

||p̂h − p̂hmin
||2s = 1

n2

∑
i,j

∫ +∞

s

IKh
(x−Xi)IKh

(x−Xj)dx (2.76)

− 2
n2

∑
i,j

∫ +∞

s

IKh
(x−Xi)IKhmin

(x−Xj)dx + c (2.77)

• −∆̂b(h) + v̂(h): the following notations are introduced:

1. v1(x) = 1
n−1

∑n
i=1(IKh

(x−Xi))2

2. v2(x) = 1
n(n−1) (

∑n
i=1 IKh

(x−Xi))2

3. δ1(x) = 1
n−1

∑n
i=1(IKh

(x−Xi)− IKhmin
(x−Xi))2

4. δ2(x) = 1
n(n−1) (

∑n
i=1 IKh

(x−Xi)− IKhmin
(x−Xi))2

Since V̂ a(h) = 1
n

∫ +∞
s

v1(x)−v2(x)dx and ∆̂b(h) = 1
n

∫ +∞
s

δ1(x)−δ2(x)dx, then −∆̂b(h)+
v̂(h) = − 1

n

∫ +∞
s

δ1(x)− v1(x)− (δ2(x)− v2(x))dx.

Let a be a function that depends on h and b a constant, the following result is always
satisfied:

(a(h)− b)2 − a(h)2 = −2a(h)b + c′ (2.78)

The value of δ1(x)− v1(x) is computed by applying Eq. 2.78 with a(h) = IKh
(t−Xi) and

b = IKhmin
(x−Xi)

δ1(x)− v1(x) = − 2
n− 1

n∑
i=1
IKh

(x−Xi)IKhmin
(x−Xi) (2.79)

Similarly, with a(h) =
∑n

i=1 IKh
(x−Xi) and b = IKhmin

(x−Xi) it gives

δ2(x)− v2(x) = − 2
n(n− 1)

(
n∑

i=1
IKh

(x−Xi)
) n∑

j=1
IKhmin

(x−Xj)

 (2.80)

= − 2
n(n− 1)

∑
i,j

IKh
(x−Xi)IKhmin

(x−Xj) (2.81)
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By combining the results from Eq. 2.79 and Eq. 2.81, it gives

−∆̂b(h) + v̂(h) =
∫ +∞

s

(
2

n(n− 1)

n∑
i=1

IKh
(x−Xi)IKhmin

(x−Xi) (2.82)

− 2
n2(n− 1)

∑
i,j

IKh
(x−Xi)IKhmin

(x−Xj)

 dx (2.83)

• Ĉritpco: as a reminder in Eq. 2.77 the term ||p̂h − p̂hmin
||2 is decomposed into a sum of

a quadratic term 1
n2

∑
i,j

∫ +∞
s
IKh

(x − Xi)IKh
(x − Xj)dt = Q(h) and a multiplicative

term − 2
n2

∑
i,j

∫ +∞
s
IKh

(x − Xi)IKhmin
(x − Xj)dx = M(h, hmin). In M(h, hmin), the

same terms are found as in δ2(x) − v2(x). By adding the multiplicative term to the bias
correction and the variance (−∆̂b(h) + v̂(h)), the result is as follows, after factoring similar
terms:

M(h, hmin)− ∆̂b(h) + v̂(h) =
(
−2
n2 + −2

n2(n− 1)

)∫ +∞

s

∑
i,j

IKh
(x−Xi)IKhmin

(x−Xj)dx

+
(

2
n(n− 1)

)∫ +∞

s

∑
i

IKh
(x−Xi)IKhmin

(x−Xi)dx

Since
(

−2
n2 + −2

n2(n−1)

)
= −2(n−1)−2

n2(n−1) == −2
n(n−1) , then it gives that:

M(h, hmin)− ∆̂b(h) + v̂(h) = −2
n(n− 1)

∫ +∞

s

∑
i,j

IKh
(x−Xi)IKhmin

(x−Xj)dx

−
∫ +∞

s

∑
i

IKh
(x−Xi)IKhmin

(x−Xi)dx

)

M(h, hmin)− ∆̂b(h) + v̂(h) = −2
n(n− 1)

∫ +∞

s

∑
i ̸=j

IKh
(x−Xi)IKhmin

(x−Xj)dx

Finally, Ĉritpco is written as the sum of the quadratic term Q(h) and a multiplicative
termM2(h, hmin), where the multiplicative termM2(h, hmin) being the termM(h, hmin)
without the diagonal (i = j).

Ĉritpco(h) = Q(h) +M2(h, hmin) (2.84)

= 1
n2

∑
i,j

∫
s

IKh
(x−Xi)IKh

(x−Xj)dx (2.85)

+ 2
n(n− 1)

∫
s

∑
i ̸=j

IKh
(x−Xi)IKhmin

(x−Xj)dx (2.86)

In the last part of the proof, it is shown that the LOO criterion, introduced in Definition 2.5,
can be written as Eq. 2.86.



2.10. Proofs 59

As a reminder, the LOO criterion is written as:

ISELOO = 1
n2

∑
i,j

∫
s

IKh
(x−Xi)IKh

(x−Xj)dt︸ ︷︷ ︸
C(h)

(2.87)

+ 1
(n + 1)n

n+1∑
i=1

n+1∑
j=1;j ̸=i

1[Xi > s]
∫ Xi

s

∫ +∞

x

IKh
(z −Xj)dzdx︸ ︷︷ ︸

D̂(h)

(2.88)

Recognizing that C(h) is equal to the quadratic term of Ĉritpco, all what remains to complete
the proof, is to prove the following equality:

1[Xi > s]
∫ Xi

s

IKh
(t−Xj)dt =

∫
s

IKh
(t−Xj)IKhmin

(t−Xi)dt (2.89)

For this purpose, the integration limits [s, Xi] are replaced by an indicator function 1[Xi > t].

1[Xi > s]
∫ Xi

s

IKh
(t−Xj)dt = 1[Xi > s]

∫
s

1[Xi > t]IKh
(t−Xj)dt (2.90)

=
∫

s

1[Xi > t]IKh
(t−Xj)dt (2.91)

This gives the desired result, since by hypothesis, the equality 1[Xi > t] = IKhmin
(t−Xi) is

assumed true.
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Chapter3
FDR Control For Online Anomaly
Detection

In this chapter, the results published in “FDR Control for Online Anomaly Detection”
[95] are presented. A new data-driven threshold procedure ensuring FDR control at
a desired level α is built. Our strategy relies on a local control of the “modified FDR”
(mFDR) on subseries. An important ingredient in this control is the cardinality of
the calibration set used to compute the empirical p-values, which turns out to be an
influential parameter. A new strategy for tuning this parameter is developed that
yields the desired FDR control over the entire time series. The statistical performance
of this strategy is analyzed by theoretical guarantees and its practical behavior is
assessed by simulation experiments, which support our conclusions.

3.1 Introduction

3.1.1 Alarm fatigue

By observing indicators along the time to check the system health, anomaly detection aims at
raising an alarm if abnormal patterns are detected [2, 105]. A motivation for automatic anomaly
detection is to reduce the workload of operations teams by allowing them to prioritize their
efforts where necessary. This is usually made possible by using statistical and machine learning
models [39, 29, 20]. However when badly calibrated an anomaly detector leads to alarm fatigue.
An overwhelming number of alarms desensitizes the people tasked responding to them, leading
to missed or ignored alarms or delayed responses [45, 21]. One of the reasons for alarm fatigue
is the high number of false positives which take time to be managed [153, 103]. The main goal
of the present work is to design a new (theoretically grounded) strategy allowing to control the
number of false positives when performing automatic anomaly detection in sequential context.
Literature is presented first to illustrate the challenges of reducing the number of false positives.
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3.1.2 Related work
As seen in Section 1.3, a high diversity of atypicity score functions can be used to detect different
abnormality patterns [56]. Abnormality scores are often not easily interpretable if the score
distribution is unknown. Therefore, it is impossible to make a judicious choice of the detection
threshold. The Conformal Anomaly Detection was introduced to alleviate this issue.

Conformal Anomaly Detection Conformal Anomaly Detection (CAD) introduced in [100]
is a method derived from Conformal Prediction [5]. The goal of CAD is to give a probabilistic
interpretation of the score using conformal p-values. Inductive Conformal Anomaly Detection
(ICAD) introduced in [100] improves the CAD linear complexity in time and adapts it for Online
Anomaly Detection by introducing the concept of calibration set. CAD can be used with a wide
variety of anomaly score functions. For instance [141] presents an anomaly detector based kernels
combined with CAD. The paper [33] combined distance and density based scoring function with
CAD. CAD gives the opportunity to control the expected number of false positives within a time
period. But its main limitation is that it yields no control over the false alarm rate on the whole
time series that is, the proportion of false positive among all detections. By contrast the present
work aims at having a control over it, more precisely on the False Discovery Rate (FDR).

FDR Control Benjamini-Hochberg (BH) procedure [13, 14] is a multiple testing procedure
that controls the proportions of false positives among rejections that is the False Discovery Rate.
The BH procedure can be improved by estimating the proportion of anomalies in the dataset [37,
70]. Most procedure based on Benjamini-Hochberg assume that the true p-values are known.
When the distribution of the scores under the null hypothesis is unknown it is generally not
possible to ensure the FDR control with BH. For instance the Monte-Carlo Multiple-Testing
has been suggested by [73, 60, 175] to overcome this difficulty. In offline context, FDR can
be controlled using conformal p-values with BH as shown in [11, 171, 111]. Moreover the FDR
control can be achieved simultaneously with upper and lower bound as suggested in [110]. But as
illustrated in Section 3.8.1 the power can be really low with small calibration set. An alternative
method for controlling FDR is based on the so-called “local FDR” [160, 169]. Unfortunately this
approach relies on a Gaussian assumption.

Online FDR Control In online multiple-testing, the decision of new observed value as an
anomaly has to be done instantaneously. If the BH procedure is applied on the current time
series, the time complexity will increase with the length of the time series. To tackle this problem,
recent papers advocate different methods for the online control of the FDR [169, 87, 133, 172].
In [169] the author suggests using the principle of local FDR. At each observation, a decision
is taken depending on the estimation of the local FDR. The [87, 133, 172] introduce a method
based on alpha-investing. The p-value is compared to an adaptive threshold depending on the
previous decisions. But this method is not applicable for conformal p-values because of its low
detection power.

Controlling false positives for online anomaly detection remains a difficult task. In particular
two challenges arise with online anomaly detection:

• The true p-values are unknown and need to be estimated.

• The decisions are made in an online context, whereas most of the multiple testing methods
are done in the offline context.



3.2. Statistical framework 63

The main contributions are to tackle these challenges. More precisely it is established that
it is possible to design online anomaly detectors controlling the FDR of the time series.

• This chapter study the relationship between the FDR and the cardinality of the calibration
set used to estimate p-values. To guarantee FDR control, a calibration set cardinality
tuning method is proposed.

• This chapter describes an online calibration strategy for anomaly detection based on mul-
tiple testing ideas to control the False Discovery Rate (FDR).

– It explains how control of the whole time series FDR can be obtained from control
of a modified version of subseries mFDR. This makes it possible to control the FDR
within an online context.

– A modified version of the Benjamini-Hochberg procedure is suggested to achieve local
control of the modified FDR.

3.1.3 Description of the chapter
First, the problem is explained and important objects are introduced in Section 3.2. Second
Section 3.3 deals with conditions on p-values estimations to ensure local control of FDR is
controlled at a desired level. Third this chapter develops algorithms that allows global control
the FDR time series and studies them in Section 3.4. Finally our solution is evaluated against
one competitor from the literature in Section 3.5.

3.2 Statistical framework

3.2.1 The Anomaly Detector
Let (Ω,F ,P) be a probability space, with Ω the set of all possible outcomes, F a σ-algebra on
Ω and P a probability measure on F . Assume a realization of the random variables (Xt)t≥1,
with Xt taking values in a set X for all t. T ∈ N ∪ {∞} is the length of the time series. Let P0
be a probability distribution, called reference distribution, on the space X . For each instant t,
the observation Xt is called “normal” if Xt ∼ P0. Otherwise, Xt is an “anomaly”. The aim of
an online anomaly detector is to find all anomalies among the new observations along the time
series (Xt)t≥1: for each instant t > 1, a decision is taken about the status of Xt based on past
observations: (Xs)1≤s≤t.

Like many other anomaly detectors, our detector is based on the notions of atypicity score,
p-value, and threshold. The novelty of our approach lies in the use of a data-driven threshold,
which allows to control FDR at a desired α level. This threshold is calculated by applying the
Benjamini-Hochberg procedure to a subseries of length m with a carefully chosen α′ level. At
the same time, the size of the calibration set must be correctly specified. More precisely, the new
anomaly detector described in Algorithm 1 relies on:

1. Atypicity score: A score a : X → R is a function reflecting the atypicity of an observation
Xt. To be more specific, the further PXt

is from P0, the larger a(Xt) is expected to be. It
is often implemented using a non-conformity measure (NCM) [100], which measures how
different a point Xt is from a training set X train, a(Xt) = a(Xt,X train).

2. p-value: It is the probability of observing a(X) higher than a(Xt) if X ∼ P0. It is
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estimated using the empirical p-value, by the following equation:

p̂e(st,Scal
t ) = 1

|Scal
t |

∑
s∈Scal

t

1[st > s] (3.1)

Where Scal
t = {a(Xu1), . . . , a(Xun)} is the calibration set with n data points. The p-value

enables an interpretable criterion measuring how unlikely Xt ∼ P0 is. The empirical p-
value is chosen because it is agnostic to the true and unknown distribution, which is not
the case for the Gaussian p-value estimator. The performance of the BH procedure applied
to empirical p-values depends strongly on the cardinality of the calibration set (|Scal

t | = n).
Section 3.3.2 investigates how to optimally choose this number.

3. Detection threshold: εt ∈ [0, 1], it discriminates observations considered as abnormal
from others. The observations considered as anomalies are Xt whose (estimated) p-value
is smaller than the threshold εt. To control FDR of the entire time series, a data-driven
threshold is computed using the m most recent p-values. This detection threshold is com-
puted using a multiple testing procedure inspired by Benjamini-Hochberg (BH) and de-
scribed in Section 3.4.3. This procedure requires the calculation of an α′ value estimated
from a training set or using heuristics. See Section 3.4.4.1 for more details.

Algorithm 1 FDR Control Online Anomaly Detection
Require: T length of the time series, (Xt)1≤t≤T time series, α desired FDR, m subseries length,

ν integer to tune the calibration set cardinality
Require: Either (Zt) an historical dataset or π the proportion of anomalies

1: if historical dataset then
2: α′ ← arg maxα̃

(
µ̂R∗∗

α̃

µ̂Rα̃
α̃ ≤ α

)
▷ Estimate α′ with training set

3: else
4: α′ ← α

1+ 1−α
mπ

▷ Estimate α′ with heuristics
5: end if
6: n← ν · m

α′ − 1 ▷ Get the calibration set cardinality
7: for t in [1, T ] do
8: st ← a(Xt)
9: p̂t ← p̂e(st,Scal

t ) ▷ Compute empirical p-value
10: ε̂t ← ε̂BHα′ (p̂t−m, . . . , p̂t) ▷ Get the threshold using Benjamini-Hochberg
11: if p̂t < ε̂t then ▷ Retrieve anomalies
12: dt = 1
13: else
14: dt = 0
15: end if
16: end for
17: Output: (dt)T

t=1 boolean list that represent the detected anomalies.

In the next sections, the design choices of Algorithm 1 are specified and justified by a theo-
retical study of the detector. Section 3.3 studies the local control of FDR when BH is applied to
subseries of m empirical p-values. This allows to specify the choice of the calibration set cardi-
nality used in Algorithm 1. Then, in Section 3.4, the FDR control on the complete time series
is obtained from the local control of some modified FDR. This allows to specify the procedure
for selecting α′ in Algorithm 1.
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In classical anomaly detector a constant threshold ε allows to control the “detection fre-
quency”: a smaller threshold will generate fewer detections. This is equivalent to defining anoma-
lies as points above a quantile in the tail of the score distribution. Nevertheless, in practice, the
calibration of the threshold is difficult. Since ε affects directly the number of false detections
(false positives), it is not possible to know in advance the number of false positives due to the
choice of ε.

One of the main contributions of this work consists in developing a data-driven rule allowing
to choose a threshold ε̂t at each time step t. This rule has the advantage of ensuring a global
control of the false discovery rate on the complete set of observations.

3.2.2 Control of false positives and multiple testing
Since the present goal is to use FDR, a natural strategy is to rephrase the online anomaly
detection problem as a multiple testing problem: At each step 1 ≤ t ≤ T , a statistical test is
performed on the hypotheses:

H0t, “Xt is not an anomaly ” against H1t“Xt is an anomaly”.

A natural criterion controlling the proportion of type I errors (False Positives) of the whole time
series is FDR [13]. For a given data-driven threshold ε̂ and a set of estimated p-values p̂ = (p̂t)t≥1,
the FDR criterion of the sequence from 1 to T is given by

FDRT
1 (ε̂, p̂) = E[FDP T

1 (ε̂, p̂)],

with FDP T
1 (ε̂, p̂) =

∑
t∈H0

1[p̂t ≤ ε̂t]∑T
t=1 1[p̂t ≤ ε̂t]

,

with the convention that 0/0 = 0. In the above expression, FDP T
1 denotes the False Discovery

Proportion (FDP) of the time series from 1 to T . Also H0 = {t ∈ N∗|H0t is true} is called the
set of null hypotheses. Let us emphasize that the anomalies (according to Algorithm 1) satisfy
1[p̂t ≤ ε̂t] = 1. The notation FDRT

1 (ε̂, p̂), used in this chapter, highlights the impact of ε̂ and p̂
on the FDR value. The main objective of the present work is to define a data-driven sequence
ε̂ : t 7→ ε̂t such that, for a given control level α ∈ [0, 1], under weak assumptions on the sequence
p̂ : t 7→ p̂t,

FDRT
1 (ε̂, p̂) ≤ α (3.2)

The control is said exact when “≤” is replaced with “=”. Such a control would imply that for
a level α = 0.1, at most 10% of the detected anomalies along the whole time series are false
positives.

The detection power of the anomaly detector is measured by means of the False Negative
Rate defined, for the sequence from 1 to T , by

FNRT
1 (ε̂, p̂) = E[FNP T

1 (ε̂, p̂)], (3.3)

with FNP T
1 (ε̂, p̂) =

∑
t∈H1

1[p̂t ≤ ε̂t]
|H1|

, (3.4)

where FNP T
1 denotes the False Negative Proportion (FNP) of the sequence from 1 to T and

H1 = {t ∈ N∗|H1t is true} is the set of alternative hypotheses.

However a crucial remark at this stage is that controlling FDR on the complete time series
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is a highly challenging task in the present online context for at least two reasons:

• The main existing approaches for controlling FDR are described in an “offline” framework
where the whole series is observed first, and decisions are taken afterwards [13, 110]. This
makes these approaches useless in the present context.

• The already existing approaches designed in the online context [87, 172, 137] are difficult
to parameterize and hard to apply with estimated p-values. Let us emphasize that realistic
scenarios usually exclude the knowledge of the true probability distribution of the test
statistics, leading to approximating or estimating the related p-values in practice. For
example, [135] present results only in Gaussian data. Furthermore, multiple test procedures
are generally not established with anomaly detection in mind, and perform poorly when
the proportion of anomalies is close to 0.

3.2.3 FDR control with Empirical p-value
A classical (offline) strategy for controlling FDR is the so-called Benjamini-Hochberg (BH) multi-
ple testing procedure [13]. Exact control relies on the knowledge of true p-values, which is usually
not realistic. Actually since the true reference distribution is unknown in practical anomaly de-
tection scenarios, there is no true p-values available.

3.2.3.1 Empirical p-value

The atypicity level of an observation is quantified by an atypicity score. The underlying scoring
function assigns each observation with a real value such that the more atypical the observation, the
higher the score value. The interpretation is that the higher the score (value) at an observation,
the more unlikely the corresponding observation has been generated from a reference distribution
implicitly encoded in the scoring function.

Examples (Examples of scoring functions). Let x ∈ X and zℓ
1 = {z1, . . . , zℓ} be a training set

generated from P0.

1. Z-score [178, 32]: Let µ and σ be estimators of mean and standard deviation of zℓ
1,

a(x) = aZ(x, zℓ
1) = |(x− µ̂)/σ̂|

2. kNN score [151, 33]: Let d be a metric on X and k > 0 and kNN(x, zℓ
1) is the set k-th

nearest neighbors of x in zℓ
1.

a(x) = akNN (x; zℓ
1, k) = 1

k

∑
z∈kNN(x,zℓ

1)

d(x, z)

The choice of the abnormality score depends on the structure of the time series and the type
of anomalies one is looking for. Intuitively a desirable scoring function should assign a high
abnormality score to any true anomaly. For example, Z-score is only able to detect anomalies
that are in the tail of the distribution. By contrast it is not effective to detect abnormal point
between two modes of data with a bimodal distribution [178, 32]. kNN score is more suited
for multi-modal data because they raise a high score for points far from the observations of the
training set. The intuition behind such a scoring function is that normal data should have a low
distance from the training set. To the best of our knowledge, there does not exist any scoring
function suitable for detecting all types of anomalies.
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Defining a meaningful threshold from a score is the classical strategy for deciding that an
observation is anomalous or not. This requires to know the true distribution of these scores,
which is not realistic in general. The induced estimation step is usually made by two means.
On the one hand, one can assume a parametric Gaussian distribution for the scores [154, 32,
78]. On the other hand, one can estimate the score distribution by use of sampling techniques
[141, 33]. Since the Gaussian assumption can cause some troubles when it is violated, the present
work rather focuses on the second strategy by considering anomaly detection relying on empirical
p-values. By contrast to the Gaussian assumption, a strong asset of empirical p-value is that
they can be used no matter the true score distribution or the scoring function.

Definition 3.1 (Empirical p-value). Let a be a scoring function. Let {x1, ..., xn} ⊂ X be a set
of data called the calibration set and their value of the atypicity score is noted si = a(xi) . The
empirical p-value is a function defined by

∀s ∈ R, p̂e(s; {s1, . . . , sn}) = 1
n

n∑
i=1

1(si ≥ s). (3.5)

Let us emphasize that Definition 3.1 describes an estimator of the p-value under P0 provided
the calibration set is composed of points generated from the reference distribution P0. However
it is well known that the main difficulty with this p-value estimator is that it is not itself a p-value
[111] since the so-called super-uniformity property is violated. More precisely, super-uniformity
means that, for all u ∈ [0, 1],

PX,X1,...,Xn∼P0(p̂e(X; {X1, . . . , Xn}) ≤ u) ≤ u.

Therefore empirical p-values are usually replaced by an other p-value estimator called the con-
formal p-value[110, 100], given by

p̂c(s; {s1, . . . , sn}) = 1
n + 1

(
1 +

n∑
i=1

1(si ≥ s)
)

. (3.6)

This definition implies the p-value property for all u in [0, 1]. But this estimator is less powerful,
as illustrated by Figure 3.11 in Section 3.8.1 where the FNR resulting from the use of conformal
p-values is always larger than that of empirical p-values.

As a consequence, an important remark is that the present work focuses on empirical p-
values (and not on conformal ones). However another motivation for this choice is provided
in Section 3.3.2.2 where it is proved that the super-uniformity property also holds true with
empirical p-values under some specific conditions that will be detailed later.

3.2.3.2 BH-procedure does not control FDR with empirical p-values

The present section starts by describing the behavior of the BH-procedure as well as establishing
the resulting FDR control. An illustration is provided that the BH-procedure does not control
FDR are the prescribed level when empirical p-values are used. This illustration is then theoret-
ically justified, which shows that straightforwardly using the BH-procedure in our online context
is prohibited.

Definition 3.2 (Benjamini-Hochberg ([13, 171])). Let m be an integer and α ∈ [0, 1]. Let
(pi)1≤i≤m ∈ [0, 1]m be a family of p-values. The Benjamini-Hochberg (BH) procedure, denoted
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by BHα, is given by

• a data-driven threshold:

ε̂BHα
(p1, . . . , pm) = max{αk

m
; p(k) ≤

αk

m
, k ∈ J1, mK},

• a set of rejected hypotheses:

BHα (p1, . . . , pm) = {i; pi ≤ ε̂BHα
, i ∈ J1, mK} .

The intuition behind this procedure consists in drawing the ordered statistics i 7→ p(i) (Fig-
ure 4.15) with p(1) ≤ · · · ≤ p(n) and the straight line i 7→ αi

m . Then the BH-procedure amounts to
rejecting all hypotheses corresponding to p-values smaller than the last crossing point between
the straight line and the ordered p-values curve.

Figure 3.1: Illustration of the Benjamini-Hochberg procedure. p-values are sorted by increasing
order. The threshold is the greatest p-value that is lower than αk/m, when k is the rank of the
p-value.

The striking property of this procedure is to yield the desired control of the FDR at the
prescribed level α as stated by the next result.

Theorem 3.1 (FDR control with BH [13]). Let m be a positive integer and (Xi)m
1 be independent

random variables such that Xi ∼ P0, 1 ≤ i ≤ m0, and Xi ∼ P1, m0 + 1 ≤ i ≤ m. Let us also
define the set of true p-values, for all 1 ≤ i ≤ m by pi = PX∼P0(a(X) ≥ a(Xi)) ∈ [0, 1], and
assume that each pi ∼ U([0, 1]). Then for every α ∈]0, 1], BHα applied to p = (pi)1≤i≤m yields
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the exact FDR control at the prescribed level α that is,

FDRm
1 (ε̂BHα

, p) = m0α

m
.

The proof of the theorem is deferred to Section 3.7.1. In particular, the FDR control results
from the fact that under H0, the true p-values follow a uniform distribution. The equality could
be replaced by an upper bound if the uniform distribution assumption were weakened by the
super-uniform property.

By contrast with the previous framework, when performing anomaly detection, the abnor-
mality score is computed using a scoring function, and the true p-value is given by

pt = PX∼P0 (a(X) ≥ a(Xt)) ,

where the notation clearly emphasizes the dependence with respect to the unknown reference
distribution. This justifies why empirical p-values are now substituted to true ones as earlier
explained (see Eq. 3.5).

A difficulty resulting from using empirical p-values in the BH-procedure is that the FDR
control does no longer hold true as illustrated by Figure 3.2. This figure displays the actual
FDR value (plain blue curve) versus the cardinality of the calibration set used to computed the
empirical p-values (see Definition 3.1) in the specific situation of Gaussian data. Except for
some a few values of the calibration set cardinality, the FDR control is no longer achieved (red
horizontal line). Furthermore the actual FDR value is higher than the desired m0/mα. This
results from the fact that the super uniform property is violated when using empirical p-values
as established by Proposition 3.1 below.

Proposition 3.1 (Distribution of empirical p-value under H0). Let X ∼ P0 where P0 is the prob-
ability distribution under H0, the calibration set cardinality is denoted by n, and {X1, . . . , Xn} ∼
Pn

0 is the calibration set. If one further assumes that there are no ties among a(X1), . . . , a(Xn),
then the empirical p-value at X is denoted by p̂e(a(X); {a(X1), . . . , a(Xn)}) and follows the dis-
crete uniform distribution

U(0,
1
n

,
2
n

, . . . , 1).

Let us mention that under H0 the empirical p-value has a different distribution from that of
the conformal p-value [110] which follows U(1/(n + 1), . . . , 1). The conformal p-value is never
smaller than 1/(n + 1), which raises issues in terms of the detection power with lots of false
negatives (see the right panel of Figure 3.11 and the discussion in Section 3.8.1). With empirical
p-values, it can be easily checked that

P (p̂e(a(X); {a(X1), . . . , a(Xn)}) ≤ 0) = 1
n + 1 > 0,

which violates the super uniformity property. As a consequence, FDR is no longer controlled
by the BH-procedure [14] applied to empirical p-values. Other consequences owing to the use of
empirical p-values violating super uniformity are illustrated in Section 3.3.1.

The assumption of no ties are allowed among the scores a(Xi)s is quite mild and fulfilled most
of the time as supported by Example 3.2.3.1 as long as the reference distribution is continuous
(admits a density).
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Proof of Proposition 3.1. Since X ∼ P0 and X1, . . . , Xn ∼ Pn
0 are independent, the empirical

p-value p̂ is a random variable computed from X and Xn
1 and satisfies for any 0 ≤ ℓ ≤ n that

P(p̂ = ℓ/n)
= P(a(X(ℓ+1)) < a(X) ≤ a(X(ℓ)))
= P({rank of a(X) among {a(X), a(X1), . . . , a(Xn)} is ℓ + 1}),

where a(X(n)) < a(X(n−1)) < · · · < a(X(1)). The conclusion comes from noticing that the
probability distribution of {X, X1, . . . , Xn} is exchangeable, and assumption of no ties in scores
a(Xi)

Let us also notice that Figure 3.2 shows that there exist particular values of the calibration set
cardinality for which FDR is still controlled at the prescribed level. This perspective is further
explored in Section 3.3.2.2, where a new multiple testing procedure yielding the desired FDR
control for the whole time series is devised.

3.3 FDR control with Empirical p-values
The goal here is to describe a strategy achieving the desired FDR control for a time series of
length m when using empirical p-values. A motivating example is first introduced for empha-
sizing the issue in Section 3.3.1. Then a theoretical understanding is provided along Section
3.3.2 which results in a new solution which applies to independent empirical p-values. An ex-
tension is then discussed to the non-independent setup in Section 3.3.3.1. Finally experimental
results are reported in Section 3.3.4 to (empirically) assess the validity of our previous theoretical
conclusions.

3.3.1 Motivating example
The purpose here is to further explore the effect of the calibration set cardinality on the ac-
tual FDR control when using empirical p-values. This gives us more insight on how to find
mathematical solutions.

Let us start by generating observations using two distributions. The reference distribution is
P0 = N (0, 1) and the alternative distribution is P1 = N (4, 10−4). The anomalies are located in
the right tail of the reference distribution. The length m of the signal is m = 100. The number
of observations under P0 is m0 = 99. The experiments have been repeated B = 104 times.

Figure 3.2 displays the actual value of FDR as a function of the cardinality n of the calibration
set {x1, ..., xn} used to compute the empirical p-values (see Definition 3.1). One clearly see that
FDR is not uniformly controlled at level m0/mα. However there exist particular values of n
for which this level of control is nevertheless achieved. As long as n has become large enough
(n ≥ 500), repeated picks can be observed with a decreasing height as n grows.

3.3.2 FDR control: main results for i.i.d. p-values
The present section aims at first explaining the shape of the curve displayed in Figure 3.2. This
will help getting some intuition about how to design an online procedure achieving the desired
FDR control for the full time series.
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Figure 3.2

3.3.2.1 Proof of FDR control by BH revisited

The main focus is first given to independent p-values. In what follows, the classical proof
(Proof 3.7.1) of the FDR control by the BH-procedure is revisited then leading to the next
result. Its main merit is to provide the mathematical expression of the plain blue curve observed
in Figure 3.2.

Theorem 3.2. Let n be the cardinality of the calibration sets and m be that of the set of tested
hypotheses where {X1, . . . , Xm} denotes a set of random variables. Let m0 ≤ m be the cardi-
nality of the random variables from the reference distribution P0. Let the empirical p-value be
denoted, for any i ∈ J1, mK, by p̂i = p̂e(a(Xi), {a(Zi,1), . . . , a(Zi,n)}), where the calibration set
is {Zi,1, . . . , Zi,n} and each Zi,j ∼ P0. Each p-value is calculated using calibration sets that are
independent of each other. Let the random variables R(i) be the number of detections raised by
BHα when replacing Xi with 0, as defined along the proof detailed in Section 3.7.1. Then for
every α ∈]0, 1], the FDR value over the sequence from 1 to m is given by

FDRm
1 (ε̂BHα

, p̂) = m0

m∑
k=1

⌊ αkn
m ⌋+1
n+1
k

P(R(i) = k),

where ε̂BHα
denotes the BHα threshold from Definition 3.2 when the BH-procedure is applied to

the empirical p-values p̂ = (p̂i; 1 ≤ i ≤ m).

In general it is not possible to compute the exact value of the FDR without knowing the
distribution of the random variables R(i). This is in contrast with the case of true p-values where
P(pi ≤ αk

m ) = αk
m , where k are simplified, whereas with empirical p-values P(p̂i ≤ αk

m ) = ⌊ αkn
m ⌋+1
n+1 ,

which prevents from any simplification of the final bound. Nevertheless this value still suggests a
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solution to circumvent this difficulty: requiring conditions on α, m, and n such that ⌊ αkn
m ⌋+1
n+1 =

αk
m , for all k. This is precisely the purpose of next Corollary 3.1.

Proof of Theorem 3.2. When applying Proof 3.7.1, the only modification is that P(p̂i ≤ αk
m ) is

not equal to αk
m since p̂i now follows the discrete uniform distribution

P(p̂i ≤
αk

m
) =

⌊nαk/m⌋∑
ℓ=0

P(np̂i = ℓ) =
⌊αkn

m ⌋+ 1
n + 1 .

Plugging this in the FDR expression, it gives

FDRm
1 (ε̂BHα , p̂) = m0

m∑
k=1

⌊ αkn
m ⌋+1
n+1
k

P(R(i) = k).

Recall that p̂i follows U(0, 1/n, 2/n, . . . , 1) entails that np̂i follows U(0, 1, 2, . . . , n).

3.3.2.2 Tuning of the calibration set cardinality

The previous result is used to suggest a tuning method for the calibration set cardinality in order
to control the FDR.

Corollary 3.1. Under the same notations and assumptions as Theorem 3.2, the next two results
hold true.

1. Assume that there exists an integer 1 ≤ ν such that νm
α is an integer. If the cardinality n

of the calibration set satisfies n = nν − 1 = νm/α− 1, then

FDRm
1 (ε̂BHα

, p̂) = m0α

m
.

2. For every α ∈]0, 1], assume that the cardinality of the calibration set satisfies n = nν − 1 =
⌈νm

α ⌉ − 1, for any integer ν ≥ 1. Then,

n

(n + 1)
m0α

m
≤ FDRm

1 (ε̂BHα
, p̂) ≤ m0α

m
.

The proof is postponed to Section 3.7.2. The first statement in Corollary 3.1 establishes that
recovering the desired control of FDR at the exact prescribed level α is possible on condition
that the calibration set cardinality is large enough and more precisely that n = νm/α− 1. This
(mild) restriction on the values of α reflects that the empirical p-values do not satisfy the super-
uniformity property. By contrast, the second statement yields the desired control at the level
αm0/m by means of lower and upper bounds. In particular, the lower bound tells us that the
FDR value can be not lower than the desired level αm0/m up to a multiplicative factor equal
to 1− 1/n, which goes 1 as n grows. For instance with α = 0.1 and m = 100, nν = 1000 would
yield that FDRm

1 (ε̂BHα , p̂) ·m/(m0α) ∈ [0.999, 1]. This small lack of control is the price to pay
for allowing any value of α ∈]0, 1]. It is also important to recall that in the anomaly detection
field, abnormal events are expected to be rare. As a consequence m0

m is close to 1 and the actual
FDR level is close to the desired α. However in situations where m0/m could depart from 1 too
strongly, then incorporating an estimator of m0/m would be helpful.
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3.3.3 Extension to dependent p-values
In Section 3.3.2, Corollary 3.1 states that FDR is controlled at a prescribed level with empirical
p-values for which the super-uniformity property is not fulfilled. A key ingredient in the proof
was the independence property across empirical p-values. One purpose of the present section is
to extend these results to non-independent p-values. Such an extension is interesting because
in practice not all p-values can be calculated from independent calibration sets. In practice,
BH is applied to families of m p-values, p̂t−m+1, . . . , p̂t, derived from a time series. There are
essentially two ways of estimating these p-values from the (Xt) series. Either a single calibration
set is used to calculate the p-values. ∀i ∈ J1, mK, pt−m+i = p̂e(Xt−m+i, {Xt−m−n, . . . , {Xt−m).
Or (more common in practice), the n preceding points are used as the calibration set. ∀i ∈
J1, mK, pt−m+i = p̂e(Xt−m+i, {Xt−m−n−i, . . . , {Xt−m−i). In this case, there is no single cali-
bration set, but overlapping calibration sets. The control of the FDR is studied in these two
cases

Towards this extension, the concept of positive regression dependency (referred to as PRDS)
[14] turns out to be useful. The PRDS property is a form of positive dependence between p-
values where all pairwise p-value correlations are positive. It results that a small p-value for a
given observation makes other p-values for all considered observations simultaneously small as
well, and vice-versa [11].

3.3.3.1 Theoretical results to dependent p-values

A classical result established in [14] proves that FDR is upper bounded by αm0/m provided the
p-value family satisfies the PRDS and super-uniformity properties. It turns out that this result
can be extended to our estimator with the same choice of calibration set cardinality as the one
discussed in Corollary 3.1. Another important achievement is the fact that FDR can be also
lower bounded in the case where the calibration set is the same for all (empirical) p-values (see
Definition 3.1). This results originally proved by [110] is extended here to empirical p-values
computed with a calibration set cardinality tuned as suggested in Corollary 3.1.

In Section 3.3.2, considering the cardinality of the calibration set is correctly chosen, it has
been proved that the control of the FDR can be achieved with estimated p-values for which
the super-uniformity property is not fulfilled. The results obtained for i.I.d. p-values will be
extended in this section for non i.i.d. p-values.

For this extension, the concept of positive regression dependency on each one from a subset
called PRDS [14] is introduced. The PRDS property is a form of positive dependence of p-values
where all pairwise p-value correlations are positive. Larger scores in the calibration set make the
p-values for all test points simultaneously smaller, and vice-versa [11].

Definition 3.3 (PRDS property). A family of p-values p̂m
1 is PRDS on a set I0 ⊂ {1, . . . , m}

if for any i ∈ I0 and any increasing set A, the probability P[p̂m
1 ∈ A|p̂i = u] is increasing in u.

A classical result in [14] asserts that the FDR is upper bounded by m0
m α in the case where

the p-value family is PRDS and super-uniform. This result can be extended our estimator with
the same choice of calibration set cardinality than in Theorem 3.1.

Corollary 3.2 (Corollary of Theorem 1.2 in [14]). Suppose the family of p-values p̂m
1 is PRDS on

the set H0 of true null hypotheses and suppose that p̂m
1 respects super-uniformity an all thresholds
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that can may resulting from BH

∀k ∈ J1, mK P(p̂i <
αk

m
) ≤ αk

m
,

Then, the FDR is upper-bounded by α

FDR(ε̂BH, p̂) ≤ m0α

m

Unique calibration set More over, in the case where the calibration set is the same for all
p-values, the FDR can also be lower bounded as shown in [110]. This result can be extended to
empirical p-values given in Definition 3.1 with a calibration set cardinality tuned as proposed in
Theorem 3.1.

Corollary 3.3 (Corollary of Theorem 3.4 in [110]). Assuming the following conditions: Let n
be the cardinality of the calibration set, n be the cardinality of the active set and m0 the number
of normal observations. Let P0 be the reference distribution. Let Zi for i in J1, mK independents
random variables, following P0. Let Xi for i in J1, mK be random independents variables and
independents from (Zj). There are exactly m0 random variables following the P0 distribution.
Let a be a scoring function. For all i in J1, mK, let p̂i be the empirical p-values associated with
the random variables Xi and computed as follows, p̂i = p̂e(a(Xi), {a(Z1), ..., a(Zn)}).

If the cardinality of the calibration set is a multiple of n = nν = νm/α − 1, then the FDR
using B̂Hα on (p̂i)1≤i≤m is equal to m0α

m :

FDRm
1 (ε̂BHα , p̂) = m0α

m

The result of this corollary is close to that of Corollary 3.1, but here the p-values are all
calculated from the same calibration set whereas they were calculated on independent calibration
sets.

Overlapping calibration set In the context of online anomaly detection, moving windows
are classically used to capture and process the incoming data. This is why the calibration sets
of the p-value family will partially overlap. To have a perfect control of the FDR, an upper
and lower bounds is needed. For simplicity’s sake, the score function a is not displayed in this
paragraph’s equations.

According Proposition 3.2, p-values with overlapping calibration sets are PRDS.

Proposition 3.2 (PRDS property for overlapping calibration sets). Let Xi for i in J1, mK
be random independents variables. There are exactly m0 random variables following the P0
distribution, with belong to H0. Let Z be the random vector that combine all calibration set, all
elements of Z are generated from P0. The set of n indices defining the elements of calibration
set related to p̂i in Z is noted Di. The calibration set related to X1 is noted ZD1 = (Zi1 , ..., Zin).
For all i in J1, mK: p̂i = p-value(Xi, ZDi).

Under these conditions, the set of p-values is PRDS on H0

The proof of the proposition is in delayed to Section 3.7.3. Since such p-values are are PRDS,
it gives an upper bound control of the FDR using Corollary 3.4.
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Corollary 3.4 (PRDS property for overlapping calibration sets). Under the same conditions as
Proposition 3.2 and the condition on calibration set cardinality satisfy ∃ν ≥ 1, n = ν m

α − 1:

FDR(ε̂BHα , p̂) ≤ m0α

m

Theoretically, the upper control is obtained for overlapping calibration sets. The question of
strict control is then studied experimentally, in the next section.

3.3.3.2 Calibration set and impact of the overlap

In the context of online anomaly detection, moving windows are usually used to capture and
process the incoming observations. In this context, the calibration set coincides with the data
points within this window. Since successive windows are overlapping each other depending on
the size of the shift, the resulting calibration sets used for computing the successive empirical p-
values are also overlapping. To have a perfect control of the FDR, an upper and lower bounds are
needed. Since Section 3.7.3 proves that such p-values are PRDS, it gives an upper bound control
of the FDR. No theoretical results exists to compute the lower bound, indeed the existing proof
in [110] did not extend to overlapping calibration sets. Therefore the next discussion suggests to
establish this lower bound empirically.

The following experiments aims at drawing a comparison between the FDR values in three
scenarios: independent calibration sets, partially overlapping calibration sets with an overlap
size driven by the value of sn (size of the shift), and the same calibration set for all empirical
p-values. To be more specific, the calibration sets (and corresponding empirical p-values) were
generated according to the following scheme. Each calibration set is of cardinality n. When
moving from one calibration set to the next one, the shift size is equal to sn, where s in [0, 1] is
the proportion of independent data between calibration sets, resulting in an overlap of cardinality
(1 − s)n. Therefore an overlap occurs as long as s < 1. All these ways to build the calibration
sets are called “calibration sets strategies”.

1. The independent p-values (iid Cal.) are generated according to

∀i ∈ J1, mK, Zi ∼ Pn
0 , p̂1,i = p̂e(Xi, Zi). (3.7)

2. The p-values with the same calibration set (Same Cal.) are generated by

∀i ∈ J1, mK, Z ∼ Pn
0 , p̂2,i = p̂e(Xi, Z). (3.8)

3. The p-values with overlapping calibration sets (Over. Cal.) are generated given, for 0 <
s < n, by

∀i ∈ J1, mK, Zi = {Z⌊isn⌋+1, . . . , Z⌊isn⌋+n}, p̂3,i = p̂e(Xi, Zi),
and {Zs+1, . . . , Z⌊2sn⌋+1, . . . , Z⌊msn⌋+1, . . . , Z⌊msn⌋+n} ∼ Pms+n

0 . (3.9)

According to these three scenarios, as s increases, the overlap cardinality decreases, which results
in more and more (almost) independent calibration sets. This is illustrated by the empirical
results collected in Table 3.1. For each calibration set strategy, presented in row, and for each
calibration set cardinality in column, the estimated FDR is shown. In this experiment, the
reference distribution P0 is the Gaussian N (0, 1) and the anomalies are equal to ∆ = 4. The
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number of tested p-values, noted m, is equal to 100 and m1, the number of anomalies, is equal
to 1. On each sample, BH-procedure is applied with α = 0.1 and the FDP is computed. Each
FDR is estimated over 103 repetitions.

n 249 250 499 500 749 750 999 1000
Same Cal. 0.164 0.175 0.112 0.183 0.137 0.131 0.097 0.154
Over Cal. (s=0.1%) 0.167 0.174 0.100 0.156 0.138 0.125 0.093 0.140
Over Cal. (s=0.2%) 0.162 0.176 0.095 0.170 0.124 0.127 0.109 0.143
Over Cal. (s=0.5%) 0.163 0.166 0.110 0.170 0.116 0.132 0.111 0.149
Over Cal. (s=1%) 0.151 0.180 0.094 0.177 0.127 0.128 0.099 0.143
Over Cal. (s=2%) 0.164 0.180 0.108 0.179 0.133 0.140 0.097 0.143
Over Cal. (s=5%) 0.168 0.172 0.108 0.169 0.125 0.130 0.096 0.144
Over Cal. (s=10%) 0.165 0.181 0.104 0.185 0.122 0.140 0.105 0.146
Over Cal. (s=20%) 0.173 0.207 0.109 0.171 0.136 0.149 0.101 0.140
Over Cal. (s=50%) 0.180 0.187 0.103 0.183 0.121 0.128 0.094 0.143
iid Cal. 0.171 0.188 0.115 0.174 0.138 0.143 0.104 0.132

Table 3.1: FDR results with overlapping calibration sets

The values of n in the columns of Table 3.1 are chosen such that, for each pair of columns,
the FDR value is smaller for the left column and larger for the right column (see Figure 3.2 for a
visual illustration of this phenomenon). Table 3.1 illustrates that, in the context of the present
numerical experiments, the FDR estimation is not too strongly impacted by the value of s (pro-
portion of the overlap). To assert that the observed differences between FDR estimations in each
column are not significant, permutation tests [53, 128] are performed. Under H0n hypothesis,
the FDR are the same across all calibration set strategies for the calibration set cardinality n.
Under H1n there are at least two calibration strategies leading to different FDR. The FDP
samples that have been used to estimate the FDR are reused. The maximal gap between sample
means is used as statistic. The test is performed using the function “permutation_test” from
the Python library called Scipy. The significance level is fixed at 0.05. Since multiple tests are
performed over the different cardinalities, the threshold for rejecting a hypothesis is 0.00625,
according Bonferroni correction. The results are display in Table 3.2. All tested hypotheses have
a p-values greater than the threshold 0.00625. There are no significant difference in the resulting
FDR between the different proportions of overlapping in calibration sets. This would suggest
that considering overlapping calibration sets should not worsen too much the control of false
positives and negatives.

n 249 250 499 500 749 750 999 1000
p-value of the test 0.300 0.0326 0.572 0.313 0.588 0.435 0.735 0.690

Table 3.2: p-values resulting from permutations test

3.3.4 Empirical Results: Assessing the FDR control
The purpose of the present section is to compute the actual FDR value when empirical p-value
are used instead of true ones. The question raised here is to check whether the FDR of the full
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time series is truly controlled at a prescribed level α. The empirical results must be compared
with the theoretical FDR expression that has been established in Theorem 3.2.

In what follows, Section 3.3.4.1 describes the simulation design that has been considered,
Section 3.3.4.2 details the criteria used for the assessment, and Section 3.3.4.3 discusses the
experimental results.

3.3.4.1 Simulation design

Two scenarios have been considered to explore how much the thickness of the distribution tails
can influence the results.

1. Thin tails:

The reference probability distribution is P0 = N (0, 1) for normal observations and P1 =
δ∆N for anomalies, where ∆N ∈ R is a parameter encoding the strength of the shift. Here
δ∆N denotes the Dirac measure such that δ∆N (z) = 1 if z = ∆N and 0 otherwise. A
Gaussian reference distribution and anomalies generated from a Dirac distribution in the
right tail. ∆N is the size of the abnormal spike in the Gaussian distribution.

2. Thick tails:

P0 = T (5) is a Student probability distribution with 5 degrees of freedom and P1 = δ∆T

denotes the alternative distribution of anomalies, where ∆N ∈ R is a parameter encoding
the strength of the shift.

Regarding the value of the shift strength in Scenarios 1 and 2, two values of ∆N have been
considered 3.5 and 4. The values of ∆T have been chosen such that

PX∼N (0,1)(X > ∆N ) = PX∼T (5)(X > ∆t)

for each choice of ∆N . This avoids any bias in the comparison of the detection power of the
considered strategy depending on the ongoing scenario.

Different cardinalities have been considered for the calibration set following the mathematical
expression

n ∈ {ν · 10, ν ∈ J1, 200K} ∪ {ν′ · 10− 1, ν′ ∈ J1, 200K}.

In particular all integers between 10 and 2 000 are explored with a step size equal to 10 as well as
all integers between 9 and 1 999 with a step size of 10. This choice is justified by the particular
expression of the FDR value provided by Theorem 3.2.

All the n elements of the calibration set are generated from the reference distribution that is,
{Z1, . . . , Zn} ∼ P0. All the m observations corresponding to the tested hypotheses {X1, . . . , Xm}
are generated according to a mixture of m1 = 1 anomalies from P1 and m0 = m −m1 normal
observations from P0. Here m = 100 and m0 = 99.

Each simulation condition has been repeated B = 104 times. For each repetition 1 ≤ b ≤ B,
the observations are indexed by b such that Xb,j ∼ P1 for each j ∈ J1, m1K, and Xb,j ∼ P0 for
j ∈ Jm1 + 1, mK.
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3.3.4.2 Criteria for the performance assessment

In the present scenarios, anomalies are all located in the right tail of the reference probability
distribution. Therefore the empirical p-value are computed according to Definition 3.1 with the
scoring function a(x) = x. For each repetition 1 ≤ b ≤ B,

∀1 ≤ j ≤ m, p̂b,j = p-value(Xb,j , {Zb,1, . . . , Zb,n}).

After computing the empirical p-values, the BHα procedure (see Definition 3.2) is applied in
such a way that, for any 1 ≤ j ≤ m,

db,j = 1BHα(p̂b,1,...,p̂b,m)(j),

where 1I denotes the indicator function of the index set I. The FDP value of the sequence from
1 to m is computed from the knowledge of the true label of the observations as “normal” or
“anomaly”. For each repetition 1 ≤ b ≤ B,

(FDP m
1 )b =

∑m
j=m1+1 db,j∑m

j=1 db,j
.

The results obtained after the B repetitions are averaged within the FDR estimate of the
sequence from 1 to m as

FDRm
1 = 1

B

B∑
b=1

(FDP m
1 )b.

The FNR value of the sequence from 1 to m (Equation 3.2.2) is estimated by

(FNP m
1 )b = 1

m−m0

m∑
j=m0+1

db,j , and FNRm
1 = 1

B

B∑
b=1

(FNP m
1 )b.

3.3.4.3 Results and analysis

Figure 3.3 displays the FDR value (left panel) and the FNR value (right panel) as a function
of the calibration set cardinality for the two scenarios (Gaussian and Student) described in
Section 3.3.4.1. The blue (respectively orange) curve corresponds to the Gaussian (resp. Student)
reference distribution. The horizontal line is the prescribed level α = 0.1 at which FDR should
be controlled with true p-values (Theorem 3.1). Figures 3.3a and 3.3b are obtained with ∆N = 4,
while Figures 3.3c and 3.3d result from ∆N = 3.5.

According to these plots, the behavior of both FDR and FNR does not exhibit any strong
dependence with respect to the reference probability distribution. The results are very close for
both Gaussian and Student distributions.

As illustrated by Figures 3.3a and 3.3c, the FDR control at the prescribed level is achieved for
particular values of the calibration set cardinality. These values coincide with the ones exhibited
by Theorem 3.1, which are multiples of α/m = 103 (up to a downward shift by 1).

A striking remark is that the FNR curve sharply increases from 1 to n = 999. This reflects
that although the FDR value becomes (close to) optimal as n increases from 1 to n = 999,
the proportion of false negatives simultaneously increases leading to a suboptimal statistical
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(a) FDR depending on n with 4 sigmas anoma-
lies

(b) FNR depending on n with 4 sigmas anoma-
lies

(c) FDR depending on n with 3.5 sigmas
anomalies

(d) FNR depending on n with 3.5 sigmas
anomalies

(e) FDR depending on n with 4 sigmas anoma-
lies and m = 150

(f) FNR depending on n with 4 sigmas anoma-
lies and m = 150

Figure 3.3: Effect of calibration set cardinality and abnormality score on the FDR control and
the FNR
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performance (because of too many false negatives). Fortunately a larger cardinality n of the
calibration set, for instance n = 1999, would greatly improve the results at the price of a larger
calibration set, which also increases the computational cost.

Consistently with what is established in Theorem 3.1, the FDR value does not depend on
the strength of the distribution shift ∆ as illustrated by Figures 3.3a and 3.3c. As long as FDR
is concerned (which is an expectation), the shift plays no role. Let us mention that focusing of
the expectation does not say anything about the probability distribution of FDP, which can be
influenced by the shift strength. By contrast, the comparison of Figures 3.3b and 3.3d clearly
shows the impact of the shift strength on the FNR value. As the shift strength becomes lower,
anomalies are more difficult to be detected which inflates the FNR value.

The best cardinality n of the calibration set depends on the number m of tested hypotheses
according to Theorem 3.1. For instance, Figure 3.3a shows the value n = 999 = 100/0.1 − 1
as a good candidate since it achieves the desired FDR control while reducing both the number
of false negatives and the computation cost. By contrast, Figure 3.3e rather exhibits the value
n = 1499 = 150/0.1− 1 as the smallest n allowing a perfect FDR control and a small number of
false negatives.

Figure 3.3a shows other intermediate values calibration set cardinalities yielding the FDR
control. For instance n = 1499 (between n = 999 and n = 1999) is predicted by Theorem 3.1.
However complementary experiments (summarized by Figure 3.12 in Section 3.8.2) illustrate
that these intermediate values of n allowing the FDR control actually depend on the number of
anomalies m1. Their existence can be explained by the distribution of the number of detections.
For example, Figure 3.12d shows a high probability of detecting 3 anomalies. Assuming there
exists k∗ ∈ J1, mK such that P(R(i) = k∗) ≈ 1, Theorem 3.2 justifies that

FDRm
1 (ε̂BHα , p̂) = n

n + 1 · α
m0

m
+ m0

n + 1

m∑
k=1

(1− qn,k)
k

P(R(i) = k)

≈ n

n + 1 · α
m0

m
+ m0

n + 1
(1− qn,k∗)

k∗ .

Then the proof detailed in Section 3.7.2 yields that 1 − qn,k∗ = α
m(n+1) can be reached for all

ν ≥ 1, such that n = ν m
αk∗ − 1. This allows to conclude that FDRm

1 (ε̂BHα , p̂) ≈ m0α
m .

3.3.4.4 How to choose the right cardinality of the calibration set?

Intuitively an optimal choice of the cardinality n of the calibration set should enable the FDR
control while minimizing the number of false negatives and avoiding any excessive computation
time. To achieve this objective, the first part of Corollary 3.1 explains that n must be chosen from
the set N = {νm/α − 1, ν ≥ 1}. Using the simulation scenarios described in Section 3.3.4.1,
the aim is to visualize the relationship between the calibration set cardinality and FNR when
n ∈ N . The results are summarized by Figure 3.4 where the FNR value is displayed versus n.
For all the considered scenarios (Fig. 3.4a, 3.4b, 3.4c, 3.4d), the FNR value converges to the value
reached with true p-values (horizontal dashed line) as n grows. From Figures 3.4a and 3.4b, the
convergence speed depends on the “difficulty” of the problem. Ideally, the the smallest n that
ensure any desired FNR level would be chosen.

In practice, the lack of labeled observations prevents us from computing the actual FNR
value, making the choice of the optimal value of n highly challenging. To tackle this challenge
our suggestion is to choose the largest possible value of n that does not exceed the computation
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(a) ∆ = 4, m1 = 1 (b) ∆ = 3.5, m1 = 1

(c) ∆ = 3, m1 = 1 (d) ∆ = 3, m1 = 5

Figure 3.4: FNR as a function of the calibration set cardinality constrained to belong to N .

time limit. Doing that would output a value of n minimizing the FNR criterion while meeting
the computational constraints. However following this suggestion does not prevent us from
computational drawbacks as illustrated by Figure 3.4a where the FNR optimal value is reached for
n = 3999 while choosing a larger n does not bring any gain (but still increases the computational
costs).

3.4 Global FDR control over the whole time series
While working with streaming time series data, the anomaly detection problem requires to control
the FDR value of the full time series to make sure that the global false alarm rate (FDR) remains
under control at the end of the iterative process. The final criterion that is to be controlled is
then the global FDR criterion given by

FDR∞
1 (ε̂, p̂),

where ε̂ = (ε̂t)t≥1 denotes a sequence of data-driven thresholds, and p̂ stands for a sequence of
empirical p-values (see Section 3.3 for further details). By contrast with this global objective,
anomaly detection nevertheless requires making decision at each time step that is, for each new
observation, without knowing what the next ones look like. This justifies the need for another
(local) criterion that will be used to make a decision at each iteration, leading to the sequence
of data-driven thresholds ε̂ = (ε̂t)t≥1. One additional difficulty results from the connection one
needs to create between this local criterion and the (global) FDR of the full time series.

To this end, Section 3.4.1 starts by showing that controlling the FDR criterion for subseries
of the full time series does not provide the desired global FDR control. Here “global” means “on
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the full time series” by contrast with the local FDR control, corresponding to controlling FDR
for a strict subseries of the full one. Then Section 3.4.2 explores the connection between FDR for
the full time series and the so-called modified-FDR (mFDR) for subseries. In particular, it turns
out that controlling the mFDR value for all subseries of a given length m yields the desired FDR
control for the full time series. Section 3.4.3 then explains how the classical BH-procedure can
be modified to get the mFDR control for subseries of length m, while Section 3.4.5 illustrates
the practical behavior of the considered strategies on simulation experiments.

3.4.1 Local and global FDR controls are not equivalent
Let us consider a time series partitioned into 4 subseries as illustrated in Figure 3.5. The normal
points are displayed in black and the anomalies in white. The surrounded points are those that
have been detected as anomalies by the procedure.

subseries 1 subseries 2 subseries 3 subseries 4

Figure 3.5: Illustration of anomaly detection in subseries.

When computing the number of rejections, false positives and the False positive rate for each
subseries, it comes

• Subseries 1 : 2 rejections, 1 false positive. FDP 4
1 = 0.5

• Subseries 2 : 2 rejections, 0 false positive. FDP 9
5 = 0

• Subseries 3 : 1 rejections, 1 false positive. FDP 14
10 = 1

• Subseries 4 : 1 rejections, 0 false positive. FDP 19
15 = 0

If one assumes that the same probability distribution has generated the observations within each
subseries, the estimated (local) FDR can be defined as average of the successive FDP values
for each subseries that is, FDR4

1 = 0.375. Let us notice that the notation emphasizes that
this FDR value is the average over subseries of respective length m = 4. If one reproduces
the same reasoning for the full time series, it comes: 6 rejections, two false positives, so that
FDP 16

1 = 1/3 = 0.333. This example highlights that the FDP of the full time series is not
equal to that of smaller subseries. This phenomenon gives some intuition on possible reasons
why applying the classical BH-procedure on local windows of length m (subseries) does control
the FDR criterion for the individual subseries, but does not yield the desired global FDR control
for the full time series. This intuition is confirmed by the boxplots of Figure 3.6, where BHα

has been applied on subseries of length m = 100. The left boxplot shows that BHα provides
the desired control at level α = 10% for each individual subseries of length m. However the
right boxplot clearly departs from α, meaning that the actual FDR value for the full times
series of length 1 000 is strongly larger than α (more than 20% on average) leading to more false
positives at the level of the full time series. The boxplots represent the quantile of FDP over 100
repetitions.
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Figure 3.6: Comparison of the calculation of the FDR computed locally on a subseries and the
FDR computed globally on the whole time series with Benjamini-Hochberg procedure applied
on a subseries. This result is obtained by cutting a series of cardinality 1000 into 10 subseries of
cardinality 100. Then the Benjamini-Hochberg procedure is applied on each subseries.

3.4.2 mFDR can help in controlling the FDR of the full time series

3.4.2.1 Mixture model and time series

At Section 3.2.2 anomalies was described using a fix set of true null hypothesis like in classical
multiple testing framework. In order to establish our global control from the local control,
the classical assumption is made that the true labels are derived from a Bernoulli distribution.
The previous model can therefore be considered as a realization of the mixture model. In this
section one assumes that the time series is generated from a mixture process between a reference
distribution P0 and an alternative distribution P1. The anomaly positions are supposed to be
independent and generated by a Bernoulli distribution. This is a common assumption usually in
the literature [80, 155] for simplification purposes.

Definition 3.4 (Time series process with anomalies). Let π ∈ [0, 1] be the anomaly proportion
and P0 and P1 be two probability distributions on the observation domain X . P0 is the reference
distribution and P1 denotes the alternative distribution. The generation process of a time series
containing anomalies (At)t≥0 is given, for every t ≥ 0, by

• At ∼ B(π) (Bernoulli distribution)

• if At = 0, then Xt ∼ P0.

• if At = 1, then Xt ∼ P1.

Moreover given the above scheme, (Xt)t≥0 is a random process with independent and identically
distributed random variables Xt ∼ (1− π)P0 + πP1.

This definition details the way anomalies are generated. In particular it assumes that anoma-
lies are independent from each other. Let us mention that this does not prevent us from observing
a sequence of successive anomalies along the time series. However this scheme substantially dif-
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fers from the case analyzed by [68] where specific patterns with successive anomalies are looked
for.

3.4.2.2 Preliminary discussion: Disjoint and Overlapping subseries

In the context of online anomaly detection, the main focus in what follows is put on two situations
where the data-driven thresholds (ε̂t)t≥0 can be defined from a set of m empirical p-values: (i)
the disjoint case where disjoint subseries of length m are successively considered, and (ii) the
overlapping case where the subseries (of length m) successively considered share m− 1 common
observations at each step. Note that the notion of overlapping sub-series, used in the threshold
calculation, is distinct from that of overlapping calibration sets, used in the calculation of p-
values.

Let us start with a subseries of length m where each observation is summarized by its corre-
sponding empirical p-value, and let us assume that there exists a function fm : [0, 1]m → [0, 1]
that is mapping a set of m empirical p-values onto a real-valued random variable. This random
variable corresponds to the data-driven threshold that is applied to the subseries of length m
to detect potential anomalies. This function fm is called the local threshold function since it
outputs a threshold which applies to a subseries of length m.

Given the above notations, the threshold sequences ε̂d = (ε̂d,t)t and ε̂o = (ε̂o,t)t can be
defined as follows.

• Disjoint subseries: ε̂d : t 7→ ε̂d,t is given by

∀k ≥ 0, ∀t ∈ Jkm + 1, (k + 1)mK, ε̂d,t = fm(p̂km+1, . . . , p̂(k+1)m) (3.10)

• Overlapping subseries: ε̂o : t 7→ ε̂o,t is given by

∀t ≥ m, ε̂o,t = fm(p̂t−m+1, . . . , p̂t). (3.11)

Figure 3.7 illustrates these two situations. In Figure 3.7a, the full time series is split into small
disjoint subseries of length m. fm is applied to each such subseries and the threshold is the same
for all observations within a given subseries. Figure 3.7b displays the situation where overlapping
subseries are successively considered. Because two successive subseries differ from each other
by two observations, the thresholds are different at each time step unlike the disjoint case.
Furthermore the sequences ε̂d and ε̂o do not enjoy the same dependence properties. Figure 3.7a
illustrates that all thresholds ε̂d,(k−1)m+1, . . . , ε̂d,km are computed by applying fm to the same
subseries p̂(k−1)m+1, . . . , p̂km. Therefore only thresholds computed from different subseries are
independent, while all thresholds from the same subseries are equal. In other words, ε̂d,t1 and ε̂d,t2

are independent if and only if t1 and t2 belong to different subseries that is, ⌊t1/m⌋ ≠ ⌊t2/m⌋,
where ⌊·⌋ denotes the integer part. By contrast Figure 3.7b shows that the variables ε̂o,t and
ε̂o,t−1 are dependent because they share m − 1 common observations. But all of them are still
different and, for each t, ε̂o,t is independent from ε̂o,t−m−1. This can be reformulated as ε̂o,t1 ,
ε̂o,t2 are independent if and only if |t1 − t2| > m.

In the present online anomaly detection context, considering the overlapping case sounds
more convenient since the detection threshold can be updated at each time step (as soon as a
new observation has been given), which makes the anomaly detector more versatile. However
for technical reasons, next Theorem 3.3 still focuses disjoint subseries as a means to introduce
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p̂1, . . . , p̂(k−2)m+1, . . . , p̂(k−1)m, p̂(k−1)m+1, . . . , p̂km

fmfm

ε̂d,1, . . . , ε̂d,(k−2)m+1, . . . , ε̂d,(k−1)m, ε̂d,(k−1)m+1, . . . , ε̂d,km

(a) Illustration of disjoint windows.

p̂1, . . . , p̂t−2m, . . . , p̂t−m−1, p̂t−m, p̂t−m+1, . . . , p̂t−1, p̂t

fmfmfm

ε̂o,1, . . . , ε̂o,t−2m, . . . , ε̂o,t−m−1, ε̂o,t−m, ε̂o,t−m+1 . . . , ε̂o,t−1, ε̂o,t

(b) Illustration of Overlapping sliding windows.

Figure 3.7: Comparison of disjoint window and overlapping window for the threshold function.

important notions without introducing too many technicalities, while Theorem 3.4 extends the
previous results to the more realistic case of overlapping subseries.

3.4.2.3 FDR control with disjoint subseries

As illustrated in Section 3.4.1, controlling FDR on each subseries of length m (locally) is not
equivalent to controlling FDR (globally) on the full time series. However in online anomaly
detection, a decision has to be made at each time step regarding the potential anomalous status
of each new observation. (This is a typical instance of a local decision since at step t, the decision
making process ignores what will be observed at the next step.) This requires a criterion to be
controlled locally (on subseries) in such a way that the resulting global FDR value (the one of
the full time series) can be proved to be controlled at the desired level α.

This requirement for a local criterion justifies the introduction of the modified FDR criterion,
denoted by mFDR [172, 57], which is defined as follows.

Definition 3.5 (mFDR). With the previous notations, the mFDR expression of the subseries
from t−m + 1 to t is given by

mFDRt
t−m+1(ε̂, p̂) =

E

[∑
u∈H0,t−m+1≤u≤t 1[p̂u ≤ ε̂u]

]
E

[∑t
u=t−m+1 1[p̂u ≤ ε̂u]

] ,

where ε̂ = (ε̂u)t−m+1≤u≤t denotes a sequence of thresholds, p̂ is a sequence of empirical p-values
evaluated at each observation of the subseries from t−m + 1 to t.

Mathematically the difference between the mFDR and the FDR is that the expectation is
no longer on the ratio but independently on the numerator and the denominator. The main
interest for mFDR is clarified by Theorem 3.3, which establishes its connection to FDR. To be
more specific, the control of the latter at the α level provides a global control of the FDR at the
same level under simple conditions.

Theorem 3.3 (Global FDR control with disjoint subseries). Assume that ε̂d : t 7→ ε̂d,t is given
by ε̂d,t = fm(p̂km+1, . . . , p̂(k+1)m), for any t ∈ Jkm + 1, (k + 1)mK (k ≥ 0) and any integer m ≥ 1
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(see Eq. (3.10)). Let us also assume that the p-value random process p̂ = (p̂t)t≥1 follows the
scheme detailed in Definition 3.4. Then, the global FDR value of the full (infinite) time series is
equal to the local mFDR value of the any subseries of length m from t = km + 1, k ∈ N∗. More
precisely,

FDR∞
1 (ε̂d, p̂) = mFDR

(k+1)m
km+1 (ε̂d, p̂) = mFDR

(k+1)m
km+1 (ε̂d, p̂).

Since the full time series is assumed to be infinite, Theorem 3.3 is an asymptotic result. It
gives rise to a strategy for controlling the (asymptotic) FDR criterion at level α by means of
successive local controls of mFDR on small subseries of length m. According to the asymptotic
nature of Theorem 3.3, there is no particular constraint on the integer m. However when dealing
within time series of a finite length T , the Theorem 3.3 proof suggests that choosing an m “not too
large” would be better since then, k = T/m would take large values making the LLN applicable
(see for instance Eq. (3.12)). Actually in the online anomaly detection context, practitioners only
have a limited freedom regarding the choice of m. Therefore, for a given fixed m, the control of
the FDR value of the full time series given by Theorem 3.3 will be all the more accurate as T will
be large. Fortunately this is not a limitation in the online anomaly detection context. The main
limitation of Theorem 3.3 lies in the use of disjoint subseries, which sounds somewhat restrictive
(at least from a practical perspective). This limitation will be overcome by next Theorem 3.4.

Proof of Theorem 3.3. Let k ≥ 1 denote an integer and T = mk. Then, the FDP definition and
the At variables introduced in Definition 3.4 justify that

FDP T
1 (ε̂d, p̂) = FP T

1 (ε̂d, p̂)
RT

1 (ε̂d, p̂)
=
∑T

t=1 1[p̂t < ε̂d,t](1−At)∑T
t=1 1[p̂t < ε̂d,t]

,

where RT
1 (ε̂d, p̂) and FP T

1 (ε̂d, p̂) respectively denote the number of rejections (resp. false posi-
tives) at the threshold ε̂d for the subseries p̂.

Using the partitioning into k subseries of length m, its first comes that FP T
1 (ε̂d, p̂) =∑k

i=1 FP
(i+1)m
im−1 (ε̂d, p̂). It is also noticeable that the k random variables {FP

(i+1)m
im−1 (ε̂d, p̂)}1≤i≤k

are independent and identically distributed since the thresholds ε̂d,i
remain unchanged within

each subseries, they are identically distributed from one block to another, and the empirical
p-values from different blocks are independent and identically distributed as well. Therefore
the random variables (FP

(i+1)m
im−1 (ε̂d, p̂))1≤i≤k are independent and identically distributed, which

implies (Law of Large Numbers theorem) that, almost surely,

lim
k

1
k

k∑
i=1

FP
(i+1)m
im−1 (ε̂d, p̂) = E[FP m

1 (ε̂d, p̂)], (3.12)

where the expectation is taken over all sources of randomness. (Here it is implicitly assumed
that T can go to +∞.) Repeating the argument forRT

1 (ε̂d, p̂), it also comes that

E[Rm
1 (ε̂d, p̂)] = lim

k

1
k

k∑
i=1

R
(i+1)m
im−1 (ε̂d, p̂), a.s..
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The conclusion then results from noticing that

mFDRm
1 (ε̂d, p̂) = E[FP m

1 (ε̂d, p̂)]
E[Rm

1 (ε̂d, p̂)] = lim
k

∑k
i=1 FP

(i+1)m
im−1 (ε̂d, p̂)∑k

i=1 R
(i+1)m
im−1 (ε̂d, p̂)

= lim
T

FDP T
1 (ε̂d, p̂).

The proof is completed by calculating the expectation on each side of the sign equals.

In fact, this proves stronger than just the control of the FDR∞
1 at the mFDRm

1 level, since
it is shown that it is actually each FDP ∞

1 that is controlled at the mFDRm
1 level. In the rest

of this chapter, only the FDR control will be discussed, as it will be seen that this is what can
be obtained for time series of finite length.

3.4.2.4 FDR control with overlapping windows

Theorem 3.4 is a generalization of Theorem 3.3. Unlike previous Theorem 3.3, following Theo-
rem 3.4 establishes a similar control of the global FDR criterion on the full time series by means
of successive local controls of the mFDR criterion on subseries that are allowed to overlap each
other. This is closer to the practical situation arising in online anomaly detection where one new
observations is collected at each time step, inducing a shift by one of the set of observations for
which a decision has to be made.

Theorem 3.4 (Global FDP control using local threshold). Let p̂ = (p̂t)t≥1 be the p-value ran-
dom process, for a time series that follows the scheme detailed in Definition 3.4. Let P̂ =
(P̂t,k)t≥1,1≤k≤m a process of p-values vectors, such that P̂t,m = p̂t. Assume that ε̂o : t 7→ εo,t is
given by ε̂o,t = fm(P̂t), for any t ≥ 1, with fm : [0, 1]m → [0, 1] permutation invariant. Let us
also assume that there exists n such that |t1 − t2| > n implies that p̂t1 and p̂t2 are independent,
and |t1−t2| > n+m implies that P̂t1 and P̂t2 are independent. For all t, P̂t = (P̂t,1, . . . , P̂t,m) is
exchangeable. Then, the global FDR (and FDP) value of the full (infinite) time series is equal to
the local mFDR value of the any subseries of length m computed at time t ∈ N∗. More specifically

FDP ∞
1 (ε̂o, p̂) = FDR∞

1 (ε̂o, p̂) = mFDRt
t−m+1(ε̂o, P̂t) = mFDRm

1 (ε̂o, P̂m)

Theorem 3.4 gives a similar result to the one of Theorem 3.3 but in a more realistic framework
corresponding to the real time anomaly detection context. In particular the main improvement
lies in that a threshold can be recomputed at each time step from a (shifted) subseries of length
m. An important consequence is that the desired control for the FDR of the full (infinite) time
series at level α can be achieved provided one can control the successive mFDR of all (shifted)
subseries of length m at level α. This point is not obvious at all and constitutes the main concern
of Section 3.4.3 where a new multiple testing procedure is designed to yield the desired control of
the mFDR criterion. The main limitation of Theorem 3.4 is the requirement that fm has to be
permutation invariant. Let us emphasize that this property holds true with the BH-procedure
for instance.

This general result encapsulates several cases of threshold computation, including:

• Threshold computed on disjoint subseries as Eq. 3.10 with iid p-values:

Suppose the a sequence of p-values (p̂t)t≥1, which is computed from iid calibration set
p̂t = p̂e(Xt, {, Z1,t, . . . , Zn,t) and that the thresholds are computed from disjoint p-values



88 CHAPTER 3. FDR Control For Online Anomaly Detection

sets:

∀k ≥ 0, ∀t ∈ Jkm + 1, (k + 1)mK, P̂t = (p̂km+1, . . . , p̂(k+1)m) (3.13)

• Threshold computed on Overlapping subseries as Eq.3.11 with p-values computed using
single calibration set at each t: Suppose that are each t the m p-values are computed using
the same calibration set:

∀t ≥ m, ∀i ∈ J1, mK p̂t−i+1,t = p̂e(Xt−i+1, {Xt−n−m, . . . , Xt−m}) (3.14)

Then using p̂t = p̂t,t and

∀t ≥ m, P̂t = (p̂t−m+1,t, . . . , p̂t,t). (3.15)

• Threshold computed on Overlapping subseries as Eq.3.11 with p-values computed using
overlapping calibration sets: Suppose that are each t the p-value is computed using the n
previous calibration set:

∀t ≥ n, p̂t = p̂e(Xt, {Xt−n−1, . . . , Xt−1}) (3.16)

And the threshold is computed using the m last p-values

∀t ≥ m, P̂t = (p̂t−m+1, . . . , p̂t). (3.17)

Let us also mention that the empirical p-values for instance computed as p̂t = p̂e(Xt, {Xt−n, . . . , Xt−1})
actually satisfy the requirements of Theorem 3.4 regarding the independence and the stationarity.

Proof of Theorem 3.4. Let us start with the FDP expression for a time series of length T .

FDP T
t=1 =

∑T
t=1 1[p̂t < ε̂o,t](1−At)∑T

t=1 1[p̂t < ε̂o,t]

=
1
T

∑T
t=1 1[p̂t < fm(P̂t)](1−At)
1
T

∑T
t=1 1[p̂t < fm(P̂t)]

,

The decision process (1[p̂t < ε̂o,t])t and the false positives process (1[p̂t < ε̂o,t]At)t are not
independent, therefore it is not possible to use the Law of Large Numbers directly. The alternative
strategy consists first in splitting the numerator and denominator into several disjoint subseries
corresponding to independent and identically distributed processes. Then partitioning the times
series of length T = T ′(n + m) into T ′ subseries, each of length n + m, it results that

1
T

T∑
t=1

1[p̂t < fm(P̂t)](1−At)

= 1
n + m

n+m∑
k=1

 1
T ′

T ′−1∑
t=0

1[p̂t(n+m)+k < fm(P̂t(n+m)+k)](1−At(n+m)+k)

 . (3.18)

Interestingly for each k from 1 to m + n, the summands within the brackets do all belong to
different subseries, which makes the sum over t a sum of independent and identically distributed
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random variables.

It results that, for each 1 ≤ k ≤ n + m, the average within the brackets is converging to its
expectation by the LLN theorem.

Since the limit of a (finite) sum is equal to the sum of the limits, the average in Eq. (3.18) is
converging and

lim
T →∞

1
T

T∑
t=1

1[p̂t < fm(P̂t)](1−At) =
m∑

k=1
E

[
1[p̂k < fm(P̂k)](1−Ak)

]
a.s. (3.19)

= mE

[
1[p̂m < fm(P̂m)](1−Am)

]
a.s.. (3.20)

Furthermore,

FP m
1 (ε̂o, P̂m) =

m∑
k=1

1[P̂m,k < fm(P̂m)](1−Ak)

Using the exchangeability of P̂m and the permutation invariance of fm is comes:

EFP m
1 (ε̂o, P̂1) = m× E[1[P̂m,m < fm(P̂m)](1−Am)]

Finally with P̂m,m = p̂m and Eq. 3.20 it gives:

lim
T →∞

1
T

T∑
t=1

1[p̂t < fm(P̂m)](1−At) = EFP m
1 (ε̂o, P̂m)

Then after applying the same reasoning on the denominator, it gives:

FDP ∞
1 (ε̂o, p̂) = EFP m

1 (ε̂o, P̂m)
ERm

1 (ε̂o, P̂m)

3.4.3 Modified BH-procedure and mFDR control
As shown in Section 3.4.2, controlling the FDR value of the full time series is possible. The
strategy then consists in first controlling the mFDR criterion of all successive subseries of length
m along the full time series at level α. The main challenge addressed in the present section is to
design a new multiple testing procedure that controls the local mFDR criterion at a prescribed
level α.

In Section 3.4.3.1, it is proved that applying the classical BH-procedure on a time series of
length m does not yield the control of mFDR at level α. However the proof of this result gives
rise to a strategy for modifying the classical BH-procedure (Section 3.4.4.3) in a such a way that
applying the so-called modified BH-procedure provides the desired mFDR control at level α,
under some conditions.



90 CHAPTER 3. FDR Control For Online Anomaly Detection

3.4.3.1 mFDR control with the BH-procedure

Next Proposition 3.3 establishes the actual mFDR level achieved by the BH-procedure.

Proposition 3.3. Let (Xi)m
1 satisfy the requirements detailed by Definition 3.4, with an abnor-

mality proportion π. m0 is the random variable representing the number of data points generated
by P0. Let p = (p1, . . . , pm) be the associated p-values. Let α belong to [0, 1]. Suppose there are
integers ν and n such that n = ν m

α −1. Let Rm
α,1 be the random variable representing the number

of rejections when BHα is applied to p. Suppose one of the following three statements is true:

1. (p1, . . . , pm) are true p-values that is, for any 1 ≤ i ≤ m, pi = PX∼P0(a(X) ≥ a(Xi)).

2. (p1, . . . , pm) are empirical p-values with independent calibration sets of cardinality n, pi =
p̂e(a(Xi), {a(Zi,1), . . . , a(Zi,n)). With Zi,j are iid random variables generated by P0.

In these two cases, let choose i in H0, the sequence (p′
j)1≤j≤m is defined by p′

i = 0 and
p′

j = pj. Let R∗,m
α,1 define the number of rejections when applying BHα on p′

3. (p1, . . . , pm) are empirical p-values with a unique calibration set of cardinality n, pi =
p̂e(a(Xi), {a(Z1), . . . , a(Zn)). With Zj are iid random variables generated by P0.

Let choose i in H0, the sequence (p′
j)1≤j≤m is defined by p′

i = 0 and p′
j = pj − 1

n1[pj < pi].
Let R∗,m

α,1 define the number of rejections when applying BHα on p′.

Then, applying BHα to the p-values (pi)1≤i≤m leads to

mFDRm
1 (p) = α

E

[
|H0|

m R∗,m
1,α

]
ERm

1,α

≤ α
ER∗,m

1,α

ERm
1,α

,

Furthermore, if E[R∗,m
α,1 |m0] is decreasing:

mFDRm
1 (p) ≤ α(1− π)

ER∗,m
1,α

ERm
1,α

,

The proof is moved to Section 3.7.4. If the ratio ER∗,m
1,α /ERm

1,α were known, it could be
possible to control of the mFDR criterion at level α by simply applying the BH-procedure with
a preliminary level α′ = m

m0

ER∗
α

ERα
α. Unfortunately at this stage, this ratio is not known and

the latter strategy cannot be straightforwardly applied. Deriving such a modified BH-procedure
is the purpose of the next sections. Let us also recall that in the anomaly detection context,
m0 is unknown but expected to be close to m since only a few anomalies are usually expected.
Therefore the main challenge remains to compute ER∗,m

1,α /ERm
1,α.

3.4.4 Evaluating the ratio of rejection numbers
3.4.4.1 Using heuristic arguments

The Section 3.4.3.1 raises the importance of the ratio ER∗,m
1,α /ERm

1,α of rejection numbers. The
present section aims at deriving a numeric approximation to this ratio. In a first step, a first
result details the value of the denominator. In a second step, an approximation to the numerator
is derived based on a heuristic argument and also empirically justified on simulation experiments.

When mFDR is assumed to equal α, the expected number of rejections can be made explicit.



3.4. Global FDR control over the whole time series 91

Proposition 3.4. With the previous notation, let (X1, . . . , Xm) be given by Definition 3.4,
where π denotes the unknown proportion of anomalies, and assume that mFDRm

1 = α and
FNRm

1 = β ∈ [0, 1]. Then

E[Rm
1,α] = mπ(1− β)

1− α
. (3.21)

The proof is postponed to Section 3.7.5. For instance, Eq. (3.21) establishes that the expected
number of rejection output by BHα increases with π, the unknown proportion of anomalies along
the signal. This makes sens since the more anomalies, the more expected rejections. The expected
number of rejection is also increasing with α: the larger α, the less restrictive the threshold, and
the more rejections should be made. However the number of rejection decreases with the FNR
value β. As β increases, the proportion of false negatives grows meaning that fewer alarms are
raised, which results in a smaller number of rejections.

In what follows, the assumption is made that anomalies are easy to detect, meaning that the
FNRm

1 value β is negligible compared to 1. In this context, Proposition 3.4 would yield that

E[Rm
1,α] ≈ mπ

1− α
. (Power)

An another assumption is also made about the relationship between E[Rm
1,α] and E[R∗,m

1,α ]. This
assumption is based on a heuristic argument supported by the results of numerical experiments
as reported in Table 3.3. In what follows, it is assumed that

E[R∗,m
1,α ] = E[Rm

1,α] + 1. (Heuristic)

No mathematical proof of this statement is given in the present paper. However, Table 3.3 dis-
plays numerical values which empirically support this approximation, whereas further analyzing
the connection between these quantities should be necessary.

BHα 0.05 0.1 0.2
E[Rm

1,α] 2.14 2.32 2.78
E[Rm

1,α(i)] 3.18 3.44 3.99

Table 3.3: Numerical evaluations for different values of α (103 repetitions)

Let us emphasize that Table 3.3 has been obtained with Gaussian data (generated similarly
to those detailed in Section 3.3.4). For all the three considered values of α, one observes that
E[R∗] remains close to (but also slightly larger than) E[R] + 1.

These two assumptions give rise to a strategy for computing the ratio E[R∗]
E[R] . So all ingredient

to build a procedure that control mFDR are given.
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E[R∗]
E[R] = 1 + 1− α

mπ
(3.22)

α′ = α

(
1 + 1− α

mπ

)−1
(3.23)

(3.24)

The value α′ can be used with the mBH procedure. Under (Heuristic) and (Power), according
to Corollary 3.5, mBH allows global control of FDR at the level α.

3.4.4.2 Estimation on a training set

The true proportion of anomalies is usually not known, and estimating the proportion of anoma-
lies is error-prone. Assumptions are also difficult to ensure. The number of detections is known
by the user. To estimate E[Rα̃], the procedure BHα̃ is applied to each of the subseries of length
m from the training set. The average number of detections is computed and noted as µ̂Rα̃

.
However, it is not possible to compute R∗

α̃′ , the number of detections after one p-value associated
with normal data is set to 0 since the true labels are unknown. But since the proportion of true
anomalies π is close to 0, E[R∗

α̃′ ] can be approximate by E[R∗∗
α̃′ ], the number of detections after

one p-values (possible abnormal) is set to 0. Then, to estimate E[R∗∗
α̃′ ], the procedure BHα̃ is

applied again to the same subseries but after a randomly chosen p-value is replaced by 0. Here
again, the average number of detections is computed and noted µ̂R∗∗

α̃
. By varying α̃ it is possible

to estimate:

α′ = arg max
α̃

{
µ̂R∗∗

α̃

µ̂Rα̃

α̃ ≤ α

}
(3.25)

This estimator of α′ can be used for the modified BH procedure. According to Corollary 3.5, the
global control of FDR is ensured by ε̂BHα′ when the size of the training set goes to infinity.

3.4.4.3 Modified BH

From previous Sections 3.4.3.1 and 3.4.4.1, it is now possible to suggest and analyze the new
modified BH-procedure (mBH in the sequel).

Definition 3.6 (Modified BH-procedure (mBH)). Let m be an integer and α ∈ [0, 1]. Let
us introduce the level α′ = α′(α) an estimate of arg maxα̃

{
E[R∗,m

1,α̃ ]
E[Rm

1,α̃] α̃ ≤ α
}

, which can be given
by some procedure. Then the modified BH-procedure, denoted by mBHα, is given for all true
p-values (p1, . . . , pm) ∈ [0, 1]m by,

mBHα(p1, . . . , pm) = BHα′(p1, . . . , pm).

The related mBHα threshold at level α is defined as

εmBHα = εBHα′ ,

when computed with true p-values, and ε̂mBHα
= ε̂BHα′ when used with empirical p-values.

The above definition defines the mBHα in terms of the BH-procedure by simply changing
the level of control α′. This new level value depends on the unknown proposition π of anomalies.
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Since in realistic anomaly detection scenarios observations are not labeled, [159] provides guide-
lines on how π could be estimated. Combining the results of Theorem 3.4 and Proposition 3.3,
the procedure mBH allows to get the control of FDR of the complete series at the desired level
α. This property is described in Corollary 3.5.

Corollary 3.5 (Control of FDR using mBH). Under the same notations and assumptions as
Theorem 3.4. Let m and n be two integers. Suppose one of the following statements if true:

1. For all t p-values of P̂t are true p-values.

2. For all t p-values of P̂t are are empirical p-values with independent calibration sets of
cardinality n.

Let i be a true null hypothesis in P̂t, the sequence P̂
′
t is defined by P̂

′
t,i = 0 and P̂

′
t,j = P̂t,j

for j ̸= i. Let R∗,m
α,1 be the number of rejections when applying BHα to P̂

′
t.

3. For all t, p-values of P̂t are are empirical p-values with a unique calibration set of cardinality
n.

Let i be a true null hypothesis in P̂t, the sequence P̂
′
t is defined by P̂

′
t,i = 0 and P̂

′
t,j =

P̂t,j − 1
n1[P̂t,j < P̂t,i] for j ̸= i. Let R∗,m

α,1 be the number of rejections when applying BHα

to P̂
′
t.

Suppose there are ν and α′ such that:

ER∗,m
1,α′

ERm
1,α′

α′ = α

Then, FDR of the entire time series can be controlled at level α by using ε̂BHα′ ,t = fm(P̂t)

FDR∞
1 (ε̂BHα′ , p̂) ≤ (1− π)α (3.26)

The proof is moved to Section 3.7.6. Corollary 3.5 describes the properties that the sequence
of p-values p̂ and the sequence of vector p-values P̂ should satisfy in order to get the control
on FDR. Theorem 3.5 gives practical ways to compute p̂ and P̂ that satisfy these requirements.
It gives the ingredient to build an anomaly detector controlling FDR at a desired level α. Our
Algorithm 1 implements this result.

Theorem 3.5 (Global FDR control using mBHα). Let (Xt) be a mixture process introduced in
Definition 3.4. Let α ∈ [0, 1] be the desired FDR level for the full time series. Let m and n be
integers.

If one of the three statements is true:

1. ∀t, p̂t = 1− PX∼P0(a(X) > a(Xt))

2. ∀t, p̂t = p̂e(a(Xt), {a(Zt,1), . . . , a(Zt,n)}) with Zt,i ∼ P0

In this two cases, let P̂t = (p̂t−m+1, . . . , p̂t). Let choose i in H0∩Jt−m+1, tK, the sequence
P̂

′
t is defined by P̂

′
t,i = 0 and P̂

′
t,j = P̂t,j for j ̸= i. Let R∗,m

α,1 be the number of rejections
when applying BHα to P̂

′
t.
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3. ∀k ∈ J1, mK, (P̂t)t,k = p̂e(a(Xt−m+k),Scal), with the calibration set

Scal = {(1−At−n+1−m)a(Xt−n+1−m) + At−n+1−ma(Zt,1), . . . ,

(1−At−m)a(Xt−m) + At−ma(Zt,n)}

with Zt,i ∼ P0 and p̂t = P̂t,m.

Let choose i in H0 ∩ Jt − m + 1, tK, the sequence P̂
′
t is defined by P̂

′
t,i = 0 and P̂

′
t,j =

P̂t,j − 1
n1[P̂t,j < P̂t,i] for j ̸= i. Let R∗,m

α,1 define the number of rejections when applying
BHα to P̂

′
t.

Suppose there are α′ and ν such that:

ER∗,m
1,α′

ERm
1,α′

α′ ≤ α and n = νm/α′ − 1.

Then, with ε̂BHα′ ,t = ε̂BHα′ (P̂)t:

FDR∞
1 (ε̂BHα′ , p̂) ≤ (1− π)α.

The main merit of Theorem 3.5 is to establish the actual level of control for the global
FDR of the full time series depending on the type of empirical p-value used in the anomaly
detection process. The last type of empirical p-values is (almost) the one used in practice in the
present work. More specifically, Section 3.5.2.3 describes empirical p-values based on a “Sliding
Calibration Set”.

Proof of Theorem 3.5. The Corollary 3.5 gives the two properties that the p-values families has
to verify to control FDR of the time series:

• The P̂t are identically distributed and independent when time distance is larger than n+m.

• For each t, P̂t are either true p-values, or empirical p-values with independent or unique
calibration set.

In the following, these properties are verified for the different p-values.

1. The sequence of true p-value PX∼P0(a(X) > a(Xt)) is i.i.d., because the time series mixture
is i.i.d. Then P̂t = (p̂t−m+1, . . . , pt) are independent for a time distance larger than m.
Using the first statement of Corollary 3.5 FDR of the whole time series is controlled at
level (1− π)α.

2. The sequence of empirical p-value is i.i.d., because the time series mixture i and the cal-
ibration sets are i.i.d. Then P̂t = (p̂t−m+1, . . . , pt) are independent for a time distance
larger than m. Using the second statement of Corollary 3.5 FDR of the whole time series
is controlled at level (1− π)α.

3. This p-value family is not i.i.d. However, because the calibration are build using a sliding
window of size n, two p-values subseries of length m, P̂t1 and P̂t2 , are independent when
|t1− t2| > m + n. Then the third statement of Corollary 3.5 ensure that FDR of the whole
time series is controlled at level (1− π)α.
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3.4.5 Empirical results
In this section, the abilities to get local control of the mFDR and the global control of the FDR,
using mBH are assessed empirically. Corollary 3.5 and Theorem 3.5 give theoretical results about
the control of the mFDR for subseries under the assumptions Power and Heuristic. However,
these assumptions are hard to ensure in practice. In Section 3.4.5.1, the assessment is done on
simulated data where the level of atypicity of the anomalies varies from one sample to another.
Different scenarios are tested to verify if the mFDR control hold. Theorem 3.3 and Theorem 3.4
give FDR control over the full time series. In Section 3.4.5.2, the abilities of thresholds computed
on disjoint and overlapping subseries to control the mFDR using are compared. Theorem 3.3 and
Theorem 3.4 give asymptotic FDR control over the full time series. But there is no result about
the speed of convergence, which is necessary when used on finite time series. In Section 3.4.5.3,
the FDR for the full time series is calculated across different situations, as a function of time
series size. It is possible to figure out when the entire series reaches control of the FDR.

3.4.5.1 Control of the mFDR on disjoint subseries

Experiment description From Corollary 3.5 the mBHα controls the mFDRm
1 only if the

Power assumption is satisfied. Since the power of the anomaly detector depends on how easy
it is to detect anomalies, the level of atypicity δ is introduced. To quantifies the atypicity of a
data point Xt, the true p-value is computed as pt = PX∼P0(X > Xt), and the atypicity level is
defined as the inverse of the p-value: δt = 1/pt. The atypicity level is preferred over the p-values
because it is easier to show on the x-axis of the chart, when the p-value is small. To evaluate the
effect of power, for each sample all anomalies have their level of atypicity lower bounded a given
parameter δ. Therefore, it is possible to observe the effect of a variation in the level of atypicity
on the mFDRm

1 , FDRm
1 and FNRm

1 .

For a given scenario—meaning a proportion of anomalies π, a level of atypicity δ, and a desired
level of mFDR noted α—the actual mFDR, FDR, and FNR are estimated. These quantities are
estimated using J = 50 samples of m data points. To control the estimation error made when
estimating on a finite number of samples, each estimation is repeated B = 100 times. The
estimation proceeds as follows:

1. With 1 ≤ b ≤ B, and 1 ≤ j ≤ J , m data point are generated.

• m0 normal data pb,j,1, . . . , pb,j,m0 are generated according the reference law U([0, 1]).

• m1 abnormal data pb,j,m0+1, . . . , pb,j,m are generated using the alternative law U([0, 1/δ]),
with δ the level of atypicity of the anomalies.

2. Then, for each sample, the thresholds are estimated with BH and mBH procedures:

• ε̂b,j,BH = BHα(pb,j,1, . . . , pb,j,m),

• ε̂b,j,mBH = mBHα(pb,j,1, . . . , pb,j,m).

3. The number of rejections, false positives and false negatives are computed on each sample
and according each threshold. Using M ∈ {mBH, BH}:

• Rb,j,M =
∑m

i=1 1[pb,j,i ≤ ε̂b,j,M ],

• FPb,j,M =
∑m0

i=1 1[pb,j,i ≤ ε̂b,j,M ],

• FNb,j,M =
∑m

i=m0+1 1[pb,j,i > ε̂b,j,M ].

4. The FDR, mFDR and FNR are estimated by averaging results over the J samples:
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• FDRb,M = 1
J

∑J
j=1

F Pb,j,m

Rb,j,m
,

• mFDRb,M =
∑J

j=1
F Pb,j,m∑J

j=1
Rb,j,m

,

• FNRb,M = 1
J

∑J
j=1

F Nb,j,m

m1
.

These steps are then repeated over the different scenarios.

Results and Analysis The results are shown in Figure 3.8 by varying δ, α and m1. In
Figure 3.8, the level of atypicity δ in represented in the abscissa. The ordinate represents the
estimated mFDR (in Figure 3.8a or 3.8c) or FNR (in Figure 3.8b or 3.8d). Different colors are
used to distinguish between BH and mBH procedures. More results are displayed in Section 3.8.3.

For a low level of atypicity δ, the FNR and the mFDR are high because the anomalies are
difficult to detect. By increasing δ, the FNR and the mFDR decrease. As shown in Figure 3.8b,
with values of δ around 100, the FNR is equal to 0 which can also generate a constant mFDR
as shown in Figure 3.8a. For the mBH-procedure, the mFDR is constant and equal to α. This
is consistent with Theorem 3.4, which guarantees the control at level α when all anomalies are
detected.

Figure 3.8d shows the totality of the anomalies detected for δ = 2000. The same result in
figure 3.8b with δ = 100. This is explained by the different parameters of the experiment. The
easier the anomalies are detected, faster the FNR = 0 is reached for a small δ and therefore the
easier it is to guarantee mFDR = α.

(a) mFDR, α = 0.2, π = 0.07 (b) FNR, α = 0.2, π = 0.07

(c) mFDR, α = 0.1, π = 0.01 (d) FNR, α = 0.1, π = 0.01

Figure 3.8: mFDR and FNR as a function of level of atypicity across different scenarios
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Conclusion In order to control the mFDR at the desired level α using mBH, the FNR has
to be equal to 0. The capacity of mBH to control the mFDR depends of the difficulty of the
problem. When abnormality proportion and level of atypicity are lower, the power of mBH
decreases and the mFDR is harder to control. The results of this experiment gives an idea of the
atypicity level that the detector can find. For example, for π = 0.01 and α = 0.1 the abnormality
level must be at least 2000. To give an idea, this corresponds to a threshold of 3.5σ for Gaussian
data (2Φ(3.5) = 1/2149). The use of such a threshold seems realistic in relation to the literature
[32].

3.4.5.2 Disjoint subseries vs overlapping subseries

Experiment Description Theorems 3.3 and 3.4 theoretically prove the control of the FDR
over the full time series throw control of the mFDR over disjoint subseries or overlapping sub-
series. According Corollary 3.5, the procedure mBHα allows the control of the mFDR over
subseries under assumption Heuristic and Power that are hard to verify. Empirical results
from Section 3.4.5.1 show that control of mFDR for the disjoint subseries can be obtained for
scenarios where the level of atypicity δ is high enough. It still unknown whether these results
hold true in cases where the subseries overlap In this section FDR control throw disjoint and
overlapping subseries are compared.

For each scenario, the quantities mFDRm
1 and FNRm

1 are estimated two times, using disjoint
subseries and using overlapping subseries. All subseries are extracted from the same time series
of length T = 104. The distribution of these estimations is obtained by repeating the experiment
across B = 100 time series. Thus, the two estimations of mFDRm

1 and FNRm
1 quantities can

be compared. The experimental design is described as follows:

1. With b in J1, BK and t in J1, T K, the time series is generated from a mixture model:

• Ab,t ∼ Ber(π)

• If Ab,t = 0, pb,t ∼ U([0, 1])

• Otherwise: pb,t ∼ U([0, 1/δ])

2. The thresholds of mBH are estimated on each subseries pb,t+1, . . . , pb,t+m0+m1 :

• ε̂b,t = mBHα(pb,t+1, . . . , pb,t+m0+m1).

3. The numbers of rejections, false positives and false negatives are calculated, according the
different cases.

(a) In the disjoint subseries case, the quantities are computed using only thresholds on
the form ε̂b,km over disjoint subseries
For 1 ≤ b ≤ B and 1 ≤ j ≤ J = T/m:

• Rb,j,d =
∑(j+1)m

t=jm+1 1[pb,j,t ≤ ε̂b,jm],

• FPb,j,d =
∑(j+1)m

t=jm+1 1[pb,j,t ≤ ε̂b,jm](1−At),

• FNb,j,d =
∑(j+1)m

t=jm+1 1[pb,j,t > ε̂b,jm]At.

The mFDR and FNR are estimated:

• mFDRb,d = 1
J

∑J
j=1 FPb,j,m,d

1
J

∑J
j=1 Rb,j,m,d,

• FNRb,d = 1
J

∑J
j=1

F Nb,j,m,d

m1
.
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(b) In the overlapping subseries case, the quantities are computed using the thresholds
from all overlapping subseries ε̂b,t:
For 1 ≤ b ≤ B and 1 ≤ j ≤ J = T/m:

• Rb,j,o =
∑(j+1)m

t=jm+1 1[pb,t−m+1,t,o ≤ ε̂b,t],

• FPb,j,o =
∑(j+1)m

t=jm+1 1[pb,t−m+1,t ≤ ε̂b,t](1−At),

• FNb,j,o =
∑(j+1)m

t=jm+1 1[pb,t−m+1,t > ε̂b,t]At.

Notice the difference with disjoint windows case, all p-values of a subseries are com-
pared to different thresholds and not to the same ε̂b,jm.

The mFDR and FNR are estimated:

• mFDRb,o = 1
J

∑J
j=1 FPb,j,m,o

1
J

∑J
j=1 Rb,j,m,o,

• FNRb,o = 1
J

∑J
j=1

F Nb,j,m,o

m1
.

Different scenarios are generated by varying the proportion of anomalies π and the atypicity
level δ.

Results and analysis As shown in Figure 3.9, disjoint and overlapping subseries control give
similar results in mFDR and FNR for considered cases. Indeed, the curves are indistinguishable
and decrease at the same rate.

(a) mFDR, α = 0.1, π = 0.01 (b) FNR, α = 0.1, π = 0.01

Figure 3.9: Comparison of mFDR and FNR control with disjoint and overlapping windows
method.

Conclusion The FDR control quality are similar for both strategies, overlapping windows and
disjoint windows. This imply that performances of the anomaly detector to not decrease by using
overlapping windows instead of disjoint windows. This is a practical result that allows to do real
time detection without having to wait to complete disjoint windows.

3.4.5.3 Convergence of false discovery rate control

This section studies the convergence rate of the FDR over the full time series using mBHα.
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Experiment Description The theoretical results obtained in Theorem 3.4 only guarantee an
asymptotic control of the FDR on the whole time series. In practice, it is more useful to have
a control of the FDR at any time, i.e. on subseries of finite size. The question is empirically
studied by observing the speed of convergence of the false discovery rate towards the level α.
The FDR of the full time series is calculated across different scenarios, as a function of time
series size. In order to get the distribution of the FDR, the experiment is repeated on B = 100
time series. The maximal time series size explored is T = 104.

1. For 1 ≤ b ≤ B and for 1 ≤ t ≤ T :

• Ab,t ∼ Ber(π)

• If Ab,t = 0, pb,t ∼ U([0, 1])

• Otherwise: pb,t ∼ U([0, 1/δ])

2. The thresholds are estimated with mBHα:

ε̂b,t,α = ε̂mBHα
(pb,t−m+1, . . . , pb,t)

3. The proportion of false discovery (FDP) on the partial time series are calculated:

FDPb,t,α =
∑t

u=1(1−Ab,t)1[pb,t ≤ ε̂b,t,α]∑t
u=1 1[pb,t ≤ ε̂b,t,α]

Different scenarios are generated by varying the proportion of anomalies π and the atypicity
level δ.

Results and analysis In Figure 3.10, the false discovery proportion is represented in the
ordinate according to the size of the time series given in the abscissa. The different levels of
α used to compute mBH threshold are experimented with the results of the median FDP and
its 95% band is shown in different colors. Different scenarios are represented by varying the
proportion of anomalies between the sub figures.

It can be observed that the convergence is quite fast from a size of 2000 data points, since
for a α of 0.05, is has 95% chance to have a false positive rate between 0.04 and 0.06, on Figure
3.10. Thus, the control of the false positive rate, can be ensured with a high probability, for a
series of one data point per minute recorded over a few days, .
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(a) δ = 1000, π = 0.02 (b) δ = 1000, π = 0.01

Figure 3.10: FDR over the full time series as a function of the time series size.

Conclusion This ensures that the control at level is reached not only for infinite time series
but also for finite time series which allows our model to be used in practice.

3.5 Empirical simulation against competitor
The control of the FDR with p-values estimated empirically has been studied at Section 3.3.
Theorem 3.2 ensure the control of the FDRm

1 when the p-values are estimated on calibration
set having particular cardinality value. Theorems 3.3 and 3.4 ensure the control of the FDR
of the full time series throw control of the mFDRm

1 of the subseries. Corollary 3.5 enables to
deduce that the mBHα procedure can be apply to control the FDR of the full time series under
the Heuristic and Power assumptions. Even though these assumptions are hard to ensure
theoretically, the experiment at Section 3.4.5.1 shows that the mFDRm

1 is controlled for tested
scenario, provided that anomalies are sufficiently atypical. Experiment from Section 3.4.5.3
shows that the control of the FDR is possible even the time series is not infinite as required by
Theorem 3.4.

These different results provide the conditions for building an anomaly detector that controls
the FDR of the time series through control of the mFDR on the subseries and the p-empirical
value. Our anomaly detector is evaluated under different scenarios by varying the generated
anomalies and the targeted FDR. To understand the source of the difficulties that the anomaly
detector may encounter, different sequences of p-values with oracle information are introduced.
Our anomaly detector is compared against Levels based On Recent Discovery (LORD) which is
a online multiple testing procedure, introduced in [87] to control the FDR.

3.5.1 Data
The synthetic data are generated from Gaussian distribution. With the use of the empirical
p-value estimator there are no need to evaluate on other data distribution. Only anomaly pro-
portion and the distribution shift associated to anomalies impact the performances of the anomaly
detector. Data are generated accordingly with Definition 3.4 with Gaussian reference distribu-
tion and anomaly spike like in Section 3.3.4.1. The strength of the distribution shift noted by
∆ takes value in {3σ, 3.5σ, 4σ} and the abnormality proportion noted π is equal to 0.01. Each
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generated time series contain T = 104 data points, according to Section 3.4.5.3 it is enough data
points to observe FDR convergence. Each experiment is repeated over 100 time series.

For t in J1, T K:

• At ∼ B(π)

• Xt =
{
N (0, σ2) if At = 0
∆σ else

The value of ∆ represents the atypicity score of the anomalies. Anomalies with higher ∆ are
easier to detect. In this experiment, the standard deviation σ is set to 1.

3.5.2 Threshold and p-value estimators description
3.5.2.1 Our proposal mBH on overlapping subseries

Using the p-value with the empirical estimator, the anomalies are detected by using mBH as the
threshold estimator on overlapping subseries in the Algorithm 1. For each time t, the threshold
is computed as: ε̂mBHα,t = fm(p̂t−m, . . . , p̂t), where fm is the mBH-procedure. To ensure FDR
control according to Theorem 3.1, the cardinality of the calibration set to be equal to n = m

α −1.
In this experiment m is equal to 100 and α takes values 0.1 and 0.2 depending the tested scenario.
So the calibration set takes values 999 or 1999.

3.5.2.2 LORD

LORD introduced in [87] is based on alpha-investing rules to define a threshold on p-values. For
each time t the threshold is computed from according to the alpha-investing rules, depending
on previous decision made by the algorithm. For more precision refer to the original article
[87]. The empirical p-value specified in Definition 3.5 does not respect this property while the
conformal p-value, defined in Equation 3.2.3.1 respects this property. Using conformal p-values
to apply LORD algorithm leads to a weak power detecting anomalies. The issue is that p̌ ≥ 1

n+1
is always verified and the threshold sequence ε̂t decreases quickly when no rejection are made.
No anomaly can be detected. For these reasons, the empirical p-value introduced in Equation
3.5 is used while applying LORD and mBH. In this experiment LORD3 from [87] is used with
the same parameters as in the original paper.

3.5.2.3 p-value estimation

Different sequences of p-values are used to understand the limitations of our anomaly detector.
The true p-values are used to evaluate the case where the only limitation comes from the multiple
testing procedure. One can thus understand how the estimation of the p-values affects the
detection of anomalies. One way to estimate p-values in practice is to use the same calibration
set for all p-values. This is referred as the fixed calibration set. However, the p-values may be
biased in that particular calibration set. In practice, the usual way to implement the estimated
p-values is to use a sliding calibration set. To evaluate the p-value of a data point Xt, n preceding
data points are used as a calibration set. To a bias in the estimation, the points detected as
abnormal cannot be part of the calibration set. However, the calibration set can be biased by
undetected anomalies. To evaluate this impact, the sliding calibration set-⋆ is introduced, where
the knowledge oracle of the labels is used to construct the calibration set from the previous data
points.
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The different p-value sequences are computed as follows:

• Oracle: The true p-value is used instead of the estimated one.

∀t ∈ J1, T K, p̂t = Φ(Xt)

• Fixed calibration set (Fixed Cal.): The p-value is estimated using the same calibration
set {Zi, i ∈ [1, n]} for all observations.

∀t ∈ J1, T K, p̂t = 1
n

n∑
i=1

1[Zi > Xt]

• Sliding Calibration set-⋆ (Sliding Cal.-⋆): The p-value is estimated using a calibration
that is a sliding windows containing the n previous true normal data.

∀t ∈ J1, T K, p̂t = 1
n

n∑
i=1

1[Xh(t,i) > Xt]

With h the function that select observation that respect H0. For each t and i, h(t, i) gives
the i-th observation lower than t and that respect H0 hypothesis.

• Sliding Calibration set (Sliding Cal.): The calibration set is a sliding windows con-
taining the n previous estimated normal data.

∀t ∈ J1, T K, p̂t = 1
n

n∑
i=1

1[Xĥ(t,i) > Xt]

With ĥ the function that estimates the function h. For each t and i, ĥ(t, i) give the i-th
observation lower than t and dĥ(t,i) = 0.

3.5.3 Performance metrics
The anomaly detector are evaluated using their ability to control the FDR and minimize the FNR
of the full time series. Therefore, the two applied metrics are the FDP and the FNP computed
as:

FDP =
∑T

t=1 1[p̂t < ε̂t](1−At)∑T
t=1 1[p̂t < ε̂t]

and
FNP =

∑T
t=1 1[p̂t < ε̂t](1−At)∑T

t=1 At

where ε̂t is estimated using mBH or LORD and p̂t is estimated using one of the estimator defined
in Section 3.5.2.3.

3.5.4 Results
The box plots shown in Figures 3.15-3.18 represent the FDP and FNP distribution for 1000
repetitions. Inside each sub figure (a, b, c, d, e,..), the box plot distributions are displayed
according to:
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1. the multiple testing method mBH or LORD,

2. the p-value estimation model set to Oracle PV, Fixed Cal., Sliding Cal.-⋆ or Sliding Cal.

3. and the distribution shift between the normal data and anomalies, noted ∆, varying from
4σ to 3σ.

Table 3.4 gives a summary using FDR and FNR estimations. It enables easily the comparison
between these values coming from the different strategies combining:

1. the multiple testing method mBH or LORD,

2. the choice of the level α varying from 0.1 to 0.2,

3. the p-value estimation model set to Oracle PV, Fixed Cal., Sliding Cal.-⋆ or Sliding Cal.

4. and the distribution shift between the normal data and anomalies, varying from 4σ to 3σ.

3.5.5 Analysis
3.5.5.1 Effect of the strength of the distribution shift ∆

According the assumption Power from Theorem 3.5, mBHα enables control of the FDR at level
α if all anomalies are detected.
To test this assertion, the different columns of the Table 3.4a, are compared. In the row “mBH
with Oracle PV”, with ∆ = 4σ the FDR is estimated at 0.101 which is close to the desired level
α = 0.1. While, when ∆ = 3σ the FDR level is estimated at 0.281 which is almost three times
the desired level α. The FNR results in Table 3.4b needs to be taken into consideration. When
∆ = 4σ, the FNR is close to 0, while when ∆ = 3σ the FNR is equal to 0.793. Similar results are
obtained with other test configurations in Table 3.4c and Table 3.4d. The FDR control at the de-
sired level need the FNR to be close to 0, which in this context is obtained for a ∆ of at least 3.5σ.

3.5.5.2 Effect of p-value estimation

To understand how the p-value estimation can prevent the control of the FDR, the first four
rows in Table 3.4a are compared. In the column “4σ”, the FDR values for the configurations
“Oracle PV”, “Fixed Cal.” and “Sliding Cal.-⋆” are very close to the desired level α = 0.1. This
control is enabled by Theorem 3.5, since the p-values verify all hypotheses, in particular all data
in the calibration sets are generated according to the reference distribution. However, in the
case of “Sliding Cal.”, the FDR increases at a value of 0.335. For the same configurations, the
FDR remains low, between 0.019 and 0.040 as shown at Table 3.4b. The increase of FDR when
using “Sliding Cal.” instead of “Sliding Cal.-⋆” is a consequence of calibration set contamination.
Indeed, according to the procedure used to build the calibration sets, described in Section 3.5.2.3,
all detected anomalies are removed from calibration sets used in the estimation of next p-values.
When an observation is wrongly detected as an anomaly, this data point cannot be part of the
calibration set at future steps of the online detection. Instead, it is replaced by an other data
point having statistically a lower atypicity score. Indeed false positives have high atypicity score
to be (wrongly) detected as anomalies. As a result, the calibration set contains data points with
lower scores than if it had been generated under P0. It leads to underestimate the p-values and to
increase the number of false positives. This illustrates the major drawback of mBH: it is highly
sensitive to the non robustness of the p-value estimator. Figure 3.15a shows that using fixed
calibration instead of sliding calibration-⋆ gives a larger variance on the FDP while the FDR is
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FDR, α = 0.1 ∆ = 4σ ∆ = 3.5σ ∆ = 3σ
mBH with Oracle PV 0.101 0.113 0.281
mBH with Fixed Cal. 0.100 0.109 0.348
mBH with Sliding Cal.-⋆ 0.100 0.113 0.256
mBH with Sliding Cal. 0.335 0.222 0.346
LORD with Oracle PV 0.106 0.115 0.367
LORD with Fixed Cal. 0.111 0.277 0.736
LORD with Sliding Cal.-⋆ 0.070 0.190 0.841
LORD with Sliding Cal. 0.075 0.098 0.627

(a) FDR, α = 0.1
FNR, α = 0.1 ∆ = 4σ ∆ = 3.5σ ∆ = 3σ
mBH with Oracle PV 0.020 0.151 0.793
mBH with Fixed Cal. 0.026 0.135 0.669
mBH with Sliding Cal.-⋆ 0.019 0.140 0.669
mBH with Sliding Cal. 0.040 0.217 0.694
LORD with Oracle PV 0.033 0.260 0.905
LORD with Fixed Cal. 0.070 0.340 0.896
LORD with Sliding Cal.-⋆ 0.781 0.845 0.978
LORD with Sliding Cal. 0.052 0.327 0.907

(b) FNR, α = 0.1
FDR, α = 0.2 ∆ = 4σ ∆ = 3.5σ ∆ = 3σ
mBH with Oracle PV 0.200 0.208 0.277
mBH with Fixed Cal. 0.206 0.211 0.301
mBH with Sliding Cal.-⋆ 0.210 0.219 0.283
mBH with Sliding Cal. 0.833 0.815 0.761
LORD with Oracle PV 0.211 0.216 0.290
LORD with Fixed Cal. 0.210 0.263 0.665
LORD with Sliding Cal.-⋆ 0.061 0.149 0.625
LORD with Sliding Cal. 0.117 0.133 0.321

(c) FDR, α = 0.2
FNR, α = 0.2 ∆ = 4σ ∆ = 3.5σ ∆ = 3σ
mBH with Oracle PV 0.009 0.062 0.395
mBH with Fixed Cal. 0.014 0.045 0.355
mBH with Sliding Cal.-⋆ 0.008 0.059 0.339
mBH with Sliding Cal. 0.003 0.018 0.101
LORD with Oracle PV 0.016 0.117 0.610
LORD with Fixed Cal. 0.04 0.144 0.689
LORD with Sliding Cal.-⋆ 0.805 0.835 0.941
LORD with Sliding Cal. 0.026 0.168 0.692

(d) FNR, α = 0.2

Table 3.4: Comparison of mBH versus LORD for online anomaly detection in Gaussian white
noise with different abnormality levels.
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the same. Using a single calibration set for the entire time series means that the FDP is highly
dependent on the start of the time series. By modifying the calibration set at each time step,
the statistical fluctuations in the FDP are smoothed over the course of the time series analysis.

3.5.5.3 Comparison with LORD

In this section, the results found using mBH and the ones using LORD are compared. As known
from the literature, LORD controls the FDR of super-uniform p-values. In this experiment, the
question is in the capacity of LORD method to control the FDR of empirical p-values that have
no theoretical guaranties. It can be noticed in Figure 3.4a that LORD is able to ensure the
control of the FDR for all calibration set definitions when anomalies are easier to detect as for
∆ = 4σ or ∆ = 3.5σ. In particular, unlike mBH, LORD is able to control the FDR in the case
of the sliding calibration set. However, mBH method has a lower FNR compared to the LORD
method, as shown in 3.4a and 3.4b. For example, Table 3.4b shows that the FNR is equal to
0.019 with mBH while it is equal to 0.781 with LORD, in the case using Sliding Calibration set-⋆
on data having ∆ = 3σ. Nevertheless, with the Sliding Calibration set case, the LORD method
has quite the same FNR but with lower FDR (0.335 against 0.075). The contamination issue of
mBH offsets the superior performance observed in the Sliding Calibration set-⋆.

3.6 Conclusion

In this chapter, an online anomaly detector that aims to have a better control of the FDR at a
given level α has been proposed. The research has been developed to tackle two issues:

• the empirical p-values: it ensures conditions on the calibration cardinality to ensure FDR
control when using Benjamini-Hochberg.

• and the online detection: it ensures a global control of the FDR through local control of
the mFDR of subseries, using a modified version of the BH-procedure.

The results of our research is the assessment of our proposal from the theoretical point of
view and from empirical experiments. Our method has been compared with a method from the
state of the art. It shows the strong capability for ensuring control of the FDR even in the case
of empirical p-values. The major drawback and improvement path of our method is it relies on
non-robust p-value estimation. In this chapter, only the simplified case of an iid time series has
been studied. In the next chapter, time series with changing reference behavior are studied.

3.7 Proofs

3.7.1 Proof of Theorem 3.1

Proof of Theorem 3.1. Let R be a random variable describing the number of rejections made by
BHα that is, R =

∑m
i=1 Di, where Di = 1 if hypothesis H0,i is rejected. Let also FP be the

number of false positives made by BHα. Then, FP =
∑m

i=1 AiDi =
∑m0

i=1 Di, where Ai is a
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random variable equal to 1 if hypothesis H0,i is true and 0 otherwise. Furthermore

FDP = FP

R
=

m0∑
i=1

1[pi ≤ αR
m ]

R
(since Di = 1[pi ≤ αR

m ])

=
m∑

k=1

m0∑
i=1

1[pi ≤ αk
m ]1[R = k]

k
. (3.27)

Let us now introduce the random variables R(i) that are the number of rejections generated by
BH when pi is replaced by the value 0 that is, R(i) = BHα(p1, .., pi−1, 0, pi+1, . . . , pm). It results
that

1[pi ≤
αk

m
]1[R = k] = 1[pi ≤

αk

m
]1[R(i) = k],

since, on the event {pi ≤ αk
m }, pi is rejected and therefore R = R(i). Let us also notice that the

independence between the p-values is already used at this stage since modifying the value of pi

does not affect that of the others.

By combining the previous argument and the independence between R(i) and the other p-
values, the expectation on both sides yields

FDP =
m∑

k=1

m0∑
i=1

1[pi ≤ αk
m ]1[R(i) = k]

k

⇒ FDR = E[FDP ] =
m∑

k=1

m0∑
i=1

P[pi ≤ αR
m ]P[R(i) = k]

k

=
m∑

k=1

m0∑
i=1

αk
m P[R(i) = k]

k

= m0α

m
,

where the last equality results from the fact that the true p-values follow a uniform distribution
on [0, 1]. The result finally follows from noticing that for each 1 ≤ i ≤ m0,

∑m
k=1 P[R(i) = k],

since R(i) ≥ 1 by definition.

3.7.2 Proof of Corollary 3.1

Proof of Corollary 3.1. To get a deeper understanding of the FDR expression obtained in The-
orem 3.2, qn,k the fractional part of αkn

m is introduced:

qn,k = αkn

m
−
⌊

αkn

m

⌋



3.7. Proofs 107

When plugged into the FDR expression, it gives:

FDR = m0

m∑
k=1

αkn
m +1−qn,k

n+1
k

P(R(1) = k)

FDR = m0α

m

n

n + 1 + m0

n + 1

m∑
k=1

1− qn,k

k
P(R∗ = k) (3.28)

In order to get lower and upper bounds of the FDR, the value of qn,k should be expressed as
a function of α, k, n and m.

For the next part of the proof, it is useful to express the relation between qn,k and qn+1,k. It
gives the effect of increasing the cardinality of the calibration by one. Using the definition of the
fractional part:

qn+1,k − qn,k = αk(n + 1)
m

−
⌊

αk(n + 1)
m

⌋
− αkn

m
+
⌊

αkn

m

⌋
qn+1,k − qn,k = αk

m
−
⌊

αk(n + 1)
m

⌋
+
⌊

αkn

m

⌋

Which can be expressed as a congruence relation:

qn+1,k − qn,k ≡
αk

m
(mod 1) (3.29)

Two cases are studied:

1. Particular case: there exists an integer 1 ≤ ν such that νm
α is an integer. the notation

nν = νm
α is introduced. Since: αknν

m = αkνm/α
m = kν is an integer, then the fractional part

is null:
qnν ,k = 0

If the calibration set cardinality n is equal to n = nν − 1 = νm
α − 1. Then, the congruence

relation in Eq. 3.29 gives:

qnν −1,k ≡ qnl,k − αk/m (mod 1)
qnν −1,k ≡ 0− αk/m (mod 1)

Using the fact that fractional part of a number belongs to [0, 1[, the only possible value to
qnν −1,k is:

qnν −1,k = 1− αk/m

Plugging the value of qnν −1,k into Eq. 3.28, it gives:

FDR = m0αn

m(n + 1) + m0

n + 1

m∑
k=1

αk

km
P(R∗ = k)
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Simplifying by k and using that
∑m

k=1 P(R(i) = k) = 1, the result is obtained:

FDR = m0αn

m(n + 1) + m0α

(n + 1)m
FDR = m0α

m

2. General case: With α ∈]0, 1], for each ν the notation nν =
⌈

νm
α

⌉
is introduced. Notice that

this definition is consistent with the particular case. The ceiling function definition gives:⌈νm

α

⌉
− 1 <

νm

α
≤
⌈νm

α

⌉

Multiplying by αk on each side and the nν notation:

αk(nν − 1)
m

< kν ≤ αk(nν)
m

It implies that ⌊αk(nν −1)
m ⌋ < ⌊αk(nν )

m ⌋. Also, Eq. 3.29 is expressed as qnν ,k − qnν −1,k ≡ αk
m

(mod 1):

1− αk

m
≤ qnν −1,k < 1 (3.30)

Indeed, the fractional part of a number as to be larger than 1−αk/m so that adding αk/m
increase the integer part.

By plugin the bounds of qnν −1,k into Eq. 3.28, it can gives the bounds of the FDR. At first,
to compute the upper bound of the FDR the lower bound of qnν −1,k is used:

FDR ≤ m0(nν − 1)α
mnν

+ m0

n + 1

m∑
k=1

αk

km
P(R∗ = k)

With the same calculations as for the “Particular case”, it gives:

FDR ≤ m0α

m

Similarly, the lower bound of the FDR can be obtained using the qn,k upper bound from
Eq. 3.30 plugged into Eq. 3.28:

m0(nν − 1)α
mnν

+ m0

n + 1

m∑
k=1

(1− 1)
k

P(R1 = k) < FDR

m0(nν − 1)α
mnν

< FDR
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3.7.3 PRDS property for p-values having overlapping calibration sets
The following construction is used to describe a family of p-values with overlapping calibration
sets. Let Z the vector that combine all calibration set, the Zi are i.i.d. with marginal probability
P0. The set of the n indices defining the elements of the calibration set related to p̂i in Z is
noted Di. The calibration related to X1 is noted ZD1 = (Zi1 , . . . , Zin

). For all i in J1, mK:
p̂i = p-value(Xi, ZDi

).

To proof that p-values with overlapping calibration set are PRDS as described in Defini-
tion 3.3, the methodology used in [11] to be extended in the case of overlapping calibration set.
For i in J1, mK the calibration set associated to Xi is noted ZDi

. The law of total probabilities
gives:

P [p̂m
1 ∈ A|p̂i = u] =

∫
P [p̂m

1 ∈ A|p̂i = u|ZDi = z]P [ZDi = z|]dz

= EZDi
|p̂i=uP [p̂m

1 ∈ A|p̂i = u|ZDi
= z]

If these two lemma are suppose to be true, the PRDS property is verified.

Lemma 3.5.1. For non-decreasing set A and vectors z, z′ such that z ⪰ z′, then

P [p̂m
1 ∈ A|ZDi

= z] ≥ P [p̂m
1 ∈ A|ZDi

= z′] (3.31)

Lemma 3.5.2. For u ≥ u′, if i belongs to the set of inliers, the exists ZDi,1 ∼ ZDi
|p̂i = u and

ZDi,2 ∼ ZDi
|p̂i = u′ such that P[ZDi,1] ⪰ P[ZDi,2]

Indeed, take i ∈ J1, mK and u ≥ u′ and define ZDi,1 and ZDi,2 as in the statement of Lemma
3.5.2.

P[p̂m
1 ∈ A|pi = u] = EZDi,1 [P[p̂m

1 ∈ A|ZDi
= ZDi,1]] (Lemma 3.5.2)

≥ EZDi,2 [P[p̂m
1 ∈ A|ZDi

= ZDi,2]] (Lemma 3.5.1)
≥ P[p̂m

1 ∈ A|pi = u′] (Lemma 3.5.2)

It shows that, when u ≥ u′ then P[p̂m
1 ∈ A|pi = u] ≥ P[p̂m

1 ∈ A|pi = u′], which means
P[p̂m

1 ∈ A|pi = u] is increasing in u. The PRDS property is satisfied. To complete the proof, the
introduced lemmas are proven.

Proof of Lemma 3.5.1. Let be i in J1, mK and vectors z, z′ and z vectors such that z ⪰ z′. The
vectors z, z′ are used to define the calibration set related to the p-values p̂i and z is used to
define elements of calibrations sets that are not in the calibration set of p̂i. By conditioning on
the calibration sets defined by (z, z) and (z′, z) it gives:

P

[
p̂m

1 ∈ A|ZDi
= z, ZDi

= z
]
≥ P

[
p̂m

1 ∈ A|ZDi
= z′, ZDi

= z
]

(3.32)
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This result comes from the decomposition the following decomposition, for all j in J1, mK

p̂j = 1
n

∑
k∈Dj

1[a(Zk) ≥ a(Xj)]

= 1
n

 ∑
k∈Dj∩Di

1[a(Zk) ≥ a(Xj)] +
∑

k∈Dj\Di

1[a(Zk) ≥ a(Xj)]


The conclusion comes from ZDi

⪰ Z ′
Di

which implies ZDi∩Dj
⪰ Z ′

Di∩Dj
.

Since ZDj\Di
⊥ ZDi

, Eq. 3.32 can be integrated over ZDi
to give:

P [p̂m
1 ∈ A|ZDi = z] ≥ P [p̂m

1 ∈ A|ZDi = z′] (3.33)

Proof of Lemma 3.5.2. Let S′
i,(1) ≤ Si,(2) ≤ . . . ≤ Si,(n) the order statistics of (a(ZDi,1), . . . , a(ZDi,n)).

Let S′
i,(1) ≤ S′

i,(2) ≤ . . . ≤ S′
i,(n+1) the order statistics of (a(ZDi,1), . . . , a(ZDi,n), a(Xi)). And Ri

the rank of a(Xi) among these.{
(S(1), . . . , S(n))|Ri = k, S′

i,(1), . . . , S′
i,(n+1)

}
= (S′

(1), . . . , S′
(k−1), S′

(k+1), . . . , S′
(n+1)) (3.34)

Using that Ri is independent of S′
i,(1), . . . , S′

i,(n+1):

{
(S(1), . . . , S(n))|Ri = k

}
= (S′

(1), . . . , S′
(k−1), S′

(k+1), . . . , S′
(n+1)) (3.35)

The right-hand side is not increasing with k and p̂i = Ri−1
n

3.7.4 Proof of Proposition 3.3
Lemma 3.5.3. Let (pi)1≤i≤m be a sequence of m p-values with m0 true null hypothesis. Suppose
i belong to the set of true negative H0, and Di the random variable equal to 1 if i is detected by
the BHα procedure.

• If the p-values are independent and verify that: ∀k ∈ J1, mK,P(pi ≤ αk
m ), then:

P(Di) = αE[R∗]
m

(3.36)

Where R is the number of hypotheses rejected by BHα and R∗ is the number of hypotheses
rejected after pi is set to 0.

• If the p-values are empirical p-values using a unique calibration set with cardinality ν m
α −1,

then:

P(Di) = αE[R̃∗]
m

(3.37)

Where R̃∗ is the number of rejected hypothesis by applying BHα after on (p′
j)1≤j≤m, where

p′
i = 0, and for j ̸= i, p′

j = pj − 1
n1[pj < pi].
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Proof of Lemma 3.5.3. Proof of the first statement:
Using, the random variable R representing the number of rejection of BHα, i is rejected if pi is
below the threshold αR

m .

P[Di] = E[1[pi ≤
αR

m
]] (3.38)

Let (p′
j)1≤j≤m be defined by p′

i = 0 and p′
j = pj . The conditions of Lemma D6 from [110]

are satisfied, it follows:

P[Di] = E[1[pi ≤
αR(i)

m
]] (3.39)

Where R(i) is the number detection when applying BHα on (p′
j)1≤j≤m.

According to the law of total expectation:

P[Di] = E[E[1[pi ≤
αR(i)

m
]|p\pi]]. (3.40)

Since R(i) is measurable is p\pi and pi is independent from p\pi, it gives:

P[Di] = E[Ppi
(pi ≤

αR(i)
m

)] (3.41)

By hypothesis Ppi
(pi ≤ αR(i)

m ) = αR(i)
m , then:

P[Di] = α

m
E[R(i)] (3.42)

which conclude the proof of the first statement.

Proof of the second statement:
Let Wi, Ci,j defined as:

Wi = ({s1, ...., sn, sn+i}, (si, i ∈ H0, i ̸= j), (si, i ∈ H1)) (3.43)

Ci,j = 1
n

 ∑
s∈{s1,...,sn,sn+i

1[s > sn+j ]− 1

 (3.44)

1. pj = Ci,j + 1
n1[sn+j > sn+i]

2. pi independent of Wi

3. pi follow uniform distribution in {0, 1
n , . . . , 1}

Lemma D.6 from [110] is applied. Let (p′
j)1≤j≤m be defined by p′

i = 0 and for j ̸= i, p′
j = Ci,j .

For all j, p′
j ≤ pj and if pj > pi then p′

j = pj . Thus, the conditions of the Lemma D.6 from [110]
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are verified, which gives:

1[pi ≤
αR

m
] = 1[pi ≤

αR̃(i)
m

] (3.45)

P[Di] = E[E[pi ≤
αR̃(i)

m
|Wi]] (3.46)

Since, R̃(i) in measurable in Wi and pi is independent of Wi.

P[Di] = E[Ppi(pi ≤
αR̃(i)

m
)] (3.47)

By hypothesis, pi is a empirical p-value with calibration set verified that there exist an integer ν

such that n = ν m
α − 1. So according to Corollary 3.1, Ppi(pi ≤ αR̃(i)

m ) = αR̃(i)
m .

Finally, the second statement is verified with:

P[Di] = α

m
E[R̃(i)] (3.48)

Lemma 3.5.4. Let X and Y be two random variables. Suppose that k 7→ E[X|Y = k] is
decreasing, then:

E[XY ] ≤ E[X]E[Y ]. (3.49)

Proof of Lemma 3.5.4. Let Z be a random variable that follows the same law than Y but is
independent. Since k 7→ E[X|Y = k] is decreasing:

(Y − Z)(E[X|Y ]− E[X|Z]) ≤ 0 (3.50)
E [(Y − Z)(E[X|Y ]− E[X|Z])] ≤ 0 (3.51)

By distributing the product and using that Y and Z follow the same law, this gives:

2E[Y E[X|Y ]]− 2E[Y E[X|Z]] ≤ 0 (3.52)

Finally using E[Y E[X|Y ]] = E[XY ] and independence of Y and Z:

E[XY ] ≤ E[X]E[Y ] (3.53)

Proof of Proposition 3.3. The mFDR formula is given by

mFDRm
1 (p) =

E[FP m
1,α(p)]

E[Rm
1,α(p)] .
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Let us compute the numerator E[FP m
1 (p)] value after applying the BHα. Keep in mind that

here the family of true null hypotheses is random, generated by (Ai)1≤i≤m. In order to meet the
conditions of Lemma 3.5.3, it is possible to condition with respect toH0. Using Di = 1[pi ≤ R

m α],
it appears that

FP m
1 (p) =

∑
i∈H0

Di.

Lemma 3.5.3 allows to calculate its conditional expectation:

E[FP m
1,α|H0] =

∑
i∈H0

α

m
E[R(i)|H0]

= αm0

m
E[R∗|H0].

With R∗ the number of rejection where one p-values is set to 0. Integrating with respect to H0.
Then using the fact that m0 = |H0| is measurable with respect to H0.

E[FP m
1,α] = E

[αm0

m
E[R∗|H0]

]
= αE

[m0

m
R∗
]

Finally, if E[R∗|m0] is decreasing, Lemma 3.5.4 gives,

E[FP m
1,α] ≤ α(1− π)E[R∗]

with 1− π = E
m0
m , the proportion of data generated by the reference distribution.

3.7.5 Proof of Proposition 3.4

Proof of Proposition 3.4. By definition mFDRm
1 = E[F P m

1 ]
ERm

1
, and Rm

1 = FP m
1 + TP m

1 . With
hypothesis the mFDR is equal to α, this gives:

α = E[FP m
1 ]

ERm
1

α = E[FP m
1 ]

E[FP m
1 + TP m

1 ]
α(E[FP m

1 ] + E[TP m
1 ]) = E[FP m

1 ]
(α− 1)E[FP m

1 ] = −αE[TP m
1 ]

E[FP m
1 ] = α

1− α
E[TP m

1 ]

Then, the expectation of true positives is expressed using the proportion of false negatives β,
the proportion of anomaly π in the m observations, Ai the random variable equal to 1 if the
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observation Xi is an anomaly and di the random variable equal to 1 if the observation Xi is
detected as anomaly :

E[TP m
1 ] =

m∑
i=1

P[Ai = 1 and di = 1]

=
m∑

i=1
P[Ai = 1]P[di = 1|Ai = 1]

= mπ(1− β)

Therefore, the E[FP m
1 ] can be expressed as:

E[FP m
1 ] = αmπ(1− β)

1− α

So the E[Rm
1 ] is expressed as follows:

E[Rm
1 ] = αmπ(1− β)

1− α
+ mπ(1− β)

= mπ(1− β)
1− α

3.7.6 Proof of Corollary 3.5
Proof of Corollary 3.5. All conditions being satisfied Theorem 3.4 gives that:

FDR∞
1 (ε̂BHα′ , p̂) = mFDRm

1 (ε̂BHα′ , P̂m) (3.54)

According to Proposition 3.3, if one of the 3 statements is true:

mFDRm
1 (ε̂BHα′ , p̂) ≤ (1− π)α′E[R∗

α′ ]
E[Rα′ ]

By hypothesis α′ E[R∗
α′ ]

E[Rα′ ] = α which allows to conclude.

mFDRm
1 (ε̂BHα′ , p̂) ≤ (1− π)α
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3.8 Figures

3.8.1 Comparison of p-values estimators
The control of the FDR is not achievable using classical multiple testing [14, 133] since the
empirical p-value, shown in Definition 3.1, is not super-uniform. Conformal p-value estimator p̌,
shown in Equation 3.2.3.1, verifies the super-uniform property. However, this estimator p̌ ≥ 1

n+1
has lower power because zero anomalies are detected with thresholds below 1

n+1 .

Figure 3.11 displays the comparison between empirical p-values and conformal p-values using
the BH-procedure. As shown in Figure 3.11a, the conformal p-values ensure an upper bound
on the FDR at level m0

m α, while the empirical p-values ensure only a lower bound at the same
level. Moreover, perfect control are reached for n = 1000 and n = 2000 with conformal p-values
while the control is reached for n = 999 and n = 1999 with estimated p-values. As shown in
Figure 3.11b, the FNR for conformal p-values estimator is always larger than the one for empirical
p-values. However for the n points that control the FDR, the FNR values are close.

To conclude, the choice between conformal p-values and empirical p-values depends on the
calibration set cardinality. Indeed, for calibration set n = 1000 the performances are similar.
But for other calibration set cardinalities as n = 1499 the FDR control are similar but the FNR
is better for empirical p-values.

(a) FDR (b) FNR

Figure 3.11: Comparison between p-value estimators using Benjamini-Hochberg
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3.8.2 Effect of the number detections by BH on the intermediate drops
for the FDR control in Section 3.3.4

(a) m1 = 1 (b) m1 = 1

(c) m1 = 2 (d) m1 = 2

(e) m1 = 3 (f) m1 = 3

(g) m1 = 4 (h) m1 = 4

Figure 3.12: Effect of the number detections by BH on the intermediate drops for the FDR
control
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3.8.3 Figures related to experiment of Section 3.4.5.1

(a) mFDR, α = 0.1, π = 0.07 (b) FDR, α = 0.1, π = 0.07 (c) FNR, α = 0.1, π = 0.07

(d) mFDR, α = 0.05, π = 0.07 (e) FDR, α = 0.05, π = 0.07 (f) FNR, α = 0.05, π = 0.07

(g) mFDR, α = 0.2, π = 0.07 (h) FDR, α = 0.2, π = 0.07 (i) FNR, α = 0.2, π = 0.07

(j) mFDR, α = 0.1, π = 0.01 (k) FDR, α = 0.1, π = 0.01 (l) FNR, α = 0.1, π = 0.01

Figure 3.13: Effect of the atypicity level on the mFDR, FDR and FNR, according to different
multiple testing procedures.
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3.8.4 Figures related to experiment of Section 3.4.5.1

(a) mFDR, α = 0.1, π = 0.01 (b) mFDR, α = 0.1, π = 0.02 (c) mFDR, α = 0.2, π = 0.02

(d) FNR, α = 0.1, π = 0.01 (e) FNR, α = 0.1, π = 0.02 (f) FNR, α = 0.2, π = 0.02

Figure 3.14: Effect of atypicity level on mFDR and FNR, depending on whether detection is on
disjoint or overlapping subseries
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3.8.5 Figures related to the experiment of Section 3.5.4

(a) mBH, 4−sigma (b) LORD, 4−sigma

(c) mBH, 3.5−sigma (d) LORD, 3.5−sigma

(e) mBH, 3−sigma (f) LORD, 3−sigma

Figure 3.15: Comparison of the FDPs acquired from using different multiple testing procedures,
mBH or LORD, and from the way the p-values are calculated, in the case α = 0.1.
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(a) mBH, 4−sigma (b) LORD, 4−sigma

(c) mBH, 3.5−sigma (d) LORD, 3.5−sigma

(e) mBH, 3−sigma (f) LORD, 3−sigma

Figure 3.16: Comparison of the FNPs acquired from using different multiple testing procedures,
mBH or LORD, and from the way the p-values are calculated, in the case α = 0.1.
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(a) mBH, 4−sigma (b) LORD, 4−sigma

(c) mBH, 3.5−sigma (d) LORD, 3.5−sigma

(e) mBH, 3−sigma (f) LORD, 3−sigma

Figure 3.17: Comparison of the FDPs acquired from using different multiple testing procedures,
mBH or LORD, and from the way the p-values are calculated, in the case α = 0.2
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(a) mBH, 4−sigma (b) LORD, 4−sigma

(c) mBH, 3.5−sigma (d) LORD, 3.5−sigma

(e) mBH, 3−sigma (f) LORD, 3−sigma

Figure 3.18: Comparison of the FNPs acquired from using different multiple testing procedures,
mBH or LORD, and from the way the p-values are calculated, in the case α = 0.2.



Chapter4
Breakpoint based Anomaly Detection

This final chapter introduces a new anomaly detector that relies on breakpoint detec-
tion to adapt to a change in reference behavior. This chapter incorporates the results
published in “Breakpoint based online anomaly detection” [96]. It begins with a
presentation of the new anomaly detector. It is shown that the FDR control results
presented in the previous paper are extended with this new detector. Each detector
component is studied separately to optimize performance. The anomaly detector is
empirically evaluated in depth to assess its capabilities and limitations.

4.1 Introduction
As seen in Chapter 1, the limitation of main Machine Learning based anomaly detector is that the
reference model is learned only once on the historical dataset, which assumes that the reference of
the time series is the same over time. However, there are data drifts where the reference behavior
of the time series changes. If the model is not updated, the data points observed after the drift
are detected as false positives. To overcome this problem, most popular strategies consist of
periodically retraining the model on a fixed-length window of data. Others use a sliding window
of fixed length to continuously learn the reference. For example, Random Cut Forest [71] is a
method inspired by Isolation Forest and adapted to real time. DiLOF [122] adapts LOF for real
time. Periodic retraining and fixed length sliding windows do not account for the true dynamics
of the time series.

This chapter introduces a new anomaly detector that can update the learned reference behav-
ior in an online context. As shown in Figure 4.1, the main idea is to use a breakpoint detector to
detect changes in the reference behavior of the time series. Breakpoints are the points at which a
property of the time series changes. Between two breakpoints, the data form a homogeneous seg-
ment whose characteristics are easy to learn. After detecting the breakpoints in the time series,
an atypicity score can be constructed by measuring the conformity of each point to its segment.
The final step is to classify as anomalies the points with an atypicity score that is too high.
Note that unlike the proposals cited in [3, 52], the breakpoints do not correspond to anomalies,
but to changes in the reference distribution. The use of a breakpoint detector introduces new
difficulties, which are addressed in this chapter. First, the detection of a breakpoint may be

123
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delayed, leading to temporary errors in segment assignment. Second, when a segment contains
few points, it is difficult to estimate its behavior, generating anomaly detection errors. In an
online context, this is particularly the case when points are observed just after a new breakpoint.
This chapter responds to these difficulties by assigning a confidence score to the estimation made
by the detector. This score is used to judiciously select the estimates to be updated when their
assigned confidence is too low. This confidence score is learned from a historical data set.

Figure 4.1: Anomaly detection based on breakpoints.

The anomaly detector presented in this chapter comes with theoretical guarantees. In Chap-
ter 3, a new strategy has been designed in the online context to control the FDR for stationary
series using a modified version of Benjamini-Hochberg applied to subseries. In this chapter, this
work is extended to the nonstationary case.

The main contributions of this chapter are summarized as follows:

• A versatile online anomaly detector based on breakpoint detection is built to adapt to
changes in the reference behavior of the time series. Each component of the detector is
studied in depth to provide the best possible parameters and improve the performance of
the anomaly detector.

• The detector is theoretically studied to demonstrate its ability to control the FDR of the
entire series at a level α, under ideal hypotheses.

• The notions of active set and calibration set are introduced to deal with the difficulties of
the online nature of the anomaly detector.

• The anomaly detector is empirically evaluated in numerous scenarios to determine its
capabilities and limitations.

In Section 4.2, the problem of anomaly detection on piecewise iid time series is introduced, and
some challenges related to non-stationarity and uncertainty in estimating breakpoint positions
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in the online context are raised. In Section 4.3, the anomaly detector is described and the main
theorems are presented. The following sections present the detector components in more detail.
The breakpoint detector is described in Section 4.4. While detecting breakpoints, a good scoring
function is needed to filter the anomalies. This question is discussed in detail and illustrated
with experiments in Section 4.5. In addition, the online nature of anomaly detection makes the
decision of an abnormal status much more difficult. Solutions to deal with the uncertainty of an
abnormal state are discussed in Section 4.6. Thanks to results presented in Chapter 3 on how
to better control the FDR, Section 4.7 integrates these results to have an optimal p-value and
threshold selection used in the anomaly detector. Finally, multiple experiments and numerical
results are elaborated in section 4.9.

4.2 Problem Setting
This section introduces the problem of anomaly detection in time series containing breakpoints,
it explains why it differs from the iid anomaly detection problem and why it cannot be solved
with an anomaly detector that does not consider the breakpoints.

4.2.1 Modeling of the problem
Let (Ω,F ,P) be a probability space, with Ω the set of all possible outcomes, F a σ-algebra on
Ω and P a probability measure on F . Assume a realization of the independent random variables
(Xt)t≥1, with Xt taking values in a set X for all t. T ∈ N∪ {∞} is the length of the time series.
Normality is a concept that is dependent on a context that changes over time. The instants
at which the reference distribution changes are called breakpoints. Supposing there are D − 1
breakpoints where D ∈ N ∪ ∞, the position of the breakpoints is noted τ = (τ1, . . . , τD+1) ∈
[1, T ]D+1. The conventions τ1 = 1 and τD+1 = T +1, which are not real breakpoints, are used to
simplify the notation. To model these different reference behaviors, several reference probability
distributions are introduced and noted P0,i. For each segment i in J1, DK, for each point t in
this segment Jτi, τi+1 − 1K, the observation Xt is called “normal” if Xt ∼ P0,i. Otherwise Xt is
an “anomaly”. Between two consecutive breakpoints, all “normal” observations are generated by
the same law defining a homogeneous segment. The time series (Xt) is piecewise stationary.

As illustrated in Figure 4.2, an observation Xt is an anomaly if it is not generated from the
reference distribution corresponding to the current segment. Figure 4.2 shows two anomalies
detected in the second segment between breakpoints τ2 and τ3. Four anomalies have been
detected in the last segment 3.

The aim of an online anomaly detector is to find all anomalies among the new observations
along the time series (Xt)t≥1: for each instant t > 1, a decision is taken about the status of
Xt based on past observations: (Xu)1≤u≤t. The control of the FDR at a targeted level α can
be expressed by FDRT

1 ≤ α. In the following, the construction of an anomaly detector that
controls the FDR at a desired level while minimizing the FNR is studied, in the case of piecewise
stationary time series.

4.2.2 Online anomaly detection in piecewise stationary time series
The aim of this section is to highlight the challenge of developing a suitable anomaly detector for
the nonstationary series described in Section 4.2.1. First, a generic anomaly detector tailored to
the stationary case is described. Then, it is modified to be adapted to the presence of breakpoints
in the time series.
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Figure 4.2: Illustration of piecewise stationary time series.

Starting point: anomaly detection in stationary time series Usually, to retrieve anoma-
lies, a unique probability distribution P0 is considered as the reference distribution assuming no
breakpoint in the time series data. Anomalies are defined by observations not generated under
the reference distribution: Xt ≁ P0. In Section 3.2.1, the following general online anomaly de-
tector description was suggested. It uses multiple testing ideas from [111] and the online context
from [100]. Unlike the previous chapter, the sets involved at each step are specified. This online
detector relies on the following notions:

• An atypicity score a to compare the observation Xt from a training set X train = {X1, ...., Xq}
generated by P0. The more Xt deviates from the points in the training set, the more the
abnormality score st = a(Xt,X train) is high.

• A p-value estimator p̂, based on a calibration set of scores Scal = {st−m−n, ..., st−m} con-
taining scores of data points generated from P0, to estimate the p-value, p̂t = p̂(st,Scal).
In the online context, the calibration set can change over time.

• The value of the threshold ε can be chosen either as a fixed value for all p-values or to
be data driven for subseries of p-values, called the test set. Data driven threshold allows
better control of the number of false positives through the False Discovery Rate (FDR).
ε̂t = ε̂({pt−m+1, . . . , pt})

Usually, the training set and calibration set are either chosen from the start of the time series
labeled with anomalies or evolve over time using sliding windows. When the training set cannot
be labeled, a robust atypicity score is required. An example of a training set, calibration set and
test set, in the context of online anomaly detection is shown in the following:

X1, . . . , Xq︸ ︷︷ ︸
Training set

, . . . Xt−n−m, . . . , Xt−n︸ ︷︷ ︸
Calibration set

, Xt−m, . . . , Xt︸ ︷︷ ︸
Test set

For each new observation Xt, the function a is used to get the atypicity score, trained on the
training set. The value of the score cannot be interpreted directly because the distribution of
the scores under H0 is unknown. So its p-value is estimated using the calibration set. The more
the data point is atypical, the closer the p-value is to 0.
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The next section discusses the reason why this anomaly detector cannot be applied in case of
time series containing breakpoints. Indeed, the definitions of training and calibration used have
to be reconsidered.

Training, calibration and test sets for piecewise stationarity time series Suppose the
strategy used for stationary data is applied to a time series where a shift in the mean of the
reference distribution occurs. Before the first shift, there are no differences with the stationary
case. After the shift, all data points appear as anomalies when using the scoring function trained
on the initial training set based on data before the shift. To adapt to the shift, the training
and the calibration sets have to be rebuilt on the new segment of data in order to reapply the
anomaly detector.

X1, . . . , Xτ1︸ ︷︷ ︸
Segment 1

, Xτ1+1, . . . , Xτ1+q︸ ︷︷ ︸
train

, Xτ1+q+1, . . . , Xτ1+q+n︸ ︷︷ ︸
calibration

, Xτ1+q+n+1, . . . , Xt︸ ︷︷ ︸
test︸ ︷︷ ︸

Segment 2

However, it would take a lot of time to gather enough data for the training and calibration
sets. This is the reason why two improvements are suggested. The first improvement in the case
where the score is stationary across different segments, data for the calibration set can be taken
from previous segments. For example, suppose the shift occurs in the mean and the score is the
z-score: (x− µ)/σ.

X1, . . . , Xq︸ ︷︷ ︸
train

, Xq+1, . . . , Xq+m︸ ︷︷ ︸
calibration

, . . .

︸ ︷︷ ︸
Segment 1

, xτ1+1, . . . , Xτ1+q︸ ︷︷ ︸
train

, Xτ1+q+1, . . . , Xt︸ ︷︷ ︸
test︸ ︷︷ ︸

Segment 2

If the scoring function is robust to the presence of anomalies inside the training set, the
training can have anomalies. The whole segment can be used as training set. The test set can be
part of the training set, using a leave-one-out strategy. The segment length required for anomaly
detection can thus be further reduced, this constitute the second improvement.

X1, ...., Xn︸ ︷︷ ︸
calibration

, . . .

︸ ︷︷ ︸
Segment 1 and train

, . . . , Xt−m......Xt︸ ︷︷ ︸
test︸ ︷︷ ︸

Segment 2 and train

4.2.3 The uncertainty of estimations
The setup of the training and calibration sets described in the previous section relies on the
knowledge of the breakpoint positions. In practice, neither the number of segments D, nor the
positions of the breakpoints τi nor the laws of the segments P0,i are known. All these quantities
must be learned using the breakpoint detector and the scoring function to perform anomaly
detection.

Moreover, in an online context, the lack of knowledge of the whole series influences a good
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estimation of these quantities and has a negative impact on the quality of the detection. With
each new observation, different situations may occur: the position of a previous breakpoint may
be adjusted or removed, or a new breakpoint may appear. As a result, the segment assigned to
a data point changes. These new observations influence the composition of each segment and
therefore modify the score value and status assigned to each point, especially is the segment is
small. Consequently, the values of quantities associated with a data point Xu change over the
time t. To reflect this evolution, a subscript t is added. For example, p̂u,t is the p-value estimated
for Xu at time t. Similarly du,t is the status of the point Xu at time t. Furthermore, the concept
of the active set is introduced to collect the last points observed in an online context and whose
“abnormal” or “normal” status is uncertain since it may evolve due to the introduction of new
data points. This uncertainty arises from the possibility that the segment assigned to a segment
may change over time, or from the estimation of scores on small segments.

In the next section, a new anomaly detector based on breakpoint detection is introduced.
This detector uses a breakpoint detector and proposes solutions to the difficulties introduced in
this section regarding the uncertainties in estimation and FDR control.

4.3 Description of the method
This section introduces the new anomaly detector. First, a high-level description is given. Then
its properties are studied in an ideal setting. Finally, the validity of the ideal hypotheses and
the procedures to approach them are discussed in Section 4.3.4.

4.3.1 High level description for Breakpoint detection Based Anomaly
Detector

Using the various concepts introduced in Sections 4.2.1, 4.2.2 and 4.2.3, the BreaKpoint detection
based Anomaly Detector (BKAD) is introduced in Algorithm 2 through the following steps.

1. Breakpoint detection: A breakpoint detector estimates the number of segments, D̂t,
and the locations of breakpoints, noted τ̂(t)1, . . . , τ̂(t)D̂t

+ 1, in the current time series
Xt

1 = (X1, . . . , Xt). The conventionsτ̂(t)1 = 1 and τ̂(t)D̂t+1 = t + 1, which are not real
breakpoints, are used to simplify the notation. For more precision, see Section 4.4. Conse-
quently, the segments formed by two consecutive breakpoints are expected to be homoge-
neous. In particular, the segment formed between the last breakpoint noted b̂t and the last
observed point t is called the current segment. With each new observation, the position of
all the breakpoints is estimated again. In this way, a breakpoint estimated at one instant
t may disappear the next instant. Thanks to dynamic programming, the computational
cost of estimating all breakpoints is limited. For more precision, see Section 4.4.

2. Active set selection: At this stage, the points whose status is to be reevaluated are
selected. This set of points is called the active set. In the current segment, the points
whose confidence in the previously evaluated status is too low (lower than a selected η
value) are selected. The status of the other points remains the same as in the previous
step. Two types of uncertainty are considered. First, uncertainty about the value of the
atypicity score on short-length segments, if the current segment is shorter than the minimal
requirement ℓη, the active set contains the entire current segment. Second, uncertainty
about the location of the breakpoints for observations that are too recent. Otherwise it
contains only the last λη data points whose segment assignment is uncertain. The values
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of ℓη and λη are derived by f̂d and f̂τ . Methods for estimating f̂τ and f̂d are described in
Section 4.6.1 and Section 4.6.2.

3. Calibration set selection: The calibration set is used to calculate the p-values. There-
fore, the calibration set should contain points that are representative of the reference be-
havior. Ideally, only points from the current segment should be used. But when the current
segment doesn’t contain enough points, points from other segments are used. To limit the
bias caused by the introduction of points from another distribution, segments most similar
to the current one are selected. The similarity between segments is measured using the
similarity function sim. See Section 4.7 for more details.

4. Atypicity Score: As described in Section 4.5, a score a : X → R is a function reflecting
the atypicity of an observation Xt, it aims to give a high value to anomalies. It is defined
as a non conformity measure to the segment. The Nonconformity Measure a, is a real
valued function a(z, B) that measures how different z is from the set B. A nonconformity
measure can be used to compare a data point to the rest of the segment.

su,t = a(Xu) = a(Xu, Segt(u)) ∈ R

where Segt(u) is the unique homogeneous segment that contains Xu, at time t. The NCM
must be carefully chosen to be robust to the presence of anomalies in the current segment
and to distinguish anomalies even with few points in this segment.

5. p-value estimator: The value of the atypicity score cannot be interpreted directly. The
atypicity score assigned to a data point is compared with those assigned to the points in the
calibration set. The probability of observing a normal data point with an atypicity score
a(X) greater than a(Xt) is estimated. This is done using the empirical p-value estimator
and the calibration set. See Section 4.8 for more details.

p̂e(su,t,Scal
t ) = 1

|Scal
t |

∑
s∈Scal

t

1[s > su,t]

6. Threshold Choice: In order to control the FDR of the complete time series, the data-
driven threshold is calculated from the empirical p-values of the active set. A multiple
testing procedure, inspired from Benjamini-Hochberg, is applied to determine this detection
threshold. See Section 4.8 for more details. This procedure was introduced in Chapter 3.
Abnormal status (du,t = 1) is assigned to data points with a p-value below the threshold.
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Algorithm 2 Breakpoints based anomaly detection
Require: Let T > 0 be the time series length, (Xt)T

1 be the time series, breakpointDetection

implements breakpoint detector, η the level of uncertainty, f̂τ estimate the probability of
segment assignment change and f̂d are estimate the probability of status change when the
breakpoint do not change, sim a similarity function between segments, a is a non conformity
measure, p̂e implements the empirical p-value estimator and ε̂ selects the best threshold to
be applied.

1: ℓ̂η ← arg min
{

ℓ, f̂τ (ℓ) < η
}

2: λ̂η ← arg min
{

λ, f̂d(λ) < η
}

3: for t = 1 to T do
4: τ̂(t)← breakpointDetection(Xt

1) ▷ Detection of the breakpoints
5: bt ← τ̂(t)D

6: if t− b̂t ≤ ℓ̂η then ▷ Definition of the active set
7: mt = t− b̂t

8: else
9: mt = min(t− b̂t, λ̂η)

10: end if
11: Iactive = {Xmt

, Xmt+1, . . . , Xt}
12: for i = 1 ito D̂t do ▷ Definition of the calibration set
13: for u = τ̂i(t) to τ̂i+1(t) do
14: simu ← sim(Xτi+1(t)−1

τi(t) , Xt
b̂t

)
15: end for
16: end for
17: sortedU = sort(J1, tK, sim)
18: filteredU = filter(u ∈ sortedU, du,t−1 = 0)
19: Ical ← {filteredUi, i ∈ J1, nK}
20: Scal ← {a(Xu, Seg(u)), u ∈ Ical}
21: for u in Iactive do ▷ Computation of the scores
22: su,t ← a(Xu, Seg(u))
23: end for
24: for u in Iactive do ▷ Estimation of the p-values
25: p̂u,t = p̂e(su,Scal)
26: end for
27: ε̂t = ε̂({p̂u,t, u ∈ Iactive}) ▷ Estimation of the threshold
28: for u in Iactive do
29: if p̂u,t < ε̂t then ▷ Computation of the status
30: du,t = 1
31: else
32: du,t = 0
33: end if
34: end for
35: for u in [1, t]\Iactive do
36: if t− b̂t < m and u ≥ b̂t −m then ▷ Segment closed
37: du,t = du,b̂t

38: else
39: du,t = du,t−1
40: end if
41: end for
42: end for
43: Output: (dt,T )T

t=1 boolean list that represent the detected anomalies.
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1) New observation measured

Input time series: X1, X2, ...., Xt

2) Time series segmented

Estimated number of segments D̂t
Detected breakpoints: τ̂(t)1, ..., τ̂(t)D̂t

3) Identification of active and calibration sets

Activ set Iactive = {t−mt, ..., t}
Calibration set: Ical = {t1, ..., tn}

4) Computation of Scores

Score

Scores of the calibration set:
∀u ∈ Ical, su,t = a(Xu, Seg(u))

Scores of the active set: ∀u ∈
Iactive, su,t = a(Xu, Seg(u))

5) Pvalues and threshold estimation

rank

pvalues

P -values of active set: ∀u ∈
Iactive, pu,t = p̂(sn+u,Scal)

Estimation of the threshold:
εt = ε̂({pu, u ∈ Iactive})

6) Decision rule

Detection: ∀u ∈ Iactive, du,t = 1[pu,t < εt]

Figure 4.3: Description flow of Algorithm 2.

Algorithm 2 is illustrated in Figure 4.3, the description of the flow is given as the following:

Step 0 (not illustrated): the minimum number of points ℓη that a segment must contain to ensure
that the atypicity score is estimated with sufficient accuracy is estimated. Similarly, the
minimum delay λη to ensure with high probability that the assignment of a point to a
segment does not change is estimated.

Step 1 : for each time step t, a new data point Xt is observed.

Step 2 : the current time series is segmented τ̂(t). Each segment is homogeneous.

Step 3 : the data points having a status with low confidence are identified to build the active
set. If the current segment is shorter than the minimal requirement ℓη, the active set
contains the entire current segment. Otherwise it contains only the last λη data points
whose segment assignment is uncertain. In the case where λη > ℓη it is possible that by
going back λη points, the current segment is exited. These points belonging to the previous
segment do not belong to the active set, and they are reassigned the historical status they
had just before observing the current segment. A similarity score is assigned to each point
by measuring the similarity between its segment and the current segment, then the n data
points with the highest similarity score are forming the calibration set.

Step 4 : The calibration set and active set data points are scored, using the non conformity
measure a.

Step 5 : The p-values of the active set are estimated using the calibration set. The multiple testing



132 CHAPTER 4. Breakpoint based Anomaly Detection

procedure is applied to the active set to obtain the data-driven threshold, in the figure the
threshold is chosen using the Benjamini-Hochberg procedure.

Step 6 : A decision is made to give the abnormal status to the data point with a p-value lower than
the threshold. For points outside the active set, their status remains the same as in the
previous step. If a current segment has less than m points, it is considered a new segment.
In this case, the previous segment has just been closed by a new breakpoint. The status of
the data point preceding the new breakpoint is updated using the most relevant historical
status. This status is the last one before observing the data of the current segment and
biasing the status estimation (du,t = du,b̂t

).

The modularity of our method allows a better adaptation to the diversity of time series. In the
following sections, two properties of an ideal version of BKAD are investigated theoretically: its
ability to control the FDR at a desired level α, in Section 4.3.2. Then, its ability to deal with
uncertainties in the estimation of breakpoints and the value of scores is studied in Section 4.3.3.
Finally, the validity of the hypotheses introduced is discussed.

4.3.2 Control of the FDR
In this section it is shown that under ideal conditions, the BKAD algorithm controls the FDR
to a desired level α. The various assumptions involved in the control of the FDR are introduced,
followed by the presentation of the theorem.

The first hypothesis concerns the generation of the true anomalies. To be able to control the
FDR of the whole time series from a control on subseries, it is necessary that the distribution of
the subseries is the same as to the rest of the series. The classical assumption is that the data
points are generated by a mixture of a reference distribution and an alternative distribution.

Definition 4.1. [Time series with uniform proportion of anomalies] Let D be the number of
segments. Let τ1, . . . , τD+1 be the breakpoint locations. Let P0,1, . . . ,P0,D be the reference distri-
butions and P1,1, . . . ,P1,D be the alternative distributions. Let π be the proportion of anomalies.
A time series is said to have a uniform proportion of anomalies if (Au) the series describing
anomaly locations and (Xu) the series of observations are generated as follows:

∀i ∈ J1, DK,∀u ∈ Jτi, τi+1 − 1K, Au ∼ Ber(π) and Xu ∼

{
P0,i, if Au = 0
P1,i, if Au = 1

(4.1)

To correctly detect anomalies, it is necessary to identify breakpoints without error. However,
in an online context, breakpoint detection is subject to a certain time delay. To account for
these conditions, it is assumed that there may be errors in the most recent observations, but
that beyond λ∗ data points, all breakpoints are correctly detected.

Definition 4.2. [Ideal breakpoint detector with delay λ∗] Let τ be the true segmentation. Let
λ∗ be an integer. Let τ̂ be the breakpoint detector and τ̂(t) be the estimated segmentation of
X1, . . . , Xt. τ̂ is called an ideal breakpoint detector with delay λ∗ if the true segmentation is
found with delay λ∗.

J1, t− λ∗K ∩ τ̂(t) = J1, t− λ∗K ∩ τ (Segmentation)

It is desirable that the computed scores be iid to correctly estimate the p-value. For example,
if each segment i follows a reference distribution N (µi, 1), then only the mean changes at the
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breakpoints and the oracle score ã(Xu, i) = |Xu − µi| is iid. An oracle score is an atypicity
score that requires the knowledge of unknown quantities to be calculated. In practice, however,
the mean µi is not known, so the empirical mean of the segments is used. In doing so, the
independence property between the scores is lost. But since µ̂i converges to µi, it can be assumed
that for a segment of sufficient length, the scores can be considered iid. This idea is generalized
in the following property.

Definition 4.3. [Score idd under minimal segment length] Let (Xu) be a time series satisfy-
ing Definition 4.1. Assumption Score assumes that there exist an oracle score ã, such that
ã(Xu, iu) = su is iid, where iu is the number of the segment to which u belongs. Furthermore
Score assumes there is a non conformal measure a and an integer ℓ∗ such that:

∀i ∈ J1, DK,∀u1, u ∈ Jτi, τi+1 − 1K, |τi − u1| ≥ ℓ∗, a(Xu, {Xτi
, . . . , Xu1}) = ã(Xu, i)

(Score)

To facilitate the theoretical study, an ideal version of BKAD is introduced. The ideal BKAD
algorithm is described in the following Definition 4.4. This is an ideal version of the algorithm
presented in Algorithm 2, assuming no computational constraints and that the true labels are
known when building the calibration set. At each time step t, the scores and p-values are updated
with information from the new observed data point, then the du,t status is changed in two cases:

• for the most recent observations,

• When a new segment is detected, the status of the last points of the closed segment is
updated.

In other cases, du,t keeps its value computed at the previous instant.

Definition 4.4. [Ideal BKAD] Let λ′ and ℓ′ be two parameters. Noting m = max(λ′, ℓ′), for
each t in J1, T K, the series of scores (su,t), p-values (pu,t) and decision (du,t) of the ideal BKAD
are calculated as the following.

First, the sequence of scores is computed as follows. The calculation is presented separately
for the segments identified between two breakpoints and for the current segment (identified with
his last detected breakpoint b̂t):

∀i ∈ J1, D̂t − 1K,∀u ∈ Jτ̂i(t), τ̂i+1(t)− 1K, su,t = a(Xu, {Xτ̂i(t), . . . , Xmin(τ̂i+1(t)−1,t−m)})
(4.2)

∀u ∈ Jb̂t, tK, su,t = a(Xu, {Xb̂t
, . . . , Xt−m}) (4.3)

Then, the sequence of p-values is computed as follows: p̂u,t = p̂e(su,t,St). With St be the
calibration at time step t and computed as follows:

St = {sh(t−m,1),t, . . . , sh(t−m,n),t} (4.4)

The calibration set is a sliding window containing the n previous scores generated according to
the reference distribution. For each t and i, h(t, i) gives the i-th observation lower than t that
satisfies the H0 hypothesis.

Finally, (du,t) the series of decisions, is computed as follows:
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• The status of the most recent observations is updated:

∀u ∈ Jmax(t−m, b̂t), tK, du,t = 1[pu,t < ε̂(pt−m,t, . . . , pt,t)] (4.5)

• If needed, the status of the last points of the previous segment is updated:

∀u ∈ Jb̂t −m, b̂t − 1K, du,t = 1[pu,t < ε̂(pb̂t−m,t, . . . , pb̂t−1,t)] (4.6)

• The status of other data points remains unchanged.

du,t = du,t−1 (4.7)

The detector associates each observed data point Xu with a status du,t that can evolve
according to the number of observed points t. The goal of the ideal detector is that the du,t

value converges to a final du,T value in a small number of steps and that the final decision series
controls the FDR at a desired level α with a minimum of false negatives. Under assumptions
Segmentation and Score, the ideal version of BKAD, described in Definition 4.4, controls the
FDP and the FDR of the complete series at the level of the mFDR of the subseries of length m.

Theorem 4.1 (False Discovery Rate convergence). Let (X)t≥1 be a time series of infinite size
with uniform proportion of anomalies π as stated in Definition 4.1. It is assumed that assump-
tions Segmentation and Score are verified. Applying the ideal BKAD with λ′ = λ∗ and ℓ′ = ℓ∗

on (Xt), and noting Rb
a the number of rejections on a subset [a, b] and FP b

a the number of false
positives on the same subset.

Rb
a = lim

t→∞

b∑
u=a

du,t

FP b
a = lim

t→∞

b∑
u=a

(1−Au)du,t

Then, the FDP, computed as FDP t
1 = F P t

1
Rt

1
, and the FDR, computed as E[ F P t

1
Rt

1
], converge and

their limit can be calculated as follows:

lim
t→∞

FDRt
1 = lim

t→∞
FDP t

1 = mFDRm
1 (4.8)

The proof of this theorem is given in Section 4.12.1. It follows from this theorem that to
control the FDP at a desired α level, it is sufficient to control the mFDR on a subseries of length
m at the same level. According to Section 3.4.3, the modified BH procedure allows to control
the mFDR if the p-values in the subseries are calculated with a unique calibration set, as stated
in [110].

Corollary 4.1. Under the same notations and assumptions as Theorem 4.1, let m and ν be two
integers, let n and α′ defined by:

α′ = α

1 + 1−α
mπ

and n = νm/α′ − 1
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the threshold procedure is the Benjamini-Hochberg procedure with level α′, also called the modified
Benjamini-Hochberg procedure introduced in Definition 3.6.

The number of data points detected as anomaly by BH in J1, mK is noted Rm
1 . Similarly, Rm

1 (u)
represents the number of data points detected as anomaly, when p̂u,t is replaced with 0. Assuming
that the Power and Heuristic assumptions hold (for more precision refer to Section 3.4.3):

E[Rm
1 ] ≈ mπ

1− α
. and E[Rm

1 (u)] = E[Rm
1 ] + 1 (4.9)

then the FDP of the complete time series is controlled almost surely at the level α:

lim
t→∞

FDRt
1 = lim

t→∞
FDP t

1 = (1− π)α (4.10)

From Corollary 4.1, the modified Benjamini-Hochberg procedure introduced in Definition 3.6
allows to control the FDR at the desired level α. To maximize the performance of the anomaly
detector, it is important to carefully choose the cardinality of the calibration set. Indeed, n must
be of the form νm/α−1 to ensure FDR control, as shown in Section 3.3.2. Section 3.4.3 conducts
experiments to test the validity of the assumptions of Eq. 4.9. The FDP control is stricter and
more interesting in practice than the FDR control because it is obtained for each individual time
series. However, all these controls are obtained for time series of infinite length and are therefore
not strictly applicable in practice. In this chapter, the focus will be on the FDR, which will be
shown experimentally to be controllable even for series of finite length.

FDR control by the anomaly detector is an important property. This result guides the
choice of the threshold selection procedure and the tuning of the calibration set cardinality in
Algorithm 2. However, Segmentation and Score are strong assumptions, it is not possible to
get perfect estimations, the following Section 4.3.3 studies the uncertainty of the estimations.

4.3.3 Manage uncertainty of estimations
This section shows how BKAD minimizes the impact of uncertainty on estimations in an online
context. First, the uncertainty caused by the online context of the estimations is described
mathematically. It is then shown that the ideal version of BKAD can control errors due to
estimation uncertainty.

4.3.3.1 Definition of confidence score

In the previous section, the λ∗ parameter fully characterizes the uncertainty associated with
breakpoint estimation. All points within λ∗ last observed points are potentially assigned to the
wrong segment. Also, ℓ∗ characterizes the uncertainty of the score estimation. All points having
their score estimated with less than ℓ∗ points may be assigned to a wrong status due to an error in
score estimation. If a status is evaluated under uncertain breakpoint location or score estimation,
it may need to be re-evaluated as additional data points are observed. In practice, there is no
λ∗ delay that guarantees that all breakpoints are detected with perfect accuracy. Observation
of a new data point may cause the location of a breakpoint to be updated, a new breakpoint to
be detected, or a breakpoint to be deleted. This can cause a point Xu to change its assigned
segment over time. However, the probability of a point changing its assigned segment decreases
with t. Similarly, there is no ℓ∗ length that guarantees that the value of the oracle’s atypicity
score is known with perfect accuracy. Each time a point is added to a segment, the value of the
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score is updated, which may change the status of the point Xu. These uncertainties in breakpoint
locations and score values lead to uncertainty in the “abnormal” or “normal” status.

Starting from the observation that in an online context, where quantities are estimated know-
ing only part of the time series, it is impossible to estimate the quantity more accurately than
knowing the whole time series. For each data point Xu the oracle status is introduced, noted
d̃u. This is the status that Xu would have been given by BKAD, assuming that the breakpoint
locations and score values were estimated with knowledge of the entire time series.

Definition 4.5 (Oracle status). The oracle status, noted d̃u, is the status of Xu under the
hypothesis that the entire time series is known. Therefore, the breakpoint locations are estimated
using the entire time series, and the atypicity score values are estimated using the entire segments.
With T , the length of the full time series is potentially infinite.

su,T = a(Xu, {Xτ̂i(T ), . . . , Xτ̂ i+1(T )}) (4.11)
d̃u = 1 [p̂e(su,T , Su) < ε(p̂e(su,T ), . . . , p̂e(su+m,T ))] (4.12)

The oracle status defines the confidence score associated with an estimated status. It is the
probability that the estimated status is the same as the oracle status.

Definition 4.6 (Confidence Score). The confidence score cu,t assigns to the decision made for
the data point Xu, at time t, the probability that it remains the same under the oracle status

cu,t = P
[
du,t = d̃u

]
Now that the confidence score associated with a status has been defined, the next step is to

ensure a control on it.

4.3.3.2 Control the confidence in the final decision

As described in Definition 4.4, the status of each data point in the current segment is calculated
as follows in three steps: Let b̂t be the last breakpoint, :

1. For all u in Jb̂t, tK compute the atypicity score su = a(Xu, {Xb̂t
, . . . , Xt−m).

2. For all u in Jb̂t, tK compute the p-value pu = p̂e(su,St)

3. For all u in Jb̂t, tK compute the status du,t = 1[pu < ε̂(pu,t, . . . , pu+m,t)].

Various situations can lead to a change in the status of the point Xu. Before describing these
situations, it is useful to introduce the following events:

• “The status of data point Xu at step t is different than the oracle status”

Vu,t =
{

du,t ̸= d̃u

}
• “The segment to which the data point Xu is assigned at time t changes over time”

Wu,t =
{
∃t′ > t, τ̂(t′)∩Kb̂t, uK ̸= ∅

}
(4.13)

First, if a breakpoint is detected between b̂t and u, as described by the event Wu,t, this means



4.3. Description of the method 137

that the score associated with Xu has to be computed from a different training set. Similarly, if
a breakpoint is detected between u and u + m, it means that the data-driven threshold has to be
computed from a different subseries. For these reasons, the probability of a point changing its
assigned segment P [Wu+m,t] is of interest. If no breakpoint is detected between b̂t and u + m,
the assignment of points u to u + m remains unchanged. This event is recorded in W u,t with
u = u + m. Under the condition of the W u,t event, it is possible for the status to be different
from the oracle status if the addition of a data point in the current segment modifies the score
value: su,T = a(Xu, {Xτ̂i(T ), . . . , Xτ̂i+1(T )), with Jb̂t, t−mK ⊂ Jτ̂i(T ), τ̂i+1(T )K

To bound the probabilities P [Wu,t] or P
[
Vu,t|Wu,t

]
and to build the active set, some assump-

tions are made:

Proposition 4.1 (Stationarity). Let η > 0.

• Assuming fτ : λ 7→ P [Wt−λ,t] is decreasing to 0 and does not depend on t.

Then, there exists λη such that:

∀t ∈ J1, T K,∀u ∈ J1, tK, |u− t| ≥ λη, P [Wu,t] ≤ η. (4.14)

The smallest value respecting this property is noted λ⋆
η .

• Assuming fd : ℓ 7→ P
[
Vu,t|Wu,t, ℓt = ℓ

]
is decreasing to 0 and does not depend on t. Then,

there exist a segment length ℓη such that:

∀t ∈ J1, T K,∀u ∈ J1, tK, ℓ ≥ ℓη, P
[
Vu,t|Wu,t, ℓt = ℓ

]
≤ η. (4.15)

The smallest value of ℓη is noted ℓ⋆
η.

The conclusions of Proposition 4.1 follow directly from the definition of convergence to 0.
Before considering the consequences of this proposition in Theorem 4.2, the validity of the as-
sumptions is discussed. The function fτ : λ 7→ P [Wt−λ,t] gives the probability that the segment
assigned to Xt−λ changes as a function of the distance λ from the last observation. It is assumed
to be decreasing because the probability of missing a breakpoint decreases with the number of
points. The function fd : ℓ 7→ P

[
Vu,t|Wu,t, ℓt = ℓ

]
gives the probability of changing the status

of a point conditional on the assigned segment remaining unchanged, as a function of the length
ℓ of the segment. It is assumed to decrease with the number of points inside the segment. It
is assumed that P [Wt−λ,t] and P

[
Vu,t|Wu,t, ℓt = ℓ

]
do not depend on t. Since the probability

of detecting a breakpoint depends on the position of the actual breakpoint, this assumption can
only be verified by assuming that the position of the breakpoints is determined by a stationary
process. Furthermore, the probability of detecting a breakpoint depends on the of the shift
that occurs in the time series. Therefore, another necessary condition is to assume that at each
breakpoint the segment law changes according to transition rules that are the same throughout
the series. Assuming that the probabilities P [Wt−λ,t] and P

[
Vu,t|Wu,t, ℓt = ℓ

]
do not depend on

t, it is possible to use the same model for the entire series. Thus, there is no need to recalculate
these probabilities for each observation time.

From this result, the definition of the active set as applied at the start of Algorithm 2 can be
deduced. Let λ̂η and ℓ̂η be estimators of λη and ℓη. The active set contains the data points whose
status needs to be reassessed because the uncertainty associated with estimating the position of
breakpoints or the value of scores is too large. As shown in Algorithm 3, the procedure starts
by comparing the length ℓt of the current segment with the threshold length ℓ̂η. If the length ℓt

is lower than this threshold, the whole segment is considered as the active set since the segment
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does not contain enough points to estimate the atypicity score with high precision. Otherwise,
the segment contains enough points and the source of the status change is segment reassignment.
Considering the data points whose distance to the end of the time series is less than λ̂η, the risk
of being reassigned to another segment is high. Consequently, the active set will contain all
points that are after the position t− λ̂η. In the case λ̂η is larger than the length of the current
segment, the active set will include the current segment. Given mt the active set cardinality, the
active set is equal to:

Iactive = {t−mt + 1, . . . , t}

Algorithm 3 Computation of active set cardinality.
1: if ℓt < ℓ̂η then
2: mt ← ℓt

3: else
4: mt ← min(λ̂η, ℓt)
5: end if
6: return mt

The goal is that by re-evaluating only the points in the active set, defined by Algorithm 3
using λη and ℓη, the final status of a data point will be the same as the oracle status with a high
probability. Also, ideally, the active set should be as small as possible so that the status of a
data point converges quickly to its final status. The following Theorem 4.2 addresses this issue.

Theorem 4.2 shows that under the conditions of Proposition 4.1, the ideal version of BKAD,
applied with λη and ℓη parameters, controls the proportion of differences between the final status
du,T and the oracle status d̃u.

Theorem 4.2. Let η be the confidence threshold, λη and ℓη are defined as in Proposition 4.1.
Let m be the integer defined by m = max(λη, ℓη).

It is assumed that:

• the probability to move the latest breakpoint beyond m is lower than η.

P(∃t′b̂t′ < b̂t and |b̂t′ − t′| > m||bt − t| < m) ≤ η (4.16)

• The probability of changing the segment assignment depends only on λu,t = t − u, the
distance between Xu and the end of the time series t. This assumption can be used to
calculate the probability of changing the segment assignment within the previous segments
(segments that are not the current segment):

P[∃t′ > t, τ̂(t′)∩Kτ̂i(t), uK ̸= ∅|t− τ̂(t) = λ] = P[∃t′ > t, τ̂(t′)∩Kb̂t, uK ̸= ∅|t− b̂t = λ] (4.17)

Then, applying the ideal BKAD as stated in Definition 4.4 with the parameters λ′ = λη and
ℓ′ = ℓη, for each u, the probability that the final status is different than the oracle status is lower
than η:

P(du,T ̸= d̃u) ≤ 3η (4.18)
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Furthermore, introducing the following notation: For all t, for all u, let τ̂ :u(t) = {τ̂i(t), τ̂i(t) <
u} and τ̂u+q1:(t) = {τ̂i(t), τ̂i(t) > u + q1}.

Assuming that there is a number q1 such that

∀u, t, τ̂(t):u ⊥ τ̂u+q1:(t) (4.19)

Then, the proportion of status that are different between the final status and the oracle status
is lower than η:

lim
t→T

1
t

t∑
u=1

1[du,t ̸= d̃u] ≤ 3η (4.20)

The proof of Theorem 4.2 can be found in Section 4.13.2.

The results of Theorem 4.2 support the way the active set is built at the beginning of Algo-
rithm 2. However, the true values of λη and ℓη are not known, so they need to be estimated. This
problem is addressed in Section 4.6. Furthermore, this result is for an ideal version of BKAD,
which cannot be used in practice. The following section discusses the validity of the various
hypotheses.

4.3.4 Discussion of theoretical hypotheses
The previous theoretical results prove that under ideal conditions BKAD allows to detect anoma-
lies with a control on the FDR. Also the strategy consisting in updating only the active set ensures
that the final status are the same as knowing the complete time series, with a low proportion of
errors. These ideal conditions cannot be verified in practice. The approach in this chapter is as
follows: Each component of the BKAD detector is studied to find the best parameters. Then,
the detector is empirically tested to see under which conditions it succeeds in detecting anoma-
lies with a control on the FDR. Now, the different assumptions are examined, their validity is
discussed, and the properties that the components must verify are deduced.

First, the assumption Segmentation cannot be verified. It is impossible to ensure that a
breakpoint detector estimates the location of all breakpoints with perfect accuracy, even with
a delay of λ > 0. To get closer to these working hypotheses, a powerful breakpoint detector
is needed. BKAD uses KCP [6] because it has several interesting properties: the number of
breakpoints is estimated by model selection, it can detect changes in any feature thanks to
kernels and it does not require parametric assumptions that are difficult to verify. For more
details, see the dedicated Section 4.4.

The assumption that there is an iid oracle score is always verified. Indeed, for each segment i
in J1, DK, the reference distribution is noted P0,i and for each normal data point of the indices u
in this segment: ã(Xu, i) = PX∼P0,i

(X ≤ Xu) follows a uniform distribution U(0, 1). However,
there is not always uniqueness of such an oracle score. For example, if the changes occur only in
the mean, then by noting µi the mean of the ith segment, |Xu−µi| is also an oracle atypicity score
that verifies the iid property. In practice, the oracle score has to be estimated correctly, which
can be difficult depending on the oracle score. However, it is not possible to verify the property
Score. Indeed, it is not possible to know the value of the oracle atypicity score with perfect
accuracy. To approach this property, one needs a measure of nonconformity a that converges as
quickly as possible to the value of the oracle atypicity score. As described in Section 4.5, the
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non conformity measure must be robust and efficient. As a consequence of the fact that the
estimated atypicity scores are not iid, the scores from different segments cannot be rigorously
used to construct the calibration set. To limit this issue, the calibration set is built from the
segments with the most similar distribution to the one of the current segment. This mechanism
is described in Section 4.7.

Another assumption of the ideal BKAD in Definition 4.4 is that the calibration set is built
using only normal data points, which requires knowledge of the true labels. In the Algorithm 2,
this is obtained by using the labels previously estimated by the anomaly detector. This exposes
the calibration set to contamination from undetected anomalies. It can also bias the calibration
set by incorrectly removing false positives. This may limit the ability of BKAD to control the
FDR. From a theoretical point of view, this leads to a dependency between the calculation of the
p-value at time t and the state of the data points at the previous time t− 1, which complicates
the analysis.

Finally, in the previous section, the values of λ∗
η and ℓ∗

η were obtained from the functions
fτ and fd. These quantities are needed to reduce the uncertainty of the BKAD estimates. In
Section 4.6, estimators of fτ and fd are introduced.

In the following Sections 4.4- 4.8 the different components of the algorithm are discussed and
described in more detail.

4.4 Breakpoint estimation

As described at Section 4.2.1 the time series (Xt)1≤t≤T has D segments with breakpoints denoted
τ1, ..., τD+1. The segment X

τi+1−1
τi is said homogeneous. Informative features for anomaly detec-

tion, such as the mean or the variance, can be extracted if the breakpoints are correctly identified.
A good breakpoint detector is important to increase the accuracy of anomaly detection. If a shift
is not well detected, the analyzed segment will be heterogeneous and the estimation of the law
under H0 will be biased. If too many breakpoints are detected in a segment while it is homoge-
neous, the analyzed segments will contain fewer points and the variance of the predictions will be
too high. To maximize the performance of the anomaly detection, the number and the locations
of breakpoints have to be accurately estimated. The article [163] is a review of existing offline
breakpoint detectors. As described with more details in Section 1.2.3, the authors show that a
breakpoint detector can be described as an optimization problem, using three notions: a cost
function C, a search function on T and a penalty function pen. The segmentation returned by
the breakpoint detector is the one that minimizes the penalized cost function among the explored
solutions:

τ̂ ∈ arg min
τ∈T

Dτ∑
i=1
C(Xτi+1−1

τi
) + pen(Dτ ) (4.21)

In this chapter, the Kernel Change Point (KCP) introduced in [6] is used for its advantages.
The kernel-based cost function could be used for any kind of time series, univariate or multivari-
ate, without changing the breakpoint detector. The diversity of time series and breakpoints types
are handle throw the choice of the kernel and its hyperparameters. This accuracy is guaranteed
by the oracle inequality given in [6]. For a given segmentation τ = (τ1, . . . , τD+1) and a kernel
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K, the cost is given by:

R̂(τ) = 1
t

t∑
u=1

K(Xu, Xu)− 1
t

Dτ∑
i=1

1
τi+1 − τi

τi+1−1∑
u,v=τi

K(Xu, Xv) (4.22)

First, the candidate segmentations that minimize the criterion are identified for each possible
number of D segments. T D is the space of all candidate segmentations with D segments, τ̂D,t

is the best candidate segmentation with D segments and LD,t is the cost associated with this
segmentation.

LD,t = min
τ∈T D

R̂(τ)

τ̂D,t = arg min
τ∈T D

R̂(τ)

To estimate the number of segments and thus the best segmentation, one searches for the segmen-
tation τ̂D,t that minimizes the penalized criterion described in Eq. 4.21. The penalty function is
given by:

pen(Dτ ) = r1Dτ + r2 log
(

t− 1
Dτ − 1

)
(4.23)

where the coefficients r1 and r2 are estimated by fitting the penalty function on the estimated
cost for over-segmented segmentations [12].

KCP is designed as an offline breakpoint estimator. By using Dynamic Programming, the
segmentation costs can be estimated without performing the same computation between time
t and t + 1 as described in [38]. This feature is necessary to be applied in an online anomaly
detection. The data driven penalty function enables good accuracy in estimating the number
of breakpoints. The breakpoints are detected by solving the optimization problem with the
algorithm: Dmax depends on T , according to [6], it can be chosen equal around: n/

√
log n . The

Algorithm 4 Dynamic Programming for breakpoint detection.
Require: T > 0, (Xt) time series, C Kernel based cost function, Dmax maximum segment

number explored and SlopeHeuristic implement the slope heuristic.
for t ∈ J1, T K do

for D ∈ J1, DmaxK do
LD,t ← mint′≤t LD−1,t′ + Ct′,t

τ̂D(t)← arg mint′≤t LD−1,t′ + Ct′,t

end for
r1, r2 ← SlopeHeuristic(L)

D̂ ∈ arg minD LD,t + r1D + r2 log
(

t− 1
D − 1

)
τ̂(t)← τ̂D̂(t)

end for
Output: ∀t ∈ J1, T K, (τ(t))1≤t≤T estimated segmentation at each time step.

main degree of freedom in KCP is the choice of the kernel. Characteristic kernels [59], like the
Gaussian kernel, are able to detect any kind of change: shift in the mean, shift in the variance,
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shift in the third moment,. . .

K(x, y) = exp(−||x− y||2

2h2 ) (4.24)

However, due to the fact that the number of points within a segment is finite, the performance
of a characteristic kernel depends on the choice of hyperparameters. In the case of the Gaussian
kernel, the only parameter is the bandwidth h. For changes that occur in the mean, the median
heuristic, shown in Eq. 4.25, gives good results [61]. Defining a method to select the most relevant
kernel for any kind of breakpoint is still an open question.

h = mediani ̸=j(||Xi −Xj ||) (4.25)

Breakpoint detection is used to define homogeneous segments. In the next section, the charac-
terization of atypicity in each segment is studied.

4.5 Atypicity score
In this chapter, an anomaly is a data point that does not follow the reference distribution of the
segment to which it belongs. To construct an atypicity score that is higher for abnormal points,
a point must be compared to the rest of the segment.The Nonconformity Measure (NCM) from
[145] is introduced. The Nonconformity Measure a, is a real valued function a(z, B) that measure
how different z is from the set B. A nonconformity measure can be used to compare a data point
with the rest of the segment. If all points within a segment are generated by the reference
distribution, then the Nonconformity Measure provides an atypicity score for this segment.

∀i ∈ J1, DK, ∀Jτi, τi+1J, a(Xt) = a(Xt, {Xτi
, . . . , Xτi+1−1}\{Xt}) (4.26)

The following properties are required to enable the usage of the nonconformity measure to
build a good atypicity score:

• anomalies should have higher atypicity score than normal data points.

• the NCM must be robust [156, 138, 176] to the presence of anomalies. The anomalies
present in the segment do not affect the value of the returned measure.

• the values returned between different segments must be comparable, so that a p-value can
be estimated, with a calibration set containing values from different segments. The iid
property of scoring is introduced in Definition 4.3, to formalize this idea.

The property of score stationarity depends on the time series. For example, the z-score with
true known mean and standard deviation satisfies the stationarity property only if the changes
generated by the breakpoints are shifts in the mean or in the standard deviation. If the change
occurs in higher moments, the property is not satisfied. Furthermore, the property is not satisfied
for the z-score if the mean and standard deviation need to be estimated. Since the stationarity
of the score is difficult to obtain, it is approached with the following strategies:

• Ensure that the segment contains enough points to ensure the convergence of the non-
conformity measures. For example, since the mean and variance must be estimated, the
z-score is not stationary. However, if these parameters converge to the true mean and
standard deviation, then the z-score can be considered stationary once the segments have
enough points. The faster convergence is achieved, the easier it is to ensure the stationarity
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property. An NCM is said to be efficient when convergence is achieved for a low number
of points.

• Instead of using the entire segment, the training set can be built by resampling a specified
number of points. It can be used on NCM that are highly dependent on the training set
cardinality, like kNN.

• Rather than trying to ensure that the score distribution is identical in each segment, identify
the segments with the most similar distribution, as described in Section 4.7.

Many NCMs depend on segment parameters to be estimated, e.g. the z-score requires knowledge
of the mean and variance. To satisfy the properties of a good atypicity function, the estimators
need to satisfy the following requirements:

1. the estimator should be robust to anomalies in the training set: the estimation should not
be affected by the presence of anomalies in the training set.

2. The estimator should be efficient [93]. High precision estimation of the parameter should
be obtained with a minimal number of samples.

4.5.1 Experiments

It has been seen that to build a good score function, the estimators used must verify the robust-
ness and efficiency properties. To assess the robustness and the efficiency of the atypicity score,
synthetic data are used for experimentation and analysis. The robustness of an estimator is its
ability to be unbiased in the presence of anomalies. An estimator is said efficient when it is close
to the parameter value with a limited number of data points. In this analysis, three categories
of estimators are tested: one “efficient and not robust”, a second “not efficient and robust” and
a third “robust and efficient”. These three estimators are analyzed considering the absence or
presence of anomalies. The assessment is based on the parameter estimation error and on the
anomaly detection performances using FDR and FNR.

4.5.1.1 Description

In this experiment, the focus is on the z-score. The atypicity of a data point x is calculated from
the mean µ and standard deviation σ as follows az(x, µ, σ) = (x−µ)/σ. In an anomaly detection
context, the mean and standard deviation are unknown and need to be estimated. There are
many estimators of the mean and standard deviation. These estimators have different properties
in terms of robustness and efficiency. In order to study the relationship between these properties
and the performance of the anomaly detector, three estimators are chosen for each of these two
values.
For the mean value the three estimators are defined as the following:

• Maximum Likelihood Estimator: µmle = 1
n

∑
i xi. This estimator is efficient but not robust

against anomaly contamination.

• Median: µr = median(x1, ..., xn). This estimator is robust but less efficient than the MLE
estimator.
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• Biweight location, introduced in [69]. This estimator is robust and efficient.

µbw =
∑ℓ

i=1(1− u2
i )xi1[|ui| < 1]∑ℓ

i=1(1− u2
i )

ui = xi − x

9MAD

Where x is median of the xi and MAD is the median absolute deviation.

For the standard deviation, the three estimators are defined as the following:

• Maximum Likelihood Estimator: σmle =
√

1
n

∑
i(xi − µ)2. This estimator is efficient but

not robust against anomaly contamination.

• Median: σmad = median(||xi − µ|). This estimator is robust but less efficient than the
MLE estimator.

• Biweight Midvariance estimator: introduced in [147]. This estimator is robust and efficient.

σ2
bw = ℓ

∑ℓ
i=1(xi − x)2(1− u2

i )4
1[|ui| < 1]

(
∑ℓ

i=1(1− u2
i )(1− 5u2

i )1[|ui| < 1])2

ui = xi − x

9MAD

Where x is the median of the xi and MAD is the median absolute deviation.

All the six estimators are evaluated according to two measures:

1. First, the precision and the robustness of the estimator is evaluated using the Mean Squared
Error (MSE), applying the following procedure: Let θ be either the mean or the standard
deviation parameter, and θ̂ be an one estimator of the parameter θ. Let ℓ be the cardinality
of the segment used to estimate θ. Let B be the number of repetitions for the experiments.

(a) Generate the segment data: For b in [1, B] and for i in [1, ℓ], Xb,i ∼ N (0, 1), if the
segment contains only normal data. For b in [1, B] and for i in [1, ℓ0], Xb,i ∼ N (0, 1)
and for i in [ℓ1, ℓ], Xb,i = 4, if the segment is contaminated by anomalies.

(b) Estimate the parameter using the estimator: For b in [1, B], θ̂b = θ̂(Xb,1, ..., Xb,ℓ).

(c) Compute the MSE, MSE = 1
B

∑B
b=1(θ̂b − θ)2

Different values of the segment length ℓ are tested, from 10 to 1000. For each value of ℓ,
two values of ℓ1 are tested. One with ℓ1 = 0, for the case where there are no anomaly in
the training set. The other with ℓ1 = ⌊0.02ℓ⌋ for the case of contamination with anomalies.
For each set of parameter values, the experiment is repeated B = 1000 times. The true
mean is µ = 0 and the true standard deviation σ = 1.

2. Then, the Anomaly Detection capacity is evaluated using the FDR and FNR criteria.
This is done by simulating multiple detections inside a segment applying the following
procedure: using n the calibration set cardinality, ℓ the length of the segment, ℓ1 the
number of anomalies in the training set, m the test set cardinality and m1 the number of
anomalies in the test set:
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(a) Generate training segment data with ℓ1 anomalies.

∀i ∈ J1, ℓ1K, Xi ∼ N (4, 0.1), and ∀i ∈ Jℓ1, ℓK, Xi ∼ N (0, 1)

And estimate the segment mean and standard deviation

µ̂ = µ̂(Xℓ
1), σ̂ = σ̂(Xℓ

1)

(b) Generate the calibration set

∀j ∈ J1, nK, Yj ∼ N (0, 1)

(c) Generate the test segment data

∀i ∈ J1, m1K, Zi ∼ N (4, 0.1), and ∀i ∈ Jm1, mK, Zi ∼ N (0, 1)

(d) Compute the p-values of the test set, using calibration set and affected by the param-
eter estimations

∀i ∈ J1, mK, p̂i = 1
n

n∑
j=1

1[Yj > (Zi − µ̂)/σ̂]

(e) Anomalies are detected using the Benjamini-Hochberg procedure on the p-values. The
threshold of the BH procedure is noted ε̂BHα

as stated in Definition 3.2:

ε̂ = ε̂BHα(p̂1, . . . , p̂m)

(f) Compute FDP and FNP. Remembering that anomalies are generated in the first m1
values of the test set:

FDP =
∑m

j=m1
1[p̂j ≤ ε̂]∑m

j=1 1[p̂j ≤ ε̂]

FNP =
∑m1

j=1 1[p̂j > ε̂]
m1

To simplify matters and make the effect of anomalies deterministic, in these experiments
the number of anomalies is fixed rather than randomly drawn (unlike the mixture model).
Different values of segment length ℓ are tested, from 10 to 500. For each value of ℓ, two
values of ℓ1 are tested. One with ℓ1 = 0, for the case where there are no anomaly in the
training set. The other with ℓ1 = ⌊0.02ℓ⌋ for the case of contamination with anomalies.
The test set contain m = 100 data points with m1 = 1 anomaly and the calibration set
contains n = 999 data points. For each set of parameter values, the experiment is repeated
B = 104 times.

4.5.1.2 Results

Figures 4.4 and 4.5 illustrate the estimators performances of the mean estimators. Figure 4.4
compares different mean estimators according to the segment length. The MSE decreases rapidly



146 CHAPTER 4. Breakpoint based Anomaly Detection

with the sample size for all estimators in Figure 4.4a. However the MLE and BW estimators have
very close and slightly better performances compared to the median estimator. This illustrates
the efficiency of the MLE and BW estimators. But in the presence of anomalies, the performance
of the MLE estimator is severely degraded as shown in Figure 4.4b compared to the median and
BW estimators showing more robustness in the presence of outliers.

(a) Without anomaly contamination. (b) With anomaly contamination.

Figure 4.4: Estimation error of the mean as a function of segment length and mean estimator
used.

Figure 4.5 illustrates the FDR and FNR of the anomaly detector according to the mean
estimator used. As shown in Figure 4.5a and 4.5b, in the case of non contamination by anomalies,
the FDR and FNR results are very close to the target for all the estimators. However, in presence
of anomalies, the MLE performance is degraded. In Figure 4.5c, the FDR is below the targeted
level and in Figure 4.5d, the FNR is higher than other estimators. Either Med or BW can be
used to do anomaly detection.

Figures 4.6 and 4.7 illustrate the performances of the standard deviation estimators. Fig-
ure 4.6 compares the precision using the MSE of the different standard deviation estimators
according to the segment length. The MSE decreases rapidly with the sample size for all esti-
mators in Figure 4.6a. However the MLE and BW estimators have very close and better per-
formances when compared with the MAD estimator. This illustrates the efficiency of the MLE
and BW estimators. But in the presence of anomalies, the performance of the MLE estimator is
severely degraded as shown in Figure 4.6b. On the contrary, the MAD and BW estimators are
less degraded and show more robustness in presence of outliers.

Figure 4.7 shows the performances measured by FDR and FNR once the anomaly detection
is applied. As illustrated in Figures 4.7a and 4.7b, FDR and FNR for MAD are higher compared
to MLE and BW. But in presence of anomalies, the MLE performance is degraded. The FDR
is below the targeted level, as shown Figure 4.7c, and the FNR is higher than other estimators,
as shown in Figure 4.7d. The strange behavior of the MLE curve in Figure 4.7d with spikes
in the FNR is due to the number of anomalies increasing with every 50 data points because
ℓ1 = ⌈0.02ℓ⌉. The best estimator for standard deviation in case of anomaly detection is BW.
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(a) FDR, without anomaly (b) FNR, without anomaly

(c) FDR, with anomalies (d) FNR, with anomalies

Figure 4.5: Anomaly detector performances as a function of the segment length and the mean
estimator used. (α = 0.1)

(a) Without anomaly contamination. (b) With anomaly contamination.

Figure 4.6: Estimation error of standard deviation as a function of the segment length and the
standard deviation estimator used.
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(a) FDR, without anomaly (b) FNR, without anomaly

(c) FDR, with anomalies (d) FNR, with anomalies

Figure 4.7: Anomaly detector performances as a function of segment length and standard devi-
ation estimator used. (α = 0.05)
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4.5.1.3 Conclusion

The experiments show the importance of the robustness and efficiency to build a good atypicity
score. High MSE implies lower performance in terms of FDR and FNR control. The classical
standard deviation estimators, MLE and MAD, are underperforming. For the following sections
of this chapter, the BW (Biweight midvariance) estimator is used to implement the scoring
function.

4.6 Confidence score estimation
Section 4.3.3 treats the uncertainty problem introduced in Section 4.2.3 from a theoretical point
of view. An active set is constructed to collect points with too low a confidence score. The
uncertainty in assigning a point to a segment with delay λ is modeled by fτ (λ). The uncertainty
in estimating the atypicity score in segments of length ℓ is described by the probability fd(ℓ).
Therefore, to construct the active set, the functions fτ and fd must be known or estimated. This
question is addressed in this section, the estimation of fτ in Section 4.6.1 and the estimation of
fd in Section 4.6.2.

4.6.1 Estimate the probability of segment assignment change
As introduced in Section 4.3.3.2, fτ (λ) is the probability that the segment assignment changes
when a data point is at distance λ from the end of the time series. This probability fτ (λ)
is needed to build the active set containing data points with uncertain status, as described in
Algorithm 3. In the following, a procedure is proposed to estimate fτ (λ).

4.6.1.1 Description of the method

As a reminder, the existence of fτ (λ) is ensured by the stationarity assumption described in
Proposition 4.1. However, stationarity is not sufficient to calculate these probabilities directly
from historical data in the same time series and thus to estimate f̂τ . It must also be assumed
that the series 1 [Wt−λ,t] is ergodic.

Proposition 4.2 (Ergodicity). Assume 1 [Wt−λ,t] is stationary and ergodic. Then

P[Wt−λ,t] = lim
T →∞

1
T

T∑
t̃=1

1[Wt̃−λ,t̃] (4.27)

The conclusion of the Proposition 4.2 follows directly from the definition of ergodic process
[67]. A sufficient condition to verify the ergodicity is the weak dependence or mixing [23]. There
are several ways to characterize this property. The general idea is that the dependence between
two points 1[Wt1−λ,t1 ] and 1[Wt2−λ,t2 ] must go to 0 as t1 − t2 goes to infinity. This property is
assumed to be verified when these criteria are satisfied:

• the locations of the breakpoints are taken from an iid probability distribution,

• the transition in distribution between two segments (for example a shift in the mean) is
generated by an iid model,

• Breakpoint detection performance is uniform over the entire time series. This is assumed
to be the case for KCP.
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An example of model achieving these criteria is given in Section 4.9.1. The breakpoint position
iid property assumes the existence of random variables that generate the positions of these
breakpoints. These random variables are assumed to be iid and uniform over J1, T K. The iid
property for the transition of the reference distribution implies the existence of random variables
that generate the reference law of segment i from that of segment i− 1. These random variables
must be iid to guarantee uniformity in the difficulty of detecting breakpoints. As an example
the time series generated in Section 4.9.1 satisfy these criteria: the segment length follows an
exponential law, the positions of breakpoints follow a stationary Poisson process. The transition
law is described as a homogeneous Markov chain on the parameters of the reference distribution.

The ergodicity property can be used to derive a learning algorithm. The time series is split into
two parts: historical and recent data. The historical data set is built using the first T̃ data points
of the time series. The estimation of fτ is based on the previous segment assignment changes
that occurred while detecting breakpoints on historical data. To estimate this probability, the
list of all previous segmentations D = (τ̂1, . . . , τ̂T̃ ) is used. Assuming stationarity and ergodicity
of 1 [Wt−λ,t], where the event Wt−λ,t is described in Eq. 4.13, these historical data are used to
estimate fτ (λ) using Eq. 4.27.

P [Wt−λ,t] ≈
1
T̃

T̃∑
t=1

1

[
W T̃

t̃,t̃−λ

]
= f̂τ (λ) (4.28)

where W T̃
t̃,t̃−λ

=
{
∃t′ ∈ Jt̃, T̃ K, τ̂t′ ∩ Jb̂t̃, t̃− λK ̸= ∅

}
.

However, to improve computation time, the following expression of W T̃
t̃,t̃−λ

is preferred:

W T̃
t̃−λ,t̃ =


 ⋃

T̃ ≥t′>t̃

τ̂t′

 ∩ Jb̂t̃, t̃− λK ̸= ∅

 (4.29)

With this formulation, each breakpoint is checked only once to see if it belongs to Jb̂t̃, t̃ − λK.
Indeed, many breakpoints remain at the same position from one step to the next step while
applying the breakpoint detection procedure.
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Algorithm 5 Exact computation of probability of segment assignment change.
Require: (τ(t̃))T̃

1 list of successive segmentations
I, S ← 0
τglobal ← ∅
for t̃ ∈ [T̃ , 1] do

τglobal ← τglobal ∪ τ̂(t̃)
for u ∈ [b̂t̃, t̃] do

for b′ ∈ τglobal do ▷ b′ is a breakpoint
if b̂t̃ < b′ ≤ u then

It̃,u ← 1
end if

end for
end for

end for
for λ ∈ [0, T̃ ] do

for t̃ ∈ [λ, T̃ ] do
Sλ ← Sλ + It̃,t̃−λ

end for
f̂τ,λ ← Sλ/(T̃ − λ)

end for
Output: f̂τ,λ list of f̂τ (λ) values for different λ

return f̂τ,λ

Algorithm 5 implements Eq. 4.29 to give an estimation of fτ . Where It̃,u = 1[W T̃
t̃,u

] and
Sλ =

∑T̃
t̃=λ It̃,t−λ so f̂τ (λ) = Sλ

T̃ −λ
.

The complexity of the exact computation of f̂τ , described in Algorithm 5, is quadratic in
time and space, which is a drawback regarding any practical use. Another version of the imple-
mentation of f̂τ is given in Algorithm 7 which is more convenient for an online context since it
is linear in time and space.

Indeed, by observing the evolution of the breakpoints over time (not shown in this thesis),
it appears that the position of the last breakpoint is the most likely to change, while that of
the other breakpoints are generally stable. This leads us to modify the characterization of the
“assigned segment change” event by considering only the change caused by the last breakpoint
instead of the entire segmentation.

∀t, λ ∈ J1, T K2
1[W T

t,t−λ] = 1

[
∃t′ ∈ Jt, T K, b̂t < b̂t′ ≤ t− λ

]
(Last)

Under this assumption, the computation of f̂τ (λ) can be simplified using Proposition 4.3.

Proposition 4.3. Let (Xt)1≤t≤T be a time series of length T . Let (τ̂(t))1≤t̃≤T̃ be the sequence
of successive segmentations of the time series. Let (1[W T

t,u])1≤t≤T,1≤u≤T the family of “assigned
segment change” events. Assume that the assumption (Last) is verified. Then the estimator f̂τ



152 CHAPTER 4. Breakpoint based Anomaly Detection

described in Eq. 4.29 is computed as

f̂τ (λ) = 1
T̃

T̃∑
t̃=1

1 [rt̃ > λ] (4.30)

where rt̃ is the maximum distance from the the end of the time series with Xt having segment
reassigned. It is computed as:

rt̃ = max
t′>t̃,b̂t′ >b̂t̃,b̂t′ <t̃

t̃− b̂t′ (4.31)

Notice that rt̃ does not depend on λ. It is sufficient to calculate rt̃ once for all λ. Therefore,
it’s easy to deduce the value of fτ (λ) for all λ. The most demanding part is the computation of rt̃.
Two implementations of rt̃ computation are proposed. Algorithm 6 gives the most naive version,
each rt̃ is calculated one after the other. The problem is that the calculation of rt̃ is itself linear
in the length of the series. Therefore, the time complexity is quadratic. Algorithm 7 improves the
computation by swapping the two loops. This limits the total number of comparisons performed.
In the second loop, t̃ takes on the values between b′

t and t′. The number of values taken by t̃ is
the length of a segment, not a the length of the time series. Algorithmic complexity is therefore
linear.

Proof of Proposition 4.3. Based on Eq. 4.29, the estimator f̂τ is given by:

f̂τ (λ) = 1
T̃

T̃∑
t=1

1

[
W T̃

t̃,t̃−λ

]
With assumption (Last) it gives:

1

[
W T̃

t̃,t̃−λ

]
= 1

[
∃t′ ∈ Jt̃, T̃ K, b̂t̃ < b̂t′ ≤ t̃− λ

]
The inequality b̂t̃ < b̂t′ ≤ t̃− λ is equivalent to b̂t̃ < b̂t′ and t̃− b̂t′ > λ which gives

1

[
W T̃

t̃,t̃−λ

]
= 1

 ⋃
t′>t̃,b̂t′ >b̂t̃,b̂t′ <t̃

t̃− b̂t′ > λ



Since, a set contains a number greater than λ, if and only if its maximum is greater than λ, it
gives:

1

[
W T̃

t̃,t̃−λ

]
= 1

[(
max

t′>t̃,b̂t′ >b̂t̃

t̃− b̂t′

)
> λ

]

Since λ > 0, when b̂t̃ < b̂t′ and t̃−b̂t′ > λ it also implies that t̃ ≥ b̂t′ so 1
[(

maxt′>t̃,b̂t′ >b̂t̃
t̃− b̂t′

)
> λ

]
=

1

[(
maxt′>t̃,b̂t′ >b̂t̃,b̂t′ <t̃ t̃− b̂t′

)
> λ

]
. The number rt̃ is introduced as equal to maxt′>t̃,b̂t′ >b̂t̃,b̂t′ <t̃ t̃−
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b̂t′ . The f̂τ estimator can be written as follows

f̂τ (λ) = 1
T̃

T̃∑
t̃=1

1 [rt̃ > λ]

Algorithm 6 Naive computation of rt̃.
for t̃ in J1, T̃ K do

for t′ in Jt̃, T̃ K do
if b̂t′ < t̃ and b̂t̃ > b̂t′ then

rt̃ = max(rt̃, t̃− b̂t′)
end if

end for
end for

Algorithm 7 Efficient computation of rt̃.
for t′ in J1, T̃ K do

for t̃ in Jb̂t′ , t′K do
if b̂t̃ > b̂t′ then

rt̃ = max(rt̃, t̃− b̂t′)
end if

end for
end for

4.6.1.2 Application on simulated data

In the previous Section 4.6.1.1, two algorithms for estimating the probability of a segment assign-
ment change were described: the exact estimation using Algorithm 5 and an efficient estimation
using Algorithm 7. In this section, these different methods are assessed by experiments on
simulated data.

Description of the experiment The following notations are used: Let T be the length of
the time series, θ the average segment length, ∆ the size jumps to generate a breakpoint and σ
the standard deviation of the data point within a segment.

Time series are generated according to the following rules:

• The number of breakpoints follows the exponential distribution D − 1 ∼ Exp(T/θ).

• Each breakpoint position is generated according to uniform distribution ∀i ∈ [1, D−1], τi ∼
U(1, T )

• The mean of the time series µi is piecewise constant with respect to the segmentation τi,
with µτi − µτi+1 = ξ∆σ

• The time series is generated according to the following rule Xt ∼ N (µt, σ)

Then f̂τ (λ) is estimated using the two different methods: Algorithm 5 and Algorithm 7.

Results and analysis: Figure 4.8 gives the estimated probability of segment assignment
change according to the two estimation Algorithms 5 and 7. The two algorithms give results
that are almost the same, as shown in Figure 4.8. The selected λ⋆

η is equal to 143, in the two
cases. This supports assumption that (Last) is verified. In practice, we recommend to use the
Algorithm 7 method since it is more computationally efficient. To compute the probability f̂τ (λ)
on a PC (4 CPU, 16GB), the Algorithm 7 gives results within 30 seconds compared to the exact
computation which gives the results within 15mn, for a time series of length 104.
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Figure 4.8: Probability of assignment change as a function of distance to time series end.

4.6.2 Estimate the probability that the point will have a status differ-
ent from that of the oracle if the point is assigned to the same
segment as the oracle.

As introduced in Section 4.3.3.2, fd(ℓ) is the probability that the status of a point changes under
the conditions the last breakpoint remains unchanged and the segment cardinality is equal to ℓ.
This probability fd(ℓ) is necessary to build the active set containing data points with uncertain
status, as described in Algorithm 3. In this section, a procedure to estimate fd(ℓ) is proposed.

(a) Starting new segment with small
length.

(b) Data points added to the current
segment becoming larger.

(c) Z-score for small segment (d) Z-score for larger segment

Figure 4.9: Atypicity score estimation according to the length of the current segment.

Figure 4.9 illustrates how the the length of the current segment has an influence on the
accuracy of the atypicity score estimation and consequently on the uncertainty of a data point
status. Indeed, Figure 4.9a shows a time series with a newly detected current segment highlighted
in gray color, and a calibration set in green color inside the previous segment. The atypicity
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scores, z-scores based on the mean and the standard deviation, are shown in Figure 4.9c computed
for the current segment in gray and the calibration set in green. Since the current segment has
few points, its z-score estimation shows a high discrepancy compared to the score distributions
of the calibration set, despite the fact that there are no anomalies. As shown in Figure 4.9d,
when new data points are added, the estimation of the abnormality score of the current segment
is more accurate.

This example highlights that the status of a data point can change even if the breakpoints
remain unchanged, whereas Section 4.6.1 deals only with the case where the change in status
is due to a change in the detected breakpoints. Uncertainty also comes from having too few
points in the current segment, leading to score estimation errors. Estimating the probability
f̂d(ℓ) is useful to build the active set that takes this into account. The following section suggests
a procedure to estimate the probability fd(ℓ).

4.6.2.1 Description of the method

The method is based on the learning phase using a set D of historical detected segments having
a low probability to change (using final step T ). This training set D is defined by,

D = {(X1, . . . , Xτ̂1(T )), (Xτ̂1(T )+1, . . . , Xτ̂2(T )), . . . , (Xτ̂D(T )+1, . . . , Xτ̂D+1(T ))} (4.32)

In the following, the training procedure is based on six different steps needed to estimate the
f̂d(ℓ) probability. Let a be the NCM (Non Conformity measure), used to define the atypicity
score, as described in Section 4.5. As a reminder, a(S, x), measures the “nonconformity” between
the set S and the point x.

Training procedure: The principle of the training phase is to simulate, using resampling,
numerous examples where the current segment changes from a length ℓ to the final length. At
each case, anomaly detection is applied to the test set of cardinality m and the proportion of
statuses that have changed by modifying the length of the current segment is measured. The
status obtained from the maximum size segment is the oracle status. By comparing it with the
status obtained with the ℓ size segment, the confidence score can be approximated. Since the
breakpoints are assumed to be stable, the simulation is inspired by the description of the detector
given in Section 2, without the parts concerning breakpoint detection. These steps are repeated
B times. Let b ∈ J1, BK:

Step 1: Figure 4.10a illustrates that two segments are resampled drawing them uniformly from the
historical data set D. S1,b is considered as the calibration set and S̃2,b as a current segment
if the whole time series where observed (see Definition 4.5) in the simulation:

S1,b, S̃2,b ∼ U(D)

Step 2: The current segment S̃2,b is sub-sampled into a smaller segment of length ℓ and noted
S2,ℓ,b, as shown in Figure 4.10b. S2,ℓ,b is considered as the same segment than S̃2,b without
knowledge of the whole time series, having only ℓ points, .

S2,ℓ,b ∼ U(S̃2,b)

.

Step 3: The current segment S̃2,b is sub-sampled into an other segments of length m and noted
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S2,m,b. S2,m,b is considered as the test set.

S2,m,b ∼ U(S̃2,b)

Step 4: As illustrates in Figure 4.10c and 4.10d, the scores of the three segments are computed:

• The score of S1,b:

∀i ∈ J1, nK, Xi ∈ S1,b, ci,b = a(Yi,S1,b\{Xi})

• The score of the test set using S̃2,b as training set:

∀i ∈ J1, mK, Yi ∈ S2,m,b, s̃i,b = a(Yi, S̃2,b\{Yi})

• The score of the test set using S2,ℓ,b as a training set:

∀i ∈ J1mK, Yi ∈ S2,m,b, si,ℓ,b = a(Yi, S2,ℓ,b\{Yi})

Step 5: Figure 4.10e illustrates that the empirical p-values are computed for the two scores obtained
from the test set using the same calibration set:

• p-values of the test set when using the complete current segment as training set:
∀i ∈ J1, mK, p̃i,b = 1

n

∑n
j=1 1[s̃i,b < cj,b]

• p-values of the test set when using the length ℓ sub-sample of the current segment as
training set: ∀i ∈ J1, mK, pi,ℓ,b = 1

n

∑n
j=1 1[si,ℓ,b < cj,b]

Step 6: Detect the anomalies in the two cases, by applying the Benjamini-Hochberg procedure
ε̂BHα

on the estimated p-values, as shown in Figure 4.10f:

• In case the training set is the entire current segment:

∀i ∈ J1, mK, d̃i,b = 1[p̃i,b < ε̂BHα
(p̃1,b, ..., p̃m,b)]

• In case the training set is the sub-sample of cardinality ℓ:

∀i ∈ J1, mK, di,ℓ,b = 1[pi,ℓ,b < ε̂BHα(p1,ℓ,b, ..., pm,ℓ,b)]

Step 7: The number of decisions that differ between the two cases, S̃2,b or S2,ℓ,b used as the training
set, is computed:

nd =
m∑

i=1
1[d̃i,b ̸= di,ℓ,b]

The training procedure simulates the behavior of the online anomaly detector: S1 plays the role
of the calibration set. S̃2 plays the role of current segment with knowledge of the whole time
series. S2,ℓ plays the role of the current segment at the beginning of a new segment, that contains
only ℓ points. The first m elements Y1, . . . , Ym from S̃2 constitute the test set.

Assuming stationarity and piecewise dependence, as stated in Definition 4.3, by repeating
this resampling process many times, as the length of the time series converges to infinity, the
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(a) Step 1: Segments resampling

(b) Step 2 and 3: Sub-sampling

(c) Step 4: Calibration set scoring

(d) Step 5: Test set scoring

(e) Step 6: p-value estimation

(f) Step 7: Anomaly detection

Figure 4.10: Illustration of the different steps of the training procedure to estimate the status
change probability under stable breakpoints.
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proportion of status changes converges to the expectation, according to the law of large numbers
[44]:

lim
T,B→∞

1
mB

B∑
b=1

m∑
j=1

1[d̃j,b ̸= dj,ℓ,b] = ES1,S2∼U(D)ES2,ℓ∼U(S2)

m∑
i=1

1[di ̸= d̃i]

Under the assumptions of score stationarity stated in Definition 4.3, the limit is equal to
fd(ℓ). Indeed, under score stationarity, the calibration set can be built from any segment of the
time series. This implies that it is possible to use described training procedure as an estimator
of f̂d(ℓ).

f̂d(ℓ) = 1
mB

B∑
b=1

m∑
j=1

1[d̃j,b ̸= dj,ℓ,b] ≈ fd(ℓ)

4.6.2.2 Application on simulated data

The training procedure in Section 4.6.2.1 is applied for different scoring functions adapted to
different types of time series considered in Section 4.5. : The goal is to check if the estimation
approach of f̂d(ℓ) can be applied to different scoring functions.

Description of the experiment Different series that require different scoring functions are
considered: Gaussian and Mixture of Gaussian.

• Figure 4.11a shows a Gaussian white noise with anomalies in distribution tail.

∀t ∈ J1, T K, At ∼ Ber(π),
if At = 0, Xt ∼ N (0, 1)
else Xt = ∆

The z-score applied on Xt to detect anomalies that are in the tail of the distribution, is
computed by,

a(Xt, S) = |Xt − µ̂S |/σ̂S (4.33)

where S is a segment of data, µ̂S the mean estimator on S and , µ̂S the standard deviation
on S

• Figure 4.11b shows a Mixture of Gaussians with anomalies between the distribution modes.

∀t ∈ J1, T K, At ∼ Ber(π),
if At = 0, Xt ∼ 0.5N (∆, 1) + 0.5N (−∆, 1)
else Xt = 0

The kernel based score, inspired from other works on kernel based anomaly detection [68,
141], applied to detect anomalies having large distance from the normal data, is computed
by,

a(Xt, S) = 1
|S|2

∑
s,s′∈S2

K(s, s′)− 2
|S|
∑
s∈S

K(Xt, s) + K(Xt, Xt) (4.34)
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(a) Gaussian with anomalies in tail (b) Gaussian mixture with anomalies in center

Figure 4.11: Different time series distributions and anomalies.

Results and analysis As stated previously, two types of time series are considered in the
experiments: results of Gaussian data shown in Figure 4.12 and results of Gaussian mixture
data shown in Figure 4.13. For both, three line charts representing the probability of status
change as a function of the current segment length in relation to the initial status: (a) the status
is normal, (b) the status is abnormal and (c) unknown status.

(a) normal status (b) abnormal status (c) unknown status

Figure 4.12: Probability that status changes under stable breakpoints as a function of segment
length, for Gaussian data.

(a) normal status (b) abnormal status (c) unknown status

Figure 4.13: Probability that status change under stable breakpoint as a function of segment
length, for Gaussian mixture data.

For Gaussian data and in the unknown status, Figure 4.12c shows clearly that the probability
of status change decreases with the length of the current segment. This probability is higher
when the status is abnormal, as shown in Figure 4.12b. Nevertheless, with a segment length
of 100, the probability is less than 1%. For Gaussian mixture data and in the abnormal status
scenario shown in Figure 4.13b, the length of the current segment needs to be at least equal
to 500 to get a probability of changing status around 5%. For the normal status scenario in
Figure 4.13a, the probability of changing quickly decreases to 0. The results are also promising
in the unknown status scenario in Figure 4.13c, where the change probability is low.
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Conclusion A solution to compute the probability of status change under “stable” breakpoints
has been built. Empirical results show that the choice of an optimal ℓ̂η which reduces the
uncertainty of a data point status depends on the type of data and the scoring function that
is used. The method can help to select an atypicity score. A good atypicity score, satisfying
requirements discussed in Section 4.5 (been robust and efficient) should have low ℓ̂η value.

4.7 Calibration set

Section 4.3.1 introduces the notion of calibration set by giving a high level description of the
Breakpoint Based Anomaly Detector. It is a collection of data points representing the reference
behavior, inspired by Conformal Anomaly Detection[100, 86]. It is built using data from the
current segment, or from another segment in the history with a similar distribution probability
compared to the current segment. The cardinality of the calibration set follows two constraints:

• it should be large enough to ensure that the p-values are estimated with sufficient precision
to generate a low false positive and false negative rate.

• it should not be too large to maximize the homogeneity of the data and to limit computation
time.

Figure 4.14: Illustration of the current segment, the active set and the calibration set.

Previously, in Score it was assumed that the scores of different segments followed the same
distribution, but this is not the case in practice, so in order to reduce the bias induced, segments
with a similar distribution are searched for. As shown in Figure 4.14, while data are collected
online, the length of the current segment after the new breakpoint is too small to build the whole
calibration set. By identifying similar segments and merging them to build the calibration set, the
current segment can be completed with enough data points to estimate the p-values accurately.
Similar segments are found using a similarity function, like the Bhattacharyya distance proposed
in [15]. This similarity function is defined between two segments S1, S2 with means µ1 and µ2
and standard deviations σ1 and σ2 by:

sim(S1,S2) = − 1
8σ2 (µ1 − µ2)2 − 1

2 ln σ
√

σ1σ2
(4.35)

The similarity function allows to sort all historical segments according to their similarity to the
current segment. First, the similarity of each segment to the current segment is calculated. This
allows to assign to each data point Xu the variable that characterizes the similarity su. By
definition, the sequence (su) is constant on each segment X

τi+1(t)−1
τi(t) and maximal on the current
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segment Xt
b̂t

.

∀i ∈ Ĵ1, DtK,∀u ∈ Jτ̂i(t), τ̂i+1(t)− 1K, simu = sim(X τ̂i+1(t)−1
τ̂i(t) , Xt

b̂t
) (4.36)

To build a calibration set of cardinality n, it is initialized using the scores of data points of
the current segment that are not assigned to the active set. The data points scores with a
“normal” status from the previous segments are added to the calibration set in descending order
of similarity until n scores are reached. After having described how a calibration set of a given
cardinality n is built, Section 4.8 describes how the optimal cardinality n is chosen.

4.8 p-value estimation and threshold selection
After having defined the active set and the calibration set, the empirical p-values of each data
point of the active set are computed using the calibration set. The threshold is chosen using the
p-values of the active set to ensure the control of the FDR at a given level α. Finally, the status
of each data point of the active set is reevaluated comparing its p-value to the threshold.

In Chapter 3 we detail a new strategy for controlling the FDR of an anomaly detector in
the online framework. This goal is achieved by efficiently controlling the modified FDR criterion
(mFDR) of subseries so that the FDR value of the full time series is controlled at the prescribed
level α. A modified version of the Benjamini-Hochberg procedure was designed. Instead of
applying BH to the active set with a slope α, it is applied with a slope α′ = α

1+ 1−α
mπ

, where
m denotes the length of the active set, α is the desired global FDR level, and π refers to the
proportion of anomalies. Since α′ depends on π, an estimation of π (or expert knowledge) is
required to detect anomalies. Some guidelines are provided in [159]. Notice that when π is
given, the fix threshold πα

1+π−α control the FDR at level α, this is equivalent to using BH with a
subseries of length m = 1.

Figure 4.15: Example of Benjamini-Hochberg procedure.

The calibration set is used to compute the p-values. The FDR and the FNR of the modified
BH procedure is very sensitive to the cardinality of the calibration set used to estimate the p-
value. In Section 3.3.2, we study under which conditions the cardinality of the calibration set
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ensures a control of the FDR. Given m the cardinality of the active set and α′ the modified slope
for BH, the calibration set cardinality has to be chosen among:

n ∈ {ν m

α′ − 1, ν ∈ N∗} (4.37)

As explained more deeply in Section 3.3.2, the number of false negatives decreases with higher
ν. But a larger ν also increases the computation time, which can make any real-time decision
difficult. We recommend to try different values of ν, to monitor the decision time and to choose
the largest ν which allows real time decisions.

4.9 Empirical study
An anomaly detector based on breakpoint detection has been proposed in Section 4.3. The core
components have been separately elaborated and evaluated in Sections 4.4, 4.5, 4.6, 4.7 and 4.8
. In this section, the performance of the whole anomaly detector is assessed. The experiments
are conducted in several steps. First, the anomaly detector is applied to several synthetic time
series. The flexibility of the detector is evaluated and the roles played by the kernel and the
atypicity score are highlighted. Second, the anomaly detector is applied by choosing different
hyperparameters involved in the core components, not necessarily the same as those proposed in
the previous analyses. The relevance of the different components and their associated analyses
are evaluated. Third, the anomaly detector is applied by replacing some estimators with true
knowledge in order to explore more deeply the reasons for the errors made by the anomaly
detector. Finally, the anomaly detector is evaluated against alternative anomaly detectors.

An experimental framework is designed to conduct the experiments and to evaluate different
aspects of the anomaly detector. The framework described in Section 4.9.1 is adapted for different
time series and anomaly detector parameters.

4.9.1 Experimental framework
Let’s consider a time series generation process and an anomaly detector. The following steps are
repeated on different samples of the time series:

1. Generate the time series, according to the the first reference distribution P0,1, the propor-
tion of anomalies π, the alternative distribution P1,1 and the transition rule describing how
the parameters of the reference distribution will change between two segments.

(a) The number D − 1 of breakpoints is generated by Exp(T/θ), where θ is the average
distance between two breakpoints.

(b) The position of the D − 1 breakpoints follows U([1, T ]). In addition to the previous
step, this implies that the process of breakpoint positions is a Poisson process.

(c) The rule is applied iteratively to get the reference and alternative distributions for
each segment. Two types of rules are considered:

• Breakpoint in the mean with a jump size of ∆. For each i in J1, D− 1K, let µi be
the mean of the reference distribution in the ith segment. The mean of a segment
is equal to the mean of the previous one shifted with ∆.

∀i ∈ J1, D − 1K, µi+1 = µi + ζi∆ (4.38)
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With ζi, a random variable following the Rademacher distribution and defining
the sign of the jump.

• Breakpoint in the variance with a jump scale size of ∆. For each i in J1, D − 1K,
let σi be the standard deviation of the reference distribution in the ith segment.
The standard deviation of a segment is equal to the standard deviation of the
previous segment multiplied or divided by ∆.

∀i ∈ J1, D − 1K, σi+1 = exp(ζi ln ∆/2) ∗ σi (4.39)

With ζi, a random variable following the Rademacher distribution and defining if
the standard deviation is multiplied or divided by ∆.

In this modeling, the locations of the breakpoints are taken from an iid probability
distribution, and the transition in the distribution between two segments is generated
by an iid model, which allows uncertainty to be controlled as discussed in Section 4.6.

(d) The position of anomalies are generated by a Bernoulli distribution: At ∼ Ber(π)

(e) All the values of the time series are computed as follows:

∀i ∈ J1, DK, ∀t ∈ Jτi, τi+1J,

{
Xt ∼ P0,i, if At = 0
Xt ∼ P1,i, otherwise

2. Apply the anomaly detector on the generated time series. Three core components need to
be defined:

(a) the appropriate kernel to identify the breakpoints using KCP,

(b) the scoring function a

(c) and parameters n for the length of the calibration set and λ and ℓ to define the active
set.

3. Compare the detections with true anomalies and calculate the proportion of false discoveries
and of false negatives.

The two criteria FDR and FNR are estimated as the average of the FDP and of the FNP over
all repetitions. In the experiments of this section, the length of the time series is T = 3000 and
it is ensured that the segments contain at least 100 points, deleting breakpoints if necessary.

The experimental framework is used in different scenarios: At Section 4.9.2, different synthetic
time series are tested and analyzed. At Section 4.9.3, the effect of hyperparameter choice on
performance is evaluated. At Section 4.9.4 the causes of underperformances of the anomaly
detector are studied. Finally, in Section 4.9.5, the proposed anomaly detector is compared to
alternative anomaly detectors using various public data collections.

4.9.2 Application on synthetic data
The goal of this section is to check if the breakpoint based anomaly detector is able to detect
anomalies with a controlled FDR considering different scenarios of time series. For the first
scenario, Gaussian time series are considered with breakpoints in the mean and anomalies in the
tail of the distribution. This simplest scenario is used as a reference before evaluating a more
complex one. The second scenario considers Gaussian mixture time series with breakpoints in
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the mean and anomalies in the center of the distribution between the two Gaussian modes. In
this case, the detector is checked for anomalies that are not present in the tail of the distribution.
For the third scenario, 2D Gaussian time series with breakpoints in the covariance are used to
evaluate the detector on multidimensional data. Indeed, the breakpoint in the covariance ensures
that breakpoints and anomalies cannot be detected by applying the anomaly detector to each
dimension. The third scenario evaluates the detector on heteroscedastic time series, considering
Gaussian time series with breakpoints in the mean and in the variance. For the last scenario,
Gaussian data with breakpoints in the variance are used to evaluate how the anomaly detector
can be applied with changes in the variance, which is a more difficult case study.

4.9.2.1 Gaussian time series with breakpoints in the mean

This scenario considers Gaussian data with breakpoints in the mean. The z-score is used to
capture anomalies. The ability of the detector to control the FDR with a low FNR on different
difficulties is assessed by varying the desired level of FDR control α and the size of the shift
between two segments ∆.

Description of the experiment By applying the framework of Section 4.9.1, multiple choices
have been made:

• The Gaussian distribution is considered as the reference P0,1 and the proportion of anoma-
lies is equal to π = 0.01. These anomalies are generated in the tail of the reference
distribution and follow ∆′ζ, where ζ is the Rademacher distribution and ∆′ = 4 is the
spike size of the anomalies.

• The transition rule between two breakpoints is a jump in the mean of size ∆ taking values
in {2, 3, 5}.

• For the breakpoint detector, the Gaussian kernel with bandwidth estimated using the
median heuristic is considered, as presented in Section 4.4. The z-score is used as the
scoring function with the mean estimated using the median estimator and the standard
deviation estimated using the biweight midvariance estimator, as defined in Section 4.5.1.1.

• According to preliminary experiments in Section 4.6, the active set is built using λ̂ = ℓ̂ =
100. Based on the rules defined in Section 4.8, Benjamini-Hochberg is applied on the active
set with the modified parameter α′ = α

1+ 1−α
mπ

. The calibration set is built according to the
rules of Section 4.8, where the value n is chosen equal to m/α′−1. Two cases are considered
α = 0.2 and α = 0.1. In the case α = 0.2, then the following values are chosen α′ = 0.1
and n = 999. In the case α = 0.1, then α′ = 0.05 and n = 1999.

Results and analysis Figure 4.16 shows an example of anomaly detection for one time series.
The x-axis is the timestamp and the y-axis the value of the generated time series, shown in blue.
The light blue data points are those that are not observed at the time the results are presented.
The vertical black lines are the detected breakpoints, the red band is the subseries defined as the
active set, the green band is the subseries used to build the calibration set. Detected anomalies
are the green crosses, false positives are the black crosses and red crosses are the false negatives.
As shown in Figure 4.16a, there are no false negative and the false positives seem to be a small
fraction of the true detected anomalies. As expected, the breakpoints are positioned exactly
where the means of the series change. The active set contains the most recent observations. And
the calibration set gathers data from several segments since the current segment does not contain
enough data.
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(a) ∆ = 5

(b) ∆ = 2

Figure 4.16: Application of our anomaly detector on Gaussian time series having breakpoints in
the mean, for different shift size values ∆.
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Table 4.1 gives the FDR and the FNR after having applied the anomaly detector to a collection
of B = 50 Gaussian time series with breakpoint in the mean for different shift sizes ∆. The FNR
is always close to 0. This is necessary to ensure the FDR control with the modified BH procedure.
For all the cases, the FDR remains close to the desired α level. The FDR is well influenced by
the choice of α level but less by the value of ∆. However, it is always slightly higher than alpha.
Indeed, for ∆ = 5, it is equal to 0.23 instead of α = 0.20, as shown in Table 4.1.

α ∆ FDR FNR
0.10 2 0.133 0.123

3 0.134 0.111
5 0.129 0.106

0.20 2 0.242 0.039
3 0.242 0.042
5 0.236 0.037

Table 4.1: FDR and FNR for anomaly detection on Gaussian time series having breakpoints in
the mean according to the α level and the shift size ∆.

The histogram in Figure 4.17 shows more detailed results applied to the collection of time
series for different values of α parameter. Figure 4.17a shows the distribution of the FDR values
compared to the target FDR in vertical lines. Figure 4.17b shows the distribution of the FNR
values. As shown in Figure 4.17a,the performance of the anomaly detector is poor for some
time series since the FDR values are higher and far from the target FDR. This explains why
the measured FDR is slightly higher than the targeted FDR in Table 4.1. The diagnosis of this
inefficiency will be examined in Section 4.9.4. In the next Sections 4.9.2.2, 4.9.2.3, 4.9.2.3, 4.9.2.4
and 4.9.2.5 the anomaly detector is applied and checked to more complex time series.

(a) FDR (b) FNR

Figure 4.17: Histograms of the FDR and FNR for different targeted FDR α levels.

4.9.2.2 Gaussian mixture time series with breakpoints in the mean

In this section, the aim is to show how to handle anomalies that occur between two modes of a
Gaussian mixture. These anomalies, which do not occur in the tail of a distribution, cannot be
detected by z-scores because they are close to the mean. Therefore, it is necessary to adapt to
this new situation by using another atypicity score, such as the kNN score introduced in [86].
Indeed, in this case, anomalies can be characterized by their distance from other segment data.
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Description of the experiment The anomaly detector applied to Gaussian mixture data
considers the reference distribution P0,1 = 0.5N (∆′, 1) + 0.5N (−∆′, 1), with an anomaly spike
size of ∆′ = 6. The anomalies are chosen to be equal to 0 to ensure they lie in the middle between
the two Gaussian distributions.

Figure 4.18: Histogram that represent the Gaussian mixture reference distribution with anoma-
lies in the center.

As explained previously, to adapt to this new difficulty of time series data with Gaussian
mixture, the atypicity score needs to be chosen accordingly. The kNN score introduced in [86] is
applied. To ensure that the distribution of the score is the same between two segments and not
affected by segment cardinality, the kNN distance is computed after having resampled Bs = 100
points from the segment. To obtain a robust score, the number k of nearest neighbors should be
chosen carefully because the kNN distance should not be affected by the presence of anomalies
in the segment. In particular, the k nearest neighbors of an anomaly should not be an anomaly,
otherwise the distance will be close to 0, which leads to a false positive. By choosing k = 10
and ensuring k/B = 0.1 >> 0.01 = π, this issue is avoided with high probability. Experimental
parameters not specified in this section have the same values as in Section 4.9.2.1.

Results and analysis The result in Figure 4.19 clearly shows that for this example, the
anomaly detector is able to detect the breakpoints, in the dashed black lines, and the anomalies,
represented by the green crosses, with few false positives. The anomaly detector has been applied
to 50 time series and the results are summarized in Table 4.2. The FDR is controlled at the
desired level of 0.1 or 0.2 while the FNR is slightly higher compared to the Gaussian case in
Table 4.1. This is probably due to the kNN score, which is less efficient than the z-score.
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Figure 4.19: Application of our anomaly detector on Gaussian mixture time series having break-
points in the mean.

α FDR FNR
0.1 0.118 0.246
0.2 0.202 0.137

Table 4.2: FDR and FNR for anomaly detection on Gaussian mixture time series with breakpoints
in the mean according to α level.

4.9.2.3 2D Gaussian time series with breakpoint in the covariance

In this section, the aim is to show how to handle anomalies that occur on multidimensional data.
Previously, the kernel method in KCP demonstrated high accuracy in detecting breakpoints for
univariate time series data. Hopefully, the paper [113] shows that this kernel method is also
applicable to multivariate time series. Once the time series is segmented, a scalar atypicity score
is computed for the multidimensional data points. An alternative would be to apply univariate
anomaly detection to each univariate time series. However, some breakpoints, such as those
occurring in the covariance, cannot be detected by this alternative method.

Description of the experiment Data are generated according the following rule:

∀t ∈ J1, T K, Xt =
(

X1,t

X2,t

)
∼ N (0, Σt) (4.40)

With the covariant matrix equal to:

Σt =



(
1 0.7

0.7 1

)
if t ≤ τ1(

1 −0.7
−0.7 1

)
else

(4.41)
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The reference distribution generates two-dimensional Gaussian data Xt. For each component
the mean is 0 and the standard deviation is 1. To simplify the generation, one breakpoint τ1 is
considered linked to the change of the covariance from 0.7 to −0.7. Figure 4.20a shows that the
covariance is positive before the breakpoint and negative after the breakpoint in Figure 4.20a.
Anomalies are considered in the second segment, and are set to the value (1, 1). This value
has interesting properties to evaluate the capacity of the anomaly detector. First, “1” appears
as a typical value at each one dimensional component of the time series. This implies that
the anomalies cannot be detected by working on each component independently. Second, the
value (1, 1) is fairly typical before the breakpoint τ1, as shown Figure 4.20a. Consequently, the
breakpoint detector enables the detection of anomalies while they are hidden in the data mixture
as shown in Figure 4.20c.

(a) Before the breakpoint. (b) After the breakpoint. (c) Data mixture.

Figure 4.20: 2D Gaussian data with breakpoint in covariance matrix

For this scenario, the Gaussian kernel is used to detect the breakpoint in the covariance. As
a characteristic kernel, it should detect the change in the covariance, which is the change at
the second moment order. The median heuristic is used to select the bandwidth. Since each
component cannot be treated independently to detect anomalies, the Mahalanobis distance [108]
is preferred over the Euclidean distance. The Mahalanobis distance is defined as the following,
where µ̂ is the estimated mean vector and Σ̂ is the estimated covariance matrix.

st =
√

(Xt − µ̂)T Σ̂−1(Xt − µ̂)

To ensure a good atypicity score, the estimator of the covariance has to be robust and efficient,
as shown in Section 4.5. Inspired by the results of Section 4.6.1.2, the biweight-midcovariance
[119] is used to estimate each coefficient of the matrix Σ̂.

Results and analysis The result is represented for one example in Figure 4.21. The multi-
dimensional time series is represented using one plot for each dimension. The anomaly detector
successfully detects the breakpoints in the dashed black lines, and the anomalies that are rep-
resented by green dots with few false positives. The anomaly detector has been applied to 50
time series and the results are summarized in Table 4.3. The FNR is close to 0 and the FDR
is smaller than expected, 0.12 instead of 0.2. This confirms that the detector can be applied to
multidimensional data with minor adaptation.
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Figure 4.21: Application of our anomaly detector on 2D Gaussian time series having breakpoints
in the covariance.

α FDR FNR
0.2 0.126 0.054

Table 4.3: FNR and FDR for anomaly detection on 2D Gaussian time series with breakpoint in
the covariance.

4.9.2.4 Gaussian data with breakpoints in the mean and in the variance

In the experiments conducted so far, all scenarios considered homoscedastic time series where
the change is in the mean while the variance is constant between two segments. In this section,
the case of heteroscedasticity in time series is studied where the variance changes between two
segments. Therefore, time series will have parts where the variance is very low and parts where
it is very high. The struggle is that a kernel may be good at detecting breakpoints in a low
variance context, but have difficulty when the variance is high, and vice versa. Therefore, several
kernels are tested by varying the bandwidth size. Kernel methods are used instead of methods
specialized in detecting breakpoints in the variance, because the aim is to keep a method capable
of detecting any type of breakpoint.

Experiment description. Let’s consider a time series generation process and an anomaly
detector described in Section 4.9.1. To adapt to the heteroscedasticity hypothesis, the transition
rule is modified so that at each breakpoint the variance changes as follows, where ∆σ is the
variance shift size equal to 2:

σi+1 = exp(ζσ,i ln ∆σ) ∗ σi

To ensure that the variance covers a wide range of values, the variable ζi is chosen asymmetric.
In the case of this experiment, ζi has a probability of 0.9 of being +1. Thus, the variance is more
likely to increase than to decrease at each breakpoint. To ensure the visibility of the breakpoint
in the mean to any variance, the size of the shift in the mean needs to be proportional to the
maximum of the variance of the segment before and after the breakpoint, as described in the
following:, where ∆µ is the mean shift size equal to 2:

µi+1 = ζµ,i+1∆µ max(σi, σi+1) + µi
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According to the median heuristic, breakpoints are easily detected by a Gaussian kernel when
the standard deviation of the data is of the same order as the bandwidth h. Several kernels are
tested:

• Gaussian kernel with bandwidth h = 1. This kernel with a small bandwidth is relevant
to detect breakpoints when the variance of the time series is small, but may fail when the
variance is high.

• Gaussian kernel with bandwidth h = 100. In this situation, the kernel is more relevant to
detect breakpoints when the variance is high.

• To consider both scenarios, where breakpoints appear in some parts of the series with
high variance and in parts of the series with low variance, a linear combination of the two
Gaussian kernels may be a good response. This kernel is characteristic as a sum of two
characteristic kernels and is defined by:

K(x, y) = 0.5Kh1(x, y) + 0.5Kh2(x, y) (4.42)

Figure 4.22: Illustration of the different kernels

Result analysis The anomaly detector is applied three times to the same time series, changing
only the kernel used in Figures 4.23, 4.24 and 4.25:

• Figure 4.23 illustrates the result using the Gaussian kernel with small bandwidth, h = 1.
The breakpoint was not detected at 1⃝, which leads to a false negative 2⃝ and a large
number of false positives at 3⃝.

• Figure 4.24 illustrates the result using the Gaussian kernel with large bandwidth, h = 100.
At the position 1⃝, the breakpoint with low variance is not detected. It leads to false
positives at 2⃝ because data with different variances belong to the same calibration set.

• Figure 4.25 illustrates the result when using the linear combination of the two Gaussian
kernels. All breakpoints are detected, reducing the number of false positives and false
negatives.

The anomaly detector has been applied to 50 time series and the FDR and FNR results are
summarized in Table 4.4. Different kernels, bandwidth h, are considered in combination with α
levels in {0.1, 0.2}:

• Gaussian kernel (labeled Gaussianh) with bandwidth h in {1, 10, 100}

• Linear combination of two Gaussians (labeled CombG1G100)



172 CHAPTER 4. Breakpoint based Anomaly Detection

Figure 4.23: Application of our anomaly detector on Gaussian time series having breakpoints in
the mean and in the variance, using a Gaussian kernel having a small bandwidth.

Figure 4.24: Application of our anomaly detector on Gaussian time series having breakpoints in
the mean and in the variance, using a Gaussian kernel having a large bandwidth.

Figure 4.25: Application of our anomaly detector on Gaussian time series having breakpoints in
the mean and in the variance, using a linear combination of two Gaussian kernels.
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The performances are strongly influenced by the kernel bandwidth: The FNR is lower when using
the Gaussian kernel with bandwidth h = 1 or using the combination of Gaussian kernels while
it is high when using kernels with larger bandwidth. The FDR is slightly higher than expected
α for all tested kernels. However, the FDR is smaller when using the combination of Gaussians
compared to the Gaussian kernel with h = 1. Thus, anomaly detection remains possible when
the variance of the time series changes under heteroscedasticity. However, there is no general
way to build a dedicated kernel that responds to this scenario, but combining specialized kernels
to adapt to the different regimes of the time series seems to be a promising approach.

α Kernel FDR FNR
0.10 Gaussian1 0.188 0.054

Gaussian10 0.127 0.136
Gaussian100 0.148 0.456
CombG1G100 0.134 0.057

0.20 Gaussian1 0.323 0.017
Gaussian10 0.232 0.102
Gaussian100 0.232 0.397
CombG1G100 0.253 0.018

Table 4.4: FDR and FNR for anomaly detection on Gaussian time series with breakpoints in the
mean and in the variance according to the α level and the chosen kernel

4.9.2.5 Gaussian data with breakpoints in the variance

In this section, the more challenging scenario of time series with changes in variance without a
shift in mean is addressed.

Description of the experiment To generate the data, a Gaussian distribution is used as the
reference one. The breakpoints in the variance are generated according to the rule described in
Eq. 4.39. Since the variance of the time series changes along the time series, it may be difficult
to detect all the breakpoints with the same kernel. To evaluate the detector in this scenario, it
is based on the same kernels defined in Section 4.9.2.4 and on the z-score atypicity function.

Results and analysis Figures 4.26 and 4.27 show two examples of anomaly detection. In
Figure 4.26, all the breakpoints are successfully detected, allowing correct anomaly detection
with few false positives. In Figure 4.27, the procedure fails and no breakpoint is detected in 1⃝.
After the change with higher variance, all data are considered as anomalies. It is an evidence
that the efficiency of the anomaly detector is strongly influenced by its ability to detect the true
breakpoints.

Table 4.5 summarizes the FDR and FNR results obtained for 50 time series using the same
kernels and α levels as in Table 4.4. In all cases, the anomaly detection shows a poor accuracy,
since on one side there is a lack of control of the FDR with respect to the target value alpha, and
on the other side the FNR is very high. However, the best FNR and FDR values are obtained
for the combination of Gaussian kernels, which allows better detection of breakpoints in the
variance.

These results show how challenging the case of time series with breakpoints in the variance is.
Indeed, the change in the variance is much harder to detect than the shift in the mean presented
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Figure 4.26: Example of successful anomaly detection on time series with breakpoints in the
variance.

Figure 4.27: Examples of failure of anomaly detection on time series with change in the variance.

α Kernel FDR FNR
0.10 Gaussian1 0.272 0.321

Gaussian10 0.806 0.712
Gaussian100 0.835 0.599
CombG1G100 0.229 0.298

0.20 Gaussian1 0.313 0.241
Gaussian10 0.649 0.511
Gaussian100 0.685 0.396
CombG1G100 0.282 0.225

Table 4.5: FDR and FNR for anomaly detection on Gaussian time series with breakpoint in the
variance according α level and chosen kernel.
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in Section 4.9.2.1. One approach is to carefully tune the kernel by choosing the right combination
of kernels to enable the detection of specific types of breakpoints.

4.9.3 How hyperparameter choices affect the the anomaly detector
performances?

The goal of this section is to show how incorrect hyperparameter values of the anomaly detector
lead to a degradation of the anomaly detector’s performances. This evaluation is done for three
core components: the variance estimator, the cardinality of the calibration set, and the cardinality
of the active set. The hyperparameters of these components are intentionally set very far from the
recommendations given in Sections 4.5 and 4.6 and the consequences are observed and discussed
to confirm the recommendations, the rules and the analyses stated in the chapter.

4.9.3.1 Bad choice of variance of segments estimator

In Section 4.5, it was established that a good atypicity score should respect two properties:
robustness to the presence of anomalies in the training set and efficiency. In this scenario, a bad
choice is made for an atypicity score that does not respect the requirements of being robust and
efficient. To simulate this case and evaluate the effects, the experiment with Gaussian time series
having breakpoint in the mean introduced in Section 4.9.2.1 is reused by replacing the biweight
estimator of the variance in the z-score function by the MLE estimator or the MAD estimator.
Indeed, MLE estimator is efficient but not robust, and the MAD estimator is robust but not
efficient while the biweight midvariance is robust and efficient.

Result and analysis To analyze and compare the effect of the different estimators, the same
example is considered in Figure 4.28, for different variance estimators. Since the MLE estimator
is not robust, Figure 4.28a at 1⃝ shows false negatives due to variance overestimation caused
by the presence of anomalies in the current segment. The choice of the robust MAD estimator
reduces the false negatives while it generates a higher number of false positives as shown in
Figure 4.28b at 2⃝. The variance is underestimated due to the lack of data points and the lower
efficiency of MAD. The Biweight estimator is advantageous as it is both robust and efficient and
is able to reduce false positives and false negatives, as shown in Figure 4.5.1.

In Figure 4.29, the boxplots represent the distribution of FNR and the FDR over a set of 50
time series based on the standard deviation estimator (MLE, MAD or BW). Paired permutation
tests [54] are used to compare the performances of two estimators. For each pair of estimators,
the hypothesis tested is: “The mean FDR (or FNR) is the same using these two variance estima-
tors”. The results are represented by adding a symbol (“ns” the difference is not significant, “*”
significance at 5%, “**” significance at 1%, “***” significance at 0.1% ) between the two tested
estimators.

The FDR and FNR results are summarized in Table 4.6. The FNR is significantly higher when
the MLE variance estimator is used compared to the more robust MAD and biweight midvariance
estimators, which have close performances. However, the FDR is significantly higher when the
MAD is used compared to the biweight midvariance estimator, for which the FDR is better
controlled.
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(a) MLE

(b) MAD

(c) BW

Figure 4.28: Application of our anomaly detector on Gaussian time series having breakpoints in
the mean, using different variance estimators.

sigma_estimator FDR FNR
MLE 0.16 0.08
MAD 0.29 0.04
BW 0.24 0.04

Table 4.6: FNR and FDR according to the choice of the variance estimator.
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(a) FDR (b) FNR

Figure 4.29: Boxplots of the FNR and FDR according to the choice of the variance estimator.

4.9.3.2 Bad choice for active set cardinality

Section 4.6 introduced the notion of an active set to deal with the uncertainty of status. It also
provides rules to compute the cardinality of the calibration test. In this section the relevance of
this rule is evaluated.

Description of the experiment To evaluate the performance degradation due to a bad choice
of the active set cardinality, the experiment framework introduced in Section 4.9.2.1 is reused.
According to the results of the experiments in Section 4.6.1.2 and Section 4.6.2.2, status can be
ensured with strong confidence with an active set cardinality equal to m = 100. For each time
series generated, two anomaly detectors are applied, one with an active set cardinality equal to
100 and the second with an active set cardinality equal to 10.

Results and analysis In order to understand how the active set improves the anomaly de-
tector, the results are observed at two different instants: at time t = 1570 in Figures 4.30a and
4.30b, and at time t = 1600 in Figures 4.30c and 4.30d. The histograms of the z-scores of the
calibration set in green and the active set in red are shown in Figures 4.30b and 4.30d. At time
t = 1570, the new current segment contains few points, resulting in a variance estimation error
and an overestimation of the z-score of the active set in 1⃝ Figure 4.30b and false positives in
1⃝ Figure 4.30a. At time t = 1600, the segment has acquired new data points, the variance
estimate is improved and the z-score is not overestimated in 2⃝ Figure 4.30d. The number of
false positives is reduced in 2⃝ Figure 4.30c. The status of the data point at t = 1570 is corrected
at time t = 1600 because the active set is large enough, otherwise its status would be fixed to
the wrong one.

Figure 4.31 illustrates the boxplots of the FDR distribution according to the active set car-
dinality. The results, summarized in Table 4.7, show that the FDR is significantly higher when
the active set has a cardinality of m = 10. On the contrary, using a cardinality of m = 100
allows to control the FDR at the desired level α = 0.2. This experiment illustrates the benefits
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(a) Example of false positive, t = 1570 (b) Example of false positive

(c) Example of accurate detection, t = 1600 (d) Example of false negative

Figure 4.30: Abnormality status update after new data points acquisition in the current segment.

of following the recommendations in Section 4.6 to improve anomaly detection performances.

α m FDR FNR
0.2 10 0.529 0.006

100 0.186 0.053

Table 4.7: FDR and FNR mean ac-
cording to the active set cardinality.

Figure 4.31: FDR boxplots according to the active
set cardinality

4.9.3.3 Bad choice of cardinality for the calibration set

It was established in Section 4.8 that the FDR can only be controlled if the cardinality of the
calibration set takes specific values. This section verifies this claim in the case of breakpoint
based anomaly detection.
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Description of the experiment To evaluate the degradation of the FDR control due to a
bad choice of the calibration set cardinality, time series are generated according to the framework
design introduced in Section 4.9.2.1. For each generated time series, with the target FDR α = 0.2
(resp. α = 0.1) and the active set cardinality m = 100, two anomaly detectors are applied: one
with a calibration set cardinality equal to 999 (resp. 1999) respecting the recommendation.
The second with a calibration set cardinality equal to 1000 (resp. 2000), not respecting the
recommendation. Indeed, since the proportion of anomalies is equal to π = 0.01, the goal of a
FDR equal to α = 0.2 (resp. α = 0.1) can be achieved using Benjamini-Hochberg with α′ = 0.1
(resp. 0.05) according to Section 4.8. The calibration set cardinality should then be equal to 999
(resp. 1999) according to Eq. 4.37.

Results and analysis The results in Table 4.8 show that the FDR is controlled at the desired
level for n = 999 and n = 1999, while the FNR is higher. This confirms that the FDR can
only be controlled by selecting the parameter n using the rule in Section 4.8. To reduce the
FNR while maintaining control of the FDR, the values n must be chosen among the values
{1999, 2999, 3999, . . .} as discussed in Section 3.3.2.

α n FDR FNR
0.2 999 0.21 0.030

1000 0.30 0.0
0.1 1999 0.1 0.1

2000 0.16 0.03

Table 4.8: FDR and FNR according to the calibration set cardinality.

4.9.4 Diagnose the causes of underperformance
Our Breakpoint based anomaly detector has been tested on different time series data in Sec-
tion 4.9.2, it shows good performances to ensure low FNR with an FDR almost controlled in
different cases. However, the FDR is never completely under control, and is always slightly higher
than expected. This section examines why this lack of complete control of the FDR occurs by
replacing some estimators with knowledge of the true values and evaluate the effect on the FDR.

4.9.4.1 Description of the experiment

The BKAD is applied to the synthetic time series, where some estimators are replaced by true
knowledge, called oracle version. Three estimators are chosen to be replaced by their oracle
versions:

• The breakpoint estimator: can be replaced by the true breakpoint position,

• The mean and standard deviation estimators: can be replaced by their true values,

• The anomaly removed: As described in Section 4.7 when building the calibration set,
estimated anomalies are removed to avoid biasing the estimation of the p-values. The
oracle version of this is to remove the true anomalies.

Using the framework from Section 4.9.1, five anomaly detectors are applied to each time series.
Multiple combinations of the true knowledge (marked “O”) versus estimated values (marked
“E”) are used to produce different versions of anomaly detectors described in Table 4.9. As an
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example, for detector 3, the breakpoints and anomalies in the calibration set are detected using
their true values, but the segment mean and variance parameters are estimated.

Detector Breakpoint Mean and variance Anomaly Removing
Detector 1 O O O
Detector 2 O O E
Detector 3 O E O
Detector 4 E E O
Detector 5 E E E

Table 4.9: Description of the different detectors.

The significance of the results is checked using permutation tests. It is possible that the cause
of this underperformance depends on the data distribution or on breakpoint types. Different
probability distributions are tested with different kinds of shifts.

4.9.4.2 Results and analysis

The complete empirical results can be found in 4.11. The performances of the different detectors
are evaluated on a different laws generating the time series (Student, Gaussian, Mixture of
Gaussians noted MoG). The FDR and FNR distributions are represented by a boxplot with the
significance differentiating two detectors (“ns” the difference is not significant, “*” significance
at 5%, “**” significance at 1%, “***” significance at 0.1% ).

In the following paragraphs, the effects of the various core components are studied: breakpoint
detector, mean and variance segment estimator and anomalies removed from the calibration set.

Breakpoint Estimation Table 4.10 shows the performance of anomaly detectors 3 and 4
(see Table 4.9) for different types of data and shifts. The only difference between the two
detectors is that Detector 3 uses a breakpoint detector while Detector 4 has knowledge of true
breakpoints. The bold values highlight the cases where the difference between the two estimators
is significant. Table 4.10 illustrates that the breakpoint estimation does not strongly affect
the FDR performance except in the case where breakpoints occur in the variance. This is
expected since breakpoints in the variance are more difficult to to detect, as discussed earlier in
Section 4.9.2.5. FNR increases in few cases where the breakpoint positions are estimated.
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Type of shift law α Breakpoints FDR FNR
Mean Gaussian 0.10 E 0.104 0.105

O 0.100 0.091
0.20 E 0.182 0.054

O 0.176 0.054
Student 0.10 E 0.119 0.066

O 0.117 0.065
0.20 E 0.199 0.033

O 0.198 0.032
MoG 0.10 E 0.113 0.131

O 0.108 0.124
0.20 E 0.186 0.072

O 0.190 0.071
Mean and var. Gaussian 0.10 E 0.114 0.090

O 0.099 0.078
0.20 E 0.188 0.051

O 0.167 0.040
Variance Gaussian 0.10 E 0.200 0.214

O 0.110 0.109
0.20 E 0.257 0.128

O 0.174 0.062

Table 4.10: Anomaly detector performances with and without knowledge of true breakpoint
positions, according different time series.

Segment mean and variance parameters Table 4.11 shows the performance of anomaly
detectors 1 and 3 (see Table 4.9) for different types of data and shifts. The only difference
between the two detectors is that Detector 3 estimates the mean and the variance parameters of
the segments while Detector 1 has knowledge of the true parameters. According to Table 4.11,
the estimators do not strongly affect the FDR of the anomaly detector. There are few significant
differences, displayed in bold, which are smaller than in Table 4.10.
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type of shift law α Mean and variance FDR FNR
Mean Gaussian 0.10 E 0.082 0.043

O 0.105 0.000
0.20 E 0.167 0.000

O 0.188 0.000
Student 0.10 E 0.117 0.065

O 0.113 0.056
0.20 E 0.198 0.032

O 0.196 0.026
Mean and var. Gaussian 0.10 E 0.091 0.000

O 0.107 0.000
0.20 E 0.167 0.000

O 0.200 0.000

Table 4.11: Anomaly detector performances with knowledge of the true segment mean and
standard deviation values and with estimation of these parameters, according different time
series.

Anomalies Removing Table 4.12 represents the results for different detectors considering
different laws, alpha levels and kind of shift. The four detectors are chosen to identify the effect
of removing detected anomalies from the calibration set instead of removing the true anomalies,
in case other components are estimators and in case other components are oracles. Note that
for Gaussian Mixture (MoG), the “Mean and Variance” component is marked with a “X”, since
the kNN atypicity score does not use mean and variance parameters. It is clear that the control
of the FDR is worse when the calibration set is built based on detected anomalies. Indeed, the
false positives and false negatives detected at time t will badly affect the detection at time t + 1.
Despite the fact that a robust score is chosen, these observations lead to a conclusion that the
p-value estimator is sensitive to:

• False negatives: If there is a missed anomaly in the calibration set, the p-values of all data
points in the active set will be underestimated. This situation leads to generate more false
negatives, which will confound the calibration sets of subsequent instants.

• False positives: The p-value estimator is also sensitive to false positives due to the way the
calibration set is constructed. As a reminder, detected anomalies are replaced by a random
points belonging to a segment similar to the current segment. The problem arises when
an anomaly is falsely detected. Generally speaking a false positive is a point with a high
score. When a false positive is replaced with a random point, its score will be statistically
lower. Thus, removing the false positives from the calibration set reduces the average score
in the calibration set and consequently reduces the p-values of the data points in the active
set. This leads to more false positives, which will affect the construction of calibration sets
at later times.
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Type of shift Law α Breakpoint Mean and
variance

Anomaly
removing FDR FNR

Mean Gaussian 0.1 E E E 0.134 0.123
E E O 0.104 0.105
O O E 0.165 0.041
O O O 0.121 0.048

0.2 E E E 0.242 0.039
E E O 0.182 0.054
O O E 0.301 0.018
O O O 0.197 0.018

Student 0.1 E E E 0.158 0.059
E E O 0.119 0.066
O O E 0.154 0.035
O O O 0.113 0.056

0.2 E E E 0.289 0.026
E E O 0.199 0.033
O O E 0.301 0.013
O O O 0.196 0.026

MoG 0.1 E X E 0.118 0.246
E X O 0.113 0.131
O X E 0.103 0.294
O X O 0.108 0.124

0.2 E X E 0.202 0.137
E X O 0.186 0.072
O X E 0.221 0.111
O X O 0.190 0.071

Mean and var. Gaussian 0.1 E E E 0.134 0.057
E E O 0.114 0.090
O O E 0.955 0.022
O O O 0.119 0.054

0.2 E E E 0.253 0.018
E E O 0.188 0.051
O O E 0.961 0.021
O O O 0.205 0.029

Table 4.12: Anomaly detector performances with and without knowledge of true anomalies for
removing anomalies, according different time series.
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Conclusion The conclusion of this analysis is that most of the underperformance relative to
the ideal case, such as higher than expected FDR, is explained by the non-robustness of the
empirical p-value estimator and the contamination of the calibration set by false negatives and
false positives.

4.9.5 Evaluation against competitors
After studying the conditions that must be met to ensure high detection performance and control
of the FDR in the previous sections, the breakpoint detection based anomaly detector (BKAD)
proposed in this chapter is compared to alternative anomaly detectors from the literature on
different data collections. The goal is to determine if and under which conditions the new
anomaly detector can improve the state of the art.

4.9.5.1 Methods

BKAD is evaluated against state-of-the-art anomaly detectors presented in the review [143]. The
most representative unsupervised anomaly detectors for univariate time series data are selected.
The implementation of [143] is used, with default hyperparameters. The detectors selected are
those that theoretically capable of detecting anomalies in piecewise iid data. These algorithms
fall into two categories: the one that build a context such as a segment, a sliding window or a
cluster, and on the other that use subseries instead of single points. On the other hand, predictive
or regression models are of little interest on piecewise iid data.

Median [10] A sliding windows is used to estimate the median and dispersion parameter of
last observations. The atypicity score used is the z-score. The main difference with the BKAD
approach is the use of sliding windows instead of using a breakpoint detector to define the
segments.

CBLOF [76] Cluster based local outlier factor identifies the cluster to which individual points
belong, then it computes the local outlier factor associated with that cluster. The use of clusters
is similar to that of breakpoints in that it attempts to group similar points together, but has no
temporal notion.

Sub. IF [106] The method divides the time series in subsequences and uses Isolation Forest
on the subsequences set.

DWT [162] Method based on wavelet to remove noise. Atypicity score is computed using the
Gaussian distribution on the Discrete Wavelet Transform, with Haar wavelet. Anomalies can be
detected as abnormal Haar coefficients.

Sub. LOF [30] The method divides the time series in subsequences and uses Local Outlier
Factor on the subsequences set.

FFT [134] Method based on Fast Fourier Transform. It uses Local outlier factor on the
Fast Fourier Transform of the subsequences. Anomalies can be detected as abnormal frequency
coefficients.
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4.9.5.2 Threshold

After applying these different methods, an atypicity score is obtained. This score is sufficient to
compute the AUC metric, but does not allow detection and calculation of the FDR and FNR
without thresholds. To calculate these thresholds, the method introduced in Chapter 3 is used,
which guarantees FDR control at a fixed α level in case the time series of scores is iid. The
threshold of BKAD is chosen as described in Section 4.8. Here α is set to 0.2 for all detectors
and time series.

4.9.5.3 Data

To ensure a comprehensive analysis, different kind of time series data are considered:

• Time series with breakpoints

• Time series with seasonality

• Residual from time-series with seasonality

• Real data time series

Time series with breakpoints The time series with breakpoints are generated according
to the experimental design presented in Section 4.9.1 with the following hyperparameters: the
reference distribution is Gaussian P0,1 = N (0, 1) and all anomalies follow the law of 4ζ, where
zeta follows the Rademacher distribution. Anomalies are generated with a proportion of π = 0.01.
The breakpoint positions are generated according to the Poisson process with an average segment
length of 125. To avoid having too few segments, breakpoints are removed if a segment has less
than 100 points. For the benchmark breakpoint-mean, breakpoints occur in the mean with a
∆ = 2. And, for the benchmark breakpoint-var, breakpoints occur in the variance with ∆ = 1.5.

Time series with seasonality To study how the anomaly detector behaves on time series
not following the statistical model introduced in Section 4.2.1, time series with seasonality and
trend are considered.

Let the following components be given:

1. Rt ∼ N (0, σ), the residual, σ = 1

2. At ∼ B(π) the abnormality variable, π = 0.01

3. S1,t = A1 sin(2πf1t) the seasonality with long period, where the amplitude A1 and the
frequency f1 are random variables, A1 ∈ {1, 3, 5} and f1 ∈ {5, 10, 20}

4. S2,t = a21A1 sin(2πw21f1t) the seasonality with short period, where the frequency multiple
w21 and the amplitude attenuation are random variable, a21 ∈ {0.5, 0.3, 0.1} and w21 ∈
{2, 3, 5}

5. σt = sin(t) + 1.5 the seasonal variance

6. Tt = Bt the linear trend

The following collections are generated:

1. simple-seasonality: Xt = S1,t + (1−At)Rt + Atζt∆′

2. complex-seasonality: Xt = S1,t + S2,t + (1−At)Rt + Atζt∆′
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3. variance-seasonality: Xt = ((1−At)Rt + Atζt∆′)σt

4. trend-seasonality: Xt = Tt + St + (1−At)Rt + Atζt∆′

Residual from time series with seasonality In practical applications, to simplify the detec-
tion of anomalies, seasonality and other predictable patterns are removed during a preprocessing
step. To evaluate how the anomaly detector performances are affected by this preprocessing
step, a new benchmark is built from the residuals extracted for each time series in the “Time
series with seasonality” benchmark. In this experiment, the residual is extracted by removing
the trend and the seasonality using the “seasonal_decompose” function from the Python library
statsmodels.

Time series from real data: The anomaly detectors are evaluated on various time series
datasets coming from different sources. The Numenta Anomaly Benchmark (NAB) from [99],
the dodger dataset from the UCI at [85] and Mars Science Laboratory (MSL) and Soil Moisture
Active Passive (SMAP) provided by NASA in [82] are used to build the complete benchmark.

4.9.5.4 Metrics

To measure the performances of different anomaly detectors, two metrics are reported: The Area
Under Curve (AUC)[28, 75] in Table 4.13 and the FDR/FNR in Table 4.14. The advantage of the
Area Under the Curve (AUC) is to be able to evaluate the anomaly detector without evaluating
the threshold selection method. However, this can also be a limitation for real use, since a
threshold is needed for practical applications. To determine the ability of anomaly detectors to
control the false positive rate to a desired level while keeping the false negative rate low, the
FDR and FNR metrics are reported. The disadvantage of these metrics is that it can be difficult
to compare two detectors if one performs better on FDR and the other on FNR. Furthermore,
they only take into account values for a single threshold, which have to be precised for detectors
that return only an atypicity score. The threshold policy used for this experiment is the one
implemented in Chapter 3, as stated in Section 4.9.5.2.

4.9.5.5 Results and analysis

The results are summarized in two tables. Table 4.13 represents the AUC metric according to
benchmarks and anomaly detectors and Table 4.14 represents the FDR and FNR metrics.

BKAD(Ours) Median Sub. IF DWT Sub. LOF LOF VALMOD CBLOF FFT
Benchmark

Breakpoint in mean 1.00 0.95 0.64 0.61 0.65 0.70 0.42 0.80 0.83
Breakpoint in variance 0.98 0.89 0.52 0.54 0.60 0.56 0.36 0.78 0.16

Simple seasonality 0.88 0.98 0.56 0.57 0.71 0.68 0.47 0.73 0.72
Complex seasonality 0.94 0.98 0.57 0.55 0.72 0.79 0.45 0.85 0.64
Seasonality in variance 1.00 0.99 0.54 0.57 0.56 0.87 0.43 0.92 0.71
Seasonality and trend 0.88 0.98 0.53 0.57 0.71 0.63 0.47 0.67 0.72

Res. simple seasonality 0.99 0.98 0.62 0.57 0.69 0.92 0.47 0.99 0.89
Res. complex seasonality 1.00 0.99 0.63 0.56 0.71 0.94 0.45 1.00 0.91
Res. seasonality and trend 0.99 0.98 0.61 0.56 0.69 0.93 0.47 0.99 0.89

DODGER 0.56 0.30 0.67 0.65 0.54 0.51 0.41 0.48 0.30
NAB 0.57 0.45 0.66 0.73 0.67 0.48 0.47 0.54 0.20
NASA-MSL 0.57 0.56 0.84 0.81 0.61 0.56 0.48 0.68 0.56
NASA-SMAP 0.60 0.39 0.83 0.90 0.69 0.51 0.61 0.61 0.47

Table 4.13: AUC metric according to the anomaly detectors on benchmarks.
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BKAD(Ours) Median LOF CBLOF Sub. LOF Sub. IF DWT FFT
FDR FNR FDR FNR FDR FNR FDR FNR FDR FNR FDR FNR FDR FNR FDR FNR

Benchmark

Breakpoint in mean 0.25 0.04 0.07 0.48 0.52 0.70 0.83 0.52 0.99 0.81 0.99 0.44 0.99 0.01 0.93 0.46
Breakpoint in variance 0.36 0.17 0.19 0.36 0.72 0.71 0.72 0.37 0.95 0.54 0.91 0.58 0.93 0.28 0.89 0.27
Simple seasonality 0.34 0.47 0.21 0.45 0.48 0.76 0.62 0.72 0.99 0.73 0.99 0.96 0.97 0.30 0.92 0.58
Complex seasonality 0.27 0.44 0.19 0.44 0.37 0.64 0.41 0.64 0.99 0.68 0.99 0.95 0.95 0.43 0.95 0.65
Seasonality and trend 0.50 0.46 0.22 0.45 0.58 0.86 0.77 0.78 0.99 0.77 0.79 0.89 0.97 0.11 0.92 0.57
Seasonality in variance 0.34 0.35 0.10 0.23 0.33 0.50 0.32 0.48 0.99 0.86 0.95 0.94 0.95 0.20 0.93 0.63
Res. simple seasonality 0.26 0.42 0.19 0.56 0.39 0.70 0.25 0.41 0.99 0.77 0.99 0.94 0.95 0.35 0.93 0.61
Res. complex seasonality 0.17 0.15 0.12 0.31 0.58 0.80 0.21 0.14 0.99 0.72 0.99 0.92 0.97 0.32 0.93 0.45
Res. seasonality and trend 0.26 0.43 0.20 0.57 0.44 0.73 0.29 0.41 0.99 0.79 0.97 0.94 0.95 0.36 0.92 0.64
dodger 0.41 0.66 0.79 0.99 0.89 0.09 0.97 1.00 0.71 0.92 0.39 0.91 0.70 0.55 0.89 0.09
NAB 0.61 0.91 0.62 0.85 0.67 0.58 0.50 0.82 0.64 0.74 0.55 0.62 0.77 0.27 0.87 0.25
NASA-MSL 0.78 0.91 0.62 0.84 0.71 0.72 0.45 0.72 0.62 0.82 0.49 0.70 0.65 0.42 0.68 0.49
NASA-SMAP 0.69 0.92 0.76 0.63 0.80 0.27 0.70 0.52 0.75 0.64 0.65 0.44 0.83 0.05 0.80 0.33

Table 4.14: FDR and FNR metrics according to the anomaly detectors on benchmarks.

The BKAD detector gets the highest AUC scores on series with breakpoints (“Breakpoint
in mean” and “Breakpoint in variance”), as shown in Table 4.13. It can also be seen that this
detector remains efficient even when the time series contain seasonality (“simple seasonality”,
“complex seasonality”,...). This shows the benefits of splitting the time series into simpler seg-
ments based on breakpoints, even if it does not follow the model introduced in Section 4.2.1. The
results show the importance of preprocessing the data. Indeed, the performance of the detector
increases when it is applied to the residuals of the seasonal series instead of the original seasonal
time series, as shown for “Res. simple seasonality” or “Res. complex seasonality”. Nevertheless,
Table 4.14 shows that it can be difficult to obtain control of the FDR and FNR even for the
best AUC score. This illustrates that FDR control relies heavily on the (piecewise) iid hypothe-
sis. Finally, BKAD is not very efficient on tested real data such as (“DODGER”, “NAB”, ... )
containing anomalies which do not follow the formalism introduced in Section 4.2.1. The most
efficient methods: “Sub. IF” and “DWT”, define an atypicity score on subseries instead of data
points. An interesting approach for the future might be to find a better preprocessing to apply
it to real data and improve the anomaly detection.

4.10 Conclusion
In this chapter, an online anomaly detector has been developed that detects anomalies and
controls the FDR at a given level α on piecewise stationary time series. The research was
conducted to address three challenges:

• Changes in the reference distribution: the changes are detected using a breakpoint detector.
Anomalies are retrieved in each homogeneous segment by defining an atypicity score and
a calibration set.

• Uncertainty: Due to the online nature of the detection, the abnormality status of the data
points is uncertain. The notion of an active set is introduced to collect the data points
that need to be re-evaluated since there status is too uncertain.

• and control of the FDR: modified Benjamini-Hochberg procedure is applied to the active
set to control the FDR on the entire time series.

The result of our research is a modular anomaly detector where all core components have been
studied through theoretical or empirical analysis to optimize their performance. The detector has
been evaluated on a variety of scenarios to understand its strengths and limitations. It demon-
strates state-of-the-art capabilities to detect anomalies on time series presenting a distribution
shift. The main drawback of our method is that it relies on non-robust estimation of p-values.
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Also, the piecewise stationary hypothesis is often not respected in practice. Further work con-
cerns the integration of a robust p-value estimator and the development of a preprocessing step
to apply the anomaly detector to time series that are not piecewise stationary.
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4.11 Figures related to experiment of Section 4.9.4

Figure 4.32: Boxplots of FDR and FNR for anomaly detection on Gaussian time series having
breakpoint in the mean according to the different Detectors described in Table 4.9 and shift
size ∆. Top-left: FDR while α = 0.1, Top-right: FNR while α = 0.1, Bottom-left: FDR while
α = 0.2, Top-right: FNR while α = 0.2.
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Figure 4.33: Boxplots of FDR and FNR for anomaly detection on Student time series having
breakpoint in the mean according to the different Detectors described in Table 4.9 and shift
size ∆. Top-left: FDR while α = 0.1, Top-right: FNR while α = 0.1, Bottom-left: FDR while
α = 0.2, Top-right: FNR while α = 0.2

Figure 4.34: Boxplots of FDR and FNR for anomaly detection on Gaussian Mixture time series
having breakpoint in the mean according to the different Detectors described in Table 4.9. Left:
FDR while α = 0.2, right: FNR while α = 0.2.
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Figure 4.35: Boxplots of FDR and FNR for anomaly detection on Gaussian time series having
breakpoint in the mean and variance according to the different Detectors described in Table 4.9.
Top-left: FDR while α = 0.1, Top-right: FNR while α = 0.1, Bottom-left: FDR while α = 0.2,
Top-right: FNR while α = 0.2



192 CHAPTER 4. Breakpoint based Anomaly Detection

Figure 4.36: Boxplots of FDR and FNR for anomaly detection on Gaussian time series hawing
breakpoint in the mean and and in the variance according to the chosen Kernel. Top-left: FDR
while α = 0.1, Top-right: FNR while α = 0.1, Bottom-left: FDR while α = 0.2, Top-right: FNR
while α = 0.2
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Figure 4.37: Boxplots of FDR and FNR for anomaly detection on Gaussian time series having
breakpoints in the variance according to different the chosen Kernel. Top-left: FDR while
α = 0.1, Top-right: FNR while α = 0.1, Bottom-left: FDR while α = 0.2, Top-right: FNR while
α = 0.2

(a) FDR (b) FNR

Figure 4.38: Boxplots of the FNR and FDR according to the chosen variance estimator.
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4.12 Proofs for FDR control

4.12.1 Proof of Theorem 4.1
Proof of Theorem 4.1. Similar to the proof of Theorems 3.3 and 3.4, the FDP is written as the
ratio of Rt

1 and FP t
1 .

FDP ∞
1 = lim

t→∞
FDP t

1 = lim
t→∞

FP t
1

Rt
1

= lim
t→∞

∑t
u=1(1−Au)du,t∑t

u=1 du,t

(4.43)

In the next part of the proof the numerator and denominator are made to converge so that the
mFDR expression appears. The main steps of the proof are:

1. First, it is shown that for any u, as long as t is large enough, then su,t = ã(Xu, iu).

2. Then, it is deduced that for any u, as long as t is large enough, then pu,t are identically
distributed.

3. Similarly, it is shown that for any u, as long as t is large enough, then du,t are identically
distributed.

4. Finally, since du,t is identically distributed and respects a mixing property, an ergodicity
theorem allows to conclude that 1/tRt

1 converges to E[d1,∞]

Some notations are introduced:

• Qs the distribution of ã(Xu, iu).

• Qp the distribution of the p-value p = p̂e(s,Scal), when s and all elements of Scal follow
Qs and are independent.

• Qd the distribution of the status d = 1[p1 < ε(p1, . . . , pm)], when all p-values p1, . . . , pm

are computed according to the same calibration set and follow Qp.

Step 1: The scores are iid distributed for t sufficiently large.

Let u ∈ J1,∞K. u belongs to a unique true segment i, delimited by the breakpoints τi and
τi+1.

When t > u + λ∗, according to (Segmentation) τ̂(t)∩ J1, uK = τ ∩ J1, uK, then Eq. 4.3 gives:

su,t = a(Xu, {Xτi
, . . . , Xmin(τi+ℓ∗,t)}) (4.44)

Furthermore, when t > u + max(λ∗, ℓ∗) = u + m, there are more than ℓ∗ data points in the
segment, then (Score) gives:

su,t = a(Xu, {Xτi , . . . , Xτi+ℓ∗}) = ã(Xu, i) (4.45)

The true score ã(Xu, i) is iid by assumption. For these reasons su,t follows Qs.

Since the p-value is calculated by comparing the score of a data point with the scores from a
calibration set, it can be deduced that the p-values are identically distributed.

Step 2: The p-values are identically distributed for t sufficiently large.



4.12. Proofs for FDR control 195

Let u be in J1, T K, according to Eq. 4.4 the p-value is estimated as the following:

pu,t = p(su,t,St) (4.46)
with St = {sh(t−m,1),t, . . . , sh(t−m,n),t} (4.47)

By definition of h: h(t − m, j) ≤ t − m, and thus according to the previous paragraph, all
elements of St are identically distributed. All p-values associated with a score that follows the
Qs distribution follow the same distribution. In particular, all p-values pu,t follow the same
distribution Qp, as soon as t > u + m.

The status of a point depends only on the p-value of the point and the p-values used to calcu-
late the data-driven threshold. It has been shown that the p-values follow the same distribution.
In the next paragraph, it is deduced that the statuses are also identically distributed.

Step 3: The decision series (du,t) is identically distributed for t sufficiently large.

Let i be in J1, DK and defining a segment Jτi, τi+1− 1K. The cases are separated according to
the position of the point in the real segment: at the end of the segment or in the middle of the
segment.

Case 1: The data point belongs to the end of the segment, u ∈ Jτi+1 − m, τi+1 − 1K.
Two steps are required. First it is shown that du,t verifies the property for t = u + m, then it is
shown that for any t > u + m, du,t = du,u+m.

First, let t = τi+1 + m. According to (Segmentation): τ̂(t)∩ J1, τi+1K = τ ∩ J1, τi+1K. Thus,
the current segment at time t is equal to Jτi+1, tK and has exactly m points. Then, since the rule
of closing the previous segment from Eq. 4.6 is applied, it gives

du,t = 1[p̂e(su,t,Scal,t) < ε(p̂e(sτi+1−m,t,Scal,t), . . . , p̂e(sτi+1−1,t,Scal,t))]

Since all score variables sτi+1−m,t, . . . , sτi+1−1,t follow the distribution Qs, according to (Score),
and all p-values are computed using the same calibration set Scal,t, then du,t follows Qd.

Then, for t > τi+1 + m, du,t = du,t−1. This implies that the limit value du,∞ is equal to
du,τi+1+m which follows the distribution Qd.

Case 2: The data point belongs to the middle of the segment, u ∈ Jτi, τi+1 −mK.

To prove that du,t follows the distribution Qd for all t ≥ u + m, we have three steps. First,
it is shown that the property holds for t = u + m. Then it is shown that the status du,t may
possibly be modified for t in Ku + m, u + 2mK, but that du,t always follows the Qd distribution.
Finally, it is verified that du,t is constant from t > u + 2m.

First, let t = u + m. Although by hypothesis Ju, u + mK contains no true breakpoints, the τ̂t

detector can detect a false breakpoint. Cases are separated according to whether a breakpoint
was detected or not.

• Case 2a, there is no (false) breakpoint in Ju, u+mK. Thus, the current segment is Jτi, u+mK,
according Eq. 4.5.

du,t = 1[p̂e(su,t,Scal,t) < ε(p̂e(su,t,Scal,t), . . . , p̂e(su+m,t,Scal,t))] (4.48)

du,t follows Qd
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• Case 2b, there is a (false) breakpoint in Ju, u+mK, this breakpoint is noted b̂t. The current
segment Jb̂t, u + mK contains less than m points. Thus, according to Eq. 4.6, du,t takes the
value:

du,t = 1[p̂e(su,t,Scal,t) < ε(p̂e(sb̂t−m,t,Scal,t), . . . , p̂e(sb̂t−1,t,Scal,t))] (4.49)

du,t follows Qd.

When t = u + m, in both cases du,t follows the distribution Qd. Next, check that this property
remains true even when t is greater than u + m.

Then, for t in Ku + m, u + 2mK, the cases are split again according to the detection of a
breakpoint in Ju, u + mK:

• Case 2a’: There are no detected breakpoint in Ju, u + mK. According Eq. 4.7, in this case
the status is not updated and du,t = du,t−1.

• Case 2b’: A (false) breakpoint is detected in Jt−m, u+ mK ⊂ Ju, u+ mK and noted b̂t. The
current segment Jb̂t, u + mK contains less than m points, du,t is updated according to the
rule:

du,t = 1[p̂e(su,t,Scal,t) < ε(p̂e(sb̂t−m,t,Scal,t), . . . , p̂e(sb̂t−1,t,Scal,t))] (4.50)

Once again, du,t follows the Qd distribution.

Finally, for t > u + 2m, assuming (Segmentation), there is no breakpoint in Ju, u + mK and
therefore: du,t = du,t−1

By induction du,t follows the law Qd as soon as t is greater than u + m. Therefore the series
of final decisions du,∞ is identically distributed and follows the law Qd.

Step 4: Numerator, denominator and ratio convergence After having proved that
the status series du,∞ is identically distributed, the following shows that the empirical mean of
the series converges to its expectation.

It was shown in the previous step that du,∞ is identically distributed. Furthermore, du1,∞ ⊥
du2,∞ if |u1 − u2| > m + n. Using the corollary of Theorem 3 in [22] this gives almost surely
convergence:

lim
t→∞

1
t
Rt

1 = lim
t→∞

1
t

t∑
u=1

du,∞ (4.51)

= E[d1,∞] (4.52)

Similarly, it gives the almost surely convergence of the numerator FP t
1 .

lim
t→∞

1
t
FP t

1 = lim
t→∞

1
t

t∑
u=1

Audu,∞ (4.53)

= E[A1d1,∞] (4.54)

Since both the numerator and the denominator converge almost surely, this leads to the
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almost sure convergence of the ratio which is the FDP:

lim
t→∞

FDPt = E[A1d1,∞]
E[d1,∞] (4.55)

Step 5: Link with mFDR So far it has been proved that the FDP of the complete series
converges to the ratio of the expectation of d1,∞ and A1d1,∞. In the following, this ratio is linked
to the mFDR computed on a subseries of size m.

This result comes from the permutation invariance of ε(·) which gives

E

[
m∑

u=1
1[p̂u,t < ε(p̂1,t, . . . , p̂1,t)]

]
=

m∑
u=1

E [1[p̂u,t < ε(p̂1,t, . . . , p̂1,t)]]

= mE [1[p̂1,t < ε(p̂1,t, . . . , p̂1,t)]]
= mE [d1,t]

This implies that the FDP limit can be written as mFDR:

lim
t→∞

FDPt = E[A1d1,∞]×m

E[d1,∞]×m
= E[FP m

1 ]
E[Rm

1 ] = mFDRm
1 (4.56)

4.12.2 Proof of Corollary 4.1
Proof of Corollary 4.1. According to Theorem 4.1, the FDP of the complete time series is equal
to the mFDR of the subseries:

lim
t→∞

FDP t
1 = mFDRm

1

The following steps of the proof show that mFDRm
1 = (1 − π)α using various results of

Corollary 3.5 proof.

First, according to Proposition 3.3, using BH the mFDRm
1 of the subseries can be expressed

using the number of rejections and the FDR on the subseries.

mFDRm
1 = E[Rm

1 (1)]
E[Rm

1 ] FDRm
1 (4.57)

From the assumptions expressed in Eq. 4.9, it follows that

E[Rm
1 (1)]

E[Rm
1 ] = 1 + 1− α

mπ

As described in Definition 4.2, all p-values are calculated from a single calibration set, further-
more, the cardinality of the calibration set is equal to n = ℓm/α′−1. Then according to Theorem
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3.4 in [110] and Corollary 3 in [95]:

FDRm
1 = (1− π)α′ =

(
1 + 1− α

mπ

)−1
(1− π)α

Injecting the value of FDRm
1 and E[Rm

1 (1)]
E[Rm

1
in Eq. 4.57, it gives:

mFDRm
1 =

(
1 + 1− α

mπ

)(
1 + 1− α

mπ

)−1
(1− π)α (4.58)

= (1− π)α (4.59)

This result completes the proof.

4.13 Proofs for uncertainty control

4.13.1 Proof of Proposition 4.1
Proof of Proposition 4.1. By assumption the probability P [Wt−λ,t] does not depend on t and is
noted fτ (λ). According to the second assumption, fτ (λ) converges to 0 when λ tends to +∞.
Therefore, by definition of convergence:

∀η > 0,∃λη > 0 λ ≥,∀λη, fτ (λ) ≤ η.

Moreover, by definition λ = t− u, it follows that:

∀η > 0, ∃λ > 0, ∀t ∈ J1, T K,∀u ∈ J1, tK, |u− t| ≥ λη, P [Wu,t] ≤ η.

The second result is proven using similar arguments.

4.13.2 Proof of Theorem 4.2
Proof of Theorem 4.2. The two statements are proven separately. First, it is shown that for
every η, the probability that the final status differs from the oracle status is less than 3η. Then,
a mixing property allows to prove that the proportion of differences along the time series is less
than 3η.

Proof of the first statement: To prove the first statement, two steps are taken: first, the
final decision about the status of Xu is characterized. According to the way BKAD works, as
described in Definition 4.4, there are two possibilities: either the final decision is taken when u
belongs to the current segment and is not updated thereafter, as stated in Eq. 4.7. Or the status
of Xu is updated when the segment to which u belongs is closed, as stated in Eq. 4.6. Once
the final status has been characterized, the probability that it differs from the oracle status is
calculated.

Let u be in J1, T K.

In case there is t such that: |bt − t| < m and u ∈ Jb̂t −m, b̂tK. Let t′ be the largest one. This
corresponds to the case where the status of Xu is updated after detecting a breakpoint which
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closes the segment to which u is assigned. According to Eq. 4.6

du,t′ = 1[p̂u,t′ < ε(p̂u,bt′ −m, . . . , pu,bt′ )] (4.60)

Otherwise, let t′ = u+m. This corresponds to the case where the final status associated with
Xu is taken at the time it belongs to the current segment. According to Eq. 4.7

du,t′ = 1[p̂u,t′ < ε(p̂u,u, . . . , pu,t+u)] (4.61)

By definition of t′, du,t′ is the final status associated with Xu. Therefore, it is of interest to
know the probability, noted P(V u,t′), that du,t′ is equal to the oracle status.

According to the law of total probabilities on the event that the assigned segment change,
noted Wu,t′ and defined in Eq. 4.13. u = bt′

P(V u,t′) = P(V u,t′ |Wu,t′)P(Wu,t′) + P(V u,t′ |W u,t′)P(W u,t′) (4.62)
≤ P(V u,t′ |Wu,t′) + P(W u,t′) (4.63)

Now let’s upper bound the different terms on the right-hand side of Eq. 4.63. According the
definition of ℓη ≤ m in in Proposition 4.1:

P(V u,t′ |Wu,t′) ≤ η (4.64)

Then the probability of Xu changing its assigned segment at Jt′,∞J is written by distinguish-
ing the time when this change occurs at Jt′, t′ + 2mK or at Kt′ + 2m,∞J

P(W u,t′) = P(∃t′′ > t′, τ(t′′)∩Kτi(t′), τi+1(t′)J̸= ∅) (4.65)
= P(∃t′ + 2m ≥ t′′ > t′, τt′′∩Kτi(t′), τi+1(t′)J ̸= ∅) (4.66)

+ P(∃t′′ > t′ + 2m, τt′′∩Kτi(t′), τi+1(t′)J ̸= ∅) (4.67)

According to Eq. 4.16 it gives:

P(∃t′ + 2m ≥ t′′ > t′, τt′′∩Kτi(t′), τi+1(t′)J̸= ∅) ≤ η (4.68)

According to the definition on λη ≤ m in Proposition 4.1 and the assumption described by
Eq. 4.17.

P(∃t′′ > t′ + 2m, τt′′∩Kτi(t′), τi+1(t′)J ̸= ∅) ≤ η (4.69)

Finally, by injecting the bounding terms in Eq. 4.63 using the results from Eq. 4.64, 4.68 and
4.69, it gives:

P(V u,t′) ≤ 3η (4.70)

Proof of the second statement: According to the first part of the proof, the probability
that the final status is different from the oracle status is less than 3η. But this property is local,
valid for each u. The aim is to have a global property. For this, a property of ergodicity of Vu,t

is to be proved. According to [22], it suffices to show that there exists a number q such that if
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|t1 − t2| > q then Vu,t1 is independent of Vu,t2 .

According to Eq. 4.19, breakpoint positions are independent beyond a distance q1. According
to the ideal BKAD operation, for a given segmentation, the statuses du,t1 and du,t2 are indepen-
dent if |t1 − t2| > m + n. It follows that the random variables in the series Vu,t are independent
if |u1 − u2| > m + n + q1. This completes the proof.



Chapter5
Conclusion and perspectives

5.1 Conclusion
In the present thesis, different approaches have been studied in order to contribute to the im-
provement of anomaly detectors. The main contribution is an anomaly detector able to adapt
to changes in the reference behavior and to theoretically control the FDR.

In Chapter 2, an attempt is made to improve the estimation of the p-value, which plays a key
role in anomaly detection. The idea is to suggest a new procedure for selecting the bandwidth
parameter for KDE. It is argued that minimization of the p-value estimation error is the most
relevant selection criterion. Different approaches to estimating this criterion are explored, with
the LOO approach giving the best results. Then, different estimators of the p-value are compared.
It turns out that, because of the poor performance of the LOO estimator, the proposed procedure
does not improve the estimation of the p-value.

In Chapter 3, a data-driven threshold selection procedure is proposed that allows FDR control
on a complete iid time series using mFDR control on subseries. First, the behavior of BH when
p-values are estimated is studied both theoretically and experimentally. This analysis highlights
the importance of the cardinality of the calibration set in BH’s performance, and suggests an
optimal way to choose this cardinality. Second, it is proved theoretically that the FDR of a
whole series can be controlled using a control of the mFDR on subseries. By showing that,
under certain conditions, the BH procedure can be used to control the mFDR, a procedure for
controlling the global FDR is obtained. This procedure is studied empirically, showing both its
practical utility and its limitations, especially due to the non-robustness of the p-value estimator.

Finally, Chapter 4 presents a new anomaly detector which uses a breakpoint detector to
identify instants where the reference distribution of the time series changes. This new detector is
studied theoretically to show that the procedure developed in Chapter 3 allows FDR control even
in this new context. The different components are studied separately to improve the performance
of the anomaly detector. The anomaly detector is then extensively tested empirically to assess
its capabilities and limitations. The detector’s versatility is demonstrated, as it can be adapted
to a wide range of time series. It also shows that the limit for controlling the FDR on real data
is that the piecewise iid working hypothesis is rarely verified.

201



202 CHAPTER 5. Conclusion and perspectives

5.2 Perspectives
There are several directions that can be explored to extend this work:

• As seen in Section 4.9.4, the non-robustness of the p-value estimator is one of the main
limitations of the anomaly detector. To our knowledge, there is no agnostic and robust
p-value estimator that ensures control of the FDR using BH. A simple method to build a
robust p-value estimator is to use the Median-of-Means. The calibration set can be divided
into different blocks, and an estimation of the p-value is computed for each block. The
different estimations are then merged by calculating their median. This estimator is easier
to study than the one based on KDE [81]. The theoretical question is whether such an
estimator can be used with BH to control the FDR at the desired level.

• Theorem 3.4 shows that the FDR of the entire time series can be controlled to a desired
level α if the mFDR of the subseries of size m can be controlled to the same level. It
was later shown that the BH procedure could be modified to control this mFDR. However,
this procedure, described in Definition 3.6, uses the proportion of true anomalies π. This
proportion cannot always be given by an expert, and its estimation is prone to error. It
would be interesting to develop a procedure that controls the mFDR without using the
proportion of π anomalies. The article [1] presents such an online procedure controlling
the mFDR. Unfortunately, the α investing procedures are not permutation invariant, so it
is not possible to use it with Theorem 3.4.

• In this work, only homogeneous segments with identical distribution have been considered.
In practice, this property is difficult to verify. To extend the application of the anomaly
detector, segments can be allowed to exhibit more complex behavior. For example, a
segment can follow a linear trend or, more generally, a polynomial trend. Breakpoints can
be detected by applying KCP to the finite difference of the series, or by using trend filtering
methods [72]. The atypicity of a data point can be defined using a nonconformity measure
on the finite difference time series, or by building a polynomial model on each detected
segment.

• Another interesting question is the detection of collective anomalies. In our theoretical
analysis and in our experiments, the anomaly labels are generated according to iid Bernoulli
distributions. In practice, however, anomalies often occur in sequences. Several questions
arise when anomalies occur in sequence. First, if there is a subset of abnormal points within
a homogeneous segment, comparing the atypicity score to a threshold is not optimal. In
fact, it’s better to calculate an average of the scores (EWMA) [136] or to cumulate the scores
(CUSUM) [66] to increase the power of the test. This raises the question of FDR control
in this case [104]. Moreover, this assumes that the anomalies are in the middle of a normal
data segment, but KCP will tend to isolate them in a homogeneous segment of abnormal
data. The anomaly detector described in Chapter 4 would consider this segment as the
new reference, and the anomalies would not be detected. Two approaches are possible for
dealing with collective anomalies: if the anomaly subsequence is known to be short, KCP
can be instructed to return only segments long enough to ensure that the anomalies are
within a larger segment. Otherwise, it is possible to build an abnormal segment detector
[167]. Features such as segment length or shift size can be used.
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