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Résumé

Les thèmes abordés dans cette thèse visent à caractériser les compromis entre confidentialité
et utilité dans la prise de décision séquentielle dans l’incertain. Le principal cadre adopté
pour définir la confidentialité est la protection différentielle, et le principal cadre d’utilité
est le problème de bandit stochastique à plusieurs bras. Tout d’abord, nous proposons dif-
férentes définitions qui étendent la définition de confidentialité à l’environnement des bandits
à plusieurs bras. Ensuite, nous quantifions la difficulté des bandits avec protection différentielle
en prouvant des bornes inférieures sur la performance des algorithmes de bandits confidentiels.
Ces bornes suggèrent l’existence de deux régimes de difficulté en fonction du budget de confi-
dentialité et des distributions de récompenses. Nous proposons également un plan générique
pour concevoir des versions confidentielles quasi-optimales des algorithmes de bandits. Nous
instancions ce schéma directeur pour concevoir des versions confidentielles de différents algo-
rithmes de bandits dans différents contextes: bandits à bras finis, linéaires et contextuels avec
le regret comme mesure d’utilité, et bandits à bras finis avec la complexité d’échantillonnage
comme mesure d’utilité. L’analyse théorique et expérimentale des algorithmes proposés valide
aussi l’existence de deux régimes de difficulté en fonction du budget de confidentialité.

Dans la deuxième partie de cette thèse, nous passons des défenses de la confidentialité
aux attaques. Plus précisément, nous étudions les attaques par inférence d’appartenance,
où un adversaire cherche à savoir si un point cible a été inclus ou pas dans l’ensemble de
données d’entrée d’un algorithme. Nous définissons la fuite d’information sur un point
comme l’avantage de l’adversaire optimal essayant de déduire l’appartenance de ce point. Nous
quantifions ensuite cette fuite d’information pour la moyenne empirique et d’autes variantes
en termes de la distance de Mahalanobis entre le point cible et la distribution génératrice
des données. Notre analyse asymptotique repose sur une nouvelle technique de preuve qui
combine une expansion de Edgeworth du test de vraisemblance et un théorème central limite
de Lindeberg-Feller. Notre analyse montre que le test de vraisemblance pour la moyenne
empirique est une attaque par produit scalaire mais corrigée pour la géométrie des données en
utilisant l’inverse de la matrice de covariance. Enfin, comme conséquences de notre analyse,
nous proposons un nouveau score de covariance et une nouvelle stratégie de sélection des points
cible pour l’audit des algorithmes de descente de gradient dans le cadre de l’apprentissage
fédéré en white-box.



Abstract

The topics addressed in this thesis aim to characterise the privacy-utility trade-offs in sequential
decision-making under uncertainty. The main privacy framework adopted is Differential
Privacy (DP), and the main setting for studying utility is the stochastic Multi-Armed Bandit
(MAB) problem. First, we propose different definitions that extend DP to the setting of multi-
armed bandits. Then, we quantify the hardness of private bandits by proving lower bounds
on the performance of bandit algorithms verifying the DP constraint. These bounds suggest
the existence of two hardness regimes depending on the privacy budget and the reward
distributions. We further propose a generic blueprint to design near-optimal DP extensions
of bandit algorithms. We instantiate the blueprint to design DP versions of different bandit
algorithms under different settings: finite-armed, linear and contextual bandits under regret as
a utility measure, and finite-armed bandits under sample complexity of identifying the optimal
arm as a utility measure. The theoretical and experimental analysis of the proposed algorithms
furthermore validates the existence of two hardness regimes depending on the privacy budget.

In the second part of this thesis, we shift the view from privacy defences to attacks. Specifi-
cally, we study fixed-target Membership Inference (MI) attacks, where an adversary aims to
infer whether a fixed target point was included or not in the input dataset of an algorithm.
We define the target-dependent leakage of a datapoint as the advantage of the optimal adversary
trying to infer the membership of that datapoint. Then, we quantify both the target-dependent
leakage and the trade-off functions for the empirical mean and variants of interest in terms of
the Mahalanobis distance between the target point and the data-generating distribution. Our
asymptotic analysis builds on a novel proof technique that combines an Edgeworth expansion
of the Likelihood Ratio (LR) test and a Lindeberg-Feller central limit theorem. Our analysis
shows that the LR test for the empirical mean is a scalar product attack but corrected for the
geometry of the data using the inverse of the covariance matrix. Finally, as by-products of our
analysis, we propose a new covariance score and a new canary selection strategy for auditing
gradient descent algorithms in the white-box federated learning setting.

Keywords: Differential Privacy, Multi-armed Bandits, Regret Analysis, Best-arm Identifica-
tion, Membership Inference, Privacy auditing
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Notation

Acronyms and Abbreviations

a.s. almost surely
e.g. exempli gratia, means "for example"
i.e. id est, means "that is"
i.i.d. independent and identically distributed
l.h.s. left hand side
r.h.s. right hand side
s.t. such that
w.r.t. with respect to
BAI Best Arm Identification
CDF Cumulative Distribution Function
DP Differential Privacy
FC-BAI Fixed Confidence Best Arm Identification
FL Federated Learning
FTL Follow-The-Leader algorithm
LR Likelihood Ratio
MAB Multi-Armed Bandits
MI Membership Inference
UCB Upper Confidence Bound
General Notation

B Borel set
[K] Set of integers {1, · · · ,K}
X ∼ ν The random variable X following a distribution ν

xi



Notation

Pr(E) Probability of an event E
E[X] Expectation of a random variable X
Eν Expectation under distribution ν
1 (E) Indicator function of an event E
X̄ Complement of a set X
o, O, Ω and Θ Landau’s notation
õ, Õ, Ω̃ and Θ̃ Landau’s notation up to polylogarithmic terms
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∑+∞
n=1 n

−s for all s > 1
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⟨x, x⟩
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∥∥∥M1/2 x
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2
forM symetric positive definite matrix

∥x∥∞ ℓ∞-norm, ∥x∥∞ = maxi∈[d] |xi|

{ei}i∈[d] Canonical basis of Rd, ei = (1 (j = i))j∈[d]

diag(x) ∈ Rd×d Diagonal matrix for a vector x ∈ Rd

Span(A) Span of a set of vectors A
Id ∈ Rd×d Identity matrix

ΣK (K − 1)-dimensional simplex, ΣK :=
{
w ∈ RK+ | w ≥ 0,

∑
i∈[K]wi = 1

}
KL Kullback-Leibler (KL) divergence
kl KL between Bernoulli distributions
TV Total variation distance
Dα Rényi divergence of order α
Df f -divergence
Lap(b) Laplace distribution centred at 0 with scale b
N (µ,C) Gaussian distribution with mean µ and covariance matrix C
Bernoulli(p) Bernoulli distribution with parameter p
Φ Cumulative Distribution Function (CDF) of the standard normal distribu-

tion
log Natural logarithm function
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MD Output distribution
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M

dHam Hamming distance
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ZM
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Multi-Armed Bandits
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T ∈ N⋆ Time horizon
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at ∈ [K] Arm played at step t
rt ∈ R Reward observed at step t
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π = (πt)Tt=1 Policy
µa ∈ R Mean of rewards of arm a, µa = EX∼Pa [X]
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Chapter 1

Introduction

1.1 Context and Scope

Imagine you are a researcher in healthcare trying to find the most effective treatment between
K candidate medicines. You decide to run a clinical trial where you sequentially allocate doses
of the treatments to patients who agree to participate in your trial. At the end of the trial, you
want to determine the identity of the best medicine with some statistical guarantees. As a
researcher, you would also like to publish the results of your study to the scientific community.
The setting is summarised in Figure 1.1. However, you fear publishing insightful statistics
about your trial may compromise the participants’ privacy. Thus, you wonder:
(a) Is it possible to design a clinical trial where the participants’ privacy is "guaranteed"?
(b) If yes, what is the cost of guaranteeing this constraint on the statistical utility of the trial?
(c) Is it even possible to infer private information about participants by only looking at published
aggregated statistics?

Privacy regulations, such as the General Data Protection Regulation (GDPR) [VVdB17] in
the European Union and the Health Insurance Portability and Accountability Act (HIPAA)
[Ann03] in the United States, play a significant role in healthcare research. These frameworks
impose strict controls on collecting, storing, and sharing personal health information (PHI).
Cryptographic tools like functional encryption [BSW11] or digital signatures [Kat10] can en-
hance data security. However, these tools only prevent information leakage beyond the outputs
of the computed functions of interest. In a clinical trial, these outputs could be participants’
aggregate statistics or the sequence of recommended doses. If not handled with care, such
outputs could potentially reveal personal information about the patients in the trial.

Differential Privacy (DP) [DR14a] is considered the gold standard for privacy-preserving
data analysis. It effectively solves the challenge of gaining valuable insights about a population

1
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Patients

Healtcare
Researcher 

Sequential
Interaction

Outputs

Public

- Sequence of
recommended
medicines

- Statistics about
the patients 

- Other
researchers

- Third Parties

- Malicious
Adversary

Figure 1.1 – The healthcare research wants to determine the most efficient medicine by designing a
sequential interaction with patients. The researcher publishes the results of the interaction, i.e. the
sequence of recommended medicines and other statistics about the patients to the public. The public
is composed of other researchers but may also contain malicious adversaries trying to infer private
information about the patients.

without compromising the privacy of individuals. It ensures that the same conclusions can
be drawn regardless of whether an individual chooses to participate in the dataset. This
demonstrates a commitment from the data curator (the healthcare researcher in our example)
to the participants in a study, assuring them that their involvement will not lead to negative
consequences from their data being used. Specifically, DP guarantees that any sequence
of algorithm outputs is "essentially" equally likely to occur, regardless of the presence or
absence of any individual. The probabilities are taken over random choices made by the
algorithm, and "essentially" is captured by closeness parameters that we call privacy budgets.
As these parameters become smaller, the privacy guarantee strengthens while typically the
utility deteriorates. Since DP is a constraint on the class of algorithms, different algorithms may
achieve the same DP constraint for a given task, but some will have better utility than others.

2



1.1 Context and Scope

Privacy-preserving data analysis aims to design algorithms that verify the DP constraint while
achieving the maximum utility possible over the class of DP algorithms. DP is an excellent
framework for discussing patient privacy in clinical trials. Next, we introduce multi-armed
bandits as the framework for measuring utility.

Motivated by clinical trial design, William R. Thompson introduced the problem of multi-
armed bandits [Tho33a], or just bandits for short. Bandits [LS20] are a simple model for
decision-making under uncertainty. Thompson’s motivation for introducing and studying
bandits was to design clinical trials that adapt treatment allocations on the fly as the medicines
appear more or less effective. Specifically, in bandits, a learner sequentially interacts with an
environment ν, which is a set of unknown distributions (or arms or actions), i.e. ν = {Pa}Ka=1.
TheK arms are theK candidate medicines in clinical trials. At each step t of the interaction,
the learner chooses an arm at from {1, . . . ,K} and the environment reveals a reward rt from
the distribution Pat . In a clinical trial, a new patient arrives at each step t of the protocol, and
the researcher recommends one of theK medicines and observes the patient’s reaction. It is
possible to define different reward functions for a clinical trial. For simplicity, let us consider
the binary reward model, where rt = 1 if the patient at step t is cured, and 0 otherwise. The
main challenge in bandits is to utilise the history of interactions Ht−1 ≜ (a1, r1, . . . , at−1, rt−1)
to recommend a "good" allocation at step t. A "good" choice to recommend at step t depends
on the goal of the learner, which can be of two types: (a) to maximise the reward accumulated
over time, i.e. cure the maximum number of patients during the clinical trial, or (b) to find
the reward distribution (or arm) with the highest expected reward, i.e. find the most effective
medicine. The first problem is called the regret minimisation problem [ACBF02], while the
second one is called the Best Arm Identification (BAI) problem [KCG16].

Under both regret minimisation and BAI settings, bandits are increasingly deployed for
different applications beyond clinical trials. These applications include recommendation
systems [SWS+22], online advertisement [CLK+14], crowd-sourcing [ZCL14], user stud-
ies [LEHT22], hyper-parameter tuning [LJD+17], communication networks [LPJ22], and pan-
demicmitigation [LVR+19] to name a few. All of these applications often involve users’ sensitive
and personal data, which raises serious data privacy concerns [TBD+16].

The first part of this thesis investigates the privacy-utility trade-offs for privacy-preserving
algorithms in bandits. We adhere to Differential Privacy (DP) as the privacy framework, and
multi-armed bandits under both regret minimisation and Best Arm Identification (BAI) to
measure the utility. We aim to address two main questions:

Q1.1 What is the fundamental hardness of differentially private bandits expressed in terms of lower
bounds on the utility?

Q1.2 How to design an algorithmic framework that converts near-optimal bandit algorithms into
near-optimal bandit algorithms satisfying DP?

3
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In the second part, we investigate the counterfactual question ofwhether it is even possible to
infer private information about individuals by only examining the outputs of some aggregated
statistics. Therefore, in the second part, we shift from the perspective of a health researcher
aiming to safeguard the privacy of studyparticipants, to the viewpoint of an adversary analysing
the researcher’s published statistics in an attempt to deduce private health-related information
about the participants. This viewpoint shift is interesting for different reasons. Designing
strategies for the adversary to execute is crucial in establishing fundamental limits of what is
possible to protect. Thus, studying such algorithms helps formulate achievable privacy goals.
For example, the adversary may aim to reconstruct 99.9% of the dataset’s participants by only
looking at the published statistics. Most people would agree that the success of this type of
goal would constitute a colossal privacy outbreak. By the same logic, any "decent" privacy
protection technique should be able to defend against such failures. This type of adversarial
goal is called reconstruction [DN03], and following their study, the concept of differential
privacy emerged [DMNS06].

The adversary may lower the threshold for defining "a win" and set a simpler goal: Is it
possible to determine whether a specific individual’s data was present or not in a given dataset,
by only looking at published statistics computed on the given dataset? This type of adversarial
goal is called tracing [HSR+08, DSSU17] or Membership Inference [SSSS17] in the machine
learning literature, and the individual in question is called the target. Tracing is considered
a privacy breach since the membership to a dataset itself can leak private information. For
example, suppose that a medical dataset only contains the data of a control group with a
specific disease. Suppose an adversary can prove a target individual’s membership to this
dataset by only looking at aggregate statistics computed on the private dataset. In that case, the
adversary can conclude that the target suffers from this disease and thus violates their privacy.
Tracing is a weaker privacy failure than reconstruction, making it an essential tool to provide
tight lower bounds on the utility of differentially private algorithms [BUV14].

Another exciting application of tracing is privacy auditing. With the success of Differen-
tial Privacy (DP), research results have proliferated, enabling the construction of intricate
data pipelines that adhere to DP. Notably, DP is now used in production by the US Census
Bureau [Abo18], Google [EPK14], Apple [TVV+17] and Microsoft [DKY17], among others.
Since DP is a theoretical constraint, a DP algorithm comes with a mathematical proof that yields
an upper bound on the privacy budgets, and an implementation that runs in production. How-
ever, proofs may have mistakes, and implementations may have bugs. This raises the question:
Is it possible to empirically certify the privacy of an algorithm? Specifically, if a company or a
data curator claims their algorithm satisfies the DP constraint with some privacy budget, is it
possible to empirically validate this budget? This problem is called privacy auditing. Typically,
a privacy audit runs a tracing attack, then translates the adversary’s Type-I/Type-II errors into
a lower bound on the privacy budget. These algorithms apply different heuristics to find the
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most leaking data point (aka canary) used as a target point for tracing. Thus, designing optimal
tracing attacks can lead to optimal privacy auditing procedures.

The second part of the thesis revisits the fundamental questions of tracing in relation to
privacy auditing. The study of statistical efficiency and design of tracing attacks has begun with
summary statistics on genomic data [HSR+08, SOJH09, DSS+15]. [HSR+08] and [SOJH09]
studied the first attack to detect an individual in the exact empirical mean statistic computed
on a dataset generated by Bernoulli distributions, using Likelihood Ratio (LR) tests. [DSS+15]
improves the attack by assuming access to noisy statistics and one reference sample, and
develops a scalar product attack to understand the correlation of a target point with the marginals
of noisy statistics. However, these tracing attacks are always studied in a threat model where the
target point attacked is sampled randomly, either from the input dataset, or from a data generating
distribution [HSR+08, SOJH09, DSS+15]. This means that the metrics of the attack analysed,
i.e. the power or trade-off functions between Type-I/Type-II errors, are "averaged" over the target
point’s sampling. This obfuscates the target-dependent hardness of tracing attacks, which
is essential to understand due to the worst-case nature of privacy [SU20]. In the Machine
Learning (ML) community, the design of tracing attacks beganwith [SSSS17] under the name of
Membership Inference (MI) attacks. Similar to tracing, the threatmodel ofMI attacks, originally
proposed in [YGFJ18], also averages out the effect of the target point. Thus, the accuracy and
ROC curves generally portrayed in the MI attack literature [SSSS17, YGFJ18, CCN+22] are
averaged over the training dataset, and thus hide the target-dependent hardness of MI games.
We aim to fill this gap in the literature on tracing attacks. Hence, we ask the question

Q2.1 Why are some points statistically harder to trace than others, and how can we quantify this
hardness?

Though DP bounds the worst-case privacy leakage on any attack, it is not always evident
how these guarantees bound the power of specific privacy attacks, such as tracing [ZYS+20,
HOT+23]. Thus, we ask:

Q2.2 Can we quantify the target-dependent effect of privacy-preserving mechanisms?

Finally, privacy audits typically trace specific targets that leak the most, i.e. canaries. Thus,
understanding the target-dependent hardness of tracing can directly provide a recipe for
designing canaries. Thus, we ask

Q2.3 How can we leverage the target-dependent hardness of tracing to design an optimal canary
selection strategy?
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1.2 Outline and Contributions

This thesis is organised in two parts. The first part answers the questions Q1.1 and Q1.2, while
the second part answers the questions Q2.1, Q2.2 and Q2.3.

1.2.1 Outline

After this first introductory chapter, Chapter 2 introduces the necessary background for the
rest of the thesis. The background includes basic facts about Differential Privacy (DP) and
Multi-armed Bandits (MAB) used in Part I. It also introduces the Membership Inference (MI)
game, the privacy auditing problem and the asymptotic statistics background used in Part II.

In Part I, we study the cost of Differential Privacy on the utility in bandits. Part I is composed
of tree chapters: Chapter 3, Chapter 4 and Chapter 5. In Chapter 3, we extend Differential
Privacy definitions to the bandit setting. In Chapter 4, we provide regret and sample complexity
lower bounds of bandits satisfying DP. Finally, in Chapter 5, we design near-optimal private
bandit algorithms.

In Part II, we study Membership Inference (MI) games and their effect on privacy auditing.
Part II is composed of two chapters: Chapter 6 and Chapter 7. In Chapter 6, we introduce
the target-dependent MI game and study the performance of its optimal adversaries for the
empirical mean mechanism and variants of interest. In Chapter 7, we use the theoretical
insight of Chapter 6 to provide a new covariance score and a new canary selection strategy that
improves privacy auditing of gradient descent algorithms in the white-box federated learning
setting.

1.2.2 Contributions

Answering the questions Q1.1 and Q1.2 led to the following contributions:

1. Privacy Definitions for Bandits. In Chapter 3, we extend the DP definition to the bandit
setting. First, we discuss three main challenges for adapting DP to bandits: the online
and interactive nature of the bandit interaction and partial information. We propose
four extensions of DP to bandits: Table DP (Definition 3.2), View DP (Definition 3.3),
Interactive DP (Definition 3.5) and DP in the adaptive continual release model (Defin-
tion 3.9). Each definition deals with the three challenges differently: Table DP and View
DP are non-interactive definitions where the inputs of the policy are fixed in advance, and
differ in the input considered due to partial information. Interactive DP and DP in the
adaptive continual release model tackle the interactive nature of bandits by considering
an adversarial analyst who adaptively chooses the inputs. Formalising and linking these
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definitions is a crucial step that was missing in the private bandits literature. Our first
contribution is to fill this gap.

2. Hardness of Preserving Privacy in Bandits as Lower Bounds. In Chapter 4, we derive lower
bounds on the regret and sample complexity of bandits with DP. To prove the lower
bounds, we develop a generic proof technique that relates lower bounds to a transport
problem using coupling techniques. Then, we instantiate the proof to provide different
flavours of lower bounds for regret and sample complexity, under different settings: a
minimax (Theorem 4.15) and a problem-dependent (Theorem 4.16) regret lower bound
for finite-armed bandits under ε-View DP, a minimax (Theorem 4.17) and a problem-
dependent (Theorem 4.18) regret lower bound for linear bandits under ε-View DP, a
minimax regret lower bounds for finite-armed (Theorem 4.20) and linear bandits (Theo-
rem 4.21) under ρ-Interactive zCDP, and a sample complexity lower bound (Theorem 4.24)
for finite-armed bandits under ε-View DP. All the lower bounds show the existence of
two privacy regimes depending on the privacy budget and the reward distributions. In
the low-privacy regime (large budget), bandits with DP are not harder than bandits
without privacy. In the high-privacy regime (small budget), privacy has an additional
cost on the utility of bandit algorithms. We characterise the additional hardness of DP in
the high privacy regime using novel information-theoretic quantities based on the Total
variation, such as the TVinf (Theorem 4.16) and T ⋆TV (Theorem 4.24). Finally, the change
of regimes can be shown to happen when the privacy budget is of the same order as the
sub-optimality gaps of arm rewards.

3. Algorithm Design. In Chapter 5, we propose a generic blueprint to design near-optimal
DP extensions of bandit algorithms. The main intuition behind the blueprint is that,
by running the bandit algorithm on non-overlapping sequences of input rewards, less
noise should be added to satisfy DP, thanks to the parallel composition property of DP
(Lemma 2.10). We instantiate the blueprint to design DP versions of different bandit algo-
rithms under different settings: finite-armed (AdaP-UCB, AdaP-KLUCB, and AdaC-UCB),
linear (AdaC-GOPE) and contextual bandits (AdaC-OFUL) for regret, and finite-armed
bandits (AdaP-TT and AdaP-TT⋆) for sample complexity. All these algorithms run in
adaptive phases and add calibrated noise to achieve Interactive DP.

4. Regret and Sample Complexity Analysis. In Chapter 5, we analyse the utility of each proposed
algorithm, and compare the theoretical performance to the lower bounds of Chapter 4.
We show that the upper bounds on the performance of our proposed algorithms match
the provided lower bounds up to constants in the problem-dependent bounds, and up to
logarithmic terms in the horizon T in the minimax bounds. In general, we show that In-
teractive DP can be preserved almost for free in terms of the minimax regrets. Specifically,
for a fixed privacy budget b (b = ε for pure DP and b = √ρ for zCDP) and asymptotically
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in the horizon T , the cost of Interactive DP in the regret of these algorithms exhibits
an additional Õ(log(T )/b), which is significantly lower than the privacy oblivious re-
gret, i.e. Õ(

√
T ). The proposed algorithms’ theoretical and experimental analysis further

validate the existence of two hardness regimes depending on the privacy budget b.

Answering the questions Q2.1, Q2.2 and Q2.3 led to the following contributions:
1. Defining the target-dependent leakage. We instantiate a fixed-target MI game (Algorithm 12).

We define the leakage of a target point as the advantage of the optimal attacker, i.e. the
LR attacker, trying to identify this fixed target point. We also characterise the target-
dependent leakage in terms of a Total Variation distance (Equation (6.1)).

2. Explaining the target-dependent leakage using the Mahalanobis distance. We investigate the
fixed-target MI game for the empirical mean. First, we find the asymptotic distributions
of the LR scores if the target datum is included in the empirical mean and also if not.
Then, we recover the optimal advantage (Equation (6.2)) and trade-off functions (Equa-
tion (6.3)). This shows that the target-dependent hardness of MI games depends on the
Mahalanobis distance between the target point z⋆ and the true data-generating distri-
bution (Table 6.1). This insight is used to propose Algorithm 14 for optimally choosing
canaries in auditing gradient descent algorithms in the white-box Federated Learning set-
ting. Our experiments show that the Mahalanobis distance explains the target-dependent
hardness of MI games on synthetic and real datasets.

3. A new covariance attack. We analyse the LR score for the empirical mean asymptotically.
Our novel proof technique that combines an Edgeworth expansion with Lindeberg-Feller
central limit theorem shows that the LR score is asymptotically a scalar product attack, corrected
by the inverse of the covariance matrix (Equation (6.4)). This enables us to provide a novel
score for attacks and improves the scalar product by correcting it for the geometry of the
data. We use this "covariance score" to propose a novel white-box attack (Algorithm 13)
that experimentally outperforms the scalar product attack.

4. Tight quantification of the effects of noise addition, sub-sampling, and misspecified targets on
leakage. We further study the impact of privacy-preserving mechanisms, such as the
Gaussian mechanism [DR14b] and sub-sampling, on the target-dependent leakage. As
shown in Table 6.1, both reduce the leakage scores and, thus, the powers of the optimal
attacks. We numerically validate them. Finally, we quantify how target misspecification
affects the leakage, and how it depends on the similarity between the real andmisspecified
targets.
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1.3 Lisf of Publications

Here is a list of publications that I co-authored during my PhD.
Publications in international conferences with proceedings

• Achraf Azize and Debabrota Basu. When Privacy Meets Partial Information: A Refined
Analysis of Differentially Private Bandits. In Advances in Neural Information Processing
Systems (NeurIPS), 2022 [AB22].
This paper studies the complexity of regret in bandits under pure DP. Elements of this
paper have been adapted in the regret lower bounds under pure DP in Section 4.3.1 of
Chapter 4, the theoretical analysis of regret algorithms in Section 5.2 and their experi-
mental analysis in Section 5.5 of Chapter 5.

• Achraf Azize, Marc Jourdan, Aymen Al Marjani and Debabrota Basu. On the Complexity
of Differentially Private Best-Arm Identification with Fixed Confidence. In Advances in Neural
Information Processing Systems (NeurIPS), 2023 [AJMB23].
This paper studies the complexity of sample complexity in bandits under pure DP. Ele-
ments of this paper have been adapted in the sample complexity lower bounds under
pure DP in Section 4.4 of Chapter 4, the theoretical analysis of best-arm identification
algorithms in Section 5.4 and their experimental analysis in Section 5.5 of Chapter 5.

• Achraf Azize and Debabrota Basu. Concentrated Differential Privacy for Bandits. In IEEE
Conference on Secure and Trustworthy Machine Learning (SaTML), 2024 [AB24a].
This paper studies the complexity of regret in bandits under concentratedDP. It introduces
the privacy definitions of Chapter 3, the coupling techniques in Section 4.2 of Chapter, the
regret lower bound under zCDP in Section 4.3.1 of Chapter 4, the theoretical analysis of
regret algorithms under zCDP in Section 5.3 and their experimental analysis in Section 5.5
of Chapter 5.

• Achraf Azize and Debabrota Basu. Open Problem: What is the Complexity of Joint Differ-
ential Privacy in Linear Contextual Bandits?. In Conference on Learning Theory (COLT),
2024 [AB24c].
We discuss this open problem in Chapter 9.

Presentations in international workshops

• Achraf Azize and Debabrota Basu. Quantifying the target-dependent Membership Leakage.
In Theory and Practice of Differential Privacy (TPDP), 2024 [AB24b].
Part II is based on this paper.

9



Introduction

• Achraf Azize and Debabrota Basu. Rényi Differentially Private Bandits. In The Fourth
AAAI Workshop on Privacy-Preserving Artificial Intelligence (PPAI), 2023.
This is a first version of [AB24a], where we study Rényi DP for bandits.

Also, a primary version of [AB22] has been presented in the European Workshop on Reinforce-
ment Learning, (EWRL) 2022. A primary version of both [AJMB23] and [AB24a] have been
presented in the European Workshop on Reinforcement Learning, (EWRL) 2023.
Preprints under review

• Achraf Azize and Debabrota Basu. Quantifying the target-dependent Membership Leakage.
Under review at an international conference with proceedings.

• Achraf Azize, Marc Jourdan, AymenAlMarjani and Debabrota Basu. Differentially Private
Best-Arm Identification [AJMB24]. Under review at the Journal of Machine Learning
Research (JMLR).
This is a journal version of [AJMB23]. In this version, we improve on our previous
results by proposing a new algorithm AdaP-TT⋆ that is inspired by the lower bound. We
analyse the sample complexity of AdaP-TT⋆ and show that the upper bound on its sample
complexity matches the lower bound up to multiplicative constant for all bandit instances.
This is an improvement over AdaP-TT that only matches the lower bound for instances
where the maximum and minimum sub-optimality gaps have similar magnitudes. Our
experimental results also validate this improvement achieved by AdaP-TT⋆. In the journal
version, we also study the complexity of the BAI problem under the local trust model.
We provide a new sample complexity lower bound for bandits under local DP and an
algorithm with a matching upper bound.
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Chapter 2

Background

This chapter provides an overview of several key concepts in Differential Privacy (DP),
Multi-Armed Bandits (MAB), Membership Inference (MI) games and Asymptotic Statistics.
The section on Differential Privacy is based on the book [DR14a]. The section on Multi-
Armed Bandits is a summary of results and definitions from the book [LS20]. The section on
Asymptotic Statistics reports basic definitions and properties from the book [VdV00], while the
version of the Edgeworth expansion reported comes from the book [Pet12]. Finally, the section
on Membership Inference games is an adaptation and formalisation of results from different
papers in the literature [SOJH09, DSS+15, YGFJ18, EMRS19, YMM+22, CCN+22, HOT+23,
DRS19, JUO20, MSS22, NHS+23, SNJ23, AKO+23].
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2.1 Differential Privacy (DP)

In this section, we formalise the definition of Differential Privacy (DP). We discuss different
interpretations of this definition and the properties that justify its success and wide adop-
tion. We also present two fundamental mechanisms to achieve DP: the Laplace and Gaussian
mechanisms. Finally, we present the binary tree mechanism [DNPR10a, CSS11] for DP under
continual observation.

2.1.1 The language of Differential Privacy

First, we define the main object of interest, a mechanism, its input and outputs.

Definition 2.1 (Mechanism, its input and output). A mechanismM is a randomised algorithm.
M takes as input a dataset D ≜ {x1, . . . , xn} ∈ X n, which is a collection of n data points from the
input universe X .M outputs a distributionMD ∈ P(O), where P(O) is the set of distributions over
the probability space (O,F), and O is the output space. The probability space is over the coin flips
of the mechanismM. Given some measurable event A in (O,F), we noteM(A|D) ≜MD(A) the
probability of observing the event A given that the input of the mechanism is D.

Second, we define the Hamming distance between two datasets, which characterises the
neighbouring relation.

Definition 2.2 (The Hamming distance, and neighbouring relation). Given two datasets D ≜
{x1, . . . , xn} and D′ ≜ {x′

1, . . . , x
′
n} in X n, let dHam(D,D′) ≜

∑n
i=1 1 (Di ̸= D′

i) denote the Ham-
ming distance betweenD andD′, i.e. the number of different records betweenD andD′. We say thatD
and D′ are neighbouring datasets, that we note D ∼ D′, if and only if dHam(D,D′) ≤ 1, i.e.D and D′

differ by at most one record.

2.1.2 Formalising Differential Privacy

We are now ready to formally define Differential Privacy (DP).

Definition 2.3 ((ε, δ)-DP [DR14a] and ρ-zCDP [BS16]). A mechanismM satisfies
• (ε, δ)-DP for a given ε ≥ 0 and δ ∈ [0, 1) , if

sup
A∈F ,D∼D′

MD(A)− eεMD′(A) ≤ δ. (2.1)

• ρ-zCDP (zero Concentrated DP) for a given ρ ≥ 0 if, for all α > 1

sup
D∼D′

Dα(MD∥MD′) ≤ ρα. (2.2)
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Here,Dα(P∥Q) ≜ 1
α−1 logEQ

[(
dP
dQ
)α] denotes the Rényi divergence of order α between P andQ. We

define ε-pure DP to be (ε, 0)-DP, or simply ε-DP.

DP is a worst-case constraint on the class of randomised mechanisms. A mechanismM
satisfies DP if the mechanism behaves "similarly" on all neighbouring datasets D and D′, even
for very "unlikely" realisations of the mechanismM.

By designing a mechanismM that satisfies the DP constraint, the curator honours the
privacy "promise": whatever would have happened to any user due to their participation in a
DP study, i.e. the world where o ∼MD, would likely have happened if they did not participate,
i.e. the world where o ∼ MD′ , for D′ ∼ D. The worst-case nature of DP ensures that the
promise is honoured, even if the user has a very unlikely data point (e.g. an outlier), and for
any coalition of the other users. The effectiveness of the DP definition lies in its information-
theoretic nature, in the sense that DP protects against any adversary with unlimited amounts
of computational power and auxiliary information.
The hypothesis test interpretation. The adversary can formulate their attack as a binary
hypothesis test. Specifically, based only on the observed output o, the adversary needs to
determine whether

H0: The output was generated from the dataset D
vs

H1: The output was generated from the neighbouring dataset D′.

DP imposes a trade-off between the Type I and Type II errors of any adversary trying to
conduct this hypothesis test. For a choice of a rejection region S ⊂ O i.e. the subset of outputs
where the attacker rejects H0, the type I error, also called the probability of False alarm, is

PFA(D,D′,M, S) ≜MD(S),

and the type II error, also called the probability of missed detection is

PMD(D,D′,M, S) ≜MD′(S̄),

where S̄ is the complement of the region S in O.
The DP constraint on a mechanismM is equivalent to the following set of constraints on

the probability of false alarm and missed detection
Theorem 2.4 (Hypothesis test formulation of Differential Privacy [KOV15]). For any ε > 0 and
any δ ∈ [0, 1], a mechanismM is (ε, δ)-DP if and only if, for all neighbouringD ∼ D′, and all rejection
regions S ⊂ O:

PFA(D,D′,M, S) + eεPMD(D,D′,M, S) ≥ 1− δ, and, (2.3)
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Figure 2.1 – Trade-off between Type I and Type II errors for (ε, δ)-DPmechanism. For simplicity, only the
regionwhere PFA+PMD ≤ 1. The rest of the region is symmetric with respect to PFA+PMD = 1 [KOV15].

eεPFA(D,D′,M, S) + PMD(D,D′,M, S) ≥ 1− δ (2.4)

This shows that it is impossible for any adversary to get both Type I and Type II erros to be
small when the mechanism verifies DP. This also provides an operational interpretation of the
DP constraint, represented graphically in Figure 2.1.
The privacy loss interpretation. Definition 2.3 uses two notions of "similarity" between the
output distributions on neighbouring datasets. To provide an intuition of the formulation of
these similarities, we introduce the notion of the privacy loss random variable.

Definition 2.5 (Privacy Loss Random Variable). LetM be a randomised mechanism, andD andD′

two datasets. We define the likelihood ratio f(o) ≜ log
(

MD(o)
MD′ (o)

)
for every output o ∈ O. The privacy

loss random variable betweenMD andMD′ denoted by ZM
D,D′ is distributed according to f(MD).

The value of the privacy loss ZM
D,D′ represents how wellMD andMD′ are distinguishable.

If ZM
D,D′ > 0, then the observed output is more likely to have occurred under input D. The

larger ZM
D,D′ , the more likely the input is from D. Likewise, ZM

D,D′ < 0 indicates the output is
more likely under D′. If ZM

D,D′ = 0, both the inputs D and D′ explain the output equally well.
The closeness notions betweenMD andMD′ used in Definition 2.3 could be expressed

as bounds on the privacy loss ZM
D,D′ . A mechanism is ε-pure DP if and only if |ZM

D,D′ | ≤ ε

almost surely on the randomness of the mechanism, for all D ∼ D′. If the probability of the
event {|ZM

D,D′ | > ε} is less than δ for every D ∼ D′, thenM is (ε, δ)-DP. The converse is also
true, up to a small loss in parameters. That is why (ε, δ)-DP could be though of as "ε-DP with
probability 1− δ”, and called approximate-DP.
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The ρ-zCDP constraint bounds the moment generating function of ZM
D,D′ for every D ∼ D′.

Specifically, zCDP implies that the privacy loss random variable is subgaussian with a small
mean, i.e. ZM

D,D′ is small with high probability, with larger deviations from zero becoming
increasingly unlikely. The ρ-zCDP class of algorithms could be thought of as an intermediate
class, between pure and approximate DP.
Proposition 2.6 (Relation between zCDP, pure and approximate DP [BS16]).

• IfM is ε-DP, thenM is (1
2ε

2)-zCDP.

• IfM is ρ-zCDP, thenM is (ρ+ 2
√
ρ log(1/δ), δ)-DP, for any δ > 0.

For the three definitions of DP, i.e. pure-DP, approximate-DP and zCDP, the "similarity"
notions are controlled by parameters, i.e. ε, δ and ρ that we call the privacy budgets. We
will think of ε and ρ as small real values in [0, 1], while the failure probability δ should be
"cryptographically" small, i.e. δ ≪ 1/n, where n is the size of the dataset.

2.1.3 Properties of Differential Privacy

In the following, we present three main properties of DP: post-processing, group privacy and
compositions.
Proposition 2.7 (Post-processing (Proposition 2.1, [DR14a])). LetM be a mechanism and f be
an arbitrary randomised function defined onM’s output.

• IfM is (ε, δ)-DP, then f ◦M is (ε, δ)-DP.

• IfM is ρ-zCDP, then f ◦M is ρ-zCDP.

The post-processing property ensures that any quantity that is constructed only from a
private output is still private, with the same privacy budget. This property is a consequence of
the data processing inequality.
Proposition 2.8 (Group Privacy). Let D and D′ be two datasets in X n.

• IfM is (ε, δ)-DP, then for any event A ∈ F

MD(A) ≤ eεdHam(D,D′)MD′(A) + δdHam(D,D′)edHam(D,D′)−1. (2.5)

• IfM is ρ-zCDP, then

Dα(MD∥MD′) ≤ ραdHam(D,D′)2. (2.6)

Group privacy translates the closeness of output distributions on neighbouring input
datasets, to a closeness of output distributions on any two datasets D and D′ that depends on
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the Hamming distance dHam(D,D′). This property will be the basis for proving lower bounds
in Chapter 4.

Proposition 2.9 (Simple Composition). LetM1, . . . ,Mk be k mechanisms. We define the mecha-
nism

G : D →
k⊗
i=1
Mi

D

as the k composition of the mechanismsM1, . . . ,Mk.

• If eachMi is (εi, δi)-DP, then G is (
∑k
i=1 εi,

∑k
i=1 δi)-DP.

• If eachMi is ρi-zCDP, then G is∑k
i=1 ρi-zCDP.

Composition is a fundamental property of DP. Composition helps to analyse the privacy of
sophisticated algorithms, by understanding the privacy of each building block, and summing
directly the privacy budgets. Proposition 2.9 can be improved in two directions. (a) It is
possible to show that the result is still true if the mechanisms are chosen adaptively, and that
the mechanism at step i takes as auxiliary input the outputs of the last i − 1 mechanisms.
(b) Advanced composition theorems [KOV15] for (ε, δ)-DP improve the dependence on k the
number of composed mechanisms. Specifically, if the same mechanism is composed k times,
Proposition 2.9 concludes that the composed mechanism is (kε, kδ)-DP. Advanced composi-
tion [KOV15] shows that the k-fold adaptively composed mechanism is (ε′, δ′ + kδ)-DP for any
δ′ where ε′ ≜

√
2k log(1/δ′)ε+ kε(eε − 1). Roughly speaking, advanced composition provides

a (
√
kε, δ)-DP guarantee, improving by

√
k the (kε, kδ)-DP guarantee of simple composition.

In addition to the classic composition theorems, we provide here an additional property of
interest: parallel composition.

Lemma 2.10 (Parallel Composition). LetM1, . . . ,Mk be k mechanisms, such that k < n, where n
is the size of the input dataset. Let t1, . . . tk, tk+1 be indexes in [1, n] such that 1 = t1 < · · · < tk <

tk+1 − 1 = n.
Let’s define the following mechanism

G : {x1, . . . , xn} →
k⊗
i=1
Mi

{xti ,...,xti+1−1}

G is the mechanism that we get by applying eachMi to the i-th partition of the input dataset
{x1, . . . , xn} according to the indexes t1 < · · · < tk < tk+1.

• If eachMi is (ε, δ)-DP, then G is (ε, δ)-DP

• If eachMi is ρi-zCDP, then G is ρ-zCDP
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In parallel composition, the k mechanisms are applied to different "non-overlapping" parts
of the input dataset. If eachmechanism is DP, then the parallel composition of the kmechanisms
is DP, with the same privacy budget. This property will be the basis for designing private bandit
algorithms in Chapter 5.

2.1.4 Achieving Differential Privacy

Let us introduce two fundamental mechanisms to achieve DP. Both of these methods add
calibrated independent noise to the output. The noise is either sampled from a Laplace or
Gaussian distribution. The variance of the noise is calibrated to the sensitivity of the function
to be made DP.

First, let us introduce the two noise distributions: Laplace and Gaussian distributions.

Definition 2.11 (The Laplace and Gaussian distributions). The Laplace distribution centred at 0
with scale b, denoted Lap(b), is the distribution with probability density function

Lap(x|b) ≜ 1
2b exp

(
−|x|
b

)
.

for any x ∈ R. The variance of this distribution is σ2 = 2b2.
The Gaussian distribution on Rk, with mean µ ∈ realk and covariance matrix Σ ∈ Rk×k a positive

definite matrix, denoted N (µ,Σ), is the distribution with probability density function

N (x|µ,Σ) ≜ 1
(2π)k/2 det(Σ)1/2 exp

(
−1

2(x− µ)TΣ−1(x− µ)
)

for any x ∈ Rk.

Now we introduce the ℓ1 and ℓ2 sensitivities of an algorithm.

Definition 2.12 (The ℓ1 and ℓ2 sensitivities). Let f : X → Rk be a deterministic algorithm. The ℓ1
sensitivity of f , denoted s1(f) is

s1(f) ≜ max
D∼D′

∥∥f(D)− f(D′)
∥∥

1 .

Similarly, the ℓ2 sensitivity of f , denoted s2(f) is

s2(f) ≜ max
D∼D′

∥∥f(D)− f(D′)
∥∥

2 .

Here, ∥ · ∥1 and ∥ · ∥2 denote the L1 and L2 norm on Rk respectively.
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Theorem 2.13 (The Laplace Mechanism (Theorem 3.6, [DR14a])). Let f : X → Rk be a deter-
ministic algorithm with ℓ1 sensitivity s1(f). Let

ML(f, ε) ≜ f + (Y1, . . . , Yk),

where Yi are i.i.D from Lap
(
s1(f)
ε

)
.

The mechanismML(f, ε) is called the Laplace Mechanism, and satisfies ε-pure DP.

The Laplace mechanism achieves pure DP. To achieve approximate or zero concentrated
DP, we use the Gaussian mechanism.

Theorem 2.14 (The Gaussian Mechanism [DR14a, BS16]). Let f : X → Rk be a a deterministic
algorithm with ℓ2 sensitivity s2(f). Let

MG(f, b) ≜ f + Z,

such that Z ∼ N (0, b× s2(f)2Id). Here, N (µ,Σ) denotes the Gaussian distribution with mean µ and
co-variance matrix Σ, and ∥ · ∥2 denotes the L2 norm on Rk.

The mechanismMG(f, b) is called the Gaussian Mechanism.
• For b = 2

ε2 log
(

1.25
δ

)
,MG(f, b) satisfies (ε, δ)-DP

• For b = 1
2ρ ,MG(f, b) satisfies ρ-zCDP.

Let us consider the empirical mean of a dataset as an example to illustrate the use of the
Laplace and Gaussian mechanisms.

Example 2.15 (Empirical mean). Let k ∈ N∗ and X = {0, 1}k, i.e. the input universe is the binary
vectors of length k. The empirical mean mechanism fm associates to a dataset D = {x1, . . . , xn} ∈ X n

the vector fm(D) = 1
n

∑n
i=1 xi.

The empirical mean’s value changes the most if a row xi goes from (1, . . . , 1) to zeros (0, . . . , 0).
Thus, the ℓ1 sensitivity of fm is k/n, and the ℓ2 sensitivity is

√
k/n.

1. Adding i.i.d Laplace noise fm +
⊗k Lap(k/ε) achieves ε-pure DP, with L2 error of order
∥∥∥∥∥
k⊗

Lap(k/ε)
∥∥∥∥∥

2
≈ k3/2

εn
.

2. Adding i.i.d Gaussian noise fm +N
(
0, 2k

ε2n2 log
(

1.25
δ

)
Ik
)
achieves (ε, δ)-DP, with L2 error of

order ∥∥∥∥N (0, 2k
ε2n2 log

(1.25
δ

)
Ik

)∥∥∥∥
2
≈ k

εn
log

(1
δ

)
.
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3. Adding i.i.d Gaussian noise fm +N
(
0, k

2ρn2 Ik
)
achieves ρ-zCDP, with L2 error of order

∥∥∥∥N (0, k

2ρn2 Ik

)∥∥∥∥
2
≈ k

n
√
ρ
.

In addition to the Laplace and Gaussian mechanisms, it is possible to achieve DP using
other mechanisms like the Exponential mechanism [MT07], randomised response [War65],
and the Sparse Vector Technique (SVT) [DNR+09], among others. In this thesis, we only use
the Laplace and Gaussian mechanisms as building blocks, in addition to composition and
post-processing, to design and analyse different sophisticated DP algorithms in Chapter 5.

2.1.5 DP under continual observation

In the continual observation setting [DNPR10a, CSS11], a mechanism receives its input dataset
D ≜ {x1, . . . , xT } ∈ X T as a stream. Specifically, at each step t ∈ [T ], the mechanism gets a
record xt and outputs an answer at. Similar to the batch model, a continual release mechanism
satisfies DP if the mechanism’s output sequence (a1, . . . , aT ) is indistinguishable under two
neighbouring input streams.

A fundamental problem studied in continual observation is the continual counting problem.
Given an input stream σT ∈ {0, 1}T , a private counting mechanism outputs at each step t a
private approximation at ∼ M(σ)t of the sum ∑t

s=1 σs. A counting mechanismM is then
(α, β)-useful, if for all time-steps t ∈ [T ], with probability at least 1− β over the randomness of
M, we have |M(σ)t −

∑t
s=1 σs| ≤ α.

It is possible to construct two simple mechanisms based solely on the Laplace mechanism.
Simple Mechanism I. Since the input stream is binary, the sum up to step t has L1 sensitivity
of 1. Thus, consider the simple mechanism that outputs

(∑t
s=1 σs

)
+ Lap (1/ε) at each step t.

Each released sum satisfies ε-DP. Thus, using basic composition, releasing the whole sequence
of sums is (Tε)-DP. Equivalently, to design a mechanism that is ε-DP, each published sum
should be

(∑t
s=1 σs

)
+ Lap (T/ε). The error at each step is then O(T/ε).

Simple Mechanism II. A second approach is to add to each input stream σt a sample γt ∼
Lap (1/ε). Then, the Simple Mechanism II outputs∑t

s=1(σs + γs). It is straightforward that the
mechanism satisfies ε-DP. At each step t, the noise added is the sum of t independent Lap(1/ε).
Hence, using the concentration of the sum of Laplace distributions, the noise level added at
each step t can be shown to be of order O(

√
t/ε). This already improves Simple Mechanism I’s

error.
Building on the intuitions from the two simple mechanisms, the binary tree mechanism

[DNPR10a, CSS11] is proposed.
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Figure 2.2 – The binary tree construction for the interval [1,8]. The sum of time steps 1 through 7 can be
recovered by adding the p-sums corresponding to the black nodes [CSS11].

The binary tree mechanism [DNPR10a, CSS11]. The complexity of the counting problem
lies in the fact that the input values observed early in the process impact all subsequent output
values. The binary tree mechanism builds on this observation to provide an ε-DP counting
algorithm, with error at each step of order O

(
log(T )3/2

ε

)
. The best way to understand the binary

tree mechanism is to think in terms of the partial sum (i.e. p-sum) framework. A p-sum is a
partial sum of consecutive items. For 1 ≤ i ≤ j ≤ T , the notation σ[i, j] ≜

∑j
t=i σt denotes the

partial sum involving items i through j. Instead of outputting the estimated counts, the binary
tree mechanism releases a sequence of noisy p-sums. This sequence of p-sums has the property
of providing "sufficient" information to estimate the count at each time step t.

The intuition is best explained using a binary interval tree as shown in Figure 2.2. Each leaf
node in the tree represents a time step, and each interior node represents a range. The binary
tree mechanism releases the p-sums corresponding to each node in the tree. Then, to recover
the sum of time steps 1 through t, finding a set of nodes in the tree to uniquely cover the range
[1, t] suffices. This construction has two properties:

(a) Every time step t appears in atmost log T p-sums. Equivalently, thismeans that changing
one σt in the input only changes at most O(log T ) p-sums. Thus, using the Laplace mechanism,
adding a noise of scale log(T )/ε to each p-sum in the tree makes the release of the whole tree
ε-DP.

(b) Every continuous range [1, t] can be represented with a set of O(log T ) nodes in the tree.
Equivalently, this means that each sum∑t

s=1 σs can be recovered by summing at most O(log T )
p-sums from the tree.

Combining points (a) and (b) gives that the binary tree mechanism releases each sum∑t
s=1 σs with a noise that is (at most) the sum ofO(log T ) i.i.d Laplace variables Lap(log(T )/ε).

21



Background

Again, using the concentration of the sum of Laplace variables, we conclude that the scale of
the noise added at each step is O(log(T )3/2/ε).

The binary tree mechanism is used as a building block for many online learning algorithms.
In Chapter 5, we discuss some shortcomings of adapting this mechanism to derive private
bandit algorithms, and propose simpler ways to overcome these shortcomings.

2.2 Multi-Armed Bandits

In this section, we formalise the bandit problem and its two main utility measures studied in
this thesis: regret minimisation and Best Arm Identification (BAI). For each utility objective,
we first present state-of-the-art algorithm design ideas and analyse their utility. Then, we show
that these algorithms achieve (asymptotic) exact optimality by providing tight lower bounds.

2.2.1 The language of bandits

A bandit problem is a sequential game between a learner and an environment. The game
is played over T rounds, where T ∈ N⋆ is a positive natural number called the horizon. In
each round t ∈ [T ], the learner first chooses an action at from a given set A. Actions are also
called "arms" in the literature. Then, the environment reveals a reward rt ∈ R. The learner
chooses arm at based only on the interaction history Ht−1 ≜ (a1, r1, . . . , at−1, rt−1). A policy is
a mapping from histories to actions. An environment is a mapping from history sequences
ending in actions to rewards. Both the learner and the environment may randomise their
decisions. The most common objective of the learner is to choose actions that lead to the largest
possible cumulative reward over the T rounds, i.e.∑T

t=1 rt. The fundamental challenge in
bandit problems is that the environment is unknown to the learner. All the learner might know
is that the true environment lies in some set E called the environment class.

2.2.2 The canonical model for stochastic bandits

A simple problem setting is that of stochastic stationary bandits. In this case, the environment
is restricted to generating the reward in response to each action from a distribution that is
specific to that action and independent of the previous action choices and rewards. A stochastic
bandit (or environment) is a collection of distributions ν ≜ (Pa : a ∈ A), where A is the set
of available actions. The learner and the environment interact sequentially over T rounds. In
each round t ∈ 1, . . . , T , the learner chooses an action at ∈ A, which is fed to the environment.
The environment then samples a reward rt ∈ R from distribution Pat and reveals rt to the
learner. The interaction between the learner (or policy) and environment induces a probability
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Algorithm 1 Bandit interaction between a policy and an environment
1: Input: A policy π and an environment ν ≜ (Pa : a ∈ [K])
2: for t = 1, . . . do
3: The policy samples an action at ∼ πt(. | a1, r1, . . . , at−1, rt−1)
4: The policy observes a reward rt ∼ Pat

5: end for
6: if Regret minimisation then
7: The interaction ends after T steps
8: else FC-BAI
9: The policy decides to stop the interaction at step τ and recomends the final guess â

10: end if

measure on the sequence of outcomes a1, r1, a2, r2, . . . , aT , rT . In the following, we construct
the probability space that carries these random variables.

Let T ∈ N⋆ be the horizon. Let ν = (Pa : a ∈ [K]) a bandit instance withK ∈ N⋆ finite arms,
and each Pa is a probability measure on (R,B(R)) with B being the Borel set. For each t ∈ [T ],
let Ωt = ([K]× R)t ⊂ R2t and Ft = B(Ωt). We first formalise the definition of a policy.

Definition 2.16 (The policy). A policy π is a sequence (πt)Tt=1 , where πt is a probability kernel from
(Ωt,Ft) to ([K], 2[K]). Since [K] is discrete, we adopt the convention that for a ∈ [K],

πt(a | a1, r1, . . . , at−1, rt−1) = πt({a} | a1, r1, . . . , at−1, rt−1)

We want to define a probability measure on (ΩT ,FT ) that respects our understanding of
the sequential nature of the interaction between the learner and a stationary stochastic bandit.
Specifically, the sequence of outcomes should satisfy the following two assumptions:

(a) The conditional distribution of action at given a1, r1, . . . , at−1, rt−1 is π(at | Ht−1) almost
surely.

(b) The conditional distribution of reward rt given a1, r1, . . . , at−1, rt−1, at is Pat almost surely.

The probability measure on (ΩT ,FT ) depends on both the environment ν and the policy π.
To construct this probability, let λ be a σ-finite measure on (R,B(R)) for which Pa is absolutely
continuous with respect to λ for all a ∈ [K]. Let pa = dPa/dλ be the Radon–Nikodymderivative
of Pa with respect to λ. Letting ρ be the counting measure with ρ(B) = |B|, the density
pνπ : ΩT → R can now be defined with respect to the product measure (ρ× λ)T by

pνπ(a1, r1, . . . , aT , rT ) ≜
T∏
t=1

πt(at | a1, r1, . . . , at−1, rt−1)pat(rt)
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and Pνπ is defined as

Pνπ(B) ≜
∫
B
pνπ(ω)(ρ× λ)T ( dω) forallB ∈ FT

Hence (ΩT ,FT ,Pνπ) is a probability space over histories induced by the interaction between
π and ν. We define also a marginal distribution over the sequence of actions by

mνπ(a1, . . . , aT ) ≜
∫
r1,...,rT

pνπ(a1, r1, . . . , aT , rT ) dr1 . . . drT ,

and forallC ∈ P([K]T ),

Mνπ(C) ≜
∑

(a1,...,aT )∈C
mνπ(a1, a2, . . . , aT ).

Hence, ([K]T ,P([K]T ),Mνπ) is a probability space over sequence of actions produced when
π interacts with ν for T time-steps.

2.2.3 Utility measures in bandits as learning objectives

We discuss two learning objectives.
Regret Minimisation. The first learning objective studied in this thesis is regret minimisation.
Informally, the regret of a policy is the deficit suffered by the learner relative to the optimal
policy that knows the environment, and plays always the optimal arm. Let ν = (Pa : a ∈ [K])
a bandit instance and define µa(ν) =

∫∞
−∞ xdPa(x) the mean of reward distribution Pa. We

assume throughout that µa(ν) exists and is finite for all actions. Let µ⋆(ν) = maxa∈[K] µa(ν)
the largest mean among all the arms. The regret of policy π on bandit instance ν is

RegT (π, ν) ≜ Tµ⋆(ν)− Eνπ

[
T∑
t=1

rt

]
. (2.7)

The expectation is taken with respect to the probability measure Pνπ on action-reward
sequences induced by the interaction of π and ν. The regret can be decomposed in terms of the
loss due to pulling each of the sub-optimal arms:

RegT (π, ν) =
K∑
a=1

∆aEνπ [Na(T )] , (2.8)

where Na(T ) ≜
∑T
t=1 1 (at = a) is the number of times the arm a is played till T , and

∆a ≜ µ⋆(ν)− µa(ν) is the sub-optimality gap.
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So what can we hope for? A relatively weak objective is to find a policy π with sub-linear
regret on all ν ∈ E . Formally, this objective is to find a policy π such that, for all ν ∈ E

lim
T→∞

RegT (π, ν)
T

= 0

Best Arm Identification. The second learning objective is Best Arm Identification (BAI).
BAI is a pure exploration problem that aims to find the arm with the highest expected re-
ward, i.e. a⋆(ν) ≜ arg maxa∈[K] µa(ν). It has been studied in two major theoretical frameworks
[ABM10, GGL12, JN14, GK16]: the fixed-confidence and fixed-budget setting. In the fixed-
budget setting, the objective is to minimise the probability of misidentifying a correct answer
with a fixed number of samples T . In this thesis, we consider the fixed-confidence setting
(FC-BAI), in which the learner aims at minimising the number of samples used to identify
a correct answer with confidence 1 − δ ∈ (0, 1). 1 To achieve this, the learner defines an FC-
BAI strategy to interact with the bandit instance ν = {νa}a∈[K], consisting of K arms with
finite means {µa}a∈[K] ∈ (0, 1)K . We assume that there is a unique best arm a⋆(ν) defined as
a⋆(ν) = arg maxa∈[K] µa. We augment the action set by a stopping action ⊤, and write at = ⊤ to
denote that the algorithm has stopped before step t. In the following, we define the ingredients
of an FC-BAI strategy.
Definition 2.17 (FC-BAI strategy). A FC-BAI strategy πBAI is composed of

i. A pair of sampling and stopping rules (Sn : Hn−1 → P([K] ∪ {⊤}))n≥1. For an action a ∈
[K], Sn (a | Hn−1) denotes the probability of playing action a given historyHn−1. On the other hand,
Sn (⊤ | Hn−1) is the probability of the algorithm halting givenHn−1. For any historyHn−1, a consistent
sampling and stopping rule Sn satisfies Sn (⊤ | Hn−1) = 1 if ⊤ has been played before n.

ii. A recommendation rule (Recn : Hn−1 → P([K]))n>1. This rule dictates Recn (a | Hn−1),
i.e. the probability of returning action a as a final guess for the best action givenHn−1.

In addition to the sampling rule, which is the same as the definition of a policy in regret
minimisation (i.e.Defintion 2.16), an FC-BAI strategy has a stopping rule, that dictates when
the strategy stops sampling, and a recommendation rule that proposes a final guess of the
optimal arm after stopping. To analyse the performance of an FC-BAI strategy, we define the
stopping time and δ-correctness.
Definition 2.18 (Stopping time). We denote by τδ the stopping time (or sample complexity) of
the policy πBAI the first step n such that an = ⊤.

The FC-BAI strategy is δ-correct if, after stopping, it recommends the optimal arm with
probability 1− δ.

1We remind not to confuse risk level δ with the δ of (ε, δ)-DP. Later when studying privacy for BAI, we only
consider ε-pure DP as the privacy definition, and δ always represents the risk (or probability of mistake) of the BAI
strategy.
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Definition 2.19 (δ-correctness). A FC-BAI strategy πBAI is called δ-correct for a class of bandit
instances E , if for every bandit instance ν ∈ E , πBAI recommends â as the optimal action a⋆(ν) with
probability at least 1− δ, i.e. PπBAI,ν(τδ < +∞, â = a⋆(ν)) ≥ 1− δ.

The goal in FC-BAI is to design a δ-correct BAI policy, with the smallest expected sample
complexity Eπ,ν [τ(δ)].

2.2.4 Concentration of measure

Before discussing the design and analysis of bandit algorithms, we need to introduce one
more tool from probability theory, called concentration of measure. Since the mean rewards
are initially unknown, they need to be estimated from the history. How long does it take to
learn about the mean reward of an action? The main technique introduced here is the Crameŕ
Chernoff exponential tail inequalities for subgaussian random variables.

Definition 2.20 (Subgaussianity). A random variable X is σ-subgaussian if for all λ ∈ R, it holds
that

E[exp(λX)] ≤ exp(λ2σ2/2)

The tails of a σ-subgaussian random variable decay approximately as fast as that of a
Gaussian with zero mean and the same variance.

Lemma 2.21 (Concentration of subgaussian random variables). If X is σ-subgaussian, then for
any ε ≥ 0,

P (X ≥ ε) ≤ exp
(
− ε2

2σ2

)

The proof is based on a generic approach called the Cramér Chernoff method.
Let λ > 0, then

P (X ≥ ε) = P (exp (λX) ≥ exp (λε))
(a)
≤ E[exp(λX)]exp(−λε)
(b)
≤ exp

(
λ2σ2

2 − λε
)

where (a) is due to Markov’s inequality, and (b) is by definition of subgaussianity.
Taking λ = ε/σ2 concludes the proof.

Lemma 2.22 (Properties of Subgaussian Random Variables). Suppose that X1 and X2 are inde-
pendent and σ1 and σ2-subgaussian, respectively, then
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1. cX is |c|σ-subgaussian for all c ∈ R.

2. X1 +X2 is
√
σ2

1 + σ2
2-subgaussian.

3. If X has mean zero and X ∈ [a, b] almost surely, then X is b−a2 -subgaussian.

2.2.5 Regret minimisation algorithms

To minimize regret, the optimal strategy is to always choose the optimal arms. This is obviously
not feasible since the environment is unknown to the learner.
Failure of Follow The Leader (FTL). A first natural idea to deal with the unknown environ-
ment is to estimate the empirical mean of each arm, and then pull the arm with the highest
estimated mean. Specifically, the Follow-The-Leader algorithm (FTL) starts by pulling each
arm once, then chooses at step t the action

at ∈ arg max
a∈[K]

µ̂a(t− 1)

where µ̂a(t) ≜ 1
Na(t)

∑t
s=1 1 (As = a) rs is the empirical mean estimate of µa at step t, and

Na(t) ≜
∑t
s=1 1 (As = a) is the number of pulls of arm a at step t.

It is easy to show that FTL achieves linear regret. Specifically, the optimal arm may appear
to be worse than a sub-optimal arm after the first exploratory round and thus never be pulled
again, leading to linear regret.

One potential fix for this strategy is to explore each arm form > 1 rounds, then commit
to the best empirical arm for the rest of the rounds. This is the Explore-then-Commit (ETC)
algorithm. It is clear that the regret of ETC depends heavily on the choice ofm. As for FTL, if
m is too small, then there is a high probability of committing to a sub-optimal arm, leading
to linear regret. On the other hand, choosing m to be big enough means that many rounds
were "wasted" on sub-optimal arms, leading to linear regret. Optimising form captures well
the exploration-exploitation dilemma. We refer to Chapter 6 in [LS20] for a complete regret
analysis of the algorithm. The take-away message from the analysis is that optimising form to
get sub-linear regret depends on the knowledge of the gaps between the means ∆a ≜ µ⋆ − µa,
and on the knowledge of the horizon T .
Optimism in the face of uncertainty and the UCB algorithms. The principle of optimism
in the face of states that one should act as if the environment is as nice as plausibly possible.
Applying this principle for bandits means using the history observed so far to assign to each arm
an index (i.e. a value), called the Upper Confidence Bound (UCB), that with high probability
is an overestimate of the unknown mean. The UCB algorithm chooses at each step the arm
with the highest estimated upper confidence bounds. The reason why UCB is successful is that
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Algorithm 2 UCB Meta-algorithm
1: Input: K number of arms
2: Initialisation: Choose each arm one.
3: for t > K do
4: Chose the optimistic arm

At ∈ arg max
a∈[K]

UCBa(t− 1)

5: Observe reward rt and update upper confidence bounds
6: end for

the upper confidence bound of an arm is high if either the true mean is high and the arm is the
best choice (exploitation), or if the arm has not been chosen often enough, which means that
exploring this arm will provide useful information about the environment (exploration). In
one step, the UCB algorithm integrates both exploration and exploitation.

The main ingredient to instantiate the UCB meta-algorithm (Algorithm 2) is to construct
the high-probability upper confidence on the real means (UCBa(t − 1))a∈[K] at each step t.
To do so, we will use the concentration of measure results on subgaussian random variables
introduced earlier. Let (Xt)Tt=1 be a sequence of independent 1-subgaussian random variables,
with mean µ and empirical mean µ̂T ≜ 1

T

∑T
t=1Xt. By Lemma 2.22, µ̂T − µ =

∑T
t=1(Xt − µ)/n

is 1/
√
T -subgaussian. Using Proposition 2.21, we get that P(µ̂T − µ ≥ ε) ≤ exp(−Tε2

2 ). This
means that, with probability 1− δ for δ ∈ (0, 1), µ ≤ µ̂T +

√
2 log(1/δ)

T .
In bandits, the policy observed Na(t− 1) samples from arm a at step t and thus builds an

upper confidence index:

UCBa(t− 1, δ) ≜ µ̂a(t− 1) +
√

2 log(1/δ)
Na(t− 1) (2.9)

The UCB index is the sum of the empirical mean of rewards, and the exploration bonus,
also known as the confidence width. We now provide an upper bound on the regret of the
UCB algorithm.

Theorem 2.23. Consider the UCB meta-algorithm of Algorithm 2, with the index defined in Eq (2.9).
Let ν be a K-armed 1-subgaussian bandit instance. For any horizon T , with δ = 1/T 2, then the
problem-dependent regret upper bound is

RegT (UCB, ν) ≤ 3
K∑
a=1

∆a +
∑

a:∆a>0

16 log(T )
∆a

(2.10)
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This gives also the following gap-free (also called worst-case, problem free or problem independent)
upper bound

RegT (UCB, ν) ≤ 8
√
TK log(T ) + 3

K∑
a=1

∆a

In particular, if ∆a ≤ 1, then

RegT (UCB, ν) ≤ 8
√
TK log(T ) + 3K (2.11)

UCB achieves sub-linear regret. The proof can be found in Chapter 7 of [LS20]. The proof
defines the "good event": all the real means are well-estimated by the empirical means, which
happens with probability 1 − δ. Under this good event, the UCB algorithm stops sampling
a sub-optimal arm a once the confidence width is smaller than the mean gap. Specifically,
if na is the number of times that UCB samples a sub-optimal arm a, then na verifies that
2
√

2 log(1/δ)
na

≤ ∆a. Solving for na and replacing δ = 1/T gives the problem-dependent regret
upper bound of Equation (2.10). It is called a problem-dependent bound since it depends on
the gaps ∆a, which depend on the means of the rewards distributions of the bandit instance.
The gap-free upper bound of Equation (2.11) is retrieved by optimising for the worst-case
instance. Another way of proving the gap-free bound is by showing that the regret of UCB
algorithms is upper bounded by the sum of the confidence intervals width. In the UCB index
of Equation (2.9), the width of the confidence interval is

√
4 log(1/δ)
Na(t−1) . Thus, an upper bound on

the regret is∑T
t=1 2

√
2 log(1/δ)
Nat (t−1) . To provide an intuition on upper bounding this quantity, it is

possible to think of Nat(t− 1) ≈ t, and thus∑t
1√
t
≈
∫
t

1√
t
dt =

√
T .

As we will show later, for better choices of the exploration bonuses, UCB is optimal and
matches exactly the regret lower bounds. For example, let us consider the following index:

UCBa(t− 1) ≜ µ̂a(t− 1) +
√

2 log f(t)
Na(t− 1) (2.12)

where f(t) ≜ 1 + t log2(t).
This index is different than the index of Equation (2.9) in the choice of the exploration

bonus. In addition to providing better regret upper bound, the index in Equation (2.12)
has the advantage of being independent of the risk parameter δ, thus making the algorithm
independent of the apriori knowledge of the horizon T . This kind of algorithm is known as an
"anytime algorithm".

Theorem 2.24. Consider the UCB meta-algorithm of Algorithm 2, with the index defined in Equa-
tion (2.12). Let ν be a K-armed 1-subgaussian bandit instance. For any horizon T , the asymptotic
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problem-dependent regret upper bound is

lim
T→∞

RegT (UCB, ν)
log(T ) ≤

∑
a:∆a>0

2
∆a

This gives also the following gap-free upper bound

RegT (UCB, ν) ≤ 2
√
CKT log(T ) + C

K∑
a=1

∆a

for some constant C > 0.

This asymptotic bound on the regret is not improvable in a strong sense.
Finally, for the stronger assumption that the rewards are Bernoulli, it is possible to de-

sign tighter upper confidence bounds. The Bernoulli model where rewards are in {0, 1} is
fundamental in many applications, where the environment’s feedback is binary.

The Bernoulli distribution is 1/2-subgaussian regardless of its mean. Thus, the results of the
previous algorithm are applicable here. However, the additional knowledge that the rewards
are Bernoulli is not being fully exploited by these algorithms. The reason is essentially that
the variance of a Bernoulli random variable depends on its mean, and when the variance is
small, the empirical mean concentrates faster, a fact that should be used to make the confidence
intervals smaller.

We introduce the relative entropy between Bernoulli random variables to construct tighter
confidence bounds on the real mean.

Definition 2.25 (Relative entropy between Bernoulli distributions). . The relative entropy between
Bernoulli distributions with parameters p, q ∈ [0, 1] is

kl(p, q) = p log(p/q) + (1− p) log((1− p)/(1− q)) (2.13)

and singularities are defined by taking limits.

Using Chernoff’s bound as the concentration of measure tool, it is possible to define the
following UCB index, called KL-UCB in the literature:

KL-UCBa(t− 1) ≜ max
{
µ̃ ∈ [0, 1] : kl(µ̂a(t− 1), µ̃) ≤ log f(t)

Na(t− 1)

}
(2.14)

where f(t) ≜ 1 + t log2(t).

Theorem 2.26. Consider the UCB meta-algorithm of Algorithm 2, with the KL-UCB index defined
in Equation (2.14). Let ν be aK-armed Bernoulli bandit instance. For any horizon T , the asymptotic

30



2.2 Multi-Armed Bandits

problem-dependent regret upper bound is

lim
T→∞

RegT (KL-UCB, ν)
log(T ) ≤

∑
a:∆a>0

∆a

d(µa, µ⋆)

This improves on the regret upper bound of Theorem 2.24, since by Pinsker’s inequality
d(µa, µ⋆) ≥ 2(µ⋆ − µa)2 = 2∆2

a.

2.2.6 Regret lower bounds

In this section, we provide two flavours of regret lower bounds for bandits.
The first type of regret lower bounds studied is the minimax regret lower bounds.

Definition 2.27 (Minimax Regret). Let E be a class of bandit instances. The worst case regret of a
policy π on the class E is

RegT (π, E) ≜ sup
ν∈E

RegT (π, ν).

Let Π be the set of all policies. The minimax regret is

Reg⋆T (E) ≜ inf
π∈Π

RegT (π, E) = inf
π∈Π

sup
ν∈E

RegT (π, ν)

A small value of Reg⋆T (E) indicates that the underlying bandit problem is less challenging
in the worst-case sense. The main result of this part is to show that Reg⋆T (E) is Ω(

√
KT ).

Theorem 2.28 (Minimax Regret Lower Bound). Let EKG be the set ofK-armed Gaussian bandits,
with unit variance. Then, forK > 1 and T ≥ K − 1,

Reg⋆T (EKG ) ≥ 1
27

√
(K − 1)T .

Themethod used to prove Theorem 2.28 can be viewed as a generalisation and strengthening
of Le Cam’s method in statistics. There are two differences compared to Le Cam’s method
[LeC73]: (a) dealing with a sequential setting, and (b) choosing the alternative problem
depends on the algorithm. In Section 4.1 of Chapter 4, we present in detail the intuition and
techniques used to prove these lower bounds, and how to adapt it to the DP policy class, i.e. the
subclass of policies that satisfy Differential Privacy.

Theminimax regret lower bound serves as a useful measure of the robustness of a policy but
can be excessively conservative. Instance-dependent lower bounds overcome this by capturing
the optimal performance of a policy on a specific bandit instance. Since minimising regret over
a class of bandit instances is a multi-objective criterion, an algorithm designer might try and
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design algorithms that perform well on one kind of instance. An extreme example is the policy
that always chooses At = 1, which suffers zero regret when the first arm is optimal and linear
regret otherwise. Thus, it is important to define exactly what is meant by a reasonable policy.
An example of such a class of reasonable policies is the consistent policies, i.e. policies that
achieve sub-linear regret on every instance in the class E .

Definition 2.29 (Consistent Policy). A policy π is called consistent over a class of bandits E if forall
ν ∈ E and p > 0, it holds that

lim
T→∞

RegT (π, ν)
T p

= 0

The class of consistent policies over E is denoted by Πcons(E).

For example, the UCB algorithm is consistent over the class of 1-subgaussian random
variables. The strategy that always chooses the first action is not consistent on any class E
unless the first arm is optimal for every ν ∈ E .

The main result of this section is a problem-dependent lower bound, for consistent policies,
over the class of unstructured bandits, i.e. the class of bandits E ≜ P1 × · · · × MK , with
P1, . . . ,MK are sets of distributions.

Definition 2.30 (The KL inf). LetM be a set of distributions with finite means. Let µ : P → R the
function that maps a distribution P ∈ P to its mean. Let µ⋆ ∈ R and P ∈ M such that µ(P ) < µ⋆.
Define

KLinf(P, µ⋆,M) ≜ inf
P ′∈M

{
KL(P, P ′) : µ(P ′) > µ⋆

}
where KL is the Kullback-Leibler divergence, i.e. for two probability distributions P,Q on (Ω,F), the
KL divergence is KL(P,Q) ≜

∫
log

(
dP
dQ(ω)

)
dP(ω) when P≪ Q, and +∞ otherwise.

Theorem 2.31. Let E ≜M1 × · · · ×MK and π ∈ Πcons(E) a consistent policy over E . Then, for any
ν = (Pa : a ∈ K) ∈ E ,

lim inf
T→∞

RegT (π, ν)
log(T ) ≥

∑
a:∆a>0

∆a

KLinf(Pa, µ⋆,Ma)
(2.15)

where ∆a ≜ µ⋆ − µa is the suboptimality gap of arm a.

The lower bound of Theorem 2.31 and the "KL inf" are fundamental quantities that char-
acterise the complexity of a bandit problem. For the class of Gaussian k-armed bandit with
variance 1, it is easy to show that KLinf(Pa, µ⋆,Ma) = (µ⋆−µa)2

2 = ∆2
a

2 , which shows the asymp-
totic optimality of Theorem 2.24. For the Bernoulli bandit class, KLinf(Pa, µ⋆,Ma) = d(µa, µ⋆),
which also validates the "exact" optimality of KL-UCB.
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2.2.7 Contextual and linear bandits

In many bandit problems, the learner has access to additional information that may help predict
the quality of the actions. Imagine creating a movie recommendation system in which users ask
for movie suggestions to watch next. It would not be wise to disregard the user’s demographic
information, the history of movies watched, or ratings when making these recommendations.

The setting of contextual bandits is an "augmented" bandit framework that better models
real-world problems where contextual information is available. In this setting, the policy
observes at each step t a context ct ∈ C, which may be random or not. Having observed the
context, the policy chooses an action at ∈ [K] and observes a reward rt. In the linear contextual
bandits, the reward rt depends on both the arm at and the context ct in terms of a linear
structural equation, that allows for learning to transfer from one context to another.

rt ≜ ⟨θ⋆, ψ(at, ct)⟩+ ηt. (2.16)

Here, ψ : [K]× C → Rd is the feature map, θ⋆ ∈ Rd is the unknown parameter, and ηt is the
noise, which may be assumed to be conditionally 1-subgaussian. While decision-making with
Equation (2.16), all that matters is the value of the feature vector. Thus, the bandit literature
often studies a reduced model [LS20], where in round t, the policy is served with the decision
set At ⊂ Rd, from which it chooses an action at ∈ At and receives a reward rt ≜ ⟨θ⋆, at⟩+ ηt,
where ηt is 1-subgaussian given A1, a1, R1, . . . ,At−1, at−1, Rt−1,At, and At. Different choices
of At lead to different settings. For example, if At ≜ {ψ(ct, a) : a ∈ [K]}, then we have a
contextual linear bandit, or if At ≜ {e1, . . . , ed}, where (ei)i are the unit vectors of Rd then the
resulting bandit problem reduces to a d-finite armed bandit. For the contextual bandit setting,
the contexts can be either generated stochastically, i.e. sampled from some distribution , or
assumed to be generated arbitrarily, i.e. adversarial contexts.

The goal is to design a policy that minimises the regret, which is defined as

RT ≜ E
[
T∑
t=1

max
a∈At

⟨θ⋆, a− at⟩
]
. (2.17)

To design an algorithm for the linear contextual setting, we use again optimism in the face
of uncertainty, i.e. acting like the environment is as nice as possible. For this setting, the main
quantity of interest is the regression parameter θ⋆Rd. The main step to adapt UCB for linear
contextual bandit is to construct a confidence set Ct ⊂ Rd at each step t based on the history
(a1, r1, . . . , at−1, rt−1) that contains with high probability the unknown parameter θ⋆. Given a
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confidence set Ct, the LinUCB index is then defined as

LinUCBt(a) = max
θ∈Ct

⟨θ, a⟩

to be an upper bound on the mean reward ⟨θ⋆, a⟩ of arm a.
The LinUCB algorithm then selects at each time step the arm

at = arg max
a∈At

LinUCBt(a).

The main question is how to choose Ct. First, we need an analogue of the empirical mean in
UCB to estimate the unknown θ⋆. A natural candidate is the regularised least-squares estimator,
also called the ridge estimator, which is

θ̂t ≜ V
−1
t

t−1∑
s=1

asrs (2.18)

where Vt ≜ λId +
∑t−1
s=1 asrs is a d× dmatrix called the design matrix and λ > 0.

Since θt is an estimate of θ⋆, a natural candidate for Ct is to be an ellipsoid centred at θt, i.e.

Ct ≜
{
θ ∈ Rd :

∥∥∥θ − θ̂t∥∥∥
V −1

t

≤ βt
}

(2.19)

for fine-tuned βt that we specify later.
Under some boundness assumptions (Assumption 19.1 in [LS20]) and for a choice of βt as

in Equation (19.8) of [LS20], it is possible to show that the regret of LinUCB in a contextual
linear bandit instance achieves

RT ≤ Cd
√
T log(T ),

where C is a universal constant. The minimax lower bounds for linear contextual bandits
(Chapter 24 in [LS20]) show that LinUCB is minimax-optimal up to logarithmic factors.

2.2.8 Sample complexity lower bound

In FC-BAI, being δ-correct imposes a lower bound on the expected sample complexity on any
instance.

Theorem 2.32 ([GK16]). Let δ ∈ (0, 1). For any δ-correct FC-BAI strategy and all instances ν ∈M,
we have that

Eν [τδ] ≥ T ⋆KL(ν) kl(δ, 1− δ)
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Algorithm 3 Generic Top Two sampling rule
1: Input: Mechanism to choose the Leader arm L, Mechanism to choose the Challenger arm
C, Mechanism to choose between the Leader and Challenger T

2: Output: Next arm to sample at
3: Let Ht−1 ≜ (a1, r1, . . . , at−1, rt−1) be the history
4: Choose bt = L(Ht−1) ∈ [K] ▷ Choose the Leader
5: Choose ct = C(Ht−1) ∈ [K]/{bt} ▷ Choose the Challenger
6: Sample at ∈ {bt, ct} using T
7: Return at

where
T ⋆KL(ν)−1 ≜ sup

ω∈ΣK

inf
λ∈Alt(ν)

∑
a∈[K]

ωaKL(νa, λa). (2.20)

Here, kl is the relative entropy between Bernoullis introduced in Definition 2.25. It is possible to show
that kl(δ, 1 − δ) ∼δ→0 log(1/δ) and kl(δ, 1 − δ) ≥ log(1/(2.4δ)) for all δ ∈ (0, 1). ΣK ≜ {ω ∈
[0, 1]K |

∑K
a=1 ωa = 1} is the probability simplex, and the set of alternative instances is denoted by

Alt(ν) ≜ {λ ∈M | a⋆(λ) ̸= a⋆(ν)}, i.e. the bandit instances λ with a different optimal arm than ν.

The sample complexity lower bound of Theorem 2.32 shows that the T ⋆KL quantity, named
the KL characteristic time, controls the complexity of the FC-BAI problem. T ⋆KL can be thought
of as the FC-BAI counterpart of the KL inf quantity of regret. In general, the expression of T ⋆KL
cannot be simply written as a sum over the arms of individual complexity terms. For Gaussian
FC-BAI, with variance 1, it is possible to show that

K∑
a=1

2
∆2
a

≤ T ⋆KL(ν) ≤
K∑
a=1

4
∆2
a

for µ1 > µ2 ≥ . . . µK , ∆1 ≜ ∆2 and ∆a ≜ µ1 − µa.
In addition, it is possible to show that any FC-BAI strategy that matches the lower bound

draws each arm with respect to the proportion dictated by w⋆ where

w⋆(ν) ≜ arg max
ω∈ΣK

inf
λ∈Alt(ν)

∑
a∈[K]

ωaKL(νa, λa).

In the following, we show that this lower bound is asymptotically tight.

2.2.9 FC-BAI algorithms

Early FC-BAI algorithms failed to reach the lower bound of Theorem 2.32, e.g. Successive
Elimination (SE) based algorithms [EDMMM06] or confidence bounds based algorithms, e.g.
LUCB [KTAS12] or lil’UCB [JMNB14]. On the other hand, inspired by this lower bound, many
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algorithms have been designed to tackle FC-BAI. The Track-and-Stop algorithm [GK16] is
the first algorithm to reach asymptotic optimality, by sequentially solving the optimisation
problem T ⋆KL(νn), where νn is the empirical instance, and tracking the associated optimal
weights. To reduce the computational cost of Track-and-Stop, several asymptotically optimal
algorithms have been proposed recently: online optimisation-based approach, e.g. game-
based algorithm [DKM19] or Frank-Wolfe-based Sampling (FWS) [WTP21], and Top Two
algorithms [Rus16]. While most algorithms can be modified to achieve privacy, this thesis
focuses on the Top Two family of algorithms due to their great empirical performance and easy
implementation.

Before presenting the sampling rules, we present the Generalised Likelihood Ratio (GLR)
stopping rule and Empirical Best (EB) recommendation rules. To design an FC-BAI strategy,
the EB recommendation and GLR rules are then complemented by choosing a sampling rule
from the Top Two family of sampling rules.
The Empirical Best (EB) recommendation rule. If the algorithm stops at step t, the EB rec-
ommendation rule proposes as a final guess the arm with the highest empirical mean, i.e.

ât ∈ arg max
a∈[K]

µ̂a(t− 1),

where we remind that µ̂a(t) ≜ 1
Na(t)

∑t
s=1 1 (As = a) rs is the empirical mean estimate of µa at

step t, and Na(t) ≜
∑t
s=1 1 (As = a) is the number of pulls of arm a at step t.

The Generalised Likelihood Ratio (GLR) stopping rule. An algorithm decides to stop when
enough statistical evidence has been collected to certify that the final recommendation (i.e. the
EB) is the optimal arm, with probability 1−δ. This can be formulated as a sequential hypothesis
test. Specifically,K sequential tests are run in parallel. Each test is associated with verifying
the optimality of arm a ∈ [K], and tries to distinguish between two hypotheses: Ha

0 : arm a

is sub-optimal for the bandit instance ν vs Ha
1 : arm a is optimal for the bandit instance ν. To

solve each test, a Generalised Likelihood Ratio (GLR) statistic is computed. Specifically

GLRt(a) ≜ inf
λ∈M:a⋆(λ)̸=a

ℓt(νt,λ),

where νt is the empirical bandit instance at step t, and ℓt is the log-likelihood ratio of the of
the rewards collected before time t. A high value of GLRt(a) indicates that the hypothesis Ha

0
should be rejected, and that arm a is optimal. The GLR stopping rule stops as soon as one of
these GLRt(a) statistics is big enough. Specifically, the GLR stopping rule stops at step

τδ ≜ inf
{
t : max

a∈[K]
GLRt(a) > c(t− 1, δ)

}
,
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where c(t, δ) is a threshold, fine-tuned using time-uniform concentration inequalities to ensure
δ-correctness.

For Gaussian bandits with unit variance, it is possible to show that the GLR can be simplified
to mina̸=ât Wt(ât, a), where Wt(a, b) is the empirical transportation cost between arm a and
arm b defined by

Wt(a, b) ≜ 1 (µ̂t(a) > µ̂t(b))
(µ̂t(a)− µ̂t(b))2

2 (1/Na(t) + 1/Nb(t))
.

The stopping rule is then

τδ ≜ inf
{
t : min

a̸=ât

Wt(ât, a) > c(t− 1, δ)
}
,

and the threshold c(t, δ) is asymptotically in log(1/δ) as δ → 0. The power of the GLR rule
ensures δ-correctness, independently from the sampling rule.
The Top Two family of sampling rules. At every step, a Top Two sampling rule samples the
arm at between two candidates: a leader arm bt and a challenger arm ct. The generic top
two sampling rule is presented in Algorithm 3. In recent years, numerous variants of Top
Two algorithms have been analysed and shown to be asymptotically optimal [Rus16, QKR17,
SHM+20, JDB+22, YQWY23, JDK24]. We refer to Chapter 2 in [Jou24] for a extensive review of
different possible ingredients to instantiate Algorithm 3 while achieving asymptotic optimality.

For the sake of simplicity, we only consider in this thesis one particular instance of the
generic top two sampling rule, called the TTUCB algorithm [JD24].

The TTUCB algorithm uses the following ingredients:
The leader. TTUCB chooses a UCB leader

bt ≜ arg max
a∈K

UCBa(t).

The challenger. TTUCB chooses a Transportation Cost (TC) challenger

ct ≜ arg min
a̸=bt

Wt(bt, a).

Choosing between the leader and challenger. For a hyper-parameter β ∈ [0, 1] called the
target allocation, TTUCB uses a Tracking approach to choose between the leader and challenger.
Let Nb,a(t) denote the number of times arm bwas pulled when awas the leader up to step t,
and La(t) denotes the number of times arm a was the leader up to step t. In order to select the
next arm to sample at, TTUCB sets at = bt if Nbt,bt(t) ≤ βLbt(t+ 1), else at = ct. This tracking
ensures that the optimal arm is sampled β-fraction of the time.
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For Gaussian bandits with unit variance, the FC-BAI strategy combining an EB recommen-
dation rule, with a GLR with c(t, δ) ∼δ→0 log(1/δ) and the TTUCB sampling rule achieves

lim sup
δ→0

Eν [τδ]
log(1/δ) ≤ T

⋆
β (ν),

where β ∈ [0, 1] is the target allocation, and

T ⋆β (ν)−1 ≜ sup
ω∈ΣK :ωa⋆ =β

inf
λ∈Alt(ν)

∑
a∈[K]

ωaKL(νa, λa).

The characteristic time T ⋆β can be shown to be the lower bound of the sample complexity
over the sub-class of FC-BAI strategies which allocate β fraction of their samples to the optimal
arm. This quantity is closely related to T ⋆KL as the latter can be expressed as

T ⋆KL(ν) = min
β∈[0,1]

T ⋆β (ν).

For β = 1/2, we also have the "worst-case" inequality T ⋆1/2(ν) ≤ 2T ⋆KL(ν). This shows that,
for a fixed β = 1/2, TTUCB achieves the lower bound T ⋆KL up to a constant 2. It is possible
to improve on this 2 constant, and achieve the lower bound exactly. The idea is to track a
clever choice of the target allocation β, which depends on the round t and the identity of the
leader and challenger, i.e. βt(bt, ct). To track the allocation βt(bt, ct), the tracking procedure of
TTUCB also needs to be adapted. We refer the curious reader to Chapter 2 of [Jou24] for the
exact expressions of the target allocation βt(bt, ct) and the tracking procedures. For these two
changes, the TTUCB algorithm is then shown to achieve

lim sup
δ→0

Eν [τδ]
log(1/δ) ≤ T

⋆
KL(ν).

2.3 Membership Inference Games and Privacy Auditing

In this section, we formalise the Membership Inference (MI) game, based on the formalism
introduced by [YGFJ18]. Then, we instantiate theMI gamewith the empirical meanmechanism,
and present two strategies to trace the empirical mean: the likelihood ratio (LR) test [SOJH09]
and the scalar product attack [DSS+15]. We also explore the effects of Differential Privacy (DP)
on controlling the power of an adversary in MI games. Finally, we show how these effects of
DP on MI games can be utilised in privacy audit procedures.
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Algorithm 4 The Crafter
1: Input: MechanismM, Data-generating distribution D, Number of samples n
2: Output: (z⋆, o, b), where z⋆ ∈ Z , o ∈ O and b ∈ {0, 1}
3: Build a dataset D ∼⊗n

i=1D
4: Sample b ∼ Bernoulli

(
1
2

)
5: if b = 0 then
6: Sample z⋆ ∼ D independent of D
7: else
8: Sample i ∼ U [n]
9: Assign z⋆ to be the i-th element of D, i.e.Di ← z⋆

10: end if
11: Sample o ∼M(D)
12: Return (z⋆, o, b)

2.3.1 Definition of a MI game and threat model

LetM be a randomised mechanism that takes as input a dataset D of n points each belonging
to Z and outputs o ∈ O. In a Membership Inference (MI) game, an adversary attempts to infer
whether a given target point z⋆ ∈ Z was included in the input dataset ofM. Given access to
an output o ∼M(D), the adversary tries to infer whether z⋆ ∈ D, whereD is the input dataset
that generated the output o.

The MI game is presented in Algorithm 5. It is a game between two entities: the crafter
(Algorithm 4) and the adversaryA. The MI game runs in multiple rounds. At each round t, the
crafter samples a tuple (z⋆t , ot, bt), where z⋆t is a target point, ot is an output of the mechanism
and bt is the secret binary membership of z⋆. To generate the tuple (z⋆t , ot, bt) at step t, the
crafter(Algorithm 4) takes as input the mechanismM, the data-generating distribution D,
the number of samples n and a target datum z⋆. The crafter starts by sampling a dataset
D = {z1, . . . , zn} of size n independently from the data-generating distribution. Then, the
crafter flips a fair coin bt ∼ Bern(1/2). If bt = 0, the crafter samples a target z⋆t ∼ D independent
from the input dataset. This corresponds to the case where z⋆t is not included in the input
dataset, and thus the output ot is completely independent from z⋆t . Otherwise if bt = 1, z⋆t is
included at a random position i in the dataset D, then the output ot ∼ M(D ∪ {z⋆t } \ {zi})
depends on z⋆t . Thus, the secret binary bt ∈ {0, 1} encodes the membership of z⋆t in the input
dataset, which generated ot, i.e. bt = 0 corresponds to the OUT case and bt = 1 corresponds to
the IN case. Then, at each step t of the game, the adversary A takes as input only (z⋆t , ot) and
outputs b̂t, trying to reconstruct bt.

The MI game can also be seen as a hypothesis test. Here, the adversary tries to test the
hypothesis “H0: The output o observed was generated from a dataset sampled i.i.d. from D”, i.e. b = 0,
versus “H1: The target point z⋆ was included in the input dataset producing the output o”, i.e. b = 1.
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Algorithm 5 The Membership Inference (MI) game
1: Input: MechanismM, Data-generating distribution D, Number of samples n, Adversary
A, Rounds T

2: Output: A list L ∈ {0, 1}T , where Lt = 1 if the adversary succeeds at step t.
3: Initialise a empty list L of length T
4: for t = 1, . . . , T do
5: Sample (z⋆t , ot, bt) ∼ Crafter, i.e.Algorithm 4 with inputs (M, D, n)
6: Sample b̂t ∼ A(z⋆t , ot)
7: Set Lt ← 1

(
bt = b̂t

)
8: end for
9: Return L

We denote by pout(o, z⋆) and pin(o, z⋆) the joint distributions of the pair output-target (o, z⋆)
under H0 and H1, respectively.

2.3.2 Performance metrics in an MI game

An adversary A is a (possibly randomised) algorithm that takes as input the pair (z⋆, o) gen-
erated by the crafter (Algorithm 4) and outputs a guess b̂ ∼ A(z⋆, o) trying to infer b. The
adversary wins if b̂ = b and loses otherwise. The performance of A can be assessed either with
aggregated metrics like the accuracy and the advantage, or with test-based metrics like Type I
error, Type II error, and trade-off functions.

The accuracy of A is defined as

Accn(A) ≜ Pr[A(z⋆, o) = b], (2.21)

where the probability is over the generation of (z⋆, o, b) using Algorithm 4with input (M,D, n).
The advantage of an adversary is the re-centred accuracy

Advn(A) ≜ 2Accn(A)− 1. (2.22)

We can also define two errors from the hypothesis testing formulation. The Type I error, also
called the False Positive Rate, is

αn(A) ≜ Pr [A(z⋆, o) = 1 | b = 0] . (2.23)

The Type II error, also called the False Negative Rate, is

βn(A) ≜ Pr [A(z⋆, o) = 0 | b = 1] . (2.24)
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The power of the test is 1− βn(A). Using the prior b ∼ Bern(1/2), we can show that

Advn(A) = 1− αn(A)− βn(A).

The advantage is a quantity always between [−1, 1]. The random adversary guesser, i.e. the
adversary Ard ∼ Bern(1/2) that guesses 0 or 1 with probability 1/2 oblivious from the game,
has an advantage of 0, i.e. Advn(Ard). This means that the advantage of an adversary measures
how much better the adversary is doing compared to the random guesser. If Advn(A) > 0,
then the adversary A is better than random guessing.

An adversary can use a threshold over a score function to conduct the MI games, i.e. for
As,τ (z⋆, o) ≜ 1 (s(o; z⋆) > τ) where s is a scoring function and τ is a threshold. We want to
design scores that maximise the power under a fixed significance level α, i.e.

Pown(s, α) ≜ max
τ∈Tα

1− βn(As,τ ), (2.25)

where Tα ≜ {τ ∈ R : αn(As,τ ) ≤ α}. Pown(s, α) is also called a trade-off function.

2.3.3 The Neyman-Pearson lemma and optimal MI adversaries

It is a fundamental result of statistics that given two data-generating distributions p0 and p1

under hypothesesH0 andH1, respectively; no test can achieve better power than the Likelihood
Ratio (LR) test, i.e. The Neyman Pearson Lemma [NP33].

By recalling the hypothesis testing formulation of the MI game, where pout
n (o, z⋆) is the

distribution of the pair output-target (o, z⋆) under H0 and pin
n (o, z⋆) is the distribution of the

pair output-target (o, z⋆) under H1. Then, the log-Likelihood Ratio (LR) score for the MI game is

ℓn(o, z⋆) ≜ log
(
pin
n (o, z⋆)

pout
n (o, z⋆)

)
.

A direct consequence of the Neaman-Pearson lemma is that the LR score ℓn maximises the
power under significance α for every α ∈ (0, 1).

2.3.4 The Likelihood Ratio test for Bernoulli empirical mean MI games

In this section, we revisit results from [SOJH09]. In [SOJH09], the MI game is instantiated
with the empirical mean mechanism denoted byMemp

n . The mechanismMemp
n takes as input a

dataset of size n of d-dimensional points, i.e.D = {Z1, . . . , Zn} ∈ (Rd)n, and outputs the exact
empirical mean µ̂n ≜ 1

n

∑n
i=1 Zi ∈ Rd.
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Assumptions on the data generating distribution and asymptotic regime. [SOJH09] sup-
poses that the data-generating distribution D is column-wise independent Bernoulli distri-
butions, i.e.D ≜ ⊗d

j=1 Bernoulli(µj), with µj ∈ [a, 1 − a] for some a ∈ (0, 1/2). We denote
by⇝ convergence in distribution, i.e.A sequence of random variables Xn ⇝ X if and only
if Pr(Xn ≤ x) → Pr(X ≤ x) for all x. Let Φ represent the Cumulative Distribution Function
(CDF) of the standard normal distribution, i.e. Φ(α) ≜ 1√

2π
∫ α

−∞ e−t2/2 dt for α ∈ R. [SOJH09]
studies the asymptotic behaviour of the LR test, when both the sample size n and the dimension d
tend to infinity such that d/n = τ > 0.

The analysis of [SOJH09] starts by showing that the exact formula of the LR score, at output
o = µ̂n and target z⋆ is

ℓn(µ̂n, z⋆) =
d∑
j=1

z⋆j log
(
µ̂n,j
µj

)
+ (1− z⋆j ) log

(
1− µ̂n,j
1− µj

)
. (2.26)

As d and n tend to infinity such that d/n = τ , [SOJH09] shows that the LR score converges
in distribution to

ℓn(µ̂n, z⋆)⇝H0 N
(
−1

2τ, τ
)

under H0 and converges to
ℓn(µ̂n, z⋆)⇝H1 N

(1
2τ, τ

)
under H1.

The asymptotic distribution of the LR score helps to provide the asymptotic trade-off of the
optimal LR attacker. Specifically, the main result (Section T2.1 in [SOJH09]) is that

Φ−1(1− α) + Φ−1(1− β) ≈
√
d/n

where α is the Type I error, β is the Type II error and Φ represents the Cumulative Distri-
bution Function (CDF) of the standard normal distribution, i.e. Φ(α) ≜ 1√

2π
∫ α

−∞ e−t2/2 dt for
α ∈ R. This trade-off between α and β shows that the MI game gets easier, as d/n gets bigger.

The LR score of Equation (2.26) assumes the knowledge of the real mean µ. To derive a
"realistic" adversary for this attack, [SOJH09] proposes to estimate µ using reference samples
Dref
n0 ≜ {Z

ref
1 , . . . , Zref

n0 } sampled independently from the input dataset. Using the reference
samples, µ̂0 = 1

n0

∑n0
i=1 Z

ref
i is estimated and plugged in the LR score of Equation (2.26). This

leads to the empirical LR score

ℓemp
n (µ̂n, z⋆;Dref

n0 ) ≜
d∑
j=1

z⋆j log
(
µ̂n,j
µ̂0,j

)
+ (1− z⋆j ) log

(
1− µ̂n,j
1− µ̂0,j

)
. (2.27)
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If the number of reference points is n0 = λn, then [SOJH09] shows that the number of
samples used to get the same power as the optimal adversary who knows the real means is
increased by a factor (1 + λ)/λ.

2.3.5 The scalar product score for MI games

[DSS+15] proposes a scalar product attack for tracing the empirical mean that thresholds over
the score

sscal(µ̂n, z⋆; zref) ≜ (z⋆ − zref)T µ̂n,

where zref is one reference point. The intuition behind this attack is to compare the target-output
correlation (z⋆)T µ̂n with a reference-output correlation (zref)T µ̂n. The analysis of [DSS+15]
shows that with only one reference point zref ∼ D, and even for noisy estimates of the mean,
the attack is able to trace the data of some individuals in the regime d ∼ n2.

Informally, the analysis of [DSS+15] considers a scalar product attack, taking as input any
1/2-accurate estimate µ̂ of a dataset D ∈ ({−1, 1}d)n of dimension d = O

(
n2 log(1/δ)

) i.e. the
estimate µ̂ is close to the empirical mean of the dataset up to 1/2, a target point z⋆ ∈ {−1, 1}d

and only a single reference sample zref ∈ {−1, 1}d. The data-generating distribution is assumed to
be chosen from a strong class of distributions P . Then,

• If z⋆ is IN the dataset D, then

Pr
{
sscal(µ̂n, z⋆; zref) > τ

}
≥ Ω(1/n).

• If z⋆ is Out of the dataset D, then

Pr
{
sscal(µ̂n, z⋆; zref) < τ

}
≥ 1− δ.

for a carefully chosen threshold τ = O(
√
d log(1/δ)).

The condition of 1/2-accuracy is a weak condition, compared to the exact empirical mean
attack [SOJH09]. The price of the weak notion of accuracy is that the attack is only guaranteed
for d ⪆ n2, whereas the exact attack of [SOJH09] is able to trace for d ≈ n.

For more accurate mechanisms, and a larger number of reference samples, [DSS+15] also
shows that it is possible to trace for intermediate values of d. Specifically, if the mechanism is
α-accurate for α ≥ n−1/2, and with O(1/α2) reference samples, the attack is able to trace for
d = O(α2n2).
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2.3.6 The effect of DP on the performance metrics of MI games

In this section, we present some results that explore the consequences of Differential Privacy
on the power of the optimal attacker.
Effect on the advantage. First, [YGFJ18] shows that, ifM is ε-pure DP, then

Advn(A) ≤ eε − 1,

for any adversary A, and any n number of samples, and any data-generating Distribution D.
Then, [EMRS19] generalises this bound for (ε, δ)-DP mechanisms, and shows that

Advn(A) ≤ 1− e−ε(1− δ),

for any adversary A, and any n number of samples, and any data-generating Distribution D.
This bound has the advantage of being always smaller than 1.

Finally, [HOT+23] improve on this bound, and shows that for any (ε, δ)-DP

Advn(A) ≤ eε − 1 + 2δ
eε + 1 ,

for any adversary A, and any n number of samples, and any data-generating Distribution D.
This bound is tighter than [EMRS19]’s bound, for any ε ≥ 0 and any δ ∈ [0, 1].

The proof of the three upper bounds on the advantage is based on the hypothesis formulation
of DP of Theorem 2.4. Specifically, Theorem 2.4 implies that, for any adversary A, we have that

αn(A) + eεβn(A) ≥ 1− δ, and, (2.28)
eεαn(A) + βn(A) ≥ 1− δ. (2.29)

Since Advn(A) = 1 − αn(A) − βn(A), playing with the two inequalities above gives the
three advantage upper bounds.
Effect on the Trade-off functions. The DP constraint not only upper bounds the advantage of
an adversary in the MI game, but restricts the whole trade-off function. Specifically, for any
adversary As,τ that thresholds over any score function s, then if the mechanismM is (ε, δ)-DP,
we have that

Pown(s, α) ≤ 1− fε,δ(α),

where
fε,δ(α) ≜ max

{
0, 1− δ − eεα, e−ε(1− δ − α)

}
. (2.30)

This is a also direct consequence of Inequalities (2.28).
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Remark 2.33 (f-DP [DRS19]). It is possible to define a DP notion, based purely on trade-off functions.
LetP andQ be two distributions on the same space. Define the trade-off functionT (P,Q) : [0, 1]→ [0, 1]
as

T (P,Q)(α) = inf{βϕ : αϕ ≤ α},

where ϕ ∈ [0, 1] is a rejection rule, αϕ ≜ EP [ϕ] is the Type I error, βϕ ≜ 1− EQ[ϕ] is the Type II error,
and the infimum is taken over all (measurable) rejection rules. We remark that this trade-off function
is defined as the infimum of Type II errors when Type I error is at most α, while the trade-off function
definition we consider in Equation (2.25) of MI games metric is the maximum over the power (i.e. 1 -
Type II error) when the Type I is as most α.

A mechanismM satisfies f -DP if, for all neighbouring d ∼ d′

T (Md,Md′) ≥ f.

This definition is parameterised by a function f , compared to real-valued parameters for (ε, δ)-DP
or ρ-zCDP. Let P and Q be the distributions such that f = T (P,Q). Then, informally, f -DP implies
that distinguishing any two neighbouring datasets based on the released output is at least as difficult as
distinguishing between P and Q based on a single draw.

The notion of f -DP can be seen as a generalisation of (ε, δ). In fact, a mechanism is (ε, δ)-DP if and
only if it is fε,δ-DP, where fε,δ is defined in Equation (2.30).

2.3.7 Privacy auditing

The goal of privacy auditing is to lower bound the privacy budgets of a mechanism.
For simplicity, let us first consider the case of auditing pure DP. A privacy audit procedure

U has query access to the mechanismM, i.e. can send as input a dataset d and observe an
output o ∼Md. If the mechanismM is ε-DP, the privacy audit should output a guess εlow that
is a high probability lower bound on the real budget ε.

Definition 2.34 (γ-correct privacy audit for ε-pure DP). Suppose that the mechanismM is ε-pure
DP. Let γ ∈ (0, 1) be the confidence parameter. Let U be a (possibly randomised) privacy audit procedure
with query access to the mechanismM. The audit procedure U outputs a guess U(M) ≜ εlow ∈ R+.

The audit procedure U is said to be γ-correct if

Pr(U(M) > ε) ≤ γ.

where the probability is over the randomness of the mechanismM and the auditing procedure U . For
example, the randomness of the auditing procedure could be from sampling randomly input datasets D
to send to the mechanismM.

45



Background

On the other hand, the utility of an audit is measured by the closeness of the lower bound to the real
budget, in expectation over the randomness of U andM i.e. E[|U(M)− ε|].

In addition to the query access to the mechanismM, which is a minimal requirement in
auditing, and the confidence parameter γ, the audit procedure U can have additional inputs.
For example, the audit U can be parameterised with the number of query interactions T with
the mechanismM, the size of the dataset n, a data-generating distribution D to generate the
input datasets D to queryM.
Hypothesis test formulation. The γ-correctness framework in Definition 2.34 could be thought
of as statistical estimation of ε in a frequentist way. A privacy audit could also be seen as a
hypothesis test. The auditor starts with an initial guess ε0 and tries to distinguish between

H0: The mechanismM satisfies ε0-DP
vs

H1: The mechanismM does not satisfy ε0-DP.

If the auditor rejects H0 with confidence 1 − γ, then providing as a guess εlow = ε0 is
γ-correct. Otherwise, the auditor can increment the guess ε0, formulate a new hypothesis test
and try to reject it again.

The difference between the hypothesis testing and statistical estimation formulations is that:
the hypothesis test starts with an initial guess ε0 and outputs a binary decision to reject or not.
On the other, an estimator outputs directly a number εlow.
Standard recipe for privacy auditing. To obtain a lower bound on the privacy budget, a natural
approach is to directly use the definition of DP. Typically, an audit based on the definition of
DP would first construct a pair of neighbouring input datasets D and D′, and an event E on
the output space. Then, the audit estimates the probabilities p0 ≜MD(E) and p1 ≜MD′(E).
If we have access to the real p0 and p1, a lower bound on the privacy budget can be set to
εlow ≜ max {log(p0/p1), log(p1/p0)}.

However, the auditor has only query access to the mechanismM and cannot observe
the real probabilities p0 and p1. Thus, these probabilities should be estimated accurately.
A natural approach for estimating p0 and p1 is using Monte Carlo estimation. Specifically,
the probabilityMD(E) for D ∈ {D,D′} can be seen as the expectation of Bernoulli random
variables 1 (o ∈ E)o∼MD

over the randomness of the mechanismM. Thus, by querying for
T times mechanismMwith the same input dataset D, and observing the outputs o1, . . . , oT

fromMd, p0 can be estimated with the variable

p̂T0 ≜
1
T

T∑
t=1

1 (ot ∈ E) .
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Similarly, observing the outputs o′
1, . . . , o

′
T fromMd gives the empirical estimate

p̂T1 ≜
1
T

T∑
t=1

1
(
o′
t ∈ E

)
for the real probability p1. Finally, since the goal is to provide a high probability lower bound
for the real quantity log(p0/p1), it is important to construct high probability upper and lower
bounds on the estimators p̂0 and p̂1. Providing high confidence intervals for Bernoulli distribu-
tions is a well-studied problem with several off-the-shelf techniques, such as Clopper-Pearson
intervals [CP34] or Wilson intervals [Wil27] among others. The standard confidence inter-
val scales in 1/

√
T for T i.i.d Bernoulli samples. Specifically, there exists C0(γ) and C1(γ)

independent from T such that, with probability 1− γ we get that

|p̂T0 − p0| ≤
C0(γ)√

T

|p̂T1 − p1| ≤
C1(γ)√

T
.

Then, a γ-correct estimate of ε is

εlow ≜ max

0, log

 p̂T0 − C0(γ)√
T

p̂T1 + C1(γ)√
T

 , log

 p̂T1 − C1(γ)√
T

p̂T0 + C0(γ)√
T

 .
The main ingredients left to specify in this recipe are:
(a) how to construct the input datasets D and D′,
(b) how to choose the event E.

Using MI games as a proxy for constructing an event E. In order to estimate the privacy
budget ε of a mechanismM, it is possible for the auditor to run an MI game. First, the auditor
estimates the performance metric of the game, for example, the Type I error α and Type II errors
β. Then, by inverting the Inequalities (2.28), the auditor recovers the following lower bound
on ε

ε ≥ max
{

0, log
(1− β

α

)
, log

(1− α
β

)}
.

Since the auditor does not have access directly to the type I and type II errors to compute this
lower bound, the auditor estimates these quantities using Monte Carlo estimation. Specifically,
the MI game is run for T independent rounds. Then, the empirical estimate α̂T is defined to be
the empirical proportion of rounds when the adversary guesses b̂ = 1 when b = 0. Similarly,
β̂T is defined to be the empirical proportion of rounds when the adversary guesses b̂ = 0 when
b = 1. Again, to have a high probability lower bound on ε, we need to have high probability
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upper and lower bounds on α and β using off-the-shelf techniques for Bernoulli variables, such
as Clopper-Pearson, Bernstein, etc. Again, let C ′

0(γ) and C ′
1(γ) two constants independent from

T such that we get

|α̂T − α| ≤
C ′

0(γ)√
T ,

|β̂T − β| ≤
C ′

1(γ)√
T

,

with probability 1− γ.
Then, a γ-correct estimate of ε is

εMI
low ≜ max

0, log

1− β̂T −
C′

1(γ)√
T

α̂T + C′
0(γ)√
T

 , log

1− α̂T −
C′

0(γ)√
T

β̂T + C′
1(γ)√
T

 .
Compared to the standard recipe, the MI game, in a sense, acts as a proxy for designing the

event E. Designing an event E is replaced by designing a strong adversary A in the MI game
audit procedure. In this sense, using MI games for audit is simpler, since the audit can directly
benefit from stronger adversaries from the MI literature.

However, to audit using MI games, one still needs to construct input datasets D and D′. If
the MI game used for audit is the game presented in Algorithm 5, the auditor only needs to
design a data-generating distribution, rather than datasets D and D′. Thus, the audit should
optimise for the data-generating distribution that minimises the Type I and Type II errors, to
get tighter privacy budget estimations.

On the other hand, privacy is a worst-case guarantee. A tight estimate of the privacy
budget should estimate the log-likelihood over the worst neighbouring datasets D and D′,
i.e. maxD∼D′,E log

(
MD(E)
MD′ (E)

)
. Motivated by this intuition, other versions of the MI game can

be proposed. In the game presented in Algorithm 5, there are two additional sources of
randomness that could be fixed. First, the initial dataset is generated by sampling n i.i.d points
from the data-generating distribution. A first variant of the games could be to have a fixed
initial distribution. Then, the choice of the target point z⋆ is also stochastically generated in
Algorithm 5. A second variant of the game can be played with a fixed target point.

In Chapter 6, we study the variant of Algorithm 5 where the target point is fixed. This
means that the metrics of the MI game are target-dependent. For a fixed adversary, it is then
possible to optimise for the target point that is easiest to attack, i.e. has the lowest Type I/ Type
II errors. This target point is called the canary and is a crucial ingredient in auditing. We will
characterise the optimal canary selection strategy for auditing the empirical mean in Chapter 6,
with an application to auditing machine learning algorithms in Chapter 7.
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Auditing (ε, δ)-DP. It is possible to formulate the auditing problem for (ε, δ)-DP in two ways.
The first natural way is to ask the auditor to output two estimates εlow and δlow, such that with
high probability, these two estimates are lower bounds on the real budgets ε and δ.

Equivalently, we can think of a mechanismM as achieving an infinite set of condition
(ε(δ), δ)-DP constraints. Then, the audit procedure can be formulated as follows: for every
input arameter δ, the auditor outputs a high probability lower bound on ε(δ).

Definition 2.35 (γ-correct (ε, δ)-DP privacy audit procedure). Suppose that the mechanismM
is (ε(δ), δ)-DP, for all δ ∈ (0, 1). Let γ ∈ (0, 1) be the confidence parameter. Let U be a (possibly
randomised) privacy audit procedure with query access to the mechanismM. The audit procedure U
outputs a guess U(M, δ) ≜ εlow(δ) ∈ R+.

The audit procedure U is said to be γ-correct if, for all δ ∈ (0, 1),

Pr(U(M, δ) > ε(δ)) ≤ γ.

where the probability is over the randomness of the mechanismM and the auditing procedure U .
Again, the utility of an audit is measured by the closeness of the lower bound to the real budget, in

expectation over the randomness of U andM i.e. E [|U(M, δ)− ε(δ)|], for each δ ∈ (0, 1).

It is possible to then adapt the equations of the definition-based audit and MI games to
correct for δ. The equations become

εlow(δ) ≜ max

0, log

 p̂T0 − δ − C0(γ)√
T

p̂T1 + C1(γ)√
T

 , log

 p̂T1 − δ − C1(γ)√
T

p̂T0 + C0(γ)√
T

 ,
εMI

low(δ) ≜ max

0, log

1− δ − β̂T −
C′

1(γ)√
T

α̂T + C′
0(γ)√
T

 , log

1− δ − α̂T −
C′

0(γ)√
T

β̂T + C′
1(γ)√
T

 .
Threat models of privacy auditing in supervised machine learning. In supervised machine
learning, the mechanism to be audited is a learning algorithm that takes as input a dataset D
and outputs a machine learning model o ≜ f . The dataset D is composed of n tuples (xi, yi)
where xi is a feature and yi is a label, i.e.D ≜ {(x1, y1), . . . , (xn, yn)}. The machine learning
model f produced can then be queried for an input feature x to get a label y = f(x). The model
f is generally found by minimising over a class of models F some type of error ℓ in the input
dataset D, i.e. f ≜ arg ming∈F ℓ(g,D).

The class of models F can be parameterised by θ ∈ Rd, i.e. f = fθ. In this case, the threat
model for auditing depends on whether the auditor has access to the parameter θ or only query
access to the model fθ. The setting where the auditor can observe the parameter θ ∈ Rd is called
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the white-box setting. On the other hand, when the auditor can only query the final model fθ,
i.e. send input features x to f and observe the outputs y = f(x) is called the black-box setting.

In the parameterised setting, the quintessential training algorithms are based on Gradient
Descent. The Gradient Descent algorithm start with an initial parameter θ0 ∈ Rd, and then
updates sequentially the parameter at each step t by θt ≜ θt−1 − η∇θt−1ℓ(θt−1, d). In white-
box auditing, the auditor may have access to only the final parameter θT , and we call this
setting white-box final parameter. The auditor can have access to all (or a subset of) the
intermediate parameters sequence (θ0, . . . , θT ), and we call this setting white-box federated
learning setting [MSS22].

In Chapter 7, we discuss how analysing the fixed-target MI game for the empirical mean
mechanism can directly provide an adversary and a canary design strategy to audit gradient
descent algorithms in the white box federated learning setting.

2.4 Asymptotic Statistics

In this section, we present some classic results from asymptotic statics, used later in Chapter 6 to
analyse the asymptotic distribution of the Likelihood Ratio (LR) test in Membership Inference
(MI) games.

2.4.1 Stochastic convergence and basic properties

A sequence of random variables Xn is said to converge in distribution to a random variable
X , i.e.Xn ⇝n X if Pr(Xn ≤ x) → Pr(X ≤ x), for every x at which the limit distribution
x→ Pr(X ≤ x) is continuous.

A sequence of random variablesXn is said to converge in probability toX if for every ε > 0,
Pr(∥Xn −X∥ > ε)→ 0, denoted by Xn →P X .

A sequence of random variable (Xn) is called uniformly tight if: for every ε, ∃M > 0, such
that supn Pr(∥Xn∥ > M) < ε.

We recall that continuous mappings preserve both convergences.
Theorem 2.36 (Continuous mappings preserve stochastic convergence). Let g : Rk → Rm be a
continuous function at every point of a set C such that P (X ∈ C) = 1.

(a) If Xn ⇝n X , then g(Xn)⇝n g(X),
(b) If Xn →P X , then g(Xn)→P g(X),

Next, Prohorov’s theorem provides a link between convergence in distribution and being
uniformly tight.
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Theorem 2.37 (Prohorov’s theorem). Let Xn be a random vector in Rd.
1. If Xn ⇝ X , for some X , then the sequence (Xn) is uniformly tight;
2. If (Xn) is uniformly tight, then there exits a sub-sequence withXnj ⇝ X as j →∞ for someX .

We also recall the stochastic op and Op notation for random variables.

Definition 2.38 (Stochastic op and Op). We say that Xn = op(Rn) if Xn = YnRn and Yn →P 0

We say that Xn = Op(Rn) if Xn = YnRn and Yn = Op(1) where Op(1) denotes a sequence that is
uniformly tight (also called bounded in probability).

The following lemma is used to get Taylor expansions of random variables.

Lemma 2.39 (Lemma 2.12 in [VdV00]). Let R be a function on Rk, such that R(0) = 0. Let
Xn = op(1).

Then, for every p > 0,
(a) if R(h) = o(∥h∥p) as h→ 0, then R(Xn) = op(∥Xn∥p);
(b) if R(h) = O(∥h∥p) as h→ 0, then R(Xn) = Op(∥Xn∥p).

2.4.2 The Lindeberg-Feller central limit theorem

The Lindeberg-Feller theorem is the simplest extension of the classical central limit theorem
(CLT) and is applicable to independent but not necessarily identically distributed random
variables with finite variances.

Theorem 2.40 (Lindeberg-Feller CLT). Let Yn,1, . . . Yn,dn be independent random vectors with finite
variances such that

1. for every ε > 0,∑dn
j=1 E

[
∥Yn,i∥21 (∥Yn,i∥ > ε)

]
→ 0,

2. ∑dn
j=1 E [Yn,i]→ µ,

3. ∑dn
j=1 Cov [Yn,i]→ Σ.

Then
dn∑
j=1

Yn,j ⇝ N (µ,Σ) .

2.4.3 The Edgeworth asymptotic expansions

Finally, the last result from asymptotic statistics is the Edgeworth asymptotic expansion in the
CLT.
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Background

Theorem 2.41 (Edgeworth expansion, Theorem 15 of Chapter 7 in [Pet12]). Let Z1, . . . , Zn

sampled i.i.d from D, where D has a finite absolute moment of k-th order, i.e. E[|X1|k] <∞. Let dn be
the density of the centred normalised mean 1

σ
√
n

∑n
i=1Xi, then

dn(x) = 1√
2π
e−x2/2 +

k−2∑
ν=1

qν(x)
nν/2 + o

( 1
n(k−2)/2

)

uniformly in x, where qv(x) are related to the Chebyshev-Hermite Polynomials Hk. Specifically,

qν(x) = 1√
2π
e−x2/2 ∑

(k1,k2,...,kν)∈C
Hν+2s(x)

ν∏
m=1

1
km!

(
γm+2

(m+ 2)!σm+2

)km

, (2.31)

where the sum is over (k1, k2, . . . , kν) which verify the condition k1 + 2k2 + . . . νkν = ν and s =
k1 + · · ·+ kν . Here, Hm is the Chebyshev-Hermite polynomial of degree m:

Hm(x) ≜ (−1)mex2/2 d
m

dxm
e−x2/2

= m!
[m/2]∑
k=0

(−1)kxm−2k

k!(m− 2k)!2k ,

where γm is the cumulant of orderm of Z1 and σ2 its variance.

For example, for k = 4, we get:

q1(x) = λ3√
2π
e−x2/2

(
x3 − 3x

)
q2(x) = 1√

2π
e−x2/2

(
λ2

3
72
(
x6 − 15x4 + 45x2 − 15

)
+ λ4

24
(
x4 − 6x2 + 3

))

where λk ≜ γk

σk .
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The Complexity of Differential Privacy
for Multi-Armed Bandits
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Chapter 3

Defining Privacy for Bandits

In this chapter, we extend the definition of Differential Privacy (DP) to the bandit setting.
First, we present the three main challenges of adapting DP to bandits: the online and sequential
nature of the bandit interaction, and partial information. To overcome the first two challenges
of the setting, i.e. the online and sequential nature, we propose two ways of representing
the bandit policy as a mechanism: (a) as a "batch" mechanism with fixed in-advance inputs,
i.e. the non-interactive setting, or (b) as an interactive mechanism with inputs adaptively and
adversarially chosen, i.e. the interactive setting. On the other hand, partial information provides
two ways to represent the input dataset of the bandit mechanism: (a) the input is the table of all
"potential" rewards, i.e. Table DP, or (b) the input is only the list of "observed" rewards, i.e. View
DP. We prove the relation between the different definitions. The interactive formulation is
stronger than the non-interactive one, and Table DP is stronger than View DP. Finally, we
discuss other threat models for DP in bandits beyond our setting, i.e. the local model, user-lever
DP, and instantaneous DP, among others.
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Defining Privacy for Bandits

3.1 Introduction

Bandits (Section 2.2) are increasingly used in a wide range of sequential decision-making tasks
under uncertainty, such as recommender systems [SWS+22], strategic pricing [BV96], clinical
trials [Tho33b] to name a few. These applications often involve individuals’ sensitive data,
such as personal preferences, financial situation, and health conditions, and thus, naturally,
invoke data privacy concerns in bandits.

Example 3.1 (DoctorBandit). Let us revisit the example of clinical trials. A health researcher (i.e. the
bandit policy) wants to find the best medicine between K candidates. Thus, they design a sequential
clinical trial. On the t-th trial round, a new patient ut arrives. The researcher recommends medicine
at ∈ [K] to the patient. Then, the patient’s reaction to the medicine is observed. If the medicine cures
the patient, the observed reward rt = 1, otherwise rt = 0. This observed reward can reveal sensitive
information about the health condition of patient ut. On the other hand, to recommend medicine at,
the policy might also consider the specific medical conditions (or context) of patient ut as additional
information. This corresponds to the contextual bandits setting (i.e. Section 2.2.7), and the context, in
this case, also encodes private patient information. The goal of a privacy-preserving bandit policy is
to recommend a sequence of medicines (actions) that cures the maximum number of patients
while protecting the privacy of the patients. We present this interactive process in Algorithm 6.

Motivated by such data-sensitive scenarios, privacy issues are widely studied for bandits
in different settings, such as finite-armed bandits [MT15, TD16, SS19, HH22], adversarial
bandits [TS13, TD17] and linear contextual bandits [SS18, NR18, HGFD22]. All these works
adhere to Differential Privacy (DP) [DR14a] as the framework to ensure the data privacy of
users, which is presently the gold standard of privacy-preserving data analysis. Also, multiple
formulations of DP, namely local and global, are extended to bandits [BDT19]. Here, we focus
on the global DP formulation, where users trust the centralised decision-maker, i.e. the policy, and
provide it access to the raw sensitive rewards. The goal of the policy is to reveal the sequence
of actions while protecting the privacy of the users and achieving either minimal regret or
minimal sample complexity.

Themain contribution of this chapter is to define privacy for bandits rigorously. We compare
different ways of adopting pure DP and its relaxations for bandits. We observe that, though
some of these definitions are equivalent for pure DP, more care is needed for approximate and
zero concentrated DP. We illustrate two main distinctions in the definitions. The first deals with
bandit feedback when defining the private input dataset. The second deals with the interactive
nature of the policy as a mechanism. Formalising and linking these definitions is a crucial step
missing in the private bandit’s literature. Our first contribution is to fill this gap.
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Algorithm 6 Sequential interaction between a policy and users
1: Input: A policy π = {πt}Tt=1 and Users {ut}Tt=1
2: Output: A sequence of actions a1, . . . , aT
3: for t = 1, . . . , T do
4: The user ut sends the sensitive context ct to π (if available)
5: The policy π recommends action at ∼ πt(. | a1, r1, . . . , at−1, rt−1)
6: The user ut sends the sensitive reward rt to π
7: end for

3.2 Challenges in Adapting DP for Bandits

In this section, we discuss three main challenges in extending DP for bandits: the online and
sequential nature of the interaction, in addition to partial information, a.k.a the bandit feedback.

All the definitions of DP in bandits considered hereafter share two main ingredients:

(a) The DP constraint is a property of the policy π alone. Recall that DP is a constraint on
algorithms, and in bandits, the algorithm is modelled by the policy, formally defined in
Defintion 2.16. This means that all the DP definitions in bandits should only depend on
the policy π and be independent of any (stochastic) environment ν.

(b) The published output is the sequence of recommended actions, i.e. (a1, . . . , aT ).

Let us fix a policy π ≜ (π1, . . . πT ). Inspired by the DP promise, the policy π satisfies DP
if the distribution over the sequence of actions (a1, . . . , aT ) is "essentially" the same when the
policy π interacts with two "neighbouring" sets of users, according to the interactive process
of Algorithm 6. Compared to the classic threat model of DP presented in Section 2.1, the
interaction protocol of Algorithm 6 has three challenging properties:

(a) The interaction is online. At each step t, the policy receives a new input rt−1 and should
produce a new output at.

(b) The interaction is sequential. The outputed action at affects the new observed input rt,
and depends only on the history (a1, r1, . . . , at−1, rt−1).

(c) The feedback to the bandit policy is partial. Specifically, each user ut can be represented
by aK-dimentional vector of "potential" rewards xt ≜ (xt,1, . . . , xt,K). When the policy
recommends action at at step t, it only observes the reward rt corresponding to at,
i.e. rt ≜ xt,at and does not observe the otherK − 1 coordinates of xt.

Next, we present four bandit DP definitions that deal with the three challenges in different
ways: Table DP (Definition 3.2), View DP (Definition 3.3), Interactive DP (Definition 3.5) and
DP in the adaptive continual release model (Definition 3.9). For each definition, we describe
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the mechanism considered, its input, outputs, the interaction protocol and the formalisation of
the definition. Then, we explain how each definition tackles the three challenges.

3.3 Table DP vs View DP

Here, we adhere to the non-interactive threat model, i.e. the inputs of the policy are supposed to
be fixed in advance. Specifically, for a policy π = (π1, . . . , πT ), we induce a "batch" mechanism
that takes as input a "reward dataset" and outputs in "one-shot" a sequence of actions.

In the following, we explicit two "batch" mechanisms that can be induced by the same
policy π. These two mechanisms only differ in the input "reward dataset" representation. In
short, Table DP considers that the input is the table of all potential rewards, while View DP
only considers the list of "observed rewards".
Table DP. We represent each user ut by the vector xt ≜ (xt,1, . . . , xt,K) ∈ RK of all its K
"potential rewards". We call this the vector of potential rewards since the policy only observes
rt ≜ xt,at when it recommends action at. Then, the Table DP defintions represent a set of T
users {ut}Tt=1 by the dataset x ≜ {xt}Tt=1 ∈ (RK)T , that we call the table of rewards. The hamming
distance between two table of rewards x, x′ ∈ (RK)T is the number of different rows in x and
x’, i.e. dHam(x, x′) ≜

∑T
t=1 1 (xt ̸= x′

t) =
∑T
t=1 1

(
∃i ∈ [K], xt,i ̸= x′

t,i

)
. Neighbouring table of

rewards, denoted by x ∼ x′, are table of rewards with hamming distance less than equal to one,
i.e. dHam(x, x′) ≤ 1.

In Table DP, we induce a "batch" mechanismMπ from the policy π, which takes as input a
table of rewards x ≜ {(xt,i)i∈[K]}t∈[T ] ∈ (RK)T , and outputs a sequence of actions (a1, . . . , aT ) ∈
[K]T . Specifically,

Mπ : (RK)T → P([K]T )

x →Mπ
x ,

whereMπ
x is a distribution over the sequence of actions, and

Mπ
x (a1, . . . , aT ) ≜

T∏
t=1

πt
(
at|a1, x1,a1 , . . . at−1, xt−1,at−1

) (3.1)

is the probability of observing the sequence (a1, . . . , aT ) for the input table of rewards x. Notice
that indeed∑(a1,...,at)∈[K]T Mπ

x (a1, . . . , aT ) = 1. Now that we rigorously defined the induced
mechanismMπ, its input and output, the definition of Table DP follows naturally.

Definition 3.2 (Table DP).
• A policy π satisfies (ε, δ)-Table DP if and only ifMπ is (ε, δ)-DP.
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Figure 3.1 – Table DP Figure 3.2 – View DP

• A policy π satisfies ρ-Table zCDP if and only ifMπ is ρ-zCDP.

In simple words, a policy is Table DP if the sequence of output actions is "essentially" the
same when the policy interacts with two neighbouring, fixed-in-advance tables of rewards.

Table DP is a formalisation of the privacy definition adopted in [TS13, MT15, NR18]. Table
DP deals with the three challenges of defining DP in the following:

(a) To deal with the online nature of the interaction, Table DP uses the "batch" reduction
idea, similar to the formulation of DP under continual observation (Section 2.1.5), i.e. the
input dataset is fixed in advance.

(b) The sequential nature of the interaction is captured by the expression of Equation (3.1).
Specifically, in Equation (3.1), the probability of outputting arm at depends only on the
past < t rewards, i.e. (x1, . . . , xt−1), and the past outputed actions, i.e. (a1, . . . , at−1).

(c) To deal with partial information, Table DP considers that the "right" input representation
for the "batch" mechanism is the table of "potential" rewards.

View DP. In this definition, we also induce a "batch" mechanism from the policy π which
takes as input a fixed in-advance dataset of rewards and outputs a sequence of actions. The
difference is in the representation of the input dataset. Since in bandits, the policy only observes
the reward corresponding to the action chosen, another natural choice for the input is a list
of rewards, i.e. r ≜ {r1, . . . , rT } ∈ RT . The Hamming distance between two lists of rewards
r, r′ ∈ RT is the number of different elements in r and r′, i.e. dHam(r, r′) ≜

∑T
t=1 1 (rt ̸= r′

t).
Neighbouring list of rewards, denoted by r ∼ r′, is a list of rewards with hamming distance
less than equal to one, i.e. dHam(r, r′) ≤ 1.

In View DP, we induce a "batch" mechanism Vπ from the policy π, which takes as input a
list of rewards r ≜ {r1, . . . , rT } ∈ RT , and outputs a sequence of actions (a1, . . . , aT ) ∈ [K]T .
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Specifically,

Vπ : RT → P([K]T )

r → Vπr ,

where Vπr is a distribution over the sequence of actions, and

Vπr (a1, . . . , aT ) =
T∏
t=1

πt(at|a1, r1, . . . at−1, rt−1) (3.2)

is the probability of observing the sequence (a1, . . . , aT ) for the input list of rewards r. No-
tice that indeed∑(a1,...,at)∈[K]T Vπr (a1, . . . , aT ) = 1. Again, the definition of View DP follows
naturally.

Definition 3.3 (View DP).
• A policy π satisfies (ε, δ)-View DP if and only if Vπ is (ε, δ)-DP.

• A policy π satisfies ρ-View zCDP if and only if Vπ is ρ-zCDP.

In simple words, a policy is View DP if the sequence of output actions is "essentially" the
same when the policy interacts with two neighbouring, fixed-in-advance lists of rewards.

View DP is a formalisation of the definition adopted in [SS19, HHM21, HGFD22]. View
DP deals with the three challenges of defining DP in the following:

(a) To deal with the online nature of the interaction, View DP also uses the "batch" reduction
idea, similar to Table DP.

(b) The sequential nature of the interaction is captured by the expression of Equation (3.2).
Similar to Table DP, in Equation (3.2), the probability of outputting arm at depends only
on the past< t rewards, i.e. (r1, . . . , rt−1), and the past outputed actions, i.e. (a1, . . . , at−1).
However, there is a subtle difference between Equation (3.2) of View DP and Equa-
tion (3.1) of Table DP, which we discuss in Remark 3.4.

(c) To deal with partial information, View DP considers that the "right" input representation
for the "batch" mechanism is the list of "observed" rewards.

Remark 3.4. [Difference between the equations in Table DP and View DP] At first glance, Equa-
tions (3.1) and (3.2) look very similar. However, the differences arise when Vπr andMπ

d are applied to a
"non-atomic" eventE ∈ P([K]T ). For example, if we define an eventE ≜ {(a1, . . . , aT ), (b1, . . . , bT )},
i.e. that the output is either the sequence of actions (a1, . . . , aT ) or the sequence (b1, . . . , bT ). Then

Vπr (E) =
T∏
t=1

πt(at|a1, r1, . . . at−1, rt−1) +
T∏
t=1

πt(bt|b1, r1, . . . bt−1, rt−1),
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while

Mπ
d (E) =

T∏
t=1

πt(at|a1, x1,a1 , . . . at−1, xt−1,at−1) +
T∏
t=1

πt(bt|b1, x1,b1 , . . . bt−1, xt−1,bt−1).

In the expression of Vπr (E), the same rewards (r1, . . . , rT ) appear in the two elements of the sum. In
contrast, in the expression ofMπ

d (E), each sequence of actions generates different trajectories of reward
in the table, i.e. (x1,a1 , . . . xT,aT

) vs (x1,b1 , . . . xT,bT
). As we show in Section 3.6, this subtle difference

is the source of the difference between Table DP and View DP in approximate DP.

3.4 Interactive Differential Privacy

In this section, we consider the interactive threat model, where an adversary chooses adaptively
the reward input to send to the policy at step t, based on previous outputs a1, . . . , at. We adhere
to the Interactive DP framework of [VZ22] to extend interactive DP to bandits. This framework
considers the policy as a party in an interaction protocol, interacting with a possibly adversarial
analyst.

The interaction protocol has three components:
(a) The policy π = {πt}Tt=1.

(b) An adversary B ≜ {Bt}Tt=1, such that Bt : (a1, . . . at) ∈ [K]t → qt ∈ [K]

(c) A table of potential rewards x ≜ (x1, . . . , xT ) ∈ (RK)T .
The interaction protocol is the following:
For t = 1, . . . , T

1. The bandit algorithm selects an action

at ∼ πt(· | q1, x1,q1 , . . . , qt−1, xt−1,qt−1), at ∈ [K]

2. The adversary returns a "query" action, which may depend on past recom-
mended actions by the policy

qt = Bt(a1, a2, . . . , at), qt ∈ [K]

3. The bandit algorithm observes the reward corresponding to query action qt for
user ut in the table x, i.e. xt,qt .

We represent this interaction by π ↔x B, and illustrate it in Figure 3.3.
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Figure 3.3 – Interaction protocol between the policy, an adversary B, and a table of rewards x.

In this interaction protocol, the reward input xt,qt that the policy observes at step t is
adaptively chosen by the adversary B. Specifically, the adversary chooses a query action qt that
depends on the policy’s past actions (a1, . . . , at). Then, this query action is used to produce
reward xt,qt from the table of rewards x. The policy is then updated using the query action qt and
reward xt,qt to produce the next action at+1. Following the Interactive DP framework [VZ22],
the policy π satisfies interacive DP if the view of adversary B, i.e.

ViewB,π,x ≜ ViewB(π ↔x B) ≜ (a1, . . . , aT ),

is indistinguishable when the interaction is run on two neighbouring tables of rewards x and x′.

Definition 3.5 (Interactive DP).
• A policy π satisfies (ε, δ)-Interactive DP for a given ε ≥ 0 and δ ∈ [0, 1), if for all adversaries B

and all subset of views S ⊆ [K]T ,

sup
x∼x′

P[ViewB,π,x ∈ S]− eεP[ViewB,π,x′ ∈ S] ≤ δ.
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• A policy π satisfies ρ-Interactive zCDP policy for a given ρ ≥ 0, if for every α > 1, and every
adversary B,

sup
x∼x′

Dα(ViewB,π,x∥ViewB,π,x′) ≤ ρα.

In simple words, a policy is Interactive DP if the view of any adversary is essentially the
same when the policy and adversary interact with two neighbouring tables of rewards.

Interactive DP provides stronger privacy guarantees than Table DP and View DP since
Interactive DP deals with a stronger adversary that adaptively queries inputs. In contrast, View
DP and Table DP only consider fixed-in-advance datasets.

Interactive DP deals with the challenges of adapting DP to bandits in the following:
(a) The online nature of the bandit interaction is captured by the online nature of the adversary

B. This adversary provides a new query qt at each step t, which translates to a new reward
input xt,qt .

(b) The sequential nature of the bandit interaction is captured by the sequential nature of the
adversary B. This adversary provides a querry qt at each step t that only depends on the
policy’s past outputs a1, . . . , at.

(c) Similar to Table DP, Inteactive DP deals with partial information by considering the
input to be the table of "potential" rewards. It is possible to derive a View DP version of
Interactive DP, where the adversary directly comes up with a new reward query to the
policy.

In addition tomodelling for a stronger adaptive adversary, Interactive DP has two additional
interesting qualities. (a) Interactive DP protects the privacy of the users even when the users
are non-compliant [Kal18, SJ18]. A non-compliant user is a user who decides to ignore the
recommendation of the policy and chooses a different arm. Intuitively, in clinical trials, we
want to protect the patients’ privacy, even if they do not follow the recommended medicine by
the doctor. (b) Interactive DP decouples actions and rewards in the privacy definition, yielding
stronger group privacy properties. We discuss this further in detail in Section 4.2.

Remark 3.6. [Expanding the View of the Adversary B] For any deterministic adversary B, any policy
π, reward table x ∈ (RK)T , and any (a1, . . . , aT ) ∈ [K]T , we have

P[ViewB,π,x = (a1, . . . , aT )] = π1(a1)π2(a2 | B1(a1), x1,B1(a1)) · · · ×

πT (aT | B1(a1), x1,B1(a1), . . . , BT−1(a1, . . . , aT−1), xT−1,BT −1(a1,...,aT −1))
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Thus, for any S ⊆ [K]T , we get

P[ViewB,π,x ∈ S] =MπB

x (S)

where πB ≜ {πBt }Tt=1 is the B post-processed policy, defined by

πBt (a | a1, r1, .., at−1, rt−1) ≜ πt (a | B1(a1), r1, B2(a1, a2), r2, .., Bt−1(a1, .., at−1), rt−1) .

Remark 3.7 (Privacy protocol vs Utility protocol). The interaction protocols to analyse privacy and
utility are different. To express the Interacive DP constraint, the protocol between the policy, an adversary,
and a table of rewards is defined (Fig 3.3). In this protocol, an Interactive DP policy is constrained
to show a similar view to any “privacy" adversary when interacting with two neighbouring reward
tables. Given a policy that verifies this Interactive DP constraint, we measure the utility (regret/sample
complexity) of this policy when it interacts with an environment using the canonical bandit protocol
(Section 2.2.2). There is no adversary in the interaction used to measure the utility of the policy.

3.5 Adaptive Continual Release Model

In this section, we extend the adaptive continual release model of [JRSS23] to bandits. In
this model, similar to the Interactive DP definition of Section 3.4, the policy interacts with
an adversary that chooses adaptively rewards based on previous outputs of the policy. The
difference between these two models is in the nature of the adversary:

(a) In Interactive DP (Definition 3.5), the adversary B ≜ {Bt}Tt=1 is a sequence of functions
that map the history of observed actions to query actions. Specifically, at step t, the adversary
observes the history (a1, . . . , at) ∈ [K]t of actions recommended, and comes up with a query
action qt = Bt(a1, . . . , at) ∈ [K]. This query action qt is then used to generate a reward from a
fixed table of rewards x; i.e. rt = xt,qt . The policy updates its recommendations at step t + 1
based on qt and rt.

(b) In the adaptive continual release model of [JRSS23], the adversary directly comes
up with a reward. In the following, we formalise this new notion of adversary and call it a
"reward-feeding" adversary. This is in contrast to the adversary B of Interactive DP, which is a
"query-action" feeding adversary.

Definition 3.8 (A reward-feeding adversary A). A reward-feeding adversary A is a sequence of
functions (At)Tt=1 such that, for t ∈ {1, . . . , T},

At : a1, . . . , at → (rLt , rRt ).
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A "reward-feeding" adversary A is a sequence of "reward" functions which take as input
the action-history and outputs a pair of rewards (rLt , rRt ). The reward-feeding adversary A has
two channels: a left "standard" channel L and a right channel R. These channels are used to
simulate "neighbouring" rewards.

Precisely, to simulate "neighbouring" rewards, the interactive protocol between the policy π
and the reward-feeding adversary A has two hyper-parameters: (a) a specific "challenge" time
t⋆ ∈ {1, T}, and (b) a binary b ∈ {L,R}. For steps t ̸= t⋆, the policy observes a reward coming
from the adversary’s left "standard" channel, i.e. rt = rLt . Otherwise, when t = t⋆, the policy
observes a reward from the channel corresponding to the secret binary b.

In other words, if b = L, the policy π always observes a reward from the left channel. When
b = R, the policy observes the left channel reward for all steps, except at t⋆ where the policy
observes a right channel reward. Thus, for any sequence of actions (a1, . . . , aT ) chosen by the
policy π, and for any t⋆, the sequence of rewards observed by π when b = L is neighbouring to
the sequence of rewards observed when b = R. In addition, these two sequences only differ at
the reward observed at the challenge time t⋆, and the rewards have been adaptively chosen by
the adversary.

Thus, we formalise the adaptive continual release interaction as follows:
Let b ∈ {L,R} and t⋆ ∈ {1, . . . , T}.
For t = 1, . . . , T

1. The policy π selects an action

at ∼ πt(· | a1, r1, . . . , at−1, rt−1), at ∈ [K]

2. The adversary A selects an adaptively chosen pair of rewards:

(rLt , rRt ) = At(a1, . . . , at)

• If t ̸= t⋆:
rt = rLt

• If t = t⋆:
rt⋆ = rbt⋆

3. The policy π observes the reward rt

When this interaction is run with parameters t⋆ and b, we represent the interaction by π b,t⋆⇔ A,
and illustrate it in Figure 3.4. The view of the adversary A in the interaction π b,t⋆⇔ A is the
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Figure 3.4 – Interactive protocol in the adaptive continual release model between a policy π and a
reward-feeding adversary A. The protocol in Figure (a) is run with b = L, while the protocol in Figure
(b) is run with b = L. The framed part corresponds to the reward observed by the policy.

sequence of actions chosen by the policy π, i.e.

Viewb,t⋆

A,π ≜ ViewA(π b,t⋆⇔ A) ≜ (a1, . . . , aT ).

A policy is DP in the adaptive continual release model if the view of the adversary is
indistinguishable when the interaction is run on b = L and b = R for any challenge step t⋆.
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Definition 3.9 (DP in the Adaptive Continual Release Model).
• A policy π is (ε, δ)-DP in the adaptive continual release model for a given ε ≥ 0 and δ ∈ [0, 1), if

for all reward-feeding adversaries A, all subset of views S ⊆ [K]T ,

sup
t⋆∈{1,...,T}

P[ViewL,t⋆

A,π ∈ S]− eεP[ViewR,t⋆

A,π ∈ S] ≤ δ.

• A policy π is ρ-zCDP in the adaptive continual release model for a given ρ ≥ 0, if for every α > 1,
and every reward-feeding adversary A,

sup
t⋆∈{1,...,T}

Dα(ViewL,t⋆

A,π ∥ViewR,t⋆

A,π ) ≤ ρα.

The adaptive continual release model deals with the challenges of adapting DP to bandits
in the following:
(a) The online nature of the bandit interaction is captured by the online nature of the reward-

feeding adversary A. This adversary provides a pair of rewards (rLt , rRt ) at each step
t.

(b) The sequential nature of the bandit interaction is captured by the sequential nature of the
reward-feeding adversary A. This adversary provides a pair of rewards (rLt , rRt ) at each
step t that only depends on the policy’s past actions a1, . . . , at.

(c) Similar to View DP, the adaptive continual release model deals with partial information
by considering the input to be the observed rewards.

Remark 3.10. [Expanding the View of the Reward-feeding Adversary A] For any reward-feeding
adversary A, any policy π and any t⋆ ∈ {1, . . . , T}, and any (a1, . . . , aT ) ∈ [K]T , we have for the left
view:

P[ViewL,t⋆

A,π = (a1, . . . , aT )] = π1(a1)π2(a2 | a1,AL1 (a1)) · · · ×

πT (aT | a1,AL1 (a1), . . . , aT−1,ALT−1(a1, . . . , aT−1))

On the other hand, for the right view:

P[ViewR,t⋆

A,π = (a1, . . . , aT )] = π1(a1)π2(a2 | a1,AL1 (a1)) · · · ×

πt⋆+1(at⋆+1 | a1,AL1 (a1), . . . , at⋆ ,ARt⋆(a1, . . . , at⋆)) · · · ×

πT (aT | a1,ALt (a1), . . . , aT−1,ALT−1(a1, . . . , at−1))

Let us define

AL,t⋆(a1, . . . , aT ) ≜ (AL1 (a1),AL2 (a1, a2), . . . ,ALT (a1, . . . , aT ))
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to be the list of rewards that the policy observes when the protocol is run on the left channel. Also,

AR,t⋆(a1, . . . , aT ) ≜ (AL1 (a1), . . . ,ARt⋆(a1, . . . , at⋆) . . .ALT (a1, . . . , aT ))

is the list of rewards that the policy observes when the protocol is run on the right channel and t⋆.
We observe that, for any (a1, . . . , aT ) ∈ [K]T ,

(a) P[ViewL,t⋆

A,π = (a1, . . . , aT )] = Vπ((a1, . . . , aT ) | AL,t⋆(a1, . . . , aT ))

(b) P[ViewR,t⋆

A,π = (a1, . . . , aT )] = Vπ((a1, . . . , aT ) | AR,t⋆(a1, . . . , aT ))

(c) AL,t⋆(a1, . . . , aT ) and AR,t⋆(a1, . . . , aT ) are neighbouring lists of rewards, and only differ at the
t⋆-th element

This remark will help connect the adaptive continual release model with View DP later.

Remark 3.11. [Reward-feeding Adversary as a Tree Reward Input] A reward-feeding adversary can
be represented by a tree of rewards. Each node in the tree corresponds to a reward input. The tree has
a depth of size T . At depth t ∈ [T ] of the tree reside all possible rewards the policy can observe at step
t. Going from depth t to depth t+ 1 depends on the action at+1. Finally, the policy only observes the
reward corresponding to its trajectory in the tree. An example of the tree is presented in Figure 3.5c for
T = 3 andK = 2.

A policy π is DP in the adaptive continual release model if and only if π is DP when interacting with
two neighbouring trees of rewards. Two trees of rewards are neighbouring if they only differ at rewards
at one depth t⋆ ∈ [T ].

3.6 Relation between DP Definitions

This section proves the relationship between Table DP, View DP, and Interactive DP constraints.
First, we summarise the relations between Table DP and View DP in the following proposition.

Proposition 3.12 (Relation between Table DP and View DP). For any policy π, we have that
(a) π is ε-Table DP⇔ π is ε-View DP.

(b) π is (ε, δ)-Table DP⇒ π is (ε, δ)-View DP.

(c) π is ρ-Table zCDP⇒ π ρ-View zCDP.

(d) π is (ε, δ)-View DP⇒ π is (ε,KT δ)-Table DP.

(e) Π(ε,δ)
Table ⊊ Π(ε,δ)

View , where Π(ε,δ)
Table and Π(ε,δ)

View are the class of all policies verifying (ε, δ)-Table DP and
(ε, δ)-View DP, respectively.
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3.6 Relation between DP Definitions

(a) List of rewards (b) Table of rewards

(c) Tree of rewards

Figure 3.5 – Different reward representations for T = 3 and K = 2. The highlighted rewards are the
rewards observed by the policy for the trajectory (a1, a2, a3) = (1, 2, 1)

Consequences of Proposition 3.12. Proposition 3.12 establishes that Table DP is a “stronger"
notion of privacy than View DP. Table DP protects all the potential responses of an individual
rather than just the observed ones.
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Specifically, Proposition 3.12(a) shows that Table DP and View DP are equivalent for pure
DP. For relaxations of pure DP, i.e. for (ε, δ)-DP and ρ-zCDP, Proposition 3.12(b) and 3.12(c)
show that Table DP always implies View DP with the same privacy budget.

However, the converse from View DP to Table DP happens with a loss in the privacy budget.
Proposition 3.12(e) states that the class of policies verifying (ε, δ)-Table DP is strictly included
in the class of policies verifying (ε, δ)-View DP. To prove this, we build a policy that verifies
some (ε1, δ1)-View DP but is shown to be never (ε1, δ1)-Table DP. This validates that going from
View DP to Table DP must happen with a loss in the privacy budgets. Proposition 3.12(d)
yields a simple loss quantification. We leave it an open problem to quantify the best privacy
loss conversion from View DP to Table DP.

The proof is presented in Appendix A. The proof uses the following two handy reductions,
going from list to table of rewards and vice versa.

Reduction 1 (From lists to table of rewards). For a list of reward r ∈ RT , we define x(r) to be
the table of rewards that concatenates r column-wiseK times, i.e. x(r)t,a = rt for all a ∈ [K] and all
t ∈ [T ]. This transformation has two interesting properties:

• For every r ∈ RT , we have Vπr =Mπ
x(r)

• If r ∼ r′ are neighbouring list of rewards, then x(r) ∼ x(r′) are neighbouring table of rewards

Reduction 2 (From table of rewards to lists). For every atomic event aT ≜ (a1, . . . , aT ) and a table
of reward x ∈ (RK)T , we define the list of rewards r(x, aT ) ∈ RT such that r(x, aT )t = dt,at . In other
words, r(x, aT ) is the list of rewards corresponding to the trajectory of aT in x. This transformation has
two interesting properties:

• For every table of rewards x and every atomic event aT , we haveMπ
x (aT ) = Vπ

r(x,aT )(a
T )

• If x ∼ x′ are neighbouring table of rewards, then for every atomic event aT , r(x, aT ) ∼ r(x′, aT )
are neighbouring list of rewards.

An Intuition. Reduction 1 shows that Vπr can be represented byMπ on a specific table of
rewards (the column-wise concatenation of r). If π is Table DP, thenMπ

x andMπ
x′ are indistin-

guishable for all x ∼ x′. Specifically, for column-wise identical tables, the indistinguishability
property is still true, which recovers that π is View DP using Reduction 1. On the other hand,
Reduction 2 shows thatMπ

x can be represented by Vπ on a specific reward list (the trajectory),
but only for atomic events. This provides that View DP implies Table DP only for pure DP
where the indistinguishability condition is enough to be verified for atomic events.

Now, we relate Interactive DP and Table DP in the following proposition.

Proposition 3.13 (Relation between Interactive DP and Table DP). For any policy π, we have that
(a) π is Interactive DP⇒ π is Table DP
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(b) π is Interactive DP if and only if, for every deterministic adversary B = {Bt}Tt=1, πB is Table DP.
Here, πB ≜ {πBt }Tt=1 is a post-processing of the policy π induced by the adversary B such that

πBt (a | a1, r1, .., at−1, rt−1) ≜ πt (a | B1(a1), r1, B2(a1, a2), r2, .., Bt−1(a1, .., at−1), rt−1) .

Proposition 3.13 shows that Interactive DP is stronger than Table DP. On the other hand,
for policies that are "closed" under interactive post-processing, Interactive DP and ρ-Table are
equivalent. A policy is "closed" under interactive post-processing if its privacy property does
not depend on the order/the source of the actions, i.e.whether they were recommended by
the policy itself or queried by an adversarial analyst. In Chapter 5, we show that algorithms
in the private bandit literature, which are based on adding the Laplace mechanism to the
empirical means or use the binary tree mechanism [DNP+10, CSS11], verify both Table DP
and Interactive DP, i.e. are "closed" under post-processing.

Remark 3.14 (Deterministic adversaries are enough). We recall that to check the interactive DP
condition, it is enough only to consider deterministic adversaries (Lemma 2.2 in [VW21]).

Proof. (a) is direct by taking the identity-adversary Bid defined by Bid
t (o1, . . . , ot) = ot.

(b) is direct by observing that for every deterministic adversaryB, ViewB(π ↔x B) reduces
toMπB

x , i.e. ViewB(π ↔x B) =MπB

x .

Now, we relate DP in the adaptive continual release model with View DP and Table DP.

Proposition 3.15 (Relation between the Adaptive Continual Release Model, View DP and Table
DP). For any policy π, we have that
(a) π is DP in the adaptive continual release model⇒ π is Table DP

(b) π is ε-DP in the adaptive continual release model⇔ π is ε-Table DP⇔ π is ε-View DP

Proposition 3.15 shows that the adaptive continual release model is stronger than Table DP.
For pure ε-DP, the adaptive continual release model, Table DP and View DP are all equivalent.

To prove this proposition, we use the following reduction.

Reduction 3 (From table of rewards to "reward-feeding" adversaries). For a pair of reward tables
x, x’ ∈ (RK)T , we define A(x, x’) to be the "reward-feeding" adversary defined by

A(x, x’)t : a1, . . . , at → (xt,at , x
′
t,at

).

In other words, at step t, the adversary A(x, x’) only uses the last action at and returns the at-th
column from xt on the left channel, and the at-th column from x′

t on the right channel.
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For neighbouring tables x and x’ which only differ at some step t⋆, it is possible to show that, for
every S ∈ RT , we have

• P[ViewL,t⋆

A(x,x’),π ∈ S] =Mπ
x (S)

• P[ViewR,t⋆

A(x,x’),π ∈ S] =Mπ
x’(S)

In other words, the batch mechanismMπ combined with neighbouring tables can be "simulated"
using a specific type of "reward-feeding" adversaries that only care about the last action from the history.

Proof. (a) Suppose that π is DP in the adaptive continual release model.
Let t⋆ ∈ [T ], and x ∼ x′ be two tables of rewards in (RK)T that only differ at step t⋆. Using

Reduction 3, we build A(x, x′).
For this construction, we have thatMπ

x = ViewL,t⋆

A(x,x’),π andMπ
x′ = ViewR,t⋆

A(x,x’),π.

Since π is DP in the adaptive continual release model, ViewL,t⋆

A(x,x’),π and ViewL,t⋆

A(x,x’),π are
indistinguishable. Thus,Mπ

x andMπ
x′ are indistinguishable, i.e.Mπ is DP and π is Table DP.

(b) To prove this part, it is enough to show that ε-View DP implies ε-DP in the adaptive
continual release model.

Suppose that π is ε-View DP, i.e. Vπ is ε-DP. Let A be a "reward-feeding" adversary, and
(a1, . . . , aT ) ∈ [K]T a sequence of arms.

Using Remark 3.10 and the notation defined there, we have:

P[ViewL,t⋆

A,π = (a1, . . . , aT )] = Vπ((a1, . . . , aT ) | AL,t⋆(a1, . . . , aT ))

≤ eεVπ((a1, . . . , aT ) | AR,t⋆(a1, . . . , aT ))

= eεP[ViewL,t⋆

A,π = (a1, . . . , aT )]

where the inequality holds because Vπ is DP, and AL,t⋆(a1, . . . , aT ) and AR,t⋆(a1, . . . , aT ) are
neighbouring lists of rewards.

Finally, this means that π is ε-DP in the adaptive continual release model, since for pure DP,
it is enough to check the atomic events (a1, . . . , aT ).

Note that the proof breaks if we consider composite events, which are necessary for approx-
imate DP proofs.

Summary of the relationship between definitions. We introduced three increasingly stronger
input representations and their corresponding DP definitions: list of rewards with View DP,
table of rewards with Table DP, and tree of rewards with DP in the adaptive continual release.
These representations are summarised in Figure 3.5 for T = 3 andK = 2.
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In general, DP in the adaptive continual release is stronger than Table DP, which is stronger
than View DP. For ε-pure DP, these three definitions are equivalent, with the same privacy
budget ε. More care is needed for other variants of DP, where going from one definition to
another happens with a loss in the privacy budgets.

Besides reward representation, Interactive DP is a definition that deals with another degree
of freedom: which actions are "fed" to the policy. In Interactive DP, these actions do not come
from the policy itself like previous definitions, but from a "query-action" adversary that chooses
the query action depending on the interaction history. This additional freedom helps protect
users’ privacy even if they do not follow the actions recommended by the policy. Also, the
Interactive DP definition decouples the rewards from actions which helps to prove stronger
group privacy properties. For policies closed under post-processing, i.e. policies that do not care
about the source of the actions, Interactive DP is equivalent to its "normal" notion counterpart.
In definition 3.5, we used the table of rewards as the reward representation, and thus, the
"normal" counterpart is Table DP. It is also possible to use other reward representations for
Interactive DP, i.e. lists or trees. All policies considered later are closed under post-processing.

3.7 Other DP Threat Models for Bandits

Here, we briefly discuss other threat models for bandits. Specifically, Table DP, View DP, and
Interactive DP definitions are

(a) globalDP.Our definitions adhere to the global DP formulation, where the users trust the
centralised decision maker, i.e. the policy, with their private inputs. In the case of a clinical trial,
we can imagine that the patients trust the doctors with their true input. In contrast, providing
a local DP [DN03, EGS03, DMNS06, DJW13] formulation is possible where the users do not
trust the centralised server. In local DP, each user uses a local perturbation mechanism to send
a "noisy" version of the rewards to the policy. Though local DP provides stronger privacy as
the policy has no access to the original rewards, it injects too much noise, leading to higher
regret/sample complexity. Also, the fundamental hardness of local DP in bandits regarding
regret lower bound and corresponding optimal algorithms are well-understood [ZCH+20].
Lastly, shuffle DP [Che21] is a trust model designed to attain the best of both worlds, i.e.
removing the need to trust the data curator as in local DP, while providing utility similar
to global DP. In the shuffle model, each user feeds their data again to a local perturbation.
However, now they trust some entity to apply a uniformly random permutation on all user
data. Thanks to privacy amplifications due to permutation, each user needs to add less noise
to each data, and thus, the utility is better. On the other hand, shuffle DP replaces the need to
trust a centralised server of global DP with the less strong assumption of trusting a randomised
shuffler. Shuffle DP is studied for bandits in [HGFD22, GCPP22].

73



Defining Privacy for Bandits

(b) event-level DP. Our definitions adpot an event-level neighbouring relation, where
each user’s data is supposed to appear in a single row of the dataset. On the other hand, in
user-level neighbouring relation, a user’s data can appear on multiple rows of the dataset. We
refer to [DNPR10b] for an in-depth discussion of these two variants. In essence, any event-
level DP algorithm could be transformed to a user-level DP algorithm using group privacy
considerations [GKK+24].

(c) over the entire sequence of actions. Our defintions provides a privacy guarantee over
the full sequence (a1, . . . , aT ) of recommended actions. It is possible to define an instantaneous
definition. Specifically, a policy π is ε-instantaneous DP if for all steps t ∈ [T ] and all neigh-
bouring histories Ht and H ′

t, and for all actions a ∈ [K], we have that πt(a|Ht) ≤ eεπt(a|Ht). It
is easy to show that if a policy is ε-instantaneous DP, then it is (Tε)-View DP.
Joint DP for contextual linear bandits. Until now, our definitions only consider the case when
only the rewards are private quantities, and the contexts are either non-available or supposed
to be non-private. The definition of Joint DP [SS18] is proposed for the case where contexts are
private. First, we define neighbouring context-reward sequences.

Definition 3.16 (t-neighbouring context-reward sequences). Let S ≜ {(A1, r1), . . . , (AT , rT )}
and S′ ≜ {(A′

1, r
′
1), . . . , (A′

T , r
′
T )} be two context-reward sequences. S and S′ are said to be t-

neighbours if for all s ̸= t it holds that (As, rs) = (A′
s, r

′
s).

Definition 3.17 (JDP, [SS18]). A randomised policy π for the contextual bandit problem is (ε, δ)-
Jointly Differentially Private (JDP) if for any t and any pair of t-neighbouring context-reward
sequences S and S′, and any subset E>t ⊂ At+1 ×At+2 × · · · × AT of sequence of actions ranging
from step t+ 1 to the end of the sequence, it holds that

P{π(S) ∈ E>t} ≤ eεP{π(S′) ∈ E>t}+ δ. (3.3)

where π(S) represents the sequence of actions recommended by the policy π when inter-
acting with S, and P accounts only for randomness due to the policy.

JDP requires that changing the context at step t does not affect the actions chosen only
in the future rounds (> t), i.e. (at+1, . . . , aT ). In contrast, the standard notion of DP would
require that the change does not affect the entire sequence of actions (a1, . . . , aT ), including
the action chosen at step t. Claim 13 of [SS18] shows that the standard notion of DP for linear
contextual bandits, where both the reward and contexts are private, and the entire sequence of
actions is published, always leads to linear regret. In addition, in the reduced model based on
decision sets At, the standard notion of DP is ill-defined, as it requires the entire sequence of
actions to remain unchanged under any change in context-reward. This is true because two
t-neighbouring context-reward sequences might yield different setsAt andA′

t. Since the action
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at should be an element of the decision set at step t, i.e. At or A′
t, then it is impossible to expect

that at is unchanged between the two neighbouring cases.
DP for FC-BAI. Up till now, our definitions are tailored for bandit policies (Definition 2.16)
used for the regret minimisation objective. An FC-BAI strategy (Definition 2.17) can be seen as
an augmented "regret" policy. In addition to a sampling rule, an FC-BAI must determine when
to stop the interaction (stopping rule) and recommend a final guess (recommendation rule).
This means that Table DP, View DP and Interactive DP could be adapted to the FC-BAI setting
by modifying the output of the mechanism. The output is changed from the recommended
sequence of actions aT ≜ (a1, . . . , aT ) to (aT , â, T ) the sequence of sampled action aT , final
recommendation â and stopping time T . Also, the mechanisms should take a potentially
"infinite" dataset as input since the final size of the dataset depends on when the FC-BAI
strategy decides to stop.

For completeness, we provide a complete example of adaptations of Table DP and View DP
for FC-BAI strategies. Let πBAI be an FC-BAI strategy. We define the batch Table mechanism
MπBAI as

MπBAI : (RK)⋆ → P([K]⋆ × N)

x →MπBAI
x ,

where
MπBAI

x (aT , â, T ) ≜ RecT+1 (â | Hx
T ) ST+1 (⊤ | Hx

T )
T∏
t=1

St
(
at | Hx

t−1
) (3.4)

is the probability that the FC-BAI strategy πBAI samples the sequence of actions aT , recommends
â and stops after T steps of interaction, andHx

t ≜ (a1, x1,a1 , . . . , at, xt,at).
Similarly, we define the batch View mechanismMπBAI as

VπBAI : (R)⋆ → P([K]⋆ × N)

r → VπBAI
x ,

where
VπBAI
r (aT , â, T ) ≜ RecT+1 (â | Hr

T ) ST+1 (⊤ | Hr
T )

T∏
t=1

St
(
at | Hr

t−1
) (3.5)

is the probability that the FC-BAI strategy πBAI samples the sequence of actions aT , recommends
â as the final recommendation and stops after T steps of interaction, andHr

t ≜ (a1, r1, . . . , at, rt).
Then, πBAI is a Table DP FC-BAI strategy if and onlyMπBAI is DP. Similarly, πBAI is a View

DP FC-BAI strategy if and only VπBAI is DP.
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3.8 Conclusion

We define four ways of extending DP to bandits: Table DP, View DP, Interactive DP and DP
in the adaptive continual release model. The first two definitions are in a non-interactive DP
setting, where the inputs are fixed in advance and differ in the input considered due to the
bandit feedback. Inteactive DP adapts the interactive threat model of [VZ22] to bandits, while
DP in the adaptive continual release model adapts the threat model of [JRSS23] to bandits.
We prove the relationship between our four definitions: Interactive DP is stronger than DP in
adaptive continual release model, which is stronger than Table DP, which is in turn stronger
than View DP. Finally, we discuss other threat models for privacy in bandits beyond our four
definitions.

76



Chapter 4

Lower Bound Techniques

This chapter provides lower bounds on the regret and sample complexity of any policy
satisfying DP. These lower bounds provide valuable insight into the inherent hardness of the
problem and establish a target for optimal algorithm design. First, we illustrate the general
idea for proving lower bounds in bandits. Then, we introduce coupling ideas that express the
additional indistinguishability due to DP as upper bounds on the KL. We plug this KL upper
bounds in classic lower bound proofs to generate new regret and sample complexity lower
bounds, for bandits under ε-View DP and ρ-Interactive zCDP.
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4.1 Lower Bounds for Bandits: Basic Ideas

The main idea to prove lower bounds in bandits is to reduce the bandit problem to hypothesis
testing. Specifically, the goal is to provide two bandit instances that are conflicting:

(a) Actions that are good in one bandit instance are bad for the other bandit instance.

(b) The two bandit instances are hard to distinguish, i.e. if a policy interacts with one of the
bandit instances, it cannot identify the true bandit instance with high statistical power.

The lower bounds emerge from the tension between these two requirements. To illustrate
better this tension, let us revisit the proof of the regret minimax lower bound of Theorem 2.28.

Let π be a policy and consider the Gaussian environment νµ with means µ = (∆, 0, . . . , 0)
and unit variances, where ∆ is a constant we fix later. The interaction between π and νµ

produces the canonical distribution over histories Pπ,νµ and over sequence of actions Mπ,νµ

(i.e. Section 2.2.2), that we denote by Pµ and Mµ for brievity.
Consider i = arg mina>1 Eµ[Na(T )] the least played sub-optimal action in expectation,

when π interacts with νµ. It is easy to show that Eµ [Ni(T )] ≤ T
K−1 since T = Eµ [N1(T )] +∑

a>1 Eµ [Na(T )] ≥ (K − 1)Eµ [Ni(T )]. Then, to choose the second environment, we make
action i optimal by considering the means to be µ′ = (∆, 0, . . . , 0, 2∆, 0, . . . , 0), i.e. µ′

i = 2∆
and µ′

j = µj for all j ̸= i. Again, the interaction between π and νµ′ produces the canonical
distribution over histories Pπ,νµ′ and over sequence of actions Mπ,νµ′ , that we denote by Pµ′

and Mµ′ for briecity.
The environment νµ and νµ′ verify the two conflicting constraints:

(a) Action i is optimal in νµ′ and suboptimal in νµ. Also, action 1 is optimal in νµ and
suboptimal in νµ′ .

(b) The environments νµ and νµ′ only differ at the mean of action i, which is an action rarely
chosen by the policy when interacting with νµ. The hardness of distinguishing between νµ
and νµ′ depends on the parameter ∆, which we finetune to get the tightest lower bounds.

To choose the ∆ parameter, we move from the high-level idea and start doing some calcula-
tions. The first step is to use the regret decomposition combined with the Markov inequality to
get that

RegT (π, νµ) = (T − Eµ [N1(T )]) ∆ ≥Mµ (N1(T ) ≤ T/2) T∆
2 ,

and

RegT (π, νµ′) = ∆Eµ′ [N1(T )] +
∑

a/∈{1,i}
2∆Eµ′ [Na(T )] ≥Mµ′ (N1(T ) > T/2) T∆

2 .
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Let us define the event A ≜ {N1(T ) ≤ T/2} = {(a1, a2, . . . , aT ) : card({j : aj = 1}) ≤ T/2}.
The second important step in the proof is applying the Bretagnolle Huber inequality to get:

RegT (π, νµ) + RegT (π, νµ′) ≥ T∆
2 (Mµ(A) + Mµ′(Ac))

≥ T∆
4 exp

(
−DKL

(
Mµ

∥∥Mµ′
))

The use of the Bretagnolle Huber inequality can be seen as the main "reduction step" to hy-
pothesis testing. This inequality shows that the testing error gets bigger as the Kullback-Leibler
(KL) divergence between the marginals gets smaller. This KL quantifies how distinguishable
the two environments are. Providing a tight lower bound on the regret then boils down to
providing a tight upper bound on the KL over marginals.

The data processing inequality provides an upper bound on the KL in the classic proofs of
bandit lower bounds. Specifically, DKL

(
Mµ

∥∥Mµ′
)
≤ DKL

(
Pµ
∥∥ Pµ′

).
Then, the general KL decomposition lemma (Exercise 15.8, (b) in [LS20]) gives that

DKL
(
Pµ
∥∥ Pµ′

)
= Eµ

[
T∑
t=1

DKL
(
Pat

∥∥ P ′
at

)]
(a)=

K∑
a=1

Eµ[Na(T )]DKL
(
Pa
∥∥ P ′

a

)
(b)= Eµ[Ni(T )]DKL (N (0, 1) ∥ N (2∆, 1))
(c)= Eµ[Ni(T )] (2∆)2

2
(d)
≤ 2T∆2

K − 1

where (a) the KL decomposition lemma for finite-armed bandits (Lemma 15.1 in [LS20]),
(b) is by the definition of µ and µ′, (c) by the definition of the KL between Gaussians and (d)
due to the choice of i.

All in all, we get

RegT (π, νµ) + RegT (π, νµ′) ≥ T∆
4 exp

(
− 2T∆2

K − 1

)

We conclude the proof by optimizing for ∆ to find that ∆ =
√

K−1
4T gives the tightest lower

bound.
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When a policy satisfies a DP constraint, this translates into a stability condition between
neighbouring rewards. The main technical challenge explored in this chapter is to express this
additional indistinguishability condition as an upper bound on the KL between the marginals,
i.e.DKL

(
Mµ

∥∥Mµ′
).

4.2 Coupling Techniques for Lower bounds under DP

As portrayed in the previous section, to provide lower bounds on bandits with privacy, it
is important to translate the privacy constraint to an upper bound on the KL between the
marginals over the outputs, when the inputs are stochastically generated. In the following, we
use coupling techniques to generate these upper bounds on the KL between marginals. We first
explore the batch setting, where the data-generating distributions are product distributions.
Then, we adapt the same techniques to the sequential setting of bandits.

4.2.1 KL Decomposition for product distributions under DP

LetM be a mechanism defined with the notation introduced in Definition 2.1. Let P1 and P2

be two data-generating distributions over X n. We define the marginalsM1 andM2 over the
output of the mechanismM as

Mν(A) ≜
∫
D∈X n

MD (A) dPν (D) , (4.1)

when the inputs are generated from Pν for ν ∈ {1, 2} and A ∈ F .
The goal in this section is to provide an upper bound on the quantityDKL (M1 ∥M2) when

the mechanismM satisfies DP.
Before showing the main result, we recall the definition of an f -divergence and its two main

properties.

Definition 4.1 (f -divergence). Let f : (0,∞) → R be a convex function with f(1) = 0. Let P
and Q be two probability distributions on a measurable space (X ,F). If P ≪ Q, i.e. P is absolutely
continuous with respect to Q, then the f -divergence is defined as

Df (P∥Q) ≜ EQ
[
f

(
dP

dQ

)]

where dPdQ is a Radon-Nikodym derivative and f(0) ≜ f(0+).

The first property is the data-processing inequality.
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Theorem 4.2 (Data processing). Consider a channel that produces Y givenX based on the conditional
law PY |X , as shown below.

Then,
Df (PY ∥QY ) ≤ Df (PX∥QX) .

A consequence of the data processing inequality is that

Df (M1∥M2) ≤ Df (P1∥P2) ,

for any mechanismM and any f -divergence.
To get a more interesting upper bound on the KL that captures the privacy constraint, we

use the second property of f divergence,i.e. conditioning increases f-divergence.

Theorem 4.3 (Conditioning Increases f-divergence). Let PX
PY |X−→ PY and PX

QY |X−→ QY .

Then,
Df (PY ∥QY ) ≤ EX∼PX

[
Df

(
PY |X∥QY |X

)]
.

To use this property for our goal, we will shift the vision from having two data-generating
distributions P1 and P2 and one mechanism "channel", into having only one data-generating
distribution and two channels.
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Define C as a coupling of (P1,P2), i.e. the marginals of C are P1 and P2. We denote by
Π(P1,P2) the set of all the couplings between P1 and P2. We consider the data-generating
distribution to be the coupling C between P1 and P2. This means that sampling from C gives a
pair of dataset (D,D′), where the marginal distribution of D is P1, and the marginal of D′ is
P2. Then, we consider two channels based onM. The first channel applies the mechanismM
only to D and ignores D′, while the second channel applies the mechanismM only to D′ and
ignores D. In other words, using the notation of the figure in Theorem 4.3:

• X = (D,D′) a pair of datasets in X n

• the input distribution is PX = C the coupling distribution.

• the first channel is the mechanism applied to the first dataset PY |X =M(Y | D).

• the second channel is the mechanism applied to the second dataset QY |X =M(Y | D′).

• Y is the output of the mechanism
Using this notation, we have that

• PY = M1

• QY = M2

• Df

(
PY |X∥QY |X

)
= Df (MD∥MD′).

Using Theorem 4.3, we get that

Df (M1∥M2) ≤ E(D,D′)∼C [Df (MD∥MD′)].

which is true for every coupling C. Taking the infimum over the couplings provides the proof
of our main theorem, which we summarise here:

Theorem 4.4. For any mechanismM and any f -divergence, we have that

Df (M1∥M2) ≤ inf
C∈Π(P1,P2)

E(D,D′)∼C [Df (MD∥MD′)]. (4.2)

Next, we need to upper-bound the Df (MD∥MD′), whenM satisfies DP. By considering
the KL, which is an f -divergence for f(x) = x log(x), a direct consequence of Group Privacy
(Proposition 2.8) gives the following corollary.

Corollary 4.5 (Group privacy and the KL).
• IfM is ε-pure DP, then for any two datasets,

DKL (MD ∥MD′) ≤ εdHam(D,D′).
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• IfM is ρ-zCDP, then
DKL (MD ∥MD′) ≤ ρdHam(D,D′)2.

Combining Corollary with Theorem 4.4 gives the following theorem.
Theorem 4.6 (KL Upper Bound as a Transport Problem).

• IfM is ε-pure DP, then

DKL (M1 ∥M2) ≤ ε inf
C∈Π(P1,P2)

E(D,D′)∼C [dHam(D,D′)].

• IfM is ρ-zCDP, then

DKL (M1 ∥M2) ≤ ρ inf
C∈Π(P1,P2)

E(D,D′)∼C [dHam(D,D′)2].

Deriving the sharpest upper bound for the KL requires solving the transport problem

inf
C∈Π(P1,P2)

E(D,D′)∼C [dHam(D,D′)] (4.3)

for ε-pure DP, and the transport problem

inf
C∈Π(P1,P2)

E(D,D′)∼C [dHam(D,D′)2] (4.4)

for ρ-zCDP.
As a proxy, we use maximal couplings.

Proposition 4.7. Let P1 and P2 be two probability distributions with the same σ-algebra. There exists
a coupling c∞(P1,P2) ∈ Π(P1,P2) called a maximal coupling, such that

E(X1,X2)∼c∞(P1,P2) [1 (X1 ̸= X2)] = TV (P1 ∥ P2)

Suppose that P1 and P2 are two product distributions over X n, i.e. P1 =
⊗n

i=1 p1,i and
P2 =

⊗n
i=1 p2,i, where pν,i for ν ∈ {1, 2} and i ∈ [1, n] are distributions over X . Let ci∞ be a

maximal coupling between p1,i and p2,i for all i ∈ [1, n]. We define the coupling C∞ ≜
⊗n

i=1 c
i
∞.

Then C∞ is a coupling of P1 and P2.
Theorem 4.8 (KL Decomposition for Product Distributions). Using the C∞ coupling between
the product distributions P1 and P2 as a proxy to solve the transport problems of Equation (4.3) and
Equation (4.4), we show that:

• IfM is ε-pure DP, then
DKL (M1 ∥M2) ≤ ε

(
n∑
i=1

ti

)
(4.5)
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• IfM is ρ-zCDP, then

DKL (M1 ∥M2) ≤ ρ
(

n∑
i=1

ti

)2

+ ρ
n∑
i=1

ti(1− ti) (4.6)

where ti ≜ TV (p1,i ∥ p2,i).

Proof. Since dHam(D,D′) =
∑n
i=1 1 (di ̸= D′

i) we get that, for (D,D′) ∼ C∞,

dHam(D,D′) ∼
n∑
i=1

Bernoulli(ti),

where ti ≜ TV (p1,i ∥ p2,i), and the terms in the sum are mutually independent.
This further yields that

E(D,D′)∼C∞ [dHam(D,D′)] =
n∑
i=1

ti,

and
E(D,D′)∼C∞ [dHam(D,D′)2] =

(
n∑
i=1

ti

)2

+
n∑
i=1

ti(1− ti).

Stochastic generalisation of group privacy. Theorem 4.8 can be seen as a stochastic generalisa-
tion of the group privacy property of DP. Specifically, the results from Theorem 4.8 suggest that
two random datasets D and D′ sampled from P1 =

⊗n
i=1 p1,i and P2 =

⊗n
i=1 p2,i respectively

could be thought of as (
∑n
i=1 ti)-neighboring datasets, where ti = TV (p1,i ∥ p2,i).

Relation to similar results in the literature. Lemma 6.1 in [KV18] shows that, for any event E,
M1(E) ≤ e6εnTV(p1 ∥ p2)M2(E), when the mechanism is ε-pure DP, and the data-generating dis-
tributions are i.i.d from p1 or p2, i.e. Pν =

⊗n
i=1 pν for ν ∈ {1, 2}. The KarwaVadhan is a stronger

result than Theorem 4.8 since it controls the multiplicative difference between the marginals at
each event. This gives the following direct KL upper bound DKL (M1 ∥M2) ≤ 6εnTV (p1 ∥ p2)
for i.i.d distributions. Also, the Karwa Vadhan lemma builds explicitly the maximal coupling
in their proof. Our result generalises this upper bound to product distributions and improves
the dependence of factor 6 there. Also, it is worth noting that similar coupling ideas have been
developed in [LGG22] to derive DP and zCDP variants of LeCam and Fano inequalities.
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4.2.2 Sequential KL decomposition for bandits under DP

Now, we adapt Theorem 4.8 for the bandit marginals. Let ν = {Pa, a ∈ [K]} and ν ′ = {P ′
a, a ∈

[K]} be two bandit instances. We recall that, when the policy π interacts with the bandit
instance ν, it induces a marginal distributionMνπ over the sequence of actions, where

mνπ(a1, . . . , aT ) ≜
∫
r1,...,rT

T∏
t=1

πt(at | Ht−1)pat(rt) drt.

and for all C ∈ P([K]T ),

Mνπ(C) ≜
∑

(a1,...,aT )∈C
mνπ(a1, a2, . . . , aT ).

We defineMν′π similarly.
The goal is to upper bound the quantity DKL (Mνπ ∥Mν′π). The marginalsMνπ andMνπ

in the sequential setting "look like" marginals generated by "product distributions". However,
the hardness of the sequential setting resides in the fact that the data-generating distributions
depend on the actions chosen, which are stochastic. Thus, the results of the previous section
cannot directly be applied. To adapt the proof ideas of the previous section to the bandit case,
we introduce the idea of a coupled bandit instance.

Let ν = {Pa : a ∈ [K]} and ν ′ = {P ′
a : a ∈ [K]} be two bandit instances. Define ca as the

maximal coupling between Pa and P ′
a. Fix a policy π = {πt}Tt=1.

Here, we build a coupled environment γ of ν and ν ′. The policy π interacts with the coupled
environment γ up to a given time horizon T to produce an augmented history {(at, rt, r′

t)}Tt=1.
The iterative steps of this interaction process are:

1. The probability of choosing an action at = a at time t is dictated only by the policy πt
and a1, r1, a2, r2, . . . , at−1, rt−1, i.e. the policy ignores {r′

s}t−1
s=1.

2. The distribution of rewards (rt, r′
t) is cat and is conditionally independent of the previous

observed history {(as, rs, r′
s)}t−1

t=1.
This interaction is similar to the interaction process of policy π with the first bandit instance

ν, with the addition of sampling an extra r′
t from the coupling of Pat and P ′

at
. This, in essence,

corresponds to the "up" branch in Theorem 4.3.
The distribution of the augmented history induced by the interaction of π and the coupled

environment can be defined as

pγπ(a1, r1, r
′
1 . . . , aT , rT , r

′
T ) ≜

T∏
t=1

πt(at | a1, r1, . . . , at−1, rt−1)cat(rt, r′
t)
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To simplify the notation, let a ≜ (a1, . . . , aT ), r ≜ (r1, . . . , rT ) and r’ ≜ (r′
1, . . . , r

′
T ). Also, let

ca(r, r’) ≜
∏T
t=1 cat(rt, r′

t) and π(a | r) ≜
∏T
t=1 πt(at | a1, r1, . . . , at−1, rt−1). We put h ≜ (a, r, r’).

With the new notation
pγπ(a, r, r’) ≜ π(a | r)ca(r, r’)

Similarly, we define
qγπ(a, r, r’) ≜ π(a | r’)ca(r, r’)

which corresponds to the "down" branch in Theorem 4.3, where the policy ignores the rewards
r1, . . . , rT in the interaction.

It follows that mνπ is the marginal of pγπ when integrated over (r, r’), and mν′π is the
marginal of qγπ when integrated over (r, r’), i.e.

mνπ(a) =
∫
r,r’
pγπ(a, r, r’) dr dr’

and
mν′π(a) =

∫
r,r’
qγπ(a, r, r’) dr dr’.

By the data-processing inequality, we get that

DKL (Mνπ ∥Mν′π) ≤ DKL (pγπ ∥ qγπ) (4.7)

We have that

DKL (pγπ ∥ qγπ) (a)= Eh≜(a,r,r’)∼pγπ

[
log

(
π(a | r)ca(r, r’)
π(a | r’)ca(r, r’)

)]
(b)= Eh≜(a,r,r’)∼pγπ

[
log

(
Vπr (a)
Vπr’(a)

)]

where: (a): by definition of pγπ, qγπ and the KL divergence
(b): by definition of Vπr (a) ≜ π(a | r) and Vπr’(a) ≜ π(a | r’).

View DP. Now, if the policy π is ε-View DP, then by group privacy Vπr (a) ≤ eεdHam(r,r’)Vπr (a),
for any sequence of actions, and any two sequence of rewards r and r’. Thus, computing
the expectation of dHam(r, r’) when r and r’ are generated through the coupled environment
provides the following theorem.

Theorem 4.9 (KL Decomposition for ε-View DP). If π is ε-View DP, then

DKL (Mνπ ∥Mν′π) ≤ εEνπ

(
T∑
t=1

tat

)
,
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where tat ≜ TV
(
Pat

∥∥ P ′
at

) and Eνπ is the expectation undermνπ.

Proof. The proof follows by computing

Eh≜(a,r,r’)∼pγπ

[
log

(Vπr (a)
Vr’(a)

)] (a)
≤ Eh≜(a,r,r’)∼pγπ

[εdHam(r, r’)]

(b)= ε
T∑
t=1

Eh≜(a,r,r’)∼pγπ

[
1
(
rt ̸= r′

t

)]
(c)= ε

T∑
t=1

Eh≜(a,r,r’)∼pγπ

[
Eh≜(a,r,r’)∼pγπ

[
1
(
rt ̸= r′

t

)
|at
]]

(d)= ε
T∑
t=1

Eh≜(a,r,r’)∼pγπ
[tat ]

(e)= ε
T∑
t=1

Ea∼mνπ [tat ]

where: (a) is by group privacy, (b) is by the definition of the hamming distance, (c) is by
the towering property of the expectation, (d) is by the definition of the maximal coupling and
(e) is because the sum only depends on the sequence of actions, with marginal distribution
mνπ.

Comparison to the product distribution setting: The result of Theorem 4.9 generalises the
result of Theorem 4.8 to the sequential setting under pure DP. Since the actions are stochastic,
there is an additional expectation over the generation process of the sequence of actions,
sampled from Mνπ. Also, Theorem 4.9 can be seen as an ε-DP version of the general KL
decomposition lemma (Exercice 15.8, (b) in [LS20]), which recall states thatDKL (Pνπ ∥ Pν′π) =
Eνπ

(∑T
t=1DKL

(
Pat

∥∥ P ′
at

)).
Remark 4.10 (Improvement of a factor of 6 comapred to [AB22]:). In Theorem of [AB22], we
have showed that

DKL (Mνπ ∥Mν′π) ≤ 6εEνπ

(
T∑
t=1

tat

)
.

We used a generalisation of Karwa Vadhan lemma to prove this result for product distributions. Using
the coupled environment idea in the new proof, we eliminate the extra 6 factor in the upper bound. This
improves all the regret and sample complexity lower bounds in this manuscript by a factor of 6 compared
to the results in [AB22, AJMB23].

Remark 4.11 (Stopping time version of the KL decomposition for FC-BAI under View DP).
Let πBAI be a DP BAI strategy. Let ν and λ be two bandit instances. Denote byMν,πBAI the marginal
distribution of (A, Â, τ) when the BAI strategy πBAI interacts with ν. By adapting the techniques of
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Theorem 4.9 to the canonical bandit setting under FC-BAI, we get that

DKL
(
Mν,πBAI

∥∥∥Mλ,πBAI
)
≤ εEν,πBAI

(
τ∑
t=1

tat

)

where τ is the stopping time.

Interactive zCDP. Now, we suppose that the policy is ρ-Interactive zCDP.
First, we show a strong group privacy property.

Theorem 4.12 (Group Privacy for ρ-Interactive DP). If π is a ρ-Interactive zCDP policy then,
for any sequence of actions (a1, . . . , aT ) and any two sequence of rewards r ≜ {r1, . . . , rT } and
r’ ≜ {r′

1, . . . , r
′
T }, we have that

T∑
t=1

DKL
(
πt(. | Ht−1)

∥∥ πt(. | H ′
t−1)

)
≤ ρdHam(r, r’)2

where Ht ≜ (a1, r1, . . . , at, rt), H ′
t ≜ (a1, r

′
1, . . . , at, r

′
t) and dHam(r, r’) =

∑T
t=1 1 (rt ̸= r′

t).

Proof. Let a ≜ (a1, . . . , aT ) be a fixed sequence of actions. Let r ≜ {r1, . . . , rT } and r’ ≜
{r′

1, . . . , r
′
T } be two sequences of rewards.

Step 1: The constant adversary. We consider the constant adversary Ba defined as

Ba(o1, . . . , ot) ≜ at

i.e.Ba is the adversary that always queries at step t the action at, independently of the actions
recommended by the policy. Let πa ≜ πBa be the policy corresponding to the post-processing
Ba.

Since π is ρ-Interactive zCDP, using Proposition 3.13, (b), thenMπa is ρ-zCDP. And Propo-
sition 3.12, (c) gives that Vπa is ρ-zCDP.

Step 2: Group privacy of zCDP. Using the group privacy property of ρ-zCDP i.e. Theorem
2.8 with α = 1, we get that

DKL
(
Vπar

∥∥ Vπar’
)
≤ ρ dHam(r, r’)2. (4.8)

Step 3: Decomposing the view of the constant adversary. On the other hand, we have
that

Vπar (o1, . . . , oT ) =
T∏
t=1

πt(ot | a1, r1, . . . , at−1, rt−1).
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In other words Vπar =
⊗T

t=1 πt(. | a1, r1, . . . , at−1, rt−1).
Similarly, Vπar’ =

⊗T
t=1 πt(. | a1, r

′
1, . . . , at−1, r

′
t−1).

Hence, we get

DKL
(
Vπar

∥∥ Vπar’
)

=
T∑
t=1

DKL
(
πt(. | Ht−1)

∥∥ πt(. | H ′
t−1)

) (4.9)

Plugging Equaion (4.9) in Inequality (4.8) concludes the proof.

Remark 4.13 (Decoupling of the adversary provides stronger Group Privacy). The result of
Theorem 4.12 is a strong group privacy property because it shows that the sum of the KL of each policy
kernel πt applied on any two histories HT and H ′

T is upper bounded by ρ times the hamming distance
squared between the reward sequence.

In contrast, if the policy was only View or Table DP, we can only upper bound the sum of the KLs in
"expectation over the generation of the actions". Specifically, if π is ρ-View zCDP, then group privacy
gives that DKL (Vπr ∥ Vπr’) ≤ ρdHam(r, r’)2, for any two fixed sequences r and r’ However,

DKL (Vπr ∥ Vπr ) = Ea∼Vπ
r’

[
log V

π
r (a)
Vπr (a)

]

= Ea∼Vπ
r

[
T∑
t=1

log πt(at | Ht−1)
πt(at | H ′

t−1)

]

= Ea∼Vπ
r

T∑
t=1

[
Ea∼Vπ

r’

[
log πt(at | Ht−1)

πt(at | H ′
t−1)

]
| A1, . . . , At−1

]

= Ea∼Vπ
r

[
T∑
t=1

DKL
(
πt(. | Ht−1)

∥∥ πt(. | H ′
t−1)

)]
.

Thus, the decoupling introduced by the adversary in the Interactive DP definition provides a stronger
KL upper bound.

Computing the expectation of dHam(r, r’)2 when r and r’ are generated through the coupled
argument provides the following theorem.

Theorem 4.14 (KL Decomposition for ρ-Interactive zCDP). If π is ρ-Interactive zCDP, then

DKL (Mνπ ∥Mν′π) ≤ ρEνπ

( T∑
t=1

tat

)2+ ρEνπ

(
T∑
t=1

tat(1− tat)
)

where tat ≜ TV
(
Pat

∥∥ P ′
at

) and Eνπ and Vνπ is the expectation undermνπ respectively.
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Proof. First, we have

Eh≜(a,r,r’)∼pγπ

[
log

(
Vπr (a)
Vπr’(a)

)]
(a)=

T∑
t=1

Eh∼pγπ

[
log

(
πt(at | Ht−1)
πt(at | H ′

t−1)

)]
(b)=

T∑
t=1

Eh∼pγπ

[
Eh∼pγπ

[
log

(
πt(at | Ht−1)
πt(at | H ′

t−1)

) ∣∣ Ht−1

]]
(c)=

T∑
t=1

Eh∼pγπ

[
Eat∼πt(.|Ht−1)

[
log

(
πt(at | Ht−1)
πt(at | H ′

t−1)

)]]
(d)=

T∑
t=1

Eh∼pγπ

[
DKL

(
πt(. | Ht−1)

∥∥ πt(. | H ′
t−1)

)]
(e)
≤ Eh∼pγπ

[
ρd2

Ham(r, r′)
]

where: (a) by definition of Vπr (a) and Vπr’(a).
(b) using the towering property of the expectation.
(c) using that, conditioned on the history Ht−1, the distribution of at is πt(. | Ht−1).
(d) by definition of the KL divergence.
(e) by the strong group privacy for Interactive DP, i.e. Theorem 4.12.
The proof is direct by computing

Eh∼pγπ

[
d2

Ham(r, r′)
] (a)= Eh∼pγπ

[
Eh∼pγπ

[
d2

Ham(r, r′)
∣∣ A ] ]

(b)= Eh∼pγπ

[
Eh∼pγπ

[
dHam(r, r′)

∣∣ A ]2 + V
[
dHam(r, r′)

∣∣ a] ]

(c)= Eh∼pγπ

[(
T∑
t=1

tat

)2

+
T∑
t=1

tat(1− tat)
]

(d)= Eνπ

( T∑
t=1

tat

)2+ Eνπ

(
T∑
t=1

tat(1− tat)
)

where we obtain (a) using the towering property of the expectation, (b) by definition of the
variance and (c) uses that dHam(r, r′) =

∑T
t=1 1 (rt ̸= r′

t) where 1 (rt ̸= r′
t) | at ∼ Bernoulli(tat)

by the definition of the maximal coupling.

Comparison to the product distribution setting: Again, the result of Theorem 4.14 generalises
the result of Theorem 4.8 to the sequential setting under zCDP. Since the actions are stochastic,
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there is an additional expectation over the generation process of the sequence of actions,
sampled from Mνπ.

4.3 Regret Lower Bounds under DP

In this section, we answer the main question:

How much additional regret do we have to endure in bandits with DP compared to bandits without DP?

First, we answer this question for stochastic and linear bandit under ε-ViewDP by providing
minimax and problem-dependent lower bounds. For ρ-Interactive zCDP, we provide only
minimax lower bounds on the regret for stochastic and linear bandits. All these lower bounds
are retrieved by plugging the upper bounds on the KL from the previous section.

4.3.1 Regret lower bounds under ε-View DP

We summarise the lower bounds presented in this section in Table 4.1.
Stochastic Bandits. First, we consider the stochastic bandit problem withK-arms, as in Sec-
tion 2.2.2.

Minimax Regret. Under DP, the minimax regret is the lowest achievable regret by a View
DP policy under the worst environment among a family of environments EK . Specifically, we
define

Reg⋆T,ε(EK) = inf
π∈Πε

sup
ν∈EK

RegT (π, ν)

where Πε is the class of all policies satisfying ε-View DP.

Theorem 4.15 (Minimax lower bound). Let EKG be the set ofK-armed Gaussian bandits, with unit
variance. Then, forK > 1 and T ≥ K − 1,

Reg⋆T,ε(EKG ) ≥ max
{ 1

27

√
T (K − 1)︸ ︷︷ ︸

without DP

,
1
22
K − 1
ε︸ ︷︷ ︸

with ε-View DP

}
. (4.10)

Proof. First, since Πε ⊂ Π, Theorem 2.28 gives that

Reg⋆T,ε(EKG ) ≥ inf
π∈Π

sup
ν∈EK

N

RegT (π, ν) ≥ 1
27

√
T (K − 1)

To get the private term of the lower bound, we revisit the same proof structure explained
in Section 4.1. Specifically, by choosing the same two environments as in Section 4.1 and
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combining a Markov inequality then the Bretagnolle Huber inequality gives that

RegT (π, νµ) + RegT (π, νµ′) ≥ T∆
4 exp

(
−DKL

(
Mµ

∥∥Mµ′
))
.

Now, we plug the KL decomposition under View DP of Theorem 4.9, which gives that

DKL (Mνπ ∥Mν′π) ≤ εEµ

(
T∑
t=1

tat

)
=(a) εEµ[Ni(T )] TV

(
Pi
∥∥ P ′

i

)
≤(b) ε

T

K − 1

√
1
2DKL (N (0, 1) ∥ N (2∆, 1))

= ε
T∆
K − 1

where: (a) is by definition of the environments νµ and νµ′ which only differ at the mean of
arm i and (b) combines a Pinsker inequality to upper bound the TV, and the upper bound
Eµ[Ni(T )] ≤ T

K−1 due to the choice of i.
All in all, we get

RegT (π, νµ) + RegT (π, νµ′) ≥ T∆
4 exp

(
−ε T∆

K − 1

)

By optimising for ∆, we choose ∆ = K−1
εT . We conclude the proof by lower bounding

exp(−1) with 8
22 , and using 2 max(a, b) ≥ a+ b.

Consequences of Theorem 4.15. Equation (4.10) shows two regimes of hardness: high-privacy,
corresponding to lower values of ε, and low-privacy, corresponding to higher values of ε. In
the high-privacy regime, specifically for ε < 22

27

√
(K−1)
T , the hardness depends only on the

number of the armsK and the privacy budget ε and is higher than the lower bound for bandits
without privacy. In the low-privacy regime, i.e. for ε ≥ 22

27

√
(K−1)
T , the lower bound coincides

with that of the bandits without privacy. This indicates the phenomena that for higher values
of ε, i.e. signifying lower privacy, bandits with View DP are not harder than the bandits without
privacy. Especially for significantly large T , the threshold between low and high privacy
regimes is smaller than most of the practically used privacy budget values. For example, if
T = 106 and K = 100, the bandits with and without View DP are equivalently hard for any
privacy budget ε ≥ 0.01. This shows that for stochastic bandits, we can deploy very low privacy
budgets εwithout losing anything in performance.
Problem-dependent Regret. Let π be a consistent ε-View DP policy, i.e. π ∈ Πcons(E) ∩Πε.
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Table 4.1 – Regret lower bounds for bandits with ε-View DP
Minimax Problem Dependent

Stochastic Multi-armed bandit max
(

1
27
√
T (K − 1), 1

22
K−1
ε

) ∑
a:∆a>0

∆a log(T )
min(da,εta)

Stoachastic Linear bandit max
(

exp(−2)
8 d

√
T , exp(−1)

4
d
ε

) infα∈[0,∞)A
∑
a∈A α(a)∆a log(T )

s.t. ∥a∥2
H−1

α
≤ 0.5∆a min (∆a, ερ(A))

Before deriving the lower bound, we first recall the KL inf quantity, which controls the
problem-dependent hardness of the non-private bandit problem, i.e.

KLinf(P, µ⋆,M) ≜ inf
P ′∈M

{
DKL

(
P
∥∥ P ′) : µ(P ′) > µ⋆

}
.

Similarly, we introduce a total variation version of the KL inf, which we call the TV inf, i.e.

TVinf (P, µ⋆,M) ≜ inf
P ′∈M

{
TV

(
P
∥∥ P ′) : µ

(
P ′) > µ⋆

}
.

Theorem 4.16 (Problem-dependent Regret Lower Bound). Let E ≜ M1 × · · · × MK and
π ∈ Πcons(E) ∩Πε an ε-View DP consistent policy over E . Then, for any ν = (Pa : a ∈ K) ∈ E ,

lim inf
T→∞

RegT (π, ν)
log(T ) ≥

∑
a:∆a>0

∆a

min
(
KLinf (Pa, µ∗,Ma)︸ ︷︷ ︸

without DP

, εTVinf (Pa, µ∗,Ma)︸ ︷︷ ︸
with ε-View DP

) . (4.11)

Consequences of Theorem 4.16. We summarise interesting observations about the lower bound.
1. Universality: The lower bound of Theorem 4.16 holds for any environment withK arms

and reward distributions with finite means. This is the first general lower bound for bandits
with ε-View DP.

2. For Bernoulli distributions of reward: TV-distinguishability gap TVinf (Pa, µ∗,Ma) = ∆a,
and the KL-distinguishability gap KLinf (Pa, µ∗,Ma) ≈ 2∆2

a. Thus, our problem-dependent
lower bound reduces to Ω

(∑
a̸=a∗

log T
min{∆a,ε}

)
. For Bernoulli rewards, our lower bound is able

to retrieve the Ω
(
K log T

ε

)
private lower bound of [SS18] with explicit constants.

3. High and Low-privacy Regimes: Like the minimax regret bound, the problem-dependent
regret also indicates two clear regimes in regret due to high and low privacy (resp. small and
large privacy budgets ε). In the low-privacy regime, i.e. for ε ≥ KLinf(Pa,µ∗,Ma)

TVinf(Pa,µ∗,Ma) , the regret achievable
by bandits with View DP and without View DP are same. Thus, there is no loss in performance due
to privacy in this regime. In the high-privacy regime, i.e. for ε < KLinf(Pa,µ∗,Ma)

TVinf(Pa,µ∗,Ma) , the regret depends
on a coupled effect of privacy and partial information. This effect is quantified by the inverse of
the privacy budget times the inverse of the TV-distinguishability gap. Approximately, one can
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think of KLinf (Pa, µ∗,Ma) ≈ ∆2
a and TVinf (Pa, µ∗,Ma) ≈ ∆a, and thus the change of regimes

happen at ε ≈ ∆a.
The proof is similar to the proof of Theorem 4.15 and is deferred to Appendix B.1.

Stochastic Linear Bandits. We also derive new minimax and problem-dependent regret
lower bounds for stochastic linear bandits [LS17].

In this section, we consider a linear bandit model with parameter θ ∈ Rd and Gaussian noise.
It implies that for an action At ∈ A ⊆ Rd the reward is Rt = ⟨At, θ⟩+ ηt, where ηt ∼ N (0, 1) is
a sequence of independent Gaussian noises. The regret of a policy is

RegT (π,A, θ) ≜ Eθ

[
T∑
t=1

∆At

]
,

where the suboptimality gap ∆a ≜ maxa′∈A ⟨a′ − a, θ⟩, and Eθ[·] is the expectation with respect
to the measure of outcomes induced by the interaction of the policy and the linear bandit
determined by θ. Given this structure, we state the minimax and problem-dependent regret
lower bounds for stochastic linear bandits.

Theorem 4.17 (Minimax regret lower bound). Let A = [−1, 1]d and Θ = Rd. Let π be an ε-View
DP policy. Then, there exists a vector θ ∈ Θ such that

RegT (π,A, θ) ≥ max


exp(−2)

8 d
√
T︸ ︷︷ ︸

without DP

,
exp(−1)

4
d

ε︸ ︷︷ ︸
with ε-View DP

 . (4.12)

Theorem 4.18 (Problem-dependent regret lower bound). Let A ⊂ Rd be a finite set spanning Rd
and θ ∈ Rd be such that there is a unique optimal action. Then, for any consistent and ε-View DP policy
π satisfies

lim inf
T→∞

RegT (π,A, θ)
log(T ) ≥ c(A, θ), (4.13)

where the structural distinguishability gap is the solution of a constraint optimisation

c(A, θ) ≜ inf
α∈[0,∞)A

∑
a∈A

α(a)∆a, such that ∥a∥2H−1
α
≤ min

{
0.5∆2

a︸ ︷︷ ︸
without DP

, 0.5ερa(A)∆a︸ ︷︷ ︸
with ε-View DP

}

for all a ∈ A with ∆a > 0, Hα =
∑
a∈A α(a)aa⊤, and a structure dependent constant ρa(A).

Remarks. The minimax regret bound also shows a clear distinction between high and low-
privacy regimes for ε < 2e/

√
T and ε ≥ 2e/

√
T . For the problem-dependent bound, the

difference between high and low-privacy regimes is more subtle, and depends on the structure
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of the problem. The proofs also plug the new KL upper bounds in the proofs in [LS17], and
are deferred to Appendix B.2 and Appendix B.3.
Remark 4.19 (Lower bounds for ε-Table DP and ε-Interactive DP). Since ΠInteractive ⊂ ΠTable ⊂
ΠView, a lower bound on ε-View DP policies is a lower bound for both ε-Table DP and ε-Interactive DP
policies.

4.3.2 Regret lower bounds under ρ-Interactive zCDP

Let Πρ
Int be the set of all ρ-Interactive zCDP policies.

Theorem 4.20 (Minimax lower bound for finite-armed bandits). For any K > 1, T ≥ K − 1,
and 0 < ρ ≤ 1,

Reg⋆T,ρ(EKG ) ≜ inf
π∈Πρ

Int
sup
ν∈EK

G

RegT (π, ν)

≥ max
{ 1

27

√
T (K − 1)︸ ︷︷ ︸

without DP

,
1

124

√
K − 1
ρ︸ ︷︷ ︸

with ρ-Interactive zCDP

}
.

Theorem 4.21 (Minimax Lower Bounds for Linear Bandits). LetA = [−1, 1]d and Θ = Rd. Then,
we have that

Reg⋆T,ρ(A,Θ) ≜ inf
π∈Πρ

Int
sup
θ∈Θ

RegT (π,A, θ)

≥ max


e−2

8 d
√
T︸ ︷︷ ︸

without DP

,
e−2.25

4
d
√
ρ︸ ︷︷ ︸

with ρ-Interactive zCDP


We summarise the lower bounds presented in this section in Table 4.2. The proofs are also

found by plugging the KL upper bound of Theorem 4.14 in the classic proofs. The detailed
proofs are deferred to Appendix B.4 and Appendix B.5.

Again, the minimax regret lower bounds suggest the existence of two hardness regimes
depending on ρ and T . The change of regimes happens at ρ ≈ 1

T . On the other hand, for ε-View
DP, the change of regimes happens at ε ≈ 1√

T
. This is in accordance with the observation that

an ε-DP mechanism is
(

1
2ε

2
)
-zCDP of Proposition 2.6.

Remark 4.22 (Lower bounds for View zCDP and Table zCDP). The lower bounds for ρ-zCDP are
only provided for ρ-Interactive zCDP since we use the stronger group privacy property thanks to the
decoupling from the adversary. An interesting open question is to provide lower bounds for the ρ-View
zCDP and ρ-Table zCDP.
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Table 4.2 – Regret lower bounds for bandits with ρ-Interactive DP

Minimax

Stochastic Multi-armed bandit max
(

1
27
√
T (K − 1), 1

124

√
K−1
ρ

)
Stoachastic Linear bandit max

(
exp(−2)

8 d
√
T , exp(−2.25)

4
d√
ρ

)

4.4 Sample Complexity Lower Bounds under DP

The central question that we address in this section is

How many additional samples a BAI strategy must select for ensuring ε-View DP?

In response, we prove a lower bound on the sample complexity of any δ-correct ε-View DP
BAI strategy.

First, we derive an ε-View DP variant of the transportation lemma, i.e. Lemma 1 in [KCG16].

Lemma 4.23 (Transportation lemma under ε-View DP). Let δ ∈ (0, 1) and ε > 0. Let ν be a
bandit instance and λ ∈ Alt(ν). For any δ-correct ε-View DP BAI strategy πBAI, we have that

ε
K∑
a=1

Eν,πBAI [Na(τ)] TV (νa ∥ λa) ≥ kl(1− δ, δ),

where kl(1− δ, δ) ≜ x log x
y + (1− x) log 1−x

1−y for x, y ∈ (0, 1).

Proof. Let πBAI be a δ-correct ε-View DP BAI strategy. Let ν be a bandit instance and λ ∈ Alt(ν).
Let Mν,πBAI denote the probability distribution of (A, Â, τ) when the BAI strategy πBAI

interacts with ν. For any alternative instance λ ∈ Alt(ν), the data-processing inequality gives
that

DKL
(
Mν,πBAI

∥∥∥Mλ,πBAI
)
≥ kl

(
Mν,πBAI

(
Â = a⋆(ν)

)
,Mλ,πBAI

(
Â = a⋆(ν)

))
≥ kl(1− δ, δ). (4.14)

where the second inequality is because π is δ-correct i.e.Mν,πBAI
(
Â = a⋆(ν)

)
≥ 1 − δ and

Mλ,π

(
Â = a⋆(ν)

)
≤ δ, and the monotonicity of the kl.
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Now, using the stopping time version of the KL decomposition for FC-BAI, we get that

DKL
(
Mν,πBAI

∥∥∥Mλ,πBAI
)
≤ εEν,πBAI

(
τ∑
t=1

tat

)

= ε
K∑
a=1

Eν,πBAI [Na(τ)] TV (νa ∥ λa) . (4.15)

Combining Inequality (4.14) and Inequality (4.15) concludes the proof.

Leveraging Lemma 4.23, we derive a sample complexity lower bound for any ε-DP-FC-BAI
strategy.

Theorem 4.24 (Sample complexity lower bound for ε-DP-FC-BAI). Let δ ∈ (0, 1) and ε > 0. For
any δ-correct ε-View DP BAI strategy πBAI, we have that

Eν,πBAI [τ ] ≥ T ⋆ (ν; ε) log(1/3δ), (4.16)

where (T ⋆ (ν; ε))−1 ≜ sup
ω∈ΣK

inf
λ∈Alt(ν)

min


K∑
a=1

ωaDKL (νa ∥ λa)︸ ︷︷ ︸
without DP

, ε
K∑
a=1

ωaTV (νa ∥ λa)︸ ︷︷ ︸
with ε-View DP

.

Comments on the lower bound. Similar to the lower bound for the non-private BAI [GK16],
the lower bound of Theorem 2 is the value of a two-player zero-sum game between a MIN
player and MAX player. MIN plays an alternative instance λ close to ν in order to confuse
MAX. The latter plays an allocation ω ∈ ΣK to explore the different arms, with the purpose
of maximising the divergence between ν and the confusing instance λ that MIN played. On
top of the KL divergence present in the non-private lower bound, our bound features the TV
distance that appears naturally when incorporating the ε-View DP constraint. The proof is
deferred to Appendix B. In order to compare the lower bound of an ε-View BAI strategy with
the non-private lower bound of [GK16], we relax Theorem 4.24 to further derive a simpler
bound, as in Corollary 4.25.

Proof. Let π be a δ-correct ε-global DP BAI strategy. Let ν be a bandit instance and λ ∈ Alt(ν).
Let E denote the expectation underMν,πBAI , ie E ≜ Eν,πBAI .
By Lemma 4.23, we have that ε∑K

a=1 E [Na(τ)] TV (νa ∥ λa) ≥ kl(1− δ, δ).

On the other, Lemma 1 of [KCG16] gives that∑K
a=1 E [Na(τ)]DKL (νa ∥ λa) ≥ kl(1− δ, δ).
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Since these two inequalities hold for all λ ∈ Alt(ν), we get

kl(1−δ, δ) ≤ inf
λ∈Alt(ν)

min
(
ε
K∑
a=1

E [Na(τ)] TV (νa ∥ λa) ,
K∑
a=1

E [Na(τ)]DKL (νa ∥ λa)
)

(a)= E[τ ] inf
λ∈Alt(ν)

min
(
ε
K∑
a=1

E [Na(τ)]
E[τ ] TV (νa ∥ λa) ,

K∑
a=1

E [Na(τ)]
E[τ ] DKL (νa ∥ λa)

)
(b)
≤ E[τ ]

(
sup
ω∈ΣK

inf
λ∈Alt(ν)

min
(
ε
K∑
a=1

ωaTV (νa ∥ λa) ,
K∑
a=1

ωaDKL (νa ∥ λa)
))

.

(a) is due to the fact that E[τ ] does not depend on λ. (b) is obtained by noting that the
vector (ωa)a∈[K] ≜

(
Eν,π [Na(τ)]

Eν,π [τ ]

)
a∈[K]

belongs to the simplex ΣK .

The theorem follows by noting that for δ ∈ (0, 1), kl(1− δ, δ) ≥ log(1/3δ).

Corollary 4.25. For any δ-correct ε-View DP BAI strategy πBAI, we have that

Eν,πBAI [τ ] ≥ max

 T ⋆KL(ν)︸ ︷︷ ︸
without DP

,
1
ε
T ⋆TV(ν)︸ ︷︷ ︸

with ε-View DP

 log(1/3δ),

where (T ⋆d (ν)
)−1 ≜ supω∈ΣK

infλ∈Alt(ν)
∑K
a=1 ωad(νa, λa), and d is either KL or TV.

Proof. The proof is direct by observing that T ⋆ (ν; ε) ≥ T ⋆KL(ν) and T ⋆ (ν; ε) ≥ 1
εT

⋆
TV(ν).

Comparison with the non-private lower bound. T ⋆KL is the characteristic time in the non-
private lower bound [GK16], and we refer to Section 2.2 of [GK16] for a detailed discussion on
its properties. The sample complexity lower bound suggests the existence of two hardness regimes
depending on ε, T ⋆KL and T ⋆TV. (1) Low-privacy regime: When ε > T ⋆TV(ν)/(T ⋆KL(ν)), the lower
bound retrieves the non-private lower bound, i.e. T ⋆KL(ν), and thus, privacy can be achieved
for free. (2) High-privacy regime: When ε < T ⋆TV(ν)/T ⋆KL(ν), the lower bound becomes T ⋆TV/ε

and ε-View DP δ-BAI requires more samples than non-private ones.
In the following proposition, we characterise T ⋆TV for Bernoulli instances.

Proposition 4.26 (TV characteristic time for Bernoulli instances). Let ν be a bandit instance,
i.e. such that νa = Bernoulli(µa) andµ1 > µ2 ≥ · · · ≥ µK . Let∆a ≜ µ1−µa and∆min ≜ mina̸=1 ∆a.
We have that

T ⋆TV(ν) = 1
∆min

+
K∑
a=2

1
∆a

, and 1
∆min

≤ T ⋆TV(ν) ≤ K

∆min
.
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Proof sketch. The proof is direct by solving the optimisation problem defining T ⋆TV and using
that TV (Bernoulli(p) ∥ Bernoulli(q)) = |p− q|. We refer to Appendix B.6 for details.
Comment. The aforementioned bound on TV characteristic time for Bernoulli instances is ε-View
DP parallel of the KL-characteristic time bound T ⋆KL(ν) ≤

∑K
a=1 ∆−2

a [GK16]. Using Pinsker’s
inequality, one can connect the TV and KL characteristic times by

T ⋆TV(ν) ≥
√

2T ⋆KL(ν).

4.5 Discussion

We provided regret and sample complexity lower bounds for bandits under DP. All the lower
bounds are retrieved by plugging a newupper bound on the KL betweenmarginals, quantifying
the extra indistinguishability due to privacy. We use coupling techniques to show that the
sharpest upper bound on the KL between the marginal is retrieved by solving an optimal
transport problem. Then, all the bandit lower bounds show that the hardness of bandits with
privacy has two regimes. A low privacy regime where the hardness of bandits with privacy
reduces to the hardness of non-private bandits. And a high privacy regime, where privacy has
an extra cost. The change between the regimes happens at ε ≈ ∆, where ∆ is the order of the
mean gap.

In our proposed lower bounds, the Total Variation is the notion that controls the extra
hardness of privacy in the high privacy regime, i.e. TVinf for regret and T ⋆TV for FC-BAI. The
high-level intuition for the total variation being the quantity that characterises the problem
is that Pure DP can be seen as a multiplicative stability constraint of eε when one data point
changes. With group privacy, if two datasets differ in dham points, then one incurs a factor eεdHam .
Now, by sampling n i.i.d points from a distribution P and n i.i.d points from a distribution
Q, these two dataset could be though as being nTV (P ∥ Q) neighboors in expectation, or∑n
t=1 TV (Pi ∥ Qi) for product distributions. This is a simple way to interpret the results of

Theorem 4.8. In brief, the total variation naturally appears in lower bounds since it is the quantity
that characterises the hardness of the optimal transport problem minimising the hamming distance,
i.e. TV (P,Q) = inf(X,Y )∼(P,Q)E(1X ̸=Y ). On the other hand, other f-divergences may also
characterize the hardness of the problem. An interesting open problem is to provide regret and
sample complexity lower bounds for (ε, δ)-DP, where group privacy and coupling techniques
are not tight.

99





Chapter 5

Algorithm Design

In this chapter, we provide regret and sample complexity upper bounds thatmatch the lower
bounds of Chapter 4. First, by considering awarm-up setting of finite-armed banditswith ε-pure
View DP, we explain the main intuitions for a generic recipe to make bandit algorithms achieve
DP near optimally: the algorithms run in phases, and the private statistics are computed on non-
overlapping-sequences to add less Laplace/Gaussian noise. We instantiate this generic wrapper
for regret minimisation algorithms under different settings and for best-arm identification
algorithms. For each algorithm, we recall the specific setting, make explicit the details of
the algorithm, and provide privacy and utility guarantees. We conclude the chapter with an
experimental analysis of the different private algorithms, confirming the theoretical findings.
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5.1 Introduction

The following sections introduce the main ingredients for designing near-optimal private
bandit algorithms. However, before, we recall in this section the main two algorithms that were
studied before in the private bandit literature: DP-UCB [MT15, TD16] and DP-SE [SS19].

DP-UCB [MT15, TD16] was the first DP version of the UCB algorithm. DP-UCB uses the
tree-based mechanism [DNPR10b, CSS11] to compute privately the sum of rewards. For each
arm, the tree mechanism maintains a binary tree of depth log(T ) over the T streaming reward
observations. At each step t, DP-UCB only updates the binary tree of the arm pulled at, then
yields the private sum of the first Nat(t) rewards from the root-to-the-leaf path in the arm-
dependent binary tree. As a result, the noise added to the sum of rewards isO (log(T )2.5/ε

) for
Bernoulli/rewards in [0, 1]. To apply the optimism in the face of uncertainty, DP-UCB builds a
high probability upper bound on the means using the noisy sum of rewards to get the following
private UCB index

DP-UCBε
a(t− 1, δ) ≜ µ̂a(t− 1) +

√
2 log(2/δ)
Na(t− 1) + Ya(t− 1)

Na(t− 1) +
√

8 log(T )3/2 log(2/δ)
εNa(t− 1) ,

where Ya(t− 1) is the noise added from the tree based mechanism, which correspnds to the
sum of at most log(T ) i.i.d Laplace noise terms, each of scale Lap

(
log(T )
ε

)
. DP-UCB achieves

ε-View DP for rewards in [0, 1] (i.e. 1/2-subgaussian bandits) 1. Analysing the regret of this
index in the UCB meta-algorithm shows that DP-UCB yields a regret upper bound of

RegT (DP-UCBε, ν) ≤ 8
√

8K log2.5(T )
ε

+ 4
K∑
a=1

∆a +
∑

a:∆a>0

4 log(T )
∆a

On the other hand, for Bernoulli bandits, the additional regret lower bound due to privacy is
Ω
(
K log(T )

ε

)
, as discussed in Section 4.3. This means that DP-UCB has an extra multiplicative

log1.5(T ) regret compared to the lower bound.
DP-SE [SS19] was the first DP bandit algorithm to eliminate the additional multiplica-

tive factor log(T )1.5 in the regret. DP-SE is a DP version of the Successive Elimination algo-
rithm [EDMM02]. DP-SE runs in episodes: at each episode, the algorithm explores a set of
active arms uniformly. At the end of each episode, DP-SE eliminates provably sub-optimal
arms. Results from the concentration of the mean are used to determine the sub-optimal arms
to eliminate. Also, to use better concentration inequalities, the algorithm runs in independent
episodes: at the end of an episode, DP-SE only uses the samples collected at the current episode
to compute the empirical means which decides the arms to eliminate. If we suppose that the
rewards are in [0, 1], it is enough to add a noise of Lap

(
1
ε

)
to each sum of arm rewards to make

1It is possible to show that DP-UCB satistifes the stronger notion of ε-Interactive DP.
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the continual release of all the empirical means achieve ε-DP thanks to parallel composition
(Lemma 2.10). Due to the addition of the Laplace noise to the sum of rewards, each arm is
explored longer. The additional exploration at each phase can be derived from the concen-
tration of Laplace random variables, and is responsible for the additional O (log(T )/ε) in the
regret, which matches the regret lower bound. However, DP-SE has two main drawbacks. The
algorithm is not anytime since the DP-SE needs to know the T in advance to decide the length
of each episode. Also, in general, Successive Elimination algorithms have the drawback of not
matching the problem-dependent regret lower bound exactly and committing to one arm when
all the other arms have been eliminated.

A careful analysis of DP-SE suggests that what made the algorithm get rid of the extra
log(T )1.5 in the regret was the fact that the algorithm runs in independent episodes: the private
means were only computed using the samples collected from that episode. In the next section,
we detect these ingredients and generalise them to propose a general framework to make bandit algorithms
achieve privacy near-optimally.

5.2 A Generic Wrapper: Warm-up Setting

This section focuses on the finite-armed stochastic bandit problem under ε-pure View DP and
Bernoulli rewards, i.e. rt ∈ {0, 1}. This section aims to present the intuitions that lead to a
generic blueprint for designing private bandit algorithms. We later generalise this blueprint
for bandits under different settings and notions of DP. As discussed in Section 2.2.5, the UCB
meta-algorithm (Algorithm 2) is the state-of-the-art optimal regret algorithm for finite-armed
bandits. Thus, it is interesting to explore whether designing a private version of UCB that
achieves the lower bound for private regret is possible.

The main challenge to making UCB private is the continual private release of the sum
of rewards, or equivalently, the empirical means. UCB computes and stores a table of KT
empirical means, i.e. T means for each arm. Using Simple Composition (Proposition 2.9),
a first attempt to make UCB achieve ε-DP is to make each computed mean ε

KT -DP. Since
rewards are in {0, 1}, it is then enough to add noise Lap

(
KT
εNa(t)

)
to the empirical mean at step t,

i.e. µ̃a(t−1) ≜ µ̂a(t−1)+Lap
(

KT
εNa(t)

)
. Building a high probability upper bound using µ̃a(t−1)

gives the following UCB index µ̃a(t − 1) +
√

2 log(2/δ)
Na(t−1) + KT log(2/δ)

εNa(t−1) . Adapting the analysis of
UCB for this index shows that this private version of UCB yields linear regret.

A second attempt to design a private version is to consider the counting problem’s structure
and thus use the binary tree mechanism [DNPR10b, CSS11] to privately estimate the empirical
means. This reduces exactly to the DP-UCB algorithm, presented in the Introduction section.
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Table 5.1 – A comparison of ε-View DP algorithms for bandits.

Algorithm Regret # Private Means Anytime Forgetfulness

DP-UCB [MT15, TD16]; O
(
K log(T )2.5

ε +
∑
a̸=a∗

log(T )
∆a

)
T Yes No

DP-SE [SS19] O
(
K log(T )

ε +
∑
a̸=a∗

log(T )
∆a

)
O(log(T )) No Yes

AdaP-UCB O
(∑

a̸=a∗
∆a log(T )

min(∆2
a, ε∆a)

)
O(log(T )) Yes Yes

AdaP-KLUCB O
(∑

a̸=a∗
∆a log(T )

min(d(µa,µ∗), ε∆a)

)
O(log(T )) Yes Yes

As explained before, DP-UCB han an extra multiplicative log(T )1.5 compared to the lower
bound. Is it possible to provide a private version of UCB that removes the extra log(T )1.5 term?

Going back to DP-SE, it seems that an important ingredient in designing the algorithm is
that the private means were computed on non-overlapping sequences of rewards, i.e. DP-SE
runs in independent episodes. Thus, using the parallel composition lemma (Lemma 2.10), it
is enough for each computed mean to be ε-DP for the whole algorithm to be ε-DP. This is in
contrast to the first attempts that need eachmean to be ε/(KT )-DP using simple composition, or
the sum of log(T ) Laplace noise each of scale log(T )

ε for DP-UCB. The main observation to make
UCB achieve privacy near optimally is that UCB also does not need to calculate the empirical
mean at each step using all the rewards observed till that step. Specifically, it is possible
to provide an episodic version of UCB, where the means are computed on non-overlapping
sequences of rewards. We present the episodic version of UCB in algorithm 7 and an illustration
of its execution in the following example.

Algorithm 7 An episodic version of UCB
1: Input: K number of arms, optimism parameter β, UCB indexes
2: Initialisation: Choose each arm once and let t = K
3: for ℓ = 1, 2, . . . do
4: Let tℓ = t+ 1
5: Compute aℓ = argmaxa∈[K] UCBa(tℓ − 1, β)
6: Choose arm aℓ until round t such that Naℓ

(t) = 2Naℓ
(tℓ − 1)

7: end for

Example 5.1 (Illustration of Algortihm 7.). To clarify the schematic, we illustrate a few steps of
executing Algorithm 7 in Figure 5.1 for a bandit with onlyK = 2 arms. After playing each arm once,
the first episode begins at t1. We focus on step t4 = 7 to observe the different ingredients. The index of
Arm 1 at t4 uses the private empirical mean r4+r5

2 + Lap
(

1
2ε

)
to build a high probability upper bound

of the real mean µ1 with confidence t−β4 . The index of Arm 2 uses r6 + Lap
(

1
ε

)
. If we assume that

the index of Arm 1 is higher at t4, Arm 1 is played for an entire episode from t4 until t5 − 1. The last
time Arm 1 was played, the episode’s length was 2. Thus, following t4, the episode’s length is doubled to
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Step t

Arm 1

Arm 2

r1

r2

t1

r3

t2

r4 r5

t3

r6

t4

r7 r8 r9 r10

t5

r11 r12

Figure 5.1 – An illustration of adaptive episodes with per-arm doubling.

4. Again, at t5, only the rewards r7, r8, r9, r10 are used to compute the index of Arm 1, and only r6 is
used to compute the index of Arm 2. This ensures that the indexes are computed on non-overlapping
sequences of rewards.

Our private version of UCB relies on three ingredients: arm-dependent doubling, forgetting,
and adding calibrated noise. First, the algorithm runs in episodes. The same arm is played for a
whole episode, and double the number of times it was last played. Second, at the beginning
of a new episode, the index of arm a is computed only using samples from the last episode
where arm a was played, i.e. the last active episode of arm a, while forgetting all the other
samples. In a given episode, the arm with the highest index is played for all the steps. Due
to these two ingredients, namely doubling and forgetting, each empirical mean is computed on
non-overlapping sequences of rewards only needs to be ε-DP for the algorithm to be ε-View
DP, avoiding the need of composition theorems.

Theorem 5.2. If Algorithm 7 is instantiated with indexes that only use the private empirical mean of
the rewards collected in the last active episode of arm a, then Algorithm 7 satisfies ε-View DP. 2

Proof. The main idea is that a change in reward will only affect the empirical mean calculated
in one episode, which is made private using the Laplace Mechanism and Lemma 2.10. Since
the actions are only calculated using the private empirical means, the algorithm is ε-View DP
following the post-processing lemma. We refer to Appendix C.1.2 for a complete proof.

To concretise an algorithm, we only need to explicitly explain how the indexes are calculated.
Let µ̂ℓa be the empirical mean reward of arm a computed using the samples collected between
tψa(ℓ) and tψa(ℓ)+1 − 1. For an episode ℓ, ψa(ℓ) = ℓa is the last active episode of arm a. In
Example 5.1, ψ1(4) = 2 and ψ2(4) = 3. Thus, due to the doubling of episode length, the
empirical mean corresponds to 1

2Na(tℓ− 1) samples of arm a. Since the rewards are in [0, 1], the
private empirical mean as µ̃ℓa,ε = µ̂ℓa + Lap

(
2

εNa(tℓ−1)

)
satisfies ε-DP (Theorem 2.13). Now, we

want to ensure that Iεa(tℓ − 1, β), computed using only µ̃ℓa,ε, is a high-probability upper bound
2In the following section, we show that this same algorithm achieves even the stronger notion of Interactive DP.
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on the true mean. Here, we introduce two specific indexes that satisfy this criterion.

For AdaP-UCB: UCBε
a(tℓ − 1, β) = µ̃ℓa,ε +

√
β log(tℓ)

2× 1
2Na(tℓ − 1)

+ β log(tℓ)
ε× 1

2Na(tℓ − 1)
(5.1)

For AdaP-KLUCB: UCBε
a(tℓ − 1, β) = max

{
q ∈ [0, 1] : d

(
µ̆ℓ,βa,ε, q

)
≤ β log(tℓ)

1
2Na(tℓ − 1)

}
(5.2)

where µ̆ℓ,βa,ε ≜ Clip0,1

(
µ̃ℓa,ε + β log(tℓ)

ε× 1
2Na(tℓ−1)

)
≜ min{max{0, µ̃ℓa,ε + β log(tℓ)

ε× 1
2Na(tℓ−1)}, 1} is the private

empirical mean clipped between zero and one.

Theorem 5.3 (Regret Analysis of AdaP-UCB). For rewards in [0, 1], AdaP-UCB satisfies ε-global
DP, and for β > 3, it yields a regret

RegT (AdaP-UCB, ν) ≤
∑

a:∆a>0

( 16β
min{∆a, ε}

log(T ) + 3β
β − 3

)
.

Theorem 5.4 (Regret Analysis of AdaP-KLUCB). When the rewards are sampled from Bernoulli
distributions, AdaP-KLUCB satisfies ε-global DP, and for β > 3 and constants C1(β), C2 > 0, it yields
a regret

RegT (AdaP-KLUCB, ν) ≤
∑

a:∆a>0

(
C1(β)∆a

min{dinf(µa, µ∗), C2ε∆a}
log(T ) + 3β

β − 3

)
.

In appendix C.2.4, we also derive problem-independent or minimax regret upper bounds for
AdaP-UCB and AdaP-KLUCB, which are of order O

(√
KT log(T ) + K log(T )

ε

)
.

Proof Sketch. Our two algorithms AdaP-UCB and AdaP-KLUCB have three main differences
compared to the vanilla UCB algorithms of Section 2.3. (a) They run in arm-dependent
doubling. We show that the effect of this change is a multiplicative ×2 in the regret compared
to Vanilla UCB. The reason is that if the vanilla UCB would have played the sub-optimal arm
a for na step, the arm-dependent doubling version will play that sub-optimal arm at most
2× na since the algorithm cannot stop in the middle of a phase. (b) They forget samples. At
each phase, the algorithm only uses samples from the last active phase. This means that the
algorithm "throws" half of the samples. This has an additional multiplicative ×2 effect on
the regret. (c) They have new UCB indexes with new exploration bonuses. This is the step
where the effect of privacy intervenes. The bonus can be written as the sum of two terms. A
first non-private bonus, retrieved by concentration inequalities over the empirical mean. A
second private bonus, retrieved by concentration inequalities over the Laplace noise. Using
the same techniques as in the proof of Theorem 2.23, we define the "good" event that all the
means are well estimated within the noisy empirical means, which happens with probability
1− δ. Then, under this good event, our private versions of UCB stop sampling a sub-optimal
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arm a as soon as the confidence width is smaller than the mean gap. Specifically, for example
for AdaP-UCB, if ña is the number of times that AdaP-UCB samples a sub-optimal arm a, then
ña verifies that 2

√
2 log(2/δ)

na
+ 2 log(2/δ)

εña
≤ ∆a. Solving for ña and replacing δ = 1/T gives the

problem-dependent regret upper bound. Optimising for the worst-case instance retrieves the
gap-free upper bound. Another way of proving the gap-free bound is using the fact that the
regret is upper bounded by the sum of the confidence width. The sum of the non-private part
of the bonus gives the classic

√
T upper bound in the regret. The sum of the private part can

be dealt with similarly to the non-private part. Specifically, for example for AdaP-UCB, the
sum of the private bonus is approximately∑t

2 log(t)
εNat (t−1) . Again, using that Nat(t− 1) ≈ t, and∑

t
1
t ≈

∫
t

1
t dt = log(T ) gives an intuition on the additional log(T )/ε part in the private upper

bond. We provide a generic analysis of Algorithm 7 in Appendix C.2.2, and an instanciation
of the proof for AdaP-UCB and AdaP-KLUCB in Appendix C.2.3. We also provide a complete
proof for the gap-free regret upper bound in Appendix C.2.4.

The regret upper bound of Theorem 5.4 matches the problem-dependent regret lower
bound of Theorem 4.16, for Bernoulli bandits, up to constants. The minimax regret upper
bound matches the minimax regret lower bound of Theorem 4.15 up to logarithmic terms in
the horizon T . Also, the upper bounds reflect the same two privacy regimes observation from
the lower bounds i.e. in the low-privacy regime the regrets of AdaP-UCB and AdaP-KLUCB are
independent of ε, and in the high-privacy regime, they depend on ε and ∆a.
Generic Blueprint. Here, we detect the main steps to design a near-optimal private bandit
algorithm: (1) Characterise the main private quantity. This corresponds to the empirical mean
of rewards µ̂ for finite-armed bandits, or the least-square estimate θ̂ in linear bandits, (2) Design
an episodic version of the bandit algorithm that computes the main private quantity on non-
overlapping input sequences. This corresponds to the arm-dependent doubling trick for UCB.
(3) Add calibrated noise to the quantity of interest using Parallel Composition (Lemma 2.10).
This helps to add less noise. (4) Calibrate for the addition of the noise in your algorithm. This
corresponds to adapting the exploration bonus in UCB or exploring the arms more in DP-SE.
This is the step where the concentration results of the noise are used. (5) Quantify the effect
of the noise addition. For AdaP-UCB and AdaP-KLUCB, this corresponds to a multiplicative 4
in the non-private regret due to arm-dependent doubling and forgetting, and an additional
O (K log(T )/ε) private regret due to the additional privacy bonus.

5.3 Private Algorithms for Regret Minimisation

In this section, we instantiate the generic blueprint of Section 5.2 for three bandit settings under
ρ-Interactive DP: finite-armed bandits, linear bandits and contextual linear bandits.
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5.3.1 Finite-armed bandits

We revisit the finite-armed setting of Section 5.2 under ρ-Interactive zCDP. Let ν = (Pa : a ∈ [K])
be a bandit instance with K arms and means (µa)a∈[K]. The goal is to design a ρ-Interactive
zCDP policy π that maximises the cumulative reward, or minimises regret over a horizon T :

RegT (π, ν) ≜ Tµ⋆ − E
[
T∑
t=1

rt

]
=

K∑
a=1

∆aE [Na(T )] (5.3)

Here, µ⋆ ≜ maxa∈[K] µa is the mean of the optimal arm a⋆, ∆a ≜ µ⋆ − µa is the sub-optimality
gap of the arm a and Na(T ) ≜

∑T
t=1 1 (at = a) is the number of times the arm a is played till T ,

where the expectation is taken both on the randomness of the environment ν and the policy π.
We present AdaC-UCB, an extension of the generic algorithmic wrapper proposed in Sec-

tion 5.2 to ρ-Interactive zCDP. Again, AdaC-UCB relies on the three ingredients : arm-dependent
doubling, forgetting, and adding calibrated noise. The only difference is that AdaC-UCB adds
calibrated Gaussian noise to achieve zCDP (Theorem 2.14).

For AdaC-UCB, we use the following private index to select the arms (Line 6 of Algorithm 7)
as

Iρa(tℓ − 1, β) ≜ µ̂ℓa +N
(
0, σ2

a,ℓ,ρ

)
+Ba(tℓ − 1, β, ρ). (5.4)

Here, µ̂ℓa is the empirical mean of rewards collected in the last episode in which arm a was
played. The variance of the Gaussian noise is

σ2
a,ℓ,ρ ≜

1

2ρ×
(

1
2Na(tℓ − 1)

)2

and the exploration bonus Ba(tℓ − 1, β, ρ) is defined as

Ba(tℓ − 1, β, ρ) ≜

√√√√√√
 1

2× 1
2Na(tℓ − 1)

+ 1

ρ×
(

1
2Na(tℓ − 1)

)2

β log(tℓ).

The term in blue rectifies the non-private confidence bound of UCB for the added Gaussian
noise.

Theorem 5.5 (Privacy of AdaC-UCB). For rewards in [0, 1], AdaC-UCB satisfies ρ-Interactive zCDP.

Proof. The main intuition is that a change in one input in the table of rewards only affects the
view of the adversary at one episode, which is made ρ-zCDP using the Gaussian mechanism
and parallel composition (Lemma 2.10). In appendix C.1.2, we provide a generic proof of the
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Interactive DP guarantee for any algorithm which uses the generic blueprint of Section 5.2. The
proof of this theorem is a direct consequence, that we specify exactly in Appendix C.1.3.

Theorem 5.6 (Regret analysis of AdaC-UCB). For rewards in [0, 1] and β > 3, AdaC-UCB yields a
problem-dependent regret upper bound of

∑
a:∆a>0

(
8β
∆a

log(T ) + 8
√
β log(T )

ρ
+ 2β
β − 3

)
.

and a gap-free regret upper bound of

O
(√

KT log(T )
)

+O
(
K

√
log(T )
ρ

)
.

Proof Sketch. The proof shares the same steps as the proof of the upper bounds in Theorem 5.3
and Theorem 5.4. The only difference is a new "private bonus" part in the UCB index due
to the concentration of Gaussian noise, in contrast to the concentration of Laplace noise for
AdaP-UCB and AdaP-KLUCB. We present a generic analysis of Algorithm 7 in Appendix C.2.2,
and instanciate it for AdaC-UCB in Appendix C.2.6.

AdaC-UCB minimax regret upper bound matches the regret lower bound of Theorem 4.20
up to a√log(T ) term. Also, there is a multiplicative

√
K gap between the upper and lower

bounds.

Remark 5.7 (Extensions to (ε, δ)-Interactive DP and (α, ε)-Interactive RDP). The difference
comes from the different calibrations of the Gaussian Mechanism (Thm 2.14). Adapting the analysis
from ρ-zCDP reduces to changing the 1

2ρ factor to 2
ε2 log(1.25

δ ) for (ε, δ)-DP and to α
2ε for (α, ε)-RDP,

i.e. varying the constant b in Theorem 2.14.

5.3.2 Stochastic linear bandits

Here, we study ρ-Interactive zCDP for stochastic linear bandits with a finite number of arms.
We consider that a fixed set of actions A ⊂ Rd is available at each round, such that |A| = K.
The rewards are generated by a linear structural equation. Specifically, at step t, the observed
reward is rt ≜ ⟨θ⋆, at⟩+ ηt, where θ⋆ ∈ Rd is the unknown parameter, and ηt is a conditionally
1-subgaussian noise, i.e. E [exp (ληt) | a1, η1, . . . , at−1] ≤ exp

(
λ2/2

) almost surely for all λ ∈ R.
For any horizon T > 0, the regret of a policy π is

RegT (π,A, θ⋆) ≜ Eθ⋆

[
T∑
t=1

∆At

]
, (5.5)
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where suboptimality gap ∆a ≜ maxa′∈A ⟨a′ − a, θ⋆⟩. Eθ⋆ [·] is the expectation with respect to
the measure of outcomes induced by the interaction of π and the linear bandit environment
(A, θ⋆).

We propose AdaC-GOPE (Algorithm 8), which is a ρ-Interactive zCDP extension of the
G-Optimal design-based Phased Elimination (GOPE) algorithm, i.e.Algorithm 12 in [LS20].
AdaC-GOPE is a phased elimination algorithm. At the end of each episode ℓ, AdaC-GOPE elimi-
nates the arms that are likely to be sub-optimal, i.e. the ones with an empirical gap exceeding the
current threshold (βℓ = 2−ℓ). The elimination criterion only depends on the samples collected
in the current episode. In addition, the actions to be played during an episode are chosen
based on the solution of an optimal design problem (Equation (5.7)) that helps to exploit the
structure of arms and to minimise the number of samples needed to eliminate a sub-optimal
arm.

In particular, if πℓ is the G-optimal solution (Definition 5.8) for Aℓ at phase ℓ, then each
action a ∈ Aℓ is played Tℓ(a) ≜ ⌈cℓπℓ(a)⌉ times, where for δK,ℓ ≜ δ

Kℓ(ℓ+1) and f(d, δ) ≜

d+ 2
√
d log

(
2
δ

)
+ 2 log

(
2
δ

)
,

cℓ ≜
8d
β2
ℓ

log
(

4
δK,ℓ

)
+ 2d
βℓ

√
2
ρ
f (d, δK,ℓ) (5.6)

The term in blue is the additional length of the episode to compensate for the noisy statistics used
to ensure privacy. The samples collected in the current episode do not influence which actions
are played in it. This decoupling allows (a) the use of the tighter confidence bounds available
in the fixed design setting (Appendix C.3.1) and (b) avoiding privacy composition theorems
and using, therefore, Lemma 2.10 to make the algorithm private. Note that AdaC-GOPE can be
seen as a generalisation of DP-SE [SS19] to the linear bandit setting.

Here, we present the definitions of optimal design and a classic equivalence result required
to state Algorithm 8.

Definition 5.8 (Optimal design [LF23]). Let A ⊂ Rd and π : A → [0, 1] be a distribution on A so
that∑a∈A π(a) = 1. Let V (π) ∈ Rd×d and f(π), g(π) ∈ R be given by

V (π) ≜
∑
a∈A

π(a)aaT , f(π) ≜ log detV (π), g(π) ≜ max
a∈A
∥a∥V (π)−1 .

• π is called a design.

• The set Supp (π) ≜ {a ∈ π : π(a) ̸= 0} is called the core set of A.

• A design that maximises f is called a D-optimal design.

• A design that minimises g is called a G-optimal design.
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5.3 Private Algorithms for Regret Minimisation

Theorem 5.9 (Kiefer–Wolfowitz theorem [KW60]). Assume thatA is compact and span(A) = Rd.
The following are equivalent

• π⋆ is a minimiser of g,

• π⋆ is a maximiser of f , and

• g(π⋆) = d.
Also, there exists a minimiser π⋆ of g such that |Supp (π⋆)| ≤ d(d+1)

2 .

Algorithm 8 AdaC-GOPE

1: Input: Privacy budget ρ, A ⊂ Rd and δ
2: Output: Actions satisfying ρ-Interactive zCDP
3: Initialisation: Set ℓ = 1, t1 = 1 and A1 = A
4: for ℓ = 1, 2, . . . do
5: βℓ ← 2−ℓ

6: Step 1: Find the G-optimal design πℓ for Aℓ:

max
π∈P(Aℓ)

|Supp(π)|≤d(d+1)/2

log detV (π). (5.7)

7: Step 2: Sℓ ← Supp (πℓ)
8: Choose each action a ∈ Sℓ for Tℓ(a) ≜ ⌈cℓπℓ(a)⌉ times where cℓ is defined by Eq (5.6).
9: Observe rewards {rt}tℓ+

∑
a
Tℓ(a)

t=tℓ
10: Tℓ ←

∑
a∈Sℓ

Tℓ(a) and tℓ+1 ← tℓ + Tℓ + 1
11: Step 3: Estimate the parameter as

θ̂ℓ = V −1
ℓ

tℓ+1−1∑
t=tℓ

atrt with Vℓ =
∑
a∈Sℓ

Tℓ(a)aa⊤

12: Step 4: Make the parameter estimate private

θ̃ℓ = θ̂ℓ + V
− 1

2
ℓ Nℓ,

where Nℓ ∼ N
(
0, 2d

ρcℓ
Id
)
.

13: Step 5: Eliminate low rewarding arms:

Aℓ+1 =
{
a ∈ Aℓ : max

b∈Aℓ

〈
θ̃ℓ, b− a

〉
≤ 2βℓ

}
.

14: end for

Now, we state some classic assumptions that bound the quantities of interest.

Assumption 5.10 (Boundedness). We assume that:
(1) actions are bounded: ∀a ∈ A, ∥a∥2 ≤ 1 in linear bandits, and ∀t ∈ [1, T ], ∀a ∈ At, ∥a∥2 ≤ 1 in
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contextual bandits
(2) rewards are bounded: |rt| ≤ 1, and
(3) the unknown parameter is bounded: ∥θ⋆∥2 ≤ 1.

Theorem5.11 (Privacy ofAdaC-GOPE). UnderAssumption 5.10,AdaC-GOPE satisfies ρ-Interactive
zCDP.

Proof Sketch. AdaC-GOPE follows the blueprint of Section 5.2: the algorithm runs in independent
episodes and each θℓ is computed on non-overlapping sequence of rewards. The generic privacy
proof is presented in Appendix C.1.2, and is instantiated for AdaC-GOPE in Appendix C.1.3.

Theorem 5.12 (Regret Analysis of AdaC-GOPE). Under Assumption 5.10 and for δ ∈ (0, 1), with
probability at least 1− δ, the regret RT of AdaC-GOPE is upper-bounded by

A

√
dT log

(
K log(T )

δ

)
+ Bd
√
ρ

√
log

(
K log(T )

δ

)
log(T ),

where A and B are universal constants. If δ = 1
T , then

E(RT ) ≤ O
(√

dT log(KT )
)

+O
(
d
√
ρ

(log(KT ))
3
2

)
.

Proof Sketch. Under the “good event" that all the private parameters θ̃ℓ are well estimated, we
show that the optimal action never gets eliminated. But the sub-optimal arms get eliminated
as soon as the elimination threshold βℓ is smaller than their sub-optimality gaps. The regret
upper bound follows directly. We refer to Appendix C.3.2 for complete proof.

We discuss the implications of our regret upper bound:
1. Achieving ρ-Interactive zCDP ‘almost for free’: Theorem 5.12 shows that the price of ρ-

Interactive zCDP is the additive term Õ
(
d√
ρ

)
3. For a fixed RDP budget ρ and as T →∞, the

regret due to privacy becomes negligible in comparison with the privacy-oblivious term in
regret, i.e. Õ

(√
dT
)
.

2. Optimality of AdaC-GOPE. In Theorem 4.21, we prove a Ω( d√
ρ) minimax private regret

lower bound that matches the regret upper bound of AdaC-GOPE up to an extra (logKT )
3
2

factor. IfK is exponential in d, then there is a mismatch between the regret upper and lower
bounds, in their dependence on the dimension d. This gap could be improved with a better
mechanism to make θ̂ private (Step 4 in Algorithm 2). In Appendix C.3.3, we discuss in detail
how different ways of adding noise at Step 4 impact the dependence of the regret upper bound
on d.

3Õ hides poly-logarithmic factors in the horizon T .
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5.3 Private Algorithms for Regret Minimisation

Related Algorithms and Bounds. Concurrently to ourwork, both [HGFD22] and [LZJ22] study
private variants of the GOPE algorithm for pure ε-View DP and (ε, δ)-View DP, respectively.
However, both algorithms differ in how they make private the estimated parameter θ̂ compared
to AdaC-GOPE. Both [HGFD22] and [LZJ22] add noise to each sum of rewards ∑tℓ+1−1

t=tℓ rt

(Line 11, Alg. 8), whereas AdaC-GOPE add noise in θ̂l (Line 12, Alg. 8). As a result, though
AdaC-GOPE achieves linear dependence on the dimension d as suggested by the lower bound,
others do not (d2 for [HGFD22] and d3/2 for [LZJ22]).

In Appendix C.3.3, we analyse in detail the impact of adding noise at different steps of
GOPE, both theoretically and experimentally.

5.3.3 Contextual linear bandits

Now, we consider an even more general setting of bandits, where the feasible arms at each step
may vary and depend on some contextual information.

Contextual bandits generalise the finite-armed bandits by allowing the learner to use side
information. At each step t, the policy observes a context ct ∈ C, which might be random or
not. Having observed the context, the policy chooses an action at ∈ [K] and observes a reward
rt. For the linear contextual bandits, the reward rt depends on both the arm at and the context
ct in terms of a linear structural equation:

rt = ⟨θ⋆, ψ(at, ct)⟩+ ηt. (5.8)

Here, ψ : [K] × C → Rd is the feature map, θ⋆ ∈ Rd is the unknown parameter, and ηt is the
noise, which we assume to be conditionally 1-subgaussian.

Under Equation (5.8), all that matters is the feature vector that results in choosing a given
action rather than the identity of the action itself. This justifies studying a reduced model: in
round t, the policy is served with the decision set At ⊂ Rd, from which it chooses an action
at ∈ At and receives a reward

rt = ⟨θ⋆, at⟩+ ηt,

where ηt is 1-subgaussian given A1, a1, R1, . . . ,At−1, at−1, Rt−1,At, and At.
Different choices of At lead to different settings. If At = {ψ(ct, a) : a ∈ [K]}, then we have

a contextual linear bandit. On the other hand, if At = {e1, . . . , ed}, where (ei)i are the unit
vectors of Rd then the resulting bandit problem reduces to the stochastic finite-armed bandit.

The goal is to design a ρ-Interactive zCDP policy that minimises the regret, which is defined
as

R̂T ≜
T∑
t=1

max
a∈At

⟨θ⋆, a− at⟩ , RT ≜ E[R̂T ].
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Remark 5.13. We suppose that ct is public information, and thus At is public too. Rewards are the
only private statistics to protect. The main difference compared to Section 5.3.2 is that the set of actions
At is allowed to change at each time-step t. Thus, the action-elimination-based strategies, as used in
Section 5.3.2, are not useful.

We propose AdaC-OFUL, a ρ-Interactive zCDP extension of the Rarely Switching OFUL
algorithm [AYPS11]. The OFUL algorithm applies the "optimism in the face of uncertainty
principle" to the contextual linear bandit setting, which is to act in each round as if the environ-
ment is as nice as plausibly possible. The Rarely Switching OFUL Algorithm (RS-OFUL) can
be seen as an "adaptively" phased version of the OFUL algorithm. RS-OFUL runs in episodes.
At the beginning of each episode, the least square estimate and the confidence ellipsoid are
updated. For the whole episode, the same estimate and confidence ellipsoid are used to choose
the optimistic action. The condition to update the estimates (Line 6 of Algorithm 9) is to
accumulate enough "useful information" in terms of the design matrix, which makes an up-
date worth enough. RS-OFUL only updates the estimates log(T ) times, while OFUL updates
the estimates at each time step. RS-OFUL achieves similar regret as OFUL, up to a √1 + C

multiplicative constant.
AdaC-OFUL (Algorithm 9) extends RS-OFUL by privately estimating the least-square esti-

mate (Line 8 of Algorithm 9) while adapting the confidence ellipsoid accordingly. Specifically,
we set β̃t = βt + γt√

t
, where βt = O

(√
d log(t)

)
and γt = O

(√
1
ρd log(t)

)
. Further details are

in Appendix C.4.1.

Algorithm 9 AdaC-OFUL
1: Input: Privacy budget ρ, Horizon T , Regulariser λ, Dimension d, Doubling Schedule C
2: Output: A sequence of T -actions satisfying ρ-Interactive zCDP
3: Initialisation: V0 = λId, θ̃ = 0d, τ = 0, ℓ = 1
4: for t = 1, 2, . . . do
5: Observe At
6: if det(Vt−1) > (1 + C) det(Vτ ) then
7: Sample Yℓ ∼ N (0, 2

ρId)
8: Compute θ̃t−1 = (Vt−1)−1(

∑t−1
s=1 asrs +

∑ℓ
m=1 Ym)

9: ℓ← ℓ+ 1 and τ ← t− 1
10: end if
11: Compute at = argmaxa∈At

〈
θ̃τ , a

〉
+ β̃τ∥a∥(Vτ )−1

12: Play arm at, Observe reward rt
13: Vt ← Vt−1 + ata

T
t

14: end for

Theorem 5.14 (Privacy ofAdaC-OFUL). Under Assumption 5.10, AdaC-OFUL satisfies ρ-Interactive
zCDP.
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5.3 Private Algorithms for Regret Minimisation

Proof Sketch. AdaC-OFUL follows the blueprint of Section 5.2: the algorithm runs in independent
adaptive episodes. Also, each θ̃t−1 can be retrieved by summing over quantities computed
on non-overlapping sequences of rewards. The generic privacy proof is presented in Ap-
pendix C.1.2, and is instantiated for AdaC-OFUL in Appendix C.1.3.

To analyse the regret of AdaC-OFUL, we impose a stochastic assumption on the context
generation. Specifically, we adopt the same assumption that is often used in on-policy [GLZ14,
LRJ+22] and off-policy [ZDLB21, JLB22] linear contextual bandits.

Assumption 5.15 (Stochastic Contexts). At each step t, the context set At ≜ {at1, . . . , atkt
} is

generated i.i.d conditionally on kt and the history Ht ≜ {A1, a1, X1, . . . ,At−1, at−1, Xt−1,At, at})
from a random process A such that 1. ∥A∥2 = 1

2. E[AAT ] is full rank, with minimum eigenvalue λ0 > 0

3. ∀z ∈ Rd, ∥z∥2 = 1, the random variable (zTA)2 is conditionally subgaussian, with variance

ν2
t ≜ V

[
(zTA)2 | kt, Ht

]
≤ λ2

0
8 log(4kt)

This additional assumption helps control the minimum eigenvalue of the design matrix
Vt ≜

∑t
s=1 asa

T
s .

Lemma 5.16 (Lemma 2, Equation (6) of [GLZ14]). Let, at each round, At = {at1, . . . , atkt
} be

generated i.i.d (conditioned on kt and the history Ht) from a random process A such that
• ∥A∥ = 1

• E[AAT ] is full rank, with minimum eigenvalue λ0 > 0

• ∀z ∈ Rd, ∥z∥ = 1, the random variable (zTA)2 is conditionally subgaussian, with variance

ν2
t = V

[
(zTA)2 | kt, Ht

]
≤ λ2

0
8 log(4kt)

Then

P
(
∃t ∈ N : λmin

(
t∑

s=1
AsA

T
s

)
≤ λ0t

4 − 8 log
(
t+ 3
δ/d

)
− 2

√
t log

(
t+ 3
δ/d

))
≤ δ

Using Lemma 5.16 on the minimum eigenvalue, we quantify more precisely the effect of
the added noise due to ρ-Interactive zCDP and derive tighter confidence bounds.
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Theorem 5.17 (Regret Analysis of AdaC-OFUL). Under Assumptions 5.10 and 5.15, and for δ ∈
(0, 1], with probability at least 1− δ, the regret RT of AdaC-OFUL is upper bounded by

RT ≤ O
(
d log(T )

√
T
)

+O
(
d2
√
ρ

log(T )2
)

Proof Sketch. The main challenge in the regret analysis is to design tight ellipsoid confidence sets
around the private estimate θ̃t, since the regret can be shown to be the sum of the confidence
widths. To design the non-private part of the ellipsoid confidence sets, we rely on the self-
normalised bound for vector-valued martingales theorem of [AYPS11]. For the private part,
we rely on the assumption of stochastic contexts controlling λmin(Gt) and the concentration of
χ2 distribution to control the introduced Gaussian noise. The rest of the proof is adapted from
the analysis of RS-OFUL [AYPS11]. We also show that the number of episodes, i.e. updates of
the estimated parameters, is in O(log(T )). We refer to Appendix C.4.2 for the complete proof.

We discuss the implications of our regret upper bound:
1. Achieving ρ-Interactive zCDP ‘almost for free’: The upper bound of Theorem 5.17 shows

that the price of ρ-Interactive zCDP for linear contextual bandits is the additive term Õ
(
d2
√
ρ

)
.

For a fixed budget ρ and as T → ∞, the regret due to zCDP turns negligible in comparison
with the privacy-oblivious regret term of Õ

(
d
√
T
)
.

2. Adapting AdaC-OFUL for private contexts: To make AdaC-OFUL achieve Joint-DP [SS18],
the estimate θ̃ at line 8 should be made private with respect to both rewards and context. A
straightforward way to do so is by estimating the design matrix Vt privately, e.g. as it is done
in [SS18]. A first regret analysis of this adaptation shows that the price of privacy in the regret
will become not negligible, i.e. the regret is O

(√
T +

√
T/ρ

)
. This shows that the bottleneck in

the problem is the private estimation of the design matrix.
3. Connecting Related Settings. [NR18] proposes LinPriv, which is an ε-global DP extension

of OFUL. The context is assumed to be public but adversely chosen. Theorem 5 in [NR18]
states that the regret of LinPriv is Õ

(
d
√
T + 1

εKd log T
)
. We revisit their regret analysis and

show that the bound should be Õ
(
d
√
T + 1

εKd
√
T
)
instead. Refer to Appendix C.4.3 for

details. Also, [SS18] proposes an (ε, δ)-Joint DP algorithm for private and adversarial contexts.
The algorithm is based on OFUL and privately estimates θ̂t at each step using the tree-based
mechanism [DNPR10b, CSS11]. However, this algorithm has an additional regret of 1

ε

√
T due

to privacy.
Open Problem. It is still an open problemwhether it is possible to design a private algorithm for

linear contextual bandits with private and/or adversarially chosen contexts, such that the additional
regret due to privacy in O(log(T )). We discuss this further in Chapter 9.
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5.4 Private Algorithms for Best-Arm Identification

Table 5.2 – Regret bounds for bandits with ρ-Interactive zCDP.
Bandit Setting Regret Upper Bound Regret Lower Bound

Finite-armed bandits O
(√

KT log(T )
)

+O
(
K√
ρ

√
log(T )

)
(Thm 5.6) Ω

(
max

(√
KT,

√
K
ρ

))
(Thm 4.20)

Linear bandits O
(√

dT log(KT )
)

+O
(
d√
ρ log

3
2 (KT )

)
(Thm 5.12) Ω

(
max

(
d
√
T , d√

ρ

))
(Thm 4.21)

Linear Contextual bandits O
(
d log(T )

√
T
)

+O
(
d2
√
ρ log(T )2

)
(Thm 5.17)

5.4 Private Algorithms for Best-Arm Identification

Following the ε-DP sample complexity lower bounds of Section 4.4, we aim to design an
efficient ε-Interactive DP FC-BAI policy that simultaneously achieves the lower bound near-
optimally and is computationally efficient. Due to the superior empirical performance and
computational efficiency of Top Two algorithms (Algorithm 3), we design a DP variant of Top
Two algorithms, which follows the generic blueprint of Section 5.2. First, we present AdaP-TT,
which directly applies the generic recipe of Section 5.2 to the Top Two Algorithm. Then, we
improve AdaP-TT by adapting the transportation costs to the private lower bounds. We call this
algorithm AdaP-TT⋆. We show that AdaP-TT⋆ achieves better sample complexity and matches
the lower bound up to constants.

5.4.1 Adapting the generic wrapper for the Top Two algorithm

We instantiate the generic wrapper presented in Section 5.2 to the Top Two Algorithm (Algo-
rithm 3). We refer to Section 2.2.9 for a general presentation of the Top Two Algorithm.

In (meta-) Algorithm 10, we present in-depth an adaptation of our private generic wrapper
to the Top Two. Algorithm 10 is an FC-BAI strategy with
(a) The Empirical Best (EB) recommendation rule: Algorithm 10 recommends the arm

with the highest (private) empirical mean, i.e. Line 14 in Algorithm 10.

(b) The Generalised Likelihood Ratio (GLR) stopping rule: Algorithm 10 decides to stop
when the GLR stopping rule at Line 12 is met. This GLR stopping rule is decided using
the transportation costs (Wa,b)(a,b)∈[K]2 and thresholds (cεa,b)(a,b)∈[K]2 specified later.

(c) The Top Two sampling rule: Algorithm 10 is an instance of TTUCB [JDB+22], since it
uses the following ingredients
1. A UCB leader, Line 16 in Algorithm 10
2. A Transportation Cost (TC) challenger, Line 17 in Algorithm 10
3. A β tracking procedure, Line 18 in Algorithm 10
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Algorithm 10 Private Top Two Meta Algorithm.
1: Input: Privacy budget ε, risk δ ∈ (0, 1), target allocation β ∈ (0, 1), transportation costs
Wa,b : RK × NK → R+, thresholds cεa,b : NK × (0, 1)→ R+,

2: Output: Recommendation â, Stopping time τ and Sequence (a1, . . . , aτ )
3: Initialization: ∀a ∈ [K], pull arm a, set ka = 1, T1(a) = K + 1, Ln,a = 0, Nn,a = 1,
n = K + 1.

4: for n > K do
5: if there exists a ∈ [K] such that Nn,a ≥ 2NTka (a),a then ▷ Per-arm doubling
6: Change phase ka ← ka + 1 for this arm a
7: Set Tka(a) = n and Ñka,a = NTka (a),a −NTka−1(a),a ▷ Pulls of a in its last phase
8: Set µ̂ka,a = Ñ−1

ka,a

∑Tka (a)−1
s=Tka−1(a)Xs1 (Is = a) ▷ Empirical mean of a in its last phase

9: Set µ̃ka,a = µ̂ka,a + Yka,a where Yka,a ∼ Lap((εÑka,a)−1) ▷Make it private
10: end if
11: Set ân = arg maxb∈[K] µ̃kb,b ▷ Arm with highest private mean
12: if Wân,b

(
(µ̃ka,a)a∈[K] ,

(
Ñka,a

)
a∈[K]

)
≥ cεân,kb

((
Ñka,a

)
a∈[K]

, δ

)
for all b ̸= ân then

13: Set an = ⊤
14: return (ân, n) ▷ If GLR condition is met, recommend the private empirical best
15: end if
16: Set bn = arg maxa∈[K]{µ̃ka,a +

√
ka/Ñka,a + ka/(εÑka,a)} ▷ Private UCB leader

17: Set cn = arg mina̸=Bn
Wbn,a

(
(µ̃ka,a)a∈[K] , (Nka,a)a∈[K]

)
▷ Private TC challenger

18: Set an = bn if N bn
n,bn
≤ βLn+1,bn , else an = cn ▷ Tracking

19: Pull an and observe rn ∼ νan

20: Set Nn+1,an ← Nn,an + 1, N bn
n+1,an

← N bn
n,an

+ 1 and Ln+1,bn ← Ln,bn + 1. Set n← n+ 1
21: end for

Algorithm 10 incorporates the ingredients from the generic wrapper since
(a) The main private quantity is the empirical mean of rewards.

(b) An arm-dependent doubling combined with forgetting (Lines 5-10) is incorporated,
so that the means (µ̂ka,a)a∈[K] are computed on non-overlapping sequences of rewards.
Thus, adding a Laplace noise of scale 1/(εÑka,a) at Line 9 of Algorithm 10 is enough to
make the whole sequence of all computed (µ̃ka,a)a∈[K] satisfy ε-DP.

(c) The sampling rule, recommendation rule and stopping rule are all solely based on the
private (µ̃ka,a)a∈[K]

(d) The algorithm calibrates for the noise addition by adapting the thresholds (cεa,b)(a,b)∈[K]2

and the UCB bonus at Line 16. As we will show later, AdaP-TT⋆ even adapts the trans-
portation costs (Wa,b)(a,b)∈[K]2 for privacy.

Following the generic wrapper and its generic privacy proof, Algorithm 10 is ε-Interactive
DP. To finalise the algorithm design, Algorithm 10 needs the specification of
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(a) Transportation costs (Wa,b)(a,b)∈[K]2 used in the GLR stopping rule (Line 12 in Algo-
rithm 10) and to choose the challenger (Line 17 in Algorithm 10). Each transportation
cost Wa,b is a function that takes as argument two vectors in RK × NK , and returns a
positive real number in R+.

(b) Thresholds (cεa,b)(a,b)∈[K]2 used for the GLR stopping rule (Line 12 in Algorithm 10).
Each threshold cεa,b is a function that takes as argument a count vector in NK and a risk
parameter δ, and returns a positive real number in R+.

5.4.2 A plug-in approach: the AdaP-TT algorithm

AdaP-TT is an instance of Algorithm 10 which uses Gaussian transportation costs

WG
a,b(µ̃, ω) =

(µ̃a − µ̃b)2
+

2σ2(1/ωa + 1/ωb)
(5.9)

where µ̃ ∈ RK , ω ∈ NK , a, b ∈ [K] and G stands for Gaussian.
AdaP-TT uses Gaussian thresholds adapted for the private empirical mean estimators. For

Gaussian distributions, the non-private thresholds are defined

cGa,b(ω, δ) = 2CG(log ((K − 1)/δ) /2) + 2 log(4 + lnωa) + 2 log(4 + lnωb) , (5.10)

where the function CG is defined in (C.30). It satisfies CG(x) ≈ x + ln(x). For bounded
distributions on [0, 1] such as Bernoulli, we take σ = 1/2.

Using the concentration of Laplace noise, the private thresholds are then chosen to be

cG,εa,b (ω, δ) = 2cGa,b(ω, δ(2ζ(s)2k(ωa)sk(ωb)s)−1) + 1
ε2σ2

∑
c∈{a,b}

1
ωc

(
log 2Kζ(s)k(ωc)s

δ

)2
(5.11)

where s > 1, ζ is the Riemann function and k(x) = log2 x+ 2.

Lemma 5.18 (AdaP-TT is δ-correct). Given any sampling rule, the GLR stopping rule withWG
a,b as

in (5.9) and the stopping threshold cG,εa,b as in (5.11) yields a δ-correct algorithm for σ-sub-Gaussian
distributions.

Proof. Proving δ-correctness of a GLR stopping rule is done by leveraging concentration results.
Specifically, we start by decomposing the failure probability Pµ (τδ < +∞, â ̸= a⋆) into a non-
private and a private part using the basic property of P(X+Y ≥ a+ b) ≤ P(X ≥ a) +P(Y ≥ b).
The two-factor in front of cGa,b originates from the looseness of this decomposition, and we
improve on it in Section 5.4.3. We conclude using concentration results from σ-sub-Gaussian
and Laplace random variables. The proof is detailed in Appendix D of [AJMB24].
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Remark 5.19 (Interpretable asymptotic shape for the thresholds of AdaP-TT). Asymptotically,
our threshold is cG,εa,b (ω, δ) ≈δ→0 2 log(1/δ) + (1/ωa + 1/ωb) log(1/δ)2/(ε2σ2).
Theorem 5.20 (Sample complexity of AdaP-TT). Let (δ, β) ∈ (0, 1)2 and ε > 0. The AdaP-TT
algorithm is ε-Interactive DP, δ-correct and satisfies that, for all µ ∈ RK such that mina̸=b |µa−µb| > 0,

lim sup
δ→0

Eν [τδ]
log(1/δ) ≤ 4T ⋆KL,β(ν)

1 +

√
1 + ∆2

max
2σ4ε2

 with σ = 1/2 .

We adopt the asymptotic proof of the TTUCB algorithm, which is based on the unified
analysis of the Top Two algorithms from [JDB+22]. We sketch high-level ideas for the proof
and specify the effect of the generic wrapper on the expected sample complexity.

Proof. (1) The non-private TTUCB algorithm [JD24] achieves a sample complexity of T ⋆KL,β(µ)
for sub-Gaussian random variables. The proof relies on showing that the empirical pulling
counts are converging towards the β-optimal allocation ω⋆KL,β(µ). (2) The effect of doubling and
forgetting is a multiplicative four-factor, i.e. 4T ⋆KL,β(µ). The first multiplicative two-factor is due
to forgetting since we throw away half of the samples. The second multiplicative two-factor
is due to doubling since we have to wait for the end of an episode to evaluate the stopping
condition. (3) The Laplace noise only affects the empirical estimate of themean. Since the Laplace
noise has no bias and a sub-exponential tail, the private means will still converge towards their
true values. Therefore, the empirical counts will also converge to ω⋆KL,β(µ) asymptotically. (4)
While the Laplace noise has little effect on the sampling rule itself, it changes the dependency in log(1/δ)
of the threshold used in the GLR stopping rule. The private threshold cG,εa,b has an extra factor
O(log2(1/δ)) compared to the non-private one cGa,b. Using the convergence towards ω⋆KL,β(µ),
the stopping condition is met as soon as n

T ⋆
KL,β

(µ) ≲ 2 log(1/δ) + ∆2
max

2σ4ε2
T ⋆

KL,β(µ)
n log2(1/δ). Solving

the inequality for n concludes the proof while adding a multiplicative four-factor. The proof is
detailed in Appendix E of [AJMB24].

Discussion. In the non-private regime where ε → +∞, our upper bound recovers the
non-private lower bound for Gaussian distributions T ⋆KL(ν) up to a multiplicative factor 16,
for β = 1/2 since T ⋆KL,1/2(ν) ≤ 2T ⋆KL(ν). For Bernoulli distributions (or bounded distributions
in [0, 1]), there is still a mismatch between the upper and lower bounds due to the mismatch
between the KL divergence of Bernoulli distributions and that of Gaussian (e.g. large ratio
when the means are close to 0 or 1). This is, in essence, similar to the mismatch between UCB
and KL-UCB in the regret-minimisation literature (e.g. Chapter 10 in [LS20]). To overcome
this mismatch, it is necessary to adapt the transportation costs to the family of distributions
considered. While the Top Two algorithms for Bernoulli distributions (or bounded distributions
in [0, 1]) have been studied in [JDB+22], the analysis is more involved. Therefore, it would
obfuscate where and how privacy is impacting the expected sample complexity.
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In the asymptotic high privacy regime i.e ε→ 0, our upper bound gives O(T ⋆KL(ν)∆max/ε)
while the lower bound is Ω(T ⋆TV(ν)/ε). Therefore, our upper bound is only asymptotically
tight for instances such that T ⋆KL(ν) = O(T ⋆TV(ν)/∆max), e.g. instances where the mean gaps
have the same order of magnitude.

Specifically, for β = 1/2, it is well known that T ⋆KL,1/2(µ) ≤ 2T ⋆KL(µ) ≤ 8
∑
a̸=a⋆ ∆−2

a . We
consider Bernoulli instances (0 < ∆min ≤ ∆max < 1), where the gaps have the same order of
magnitude, i.e. Condition 1: there exists a constant C ≥ 1 such that ∆max/∆min ≤ C. For such
instances, there exists a universal constant c, such that

lim sup
δ→0

Eµ[τδ]
log(1/δ) ≤ c max

{
T ⋆KL,1/2(µ), Cε−1∑∆−1

a

}
.

To show this, first, we upper bound

lim sup
δ→0

Eν [τδ]
log(1/δ) ≤ 4T ⋆KL,β(µ)

1 +

√
1 + ∆2

max
2ε2


≤
(a)

4T ⋆KL,β(µ)
(

2 + ∆max√
2ε

)

where T ⋆KL,β(µ) is the β-characteristic time for Gaussian bandits, and (a) is due to the sub-
additivity of the square root.

For β = 1/2, [Rus16] showed that T ⋆KL,1/2(µ) ≤ 2T ⋆KL(µ). On the other hand, [GK16]
showed that H(µ) ≤ T ⋆KL(µ) ≤ 2H(µ), where H(µ) ≜

∑
a∈[K] 2∆−2

a with ∆a⋆ = ∆min.
Plugging these two inequalities in the upper bound with β = 1/2 gives that

lim sup
δ→0

Eν [τδ]
log(1/δ) ≤ 8T ⋆KL,1/2(µ) + 16H(µ)∆max√

2ε

Since we consider Bernoulli distributions, we know that 0 < ∆min ≤ ∆max < 1. If we restrict
ourselves to instances such that all the gaps have the same order of magnitude (Condition 1):
there exists a constant C ≥ 1 such that ∆max ≤ C∆min.

For such instances, we obtain

lim sup
δ→0

Eν [τδ]
log(1/δ) ≤ 8T ⋆KL,1/2(µ) + 16H(µ)C∆min√

2ε

≤ 8T ⋆KL,1/2(µ) + 16
√

2C
ε

(
1

∆min
+

K∑
a=2

1
∆a

)

where the last inequality is due to H(µ)∆min ≤ 2
∆min

+
∑K
a=2

2
∆a
.
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Finally using that a+ b ≤ 2 max(a, b), we get that

lim sup
δ→0

Eν [τδ]
log(1/δ) ≤ cmax

{
T ⋆KL,1/2(µ), C

ε

(
1

∆min
+

K∑
a=2

1
∆a

)}

for the universal constant c = 45.26.
For Bernoulli instances, Corollary 4.25 gives that the lower bound of the expected sample

complexity of any δ-correct ε-global DP BAI strategy is

lim sup
δ→0

Eν [τδ]
log(1/δ) ≥ max

{
T ⋆KL(ν), 1

ε

(
1

∆min
+

K∑
a=2

1
∆a

)}
.

where we use Proposition 4.26 to replace T ⋆TV(ν) and T ⋆KL(ν) is the characteristic time for
Bernoulli bandits.

However, in all the other cases where the gaps are not of the same order, the plug-in
approach of AdaP-TT is sub-optimal due to a problem-dependent gap.

5.4.3 A lower bound based ppproach: the AdaP-TT⋆ algorithm

To overcome the limitation of AdaP-TT, we adapt the transportation costs to reflect the private
lower bound of Theorem 4.24, instead of “ignoring” the privacy constraint by using the non-
private transportation costsWG

a,b as in (5.9) which are tailored for non-private FC-BAI.
Therefore, we propose the AdaP-TT⋆ algorithm. AdaP-TT⋆ is an instance of Algorithm 10

with the transportation costs

WG,ε
a,b (µ̃, ω) = (µ̃a − µ̃b)+ min{3ε, (µ̃a − µ̃b)+}

2σ2(1/ωa + 1/ωb)
with σ = 1/2 . (5.12)

The transportation costWG,ε
a,b is inspired by the relaxed private β-characteristic time

T ⋆ε,β(ν)−1 ≜ max
ω∈ΣK ,ωa⋆ =β

min
a̸=a⋆

(µa⋆ − µa) min{3ε, µa⋆ − µa}
2σ2(1/β + 1/ωa)

with σ = 1/2 . (5.13)

AdaP-TT⋆ uses the thresholds

c̃G,εa,b (µ̃, ω, δ) ≜


1
2c
G,ε
a,b (ω, 2δ/3) +

√
2

εσ

∑
c∈{a,b}

√
h(ωc,δ)
ωc

log
(

3Kζ(s)k(ωc)s

δ

)
, if (µ̃a − µ̃b)+ < 3ε

3
σ2 log

(
3Kζ(s) maxc∈{a,b} k(wc)/δ

)
+ 3ε√

2σ
∑
c∈{a,b}

√
ωch(ωc, δ) else

(5.14)
where s > 1, ζ is the Riemann function andW−1(x) = −W−1(−e−x) for all x ≥ 1, whereW−1

is the negative branch of the LambertW function. It satisfiesW−1(x) ≈ x+ log x. Finally, cG,εa,b
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is as in (5.11), k(x) = log2 x+ 2 and

h(x, δ) = W−1 (2 log(3Kζ(s)k(x)s/δ) + 4 log(4 + log x) + 1/2) /2 .

Compared to thresholds of AdaP-TT, c̃G,εa,b depends also on the mean estimator µ̃.

Lemma 5.21 (AdaP-TT⋆ is δ-correct). Given any sampling rule, the GLR stopping rule withWG,ε
a,b

as in (5.12) and the stopping threshold c̃G,εa,b as in (5.14) yields a δ-correct algorithm for σ-sub-Gaussian
distributions.

Proof. The proof is similar to the one of Lemma 5.18 with tighter manipulations allowing to
divide cG,εa,b by 2. The proof is detailed in Appendix D of [AJMB24].

Remark 5.22 (Interpretable asymptotic shape for the thresholds of AdaP-TT⋆). Our threshold is

3
σ2 log(1/δ) + 3ε√

2σ
(√ωb +

√
ωa)

√
log(1/δ)

when µ̃a − µ̃b ≥ 3ε, and

log(1/δ) + 1
2ε2σ2 (1/ωa + 1/ωb) log(1/δ)2 +

√
2

εσ
(
√

1/ωa +
√

1/ωb) log(1/δ)3/2

otherwise.

Theorem 5.23 (Sample complexity of AdaP-TT⋆). Let (δ, β) ∈ (0, 1)2 and ε > 0. The AdaP-TT⋆

algorithm is ε-Interactive DP, δ-correct and satisfies that, for all µ ∈ RK such that mina̸=b |µa−µb| > 0,

lim sup
δ→0

Eν [τδ]
log(1/δ) ≤

4T ⋆KL,β(ν)g1
(
∆max/(σ2ε)

) if ∆max < 3ε

12T ⋆ε,β(ν)g2(3ε2T ⋆ε,β(ν) max{β, 1− β}/2)/σ2 otherwise
,

where T ⋆ε,β(ν) as in (5.13) with σ = 1/2. The function g1(y) = sup
{
x | x2 < x+ y

√
2x+ y2

4

}
is increasing on [0, 12] and satisfies that g1(0) = 1 and g1(12) ≤ 10. The function g2(y) = 1 +
2(
√

1 + 1/y − 1)−1 is increasing on R⋆+ and satisfies that limy→0 g2(y) = 1.

Proof. The proof is similar to the one of Theorem 5.20 with tighter manipulations. The complete
proof is detailed in Appendix E of [AJMB24].

Discussion. When ∆max < 3ε, our upper bound recovers the non-private lower bound for
Gaussian distributions T ⋆KL(ν) up to a multiplicative factor 8g1(4∆max/ε) ∈ [8, 80], whose limit
is 8 in non-private regime where ε→ +∞. When ∆min ≥ 3ε, we have 12T ⋆ε,β(ν) ≤ 8T ⋆TV(ν)/ε.
In the asymptotic highly privacy regime where ε → 0, our upper bound matches the lower
bound up to a multiplicative factor 48. Therefore, we close the gap left open by the algorithm
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in Section 5.4.2. While the regime ∆max ≥ 3ε > ∆min is relevant for practical application, it
is harder to understand how the different quantities interact in the upper/lower bounds in
transitional phases. Thus, it is harder to claim optimality in those phases.

Comparison to DP-SE. DP-SE [SS19] is a DP version of the Successive Elimination algorithm
introduced for the regret minimisation setting. The algorithm samples active arms uniformly
during phases of geometrically increasing length. Based on the private confidence bounds, DP-
SE eliminates provably sub-optimal arms at the end of each phase. Due to its phased-elimination
structure, DP-SE can be easily converted into a DP FC-BAI algorithm, where we stop once
there is only one active arm left. In particular, the proof of Theorem 4.3 of [SS19] shows that
with high probability any sub-optimal arm a ̸= a⋆ is sampled no more than O(∆2

a + (ε∆a)−1).
From this result, it is straightforward to extract a sample complexity upper bound for DP-SE,
i.e.O(

∑
a̸=a⋆ ∆−2

a +
∑
a̸=a⋆(ε∆a)−1). This shows that DP-SE, too, achieves (ignoring constants)

the high-privacy lower bound T ⋆TV(ν)/ε for Bernoulli instances. However, due to its uniform
sampling within the phases, DP-SE is less adaptive than the Top Two sampling rule. Inside
a phase, DP-SE continues to sample arms that might already be known to be bad, while Top
Two algorithms adapt their sampling based on the transportation costs that reflect the amount
of evidence collected in favour of the hypothesis that the leader is the best arm. Finally, our
top two algorithms have the advantage of being anytime, i.e. their sampling strategy does not
depend on the risk δ.

Another adaptation of DP-SE, namely DP-SEQ, is proposed in [KNSS21] for the problem
of privately finding the arm with the highest quantile at a fixed level. Hence, it is different
from BAI. For multiple agents, [RBCS23] studies privacy for BAI under fixed confidence. They
propose and analyse the sample complexity of DP-MASE, a multi-agent version of DP-SE. They
show that multi-agent collaboration leads to better sample complexity than independent agents,
even under privacy constraints. While the multi-agent setting with federated learning allows
tackling large-scale clinical trials taking place at several locations simultaneously, we study the
single-agent setting, which is relevant for many small-scale clinical trials.

Remark 5.24 (On the number of rounds of adaptivity). Using our arm-dependent phases technique,
it is possible to compute, at the end of the episode of arm a, the sequence of all the arms to be pulled before
the end of the next episode (for another arm), without taking the collected observations into account. In
contrast to the classical batched setting, where the batch size is fixed, the size of the resulting batches
is adaptive and data-dependent. In the non-private setting (ε = +∞), we recover Batched Best-Arm
Identification (BBAI) in the fixed-confidence setting. AdaP-TT and AdaP-TT⋆ are asymptotically
optimal up to a multiplicative factor 4 with solely O (K log2(T ⋆KL(ν) log(1/δ))) rounds of adaptivity.
We refer the reader to Appendix F of [AJMB24] for more details on this remark, including a comparison
to existing works.
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5.5 Experimental Analysis

In this section, we test experimentally the performance of the private bandit algorithms, which
all are instantiations of the generic wrapper presented in Section 5.2.

5.5.1 Finite-armed bandits under Pure DP

We perform empirical evaluations to test two hypotheses:
(a) AdaP-KLUCB is the most optimal algorithm among the existing bandit algorithms with

ε-pure DP

(b) The transition between high and low-privacy regimes is reflected in the empirical perfor-
mance.

First, we compare the performances of AdaP-UCB and AdaP-KLUCB with those of DP-SE
and DP-UCB. We set α = 3.1 to comply with the regret upper bounds of AdaP-UCB and
AdaP-KLUCB. We assign γ = 0.1 for DP-UCB and β = 1/T for DP-SE. We implement all the
algorithms in Python (version 3.8) and on an 8-core 64-bit Intel i5@1.6 GHz CPU. We test
the algorithms for Bernoulli bandits with 5-arms and means {0.75, 0.625, 0.5, 0.375, 0.25} (as
in [SS19]). We run each algorithm 20 times for a horizon T = 107, and plot corresponding
average and standard deviations of regrets in Figure 5.2. AdaP-KLUCB achieves the lowest
regret followed by AdaP-UCB. Both of them achieve 10 times lower regret than the competing
algorithms.

In Figure 5.3, we plot regret of AdaP-KLUCB at T = 107 for a Bernoulli bandit with mean
rewards {0.8, 0.1, 0.1, 0.1, 0.1}. We plot the average regret over 20 runs as a function of the
privacy budget ε ∈ [0.05, 10]. As indicated by the theoretical regret lower bounds and upper
bounds, the experimental performance of AdaP-KLUCB demonstrates two regimes: a high-
privacy regime (for ε < 0.3), where the regret of AdaP-KLUCB depends on the privacy budget
ε, and a low privacy regime (for ε > 0.3), where the regret of AdaP-KLUCB does not depend
on ε.

In brief, our experimental results validate that AdaP-KLUCB is the most optimal algorithm for
stochastic bandits that satisfies ε-global DP, and performance of AdaP-KLUCB transits from high- to
low-privacy regimes, where its performance turns independent of the privacy budget ε.

5.5.2 Regret bandits under ρ-Interactive zCDP

For finite-armed bandits, we test AdaC-UCB with β = 1 and compare it to its non-private counter-
part, i.e. a UCB algorithm with adaptive episodes and forgetting. We test the algorithms for
Bernoulli bandits with 5-arms and means {0.75, 0.625, 0.5, 0.375, 0.25} (as in [SS19]).
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Figure 5.2 – Evolution of regret over time for
DP-UCB, DP-SE, AdaP-UCB, and AdaP-KLUCB
with ε = 1. Each algorithm is run 20 times
with T = 107, and Bernoulli distributions with
means {0.75, 0.625, 0.5, 0.375, 0.25}. AdaP-KLUCB
achieves the lowest regret.
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Figure 5.3 – Dependence of lower bounds and re-
gret of AdaP-KLUCB with respect to the privacy
budget ε. We run AdaP-KLUCB for 20 runs with
T = 107. Echoing the theoretical analysis, the
regret of AdaP-KLUCB transits between privacy
regimes and is independent of ε for low-privacy.

For linear bandits with finitely many arms, we implement AdaC-GOPE and compare it to GOPE.
We set the failure probability to δ = 0.001 and the noise to be ρt = N (0, 1). We use the Frank-
Wolfe algorithm to solve the G-optimal design problem [LS20]. We chose K = 10 actions
randomly on the unit tri-dimensional sphere (d = 3). The true parameter θ⋆ is also chosen
randomly on the tri-dimensional sphere.

For linear contextual bandits, we implement AdaC-OFUL and compare it to RS-OFUL. We
set C = 1, the regularisation constant λ = 0.1, the failure probability to δ = 0.001 and
the noise ρt = N (0, 1). We set K = 10 and d = 3. To generate the contexts, at each time
step, we sample from a new set of actions At which is 10 dimensional multivariate Gaussian
N
((

1√
d
, . . . , 1√

d

)
, 1

10Id
)
. This way, we sample the contexts near the unit sphere, while having

a sub-Gaussian generation process corresponding to the context-generation Assumption 5.15.
The true parameter θ⋆ is chosen randomly on the tri-dimensional sphere.

For the three settings, we run the private and non-private algorithms 100 times for a horizon
T = 107, and compare their average regrets (Figure 6.2).

From the experimental results illustrated in Figure 6.2, we reach two conclusions for all
three settings.

1. Free-privacy in low-privacy regime. For a fixed horizon T , the difference between the
private and non-private regret, Regpriv −Regnon−priv, converges to zero as the privacy budget
ρ→∞. Thus, our algorithms achieve the same regret as their non-private counterparts in the
low-privacy regime.

2. Asymptotic no price of privacy. For a fixed privacy budget ρ, the Price of Privacy (PoP),
i.e. PoP ≜ Regpriv−Regnon−priv

Regnon−priv
converges to zero as the horizon T increases. This observation
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Figure 5.4 – Finite-armed Bandits under ρ-Interactive DP
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Figure 5.5 – Linear Bandits under ρ-Interactive DP
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Figure 5.6 – Contextual Linear Bandits under ρ-Interactive DP

resonates with both the theoretical regret upper bounds of the algorithms and the hardness
suggested by the lower bounds, where cost due to privacy appears as lower-order terms.
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Figure 5.7 – Empirical stopping time τδ (mean± std. over 1000 runs) with respect to the privacy budget
ε for ε-global DP on Bernoulli instance µ1 (left) and µ2 (right). The shaded vertical line separates the
two privacy regimes.

5.5.3 FC-BAI setting under Pure DP

We compare the performances of AdaP-TT, AdaP-TT⋆ and DP-SE for FC-BAI in different
Bernoulli instances as in [SS19]. The first instance has means µ1 = (0.95, 0.9, 0.9, 0.9, 0.5)
and the second instance has means µ2 = (0.75, 0.7, 0.7, 0.7, 0.7). As a benchmark, we also
compare to the non-private TTUCB. We set the risk δ = 10−2 and implement all the algorithms
in Python (version 3.8). We run each algorithm 1000 times, and plot corresponding average
and standard deviations of the empirical stopping times in Figure 5.7.

Figure 5.7 shows that: (a) AdaP-TT and AdaP-TT⋆ require fewer samples than DP-SE to
provide a δ-correct answer, for different values of ε and in all the instances tested. AdaP-TT and
AdaP-TT⋆ have the same performance in the low privacy regimes, whileAdaP-TT⋆ improves the
sample complexity in the high privacy regime, as predicted theoretically. (b) The experimental
performance of AdaP-TT and AdaP-TT⋆ demonstrate two regimes. A high-privacy regime (for
ε < 0.1 for µ1 and ε < 0.4 for µ2), where the stopping time depends on the privacy budget
ε, and a low privacy regime (for ε > 0.1 for µ1 and ε > 0.4 for µ2), where the performance
of AdaP-TT and AdaP-TT⋆ does not depend on ε, and is four times the samples required by
TTUCB in the worst case, as shown theoretically.

5.6 Conclusion

We propose a generic wrapper to design near-optimal private bandit algorithms. The main in-
gredient of this wrapper builds on the fact that themain private quantities of interest (i.e. the em-
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pirical means of rewards µ̂ and the least-square estimate θ̂) are computed over non-overlapping
sequences of inputs. This helps to add less noise in the bandit algorithm thanks to the Parallel
Composition lemma (Lemma 2.10), thus achieving better utility. The noise addition step is
then calibrated inside each algorithm differently: the exploration bonus is adapted for UCB
and LinUCB, the exploration of each phase is augmented in elimination-based algorithms,
and the thresholds are adapted for the FC-BAI algorithm. For different settings of interest, we
instantiate the wrapper by expliciting the algorithm’s details, inherit the wrapper’s privacy
guarantee, and then prove utility guarantees, i.e. regret and sample complexity upper bounds.
For bandits under pure DP, we propose AdaP-UCB and AdaP-KLUCB, the first DP versions of
UCB, which achieve the regret lower bounds. For ρ-Interactive zCDP, we propose AdaC-UCB,
AdaC-GOPE and AdaC-OFUL, for finite-armed, linear and contextual bandits, and show that the
additional cost in the regret due to ρ-Interactive zCDP is negligible in comparison to the regret
incurred oblivious to privacy. Finally, for FC-BAI, we propose AdaP-TT and AdaP-TT⋆, DP
versions of the Top Two algorithm. If AdaP-TT only matches the lower bound in instances with
similar gaps, the AdaP-TT⋆ algorithm overcomes this limitation by adapting the transportation
costs. Our experimental analysis of the different algorithms validates our theoretical results.
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Privacy Auditing and the Hardness of
Membership Inference Games
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Chapter 6

The Hardness of Target-dependent
Membership Inference Games

We study fixed-target tracing attacks, where an attacker aims to infer whether a fixed target
point was included or not in the input dataset of an algorithm. First, we define the target-
dependent leakage of a point z⋆ as the advantage of the optimal adversary inferring its member-
ship, and express it as a Total Variation distance. Then, we quantify both the target-dependent
leakage and the trade-off functions for the empirical mean in terms of the Mahalanobis dis-
tance between the target point and the data-generating distribution. We further assess the
impacts of two privacy defences, i.e. adding Gaussian noise and sub-sampling, and that of
target misspecification by deriving their target-dependent leakages and trade-off functions. Our
asymptotic analysis builds on a novel proof technique that combines an Edgeworth expansion
of the Likelihood Ratio (LR) test and a Lindeberg-Feller central limit theorem. Our analysis
yields that the LR attack for the empirical mean is a scalar product attack corrected by the
inverse of the covariance matrix. This connects the LR and scalar product scores in the tracing
attacks literature. Also, our Mahalanobis leakage score justifies the empirical success of orthog-
onality and other canary selection strategies used for privacy auditing. Finally, our experiments
demonstrate the impacts of the leakage score, the sub-sampling ratio, and the noise scale on
the target-dependent leakage, as indicated by the theory. Finally, our experiments validate that
the Mahalanobis leakage score explains the hardness of fixed-target tracing attacks.
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6.1 Introduction

6.1 Introduction

In this section, we answer the main two questions:

Why are some points statistically harder to trace than others, and how can we quantify this hardness?
Can we quantify the target-dependent effect of privacy-preserving mechanisms?

Answering these two questions leads to the following contributions.
1. Defining the target-dependent leakage. We instantiate a fixed-target MI game (Algorithm 12,

[YMM+22]). We define the leakage of a target point as the advantage of the optimal attacker,
i.e. the LR attacker, trying to identify this fixed target point. We also characterise the target-
dependent leakage in terms of a Total Variation distance (Equation (6.1)).

2. Explaining the target-dependent leakage using the Mahalanobis distance. We investigate the
fixed-target MI game for the empirical mean. First, we find the asymptotic distributions of
the LR scores if the target datum is included in the empirical mean and also if not. Then, we
recover the optimal advantage (Equation (6.2)) and trade-off functions (Equation (6.3)). This
shows that the target-dependent hardness of MI games depends on the Mahalanobis distance
between the target point z⋆ and the true data-generating distribution (Table 6.1).

3. A new covariance attack. We analyse the LR score for the empirical mean asymptotically.
Our novel proof technique that combines an Edgeworth expansion with Lindeberg-Feller
central limit theorem shows that the LR score is asymptotically a scalar product attack, corrected
by the inverse of the covariance matrix (Equation (6.4)). This enables us with a novel score for
attacks, and improves on the scalar product by correcting it for the geometry of the data.

4. Tight quantification of the effects of noise addition, sub-sampling, and misspecified targets on
leakage. We further study the impact of privacy-preserving mechanisms, such as the Gaussian
mechanism [DR14b] and sub-sampling, on the target-dependent leakage. As shown in Table 6.1,
both of them reduce the leakage scores and, thus, the powers of the optimal attacks. We
numerically validate them. Finally, we quantify how target misspecification affects the leakage,
and how it depends on the similarity between the real and misspecified targets.

6.2 Fixed-target Membership Game

First, we introduce the fixed-target Membership Inference (MI) game. Then, we discuss
different performance metrics to assess the power of the adversary in the fixed-target game.
Finally, we connect the fixed-target MI game (Algorithm 12) to the "average-target" MI game
(Algorithm 5) presented in Section 2.3.

135



The Hardness of Target-dependent Membership Inference Games

6.2.1 The target-dependent threat model

LetM be a randomised mechanism that takes as input a dataset D of n points belonging to
Z and outputs o ∈ O. In a Membership Inference (MI) game, an adversary attempts to infer
whether a given target point z⋆ ∈ Z was included in the input dataset ofM. Given access to
an output o ∼M(D), the adversary tries to infer whether z⋆ ∈ D where D is the input dataset
that generated the output o.

A fixed-target MI game (Algorithm 12) is a game between two entities: the fixed-target
Crafter (Algorithm 11) and the adversary Az⋆ . The MI game runs in multiple rounds. At each
round t, the crafter samples a pair (ot, bt), where ot is an output of the mechanism and bt is the
secret binary membership of z⋆. The adversaryAz⋆ takes as input only ot and outputs b̂t trying
to reconstruct bt.

The specificity of the fixed-target MI game is that the target z⋆ is fixed throughout the
game. Thus, the performance metrics of the attacker, i.e. the advantage and trade-off functions,
are target-dependent. In contrast, in the MI game of Algorithm 5, the target z⋆ is sampled
randomly at each step of the game, either sampled from the data-generating distribution (Line
6 in Algorithm 4), or uniformly sampled from the input dataset (Line 8 in Algorithm 4). Thus,
in the MI game of Algorithm 5, the performance metrics of the attacker are averaged over the
sampling of the target points. This averaging obfuscates the dependence of the leakage on
each target point. To study the effect of target points on the hardness of MI games, we use
this fixed-target formulation of MI games, which has also been proposed in Definition 3.3
of [YMM+22].

A fixed-target MI game can also be seen as a hypothesis test. Here, the adversary tries to
test the hypothesis “H0: The output o observed was generated from a dataset sampled i.i.d. from D”,
i.e. b = 0, versus “H1: The target point z⋆ was included in the input dataset producing the output o”,
i.e. b = 1. We denote by pout(o | z⋆) and pin(o | z⋆) the distributions of the output o under H0

and H1 respectively.

6.2.2 Performance metrics for the fixed-target adversary

An adversary Az⋆ is a possibly randomised function that takes as input o the output of the
mechanismM, and generates a guess b̂ ∼ Az⋆(o) trying to infer b. The performance of Az⋆

can be assessed either with aggregated metrics like the accuracy and the advantage, or with
test-based metrics like Type-I/Type-II errors, and trade-off functions.

The accuracy of Az⋆ is defined as

Accn(Az⋆) ≜ Pr[Az⋆(o) = b],
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Algorithm 11 The Fixed-target Crafter
1: Input: MechanismM, Data distribution D, Number of samples n, Target z⋆
2: Output: (o, b), where o ∈ O and b ∈ {0, 1}
3: Build a dataset D ∼⊗n

i=1D
4: Sample b ∼ Bernoulli

(
1
2

)
5: if b = 1 then
6: Sample i ∼ U [n]
7: D ← Replace(D, i, z⋆) ▷ Put z⋆ at position i in D
8: end if
9: Let o ∼M(D)

10: Return (o, b)

where the probability is over the generation of (o, b)usingAlgorithm11with input (M,D, n, z⋆),
and any randomness in the adversary.

The advantage of an adversary is the centred accuracy

Advn(Az⋆) ≜ 2Accn(Az⋆)− 1.

We can also define two errors from the hypothesis testing formulation. The Type-I error, aka
False Positive Rate, is

αn(Az⋆) ≜ Pr [Az⋆(o) = 1 | b = 0] .

The Type-II error, aka the False Negative Rate, is

βn(Az⋆) ≜ Pr [Az⋆(o) = 0 | b = 1] .

The power of the test is 1− βn(Az⋆).
In MI games, an adversary can threshold over a score function s to conduct the MI games,

i.e. for As,τ,z⋆(o) ≜ 1 (s(o; z⋆) > τ) where s is a score function and τ is a threshold. We want to
design score functions that maximise the power under a fixed significance level α, i.e.

Pown(s, α, z⋆) ≜ max
τ∈Tα

1− βn(As,τ,z⋆)

where Tα ≜ {τ ∈ R : αn(As,τ,z⋆) ≤ α}. Pown(s, α, z⋆) is also called a trade-off function.

6.2.3 Connection between the fixed-target and average-target MI games

An adversary A in an average-target MI game (Algorithm 5) can be regarded as an infinite
collection of target-dependent adversaries (Az⋆)z⋆ , where A(z⋆, o) = Az⋆(o).
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Algorithm 12 Fixed-target MI Game
1: Input: MechanismM, Data distribution D, Number of samples n, Target z⋆, Adversary
Az⋆ , Rounds T

2: Output: A list L ∈ {0, 1}T , where Lt = 1 if the adversary succeeds at step t.
3: Initialise a empty list L of length T
4: for t = 1, . . . , T do
5: Sample (ot, bt) ∼ Fixed-target Crafter (Algorithm 11), with inputs (M, D, n, z⋆)
6: Sample b̂t ∼ Az⋆(ot)
7: Set Lt ← 1

(
bt = b̂t

)
8: end for
9: Return L

The advantage (and accuracy) ofA is the expected advantage (and accuracy) ofAz⋆ , when
z⋆ ∼ D, i.e.

Advn(A) = Ez⋆∼D [Advn(Az⋆)] .

Studying the performance metrics of an adversary under average-target MI game hides the
dependence on the target, by averaging out the performance on different target points. Con-
sequently, using the average-target MI games to audit privacy can hurt performance. A gain
could directly be observed by running the same attack on a fixed “easy to attack” fixed-target
MI game.

Also, we observe that the optimal LR test for the average-target MI game is the same LR
test for the fixed-target MI game. Specifically,

ℓn(o; z⋆) ≜ log
(
pin
n (z⋆, o)

pout
n (z⋆, o)

)

= log
(

pin
n (o | z⋆)pin

n (z⋆)
pout
n (o | z⋆)pout

n (z⋆)

)

= log
(
pin
n (o | z⋆)

pout
n (o | z⋆)

)

since pin
n (z⋆) = pout

n (z⋆) = D(z⋆).
Thus, the same LR attack optimally solves both fixed-target and average-target MI games.

The only difference is in the resulting performance metric, i.e.whether we average out the effect
of z⋆ ∼ D in average-target MI games or we keep the dependence on the target z⋆, by fixing z⋆
in the fixed-target MI games.
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6.3 Optimal Adversary and Definition of Membership Leakage

It is a fundamental result of statistics that given two data generating distributions p0 and p1

under hypothesesH0 andH1 respectively, no test can achieve better power than the Likelihood
Ratio (LR) test [NP33].

Now, we recall the hypothesis testing formulation of the fixed-target MI games, where
pout
n (o | z⋆) is the distribution of the output o under H0 and pin

n (o | z⋆) is the distribution of the
output o underH1. Then, the log-Likelihood Ratio (LR) test (or score) for fixed-target MI game
is

ℓn(o; z⋆) ≜ log
(
pin
n (o | z⋆)

pout
n (o | z⋆)

)
.

The LR attacker uses a threshold τ on the log-likelihood score, i.e.Aℓ,τ,z⋆(o) ≜ 1 (ℓn(o; z⋆) > τ).
We denote byABayes,z⋆ ≜ Aℓ,0,z⋆ the LR attacker with threshold τ = 0. We provide Theorem 6.1
to characterise optimal adversaries under both aggregated and test-based metrics.

Theorem 6.1 (Characterising Optimal Adversaries).
(a) For everyα ∈ [0, 1], the log-likelihood test ℓn is the test that maximises the power under significance

α, i.e. for any α and any test function s,

Pown(ℓn, α, z⋆) ≥ Pown(s, α, z⋆).

(b) ABayes,z⋆ is the adversary that maximises the advantage (and accuracy), i.e. for any adversary
Az⋆ , we have that

Advn(ABayes,z⋆) ≥ Advn(Az⋆).

(c) Let TV denote the total variation distance. The advantage of the optimal Bayes adversary is

Advn(ABayes,z⋆) = TV
(
pout
n (. | z⋆)

∥∥∥ pin
n (. | z⋆)

)
. (6.1)

Proof. First, (a) is a direct consequence of the Neyman-Pearson lemma. To prove (b), we
observe that the log-likelihood adversary with threshold τ = 0 is exactly the Bayes optimal
classifier. Specifically, since Pr(b = 0) = Pr(b = 1) = 1/2, we can rewrite the log-likelihood as
the

ℓn(o; z⋆) = log
(Pr(b = 1 | o, z⋆)

Pr(b = 0 | o, z⋆)

)
.

Thus, thresholding with 0 gives the Bayes optimal classifier exactly, which has the highest
accuracy among all classifiers.

For (c), we observe that

Advn(ABayes,z⋆) = Pr(ℓn(o; z⋆) ≤ 0 | b = 0)− Pr(ℓn(o; z⋆) ≤ 0 | b = 1)
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= pout
n (O | z⋆)− pin

n (O | z⋆)

where O ≜ {o ∈ O : pout
n (o | z⋆) ≥ pin

n (o | z⋆)}.
The last equation is exactly the definition of the TV

(
pout
n (. | z⋆)

∥∥ pin
n (. | z⋆)

).

As a consequence of Theorem 6.1, we define the target-dependent leakage of z⋆.

Definition 6.2 (Targent-dependent leakage). The target-dependent leakage of z⋆, for mechanism
M and data-generating distribution D, is the advantage of the optimal Bayes attacker on z⋆, i.e.

ξn(z⋆,M,D) ≜ Advn(ABayes,z⋆) = TV
(
pout
n (. | z⋆)

∥∥∥ pin
n (. | z⋆)

)
.

Our main goal is to quantify the target-dependent leakage ξn(z⋆,M,D) and trade-off functions for
different mechanisms, namely the empirical mean and its variations. These two quantities may
be intractable to characterise for any general data-generating distribution. To overcome this
limitation, we use the asymptotic properties of the empirical mean as the main tool.

6.4 Target-dependent Leakage of the Empirical Mean

We instantiate the fixed-target MI game with the empirical mean mechanism. First, we char-
acterise the asymptotic distribution of the LR scores under H0 and H1. Then, we quantify
the target-dependent leakage of a target z⋆, and show that it depends on the Mahalanobis
distance z⋆ and the data generating distribution D. Finally, we connect our results to tracing
attacks [SOJH09, DSS+15], and propose a new canary selection strategy and white-box attack
on gradient descents.
Notations and the asymptotic regime. We denote byMemp

n the empirical mean mechanism.
Memp

n takes as input a dataset of size n of d-dimensional points, i.e.D = {Z1, . . . , Zn} ∈ (Rd)n,
and outputs the exact empirical mean µ̂n ≜ 1

n

∑n
i=1 Zi ∈ Rd. We denote by⇝ convergence

in distribution. Let Φ represent the Cumulative Distribution Function (CDF) of the standard
normal distribution, i.e. Φ(α) ≜ 1√

2π
∫ α

−∞ e−t2/2 dt for α ∈ R. For a matrixM and a vector x,
we write ∥x∥2M ≜ xTMx. Since the LR test can be non-tractable in general cases, we study the
asymptotic behaviour of the LR test, when both the sample size n and the dimension d tend to
infinity such that d/n = τ > 0.
Assumptions on the data generating distribution. We suppose that the data-generating dis-
tribution is column-wise independent, i.e.D ≜⊗d

j=1Dj and has a finite (4 + δ)-th moment for
some small δ, i.e. there exists δ > 0, such thatE[Z4+δ] <∞. We denote by µ ≜ (µ1, . . . , µd) ∈ Rd
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the mean of D, and by Cσ ≜ diag(σ2
1, . . . , σ

2
d) ∈ Rd×d the covariance matrix. We recall that the

Mahalanobis distance [Mah36] of z⋆ with respect to D is ∥z⋆ − µ∥C−1
σ

.
Asymptotic distribution of the LR score. For the empirical mean and a column-wise indepen-
dent distribution D, the LR score is

ℓn(µ̂n; z⋆, µ, Cσ) =
d∑
j=1

log
(
pin
n,j(µ̂n,j ; z⋆j , µj , σj)
pout
n,j (µ̂n,j ; z⋆j , µj , σj)

)
,

where µ̂n = (µ̂n,j)dj=1, pout
n,j is the distribution of µ̂n,j for b = 0, and pin

n,j is the distribution of
µ̂n,j for b = 1. In Theorem 6.3, we characterise the asymptotic distribution of the LR test, under
H0 and H1 in the target-dependent MI game.

Theorem 6.3 (Asymptotic distribution of the LR score). Using an Edgeworth asymptotic expansion
of the likelihood ratio score and a Lindeberg-Feller central limit theorem, we show that

(a) Under H0,
ℓn(µ̂n; z⋆, µ, Cσ)⇝ N

(
−1

2m
⋆,m⋆

)
(b) Under H1,

ℓn(µ̂n; z⋆, µ, Cσ)⇝ N
(1

2m
⋆,m⋆

)
The convergence is a convergence in distribution, such that d, n→∞, while d/n = τ . We call

m⋆ ≜ lim
n,d

1
n
∥z⋆ − µ∥2

C−1
σ

= lim
n,d

d∑
j=1

(z⋆j − µj)2

nσ2
j

the leakage score of target z⋆.

Proof Sketch. The proof has three main steps. First, we rewrite the LR score with respect to
dn,j the density of the centred normalised mean √n

(
µ̂n,j−µj

σ

)
. Then, we use the Edgeworth

asymptotic expansion (Theorem 2.41) of dn,j to get an expansion of the LR score. Finally,
we conclude the asymptotic distribution of the LR test using the Lindeberg-Feller theorem
(Theorem 2.40). The detailed proof of Theorem 6.3 is presented in Appendix D.1.

Using testing results between Gaussians, we retrieve the leakage and trade-off functions.

Corollary 6.4 (Target-dependent leakage of the empirical mean). The asymptotic target-dependent
leakage of z⋆ in the empirical mean is

lim
n,d

ξn(z⋆,Memp
n ,D) = Φ

(√
m⋆

2

)
− Φ

(
−
√
m⋆

2

)
. (6.2)
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The asymptotic trade-off function, achievable with threshold τα = −m⋆

2 +
√
m⋆Φ−1(1− α), is

lim
n,d

Pown(ℓn, α, z⋆) = Φ
(
Φ−1(α) +

√
m⋆
)
. (6.3)

Proof. From the asymptotic distribution of the LR score, we get directly that

lim
n,d

ξn(z⋆,Memp
n ,D) = Pr

(
N
(
−m

⋆

2 ,m⋆
)
< 0

)
− Pr

(
N
(
m⋆

2 ,m⋆
)
< 0

)
= Φ

(
m⋆/2√
m⋆

)
− Φ

(
−m

⋆/2√
m⋆

)
= Φ

(√
m⋆

2

)
− Φ

(
−
√
m⋆

2

)

The threshold τα for which the asymptotic LR attack achieves significance α verifies:

Pr
(
N
(
−m

⋆

2 ,m⋆
)
≥ τα)

)
= α

Thus τα = −m⋆

2 +
√
m⋆Φ−1(1− α).

Finally, we find the power of the test by

lim
n,d

Pown(ℓn, α, z⋆) = Pr
(
N
(
m⋆

2 ,m⋆
)
≥ τα

)
= Pr

(
m⋆

2 +
√
m⋆N (0, 1) ≥ −m

⋆

2 +
√
m⋆Φ−1(1− α)

)
= Pr

(√
m⋆N (0, 1) ≥ −m⋆ −

√
m⋆Φ−1(α)

)
= Pr

(
N (0, 1) ≤

√
m⋆ + Φ−1(α)

)
= Φ

(
Φ−1(α) +

√
m⋆
)

Empirical LR attack. Following the proof of Theorem 6.3, we show in Remark D.1 that

ℓn(µ̂n; z⋆, µ, Cσ) ∼ (z⋆ − µ)TC−1
σ (µ̂n − µ)− 1

2n∥z
⋆ − µ∥2

C−1
σ

(6.4)

asymptotically in n and d. Equation (6.4) shows that the LR score is a scalar product between
z⋆ − µ and µ̂n − µ, corrected by the precision matrix C−1

σ . The optimal LR score is computed
using the true mean µ and covariance matrix Cσ. A straightforward way to convert it into
a realistic attack is by replacing the true mean µ and covariance Cσ in Equation (6.4) with
empirical estimates. We can use a set of reference points Dref

n0 ≜ {Z
ref
1 , . . . , Zref

n0 } sampled
independently from Z1, . . . , Zn, z

⋆ to get µ̂0 = 1
n0

∑n0
i=1 Z

ref
i and Ĉ0 = 1

n0

∑n0
i=1 Z

ref
i (Zref

i )T . This
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leads to an empirical LR score

ℓemp
n (µ̂n; z⋆, Dref

n0 ) = (z⋆ − µ̂0)T Ĉ−1
0 (µ̂n − µ̂0)− 1

2n∥z
⋆ − µ̂0∥2Ĉ−1

0
. (6.5)

Since the attack estimates the mean and covariance, the empirical LR attack is no longer optimal.
The drop in the empirical LR attack’s power depends on the estimation’s accuracy, and thus on
n0 the number of reference points.
Connection to [SOJH09]. For Bernoulli distributions, [SOJH09] shows that the LR test in the
“average-target” MI game is asymptotically distributed asN

(
−1

2τ, τ
)
underH0 andN

(
1
2τ, τ

)
under H1. Since Ez⋆∼D

[
∥z⋆ − µ∥2

C−1
σ

]
= d, we have Ez⋆∼D [m⋆] = limn,d

d
n = τ . Thus, our

results retrieve the “averaged” results of [SOJH09, Section T8.1.1], which we presented in
Section 2.3.4. To prove their result, [SOJH09] uses an analysis tailored only for Bernoulli
distributions. (a) The starting point of the proof is an exact characterisation of the LR score, only
true for Bernoulli distribution, i.e. ℓn(µ̂n; z⋆, µ, Cσ) =

∑d
j=1 z

⋆
j log

(
µ̂n,j

µj

)
+ (1− z⋆j ) log

(
1−µ̂n,j

1−µj

)
for every n [SOJH09, Sec. T1.2]. (b) The proof also uses specific concentration results of
Bernoulli distributions [SOJH09, Sec. T8.1.2]. Our analysis generalises their results without
assuming the knowledge specific to Bernoulli distributions.
Connection to the scalar product attack. [DSS+15] proposes a scalar product attack for tracing
the empirical mean that thresholds over the score sscal(µ̂n; z⋆, zref) ≜ (z⋆ − zref)T µ̂n. The
intuition behind this attack is to compare the target-output correlation (z⋆)T µ̂n with a reference-
output correlation (zref)T µ̂n. The analysis of [DSS+15] shows that with only one reference
point zref ∼ D, and even for noisy estimates of the mean, the attack is able to trace the data
of some individuals in the regime d ∼ n2. Our asymptotic analysis shows that the LR test is also a
scalar-product attack (Equation (6.4)), but corrected for the geometry of the data using the inverse
covariance matrix. If the data-generating distribution has the same variance over the columns,
i.e. Cσ = σId, the LR test and the scalar product test are equivalent up to a multiplicative
constant, and thus, have the same power.
Explaining the privacy onion effect. Removing a layer of outlier points is equivalent to sam-
pling from a new data-generating distribution, with a smaller variance. In this new data-
generating distribution with smaller variance, the points which are not removed will naturally
have an increased Mahalanobis distance. Thus, removing a layer of outlier points yields a layer
of newly exposed target points. Hence, the Mahalanobis leakage score explains the privacy
onion effect [CJZ+22].
Inherent privacy of the empirical mean. The hypothesis testing interpretation of Differential
Privacy (DP) implies a trade-off between the Type-I and the Type-II errors of any adversary
trying to infer the presence of any target point, under any data-generating distribution. Our
results show that, under the specific threat model of the MI games, the empirical mean already
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imposes a trade-off between the Type-I and Type-II errors of any MI adversary. Another
way to interpret the result is that, if an auditor uses the fixed-target MI game to audit the
privacy of the empirical mean, the auditor would conclude that the empirical mean is

√
m⋆-

Gaussian DP [DRS19], or equivalently (ε, δ)-DPwhere for all ε ≥ 0, δ(ε) = Φ
(
− ε√

m⋆ +
√
m⋆

2

)
−

eεΦ
(
− ε√

m⋆ −
√
m⋆

2

)
.The result is a direct consequence of Equation (6.3) and [DRS19, Corollary

2.13].
The column-wise independence asymption. Our analysis assumes that the data-generating
distribution D is a product distribution, i.e. the columns of the input are independent. This
assumption is standard and has been used in different related works in the tracing litera-
ture [HSR+08, SOJH09, DSS+15]. Our proof could be adapted to the dependent case using
a multivariate Edgeworth expansion in the likelihood ratio test. The same conclusions of our
analysis will follow, with the only difference being that the covariance matrix will no longer
be diagonal but a full matrix. To rigorously use a high-dimensional multivariate Edgeworth
expansion, additional technical assumptions must be added, making the analysis very technical
without yielding additional insights. We leave it as a future direction to adapt the proof to the
dependent case.

6.5 Impact of PrivacyDefences andMisspecification on the Leakage

We quantify the effect of adding noise and sub-sampling on the leakage of the empirical mean.
Both defences act like contractions of the leakage score. We also study the effect of target
misspecification. The detailed proofs for this section are presented in Appendix D.

6.5.1 Effect of adding noise

Wedenote byMγ
n themechanism releasing the noisy empiricalmean of a dataset using theGaus-

sian mechanism [DR14b]. Specifically,Mγ
n takes as input a dataset of size n of d-dimensional

points, i.e.D = {Z1, . . . , Zn} ∈ (Rd)n, and outputs the noisymean µ̃n ≜ 1
n

∑n
i=1 Zi+ 1√

n
Nd ∈ Rd,

where Nd ∼ N (0, Cγ) such that γ = (γ1, . . . , γd) ∈ Rd and Cγ = diag
(
γ2

1 , . . . , γ
2
d

)
∈ Rd×d.

Similar to Section 6.4, we assume that the data-generating distribution D is column-wise inde-
pendent, has a mean µ ≜ (µ1, . . . , µd) ∈ Rd, a covariance matrix Cσ ≜ diag(σ2

1, . . . , σ
2
d) ∈ Rd×d,

and a finite (4 + δ)-th moment.
The LR score forMγ

n is

ℓ̃γn(µ̃n; z⋆, µ, Cσ) =
d∑
j=1

log
(
p̃in
n,j(µ̃n,j ; z⋆j , µj , σj)
p̃out
n,j (µ̃n,j ; z⋆j , µj , σj)

)
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where µ̃n = (µ̃n,j)dj=1, p̃out
n,j is the distribution of µ̃n,j under b = 0, and p̃in

n,j is the distribution of
µ̃n,j under b = 1.

The output ofMγ
n could be re-written as µ̃n = 1

n

∑n
i=1(Zi +Ni), where (Ni) ∼i.i.d N (0, Cγ).

Thismeans thatMγ
n could be seen as the exact empiricalmean ofn i.i.d samples from a newdata-

generating distribution D̃ ≜ D⊗N (0, Cγ). i.e. µ̃n = 1
n

∑n
i=1 Z̃i, where Z̃i ∼ D̃. This means

that the results of Section 6.4 directly apply toMγ
n, by replacing D by D̃. The Mahalanobis

distance of z⋆ with respect to D̃ is ∥z⋆−µ∥(Cσ+Cγ)−1 , where ∥z⋆−µ∥2(Cσ+Cγ)−1 =
∑d
j=1

(z⋆
j −µj)2

σ2
j +γ2

j
.

We call
m̃⋆
γ ≜ lim

n,d

1
n
∥z⋆ − µ∥2(Cσ+Cγ)−1

the noisy leakage score.

Theorem6.5 (Target-dependent leakage of the noisy empiricalmean). As d, n→∞ s.t. d/n = τ ,
ℓ̃γn(µ̃n; z⋆, µ, Cσ)⇝ N

(
− m̃⋆

γ

2 , m̃⋆
γ

)
under H0, and ℓ̃γn(µ̃n; z⋆, µ, Cσ)⇝ N

(
m̃⋆

γ

2 , m̃⋆
γ

)
under H1.

The asymptotic target-depend leakage of z⋆ in the noisy empirical mean is

lim
n,d

ξn(z⋆,Mγ
n,D) = Φ


√
m̃⋆
γ

2

− Φ

−
√
m̃⋆
γ

2

 .
The optimal trade-off function, achievable with the threshold τα = − m̃⋆

γ

2 +
√
m̃⋆
γΦ−1(1− α), is

lim
n,d

Pown(ℓ̃n, α, z⋆) = Φ
(
Φ−1(α) +

√
m̃⋆
γ

)
.

Theorem 6.5 shows that the Gaussian Mechanism acts by increasing the variance of the
data-generating distribution, thus decreasing the Mahalanobis distance of target points and
their leakage.

6.5.2 Effect of sub-sampling

Weconsider the empirical meanwith sub-samplingmechanism [BBG18]Msub,ρ
n that uniformly sub-

samples kn rows without replacement from the original dataset, and then computes the exact
empirical mean of the sub-sampled rows.Msub,ρ

n takes as input a dataset D = {Z1, . . . , Zn} ∈
(Rd)n and outputs µ̂sub

kn
≜ 1

kn

∑n
i=1 Zi1 (ς(i) ≤ kn) . Here, kn ≜ ρn, 0 < ρ < 1 and ς ∼unif Sn

is a permutation sampled uniformly from the set of permutations of {1 . . . , n}, i.e. Sn, and
independently from (Z1, . . . , Zn). The LR score forMsub,ρ

n is

ℓsub,ρ
n (µ̂sub

n ; z⋆, µ, Cσ) =
d∑
j=1

log

 pin,sub
n,j (µ̂sub

n,j ; z⋆j , µj , σj)
pout,sub
n,j (µ̂sub

n,j ; z⋆j , µj , σj)

 .
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Here, µ̂sub
n = (µ̂sub

n,j )dj=1, pout,sub
n,j is the distribution of µ̂sub

n,j under b = 0, and pin,sub
n,j is the distri-

bution of µ̂sub
n,j under b = 1.

Theorem 6.6 (Target-dependent leakage of the sub-sampling empirical mean). As d, n →
∞ s.t. d/n = τ , ℓsub,ρ

n (µ̂sub
n ; z⋆, µ, Cσ) ⇝ N

(
−ρm⋆

2 , ρm⋆
)
under H0, ℓsub,ρ

n (µ̂sub
n ; z⋆, µ, Cσ) ⇝

N
(
ρm⋆

2 , ρm⋆
)
under H1.

The asymptotic target-dependent leakage of z⋆ inMsub,ρ
n is

lim
n,d

ξn(z⋆,Msub,ρ
n ,D) = Φ

(√
ρm⋆

2

)
− Φ

(
−
√
ρm⋆

2

)
.

The optimal trade-off function obtained with τα = −ρm⋆

2 +
√
ρm⋆Φ−1(1− α), is

lim
n,d

Pown(ℓsub,ρ
n , α, z⋆) = Φ

(
zα +

√
ρm⋆

)
.

Proof sketch. The proof uses the same three steps of the proof of Theorem 6.3. The additional
technical hardness of this proof comes from the "mixture" nature of the "in" distribution pin,sub

n,j ,
due to the sub-sampling. The detailed proof is presented in Appendix D.3.

Theorem 6.6 shows that the sub-sampling mechanism acts by increasing the number of
“effective samples” from n to n/ρ, thus decreasing the leakage score.

6.5.3 Attacking with a misspecified target

Now, we suppose that the adversary has a misspecified target ztarg, i.e. different from the real
z⋆ in the fixed-target MI game (Algorithm 12). The adversary then builds the LR test tailored
for ztarg, i.e.

ℓn(µ̂n; ztarg, µ, Cσ),

where ℓn is defined in Section 6.4. The misspecified adversary will never be optimal, but it can
still leak enough information depending on the amount of misspecification. In the following,
we quantify the sub-optimality of the misspecified adversary, which we define as a measure
of leakage similarity between ztarg and z⋆, i.e.we quantify how much ztarg leaks information
about the presence of z⋆.

Theorem 6.7 (Leakage of a misspecified adversary). LetAmiss the adversary that uses the misspec-
ified LR score ℓn(µ̂n; ztarg, µ, Cσ). Then,

lim
n,d

Advn(Amiss) = Φ
(
|mscal|

2
√
mtarg

)
− Φ

(
− |m

scal|
2
√
mtarg

)
.
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x

x

x

Figure 6.1 – The effect of misspecifying the target datum depends on the relative angle θ, between z⋆−µ
and ztarg − µ, corrected by C−1

σ .

Here,mscal ≜ limn,d
1
n

(
ztarg − µ

)T
C−1
σ (z⋆ − µ) andmtarg ≜ limn,d

1
n∥z

targ − µ∥2
C−1

σ
.

If the MI adversary had well specified the target datum, i.e. used z⋆ rather than ztarg, then
they achieve the optimal asymptotic advantage

lim
n,d

ξn(z⋆,Memp
n ,D) = Φ

(√
m⋆

2

)
− Φ

(
−
√
m⋆

2

)
.

Theorem 6.7 quantifies the sub-optimality of the misspecified adversary, which is

∆(ztarg, z⋆) = lim
n,d

ξn(z⋆,Memp
n ,D)−Advn(Amiss).

Indeed, ∆(ztarg, z⋆) ≥ 0, since by the Cauchy Schwartz inequality, |mscal| ≤
√
mtargm⋆. The

misspecified attack is still strong as long as
√
mtargm⋆ − |mscal| =

√
mtargm⋆(1− |cos(θ)|) stays

small. We geometrically illustrate θ in Figure 6.1.
Proof sketch. The proof uses the same three steps of the proof of Theorem 6.3. The difference in
the proof happens at the step of computing the expectations and variances before concluding
using the Lindeberg-Feller theorem. The detailed proof is presented in Appendix D.4.

6.6 Experimental Analysis

We validate the theoretical analysis empirically on synthetic data.
We test: Are the powers of the LR tests tightly determined by Theorem 6.3, Theorem 6.5, and

Theorem 6.6 for the empirical mean, noisy empirical mean, and sub-sampled empirical mean mechanisms,
respectively?
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Table 6.1 – Target-dependent leakage score in different settings
Setting Leakage Score

Empirical mean 1
n∥z

⋆ − µ∥2
C−1

σ

Gaussian Noise (γ > 0) 1
n∥z

⋆ − µ∥2(Cσ+Cγ)−1

Sub-sampling (ρ < 1) ρ
n∥z

⋆ − µ∥2
C−1

σ

Similar point 1
n

(
z⋆targ − µ

)T
C−1
σ (z⋆true − µ)

Experimental setup. We take n = 1000, τ = 5, and thus, d = 5000. The data-generating
distribution D is a d dimensional Bernoulli, with parameter p ∈ [0, 1]d. The three mechanisms
considered areMemp

n ,Mγ
n andMsub,ρ

n . The adversaries chosen for each mechanism are the
thresholding adversaries based on the asymptotic approximations of LR tests, as in our analysis.
Finally, we choose three target data points in {0, 1}d. (a) The easiest point to attack z⋆easy is the
point with the highest Mahalanobis distance with respect to p. It is the point with binary
coordinates furthest away from those of p. z⋆easy = (1 (pi ≤ 1/2))di=1. (b) The hardest point to
attack is z⋆hard = (1 (pi > 1/2))di=1, that has the coordinates closest to p. (c) A medium point to
attack z⋆med is randomly sampled from the data-generating distribution Bern(p), for which the
Mahalanobis distance and the leakage score are of orders d and τ = d/n.

Results and discussions. We illustrate the results in Figure 6.2. (a) Impact ofm⋆, noise, and
sub-sampling ratio: Figure 6.2 (a) shows that the power of LR test uniformly increases with an
increase inm⋆. Figure 6.2 (b) shows that the power of the LR test uniformly decreases with
an increase in the noise variance γ2 of the Gaussian mechanism. Figure 6.2 (c) shows that
the power of the LR test uniformly decreases with a decrease in the sub-sampling ratio ρ. (b)
Tightness of the power of test analysis: Figure 6.2 validates that our theoretical analysis tightly
captures the impacts of the target-dependent hardness of leakage and privacy-preserving
mechanisms on the experimental ROC curves.

6.7 Conclusion

We study fixed-target MI games, and characterise the target-dependent leakage and trade-off
functions of the empirical mean and its variations. We summarise the results in Table 6.1. We
show that the leakage due to a target point depends on its Mahalanobis distance from the
mean of the data generating distribution, and captures precisely the hardness of fixed-target
MI games. Our generic analysis captures the impact of different DP mechanisms, like Gaussian
noise addition, sub-sampling, and using a misspecified target datum on the leakage. Finally,
we numerically validate our theoretical results.
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Figure 6.2 – Experimental demonstration of the theoretical results and impacts ofm⋆, noise, and sub-
sampling ratio on leakage. Dotted lines represent theoretical bounds and solid lines represent the
empirical results.
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Chapter 7

White-Box Membership Inference
Games for Gradient Descents

In this chapter, we focus on auditing supervised learning gradient descent algorithms.
The main observation is that gradient descent algorithms operate by sequentially updating a
parameter estimate θt in the direction of the empirical mean of gradients. Thus, if an auditor has
access to all the intermediates parameters {θt}t, i.e. the white-box federated learning setting,
auditing gradient descent algorithms reduces to auditing the empirical mean mechanism.
Using this observation, we use the results of target-dependent MI games for the empirical
mean from Chapter 6 to propose (a) an optimal covariance attack for gradient descents and (b)
an optimal canary selection strategy based on the Mahalanobis leakage score. We test the two
methods for a logistic regression algorithm trained on the FMNIST dataset and a CNN model
trained on the CIFAR10 dataset. Our results show that the covariance attack improves over
the scalar product attack for gradients. Also, the Mahalanobis score predicts the hardness of
the MI game well and thus provides good candidates for canaries. We also connect our attack
and canary strategy to the heuristics proposed in the white-box federated learning auditing
literature.
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7.1 The White-Box Federated Learning Setting

In this section, we present the white-box federated learning setting for privacy auditing. Then,
we discuss techniques from the literature in this setting, both attack strategies and canary
selection strategies.

7.1.1 Presentation of the threat model

First, we recall the learning problem’s setting. We adhere to supervised learning, where the
(private) input dataset contains n examples of features and label pairs, i.e.D ≜ {(xi, yi)}ni=1.
The goal in supervised learning is to learn a model f that explains well the dataset D. We
suppose that the model f is parameterised, i.e. f = fθ. This reduces the learning problem to
finding the best parameter θ ∈ Rd which explains the dataset D with respect to a loss function
ℓ, i.e. to find θ⋆ ≜ arg minθ∈Rd

1
n

∑n
i=1 ℓ(fθ(xi), yi). Throughout this chapter, we only focus

on gradient descent algorithms. Gradient Descent algorithms start with an initial parameter
θ0 ∈ Rd, and then update sequentially the parameter at each step t by

θt ≜ θt−1 − ηt∇θt−1Q(θt−1),

where ηt is the learning rate at step t, and Q(θt−1) is a quantity that depends on the loss on
"some input samples". For example,

(a) in batch gradient descent

∇θt−1Q(θt−1) ≜ 1
n

n∑
i=1
∇θt−1ℓ(fθt−1(xi), yi)

is the gradient with respect to the whole dataset.

(b) in mini-batch gradient descent, the dataset is divided into a set of mini-batchesD = ∪Bk.
At each step t, a mini-batch B is sampled uniformly and

∇θt−1Q(θt−1) ≜ 1
|B|

∑
i∈B
∇θt−1ℓ(fθt−1(xi), yi).

We call |B| the batch size.

(c) in stochastic gradient descent,

∇θt−1Q(θt−1) ≜ ∇θt−1ℓ(fθt−1(xi), yi),

where i ∼ U([1, n]) is sampled randomly from {1, n}.
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(d) in DP-SGD [ACG+16],

∇θt−1Q(θt−1) ≜
(

1
|B|

∑
i∈B

ClipNormC

[
∇θt−1ℓ(fθt−1(xi), yi)

])
+N

(
0, γ2C2Id

)
,

where B is again a batch uniformly sampled, ClipNormC(x) ≜ min{1, C/∥x∥}x is the
clipping norm function, i.e. ClipNormC(x) = x if ∥x∥ ≤ C otherwise ClipNormC(x) =
C x

∥x∥ . Here, C > 0 is a gradient norm bound and γ > 0 is the noise magnitude. DP-SGD
can be shown to verify a DP constraint, where the privacy budget depends on the clipping
gradient norm C, the noise γ, the batch size |B| and the number of gradient iterations T .

The goal is to audit the privacy guarantee of gradient descent algorithms. Specifically, the
mechanism to be audited is the "training" algorithm that takes as input the private dataset
D ≜ {(xi, yi)}ni=1, and produces sequentially the parameter estimates {θt}Tt=1. Depending on
which part the auditor can observe, it is possible to define different threat models. In the white-
box federated learning setting, the auditor can observe the full sequence of iterates {θt}Tt=1.
On the other hand, in the white-box final parameter setting, the auditor only observes the last
iterate θT . For both these two settings, the auditor observes the value of the parameter θ ∈ Rd,
either the last one or the full intermediate ones. In contrast, the auditor has only query access
to the final model θt in the black box model, i.e. the auditor can choose an input x to send to
the model, and observes the output fθT

(x) of the final model.
The white-box federated learning setting is a fundamental setting for understanding privacy

auditing. In addition, this setting has practical uses too. For example, a potential use of this
setting is for "debugging" implementations of private gradient descent algorithms. In this
case, the auditor is the programmer trying to release an implementation of their favourite
private descent algorithm. To verify the guarantees of their algorithm, the programmer runs
a white-box federated learning audit on their implementation and compares the empirical
privacy guarantees retrieved with the theoretical analysis. The white-box federated learning
setting captures well this use case since the auditor is the programmer themselves, and thus
have access to all the intermediate iterates.

On the other hand, as the name of the setting suggests, another natural application of
this threat model is auditing the private Federated Learning (FL) protocol. In a standard FL
protocol (Figure 7.1), a server computes a global model θt at each step t by taking the (noisy)
average of client updates, where each client computes a gradient estimate using their local
datasets. We suppose that the auditor is also a client in an "honest-but-curious" FL protocol,
i.e. the auditor plays the role of the "adversary" but follows the rules of the protocol: At each
step t of the protocol, the server sends a global model θt to each client. Then, each client i
computes their local gradient update gt,i and sends it to the server. The auditor, being also a
client in the protocol, computes a gradient update g⋆t ≜ ∇θtℓ(fθt(x⋆), y

⋆) on their local "canary"
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Server

Client 1

Client 2

Client N

Auditor

Aggregtation

Figure 7.1 – The White-box Federated learning threat model. At each step, the server sends a global
model θt to each client. The auditor is a client, too. Each client i computes and sends the local update
gi,t to the server. The auditor also computes the local update g⋆ on a canary z⋆, and sends it to the global
server with probability 1/2. The server aggregates the updates received to compute θt+1.

datapoint z⋆ ≜ (x⋆, y⋆), i.e. the most-leaking sample. Then, the auditor sends the gradient
update to the server with probability 1/2, or otherwise sends nothing to the server. In the next
step of the interaction, the auditor observes the new updated global model θt+1. The goal of the
auditor is to decide based solely on θt+1, θt and g⋆t whether the canary update was indeed sent
to the server or not. This is exactly a tracing problem of the aggregation mechanism, which is
generally a variant of the empirical mean. To design an audit in this setting, the auditor has to
design two algorithms. First, an attack score to determine based on θt+1, θt and g⋆t whether g⋆t
was included in θt+1 or not, i.e. a score function that takes as input θt+1, θt and g⋆t and outputs
a score that would be high if the canary was included, otherwise the score is low. The auditor
also needs to choose a good canary z⋆t at each step t. A good canary should be an easy point to
trace, i.e. , one for which the target-dependent leakage is high.

To summarise, auditing a gradient descent algorithm (batch, minibatch and DP-SGD) in
the white-box federated learning setting reduces to auditing variants of the empirical mean
mechanism, applied to loss gradient data {∇θt−1ℓ(fθt−1(xi), yi)}ni=1. In turn, as explained above
and also in more detail in Section 2.3.7, designing an audit algorithm reduces to designing an
MI attack (or score) and a canary-selection strategy which determines how to choose the target
point for the MI attack. In the following, we present the main techniques used in the white-box
federated learning auditing literature. Then, we show how our results from analysing the
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target-dependent hardness of MI games can be used to design a new score and a new canary
selection strategy for white-box gradient descent algorithms.

7.1.2 Related works

We present the MI scores and canary selection strategies used in the white-box federated
learning literature.
Attack scores. The scalar product [DSS+15] is themost popular score used inwhite-box attacks
in the literature [MSS22, NHS+23, SNJ23, AKO+23]. The scalar product score takes as input
θt+1, θt and g⋆t and outputs the scalar product ⟨θt+1 − θt, g⋆t ⟩. This score is a direct application
of the tracing attack against of [DSS+15] to the white-box federated learning setting, since
θt+1 − θt is an empirical-mean like quantity.

On the other hand, [LPK23] proposes a different score attack, called Gradient Likelihood
Ratio (GLiR) Attack, i.e.Algorithm 1 in [LPK23]. This attack is based on an analysis of the
LR test of the empirical mean. However, the analysis of [LPK23] arrives at a different score
function compared to our results. Specifically, let gtbatch = θt+1−θt

ηt
be the batch gradient. Then,

the GLiR attack needs to estimate an empirical mean µ̂0 and covariance Ĉ0 of reference data’s
gradient. Then, the attack computes the statistics Ŝ = (|B| − 1)(gtbatch − g⋆t )T Ĉ

−1
0 (gtbatch − g⋆t )

and K̂ = ∥Ĉ−1/2
0 (µ̂0 − g⋆t )∥. The GLiR score is

sGLiR(gtbatch, g⋆t ) = log
(
F−1
χ2

d
(|B|K̂)

(
Ŝ
))

where F−1
χ2

d
(γ) is the inverse of the CDF of the non-central chi-squared distributionwith d degrees

of freedom and non-centrality parameter γ and |B| is the batch size. For some threshold τ , if
sGLiR(gtbatch, g⋆t ) < τ , the GLiR attack suggests that g⋆ was included, otherwise it was not.

We connect the GLiR score to our covariance attack in Section 7.2, and provide some
comments on the LR analysis of [LPK23].
Canary selection strategies. The main intuition for canary selection strategies in the literature
is to propose heuristics to generate out-of-distribution data [JUO20, MSS22, NHS+23, SNJ23,
AKO+23]. For example, [NHS+23] proposes the Dirac canary strategy which suggests to use
as canaries gradient updates with all the values zero except at a single index. The intuition
behind this choice is that the sparse nature of the Dirac gradient makes it an out-of-distribution
sample in natural datasets. For CIFAR10, [NHS+23] shows the effectiveness of such a canary
choice for auditing neural nets in the white-box federated learning setting. The Dirac canary
is a type of gradient canaries, because it directly suggests what gradient g⋆ the auditor should
include or not in the training. The other type of canaries is input canaries. As the name suggests,
input canaries are pairs of features and label z⋆ = (x⋆, y⋆) that the auditor chooses to include
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or not in the training. There are different heuristics in the literature to generate input canaries,
i.e.mislabeled examples or blank examples [NHS+23], or adversarial examples [JUO20]. In
Section 7.3, we explain the experimental success of Dirac canaries using our Mahalanobis
leakage score, and propose a new canary selection strategy based on Mahalanobis leakage
score that can be used to generate both gradient and input canaries.

On the other hand, [MSS22] proposes CANIFE, an algorithm that learns to craft canaries
by back-propagating to the input level the following loss function

ℓCANIFE(z⋆) ≜
nr∑
i

⟨ui, g⋆t ⟩
2 + max(C − ∥g⋆t ∥, 0)2. (7.1)

Here, g⋆t ≜ ∇θtℓ(fθt(x⋆), y⋆) is the gradient of the loss of the canary z⋆ at step t, ui is the
gradient of the loss with respect to a reference sample and nr is the number of reference
samples. CANIFE can be used to craft an input canary z⋆ by directly minimising the loss
ℓCANIFE. We connect the CANIFE loss to our Mahalanobis score in Section 7.3.

7.2 The Covariance Score for Gradient Descents

We present our covariance attack in Algorithm 13. Given a target gradient of g⋆t and the
batch gradient gtbatch ≜

θt+1−θt

ηt
, the covariance attack at step t uses the empirical LR score of

Equation (6.5) to provide the covariance score

scov
t = (g⋆t − µ̂t0)T (Ĉt0)−1

(
gtbatch − µ̂t0

)
− 1

2|B|∥g
⋆
t − µ̂t0∥2(Ĉt

0)−1 . (7.2)

Here, µ̂t0 and Ĉt0 are the estimated empirical mean and empirical variance of the loss computed
on reference samples {(x1, y1), . . . , (xnr , ynr )} at step t.

Let us suppose that the auditor wants to run the attack over only one step t of the gradient
descent iterations. Then, an attack over a "one-step update" is exactly an attack on the "empirical
mean" gtbatch. In this case, µ̂t0 and Ĉt0 in Equation (7.2) are estimated using the gradients at
step t of the reference samples, i.e. µ̂t0 = 1

nr

∑nr
i uti and Ĉt0 = 1

nr

∑nr
i uti(uti)T , where uti ≜

∇θtℓ(fθt(xi), yi).
The covariance attack can also be used to trace gradient descent algorithms over multiple

steps of gradient iterations. At each step t, the attack computes the score scov
t . Then, the final

score over T iterations is just the sum of scores∑T
t=1 s

cov
t . This sum is big if at least the target

datapoint z⋆ is detected at one iteration. Otherwise, if the target is not detected at any step, the
sum of scores is low. For the covariance attack of Algorithm 13 to be able to trace the presence
of a target point z⋆ = (x⋆, y⋆)
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Algorithm 13 The covariance attack
1: Input: Estimated (µ̂0, Ĉ0), canary z⋆ = (x⋆, y⋆), learning rates (ηt), batch size |B|, number

of gradient steps T .
2: for t = 1, · · · , T do
3: Set g⋆t = ∇θtℓ(fθt(x⋆), y⋆)
4: Set gtbatch = (θt+1 − θt)/ηt
5: Compute scov

t = (g⋆t − µ̂0)T Ĉ−1
0
(
gtbatch − µ̂0

)
− 1

2|B|∥g
⋆
t − µ̂0∥2Ĉ−1

0
6: end for
7: Return∑T

t=1 s
cov
t

Ideally, each score scov
t in Equation (7.2) should be computedwith newly estimatedmean µ̂t0

and covariance Ĉt0 of the gradients at step t. However, this may be computationally expensive.
To deal with this, in Algorithm 13, we only estimate µ̂0 and covariance Ĉ0 once at the beginning
of an epoch, i.e. using θ0. The covariance attack at each step t is computed using the same
estimated µ̂t0 and Ĉt0, and then summed over the iterations. This means that at each step
t > 1, the covariance attack of Algorithm 13 uses a misspecified reference empirical mean and
covariance. On the other hand, if the number of iterations is small enough, for example by
running the attack on only one epoch, then we can argue that the model parameters did not
change much, and the effect of misspecification is negligible.

The covariance attack of Algorithm 13 is provably better than the scalar product attack, at
the expense of estimating the inverse of the covariance matrix well. The shape of the covariance
matrix is d×d, where d is the number of parameters of the model θ. This means that storing and
inverting this covariancematrix is computationally expensive formodels withmany parameters.
A simple trick to deal with this problem is only running the attack on a subset of the parameters.
For example, we can run the covariance attack over the last layer of a neural net. If the last layer
has dℓ parameters, the covariance matrix becomes dℓ × dℓ with dℓ ≪ d.

As Section 7.1.2 explains, [LPK23] also provides a score based on analysing the LR test. We
provide the following remarks to connect our analysis to that of [LPK23].

(a) In Step 1 of the proof, in [LPK23, Section E.1.] declares that "We suppose that the
number of averaged samples is sufficiently large such that we can apply the Central Limit
Theorem", and thus, considers1 under H0,

µ̂n ∼ N
(
µ,

1
n
Cσ

)
(7.3)

and under H1,
µ̂n ∼ N

( 1
n
z⋆ + n− 1

n
µ,
n− 1
n2 Cσ

)
. (7.4)

1Following equations are restatements of Equations 45 and 46 of [LPK23] using our notations.

157



White-Box Membership Inference Games for Gradient Descents

However, the Central Limit Theorem is a "limit in distribution" of the empirical means. Thus,
the limit distribution of µ̂n is just the constant µ under both H0 and H1. The effect of z⋆ disappears
in this statement, as n → ∞. For their claim to be “rigorously” correct, one should assume
that the data-generating distribution is exactly a Gaussian distribution. This gives the exact
distribution of µ̂n under H0 and H1 as expressed by the two equations above. Supposing that
the data-generating distributions are Gaussian distributions simplifies the analysis, since now
there is no need to go for asymptotics in n and d, and thus, there is no need for Edgeworth
expansions and Lindeberg CLT. In contrast, our results provide a way to rigorously justify
under which conditions this holistic view of “equivalence to testing between Gaussians” is
correct, i.e. finite 4-th moment of the data distribution.

(b) As a score function, [LPK23] chooses to analyse the distribution of the "norm squared"
of a re-centred and normalised version of the mean i.e. Sn ≈ ∥C−1/2(µ̂n − µ)∥2 while hiding
some constants specific to their analysis. They characterise the distribution of Sn and show that
it is a (scaled) non-central chi-squared distribution with d degrees of freedom, with different
parameters under H0 and H1. In our case, we provide the asymptotic distribution of the LR
score directly under H0 and H1, which provides a simpler covariance score.

7.3 Choosing Canaries Using the Mahalanobis Distance

We present our Mahalanobis-based canary selection strategy in Algorithm 14.
Algorithm 14 can either be run to generate a gradient canary or an input canary. The

algorithm takes as input candidate canaries, either gradients or inputs, and outputs the easiest
point to attack between the proposed candidates. To do so, Algorithm 14 starts by estimating
the reference empirical mean µ̂0 and covariance matrix Ĉ0 of gradients over reference points.
Then, for each canditate canary k, Algorithm 14 computes its estimated Mahalanobis score
m⋆
k with respect to the estimated reference means µ̂0 and Ĉ0. Finally, the algorithm returns

the candidate with the highest estimated Mahalanobis score, i.e. the easiest point to attack
according to the results of Chapter 5.

In addition to proposing a new gradient and a new input canary strategy, our Mahalanobis
score also explains the success of the heuristics presented in Section 7.1.2. Specifically, Dirac
canaries, black examples, or mislabeled examples are all points with highMahalanobis distance,
thus making them great canary candidates. Our Mahalanobis score can also be run over "in-
distribution" canary candidates to find the most leaking one over them. This could come
in handy when the auditor, while trying to participate in the white-box audit protocol (e.g.
Figure 7.1), does not want to hurt the accuracy of the final model. Thus, the auditor wants
to send gradient updates that are helpful for accuracy, i.e. "in-distribution", but with a high
enough Mahalanobis score to be distinguishable. The Mahalanobis score solves the tradeoff
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7.4 Experimental Analysis

Algorithm 14 Canary selection strategy using the Mahalanobis score.
1: Input: {(x1, y1), . . . , (xnr , ynr )} reference points, {(x⋆1, y⋆1), . . . , (x⋆nc

, y⋆nc
)} candidate input

canaries, {g⋆1, . . . , g⋆nc
} candidate gradient canaries.

2: Step1: Estimate the empirical mean and covariance of the gradients
3: Initialise weights and biases of the model i.e. set θ0.
4: for i = 1, · · · , nr do
5: Compute ui = ∇θ0ℓ(fθ0(xi), yi)
6: end for
7: Compute µ̂0 = 1

nr

∑nr
i ui and Ĉ0 = 1

nr

∑nr
i uiu

T
i

8: Return (µ̂0, Ĉ0)
9: Step2: Compute the Mahalanobis score for the candidates, using the estimated mean and

covariance
10: if "Input Canaries" then
11: for k = 1, · · · , nc do
12: Compute g⋆k = ∇θ0ℓ(fθ0(xk), yk)
13: Compute the Mahalanobis scorem⋆

k = ∥g⋆k − µ̂0∥2Ĉ−1
0

14: end for
15: Return (x⋆k⋆ , y⋆k⋆) where k⋆ ≜ arg maxnc

k=1m
⋆
k

16: else "Gradient canaries"
17: for k = 1, · · · , nc do
18: Compute the Mahalanobis scorem⋆

k = ∥g⋆k − µ̂0∥2Ĉ−1
0

19: end for
20: Return g⋆k⋆ where k⋆ ≜ arg maxnc

k=1m
⋆
k

21: end if

between the "accuracy of the model" and the "success of the MI attack" by choosing points with
a moderate Mahalanobis score.

Finally, our Mahalanobis score also explains the CANIFE loss ℓCANIFE of Equation (7.1).
In [MSS22, Appendix A], the intuition to explain the CANIFE loss starts by expressing the
LR score between two Gaussian distributions. Then, [MSS22] concludes that to make the two
Guassians distinguishable (separable) enough, one should maximise (g⋆t )TC−1g⋆t , which is
precisely the Mahalanobis score. Finally, they claim that maximising the score is "equivalent"
to minimising (g⋆t )TCg⋆t , which yields exactly the CANIFE loss ℓCANIFE when substituting
C =

∑
i uiu

⊤
i . Thus, the Mahalanobis score also explains the CANIFE loss, and our results

rigorously justify the success of this approach beyond Gaussian distributions.

7.4 Experimental Analysis

We test: Does the Mahalanobis leakage score explain the target-dependent hardness of MI games on real
datasets? Does the covariance-corrected LR attack improve the scalar product attack?
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Figure 7.2 – Covariance and scalar product attacks.

Experimental Setup. We attack twomodels. We train a single linear layer (Linear(28×28, 10)),
i.e. a Logistic Regressor, on Fashion MNIST (FMNIST) [XRV17]. Thus, the number of weights
and biases in the model is dF = 7850. We train a Convolutional Neural Net (CNN) [LBH15]
with three convolutional layers and a final linear layer on CIFAR10 [KH+09].

The number of weights and biases in CNN is dC = 18786, while the last linear layer has
dL = 4080 parameters. We use a mini-batch SGD with a batch size 64, learning rate 10−3, and
cross-entropy loss for training. We attack the models in a white-box FL setting [MSS22]. First,
we run Algorithm 14 to estimate the empirical mean and covariance, using nr = 20k reference
points from training data. Then, we estimate the Mahalanobis score for every point in the
training data. Finally, we run the covariance attack (Algo. 13) and a scalar product attack on
the points in the training data with the highest and lowest Mahalanobis scores, i.e. zeasy and
zhard, respectively. The scalar product attack replaces the score st in Algo. 13 with the scalar
product score sscalt = (g⋆t )T gtbatch. Both attacks are run only on one epoch of SGD, i.e. one loop
over the training data. For FMNIST, the attack is implemented with the full gradient of the loss.
For CIFAR10, we only attack the last linear layer of the CNN, leading to dL × dL covariance
matrix rather than dC × dC . This improves our attack’s time and space complexity by storing
and inverting a smaller matrix. It still maintains the strength of the tracing attack since dL is
still significantly larger than the batch size. We show the ROC curves of the two attacks against
easy and hard targets of FMNIST and CIFAR10 in Fig. 7.2.
Results and discussion. Figure 7.2 shows: (a) The point with the highest Mahalanobis score
is easier to attack than the point with the lowest Mahalanobis score for both the datasets and
models. (b) The covariance attack improves on the scalar product attack. (c) Also, in practice,
we can run the covariance attack over one epoch of training and use the same covariance matrix
computed with only the last layer at each step.
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7.5 Conclusion

7.5 Conclusion

This chapter introduces the covariance attack (Algorithm 13) and Mahalanobis canary selec-
tion strategy (Algorithm 14) for white-box federated learning auditing of gradient descent
algorithms. These two algorithms are a direct consequence of analysing the target-dependent
hardness of MI games on variants of the empirical mean mechanisms. Also, these two al-
gorithms can be directly plugged into state-of-the-art auditing procedures, where our new
covariance attack can replace the scalar product, and our Mahalanobis gradient can replace
heuristics used in the literature (i.e.Dirac canaries and black example canaries). Our two
algorithms have the advantage of being provably optimal. On the other hand, the price of
optimality is the computational burden of estimating, storing and inverting a covariance matrix.
We propose only running the attack on the last layer for big neural nets to deal with this extra
computational expense.
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Chapter 8

Conclusion

In this thesis, we have contributed to the field of privacy-preserving data analysis. The main
framework to define privacy throughout the thesis is Differential Privacy (DP). In the first
part, the main setting for studying utility is the stochastic multi-armed bandit problem. For
the second part, the main framework for analysing the leakage of mechanisms is Membership
Inference (MI) games. From both attack and defence points of view, the thesis aims to quantify
the utility-privacy tradeoffs. For bandits, we express the privacy-utility tradeoffs as lower
bounds and matching upper bounds of bandit algorithms’ regret and sample complexity. For
MI games, we express the tradeoffs as bounds on the power of any adversary trying to infer
the presence of a target data point.

In Part I, we study the complexity of bandits under privacy constraints. First, in Chapter 3,
we propose four extensions of DP to the bandit setting: View DP, Table DP, Interactive DP
and DP in the adaptive continual release model. Each definition deals differently with the
challenges of extending DP, i.e. the online and sequential nature of the bandit interaction
with partial feedback. We also provide different relations between the definitions. Then, in
Chapter 4, we provide lower bounds on the minimal regret and sample complexity that any
DP policy should satisfy. We provide a generic proof of the lower bounds, all generated from a
"stochastic generalisation" of group privacy using coupling techniques. The lower bounds show
the existence of two regimes of hardness: a low privacy regime where the hardness of private
bandits reduces to the hardness of non-private bandits, and a high privacy regime where the
extra price of privacy is characterised by new information-theoretic quantities based on the total
variation (i.e. the TVInf and T ⋆TV). Approximatively, the change of regmine from low to high
privacy happens at ε ≈ ∆, where∆ is the order of themean gaps. The lower bounds of Chapter 4
provide a target for optimal algorithm design. In Chapter 5, we provide a generic wrapper to
generate near-optimal private bandits. The main intuition of the wrapper is to compute the
main private statistics of the algorithm on non-overlapping sequences, to add less noise thanks
to parallel composition. The challenge is to find ways to run state-of-the-art bandit algorithms
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in a non-overlapping way, for example, by running in phases without forgetting. We instantiate
the wrapper for finite-armed bandits under ε-Interactive DP (AdaP-UCB and AdaP-KLUCB)
and under ρ-Interactive zCDP (AdaC-UCB), for linear (AdaC-GOPE) and contextual bandits
(AdaC-OFUL) under ρ-Interactive DP, and for Best-arm Identification under ε-Interactive DP
(AdaP-TT and AdaP-TT⋆). For each algorithm, we provide a privacy guarantee resulting from
the generic wrapper and a utility guarantee in terms of upper bounds on the regret or sample
complexity. The upper bounds of each algorithm are compared to the lower bounds and match
up to constants or logarithmic terms, depending on the setting. The theoretical upper bounds
also reflect the two hardness regime observations from the lower bounds, which in turn is
validated by the experimental analysis.

In Part II, we study fixed-target Membership Inference (MI) games. In MI games, the goal
of an adversary is to determine whether a target point was included or not in the input dataset
of a mechanism by only looking at its output. The fixed-target MI game is a threat model for
MI games that models the MI problem as a game between a crafter and an adversary. The
specificity of this game is that the target point is fixed throughout the game. This means that the
metrics of the game, i.e. the advantage and power of the adversary, are target-dependent. Our
main goal is to quantify the target-dependent advantage and power of the optimal adversaries
(the LR test), which we call the target-dependent leakage. For the empirical mean and variants
of interest, we use asymptotic properties from generalisations of the Central Limit Theorem
(CLT) to quantify the optimal advantage and power of the optimal LR attack. The main result
of the analysis is that the hardness of the fixed-target MI game depends on the Mahalanobis
distance between the target z⋆ and the data-generating distribution. Specifically, target points
with high Mahalanobis distance are easy to attack, while points with lowMahalanobis distance
are hard to trace. Another by-product of our asymptotic analysis of the LR score is showing
that the LR score is a scalar product attack, corrected by the inverse of the covariance of the
data-generating distribution. This observation connects the two primary attacks in the tracing
literature, i.e. the LR score and the scalar product attack. It also provides a new covariance
attack that dominates the scalar product attack. Using these two by-products of the asymptotic
analysis, we provide a new MI attack (Algorithm 13) and a new canary-chosing strategy
(Algorithm 14) for auditing gradient descent algorithms, in the white-box federated learning
setting. The main observation is that one step of gradient descent computes the empirical mean
of gradient quantities, and thus, auditing gradient descents reduces to auditing the empirical
mean of gradients. We implement our two algorithms for a logistic regression model trained
with FMNIST and a CNN model trained with CIFAR10. Our results show that the covariance
attack improves on the scalar product attack and that the Mahalanobis leakage predicts well
the hardness of the MI games. Our two algorithms can then be integrated into any auditing
scheme to improve the tightness of the privacy budget estimates.
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Chapter 9

Perspectives

Throughout this thesis’s chapters, we have encountered many open questions worth exploring
in future research.
Privacy Defintions. In Chapter 3, Proposition 3.12 shows that any (ε, δ)-View DP policy is
(ε,KT δ)-Table DP. This means that the conversion from View to Table DP happens at a loss in
the δ parameter. An interesting open problem is to provide an "optimal" conversion from View
DP to Table DP, especially at low δ regimes.
Lower bounds for (ε, δ)-DP. In Chapter 4, all the lower bounds presented are either for ε-pure
DP or ρ-zCDP. The reason behind this is that the coupling techniques of Section 4.2 are based on
the group privacy property. However, the group privacy property for (ε, δ)-DP (Equation (2.5))
has extra terms corresponding to δmaking hard to express this group privacy property as a non-
vacuous upper bound on the DKL (Md ∥Md′). Thus, other techniques should be developed
for this setting, e.g. adapting fingerprinting proofs [BUV14] to the bandit setting.
Contextual bandits under Joint DP. In Chapter 5, we only provide a private contextual linear
bandit algorithm where only the rewards are considered private, while the context is supposed
to be public. In the setting where both rewards and context are private, i.e. Joint DP, it is
still an open problem to design a near-optimal Joint DP bandit algorithm. In particular, the
best regret upper bound is known to be O

(
d
√
T log(T ) + d3/4√T log(1/δ)/

√
ε
)
[SS18], while

the lower bound is Ω
(√

dT log(K) + d/(ε+ δ)
)
[HZZ22]. To solve linear contextual bandits

under JDP, [SS18] propose a variant of LinUCB [AYPS11], where the regression parameter θ is
estimated privately using the tree-based mechanism. Specifically, let us write the least squares
estimator at step t as θ̂t = V −1

t ut, where Vt ≜ λId +
∑t−1
s=1 asa

T
s and ut ≜

∑t−1
s=1 asrs. Then, since

these two quantities are written as sums, [SS18] estimates the quantities Vt and ut privately
using the tree-based mechanism. Let us refer to the private estimations of Vt and ut as Ṽt and ũt.
Thus, θ̃t = Ṽ −1

t ũt and at = arg maxa∈At

〈
θ̃t, a

〉
+
√
β̃t∥a∥Ṽ −1

t
, where β̃t accounts for the noise

addition. [SS18] analyse the corresponding algorithm for adversarial contexts, and show that
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it yields a regret upper bound of O
(
d
√
T log(T ) + d3/4√T log(1/δ)/

√
ε
)
, where the price of

JDP is non-negligible even asymptotically in T . Given the advancements in other settings, we
wonder: Is it possible to propose a JDP variant of LinUCB, such that the price of JDP is negligible
for adversarial contexts?. We postulate that the main bottleneck in the JDP variant of LinUCB
proposed by [SS18] is the "sufficient statistic" method used to make the least square estimator
achieve DP. For example, even for the offline batch setting of regression, [BHH+24] provides
several drawbacks of using the sufficient statistics method for least squares, e.g. requiring d3/2

samples or having errors growing with the condition number of the design matrix. They also
propose a new private version of least squares called ISSP, which is near-optimal and overcomes
the pitfalls of the "sufficient statistic" method. Thus, we ask: Is it possible to propose a JDP variant
of LinUCB based on the ISSP estimator with a negligible price of privacy in the regret?. We discuss the
recent progress on this problem, both from the algorithm design and lower bound techniques,
and posit the open problem in [AB24c].
MI games/auditing on Z-estimators and relation to influence functions. In Chapter 6, the
main technical tool used to provide an asymptotic expansion of the LR test is the "asymptotic
normality" of the empirical mean, i.e. the Edgeworth expansion in Theorem 2.41. Conversely,
the empirical mean estimator is only one instance of a more general class of estimators verifying
the asymptotic normality property, calledZ-estimators. Supposewe are interested in estimating
a parameter θ that is attached (a "functional") of the distribution of observations X1, . . . , Xn.
A popular method to construct an estimator θ̂n = θ̂n(X1, . . . , Xn) is to maximise a criterion
function of the type

θ →Mn(θ) ≜ 1
n

n∑
i=1

mθ(Xi). (9.1)

Here,mθ : X → R̄ are known functions. An estimator maximisingMn is called an Z-estimator.
Often, maximising a function is found by setting a derivative to zero. Therefore, the name
Z-estimator is also used for estimators satisfying a set of equations of the type

Ψn(θ) ≜ 1
n

n∑
i=1

ψθ(Xi) = 0. (9.2)

The class of Z-estimators retrieves the empirical mean with ψθ(Xi) ≜ Xi − θ and the median
with ψθ(Xi) ≜ sign(Xi − θ). The class of Z-estimators also recovers many other estimators of
interest, such as Maximum likelihood estimators, least square estimators and Empirical risk
minimisation.

Under some technical condition on the data-generating distribution and the "regularity" of
the function ψθ, it is possible to show that θn converges in probability to a parameter θ0 a zero
of the function Ψ(θ) ≜ EX(ψθ(X)). Also, for any Z-estimator, Theorem 5.21 in [VdV00] shows
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that
θ̂n − θ0 = −V −1

θ0

1
n

n∑
i=1

ψθ0(Xi) + op

( 1√
n

)
, (9.3)

where Vθ is a non-singular derivative matrix of the map θ → Ψ(θ) at θ0. Generlly, Iθ0(Xi) ≜
V −1
θ0
ψθ0(Xi) is called the influence function. Thus, Equation (9.3) shows that, asymptotically,

any Z-estimator can be thought of as the empirical mean of its influence functions. Using
the results of the target-dependent MI game for the empirical mean mechanism, it is direct to
provide a new covariance and a new canary selection strategy for Z estimators. For the score,
the covariance attack becomes

(Iθ0(X⋆)− θ0)T V −1
θ0

(θ̂n − θ0)− 1
2n∥Iθ0(X⋆)− θ0∥2V −1

θ0
.

Similarly, to choose canaries, find samples for which the estimated Mahalanobis distance of the
influence functions at X⋆ is high, i.e. ∥Iθ0(X⋆)− θ0∥V −1

θ0
. However, we leave it for future work

to provide a rigorous statement of when these statements are correct, i.e. rigorous conditions
on the data-generating distribution and regularity of the ψθ functions.
Tight black-box auditing. In Chapter 7, we propose an attack score and a canary strategy
for auditing gradient descent algorithms in the white-box federated learning setting. These
two ingredients can be plugged into any state-of-the-art auditing procedure [NHS+23, SNJ23,
MSS22] to improve the privacy lower bound estimates. For the white-box federated learning
setting, the audit procedure applied to gradient descent algorithms trained on datasets like
FMINST and CIFAR10 [NHS+23, SNJ23, MSS22] already seems to provide tight estimates of
the privacy budgets. However, the auditing procedures are still not tight in the black-box setting
where the auditor can only query the final trained model. The main score for MI attacks in the
black-box setting are thresholds over the loss computed over the canary [CCN+22]. Specifically,
if the canary is z⋆ = (x⋆, y⋆), then the auditor queries the final model at z⋆ (and augmented
versions of z⋆ [CCN+22]). Then, the auditor computes the loss of the final model at z⋆, i.e.
ℓ(fθT

(x⋆), y⋆). The main intuition is that the loss of the model over a point that is included in
the training is small. Thus the attack concludes that zstar is in when the loss ℓ(fθT

(x⋆), y⋆) is
smaller than some fine-tuned threshold τ . An interesting open problem is to prove optimal
scores for the MI problem in the black-box setting. Are the adversaries thresholding over the
loss used in the literature already optimal? If not, can we design better scores? Also, how do
we design optimal canary strategies in the black-box setting?
MI games/auditing of online/sequential algorithms. In part II, all the mechanisms analysed
were offline batch algorithms, which produce a one-shot output computed on a full dataset.
An interesting future direction is to analyse the leakage of online and sequential algorithms by
instantiating MI game threat models for these algorithms. Analysing the sequential LR test for
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this setting may have multiple applications, such as auditing algorithms that are continuously
updated [JWO+23] or auditing bandit algorithms and recommendation systems.
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Appendix A

Supplementary for Chapter 3

Proof of Proposition 3.12

Proposition 3.12 (Relation between Table DP and View DP). For any policy π, we have that
(a) π is ε-Table DP⇔ π is ε-View DP.

(b) π is (ε, δ)-Table DP⇒ π is (ε, δ)-View DP.

(c) π is ρ-Table zCDP⇒ π ρ-View zCDP.

(d) π is (ε, δ)-View DP⇒ π is (ε,KT δ)-Table DP.

(e) Π(ε,δ)
Table ⊊ Π(ε,δ)

View , where Π(ε,δ)
Table and Π(ε,δ)

View are the class of all policies verifying (ε, δ)-Table DP and
(ε, δ)-View DP, respectively.

Proof. (b): Suppose thatMπ is (ε, δ)-DP.
Let r ∼ r′ two neighbouring lists of rewards. For every event E ∈ P([K]T ), we have that

Vπr (E)− eεVπr′(E) =Mπ
d(r)(E)− eεMπ

d(r′)(E) ≤ δ

where the last inequality is becauseMπ is (ε, δ)-DP and d(r) ∼ d(r′).
We conclude that Vπ is (ε, δ)-DP.

(c): Suppose thatMπ is ρ-zCDP.
Let r ∼ r′ two neighbouring lists of rewards. For every α > 1, we have that

Dα(Vπr ∥Vπr′) = Dα(Mπ
d(r)∥M

π
d(r′)) ≤ ρα

where the last inequality is becauseMπ is ρ-zCDP and d(r) ∼ d(r′).
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We conclude that Vπ is ρ-zCDP.
(a)⇒) Is a direct consequence of (b) for δ = 0.
⇐) Suppose that Vπ is ε-DP.
Let d ∼ d′ be two tables of rewards in (RK)T .
For ε-DP, it is enough to consider atomic events aT ≜ (a1, . . . , aT ).
For any atomic event aT , we have that

Mπ
d (aT ) = Vπr(d,aT )(a

T ) ≤ eεVπr(d′,aT )(a
T ) = eεMπ

d′(aT )

where the first inequality is because Vπ is ε-DP and r(d, aT ) ∼ r(d′, aT ).
We conclude thatMπ is ε-DP.

(d) Suppose that Vπ is (ε, δ)-DP.
Let d ∼ d′ be two tables of rewards in (RK)T .
Let E ∈ P([K]T ) be an event, i.e. a set of sequences. We have that

Mπ
d (E) =

∑
aT ∈E

Mπ
d (aT ) =

∑
aT ∈E

Vπr(d,aT )(a
T )

≤
(1)

∑
aT ∈E

(eεVπr(d′,aT )(a
T ) + δ)

≤
(2)
eεMπ

d′(E) +KT δ,

where (1) holds true because Vπ is (ε, δ)-DP, and (2) is true because card(E) ≤ KT .
We conclude thatMπ is (ε,KT δ)-DP.

(e) To prove the strict inclusion, we build a policy π for T = 3,K = 2 with action 0 and action
1, and rewards in {0, 1}.

A policy here is a sequence of three decision rules

π = {π1, π2, π3},

where each decision rule is a function from the history. Since the possible histories at each step
are finite, specifying a decision rule is just specifying the probability weights of choosing action
0 and action 1 for every possible history.

We consider the following decision rules

π1 =
[
2/3 1/3

]
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π2 =


1/2 1/2
1/3 2/3
1/4 3/4
1/3 2/3



π3 =



1/2 1/2
1/3 2/3
1/4 3/4
1/5 4/5
1/2 1/2
2/3 1/3
1/4 3/4
0 1

1/3 2/3
1/7 6/7
3/4 1/4
2/5 3/5
1/2 1/2
1 0

1/4 3/4
2/3 1/3


The history is first represented as a binary string, and then converted to decimals. Finally, the
index in the decision rule corresponding to this decimal value is chosen. We elaborate this
procedure in the two examples below.

Example 1. If the policy observed the history {1, 0}, i.e. action 1 was played in the first
round and the reward 0 was observed, this leads to index 2 in π2, so the policy plays arm 0
with probability 1/4 and arm 1 with probability 3/4.

Example 2. If the policy observed the history {0, 1, 1, 1}, i.e. action 0 was played in the
first round, the reward 1 was observed, then action 1 was played in the second round and the
reward 1 was observed. This corresponds to index 7 in π3. Thus, the policy plays arm 0 with
probability 0 and arm 1 with probability 1.

Since the events and the neighbouring datasets are finite (and have a small number), it is
easy to build the following two sets:

A =
{

(Vπr (E),Vπr′(E)) ,∀E ∈ P([2]3), and ∀r ∼ r′
}

B = {(Mπ
d (E),Mπ

d′(E)),∀E ∈ P([2]3), and ∀d ∼ d′}
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A and B represent all the probability tuples (p, q) computed on all neighbouring lists and
tables of rewards, respectively, for all possible events on the sequence of actions.

Then, by checking over all the elements of A and B, it is possible to show that π is (ε1, δ1)-
View DP but never (ε1, δ1)-Table DP for ε1 = 0.95 and δ1 = 0.17. Specifically, we mean that for
ε1 = 0.95 and δ1 = 0.17, we obtain that ∀(p, q) ∈ A, p ≤ eε1q + δ1, while ∃(p′, q′) ∈ B, p′ >

eε1q′ + δ1. In fact, we can show that the smallest ε0, for which π is (ε0, δ1)-Table DP, is ε0 = 0.98.
Thus, we conclude our proof with this construction.
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B.1 Proof of Theorem 4.16

Theorem 4.16 (Problem-dependent Regret Lower Bound). Let E ≜ M1 × · · · × MK and
π ∈ Πcons(E) ∩Πε an ε-View DP consistent policy over E . Then, for any ν = (Pa : a ∈ K) ∈ E ,

lim inf
T→∞

RegT (π, ν)
log(T ) ≥

∑
a:∆a>0

∆a

min
(
KLinf (Pa, µ∗,Ma)︸ ︷︷ ︸

without DP

, εTVinf (Pa, µ∗,Ma)︸ ︷︷ ︸
with ε-View DP

) . (B.1)

Proof. Let µa be the mean of the a-th arm in ν. We denote da = KLinf (Pa, µ∗,Ma) and ta =
TVinf (Pa, µ∗,Ma) for brievity. Let π ∈ Πcons (E) ∩Πε be a consistent ε-View DP policy. Recall
that RegT (π, ν) =

∑
a̸=a⋆ ∆a Eνπ[Na(T )].

Since π is consistent, by Theorem 2.31, it holds that

lim inf
T→∞

Eνπ [Na(T )]
log(T ) ≥ 1

da
.

The theorem will follow by showing, for every suboptimal arm a, that

lim inf
T→∞

Eνπ [Na(T )]
log(T ) ≥ 1

ε ta

Fix a suboptimal arm a, and let α > 0 be an arbitrary constant.

Step 1: Choosing the ‘Hard-to-distinguish’ Environment. Let ν ′ ≜
(
P ′
j

)K
j=1
∈ E be a

bandit with P ′
j = Pj for j ̸= a and P ′

a ∈Ma be such that TV (Pa ∥ P ′
a) ≤ ta+α and µ (P ′

a) > µ∗,
which exists by the definition of ta. Let µ′ ∈ RK be the vector of means of distributions of ν ′.

Step 2: From Lower Bounding Regret to Upper Bounding KL-divergence. For simplicity
of notations, we use RegT = RegT (π, ν), Reg′

T = RegT (π, ν), and A = {(a1, a2, . . . , aT ) :
card({j : aj = 1}) ≤ T/2}.

Then, by regret decomposition and Markov Inequality, we obtain

RegT + Reg′
T ≥

T

2
(
Mνπ(A)∆a +Mν′π (Ac)

(
µ′
a − µ∗)) (B.2)

≥ T

2 min
{
∆a, µ

′
a − µ∗} (Mνπ(A) +Mν′π (Ac))

≥ T

4 min
{
∆a, µ

′
a − µ∗} exp(−DKL (Mνπ ∥Mν′π))
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Step 3: KL-divergence Decomposition with ε-View DP. By Theorem 4.9 and the construc-
tion of the ‘hard-to-distinguish’ environments, we obtain

DKL (Mνπ ∥Mν′π) ≤ εEνπ [Na(T )] TV
(
Pa
∥∥ P ′

a

)
≤ εEνπ [Na(T )] (ta + α)

Step 4: Rearranging and taking the limit inferior. Thus, we get

RegT + Reg′
T ≥

T

4 min
{
∆a, µ

′
a − µ∗} exp (−εEνπ [Na(T )] (ta + α))

Now, taking the limit inferior on both sides leads to

lim inf
T→∞

Eνπ [Na(T )]
log(T ) ≥ 1

ε (ta + α) lim inf
T→∞

log
(
T min{∆a,µ′

a−µ∗}
4(RegT +Reg′

T )

)
log(T )

= 1
ε (ta + α)

(
1− lim sup

T→∞

log
(
RegT + Reg′

T

)
log(T )

)
= 1
ε (ta + α) .

The last equality follows from the definition of consistency, which says that for any p > 0,
there exists a constant Cp such that for sufficiently large T , RegT + Reg′

T ≤ CpT p. This property
implies that

lim sup
T→∞

log
(
RegT + Reg′

T

)
log(T ) ≤ lim sup

T→∞

p log(T ) + log (Cp)
log(T ) = p,

which gives the result since p > 0 was an arbitrary constant.
We arrive at the claimed result by taking the limit as α tends to zero.

B.2 Proof of Theorem 4.17

Theorem 4.17 (Minimax regret lower bound). Let A = [−1, 1]d and Θ = Rd. Let π be an ε-View
DP policy. Then, there exists a vector θ ∈ Θ such that

RegT (π,A, θ) ≥ max


exp(−2)

8 d
√
T︸ ︷︷ ︸

without DP

,
exp(−1)

4
d

ε︸ ︷︷ ︸
with ε-View DP

 . (B.3)
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Proof. Due to Theorem 24.1 in [LS20], it holds that,

Regminimax
T (A,Θ) ≥ exp(−2)d8

√
T .

Now, we focus on proving the ε-View DP part of the lower bound.

Let Θ =
{
− 1
εT ,

1
εT

}d. For θ, θ′ ∈ Θ, let ν and ν ′ be the bandit instances corresponding resp.
to θ and θ′. We denote Mθ = Mν,π and Mθ′ = Mν′,π. Let Eθ and Eθ′ the expectations under Mθ

and Mθ′ respectively.
Step 1: From Lower Bounding Regret to Upper Bounding KL-divergenceWe begin with

RegT (A, θ) = Eθ

[
T∑
t=1

d∑
i=1

(sign (θi)−Ati) θi

]

≥ 1
εT

d∑
i=1

Eθ

[
T∑
t=1

I {sign (Ati) ̸= sign (θi)}
]

≥ 1
ε

d∑
i=1

Mθ

(
T∑
t=1

I {sign (Ati) ̸= sign (θi)} ≥ T/2
)

In this derivation, the first equality holds because the optimal action satisfies a∗
i = sign (θi)

for i ∈ [d]. The first inequality follows from an observation that

(sign (θi)−Ati) θi ≥ |θi| I {sign (Ati) ̸= sign (θi)}

. The last inequality is a direct application of Markov’s inequality.
For i ∈ [d] and θ ∈ Θ, we define

pθ,i ≜Mθ

(
T∑
t=1

I {sign (Ati) ̸= sign (θi)} ≥ T/2
)
.

Now, let i ∈ [d] and θ ∈ Θ be fixed. Also, let θ′
j = θj for j ̸= i and θ′

i = −θi. Then, by the
Bretagnolle-Huber inequality,

pθ,i + pθ′,i ≥
1
2 exp (−DKL (Mθ ∥Mθ′)) .

Step 2: KL-divergence Decomposition with ε-ViewDP. From Theorem 4.9, we obtain that

DKL (Mθ ∥Mθ′) ≤ εEνπ

[
T∑
t=1

TV
(
N (⟨At, θ⟩ , 1)

∥∥ N (〈At, θ′〉 , 1))]
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≤ εEνπ

[
T∑
t=1

√
1
2DKL (N (⟨At, θ⟩ , 1) ∥ N (⟨At, θ′⟩ , 1))

]

= εEνπ

[
T∑
t=1

√
1
4
[
⟨At, θ − θ′⟩2

]]

= 1
2εEνπ

[
T∑
t=1

∣∣〈At, θ − θ′〉∣∣] (B.4)

= 1
2εEνπ

[
T∑
t=1
|At,i| (2 |θi|)

]

≤ 1
2εEνπ

[
T × 2 1

εT

]
= 1 (B.5)

Here, the second inequality is a consequence of Pinsker’s inequality. The last inequality
holds true because At ∈ [−1, 1]d and θ, θ′ ∈

{
− 1
εT ,

1
εT

}d
Step 3: Choosing the ‘Hard-to-distinguish’ θ. We already have that

pθ,i + pθ′,i ≥
1
2 exp (−1)

Now, we apply an ‘averaging hammer’ over all θ ∈ Θ, such that |Θ| = 2d, to obtain

∑
θ∈Θ

1
|Θ|

d∑
i=1

pθ,i = 1
|Θ|

d∑
i=1

∑
θ∈Θ

pθ,i ≥
d

4 exp(−1).

This implies that there exists a θ ∈ Θ such that∑d
i=1 pθ,i ≥ d exp(−1)/4.

Step 4: Plugging Back θ in the Regret Decomposition. With this choice of θ, we conclude

RegT (A, θ) ≥ 1
ε

d∑
i=1

pθ,i

≥ exp(−1)
4

d

ε

B.3 Proof of Theorem 4.18

Theorem 4.18 (Problem-dependent regret lower bound). Let A ⊂ Rd be a finite set spanning Rd
and θ ∈ Rd be such that there is a unique optimal action. Then, for any consistent and ε-View DP policy
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π satisfies
lim inf
T→∞

RegT (π,A, θ)
log(T ) ≥ c(A, θ), (B.6)

where the structural distinguishability gap is the solution of a constraint optimisation

c(A, θ) ≜ inf
α∈[0,∞)A

∑
a∈A

α(a)∆a, such that ∥a∥2H−1
α
≤ min

{
0.5∆2

a︸ ︷︷ ︸
without DP

, 0.5ερa(A)∆a︸ ︷︷ ︸
with ε-View DP

}

for all a ∈ A with ∆a > 0, Hα =
∑
a∈A α(a)aa⊤, and a structure dependent constant ρa(A).

Proof. Let a∗ = argmaxa∈A⟨a, θ⟩ be the optimal action, which we assumed to be unique.
By Theorem 25.1, [LS20],

lim sup
T→∞

log(T ) ∥a− a∗∥2Ḡ−1
T
≤ 1

2∆2
a. (B.7)

LetM andM′ be the measures on the sequence of outcomes A1, . . . , AT induced by θ and
θ′ respectively. Let E[·] and E′[·] be the expectation operators ofM andM′, respectively.

Step 1: Choosing the ‘Hard to distinguish’ θ′. Let θ′ ∈ Rd be an alternative parameter
to be chosen subsequently. We follow the usual plan of choosing θ′ to be close to θ, but also
ensuring that the optimal action in the bandit determined by θ′ is not a∗. Let ∆min = min {∆a

: a ∈ A,∆a > 0}, α ∈ (0,∆min) and H be a positive definite matrix (to be chosen later) such
that ∥a− a∗∥2H > 0.

Given this setting, we define

θ′ ≜ θ + ∆a + α

∥a− a∗∥2H
H (a− a∗) ,

which is chosen such that ⟨a− a∗, θ′⟩ = ⟨a− a∗, θ⟩+ ∆a + α = α.
This means that a∗ is α-suboptimal for the environment corresponding to θ′.
Step 2: From Lower Bounding Regret to Upper Bounding KL-divergence. For simiplicity,

we abbreviate RegT = RegT (A, θ) and Reg′
T = RegT (A, θ′).

Then, by applying the classic regret decomposition and Markov’s inequality, we obtain

RegT = E
[∑
a∈A

Na(T )∆a

]
≥ T∆min

2 M (Na∗(T ) < T/2) ≥ Tα

2 M (Na∗(T ) < T/2) ,
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Since a∗ is α-suboptimal in bandit θ′, it implies that

Reg′
T ≥

Tα

2 M′ (Na∗(T ) ≥ T/2) .

Now, Bretagnolle Huber inequality implies that

RegT + Reg′
T ≥

Tα

2
(
M (Na∗(T ) < T/2) + M′ (Na∗(T ) ≥ T/2)

)
≥ Tα

4 exp
(
−DKL

(
M
∥∥M′))

Step 3: KL-divergence Decomposition with ε-View DP. By Equation B.4, we have that

DKL (M ∥M) ≤ 1
2εEνπ

[
T∑
t=1

∣∣〈At, θ − θ′〉∣∣]

= 1
2εEνπ

[
T∑
t=1

∣∣∣∣∣
〈
At,

∆a + α

∥a− a∗∥2H
H (a− a∗)

〉∣∣∣∣∣
]

= 1
2ε

∆a + α

∥a− a∗∥2
Ḡ−1

T

ρT (H),

where we define
ρT (H) ≜

∥a− a∗∥2
Ḡ−1

T

∥a− a∗∥2H
Eνπ

[
T∑
t=1
|⟨At, H (a− a∗)⟩|

]

Thus, after re-arrangement, we get

ε (∆a + α)
2 log(T ) ∥a− a∗∥2

Ḡ−1
T

ρT (H) ≥ 1− log ((4RT + 4R′
T ) /α)

log(T ) . (B.8)

Step 4: Choosing H and Taking the Limit. The definition of consistency means that RegT
and Reg′

T are both sub-linear in T . This implies that the second term in Equation (B.8) tends
to zero for large T . Thus, by tending T to∞ and α to zero, we obtain

lim inf
T→∞

ρT (H)
log(T ) ∥a− a∗∥2

Ḡ−1
T

≥ 2
ε∆a

.

We now choose H to be a cluster point of the sequence
(
Ḡ−1
T /

∥∥∥Ḡ−1
T

∥∥∥)
T∈S

where
∥∥∥Ḡ−1

T

∥∥∥ is
the spectral norm of the matrix Ḡ−1

T .
Lemma B.1: For this choice of H ,

lim inf
T→∞

ρT (H) ≤ ρa(A),
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where

ρa(A) ≜
K∑

j=1,∥aj∥≠0

∣∣∣aTj (a− a∗)
∣∣∣

∥aj∥2
.

Finally,
lim sup
T→∞

log(T ) ∥a− a∗∥2Ḡ−1
T
≤ 1

2ε∆aρa(A).

Combined with Equation B.7, we get that

lim sup
T→∞

log(T ) ∥a− a∗∥2Ḡ−1
T
≤ min

(1
2∆2

a,
1
2ε∆aρa(A)

)
.

Using that

lim
T→∞

∥a− a∗∥Ḡ−1
T

∥a∥Ḡ−1
T

= 1

from Theorem 25.1, [LS20], we get that

lim sup
T→∞

log(T ) ∥a∥2
Ḡ−1

T
≤ min

(1
2∆2

a, 3ε∆aρa(A)
)
.

Step 5: Getting Back to the Regret. We conclude using the same steps as in the Corollary
2 [LS17].

Now, we prove Lemma B.1.

Lemma B.1. IfH is a cluster point of the sequence
(
Ḡ−1
T /

∥∥∥Ḡ−1
T

∥∥∥)
T∈S

and
∥∥∥Ḡ−1

T

∥∥∥ is the spectral norm
of the matrix Ḡ−1

T , then the following inequality holds true:

lim inf
T→∞

ρT (H) ≤ ρa(A),

where

ρa(A) ≜
K∑

j=1,∥aj∥≠0

∣∣∣aTj (a− a∗)
∣∣∣

∥aj∥2
.

Proof. We let S be a subset so that Ḡ−1
T /

∥∥∥Ḡ−1
T

∥∥∥ converges to H on T ∈ S. Then,

lim inf
T→∞

ρT (H) ≤ lim inf
T∈S

ρT (Ḡ−1
T /

∥∥∥Ḡ−1
T

∥∥∥)
= lim inf

T∈S
Eθ

[
T∑
t=1

∣∣∣〈At, Ḡ−1
T (a− a∗)

〉∣∣∣]

= lim inf
T∈S

K∑
j=1

Eθ(Nj(T ))
∣∣∣aTj Ḡ−1

T (a− a∗)
∣∣∣
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= lim inf
T∈S

K∑
j=1,∥aj∥≠0

Eθ(Nj(T ))
∣∣∣aTj Ḡ−1

T (a− a∗)
∣∣∣

Let j be such that ∥aj∥ ≠ 0. Now, we aim to upper bound the term
∣∣∣aTj Ḡ−1

T (a− a∗)
∣∣∣

First, we decompose a− a∗ into two orthogonal components, which are aligned and orthog-
onal to aj respectively.

a− a∗ = αjaj + bj ,

where a⊤
j bj = 0 and αj = aT

j (a−a∗)
∥aj∥2 .

On the other hand, we have that

ḠT = Eθ

[
T∑
t=1

AtA
⊤
t

]
=

K∑
j=1

Eθ(Nj(T ))aja⊤
j ⪰ Eθ(Nj(T ))aja⊤

j

Since (
Eθ(Nj(T ))aja⊤

j

)†
= 1

Eθ(Nj(T ))(a⊤
j aj)2aja

⊤
j ,

and (
Eθ(Nj(T ))aja⊤

j

)†
bj = 0,

only the component of a− a∗ in the direction of aj matters in the dot product aTj Ḡ−1
T (a− a∗).

Thus,
∣∣∣aTj Ḡ−1

T (a− a∗)
∣∣∣ ≤ |αj |

Eθ(Nj(T ))(a⊤
j aj)2a

T
j aja

T
j aj

= |αj |
Eθ(Nj(T ))

Consequently,

lim inf
T→∞

ρT (H) ≤
K∑

j=1,∥aj∥≠0

∣∣∣aTj (a− a∗)
∣∣∣

∥aj∥2
≜ ρa(A)
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Example B.2 (ρa(A) for an orthogonal set of arms). If the action space is the orthogonal basis, then
ρa(A) = 2, because:

ḠT =


E(N1(T ))

. . .
E(Nd(T ))


and: ∣∣∣〈At, Ḡ−1

T (a− a∗)
〉∣∣∣ = 1

E(Na(T ))IAt=a + 1
E(Na⋆(T ))IAt=a⋆

so:
E
[
T∑
t=1

∣∣∣〈At, Ḡ−1
T (a− a∗)

〉∣∣∣] = 2

B.4 Proof of Theorem 4.20

Theorem 4.20 (Minimax lower bound for finite-armed bandits). For any K > 1, T ≥ K − 1,
and 0 < ρ ≤ 1,

Reg⋆T,ρ(EKG ) ≜ inf
π∈Πρ

Int
sup
ν∈EK

G

RegT (π, ν)

≥ max
{ 1

27

√
T (K − 1)︸ ︷︷ ︸

without DP

,
1

124

√
K − 1
ρ︸ ︷︷ ︸

with ρ-Interactive zCDP

}
.

Proof. The non-private part of the lower bound is due to Theorem 15.2 in [LS20]. To prove the
private part of the lower bound, we plug our KL decomposition theorem into the proofs of
regret lower bounds for bandits.

Step 1: Choosing the ‘hard-to-distinguish’ environments. First, we fix a ρ-zCDP policy
π . Let ∆ be a constant (to be specified later), and ν be a Gaussian bandit instance with unit
variance and mean vector µ = (∆, 0, 0, ..., 0).

To choose the second bandit instance, let a ≜ arg mini∈[2,K] Eν,π[Ni(T )] be the least played
arm in expectation other than the optimal arm 1. The second environment ν ′ is then chosen to be
a Gaussian bandit instance with unit variance and mean vector µ′ = (∆, 0, 0, . . . 0, 2∆, 0 . . . , 0),
where µ′

j = µj for every j except for µ′
a = 2∆.

The first arm is optimal in ν and the arm i is optimal in ν ′.
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Since T = Eνπ [N1(T )] +
∑
i>1 Eνπ [Ni(T )] ≥ (K − 1)Eνπ [Na(T )], we observe that

na ≜ Eνπ [Na(T )] ≤ T

K − 1

Step 2: From lower bounding regret to upper bounding KL-divergence. Now by the
classic regret decomposition and Markov inequality, we get

RegT (π, ν) = (T − Eνπ [N1(T )]) ∆

≥Mνπ (N1(T ) ≤ T/2) T∆
2 ,

and

RegT (π, ν ′) = ∆Eν′π [N1(T )] +
∑

a/∈{1,i}
2∆Eν′π [Na(T )]

≥Mν′π (N1(T ) > T/2) T∆
2 .

Let us define the event A ≜ {N1(T ) ≤ T/2} = {(a1, a2, . . . , aT ) : card({j : aj = 1}) ≤ T/2}.
By applying the Bretagnolle–Huber inequality, we have:

RegT (π, ν) + RegT (π, ν′) ≥ T∆
2 (Mνπ(A) +Mν′π(Ac))

≥ T∆
4 exp(−DKL (Mνπ ∥Mν′π))

Step 3: KL-divergence decomposition with ρ-Interactive zCDP. Since ν and ν ′ only differ
in arm a, we get that∑ tat = ta

∑
1 (at = a), where ta ≜ TV (νa ∥ ν ′

a).
Now, applying Theorem 4.14 gives

DKL (Mνπ ∥Mν′π) ≤ ρ(n2
at

2
a + nata(1− ta) + t2aVνπ(Na(T )))

≤ ρ(n2
at

2
a + nata + t2aVνπ(Na(T ))) .

where the last inequality is due to the fact that 1− ta ≤ 1.
On the other hand, we have the following upper bounds,

na ≤
T

K − 1

and

Vνπ(Na(T )) ≤ Eνπ [Na(T )] (T − Eνπ [Na(T )]) ≤ T 2

K − 1
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and finally, using Pinsker’s Inequality

ta = TV
(
νa
∥∥ ν ′

a

)
≤
√

1
2DKL (N (0, 1) ∥ N (2∆, 1)) = ∆

Step 4: Choosing the worst ∆. Plugging back in the regret expression, we find

RegT (π, ν) + RegT (π, ν′) ≥ T∆
4 exp

(
−ρ

[
T 2

K − 1

(
1 + 1

K − 1

)
∆2 + T

K − 1∆
])

Let α ≜ T
4 , β ≜ ρT 2

K−1(1 + 1
K−1) and γ ≜ ρT

K−1 .
We have then

RegT (π, ν) + RegT (π, ν ′) ≥ α∆ exp
(
−β∆2 − γ∆

)
≥ α∆ exp

(
−β

(
∆ + γ

2β

)2
)

By optimising for ∆, we choose ∆ = 1√
β
− γ

2β .

Putting back in ∆ we have

∆ = 1√
β
− γ

2β

=
√√√√ K − 1
ρT 2

(
1 + 1

K−1

) − 1
2T
(
1 + 1

K−1

)
≥
√
K − 1
2ρT 2 −

1
2T =

√
K − 1
T

( 1√
2ρ −

1
2
√
K − 1

)

≥
√
K − 1
T

( 1√
2ρ −

1
2

)
≥
√
K − 1
T

( 1
4
√

2ρ

)
where all the inequalities use thatK ≥ 2 and ρ ≤ 1.

This gives that

RegT (π, ν) + RegT (π, ν ′) ≥
√
K − 1

4

( 1
4
√

2ρ

)
exp (−1)

We conclude the proof by using 1
16

√
2 exp(−1) ≥ 1

62 , and using 2 max(a, b) ≥ a+ b.
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B.5 Proof of Theorem 4.21

Theorem 4.21 (Minimax Lower Bounds for Linear Bandits). LetA = [−1, 1]d and Θ = Rd. Then,
we have that

Reg⋆T,ρ(A,Θ) ≜ inf
π∈Πρ

Int
sup
θ∈Θ

RegT (π,A, θ)

≥ max


e−2

8 d
√
T︸ ︷︷ ︸

without DP

,
e−2.25

4
d
√
ρ︸ ︷︷ ︸

with ρ-Interactive zCDP


Proof. For the non-private lower bound, Theorem 24.1 of [LS20] gives that,

Regminimax
T (A,Θ) ≥ exp(−2)d8

√
T .

Now, we focus on proving the ρ-zCDP part of the lower bound.

Let Θ =
{
− 1
T

√
ρ ,

1
T

√
ρ

}d. For θ, θ′ ∈ Θ, let ν and ν ′ be the bandit instances corresponding
resp. to θ and θ′. We denote Mθ = Mν,π and Mθ′ = Mν′,π. Let Eθ and Eθ′ the expectations
under Mθ andMθ′ respectively.

Step 1: From lower bounding regret to upper bounding KL-divergence. We begin with

RegT (A, θ) = Eθ

[
T∑
t=1

d∑
i=1

(sign (θi)−Ati) θi

]

≥ 1
T
√
ρ

d∑
i=1

Eθ

[
T∑
t=1

I {sign (Ati) ̸= sign (θi)}
]

≥ 1
√
ρ

d∑
i=1

Mθ

(
T∑
t=1

I {sign (Ati) ̸= sign (θi)} ≥ T/2
)

In this derivation, the first equality holds because the optimal action satisfies a∗
i = sign (θi)

for i ∈ [d]. The first inequality follows from an observation that

(sign (θi)−Ati) θi ≥ |θi| I {sign (Ati) ̸= sign (θi)} .

The last inequality is a direct application of Markov’s inequality.
For i ∈ [d] and θ ∈ Θ, we define

pθ,i ≜Mθ

(
T∑
t=1

I {sign (Ati) ̸= sign (θi)} ≥ T/2
)
.
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Now, let i ∈ [d] and θ ∈ Θ be fixed. Also, let θ′
j = θj for j ̸= i and θ′

i = −θi. Then, by the
Bretagnolle-Huber inequality,

pθ,i + pθ′,i ≥
1
2 exp (−DKL (Mθ ∥Mθ′)) .

Step 2: KL-divergence decomposition with ρ-Interactive zCDP.

Define pt ≜ TV (N (⟨At, θ⟩ , 1) ∥ N (⟨At, θ′⟩ , 1)).
From Lemma 4.14, we obtain that

DKL (Mθ ∥Mθ′) ≤ ρ
(
Eνπ

[
T∑
t=1

pt

])2

+ ρ

(
Eνπ

[
T∑
t=1

pt

])
+ ρVνπ

[
T∑
t=1

pt

]

On the other hand, using Pinsker’s inequality, we have that

T∑
t=1

pt ≤
T∑
t=1

√
1
2DKL (N (⟨At, θ⟩ , 1) ∥ N (⟨At, θ′⟩ , 1))

≤
T∑
t=1

√
1
4
[
⟨At, θ − θ′⟩2

]

≤ 1
2

[
T∑
t=1

∣∣〈At, θ − θ′〉∣∣]

≤ 1
2

[
T∑
t=1
|At,i| (2 |θi|)

]

≤ 1
2

[
T × 2 1

T
√
ρ

]
= 1
√
ρ
.

The last inequality holds true because At ∈ [−1, 1]d and θ, θ′ ∈
{
− 1
T

√
ρ ,

1
T

√
ρ

}d.
This gives that

Eνπ

[
T∑
t=1

pt

]
≤ 1
√
ρ

and Vνπ

[
T∑
t=1

pt

]
≤ 1

4ρ

Plugging back in the KL decomposition, we get that,

DKL (Mθ ∥Mθ′) ≤ ρ
(

1
√
ρ

)2

+ ρ

(
1
√
ρ

)
+ ρ

( 1
4ρ

)
= 1 +√ρ+ 1

4 ≤
9
4

where the last inequality is due to ρ ≤ 1.
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Step 3: Choosing the ‘hard-to-distinguish’ θ. Now, we have that

pθ,i + pθ′,i ≥
1
2 exp (−9/4)

Now, we apply an ‘averaging hammer’ over all θ ∈ Θ, such that |Θ| = 2d, to obtain

∑
θ∈Θ

1
|Θ|

d∑
i=1

pθ,i = 1
|Θ|

d∑
i=1

∑
θ∈Θ

pθ,i ≥
d

4 exp(−9
4).

This implies that there exists a θ ∈ Θ such that∑d
i=1 pθ,i ≥ d exp(−9

4)/4.

Step 4: Plugging back θ in the regret decomposition. With this choice of θ, we conclude
that

RegT (A, θ) ≥ 1
√
ρ

d∑
i=1

pθ,i

≥
exp(−9

4)
4

d
√
ρ

B.6 Proof of Proposition 4.26

Proposition 4.26 (TV characteristic time for Bernoulli instances). Let ν be a bandit instance, i.e.
such that νa = Bernoulli(µa) and µ1 > µ2 ≥ · · · ≥ µK . Let ∆a ≜ µ1 − µa and ∆min ≜ mina̸=1 ∆a.
We have that

T ⋆TV(ν) = 1
∆min

+
K∑
a=2

1
∆a

, and 1
∆min

≤ T ⋆TV(ν) ≤ K

∆min
.

Proof. Step 1: Let ν be a bandit instance, i.e. such that νa ≜ Bernoulli(µa) and µ1 > µ2 ≥ · · · ≥
µK .

For the alternative bandit instance λ, we refer to the mean of arm a as ρa, i.e. λa ≜

Bernoulli(ρa).
By the definition of T ⋆TV, we have that

(T ⋆TV(ν))−1 = sup
ω∈ΣK

inf
λ∈Alt(ν)

K∑
a=1

ωaTV (νa ∥ λa)

(a)= sup
ω∈ΣK

min
a̸=1

inf
λ:ρa>ρ1

ω1 |µ1 − ρ1|+ ωa |µa − ρa|
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(b)= sup
ω∈ΣK

min
a̸=1

min(ω1, ωa)∆a

(c)= sup
ω∈ΣK

ω1 min
a̸=1

min(1, ωa
ω1

)∆a

(d)= sup
(x2,...,xK)∈(R+)K−1

mina̸=1 ga(xa)
1 + x2 + · · ·+ xK

,

where ga(xa) ≜ min(1, xa)∆a.
Equality (a) is obtained due to the fact that Alt(ν) =

⋃
a̸=1{λ : ρa > ρ1}, and for Bernoullis,

TV (νa ∥ λa) = |µa − ρa|.
Equality (b) is true, since infλ:ρa>ρ1 ω1 |µ1 − ρ1|+ ωa |µa − ρa| = min(ω1, ωa)∆a.
Equality (c) holds true, since ω1 ̸= 1 (if ω1 = 0, the value of the objective is 0).
Equality (d) is obtained by the change of variable xa ≜ ωa

ω1

Step 2: Let (x2, . . . , xK) ∈ (R+)K−1. By the definition of ga, we have that

ga(xa) ≤ xa∆a and ga(xa) ≤ ∆a.

This leads to the inequalities

min
a̸=1

ga(xa) ≤ ga(xa) ≤ xa∆a and min
a̸=1

ga(xa) ≤ ∆min.

Thus,
(

min
a̸=1

ga(xa)
)( 1

∆min
+

K∑
a=2

1
∆a

)
= mina̸=1 ga(xa)

∆min
+

K∑
a=2

mina̸=1 ga(xa)
∆a

≤ 1 +
K∑
a=2

xa .

This means that for every (x2, . . . , xK) ∈ (R+)K−1,

mina̸=1 ga(xa)
1 + x2 + · · ·+ xK

≤ 1
1

∆min
+
∑K
a=2

1
∆a

.

Here, the upper bound is achievable for x⋆a = ∆min
∆a

, since ga(x⋆a) = ∆min for all a ̸= 1.
This concludes that

(T ⋆TV(ν))−1 = 1
1

∆min
+
∑K
a=2

1
∆a

=⇒ (T ⋆TV(ν)) = 1
∆min

+
K∑
a=2

1
∆a

.
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Step 3: The lower and upper bounds on (T ⋆TV(ν)) follow from the fact that 1
∆a
≥ 0 for all a,

and 1
∆a
≤ 1

∆min
for all a ̸= 1.

Hence, we conclude the proof.
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C.1 Privacy Proof of the Generic Wrapper

In this section, we give complete proof of the privacy of the generic wrapper, introduced in
Section 5.2. First, the intuition behind the blueprint is formalised in Lemma 2.10, that we first
recall in more detail. Then a generic proof of privacy is proposed, followed by a specification
for each algorithm given after.

C.1.1 The parallel composition lemma

The Parallel Composition lemma shows that when the mechanism M is applied to non-
overlapping subsets of the input dataset, there is no need to use the composition theorems.
Plus, there is no additional cost in the privacy budget.

LetM be a mechanism that takes a set as input. Let ℓ < T and t1, . . . tℓ, tℓ+1 be in [1, T ] such
that 1 = t1 < · · · < tℓ < tℓ+1 − 1 = T .
Let’s define the following mechanism

G : {x1, . . . , xT } →
ℓ⊗
i=1
M{xti ,...,xti+1−1}

G is the mechanism we get by applyingM to the partition of the input dataset {x1, . . . , xT }
according to t1 < · · · < tℓ < tℓ+1, i.e. 

x1

x2
...
xT


G→


o1
...
oℓ

 (C.1)

where oi ∼M{xti ,...,xti+1−1}.
We have that

(a) IfM is (ε, δ)-DP then G is (ε, δ)-DP

(b) IfM is ρ-zCDP then G is ρ-zCDP

Proof. Let x ≜ {x1, . . . , xT } and x′ ≜ {x′
1, . . . , x

′
T } be two neighboring datasets. This implies

that ∃j ∈ [1, T ] such that xj ̸= x′
j and ∀t ̸= j, xt = x′

t.
Let ℓ′ be such that tℓ′ ≤ j ≤ tℓ′+1 − 1.
We denote {x}ti+1

ti ≜ {xti , . . . , xti+1−1} the records in x corresponding to the episode from
ti until ti+1 − 1.
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(a) Suppose thatM is (ε, δ)-DP.
For every output event E = E1 × · · · × Eℓ, we have that

Gx(E) =
ℓ∏
i=1
M{x}

ti+1
ti

(Ei)

=M
{x}

tℓ′+1
tℓ′

(Eℓ′)
ℓ∏

i=1,i ̸=ℓ′
M{x}

ti+1
ti

(Ei)

≤
(
eεM

{x′}
tℓ′+1
tℓ′

(Eℓ′) + δ

)
ℓ∏

i=1,i ̸=ℓ′
M{x}

ti+1
ti

(Ei)

= eεGx′(E) + δ ×
ℓ∏

i=1,i ̸=ℓ′
M{x}

ti+1
ti

(Ei)

≤ eεGx′(E) + δ

since∏ℓ
i=1,i ̸=ℓ′M{x}

ti+1
ti

(Ei) ≤ 1

Which gives that G is (ε, δ)-DP.
(b) Suppose thatM is ρ-zCDP. Let denote oℓ ≜ (o1, . . . , oℓ) We have that

Dα(Gx∥Gx′) = 1
α− 1 log

(∫
oℓ
Gx′(o)

( Gx(o)
Gx′(o)

)α)
Since

Gx(o) =
ℓ∏
i=1
M{x}

ti+1
ti

(oi)

and
Gx′(o) =

ℓ∏
i=1
M{x′}

ti+1
ti

(oi)

we get
Gx(o)
Gx′(o) =

M
{x}

tℓ′+1
tℓ′

(oi)

M
{x′}

tℓ′+1
tℓ′

(oi)

Thus,
Dα(Gx∥Gx′) = Dα(M

{x}
tℓ′+1
tℓ′

∥M
{x′}

tℓ′+1
tℓ′

) ≤ αρ

Which gives that G is ρ-zCDP.
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For each of the algorithms instanciated using the generic wrapper of Section 5.2, the final
actions can be seen as a post-processing of some private quantity of interest (empirical means
for finite-armed bandits or the parameter θ̂ for linear and contextual bandits). However, we
cannot directly conclude the privacy of the proposed algorithms using just a post-processing
argument and Lemma 2.10. This is because the steps corresponding to the start of an episode
in the algorithms t1 < · · · < tℓ < tℓ+1 are adaptive and depend on the dataset itself, while for
Lemma 2.10, those have been fixed before.

To deal with the adaptive episode, we propose a generic privacy proof.

C.1.2 Generic privacy proof

In this section, we give one generic proof that works for the all the proposed algorithms.
First, we give a summary of the intuition of the proof for dealing with adaptive episodes.

By fixing two neighbouring tables of rewards d and d′ that only differ at some user uj , and a
deterministic adversary B, we have that

• the view of the adversary B from the beginning of the interaction until step j will be the
same

• the adaptive episodes generated by the policy in the first j steps will be the same, which
means that step j will fall in the same episode in the view of B when interacting with
π(d) or π(d′)

• for these fixed similar episodes, we use the privacy Lemma 2.10

• the view of B from step j + 1 until T will be private by post-processing
Let d = {x1, . . . , xT } and d′ = {x′

1, . . . , x
′
T } two neighbouring reward tables in (RK)T . Let

j ∈ [1, T ] such that, for all t ̸= j, xt = x′
t. Let B be a deterministic adversary. We want to show

that Dα(View(B ↔ π(d))∥View(B ↔ π(d′))) ≤ αρ.
Step 1. Sequential decomposition of the view of the adversary B

We observe that due to the sequential nature of the interaction, the view of B can be
decomposed to a part that depends on d<j ≜ {x1, . . . , xj−1}, which is identical for both d and
d′ and a second conditional part on the history.

First, let us denote PB,πd ≜ View(B ↔d π), o≤j ≜ (o1, . . . , oj) and o>j ≜ (oj+1, . . . , oT ).
We have that, for every sequence of actions o ≜ (o1, . . . , oT ) ∈ [K]T

PB,πd (o) =
T∏
t=1

πt
(
ot | B(o1), x1,B(o1), . . . , B(o≤t−1), xt−1,B(o≤t−1)

)
≜ PB,πd<j

(o≤j)PB,πd (o>j | o≤j)
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where

PB,πd<j
(o≤j) ≜

j∏
t=1

πt
(
ot | B(o1), x1,B(o1), . . . , B(o≤t−1), xt−1,B(o≤t−1)

)
and

PB,πd (o>j | o≤j) ≜
T∏

t=j+1
πt
(
ot | B(o1), x1,B(o1), . . . , B(o≤t−1), xt−1,B(o≤t−1)

)

Similarly
PB,πd′ (o) = PB,πd<j

(o≤j)PB,πd′ (o>j | o≤j)

since d′
<j = d<j .

Step 2. Decomposing the Rényi divergence.

We have that

e(α−1)Dα(PB,π
d

∥PB,π

d′ ) =
∑

o∈[K]T
PB,πd′ (o)

(
PB,πd (o)
PB,πd′ (o)

)α

=
∑

o∈[K]T
PB,πd′ (o)

(
PB,πd (o>j | o≤j)
PB,πd′ (o>j | o≤j)

)α

=
∑

o≤j∈[K]j
PB,πd′

<j
(o≤j)

∑
o>j∈[K]T −j

PB,πd′ (o>j | o≤j)
(
PB,πd (o>j | o≤j)
PB,πd′ (o>j | o≤j)

)α

=
∑

o≤j∈[K]j
PB,πd<j

(o≤j)e(α−1)Dα(PB,π
d

(.|o≤j)∥PB,π

d′ (.|o≤j))

= Eo≤j∼PB,π
d<j

[
e(α−1)Dα(PB,π

d
(.|o≤j)∥PB,π

d′ (.|o≤j))
]

Step 3. The adaptive episodes are the same, before step j.

Let ℓ such that tℓ ≤ j < tℓ+1 in the view ofB when interactingwith d. Let us call it ψπd (j) ≜ ℓ.
Similarly, let ℓ′ such that tℓ′ ≤ j < tℓ′+1 in the view of B when interacting with d. Let us call it
ψπd′(j) ≜ ℓ′.

Since ψπd (j) only depends on d<j , which is identical for d and d′, we have that ψπd (j) = ψπd′(j)
with probability 1.

We call ξj the last time-step of the episode ψπd (j), i.e ξj ≜ tψπ
d

(j)+1 − 1.
Step 4. Private sufficient statistics.

Fix o≤j .
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Let rs ≜ xs,B(o1,...,os), for s ∈ [1, j], be the reward corresponding to the action chosen by B
in the table d. Similarly, r′

s ≜ x
′
s,B(o1,...,os) for d′.

Let us defineLj ≜ G{r1,...,rξj
} andL′

j ≜ G{r′
1,...,r

′
ξj

}, where G is defined as in Eq. C.1, using the
same episodes for d and d′. The underlying mechanismM, used to define G, will be specified
for each algorithm in Section C.1.3.

In addition, the specified mechanismMwill verify ρ-zCDP with respect to its set input.
Using the structure of the policy π, there exists a randomised mapping fxξj +1,...,xT such that

PB,πd (. | o≤j) = fxξj +1,...,xT (Lj) and PB,πd′ (. | o≤j) = fxξj +1,...,xT (L′
j).

In other words, the view of the adversary B from step ξj + 1 until T only depends on the
sufficient statistics Lj and the new inputs xξj+1, . . . , xT , which are the same for d and d′.

For example, the sufficient statistics are the private mean estimate of the active arm in each
episode for AdaC-UCB and the noisy parameter estimate θ̂ for AdaC-GOPE.
Step 5. Concluding with Lemma 2.10 and post-processing.

Using Lemma 2.10, we have that

Dα(Lj , L′
j) ≤ αρ

Using the post-processing property of Dα, we get that

Dα(PB,πd (. | o≤j)∥PB,πd′ (. | o≤j)) = Dα(fxξj +1,...,xT (Lj)∥fxξj +1,...,xT (L′
j))

≤ Dα(Lj , L′
j) ≤ αρ

Finally, we conclude by taking the expectation with respect to o≤j ∼ PB,πd<j

e(α−1)Dα(PB,π
d

∥PB,π

d′ ) = Eo≤j∼PB,π
d<j

[
e(α−1)Dα(PB,π

d
(.|o≤j)∥PB,π

d′ (.|o≤j))
]

≤ e(α−1)αρ

Thus, we conclude
Dα(PB,πd ∥PB,πd′ ) ≤ αρ

Remark C.1 (Beyond zCDP). The same proof could be adapted to Pure DP and other relaxations of
Pure DP under Interactive DP.
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C.1 Privacy Proof of the Generic Wrapper

C.1.3 Instantiating the specifics of the privacy proof for each algorithm

In this section, we instantiate Step 4 of the generic proof for each algorithm, by specifying the
mechanismM in the proof and showing that they are ρ-zCDP.

• For AdaC-UCB, the mechanismM is the private empirical mean statistic, i.eM{r1,...,rt} ≜
1
t

∑t
s=1 rs + N

(
0, 1

2ρt2
)
. Since rewards are in [0, 1], by the Gaussian Mechanism (i.e. Theo-

rem 2.14)M is ρ-zCDP.
• For AdaC-GOPE, the mechanismM is a private estimate of the linear parameter θ, i.e

M{rtℓ
,...,rtℓ+1−1} ≜ V

−1
ℓ

(∑tℓ+1−1
t=tℓ asrs

)
+V − 1

2
ℓ NℓwhereVℓ =

∑
a∈Sℓ

Tℓ(a)aa⊤,Nℓ ∼ N
(
0, 2

ρg
2
ℓ Id
)

and gℓ = maxb∈Aℓ
∥b∥V −1

ℓ
.

To show thatM is ρ-zCDP, we rewrite θ̂ℓ = V −1
ℓ

(∑tℓ+1−1
t=tℓ asrs

)
= V

− 1
2

ℓ ϕℓ where ϕℓ ≜
V

− 1
2

ℓ

(∑tℓ+1−1
t=tℓ asrs

)
.

Let {rs}tℓ+1−1
s=tℓ and {r′

s}
tℓ+1−1
s=tℓ two neighbouring sequence of rewards that differ at only step

j ∈ [tℓ, tℓ+1 − 1]. We have that

∥ϕℓ − ϕ′
ℓ∥2 = ∥V − 1

2
ℓ

[
aj(rs − r′

s)
]
∥2

≤ 2∥V − 1
2

ℓ aj∥2 ≤ 2gℓ

since rj , r′
j ∈ [−1, 1].

Using the Gaussian Mechanism (i.e. Theorem 2.14), this means that ϕℓ +Nℓ is ρ-zCDP and
M is too by post-processing.

• For AdaC-OFUL, the mechanismM is the private estimate of the sum∑tℓ+1−1
s=tℓ asrs, i.e

M{rtℓ
,...,rtℓ+1−1} ≜

∑tℓ+1−1
t=tℓ asrs +N (0, 2

ρId).

Since rewards are in [−1, 1] and ∥a∥2 ≤ 1, the L2 sensitivity of∑tℓ+1−1
t=tℓ asrs is 2. By Theo-

rem 2.14,M is ρ-zCDP.
We need an extra step of cumulatively summing the outputs of G, which is still private by

post-processing, i.e

x1

x2
...
xT


G→


o1
...
oℓ

→


o1

o1 + o2
...

o1 + o2 + · · ·+ oℓ



Then, we have that
(∑tj

t=1 asrs +
∑j
m=1 Ym

)
j∈[1,ℓ]

is ρ-zCDP, where Ym i.i.d∼ N
(
0, 2

ρId
)
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This shows that the price of not forgetting is, for each estimate at the end of an episode j,
to have to sum all the previous independent noises i.e. ∑j

m=1 Yj , compared to just Yj when
forgetting.

• For AdaP-UCB, AdaP-KLUCB, AdaP-TT and AdaP-TT⋆, the mechanismM is the private
empirical mean statistic, i.eM{r1,...,rt} ≜

1
t

∑t
s=1 rs + Lap

(
1
εt

)
. Since rewards are in [0, 1], by

the Laplace Mechanism (i.e. Theorem 2.13)M is ε-DP. As observed in Remark C.1, the generic
proof of Section C.1.2 is still valid for ε-Interactive DP. Also, for FC-BAI strategies, the same
proof is adapted with the minor change of havaing the final recommendation and stopping
time as additional outputs of the mechanism. Since this two additional outputs are also solely
computed using the sequence of private empirical mean, the same conclusions are valid.

C.2 Finite-armed Bandits with Pure DP and zCDP

C.2.1 Concentration inequalities for pure DP

Lemma C.2. Assume that (Xi)1≤i≤n are iid random variables in [0, 1], with E(Xi) = µ. Then, for
any δ ≥ 0,

P

µ̂n + Lap

( 1
nε

)
−

log
(

1
δ

)
nε

−

√√√√ log
(

1
δ

)
2n ≥ µ

 ≤ 3
2δ, (C.2)

and

P

µ̂n + Lap

( 1
nε

)
+

log
(

1
δ

)
nε

+

√√√√ log
(

1
δ

)
2n ≤ µ

 ≤ 3
2δ, (C.3)

where µ̂n = 1
n

∑n
t=1Xt

Proof. We have that

p1 ≜ P

µ̂n + Lap

( 1
nε

)
−

log
(

1
δ

)
nε

−

√√√√ log
(

1
δ

)
2n ≥ µ



≤ P

µ̂n −
√√√√ log

(
1
δ

)
2n ≥ µ

+ P

Lap( 1
nε

)
−

log
(

1
δ

)
nε

≥ 0


≤ δ + δ

2 = 3
2δ,

where the last inequality is due to Lemma C.23 and Lemma C.22.
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Similarly,

p2 ≜ P

µ̂n + Lap

( 1
nε

)
+

log
(

1
δ

)
nε

+

√√√√ log
(

1
δ

)
2n ≤ µ



≤ P

µ̂n +

√√√√ log
(

1
δ

)
2n ≤ µ

+ P

Lap( 1
nε

)
+

log
(

1
δ

)
nε

≤ 0


≤ δ + δ

2 = 3
2δ,

where the last inequality is due to Lemma C.23 and Lemma C.22.

Lemma C.3. Let X1, X2, . . . , Xn be a sequence of independent random variables sampled from a
Bernoulli distribution with mean µ, and let µ̂n = 1

n

∑n
t=1Xt be the sample mean. Let

µ̆n(δ) ≜ Clip0,1

(
µ̂n + Lap

( 1
nε

)
+

log(1
δ )

nε

)
(C.4)

for δ > 0 be the clipped and private empirical mean.
Claim 1. For any δ > 0 and α ∈ [0, µ], the following inequality holds:

P(µ ≥ µ̆n(δ) + α) ≤ exp(−nd(µ− α, µ)) + 1
2δ (C.5)

Claim 2. Furthermore for δ ≥ 0, we define

Un(δ) ≜ max

q ∈ [0, 1] : d (µ̆n (δ) , q) ≤
log

(
1
δ

)
n

 (C.6)

Then,
P(µ ≥ Un(δ)) ≤ 3

2δ (C.7)

Proof. Here, we prove Claim 1 followed by Claim 2.

Claim 1. Since µ̆n(δ) = min
{

max
{

0, µ̂n + Lap
(

1
nε

)
+ log( 1

δ
)

nε

}
, 1
}
, we have that

µ− α ≥ µ̆n(δ)⇒ µ− α ≥ 1 or µ− α ≥ max
{

0,
(
µ̂n + Lap

( 1
nε

)
+

log(1
δ )

nε

)}

⇒ µ− α ≥ µ̂n + Lap

( 1
nε

)
+

log(1
δ )

nε
(since µ ≤ 1)

⇒ µ− α ≥ µ̂n or Lap

( 1
nε

)
+

log(1
δ )

nε
≤ 0.
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It implies that

P(µ ≥ µ̆n(δ) + α) ≤ P
(
µ ≥ µ̂n + α

)
+P
(
Lap

( 1
nε

)
+

log(1
δ )

nε
≤ 0

)
≤ exp(−nd(µ− α, µ)) + 1

2δ.

The last inequality is due to Equation C.29 of Lemma C.26 and Lemma C.22.
Claim 2.

We have that the sets

{µ ≥ Un(δ)} =
(a)
{µ ≥ Un(δ) ≥ µ̆n(δ)}

=
(b)
{d(µ̆n(δ), µ) ≥ d(µ̆n(δ), Un(δ)), µ ≥ µ̆n(δ)}

=
(c)
{d(µ̆n(δ), µ) ≥

log(1
δ )

n
, µ ≥ µ̆n(δ)}

=
(d)
{µ̆n(δ) ≤ µ− α}

Here, we chose an α > 0 such that d(µ− α, µ) = log( 1
δ

)
n .

Step (a) holds because Un(δ) ≥ µ̆n(δ) by the definition of Un(δ). Step (b) also holds true
since d(µ̆n(δ), ·) is increasing on [µ̆n(δ), 1]. Since d(µ̆n(δ), Un(δ)) = log( 1

δ
)

n by the definition of
Un(δ), we obtain the equality in Step (c). Finally, Step (d) is obtained by inverting the relative
entropy.

We conclude the proof by

P{µ ≥ Un(δ)} = P {µ̆n(δ) ≤ µ− α}

≤ exp(−nd(µ− α, µ)) + 1
2δ (by Claim 1)

= δ + δ

2 = 3
2δ (by substituting α)

C.2.2 Generic regret analysis for Algorithm 7

Algorithm 7 is a generic framework to construct an extension of any optimistic index-based bandit
algorithm, which would satisfy ε-Interactive DP. The algorithm is based on the index Iεa of each
arm. Iεa is computed using the private empirical mean of the last active episode of arm a and is
a high probability upper bound of the real mean µa.
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To explicate the two conditions on arm indexes, we introduce the notation Iεa(t− 1, β, s),
which is the index of arm a, at time-step t and computed using s reward samples from arm a.

Thus, we can express the index computed using just the last active episode as

Iεa(t− 1, β) = Iεa(t− 1, β, 1
2Na(t− 1)). (C.8)

Because Iεa(t− 1, β) only uses samples collected from the last active episode, and due to the
doubling, the last active episode’s size is exactly half the number of times arm awas pulled
since the beginning.

The optimism of the index is ensured by the fact that

P (Iεa(t− 1, β, s) ≤ µa) ≤
3
2

1
tβ

(C.9)

for every arm a, every sample size s and every time-step t, where β is the confidence level.

Theorem C.4. Let a be a suboptimal arm and ℓ ∈ N such that 2ℓ < T . Then, Algorithm 7 using an
index Iεa satisfying Equations C.8 and C.9, also satisfies that for any β > 3,

E[Na(T )] ≤ 2ℓ+1 + P
(
Gca,ℓ,T

)
T + β

β − 3 ,

where Ga,ℓ,T = {Iεa(T − 1, β, 2ℓ) < µ∗} and Gca,ℓ,T is the complement of Ga,ℓ,T

Proof. Without loss of generality, we assume the first arm is the optimal one (µ∗ = µ1) and
denote a suboptimal arm by a (1 < a ≤ K).

We leverage the standard idea of UCB-type proofs: if arm a is chosen at the beginning of
an episode ℓ, then either its index at tℓ is larger than the true mean of the first arm, or the true
mean of the first arm is larger than the first arm’s index at tℓ.

Since decisions, i.e. playing the arm with the highest index, are only taken at the beginning
of an episode, we introduce ϕ which takes as input a time step and outputs the time step
corresponding to the beginning of an episode. Formally, for each t ∈ [K + 1, T ], let ϕ(t) = tℓ

such that tℓ ≤ t ≤ tℓ+1 − 1. In Example 5.1, ϕ(5) = 4 and ϕ(9) = 7.
Formally, ϕ(t) is a random variable such that

∀t : ϕ(t) ≤ t ≤ 2ϕ(t) (C.10)

Step 1: Decomposition of Na(T ). We observe that

Na(T ) = 1 +
T∑

t=K+1
I{At = a}
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= 1 +
T∑

t=K+1
I{At = a and Iε1(ϕ(t)− 1, β) > µ1}+ I{At = a and Iε1(ϕ(t)− 1, β) ≤ µ1}

≤ 1 +N ′
a(T )︸ ︷︷ ︸

Term1

+
T∑

t=K+1
I{Iε1(ϕ(t)− 1, β) ≤ µ1}︸ ︷︷ ︸

Term2

We define N ′
a(T ) ≜

∑T
t=K+1 I{At = a and Iε1(tℓ′ − 1, β) > µ1}

Step 2: Decomposition of Term 1: N ′
a(T ). Let Ga,ℓ,T be the ‘good’ event defined by

Ga,ℓ,T = {Iεa(T − 1, β, 2ℓ) < µ1}.

The main part of the proof is decomposing N ′
a(T ) among the ‘good’ and the ‘bad’ events,

i.e.
E[N ′

a(T )] = E[I{Ga,ℓ,T }N ′
a(T )] + E[I{Gca,ℓ,T }N ′

a(T )] ≤ 2ℓ+1 + P(Gca,ℓ,T )T.

Gca,ℓ,T denotes the complement of Ga,ℓ,T .
To prove the last inequality, we only need to prove that whenGa,ℓ,T happens,N ′

a(T ) ≤ 2ℓ+1.
We prove it by contradiction.

Hence, let us assume that Ga,ℓ,T holds but N ′
a(T ) > 2ℓ+1.

This assumption implies that the arm a is played more than 2ℓ+1 times. Thus, there must
exist a round tℓ′ , where Na(tℓ′ − 1) = 2ℓ+1, Atℓ′ = i and Iε1(tℓ′ − 1, β) ≥ µ1. Since indices are
computed only using the samples from the last active episode, Iεa(tℓ′ − 1, β) is computed using
exactly 2ℓ reward samples from arm a.

Thus, we obtain

Iεa(tℓ′ − 1, β) = Iεa(tℓ′ − 1, β, 2ℓ)

≤ Iεa(T − 1, β, 2ℓ) (because tℓ′ ≤ T and Iεa(·, β, 2ℓ) is increasing)
< µ1 (definition of Ga,ℓ,T )
≤ Iε1(tℓ′ − 1, β)

The last inequality contradicts the fact thatAtℓ′ = i and thus, establishes the claim thatN ′
a(T ) ≤

2ℓ+1 under the ‘good’ event.
Step 3: Upper-bounding Term 2. To conclude,

E

 T∑
t=K+1

I{Iε1(ϕ(t)− 1, β) ≤ µ1}

 =
T∑

t=K+1
P{Iε1(ϕ(t)− 1, β) ≤ µ1}
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≤
T∑

t=K+1

t∑
ϕ=t/2

P{Iε1(ϕ− 1, β) ≤ µ1}

≤
T∑

t=K+1

t∑
ϕ=t/2

ϕ∑
s=1

P{Iε1(ϕ− 1, β, s) ≤ µ1}

≤
T∑

t=K+1

t∑
ϕ=t/2

ϕ∑
s=1

3
2

1
ϕβ

(Equation C.9)

= 3
2

T∑
t=K+1

t∑
ϕ=t/2

1
ϕβ−1

≤ 3
2

T∑
t=K+1

2β−2

tβ−2 (because ϕ ≥ t

2)

≤ 3
22β−2

∫ T

K

1
xβ−2dx (sum-integral inequality)

≤ 3
22β−2 1

β − 3
1

Kβ−3 = 3
2

2
β − 3

( 2
K

)β−3

≤ 3
β − 3

for β > 3 andK ≥ 2.
Here, the first inequality is due to an union bound on ϕ(t) ∈ [t/2, t] (Equation C.10), and

the second inequality is due to a union bound on N1(ϕ− 1).
Step 4: Combining the Bounds on Terms 1 and 2.

E[Na(T )] ≤ 1 + 2ℓ+1 + P
(
Gca,ℓ,T

)
T + 3

β − 3

= 2ℓ+1 + P
(
Gca,ℓ,T

)
T + β

β − 3

Now we design indexes that satisfy the conditions of Theorem C.4, namely AdaP-UCB and
AdaP-KLUCB.

To obtain the final regret bounds, we only have to choose ℓ big enough such that

P
(
Ia(T, 2ℓ) ≥ µ1

)
T

is negligible. This corresponds to the leading term in the regret upper-bounds, and this is
where the regrets of AdaP-UCB and AdaP-KLUCB differ.
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We explicate the issues of designing the indexes and choosing corresponding ℓ in the
following section, which leads to the regret upper bounds of AdaP-UCB and AdaP-KLUCB.

C.2.3 Regret analysis for AdaP-UCB and AdaP-KLUCB

Theorem5.3 (RegretAnalysis ofAdaP-UCB). For rewards in [0, 1],AdaP-UCB satisfies ε-Interactive
DP, and for β > 3, it yields a regret

RegT (AdaP-UCB, ν) ≤
∑

a:∆a>0

( 16β
min{∆a, ε}

log(T ) + 3β
β − 3

)
.

Proof. The proof is constituted of three steps.
Step 1: Designing an Index satisfying Equation (C.8), Equation (C.9), and ε-Interactive

DP. For AdaP-UCB, the index is defined as

Iεa(tℓ − 1, β) = µ̃ℓa,ε +
√

β log(tℓ)
2× 1

2Na(tℓ − 1)
+ β log(tℓ)
ε× 1

2Na(tℓ − 1)
,

where
µ̃ℓa,ε = µ̂a, 1

2Na(tℓ−1) + Lap

(
1

ε× 1
2Na(tℓ − 1)

)
(C.11)

is the private empirical mean of arm a computed using only samples from the last active
episode, and µ̂a,s is the empirical mean of arm a calculated using s samples of reward from
arm a.

This index verifies the first condition (Equation C.8) of Theorem C.4.
The second condition (Equation C.9) of Theorem C.4 follows directly from Equation C.3 of

Lemma C.2
By Section C.1.3, AdaP-UCB is ε-Interactive DP.
By Theorem C.4, for every suboptimal arm a, we have that

E[Na(T )] ≤ 2ℓ+1 + P
(
Gca,ℓ,T

)
T + β

β − 3 ,

where
Ga,ℓ,T =

µ̂a,2ℓ + Lap

( 1
2ℓε

)
+

√
β log(T )
2× 2ℓ + β log(T )

ε2ℓ < µ1

 .

206



C.2 Finite-armed Bandits with Pure DP and zCDP

Step 2: Choosing an ℓ. Now, we observe that

P(Gca,ℓ,T ) = P

µ̂a,2ℓ + Lap

( 1
2ℓε

)
+

√
β log(T )
2× 2ℓ + β log(T )

ε2ℓ ≥ µ1


= P

µ̂a,2ℓ + Lap

( 1
2ℓε

)
−

√
β log(T )
2× 2ℓ −

β log(T )
ε2ℓ ≥ µa + γ


for γ =

(
∆a − 2

√
β log(T )

2×2ℓ − 2β log(T )
ε2ℓ

)
.

The idea is to choose ℓ big enough so that γ ≥ 0.
Let us consider the contrary, i.e.

γ < 0⇒
√

2ℓ <
√
β log(T )

2∆2
a

1 +

√
1 + 4∆a

ε


⇒ 2ℓ < β log(T )

2∆2
a

(
4 + 8∆a

ε

)
⇒ 2ℓ < 4β log(T )

∆a min{ε, 2∆a}
. (C.12)

Thus, by choosing
ℓ =

⌈ 1
log(2) log

( 4β log(T )
∆a min{ε, 2∆a}

)⌉
we ensure γ > 0. This also implies that

P(Gca,ℓ,T ) ≤ P

µ̂a,2ℓ + Lap

( 1
2ℓε

)
−

√
β log(T )
2× 2ℓ −

β log(T )
ε2ℓ ≥ µa

 ≤ 3
2T β

The last inequality is due to Equation C.2 of Lemma C.2.
Step 3: The Regret Bound. Combining Steps 1 and 2, we get that

E[Na(T )] ≤ β

β − 3 + 2ℓ+1 + T × 3
2T β

≤ 16β log(T )
∆a min{ε, 2∆a}

+ 3β
β − 3 . (C.13)

Plugging this upper bound back in the definition of problem-dependent regret concludes the
proof.

Remark C.5. The leading term of the regret is 16β log(T )
∆a min{ε,2∆a} , which is 4 times more than what we

got from Equation C.12. A multiplicative factor of 2 is introduced due to the doubling and another
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multiplicative factor of 2 is due to the forgetting. Thus, the combined price of doubling and forgetting is
a multiplicative constant 4 in the leading term of regret.

Theorem 5.4 (Regret Analysis of AdaP-KLUCB). When the rewards are sampled from Bernoulli
distributions, AdaP-KLUCB satisfies ε-global DP, and for β > 3 and constants C1(β), C2 > 0, it yields
a regret

RegT (AdaP-KLUCB, ν) ≤
∑

a:∆a>0

(
C1(β)∆a

min{dinf(µa, µ∗), C2ε∆a}
log(T ) + 3β

β − 3

)
.

Proof. The proof is constituted of three steps.
Step 1: Designing an Index satisfying Equation (C.8), Equation (C.9), and ε-Interactive

DP. For AdaP-KLUCB, the index is defined as

Iεa(tℓ − 1, β) = max
{
q ∈ [0, 1] : d

(
µ̆ℓ,βa,ε, q

)
≤ β log(tℓ)

1
2Na(tℓ − 1)

}
≜ Ua, 1

2Na(tℓ−1)

(
1
tβℓ

)
,

where µ̆ℓ,βa,ε = Clip0,1

(
µ̃ℓa,ε + β log(tℓ)

ε 1
2Na(tℓ−1)

)
= µ̆a, 1

2Na(tℓ−1)

(
1
tβ
ℓ

)
as defined in Equation C.4,

µ̃ℓa,ε is the private empirical computed only using the samples from the last active episode
(as defined for AdaP-UCB, and Ua,s(δ) = max

{
q ∈ [0, 1] : d (µ̆a,s (δ) , q) ≤ log( 1

δ )
s

}
as defined

in Equation C.6
This index verifies the first condition (Equation C.8) of Theorem C.4.
The second condition (Equation C.9) of Theorem C.4 follows directly from Equation C.3 of

Lemma C.2
By Section C.1.3, AdaP-KLUCB also satisfies ε-Interactive DP.
By Theorem C.4, for every suboptimal arm a, we have that

E[Na(T )] ≤ 2ℓ+1 + P
(
Gca,ℓ,T

)
T + β

β − 3 ,

where
Ga,ℓ,T =

{
Ua,2ℓ

( 1
T β

)
< µ1

}
.

Step 2: Choosing an ℓ. We observe that

P(Gca,ℓ,T ) = P
(
Ua,2ℓ

( 1
T β

)
≥ µ1

)
≤ P

(
d+
(
µ̆a,2ℓ

( 1
T β

)
, µ1

)
≤ β log(T )

2ℓ
)

(by definition of Ua,2ℓ)
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where d+(p, q) ≜ d(p, q)Ip<qand d(p, q) is the relative entropy between Bernoulli distributions
as stated in Definition C.24.

Let υ > 0, and c(υ) ∈ [0, 1] such that: d(µa + c(υ)∆a, µ1) = d(µa,µ1)
1+υ .

Since d(·, µ1) is a bijective function from [µa, µ1] to [0, d(µa, µ1)], we get that c(υ) always
exists and is unique.

In addition, c(υ) verifies: limυ→0 c(υ) = 0, limυ→+∞ c(υ) = 1 and c(υ) is an increasing
function of υ.

First, we choose ℓ such that
2ℓ ≥ (1 + υ)β log(T )

d(µa, µ1) . (C.14)

This leads to

P(Gca,ℓ,T ) ≤ P
(
d+
(
µ̆a,2ℓ

( 1
T β

)
, µ1

)
≤ d(µa, µ1)

1 + υ

)
= P

(
d+
(
µ̆a,2ℓ

( 1
T β

)
, µ1

)
≤ d(µa + c(υ)∆a, µ1)

)
(definition of c(υ))

≤ P
(
µ̆a,2ℓ

( 1
T β

)
≥ µa + c(υ)∆a

)
(d(·, µ1) is decreasing on [0, µ1])

≤ P
(
µ̂a,2ℓ + Lap

( 1
2ℓε

)
+ β log(T )

ε2ℓ ≥ µa + c(υ)∆a

)
(definition of µ̆)

Let us consider γℓ,T such that d(µa + γℓ,T∆a, µa) = log(T )
2ℓ . We prove its existence and upper

bound it later in Fact C.6. Thus, we obtain

P(Gca,ℓ,T ) ≤ P
(
µ̂a,2ℓ − γℓ,T∆a + Lap

( 1
2ℓε

)
− log(T )

ε2ℓ ≥ µa + (c(υ)− γℓ,T )∆a −
(1 + β) log(T )

ε2ℓ
)

= P
(
µ̂a,2ℓ − γℓ,T∆a + Lap

( 1
2ℓε

)
− log(T )

ε2ℓ ≥ µa + θ

)

Here, θ ≜ (c(υ)− γℓ,T )∆a − (1+β) log(T )
ε2ℓ .

By choosing
2ℓ ≥ (1 + β) log(T )

(c(υ)− γℓ,T )ε∆a
, (C.15)

we ensure that θ ≥ 0. Thus, we get

P(Gca,ℓ,T ) ≤ P
(
µ̂a,2ℓ − γℓ,T∆a + Lap

( 1
2ℓε

)
− log(T )

ε2ℓ ≥ µa
)

≤ P
(
µ̂a,2ℓ − γℓ,T∆a ≥ µa

)
+ P

(
Lap

( 1
2ℓε

)
− log(T )

ε2ℓ ≥ 0
)

≤ exp
(
−2ℓd(µa + γℓ,T∆a, µa)

)
+ 1

2T = 3
2T .
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The last inequality is due to Equation C.28 of Lemma C.26 and Lemma C.22.
Fact C.6. B ≜ {υ > 0 : c(υ) > γℓ,T } ≠ ∅.
Combining both conditions C.14 and C.14, we choose ℓ to be the smallest integer such that

2ℓ ≥ inf
υ∈B

max
{

(1 + υ)β
d(µa, µ1) ,

(1 + β)
(c(υ)− γℓ,T )ε∆a

}
log(T ) ≜

1
4C1(β)

min{d(µa, µ1), C2ε∆a}
log(T )

Step 3: The Regret Bound. Combining Steps 1 and 2, we get that

E[Na(T )] ≤ 2ℓ+1 + T × 3
2T + β

β − 3

≤ C1(β)
min{d(µa, µ1), C2ε∆a}

log(T ) + 3β
β − 3

Plugging this upper bound back in the definition of problem-dependent regret concludes the
proof.

To conclude, we prove Lemma C.6.

Lemma C.6. B ≜ {υ > 0 : c(υ) > γℓ,T } ≠ ∅.

Proof. Step 1: Going from d(·, µa) to d(·, µ1). The difficulty of the proof lies in the fact that γℓ,T
is defined by inverting d(·, µa) while c(υ) is defined by inverting d(·, µ1).

To handle that, we investigate the function g(x) ≜ d(x, µa)− d(x, µ1).
g satisfies the following properties:
• g is continuous and increasing in the interval [µa, µ1],

• g(µa) = −d(µa, µ1) < 0, and

• g(µ1) = d(µ1, µa) > 0.
This implies that there exists a unique root of g(x), where it changes sign. Specifically, there
exists a unique z ∈ [µa, µ1] such that:

• g(z) = 0

• ∀x ∈ [µa, z[: g(x) < 0

• ∀x ∈]z, µ1] : g(x) > 0

and consequently z verifies d(z, µa) = d(z, µ1)

Step 2: Choosing υ. We choose υ such that d(µa,µ1)
1+υ = d(z, µa) = d(z, µ1).

Step 3: Consequence of the choice of υ on c(υ). Thus,
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C.2 Finite-armed Bandits with Pure DP and zCDP

d(µa + c(υ)∆a, µ1) = d(z, µ1),

which yields
z = µa + c(υ)∆a

by uniqueness of z.
Step 4: Consequence of the choice of υ on γℓ,T . On the other hand,

d(µa + γℓ,T∆a, µa) = log(T )
2ℓ (by definition of γℓ,T )

≤ d(µa, µ1)
β(υ + 1) (by Equation C.14)

< d(z, µa) (since β > 3)

= d(µa + c(υ)∆a, µa) (C.16)

As a consequence, we conclude that γℓ,T exists and γℓ,T < c(υ) as d(·, µa) is an increasing
function in the interval [µa, 1]

C.2.4 Gap-free regret bound for AdaP-UCB and AdaP-KLUCB

In this section, we provide problem-independent (or minimax) regret upper bounds for
AdaP-UCB.

Theorem C.7. For rewards in [0, 1], AdaP-UCB yields a regret

RegT (AdaP-UCB, ν) ≤ 3β
β − 3

∑
a

∆a + 8
√
βKT log(T ) + 16βK log(T )

ε

which achieves the minimax lower bound of Thm 4.15 up to log(T ) factors.

Proof. Let ∆ be a value to be tuned later.
We have that

RegT (AdaP-UCB, ν) =
∑
a

∆aE[Na(T )] =
∑

a:∆a≤∆
∆aE[Na(T ) +

∑
a:∆a>∆

∆aE[Na(T )]

≤ T∆ +
∑

a:∆a>∆
∆a

( 16β log(T )
∆a min{ε,∆a}

+ 3β
β − 3

)
(eq. C.13)

≤ T∆ + 16βK log(T )
∆ + 16βK log(T )

ε
+ 3β
β − 3

∑
a

∆a

≤ 8
√
βKT log(T ) + 16βK log(T )

ε
+ 3β
β − 3

∑
a

∆a
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where the last step is by taking ∆ = 4
√

βK log(T )
T .

Remark C.8. The same bound is achieved by AdaP-KLUCB (up to multiplicative constants) by using
that d(µa, µ∗) ≥ 2∆2

a and using the same steps in Thm C.7.

C.2.5 Concentration inequalities for zCDP

Lemma C.9. Assume that (Xi)1≤i≤n are iid random variables in [0, 1], with E(Xi) = µ. Then, for
any δ ≥ 0,

P
(
µ̂n + Zn −

√( 1
2n + 1

ρn2

)
log

(1
δ

)
≥ µ

)
≤ δ, (C.17)

and
P
(
µ̂n + Zn +

√( 1
2n + 1

ρn2

)
log

(1
δ

)
≤ µ

)
≤ δ, (C.18)

where µ̂n = 1
n

∑n
t=1Xt and Zn ∼ N

(
0, 1

2ρn2

)
.

Proof. Let Y = (µ̂n + Zn − µ).
Using Properties 2 and 3 of Lemma 2.22, we get that Y is

√
1

4n + 1
2ρn2 -subgaussian.

We conclude using the concentration on subgaussian random variables, i.e. Lemma 2.21.

C.2.6 Regret analysis for AdaC-UCB

Theorem 5.6 (Regret analysis of AdaC-UCB). For rewards in [0, 1] and β > 3, AdaC-UCB yields a
problem-dependent regret upper bound of

∑
a:∆a>0

(
8β
∆a

log(T ) + 8
√
β log(T )

ρ
+ 2β
β − 3

)
.

and a gap-free regret upper bound of

O
(√

KT log(T )
)

+O
(
K

√
log(T )
ρ

)
.

Proof. By the generic regret decomposition of Theorem C.4, for every sub-optimal arm a, we
have that

E[Na(T )] ≤ 2ℓ+1 + P
(
Gca,ℓ,T

)
T + β

β − 3 , (C.19)
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where
Ga,ℓ,T =

{
µ̂a,2ℓ + Zℓ + bℓ,T < µ1

}
.

such that bℓ,T ≜
√(

1
2×2ℓ + 1

ρ×(2ℓ)2

)
β log(T ) and Zℓ ∼ N

(
0, 1/

(
2ρ×

(
2ℓ
)2
))

.

Step 1: Choosing an ℓ. Now, we observe that

P(Gca,ℓ,T ) = P
(
µ̂a,2ℓ + Zℓ + bℓ,T ≥ µ1

)
= P

(
µ̂a,2ℓ + Zℓ − bℓ,T ≥ µa + ε

)
for ε = ∆a − 2bℓ,T .

The idea is to choose ℓ big enough so that ε ≥ 0.
Let us consider the contrary, i.e.

ε < 0⇒ 2ℓ < 2β log(T )
∆2
a

(
1 + ∆a

√
1

ρβ log(T )

)

⇒ 2ℓ < 2β
∆2
a

log(T ) + 2
√

β

ρ∆2
a

√
log(T ) (C.20)

Thus, by choosing

ℓ =
⌈

1
log(2) log

(
2β
∆2
a

log(T ) + 2
√

β

ρ∆2
a

√
log(T )

)⌉

we ensure ε > 0. This also implies that

P(Gca,ℓ,T ) ≤ P
(
µ̂a,2ℓ + Zℓ − bℓ,T ≥ µa

)
≤ 1
T β

The last inequality is due to Equation C.17 of Lemma C.9, with n = 2ℓ and δ = T−β .
Step 2: The regret bound. Plugging the choice of ℓ and the upper bound on P(Gca,ℓ,T ) in

Inequality C.19 gives

E[Na(T )] ≤ β

β − 3 + 2ℓ+1 + T × 1
T β

≤ 8β
∆2
a

log(T ) + 8
√

β

ρ∆2
a

√
log(T ) + 2β

β − 3 . (C.21)
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Plugging this upper bound back in the definition of problem-dependent regret, we get that
the regret RegT (AdaC-UCB, ν) is upped bounded by

∑
a:∆a>0

(
8β
∆a

log(T ) + 8
√
β

ρ

√
log(T ) + 2β

β − 3

)
.

Step 3: The gap-free regret bound. Let ∆ be a value to be tuned later.
We observe that

RegT (AdaP-UCB, ν) =
∑
a

∆aE[Na(T )]

=
∑

a:∆a≤∆
∆aE[Na(T ) +

∑
a:∆a>∆

∆aE[Na(T )]

≤ T∆ +
∑

a:∆a>∆
∆a

(
8β
∆2
a

log(T ) + 8
√
β log(T )
ρ∆2

a

+ 2β
β − 3

)

≤ T∆ + 8βK log(T )
∆ + 8K

√
β log(T )

ρ
+ 3β
β − 3

∑
a

∆a

≤ 4
√

2βKT log(T ) + 8K
√
β log(T )

ρ
+ 3β
β − 3

∑
a

∆a

Here, the last step is tuning ∆ =
√

8βK log(T )
T .

C.3 Linear Bandits with zCDP

C.3.1 Concentration inequalities

Let a1, . . . , at be deterministically chosen without the knowledge of r1, . . . , rt. Let π be an
optimal design for A.

Let Vt ≜
∑t
s=1 asa

T
s =

∑
a∈ANa(t)aaT be the designmatrix, θ̂t = V −1

t

∑t
s=1 asrs be the least

square estimate and θ̃t = θ̂t + V
− 1

2
t Nt where Nt ∼ N

(
0, 2

ρg
2
t Id
)
, where gt ≜ maxb∈A ∥b∥V −1

t
.

Theorem C.10. Let δ ∈ [0, 1] and βt ≜ gt
√

2 log
(

4
δ

)
+ g2

t

√
2
ρf(d, δ), where

f(d, δ) ≜ d+ 2
√
d log

(2
δ

)
+ 2 log

(2
δ

)
.

For every a ∈ A, we have that
P
(∣∣∣〈θ̃t − θ⋆, a〉∣∣∣ ≥ βt) ≤ δ.
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Proof. For every a ∈ A

〈
θ̃t − θ⋆, a

〉
=
〈
θ̂t − θ⋆, a

〉
+ aTV

− 1
2

t Nt

=
〈
θ̂t − θ⋆, a

〉
+ Zt

where Zt ≜ aTV − 1
2

t Nt.
Step 1: Concentration of the least square estimate. Using Equation (20.2) from Chapter

20 of [LS20], we have that

P
(∣∣∣〈θ̂t − θ⋆, a〉∣∣∣ ≥ gt

√
2 log

(4
δ

))
≤ δ

2

Step 2: Concentration of the injected Gaussian noise. On the other hand, using Cauchy-
Schwartz, we have that

|Zt| =
∣∣∣∣aTV − 1

2
t Nt

∣∣∣∣ ≤ ∥V − 1
2

t a∥.∥Nt∥ ≤ gt∥Nt∥

using that ∥V − 1
2

t a∥ = ∥a∥V −1
t
≤ gt.

Here, Nt =
√

2
ρgtN (0, Id). Thus, using Lemma C.28, we get

P
(
|Zt| ≥ g2

t

√
2
ρ
f(d, δ)

)
≤ δ

2

Steps 1 and 2 together conclude the proof.

Corollary C.11. Let β be a confidence level. If each action a ∈ A is chosen forNa(t) ≜ ⌈ctπ(a)⌉ where

ct ≜
8d
β2 log

(4
δ

)
+ 2d

β

√
2
ρ
f(d, δ)

and f(d, δ) ≜ d+ 2
√
d log

(
2
δ

)
+ 2 log

(
2
δ

)
.

then, for t =
∑
a∈Supp(π)Na(t), we get that

P
(∣∣∣〈θ̃t − θ⋆, a〉∣∣∣ ≥ β) ≤ δ .
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Proof. We have that

Vt =
∑

a∈Supp(π)
Na(t)aaT ≥ ctV (π)

This means that

g2
t = max

b∈A
∥b∥2

V −1
t
≤ 1
ct

max
b∈A
∥b∥2V (π)−1 = g(π)

ct
= d

ct
,

where the last equality is because π is an optimal design for A.
Recall that

βt ≜ gt

√
2 log

(4
δ

)
+ g2

t

√
2
ρ
f(d, δ)

Thus,

βt ≤
√
d

ct

√
2 log

(4
δ

)
+ d

ct

√
2
ρ
f(d, δ)

≤

√
2d log

(
4
δ

)
√

8d
β2 log

(
4
δ

) +
d
√

2
ρf(d, δ)

2d
β

√
2
ρf(d, δ)

= β

2 + β

2 = β

The final inequality is due to ct ≥ 8d
β2 log

(
4
δ

)
, and ct ≥ 2d

β

√
2
ρf(d, δ).

We conclude the proof using Theorem C.10.

C.3.2 Regret analysis of AdaC-GOPE

Theorem 5.12 (Regret Analysis of AdaC-GOPE). Under Assumption 5.10 and for δ ∈ (0, 1), with
probability at least 1− δ, the regret RT of AdaC-GOPE is upper-bounded by

A

√
dT log

(
K log(T )

δ

)
+ Bd
√
ρ

√
log

(
K log(T )

δ

)
log(T ),

where A and B are universal constants. If δ = 1
T , then

E(RT ) ≤ O
(√

dT log(KT )
)

+O
(
d
√
ρ

(log(KT ))
3
2

)
.
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Proof. Step 1: Defining the good event E. Let

E ≜
∞⋂
ℓ=1

⋂
a∈Aℓ

{∣∣∣〈θ̃ℓ − θ∗, a
〉∣∣∣ ≤ βℓ} .

Using Corollary C.11, we get that

P(¬E) ≤
∞∑
ℓ=1

∑
a∈Aℓ

P
(∣∣∣〈θ̃ℓ − θ∗, a

〉∣∣∣ > βℓ
)

≤
∞∑
ℓ=1

∑
a∈Aℓ

δ

Kℓ(ℓ+ 1) ≤ δ

Step 2: Good properties under E. We have that under E
• The optimal arm a⋆ ∈ arg maxa∈A ⟨θ∗, a⟩ is never eliminated.

Proof. for every episode ℓ and b ∈ Aℓ, we have that under the good event E,〈
θ̃ℓ, b− a⋆

〉
=
〈
θ̃ℓ − θ⋆, b− a⋆

〉
+ ⟨θ⋆, b− a⋆⟩

≤
〈
θ̃ℓ − θ⋆, b− a⋆

〉
≤
∣∣∣〈θ̃ℓ − θ∗, a

⋆
〉∣∣∣+ ∣∣∣〈θ̃ℓ − θ∗, b

〉∣∣∣ ≤ 2βℓ

where the first inequality is because ⟨θ⋆, b− a⋆⟩ ≤ 0 by definition of the optimal arm a⋆.
This means that a⋆ is never eliminated.

• Each sub-optimal arm awill be removed after ℓa rounds where ℓa ≜ min{ℓ : 4βℓ < ∆a}.

Proof. We have that under E,〈
θ̃ℓa , a

⋆ − a
〉
≥ ⟨θ⋆, a⋆⟩ − βℓa − ⟨θ⋆, a⟩ − βℓa

= ∆a − 2βℓa > 2βℓa

which means that a get eliminated at the round ℓa.

• for a ∈ Aℓ+1, we have that ∆a ≤ 4βℓ.

Proof. If ∆a > 4βℓ, then by the definition of ℓa, ℓ ≥ ℓa and arm a is already eliminated,
i.e. a /∈ Aℓ+1
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Step 3: Regret decomposition under E.

Fix ∆ to be optimised later.
Under E, each sub-optimal action a such that ∆a > ∆ will only be played for the first ℓ∆

rounds where
ℓ∆ ≜ min{ℓ : 4βℓ < ∆} =

⌈
log2

( 4
∆

)⌉
We have that

RT =
∑
a∈A

∆aNa(T )

=
∑

a:∆a>∆
∆aNa(T ) +

∑
a:∆a≤∆

∆aNa(T )

=
ℓ∆∧ℓ(T )∑
ℓ=1

∑
a∈Aℓ

∆aTℓ(a) + T∆

≤
ℓ∆∧ℓ(T )∑
ℓ=1

4βℓ−1Tℓ + T∆

where the last inequality is thanks to the third bullet point in Step 2, i.e. ∆a ≤ 4βℓ−1 for a ∈ Aℓ.
Also ℓ(T ) is the total number of episodes played until timestep T .
Step 4: Upper-bounding Tℓ and ℓ(T ) under E. Let δK,ℓ ≜ δ

Kℓ(ℓ+1) . We recall that f(d, δ) ≜

d+ 2
√
d log

(
2
δ

)
+ 2 log

(
2
δ

)
.

We have that

Tℓ =
∑
a∈Sℓ

Tℓ(a)

=
∑
a∈Sℓ

⌈
8dπℓ(a)
β2
ℓ

log
(

4
δK,ℓ

)
+ 2dπℓ(a)

βℓ

√
2
ρ
f(d, δK,ℓ)

⌉

≤ d(d+ 1)
2 + 8d

β2
ℓ

log
(

4
δK,ℓ

)
+ 2d
βℓ

√
2
ρ
f(d, δK,ℓ).

since βℓ+1 = 1
2βℓ and

∑ℓ(T )
ℓ=1 Tℓ = T , there exists a constant C such that ℓ(T ) ≤ C log(T ). In

other words, the length of the episodes is at least doubling so their number is logarithmic.
Which means that, for ℓ ≤ ℓ(T ), there exists a constant C ′ such that

log
(

4
δK,ℓ

)
= log

(4Kℓ(ℓ+ 1)
δ

)
≤ C ′ log

(
K log(T )

δ

)
.
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Define αT ≜ log
(
K log(T )

δ

)

Tℓ ≤
d(d+ 1)

2 + 8d
β2
ℓ

C ′αT + 4d
βℓ

√
1
ρ
C ′αT

Step 5: Upper-bounding regret under E.

Under E
ℓ∆∧ℓ(T )∑
ℓ=1

4βℓ−1Tℓ

≤
ℓ∆∧ℓ(T )∑
ℓ=1

8βℓ

(
d(d+ 1)

2 + 8d
β2
ℓ

C ′αT + 4d
βℓ

√
1
ρ
C ′αT

)

≤ 4d(d+ 1) + 64dC ′αT

 ℓ∆∑
ℓ=1

2ℓ
+ 32d

√
1
ρ
C ′αT ℓ(T )

≤ 4d(d+ 1) + 16dC ′αT

(16
∆

)
+ 32d

√
1
ρ
C ′αT ℓ(T )

≤ 4d(d+ 1) + C1dαT
1
∆ + C2d

√
1
ρ
αT log(T )

All in all, we have that

RT ≤ 4d(d+ 1) + C2d

√
1
ρ
αT log(T ) + C1dαT

1
∆ + T∆

Step 6: Optimizing for ∆. We take

∆ =

√
C1d

T
αT .

We get an upper bound on RT of

A

√
dT log

(
k log(T )

δ

)
+Bd

√
1
ρ

log
(
k log(T )

δ

)
log(T )

Step 7: Upper-bounding the expected regret. For δ = 1
T , we get that

E(RT ) ≤ (1− δ)RT (δ) + δT
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≤ RT (δ) + 1

≤ C ′
1

√
dT log(kT ) + C ′

2

√
1
ρ
d log(kT )

3
2

C.3.3 Adding noise at different steps of GOPE

In order to make the GOPE algorithm differentially private, the main task is to derive a private
estimate of the linear parameter θ at each phase ℓ, i.e. θ̂ℓ. If the estimate is private with respect
to the samples used to compute it, i.e. θ̂ℓ = V −1

ℓ

(∑tℓ+1−1
t=tℓ asrs

)
w.r.t {rs}tℓ+1−1

s=tℓ , then due to
forgetting and post-processing, the algorithm turns private too.

We discuss three different ways to make the empirical estimate θ̂ℓ private.

Adding noise in the end

A first attempt would be to analyse the L2 sensitivity of θ̂ℓ directly, and adding Gaussian noise
calibrated by the L2 sensitivity of θ̂ℓ.

Let {rs}tℓ+1−1
s=tℓ and {r′

s}
tℓ+1−1
s=tℓ two neighbouring sequence of rewards that differ at only step

j ∈ [tℓ, tℓ+1 − 1]. Then, we have that

∥θ̂ℓ − θ̂′
ℓ∥2 = ∥V −1

ℓ

[
aj(rs − r′

s)
]
∥2

≤ 2∥V −1
ℓ aj∥2

since rj , r′
j ∈ [−1, 1].

However, it is hard to control the quantity ∥V −1
ℓ aj∥2 without additional assumptions. The

G-optimal design permits only to control another related quantity, i.e. ∥aj∥V −1
ℓ

= ∥V − 1
2

ℓ aj∥2.
Thus, it is better to add noise at a step before if one does not want to add further assumption.

Adding noise in the beginning

Since θ̂ℓ = V −1
ℓ

(∑tℓ+1−1
t=tℓ asrs

)
, another way to make θ̂ℓ private is by adding noise directly to

the sum of observed rewards.
Specifically, one can rewrite the sum

tℓ+1−1∑
t=tℓ

asrs =
∑
a∈Sℓ

a
∑

at=a,t∈[tℓ,tℓ+1−1]
rt .
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Since rewards are in [−1, 1], the L2 sensitivity of∑at=a,t∈[tℓ,tℓ+1−1] rt is 2.
Thus, by Theorem 2.14, this means that the noisy sum of rewards ∑at=a,t∈[tℓ,tℓ+1−1] rt +

N
(
0, 2

ρ

)
is ρ-zCDP. Hence, by post-processing lemma, the corresponding noisy estimate θ̂ℓ +

V −1
ℓ

(∑
a∈Sℓ

aN
(
0, 2

ρ

))
is a ρ-zCDP estimate of θ̂ℓ.

This is exactly how both [HGFD22] and [LZJ22] derive a private version of GOPE for dif-
ferent privacy definitions, i.e. pure ε-DP for [HGFD22] and (ε, δ)-DP for [LZJ22], respectively.
The drawback of this approach is that the variance of the noise depends on the size of the
support Sℓ of the G-optimal design.

To deal with this, both [HGFD22] and [LZJ22] solve a variant of the G-optimal design to get
a solution where |Sℓ| ≤ 4d log log d+ 16 rather than the full d(d+ 1)/2 support of AdaC-GOPE’s
optimal design. And still, the dependence on d in the private part of the regret achieved by
both these algorithms are d2 in [HGFD22, Eq (18)], and d 3

2 in [LZJ22, Eq (56)], respectively.
Thus, both of these existing algorithms do not achieve to the linear dependence on d in the
regret term due to privacy, as suggested by the minimax lower bound.

Adding noise at an intermediate level

In contrast, AdaC-GOPE adds noise to the statistic

ϕℓ = V
− 1

2
ℓ

tℓ+1−1∑
t=tℓ

asrs

 .
ϕℓ is an intermediate quantity between the sum of rewards∑tℓ+1−1

t=tℓ asrs, and the parameter
θ̂ℓ, whose L2 sensitivity can be controlled directly using the G-optimal Design. Due to this
subtle observation, the private estimation θ̃ℓ of AdaC-GOPE is independent of the size of the
support Sℓ. Hence, the regret term of AdaC-GOPE due to privacy enjoys a linear dependence
on d, as suggested by the minimax lower bound.

Conclusion

In brief, to achieve the same DP guarantee with the same budget, one may arrive at it by adding
noise at different steps, and the resulting algorithms may have different utilities. In general,
adding noise at an intermediate level of computation (not directly to the input, i.e. local and
not output perturbation) generally gives the best results.

Remark C.12 (AdaC-GOPE VS variants). We also compare the empirical performance of AdaC-GOPE
with a variant where the noise is added to the sum statistic i.e. θ̃ℓ ≜ θ̂ℓ + V −1

ℓ

(∑
a∈Sℓ

aN
(
0, 2

ρ

))
. we

add an experimental comparison between AdaC-GOPE and a variant of AdaC-GOPE where the way of
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Figure C.1 – Evolution of the regret over time for AdaC-GOPE and Adar-GOPE-Var for different values
of the privacy budget ρ.

making the estimate θ̂ℓ private is different (Section C.3.3). In AdaR-GOPE-Var, Step 4 changes to

θ̃AdaR-GOPE-Var
ℓ = θ̂ℓ + V −1

ℓ

∑
a∈Sℓ

aN
(

0, 2
ρ

) .

We compare AdaC-GOPE and AdaR-GOPE-Var in the same experimental setup and instances as in
Section 5.5, for different privacy budgets ρ and report the results in Figure C.1.

As suggested by the regret analysis, AdaC-GOPE achieves less regret, especially in the high privacy
regime where the private part of the regret has more impact.
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C.4 Linear Contextual Bandits with zCDP

C.4.1 Confidence bound for the private least-square estimator

Theorem C.13. Let δ ∈ (0, 1). Then, with probability 1−O(δ), it holds that, for all t ∈ [1, T ],

∥θ̃t − θ⋆∥Vt ≤ β̃t

where

β̃t = βt + γt√
t

such that

βt = O
(√

d log(t)
)

and γt = O
(√

1
ρ
d log(t)

)

and βt and γt are increasing in t.

Proof. Step 1: Decomposing θ̃t − θ⋆. We have that

θ̃t − θ⋆ = V −1
t

 t∑
s=1

AsRs +
ℓ(t)∑
m=1

Ym

− θ⋆
= V −1

t

 t∑
s=1

As(ATs θ⋆ + ηs) +
ℓ(t)∑
m=1

Ym

− θ⋆
= V −1

t

(Vt − λId)θ⋆ +
t∑

s=1
Asηs +

ℓ(t)∑
m=1

Ym

− θ⋆
= V −1

t (St +Nt − λθ⋆)

where St ≜
∑t
s=1Asηs, Nt =

∑ℓ(t)
m=1 Ym ∼ N

(
0, 2ℓ(t)

ρ Id
)
and ℓ(t) is the number of episodes

until time-step t number of updates of θ̃.
Which gives that

∥θ̃t − θ⋆∥Vt = ∥St +Nt − λθ⋆∥V −1
t

Step 2: Defining the Good Event E.We call E1, E2 and E3 respectively the events

∀t ∈ [T ] : ∥St∥V −1
t
≤

√
2 log

(1
δ

)
+ log

(det(Vt)
λd

) ,
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{∀t ∈ [T ] : λmin(Gt) ≥ g(t, λ0, δ, d)} ,{
∀t ∈ [T ] : ∥Nt∥ ≤

√
2ℓ(t)
ρ

f

(
d,
δ

T

)}

where Gt ≜
∑t
s=1AsA

T
s , g(t, λ0, δ, d) ≜ λ0t

4 − 8 log
(
t+3
δ/d

)
− 2

√
t log

(
t+3
δ/d

)
and f(d, δ) ≜ d +

2
√
d log

(
1
δ

)
+ 2 log

(
1
δ

)
.

Let

E = E1 ∩ E2 ∩ E3 (C.22)

Step 3: Showing that E Happens with High Probability.

For event E1:
By a direct application of Lemma C.30, we get that

P(¬E1) ≤ δ.

For event E2:
By a direct application of Lemma 5.16, we get that

P(¬E2) ≤ δ.

For event E3:
Since Nt ∼ N

(
0, 2ℓ(t)

ρ Id
)
, a direct application of Lemma C.28 gives that

P(¬E3) ≤ δ.

All in all, we get that P(E) ≥ 1− 3δ.
Step 4: Upper-bounding ∥θ̃t − θ⋆∥Vt under E. We have that,

∥θ̃t − θ⋆∥Vt ≤ ∥St∥V −1
t

+ ∥Nt∥V −1
t

+ ∥λθ⋆∥V −1
t

Under E, Vt ≥ (λ+ λmin(Gt))Id ≥ λId.
Which gives that, under E,

∥Nt∥V −1
t
≤ 1√

λ+ λmin(Gt)
∥Nt∥
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≤

√√√√√√√√
2ℓ(t)
ρ

(
d+ 2

√
d log

(
1
δ

)
+ 2 log

(
T
δ

))
λ+ λ0t

4 − 8 log
(
t+3
δ/d

)
− 2

√
t log

(
t+3
δ/d

)
≜

γt√
t

and

∥St∥V −1
t

+ ∥λθ⋆∥V −1
t

≤

√
2 log

(1
δ

)
+ log

(det(Vt)
λd

)
+ λ√

λ
∥θ⋆∥

=
√

2 log
(1
δ

)
+ log

(det(Vt)
λd

)
+
√
λ∥θ⋆∥ ≜ βt

So, under E, we have that

∥θ̃t − θ⋆∥Vt ≤ β̃t

where

β̃t = βt + γt√
t

Step 5: Upper-bounding det(Vt) and ℓ(t).

Under E, using the determinant trace inequality, we have that

det(Vt) ≤
(1
d
trace(Vt)

)d
≤
(
dλ+ t

d

)d
which gives that

βt =
√

2 log
(1
δ

)
+ d log

(
1 + t

λd

)
+
√
λ∥θ⋆∥

We can say that βt = O(
√
d log(t)).

On the other hand, after each episode, the det(Vt) is, at least, increased multiplicatively by
(1 + C), which means that under E, we have that

(1 + C)ℓ(t) det(V0) ≤ det(Vt) ≤
(
λ+ t

d

)d
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which gives that

ℓ(t) ≤ d

log(1 + C) log
(

1 + t

λd

)

so ℓ(t) = O(d log(t)) and γt = O
(√

1
ρd log(t)

)
Step 6: Final Touch.

Under event E, we have that ∥θ̃t − θ⋆∥Vt ≤ β̃t where β̃t = βt + γt√
t
, βt = O(

√
d log(t)) and

γt = O
(√

1
ρd log(t)

)
such that βt and γt are increasing.

C.4.2 Regret analysis of AdaC-OFUL

Theorem 5.17 (Regret Analysis of AdaC-OFUL). Under Assumptions 5.10 and 5.15, and for δ ∈
(0, 1], with probability at least 1− δ, the regret RT of AdaC-OFUL is upper bounded by

RT ≤ O
(
d log(T )

√
T
)

+O
(
d2
√
ρ

log(T )2
)

Proof. Let E be the event defined in equation C.22.
Step 1: Regret Decomposition.

Let A⋆t = arg maxa∈At ⟨θ⋆, a⟩.
We have that

RT =
T∑
t=1

rt, where rt = ⟨θ⋆, A⋆t −At⟩

Step 2: Upper-bounding Instantaneous Regret under E.

At step t, let τt be the last step where θ̃ was updated.
Let Ct = {θ ∈ Rd : ∥θ − θ̃t−1∥Vt−1 ≤ β̃t−1} and UCBt(a) = maxθ∈Ct ⟨θ, a⟩.
Also, define θ̆τt = arg maxθ∈Cτt

⟨θ,At⟩ so that UCBτt(At) =
〈
θ̆τt , At

〉
.

Finally, Line 11 of Algorithm 9 could be re-written as At = arg maxa∈At UCBτt(a).
Under E, we have that

rt = ⟨θ⋆, A⋆t −At⟩
(a)
≤
〈
θ̆τt − θ⋆, At

〉
(b
≤ ∥θ̆τt − θ⋆∥Vt−1∥At∥V −1

t−1
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(c)
≤
√

det(Vt−1)
det(Vτt)

∥θ̆τt − θ⋆∥Vτt
∥At∥V −1

t−1

(d)
≤
√

1 + C(2β̃τt)∥At∥V −1
t−1

where:
(a) Under E, θ⋆ ∈ Cτt and ⟨θ⋆, A⋆t ⟩ ≤ maxθ∈Cτt

⟨θ,A⋆t ⟩ = UCBτt(A⋆t ) ≤ UCBτt(At) =〈
θ̆τt , At

〉
.

(b) By the Cauchy-Schwartz inequality.
(c) By Lemma C.31.
(d) By definition of τt and Line 6 of Algorithm 9 , we have that det(Vt−1) ≤ (1 +C) det(Vτt)

and under E, θ⋆ ∈ Cτt , so ∥θ̆τt − θ⋆∥Vτt
≤ 2β̃τt .

We also have that rt ≤ 2 and β̃τt ≤ βT + γT√
τt
, which gives

rt ≤ 2
√

1 + CβT
(
1 ∧ ∥At∥V −1

t−1

)
+ 2
√

1 + C

γT√
τt

(
1 ∧ ∥At∥V −1

t−1

)

Step 3: Upper-bounding Regret under E.
Under E, we have that

RT =
T∑
t=1

rt

≤ 2
√

1 + CβT

T∑
t=1

(
1 ∧ ∥At∥V −1

t−1

)

+ 2
√

1 + CγT

T∑
t=1

1
√
τt

(
1 ∧ ∥At∥V −1

t−1

)

≤ 2
√

1 + CβT

√√√√T T∑
t=1

1 ∧ ∥At∥2V −1
t−1

+ 2
√

1 + CγT

√√√√( T∑
t=1

1
τt

)(
T∑
t=1

1 ∧ ∥At∥2V −1
t−1

)
(C.23)

where the last inequality is due to the Cauchy-Schwartz inequality.
Step 4: The Elliptical Potential Lemma.
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We use that 1 ∧ x ≤ log(1 + x) and det(Vt) = det(Vt−1)
(
1 + ∥At∥2Gt−1(λ)−1

)
to have that

T∑
t=1

(
1 ∧ ∥At∥2V −1

t−1

)
≤ 2

T∑
t=1

log
(

1 + ∥At∥2V −1
t−1

)

= 2 log
(det(VT )

det(V0)

)
≤ 2d log

(
1 + T

λd

)
(C.24)

often known as the elliptical potential lemma (Lemma 19.4, [LS20].
Step 5: Upper-bounding the Length of Every Episode .

Episode ℓ starts at tℓ and ends at tℓ+1 − 1, so we have that

det(Vtℓ+1−1)
det(Vtℓ)

≤ 1 + C (C.25)

On the other hand,

det(Vtℓ+1−1)
det(Vtℓ)

=
tℓ+1−1∏
t=tℓ+1

(
1 + ∥At∥2V −1

t−1

)
(C.26)

Under E, we use that

Vt−1 ≤ (λ+ λmax (Gt−1)) Id ≤ (λ+ t− 1) Id

since λmax (Gt−1) ≤ trace(Gt−1) ≤ t− 1.
which gives that

∥At∥2V −1
t−1
≥ 1
λ+ t− 1

Plugging in Equation C.26, we get that

det(Vtℓ+1−1)
det(Vtℓ)

≥
tℓ+1−1∏
t=tℓ+1

(
1 + 1

λ+ t− 1

)

=
tℓ+1−1∏
t=tℓ+1

(
λ+ t

λ+ t− 1

)
= λ+ tℓ+1 − 1

λ+ tℓ

≥ 1
λ+ 1

tℓ+1
tℓ

where the last inequality uses that tℓ ≥ 1 and λ ≥ 1.
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Finally using the upper bound of Equation C.25, we get that

tℓ+1
tℓ
≤ (1 + C)(1 + λ)

Which gives that

T∑
t=1

1
τt

=
ℓ(T )∑
ℓ=1

tℓ+1−1∑
t=tℓ

1
tℓ

=
ℓ(T )∑
ℓ=1

tℓ+1 − tℓ
tℓ

≤ (1 + C)(1 + λ)ℓ(T ) (C.27)

Step 6: Final Touch.
Plugging the upper bounds of Equation C.24 and C.27 in the regret upper bound of Equa-
tion C.23, we get that

RT ≤ 2
√

1 + C

√
2d log

(
1 + T

λd

)(
βT
√
T

+γT
√

(1 + C)(1 + λ)ℓ(T )
)

We finalise by using that

βT = O
(√

d log(T )
)
, γT = O

(√
1
ρ
d log(T )

)
and ℓ(T ) = O (d log(T ))

We get that

RT ≤ O
(
d log(T )

√
T
)

+O
(√

1
ρ
d2 log(T )2

)

C.4.3 Rectifying LinPriv regret analysis

[NR18] propose “LinPriv: Reward-Private Linear UCB", an ε-global DP linear contextual bandit
algorithm. The context is assumed to be public but adversely chosen. The algorithm is an
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ε-global DP extension of OFUL, where the reward statistics are estimated, at each time-step
and for every arm, using a tree-based mechanism [DNPR10b, CSS11].

Theorem 5 in [NR18] claims that the regret of LinPriv is of order

Õ
(
d
√
T + 1

ε
Kd log T

)
.

We believe there is a mistake in their regret analysis. In the proof of Theorem 5, page 25,
they say that

"The crux of their analysis is actually the bound∑n
t=1 ∥xi,t∥V −1

i,t
≤ 2d log

(
1 + n

λd

). "
However, we believe that the result they are citing from [AYPS11] is erroneous. The correct

one is
n∑
t=1
∥xi,t∥2V −1

i,t
≤ 2d log

(
1 + n

λd

)
,

which is known as the elliptical potential lemma ( Eq. (C.24)).
To get the sum, a Cauchy-Schwartz inequality is generally used which leads to

n∑
t=1
∥xi,t∥V −1

i,t
≤

√√√√n n∑
t=1
∥xi,t∥2V −1

i,t

≤
√

2nd log
(

1 + n

λd

)

After n is replaced by T
K , an additional multiplicative

√
T should appear in the private

regret.
Thus, the rectified regret should be Õ

(
d
√
T + 1

εKd
√
T
)
.

Remark C.14. In the proof of Theorem 5 [NR18], to bound the sum

∑
wi,t ≤ O(

√
log T )

n∑
t=1
∥xi,t∥V −1

i,t
,

the correct bound has been used on the sum
n∑
t=1
∥xi,t∥V −1

i,t

with the
√
T appearing. However, it is misused for the private part.
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C.5 Existing Technical Results and Definitions

In this section, we summarise the existing technical results and definitions required to establish
our proofs.
Lemma C.15 (Post-processing Lemma (Proposition 2.1, [DR14a])). IfM is a mechanism and f
is an arbitrary randomised mapping defined onM’s output, then

• IfM is (ε, δ)-DP, then f ◦M is (ε, δ)-DP.

• IfM is ρ-zCDP, then f ◦M is ρ-zCDP.
Lemma C.16 (Post-processing property of Renyi Divergence, Lemma 2.2 [BS16]). Let P and Q
be distributions on Ω and let f : Ω→ Θ be a function. Let f(P ) and f(Q) denote the distributions on
Θ induced by applying f to P and Q respectively. Then Dα(f(P )∥f(Q)) ≤ Dα(P∥Q).
Lemma C.17 (Markov’s Inequality). For any random variable X and ε > 0,

P(|X| ≥ ε) ≤ E[|X|]
ε

.

Definition C.18 (Consistent Policies). A policy π is called consistent over a class of bandits E if for
all ν ∈ E and p > 0, it holds that

lim
T→∞

RegT (π, ν)
T p

= 0.

The class of consistent policies over E is denoted by Πcons (E).
Lemma C.19 (Divergence decomposition). Let ν = (P1, . . . , PK) and ν ′ = (P ′

1, . . . , P
′
K) be two

bandit instances. Fix some policy π and let Pνπ and Pν′π be the probability measures on the canonical
bandit model. Then,

KLPνπPν′π =
K∑
a=1

Eν [Na(T )] D
(
Pa, P

′
a

)
.

Lemma C.20 (Bretagnolle-Huber inequality). Let P and Q be probability measures on the same
measurable space (Ω,F), and let A ∈ F be an arbitrary event. Then,

P(A) + Q (Ac) ≥ 1
2 exp(−D(P,Q)),

where Ac = Ω\A is the complement of A.
Lemma C.21 (Pinsker’s Inequality). For two probability measures P and Q on the same probability
space (Ω,F), we have

KLPQ ≥ 2(TV (P ∥ Q))2.

Lemma C.22 (Tail Bounds for Laplacian Random Variables). For any a, b > 0, we have

P(Lap(b) > a) = 1
2 exp

(
−a
b

)
and P(Lap(b) < −a) = 1

2 exp
(
−a
b

)
.
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Lemma C.23 (Hoeffding’s Bound). Assume that (Xi)1≤i≤n are iid random variables in [0, 1], with
E(Xi) = µ. For any δ, β ≥ 0 and, we have:

P (µ̂n ≥ µ+ β) ≤ exp
(
−2nβ2

)
and P (µ̂n ≤ µ− β) ≤ exp

(
−2nβ2

)
,

where µ̂n = 1
n

∑n
t=1Xt.

Definition C.24 (Relative entropy between Bernoulli distributions). The relative entropy between
Bernoulli distributions with parameters p, q ∈ [0, 1] is

d(p, q) = p log(p/q) + (1− p) log((1− p)/(1− q)),

where singularities are defined by taking limits: d(0, q) = log(1/(1− q)) and d(1, q) = log(1/q) for
q ∈ [0, 1] and d(p, 0) = 0 if p = 0 and∞ otherwise and d(p, 1) = 0 if p = 1 and∞ otherwise.

Lemma C.25 (Properties of the relative entropy between Bernoulli distributions (Lemma
10.2, [LS20])). Let p, q, ε ∈ [0, 1].

1. The functions d(·, q) and d(p, ·) are convex and have unique minimisers at q and p, respectively.

2. d(p, ·) and d(·, p) are increasing in the interval [p, 1] and decreasing in the interval [0, p].

LemmaC.26 (Chernoff’s Bound). LetX1, X2, . . . , Xn be a sequence of independent random variables
that are Bernoulli distributed with mean µ, and let µ̂n = 1

n

∑n
t=1Xt be the sample mean. Then, for

β ∈ [0, 1− µ], it holds that:

P(µ̂n ≥ µ+ β) ≤ exp(−nd(µ+ β, µ)), (C.28)

and for β ∈ [0, µ],
P(µ̂n ≤ µ− β) ≤ exp(−nd(µ− β, µ)). (C.29)

Lemma C.27 (Theorem 7.8 of [Zha11]). If A ≥ B ≥ 0, then
• det(A) ≥ det(B)

• A−1 ≤ B−1 if A and B are non-singular.

Lemma C.28 (Concentration of the χ2-Distribution, Claim 17 of [SS18]). If X ∼ N (0, Id) and
δ ∈ (0, 1), then

P
(
∥X∥2 ≥ d+ 2

√
d log

(1
δ

)
+ 2 log

(1
δ

))
≤ δ

Lemma C.29 (Concentration of the Largest Singular Value, Section 4.2 of [SS18]). IfM ∈ Rd×d

such thatMi,j
iid∼ N (0, 1), ∥M∥ ≜ the largest singular value ofM and δ ∈ (0, 1), then

P
(
∥M∥ > 4

√
d+ 1 + 2 log

(1
δ

))
≤ δ
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C.5 Existing Technical Results and Definitions

Lemma C.30 (Theorem 20.4 of [LS20]). Let the noise ρt be conditionally 1-subgaussian (conditioned
on A1, X1, . . . , At−1, Xt−1, At), St =

∑t
s=1Asρs and Vt(λ) = λId +

∑t
s=1AsA

T
s . Then, for all

λ > 0 and δ ∈ (0, 1),

P
(
∃t ∈ N : ∥St∥2Vt(λ)−1 ≥ 2 log

(1
δ

)
+ log

(det(Vt(λ))
λd

))
≤ δ

Lemma C.31 (Lemma 12 in [AYPS11]). Let A, B and C be positive semi-definite matrices such that
A = B + C. Then, we have that

sup
x ̸=0

xTAx

xTBx
≤ det(A)

det(B)

Lemma C.32 (Theorem 9 in [KK21]). Let ν be a sub-Gaussian bandit with means µ ∈ RK and
variance proxy σ. Let S ⊆ [K] and x > 0.

Pν

(
∃n ∈ N,

∑
a∈S

Nn,a

2σ2 (µn,a − µa)2 >
∑
a∈S

2 log (4 + log (Nn,a)) + |S|CG
(
x

|S|

))
≤ e−x ,

where CG is defined in [KK21] as

CG(x) ≜ min
λ∈]1/2,1]

gG(λ) + x

λ
and gG(λ) ≜ 2λ− 2λ log(4λ) + log ζ(2λ)− 1

2 log(1− λ) . (C.30)

Here, ζ is the Riemann ζ function and CG(x) ≈ x+ log(x).
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D.1 Proof of Theorem 6.3

Theorem 6.3 (Asymptotic distribution of the LR score). Using an Edgeworth asymptotic expansion
of the likelihood ratio score and a Lindeberg-Feller central limit theorem, we show that

(a) Under H0,
ℓn(µ̂n; z⋆, µ, Cσ)⇝ N

(
−1

2m
⋆,m⋆

)
(b) Under H1,

ℓn(µ̂n; z⋆, µ, Cσ)⇝ N
(1

2m
⋆,m⋆

)
The convergence is a convergence in distribution, such that d, n→∞, while d/n = τ . We call

m⋆ ≜ lim
n,d

1
n
∥z⋆ − µ∥2

C−1
σ

= lim
n,d

d∑
j=1

(z⋆j − µj)2

nσ2
j

the leakage score of target z⋆.

Proof. We have that µ̂n = 1
n

∑n
i=1 Zi, where Zi = (Zi,j)dn

j=1 ∈ Rdn and Zi ∼i.i.d D =
⊗dn

j=1Dj .
Each distribution Dj has mean µj and variance σ2

j .
We denote µ̂n = (µ̂n,j)dn

j=1, where µ̂n,j = 1
n

∑n
i=1 Zi,j .

Step 1: Rewriting the LR score

Let j ∈ [1, dn].
Under H0, we can re-write

µ̂n,j = µj + σj√
n
Ẑn,j ,

where

Ẑn,j ≜
√
n

(
µ̂n,j − µj

σ

)
= 1√

n

n∑
i=1

Zi,j − µj
σj

.

Since (Zi,j)ni=1 are i.i.d from Dj , using the CLT, Ẑn,j ⇝n→∞ N (0, 1).
Let dn,j be the density function of Ẑn,j .
The density pout

n,j of µ̂n,j under H0 can be written as

pout
n,j (x; z⋆j , µj , σj) =

√
n

σj
dn,j

[√
n

σj
(x− µj)

]
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Under H1, we can re-write

µ̂n,j = 1
n
z⋆j + n− 1

n

(
µj + σj√

n− 1
Ẑn−1,j

)
= µj + 1

n

(
z⋆j − µj

)
+ σj

√
n− 1
n

Ẑn−1,j

The density pin
n,j of µ̂n,j under H1 can be written as

pin
n,j(x; z⋆j , µj , σj) = n

σj
√
n− 1

dn−1,j

[
n

σj
√
n− 1

(
x− µj −

1
n

(
z⋆j − µj

))]

The LR score is

ℓn(µ̂n; z⋆, µ, Cσ) =
dn∑
j=1

log
(
pin
n,j(µ̂n,j ; z⋆j , µj , σj)
pout
n,j (µ̂n,j ; z⋆j , µj , σj)

)

=
dn∑
j=1
−1

2 log
(

1− 1
n

)
+ log

dn−1,j
(
δin
n,j

)
dn,j

(
δout
n,j

)


where

δout
n,j ≜

√
n

σj
(µ̂n,j − µj)

δin
n,j ≜

n√
n− 1σj

(
µ̂n,j − µj + 1

n

(
µj − z⋆j

))

Step 2: Asymptotic expansion of the LR score

Using Lemma D.2, we have

log

dn−1,j
(
δin
n,j

)
dn,j

(
δout
n,j

)
 = 1

2

((
δout
n,j

)2
−
(
δin
n,j

)2
)

+
λ3,j

(
µj − z⋆j

)
nσj

Rn,j + op

( 1
n

)

where λk,j ≜ γj,k

σk
j

s.t. γj,k is the k-order cumulant of distribution Dj .

Let Yn,j ≜ 1
2

((
δout
n,j

)2
−
(
δin
n,j

)2
)

+ λ3,j(µj−z⋆
j )

nσj
Rn,j .

We remark that we need an expansion up to op
(

1
n

)
, since dn/n = τ + o(1).

Thus

ℓn(µ̂n; z⋆, µ, Cσ) =
dn∑
j=1
−1

2 log
(

1− 1
n

)
+ log

dn−1,j
(
δin
n,j

)
dn,j

(
δout
n,j

)

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=
dn∑
j=1

( 1
2n + Yn,j + op

( 1
n

))

= τ

2 + op(1) +
dn∑
j=1

Yn,j (D.1)

because dn
n = τ + o(1).

Step3: Concluding using the Lindeberg-Feller CLT

Under H0:

Using Lemma D.3, E0[Yn, j] = − 1
2n −

(z⋆
j −µj)2

2nσ2
j

+ o
(

1
n

)
and V0[Yn, j] = (z⋆

j −µj)2

nσ2
j

+ o
(

1
n

)
.

Since∑dn
j=1

(z⋆
j −µj)2

nσ2
j

=
∥z⋆−µ∥2

C−1
σ

n , we get:

• ∑dn
j=1 E0[Yn, j]→ − τ

2 −
m⋆

2

• ∑dn
j=1 V0[Yn, j]→ m⋆

Using Lemma D.4, we have that Yn,j verify the Lindeberg-Feller condition, i.e.

dn∑
j=1

E0
[
Y 2
n,j1 (|Yn,j | > ε)

]
→ 0

for every ε > 0.
We conclude using the Lindeberg-Feller CLT that∑dn

j=1 Yn,j ⇝ N
(
− τ

2 −
m⋆

2 ,m
⋆
)
, and thus

ℓn(µ̂n; z⋆, µ, Cσ)⇝ N
(
−m

⋆

2 ,m⋆
)

Similarly, Under H1:

Using Lemma D.3, E1[Yn, j] = − 1
2n + (z⋆

j −µj)2

2nσ2
j

+ o
(

1
n

)
and V1[Yn, j] = (z⋆

j −µj)2

nσ2
j

+ o
(

1
n

)
.

We get:
• ∑dn

j=1 E1[Yn,j ]→ − τ
2 + m⋆

2

• ∑dn
j=1 V1[Yn,j ]→ m⋆

Using Lemma D.4, we have that Yn,j verify the Lindeberg-Feller condition, i.e.

dn∑
j=1

E1
[
Y 2
n,j1 (|Yn,j | > ε)

]
→ 0

for every ε > 0.

238



D.2 The Three Technical Lemmas Used in the Proof of Theorem 6.3

We conclude using the Lindeberg-Feller CLT that∑dn
j=1 Yn,j ⇝ N

(
− τ

2 + m⋆

2 ,m
⋆
)
, and thus

ℓn(µ̂n; z⋆, µ, Cσ)⇝ N
(
m⋆

2 ,m⋆
)

Remark D.1. Expanding 1
2

((
δout
n,j

)2
−
(
δin
n,j

)2
)
, taking the sum from j = 1 until dn, we get that

ℓn(µ̂n; z⋆, µ, Cσ) ∼(z⋆ − µ)TC−1
σ (µ̂n − µ)− 1

2n∥z
⋆ − µ∥2

C−1
σ

Let Xn ≜ (z⋆ − µ)TC−1
σ (µ̂n − µ)− 1

2n∥z
⋆ − µ∥2

C−1
σ

.
This asymptotic representation of the LR test is useful to get directly the means and variances of

the limit distribution of the LR test. Specifically, since E0(µ̂n) = µ, E1(µ̂n) = n−1
n µ + 1

nz
⋆ and

V0(µ̂n) = V1(µ̂n) = Cσ, we get that

E0 [Xn] = − 1
2n∥z

⋆ − µ∥2
C−1

σ

E1 [Xn] = 1
2n∥z

⋆ − µ∥2
C−1

σ

V0 [Xn] = V1 [Xn] = 1
n
∥z⋆ − µ∥2

C−1
σ

Taking the limit as n→∞ retrieves the results of Theorem 6.3.

D.2 The Three Technical Lemmas Used in the Proof of Theorem 6.3

Lemma D.2. Asymptotic expansion of the LR score
We show that

log

dn−1,j
(
δin
n,j

)
dn,j

(
δout
n,j

)
 = 1

2

((
δout
n,j

)2
−
(
δin
n,j

)2
)

+
λ3,j

(
µj − z⋆j

)
nσj

Rn,j + op

( 1
n

)

where δout
n,j ≜

√
n
σj

(µ̂n,j − µj), δin
n,j ≜

n√
n−1σj

(
µ̂n,j − µj + 1

n

(
µj − z⋆j

))
, λk,j ≜ γj,k

σk
j

where γj,k is

the k-order cumulant of distribution Dj and Rn,j ≜
(
δout
n,j

)2
+ δout

n,j δ
in
n,j +

(
δin
n,j

)2
− 3.

Proof Sketch. The proof starts by using the Edgeworth expansion of dn,j up to the order k = 4.
Then, using Taylor expansions of the logarithm, exponential and polynomial function to the
2nd order, the final LR expansion can be found. We present the exact derivations in Appendix
C.3 of [AB24b].
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Lemma D.3. Expectation and variance computations

E0[Yn,j ] = − 1
2n −

(z⋆j − µj)2

2nσ2
j

+ o

( 1
n

)
V0[Yn,j ] =

(z⋆j − µj)2

nσ2
j

+ o

( 1
n

)

E1[Yn,j ] = − 1
2n +

(z⋆j − µj)2

2nσ2
j

+ o

( 1
n

)
V1[Yn,j ] =

(z⋆j − µj)2

nσ2
j

+ o

( 1
n

)

Proof Sketch. The proof is direct from expectation and variance of the mean under H0 and H1.
Specifically, under H0 we have that E0(µ̂n,j) = µj and V0(µ̂n,j) = 1

nσ
2
j . On the other hand,

under H1, we have that E1(µ̂n,j) = µj + 1
n

(
z⋆j − µj

)
and V1(µ̂n,j) = n−1

n2 σ
2
j . We present the

exact derivations in Appendix C.3 of [AB24b].

Lemma D.4. The Lindeberg-Feller condition
The random variables (Yn,j)dn

j=1 verify the Lindeberg-Feller condition.

Proof. Let ε > 0, h ∈ {0, 1} and δ > 0. We have that

Eh
[
Y 2
n,j1 (|Yn,j | > ε)

]
= Eh

[
Y 2+δ
n,j

Y δ
n,j

1 (|Yn,j | > ε)
]

≤ 1
εδ

Eh
[
Y 2+δ
n,j

]

On the other hand, we have that Yn,j = 1
2

((
δout
n,j

)2
−
(
δin
n,j

)2
)

+ λ3,j(µj−z⋆
j )

nσj
Rn,j , where

((
δout
n,j

)2
−
(
δin
n,j

)2
)

= Op

( 1√
n

)
and Rn,j = Op(1)

Thus Yn,j = Op
(

1√
n

)
, and Eh

[
Y 2+δ
n,j

]
= o

(
1
n

)
.

Which means that Eh
[
Y 2
n,j1 (|Yn,j | > ε)

]
= o

(
1
n

)
and

dn∑
j=1

Eh
[
Y 2
n,j1 (|Yn,j | > ε)

]
= o

(
dn
n

)
= o(1)→ 0
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D.3 Effect of Sub-sampling, Proof of Theorem 6.6

Theorem 6.6 (Target-dependent leakage of the sub-sampling empirical mean). As d, n →
∞ s.t. d/n = τ , ℓsub,ρ

n (µ̂sub
n ; z⋆, µ, Cσ) ⇝ N

(
−ρm⋆

2 , ρm⋆
)
under H0, ℓsub,ρ

n (µ̂sub
n ; z⋆, µ, Cσ) ⇝

N
(
ρm⋆

2 , ρm⋆
)
under H1.

The asymptotic target-dependent leakage of z⋆ inMsub,ρ
n is

lim
n,d

ξn(z⋆,Msub,ρ
n ,D) = Φ

(√
ρm⋆

2

)
− Φ

(
−
√
ρm⋆

2

)
.

The optimal trade-off function obtained with τα = −ρm⋆

2 +
√
ρm⋆Φ−1(1− α), is

lim
n,d

Pown(ℓsub,ρ
n , α, z⋆) = Φ

(
zα +

√
ρm⋆

)
.

Proof. We have that µ̂sub
n = 1

kn

∑n
i=1 Zi1 (ς(i) ≤ kn), where kn ≜ ρn, Zi are i.i.d and ς ∼unif Sn

is a permutation sampled uniformly from the set of permutations of {1 . . . , n} i.e. Sn and
independently from (Zi).

We denote µ̂sub
n = (µ̂sub

n,j )dn
j=1.

Step 1: Rewriting the LR score

Let j ∈ [1, dn].
Under H0, we can re-write

µ̂sub
n,j = µj + σj√

kn
Ẑkn,j ,

where

Ẑdn,j ≜
√
kn

(
µ̂sub
n,j − µj
σ

)

= 1√
kn

kn∑
i=1

Zς−1(i),j − µj
σj

.

Since (Zi,j)ni=1 are i.i.d from Dj , and ς ∼unif Sn and ind. from (Zi), then (Zς−1(i),j)kn
i=1.

Using the CLT, Ẑdn,j ⇝n→∞ N (0, 1).
Let dn,j be the density function of Ẑn,j .
The density pout,sub

n,j of µ̂sub
n,j under H0 can be written as

pout,sub
n,j (x; z⋆j , µj , σj) =

√
kn
σj

dkn,j

[√
kn
σj

(x− µj)
]
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Under H1, we can re-write

µ̂sub
n,j = 1

kn
z⋆j1 (ς(n) ≤ kn) + 1

kn

n−1∑
i=1

Zi1 (ς(i) ≤ kn)

Let A = {1 (ς(n) ≤ kn)} the event that z⋆ was sub-sampled. We have that Pr(A) = ρ.
The density pin,sub

n,j of µ̂sub
n,j under H1 and given A is

kn

σj
√
kn − 1

dkn−1,j

[
kn

σj
√
kn − 1

(
x− µj −

1
kn

(
z⋆j − µj

))]

The density pin,sub
n,j of µ̂sub

n,j under H1 and given Ac is
√
kn
σj

dkn,j

[√
kn
σj

(x− µj)
]

Thus, the density pin,sub
n,j of µ̂sub

n,j under H1 can be written as

pin,sub
n,j (x; z⋆j , µj , σj) = (1− ρ)

√
kn
σj

dkn,j

[√
kn
σj

(x− µj)
]

+ ρ
kn

σj
√
kn − 1

dkn−1,j

[
kn

σj
√
kn − 1

(
x− µj −

1
kn

(
z⋆j − µj

))]

The additional technical hardness of this proof comes from the ‘mixture’ nature of the ‘in’ distribution.
The LR score is

ℓsub,ρ
n (µ̂sub

n ; z⋆, µ, Cσ) =
dn∑
j=1

log

 pin,sub
n,j (µ̂sub

n,j ; z⋆j , µj , σj)
pout,sub
n,j (µ̂sub

n,j ; z⋆j , µj , σj)


=

dn∑
j=1

log

(1− ρ)
√
kn
σj
dkn,j

(
δout,sub
kn,j

)
+ ρ kn

σj

√
kn−1dkn−1,j

(
δin,sub
kn,j

)
√
kn
σj
dkn,j

(
δout,sub
kn,j

)


=
dn∑
j=1

log

(1− ρ) + ρ

√
kn

kn − 1
dkn−1,j

(
δin,sub
kn,j

)
dkn,j

(
δout,sub
kn,j

)


where

δout,sub
kn,j

≜

√
kn
σj

(
µ̂sub
n,j − µj

)
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δin,sub
kn,j

≜
kn√

kn − 1σj

(
µ̂sub
n,j − µj + 1

kn

(
µj − z⋆j

))

Step 2: Asymptotic expansion of the LR score

Using Lemma D.5, we have

log

(1− ρ) + ρ

√
kn

kn − 1
dkn−1,j

(
δin,sub
kn,j

)
dkn,j

(
δout,sub
kn,j

)
 = Wn,j + op

( 1
n

)

where

Wn,j ≜
ρ

2
(
(δout,sub
kn,j

)2 − (δin,sub
kn,j

)2
)

+ ρ

2kn
+ ρ(1− ρ)

8
(
(δout,sub
kn,j

)2 − (δin,sub
kn,j

)2
)2

+ ρ
λ3,j

(
µj − z⋆j

)
knσj

Rkn,j

The extra hardness of this proof comes from the fact that the density under H1 is now a
mixture of two Gaussians, rather than just one Gaussian in the case of the exact empirical mean.

Thus

ℓsub,ρ
n (µ̂sub

n ; z⋆, µ, Cσ) = op(1) +
dn∑
j=1

Wn,j

because dn
n = τ + o(1).

Step3: Concluding using the Lindeberg-Feller CLT

Under H0:

Using Lemma D.6, E0[Wn, j] = −ρ
2

(µj−z⋆
j )2

nσ2
j

+ o
(

1
n

)
and V0[Wn,j ] = ρ

(µj−z⋆
j )2

nσ2
j

+ o
(

1
n

)
.

Since∑dn
j=1

(z⋆
j −µj)2

nσ2
j

=
∥z⋆−µ∥2

C−1
σ

n , we get:

• ∑dn
j=1 E0[Wn, j]→ −ρm⋆

2

• ∑dn
j=1 V0[Wn, j]→ ρm⋆

Similarly to Lemma D.4, we can show thatWn,j verify the Lindeberg-Feller condition, i.e.

dn∑
j=1

E0
[
W 2
n,j1 (|Wn,j | > ε)

]
→ 0

for every ε > 0.
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We conclude using the Lindeberg-Feller CLT that

ℓsub,ρ
n (µ̂sub

n ; z⋆, µ, Cσ)⇝ N
(
−ρm

⋆

2 , ρm⋆
)

Similarly, Under H1:

Using Lemma D.6, E1[Wn, j] = ρ
2

(µj−z⋆
j )2

nσ2
j

+ o
(

1
n

)
and V1[Wn,j ] = ρ

(z⋆
j −µj)2

nσ2
j

+ o
(

1
n

)
.

We get:
• ∑dn

j=1 E1[Wn, j]→ ρm⋆

2

• ∑dn
j=1 V1[Wn, j]→ ρm⋆

Similarly to Lemma D.4, we can show thatWn,j verify the Lindeberg-Feller condition, i.e.

dn∑
j=1

E1
[
W 2
n,j1 (|Wn,j | > ε)

]
→ 0

for every ε > 0.
We conclude using the Lindeberg-Feller CLT that

ℓsub,ρ
n (µ̂sub

n ; z⋆, µ, Cσ)⇝ N
(
ρ
m⋆

2 , ρm⋆
)

Step4: Characterising the advantage and the power function

Using the same step as in the proof of Corollary 6.4, we conclude.

Now we present the helpful technical lemmas. Similarly to Section D.2 the proofs are only
computational, and the details can be found at the end of Appendix C.5 in [AB24b].

Lemma D.5 (Asymptotic expansion of the LR score for sub-sampling). We show that

log

(1− ρ) + ρ

√
kn

kn − 1
dkn−1,j

(
δin,sub
kn,j

)
dkn,j

(
δout,sub
kn,j

)
 = Wn,j + op

( 1
n

)

where

Wn,j ≜
ρ

2
(
(δout,sub
kn,j

)2 − (δin,sub
kn,j

)2
)

+ ρ

2kn
+ ρ(1− ρ)

8
(
(δout,sub
kn,j

)2 − (δin,sub
kn,j

)2
)2

+ ρ
λ3,j

(
µj − z⋆j

)
knσj

Rkn,j
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Lemma D.6. Expectation and variance computations for sub-sampling

E0[Wn,j ] = −ρ2

(
µj − z⋆j

)2

nσ2
j

+ o

( 1
n

)
V0[Wn,j ] = ρ

(µj − z⋆j )2

nσ2
j

+ o

( 1
n

)

E1[Wn,j ] = ρ

2

(
µj − z⋆j

)2

nσ2
j

+ o

( 1
n

)
V1[Wn,j ] = ρ

(z⋆j − µj)2

nσ2
j

+ o

( 1
n

)

D.4 Effect of Misspecifiaction, Proof of Theorem 6.7

Theorem 6.7 (Leakage of a misspecified adversary). We show that as d, n←∞ while d/n = τ ,

(a) Under H0,
ℓn(µ̂n; ztarg, µ, Cσ)⇝ N

(
−m

targ

2 ,m⋆

)

(b) Under H1,
ℓn(µ̂n; ztarg, µ, Cσ)⇝ N

(
m⋆ −mdiff

2 ,m⋆

)

wheremdiff ≜ limn,d
1
n∥z

⋆ − ztarg∥2
C−1

σ
= limn,d

∑d
j=1

(z⋆
j −ztarg

j )2

nσ2
j

.

Let Amiss the adversary that uses the misspecified LR score ℓn(µ̂n; ztarg, µ, Cσ). Then,

lim
n,d

Advn(Amiss) = Φ
(
|mscal|

2
√
mtarg

)
− Φ

(
− |m

scal|
2
√
mtarg

)
.

Here,mscal ≜ limn,d
1
n

(
ztarg − µ

)T
C−1
σ (z⋆ − µ) andmtarg ≜ limn,d

1
n∥z

targ − µ∥2
C−1

σ
.

Proof. Step 1: Asymptotic expansion of the LR score

Directly using Equation (D.1) from the proof in Section D.1, by only replacing z⋆ by ztarg,
we get

ℓn(µ̂n; z⋆, µ, Cσ) = τ

2 + op(1) +
dn∑
j=1

Y targ
n,j

where

Y targ
n,j ≜

1
2

((
δout,targ
n,j

)2
−
(
δin,targ
n,j

)2
)

+
λ3,j

(
µj − ztarg

j

)
nσj

Rtarg
n,j ,
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and

δout,targ
n,j ≜

√
n

σj
(µ̂n,j − µj)

δin,targ
n,j ≜

n√
n− 1σj

(
µ̂n,j − µj + 1

n

(
µj − ztarg

j

))
Rtarg
n,j ≜

(
δout,targ
n,j

)2
+ δout,targ

n,j δin,targ
n,j +

(
δin,targ
n,j

)2
− 3

Step 2: Computing expectations and variances

This is the step where the effect of misspecification appears.
Computing the expectations and variances under H0 and H1 gives that

E0[Y targ
n,j ] = − 1

2n −
(ztarg
j − µj)2

2nσ2
j

+ o

( 1
n

)

V0[Y targ
n,j ] = 1

n

(µj − ztarg
j )2

σ2
j

+ o

( 1
n

)

E1[Y targ
n,j ] = − 1

2n +
(z⋆j − µj)2 −

(
z⋆j − z

targ
j

)2

2nσ2
j

+ o

( 1
n

)

V1[Y targ
n,j ] = 1

n

(µj − ztarg
j )2

σ2
j

+ o

( 1
n

)

Step3: Concluding using the Lindeberg-Feller CLT

Under H0:
Using the results of Step2, we have

• ∑dn
j=1 E0[Y targ

n , j]→ − τ
2 −

mtarg

2

• ∑dn
j=1 V0[Yn, j]→ mtarg

Similarly to Lemma D.4, we can show that Y targ
n,j verify the Lindeberg-Feller condition, i.e.

dn∑
j=1

E0
[
(Y targ
n,j )21

(
|Y targ
n,j | > ε

)]
→ 0

for every ε > 0.
We conclude using the Lindeberg-Feller CLT that ∑dn

j=1 Y
targ
n,j ⇝ N

(
− τ

2 −
mtarg

2 ,mtarg
)
,

and thus
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ℓn(µ̂n; ztarg, µ, Cσ)⇝ N
(
−m

targ

2 ,mtarg
)

Similarly, Under H1:
Use the results of Step2, we get
• ∑dn

j=1 E1[Y targ
n,j ]→ − τ

2 + m⋆−mdiff

2

• ∑dn
j=1 V1[Y targ

n,j ]→ mtarg

Similarly to Lemma D.4, we can show that Y targ
n,j verify the Lindeberg-Feller condition, i.e.

dn∑
j=1

E1
[
(Y targ
n,j )21

(
|Y targ
n,j | > ε

)]
→ 0

for every ε > 0.
We conclude using the Lindeberg-Feller CLT that∑dn

j=1 Y
targ
n,j ⇝ N

(
− τ

2 + m⋆−mdiff

2 ,mtarg
)
,

and thus

ℓn(µ̂n; ztarg, µ, Cσ)⇝ N
(
m⋆ −mdiff

2 ,mtarg
)

Step4: Getting the advantage of the misspecified attack.

We use that TV
(
N
(
µ0, σ

2
0
) ∥∥ N (µ1, σ

2
0
))

= Φ
(

|µ0−µ1|
2σ0

)
− Φ

(
− |µ0−µ1|

2σ0

)
, so that

lim
n,d

Advn(Amiss) = TV
(
N
(
−m

targ

2 ,mtarg
) ∥∥∥∥∥ N

(
m⋆ −mdiff

2 ,mtarg
))

= Φ
(
|m⋆ +mtarg −mdiff |

4
√
m⋆

)
− Φ

(
−|m

⋆ +mtarg −mdiff |
4
√
m⋆

)

= Φ
(
|mscal|

2
√
mtarg

)
− Φ

(
− |m

scal|
2
√
mtarg

)

becausemdiff = m⋆ +mtarg − 2mscal.

Remark D.7 (Simple way to get the expectations computation). Thanks to Remark D.1, we recall
that

ℓn(µ̂n; ztarg, µ, Cσ) ≈ (ztarg − µ)TC−1
σ (µ̂n − µ)− 1

2n∥
targ − µ∥2

C−1
σ
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And thus taking the expectation underH0 andH1, using that E0(µ̂n) = µ, E1(µ̂n) = n−1
n µ+ 1

nz
⋆

and V0(µ̂n) = V1(µ̂n) = Cσ, we get back the same expectations and variances values as the result of
Theorem 6.7.
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