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Abstract v

Contributions to the Concept of Embodied Intelligence in Soft Robotics through Control and
Design Co-Optimization

Abstract

Soft robots utilize compliant materials to interact in a flexible way with complex and uncertain envi-
ronments, enabling the manipulation of fragile objects and safe interaction with living beings. Their
adaptability drives innovations in fields such as medicine and manufacturing.
Designing soft robots is challenging, even for experienced designers, due to their nonlinear materials,
multiphysics coupling, the complex interaction between multiple bodies and the environment, and their
many degrees of freedom. This explained why the first designs in soft robotics were inspired by nature,
mimicking soft animals such as worms or octopuses. Soft bodies have the ability to conform to hard
object and reconfigure for different tasks, then delegating an important part of the control to the body.
Unlike rigid robots, embodied intelligence is still an emerging topic in soft robotics. However, it is clear
that intelligent behaviors can be quickly learned by agents whose morphology is well-adapted to their
environment. Moving away from the traditional focus on training control and dexterity, this thesis aims to
address control challenges by linking artificial intelligence with soft robot design.
The field of soft robotics presents numerous challenges in modeling, control, and design. The DEFROST
team at Inria Lille has developed several Finite Element Method (FEM)-based tools to address these
challenges, enabling accurate simulation of soft robots. These tools have been used for low-level control
and to evaluate soft robot designs before manufacturing. In this work, various FEM-based simulation and
numerical optimization tools are applied to explore the computational design of soft robots.
This exploration requires addressing several challenges. The design space must be sufficiently large
to explore relevant designs but also constrained enough to make the optimization problem tractable.
Developing relevant mathematical fitness functions is crucial for accurately evaluating the performance
and effectiveness of soft robot designs. Given the significant data requirements of computational design
algorithms and computational expense of accurate simulations, we aim to speed up the simulation either
by choosing models that balance computation time and accuracy or by employing learning techniques to
accelerate FEM simulations.
This thesis explores the computational design of soft robots, with a focus on the simulation-to-reality trans-
fer of numerical results. The design optimization of two parametric soft manipulators, one with embedded
sensors and the other with self-contact capabilities, was addressed. As control tasks, environments, and
design spaces become more complex, the computational burden increases. This motivates the development
of a surrogate model learned from FEM simulations to characterize both soft robot design and control.
The model’s applicability is demonstrated through various scenarios, notably the embedded control of a
pneumatic manipulator and the computational design of a soft manipulator. In addition, a key objective of
this work is to develop tools towards the co-optimization of soft robot design and control.

Keywords: soft robotics, computational design, reduced order modeling

DEFROST (Deformable Robotics Software)
CRIStAL, Centre Inria de l’Université de Lille



vi Abstract

Contribution au Concept d’Intelligence Incarnée en Robotique Souple via la Co-Optimisation du
Contrôle et de la Conception

Résumé

Les robots souples utilisent des matériaux conpliants pour interagir de manière flexible avec des envi-
ronnements complexes et incertains, permettant ainsi la manipulation d’objets fragiles et une interaction
sécurisée avec les êtres vivants. Leur adaptabilité favorise des innovations dans des domaines tels que la
médecine et l’industrie.
La conception de robots souples est un défi, même pour les concepteurs expérimentés, en raison de leurs
matériaux non linéaires, du couplage multiphysique, de l’interaction complexe entre plusieurs corps et
l’environnement, et de leurs nombreux degrés de liberté. Cela explique pourquoi les premières conceptions
en robotique souple s’inspiraient de la nature, en imitant des animaux souples comme les vers ou les
pieuvres. Les corps souples ont la capacité de se conformer à des objets durs et de se reconfigurer pour
différentes tâches, déléguant ainsi une partie importante du contrôle au corps lui-même. Contrairement
aux robots rigides, l’intelligence incarnée est encore un sujet émergent en robotique souple. Cependant,
il est évident que des comportements intelligents peuvent être rapidement appris par des agents dont
la morphologie est bien adaptée à leur environnement. En s’éloignant de la vision traditionnelle de
l’intelligence artificielle en robotique, qui se concentre sur l’entraînement au contrôle et à la dextérité
du robot sur diverses tâches, cette thèse vise à aborder les défis de contrôle en établissant un lien entre
l’intelligence artificielle et la conception des robots souples.
Le domaine de la robotique souple présente de nombreux défis en matière de modélisation, de contrôle et de
conception. L’équipe DEFROST d’Inria Lille a développé plusieurs outils basés sur la méthode des éléments
finis pour relever ces défis, permettant une simulation précise des robots souples. Ces outils ont été utilisés
pour le contrôle bas niveau et pour évaluer les conceptions de robots souples avant leur fabrication. Dans
ce travail, divers outils de simulation basés sur la méthode des éléments finis et d’optimisation numérique
sont appliqués pour explorer la conception computationnelle des robots souples.
Cette exploration nécessite de relever plusieurs défis. L’espace de conception doit être suffisamment vaste
pour explorer des conceptions pertinentes, mais aussi suffisamment contraint pour rendre le problème
d’optimisation abordable. Développer des fonctions d’optimisation mathématiques pertinentes est crucial
pour évaluer avec précision la performance et l’efficacité des conceptions de robots souples. Étant donné les
exigences importantes en matière de données des algorithmes de conception computationnelle et le coût
élevé des simulations précises, nous visons à accélérer la simulation soit en choisissant judicieusement des
modèles qui équilibrent le temps de calcul et la précision, soit en employant des techniques d’apprentissage
pour accélérer les simulations éléments finies.
Cette thèse explore la conception computationnelle des robots souples, en mettant l’accent sur le transfert
des résultats numériques de la simulation à la réalité. L’optimisation de la conception de deux manipula-
teurs souples paramétriques, l’un avec des capteurs intégrés et l’autre avec des capacités d’auto-contact,
a été abordée. À mesure que les tâches de contrôle, les environnements et les espaces de conception
deviennent plus complexes, la charge computationnelle augmente. Cela motive le développement d’un
modèle de substitution appris à partir des simulations éléments finis pour caractériser à la fois la concep-
tion et le contrôle des robots souples. L’applicabilité du modèle est démontrée à travers divers scénarios,
notamment le contrôle embarqué d’un manipulateur pneumatique et la conception computationnelle
d’un manipulateur souple. En outre, un objectif clé de ce travail est de développer des outils pour la
co-optimisation de la conception et du contrôle des robots souples.

Mots clés : robotique souple, conception numérique, réduction de modèle
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Chapter1
Overall Introduction

1.1 Introduction and Chapter Overview

The objective of this first chapter is to provide context and give an overall introduction to the
present work. We begin this chapter by an introduction of a short history and the motivations
behind the soft robotics field, followed by a discussion about the main characteristics and prop-
erties of soft robots. Then, the second section explore the concept of Embodied Intelligence
through the observation of biological systems characteristics. We show that part of the intelli-
gence classically attributed to the brain can be shared with the body, and the growing interest
and attempts to apply these principles for building efficient soft robots. The third section is then
dedicated to the design of soft robots in this framework. Although the soft robotics community
historically took inspiration from biological organisms for building soft robots, a systemic ap-
proach based on computational design framework need to be developed. After introducing the
computational design general methodology, we show that the scope of this thesis is then exten-
sive, encompassing numerical simulation, reduced modeling, control, and computational design
in the context of soft robotics. Background and related works relative to the aforementioned
topics will be in-depth introduced in Chapter 2. Finally, the key contributions of this work are
highlighted and the manuscript outlines are given.

1.2 Soft Robotics

1.2.1 History and Motivations

Robotics initially transformed industries by automating challenging and repetitive tasks. Tradi-
tionally, robots were built with rigid components, which simplified their design, modeling, and
control. While this rigidity allowed for high precision, it also posed risks during interactions
with delicate environments, such as handling fragile objects or working alongside humans.

As robots began to extend their applications beyond factories into the medical field, particu-
larly as tools to assist surgeons with minimally invasive procedures, researchers turned their
attention to soft materials. Soft robotics emerged as a means to achieve safe and compliant
interactions with human organs. The probably first soft robot [SIT91], introduced in the 1990s
and inspired by the need for medical micro-robots, marked the beginning of the field. In the
subsequent decades, soft robotics evolved into an active multidisciplinary area of research,
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2 CHAPTER 1. Overall Introduction

focusing on various aspects such as material sciences, design, fabrication, modeling, and control
of soft bodies.

Soft robots are increasingly being integrated into various applications, as illustrated in
Figure 1.1. In the medical field, they are utilized for exoskeletons in rehabilitation and for
minimally invasive surgery as endoscopes or catheters [Cia+18]. In industrial settings, they are
used as robotic grippers, taking advantage of their deformable bodies to adapt to the shapes of
fragile objects. Additionally, soft robots are emerging in search and rescue operations, where
their flexible bodies allow them to navigate through challenging environments that rigid robots
cannot easily access. This thesis will concentrate mostly on soft robots for manipulation.

Figure 1.1: Example of soft robots. A) Soft robot orthosis for wrist rehabilitation [Bar+15a].
B) Ferromagnetic soft catheter for minimally invasive bio-printing, i.e. in vivo fabrication of
artificial tissues and medical devices [Zho+21a]. C) Soft gripper for the food industry, launched
by the start-up SoftRobotics [Lab]. D) A pneumatic soft robot for exploration that navigate
constrained environments through growth [Haw+17].

1.2.2 Definition

The definition of soft robotics is not entirely stable. Initially, soft robots were classified based
on the material they are made of and its corresponding Young’s modulus. Specifically, soft
robots are considered to be those made from materials with a Young modulus between 104P a
and 109P a [Maj14]. However, this classification has its limitations, as materials with a high
Young modulus can still be compliant depending on their structural organization and density.
Additionally, many systems identified as soft robots are actually hybrids, comprising both rigid
and deformable components. For instance, passive compliance can be reached using compliant
elements, such as springs or dampers. In this thesis, we investigate soft robots that demonstrate
passive compliant behavior by using flexible materials or rigid materials with specific infill
patterns and densities for their bodies.

While classical rigid robots have a finite number of degrees of freedom, soft bodies are
theoretically characterized by an infinite number of degrees of freedom, meaning an infinite
number of independent relative motions. Consequently, soft robots have under-actuated and
redundant structures, as they lack an actuator for each degree of freedom. Thus, multiple
configurations may achieve the same goal through deformation. These characteristics make it
challenging to develop efficient controllers for soft robots and to design them intuitively, which
underscores the importance of the use of computational algorithms in this thesis work.
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1.3 Embodied Intelligence in Soft Robotics

The concept of Embodied Intelligence is broad and encompasses different topics in various fields.
This section narrows the scope of this thesis and explores the diverse challenges associated with
Embodied Intelligence in soft robotics.

1.3.1 From Conventional Rigid Robots to Biological Systems

When the general public thinks of artificial intelligence, they typically envision a robot. However,
a robot is not necessarily intelligent in the same way humans are. Artificial intelligence is more
accurately described as a set of mathematical techniques that, at best, can imitate human intelli-
gence in very specific tasks. Robots are programmed systems designed to perform particular
tasks, and their intelligence is confined to the context of these tasks. Traditionally, intelligence
has been associated with cognitive abilities and problem-solving, often focused on the brain and
information processing. However, this perspective is incomplete; it is also possible to discuss
intelligence at the level of the body, as we will explore in this section.

When comparing conventional rigid robots against biological systems, three main key differ-
ences are observed [HNF23].

Conventional robots rely on simplified rigid dynamics, which simplifies modeling and
control. In the industrial context, it enables to obtain reliable and precise robots. In contrast,
biological systems are soft and exhibit non-linear dynamics. The use of soft materials in complex
morphological systems can introduce interesting features, as seen in nature. For example, the
flexibility of an octopus’s tentacles allows for intricate manipulation and exploration, while
the soft body of a worm enables it to navigate through confined spaces. These non-linearities
directly contribute to both perception and task execution.

In contrast to biological organisms that seamlessly interact with their environment, rigid
robots are typically designed for controlled and simplified environments, often avoiding direct
interactions. For example, industrial robots are frequently enclosed in cages to prevent hazardous
contact with humans. Biological evolution has shaped organisms to thrive within specific
environments, such as fish, which possess streamlined bodies and flexible fins enabling efficient
movement through water. However, traditional controllers often struggle in open, dynamic
scenarios.

In conventional rigid robots, the controller is considered separately from the body. It dictates
what the body should do. In biological organisms, the boundary is much more blurred: the
controller and the controlled body are not explicitly detached from one another. Biological
organisms can solve problems efficiently in real-time without relying on a central controller.
They utilize their bodies to perform computations typically attributed to the brain, a concept
known as morphological computation. This synergy between the brain and body allows for
efficient and adaptive control. In geckos, for instance, the passive adhesive properties of their feet
enable them to climb smooth surfaces without continuous active control [Wan+15]. Mountain
goats can navigate steep, rocky terrains with agility and precision thanks to the specialized
structure of their hooves and legs [Aba+19], which contribute significantly to stability and
movement, allowing for efficient and adaptive control with minimal active brain involvement.

These three principles are typically actively avoided in conventional rigid robotics, while
biological organisms, shaped by long evolutionary processes, seem to favor these phenomena.
They help identify the key challenges to be addressed in designing effective soft robot bodies,
simplifying robot control in terms of control parameters [Las22]. These principles are commonly
encapsulated within the concept of Embodied Intelligence.
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1.3.2 Embodied Intelligence in the Soft Robotics and Artificial Intelligence
Communities

Embodied intelligence is a concept specifying the need for intelligence to be developed in the
physical world, seeing sensory and action systems as fully integrated with cognitive processing.
The concept was formulated to make the interaction of agents more immersive with their
environment, based on lessons learned from observing the psychological development of human
babies [SG05]. In order to be able to learn as humans do, embodied agents able to perceive the
world in the first person along with a simulation of the agent environment are needed. Embodied
intelligence is nowadays widely studied in the robotics field especially for learning high level
control policies for solving complex tasks using reinforcement learning [KBP13]. Unlike its rigid
counterpart, Embodied Intelligence is still an emerging topic in soft robotics. However, it is clear
that intelligent behaviors can be rapidly learned by agents whose morphology are well adapted
to their environment [Bro91].

Within the soft robotics community, the term Embodied Intelligence is gathering increasing
attention. It is a profoundly interdisciplinary field at the intersection of materials science,
artificial intelligence, cognitive science, and robotics. Figure 1.2 summarizes the most common
aspects of Embodied Intelligence identified through interviews conducted with 200 researchers
across different fields [Sad+22].

Figure 1.2: Key aspects of Embodied Intelligence, reproduced from [Sad+22].

Various concepts such as Morphological Computation and Physical Intelligence appear in
this Figure. We provide insights about them below. The authors of [Sad+22] highlight the
ongoing challenge of co-designing the body and controller of soft robots to leverage material
properties and dynamics for achieving desired functionalities with minimal control input.
Despite numerous isolated studies on Embodied Artificial Intelligence, a common theoretical
framework remains lacking, despite recent efforts in this direction [Zha+24].

Among them, Morphological Computation frameworks involve studying how the inherent
physical properties of a system can aid in solving computational problems, a functionality
typically attributed to the controller [Gha+21]. The emphasis is then on simplifying control and
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data processing. General Morphological Computation frameworks use reservoir computing, a
machine learning technique for managing complex time-series data. This approach converts
input data into higher-dimensional dynamic representations, enhancing the data nonlinear char-
acteristics and complexity. Research has shown that incorporating sensor feedback mechanisms
into the design of soft robots enables for the generation of adaptive motion patterns without the
need for complex controllers [HNF23], as illustrated in Figure 1.3.

Figure 1.3: Illustration of Morphological Computation framework from 1.3. The soft body is
used as a reservoir and a single readout layer is trained using linear regression to map actuation
input u to target output y (left), enabling a soft octopus silicone arm to detect objects by only
observing the distance between red points on its body (right).

Most efforts from the soft robotics community are focused on Physical Intelligence, which
involves directly encoding sensing, actuation, control, memory, logic, computation, adaptation,
learning, and decision-making into the body of an agent [Sit21], thereby facilitating control
through the body. The goal of Physical Intelligence is then to lower costs, improve response times,
and enhance the resilience of robotic systems. Although the terms Morphological Computing and
Physical Intelligence are often used interchangeably, it can be misleading. Most of robot designs
aim to leverage the non-linear dynamics of soft bodies to facilitate control functions rather than
directly using them as computational resources. A few notable example of Physical Intelligence
are described as illustration. The beach animals developed by the artist Theo Jansen [lin+],
are able to perform complex walking motions on the sand from a simple wind actuation (see
Figure 1.4.A). In [Dro+21], researchers propose a mechanical method to control the gaits of
soft-legged robots using simple pneumatic circuits without any electronic components, reducing
the controller to a constant source of pressurized air (see Figure 1.4.B). Instead of using complex
controllers for soft grippers with multiple grasping appendages, researchers [Bro+10] have
developed an efficient gripper that conforms to various object shapes using granular jamming
(see Figure 1.4.C).

In practice, robots require complex and adapted controllers to interact effectively with their
environments, which emphasizes the integration of the body, brain, and their interactions with
the physical world. A significant portion of the artificial intelligence community investigates the
principles of environmental complexity, evolved morphology, and the learnability of suitable
controllers through evolutionary processes. These approaches utilize evolutionary algorithms,
inspired by Darwinian evolution, for evolving robot morphologies. They are carried out in
simulation due to the challenges of conducting large-scale physical experiments on evolution
and learning.

For example, studies from [Gup+21] and [Bha+22] demonstrate the intricate connection
between environment and morphology to facilitate learning the controller on new tasks respec-
tively on limbs-made and soft creatures, as shown in Figure 1.5. However, while these methods
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Figure 1.4: Illustration of Physical and Embodied Intelligence. A) Beach animals made with
PVC tubes, zip ties and recycled plastic bottles [lin+]. B) Quadruped robot with onboard soft
valves powered by a constant airflow and pneumatic oscillators used for controlling the motions
of each diagonal leg pair for forward walking [Dro+21]. C) Universal gripper using granular
jamming to conform to any object shape [Bro+10].

overcome human subjectivity in design, fabricating the resulting designs remains a challenge.
In this thesis, we primarily focus on applications involving Physical Intelligence and intro-

duce tools to explore Embodied Intelligence in soft robotics while adhering to strict fabrication
constraints. Specifically, we ensure that computationally generated designs are manufacturable
using known fabrication techniques.

1.4 Soft Robot Design

1.4.1 Soft Robots are Primarily Designed Through Bio-Inspiration and Intu-
ition

The design of soft robots has been primarily influenced by biology through bio-mimetic, which
involves replicating the capabilities of natural systems by imitating their motions, appearance,
and behaviors [SH23]. Well known soft robot designs were thus inspired by the elephant
trunk [HW03] (see Figure 1.7.A) or the tentacle of the octopus [Las+12] (see Figure 1.7.B).

There is still no universally adopted systematic methodology for the simulation or design
of soft robots. Unlike conventional rigid robotics, where well-established design frameworks
and common modeling techniques exist, the field of soft robotics remains in an exploratory
phase, lacking standardized practices and components. Soft robot design is thus still primarily
investigated both from the observation of nature and human intuition.
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Figure 1.5: Examples of embodied artificial intelligence. A) Example of evolved morphologies
(up) and trained morphology on a locomotion task (down) obtained using the framework for co-
evolving animals morphology and controller from [Gup+21]. B) Example of evolved morphology
and controller for locomotion with (up) or without (down) carrying an object from [Bha+22].

Figure 1.6: Bio-Inspired robots. A) Soft manipulator inspired by the elephant trunk [HW03]. B)
Soft manipulator inspired by the octopus tentacle [Las+12].

Bio-inspiration is often favored due to the evolution of biological organisms to survive in
specific environments and adapt to particular tasks. However, directly drawing inspiration
from biological organisms for robot design presents limitations. Fabricating robots at the
complexity level of biological organisms is currently unachievable, and the environments and
tasks considered for our robots may not mirror those found in nature.

The ultimate goal is to identify fundamental concepts governing bio-inspired organisms
and apply them to robot design using available manufacturing methods. Such designs may
initially rely on intuition and evolve to adapt to tasks and environments. Given the vast design
spaces encountered in soft robotics, empirical design is impractical, highlighting the need for
computational design in soft robotics.

1.4.2 Computational Design Methodology

The computational design of soft robots involves the intricate interplay between several compo-
nents, making it a deeply interdisciplinary field. The interplay between these components is
displayed in Figure 1.7. These components are introduced below and further discussed in the
background section:

■ Simulation Environment and Models: This entails having simulation environments and
models for the robot body, its controller, and its environment. It requires access to models
that characterize both control and design, as well as the ability to account for interactions
with the external environment such as contacts. Algorithms for optimization are typically
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simulation-intensive, so finding a balance between simulation speed and accuracy for the
simulation-to-reality transfer is crucial. More information on the different simulation tools
available is provided in the Background section.

■ Fitness Functions: Designing objective functions to evaluate the performance of a robot
is essential. These functions should be linked to the robot’s controller ability to perform
its task in its environment. This involves either decomposing the task into multiple sets
of mechanical constraints to be met or testing the controller on the task in simulation for
a given set of design parameters. More information on control models is provided in the
Background section.

■ Optimization Parameters: Choosing which parameters to optimize involves a trade-off
between the size of the design space, allowing for the emergence of novel shapes, and
maintaining a feasible optimization problem. More information on common materials,
actuators, and sensors in soft robotics is provided in the Background section. Fabrication
constraints must also be taken into account.

■ Optimization Method: A method of optimization is needed to guide the search for the
best design. The choice of method (e.g., gradient, stochastic, ...) is partly dictated by the
choices made for the previous three ingredients.

Figure 1.7: Control and design co-optimization workflow in the framework of soft robotics.

This thesis work establish different computation design methods for evolving controller and
design, and apply them to diverse scenarios.

1.5 Manuscript Outline and Contributions

In this introductory chapter, it is emphasized that the link between the robot design, controller,
and environment cannot be overlooked, as they are typically considered separately in a classical
intuitive soft robot design process. Yet, they are interconnected.

One challenge lies in transferring design and controller optimization results obtained using
numerical simulations that may lack precision or realism, in order to make the optimization
tractable. We justify the use of the Simulation Open Framework Architecture (SOFA) simulator
based on its proven precision in previous studies on physical robot control, which aligns with
our goal of achieving sim-to-real transfer. This is further discussed in the Background section of



1.5. Manuscript Outline and Contributions 9

this manuscript, which introduces several problematics in term of computation time, leading to
the need for developing surrogate of the simulation.

The objective of this thesis is then to explore the optimization of robot design to facilitate
its control strategy and enhance its performance in specific tasks and environments. This
work introduces novel general tools for exploring designs of soft robots with regards to their
performance and addresses some challenges for co-optimizing control and design for soft robots.
The organisation of the manuscript and the different contributions of this thesis work are the
following:

■ Chapter 2: Background and Related Work. This chapter introduces the various mathemat-
ical tools and models that can be used for modelling, control and design in soft robotics.
In addition, it introduces the current state of the art on computational design optimization
of soft robots.

■ Chapter 3: Optimization of the Parametric Design of Soft Robots Assisted by Surrogate.
Development of a generic framework for optimizing parametric design of soft robots.
It has been applied in several scenarios with an emphasis on the simulation to reality
transfer. Particular attention has been put on the design of fitness functions for assessing
the performance of soft grippers and manipulators.

■ Chapter 4: Condensed FEM Modeling for Embedded Control and Design Optimization.
Development of a single framework for learning a compact mechanical representation of a
robot based on mechanical matrices projected in the constraint space. It enables to mitigate
the computational burden of the simulation while keeping a precision close to the one
offered by FEM simulation. The relevance of using this single differentiable description for
both design and embedded control is highlighted in several applications.

■ Chapter 5: Towards a General Framework for the Emergence of Embodied Intelligence
in Soft Robots. Discussion of this thesis results and introduction of ongoing work aimed
at leveraging the condensed FEM model to co-optimize design and high-level controllers.
Additionally, methods for obtaining compact, easily fabricable representations of more
free-form designs are investigated.

These topics have been covered in multiple scientific publications to conferences or journal, as
either the principal author or co-author:

⋄ Stefan Escaida Navarro, Tanguy Navez 1, Olivier Goury, Luis Molina and Christian Duriez,
"An Open Source Design Optimization Toolbox Evaluated on a Soft Finger", RAL,
2023 [Nav+23]

⋄ Etienne Ménager, Tanguy Navez 1, Olivier Goury and Christian Duriez, "Direct and inverse
modeling of soft robots by learning a condensed FEM model", ICRA, 2023 [Mén+23]

⋄ Tanguy Navez, Baptiste Liévin, Quentin Peyron, Stefan Escaida Navarro, Olivier Goury
and Christian Duriez, "Design Optimization of a Soft Gripper using Self-Contact",
Robosoft, 2024 [Nav+24]

⋄ Tanguy Navez, Etienne Ménager, Paul Chaillou, Olivier Goury and Christian Duriez,
"Modeling, Embedded Control and Design of Soft Robots using a Learned Condensed
FEM Model’, Transactions on Robotics, under review

1equal contribution to first author
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Along with these projects, two open-source plugin for the simulation software SOFA have been
released:

⋄ The "SoftRobots.DesignOptimization" plugin, implementing an interface for design
optimization and calibration of soft robots simulation asissted by surrogate [Navb]

⋄ The "CondensedFEMModel" plugin, implementing components for learning a condensed
model of a soft robot and leverage it in several applications, co-developed with Etienne
Ménager [Tan]



Chapter2
Background and Related Work

The computational design of soft robots within the framework of Embodied Intelligence is
challenging, as it encompasses various topics related to soft robot modeling and simulation,
control, and design. This chapter introduces the state of the art for each of these three topics.

2.1 Soft Robot Modeling and Numerical Simulation

Numerical simulation consists in approximating the analytical solution of a physical model,
which is an abstract representation of the reality. This representation captures the essential
aspects of a system to make understanding and analysis more accessible.

Whether for control or computer-assisted design applications, having an accurate numerical
simulation of soft robots is a crucial component for achieving successful applications. This
Section introduces the specific features of the soft robot simulation followed by an overview
of both the different theoretical models and simulators used for modeling and simulating soft
robots. Then, both the continuous mechanical models and the SOFA Framework implementing
it, which are mainly used in this thesis, are further developed. Finally, we see how reduced order
modeling framework are used for reducing the simulation computation time which is critical in
applications leveraging simulation which require real-time interactions.

2.1.1 Soft Robot Simulation Features

In robotics, simulation primarily enables to control a physical robot by predicting the best
actuation strategy to achieve certain user-defined goals. For this purpose, a digital twin, i.e. a
model calibrated to be an accurate representation of the physical prototype, is needed. We are
then interested in models linking the robot’s actuation a to its state description X. Direct models,
described using the equation X = f (a), compute the robot state depending on the constraints
imposed on the robot. In the inverse models described as a = f −1(X), we are interested in how
the constraints evolve based on the robot state description. Each of these models have their own
set of applications. Direct models are mostly used for interactive simulations, while inverse
models are mostly used for control or robot state estimation. Simulation is also widely used as
an assisting tools for design. Under the condition of having a model able to capture variation in

11
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design parameters, simulation enables to evaluate design performances.

Modeling and simulating soft robots pose unique challenges compared to classical rigid
robots due to the intrinsic complexity associated with soft materials and deformable structures.
In rigid robotics, standardized efficient and quick to compute analytical models are available.
This is explained by their structural assumptions, fixed robot shape and limited deformations,
that remain verified at all time. In comparison, soft robots lack such standardized model. They
have in theory an infinite number of degrees of freedom, due to the inherent complexity associ-
ated with deformable structure made with non-linear materials. Variable stiffness, a common
feature in soft robotics, further complicates the modeling process, as the robot behavior depends
on the changing stiffness of its materials. Interactions with fluids introduce fluid-structure
coupling and hydrodynamic challenges. Additional complexity also comes from the frequent op-
eration of soft robots in unstructured environments as their interactions with objects or surfaces
involve intricate contact mechanics.

The nature of soft robot implies the lack of analytical solutions in most case. One solution for
addressing these challenges is to implement numerical models that use numerical solvers to solve
for the robot deformations on a discretized geometry by making approximations. The diversity
and complexity in soft robot designs, materials, and actuation methods makes it challenging to
develop generalized modeling framework across various soft robot platforms. Then, the most
efficient method can vary from one system to another. From shape-specific methods to the more
generic ones, we describe the different modeling classes in the next Section.

2.1.2 Classification of Soft Robot Modeling and Approaches

As developing new soft robot models exceed the scope of this thesis, only a short review of the
main soft robot modeling approaches is considered. Complete state of the arts reviews of soft
robot modeling strategies are available in [Arm+22; SD22; Qin+23; Men+22]. These strategies
can be roughly classified in 4 main categories although they may sometimes overlap.

A - Geometrical Models

Geometrical models are based on strong geometrical assumptions on the deformed shapes
undertaken by the soft body. The Piece-wise Constant Curvature (PCC) Model is one of the
most popular ones, available under the assumption of constant curvature for soft robot shapes
composed of beam elements. As it is an analytical model, it is fast to compute and easy to obtain
gradients for control. Thus, it has historically been one the most used method in the soft robotics
community [WJ10]. Examples of applications include soft manipulators [Mar+14] [CFW18],
as shown in Figure 2.1. However, the constant curvature assumption becomes invalid when
external forces are applied on the robot, making it unsuitable to handle gravity and interactions
with the environment through contacts.

B - Continuum Mechanical Models

Continuum mechanical models are obtained from classical elasticity theory and characterized
by a continuous robot state space i.e. the robot is modelled as a continuum where the properties
of interest (stress, strain, ..) vary continuously. By establishing the connection between particles
motion and deformation tensors, these models are derived based on the constitutive laws of
materials. For an introduction of the basic notions related to continuum mechanics, we refer the
reader to the following handbook [Sal01].
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Figure 2.1: Schematic of Piecewise Constant Curvature forward kinematics modeling applied
to the forward kinematics (left) of the OctArm, a multisection continuum manipulator (right)
from [CFW18]. The soft structure is represented with a fixed number of arcs described by three
parameters, namely the curvature radius, the arc angle and the bending plane.

In soft robotics, a significant obstacle lies in enhancing the efficiency of these methods
to enable real-time usage without compromising realism. Thus, the development of specific
numerical resolution schemes targeted at continuum mechanical models have an important
place in the soft robot modeling literature. This partly explains why modeling and numerical
resolution are terms used regularly interchangeably in the soft robotics community while both of
them are well differentiated in the continuum mechanics community. Given their importance in
this thesis work, soft robot continuum mechanical models and associated numerical integration
methods are described in more details compared to other modeling categories.

As simulating an infinite number of degrees of freedom is not conceivable, there is a necessary
step of discretization of the continuous structure either in particles or in a spatial mesh. We start
by introducing below the generic 3D modeling and joint numerical solvers. A common way to
reduce the resolution space being to consider geometrical assumptions when possible, we then
introduce the main modeling strategies for this purpose.

B.1 - Generic Continuum Mechanical Modeling and Numerical Resolution
The Finite Element Method (FEM) is the most known generic 3D numerical technique, appli-

cable without any assumption on the shape of the structure. It consists in discretizing the robot
geometry in a mesh of finite elements and solving the underlying non-linear equations of the
continuum mechanics for each of these elements. This is why FEM is also commonly referred
as a mesh-based method. Within each element, approximate solutions to the governing partial
differential equations are formulated using polynomial interpolation functions. By assembling
the contributions from all elements, a system of algebraic equations is derived, which is then
solved numerically to obtain the solution for the entire domain. In practice, FEM models have
been widely used by the soft robot community and shown to be effective to address challenging
modeling and simulation tasks, involving for instance factors such as gravity forces, important
load constraints and contact forces. For instance, it has been applied to very different shapes
and scenarios, such as to the modeling of a parallel robot actuated by cables [Dur13a], soft
tentacles robots [CED17; Mor+20a] interacting with their environment, a pneumatically actuated
crawling robot for locomotion [GD18], or a parallel continuum haptic device [Koe+23]. Some
examples are shown in Figure 2.2. Nevertheless, one drawback of these methods is that they
are computationally expensive because of the large number of discrete degrees of freedom to



14 CHAPTER 2. Background and Related Work

handle. They also rely on a lot of hyper-parameters (mechanical and geometric parameters,
mesh discretization, boundary conditions on forces and contacts), requiring extensive experience
from the user to be used effectively. Hence, continuum mechanical models with geometrical
assumptions are commonly preferred when possible.

Figure 2.2: Examples of soft robots controlled using FEM: Diamond robot made in silicone and
actuated by four cables [Dur13a] (left), a soft tentacle robot actuated by cables [CED17] (middle)
and a crawling robot actuated by four pneumatic cavities [GD18] (right).

Another well-known model is the Material Point Method (MPM) [Jia+16], where a continuum
body is described by a set of small Lagrangian elements called material points. Material points
store all the information relative to the robot state and a fixed background mesh is used to
compute gradients of deformations. It is a direct competitor to FEM modeling as a generic
method to simulate any robot shape. ChainQueen is an open-source simulator implementing a
variant of MPM specifically targeted at soft robot simulation [Spi+23]. They propose a hybrid
Eulerian-Lagrangian approach where particles and grid representation are used interchangeably.
It is particularly effective for handling large deformations and material interfaces, but is more
computationally expensive than FEM as the background grid must be reset at the end of each
MPM calculation steps. This makes it particularly suitable for modeling locomoting soft robots.
One interesting characteristics is that computing gradients is fairly easy relative to the fixed
background grid, opening the path for gradient-based control and design co-optimization
applications. Compared to FEM, there are however less examples of physical soft robot controller
derived from MPM in the bibliography. Some examples of applications are a soft beam actuated
by magnetic field gradients [Dav+23], or pneumatically actuated locomoting soft robots shapes
generated and controlled using MPM [Kob+23] (see Figure 2.3).

Figure 2.3: Illustration of the Material Point Method for simulating soft robots: particle-to-grid
scheme and grid-to-particle transfers implemented in the ChainQueen simulator [Spi+23] (left),
and an example of a locomoting soft robot with a MPM-based controller [Kob+23] (right).

B.2 - Continuum Mechanical Models with Geometrical Assumptions and Numerical Resolu-
tion
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B.2.a - Modeling
A large set of continuum mechanical models consider specific assumptions on the shape of

the robot. Some approaches have been specifically proposed for 1D slender structures, such as
beams and rods, and 2D surface structures such as membranes, shells or plates. Although the
former are extensively utilized as the geometrical hypothesis are suitable practical applications
(catheters, manipulators), there are relatively few examples of applications for the latter in the
bibliography.

The 1D slender structure category include widely used models such as the Kirchhoff [Dil92]
and the Euler-Bernoulli [Sha97] rod theories, as well as the Cosserat beams [renda_discrete_2016],
and have been shown to be the most efficient techniques in most cases for modeling systems that
can be described as combinations of slender-shaped structures. Both these models are expressed
as systems of partial differential equations with one spatial dimension.

The Kirchhoff and Euler-Bernoulli theories both focus on global deformations like bending
and torsion. The modeled structure is then simplified to a uni-dimensional element that
primarily flexes within the plane of deformation. Kirchhoff rod theory neglects transverse
deformations, by assuming that cross-section remains plane and normal to the deformed beam
axis during deformation, while Euler-Bernoulli beam theory considers these deformations along
with longitudinal bending, as long as transverse deformations stay small. Kirchhoff theory is then
applicable primarily to thin rods where transverse deformations are negligible, as it is the case
for catheters for instance [Kra+17] (see Figure 2.4.A). On the other hand, Euler-Bernoulli theory
is more versatile, accommodating thicker beams and situations where transverse deformations
cannot be disregarded. It has successfully been applied to the modeling of a cylindrical soft
arm [Ols+20] bent by external load (see Figure 2.4.B). This approach however lacks to capture
local deformation in the structure.

An alternative for accurate modeling of such slender structures is the Cosserat rod theory.
It is a generalization of Kirchhoff rod theory considering structures as a line along which is
continuously stacked a set of rigid cross Sections. For each of these Sections, local deformations
and rotations are computed. The ability of Cosserat models to handle kinematics and dynamics
of slender shaped objects undergoing important deformations has been demonstrated on a wide
range of soft robots and actuated objects, such as an octopus arm [Ren+18b] (see Figure 2.4.C),
underwater soft robots [Ren+18a], or threads in surgical simulation [Pai02]. Although it is
considered as a geometrically exact modeling approach, it is however often used jointly with
complex numerical solvers in real-time applications for computational time reason.

In all cases, a common limitation of these kind of approaches is that all deformations are
not taken into account as cross-sections are assumed to be (or almost) rigid. In certain cases,
this may not precisely reflect the behaviour of some materials, large transverse deformations
implied by some actuation strategy such as pneumatic cavities, or of specific robot configurations.

2D surface structures modeling methods are targeted at thin objects which motion can be
abstracted through the motion of a surface, such as membranes, plates or shells. In these cases,
the thickness of the soft structure is considered constant under loading.

For instance, a combination of the Cosserat model and the Reissner shell model [SF89] is
used to model the shell of a soft underwater vehicle inspired by cephalopods in [Ren+15] (see
Figure 2.5). Exploiting axis symmetry enables reducing the general configuration space of the
shell which is modeled as a continuous assemble of rigid fibers along the median of the shell.
Other example include the shell of a growing soft robot [PRZ+23].

Although this style of models has been widely applied in medical simulation, for example
to model organ membranes, there are few examples of applications in soft robotics. This is
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Figure 2.4: Illustration of wire-like soft structures modeling. A) Schematic of a rod modeled
with Kirchhoff theory as a space curve with a local coordinate frame attached to each point
(left), and illustration of the setup proposed in [Kra+17] for guiding the magnetic rod with a
robot-manipulated magnet (right). B) Schematic of Euler-Bernoulli beam modeling (left) for a
soft robot arms (right) from [Ols+20]. C) Schematic of Cosserat modeling from [Arm+22] (left)
alongside an octopus arm controlled via forward kinematics derived from Cosserat theory (right)
from [Ren+18b].

Figure 2.5: Schematic of a shell modeled using Reissner modeling (left) and a cephalopod-
inspired pulsed-jet soft robot for locomotion (right) from [Ren+15].
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explained by the low number of soft robot designs where 2D structure hypotheses are valid.

B.2.b - Numerical Resolution
Analytical solutions are available only in some very specific conditions. 1D slender structures

subject to concentrated external loads are one example. In most cases, analytical solutions are
not available, and numerical solvers are used.

Approaches for solving continuum mechanical models with geometrical assumptions are
classified into non-energetic and energetic methods. A complete review of the numerical
resolution of director-based formulations is proposed in [Arm+22]. For non-energetic methods,
the modeling formulation is reshaped as a set of partial differential equations with boundary
conditions that are directly discretized on a spatial grid. Then standard numerical analysis
techniques are employed for the resolution, such as finite differences or shooting methods.
Energetic methods rely on the principle of energy conservation whatever the chosen coordinate
system, as stipulated by Lagrangian mechanics. The configuration is parameterized by some
vector fields, reduced on a truncated functional basis of space-dependant vectors. This defines a
set of Lagrange differential equations in time. One powerful method is the geometrically exact
FEM (GE-FEM) [SV88] where material points of the classical medium are replaced by the rigid
Sections of the Cosserat model, and the obtained system is solved with FEM.

C - Particle Models
As for continuum mechanical models, particle models are also obtained by deriving physical

laws. However, they consider a finite discretization of the body in discrete materials components.
This is why they are also sometimes referred as mesh-less methods.

For instance, lumped-mass models consists in representing the structure as a set of discrete
masses connected by a network of springs. It has been applied to model the large deformations
of a continuum surface actuated by robot arms [Hab+20] (see Figure 2.6.A) or the modeling of
tendon-driven medical robotics catheter in [Jun+11]. Although it provides a fast solution regard-
ing computation time, it requires specific optimization for calibrating the model parameters to
the robot mechanical properties.

Other examples are pseudo-rigid models represents soft bodies as series of rigid links which
are connected by joints. These kind of models are usually convenient for modeling hybrid robots
combining both soft and rigid parts. Relevant applications are to be found in dexterous catheter
manipulators [Kut+11](see Figure 2.6.B) [KP13] in the early stage of the soft robotics fields.

Although easier to implement than continuum mechanical methods, particle models also
suffer from the computational complexity related to handling a large number of degrees of
freedom, and unlike the aforementioned methods, they struggle to model certain aspects such
as boundary conditions because of their inconsistent discretization.

D - Learning-Based Models

Learning-based models rely on machine learning. Complete reviews are available in [WLK21] [Kim+21].
These models are trained from large sets of data. These data can be extracted from different
sources, such as numerical simulation results harvested using any other aforementioned mod-
eling strategy, or measures extracted from sensors on a physical prototype. Most framework
consists in training shallow neural networks, such as a MultiLayer Perceptron, for using it
directly as a direct (X = f (a)) or an inverse model (a = g(X)) (see Figure 2.7.A).

More complex deep architectures, such as Recurrent Neural Networks (RNNs), have also
been applied for capturing complex functions involving intricate time and mechanical coupling
such as when considering soft robot dynamics. However, the recurrent nature of RNNs makes
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Figure 2.6: Illustration of two particle models. A) Schematic of a lumped-mass discrete model
integrated with an arm model along one side (left) and the controlled curved-shape soft surface
actuated by two continuum arms (right) from [Hab+20]. B) Schematic of a pseudo-rigid model
(left) applied to the control of a dexterous catheter designed for minimally-invasive surgery
(right) from [Kut+11].

training on long sequences challenging due to the gradient propagation across many time steps,
which can lead to vanishing or exploding gradient issues, slowing down or even hindering
learning convergence. Thus there are few working examples in the bibliography [Kim+21]. For
instance, a RNN is applied to learning the forward dynamics of both a tendon-driven and a
pneumatically-driven soft manipulators in [Thu+17] from simulation data, and authors showed
that the open-loop controller built from this learned RNN is not robust to external disturbances.
A model-based learning method, this time learned from real-world data, enabled to reach a
better stability in [Thu+19] and was validated on the the closed-loop control of a pneumatically
actuated soft manipulator (see Figure 2.7.B).

Learning-based models can be applied to any robot shape and scenario. Once trained, the
high prediction speed of these models is suitable for real-time control. Nevertheless, their
training is tailored to the specific scenario and shape met during the data generation, limiting
their applicability to other contexts.

Some data-driven approaches employ data jointly with modeling tools for efficiently approxi-
mating the physical model. In this case, these methods are referred as model order reduction.
These methods are further discussed in Section 2.1.5.
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Figure 2.7: Illustration of learning based models. A) Neural networks are trained to learn direct
or inverse models. B) Pneumatically-driven soft manipulator controlled using a trained RNN as
the forward dynamics model from [Thu+19].

2.1.3 Physics-Based Simulators and SOFA Framework

In this thesis work, we rely SOFA for the simulation of soft robots. This open-source
software is collaboratively developed by several research teams. The DEFROST team,
where I conducted this work, has been its main contributor these last years. After a short
introduction of the main alternatives physics-based simulators used in soft robotics, this
Section describes the SOFA framework and its features.

Main features of SOFA framework:

• FEM simulation

• Multi-model representation and mappings

• Libraries of actuator and sensor models

• Inverse models for soft robot control

Available Physics-Based Simulators

SOFA has an original positioning between real-time simulators for robotics, such as Mu-
JoCo [TET12] or Gazebo [KH04], and FEM computation software like ANSYS or COMSOL.

The FEM is a standard for many popular multi-physics simulation software, such as Abaqus,
ANSYS, COMSOL. These software are user-friendly frameworks providing a wide spectrum
of tools for tackling different physical problems, including heat transfer, electric conduction,
magnetism and fluid flow [Col+21]. They have also been demonstrated for modeling soft robots
and for soft robot design studies. However they lack features necessary for robotics applications,
like actuators and sensors modeling or controllers. Moreover, as they are not specifically tailored
for soft body simulation, their computational cost is a non affordable burden in real-time
applications.

ChainQueen [Hu+18b] is another alternative simulator. Implementing a variant of MPM, it
is fully differentiable, but it is limited in its capabilities, proposing only limited actuator models
and material constitutive laws.
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Other well-known state of the art simulators are specifically targeted at simulating the
dynamics of deformable objects for control purpose, and rely on different approaches for the
modeling and solving the dynamics. Among them, some are using particle-based modeling
(MuJoCo [TET12], Flex [Mac+14]) or continuum-based modeling solved with FEM (Bullet [Bai],
SOFA [Fau+12]). Although simulation is widely used as a mean to evaluate designs or learning
controllers, few works consider an in-depth analysis and comparison of the simulation to reality
transfer. Recently, these simulators have been compared on the cloth manipulation tasks [Bla+24].
On their benchmark tasks, SOFA showed to present lower errors than the other aforementioned
simulators.

Recent significant release include the Sorotoki toolkit [CPN24], implementing FEM simulator
and algorithms for control and design of soft robots. In their work, they also propose a complete
comparative review of the current simulation software available. Both SOFA and Sorotoki are
the more complete platforms regarding the range of models (hyper-elastic, tendon, fluidic),
considered tasks (locomotion, manipulation) and control algorithms available. Both simulators
have also been widely validated on physical prototypes. Another interesting feature of Sorotoki
is that it natively includes algorithms for inverse design of soft robots (more details on this
aspect are given in Section 2.3.2). However, unlike SOFA, the focus of the Sorotoki package is
not on real-time control.

SOFA Framework

The Simulation Open Framework Architecture (SOFA) software is an open-source C++ library
that has been initially presented as biomedical and surgical simulator [Fau+12]. It enables to
simulate a large choice of different mechanical models and geometrical descriptions (from curve
to 3D meshes), handling multi-physics coupling and precise contact management including
self-collision. SOFA implements a scene-based architecture that can be described in a Python
script. Robots and environments objects are described with elementary components that are
easily interchanged. Components are provided for encoding topologies and contacts, numerical
integration, mechanical modeling or rendering. This architecture is especially well-suited for
exploring and experimenting with various ideas. It turned out to be particularly convenient
for constructing automated and parameterized pipelines to evaluate soft robot designs in this
thesis work. Being targeted at real-time simulation of real robots, SOFA also provide tools
for interacting with sensing hardware and haptic devices [Fau+12]. The software is built to
allow users to develop new components as plugins on top of the core software. Across the
years, the software has been updated with several plugins specifically targeted at soft robotics:
the SoftRobot plugin [Dur13a] [Coe+17] targeted at soft robot simulation and control which
provides a wide range of actuator and sensors models, and its pendant the SoftRobot.Inverse
plugin [Coe19] implementing inverse model for soft robot control. Although initially targeted
at FEM simulation, SOFA also implement other continuum mechanics based models such as
Euler-Bernoulli beam model[Tal+16] and a model combining FEM simulation and discrete
Cosserat [ARD21]. Example of soft robots controlled using SOFA for the simulation are shown
in Figure 2.2.

One of the strength of SOFA lies in a multiple model representation, where a simulated
object can be simultaneously represented by several meshes linked together through mappings.
Mappings are non-linear functions enabling to transfer positions, velocities and forces between
different representations. For instance, it enables to consider different representation for 2D
contact surfaces and simulation meshes, as illustrated in Figure 2.8. It is also convenient to
model hybrid robots, as rigid parts can be easily mapped to soft parts.
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Figure 2.8: Illustration of multi-modal mapping in SOFA, for a circular rolling robot actuated
by 4 cables. On the left, models for detecting collisions between the robot and the surface it
moves on. In the middle, mechanical model for computing the deformations of the rolling robot.
This model is usually more detailed than the collision model. It controls the update of the other
representations through different mappings. On the right, models for visualisation purpose.

2.1.4 Modeling and Simulation based on Continuum Mechanics in SOFA

In this thesis work, continuum mechanical models and FEM numerical solvers are used
for the simulation of soft robots. This choice is justified mostly by the genericity of
the methods and numerous successful applications addressing the simulation to reality
transfer in the state of the art. In this Section, the governing discretized equations and
numerical integration schemes are introduced.

Usefull concepts:

• Conversion of Lagrangian mechanics equations to a system Ax = b

• Definition of constraints as Lagrangian multipliers

• Resolution for a free configuration xf ree and then for the constrained system

Discrete Equations of Motion

The mathematical description of the behavior of soft bodies is obtained from deriving equations
based on continuous media principles. As previously explained, various modeling approaches
stem from these equations. In each approach, a set of coordinates describing any configuration
X of the soft body is required. These coordinates can either be relatives, pertaining to a frame
moving with the system (such as in the Euler-Bernoulli beam model or the Cosserat model),
or absolutes, referencing a fixed frame (as for 3D volumes). We refer to these coordinates as
generalized coordinates and denote them q.

As explained in the previous Section, all the introduced continuum mechanical models can
be solved in the framework of FEM. In this case, the type of elements used will differ, depending
on the considered geometrical assumptions, as shown in Figure 2.9. In all cases, a mesh defines
how the kinematics of each node will be linked to the kinematics of the other nodes through
an interpolation function. The number of degrees of freedom considered for the nodes, i.e. the
generalized coordinates q, depends on the chosen geometrical assumptions. For instance, frame
nodes with 3 translations and 3 rotations are usually considered for 1D beam elements, some
rotations elements are included for 2D elements, and most often only translation are considered
in the generic case.
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Figure 2.9: Example of elements used in FEM.

In their primal form, the discrete dynamic equations describing a soft body are then written
as:

M(q)q̈ = fint(q, q̇) + fext (2.1)

where M is the mass matrix, fint are non-linear internal forces computed from the material
laws chosen for the robot that can include viscosity effects, fext are external forces such as the
gravitational force. All these dimensions are projected in the chosen coordinate space q. Finally,
q̇ and q̈ are respectively the velocities and acceleration of the generalized coordinates q.

When possible, these equations are further simplified under both the assumptions that some
nodes of the mesh are fixed and that the velocities of the nodes are low so that inertial forces
vanish. This hypothesis is often valid, as it is common to actuate soft robots with low actuation
frequency to avoid dynamics effects such as vibrations. However, the first assumption is not
valid when considering soft robots for locomotion for instance. We are then in the quasi-static
case, and the system of equations to solve is simplified as:

fint(q) + fext = 0 (2.2)

Numerical Resolution with an Implicit Euler Scheme

To be solved, the dynamics equations are commonly discretized in time with an integration
scheme, over a chosen time step h = ti+1 − ti . At each time step, numerical solvers are used to
obtain a good approximation to these equations.

Explicit time-stepping schemes, computing the current position qi+1 and velocities q̇i+1
from the values at the previous steps qi and q̇i , enable an easy computation of internal forces.
However their stability is conditioned by the chosen time steps h [Dur13b]. On the other hand,
implicit time-stepping schemes compute the current dimensions from internal forces defined
at the next time step. This kind of approach, at the cost of the inversion of complex matrices,
ensures unconditional stability and is adapted for interactive simulations with contact handling.
Indeed, when a contact occurs, the velocity of a node change and the acceleration is not defined
anymore. This issue can be addressed in an Euler implicit time-stepping scheme by replacing



2.1. Soft Robot Modeling and Numerical Simulation 23

the acceleration by a change of velocity dq̇ = q̇i+1 − q̇i . These reasons explain why implicit
integration scheme are usually privileged over explicit schemes.

In SOFA, an implicit time-stepping Euler scheme is implemented. Given the current state
(qi , q̇i), it is written as: 

M(qi)dq̇ = hfint(qi+1, q̇i+1) + hfext
q̇i+1 = q̇i + hdq̇
qi+1 = qi + hq̇i+1

(2.3)

At this step, as positions qi+1 and velocities q̇i+1 are not yet known at the end of the time step,
internal forces are computed using a first-order Taylor series expansion for linearizing them:

fint(qi+1, q̇i+1) ≈ fint(qi , q̇i) +
∂fint(qi , q̇i)

∂q
dq +

∂fint(qi , q̇i)
∂q̇

dq̇ (2.4)

In the most generic case, we denote ∂fint
∂q = K the stiffness matrix and ∂fint

∂q̇ = D the damping
matrix. In SOFA, viscous material are simulated using Rayleigh damping which define D as a
linear combination of the mass and stiffness matrices D = αM+ βK with α the Rayleigh mass and
β the Rayleigh stiffness.

This leads to the following system to solve at each time step:

(M(qi)− hD(qi , q̇i)− h2K(qi , q̇i)︸                                  ︷︷                                  ︸
A

dq̇︸︷︷︸
x

= hfint(qi , q̇i) + h2K(qi , q̇i)q̇i + hfext︸                                      ︷︷                                      ︸
b

(2.5)

We obtain a sparse matrix system Ax = b solved to compute the value of dq̇. Then the values
of the new positions qi+1 and the new velocities q̇i+1 are respectively updated using the Euler
scheme as described in Eq. 2.3. As K, D and M are symmetric, positive definite and sparse by
construction, the matrix A is then invertible and the system can be solved at each time step.

Similarly, in the quasi static case, we obtain the following system to solve at each time step:

(−K(qi , q̇i)︸      ︷︷      ︸
A

dq︸︷︷︸
x

= fint(qi) + fext︸         ︷︷         ︸
b

(2.6)

Lagrangian Formulation for Actuation and Contact Constraints in Forward Simulation

Soft robots movements are generated by a change in the equilibrium of forces induced either by
actuation or interaction with the environment. In the previous Section, we have considered that
the external forces fext do not depend on the position of the nodes, which is not always the case
for actuator and contact forces. We separate external forces, such as gravity forces or constant
forces applied in one point, and forces due to constraints, i.e. actuator and contact forces.
Therefore, b includes external forces and constraints are model using Lagrange multipliers,
leading to the following system to solve:{

Ax = b + hHT
a λa + hHT

c λc in the dynamic case
Ax = b +HT

a λa +HT
c λc in the quasi-static case

(2.7)

λa and λc are respectively the constraint forces relative to actuation or contacts.
HT
i for i ∈ {a,c} can be seen as the first derivatives (i.e. the Jacobian matrices in the mathe-

matical sens) of the constraints. They are matrices of size n×ni , n being the number of DoFs in
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the FEM mesh and ni being the number of DoFs for the considered constraint, which directly
contains the direction of the considered forces on the set of involved nodes.

For each of these constraints, a characteristic distance δi , i ∈ {a,c} is defined. This quantity
has different meaning depending on the type of constraint considered. For instance, δa is the
length of the cable for a cable actuator or the volume change for a pneumatic actuator. For a
complete mathematical description of most soft robot models available in SOFA, the reader
is referred to this work [Coe19]. In SOFA, colliding points and surfaces are detected at each
simulation step. The responses are computed using Signorini’s and Coulomb law as described
in [Dur13b]. For contacts, δc represents signed distance between two colliding objects in the
contact zone. Illustrations of these distances are provided in Figure 2.10. We will introduce
further the mathematical expressions of these characteristic distances in this manuscript along
with the inverse control of soft robots in Section 2.2.1.

Figure 2.10: Illustration of the characteristic dimensions for a soft robot, actuated by a cable c
(in green) and two pneumatic cavities p1 and p2 (in dark blue) while colliding with an object
(grey square).

For solving continuum mechanics equations with a numerical method, the number of degrees
of freedom must be sufficiently high for ensuring accurate results. This result in obtaining
systems with many DoFs, which makes the system impossible to solve in the computation time
required in robotics. However, whereas FEM can guarantee good prediction of the deformation
of the soft robot, what is really useful in robotics is to parameterize the space of configurations
the robot can take, i.e. the relationship between actuators, contacts and effectors. The motion of
the robot can then be described in a sub-space composed of the actuators and external constraints
such as contacts.

The constraints are then solved in two steps. First, the free configuration xf ree in which there
is no actuation or contacts is obtained by solving:

Axf ree = b (2.8)

Next, these values are corrected by incorporating the effect of the constraints in the considered
sub-spaces. The final solution, obtained from both Equation 2.8 and Equation 2.7, is then given
by: {

x = xf ree + hA−1HT
a λa + hA−1HT

c λc in the dynamic case
x = xf ree +A−1HT

a λa +A−1HT
c λc in the quasi-static case

(2.9)
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2.1.5 Model Order Reduction of Soft Robots

In soft robotics, model order reduction algorithms have been widely studied for reaching
real-time performances. Having reliable and quick to compute reduced models is nec-
essary to efficiently tackle data-driven co-optimization algorithms for both control and
design. In this thesis work, we aim at being generic and we do not make any assumption
regarding the geometry of the robot. Moreover, we are interested in models that can
capture design variations. This Section explores current reduced order applications in
soft robotics.

In classical continuum mechanics, reduced order modeling or model order reduction (MOR)
techniques consist in reducing the computational complexity of a model while maintaining
acceptable prediction errors. In the machine learning community, these methods are referred
as state representation learning [Les+18]. The general objective is to find a model with few
variables that describe the full order model by keeping only relevant information for the task at
hand. These small dimensional model are mostly targeted at control applications, but, in our
case, we are also interested in design applications.

Reduced Order Modeling of Continuum Mechanical Models with Geometrical Assumptions

For models with geometrical assumptions, any approaches targeting at approximating evolution
of states of a soft robot is called a MOR approach. The objective is to build a reduced order
kinematics of a soft robot. As already discussed in Section 2.1.2, energetic methods for solving
continuum mechanical models with geometrical assumptions require finding a truncated func-
tional basis of vectors, on which are defined a set of decoupled Lagrange differential equations
in time or in space. Two main methods are available to find or further reduce this basis: modal
approaches, where the system kinematics is approximated by a weighted sum of the dominant
deformation modes, and fitting approaches, where the system kinematics is based on a basis
function that is calibrated to the considered system [Sad+23]. In both cases, the modes shape
or pre-designed basis functions are obtained with generic methods (spectral analysis or series
expansion), or by fitting some empirically chosen function. For instance, Legendre polynomials
are used for approximating a beam in [Liu+18b]. For a more in-depth reviews of reduced
modeling techniques applied to continuum mechanical models with geometrical assumptions,
the reader can refer to [Sad+23] [Qin+23] .

Reduced Order Modeling of Generic Continuum Mechanical Models

The computational complexity associated with high dimensional models is a major drawback
to FEM simulation. A first step towards real-time simulation is to replace complex matrix
computations with approximations. This is the case in SOFA, where the linear elasticity hypoth-
esis is adopted, which enable local pre-computations (see Equation 2.9) for reaching real-time
performances.

Popular methods, like the principal orthogonal decomposition, aim at compressing the state
space dimension. This technique consists in reducing the size of the model by projecting the
FEM equations into a reduced space. The principal modes of deformations are computed using
a singular value decomposition on a pre-computed dataset of soft robot configurations. This
dataset should be representative of the workspace of the robot. This technique enables to find
a reduced basis Φ which, once integrated in the Equations 2.7 of motions, gives the following
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equations:{
ΦTAΦdα̇ = ΦT b(Φα,Φα̇) + h(HaΦ)Tλa + h(HcΦ)Tλc in the dynamic case
ΦTAΦdα = ΦT b(Φα) + (HaΦ)Tλa + (HcΦ)Tλc in the quasi-static case

(2.10)

where Φα = q is the reduced expression for the vector of positions. This methods enable to
drastically reduce the number of degrees of freedom of the model, and can account for contacts
and even self-contacts [GCD21]. For instance, in [GD18], a basis of 60 modes is enough for
controlling a complex robot (see Figure 2.11).

Figure 2.11: Example of MOR for a multigait soft robot (left) actuated by 5 pneumatic actuators
from [GD18]. The 5 first basis vectors (middle) and the reduced integration domain (right) are
displayed. A given state of the multigait is approximated by a weighted sum of the basis vectors.

Note that these kind of methods present the same drawbacks than learning-based models
introduced in Section 2.1.2. They are dependant on the data used for computing the reduced
basis, and thus are not able to generalize to configurations unmet in the dataset. It is challenging
for most soft robots having strong interactions with the environment, where it is difficult to
determine where the contacts will occur in advance. These methods are also design/mesh
dependant, meaning that changing the geometry of the robot involves recomputing the entire
pipeline.
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2.2 Soft Robot Control

Controllers leverage soft robot models to generate control inputs that manipulate the soft robot
effectively. Having a trustworthy simulation is necessary to account for the non-linearities
and large deformations behaviors of soft robots, but this simulation must be at least real-time
for being used in practical applications. Additionally, a robust controller must incorporate a
feedback component to accommodate external disturbances as well as disparities between the
model and the physical robot.

One question that may be asked is : what is meant by controlling a robot? When the task
involves to follow a trajectory in space, optimisation methods for continuum-mechanics based
inverse models have been developed [Coe19] [Mén+24]. It consists in finding the actuation
strategy to match some target locations and velocities with the effectors of the robot. However,
the most apparent answer to our question is to focus on the task the robot needs to accomplish.
For instance, it could be grasping and manipulating objects or locomoting to a specific far-away
location. With our tools, controlling a robot on these kinds of task then involves breaking down
the task in a set of trajectories that can be solved with optimization. Optimization approaches
are not sufficient in this case and need to be coupled with other algorithms such as path planning
algorithms. For this part, we rely on Reinforcement Learning (RL) algorithms to explore the
space of trajectories from simulation data. In this manuscript, we differentiate between low-level
control, which involves executing predefined trajectories, and high-level sequential control
schemes, which generate a series of trajectories to accomplish a specific task. The two main
algorithms employed for each class of controllers are described below.

2.2.1 Low Level Control using Mechanical Modeling

This Section introduces the intricate coupling between simulation based on mechanical
modeling and control, highlighting that control methods both benefits from accurate
and fast simulations. Moreover, optimization methods and mathematical notations for
inverse control of soft robots based on a condensation of the FEM model are presented.
Low-level inverse control of soft robots using quadratic programming is widely used in
this work.

Usefull concepts:

• Condensation of the FEM in the constraint space Wij for i, j ∈ {a,c, e}

• Characteristic distance δ
f ree
i for i ∈ {a,c, e}

• Quadratic programming for control

Simulation and Model-Based Control

Optimization algorithms used in low level control strategies require mechanical quantities that
are computed in the simulation.

When considering physical prototypes, having good open-loop algorithms is not always
sufficient. Algorithms based on continuum mechanical models are sensitive to lot of numeri-
cal parameters such as mechanical parameters, mesh discretization and boundary conditions.
Moreover, they are sensitive to modeling uncertainties, like the variations in geometry and
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materials properties of the soft robot, or external perturbations that are not accounted for in
the model. For guarantying that the system reach a desired trajectory, closed-loop controllers
are set. They rely on sensors to provide feedback about the robot state (actuation, contacts,
deformation). Closed-loop control can be divided into two levels of details [WC22]. In the first
one, the feedback enable controlling the deformation state of actuators. For instance, measures of
the pressure applied in the pneumatic cavities of a soft robot can be used to ensure the actuator
delivers the wanted actuation [Bes+16]. The second-level builds a feedback part from measures
in the configuration or task space. For instance, it could be the location of the end-effectors of
the robot [Del+20; BS16].

Building working closed-loop algorithms for soft robot is an active area of research. One
limitation of closed-loop strategies is that they are mostly model-based, meaning that algorithms
not developed with generic mechanical model are applicable only to particular soft robot systems.
Another issue is related to the small size of most soft robots. Making small sensors integrated
with actuators is then a limiting factor for small soft robots, but also for soft robots with many
actuators. In these cases, open-loop algorithms are preferred. Complete review of closed-loop
algorithms used in soft robotics is available in [WC22].

Quadratic Programming

A method has been proposed for one-time step control of soft robots modeled with Lagrangian
mechanics [Coe19]. This method extend the modeling and numerical scheme introduced in
Section 2.1.4.

In addition to actuation and contact constraints, the effectors sub-space is considered. Effec-
tors are points at which the robot’s movement is controlled. Note that, as soft robots are usually
under-actuated, only a sub-part of the total number of degrees of freedom can be controlled.
Effectors are classically end-tip of the robots or where sensors are located. The general idea is to
minimize some characteristic distance δe = qe −qgoal between the 3D locations of effectors qe and
some goals qgoal . As for the actuators and the contacts, the Jacobian matrix (in the mathematical
sense) of the effectors He is defined to obtain the motion of the effectors given the motion of the
degrees of freedom of the FEM model:

∆δe = Hedq (2.11)

Practically, some nodes of the mesh are defined as effectors such that

He =
[
0 0 0 0 I 0 0 0 0 0

]
(2.12)

where I is the identity matrix located at the effector position indices. I is of the same dimensions
as the number of degrees of freedoms attached to a node (3 for a position node, or 6 for a position
and orientation node when using beam of shell elements for instance). The generalization to
several effectors is straightforward.

For reducing the equations of equilibrium and motion on the loaded degrees of freedom, the
compliance is projected in the space of constraint. The unloaded degrees of freedoms are then
slaves of the loaded ones. This technique is called condensation of the FEM. As with the forward
modelling described in Section 2.1.4, the solution of the inverse problem is computed in two
steps. First, a free configuration is solved for qf ree and the violation of the constraints in the
free configuration of the robots are evaluated as δ

f ree
i for i ∈ {a,c, e}. When the equilibrium is

disturbed, the distance of effectors to their goal position is updated by a linear approximation of
the nodes displacement using FEM interpolation. For this purpose, characteristic distances are
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built from the projection of the integrated admittance matrix A−1 from Equation 2.5 as follows:

δa = Waaλa +Wacλc + δ
f ree
a

δc = Wcaλa +Wccλc + δ
f ree
c

δe = Weaλa +Wecλc + δ
f ree
e

(2.13)

when Wij = HiA−1(q, q̇)HT
j for i, j ∈ {a,c, e} the projection of A in the constraints spaces.

These matrices are homogeneous to a compliance and gather the mechanical coupling between
the different constraints. The values of these matrices are not constant and depend on the
configuration q of the robot. Moreover, their computation in real-time can be challenging as the
size of A is proportional to the size of the FEM mesh.

Note that this projection on constraints is in fact also used for forward simulation. The
difference is that, at this stage, user-chosen actuation is directly applied to the actuators. Here,
the values of actuation and contacts are not known in advance, which leads to solve the following
optimization problem:

argλa,λc
min ||δe ||2

s.t.δmin ≤ δa ≤ δmax (Actuators course constraint)

λmin ≤ λa ≤ λmax (Actuation effort constraint)

0 ≤ λc ⊥ δc ≥ 0 (Contact constraint)

(2.14)

This optimization problem minimizes the distance δe while respecting the constraints on
actuation and contacts. We face a quadratic problem (QP) when no contacts are considered, and
a quadratic problem with complementary conditions (QPCC) when contacts are considered. In
the last case, λc is part of the problem for enabling the robot to use contact to reach certain
positions. Dedicated solvers are available to solve both types of optimization problems, and are
further introduced in [Coe19].

2.2.2 High Level Sequential Control using Machine Learning

This Section introduces reinforcement learning methods to address sequential decision
problems. While these concepts are not directly applied in this thesis, our goal is to
leverage reinforcement learning for the co-optimization of both controller and design
for soft robots. Challenges related to integrating the condensed FEM model into a
reinforcement learning loop are further discussed in Chapter 5.

Usefull concepts:

• Soft Actor Critic

• Sample efficiency and sim-to-real transfer in reinforcement learning

High level sequential controllers such as RL algorithms may also benefit from simulation.
They require large amount of data for training, which are not easy to obtain on a physical
prototype. Simulation provides a reproducible environment where experiments can be precisely
replicated, facilitating comparison and validation of different algorithms or approaches. Simula-
tion environments are safer, as RL algorithms usually require large amounts of trial and error,
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which can be risky and potentially damaging both for the prototype and its environment. Finally,
simulation enables parallelization and computation time that can be faster than real-time. This
last point needs to be mitigated. When an accurate simulator is used, the complexity of the
simulation may lead to very high computation times, limiting the use of machine learning
algorithms. Control policies learned in less accurate simulators, on the other hand, may struggle
to transfer to physical prototypes.

Reinforcement Learning (RL) algorithms have been applied to optimize soft robot controllers
for high level tasks. This is the case, for example, with Chainqueen [Hu2018ChainQueenAR]
and DiffTaichi [Difftaichi], which have been used to simulate soft robots to learn control strate-
gies. However, these simulators rely on simplified models and do not offer a wide variety of
actuations, deformable structures or constitutive laws. SofaGym [SofaGym], a RL framework
relying on FEM simulation, can be used to solve complex tasks with accurate robot models.
However, learning the control strategy requires a lot of interaction between the robot and its
environment. This process is time-consuming when the simulated model is slow.

Solving a sequential decision problem involves determining a sequence of decisions to
accomplish a specific task. A common modeling approach for decision-making is the Markov
Decision Process (MDP), defined by four key components:

• State Space: The robot’s state space is represented by S = {s0,s1, ...,st−1,st ,st+1, ...sn} where
st denotes the successive states of the robot.

• Action Space: A represents the set of possible actions, with At being the set of actions
available from state st .

• Transition Function: The transition function P , such that st ≈ P (st−1,at−1), describes the
probability that taking action at−1 in state st−1 will lead to state st .

• Reward Function: The reward function Rt ≈ R(st−1,at−1) computes the expected reward
received after transitioning from state st−1 to st using action at−1.

In robotics, the action space is defined by the various values applied to actuators, while the
robot states are described by sensor data. Solving an MDP involves finding the optimal policy
π(at|st − 1), which represents the probability of taking action at given the state st−1. The policy,
denoted as π, is to be optimized to maximize the expected cumulative reward J such that

Jπ = lim
t→+∞

Eπ[Gπ(t)] = lim
t→+∞

Eπ[
t∑

k=0

γ tR(sk ,ak)] (2.15)

where Gπ(t) is the expected reward in step t applying the strategy π, and γ ∈ [0,1] is the discount
factor which determines the importance of future rewards.

In the context of robotics, we know the sets of states S, actions A and the J function, but not
the transition and reward functions. Reinforcement learning rely on the interactions of the robot
with its environment, whether physically or using simulation, to obtain information regarding
both these functions through trial and errors. Much of the reinforcement learning literature rely
on a value function V to solve this problem:

Vπ(sk) = Eπ[Gπ(t)s0 = sk] k ≤ t (2.16)

This function differs from the expected cumulative reward function J as it defines the
expected outcome of starting from state sk and following the policy π. Specifically, it quantifies
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the expected reward from state sk . According to MDP theory, a control strategy is optimal
if it maximizes the value function V for any initial state. However, in robotics, it is often
impractical to directly control the state the robot will reach after one action, as evaluating the
transition function P is not always possible. Instead, we use the Q-value function Qπ(sk ,ak),
which is defined as the expected return starting from state sk , taking action ak , and subsequently
following policy π:

Qπ(sk ,ak) = Eπ[Gπ(t)s0 = sk,a0 = ak] k ≤ t (2.17)

Finally, maximizing the value function V for any initial state is equivalent to consistently
choosing the action in the current state that leads to the state with the highest value. In other
words, the optimal policy is obtained as follows:

π ∗ (sk ,ak) = argmaxQπ
(Q(sk ,ak)) (2.18)

where π∗ is the optimal strategy.
The Q-value function exact value is typically unknown, prompting the development of

various approximation methods [KBP13]. One notable approach is the Soft Actor-Critic (SAC)
algorithm [Haa+18], an off-policy reinforcement learning method designed to balance explo-
ration and exploitation by maximizing both the expected reward and the policy entropy. SAC
employs a stochastic policy to encourage exploration through random action selection. It utilizes
two Q-value functions to reduce positive bias during policy improvement and a separate policy
network, the actor, to update the policy towards actions that optimize the soft Q-values. The
SAC algorithm has proven effective in learning control policies for soft robots simulated in SOFA,
and an open-source plugin called SofaGym is available for this purpose [Sch+23].

Reinforcement learning faces several challenges, particularly with robots, including sample
efficiency. While actions are typically sampled discontinuously, most robots operate in contin-
uous state and action spaces. For example, adjusting a cable actuator on a soft robot in 1mm
increments requires fine control but results in a vast sampling space. On physical systems,
obtaining samples is costly due to the time needed for complex task execution and robot mainte-
nance. Using a simulation environment for training control policies can mitigate these issues,
but it introduces challenges related to the simulation-to-reality transfer. The simulation must
be robust against environmental and model inaccuracies. Therefore, reinforcement learning
benefits significantly from simulators that are both accurate and computationally efficient. This
last point especially motivates the development of a surrogate learned from the condensed FEM
model in this thesis work.
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2.3 Soft Robot Design

Soft robot designs benefit from a variety of new materials, embedded sensors for smooth
integration in the robot body, and actuators for making the structure able to deform itself. The
rise of soft robotics is strongly linked with the widespread adoption of additive manufacturing
(AM) due to its capacity for rapid prototyping and customization.

Soft-robots are still primarily designed by hand through replacing hard parts by soft ones in
rigid robots or reproducing what can be found in nature. Using soft materials in robots indeed
poses unprecedented challenges by increasing the complexity of robotics systems because of
the intricate coupling between geometry, material and actuation, rendering intuitive design
extremely challenging. We discussed more in-depth the limitations of these approaches in the
introductory Section 1.4, and the need of specific tools and simulation for efficiently exploring
the design space. A handful of attempt to automate the design of soft robots has been carried
out, but there is no general framework widely adopted by the community yet.

This Section provides an overview of the vast design possibilities and the accompanying
fabrication limitations. It then delves into the primary classes of frameworks used for optimizing
the design of soft robots.

2.3.1 Design Space and Fabrication

This Section highlights the complexity of designing soft robots regarding the large avail-
able design space and the lack of standardized components. The computational design of
soft robots implies refining these possibilities to build a space of possible designs. This
involves considering the materials, electronic components, and manufacturing capabil-
ities we have access to. Across this thesis work, several types of robot morphologies,
materials (silicone, TPU), metamaterials (stochastically generated micro-structures), actu-
ators (pneumatic chambers, cables, servo-motors), sensors (motion tracking, pneumatic
chambers, capacitive sensors) have been considered in several soft robot prototypes.

Available Materials

In nature, soft materials such as rubber, sponge and leather are prevalent [Li+19]. The emergence
of soft robotics is greatly linked to the advancements in fabricating synthetic materials that share
analogous characteristics.

Silicone-based elastomers are the primary choice for designing soft robots. Typically, they
are casted in rigid molds, which are 3D printed beforehand [Sac+21]. However, complexities
arise when dealing with cavities, requiring multiple separate casts and subsequent reassembly.
This process is prone to minor asymmetries and challenges in ensuring a tight seal for the cavity.
Moreover, it tends to be slow and cumbersome to manage.

Advancements in additive manufacturing have paved the way for direct 3D printing of
flexible materials. For a comprehensive overview of the primary commercial materials and
associated printing techniques, refer to [YSY20]. In the context of this thesis, a notable example
of a widely used elastomer for 3D printing filament is thermoplastic polyurethane (TPU). Despite
these strides, achieving the same level of flexibility with 3D printed silicone as with traditional
silicone casting and molding methods remains challenging. However, recent developments
offer promising alternatives. For instance, [Spa+21] demonstrated the 3D printing of silicone



2.3. Soft Robot Design 33

pneumatic actuators (see Figure 2.12.A), while commercial printers capable of directly 3D
printing silicone objects are now available [23].

Figure 2.12: Example of a few soft robot 3D printed design. A) 3D printed silicone pneumatic
actuator with the method from [Spa+21]. B) 3D printer multi-materials tendon-driven gripper
and locomoting gripper obtained with the method from [Buc+23].

Composite materials, including shape memory alloys, shape memory polymers, and smart
composites, as well as multi-material 3D printing, both enable to obtain complex engineered
materials made from several constituent materials, offering a wide array of interesting proper-
ties. However, utilizing these kind of techniques remains challenging and costly with current
commercially available materials and 3D printers, thus lying beyond the scope of this thesis. We
however highlight one recent notable advancement, which is the vision-based multi-material
3D printing method pioneered in [Buc+23], facilitating the creation of structures featuring
intricate arrangements of elastic and rigid materials, along with integrated sensing and actuation
channels. The authors showcase their approach by directly 3D printing soft-rigid hybrid robots
like a tendon-driven five-fingered gripper and a locomoting gripper (see Figure 2.12.B). One
advantage of some advanced multi-material 3D printers is the ability to obtain continuous
gradients in material properties during printing. This suggests that we will be able to automat-
ically manufacture much more complex soft robots by overcoming numerous manufacturing
constraints in a near future.

When it comes to FEM simulation, modeling plain structures made of soft elastomers is
straightforward. However, dealing with non-periodic composite structures presents greater
complexity. This is because accurately defining the material boundaries within the FEM mesh
requires a thorough understanding of the distinct material interfaces. In this thesis, we focus
exclusively on mono-material soft robots.

Metamaterials

In an ideal scenario, soft bodies should exhibit mechanical properties heterogeneity, i.e. compris-
ing various materials with differing mechanical properties across different regions. Figure 2.13
provides an overview of the mechanical properties offered by synthetic materials and compares
them with those of organic materials. As discussed earlier, multi-material 3D printing offers a
solution for achieving such heterogeneous bodies.

An alternative approach involves working with flexible mechanical metamaterials [Ber+17].
These are engineered materials featuring structures ranging from microscopic to macroscopic
scales, deliberately designed to exhibit unconventional mechanical properties. Of particular
interest is the ability to manipulate material patterns to directly program mechanical behavior
within soft bodies. Three primary categories of flexible mechanical metamaterials have been
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Figure 2.13: Comparison of hardness and softness of synthetic materials used in soft robotics
and some organic materials, reproduced from [Zhu+22].

utilized to encode intriguing behaviors in soft robots [RBS19].

Linear beam-based structures are frequently employed for programming the patterns
of flexible metamaterials due to their ease of manufacture using 3D printing. Among these
structures, auxetic materials stand out, featuring a negative Poisson’s ratio achieved through well-
known patterns. These materials thicken when stretched and become thinner when compressed.
For instance, auxetic structures have been combined with non-auxetic clutches to simplify
locomotion in soft worm robots, reducing the need for multiple independent actuators to
just one [Mar+16] (see Figure 2.14.A), and have also been applied in the design of gripper
fingers [TCR21]. Elastic beams not only bend but also buckle under axial compression, enabling
the triggering of homogeneous and reversible configurations in structures composed of regular
arrays of such beams. These configurations can be activated by applying negative pressure,
as demonstrated in the development of a locomoting soft robot composed of several buckling
material units [Gro+21] (see Figure 2.14.B).

Furthermore, recent work introduces the use of anisotropic foams, which involves flexi-
ble materials with procedurally and stochastically generated micro-structures. Unlike other
aforementioned methods, this approach allows for a wide and smooth continuous range of me-
chanical properties, without relying on an abrupt mechanical behaviors. These foams have been
demonstrated to enable the control of a new degree of freedom in a parallel robot [VGD21] (see
Figure 2.14.C). Regarding FEM simulation, when metamaterials patterns are at the micro-scale,
employing a mesh with sufficient precision to simulate their complexity becomes impractical. In
such scenarios, metamaterials are approximated using homogenization theory. This involves
employing a coarser macroscopic discretization, which provides an equivalent behavior at the
macroscopic scale through a local averaging of the microscopic behavior, replacing the need for
micro-scale discretization. Such approaches have been successfully demonstrated within the
SOFA simulator.

Reinforced systems, also known as lattice structures in the literature, involve the assembly of
3D building blocks comprised of interconnected beams. These unit blocks often exhibit specific
anisotropic behaviors and are assembled according to user requirements. Various techniques can
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Figure 2.14: Highlight of a few soft robotics systems using metamaterials. A) Locomoting soft
worm robot based on complementary auxetic components acting as a passive clutches 2.14. B)
Metarpillar robot leveraging actuated buckling material units for locomotion [Gro+21]. C) Using
stochastic foam enable to obtain a new degree of freedom on a parallel soft robot [VGD21].
D) Soft pneumatic gripper making use of two different knitted material. When actuated, the
softer elastomeric yarn expand and all legs bend simultaneously [San+23]. E) Multi-directional
locomoting soft robot with legs composed of tensegrity patterns [Lee+20]. F) Origami robotic
manipulator from [TSR20]. G) Magnetically actuated origami crawler robot [Ze+22].

be employed to fabricate these blocks, including knitting or weaving. For example, both knitting
and weaving have been utilized to construct artificial muscles using specialized filaments as actu-
ators [Maz+17]. However, such approaches often necessitate additional assembly post-processing
steps alongside casting and/or printing techniques. Addressing this challenge, [San+23] present
a solution in the form of a 3D knitting machine designed for pneumatic soft robots (see Figure
2.14.D). Another noteworthy work introduces a strategy for additive manufacturing of tensegrity
patterns, which combine stiff beams and flexible tendons. This method was demonstrated on a
tensegrity robot capable of omnidirectional walking [Lee+20] (see Figure 2.14.E).

Origami and Kirigami, the Japanese arts of folding and cutting material sheets, represent
the most active field in the soft robotics community for utilizing metamaterials. Their primary
feature lies in their ability to create programmable, morphable shapes for soft robots. However,
while designs achieved through these methods can exhibit high deformability, they often lack
load-bearing capacity. This limitation can be addressed through specific designs involving
arrangements of different materials [FAS18], leveraging multi-material 3D printing. Numerous
exemplary applications abound, including a three-fingered origami manipulator [JL18], a soft
robotics arm segment integrating kirigami conductive sensors [TSR20] (see Figure 2.14.F), and
a small magnetically actuated origami crawler robot [Ze+22] (see Figure 2.14.G). Thanks to
the maturity of the field, several specialized tools for simulation or design of origami- and
kirigami-based mechanisms are readily available [RT18].
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Actuation

Actuators enable soft robots to deform and move. Transitioning from rigid to soft robotics
necessitates the development of novel actuation systems that are lightweight and compact to
accommodate the characteristics of soft bodies. Various classes of actuators have been categorized
based on the stimuli that trigger the actuation response [El-+20]. Each class possesses its own
set of advantages and disadvantages, extensively discussed in [BRR18].

Many of these actuation systems rely on specialized active materials. Examples include
magnetically responsive actuators [Kim+19], thermally responsive actuators utilizing shape
memory alloys [Wan+14], and even photo-responsive actuators [Liu+17] or explosive-based
actuators relying on internal combustion [Bar+15b]. Such actuation systems necessitate specific
and unconventional methods for generating stimuli to initiate movement and rely on materials
not easily accessible and challenging to manufacture.

Figure 2.15: Highlight of a few actuation technologies used with soft robotics systems. A) Soft
manipulator actuated by cables going through its compliant splines [Mor+20a]. B) Schematic
and prototype of the PneuNet soft robot actuated by inflation of a pneumatic network [Mos+14].

The predominant actuation methods observed in existing literature for soft systems in-
volve direct mechanical stimuli, achieved either through servomotors or cables attached to soft
parts [Mor+20a] (see Figure 2.15.A), or by pressurizing cavities to induce deformation [Mos+14](see
Figure 2.15.B). These actuation approaches are both used in the present thesis work. Utilizing
cables involves managing friction effects between the cable and the structure, but it facilitates
significant deformations. Conversely, pneumatic actuation allows for more distributed defor-
mations but exerts greater stress on the structure compared to cable actuation. Regarding
simulation, numerical models for such actuators have been extensively explored, with their
accuracy validated on physical prototypes [Coe19]. It is worth noting that simulating vac-
uum actuation, where negative pressure is applied to a pneumatic cavity, poses computational
challenges due to the occurrence of collisions across large surfaces.

Sensing

As outlined in Section 2.2 regarding control, sensors are necessary for gathering real-world data
for model calibration or establishing feedback loops to address model uncertainties.

These sensors may be external, as seen in motion capture systems. In such systems, reflective
markers are placed on the soft body and tracked in real-time by infrared cameras, as it is the
case with the continuous soft robot by [Del+20] (see Figure 2.16.A). However, this approach is
typically suited for specific constrained environments due to its reliance on an external setup
and susceptibility to perturbations like occlusion.

In scenarios where external conditions can not be guaranteed, sensors must be embedded
within soft structures. However, conventional sensors, primarily designed for rigid structures,
pose challenges when integrating them into soft bodies. They must exhibit flexibility to preserve
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Figure 2.16: Highlight of a few sensor technologies used with soft robotics systems. A) Con-
tinuous soft robot with reflective markers for trajectory tracking with a motion capture sys-
tem. [Del+20]. B) View of a soft finger with internal air channels, sealed Sections and in-
serted resistive sensors (up), and a soft gripper grasping a mug with force contact sensing
(bottom) [Hom+19]. C) Artificial skin made of an electrode matrix embedded within different
silicone elastomers layers for touch sensing (up), that can be mounted on a robotics arm (bot-
tom) [Tey+21].

the soft robot’s behavior. Additionally, given that soft robots theoretically possess an infinite
number of degrees of freedom, sensors with enhanced range, accuracy, and resolution are needed.

Embedded sensors for soft robot is thus an active area of research. Here, we introduce several
well-know classes of embedded sensors. Resistive sensors exploit the correlation between changes
in the resistance of elastic conductive materials and their deformation state to estimate the robot’s
actuation state or interactions with the environment [Hom+19] (see Figure 2.16.B) [Tia+23].
Capacitive sensors discern the interactions of soft robots with their surroundings by detecting
changes in the electric fields they generate [Tey+21] (see Figure 2.16.C) [Nav+20; Als+23].
Lastly, magnetic sensors ascertain the deformation state of soft robots by measuring changes
in magnetic flux while a permanent magnet embedded within the soft body moves [Kha+12;
Baa+22]. For instance, such sensors have even been employed to locate the tips of catheters in
in-vivo applications [Kha+12].

Morphology and Geometry

The morphology and geometry of both the soft robot body and its individual components are
crucial in the design process. For example, the exploration of the actuator design space extends
beyond selecting suitable actuators and materials. In the context of pneumatic actuators, it also
includes decisions about the placement and configuration of internal cavities.

Identifying the optimal morphology for a soft robot is particularly challenging because of
the complex deformations possible with the materials or metamaterials in use. This complexity
makes it difficult to rely solely on intuition when making design decisions.
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2.3.2 Automated Design in Soft Robotics

Faced with the complexity of the encountered design spaces, and with the emergence of
increasingly reliable numerical simulators, a growing interest in computational design
optimization of soft robots has emerged in the soft robotics community.
In this Section, the main optimization frameworks are described and classified depend-
ing on their level of automation. It is shown that reducing user-induced bias in these
frameworks, through choice of design parameters and fitness functions for instance, is
usually to the detriment of the quality of the simulation and therefore to the transfer of
design results into reality.
Generating novel designs while following embodied intelligence principles requires a
general framework for evolving soft robot designs and controllers altogether. We show
that state-of-the-art works in design and control co-optimization, introduced in this
Section, struggle to integrate the two aspects.

A Classification of Soft Robot Computational Design Methods

Robotics design process starts with the articulation of high-level task objectives. For instance,
it could be to quickly and stably navigate a terrain for a locomoting robot. Task-specific re-
quirements are iteratively translated into a morphology, a mechanical structure, and finally
refined in a comprehensive design encompassing detailed geometry, selection of materials and/or
metamaterials, and the integration of actuators, sensors, and control systems. This process is
summarized in Figure 2.17.

Figure 2.17: Iterative workflow for robotics design, reproduced from [PH22].

Given the infinite degrees of freedom in soft robotics and the lack of standardized compo-
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nents, transforming task-specific requirements into an effective morphology still relies heavily
on intuition and bio-inspired principles [Coy+18]. Due to the absence of a standardized pro-
cess, researchers have increasingly turned to computational methods to accelerate the design
exploration phase.

In this Section, we endeavor to present a classification of computational design frameworks
tailored specifically for soft robots. We commence by acknowledging that these frameworks
typically rely on four fundamental components, as described in the introductory Section 1.4.2: a
simulation environment and objective function(s) for assessing design performance, a description
of the design space, and an optimization method for efficiently exploring the design space.

In line with the suggestion from [PH22], we opt to prioritize the level of automation provided
by the method as a classification parameter, characterizing them based on the required level of
user involvement. This classification is summarized in Figure 2.18.

Figure 2.18: A classification of methods for exploring soft robot design based on the level of
user’s involvement they require.

A - Parametric Design

Beginning with a user-defined design representation, these methods focus on optimizing high-
level parameters. They leverage the user’s intuition to construct a well-parameterized design,
enabling the creation of compact yet expressive design spaces which encompasses fabrication
constraints. This approach enables the use of accurate and computationally intensive simulations,
as shown by numerous examples in the literature spanning from numerical optimization to
physical prototyping. However, these parameterizations typically revolve around variations of a
baseline design, inherently influenced by human biases. Consequently, they are incremental,
with users often refining variables of interest throughout the design variables exploration
process. Parametric design methods can be broadly categorized into two groups: model-free and
model-based methods.

Model-free Methods
These methods employ simulation as a black-box to evaluate design performances and rely

on algorithms such as sensitivity analysis or stochastic algorithms to navigate the design space.
Such approaches are particularly well-suited for computational design of soft robots, where
complex mathematical fitness functions abound due to non-linearities in materials, contacts,
and actuator/effectors couplings. Furthermore, design variables often interact in intricate
ways, and disparate designs can yield similar performance outcomes. These methods facilitate
comprehensive exploration of the design space and the discovery of multiple viable solutions.
However, they suffer from low sample efficiency, lack proof of convergence to an optimal design
and only yield solutions that are close to optimal.

Model-free methods have found widespread application in diverse shape optimization prob-
lems. For instance, investigations into soft pneumatic actuator geometries have employed various
techniques, including sensitivity analysis [Hu+18a], multi-objective evolutionary algorithms
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[Pag+20], genetic algorithms [RPR17], and sequential programming with finite difference ap-
proximations [Däm+19] (see Figure 2.19.A). In [MMD19], evolutionary algorithms were utilized
to optimize the leg shapes of locomoting soft robots (see Figure 2.19.B). In this work, leg shapes
were represented using splines, with their control points serving as design variables. The
aforementioned work rely on FEM simulations for evaluating design performances. However,
when the design space involves numerous variables, conducting many FEM simulations can be
computationally intensive. Consequently, the expense of accurate simulations may hinder the
incorporation of detailed environmental modeling or exploration of large design spaces.

Figure 2.19: Example of frameworks for black box design optimization of parametric soft robot
designs. A) Design parameterization of a linear bellow-type actuator optimized to minimize
the induced maximal principal strain [Däm+19]. B) Example of parametric leg shapes and
optimized leg robot design from [MMD19].

Model-Based Methods
These methods rely on specific strategies for leveraging information extracted from soft robot

models. They need rewriting of specific objectives function and analytical gradients from soft
robot models relative to considered continuous design variables.

Complete frameworks derived from continuum mechanics modeling have been developed
for automatically designing actuated objects and soft actuators. Given an input shape, authors
of [Sko+13] develop a framework for optimizing the location of cable actuators along with the
input shape’s material distribution for being able to reach a set of target deformation poses (see
Figure 2.20.A). Mostly 2D cases are considered and there is little information on how the frame-
work would scale to the 3D world. A similar objective of matching target deformation shapes is
addressed in [Ma+17] [Din+19], where pneumatic chamber locations and rigid frame materi-
als are optimized to constrain pneumatic chambers expansion (see Figure 2.20.B). Pneumatic
chambers locations are found by iterative clustering, and rigid frames materials are optimized
through gradient-based optimization.

Specific analytical models have been developed to optimize the position and geometrical pa-
rameters of elliptic pneumatic actuators for rigidification performance of a soft gripper [GK20],
or the fibers orientation of a fiber-reinforced pneumatic actuator for performing different defor-
mation states (extension, contraction, bending, twisting) [CWB17] (see Figure 2.20.C).

In all cases, authors show the results transfer qualitatively to physical prototypes.
The efficacy of these methods relies on the user’s proficiency in crafting mathematical

formulations that effectively reduce the feature space while maintaining high accuracy. These
approaches are tailored to particular scenarios with specific constraints, posing challenges
for extension to different design variables and scenarios, particularly for non-specialists in
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Figure 2.20: Example of frameworks for gradient-based design optimization of parametric soft
robot designs. A) Workflow for optimizing cable location and material distribution of an actuated
object for reaching target deformations, from [Sko+13]. B) Pipeline for determining pneumatic
chambers location and shape, and optimizing frame structures for a pneumatic object to reach
target deformations [Ma+17]. C) Fiber-reinforced pneumatic actuator design parameters are
optimized for replicating a prescribed motion in [CWB17].

mechanical modeling and mathematical programming. Furthermore, as these methods do not
model interactions with the environment, they are confined to soft components or soft robots
without direct interaction with their surroundings. Consequently, tasks such as locomotion,
grasping, or manipulation remain beyond their scope.

B - Topology Optimization

Topology optimization is a widely used method in the industry for structural optimization.
Unlike parametric design approaches applied to optimizing shapes of soft robots, it enables
for the generation of more free forms, reducing dependence on initial user intuition. Relying
on the FEM for design performance evaluation, it is a numerical technique that redistributes
material within specified design bounds. The problem is described by a set of constraints, loads
and boundary conditions. The objective function is formulated from the mechanical equations
describing the equilibrium of the optimized structure and mathematical programming is applied
to explore the design space.

Different formulations and dedicated algorithms exist for topology optimization [SM13],
accommodating discrete, or continuous variables like material densities or geometric boundaries.
Continuous variable methods are widespread adopted as they facilitate efficient exploration of
the design space through gradient-based algorithms.

Density-based methods iteratively redistribute material within a design space to optimize
structural performance. This design space is typically represented as a grid of regular elements
(such as voxels or hexahedrons). Each element is assigned a continuous density of material,
ranging from void to solid, with penalties applied to encourage convergence toward a final
refined design. This approach has found applications in designing grippers actuated by ca-
bles [Che+18a] [Wan+20] or motors [Liu+18a] (see Figure 2.21.A), as well as legged robots
actuated by servomotors [Sun+23] or pneumatic actuators [CPN20] (see Figure 2.21.B).

On the other hand, level-set methods iteratively enhance the design’s shape using a level-set
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function delineating the interface between material and void regions. Despite being less preva-
lent than density-based methods, level-set approaches offer the advantage of precisely defining
boundaries. This is particularly crucial in designs optimization cases featuring pneumatic
chambers, as it prevents the appearance of disconnected elements [Pin+23]. Level-set methods
have been employed in designing skeletons to achieve desired deformations with soft pneumatic
actuators [Che+21] (see Figure 2.21.C) or ferromagnetic soft robots [Tia+20].

All the cited works directly prototype their designs using additive manufacturing and vali-
date them experimentally. As additive manufacturing becomes more widespread, it opens up
new possibilities. Recent advancements extend conventional topology optimization algorithms
to generate structures with multiple materials and varying properties [Pin+23].

Figure 2.21: Soft robot components generated using topology optimization. A) Universal soft
gripper design optimized with density-based topology optimization [Liu+18a]. B) Soft actuator
design optimized with density-based topology optimization [CPN20]. C) Soft actuator skeleton
design optimized with level-set topology optimization [Che+21]. D) Soft grippers generated
with evolutionary algorithms coupled with topology optimization [Pin+24].

While there is significant enthusiasm for optimizing compliant mechanisms using topol-
ogy optimization, conventional algorithms [Sig97] encounter several challenges in effectively
addressing the requirements of soft robot design.

Primarily, these algorithms must be extended to accommodate the unique characteristics
of soft robots, such as nonlinear materials and contacts. Recent efforts address this need:
in [Che+17] and [CPN20], level-set and density-based methods are respectively adapted to
handle hyper-elastic structures. Moreover, in [FSP23], density-based topology optimization is
expanded to manage self-contacting structures. However, many examples of topology optimiza-
tion in soft robot design rely on gradient-based algorithms, assuming linear behavior for soft
materials and no discontinuous contact scenarios. Yet, gradient-based solvers can easily get
trapped in local optima for non smooth problems. To efficiently explore soft robot design spaces,
one solution involves coupling gradient-based topology optimization with stochastic algorithms
to vary initial material distributions. This approach is exemplified in [Pin+24] where it’s applied
to generate soft grippers (see Figure 2.21.D).

Secondly, conventional topology optimization struggles to effectively capture soft robot
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actuation methods due to its requirement for fixed constraints and loading scenarios. However,
soft robot actuation typically involves internal mechanisms with spreaded constraints, such as the
internal routing of cables or pneumatic chambers within the robot’s body. This necessitates the
development of specific formulations for modeling actuators alongside with material parameters
in the framework of topology optimization, as further discussed in [PH22].

Lastly, conventional topology optimization algorithms typically focus on optimizing a con-
figuration to static equilibrium under given constraints. Yet, selecting relevant configurations
for specific tasks is challenging and often relies on user expertise to specify mechanical spec-
ifications. This complexity is particularly evident in tasks like grasping and manipulation,
where various interaction scenarios between the robot and manipulated objects are possible. To
address this issue, authors of [Che+18a] employ stochastic optimization algorithms to quantify
the uncertainty associated with each potential contact scenario, determined experimentally
beforehand. Others approaches consider expanding existing topology optimization frameworks
to incorporate control strategies, as seen in [CBS23] and [Kob+23]. To facilitate obtaining gradi-
ents of the FEM with respect to actuation variables, these studies utilize Material Point Method
(MPM) simulation instead of FEM simulation to evaluate optimized robot performance. These
approaches are further explored alongside morphogenesis methods below.

C - Morphogenesis and Generative Methods

Morphogenesis frameworks, often referred to as evolutionary or generative design, employ
discretized design spaces such as voxels grids. Material properties can evolve independently for
each element within this space, while the actuation strategy is co-evolved, typically represented
as voxels whose volumes cyclically expand and contract.

Many studies utilize simulation to evaluate design performance, employing gradient-free
algorithms such as genetic algorithms to explore the design space. This approach originated
from Karl Sims’ pioneering work [Sim94], which introduced a method for generating numerical
creatures capable of performing simple tasks like jumping or running. This methodology
has since been extended to soft structures [Che+14] [Che+18b], encoding the morphology
and control policies of soft robots within compositional pattern-producing networks (CPPN).
Genetic algorithms, such as the neuro-evolution of augmenting topologies (NEAT) method, are
then employed to evolve the neural architecture based on performance metrics evaluated in
simulation.

Examples of soft robots generated using these frameworks are depicted in Figure 2.22.
The generation of comprehensive morphologies for soft robots remains an active research

field, with numerous studies [PH22] exploring diverse fitness functions, morphology encod-
ings, and heuristic algorithms. These approaches excel in producing both robot behaviors and
morphologies that outperform traditional design optimization methods within their simulated
environments.

However, heuristic algorithms commonly employed in such approaches often face challenges
related to low sample efficiency, imposing significant constraints that are further discussed
below.

First, researchers are often stuck with limited design spaces, typically confined to small
grids comprising around 20 × 20 × 20 voxels. However, recent advancements, such as those
presented in [CBS23], have introduced fully differentiable pipelines capable of addressing ex-
pansive design spaces. Their study showcases the optimization of soft robots at a resolution
of 1003 voxels with over 2 million parameters. In contrast to previous methodologies reliant
on discrete design spaces and stochastic solvers, their approach challenges the notion of soft
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Figure 2.22: Highlights of several works using morphogenesis methods. A) Soft robots traversing
a flat surface, created through CPPN-NEAT [Che+14]. B) Soft robots ascending stairs, generated
via a fully differentiable pipeline within an extensive design space [CBS23]. C) Several 2D
designs and non periodic control strategies for object manipulation tasks, obtained using CPPN-
NEAT jointly with RL [Bha+22]. D) Magnetic modules for building voxelized soft robots [Sui+20].

robot design spaces as inherently discrete, advocating instead for their continuity. By leveraging
differentiable MPM simulations, they successfully optimized a robot’s geometry for climbing
stairs (see Figure 2.22.B), offering promising avenues for scaling morphogenesis frameworks to
larger resolution design spaces. Another significant contribution in this direction is the frame-
work introduced in [Yuh+23]. This framework employs a density-based topology optimization
algorithm coupled with MPM simulation instead of traditional FEM approaches. Additionally,
they integrate a sinusoidal actuation component. They demonstrate optimization of the shape
of pneumatically actuated climbing soft robots [Kob+23], and evaluate the transfer to a phys-
ical prototype, but only qualitatively. Ultimately, the auto-encoder approach, as introduced
in [Spi+19], empowers the utilization of gradient information to explore expansive design spaces
characterized by numerous voxels, all without necessitating prior knowledge regarding the
quantity and positioning of design variables.

Secondly, while the controllers’ parameters are optimized in certain studies, such as being
encoded in the genotype of a soft robot and jointly optimized with design parameters as demon-
strated in [Che+18b], they often remain relatively simplistic in their periodic phase changes.
Employing systematically periodic actuation patterns inhibits generated robots from mastering
complex non-periodic tasks, such as navigating uneven terrains. To address this challenge, the
Evolution Gym framework [Bha+22] advocates for employing RL to train the control policy of
the designs. They demonstrate the method’s efficacy in optimizing soft robot designs for intricate
control scenarios (see Figure 2.22.C), yet the majority of their illustrative examples are confined
to 2D to ensure the optimization process remains manageable. Another systemic limitation
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of designs obtained from morphogenesis lies in the framework’s exclusive consideration of
pneumatic chambers as actuators, which narrows the spectrum of available options for control
strategies.

Finally, the majority of morphogenesis frameworks rely on computationally efficient but
somewhat less accurate models of materials and actuators to ensure tractability. For instance,
the widely utilized simulator VoxCAD [HL14], which employs a mass-spring based particle
model, is prevalent in many studies. Despite its computational efficiency compared to generic
continuum mechanics models, there remains a notable absence of successful transitions from
designs optimized using morphogenesis methods to functional physical prototypes. For example,
researchers in [Kri+20] demonstrate discrepancies between the quantitative and qualitative
behaviors of physical models and VoxCAD simulations. Additionally, implementing simulated
actuation strategies, such as voxels cyclically expanding and contracting, poses significant
challenges in the physical world. Addressing this, modular assemblies featuring magnetic soft
voxels with air supply have been proposed to streamline the prototyping process for evolved
soft robots [Sui+20] (see Figure 2.22.D).
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Summary

In the previous Sections, we have explored various strategies for automating the optimization of
soft robot designs. In Table 2.2, we summarize the key attributes of each method category. It
is worth noting that this classification is broad, and some works may intersect across multiple
categories.

In the next Section, we discuss the link between design and control optimization.

Method Needed Intuition Optimized fea-
tures

Design Space and Optimiza-
tion Convergence

Transfer to Physical Proto-
types

Parametric
Design

Medium to Strong:
The design space
consists of variations
of design parameters
around an initial base-
line design conceived
by the user.

Case-dependent:
Geometrical vari-
ations, materials,
actuator or sensor
locations/shapes.
Discovered de-
signs are bound to
the user’s initial
intuition.

In model-based methods, dif-
ferentiable models linking fit-
ness functions to design pa-
rameters are available, and
a large number of design
variables can be considered.
Model-free methods rely on al-
gorithms with low sample ef-
ficiency, leading to considera-
tion of small to medium num-
bers of design variables.

Demonstrated in many works.
It relies on the user experi-
ence to build both a well-
calibrated simulation for per-
formance evaluation and a
well-constrained design space
to ensure fabrication con-
straints.

Topology Op-
timization

Medium: The user
has to provide a set
of loads and boundary
constraints describing
their problem. This
is difficult for complex
design tasks involving
several different config-
urations, such as grasp-
ing tasks.

Shape of soft robot
components.

The design space is com-
posed of whether materials
distribution distributed over
a voxel grid or parameters
of level-set functions describ-
ing shapes. Algorithm conver-
gence is quick regarding large
numbers of design variables
as it benefits from the gradi-
ent.

Demonstrated in many works,
but restricted to cases where
material laws can be assumed
to be linear and where the dy-
namics of the soft body can be
neglected.

Morphogenesis
Methods

Low Complete robot
morphology, in-
cluding material
distribution.

The design space is a mix of
material properties, actuator
location, and controller vari-
ables, all within a voxel grid.
Small design spaces are con-
sidered due to computation-
ally expensive simulation and
the low sample efficiency of
stochastic algorithms.

Few works have managed to
build prototypes, and in the
best case, they match the nu-
merical simulations only qual-
itatively.

Table 2.2: Summary of the main classes of design optimization algorithms and their fundamental
properties.

2.3.3 Design and Control Co-Optimization with Sim-to-Real Transfer

Soft robot control and design are typically treated as separate challenges due to their computa-
tional complexities. However, there exists a profound interplay between them, as the inherent
compliance of soft robot bodies allows them to passively exhibit behaviors that are challenging
to program directly. Co-optimization of soft robot control and design should capitalize on this
interplay to generate efficient soft robots.

Among the various approaches to soft robot design previously discussed, morphogenesis
frameworks align most closely with this mindset. Nevertheless, many of these methods are
primarily evaluated in simulation, leaving uncertainty regarding their translation to physical
prototypes.
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Figure 2.23: Highlights of two works targeting control and design co-optimization of soft robots.
A) Two soft hand design and matching control signals obtained with the pipeline from [Dei+17].
B) Comparison of temporal behaviours of a baseline and optimized soft robots for locomotion
from [SSW22].

Few works have explored the co-optimization of soft robot design and controller with an
assessment of the simulation-to-reality transfer. The common thread among these methods is
their reliance on FEM simulation for evaluating design performance, given its widely validated
precision in the literature. In their study, authors of [Dei+17] employ particle filter-based
optimization to co-optimize finger angles and grasp strategies of a soft pneumatic gripper.
While they do not construct a physical prototype, they utilize the SOFA simulator, which is well
validated in the literature. However, their method is computationally intensive, involving the
simulation of 5.5 million soft gripper design and control strategies.

Recognizing the significant cost of precise simulation, a paradigm shift is underway towards
leveraging reduced modeling or surrogates of simulations. For instance, MOR techniques has
been applied to mitigate computational complexity of FEM simulation in [SSW22]. This work
introduce reconfigurable reduced-order models of soft robot modules blended together to fully
describe a soft robot design. They employ multi-task reinforcement learning to jointly optimize
the placement of pneumatically actuated soft legs on the soft robot body, as well as control
policies for locomotion task. Their approach generates crawling robots that surpass expert
designs, with successful simulation-to-reality transfer demonstrated. Recently, the design and
control of auxetic lattice structures for soft robots has been adressed in [ZSZ23]. A neural
network is trained on FEM simulation data, and employed for gradient-based optimization of
design and trajectory control for soft robots with auxetic structures.

These works rely on carefully chosen parametric representation to describe the joint design
and control parameters space, ensuring tractable optimization. This is the mindset we adopt in
our work.
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2.4 Conclusion

This state-of-the-art review explores the fundamental components required to advance towards
the co-optimization of design and control in soft robotics. This endeavor hinges on the integra-
tion of numerical simulations with a balance between accuracy and computational efficiency,
alongside the implementation of efficient controllers and tools for exploring the vast design
space of soft robots.

We started by delving into soft robot modeling and simulation, with a particular emphasis on
continuum mechanical models. These models have attracted considerable attention due to their
ability, under appropriate modeling choices, to accurately depict deformations, a characteristic
extensively validated by the soft robotics community. We introduce the discretization of the
dynamic equations derived from continuum mechanics and their resolution. These methods are
however computationally demanding. While geometrical assumptions can sometimes mitigate
this computational burden, they are not always usable, as we target generic shape of soft robots
in this thesis work. Furthermore, since our objectives extend beyond control to encompass
design optimization applications, the justification for simulations with computational speed that
surpass real-time becomes apparent. This supports the exploration of model order reduction
techniques. In particular, we introduce a prominent method based on principal orthogonal
decomposition, which has been demonstrated in control applications. However, it falls short in
capturing design parameters such as geometrical dimensions. This underscores the necessity to
develop a new reduced model capable of encompassing both controller and design parameters.

Secondly, distinct methods for controlling soft robots are introduced, categorized based on
the degree to which they necessitate breaking down the robot’s task into a series of trajectories.
These methods include single time step trajectory control utilizing quadratic programming
and task-level control using techniques such as reinforcement learning. The overarching aim
is to progress towards the latter category, which circumvents the inclusion of user bias in
the initial task decomposition into less evident sub-tasks. Nevertheless, this progression also
entails an additional computational burden, which we aim to mitigate through the speed and
differentiability offered by the reduced model developed in this work.

Lastly, the complexity associated with designing soft robots is developed, particularly in light
of the absence of standardized components. We explore the spectrum of available materials,
metamaterials, actuators, and sensors, and justify the components used in this work based
on factors such as accessibility and fabrication feasibility. Additionally, the main classes of
framework for design optimization of soft robots are introduced. We highlight that methods
generating more free-form robots often rely on less precise simulations and design specifications
that fail to account for fabrication constraints. Given our emphasis on translating numerical
findings into physical prototypes, we primarily focus on hand-crafted parametric representations
of soft robot designs.



Chapter3
Optimization of the Parametric Design
of Soft Robots Assisted by Surrogate

3.1 Introduction and Chapter Overview

In this chapter, the potential of computational design is explored for facilitating effective soft
robot control and improving performances on a designated task, with a specific emphasis on
ensuring the transferability between numerical results and reality. The scope of this study is
refined given the aforementioned requirements. Exploring the design space of a soft robot
requires both a mathematical representation of the soft robot design and a numerical simulation
to assess its performance. In this section we choose to work with a parametric representation
of the design space and we will rely on FEM to evaluate the quality of the design. On the one
hand, the choice to work with a parametric representation of the design space is motivated
to ensure both manufacturing and design reproducibility constraints. On the other hand, the
utilization of Finite Element Method (FEM) is justified due to its proven precision, reliability,
and generic applicability to robots of diverse shapes. Finally, acknowledging both computational
and transferability constraints, the focus is intentionally put on low-level tasks.

With all these elements set, the second Section 3.2 of this chapter is dedicated to the resulting
generic computational framework for exploring soft robot parametric design. This work gave rise
to the development of distributed open-source software 1 [Navc], built as an overlay of the SOFA
simulation software. An overview of the proposed framework is given, including mathematical
descriptions of the considered parametric design representations, optimization problems, and
stochastic solvers. We also introduce automatic mesh generation tools for addressing FEM sim-
ulation requirements and components for exploring the solution space in multi-objective settings.

The subsequent sections leverage the developed tools in two distinct design optimization
scenarios. These applications showcase the ability of the proposed framework to apply to diverse
soft robotic design challenges. Each application involves defining the parametric design of a
robot, implementing task-specific objective functions to be assessed in a parametric simulation,
and analyzing the transfer of numerical results to a built prototype. Part of these results have

1SoftRobots.DesignOptimization plugin for SOFA
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been presented in two articles [Nav+23; Nav+24].
In section 3.3, a cable-driven soft finger design geometry is optimized for improving integrated
sensorization and kinematics. An emphasis is put on showing the method’s adaptability to
tailor designs to specific user needs, including sensor types. In depth-analysis of the sim-to-real
transfer behavior is conducted regarding factors such as mesh density in simulation, mechanical
parameters, and fabrication tolerances are discussed.
In section 3.4, a servo-motor actuated soft gripper parametric design is explored to analyze the
potential of using self-contacts to enhance grasping quality and energy consumption. Addition-
ally, the influence of friction coefficients at contact points and the shape of the objects to be
grasped are examined. It is also demonstrated how to use stochastic optimization for calibrating
simulation mechanical parameters, which is particularly useful in highly nonlinear cases such as
those involving contacts, where traditional gradient-based methods struggle.

In section 3.5, the advantages and limitations of the parametric design framework are
discussed.
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3.2 Framework for the Soft Robots Parametric Design Opti-
mization

3.2.1 Context for a Generic Framework for Computational Design Optimiza-
tion of Soft Robots and with Sim-to-Real Transfer

Within the domain of Soft Robotics, many of novel designs for actuators, mechanisms, and
sensors using a variety of materials have been proposed over the last few years. The dissemination
of these designs happens through a variety of channels: scientific literature, lab-to-lab sharing,
and online platforms. Examples of such platforms are the Soft Robotics Toolkit2, Instructables3,
and the website for the Soft Robots plugin for SOFA featuring both designs and simulation
files4. Some of the designs and fabrication methods have since been widely adopted, such as the
PneuNet actuator [She+11] [Mos+14] or the Vine Robot [Haw+17].

The available resources allow users to replicate the designs, oftentimes with step-by-step
tutorials. Despite this, if they want to adapt a design for their own specific application, they
need to get back to the metaphorical drawing board to redesign the parts and everything that
is needed for fabrication (molds, laser-cut parts, etc.). However, considering the trend towards
computational design in Soft Robotics, this is no longer an up-to-date mindset. The mindset
that is starting to emerge is to think of families of designs that are given by a parameterized
representation of the devices of interest. Integrated into this way of thinking are simulation tools
that are fed by the parametric designs allowing to find optimal ones computationally. This is the
type of architecture that we propose in the open source SoftRobots.DesignOptimization plugin for
SOFA, illustrated in Figure 3.1.

Soft robots are still primarily designed by hand by replacing hard parts with soft ones in
rigid robots or reproducing what can be found in nature. Thus, there is a growing interest from
the soft robotics community for tools enabling efficient design exploration. However, most of
the available tools are still restricted to a few soft robot modeling strategies or to specific design
applications. In [YHM22], a toolbox for exploring the design of a standardized soft pneumatic
actuator based on FEM simulation is introduced. However, this toolbox is limited to a single
parametric design and lacks the integration of optimization tools for efficiently exploring the
design space. A more complete toolbox for simulating, optimizing the design, and controlling
soft robots has been proposed in [Mat+23]. However, it is based on the Geometric Variable-Strain
model of Cosserat rod which constrains its application to robots with rod-like shapes. There is a
need for a generalized modeling platform enabling to tackle applications in design optimization
and model-based control without the need to develop several specific scripts in different software
frameworks.

One challenge in the domain of design optimization is the choice of mathematical represen-
tation of the design variables. On the one hand, some works are interested in design parameters
encoding in discretized spaces, for instance on a voxel grid. Design variables such as materi-
als are then optimized at the scale of each voxel. Although these kinds of approaches enable
the generation of almost free geometries, they still lack efficient soft actuator modeling and
struggle to integrate manufacturability constraints. A comprehensive review of works in both
topology optimization and generative approaches applied to soft robot design optimization
is proposed in [PH22]. On the other hand, high-level design parameters encodings consider
the robot as an association of modular components [SSW22] or geometrical components of

2https://softroboticstoolkit.com/
3https://www.instructables.com/Soft-Robotics/
4https://project.inria.fr/softrobot/

https://softroboticstoolkit.com/
https://www.instructables.com/Soft-Robotics/
https://project.inria.fr/softrobot/
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Figure 3.1: The Design Optimization Toolbox is based on fully parametric description of soft
robotics devices coupled to the simulation framework SOFA. Users can implement their own
Config class describing a generic design and multiple fitness functions. Volumetric meshes are
generated using the Python API of Gmsh, enabling evaluation of the optimization objectives
within a SOFA simulation. A sensitivity analysis feature enables exploring relationships between
objectives and design parameters. Heuristic-based algorithm are implemented through the
Solver class for efficiently exploring the Pareto Front in the design space.

variable sizes [YHM22] [MMD19]. These types of encoding rely on the designer’s expertise
in designing an initial geometric modeling of the robot. Then, optimization is performed for
variation around this initial model. The result is a more restricted design space, but one that
can more easily ensure compliance with physical fabrication constraints as well as an acceptable
optimization time. In this work, we consider the optimization of generic design with a focus on
both manufacturability and simulation-to-reality transfer.

In [SSW22], the authors propose a co-optimization of the control policy and the design of a
crawling robot, using SOFA. They discuss that the optimization outcome outperforms an expert-
designed device. The robot is a disc with eight ports where pneumatic legs can be attached. The
design space is thus discrete. The authors chose to employ model-order-reduction [GD18] to
make the exploration of the control/design space feasible in terms of time and effort. These
works highlight the feasibility of using SOFA for optimization tasks that successfully transfer to
real robot platforms. In [Ma+21], Ma et al. introduce their work on optimizing the shape and
control of swimmers using a differentiable simulation, which is leveraged for a gradient-based
optimization approach. Their work considers both co-optimization of shape and control as well
as multi-objective optimization of swimming speed and energy efficiency. An optimal design
is found by interpolating between previously established shapes. Thus, their design space is
continuous, but limited to barycentric combinations of the initial designs. In [Tap+20], Tapia et al.
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present an approach for optimal sensorization of soft robots using stretch sensors to reconstruct
their configuration. The robot’s mechanics are modeled using the FEM and a model for the
resistive type sensors is established, allowing to relate deformations to sensor values and vice-
versa. They also simulate the actuation of the robot using a pneumatic chamber. However, the
authors do not report optimizing for both actuation and sensing. Finally, in [Spi+21] Spielberg
et al. report on a method for co-learning task and sensor placement for soft robots. Their work
highlights the importance of optimizing for sensor placement, as this impacts the ability to
properly reconstruct the state of the robot from the sparse sensor data. However, their work
does not address the challenge of optimizing the shape of the robots and they do not evaluate
the simulation to reality transfer.

In summary, a variety of methods exist in literature to optimize the design of soft robots,
oftentimes co-optimizing control policies. The choice of design variables (discrete, continuous,
interpolated, etc.) as well as the considerations of fabrication constraints are important. Chal-
lenges such as sensorization or interaction with the environment are also addressed in a few
cases but never all together. However, to our knowledge, a multi-objective optimization for
actuation, sensing, and with contact modeling has not been presented yet. Also, while some of
the approaches include useful features for optimization, such as differentiable simulations, the
design space is often discrete or reduced to combinations of existing designs. We aim to manage
completely generic designs using the whole feature set of SOFA available for exploring different
modes of actuation, sensing, including contacts and functionality such as model-order reduction.
We also provide additional insight for the sim-to-real behavior compared to previous works.

3.2.2 Overview of the Design Optimization Toolbox

The introduced framework is built as an interface between the SOFA Framework that provides the
simulation and Python libraries for scriptable design and automatic meshing with Gmsh as well
as heuristic-based optimization. Design optimization is done through the exploration of design
parameters with regard to user-defined objective functions. The mechanical behavior of soft robot
deformations can be described through continuum mechanics for which there are no analytical
solutions in the general case. The toolbox enables the use of many simulation functionalities
developed around the SOFA Framework to simulate and evaluate a given design, including
actuation [Coe+17] and sensor [Nav+20] models, different modeling strategies (Finite Element
Method (FEM), Cosserat Rod [ARD21]) for computing numerical solutions, inverse solvers
and contact modeling [CED17]. SOFA has in fact already been used for design optimization
tasks [SSW22; MMD19], as discussed in the previous section. In order to be able to use the
FEM for modeling a soft robot, tools for automatically regenerating meshes when the design
parameters evolve are introduced in Section 3.2.3.

The proposed toolbox for design optimization is developed in an object-oriented program-
ming fashion. The user can easily define his own components inheriting from base classes in a
well-structured manner. For each class, one to several component extensions are provided as an
example. A design optimization problem is represented through the Config class. It describes the
design parameters and their bounds. This class makes the link with user-defined scripts both for
generating new design meshes and for evaluating their fitness function(s) in SOFA simulation
scene(s). The Solver class manages the design optimization and results visualization. Thanks to
the modularity of the proposed toolbox, new scripts taking advantage of Python computation
libraries are easily implemented. Although the primary focus of the developed framework is
to target applications in soft robot design calibration and optimization, it can also be used for
non-robotics-related applications such as calibrating design and simulation parameters of rigid
or deformable structures.
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3.2.3 Design Space Parameterization

The design parameters considered are diverse. One of the prerequisites for the solver algorithms,
introduced later, is that the values taken by these parameters are continuous and bounded by
box constraints. From a practical point of view, the parameters considered can be parameters of
the robot model and its environment (parameters defining the characteristics of the materials,
parameters characterizing the contacts, etc.), or even geometric dimensions defining shape
variations of the robot, sensors or actuators, around an initial morphology

When the geometrical dimensions of the soft robot evolve, it is necessary to generate the
meshes needed for assessing its performance in FEM simulation. The free software Gmsh
implements a Python API for one of its backends, the Open Cascade Technology (OCCT). This
means the user can create arbitrary 3D shapes by building them in a bottom-up fashion starting
with elementary entities, i. e. from points to curves to surfaces and finally volumes. In addition,
2D and 3D meshes can be generated from the resulting 3D shape with Gmsh. They are thus
readily available for simulation within SOFA or other platforms. Furthermore, the fabrication
process can be considered as a part of the computational design phase. For instance, in the case of
the sensorized soft finger designs from Section 3.3, the fabrication of the devices based on casting
involves several steps. The corresponding molds can therefore be generated automatically from
the given finger design to ease the fabrication process. In the case of the contact-aided gripper
design from Section 3.4, meshes needed for 3D printing are automatically generated. In both
cases, this automation aids in the fabrication process and the dissemination of the designs.

3.2.4 Sensitivity Analysis

Sensitivity analysis methods are statistical and mathematical techniques employed to quantify
the variation in model performance in response to changes in parameter values. In our work,
it is used systematically as a pre-processing step to reduce the complexity of the optimization
process by eliminating design variables having little impact on the considered fitness functions.
It computes the gradient of the fitness functions for the design variables. They are normalized
and visualized as a graph so that we can easily select the most relevant design variables during
optimization.

Another application, as illustrated in one of the experiments of the work on the design
of the sensorized soft finger in Section 3.3, is to obtain a better understanding of the design
optimization process by assessing the impact of parameter variations on the optimized designs.

For this purpose, a one-at-a-time strategy [BVL16] has been adopted. Starting from a baseline
design, optimization objectives are evaluated for bounding values of each design variable. In
other words, only one design parameters vary at a time, meaning only variations around the
baseline designs are considered. This evaluation lacks the consideration of interactions between
variables but has the advantage of being quick to evaluate. The following normalized metric
is computed for each variable i, fixing values of all other variables J = I \ {pi} where I is the
ensemble of considered design parameters:

100×
(maxi(f (J,pi)−mini(f (J,pi)))local

(maxI (f (J)−minI (f (J)))global
(3.1)

where f is the considered fitness function.
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3.2.5 Optimization Problems and Solvers

Both single-objective and multi-objective optimization problems of the following form are
tackled:

argmin
x

(f1(p), f2(p), ..., fn(p))

s.t. ai < pi < bi ∀pi ∈ p
(3.2)

where the integer n is the number of objectives and pi are continuous design variables bound by
box constraints.

We chose to rely on stochastic algorithms for addressing these optimization problems, for
several reasons that are now listed. These algorithms leverage randomness and probabilistic
components to explore solution spaces. They do not need to compute gradients for the fitness
functions relative to the design parameters, which are not available especially when considering
geometrical parameters, as building explicit meshes for FEM simulation is not a differentiable
operation. For instance, having the same number of nodes when regenerating a mesh is not
guaranteed. Stochastic algorithms usually offer a diverse set of techniques for escaping local
optima and enabling them to navigate complex landscapes. However, they do not provide any
guarantee to find the optimal solution but instead converge toward near-optimal solutions. In the
context of multi-objective optimization, it is usually not possible to find a solution minimizing
all the objective functions. The stochastic nature of these algorithms enables the exploration of
diverse regions of the Pareto front, facilitating the discovery of solutions that represent optimal
compromises between conflicting objectives. In that case, we are interested in Pareto optimal
solutions i. e. solutions that cannot be improved regarding any objective function fi without
deteriorating their result concerning at least one of the other objective functions.

Stochastic solvers implementation is provided through the open source library Optuna [Aki+19]
targeted at hyperparameters optimization. In our work, evolutionary and bayesian algorithms
are both considered. One additional interest of these classes of algorithms is that they are fully
parallelizable, i.e. evaluations of design in simulation can be distributed on several different pro-
cesses for reducing computation time. The general principles of these two classes of algorithms
are described below.

Evolutionary algorithms

Rather than optimizing a single candidate, evolutionary algorithms evaluate a population of
candidates evolving over generations, mimicking the natural selection principles met in nature.
They consist of four overall steps, corresponding each to a particular facet of natural selection.
There are many variants of these steps, which makes it easy to modulate implementations of
such algorithms. A typical workflow for an evolutionary algorithm is shown in Figure 3.2.

Candidate solutions to the optimization problem play the role of individuals in the population.
During the selection phase, the best individuals regarding the objective to evaluate are selected.
Then, the population is replaced through the breeding of the selected individuals, crossover, and
random mutations.

Covariance Matrix Adaptation Evolution Strategy (CMA-ES) [Han05] and Non-dominated
Sorting Genetic Algorithm (NSGA-II) [Deb+02] variants are respectively used for mono and
multi objectives optimization.

Bayesian algorithms

Bayesian optimization is typically used to optimize expensive-to-evaluate functions that can
have up to a hundred parameters. However, few applications consider Bayesian algorithms for
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Figure 3.2: Workflow for an evolutionary algorithm.

the design optimization of soft robots. In general, these optimization works consider quick-to-
evaluate objectives and rely on evolutionary algorithms. Nevertheless, Bayesian methods have
the advantage of converging faster than evolutionary methods by making assumptions on the
underlying fitness landscape, at the cost of a smaller exploration of the design space. This feature
is all the more interesting when the evolution of the cost function is particularly time-consuming,
or when the user is not interested in exploring the entire design space but rather in quickly
finding a satisfactory solution. An example of such a scenario is when considering the calibration
of mechanical parameters of a soft robot.

In Bayesian optimization [Fra18], the objective function is considered a random function.
A probability distribution called a surrogate is iteratively trained for giving a belief about the
quantity of this function. The Bayesian strategy alternates between quantifying the uncertainty
in the surrogate, building an acquisition function to determine the next query data point,
evaluating its objective, and updating the surrogate.

Both the Tree-structured Parzen Estimator (TPE) [Ber+11] algorithm and its extension for
multi-objective optimization (MOTPE) [Oza+20] are implemented.
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3.3 Design Optimization of a Sensorized Soft Finger

3.3.1 General Description of the Soft Finger

In this work, we develop the SoftRobots.DesignOptimization plugin to experiment the methods
proposed in the previous Section. We apply these methods to optimize a soft finger that we
wish to use to build a soft gripper in the future. The current design is based on a previous
work [Nav+20]. The first step is to present a completely parametric version of the soft finger
that can readily be simulated with SOFA, as shown in Figure 3.1. For describing the parametric
designs and generating the meshes needed for simulation, the Python API for the free software
Gmsh [GR09] is used. The 3D-printed molds necessary for the silicone casting steps during the
fabrication are derived automatically from the design parameters.
Considering the action of displacing the cable by a unit amount of 10mm, we want to find
the design achieving the largest variation of the finger’s cavities volume, for sensing purposes,
and at the same time the largest bending angle, for dexterity purposes. These objectives are
called deformation volume and angular displacement, respectively. We consider this task to
be a proof of concept for the use of the SoftRobots.DesignOptimization plugin that showcases
the optimization and trade-off of performance between sensor efficiency and finger dexterity.
Then, instances of the soft fingers developed with the presented tools are fabricated and we take
an in-depth look at the question of how well the optimization results predict performance in
reality, i. e. an analysis of the sim-to-real transfer. Finally, it is shown how the current design
and numerical optimization framework could be extended for configuration estimation under
perturbation with the environment i. e. external contacts.

3.3.2 Numerical Implementation

Parametric Design

The geometrical dimensions of the finger are considered as design parameters. The ones subject
to change during optimization of the finger are shown in Figure 3.3 on the left, on the example
of our initial design finger baseline. All other parameters remain constant, in particular, the
thickness, height, and length of the finger. The cable is at a fixed distance from the outer radius
of the cavity. Thus, the cable passes closer to the center of the finger when a small outer radius is
chosen for the cavities.

We furthermore consider the fabrication process as a part of the computational design phase.
The fabrication of the devices based on casting involves several steps. The corresponding molds
can therefore be generated automatically from the given finger design to ease the fabrication
process, as is shown in the example of the Soft Finger (see Figure 3.4).

Simulation and Fitness Functions

For simulation, we use the FEM model together with the constraint-based cable and pneumatic
cavities models from the Soft Robots plugin [Coe+17]. The assessment of the fitness functions
is made for the model at static equilibrium. The fitness functions for the quantifying the
deformation volume, f1, and the angular displacement, f2 are, respectively, given by:

f1(p) = |V ol(p,δ10
a )−V ol(p,δ0

a )|

f2(p) =
|arccos(|P T ip

z (p,δ10
a )|)

||P T ip(p,δ10
a )||

(3.3)
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Figure 3.3: Left: The parameters subject to optimization are the following: (a) Cavity Height, (b)
Outer Radius, (c) Cork Thickness, (d) Joint Height, (e) Joint Slope Angle, (f) Plateau Height, (g)
Wall Thickness. Right: The two instances of the finger selected for evaluation, the finger large
and finger slim.

Figure 3.4: Both fingers, large and slim, fabricated using the corresponding automatically
generated molds.

where p is the set of design variables. Here, p is of dimension 7 and is displayed in Figure 3.3, δ0
a

and δ10
a are the actuation displacements imposed on the cable actuators of respectively 0 mm

and 10 mm. The operator Vol() gives the volume of a cavity and P T ip is the position of the tip
of the finger. The function f1 then computes the deformation volume (the variation of volume)
in the cavity for a controlled actuator displacement, which corresponds to what a flow sensor
can measure (see Section 3.3.4), whereas the function f2 is the angular displacement reached
by the fingertip under the same actuator displacement constraints. Notations are introduced in
Figure 3.5.

Simulating the sensorized finger is performed using an Euler implicit time integration method
with a time step of 0.01 seconds. Other detailed parameters are available in the open source
code on GitHub [Navc].

For the optimization, we made assumptions about the mechanical properties of the finger.
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Figure 3.5: Illustration of the optimized fitness functions. a) Initial equilibrium of the soft finger.
b) Equilibrium of the soft finger for an imposed actuation displacement s10

a .

We used a Young’s Modulus of 3 MPa and a Poisson’s Ratio of 0.30, as well as damping coefficient
parameters related to mass and stiffness of 0.1. For a given set of design parameters, the objectives
are assessed using a 3D mesh having about 500 nodes. With this settings, the simulation takes
around 2 seconds to reach equilibrium for each design on our setup5.

3.3.3 Numerical Results

Optimization Results

We use the implementation of the NSGA-II multi-objective evolutionary algorithm from the
Optuna library as a solver. Algorithm hyper-parameters and results are displayed in Figure 3.6.
Results design variables can be explored in the GitHub repository.

The best performing results in Figure 3.6 with respect to the angular displacement objective
are geometries with less material and cavities flattened along the finger length such as design
B. The volume of the cavities is then minimal, thus facilitating a more significant deflection of
the finger because the cable can pass closer to the joints. Conversely, the best results regarding
the sensitivity to deformation volume consider the largest possible cavities having thin walls,
as in design E. The Pareto front enables efficient exploration of the design space and to find
compromises like that of design C.

Later, in Section 3.3.5, it is discussed more in detail that the results obtained seem to
generalize well to other mechanical parameters (Young’s Modulus and Poisson’s Ratio) and
discretization sizes.

Considerations on the Choice of the Fitness Functions

The choice of fitness function has a big impact on the optimization outcome. If pressure
measurements are used rather than air-flow sensors, the optimal geometries are quite different.

5Laptop with height cores 2.70 GHz Intel Core i7 - 6820
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Figure 3.6: Pareto Front obtained as well as geometries of a few sampled designs for the
Sensorized Finger design optimization. Results are generated using NSGA-II algorithms with an
initial population of 50 design candidates, a probability of crossover of 0.9, and a probability
of swapping parameters between parents of 0.5. Each point is the evaluation of a design
in simulation. A total of 1500 designs were considered. The Pareto optimal solutions are
represented by red dots.

To test this, we designed alternative fitness functions as follows:

f3(p) =
f1(p)

V ol(p,δ10
a )

f4(p) = V ol(p,δ0
a )

(3.4)

where f3 characterizes the change of pressure of the pneumatic chamber under imposed dis-
placement and f4 its initial volume. The resulting Pareto Front is shown in Figure 3.7.

This time, contrary to the results obtained when evaluating the deformation volume, the
flatter the pneumatic cavity, the more effective is the pressure change. The f4 objective on the
initial volume of the cavity was added to avoid having pneumatic cavities that are too small
and impossible to manufacture. This example demonstrates the relevance of using the provided
toolbox for generating designs in accordance with different physical specifications.

3.3.4 Experimental Validation

The test bench used to validate the performance of the fingers is shown in Figure 3.8. For
all experiments, we are interested in the effect of a displacement of 10mm of the cable, as
discussed in Section 3.3.2. To evaluate deformation volume, we have attached an air-flow sensor
D6F-P0001A1 by the OMRON Corporation6 to the distal cavity. The analog signal of the sensors

6https://omronfs.omron.com/en_US/ecb/products/pdf/en-D6F_series_users_manual.pdf

https://omronfs.omron.com/en_US/ecb/products/pdf/en-D6F_series_users_manual.pdf
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Figure 3.7: Pareto Front obtained from the design optimization of the Sensorized Finger for
using a pressure sensor. Geometries of a few sampled design are also shown: A) f2(pA) = 17.2◦,
f3(pA) = 0.085, f4(pA) = 2043µL, B) f2(pB) = 26.9◦, f3(pB) = 0.395, f4(pB) = 47µL, C) f3(pC) =
26.9◦, f3(pC) = 0.132, f4(pC) = 572µL.

is digitized using an Arduino UNO board. On the same board, the time integration is done to
obtain the volume measurements from the flow. This technique enables measuring very small
volumes and exhibits high repeatability, as previously reported in [Nav+19]. We did not look into
using pressure sensors here, because the tubing and the sensor itself represent a rigid volume
that needs to be taken into account to obtain volume estimates. However, determining this rigid
volume is a more involved process whereas the measurements of the air-flow sensors can be
interpreted directly as is. The angular displacement is measured from pictures, as shown in
Figure 3.9.

For validating the results obtained by running the optimization, we have fabricated three
instances of the finger. We created one finger slim and two identical finger large (#1 and #2),
as illustrated in Figure 3.3. The idea of fabricating the same design twice was to assess the
variability introduced by the fabrication process. In particular, sealing the cavities involves a
manual gluing process that we assumed could impact the deformation volume. We first present
the results of what is predicted by the simulation in Table 3.1. It is shown that a large difference
of 515% exists between the predicted deformation volume of the slim and large fingers. The
change in angular displacement is not quite as dramatic, but still clearly noticeable, i. e. an
increase of 9.03° or 147% from large to slim.

Device Deform. Vol. Ang. Disp. (deg.)

Finger Baseline 41.5µL 21.1
Finger Slim 29.7µL 28.13
Finger Large 153.1µL 19.1

Table 3.1: Deformation Volumes in SOFA
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Figure 3.8: Test bench for evaluating the finger’s performances: (a) Air-flow sensor, (b) linear
actuator and (c) reset button for integration.

Deformation Volume

For assessing the deformation volume, each experiment was repeated 5 times. The mean value,
together with the standard deviation is reported for all experiments in Table 3.2. In Table 3.3,
the metrics provided enable a comparison of the experiments. We first note that the experiments
demonstrate high repeatability, with a series of 5 repetitions showing a deviation of less than
1%, except for the slim finger, where the deviation is slightly higher. This is probably because
the overall measured volume is small and thus the measurements are more affected by the noise
floor.

Device Deform. Vol. (µL) Std (µL) Std (%)

Finger Slim T1 45.7 0.50 1.10
Finger Slim T2 45.5 0.81 1.78
Finger large #1 300.7 2.24 0.75

Finger large #2 T1 304.7 1.46 0.48
Finger large #2 T2 307.9 1.75 0.57

Table 3.2: Sensitiviy of Deformation Volume Measurements

Metric Value
Gain slim to large (sim.) 5.15 (515%)

Gain slim to large #2 6.74 (674%)
Diff finger large #1 vs #2 7.21 µL (2.40 %)

Diff slim T1 vs T2 0.22 µL (0.49 %)
Diff large T1 vs T2 3.25 µL (1.06 %)

Table 3.3: Metrics for comparisons
When comparing the slim finger with the large finger, we observe in Table 3.3 that the gain

in Deformation Volume is 6.74 (674%), which is a quite significant increase and is also a figure
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similar to what was predicted by SOFA, which is a gain of 5.15 (515%). When we compare the
two identical large fingers, we observe a difference of 7.21 µL or 2.4%. This indicates that the
variability in deformation volume introduced by fabrication is much lower than the variability
due to design. Finally, when comparing the results of the exact same fingers (slim and large #2)
after remounting the fingers into the test bench (trial 1 and trial 2), we observed a variability of
0.22 µL (0.49%) and 3.25 µL (1.06%), respectively. We therefore conclude that variability due
to fabrication and experimental conditions is small compared to the variability due to design.
Thus, the optimization process run in simulation has in fact predicted a significant change in
performance for the deformation volume on real-world devices.

Angular Displacement Performance

To evaluate the performance of the designs in terms of angular displacement, we have manually
labeled pictures of the angular displacements with respect to the rest position of both the slim
and large fingers, as seen in Figure 3.9. The results have been summarized in Table 3.4. The
angular displacement is measured with respect to the vertical line (the ẑ-axis) and the reference
point on the finger is at the back of its tip, as shown in Figure 3.9. There is a very good agreement
between the predicted difference in angular displacement of both designs. However, the absolute
values differ slightly. Overall these results confirm that the simulation can predict the difference
in performance between the designs.

Figure 3.9: Comparison of angular displacement between the large finger (left) and the slim
finger (right).
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Angular Displacement (deg.) Reality SOFA

Finger Slim 26.1 28.13
Finger large 16.9 19.1

Diff 9.2 9.03

Table 3.4: Comparison Angular Displacement

3.3.5 Considerations on Sim-to-Real Transfer

In this sub-section, we dig deeper into the question of how well the results obtained with the help
of the simulation transfer to reality. The main points addressed are the mesh density employed,
the mechanical parameters chosen (Poisson’s Ratio and Young’s Modulus) as well as the influence
of tolerances due to fabrication.

Mesh Density and Deformation Volumes

We used Gmsh’s ability to locally define mesh sizes to selectively increase the mesh density
around the cavities, as shown in Figure 3.10. We observed that increasing the mesh density can
affect the estimate of volume change significantly. We therefore repeated the same simulation
increasing each time the mesh density to observe this effect. The results are shown in Figure 3.11.
A higher mesh density captures more detail of the deformation around the cavity and the overall
trend is for the sensitivity to increase. However, as the number of nodes employed increases, the
estimate converges, as the variation in sensitivity per increase in number of nodes, i. e. ∆V /∆#N
converges to 0.

Figure 3.10: Local mesh size

Figure 3.11: The effect of the number of nodes chosen for representing the finger in SOFA.

As discussed later, in Section 3.3.5, the Pareto Front for our optimization problem is not very
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sensitive to the mesh size. Therefore, lower resolutions can be chosen here. Furthermore, this
analysis points to the issue of the sim-to-real gap as deformation volumes are not predicted
exactly, even for high mesh densities. Possible explanations include that we are ignoring local
self-contacts at the folds and tolerances in the fabrication process (see Section 3.3.5). It should
also be considered that the estimated deformation volumes are less than 10% of the total cavity
volume. In this specific case, our manufacturing process and the current tolerances for these soft
robotics fingers do not require models more precise than those we will be using subsequently.

Pareto Front Variability

At first, when exploring the optimal design of the soft finger in Section 3.3.3, we made two
strong assumptions without prior calibration with a physical prototype as stated there, which
were a Young’s Modulus of 3 MPa, a Poisson’s Ratio of 0.3 and a mesh density of 500 nodes (see
also Figure 3.12). To investigate the variability of the Pareto Front, we ran two optimization
procedures, once with a Poisson’s Ratio of 0.45, having a mesh density of 2500, and once
with a Poisson’s Ratio of 0.495 and a mesh density of 500 nodes. Here, we show that the
Pareto Fronts obtained, shown in Figure 3.12, are not very dependent on these two parameters.
Points on the extremes of the compromises are basically identical designs on either Pareto
Front and correspond to the finger slim and finger large. This demonstrates that using a
lower-resolution mesh and non-calibrated mechanical parameters to explore our Pareto Front is
feasible. Nevertheless, this should not be taken for granted and would need to be verified for
other optimization tasks.

Note that we do not consider here the Young’s Modulus because it has little impact on the
result. This is due to the performance metrics, the deformation volume of the cavities, and
angular displacement, which are geometric in nature. An assessment of the finger, for example
taking into account contacts in the optimization problem, would have required a prior calibration
of this parameter. The same is true for an actuation based on forces on the cable rather than
displacement, which would also have required accurate mechanical parameters calibration.

Figure 3.12: Pareto Fronts as well as optimal geometries obtained regarding both deflection and
Deformation Volume for refined meshes and Poissons’s Ratios values of 1) 0.45 with 2500 nodes
and 2) 0.495 with 500 nodes. Simulation times range from 2 seconds per design with meshes of
500 nodes to 15 seconds for meshes of 2500 nodes on our computational setup.
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Fabrication Tolerances

We also are interested in studying the effect that fabrication tolerances can have on performance
metrics. Since our process of fabrication is based on 3D-printed molds, we expect tolerances
in the fabricated devices related to this process, such as larger than intended borders. These
in turn can result in thinner-than-expected features in the silicone casting process. We have
looked at the parameter Wall Thicknes, (g) in Figure 3.3, of the large finger and we measured
that it exhibited a variation of up to 0.4mm, going down from the intended 3mm to 2.6mm.
As shown in Table 3.5, when simulating the device with the adjusted Wall Thickness parameter,
using 3209 nodes (see Figure 3.11), there is a significant impact on the deformation volume, an
increase of about 24%. This is an important reduction of the sim-to-real gap. We have provided a
sensitivity analysis for the deformation volume with respect to the free design parameters shown
in Figure 3.13. We used a One-At-a-Time strategy. Starting from the finger large design (see
Figure 3.3), optimization objectives are evaluated for the bounding values of each design variable.
This evaluation lacks the consideration of interactions between variables but has the advantage
of being quick to evaluate. It is confirmed that the Wall Thickness is indeed a very sensitive
parameter for the deformation volume optimization objective. This gives another clue for the
calibration procedure: a model calibration could consider fabrication tolerances, for instance
by finding the design parameters within a tolerance interval that minimizes the sim-to-real
difference.

Wall Thickness Deform. Vol.

3mm −175.24 µL
2.6mm −217.00 µL

Table 3.5: Analysis Fabrication Tolerances Effect

Figure 3.13: Analysis of local parameter changes around the large finger design using the One-
At-a-Time strategy. The labels correspond to the parameters described in Figure 3.3. The values
for each label with respect to each objective correspond to the maximum objective differentials
encountered by separately varying each parameter with respect to the initial parameters of
the large Finger. These values are then normalized by the maximum objective differential
encountered by varying all design variables. Both objectives are mostly sensitive to a) Cavity
Height, (b) Outer Radius and (g) Wall Thickness parameters.
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3.3.6 Extension to Configuration Estimation with Capacitive Touch Location
Sensing

Introduction and Motivations

As a contribution to the Soft Robotics Toolkit Competition 2023, we close the bridge between the
soft finger design proposed in [Nav+20] and the SoftRobots.DesignOptimization plugin. This
section focuses on the reproducibility of the method. Instead of sharing static CAD files, it
provides both an in-depth fabrication tutorial and parametric designs that can be used in
optimization frameworks, while automating part of the fabrication process by generating the
corresponding molds automatically.

Compared to the previously introduced version of the soft finger design, the main difference
consists in the addition of capacitive sensing functionalities. The objective is to perform configu-
ration estimation using model-based sensing. The mechanical model of the device is leveraged to
interpret the sensor values. The interpretation happens through an inverse model implemented
in SOFA that yields the forces/deformations of the device that best explains observed sensor
values.

Another slight difference is that the pneumatic cavities are now in two parts at the level of
each section (see results in Figure 3.15). This slightly complicates the manufacturing process but
generates less opposition to the cable closing course compared to the previous design.

The capacitive touch location sensing enables to determination of where the interactions are
happening on the finger, whereas the sensing of changes in air pressure inside of the airtight
cavities embedded in the finger enables the quantification of deformation. The touch location
sensors provide the model in SOFA with crucial information that helps to correctly attribute the
observed effects, i. e. deformation sensed by the air-pressure sensors, to the causes, i. e. cable
displacement and external forces. Furthermore, touch sensing is only used to determine the
contact location, not deformation. This makes the design of the capacitive sensing element
relatively simple. This design is very much like the one found in touch screens of consumer
electronic devices. Illustrations of the capacitive sensing operating and configuration estimation
pipeline are provided in Figure3.14.

Figure 3.14: On the left, illustration of multi-point mutual capacitance. On the right, an example
of interaction with the soft finger with configuration estimation in SOFA.
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Design Optimization

As air-pressure sensors are used instead of volume sensors, we consider the same fitness functions
as for the experiment from Section 3.3.3. First, the kinematics of the Soft Finger is evaluated as
the angular displacement of the tip under a fixed cable displacement of 10 mm. Secondly, the
pressure sensibility is computed as the ratio between the change in volume of the cavity under
deformation versus its volume at rest. Here, the minimum pressure change in a cavity under
two interaction scenarios is taken. The first one consists of a fixed cable displacement of 10 mm
and the second one of a fixed force applied on the lateral edge of the Soft Finger. High-pressure
sensitivities are reached for flat cavities, which are not feasible to fabricate. To avoid having
a non-feasible design, the initial volume of the cavities is computed as an additional fitness
function.

The assessment of the fitness functions is made for the model at static equilibrium. Numerical
results obtained with the provided tools are displayed in Figure 3.15. The best designs in terms
of kinematics tend to favor flat cavities in the direction of the length of the finger (see design D)
and less material (see design C). However, best designs regarding pressure sensibility tend to
privilege flatter cavities in the direction of the height of the Soft Finger (see design A), as this
direction is subjected to more deformation when the Soft Finger is subject to a lateral force. A
good compromise between all considered fitness metrics is therefore design E.

Figure 3.15: Pareto Front and a few sampled geometries obtained for 185 trials of the Soft Finger
design optimization. Pareto optimal solutions are represented by red dots. Results are generated
using the NSGA-II algorithm with an initial population of 50 design candidates, probabilities
of crossover, and swapping parameters between parents of 0.9 and 0.5, respectively. The best
scores and worst scores regarding each fitness function are respectively written in green and red.

This work represents a proof of concept, as an in-depth study of the simulation-to-reality
transfer has not yet been carried out.
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3.3.7 Conclusion

These contributions illustrate how to use the computational plugin SoftRobots.DesignOptimization
and evaluate its performance on the example of a cable-driven soft finger featuring embedded
flow sensors. The finger design task highlights the need for a multi-objective optimization
framework because optimizing at the same time for actuation capabilities and for sensing
capabilities can be conflicting goals. Thus, a trade-off needs to be found. We provided an
experimental validation of the proposed optimization procedure. For a given displacement of
the cable inside the finger, we chose to optimize the angular deflection achieved as well as the
deformation volume measured inside the embedded cavities. It was shown with the help of
two fabricated devices on the extremes of the Pareto Front, called finger slim and finger large,
that the toolbox correctly predicts significant variations of both optimization objectives. We
furthermore provide a more in-depth analysis of how the simulation parameters chosen affect
–or not– the real-world outcome of the optimization for our task. As an extension, we also
considered optimizing for the sensitivity to interactions with the environment.

In the future, we would like to explore further devices and design objectives. In particular, we
would like to explore more complex devices, such as a gripper, whose basic building block could
be the finger presented here. Objectives on the kinematics and sensing of the sensorized finger
were considered. These objectives were chosen for the ease of measuring their performance on a
test bench. This work could be extended to optimizing the design of an entire soft gripper for
manipulation by considering additional design parameters, such as the location of the fingers in
relation to each other, as well as additional fitness functions evaluating the contact forces and
manipulation dexterity of the robot. Although on a different design, we consider optimizing a
soft manipulator while taking into account contacts in the next section.
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3.4 Design Optimization of a Soft Gripper using Self-Contacts

In this section, we aim to optimize the design of a soft gripper for manipulation, emphasizing
the role of contact interactions. Our objective is to explore how self-contacts influence the robot’s
behavior and explore their potential in designing more effective soft grippers and manipulators.

3.4.1 Background on the Design of Contact-Aided Soft Robots

Designing and assessing both soft grippers and soft manipulators is a broad area of research
getting more and more attention from the soft robotics community [Hug+16] [Tee+20].

A soft gripper design is classically optimized in a multi-objective setting. However, the design
task is difficult regarding the stiffness of the deformable part. The latter has to be able to easily
reach the object to be handled while transmitting significant forces for grasping and handling.
On the one hand, a consistently soft manipulator will easily reach the object but will eventually
fail to pick it up. On the other hand, a constantly stiffer manipulator will require a lot of effort
and energy just to reach the object. Similarly, developing soft grippers capable of generating
a desired grasping force requires them to be soft enough to conform to the object shape and
maximize the contact area, and rigid enough to transfer loads. Therefore a compromise has to
be found between the abilities of the gripper both to deform during the grasping phase and to
stiffen during object manipulation.

Satisfying these requirements has been addressed through active stiffness modulation [MCC16].
Another interesting approach is to leverage self-contacts. These can be used to create closed
parallel chains for specific actuation values and therefore stiffen the structure. Few works
consider using self-contacts in their soft robot design. One famous example is the design of
a fast PneuNet actuator developed in [Mos+14]. The actuator is composed of an inextensible
layer deformed by a series of cube-like chambers, whose walls collide upon inflation to create
additional forces. In [Mor+20a], a bio-inspired soft manipulator robot based on a compliant
spine uses self-collision of its vertebrae to limit local deformations. Finally, a catheter made
with several segments with joint stops is introduced in [Gao+20] that can stiffen locally and
achieve a desired shape for the same actuation force. These soft robot designs exploit a-posteriori
self-collisions and there is no general methodology to design soft robots using self-contacts.
Moreover, there is, to the best of our knowledge, no analysis of the influence of self-contacts on
the robot behavior and their potential for designing grippers and manipulators.

Given the trend toward computational design in soft robotics, there is a growing interest for
sharing parametric families of designs coupled with simulation tools, that can be easily adapted
to the user needs through computational optimization. Few works on design optimization
frameworks targeting contact-aided soft robot design have been proposed. In [Ros+19], design
optimization of contact-aided continuum robots is addressed. In the field of compliant mecha-
nisms synthesis, a computational framework has been developed for optimizing the topology of
a contact-aided compliant mechanism [KSS18]. However, we are not aware of works considering
a general methodology for the optimization of grippers and flexible manipulators leveraging
self-contacts.

3.4.2 Contributions

In this section, we present two main contributions: the demonstration of an optimization
framework for soft robot design with both self-contacts and external contacts, as well as the
analysis of the potential of using self-contacts for soft robot design. The aim is not to design an
advanced gripper but to work with a design space parameterization that enables highlighting
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the contribution of self-contacts to the gripper’s performance. This practical design is easily
manufactured. Both the simulation and numerical optimization results are experimentally
validated.

Additionally, an environment targeted toward soft gripper optimization for grasping tasks
is introduced. Although a case study based on a particular parameterization is analyzed in
this work, both simulation and grasping quality metrics generalize to other soft grippers. All
the code is available as another part of the open source plugin SoftRobots.DesignOptimization
for SOFA. It also shows how heuristic-based algorithms implemented in the plugin can be
applied to the calibration of mechanical parameters of soft robots in the practical case of the
soft grippers. It is especially relevant in cases with non-smooth events such as contact, in which
gradient-based methods might struggle with highly non-convex fitness function landscapes.
Finally, the flexibility of the proposed framework is highlighted in the design optimization of
soft finger shapes for handling different objects.

3.4.3 Parameterization and Numerical Implementation

Parametric Design

The design topology is chosen to enable the creation of self-contacts for specific actuation
values during optimization, while being simple enough to understand their effect on the finger
performances, and simple to fabricate and actuate. The finger design is depicted in Figure 3.16.
It consists of two legs attached to a top wall, one being fixed in space at its base and intended to
come into contact with the object to grasp, and the other being actuated using a servo motor.

Figure 3.16: Illustration of the finger design parameterization. Finger composed of left (1a), top
(1c), and right (1b) walls. (2) Servomotor. (3) Example of object to grasp, fixed in space. Left:
rest configuration. Right: closed configuration.

The design parameters to optimize are the thickness of each leg and the top wall (e1, e2, e3)
and the distances (d1, ...,dn) between the left leg and n intermediate points along the right leg.
Varying these distance values enables the production of zigzag patterns on the right leg to create
self-contacts and adapt to the shape of the object to grasp. Additionally, the finger shape is
an extruded planar pattern and is therefore easy to fabricate using additive manufacturing
techniques. The design parameters are constrained in intervals with fixed boundaries to prevent
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interpenetration, limit the finger size, and respect the minimum thickness that can be obtained
using the 3D printer considered in this work. The total finger thickness w, the finger width l2,
and the length L are fixed for simplicity.

Simulation

A quasi-static simulation of the soft finger is used to assess its performance. The mechanical
behavior of the soft gripper deformation is described using continuum mechanics for which
there are no analytical solutions in the general case, justifying the use of non-linear FEM for
obtaining an approximate solution. Under the assumptions of both low robot acceleration and
velocity, using the quasi-static equilibrium is enough for accurately modeling soft robot behavior.
It is written as follows:


KDD (xi) KDR(xi)J 0 HT

c
JT KRD (xi) JT KRR(xi)J HT

a 0
0 Ha 0 0
Hc 0 0 0



∆xi
δa
λa
λc


=
=
=
⊥


fext − fint(xi−1)

JT (fext − fint(xi−1))
θ
δc

 (3.5)

where ∆xi are small displacement of nodes around their current position xi , J is the Jacobian,
Kij are the tangent stiffness matrices depending on the current positions of the FEM nodes where
D and R refer respectively to deformable and rigidified degrees of freedom. Rigidified nodes are
the ones fixed to the servomotor. fext are gravity forces and fint are nonlinear internal forces
of the deformable structure computed from the material constitutive laws. Considering both
the low thickness of the finger’s leg and the low angle values achieved with the servo-motor,
the deformation inside the material is assumed to be small and the material to be elastic linear.
Its behavior is characterized by a Poisson ratio ν and a Young’s Modulus E. Both actuation
and contact constraints effects are integrated into the model as Lagrange multipliers, denoted
respectively λa and λc, whereas the corresponding constraints displacements are δa and δc. They
respectively depict the angular displacement of the servomotor and the distance between contact
points computed with the model. The angle θ is the desired servomotor angular displacement
specified by the user. Finally, the symbol ⊥ is used for referring to complementary constraints
such as contacts.

The servo motor is modeled using stiffness projection of the node elements of the soft finger
parts attached to the actuation device. The degrees of freedom of the rigid part are then directly
given by the angular displacement δa imposed on the servomotors.

Specific meshes of the soft finger and the manipulated object are provided for modeling
collisions. Contact points and surfaces are detected at each time step using a collision detection
algorithm. The constraint response is then computed using Signorini’s law and friction is mod-
eled using the Coulomb law with a friction coefficient µ. The formulation of the complementary
problem using Signorini’s law is as follows:

0 ≤ δc ⊥ λc ≥ 0 (3.6)

According to Coulomb’s friction law illustrated in Figure 3.17, the reaction force lies within a
cone defined by the normal force’s magnitude and direction. The contact force is thus given by the
composition of a normal force HT

nλn and a tangential force HT
t λt such that HT

c λc = HT
nλn +HT

t λt .
When the reaction force is strictly within the cone, the objects stick together. If the reaction
force reaches the cone’s boundary, the objects slip along the tangential direction. In this slipping
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scenario, the friction force aligns with the direction of motion. The three cases are summarized
below: 

λn = 0 and δn ≥ 0 (inactive)
||λt || < µ||λn|| and δc = 0 (stick)
||λt || = µ||λn|| and δn = 0 (slip)

(3.7)

Figure 3.17: Illustration of Coulomb’s friction law.

Solving the constraints is done in two steps by first solving a free configuration of the robot
without any constraint:

K(x)∆xf reei = fext − fint(xi−1) (3.8)

and then computing the new shape of the robot from δa. The motor torque λa is then computed.

Fitness functions for calibration

Calibration of mechanical parameters is a crucial step for ensuring that the simulation is reliable
enough for the targeted applications. Due to the non-linearities and non-smooth events induced
by self-contacts, stochastic algorithms are well-suited for exploring the space of mechanical
parameters. Unlike gradient-based algorithms, stochastic methods are effective at avoiding local
minima, making them more robust for the task at hand.

For this purpose, the general idea is to build a fitness function as a distance between sensor
measurements on the physical prototypes and the same measurements obtained from the
simulation. For the considered soft finger, the servomotor torque is measured and used for
calibration. This gives the following fitness function:

Fcalib_torque(p) =

√
1
N

∑
θi

(λa(p,θi)−λ∗a(θi))2 (3.9)

where p is a vector containing the optimized calibration parameters, θi are the sampled
angular displacements imposed on the servomotor, N is the total number of measures, λa and
λ∗a are respectively the servomotor torques computed through simulation and measured on the
physical prototype.

Fitness functions for design optimization

Several metrics have previously been used for assessing soft grippers and manipulators, consid-
ering whether object shape matching [DL21], grasping forces [Don+18], workspace [AZK21]
or sensing [Nav+23]. When designing a soft gripper finger, the best compromise between
deformability and ability to apply force has to be found. One objective is also to reduce the



74 CHAPTER 3. Optimization of the Parametric Design of Soft Robots Assisted by Surrogate

necessary energy needed for both actions. Finally, actuation limits in terms of maximum force
and torque are taken into account to avoid oversizing the actuation system. These compromises
are expressed in the form of three fitness functions to be optimized for the design parameters
p = (e1, e2, e3,d1, ...,dn): Fstr , Fgrasp_res and Fgrasp_ener .

In order to evaluate these fitness functions, a direct simulation where an angular displacement
θmax is imposed at the base of the finger is implemented. The angular displacement θ is
gradually increased and the resulting torque is monitored at each simulation time step. The
angular displacement samples are denoted θi . When the maximum torque is reached, the fitness
functions are then computed. The expressions of these three functions are introduced below.

The first function to optimize is the maximum contact force applied by the soft finger on
the object, denoted Fstr . Only the component along the x-axis i.e. the direction from the finger
towards the object, is considered. In simulation, this objective is computed as being the sum of
the forces λj

c,x exerted on each node of the finger mesh colliding with the nodes of the object at
equilibrium:

Fstr (p,θmax) =
∑

λ
j
c,x (3.10)

The second function directly relates to the necessary energy for maintaining the object during
the grasp. It is computed as a resistance Fgrasp_res to be minimized. To encourage the creation of
designs with an effective grasp at the smallest actuation cost, the minimum of the computed
resistance for each angular displacement is kept. This gives:

Fgrasp_res(p) = minθi (
λa(p,θi)
Fstr (p,θi)

) (3.11)

Finally, the Fgrasp_ener is a metric proportional to the electric energy needed for grasping
the object. The torque λa(p,θi) is measured for each angular step θi . For a specific angular
displacement, the mechanical work is:

E(p,θi) = λa(p,θi)θi (3.12)

This mechanical work is directly proportional to the electric energy absorbed by the actuator by
a constant transmission ratio. Under the hypothesis of constant torque in a sampled angular in-
terval, the total electric energy Fgrasp_ener absorbed during the grasping cycle can be represented
by:

Fgrasp_ener =
∑
θi

λa(p,θi)θi (3.13)

Choice of Optimization algorithm

The design system we defined is a multi-objective problem with highly non-linear fitness
functions regarding design parameters and without available analytical gradients. Stochastic
algorithms are thus good candidates for solving this kind of problem. In our experience,
Bayesian algorithms are usually better than Evolutionary algorithms at giving good solutions
in a few optimization iterations as they privilege exploitation over exploration. Nevertheless,
evolutionary algorithms are mainly used for generating the results in this work for their didactic
purpose. Indeed, they enable exploring more in-depth what are good and bad results regarding
the fitness metrics. Unless mentioned otherwise, they are use in all the following experiments.
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3.4.4 Numerical Results

Design Optimization Results and Analysis

The considered scenario consists of grasping a vertical rigid object. For the optimization, a
Young’s Modulus of 3.62 MPa and a Poisson’s Ratio of 0.452 are selected. They are obtained
through torque calibration as latter described in Section 3.4.5. Moreover, strong hardware
constraints come from the maximum torque exerted by the chosen servomotors. Preliminary
experimental studies have shown it to be a limiting factor in the angular displacement of the
finger when interacting with objects. A maximum torque of λmax = 1.2Nm is thus considered. A
single friction coefficient is taken equal to 0.85 for all contacts. These hypotheses are further
discussed in section 3.4.4. For a given set of design parameters, the three objectives are assessed
using a 3D mesh with a uniform node density, resulting in a number of nodes varying from 2000
to 3000 with the design. A total of 40 intermediate angular positions θi are sampled in the range
[0°,30°]. With these settings, evaluating a design takes between 30 s to 90 s with our setup 7,
depending on the number of contact surfaces met during the grasping trajectory.

Both algorithm’s hyper-parameters and results obtained for the three fitness functions intro-
duced in section 3.4.3 are displayed in Figure 3.18.

For generating high contact forces, the best performing results, such as designs B and C, are
the ones with thicker walls and self-contacts, leading to a higher rigidity when contacting the
object. The respective designs D and A are examples of ineffective designs.
The relevance of both the grasping resistance and the grasping energy metrics is now highlighted.
On the one hand, poor grasping resistance scores reflect designs where keeping the grasped
position is expensive in terms of actuation effort. It is the case for design A where the absence of
self-contacts does not enable to rigidify the finger enough. It is also the case for design E where
self-contacts appear too close to the base of the soft finger structure, then directly opposing to
the servomotor course. On the other hand, minimizing the grasping energy enables the exclusion
of designs where self-contacts appear too soon when the soft finger is closing on an object, as it
is the case for E. Finally, efficient designs also feature large contact surfaces shared between the
soft finger and the considered object. Good compromises between all metrics are designs B and
C.

Influence of Relative Object Pose and Shape

The potential of self-contacts to adapt to objects with different poses and shapes, as well as the
modularity of the design optimization framework, are here demonstrated. Indeed, changing
both these parameters has a strong impact on the optimization outcomes.

First, two different object-shape scenarios are considered: one with a hexagon-shaped object
and one with a spherical object. The choice of these object shapes is to explore two different
scenarios: one involving contacts with a plane, which is one of the simplest cases, and another
one featuring contacts with a small convex surface. This last scenario aims to favor the emergence
of designs that wrap around the object to develop more grasping forces. The approach is fairly
general and can be extended to any other object shape. In order to favor the appearance of
contact surfaces with a specific object shape, a higher value of 40° for the maximum angle
command θ of the servomotor is considered. The objective is to privilege the emergence of more
self-contacts. This angle is illustrated in Figure 3.16. Design optimization results are displayed
in Figure 3.19.

Compared with the results in Figure 3.18 for the baseline finger design A, the considered
actuation angle leads to self-contacts during grasping. However, this design still gives poor

7Laptop with eight cores 2.70 GHz Intel Core i7 - 6820
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Figure 3.18: Pareto Front and a few sampled geometries at the grasping pose obtained for 300
trials of the Soft Finger design optimization. Pareto optimal solutions are represented by red
dots. Results are generated using the NSGA-II algorithm with an initial population of 50 design
candidates, probabilities of crossover, and swapping parameters between parents of 0.9 and 0.5,
respectively.

performances for both object shapes, due to the finger slenderness and the proximity of the
contact to the base.

In the hexagon-shaped scenario, because of the object layout, there is little room for gener-
ating large contact areas shared between the soft finger and the object unlike in the previous
experiment. Only one or two contact lines along the width of the finger are possible at most.
This is why the best-performing designs feature double closed kinematic chains for transmitting
more contact forces, as shown in both designs B and C.

For the spherical object, Pareto designs such as designs D and E both comply with the shape
of the object and feature an internal closed chain far away from the base of the finger and close to
the object for an enhanced stiffening. However, E is also an example of a design where a second
internal closed chain appears too close to the finger base and opposes its course: because of the
maximum servomotor torque, only a maximum angular displacement of 35° is reached.
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Figure 3.19: Pareto Front and a few sampled geometries at the grasping pose obtained for 300
trials of the Soft Finger design optimization for different objects scenarios. Scenarios are 1) a
hexagon-shaped object and 2) a spherical object. Pareto optimal solutions are represented by red
dots. Results are generated using the NSGA-II algorithm with an initial population of 50 design
candidates, probabilities of crossover, and swapping parameters between parents of respectively
0.9 and 0.5.

Influence of Friction

The impact of the chosen friction coefficients µ for both soft finger self-contacts and contacts
with the object is now discussed. Numerical values of the fitness functions for different designs
and friction coefficients are displayed in Table 3.6.

Design µ Fstr Fgrasp_res Fgrasp_ener

B from Figure3.18 0.85 4.32 0.075 1.49
B from Figure3.18 0.30 3.09 0.086 1.40
E from Figure3.19 0.85 11.08 0.090 4.32
E from Figure3.19 0.30 8.97 0.094 7.14

Table 3.6: Fitness functions values for a two soft finger design and different friction coefficient µ.
Although the magnitudes of the different fitness functions can differ by a factor of 100, using
a Pareto front to explore the design space prevents fitness functions with higher values from
dominating the optimization process.

Decreasing the friction coefficient results in reducing the generated contact force and increas-
ing the grasping energy as illustrated in the cases of both designs Figure3.18.B and Figure3.19.E.
This can be explained by the fact that generated forces are lost in sliding motion. However,
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some designs may take advantage of an increased sliding motion to generate additional contact
surfaces. This is particularly the case in manipulation tasks considering small objects such as the
sphere. Without necessarily decreasing the contact force, considering altering the µ coefficient
and maximizing this contact surface with an additional fitness function would ensure more
stable grasping. In practice, these coefficients may be easily altered on the physical prototype by
installing pads of different materials located at the expected contact areas on the soft finger. It is
interesting to notice that the optimization tools are able to find solutions that go against normal
intuition: one would think that increasing friction is always beneficial for stable grasping, as
suggested by Table. 3.6, but we show here that this is not always true as it impacts the number
of contact surfaces.

3.4.5 Experimental Study

Experimental Setup

The experimental test bench used to characterize the finger design is represented in Figure 3.20.
This setup incorporates a Herkulex DRS-0101 servomotor (DFRobot) with a stall torque of
1.18 N m and a resolution of 0.321° to actuate the finger. The actuation torque is evaluated using
a strain gauge placed on the servo motor arm and by multiplying the measured torque by the
arm length. The gauge is capable of measuring forces up to 1 kg with a measurement accuracy
of ±0.02%, connected to a high-precision 24-bit hx711 analog-to-digital converter. As a result,
torques up to 0.36 N m can be measured with an accuracy of ±7.2×10−3 N m. The servo motor
control and torque estimation are performed on an Arduino Mega acquisition board connected
to a PC. This test bench incorporates also a Velleman precision balance enabling precise readings
of the contact force with a precision of 9.81 mN.

The rest of the components making up the test bench were produced on a Prusa MK3 3D
printer using PLA as the material. All the fingers tested were 3D printed (Prusa mk3) using
FilaFlex flexible filament with a shore hardness of 60A and a stretch capacity of around 950%.

As the ultimate aim of the test bench was to check the gripping capacities of the various
finger designs, a complete gripper was developed, shown in Figure 3.21. This gripper uses the
same servomotor-finger assembly concept as in Figure 3.20, which is repeated 2 times with a
120° offset. Its modular design makes it easy to change the design of the fingers using the various
fixing and locking screws and to adjust their distance from the gripper center. Different distance
values are indicated using 3D-printed graduations for accurate positioning. In order to carry
out grasping operations, this gripper was assembled on the end-effector of a UR3 robot arm
(Universal Robot). The integration of the gripper enables various ’pick and place’ processes to be
carried out with objects of different sizes, shapes, and weights.

Simulation Calibration

We demonstrate now how to use the toolbox for calibrating the model of a soft robotic system
involving contacts. In this work, the mechanical properties of the material composing the finger,
i.e. E and ν, as well as the distance from the finger do to the object and the torque offset τ0 must
be estimated. The Young’s modulus is computed from the shore hardness given by the filament
manufacturer using the relation in [Gen58], giving, E = 3.62MPa. The Poisson ratio and the
two other parameters are obtained through optimization, using the fitness function (3.9). The
Poisson ratio is typically close to 0.5 for rubber material, and small changes around these values
can lead to large changes in the simulated robot behavior. Therefore, the algorithm is forced to
explore values close to 0.5 by optimizing a modified Poisson ratio νo such as:



3.4. Design Optimization of a Soft Gripper using Self-Contacts 79

Figure 3.20: Experimental setup for the finger design (1). Test bench consisting of a strain gauge
(2), a Herkulex drs-0101 servomotor (3) and a Velleman precision balance (4).

Figure 3.21: Prototype of gripper composed of three fingers. Screws and graduation are used to
adjust the distance between the finger and the gripper center (1) and the finger width (2). The
gripper is assembled on the UR3 collaborative robot in a pick-and-place situation.

ν = (ν∞ − νm)(1− e−
νo
τ ) + νm

τ = −1/ ln
(
1− νM − νm

ν∞ − νm

) (3.14)

where [νm,νM ,ν∞] = [0.4,0.499,0.501] are the values of ν for νo = [0,1,∞].
Experimental data was acquired on both the baseline and finger design C from Figure3.18.

On the test bench, the servomotor’s angle was increased and then decreased in the range [0◦,40◦]
with steps of 1◦. Each experiment was repeated 3 times, leading to point clouds with hysteresis
patterns as shown in Fig 3.22. The centerline of these two point clouds, one for each finger, was
extracted using a recursive barycentric method and evaluated at 8 angular displacement values
in [0◦,30◦], giving the experimental torque values λ⋆

a .
To reach the function minimum as fast as possible, the Tree-Structured Parzen Estimator

Bayesian algorithm was used. After 250 iterations, the cost function reaches an acceptable value
of 4.3×10−3 N m with the parameters (ν,do, τ0) = (0.451,35.3mm,−3.2× 10−3 Nm) for the base
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Figure 3.22: Measured and simulated relations between angular displacement and torque for
the base finger (left) and the C finger (right).

finger design, and (0.451,30.3mm,1.5× 10−2 Nm) for the C finger design. The obtained value of
the Poisson ratio is consistent with the usual values for elastomer materials. The relatively high
torque offset observed during the finger C calibration is due to the amplifier of the hx711, whose
offset was observed to increase with its temperature.

Moreover, the distance to the object varies reasonably around the nominal value of 30 mm,
considering the possible assembly and manufacturing defaults on the test bench and the 3D
printing errors on the finger. This validates the ability of the model to predict the finger’s
behavior both when colliding with the object and when self-contact occurs.

Performance Validation

To validate the performances of the finger designs, the fitness functions values obtained ex-
perimentally and numerically are compared. For the comparison, the numerical values of the
performance indicators are obtained in simulation with the calibrated parameters determined
in section 3.4.3 for the baseline design. The results are presented in Table 3.7. There is a good
agreement between the simulated values of grasping energy and the reality, as they depend on
the calculated torques that were calibrated. There is a significant difference in contact force for
the two designs with self-contacts, leading to discrepancies in the values of grasping resistance
as well. After investigation, several sources of error were detected. There are variations of the
effective finger length and the relative finger-to-object distance due to manual assembly, leading
self-contacts to happen for higher angular displacements and decreasing the final contact force.
Also, simulation parameters such as the friction coefficient µ and the density of the surface
contact meshes were not optimized. A lower value of µ and a denser mesh significantly reduce
the simulated contact force, decreasing further the gap of measured contact forces between
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simulation and reality. Furthermore, the assumption that both internal and object contacts share
the same friction coefficient creates errors as well. However, despite this difference in contact
force, finger designs A, C, and B in this order have increasing contact forces and decreasing
grasping energy as expected from the Pareto front in Figure 3.18. In conclusion, the experiments
confirm that the optimization process yields correct sim-to-real behavior in terms of the relative
performance of the designs. However, the current modeling assumptions do not allow for
quantitatively accurate results.

Design
Fstr Fgrasp_res Fgrasp_ener

Sim. Exp. Sim. Exp. Sim. Exp.
A 0.65 0.63 0.154 0.155 0.296 0.308
B 4.32 0.87 0.075 0.320 1.49 1.247
C 1.88 0.69 0.142 0.430 0.654 0.769

Table 3.7: Fitness functions values for the three soft finger designs obtained experimentally
(Exp.) and in simulation (Sim.).

Grasping Demonstration

Designs are demonstrated on a pick-and-place task corresponding to grasping a weighted
cylinder and moving it to a given location. In order to have friction coefficients consistent with
those used in simulation, tabs of the same material as the fingers are glued to the cylinder in
the places where it is gripped. The final angle command imposed to all servomotors is 37°.
The video of the grasping experiments is available here [Nava]. The gripper is tested with the
designs A, B and C from Figure3.18, and manages to lift respectively 150g, 650g, and 750g. The
fact that the gripper performs better with design C rather than design B is explained by the
considered greater angle control than the one considered during the optimization. The results
obtained validate the superior performances of the optimized designs with self-contacts. Pictures
of the gripper design C taken at different times during the grasping scenario are provided in
Figure 3.23.

3.4.6 Conclusion

This work presents the computational design and calibration of a parametric soft finger with
contact modeling. We show that the most performing designs make use of self-contacts, both for
improving grasping metrics and for adapting to the object shape. The optimization results are
assessed experimentally, validating the Pareto front given by the FEM-based design framework.

Several perspectives are considered to push this work further. The considered design param-
eterization leads to sharp line-shaped contact areas. This strengthens the influence of friction at
both the Finger-Finger and Finger-Objects interfaces. In future iterations, we plan to consider
building smooth elbow-shaped surfaces between the control points instead of lines, by using
Bezier curves for instance.

Also, the design optimization of a soft finger shape is done for a single specific object shape.
In future work, we plan to extend the introduced tools for designing a more universal soft gripper,
by considering the evaluation of fitness functions averaged on a dataset of different objects.
Moreover, other fitness functions may be considered for accounting whether for manufacturing
constraints such as minimizing the material volume needed for building the finger, or functional
constraints such as the grasping stability i.e. maximizing the shared surface area between the
soft finger and object.

https://www.youtube.com/watch?v=hq81VX2wWvA
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Figure 3.23: 1) Gripper design C at different moments of the considered grasping scenario,
respectively at the initial position, once the object is grasped, and during object displacement. 2)
Gripper design C during the grasping phase for different angular displacements.

3.5 Discussion and Conclusion

In this Chapter, a framework targeted at the computational design optimization of parametric
soft robot designs is introduced. This framework is fairly general. Indeed, the chosen stochastic
solvers are not required to compute analytical gradients of design objectives relative to the
design variables, meaning the method is compatible with any modeling choice for performance
assessment of soft robot designs. In particular, we coupled it with FEM simulation which enables
the simulation of a wide range of soft robots without prior assumptions about their shape and
which results transfer well to soft robots in the physical world. We can differentiate between
scenarios where there is no contact, resulting in smooth transfer, and scenarios with frictional
contacts, where the transfer is qualitatively correct but not quantitatively accurate.

Both a soft sensorized finger and contact-aided soft gripper design spaces have been explored
using the aforementioned framework. In each case, the proposed framework enables exploring
design performances relative to user-chosen metrics. They feature how good design choices, such
as optimized embedded sensor geometry or structures making use of self-contacts, facilitate
task-specific effective control and sensing. We also show that the numerical results transfer well
to physical prototypes in terms of relative performances obtained numerically.

However, the proposed framework has some disadvantages. First, the used stochastic solvers
do not scale well on large problems with many design variables and are limited to continuous
variables. Moreover, the proposed framework relies on many simulations for soft robot assess-
ment that may be computationally expensive. In our experiments, design spaces of at most 20
design parameters and simulation evaluation taking between 30 seconds to 1 minute were con-
sidered. Simulation computation time constraints induce considering relatively simple control
strategies during a design evaluation. The designer then needs to break down the task they
want their robot to perform into a set of easy-to-evaluate performance metrics with low-level
controllers.

With the desire to scale to more complex models and control strategy for design assessment,
we develop a reduced model based on the FEM in the next Chapter. The objective is to keep a pre-
cision close to that of the FEM while drastically reducing the simulation time. Compared to this
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framework, the idea is not to use the simulation as a black box anymore, but to extract relevant
information to be used for control, design and interaction with the environment dynamically.

Finally, the considered design spaces are still heavily reliant on the user intuition. We also con-
sidered moving to more expressive design spaces, using modular components or metamaterials.
Preliminary works about this matter are further discussed in Chapter 5.



Chapter4
Condensed FEM Modeling for
Embedded Control and Design
Optimization

4.1 Introduction and Chapter Overview

Although the FEM is a powerful tool for modeling and predicting the behavior of soft robots,
its computation time can be a significant limitation in robotics applications. Using FEM in
control applications poses challenges for those not specialized in numerical computation, as
achieving real-time performance requires optimization of computation time. Additionally,
design optimization can benefit from simulations that run faster than real-time, facilitating
quicker design space exploration.

This chapter introduces a learning-based approach to obtain a compact but sufficiently rich
mechanical representation for both control and design optimization applications. Our choice is
based on non- linear compliance data in the space of robot constraints (actuator, effector and
contact) provided by a condensation of the FEM model. The proposed method is able to handle
all kinds of constraints and in particular contacts. We demonstrate that this compact model can
be learned with a reasonable amount of data and remain very efficient in terms of modeling,
since we can deduce the direct and inverse kinematics of the robot. We envision this condensed
FEM modeling as a general framework for modeling, control, and design of soft robots. This
work have been jointly developed with Etienne Menager and presented in two articles [Mén+23],
one being under review.

First, the learned condensed FEM model is contextualized within the model reduction
bibliography and the proposed mechanical representation is described in section 4.2. Then
several applications leveraging the proposed compact mechanical representation of a soft robot
are described. These applications are summarized in Figure 4.1.

Section 4.3 highlights the use of the condensed FEM model in control scenarios, demonstrat-
ing the derivation of both direct and inverse kinematics. Rather than directly learning a direct
or inverse kinematic link between effectors movement and actuators movement, a mechanical
representation is learned. This approach enables the development of various control schemes
from a single learned model, as illustrated in two manipulation scenarios with a soft gripper.

85
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Additionally, this section emphasizes the modularity of the proposed framework by showcasing
the control of a complete gripper in a manipulation task based on the condensed FEM model
learned from a single soft finger.

In section 4.4, both the low-memory consumption and the high prediction speed of the
learned condensed model are leveraged for real-time embedding control without relying on
expensive online FEM simulation .

In section 4.5, it is demonstrated how both the expressivity and the differentiability of the
learned condensed model relative to soft robot design variations are used in calibration and
design optimization applications.

Finally, section 4.6 discuss the advantages and limitations of the proposed framework.

Figure 4.1: Illustration of the proposed framework and its applications. A physical soft robot
is modeled using the FEM. The condensed modeling is obtained by projecting the FEM charac-
teristic matrices in the constraint space. A neural network is trained offline for predicting the
condensed FEM modeling from both the initial robot condensed state and applied actuation. For
a given robot, a single learned condensed FEM modeling may be used in several applications i.e.
for real-time embedded control, for inverse control involving a set of predefined contact points,
for controlling several coupled similar robots altogether as well as for calibration and design
optimization.
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4.2 Learned Condensed FEM Modeling

In this section, the learned condensed FEM model is introduced. After contextualizing the
chosen mechanical representation, we justify the choice of the model to be learned and explain
how it is built and applied in control applications.

4.2.1 Model Order Reduction based on Soft Robot Simulation for Embedded
Control and Design

As described in section 2.1.5 of the state of the art, model order reduction techniques aim to lower
the computational complexity of computationally expensive and large-dimension mathematical
models in numerical simulations. In this work, we target a new method for building a reduced
model of soft robots. This model should capture the inverse and direct kinematics of the robot
under quasi-static assumptions, and accounts for contact configurations. In addition, this
reduced model has to be sufficiently small to be embedded in a micro-controller. It should
also be sufficiently generic to capture design variations for calibration and design optimization
applications.

Modeling and Control

Models chosen for describing the behaviour of soft robots influence the way they are controlled.
For example, thanks to their small dimension, beam models can be used for quick control
loops [LXZ23] or predictive control [SK22]. However, the 1D aspect of the underlying model
does not enable considering complex robot geometries. Other highly simplified models, such as
the voxel-based mass-spring model used in EvolutionGym [Bha+22], enable to easily explore
the resolution of complex tasks thanks to their low computational cost, but they do not transfer
well to physical robots. Several works propose to use neural networks to learn robot model
from experimental data [Thu+17; Gil+18; Ber+20]. However, they can require large amounts of
training data to be accurate, which can limit their use in situations where data is either rare or ex-
pensive to obtain. Learned models have been applied in low-level adaptive controllers [Thu+17;
Thu+18], but their capabilities are limited to the training data sets. Finally, models based on
continuum mechanics can be used to build controllers based on fine control of robot deformation.
For example, the FEM model can be condensed through projection in a smaller space [Dur13a].
However, this still requires to compute the entire FEM model for computing the condensation.
The linearization of the command and the size of the involved mathematical systems reduce the
control time horizon and imposes low-level control.

Reduced Order Modeling for Control

Using reduced models is a common approach in soft robotics to simplify the modeling and
control of these complex systems. They are obtained using different methods, including pro-
jection, simplification, and learning. In [GD18], Proper Orthogonal Decomposition is applied
to reconstruct the state of a robot based on deformation modes. The general idea is to reduce
the number of degrees of freedom in the simulation, keeping only the modes that faithfully
simulate the robot. This method requires an offline learning phase and is coupled with ad-
ditional control tools from [CED17] for real-time control of soft robots. However, leveraging
this reduced model for embedded control applications is still too computationally intensive.
Simplification of the robot’s mechanical behaviour can be achieved by using beam models such
as Euler-Bernoulli or Cosserat to represent the behaviour of more complex robots in a smaller
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resolution space [MPD23]. As the model is simplified, it only represents the robot’s behaviour
under a given set of assumptions. Learning methods enable the estimation of reduced models
from experimental data. Various learning methods can be used. For example, data-driven
approach has been applied to learn a differentiable inverse model of a soft robot’s quasi-static
physics linking actuation to effector positions [Ber+20]. However, since this direct link depends
on the specific task at hand, the learned reduced model is only applicable to the conditions
under which the data was collected. Each scenario requires specific training. In addition, learned
models may not be able to capture the transient dynamic effects of the system, which may
affect the performance of the associated controller. Other learning based methods facilitate the
implementation of multi-time-step control. For example, a spectral sub-manifold can be used to
learn the robot’s dynamics around an equilibrium point [Alo+22]. The method has to rely on
approximate dynamics and applications are limited to robots with equilibrium points and no
contact points. Using reduced models significantly impacts system controllability. Simplifying
the model reduces the complexity of the controller, making its design more straightforward and
efficient. In addition, reduced models can enable faster and more efficient simulation, which can
be useful for the design and optimization of reactive controllers [Thu+17; LXZ23]. However,
using reduced models can also pose challenges for controllability. By reducing the number
of degrees of freedom of the system, it is possible to lose important information on system
behaviour. This can affect model accuracy and controller performance. For example, in the
proxies method [MPD23], a simplified model has to be combined with an FEM-based control
loop to correct the errors of the beam-based model. In addition, reduced models may not be able
to capture non-linear effects and complex interactions with the environment, which may limit
their use in more complex situations. This is the case, for example, with models learned for one
set of contacts [GD18], which are difficult to generalize to a different set of contacts.

Reduced Order Modeling for Design

A trend towards using surrogates to facilitate soft robot design exploration is starting to emerge.
These models are approximate representations of system behaviour under different working
conditions. Surrogate models have been applied to optimize robot design according to specific
performance criteria. In [YHM24], a surrogate model is learned to predict angular deflection
of pneumatic modules as a function of mechanical and geometric parameters. However, in
this approach, changing the cost function requires generating new data and relearning the
surrogate model. In [ZSZ23], an FEM-based differentiable surrogate model is used to perform
joint optimization of the design and trajectory of an auxetic robot. However, this model seeks to
predict the behaviour of each lattice node and is limited to cylindrical geometries, which restricts
its applicability to other design parameters. Finally, a soft crawler robot legs placement has been
optimized to maximize its locomotion capacity [SSW22]. It relies on pre-learned POD-based
reduced models of the legs as presented in [GD18] to speed up the simulation. This application
is particularly compelling as it co-optimizes both the morphology and control of the soft robot,
enabling the emergence of Embodied Intelligence.

However, not all reduced models are suitable for design optimization. For example, the POD-
based model presented in [GD18] is a mesh and design-dependent model, meaning it cannot be
explicitly linked to geometric design parameters. In the above-mentioned optimization case of
the soft crawler robot [SSW22], it does not enable to consider variations of the legs geometry.
Moreover, other learning-based models presented in [Thu+17; Alo+22] do not depend explicitly
on the design of the soft-robots.
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4.2.2 Mechanical Representation Learning

In this work, a high-dimensional state of the robot is available through simulation. For reducing
the dimension of this state, the global compliance matrix projected in the constraint space W
is a good candidate because it is a small dimensional matrix, independent of the size of the
FEM mesh and it expresses a direct relationship between actuator and effector constraint spaces.
This matrix is obtained through condensation of the FEM model in the space of constraint, as
described in this manuscript state of the art in sections 2.1.4 and 2.2.1. We recall that W is
defined as Wij = HiA−1(q, q̇)HT

j for i, j ∈ {a,c, e}, q the degrees of freedom and HT
i for i ∈ {a,c, c}

are the first derivatives of the constraints. When the model is dynamic, A is analogous to an
impedance matrix, so A−1 represents an admittance. In contrast, when the model is quasi-static,
A is analogous to a stiffness matrix, making A−1 represents compliance. This suggests that the
condensed model could be applicable in dynamic contexts. However, for this study, we have
primarily focused on quasi-static conditions, which is why we emphasize compliance. The
mechanical matrices Wij and δj for i, j ∈ {a,c, e}, respectively the compliance and characteristic
distances both projected in the constraint space, can be seen as a reduced state of a soft robot.
It has been shown that both direct and inverse models of soft robot can be derived, as long as
an approximation of the δj for j ∈ {a,c, e} is available. Combining W with the free displacement
vector δfree enable to obtain this approximation using the following equations:

δa = Waaλa +Wacλc + δ
f ree
a

δc = Wcaλa +Wccλc + δ
f ree
c

δe = Weaλa +Wecλc + δ
f ree
e

(4.1)

In the FEM framework, the computation of W is expensive because it involves the multiplica-
tion and inversion of several large matrices and this needs to be computed at every simulation
step. This is an incentive for learning it rather than computing it from mechanical simulation.
Learning these mechanical quantities rather than non-supervised ones makes it possible to
obtain interpretative mechanical robot representations useful for simulating, controlling, and
even designing the robot. The method is illustrated in Figure 4.2.

For building the condensed FEM model, we consider the following hypotheses:

• The robot’s behaviour is described using the quasi-static mechanical equations. This quasi-
static assumption holds true for robots that either move slowly or have negligible mass. If
this assumption no longer holds, dynamic effects will emerge that are not taken into account
by the model. This assumption is valid for many robots (catheters, trunks, etc.) [Coe19;
Kar+20]. For other applications, such as high-frequency pick-and-place [ZHD21] or
locomotors that are not attached to a fixed base [Coe19], dynamic effects often have to be
taken into account. In this work we consider fixed-base robots with low speeds.

• The location of the contact points on the robot is known in advance, even though these
points are not necessarily active throughout the simulation. This assumption means that
contacts only exist at these locations. In more complex contact scenarios, such as dexterous
manipulation [Coe19] or catheter locomotion for minimally invasive surgery [Kar+20], the
position and number of contact points is not known in advance.

• Only actuation and contact forces modify the state of the robot. This means that even if W
directly depends on the global FEM state, the knowledge of both actuators and contacts
states is enough to evaluate W in the quasi-static case.
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Figure 4.2: Illustration of the condensed FEM model for both the Diamond parallel and Soft
Finger robots. They are respectively actuated by 4 and 2 cables. In both cases, a FEM model of
the robot (left) is used to learn a condensed model (right). The reduced model is based on the
projection of the compliance matrix into the constraint space, resulting in drastically reducing
the number of characteristic dimensions describing a robot state.

• As we are not using highly non-linear material models or considering non-linear phe-
nomenons such as buckling, there are no cases where the robot can reach a similar configu-
ration for a same actuation.

• The data space is dense enough to represent the quasi-static state of the robot in many
configurations. This assumption leads to significant sampling, which can be difficult to
achieve when there are many different actuators or contacts.

The learning problem can be formulated in the following way. Let δa and δc be the effective
states reached by both actuation and contact constraints when applying a specific active con-
straint state, W and δfree be the corresponding compliance matrix and free displacement of the
robot projected in the constraint space. The goal is to reconstruct (W,δfree) from initial values
(W0,δ

free
0 ) for efforts λa = 0, λc = 0 and current active constraint state δa, δc. This leads to learn a

function F such that:

W̃, δ̃free = F(δa,δc,W0,δ
free
0 ) (4.2)

W0 is a good compliance initialization since it already captures the mechanical coupling
between constraints and the compliance matrix varies smoothly from that initial position in the
robot workspace.
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4.2.3 Learning Model

The compliance matrix W is a symmetric matrix that represents the compliance in the space of
defined constraints: actuator, effector and contact. It is formed by sub mechanical matrices as
follows:

W =

Wee Wea Wec
Wae Waa Wac
Wce Wca Wcc

 (4.3)

The magnitude of both the values of W and δfree depends on both the type of constraints
and the measurement units chosen for the simulation. To avoid vanishing gradients during the
learning process, both the input and output data are element-wise standardized. Standardization
involves transforming each feature in the dataset so that it has a mean of 0 and a standard
deviation of 1. This is done by subtracting the mean of the feature and then dividing by its
standard deviation, computed across the entire training set. This standardization is computed
once using all the training set.

As the matrix is symmetric, the networks are trained in a supervised manner by minimizing
the reconstruction loss:

L =
∑
δa,δc

[||W̃tri −Wtri||2 + ||δ̃free − δfree||2] (4.4)

where Wtri is the upper triangular part of the matrix W, W̃tri and δ̃free are the predicted values
of Wtri and δfree as given by the network for actuation displacement δa and contact displacement
δc. As all data are standardized, the computed loss functions obtained on different training data
are somewhat comparable.

Well-known neural network architectures such as the MultiLayer Perceptron (MLP) are
sufficient for learning a mechanical representation for control and design tasks. This kind of
network is chosen because it is one of the simplest one. As it has few weights, it is very quick
to train and produce results. In our implementation, the input is the raw data vectorized and
concatenated to form a single vector and the output is the vectorized couple (W̃tri, δ̃free). Rectified
Linear Unit (ReLu) activation functions are used.

As the framework is a supervised learning framework, pre-computation steps where data
are collected and the learning model is trained are first performed. The data (δa,δc,Wtri,δfree)
are obtained through simulation and stored in a database. Each data point is associated with
a robot configuration after applying an active constraint displacement (δa, δc). The range of
possible values of both δa and δc are bounded in continuous intervals. Sampling the active
constraint space is done using Scrambled Halton sampling algorithm [MC04] for building the
training dataset and random search for the test dataset. Compared to homogeneous grid search
strategies, it enables a better filling of a high dimensional sampling space and therefore a
better scalability to robot having numerous actuators and contacts. For example, while 15000
configurations sampled with a grid search strategy were used for the Soft Finger robot without
contact, we reduce the number of needed samples using the SH sampling algorithm to 6500 (see
section 4.3). Reducing the dataset by 60% does not compromise the accuracy of the resulting
matrices. Moreover, the number of sampled configurations is less or equal to those required
for other methods. For example, the POD-based model presented in [GD18] requires 10000
samples to create a reduced model of a cable-driven parallel robot, where the learned condensed
FEM model rely on only 6561 samples for the same robot with a grid search strategy. We do not
consider optimizing the number of samples in this work, but we highlight that there is potential



92 CHAPTER 4. Condensed FEM Modeling for Embedded Control and Design Optimization

for improvement in this area.

The number of points of the test set is chosen to amount to 25% of the number of points
of the training set. Once the data is acquired, learning consists in training the network to
predict the quantities (Wtri,δfree) from the quantities (δa,δc,W

tri
0 ,δfree

0 ) using MLP predictions
and Equation 4.4. Unless mentioned otherwise, the used network in the following experiments
of this chapter is a fully connected MLP with 3 hidden layers of 450 nodes each. The learning
rate is initialized to 10−3 and incrementally decreased with an adaptive scheduler.

For all the learning experiments, training stops after a maximum of 50000 epochs. We retain
the model from the epoch that achieves the lowest loss on the test set. The initial learning rate
is set to 10−4. An adaptive scheduler is consistently used in all experiments to automatically
reduce the learning rate when the optimizer encounters a local optimum. We employ a discrete
hyperparameter search to determine the best set of hyperparameters. Various combinations
are tested, and models are compared using our training strategy on the same dataset. The
hyperparameters explored include the number of hidden layers, which ranges from 3 to 5, and
the number of nodes per hidden layer, which ranges from 400 to 900.

4.2.4 Learned Condensed FEM Model for Control Applications

Once learned, the condensed FEM model can be used in a control loop scheme. We suppose
that Wtri

0 and δfree
0 are known. δa and δc are obtained through measurements on the robot. Then,

the trained network is used to predict (W̃tri, δ̃free) = F(δa,δc,W
tri
0 ,δfree

0 ), where W̃ is reconstructed
from W̃tri.

Even if the condensed FEM model is learned on a predefined set of fixed goals xtrain
goal , one for

each of the effectors according to δ̃free
e = xeffector − xtrain

goal , it can be easily adapted to other goals
xgoal during the control phase with the formula:

δfree
e = δ̃free

e + xtrain
goal − xgoal (4.5)

The learned quantities are used in an inverse optimization problem using a quadratic opti-
mization solver. The aim is to compute the actuation force vector λa necessary for controlling
the robot. The C++ library Prox-QP [Bam+22] is used for implementing the solver in our work.
Finally, the actuation effort λa is applied on the robot, and the respective new actuation and
contact states δa and δc are recovered. At this step, corrective motion can be applied to improve
performance, stability, and precision. In particular, it enables to palliate the two main sources
of errors which are due to both the learning and the simulation-to-reality gap. The control
loop starts again with a new prediction of the value until convergence, i.e. until an accuracy or
stability criterion is satisfied.

In section 4.3, this pipeline is applied to simulated robots. As the simulation-to-reality
transfer of the robots considered in our experiments has already been studied in previous
works, the simulation could be considered as a ground truth for assessing our algorithms. For
a FEM model, this transfer is possible when the mechanical and geometric parameters of the
simulated model are well calibrated, the mesh discretization is precise enough and when the
boundary conditions on forces and contacts are respected. Constraints states could then be
directly retrieved as results from the simulation. In section 4.4, this workflow is applied on a
physical prototype. Constraint states are retrieved from a set of sensors, thus enabling to avoid
doing FEM simulation of the robot in the control loop.
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4.3 Soft Robot Control using a Condensed FEM Model

4.3.1 Open Loop Control of Soft Robots without Contacts

Following the introduction of the condensed FEM model, a set of experiments are introduced be-
low for highlighting control applications without taking contacts into account. After introducing
the two considered robots, open loop control and analysis of mesh influence are performed.

Diamond and Soft Finger Robot without Contacts

The open-loop control is illustrated and validated using two FEM models of different soft robots
driven by cables. These robots are shown in Figure 4.2.

• The Diamond robot is a soft parallel silicone robot driven by 4 cables. The FEM model
of this robot has been validated in [Dur13a]. The simulation mesh is made of 4147
tetrahedrons.

• The Soft Finger robot is validated in [Nav+20]. It is made up of three segments connected
by accordion-shaped joints and actuated by 2 cables. The simulation mesh is made of 1557
tetrahedrons.

These two robots are simulated in SOFA using components from the SoftRobot plugin [Dur13a] [Coe+17].
FEM-based control has already been applied and validated on real robots in the above-mentioned
work. Consequently, in the following, simulation results are considered as ground truth.

For each robot, the data are retrieved from the simulation as described in subsection 4.2.3.
Statistics about the data are given in Table 4.1. During data acquisition, the space of displace-
ments i.e. the space of relative lengths δa imposed on the cables is discretized and the actuation
state is observed as the reached length of the cables at equilibrium.

Table 4.1: Data acquisition parameters for each robot for nl = 6500 sample points in the
workspace. Final loss and best epoch after 9000 learning iterations.

Robot Cable workspace Final Loss Best Epoch
δa,min δa,max

Diamond 0 30 6.52e-5 8960
Finger 0 20 3.79e-6 8850

Learning Results

For evaluating the learning process, the average loss is computed on the test set of random robots
configurations. Learning results for the condensed FEM model are given in Table 4.1.

Although there are more constraints in the Diamond problem, it takes the same amount of
data samples for training the MLP for the Diamond and the Soft Finger.

This is because more mechanical non-linearities are observed in the Soft Finger case as it
implies more element rotations. In this example, the influence of the forces exerted on the
actuators on the end effector changes a lot depending on the configuration of the robot, i.e.
depending on how bent the robot is.
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Control Results

To evaluate the use of the learned condensed FEM model for inverse modeling, a trajectory is
considered in the form of several goal positions to be reached by the effector for each robot. As
the soft robot dynamics is neglected in this study, the results are only valid in the quasi-static
regime. The results are shown in Figure 4.3.

Figure 4.3: Control results for the Diamond and Soft Finger robots without contact. On the left,
the trajectory of the end effector of the Diamond robot in the (x, y) plane (mm) for 30 different
goals (orange dots) when using learned mechanical matrices (blue cross) or computed FEM
mechanical matrices (red cross). 3 different positions of the Diamond robot along this trajectory
are shown as examples. The effector is represented by a green dot, and the goal by an orange
dot. On the right, the trajectory of the end effector of the Soft Finger robot in the (y, z) plane
(mm) for 25 different goals (orange dots) when using learned mechanical matrices (blue cross) or
computed mechanical matrices (red cross). 3 different positions of the Soft Finger robot along
this trajectory are shown as examples.

A circular trajectory of the effector in a horizontal plane is applied on the Diamond robot.
This trajectory is chosen for being convenient for two dimensions visualization although the
robot end effector can be controlled in all three directions of space. Then the positions obtained
for each goal using the condensed FEM model learning-based control pipeline and the classical
inverse model are compared. In most configurations, the positions reached by the tips in both
cases are very similar. This shows that the compact model is a good representation of the system.
In some positions, small-scale errors between the learned model and the full model can occur:
this comes from the learning errors specific to the method. This error can be further decreased
by increasing the discretization of the actuation space during data collection and by judicious
choices of network hyper-parameters.

For the Soft Finger robot, a trajectory is chosen to force the robot to bend. Both control
pipelines using the learned condensed FEM model and classical FEM model achieve similar
results. Training errors can be explained by the same reasons as for the Diamond robot. In
the case of the Soft Finger robot, the desired trajectory is not in the robot’s workspace. This
highlights that our framework relies on an optimization algorithm seeking to respect the soft
robot’s physical constraints.
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Analysis of Mesh Refinement Influence

Mesh refinement generally results in more accurate simulations at the cost of significant compu-
tation time. A compromise between speed and precision is needed for FEM-based control of a
soft robot in real time.

As the condensed FEM model is built from the projection of mechanical matrices in constraint
space, its size is independent of the mesh size. With a control based on a learned condensed
model, the additional computation costs of mesh refinement are transferred to the offline phase
of learning. This is experimented with the example of the three condensed FEM models of the
Soft Finger, with different mesh sizes (see Figure 4.4).

Figure 4.4: Soft Fingers with different mesh resolutions: A) 1557 tetrahedrons, B) 8895 tetrahe-
drons, C) 17852 tetrahedrons. For each of them, the average FPS of the simulation when using
the learned condensed or doing online FEM simulation is displayed.

6500 Soft Finger states are sampled for building the training set, and a fixed number of 9000
training iterations is performed for each Soft Finger. The magnitude order of final training
losses is similar, being respectively 3.79×10−6, 4.26×10−6 and 3.60×10−6 for meshes resolution
A, B and C. Moreover, simulations FPS are similar with the three discretizations as shown in
Figure 4.4.

There is no variation in FPS when using the learned condensed model. Whatever the size of
the mesh, the learned neural network queries allowing to get the mechanical state of the robot
takes about the same amount of time and results in similar prediction performances. The learned
condensed model complexity does not depend on the mesh size but on the number of actuators,
effectors, and contacts in the problem. As the mesh resolution increases, the FEM simulation is
more accurate. Thus, training on a more faithful data set leads to a more faithful result, without
resulting in additional computational expense for using the trained neural network.

Illustrating the Modularity of the Condensed FEM Model regarding Different Inverse Prob-
lems and Redundant Soft Robots

Mechanical matrices learned for a single soft robot can be used to formulate a single inverse
problem merging several identical soft robots. Moreover, both the data acquisition and training
phases of the condensed FEM model can be efficiently reduced for redundant robots.

This is illustrated with the example of a 2D Gripper robot made of two identical Soft Finger
robots as described in the previous section. The mechanical matrices of the system can be built



96 CHAPTER 4. Condensed FEM Modeling for Embedded Control and Design Optimization

from the matrices computed for a single Soft Finger. The learned mechanical representations
of the two Soft Fingers are mechanically coupled by adding a force between the effectors. This
force corresponds to a configuration in which the two Fingers catch an object by enabling one
Finger to reach a position while forcing the other Finger to follow it. To take this coupling into
account, the optimization problem is reformulated according to:

argλt
a,1,λ

t
a,2,λ

t
e
min ||Pt

e1
−Pgoal ||2

s.t.Pt
e1

+ β = Pt
e2

(4.6)

where Pt
e1

and Pt
e2

are the respective positions of the effectors of Fingers 1 and 2 at time
t, Pgoal the target position of Pt

e1
, β a distance describing the size of the object, λt

a,1 and λt
a,2

the forces applied on the cable actuators of respectively Fingers 1 and 2 at time t and λt
e the

coupling force shared on the two Fingers. Both the quantities Pt
e1

and Pt
e2

can be written with
the compliance matrices projected in the constraint space as
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ee,1(λt
e −λt−1

e,1 )

Pt
e2

= Pt−1
e2
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a,2 −λ
t−1
a,2 )− W̃t

ee,2(λt
e −λt−1

e )
(4.7)

where the W̃ea and W̃ee values are the predicted projected compliance values. The quantities at
time t − 1 are known quantities that are not involved in the optimization.

Figure 4.5: A) 2D Gripper robot controlled using effectors located at the tip of each finger. B)
Position obtained using mechanical coupling between Soft Fingers 1 and 2 and learned Finger
mechanical representation. The position of the effector of Finger 1 Pt

e1
is given by a goal point

while the position of the effector of Finger 2 Pt
e2

is imposed by the coupling. This coupling is
represented in the picture by an orange object to grasp.

This optimization problem enables to mechanically couple the two Fingers using the values
learned for a single Finger. Indeed it is possible to build W̃2 from the same network used to
predict W̃1 by carefully considering the orientation of the fingers. W̃2 is thus obtained from a
rotation of W̃1. Solving this optimization problem applied to the Gripper robot enables to catch
an object. Starting from the position given in the Figure 4.5.A, the resolution of Equation 4.6
leads to the result given in Figure 4.5.B. The movement of the gripped object between the two
Fingers can be controlled. However, there is a limitation when the force applied to the effectors
of the Fingers becomes important for extreme actuation positions. To solve this problem, it is
necessary to integrate the possibility of putting forces on the effector during the learning stage,
as described in the following section.
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4.3.2 Open Loop Control with Contacts

In this section, we introduce contact modeling using the condensed FEM model, considering
mostly manipulation control tasks.

Soft Gripper Robot with Contacts

To evaluate the condensed learned model with contact, we use the Soft Finger. First, it is used
to press a button. Then we combine the same soft finger three times to create a gripper and
manipulate an object. We made several simplifying assumptions: (i) the gripped object is always
rigid, (ii) the location of the contacts on the actuated flexible finger is fixed and placed on the
surface of the last phalanx, (iii) the contact points are always active and friction-less.

The condensed FEM model and the two considered application cases are illustrated in
Figure 4.6:

• A soft finger presses a cube-shaped button. The resistance of the button is modeled as a
constant horizontal force. This example is used to validate the learning of the different
mechanical quantities of the condensed FEM model related to contacts, namely Wcc, Wca,
and δ

f ree
c .

• A Soft Gripper manipulates a cube. The gripper consists of 3 identical Soft Finger robots.
This example also illustrates that a single condensed FEM model learned for one Soft
Finger robot can be used in another inverse optimization scheme coupling several Soft
Fingers.

Figure 4.6: Illustration of the condensed FEM model for a Soft Finger with contacts and the
two considered control scenarios (right). The Soft Finger is actuated by 2 cables and has 3 fixed
contact points located at the tip. The FEM model of the robot (left) is used to learn a condensed
model (middle). The condensed model is based on the projection of the compliance matrix into
the constraint space, resulting in drastically reducing the number of characteristic dimensions
describing a robot state. The scenarios are A) a Soft Finger robot pushing a button, and B) a Soft
Gripper robot manipulating a cube. The cube effector is represented by a green frame.

When generating the dataset for learning the condensed FEM model for both scenarios, the
sampling space is directly proportional to the number of both actuation and contact constraints.
One encountered issue is that exploring the constraint space has exponential complexity with the
number of constraints. In the case of the Soft Finger, there are 2 constraints relative to actuation
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and 9 constraints relative to contacts, since we fixed the number of contact points to 3. Moreover,
using a box sampling on both actuation and contact constraint spaces would result in many robot
states that are irrelevant to our applications. That is why in both cases, the dataset is generated
by sampling in the cube effector displacement space and using an inverse model to find the
corresponding robot configuration. This means that the position of the cube is sampled first, and
then an inverse model is used to find the active constraints to reach it. The sampling space size
is then reduced from 11 constraints to 3. As the two scenarios involve different configurations of
the cube, two different training sets are considered, each time for a single Soft Finger. Respective
final test loss for training the condensed FEM model for the Soft Finger and one Soft Finger of
the Soft Gripper over 50000 training iterations are 1.67e-6 and 1.24e-3.

Inverse Problem for Soft Finger/Object Interaction

Let Xcube ∈ R
6 be the position of the cube in both translation and rotation. Let prev be the

notation to refer to quantities calculated at the previous time step in an iterative process. In
a manipulation task, we want to control the translation of the cube. It is then equivalent to
minimizing the following quantity:

min
λa

||Xcube,trans −X
goal
cube,trans||

2 (4.8)

where Xgoal
cube,trans is the translation component of the goal position to reach, Xcube,trans the

translation component of X and ||.|| is the euclidean norm. To solve this problem, Xcube has to be
written as a function depending on the actuation force λa. We use condensed mechanics and
cube kinematics to obtain this function.

Kinematics of Points Placed on a Rigid Object From the hypothesis that contact points
location on both the Soft Finger and the object are shared, it results that λc = λc,finger = −λc,cube
and xc,finger = xc,cube, where xc,finger and xc,cube are the euclidean positions of the contact points
between the Soft Finger and the cube.

For an infinitesimal displacement of Xcube, the positions of Xcube and xc,cube are linked as:

xc,cube − xprev
c,cube = Jc(Xcube −X

prev
cube) (4.9)

where Jc ∈RN×6 is the Jacobian matrix linking the kinematics of the manipulated object to the
contact points and N the number of contact points.

From this Jacobian matrix, the resulting contact force on the cube is then expressed as
fcube = JTc λc.

Condensed mechanics applied on a Soft Manipulator
Knowing the contact forces fcube imposed on the cube, and multiplying by D = JTc W

−1
cc , the

following relation is obtained:

Dxprev
c,cube+DJc(Xcube −X

prev
cube) =

Dδfree
c +DWccλc +DWcaλa

(4.10)

Manipulating the equation gives a function Xcube = Aλa +B as DWccλc = fcube is known. The
optimization objective from Equation 4.8 is now well-posed.

Both the Soft Finger robot and the Soft Gripper robot differ in the way the force fcube is
computed. From the new values of Xcube and λa, it is then possible to compute a new value of λc
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using Equation 4.10.

Application: Soft Finger pushing a Press-button.

We aim to control the position of a cube through its contact with the soft finger. A known
constant horizontal force F is opposed to the orientation of the applied bending movement. The
contact force fcube can be deduced from F. A trajectory of positions of the center of the cube Xcube
following a horizontal line is given as the target. As the main direction of deformation of the
Soft Finger is in its bending direction, only a single degree of freedom of the cube is controlled.
The results are shown in Figure 4.7.

Figure 4.7: Control results for the Soft Finger robot pressing a button. The reached horizontal
position (mm) of the cube is compared on a trajectory of 9 successive goals (orange dots) when
using learned mechanical matrices (blue cross). The contact force exerted at the interface
between the Soft Finger and the button as well as the sum of actuation forces exerted on the two
cables during the trajectory are also displayed. 3 different positions of the Soft Finger robot met
during this trajectory are shown as examples. In this representation, the effector is a green frame,
and the goal is a red frame.

In this application, the soft robot open-loop control using the condensed FEM model shows a
similar degree of precision to the simulation-based control.

Application: Soft Gripper Manipulating a Cube.

This experiment aims at manipulating a cube using three Soft Fingers.
Mechanical Coupling Using Contacts for Manipulation
The mechanical matrices of the Soft Gripper robot are built from the mechanical matrices

computed on three single Soft Finger. Compared to the scenario of the Soft Finger pushing a
button, applied forces on the cube are not known this time.
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After solving the same problem as for a single Soft Finger, Equation 4.10 enables to express
the contact forces λc with the new values of the actuation forces λa and the 6D position of the
cube Xcube. The corresponding algorithm to control the robot is written as follows:

Algorithm 1 Control algorithm for object manipulation scenario.

Ensure: Start from λc = 0.
for each time step do

1. Compute λa from Equation 4.8 using Xcube = Aλa +B and the previous evaluation of λc.
λc is used for computing B.
2. Evaluate the new value of λc using Equation 4.1 and the new value of λa.

end for

In this algorithm, both λa and λc are updated once per time step using previous values.
Experimentations showed that this simple scheme is sufficient to control the robot. Another
valid choice would be to consider using an internal iterative procedure for gradually updating
λa and λc until their respective convergence at each time step. With the design choices for the
Soft Gripper robot, only small movements of the cube are enabled around its resting position.
Indeed, the initial configuration of the Soft Fingers in contact with the cube consists of fully
relaxed cable actuation. Thus, the motion is limited in the opposite direction of the Soft Fingers
bending.

Results
For the experiment, a circular trajectory of the object center is considered. The results are

shown in Figure 4.8.

Figure 4.8: Control results for the Soft Gripper robot. The positions of the manipulated cube
(mm) are compared on a trajectory for 20 different goals (orange dots) when using learned
mechanical matrices (blue cross) or mechanical matrices computed from the full simulation (red
cross).

On the considered trajectory, slight differences between goals and reached effector positions
are observed both with the simulation-based and learning-based controllers. In addition, a small
effector-goal gap of about 0.04 mm is observed along the vertical z-axes in both cases. This is
explained by the modeling of the manipulator which considers Soft Fingers contact points to
always be at the same location on the manipulated object. These errors could be reduced using a
closed-loop controller.

Moreover, small differences between the reached positions of both the simulation-based and
learning-based controllers are observed. Compared to the case of the Soft Finger pushing a
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button, training results are less good. This is explained by the complexity of the dataset, as
various forces can be applied to the cube.

For the moment, the application case considers only small deformations. However, results
show that contacts information can be taken into account in the learned condensed FEM model,
which is promising. Future works may consider application cases with larger deformation and
collision detection/resolution so to avoid having the fixed contact points location hypothesis.
This may open the path to locomotion applications.

4.4 Embedded Control of Soft Robot

In this section, it is demonstrated how the condensed FEM model can be used to control a
physical pneumatic robot ongoing large displacements without relying on online FEM simulation,
leveraging both the small scale and prediction speed of the neural network for application in
embedded control.

4.4.1 Pneumatically Actuated Continuum Robot.

The considered soft robot is a pneumatic trunk robot initially introduced in [Abi+18]. The robot
is a highly flexible and pneumatically driven soft robot composed of two modules including three
fully fiber-reinforced chamber pairs each. This robot was developed for medical applications as
an in-vivo cancer diagnostic tool during minimally invasive interventions. The physical robot
and the associated simulation are shown in Figure 4.9.

Figure 4.9: Illustration of the physical prototype and the condensed FEM model for the PAC
robot. The robot is actuated by 6 pneumatic cavities represented by blue cylinders. A location
sensor is located at its tip. The reduced FEM-based modeling from [Cha+23] is displayed as the
FEM model.

Physical prototype: The chamber pressure is regulated and monitored by solenoid valves
(Rexroth ED02 R414002399). This pressure regulators are voltage-actuated, and the proportional
voltage is generated thanks to a dedicated voltage output board (PhidgetAnalog 4-Output
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1000_0b). Pressurized air is supplied to the regulators by a compressor (Fengda FD-186). An
electromagnetic tracking system (Polhemus Liberty) monitors the end-effector position and
orientation. The system may be connected both to a computer or Raspberry Pi, synchronized
and connected with the learned model through Python scripts. An illustration of the hardware
setup with a Raspberry Pi is provided in Figure 4.12.

Simulation: The Stiff-Flop robot is built using a beam-based reduced finite element method
model as described in [Cha+23]. Compared to [Cha+23], the sensor stiffness cannot be neglected
on our physical prototype. We consequently adapt the stiffness of the modules leading to a
Young Modulus of 150kPa and 90kPa respectively for the base and the top modules.

Learned condensed FEM model: The condensed FEM model is learned upon the beam-based
reduced model and not on the full-FEM simulation to speed up the sampling phase and to
highlight the capacity of the condensed FEM model to further decrease computation cost, even
for already optimized simulation. Data are collected in the space of the volume change of the
cavities. The dataset is composed of 30000 configurations of the robot. The final test loss for
training the condensed FEM model for this soft robot over 50000 training episodes is 6.05e − 5.

4.4.2 Control using the Condensed FEM Model with Minimal Sensor Feed-
back

A strong assumption of the control loop used in previous control applications is that both the
actual displacements of the actuators and the actual positions of the effectors are observable.
Practically, this requires the systematic use of a set of adapted sensors, introducing an additional
constraint on the physical prototype. This issue is overcome by the following framework
targeting both embedded open and closed-loop control of a robot from absolute position sensor
feedback.

Concerning the Stiff-Flop robot, the system is pressure-controlled. There is no direct access
to the position of the actuator. In our case, it would require a sensor of the volume of each cavity
and there is no trivial way to build such a sensor. Instead, the condensed FEM model is used
as a state observer. The value of the volume of the cavities is computed based on the actuation
λa and the projected mechanical matrices from δa(x) = Wprev

aa λa + δ
free,prev
a where prev stands for

the evaluation of the mechanical quantities in the previous iteration of the control loop. This
strategy results in a time-step shift on the predicted mechanical matrices used for computing the
actuation displacement. This shift may be corrected using a suitable corrector in a closed-loop
setting.

The general embedded control loop framework is as described in Alg. 2.
To close the loop, a measurement taken on the physical robot must be compared with

the values predicted by the used control scheme. In the proposed experiment, a location
sensor is placed on the tip of the robot, and a PI controller is set on the effector displacement
(see Equation 4.5). The same proportional and integral coefficients are considered for all the
experiments, independently of the frequency of the control loop.

4.4.3 Experiments in a Virtual Environment

To evaluate the use of the learned condensed model for inverse control of the Stiff-Flop robot, a
40mm radius circular trajectory around the robot tip is considered. This trajectory takes the form
of a succession of 200 goal positions to reach the circle from the initial rest position followed by
600 successive goal positions describing the circle itself.

The objective of the following experiments is to evaluate the introduced control scheme used
with the learned condensed FEM model in open-loop. Initially, the experiments are carried out
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Algorithm 2 Embedded control loop with end-effector location feedback only.

Ensure: Access to W0 and δfree
0 from the training dataset. Set initial actuation λa = 0 and initial

actuators displacement δa = δfree
a,0 .

for each time step do
1. If considering to close the loop, recover the position of the effectors and compute the
corrected goal position.
2. Predict the mechanical quantities W̃ and δ̃free according to Equation 4.2 without contact,
using the trained neural network.
3. Solve the optimization problem to find the force λa.
4. Compute the new actuator state from mechanical matrices and forces as δa = Waaλa +δfree

a
for querying the learned condensed FEM model at the next iterations.
5. Apply the forces λa on the robot.

end for

in a virtual environment to limit the artifacts associated with the simulation to reality transfer.
The positions errors are compared when using either the computed state of the actuation δa or
the predicted state of the actuation δa = Wprev

aa λa + δ
free,prev
a as explained in the previous section.

In both cases, the trajectory is closely matched in open-loop, with a maximum error of
approximately 1.8 mm using the computed state and 5 mm using the predicted state. These
results show that the robot is capable of following the circular trajectory, even if no actuation
states are measured in the simulation as in the second case. When the predicted state is used,
a constant shift depending on the discretization step used for the integration is nevertheless
observable. Indeed, increasing the number of intermediate goals sampled on the circular
trajectory results in decreasing the error on the robot state estimation between two successive
points. This shift can also be compensated by setting up a closed-loop control scheme based on
minimal sensor feedback, as shown in the following experiments on the physical prototype.

Figure 4.10: Performed trajectory and tracking errors obtained for performing a circular tra-
jectory (orange dots) using condensed FEM model-based control schemes with the physical
prototype of the robot. Errors are computed as the absolute distance between the desired and
the reached positions. Experiments are A) Comparison of full order simulation (red) based
and condensed FEM model with minimal sensor feedback (blue) based open-loop control, B)
Comparison of simulation (red) based and condensed FEM model with minimal sensor feedback
(blue) based closed-loop control.
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4.4.4 Experiments with the Physical Prototype

Hardware Setup Description

The chamber pressure is regulated and monitored by solenoid valves (Rexroth ED02 R414002399).
This pressure regulators are voltage-actuated, and the proportional voltage is generated thanks
to a dedicated voltage output board (PhidgetAnalog 4-Output 1000_0b). Pressurized air is
supplied to the regulators by a compressor (Fengda FD-186). An electromagnetic tracking
system (Polhemus Liberty) monitors the end-effector position and orientation. The system may
be connected both to a computer or Raspberry Pi, synchronized and connected with the learned
model through Python scripts. An illustration of the hardware setup with a Raspberry Pi is
provided in Figure 4.12.

Evaluation of the Transfer to Reality

The control is tested on both the simulated and the physical robot. Results are shown in
Figure 4.10. Both open and closed-loop scenarios follow the same 40mm circle trajectory. This
validates the use of this model for robot control, under the same conditions as the physical
prototype, and also demonstrates the benefits and drawbacks of this system for positioning
purposes.

The computational cost cutback lets the learned model run at 10e3 Hz. The communication
with the hardware setup limits the feedback loop at 90.9 Hz which is limited for example by
the Polhemus sensor, able to communicate at 100 Hz. With the classic beam-based reduced
model, the simulation runs at 5 Hz, so the communication system does not limit the control loop
frequency.

In the rest of this section, we will detail and discuss the results obtained with the physical
prototype in terms of open loop, closed loop, convergence speed of the closed loop control and
embedded control.

Open-Loop Control
As computing a robot state using the learned condensed FEM model is way faster than when

using the reduced FEM-based simulation [Cha+23], the actuation pressures are also applied
faster. This may lead to dynamical effects that are not taken into account in the quasi-static
modeling used for learning the condensed FEM model. Reducing these dynamical effects is then
performed by increasing the number of intermediate goals sampled on the trajectory. At each
time step, the robot’s inverse problem is solved using optimisation tools, and the actuation to
move from one point to another is imposed. By reducing the distance between two successive
points, the variation in actuation to reach the next point in one time step is reduced. Acceleration
is also reduced, which reduces dynamic effects. The greater the number of points on the circle,
the less the dynamic effects affect the model’s performance. The quasi-static assumption is thus
performing better if the number of points on the trajectory is increased for a given time budget.
This criterion is used to compare the temporal performance of the models over several goals,
as well as the accuracy they achieve within a given time budget. In practice, we consider that
we have the same calculation time budget for both models to achieve a circular trajectory. This
budget is set to 80 seconds.

Concerning the computational performance of the model, the idea is to know how many
points can be considered in the allocated time. As the model has to be calculated for each point
to be reached, this value gives the average calculation time for both models. For 80 seconds of
calculation, 3300 points can be reached with the learned condensed model. Only 500 points can
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be reached with the beam-based model. The open-loop built from the learned condensed FEM
model is 7 times faster on average than a reduced model that uses beam theory to be simulated.

Concerning the accuracy of the model under time budget constraint, results are displayed
in Fig 4.10.A. It demonstrates the ability to transfer to a physical prototype using the learned
condensed FEM model without actuation sensors. In fact, the trajectory errors when using the
learned condensed FEM model have the same magnitude as when using the beam-based FEM
model. The little difference between the mean error could be explained by the use of predicted
actuation states from previous mechanical state, leading to a one-time step shift between the
mechanical state values evaluated in the two methods.

Thus, using the condensed FEM model does not enable increasing the speed of doing the
entire circle trajectory under strong accuracy constraints for the Stiff-Flop robot. Indeed, increas-
ing the speed will directly increase the positioning error due to the dynamic effect. However, it
is possible to consider more points in the trajectory for the same time budget with the learned
condensed model. This makes it possible to compensate more quickly for errors in a closed loop,
as demonstrated in the next experiment.

Closed-Loop Control
Assessing the closed-loop trajectory is performed with the same iteration distribution and

under a time budget as for the open-loop experiment. The proportional and integral error
weights are respectively KP = 0.01 and KI = 0.002. The choice of the control approach is not the
focus of this work. The objective is to show the interest of the high frequency of the condensed
model in a closed control loop scenario, without trying to have the best closed loop for our task.
It is certain that other more efficient control schemes could be designed.

Results are displayed in Fig 4.10.B. The positioning accuracy improvement is noteworthy
when using the learned condensed FEM model-based closed-loop. This accuracy improvement
is mainly due to the PI correction. Indeed, the correction frequency is way higher with the
learned model, so the system compensates better both modeling and control errors compared
to the closed-loop using the beam-based reduced modeling. Indeed, for the same time budget,
the learned condensed FEM model may use higher iterations, so it will apply more successive
corrections to reach more accurate positions. The high computing frequency related to using the
learned condensed FEM model overcomes the inaccuracies for closed-loop control applications.

Convergence Speed of the Closed Loop Control

In this experiment, the convergence speed of the closed loop is evaluated on the task of reaching
a point in space with a given precision, i.e. when the error to the target is less than a given
threshold. Practically, we consider that the error threshold is reached when the error remains
below ϵ = 0.5mm for at least 2.4 seconds which corresponds to around 10 simulation steps of
the FEM model.

The results are plot in Figure 4.11. The error threshold is reached in more than 100 seconds
for the beam-based model, compared with around ten seconds for the learned condensed model.
Due to its high correction speed, the closed loop based on the learned condensed FEM model
reaches the desired position in space faster than with the beam-based reduced model control
loop. It shows that a PID corrector can be used to correct iteratively any errors faster with the
learned condensed model, as the learned condensed FEM model prediction is faster than the
beam-based model prediction, and the error between the two models remains small.

This speed improvement demonstrates the utility of the learned condensed FEM model
for accurate positioning control. This demonstrates very interesting properties for accurate
medical applications like biopsy retrieval where it is needed to reach point-per-point positions
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Figure 4.11: Convergence histories obtained in a closed loop setting for reaching a point, and
pictures of the associated reached state by the physical prototype. Log-scale error histories are
compared respectively for simulation-based (red) and condensed FEM-based (blue) closed-loop
control. The aimed error is 0.5mm to the target point (orange dot line). Considered target points
are A) [57, -5, -70], B) [106, 26, 32.5], and C) [92.5, -58.5, 9].

with accuracy criterion. In addition, as shown in the supplementary video, this high-frequency
correction helps to react faster to external disturbances such as contact without modeling them.
The minimal sensor configuration is considered. The value of δa (and therefore the predictions of
W and δf ree) depend on the λa and the position of the end effector. When the robot is disturbed,
the position of the effector no longer corresponds to the position given by the condensed model.
Indirectly, this disturbance information is taken into account in the δa. The closed loop is then
used to quickly react to this kind of error, even if no disturbance effect has been taken into
account during training. Depending on the considered task, this feature could be an asset to
ensure a good trade-off between precision and speed over a considered trajectory.

Embedded Control

The control loops developed with the learned condensed FEM model have low computation and
memory resource consumption. Indeed, the memory consumed by the main controller loop is
estimated at 660 MiB on average.

The full algorithm has been directly embedded in a Raspberry PI 4. It has been tested on the
different scenarios and features comparable results, demonstrating using the embedded control
loop based on the condensed model on microprocessors. The results in terms of positioning
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Figure 4.12: Picture of the setup with the Raspberry Pi.

are identical to those presented in Figure 4.10. The difference is on the calculation time, which
is longer on a Raspberry PI 4 than on a computer with a high-performance processor as the
calculation frequency is not the same.

This implementation demonstrates the clear advantage of using the learned condensed FEM
model for embedded robot control, which may run with good performances on light hardware.
This could be useful for control in contexts of robot autonomy, such as flying robots [RK22] or
aquatic exploration applications [SNW17].

4.5 Condensed FEM Modeling Extended to Calibration and
Design

In classical design optimization loops, designs are evaluated in simulation for iteratively updating
design parameters. The computation time of the entire process is directly proportional to the
computation time needed for simulating a design. Recent works in the community consider
training a surrogate to directly learn the values of the fitness function relative to the design
variables, as we did in Chapter 3.

Changing the fitness function then requires to regenerate data and re-train a model.

The specificity of our model is to learn mechanical matrices instead of fitness functions, and
account for controller variables on all the considered workspace. In fact, both the W and δfree

mechanical matrices directly capture the link between the robot’s actuators, contact points, and
effectors. This link depends directly on the robot’s body and its mechanical properties. It is then
possible to write multiple fitness functions characterizing design performance and control based
on the condensed FEM matrices.

We make the hypothesis that a design can be described by the mechanical matrices character-
istics of its rest state, namely W0 and δ

f ree
0 . This hypothesis will be challenged in the applications

in the next sections. However, W0 and δ
f ree
0 does not enable directly to generate this design. This

is why we introduce some explicit design parameters p which makes sense for the user.
The idea is therefore to build a differentiable link as follows:
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W̃0, δ̃
free
0 = G(p) (4.11)

where G is a MLP network. Data are collected in the same way as for the network F and
the training loss is similar to Equation 4.4. Then applications such as calibration and design
optimization can be explored. When design parameters are relevant, the condensed FEM model
is extended following:

W̃, δ̃free = F(δa,δc,G(p)) (4.12)

This enables building a differentiable link between design parameters and mechanical
quantities given active constraint states as illustrated in Figure 4.13. Differentiable fitness
functions relative to p can then be designed from W and δf ree for assessing a design performance.

Figure 4.13: Illustration of the pipeline for learning mechanical states of Soft Robot. G predicts
the mechanical state of the robot in its rest position from design parameters, and F predicts the
mechanical state of the robot from both G outputs and a given actuation displacement.

Using the condensed FEM model for design applications presents some advantages. In con-
ventional design optimization frameworks, once a design is optimized, all computed simulation
data are lost in the process. Training a condensed FEM model on a data library containing
variations of a robot design still requires many simulations to generate the training set. However,
once the condensed FEM model is learned, using it both in the design optimization loop and
for control tasks does not require performing any more simulations. Another interesting aspect
related to learning for both actuation states and design parameters altogether is that it may help
to limit the number of needed samples in the training dataset compared to learning a condensed
FEM model separately for each design. Finally, in the case of the condensed FEM model, since
fitness functions are directly formulated from the learned matrices, a single condensed model
can be used to optimize a robot across multiple tasks.

After introducing the considered Soft Finger parametric design, the performance and ex-
pressivity of the condensed FEM model relative to geometrical and mechanical design variables
is analyzed. Then, Soft Finger design calibration and optimization scenarios are explored,
leveraging the formulation of 3 different fitness functions from learned mechanical matrices.
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4.5.1 The Soft Finger Parametric Design

In our numerical experiments, a parametric design of Soft Finger is considered, building upon
the one proposed chapter 3. Compared to the one previously considered in this work, there is
only one cable actuator going from the base to the tip. The considered parametric Soft Finger
and its geometrical design variables are shown in Figure 4.14.

Figure 4.14: Soft Finger parametric design. Design parameters are A) Length, B) Height and C)
Joint Height.

4.5.2 Parametric Design Captured by a Single Condensed FEM Model

For demonstrating the expressivity of the condensed FEM model relative to both geometrical
and mechanical design variables, two condensed FEM models are learned from two different
datasets with the following features:

• The mechanical parameters dataset considers 10000 Soft Finger states with varying
Young’s Modulus (range [1000kP a,10000kP a]), Poisson Ratio (range [0.400,0.499]), and
cables displacement (range [0.0mm,20.0mm]) sampled using a Scrambled Halton sequence.

• The geometrical dimensions dataset considers 50000 Soft Finger states with varying
geometrical dimensions around a baseline design of the Soft Finger as shown in Figure 4.14.
The sampling spaces are 38.0mm to 42.0mm for the Length, 20.0mm to 22.0mm for
the Height, and 5.0mm to 8.0mm for the Joint Height, and 0mm to 20mm for the cable
displacement. The open-source software Gmsh [GR09], enabling parametric CAD by script-
ing, is used for generating the meshes needed for simulation for each set of geometrical
parameters.

This model integrates both actuation and design, rather than providing a separate control
model for each design. Since the neural network shares information between different designs,
the dataset size is smaller than if each design were considered separately.

Training results are displayed in Table.4.2 for both datasets. For learning the condensed FEM
model of geometrical variations of the Soft Finger, a more complex strategy is adopted. A neural
network of 5 fully connected layers with 800 nodes each is chosen.

The dataset features robot states that are highly different compared to the datasets previ-
ously encountered in section 4.3. Indeed, the geometrical dimension parameters have a greater
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influence on the learned condensed FEM matrices. This results in under-sampling the training
set. As an answer, a dropout strategy is applied for regularizing the network. The orders of
magnitude of the final learning loss for the learned condensed FEM model with the geometrical
dimensions dataset displayed in Table 4.2 is significantly higher than the learning losses previ-
ously encountered. However, the generalization remains adequate for position-based control
applications. Design variations are harder to learn than actuation variations. Indeed, mechanical
matrix values that link actuation to effectors, specifically in the direction where the geometrical
dimensions (Length and Height) of the parametric soft finger evolve, are harder to learn due to
strong non-linearities. However, these error values correspond to a small difference between
predicted and simulated effector positions of around 3mm in the worst case met on the entire
validation dataset.

Table 4.2: Test loss values for each parametric Soft Finger dataset for both G and F neural
networks.

Dataset G F
Training Loss Best Epoch Final Loss Best Epoch

Mechanical Parameters 3.82e-7 18420 5.04e-5 12530
Geometrical Dimensions 0.19 4400 0.13 270

Several designs are evaluated on the same trajectory using the condensed FEM model-based
open loop inverse controller. The trajectory is described by 25 intermediate goals and consists
of closing the Soft Finger on itself. Comparative trajectory errors between positions reached
by the ground truth simulation and the corresponding positions obtained with the condensed
FEM model are displayed in Table 4.3. Whatever the sampled design, it shows that both the
trained condensed FEM models enable the control of different designs from their respective
validation datasets. In studied examples, the maximal positioning error is about 1.2 mm which
is approximately less than 1% of the total length of the parametric Soft Finger.

Table 4.3: Relative Euclidean positioning error for different values of geometrical and mechanical
parameters.

Trajectory errors with mechanical parameters dataset:
Young Modulus (GPa) Poisson Ratio Error
5000 0.47 0.91%
1000 0.45 0.29%
7000 0.4 0.90%
3000 0.47 1.03%

Trajectory errors with geometrical dimensions dataset:
Length (mm) Height (mm) Joint Height (mm) Error
40 20 6 1.03%
38.5 21.5 6 3.11%
40 20.5 7.5 7.02%
41 21 5.5 1.62%
39.5 20 7 5.10%
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4.5.3 Parameters Optimization Using a Condensed FEM Model

Application to Calibration of the Condensed FEM Model of a Parametric Soft Finger

Mechanical parameters influence the behavior of the robot in simulation. Since the condensed
FEM model is learned from simulations, one of the drawbacks is that it is learned for a fixed set
of numerical parameters. Even if the simulation is initially calibrated using a physical prototype,
discrepancies may arise during the manufacturing of other similar prototypes or due to silicone
degradation over time. In such cases, it would be necessary to re-calibrate the simulation and
develop a new condensed FEM model for effective control. In the example of the Soft Finger, the
appearance of air bubbles or an incorrect dosage of silicone during the molding process can lead
to different corresponding mechanical parameters.

For dealing with this issue, the extended condensed FEM model is learned from the mechani-
cal parameters dataset. The aim is to address learning the condensed FEM model with zero-shot
transfer to reality.

Once the condensed FEM model is learned, it is calibrated using data collected from the
physical robot. The general workflow to calibrate a condensed FEM model of any soft robot is as
follows. First, positions of the effector(s) are measured for several actuation displacement states
δa. Increasing the number of actuation states enables better convergence. Then, a fitness function
Ocal(p), with p the design parameters, computing the difference between the relative position of
the effectors δ∗e evaluated on the physical prototype and those estimated by the condensed FEM
model δ̃e is built as:

Ocal(p) =
∑
δa

|δ̃e(δa,p)− δ∗e(δa)| (4.13)

To build a differentiable link with the design parameters p, δe is expressed from the predicted
mechanical matrices. Using the the expression of the coupling between W and δ without contacts,
it gives:

δ̃e(δa,p) = W̃ea(δa,p)W̃−1
aa (δa,p)(δa − δ̃

f ree
a ) + δ̃

f ree
e (4.14)

The optimal design parameters p are obtained by minimizing Ocal through gradient descent.
The Poisson’s Ratio is optimized because the Soft Finger is controlled through displacement.

In this control mode, the Poisson’s Ratio is crucial for accurately modeling how the material
deforms laterally in response to an applied longitudinal strain. On the other hand, if we were
controlling the Soft Finger by applying force, the Young’s Modulus would be more important, as
it directly affects the stiffness and how the material resists deformation under load. Therefore,
optimizing the Poisson’s Ratio is more relevant for displacement control, while the Young’s
Modulus would be more critical for force control. As the simulation to reality transfer of the
Soft Finger has already been validated in previous work, simulation results are taken as ground
truth. The states δ∗e of the robot are sampled in simulation for 3 given cable displacement values
δa. Poisson’s Ratio ground truth value is taken equal to 0.47. Then, the fitness function from
Equation 4.13 is minimized for retrieving the corresponding parameters. Obtained convergence
histories are displayed in Fig 4.15 for three different initializations of the mechanical parameters.

In each case, the algorithm succeeds in finding a good Poisson Ratio for reducing the distance
error on effector location. The optimization converges in a few ms. Changing for a servoing in
force exerted on the cables instead of cable displacements would require taking into account the
Young’s Modulus during the optimization.

With this experiment, it is demonstrated that it is possible to learn a single condensed
FEM model that can be directly calibrated to a soft robot. By relying on the differentiability
of the learned condensed FEM model, the calibration method only takes a few seconds on
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Figure 4.15: Optimization history for the calibration of the Soft Finger robot. Results have
been obtained with an initial learning rate of 0.01 used conjointly with an adaptive scheme
as described in section 4.2.3. Both fitness function (A) and mechanical parameters histories
(B,C,D) across optimization iterations are displayed for different initial guesses of the mechanical
parameters. Initial mechanical parameters are a fixed Young Modulus of 3000 GPa as well as B)
Poisson Ratio = 0.47, C) Poisson Ratio = 0.49, and D) Poisson Ratio = 0.45.

a pre-learned model, compared to other models relying on non-gradient solvers requiring a
lot of simulations. Moreover, including design parameters such as geometrical dimensions in
addition to mechanical parameters would enable to calibrate the condensed FEM model to
design variations that may appear during the manufacturing process.

Application to Design Optimization of a Parametric Soft Finger

For this experiment, the parametric Soft Finger design introduced in Figure 4.14 is optimized
successively for its dexterity and precision grasping.

Design optimization objectives are formulated from the predicted mechanical matrices. The
two considered objectives are both illustrated in Figure 4.16.

The first fitness function Odext characterizes the kinematics of the parametric Soft Finger, i.e.
the reached bending angle for a fixed cable displacement δa of 10mm. Minimizing this function
is equivalent to maximizing the workspace of the robot. Odext is expressed as follows:

Odext(p) = |αmax −α(δa,p)|

α(δa,p) = Arccos(
δ̃ze(δa,p)
|δe(0,p)|

)
(4.15)

where α is the function giving the bending angle of the parametric Soft Finger in the z-plane
and αmax = 1.57 rad is the maximum reached angle.

The second fitness function Ostr measures the contact force generated at the tip of the
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Figure 4.16: Illustration of design objectives for the parametric Soft Finger. A) Bending angle
α(δa,p) reached for a fixed cable displacement δa. B) Contact force β(δa,p) generated for a fixed
cable displacement δa.

Soft Finger for a fixed cable displacement δa of 10mm. Minimizing this function amounts to
maximizing the performance of using the parametric Soft Finger for precision grasping. Again,
for building a differentiable link with the design parameters p, the contact force λc is expressed
from the predicted mechanical matrices.

With the assumption of a fixed object i.e. δc = 0, and considering the tip effector as a
contact point, the system expressed from both expressions of the coupling of δa and δc with the
compliance projected in the constraint space, enables to obtain:

λc(p,δa) = B(p,δa)−1[W̃caW̃
−1
aa (δa − δ̃free

a ) + δ̃free
c ] (4.16)

with B(p,δa) = W̃caW̃−1
aa W̃ac − W̃cc

Finally, the fitness function Ostr is expressed as follows:

Ostr(p) = |βmax − β(δa,p)|
β(δa,p) = |λc(p,δa)y |

(4.17)

where β is the function giving the force generated at the tip of the parametric Soft Finger on
the y-axis and βmax = 10000 N is an unreachable force.

The two fitness functions are written from the mechanical matrices learned with the con-
densed FEM model. These matrices connect forces to displacements in crucial areas of the design,
while accounting for its mechanical structure. This allows for the creation of fitness functions
derived from this compact representation. Design optimization can then benefit from this pre-
learned model to quickly travel the design space. In the following, results are first generated and
analyzed separately for each fitness function. Then, it is shown how a multi-objective scheme
can be implemented based on the condensed FEM modeling.

Single objective optimization: As the considered fitness functions are highly non-convex,
a simple gradient descent optimizer may fall in a local optimum. To avoid this behavior, a
grid search is first performed to determine a good starting point for the optimization. As the
design space is of only three dimensions, the computation is a simple matter of seconds with the
condensed FEM model. A total of 600 designs are evaluated for both fitness functions. In high
dimensional cases, an alternative for avoiding the dependency on the initialization would have
been to use stochastic gradient descent instead of a simple gradient descent scheme as a solver.



114 CHAPTER 4. Condensed FEM Modeling for Embedded Control and Design Optimization

For each fitness function, the objective function landscape is computed. For this purpose,
a regular grid sampling strategy is applied around the chosen initialization starter design.
Landscapes computed for both fitness functions are displayed in Figure 4.17. They show that
the length has a higher impact on both objectives than two other design variables.

Figure 4.17: Fitness landscapes around the initialized design selected with grid search strategy,
for A) dexterity fitness function (Length = 38.0mm, Height = 20.57mm, Joint Height = 6.28mm)
and B) strength fitness function (Length = 42mm, Height = 22mm, Joint Height = 8mm). The
best design after optimization is shown as a blue dot.

Gradient descent is performed from the initial design. Regarding dexterity, the best design
(Length=38.0 mm, Height=20.6mm, Joint Height=6.3mm) privileged a shorter length. In the
case of strength optimization, a longer length helps (Length=42.0 mm, Height=22.0mm, Joint
Height=7.9mm) to generate more force on the object thanks to the lever arm effect. The best
design regarding contact forces generated at the tip is also a Soft Finger with more material,
enabling it to rigidify better around the contact location.

Multi-objective optimization: In this experiment, it is highlighted how to determine the
optimal design of a Soft Finger regarding several metrics computed using the condensed FEM
model. Figure 4.18 shows the fitness functions values for 600 Soft Finger designs sampled
with a grid search strategy. For having comparative values between the two losses, they are

both normalized using Onorm
i (p) =

Oi (p)−minp∗(Oi (p∗))
maxp∗(Oi (p∗))−minp∗(Oi (p∗))

where p∗ are design parameters

encountered during initial grid search.
A Pareto front is clearly visible, showing that the two considered metrics are antagonistic. A

compromise has therefore to be found. This can be done using the gradients calculated via the
condensed model, by formulating a single fitness function as an aggregation of the considered
fitness functions:

Omult(p) = γ1O
norm
dext (p) +γ2O

norm
str (p) (4.18)

where both γ1 and γ1 are user-chosen weighting factors between 0 and 1 for selecting the priority
to give to each fitness function. This kind of approach enables to generate the optimal design
of a Soft Robot given user-chosen requirements. Setting these weighting factors is usually
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Figure 4.18: Pareto Front for the design optimization of the Soft Finger regarding Dexterity and
Strength metrics and generated using a Grid Search strategy. Design parameters for several
design sampled: A) Length = 38.0mm, Height = 21.6mm, Joint Height = 5.0mm, B) Length =
40.4mm, Height = 20.0mm, Joint Height = 5.6mm, C) Length = 40.2mm, Height = 22.0mm,
Joint Height = 7.4mm, D) Length = 42.0mm, Height = 22.0mm, Joint Height = 8.0mm

challenging. They are commonly chosen by trial and error, each trial requiring many simulations
to be performed for evaluating fitness functions at each iteration of the optimization process.
Using a pre-learned condensed FEM model enables to discard the computation time related to
simulation.

4.6 Discussion and Conclusion

In this chapter, a method for modeling a soft robot in a compact way has been introduced. The
proposed representation takes the form of learned mechanical quantities. The particularity of
this method is that it provides a link between actuation, effector, contacts and design parameters.
Although we consider entirely soft robots, the current condensed formalism enables to consider
robots with both rigid and soft parts. We summarize the main contributions, limits, and future
avenues to explore below.

We showed that this method enables to control soft robots with quadratic optimisation.
Although we only consider pneumatic and cable actuators, nothing prevents the method to
be used with a wider variety of actuators. The method can also handle contacts, which are
considered as constraints in the same way as actuators and effectors. We show how to formulate
inverse control problems both for single and coupled soft robots. In the current framework,
we made the assumption that the number and the location of the contact points on the robot
are fixed. This assumption can be overcome by considering multi-point contact. The approach
involves accounting for a variable number of contact points without prior knowledge of their
quantity and locations. This could be done using models that can predict matrices of variable
size, like Transformers [Vas+23] or GNN [Zho+21b], or by increasing the robot’s state to include
many potential contact points.

Secondly, embedding of the condensed FEM model for open-loop and closed-loop control
is demonstrated on a pneumatic soft robot. Once learned, we demonstrate that the model
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can run on a very simple embedded controller. The embedded control could be applied to
other robots. The more complex the robot, the more speed-up can be obtained. So far, only
quasi-static assumption has been considered. This assumption could be overcome by considering
learning the dynamics in order to take into account speed and position information. Neural
architectures developed for sequential data, such as LSTMs [SM19] or Transformers [Vas+23],
are good candidates for this task. The condensed FEM model extension to dynamics may unlock
applications in using more robust controllers such as Model Predictive Control [GPM89].

In this chapter, we show that the condensed FEM model formalism can be used to jointly learn
the design and control of a soft robot. Applications in the direct calibration of the condensed FEM
model and design optimization of soft robots are demonstrated in the example of a parametric
Soft Finger. So far, our model has been demonstrated with few design parameters. The use
of this type of model for more complex parameterization, in terms of number of parameters
or expressivity, is an interesting prospect involving in-depth rethinking of network scaling
and sampling strategies. Moreover, this type of model could provide ideal conditions for the
development of co-optimization techniques. For the moment, the proposed control is low-level,
based on inverse robot modeling and Quadratic Programming optimization tools. However,
it is possible to imagine using the learned condensed FEM model as a surrogate model in an
RL approach, where the control strategy takes into account design information to both solve
high-level control tasks and optimize the robot design.

Finally, to overcome the assumption on the sampling process, one envisioned extension is to
use online learning techniques. Indeed, one of the drawbacks of the method is its reliability on
a huge amount of data collected offline. However, many robot states may be redundant or not
carry relevant information for the task to be performed. This would enable a case-dependent
exploration of the actuation space. This is particularly necessary when there are several points
of contact, leading to a much larger sampling space. Physics Informed Neural Network [RPK19]
could be implemented to facilitate learning generalization. It necessitates formulating the
problem in another way for integrating first-order derivatives for learned variables.



Chapter5
Towards a General Framework for the
Emergence of Embodied Intelligence
in Soft Robots

5.1 Introduction and Chapter Overview

In the previous chapter, we demonstrated the learning of a condensed FEM model, with design
parameters as inputs, which allows it to function as a differentiable surrogate for the simulation
regarding both soft robot design parameters and state. This surrogate is quick to evaluate while
maintaining precision comparable to FEM-based simulation. However, there are still several
challenges to address when it comes to co-evolving the design and controller of soft robots. First,
how can we develop generic parametric designs that accurately describe diverse morphologies,
rather than being restricted to variations around a designer-provided baseline? These design
parameterizations should also include manufacturing constraints to ensure applicability in
real-world scenarios. Moreover, we seek parametric representations that are highly expressive,
capable of generating a wide variety of shapes, yet rely on a minimal number of parameters.
Indeed, the design parametric space should remain small to ensure that co-optimization remains
tractable. Second, how can we optimize soft robot controllers for high-level tasks without
having to decompose these tasks into a set of mechanical requirements? These questions are
further constrained by available computational time and power, which must be addressed in any
proposed solutions.

This chapter presents preliminary and ongoing work aimed at leveraging this surrogate to
develop a generic framework for the co-evolution of soft robot design and control. The work
presented here has not yet been published in a scientific journal or conference. This chapter is
shorter than the others because it is limited to a presentation of ongoing work. It also discusses
future works based on the results obtained in this thesis.

In Section 5.2, we explore how to build design parameterizations that are both more expres-
sive and less influenced by human subjectivity than the parametric representations introduced
in chapter 3. This exploration includes investigating new types of parameterizations based on
generative design and constructing a library of modular soft components.

Section 5.3 then introduces methods for efficiently learning controllers for high-level tasks
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using reinforcement learning and the condensed FEM model as a simulator. One of the prob-
lems with reinforcement learning-based co-optimization frameworks is the computational time
required to jointly explore design and control spaces. On one hand, it is necessary to have
expressive design spaces with few parameters for exploration. On the other hand, the simula-
tions needed to evaluate the performance of a design and a controller are costly and generally
the bottleneck in this type of framework. We analyze strategies to reduce the amount of data
required to train the condensed FEM model and extend it to account for dynamics. Finally, we
discuss considerations for incorporating moving contact points in the condensed FEM model to
better explore interactions between soft robots and their environments.

5.2 Toward more Expressive Design Parameterizations

In the previous works introduced in this thesis, parametric representation of soft robot geome-
tries were considered as a design space for computational design. This type of parameterization
is constructed on a case-by-case basis for a specific family of designs, relying heavily on the
expertise and intuition of the designer. Consequently, each new design requires the develop-
ment of a specific parametric model, limiting the ability to generate morphologies that deviate
significantly from the baseline envisioned by the designer. However, parametric descriptions
have the advantage of easily incorporating manufacturability constraints, facilitating the transfer
to real-world applications. Moreover, the number of design variables is kept small, making it
practical for use with simple numerical optimization algorithms.

In the literature discussed in the Background section 2.3.2, methods that enable the genera-
tion of significantly different morphologies rely on very abstract representations of the design
space, such as grid of voxels with varying material properties. These approaches enable for the
creation of designs that diverge greatly from what intuition might suggest, but they present
challenges when transitioning from optimized numerical designs to real-world implementations.

Two different approaches are presented to explore these design spaces.
The first approach, described in section 5.2.1, relies on the use of Growing Cellular Automata

to construct an implicit representation of a family of designs. The idea is to provide examples
of successful designs and automatically create a parameterization of the design space based on
these examples.

The second approach, detailed in section 5.2.2, takes a modular perspective. The goal is
to construct the body of a soft robot by juxtaposing soft modules with known mechanical
behaviors. Design optimization can then be performed in a grid space where each squared-
element is populated with easily manufacturable modules from this library. This approach
ensures manufacturability of the optimized robot body, as opposed to using abstract spaces that
may not guarantee it, such as those involving discontinuous material distributions along the soft
body or multiple pneumatic cavities.

5.2.1 Generative Design of Soft Robots using Growing Cellular Automata

Generative models [RNA22] [Bon+22] are currently popular in the machine learning community.
These models aim to understand and replicate the underlying data distribution of a given dataset.

The advantage of these methods is their ability to achieve a compact parameterization of
a robot’s geometry using a database of functional robot geometries. Provided access to this
database, such parameterizations offer a richer representation without the need for explicit,
case-by-case parameterizations created by the designer, as explored in Chapter 3.

This approach is illustrated on the example of the parameterization of the shape of a pneu-
matic cavity. Applying the method proposed in Chapter 3 involves manually constructing
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complex design parameterizations by defining control points on the cavity’s surface, as illus-
trated with the optimization of the soft manipulator using self-contacts in Chapter 3. These
control points are treated as design parameters. To accommodate a wide variety of cavity
shapes, it is necessary to include a substantial number of points in the parameterization, which
significantly expands the design space. Furthermore, enforcing manufacturability constraints
proves to be challenging due to the complex inter dependencies among the design parameters.
Our proposed approach involves learning a generative model from different cavity geometries,
which yields a lower-dimensional design space capable of generating complex shapes. This is
illustrated in Figure 5.1. The idea is to rely on the ability of the model to infer constraints on
manufacturability and a complex design space.

Figure 5.1: Illustration of the proposed generative framework for the generation of pneumatic
cavities. The generative model is trained using a library of pneumatic actuators (left). In the
training dataset, Design 1 tends to elongate, while Design 2 is a Pneunet-style design [Mos+14]
that tends to bend. By utilizing the generative design framework, we can infer from the distribu-
tion of input data to generate an optimal shape tailored for the desired deformation (right).

Recently, we have started to see examples of generative models emerging in the field of
soft robotics design [Wan+23] [CWY24]. Both of these works rely on machine learning models
that are computationally intensive to train. However they still lack to integrate manufacturing
constraints, and the designer needs to post-process the results.

Design Description from Realistic Soft Robot Design Sub-Parts
The idea is to develop a framework that generates realistic patches of soft robots using low-

dimensional networks. The design of the robot is then described implicitly through a collection
of patches extracted from CAD models of working soft robot designs. A patch is then a sub-part
of a CAD model. Specifically, we consider small cubes composed of cubic cells, each with an
associated continuous state ranging from 0 (representing an empty cell) to 1 (representing a cell
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filled with material). A complete soft robot design is then described by an association of patches.

Growing Shapes from a Neural Cellular Automata
For this purpose, we implemented a framework based on Neural Cellular Automata (NCA) [Mor+20b],

an extension of traditional Cellular Automata models. These models operate on a grid of cells
that iteratively evolve through a set of local rules based on their current state and the states of
neighboring cells. Unlike fixed-rule models, NCA dynamically learns and adapts these rules
from provided data.

When growing a Cellular Automata, the design space is discretized into a Euclidean grid of
elements, typically a voxel grid, where each element is associated with continuous state from 0
to 1. Growing a Cellular Automata usually begins with a single cell, whose continuous state can
be chosen or initialized at random, and iteratively updates local cells based on their neighbors’
states. NCA takes as input the states of the current cell and its neighbors, encoded as hidden
channels, and provides the cell’s update. The NCA model is trained by initializing an empty grid
with a single living cell, running the NCA for a certain number of steps, comparing the output
with the target design, and then backpropagating the mean square error loss. An illustration of
an NCA update step is provided in Fig. 5.2.

Figure 5.2: Illustration of an update step for growing a lizard shape using a NCA from [Mor+20b]

Handling 3D Resolution for Design Applications
As most of the examples in the machine learning community were about generating 2D images,

we faced several issues to scale NCA to 3D. Indeed, the computational cost is directly related to
the number of element in the grid, as NCA involve convolution operations on the entire design
space. Furthermore, as we are interested in generating detailed 3D design, this is an even bigger
constraint. To address this issue, we adopt a multi-resolution strategy [LYH11]. We begin with an
initial grid scale and apply the NCA for several steps, then up-sample the grid to a higher scale
by dividing cells and applying the NCA again. This process is repeated until the target scale is
achieved. During training, we compare the final scale with the target or each intermediate scale
with scaled versions of the target, providing flexibility to use any intermediate scale as needed.
We evaluate and demonstrate our method on the example of the iterative reconstruction of a
high resolution 2D picture, as shown in Figure 5.3. This examples that we are able to handle
large design spaces compared to the small resolution cases proposed in [Mor+20b].

We demonstrated our framework on regenerating 3D designs from examples (see Fig 5.4.A).
We also show that we can learn implicit parameterization of local patches of provided mechanical
designs (see Fig 5.4.B).
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Figure 5.3: Iterative reconstruction of a HD image using our generative framework with multi-
resolution NCA. Several intermediate reconstruction states are displayed, from top left to bottom
right.

Figure 5.4: Illustration of several results obtained with our generative model. A) Iterative
reconstruction of a Soft Finger design. In this experiment, the NCA is trained to reconstruct
a Soft Finger design. Several intermediate shapes obtained during the growth process are
displayed. B) Implicit parameterization of local patches guided by example, with the example of
the iterative growth of one patch from the Soft Finger. Voxel colors correspond to continuous
values between 0 and 1. In this experiment, the NCA is trained to reconstruct several 3D patches
of the Soft Finger design. Given the initial values of one of the patches (see picture on the bottom
left), we show that we we are able to reconstruct this patch through growth.

Reducing the Design Parameter Space
Training a network to learn an implicit parameterization for a family of designs involves train-

ing it to reconstruct multiple designs from a dataset. Once the NCA is trained, the reconstruction
of a design depends solely on the initial seed values, which are associated with the value of
voxels of the initial patch provided to the algorithm. For example, we use 5x5x5 patches as initial
seeds to reconstruct larger 16x16x16 patches. Although this result in still a large design space
of 125 parameters, it enables to compact an entire shape. To reduce the parameter space, we
employ a Variational Autoencoder (VAE) [KW19] to create a compact parameterization of these
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seeds. The VAE is trained to encode the initial seeds into a smaller, more manageable parameter
space, allowing us to navigate and reconstruct designs efficiently based on these parameters.

Future Work: Adding Physical Constraints
Once trained, the network is expected to interpolate between the dataset designs by selecting

various continuous values within the compact design space. However, the design domain is
constrained only in several points of this parameterized space, making it challenging to generate
viable designs on all the domain. As a result, many generated designs have disconnected parts
or mechanically unfeasible structures. This occurs because convergence is enforced only on
the known data at the parameter bounds. This limitation is a common challenge in generative
design.

To address this issue, the conventional approach is to include numerous intermediate designs
in the training dataset. However, this significantly increases the cost of training the generative
model and can potentially reduce its expressiveness, as it may become overly constrained. We
consider two other approaches. The first one is to add physical constraint in the training loss
of the generative network. For instance, several points of the parametric design space may be
randomly sampled during the training. After growth, they may be evaluated in simulation
and physical constraints may be computed as a regularization term for the training loss of the
network. Another idea is to use the imperfect learned implicit parameterization as a starting
point to generate new plausible design patches, incorporating physical constraints during growth.
For instance, an initial robot design can be described as patches that can be assembled and
combined using evolutionary algorithms for sampling in the parametric design space, and
topology optimization (see the Background section 2.3.2) for enforcing mechanical constraints.
Topology optimization algorithms are gradient-based algorithms that are highly dependant on
the initial conditions of the design problem (load and boundary conditions, initialization of
design variables). Recent work [Pin+24] shows the relevance of including variability in the
initialization of topology optimization design problem to generate different soft robot shapes.
Compared to this work, our approach would enable to include constraints on the general shape
of the generated robot designs.

5.2.2 A Library of Modular Components for Soft Robot Design

Soft robotics misses modular components that can be reused for having desired motions. Com-
putational design optimization contributions to soft robotics mostly consider specific design
parameterization to the problem at hand. On the other hand, classic rigid robots are usu-
ally designed through a set of degrees of freedom requirements, and the mapping between
these requirements and the optimization of of generic geometrical parameters has been well
explored [Pet08; Ha+17].

In the Background section on computational design for soft robotics 2.3.2, we showed that
the most promising frameworks for generating totally new morphologies for soft robots rely
on modular representations of soft robots. For instance, design spaces are often represented as
aggregation of voxels able to expand and contract [Che+14; Bha+22; CBS23], but the optimized
designs are not manufacturable. These methods also rely on overly simplified simulation,
avoiding numerically optimized designs to transfer well to physical prototypes.

The idea is to build a library of easily manufacturable parametric modular components with
characterized behaviours in term of degrees of freedoms. Problematic related to simulation
computation time may be addressed by leveraging the condensed FEM model to learn reduced
and differentiable representations of these parametric modular components.
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For this purpose, we take inspiration from what is done in the field of compliant mechanisms,
where many people have worked at designing and characterizing simple mechanisms made
of soft materials to enable targeted degrees of freedoms [HMO13]. They take geometrical
considerations and jointly use different soft materials with different mechanical behaviours.
We have built a library of geometrical parameterizations and simulation for several different
compliant mechanisms. Examples of simulation for two compliant mechanisms from the library
are displayed in Figure 5.5.

Figure 5.5: Example of simulation of two compliant mechanisms from the component library.
For each of them, different loading cases are provided. The size of the green arrows is directly
proportional to the force exerted at their base. A) Accordion pattern mechanism. Reducing the
dimension of (a) the guide and (b) the width of the accordion pattern from the right column
enable to obtain greater translation along the x-axis but less resistance to simulations along y
and z-axes. B) Single leaf spring mechanism. Reducing the dimension of (c) of the single leaf
spring mechanism from the right column enables to facilitate both the twisting and the torsion
motions.

In our approach, we aim to avoid using multiple materials, which complicates the manu-
facturing process. Instead, we plan to use fused deposition modeling 3D printing parameters
as design variables, such as material density and fiber orientation, to smoothly and locally
alter the mechanical properties of printed components. We utilize the IceSL slicer 1, which
allows for defining continuous infill fiber orientations using three simple parameters. This
results in components with heterogeneous properties that are easily printable. Examples of
several components printed with different fiber orientations and material density are provided
in Figure 5.6.

Simulation models for soft robots exhibiting anisotropic behavior have already been devel-
oped using the finite element method (FEM) in SOFA [Van+20; VGD21]. These models rely on
homogenization methods to calibrate the simulation, as simulating the detailed full mesh of
the structure would be computationally intensive and would require handling numerous self-
contacts. Currently, there is no inverse model yet directly linking the infill parameters and the
numerical parameters of the printed material. This inverse model can be built by measuring the
force/displacement ratios for several design variations of each compliant mechanism, calibrating
a simulation scene to each design, and learning condensed FEM models from data extracted

1IceSL: https://icesl.loria.fr/about/

https://icesl.loria.fr/about/
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Figure 5.6: Example of several single leaf spring patterns obtained for different 3D printing
parameters.

from the simulation. Acquiring the data necessary for this task requires to build a test bench for
evaluating several variations for each compliant mechanisms.

Once this library of condensed FEM models is established, we can develop optimization
frameworks to fine-tune the placement and geometric parameters of these models based on
user-defined objectives and constraints. We envision the design space as a grid where each cell
is populated with compliant mechanisms exhibiting varying infill and geometrical parameters
properties. Both this design problem and the illustrative example of a leg constructed from
several compliant mechanisms of our library are shown in Figure 5.7.

Figure 5.7: A) The proposed design space. Given a task and actuator locations, we want to
optimize the placement and parameters of compliant mechanisms for each voxel of the grid. B)
Example of simulation of a soft leg built from several accordion pattern and single leaf spring
mechanisms. Different loading cases are provided. The size of the green arrows is directly
proportional to the force exerted at their base. In this example, bilateral constraints are applied
to attach the different modules together. In the future, we plan to speed up the simulation by
building an equivalent condensed FEM model of the leg from the condensed FEM models of its
different modules.
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5.3 Toward a Generic Framework for Soft Robot Control and
Design Co-Optimization

In this thesis, we primarily focus on optimizing robotic designs for tasks that have been broken
down into multiple simple control tasks. These can be solved using model-based approaches,
either directly or inversely, with a one-time-step scheme. It requires specific user intervention
to decompose a complex task into a set of sub-tasks or mechanical constraints. For instance, a
grasping task can be divided into several sub-tasks such as positioning the gripper at the level of
the object, closing it on the object, or maintaining sufficient force on the object during manipu-
lation. Decomposing tasks into sub-tasks is not straightforward, especially when considering
complex tasks, and taking into account interactions with the environment make it even more
challenging. Additionally, this decomposition into sub-tasks can be design-dependent. For
example, in the case of a gripper, the best grasping position may vary depending on the shape of
the gripper.

We choose to use reinforcement learning for exploring higher-level tasks, as detailed in
Section 2.2.2 of the Background. However, a challenge with these methods is that the simulations
required to evaluate the performance of a design and controller are costly.

To mitigate this problem, the idea is to use a surrogate to replace the simulation. The learned
condensed FEM model is a good candidate because it enables the characterization of the robot
design as well as the robot actuation and contact states. However, there are still some hurdles to
overcome to use it smoothly, which are described below.

Learned Condensed FEM Model extended to Dynamics
The learned condensed FEM model needs to be extended to handle dynamics of soft bodies.

To address this, we propose replacing the MLP used for learning the quasi-static condensed FEM
model with a Long Short-Term Memory (LSTM) network, a type of recurrent neural network
architecture designed to capture and retain long-term dependencies in sequential data [SM19].

For our first tests, we considered the Tetrapod, a four-legged robot, for trajectory control
applications. The Tetrapod is powered by four servomotors, each located at the base of its TPU
3D-printed legs. Picture of the robot is available in Figure 5.8.A.

The motivation behind the choice of this platform is twofold. First, we demonstrated that
using this platform in manipulation scenarios induces dynamic effects that influence the robot’s
behavior and must be considered when exploring an optimal control policy. Two RL policies
were learned to reach the farthest point on the right side of the Tetrapod’s workspace, as shown
in Figure 5.8.B. The first policy does not involve carrying an object, while the second policy
involves carrying an object modeled as a 1 kg mass at the tip of the robot. These results highlight
the importance of considering the Tetrapod’s dynamics in manipulation tasks, especially when
dynamic effects are significant, as in the second scenario. The RL approach results in a more
effective strategy compared to using simple quadratic programming, which would have directed
the robot straight to the right without accounting for momentum. Secondly, the modular design
of the Tetrapod’s platform allows for easy replacement of its legs. The legs can be 3D printed
with specific pre-curvatures, which significantly impact the Tetrapod’s performance, including
its stability under external forces and its operational workspace. This makes the platform an
excellent candidate for design optimization applications. In the future, we plan to apply this
model both for embedded control of the Tetrapod dynamics and design optimization.

Initial results for learning the dynamics of the Tetrapod robot show that we can successfully
use it to follow a complex trajectory, as displayed in in Figure 5.8.C. However, this model needs
to be scaled to larger datasets, and its generalization ability to unseen trajectories still needs to
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Figure 5.8: A) Picture of the Tetrapod robot. B) The two learned RL policies for reaching the
farthest point on the right side of the Tetrapod’s workspace while not carrying an object (top) or
while carrying an object modeled as a 1 kg mass at the tip of the robot (bottom). C) Results for
learning the dynamics of the Tetrapod: the original trajectory (blue) and the trajectory obtained
from the learned condensed FEM model (orange).

be further explored.

Managing Variable-Size Robot States
For now, both the MLP and LSTM network architectures can not handle robot states with

variable size. Although we showed that the learned condensed FEM model can manage contacts,
exploring interactions of the soft robot with its environment requires to take into account the
various contact points location on the robot that are not known in advance. For this purpose, we
aim at integrating size-independent neural network such as Graph Neural Networks [SM19] or
Transformers [Vas+23].

Online Learning
Another challenge is to efficiently integrate the learned condensed FEM model into a rein-

forcement learning training loop. Due to the transition to dynamics and the multiple contact
scenarios that can occur during the learning of the control policy, it is very complex to anticipate
and pre-train a condensed model in advance for all potential states to be met during co-design
exploration. Indeed, there are far more possible states to describe the dynamics of a robot than
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its quasi-statics, as each state depends on previous states. Furthermore, there are numerous
potential contact points between the robot and its environment. In reality, reinforcement learn-
ing algorithms will likely quickly converge towards more plausible robot states during their
operation, making it expensive and useless to learn all possible states of the robot, especially
those that will be rarely or never encountered.

One idea is to implement online learning, which involves continuously learning the con-
densed FEM model based on the data encountered during the policy exploration of both con-
troller and design.

Figure 5.9: Illustrative of cluster areas obtained for different configuration of the Soft Finger
respectively for A) 4 clusters and B) 10 clusters. A robot state is illustrated for each clustered
area from case A).

Preliminary results have shown that it is possible to drastically reduce the number of samples
required to learn the condensed models of the Diamond robot or the Soft Finger robot from
Chapter 4, provided that these samples are chosen wisely. For example, applying a K-means
clustering algorithm to the training sets used in previous mentioned experiments allows us to
identify regions where the mechanical properties of the matrices are similar. The metrics we use
for the clustering is a norm of normalized values of both W and δf ree quantities. These regions
are actuation range where the condensed model varies little. The centroid of each cluster is then
chosen as a representative of all the data within that cluster. We then build a reduced dataset
from all centroids for learning the condensed FEM model. The proposed method has been
applied to reduce 6500 data points previously used for training both Diamond and Soft Finger
robots. It is demonstrated that surrogate models can be learned with similar performance for
control using reduced datasets, i.e. with an error between each effector and target goal position
being less than 0.1mm on the bending and circular trajectories from Fig. 4.3 . In other words, we
obtain similar trajectory graphs for open-loop controller built from the learned condensed FEM
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model with 6500 samples or from a subset of well-chosen samples. In the Diamond example, 200
samples are enough while 500 samples is a good choice in the case of the Soft Finger. Illustrative
clustering results for the Soft Finger are presented in Fig. 5.9.

This demonstrates the possibility to greatly improve the sample efficiency of the learned
condensed FEM model through carefully selecting the samples to include in the training set.
However, in a typical reinforcement learning loop, data arrives continuously and there is no
pre-existing database of the robot states. When a new robot state needs to be evaluated, it
becomes necessary to decide whether to trust the learned condensed FEM model to predict
this state, or to use simulation to obtain these data and incorporate them into the training
set. Potential investigated solution to address this challenge includes building an uncertainty
estimation using deep ensembles, i.e. an ensemble model of several deep neural network trained
concurrently [LPB17].

5.4 Conclusion

In this Chapter, we introduced the current avenues being explored toward achieving co-optimization
of soft robots design and control. Exploring both design and control spaces presents significant
constraints regarding the balance between the size of both control and design parameters and
the computational costs of the simulation used for design assessment.

We first proposed two methods to address the challenge of obtaining compact representations
of the design space that can describe a wide variety of designs. The first method involves learning
local rules to iteratively grow designs from a dataset of functional soft robot designs, resulting
in compact and expressive shape parameterizations. The grown designs general morphology
are inherently constrained by the data used to train the generative model. The second approach
involves building a library of compliant mechanisms with parameterized shapes and 3D printing
properties. Soft robot designs are described using these components. Condensed models relative
to the design parameters of each component can be pre-learned, as described in Chapter 4. Since
the complete condensed model of a soft robot can be constructed through the association of the
condensed models of its components, this approach enables a modular representation suitable
for both design and control.

Secondly, we introduced the use of the condensed FEM model as a surrogate to reduce the
computational cost relative to the FEM simulation while exploring high-level control tasks with
reinforcement learning. As many scenarios that may benefits from this kind of approach involve
non negligible dynamical effects, such as locomotion and manipulation of weighted objects, we
first propose an extension of the condensed FEM model to dynamics. Additionally, we introduce
methods for including contacts through size-independent neural networks, and online learning
strategies to increase the sample efficiency of the condensed FEM learning in a reinforcement
learning loop.

Unfortunately, we were unable to finalize these works within the timeframe of this thesis.
However, we hope to make significant progress on these topics in the near future.
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As the field of soft robotics expands, there is an increasing need for methods to numerically
explore the extensive solution space of soft robot designs. This thesis proposes to leverage FEM
simulations to evaluate robot designs, ensuring that the results are accurate enough to transfer
numerically optimized solutions to physical prototypes.

Although FEM simulation is commonly used to accelerate the design evaluation process,
design exploration is still largely done through trial and error, requiring the designer to iteratively
redesign CAD parts before re-evaluating their designs in simulation. We introduced a general
methodology in Chapter 3 for emerging Physical Intelligence in soft robots. This framework
relies on scripted parametric representation of geometric shapes and multi-objectives stochastic
algorithms for exploring non-convex optimization landscapes. It is then generic, in the sense
that the simulator is considered as a black-box, and the optimization algorithms used for design
explorations do not make any assumption on the choice of the simulator. Although the optimized
results cannot directly predict absolute real-world performance metrics precisely, we show that
by carefully calibrating the simulation parameters used to assess the baseline design (such as
mechanical parameters, mesh discretization, and boundary conditions) and making thoughtful
decisions about the constraints applied within the design space, we can effectively explore and
compare different design possibilities in term of relative performances. Using this framework,
we demonstrated its effectiveness on two soft manipulator cases. The versatility of the method
was shown through the optimization of various criteria related to the optimized robot kinematics,
the sensitivity of its embedded sensors, its energy consumption, or its performance in terms
of generated forces. Finally, we demonstrated that the developed optimization framework can
be leveraged in calibrating the simulation parameters, a task that is challenging for traditional
gradient-based algorithms in highly nonlinear scenarios involving contacts. We showed that
these methods produce designs that outperform user-intuitive baselines, especially in highly
unintuitive cases, such as those involving internal contacts. As results takes the shape of a Pareto
Front, they enable to efficiently investigate compromise between several evaluation metrics.
Furthermore, they offer an agile way to share designs. Indeed, the user does not need to replicate
the design to adapt it to their own application, as they can directly regenerate an optimized
design for their specific goals and constraints. We have thus shown that it is possible to easily
re-optimize the shape of the manipulator using self-contacts to adapt to manipulation tasks for
diverse object shapes.

The considered optimized robots in this thesis work are simple proofs of concepts, and the
scaling to complex robotics systems with many design parameters still needs to be assessed.
Although the proposed stochastic framework helps the design exploration, a significant con-
straint still arises from the definition of the optimized parametric design. This constraint limits
generated designs to a baseline morphology chosen by the user. Preliminary work on exploring
more expressive design spaces have been explored, and presented in Chapter 5.2. First, we
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introduced a generative design framework using Neural Cellular Automata to create novel
designs from a dataset of functional soft robot designs examples. By building a parameterization
from examples, we can reduce the complexity in constructing an efficient geometric param-
eterization of the soft robot body. However, it is essential to incorporate both physical and
manufacturing constraints into the current framework to ensure the plausibility of the generated
designs. Secondly, we developed a library of modular parametric components for designing
soft robots. These components are simple geometric shapes inspired by compliant mechanism
research. By integrating 3D printing features such as infill density and anisotropic patterns into
their parameterization, we can smoothly adjust their mechanical properties. The purpose of
this library is to define soft robot designs based on the desired degrees of freedom, akin to rigid
robotics. Utilizing pre-designed modules provides several benefits. By employing a finite set
of known components, we can pre-characterize and develop reduced models for each of them,
significantly improving computation time during a complete design evaluation. This approach
also ensures the manufacturability of the final designs.

Besides problematics related to design parameterization, the computation time related to
design assessment in simulation does not enable to consider high level controllers, but only
simple pre-determined direct or inverse strategies. For instance, in the optimization of a
manipulator, it is assumed that one must predefine either the contact zones between the object
and the gripper, or its actuation strategy. However, it is clear that different control strategies are
more suitable depending on the gripper design. Thus, emerging true Embodied Intelligence in
soft robots requires to co-optimize for both controller and design.

For this purpose, we developed the learned condensed FEM model in Chapter 4, shared
as an open-source plugin for the simulation software SOFA, as a surrogate accounting for
both control and design particularities. Low dimensional neural network are used to rapidly
predict mechanical matrices quantities that synthesize the link between mathematical constraints
(actuation, effector, contacts) exerted on the robot under the quasi-static assumption. We leverage
these mechanical matrices in applications such as embedded inverse control of soft robot or
design optimization. We have demonstrated the usefulness of employing this method to replace
simulation in embedded inverse control schemes. This significantly reduces the time and
memory required for numerical simulation computations, a critical barrier for achieving real-
time simulation of complex soft robots. Furthermore, we showcased the use of this framework
for design optimization, leveraging neural network differentiability to effectively explore the
design space. Further investigation of this capability may consist in the implementation of
additional constraints to guarantee the smoothness of the neural network gradients. For instance,
techniques such as Sobolev learning could be considered [Cza+17].

As discussed in Chapter 5.3, the condensed FEM model needs to be extended for use as a
surrogate in optimizing high-level control policies with methods such as reinforcement learning.
It is essential to account for the robot dynamics, particularly to exploit the non-linear dynamics
of soft bodies in complex tasks like locomotion and rapid manipulation. Promising preliminary
results have been obtained in learning the condensed FEM for dynamic trajectory predictions,
but the framework needs to be scaled to handle large datasets. One current limitation is the
neural network architecture inability to handle robot states with variable sizes. When exploring
high-level controllers, new unplanned contact points may alter the size of the learned mechanical
matrices. Additionally, as the design space expands, uniformly sampling the entire mathematical
constraint space beforehand to learn the condensed FEM model is computationally impractical,
as many states may never be encountered. Future work will focus on using size-independent
neural networks and online learning strategies to address these challenges.
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The soft robotics field still tends to prioritize the search for innovative solutions over standard
and robust ones [Bai+24]. As a result, there are still few commercial soft robots, except for
medical applications and soft grippers. This lack of standards and benchmarks is visible at
multiple levels, including the available simulation tools, manufacturing methods, and means of
comparing results.

There is a shortage of comprehensive, high-performance digital tools for the control and
design of soft robots. Many simulators have emerged from university laboratories in recent years,
but they remain small projects implementing only a few specific models [Mac+14; Bai; CPN24;
Bha+22; Hu+18b]. This limits their use to simple, highly specialized prototypes. As discussed in
the Background of this thesis, the numerical optimization of soft robot designs is still largely
dependent on simulators that prioritize computation speed over accuracy [Bha+22; Hu+18b],
making them less relevant for simulation-to-reality transfer. While the SOFA [Fau+12] simulator
used in this thesis offers accurate models under correct assumptions, it is still limited in terms
of available models. For example, the platform does not directly provide magnetic actuation
models, despite their use in many soft robots [Kim+19; Zho+21a; Ze+22; Kha+12]. Additionally,
SOFA remains challenging to use for users who are not comfortable with programming. In other
industrial fields (automotive, aviation, traditional rigid industrial robotics), commercial solutions
such as ANSYS, Abaqus or Comsol, are more comprehensive, standardized, and accessible from
a user perspective. Although the tools used in these fields can be employed for the analysis
of static designs, they do not implement the necessary components for robotic control. The
distribution of models across various scattered platforms makes it particularly challenging to
use simulation for the generic exploration of soft robots design and controller. The soft robotics
fields would greatly benefit from such a platform in the future.

This lack of standardization also impacts the ease of sharing soft robot designs. Given
the absence of commercially available building blocks, laboratories continue to develop their
own custom designs and recipes for manufacturing actuators, sensors, and controllers. This
makes designs difficult to replicate. Some efforts are being made to facilitate the sharing of
these designs, for instance through sharing tutorials and open-source repositories that allow
the replication of designs [Del+17; Hab+24], and platforms like the Soft Robotics Toolkit2 that
compile design fabrication tutorials. However, this effort is not consistent in the literature.
In this thesis, we have aimed to contribute by providing open-source code for each of our
contributions. Additionally, the development and democratization of more robust and accessible
design methods, such as 3D printing of silicons [Spa+21] and composite materials [Buc+23],
could further facilitate the sharing of complex designs in the near-future. Finally, there is a lack
of clear metrics for comparing robotic designs. This issue is directly related to manufacturing
challenges and the absence of standard evaluation platforms. For example, it is reported
in [Gra+20] that approximately one out of every two robots built for a scientific publication on
modeling and control of concentric tube robots is used only once. Working on common platforms
would facilitate easier comparisons and accelerate progress on the main research challenges
of the soft robotics fields. Such a platform has been proposed for the evaluation of pneumatic
robots [Shi+23]. There is also a need for standardized indicators and clear shared quantitative
metrics to compare the performance of soft robots. For instance, the authors of [Bai+24] advocate
that terms like "robustness" are often mentioned in scientific contributions without quantitative
evaluations. The soft robotics community has begun working on establishing standard for testing
and metrics and methods. This was the subject of a workshop I attended in the 2024 RoboSoft
conference. Ideas such as enforcing a systemic and comprehensive standardized report for
replicating and comparing results start to emerge. This approach may facilitate the sharing and
comparison of designs, leading to the development of standard components. Collaboration and

2https://softroboticstoolkit.com/home

https://softroboticstoolkit.com/home
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transfer to industry will also be crucial for establishing and refining these standards.
We believe that the methods developed in this thesis will be particularly relevant in this con-

text, with the spread of more generic numerical tools and when families of standard components
will be clearly identified. Shareable parametric and learned condensed FEM models could be
used for automatic design and control applications. This is the idea we would like to explore
with the development of the modular library of compliant mechanisms from Chapter 5.2.2.
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