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A B S T R A C T

In Retail, inventory optimisation is a common problem targeting a trade-off between
the risk of stock-out and the risk of overstocking, in order to reach an optimal global
profit. This inventory optimisation task is however very challenging in case of prod-
ucts that are sold in low quantity (so- called slow movers in Retail). Indeed, estimat-
ing properly the related future sales, especially after discretisation, usually suffers
from high relative standard deviation, from which the optimal replenishment solu-
tion inherits to the point of being usefulness in practice. Nevertheless, slow movers
in many companies, as ADEO (French holding company selling consumer goods for
DIY and decoration), are sufficiently numerous to represent a significant portion of
the sales and of the stock. Consequently, concerned items are difficult to be optimally
replenished, and even a small improvement of the replenishment process may have a
significant positive effect on the whole global profit.

For bridging the gap, this thesis reformulates the slow movers optimal replenish-
ment problem as a substitution probability estimation problem between items. When
a product is out of stock, a client may alternatively choose another item (a so-called
substitute product), avoiding to definitively loose the intended initial sale. As a conse-
quence, instead of choosing the optimal quantity to replenish separately for each item
(classical approach), we leverage that additional information that a group of items
products can be substituted for each other allows to more efficiently estimate the opti-
mal replenished quantity of the whole group of items. Obviously, such a substitution
process occurs only with a certain probability, (1) that we have to estimate and (2)
then we have to properly use through the optimal replenishment calculation. Notice
fundamentally that the discrete nature of the stock quantity is expected to provide a
better relative improvement in terms of profit in the case of slow movers compared
to the case of fast movers (the contrary of slow movers), which justifies the special
interest of our approach for slow movers.

For estimating the substitution probabilities within a group of substitutable prod-
ucts, we reformulate a specific existing model. This model is however only based on
poor observed data since limited to sales and stocks transactions in the store. In par-
ticular, the initial demand of the client, and also the lost sales, are not observable.
We circumvent this missing data issue by adapting an EM algorithm for the estima-
tion of the probabilities of substitution. We pay also attention to the identifiability of
such a model for applying properly the maximum likelihood paradigm, establishing
some theoretical hard constraints on the size of the group of substitutable products.
Some experiments on synthetic and real data sets (from ADEO) allow to measure the
variability of the substitution probability estimation (which is quite large in this large
missing data case) but illustrate however that the quality of estimates when merging
sales and stock data from several stores allows to reach very valuable and useful in-
ference on products substitution and their replenishment. The last step of our work
consists to discover the groups of substitutable products, ideally from a large set of
a raw products list providing from the store. For this purpose, we propose a specific
clustering of products relying on the light hypothesis that most of products have zero
probability of substitution. We then adapt a hierarchical clustering algorithm, allowing

v
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to estimate the targeted groups in a very fast manner and we apply it to a consequent
real data set from the ADEO company.

Keywords. Replenishment Optimisation, Substitutable Products, Missing Data, Iden-
tifiability, EM Algorithm, Clustering
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R É S U M É

Dans le commerce de détail, l’optimisation des stocks est un problème courant qui
consiste à trouver un compromis entre le risque de rupture de stock et le risque de sur-
stockage, afin d’atteindre un profit global optimal. Cependant, cette tâche d’optimisation
des stocks est très difficile dans le cas des produits vendus en faible quantité (les fa-
meux ßlow movers"dans le commerce de détail). En effet, estimer correctement les
ventes futures de ces produits, notamment après discrétisation, souffre généralement
d’une déviation standard relative élevée, dont la solution de réapprovisionnement op-
timale hérite au point de devenir inutilisable en pratique. Néanmoins, les slow movers,
dans de nombreuses entreprises comme ADEO (une holding française vendant des
biens de consommation pour le bricolage et la décoration), sont suffisamment nom-
breux pour représenter une part significative des ventes et des stocks. En conséquence,
les articles concernés sont difficiles à réapprovisionner de manière optimale, et même
une petite amélioration du processus de réapprovisionnement peut avoir un effet po-
sitif significatif sur le profit global.

Pour combler cette lacune, cette thèse reformule le problème de réapprovisionne-
ment optimal des slow movers en un problème d’estimation de la probabilité de sub-
stitution entre les articles. Lorsqu’un produit est en rupture de stock, un client peut
choisir un autre article en alternative (un produit dit substitut), évitant ainsi de perd-
re définitivement la vente initialement prévue. En conséquence, au lieu de choisir la
quantité optimale à réapprovisionner séparément pour chaque article (approche clas-
sique), nous tirons parti de l’information supplémentaire qu’un groupe d’articles peut
être substitué les uns aux autres, ce qui permet d’estimer plus efficacement la quantité
optimale à réapprovisionner pour l’ensemble du groupe d’articles. Évidemment, un
tel processus de substitution ne se produit qu’avec une certaine probabilité, (1) que
nous devons estimer et (2) que nous devons ensuite utiliser correctement lors du calcul
du réapprovisionnement optimal. Il est important de noter que la nature discrète de
la quantité de stock devrait fournir une meilleure amélioration relative en termes de
profit dans le cas des slow movers par rapport aux fast movers (le contraire des slow
movers), ce qui justifie l’intérêt particulier de notre approche pour les slow movers.

Pour estimer les probabilités de substitution au sein d’un groupe de produits sub-
stituables, nous reformulons un modèle existant spécifique. Cependant, ce modèle ne
repose que sur des données observées limitées puisqu’il se limite aux transactions
de ventes et de stocks en magasin. En particulier, la demande initiale du client, ain-
si que les ventes perdues, ne sont pas observables. Nous contournons ce problème
de données manquantes en adaptant un algorithme EM pour l’estimation des pro-
babilités de substitution. Nous prêtons également attention à l’identifiabilité d’un tel
modèle pour appliquer correctement le paradigme de maximum de vraisemblance, en
établissant certaines contraintes théoriques strictes sur la taille du groupe de produits
substituables. Des expériences sur des ensembles de données synthétiques et réelles
(d’ADEO) permettent de mesurer la variabilité de l’estimation des probabilités de sub-
stitution (qui est assez grande dans ce cas de données manquantes importantes) mais
illustrent néanmoins que la qualité des estimations lorsqu’on fusionne les données
de ventes et de stocks de plusieurs magasins permet d’atteindre des inférences très
précieuses et utiles sur la substitution des produits et leur réapprovisionnement.
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La dernière étape de notre travail consiste à découvrir les groupes de produits sub-
stituables, idéalement à partir d’une vaste liste brute de produits provenant du maga-
sin. Pour ce faire, nous proposons un regroupement spécifique de produits en nous
appuyant sur l’hypothèse légère que la plupart des produits ont une probabilité de
substitution nulle. Nous adaptons ensuite un algorithme de clustering hiérarchique,
permettant d’estimer les groupes ciblés de manière très rapide et nous l’appliquons à
un ensemble de données conséquent provenant de l’entreprise ADEO.

Mots clés. Optimisation du Réapprovisionnement, Produits substituables, Données
Manquantes, Identifiabilité, Algorithme EM, Partitionnement.

viii

[ December 19, 2024 at 14:29 – classicthesis version 4.2 ]



P U B L I C AT I O N S

Potier, Axel, Christophe Biernacki, Vincent Vandewalle, Marbac-Lourdelle Matthieu,
and Julien Favre (2022). “Modélisation de la Substitution entre Articles pour Opti-
miser leur Réapprovisionnement,” pp. 101–106. url: https://jds22.sciencesconf.
org/data/pages/LivretJdS22_version_longue.pdf.

ix

[ December 19, 2024 at 14:29 – classicthesis version 4.2 ]

https://jds22.sciencesconf.org/data/pages/LivretJdS22_version_longue.pdf
https://jds22.sciencesconf.org/data/pages/LivretJdS22_version_longue.pdf


[ December 19, 2024 at 14:29 – classicthesis version 4.2 ]



A C K N O W L E D G M E N T S

I wish to express my gratitude to all those who supported me throughout my thesis
journey.

First and foremost, I extend my thanks to the examiners for reviewing this manuscript
and recognizing the novelty of the results, which ultimately led to the awarding of this
doctorate.

I am especially gratefull to my research supervisors Christophe Biernacki, Matthieu
Marbac-Lourdelle and Vincent Vandewalle for their kindness, support and continuous
availability from the internship phase to the completion of this work, as well as for
their invaluable advices regarding the core models and designing numerical experi-
ments.

I would also like to thank Maxime Hemery for the opportunity that fostered the
partnership between Adeo and Inria. I am gratefull to Julien Favre for overseeing my
Phd at Adeo offering perspective and advices regarding coding and retail practices. I
am thankfull to Florian Deze for coding advices and to Luc de Ricke and Guillaume
Bonningue for sharing their expertise in the retail field from Adeo’s perspective.

My sincere thanks to the MODAL team at Inria for enriching discussions during
coffee breaks and for their camaraderie.

My gratitude also goes to Adeo for the opportunity of working on such a rich
subject.

Finally, i thank my family and friends for their emotional support as well as at times
for their technical advice.

xi

[ December 19, 2024 at 14:29 – classicthesis version 4.2 ]



[ December 19, 2024 at 14:29 – classicthesis version 4.2 ]



C O N T E N T S

i from multi-product replenishment to multi-product substi-
tuability 1

1 introduction 3

1.1 Motivation for multi-product replenishment at Adeo 3

1.1.1 General information about Adeo 3

1.1.2 Importance and difficulties associated to infrequently purchased
products 3

1.2 Objective and contributions 5

1.3 Organisation of the document 6

2 issues of replenishment processes associated to slow movers 7

2.1 General overview of mono-product management 7

2.1.1 Overview 7

2.1.2 A description of inventory replenishment planning with approx-
imate modelling 8

2.1.3 Mono-product inventory policies 10

2.1.4 Probabilistic and point forecasts 14

2.1.5 Scoring rule and score functions 17

2.2 State of the art on slow movers 20

2.2.1 Slow movers in industry 23

2.2.2 Difficulties associated to forecasts 24

2.2.3 Difficulties associated to replenishment 25

3 assortment and replenishment optimization with multiprod-
uct effects 29

3.1 Assortment planning with informal multi-product analysis 29

3.1.1 Profit function under substitution 29

3.2 Assortment and replenishment planning using multiproduct substitu-
tion effects 32

3.2.1 Introduction to the concept of substitution 32

3.2.2 Relation of the substitution to the assortment 33

3.2.3 Mathematical tools 33

3.2.4 Modelling the customer choice and the multiproduct substitu-
tion 35

3.2.5 Estimation 41

3.2.6 Optimization of the assortment 42

4 substituability modelling based on sales and out-of-stocks 43

4.1 Introduction 43

4.2 An introductive model for product substituability 43

4.2.1 Model presentation 43

4.2.2 Numerical illustration of the model’s benefits 44

4.3 The proposed substitution model 46

4.3.1 A new sale model considering product substitutability 47

4.3.2 A first modelling of substitution 48

4.3.3 A second modelling of substitution 50

4.4 Parameter estimation of the second model 52

xiii

[ December 19, 2024 at 14:29 – classicthesis version 4.2 ]



xiv contents

4.4.1 Parameter estimation 52

4.5 Numerical experiments 53

4.5.1 Tuning and evaluation of the EM algorithm on synthetic data 54

4.5.2 Statistical test of significance of substitution 63

4.6 Application to real datasets 66

4.6.1 Description of the datasets and the designs of experiments 66

4.6.2 Pretreatment of the time series 66

4.6.3 Numerical application in the case of 3 putting knives and a set
of tapes 67

4.6.4 Numerical application in the case of 3 putting knives and a pad-
lock 70

5 sparse substituability modelling in case of a large number of

products 73

5.1 The proposed sparse modelling 73

5.2 Estimating the groups of substituability 74

5.2.1 Invoking a specific HAC algorithm for estimating the groups
74

5.2.2 A non asymptotic model selection method 75

5.3 Numerical application on synthetic and real datasets 75

5.3.1 Evaluation of the model selection on synthetic data 75

5.3.2 Application on Adeo data 81

6 conclusion 95

ii appendix 97

a complements related to chapter 2 99

a.1 Mathematical details related to the newsvendor model 99

a.2 Proofs related to the replenishment of slow movers in Section 2.2.3
100

a.3 Additional content related to the Poisson case 102

b complements related to chapter 4 105

b.1 Model 1 properties 105

b.2 Model 2 properties 106

b.3 Additional numerical experiments results 111

c complements related to chapter 5 135

c.1 Consistency of the estimation of the edges E of the graph of substitution
135

c.2 The constrained hierarchical agglomerative clustering 135

c.3 A BIC heuristic proposal 136

c.3.1 The proposed BIC formulation 136

c.3.2 Numerical experiments related to the proposed BIC 136

bibliography 141

[ December 19, 2024 at 14:29 – classicthesis version 4.2 ]



L I S T O F F I G U R E S

Figure 1 Distribution of the number of products and turnover per daily
frequency of sales 4

Figure 2 Mean SWAPE per daily frequency of sale 4

Figure 3 Cartography of the products by the forecast’s quality 5

Figure 4 Replenishment policy (s,Q) 11

Figure 5 Replenishment policy (R,S) 12

Figure 6 Figure of the Poisson and Negative Binomial Distributions 15

Figure 7 Relative gain of including the substitution. 31

Figure 8 Relative gain of including the substitution. 31

Figure 9 Case of low devaluation (Scenario 2). 46

Figure 10 Case of high devaluation (Scenario 1). 46

Figure 11 Illustration of the selected products 67

Figure 12 Time series of stocks and sales for two subdatasets 69

Figure 13 Data-observed log-likelihood for S̃ = (10, 50, perfect substitution, c)
Degrees of freedom of the true partition: 600 78

Figure 14 Data-observed log-likelihood for S̃ = (10, 50, perfect substitution, c)
79

Figure 15 Data-observed log-likelihood for S̃ = (10, 50, realistic, c) 80

Figure 16 Data-observed log-likelihood for S̃ = (50, 10, perfect substitution, c)
80

Figure 17 Data-observed log-likelihood for S̃ = (50, 10, realistic, c) 80

Figure 18 Data-observed log-likelihood for S̃ = (100, 0, realistic, c) 81

Figure 19 Descriptive statistics of Dataset 2 82

Figure 20 Descriptive statistics of Dataset 3 82

Figure 21 Descriptive statistics of the Dataset 4 83

Figure 22 Dataset 1 Selection model for Ward linkage 85

Figure 23 Dataset 2 Selection model for Ward linkage 86

Figure 24 Dataset 3 Store 1 87

Figure 25 Dataset 3 Store 2 87

Figure 26 Dataset 3 Store 3 87

Figure 27 Model selection based on the retained BIC heuristic for the
putting knife-tape dataset 136

Figure 28 35 Products 137

Figure 29 Descriptive statistics 138

L I S T O F TA B L E S

Table 1 Common distribution of demand 15

Table 2 Results from the numerical applications in an unfavorable case
S = (2, 180, 0.1, 0.5) 56

xv

[ December 19, 2024 at 14:29 – classicthesis version 4.2 ]



xvi List of Tables

Table 3 Results from the numerical applications in a more favorable
case S = (2, 730, 2.0, 0.5) 57

Table 4 Results from the numerical applications for S = (5, 180, 0.1, 1.0) 58

Table 5 Results from the numerical applications for S = (5, 730, 2.0, 0.2) 58

Table 6 Numerical applications for S where K = 2 60

Table 7 Numerical applications for S where K = 3 61

Table 8 Quality of estimators for S where K = 5 62

Table 9 Numerical applications for K = 5 and heterogeneous mean fre-
quencies of sale 63

Table 10 Random initialization versus single initialization 64

Table 11 Numerical applications for S where (K, c) = (2, 1) 65

Table 12 θ̂ on dataset 66

Table 13 Homogeneity test on all stores for putting knives and the set of
tapes 68

Table 14 θ̂ on a single store 68

Table 15 θ̂ on Subdataset 1 69

Table 16 θ̂ on Subdataset 2 69

Table 17 Mean and standard deviation of the aggregated estimators 70

Table 18 Homogeneity test on pooled data for putting knife and the set
of tapes 70

Table 19 Numerical results for the pooled stores 71

Table 20 Homogeneity test on all stores for putting knives and the pad-
lock 71

Table 21 Mean (standard deviation ) of θ̃ 72

Table 22 Homogeneity test on pooled data for putting knives and the
padlock 72

Table 23 Numerical applications for the pooled stores 72

Table 24 HAC with single linkage 77

Table 25 HAC with Ward linkage 77

Table 26 HAC with complete linkage 78

Table 27 Evaluation of the HAC using Ward’s linkage 79

Table 29 Categories of Dataset 2 82

Table 30 Categories of Dataset 3 83

Table 31 Statistical test of the proportion of availability 84

Table 32 Dataset 2 Estimators Group (21,25,31) 86

Table 33 Dataset 2 Estimators Group (20,23) 86

Table 34 Dataset 2 Estimators Group (13,22,30) 86

Table 35 Store 1 group 1 89

Table 36 Store 1 group 2 89

Table 37 Store 1 group 3 89

Table 38 Store 2 group 1 89

Table 39 Store 2 group 2 90

Table 40 Store 2 group 3 90

Table 41 Store 2 group 4 90

Table 42 Store 3 group 1 90

Table 43 Store 3 group 2 90

Table 44 Store 3 group 3 91

Table 45 Store 3 group 4 91

Table 46 Dataset 4 1rst group of substitution 91

[ December 19, 2024 at 14:29 – classicthesis version 4.2 ]



Table 47 Dataset 4 2nd group of substitution 92

Table 48 Dataset 4 3rd group of substitution 92

Table 28 Model selection for S̃ where (µ,n) = (2, 104) 93

Table 49 Results from the numerical applications for S = (2, 180, 0.1, 0.0) 112

Table 50 Results from the numerical applications for S = (2, 180, 2.0, 0.0) 113

Table 51 Results from the numerical applications for S = (2, 180, 2.0, 0.5) 114

Table 52 Results from the numerical applications for S = (2, 180, 0.1, 1.0) 115

Table 53 Results from the numerical applications for S = (2, 180, 2.0, 1.0) 116

Table 54 Results from the numerical applications for S = (2, 365, 0.1, 0.0) 117

Table 55 Results from the numerical applications for S = (2, 365, 2.0, 0.0) 118

Table 56 Results from the numerical applications for S = (2, 365, 0.1, 0.5) 119

Table 57 Results from the numerical applications for S = (2, 365, 2.0, 0.5) 120

Table 58 Results from the numerical applications for S = (2, 365, 0.1, 1.0) 121

Table 59 Results from the numerical applications for S = (2, 365, 2.0, 1.0) 122

Table 60 Results from the numerical applications for S = (2, 730, 0.1, 0.0) 123

Table 61 Results from the numerical applications for S = (2, 730, 2.0, 0.0) 124

Table 62 Results from the numerical applications for S = (2, 730, 0.1, 0.5) 125

Table 63 Results from the numerical applications for S = (2, 730, 0.1, 1.0) 126

Table 64 Results from the numerical applications for S = (5, 180, 0.1, 0.0) 127

Table 65 Results from the numerical applications for S = (5, 180, 2.0, 0.0) 127

Table 66 Results from the numerical applications for S = (5, 180, 2.0, 0.2) 128

Table 67 Results from the numerical applications for S = (5, 180, 2.0, 1.0) 128

Table 68 Results from the numerical applications for S = (5, 365, 0.1, 0.0) 129

Table 69 Results from the numerical applications for S = (5, 365, 2.0, 0.0) 129

Table 70 Results from the numerical applications for S = (5, 365, 0.1, 0.2) 130

Table 71 Results from the numerical applications for S = (5, 365, 2.0, 0.2) 130

Table 72 Results from the numerical applications for S = (5, 365, 0.1, 1.0) 131

Table 73 Results from the numerical applications for S = (5, 365, 2.0, 1.0) 131

Table 74 Results from the numerical applications for S = (5, 730, 0.1, 0.0) 132

Table 75 Results from the numerical applications for S = (5, 730, 2.0, 0.0) 132

Table 76 Results from the numerical applications for S = (5, 730, 0.1, 0.2) 133

Table 77 Results from the numerical applications for S = (5, 730, 0.1, 1.0) 133

Table 78 Results from the numerical applications for S = (5, 730, 2.0, 1.0) 134

Table 79 Product id and information 138

Table 80 1st group of substitution 139

Table 81 2nd group of substitution 139

Table 82 3rd group of substitution 139

xvii

[ December 19, 2024 at 14:29 – classicthesis version 4.2 ]



L I S T I N G S

A C R O N Y M S

NVM Newsvendor Model

OOS Out Of Stock

SKU Stock Keeping Unit

PIT Probability Integral Transform

CDF Cumulative Density Function

N O TAT I O N S

notations common to all chapters

• ˆ estimated quantities.

• ⊤ transpose.

• E expectation operator.

• V variance operator.

• P probability measure depending on a random variable.

• P Poisson law.

• M Multinomial law.

• G Geometrical law.

• N Gaussian law.

• K number of products.

• t continuous variable denoting the time.

• k, ℓ index of products.

• πℓk probability of substitution from product ℓ to k.

• πℓ = (πℓ1, . . . ,πℓK)⊤ probabilities of substitution of product ℓ.

• π = (π⊤
1 , . . . ,π⊤

K)
⊤ vector of probabilities of substitution.

• SK =
{
a ∈ RK, 0 ⩽ ak ⩽ 1,

∑K
k=1 ak = 1

}
is the simplex of dimension K.

xviii

[ December 19, 2024 at 14:29 – classicthesis version 4.2 ]



acronyms xix

notations related to chapter 3

• H number of periods.

• h index of the period of interest.

• n time horizon.

• Dh = (Dh1, . . . ,DhK) demand of products over the period h.

• D̃t = (D̃t1, . . . , D̃tK) vector of demand at time t.

• Vt = (Vt1, . . . ,VtK) vector of sale at time t.

• P = (P1, . . . ,PK) vector of Replenishment Policies.

• θ parameters of the distribution of Dh.

• Q = (Q1, . . . ,QK) ordering quantity.

• D̂h+τ|h demand’s forecast made at period h for the period h+ τ.

• ρk stochastic profit associated to product k.

• c+ underage cost.

• c− overage cost.

notations related to chapter 4 and chapter 5

• j variable for the configuration of availability.

• J (integer) number of configurations of availability.

• n time horizon.

• ωj = (ωj1, . . . ,ωjK)
⊤ vector of availability of products.

• Xn = (Xn1, . . . ,XnJ)
⊤ random variable of the time spent in the configurations.

• xn observation associated to Xn

• Zn random variable of the initial demand of products (hidden variable).

• zn observation associated to Zn.

• Yn random variable associated to the sales.

• yn observation associated to Yn.

• µk Poisson intensity parameters of arriving customers for product k.

• θ whole parameters related to the model of substitution (µ1, . . . ,µK,π⊤
1 , . . . ,π⊤

K)
⊤.

[ December 19, 2024 at 14:29 – classicthesis version 4.2 ]



[ December 19, 2024 at 14:29 – classicthesis version 4.2 ]



Part I

F R O M M U LT I - P R O D U C T R E P L E N I S H M E N T T O
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1
I N T R O D U C T I O N

1.1 motivation for multi-product replenishment at adeo

1.1.1 General information about Adeo

Adeo is a French holding in the retail sector including Leroy Merlin, Bricoman, Wel-
dom, Zodio, Kbane, Alice Delice, Adeo Service. These brands are specialised in the
do-it-yourself (DIY) and decoration sector for inhabitants/professionals. Adeo serves
500 millions consumers and has about 150,000 employees. With a turnover of 24.2
billion euros in 2024 and 1,000 points of sale distributed in 20 countries, Adeo is in
first place in the European market and at the third place on the global. Adeo SER-
VICE1 supports the global strategy of Adeo by providing with its digital department
optimisations along the supply chain.

1.1.2 Importance and difficulties associated to infrequently purchased products

Adeo’s strategy is based on products’ variety. Indeed, the large assortment of prod-
ucts is an incentive for clients to select a product suiting a home project and buying
complementary products. Providing such a large assortment implies that some of the
products are sold in small quantities (slow movers). An exploratory analysis (Figure 1)
showed that Leroy Merlin France has 50% of the couples store products that are sold
less than once each ten days, and it amounts to 33% of turnover. The total stock of
these products is around 150 millions euros. The importance of slow movers is com-
mon to the retail sector, as described in surveys such as Valery Lukinskiy, Vladislav
Lukinskiy, and Sokolov, 2020 which attest the rich body of literature related to slow
movers.

The demand for slow movers, denoted by yi for a product i, is uncertain as a conse-
quence of the many zeros in the time series, implying difficulties in terms of forecast-
ing and replenishment. As an example, Figure 2 illustrates the decreasing quality of
the forecasting as a function of the mean frequency of sales. The measure is the Sym-
metrical Weighted Absolute Percentage Error given by SWAPE =

∑
i |yi−ŷi|∑
i |yi+ŷi|

which is
scaled independent, where ŷi is an estimate of yi. The turnover generated by the slow
movers can be seen as 33% whereas fast movers with the same amount generate 75%.
Improving the inventory policy even by on the margins would yield substantial gains.

1 https://www.ADEO.com/
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4 introduction

Figure 1: Distribution of the number of products and turnover per daily frequency of sales

Figure 2: Mean SWAPE per daily frequency of sale

Another study we conducted on 300 electrical accessories showed that a lower fre-
quency of sales per month is associated with a higher coefficient of variation and with
lower quality of forecast (Figure 3). The metric used was SWAPE and the prediction
was made by the RAP software in the year 2018 for Bricoman France. An increase in
the coefficient of variation has impacts on the quality of the inventory (Zotteri, 2000).
At a given fixed mean frequency of sale, an increase in uncertainty results in a lower
quality of replenishment. Due to the quantity of slow movers, this problem scales.
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Figure 3: Cartography of the products by the forecast’s quality

The financial importance, the difficulty associated with replenishment, and the com-
monality of the problem make the optimisation of slow movers a subject for research
that has been extensively studied and that is still problematic.

1.2 objective and contributions

The seminal intention of this thesis was then to promote a method for improving
the replenishment of slow movers. Our approach is to use the notion of substitution
between products as additional information that could serve as a lever of optimization
for the optimal replenishment quantity. However, this notion of substitution happens
to be critical and unknown for Adeo. Currently, the demand of a client that is not met
by sufficient stock has a probability of 1

3 to be lost, 1
3 to be backlogged (postponed

in the future) and 1
3 to be substituted. This quantity is valuable in itself because it

yields information about the assortment and can be used in various ways, including
replenishment. Hence, the probability of substitution is the key quantity to estimate.

In this PhD thesis, our first contribution to the literature is to provide a modelling of
the substitution between products close to other works in the field with an EM (Expec-
tation Maximization) estimation procedure and a necessary and sufficient condition
for the identifiability of the probabilities of substitution. Estimating substitution based
on out of stock is a hard problem because of the sparse data and the high number of
parameters to estimate. It implies a high variance of the estimators, hence we provided
a statistical test of the significance of the substitution and tested the estimation proce-
dure both on simulated data close to Adeo’s framework and also on Adeo’s datasets.
A second contribution was the proposition of a model that accounts for the numer-
ous zero probabilities of substitution between products to create a first pre-clustering
based on a constrained agglomerative hierarchical clustering algorithm. This enables
us to account for the problems of identifiability and execution time problems that
arise when the number of products becomes larger. The results on real datasets were
promising in the case of the small datasets, however not fully informative for larger
datasets, even if encouraging. A last chapter concludes our study.
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1.3 organisation of the document

Chapter 2 introduces some replenishment models and times series forecasting meth-
ods. It presents the state of the art on the topic of slow movers with the difficulties
related to the forecast and the replenishment and the actual improvements proposed
in the literature. Chapter 3 introduces the notion of assortment and substitution, and
more specifically the state of the art in the literature on the estimation of the substitu-
tion. It presents how the additional information of substitution can be used to improve
replenishment, and how it is especially beneficial for slow movers. In Chapter 4, we
introduce a first full model of demand and sales with a numerical experiment that
shows the gain in terms of profit of including the substitution in the replenishment
process. A second model of demand and sales with its modelling of the substitution
is provided along with a necessary and sufficient condition for the identifiability. Fol-
lows an estimation procedure and some numerical experiments both on simulated
and real data for a low number of products. Chapter 5 presents the sparse model
of substitution and the pre-clustering using a constrained agglomerative hierarchical
clustering algorithm along with numerical experiments both on simulated and real
datasets.

[ December 19, 2024 at 14:29 – classicthesis version 4.2 ]



2
I S S U E S O F R E P L E N I S H M E N T P R O C E S S E S A S S O C I AT E D T O
S L O W M O V E R S

In this chapter, we introduce a general overview of an assortment planning process
and provide some common techniques for forecasts and replenishment. A definition
of slow movers is provided along with arguments showing that there are classic prob-
lems associated with slow movers’ forecasts and inventory level optimization. We look
at the state of the art about forecasts and replenishment procedures and position our
contribution in this field by adding multiproduct substitution effects. The notion of
substitution between products will be described in Chapter 3.

2.1 general overview of mono-product management

2.1.1 Overview

In order to optimize its profit, a company chooses a strategy, and from this stems the
construction of an assortment of products. An assortment has a certain number of
categories (breadth) and a number of products (depth) within these categories. Some
firms such as Lidl are more based on a model that provides a wide breadth but small
depth, meaning that for a specific usage, there are few choices. Other firms such as
Toys R Us have low breadth but large depth in that the categories are restricted to
games and for a given type of game there are a lot of choices. These strategies drive
in their way a flow of incoming customers. The flow of incoming customers depends
on these strategies and so does the supply chain. At the technical level of logistics,
a Stock Keeping Unit (SKU) corresponds to the unique identifier of a product which
enables the management of the stocks.

Hubner, 2017 conducted on the subject of the main processes in category manage-
ment a survey of 6 firms including full assortment retailers, discounters, drugs store
and mixed grocery/ department retailers weighing more than 10 billion annual sales.
They report that category management could be summarised in a 4 part hierarchi-
cal model that spans from mid-term decisions to short-term decisions: category sales
planning, assortment planning, shelf space planning, and in-store replenishment plan-
ning.

In the category of sales planning, the firm takes in the overarching decisions made
at the strategical level and makes a midterm sales plan based on midterm predic-
tions about possible income in a particular market and see if it is beneficial. Category
planning includes the selection of the categories, the definition of their role, midterm
forecasting, and total category shelf space.

Then comes the assortment planning, which is the choice of the SKUs (depth) that
will be integrated into stores. Here the product line is designed via forecasting and
taking into account the similarity, complementarity, and price ranges according to
prerequisite of the category plan.

The shelf planning takes into account information about the products to include
and the total category shelf space. It assigns the location of the product on the shelf,
which influences the consumer’s demand.

7
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8 issues of replenishment processes associated to slow movers

On the operational part, the inventory replenishment planning fixes the cycles of
replenishment and the quantity to meet a target "on-shelf availability". The inventory
level planning is composed of two elements. The first is how much to purchase, and
the second is when to make the order.

In this section, we assume that once the assortment is created, the replenishment
policy is dealt with in a mono-product way. That is, a choice of a policy is made
independently for each product by experts.

2.1.2 A description of inventory replenishment planning with approximate modelling

In the following sections of this document, we refer to the probability measure as P,
to the expectation operator as E, and to the variance operator as V. Random variables
and their realisations are referred to by upper/lower class letters capital such as X, x.
Vectors are referred to by a bold letter, such as X. The distribution and cumulative
density function of a random variable X is fX and FX.

We provide here a modelling of the choice of the inventory policy. Let K be the
set of products commercialised at a store. At time t ∈ [0,n] a client chooses a basket
of products among the assortment of K products. The demand at time t is D̃t =

(D̃t1, . . . , D̃tK) with D̃tk ∈ {0, 1}. When a client has a demand for the product k,
D̃tk = 1.

The time horizon [0,n] is split into H equal sections of length n/H and over the
period [th, th+1] with h ∈ {1, . . . ,H}. The demand of a product over that period is
Dhk =

∫th+1
t=th

D̃tkdδ with δ being the Dirac measure.
Let the stock at the time t be St = (St1, . . . ,StK). If a client wants a product at

time t and it is available, then it is purchased Vtk = 1. The random vector of sales at
time t is Vt = (Vt1, . . . ,VtK). The stock is then updated by subtracting the sale hence
St+k = Stk − Vtk.

A replenishment policy Pk associated with product k is a set of rules that defines
when and how much of a product is purchased by the retailer to its supplier. Let P =

(P1, . . . ,PK) be the vector of policies. A description of the classic policies is given in
Section 2.1.3. A policy of replenishment makes an arbitration between the transaction
costs such as transportation or reception, costs of Out Of Stock (OOS) when products
are unavailable to meet demand, and holding costs induced by the stock itself. The
costs of transactions include some variable costs such as transportation, reception, or
administration fees according to Vandeput, 2020.

We chose to restrict the costs involved in our framework to c⊤ = (c⊤1 , . . . c⊤k )
⊤ the

costs associated with each product. The costs for product k, c⊤k = (ckp, ckc, cksn, ckh,
ckr, cko)⊤ includes respectively the selling price, the cost of purchase of the retailer,
the salvage cost which is the value of the product at the end of the considered period
n, the holding cost of a unit of stock for a given period n, the transaction cost and the
OOS cost.

The profit associated with a trajectory of the demand, sales, and replenishment
policy ρ(D̃,V;θ, c,P) is a function of the parameters c that includes various costs and
prices of each product. An appropriate policy would optimize a measure of the profit
mθρ(D̃,V; θ, c,P) where θ includes the parameters of the distributions of D̃,V. We
provide some details about the prices and inventory policies in Section 2.1.3.

The profit being a complex function, we chose a set of assumptions to describe
first the mono-product inventory model which is composed of Assumptions 1 and 2. As-
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2.1 general overview of mono-product management 9

sumption 1 states that the demands for the products are independent. Assumption 2

states that a sale is deterministic given the demand and the stock of product k. As a
consequence, the sales trajectories of each product {Vtk}k∈[K] are then mutually inde-
pendent. Recall that [K] = {1, . . . ,K}

Assumption 1 (Independence of the initial demands) The demand {D̃kt}k∈[K] are mutually
independent.

Assumption 2 (Sales for the mono-product inventory model) A sale is made if there is
enough stock, else the sale is lost. Vtk = 1 if and only if D̃tk = 1 and Stk > 0.

Assumption 3 (Stationary costs) c is fixed.

Remark 1 In real situations, from the retailer perspective the independence Assumptions 1
and 2 do not result in completely independent inventory policies. The gain of uniting the
policies is key for an efficient supply chain because the allocation of transport or supplier rela-
tionships is not mono-product. For example, choosing to order several products from a supplier
would reduce costs, and pooling products in terms of transportation would also improve the
supply chain.

A mono-product inventory policy considers the quantity and the time to replenish a
product independently of another product. Despite Remark 1, we believe that it is
reasonable and choose in this chapter to adopt it. We define as an optimal mono-product
inventory policy as a mono-product inventory policy that optimizes a certain measure of
the profit ρk({D̃tk}t∈[0,n], {Vtk}t∈[0,n];θk, ck,Pk) for a specific product k on a time
frame t ∈ [0,n]. Note that since the demands are independent in the mono-product
inventory policy, we can refer to θ = (θ1, . . . ,θK)

⊤ as the parameters of the distri-
bution of the demands. In this framework, the distribution of the demand for prod-
uct k has parameters θk ∈ Rp. The total profit for the assortment would then be
mθρ(D̃,V;θ, c,P) =

∑K
k=1mθρk({D̃tk}t∈[0,n], {Vtk}t∈[0,n];θk, ck,Pk).

Nevertheless, explicating a profit function including an inventory policy is complex,
hence in practice, the choice of the policy is done in two steps, first a choice of a policy
to treat the frequency of the purchases of product k denoted as rk. The closer the
replenishment dates, the less quantity is needed. The further away, the more stock is
needed, and hence stock cost increases. The problem is the choice of the number of
transactions with the supplier that can be expected over a period of time and the cost
of holding the stocks.

Second, the quantity to replenish Qk(rk), the retailer mitigates the variation of the
demand between the two dates. It is a compromise between the OOS and the excessive
stock cost associated respectively to a lack and excess of stock to meet the demand.
The lead time L is the time between the order to the supplier and the delivery. This
second part can be referred to as choosing a safety stock. According to that mod-
elling, PK = (rk,Qk(rk)) summarises the mono-product inventory policy. We refer to the
optimal policy as

P∗k = argmaxPk
mθk

ρk({D̃tk}t∈[0,n], {Vtk}t∈[0,n];θk, ck,Pk). (1)

The safety stock to replenish given r∗k is

Q∗
k(r

∗
k) = argmaxQmθk

ρk({D̃tk}t∈[0,n], {Vtk}t∈[0,n];θk, ck, (r∗k,Qk(r
∗
k)). (2)
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10 issues of replenishment processes associated to slow movers

In the following sections, once rk is defined for the notation we use Qk ∈ R+

instead for the quantity to replenish. These two aspects of the mono-product inventory
policy are described in Section 2.1.2. Note that the cost of OOS is difficult to model
due to global effects, such as the loss of a customer induced by dissatisfaction. This
is why experts usually use other types of rules to account for the OOS. Such as the
service level on a cycle which is the probability of having no stock out on the period
considered (Definition 1) or the fill rate which is the proportion of the demand that
is met (Definition 2). A price for stock out cko can be leveraged along with a holding
cost ckh to make a compromise between expected unit short over the period h defined
above E[(Dhk−Qk)

+] versus expected excess of stock E[(Qk−Dhk)
+], two quantities

computed from the same distribution.

Definition 1 The fill rate β is defined as the expected part of the demand for product k that
will be met with the on hand inventory over cycle h:

β = 1−
E[(Dhk −Qk)

+]

E(Dk)
.

Definition 2 The service level for product k over cycle h for a stock is defined as

α = P(Dhk > Qk).

Assuming that the service level proposed is fixed based on an expert judgment, the
optimal quantity for a specified service level α(θk) that determines the right quantity
to replenish is

Q∗
hk = inf{Q ∈ R+ : P(Dhk ⩽ Q) ⩾ α}. (3)

In the retail sector, α = 0.95 is a common value for the safety stock.

2.1.3 Mono-product inventory policies

We provide in the following subsections a review of the most classical inventory poli-
cies. These models can be found in Vandeput, 2020, Caplice and Ponce, 2020, Schoot,
Heuts, and Strijbosch, 2000, Choi, 2012. The objective here is related to Problem 1

which is to choose the right policy that maximises the profit. As said earlier, in prac-
tice the problem is solved by first choosing a policy that will set the orders frequency
and then how much is replenished.

We introduce first the Economic Order Quantity which is modelled with a determin-
istic demand. Then two policies (s,Q) and (R,S) that target service level rather than
incorporate explicit values of the costs. The last model introduced is the newsvendor
model (N, ) which is based on explicit values of the costs.

2.1.3.1 Economic order quantity (EOQ) model

The EOQ provides the quantity to order and how much re-order points equally spaced
we need. The EOQ model is simple (Vandeput, 2020), but is based on restrictive as-
sumptions. The assumption is that the demand is deterministic. It is constant over
the H periods, and the total demand is Dk over the chosen horizon. A re-order is
made when the stock reaches 0 and there is no lead time (no time between the time
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2.1 general overview of mono-product management 11

of re-order and the delivery). The EOQ for the product k is a solution of a cost min-
imisation problem including the holding cost of the stock ckh, a backorder cost ckb, a
transaction cost ckt and the delivery cost per unit ckd. The fixed order quantity

Q∗
k = argmaxQk

ckh
Qk

2
+ ckk

Dk

Qk
+ cktDk

which yields Q∗
k =

√
2ckkDk

ckh
. The EOQ also implies the transaction period

T∗k =
Q∗

k

Dk
=

√
2ckk
ckhDk

.

The EOQ model has good mathematical properties. If the quantity Qk is close to Q∗
k

then the total cost will be close to the optimal one (mathematical proof is provided in
Vandeput, 2020).

2.1.3.2 The continuous review policy (s,Q)

The main characteristic of the (s,Q) method (Vandeput, 2020, Caplice and Ponce, 2020)
is that an order can be made at any time and the stock is reviewed continuously. A
threshold s called reorder point is set and when the stock falls below an order is made
for Q. The value of Q can be set by an EOQ, Q∗ following the method described in the
previous section, including the cost of transaction and the cost of holding the stock.
A forecast of the demand is made over a prolonged period of time (such as a year)
and then given the cost of transaction and the cost of holding stock we use the EOQ
model to fix Q∗. Fixing the period at H = n/L where L is the lead time, we get that the
quantity smakes a trade-off between the under-stock and the over-stock over the fixed
lead time L. Figure 4 is an example of a (s,Q) continuous policy with s = 20, Q = 30

on a horizon of 60. Generally, using s = Q∗
k, we have Q∗

k solution of Problem 3.

Figure 4: Replenishment policy (s,Q)

2.1.3.3 The periodic review policy (R,S)

Policy (R,S) is a re-order level policy with an order that can be placed each R period.
A level S is chosen and in each R period the difference between the current stock
and S is ordered. The periodicity R is computed in the same way as T does in the
EOQ optimization problem based on holding and transaction costs. The target level
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12 issues of replenishment processes associated to slow movers

S makes a trade-off between the OOS cost and the holding cost associated with the
demand over the period between two replenishments R+ L where R is the re-order
interval and L is the lead time. Q∗

k can be computed based on Problem 3 for a chosen
service level α. Figure 5 is an example of such a policy with S = 60, R = 10, a time
horizon of 60 periods, and no lead time L = 0.

Figure 5: Replenishment policy (R,S)

2.1.3.4 The base stock policy

The base stock policy is a periodic review policy (R,S) with the objective to restore
the base stock S each period R = 1. The base stock S is computed to mitigate the OOS

cost and holding stock over the lead time L, hence S = Q∗
k is the solution of Problem 3

where α is the target service level chosen by the retailer.

2.1.3.5 Newsvendor model

The newsvendor model Newsvendor Model (NVM) first introduced by Kenneth J. Ar-
row and Marschak, 1951 is a model of the policy of replenishment based on the ran-
dom variables of the demand D,V and explicit values of the costs. In its simplest
form, introduced in this section, NVM is a single period model of the replenishment
associated with a problem whose optimal quantity of stock is a solution to Problem 2

where the measure mθ is the expectation Eθ operator.
The usual presentation of the model refers to a newsvendor wanting to know the

quantity of newspaper he has to buy in order to maximize his expected profit. He
knows its selling price ckp and purchasing cost ckc along with the value at the end of
the period (salvage value) cks. Let Dhk be the demand associated with the newspaper
(product k = 1). The quantity purchased by the newsvendor is the inventory level Qk.
The quantity of unit short is (Dk−Qk)

+. The quantity of unit in excess is (Qk−Dk)
+.

The optimal inventory level for the period h is given by

Q∗
hk = argmaxQhk∈NE

[
ckp min(Qhk,Dhk) + cks max(0,Qhk −Dhk) − ckcQhk

]
.

(4)

NVM is a model that has been thoroughly studied and has various extensions, see
Choi, 2012 for an exhaustive presentation of the extensions. Dhk may be discrete or
continuous. We provide here a model that will be extended for substitutions and
related analysis in Chapter 3.
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2.1 general overview of mono-product management 13

the chosen newsvendor model We consider the replenishment over a single
period that we identify with [0,n]. The formula of the profit is a function of the aggre-
gated sales Dhk hence for this paragraph we drop the reference to the period h for
ease of reading. The explicit chosen costs are the holding cost ckh, the salvage value
cks, the purchase price chp, the cost of OOS cho and the cost of the product chc. The
total cost associated respectively to hold the stock, to the OOS is linear in the associated
cost hence

ρk({D̃tk}t∈[0,n], {Vtk}t∈[0,n];θk,Qk) = ckp min(Qk,Dk) − (ckh − cks)max(0,Qk −Dk)

− cko max(0,Dk −Qk) − ckcQk.

The optimal replenishment in NVM is then given by

Q∗
k = argmaxQk∈Rρk({D̃tk}t∈[0,n], {Vtk}t∈[0,n];θk,Qk). (5)

Here the cost of one unit shortage is the lost margin plus the additional cost of not
fulfilling the order (c−k = cko + ckp − ckc). The unit cost for an excess of one unit
(excessive stock cost) here is c+k = ckh + ckc − cks, and we have

Proposition 1 Problem 5 is equivalent to

Q∗
k = argmaxQk∈REθk

(
(ckp − ckc)Dk − c−k (Dk −Qk)

+ − c+k (Qk −Dk)
+
)

(6)

which then yields

Q∗
k = argminQk∈Rc

+
k Eθk

((Qk −Dk)
+) + c−k Eθk

((Dk −Qk)
+). (7)

Proof 1 is provided Appendix.

As mentioned in the other mono-product inventory policies the trade-off between OOS

and excessive stock is key for the computation of the replenishment quantity. Propo-
sition 1 states it for the NVM. The following result is meaningful, it relates the service
level to the costs of OOS and excessive stock in a simple formula

α =
c−k

c−k + c+k
. (8)

Proposition 2 Let Dk be a continuous random variable with distribution function f and
cumulative distribution function F. The optimal inventory level is given by F(Qk) =

c−
k

c−
k+c+

k

.

This last results provides the relation between the service level and the costs for a
discrete variable. The proof is not given but can be found in Vandeput, 2020.

Proposition 3 LetDk be a discrete random variable. The optimal inventory level is the lowest
Qk such that P(Dk ⩾ Qk) ⩾

c−
k

c−
k+c+

k

. Proof 2 is provided in Appendix.

Example 1 If the cost of an out of stock is 95 euros and a cost per period is five euros the
optimal service level would be α = 95%.

The optimal quantity is expressed in a tractable way as can be seen both from
the Proposition 3 and Example 1. The intuition is that the most costly a shortage is
compared to an excess, the more inventory will be held. The quantile will in practice
depend upon the type of product sold: the fresh product has a high excess cost, the
spare part a high shortage cost.
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14 issues of replenishment processes associated to slow movers

2.1.4 Probabilistic and point forecasts

2.1.4.1 Motivation for the estimation and demand forecast

In various processes including the mono-product inventory policy, the information about
the demand is the input for making the best decisions. The demand being stochastic,
giving a specific number as a forecast results in an impoverishment of the information
at hand hence the need to retrieve a full distribution. A probabilistic forecast is a
forecasted distribution for a given period and since it is dependent on observations
it is random. In order to provide some theoretical aspects we refer to the work of
Gneiting and Ranjan, 2013, we chose to define the forecast as a probability measure
on the observations Y when dealing with the theory and Dhk when dealing with
the demand framework. A is the set of events with A1 ⊂ A being a sub σ-algebra
containing the information at hand such as data and expertise.

Definition 3 A prediction space is defined as (Ω,A, Q) with A1 ⊂ A being a sub σ-algebra.
Elements of Ω are (F, Y) and Q is the joint distribution of the two. It verifies :

• F is the random Cumulative Density Function (CDF) measurable on A1.

• Y is a real valued random variable.

Definition 4 Let L be a conditional law. A random CDF is ideal with respect to the sub σ-
algebra A1 if F = L(Y|A1).

An ideal CDF can be seen as optimal based on the information provided by A.
In the case of the time series such as Dhk, the probabilistic forecast for the future

period H+ τ with τ ∈ N based on observations Dk = (D1k, . . . ,Dhk)
⊤ is referred as

F̂H+τ|H(•;Dk). A point forecast D̂h+τ|h is a forecast of the value the demand would
have in τ days according to a forecast method m.

2.1.4.2 Famous distributions of the demand

We review the most famous parametric distributions of the demand. It is classical to
model the arrival of customers by a Poisson law. The clear link between the incom-
ing flow of clients and the demand contributes to make this law one of the most
used (Vandeput, 2020, Anupindi, Dada, and Gupta, 1998). The distribution can be
found in Table 1. The Poisson law is a one parameter distribution with equal variance
and mean. We use this distribution of the demand in our contributions. According to
Agrawal and Smith, 1996, the negative binomial is a better choice. It is also a popular
distribution for the distribution of demand used in (Smith et al., 2000). The demand
is positive and often shows a skewness on the right tail which is due to the low prob-
ability of having a high demand. Moreover the demand in the retail sector also has
to deal with unobservable lost sales due to the OOS. Figure 6 shows the right tail is
longer for negative binomial.

The demand can also be approximated by continuous distribution such as the nor-
mal law which exhibit nice properties such as a formula for the quantiles F−1

Dhk
(α) =

µ+Φ−1(α)σ often used for safety stocks computation 2.1.3. Φ and ϕ in the rest of
the document are respectively the cumulative distribution function and the density of
the normal centred and scaled law. But it has some limitations such as the fact that
the distribution is symmetrical (it can be a limiting assumption) and the fact that the
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Figure 6: Figure of the Poisson and Negative Binomial Distributions

demand can be negative which is not possible in practice. However Schoot, Heuts,
and Strijbosch, 2000 uses the gamma law which is more convenient, it has a positive
support and two parameters that account for the skewness of the right tail. If the
smallest value of the dataset is strictly positive this law can be shifted by the mini-
mum value. AZZALINI, 1985 proposes a skew normal distribution which takes three
parameters accounting the mean, variance and skewness of the distribution and is a
generalization of the normal law.

After choosing the model for the demand, parameters are estimated based on ob-
served data. Assuming the stationarity of the demand enables to see the past obser-
vations (Dhk)h∈[H] as i.i.d samples of the distribution. Then via classical techniques
such as maximum likelihood maximization the parameters of the demand can be re-
trieved. Semi parametric and non parametric distributions such as bootstraping are
an alternative.

For example, in the case of the Gaussian distribution, the maximum likelihood esti-
mator is µ̂ = 1

H

∑
tDhk and the variance is σ̂2 = 1

H

∑
h∈[[0,H]](Dhk − 1

H

∑
tDhk)

2.

Table 1: Common distribution of demand

Distribution distribution

P(λ) λk

k! exp(−λ)

NG(r,p)
(
k+r−1

k

)
pr(1− p)k

N(µ,σ) 1√
2πσ

e
(x−µ)2

2σ2

G(k, θ) 1
Γ(k)θkx

k−1e−
x
θ

SN(ξ,ω,α) 2
ωϕ(

x−ξ
ω )Φ(α(x−ξ

ω ))

In next Section 2.1.4.3, we provide some forecasting techniques that assume the
demand may be non stationary and we provide next an introduction to the calibration
and the score functions that enables the evaluation of the quality of the forecasted
distribution and permits to define a link between the probabilistic forecasts, point
forecasts and their accuracy measures. This is motivated by the fact that point forecasts
are the provided information for the replenishment.
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2.1.4.3 Some usual time series forecasting methods

When the demand is not stationary and the d̃ are not iid, a time series forecast takes
as input the data over a period of time (Dh)h∈[H] and outputs a value at the period h
for a specific future period τ D̂h+τ|h.

A first naive method assumes a future period has the value of the current period
D̂h+τ|h = Dh.

The simple exponential (SES) was investigated around 1950-1960. The seminal work
can be found in Brown, 1959, Holt, 1957 and Winters, 1960. Given a smoothing parame-
ter α, the forecasted demand specified by D̂h+1|h is computed via fixing a0 arbitrarily
and computing

ah = αDh + (1−α)ah−1

D̂h+τ|h = ah. (9)

Equation 9 reflects the fact that exponential smoothing is a flat forecast with D̂h+τ|h =

D̂h+1|h and not tailored for time series with trends or seasonality. The parameter
α ∈ [0, 1] assigns more weight to the new values when close to 1. The adjective "expo-
nential" refers to the fact that the weight attached to a Dh is decreasing exponentially.
Another version of the estimator is the weighted average formula:

ah =

h−1∑
j=0

α(1−α)jDh−j +α(1−α)
ha0.

In pratice, values of different α can be evaluated in terms of performances to retrieve
the best value.

The double exponential smoothing (also called Holt’s linear trend method Holt,
1957) is based on the same principle and adds a linear trend term. Let α ∈]0, 1[ and
γ ∈]0, 1[ be the smoothing parameters associated respectively to the data and to the
trend. The intialization of the variables are a0 = D0 and b0 = D1 −D0.

ah = αDh + (1−α)(ah−1 + bh−1),

bh = γ(ah − ah−1) + (1− γ)bh−1,

D̂h+τ|h = ah + hbh.

Another alternative is the Brown’s method which is similar and can be found in Brown,
1959. The triple exponential method (also called Holt Winters method) adds a seasonal
term. It involves smoothing parameters for the data, trend and seasonality respectively
named α,γ, ζ. Two versions exist, the first with additive seasonality and the second
with multiplicative. We provide the additive version for a cycle of length L. Let a0 =

D0, we have

ah = α(Dh −Dt−L) + (1−α)(ah−1 + bh−1),

bh = γ(ah − ah−1) + (1− γ)bh−1,

ch = ζ(Dh − ah−1 − bh−1) + (1− ζ)Dt−L,

D̂h+τ|h = ah + hbh +Dt−L+((h−1) mod L).

Other methods can involve exterior information and more practices can be found in
Rob J Hyndman and Athanasopoulos, 2018 and Kolassa, 2020 for an exhaustive review
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2.1 general overview of mono-product management 17

of the forecasting in retail. If we relax the assumption of stationarity of the demand,
it is possible to combine forecasting techniques with standard estimation of the de-
mand’s probability distribution in order to compute the future demand. For example,
evaluating the mean on past data using exponential smoothing and the standard error
with the RMSE (the root of the empirical risk introduced in Equation 2 ) can be used
with a Gaussian distribution.

2.1.4.4 Calibration of the estimation

In the case of probabilistic forecast the candidate distribution is evaluated in terms
of the calibration and the concentration. The former is the property of how well the
distribution fits the data and the second refers to the pread of the possible value
around a point forecast.

The probability integral transform is a statistic based on the observation and the
forecast distribution that enables the calibration.

Definition 5 Let V ∼ U[0, 1] independent from the forecast CDF F and Y the observations. The
Probability Integral Transform (PIT) of F is defined as

ZF = lim
x→Y−

F(x) + V(F(Y) − lim
x→Y−

F(x)).

For a function F that is continuous and if Y ∼ F then ZF is uniform. Based on this
property we define the notion of calibration as

Definition 6 The forecast F is stochastically calibrated if the PIT ZF has a standard uniform
distribution.

Definition 7 The forecast F is marginally calibrated if EQ[F(Y)|Y = y] = Q(Y ⩽ y).

Associated to the notion of calibration there is the notion of dispersion. A forecast
is over dispersed if the histogram of the PIT is inverse U shaped and under dispersed
if it is U shaped.

Definition 8 The forecast is underdispersed if V(ZF) <
1
12 and overdispersed is V(ZF) >

1
12 .

It is also possible to compare the PIT of two candidate distributions F,G .

Definition 9 F is more dispersed than G if V(ZF) ⩽ V(ZG).

According to Gneiting, Balabdaoui, and Raftery, 2007 the PIT does not permit to
discriminate in all situations whether a candidate distribution is preferable over an
other. He provides the example of 4 distributions candidate and the PIT histogram is
similar for all despite the fact that the true distribution is included. The authors then
propose to add a second criterion through the notion of sharpness.

2.1.5 Scoring rule and score functions

Drawing from Gneiting and Katzfuss, 2014, the concept of score is here defined and
some of its properties and use cases are explored. The evaluation of the quality of
the forecasted distribution to the data d̃ may be evaluated with a scoring rule. The
scoring rule evaluates both the callibration and the sharpness. Let F be a convex class
of distribution functions on R and Ω be the set of values of y. A scoring rule is a
function S : F×Ω→ R̄ with R̄ = R∪ {−∞,∞} the completed real line.
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18 issues of replenishment processes associated to slow movers

Definition 10 Let F ∈ F be a forecast cumulative density function. Let S(F,G) = EG[S(F, Y)]]
be the expected score associated to the function F given that G is the real distribution. A proper
scoring function S for the class of function F verifies

S(G,G) ⩽ S(F,G),∀(F,G) ∈ F×F.

It is strictly proper if S(G,G) = S(F,G) implies that F = G. We provide a formulation
characterising a proper scoring rule S.

Theorem 1 The scoring rule S is proper relative to S if the expected score function e(F) =

S(F, F) is concave and S(F, •) is a super gradient of e at the point F, ∀F ∈ F.

A super gradient is a generalization of the gradient for functions that are not
smooths. It verifies the following property.

Definition 11 Let C ⊂ Rm be a convex set, and let F : C → R be concave. A vector p is a
supergradient of F at the point x if for every y it satisfies the supergradient inequality,

F(x) + p · (y− x) ⩾ F(y)

For concave F, the set of all supergradients of F at x is called the superdifferential of F at x,
and is denoted ∂f(x).

Among the scoring rules we have the logarithmic score which is defined as

LS(f,y) = − log(f(y))

which is associated to the maximum likelihood estimation of the distribution. The
quadratic score

QS(f,y) = −f(y) +

∫
R

f2(x)dx

which is associated to the density functions that are square integrable which corre-
sponds to the least square estimation. A list of other scoring rules is available in the
paper Gneiting and Katzfuss, 2014.

In the retail sector, for the decisions of the replenishment it is necessary to compute
a point forecast which is defined as a value in R optimal for a given distribution.

Definition 12 A scoring function or loss function is a function s that verifies s : Ω×Ω →
R+.

Definition 13 Let F be the forecast distribution ("predictive" in the paper) and s(x,y) be a
non negative loss function / scoring function which assigns the loss to the point forecast x
given that y is the realized value. The Bayes rule or optimal point forecast is then given by
x̂ = argminxEF[s(x, Y)] where Y follows F.

A statistical functional is defined as T : F → P(R) for which the expectation, quan-
tiles are examples. A scoring function s is consistent for the functional T relative to the
class F if EF[s(t, Y)] ⩽ EF[s(x, Y)], ∀F ∈ F, t ∈ T(F) and x ∈ R. It is strictly consistent if
the equality implies that x ∈ T(F).

A consistent scoring function generates a proper scoring rule.

Theorem 2 Let s be a scoring function consistent for T relative to a convex class F. Let
tF ∈ T(F) then S(F,y) = s(tf,y) is a proper scoring rule relative to the class F.
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2.1.5.1 Ellicitable functionals, point forecasts and accuracy measures

The value tf is a point forecast.

Definition 14 Functionals T which have a scoring function strictly consistent are called ellic-
itable.

Among the functionals that are elicitable there is the expectation and α-quantile
which have the related scoring functions respectively s(x,y) = (x− y)2 and s(x,y) =
(1y<x −α)(x− y).

In practice, a point forecast is a quantity that answers to a specific question such
as, "What will be the level of sale of this specific product in 6 months?" from the
demand perspective and "Which stock should i order to cover a one month period?"
from a replenishment perspective. To each of these questions there is associated a loss
function that enables the evaluation of the quality of the response.

A point forecast stemming from a distribution FDhk
can be expressed in terms of a

functional T : F → P(R̄). For example, the expected sale for the period h is expressed
as T(FDhk

) = {Eθk
(Dhk)}, and the variance T(FDhk

) = {Vθk
(Dhk)}. As seen in the

previous section in Theorem 2 there is an association between a functional and a loss
function.

In practice, there is a risk function associated to the loss function, an empirical
approximation of it. Examples 2, 3, 4 show some loss functions used in practice.

Example 2 The risk defined by the mean squared error E[[Yh − Ŷh]
2] is approximated by

the in-sample mean squared error H−1
∑H

h=1[Yh − Ŷh]
2 and the loss function is quadratic

s(x,y) = (x − y)2. The associated functional is the expectation meaning that the optimal
value in terms of risk is the mean of the distribution.

Example 3 The risk defined by the mean absolute error E[|Yh − Ŷh|] is associated with the
empirical mean absolute error H−1

∑H
h=1 |Yh− Ŷh|. The loss function is s(x,y) = |x−y| and

the functional is the median operator.

Example 4 The risk defined by the loss function s(x,y) = (1y<x − α)(x− y) (also called
pinball function (Biau and Patra, 2000) is associated with the α quantile functional. The risk
associated to it is E[1Yh<Ŷh

− α)(Ŷh − Yh)]. The empirical risk is H−1
∑H

h=1[1Yh<Ŷh
−

α)(Ŷh − Yh)].

2.1.5.2 Other forecast accuracy measures

Additional to the empirical risk provided in the last section, some other empirical risks
are worth stating because of their relation to the retail forecasting. Following Rob J.
Hyndman and Koehler, 2006, there are 4 different empirical risks: the scale dependent
metrics, the percentage error metrics, the mean ratio of error between two methods,
the scale independent methods.

In the scale dependent empirical risk, we cite the mean absolute error (MAE) from
Example 3, the mean squared error (MSE) from Example 2, the empirical risk asso-
ciated to the pinball loss function from Example 4 and the geometric mean absolute

error
(∏H

h=1 |Yh − Ŷh|
) 1

H
. The scale dependent empirical risks are a relevant for eval-

uating different forecasting methods on the same time series but are irrelevant across
time series with different scales.
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The percentage errors include the mean absolute percentage error (MAPE) MAPE =
100%
T

∑H
h=1

|Yh−Ŷh|
Yh

which is easy to interpret in term of percentage of error and as-
signs more importance to positive errors than negative errors (Rob J. Hyndman and
Koehler, 2006). So an alternative has been suggested which is the symmetric mean ab-

solute percentage error (SMAPE) equal to 100%
H

∑H
h=1

|Yh−Ŷh|

(Yh+Ŷh)/2
. However it can have

a negative value. These measures suffer from their denominators when the observa-
tions Yh have numerous zero values.

It is possible to compare errors between different forecasting methods. Let Ỹt be

the forecast for a second method. Possible measures are the median
(
|Yh−Ŷh|

|Yh−Ỹt|

)
. This

measure is scale independent so it is possible to compare accross multiple time series.
This type of measure is not suited for intermittent demand because low values of
errors yields poor accuracy.

The last one is scale independent methods such as the MASE (
1
H

∑H
h=1 |Yh−ŷh|

1
T−1

∑T
t=2 |Yh−Yh−1|

)

which is recommended in the case Rob J. Hyndman and Koehler, 2006 because it
does not have the limitations of the other categories. We can also cite the SWAPE

(
∑

t |Yh−Ŷh|∑
t |Yh+Ŷh|

) that is used at Adeo.

2.2 state of the art on slow movers

In the assortment of Adeo, the frequencies of sale and the prices of products are
characteristics driving the importance of products in terms of turnover nevertheless
forecasting time series with different frequencies can be challenging. Time series of
slow movers or fast movers need different tools both in terms of forecasting techniques
and in terms of choice of empirical risk. In this section we provide the most accepted
definition of a slow movers, derive cut-off points to distinguish from fast movers and
show the shortcomings both in terms of forecast and replenishment.

2.2.0.1 A partition of the products in four types

A slow mover also referred to as "product with intermittent demand" or "unfrequently
purchased" (A. A. Syntetos, Boylan, and Croston, 2005, Miller et al., 2010) is defined in
relation to a given time granularity. For a fixed temporal horizon [0,n], the subdivision
into H periods with H increasing increases the number of zeros in the time serie
(d̃1k, . . . , d̃Hk).

Remark 2 The definitions of slow movers in practice tend to be inconsistent (Kwan, 1991)
from a company to another due to variations of volume of demand, frequency of sale or lead
time. We provide some information about it in Section 2.2.1.

Definition 15 characterises slow movers by the probability of no sales on a given
period.

Definition 15 Given a threshold η, a slow mover is a product so that P(Dhk = 0 | θk) ⩾ η.

In the literature Croston, 1972, the threshold η should be defined in terms of differ-
ence best forecasting method. However, the demonstration of the value of this cut-off
point is also related to the coefficient of variation of the quantity once a sale is made
thus including a more precise partition of the types of products. A partition which
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2.2 state of the art on slow movers 21

separates products as follows: the lumpy demand has long inter demand interval (p)
and high coefficient of variation for the quantity (CVq) when a demand occurs. Er-
ratic demand is characterised with short inter demand interval and high coefficient
CVq. Intermittent demand has long inter demand interval and low CVq and smooth
demand is the last class. We can note that for lumpy items, the inter demand intervals
can be long and yet the number of sales high. Often this is not the case.

The demonstration of the cut-off values along the two dimensions build on a mod-
elling of the demand introduced by Croston, 1972, the choice between four proposed
methods of forecasting and the demonstration in a theoretical framework of the cut-off
values.

croston modelling of intermittent demand Croston, 1972 proposed a
novel modelling of the products demand relevant to the infrequently purchased prod-
ucts. Let θk = (µ,σ,p) be the parameters of Dhk such that Dhk = zhk ∗ xhk with
zhk ∼ N(µ,σ2) denoting the quantity demanded in the period t and xhk ∼ B(1/p)

being 1 if a demand occurs and 0 otherwise. The related inter demand interval is
denoted by phk ∼ G(p) with G being the geometric law.

candidate forecasting method Based on the past data of demand ((Dhk)h∈[[0,H]],
we introduce the simple exponential smoothing

D̂h+1|h = αD̃h + (1−α) ˆ̃Dh|h−1

where α is the smoothing parameter. The forecast verifies D̂h+τ|h = D̂h+1|h for h ∈N.
Croston, 1972 proposed a method for forecasting based on similar technique as SES:

let α ∈]0, 1[ be a smoothing parameter. p ′
h is the exponentially smoothed interdemand

interval and z ′h is the exponentially smoothed demand quantity.

p̂h =

{
αph + (1−α)p̂h−1 if D̃h ̸= 0

p̂h−1 if D̃h = 0,

and

ẑh =

{
αzh + (1−α)ẑh−1 if D̃h ̸= 0

ẑh−1 if D̃h = 0.

The estimator of the demand is D̂h+1|h = ẑh
p̂h

. According to A A Syntetos, 2001 this
method is biased and he provided a modified version D̂h+1|h = (1− α

2 )
ẑh
p̂h

. We refer
to this method by SBA (Syntetos Boylan Approximation). The two methods verify
D̂h+τ|h = D̂h+1|h for h ∈N∗.

general definition of demand patterns along 2 dimensions The crite-
ria used in the literature to discriminate between different demand patterns including
slow movers is based on two dimensions: the coefficient of variation of the size of
products sold when a sale happens which is CV(D̃h|D̃h > 0) =

E(D̃h|D̃h>0)

V(D̃h|D̃h>0)
1
2

and the

mean inter demand interval E(ph). Which is in the case of the modelling of Croston
CV(zh) and the mean inter demand interval E(ph). A cut-off point along these two
dimensions separates fast movers, intermittent demand, erratic demand and lumpy
demand.
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idea of the demonstration of the cut-off values Historically, the fore-
casting of intermittent demand was percieved as best performed by the Croston method.
Therefore the criteria for the two thresholds have been defined in A. A. Syntetos, Boy-
lan, and Croston, 2005 by theoretical outperformances of the SBA versus the SES fore-
casting method.

The demand Dh follows the model of Croston. D̂h+τ|h refers to one of the three
methods. Each of the methods has an auto-correlation error stemming from the prop-
erty D̂h+τ|h = D̂h+1|h for h ∈N. The evaluation of the forecast methods must include
it. Let L be the number of periods over which the demand is forecasted. The error is
then

∑L
τ=1(Dh+τ− D̂h+τ|h). The performance of each prediction method is evaluated

via the mean squared error:

MSEforecasting method = E([

L∑
τ=1

(Dh+τ − D̂h+τ|h)]
2).

The following lemma gives the formula of the MSEforecasting method.

Lemma 1 The mean squared error verifies :

MSEforecasting method = L
{
LV(D̂h+1|h) + LBIAS2 + V(Dh)

}
.

Which yields the following results when applied to the different methods.

MSESES =L

{
L
α

2−α

[
p− 1

p2
µ2 +

σ2

p

]
+

[
p− 1

p2
µ2 +

σ2

p

]}
Croston in Croston, 1972 derived a formula for MSECROSTON that appeared to be

false according to numerical application. It was later corrected by A A Syntetos, 2001

yielding

MSECROSTON ≈ L
{
L α
2−α

[
p(p−1)

p4

(
µ2 + α

2−ασ
2
)
+ σ2

p2

]
+L
[

α
2−αµ

(p−1)
p2

]2
+
[
p−1
p2 µ

2 + σ2

p

]}
.

In A A Syntetos, 2001, the authors also showed that

MSESBA ≈ L
{
L
α(2−α)

4

[
(p− 1)

p3

×
(
µ2 +

α

2−α
σ2
)
+
σ2

p2

]
+L

[
α

2

µ

p2

]2
+

[
p− 1

p2
µ2 +

σ2

p

]}
.

The authors chose to assume that the smoothing constant α is the same for each
method which is acceptable.

The proofs can be found in A. A. Syntetos, Boylan, and Croston, 2005, theoretically
the method of Croston performs better than SES in term of MSE at least when p > 1. A
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categorization has been derived along the two dimensions. The intermittent demand
verifies CVq < 0.49 and p > 1.32, Erratic demand CVq > 0.49 and p < 1.32, lumpy
demand CVq > 0.49 and p > 1.32. Croston performs better than Syntetos and Boylan
on the smooth demand and worst on the intermittent, erratic and lumpy demand.

Remark 3 According to the results of A. A. Syntetos, Boylan, and Croston, 2005, the accepted
Definition 15 of slow movers is η = 1− 1/1.32 ≈ 0.24.

our approximate versus theoretical threshold In Section 1 we intro-
duced the boundary of slow movers versus fast movers in terms of turnover versus
number of products. We have considered two distributions, each product k has a
unique mean frequency of sale µk and we can describe the K products as a number
of products per mean frequency of sale. We can also describe the turnover per mean
frequency of sale as a distribution. The cutoff point along the mean frequency of sale
that separates the region of superior performance of turnover versus the number of
products was empirically found to be θk = 0.1. Assuming that D̃v,emp = P(µk), the em-
pirical cutoff point P(D̃v,emp = 0; θk) = exp(−0.1) = 0.9 which is above the threshold
η = 0.24 verifying the slow movers Definition 15.

2.2.1 Slow movers in industry

The fast movers have attracted a lot of attention since Brown, 1959. The intermittent
demand inventory control literature dates at least back to 1960 concerning engineer-
ing parts (Mitchel 1960). These spare parts are generally sold/ used every few months
and can be needed in amount that exceeds a unit. In the above categorisation, they
are considered as lumpy demand or intermittent. The aerospace and machine main-
tenance companies are concerned by that problematic. A threshold cited in (Gelders
and Van Looy, 1978), a slow moving product has a demand less than 2 units in a year.
The management of spare parts is a complex problem that has some overlap with the
extreme value theory (Zhu, 2021 ). Associated issues are the high cost of shortage,
high price, low information about the highest quantiles and obsolescence problems.
For example, the shortage cost associated to one hour of downtime of an air plane
can amount to 8,000 dollars according to Zhu, 2021. Yet, the market of spare parts is
large because of the pervasive presence of machines. Aris A Syntetos, M Zied Babai,
and Jr, 2015 cites a benchmark of 1.5 trillion dollars for the combined revenue of the
largest manufacturing companies and about 26% of it is services. In the Introduction,
we pointed out the high proportion of the stock associated to the slow movers which
was already noted by Aris A Syntetos, M Zied Babai, and Jr, 2015 with 60% of the
stock value associated to it in the spare parts sector.

Time series are less intermittent for durable and non-durable goods as well as for the
retail sector. In the case of non durable goods, Albert Heijn is a deutch company with
local grocery stores which according to A. G. Kok and Fisher, 2007 reports that a slow
moving product is sold less than 10 units a day. This observation is coherent with
Remark 2 observing the high disparity of criteria for slow movers. Another type of
industry is the one with durable goods such as Adeo. According to Valery Lukinskiy,
Vladislav Lukinskiy, and Sokolov, 2020, around 30% to 70% of products in retail and
service experience low demand and 90% of the logistic cycle time (from vendor to end
customer) is spent in storage and expensive products generally have a low demand.
This implies too that there is capital that is immobilised.

[ December 19, 2024 at 14:29 – classicthesis version 4.2 ]



24 issues of replenishment processes associated to slow movers

2.2.2 Difficulties associated to forecasts

Slow movers are important from the business perspective however forecasting and re-
plenishment issues stem from the sparse nature of its demand patterns. In this section,
we shed some light on the forecast aspect.

In inventory management, forecasting provides insight about the demand pattern.
It provides insights at a mid term about the trends and seasonality. As introduced in
Section 2.1.4, demand forecasting can be separated into two related fields the analyti-
cal methods such as SES, Croston and probabilistic method which are composed of the
estimation of the demand and then according to a specific metric computes the value
wanted for the forecast. The assessment of the quality of forecast in the case of slow
movers is difficult for two reasons: the relative error of forecasts and the interpretation
based on empirical risks.

high relative errors of forecasts It is unanimous that the slow moving
items are difficult to forecast. The underlying problem being the fact that the available
information are sparse because of the numerous zero sales. From the stand point of
the distribution of the demand we have seen that there is a concentration of the prob-
ability that is close to 0. According to M Z Babai, Tsadiras, and Papadopoulos, 2020,
it is recurrent that given a specific metric the best value forecasted via a probabilistic
method is 0, Example 5 is an illustration. A forecast at 0 is not necessarily interesting
for the company from a replenishment perspective, a probabilistic forecast is more
valuable.

Example 5 An example is a Bernouilli process with a probability of 0.9 to have 0 demand and
0.1 to have a unit demand. The best point forecast is 0 according to the MAE (see Example 3).
For the forecast value being zero, E[|Dhk − 0|] = 0.9|0− 0|+ 0.1|1− 0| = 0.1 and the forecast
at 1 gives E[|Dk − 1|] = 0.9|0− 1|+ 0.1|1− 1| = 0.9.

An error of one unit in forecast is high relatively to the mean frequency of sale
for slow movers. Considering the large proportion of the slow movers in assortments
such as Adeo we conclude that this relative error scales and becomes an issue.

Teunter and Duncan, 2009 considers a real application to spare parts in the Royal
Air Force, where the time series have many zeros and few positive demand. In the
application the point forecast at 0 was the best forecasting method. More-over in Ko-
lassa, 2020 examples have been provided of point forecast. It is possible to see that the
point forecast depends largely on the metric and their relative size are substantial. A
difference of 1 for a product that is sold unfrequently is a high relative error.

A critical review Pinçe, Turrini, and Meissner, 2021 including a hundred papers with
various applications and methods concluded that no method outperforms the others
systematically and the performance depends on the industrial. They also conclude
that the measures in the case of slow movers are very important and they often are not
appropriate. According to Pinçe, Turrini, and Meissner, 2021 a measure of inventory
control would be a better choice. The simple method such as SES compete on real data
with more complex one such as neural network or the SBA M Z Babai, Tsadiras, and
Papadopoulos, 2020 according to the MASE. Pinçe, Turrini, and Meissner, 2021(2021)
provides the avenue for future research. It must be noted that at the extreme which
is the case for spare parts, time series can be very short having at the granularity of
months about a dozen periods (Valery Lukinskiy, Vladislav Lukinskiy, and Sokolov,
2020).
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In the next section we investigate the inventory model for slow movers. In the case
of reorder "reorder up to level" and "reorder point", a safety stock is computed for a
target service level. This quantity in mono-product optimization of stock is a quantile
of the demand distribution. Hence, an estimation procedure is necessary.

choice of an appropriate empirical risk The use for empirical risks can be
in view of comparing different forecast techniques but also across different products.
For the comparison on the same time series, the most interpretable empirical risk
is the MAPE which gives a percentage error however this choice is disabled by the
numerous zeros in the time series. The use of the MAE and MSE is a viable option.

When comparing products including slow movers based on a forecast method it
has to be scale independent and have a formula with a denominator strictly positive.

Hence the MAPE (
∑H

h=1
|Dh−D̂h|

Dh
), and SMAPE (100%

H

∑H
h=1

|Yh−Ŷh|

(Yh+Ŷh)/2
) are not rec-

ommended. An example of candidate formula is the symmetric weighted absolute

percentage error (SWAPE)(
∑H

h=1 |Dh−D̂h|∑H
h=1 |Dh+D̂h|

) used at adeo which has a no denominator

problem.

2.2.3 Difficulties associated to replenishment

2.2.3.1 Modelling of comparable demand of fast mover and slow movers based on aggregation

We consider a set of K products whose demand are iid variables Dhk. We define as
fast mover of order K as the aggregation of K products. Its demand verifies D̃h,(K) =∑K

k=1Dhk. In particular D̃h,(1) follows the same distribution as Dhk. In this section,
we chose to view a slow mover as being a fast mover of order 1 with suitably chosen
properties over the distribution which is an approximation that we believe is accept-
able if products are assumed to have a Poisson distribution.

2.2.3.2 Comparison of replenishment performance between fast movers and slow movers

For each product, the best replenishment quantity Q is computed in order to optimize
the expected profit over a single period. The profit is modeled by the single period
mono-product newsvendor model (NVM) from Section 2.1.3.5.

The retailer has to make a compromise between out of stock and excessive stock.
All products in our model have the same costs. The revenue per product sold is ckp
and its purchasing cost is ckc. The excessive stock cost is denoted as cko and out of
stock cost is cku. Let c = (ckp, ckc, c−k , c+k ) be the cost parameter. Since the costs are
all the same, we drop the index k. The formula of the profit in the NVM is

ρ(K)(D(K); θ,Q) = E
(
(cp − cc)D(K) − c

−(D(K) −Qk)
+ − c+(Qk −D(K))

+
)
.

The optimal replenishment becomes

Q∗
(K) = argmaxQk∈Nρ(K)(D(K); θ,Qk). (10)

The space of constraint over the quantities to replenish is N. Since the demand
of a fast mover of order K is equal to K fast movers of order 1, we can compare
the optimal profit and optimal replenishment quantity of the two. We define the gap
of profit between a fast mover of order K and a fast mover of order 1 as ∆ρ(K,Dk) =
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E[ρ(K)(D(K); θ,Q)]−K∗E[ρ(1)(D(1); θ,Q)] and the gap of total stock as being ∆Q(K, f) =
K ∗Q(1) −Q(K).

In Section 2.2.3.3, we show properties of the gap functions in the Gaussian case.
In Section 2.2.3.4, we provide properties of the gap functions in the case of demand
following a Poisson distribution.

2.2.3.3 Relaxation of the optimization problem to continuous replenishment quantity and
Gaussian demand

As a first step, relaxing the replenishment to a continuous quantity (R) enables to use a

close form for the optimum Q(K) when the demand is normal. Let Dk
iid
∼ N(µ,σ) with

probability mass function f. We define the critical quantile as being α = c−

c−+c+ . The
optimal quantity Q(K) does a compromise between the OOS cost and excessive stock
costs and a classic result in the case of continuous distributions yields Q(K) = F

−1
K

(
α)

. Since D(K) ∼ N(Kµ,Kσ2), we have Q(K) = Kµ+ zαK
1
2σ where zα = F−1

N(0,1)(α) the
cumulative density function (CDF) of the standard normal distribution . We then have
that the gap of total stock ∆Q(K, f) = zασK(1− K

− 1
2 ). The gap between the stocks is

expanding linearly in the Gaussian case. We also have that the profit gap is linearly
increasing such as in Lemma 2.

Lemma 2 We have

E[ρ(K)(D(K); θ,Q)] = (cp − cc)Kµ− (c− + c+)K
1
2σfN(0,1)(zα) (11)

and

∆ρ(K,Dk) = (c− + c+)σK[1−K− 1
2 ]fN(0,1)(zα). (12)

The proof is provided in Appendix A.2.

2.2.3.4 Properties of the profit under Poisson demand

In the Poisson case, Dk
iid
∼ P(λ) with pmf P. We have D(K) ∼ P(λK) and Q = N. A

classic result from the newsvendor literature is that Q(K) = inf{Q | P(D(K) ⩽ Q(K)) ⩾
c−

c++c− }. In this case in addition to the same conclusion that the profit is optimum if
Q(k) is exactly equal to the α quantile, we also have the rounding to an integer value
for Q(K) that provides additional costs. We derive bounds in the lemma 3 for the
optimal profit. The upper bound is attained when F(K)(Q(K)) = α. The lower bound
is optimal and describes the case when the quantile of F(K)(Q(K) − 1) is close to α.
The closer it gets the bigger the effect of the rounding. We show that these bounds
are converging asymptotically to the bound of the Gaussian case and the difference is
decreasing in O((λK)−1).

Lemma 3 We have that

−(c− + c+)Q(K)P(D(K) = Q(K)) < E[ρ(K)(D(K); θ,Q)] − (cp − cc)Kλ

⩽ −(c+ + c−)KλP(D(K) = Q(K)), (13)

with the asymptotic convergence of the two bounds being

−(c− + c+)(λK)
1
2 fN(0,1)(zα) +O(1). (14)
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The difference between the two bounds converges to the constant −(c+ + c−)zαfN(0,1)(zα).
The proof is provided in Appendix A.2.

Conclusion The difference between the inventory quality of a slow mover versus a
fast mover evolves in K

1
2 for the Poisson modelling with an additional rounding effect

in the case of discrete demand.
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3
A S S O RT M E N T A N D R E P L E N I S H M E N T O P T I M I Z AT I O N W I T H

M U LT I P R O D U C T E F F E C T S

3.1 assortment planning with informal multi-product analysis

We introduced the mono-product inventory replenishment in the last chapter which is
based on Assumption 1 which states that demands are independent from a product
to another. The inventory policies considered were chosen as independent. However
the demands in real situation are dependent as some products may be complementary
or substitutable. This dependence of demands {D̃tk}k∈[K] with [K] = {1, . . . ,K} can be
used as an additional lever for the optimisation of the stocks. In this section we chose
to focus on the substitution by first providing in Section 3.1.1 a version of the NVM

introduced in Section 2.1.3.5 including the substitution effects. The profit function to
optimise is the function ρ(D̃,V;θ, c,P) with either a modelling of the substitution
based on the demand {D̃tk}k∈[K] or on the sales {Ṽtk}k∈[K].

3.1.1 Profit function under substitution

In this section we provide a subcase of the modelling of Section 2.1.2 and more specifi-
cally it is an extension to multiproduct of the news-vendor model from Section 2.1.3.5.
We consider only one period h and choose for ease of reading to note Dk the demand
of the product k. Let the probability of substitution be πℓk between the product ℓ
and k. We assume that there is no substitution from one product to himself which
is equivalent to πℓℓ = 0. The vector of probability of substitution is π = (πℓk)ℓ,k∈[K].
The Bℓk is the spill over from product ℓ to product k adopting the convention that Bℓℓ

is the quantity of lost sale and that there is no substitution from a product to itself.
The probability distribution of the spill over quantity conditionally on the stocks Qk

is multinomial, thus

(Bℓ1, . . . ,BℓK)
′ | Qℓ,Dℓ ∼ M

(
(Dℓ −Qℓ)

+,πℓ1, . . . ,πℓk
)
, (15)

where Bℓℓ is the amount that does not substitute.
Let r = (r1, . . . , rK)⊤ be the revenue per sale per product. p = (p1, . . . pK)⊤ is the

purchasing cost of the product. The salvage cost at the end of the period considered is
s = (s1, . . . , sK)⊤. They verify the assumption rk > pk > sk ⩾ 0,∀k ∈ [K] which is that
the revenue of the product is higher than the purchasing cost and that the purchasing
cost is higher than the salvage cost. These costs are referred to by θ = (r⊤,p⊤, s⊤)⊤.
Let cuk = rk−pk and cok = pk− sk be respectively the underage cost and the overage
cost.

The profit expressed via a newsvendor model is

E[ρ(D;π,Q,θ)] =
∑

k∈[K]

E
(
(rk − pk)D

s
k − cuk(D

s
k −Qk)

+ − cok(Qk −Ds
k)

+
)

(16)

where Ds
k = Dk +

∑
ℓ ̸=k Bℓk is the sum of the primary demand and the spillover

where ’s’ stands for the accounted substitution effects.

29

[ December 19, 2024 at 14:29 – classicthesis version 4.2 ]



30 assortment and replenishment optimization with multiproduct effects

Let π0 be the no substitution set of probabilities of substitution hence π0ℓℓ = 1 and
π0ℓk = 0,∀k ̸= ℓ. The quantity Bℓk = 0 for k ̸= ℓ. Hence we have Ds

k = Dk which results
in the following profit expression:

E[ρ(D;π0,Q,θ)] =
∑

k∈[K]

E
(
(rk − pk)Dk − cuk(Dk −Qk)

+ − cok(Qk −Dk)
+
)
.

(17)

It corresponds to the classical newsvendor profit function applied to the mono-product
case introduced previously.

3.1.1.1 Optimization of the profit function

The objective is to choose the best replenishment quantity Q in terms of the expected
profit. It is expressed by

Qs∗ = argmaxQ∈NKE[ρ(D;π,Q,θ)]. (18)

If we denote by Q0∗ the optimal replenishment quantity when there is no substitution
we have

Q0∗ = argmaxQ∈NKE[ρ(D;π0,Q,θ)]. (19)

We then have by definition of Q∗
k and Q0∗

k that given specific values of π

E[ρ(D;π,QS∗,θ)] ⩾ E[ρ(D;π,Q0∗,θ)]. (20)

3.1.1.2 Illustration of the relative gain for slow movers in a simple scenario

The inclusion of the substitution when deriving the best quantity to replenish in the
case of the newsvendor model for two products is especially interesting for slow
movers. We conducted an experiment comparing the ratio of the profits, expressed
by

Rρ(D,π,θ) =
E[ρ(D;π,Qs∗,θ)]
E[ρ(D;π,Q0∗,θ)]

,

across different parameterisations of the distribution of D and use to illustrate the
relative gain as a function of the mean frequencies of sales.

We consider a group of two products equals in term of costs θ, probability of sub-
stitution π and identically distributed which follows D1,D2 ∼ P(λ). Let α = cu

cu+co
.

According to Section 2.1.3.5, Q0∗ = inf{Q; FD(Q) >= α}. When FD(Q0∗ − 1) ≈ α

the inclusion of substitution has a rounding effect that is higher for slow movers. We
chose to illustrate this fact with α ∈ {0.91, 0.93, 0.95, 0.97, 0.99} which corresponds to
classical service level used by retailers and (pk, sk) = (110, 100), thus implying that
rk = (−αs+p)/(1−α). We then searched extensively for the optimal Q∗ and retrieved
the ratio. Figure 7 shows the function Rρ(λ,α). Figure 8 shows that the intuition for
slow movers is effective in this scenario. The relation between the relative gain and
the value α is valuable and the ratio at the peaks is higher for low values of λ hence
for slow movers and then decreases.

To understand what precisely happens, we assume that we consider the case where
the costs of underage is higher than the overage which means that α is closer to 1. In
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Figure 7: Relative gain of including the substitution.

Figure 8: Relative gain of including the substitution.

this case the substitution at the level of a group of substitution reduces the quantity of
stock or doesn’t modify it. Assuming that replenishing a product at Q0 is optimal then
if Q0 − 1 is lower and sufficiently close to the percentile α the incentive produced by
the substitution induces a reduction of the stock. The closer Q0 − 1 to the percentile α
the bigger the gap between the expected profit evaluated at. The relative gap is bigger
for low values of λ.

Let {λ1,< λ2 < . . .} be the values of λ such that F−1
D1

(α) is an integer. In Figure 8

they are visible where the green line of ordinate α meets the red line which is the
quantile associated to the optimal replenishment quantity F−1

D1
(Q0∗(λ,α). Note that

since Q0∗(λ,α) is an integer we have FD1
(Q0∗(λ,α)) ⩽ α. Additionaly Q0∗(λ,α) is

increasing in λ. We refer to the abscissa of downward pikes of the CDF associated to
each Q0∗(λ,α) as {λ̃1 < λ̃2 < . . .} and conjecture that the profit associated to these
pikes is decreasing. For ϵ > 0 small enough, we can define an approximation of these
λ̃ by λi + ϵ Q0(λi + ϵ,α) = Q0(λi,α) + 1.

At this step, we can thus provide the following conjecture:

Conjecture 1 For ϵ > 0 sufficiently low, let λ̃i(ϵ) = λi + ϵ. Then for i < j we have
Rρ(λ̃i(ϵ),α) > Rρ(λ̃j(ϵ),α).
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3.2 assortment and replenishment planning using multiproduct sub-
stitution effects

3.2.1 Introduction to the concept of substitution

A client comes with a specific primary demand for an article to a store. If this article
is not present, then the client may choose to abandon the purchase, to postpone it in
the future or he may substitute for another available article that meets the same needs.
It could be an article that is in the same store or a competitor. An exhaustive study of
the extent, causes and consumer response of the out of stocks can be found in Gruen,
2002.

The process of substitution gives information about customer behavior but also
about the market and the relation between products. Quantifying it yields value that
can be leveraged by firms. We have chosen to focus on the subject of estimating the
probability of substitution between articles i.e the probability for a client to purchase
an article in place of another unavailable.

This PhD Cifre is part of a partnership between the team MODAL at Inria and the
group Adeo which is the leader of the DIY market in Europe. For Adeo, the knowledge
of the probability of substitution at the scale of the 50,000 articles in store is valuable.

Firstly, currently they have a heuristic for that quantity which is 1/3 lost, 1/3 post-
poned in the future and 1/3 substitution. But this is very inaccurate and so that can’t
be used for an optimization.

Secondly, substitution can also be viewed as a similarity score for articles: articles
that have the same usage may be highly substitutable. Hence it could be used for the
browser of their website in the proposition of similar articles.

Thirdly, the knowledge of the substitution can be precious for having insights about
assortment decisions. If in a group, articles are very substitutable then one of them
may be deleted saving some fix costs and holding costs for example.

Another example of use is the following. If a client wants a specific article that
is not available the customer support may propose the best alternative in term of
substitution.

A last example of use is the replenishment, substitution is an additional information
that induces a relation between the stocks that can be leveraged in order to improve
marginally profits. In the case of Adeo, it could be substantial because due to their
business model they have a lot of articles that are sold in small quantities. The defini-
tion we adopt here is a product that is sold less than 1 unit per 10 days at the store
level. Other definitions can be found in A. A. Syntetos, Boylan, and Croston, 2005. In
A. G. Kok and Fisher, 2007 slow movers at Albert Heijn a Deutch grocery company
are products sold less than 10 units a day. In addition the quantity sold can also be a
source of variability (lumpiness). For Adeo, slow movers represent 25% of the revenue
according to our exploratory analysis. These articles are difficult to forecast (Croston,
1972) due to their intermittent nature and sometimes are associated with higher coeffi-
cient of variation (Garrett Van Ryzin and Siddharth Mahajan, 1999). This leads to over
stock and under-stock that could be improved via the use of substitution in tuning
their replenishment.

From the academic point of view, we address a subject that is not recent. The first
article that deals with the estimation of substitution can be tracked to Anupindi, Dada,
and Gupta, 1998. There is a stream in the operational literature related to this topic.
This is because the issues addressed before are common to the retail sector and gave
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rise to several different approach that we describe in the literature review. We believe
that there is still room for improvement. This thesis is part of the field of statistics and
probability so we address notions that are not well documented (to our knowledge).
The notion of identifiability is not addressed in the literature, nor is the scaling of
the estimation method to the whole articles. Exception made for the restriction of the
groups at the subcategory granularity. Hence, an objective may be to find substitutes
across categories. We want to provide algorithms that are tractable for large numbers
of articles and that have good estimator properties such as robustness, convergence.

3.2.2 Relation of the substitution to the assortment

The right concept to understand relations between products is the notion of assort-
ment. substitutable articles have a similarity in term of use. The group of articles that
are substitutable meets the same need. This is an assumption made by Smith et al.,
2000, Salameh et al., 2014. A consequence is that the market shares and their demandss
are related. Their demand are also related via the price of the product, the increase
of the price of an item increases the demand for variants. Integrating a variant in an
assortment may increase the total market share, it could induce cannibalisation and it
could introduce recapture of the demand in case of out of stocks. Several models have
been proposed for these relations (Wan et al., 2018,Garrett Van Ryzin and Siddharth
Mahajan, 1999).

The notion of substitution is linked to the unavailability that a customer could expe-
rience. This initial demand is also referred to as the "favourite product","first choice",
"primary demand". There is two types of unavailability according to Campo, Gijs-
brechts, and Nisol, 2004, a permanent assortment reduction (PAR) which refers to the
fact that the store does not carry the variant in the assortment and the out of stock
(OOS) substitution which happens when the article is carried in the store’s assortment
but has no more inventory left.

According to Campo, Gijsbrechts, and Nisol, 2004 these two kinds of unavailability
have strong similarities in that customer behavior is close but it also has its differences.
The postponement of the article in a PAR is not possible. It can represent around 15%
according to Gruen, 2002. Campo, Gijsbrechts, and Nisol, 2004 showed via a survey
that customers who would have postpone in the case of OOS are more prone to going
to the competitors or abandoning the sale.

Study shows that via the modelling of OOS and the estimation of the probabilities
of substitution it is possible to obtain accurate information about the assortments. This
is a reason why we focus on OOS substitution.

In Section 3.2.3, we provide the mathematical tools that are used in the literature
and in our work. In Section 3.2.4.1, we introduce several modelling and in Section 3.2.5
estimation procedure.

3.2.3 Mathematical tools

3.2.3.1 EM algorithm

In the case of parametric estimation procedures, the objective is to find the best param-
eters that fit the data. A classic method is to compute the parameters via a maximum
likelihood estimation. But often there are cases such as missing data, for which the
likelihood function is intractable.
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The EM algorithm proposes an alternative. It enables the estimation by proposing
an iterative procedure that re-computes the parameters at each step. The algorithm
assures that at each step the likelihood is increasing. When it reaches stationarity the
estimators end up being a local maximum of that likelihood. Several runs with random
initialization of the algorithm may converge to the global optimum. The core idea is
that when the likelihood of the full data has a formula that is tractable, a replacement
of the hidden variables by its expectation conditional on the current parameter and
the observed variable yields a function that can be maximized.

The EM algorithm was used in a variety of framework before being generalized by
A. Dempster, N. Laird, and D. Rubin, 1977. This algorithm is a corner stone for the esti-
mation literature. It has been used in various situation such as missing data, censored
data, mixtures, hyperparameter estimation,... All fields benefit from it. A comprehen-
sive literature about the applications and properties can be found in Balakrishnan,
Wainwright, and Yu, 2017.

The model
Let (X,Z) be random variables taking values in the sample space X× Y. The joint

distribution is f(X,Z;θ∗) that belongs to some parameterized family {f(•;θ) | θ ∈ Θ}.
Θ is a non empty convex set of parameters. X are observed. Z are some hidden vari-
ables. The marginal distribution of the observable variables is f(X;θ). The conditional
distribution of the hidden variables given the observed variables is f(Z|X;θ). The
functions are related by

f(X,Z;θ) = f(X;θ)f(Z|X;θ). (21)

The objective is to retrieve θ∗ that maximizes the observed log-likelihood lobs(θ;X) :=
ln f(X;θ). The framework includes the cases of the i.i.d samples (Xi,Zi)i∈[[1;N]] by sub-
stituting X = (Xi)i∈[[1;N]], Z = (Zi)i∈[[1;N]] and f(X,Z;θ) =

∏n
i=1 f(Xi,Zi;θ).

Let lcomp(θ;X) := ln f(X,Z;θ) be the complete log-likelihood. We have the following
relationship:

lobs(θ;X) = lcomp(θ;X,Z) − ln(f(Z|X;θ)). (22)

Which implies after taking the expectation conditionally on the observed variables
and a value of the parameters θ ′:

lobs(θ;X) = E(lcomp(θ;X,Z) | X;θ ′) − E(ln(f(Z|X;θ)) | X;θ ′) (23)

= G(θ,θ ′) +H(θ,θ ′). (24)

It can be shown that H(θ,θ ′) ⩾ H(θ ′,θ ′). G ∈ Θ×Θ −→ R. This implies that in
order to increase the observed likelihood, we only have to increase G(•,θ ′). The EM
algorithm is composed of 2 steps at each iteration p, the E step and the M step. At
the E step, we retrieve the G(•,θ(p−1)) function by taking the conditional expectation
of the complete likelihood. At the M step, we compute parameters θ(p) that increase
G(•,θ(p−1)). Two types of EM algorithm are usually used: the standard EM which
retrieves θ(p) = argmaxθ∈ΘG(θ,θ(p−1)) and the first order EM algorithm such that
under certain regularity conditions θ(p) = θ(p−1) + α∇G(•,θ(p−1))(θ(p−1)). Some
other variations are also possible when G is not tractable but it is not mentioned here.
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Algorithm 1 Standard EM algorithm

1: procedure EM
2: Input: X
3: Initialize θ(0) ∈ Θ
4: p← 0.
5: while ∆ > ϵ do
6: Step E: compute G(θ,θ(p−1))

7: Step M: θ(p) = argmaxθ∈ΘG(θ,θ(p−1))

8: ∆ = lobs(θ
(p);X) − lobs(θ

(p−1);X)
9: p← p+ 1

10: Output: θ(p)

3.2.4 Modelling the customer choice and the multiproduct substitution

In this section we delve in the details of the important concepts. Section 3.2.4.1 deals
with modelling of the primary demand. In Section 3.2.4.2 we introduce some generali-
ties about the out of stock. In Section 3.2.4.3 we give the main families of model for the
substitution. We introduce in Section 3.2.4.4 the utility framework, in Section 3.2.4.6
the endogenous models, in Section 3.2.4.7 the exogenous models, in Section 3.2.4.8
the different types of substitution patterns and in Section 3.2.4.9 the identifiability of
the models in the literature.

3.2.4.1 Common assumptions on primary demand

The primary demand for an article is the quantity of articles initially sought by the
clients over an arbitrary period of time. If the primary demand meets enough stocks,
then it becomes a sale. The EOQ (economic order quantity) model introduced in Sec-
tion 2.1.3.1, treats the demand as being deterministic (Vandeput, 2020) but generally it
is modeled with a random variable that is either continuous ( Honhon et al., 2010) or
discrete (Smith et al., 2000, Anupindi, Dada, and Gupta, 1998). Laws such as gamma
and normal can be used (Vandeput, 2020).

When an estimation of the substitution is needed, all primary demand models are
discrete in the literature. It is decomposed in an arrival of customer and a choice
among an assortment. The arrivals and choices can be modeled simultaneously with
a random law (Anupindi, Dada, and Gupta, 1998). Or the arrival can be modeled and
then the choice such as in A. G. Kok and Fisher, 2007, Talluri and Garrett Van Ryzin,
2004. A first model that is very natural for the arrival is the Poisson law (Anupindi,
Dada, and Gupta, 1998). Agrawal and Smith, 1996 provides arguments for choosing a
negative binomial instead of the Poisson or normal. This model is also used in Smith
et al., 2000.

The parameters of the law can be provided additional information such as relative
market share, prices, or some other variables such as the temperature and product
characteristics (A. G. Kok and Fisher, 2007).

The demand can be sequential (Honhon et al., 2010, Talluri and Garrett Van Ryzin,
2004) in that we have each client successively. Or it can be aggregated over a period of
time (Anupindi, Dada, and Gupta, 1998).

It has been shown that the stock out of a product implies an underestimation of the
demand by right censoring. Estimating the demand without taking into account the
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out of stocks of closely related articles with high substitution rate toward the article
yields an overestimation (Anupindi, Dada, and Gupta, 1998).

3.2.4.2 The out of stock concept

Out of stock is a core idea in our framework in the sense that it provides the oppor-
tunity to observe a shift in the demand by the reduction of available articles (i.e the
substitution). But the out of stock is also a key point in the replenishment optimization
because it has an economic cost for the retailer in terms of retention of the consumers
and in term of cost of opportunity. In short, the cost of out of stock is not currently
fully understood.

Gruen, 2002 gives a thorough study of the out of stocks for fast moving products in
retail encompassing 52 previous studies. In the worldwide market of the retail, 8.4%
of the SKU are stocked out. Around 70 to 75% is due to store practices. 47% is due
to store ordering and forecasting, 25% in the store and not on shelf and 28% due to
upstream causes.

Out of stock has a cost for the consumer. Its response to out of stock are: buy in
another store, defer the purchase, substitute in the same brand, substitute by another
brand and cancel the purchase. Campo, Gijsbrechts, and Nisol, 2004 investigate via a
survey the customer behavior and enumerate the costs for the customer. For example,
if the favourite article is not available and the client chooses to cancel there is an
opportunity cost associated because he won’t be able to fulfill his need. Transaction
costs could occur because he has to search for the alternative item. These costs are
repercuted on the utility by reducing some utilities associated to the articles available
or the other options including the cancellation.

That level of complexity is not translated in the assumptions of the modellings.
The literature on the estimation of the probability of substitution do not for instance
incorporate the postponement of a sale to our knowledge.

3.2.4.3 Overview of the response to substitution

The demand models are parametric in our setting. The literature of customer choices
of substitution due to OOS can be partitioned in three main models:

The utility based which treats the substitution in an endogenous manner. There are
parameters associated to the utilities and the substitution does not incorporate more
parameters meaning that the substitution is related to the products success. Articles
related are Talluri and Garrett Van Ryzin, 2004, Wan et al., 2018.

The location models, which assigns a probability based on the distance between the
products. That distance is computed based on the product’s characteristic (Gaur and
Honhon, 2006).

The exogenous models incorporate additional parameters that describe the susbti-
tution behavior (Anupindi, Dada, and Gupta, 1998, Smith et al., 2000, A. G. Kok and
Fisher, 2007, Fisher and Vaidyanathan, 2009, Wan et al., 2018). Our model is related to
this stream.

3.2.4.4 Utility model for the primary demand

Let [K] = {1, . . . ,K} be the set of decisions.
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Definition 16 A decision maker i associate a utility to decision k ∈ [K]

Uik = Vk + ϵik (25)

with Vk fixed and (ϵik)(i,k)∈[I]×[K] is i.i.d random variables following the Gumbell law (ex-
treme value distribution). The probability for a random decision maker to choose decision k is
Pk = P(Uik > Uik ′ ,∀k ′ ̸= k).

Definition 17 The Gumbell law is a type I extreme value distribution with probability mass
function f(ϵij) = e−ϵijee

−ϵij and cumulative distribution function F(ϵij) = ee
−ϵij .

Proposition 4 Let ϵ∗ijj ′ = ϵij − ϵij ′ then F(ϵ∗ijj ′) =
e
ϵ∗
ijj ′

1+e
ϵ∗
ijj ′

.

Proposition 5 The decision maker chooses alternative k with probability Pk = eVk∑
k ′∈[K] e

V
k ′ .

Proof 1

Pk = P(Vik + ϵik > Vik ′ + ϵik ′)

= P(Vik + ϵik − Vik ′ > ϵik ′).

Since P(Vik + ϵik − Vik ′ > ϵik ′ |ϵik) =
∏

k̸=k ′ ee
−ϵik+Vik−V

ik ′ we then have that

Pk =

∫
(
∏
k̸=k ′

ee
−ϵik+Vik−V

ik ′
)e−ϵike

−ϵik
dϵik

which yields Pk = eVik∑
k ′∈[K] e

V
ik ′ after some algebraic manipulations.

This result will come by often in the modelling literature. Variations of this model
are used in A. G. Kok and Fisher, 2007, Garrett Van Ryzin and Siddharth Mahajan,
1999, Musalem et al., 2010, Wan et al., 2018, Talluri and Garrett Van Ryzin, 2004.

In the mean utility it is possible to incorporate some more variables related to prod-
uct characteristics such as prices of the products, average price in the category, pro-
motions A. G. Kok and Fisher, 2007. The vector of attributes of choice k is zk (price,
indicator variables for product restrictions) β is a vector of weight over these attributes.
An example would be that the mean utility is vik = βTzk.

3.2.4.5 Endogenous and exogenous models for the first choice

In the endogenous models there is a set of parameters ui that characterize the utilities.
Once known it yields the probability of choice within an assortment Pj(N). In the case
of the exogenous model, the additional parameters are the probability itself p.

3.2.4.6 Endogenous model

In Talluri and Garrett Van Ryzin, 2004, Wan et al., 2018, Garrett Van Ryzin and Sid-
dharth Mahajan, 1999 the substitution is endogenous. In Talluri and Garrett Van Ryzin,
2004, for a given assortment S ⊂ N the probabilities of choosing an article in the as-
sortment becomes

Pj(S) =
euj∑

i∈S e
ui + eu0

. (26)
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In Wan et al., 2018, they model the traditional high density small shops. These
traditional stores are similar in the sense that they provide the same products. The
substitution between couples of store/product (i, j) is modeled. Here i is the store, j
is the product. The probability for a customer to choose a product within J in a given
store i conditionally on the availability of the products has the form of a nested logit
model.

Ptnij(ν,γ | atn) =
atnij exp(νij)(

∑
j ′∈J atnij ′ exp(νij ′))γ−1

1+
∑

i ′∈I(
∑

j ′∈J atni ′j ′ exp(νi ′j ′))γ
(27)

where atnij = 1 if consumer n at time t finds the product i at the store j available. γ
is an additional scalar parameter and ν is a preference weight vector associated to all
store/product couple.

A probability of substitution can be computed by:

αij−→i ′j ′ =
p
(ij)
i ′j ′ − pi ′j ′

pij
(28)

with p(ij)i ′j ′ being the probability of choosing i ′, j ′ when only product j at store i is
unavailable.

Musalem et al., 2010 models customer i’s choice of a product j during time period t
at store m. A random coefficient model is used. The formula for the utility is another
variation of 25:

Uijtm = β ′
itmXjtm + ξjtm + ϵijtm. (29)

The individual preferences are captured by βitm, a random multivariate normal vari-
able of mean θ ′Zm and covariance matrix Σ. Xjtm is a time varying vector of the
product’s characteristics. Here ξtm = (ξ1tm . . . ξJtm) is a multivariate Gaussian ran-
dom variable that accounts for the unobserved market factors. It has zero mean and
variance σ2ξIJ.

The substitution is also endogenous with the following probability of choosing
within the available products:

P(yitm = j | βitm,aitm, ξtm,X) =
a
j
itm exp(β ′

itmXjtm + ξjtm)

1+
∑

k∈J a
k
itm exp(β ′

itmXktm + ξktm)
. (30)

The limit of this type of model is that it lacks of flexibility: a probability of choice
within the available articles cannot be zero. It is a problem because in real settings
some substitutions do not account for the popularity of a substitute but for other
characteristics such as the size or the price. We describe some of these substitution
patterns in Section 3.2.4.8. The substitution probabilities are correlated with the first
choice probabilities in the endogenous models.

3.2.4.7 Exogenous models

The exogenous models incorporate a set of additional parameters that account for the
substitution.

The first article on the estimation of the probability of substitution is Anupindi,
Dada, and Gupta, 1998. The context are vending machines that sell cans. There is no
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modelling of the demand. The focus is entirely on the sales. Each can’s sale follows
a Poisson law of parameter λ•. In the notation of the article, λA stands for the mean
sales of the article A and λAB̄ for the mean frequency of sale when A is available and
B is not. These parameters are subject to the following constraints:

λA ⩽ λAB̄ ⩽ λA + λB

and
λB ⩽ λAB̄ ⩽ λA + λB

.
The probability of substitution can be computed from these rates. For example, for

an out of stock of only B, the probability of substitution from B to A is αBA =
λAB̄−λA

λB
.

Each parameter has to be estimated. We discuss the estimation issues in Section 3.2.5.
Smith et al., 2000 propose a modelling with sales following the negative binomial. di

is item i’s demand including substitution effects. fi is the probability of an incoming
customer to have i as favourite product. di has then for distribution:

ψ(di|hi(x))) =

(
N+ di − 1

N− 1

)
yNi (1− yi)

di

with yi = p
p+hi(x)(1−p) and hi(x) = fi +

∑
i ̸=j fj(1 − xj)αji and N and p are pa-

rameters of the binomial used. Here the substitution matrix α can be of any form
accounting for a lot of different substitution patterns.

In A. G. Kok and Fisher, 2007, the assumption is that there is a single substitu-
tion attempt. The probability for a client t to purchase a product z depends on the
set of products available at that time S(t) and is given by the following formula:
p̄z(t),t +

∑
k∈S̄(t) αk,z(t)p̄kt. α are the substitution’s parameters. The probability of

first choice p̄z(t),t is utility based. Here z(t) is the first choice of customer t. A. G. Kok
and Fisher, 2007 includes parameters that capture the dynamic of arrival of customer
in relation to the weather, the holidays, the day or the weekend. It also links the prob-
ability of choosing a category and an article in that category to other variables such as
promotions and prices.

Wan et al., 2018 propose an exogenous model based on probabilities of first choice p

and of substitution α. The indexes are the same as in the endogenous model they
proposed in the previous subsection. The probability of purchasing is then given by
the following formula:

Ptnij(p,α | atn) =

{
pij +

∑
(i ′j ′)∈C(1− atni ′j ′)pi ′j ′αi ′j ′−→ij ,atnij = 1

0 ,atnij = 0.
(31)

The difference between this modelling and A. G. Kok and Fisher, 2007 is that this one
has first choice that is exogenous whereas the other is endogenous multinomial logit
model.

Another approach is proposed by Fisher and Vaidyanathan, 2009. Each article has a
vector of categorical characteristics and the probability of substitution is associated to
the relation of these vectors in an exogenous manner. Here i is a product, A is the num-
ber of attributes and ia is the level of the attribute a for the product i. The probability
of substituting the favourite article i by the article j is given by πsij =

∏A
a=1 π

s
aiaja

. It is
composed of the probabilities πaiaja that the customer would substitute the attribute
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level ia by ja. These probabilities are exogenous. fi is the share of consumers whose
favourite product is i. The probability for choosing an article within the assortment S
is:

Fj(S) = fj +
∑

i/∈S,j=j(i,S)

fiπij. (32)

It is more a PAR than an OOS substitution.

3.2.4.8 Structure of the substitution

An assumption is generally adopted about substitution: the single attempt assumption
states that if the favourite article is out of stock the customer chooses another article
and if this one is unavailable then the sale is lost. This is common to Smith et al.,
2000, A. G. Kok and Fisher, 2007, Netessine and Rudi, 2003, Wan et al., 2018. A. Kok,
2003 argue that a multi attempt substitution model can be approximated with a single-
attempt model by a higher substitution probability.

In Section 3.2.4.6, the formula of substitution in the case of the endogenous model
is not flexible. A potential substitute is chosen on the base of its initial success in the
assortment. It is in fact proportional to the probability to choose the article if the whole
assortment was available.

In practice there could be different substitution patterns. Substitution in the exoge-
nous model can be expressed in term of the substitution matrix α. In A. G. Kok and
Fisher, 2007, the matrix is proposed with two forms: αkj = δ 1

|N|
with random substi-

tution among the variants and with a probability of lost sale associated with 1− δ, or
αkj = δ

dj∑
l/k dl

for the substitution proportional to their primary demand. Other types
of matrices are proposed in Caro and Gallien, 2007 and Smith et al., 2000 such as re-
spectively the one item substitution, the random substitution matrix and the adjacent
matrix. We provide 3 matrices of substitution where the out of stock product is on the
row and the substitute is in the column. The first matrix displayed on the left refers
to a super attractor, the second to a uniform substitution (considering lost sale 1− δ ).
The last one is composed of a substitution to two products with the order taken into
account which relates to assortment with products order by sizes for example.



0 0 δ 0 0

0 0 δ 0 0

0 0 δ 0 0

0 0 δ 0 0

0 0 δ 0 0





0 δ
4

δ
4

δ
4

δ
4

δ
4 0 δ

4
δ
4

δ
4

δ
4

δ
4 0 δ

4
δ
4

δ
4

δ
4

δ
4 0 δ

4
δ
4

δ
4

δ
4

δ
4 0





0 δ 0 0 0
δ
2 0 δ

2 0 0

0 δ
2 0 δ

2 0

0 0 δ
2 0 δ

2

0 0 0 δ 0


(33)

A constraint on α can be applied but it is not systematic in the literature.

3.2.4.9 Identifiability of the models

There are very few remarks about the identifiability in the literature. In Talluri and
Garrett Van Ryzin, 2004 they state that their model is not identifiable. In the endoge-
nous model the identifiability is associated to the property of the utility and the MNL
model. It can be found in McFadden, 1974, Train, 2009. In the case of the utility be-
cause it is an ordinal statistics, a constant and a scale parameter may be added without
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changing the choice process of the client. Hence normalization are commonly used. In
Train, 2009 they state that it is a complex subject.

3.2.5 Estimation

We have chosen parametric statistical models for the modelling of our demand. The
initial objective of our approach is to quantify the probability of substitution and esti-
mate the parameters related to the primary demand. A general and important remark
is that the endogenous models have fewer parameters and they can be estimated over
periods when there is no out of stock. The number of parameters typically is the
number of products (K). Whereas in the exogenous models, in addition to the param-
eters linked to the primary demand, there is additional parameters associated to the
substitution. These parameters link each couples of articles. There is K× (K− 1) pa-
rameters only for the substitution requiring that the right availability/ unavailability
configurations must be observed in the input data.

This statement is at the core of the identifiability of the model’s parameters. The
estimation in the case of the exogenous model can be confronted with two problems:
the sparseness of the data associated to stock-out and the complexity in time that in-
creases in relation to the number of availability configurations in the group studied.
In Anupindi, Dada, and Gupta, 1998, the mean frequency of sale that is the param-
eter of the Poisson must be estimated for all the possible configurations. This leads
to about N2 × 2N +N parameters which is not tractable. Anupindi, Dada, and Gupta,
1998 observe the fact that only 10% of the machine days have 2 or more product simul-
taneously out of stock. They provide an approximation that translates in a constraint
on the parameters associated to two simultaneous stock out and they ignore higher
order of substitution. However A. G. Kok and Fisher, 2007 does not have the problem
of increasing time complexity in their algorithm.

The estimation of the parameters require input data. These data in real framework
are a product of the systems that tracks the transaction and the stocks. For perpetual
review systems the retailer has the time of sales and the stock at that time. Hence
they have the configuration of availability at each sale and they also have the time of
stock out (Anupindi, Dada, and Gupta, 1998, A. G. Kok and Fisher, 2007). For periodic
review systems, the system records at periodic time the stocks and the sales. In this
case data are aggregated by article and by period. The time of stock out is not known
and the availability configuration of products is not known either (Anupindi, Dada,
and Gupta, 1998, Musalem et al., 2010, Wan et al., 2018).

It is important to note that real stocks and system records are not necessarily the
same. A classic way to remedy that for the retailer is to check the stock periodically.
So even if the review system is perpetual the estimation procedure can include that
inaccuracy by assuming that the review system is in fact periodic (Musalem et al.,
2010).

Depending on the modelling, the data may not be complete. For instance, in the
case of perpetual system review the primary demand is not known. The lost sales are
not observed. The data may be incomplete in the case of periodic review systems. The
time of stock out is essential to estimate the substitution parameters.

All the papers procedure for optimization rely on methods derived from the maxi-
mum likelihood estimation such as Maximum Likelihood Estimate (MLE), algorithm
EM and MCMC. The last two are adequate for the missing data framework. The max-
imum likelihood procedure is used in Anupindi, Dada, and Gupta, 1998, Fisher and
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Vaidyanathan, 2009. The algorithm EM is used in Anupindi, Dada, and Gupta, 1998,
Talluri and Garrett Van Ryzin, 2004, A. G. Kok and Fisher, 2007 because the complete
likelihood is linear in missing variables. The algorithm MCMC is used in Musalem
et al., 2010, Wan et al., 2018.

3.2.6 Optimization of the assortment

The assortment optimization and the inventory level can be further optimized by in-
corporating the substitution between products. In the literature, we find that some
models optimize the two in a single procedure. In effect, having a proposition of zero
stock for a product means that it is not included in the assortment. We separate the
models that propose a replenishment quantity with or without the shelf allocation and
the related space constraint imposed at higher level.

Most of the models including stochastic demand are based in the newsvendor prob-
lem.

In Hubner, 2017, they solve a problem of assortment based on the NVM, shelf con-
straint and substitution behaviors. It is called capacitated assortment and shelf prob-
lem (CASP). The parameters related to the products are their price of purchase, selling
price, salvage cost and shortage cost. The benchmark method for assessing the perfor-
mance is called a sequential planning (SP): given a set of article they retrieve the
optimal quantity based on the quantile solution of the NVM, they round it to an inte-
ger, then they rank each products according to profit pi − ci and they allocate shelf in
the rank order until there is no more shelf space. The problem is a mixed integer non
linear problem and the number of possible solution is

(
N
S

)
. They provide an analysis

of the effect of the level of substitution on the profit gain.
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4
S U B S T I T U A B I L I T Y M O D E L L I N G B A S E D O N S A L E S A N D

O U T- O F - S T O C K S

4.1 introduction

In this chapter, we build upon Chapter 2 and Chapter 3 which have reinterpreted the
initial optimised replenishment task as a new products substitution task. Indeed, we
have seen that the additional information that substitution provides can be included
in the replenishment optimisation in order to yield more profits. The novel question
is thus now to propose a valuable substitution model, in conjunction with an efficient
estimation process.In Section 4.2, we introduce a general modelling of the substitu-
tion first based on the trajectory of the demand and sales for a given assortment
of products. This model integrates the continuity of time and its indexing of the in-
coming customers in order to provide the variable of demand and sales. We provide
also an illustration of the potential gains using the Newsvendor model introduced
in Section 2.1.3.5. In Section 4.3, we proposed however a simpler modelling of sub-
stitution relying on an aggregation of the demand and of the sales at the availability
configurations level. This choice facilitates in particular the proof of a nice property of
identifiability of the model. Retaining definitively this latter model, in Section 4.4, we
detail the associated estimation strategy based on an EM algorithm. Then, we provide
in Section 4.5 a quite dense numerical study based on simulated datasets to illustrate
the good properties, and also the limits, of our proposed model. The last section (Sec-
tion 4.6) refers to the application of our estimation algorithm on two real datasets from
the Adeo company, revealing its promising availability for detecting substituability of
products in a real situation..

4.2 an introductive model for product substituability

4.2.1 Model presentation

Building on the notations from Section 2.1.2, we focus on a period of length n during
which, we suppose that no replenishment is made. Customer ξ may have a demand
for a product. We note ξ ∈ {1, . . . , T } the customer and tξ its time of arrival during the
period. Importantly also, T customers arrive sequentially with a (unique) initial unit
demand D̃tξ = (Dtξ1, . . . ,DtξK)

⊤ for a single item, where Dtξk = 1 if customer ξ has
an initial demand for product k and Dtξk = 0 otherwise, with

∑K
k=1Dtξk = 1. Since

the initial demand of customers is not always satisfied (i.e., the product is unavailable),
a customer may switch to another product or make no purchase, resulting in the
"trajectory" of demands D = (D̃t)t∈[0,n] and D̃t = (Dt1, . . . ,DtK). It is important
to note that the latter (the demand trajectory) is not practically observable. We also
denote V = (Vt)t∈[0,n] as the "sales trajectory," and Vtξ = (Vtξ0,Vtξ1, . . . ,VtξK)

⊤ with
Vtξ0 = 1 if customer ξ does not buy any product and Vtξk = 1 if customer ξ purchases
product k, and

∑K
k=0 Vtξk = 1. Since the initial demands are not always satisfied, we

generally have V ̸= D. Furthermore, only the stock evolutions are observed. The order
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of sales made for k ⩾ 1 is observed, unlike T or the indices ξ of customers who did
not make any purchases.

Here, we consider that a customer’s initial demand remains unsatisfied only if the
product is out-of-stock. Given an initial stock S = (S1, . . . ,SK)⊤, where Sk ∈ N is
the stock of product k at the beginning of the period of interest, the vector u(tξ) =

(u1(tξ), . . . ,uK(tξ))⊤ indicates the products still accessible to customer ξ when he
arrives in the store. Specifically, uk(tξ) = 1 if product k is accessible to customer
ξ (i.e., Sk −

∑ξ−1
ξ ′=1 Vtξ ′k ⩾ 1, with

∑0
ξ=1 Vtξk = 0), and uk(tξ) = 0 otherwise (i.e.,

Sk =
∑ξ−1

ξ ′=1 Vtξ ′k). Therefore, for customer ξ with an initial demand for product
k, if the product is in stock, the customer purchases it (i.e., Vtξk = 1 if Dtξk = 1

and uk(tξ) = 1), while if it is not in stock, a substitution mechanism dependent
on the initial demand and the available products is implemented. Since the sale Vtξ

is only dependent upon the initial demand of the client D̃tξ , the availability of the
products u(tξ) and not the past, we get that the distribution of Vtξ | Ftξ−1, D̃tξ ,u(tξ)
is equal to Vtξ | D̃tξ ,u(tξ), where Ftξ−1 is the natural filtration. This mechanism
results in the sale of another product (substitution) or no sale at all (the customer
leaves without any product). The customer will then switch to product k ∈ [[0,K]] (the
case k = 0 indicates a lost sale) with a probability λkℓ(u(tξ);π), where for all ℓ ∈ [[1,K]],∑K

k=0 λkℓ(u(tξ);π) = 1. The sales switching probabilities λkℓ(u(tξ);π) depends on
the configuration of availability u(tξ) and on π ∈ RK2

. π defines the probabilities of
substituting product k with other products unconditionally, regardless of stock levels
and product availability (as determined by u(tξ)) Thus, the conditional distribution
of sales, given the initial demand and stock, is defined as follows:

∀k ∈ [[1,K]], P(Vtξk = 1 | D̃tξ ,u(tξ)) = uk(tξ)Dtξk+

K∑
ℓ=1

(1−uℓ(tξ))Dtξℓλkℓ(u(tξ),πℓ)

and

P(Vtξ0 = 1 | D̃tξ ,u(tξ)) =
K∑

ℓ=1

(1− uℓ(tξ))Dtξℓλ0ℓ(u(tξ);πℓ).

The profit generated over the time period is determined by the function ρ(D, V;θ,S)
where θ groups the store-specific parameters (purchase and storage costs, selling
prices, customer dissatisfaction costs when the initial demand is not met, etc.; see
S. Mahajan and G. Van Ryzin, 2001 for examples). It’s important to note that for a
fixed initial stock, the profit obtained at the end of the period under consideration,
ρ(D, V;θ,S), is a random variable. In a stock management framework, the goal is to
determine the optimal initial stock S⋆

π that maximizes a certain statistical measure
mη,π (e.g., expectation, q-quantile, etc.) of ρ(D, V;θ,S). This measure depends on the
distribution of initial demands defined by η and of the product substituability defined
by π = (π⊤

1 , . . . ,π⊤
K)

⊤. Therefore, the objective is to determine the optimal value

S⋆
π = argmaxSmη,π [ρ(D, V;θ,S)] .

4.2.2 Numerical illustration of the model’s benefits

instantiation of profit In retail, it is common (S. Mahajan and G. Van Ryzin,
2001) to consider various costs, such as purchase cost, selling cost, salvage cost, hold-
ing cost per unit and per period, and stockout cost. We will denote these different
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costs as cp, ck, sk, ckh, and cok, respectively, and group them in the parameter vector
c = (ckp, ckc, cks, ckh, cko)k∈[K].

This parameter will influence the profit. ρt(D̃t,Vt;θ) is the "instantaneous" gain/loss
associated to a demand that occurs at time t. If there is no demand at time t it implies
that there is no gain/loss hence ρt(D̃t,Vt;θ) = 0. For customer ξ

ρtξ(D̃tξ ,Vtξ ;θ) =
K∑

k=1

1Dtξk=1

[
K∑

ℓ=1

cpkVtξℓ − cokVtξ0

]
.

Taking into consideration that either a sale is made with an associated profit or the sale
is lost with the resulting financial penalty, this process is repeated for each customer ξ.
At the end, there is a certain amount of remaining stock for product k, denoted as Send

k

(this quantity is deduced from the entire sales process), which incurs a holding cost mi-
nus the salvage value. Also considering the purchase cost incurred by replenishment
at the beginning of the period, we then obtain the overall profit across all customers
associated with the "trajectory" (D, V) of customer demands and actual sales:

ρ(D, V;θ,S) =

{∫n
0

ρt(D̃t,Vt;θ)dδ(t) −

K∑
k=1

(ckh − cks)S
end
k −

K∑
k=1

ωkSk

}

where dδ(t) is the Dirac measure. ρ(D, V;θ,S) builds upon ρt(D̃t,Vt;θ). The benefit
of the proposed substitution model, in contrast to a naive method that does not ac-
count for substitutions even when they occur in reality, can be assessed through the fol-
lowing two key metrics. Firstly, the profit gain, denoted as δρ(π) = mη,π [ρ(D, V;θ,S⋆π)]−

mη,π [ρ(D, V;θ,S⋆
0)]. Secondly, the difference in initial replenishment, denoted as δS(π) =∑K

k=1 [(S
⋆
π)k − (S⋆

0)k].
Note that in the following, we will consider the mean for the statistical measure

mη,π. Furthermore, the calculation and optimization of the profit mη,π [ρ(D, V;θ,S)]
are generally far from being straightforward. In this preliminary work, we will con-
tent ourselves with approximating this quantity using a simple Monte Carlo method
(with 105 samples) and then optimizing it using a standard general-purpose proce-
dure available in r.

scenario 1 : products with low depreciation. In the first scenario, the val-
ues (in €) have been set to represent a scenario similar to those found in the company
Adeo, specializing in the home market: cp = 15, ck = 10, sk = 9, ckh = 0.05 and
cok = 1. It can be observed that the stockout cost has a more significant impact than
the holding cost. The results of the numerical application for two products can be
found in Figure 9. The left sub-figure illustrates that the profit gain δρ, at a fixed mean
frequency of demand here denoted by the coefficient µ, consistently increases as the
substitution probability π1 = π (π ∈ [0, 1]) increases. The right sub-figure (related to
δS) indicates that this profit gain is achieved through slight understocking.

scenario 2 : products with high depreciation. The second scenario is
associated with perishable goods, which are quite different from the home market
described in scenario 1. In this scenario, there is a significant product depreciation over
the period, resulting in a substantial loss of stock value. To represent this situation,
the only difference from the previous scenario is that cs = 0. The results of this new
numerical application can be found in Figure 10. Similar to the previous experiment,
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(a) Gain in profit (b) Difference of replenishment quantity.

Figure 9: Case of low devaluation (Scenario 2).

with fixed µ, the left sub-figure shows an increase in profit gain as a function of π.
The right sub-figure indicates that this gain is achieved by either slightly increasing or
decreasing the stock.

(a) Gain in profit. (b) Difference of replenishment quantity.

Figure 10: Case of high devaluation (Scenario 1).

4.3 the proposed substitution model

The previous model was just a firt attempt for modelling product substituability. How-
ever, it was quite complex to implement and is was also challenging to obtain some
identifiability properties. Indeed, we expect that identifiability is a inescapable task
since the available data is poor, because limited to the availability of the configura-
tions. In addition, concerning model complexity, we expect to limit it by simplifying
the global approach with the sequence of customers and their time of arrival by replac-
ing with aggregated sales and demands over subperiods of [0,n] with same availability
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configurations of products. Additionally, we will see that such an aggregation strategy
opens the door for an algorithm that will have an acceptable execution time.

4.3.1 A new sale model considering product substitutability

We still consider a set of K products. At time t, the availability of the products is de-
fined by the binary vector u(t) = (u1(t), . . . ,uK(t))⊤ introduced in Section 4.2. There
are J = 2K possible configurations of product availability where the configuration of
product availability j is defined by the binary vector ωj = (ωj1, . . . ,ωjK)

⊤ such that
ωjk = 1 if the stock of product k is not zero and ωjk = 0 if the stock of product
k is zero, for j = 1, . . . , J. For instance, the configuration of availability ωj = (0, 1)⊤

for K = 2 products refers to the case where product 1 is out-of-stock when prod-
uct 2 is available. We study the sales during a period of time of length n > 0 and
we denote by Xn = (Xn1, . . . ,XnJ)

⊤ the times spent in each configuration, where
Xnj =

∫n
0 1{ωj=u(t)}dt denotes the time spent in configuration of product availabil-

ity j, for j = 1, . . . , J. Note that some configurations could be not observed during
the period of study, so Xnj can be equal to zero for some j and, by construction,∑J

j=1 Xnj = n.

Example 6 We provide an example of a situation where K = 2. The time spent in the first
configuration ω1 = (1, 1) where the two products are available is ten days (Xn1 = 10). The
time for the case where the first product is unavailable, i.e. ω2 = (0, 1), is 20 days Xn2 = 20.
The total time is thus n = 30.

We consider that each consumer comes with an initial demand for a single product.
The model assumes that the initial demands of all the products follow independent
univariate homogeneous Poisson processes where µk > 0 denotes the intensity of the
Poisson process modelling the initial demand of product k. If the product is available
then the consumer buys it. If the product is not available, then the consumer can
randomly decide buying another product among the available products or leaving the
shop without buying anything. For any k ∈ {1, . . . ,K}, we denote by Znjkℓ ∈ N the
number of products k sales despite the fact that the initial demands of the consumers
were for product ℓ, under the configuration ωj and during the time period of length
n. Moreover, with the notation k = 0, Znj0ℓ ∈ N denotes the number of lost sales for
product ℓ because product ℓ is not available. From Section 4.2 we have that Znjkℓ =∫n
0 VtkDtℓ1ωj=u(t)dδ(t) with dδ being the dirac measure. The previous assumption

of independent initial demands leads to Znjkℓ being conditionally independent given
the times of configurations Xnj such that

P(Zn | Xn) =

J∏
j=1

K∏
k=0

K∏
ℓ=1

P(Znjkℓ | Xnj),

where Zn = (Z⊤
n1, . . . ,Z⊤

nJ)
⊤, Znj = (Z⊤

nj1, . . . ,Z⊤
njK)

⊤ and Znjk = (Znjk1, . . . ,ZnjkK)
⊤.

The random variable Znjkℓ | Xnj follows a Poisson distribution P(Xnjλkℓ(ωj;θ)) with
λkℓ(ωj;θ) describing the substitution rate from ℓ to k under the availability configu-
ration ωj and depending on the parameters θ that we will describe in detail later.

Example 7 Following Example 6, one substitution from product 1 to product 2 in the config-
uration ω2 is noted Zn221 = 1. In this configuration, there is no substitution from product 2
to 1 which is denoted by Zn212 = 0. The number of sales of product 2 stemming from its
initial demand is Zn222 = 1.
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The variable Zn is a latent variable since we only have access to the number of sales
of each product under each configuration, and thus the initial demands of the con-
sumers are generally unknown. Therefore, we denote by Yn = (Y⊤

n1, . . . ,Y⊤
nJ)

⊤ ∈Np,
with p = JK, the number of sales (whatever be the product) for each configuration
where Ynj = (Ynj1, . . . , YnjK)

⊤ indicates the number of sales under configuration j
and Ynjk =

∑J
ℓ=1 Znjkℓ is the number of sales of product k under configuration j.

From Section 4.2, we have that Ynjk =
∫n
0 Vtk1ωj=u(t)dδ(t). Note that, for any con-

figuration j, the number of people leaving the shop without buying anything (i.e.,∑K
ℓ=1 Znj0ℓ) is not observed. The observed variables Ynj are independent given the

time spent in each configuration, leading to

P(Yn | Xn) =

K∏
k=1

J∏
j=1

P(Ynjk | Xnj), (34)

where each Ynjk given Xnj follows a homogeneous Poisson distribution P(Xnjλk(ωj;θ))
and λk(ωj;θ) =

∑K
ℓ=1 λkℓ(ωj;θ). Thus, the probability mass function of Yn given Xn

is

f(yn | xn;θ) =
J∏

J=1

K∏
k=1

p(ynjk; xnjλk(ωj;θ)), (35)

where p(.; τ) is the probability mass function of a Poisson distribution with parameter
τ (when τ = 0 this corresponds to a Dirac distribution in zero).

Example 8 Following the previous example, the number of sales of product 2 in configuration
j = 2 is Yn22 = 2.

4.3.2 A first modelling of substitution

4.3.2.1 The model

This first modelling assumes that the demand for a product that is not available is
transferred both on available products and the abandon of the sales in proportion to
their respective probability of substitution. For any ℓ ∈ {1, . . . ,K} the substitution rate
in the configuration ωj from ℓ to k is expressed as

λkℓ(ωj;θ) =


µℓωjℓ if k = ℓ,

µℓ(1−ωjℓ)βℓk(1+ω⊤
j βℓ)

−1ωjk if k ̸= ℓ, k ̸= 0

µℓ(1−ωjℓ)(1+ω⊤
j βℓ)

−1 if k = 0

, (36)

where θ groups all the parameters, βℓ = (βℓ1, . . . ,βℓK)
⊤ is the vector of probabilities

of sales reporting from ℓ to the other products such that βℓk is a parameter associated
to the probability of buying product k, when it is available, with an initial demand
of product ℓ. Here βℓℓ = 0. Note that when other products are not available the
consumer cannot consider them for its sale reporting. Detailing now the parameter θ,
we have configuration ωj, the probability of leaving without buying anything, when
a consumer comes with an initial demand for the product ℓ that is not available (i.e.,
ωjℓ = 0) is (1 +ω⊤

j βℓ)
−1. Thus, θ = (µ1, . . . ,µK,β⊤

1 , . . . ,β⊤
K)

⊤ ∈ Θ where Θ =

(R+∗)K × (Hℓ)ℓ∈[K] where Hℓ = {βℓ ∈ (R+)K : βℓℓ = 0}.
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4.3.2.2 Identifiability property of the model

Model 36 has K+ K(K− 1) free parameters. A natural question is to state sufficient
conditions that ensure the identifiability of the parameters given Xn. Let Jn = {j ∈
{1, . . . , J} : Xnj > 0}.

Assumption 4 (Poisson intensity) For k = 1, . . . ,K, then 0 < µk <∞.

Assumption 5 (The configuration where every product is available is observed) let ωj̃ = 1K,
j̃ ∈ Jn.

Assumption 6 (All the configurations of availabilities where a unique product is unavailable
are observed) i.e.: Let j verifies ∃ℓ ∈ [K] = {1, . . . ,K}, ∀k ̸= ℓ, ωjℓ = 0 and ωjk = 1 then
j ∈ Jn.

Assumption 7 (A subset of configurations of availability) Let H ⩽ K and ωjh be an avail-
ability configuration so that ωjhk = 0 if k < h and ωjhk = 1 if k ⩾ h. Then for h ⩽ H,
jh ∈ Jn.

Remark 4 The identifiability of the parameters are related to the observed configurations of
availability where observed means that xnj > 0 for the specific configurations. Assumption 4
assumes that each product has a strictly positive demand ratio which is natural. Assumption 5
and 5 assume that the configuration where every product is available and configurations where
only one product is unavailable are observed. Assumption 7 for H ⩽ K− 2 may be visualized
by a matrix

ω⊤
j1

ω⊤
j2
...

ω⊤
jK−2

 =


1 1 . . . 1 1

0 1 . . . 1 1

0 0
. . . 1 1

0 0 0 1 1

 .

Assumption 5 is restrictive in the sense that among the 2K possible observed configurations
of availability only K verifies it. Assumption 7 is less restrictive because it can be verified on
more subset of the 2K possible configurations.

Proposition 6 1. Assumptions 4, 5, and 6 are sufficient conditions for the parameters of
the model to be identifiable.

2. Assumptions 4 and 7 are sufficient conditions for the parameters βℓk such that 1 ⩽ k ⩽
H and ℓ ⩾ k. to be identifiable.

Proofs can be found in Appendix B.1.

Remark 5 Assumption 4 and 7 may often yield a partial identifiability of the parameters.

However, the conditions are only sufficient conditions. Consequently, we propose
another modelling of the substitution for which we are able to derive necessary and
sufficient conditions. It will lead to our most accomplished, thus final, model.
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4.3.3 A second modelling of substitution

4.3.3.1 The model

This second modelling is a little bit simpler than the previous one and thus allows
to obtain finer theoretical properties. It assumes that the demand for a product that
is not available is entirely transfered to the no sale case. For any ℓ ∈ {1, . . . ,K} the
substitution rate in the configuration ωj from ℓ to k is expressed as

λkℓ(ωj;θ) =


µℓωjℓ if k = ℓ,

µℓ(1−ωjℓ)πℓkωjk if k ̸= ℓ, k ̸= 0

µℓ(1−ωjℓ)π
⊤
ℓ (1K −ωj) if k = 0

, (37)

where 1K is the vector of ones of length K, θ groups all the parameters, πℓ = (πℓ1, . . .
πℓK)

⊤ is the vector of probabilities of sales reporting from ℓ to the other products such
that πℓk is the probability of buying product k, when it is available, with an initial
demand of product ℓ and πℓℓ is the probability of buying no product with an initial
demand of product ℓwhen all the products but product ℓ are available. Note that when
other products are not available the consumer cannot consider them for his sale report-
ing. Thus, under configuration ωj, the probability of leaving without buying anything,
when a consumer comes with an initial demand for product ℓ that is not available (i.e.,
ωjℓ = 0) is π⊤

ℓ (1K −ωj). Concerning notations, θ = (µ1, . . . ,µK,π⊤
1 , . . . ,π⊤

K)
⊤ ∈ Θ

where Θ = (R+∗)K × (SK)
K where SK is the simplex of dimension K.

4.3.3.2 Identifiability property of the model

Model 37 involves K+K(K−1) free parameters. A natural question is to state sufficient
conditions that ensure the identifiability of these parameters given Xn. Considering
conditions presented in Assumption 8, Proposition 7 states the identifiability of the
model parameters.

Assumption 8 (Observed configurations of availability) Γk = {1K−ωj : j ∈ Jn and ωjk =

1} and Rk be the matrix of size card(Γk)×K where each row corresponds to the sum between
one element of Γk and ek, ek being the vector of length K composed of zeros except its coor-
dinate k that is equal to one. For any k ∈ {1, . . . ,K}, Rk is such that it contains a sub-matrix
Sk having rank K.

Example 9 Given K = 3 and the observed configuration of availability Jn = {j : ωj ∈
{(1, 1, 1), (1, 1, 0) (1, 0, 0)}},

Γ1 =

1 0 0

1 0 1

1 1 1

 .

Proposition 7 Assumption 8 is a necessary and sufficient condition for the parameters of
model 37 to be identifiable leading to any θ ∈ Θ and θ̃ ∈ Θ

∀yn ∈Np, f(yn | xn;θ) = f(yn | xn; θ̃)⇒ θ = θ̃.

The proofs can be found in Appendix B.2.
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If the number of products is large, it is unlikely that the sub-matrix Sk has rank
K for any k ∈ {1, . . . ,K} as required by Assumption 8. Thus, when K is large, it is
unlikely that the observed configurations (i.e., ωj such that Xnj > 0) permit to satisfy
Assumption 8, and so the identifiability of the model parameters is not ensured. It is
the reason why we will address specifically the issues related to K large in Chapter 5.

The availability of a necessary and sufficient condition for the identifiability of
the model makes it the one we selected for the continuation of our work.

4.3.3.3 Asymptotic property of the model

This property permits to state an asymptotic control of the normalized difference
between the number of sales of a product given the fact that another product is not
available and the number of sales of the same product given the fact that the second
product is available. Let Vnkℓ and Wnkℓ be the number of sales of product k given the
fact that product ℓ is available and is not available respectively,

Vnkℓ :=
∑

{j:ωjk=1,ωjℓ=1}

Ynjk and Wnkℓ :=
∑

{j:ωjk=1,ωjℓ=0}

Ynjk

where Ynjk is defined in Section 4.3. Under Assumption 4, 9, 10 , Lemma 4 shows that
the asymptotic normalized difference between Wnkℓ and Vnkℓ depends on the sub-
stitution of product ℓ by product k. Moreover, when product ℓ cannot be substituted
by product k, then this difference converges to zero. Assumption 4 and Assumption 9

are standard since they consider that the intensity µk are finite and strictly positive
and that the proportion of time spent in each configuration satisfies a central limit
theorem. Finally, Assumption 10 considers that the asymptotic times spent in each
configuration is a product of the asymptotic times of availability of each product.

Assumption 9 The time spent in each configuration satisfies a central limit theorem leading
to, for any j ∈ {1, . . . , J},

Xnj

n
= τj +OP(n

−1/2). (38)

Assumption 10 Let 0 < ρk < 1 be the proportion of time where product k is available, then
proportion τj satisfies

τj =

K∏
j=1

ρ
ωjk

k (1− ρk)
1−ωjk . (39)

Lemma 4 Let ∆nkℓ :=Wnkℓ/(nk −nkℓ) − Vnkℓ/nkℓ. Under Assumption 4,9,10 we have

∆nkℓ := µℓπℓk +OP(n
−1/2),

where nk =
∑J

j=1 Xnjωjk denotes the time where product k was available and nkℓ =∑J
j=1 Xnjωjkωjℓ denotes the time where product k and product ℓ were available simulta-

neously. The proof can be found in Appendix Proof 8.
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4.4 parameter estimation of the second model

4.4.1 Parameter estimation

The observed-data log-likelihood function (i.e., the log-likelihood function computed on
the observed data) given the conditional distribution of Y described in Equation 34 is
defined by

lnL(θ;yn|xn) =

J∑
j=1

K∑
k=1

ynjk ln
[
xnjλk(ωj;θ)

]
− xnjλk(ωj;θ) − ln

[
ynjk!

]
.

However, the maximization of the observed-data log-likelihood does not lead to a closed
form of θ̂ (the corresponding maximum likelihood estimate), hence optimization al-
gorithms are needed. Since the model defined by 37 implies latent variables, it is
natural to use an Expectation-Maximization algorithm (EM algorithm; A. P. Dempster,
N. M. Laird, and D. B. Rubin (1977) and McLachlan and Krishnan (2007)) to achieve
the maximization of the observed-data log-likelihood on θ. This algorithm considers the
complete-data log-likelihood function (i.e., the log-likelihood function computed on both
of the observed and latent data) that is defined by

lnLc(θ; zn,yn|xn) =

J∑
j=1

K∑
k=1

ln
[
1
ynjk=

∑K
ℓ znjkℓ

]
+

J∑
j=1

K∑
k=0

K∑
ℓ=1

znjkℓ ln
[
xnjλkℓ(ωj;θ)

]
− xnjλkℓ(ωj;θ) − ln

[
znjkℓ!

]
.

The EM possibly achieves a local maxima for a specific initialization. Thus, in order
to retrieve a global maxima,Ninit initializations are generated so that the best estimator
in terms of observed-data log-likelihood is retrieved.

An initialization of the EM algorithm starts with an initial value of the parameters
θ[0] = (µ[0],π[0]) sampled in Θ. The asymptotic relation between the statistic ∆nkℓ

and parameters µℓ, πℓ from Lemma 4 supports the choice of the initialization of µ[0] as
µ
[0]
ℓ = (π

[0]
ℓ ℓ+1)

−1∆nℓ+1ℓ for ℓ ∈ {1, . . . ,K− 1} and µ[0]K = (π
[0]
K1)

−1∆n1K. The algorithm
alternates between the computation of the conditional expectation of the complete-data
log-likelihood given the observed data and the current parameters, and the updating of
the parameters by maximizing this conditional expectation with respect to θ under the
constraint Θ. The EM algorithm ensures that the observed-data log likelihood increases
at each iteration and converges to a value. Thus, at iteration (r > 0), the algorithm
performs the following two steps:

• E-step: computation of the conditional expectation of the complete-data log-likelihood

z
[r]
njkℓ = E[Znjkℓ | yn, xn;θ[r−1]].

For any k ∈ {1, . . . ,K}, elementary properties of the Poisson distributions and
Lemma 7 presented in Appendix applied with U = Znjkℓ,
µ = xnjλkℓ(ωj;θ[r−1]), V = Ynjk −Znjkℓ and ν = xnj(λk(ωj;θ[r−1])

− λkℓ(ωj;θ[r−1])) lead to

z
[r]
njkℓ = ynjk

λkℓ(ωj;θ[r−1])

λk(ωj;θ[r−1])
.
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Moreover, the independence between Znj0ℓ and Znjkℓ for k ̸= 0 condition-
ally on x implies independence between Znj0ℓ and Yn. Therefore, E[Znj0ℓ |

yn, xn;θ[r−1]] = E[Znj0ℓ | xn;θ[r−1]], leading to

z
[r]
nj0ℓ = xnjλ0ℓ(ωj;θ[r−1]).

• M-step: the maximization of the conditional expectation of the complete-data log-
likelihood

θ[r] = argmaxθ∈Θ lnL(θ; z[r]n ,yn|xn)

is equivalent to maximizing separately K independent problems of optimisation

(µ
[r]
ℓ ,π[r]

ℓ ) = argminπℓ∈SK,µℓ>0
F̃ℓ(µℓ,πℓ) (40)

where

F̃ℓ(µℓ,πℓ) = −

 J∑
j=1

K∑
k=0

z
[r]
njkℓ ln[xnjλkℓ(ωj;θ)] − xnjλkℓ(ωj;θ)

 .

Since we have (see Appendix B.2)

µ
[r]
ℓ =

1

n

J∑
j=1

K∑
k=0

z
[r−1]
njkℓ ,

we compute
π
[r]
ℓ = argminπℓ∈SK

F̃ℓ(µ
[r]
ℓ ,πℓ).

The Hessian H̃ℓ(µ
[r]
ℓ ,πℓ) = ∇2

πℓ
F̃ℓ(µ

[r]
ℓ ,πℓ) is positive semi definite (see in the

appendix Lemma 9 for an explicit value of the Hessian) hence the problem is
then convex and the solution is unique. The optimization algorithm used is
SLSQP (Sequential Least Squares Quadratic Programming). The function cho-
sen in Python is optimize.minimize from the package SciPy. The stopping cri-
teria for the optimization problem are F̃ℓ(µ

[r]
ℓ ,π[s−1]

ℓ ) − F̃ℓ(µ
[r]
ℓ ,π[s]

ℓ ) < ϵM and
s > NM where s > 0 is the iterations of the SLSQP. The setting of the parameters
is discussed in Section 4.5.1.2.

• The EM algorithm stops when lnL(θ[r];yn|xn) − lnL(θ[r−1];yn|xn) < ϵem.

The code of the EM algorithm will soon be available on GitHub for the reproduction
of the following experiences.

4.5 numerical experiments

The numerical experiments proposed in this section illustrate the good properties of
our algorithm on synthetic data and on a real datasets from the Adeo company.
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4.5.1 Tuning and evaluation of the EM algorithm on synthetic data

4.5.1.1 Realistic synthetic data scenarios in the Adeo company context

The objective is twofold: motivate the settings of the EM algorithm and evaluate the
quality of the estimators in situations close to Adeo’s data.

Let S = (K,n,µ,aK, c) be the scenario associated respectively to a number of prod-
ucts (K), time horizon (n), mean frequencies of sales (µ), probability of lost sale (a)
and group heterogeneity (c). Let n ∈ {180, 365, 730} respectively stands for 6 months,
one year and two years of daily sales. The number of products varies as K ∈ {2, 5}. In
real situations, the mean frequency of sales is often not of the same order of mag-
nitude from a product to another. This remark motivates to define the coefficient
c ∈ {1, 10} referring to the mean frequency of sale heterogeneity among a group of
susbtitution. Products have the same mean frequency of sales µ for products 2 to
K and the first product has µ1 = cµ. In addition, slow and fast movers cases are
expressed by µ ∈ {0.1, 2}. The probabilities of substitution are defined by the param-
eter a ∈ {perfect susbt, unif, no subst} and respectively represents the case with perfect
substitution, uniform substitution and no substitution among the group by the fol-
lowing formulas πℓk ∈ {(K − 1)−1,K−1, 0} ∀ℓ ̸= k and πℓℓ = 1 −

∑
k̸=ℓ πℓk. Let θS

be the unique parameter associated to each scenario S as defined in Section 4.3.3.1.
Nsamp = 100 samples (xi,S

n ,yi,S
n ,ωi,S)i∈[Nsamp] are generated from a parameter θS. The

time in each configuration of availability j is the same on all the possible configura-
tions hence xSij = 2−K,∀j ∈ [2K]. The elements of yi,S

n are sampled from the Poisson
distribution with parameters based on xi,S

n and θS.
Let also A = (ϵem,NM,Ninit) ∈ {10−5, 10−3, 10−1}× {2, 5, 10}× {10, 25, 50} and a fixed

ϵm = 10−6 be the parameters of the EM algorithm to be tested. Then, the algorithm for
a sample (xi,S

n ,yi,S
n ,ωi,S) and a setting A retrieves θ̂

S,A
i composed of µ̂S,A

ℓ,i and π̂S,A
ℓ,i

∀ℓ ∈ [K].

4.5.1.2 Tuning hyperparameters of EM in the defined scenarios

We evaluated Settings A in the grid defined above. The conclusions we draw have
been checked to all scenarios mentioned in the preceding subsection, where K ∈ {2, 5}
and with the case of homogeneous groups of substitution (c = 1). We drop this last
variable from the tuple S and mention it later when we will study heterogeneity. To
illustrate, we present a subset of scenarios S in Tables 2, 3, 4, 5 which vary in terms
of data quantity and provide the rest of the results in Table 49 to 63 for the case
K = 2 and Table 64 to 78 for K = 5 in Appendix B.3. Specifically, we examine an
unfavourable scenario S1 = (2, 180, 0.1, 0.5) for slow movers over a short period and a
more favourable scenario S2 = (2, 730, 2, 0.5) for fast movers over a longer period of
time. The remaining two tables provide additional information. Our aim is to compare
the quality of estimators and their computational times across different settings. We

use the reference estimator denoted as θ̂
S,Ā
i = (µ̂S,Ā⊤

i , π̂S,Ā⊤
i ), with Ā = (ϵem =

10−5,NM = 10,Ninit = 50) because it relates to the smallest ϵem, and the largest
number of iterations and initializations.

The quality is evaluated by the mean of three criteria. The average difference of data-
observed log-likelihood between the estimator of reference and the estimator associated
to A is
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∆S,A
ℓ = N−1

samp

Nsamp∑
i=1

(
lnL(θ̂

S,Ā
i ;yi,S

n |xi,S
n ) − lnL(θ̂

S,A
i ;yi,S

n |xi,S
n )

)
.

The mean distances of the estimators to the references A have the following formu-
las

∆S,A
π̂1

= N−1
samp

Nsamp∑
i=1

||π̂S,Ā
1,i − π̂S,A

1,i || and ∆S,A
µ̂1

= N−1
samp

Nsamp∑
i=1

||µ̂S,Ā
1,i − µ̂S,A

1,i ||.

An algorithm with Settings Ā is ran. The estimators and likelihoods are recorded at
each step. At NM = 10 fixed, the results associated to other settings A are computed
from these recordings by sampling without replacement among the initializations and
by clipping the recordings associated at the iteration where the criteria ϵem is met.
This enables ∆S,A

ℓ to be positive most of the time. More specifically, it is assured to be
positive when NM = 10. Results among NM ∈ {2, 5} are produced similarly.

The choice among Settings A makes a compromise between computation time and
precision in terms of distance of the maximum observed-data log-likelihood to the bench-
mark generated by the set of parameters Ā. As the EM is more demanding in terms of
precision where K > 2, we propose here two settings, the first in the case of K = 2 and
complement it with the experiences on K = 5 to provide another set of parameters
that can be used with any K.

We chose to keep the ∆S,A
π1

< 0.05 and ∆S,A
ℓ ⩽ 10−3 for the limitation of the estima-

tor’s variability induced by the setting of parameters. We provide first our analysis of
the settings of parameters in the scenarios where K = 2 (Table 2, 3). All cases from
the tables show that A where ϵem = 10−5 are possible candidates and all cases related
to ϵem = 0.1 are excluded. According to Table 2 candidates are similar in terms of
accuracy for ϵem > 0.1. NM = 2. Table 3 in the most favourable case is coherent with
these conclusions. Since NM = 2 is of the same order of magnitude in terms of time
of execution, we leave it aside for the analysis of the case K = 5.

Table 4 shows that only the cases where ϵem = 10−5 verifies ∆S,A
ℓ ⩽ 10−3 and all

of the accuracies are acceptable. We conclude that Setting A = (10−5, 5, 10) (denoted
now as A∗) is optimal and should be used in general since it has the lowest time of
execution.

4.5.1.3 About the negligeability of the non increasing log-likelihood cases

Throughout the experiences, some EM runs did not validate the increasing property
of the observed-data log-likelihood. It is however marginal and possibly due to numerical
difficulties encounters in the border of the parameter space (when substitution prob-
abilities are close to zero). We isolated the results for the advised parametrization in
the cases K ∈ {2, 5} and found out that no cases were reported for K = 2. On the sce-
narios where (K,µ) = (5, 2), we reported that among the 9,000 different initializations
only 0.003% had a non increasing observed-data log-likelihood. In these non increasing
cases 90% had a cumulative error relative to the max log likelihood under 2% and 60%
had a number of non increasing step relative to the total number of step lower than
5%. From these observations, we judged that it is negligible in terms of occurences
and implemented a condition of increasing loglikelihood to accept the result of an
initialization.
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Table 2: Results from the numerical applications in an unfavorable case S = (2, 180, 0.1, 0.5)

ϵem NM Ninit ∆S,A
ℓ (std) ∆S,A

π1
(std) ∆S,A

µ1
(std)

mean
execution
time [s]

mean
number

iterations

1e-05

2

10 0.000 (0.000) 0.017 (0.132) 0.000 (0.000) 3.271 83.760 (30.398)
25 0.000 (0.000) 0.009 (0.063) 0.000 (0.000) 8.380 77.080 (33.542)
50 0.000 (0.000) 0.003 (0.009) 0.000 (0.000) 16.550 76.810 (37.987)

5

10 0.000(0.000) 0.017(0.132) 0.000(0.000) 3.576 69.800(33.153)
25 0.000 (0.000) 0.010 (0.081) 0.000 (0.000) 9.107 59.580 (28.399)
50 -0.000 (0.000) 0.002 (0.009) 0.000 (0.000) 17.949 58.340 (35.646)

10

10 0.000 (0.000) 0.017 (0.132) 0.000 (0.000) 3.701 71.450 (35.623)
25 0.000 (0.000) 0.001 (0.004) 0.000 (0.000) 9.429 60.570 (30.417)
50 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 18.559 56.820 (31.235)

0.001

2

10 0.007 (0.003) 0.052 (0.136) 0.001 (0.001) 1.348 31.380 (15.878)
25 0.006 (0.003) 0.036 (0.067) 0.001 (0.001) 3.455 29.400 (19.057)
50 0.005 (0.003) 0.026 (0.030) 0.001 (0.001) 6.807 27.150 (18.396)

5

10 0.005 (0.003) 0.051 (0.136) 0.001 (0.001) 1.413 24.330 (10.866)
25 0.004 (0.003) 0.038 (0.090) 0.001 (0.001) 3.607 21.620 (12.333)
50 0.004 (0.003) 0.026 (0.031) 0.001 (0.001) 7.103 20.880 (12.594)

10

10 0.005 (0.003) 0.053 (0.137) 0.001 (0.001) 1.468 24.620 (12.262)
25 0.004 (0.003) 0.029 (0.031) 0.001 (0.001) 3.740 22.030 (12.939)
50 0.004 (0.003) 0.025 (0.030) 0.001 (0.001) 7.372 21.280 (13.322)

0.1

2

10 0.182 (0.142) 0.260 (0.218) 0.009 (0.005) 0.264 5.050 (1.951)
25 0.120 (0.114) 0.151 (0.155) 0.007 (0.005) 0.668 4.660 (1.823)
50 0.100 (0.101) 0.155 (0.166) 0.007 (0.005) 1.336 4.420 (1.505)

5

10 0.133 (0.083) 0.203 (0.172) 0.008 (0.006) 0.337 5.470 (2.207)
25 0.091 (0.073) 0.121 (0.117) 0.007 (0.005) 0.857 4.990 (2.133)
50 0.079 (0.071) 0.118 (0.111) 0.007 (0.005) 1.713 4.830 (2.687)

10

10 0.130 (0.084) 0.197 (0.160) 0.008 (0.006) 0.343 5.560 (2.393)
25 0.089 (0.073) 0.121 (0.117) 0.007 (0.005) 0.870 5.120 (2.447)
50 0.076 (0.069) 0.112 (0.107) 0.007 (0.005) 1.736 4.800 (2.285)

In bold: results associated to the advised settings for K = 2.
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Table 3: Results from the numerical applications in a more favorable case S = (2, 730, 2.0, 0.5)

ϵem NM Ninit ∆S,A
ℓ (std) ∆S,A

π1
(std) ∆S,A

µ1
(std)

mean
execution
time [s]

mean
number

iterations

1e-05

2

10 0.000 (0.000) 0.001 (0.001) 0.001 (0.001) 3.777 85.490 (29.023)
25 0.000 (0.000) 0.001 (0.001) 0.001 (0.001) 9.481 75.750 (37.031)
50 -0.000 (0.000) 0.001 (0.001) 0.001 (0.001) 19.031 64.640 (34.078)

5

10 0.000(0.000) 0.001(0.001) 0.001(0.001) 4.605 99.000(33.494)
25 0.000 (0.000) 0.001 (0.001) 0.000 (0.001) 11.680 87.630 (34.208)
50 0.000 (0.000) 0.000 (0.001) 0.000 (0.001) 23.390 75.870 (40.566)

10

10 0.000 (0.000) 0.001 (0.001) 0.001 (0.001) 4.740 96.250 (34.569)
25 0.000 (0.000) 0.000 (0.001) 0.000 (0.001) 12.042 92.750 (38.011)
50 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 24.089 76.930 (40.360)

0.001

2

10 0.006 (0.002) 0.009 (0.004) 0.006 (0.002) 2.199 36.020 (24.208)
25 0.004 (0.002) 0.007 (0.004) 0.005 (0.003) 5.512 22.710 (13.944)
50 0.003 (0.002) 0.005 (0.004) 0.004 (0.003) 11.118 18.360 (4.614)

5

10 0.006 (0.002) 0.010 (0.004) 0.006 (0.003) 2.840 45.030 (26.421)
25 0.004 (0.002) 0.007 (0.005) 0.005 (0.003) 7.227 28.140 (22.053)
50 0.003 (0.002) 0.006 (0.004) 0.004 (0.003) 14.514 21.600 (12.830)

10

10 0.006 (0.002) 0.010 (0.004) 0.006 (0.002) 2.935 47.940 (32.006)
25 0.004 (0.002) 0.007 (0.005) 0.005 (0.003) 7.500 26.970 (18.885)
50 0.003 (0.002) 0.006 (0.004) 0.004 (0.003) 15.027 22.460 (17.178)

0.1

2

10 0.162 (0.148) 0.036 (0.031) 0.029 (0.020) 0.848 10.880 (4.323)
25 0.073 (0.042) 0.017 (0.015) 0.019 (0.012) 2.136 10.140 (2.581)
50 0.058 (0.020) 0.014 (0.011) 0.017 (0.010) 4.283 10.120 (2.840)

5

10 0.228 (0.204) 0.047 (0.038) 0.034 (0.022) 1.180 11.620 (9.300)
25 0.097 (0.068) 0.023 (0.022) 0.020 (0.014) 3.006 9.450 (2.598)
50 0.072 (0.029) 0.015 (0.013) 0.017 (0.012) 6.027 8.870 (2.493)

10

10 0.226 (0.201) 0.046 (0.036) 0.035 (0.023) 1.228 12.330 (10.966)
25 0.097 (0.068) 0.023 (0.022) 0.020 (0.014) 3.160 9.450 (2.598)
50 0.071 (0.029) 0.015 (0.013) 0.017 (0.012) 6.315 8.910 (2.542)

In bold: results associated to the advised settings for K = 2.
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Table 4: Results from the numerical applications for S = (5, 180, 0.1, 1.0)

ϵem NM Ninit ∆S,A
ℓ (std) ∆S,A

π1
(std) ∆S,A

µ1
(std)

mean
execution
time [s]

mean
number

iterations

1e-05

5

10 0.000(0.000) 0.018(0.077) 0.000(0.000) 34.003 164.850(57.164)
25 0.000 (0.000) 0.021 (0.079) 0.000 (0.000) 84.970 159.190 (59.341)
50 0.000 (0.000) 0.016 (0.051) 0.000 (0.000) 170.519 155.700 (59.021)

10

10 0.000 (0.000) 0.021 (0.082) 0.000 (0.000) 37.728 162.960 (56.026)
25 0.000(0.000) 0.016 (0.059) 0.000(0.000) 94.202 159.670 (58.172)
50 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 188.571 155.750 (59.654)

0.001

5

10 0.015 (0.006) 0.073 (0.110) 0.002 (0.002) 10.665 50.050 (9.157)
25 0.015 (0.007) 0.065 (0.087) 0.002 (0.002) 26.828 50.590 (11.630)
50 0.014 (0.007) 0.064 (0.104) 0.002 (0.001) 53.853 50.280 (10.831)

10

10 0.015 (0.006) 0.069 (0.112) 0.002 (0.002) 12.300 50.070 (9.376)
25 0.014 (0.006) 0.065 (0.104) 0.002 (0.001) 30.943 50.270 (10.166)
50 0.013 (0.006) 0.068 (0.116) 0.001 (0.001) 62.175 51.330 (11.499)

0.1

5

10 0.444 (0.076) 0.287 (0.199) 0.009 (0.007) 2.462 12.000 (1.929)
25 0.425 (0.069) 0.250 (0.154) 0.010 (0.007) 6.169 12.000 (1.510)
50 0.413 (0.066) 0.259 (0.178) 0.009 (0.007) 12.362 11.850 (1.519)

10

10 0.435 (0.090) 0.276 (0.176) 0.011 (0.009) 2.690 11.130 (1.831)
25 0.414 (0.084) 0.257 (0.155) 0.010 (0.007) 6.753 10.960 (1.624)
50 0.396 (0.079) 0.250 (0.157) 0.010 (0.007) 13.544 10.970 (1.791)

In bold: results associated to the advised settings for K = 5

Table 5: Results from the numerical applications for S = (5, 730, 2.0, 0.2)

ϵem NM Ninit ∆S,A
ℓ (std) ∆S,A

π1
(std) ∆S,A

µ1
(std)

mean
execution
time [s]

mean
number

iterations

1e-05

5

10 0.000(0.000) 0.002(0.002) 0.001(0.001) 88.047 328.950(103.552)
25 0.000 (0.000) 0.002 (0.002) 0.001 (0.001) 222.208 324.290 (111.880)
50 0.000 (0.000) 0.001 (0.002) 0.001 (0.001) 443.346 321.840 (115.294)

10

10 0.000 (0.000) 0.001 (0.002) 0.001 (0.001) 109.585 391.480 (138.332)
25 0.000(0.000) 0.001(0.002) 0.001(0.001) 275.024 378.210(149.868)
50 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 550.069 374.170 (166.943)

0.001

5

10 0.025 (0.009) 0.015 (0.008) 0.010 (0.006) 40.371 142.740 (33.886)
25 0.023 (0.008) 0.013 (0.008) 0.008 (0.006) 101.479 141.880 (48.509)
50 0.021 (0.007) 0.012 (0.007) 0.008 (0.006) 203.089 142.950 (54.234)

10

10 0.026 (0.009) 0.015 (0.009) 0.010 (0.007) 54.468 183.040 (70.276)
25 0.023 (0.008) 0.013 (0.008) 0.008 (0.007) 136.373 180.410 (84.693)
50 0.021 (0.007) 0.012 (0.007) 0.007 (0.006) 274.045 181.820 (87.495)

0.1

5

10 1.300 (0.172) 0.085 (0.037) 0.082 (0.060) 13.733 45.160 (8.229)
25 1.191 (0.165) 0.082 (0.037) 0.071 (0.050) 34.275 43.920 (9.715)
50 1.119 (0.153) 0.081 (0.040) 0.063 (0.045) 68.770 42.820 (10.079)

10

10 1.419 (0.235) 0.095 (0.044) 0.078 (0.059) 18.944 52.510 (11.158)
25 1.257 (0.195) 0.086 (0.040) 0.063 (0.042) 47.137 52.030 (10.482)
50 1.178 (0.160) 0.083 (0.042) 0.064 (0.041) 95.053 50.080 (10.786)

In bold: results associated to the advised settings for K = 5
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4.5.1.4 Evaluation of the EM estimates quality in the defined scenarios

In this section, the parameters are set to the advised A∗ and for ease of reading, the
superscript is dropped. According to the generation of πS

i and µS
i where i ∈ [1,Nsamp],

the properties of the estimators π̂Sℓk,i and µSℓ are symmetric for ℓ,k when k ̸= ℓ. Hence
first measures provided are the mean and variance of π̂Sℓk,i for ℓ = 1,k = 2 and µ̂1.
The multivariate aspect is assessed via the mean squared error

mse(π̂S
i ) = N

−1
samp

Nsamp∑
i=1

||πS
i − π̂S

i ||
2 and mse(µ̂S

i ) = N
−1
samp

Nsamp∑
i=1

||µS
i − µ̂S

i ||
2

with ∥∥ being the matrix Euclidean norm.
In the following tables, we included the value of π12 which is determined by a.

According to Table 6, results show an improvement in terms of all measures as n
increases which is due to the consistance of the estimators. In terms of the quality of
the estimators π̂S12,i, µ̂

S
1,i, the cases related to slow movers show a significantly higher

deviation from the true value both in terms of the bias and the variance compared to
fast movers. In comparison, Table 7 and 8 show an increase in terms of mse which
is the consequence of the augmentation of the number of parameters to be estimated.
The variance and bias of π̂12 alone are not significantly impacted by increasing K. The
impact of substitution parameters on the border of the parameter space concerning
the quality the quality do not show any type of recurrent behavior exception made for
the augmentation of the bias of µ1 as K increases in the no substitution case. The high
standard deviation of the substituability parameters in the tables, especially for slow
movers (µ = 0.1) indicates that the signal of substitution is weak for the chosen time
frames n.

4.5.1.5 Assessment of the quality of the estimators for heterogeneous selling frequency

In real situations, a group of products may have different mean frequency of sales,
thus a natural question is to ask how it affects the quality of the various estimators.
We compare the results of the previous subsection with the new results. Scenarios S

remain exactly the same except that we now fix c = 10 meaning that the first product
is sold more and has µ1 = 10µ. Hence π12 refers to the substitution of a fast mover by
a slow mover. π21 refers to the substitution of a slow mover by a fast mover and π23
refers a slow mover by a slow mover.

From Table 9 we derive a conclusion both in terms of bias and variance. The con-
clusions are derived from first a comparison of the column of Table 8 in the last
subsection. According to it, the quality of the estimation of the substitution from a
slow mover to a slow mover is of the same degree of precision as in the homogeneous
case hence we use it as a benchmark for the analysis of the two remaining columns.
The quality of the estimators from a slow mover to a fast mover is severely degraded.
The substitution from a fast mover to a slow mover however is more precise. This last
two observations may stem from the difference of signals meaning that if the slow
mover is available and not the fast mover there should be some apparent spikes if the
two are substituable. However, if the fast mover is available and not the slow movers,
the spillover may not be distinguishable from the variability of the demand of the
fast mover. We chose now to provide a statistical test to discriminate cases where the
substitution can be captured.
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Table 6: Numerical applications for S where K = 2

a π12 µ n
mean(π̂12)
(std)

mean(µ̂1)
(std)

mse(π̂) mse(µ̂)

perfect subst 1.00

0.10

180 0.68 (0.35) 0.12 (0.04) 1.12 0.00

365 0.78 (0.31) 0.11 (0.03) 0.60 0.00

730 0.77 (0.28) 0.11 (0.03) 0.48 0.00

2.00

180 0.91 (0.13) 2.04 (0.20) 0.09 0.09

365 0.93 (0.09) 2.08 (0.13) 0.05 0.04

730 0.95 (0.07) 2.04 (0.09) 0.03 0.02

unif 0.50

0.10

180 0.45 (0.39) 0.10 (0.04) 0.64 0.00

365 0.45 (0.37) 0.10 (0.03) 0.55 0.00

730 0.55 (0.31) 0.10 (0.02) 0.41 0.00

2.00

180 0.52 (0.19) 1.99 (0.23) 0.14 0.10

365 0.52 (0.12) 1.98 (0.14) 0.06 0.05

730 0.50 (0.08) 2.01 (0.11) 0.03 0.02

no subst 0.00

0.10

180 0.26 (0.37) 0.09 (0.03) 0.70 0.00

365 0.16 (0.26) 0.09 (0.03) 0.45 0.00

730 0.15 (0.21) 0.10 (0.02) 0.27 0.00

2.00

180 0.06 (0.10) 1.98 (0.16) 0.04 0.06

365 0.05 (0.08) 1.95 (0.13) 0.03 0.04

730 0.03 (0.04) 1.97 (0.09) 0.01 0.02
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Table 7: Numerical applications for S where K = 3

a π12 µ n
mean(π̂12)
(std)

mean(µ̂1)
(std)

mse(π̂) mse(µ̂)

perfect subst 0.50

0.10

180 0.40 (0.38) 0.11 (0.05) 1.53 0.01

365 0.32 (0.32) 0.11 (0.03) 1.36 0.00

730 0.42 (0.29) 0.11 (0.03) 0.95 0.00

2.00

180 0.42 (0.14) 2.03 (0.23) 0.26 0.19

365 0.47 (0.10) 2.07 (0.17) 0.15 0.11

730 0.47 (0.07) 2.05 (0.11) 0.07 0.05

unif 0.33

0.10

180 0.26 (0.35) 0.10 (0.05) 1.34 0.01

365 0.32 (0.33) 0.10 (0.03) 1.05 0.00

730 0.38 (0.28) 0.10 (0.03) 0.81 0.00

2.00

180 0.35 (0.16) 1.98 (0.26) 0.34 0.20

365 0.33 (0.12) 2.01 (0.15) 0.18 0.09

730 0.34 (0.08) 2.00 (0.13) 0.09 0.05

no subst 0.00

0.10

180 0.20 (0.32) 0.08 (0.04) 2.27 0.01

365 0.15 (0.25) 0.08 (0.02) 1.51 0.00

730 0.14 (0.20) 0.09 (0.02) 1.01 0.00

2.00

180 0.08 (0.09) 1.88 (0.19) 0.16 0.14

365 0.04 (0.07) 1.92 (0.13) 0.08 0.07

730 0.03 (0.04) 1.94 (0.09) 0.04 0.04
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Table 8: Quality of estimators for S where K = 5

a π12 µ n
mean(π̂12)
(std)

mean(µ̂1)
(std)

mse(π̂) mse(µ̂)

perfect subst 0.25

0.10

180 0.20 (0.32) 0.10 (0.06) 2.75 0.02

365 0.23 (0.29) 0.11 (0.04) 2.18 0.01

730 0.21 (0.22) 0.11 (0.03) 1.72 0.01

2.00

180 0.20 (0.17) 2.11 (0.31) 0.78 0.64

365 0.21 (0.09) 2.12 (0.24) 0.48 0.35

730 0.25 (0.09) 2.09 (0.20) 0.26 0.18

unif 0.20

0.10

180 0.21 (0.31) 0.10 (0.05) 2.51 0.01

365 0.17 (0.24) 0.11 (0.04) 2.02 0.01

730 0.19 (0.22) 0.10 (0.03) 1.55 0.00

2.00

180 0.18 (0.17) 2.02 (0.33) 0.72 0.49

365 0.18 (0.11) 2.02 (0.24) 0.45 0.29

730 0.19 (0.08) 2.02 (0.16) 0.29 0.14

no subst 0.00

0.10

180 0.20 (0.32) 0.08 (0.04) 6.09 0.01

365 0.17 (0.26) 0.08 (0.03) 4.84 0.01

730 0.16 (0.24) 0.08 (0.02) 3.74 0.01

2.00

180 0.08 (0.12) 1.75 (0.26) 1.04 0.58

365 0.04 (0.06) 1.86 (0.16) 0.41 0.25

730 0.04 (0.05) 1.89 (0.12) 0.17 0.13
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Table 9: Numerical applications for K = 5 and heterogeneous mean frequencies of sale

a π12 µ n
mean(π̂12)
(std)

mean(π̂21)
(std)

mean(π̂23)
(std)

mean(µ̂1)
(std)

mse(π̂) mse(µ̂)

perfect subst 0.25

0.10

180 0.21 (0.10) 0.23 (0.29) 0.23 (0.30) 1.00 (0.09) 1.91 0.03

365 0.22 (0.07) 0.23 (0.29) 0.21 (0.27) 1.03 (0.08) 1.62 0.02

730 0.25 (0.05) 0.21 (0.26) 0.21 (0.22) 1.01 (0.06) 1.31 0.01

2.00

180 0.24 (0.02) 0.17 (0.21) 0.22 (0.17) 20.24 (0.66) 0.87 1.07

365 0.24 (0.02) 0.18 (0.17) 0.22 (0.13) 20.22 (0.44) 0.61 0.60

730 0.25 (0.01) 0.21 (0.16) 0.22 (0.09) 20.18 (0.31) 0.36 0.30

unif 0.20

0.10

180 0.19 (0.11) 0.24 (0.33) 0.14 (0.24) 0.98 (0.10) 1.81 0.03

365 0.20 (0.08) 0.19 (0.28) 0.18 (0.25) 1.00 (0.09) 1.57 0.02

730 0.21 (0.06) 0.27 (0.28) 0.20 (0.26) 0.99 (0.06) 1.16 0.01

2.00

180 0.20 (0.03) 0.27 (0.26) 0.16 (0.16) 19.86 (0.67) 0.84 0.91

365 0.20 (0.02) 0.22 (0.20) 0.17 (0.13) 19.99 (0.60) 0.55 0.64

730 0.20 (0.01) 0.19 (0.15) 0.19 (0.09) 19.95 (0.38) 0.36 0.29

no subst 0.00

0.10

180 0.03 (0.04) 0.28 (0.32) 0.22 (0.30) 0.97 (0.11) 5.11 0.03

365 0.02 (0.03) 0.33 (0.31) 0.15 (0.22) 0.97 (0.08) 4.51 0.02

730 0.01 (0.02) 0.29 (0.28) 0.17 (0.22) 0.95 (0.05) 4.08 0.01

2.00

180 0.01 (0.01) 0.19 (0.26) 0.08 (0.12) 19.21 (0.62) 1.89 1.45

365 0.00 (0.01) 0.15 (0.25) 0.04 (0.07) 19.51 (0.51) 0.94 0.71

730 0.00 (0.01) 0.13 (0.18) 0.03 (0.05) 19.59 (0.40) 0.53 0.44

4.5.2 Statistical test of significance of substitution

4.5.2.1 Definition and parameterization of a statistical test for discriminating substitution
and non substitution

The signal of substitution between two products πℓk might not be retrievable accu-
rately because of the variability of the estimators. Hence we provide here a first sta-
tistical test that assesses if the signal of substitution is significant. The hypothesis
H0 : πℓk = 0 is tested against the alternative H1 : πℓk > 0 via an empirical likeli-
hood ratio test. In order to do so a maximum likelihood ratio statistic is computed
and compared to the empirical distribution of the statistic under H0 with a risk α.
Let θ̂

S

i = argmaxθ∈Θ lnL(θ;yS
i |x

S
i ) and θ̂

S

i|H0
= argmaxθ∈Θ0

lnL(θ;yS
i |x

S
i ) where

i ∈ [Nsamp] be the maximum likelihood estimator retrieved by the EM procedure
where Θ0 = Θ∩ {πℓk = 0}. The likelihood ratio statistic is

LRTS
i = −2

(
lnL(θ̂

S

i|H0
;yi|xi) − lnL(θ̂

S

i ;yi|xi)

)
.

The distribution of the statistic LRTS,h
i|H0

under H0 is evaluated by bootstrap on
h ∈ [H] samples yh

i generated from the model described in Section 4.3 given xSi and

θ̂
S

i|H0
.

Let the proportion of rejection of H0 at risk α for a scenario S be

pα,S
reject = N

−1
samp #

{
i ∈ [Nsamp] : H−1

H∑
h=1

(1LRTS
i−LRTS,h

i|H0

) > 1−α

}
.
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In order to evaluate the quality of the confidence interval, we also provide the pro-
portion of cases where the true value of πS12 is present in the interval of confidence of
the estimator hence

pα,S
prst = N

−1
samp #

{
i ∈ [Nsamp] : πS12 ∈ CI(α, π̂S12,i)

}
where CI(α, π̂S12,i) is the empirical interval of confidence with level 1− α computed
with bootstrap.

Remark 6 Since the statistic LRTS
i for the empirical likelihood test are called H times, there is

an incentive to provide the initialization at the parameter that generated the bootstrap instead
of initializing several times. This procedure introduce bias in the estimators.

Let the estimators θ̂
S,h,M̄
i• be the one that are produced with multiple initializations

and θ̂
S,h,M
i• for the estimators associated to the single initialization at θ̂

S

i|H0
. Let the dif-

ference in observed-data log-likelihood for the constrained and unconstrained estimators
be

∆S,M
ℓ|H0

=
1

HNsamp

Nsamp∑
i=1

H∑
h=1

lnL(θ̂
S,h,M̄
i|H0

;yh
i |x

h
i ) − lnL(θ̂

S,h,M
i|H0

;yh
i |x

h
i )

and

∆S,M
ℓ =

1

HNsamp

Nsamp∑
i=1

H∑
h=1

lnL(θ̂
S,h,M̄
i ;yh

i |x
h
i ) − lnL(θ̂

S,h,M
i ;yh

i |x
h
i ).

Let

∆S,M
π̂1

=
1

HNsamp

Nsamp∑
i=1

H∑
h=1

||π̂S,h,M̄
1,i − π̂S,M

1,i ||

and

∆S,M
π̂1|H0

=
1

HNsamp

Nsamp∑
i=1

H∑
h=1

||π̂S,h,M̄
1,i|H0

− π̂S,M
1,i|H0

||.

We chose to evaluate the quality on Nsamp = 20, H = 10 and S ∈ {(2, 0.5, 2, 730),
(5, 0.2, 2, 730)}. Results shown in Table 10 indicate that there is an order of magnitude
in terms of the time of computation. There is a slight decrease on the quality of esti-
mation. In the case of the constrained estimator for the scenario with K = 2 the same
results are retrieved for both. According to the table, the loss in terms of accuracy is
more pronounced for the scenarios of K = 5 on both the estimators of the constrained
and unconstrained with a value of about 0.08. Hence, this test should be computed
with all its initializations despite the mean execution time.

Table 10: Random initialization versus single initialization

K a π12 µ n ∆S,M
ℓ (std) ∆S,M

ℓ|H0
(std) ∆S,M

π̂1
(std) ∆S,M

π̂1|H0
(std)

mean
execution
time M [s]

mean
execution
time M̄ [s]

2 unif 0.5 2.0 730 0.27(0.53) 5e-6(1e-5) 0.052(0.07) 2.3e-17 (4.5e-17) 19 382

5 unif 0.2 2.0 730 3.58(9.9) 0.31(0.8) 0.08(0.1) 0.08(0.10) 699 8,552

[ December 19, 2024 at 14:29 – classicthesis version 4.2 ]



4.5 numerical experiments 65

Table 11: Numerical applications for S where (K, c) = (2, 1)

a π12 µ n pα,S
prst pα,S

reject

perfect subst 1.00

0.10

180 0.93 0.38

365 0.88 0.66

730 0.81 0.84

2.00

180 0.88 1.00

365 0.88 1.00

730 0.84 1.00

unif 0.50

0.10

180 0.98 0.11

365 0.97 0.24

730 0.97 0.49

2.00

180 0.84 0.93

365 0.91 0.99

730 0.91 1.00

no subst 0.00

0.10

180 0.96 0.05

365 0.93 0.06

730 0.89 0.07

2.00

180 0.94 0.05

365 0.91 0.09

730 0.94 0.04

4.5.2.2 Application of the statistical tests to the defined scenarios

Results of the experiment is provided for K = 2 in Table 11. According to the column
pα,S

reject, the test rejects the non substitution case when there is substitution in the fast
movers case (µ = 2). The same test does not reject the null hypothesis when there is
no substitution hence concluding that for fast movers the signal is detectable. In the
slow movers case where µ = 0.1, the signal is weaker. A maximum proportion of true
positive for medium substitution (π12 = 0.5) is 0.5 meaning that even in the best case
where n = 730 we may not detect the signal systematically. For perfectly substituable
(π12 = 1) slow movers on a short period of time, only 0.37 pass the test. In the case
of slow movers and short period of time the signal is weak and attains around 0.13

of proportion of case where the substitution is detected. We expect that on real data,
the probability of detecting substitution for slow movers may be partialy retrievable
if enough data are available meaning at least 365 days of sales. The second column
pα,S

prst provides the assurance that the CIs are accurate except for a slight deviation in
the case of the full substitution case.
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4.6 application to real datasets

4.6.1 Description of the datasets and the designs of experiments

The dataset is composed of 3 putting knives of size 16, 14 and 12 cm, a set of 2 tape
rolls and a padlock shown in Figure 11. The usage of the first 3 overlap and should
be substitutable whereas the set of tapes rolls or the padlock is not substituable with
the 3 putting knife. According to the data the padlock is of the same order of mean
frequency of sales whereas the set of tapes is much more successful in sales. This
choice of products enables the observation of effects of heterogeneous/homogeneous
mean frequency of sale on the EM results. The dataset includes the time series of sales
and stocks of all stores of Leroy Merlin over a period of n = 1, 613 days.

We refer later to the desired structure as the case where the 16 cm is expected to
substitute more to the 14 than to the 12 cm and is expected to not substitute to the set
of tape. Moreover, the 14 cm may substitute to the 16 cm and the 12 cm and not the
set of tapes. The 12 cm may substitute more to the 14 cm than the 16 cm and not to
the set of tape. Finally, the set of tapes does not substitute with other products.

First, we provide the numerical results and interpretation for the 3 putting knives
and the set of tapes over a year of data on a single store and delve into shortcomings
and the reasons associated to it. Then we provide the analysis on the full period of
time and all stores. Finally we provide the results of the numerical application in the
case of the second dataset with the 3 putting knives and a padlock. Advantage of this
second dataset is that it features homogeneous mean frequency of sales.

All tables that follow should be interpreted from the substitution probability πℓk
point of view. In more details, rows are associated to out-of-stock products and columns
correspond to the substitute, as it is displayed in the example given by Table 12.

Table 12: θ̂ on dataset

µ̂k 1 2 3 4

1 µ̂1 π̂11 π̂12 π̂13 π̂14

2 µ̂2 π̂21 π̂22 π̂23 π̂24

3 µ̂3 π̂31 π̂32 π̂33 π̂34

4 µ̂4 π̂41 π̂42 π̂43 π̂44

4.6.2 Pretreatment of the time series

The time series undergo a preprocessing composed of the imputation of the negative
stock, the imputation of the outliers, the imputation of the zero stock when a sale
occurs and the rounding of the values. We explain now the reasons of such actions.

The imputation of the negative stock is zero if the day after or previous a sequence
of negative stock is zero; else it equals to 1. It may introduce bias but it is a reasonable
assumption that enables to capture more out-of-stocks which is the relevant signal.
We chose to address this point by fixing the stock to a value of 1 since the information
we need is only the availability of the product. The outliers may not be superior to the
value of the 0.001 and 0.99 percentile in order to avoid some effects on the estimators.
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Figure 11: Illustration of the selected products

(a) Putting knife

(b) set of tapes (c) Padlock

Zero stocks when a sale occurs is a mistake in the database. The rounding is necessary
because of the assumption of discreteness of the demand.

4.6.3 Numerical application in the case of 3 putting knives and a set of tapes

4.6.3.1 Test of homogeneity

Since our modelling assumes the homogeneity of the Poisson process in each configu-
ration of availability, we evaluated the homogeneity assumption of the K× Jn Ynkj on
both the separated stores. For this, let dkj1, . . . ,dkjDk

be the duration between sales
of the product k on connected sections of (0,n) where u(t) = ωj. We conducted a
test of Kolmogorov to compare the cumulated inter arrival time to the uniform law
over each store and each configuration of availability. Since there are K× Jn ×U tests,
we deal with the multiplicity by applying a correction using the false discovery rate
correction explained in Benjamini and Hochberg, 1995. Table 13 shows that most of
the configurations validate the assumption, even if not all.

4.6.3.2 Application of the EM on short period of time and single store

Table 14 shows the matrix θ̂ of the EM’s results. We can see that structure emerges
from the estimators. The 16 cm does substitute with the 14 cm and not with the 12
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Table 13: Homogeneity test on all stores for putting knives and the set of tapes

product significant nb config

16 cm
0 350

1 15

14 cm
0 391

1 16

12 cm
0 328

1 15

Tapes
0 427

1 77

cm and the tapes. The 14 cm substitutes both with the 16 and the 12 cm. The 12 cm
does not substitute with the 16 cm. However we see an error of estimation: the 12 cm
does substitute according to the data with the tapes. The substitution rate from the set
of tapes to the other products is low (< 0.12) and most of it is lost which is coherent.
Results show that the mean frequency of sale of the 12 cm is less sold than the 14

cm and 16 cm and the tapes. It also points out that the error may be due to the low
substitution rate of the 12 cm.

Table 14: θ̂ on a single store

µ̂k 16 cm 14 cm 12 cm Tapes

16 cm 0.22 0.42 0.42 0.16 0.00

14 cm 0.21 0.73 0.01 0.26 0.00

12 cm 0.11 0.00 0.49 0.01 0.49

Tapes 0.54 0.03 0.03 0.06 0.88

Interpretation: The substitution rate from the 16 cm to the 14 cm is 0.42.

The error reveals an impact of the randomness in the time series on the quality of
the estimation.

A random split of the dataset into two parts, each of about 180 days, and an esti-
mation of the parameters yield Tables 15 and 16. Since the mean frequency of product
sales is close to 0.1 and n = 180, the estimators exhibit high variance, as discussed in
Section 4.5.2.1. We observe differences between the estimators and the one estimated
with n = 365. Specifically, π̂32 has values of 0 for the first subdataset and 1 for the sec-
ond. The time series of the stock of the putting knives and the sales of the set of tapes
are shown in Figure 12. In the first subdataset, sales happen to be concentrated dur-
ing the out-of-stock period, while in the second, they are not, leading to the disparity
between the estimators. Hence we isolate two factors of error: the variance associated
to the amount of information (µk,n) and the interaction of the time series of sales
and out-of-stock periods. In the latter, it is especially influenced when the period of
out-of-stock is short.
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Table 15: θ̂ on Subdataset 1

µ̂k 16 cm 14 cm 12 cm Tapes

16 cm 0.18 0.71 0.29 0.00 0.00

14 cm 0.19 0.90 0.00 0.10 0.00

12 cm 0.11 0.00 0.00 0.34 0.66

Tapes 0.22 0.26 0.65 0.09 0.00

Interpretation: The substitution rate from the 16 cm to the 14 cm is 0.369.

Table 16: θ̂ on Subdataset 2

µ̂k 16 cm 14 cm 12 cm Tapes

16 cm 0.23 0.62 0.38 0.00 0.00

14 cm 0.25 0.00 0.90 0.11 0.00

12 cm 0.09 0.00 1.00 0.00 0.00

Tapes 0.32 0.02 0.00 0.06 0.92

Interpretation: The substitution rate from the 16 cm to the 14 cm is 0.729.

Remark 7 The values of substitution are estimated in a situation with sparse data so it suffers
from a high variability. Moreover an unrelated product may have sales deviating from its
normal frequency over a period where another product is out-of-stock.

Figure 12: Time series of stocks and sales for two subdatasets

(a) Subdataset 1 (b) Subdataset 2

A natural question can the be the following: do the statistical tests in this example
provide faith to the values of substitution between putting knives and back up the
intuition of non substituability between the 12 cm and the set of tapes? We now try to
answer to it.

4.6.3.3 Application of the EM based on multiple stores

Having more data is expected to provide a better estimation hence we provide two
experiences based on 150 stores. The first experience relies on aggregation of the esti-
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mators and the second on the aggregation in a single time series. The demand could
be different from one store to the other and introduce bias in the estimators. In this
section, the set of stores is refered as U and an estimator over a store is θ̂

(u)
.

The first estimator is defined as θ̃ = 1
|U|

∑
u∈U θ̂

(u)
with U being the set of stores.

Table 17 shows that the associated variance is high. The spillover despite the high
variance shows the desired structure among the putting knives. However the spillover
from the putting knives to the set of tapes is high. Note that the set of tapes is sold in
higher amounts than the putting knives. According to Section 4.5.1.5 the estimators are
impacted by it, hence the conclusion is similar and the set of tapes do not substitute to
the other products whereas the putting knives substitute wrongly to the set of tapes .

For the second experience, we first chose to concatenate all the time series of sale
and stocks with the 4 concerned products. Table 18 shows that a large proportion of
the availability configurations do not respect the assumption of homogeneity.

According to Table 19, the EM procedure retrieved exactly the group of substitution
associated to the putting knife and the singleton of the set of tapes. However the
desired structure is not apparent since the 16 cm substitutes more with the 12 cm than
with the 14 cm.

Table 17: Mean and standard deviation of the aggregated estimators

µ̂k 16 cm 14 cm 12 cm Tapes

16 cm 0.30 (0.20) 0.28 (0.37) 0.31 (0.33) 0.16 (0.25) 0.24 (0.36)

14 cm 0.28 (0.16) 0.21 (0.32) 0.28 (0.37) 0.24 (0.32) 0.26 (0.38)

12 cm 0.21 (0.12) 0.15 (0.27) 0.34 (0.39) 0.27 (0.38) 0.23 (0.36)

Tapes 2.29 (1.45) 0.04 (0.10) 0.03 (0.06) 0.01 (0.03) 0.91 (0.16)
Interpretation: The substitution rate from the 16 cm to the 14 cm is 0.31.

Table 18: Homogeneity test on pooled data for putting knife and the set of tapes

product significant nb config

16 cm
0 4

1 3

14 cm
0 4

1 4

12 cm
0 3

1 5

Set of tapes
0 3

1 5

4.6.4 Numerical application in the case of 3 putting knives and a padlock

The dataset is composed now of the putting knives and the padlock over 152 stores.
We first introduce the estimators over single stores and the pooled data which is
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Table 19: Numerical results for the pooled stores

µ̂k 16 cm 14 cm 12 cm Tapes

16 cm 0.31 0.00 0.19 0.80 0.01

14 cm 0.22 0.00 0.81 0.19 0.00

12 cm 0.28 0.08 0.00 0.92 0.00

Tapes 2.41 0.00 0.00 0.01 0.99

Interpretation: The substitution rate from the 16 cm to the 14 cm is 0.19.

composed of a fictional store with all the time series aggregated. Table 20 shows that
most of stores availability configurations verifies the homogeneity characteristic.

The experience over the single stores yields Table 21 which shows a similar pattern
as for the previous dataset, but the variance of the estimators is high. The signal of
substitution from the padlock to the putting knives is coherent with a no substitu-
tion situation. However some substitution from the putting knives to the padlock is
wrongly detected.

The homogeneity test over configurations of availability in the case of the pooled
time series yields Table 22 which confirms that the assumption of homogeneity of
the Poisson process is not verified in most cases. Pooling the data in a single time
series however yields Table 23. The EM retrieves the signal of substitution between the
putting knives and no substitution from the putting knives to the padlock. Moreover
the substitution from the 14 cm and 12 cm to the other products is coherent with
a high probability of lost sale and a substitution coherent with the desired structure.
There is however a problem of ordering, the putting knife of 16 cm should substitute
to the 14 cm and does it to the 12 cm and that with a high probability. This experience
suggests that pooling the data yields mostly coherent results as in the case of the
previous dataset in spite of not respecting the homogeneity of sales on availability
configurations.

Table 20: Homogeneity test on all stores for putting knives and the padlock

product significant nb configurations

16 cm
0 407

1 14

14 cm
0 376

1 16

12 cm
0 463

1 13

Padlock
0 286

1 15
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Table 21: Mean (standard deviation ) of θ̃

µ̂k 16 cm 14 cm 12 cm Padlock

16 cm 0.3 (0.18) 0.28 (0.36) 0.29 (0.31) 0.18 (0.27) 0.24 (0.33)

14 cm 0.27 (0.15) 0.22 (0.31) 0.37 (0.38) 0.24 (0.3) 0.16 (0.28)

12 cm 0.21 (0.10) 0.15 (0.25) 0.38 (0.37) 0.29 (0.37) 0.17 (0.29)

Padlock 0.41 (0.25) 0.03 (0.07) 0.07 (0.15) 0.04 (0.09) 0.84 (0.23)
Interpretation: The mean substitution rate from the 16 cm to the 14 cm is 0.31.

Table 22: Homogeneity test on pooled data for putting knives and the padlock

product significant nb config

16 cm
0 4

1 4

14 cm
0 3

1 5

12 cm
0 3

1 5

Padlock
0 5

1 3

Table 23: Numerical applications for the pooled stores

µ̂k 16 cm 14 cm 12 cm Padlock

16 cm 0.31 0.00 0.27 0.73 0.00

14 cm 0.22 0.00 0.88 0.12 0.00

12 cm 0.29 0.08 0.09 0.83 0.00

Padlock 0.41 0.00 0.00 0.00 1.00

Interpretation: The substitution rate from the 16 cm to the 14 cm is 0.23.
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5
S PA R S E S U B S T I T U A B I L I T Y M O D E L L I N G I N C A S E O F A L A R G E
N U M B E R O F P R O D U C T S

As exhibited in the previous chapter, the proposed model for product substituability
estimation suffers from both complexity in time of the computations and also from
the identifiability problems, as soon as K increases. In particular, it seems difficult to
exceed 10 product (sometimes even 5), thus strongly limiting the practical interest of
our model since a full assortment is composed . Consequently, we provide here an
additional modelling that builds upon the model of the previous section. We intro-
duce a sparse version of the model (37) that builds upon the natural numerous non
substitutability that occurs in real situations. This sparsity assumption is then refor-
mulated within the clustering paradigm, where obtained groups of products are non
substitutable to each other.

5.1 the proposed sparse modelling

We recall that if the number of products K is large, it is unlikely that the sub-matrix
Sk has rank K for any k ∈ {1, . . . ,K} as required by Assumptions 8 (see the previous
chapter) and thus there is no guarantee on the identifiability of the model parameters.
In return, when the sales of many products are considered (i.e., K is quite large), it is
likely that many products are strongly different and so cannot be substituted. It leads
to the natural assumption that many substituability product probabilities πℓk are null.
Therefore, in this section, we introduce a sparse version of sale model considering
product substituability, in order to take into account that many products (most of
them in fact. . . ) cannot be substituted by all of them.

More precisely, we consider B groups of products such that two products belonging
to the same group of products can be substituted while two products belonging to
different groups of products cannot be substituted. The group of products k is indi-
cated by the binary vector γk = (γk1, . . . ,γkB)⊤ where γkb = 1 if product k belongs
to group b and γkb = 0 otherwise (k = 1, . . . ,K, b = 1, . . . ,B). We consider that each
product belongs to exactly one group. The information about the group of products
is stored into the B×K matrix γ = [γ1 . . .γK]. We consider then the sparse simplex of
size K indexed by γ and defined by

SK(k;γ) =
{
a :∈ SK, ∀ℓ ∈ {ℓ : γ⊤

k γℓ = 0}, aℓ = 0 and ak = 1 iif ∀ℓ ̸= k,γ⊤
k γℓ = 0

}
.

The proposed sparse sale model considers that each vector defining the probability
of reporting the initial demand of product ℓ to another product belongs to the sparse
simplex of size K indexed by γ, thus such that πℓ ∈ SK(ℓ;γ). Hence, the resulting
matrix γ defines a sparse version of the seminal sale model of product substituability
since it imposes many probabilities πℓk to be equal to zeros. Consequently, the initial
model defined by (37) is crossed with the additional constraints on the parameter
space θ ∈ Θγ, where

Θγ = (R+∗)K × SK(1;γ)× . . .× SK(K;γ).

73
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These parsimonious constraints can be summarized by the undirected graph G =

(V ,E) where V = {1, . . . ,K} is the set of vertices (products) and where the edges E are
composed by the couples of products that can be substituted leading that E = {(k, ℓ) :
πkℓ + πℓk > 0}. Thus, a model is defined by the components of G since γ⊤

k γℓ = 1 if
and only if the vertices k and ℓ belong to the same component of the graph. It thus
leads to groups of substituability, that we need to estimate now.

5.2 estimating the groups of substituability

5.2.1 Invoking a specific HAC algorithm for estimating the groups

A model γ is defined by a partition of the K products, leading to possible intra-group
substituability, but impossible inter-group substituability. We now motivate and ex-
plain the choice of a specific constrained hierarchical agglomerative clustering (HAC)
allowing to estimate such a group structure in an efficient way.

Estimating the groups of products that can be substituted will rely on the com-
putation of an estimator of G defined, for any positive value τn ∈ R+, by Ĝn,τn =

(V , Ên,τn) where Ên,τn is the estimator of the vertices defined by

Ên,τn := {(k, ℓ) ∈ {1, . . . ,K}× {1, . . . ,K}, ∆nkℓ +∆nℓk > τn} .

Then, the following proposition shows that if the threshold τn follows an appropriate
rate, then Ên,τn consistently estimates E. Hence, the groups of G, and so the model,
can be consistently estimated by the groups within Ĝ.

Conjecture 2 Under Assumptions 9, 10, if τn tends to zero as n tends to infinity and that
τnn

1/2 tends to infinity as n tends to infinity then

lim
n→∞ P(Ên,τn = E) = 1.

An idea of the proof is provided in the Appendix C.1.

Proposition 2 ensures the consistency of the estimator of γ, as well as τn = Cn−α

with C > 0 and 0 < α < 1/2. However, for a finite time n, the choices of C and α can
impact the selected model. In othert words, coefficients ∆nkℓ +∆nℓk for (ℓ,k) ∈ [K]2

retrieve a signal of substitution which, combined with a clustering algorithm, is able
to provide a set of candidate partitions γ. We retain an HAC for this task, and more
precisely a constrained HAC process for preserving the model identifiability as we
describe now.

The HAC paradigm relies on a dissimilarity matrix D for providing a set of K
possibles embedded models γ(1), . . . ,γ(K), corresponding to K sequential partitions.
Usually, it enables an acceptable time of execution. However, we need to constrain the
proposed partitions by the identifiability requirement of the parameters, as described
in more detail in Appendix C.2. The whole algorithm is also available at the same
place.

The dissimilarity matrix matrix we retain is obtained by the following transforma-
tion of the matrix ∆ := [∆nkℓ + ∆nℓk]

ℓ=1,...,K
k=1,...,K, defining D(i, j) = max(∆̄) − ∆̄(i, j),

∀(i, j) ∈ [K]2 so that i ̸= j and D(i, i) = 0 with ∆̄ = ∆− min(∆). Concerning now the
aggregation criterion, we provide a numerical analysis in Section 5.3.1.2 for choosing
within the different classical ones (Ward, single and complete linkage).
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5.2.2 A non asymptotic model selection method

Our estimation aims at maximizing the data-observed log-likelihood hence we consider
quite naturally a selection process of the model γ̂ based on a penalized log-likelihood
criterion. In this context, BIC and AIC are common criteria for model selection. How-
ever, we have a doubt on the definition of the asymptotic quantities which are involved
in the specific case of our model. This is the reason why, we provide only a heuristic of
BIC (Schwarz, 1978) and we decide to locate it in Appendix C.3 with related numerical
applications.

However, contrary to BIC, there exists some non asymptotic criteria avoiding this
difficulty. It is the reason why we chose to use mainly the heuristic slope paradigm
initially proposed by Massart (Birgé and Massart, 2007, Baudry et al., 2010), which is
a penalized method for the selection of the best model with the interesting property
to be non asymptotic. This related penalization is known up to a constant C and its
shape should to be of the form C

ν
γ(k)

2 as successfully studied in various situations by
Arlot, 2019. In our case, this criterion becomes

γ̂ = argmaxk=1,...,K logL(θ̂γ(k) ;γ(k),yn|xn) −C
νγ(k)

2
,

where νγ(k) = K+
∑K

k ′=1

∑
ℓ ̸=k ′ γ

(k)⊤
k γ

(k ′)
ℓ is the number of parameters involved by

model γ, θ̂γ is the maximum likelihood estimate (see Section 4.4.1 for details on its
estimation). To the log-likelihood logL introduced in Section 4.3, a new parameter γ

is added that expresses the sparsity of the parameter space.
In practice, there exists some methods to automatically detect the elbow of the log-

likelihood (see Arlot, 2019). However, in our work, we prefer to visually detect the
change of slope of the function (νγ(k) , logL(θ̂γ(k) ;γ(k),yn|xn)). It corresponds to a
heuristic implementation of the seminal method of Massart but which works well as
we will illustrate below along our experiments.

5.3 numerical application on synthetic and real datasets

5.3.1 Evaluation of the model selection on synthetic data

5.3.1.1 Realistic synthetic data scenarios in the Adeo company context

We provide scenarios close to the situation at Adeo in order to assess the quality
of the model selection on larger groups of products. Similar to the scenarios de-
fined in the previous chapter, let S̃ = (B5,B2,n,µ,a, c) be scenarios where B5,B2

represent respectively the number of groups of 5 and 2 substitutable products. The
total number of products is then K = 5B5 + 2B2. We chose the scenarios where
(B5,B2) ∈ {(10, 50), (50, 10), (100, 0), (200, 0)}. πℓk is fixed based on the number of
products in a substitution group and the choice of a. Obviously, πℓk = 0 for all
products ℓ and k belonging to different groups. We chose to consider a time frame
n ∈ {103, 104, 105} where u from Section 4.3 is generated by subdividing [0,n] in 1, 000
periods and choosing the configuration of availability uniformly from the 2K possible
configurations. Additionally, we chose µ = 2 for the mean frequencies of sale.
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Each scenario defines a unique θS̃ which generatesNsamp samples (xin,yi
n,ωi)i∈[Nsamp].

For instance, the matrix of substitution associated to S̃ such that (B5,B2,a) = (0, 2, unif)
is

πS̃
i =


0.5 0.5 0 0

0.5 0.5 0 0

0 0 0.5 0.5

0 0 0.5 0.5

 . (41)

The true partition of products in groups is denoted by γS̃ as described in Section 5.1.

The model selection proceeds first in a proposal of at most K partitions (γ(k),S̃
i )k∈[K]

of products in subgroups of sustitutability via the constrained HAC provided in Ap-

pendix C.2. The EM applied to the subgroups associated to γ
(k),S̃
i provides the estima-

tors θ̂
S̃

i,γ(k),S̃
i

. Finally a selection of the best partition is made with the slope heuristic
method we described before.

5.3.1.2 Evaluation of the HAC without model selection

In order to evaluate the quality of the HAC and chose within single, Ward and com-
plete linkage we chose a subset of the scenarios S̃. This expriment does not include
the model selection and the application of the EMs. The subset of the scenarios is
restricted to n = 104 where the groups of substitutable products are composed of
groups of 5 products and a varying number of groups B5 ∈ {10, 50, 100, 200}. We com-
puted only one sample (Nsamp = 1) for each S̃, since the different number of groups
we study already gives a sufficient idea about the HAC variability estimation for our
present purpose.

We have computed the ARI for each partition produced by the HAC and retrieved
the one with the highest. In Table 24, 25, the ARI is perfect for both the single and
the Ward linkage. Table 26 associated to the complete linkage “suffers” in the case of
heterogeneous mean frequency of sales. This application gives us confidence in the
constrained HAC and we chose the Ward linkage in the following sections.

We then conducted a full set of experiences where Nsamp = 10 with Ward linkage in
the case of realistic probabilities of substitution ak = realistic. Table 27 shows that the
clustering quality in terms of ARI for n ∈ {104, 105} is high. For the same values of n,
the ARI decreases slightly from c = 1 to 10 and for increasing K where c defined in
the previous chapter is the multiplicative coefficient defining the heterogeneity of sale
within a group. The ARI for n = 103 drops significantly from B5 = 10 to 200.

In terms of proportion of real groups retrieved, values are close to 1 until and in-
cluding B5 = 50. For homogeneous mean frequencies of sales (c = 1) all the groups
are retrieved whereas for c = 10 the values drop to 0.53 for n = 104. It thus sug-
gests that the heterogeneous mean frequency of sales is detrimental to the estimation
performance. In the case of n = 103 the best scenario for B5 = 10 is at 0.51 and for
B5 = 50 no groups are retrieved. This experience provides confidence in the HAC and
concludes additionnally that n = 103 for µ = 2 is not sufficient in terms of amount of
data.
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Table 24: HAC with single linkage

a B2 n K B5 c

Proportion
group re-
trieved

ARI

realistic 0 10000

50 10

1 1. 1.
10 1. 1.

250 50

1 1. 1.
10 1. 1.

500 100

1 1. 1.
10 1. 1.

1000 200

1 1. 1.
10 1. 1.

Table 25: HAC with Ward linkage

a B2 n K B5 c

Proportion
group re-
trieved

ARI

realistic 0 10000

50 10

1 1. 1.
10 1. 1.

250 50

1 1. 1.
10 1. 1.

500 100

1 1. 1.
10 1. 1.

1000 200

1 1. 1.
10 1. 1.

5.3.1.3 Evaluation of model selection on synthetic data

The quality of the model selection is now evaluated by retrieving the best partition
using the slope heuristic method. The change of slope of the data-observed log-likelihood
corresponds to the retained estimate γ̂. However, we have to note some specific cases
where this elbow in the slope is not present. For instance, in Figure 18 there is no
significant change of the slope because the limit number of the groups in the HAC
avoids to visualize it. In that case, we retain the beginning of the curve at the first
group (100 groups), corresponding to the maximum number of groups available under
the constraint HAC. In addition, note that, strictly speaking, the slope criterion should
be based upon the change of the slope of the data-observed log-likelihood as a function
of the number of the parameters of the model associated to γ. However, we prefer to
use instead the number of groups in the horizontal axis since it is more explicit for
the reader while having no consequence on the results (the number of parameters is a
decreasing function of the number of groups). We illustrate this property in Figure 13

and 14(a).
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Table 26: HAC with complete linkage

a B2 n K B5 c

Proportion
group re-
trieved

ARI

realistic 0 10000

50 10

1 1. 1.
10 0.5 0.90

250 50

1 1. 1.
10 0.26 0.76

500 100

1 1. 1.
10 0.25 0.77

1000 200

1 1. 1.
10 0.22 0.74

Each partition is chosen based on Figure 14, 15, 16, 17, 18 which show the evolu-
tion of the log-likelihood for homogeneous mean frequency of sales in (a) and the
heterogeneous mean frequencies of sales in the subfigure (b). The selected partition is
compared to the true groups using the ARI (adjusted rand index) (Hubert and Arabie,
1985). Then, best groups are retrieved based on the evaluated π̂S̃ℓk according to a cri-
terion such as the group with the highest substitution probability. The substitution in
groups can be seen as an oriented weighted graph with nodes as products and edges
weighted by the substitution rate.

According to Table 28, the selection of model is perfect from the standpoint of the
proportions of groups retrieved and the ARI both for heterogeneous and homoge-
neous frequencies of sales (c) and for different sizes of groups.

Figure 13: Data-observed log-likelihood for S̃ = (10, 50, perfect substitution, c)
Degrees of freedom of the true partition: 600
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Table 27: Evaluation of the HAC using Ward’s linkage

a B2 K B5 n c

Proportion
group re-
trieved
(std)

ARI (std)

realistic 0

50 10

1000

1 0.37 (0.23) 0.76 (0.13)
10 0.51 (0.2) 0.87 (0.06)

10000

1 1.0 (0.00) 1.0 (0.00)
10 0.92 (0.13) 0.98 (0.02)

100000

1 1.0 (0.00) 1.0 (0.00)
10 1.0 (0.00) 1.0 (0.00)

250 50

1000

1 0.04 (0.03) 0.42 (0.05)
10 0.09 (0.03) 0.65 (0.03)

10000

1 1.0 (0.00) 1.0 (0.00)
10 0.86 (0.08) 0.98 (0.01)

100000

1 1.0 (0.00) 1.0 (0.00)
10 0.87 (0.09) 0.98 (0.02)

500 100

1000

1 0.02 (0.01) 0.32 (0.04)
10 0.07 (0.02) 0.6 (0.03)

10000

1 1.0 (0.00) 1.0 (0.00)
10 0.69 (0.07) 0.94 (0.01)

100000

1 1.0 (0.00) 1.0 (0.00)
10 0.86 (0.08) 0.98 (0.01)

1000 200

1000

1 0.0 (0.00) 0.21 (0.02)
10 0.04 (0.01) 0.53 (0.02)

10000

1 1.0 (0.00) 1.0 (0.00)
10 0.53 (0.04) 0.9 (0.01)

100000

1 1.0 (0.00) 1.0 (0.00)
10 0.73 (0.04) 0.95 (0.01)

Figure 14: Data-observed log-likelihood for S̃ = (10, 50, perfect substitution, c)

(a) S̃ with c = 1
True number of groups: 60

(b) S̃ with c = 10
True number of groups: 60
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Figure 15: Data-observed log-likelihood for S̃ = (10, 50, realistic, c)

(a) S̃ with c = 1
True number of groups: 60

(b) S̃ with c = 10
True number of groups: 60

Figure 16: Data-observed log-likelihood for S̃ = (50, 10, perfect substitution, c)

(a) S̃ with c = 1
True number of groups: 60

(b) S̃ with c = 10
True number of groups: 60

Figure 17: Data-observed log-likelihood for S̃ = (50, 10, realistic, c)

(a) S̃ with c = 1
True number of groups: 60

(b) S̃ with c = 10
True number of groups: 60
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Figure 18: Data-observed log-likelihood for S̃ = (100, 0, realistic, c)

(a) S̃ with c = 1
True number of groups: 100

(b) S̃ with c = 10
True number of groups: 100

5.3.2 Application on Adeo data

5.3.2.1 Description of the four real datasets

The objective for Adeo is to retrieve the probability of substitution at scale. A common
store references about 40,000 products. In our experiments, the products were chosen
such that to limit impacts on the mean frequency of sales that are not related to the
substitution. In particular, we select products not impacted by seasonality. Moreover,
the price promotions have been identified in order to discard their impact on the sales.

In practice, Adeo’s categories are a hierarchical structure in the order of the depart-
ment, subdepartment, type and subtype (Category 1, 2, 3, 4). The retained types of
products belong to the following distinct categories: paintings, plumbing and electric-
ity, tools workshop, ironsmith. The products between two different types are obviously
not substitutable which makes it possible to evaluate the quality of the partitioning
proposed by our unsupervised method. We thus expect that substitutable products are
in the same subtypes. We chose products that are sold in a sufficient quantity sold in
quantity which is the category A and that are automatically replenished. We described
now four datasets which follow globally all these requirements.

Dataset 1 is composed of the three putting knifes (16cm, 14cm, 12cm) and the set
of tapes already studied in the previous chapter on all stores where they are available
simultaneously.

In Dataset 2, 34 products in the hand tools department (Table 29) have been se-
lected on a single store. We chose for this application a group of 70 products on a
single store over a period of 1,613 days. Since there is changes in the assortment, the
similarity matrix wasn’t calculable, thus we provided the biggest subset of products.
According to Figure 19, products have a mean frequency of sale under 0.8 per day
and concentrated around 0.2. The proportion of out of stock periods is lower than 10%
with most products around 2%.

[ December 19, 2024 at 14:29 – classicthesis version 4.2 ]



82 sparse substituability modelling in case of a large number of products

Figure 19: Descriptive statistics of Dataset 2

(a) Mean frequency of sales (b) Proportion of OOS

Table 29: Categories of Dataset 2

Category 1 Category 2 Category 3 Category 4 NUM_ART

OUTILLAGE OUTILLAGE A MAIN

CLES ET DOUILLES

CLES A MOLETTES ET JEUX 8

CLES PLATES ET JEUX 10

CLES TUBES ET JEUX 2

MALL. CLES, DOUILLES, ACCES. 2

TOURNEVIS

T.VIS ELECTRICIEN GAINE 6

T.VIS ELECTRICIEN NON GAINE 5

TOURNEVIS MECANICIENS 1

Dataset 3 is composed of 33 products from several subcategories in the tools depart-
ment over all stores of Leroy Merlin France. Because of the high assortment choice
every products were not available simultaneously in every store. Consequently, we re-
tained 3 stores for the first model selection where 20 of these proposed products were
available. Detail of categories can be found in Table 30.

Figure 20: Descriptive statistics of Dataset 3

(a) Mean frequency of sales (b) Proportion of OOS
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Table 30: Categories of Dataset 3

Category Nb_prod
Store 1

Nb_prod
Store 2

Nb_prod
Store 3

DEFONCEUSES 2 2 2

PERFORATEURS,BURINEUR,MARTEAU 7 10 7

RABOTS 2 1 2

SCIES SAUTEUSES 8 7 8

TOURNEVIS SANS FIL 1 0 1

Dataset 4 is a set of 32 products in the tools department with the information of
all the store of Leroy Merlin France. This dataset is composed of 33 products from
several subcategories in the tools department over all stores of Leroy Merlin France.
We selected non substitutable products accross the finest category. The length of the
pooled time series is 238,367. According to Table 21, the mean frequencies of sales is
composed of slow movers and other products with a value µk = 0.4 at its maximum.
Additionnaly, the proportion of out of stock is around 5% for most of the products
meaning that some substitution signal is detectable. It must be noted that since all
products were not substitutable simultaneously, we inputed zeros in sales and stocks
and this introduces biases since there is differences in terms of mean frequencies of
sale that violate the assumption of homogeneity of the Poisson process underlying
Ynjk (see Section 4.3).

Figure 21: Descriptive statistics of the Dataset 4

(a) Mean frequency of sales (b) Proportion of OOS

Concerning the pre-processing of the raw time series, we imputed stock values of
adjacent consecutive negative values by zero if the value before or after was zero
and else we imputed a positive value. The other negative value were inputed by 1. We
clipped the outliers at the quantiles 0.01 and 0.99. We kept all products that were in the
intersection of the products within the stock data frame and the sale data frame. We
fixed at one the stock of products that were sold on the day. In the case of the pooled
time series of stores for which the assortment did not match the selected products
we have added zeros both for the stocks and the sales. However, this imputation may
have a compromising effect between the amount of data and an introduction of bias.
We will discuss later this possible consequence on results.
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5.3.2.2 Application to Dataset 1

In this section, we apply the model selection to the putting knifes and the tape. We
estimated ρ̂k = 1

n(
∑J

j=1 xnjωjk) and τ̂j =
∏K

j=1 ρ̂
ωjk

k (1− ρ̂k)
1−ωjk Assuming that τj

verifies Equation 39 in Assumption 9 and that each day of the n days has a probability
of ρk to have the product k available then Xnj ∼ B(n, τj), we applied a test of equality
of the proportions with H0 : τ̂j = τj against H1 : τ̂j ̸= τj. The statistics Xnj/n−τ̂j√

τ̂j(1−τ̂j)/n

shown in Table 31 are all rejecting the null hypothesis and the assumption is not
verified for all the configurations of availability Xnj. As a consequence the results of
the numerical experiments on real datasets may be biased by Assumption 9.

The model selection applied to the real data shows that the HAC with Ward’s link-
age succeeds in retrieving the right partition (Figure 22).

Table 31: Statistical test of the proportion of availability

1 2 3 4 Xnj/n τ̂j Statistics p-value

1 1 1 1 0.887 0.842 59.166 1.000

1 1 1 0 0.043 0.057 -29.359 0.000

1 0 1 1 0.010 0.025 -45.974 0.000

0 1 1 1 0.022 0.040 -44.410 0.000

1 1 0 1 0.012 0.026 -42.118 0.000

1 1 0 0 0.000 0.002 -14.752 0.000

1 0 1 0 0.001 0.002 -10.977 0.000

1 0 0 1 0.001 0.001 4.322 1.000

0 1 1 0 0.005 0.003 24.260 1.000

0 0 1 1 0.002 0.001 7.605 1.000

0 0 0 1 0.001 0.000 100.178 1.000

0 1 0 1 0.001 0.001 0.014 0.505

0 1 0 0 0.000 0.000 3.468 1.000

0 0 1 0 0.000 0.000 1.500 0.933

1 0 0 0 0.000 0.000 12.520 1.000

0 0 0 0 0.014 0.000 4123.293 1.000

Interpretation: Product 1 (16cm), Product 2 (14cm), Product 3 (12cm), Product 4 (tapes)

D =


0.000 0.000 0.217, 0.283]

0.000 0.000 0.210 0.676]

0.217 0.210 0.000 0.682]

0.283 0.676 0.682 0.000

 (42)

is obtained from the similarity matrix
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∆ =


- 0.292 0.074 0.009

0.292 - 0.082 −0.384

0.074 0.0818 - −0.391

0.009 −0.384 −0.391 -

 (43)

(where the "-" stands for the values that can’t be computed).

Figure 22: Dataset 1 Selection model for Ward linkage
Interpretation: Product 1 (16cm), Product 2 (14cm), Product 3 (12cm), Product 4 (tapes)

(a) HAC with Ward linkage (b) Dendrogram with Ward linkage

5.3.2.3 Application to Dataset 2

The model selection applied to the dataset leads to Figure 23. The slope of the data-
observed log-likelihood does not have stark changes however it seems to indicate a possi-
ble partition with 16 groups. According to this retained partition, the ARI in terms of
Category3 and Category4 is 0.02 and 0.10, respectively. These values are close to 0,
thus meaning that such clustering solutions are not very far from a random partition.
The three groups with maximum substitution for the partition where also retrieved.
The analysis of Table 32, 33 and 34 leads to a mix of promising and less promising re-
sults. For instance, the wrenchs could substitute with a screw driver or a pipe wrench
from an uncompatible size. Thus, the substitutions do not yield reliable information in
this case. We guess that it could be due to the lack of information in data (data coming
just from one store). It is the reason why the possibility to aggregate data from multi-
ple stores will be studied later. However some values could yield some more valuable
information such as the high probability of substitution between the open end wrench
of size 18x19mm or 30x32mm to the set of wrenches in Table 32.
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Figure 23: Dataset 2 Selection model for Ward linkage

(a) Log-likelihood (b) Dendrogram of the constrained HAC

Table 32: Dataset 2 Estimators Group (21,25,31)

µ̂k 1 2 3

1 0.19 0.00 0.00 1.00

2 0.21 0.38 0.00 0.62

3 0.24 0.98 0.02 0.00

Interpretation: 1: Open end wrench 18 x 19 mm,
2 : Open end wrench 30x32mm,
3 : Set of 6 open end wrenches

Table 33: Dataset 2 Estimators Group (20,23)

µk 1 2

1 0.12 0.00 1.00

2 0.20 0.62 0.38

Interpretation: 1: Open end wrench 16 x 17 mm,
2 : Open end wrench 24 x 26 mm

Table 34: Dataset 2 Estimators Group (13,22,30)

µk 1 2 3

1 0.19 0.00 0.00 1.00

2 0.21 0.38 0.00 0.62

3 0.24 0.98 0.02 0.00

Interpretation: 1: screw drivers, L.80 mm
2 : Open end wrench 21 x 23 mm

3 : pipe wrench 8x9mm
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5.3.2.4 Application to Dataset 3

Figure 24: Dataset 3 Store 1

(a) Data-observed log-likelihood (b) Dendrogram

Figure 25: Dataset 3 Store 2

(a) Data-observed log-likelihood (b) Dendrogram

Figure 26: Dataset 3 Store 3

(a) Data-observed log-likelihood (b) Dendrogram

With this new dataset, based on Figure 24, 25, 26, we select again the partition with
the slope heuristic but now for each of the three stores. We chose to present the groups
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in terms of their aggregation order in the constrained HAC. The experiences on sim-
ulated data Section 4.5.1.5 showed that the variance of the estimator π̂ℓk has a higher
variance when product ℓ is sold on a order of magnitude less than k. This last obser-
vation will shine light on several false detections of substitution signal.

Table 35, 36, 37 show the estimated probabilities for the three (non-singleton) groups
provided by the partition. Products that do not appear in the partition do not have
substitute. The first group is composed of two jigsaws. There is a high substitution
from the first to the second and no substitution in the other way. The second group
appears to be coherent in terms of the two products which are jigsaws with cables
with different powers. However there is a high value of substitution from the second
product which is less powerful to the first with a perfect substitution. This could be
interpreted as an upselling induced by the out of stock which happens when a client
choses a more valuable item in place of another. The last group is composed of two
products (the jigsaw and the perforator) that are not subtitutable. However, we notice
that the first and the second groups have a significant difference in terms of the mean
frequency of sale; this fact could explain such an erroneous substitution estimation.

Table 38, 39, 40, 41 provide the results for the second store. The first group ag-
gregates two electric drill perforators. The perfect substitution from the 680W drill
perforator to the 1500W indicates an upselling. However the difference of magnitude
between the two mean frequencies of sale (corresponding to a biased modelling) could
be the reason of such a mistake. The two products of the third group are theoretically
not substitutable but the estimation indicates there is a perfect substitution from the
first product to the second. This error can be due (again) to the difference of magni-
tude between the mean frequencies of sales. The third group provides an interesting
signal of substitution between two jigsaws with an upselling relationship from the first
to the second. The fourth group has two substitutable electric routers which are sold
in the same order of mean frequencies of sale and a jigsaw which is not substitutable
with the other. The jigsaw is sold twice as much as the other which could indicate why
a perfect substitution from the electric router to the jigsaw is detected. However there
is some interesting signal such as the fact that there is almost no substitution from the
jigsaw to the other products and some substitution between the second electric router
to the first.

The analysis of the last store yields Table 42, 43, 44, 45. The first and second groups
are examples of the erroneous retrieval of the substitution between products due to
the difference of magnitude of mean frequencies of sales (argument already used
before). The third group includes two electric drill perforators and a jigsaw. The two
perforators can be substituted by each other and do not substitute to the electric jigsaw.
However a signal of substitution is retrieved from the jigsaw to the perforator. The last
group of the partition produced by the HAC is one including two products that are
not substitutable.

Additionally, we can see that the screw drivers and planes were always correctly
separated. It must be noted nevertheless that we chose a group of products where
there is a disproportion in the products in each category in favor of the electric drill
perforator and jigsaw as can be seen in the previous Table 30.

In conclusion, some signals retrieved do have some information about the products.
But, the difference of mean frequencies of sales could have an impact on the quality
of the groups by aggregating early in the HAC the products that have a difference
of order of magnitude of the mean frequency of sales. A further improvement of
the algorithm could address this issue and should try to produce different groups
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including this information of heterogeneity. We note that respectively the presence of
jigsaw and of electric router represents a substantial proportion of the products in the
dataset yielding groups that could be produced randomly.

Table 35: Store 1 group 1

µk 13 15

0.04 0.00 1.00

0.64 0.00 1.00

Interpretation: Scie sauteuse 20V WORX , WX543.9 (Sans batterie ni chargeur)
Scie sauteuse filaire DEXTER Dp5 500.0 W

Table 36: Store 1 group 2

µk 2 12

0.48 0.81 0.19

0.59 1.00 0.00

Interpretation: Scie sauteuse filaire BOSCH Pst 650 500 W
Scie sauteuse filaire 400 W

Table 37: Store 1 group 3

µk 16 19

0.21 0.00 1.00

1.20 0.11 0.89

Interpretation: Scie sauteuse filaire DEXTER Dp5 750js3-100.5 750.0 W
Perforateur DEXTER Dp5, 800 W

Table 38: Store 2 group 1

µk 14 18

0.07 0.00 1.00

0.39 0.00 1.00

Interpretation: Marteau perforateur burineur filaire SDS plus RYOBI RSDS680KA2, 680 W
Perforateur sds plus DEXTER 1500rh2-50.5, 1500 W
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Table 39: Store 2 group 2

µk 4 19

0.03 0.00 1.00

0.18 0.03 0.97

Interpretation: Scie sauteuse filaire MAKITA Jv0600j 650 W
Perforateur DEXTER Dp5, 800 W

Table 40: Store 2 group 3

µk 15 16

0.25 0.20 0.8

0.16 0.15 0.85

Interpretation: Réf 75348084 Scie sauteuse filaire DEXTER Dp5 500.0 W
Scie sauteuse filaire DEXTER Dp5 750js3-100.5 750.0 W

Table 41: Store 2 group 4

µk 2 3 10

0.29 0.91 0.06 0.03

0.15 1.00 0.00 0.00

0.10 0.06 0.94 0.00

Interpretation: Scie sauteuse filaire BOSCH Pst 650 500 W
Défonceuse électrique BOSCH Pof 1400 ace + coffret 6 fraises, 1400 W

Défonceuse électrique DEXTER POWER Dp4, 1300.0 W

Table 42: Store 3 group 1

µk 2 13

0.05 0.00 1.00

0.19 0.00 1.00

Interpretation: Réf 75348084 Rabot électrique filaire RYOBI Epn 7582 nhg, 750 W
Scie sauteuse filaire 400 W

Table 43: Store 3 group 2

µk 1 16

0.02 0.00 1.00

0.23 0.00 1.00

Interpretation: Réf 75348084 Perforateur sds plus AEG Kh28 super xek, 1010 W
Scie sauteuse filaire DEXTER Dp5 750js3-100.5 750.0 W
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Table 44: Store 3 group 3

µk 8 18 19

0.11 0.00 0.24 0.76

0.45 0.0 0.64 0.36

0.15 0.04 0.11 0.85

Interpretation: Scie sauteuse filaire BOSCH Pst9500pel 620.0 W
Perforateur sds plus DEXTER 1500rh2-50.5, 1500 W

Perforateur DEXTER Dp5, 800 W

Table 45: Store 3 group 4

µk 4 11

0.20 0.83 0.17

0.11 0.90 0.10

Interpretation: Défonceuse électrique BOSCH Pof 1400 ace + coffret 6 fraises, 1400 W
Scie sauteuse filaire BOSCH Pst9500pel 620.0 W

5.3.2.5 Application to Dataset 4

Using the heuristic of the method of Massart, we select the best partition based on the
change of slope from the observed-data log-likelihood.

The three groups show substitution between non substitutable products. In Fig-
ure 46, a drill perforator and a router which are note substitutable are aggregated.
Figure 47 shows a group composed of a jigsaw and an electric screw driver. Figure 48

groups an electric jigsaw and a drill perforator. We note however that there is a fac-
tor of two between the mean frequencies of sales of the two products in the last two
groups. This observation has already been drawn for Dataset 3. This dataset being
based on the aggregation of the time series over multiple stores, the difference of
mean frequencies of sales between store introduces some bias to the model. Another
cause of bias would be the imputation of zeros in the data over stores that do not carry
one of the products in its assortment. The increase of data that the aggregation of the
time series provides did not improve the quality of the results, the experience on the
Dataset 3 was more informative.

Table 46: Dataset 4 1rst group of substitution

µk 6 11

0.22 1.00 0.00

0.20 1.00 0.00

Interpretation: 6 Défonceuse électrique BOSCH Pof 1400 ace + coffret 6 fraises, 1400 W
11 Perforateur sds plus BOSCH Pbh 2500 sre, 600 W
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Table 47: Dataset 4 2nd group of substitution

µk 7 31

0.07 0.00 1.00

0.17 0.01 0.99

Interpretation: 7 Scie sauteuse filaire MAKITA Jv0600j 650 W
31 Tournevis sans fil DEXTER 3.6 V 2.0 Ah

Table 48: Dataset 4 3rd group of substitution

µk 18 26

0.17 0.67 0.33

0.40 0.37 0.63

Interpretation: 18 Scie sauteuse filaire 400 W
26 Perforateur sds plus DEXTER 1500rh2-50.5, 1500 W
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6
C O N C L U S I O N

In this thesis, we provided a substitution model with a necessary and sufficient con-
dition for the identifiability of the parameters which was not found in the literature’s
models. We proposed an EM algorithm that enables the estimation of products in an
acceptable run time for a small number of products. The numerical results on realis-
tic simulated data showed the good properties of our algorithm and the results for
Adeo’s datasets were coherent and interpretable. For a larger number of products,
the parameters may not be identifiable and the time of computation of the algorithm
was untractable. We proposed a sparse model of substitution that accounts for the
numerous zero probability of sales. This additional layer enabled the proposition of
embedded models described by partitions of products obtained by a constrained ag-
glomerative clustering that accounts for the identifiability within the groups. The best
partition is then selected based on a heuristic of the slope method of Massart. The
numerical applications on simulated data showed that the constrained HAC and the
selection model perform well. On real data, the small dataset clustered the products
in the right way. However on large datasets the results were mitigated in the sense
that some groups of products and substitution probabilities were interpretable but
some substitution were falsely detected. The experiments showed that the data are
sparse and this either leads to a high variance of the estimators on single stores or the
aggregated data were not coherent with the assumption of homogeneity of the sales
process which led to a bias in the model and some poor results. We also point out the
effect of the difference of order of magnitude of the mean frequencies of sales within a
group both on the quality of the estimators and on the groups retrieved by the model
selection.

As a research perspective, a new model could account for the heterogeneity of the
mean frequencies of sales within groups in the objective to reduce the variance of the
estimators. Another avenue would be to propose a model that accounts for the non-
homogeneous Poisson process underlying the demand and the sales such as some
models in the literature and to propose a condition of identifiability of the parameters.
We also point out that Adeo uses an heuristic concerning the demand that meets an
out of stock which is that 1

3 is backlogged, 1
3 is substituted and 1

3 is lost hence it would
be natural to propose a model that accounts for the backlog.
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Part II

A P P E N D I X
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A
C O M P L E M E N T S R E L AT E D T O C H A P T E R 2

a.1 mathematical details related to the newsvendor model

Proof 1 (of Proposition 1) We have

min(Qk, D̃k) = D̃k + min(Qk − D̃k, 0) = D̃k −max(D̃k −Qk, 0) = D̃k − (D̃k −Qk)
+.

We can rewrite the profit as

ρk({Dtk}t∈[0,n], {Vtk}t∈[0,n];θ,Qk) = ckp(D̃k − (D̃k −Qk)
+) − (ckh − cks)(Qk − D̃k)

+

− k(D̃k −Qk)
+ − c(Qk − D̃k) − ckcD̃k

= (ckp − ckc)D̃k − (ckh − cks + ckc)(Qk − D̃k)
+

− (k+ ckp − ckc)(D̃k −Qk)
+.

Here the cost of one unit shortage is the lost margin plus the additional cost of not fulfilling
the order (c−k = cku + ckp − ckc). The unit cost for an excess of one unit (overage cost) here
is c+k = h+ c− s, which is the value of the stock and the holding cost. We obtain then the
following formula for the profit:

ρk(D̃k;θ,Qk) = (ckp − c)D̃k − c+k (Qk − D̃k)
+ − c−k (D̃k −Qk)

+.

We get also the expected profit:

E[ρkD̃k;θ,Qk)] = (ckp − c)µ− c+k E((Qk − D̃k)
+) − c−k E((D̃k −Qk)

+),

where µ is the mean of the demand. Optimizing this function is equivalent to optimize the cost
c+k E((Qk − D̃k)

+) + c−k E((D̃k −Qk)
+).

Proof 2 (of Proposition 2) In the case of continuous D̃k, an optimum of this function inQ∗
k

verifies ∂E[ρk({Dtk}t∈[0,n],{Vtk}t∈[0,n];θk,Q∗
k)]

∂Qk
= 0. We have

∂E((Qk − D̃k)
+)

∂Qk
=

∂

∂Qk

∫Qk

0

(Qk − x)fD̃k
(x)dx

= FD̃k
(Qk) +QkfD̃k

(Qk) −QkfD̃k
(Qk) = FD̃k

(Qk).

We also have

∂E((D̃k −Qk)
+)

∂Qk
=

∂

∂Qk

∫+∞
0

(x−Qk)fD̃k
(x)dx

= (QkfD̃k
(Qk) − (1− FD̃k

(Qk)) −Qk(fD̃k
(Qk)) = FD̃k

(Qk) − 1.

We then obtain

c0FD̃k
(Qk) + cu(FD̃k

(Qk) − 1) = 0

⇔ FD̃k
(Qk) =

cu

cu + c0
.
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a.2 proofs related to the replenishment of slow movers in section 2 .2 .3

Lemma 5 Let X ∼ N(µ,σ2), and f, F be respectively the probability mass function and the
cumulative distribution function then E((X−Q)+) = σ2f(Q) + (µ−Q)(1− F(Q)).

Proof 2 (of Lemma 5) We have

E((X−Q)+) =

∫+∞
Q

(x−Q)fN(0,1)(x)dx,

which is equal to

=

∫∞
x=Q

x · f(x)dx −Q

∫∞
x=Q

f(x)dx

= Int1−Q[1− F(Q)].

The following proof can be found in Vandeput, 2020. In order to solve Int1, we will use the
definition of f(x) for a normal distribution:

f(x) =
1√
2nσ2

e
− x−µ2

2σ2 .

So that
Int1 =

∫∞
x=Q

xf(x)dx

=

∫∞
Q

x√
2nσ2

exp
(
(x− µ)2

2σ2

)
dx

=
1√
2nσ2

∫∞
Q

x exp

((
x− µ)2

2σ2

)
dx.

We will integrate this by defining

u =
x− µ

σ
; du =

1

σ
dx⇐⇒ d = uσ+ µ; dx = σdu.

So that, ∫∞
x=Q

x · exp
(
−
(x− µ)2

2σ2

)
dx =

∫∞
u=Q−µ

σ

σ(uσ+ µ) · exp
(
−(uσ)2

2σ2

)
du

= σ

∫∞
u=Q−µ

σ

(uσ+ µ) · exp
(
−u2

2

)
du

= σ2
∫∞
u=Q−µ

σ

u · exp
(
−u2

2

)
du + µσ

∫∞
u=Q−µ

σ

exp
(
−u2

2

)
du

= σ2 · Int 21 + µ · Int 22.

Int 21,

Int 21 =

∫∞
u=Q−µ

σ

u · exp
(
−u2

2

)
du.

We integrate by defining v as

v =
−u2

2
;dv = −udu⇔ u =

√
−2v.
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The limits of the integral will change as

u = ∞⇒ v = −∞ and u =
Q− µ

σ
⇒ v = −

(
Q− µ√
2σ

)2

.

We transform our integral in∫−∞
v=−

(
Q−µ√

2
σ
)2 u · exp

(
−u2

2

)
du = −

∫−∞
v=−

(
Q−µ√

2σ

)2 evdv

= −

(
e−∞ − e

−
(
Q−µ√

2σ

)2)

= e
−
(
Q−µ√

2

)2
.

According to the definition of the normal density function (see Eq. B.6), we can transform
into

exp

(
−

(
Q− µ√
2σ

)2
)

=

√
2πσ2√
2πσ2

· exp
(
−
(Q− µ)2

2σ2

)
=
√
2πσ2 · f(Q).

We finally solve Int 21:
Int 21 =

√
2πσ2 · f(Q).

We now solve Int 22,

Int22 = σ

∫∞
u=Q−µ

σ

exp
(
−u2

2

)
du.

We can revert to x instead of u and we obtain

σ

∫∞
x=Q

1

σ
· exp

(
−(x− µ)2

σ2

)
dx =

∫∞
x=Q

· exp
(
−(x− µ)2

σ2

)
dx =

√
2πσ2(1− F(Q)).

So that,
Int 22 =

√
2πσ2(1− F(Q)).

Int2 =

∫∞
x=Q

x · f(x)dx

=
1√
2πσ2

∫∞
x=Q

x · exp
(
−
(x− µ)2

2σ2

)
dx

=
1√
2πσ2

(
σ2 · Int 21 + µ · Int 22

)
=

1√
2πσ2

(
σ2 ·
√
2πσ2 · f(Q) + µ ·

√
2πσ2(1− F(Q))

)
= σ2f(Q) + µ(1− F(Q)).

We can then solve our initial loss function:

E[(x−Q)+] =

∫∞
x=Q

(x−Q)f(x)dx

=

∫∞
x=Q

x · f(x) −Q
∫∞
x=Q

f(x)dx

= Int1−Q · Int2

= σ2f(Q) + µ(1− F(Q)) −Q(1− F(Q))

= σ2f(Q) + (µ−Q)(1− F(Q)).
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Proof 3 (of Lemma 2) We have thatQ(K) = F
−1
(K)(α) and F(K) is the cumulative distribution

function of N(Kµ,Kσ2). Hence Q(K) = Kµ+ zα
√
Kσ with zα = F−1

N(0,1)(α). We then have

that the gap of total stock can be written as ∆Q(K, f) = K(µ + zασ) − (Kµ + zασ
√
K) =

zασK(1−K
− 1

2 ).
The formula of the profit is

Π(K)(Q(K), f) = (r− c)E(D(K)) − cuE((D(K) −Q(K))
+) − coE((Q(K) −D(K))

+).

(44)

Since E((Q(K) −DK)
+) = E(Q(K) −D(K)) + E((D(K) −QK)

+) we have

Π(K)(Q(K), f) = (r− c)E(D(K)) − (cu + co)E((D(K) −Q(K))
+) − coE(Q(K) −D(K)).

According to Lemma 5, we have

Π(K)(Q(K), f) = (r− c)Kµ− (cu + co)[Kσ
2f(K)(Q(K)) + (Kµ−Q(K))(1− F(K)(Q(K)))]

− co(zα
√
Kσ)

= (r− c)Kµ− (cu + co)[Kσ
2f(K)(Q(K)) − zα

√
Kσ)(

co

cu + co
)] − co(zα

√
Kσ)

= (r− c)Kµ− (cu + co)Kσ
2f(K)(Q(K)). (45)

Since

f(K)(Q(K)) =
1√
2πKσ

exp
(
−
1

2

(Q(k) −Kµ√
Kσ

)2) (46)

=
1√
2πKσ

exp
(
−
(zα)

2

2

)
(47)

=
1√
Kσ
fN(0,1)(zα).

The profit is then

Π(K)(Q(K), f) = (r− c)Kµ− (cu + co)
√
KσfN(0,1)(zα). (48)

Hence we obtain∆Π(K, f) by taking the difference betweenΠ(K)(Q(K), f) and KΠ(1)(Q(1), f).

a.3 additional content related to the poisson case

Lemma 6 Let D(K) ∼ P(Kλ), and Q = inf{Q | P(D(K) ⩽ Q) ⩾ α}. Then β(α,K) =

P(D(K) ⩽ Q(K)) verifies β(α,K) K−→ α.

Proof 4 (of Lemma 6) We have that by definition of Q∗
(K) that 0 ⩾ β − α. We also have

that P(D(K) ⩽ Q(K) − 1) < α so we have β − α < P(D(K) ⩽ Q(K)) − P(D(K) ⩽
Q(K) − 1) which is β− α < P(D(K) = Q(K)). At the limit we have P(D(K) = Q(K)) ≈
fN(λK,λK)(Q(K)) which is decreasing to 0.
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Proof 5 (of Lemma 3) Proof of the bounds We have that E[(Q(K)−D(K))
+) = E[Q(K)−

D(K)] + E[(D(K) −Q(K))
+] which yields

Π(K)(Q(K),P) = (r− c)Kλ− (cu + co)E[D(K) − (Q(K))
+] − coE[Q(K) −D(K)].

We have that E[(D(K) −Q(K))
+] =

∑∞
d=Q(K)+1 dP(D(K) = d) −Q(K)(1 − P(D(K) ⩽

Q(K)) and

∞∑
d=Q(K)+1

dP(D(K) = d) =

∞∑
d=Q(K)+1

d
(Kλ)d exp(−Kλ)

d!
= Kλ(1− P(D(K) ⩽ Q(K) − 1)).

Then we have

Π(K)(Q(K),P) = (r− c)Kλ− (cu + co)
[
Kλ(1− P(D(K) ⩽ Q(K) − 1) −Q(K)(1− P(D(K) ⩽ Q(K))

]
− coE[Q(K) −D(K)].

By rearranging the terms we get

= (r− c)Kλ− (cu + co)
[
Kλ(

cu

cu + co
− P(D(K) ⩽ Q(K) − 1) +Q(K)(P(D(K) ⩽ Q(K)) −

cu

cu + co
)
]
.

Since P(D(K) ⩽ Q(K)) ⩾
cu

cu+co
we have the upper bound

(r− c)Kλ− (cu + co)Kλ(P(D(K) ⩽ Q(K)) − P(D(K) ⩽ Q(K) − 1))

= (r− c)Kλ− (cu + co)KλP(D(K) = Q(K)). (49)

In order to retrieve the strict lower bound we use the inequality P(D(K) ⩽ Q(K) − 1) <
cu

cu+co
. We get

(r− c)Kλ− (cu + co)Q(K)(P(D(K) ⩽ Q(K)) − P(D(K) ⩽ Q(K) − 1))
]

= (r− c)Kλ− (cu + co)Q(K)P(D(K) = Q(K)). (50)

Proof of the asymptotic behavior of the bounds Now we compute the asymptotic com-
plexity of the last term of the upper and lower bound. In order to do so we have to compute
the complexity of P(D(K) = Q(K)). We have that this quantity for large values of K can be

approximated by 1√
2πλK

exp
(
− 1

2

(Q(K)−λK√
λK

)2). The quantile of the Poisson law can be ap-
proximated by the Cornish Fisher expansion given the ratio associated to Q(K). This ratio is
here denoted by β(α,K) = P(D(K) ⩽ Q(K)). We have that

Q(K) = λK+ F−1
N(0,1)(β(α,K))

√
λK+O(1).

We then have

P(D(K) = Q(K)) ≈
1√
2πλK

exp
(
−
1

2

(
F−1
N(0,1)(β(α,K)

)2). (51)

According to Lemma 6 we have the convergence of β(α,K) K−→ α so using the continuity of
F−1
N(0,1) we get
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P(D(K) = Q(K)) ≈
1√
2πλK

exp
(
−
1

2

(
F−1
N(0,1)(α)

)2). (52)

The upper bound verifies the stated result in the lemma

−(cu + co)(Kλ)P(D(K) = Q(K)) ≈ −(cu + co)(λK)
1
2 fN(0,1)(zα)

where zα = F−1
N(0,1)(α).

The lower bound given the expression 51 is

−(cu + co)Q(K)P(D(K) = Q(K)) ≈ −(cu + co)(λK)
1
2
[
1+ F−1

N(0,1)(β(α,K))(λK)−
1
2

+O((λK)−1)
]
fN(0,1)(zα)

≈ −(cu + co)
[
(λK)

1
2 fN(0,1)(zα)

+ F−1
N(0,1)(β(α,K))fN(0,1)(zα) +O((λK)

− 1
2 )
]
.

Proof of the asymptotic behavior of the difference of the bounds
We have that the difference between the two bounds are

−(cu + co)λKP(D(K) = Q(K)) + (cu + co)Q(K)P(D(K) = Q(K))

= (cu + co)[Q(K) − λK]P(D(K) = Q(K))

Using Formula 51, the quantity [Q(K) − λK] = F−1
N(0,1)(β(α,K))(λK)

1
2 +O(1). We then

get using the normal approximation

= (cu + co)[F
−1
N(0,1)(β(α,K))(λK)

1
2 +O(1)]

1√
λK
fN(0,1)(zα).

Due to the fact that β(α,K) K−→ α and the continuity of F−1
N(0,1) , we get the final result:

= (cu + co)[zα]fN(0,1)(zα) +O(
1√
λK

). (53)

This concludes the proof.
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b.1 model 1 properties

Proof 6 ( of Proposition 6) Let two sets of parameters θ and θ̃ satisfy

∀yn ∈Np, f(yn | xn;θ) = f(yn | xn; θ̃).

1. Since xnj > 0 for ωj = 1K we have that λk(ωj;θ) = λk(ωj; θ̃). Assumptions 5
implies that µ is identifiable since the equation translates to µkωjk = µ̃kωjk.

From the second condition, we chose ℓ ∈ [K] and then retrieve j̄ ∈ [J] such that ∀h ∈
[K],h ̸= ℓ,ωj̄h = 1 and ωj̄ℓ = 0. For any k ∈ [K] with k ̸= ℓ

µk+
∑
h ̸=k

µh(1−ωj̄h)ωj̄kβhk(1+ω
⊤
j̄
βh)

−1 = µ̃k+
∑
h ̸=k

µ̃h(1−ωj̄h)ωj̄kβ̃hk(1+ω
⊤
j̄
β̃h)

−1

which becomes

ωj̄kβℓk(1+ω
⊤
j̄
βℓ)

−1 = ωj̄kβ̃ℓk(1+ω
⊤
j̄
β̃ℓ)

−1. (54)

This equality is verified for all k hence summing over the k yields the equality of (1+
ω⊤

j̄
βℓ)

−1 = (1+ω⊤
j̄
β̃ℓ)

−1. Therefore

ωj̄kβℓk(1+ω
⊤
j̄
βℓ)

−1 = ωj̄kβ̃ℓk(1+ω
⊤
j̄
βℓ)

−1

which implies βℓk = β̃ℓk.

2. The proof of the identifiability is recursive. The objective is to show the property at h that
βhh, . . . ,βhK are identifiable. For h ∈ [K], let jh ∈ [J] be a reference to an availability
configuration that verifies ωjhk = 0 for k < h and ωjhk = 1 for k ⩾ h ∈ [K].

According to the previous proof, the observation of ωj1 implies the identifiability of
µ, the observation of ωj2 that of β1. By recursion, we suppose that the property is
verified for h− 1. We choose the observation ωjh+1

to demonstrate that βhh, . . . βhK

are identifiable. In the following, we drop the subscript h+ 1 from j for ease of reading.
Suppose we have βhh = β̃hh = 0. For k > h and from the previous proof, we have that

λk(ωj;θ) = λk(ωj; θ̃)

⇔µk +
∑
ℓ ̸=k

µℓ(1−ωjℓ)ωjkβℓk(1+ω
⊤
j βℓ)

−1

= µ̃k +
∑
ℓ ̸=k

µ̃ℓ(1−ωjℓ)ωjkβ̃ℓk(1+ω
⊤
j β̃ℓ)

−1.

Since k > h, we have that ωjk = 1 and for ℓ > h we have that (1−ωjℓ) = 0. Hence
we have

∑
ℓ⩽h

µℓ(1−ωjℓ)ωjkβℓk(1+ω
⊤
j βℓ)

−1 =
∑
ℓ⩽k

µ̃ℓ(1−ωjℓ)ωjkβ̃ℓk(1+ω
⊤
j β̃ℓ)

−1.

105
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The identifiability of the parameters µ and βℓ for ℓ < h implies that ∀k > h

ωjkβhk(1+ω⊤
j βh)

−1 = ωjkβ̃hk(1+ω⊤
j β̃h)

−1. (55)

Since we sum over k > h, we obtain∑
k>h

ωjkβhk

(1+ω⊤
j βh)

=
∑
k>h

ωjkβ̃hk

(1+ω⊤
j β̃h)

.

And since
∑

k>hωjkβhk = ω⊤
j βh and βhk ⩾ 0 we either have identifiability of the

parameters through βhk = 0,∀k > h or

1

(1+ (ω⊤
j βh)

−1)
=

1

(1+ (ω⊤
j β̃h)

−1)

leading to (ω⊤
j βh) = (ω⊤

j β̃h).

Since k ⩾ h we have that ωjk = 1 and βhh = 0, equation (55) yields ∀k ⩾ h,
βhk = β̃hk.

b.2 model 2 properties

Proof 7 ( of Proposition 7) Let θ ∈ Θ and θ̃ ∈ Θ that satisfy

∀yn ∈Np, f(yn | xn;θ) = f(yn | xn; θ̃).

Define the following reparameterization of the intensity functions

λk(ωj;αk) = ωjk

αkk +
∑
ℓ ̸=k

(1−ωjℓ)αkℓ

 ,

where αkk = µk, αkℓ = µℓπℓk and αk = (αk1, . . . ,αkK)
⊤. Defining α = (α⊤

1 , . . . ,α⊤
K)

⊤

and α̃ = (α̃⊤
1 , . . . , α̃⊤

K)
⊤ the reparameterization of θ and θ̃ respectively, we have that

∀yn ∈Np, f(yn | xn;θ) = f(yn | xn; θ̃)

⇐⇒ ∀k ∈ {1, . . . ,K}, ∀j ∈ Jn, λℓ(ωj;αk) = λℓ(ωj; α̃k).

Hence, α and α̃ satisfy

∀k ∈ {1, . . . ,K}, ∀j ∈ Jn, λk(ωj;αk) = λk(ωj; α̃k).

Considering only the subsets of index j that defines matrix Sk, α and α̃ satisfy

∀k ∈ {1, . . . ,K}, Sk(αk − α̃k) = 0K. (56)

Let A be the matrix of size K2 ×K2 composed of K×K matrices Akℓ with

A =



A11 . . . A1K

. . .
... Akℓ

...
. . .

AK1 . . . AKK


,
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where Akℓ is a K× K matrix composed of zeros if k ̸= ℓ and Akk = Sk. By Assumptions 8,
all the matrices Sk are invertible and so is A. Noting that (56) implies

A(α− α̃) = 0K2 ,

and the invertibility of A implies that α = α̃ and so the identifiability of the model parameters
holds.

Proof 8 ( of Lemma 4) First we prove a formula for Vnkℓ

nkℓ
, then for Wnkℓ

nk−nkℓ
and, finally, we

prove that the difference verifies the formula of the lemma.

Let J1(k, ℓ) = {j : ωjk = 1,ωjℓ = 1} be a set the set of configurations where product ℓ,k
are both available. Ynjk is the number of realisations of a Poisson point process of intensity
Xnjλk(ωj,θ) on the temporal horizon Xnj. Hence the theorem central limit (TCL) for the
homogeneous Poisson point process yields

Ynjk −Xnjλk(ωj;θ) −→
d

N(0, (Xnjλk(ωj;θ)))

where N(µ,σ
2) is the normal law with mean µ and variance σ2.

Since the Ynjk are independent, summing over the J1(k, ℓ) and dividing by nkℓ yields

Vnkℓ

nkℓ
−

∑
j∈J1(k,ℓ)

Xnj

nkℓ
λk(ωj;θ) −→

d
N

(
0,

∑
j∈J1(k,ℓ)

Xnj

n2
kℓ

λk(ωj;θ))
)

. (57)

According to the definition of λk(ωj,θ) we have that∑
j∈J1(k,ℓ)

Xnj

nkℓ
λk(ωj;θ) =

∑
j∈J1(k,ℓ)

[
(µkωjk + µℓπℓk(1−ωjℓ)

+
∑

h ̸=k,ℓ

µh(1−ωjh)ωjkπhk

]
Xnj

nkℓ
.

Moreover, since 1−ωjℓ = 0 for j ∈ J1(k, ℓ), we have that

= µk
∑

j∈J1(k,ℓ)

Xnj

nkℓ
+

∑
h ̸=k,ℓ

µhπhk

∑
j∈J1(k,ℓ)

(1−ωjh)ωjk
Xnj

nkℓ
.

The definition of Xnj implies that

= µk +
∑

h ̸=k,ℓ

µhπhk

∑
j∈J1(k,ℓ)

(1−ωjh)ωjk
Xnj

nkℓ
. (58)

According to Assumptions 9, Xnj

n = τj +O(n
−1
2 ) which implies that

Xnj

nkℓ
=
Xnj

n

n

nkℓ

= (τj +OP(n
−1
2 ))

n

nkℓ
.

The definition of J1(k, ℓ) implies that

nkℓ

n
=

∑
j∈J1(k,ℓ)

Xnj

n
ωjkωjℓ =

∑
j∈J1(k,ℓ)

(τj +OP(n
− 1

2 )).
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Using the definition of τj in Assumptions 10 and of J1(k, ℓ), we have now that

nkℓ

n
= ρkρℓ +OP(n

− 1
2 ).

Using the development at the second order of n
nkℓ

we obtain

n

nkℓ
= (ρkρℓ)

−1(1−OP(n
− 1

2 )).

Equation 58 then yields∑
j∈J1(k,ℓ)

Xnj

nkℓ
λk(ωj;θ) =µk +

∑
h ̸=k,ℓ

µhπhk

∑
j∈J1(k,ℓ)

{
(ρkρℓ)

−1(1−OP(n
− 1

2 ))

(τj +OP(n
− 1

2 ))(1−ωjh)ωjk

}
.

The definition of τj in Assumptions 10 implies that
∑

j∈J1(k,ℓ) τj(1−ωjh) = ρkρℓ(1− ρh)

therefore

= µk +
∑

h ̸=k,ℓ

µhπhk

∑
j∈J1(k,ℓ)

(ρkρℓ)
−1(1−OP(n

− 1
2 ))(τj +OP(n

−1
2 ))

= µk +
∑

h ̸=k,ℓ

µhπhk(1− ρh) +OP(n
−1
2 ).

Moreover, since
∑

j∈J1(k,ℓ)
Xnj

nkℓ
λk(ωj;θ) = OP(1) and 1

nkℓ
= OP(n

−1), we have that the
variance from Equation 57 is equal to

1

nkℓ

∑
j∈J1(k,ℓ)

Xnj

nkℓ
λk(ωj;θ) = OP(n

−1).

From Equation 57, we finally prove our first point which is

Vnkℓ

nkℓ
= µk +

∑
h ̸=k,ℓ

µhπhk(1− ρh) +OP(n
− 1

2 ). (59)

We apply the same reasoning to retrieve a similar expression for Wnkℓ

nk−nkℓ
. Let J2(k, ℓ) = {j :

ωjk = 1,ωjℓ = 0}. The TCL gives us

Wnkℓ

nk −nkℓ
−

∑
j∈J2(k,ℓ)

Xnj

nk −nkℓ
λk(ωj;θ) −→

d
N

(
0,

∑
j∈J2(k,ℓ)

Xnj

(nk −nkℓ)2
λk(ωj;θ))

)
.

(60)

We have that∑
j∈J2(k,ℓ)

Xnj

nk −nkℓ
λk(ωj;θ) =

∑
j∈J2(k,ℓ)

n

nk −nkℓ

Xnj

n
λk(ωj;θ).

The definition of λk(ωj,θ) yields

=
∑

j∈J2(k,ℓ)

[
µkωjk + µℓπℓk(1−ωjℓ) +

∑
h ̸=k,ℓ

µh(1−ωjh)ωjkπhk

]
Xnj

n

n

nk −nkℓ
.

(61)
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Since Xnj

n = τj +OP(n
− 1

2 )) we have

=
∑

j∈J2(k,ℓ)

µkωjk
Xnj

nk −nkℓ
+

∑
j∈J2(k,ℓ)

µℓπℓk(1−ωjℓ)
Xnj

nk −nkℓ

+
∑

j∈J2(k,ℓ)

[ ∑
h ̸=k,ℓ

µh(1−ωjh)ωjkπhk

]Xnj

n

n

nk −nkℓ
.

According to the definition, nk −nkℓ =
∑

j∈J2(k,ℓ) Xnj and 1−ωjℓ = 1,ωjk = 1 therefore

= µk + µℓπℓk +
∑

h ̸=k,ℓ

µhπhk

∑
j∈J2(k,ℓ)

(1−ωjh)
Xnj

n

n

nk −nkℓ
.

Using Assumption 9, we have that

= µk + µℓπℓk +
∑

h ̸=k,ℓ

µhπhk

∑
j∈J2(k,ℓ)

(1−ωjh)(τj +OP(n
− 1

2 )))
n

nk −nkℓ
(62)

and

nk −nkℓ

n
=

∑
j∈J2(k,ℓ)

Xnj

n

=
∑

j∈J2(k,ℓ)

(τj +OP(n
− 1

2 ))

= ρk(1− ρℓ) +OP(n
− 1

2 )).

Hence using a limited development we obtain

n

nk −nkℓ
= (ρk(1− ρℓ))

−1(1−OP(n
− 1

2 )).

Equation 62 becomes

= µk + µℓπℓk +
∑

h ̸=k,ℓ

µhπhk

∑
j∈J2(k,ℓ)

(1−ωjh)(τj +OP(n
− 1

2 ))(ρk(1− ρℓ))
−1(1−OP(n

− 1
2 ))

= µk + µℓπℓk +
∑

h ̸=k,ℓ

µhπhk(1− ρh) +OP(n
− 1

2 ).

Since
∑

j∈J2(k,ℓ)
Xnj

n λk(ωj;θ)) = OP(1) and n
(nk−nkℓ)2

= OP(n
−1) the variance term in

Equation 60 is OP(n
−1) which implies our second objective that:

Wnkℓ

nk −nkℓ
− µk + µℓπℓk +

∑
h ̸=k,ℓ

µhπhk(1− ρh) +OP(n
− 1

2 ) = OP(n
− 1

2 ). (63)

Taking the difference of

Wnkℓ

nk −nkℓ
−
Vnkℓ

nkℓ
= µℓπℓk +OP(n

− 1
2 ). (64)

Lemma 7 Let U and V be two independent random variables that follow Poisson distribu-
tions with parameters µ and ν respectively. Then, for any positive integer c, the conditional
expectation of U given U+ V = c is

E[U | U+ V = c] = c
µ

µ+ ν
.
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Proof 9 ( of Lemma 7) Noting that P(U = u | U + V = c) = P(U = u)P(V = c −

u)/P(U+ V = c), we have

E[U | U+ V = c] =
c!

e−µ−ν(µ+ ν)c

c∑
u=0

u
e−µ

u!
µu

e−ν

(c− u)!
νc−u.

If c = 0, then E[U | U+ V = c] = 0. Now, if c is an integer that is strictly positive, then

E[U | U+ V = c] =
c!

(µ+ ν)c
µ

c∑
u=1

1

(u− 1)!
µu−1 1

(c− 1− (u− 1))!
νc−1−(u−1)

=
c

(µ+ ν)c
µ

c−1∑
u=0

(c− 1)!
u!(c− 1− u)!

µuνc−1−u

=
c

(µ+ ν)c
µ(µ+ ν)c−1.

Lemma 8 From the optimisation problem 40, we have that :

µ
[r]
ℓ = n−1(

J∑
j=1

K∑
k=0

z
[r−1]
njkℓ ).

Proof 10 Since

λkℓ(ωj;θ) =


µℓωjℓ if k = ℓ

µℓ(1−ωjℓ)πℓkωjk if k ̸= ℓ, k ̸= 0

µℓ(1−ωjℓ)π
⊤
ℓ (1K −ωj) if k = 0,

we obtain
∂

∂µℓ
λkℓ(ωj;θ) = λkℓ(ωj;θ)/µℓ.

We notice also that µ[r]ℓ verifies
∂F̃ℓ(µ

[r]
ℓ ,π[r])

∂µℓ
= 0.

Then we have z[r−1]
n = {z

[r−1]
njkℓ }j,k,ℓ , leading to

J∑
j=1

K∑
k=0

z
[r−1]
njkℓ

1

µ
[r]
ℓ

− xnjλkℓ(ωj;θ[r])
1

µ
[r]
ℓ

= 0

which yields

µ
[r]
ℓ =

∑J
j=1

∑K
k=0 z

[r−1]
njkℓ∑J

j=1

∑K
k=0 xnjλkℓ(ωj;θ[r]) 1

µ
[r]
ℓ

=

∑J
j=1

∑K
k=0 z

[r−1]
njkℓ∑J

j=1 xnj[ωjℓ +
∑K

k=1
k̸=ℓ

(1−ωjℓ)π
[r]
ℓkωjk + (1−ωjℓ)π

[r]
ℓ

⊤
(1K −ωj)]

=

∑J
j=1

∑K
k=0 z

[r−1]
njkℓ∑J

j=1 xnj[ωjℓ + (1−ωjℓ)
∑K

k=1 π
[r−1]
ℓk ]

.

Finally, since
∑K

k=1 π
[r]
ℓk = 1 we do have the result.
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Lemma 9 H̃ℓ(µ
[r]
ℓ ,πℓ) is semi definite positive.

Proof 11 For ℓ ∈ [K], we have that

F̃ℓ(µℓ,πℓ) = −
[ J∑
j=1

K∑
k=0

z
[r]
njkℓ ln[xnjλkℓ(ωj;θ)] − xnjλkℓ(ωj;θ)

]
. (65)

From Model 37, we have that λkℓ(ωj;θ) is linear in πℓk hence its second derivative with
respect to πℓ is null. The derivation of the first term with respect to πℓh based on Model 37

yields for k ̸= 0 if (h,h ′) ̸= (k,k), ∂2 lnλkℓ(ωj,θ)
∂πℓh∂πℓh ′

= 0. We also have that ∂ lnλkℓ(ωj,θ)
∂πℓk∂πℓk

=

−
µℓ(1−ωjℓ)ωjk

π2
ℓk

for k ̸= 0 and ∀(h,h ′) ∈ [K]2,∂
2 ln(λ0ℓ(ωj,θ)))

∂πℓh∂πℓh ′
= −

(1−ωjh)(1−ωjh ′)

[
∑K

k ′′=0 πℓk ′′(1−ωjk ′′)]2
.

These equations yield the following formulas

∂2

∂2πℓℓ
(

K∑
k=1

ln(λkℓ(ωj,θ))) = −
(1−ωjℓ)

[
∑K

k=0 πℓk ′(1−ωjk ′)]2
for k ′ ̸= k;

∂2

∂2πℓk
(

K∑
k=1

ln(λkℓ(ωj,θ))) = −

(
µℓ(1−ωjℓ)ωjk

π2ℓk
+

(1−ωjk)(1−ωjℓ)

[
∑K

k ′=0 πℓk ′(1−ωjk ′)]2

)
;

∂2

∂πℓh∂πℓh ′

( K∑
k=1

ln(λkℓ(ωj,θ))
)

= −
(1−ωjh)(1−ωjh ′)

[
∑K

k ′′=0 πℓk ′′(1−ωjk ′′)]2
for any h ′ ̸= h.

Hence the second partial derivatives are given by the following formulas:

∂2F̃ℓ(µℓ,πℓ)
∂2πℓℓ

= n−1
J∑

j=1

znj0ℓ
(1−ωjℓ)

[
∑K

k=0 πℓk ′(1−ωjk ′)]2
;

∂2F̃ℓ(µℓ,πℓ)
∂2πℓk

= n−1

(
rℓk

π2ℓk
+

J∑
j=1

znj0ℓ
(1−ωjk)(1−ωjℓ)

[
∑K

k ′=0 πℓk ′(1−ωjk ′)]2

)
;

∂2F̃ℓ(µℓ,πℓ)
∂πℓk∂πℓk ′

= n−1
J∑

j=1

znj0ℓ
(1−ωjk)(1−ωjk ′)

[
∑K

k ′′=0 πℓk ′′(1−ωjk ′′)]2
;

∂2F̃ℓ(µℓ,πℓ)
∂πℓk∂πℓℓ

= n−1
J∑

j=1

znj0ℓ
(1−ωjℓ)(1−ωjk)

[
∑K

k ′=0 πℓk ′(1−ωjk ′)]2

where rℓk =
∑J

j=1

∑K
k=1 znkℓ. We conclude since znkℓ,πℓk, (1 −ωjk) are positive and

∀(k, ℓ) ∈ [K]2 the Hessian with respect to πℓ is positive.

b.3 additional numerical experiments results

Additional tables related to Section 4.5.1.2. We chose to restrict the ∆S,A
π1

< 0.005 and
∆S,A
ℓ ⩽ 10−3. The setting of parameters ϵem = 10−5 and NM ∈ {5, 10} is compati-

ble with all the S with K = 2 ( Table 49 to 63 ). Since all the Ninit ∈ {10, 25, 50} are
compatible we chose 10 for its lowest time of computation. In the case S with K = 5

we also have that this setting is compatible with certain values exceeding slightly the
threshold for Ninit = 10 while still being in the standard deviation. The chosen set
of parameters of the EM A∗ = (10−5, 5, 10) is then compatible with the settings of the
parameters.
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Table 49: Results from the numerical applications for S = (2, 180, 0.1, 0.0)

ϵem NM Ninit ∆S,A
ℓ (std) ∆S,A

π1
(std) ∆S,A

µ1
(std)

mean
execution
time [s]

mean
number

iterations

1e-05

2

10 0.000 (0.000) 0.004 (0.007) 0.000 (0.000) 3.570 86.630 (32.820)
25 0.000 (0.000) 0.003 (0.005) 0.000 (0.000) 8.584 81.300 (34.773)
50 0.000 (0.000) 0.002 (0.004) 0.000 (0.000) 17.178 82.760 (41.559)

5

10 0.000 (0.000) 0.003 (0.007) 0.000 (0.000) 4.038 76.640 (38.082)
25 0.000 (0.000) 0.003 (0.006) 0.000 (0.000) 9.651 69.120 (35.956)
50 0.000 (0.000) 0.000 (0.003) 0.000 (0.000) 19.299 65.810 (40.332)

10

10 0.000 (0.000) 0.004 (0.007) 0.000 (0.000) 4.175 78.560 (39.350)
25 0.000 (0.000) 0.003 (0.006) 0.000 (0.000) 9.991 70.190 (36.406)
50 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 19.978 67.100 (41.203)

0.001

2

10 0.007 (0.003) 0.029 (0.034) 0.001 (0.001) 1.472 32.950 (17.566)
25 0.006 (0.003) 0.029 (0.036) 0.001 (0.001) 3.528 29.200 (20.058)
50 0.005 (0.003) 0.027 (0.035) 0.001 (0.001) 7.062 26.110 (18.343)

5

10 0.005 (0.004) 0.034 (0.048) 0.001 (0.001) 1.723 26.970 (12.927)
25 0.004 (0.003) 0.031 (0.038) 0.001 (0.001) 4.062 23.050 (13.352)
50 0.004 (0.003) 0.028 (0.036) 0.001 (0.001) 8.136 22.050 (12.936)

10

10 0.005 (0.004) 0.031 (0.037) 0.001 (0.001) 1.794 27.490 (14.117)
25 0.004 (0.003) 0.031 (0.038) 0.001 (0.001) 4.239 23.410 (13.920)
50 0.004 (0.003) 0.028 (0.036) 0.001 (0.001) 8.493 22.380 (13.649)

0.1

2

10 0.181 (0.150) 0.161 (0.137) 0.010 (0.006) 0.332 5.670 (2.973)
25 0.134 (0.132) 0.121 (0.102) 0.009 (0.006) 0.793 5.140 (2.698)
50 0.106 (0.106) 0.098 (0.092) 0.008 (0.006) 1.582 4.780 (2.296)

5

10 0.143 (0.095) 0.145 (0.142) 0.009 (0.006) 0.442 6.090 (3.723)
25 0.106 (0.078) 0.103 (0.084) 0.008 (0.005) 1.026 5.410 (3.144)
50 0.087 (0.074) 0.085 (0.073) 0.007 (0.005) 2.061 5.330 (3.344)

10

10 0.144 (0.096) 0.144 (0.142) 0.009 (0.006) 0.443 6.030 (3.675)
25 0.106 (0.079) 0.102 (0.084) 0.008 (0.006) 1.047 5.370 (3.104)
50 0.087 (0.075) 0.084 (0.073) 0.007 (0.006) 2.087 5.210 (3.213)
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Table 50: Results from the numerical applications for S = (2, 180, 2.0, 0.0)

ϵem NM Ninit ∆S,A
ℓ (std) ∆S,A

π1
(std) ∆S,A

µ1
(std)

mean
execution
time [s]

mean
number

iterations

1e-05

2

10 0.000 (0.000) 0.001 (0.002) 0.001 (0.001) 8.390 225.930 (108.723)
25 -0.000 (0.000) 0.001 (0.002) 0.001 (0.001) 20.849 211.350 (118.389)
50 -0.000 (0.000) 0.001 (0.001) 0.000 (0.001) 41.553 191.820 (118.519)

5

10 0.000 (0.000) 0.001 (0.002) 0.001 (0.001) 10.019 233.520 (106.616)
25 0.000 (0.000) 0.001 (0.002) 0.000 (0.001) 24.947 224.830 (111.148)
50 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 49.702 202.840 (115.154)

10

10 0.000 (0.000) 0.001 (0.002) 0.000 (0.001) 10.352 234.730 (106.662)
25 0.000 (0.000) 0.001 (0.002) 0.000 (0.001) 25.741 222.380 (111.703)
50 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 51.306 200.540 (113.903)

0.001

2

10 0.021 (0.013) 0.020 (0.017) 0.009 (0.007) 3.231 75.850 (36.789)
25 0.018 (0.012) 0.016 (0.014) 0.008 (0.006) 8.041 61.460 (34.795)
50 0.016 (0.011) 0.012 (0.012) 0.006 (0.005) 16.001 54.720 (27.883)

5

10 0.022 (0.012) 0.020 (0.017) 0.010 (0.007) 3.971 79.560 (34.770)
25 0.019 (0.011) 0.016 (0.014) 0.008 (0.007) 9.889 61.620 (29.585)
50 0.016 (0.010) 0.012 (0.011) 0.006 (0.005) 19.691 57.930 (29.168)

10

10 0.022 (0.012) 0.020 (0.017) 0.010 (0.007) 4.122 79.770 (35.333)
25 0.019 (0.011) 0.016 (0.014) 0.008 (0.007) 10.259 61.760 (29.109)
50 0.016 (0.010) 0.012 (0.011) 0.006 (0.005) 20.431 57.710 (28.589)

0.1

2

10 0.546 (0.331) 0.118 (0.086) 0.064 (0.039) 0.778 11.620 (7.757)
25 0.400 (0.254) 0.083 (0.063) 0.054 (0.028) 1.943 8.610 (8.530)
50 0.328 (0.235) 0.074 (0.061) 0.051 (0.026) 3.859 6.990 (7.429)

5

10 0.596 (0.356) 0.125 (0.085) 0.068 (0.040) 1.088 11.620 (9.503)
25 0.436 (0.297) 0.087 (0.062) 0.057 (0.030) 2.699 7.120 (4.330)
50 0.356 (0.273) 0.077 (0.058) 0.053 (0.029) 5.379 6.010 (3.882)

10

10 0.594 (0.354) 0.125 (0.086) 0.068 (0.039) 1.151 13.260 (13.690)
25 0.435 (0.296) 0.087 (0.062) 0.057 (0.030) 2.831 7.670 (7.928)
50 0.355 (0.272) 0.077 (0.058) 0.053 (0.029) 5.647 6.560 (7.772)
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Table 51: Results from the numerical applications for S = (2, 180, 2.0, 0.5)

ϵem NM Ninit ∆S,A
ℓ (std) ∆S,A

π1
(std) ∆S,A

µ1
(std)

mean
execution
time [s]

mean
number

iterations

1e-05

2

10 0.000 (0.000) 0.002 (0.002) 0.001 (0.001) 3.985 86.690 (58.839)
25 0.000 (0.000) 0.002 (0.002) 0.001 (0.001) 9.973 77.880 (67.292)
50 -0.000 (0.000) 0.002 (0.002) 0.001 (0.001) 20.069 63.990 (65.493)

5

10 0.000 (0.000) 0.002 (0.002) 0.001 (0.001) 5.087 101.650 (67.429)
25 0.000 (0.000) 0.001 (0.002) 0.001 (0.001) 12.677 84.160 (67.725)
50 0.000 (0.000) 0.000 (0.001) 0.000 (0.000) 25.500 70.180 (66.871)

10

10 0.000 (0.000) 0.002 (0.002) 0.001 (0.001) 5.298 100.500 (67.118)
25 0.000 (0.000) 0.001 (0.002) 0.001 (0.001) 13.138 85.930 (72.234)
50 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 26.475 70.190 (67.090)

0.001

2

10 0.006 (0.006) 0.018 (0.013) 0.011 (0.006) 1.935 30.020 (18.765)
25 0.004 (0.004) 0.013 (0.010) 0.007 (0.005) 4.815 21.480 (16.904)
50 0.003 (0.002) 0.009 (0.007) 0.006 (0.004) 9.721 18.130 (6.685)

5

10 0.007 (0.005) 0.021 (0.012) 0.011 (0.006) 2.591 37.470 (21.425)
25 0.004 (0.003) 0.015 (0.010) 0.008 (0.005) 6.401 25.050 (20.832)
50 0.003 (0.002) 0.011 (0.008) 0.007 (0.005) 12.915 20.580 (14.049)

10

10 0.007 (0.005) 0.021 (0.012) 0.011 (0.006) 2.710 40.090 (24.859)
25 0.004 (0.003) 0.015 (0.011) 0.007 (0.005) 6.709 25.640 (22.200)
50 0.003 (0.002) 0.011 (0.008) 0.007 (0.005) 13.535 20.160 (9.886)

0.1

2

10 0.125 (0.108) 0.062 (0.058) 0.044 (0.034) 0.553 8.490 (2.674)
25 0.075 (0.044) 0.037 (0.034) 0.034 (0.022) 1.382 7.590 (2.926)
50 0.057 (0.031) 0.029 (0.027) 0.033 (0.020) 2.763 7.320 (3.095)

5

10 0.174 (0.146) 0.079 (0.065) 0.053 (0.042) 0.743 8.130 (2.855)
25 0.084 (0.046) 0.043 (0.035) 0.035 (0.024) 1.846 6.880 (2.662)
50 0.065 (0.034) 0.034 (0.028) 0.035 (0.021) 3.716 6.600 (2.731)

10

10 0.174 (0.146) 0.079 (0.065) 0.053 (0.042) 0.770 8.130 (2.855)
25 0.084 (0.046) 0.043 (0.035) 0.035 (0.024) 1.885 6.880 (2.662)
50 0.065 (0.034) 0.034 (0.028) 0.035 (0.021) 3.799 6.600 (2.731)
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Table 52: Results from the numerical applications for S = (2, 180, 0.1, 1.0)

ϵem NM Ninit ∆S,A
ℓ (std) ∆S,A

π1
(std) ∆S,A

µ1
(std)

mean
execution
time [s]

mean
number

iterations

1e-05

2

10 0.000 (0.000) 0.005 (0.020) 0.000 (0.000) 3.362 88.370 (22.613)
25 0.000 (0.000) 0.003 (0.007) 0.000 (0.000) 8.392 83.220 (24.760)
50 0.000 (0.000) 0.001 (0.003) 0.000 (0.000) 16.776 76.690 (25.911)

5

10 0.000 (0.000) 0.005 (0.020) 0.000 (0.000) 3.192 64.330 (32.287)
25 0.000 (0.000) 0.002 (0.006) 0.000 (0.000) 7.969 58.480 (32.234)
50 -0.000 (0.000) 0.000 (0.001) 0.000 (0.000) 15.920 50.880 (28.213)

10

10 0.000 (0.000) 0.005 (0.020) 0.000 (0.000) 3.274 64.760 (33.035)
25 0.000 (0.000) 0.001 (0.006) 0.000 (0.000) 8.181 57.040 (32.143)
50 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 16.368 49.400 (29.322)

0.001

2

10 0.007 (0.002) 0.040 (0.058) 0.001 (0.001) 1.404 33.700 (15.047)
25 0.007 (0.002) 0.033 (0.040) 0.001 (0.001) 3.499 33.390 (15.523)
50 0.006 (0.003) 0.031 (0.041) 0.001 (0.001) 7.009 30.730 (15.624)

5

10 0.004 (0.003) 0.033 (0.055) 0.001 (0.001) 1.230 19.230 (7.261)
25 0.004 (0.003) 0.027 (0.041) 0.001 (0.001) 3.063 18.170 (7.203)
50 0.003 (0.003) 0.020 (0.031) 0.001 (0.001) 6.128 17.050 (6.635)

10

10 0.004 (0.003) 0.033 (0.055) 0.001 (0.001) 1.254 19.020 (7.555)
25 0.004 (0.003) 0.027 (0.041) 0.001 (0.001) 3.127 18.070 (7.445)
50 0.003 (0.003) 0.020 (0.031) 0.001 (0.001) 6.265 16.730 (6.820)

0.1

2

10 0.219 (0.176) 0.256 (0.222) 0.008 (0.005) 0.227 4.500 (1.091)
25 0.144 (0.126) 0.161 (0.144) 0.007 (0.004) 0.566 4.220 (0.701)
50 0.106 (0.100) 0.139 (0.139) 0.006 (0.004) 1.139 4.100 (0.557)

5

10 0.110 (0.074) 0.169 (0.182) 0.006 (0.004) 0.308 5.410 (2.103)
25 0.085 (0.060) 0.121 (0.121) 0.006 (0.004) 0.768 4.930 (1.899)
50 0.065 (0.048) 0.097 (0.100) 0.005 (0.003) 1.539 4.680 (1.618)

10

10 0.105 (0.076) 0.170 (0.183) 0.006 (0.004) 0.318 5.390 (2.049)
25 0.082 (0.061) 0.120 (0.122) 0.006 (0.004) 0.790 4.870 (1.641)
50 0.063 (0.048) 0.094 (0.101) 0.005 (0.003) 1.585 4.720 (1.537)
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Table 53: Results from the numerical applications for S = (2, 180, 2.0, 1.0)

ϵem NM Ninit ∆S,A
ℓ (std) ∆S,A

π1
(std) ∆S,A

µ1
(std)

mean
execution
time [s]

mean
number

iterations

1e-05

2

10 -0.000 (0.000) 0.000 (0.001) 0.000 (0.001) 6.585 186.610 (78.270)
25 -0.000 (0.000) 0.000 (0.001) 0.000 (0.001) 16.519 186.590 (78.345)
50 -0.000 (0.000) 0.000 (0.001) 0.000 (0.001) 32.974 180.170 (79.140)

5

10 0.000 (0.000) 0.000 (0.001) 0.000 (0.001) 7.953 193.170 (76.177)
25 0.000 (0.000) 0.000 (0.001) 0.000 (0.001) 19.856 189.360 (80.970)
50 -0.000 (0.000) 0.000 (0.000) 0.000 (0.001) 39.608 180.040 (83.740)

10

10 0.000 (0.000) 0.000 (0.001) 0.000 (0.001) 8.201 194.660 (76.979)
25 0.000 (0.000) 0.000 (0.001) 0.000 (0.001) 20.479 190.840 (81.113)
50 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 40.881 182.690 (83.894)

0.001

2

10 0.018 (0.009) 0.013 (0.012) 0.010 (0.008) 2.519 67.560 (16.283)
25 0.017 (0.009) 0.013 (0.010) 0.010 (0.008) 6.318 64.050 (18.004)
50 0.016 (0.008) 0.012 (0.010) 0.010 (0.007) 12.580 59.420 (17.285)

5

10 0.018 (0.008) 0.014 (0.012) 0.011 (0.008) 3.035 68.550 (16.889)
25 0.017 (0.008) 0.013 (0.010) 0.010 (0.008) 7.581 62.440 (20.031)
50 0.016 (0.008) 0.012 (0.010) 0.009 (0.008) 15.071 56.580 (16.828)

10

10 0.018 (0.008) 0.014 (0.012) 0.011 (0.008) 3.133 68.930 (16.411)
25 0.017 (0.008) 0.013 (0.010) 0.010 (0.008) 7.824 62.940 (19.400)
50 0.016 (0.008) 0.012 (0.010) 0.009 (0.008) 15.555 56.550 (16.630)

0.1

2

10 0.601 (0.189) 0.111 (0.070) 0.091 (0.047) 0.754 18.620 (5.919)
25 0.527 (0.186) 0.095 (0.070) 0.084 (0.050) 1.887 16.610 (5.943)
50 0.478 (0.204) 0.083 (0.073) 0.077 (0.051) 3.736 15.090 (5.870)

5

10 0.610 (0.210) 0.108 (0.072) 0.092 (0.046) 0.932 17.620 (6.397)
25 0.531 (0.218) 0.095 (0.069) 0.076 (0.045) 2.320 15.420 (6.223)
50 0.478 (0.221) 0.088 (0.067) 0.070 (0.047) 4.590 13.270 (5.451)

10

10 0.611 (0.207) 0.109 (0.072) 0.093 (0.046) 0.966 17.750 (6.674)
25 0.531 (0.217) 0.095 (0.067) 0.077 (0.045) 2.407 14.990 (5.799)
50 0.478 (0.220) 0.088 (0.067) 0.070 (0.046) 4.758 13.210 (5.529)
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Table 54: Results from the numerical applications for S = (2, 365, 0.1, 0.0)

ϵem NM Ninit ∆S,A
ℓ (std) ∆S,A

π1
(std) ∆S,A

µ1
(std)

mean
execution
time [s]

mean
number

iterations

1e-05

2

10 0.000 (0.000) 0.003 (0.006) 0.000 (0.000) 4.105 102.070 (49.427)
25 0.000 (0.000) 0.003 (0.005) 0.000 (0.000) 10.341 89.560 (45.302)
50 -0.000 (0.000) 0.002 (0.005) 0.000 (0.000) 20.714 82.810 (43.965)

5

10 0.000 (0.000) 0.003 (0.006) 0.000 (0.000) 4.761 104.660 (51.733)
25 0.000 (0.000) 0.002 (0.005) 0.000 (0.000) 12.022 88.110 (48.774)
50 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 24.032 81.500 (46.237)

10

10 0.000 (0.000) 0.003 (0.007) 0.000 (0.000) 4.973 106.930 (57.842)
25 0.000 (0.000) 0.001 (0.005) 0.000 (0.000) 12.550 90.620 (52.270)
50 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 25.068 82.520 (47.469)

0.001

2

10 0.009 (0.004) 0.031 (0.031) 0.001 (0.001) 1.567 34.250 (17.088)
25 0.007 (0.004) 0.025 (0.023) 0.001 (0.001) 3.949 30.740 (19.046)
50 0.007 (0.004) 0.024 (0.023) 0.001 (0.001) 7.915 30.010 (22.662)

5

10 0.008 (0.005) 0.033 (0.034) 0.001 (0.001) 1.879 30.260 (15.955)
25 0.007 (0.005) 0.024 (0.025) 0.001 (0.001) 4.750 26.710 (14.317)
50 0.006 (0.004) 0.022 (0.025) 0.001 (0.001) 9.520 23.740 (12.093)

10

10 0.008 (0.005) 0.033 (0.034) 0.001 (0.001) 1.967 30.900 (17.389)
25 0.007 (0.005) 0.024 (0.024) 0.001 (0.001) 5.001 26.840 (14.514)
50 0.006 (0.004) 0.022 (0.025) 0.001 (0.001) 10.009 24.060 (12.957)

0.1

2

10 0.205 (0.159) 0.164 (0.121) 0.007 (0.004) 0.368 6.300 (3.189)
25 0.147 (0.130) 0.116 (0.108) 0.006 (0.004) 0.924 4.910 (2.254)
50 0.112 (0.096) 0.094 (0.091) 0.005 (0.004) 1.852 4.410 (1.588)

5

10 0.176 (0.120) 0.139 (0.119) 0.006 (0.005) 0.471 6.220 (3.094)
25 0.127 (0.093) 0.108 (0.095) 0.005 (0.004) 1.181 4.880 (2.183)
50 0.100 (0.078) 0.088 (0.074) 0.005 (0.004) 2.348 4.450 (1.841)

10

10 0.175 (0.117) 0.139 (0.118) 0.006 (0.004) 0.478 6.250 (3.297)
25 0.127 (0.092) 0.108 (0.097) 0.005 (0.004) 1.203 5.110 (3.313)
50 0.100 (0.078) 0.088 (0.074) 0.005 (0.004) 2.389 4.450 (1.841)
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Table 55: Results from the numerical applications for S = (2, 365, 2.0, 0.0)

ϵem NM Ninit ∆S,A
ℓ (std) ∆S,A

π1
(std) ∆S,A

µ1
(std)

mean
execution
time [s]

mean
number

iterations

1e-05

2

10 0.000 (0.000) 0.001 (0.002) 0.001 (0.001) 11.290 321.510 (138.344)
25 0.000 (0.000) 0.001 (0.001) 0.000 (0.001) 28.149 294.560 (146.399)
50 0.000 (0.000) 0.000 (0.001) 0.000 (0.001) 56.292 275.290 (156.234)

5

10 0.000 (0.000) 0.001 (0.002) 0.001 (0.001) 13.277 330.550 (138.467)
25 0.000 (0.000) 0.000 (0.001) 0.000 (0.001) 33.120 296.730 (157.933)
50 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 66.269 281.320 (160.321)

10

10 0.000 (0.000) 0.001 (0.002) 0.000 (0.001) 13.663 333.300 (140.156)
25 0.000 (0.000) 0.000 (0.001) 0.000 (0.001) 34.091 299.840 (157.458)
50 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 68.255 279.650 (158.077)

0.001

2

10 0.032 (0.017) 0.021 (0.013) 0.010 (0.006) 4.125 100.620 (42.170)
25 0.028 (0.017) 0.016 (0.012) 0.008 (0.006) 10.278 77.740 (38.349)
50 0.024 (0.016) 0.014 (0.011) 0.006 (0.005) 20.583 66.660 (29.670)

5

10 0.032 (0.017) 0.020 (0.014) 0.010 (0.006) 4.878 98.390 (43.740)
25 0.028 (0.017) 0.016 (0.012) 0.007 (0.006) 12.163 80.570 (39.744)
50 0.024 (0.016) 0.014 (0.011) 0.006 (0.005) 24.374 70.270 (30.610)

10

10 0.032 (0.017) 0.020 (0.014) 0.010 (0.006) 5.047 99.440 (44.334)
25 0.028 (0.017) 0.017 (0.012) 0.007 (0.006) 12.577 81.610 (40.906)
50 0.024 (0.016) 0.014 (0.011) 0.006 (0.005) 25.215 70.160 (30.312)

0.1

2

10 0.785 (0.471) 0.128 (0.071) 0.065 (0.035) 0.961 12.750 (9.712)
25 0.559 (0.400) 0.090 (0.067) 0.046 (0.029) 2.404 8.410 (5.724)
50 0.421 (0.296) 0.071 (0.056) 0.040 (0.025) 4.823 7.130 (5.392)

5

10 0.810 (0.467) 0.127 (0.068) 0.064 (0.034) 1.279 14.190 (13.456)
25 0.580 (0.407) 0.092 (0.069) 0.048 (0.028) 3.201 8.880 (7.125)
50 0.461 (0.350) 0.077 (0.061) 0.042 (0.026) 6.419 6.850 (5.070)

10

10 0.810 (0.467) 0.128 (0.069) 0.063 (0.034) 1.336 15.430 (15.952)
25 0.580 (0.407) 0.092 (0.069) 0.048 (0.028) 3.346 8.760 (6.524)
50 0.461 (0.350) 0.077 (0.061) 0.042 (0.026) 6.714 6.850 (5.070)
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Table 56: Results from the numerical applications for S = (2, 365, 0.1, 0.5)

ϵem NM Ninit ∆S,A
ℓ (std) ∆S,A

π1
(std) ∆S,A

µ1
(std)

mean
execution
time [s]

mean
number

iterations

1e-05

2

10 0.000 (0.000) 0.004 (0.007) 0.000 (0.000) 3.618 87.820 (42.990)
25 0.000 (0.000) 0.003 (0.005) 0.000 (0.000) 9.115 84.740 (48.836)
50 -0.000 (0.000) 0.002 (0.003) 0.000 (0.000) 18.148 81.120 (51.864)

5

10 0.000 (0.000) 0.004 (0.008) 0.000 (0.000) 4.255 85.770 (43.942)
25 0.000 (0.000) 0.002 (0.006) 0.000 (0.000) 10.718 75.660 (42.986)
50 0.000 (0.000) 0.000 (0.001) 0.000 (0.000) 21.354 71.060 (46.918)

10

10 0.000 (0.000) 0.004 (0.008) 0.000 (0.000) 4.409 85.610 (44.183)
25 0.000 (0.000) 0.002 (0.005) 0.000 (0.000) 11.124 77.240 (43.233)
50 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 22.145 72.340 (47.793)

0.001

2

10 0.007 (0.004) 0.030 (0.034) 0.001 (0.001) 1.361 29.400 (15.375)
25 0.006 (0.004) 0.026 (0.026) 0.001 (0.001) 3.428 26.480 (15.439)
50 0.005 (0.004) 0.023 (0.024) 0.001 (0.001) 6.810 25.750 (16.826)

5

10 0.007 (0.004) 0.036 (0.036) 0.001 (0.001) 1.637 27.970 (14.057)
25 0.006 (0.004) 0.030 (0.029) 0.001 (0.001) 4.113 23.420 (12.557)
50 0.005 (0.004) 0.026 (0.027) 0.001 (0.001) 8.193 21.570 (11.938)

10

10 0.007 (0.004) 0.036 (0.036) 0.001 (0.001) 1.694 28.240 (14.601)
25 0.006 (0.004) 0.030 (0.030) 0.001 (0.001) 4.280 24.530 (14.988)
50 0.005 (0.004) 0.026 (0.027) 0.001 (0.001) 8.525 22.360 (13.760)

0.1

2

10 0.180 (0.162) 0.165 (0.126) 0.007 (0.005) 0.298 5.990 (2.528)
25 0.136 (0.130) 0.140 (0.125) 0.005 (0.004) 0.741 5.330 (1.965)
50 0.099 (0.097) 0.101 (0.089) 0.005 (0.003) 1.485 4.980 (1.903)

5

10 0.150 (0.112) 0.140 (0.117) 0.006 (0.004) 0.352 6.010 (2.335)
25 0.114 (0.091) 0.113 (0.091) 0.006 (0.004) 0.869 5.420 (2.036)
50 0.085 (0.071) 0.080 (0.068) 0.005 (0.003) 1.744 5.070 (2.006)

10

10 0.150 (0.112) 0.140 (0.117) 0.006 (0.004) 0.358 6.130 (2.834)
25 0.114 (0.091) 0.113 (0.091) 0.006 (0.004) 0.889 5.420 (2.036)
50 0.085 (0.071) 0.080 (0.068) 0.005 (0.003) 1.774 5.070 (2.006)
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Table 57: Results from the numerical applications for S = (2, 365, 2.0, 0.5)

ϵem NM Ninit ∆S,A
ℓ (std) ∆S,A

π1
(std) ∆S,A

µ1
(std)

mean
execution
time [s]

mean
number

iterations

1e-05

2

10 0.000 (0.000) 0.002 (0.002) 0.001 (0.001) 3.758 85.520 (35.636)
25 0.000 (0.000) 0.002 (0.001) 0.001 (0.001) 9.391 72.940 (34.774)
50 -0.000 (0.000) 0.001 (0.001) 0.001 (0.001) 18.790 54.840 (32.864)

5

10 0.000 (0.000) 0.001 (0.002) 0.001 (0.001) 4.573 90.010 (34.107)
25 0.000 (0.000) 0.001 (0.001) 0.001 (0.001) 11.439 87.210 (34.694)
50 0.000 (0.000) 0.000 (0.001) 0.000 (0.001) 22.933 61.730 (35.012)

10

10 0.000 (0.000) 0.001 (0.002) 0.001 (0.001) 4.773 91.610 (36.013)
25 0.000 (0.000) 0.001 (0.002) 0.001 (0.001) 11.907 86.140 (36.130)
50 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 23.860 63.480 (39.475)

0.001

2

10 0.006 (0.003) 0.014 (0.006) 0.008 (0.004) 2.055 35.320 (20.036)
25 0.004 (0.002) 0.010 (0.006) 0.006 (0.004) 5.144 22.040 (11.634)
50 0.003 (0.002) 0.007 (0.006) 0.004 (0.003) 10.303 18.220 (7.001)

5

10 0.006 (0.002) 0.014 (0.006) 0.009 (0.003) 2.678 41.710 (23.682)
25 0.005 (0.002) 0.011 (0.006) 0.007 (0.004) 6.698 27.800 (19.231)
50 0.003 (0.002) 0.008 (0.005) 0.005 (0.004) 13.457 20.430 (10.224)

10

10 0.006 (0.002) 0.014 (0.006) 0.009 (0.003) 2.821 44.160 (28.196)
25 0.005 (0.002) 0.012 (0.006) 0.007 (0.004) 7.026 28.740 (20.888)
50 0.003 (0.002) 0.008 (0.005) 0.005 (0.004) 14.112 20.870 (11.834)

0.1

2

10 0.135 (0.112) 0.046 (0.036) 0.034 (0.026) 0.681 9.440 (2.879)
25 0.074 (0.036) 0.027 (0.021) 0.026 (0.016) 1.684 9.140 (2.793)
50 0.060 (0.030) 0.022 (0.017) 0.024 (0.012) 3.369 8.950 (2.882)

5

10 0.173 (0.148) 0.055 (0.044) 0.036 (0.029) 0.958 9.350 (4.112)
25 0.100 (0.068) 0.035 (0.028) 0.027 (0.018) 2.381 8.330 (2.687)
50 0.069 (0.031) 0.024 (0.017) 0.023 (0.014) 4.758 7.900 (2.528)

10

10 0.172 (0.144) 0.053 (0.040) 0.037 (0.030) 1.015 9.950 (7.407)
25 0.101 (0.068) 0.035 (0.028) 0.027 (0.018) 2.509 8.330 (2.687)
50 0.069 (0.031) 0.024 (0.017) 0.023 (0.014) 5.024 7.900 (2.528)
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Table 58: Results from the numerical applications for S = (2, 365, 0.1, 1.0)

ϵem NM Ninit ∆S,A
ℓ (std) ∆S,A

π1
(std) ∆S,A

µ1
(std)

mean
execution
time [s]

mean
number

iterations

1e-05

2

10 0.000 (0.000) 0.003 (0.005) 0.000 (0.000) 3.653 97.060 (33.509)
25 0.000 (0.000) 0.002 (0.004) 0.000 (0.000) 9.116 92.820 (35.904)
50 0.000 (0.000) 0.002 (0.004) 0.000 (0.000) 18.254 91.250 (36.466)

5

10 0.000 (0.000) 0.002 (0.004) 0.000 (0.000) 3.813 81.300 (39.000)
25 0.000 (0.000) 0.001 (0.003) 0.000 (0.000) 9.558 73.940 (37.620)
50 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 19.054 68.300 (38.191)

10

10 0.000 (0.000) 0.002 (0.004) 0.000 (0.000) 3.942 81.270 (39.030)
25 0.000 (0.000) 0.001 (0.003) 0.000 (0.000) 9.852 74.460 (38.050)
50 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 19.696 68.750 (38.186)

0.001

2

10 0.008 (0.003) 0.025 (0.032) 0.001 (0.001) 1.557 38.900 (15.401)
25 0.007 (0.003) 0.021 (0.025) 0.001 (0.001) 3.877 34.830 (16.362)
50 0.007 (0.003) 0.020 (0.023) 0.001 (0.001) 7.762 34.540 (17.059)

5

10 0.006 (0.004) 0.028 (0.036) 0.001 (0.001) 1.517 26.710 (10.416)
25 0.005 (0.004) 0.019 (0.023) 0.001 (0.001) 3.795 23.140 (8.993)
50 0.005 (0.003) 0.017 (0.021) 0.000 (0.001) 7.547 21.890 (8.964)

10

10 0.006 (0.004) 0.028 (0.036) 0.001 (0.001) 1.556 26.760 (10.134)
25 0.005 (0.004) 0.020 (0.025) 0.001 (0.001) 3.897 22.740 (9.048)
50 0.005 (0.003) 0.017 (0.021) 0.000 (0.001) 7.779 21.720 (8.849)

0.1

2

10 0.315 (0.222) 0.219 (0.166) 0.008 (0.005) 0.310 5.690 (1.875)
25 0.206 (0.181) 0.148 (0.124) 0.006 (0.004) 0.780 5.320 (1.933)
50 0.156 (0.142) 0.123 (0.112) 0.005 (0.003) 1.556 5.000 (1.400)

5

10 0.180 (0.111) 0.151 (0.127) 0.006 (0.004) 0.373 6.870 (2.618)
25 0.125 (0.093) 0.104 (0.086) 0.005 (0.003) 0.942 5.700 (1.889)
50 0.105 (0.079) 0.092 (0.083) 0.004 (0.003) 1.870 5.370 (1.858)

10

10 0.179 (0.111) 0.150 (0.128) 0.005 (0.004) 0.385 6.810 (2.587)
25 0.125 (0.092) 0.104 (0.086) 0.005 (0.003) 0.969 5.690 (1.880)
50 0.105 (0.079) 0.091 (0.083) 0.004 (0.003) 1.932 5.320 (1.827)
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Table 59: Results from the numerical applications for S = (2, 365, 2.0, 1.0)

ϵem NM Ninit ∆S,A
ℓ (std) ∆S,A

π1
(std) ∆S,A

µ1
(std)

mean
execution
time [s]

mean
number

iterations

1e-05

2

10 -0.000 (0.000) 0.001 (0.002) 0.000 (0.001) 8.451 245.580 (104.859)
25 -0.000 (0.000) 0.000 (0.002) 0.000 (0.001) 21.136 245.240 (107.465)
50 -0.000 (0.000) 0.000 (0.002) 0.000 (0.001) 42.307 238.890 (107.777)

5

10 0.000 (0.000) 0.000 (0.002) 0.000 (0.001) 10.168 254.020 (102.004)
25 0.000 (0.000) 0.000 (0.002) 0.000 (0.000) 25.422 248.710 (107.574)
50 -0.000 (0.000) 0.000 (0.001) 0.000 (0.001) 50.820 238.960 (112.500)

10

10 0.000 (0.000) 0.000 (0.002) 0.000 (0.001) 10.428 253.410 (102.412)
25 0.000 (0.000) 0.000 (0.001) 0.000 (0.000) 26.025 249.520 (107.068)
50 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 52.070 239.980 (110.209)

0.001

2

10 0.025 (0.013) 0.011 (0.009) 0.007 (0.006) 3.016 82.210 (19.502)
25 0.024 (0.013) 0.011 (0.009) 0.007 (0.006) 7.573 77.710 (22.325)
50 0.022 (0.012) 0.010 (0.008) 0.007 (0.005) 15.153 71.310 (23.366)

5

10 0.025 (0.011) 0.011 (0.009) 0.008 (0.006) 3.687 84.200 (20.441)
25 0.024 (0.011) 0.011 (0.009) 0.007 (0.006) 9.255 77.260 (23.076)
50 0.022 (0.011) 0.010 (0.008) 0.007 (0.006) 18.489 71.310 (23.791)

10

10 0.025 (0.011) 0.011 (0.009) 0.008 (0.006) 3.786 86.250 (18.864)
25 0.024 (0.011) 0.011 (0.009) 0.007 (0.006) 9.486 78.050 (22.568)
50 0.022 (0.011) 0.010 (0.008) 0.007 (0.006) 18.966 71.240 (23.559)

0.1

2

10 0.718 (0.230) 0.095 (0.049) 0.065 (0.035) 0.850 20.520 (7.920)
25 0.666 (0.257) 0.095 (0.054) 0.057 (0.036) 2.158 18.530 (7.520)
50 0.591 (0.254) 0.078 (0.053) 0.055 (0.038) 4.310 16.900 (7.151)

5

10 0.774 (0.242) 0.097 (0.049) 0.069 (0.036) 1.095 21.040 (7.746)
25 0.679 (0.291) 0.084 (0.051) 0.063 (0.037) 2.794 17.940 (7.243)
50 0.608 (0.292) 0.071 (0.054) 0.060 (0.039) 5.574 16.480 (6.642)

10

10 0.775 (0.240) 0.098 (0.049) 0.069 (0.036) 1.127 21.180 (8.192)
25 0.683 (0.286) 0.085 (0.052) 0.062 (0.037) 2.874 18.180 (7.492)
50 0.609 (0.291) 0.071 (0.055) 0.060 (0.039) 5.739 16.480 (6.642)
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Table 60: Results from the numerical applications for S = (2, 730, 0.1, 0.0)

ϵem NM Ninit ∆S,A
ℓ (std) ∆S,A

π1
(std) ∆S,A

µ1
(std)

mean
execution
time [s]

mean
number

iterations

1e-05

2

10 0.000 (0.000) 0.002 (0.004) 0.000 (0.000) 4.835 127.880 (68.991)
25 0.000 (0.000) 0.002 (0.003) 0.000 (0.000) 11.906 108.560 (66.486)
50 -0.000 (0.000) 0.001 (0.002) 0.000 (0.000) 23.929 104.150 (66.008)

5

10 0.000 (0.000) 0.002 (0.004) 0.000 (0.000) 5.868 133.410 (69.902)
25 0.000 (0.000) 0.001 (0.002) 0.000 (0.000) 14.416 114.350 (72.544)
50 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 29.032 105.720 (68.238)

10

10 0.000 (0.000) 0.002 (0.004) 0.000 (0.000) 6.133 138.260 (70.871)
25 0.000 (0.000) 0.001 (0.002) 0.000 (0.000) 15.001 114.100 (70.655)
50 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 30.193 106.280 (67.606)

0.001

2

10 0.011 (0.007) 0.025 (0.023) 0.001 (0.001) 1.845 39.890 (22.264)
25 0.009 (0.006) 0.020 (0.019) 0.001 (0.001) 4.490 32.760 (20.633)
50 0.008 (0.006) 0.019 (0.018) 0.001 (0.000) 9.071 30.340 (19.414)

5

10 0.011 (0.007) 0.028 (0.024) 0.001 (0.001) 2.329 42.230 (25.529)
25 0.008 (0.006) 0.020 (0.018) 0.001 (0.001) 5.638 30.890 (18.641)
50 0.008 (0.006) 0.019 (0.018) 0.001 (0.000) 11.412 29.330 (17.595)

10

10 0.011 (0.007) 0.028 (0.024) 0.001 (0.001) 2.460 43.680 (27.888)
25 0.008 (0.006) 0.020 (0.018) 0.001 (0.001) 5.918 32.410 (20.644)
50 0.008 (0.006) 0.019 (0.018) 0.001 (0.000) 11.952 29.970 (18.292)

0.1

2

10 0.239 (0.181) 0.136 (0.097) 0.005 (0.003) 0.444 6.950 (3.689)
25 0.158 (0.136) 0.082 (0.070) 0.004 (0.003) 1.062 5.390 (2.231)
50 0.133 (0.131) 0.083 (0.067) 0.004 (0.003) 2.139 4.890 (2.213)

5

10 0.239 (0.179) 0.140 (0.103) 0.005 (0.003) 0.601 6.940 (4.440)
25 0.150 (0.124) 0.088 (0.079) 0.005 (0.002) 1.437 5.510 (2.410)
50 0.127 (0.120) 0.080 (0.066) 0.004 (0.003) 2.906 4.970 (2.317)

10

10 0.238 (0.179) 0.139 (0.103) 0.005 (0.003) 0.620 7.000 (4.783)
25 0.150 (0.124) 0.088 (0.079) 0.005 (0.002) 1.481 5.510 (2.410)
50 0.127 (0.120) 0.080 (0.066) 0.004 (0.003) 2.981 4.970 (2.317)
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Table 61: Results from the numerical applications for S = (2, 730, 2.0, 0.0)

ϵem NM Ninit ∆S,A
ℓ (std) ∆S,A

π1
(std) ∆S,A

µ1
(std)

mean
execution
time [s]

mean
number

iterations

1e-05

2

10 0.000 (0.000) 0.001 (0.001) 0.000 (0.001) 13.022 403.480 (173.329)
25 0.000 (0.000) 0.001 (0.001) 0.000 (0.001) 32.682 388.830 (175.063)
50 -0.000 (0.000) 0.000 (0.001) 0.000 (0.000) 65.284 362.250 (189.200)

5

10 0.000 (0.000) 0.000 (0.001) 0.000 (0.001) 15.790 417.780 (187.494)
25 0.000 (0.000) 0.000 (0.001) 0.000 (0.001) 39.658 398.660 (193.035)
50 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 79.284 369.570 (205.599)

10

10 0.000 (0.000) 0.000 (0.001) 0.000 (0.001) 15.904 415.760 (189.212)
25 0.000 (0.000) 0.000 (0.001) 0.000 (0.001) 39.883 399.570 (194.325)
50 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 79.697 372.340 (203.967)

0.001

2

10 0.040 (0.019) 0.017 (0.011) 0.008 (0.005) 4.700 130.810 (51.079)
25 0.037 (0.020) 0.015 (0.011) 0.007 (0.005) 11.875 113.970 (53.816)
50 0.033 (0.021) 0.013 (0.010) 0.006 (0.004) 23.681 98.750 (48.356)

5

10 0.041 (0.021) 0.018 (0.012) 0.008 (0.006) 5.580 127.950 (51.578)
25 0.038 (0.022) 0.015 (0.012) 0.007 (0.005) 14.094 107.170 (48.642)
50 0.034 (0.022) 0.013 (0.011) 0.006 (0.004) 28.133 94.020 (44.325)

10

10 0.041 (0.021) 0.018 (0.012) 0.008 (0.006) 5.633 125.590 (50.996)
25 0.038 (0.022) 0.015 (0.012) 0.007 (0.005) 14.207 108.990 (50.498)
50 0.034 (0.022) 0.013 (0.011) 0.006 (0.004) 28.355 94.310 (44.536)

0.1

2

10 1.140 (0.555) 0.114 (0.058) 0.057 (0.027) 1.114 17.210 (13.223)
25 0.929 (0.502) 0.093 (0.061) 0.047 (0.024) 2.819 11.530 (6.391)
50 0.710 (0.461) 0.075 (0.052) 0.038 (0.023) 5.632 8.490 (5.681)

5

10 1.108 (0.532) 0.111 (0.057) 0.055 (0.026) 1.454 18.250 (15.753)
25 0.909 (0.479) 0.092 (0.061) 0.046 (0.024) 3.669 12.560 (7.530)
50 0.711 (0.458) 0.078 (0.055) 0.038 (0.022) 7.348 8.940 (6.988)

10

10 1.107 (0.532) 0.111 (0.057) 0.056 (0.027) 1.473 18.120 (16.075)
25 0.909 (0.479) 0.092 (0.061) 0.046 (0.024) 3.743 12.560 (7.530)
50 0.711 (0.458) 0.078 (0.055) 0.038 (0.022) 7.472 8.940 (6.988)
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Table 62: Results from the numerical applications for S = (2, 730, 0.1, 0.5)

ϵem NM Ninit ∆S,A
ℓ (std) ∆S,A

π1
(std) ∆S,A

µ1
(std)

mean
execution
time [s]

mean
number

iterations

1e-05

2

10 0.000 (0.000) 0.004 (0.005) 0.000 (0.000) 3.770 94.690 (53.990)
25 0.000 (0.000) 0.004 (0.005) 0.000 (0.000) 9.477 83.780 (58.680)
50 0.000 (0.000) 0.002 (0.003) 0.000 (0.000) 18.837 68.230 (51.142)

5

10 0.000 (0.000) 0.004 (0.006) 0.000 (0.000) 4.680 102.590 (60.426)
25 0.000 (0.000) 0.002 (0.004) 0.000 (0.000) 11.793 88.730 (62.436)
50 -0.000 (0.000) 0.000 (0.001) 0.000 (0.000) 23.374 74.070 (57.812)

10

10 0.000 (0.000) 0.004 (0.006) 0.000 (0.000) 4.731 98.930 (58.948)
25 0.000 (0.000) 0.002 (0.004) 0.000 (0.000) 11.803 89.080 (63.479)
50 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 23.502 74.910 (58.348)

0.001

2

10 0.008 (0.006) 0.032 (0.023) 0.001 (0.001) 1.455 28.830 (17.777)
25 0.006 (0.006) 0.024 (0.022) 0.001 (0.000) 3.676 22.140 (13.752)
50 0.005 (0.005) 0.020 (0.022) 0.001 (0.000) 7.288 19.910 (14.371)

5

10 0.008 (0.006) 0.033 (0.022) 0.001 (0.001) 1.888 29.920 (17.782)
25 0.006 (0.005) 0.025 (0.021) 0.001 (0.001) 4.724 23.560 (16.503)
50 0.005 (0.005) 0.021 (0.022) 0.001 (0.000) 9.389 19.980 (13.255)

10

10 0.008 (0.006) 0.033 (0.023) 0.001 (0.001) 1.923 30.170 (18.500)
25 0.006 (0.005) 0.025 (0.021) 0.001 (0.001) 4.758 24.120 (17.582)
50 0.005 (0.005) 0.020 (0.022) 0.001 (0.000) 9.491 20.090 (13.258)

0.1

2

10 0.162 (0.149) 0.124 (0.095) 0.004 (0.003) 0.329 6.480 (2.563)
25 0.099 (0.103) 0.092 (0.083) 0.004 (0.003) 0.826 5.700 (2.711)
50 0.077 (0.088) 0.077 (0.068) 0.004 (0.003) 1.647 5.290 (2.590)

5

10 0.157 (0.128) 0.120 (0.098) 0.004 (0.003) 0.416 6.640 (2.571)
25 0.100 (0.098) 0.081 (0.068) 0.004 (0.003) 1.032 5.470 (2.394)
50 0.075 (0.085) 0.071 (0.063) 0.003 (0.002) 2.059 4.820 (2.118)

10

10 0.157 (0.129) 0.121 (0.099) 0.004 (0.003) 0.405 6.630 (2.568)
25 0.100 (0.098) 0.081 (0.068) 0.004 (0.003) 1.007 5.470 (2.394)
50 0.075 (0.084) 0.071 (0.063) 0.003 (0.002) 2.017 4.850 (2.211)
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Table 63: Results from the numerical applications for S = (2, 730, 0.1, 1.0)

ϵem NM Ninit ∆S,A
ℓ (std) ∆S,A

π1
(std) ∆S,A

µ1
(std)

mean
execution
time [s]

mean
number

iterations

1e-05

2

10 0.000 (0.000) 0.002 (0.004) 0.000 (0.000) 3.885 113.950 (40.651)
25 -0.000 (0.000) 0.002 (0.003) 0.000 (0.000) 9.614 106.790 (43.284)
50 -0.000 (0.000) 0.001 (0.002) 0.000 (0.000) 19.253 105.030 (44.586)

5

10 0.000 (0.000) 0.001 (0.004) 0.000 (0.000) 4.503 109.200 (49.968)
25 0.000 (0.000) 0.001 (0.002) 0.000 (0.000) 11.120 97.930 (49.506)
50 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 22.217 94.990 (50.650)

10

10 0.000 (0.000) 0.001 (0.003) 0.000 (0.000) 4.437 109.580 (50.074)
25 0.000 (0.000) 0.001 (0.002) 0.000 (0.000) 11.087 97.930 (50.381)
50 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 22.149 95.210 (51.639)

0.001

2

10 0.010 (0.004) 0.021 (0.020) 0.001 (0.001) 1.628 46.160 (14.943)
25 0.009 (0.004) 0.018 (0.019) 0.001 (0.001) 4.024 42.050 (15.563)
50 0.008 (0.004) 0.017 (0.018) 0.001 (0.001) 8.048 39.180 (15.868)

5

10 0.009 (0.005) 0.022 (0.022) 0.001 (0.001) 1.820 37.940 (13.740)
25 0.008 (0.005) 0.018 (0.018) 0.001 (0.001) 4.466 34.430 (12.892)
50 0.007 (0.005) 0.017 (0.019) 0.001 (0.001) 8.913 31.330 (12.147)

10

10 0.009 (0.005) 0.022 (0.022) 0.001 (0.001) 1.797 37.780 (13.699)
25 0.008 (0.005) 0.018 (0.018) 0.001 (0.001) 4.459 34.410 (12.895)
50 0.007 (0.005) 0.017 (0.019) 0.001 (0.001) 8.895 31.250 (12.086)

0.1

2

10 0.410 (0.216) 0.179 (0.124) 0.007 (0.004) 0.387 9.770 (4.964)
25 0.300 (0.196) 0.160 (0.127) 0.006 (0.003) 0.951 7.350 (3.948)
50 0.247 (0.179) 0.127 (0.110) 0.005 (0.003) 1.914 6.280 (2.761)

5

10 0.301 (0.145) 0.149 (0.100) 0.006 (0.004) 0.458 8.410 (3.281)
25 0.224 (0.126) 0.114 (0.096) 0.005 (0.003) 1.118 7.270 (2.973)
50 0.191 (0.117) 0.105 (0.092) 0.005 (0.003) 2.238 6.610 (2.742)

10

10 0.300 (0.145) 0.149 (0.100) 0.006 (0.004) 0.449 8.410 (3.274)
25 0.224 (0.126) 0.113 (0.097) 0.005 (0.003) 1.115 7.300 (2.978)
50 0.191 (0.117) 0.105 (0.092) 0.005 (0.003) 2.229 6.610 (2.742)
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Table 64: Results from the numerical applications for S = (5, 180, 0.1, 0.0)

ϵem NM Ninit ∆S,A
ℓ (std) ∆S,A

π1
(std) ∆S,A

µ1
(std)

mean
execution
time [s]

mean
number

iterations

1e-05

5

10 0.000 (0.000) 0.011 (0.041) 0.000 (0.000) 39.568 188.470 (56.228)
25 0.000 (0.000) 0.004 (0.009) 0.000 (0.000) 99.257 187.600 (56.425)
50 0.000 (0.000) 0.004 (0.013) 0.000 (0.000) 197.873 183.070 (53.202)

10

10 0.000 (0.000) 0.007 (0.035) 0.000 (0.000) 44.358 187.480 (60.264)
25 0.000 (0.000) 0.003 (0.012) 0.000 (0.000) 111.588 187.490 (60.796)
50 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 222.153 181.310 (54.118)

0.001

5

10 0.017 (0.006) 0.047 (0.061) 0.002 (0.003) 12.342 57.090 (10.122)
25 0.017 (0.006) 0.046 (0.067) 0.002 (0.002) 31.067 56.020 (10.879)
50 0.016 (0.005) 0.049 (0.075) 0.002 (0.002) 61.964 55.490 (11.494)

10

10 0.017 (0.006) 0.047 (0.074) 0.002 (0.003) 14.355 59.160 (11.511)
25 0.016 (0.005) 0.049 (0.088) 0.002 (0.003) 36.072 57.850 (11.079)
50 0.015 (0.005) 0.049 (0.081) 0.002 (0.002) 71.894 57.210 (12.743)

0.1

5

10 0.528 (0.114) 0.249 (0.151) 0.012 (0.012) 2.791 13.200 (2.232)
25 0.500 (0.110) 0.249 (0.147) 0.011 (0.011) 7.044 13.080 (1.880)
50 0.481 (0.105) 0.243 (0.159) 0.011 (0.011) 14.044 13.100 (2.062)

10

10 0.534 (0.117) 0.271 (0.169) 0.012 (0.011) 3.119 13.030 (2.855)
25 0.508 (0.117) 0.251 (0.152) 0.011 (0.011) 7.879 12.640 (2.256)
50 0.486 (0.114) 0.235 (0.151) 0.012 (0.010) 15.698 12.790 (2.511)

Table 65: Results from the numerical applications for S = (5, 180, 2.0, 0.0)

ϵem NM Ninit ∆S,A
ℓ (std) ∆S,A

π1
(std) ∆S,A

µ1
(std)

mean
execution
time [s]

mean
number

iterations

1e-05

5

10 0.000 (0.000) 0.002 (0.003) 0.001 (0.002) 84.344 311.460 (67.957)
25 0.000 (0.000) 0.001 (0.002) 0.001 (0.001) 209.823 298.790 (69.130)
50 0.000 (0.000) 0.001 (0.002) 0.001 (0.001) 418.906 300.960 (79.332)

10

10 0.000 (0.000) 0.002 (0.002) 0.001 (0.001) 96.400 328.840 (81.257)
25 0.000 (0.000) 0.001 (0.002) 0.001 (0.001) 238.726 317.860 (80.612)
50 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 477.953 316.640 (94.333)

0.001

5

10 0.027 (0.006) 0.020 (0.013) 0.012 (0.010) 29.167 108.040 (19.478)
25 0.025 (0.006) 0.019 (0.012) 0.013 (0.010) 72.604 110.520 (21.617)
50 0.024 (0.006) 0.017 (0.011) 0.012 (0.009) 144.905 113.390 (28.199)

10

10 0.028 (0.007) 0.022 (0.015) 0.012 (0.012) 35.013 122.410 (33.630)
25 0.026 (0.007) 0.019 (0.013) 0.013 (0.011) 86.751 120.890 (27.292)
50 0.024 (0.006) 0.018 (0.013) 0.013 (0.010) 173.320 128.960 (38.170)

0.1

5

10 0.949 (0.127) 0.128 (0.063) 0.088 (0.071) 7.981 29.430 (5.636)
25 0.881 (0.110) 0.119 (0.058) 0.079 (0.062) 19.868 28.040 (4.665)
50 0.852 (0.106) 0.115 (0.056) 0.077 (0.059) 39.605 28.070 (5.256)

10

10 1.046 (0.161) 0.131 (0.064) 0.085 (0.065) 9.588 32.550 (7.990)
25 0.958 (0.121) 0.117 (0.047) 0.078 (0.063) 23.873 31.530 (6.019)
50 0.919 (0.119) 0.122 (0.052) 0.084 (0.062) 47.549 31.020 (6.005)
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Table 66: Results from the numerical applications for S = (5, 180, 2.0, 0.2)

ϵem NM Ninit ∆S,A
ℓ (std) ∆S,A

π1
(std) ∆S,A

µ1
(std)

mean
execution
time [s]

mean
number

iterations

1e-05

5

10 0.000 (0.000) 0.001 (0.002) 0.001 (0.001) 89.800 331.740 (64.068)
25 0.000 (0.000) 0.001 (0.002) 0.001 (0.001) 224.278 328.310 (70.949)
50 0.000 (0.000) 0.001 (0.001) 0.000 (0.001) 448.569 327.910 (72.443)

10

10 0.000 (0.000) 0.001 (0.002) 0.001 (0.001) 101.660 348.840 (77.102)
25 0.000 (0.000) 0.001 (0.001) 0.000 (0.001) 252.885 340.890 (76.057)
50 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 505.921 340.970 (84.459)

0.001

5

10 0.031 (0.007) 0.021 (0.014) 0.013 (0.009) 30.361 110.780 (16.464)
25 0.029 (0.007) 0.019 (0.013) 0.011 (0.009) 75.822 111.870 (19.228)
50 0.028 (0.006) 0.020 (0.013) 0.012 (0.009) 151.533 113.150 (20.895)

10

10 0.031 (0.007) 0.022 (0.015) 0.014 (0.009) 35.760 120.420 (18.678)
25 0.029 (0.007) 0.020 (0.015) 0.012 (0.009) 89.210 121.720 (22.958)
50 0.028 (0.007) 0.019 (0.014) 0.012 (0.009) 178.424 125.120 (24.574)

0.1

5

10 1.000 (0.152) 0.138 (0.069) 0.090 (0.060) 7.692 28.930 (5.260)
25 0.935 (0.136) 0.125 (0.058) 0.078 (0.060) 19.264 29.040 (6.290)
50 0.908 (0.127) 0.123 (0.055) 0.073 (0.052) 38.288 29.200 (5.848)

10

10 1.079 (0.166) 0.136 (0.068) 0.087 (0.058) 9.070 31.430 (6.228)
25 1.013 (0.140) 0.126 (0.057) 0.091 (0.064) 22.675 32.140 (7.185)
50 0.982 (0.131) 0.117 (0.056) 0.087 (0.060) 45.129 32.850 (6.715)

Table 67: Results from the numerical applications for S = (5, 180, 2.0, 1.0)

ϵem NM Ninit ∆S,A
ℓ (std) ∆S,A

π1
(std) ∆S,A

µ1
(std)

mean
execution
time [s]

mean
number

iterations

1e-05

5

10 0.000 (0.000) 0.001 (0.001) 0.000 (0.001) 102.206 369.930 (52.898)
25 0.000 (0.000) 0.000 (0.001) 0.000 (0.000) 255.936 368.410 (52.833)
50 0.000 (0.000) 0.000 (0.001) 0.000 (0.000) 511.591 364.620 (55.262)

10

10 0.000 (0.000) 0.001 (0.001) 0.000 (0.001) 113.800 377.420 (53.454)
25 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 284.986 374.460 (56.169)
50 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 569.106 369.630 (57.445)

0.001

5

10 0.035 (0.006) 0.025 (0.014) 0.014 (0.009) 37.259 133.210 (13.753)
25 0.034 (0.006) 0.023 (0.013) 0.013 (0.008) 93.222 131.550 (13.131)
50 0.033 (0.006) 0.022 (0.012) 0.012 (0.008) 186.414 131.080 (13.891)

10

10 0.036 (0.006) 0.025 (0.015) 0.014 (0.009) 42.930 137.550 (13.327)
25 0.035 (0.006) 0.024 (0.014) 0.013 (0.008) 107.465 137.450 (13.379)
50 0.033 (0.006) 0.022 (0.012) 0.014 (0.009) 214.845 136.790 (14.220)

0.1

5

10 1.515 (0.228) 0.217 (0.079) 0.132 (0.059) 9.552 35.090 (5.316)
25 1.454 (0.217) 0.199 (0.072) 0.122 (0.055) 23.979 34.720 (5.344)
50 1.402 (0.223) 0.183 (0.069) 0.113 (0.054) 47.888 34.990 (5.617)

10

10 1.513 (0.218) 0.201 (0.080) 0.126 (0.063) 11.268 37.170 (5.463)
25 1.438 (0.200) 0.185 (0.076) 0.121 (0.058) 28.303 37.810 (5.112)
50 1.388 (0.198) 0.178 (0.072) 0.108 (0.056) 56.547 37.850 (5.474)
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Table 68: Results from the numerical applications for S = (5, 365, 0.1, 0.0)

ϵem NM Ninit ∆S,A
ℓ (std) ∆S,A

π1
(std) ∆S,A

µ1
(std)

mean
execution
time [s]

mean
number

iterations

1e-05

5

10 0.000 (0.000) 0.003 (0.004) 0.000 (0.000) 47.686 208.320 (50.152)
25 0.000 (0.000) 0.002 (0.005) 0.000 (0.000) 119.526 200.260 (49.553)
50 0.000 (0.000) 0.002 (0.003) 0.000 (0.000) 239.191 202.080 (53.141)

10

10 0.000 (0.000) 0.003 (0.005) 0.000 (0.000) 52.356 211.170 (52.678)
25 0.000 (0.000) 0.001 (0.004) 0.000 (0.000) 130.871 201.580 (49.992)
50 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 262.125 199.290 (49.609)

0.001

5

10 0.019 (0.005) 0.040 (0.033) 0.002 (0.001) 15.089 63.870 (9.459)
25 0.018 (0.005) 0.037 (0.034) 0.001 (0.001) 38.033 63.150 (10.301)
50 0.018 (0.005) 0.040 (0.035) 0.001 (0.001) 76.048 63.310 (11.051)

10

10 0.019 (0.005) 0.038 (0.032) 0.001 (0.001) 17.085 65.970 (9.328)
25 0.018 (0.005) 0.038 (0.034) 0.001 (0.001) 43.044 65.820 (11.504)
50 0.017 (0.005) 0.038 (0.035) 0.002 (0.001) 86.093 66.260 (12.246)

0.1

5

10 0.587 (0.108) 0.204 (0.117) 0.010 (0.008) 3.603 15.500 (2.508)
25 0.562 (0.097) 0.212 (0.130) 0.008 (0.007) 9.052 15.610 (2.549)
50 0.541 (0.096) 0.198 (0.119) 0.009 (0.007) 18.112 15.320 (2.315)

10

10 0.613 (0.109) 0.216 (0.121) 0.011 (0.008) 4.122 16.200 (2.713)
25 0.584 (0.095) 0.210 (0.115) 0.009 (0.007) 10.361 16.040 (2.775)
50 0.566 (0.093) 0.198 (0.107) 0.009 (0.007) 20.735 15.470 (2.590)

Table 69: Results from the numerical applications for S = (5, 365, 2.0, 0.0)

ϵem NM Ninit ∆S,A
ℓ (std) ∆S,A

π1
(std) ∆S,A

µ1
(std)

mean
execution
time [s]

mean
number

iterations

1e-05

5

10 0.000 (0.000) 0.001 (0.002) 0.001 (0.001) 92.291 329.340 (90.550)
25 0.000 (0.000) 0.001 (0.002) 0.001 (0.001) 229.967 318.490 (91.658)
50 0.000 (0.000) 0.001 (0.001) 0.001 (0.001) 459.291 316.100 (102.850)

10

10 0.000 (0.000) 0.001 (0.002) 0.001 (0.001) 109.799 359.070 (115.398)
25 0.000 (0.000) 0.001 (0.002) 0.000 (0.001) 276.147 365.460 (125.392)
50 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 550.769 365.210 (143.736)

0.001

5

10 0.024 (0.008) 0.014 (0.010) 0.011 (0.008) 37.696 130.520 (45.480)
25 0.022 (0.008) 0.013 (0.009) 0.011 (0.008) 93.462 131.700 (44.305)
50 0.021 (0.008) 0.012 (0.009) 0.011 (0.008) 186.898 139.500 (58.222)

10

10 0.025 (0.009) 0.016 (0.012) 0.012 (0.009) 49.266 153.020 (62.084)
25 0.023 (0.008) 0.014 (0.011) 0.011 (0.009) 122.717 155.330 (63.061)
50 0.021 (0.008) 0.013 (0.010) 0.010 (0.009) 245.668 157.270 (63.781)

0.1

5

10 1.112 (0.219) 0.104 (0.057) 0.084 (0.061) 11.836 39.100 (8.664)
25 1.012 (0.186) 0.097 (0.049) 0.087 (0.070) 29.679 38.380 (8.898)
50 0.940 (0.149) 0.080 (0.042) 0.075 (0.057) 59.174 38.920 (9.450)

10

10 1.234 (0.277) 0.113 (0.060) 0.080 (0.066) 16.032 44.330 (12.743)
25 1.126 (0.197) 0.105 (0.054) 0.078 (0.066) 40.010 42.770 (10.230)
50 1.047 (0.161) 0.086 (0.040) 0.066 (0.053) 79.900 41.570 (9.218)
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Table 70: Results from the numerical applications for S = (5, 365, 0.1, 0.2)

ϵem NM Ninit ∆S,A
ℓ (std) ∆S,A

π1
(std) ∆S,A

µ1
(std)

mean
execution
time [s]

mean
number

iterations

1e-05

5

10 0.000 (0.000) 0.009 (0.052) 0.000 (0.000) 47.124 208.490 (50.303)
25 0.000 (0.000) 0.004 (0.007) 0.000 (0.000) 117.750 207.380 (51.699)
50 -0.000 (0.000) 0.003 (0.006) 0.000 (0.000) 235.441 199.830 (53.316)

10

10 0.000 (0.000) 0.006 (0.032) 0.000 (0.000) 51.338 207.720 (50.930)
25 0.000 (0.000) 0.002 (0.005) 0.000 (0.000) 129.126 203.550 (50.081)
50 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 258.133 202.990 (53.553)

0.001

5

10 0.019 (0.005) 0.046 (0.069) 0.002 (0.002) 14.668 63.170 (9.750)
25 0.019 (0.006) 0.037 (0.040) 0.001 (0.002) 36.726 63.650 (10.903)
50 0.018 (0.005) 0.040 (0.047) 0.001 (0.002) 73.356 62.430 (10.458)

10

10 0.019 (0.006) 0.051 (0.098) 0.002 (0.001) 16.653 65.230 (10.084)
25 0.018 (0.006) 0.044 (0.078) 0.001 (0.002) 41.803 65.990 (11.333)
50 0.017 (0.005) 0.044 (0.083) 0.001 (0.001) 83.367 65.260 (11.110)

0.1

5

10 0.584 (0.100) 0.221 (0.144) 0.009 (0.007) 3.408 15.260 (2.265)
25 0.558 (0.094) 0.210 (0.130) 0.008 (0.007) 8.509 14.920 (2.023)
50 0.542 (0.091) 0.204 (0.143) 0.008 (0.007) 17.024 14.880 (2.036)

10

10 0.620 (0.110) 0.238 (0.141) 0.009 (0.007) 3.916 15.760 (2.608)
25 0.587 (0.096) 0.229 (0.144) 0.009 (0.007) 9.777 15.520 (2.755)
50 0.570 (0.091) 0.228 (0.146) 0.009 (0.007) 19.546 14.910 (2.413)

Table 71: Results from the numerical applications for S = (5, 365, 2.0, 0.2)

ϵem NM Ninit ∆S,A
ℓ (std) ∆S,A

π1
(std) ∆S,A

µ1
(std)

mean
execution
time [s]

mean
number

iterations

1e-05

5

10 0.000 (0.000) 0.002 (0.002) 0.001 (0.001) 96.404 353.320 (89.766)
25 0.000 (0.000) 0.001 (0.001) 0.001 (0.001) 240.545 345.760 (83.007)
50 0.000 (0.000) 0.001 (0.001) 0.001 (0.001) 480.448 340.140 (93.486)

10

10 0.000 (0.000) 0.001 (0.002) 0.001 (0.001) 110.822 381.430 (99.348)
25 0.000 (0.000) 0.001 (0.002) 0.000 (0.001) 276.333 370.900 (97.205)
50 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 552.759 356.730 (98.656)

0.001

5

10 0.030 (0.009) 0.019 (0.012) 0.013 (0.009) 35.125 125.730 (21.248)
25 0.027 (0.009) 0.018 (0.012) 0.012 (0.009) 87.989 127.760 (29.151)
50 0.026 (0.008) 0.016 (0.010) 0.011 (0.008) 175.981 130.560 (35.448)

10

10 0.030 (0.009) 0.020 (0.012) 0.013 (0.009) 43.346 143.610 (44.990)
25 0.028 (0.010) 0.018 (0.013) 0.011 (0.009) 108.622 149.600 (48.528)
50 0.026 (0.009) 0.016 (0.011) 0.011 (0.008) 217.191 153.090 (51.692)

0.1

5

10 1.098 (0.215) 0.114 (0.059) 0.093 (0.063) 9.785 36.020 (7.340)
25 0.999 (0.186) 0.098 (0.047) 0.082 (0.055) 24.643 36.810 (7.713)
50 0.953 (0.179) 0.094 (0.043) 0.075 (0.054) 49.133 36.470 (7.299)

10

10 1.216 (0.239) 0.118 (0.063) 0.087 (0.047) 12.205 39.750 (8.153)
25 1.124 (0.198) 0.109 (0.053) 0.083 (0.054) 30.793 38.240 (7.861)
50 1.074 (0.187) 0.103 (0.055) 0.071 (0.050) 61.518 38.380 (7.320)
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Table 72: Results from the numerical applications for S = (5, 365, 0.1, 1.0)

ϵem NM Ninit ∆S,A
ℓ (std) ∆S,A

π1
(std) ∆S,A

µ1
(std)

mean
execution
time [s]

mean
number

iterations

1e-05

5

10 0.000 (0.000) 0.005 (0.011) 0.000 (0.000) 41.348 190.530 (65.262)
25 0.000 (0.000) 0.005 (0.014) 0.000 (0.000) 103.632 187.080 (62.082)
50 0.000 (0.000) 0.008 (0.038) 0.000 (0.000) 207.305 186.070 (62.841)

10

10 0.000 (0.000) 0.004 (0.014) 0.000 (0.000) 45.562 189.760 (63.304)
25 0.000 (0.000) 0.006 (0.047) 0.000 (0.000) 114.190 186.120 (63.350)
50 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 228.581 184.170 (62.585)

0.001

5

10 0.018 (0.007) 0.062 (0.104) 0.001 (0.001) 12.920 58.120 (11.480)
25 0.017 (0.007) 0.056 (0.091) 0.001 (0.001) 32.375 58.080 (10.428)
50 0.017 (0.007) 0.056 (0.092) 0.001 (0.001) 64.803 58.980 (12.832)

10

10 0.018 (0.007) 0.062 (0.109) 0.001 (0.001) 14.913 59.370 (11.872)
25 0.017 (0.007) 0.055 (0.095) 0.001 (0.001) 37.393 59.670 (11.623)
50 0.016 (0.007) 0.061 (0.107) 0.001 (0.001) 74.751 59.420 (11.220)

0.1

5

10 0.525 (0.105) 0.256 (0.171) 0.008 (0.007) 3.048 14.190 (2.053)
25 0.502 (0.101) 0.217 (0.129) 0.007 (0.006) 7.648 14.390 (2.262)
50 0.489 (0.097) 0.211 (0.133) 0.008 (0.006) 15.288 14.350 (2.422)

10

10 0.543 (0.108) 0.253 (0.153) 0.008 (0.006) 3.435 13.890 (2.457)
25 0.516 (0.101) 0.228 (0.142) 0.007 (0.005) 8.622 13.790 (2.160)
50 0.503 (0.101) 0.222 (0.135) 0.007 (0.005) 17.209 13.790 (2.041)

Table 73: Results from the numerical applications for S = (5, 365, 2.0, 1.0)

ϵem NM Ninit ∆S,A
ℓ (std) ∆S,A

π1
(std) ∆S,A

µ1
(std)

mean
execution
time [s]

mean
number

iterations

1e-05

5

10 0.000 (0.000) 0.000 (0.001) 0.000 (0.000) 131.559 484.900 (70.036)
25 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 329.092 484.470 (68.602)
50 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 657.847 480.790 (67.195)

10

10 0.000 (0.000) 0.000 (0.001) 0.000 (0.000) 148.165 492.840 (70.715)
25 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 370.301 491.310 (73.410)
50 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 738.746 488.020 (71.765)

0.001

5

10 0.046 (0.007) 0.015 (0.007) 0.011 (0.006) 48.655 176.200 (13.662)
25 0.045 (0.008) 0.015 (0.008) 0.010 (0.006) 121.743 176.070 (15.380)
50 0.044 (0.008) 0.014 (0.007) 0.010 (0.006) 243.373 177.540 (21.513)

10

10 0.047 (0.008) 0.015 (0.008) 0.011 (0.006) 56.391 181.150 (15.816)
25 0.046 (0.008) 0.015 (0.008) 0.011 (0.006) 141.224 182.050 (19.259)
50 0.045 (0.008) 0.014 (0.007) 0.010 (0.006) 282.093 181.910 (19.259)

0.1

5

10 2.028 (0.160) 0.166 (0.055) 0.117 (0.043) 14.201 50.700 (5.199)
25 1.977 (0.178) 0.153 (0.047) 0.108 (0.039) 35.532 50.270 (5.366)
50 1.936 (0.176) 0.150 (0.050) 0.104 (0.036) 71.068 50.640 (5.759)

10

10 2.014 (0.156) 0.164 (0.059) 0.112 (0.041) 16.686 52.760 (4.813)
25 1.956 (0.165) 0.148 (0.050) 0.105 (0.044) 41.748 52.690 (5.126)
50 1.903 (0.168) 0.146 (0.052) 0.099 (0.041) 83.497 53.630 (4.795)
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Table 74: Results from the numerical applications for S = (5, 730, 0.1, 0.0)

ϵem NM Ninit ∆S,A
ℓ (std) ∆S,A

π1
(std) ∆S,A

µ1
(std)

mean
execution
time [s]

mean
number

iterations

1e-05

5

10 0.000 (0.000) 0.002 (0.002) 0.000 (0.000) 57.935 237.280 (51.792)
25 0.000 (0.000) 0.002 (0.002) 0.000 (0.000) 145.091 232.910 (55.392)
50 0.000 (0.000) 0.001 (0.002) 0.000 (0.000) 290.051 228.890 (52.451)

10

10 0.000 (0.000) 0.002 (0.002) 0.000 (0.000) 64.337 239.800 (50.793)
25 0.000 (0.000) 0.001 (0.002) 0.000 (0.000) 160.090 234.390 (55.298)
50 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 320.629 230.620 (50.476)

0.001

5

10 0.023 (0.006) 0.027 (0.024) 0.001 (0.001) 18.997 77.850 (11.952)
25 0.022 (0.006) 0.025 (0.019) 0.001 (0.001) 47.521 75.700 (12.131)
50 0.021 (0.006) 0.024 (0.017) 0.001 (0.001) 95.010 75.340 (13.361)

10

10 0.023 (0.006) 0.026 (0.022) 0.001 (0.001) 21.657 81.030 (12.714)
25 0.021 (0.006) 0.024 (0.018) 0.001 (0.001) 54.144 78.530 (11.835)
50 0.021 (0.006) 0.026 (0.018) 0.001 (0.001) 108.174 79.740 (13.796)

0.1

5

10 0.733 (0.118) 0.164 (0.097) 0.007 (0.005) 4.524 18.720 (3.073)
25 0.693 (0.116) 0.161 (0.076) 0.007 (0.005) 11.244 18.510 (2.844)
50 0.673 (0.106) 0.154 (0.066) 0.007 (0.004) 22.539 18.580 (3.131)

10

10 0.757 (0.116) 0.169 (0.103) 0.007 (0.005) 5.314 20.550 (3.996)
25 0.714 (0.110) 0.155 (0.081) 0.007 (0.005) 13.183 19.870 (3.405)
50 0.694 (0.106) 0.149 (0.075) 0.007 (0.005) 26.424 19.820 (3.648)

Table 75: Results from the numerical applications for S = (5, 730, 2.0, 0.0)

ϵem NM Ninit ∆S,A
ℓ (std) ∆S,A

π1
(std) ∆S,A

µ1
(std)

mean
execution
time [s]

mean
number

iterations

1e-05

5

10 0.000 (0.000) 0.001 (0.001) 0.001 (0.001) 103.260 350.060 (84.877)
25 0.000 (0.000) 0.001 (0.002) 0.001 (0.001) 258.618 347.790 (115.054)
50 0.000 (0.000) 0.001 (0.001) 0.001 (0.001) 516.548 340.540 (127.493)

10

10 0.000 (0.000) 0.001 (0.002) 0.001 (0.001) 128.346 393.270 (103.521)
25 0.000 (0.000) 0.001 (0.001) 0.000 (0.001) 321.250 400.010 (149.218)
50 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 641.873 411.060 (188.371)

0.001

5

10 0.025 (0.007) 0.013 (0.010) 0.008 (0.006) 48.624 148.270 (57.472)
25 0.023 (0.007) 0.012 (0.009) 0.008 (0.006) 121.495 149.320 (59.852)
50 0.020 (0.006) 0.010 (0.009) 0.007 (0.006) 243.007 158.390 (79.278)

10

10 0.025 (0.007) 0.012 (0.009) 0.008 (0.006) 66.517 189.630 (90.292)
25 0.023 (0.007) 0.011 (0.010) 0.008 (0.006) 165.294 190.890 (95.858)
50 0.020 (0.006) 0.010 (0.010) 0.007 (0.005) 331.532 204.460 (109.883)

0.1

5

10 1.333 (0.226) 0.088 (0.051) 0.083 (0.062) 17.254 48.560 (11.889)
25 1.217 (0.209) 0.076 (0.042) 0.071 (0.055) 43.158 45.800 (9.793)
50 1.142 (0.188) 0.071 (0.039) 0.064 (0.050) 86.525 44.580 (9.418)

10

10 1.411 (0.287) 0.093 (0.057) 0.077 (0.057) 24.717 57.020 (16.387)
25 1.256 (0.235) 0.073 (0.042) 0.073 (0.054) 61.733 51.850 (12.857)
50 1.171 (0.203) 0.067 (0.039) 0.067 (0.046) 123.735 49.390 (10.400)
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Table 76: Results from the numerical applications for S = (5, 730, 0.1, 0.2)

ϵem NM Ninit ∆S,A
ℓ (std) ∆S,A

π1
(std) ∆S,A

µ1
(std)

mean
execution
time [s]

mean
number

iterations

1e-05

5

10 0.000 (0.000) 0.003 (0.004) 0.000 (0.000) 55.771 231.000 (50.577)
25 0.000 (0.000) 0.002 (0.004) 0.000 (0.000) 138.917 223.060 (53.277)
50 0.000 (0.000) 0.002 (0.004) 0.000 (0.000) 278.267 222.620 (54.930)

10

10 0.000 (0.000) 0.002 (0.004) 0.000 (0.000) 62.296 234.130 (52.784)
25 0.000 (0.000) 0.002 (0.004) 0.000 (0.000) 154.856 227.160 (54.929)
50 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 309.911 224.090 (55.043)

0.001

5

10 0.021 (0.006) 0.033 (0.027) 0.001 (0.001) 18.145 73.520 (10.404)
25 0.020 (0.005) 0.031 (0.026) 0.001 (0.001) 45.163 73.370 (10.366)
50 0.019 (0.005) 0.029 (0.023) 0.001 (0.001) 90.475 72.500 (11.732)

10

10 0.021 (0.006) 0.033 (0.026) 0.001 (0.001) 20.892 77.670 (10.794)
25 0.019 (0.005) 0.029 (0.022) 0.001 (0.001) 51.910 76.900 (10.736)
50 0.019 (0.005) 0.029 (0.025) 0.001 (0.001) 103.963 75.620 (12.582)

0.1

5

10 0.699 (0.105) 0.185 (0.101) 0.007 (0.005) 4.430 18.460 (2.762)
25 0.662 (0.090) 0.173 (0.098) 0.006 (0.005) 11.094 18.830 (2.832)
50 0.646 (0.087) 0.164 (0.085) 0.007 (0.005) 22.171 18.590 (2.916)

10

10 0.728 (0.093) 0.193 (0.103) 0.007 (0.005) 5.225 19.450 (3.170)
25 0.694 (0.089) 0.183 (0.100) 0.006 (0.005) 13.080 19.940 (3.655)
50 0.675 (0.087) 0.173 (0.090) 0.007 (0.005) 26.134 20.110 (3.715)

Table 77: Results from the numerical applications for S = (5, 730, 0.1, 1.0)

ϵem NM Ninit ∆S,A
ℓ (std) ∆S,A

π1
(std) ∆S,A

µ1
(std)

mean
execution
time [s]

mean
number

iterations

1e-05

5

10 0.000 (0.000) 0.002 (0.004) 0.000 (0.000) 47.776 207.270 (46.567)
25 0.000 (0.000) 0.002 (0.002) 0.000 (0.000) 119.525 205.560 (50.892)
50 0.000 (0.000) 0.001 (0.002) 0.000 (0.000) 239.376 203.630 (52.811)

10

10 0.000 (0.000) 0.002 (0.004) 0.000 (0.000) 53.905 209.300 (45.370)
25 0.000 (0.000) 0.001 (0.002) 0.000 (0.000) 134.971 208.400 (49.737)
50 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 270.158 204.310 (52.557)

0.001

5

10 0.020 (0.005) 0.032 (0.021) 0.001 (0.001) 15.732 68.290 (11.345)
25 0.019 (0.006) 0.029 (0.019) 0.001 (0.001) 39.259 66.470 (11.122)
50 0.018 (0.005) 0.028 (0.018) 0.001 (0.001) 78.698 67.130 (11.732)

10

10 0.019 (0.005) 0.030 (0.020) 0.001 (0.001) 18.379 70.900 (11.560)
25 0.018 (0.005) 0.029 (0.019) 0.001 (0.001) 45.889 69.870 (14.030)
50 0.017 (0.005) 0.026 (0.020) 0.001 (0.001) 91.808 71.450 (15.018)

0.1

5

10 0.625 (0.114) 0.194 (0.092) 0.006 (0.004) 3.896 17.410 (2.502)
25 0.587 (0.104) 0.179 (0.093) 0.005 (0.003) 9.701 17.290 (2.197)
50 0.574 (0.100) 0.175 (0.090) 0.005 (0.004) 19.477 17.130 (2.671)

10

10 0.657 (0.111) 0.197 (0.099) 0.006 (0.004) 4.622 18.180 (2.744)
25 0.621 (0.103) 0.204 (0.103) 0.005 (0.004) 11.504 18.110 (2.860)
50 0.605 (0.102) 0.201 (0.106) 0.005 (0.004) 23.063 18.250 (3.468)
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Table 78: Results from the numerical applications for S = (5, 730, 2.0, 1.0)

ϵem NM Ninit ∆S,A
ℓ (std) ∆S,A

π1
(std) ∆S,A

µ1
(std)

mean
execution
time [s]

mean
number

iterations

1e-05

5

10 0.001 (0.002) 0.001 (0.002) 0.001 (0.002) 54.797 608.890 (133.559)
25 0.001 (0.002) 0.001 (0.003) 0.001 (0.002) 137.300 610.450 (134.781)
50 -0.000 (0.001) 0.001 (0.003) 0.000 (0.001) 274.368 610.790 (134.592)

10

10 0.001 (0.002) 0.001 (0.003) 0.001 (0.002) 57.521 607.520 (130.220)
25 0.001 (0.002) 0.001 (0.002) 0.001 (0.002) 143.610 611.950 (135.164)
50 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 287.074 610.370 (132.982)

0.001

5

10 0.084 (0.029) 0.013 (0.009) 0.010 (0.006) 28.068 313.820 (40.024)
25 0.078 (0.025) 0.012 (0.009) 0.010 (0.006) 70.282 315.050 (39.699)
50 0.073 (0.022) 0.011 (0.008) 0.009 (0.005) 140.131 315.920 (42.450)

10

10 0.084 (0.029) 0.013 (0.009) 0.010 (0.006) 29.482 313.300 (39.476)
25 0.078 (0.028) 0.012 (0.009) 0.010 (0.006) 73.569 316.220 (39.974)
50 0.073 (0.024) 0.011 (0.008) 0.009 (0.005) 146.964 317.880 (41.593)

0.1

5

10 2.465 (0.191) 0.117 (0.035) 0.088 (0.028) 6.690 71.410 (5.078)
25 2.403 (0.201) 0.115 (0.031) 0.084 (0.029) 16.755 71.580 (5.196)
50 2.359 (0.200) 0.112 (0.035) 0.083 (0.031) 33.443 71.300 (5.677)

10

10 2.481 (0.188) 0.118 (0.033) 0.086 (0.026) 7.035 71.970 (4.649)
25 2.422 (0.196) 0.110 (0.034) 0.083 (0.028) 17.557 71.750 (5.233)
50 2.386 (0.190) 0.108 (0.033) 0.082 (0.030) 35.075 71.290 (5.645)
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c.1 consistency of the estimation of the edges e of the graph of sub-
stitution

We reming the reader that the substitution graph is composed of products as vertices
and edges link products that are substitute.

Proof 12 (Some ideas about a possible future proof of Conjecture 2) The definition of
G is entirely defined by the probability of substitution meaning that all edges that are not part
of E will have a πℓk+πkℓ = 0 and every edge that is part of the graph will have πℓk+πkℓ > 0.
The definition of Enτn implies that every edge (ℓ,k) verifies ∆nkℓ + ∆nℓk > τn. Lemma 4
implies that limn→+∞∆nkℓ = µℓπℓk at a rate of OP(n

− 1
2 ) and that limn→+∞ τn = 0 at a

rate slower than n− 1
2 .

The main argument for believing that the conjecture is true is that for (ℓ,k) ∈ E, limn→+∞ P(0 <

τn < πℓk + πkℓ) = 1 and then that limn→+∞ P(∆nkℓ + ∆nℓk > τn) = 1. For (ℓ,k) ∈
[K2]/E, for n sufficiently large since ∆nkℓ + ∆nℓk converges faster to 0 than τn, we would
obtain limn→+∞ P(∆nkℓ + ∆nℓk < τn) = 1. These two results imply that we retrieve the
signal of substitution for the products that are in the same groups and rule out the edges
corresponding to non substituable products.

c.2 the constrained hierarchical agglomerative clustering

Algorithm 2 Proposed constrained HAC Algorithm
Input: [K], D(., .) ▷ D is the distance matrix.
Output: Constrained HAC tree T

1: C← ∅
2: for k ∈ [K] do
3: C← C∪ {k}
4: Compute Dk,l = D(k, l),∀(k, l) ∈ [K]× [K]

5: T ← C

6: while |C| > 1 do
7: cm1, cm2 ← argmin(c1,c2)∈C×C,Is-Identifiable(c1∪c2)

Dist-SingleLink(c1, c2)
8: C← (C/{cm1})/{cm2}

9: C← C∪ {cm1 ∪ cm2}

10: T ← T ∪ {cm1 ∪ cm2}

11: return T

1: function Dist-SingleLink({kh}
H
h=1 , {lm}

M
m=1)) = minh,mD(kh, lm)
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1: function Is-Identifiable( c ) ▷ Defined by the Proposition 7 given ω associated
to c.

c.3 a bic heuristic proposal

c.3.1 The proposed BIC formulation

We have hesitated between two BIC formulas: the first whose asymptotic property is
dependent on n itself and the second which is dependent on the number of sales such
as in Choiruddin, Coeurjolly, and Waagepetersen, 2021. Respectively these possible
BIC criteria are

γ̂ = argmaxk=1,...,K logL(θ̂γ(k) ;γ(k),yn|xn) − νγ(k)

lnn
2

, (66)

and

γ̂ = argmaxk=1,...,K logL(θ̂γ(k) ;γ(k),yn|xn) − νγ(k)

ln(
∑J

j=1

∑K
k=1 Ynjk)

2
,

where νγ = K+
∑K

k=1

∑
ℓ ̸=k γ

⊤
k γℓ is the number of parameters involved by model γ,

θ̂γ is the maximum likelihood estimate (see Section 4.4.1 for details on its estimation).
Here the log-likelihood logL refers to the likelihood introduced in Section 4.3 where
we added a new parameter γ that expresses the sparse modelling. We chose only
Criterion 66 for the numerical applications that follow.

c.3.2 Numerical experiments related to the proposed BIC

We remind the reader that the constrained HAC produces a partition of at most 5

products hence some groups in the dendrogram are not aggregated with other groups.
Dataset 1
In Figure 27 are the results of the model selection based on a the retained BIC

heuristic. The right groups are retrieved with the Ward linkage.

Figure 27: Model selection based on the retained BIC heuristic for the putting knife-tape
dataset

Interpretation: Product 1 (16cm), Product 2 (14cm), Product 3 (12cm), Product 4 (tapes)

(a) HAC with single linkage

Dataset 2
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The model selection applied to the dataset yields the Figure 28. The BIC is best for
the partition where all the products are separated meaning when there is no substitu-
tion.

However the slope of the data-observed log-likelihood changes for a partition where
there is 16 groups. According to that true partition, the ARI in terms of LIB_TYP and
LIB_STYP is 0.02 and 0.10. These values are close to 0 meaning that the clustering
solutions are not better than a random partition. The three groups with maximum
substitution for the partition where retrieved. The analysis of Table 32, 33 and 34 is not
promising. The wrenchs could substitute with a screw driver or a pipe wrench from
an uncompatible size. Substitutions estimators are not reliable in this case; it could be
due to the lack of information because we did not aggregate all stores. However some
values are of interest such as the high probability of substitution between the open
end wrench of size 18x19mm or 30x32mm to the set of wrenches in Table 32.

Figure 28: 35 Products

(a) BIC curve (b) Dendrogram of the constrained HAC

Dataset 4
Table 29 shows that the best partition is composed of 8 groups. The dendrogram

shows that some groups are aggregated early. Since we expect that products for dif-
ferent categories at the TYP and STYP are not substitutable we used it to evaluate the
quality of our partition at 0.02 which is close to 0 and reveals that the quality is close
to a random clustering. The first 3 groups that have the maximum mean substitution
rate (i.e: K−1

∑K
ℓ=1(1− π̂ℓℓ)) have been studied.

The first group shown in Table 80 is composed of the products (1,2,3,4) which re-
trieves some interesting signals such as the two corded router (products 1 and 4) can
have the same usage. The probability of substitution to the first corded router and to
the jigsaw and the hammer drill is at 0 denoting the non substitutability. The same
observation can be made for the second corded router. The other associations are how-
ever incoherent such as the jigsaw (product 2) substituting to the corded router with
a value of 0.66.

The second group shown in Table 81 detects substitution within products that do
not have the same usage.

The third group shown in Table 82 is composed of 2 jigsaws that are substitutable
and three other products that are not, such as an electric screw driver, a corded planer
or a drill. The probabilities of substitution make apparent the substitution from the
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1rst jigsaw to the second (respectively products 8 and 12). The electric screw driver
does not substitute with other products.

Figure 29: Descriptive statistics

(a) BIC (b) Dendrogram

(c) Data-observed log-likelihood (d) Degrees of freedom

Table 79: Product id and information

1 Défonceuse électrique DEXTER POWER Dp4, 1300.0

2 Scie sauteuse 20V WORX , WX543.9 (Sans batterie ni chargeur)

3 Marteau perforateur 3en1 Brushless 20V WORX NITRO, WX380 (2 batteries 4Ah)

4 Défonceuse filaire DEXTER Dp5, 1300 W

5 Scie sauteuse filaire MAKITA Jv0600j 650 W

6 Marteau perforateur burineur sds plus METABO Uhe 2660-2 quick, 800 W

7 Rabot électrique filaire RYOBI Epn 7582 nhg, 750 W

8 Scie sauteuse filaire BOSCH Pst 650 500 W

9 Tournevis sans fil sans fil BOSCH Psr select 3.6 V 1.5 Ah

10 Rabot électrique filaire RYOBI Epn 7582 nhg, 750 W

11 Perforateur sds plus MAKITA Hr2300x9, 720 W

12 Scie sauteuse pendulaire filaire METABO Steb 65 quick 450 W

[ December 19, 2024 at 14:29 – classicthesis version 4.2 ]



C.3 a bic heuristic proposal 139

Table 80: 1st group of substitution

µk 1 2 3 4

0.07 0.71 0.03 0.00 0.26

0.02 0.66 0.00 0.17 0.17

0.01 0.86 0.14 0.00 0.00

0.04 0.74 0.01 0.00 0.25

Table 81: 2nd group of substitution

µk 5 6 7

0.07 0.00 0.00 1.00

0.06 0.20 0.00 0.80

0.17 0.01 0.04 0.95

Table 82: 3rd group of substitution

µk 8 9 10 11 12

0.05 0.00 0.25 0.00 0.10 0.64

0.36 0.00 1.00 0.00 0.00 0.00

0.15 0.09 0.65 0.00 0.03 0.23

0.07 0.05 0.58 0.37 0.00 0.00

0.12 0.06 0.76 0.18 0.00 0.00
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