
Earliest Query Answering for Regular
Queries with Complete Subhedge

Projection

Doctoral Dissertation
submitted to obtain the degree

Doctor of the University of Lille

in Computer Science

Committee members

Reporters Sebastian Maneth Professor at University of Bremen
Sylvain Schmitz Professor at University Paris-Cité

Thesis director Joachim Niehren Research director at Inria
President Sophie Tison Professor emeritus at University of Lille

defended on December 12, 2024

Antonio Al Serhali

Evaluation au Plus Tôt de Requêtes
Régulières avec Projection de Sous-Haies

Complète

Thèse de doctorat
présentée en vue de l’obtention du grade de

Docteur de l’Université de Lille

en Informatique

Composition du jury

Rapporteurs Sebastian Maneth Professeur à l’Université de Brême
Sylvain Schmitz Professeur à l’Université Paris-Cité

Directeur de thèse Joachim Niehren Directeur de recherche Inria
Présidente Sophie Tison Professeure émérite à l’Université de Lille

soutenue le 12 décembre 2024

Antonio Al Serhali

Abstract

Logical queries are at the core of graph databases, complex event processing, and
Xml stream processing. The efficiency of query answering algorithms is crucial in
practice, despite the inherent theoretical complexity of the underlying algorithmic
problem, which rules out any solution that is at the same time fully general and
efficient.

We reconsider the problem of how to answer regular queries on sequences of
data trees – often called hedges – in an earliest manner. This problem was first
studied by Gauwin et al. in 2011. Their original motivation, and still our main
application, is to answer regular XPath queries on Xml streams with the lowest
possible latency. Query answers should be output immediately whenever they
become certain independently of the continuation of the stream.

Earliest query answering for deterministic nested word automata was shown to
be in polynomial time by Gauwin et al. (2011). Unfortunately, their earliest query
answering algorithm was not successful in practice when applied to regular XPath
queries on Xml streams: the deterministic nested word automata obtained were
huge even for small XPath queries, the processing time per event of the stream was
too high, and no projection of irrelevant events was available. Therefore, the best
current tools for evaluating regular XPath queries on Xml streams – obtained by
Sebastian et al. (2015) – are based on an approximation of earliest query answering
that avoids the need to determinize nested word automata.

In this thesis, we show that earliest query answering for regular XPath queries is
feasible in practice. For this, we develop a new earliest query answering algorithm
for deterministic stepwise hedge automata (dShas). This more recent automaton
model from Sakho et al. (2021) combines deterministic finite state automata for
words and trees in a natural manner. We enhance our algorithm with complete
subhedge projection in order to project irrelevant subhedges maximally. We show
how to obtain small dShas for regular XPath queries harvested from practical Xslt
and XQuery programs by Lick and Schmitz by schema-based determinization, de-
velop a streaming algorithm for monadic queries defined by dSha with better worst
case complexity, and the first complete subhedge projection algorithms for dShas.
It turns out that complete subhedge projection makes earliest query answering
with dShas competitive in time efficiency with the best existing streaming tools
for general regular XPath queries, while being more memory efficient in cases
where these tools are not earliest. We believe that the algorithmic progress made
on earliest query answering on streams in the present thesis will eventually enable
earliest query answering on hyperstreams as proposed by Sakho et al. (2021).

Résumé

Les requêtes logiques sont au cœur des bases de données graphes, du traitement
d’événements complexes et du traitement de flux Xml. L’efficacité des algorithmes
de réponse à ces requêtes est cruciale en pratique, malgré la complexité théorique
inhérente du problème algorithmique sous-jacent, qui exclut toute solution à la fois
pleinement générale et efficace.

Nous réexaminons le problème de la réponse au plus tôt aux requêtes régulières
sur des séquences d’arbres de données, souvent appelées haies. Ce problème a été
étudié pour la première fois par Gauwin et al. en 2011. Leur motivation initiale,
qui demeure notre principale application, est de répondre aux requêtes régulières
XPath sur des flux Xml avec la latence la plus faible possible. Les réponses aux
requêtes doivent être produites immédiatement dès qu’elles deviennent certaines,
indépendamment de la continuation du flux.

Gauwin et al. (2011) ont montré que la réponse au plus tôt aux requêtes pour
les automates à mots imbriqués déterministes est en temps polynomial. Mal-
heureusement, leur algorithme de réponse n’était pas suffisament performant en
pratique lorsqu’il était appliqué aux requêtes régulières XPath sur des flux Xml :
les automates obtenus étaient énormes même pour de petites requêtes XPath, le
temps de traitement par événement du flux était trop élevé, et aucune projection
d’événements non pertinents n’était disponible. Par conséquent, les meilleurs outils
actuels pour évaluer les requêtes régulières XPath sur des flux XML – obtenus par
Sebastian et al. (2015) – reposent sur une approximation des réponses au plus tôt
qui évite la nécessité de déterminiser des automates à mots imbriqués.

Dans cette thèse, nous montrons que la réponse au plus tôt aux requêtes régulières
XPath est réalisable en pratique. Pour ce faire, nous développons un nouvel
algorithme pour les automates de haies déterministes pas-à-pas (dShas). Ce modèle
d’automate plus récent de Sakho et al. (2021) combine de manière naturelle les
automates à états finis déterministes pour les mots et les arbres. Nous renforçons
notre algorithme avec une projection complète de sous-haies afin de projeter au
maximum des sous-haies non pertinentes. Nous montrons comment obtenir de
petits dShas pour des requêtes régulières XPath extraites de programmes Xslt et
XQuery pratiques par Lick et Schmitz, par déterminisation guidée par schéma,
développons un algorithme de streaming pour des requêtes monadiques définies
par dSha avec une meilleure complexité dans le pire des cas, et introduisons les
premiers algorithmes complets de projection de sous-haies pour les dShas.

Il s’avère que la projection complète de sous-haies rend la réponse au plus tôt avec
les dShas compétitive en termes d’efficacité temporelle par rapport aux meilleurs
outils de streaming existants pour les requêtes régulières XPath générales, tout en
étant plus efficace en mémoire dans les cas où ces outils ne fonctionnent pas au plus
tôt. Nous croyons que les progrès algorithmiques réalisés sur l’approche au plus tôt
sur les flux de données dans la présente thèse permettront finalement d’avoir cette
même approche sur les hyperflux, comme proposé par Sakho et al. (2021).

Acknowledgments

First and foremost, I sincerely thank Joachim for giving me the opportunity to work
in research and pursue a PhD. It has been a long and fruitful journey. My gratitude
also goes to Professors Sebastian Maneth and Sylvain Schmitz for reviewing my
dissertation and providing valuable feedback, and to Professor Sophie Tison for
being part of the committee and presiding over it. Finally, a heartfelt thanks to the
Links team for the coffee chats, seminar discussions, and collaborations (after all, I
started as an R&D engineer in the team).

Now, since this is probably the only section where I can dodge science and
readings, it’s dedicated to some of the experiences, things, and places that made
this journey bearable–and even memorable. No algorithms, no automata, and no
names (a quirky habit of mine to link memories to places, moments, and, yes, even
the weather). But trust me–you’ll know who you are!

It began in 2020 with the "delightful" outbreak of Covid-19. Apparently, a PhD
wasn’t challenging enough without confinement and a looming death threat. Room
number 5, 4 a.m. dinner cooking (don’t judge), a lovely soul, and long nights
on "Clubhouse" with friends from all over the world made surviving that period
possible.

Coffee. The coffee machine. The second coffee machine (don’t ask). Beer–Belgian
beer (arguably the best). Wine–French, obviously. German wine–yes, it exists, and
I know at least one person who argues it’s the best. Local markets–no visit to Lille
is complete without Nicola’s pizza from the Minitalie food truck. Senegalese food
(ask J.), Molla’s Kurdish dishes, the clubs on Rue Royale, and more. Each was a
much-needed escape to recharge.

Lille and its weather–enough said. Dijon, the bittersweet. Lyon, an old childhood
friendship. Rouen, the newest piece of my precious people puzzle finding its place.
Nearby Ghent, Bruges, the Belgian coast, and the Normandy coast where you can
still see traces of Europe’s "affection" for each other (I couldn’t resist–sorry!). On
a side note, the universe seemed to enjoy throwing heavy events at us–from the
Middle East crises to the Russian-Ukrainian war. Away from stereotyping, and
while the sample size is not statistically relevant for a valid conclusion, but let’s
just say a political discussion between a Middle Easterner and a German might
be best avoided heh! Hopefully, the universe will someday find a way to "expand"
without throwing in more wars. The long car trips (I know, not the most eco-
friendly choice, and no, Paris didn’t make the cut–too noisy for the brain) to the
Netherlands, Germany, Belgium, Switzerland, Luxembourg, and the rest of France.
Unforgettable, thanks to all who tagged along and turned them into cherished
memories.

Lastly, Lebanon–my roots, my heart, my nostalgia, and my backbone. No matter
how far I go, how long I’m gone, or what arguably questionable choices I make, it’s
always there–never judging, always supporting, and always welcoming me back.

Funding Acknowledgments

I would like to express my gratitude to the "ANR" and the "Région Hauts-de-
France" for funding my PhD project and supporting my research endeavors. I
am also deeply thankful to the Inria Research Center of Lille for providing an
outstanding working environment as part of the Links team, where I benefited
from enriching collaborations, insightful discussions, and access to all the resources
I needed throughout my PhD journey–even during the stay-at-home challenges of
the Covid period. Finally, I sincerely thank the BioComputing team at Cristal, who
graciously welcomed me into their offices during my final year of research and the
most challenging phase of thesis writing.

Contents

1 Introduction 1

1.1 Context . 1

1.1.1 Logical Queries . 1

1.1.2 Streaming Query Answering 3

1.2 Open Challenges . 6

1.3 Contributions . 9

1.3.1 Small dShas for Regular XPath Queries 9

1.3.2 Subhedge Projection Algorithms for dShas 10

1.3.3 Earliest Query Answering for dShas 11

1.4 Further Related Work . 13

1.4.1 Complex Event Processing . 13

1.4.2 Xml Stream Processing . 14

1.4.3 Projection for XPath Queries 15

1.4.4 Parallelism and Streams . 16

1.5 Outline . 17

1.6 Publication Comments . 17

Part I Starting 19

2 Preliminaries 21

2.1 Mathematical Notation . 22

2.2 Words, Hedges and Nested Words . 22

2.2.1 Words . 22

2.2.2 Hedges . 23

2.2.3 Nested Words . 26

2.2.4 Hedge Traversals . 27

2.2.5 Nested Words Prefixes . 29

2.3 Regular Languages and Queries . 30

2.3.1 Regular Expressions . 30

2.3.2 Nested Regular Expressions 32

2.3.3 Regular Monadic Queries . 34

2.3.4 Schema Constraints for x-Annotations 37

3 Hedge Automata 39

3.1 Finite State Automata on Words (Nfas) 40

3.1.1 Syntax . 41

3.1.2 Semantics . 41

3.1.3 Size Measures . 42

3.1.4 Graphs . 42

3.1.5 Completion . 42

3.1.6 Runs . 44

3.1.7 Determinization . 44

3.1.8 Complementation . 46

3.1.9 Product and Intersection . 46

3.1.10 Accessibility . 48

3.1.11 Minimization . 49

3.1.12 Cleaning . 49

3.1.13 Infinitary NFAs . 50

3.1.14 Adding Else Rules . 51

3.2 Stepwise Hedge Automata (Shas) . 53

3.2.1 Syntax . 54

3.2.2 Semantics . 56

3.2.3 Size Measures . 58

3.2.4 Completion . 58

3.2.5 Runs . 58

3.2.6 Determinization . 62

3.2.7 Complementation . 62

3.2.8 Product and Intersection . 63

3.2.9 Hedge Accessibility . 63

3.2.10 Minimization . 64

3.2.11 Cleaning . 64

3.2.12 Infinitary Shas . 65

3.2.13 Else Rules . 65

3.2.14 Related Automata Models . 65

3.3 Downward Stepwise Hedge Automata (Sha↓s) 66

3.3.1 Syntax . 67

3.3.2 Semantics . 68

3.3.3 Completion . 69

3.3.4 Runs . 69

3.3.5 Conversion between Shas and Sha
↓s 70

3.3.6 Determinization . 71

3.3.7 Minimization . 72

3.3.8 Relationship to Nwas . 72

3.4 Membership Testing . 75

3.4.1 In-Memory . 76

3.4.2 Streaming . 77

3.5 Schema-Completeness . 79

3.6 Schema-Based Cleaning . 82

3.7 Two-sorted Automata . 82

3.7.1 2-Sorted Shas . 83

3.7.2 2-Sorted Sha
↓s . 84

4 Xml Documents and XPath Queries 85

4.1 XML Documents . 86

4.2 Hedge Encoding of XML Documents 87

4.2.1 General Encoding . 87

4.2.2 Schema of Hedge Encodings 88

4.3 XPath . 89

4.3.1 Regular Fragment . 89

4.3.2 Non-regular Queries . 90

4.3.3 Types and Functions . 91

4.3.4 Answer Sets . 91

4.3.5 Variables . 91

4.4 XPath Benchmarks . 92

4.4.1 XPathMark Benchmark . 92

4.4.2 Lick and Schmitz’ Benchmark 93

4.5 Schema Constraints for x-Annotations 94

4.6 Available Deterministic SHAs . 95

Part II Determinization 105

5 Schema-based Determinization 107

5.1 Introduction . 108

5.2 Accessible Determinization . 112

5.3 Schema-Based Cleaning for NFAs . 114

5.4 Schema-Based Determinization for NFAs 117

5.5 Schema-Based Cleaning and Determinization for SHAs 124

5.6 Correctness Proof . 127

5.7 Scaling Experiments . 131

6 Benchmark of XPath Queries 137

6.1 Introduction . 138

6.2 Subcorpus of Lick and Schmitz’ Benchmark 140

6.3 A Schema for Xml Documents . 146

6.4 Compiler to Automata . 146

6.4.1 Parser . 147

6.4.2 Nested Regular Expressions 147

6.4.3 Compiler to SHAs . 148

6.4.4 Schema-Based Determinization 150

6.4.5 Minimization . 151

6.4.6 Examples . 151

6.5 Testing Automata . 153

6.5.1 Membership for Samples . 153

6.5.2 Query Evaluation . 154

6.6 Automata Statistics . 155

6.6.1 XPathMark Benchmark . 155

6.6.2 Lick and Schmitz’ Benchmark 156

6.7 Example Automata for Lick and Schmitz’ Benchmark 159

Part III Projection 167

7 Complete Subhedge Projection 171

7.1 Introduction . 172

7.2 Definitions and Properties . 174

7.2.1 Irrelevant Subhedges . 174

7.2.2 Basic Properties . 176

7.2.3 Completeness for Subhedge Projection 178

7.3 Safe-No-Change Projection . 183

7.3.1 Algorithm . 183

7.3.2 Soundness . 186

7.3.3 Incompleteness . 196

7.4 Congruence Projection . 197

7.4.1 Motivation . 198

7.4.2 Approach . 198

7.4.3 Algorithm . 200

7.4.4 Soundness . 207

7.4.5 Completeness . 217

7.4.6 Automata Sizes . 222

8 Complete Suffix Projection 223

8.1 Introduction . 224

8.2 Certainty . 226

8.2.1 Σ-Certain Membership . 226

8.2.2 Certain Non-membership . 227

8.3 Schema-Safety . 227

8.4 Certainty Automata . 229

8.4.1 Membership . 229

8.4.2 Non-membership . 232

8.4.3 Combining Both . 232

8.5 Earliest dSha↓s with Complete Suffix Projection 233

9 Combining Subhedge and Suffix Projection 237

9.1 Combination Algorithm . 237

9.2 Soundness and Completeness . 238

9.3 Automaton Size . 240

9.4 Benchmark dSha for XPath Queries 240

10 Projecting Evaluators for Earliest Membership 245

10.1 Early Evaluators with Projection . 245

10.1.1 In-Memory Evaluator . 246

10.1.2 Streaming Evaluator . 249

10.2 Earliest Membership with Projection 254

10.2.1 In-Memory Complexity . 254

10.2.2 Streaming Complexity . 255

Part IV Querying 257

11 Earliest Query Answering for Regular Monadic Queries 261

11.1 Introduction . 262

11.2 Certainty for Monadic Queries . 263

11.2.1 Certain Answers . 264

11.2.2 Certain Non-answers . 264

11.2.3 Deciding Certainty . 265

11.3 Candidate Automata . 267

11.3.1 Construction . 267

11.3.2 In-Memory Correctness . 269

11.3.3 Streaming Correctness . 273

11.4 Earliest Monadic Query Answering 277

11.4.1 Earliest Candidate Automata 277

11.4.2 Adding Subhedge Projection 280

12 Experiments on Regular XPath Evaluation on Xml Streams 283

12.1 Introduction . 284

12.2 Streaming Evaluation Tool: Astream 284

12.3 Experiments without projection: Linear increase with size 286

12.3.1 Scaling-Up Document Sizes without Subhedge Projection . . 286

12.3.2 Being Earliest . 287

12.3.3 Factorization . 287

12.4 Experiments with projection . 288

12.4.1 Evaluation Measures . 288

12.4.2 Earliest Congruence Projection 290

12.4.3 Earliest Safe-No-Change Projection 291

12.4.4 Comparison to External Tools 292

12.4.5 Experiments with Lick and Schmitz’ Benchmark 293

13 Conclusion and Future Work 297

Bibliography 301

Chapter 1
Introduction

1.1 Context

In this thesis, we study the problem of answering logical queries on streams contain-

ing linearizations of data trees or hedges. We start by recalling logical languages

in which logical queries can be specified and then discussing how they are used in

stream processing.

1.1.1 Logical Queries

Logical queries are at the core of database theory [Arenas et al. 2022,

Abiteboul et al. 1995], knowledge representation [Fagin et al. 2003], complex event

processing [Cugola & Margara 2012], data exchange [Arenas et al. 2014], Web

information extraction [Abiteboul et al. 2000], and Xml document transforma-

tion [Kay 2011]. Typical examples of logical languages are first-order logic

[Smullyan 2012], monadic second-order logic [Comon et al. 2002], and Datalog

[Ceri et al. 2012]. The formulas of a logical language can specify conditions – based

on the usual logical connectives and possibly with recursion – upon which infor-

mation may be extracted from relational structures, such as graphs, hypergraphs,

trees, and relations (tables).

For many logical languages, however, the algorithmic problem of query answer-

ing is highly complex. Even the simpler problem of deciding whether a given query

has some answer on a given relational structure is often computationally hard.

The most well-known example is first-order logic – the foundation of relational

databases – where satisfiability is Pspace-complete in terms of combined complexity

2 Chapter 1. Introduction

[Stockmeyer 1974, Vardi 1982]. Even worse, satisfiability remains NP-complete for

conjunctive first-order queries [Cook 1971]. As a result, the satisfiability of SQL’s

widely-used select-project-join queries is also NP-complete when both the query

and the database are provided as inputs. Thus, under the common complexity

assumption that P ,NP, query answering is not in polynomial time even for the

most frequent classes of database queries in practice.

A key idea for reducing the algorithmic complexity of logical queries

is to restrict the use of variables. For instance, one might consider var-

ious notions of acyclic queries [Yannakakis 1981, Durand & Grandjean 2004,

Bergougnoux et al. 2019], or else, limit the number of free variables in sub-

formulas [Immerman & Kozen 1989, Schwentick & Zeume 2012]. An interest-

ing alternative is to use variable-free logics, such as modal logic [Kripke 1959,

Blackburn et al. 2001] or temporal logic [Barcelo & Libkin 2005, Hustadt 2001]. A

particularly powerful variable-free logic for graphs is the language of Nested

Regular Path Queries (NRPQs), first introduced in the seventies as formulas of

propositional dynamic logic [Fischer & Ladner 1979]. For NRPQs, fortunately, the

query answering problem is known to be in combined linear time O(|Q| |G|), where

|Q| represents the size of the query and |G| the size of the graph. This complexity

upper bound is folklore in the context of database theory and has also been shown

for the even richer logical language called the alternation-free modal µ-calculus

[Cleaveland & Steffen 1991].

When restricting graphs to data trees or hedges, NRPQs can be identified with the

navigational core of XPath 3.0. In contrast to the navigational cores of XPath 2.0

[Marx 2004] and XPath 1.0 [Gottlob et al. 2003], NRPQs not only support filters

with logical operators but also Kleene’s star operator without any restriction. The

latter cannot be expressed natively in XPath 3.0; however, it is still expressible by

using recursive functions, which are one of the important additions in XPath 3.0.

For instance, if one wants to select the name of all persons in an Xml document,

for which an address is provided, as well as a phone number or a homepage, and

also a credit card number or a profile, the query can be formulated as follows in the

navigational core of XPath 1.0:

//person

[address and (phone or homepage)

and (creditcard or profile)]/name

Here, the operator / hides a child axis, and the operator // a descendant axis,

i.e., the transitive closure child+ of the child relation. Beside these navigational

1.1. Context 3

operators, this XPath query includes a filter [address and ...] that contains

both conjunctions and disjunctions. Note that further child axis are hidden in the

above filter, which could be equivalently written as:

[child::address and (child::phone or child::homepage)

and (child::creditcard or child::profile)]

This should make it clearer that address is a label test for some child node of the

current node of the hedge. On the other hand, the core of the query language XPath

3.0 rules out the comparisons between data values, which are otherwise permitted

in full XPath. For instance, if one wants to know whether the same firstname is used

by both a male and by a female in the database , it can be done by the following

comparison of data values:

//male/firstname = //female/firstname

NRPQs on data trees or hedges can be compiled into nested regular expres-

sions with a arbitrary but fixed selection variable x, and thus, into hedge au-

tomata [Niehren & Sakho 2021]. This shows that all NRPQs for hedges define

regular queries, while the addition of comparisons of data values enable defini-

tions of non-regular queries. For this, the language of conjunctive regular path

queries (CRPQs) is more widely used as logical foundation of graph databases

[Florescu et al. 1998, Angles et al. 2017], but at the cost of variables coming back.

In this thesis, however, we will focus exclusively on regular monadic queries on

hedges with data values. Still, we permit to compare data values to constants, such

as in the query that selects all first names in the database containing the data value

“Marie”:

//male/firstname[contains(.,’Marie’)]

Comparisons with constant data values enable a restrictive usage of the data values

in the hedges without compromising the regularity of the queries.

1.1.2 Streaming Query Answering

Query answering on data streams has been studied extensively in the fields of

Xml document processing and Complex Event Processing (CEP), where a complex

event is nothing else than a query. The data streams contain words with or without

4 Chapter 1. Introduction

parenthesis, with the main restriction being that the word on the stream can be

read only once from the left to the right.

Query answering on hedges becomes even more challenging when the hedge can

only be read in streaming mode, meaning that a linearization of the hedge as a

nested word is received through an input stream. Users often expect that query

answers are produced with low latency, i.e., as soon as sufficient information has

been observed in the stream, rather than having to wait for the end of the stream

to conclude. Consequently, streaming algorithms should operate incrementally,

processing streams event by event (i.e. letter by letter), immediately as they arrive.

For certain applications, such as web advertising placement or detecting web service

attacks, answers must not only be provided with low latency but also in real time,

often within milliseconds.

From an algorithmic perspective, non-answers must be discovered and rejected

eagerly once they become certain. These are answer candidates that can no longer

be selected in any continuation of the stream. If not addressed, these non-answers

may require excessive space and processing time. For monadic queries, the number

of certain non-answers can be linear in the size of the stream, making it impossible

to store all of them for large streams (stream size exceeding memory capacity, which

can reach tens of gigabytes on typical modern machines). Furthermore, examining

each certain non-answer for every event may require quadratic time in the size of

the stream, which is unacceptable, even for streams of moderate size (typically on

the order of several tens of megabytes).

A certain query answer is an answer candidate in a stream that will be selected

in all its continuations. Low-latency query answering requires the eager output

of certain query answers. An alive answer candidate is an answer candidate in a

stream that is neither certain for selection nor certain for rejection. The concurrency

of a query at an event in a stream refers to the number of its alive candidates. Many

practical queries exhibit only a small concurrency. This holds for instance for

0-delay regular path queries, such as:

//a/b/c

Whether a c-event on the stream can be selected can be decided without looking

into the future of the stream. The situation becomes more complicated for NRPQs

with filter from Core XPath 1.0 such as:

//a/b/c[child::d]

1.1. Context 5

In many practical complex event processing systems [Carney et al. 2002,

Chandrasekaran et al. 2003], queries are specified by using sliding windows. The

delay of such queries is the window’s size w, so the concurrency of the query is

bounded by w + 1. In Xml stream processing, however, regular XPath queries with

unbounded delay and concurrency cannot be excluded, as illustrated already by

the above NRPQ example from Core XPath 1.0 with a filter. Therefore, all existing

streaming tools for regular XPath queries with large coverage such as Olteanu’s Spex

[Olteanu 2007] and Sebastian’s QuiXPath [Sebastian 2016, Debarbieux et al. 2015]

need clever strategies to remove certain non-answers and detect certain answers as

quickly as possible.

This brings us to the main problem addressed in this thesis: Earliest Query
Answering (EQA). EQA refers to the problem of answering a given query on a given

stream in an earliest manner, i.e., determining certain answers with the lowest

possible latency, while discarding certain non-answers as soon as possible. In this

work, we specifically focus on EQA for regular queries on streams containing data

hedges, i.e., sequences of letters and trees containing data hedges themselves. In

other words, the streams send the letters of some nested word.

Unfortunately, EQA is computationally hard, even for small logical query lan-

guages for which query answering is in polynomial time. More precisely, the

decision problem for a query language – i.e. determining whether a candidate

in the stream is a certain answer to a query in that language – is a universality

problem [Gauwin & Niehren 2011]. Since EQA is a universality problem, both EQA
and universality are coNP-hard problems for the language of forward regular path

queries with the axes child and child∗, including filters and negation (see Proposition

17 of [Gauwin 2009]).

On the positive side, Gauwin et al. [Gauwin et al. 2009b, Gauwin 2009] showed

that EQA is in polynomial time for regular queries on nested words (i.e., hedges)

defined by deterministic nested word automata (Nwas). Determinism is crucial

here, as it renders the language universality problem feasible, and thus also EQA.

Gauwin’s EQA algorithm requires quadratic time per event O(n2), where n is the

number of states of the deterministic Nwa, following a cubic precomputation in

time O(n3). The first bottleneck of this approach in practice is the determinization

algorithm for Nwas, which may produce huge results even for simple regular XPath

queries, or may not even terminate after several hours [Debarbieux et al. 2015].

To avoid the bottleneck of Nwa determinization, Sebastian et al. proposed com-

piling forward regular XPath queries to nondeterministic early Nwas for approxi-

6 Chapter 1. Introduction

mating EQA [Sebastian 2016, Debarbieux et al. 2015]. Additionally, they presented

subtree and descendant projection algorithms for Nwas to improve the efficiency

of their streaming algorithms. Their QuiXPath tool, based on these algorithms, is

currently the most efficient streaming tool for answering XPath queries on streams

with large coverage.

The time per event of QuiXPath is limited to O(n), even for queries with large

concurrency, due to stack-and-state sharing. However, for some queries with low

concurrency, where their EQA approximation is not exact, QuiXPath may run out

of memory on huge streams, even though the concurrency c is low. In contrast, for

queries for which QuiXPath is earliest, the required memory is bounded by

O(c+m+n depth(h))

where m is the overall size of the input early Nwa, n the number of it states, and c

the concurrency the automaton’s query on h, and depth(h) the depth of hedge h. So

when bounding the concurrency c and depth(h), QuiXPath should not run out of

memory for queries where it is earliest even for huge input streams.

1.2 Open Challenges

Following the above, several open challenges and questions emerge. These highlight

the problems for which we will present solutions in this dissertation. Here, we lay

them out:

Question 1. Does there exist sufficiently small deterministic automata for regular

path queries, that allow to answer regular XPath queries on Xml streams in an

earliest manner in practice? And if so, how to compute them?

As discussed above, Xml stream processing has been widely studied, with sub-

stantial research efforts aimed at improving its practical efficiency, particularly in

terms of large coverage, minimal latency, and low memory consumption. Large

coverage, combined with streaming, calls for automata-based approaches, as shown

in the best previous solutions. Optimal latency in all cases, calls for deterministic

automata due to complexity reasons.

The determinization of automata for words and trees is usually based

on the subset construction, which may raise an exponential blow-up of

the automaton size. The usual determinization algorithm for nested

word automata [von Braunmühl & Verbeek 1985, Alur & Madhusudan 2004,

1.2. Open Challenges 7

Okhotin & Salomaa 2014] combines a pair and a subset construction, so it may

raise an exponential blow-up too. For Nwas, however, this may happen much more

frequently than for Nfas as noticed by Debarbieux et al. [Debarbieux et al. 2015].

For instance, they report a huge blow-up for their attempt to determinize an Nwa

for the XPath query:

//a[following-sibling::b[.//c][./d]]/e

The nondeterministic Nwa that they compiled from the query has 38 states and

7,719 transitions. The determinization of this Nwa runs out of memory, after

having discovered more then 5,000 accessible states and 20 million transitions.

Niehren and Sakho [Niehren & Sakho 2021] revisited the problems of deter-

minization and minimization of automata for nested words. They propose to

reduce Nwa determinization to the determinization of stepwise hedge automata

(Shas), in order to obtain smaller deterministic Nwas. Shas are a more recent

automaton model that they introduce, by combining finite state automata for words

and trees in a natural manner. They have the advantage that they can be deter-

minized by the usual subset construction, avoiding the difficulties of classical Nwa

determinization.

Niehren and Sakho also noticed an important role of schemas of queries, i.e.,

to which hedges the query may be applied. Which regular languages represent a

given regular query may depend on the schema. Additionally, they propose schema-

based automata cleaning – which may change the automaton’s language outside

the schema – in order to reduce the size of minimal deterministic automata. In this

way, they obtained promising results, producing smaller deterministic automata

for all regular XPath queries of the XPathMark benchmark.

However, their approach still falls short when applied to the practical queries

from the benchmark harvested by Lick and Schmitz [Lick & Schmitz 2022], as we

will report in Chapter 5: Sha determinization fails to terminate within a timeout

of 100 seconds for 37% of the queries there. Even without the timeout and with

processing time extending to some hours, the resulting determinized automata for

some queries still reached the order of tens of thousands of states and millions of

transition rules. So the question remains open whether one can improve on this

situation. What gives hope is that the schema-based cleaning of the determinization

of an Sha may still be way much smaller than the determinization.

Question 2. Is EQA for regular queries feasible in practice, particularly in the

application of XPath query answering on Xml streams? Can the quadratic factor

8 Chapter 1. Introduction

n2 in the time upper bound per event of Gauwin’s EQA algorithm for dNwas be

avoided?

As input, the EQA problem receives a stream that contains a nested word – i.e.

a linearization of some hedge sent letter by letter from the left to the right – and

a deterministic automaton for nested words that defines the regular query. We

assume that the deterministic automaton is of a reasonable size, so the number of

states n is no more than few hundreds, and the number of transition rules m at

most few thousands.

Gauwin’s EQA algorithm requires time O(c n2) per event of the stream, where c

is the concurrency of the query at the event, i.e., the number of alive candidates

of the query on the event that are neither certain for selection nor rejection. In

practice of regular XPath queries, the concurrency c is often bounded by 2. When

assuming bounded concurrency, the critical factor is the remaining O(n2). This

quadratic factor comes from dNwa universality checking, under the assumption

that the binary hedge accessibility relation of the dNwa has been precomputed in

time O(n3). So a key question is how to reduce this quadratic factor (and may be

also the cubic precomputation?).

We also note that for queries with unbounded concurrency, one should be able

to apply dNwa evaluation with stack-and-state sharing from Debarbieux et al.

[Debarbieux et al. 2015], in order to improve Gauwin’s EQA algorithm. Thereby,

the concurrency factor c in the upper bound can be reduced to n. However, even

in this case, the question remains: under which conditions can one reduce the

quadratic factor n2? More concretely, can we reduce the quadratic factor n2 to m

– i.e. the overall automaton size – when using dShas instead of dNwas as inputs?

This was suggested already by the PhD thesis of Sakho [Sakho 2020], but could not

be proven there. As we will show, the answer is indeed positive.

Question 3. Can EQA algorithms for regular monadic queries be made so efficient,

that they becomes competitive with the best existing streaming algorithms for

answering regular XPath queries on Xml streams? Given that projection is key

for the efficiency of these algorithms, the question is how to obtain sufficiently

powerful projection algorithms for dShas.

Projection means processing only the relevant parts of the input document while

ignoring others, thereby reducing unnecessary computation. In-memory projection

can be obtained by jumping over irrelevant parts of the input hedge. In streaming

mode, projection means to only parse irrelevant parts of the input hedge and not to

1.3. Contributions 9

send them to the evaluator. This optimization is critical, given that pure parsing is

usually done two or three orders of magnitude faster than query evaluation.

The best existing streaming algorithms that answer XPath queries on Xml streams

rely on projection to drastically reduce the processing time. Saxon’s in-memory

evaluator for all of Xslt and thus XPath must use some kind of projection given

its high efficiency. However, we couldn’t find information on which precise pro-

jection algorithm it applies. Projection for alternating tree automata is used for

the regular XPath evaluator of [Maneth & Nguyen 2010]. The QuiXPath eval-

uator for Xml streams, relies on subtree and descendant projection for Nwas

[Sebastian & Niehren 2016]. The idea in the latter is to recognize loops, in which

an Nwa does not change the state, when either reading a subtree, or else moving

down to some descendant. Their approach may require choices between the two

strategies for subtree projection or descendant projection. However, it does not

offer any guarantee that projection is complete, i.e., that all irrelevant parts of the

stream are ignored.

When moving from dNwas to dShas, one problem is that subtree projection

becomes much weaker, since dShas operate in a bottom-up manner, so that the

loops in which dNwas don’t change the state in subtrees do not exist anymore.

Therefore, it is unclear how one could obtain to powerful projection methods for

dShas. It is sure, though, that simple loop detection will not do the job. What is

less clear is which alternative one could develop instead.

1.3 Contributions

We next present our contributions to the open challenges, on schema-based de-

terminization, subhedge projection, and earliest query answering (EQA). Each

contribution comes with a theoretical and a practical result.

1.3.1 Small dShas for Regular XPath Queries

We contribute the first schema-based determinization algorithm for stepwise hedge

automata (Sha). In a nutshell, it consists of integrating schema-based cleaning as

presented in [Niehren & Sakho 2021] directly into the accessible determinization

of the automaton. Thereby, generating the possibly exponentially larger accessible

determinization as an intermediate result is avoided.

We show an upper-bound for the time needed to compute schema-based deter-

10 Chapter 1. Introduction

minized automata for Shas, which is equivalent to the accessible determinized one

followed by schema-cleaning. This upper bound depends quadratically on the size

of the product of the accessible determinization automaton with the deterministic

automaton for the schema, which, in turn, may be exponentially smaller than the

accessible determinization alone.

We implemented our schema-based determinization algorithm for Shas and

tested it on the Shas of 78 regular forward XPath queries, that we selected from a

corpus of over 21,000 queries extracted by Lick and Schmitz [Lick & Schmitz 2022]

from real-world Xslt and XQuery programs (docbook, htmlbook, teixsl, treedown,

and histei). The selection aimed to capture the most complex regular forward XPath

queries in the corpus. The schema we employed integrates the Xml data model and

the fact that the selection variable of Shas of the query must occur exactly once in

each accepted hedge. As a result, we could successfully determinize the Shas for 78

queries, obtaining small dSha with at most 58 states for all queries and an overall

size of at most 358. We made these dShas freely available in the Software Heritage

archive (see https://gitlab.inria.fr/aalserha/xpath-benchmark), as well as

the corresponding dNwas of similar sizes.

This contribution yields a positive answer to Question 1. The schema-based

determinization algorithm directly produces small deterministic Shas by avoiding

large intermediate automata. The complexity result shows that this method can

generate significantly smaller automata, and the implementation tested on real

XPath queries confirms its practical effectiveness. This result is game changer for

the practical problem of earliest query answering of regular XPath queries on Xml

streams.

1.3.2 Subhedge Projection Algorithms for dShas

We developed subhedge projection algorithms for dShas that answer Question 3, at

least partially.

We start by formalizing the concept of irrelevant subhedges for regular languages.

Given a language L, it identifies which subhedges of a given hedge h are not relevant

for language membership h ∈ L. This notion is the foundation of a subhedge projec-

tion algorithm, that we present next. We will apply subhedge projection to earliest

membership testing algorithms for regular hedge languages – corresponding to

answering regular Boolean queries – and to earliest monadic query answering.

Our first algorithm for subhedge projection for dShas is called safe-no-change

https://gitlab.inria.fr/aalserha/xpath-benchmark

1.3. Contributions 11

projection. It relies on compiling dShas representing regular hedge languages to

dSha↓s. These are an extension of Shas with top-down processing that we introduce,

necessary to identify states that allow for subhedge projection. Sha↓s for hedges

are roughly like Nwas for nested words [Alur 2007, Okhotin & Salomaa 2014].

Formally, Shas are even closer to Neumann and Seidl’s pushdown forest automata

[Neumann & Seidl 1998], since hedges extend on (ordered) forests by permitting

unlabeled nodes.

The key idea behind the safe-no-change projection is to propagate information

top-down, allowing the identification of looping states that are guaranteed to re-

main unchanged. Although being sound, safe-no-change projection is not complete

for subhedge projection, i.e., it may not detect all irrelevant subhedges.

This leads us to the question, whether complete subhedge projection for dShas

is possible. To formalize what that means precisely, we introduce the notion of

strongly irrelevant subhedges. Only these subhedges need to be projected by a

complete subhedge projection. Projecting all strongly irrelevant subhedges makes it

impossible to project those that are irrelevant but not strongly irrelevant. The most

technically challenging contribution of this thesis is an algorithm for dShas that is

complete for subhedge projection: the congruence projection algorithm. It resolves

the incompleteness of the safe-no-change projection, while using congruence as

known from Myhill-Nerode’s theorem for Nfa minimization. In the case of general

dShas, the algorithm maintains a difference relation on the states of the input dSha,

for compiling it to a dSha↓, while also depending on a regular schema.

This contribution shows that powerful subhedge projection algorithms for dShas

are indeed achievable, providing a partial answer to Question 3. How to incorporate

complete subhedge projection into EQA for regular monadic queries is studied next,

as well as reporting some practical results.

1.3.3 Earliest Query Answering for dShas

We finally study earliest query answering for dShas in order to answer Question 2.

In combination with complete subhedge projection, this also closes most of the

open parts of Question 1 and Question 3.

We contribute a new compiler from dShas to earliest dSha↓s which can detect

certain language membership or non-membership at the earliest possible prefix

of hedge. These earliest automata enable complete suffix projection, i.e. earliest

selection and earliest rejection, so that all irrelevant suffixes of the nested word of a

12 Chapter 1. Introduction

hedge can be ignored.

We then show how to obtain an earliest dSha↓s with complete subhedge projec-

tion for any dSha. For this, we provide a general method for combining subhedge

projection with suffix projection, i.e. earliest dSha↓s with dSha↓s with complete

subhedge projection.

We then introduce earliest top-down evaluators for dSha↓s with subhedge pro-

jection, which can operate either in-memory or in streaming modes. Both eval-

uators detect certain membership upon reaching some selection state. For each

non-projected event of the input hedge, they require O(1) time, when assuming a

potentially exponential precomputation.

Finally, we present a new earliest query answering (EQA) algorithm with full

subhedge projection for monadic queries defined by dSha. The algorithm operates

in time O(c) per non-projected event, where c is the concurrency of the query at

the event of the hedge. Our algorithm efficiently supports both streaming and

top-down in-memory evaluation of regular monadic queries defined by dSha. It

requires polynomial preprocessing time relative to the size of the earliest dSha↓

with complete subhedge projection, which itself may require exponential time to

compute in the worst case. This exponential preprocessing time can be avoided by

computing only the needed part of the dSha↓s on the fly, at the cost of admitting

O(c m) time per event, where m is the overall size of the dSha. In this case, the

preprocessing time can be reduced to O(n3d), where d is the number of needed

difference relations, which is linearly bounded by the size of the stream.

We fully implemented the EQA algorithm for dShas with complete subhedge

and suffix projection in Astream, a currently internal tool that we developed to test

our query answering algorithms for monadic queries defined by dShas. It supports

both safe-no-change and congruence projection, and is currently limited to the

streaming evaluation mode.

Since we aim to answer regular XPath queries on Xml streams, we tested Astream

on dShas using the XPathMark benchmark, which provides an Xml document

generator for scaling document sizes. This allows us to compare the performances

of Astream and QuiXPath on the same Xml documents and XPath queries. Congru-

ence projection proved more efficient than safe-no-change, significantly reducing

runtime by projecting 75.7% to 100% of the input streams. For queries with only

child axes, Astream’s congruence projection is 1.3 to 2.9 times slower than QuiX-

Path, but remains competitive even with descendant axes, where it is at most

13.8 times slower. We also tested Astream’s congruence projection on the regular

1.4. Further Related Work 13

queries collected from Lick and Schmitz’ benchmark, on documents we gathered

for this purpose. The test showed the correctness of the answer sets after comparing

them to those obtained with Saxon evaluator.

1.4 Further Related Work

We describe some approaches on complex event processing, Xml stream processing,

and projection in more details.

1.4.1 Complex Event Processing

A complex event is a query on streams that selects tuples of events, i.e., tuples of

positions of the stream. Complex event processing (CEP) is the problem of answer-

ing such a query on a stream. Most approaches to CEP [Cugola & Margara 2012]

use restricted classes of queries, so that whether a tuple of events answers the query

depends only on the past and on a window of bounded size of the future (following

the last event of the tuple). Most CEP systems do allow for non-regular queries,

which compare data values. Moreover, answers are expected to be reported with

low latency, meaning the output must be produced incrementally, no later than

when the processing of the window following the selected tuple is finished.

In the most extreme case, where the window size is 0, one refers to 0-delay queries

[Benedikt & Jeffrey 2007]. For monadic 0-delay queries, whether an event is an

answer depends solely on the past of the event, not on its future. Bounded delay

queries allow windows with a bounded number of events [Gauwin et al. 2011].

However, there are also many other kinds of windows, for instance defined by the

real time delay [Cugola & Margara 2012].

In [Mozafari et al. 2012], a query language for CEP over Xml streams was de-

veloped and applied to various domains such as stock analysis, social networks,

genetics, and more. Whether an Xml element is selected by a query of this language

depends only on the attributes of the event and its past, i.e., the preceding elements.

The language is inspired by XPath. It uses a syntax for NRPQs including the Kleene-

star natively (unlike XPath), and thus allowing a recursive look back into the past.

They compile their queries to nondeterministic visibly pushdown automata – yet an-

other alternative to nested word automata [Pitcher 2005, Okhotin & Salomaa 2014]

– which are used for query answering.

In [Grez et al. 2019], a formal framework for CEP was introduced, along with a

14 Chapter 1. Introduction

formal language for specifying complex events and its complete semantics. Streams

are lists of tuples of data values. This language permits to select tuples of events

while using comparisons of data values. Selection depends only on the past of the

last event bound in the tuple. In [Muñoz & Riveros 2022a], streams were general-

ized to nested words, and filter with tests about the future were added. In this case,

the answer set can be produced only at the very end of the stream.

1.4.2 Xml Stream Processing

Xml stream processing has been extensively studied [Green et al. 2004,

Koch et al. 2004, Olteanu 2007, Kumar et al. 2007, Benedikt et al. 2008, Kay 2010]

both theoretically and practically. Many approaches are restricted to small frag-

ments of XPath, with a primary focus on algorithms and tools that can handle Xml

streams efficiently, with low memory, low time per event, and low latency. But

some approaches can deal with large fragment of XPath too.

Olteanu’s Spex tool [Olteanu 2007], was the first to deal with all regular XPath

1.0 queries. He propose to use transducer networks to represent and process regular

XPath queries. His tool is freely available and operational. It yields decent time

and space efficiency for most queries. His algorithm approximates EQA but is

not earliest in general. The idea is that all answer candidates nodes of a regular

XPath query, with only descending axis (child and descendant), become certain

at closing time.

Sebastian QuiXPath tool [Sebastian 2016, Debarbieux et al. 2015] also supports

all regular XPath 1.0 queries. In addition, it support some non-regular queries

of XPath 3.0 based on networks of automata. QuiXPath approximates EQA by

compilation of forward regular XPath queries to nondeterministic Early Nwas.

These are Nwas with distinguished subsets of selection and rejection states that

permit to select certain answers and non-answer in an early manner.

QuiXPath achieved the largest coverage compared to all other tools benchmarks

and demonstrated the highest time efficiency since using subtree and descen-

dant projection [Sebastian & Niehren 2016]. Queries with high concurrency can

be treated in time O(n) per event, where n is the number of states of the Nwa

representing the query. This is possible by using stack-and-state sharing for the

concurrent candidates [Debarbieux et al. 2015]. For queries, where QuiXPath is

not earliest, it still has high time efficiency per event, but may run out of memory

for huge documents that do not fit into memory (even with low concurrency).

1.4. Further Related Work 15

1.4.3 Projection for XPath Queries

Maneth and Nguyen [Maneth & Nguyen 2010] defined notions of relevant nodes

for bottom-up and top-down tree automata. These are based on the idea the

automaton does not change the state on these nodes, up to equivalence class with

respect to the Myhill-Nerode congruence. They then use an approximation of

these notions of relevant nodes for nondeterministic alternating tree automata, in

order to evaluate regular XPath queries in-memory with subtree and descendant

projection. Their experimental results show very good performances compared to

Xml database systems (MonetDB). Comparisons with Saxon’s in-memory evaluation

are not given.

The idea underlying this approach are closely related to the approach to projec-

tion applied in the present thesis. Our notion of irrelevant subhedges for Sha
↓s

seems to generalize on the congruence-based notion of irrelevant nodes of Maneth

and Nguyen, in that Sha↓s generalize on top-down and bottom-up tree automata in

a uniform framework. With the difference that we consider only subhedge projec-

tion, while they also treat descendant projection. Our safe-no-change algorithm for

subhedge projection for Shas yields an approximation of relevant subhedges based

on looping states, in the same spirit as their approximation of relevant nodes for

nondeterministic alternating tree automata. Our notion of congruence projection is

based on the idea that irrelevant suffixes for Dfas can be discovered on the basis

of the Myhill-Nerode congruence, which was already noticed in their paper. But

no completeness results for subhedge projection were obtained there that could be

applied to general regular XPath queries.

Niehren and Sebastian [Sebastian & Niehren 2016] propose projection algo-

rithms for Nwas supporting both, subtree and descendant projection. These

algorithms use loop detection to skip subtrees or jump to descendants while ig-

noring irrelevant parts. As we do, they consider streaming evaluation, in con-

trast to Maneth and Nguyen who study in-memory evaluation. But similar to

[Maneth & Nguyen 2010], their approach does not guarantee complete subtree

projection, but has the advantage to also perform descendant projection.

Niehren et al. [Niehren et al. 2022b] study projection algorithms for NRPQs on

graphs. They introduce a notion of top-irrelevant nodes for NRPQs and show that

it can be captured by the top-down evaluation of Datalog programs compiled from

the NRPQs. Even though applicable to graphs, they tested their evaluation with

projection on regular XPath queries. Moreover, they overcome some limitations of

Maneth and Nguyen’s. Their algorithm is not bound to trees and applies to graphs.

16 Chapter 1. Introduction

Furthermore, it is not limited to forward navigational XPath but can treat any

NRPQ also with backward axis. Finally, it was implemented efficiently without any

dedicated techniques based on any top-down Datalog evaluator (such as provided

by LogicBlox for instance).

Gienieczko, Murlak, and Paperman [Gienieczko et al. 2024] present an efficient

algorithm for querying JSON streams. It supports simple NRPQs without filters, i.e.,

path queries with forward axis child, descendant, label test, and wildcard selectors.

For such queries, any answer or non-answer becomes certain with 0-delay. They

consider machines with Single Instruction, Multiple Data (SIMD) architectures.

Based on vector operations of such machines, the part of the stream subject to

descendant projection can be processed blockwise (using memchr), speeding up

the parsing of the projected part up to an order of magnitude.

1.4.4 Parallelism and Streams

Stream processing can be sped up by hyperstreaming. The idea is to decom-

pose the stream into factors that are sent and processed in parallel. Hyper-

streams containing Xml documents are also called Xml streams with references

[Maneth et al. 2015]. Hyperstreams containing trees are also called compressed

tree patterns [Sakho et al. 2017].

When evaluating a factor by an automaton, however, one cannot know the state

into which the preceding suffix got evaluated. Nonetheless, one can still start in

all states in a speculative manner, and decide on the correct state later once the

missing information becomes available. The whole stream can then be evaluated

by composing the transitions of its factors.

Paperman et al. [Murlak et al. 2016] considered hyperstreams with fixed-size

blocks for the problem of regular schema validation. They used circuits to evaluate

blocks of size b in time log(b).

Sakho et al. [Sakho 2020, Sakho et al. 2017] studied hyperstreams of trees for the

problem of earliest query answering for regular monadic queries. They considered

automata techniques to evaluate the nested word factors, with the objective of

reducing the output latency of certain query answers.

Maneth, Seidl, et al. [Maneth et al. 2015] studied the problem of transforming

Xml streams with references by top-down tree transducers with low memory costs.

1.5. Outline 17

1.5 Outline

This thesis is split into 4 parts:

Part I starts with preliminaries. The only new contribution there is the notion of

downward stepwise hedge automata in Section 3.3.

Part II is about schema-based determinization and how to use it to obtain small

deterministic automata for regular XPath queries in practice.

Part III presents the new results on subhedge and suffix projection. This is the

core of the thesis.

Part IV shows how to use these projection algorithms for earliest query answering

on Xml streams, and provides experimental results.

1.6 Publication Comments

During my PhD, I contributed to 5 publications, 4 at international conferences

(of which one is of industrial character), and 1 extended to a journal article. The

content of all these publications constitute the basis of the present dissertation:

• Schema-Based Automata Determinization [Niehren et al. 2022a]: This Gan-

dalf’22 conference paper introduces our schema-based determinization algo-

rithms for both Nfas and Shas. It is included in Chapter 5.

• A Benchmark Collection of Deterministic Automata for XPath Queries
[Al Serhali & Niehren 2022]: This Xml Prague’22 conference paper presents

the application of our newly introduced determinization algorithm on bench-

marks of XPath queries, where we were able to obtain small deterministic

Shas. It constitutes the content of Chapter 6.

• Complete Subhedge Projection for Stepwise Hedge Automata
[Al Serhali & Niehren 2024] and Subhedge Projection for Stepwise Hedge
Automata [Al Serhali & Niehren 2023b]: This article in the Algorithms’24

journal was partially presented previously at the FCT’23 conference. In FCT,

the safe-no-change projection algorithm was given and in Algorithms, the

congruence projection algorithm was added. These contribution form the

backbone of the present dissertation. They can be found in Chapters 7, 9, 10,

and 12.

18 Chapter 1. Introduction

• Earliest Query Answering for Deterministic Stepwise Hedge Automata
[Al Serhali & Niehren 2023a]: This conference paper presents our Earliest

Query Answering (EQA) algorithm for dShas, which achieves a combined

linear complexity of O(c m) time per event. The algorithm used infinitary, on-

the-fly, deterministic nested word automata (dNwas) as streaming machines,

without considering schema. In this dissertation, we now use downward step-

wise hedge automata (dSha↓s), which we construct statically, incorporating

schema into the construction. This work is included in Chapters 8, 10, and

11.

Part I

Starting
We present preliminaries on formal language theory, finite state automata on

words, regular hedge languages, and stepwise hedge automata. We introduce

downward stepwise hedge automata, an extension of stepwise hedge automata

that was proposed during the present doctoral thesis [Al Serhali & Niehren 2023b,

Al Serhali & Niehren 2024], but can also be considered as a variant of nested word

automata, which have been reinvented multiple times under various different

names since the eighties. We finally discuss regular monadic queries on hedges and

their relationship to regular XPath queries on Xml documents.

Chapter 2
Preliminaries

Abstract
We introduce the basic concepts from formal language theory and regu-
lar queries on hedges that will be needed in this dissertation. We start
with the structures of words, hedges, and nested words, with particular
emphasis on the graphs of hedges and their top-down traversals. Addi-
tionally, we discuss the relationship between hedges, nested words, and
stream processing. We then recall how to define regular hedge languages
by nested regular expressions, and explain how the latter can be used to
define regular monadic queries that select nodes of hedges as well.

Contents
2.1 Mathematical Notation . 22

2.2 Words, Hedges and Nested Words . 22

2.2.1 Words . 22

2.2.2 Hedges . 23

2.2.3 Nested Words . 26

2.2.4 Hedge Traversals . 27

2.2.5 Nested Words Prefixes . 29

2.3 Regular Languages and Queries . 30

2.3.1 Regular Expressions . 30

2.3.2 Nested Regular Expressions 32

2.3.3 Regular Monadic Queries . 34

2.3.4 Schema Constraints for x-Annotations 37

22 Chapter 2. Preliminaries

2.1 Mathematical Notation

Let N be the set of natural numbers including 0. For any set A and natural number

n ∈N, we define the set of n-tuples of elements of A by:

An = {(a1, . . . , an) | a1, . . . , an ∈ A}

Note that A0 = {()} is a singleton and thus ∅0 is nonempty. Let A,B be sets. If A ⊆ B
then the complement of A in B is denoted by

A = B \A

Note that the set relative to which the complement is taken is kept implicit when

writing A. The domain of a binary relation r ⊆ A×B is:

dom(r) = {a ∈ A | ∃b ∈ B. (a,b) ∈ r}

A partial function f : A ↪→ B is a binary relation f ⊆ A×B that is functional, i.e., for

all a ∈ A there exists at most one b ∈ B such that (a,b) ∈ f . In this case we define

f (a) = b. A total function f : A→ B is a partial function f : A ↪→ B with dom(f) = A.

2.2 Words, Hedges and Nested Words

We start with recalling the definition for words, then introduce hedges and their

linearizations to nested words.

2.2.1 Words

Let Σ be a finite set. The set of words with alphabet Σ is Σ∗ = ∪n∈NΣn. A word

(a1, . . . , an) ∈ Σn where n ∈N is written as a1 . . . an. We denote the empty word of

length 0 by ε = () ∈ Σ0 and by v1 · v2 ∈ Σ∗ the concatenation of two words v1,v2 ∈ Σ∗.

If v = u · v′ ·w is a word, then we call u a prefix of v and v′ a factor of v and w a

suffix of v. Given any subset L ⊆ Σ∗, we denote the set of prefixes of words in L by

prefs(L) and the set of suffixes of words in L by suffs(L).

For any subalphabet Σ′ ⊆ Σ, the projection of a word v ∈ Σ∗ to Σ′ is the word

projΣ′ (v) in (Σ′)∗ that is obtained from v by removing all letters from Σ \Σ′.

2.2. Words, Hedges and Nested Words 23

2.2.2 Hedges

Intuitively, hedges are sequences of letters and unlabeled trees 〈h〉, that again

contain some hedge h. More formally, a hedge h ∈ HΣ is an equivalence class of

terms with the following abstract syntax:

h,h′ ∈ HΣ ::= a | 〈h〉 | ε | h · h′ where a ∈ Σ

The terms are constructed from the constants a ∈ Σ, the unary tree constructor 〈〉,
and, from a constant ε, and the binary composition operator ·. The application of

the tree constructor 〈〉 to some hedge h is written as 〈h〉, while the application of

the binary constructor · to hedge h and h′ is written in infix notation as h · h′. We

assume that (HΣ,ε, ·) is a monoid, i.e. that hedge composition · is associative with

the empty hedge ε as neutral element, so for all h,h′ ,h′′ ∈ HΣ:

ε · h = h · ε = h

(h · h′) · h′′ = h · (h′ · h′′)

That means that hedges are equivalence classes of terms modulo the monoid axioms.

Since · is associative, we can omit parenthesis in our abstract syntax, and simply

write h · h′ · h′′ instead of (h · h′) · h′′ or h · (h′ · h′′).

Example 2.1. Let Σ = {a,b}. Then 〈a · ε · 〈b · a〉 · 〈a · b〉〉 · a · 〈a〉 is a hedge in HΣ that is
equal to the hedge 〈a · 〈b · a〉 · 〈a · b〉〉 · a · 〈a〉

Words are different from hedges. The only words that are also hedges are the

empty word ε and the single letter words a ∈ Σ. Still any word in Σ∗ can be mapped

to some hedge in HΣ by adding the composition operator · between the letters. The

word w = aab ∈ Σ∗, for instance, can be mapped to the hedge hdg(w) = a · a · b ∈ HΣ.

Note that the composition operator · for hedge construction is different from

the concatenation operator · for words, which is typeset in bold face to make this

apparent. As a consequence, a ·a ·b = hdg(aab) is a hedge inHΣ, whereas a ·a ·b = aab

is a word in Σ∗.

Given a subset Σ′ ⊆ Σ and a hedge h ∈ HΣ, we define the projection ΠΣ′ (h) ∈ HΣ′

as the hedge obtained by removing all letter outside Σ′ from h.

24 Chapter 2. Preliminaries

〈〉

a 〈〉

b a

〈〉

a b

a 〈〉

a

Figure 2.1: A graphical representation of the hedge 〈a · ε · 〈b · a〉 · 〈a · b〉〉 · a · 〈a〉.

2.2.2.1 Hedge Sizes

We define the size |h| of a hedge as its term size, while ignoring the constructors ·
and ε. The size can be defined recursively over the structure of hedges such that

for all h,h′ ∈ HΣ and a ∈ Σ:

|ε| = 0 |a| = 1

|h · h′ | = |h|+ |h′ | |〈h〉| = 1 + |h|

Example 2.2. The hedge h = 〈a · ε · 〈b · a〉 · 〈a · b〉〉·a·〈a〉 from Figure 2.1 has size |h| = 11.

2.2.2.2 Hedge Nodes

Since any hedge is a term modulo the monoid axioms, it can be represented by

some directed acyclic graph (DAG).

Example 2.3. A graphical representation of the hedge 〈a · ε · 〈b · a〉 · 〈a · b〉〉 ·a · 〈a〉, which
that is equal to 〈a · 〈b · a〉 · 〈a · b〉〉 · a · 〈a〉 by the monoid axioms, is given in Figure 2.1.
Note that the operators · and ε are not shown there explicitly. They impose an ordering
on the nodes of any subhedge of the hedge, which we drawn by placing them from the left
to the right.

A node of a hedge in the graphical representation is an occurrence of a hedge

constructor in Σ∪ {〈〉}. We can identify any node of a hedge h ∈ HΣ by a natural

number, numbering the occurrences of hedge constructors in Σ∪ {〈〉} from 1 to |h|.
So the set of all nodes of a hedge h is:

nod(h) = {1, . . . , |h|}

Example 2.4. The hedge h = 〈a · ε · 〈b · a〉 · 〈a · b〉〉 · a · 〈a〉 from Figure 2.1, has the node
set nod(h) = {1, . . . ,11}.

Various alternative naming schemes for nodes of trees or hedges were proposed

in the literature, such as Dewey notation for paths addressing nodes. We subscribe

2.2. Words, Hedges and Nested Words 25

1

2 3

4 5

6

7 8

9 10

11

〈〉

a 〈〉 〈〉

b a

〈〉

a b

a

a

Figure 2.2: Illustration of the graph of the hedge 〈a · ε · 〈b · a〉 · 〈a · b〉〉 · a · 〈a〉·

V = nod(h) = {1, . . . ,11}
E = chh = {(1,2), (1,3), (1,6), (3,4), (3,5), (6,7), (6,8), (10,11)}

nsh = {(1,9), (9,10), (2,3), (3,6), (4,5), (7,8)}
labh = [1/〈〉,2/a,3/〈〉,4/b,5/a,6/〈〉,7/a,8/b,9/a,10/〈〉,11/a]

Figure 2.3: The graph (V ,E, labh,nsh) of the hedge h from Figure 2.2.

to the identification of nodes by integers. This has the advantage that each node

can be represented with logarithmic space in the size of the hedge, while Dewey

addresses would require linear space. As a consequence, any subset of nodes of a

hedge of size |h| can be represented by an array of size |h|. With the Dewey notation,

a representation of size O(|h|2) may become necessary.

The edges of the DAG of a hedge correspond to the child relation on the hedge’s

nodes. Note that DAGs of hedges are always sharing-free, so none of the nodes may

have more than one incoming edge. The DAG may have several roots but these are

totally ordered. The left-most root is thus unique if it exists.

Example 2.5. The example hedge in Figure 2.1 has three roots, which are the nodes
1 < 9 < 10. The left-most and right-most root are labeled by the tree constructor 〈〉 and
the root in the middle is labeled by letter a.

2.2.2.3 Graphs of Hedges

The graphical representation of a hedge can be turned into a formal definition of

the graph of a hedge, which in turn induces a logical structure. We next explain

how this can be done, while still leaving parts of the construction informal. We

continue to identify the nodes of a hedge h by the natural numbers in nod(h).

Example 2.6. For illustration, the node identifiers of the example hedge

26 Chapter 2. Preliminaries

〈a · ε · 〈b · a〉 · 〈a · b〉〉 · a · 〈a〉 from Figure 2.1 are added to the graph in Figure 2.2. One
can see there that the example hedge has indeed three roots 1 < 9 < 10.

The edges of the graph are directed and drawn top-down. They represent the

child relation between the nodes of the hedge h that we denote by chh. For each

node, the children are ordered from the left to the right. Also the roots of the hedge

are ordered from the left to the right. The set of single steps in this ordering is

called the next-sibling relation and denoted by nsh. So the graph of a hedge h is

a tuple (V ,E, labh,nsh) where V = nod(h), E = chh ⊆ V ×V , labh : V → Σ∪ {〈〉}, and

nsh ⊆ V ×V . The elements of V = nod(h) are the nodes of the hedge, the elements

of E the edges for the child relation on nodes chh, labh : V → Σ∪ {〈〉} is the node

labeling, and nsh is the next sibling relation, that is compatible with the total

ordering on the nodes.

2.2.2.4 Logical Structures and Queries for Hedge Graphs

The graph of a hedge h ∈ HΣ induces a relational structure with domain nod(h) and

relational signature Γ = {laba | a ∈ Σ∪ 〈〉} ∪ {ch,ns}. The arity of all relation symbols

laba is 1 where a ∈ Σ∪ {〈〉} and the arities of ch and ns are both 2. For any hedge h,

the logical structure of h interprets the monadic relation symbols laba as the set of

a-labeled nodes {π ∈ nod(h) | labh(π) = a} and the binary relation symbols ch and ns
by the relations chh and respectively nsh.

The view of hedge graphs as relational structures permits us to define n-ary node

selection queries on hedges in HΣ by logical formulas with n-free variables and

relation symbols in Γ = {laba | a ∈ Σ∪ {〈〉}} ∪ {ch,ns}.

Example 2.7. Consider the signature Σ = {a,b}. The formula below with the single free
variable x selects all a-nodes that have some next sibling y with some child z:

∃y.∃z. (laba(x)∧ns(x,y)∧ ch(y,z))

This answer set of this monadic node selection query on the graph of the hedge from
Figure 2.3 is the subset of nodes {2,9}.

2.2.3 Nested Words

A nested word over Σ is a word over the alphabet Σ̂ = Σ∪ {〈,〉} in which all paren-

theses are well-nested. Intuitively, this means that for any opening parenthesis

there is a matching closing parenthesis and vice versa. An example of a nested

2.2. Words, Hedges and Nested Words 27

〈 a 〈 b a 〉 〈 a b 〉 〉 a 〈 a 〉

Figure 2.4: The nested word nw(h) = 〈a〈ba〉〈ab〉〉a〈a〉 linearizing the hedge
h = 〈a · ε · 〈b · a〉 · 〈a · b〉〉 · a · 〈a〉 with the matching relation of the parenthesis, for
illustrating its well-nestedness.

word with the matching relation on parenthesis, illustrating its well-nestedness, is

given Figure 2.4.

The set of nested words over Σ can be defined as the subsets of words over Σ̂

that are a linearization of some hedge, where the linearization function nw :HΣ→
(Σ∪ {〈,〉})∗ is defined by induction on the structure of h such that for all h,h′ ∈ HΣ

and a ∈ Σ:
nw(ε) = ε nw(〈h〉)) = 〈 ·nw(h) · 〉
nw(a) = a nw(h · h′) = nw(h) ·nw(h′)

So the set of all nested words over Σ is:

NΣ = nw(HΣ)

Example 2.8. For our example hedge h = 〈a · ε · 〈b · a〉 · 〈a · b〉〉 · a · 〈a〉, we obtain the
nested word nw(h) = 〈a〈ba〉〈ab〉〉a〈a〉 illustrated in Figure 2.4.

Let hdg be the inverse of the injective function nw restricted to its image, so the

mapping from nested words to hedges with hdg(nw(h)) = h for all h ∈ HΣ.

2.2.4 Hedge Traversals

A depth-first search on the graph of our example hedge is illustrated in Figure 2.5.

Each node labeled labeled 〈〉 is visited twice, one when entering the subtree and

once when leaving it. Labels in leafs are visited only once. The visits are also called

events. These are totally ordered. In our example in Figure 2.5 they range from 1 to

15, in green for opening events, red for closing events and yellow for letter events.

We note that the preorder of the depth-first search is equal to the total ordering

of the nodes:

1 < 2 < 3 < 4 < 5 < 6 < 7 < 8 < 9 < 10 < 11

In other words, if the first visits of a node π precedes the first visit of a node π′

28 Chapter 2. Preliminaries

1

22 3

4

4

5

5

3 6 6

7

8

8

9

7 10

1 11 9

12

13 1510

11

14

〈〉

a 〈〉 〈〉

b a a a

a 〈〉

a

Figure 2.5: The depth-first search of the graph of the hedge 〈a · 〈b · a〉 · 〈a · b〉〉 ·a · 〈a〉
illustrated in Figure 2.2.

then π < π′.

A traversal of a hedge is a list of nodes that contains all the nodes of the hedge at

least once. We will see lists as words. The top-down traversal of a hedge is the list of

its nodes obtained when mapping each event in the list of events to the node that it

affects. The top-down traversal of our example hedge, for instance, is:

1 2 3 4 5 3 6 7 8 6 1 9 10 11 10

The node 1, for instance, occurs twice in this top-down traversal, since it is the node

of both events 1 and 8. For this reason the top-down traversal is not an order.

We note that the top-down traversal of a hedge can also be obtained by mapping

the letters of its nested word to the corresponding node of the hedge. In the running

example, this can be illustrated as follows:

〈 a 〈 b a 〉 〈 a b 〉 〉 a 〈 a 〉
1 2 3 4 5 3 6 7 8 6 1 9 10 11 10

This means that a top-down traversal lists all the nodes of a hedge in the ordering

in which they are met when reading the hedge in streaming mode. But, of course,

streaming is not needed: top-down traversals of hedge graphs can also be computed

from the graph of a hedge when stored in memory.

The depth-first search of a hedge also induce a postorder on the nodes of the

hedge, which depends on the order of the last visiting events of the nodes. In our

2.2. Words, Hedges and Nested Words 29

example hedge, the postorder is:

2 < 4 < 5 < 3 < 7 < 8 < 6 < 1 < 9 < 11 < 10

The left-most bottom-up traversal of a hedge is the list of all states in postorder. For

instance, the bottom-up traversal of our running example is:

2 4 5 3 7 8 6 1 9 11 10

It should be noticed that the left-most-bottom up traversal is contained in the

top-down traversal for any hedge. In our example, we have to remove all elements

from the top-down traversal coming from opening events, while we have to keep

those coming from closing and letter events. The latter are highlighted in boldface

below:

1 2 3 4 5 3 6 7 8 6 1 9 10 11 10

2.2.5 Nested Words Prefixes

Prefixes, suffixes, and factors of nested words may not be nested words themselves.

For instance, the hedge h = a · 〈b · c〉 has the linearization nw(h) = a〈bc〉. Its prefix

a〈b is not well-nested since it has a dangling opening parenthesis. Neither its suffix

c〉 is well-nested since it has a dangling closing parenthesis.

Any algorithm that traverses a hedge h top-down inspects all the prefixes of

nw(h). The end of any prefix v of nw(h) locates some position in the top-down

traversal of the graph of h, i.e., a position of the nested word of h, or equivalently an

event of the depth-first search of the graph of h. Furthermore, the prefix specifies

the part of the hedge that is located before this event in the linearization nw(h). An

example is illustrated graphically in Figure 2.6.

This particularly holds for streaming algorithms that receive the nested word

nw(h) as an input on a stream, and may be inspected only once from the left to the

right. But it holds equally for in-memory algorithms that receive the input hedge h

as a hierarchical structure whose graph is stored in-memory, and then traverses the

hedge’s graph top-down. Any 〈〉 node will then be visited twice, once when reading

an opening parenthesis 〈 and going down into a subhedge, and another time when

going up to the closing parenthesis 〉 after having processed the subhedge.

The set of positions pos(w) of a nested word prefix w ∈ prefs(NΣ) is {1, . . . , k}where

k is the number of occurrences in w of symbols from Σ∪ {〈}. Note that for any

30 Chapter 2. Preliminaries

Figure 2.6: The part of the hedge from the nested word prefix 〈a〈ba〉〈a.

nested word w ∈ NΣ we have pos(w) = nod(hdg(w)).

2.3 Regular Languages and Queries

We show how to define regular languages and queries by regular expressions.

We are interested in boolean queries for hedges, i.e., in hedge languages, and in

monadic queries for hedges that select nodes in hedges.

2.3.1 Regular Expressions

Let Σ be a set. A language L ⊆ Σ∗ is a subset of words with alphabet Σ. Finite

languages are always regular, while infinite languages may be non-regular. For

instance consider the alphabet Σ = {a,b}.

• The finite language Σ2 = {aa,ab,ba,bb} is regular. It contains all words of

length exactly 2.

• The infinite language {anbn | n ≥ 0} is non-regular. For each natural num-

ber n it contains the word anbn. So this language is equal to the set

{ε,ab,aabb,aaabbb, . . .}.

A language L ⊆ Σ∗ is regular if it can be defined by some regular expression,

where a regular expression is a term e ∈ RegExpΣ with the following abstract syntax:

e,e′ ∈ RegExpΣ ::= ε | ∅ | a | e · e′ | e+ e′ | e∗ where a ∈ Σ
| e&e′ | e

2.3. Regular Languages and Queries 31

The terms e ∈ RegExpΣ are constructed from the constants ε, ∅, and a ∈ Σ, the

binary concatenation operator ·, a binary union operator +, and the unary repetition

operator ∗, that is usually called the Kleene star. Furthermore, we admit a binary

intersection operator & and a unary complement operator which are known not

to add expressiveness. We include them nevertheless, since they will make it easier

to define regular queries.

Semantically, any regular expression e ∈ RegExpΣ defines a language ~e� ⊆ Σ∗.

The definition is by induction on the structure of regular expressions such that for

all a ∈ Σ and e,e′ ∈ RegExpΣ:

~∅� = {} ~e+ e′� = ~e� ∪ ~e′�
~ε� = {ε} ~e∗� = ~e�∗

~a� = {a} ~e&e′� = ~e� ∩ ~e′�
~e · e′� = ~e� · ~e′� ~e� = Σ∗ \ ~e�

It should also be noticed that some of the operators could be removed due to

redundancy. For example, the empty set constant can be eliminated since the

complement operator is available. Let Σ = {a1, . . . , an}, then Σ∗ = ~(a1 + . . .+ an)∗� so

that ~∅� = ~(a1 + . . .+ an)∗�. Conversely, the complement operator can be removed –

by a detour via the complementation of finite state automata – but only if the empty

set constant remains present. Furthermore, the intersection is redundant in the

presence of complement, since ~e&e′� = ~e+ e′�.

Definition 2.9. A language L ⊆ Σ∗ is regular if there exists a regular expression e ∈
RegExpΣ such that L = ~e�.

The class of all regular languages can be built from the finite languages by using

the boolean operators union and concatenation and the Kleene star. A proof that

the language {(ab)n | n ≥ 0} is non-regular can be found in any standard text books

on theoretical computer science. It can be based on a pumping Lemma for finite

state automata and the fact that these capture regular languages.

Star-free regular languages are regular languages that can be defined by some

expression in RegExpΣ without the Kleene star. For this definition, the availability

of the complement operator is essential. For instance, if Σ = {a,b}, then the language

~a∗� is star-free since it is equal to the language ~∅ · b · ∅�. In contrast, the language

~(a · a)∗� is known not to be star-free, since counting modulo 2 is needed for testing

membership. Still, how to test whether a regular language is star-free is not obvious.

32 Chapter 2. Preliminaries

For instance, the language ~(a · b)∗� is again star-free since it is equal to:

~ε+ (a · b · ∅ ∩ ∅ · a · b ∩ ∅ · a · a · ∅ ∩ ∅ · b · b · ∅)�

So, for testing membership to this language of a nonempty word, it is sufficient to

test locally whether it starts and ends with ab, and that it does not contain aa nor

bb somewhere in the middle. Counting is not needed, local tests are sufficient. We

note that intersections of star-free languages are always star-free by definition, even

though they may not be locally testable. An example is ~(a · b)∗ ∩ (b · a)∗� .

A classic result in formal language theory is the equivalence of star-free regular

languages to non-counting or aperiodic regular languages, and to languages defin-

able in first-order logic [McNaughton & Papert 1971], with the successor predicate

on positions of the word but without the order predicate.

2.3.2 Nested Regular Expressions

We recall nested regular expression (nRegExpΣ) [Hosoya & Pierce 2003] for defin-

ing regular hedge languages in the same way regular expressions define regu-

lar languages of words. For this, we follow the presentation and choices from

[Niehren & Sakho 2021] rather than the original definition. We would like to note

that similar regular expressions for defining regular languages of ranked trees were

already used in the eighties [Gécseg & Steinby 1984].

Beside the signature Σ, we fix a set V of recursion variables and assume that it is

disjoint from Σ. A nested regular expression e ∈ nRegExpΣ is then a term with the

following abstract syntax:

e,e′ ∈ nRegExpΣ ::= ε | ∅ | a | e · e′ | e+ e′ | e∗ where a ∈ Σ
| e&e′ | e
| 〈e〉 | z | µz.e where z ∈ V

The first two lines are the same as for regular expressions. The third line provides

the application of a unary constructor for unlabeled trees 〈.〉, and a µ-operator

for vertical recursion, that binds a recursion variable z ∈ V . We adopt the usual

restriction that in any nested regular expression µz.e, all occurrences of z in e must

be in some subexpression 〈e′〉 of e, i.e., any free occurrence of z must be guarded by

some tree constructor.

Any e ∈ nRegExpΣ represents a hedge language ~e� ⊆ HΣ∪V . We define it by

induction on the structure of nested regular expressions such that for all a ∈ Σ,

2.3. Regular Languages and Queries 33

e,e′ ∈ nRegExpΣ and z ∈ V :

~∅� = {} ~e+ e′� = ~e� ∪ ~e′� ~z� = {z}
~ε� = {ε} ~e∗� = ~e�∗ ~〈e〉� = 〈~e�〉
~a� = {a} ~e&e′� = ~e� ∩ ~e′� ~µz.e� =

⋃
n≥0~µ

nz.e�

~e · e′� = ~e� · ~e′� ~e� = Σ∗ \ ~e�

The first two columns are literally the same as for the regular expressions. In the

last column, the tree constructor is treated without surprise. For the µ-operator, we

have to define iterations µnz.e. We set:

µ0z.e = ∅ zero iterations

µnz.e = e[z/µn−1z.e] n iterations where n ≥ 1

For the language of a µ-expression µz.e, we have to replace the recursion variable

z in e repeatedly by e until eventually replacing it by ∅. For instance, consider

the µ-expression µz.(a + 〈z〉). We then have µ0z.e = ∅, µ1z.e = a, µ2z.e = a + 〈a〉,
µ3z.e = a+ 〈a+ 〈a〉〉, etc.

Note that for µ-expressions like µz.(a · z · b + ε), this semantic definition would

lead to non-regular languages. Fortunately, this µ-expression is forbidden, since

the bound variable z does not have free occurrences that are not guarded by any

tree constructor.

Example 2.10. We can model nested lists as hedges over the signature Σ = {list,item}.
For instance, the following hedge in HΣ is a nested list:

〈list · 〈item〉 · 〈list · 〈item〉 · 〈item〉〉 · 〈item〉〉

More generally, the set of all nested lists can be defined by the nested regular expression
N-List as follows:

N-List =def Tree∗

Tree =def µz. 〈(list+ item) · z∗〉

Note that ~∅�∗ = {ε} and that µ1z. 〈(list+ item) · z∗〉 = 〈(list+ item) · ∅∗〉. Hence,

~µ1z. 〈(list+ item) · z∗〉� = ~〈list+ item〉� = {〈list〉,〈item〉}

Therefore, the set ~Tree� of all trees that are nested lists is nonempty.

The nested regular expression N-List will serve us in the running examples of

34 Chapter 2. Preliminaries

the next chapters and parts. This is since Xml documents are essentially nested

lists with data values, where list corresponds to Xml’s element constructor and

item to Xml’s text node constructor.

2.3.3 Regular Monadic Queries

We start defining what are boolean and monadic queries on hedges and then discuss

what it means for a query to be regular.

2.3.3.1 Boolean Queries

A Boolean query on hedges in HΣ is nothing else than a hedge language L ⊆HΣ. So

any schema is itself a Boolean query.

Definition 2.11. Let S ⊆HΣ. A boolean query with schema S is a language L ⊆ S.

For instance, ~Tree� is a boolean query with schema ~N-List�. The boolean query

answering problem for schema S then inputs a hedge h ∈ S and a Boolean query

L ⊆ S and returns the truth value of h ∈ L. The same problem is also called the

language membership problem for hedges with schema S.

A boolean query is called regular if it can be defined by some nested regular

expression. So ~Tree� is a regular Boolean query with schema ~N-List�.

2.3.3.2 Monadic Queries

Monadic queries select nodes in hedges satisfying the schema. More formally:

Definition 2.12. Let S ⊆HΣ. A monadic query with schema S is a function Q : S→ 2N

mapping any hedge h ∈ S to some subset of nodes Q(h) ⊆ nod(h).

For any hedge h ∈ S, the set Q(h) is called the answer set of Q on h.

Example 2.13. For instance, consider the query Q that mimics the XPath query

descendant-or-self::list[child::item]

on nested lists in ~N-List�, where it selects all list nodes with at least one item child.
On the nested list

h = 〈list · 〈item〉 · 〈list · 〈list〉 · 〈item〉 · 〈item〉〉 · 〈list〉〉

2.3. Regular Languages and Queries 35

for instance, it has the answer set:

Q(h) = {2,6}

In order to specify regular monadic queries on hedges, we can identify them

with languages of annotated hedges. For this, we need to introduce annotations of

hedges first.

2.3.3.3 Annotating Hedges with Node Identifiers

For any h ∈ HΣ, we want to define ann-nod(h) ∈ HΣ∪nod(h) as its annotation with node

identifiers. For this, we define more generally for any n ∈N a hedge ann-nodn(h) ∈
HΣ∪{n,...,n+|h|−1} where the annotation starts with n. The definition is by induction

on the structure of h, so that for all a ∈ Σ, n ∈N, and h,h′ ∈ HΣ:

ann-nodn(ε) = ε

ann-nodn(a) = a ·n
ann-nodn(h · h′) = ann-nodn(h) · ann-nodn+|h|(h′)
ann-nodn(〈h〉) = 〈n · ann-nodn+1(h)〉

Since the identifier of the left-most root of h is 1, we define the annotation of h by:

ann-nod(h) = ann-nod1(h)

For instance:

ann-nod(a · a · 〈〉 · a) = a · 1 · a · 2 · 〈3〉 · a · 4

2.3.3.4 Regular Monadic Queries

We next relate monadic queries on hedges to hedge languages. For this, we fix a

selection variable x < Σ arbitrarily and consider hedge languages over signature

Σx = Σ∪ {x}.

For any variable assignment α : {x} ↪→ nod(h), we define the hedge h ∗ α ∈ HΣx

annotated with x by substituting in ann-nod(h) the node α(x) by x and removing

all other node annotations. That is:

h ∗α = ann-nod(h)[α(x)/x][π/ε | π , α(x),π ∈N]

Example 2.14. For instance, if h = a · a · 〈〉 · a then h ∗ [x/2] = a · a · x · 〈〉 · a and h ∗ [] = h.

36 Chapter 2. Preliminaries

We note that all hedges of the form h ∗ [x/π], with π ∈ N, contain a single

occurrence of x that was inserted after node π. Such structures are also called

V -structures where V = {x} (see e.g [Straubing 1994]). The set of all {x}-structures

with schema S =HΣ can be defined the following nested regular expression One-x:

One-x =def µz. (Zero-x · (x+ 〈z〉) ·Zero-x)

Zero-x =def µz. (+a∈Σa+ 〈z〉)∗

For any schema S ⊆HΣ we define a schema of {x}-structures x-str(S) ⊆HΣx by:

x-str(S) = {h ∗ [π/x] | h ∈ S, π ∈ nod(h)}

Clearly x-str(HΣ) = ~One-x�. The monadic query with schema S ⊆HΣ defined by a

language L ⊆HΣx is the function qryS(L) : S→ 2N such that for all hedges h ∈ S:

qryS(L)(h) = {π | π ∈ nod(h), h ∗ [x/π] ∈ L}

For any L ⊆HΣx , note that qryS(L) = qryS(L∩~One-x�) = qryS(L∩x-str(S)). So the

languages L and L∩ x-str(S) define the same query with schema S. This means that

only the {x}-structures in L are relevant for the query qryS(L). Furthermore, only

the x-annotations of hedges in S in L matter for the query.

Definition 2.15. A monadic query Q : S→ 2N on a subset of hedges S ⊆HΣ is called
regular if S is regular and there exists a nested regular expression e ∈ nRegExpΣx such
that Q = qryS(~e�).

Example 2.16. In Example 2.13, we considered the monadic query Q on nested lists that
mimics the XPath query self::list[child::item] on nested lists, where it selects
all list-labeled nodes with at least one child labeled item. This query has the schema
S = ~N-List� and the signature Σ = {list,item}. For instance, on the nested list

h = 〈list · 〈item〉 · 〈list · 〈list〉 · 〈item〉 · 〈item〉〉 · 〈list〉〉

the query selects the set of nodes Q(h) = {2,6}. Query Q is regular, since it can be defined
by the following nested regular expression child∗-list[child-item] ∈ nRegExpΣx where:

child∗-list[child-item] =df µz.

 〈list · x · N-List · 〈item〉 · N-List〉
+ 〈(list+ item) · N-List · z · N-List〉


This means that qry~N-List�(~child∗-list[child-item]�) = Q. For instance, the following
two x-annotations of hedge h belong to the language ~child∗-list[child-item]� defining

2.3. Regular Languages and Queries 37

query Q:

h ∗ [x/2] = 〈list · x · 〈item〉 · 〈list · 〈list〉 · 〈item〉 · 〈item〉〉 · 〈list〉〉
h ∗ [x/6] = 〈list · 〈item〉 · 〈list · x · 〈list〉 · 〈item〉 · 〈item〉〉 · 〈list〉〉

2.3.4 Schema Constraints for x-Annotations

When specifying queries Q : S→ 2N we may want to impose constraints where x-

annotations may be inserted. This can be done by choosing some schema constraints,

that is a schema for x-annotated hedges:

C ⊆HΣx

The query specified by a language L ⊆HΣx , a schema for the query S ⊆HΣ, and a

schema constraint for x-annotation C ⊆HΣ then is:

qryC
S (L) = qryS(L∩C)

rather than qryS(L) without the schema constraints on the x-annotations.

We note that ΠΣ(C) , S is possible. In this case, one may not be able to infer the

schema of the query S from the schema constraints C on the x-annotated hedges,

nor vice versa.

Example 2.17. When considering monadic queries on nested lists, i.e., with the schema:

S = ~N-List�

we may want to select list or item nodes only. In order to do so, we can impose the
schema constraints C on the x-annotations of nested lists

C = ~N-List-x�

where:
N-List-x =def Tree-x∗

Tree-x =def µz. 〈(list+ item) · (x+ ε) · z∗〉

This means that variable x matters only when placed in a nested list only after a
letter (list or item) following some opening parenthesis. Thus, the positions of some
opening or closing parenthesis themselves cannot be selected. Clearly, ΠΣ(~N-List-x�) =

~N-List�. Note however, that ~N-List-x� does contain hedges, in which x occurs more
than once or not at all, such as ε and 〈list · x〉 · 〈list · x〉. These are irrelevant for

38 Chapter 2. Preliminaries

queries, so one may want to impose the more restrictive constraint, without changing the
query defined:

C′ = C∩ ~One-x�

So for any query specification L ⊆HΣx , we are not really interested in the query qryS(L∩
C) but by the query:

qryCS (L) = qryC
′

S (L)

Chapter 3
Hedge Automata

Abstract
We introduce stepwise hedge automata (Shas) for the bottom-up evaluation
of hedges. We then extend Shas to downward stepwise hedge automata for
the top-down evaluation of hedges, either in-memory or in streaming mode.
We introduce the notion of schema-completeness and discuss two-sorted
extensions for Shas. The relationships to tree automata, forest automata,
standard hedge automata and nested word automata are also discussed.

Contents
3.1 Finite State Automata on Words (Nfas) 40

3.1.1 Syntax . 41

3.1.2 Semantics . 41

3.1.3 Size Measures . 42

3.1.4 Graphs . 42

3.1.5 Completion . 42

3.1.6 Runs . 44

3.1.7 Determinization . 44

3.1.8 Complementation . 46

3.1.9 Product and Intersection . 46

3.1.10 Accessibility . 48

3.1.11 Minimization . 49

3.1.12 Cleaning . 49

3.1.13 Infinitary NFAs . 50

40 Chapter 3. Hedge Automata

3.1.14 Adding Else Rules . 51

3.2 Stepwise Hedge Automata (Shas) . 53

3.2.1 Syntax . 54

3.2.2 Semantics . 56

3.2.3 Size Measures . 58

3.2.4 Completion . 58

3.2.5 Runs . 58

3.2.6 Determinization . 62

3.2.7 Complementation . 62

3.2.8 Product and Intersection . 63

3.2.9 Hedge Accessibility . 63

3.2.10 Minimization . 64

3.2.11 Cleaning . 64

3.2.12 Infinitary Shas . 65

3.2.13 Else Rules . 65

3.2.14 Related Automata Models . 65

3.3 Downward Stepwise Hedge Automata (Sha↓s) 66

3.3.1 Syntax . 67

3.3.2 Semantics . 68

3.3.3 Completion . 69

3.3.4 Runs . 69

3.3.5 Conversion between Shas and Sha
↓s 70

3.3.6 Determinization . 71

3.3.7 Minimization . 72

3.3.8 Relationship to Nwas . 72

3.4 Membership Testing . 75

3.4.1 In-Memory . 76

3.4.2 Streaming . 77

3.5 Schema-Completeness . 79

3.6 Schema-Based Cleaning . 82

3.7 Two-sorted Automata . 82

3.7.1 2-Sorted Shas . 83

3.7.2 2-Sorted Sha
↓s . 84

3.1 Finite State Automata on Words (Nfas)

We recall finite automata on words, their closure properties, minimization, and

cleaning methods.

3.1. Finite State Automata on Words (Nfas) 41

Figure 3.1: An Nfa A0 for the regular expression (x+ ε) · (x · a)∗. Note that it is not
deterministic since it has two initial states.

3.1.1 Syntax

We start with the definition of nondeterministic finite state automata on words.

Definition 3.1. A Nfa is a tupleA = (Σ,Q,∆, I ,F) such thatQ is a finite set of states, the
alphabet Σ is a finite set, I,F ⊆ Q are subsets of initial and final states, and ∆ ⊆ (Q×Σ)×Q
is the set of transition rules. We call an Nfa deterministic or equivalently a Dfa,
if I contains at most one initial state and ∆ is a partial function, i.e., |I | ≤ 1 and
∆ : (Q×Σ) ↪→Q.

We write q
a−→ q′ ∈ ∆ instead of a transition rule (q,a,q′) ∈ ∆. For any letter a ∈ Σ

we define a finite interpretation as a subset of transition rules:

a∆ = {(q,q′) ∈ Q2 | q a−→ q′ ∈ ∆}

If A is a Dfa, then all interpretations a∆ are partial functions, so a∆ :Q ↪→Q.

3.1.2 Semantics

We define transitions q
w−→ q′ wrt ∆ for arbitrary words w ∈ Σ∗ by the following

inference rules:

q ∈ Q

q
ε−→ q wrt ∆

q
a−→ q′ ∈ ∆

q
a−→ q′ wrt ∆

q0
w1−−→ q1 wrt ∆ q1

w2−−→ q2 wrt ∆

q0
w1·w2−−−−−→ q2 wrt ∆

The language of words recognized by a Nfa then is:

L(A) = {w ∈ Σ∗ | q w−→ q′ wrt ∆, q ∈ I, q′ ∈ F}

42 Chapter 3. Hedge Automata

3.1.3 Size Measures

We will use two measures for the size of automata. The number of states of an

automata will be denoted by

n = |Q|

while its overall size will be denoted by m, for an Nfa:

m = n+ |Σ|+ |∆|+ |F|+ |I |

For any Dfa note that m ∈ Θ(|Σ| n). Therefore there is no significant difference

between n and m for fixed signature Σ. This may not hold for Nfas though, where

we only have m ∈Θ(|Σ| n2).

3.1.4 Graphs

We draw Nfas as graphs whose nodes are the states. A state q ∈ Q is drawn with

a circle q , an initial state q ∈ I with an incoming arrow q , and a final state

with a double circle q . A letter transition rule (q1, a,q2) ∈ ∆ is drawn as a black

edge q1 q2
a that is labeled by a letter a ∈ Σ. As a running example, an Nfa

A0 for the regular expression (x+ ε).(x.a)∗ that is drawn in Figure 3.1.

Note that there exists a transition q
w−→ q′ wrt ∆ if and only if there exists a path

in the graph of A over edges labeled by the letters in w, that starts with q and ends

in q′. In the graph in Figure 3.1, for instance, the transition 2
xax−−−→ 3 wrt ∆ is coming

from the following path:

2 3
x

, 3 2
a

, 2 3
x

3.1.5 Completion

Intuitively, an automaton is complete if for all states and letters in the signature, it

has some transition rule. In addition, it must have at least one initial state.

Definition 3.2. We call a Nfa A = (Q,Σ,∆, I ,F) complete if the binary relation ∆ ⊆
(Q×Σ)×Q is total and the set I is nonempty.

Lemma 3.3. If A is complete then for any word w ∈ Σ∗ there exists some transition
q
w−→ q′ wrt ∆ for some q ∈ I and q′ ∈ Q.

Any Nfa can be completed. It is sufficient to add a fresh sink state and transition

3.1. Finite State Automata on Words (Nfas) 43

Figure 3.2: The completion complete(A0) adds the state sink to A0 and transitions
rules leading to the sink state.

rules into this sink whenever no other transition rule exists. More precisely, let

A = (Σ,Q,∆, I ,F) be an Nfa and sink a fresh state. The completion complete(A) is

then defined as follows:

complete(A) = (Σ,Q] {sink},∆′ , I ,F)

where ∆′ contains the following transition rules:

q
a−→ q′ ∈ ∆

q
a−→ q′ ∈ ∆′

a ∈ Σ q ∈ Q @q′ ∈ Q. q a−→ q′ ∈ ∆

q
a−→ sink ∈ ∆′

a ∈ Σ

sink
a−→ sink ∈ ∆′

Example 3.4. The completion complete(A0) of the automaton A0 is shown in Figure 3.2.
The added sink state cannot reach any final state and is thus irrelevant for the language.

Proposition 3.5. For any Nfa A: L(A) = L(complete(A)).

Proof. The sink cannot be used in any successful run of complete(A). Since the sink

state cannot access any final state, the language of A remains unchanged when

adding a sink.

Lemma 3.6. If A is deterministic then complete(A) is deterministic too.

Proof. The completion adds transition rules for letters in a deterministic manner

only when none existed from the original states with the same letters. This preserves

determinism.

44 Chapter 3. Hedge Automata

3.1.6 Runs

A run of Nfa A on a word w ∈ Σ∗ is a word in (Σ]Q)∗. We define the set of runs

R ∈ run∆(w) by the following rules, such that for all w,w′ ∈ Σ∗:

true

q ∈ run∆(ε)

q
a−→ q′ ∈ ∆

q · a · q′ ∈ run∆(a)

q ·R · q′ ∈ run∆(w) q′ ·R′ · q′′ ∈ run∆(w′)

q ·R · q′ ·R′ · q′′ ∈ run∆(w ·w′)

A run of A = (Q,Σ,∆, I ,F) is called successful if starts in some state in I it ends with

some state in F.

Lemma 3.7. Any word w ∈ Σ∗ satisfies that w ∈ L(A) if and only if there exists a
successful run R ∈ run∆(w) of A.

Proof. Straightforward by induction on w.

Definition 3.8. A partial run of A on a word w is a prefix r of some run of compl(A)

on w such that r does not contain the state sink added by compl(A). A partial run is
blocking if is maximal and ends with some letter from Σ.

Example 3.9. A successful run of the Nfa A0 in Figure 3.1 on the word xxa is 4x2x3a2.
On the same word, there is also a blocking partial run 2x3x of A0. It starts from the
other initial state of A0 than the successful run on xxa. It is blocking since there is no
transition rule starting in 3 reading x.

3.1.7 Determinization

We next remind that any Nfa can be made deterministic while preserving the

language. So let A = (Q,Σ,∆, I ,F) be an Nfa. We construct its (full) determinization:

Adet-f = (Σ,Qdet-f ,∆det-f , Idet-f ,Fdet-f)

by the usual subset construction. We call this determinization "full" in order to

distinguish it from the accessible determinization Adet, that will come later on. The

state set of the determinization is:

Qdet-f = 2Q \ {∅}

Note that the empty set is excluded from Qdet-f . Otherwise, it would become a sink

state, that is useless since not co-accessible. The initial and final subsets of the full

3.1. Finite State Automata on Words (Nfas) 45

Figure 3.3: The full determinization Adet-f
0 for the Nfa A0 of Figure 3.1. Note that

the states {2,3,4}, {3,4} and {4} are not accessible from the initial state and thus
useless.

determinization are the following:

Idet-f = {I | I , ∅}
Fdet-f = {Q ⊆ Q |Q ∩F , ∅}

The set of transition rules ∆det-f can be inferred by the following rule:

Q ∈ Qdet-f a ∈ Σ Q ′ = {q′ ∈ Q | q a−→ q′ ∈ ∆, q ∈Q } , ∅

Q
a−→Q ′ ∈ ∆det-f

For each nonempty subset of states Q ⊆ Q and letter a ∈ Σ, the full determiniza-

tion has a transition rule Q
a−→Q ′ ∈ ∆det-f where Q ′ is the set of all states q′ to which

there exists a transition rule q
a−→ q′ for the same state q ∈Q .

Example 3.10. In Figure 3.3, we show the Dfa A
det-f
0 obtained by the full determiniza-

tion of Nfa A0 from Figure 3.1. Note that all subsets of states of A0 are states of Adet-f
0

except for the empty set ∅. Note also, that some of the subsets – {4}, {3,4}, and {2,3,4} –
are not accessible from the initial state {2,4} in Adet-f

0 , so they cannot be used in any run
of Adet-f

0 .

Proposition 3.11 (Folkore). Any Nfa A can be determinized while preserving the
language:

L(A) = L(Adet-f)

46 Chapter 3. Hedge Automata

Proof. It is sufficient to show for any nonempty subsets Q ,Q ′ ⊆ Q and word w ∈ Σ∗:

Q
w−→Q ′ wrt ∆det-f ⇔Q ′ = {q′ ∈ Q | ∃q ∈Q . q w−→ q′ wrt ∆}

This can be shown by induction on the size of w.

3.1.8 Complementation

We next show that regular languages are closed under complement. For any

complete Dfa A, we define its complement automaton by A by flipping the final

states of A, i.e.:

A = (Σ,Q,∆, I ,F)

.

Proposition 3.12 (Folklore). For any complete Dfa A: L(A) = L(A).

Proof. Let A = (Q,Σ,∆, I ,F) be a complete Dfa and w ∈ Σ∗ an arbitrary word. Since

A is complete there exists q ∈ I and q′ ∈ Q such that q
w−→ q′ wrt ∆. Since A is

deterministic, the states q and q′ unique with this property. Therefore:

w ∈ L(A)⇔ q′ ∈ F

Since A = (Σ,Q,∆, I ,F), there is also a unique transition of A on w that starts in I .

Since A and A have the same set of initial states and the same set of transition rules,

this transition is q
w−→ q′ wrt ∆. Hence:

w ∈ L(A)⇔ q′ < F

As a consequence, w ∈ L(A)⇔ w < L(A). Since w was arbitrary, this yields L(A) =

L(A).

3.1.9 Product and Intersection

For any two Nfas A and B we can construct an Nfa A ×f B that runs A and B in

parallel, and accepts if both accept. For this, we define the (full) product of two

Nfa A = (Σ,QA,∆A, IA,FA) and B = (Σ,QB,∆B, IB,FB) as the Nfa

A×f B = (Σ,QA×
f B, IA×

f B,FA×
f B,∆A×

f B)

3.1. Finite State Automata on Words (Nfas) 47

Figure 3.4: The Dfa word-one-xΣ with signature Σ] {x}.

as follows. The states of A×f B are all sets of pairs of states from A and B, i.e.:

QA×
f B =QA ×QB

The initial and final states are defined as follows:

IA×
f B = IA × IB

FA×
f B = FA ×FB

Furthermore, the set of transition rules ∆A×
f B is defined by the following inference

rule:
q1

a−→ q2 ∈ ∆A p1
a−→ p2 ∈ ∆B

(q1,p1)
a−→ (q2,p2) ∈ ∆A×f B

Proposition 3.13. L(A×f B) = L(A)∩L(B).

Proof. Let w ∈ Σ∗ and p,p′ ∈ QA and q,q′ ∈ QB be arbitrary. We then have:

(p,q)
w−→ (p′ ,q′) ∈ ∆A×

f B⇔ p
w−→ p′ ∈ ∆A ∧ q w−→ q′ ∈ ∆B

By construction of IA×
f B and FA×

f B it follows that w ∈ L(A ×f B) if and only if

w ∈ L(A) and w ∈ L(B).

Example 3.14. The Dfa word-one-xΣ in Figure 3.4 recognizes all words with Σ]{x} that
contain exactly one occurrence of x. This automaton will be used later on as a schema for
monadic queries on words. In Figure 3.5, we show the full productA0×f word-one-x{a}. It
accepts the words of L(A0) with exactly one occurence of x, i.e., L(A0×f word-one-x{a}) =

{x,x · a}. Note that the loop 2
x−→ 3

a−→ 2 of A0 is no more present in the full product, since
it would accumulate more than one x, so that word-one-x{a} blocks.

48 Chapter 3. Hedge Automata

Figure 3.5: The full product A0 ×f word-one-x{a} where A0 is given Figure 3.1 and
word-one-x{a} in Figure 3.4. Note the states (4,1) and (3,0) of the full product are
useless since not accessible from the initial states.

3.1.10 Accessibility

Let A = (Q,Σ,∆, I ,F) be an Nfa and Q ⊆ Q a subset of states. The set of states

accessible from Q is then defined as follows:

acc∆(Q) = {q′ ∈ Q | ∃q ∈Q . ∃w ∈ Σ∗. q w−→ q′ wrt ∆}

So q ∈ acc∆(Q) if and only if there is some path in the graph of A that starts from

some state in Q and ends in q. For any set Q , we can compute the set of accessible

states acc∆(Q) in time |∆| + |Q | by a traversal of the graph of A starting from Q .

Alternatively, we can compute acc∆(Q) as the least fixed point of a ground Datalog

program of size |∆|+ |Q |:

q ∈Q

q ∈ acc∆(Q).

q
a−→ q′ ∈ ∆

q′ ∈ acc∆(Q) :− q ∈ acc∆(Q).

Since the size of this Datalog program is linear in the size of A, the set of all

accessible states can be computed in time O(m). The inverse accessibility relation

for a set of states Q is defined as follows:

invacc∆(Q) = {q′ | q ∈ acc∆({q′}), q ∈Q }

3.1. Finite State Automata on Words (Nfas) 49

Note that invacc∆(Q) = acc∆
−1

(Q) where ∆−1 is the set of inverse transition rules of

∆, so for all q,q′ ∈ Q and a ∈ Σ:

q
a−→ q′ ∈ ∆

q′
a−→ q ∈ ∆−1

Therefore, invacc∆(Q) can also be computed in linear time.

3.1.11 Minimization

We are generally interested in reducing the size nondeterministic automata as much

as possible while preserving the language. In the case of Dfas this can be done by

automata minimization.

It is well known, Dfas enjoy unique minimization, i.e., for any regular language

L, the Dfa A with L(A) = L with a minimal number of states is unique up to state

renaming.

3.1.12 Cleaning

For more general Nfas, it is still possible to clean the automata by removing useless

states, i.e., states that are not used in any successful run. Clearly, the states in

acc∆(I) and invacc∆(F) are useless.

Lemma 3.15. A state q ∈ Q of an Nfa A = (Q,Σ,∆, I ,F) is useless if and only if q <
acc∆(I)∩ invacc∆(F).

For any Nfa A = (Q,Σ,∆, I ,F) and subset of states Q ⊆ Q, we define the cleaning

of A with respect to Q , removing the states in Q , by:

clean(A,Q) = (Σ,Q ,∆∩ (Q ×Σ×Q), I ∩Q ,F ∩Q)

Lemma 3.16. If all states in a subset Q\Q are useless then L(A) = L(clean(A,Q)).

We define the accessibility cleaning, the co-accessibility cleaning, and the trim-

ming of A as follows:

acc-clean(A) = clean(A,acc∆(I))

coacc-clean(A) = clean(A, invacc∆(F))

trim(A) = clean(A,acc∆(I)∩ invacc∆(F))

50 Chapter 3. Hedge Automata

Figure 3.6: The trimmed automaton trim(Adet-f
0) = acc-clean(Adet-f

0).

By Lemma 3.15, that automaton trim(A) removes all useless states of Nfa A. The

accessibility cleaning and co-accessibility cleaning each remove only a subset of

these states.

Example 3.17. The accessibility cleaning and trimming of Adet-f
0 result in the same

automaton, i.e., trim(Adet-f
0) = acc-clean(Adet-f

0), shown in Figure 3.6. Note that this Dfa

is minimal.

We can now refine the notions of full determinization and product to the accessi-

ble determinization and product. For any Nfas A and B, we define the accessible

determinization as the accessibility cleaning of the full determinization:

det(A) = acc-clean(Adet-f)

and the accessible product by the accessibility cleaning of the full product:

A×B = acc-clean(A×f B)

It is not difficult to see how to compute det(A) from A without computing Adet-f ,

as well as how to compute A × B from A and B without computing A ×f B.

Co-accessibility cleaning, in contrast, can be done only a posteriori. This is the

reason, why accessibility cleaning is of particular interest, even though trimming

may be stronger.

3.1.13 Infinitary NFAs

We sometimes need to admit infinitary Nfas, which are similar to Nfas expect that

the sets of states and transition rules may be infinite.

Definition 3.18. An Nfa
∞ is a tuple A = (Q,Σ,∆, I ,F) such that Σ and Q are sets,

I,F ⊆ Q and ∆ ⊆ (Q×Σ)×Q. An Nfa
∞ is called deterministic or equivalently a Dfa

∞

if ∆ ⊆ (Q×Σ)×Q is a partial function.

3.1. Finite State Automata on Words (Nfas) 51

In other words, there are no finiteness restrictions any more, so any component

of infinitary Nfas may be infinite. Such general infinitary automata can be used

for instance to define query answering algorithms, that can store integers in their

states, i.e., the nodes of hedges.

3.1.14 Adding Else Rules

In order to deal with infinite signatures, we will consider infinitary Nfas with else

rules, but with finite sets of states and transition rules. More general kinds of

symbolic automata [Veanes et al. 2012] will not be needed, neither in the present

thesis, nor in the practical tools issuing from this thesis.

An Nfa with untyped else rules is an infinitary Nfa with a special symbol _

added to the signature.

Definition 3.19. An Nfa over Σ with untyped else rules is an Nfa
∞ A = (Σ]

{_},Q,∆, I ,F) such that the sets Q and ∆ are finite.

Semantically, an else rule q
_−→ q′ ∈ ∆ means that the automaton in state q can

go to state q′ when reading any letter a ∈ Σ such there exists no state q′′ ∈ Q with

q
a−→ q′′ ∈ ∆. Even in the case of finite signatures, this extension is relevant, since

large numbers of transition rules with labels in Σ can be represented symbolically

in a more concise manner by using else rules q
_−→ q′ ∈ ∆.

Any else rule can be expanded to a possibly infinite set of letter transition rules

∆exp ⊆ Q×Σ×Q as follows:

q
_−→ q′ ∈ ∆ a ∈ Σ ¬∃q′′ ∈ Q. q a−→ q′′ ∈ ∆

q
a−→ q′ ∈ ∆exp

a ∈ Σ q
a−→ q′ ∈ ∆

q
a−→ q′ ∈ ∆exp

By contrast, ∆ was assumed to be finite. In this sense, else rules represent infinite

set of letter rules symbolically.

3.1.14.1 Typed Else Rules

We next consider Nfas with typed signatures, leading us to the concept of Nfas

with typed else rules. A typing for a signature Σ is a function

type : Σ→ T

52 Chapter 3. Hedge Automata

with some finite range T , that is called the set of types. The typing function assigns

some type from T to each letter of Σ.

Definition 3.20. Let type : Σ→ T be a typing function. An Nfa over Σ with typed

else rules is an Nfa
∞ A = (Σ] {_ : τ | τ ∈ T },Q,∆, I ,F) such that Q and ∆ are finite.

Semantically, an typed else rule q
_:τ−−→ q′ ∈ ∆ means that the automaton in state q

can go to state q′ when reading any letter a ∈ Σ with type(a) = τ such there exists

no state q′′ ∈ Q with q
a−→ q′′ ∈ ∆. A typed else rule can be expanded with all letters

a ∈ Σ with type(a) = τ :

q
_:τ−−→ q′ ∈ ∆ type(a) = τ ¬∃q′′ ∈ Q. q a−→ q′′ ∈ ∆

q
a−→ q′ ∈ ∆exp

3.1.14.2 Lifting Automata Constructions

All above automata constructions for Nfas can be lifted to Nfas with else rules. This

has to be done carefully in order to avoid automata with infinitely many transition

rules, i.e., the infinite expansions ∆exp. It is sufficient to treat the case of typed else

rules, since any untyped else rule can be encoded by a finite set of typed else rule,

one for each type, as follows:

τ ∈ T q
_−→ q′ ∈ ∆untyped

q
_:τ−−→ q′ ∈ ∆typed

Determinization. The full determinization Adet-f can bey defined for any Nfa

with typed else rules A, by lifting the full determinization of Nfas as follows:

a ∈ Σ τ = type(a) Q ⊆ Q {q a−→ q′ ∈ ∆ | q ∈Q ,q′ ∈ Q} , ∅

Q
a−→ {q′ ∈ Q | q a−→ q′ ∈ ∆exp, q ∈Q } ∈ ∆det-f

τ ∈ T Q ⊆ Q Q ′ = {q′ ∈ Q | q _:τ−−→ q′ ∈ ∆, q ∈Q } , ∅

Q
_:τ−−→Q ′ ∈ ∆det-f

It should be noticed that the set of transition rules ∆det-f remains finite since ∆ was

finite, even though ∆exp may be infinite.

3.2. Stepwise Hedge Automata (Shas) 53

Product. The full product A×f B can also be lifted to Nfas with typed else rules

as follows:

q1
a−→ q2 ∈ ∆A p1

a−→ p2 ∈ ∆B
exp

(q1,p1)
a−→ (q2,p2) ∈ ∆A×f B

q1
a−→ q2 ∈ ∆A

exp
p1

a−→ p2 ∈ ∆B

(q1,p1)
a−→ (q2,p2) ∈ ∆A×f B

q1
_:τ−−→ q2 ∈ ∆A p1

_:τ−−→ p2 ∈ ∆B

(q1,p1)
_:τ−−→ (q2,p2) ∈ ∆A×f B

Note that ∆A×
f B remains finite since ∆A and ∆B are finite, even though ∆A

exp
and

∆B
exp

may be infinite. It should also be clear that the product automaton A ×f B
recognizes the intersection L(A)∩L(B).

Completion. An Nfa with else rules is complete if I is nonempty and for all q ∈ Q
and a ∈ Σ there exists q′ ∈ Q such that q

a−→ q′ ∈ ∆exp. The idea for completing an Nfa

with else rules, is to add else rules leading to the added sink state. More formally,

let A be a Nfa with typed else rules for the typing type : Σ→ T . We then define the

completion

complete′(A) = (Σ,Q] {sink},∆′ , I ,F)

as an Nfa with typed else rules and the same typing such that:

a ∈ Σ q
a−→ q′ ∈ ∆

q
a−→ q′ ∈ ∆′

τ ∈ T q
_:τ−−→ q′ ∈ ∆

q
_:τ−−→ q′ ∈ ∆′

τ ∈ T q ∈ Q @q′ .q
_:τ−−→ q′ ∈ ∆

q
_:τ−−→ sink ∈ ∆′

τ ∈ T

sink
_:τ−−→ sink ∈ ∆′

Complementation. Complete Dfas with typed else rules can be complemented

by flipping final states, exactly as for Dfas without else rules.

3.2 Stepwise Hedge Automata (Shas)

We show how to capture regular hedge languages by stepwise hedge automata

(Shas).

54 Chapter 3. Hedge Automata

3.2.1 Syntax

Shas are a more recent notion of automata for hedges [Niehren & Sakho 2021]

that mix up bottom-up tree automata and left-to-right word automata in a nat-

ural manner. They extend stepwise tree automata [Carme et al. 2004] in that,

they operate on hedges rather than unranked trees, i.e., on sequences of letters

and trees containing hedges. They differ from nested word automata (Nwas)

[Okhotin & Salomaa 2014, Alur 2007] in that, they process hedges directly rather

than their linearizations to nested words.

Definition 3.21. A stepwise hedge automata (Sha) is a tuple A = (Σ,Q,∆, I ,F) such
that the alphabet Σ is a finite set of letters, Q is a finite set of states, I,F ⊆ Q are subsets of
initial and final states, ∆ = (∆′ ,〈〉∆,@∆) is the set of transition rules, with ∆′ ⊆ (Q×Σ)×Q
a set of letter rules, 〈〉∆ ⊆ Q a set of tree initial states, and @∆ ⊆ (Q×Q)×Q a set of apply
rules. A Sha is deterministic or equivalently a dSha if I and 〈〉∆ contain at most one
element, and all relations in ∆ are partial functions.

Any ShaA = (Σ,Q,∆, I ,F) where ∆ = (∆′ ,〈〉∆,@∆) extends on the Nfa (Σ,Q,∆′ , I ,F),

by adding a set of tree initial states 〈〉∆ ⊆ Q and a set of apply rules @∆ ⊆ (Q×Q)×Q.

Whenever q ∈ 〈〉∆, we also write
〈〉
−→ q ∈ ∆, and alternatively to (q,p,q′) ∈@∆ we write

q@p→ q′ ∈ ∆.

Example 3.22. An dSha for the nested regular expression N-List from Section 2.3.2 is
defined in Figure 3.7 and graphically represented in Figure 3.8. This dSha recognizes for
instance the hedge 〈list · 〈list〉 · 〈item〉〉 · 〈list〉 but not the hedge 〈〈list〉 · 〈item〉〉.
Its transition rules in ∆ can be rewritten as the following set:

{0 list−−−−→ 1, 0
item−−−−→ 1, 0@1→ 4, 1@1→ 1, 4@1→ 4,

〈〉
−→ 0}

The graphs of Sha can be inferred and drawn similarly to Nfas, see e.g. Figure 3.8.

The states of the automaton are the nodes of the graph and its transition rules are

the edges. Any apply rule q1@p→ q2 ∈ ∆ is represented by a blue edge q1 q2
p

that is annotated with state p (and not with some letter from Σ). Tree initial states

q ∈ 〈〉∆ are indicated by an incoming 〈〉-edge as follows q
〈〉

.

Example 3.23. In Figure 3.9, another dSha for the nested regular expression N-List is
given. It has two disjoint levels, the subautomaton accessible from I and subautomaton
accessible from 〈〉∆. It has the same number of states, but nevertheless is not equal to the
dSha in Figure 3.8 up to renaming of states. This shows that unique minimization does
not hold for dShas.

3.2. Stepwise Hedge Automata (Shas) 55

Σ = {list,item} Q = {0,1,4}
I = {0} F = {0,4}

list∆ = {(0,1)} item∆ = {(0,1)}
〈〉∆ = {0} @∆ = {(0,1,4), (1,1,1), (4,1,4)}

Figure 3.7: A dSha A = (Σ,Q,∆, I ,F) for the nested regular expression N-List from
Section 2.3.2. This dSha is drawn graphically in Figure 3.8.

Figure 3.8: A graphical presenta-
tion of the dSha in Figure 3.7 for
the nested regular expression N-List
from Section 2.3.2.

Figure 3.9: Another state-minimal
dSha for the nested regular expres-
sion N-List from Section 2.3.2 with
two separated levels.

As shown in [Niehren & Sakho 2021], unique minimization holds for the subclass

of dShas with I = 〈〉∆. In [Niehren 2024], it is shown that unique minimization also

holds for the subclass dShas with two levels, so where top-level (the states sets

accessible from I) and the tree level (the states accessible from 〈〉∆) are disjoint. The

unique minimal deterministic Shas for these two classes are exactly those shown in

Figures 3.8 and 3.9 respectively.

Example 3.24. We consider the boolean query with schema ~N-List� that
is defined by the following regular expression mimicking the XPath filter
[self::list/child::item]:

[self-list-child-item] =def 〈list · N-List · 〈item · N-List〉 · N-List〉 · N-List

The language ~[self-list-child-item]� contains all nested lists, where the first tree starts
with a list-node that contains some item-child. This language can be defined equiva-
lently by the dSha in Figure 3.10. In order to accept a nested list, it has to move from the
initial state 0 to the final state 4 but reading some tree in state 3, by using the apply rule

0@3→ 4 that is drawn as 0 4
3 . For a subtree to get into state 3 it has to start

with the tree initial state 0, read a letter list to go to state 1, by using the rule 0
list−−−−→ 1.

and then eventually read some tree in state 2 with the apply rule drawn as 1 3
2 .

56 Chapter 3. Hedge Automata

Figure 3.10: A dSha recognizing the language of the nested regular expression
[self-list-child-item] = 〈list · N-List · 〈item · N-List〉 · N-List〉 · N-List.

For a subtree to get into state 2 it has to start with the tree initial state 0, read a letter
item there by using the rule 0

item−−−−→ 2.

This automaton can also be run on all hedges from the schema that are not accepted,
i.e., the hedges in ~N-List� \ ~[self-list-child-item]� for which, the run will end in the
sink state 5. So this automaton will never block when run on some hedge satisfying
schema ~N-List�. It does block, however, for hedges outside the schema such as 〈〈list〉〉,
since it is missing an apply rule with left hand side 0@5. We therefore call this automaton
schema-complete for schema ~N-List�, while not being complete in general.

3.2.2 Semantics

We next define the semantics of Shas, i.e., the transitions on hedges that it defines

and the hedge language that it accepts. For any hedge h ∈ HΣ, we define the

transition steps q
h−→ p wrt ∆ such that for all q,q′ ,p,p′ ∈ Q, a ∈ Σ, and h,h′ ∈ HΣ:

q
a−→ q′ ∈ ∆

q
a−→ q′ wrt ∆

q
h−→ q′ wrt ∆ q′

h′−→ q′′ wrt ∆

q
h·h′−−−→ q′′ wrt ∆

q ∈ Q

q
ε−→ q wrt ∆

〈〉
−→ p ∈ ∆ p

h−→ p′ q@p′→ q′ ∈ ∆

q
〈h〉
−−−→ q′ wrt ∆

The transitions can be used to evaluate hedges nondeterministically bottom-up and

left-to-right by Shas. The first three rules state how to evaluate sequences of trees

and letters as a usual finite state automaton, while assuming that the trees were

already evaluated to states. The last rule states how to evaluate a tree 〈h〉 from

3.2. Stepwise Hedge Automata (Shas) 57

some state q to some state q’. This can be visualized as follows:

q

p h p′

q′

〈〉

For any tree initial state p ∈ 〈〉∆, one has to evaluate the subhedge h to some state

p′ nondeterministically. For each p′ obtained, one then returns some state q′ such

that q@p′→ q′ ∈ ∆ non-deterministically.

A hedge is accepted by A if it permits a transition from some initial state to some

final state. The language L(A) is the set of all accepted hedges:

L(A) = {h ∈ HΣ | q
h−→ q′ wrt ∆, q ∈ I, q′ ∈ F}

Proposition 3.25 (Theorem 2 of [Niehren & Sakho 2021]). For any nested regular
expression e ∈ nRegExp, we can construct a nondeterministic Sha A in linear time such
that L(A) = L(e).

It should be noticed that the proof of this Proposition uses 2-level Shas, whereas,

for most of our example Shas, we will satisfy I = 〈〉∆.

Theorem 1 (Kleene’s Theorem for Shas). A hedge language is regular if and only if it
can be defined by some Sha.

Proof. The one direction is from Proposition 3.25. Conversely, it is not difficult to

see that the language of any Sha can be defined by some nested regular expression.

To the best of our knowledge, the analogous result has not been formulated for

standard hedge automata before (see e.g. Chapter 8 of [Comon et al. 2007]). How-

ever, analogous results are folklore for both tree automata [Gécseg & Steinby 1984]

and word automata [Yu 1997], where it is known as Kleene’s theorem from the

fifties.

Corollary 3.26. A monadic query on hedges is regular if and only if it can be defined by
some Sha.

Proof. Immediate from Theorem 1.

58 Chapter 3. Hedge Automata

3.2.3 Size Measures

The number of states of a Sha A = (Q,Σ,∆, I ,F) is denoted by n = |Q|. Suppose that

∆ = (∆′ ,@∆,〈〉∆). Then the overall size m of A is defined by:

m = n+ |Σ|+ |∆′ |+ |@∆|+ |〈〉∆|+ |I |+ |F|

For dShas note that m ∈Ω(n2 + |Σ| n). In contrast to Dfas (see Section 3.1.3), note

that m may grow quadratically in n for dShas due to |@∆|, even when fixing the

signature Σ. For general Shas, there may even be a cubic dependency, since then

m ∈Ω(n3 + |Σ| n2). Again, this size increase is due to the addition of apply rules @∆

to Nfas.

3.2.4 Completion

Similarly to Nfas, any Sha can be completed with the same intuition, with one

addition: it must also have at least one tree initial state. Completion works as

before by adding a sink state. We now also have to add apply rules to the sink as

follows, where ∆ is original set of transition rules and ∆′ that of the completion:

q,p ∈ Q∪ {sink} ¬∃q′ ∈ Q. q@p→ q′ ∈ ∆

q@p→ sink ∈ ∆′

3.2.5 Runs

Runs can represent the whole history of a single choice of the nondeterministic

evaluator on a hedge. We define runs of Shas on hedges formally. Whether a hedge

with letters and states R ∈ HΣ∪Q is a ∆-run or simply a run on a hedge h ∈ HΣ –

written R ∈ run∆(h) – is defined by the following rules:

q
a−→ q′ ∈ ∆

q · a · q′ ∈ run∆(a)

q ·R · q′ ∈ run∆(h) q′ ·R′ · q′′ ∈ run∆(h′)

q ·R · q′ ·R′ · q′′ ∈ run∆(h · h′)

true

q ∈ run∆(ε)

〈〉
−→ p ∈ ∆ p ·R · p′ ∈ run∆(h) q@p′→ q′ ∈ ∆

q · 〈R〉 · q′ ∈ run∆(〈h〉)

Note that if R ∈ run∆(h) then h can be obtained by removing all states from R, i.e.,

projΣ(R) = h.

3.2. Stepwise Hedge Automata (Shas) 59

0 〈〉

0 list 1 〈〉

0 item 2

3

4

Figure 3.11: The unique run 0 · 〈0 · list · 1 · 〈0 · item · 2〉 · 3〉 · 4 of the dSha in
Figure 3.10 for the nested regular expression [self-list-child-item] on the hedge
〈list · 〈item〉〉.

Example 3.27. The dSha for the nested regular expression [self-list-child-item] in
Figure 3.10 on the nested list 〈list · 〈item〉〉 has the following successful run:

0 · 〈0 · list · 1 · 〈0 · item · 2〉 · 3〉 · 4

This run is a hedge over a signature extended with states. It can be drawn graphically as
any hedge, see Figure 3.11. It is unique since the automaton is deterministic.

A run of A = (Q,Σ,∆, I ,F) is a ∆-run that starts with some state in I . A run of A is

called successful if it ends with some state in F.

Lemma 3.28. Any hedge h satisfies that h ∈ L(A) if and only if there exists a successful
run R ∈ run∆(h) of A.

Proof. Straightforward by induction on h.

3.2.5.1 States of Prefixes

Any run R ∈ run∆(h) satisfies h = projΣ(R). Note that R annotates all events of the

depth first-search of the graph of h by some state. These events do correspond to

prefixes of nw(h), so R can be identified with a mapping of prefixes of the nested

word nw(h) to states in Q. Therefore, for any prefix v of nw(h), there exists a unique

prefix r of the nested word nw(R) that ends with some state q ∈ Q and satisfies

projΣ(r) = v. We then call q the state of R at prefix v.

Example 3.29. Reconsider the run R = 0 · 〈0 · list · 1 · 〈0 · item · 2〉 · 3〉 ·4 on the hedge

60 Chapter 3. Hedge Automata

0 4

0 1

0 2

3
〈〉

〈〉

〈〉 list

item〈〉

Figure 3.12: A top-down representation of the run the dSha for the nested regular
expression [self-list-child-item] in Figure 3.10 on the hedge 〈list · 〈item〉〉.

〈list · 〈item〉〉. It corresponds to the following mapping on prefs(〈list〉〈item〉〉):
ε / 0, 〈list〈item / 2,

〈 / 0, 〈list〈item〉 / 3,

〈list / 1, 〈list〈item〉〉 / 4

〈list〈 / 0


So, for instance, run R starts in state 0, eventually goes at prefix 〈list〈item to state 2,
and then ends for the full nested word 〈list〈item〉〉 in state 4.

3.2.5.2 Bottom-Up versus Top-Down Vision

Runs of dShas can be computed deterministically when traversing the hedge in a

bottom-up and left-to-right manner. In other words, the states of the unique run of

a hedge can be computed during a left-most bottom up traversal of the hedge.

As argued in Section 2.2.4, the left-most bottom-up traversal of a hedge is part

of its top-down traversal. In this thesis, we prefer the top-down vision when

running automaton on hedges. For emphasizing the top-down vision, we will

often draw runs as in Figure 3.11, alternatively as in Figure 3.12. This way, we

separate the contributions of the hedge and of the automaton in a clear manner

(without the need of coloring the contribution of the automaton). We added some

more processing comments to the top-down representation of the same run in

Figure 3.13: the depth-first search of the hedge 〈list · 〈item〉〉 is indicated within

the run by a line that is colored first green and then changes to red. This shows

that the states of the run can be assigned to the events of the depth-first search,

i.e., to the elements of the top-down traversal, or yet alternatively, to the prefixes

of the nested word of the hedge. The green parts of the line indicate the events in

descending direction, and the red part those events in ascending direction. Note

3.2. Stepwise Hedge Automata (Shas) 61

0 4

0 1

0 2

3
〈〉

〈〉Depth 0

Depth 1

Depth 2

descending ascending

〈〉 list

item〈〉

resume

resume

suspend

suspend

Figure 3.13: Adding processing comments to the top-down vision of the run in
Figure 3.12.

that there could be multiple changes of directions, i.e., from green to red and vice

versa, even though there is only one in the present example.

The run starts at depth zero before the left-most root (there is only one in this

example) in the unique initial state 0 . It then encounters a tree constructor,

so it must be suspended in state 0 until the subhedge of the tree is evaluated. The

suspension is indicated by the blue edge to the suspension box 0 , which

represents a future value that will be computed on the lower level. The run then

restarts one level down at depth 1: it has to evaluate the subhedge h′ = list · 〈item〉

of the tree, starting with the unique tree initial state of the automaton 0
〈〉

. For

h′, the run reads letter list reaching state 1 and must suspend again at 1

when encountering a second tree constructor. It then goes down to depth 2 where it

is restarted again in state 0
〈〉

, for evaluating the last subhedge h′′ = item. From

state 0, the run of h′′ eventually ends in state 2 concluding the descending part.

It should be noticed that no information is passed down in the descending phases

of any run of any dSha. Instead, at each step going properly down into some

subhedge at a lower level, the run is restarted in the tree initial state, while the run

on the upper level will be resumed once the evaluation of the lower level is finished.

The only state changes in the descending phases are due to left-to-right processing,

when reading letters and staying at the same depth.

Once reaching the last node at depth 2, the run changes direction and becomes as-

cending. It goes up revisiting the tree constructors, filling the boxes left above with

the states computed at the lower level, and consequently triggering the resumption

of the runs at higher depths. Therefore, the box at depth 1 is filled with state 2,

62 Chapter 3. Hedge Automata

0 4

0 1

0 2

3
〈〉 list

item〈〉

Figure 3.14: A simplified top-down representation of the run the dSha for
the nested regular expression [self-list-child-item] in Figure 3.10 on the hedge
〈list · 〈item〉〉 without tree constructors and child edges.

which we mark by 2 , giving 1 3 . This transition is justified by the

apply rule 1@2→ 3. Similarly at the top level, the resumption is now triggered, the

box is filled with state 3 and the computation finally goes to the final state 4 by

using the apply rule 0@3→ 4.

In the top-down drawings of runs, we can safely remove the tree constructors

and child edges without loosing any information. This leads as to the simplified

version of the graphical representation in Figure 3.14.

3.2.6 Determinization

The full determinization of an Sha A extends on that of the Nfa in subsection 3.1.7,

with the below two inference rules:

true

〈〉∆det-f (A)
= {〈〉∆ | 〈〉∆ , ∅}

Q1,Q2 ⊆ QA Q ′ = {q′ ∈ QA | q1@q2→ q′ ∈ ∆A, q1 ∈Q1,q2 ∈Q2} , ∅

Q1@Q2→Q ′ ∈ ∆det-f (A)

3.2.7 Complementation

Analogously to Nfas, for any complete dSha A, its complement automata A can be

obtained by flipping the final states.

Moreover, Proposition 3.12 still holds when applied for some dSha A.

3.2. Stepwise Hedge Automata (Shas) 63

3.2.8 Product and Intersection

The full product A×f B of two Shas A and B can be computed by an extension of

the construction for Nfas from Section 3.1.9. It is sufficient to add the following

two inference rules:

q ∈ 〈〉∆A p ∈ 〈〉∆B

(q,p) ∈ QA×f B
q1@q→ q2 ∈ ∆A p1@p→ p2 ∈ ∆B

(q1,p1)@(q,p)→ (q2,p2) ∈ ∆A×f B

As for Nwas the product of Shas continues to compute the intersection of their

languages, so Proposition 3.13 remains true for Shas too.

3.2.9 Hedge Accessibility

The set of states that are accessible from a state in a subset Q ⊆ Q through some

hedge is:

acc∆(Q) = {q′ | q ∈Q ,q h−→ q′ wrt ∆, h ∈ HΣ}

For any set Q we can compute the set of accessible states by the least fixed point of

a ground Datalog program of size O(|∆|+ |Q |).

q ∈Q

q ∈ acc∆(Q).

q ∈ 〈〉∆

q ∈ acc∆(〈〉∆).

q
a−→ q′ ∈ ∆

q′ ∈ acc∆(Q) :− q ∈ acc∆(Q).

q1@∆p = q2

q2 ∈ acc∆(Q) :− q1 ∈ acc∆(Q),p ∈ acc∆(〈〉∆).

q
a−→ q′ ∈ ∆

q′ ∈ acc∆(〈〉∆) :− q ∈ acc∆(〈〉∆).

q1@∆p = q2

q2 ∈ acc∆(〈〉∆) :− q1 ∈ acc∆(〈〉∆),p ∈ acc∆(〈〉∆).

For any Q ⊆ Q, the set acc∆(Q) can be computed in time O(|A|). This also applies

to inverse accessibility:

invacc∆(Q) = {q′ | q ∈ acc∆({q′}), q ∈Q }

This is since invacc∆(Q) = acc∆
−1

(Q) where ∆−1 is the set of inverse transition rules

64 Chapter 3. Hedge Automata

for ∆, which is such that for all q,p,q′ ∈ Q and a ∈ Σ:

q
a−→ q′ ∈ ∆

q′
a−→ q ∈ ∆−1

q@p→ q′ ∈ ∆

q′@p→ q ∈ ∆−1

3.2.10 Minimization

As illustrated by example in Section 3.2.1, unique minimization does not hold for

dShas in general. But two subclasses of dShas enjoy unique minimization. The first

is the subclass of dShas where the initial state is equal to the tree initial state. The

second is the subclass of 2-level dShas.

While our Sha construction from nested regular expressions needs 2-level Shas,

our determinizer for Shas will produce Shas where the initial state is equal to the

tree initial state. So when considering deterministic Shas we will work with the

first subclass and use the minimization algorithm from [Niehren & Sakho 2021]

for their minimization.

3.2.11 Cleaning

The following Datalog program defines the set of useful states of a Sha by using

accessibility and co-accessibility. Note that determinism is not needed.

For this, we introduce monadic predicates accτ and coaccτ for accessibility and

co-accessibility for both types τ ∈ {h, t}, depending on whether we talk about the

upper hedge level, or the lower tree level. The following monadic ground Datalog

program defines these predicates:

q ∈ I

acch(q).

q ∈ 〈〉∆

acct(q).

q ∈ F

coacch(q).

q@p→ q′ ∈ ∆

coacct(p) :− acch(q), coacch(q′).

q@p→ q′ ∈ ∆ τ ∈ {h, t}

coaccτ (q) :− acct(p), coaccτ (q′).

accτ (q′) :− accτ (q), acct(p).

q
a−→ q′ ∈ ∆ τ ∈ {h, t}

coaccτ (q) :− coaccτ (q′).

accτ (q′) :− accτ (q).

3.2. Stepwise Hedge Automata (Shas) 65

τ ∈ {h, t}

useful(q) :− accτ (q), coaccτ (q).

We define the accessibility cleaning, the co-accessibility cleaning, and the trim-

ming of A as follows:

acc-clean(A) = clean(A, {q ∈ Q | accτ (q), τ ∈ {h, t}})
coacc-clean(A) = clean(A, {q ∈ Q | coaccτ (q), τ ∈ {h, t}})
trim(A) = coacc-clean(acc-clean(A))

So trim(A) = clean(A, {q ∈ Q | useful(q)}) keeps only the useful states of the Sha, i.e.,

those that are used in some successful run.

3.2.12 Infinitary Shas

In analogy to the definition of Nfa
∞s in Section 3.1.13, we can define infinitary

Shas or equivalently Sha
∞s such as Shas while dropping all finiteness restrictions.

In other words, any Sha
∞ equips some Nfa

∞ with a set of set of apply rules and

tree initial states.

3.2.13 Else Rules

An Sha with else rules is an Sha
∞ with finite sets of states and transitions rules,

but possibly an infinite signature, that is extended by typed or untyped else rules.

So any Sha with else rule extends on some Nfa with else rules (see Section 3.1.14

by apply rules and tree initial states.

3.2.14 Related Automata Models

We relate the model of Shas to the existing automata models for unranked trees,

hedges, and nested words in the literature.

3.2.14.1 Standard Hedge Automata

Standard hedge automata [Thatcher 1967, Comon et al. 2007, Pair & Quéré 1968,

Murata 2000] operate on labeled hedges in a bottom-up manner similarly to Shas.

Also they have the same expressiveness, but horizontal languages are specified dif-

66 Chapter 3. Hedge Automata

ferently, leading to a problematic notion of determinism [Martens & Niehren 2007].

For this reason, unique minimization fails for deterministic standard hedge au-

tomata. Still, they have the same expressiveness as Shas when restricted to labeled

hedges.

3.2.14.2 Standard Tree Automata

Syntactically, any Sha A is a standard tree automaton over the following ranked

signature:

• a unary symbol for any letter a ∈ Σ,

• a binary symbol @, and

• a constant 〈〉.

Semantically, however, there is no perfect general correspondence. Only for

subclasses a perfect correspondence can be made up via binary encoding. This

was shown in [Niehren & Sakho 2021] for the subclass of dShas with I = 〈〉∆. In

[Niehren 2024], it could also be shown for the subclass of multi-module dShas.

This leads to unique minimization results for both subclasses of deterministic Shas.

3.2.14.3 Bojanczyk’s Forest Automata

Standard hedge automata also have the same expressiveness as Bojanczyk’s forest

automata (see Section 3.3 of [Bojanczyk & Walukiewicz 2008]). These are based

on the idea of transition monoids, rather than on the idea of transition rules such

as Shas or finite state automata or Neuman’s and Seidl’s forest automata. As a

consequence, however, there is an exponential difference in succinctness between

Shas and Bojanczyk’s forest automata [Niehren 2024].

3.3 Downward Stepwise Hedge Automata (Sha↓s)

The bottom-up evaluation of Shas cannot pass any information top-down. Even

with the top-down vision of runs of Shas– as presented in the previous section – no

information is passed down when a Shas moves down by one level. Instead, the

computations is always restarted in some tree initial state.

We therefore propose an extension of Shas to Sha
↓s, that adds the ability to

Shas to pass information top-down. Sha
↓s are basically equal to Neumann and

3.3. Downward Stepwise Hedge Automata (Sha↓s) 67

Seidl’s pushdown forest automata [Neumann & Seidl 1998] but lifted from (la-

beled) forests to (unlabeled) hedges. These, in turn, are closely related to Nwas too,

as already noticed in [Gauwin et al. 2008] and discussed in Section 3.3.8.

3.3.1 Syntax

Sha
↓s are like Shas except that tree initial states are generalized to tree initial rules.

Thereby, the state in which the evaluation of the hedge in a subtree restarts may

depend on the state of its parent.

Definition 3.30. A downward stepwise hedge automaton (Sha↓) is a tuple A =

(Σ,Q,∆, I ,F) where Σ and Q are finite sets, I,F ⊆ Q, and ∆ = (∆′ ,〈〉∆, @∆). Furthermore,
∆′ ⊆ (Q×Σ)×Q, 〈〉∆ ⊆ Q×Q, and @∆ ⊆ (Q×Q)×Q. A Sha

↓ is called deterministic or
equivalently a dSha↓ if I contains at most one element, and all relations 〈〉∆, ∆′, and @∆

are partial functions.

The only difference to Shas is the form of the tree opening rules. If (q,q′) ∈ 〈〉∆

then we have a tree initial rule that we denote as q
〈〉
−→ q′ ∈ ∆. So here the state q′

where the evaluation of a subhedge starts depends on the state q of the parent.

Graphically, a Sha
↓ is drawn like an Sha, except that tree initial rules are repre-

sented by edges q q′
〈〉

.

Example 3.31. A dSha↓ recognizing the language of expression [self-list-child-item]

from Example 3.24 is given in Figure 3.15. The same language was recognized by
the dSha in Figure 3.10. The dSha↓, however, passes level information top-down. Its
states on level 0 have 0 primes, states on level 1 have 1 prime, and states on level 2 and
more have 2 primes. Furthermore, each state has a type which is a state of the dSha
in Figure 3.10. For instance, the state 0′′ of the dSha↓ has type 0 and 2 primes. For

example, the tree opening rule 1′ 0′′
〈〉

means that the automaton in a node of type
1 at level 1 goes to a node of type 0 at level 2. We notice that the automaton needs to
inspect only 2 levels of the input hedge, in order to verify whether the first subtree has
label list on level 1 and a child with label item on level 2.

68 Chapter 3. Hedge Automata

Figure 3.15: A deterministic Sha
↓ recognizing the language of the nested regular

expression [self-list-child-item] = 〈list · N-List · 〈item · N-List〉 · N-List〉 · N-List.

3.3.2 Semantics

The definition of transition steps for Sha
↓s differs from that of Shas only in the

usage of opening rules in the following inference rule:

q
〈〉
−→ p ∈ ∆ p

h−→ p′ wrt ∆ q@p′→ q′ ∈ ∆

q
〈h〉
−−→ q′ wrt ∆

This means that the evaluation of the subhedge h starts in some state p such that

q
〈〉
−→ p ∈ ∆.

q

p h p′

q′

〈〉

So the restart state p that is chosen may now depend on the state q above. This is

how finite state information is passed top-down by Sha
↓s. Shas in contrast, operate

purely bottom-up and left-to-right.

3.3. Downward Stepwise Hedge Automata (Sha↓s) 69

3.3.3 Completion

Completion for Sha↓s is done similarly as for Shas, except that now we need rules

to the sink when starting subtrees, where ∆ is original set of transition rules and ∆′

that of the completion:

q ∈ Q∪ {sink} @q′ ∈ Q. q
〈〉
−→ q′ ∈ ∆

q
〈〉
−→ sink ∈ ∆′

3.3.4 Runs

The notion of runs can be adapted straightforwardly from Shas to Sha
↓s. When in

state q, it is sufficient to restart the computation in subhedges on the state p such

that q
〈〉
−→ p ∈ ∆. In this way, finite state information is passed down (while for Shas

some tree initial is to be chosen that is independent of q). The only rule of runs to

be changed is the following:

q
〈〉
−→ p ∈ ∆ p ·R · p′ ∈ run∆(h) q@p′→ q′ ∈ ∆

q · 〈R〉 · q′ ∈ run∆(〈h〉)

Example 3.32. An example of a run of the dSha↓ in Figure 3.15 is shown in Figure 3.16
for the hedge 〈list · 〈list · h1〉 · 〈item · h2〉〉 with arbitrary h1,h2 ∈ HΣ. It naturally
shows the top-down traversal of the Sha↓ on the hedge. The difference with the run of
Shas concernes the tree initial rules used to pass level information top-down as already
described in the Example 3.31.

For instance, consider the tree whose first node is labeled list: reading such a tree at
depth 1 is done through the sequence of states 0,0′ ,1′, whereas at depth 2, the same tree
is read through a different sequence 1′ ,0′′ ,1′′. Finally, going beyond depth 2, it read in
states 1′′ or 2′′ depending whether the first node of the parent tree is respectively labeled
list or item.

More generally, notice the parts marked in red, where all nodes of the arbitrary
subhedges h1 and h2 does not change states after evaluation and stay respectively in
states 1′′ and 2′′. This highlights a key notion of our thesis that will be introduced going
forward: Subhedge irrelevance.

70 Chapter 3. Hedge Automata

0

0’ 1’

0” 1′′

h2h1

1′′ 1′′

1’

0” 2” 2′′ 2”

3’

4

list
〈〉

〈〉
list

〈〉
item

Figure 3.16: A successful run of the Sha
↓ in Figure 3.15 on the hedge

〈list · 〈list · h1〉 · 〈item · h2〉〉.

3.3.5 Conversion between Shas and Sha↓s

Sha
↓’s have the same expressiveness as Shas. Basically, it is for the same reason

why Nwas have the same expressiveness as Shas (see e.g. [Niehren & Sakho 2021]).

We shall describe how to get from a Sha to an equivalent Sha↓ and viice versa

Downward Insertion Any Sha A = (Σ,Q,∆, I ,F) can be mapped to a Sha
↓ Adown =

(Σ,Q,∆down, I , F) while preserving the runs and determinism. The only change of

∆down compared to ∆ is described by the following rule:

〈〉
−→ p ∈ ∆ q ∈ Q

q
〈〉
−→ p ∈ ∆down

Independently of the current state q ∈ Q, the Sha
↓ Adown can start the evaluation

of the subhedge of a subtree in any open tree state p ∈ 〈〉∆. For instance, the dSha↓

Adown for dSha A from Figure 3.10 from the introduction is given in Figure 3.17. It

is clear by this conversion, no information has been passed down in contrast to the

example in Figure 3.15 and the run on this automaton will be the same as the its

equivalent Sha, where it restarts in the same tree initial state 0 at each encounter of

a tree constructor.

Downward Elimination Conversely, we can convert any dSha↓ A into an equiva-

lent Sha elim↓(A) while possibly introducing nondeterminism as follows:

Ielim↓ = I ×Q
Felim↓ = F ×Q

q
〈〉
−→ q′ ∈ ∆

〈〉
−→ (q,q′) ∈ ∆elim↓

3.3. Downward Stepwise Hedge Automata (Sha↓s) 71

Figure 3.17: The Sha
↓ Adown for the dSha A in Figure 3.10.

q
a−→ q′ ∈ ∆ r ∈ Q

(r,q)
a−→ (r,q′) ∈ ∆elim↓

q@p→ q′ ∈ ∆ r ∈ Q

(r,q)@(q,p)→ (r,q′) ∈ ∆elim↓

Proposition 3.33. L(A) = L(elim↓(A)).

The construction is analogous to the conversion of Nwas to Shas

[Niehren & Sakho 2021] or to hedge automata [Gauwin et al. 2008]. The correct-

ness proofs for these compilers are standard.

3.3.6 Determinization

The determinization procedure for Sha↓s is more complicated then for Shas, since

Sha
↓s can pass information top-down and not only bottom-up and left-to-right. De-

terminization therefore does not only rely on the pure subset construction, but also

uses pairs of states in the subsets, basically in the same way as for nested word au-

tomata (Nwas) [Okhotin & Salomaa 2014, von Braunmühl & Verbeek 1985]. This

is needed to deal with the stack of states that were seen above. There-

fore, each determinization step may cost time O(|A|5) as stated for instance in

[Debarbieux et al. 2015]. The upper time bound for membership testing for Sha↓s

is thus in time O(|h||A|5), and no longer combined linear as it is for Shas.

On the other hand, one can take the approach done for Nwas in

[Niehren & Sakho 2021] and apply it to Sha
↓. It would require to transform the

Sha
↓ to its equivalent Sha by downward elimination. Since the latter procedure

may introduce nondeterminism, the resulting Sha should be determinized and then

72 Chapter 3. Hedge Automata

converted back to Sha
↓. This approach has proved to be efficient in practice and the

resulting automata did not explode in size as with direct determinization. In any

case, and during the course of this thesis, we do not attempt to directly determinize

a Sha
↓ but rather get the needed parts through the determinization of Sha.

3.3.7 Minimization

Unique minimization fails for dSha↓s for two reasons. First, since it fails for dShas

(as discussed in Example 3.23), and second, since it fails for deterministic multiway

automata.

3.3.8 Relationship to Nwas

Sha
↓s are closely related to Neumann and Seidl’s pushdown forest automata,

which in turn are closely related to nested word automata, as first noticed in

[Gauwin et al. 2008]. We here present the relationship between Sha
↓s and Nwas in

a direct manner.

3.3.8.1 Syntax

A nested word automata reads nested words rather than hedges. So it provides

rules for all letters of nested words.

Definition 3.34. A nested word automata (Nwa) is a tuple (Σ,Q,Γ ,∆, I ,F), where Σ,
Γ and Q are sets, I,F ⊆ Q, and ∆ = (∆′ ,〈∆,〉∆) contains relations: ∆′ ⊆ Q × Σ × Q,
〈∆ ⊆ Q× (Γ ×Q) and 〉∆ ⊆ (Q× Γ)×Q. A Nwa is deterministic or equivalently a dNwa if
I contains at most one element and all above relations are partial functions.

The elements of Γ are called stack symbols. The transition rules in ∆ again have

three forms: Internal rules q
a−→ q′ in ∆ as for Shas, opening rules q

〈↓γ
−−−→ q′ in ∆ if

〈∆(q) = (q′ ,γ) and closing rules q
〉↑γ
−−−→ q′ in ∆ if 〉∆(q,γ) = q′.

3.3.8.2 Semantics

We can define transitions q
v−→ q′ wrt ∆ for all Nwas A = (Σ,Q,Γ ,∆, I ,F) with states

q,q′ ∈ Q and nested words v ∈ NΣ. These are such that for all q,q′ ,p,p′ ∈ Q, a ∈ Σ,

3.3. Downward Stepwise Hedge Automata (Sha↓s) 73

and v,v′ ∈ NΣ:

q
a−→ q′ ∈ ∆

q
a−→ q′ wrt ∆

q
v−→ q′ wrt ∆ q′

v′−→ q′′ wrt ∆

q
v·v′−−−→ q′′ wrt ∆

q ∈ Q

q
ε−→ q wrt ∆

q
〈↓γ
−−−→ p ∈ ∆ p

v−→ p′ wrt ∆ p′
〉↑γ
−−−→ q′ ∈ ∆

q
〈v〉
−−−→ q′ wrt ∆

Note that the inference rules for Nwa transitions are in full analogy to the inference

rules for Sha↓ transitions, when adopting the restriction Γ = Q. It is sufficient to

identify hedges h with their nested words nw(h), open tree rules q
〈〉
−→ p wrt ∆ with

opening rules q
〈↓q
−−−→ p ∈ ∆ that push the current state to the stack, and apply rules

q@p→ q′ with closing rules q
〉↑p
−−−→ q′ ∈ ∆. The language of nested words recognized

by a Nwa A can be defined literally as for Sha↓:

L(A) = {v ∈ NΣ | q0 ∈ I, q0
v−→ q1 wrt ∆, q1 ∈ F}

Lemma 3.35. L(Anwa) = nw(L(A)).

Proof. The transitions of a Sha
↓ A on a hedge h and of the Nwa Anwa on the nested

word nw(h) can be identified.

3.3.8.3 Streaming Evaluator

A streaming evaluator for dNwa can be defined by a visibly pushdown machine

(or by compilation to a visibly pushdown automaton [Alur & Madhusudan 2004]

known earlier as input-driven pushdown automata [Alur & Madhusudan 2004,

Okhotin & Salomaa 2014]).

A configuration of this machine is a pair of a state and a stack, i.e., a word of

stack symbols:

K =Q× Γ ∗

For any factor of some nested word inNΣ, i.e., for any v ∈ Σ̂∗, we define streaming

transitions on configurations

~v�str :K ↪→K

74 Chapter 3. Hedge Automata

Figure 3.18: The dNwa Bnwa for the dSha↓ B = Anwa in Figure 3.17, where A is the
earliest dSha in Figure 3.10 for the nested regular expression [self-list-child-item].

such that for all q,q′ ∈ Q, v,v′ ∈ Σ̂∗, γ ∈ Γ and σ ∈ Γ ∗:

~a�str(q,σ) = (a∆(q),σ) ~〈�str(q,σ) = (q′ ,σ ·γ) where q
〈↓γ
−−−→ q′

~ε�str(q,σ) = (q,σ) ~〉�str(q,σ ·γ) = (q′ ,σ) where q
〉↑γ
−−−→ q′

~v · v′�str(q,σ) = ~v′�str(~v�str(q,σ))

3.3.8.4 From SHA↓s to NWAs

A streaming evaluator for dSha↓s can be derived from that of dNwas by compiling

the former to the latter. More generally, we can also compile nondeterministic

Sha
↓s to nondeterministic Nwas while preserving determinism.

For any Sha
↓ A = (Σ,Q,∆, I ,F) we can define an Nwa Anwa = (Σ,Q,

Γ ,∆nwa, Inwa,Fnwa) while preserving determinism, such that Γ = Q and such that

∆nwa contains for all a ∈ Σ and q,p ∈ Q the transition rules:

q
a−→ q′ ∈ ∆

q
a−→ q′ ∈ ∆nwa

q
〈〉
−→ q′ ∈ ∆

q
〈↓q
−−−→ q′ ∈ ∆nwa

q@p→ q′ ∈ ∆

p
〉↑q
−−−→ q′ ∈ ∆nwa

For instance, the dNwa Bnwa in Figure 3.18 is obtained from the dSha↓ B = Adown

in Figure 3.17. It captures the nested regular expression [self-list-child-item].

3.4. Membership Testing 75

3.3.8.5 From Nwas to Sha↓s

Conversely, any Nwa A = (Q,Σ,∆, I ,F) can be compiled back to a Sha
↓ Asha↓ =

(Σ,Q,∆sha↓ , I ,F), which has the same transitions up to mapping nested words v to

hedges hdg(v), while preserving determinism:

q
a−→ q′ ∈ ∆

q
a−→ q′ ∈ ∆sha↓

q
〈↓γ
−−−→ p ∈ ∆

q
〈〉
−→ p ∈ ∆sha↓

p
〉↑q
−−−→ q′ ∈ ∆ q ∈ Q

q@p→ q′ ∈ ∆sha↓

This translation is in linear time for deterministic Nwas, since for these, the stack

symbol γ pushed when opening q
〈↓γ
−−−→ p ∈ ∆ is determined by the current state q.

Lemma 3.36. If A is a deterministic Nwa then (Asha↓)nwa = A.

For this reason, there is no essential difference between dSha↓s and dNwas when

it comes to their streaming evaluator, also with respect to complexity issues. For

nondeterministic Nwas, however, note the translation to Sha
↓s may be in quadratic

time. So the correspondence between Nwas and Sha
↓s is less perfect.

Also notice that the graphs of both kinds of automata are drawn differently,

similarly to the graphs of hedges and nested words. So the perspectives taken

are not the same: Hedge automata may seem more natural when focusing on

in-memory processing, while nested word automata are slightly more streaming

oriented. Still there is no essential difference between dSha↓s and dNwas.

The main advantage of Sha
↓s is their syntactical similarity to the bottom-up

model of Shas, for which determinization is less problematic than for Nwas. As

stated earlier, Shas correspond to weak single-entry Nwas. What is not yet clear is

whether the usual determinization algorithm for Nwas restricted to weak single

entry Nwas is bisimilar to the determinization algorithm for Shas.

3.4 Membership Testing

The membership h ∈ L(A) can be decided for any dSha↓ A and hedge h by com-

puting the unique transition (or run) of A on h starting from I , if it exists, and

testing whether it ends in a final state. This can also be applied to any dSha B via

conversion to a dSha↓ A = Bdown.

We next show how membership can be tested during a top-down traversal either

in-memory or in streaming mode.

76 Chapter 3. Hedge Automata

We recall that the top-down traversals of hedges have top-down, left-to-right, and

bottom-up steps. When applied to some dSha↓ A = Bdown obtained from some dSha

B, note that the top-down steps q
〈〉
−→ 〈〉B ∈ ∆A will always restart the computation in

the same state 〈〉B, so no information from the current state q is ever passed down.

Hence, all the work will be done during bottom-up and left-to-right steps of the

dSha B during the top-down traversal.

3.4.1 In-Memory

Let A = (Σ,Q,∆, I ,F) be a dSha↓ and h ∈ HΣ a hedge. For the deterministic in-

memory evaluation of A one h, we define a partial function

~h�∆ = ~h� :Q ↪→Q

recursively on the structure of h, such that for all q ∈ Q, a ∈ Σ, and h,h′ ∈ HΣ:

~ε�(q) = q ~a�(q) = a∆(q)

~h · h′�(q) = ~h′�(~h�(q)) ~〈h〉�(q) = q@∆~h�(〈〉∆(q))

The next lemma relates the deterministic transitions of dSha↓s to their determin-

istic evaluation, showing that they are operating in the same way.

Lemma 3.37. For any dSha↓ A = (Σ,Q,∆, I ,F), hedge h ∈ HΣ, and states q,q′ ∈ Q:

q
h−→ q′ wrt ∆ ⇔ q′ = ~h�∆(q)

Proof. By induction on the structure of hedge h.

As a consequence a hedge h is accepted by a dSha↓ A if and only if the state

~h�(I) is well-defined and belongs to F.

Proposition 3.38 (Efficiency of in-memory membership testing). For any dSha↓ A
and hedge h, language membership h ∈ L(A) can be decided in-memory in time and space
of O(|h|+m) where m is the overall size of A.

Proof. Suppose that the graph of h is stored in-memory. We first compute hash

tables for ∆, assuming perfect hashing, in timeO(|A|). We can then run the recursive

evaluator to compute ~h�∆(I). This requires to compute at most one state transition

for each node of the graph of h, each requires constant time. So the recursive

3.4. Membership Testing 77

computation of ~h�∆(I) costs time O(|h|). Finally, it is to test whether ~h�∆(I) ∈ F by

Lemma 3.37, which is also in constant time.

3.4.2 Streaming

We next adapt the deterministic membership tester of dSha↓s so that it can read

the nested word of the input hedge in streaming mode, i.e., once from the left to the

right. So at each time point, it will have to read a prefix of a nested word, and store

a configuration consisting of a state and a stack, which is a word of states. It then

reads further letters, so a factor of a nested word, leading to new configurations

after each step.

As we will show in Lemma 3.41 the same streaming evaluator can be inher-

ited from dNwas and the compilation of dSha↓ to dNwas. For reasoning about

complexity, we prefer to present a direct construction though.

A factor of a nested word over Σ may be any word with parenthesis, so a word

in Σ̂∗ where Σ̂ = Σ∪ {〈,〉}. The deterministic streaming evaluator for a factor of

some nested word v ∈ Σ̂∗ is a visibly pushdown machine with configurations of the

following type:

~v�str :K ↪→K where K =Q×Q∗

It is defined such such that for all p,q ∈ Q, a ∈ Σ, σ ∈ Q∗ and v,v′ ∈ Σ̂∗:

~a�str(q,σ) = (a∆(q),σ) ~〈�str(q,σ) = (〈〉∆(q),σ · q)

~ε�str(q,σ) = (q,σ) ~〉�str(p,σ · q) = (q@∆p,σ)

~v · v′�str(q,σ) = ~v′�str(~v�str(q,σ))

When reading a letter a ∈ Σ, the stack is left unchanged and the state q is changed

to a∆(q) by applying a letter rule of ∆. When the opening parenthesis 〈 is read, the

current state q is pushed onto the stack and the computation continues in 〈〉∆(q).

So an open tree rules got applied. When a closing parenthesis is read, the top most

state p is popped from the stack and the computation continues in q@∆p.

Lemma 3.39. For any hedge h ∈ HΣ: ~nw(h)�str(q,ε) = (~h�(q),ε).

Proof. More generally, we prove for any dSha↓ A = (Σ,Q,∆, I ,F), hedge h ∈ HΣ,

q ∈ Q and stack σ ∈ Q∗ that:

~nw(h)�str(q,σ) = (~h�(q),σ)

78 Chapter 3. Hedge Automata

The proof is by induction on the structure of h. Let σ ∈ Γ ∗ be a stack and q ∈ Q be a

state. We distinguish four cases depending on the form of h:

Case h = ε. So nw(h) = ε, we then have:

~nw(h)�str(q,σ) = ~ε�str(q,σ) = (q,σ) = (~ε�(q),σ) = (~h�(q),σ)

Case h = a. With nw(h) = a, we have :

~nw(h)�str(q,σ) = ~a�str(q,σ) = (a∆(q),σ) = (~a�(q),σ) = (~h�(q),σ)

Case h = h1 · h2. Thus, nw(h) = nw(h1) ·nw(h2). The induction hypothesis applied

to h1 yields ~nw(h1)�str(q,σ) = (~h1�(q),σ). Hence:

~nw(h)�str(q,σ) = ~nw(h1) ·nw(h2)�str(q,σ)

= ~nw(h2)�str(~nw(h1)�str(q),σ) streaming transition

= ~nw(h2)�str(~h1�(q),σ) induction hypothesis on h1

= (~h2�(~h1�(q)),σ) induction hypothesis on h2

= (~h1 · h2�(q),σ) in-memory transition

= (~h�(q),σ)

Case h = 〈h1〉 : We have nw(h) = 〈 ·nw(h1) · 〉, thus:

~nw(h)�str(q,σ) = ~〉�str(~nw(h1)�str(~〈�str(q,σ))) streaming transition

= ~〉�str(~nw(h1)�str(〈〉∆(q),σ · q)) streaming transition

= ~〉�str(~h1�(〈〉∆(q)),σ · q) induction hypothesis for h1

= (q@∆~h1�(〈〉∆(q)),σ) streaming transition

= (~〈h1〉�(q),σ) in-memory transition

= (~h�(q),σ)

Proposition 3.40 (Efficiency of streaming membership testing). For any dSha↓ A
and hedge h, the streaming membership of h ∈ L(A) can be decided in time O(1) per
event after a preprocessing time in O(m) and with memory of size in O(depth(h) +m)

where m is the overall size of A.

So the overall time for streaming membership with deterministic Sha
↓s A on

hedges h is in time O(|h|+m). The time upper bound is the same as for in-memory

3.5. Schema-Completeness 79

membership testing, while the memory consumption is lower. The whole hedge h

needs no more to be stored, but only a stack, whose size is the depth of h.

Proof. The streaming transition on nw(h) with respect to ∆ starting with (q,ε) can

be computed in time O(1) per letter after a precomputation in time O(|A|). So the

overall computation time is in O(|A|+ |h|). The streaming memory needed to store a

configuration is of sizeO(depth(h)+ |A|) since the size of the visible stack is bounded

by the depth of the input hedge. We finally test if ~h�str(I,ε) ∈ (F,ε).

The streaming transitions of a dSha↓ A are equal to the streaming transitions

of the corresponding dNwa Anwa, that we recalled in Section 3.3.8.3 on related

automata models.

Lemma 3.41. For any dSha↓ A = (Q,Σ,∆, I ,F) and factor v ∈ Σ̂∗ of nested words:

~v�∆str = ~v�∆
nwa

str

This shows that the streaming evaluator for dSha↓s is induced via compilation to

dNwas from that the streaming evaluator for dNwas.

3.5 Schema-Completeness

Schemas are inputs of the membership problem that we consider, while complete-

ness is a fundamental property of automata. To combine both aspects appropriately,

we propose the notion of schema completeness, that we define uniformly for both

Shas and Sha
↓s. First, we define what is a partial run on a dSha (equivalently a

Sha
↓) A and when a partial run is blocking:

Definition 3.42. A partial run of A on a hedge h is a prefix r of some run of compl(A)

on h such that:

• r ends with some state of Q, and

• r does not contain the sink state of compl(A).

A partial run r of A on h is called blocking if there does not exist any partial run r ′ of A
on h such that r is a strict prefix of r ′.

The dSha in Figure 3.10 has the unique run R = 0 · 〈0 · list · 1 · 〈0 · item · 2〉 · 3〉 ·4
on h. The partial runs of h are thus all prefixes of nw(R) that end with some state,

i.e., 0, 0 · 〈 · 0, 0 · 〈 · 0 · list · 1, etc. None of these partial runs is blocking.

80 Chapter 3. Hedge Automata

Definition 3.43. A schema for an automaton A is a hedge language S ⊆HΣ such that
L(A) ⊆ S. We call the automaton A schema-complete for schema S if no hedge h ∈ S has
some blocking partial run of A.

Schemas S are usually used to restrict the type of hedges that some problem

may accept as input. The dSha pattern matching problem for a schema S takes

two inputs: a hedge h ∈ S and an automaton A – rather than an nested regular

expression e. The automaton A then selects those input hedges h ∈ S that match

the pattern, i.e., such that h ∈ L(A). For this reason, we assume that S is a schema

for A, i.e., L(A) ⊆ S. We will often assume that A is schema-complete for S, so that

no partial run of A on any input hedge h ∈ S may ever block. This can always be

achieved based on the next Lemma 3.45.

Example 3.44. The dSha in Figure 3.10 for the nested regular expression [self-list-

child-item], a simplified version of the XPath filter [self::list/child::item], has
signature Σ = {item,list}. It is schema-complete for schema ~N-List�. To make this
happen, we added state 5 to this automaton, which is not used in any successful run.
But still, this Sha is not complete. For completing it, we would have to run 5 into a sink
states by adding many transitions into it, such as 0@4→ 5 and 0@5→ 5, but also for
all other states q ∈ {1,2,3,4,5} the transition rules q

list−−−−→ 5, q
item−−−−→ 5, q@4→ 5 and

q@5→ 5.

Automaton completion may raise problems to safe-no-change projection (Section

7.3) . In many examples completion renders safe-no-change projection incomplete,

for which it was complete otherwise. This happens for instance for the dSha in

Figure 3.10 for the nested regular expression [self-list-child-item], completed in

Example 3.44: the states 2,3,5,6, that otherwise can no more be changed before

completion, can be changed after completion into the sink.

Without schema-completeness, however, safe-no-change projection may be un-

sound: it might overlook the rejection of hedges inside the schema. This is why

we have to assume schema-completeness for the input automata of safe-no-change

projection, and do not assume full completeness there. For congruence projection

(Section 7.4), schema-completeness will be assumed implicitly in the setting taken

there. Further automata completion will not affect there completeness for subhedge

projection there.

We note that schema-completeness is well-defined even for non-regular schemas.

For safe-no-change projection, we indeed don’t have to restrict schemas to be

regular, while for congruence projection only regular schemas are considered.

3.5. Schema-Completeness 81

Furthermore, if A is schema-complete for the universal schema S =HΣ and does

not have inaccessible states then A is complete.

Schema-completeness of deterministic automata for regular schemas can always

be made to hold. In order to show this, we define that A is compatible with schema
S if for any hedge h ∈ S there exists a run of A in run∆(h). Schema-completeness

implies compatibility, as shown by the next lemma. The converse is true only when

assuming determinism.

Lemma 3.45. Let A be a deterministic Sha with schema S. Then A is compatible with S

iff A is schema-complete for S.

Proof. Suppose that A is schema-complete for S. Wlog., we can assume S , ∅. Note

that if I = ∅, then ε would be a blocking partial run for any hedge in S \ {ε}. Since

S , ∅ it follows that there exists q0 ∈ I . So q0 is a partial run for any hedge h ∈ S\ {ε}.
Since there exists no blocking partial runs by schema-completeness, this run can

be extended step by step to a run on any h ∈ S. So for any hedge h ∈ S there exists

some run by A, showing compatibility.

For the converse, let A be compatible with S and deterministic. We have to

show that A is schema-complete for S. Let v be a partial run of A on h ∈ S. By

compatibility, there exists a run R ∈ run∆(h) that starts in some initial state of A. By

determinism, v must be a prefix of nw(R). Thus, v is not blocking.

Proposition 3.46. Any Sha A with regular schema S can be made schema-complete for
S.

Proof. By Lemma 3.45 it is sufficient to make A compatible with S. Let B be a

dSha with S = L(B). Automaton B is compatible with S. Since B is deterministic,

Lemma 3.45 implies that B is schema-complete for S. Since S is a schema for A

with have L(A) ⊆ L(B). We then compute the completion of compl(A). The product

C = B× compl(A) with final states FC = FB ×FA is schema-complete for schema S.

Furthermore, since L(A) ⊆ S = L(B) it follows that L(C) = L(B)∩L(A) = L(A).

Finally note that the schema S can be recognized by the same product C =

B×compl(A) except for replacing the set of final states FC by the set of schema final

states FS = FB × (QA∪{sink}). We have S = L(C[FC/FS]) where C[FC/FS] is the dSha

obtained from C by replacing the set of final states FC by FS.

82 Chapter 3. Hedge Automata

3.6 Schema-Based Cleaning

Schema-based cleaning was introduced recently [Niehren & Sakho 2021] in order

to reduce the sizes of automata A with respect to a schema-constraint S. When

interested in the intersection L(A)∩S, the idea is to remove all rules and states of

A that are not used on any successful run on some hedge from S. This idea can be

applied Nfas, Sfas, Sha↓s, and Nwas.

If the schema S is defined by some automaton S, i.e. S = L(S), then the strongest

version of schema-based cleaning of A wrt. S can be obtained by removing all

useless states from full product A×f S, i.e., by computing trim(A×f S) as described

in Section 3.2.11, and then projecting back to A. Alternatively, one can apply

accessibility cleaning to the schema product only, i.e., project the accessible product

A× S = acc-clean(A×f S) back to A. We denote this form of schema-based cleaning

by:

sclS(A)

It will be studied more deeply in this thesis in the case of Nfas and Shas.

The advantage of schema-based cleaning over the clean schema-product, is

that the schema-based cleaning does always reduce the size of the automaton. In

contrast, the cleaning schema-product may become larger. The advantage of the

cleaned schema-product is that it recognizes exactly the language of interest L(A)∩
S, while the schema-based cleaning may recognize a larger language accepting

some element of S too.

It should be noticed that schema-based cleaning may change the automaton’s

language. Therefore, even when working with a class of deterministic automata that

enjoys unique minimization, the minimization of det(A) and sclS(det(A) may be very

different. In the most extreme case, where L(A)∩S is empty, the minimal automaton

of sclS(det(A)) does not contain any state, while det(A) may be of exponential size

in the size of A. This indicates that the size reduction obtained by schema-based

cleaning followed by minimization may be much larger than by minimization alone.

3.7 Two-sorted Automata

We will use 2-sorted versions of (downward) stepwise hedge automata with tree

states and hedge states. The two sorted versions can be compiled back to the one-

sorted versions; so the expressiveness is the same. But this elimination of tree-states

may lead to a quadratic size increase. Therefore, the more concise 2-sorted variant

3.7. Two-sorted Automata 83

is often preferable in practice.

3.7.1 2-Sorted Shas

In the 2-sorted version, hedge states (h) must be converted to tree states (t), before

they can be applied. So the 2-sorted apply operator has the type @ : h× t→ h.

Definition 3.47. A 2-sorted Sha is a tuple A = (Σ,Q,P ,∆, I ,F) where ∆ = (∆′ ,∆′′)

so that A′ = (Σ,Q,∆′ , I ,F) is a Nfa. Furthermore, P is a finite set of tree states and
∆′′ = (〈〉∆,@∆, T∆), such that 〈〉∆ ⊆ Q is a subset of tree initial states, @∆ ⊆ (Q×P)×Q a
set of apply rules, and T

∆ ⊆ Q×P a set of tree final rules.

We draw 2-sorted Shas as graphs extending on the graphs of Nfas as before.

A tree state p ∈ P is drawn in gray p . A tree final rule (q,p) ∈ T∆ is drawn as

q −→ p . It states that if h is a hedge going to state q ∈ Q then 〈h〉 is a tree going

to state p ∈ P .

Transitions of 2-sorted Shas have the form q
h−→ q′ wrt ∆ where h ∈ HΣ and

q,q′ ∈ Q. They are defined by the inference rules:

q ∈ Q

q
ε−→ q wrt ∆

q
a−→ q′ ∈ ∆

q
a−→ q′ wrt ∆

q0
h1−−→ q1 wrt ∆ q1

h2−−→ q2 wrt ∆

q0
h1·h2−−−−→ q2 wrt ∆

q′ ∈ 〈〉∆ q′
h−→ q wrt ∆ (q,p) ∈ T∆ q1@p→ q2 ∈ ∆

q1
〈h〉
−−→ q2 wrt ∆

The last inference rule says that when reading a tree 〈h〉 the automaton can change

from a state q1 to a state q2 if with h it can change from some tree initial state q′ to q,

so that there is some tree final rule (q,p) ∈ T∆ and some apply rule q1@p→ q2 ∈ ∆.

The language L(A) of a 2-sorted Sha is defined as usual for Shas. Typed else

rules can be added to 2-sorted Shas as we did for Shas.

Example 3.48. An example for a deterministic 2-sorted Sha with typed else rules is
given in Figure 4.5. It captures the schema of hedges encoding Xml documents with a
single x-annotation.

One way to compile 2-sorted Shas to Shas is to use Q] P as state set and to

replace tree final transition rules (q,p) ∈ T∆ by epsilon rules q
ε−→ p ∈ ∆. These can

be eliminated as usual a the cost of a quadratic size increase. A better way is to use

84 Chapter 3. Hedge Automata

the following elimination rule:

q1@p→ q2 ∈ ∆ (q,p) ∈ T∆

q@q→ q2 ∈ ∆elim−2−sorted

Determinism is preserved when eliminating 2-sortedness in this way. Furthermore,

the possible size increase is at most quadratic.

3.7.2 2-Sorted Sha↓s

A 2-sorted Sha
↓ can be defined such as a 2-sorted Sha by replacing tree initial

states to tree initial rules 〈〉 ⊆ Q×Q. Extensions with typed else rules are as before.

Example 3.49. An example for a 2-sorted Sha
↓ with typed else rules is given in Fig-

ure 9.4. It represents the XPath query A0 equal to child::site.

Chapter 4
Xml Documents and XPath Queries

Abstract
We recall the Xml data model, discuss an encoding of Xml documents as
hedges, and show how to formalize the XML data model by a stepwise
hedge automaton. We introduce regular XPath queries for XML docu-
ments informally, and discuss how these can be compiled to stepwise
hedge automata too. Finally, we recall the 8 regular XPath queries of the
XPathMark benchmark that we will be used for testing our algorithms.

Contents
4.1 XML Documents . 86

4.2 Hedge Encoding of XML Documents 87

4.2.1 General Encoding . 87

4.2.2 Schema of Hedge Encodings 88

4.3 XPath . 89

4.3.1 Regular Fragment . 89

4.3.2 Non-regular Queries . 90

4.3.3 Types and Functions . 91

4.3.4 Answer Sets . 91

4.3.5 Variables . 91

4.4 XPath Benchmarks . 92

4.4.1 XPathMark Benchmark . 92

4.4.2 Lick and Schmitz’ Benchmark 93

4.5 Schema Constraints for x-Annotations 94

86 Chapter 4. Xml Documents and XPath Queries

4.6 Available Deterministic SHAs . 95

4.1 XML Documents

Xml is one of the most used standardized formats for representing and ex-

changing structured data between various tools and applications. Process-

ing Xml documents in both in-memory and streaming modes has been widely

studied for many years [Kay 2004] [Labath & Niehren 2015] [Gottlob et al. 2003]

[Genevès & Layaïda 2006] [Gauwin 2009]. The most frequent tasks are validating,

querying and transforming Xml documents. In the Xml technology, this is done

with standardized languages based on XPath queries, such as Xslt and XQuery.

Any Xml document can be parsed into some labeled unranked tree, or can be

serialized to some nested word but with labeled parenthesis. Consider for instance

the Xml document:

<list>

<item>

CIAA

<item>

<list>

It can be seen a nested word but with labeled parenthesis, the labeled opening paren-

thesis <list> and <item> and labeled closing parenthesis </item> and </list>.

Up to removing whitespace, this XML document can be parsed to the following

unranked tree:

list

item

text

C I A A

Its root element is labeled list, has a single child element that is labeled by item,

and which contains a text node with data value C · I ·A ·A. This unranked tree

4.2. Hedge Encoding of XML Documents 87

with labeled nodes can be identified with the following hedge h ∈ HΣ with a single

unlabeled tree constructor, and the alphabet Σ = {list,item, text} ∪ {A, . . . ,Z}:

h = 〈list · 〈item · 〈text ·C · I · I ·A〉〉〉

In turn, this hedge can be linearized to the nested word nw(h) ∈ NΣ below – but

now with unlabeled parenthesis:

nw(h) = 〈 list 〈 item 〈 text C I A A 〉 〉

4.2 Hedge Encoding of XML Documents

We present a general encoding of Xml documents as hedges, and give a regular

schema for the set of all encodings.

4.2.1 General Encoding

Any sequence of Xml documents can be encoded by some hedge. This can be done

in such a way that the 5 node types of Xml documents – element, attribute, text,

comment, document – are represented. Furthermore, Xml’s qualified names are

decomposed into a name and a namespace.

Example 4.1. In Figure 4.1, we give an example of a sequence of two Xml documents.
Such a sequence is not an Xml document itself, but may be an intermediate result of
some Xslt program, to which the Xslt program may then apply some XPath query. The
graph of hedge of this sequence of Xml documents is shown in Figure 4.2. This hedge h
has the following nested word nw(h) ∈ NΣ – but now with unlabeled parenthesis:

〈elem default list

〈 elem default item 〈 text F C T 〉
〈 elem default item 〈 text C I A A 〉 〉

〈elem default list

〈 elem default item 〈 text C M S B 〉 〉 〉

We assume that the signature contains a constant for each of the 5 Xml node

types: elem (elements), attr (attributes), text (text nodes), comment (comments),

and doc (documents). It must also contain the letters of the characters of text, so

usually the set of UTF-8 characters. All names and the namespace must belong to

the signature too, but we don’t decompose them into letters.

88 Chapter 4. Xml Documents and XPath Queries

<list>

<item>FCT</item>

<item>CIAA</item>

</list>

<list>

<item>CMSB</item>

</list>

Figure 4.1: A sequence of two Xml documents.

〈〉

elem default list 〈〉

elem default item 〈〉

text F C T

〈〉

elem default item 〈〉

text C I A A

〈〉

elem default list 〈〉

elem default item 〈〉

text C M S B

Figure 4.2: The hedge representing the sequence of Xml documents in Figure 4.1.

4.2.2 Schema of Hedge Encodings

The schema of hedge encodings of Xml documents is defined by the nested regular

expression XML-Seq in Figure 4.3.

For this, we assume that there exists a nested regular expression Name that

specifies the set of Xml names, and a nested regular expression Namespace that rec-

ognizes the set of all namespaces allowed by Xml documents. We assume that there

is the constant default for the case of names without namespace1. Furthermore,

we assume a nested regular expression Char that defines the characters of Xml data

values.

The nested regular expression Text, for instance, states that any text subtree

starts with Xml node type text and continues with a sequence of characters. The

nested regular expression Elem states that an Xml element is a subtree that starts

with the Xml node type elem, continues with a Namespace or the constant default,

followed by a Name, then a sequence of Xml attributes, and finally a sequence of

1The choice of the name default has historical reasons in our tool chain. The value none would
have been clearer.

4.3. XPath 89

Attr = 〈attr · (Namespace + default) ·Name ·Char∗〉
Comment = 〈comment ·Char∗〉

Text = 〈text ·Char∗〉
Elem = µz. 〈elem · (Namespace + default) ·Name

·Attr∗ · (z+ Comment + Text)∗〉
Doc = 〈doc ·Elem〉

XML-Seq = Elem∗ + Doc

Figure 4.3: Schema ~XML-Seq� contains all hedges encoding Xml documents.

Xml elements, text, or comments.

An important issue remains to be discussed though: the sets of namespaces and

names may be infinite (while the set of characters is usually finite). Therefore, the

assumption of a finite signature is too optimistic. This can be solved by enriching

the nested regular expressions with symbols capturing infinitely many letters.

These are of the form _ : τ where τ ∈ {namespace,name,char}. We can then define

the missing (infinitary) nested regular expressions as follows:

Namespace = _ : namespace

Name = _ : name

Char = _ : char

These infinitary nested regular expressions can be compiled to typed else rules of

infinitary Shas.

4.3 XPath

XPath is a W3C standard query language for selecting nodes in Xml data trees.

It plays a key role across Xml technologies like Xslt, and XQuery, enabling data

transformations and extractions. XPath has evolved through three main versions –

1.0, 2.0, and 3.0 – each expanding its syntax while retaining core navigational logic,

allowing it to handle a wider variety of queries. The latest version 3.1 had a key

update: the addition of support for JSON by introducing maps and arrays, along

with new expressions and functions to handle them.

4.3.1 Regular Fragment

In this thesis, we focus on the regular fragment of XPath 3.1. This is basically the

navigational fragment of XPath 3.0 that we also called Core XPath 3.0. Its queries

90 Chapter 4. Xml Documents and XPath Queries

<people>

<female id="f1">

<firstname>Marie</firstname>

<lastname>Dupont</lastname>

</female>

<male id="m1">

<firstname>Jean-Marie</firstname>

<lastname>Martin</lastname>

</male>

</people>

Figure 4.4: An Xml document representing a list of people with gender and name
information.

are NRPQs, so they have path and filters, where filters may contain paths again and

logical connectives. Note that the Kleene-star is not included natively in XPath 3.1,

but it can still be expressed by recursive functions.

We consider regular XPath queries with forward axis only. These include self,

child, descendant, and following-sibling. Backward axis such as ancestor or

preceding-sibling are excluded from our examples, since our current compiler to

nested regular expressions does not support them. Also note that next-sibling is not

an XPath axis, but still expressible by using positions via following-sibling[1].

Positions, however, do not belong to the XPath fragment that we consider.

Regular XPath queries permit to compare data values to constants. The following

example, for instance, was already given in Section 1.1.1 of the introduction::

//male/firstname[contains(.,’Marie’)]

When applied to the Xml document in Figure 4.4, this query selects the second

firstname node with identifier m1 of the document, since its parent node is male,

but not the first, since it has the parent node female.

4.3.2 Non-regular Queries

On the other hand, non-regular XPath query with comparisons between data values

are ruled out, in the fragment of interest. An example is the query:

//male/firstname[contains(. = //female/firstname)]

which selects the node the firstname with parent node male and text Jean-Marie,

since there exists a node female whose firstname child is Marie.

4.3. XPath 91

4.3.3 Types and Functions

We notice that XPath is a typed language, and that different types of output are

possible. It supports subtyping, so that the same object can be given various types

of different generality. This permits, for instance, to consider dates as special texts.

We restricted ourselves to queries that output sets of nodes. Other queries that

output integers, dates, texts, or sequences are not considered.

XPath 3.1 also support recursive higher order functions. These permit to express

the Kleene-star in particular. Having the Kleene star-natively would be of high

interest as argued for instance by [Mozafari et al. 2012]. The only functions that

we permit in our study are the functions on texts: contains, starts-with, and

ends-with.

However, since we rule out all other XPath functions, the only recursive

queries permitted are those that use the recursive axis like descendant and

following-sibling.

4.3.4 Answer Sets

XPath has two different official semantics given by the W3C, depending on whether

it is considered as a fragment of Xslt or XQuery. In the former, the answer set

must be output in document order, while in the latter, the answer set can be output

in any order. Since we are interested in Xml stream processing, it is crucial to adopt

the unordered semantics, which is the approach taken in the present thesis.

The nodes of an Xml document may be identified with integers when traversing

them in document order. In the official semantics, the answer set does not refer to

the nodes of the Xml document, but to the subtrees rooted at these nodes. However,

using subtrees instead of nodes may increase the size of the answer set from linear

to quadratic and potentially lead to huge delays in streaming mode. For example,

if the root is selected, the full input document must be output, which can only be

done at the very end of the document. Therefore, we do not follow the choice of

outputting subtrees and instead consider the answer sets as sets of nodes (integers).

4.3.5 Variables

Finally notice that XPath queries may also contain variables that are bound to

further Xml documents or values of other types. In this way, it may select nodes in

several Xml documents. In the example we consider, we do not permit any variables

92 Chapter 4. Xml Documents and XPath Queries

though.

4.4 XPath Benchmarks

Two benchmarks for XPath queries were made available, the XPathMark bench-

mark and Lick and Schmitz’ benchmark.

4.4.1 XPathMark Benchmark

XPathMark [Franceschet 2005a] is a widely used benchmark for XPath 1.0, con-

sisting of two main tests: a functional test and a performance test. Below is a brief

description of each:

• XPath Functional Test (XPath-FT): This test focuses on evaluating various

functional aspects of XPath 1.0, such as navigational axes, filters, node tests,

operators, and functions. It consists of multiple groups of queries, each

targeting specific features of the language, which are executed on a small

educational document.

• XPath Performance Test (XPath-PT): This test assesses the performance

of an Xml query processor. It includes a set of queries grouped by their

computational complexity, designed to test both data and query scalability. A

key advantage is that these queries are compatible with the XMark benchmark

[Schmidt et al. 2002], which provides a generator for scalable Xml documents,

of size up to tens of gigabytes.

In this thesis, we primarily focus on XPath-PT [Franceschet 2005b] due to its

scalability benefits and its direct relevance to computational complexity. This test

organizes queries into six categories (A–F):

• A: queries with forward axes.

• B: queries with backward axes.

• C: queries with the focus on data comparisons and joins.

• D: queries with aggregation functions, primarily counting and summing.

• E: queries using positions with different axes, and also string searches.

4.4. XPath Benchmarks 93

Query ID XPath query
A1 /site/closed_auctions/closed_auction/annotation/description/

text/keyword
A2 //closed_auction//keyword
A3 /site/closed_auctions/closed_auction//keyword
A4 /site/closed_auctions/closed_auction[annotation/description/ tex-

t/keyword]/date
A5 /site/closed_auctions/closed_auction[descendant::keyword]/date
A6 /site/people/person[profile/gender and profile/age]/name
A7 /site/people/person[phone or homepage]/name
A8 /site/people/person[address and (phone or homepage) and (cred-

itcard or profile)]/name

Table 4.1: Regular XPath Queries of XPathMark Benchmark.

• F: queries with the focus closure types (single, 2-step, long step, transitive).

In this thesis, the starting point of our tests with Category A, which only uses

the child and descendant axes. While we could have also considered Category B, as

mentioned earlier, we are constrained by certain limitations of existing compilers

for nested regular expressions. Some queries from Category C, particularly those

involving data comparisons with atomic values, could have been used as well.

However, we designed our own set of queries that extend upon Category A (see

Table 9.2). In Table 4.1, we present the eight queries from Category A.

The dShas for these queries obtained by Niehren and Sakho

[Niehren & Sakho 2021] will be shown in Section 4.6.

4.4.2 Lick and Schmitz’ Benchmark

Lick and Schmitz [Lick 2019] presented a benchmark of XPath queries gathered

from real-world online Xslt and XQuery programs [Lick & Schmitz 2022]. The

benchmark contains 21,141 XPath queries from all XPath 1.0, 2.0, and 3.0.

This benchmark was originally developed for testing verification techniques for

XPath queries, such as satisfiability and containment testing. These problems

are undecidable for non-regular XPath queries in general, so the question was,

which percentage of XPath queries in practice belong to subclasses for which these

problems are decidable.

Performance testing or XPath evaluators was not in the scope of interest. So

neither documents nor schemas were provided with the queries. What was given,

94 Chapter 4. Xml Documents and XPath Queries

however, is a tool to select XPath queries with particular properties from the

benchmark.

4.5 Schema Constraints for x-Annotations

We can encode each node selecting XPath query as a a monadic query:

Q : S→ 2N

The schema S of this query is defined by the nested regular expression XML-Seq:

S = ~XML-Seq�

Any monadic query Q for some regular XPath expression is regular, so Q can be

represented by regular languages of x-annotated hedges. We next introduce schema

constraints C for x-annotated hedges encoding Xml documents. We assume that the

selection variable x is annotated after names of elem or attr nodes, or after the type

constants text, comment, or doc. So we impose the following schema XML-Seq-x

to constrain the x-annotations of the hedge encodings of Xml documents:

Attr-x = 〈attr · (Namespace + default) ·Name · (x+¬x) · x-Char∗〉
Comment-x = 〈comment · (x+¬x) ·Char∗〉

Text-x = 〈text · (x+¬x) ·Char∗〉
Elem-x = µz. 〈elem · (Namespace + default) ·Name · (x+¬x)·

Attr∗ · (z+ Comment-x + Text-x)∗〉
Doc-x = 〈doc · (x+¬x) ·Elem-x〉

XML-Seq-x = Elem-x∗ + Doc-x

In positions where we may put the selection variable x, we may also put a special

word ¬x. Most of the time we consider ¬x as a special letter, in particular when

determinism matters, but in other place, we identify it with the empty word ε.

In addition we may impose the schema constraint on x-annotation One-x that

tests whether x occurs exactly once. So the overall schema constraint for x-

annotation that we are going to impose is:

C = ~XML-Seq-x� ∩ ~One-x�

4.6. Available Deterministic SHAs 95

Figure 4.5: The dSha xml-seq&one-x with typed else rules: a schema constraint for
hedges encoding x-annotated sequences of Xml documents.

A deterministic Sha xml-seq&one-x accepting the language ~C� is given in Fig-

ure 4.5.

4.6 Available Deterministic SHAs

Sakho and Niehren computed deterministic Shas for the regular XPath queries

A1-A8 of the XPathMark benchmark. Deterministic Shas for the regular XPath

queries of Lick and Schmitz’ benchmark were not yet available.

We present the dShas for A1-A8 in the Figures 4.6, 4.7, 4.8, 4.9, 4.10, 4.11, 4.12,

4.13. Each XPath expression was first compiled to some nested regular expression,

which was the compiled to a Sha, that was determinized, cleaned with respect

to the schema-constraint C, and then minimized. Each of these dSha B defines a

monadic query

qryC
S (L(B))

for the corresponding XPath expression, where schema S and the schema con-

straints C are given above.

96 Chapter 4. Xml Documents and XPath Queries

Figure 4.6: The minimization of the schema-cleaned accessible determinization
of the Sha compiled from the XPath query of the XPathMark benchmark: A1 =
/site/closed_auctions/closed_auction/annotation/description/ text/keyword.

4.6. Available Deterministic SHAs 97

Figure 4.7: The minimization of the schema-cleaned accessible determinization
of the Sha compiled from the XPath query of the XPathMark benchmark: A2 =
//closed_auction//keyword.

98 Chapter 4. Xml Documents and XPath Queries

Figure 4.8: The minimization of the schema-cleaned accessible determinization
of the Sha compiled from the XPath query of the XPathMark benchmark: A3 =
/site/closed_auctions/closed_auction//keyword.

4.6. Available Deterministic SHAs 99

Figure 4.9: The minimization of the schema-cleaned accessible determinization
of the Sha compiled from the XPath query of the XPathMark benchmark: A4 =
/site/closed_auctions/closed_auction[annotation/description/ text/keyword]/date.

100 Chapter 4. Xml Documents and XPath Queries

Figure 4.10: The minimization of the schema-cleaned accessible determinization
of the Sha compiled from the XPath query of the XPathMark benchmark: A5 =
/site/closed_auctions/closed_auction [descendant::keyword]/date.

4.6. Available Deterministic SHAs 101

Figure 4.11: The minimization of the schema-cleaned accessible determinization
of the Sha compiled from the XPath query of the XPathMark benchmark: A6 =
/site/people/person[profile/gender and profile/age]/name.

102 Chapter 4. Xml Documents and XPath Queries

Figure 4.12: The minimization of the schema-cleaned accessible determinization
of the Sha compiled from the XPath query of the XPathMark benchmark: A7 =
/site/people/person[phone or homepage]/name.

4.6. Available Deterministic SHAs 103

Figure 4.13: The minimization of the schema-cleaned accessible determinization
of the Sha compiled from the XPath query of the XPathMark benchmark: A8 =
/site/people/person[address and (phone or homepage) and (creditcard or profile)]/name.

Part II

Determinization
Abstract

We develop a schema-based determinization algorithm for stepwise hedge
automata, in order to obtain small deterministic automata for regular
XPath queries in practice. Schema-based determinization may yield ex-
ponentially smaller automata than schema-less accessible determiniza-
tion. We apply schema-based determinization to the benchmark of XPath
queries harvested by Lick and Schmitz in practice (from online Xslt and
XQuery programs transforming Xml documents with schema (docbook,
htmlbook, teixsl, treedown, and histei). We selected the 78 most complex
forward regular XPath queries from the more than 4500 regular forward
XPath queries in this benchmark, which overall contains more than 21000
queries. We obtain small deterministic stepwise hedge automata for 78
regular XPath queries. The biggest has 58 states and an overall size of 358.
We also converted these dShas to deterministic nested word automata of
similar sizes. All queries and automata are made freely available in the
Software Heritage archive. They can serve as a benchmark for testing the
efficiency of automata-based query evaluators.

Chapter 5
Schema-based Determinization

Abstract
We consider automata whose languages are constrained by some regular
schema. We propose an algorithm for schema-based determinization of
finite state automata. We develop it for stepwise hedge automata (Shas)
but our algorithm is new even for the special case of finite state automata
on words. We show that schema-based determinization is always more
efficient than the usual accessible determinization followed by schema-
based cleaning while yielding the same result. We also present a family
of stepwise hedge automata obtained from XPath queries, for which the
experiments with schema-based determinization suggest a more than linear
size reduction and thus speed-up compared to accessible determinization.

Contents
5.1 Introduction . 108

5.2 Accessible Determinization . 112

5.3 Schema-Based Cleaning for NFAs . 114

5.4 Schema-Based Determinization for NFAs 117

5.5 Schema-Based Cleaning and Determinization for SHAs 124

5.6 Correctness Proof . 127

5.7 Scaling Experiments . 131

108 Chapter 5. Schema-based Determinization

5.1 Introduction

Automata determinization is a crucial operation for many algorithmic problem

on automata like testing universality and inclusion. More generally it is rel-

evant for any automata problem that is in polynomial time when restricted

to deterministic automata and in exponential time otherwise. As shown by

[Gauwin et al. 2009a, Gauwin et al. 2009b], this is the case for EQA for Nwas and

Shas (since these are ExpTime-complete), and also unfeasible for EQA for Nfas

(which is Pspace-complete) when assuming P,NP.

The usual determinization algorithm for Nwas – that lifts the subset construction

to subsets of pairs of states [Okhotin & Salomaa 2014, Alur & Madhusudan 2004,

von Braunmühl & Verbeek 1985] – is problematic for any Nwa that uses top-down

information, i.e., that does not have the weak single entry property. The Nwas ob-

tained from regular XPath queries via nested regular expressions and the compiler

to Nwas from [Niehren & Sakho 2021] are problematic in particular.

In order to solve this problem, Niehren and Sakho proposed an alternative

determinization algorithm for Nwas that is based on Shas determinization. The

Shas obtained from the Nwas for the regular XPath queries in the XPathMark

benchmark [Franceschet 2005b] could all be determinized in few seconds. The

largest deterministic Sha was obtained for XPath query A8. It has 124 states and an

overall size of 2464. The size can be reduced further by cleaning the deterministic

Sha with respect to the schema such as ~One-x� constraining the languages of

x-annotated hedges with signature Σ defining XPath queries. When minimizing

after schema-based cleaning, the number of states of the dShas for A8 could be

reduced to 48 and the overall size of the automaton to 294. The dShas obtained

could then be compiled to deterministic Nwas in linear time.

Unfortunately, the situation becomes worse again, when constructing dShas for

regular XPath queries from practical Xslt and XQuery programs, as provided by

Lick and Schmitz’ benchmark [Lick & Schmitz 2022]. The phenomenon can also

be observed at the following example XPath query(outside this benchmark):

(QN7) /a/b//(* | @* | comment() | text())

Query QN7 selects all nodes of an XML document that are descendants of a b-

element below an a-element at the root. The nodes may have any XML type:

5.1. Introduction 109

element, attribute, comment, or text. The nondeterministic Sha for QN7 has 145

states and an overall size of 348. Its determinization however leads to an automaton

with 10,005 states and an overall size of 1,634,122.

The kick-off question of the present chapter is how to further reduce the size

of the dSha for regular XPath queries, and the time to compute them, in order

to obtain sufficiently small dShas for practical XPath queries – such as in the

benchmark of Lick and Schmitz – efficiently. The idea of the present chapter is to

used schema-based cleaning and determinization for this purpose.

Since we are interested in automata defining monadic queries, we consider

automata A whose languages are constrained by some regular schema S. This

means that we are less interested in the language of the automaton L(A) than in

its intersection with the schema constraints L(A) ∩ S. A typical example for a

schema constraint when defining monadic queries, is the constraint by the schema

S = ~One-x�, which accepts all hedges in HΣx that contain a single occurrence x.

Schema S can be defined by the dSha in Figure 5.9. When x is the selection variable

of a monadic query, then it models that any query answer selects a single node for

x.

Further schema constraints may define the domain of monadic queries, i.e., the

schema of the query. If the query must be applied to some Xml documents, then

the schema constraint has to specify the Xml data model. If the query is applied to

hedges encoding Xml documents, then the schema constraint has to capture such

hedges. See the schema ~XML-Seq-x� from Section 4.2.

The schema-based cleaning from Section 3.6 of the dSha for QN7 results in a dSha

with only 74 states and 203 transition rules. Applying Sha minimization afterward

reduces the automaton further to 27 states and 71 transition rules. What we are

really interested in, however, is to compute the schema-based cleaning of det(QN7)

and minimize it. However, our implementation of schema-based cleaning, that

computes the accessible product of two Shas based on OCaml’s cli Datalog, quickly

runs out of memory for larger automata, so it remains impossible to clean det(QN7)

based on the schema, given that det(QN7) has 10,005 states and an overall size of

1,634,122. A similar efficiency problem applies to our implementation of dSha

minimization, that is equally based OCaml’s cli Datalog for computing difference

relations on states, so it is impossible to minimize det(QN7) in this way.

Therefore, the question remains open how to compute sclS(det(A)) efficiently

where A is a Sha for some regular XPath query, in order to efficiently produce

reasonably small deterministic automata for regular XPath queries as simple as

110 Chapter 5. Schema-based Determinization

QN7, and for the regular XPath queries in the benchmark of Lick and Schmitz.

Given the relevance of schemas for schema-based cleaning, one naive approach

could be to determinize the product of the automata for the query and schema.

This may look questionable at first sight, given that the schema-product may be

bigger than the original automaton, so why could it make determinization more

efficient? But in the case of QN7, the determinization of the schema-product yields

a deterministic automata with only 92 states and 325 transition rules, and can be

computed efficiently. This observation is very promising, motivating three general

questions:

Question 4. Why are schemas so important for automata determinization?

Question 5. Can this be established by some complexity result?

Question 6. Is there a way to compute the schema-based cleaning of the deter-

minization of an Sha more efficiently than by accessible determinization followed

by schema-based cleaning?

Our main result is a novel algorithm for schema-based determinization Shas, that

integrates schema-based cleaning directly into the usual determinization algorithm.

For any Sha A, it computes the schema-based determinization:

detS(A) = sclS(det(A))

i.e., the same result as accessible determinization det applied to A followed by

schema-based cleaning sclS . This is proven by our soundness Theorem 2. Further-

more, we show in Proposition 5.15 that detS(A) can be computed more efficiently

than first computing B = det(A) and then sclS(B). Our results thus answer Ques-

tion 6 positively.

The idea of our schema-based determinization algorithm is to refine the usual

accessible determinization algorithm based on the subset construction, so that it

keeps only those subsets of states that can be aligned to some state of the schema.

This algorithm obtained in this way can compute the schema-based cleaning of the

usual accessible determinization of QN7 in less than three seconds. In contrast, the

accessible determinization is so big such that our implementation of schema-based

cleaning of does not terminate on it after a few hours. We also show that the

worst case time complexity of schema-based determinization is lower than that of

accessible determinization followed by schema-based cleaning.

5.1. Introduction 111

The answer to Question 4 is that determinizing A× S may be exponentially less

costly than determinizing A, but at most polynomially more costly. This is shown

by the answer of Question 5: It starts from the observation that the number of

states of S × det(A) may be exponentially smaller than the number of states of the

accessible determinization det(A), since the schema automaton S is assumed to be

deterministic, and at most polynomially bigger.

In order to see this, we first note that det(A × S) = det(A) × S up to renaming

of states1 for the deterministic schema automaton S. So for exponentially many

subsets of states Q ∈ Qdet(A), there may be no state s ∈ QS such that (Q , s) ∈ Qdet(A)×S ,

since this would require that all states q ∈Q can be aligned to s, i.e., that (q,s) in

QA×S for all q ∈Q .

Concerning Question 6, we provide a complexity upper bound for the time to

compute detS(A) = sclS(det(A)) in Proposition 5.15. This bound depends quadrat-

ically on the number of states of S × det(A), which may be exponentially smaller

than for det(A) since S is deterministic. Furthermore, it is not difficult to see that

det(A)× S is equal to detS(A)× S, and thus:

det(A× S) = detS(A)× S

Hence, any size bound for the schema-based determinization detS(A) implies a size

bound for the accessible determinization of the schema-product det(A× S).

We have implemented schema-based determinization for Shas with an experi-

mental evaluation. For this, we consider a family of Shas obtained from a scalable

family of XPath queries. Our experiments confirm a very large reduction of the com-

putation time by the usage of schemas during determinization. These experiments

suggest that the speed up is more than linear for this family of queries.

A large scale experiment on practical XPath queries is provided in Chapter 6

where schema-based algorithms were applied to the regular XPath queries col-

lected by Lick and Schmitz [Lick & Schmitz 2022] from real-world XQuery and

Xslt programs. Small deterministic Shas could be obtained by schema-based de-

terminization for all regular XPath queries in this corpus. By contrast, accessible

determinization fails in 37% of the cases with a timeout of 100 seconds. Without

this timeout, determinization either runs out of memory or produces very large

automata.

1If {(q1, s1) . . . (qn, sn)} ∈ Qdet(A×S). then there exists a tree that can go into all states q1 . . .qn with A
and into all states s1, . . . sn with S. Since S is deterministic, we have s1 = . . . = sn. So there exists a tree
going into {q1, . . . , qn} with det(A) and also into all si . So ({q1, . . . , qn}, si) is a state of det(A)× S.

112 Chapter 5. Schema-based Determinization

IA , ∅
IA ∈ Idet(A) IA ∈ Qdet(A)

Q ∈ Qdet(A) Q ∩FA , ∅
Q ∈ Fdet(A)

Q ∈ Qdet(A) Q ′ = {q′ ∈ QA | q a−→ q′ ∈ ∆A, q ∈Q } , ∅

Q
a−→Q ′ ∈ ∆det(A) Q ′ ∈ Qdet(A)

det(A) = (Σ,Qdet(A),∆det(A), Idet(A),Fdet(A))

Figure 5.1: The accessible determinization det(A) of Nfa A.

1 fun det (A) =
2 l e t Store = hashset.new(∅)
3 l e t Agenda = list.new() and Rules = hashset.new(∅)
4 i f IA , ∅ then Agenda.add(IA)
5 while Agenda.notEmpty() do

6 l e t Q = Agenda.pop()
7 l e t h be an empty hash t a b l e with keys from Σ .
8 / / t h e v a l u e s w i l l be \nempty hash s u b s e t s o f QA

9 for q
a−→ q′ ∈ ∆A such that q ∈Q do

10 i f h.get(a) = undef then h.add(a,hashset.new(∅))
11 (h.get(a)).add(q′)

12 for (a,Q ′) in h.tolist() do Rules.add(Q
a−→Q ′)

13 i f not Store.member(Q ′) then Store.add(Q ′) Agenda.push(Q ′)
14 l e t Fdet(A) = {Q |Q ∈ Store,Q ∩FA , ∅}
15 return (Σ,Store.toSet(),Rules.toSet(), IA,Fdet(A))

Figure 5.2: A program computing the accessible determinization of an Nfa A from
Figure 5.1.

Outline We start in Section 5.2 by recalling the accessible determinization of

Nfas.In Section 5.3, we recall schema-based cleaning for Nfas. In Section 5.4, we

contribute our schema-based determinization algorithm in the case of Nfas and

show its correctness. In Section 5.5, we lift schema-based determinization to Shas

and proof it soundness in Section 5.6. In Section 5.7, we illustrate a non-linear

speed-up of schema-based determinization or by determinizing the schema product

experimentally for the Shas of a family of regular XPath queries.

5.2 Accessible Determinization

We work out few complexity properties of the accessible determinization of Nfas

that are basically folklore.

For this we note that the accessible determinization det(A) of a Nfa A =

5.2. Accessible Determinization 113

(Σ,QA,∆A, IA,FA) can be computed by the inference rules in Figure 5.1. The com-

putation works like determinization with the usual subset construction, except that

only accessible subsets are created. It is well known that L(A) = L(det(A)). Since

only accessible subsets of states are added, we have Qdet(A) ⊆ 2Q
A
. Therefore, the

accessible determinization may even reduce the size of the automaton and often

avoid the exponential worst case where Qdet(A) = 2Q
A
.

Proposition 5.1 (Folklore). The accessible determinization det(A) of a Nfa A can be
computed in expected amortized time O(|Qdet(A)| |∆A|+ |A|).

Proof. The algorithm for accessible determinization and its complexity upper

bound are somehow folklore. We present them nevertheless, since they are to

be refined for schema-based determinization later on. A set of inference rules for

accessible determinization is given in Figure 5.1, and an algorithm computing the

fixed point of these inference rules is presented in Figure 5.2. It uses dynamic

perfect hashing [Dietzfelbinger et al. 1994] for implementing hash sets, so that set

inserting and membership can be done in randomized amortized time O(1). The

algorithm has a hash set Store to save all discovered states Qdet(A) and a hash set

Rules to collect all transition rules. Furthermore, it has a stack Agenda to process

all new states Q ∈ Qdet(A). For each Q popped from the stack Agenda, the algorithm

uses a hash table h to compute all pairs (a,Q ′) such that Q
a−→ Q ′ ∈ ∆det(A) and

Q ′ , ∅. This is done by iterating over ∆A so in time O(|∆A|). By iterating over the

hash table h, all transitions Q
a−→ Q ′ will be added to the set Rules and Q ′ will

be added to the stack Agenda and to the hash set Store if it wasn’t there yet. The

overall number of elements in the Agenda is |Qdet(A)|. For each Q , the computation

of all Q ′ is in time O(|∆A|). The preprocessing of A requires time O(|A|). Thus, the

total time of the algorithm is in O(|Qdet(A)| |∆A|+ |A|).

The graph of the Dfa det(A0) obtained by accessible determinization is shown

in Figure 3.6. For A0, it is equal to the trimmed automaton trim(Adet-f
0) =

acc-clean(Adet-f
0). Note that only 4 out of the 23 = 8 subsets are accessible, so the size

increases only by a single state and two transitions rules in this example.

Proposition 5.2. The accessible determinization of a Sha can be computed in expected
amortized time O(|Qdet(A)|2 |∆A|+ |A|).

Proof. An algorithm for computing the fixed points of the inference rules of acces-

sible determinization of a Sha is presented in Figure 5.3. It extends on the case of

Nfas with the same data structures. It uses dynamic perfect hashing for the hash

114 Chapter 5. Schema-based Determinization

1 fun detSHA (A) =
2 l e t Store = hashset.new(∅)
3 l e t Agenda = list.new() and Rules = hashset.new(∅)
4 i f IA , ∅ then Agenda.add(IA)
5 while Agenda.notEmpty() do

6 l e t Q = Agenda.pop()
7 l e t h be an empty hash t a b l e with keys from Σ .
8 / / t h e v a l u e s w i l l be \nempty hash s u b s e t s o f QA

9 for q
a−→ q′ ∈ ∆A such that q ∈Q do

10 i f h.get(a) = undef then h.add(a,hashset.new(∅))
11 (h.get(a)).add(q′)

12 for (a,Q ′) in h.tolist() do Rules.add(Q
a−→Q ′)

13 i f not Store.member(Q ′) then Store.add(Q ′) Agenda.push(Q ′)
14 for Q1 ∈ Store do

15 l e t Q ′ = {q′ | q@q1→ q′ ,q1 ∈Q1,q ∈Q }
16 i f Q ′ , ∅ then Rules.add(Q@Q1→Q ′)
17 i f not Store.member(Q ′) then Store.add(Q ′) Agenda.push(Q ′)
18 l e t Q ′′ = {q′′ | q1@q→ q′′ ,q1 ∈Q1,q ∈Q }
19 i f Q ′′ , ∅ then Rules.add(Q1@Q →Q ′′)
20 l e t Fdet(A) = {Q |Q ∈ Store,Q ∩FA , ∅}
21 return (Σ,Store.toSet(),Rules.toSet(), IA,Fdet(A))

Figure 5.3: An algorithm for accessible determinization of Shas.

sets. The additional treatment of apply rules, that dominates the complexity of

the algorithm, works as follows: for each Q ∈ Qdet(A) in the Agenda and each state

Q1 ∈ Qdet(A) in the Store, it computes the sets Q ′ = {q′ | q@q1→ q′ ,q1 ∈ Q1,q ∈ Q }
and Q ′′ = {q′′ | q1@q→ q′′ ,q1 ∈Q1,q ∈Q } and puts all new nonempty sets in both

the Agenda and the Store, while adding dynamically the generated apply rules in

the hash set Rules. Again, the overall number of elements in the agenda will be

|Qdet(A)|, requiring time in O(|Qdet(A)|2 |∆A|). With a precomputation time of A in

O(|A|), the total computation will be in O(|Qdet(A)|2 |∆A|+ |A|).

5.3 Schema-Based Cleaning for NFAs

We establish natural properties of schema-based cleaning of Nfas that are based on

the accessible schema product. The restriction to accessibility cleaning the schema

product is relevant for schema-based determinization. The removal of all useless

states from the schema product is not feasible in this context.

Example 5.3. For illustration, the schema-based cleaning of Dfa det(A0) in Figure 3.6
with respect to schema automaton word-one-x{a} is given in Figure 5.4. The only words
recognized by both det(A0) and word-one-x{a} are x and xa. For recognizing these two

5.3. Schema-Based Cleaning for NFAs 115

Figure 5.4: The schema-based cleaning of det(A0) constrained by the schema au-
tomaton word-one-x{a}, up to renaming the states.

q ∈ IA s ∈ IS

(q,s) ∈ IA×S (q,s) ∈ QA×S
q ∈ FA s ∈ FS (q,s) ∈ QA×S

(q,s) ∈ FA×S

q1
a−→ q2 ∈ ∆A s1

a−→ s2 ∈ ∆S (q1, s1) ∈ QA×S

(q1, s1)
a−→ (q2, s2) ∈ ∆A×S (q2, s2) ∈ QA×S

Figure 5.5: Accessible product A× S = (Σ,QA×S , IA×S ,FA×S ,∆A×S).

words, the automaton det(A0) does not need the subset of states {3}, so it can be removed
with all it transitions rules. Thereby, the word xxa violating the schema is no more
recognized after schema-based cleaning, while it was recognized by det(A0). Furthermore,
note that the state of subset {2,4} do not need to be final after schema-based cleaning.
Therefore the word ε, which is recognized by the automaton but not by the schema, is no
more recognized after schema-based cleaning. So schema-based cleaning may change the
language of the automaton but only outside of the schema.

Interestingly, the Nfa A0 in Figure 3.1 is schema-clean for schema word-one-x{a}
too, even though it is not perfect, in that it recognizes the words ε and xxa which

are rejected by the schema. The reason is that for recognizing the words x and

xa, which both satisfy the schema, all 3 states and all 4 transition rules of A0

are needed. By contrast, we already noticed that the accessible determinization

det(A0) in Figure 3.6 is not schema-clean for schema word-one-x{a}. This illustrates

that accessible determinization does not always preserve schema-cleanliness. In

other words, schema-based cleaning may have a stronger cleaning effect after

determinization than before.

The schema-based cleaning of an automaton can be defined based on the accessi-

ble product of the automaton with the schema. The accessible product A× S of two

Nfas A and S with alphabet Σ is defined in Figure 5.5. This is the usual product,

except that only accessible states are admitted. Clearly, L(A× S) = L(A)∩L(S). Let

ΠA(A× S) be obtained from the accessible product by projecting away the second

component, as formally defined in Figure 5.6. The schema-based cleaning of A with

respect to schema S is this projection.

Definition 5.4. sclS(A) = ΠA(A× S).

116 Chapter 5. Schema-based Determinization

(q,s) ∈ IA×S

q ∈ IΠA(A×S)

(q,s) ∈ QA×S

q ∈ QΠA(A×S)

(q,s) ∈ FA×S

q ∈ FΠA(A×S)

(q1, s1)
a−→ (q2, s2) ∈ ∆A×S

q1
a−→ q2 ∈ ∆ΠA(A×S)

Figure 5.6: Projection ΠA(A× S) = (Σ,QΠA(A×S),∆ΠA(A×S), IΠA(A×S),FΠA(A×S)).

Figure 5.7: A Dfa that
is schema-clean but not
perfect for word-one-xΣ.

Figure 5.8: The ac-
cessible product with
word-one-xΣ is schema-
clean and perfect for
word-one-xΣ.

Figure 5.9: The dSha
one-xΣ with alphabet Σ]
{x,¬x}.

The fact that A × S is restricted to accessible states matches our intuition that

all states of sclS(A) can be used to read some word in L(A) that satisfies schema

S. This can be proven formally under the condition that all states of A× S are also

co-accessible. Clearly, sclS(A) is obtained from A by removing states, initial states,

final states, and transitions rules. So it is smaller or equal in size |sclS(A)| ≤ |A| and

language L(sclS(A)) ⊆ L(A). Still, schema-based cleaning preserves the language

within the schema.

Proposition 5.5 ([Niehren & Sakho 2021]). L(A)∩L(S) = L(sclS(A))∩L(S).

Schema-clean deterministic automata may still not be perfect, in that they may

recognize some words outside the schema. This happens for Dfas if some state

of is reached, both, by a word satisfying the schema and another word that does

not satisfy the schema. An example for a Dfa that is schema-clean but not perfect

for word-one-xΣ is given in Figure 5.7. It is not perfect since it accepts the non

V -structure xaxa. The problem is that state 1 can be reached by the words a and xa,

so one cannot infer from being in state 1 whether some x was read or not. If one

wants to avoid this, one can use the accessible product of the Dfa with the schema

instead. In the example, this yields the Dfa in Figure 5.8 that is schema-clean and

perfect for word-one-xΣ.

Proposition 5.6 (Folklore). For any two Dfas A and S with alphabet Σ the accessible
product A× S can be computed in expected amortized time O(|QA×S ||Σ|+ |A|+ |S |).

Proof. An algorithm to compute the fixed points of the inference rules for the

5.4. Schema-Based Determinization for NFAs 117

accessible product A× S in Figure 5.5 can be organized such that only accessible

states are considered (similarly to semi-naive Datalog evaluation). This algorithm

is presented in Figure 5.10. It dynamically generates the set of rules Rules by using

perfect dynamic hashing [Dietzfelbinger et al. 1994]. Testing set membership is in

timeO(1) and the addition of elements to the set is in expected amortized timeO(1).

The algorithm uses a stack, Agenda, to memoize all new pairs (q1, s1) ∈ QA×S that

need to be processed, and a hash set Store that saves all processed states QA×S . We

aim not to push the same pair more than once in the Agenda. For this, membership

to the Store is checked before an element is pushed to the Agenda. For each pair

popped from the stack Agenda, the algorithm does the following: for each letter

a ∈ Σ it computes the sets Q = {q2 | q1
a−→ q2 ∈ ∆A} and R = {s2 | s1

a−→ s2 ∈ ∆S } and

then adds the subset of states of Q ×R that were not stored in the hash set Store to

the agenda. Since A and S are deterministic, there is at most one such pair, so the

time for treating one pair on the agenda is in expected amortized time O(|Σ|). The

overall number of elements in the agenda will be |QA×S |. Note that Q and R can be

computed in O(1) after preprocessing A and S in time O(|A|+ |S |). Therefore, we

will have a total time of the algorithm in O(|QA×S ||Σ|+ |A|+ |S |).

Corollary 5.7. For any two Dfas A and S with alphabet Σ schema-based cleaning
sclS(A) can be computed in expected amortized time O(|QA×S ||Σ|+ |A|+ |S |).

Proof. By Definition 5.4 it is sufficient to compute the projection of the accessible

product A×S. By Proposition 5.6 the product can be computed in timeO(|QA×S ||Σ|+
|A| + |S |). Its size cannot be larger than its computation time. The projection

can be computed in linear time in the size of A × S, so the overall time is in

O(|QA×S ||Σ|+ |A|+ |S |) too.

5.4 Schema-Based Determinization for NFAs

Schema-based cleaning after determinization becomes impossible in practice if the

automaton obtained by determinization is too big. We therefore show next how to

integrate schema-based cleaning into automata determinization directly.

The schema-based determinization of A with respect to schema S extends on

accessible determinization det(A). The idea is to run the schema S in parallel with

det(A), in order to keep only those state Q ∈ Qdet(A) that can be aligned to some

state s ∈ QS . In this case we write Q ∼ s.

118 Chapter 5. Schema-based Determinization

1 fun A× S =
2 l e t Store = hashset.new(∅)
3 l e t Agenda = list.new() and Rules = hashset.new(∅)
4 i f initA = {q0} and initS = {s0} then Agenda.add((q0, s0))
5 while Agenda.notEmpty() do

6 l e t (q1, s1) = Agenda.pop()
7 for a ∈ Σ do

8 l e t Q = {q2 | q1
a−→ q2 ∈ ∆A} R = {s2 | s1

a−→ s2 ∈ ∆S }
9 for q2 ∈Q and s2 ∈ R do

10 Rules.add((q1, s1)
a−→ (q2, s2))

11 i f not Store.member((q2, s2))
12 then Store.add((q2, s2)) Agenda.push((q2, s2))
13 l e t initA×S = {(q0, s0) | (q0, s0) ∈ Store} and FA×S = {(q,s) | (q,s) ∈ Store,q ∈ FA, s ∈ FS }
14 return (Σ,Store.toSet(),Rules.toSet(), initA×S ,FA×S)

Figure 5.10: An algorithm computing the accessible product of Dfas A and S.

Q ∈ Idet(A) IS = {s}
Q ∈ IdetS (A) Q ∼ s

Q ∼ s
Q ∈ QdetS (A)

Q ∈ Fdet(A) s ∈ FS Q ∼ s
Q ∈ FdetS (A)

Q
a−→Q ′ ∈ ∆det(A) Q ∼ s s

a−→ s′ ∈ ∆S

Q
a−→Q ′ ∈ ∆detS (A) Q ′ ∼ s′

Figure 5.11: Schema-based determinization detS(A) =
(Σ,QdetS (A),∆detS (A), IdetS (A),FdetS (A)).

The schema-determinization detS(A) is defined in Figure 5.11. The automaton

detS(A) permits to go from any subset Q ∈ Qdet(A) and letter a ∈ Σ to the set of states

Q ′ = a∆
det(A)

(Q), under the condition that there exists schema states s, s′ ∈ QS such

that Q ∼ s and s
a−→ s′. In this case Q ′ ∼ s′ is inferred.

Theorem 1 (Correctness). detS(A) = sclS(det(A)) for any Nfa A and Dfa S with the
same alphabet.

The theorem states that schema-based determinization yields the same result as

accessible determinization followed by schema-based cleaning.

For the correctness proof we collapse the two systems of inference rules for

accessible products and projection into a single rule system. This yields the rule

systems for schema-based cleaning in Figure 5.12. The rules there define the

automaton ŝclS(A), that we annotate with a hat, in order to distinguish it from the

previous automaton sclS(A). The rules also infer judgments (q,s) ∈ QA×̂S that we

distinguish by a hat from the previous judgments (q,s) ∈ QA×S of the accessible

5.4. Schema-Based Determinization for NFAs 119

q ∈ IA s ∈ IS

q ∈ I ŝclS (A) (q,s) ∈ QA×̂S
q ∈ FA s ∈ FS (q,s) ∈ QA×̂S

q ∈ FŝclS (A)

(q,s) ∈ QA×̂S

q ∈ QŝclS (A)

q1
a−→ q2 ∈ ∆A s1

a−→ s2 ∈ ∆S (q1, s1) ∈ QA×̂S

q1
a−→ q2 ∈ ∆ŝclS (A) (q2, s2) ∈ QA×̂S

ŝclS(A) = (Σ,QŝclS (A),∆ŝclS (A), I ŝclS (A),FŝclS (A))

Figure 5.12: A collapsed rule systems for schema-based cleaning ŝclS(A).

1 fun detS (A ,S) =
2 l e t Store = hashset.new(∅)
3 l e t Agenda = list.new() and Rules = hashset.new(∅)
4 i f IA , ∅ and initS = {s0} then Agenda.add(IA ∼ s0)
5 while Agenda.notEmpty() do

6 l e t (Q1 ∼ s1) = Agenda.pop()
7 for a ∈ Σ do

8 l e t P = {Q2 |Q1
a−→Q2 ∈ ∆det(A)} and R = {s2 | s1

a−→ s2 ∈ ∆S }
9 for Q2 ∈ P and s2 ∈ R do Rules.add(Q1

a−→Q2)
10 i f not Store.member(Q2 ∼ s2)
11 then Store.add(Q2 ∼ s2) Agenda.push(Q2 ∼ s2)

12 l e t initdetS (A) = {Q |Q ∼ s ∈ Store,Q ∩ IA , ∅} and FdetS (A) = {Q |Q ∼ s ∈ Store,Q ∩FA , ∅}
13 return (Σ,Store.toSet(),Rules.toSet(), initdetS (A),FdetS (A))

Figure 5.13: An algorithm for schema-based determinization detS(A) of an Nfa A
and a Dfa schema S.

product. The next proposition shows that the system of collapsed inference rules

indeed redefines the schema-based cleaning.

Proposition 5.8. For any two Nfas A and S with the same alphabet:

sclS(A) = ŝclS(A) and QA×S =QA×̂S

Proof. The two equations are shown by the following four lemmas. The judgments

with a hat there are to be inferred by the collapsed system of inference rules in

Figure 5.12, while the other judgments are to be inferred with the rule system for

accessible products in Figure 5.5.

Lemma 5.9. q ∈ I ŝclS (A) iff q ∈ IsclS (A).

Proof. The rule systems of accessible product, projection, and the collapsed system

120 Chapter 5. Schema-based Determinization

can be used as following :

q ∈ IA s ∈ IS

q ∈ I ŝclS (A)

q ∈ IA s ∈ IS

(q,s) ∈ IA×S

q ∈ IsclS (A)

Lemma 5.10. (q,s) ∈ QA×̂S iff (q,s) ∈ QA×S .

Proof. We prove for all n ≥ 0 that if (q,s) ∈ QA×̂S has a proof tree of size n then there

exists a proof tree for (q,s) ∈ QA×S . The proof is by induction on n.

In the case of the rules of the initial states, (q,s) ∈ QA×̂S is inferred directly

whenever (q,s) ∈ QA×S and vice versa, using the following:

q ∈ IA s ∈ IS

(q,s) ∈ IA×S (q,s) ∈ QA×S
q ∈ IA s ∈ IS

q ∈ I ŝclS (A) (q,s) ∈ QA×̂S

If (q,s) ∈ QA×̂S is inferred by the internal rule of the collapsed rule system in

Figure 5.12. Then the proof tree has the following form for some proof tree T1:

q1
a−→ q2 ∈ ∆A s1

a−→ s2 ∈ ∆S
T1

(q1, s1) ∈ QA×̂S

(q2, s2) ∈ QA×̂S

This shows that there is a smaller proof tree T1 for inferring (q1, s1) ∈ QA×̂S . So

by induction hypothesis applied to T1, there exists a proof tree T ′1 for inferring

(q1, s1) ∈ QA×S with the proof system of accessible products in Figure 5.5:

T ′1

(q1, s1) ∈ QA×S

Therefore, we also have the following proof tree for (q2, s2) ∈ QA×S with the internal

rule for the accessible product:

q1
a−→ q2 ∈ ∆A s1

a−→ s2 ∈ ∆S
T ′1

(q1, s1) ∈ QA×S

(q2, s2) ∈ QA×S

5.4. Schema-Based Determinization for NFAs 121

For the inverse direction, if (q,s) ∈ QA×S is inferred by the internal rule of the

accessible product rule system in Figure 5.5. Then the proof tree has the following

form for some proof tree T1:

q1
a−→ q2 ∈ ∆A s1

a−→ s2 ∈ ∆S
T1

(q1, s1) ∈ QA×S

(q2, s2) ∈ QA×S

This means that there is a smaller proof tree T1 for inferring (q1, s1) ∈ QA×S . By

induction hypothesis applied to T1, there exists a proof tree T ′1 for inferring (q1, s1) ∈
QA×̂S with the collapsed system in Figure 5.12:

T ′1

(q1, s1) ∈ QA×̂S

which leads to the following proof tree for (q2, s2) ∈ QA×S with the internal rule for

the collapsed system:

q1
a−→ q2 ∈ ∆A s1

a−→ s2 ∈ ∆S
T ′1

(q1, s1) ∈ QA×̂S

(q2, s2) ∈ QA×̂S

Lemma 5.11. q1
a−→ q2 ∈ ∆ŝclS (A) iff q1

a−→ q2 ∈ ∆sclS (A).

Proof. We prove for all n ≥ 0 that, if q1
a−→ q2 ∈ ∆ŝclS (A) has a proof tree of size n,

then there exists a proof tree for q1
a−→ q2 ∈ ∆sclS A and vice versa. The proof is by

induction on n.

If q1
a−→ q2 ∈ ∆ŝclS (A) is inferred by the internal rule of the collapsed system, the

proof tree will have the following for some tree T1:

q1
a−→ q2 ∈ ∆A s1

a−→ s2 ∈ ∆S
T1

(q1, s1) ∈ QA×̂S

q1
a−→ q2 ∈ ∆ŝclS (A)

122 Chapter 5. Schema-based Determinization

By Lemma 5.10 and the rule of internal rules of the accessible product rule system:

q1
a−→ q2 ∈ ∆A s1

a−→ s2 ∈ ∆S
T ′1

(q1, s1) ∈ QA×S

(q1, s1)
a−→ (q2, s2) ∈ ∆A×S

For the inverse direction, if q1
a−→ q2 ∈ ∆sclS (A) is inferred by the internal rule of

the accessible product, the proof tree will have the following for some tree T1:

q1
a−→ q2 ∈ ∆A s1

a−→ s2 ∈ ∆S
T1

(q1, s1) ∈ QA×S

(q1, s1)
a−→ (q2, s2) ∈ ∆A×S

q1
a−→ q2 ∈ ∆sclS (A)

By lemma 5.10 and the rule of internal rules of the collapsed system:

q1
a−→ q2 ∈ ∆A s1

a−→ s2 ∈ ∆S
T ′1

(q1, s1) ∈ QA×S

q1
a−→ q2 ∈ ∆ŝclS (A)

Lemma 5.12. q ∈ QŝclS (A) iff q ∈ QsclS (A) and q ∈ FŝclS (A) iff q ∈ FsclS (A).

Proof. We start by proving that q ∈ QŝclS (A) iff q ∈ QsclS (A). By Lemma 5.10, and

rules of construction of the accessible product, projection, and collapsed systems,

this lemma holds for some proof trees T and T ′ as follows:

T

(q,s) ∈ QA×S

q ∈ QsclS (A)

T ′

q ∈ QŝclS (A)

Finally, we show that q ∈ FŝclS (A) iff q ∈ FsclS (A). Using Lemma 5.10, there exists

some proof trees T and T ′ that infers (q,s) ∈ QA×S and (q,s) ∈ QA×̂S in both ways

5.4. Schema-Based Determinization for NFAs 123

Q ∈ Idet(A) s ∈ IS

Q ∈ I ŝclS (det(A)) (Q , s) ∈ Qdet(A)̂×S

Q ∈ Fdet(A) s ∈ FS (Q , s) ∈ Qdet(A)×S

Q ∈ FŝclS (det(A))

(Q , s) ∈ Qdet(A)̂×S

Q ∈ QŝclS (det(A))

Q1
a−→Q2 ∈ ∆det(A) s1

a−→ s2 ∈ ∆S (Q1, s1) ∈ Qdet(A)×S

Q1
a−→Q2 ∈ ∆ŝclS (det(A)) (Q2, s2) ∈ Qdet(A)̂×S

ŝclS(det(A)) = (Σ,QŝclS (det(A)),∆ŝclS (det(A)), I ŝclS (det(A)),FŝclS (det(A)))

Figure 5.14: Instantiation of the collapsed rule system for schema-based cleaning
from Figure 5.12 with det(A).

and therefore having the following form of rules:

q ∈ FA s ∈ FS
T

(q,s) ∈ QA×̂S

q ∈ FŝclS (A)

q ∈ FA s ∈ FS
T ′

(q,s) ∈ QA×S

(q,s) ∈ FA×S

q ∈ FsclS (A)

Proof of Correctness Theorem 1. Instantiating the system of collapsed rules for

schema-based cleaning from Figure 5.12 with det(A) for A yields the rule system

in Figure 5.14. We can identify the instantiated collapsed system for ŝclS(det(A))

with that for detS(A) in Figure 5.11, by identifying the judgments (Q , s) ∈ Qdet(A)̂×S

with judgments Q ∼ s. After renaming the predicates, the inference rules for

the corresponding judgments are the same. Hence ŝclS(det(A)) = detS(A), so that

Proposition 5.8 implies sclS(det(A)) = detS(A).

Proposition 5.13. The schema-based determinization detS(A) for a Nfa A and a Dfa

S over Σ can be computed in expected amortized time O(|Qdet(A)×S ||Σ|+ |QdetS (A)||∆A|+
|A|+ |S |).

Proof. An algorithm computing the fixed points of the inference rules of schema-

based determinization from Figure 5.11 is given in Figure 5.13. It refines the

algorithm computing the accessible product with on-the-fly determinization and

projection.

On the stack Agenda, the algorithm stores alignments Q ∼ s such that (Q , s) ∈
Qdet(A)×S that were not considered before. Transition rules of detS(A) are collected in

124 Chapter 5. Schema-based Determinization

hash set Rules, using the dynamic perfect hashing aforementioned. The alignments

Q1 ∼ s1 popped from the agenda are processed as follows: For any letter a ∈ Σ, the

sets R = {Q2 | Q1
a−→ Q2 ∈ ∆det(A)} and P = {s2 | s1

a−→ s2 ∈ ∆S } are computed. One

then pushes all new pairs Q2 ∼ s2 with Q2 ∈ P and s2 ∈ R into the agenda, and adds

Q1
a−→Q2 to the set Rules. Since S and det(A) are deterministic there is at most one

pair (Q , s) ∈ P ×R for Q1 and s1. So the time for treating one pair on the agenda

is in O(|Σ|) plus the time for building the needed transition rules of det(A) from

∆A on the fly. The time for the on the fly computation of transition rules of det(A)

is in time O(|QdetS (A)||∆A|). The overall number of pairs on the agenda is at most

|Qdet(A)×S | so the main while loop of the algorithm requires time in O(|Qdet(A)×S ||Σ|)
apart from on the fly determinization. This will give us an overall complexity for

the algorithm in O(|Qdet(A)×S ||Σ|+ |QdetS (A)||∆A|+ |A|+ |S |), with consideration of the

preprocessing time of A and S.

By Proposition 5.1, computing det(A) requires time O(|Qdet(A)| |∆A|+ |A|). There-

fore, with Proposition 5.6, the accessible product det(A)× S can be computed from

A and S in time O(|Qdet(A)×S ||Σ|+ |Qdet(A)| |∆A|+ |A|+ |S |). Since QdetS (A) ⊆ Qdet(A) the

proposition shows that schema-based determinization is at most as efficient in

the worst case as accessible determinization followed by schema-based cleaning.

If |Qdet(A)×S ||Σ| < |Qdet(A)||∆A| then it is more efficient, since schema-based deter-

minization avoids the computation of det(A) all over. Instead, it only computes

the accessible product det(A)× S, which may be way smaller, since exponentially

many states of det(A) may not be aligned to any state of S. Sometimes, however, the

accessible product may be bigger. In this case, schema-based determinization may

be more costly than pure accessible determinization, not followed by schema-based

cleaning.

5.5 Schema-Based Cleaning and Determinization for

SHAs

We can lift all previous algorithms from Nfas to Shas while extending the system

of inference rules. The additional rules concern tree initial states, that work in

analogy to initial states, and also apply rules that works similarly as internal rules.

The new inference rules for accessible products A× S are given in Figure 5.15 and

for projection ΠA(A× S) in Figure 5.16. As before we define sclS(A) = ΠA(A× S).

The rules for schema-based determinization detS(A) are extended in Figure 5.17.

The next complexity upper bound, however, now become quadratic with fixed

5.5. Schema-Based Cleaning and Determinization for SHAs 125

q ∈ 〈〉∆A s ∈ 〈〉∆S

(q,s) ∈ 〈〉∆A×S (q,s) ∈ QA×S

(q1, s1) ∈ QA×S
(q,s) ∈ QA×S

q1@q→ q2 ∈ ∆A
s1@s→ s2 ∈ ∆S

(q1, s1)@(q,s)→ (q2, s2) ∈ ∆A×S (q2, s2) ∈ QA×S

Figure 5.15: Lifting accessible products to Shas.

(q,s) ∈ 〈〉∆A×S

q ∈ 〈〉∆ΠA(A×S)

(q1, s1)@(q,s)→ (q2, s2) ∈ ∆A×S

q1@q→ q2 ∈ ∆ΠA(A×S)

Figure 5.16: Lifting projections ΠA(A× S) to Shas.

alphabet:

Proposition 5.14. If A and S are dShas then the accessible product A × S and the
schema-based cleaning sclS(A) can be computed in expected amortized time O(|QA×S |2 +

|QA×S ||Σ|+ |A|+ |S |).

The algorithm in Figure 5.18 is obtained by lifting the algorithm for Dfas in

Figure 5.10 to Shas. For the case of apply rules, we have to combine each pair

(q1, s1) ∈ QA×S in the stack Agenda with all (q,s) ∈ QA×S in the hash set Store, in both

directions. The time to treat these pairs is O(|QA×S |2), so quadratic in the worst case.

As before, no state (q1, s1) will be processed twice, due to the set membership test

before pushing a pair into the agenda.

Theorem 2 (Correctness). For any Sha A and dSHA S with the same alphabet:

detS(A) = sclS(det(A))

The proof presented in Section 5.6 extends on that for Nfas (Theorem 1) in a

direct manner.

Proposition 5.15. The schema-based determinization detS(A) of a Sha A with respect
to a dSha S can be computed in expected amortized time O(|Qdet(A)×S |2 + |Qdet(A)×S | |Σ|+
|QdetS (A)|2 |∆A|+ |A|+ |S |).

This proposition follows the result in Proposition 5.13 with an additional

quadratic factor in the size of states of the product det(A) × S and the states of

the schema-based determinized automaton. This is always due to the apply rules

of type Q3.

126 Chapter 5. Schema-based Determinization

〈〉∆S = {s}
〈〉∆A ∈ 〈〉∆detS (A) 〈〉∆A ∼ s

s1@s2→ s′ ∈ ∆S Q1 ∼ s1 Q2 ∼ s2
Q1@Q2→Q ′ ∈ ∆det(A)

Q1@Q2→Q ′ ∈ ∆detS (A) Q ′ ∼ s′

Figure 5.17: Extension of schema-based determinization to Shas.

1 fun A× S =
2 l e t Store = hashset.new(∅)
3 l e t Agenda = list.new() and Rules = hashset.new(∅)
4 i f initA = {q0} and initS = {s0} then Agenda.add((q0, s0))
5 while Agenda.notEmpty() do

6 l e t (q1, s1) = Agenda.pop()
7 for a ∈ Σ do

8 l e t Q = {q2 | q1
a−→ q2 ∈ ∆A} and R = {s2 | s1

a−→ s2 ∈ ∆S }
9 for q2 ∈Q and s2 ∈ R do Rules.add((q1, s1)

a−→ (q2, s2))
10 i f not Store.member((q2, s2))
11 then Store.add((q2, s2)) Agenda.push((q2, s2))
12 for (q,s) ∈ Store do

13 l e t Q ′ = {q2 | q1@q→ q2 ∈ ∆A} and R′ = {s2 | s1@s→ s2 ∈ ∆S }

14 for q2 ∈Q ′ and s2 ∈ R′ do Rules.add((q1, s1)
(q,s)
−−−−→ (q2, s2))

15 i f not Store.member((q2, s2))
16 then Store.add((q2, s2)) Agenda.push((q2, s2))
17 l e t Q ′′ = {q2 | q@q1→ q2 ∈ ∆A} and R′′ = {s2 | s@s1→ s2 ∈ ∆S }

18 for q2 ∈Q ′′ and s2 ∈ R′′ do Rules.add((q,s)
(q1,s1)
−−−−−−→ (q2, s2))

19 i f not Store.member((q2, s2))
20 then Store.add((q2, s2)) Agenda.push((q2, s2))
21 l e t initA×S = {(q0, s0) | (q0, s0) ∈ Store} and FA×S = {(q,s) | (q,s) ∈ Store,q ∈ FA, s ∈ FS }
22 return (Σ,Store.toSet(),Rules.toSet(), initA×S ,FA×S)

Figure 5.18: An algorithm computing the accessible product of dShas A and S.

Proof. Analogously to the case of Nfas on words. The algorithm in Figure 5.19 com-

putes the fixed point of the inference rules of schema-based determinization of Shas.

As for Nfas, it stores untreated alignments on a stack Agenda and processed align-

ments in a hash set Store. It also collects transition rules in a hash set Rules. New

alignments can now be produced by the inference rule for apply transitions: for each

alignment Q1 ∼ s1 on the Agenda and Q2 ∼ s2 in the Store, the algorithm computes

the sets {s | s1@s2 → s ∈ ∆S } and {Q | Q1@Q2 → Q ∈ ∆det(A)} and pushes all pairs

Q ∼ s outside the Store to the Agenda. There may be at most one such pair since S

and det(A) are deterministic. We also have to consider the symmetric case where

Q1 ∼ s1 on the store and Q2 ∼ s2 on the Agenda. Thus, it is in time O(|Qdet(A)×S |2)

which is quadratic in the worst case. Added to the latter, the cost of computing

the transition of det(A) on the fly which is in worst case O(|QdetS (A)|2 |∆A| + |A|).

5.6. Correctness Proof 127

1 fun detS (A ,S) =
2 l e t Store = hashset.new(∅)
3 l e t Agenda = list.new() and Rules = hashset.new(∅)
4 i f IA , ∅ and IS = {s0} then Agenda.add(IA ∼ s0)
5 while Agenda.notEmpty() do

6 l e t (Q1 ∼ s1) = Agenda.pop()
7 for a ∈ Σ do

8 l e t P = {Q2 |Q1
a−→Q2 ∈ ∆det(A)} and R = {s2 | s1

a−→ s2 ∈ ∆S }
9 for Q2 ∈ P and s2 ∈ R do Rules.add(Q1

a−→Q2)
10 i f not Store.member(Q2 ∼ s2)
11 then Store.add(Q2 ∼ s2) Agenda.push(Q2 ∼ s2)
12 for (Q ∼ s) ∈ Store do

13 l e t P ′ = {Q2 |Q1@Q →Q2 ∈ ∆det(A)} and R′ = {s2 | s1@s→ s2 ∈ ∆S }
14 for Q2 ∈ P ′ and s2 ∈ R′ do Rules.add(Q1@Q →Q2)
15 i f not Store.member(Q2 ∼ s2)
16 then Store.add(Q2 ∼ s2) Agenda.push(Q2 ∼ s2)
17 l e t P ′′ = {Q2 |Q@Q1→Q2 ∈ ∆det(A)} and R′′ = {s2 | s@s1→ s2 ∈ ∆S }
18 for Q2 ∈ P ′′ and s2 ∈ R′′ do Rules.add(Q@Q1→Q2)
19 i f not Store.member(Q2 ∼ s2)
20 then Store.add(Q2 ∼ s2) Agenda.push(Q2 ∼ s2)

21 l e t initdetS (A) = {Q |Q ∼ s ∈ Store,Q ∩ IA , ∅} and FdetS (A) = {Q |Q ∼ s ∈ Store,Q ∩FA , ∅}
22 return (Σ,Store.toSet(),Rules.toSet(), initdetS (A),FdetS (A))

Figure 5.19: An algorithm for schema-based determinization of an Sha A and a
dSha schema S

Therefore, having the whole algorithm running, including the time for computing

the internal rules, in O(|Qdet(A)×S |2 + |Qdet(A)×S | |Σ|+ |QdetS (A)|2 |∆A|+ |A|+ |S |) .

By Propositions 5.2 and 5.14, computing sclS(det(A)) by schema-based clean-

ing after accessible determinization needs time in O(|Qdet(A)×S |2 + |Qdet(A)×S | |Σ| +
|Qdet(A)|2 |∆A|+ |A|+ |S |). This complexity bound is similar to that of schema-based

determinization from Proposition 5.15. Since QdetS (A) ⊆ Qdet(A), Proposition 5.15

shows that the worst case time complexity of schema-based determinization is

never worse than for schema-based cleaning after determinization.

5.6 Correctness Proof

The proof of Theorem 2 extends on the proof of the case of words (Theorem 1) in a

direct manner.

We first lift the collapsed rule system for Nfas from Figure 5.12 to Shas in-

Figure 5.20, and then show that collapsed rules also redefine the schema-based

cleaning ŝclS(A) = sclS(A) in the case of Shas.

128 Chapter 5. Schema-based Determinization

q ∈ 〈〉∆A s ∈ 〈〉∆S

q ∈ 〈〉∆ŝclS (A)
(q,s) ∈ QA×̂S

q1@q→ q2 ∈ ∆A s1@s→ s2 ∈ ∆S (q1, s1) ∈ QA×̂S (q,s) ∈ QA×̂S

q1@q→ q2 ∈ ∆ŝclS (A) (q2, s2) ∈ QA×̂S

Figure 5.20: Lifting the collapsed rule system from Nfas to Shas.

Proposition 5.16. For any two Shas A and S with the same alphabet:

ΠA(A× S) = ŝclS(A) and QA×S =QA×̂S

Proof. The two equations are shown either by new lemmas or an extension of the

lemmas from the proof of Theorem 1, whereas all unchanged existing lemmas

hold(Lemmas 5.9, 5.11 and 5.12).

Lemma 5.17. q ∈ 〈〉∆ŝclS (A)
iff 〈〉∆sclS (A)

Proof. The rule systems of accessible product, projection and the collapsed system

can be used as following :

q ∈ 〈〉∆A s ∈ 〈〉∆S

q ∈ 〈〉∆ŝclS (A)

q ∈ 〈〉∆A s ∈ 〈〉∆S

(q,s) ∈ 〈〉∆A×S

q ∈ 〈〉∆sclS (A)

Lemma 5.18 (extends Lemma 5.10). (q,s) ∈ QA×̂S iff (q,s) ∈ QA×S .

All proofs for initial states rules and internal rules from the previous lemma hold

and we extend it for tree initial rules and apply rules:

Proof. Similarly, we prove for all n ≥ 0 that if (q,s) ∈ QA×̂S has a proof tree of size n

then there exists a proof trees for (q,s) ∈ QA×S . The proof is by induction on n.

In the case of tree initial rules, (q,s) ∈ QA×̂S is inferred directly whenever (q,s) ∈
QA×S and vice versa, using the following:

q ∈ 〈〉∆A s ∈ 〈〉∆S

(q,s) ∈ 〈〉∆A×S (q,s) ∈ QA×S
q ∈ 〈〉∆A s ∈ 〈〉∆S

q ∈ 〈〉ŝclS (A) (q,s) ∈ QA×̂S

5.6. Correctness Proof 129

In the same spirit, if (q,s) ∈ QA×̂S is inferred by the apply rule of the same system,

then the proof tree has the following form for some proof trees T1 and T :

q1@q→ q2 ∈ ∆A s1@s→ s2 ∈ ∆S
T1

(q1, s1) ∈ QA×̂S
T

(q,s) ∈ QA×̂S

(q2, s2) ∈ QA×̂S

This means that there are smaller proof trees T1 and T for inferring respectively

(q1, s1) ∈ QA×̂S and (q,s) ∈ QA×̂S . Correspondingly, by induction hypothesis applied

to T1 and T , there exists T ′1, T ′ for inferring (q1, s1) ∈ QA×S and (q,s) ∈ QA×S :

T ′1

(q1, s1) ∈ QA×S
T ′

(q,s) ∈ QA×S

Thus allowing the following proof tree for (q2, s2) ∈ QA×S with the apply rule of the

accessible product:

q1@q→ q2 ∈ ∆A s1@s→ s2 ∈ ∆S
T ′1

(q1, s1) ∈ QA×S
T ′

(q,s) ∈ QA×S

(q2, s2) ∈ QA×S

For the inverse direction of the apply rules, and using the induction hypothesis,

we will be able to infer (q2, s2) ∈ QA×̂S with some T ′1 and T ′ and ending with the

following proof tree:

q1@q→ q2 ∈ ∆A s1@s→ s2 ∈ ∆S
T ′1

(q1, s1) ∈ QA×̂S
T ′

(q,s) ∈ QA×̂S

(q2, s2) ∈ QA×̂S

Lemma 5.19. q1@q→ q2 ∈ ∆ŝclS (A) iff q1@q→ q2 ∈ ∆sclS (A).

Proof. Following the same logic in Lemma 5.11, this lemma holds by the following

130 Chapter 5. Schema-based Determinization

sequence of rules, for some proof trees T1, T , T ′1 and T ′ :

q1@q→ q2 ∈ ∆A s1@s→ s2 ∈ ∆S
T1

(q1, s1) ∈ QA×̂S
T

(q,s) ∈ QA×̂S

q1@q→ q2 ∈ ∆ŝclS (A)

q1@q→ q2 ∈ ∆A s1@s→ s2 ∈ ∆S
T ′1

(q1, s1) ∈ QA×S
T ′

(q,s) ∈ QA×S

(q1, s1)@(q,s)→ (q2, s2) ∈ ∆A×S

(q1, s1)@(q,s)→ (q2, s2) ∈ ∆A×S

q1@q→ q2 ∈ ∆ŝclS (A)

For the inverse direction, the sequence of rules, for some proof trees T1, T , T ′1 and

T ′ will be:

q1@q→ q2 ∈ ∆A s1@s→ s2 ∈ ∆S
T1

(q1, s1) ∈ QA×S
T

(q,s) ∈ QA×S

(q1, s1)@(q,s)→ (q2, s2) ∈ ∆A×S

q1@q→ q2 ∈ ∆sclS (A)

q1@q→ q2 ∈ ∆A s1@s→ s2 ∈ ∆S
T ′1

(q1, s1) ∈ QA×̂S
T ′

(q,s) ∈ QA×̂S

q1@q→ q2 ∈ ∆ŝclS (A)

Proof of Correctness Theorem 2. For the proof of Theorem 2 for Sha, we extend

the instantiation of the rule system for schema-based cleaning from Figure 5.20

with det(A), yielding the rule system in Figure 5.21. The whole instantiation

holds with the previous instantiation for words and we can still identify the rule

system for ŝclS(det(A)) with the rule system detS(A). With the same identification

of judgments and predicate renaming, the two systems are still exactly the same.

Having ŝclS(det(A)) = detS(A) implies, by Proposition 5.16 sclS(det(A)) = detS(A).

5.7. Scaling Experiments 131

Q ∈ 〈〉∆det(A)
s ∈ 〈〉∆S

Q ∈ 〈〉∆ŝclS (det(A))
(Q , s) ∈ Qdet(A)̂×S

Q1@Q →Q2 ∈ ∆det(A) s1@s→ s2 ∈ ∆S (Q1, s1) ∈ Qdet(A)̂×S (Q , s) ∈ Qdet(A)̂×S

Q1@Q →Q2 ∈ ∆ŝclS (det(A)) (Q2, s2) ∈ Qdet(A)̂×S

Figure 5.21: Extending the instantiation of the alt. definition of schema-based

cleaning: ŝclS(det(A)) = (Σ,QŝclS (det(A)),∆ŝclS (det(A)), I ŝclS (det(A)),FŝclS (det(A))).

5.7 Scaling Experiments

In this section, we present an experimental evaluation of the sizes of the automata

produced by the different determinization methods. For this, we consider a scalable

family of Shas that is compiled from the following scalable family of XPath queries

where n and m are natural numbers:

(Qn.m) //*[self::a0 or ... or self::an]

[descendant::*[self::b0 or ... or self::bm]]

Query Qn.m selects all elements of an Xml document, that are named by ei-

ther of a0, . . ., an and have some descendant element named by either of b1,

. . ., bm. We compile those XPath queries to Shas based on the compiler from

[Niehren & Sakho 2021]. As schema automaton, we chose the one-sorted variant

of the dSha S = xml-seq&one-x from Figure 4.5, so that S = L(S) = ~XML-Seq-x� ∩
~One-x�. Note that this Sha has a typed alphabet where each letter has a unique

type in {node_type,name,namespace,char}, and typed else rules. Note also that the

special symbol ¬x will be used by this automaton and throughout our experiments,

while we could safely ignore it in our theoretical treatments.

The results of our experiments are summarized in Table 5.1. For each automaton

we present two numbers, size(#states), its size and the number of its states. Unless

specified otherwise, we use a timeout of 1000 seconds whenever calling some

determinization algorithm. Fields of the table are left blank if an exception was

raised. This happens when the determinization algorithm reached the timeout, the

memory was filled, or the stack overflowed. We conducted all the experiments on a

Dell laptop with the following specs: Intel® Core™ i7-10875H CPU @ 2.30 GHz,16

cores, and 32 GB of RAM.

For illustration, we present the minimization of the schema-based determiniza-

132 Chapter 5. Schema-based Determinization

Figure 5.22: The automaton mini(detS(A)) where A = sha(Q3.4).

tion mini(detS(A)) where A = sha(Q3.4) in Figure 5.22. Our tool produces this dSha

from a two-sorted version, with #states = 20 states and size = 84, of which we omit

the details. The slightly bigger dSha for the schema product mini(det(A × S)) is

given in Figure 5.23. It is computed by our tool from the two-sorted variant of this

dSha with #states = 43 and size = 168.

Table 5.1 reports the statistics on the number of states and sizes of the Shas

obtained from the queries Q = Qn.m for n ∈ {1,2,3,4,5,6} and m ∈ {1,2,3,4}, and

for n = 6 and m ∈ {5,6}. The first column of the table is about the Sha A = sha(Q)

produced by the compiler of [Niehren & Sakho 2021] when applied to query Q.

The second column det(A) is obtained from Sha A by accessible determinization.

The blank square in column det(A) for query Q4.4 was raised by a timeout of the

determinization algorithm. As one can see, this happens for all larger pairs (n,m).

The size of det(A) seems to grow exponentially in |A| =O(n+m).

In the third column det(A × S), the determinization of the schema product is

presented. For all A it yields a much smaller automaton than det(A). For Q4.3 for

instance, det(A) has size 53,550 (2161) while det(A × S) has size 5412 (438). The

computation continues successfully until Q6.4. For the larger queries Q6.5 and

Q6.6, our determinizer runs out of memory.

The fourth column detS(A) reports on schema-based determinization. For Q4.3

for instance, we obtain 3534 (329). Here and in all given examples, both measures

are always smaller for detS(A) than for det(A× S). This may not always be the case,

but both approaches yield decent results generally. The numbers for the detS(A)

where A = sha(Q6.6) are marked in gray, since its computation took around one

hour, so we obtain it only when ignoring the timeout. In contrast to det(A × S),

5.7. Scaling Experiments 133

Figure 5.23: The automaton mini(det(A× S)) where A = sha(Q3.4).

however, the computation of detS(A) did not run out of memory.

The numbers in columns 2-4 of Table 5.1 suggest that the sizes of detS(A) and

det(A× S) are reduced by more than a linear factor compared to det(A) depending

on |A| = n+m.

The fifth column sclS(det(A)) contains the schema-based cleaning of det(A). This

automaton is equal to detS(A) by Correctness Theorem 2. Nevertheless, this field is

left blank for all queries but the smallest Q2.1, since our Datalog implementation

of schema-based cleaning quickly runs out of memory for automata with many

states.

In the last two columns for mini(det(A× S)) and mini(detS(A)) we report the size

of the minimization of det(A×S) and detS(A) respectively. We note that the number

of states is independent of n and m, while the number of rules depends linearly of

n+m. It also turns out that mini(detS(A)) is always smaller than mini(det(A×S)), if

both can be computed successfully.

Table 5.2 presents the time in seconds for the determinization of the schema

product det(A× S) and for the schema-based determinization detS(A). They grow

linearly in dependence of the size of the output, from 0.9 seconds until reaching

134 Chapter 5. Schema-based Determinization

query A = sha(Q) det(A) det(A× S) detS (A) sclS (mini(det mini(
Q det(A)) (A× S)) detS (A))

Q2.1 166 (67) 1380 (101) 540 (92) 284 (53) 284 (53) 160 (43) 73 (20)
Q2.2 199 (79) 3635 (214) 1488 (167) 830 (106) 162 (43) 75 (20)
Q2.3 232 (91) 9574 (471) 4174 (334) 2424 (227) 164 (43) 77 (20)
Q2.4 265 (103) 24813 (1052) 11502 (713) 6826 (504) 166 (43) 79 (20)
Q3.1 203 (81) 3282 (204) 625 (104) 351 (64) 162 (43) 75 (20)
Q3.2 243 (95) 8660 (447) 1716 (191) 1025 (129) 164 (43) 77 (20)
Q3.3 283 (109) 22516 (996) 4793 (386) 2979 (278) 166 (43) 79 (20)
Q3.4 323 (123) 57328 (2225) 13148 (829) 8341 (619) 168 (43) 81 (20)
Q4.1 240 (95) 8020 (435) 710 (116) 418 (75) 164 (43) 77 (20)
Q4.2 287 (111) 20945 (968) 1944 (215) 1220 (152) 166 (43) 79 (20)
Q4.3 334 (127) 53550 (2161) 5412 (438) 3534 (329) 168 (43) 81 (20)
Q4.4 381 (143) 14794 (945) 9856 (734) 170 (43) 83 (20)
Q5.1 277 (109) 19722 (954) 795 (128) 485 (86) 166 (43) 79 (20)
Q5.2 331 (127) 50666 (2129) 2172 (239) 1415 (175) 168 (43) 81 (20)
Q5.3 385 (145) 6031 (490) 4089 (380) 170 (43) 83 (20)
Q5.4 439 (163) 16440 (1061) 11371 (849) 85 (20)
Q6.1 314 (123) 48212 (2113) 880 (140) 552 (97) 168 (43) 81 (20)
Q6.2 375 (143) 2400 (263) 1610 (198) 170 (43) 83 (20)
Q6.3 436 (163) 6650 (542) 4644 (431) 172 (43) 85 (20)
Q6.4 497 (183) 18086 (1177) 12886 (964) 87 (20)
Q6.5 558 (203) 34376 (2169)
Q6.6 619 (223) 88666 (4862)

Table 5.1: Statistics of automata for XPath queries: size(#states)

the timeout. This shows that the times for computing det(A× S) and detS(A) can be

estimated directly from the sizes of these automata. Note that this is not the case for

sclS(det(A)) reported in Table 5.1, in contrast, since the intermediate result det(A)

there is larger than the final result, so that the timeout is reached very quickly

except for the smallest query Q2.1.

5.7. Scaling Experiments 135

query det(A× S) detS(A)
Q size(#states) time in sec size(#states) time in sec

Q2.1 540 (92) 1.4 284 (53) 0.9
Q2.2 1488 (167) 3.1 830 (106) 1.5
Q2.3 4174 (334) 11.1 2424 (227) 3.9
Q2.4 11502 (713) 54.5 6826 (504) 16.9
Q3.1 625 (104) 1.6 351 (64) 1.1
Q3.2 1716 (191) 4.1 1025 (129) 1.9
Q3.3 4793 (386) 16.9 2979 (278) 6.2
Q3.4 13148 (829) 84.9 8341 (619) 30.6
Q4.1 710 (116) 1.9 418 (75) 1.3
Q4.2 1944 (215) 5.5 1220 (152) 2.7
Q4.3 5412 (438) 22.9 3534 (329) 9.3
Q4.4 14794 (945) 120 9856 (734) 46.5
Q5.1 795 (128) 2.2 485 (86) 1.5
Q5.2 2172 (239) 7.1 1415 (175) 3.3
Q5.3 6031 (490) 32.2 4089 (380) 13
Q5.4 16440 (1061) 174.6 11371 (849) 71.7
Q6.1 880 (140) 2.8 552 (97) 1.6
Q6.2 2400 (263) 9.2 1610 (198) 4.6
Q6.3 6650 (542) 44.33 4644 (431) 19
Q6.4 18086 (1177) 231.8 12886 (964) 101.4
Q6.5 34376 (2169) 569.7
Q6.6 88666 (4862) 3284.5

Table 5.2: Computation times in seconds for the determinization of the schema
product A× S and for schema-based determinization detS(A) where A = sha(Q).

Chapter 6
Benchmark of Deterministic
Automaton for XPath Queries

Abstract
We provide a benchmark collection of deterministic stepwise hedge au-
tomata (dShas) for 78 regular forward XPath queries selected from the
corpus of more than 21,000 XPath queries that Lick and Schmitz extracted
from real-world Xslt and XQuery programs. The objective of the selection
of the subcorpus was to find the most complex of regular forward XPath

queries in the corpus, so that these can be used for benchmarking automata
based query evaluators. We compile all selected regular XPath queries to
Shas and determinize them based on a schema, capturing the Xml data
model and the fact that any answer of a monadic path query must return a
single node. The dShas obtained are also compiled to deterministic nested
word automata of similar size, all having the weak single entry property.

Contents
6.1 Introduction . 138

6.2 Subcorpus of Lick and Schmitz’ Benchmark 140

6.3 A Schema for Xml Documents . 146

6.4 Compiler to Automata . 146

6.4.1 Parser . 147

6.4.2 Nested Regular Expressions 147

6.4.3 Compiler to SHAs . 148

6.4.4 Schema-Based Determinization 150

138 Chapter 6. Benchmark of XPath Queries

6.4.5 Minimization . 151

6.4.6 Examples . 151

6.5 Testing Automata . 153

6.5.1 Membership for Samples . 153

6.5.2 Query Evaluation . 154

6.6 Automata Statistics . 155

6.6.1 XPathMark Benchmark . 155

6.6.2 Lick and Schmitz’ Benchmark 156

6.7 Example Automata for Lick and Schmitz’ Benchmark 159

6.1 Introduction

Algorithms for regular XPath queries are often based on automata

[Muñoz & Riveros 2022b, Debarbieux et al. 2015, Mozafari et al. 2012,

Maneth & Nguyen 2010, Gauwin et al. 2009b, Neumann & Seidl 1998]. Com-

piling regular path queries or nested regular expressions without filters,

intersection, and complement to Nwas or Shas can be done in polynomial time,

and is thus feasible.

The compilation of filters can be done by automata intersections. This remains

in polynomial time, as long as the number of filters is bounded. In the benchmark

of Lick and Schmitz [Lick & Schmitz 2022], the number of filters in regular XPath

queries is bounded by 5 (see Section 4.4.2). The same holds for the regular forward

XPath queries of the XPathMark benchmark [Franceschet 2005b] (see Table 4.1).

Therefore, the regular XPath queries with filters to nondeterministic automata

is indeed unproblematic in practice. Automata with alternation (as used for in-

stance in [Maneth & Nguyen 2010]) are not needed to represent intersections more

concisely.

However, obtaining deterministic automata for regular XPath queries is often

more problematic, as discussed already in the open challenges of the general

Introduction (Section 1.2) and also in Chapter 5.

Niehren and Sakho [Niehren & Sakho 2021] proposed to use the determinization

algorithm for Shas to improve on this situation, followed by schema-based cleaning.

In this way, deterministic Shas and Nwas of decent size could be obtained for the

forward regular XPath queries for the XPathMark benchmark [Franceschet 2005b]

that we reported already in Section 4.4.1.

6.1. Introduction 139

The determinization of Shas may still lead to unreasonably large automata for

practically relevant XPath queries, even though the problem doesn’t show up for the

queries from the XPathMark benchmark. This happens in particular for the Shas

obtained for the regular forward XPath queries in Lick and Schmitz’ benchmark

(Section 4.4.2). See column det(A) of Table 6.4 for few examples. The first example

in this list is the query Q01705, for which the nondeterministic Sha constructed has

350 states and overall size 772:

book | article | part | reference | preface | chapter |

bibliography | appendix | glossary | section | sect1 |

sect2 | sect3 | sect4 | sect5 | refentry | colophon |

bibliodiv[title] | setindex | index

The accessible determinization of this Sha needs more than 100 seconds –

the timeout we selected – as for 37% of the 78 queries that we selected from

Lick and Schmitz’ benchmark in Section 6.2.

In Chapter 5, we showed that schema-based Sha determinization may be sped-up

exponentially by accessible determinization. The objective of the present chapter

is to apply schema-based determinization for the Shas for the 78 regular XPath

queries in the subcorpus we selected from Lick and Schmitz’ benchmark.

For instance, we can compute the schema- based determinization of the Sha of

the query Q01705 given above in few seconds. The resulting dSha has 172 states

and size 746. Its minimization has only 19 states and overall size 113. It is given in

Figure 6.1.

The largest dSha we obtain for the whole subcollection of 78 regular XPath

queries by schema-based determinization followed by minimization has 58 states.

In average, there are 22 states and 71 transition rules per automaton.

The whole automata collection obtained for the subcorpus of 78 regular XPath

queries of Lick and Schmitz’ benchmark is published in the software heritage

archive at https://archive.softwareheritage.org/browse/origin/?origin_

url=https://gitlab.inria.fr/aalserha/xpath-benchmark.

Outline

We present our selection of regular XPath benchmark queries from the corpus

of Lick and Schmitz [Lick & Schmitz 2022] in Section 6.2. A dSha defining the

schema of hedge encodings of valid Xml documents is given in Section 6.3. In

https://archive.softwareheritage.org/browse/origin/?origin_url=https://gitlab.inria.fr/aalserha/xpath-benchmark
https://archive.softwareheritage.org/browse/origin/?origin_url=https://gitlab.inria.fr/aalserha/xpath-benchmark
https://archive.softwareheritage.org/browse/origin/?origin_url=https://gitlab.inria.fr/aalserha/xpath-benchmark
https://archive.softwareheritage.org/browse/origin/?origin_url=https://gitlab.inria.fr/aalserha/xpath-benchmark

140 Chapter 6. Benchmark of XPath Queries

Figure 6.1: The minimization of the schema-based determinization of the Sha

compiled from the XPath query of the Lick and Schmitz’ benchmark:

Q01705 = book | article | part | reference | preface | chapter | bibliography | appendix | ...

Section 6.4 we discuss our compiler from XPath expressions to deterministic

automata, and illustrate it by example automata from our benchmark collection.

In Section 6.5 we discuss how we tested our automata for correctness compared

to Saxon’s Xslt. The sizes of automata in our regular subset of Lick and Schmitz’

benchmark and also for the XPathMark benchmark are discussed in Section 6.6.

In Section 6.7 we present example automata for some queries of Lick and Schmitz’

benchmark.

6.2 Subcorpus of Lick and Schmitz’ Benchmark

We start with the collection of 21000 XPath queries that Lick and Schmitz

[Lick & Schmitz 2022] extracted from real-world XQuery and Xslt programs avail-

able on the Web. The purpose of this corpus is to reflect the form and distribution of

XPath queries in practical applications. The much smaller XPathMark benchmark

[Franceschet 2005b], in contrast, focuses on functional and performance testing.

We then filter the subclass of around 4500 forward navigational XPath queries

of Lick and Schmitz’ corpus. The other queries contain comparisons of data val-

ues, arithmetics, and functions, including higher-order functions to iterate over

sequences, which may be non-regular. We also removed boolean queries and

kept only node selection queries. We then selected the 180 largest queries of this

subcorpus.

Finally, we removed duplicates of queries up to renaming of Xml names-

6.2. Subcorpus of Lick and Schmitz’ Benchmark 141

Id XPath Query
18330 /descendant-or-self::node()/child::parts-of-speech
17914 /descendant-or-self::node()/child::tei:back/descendant-or-self::node()

/child::tei:interpGrp
10745 *//tei:imprint/tei:date[@type=’access’]
02091 * | .//refentry
00744 .//@id | .//@xml:id
12060 .//attDef
02762 .//authorgroup/author | .//author
06027 .//authorinitials | .//author
02909 .//bibliomisc[@role=’serie’]
06415 .//email | address/otheraddr/ulink

Table 6.1: Some of the 78 queries of the benchmark collection (see Table 6.2).

pace prefixes and local names, and syntactical details, such as .//author or

descendant-or-self::author or descendant-or-self::corpauthor. This leads

us to the collection of 781 queries in Table 6.2 of which 10 typical queries are shown

in Table 6.1, except that they are rather small.

We note that the XPath query 18339 is considered as large since it contains the

recursive axis descendant-or-self. Other queries are considered as large since

having a parse tree with more than 15 nodes, for instance 05684.

Table 6.2: The 78 regular XPath queries selected from Lick and Schmitz’ bench-
mark.

Query ID XPath query

00744 .//@id | .//@xml:id

01705 book | article | part | reference | preface | chapter | bibliography |
appendix | glossary | section | sect1 | sect2 | sect3 | sect4 | sect5 |
refentry | colophon | bibliodiv[title] | setindex | index

01847 set | book | part | preface | chapter | appendix | article | reference |
refentry | book/glossary | article/glossary | part/glossary | bibliog-

raphy | colophon

02000 chapter | appendix | epigraph |warning | preface | index | colophon |
glossary | biblioentry | bibliography | dedication | sidebar | footnote

| glossterm | glossdef | bridgehead | part

1Originally, our filtering scheme selected 79 queries. However, we excluded the query 13896 from
the list (//HEADER//IDNO[@TYPE=’evans citation’]). The blank symbol in the data value caused
our compiler to fail and not obtain the Sha representing the query.

142 Chapter 6. Benchmark of XPath Queries

02086 book | article | topic | part | reference | preface | chapter | bibliogra-

phy | appendix | glossary | section | sect1 | sect2 | sect3 | sect4 | sect5

| refentry | colophon | bibliodiv[title] | setindex | index

02091 * | .//refentry

02194 //annotation

02697 chapter | appendix | preface | reference | refentry | article | topic |
index | glossary | bibliography

02762 .//authorgroup/author | .//author

02909 .//bibliomisc[@role=’serie’]

03257 .//equation[title or info/title]

03325 set | book | part | reference | preface | chapter | appendix | article |
topic | glossary | bibliography | index | setindex | refentry | sect1 |
sect2 | sect3 | sect4 | sect5 | section

03407 set | book | part | reference | preface | chapter | appendix | article |
glossary | bibliography | index | setindex | refentry | sect1 | sect2 |
sect3 | sect4 | sect5 | section

03410 set | book | part | reference | preface | chapter | appendix | article |
topic | glossary | bibliography | index | setindex | refentry | refsyn-

opsisdiv | refsect1 | refsect2 | refsect3 | refsection | sect1 | sect2 |
sect3 | sect4 | sect5 | section

03864 guibutton | guiicon | guilabel | guimenu | guimenuitem | guisub-

menu | interface

04245 set | book | part | reference | preface | chapter | appendix | article |
glossary | bibliography | index | setindex | refentry | refsynopsisdiv

| refsect1 | refsect2 | refsect3 | refsection | sect1 | sect2 | sect3 | sect4

| sect5 | section

04267 descendant::label

04338 refsynopsisdiv/title | refsection/title | refsect1/title | refsect2/title

| refsect3/title | refsynopsisdiv/info/title | refsection/info/title |
refsect1/info/title | refsect2/info/title | refsect3/info/title

04358 section/title | simplesect/title | sect1/title | sect2/title | sect3/title |
sect4/title | sect5/title | section/info/title | simplesect/info/title |
sect1/info/title | sect2/info/title | sect3/info/title | sect4/info/title

| sect5/info/title | section/sectioninfo/title | sect1/sect1info/title |
sect2/sect2info/title | sect3/sect3info/title | sect4/sect4info/title |
sect5/sect5info/title

6.2. Subcorpus of Lick and Schmitz’ Benchmark 143

04953 set | book | part | reference | preface | chapter | appendix | article |
glossary | bibliography | index | setindex | topic | refentry | refsyn-

opsisdiv | refsect1 | refsect2 | refsect3 | refsection | sect1 | sect2 |
sect3 | sect4 | sect5 | section

05122 .//procedure[title]

05219 set | book | part | preface | chapter | appendix | article | topic |
reference | refentry | book/glossary | article/glossary | part/glossary

| book/bibliography | article/bibliography | part/bibliography |
colophon

05226 set | book | part | preface | chapter | appendix | article | topic |
reference | refentry | sect1 | sect2 | sect3 | sect4 | sect5 | section |
book/glossary | article/glossary | part/glossary | book/bibliography

| article/bibliography | part/bibliography | colophon

05460 .//table//footnote | .//informaltable//footnote

05463 table//footnote | informaltable//footnote

05684 @abbr | @align | @axis | @bgcolor | @border | @cellpadding |
@cellspacing | @char | @charoff | @class | @dir | @frame | @headers

| @height | @id | @lang | @nowrap | @onclick | @ondblclick | @on-

keydown | @onkeypress | @onkeyup | @onmousedown | @onmouse-

move | @onmouseout | @onmouseover | @onmouseup | @rules |
@scope | @style | @summary | @title | @valign | @valign | @width |
@xml:id | @xml:lang

05735 //glossary[@role=’auto’]

05824 descendant-or-self::*

06027 .//authorinitials | .//author

06169 article | preface | chapter | appendix | refentry | section | sect1 |
glossary | bibliography

06176 //set | //book | //part | //reference | //preface | //chapter | //ap-

pendix | //article | //colophon | //refentry | //section | //sect1

| //sect2 | //sect3 | //sect4 | //sect5 | //indexterm | //glossary |
//bibliography | //*[@id]

06415 .//email | address/otheraddr/ulink

06458 info | refentryinfo | referenceinfo | refsynopsisdivinfo | refsection-

info | refsect1info | refsect2info | refsect3info | setinfo | bookinfo | ar-

ticleinfo | chapterinfo | sectioninfo | sect1info | sect2info | sect3info |
sect4info | sect5info | partinfo | prefaceinfo | appendixinfo | docinfo

144 Chapter 6. Benchmark of XPath Queries

06512 //refentry//text()

06639 .//tgroup//footnote

06726 //doc:table | //doc:informaltable

06794 articleinfo | chapterinfo | bookinfo | doc:info | doc:articleinfo |
doc:chapterinfo | doc:bookinfo

06808 personname | surname | firstname | honorific | lineage | other-

name | contrib | doc:personname | doc:surname | doc:firstname

| doc:honorific | doc:lineage | doc:othername | doc:contrib

06856 imageobject | imageobjectco | audioobject | videoobject

| doc:imageobject | doc:imageobjectco | doc:audioobject |
doc:videoobject

06924 authorblurb | formalpara | legalnotice | note | caution | warning |
important | tip | doc:authorblurb | doc:formalpara | doc:legalnotice

| doc:note | doc:caution | doc:warning | doc:important | doc:tip

06947 anchor | areaset | audiodata | audioobject | beginpage | constraint |
indexterm | itermset | keywordset |msg | doc:anchor | doc:areaset |
doc:audiodata | doc:audioobject | doc:beginpage | doc:constraint |
doc:indexterm | doc:itermset | doc:keywordset | doc:msg

07106 dbk:appendix | dbk:article | dbk:book | dbk:chapter | dbk:part

| dbk:preface | dbk:section | dbk:sect1 | dbk:sect2 | dbk:sect3 |
dbk:sect4 | dbk:sect5

07113 following-sibling::*[self::dbk:appendix | self::dbk:article |
self::dbk:book | self::dbk:chapter | self::dbk:part | self::dbk:preface

| self::dbk:section | self::dbk:sect1 | self::dbk:sect2 |
self::dbk:sect3 | self::dbk:sect4 | self::dbk:sect5] | following-

sibling::dbk:para[@rnd:style = ’bibliography’ or @rnd:style

= ’bibliography-title’ or @rnd:style = ’glossary’ or @rnd:style

= ’glossary-title’ or @rnd:style = ’qandaset’ or @rnd:style =

’qandaset-title’]

08632 tei:front//tei:titlePart/tei:title

09123 tei:content//rng:ref[@name = ’macro.anyXML’]

09138 .//rng:ref | .//tei:elementRef | .//tei:classRef | .//tei:macroRef |
.//tei:dataRef

10337 .//tei:note[@place=’end’]

10745 *//tei:imprint/tei:date[@type=’access’]

6.2. Subcorpus of Lick and Schmitz’ Benchmark 145

11160 html:table | html:tr | html:thead | html:tbody | html:td | html:th |
html:caption | html:li

11227 /tei:TEI/tei:text//tei:note[@type=’action’]

11368 descendant-or-self::tei:TEI/tei:text/tei:back

11478 //xhtml:p[@class]

11780 //tei:ref[@type=’cite’] | //tei:ptr[@type=’cite’]

11958 biblStruct//note

12060 .//attDef

12404 .//tei:dataRef[@name]

12514 tei:content/tei:classRef | tei:content//tei:sequence/tei:classRef

12539 //tei:elementSpec | //tei:classSpec[@type=’atts’]

12960 tei:classSpec/tei:attList//tei:attDef/tei:datatype/rng:ref

12961 tei:classSpec/tei:attList//tei:attDef/tei:datatype/tei:dataRef

12962 tei:macroSpec/tei:content//rng:ref

12964 tei:dataSpec/tei:content//tei:dataRef

13632 self::placeName | self::persName | self::district | self::settlement |
self::region | self::country | self::bloc

13640 //equiv[@filter]

13710 persName | orgName | addName | nameLink | roleName | forename

| surname | genName | country | placeName | geogName

13804 //GAP/@DISP

14183 content//rng:ref

14340 //*

15461 h:table[descendant::h:span[@data-type=’footnote’]]

15462 descendant::h:span[@data-type=’footnote’]

15484 h:pre[@data-type=’programlisting’]//text()

15524 //h:section[@data-type=’titlepage’]

15539 //h:figure[@data-type=’cover’]//h:img[@src != ”]

15766 //h:body/h:section[@data-type=’titlepage’]

15809 //h:html[@lang != ”] | //h:body[@lang != ”]

15848 descendant::*[@class=’refname’]

17914 / descendant-or-self::node()/child::tei:back/descendant-or-

self::node()/child::tei:interpGrp

18330 / descendant-or-self::node()/child::parts-of-speech

146 Chapter 6. Benchmark of XPath Queries

6.3 A Schema for Xml Documents

The most frequent type of XPath queries select nodes of Xml documents. For

referring to selected nodes, we fix a single selection variable x. We call an Xml

document or subdocument, in which a single node is annotated by x, an x-annotated
example. An x-annotated example is called positive for a query if the query selects

the x-annotated node in the Xml document, and negative otherwise.

The dSha xml-seq&one-x is a schema for x-annotated Xml documents(See Fig. 4.5)

that recognizes the set of all x-annotated examples. These must satisfy the Xml

data model and contain exactly one occurrence of x.

The automaton starts in hedge state 0 where it expects to read a nested word 〈w〉,
that can be evaluated to tree state 28, in order to go to the final state 29, where it

accepts. The sequence of children w of the tree must be evaluated from the tree

initial state, which is equally the hedge state 0. If w starts with letter doc indicating

an Xml document node at the root, the automaton moves from state 0 to state 5.

There it may either read the variable x and go to state 5, where it expects a subtree

in state 21, i.e. an Xml element of which no node is annotated by x. Or it may read

the symbol ¬x and move to state 6, where it expects a subtree in state 19, i.e. an

Xml element of which exactly one node is annotated by x. In both cases it can go to

the hedge state 26 and from there to the tree state 28. The automaton also states

the relationships of elements, attributes, text and comment nodes according to the

Xml data model.

The alphabets of names and namespaces of Xml documents are infinite. In order

to represent infinite sets of transition rule symbolically in a finite manner, the

automaton use typed else rules. The typed else rule in state 3, for instance, is

labeled by -namespace, permitting to read any namespace and to go to state 9.

State 9 in turn has an else rule labeled by -name which permits to read any (local)

name and move to state 13.

6.4 Compiler to Automata

We extended on the compilation chain for regular XPath queries to automata from

[Niehren & Sakho 2021]. As a running example, we consider the following query:

Q15809′ : h:body[@lang != ”]

6.4. Compiler to Automata 147

Query Q15809′ selects a node if it has a child named body in namespace h, that

has the attribute node named lang containing a nonempty text.

6.4.1 Parser

Our parser for XPath expressions computes a parse tree following the grammar

of XPath 3.1 from the W3C. In addition, it returns for any forward regular XPath

expression a logical formula in the language FXP [Debarbieux et al. 2015]. For the

XPath example Q15809′ , we obtain the following FXP formula:

child(labelem:type ∧ labh:namespace ∧ labbody:name ∧ labx:var∧
child(labatt:type ∧ canddef ault:namespace ∧ lablang:name ∧ string ,′′))

Our previous parser needed considerable improvement in order to be able

to cover the large variety of queries from the corpus of Lick and Schmitz

[Lick & Schmitz 2022].

6.4.2 Nested Regular Expressions

We next compile Fxp formulas to nested regular expressions, which extend on

standard regular expressions from words to nested words. Again, considerable

work was needed to enable a sufficiently large coverage. For the query Q15809′ our

compiler yields the nested regular expression:

〈(elem:type._) + doc:type)._.>.
〈elem:type.h:namespace.body:name.x:var.

〈att.type.def ault:namespace.lang:name._.(_char.(_char)∗〉.>〉.>〉.>

Note that the test for a nonempty string got translated by the regular expression

_char.(_char)∗. It should also be noticed that this expression matches some x-

annotated nested words, that are not x-annotated examples, i.e. not belonging to

the language L(xml-seq&one-x) of the schema. This is since the nested subwords

matching universal expression > are completely unconstrained.

148 Chapter 6. Benchmark of XPath Queries

Figure 6.2: The nondeterministic 2-sorted Sha A15809′ = sha(Q15809′). .

6.4.3 Compiler to SHAs

The compiler then converts nested regular expressions into 2-sorted Shas. This

is done by extending a usual compiler from regular expressions to Nfas. The

interaction of recursion and nesting leads to some nasty issues, that are discussed

and resolved in [Niehren & Sakho 2021]. For developing the present benchmark,

we needed to add a treatment of typed wildcards such as -char. This is done by

introducing typed else rules. For the query Q15809′ we obtain The nondeterministic

2-sorted Sha A15809′ = sha(Q15809′) in Fig. 6.2. Similarly to the nested regular

expression, this 2-sorted Sha may recognize some annotated nested words, that

are not x-annotated examples, i.e., that do not belong to the language of the schema

L(xml-seq&one-x).

6.4.3.1 Accessible Determinization

The accessible determinization det(A15809′) of the Sha of the query Q15809′ yields

an dSha with 25 states and 183 transition rules given in Figure 6.3. This is much

much larger than one might expect. Even worse, in some cases, the accessible

determinization does not finish after some hours.

6.4. Compiler to Automata 149

Figure 6.3: The accessible determinization det(A15809′).

150 Chapter 6. Benchmark of XPath Queries

Figure 6.4: The determinization of the schema product det(A15809′ ×xml-seq&one-x).

6.4.3.2 Determinizing the Schema Product

Accessible determinization applied to the product of the queries’ automaton and

the schema xml-seq&one-x permits to compute deterministic Shas for all queries of

our benchmark within a timeout of 100 seconds. The result for Q15809′ is a dSha

with 53 states and 110 transition rules, see automaton det(A15809′ × xml-seq&one-x)

in Figure 6.4. The overall size is smaller, and the automaton is much easier to

understand, but the number of states increased.

6.4.4 Schema-Based Determinization

Schema-based determinization as proposed in [Niehren et al. 2022a] improves the

situation further. For query Q15809′ it yields the 2-sorted Sha in the schema-based

determinization detS(A15809′) where S = xml-seq&one-x in Fig. 6.5, which has only

6.4. Compiler to Automata 151

Figure 6.5: The schema-based determinization det(A15809′) where S =
~xml-seq&one-x�.

22 states and 45 transitions. The size is roughly divided by 2 compared to the

determinization of the schema product det(A15809′ × xml-seq&one-x) in Figure 6.4.

6.4.5 Minimization

We then minimize the dSha from the schema-based determinization detS(A15809′)

where S = xml-seq&one-x in Fig. 6.5. This often reduces the size and the number of

states in an important manner and often makes it easy to see how the automaton

is functioning. Exceptionally in the case of Q15809′ , no states are fusioned when

minimizing the dSha obtained by schema-based determinization.

It should be noticed that minimizing the determinization of the schema product

usually yields a different result then minimizing the schema-based determinization.

This is since both automata may recognize different languages. Some nested words

outside the schema may be accepted after schema-based determinization, but not

by the schema product.

6.4.6 Examples

With schema-based determinization and minimization, we obtained using the

Astream compiler from the XPath query from self :: site the dSha in Figure 6.6 and

from A0=child::site the dSha in Figure 6.7.

152 Chapter 6. Benchmark of XPath Queries

Figure 6.6: The minimization of the schema-based determinization of the Sha for
the XPath query self :: site .

Figure 6.7: The minimization of the schema-based determinization of the Sha for
the XPath query A0=child::site.

6.5. Testing Automata 153

6.5 Testing Automata

The natural manner to test an automaton for some XPath query, is to apply some

query evaluator to the automaton with some document and to compare the result

to an XPath evaluator. When we started, however, we were lacking any sufficiently

efficient query evaluator for dShas. Therefore, we started testing dShas for queries

differently, by testing language membership for x-annotated documents. Only

when Astream 1.0 became available, we could move to testing dShas for queries by

using query evaluation.

We note in particular, that Sebastian’s QuiXPath [Sebastian 2016,

Debarbieux et al. 2015] could not be used, even though any Sha A can be

compiled to the Nwa Anwa while preserving determinism and the size of the

automaton. The problem is that QuiXPath requires an early Nwa as input, i.e.,

an Nwa and subset of early selection and rejection states. Without these sets, the

Nwa query cannot be evaluated with reasonable efficiency. Sebastian computed

these sets during the compilation of XPath queries to early Nwas. This cannot

be done though, when compiling XPath queries to Shas, since these cannot pass

information top-down, so that appropriate sets of selection and rejection states

may not be available. This is in contrast to earliest downward Shas (see Chapter

7), that can be compiled to early Nwas with optimal selection and rejection states.

But the earliest dSha↓s may be of exponential size, so require their on-the-fly

generation during query evaluation for a given document, which is not supported

by QuiXPath.

6.5.1 Membership for Samples

For each regular XPath query and each Xml document, we created a sample of

x-annotated examples. An x-annotated example is marked positively, if and only if

its belongs to the language of the query, and negatively otherwise.

The first problem was that Lick and Schmitz’ corpus does not come with Xml

documents, corresponding to the queries harvested in the Xslt and XQuery pro-

grams docbook, htmlbook, teixsl, treedown, and histei. So we had to create Xml

documents ourselves that satisfy the schemas of these applications, ensuring that

the queries select some nodes there.

We computed the Boolean markings for the x-annotated example using Saxon

Xslt evaluator. For this, we complied each XPath query Q into some Xslt program

so that when Saxon applied to some Xml document d,it returns Q(d). We exported

154 Chapter 6. Benchmark of XPath Queries

query answers in Dewey notation, similarly to how nodes are returned by Schema-

tron: The Dewey notation of a node is its relative address from the root, i.e., by

the list of child steps leading to the node. Such lists can be easily encoded in Xml

format.

We can then test the correctness of automata A for a given query Q on the

sample by using dSha membership tester. Suppose that h is the hedge encoding the

Xml document d under consideration. It is sufficient to verify for all x-annotated

examples e = h∗[x/π] of the sample, that the query evaluator e ∈ L(A) if and only if,

e was marked positively. The latter is equivalent to Saxon confirming π ∈Q(d).

By testing dShas on samples, we could fix various problems that arose on the

way to our final collection. Currently, no test failures are remaining, except for the

query 13896 below:

//HEADER//IDNO[@TYPE=’evans citation’]

The problem here is raised by the blank symbol in the attribute value ’evans

citation’. For now, we simply removed this example from our tests.

We omit the details of how we created the samples for each query. We just note

that we had to limit the number of marked x-annotated examples, since otherwise,

the samples would contain one x-annotated example for each node of the Xml

document, and thus the overall sample size would have been of quadratic in O(|h|2).

When having large samples, the testing method becomes time consuming, while

when limiting the sample sizes, the testing method becomes even more incomplete.

At the end, we considered no more than 10 x-annotated examples per query and

document, while choosing positively marked x-annotated examples with priority.

6.5.2 Query Evaluation

Once Astream 1.0 was developed we could apply it to evaluate XPath queries

defined by dShas on Xml streams, and compare its answer set to the answer set

computed by Saxon (after conversion of the XPath query to some Xslt program).

This testing method again remains incomplete, since restricted to ta finite number

of Xml documents. But when some dSha A was considered as convincing for

defining a query with schema S, then any other dSha B can be tested for schema-

equivalence:

L(A)∩S = L(B)∩S

Under the assumption that A defines the target query correctly with respect to the

6.6. Automata Statistics 155

schema, B does so too if and only if schema-equivalence holds.

6.6 Automata Statistics

We present statistics for the sizes of dShas for the regular XPath queries in our

benchmarks.

6.6.1 XPathMark Benchmark

Minimal dShas for the regular XPath queries in the XPathMark benchmark were

presented already in Section 4.4.1. Statistics on the sizes of the automata obtained

with and without schema-based determinization are given in column C of Table

6.3.

Table 6.3: Statistics of the Shas for the regular forward XPath queries in the
XPathMark benchmark in Table 4.1. For each Sha we present its size and the
number of states in the format size(#states).

query B = C = C′ = B′ =

ID A det(A) det(A× S) detS(A) mini(C) mini(B)

site 50 (19) 114 (16) 121 (38) 51 (14) 51 (14) 121 (38)

A1 152 (63) 399 (37) 393 (79) 172 (37) 172 (37) 348 (66)

A2 137 (57) 597 (53) 210 (59) 122 (34) 71 (20) 138 (40)

A3 133 (55) 484 (46) 279 (69) 138 (36) 111 (28) 213 (51)

A4 181 (74) 486 (42) 724 (95) 253 (42) 259 (42) 484 (72)

A5 201 (80) 690 (57) 860 (116) 381 (57) 180 (37) 314 (61)

A6 260 (99) 547 (45) 812 (98) 297 (45) 304 (45) 529 (74)

A7 178 (71) 468 (41) 523 (85) 222 (41) 138 (30) 276 (57)

A8 923 (279) 2464 (124) 2302 (202) 1261 (118) 294 (48) 492 (77)

One can see, that schema-based determinization does not behave much better

than accessible determinization on this benchmark. Still, the overall size of the

dShas in column C = detS(A) compared to accessible determinization in column

det(A) is reduced by a factor of around 2. The number of states, however, does not

change much.

156 Chapter 6. Benchmark of XPath Queries

6.6.2 Lick and Schmitz’ Benchmark

We compiled all of our 78 XPath queries to deterministic automata using the

compilation chain described in Section 6.4. Here we present the statistics of the

benchmark automata that we obtained. The summary is given in Table 6.4. We

show for each automaton two numbers size(#states) where size is the overall

size of the automaton and #states the number of its states.

The nondeterministic Shas compiled from the nested regular expressions was

cleaned using the schema xml-seq&one-x: The dSha xml-seq&one-x: a schema for

x-annotated Xml documents in Figure 4.5. The result is called A = sha(Q) leading

to the statistics in the second column of in Table 6.4.

We note that 37% of the 2-sorted Shas original stepwise hedge automata for the

queries A = sha(Q) have more than 100 states, so they are sometimes bigger than

one might expect. The biggest is for query 06176 with 630 states and an overall

size of 1391. The reason is that this query is selecting a union of 20 subqueries, all

with descendant-or-self axis. For each subquery, we have 4 constructs of respective

state sizes: 2, 6, 10 and 13, making a subtotal of 31 ∗ 20 = 620. With an additional 8

states for one subquery that select all descendants with an attribute named id and

another 2 for reading any tree, we end up with our total 630 states.

Table 6.4: Experiment results on the XPath subcorpus from Lick and Schmitz in
Table 6.2. For each automaton we present: size(#states).

query A = B = C = B′ = C′ =

Q of id Sha(Q) det(A) det(A× S) detS(A) mini(B) mini(C)

00744 109 (46) 335 (37) 169 (54) 80 (24) 128 (41) 54 (15)

01705 772 (350) 1308 (279) 746 (172) 221 (48) 113 (19)

01847 559 (252) 1013 (223) 543 (137) 194 (48) 92 (19)

02000 642 (291) 723 (201) 387 (110) 163 (41) 83 (14)

02086 809 (367) 1366 (291) 781 (180) 223 (48) 115 (19)

02091 100 (42) 555 (45) 182 (57) 81 (24) 146 (44) 61 (17)

02194 81 (33) 253 (31) 135 (42) 66 (20) 119 (38) 53 (16)

02697 383 (172) 464 (131) 240 (68) 149 (41) 69 (14)

02762 121 (50) 564 (53) 222 (63) 97 (28) 123 (39) 46 (12)

02909 96 (38) 311 (36) 213 (62) 100 (27) 167 (49) 91 (24)

03257 130 (53) 1310 (92) 445 (85) 224 (46) 210 (49) 87 (20)

03325 753 (342) 834 (231) 450 (128) 169 (41) 89 (14)

03407 716 (325) 797 (221) 429 (122) 167 (41) 87 (14)

6.6. Automata Statistics 157

03410 938 (427) 1019 (281) 555 (158) 179 (41) 99 (14)

03864 272 (121) 353 (101) 177 (50) 143 (41) 63 (14)

04245 901 (410) 982 (271) 534 (152) 177 (41) 97 (14)

04267 87 (34) 146 (20) 137 (43) 54 (15) 131 (41) 51 (14)

04338 470 (206) 1066 (207) 563 (135) 213 (51) 95 (22)

04358 1006 (444) 3580 (559) 2021 (433) 757 (99) 345 (58)

04953 938 (427) 1019 (281) 555 (158) 179 (41) 99 (14)

05122 83 (33) 292 (33) 221 (55) 92 (23) 161 (44) 63 (16)

05219 698 (315) 1192 (260) 651 (164) 196 (48) 94 (19)

05226 920 (417) 1558 (338) 867 (218) 208 (48) 106 (19)

05460 232 (98) 3468 (174) 509 (127) 269 (77) 156 (44) 62 (16)

05463 204 (86) 1180 (70) 332 (77) 152 (38) 180 (48) 78 (20)

05684 1348 (616) 1068 (284) 719 (226) 193 (39) 124 (16)

05735 111 (45) 412 (44) 201 (58) 106 (30) 161 (47) 96 (27)

05824 62 (25) 150 (21) 130 (42) 50 (15) 112 (37) 38 (11)

06027 115 (48) 1101 (79) 184 (57) 82 (24) 123 (39) 46 (12)

06169 346 (155) 427 (121) 219 (62) 147 (41) 67 (14)

06176 1391 (630) 1661 (448) 1203 (386) 176 (43) 113 (23)

06415 139 (58) 1793 (93) 300 (74) 135 (36) 229 (55) 101 (25)

06458 827 (376) 908 (251) 492 (140) 173 (41) 93 (14)

06512 135 (56) 583 (58) 218 (60) 117 (35) 152 (43) 77 (23)

06639 123 (50) 516 (49) 237 (65) 106 (30) 154 (44) 60 (16)

06726 149 (64) 2806 (149) 176 (53) 97 (30) 121 (38) 55 (16)

06794 270 (121) 354 (102) 178 (51) 144 (42) 64 (15)

06808 525 (240) 609 (172) 321 (93) 145 (41) 65 (14)

06856 306 (138) 390 (112) 198 (57) 139 (41) 59 (14)

06924 598 (274) 682 (192) 362 (105) 147 (41) 67 (14)

06947 744 (342) 828 (232) 444 (129) 151 (41) 71 (14)

07106 457 (206) 538 (151) 282 (80) 153 (41) 73 (14)

07113 695 (296) 2409 (456) 1527 (302) 311 (73) 229 (48)

08632 128 (52) 629 (51) 277 (67) 120 (31) 219 (53) 96 (24)

09123 164 (64) 705 (59) 358 (90) 175 (43) 265 (66) 164 (40)

09138 269 (117) 323 (97) 164 (49) 133 (40) 56 (13)

10337 92 (36) 291 (34) 197 (58) 92 (25) 159 (47) 83 (22)

10745 187 (76) 939 (68) 275 (72) 141 (38) 218 (57) 130 (34)

11160 309 (138) 390 (111) 198 (56) 145 (41) 65 (14)

158 Chapter 6. Benchmark of XPath Queries

11227 153 (62) 583 (53) 334 (81) 163 (42) 244 (59) 144 (37)

11368 102 (41) 458 (44) 247 (62) 104 (28) 191 (49) 78 (20)

11478 101 (41) 365 (40) 166 (50) 87 (26) 141 (43) 77 (23)

11780 205 (88) 3832 (190) 254 (71) 143 (41) 164 (47) 99 (27)

11958 109 (44) 348 (35) 213 (57) 90 (24) 178 (48) 76 (20)

12060 64 (25) 162 (22) 139 (44) 56 (16) 121 (39) 44 (12)

12404 84 (33) 258 (31) 170 (52) 77 (22) 143 (44) 68 (19)

12514 182 (77) 2734 (112) 320 (77) 146 (38) 247 (57) 114 (28)

12539 179 (76) 3479 (174) 243 (69) 138 (40) 166 (48) 101 (28)

12960 167 (68) 1340 (81) 421 (88) 190 (46) 317 (64) 146 (33)

12961 166 (68) 1318 (80) 417 (87) 186 (45) 313 (63) 142 (32)

12962 129 (52) 576 (49) 281 (68) 124 (32) 223 (54) 100 (25)

12964 128 (52) 560 (48) 277 (67) 120 (31) 219 (53) 96 (24)

13632 132 (58) 339 (33) 248 (66) 113 (33) 128 (36) 47 (9)

13640 100 (41) 364 (40) 165 (50) 86 (26) 140 (43) 76 (23)

13710 420 (189) 501 (141) 261 (74) 151 (41) 71 (14)

13804 70 (29) 155 (21) 128 (41) 63 (20) 124 (40) 60 (19)

14183 110 (44) 362 (36) 217 (58) 94 (25) 182 (49) 80 (21)

14340 79 (33) 231 (29) 126 (40) 58 (18) 110 (36) 45 (14)

15461 146 (58) 628 (54) 651 (109) 283 (51) 241 (59) 140 (33)

15462 127 (50) 325 (37) 237 (67) 112 (29) 191 (54) 109 (28)

15484 181 (71) 657 (62) 394 (96) 189 (47) 277 (68) 174 (42)

15524 125 (50) 471 (49) 245 (68) 130 (35) 185 (52) 120 (32)

15539 217 (88) 1709 (121) 402 (98) 213 (58) 228 (57) 144 (38)

15766 144 (58) 669 (60) 300 (77) 155 (41) 219 (57) 135 (35)

15809 197 (84) 3795 (188) 230 (67) 129 (39) 145 (43) 82 (24)

15848 124 (49) 303 (35) 221 (63) 103 (27) 179 (51) 100 (26)

17914 179 (75) 2740 (141) 265 (69) 150 (44) 152 (43) 82 (24)

18330 99 (41) 465 (43) 145 (44) 74 (22) 128 (39) 61 (18)

The column for det(A) contains the statistics for the determinization of A. No

schema is used there. We use a timeout of 100 seconds. Whenever this is not

enough, the cell in the table is left blank. Indeed, the determinization fails with

this timeout for 37% of the queries of our corpus. Roughly, the determinization

fails for all 2-sorted Shas with more than 100 states. For instance, for query 11780

the 2-sorted Sha A has has size 205 (88), while the dSha det(A) has size 3832 (190).

6.7. Example Automata for Lick and Schmitz’ Benchmark 159

The column for B = det(A× S) contains the determinization of the product of A

and the schema S = xml-seq&one-x. Even though A× S is always larger than A, we

were able to always determinize A × S within the timeout, in contrast to A. The

largest dSha B obtained is for for query 04358: it has size 3580 (559). This show

that B may still be quite big, but often a big improvement in size over det(A).

The next column reports on C = detS(A) obtained by schema-based determiniza-

tion with schema S = xml-seq&one-x. Again, the computation succeeds in all cases

within the timeout of 100 seconds. The size of C for query 04358 is 2021 (433),

which improves in size over B.

In the next two columns, we respectively minimize the determinized Shas B and

C, using a naive minimization algorithm. All automata can be minimized within

the timeout of 100 seconds. We note that C′ = mini(C) is always smaller than

B′ =mini(B), showing that schema-based determinization yields smaller minimal

automata than determinizing the schema-product. The maximal number of states

of the minimal dShas C′ =mini(C) is 58 for query 04358. In average the number of

states decreases by 55%.

In the last column, we compiled the minimized dShas of C′ to the dNwa

nwa(C′). It has the same number of states as C′ for all queries and a mi-

nor increase is the number of transitions. All these results, including the

automata of the intermediate steps, generated during the whole compila-

tion chain are available at in the software heritage archive at the following

url: https://archive.softwareheritage.org/browse/origin/?origin_url=

https://gitlab.inria.fr/aalserha/xpath-benchmark.

6.7 Example Automata for Lick and Schmitz’ Benchmark

Given that the minimized dSha for the 78 regular XPath queries selected from

Lick and Schmitz’ benchmark are all small, we present some. We have chosen

somehow arbitrarily queries Q01705, Q17914, Q10745, Q15809, Q02762, Q06027, Q02909,

Q06415, and Q15339 in the Figures 6.1, 6.9, 6.10, 6.11, 6.12, 6.13, 6.14, and 6.15.

.

https://archive.softwareheritage.org/browse/origin/?origin_url=https://gitlab.inria.fr/aalserha/xpath-benchmark
https://archive.softwareheritage.org/browse/origin/?origin_url=https://gitlab.inria.fr/aalserha/xpath-benchmark
https://archive.softwareheritage.org/browse/origin/?origin_url=https://gitlab.inria.fr/aalserha/xpath-benchmark
https://archive.softwareheritage.org/browse/origin/?origin_url=https://gitlab.inria.fr/aalserha/xpath-benchmark

160 Chapter 6. Benchmark of XPath Queries

Figure 6.8: The minimization of the schema-based determinization of the Sha

compiled from the XPath query of the Lick and Schmitz’ benchmark:

Q10745 = *//tei : imprint/tei:date[@type=’access’]

6.7. Example Automata for Lick and Schmitz’ Benchmark 161

Figure 6.9: The minimization of the schema-based determinization of the Sha

compiled from the XPath query of the Lick and Schmitz’ benchmark:

Q17914 = /descendant−or−self::node()/child::tei :back/descendant−or−self::node()/child::tei:interpGrp

162 Chapter 6. Benchmark of XPath Queries

Figure 6.10: The minimization of the schema-based determinization of the Sha

compiled from the XPath query of the Lick and Schmitz’ benchmark:

Q15809 = //h:html[@lang] | //h:body[@lang]

6.7. Example Automata for Lick and Schmitz’ Benchmark 163

Figure 6.11: The minimization of the schema-based determinization of the Sha

compiled from the XPath query of the Lick and Schmitz’ benchmark:

Q02762 = .//authorgroup/author | .//author

Figure 6.12: The minimization of the schema-based determinization of the Sha

compiled from the XPath query of the Lick and Schmitz’ benchmark:

Q06027 = .// authorinitials | .//author

164 Chapter 6. Benchmark of XPath Queries

Figure 6.13: The minimization of the schema-based determinization of the Sha

compiled from the XPath query of the Lick and Schmitz’ benchmark:

Q02909 = .//bibliomisc[@role=’serie ’]

6.7. Example Automata for Lick and Schmitz’ Benchmark 165

Figure 6.14: The minimization of the schema-based determinization of the Sha

compiled from the XPath query of the Lick and Schmitz’ benchmark:

Q06415 = .//email | address/otheraddr/ulink

166 Chapter 6. Benchmark of XPath Queries

Figure 6.15: The minimization of the schema-based determinization of the Sha

compiled from the XPath query of the Lick and Schmitz benchmark:

Q15539 = //h:figure[@data−type=’cover’]//h:img[@src != ’’]

Part III

Projection

Abstract
We show how to evaluate stepwise hedge automata in a top-down manner
with complete subhedge and suffix projection. This means that irrelevant
subhedge and irrelevant suffixes are projected in a maximal manner. Fur-
thermore, language membership is decided at the earliest prefix when it
becomes certain. In order to pass projection information top-down, we
base our projection algorithms on compilers from deterministic stepwise
hedge automata to dSha↓s with subhedge projection and selection states.
The top-down evaluator of this dSha↓ can then be run with subhedge
projection, either in-memory or in streaming mode.

Contents
7 Complete Subhedge Projection 171

8 Complete Suffix Projection 223

9 Combining Subhedge and Suffix Projection 237

10 Projecting Evaluators for Earliest Membership 245

Introduction

Projection needs to be added to various algorithms on words, trees, hedges, or

nested words in order to make them efficient. Intuitively, an algorithm is project-

ing if it visits only a fragment of the input structure, in the best case, the part

that is relevant to the problem under consideration. The relevance of projection

for Xml processing was already noticed by [Marian & Siméon 2003, Frisch 2004,

Maneth & Nguyen 2010, Sebastian & Niehren 2016]. Saxon’s in-memory evalua-

tor, for instance, projects input Xml document relative to an Xslt program, which

contains a collection of XPath queries to be answered simultaneously [Kay 2004].

The QuiXPath tool [Sebastian & Niehren 2016] evaluates XPath queries in stream-

ing mode with subtree and descendant projection. Projection during the evaluation

JSONPath queries on JSON documents in streaming mode is called fast-forwarding

[Gienieczko et al. 2024].

Projecting for in-memory algorithms assumes that the full graph of the input

hedge has to be constructed. Nevertheless, projection may still save time if one has

to match several patterns on the same input hedge, or, if the graph was constructed

for different reasons anyway. In streaming mode, the situation is similar: the whole

input hedge on the stream needs to be parsed, but the evaluators need to inspect

only nodes that are not projected away. Given that pure parsing is by two or three

orders of magnitude faster than pattern evaluation, the time gain of projection may

be considerable.

In this part, we study subhedge projection and suffix projection for regular

hedge languages, as well as their combination. Complete suffix projection is the

main objective of earliest membership testing for top-down evaluators, possibly in

streaming mode. However, it must be combined with subhedge projection in order

to obtain reasonable efficiency.

We also provide a projecting top-down evaluator for dSha↓. It does the same as the

top-down evaluator for Sha, except that it accepts in selection states and projects

the current subhedge in subhedge projection states. We provide two versions of the

projecting top-down evaluator, of which the first runs in-memory and the second

in streaming mode.

Finally, we present earliest top-down membership tester for dShas with complete

subhedge and suffix projection. For obtaining this algorithm, we run projecting

top-down evaluator on the combination of the earliest dSha and the dSha with

complete subhedge projection for the input dSha yields. Again, we have two modes

for this evaluator in-memory and streaming.

Outline. In Chapter 7 we start with an algorithm for complete subhedge projec-

tion for dShas by compilation to dSha↓s. In the following Chapter 8, we continue

with an algorithm for complete suffix projection for dShas, again by compilation to

Contents 169

dSha↓s. And then in Chapter 9 we show how to combine both compilers in order

to produce an earliest dSha↓ with complete subhedge and suffix projection for any

dSha. Projecting evaluators for arbitrary Sha
↓s are given in Chapter 10 and applied

too earliest dSha↓s with projection for dShas. This leads to an earliest membership

tester with complete subhedge and suffix projection for dShas.

Chapter 7
Complete Subhedge Projection

Abstract
We define top-down evaluators with subhedge projection for stepwise
hedge automata. For this, we compile any stepwise hedge automata to
some dSha↓s recognizing the same language. The top-down evaluator of
the dSha↓ passes information top-down that is needed to detect irrelevant
subhedges. We show how to obtain complete subhedge projection in this
manner, i.e., to project as many irrelevant subhedges as possible during
top-down evaluation.

Contents
7.1 Introduction . 172

7.2 Definitions and Properties . 174

7.2.1 Irrelevant Subhedges . 174

7.2.2 Basic Properties . 176

7.2.3 Completeness for Subhedge Projection 178

7.3 Safe-No-Change Projection . 183

7.3.1 Algorithm . 183

7.3.2 Soundness . 186

7.3.3 Incompleteness . 196

7.4 Congruence Projection . 197

7.4.1 Motivation . 198

7.4.2 Approach . 198

7.4.3 Algorithm . 200

7.4.4 Soundness . 207

172 Chapter 7. Complete Subhedge Projection

7.4.5 Completeness . 217

7.4.6 Automata Sizes . 222

7.1 Introduction

We study subhedge projection for the membership problem to a regular hedge

language, i.e., whether a given hedge h belongs to a regular hedge language L. A

hedge language is sometimes also called a hedge pattern. The membership problem

for regular hedge languages is called regular hedge pattern matching.

The starting point of the present chapter is the notion of irrelevant subhedges

that we introduce. It states that the positions of the subhedge in a hedge h are

irrelevant for the membership to some regular hedge language L with respect to

top-down traversal on h. In other words, a position of h is subhedge irrelevant

for L, if for all possible continuations beyond the position, the insertion of some

subhedge at the position does not affect membership to L.

We contribute an algorithm for hedge pattern matching with complete subhedge

projection. Our algorithm decides language membership while maximally pro-

jecting irrelevant subhedges away. In other words, it decides whether a hedge h

matches a pattern L without visiting any subhedge of h that is located at some

position that is subhedge irrelevant with respect to L.

Reconsider the example of the nested regular expression [self-list-child-item]

mimicking the XPath filter [self::list/child::item]. The nested regular ex-

pression is satisfied by a nested list if its root is a list element that has some item

child. The satisfying hedges have the form 〈list · h1 · 〈item · h2〉 · h3〉 · h4 for some

hedges h1,h2,h3,h4. When evaluating this filter on some hedge, it is sufficient to

inspect the first subtree for having the root label list and then all its children

until one with root label item is found. The subhedges of these children, i.e., the

hedge h2 and the subhedges of the top-level trees in h1 and h3, can be projected

away, as well as the hedge h4: They don’t have to be inspected for evaluating this

filter. However, one must memoize whether the level of the current node is 0, 1, or

greater. This level information can be naturally updated in a top-down manner. The

evaluators of Shas, however, operate bottom-up. Therefore, projecting evaluators

for Shas need to be based on more general machines. We propose downward step-
wise hedge automata (Sha↓s), a variant of Shas that supports top-down processing

in addition. They are basically Neumann and Seidl’s pushdown forest automata

[Neumann & Seidl 1998], except that they apply to unlabeled hedges instead of

7.1. Introduction 173

labeled forests. Furthermore, Nwas are known to operate in basically the same

manner on nested words [Gauwin et al. 2008], while allowing for more slightly

more general visible pushdowns. We then distinguish subhedge projection states

for Sha↓s, and show how to use them to evaluate Shas with subhedge projection

both in-memory and in streaming mode.

As a first contribution, we present the safe-no-change compiler from Shas to

Sha
↓s that can distinguish appropriate subhedge projection states. The idea is that

the safe-no-change Sha
↓ can distinguish contexts in which the states of the Sha will

safely not change. For instance, the nested regular expression [self-list-child-item]

already defined by the deterministic Sha in Figure 3.10, which our compiler maps

to the Sha
↓ in Figure 3.15. The context information made explicit is about the

levels of the states. This permits us to distinguish projection states from level

2 on, and in which subhedges can be ignored. We prove the soundness of our

compiler based on a nontrivial invariant that we establish1. We also present a

counter example showing that the safe-no-change projection is not complete for

subhedge projection. It shows that a subhedge may be irrelevant even though its

state may still be changing.

As a second contribution, we propose the congruence projection algorithm. It

again compiles Shas to Sha
↓s but relies on the congruence relations on automata

states. We then prove that congruence projection yields not only a sound algo-

rithm, but that this algorithm is also complete for subhedge projection, i.e., all

strongly irrelevant subhedges (see Definition 7.14) are evaluated into some looping

state. Congruence projection starts on top-level of hedges with the Myhill-Nerode

congruence that is well-known from automata minimization. For languages on

words L, this congruence identifies prefixes v that have the same residual language

v−1(L) = {w | v ·w ∈ L}. A prefix v is then suffix irrelevant, if its residual language

v−1(L) is either universal or empty. In the case of hedges – which extend on words

by adding hierarchical nesting via a tree constructor – the congruence must be

adapted when moving down into subtrees.

We show that both compilers may increase the size of the automata exponentially,

since they must be able to convert bottom-up deterministic automata on monadic

trees into top-down deterministic automata. That is the same as inverting determin-

istic automata on words, which is well known to raise an exponential blow up in

the worst case2. The exponential explosion can be avoided when interested in the

1We note that the proof required an adaptation of the original compiler from FCT
[Al Serhali & Niehren 2023b].

2For the family of languages (a+b)∗ ·a · (a+b)n where n ∈N the minimal deterministic left-to-right

174 Chapter 7. Complete Subhedge Projection

evaluation of hedges by automaton with subhedge projection, by not constructing

the complete Sha
↓s statically. Instead, only the needed part of the Sha

↓s may be

constructed on the fly when evaluating some hedge.

Our third contribution is a refinement of the two previous compilers so that

they can also distinguish safe states for selection at the earliest position. For

this, we combine these compilers with a variant of the earliest membership tester

of [Al Serhali & Niehren 2023a] that operates in-memory by compiling to Sha
↓s

instead of Nwas. Furthermore, membership failure is detected at the earliest

position too. In this way, we obtain an earliest in-memory membership tester for

deterministic Shas.

7.2 Definitions and Properties

7.2.1 Irrelevant Subhedges

We define the concept of irrelevant occurrences of subhedges with respect to a

given hedge pattern. What this means depends on the kind of algorithm that we

will use for pattern matching. We will use algorithms that operate on the input

hedge top-down, left-to-right, and bottom-up. This holds for streaming algorithms

in particular.

Intuitively, when the pattern matching algorithm reaches a node top-down or

left-to-right whose subsequent subhedge is irrelevant, then it can jump over it

without inspecting its structure. What jumping means should be clear if the hedge

is given by a graph that is stored in memory. Notice, that the full graph is to be

constructed beforehand even though some parts of it may turn out irrelevant. Still

one may win lots of time by jumping over irrelevant parts if either the graph was

already constructed for other reasons, or if many pattern matching problems are to

be solved on the same hedge.

In the case of streams, the irrelevant subhedge still needs to be parsed, but it

will not be analyzed otherwise. Most typically, the possible analysis is done by

automata, which may take 2 orders of magnitudes more time than needed for

parsing. Therefore not having to do any analysis may considerably speed up a

streaming algorithm.

Definition 7.1. Let S ⊆HΣ be a schema and L ⊆ S a language satisfying this schema. We
define diff LS as the least symmetric relation on prefixes of nested words u,u′ ∈ prefs(NΣ)

automaton has 2n+1 states while the minimal deterministic right-to-left automaton has n+ 1 states.

7.2. Definitions and Properties 175

such that:

diff LS(u,u′)⇔∃w ∈ suffs(NΣ). u ·w ∈ nw(L)∧u′ ·w ∈ nw(S \L)

A nested word prefix u is called subhedge relevant for L with schema S if there exists
nested words v,v′ ∈ NΣ such that diff LS(u · v,u · v′). Otherwise, the prefix u is called
subhedge irrelevant for L with schema S.

So diff LS(u,u′) states that u and u′ have continuations that behave differently with

respect to L and S. Furthermore, a prefix u is subhedge irrelevant if language mem-

bership does not depend on hedge insertion at u under the condition that schema

membership is guaranteed. The case without schema restrictions is subsumed by

the above definition by choosing S =HΣ. In this case, the complement diff LHΣ
is the

Myhill-Nerode congruence of L, which is well-known in formal language theory

from the minimization of Dfas (see any standard textbook on formal language

theory or Wikipedia3).

This congruence also serves as the basis for Gold-style learning of regular lan-

guages from positive and negative examples (see [Gold 1967] or Wikipedia4).

Schema restrictions are needed for our application to regular XPath patterns.

Example 7.2 (Irrelevant subhedges for nested regular expression [self-

-list-child-item]). We reconsider the nested regular expression [self-list-child-item] from
Example 3.24, which is a simplified version of the XPath [self::list/child::item].

[self-list-child-item] = 〈list · N-List · 〈item · N-List〉 · N-List〉 · N-List

In the signature Σ = {list,item} and schema S = ~N-List�. Let L =

~[self-list-child-item]� be the hedge language of this nested regular expression.

The nested word prefix u = 〈list〈item is subhedge irrelevant for the language L with
schema S. Note that its hedge continuation 〈list〈item〉〉 with the suffix w = 〉〉 belongs
to L. Hence, for any h ∈ HΣ if the hedge continuation 〈list · 〈item · h〉〉 belongs to S

then it also belongs to L. Nevertheless, for the hedge h1 = 〈〉 the hedge continuation
〈list · 〈item · h1〉〉 does not belong to L, since it does not satisfy the schema S.

The prefix 〈item is also irrelevant for the language L even independently of the schema.
This is because L does not contain any continuation of this prefix to some hedge. The
prefix 〈list is not irrelevant for the language L wrt S. This can be seen with suffix

3Myhill-Nerode theorem: https://en.wikipedia.org/wiki/Myhill-Nerode_theorem
4Gold style learning in the limit https://en.wikipedia.org/wiki/Language_identification_

in_the_limit

https://en.wikipedia.org/wiki/Myhill-Nerode_theorem
https://en.wikipedia.org/wiki/Language_identification_in_the_limit
https://en.wikipedia.org/wiki/Language_identification_in_the_limit
https://en.wikipedia.org/wiki/Language_identification_in_the_limit
https://en.wikipedia.org/wiki/Language_identification_in_the_limit

176 Chapter 7. Complete Subhedge Projection

w = 〉, since 〈list〉 does not belong to L while the hedge continuation 〈list · h〉 with
h = 〈item〉 does belong to L and both continuations satisfy the schema S = ~N-List�.

While needed in our main application, schema-restrictions may also have some-

how surprising but logical consequences that make the problem of identifying

irrelevant subhedges more tedious.

Example 7.3 (Surprising consequences of schema restrictions). Consider the signa-
ture Σ = {a}, the pattern L = {〈a〉} and the schema S = L∪ {〈〉 · a}. The prefix 〈 is indeed
subhedge irrelevant for L and S. In order to see this, we consider all possible closing
suffixes one by one. The smallest closing prefix is 〉. Note that a hedge 〈h〉 ∈ L if and only
if h = a. So membership to L seems to depend on the subhedge h. But note that 〈h〉 ∈ S
if and only if h = a. So when assuming that the hedge 〈h〉 belongs to the schema S, it
must also belong to L. So the pattern must match in any case when assuming schema
membership. The next closing suffix is 〉 · a. Note that a hedge 〈h〉 · a ∈ S if and only if
h = ε. However, 〈h〉 · a < L, so the pattern will not match for any subhedge h with this
prefix when assuming the input hedge satisfies the schema. The situation is similar for
larger suffixes, so in no case, language membership does depend on the subhedge at prefix
〈, when assuming that the full hedge satisfies the schema S.

7.2.2 Basic Properties

We first show that subhedge irrelevant prefixes remain irrelevant when extended

by any nested word, i.e. by the nested word of any hedge. This property is expected

for any reasonable notion of subhedge irrelevance.

Lemma 7.4. For any nested word prefix u, and language L,S ⊆ HΣ, and nested word
v ∈ NΣ, if the prefix u is subhedge irrelevant for L with schema S and then the prefix
u · v is so too.

Proof. Let u be subhedge irrelevant for L with schema S and v ∈ NΣ a nested word.

We fix arbitrary nested words v′ ,v′′ ∈ NΣ and a nested word suffix w ∈ suffs(NΣ)

such that u ·v ·v′ ·w ∈ nw(S) and u ·v ·v′′ ·w ∈ nw(S). Since v ·v′ and v ·v′′ are nested

words too, the subhedge irrelevance of u yields:

u · v · v′ ·w ∈ nw(L)⇔ u · v · v′′ ·w ∈ nw(L)

Hence, the nested word prefix u · v is subhedge irrelevant for L with schema S

too.

7.2. Definitions and Properties 177

Definition 7.5. We call a binary relation D on prefixes of nested words a difference

relation on prefixes if for all prefixes of nested words u,u′ ∈ prefs(NΣ) and nested words
v ∈ NΣ:

(u · v,u′ · v) ∈D⇒ (u,u′) ∈D

Lemma 7.6. diff LS is a difference relation.

Proof. We have to show for all prefixes u,u′ ∈ prefs(NΣ) and nested words v ∈ NΣ

that (u ·v,u′ ·v) ∈ diff LS implies (u,u′) ∈ diff LS. So let u,u′ be prefixes of nested words

and v a nested word such that (u · v,u′ · v) ∈ diff LS. Then there exists a nested suffix

w such that

u · v ·w ∈ nw(L)∧u′ · v ·w ∈ nw(S \L)

The suffix w̃ = v ·w then satisfies u ·w̃ ∈ nw(L)∧u′ ·w̃ ∈ nw(S\L). Hence (u,u′) ∈ diff LS
as required.

In the schema-free case on words, the complement diff LΣ∗ is an equivalence re-

lation that is known as the Myhill-Nerode congruence. In the case of schemas,

however, the complement diff LS may not be transitive, and thus, it may even not be

an equivalence relation. This might be surprising at first sight.

Example 7.7. Let Σ = {a,b}, L = {ε,b,aa} and S = L∪ {aab}. Then (ε,a) ∈ diff LS since
there is no continuation, that extends both ε and a into the schema. For the same reason,
we have (a,aa) ∈ diff LS. However, diff LS(ε,aa) since ε · b ∈ L and aa · b ∈ S \ L. Thus,
(ε,aa) < diff LS, so the complement diff LS is not transitive.

It should be noted for all languages L that diff LHΣ
is reflexive and transitive, so it

is an equivalence relation and thus a congruence. For general schemas S, however,

diff LS may not be transitive as shown by Example 7.7, and thus not be a congruence.

This indicates that schemas may make it more difficult to decide subhedge

irrelevance. And indeed, the natural manner that one might expect to eliminate

schemas based on complements does not work, as confirmed by following lemma

(in particular the counter example in the proof 1.; 2.):

Lemma 7.8. For any nested word prefix u ∈ suffs(NΣ), and languages L,S ⊆HΣ consider
the following two properties:

1. u is irrelevant for L with schema S

2. u is irrelevant for L∪S with schema HΣ.

178 Chapter 7. Complete Subhedge Projection

Then property 2. implies property 1., but not always vice versa.

Proof. 1.; 2.: Here comes a counter-example. Let L = {ε} and S = {ε,a}. Then

prefix a is irrelevant for L with schema S. However, prefix a is relevant for L∪S =

HΣ \ {a} with schema HΣ, since for the nested words v = ε and v′ = a we have

a · v < L∪S and a · v′ ∈ L∪S.

1.⇐ 2.: We assume property 2. Consider arbitrary nested words v,v′ ∈ NΣ and a

nested word suffix w ∈ suffs(NΣ) such that u ·v ·w,u ·v′ ·w ∈ S. It is sufficient to show

that u · v ·w ∈ S and u · v′ ·w ∈ S implies u · v ·w ∈ L⇔ u · v′ ·w ∈ L. This implication

holds trivially if u · v ·w ∈ S or u · v′ ·w ∈ S. Otherwise, we have u · v ·w ∈ S and

u · v′ ·w ∈ S. Property 2. as assumed then implies u · v ·w ∈ L⇔ u · v′ ·w ∈ L. So

property 1. holds.

7.2.3 Completeness for Subhedge Projection

We define for dShas what it means to be complete for subhedge projection. For

this we start with the concept of subhedge projection states, a syntactic criterion to

identify states of irrelevant subhedges.

7.2.3.1 Subhedge Projection States

We next introduce the concept of subhedge projection states for Sha↓s in order to

distinguish prefixes of hedges that are subhedge irrelevant, and to evaluate Sha
↓s

with subhedge projection.

Intuitively, a subhedge projection state can only loop in itself until a hedge closes

(and then it is applied). When going down into a subtree, the subhedge projection

state may still be changed into some other looping state. When leaving the subtree,

however, one must come back to the original subhedge projection state. Clearly,

any sink is a subhedge projection state. The more interesting cases, however, are

subhedge projection states that are not sinks.

We start with Sha
↓s without any restrictions but will impose schema-

completeness and determinism later on.

Definition 7.9. We call a state q ∈ Q a subhedge projection state of ∆ if there exists
q′ ∈ Q called the witness of q such that the set of transition rules of ∆ containing q′ or q

7.2. Definitions and Properties 179

on the leftmost position is included in the following set:

{q
〈〉
−→ q′ , q@q′→ q, q′

〈〉
−→ q′ , q′@q′→ q′}

∪{q′ a−→ q′ , q
a−→ q | a ∈ Σ}

q q′
〈〉

〈〉

a ∈ Σ

q′

q′

a ∈ Σ

The set of all subhedge projection states of ∆ is denoted by Q∆
shp.

For any complete Sha
↓, the above set of transition rules must be equal to the set

of all transition rules of ∆ with q or q′ on the leftmost position. But if the Sha
↓ is

only schema-complete for some schema S then not all these transitions must be

present. Note also that a subhedge projection state q may be equal to its witness

q′. Therefore any witness q′ of some subhedge projection state is itself a subhedge

projection state with witness q′.

In the example dSha↓ A = (Σ,Q,∆, I ,F) in Figure 3.15, we have Q∆
shp =

{Π,4,2′ ,3′ ,1′′ ,2′′}. The witness of all these subhedge projection states is Π. Note

that not all possible transitions are present for the states in Q∆
shp \ {Π}, given that

this automaton is not complete (but still schema-complete for schema ~N-List�).

Lemma 7.10. If q ∈ Q∆
shp is a subhedge projection state and q

h−→ p wrt ∆ then q = p.

Proof. Suppose that q
h−→ p wrt ∆ and that q is a subhedge projection state of ∆ with

witness q′. So the only possible transitions with q or q′ on the left-hand side are the

following:

q q′
〈〉

〈〉

a ∈ Σ

q′

q′

a ∈ Σ

Suppose that h = t1 · . . . · tn is a sequence of trees or letters ti ∈ 〈HΣ〉 ∪ Σ where

1 ≤ i ≤ n. Then there exists runs Ri ∈ run∆(ti) and a run R ∈ run∆(h) that has the

form h = q0 ·R1 ·q1 · . . . ·Rn ·qn where q0 = q and qn = p. We prove for all 0 ≤ i ≤ n that

qi = q by induction on i. For i = 0, this is trivial. For i > 0, the induction hypothesis

shows that qi−1 = q

180 Chapter 7. Complete Subhedge Projection

Case ti = a ∈ Σ. Then qi−1
a−→ qi ∈ ∆ Since qi−1 = q is a subhedge projection state of

∆ it follows that qi = q too.

Case ti = 〈h′〉 for some h′ ∈ HΣ. Since qi−1 = q is a subhedge projection state of ∆

with witness q′, the subrun of R recognizing ti must be justified by the following

diagram:

q

q′ h′ q′

q

〈〉

So the subrun of R of h′ may only contain the witness q′ and furthermore, qi = q.

7.2.3.2 Soundness

We show that subhedge projection states can be used to soundly identify subhedges

that are irrelevant for subhedge projection. For this, we show that subhedge

projection states in runs of deterministic Sha
↓s occur only at irrelevant prefixes.

Proposition 7.11. Let A = (Σ,Q,∆, I ,F) be a dSha↓ with schema S, R ∈ run∆(h) the
run of compl(A) on some hedge h ∈ S, and q a subhedge projection state for ∆. Then for
any prefix r · q of nw(R), the prefix projΣ(r) of nw(h) is subhedge irrelevant for L(A) for
schema S.

Proof. Let R ∈ run∆(h) be the unique run of compl(A) on some hedge h ∈ S. Suppose

that r · q · s = nw(R) for some subhedge projection state q of ∆ and let v = projΣ(r)

and ℘ = projΣ(s). Since v ·℘ = nw(h) and h ∈ S it follows that v ·℘ ∈ nw(S). We fix

some hedge h′ ∈ HΣ such that v ·nw(h′) ·℘ ∈ nw(S) arbitrarily. Let h̃ ∈ HΣ such that

nw(h̃) = v ·nw(h′) ·℘. For the subhedge irrelevance of v, we have to show that:

h ∈ L(A)⇔ h̃ ∈ L(A)

“⇒” We suppose that h ∈ L(A) and have to show that h̃ ∈ L(A). For the partial

run r · q of A on h̃ there must exist R′ and p such that q ·R′ · p ∈ run∆(h′). Since q

is a subhedge projection state of ∆, it follows by Lemma 7.10 that q = p. Hence

r · q · nw(R′) · q · s is a run of A on h̃. Since R was successful for A, s must end in F,

7.2. Definitions and Properties 181

and thus the above run on h̃ is successful for A too. Hence h̃ ∈ L(A) as we had to

show.

“⇐” We suppose that h̃ ∈ L(A) and have to show that h ∈ L(A). Let R̃ be the unique

run of compl(A) on h̃. By determinism, R̃ must have the prefix r · q. So there exist

R′ ,p′ , s such that p ·R′ · q ∈ run∆(h′) and r · q ·R′ · p · s = R̃. Lemma 7.10 shows that

p = q. Hence, r ·q · s is the unique run of compl(A) on h and this run is accepting. So

h ∈ L(A).

We note that Proposition 7.11 would not hold without assuming determinism.

To see this, we can add some sink to any dSha as a second initial state. One can

then always go to this sink, which is a subhedge projection state. Nevertheless, no

prefix going to the sink may be subhedge irrelevant.

7.2.3.3 Completeness

Proposition 7.11 shows that subhedge projection states permit to soundly distin-

guish prefixes that are subhedge irrelevant for deterministic Sha
↓s. An interesting

question is whether all subhedge irrelevant prefixes can be found in this way. A

closely related question is whether there for all regular patterns there exist dShas

that project all irrelevant subhedges.

Example 7.12. Reconsider Example 7.3 with Σ = {a}, regular pattern L = {〈a〉} and
regular schema S = L ∪ {〈〉 · a}. The prefix 〈〉 is irrelevant for L and S, since all its
continuations ending in the schema are rejected: there is only one such continuation
which is 〈〉 ·a. However, a dSha for L and S with maximal subhedge projection – as given
in Figure 7.8 – will not go into a subhedge projection state at this prefix. The reason
is that it will go into the same state {3,4}D0 for any prefix in 〈NΣ〉, since ignoring the
nested word of the irrelevant subhedge. So this state must accept 〈a〉. But when reading
an a in this state, the dSha goes into the rejection state {5}D0, showing that the hedge
from the schema 〈〉 · a ∈ S is rejected.

The example shows that we have eventually to reason with sets of prefixes. We

first lift the notion of subhedge irrelevance to prefix sets.

Definition 7.13. Let S ⊆HΣ be a schema and L ⊆ S a language satisfying this schema.
A set of nested word prefixes U ⊆ prefs(NΣ) is called subhedge relevant for L with
schema S if there exist prefixes u′ ,u′′ ∈ U and nested words v′ ,v′′ ∈ NΣ such that
diff LS(u′ · v′ ,u′′ · v′′). Otherwise, the set U is called subhedge irrelevant for L wrt S.

182 Chapter 7. Complete Subhedge Projection

In order to explain the problem of Example 7.12, we define for each nested

word prefix w ∈ prefs(NΣ) a class [w]LS of similar prefixes up replacing the nested

word of any irrelevant subhedge byNΣ from the left to the right. For all prefixes

w ∈ prefs(NΣ), nested words v ∈ NΣ, letters a ∈ Σ, subsets of prefixes U ⊆ prefs(NΣ),

and l ∈ Σ̂ letters or parenthesis:

[w]LS = class_pr{ε}(w)

class_prU (ε) =

 U ·NΣ if U irrelevant for L wrt S

U else

class_prU (w · 〈 · v) = class_insU ′ (〈,v) where U ′ = class_prU (w)

class_prU (a · v) = class_insU ′ (a,v) where U ′ =U · a
class_prU (〈v′〉 · v) = class_insU ′ (〉,v) where U ′ = class_prU (〈 · v′)

class_insU (l,v) =

 U ·NΣ if U irrelevant for L wrt S

class_prU ·l(v) else

Definition 7.14. A prefix u ∈ prefs(NΣ) is called strongly subhedge irrelevant for L
wrt S if the set [u]LS is subhedge irrelevant for L wrt S.

Example 7.15. In our running Example 7.12 where L = {〈a〉}, S = L ∪ {〈〉 · a} and
Σ = {a} we have [〈]LS = 〈 · NΣ, so the prefix 〈 is strongly subhedge irrelevant. The set
[〈a〉]LS = 〈NΣ〉 is subhedge relevant, so the prefix 〈a〉 is not strongly subhedge irrelevant.
The set [〈〉 · a]LS = 〈NΣ〉 · a · NΣ is subhedge irrelevant, so the prefix 〈〉 · a is strongly
subhedge irrelevant.

Definition 7.16. A dSha↓ A = (Σ,Q,∆, I ,F) is called complete for subhedge projec-

tion for schema S if A is schema-complete for S and for all hedges h ∈ S and all prefixes
v of nw(h) that are strongly subhedge irrelevant for ∆, the unique run of A on h goes to
some subhedge projection state of ∆ at v.

Example 7.17. The dSha in Figure 7.8 is complete for subhedge projection for our
running Example 7.12 where L = {〈a〉} and S = L∪{〈〉 ·a}. It was obtained by congruence
projection. On all prefixes of the subhedge irrelevant class [〈]LS it goes to the subhedge
projection state {0}D1. On all prefixes of the class [〈a〉]LS which is not subhedge irrelevant,
it goes to the state {3,4}D0 which is not a subhedge projection state. And on all prefixes
of the subhedge irrelevant class [〈〉 · a]LS it goes to the subhedge projection state {5}D0.

Example 7.18. The dSha↓ from Figure 3.15 is complete for subhedge projection with
schema ~N-List�. It can be obtained by safe-no-change projection. In general, how-
ever, dSha↓s obtained by safe-no-change projection may not be complete for subhedge
projection, as we will discuss in Section 7.3.3.

7.3. Safe-No-Change Projection 183

7.3 Safe-No-Change Projection

We want to solve the membership problem for hedges – also called regular hedge

pattern matching – with subhedge projection. We assume that the regular language

(pattern) is given by a dSha while the schema may be arbitrary.

We present the safe-no-change projection algorithm which compiles the dSha

into some dSha↓ with the same language while introducing subhedge projection

states.

7.3.1 Algorithm

The idea of the safe-no-change projection is to push information top-down by

which to distinguish looping states that will safely no more be changed. Thereby,

subhedge projection states are produced as we will illustrate by examples. The

soundness proof of safe-no-change projection is nontrivial and instructive for

the soundness proof of congruence projection in Section 7.4.4. Completeness for

subhedge projection cannot be expected, since the safe-no-change projection does

only take simple loops into account. More general loops cannot be treated and it is

not clear how that could be done. The congruence projection algorithm in Section

7.4.3 will eventually give an answer to this.

We keep the safe-no-change compiler independent of the schema and there-

fore have not even to assume its regularity. But we have to assume the schema-

completeness (see Section 3.5) of the input dSha, in order to show that the output

dSha↓ recognizes the same language within the schema. The regular pattern match-

ing problem can then be solved in memory and with subhedge projection, by

evaluating the dSha↓ on the input hedge, in memory and with subhedge projection

as discussed in Section 10.1.1.

We now describe the safe-no-change projection algorithm. Let A = (Σ,Q,∆, I ,F)

be a Sha with schema S. The algorithm takes the dSha A as input and compiles it

to some dSha↓ Asnc. We will state why Asnc is sound for subhedge projection under

the condition that A is schema-complete for schema S. We do not even have to

assume that the schema S is regular.

For any set P ⊆ Q we define the set of states that safely lead to P :

safe∆(P) = {q ∈ Q | acc∆({q}) ⊆ P }

So a state q is safe for P if any hedge read from q on which the run with ∆ does not

184 Chapter 7. Complete Subhedge Projection

block must reach some state in P . We note that safe∆(P) can be computed in linear

time in the size of ∆, by using inverse hedge accessibility from P . We define the set

of states that will no longer change:

no-change∆ = {q | q ∈ safe∆({q})}

So q ∈ no-change∆ if and only if acc∆({q}) ⊆ {q}. This means that all transition rules

starting in q must loop in q. In the example automaton from Figure 3.10, the

self-looping states are those in no-change∆ = {2,3,4,5}.

Lemma 7.19. Let A = (Σ,Q,∆, I ,F) be a Sha that is schema-complete for schema S. For

any hedge h ∈ S and state q ∈ I ∩no-change∆ it then holds that q
h−→ q wrt ∆.

Proof. The schema-completeness of A for S applied to h ∈ S and q ∈ I yields the

existence of some state q′ ∈ Q such that q
h−→ q′ wrt ∆. Let q′ be any such state. Note

that q′ ∈ acc∆(q). Since q ∈ no-change∆, we have q ∈ safe∆({q}) so that q′ ∈ acc∆({q})
implies q′ = q. This proves q

h−→ q wrt ∆.

For any state q ∈ Q and subset of states Q ⊆ Q we define:

s-down∆(q,Q) = safe∆({p ∈ Q | q@∆p ⊆Q})
s-no-change∆(q) = s-down∆(q, {q})

A state belongs to s-down∆(q,Q) if all states p ∈ acc∆(q) satisfy q@∆p ⊆ Q. So p

is a state down that will safely go up to some state in Q. A state p belongs to

s-no-change∆(q) if it safely does not change q, i.e., if {q}@∆acc∆({p}) ⊆ {q}.

We next compile the Sha A to a Sha
↓ Asnc = (Σ,Qsnc, ∆snc, I snc,Fsnc). For this let

Π be a fresh symbol and consider the state set:

Qsnc = {Π}] (Q× 2Q)

In practice we restrict the state space to the states that are accessible, or clean the

dShas keeping only those states that are used in some successful run. But in the

worst case, the construction may indeed be exponential.

A pair (q,P) means the state q may will safely no more change in the current

subhedge if q ∈ P ∪ no-change∆. In this case, the subhedge can be projected. The

sets of initial and final states are defined as follows:

I snc = I × {∅} Fsnc = F × {∅}

7.3. Safe-No-Change Projection 185

q
a−→ q′ ∈ ∆ q < P ∪no-change∆

(q,P)
a−→ (q′ , P) ∈ ∆snc

a ∈ Σ q ∈ P ∪no-change∆

(q,P)
a−→ (q,P) ∈ ∆snc

〈〉
−→ q′ ∈ ∆ q < P ∪no-change∆

(q,P)
〈〉
−→ (q′ ,s-no-change∆(q)) ∈ ∆snc

q ∈ P ∪no-change∆

(q,P)
〈〉
−→Π ∈ ∆snc

q@p→ q′ ∈ ∆ q < P ∪no-change∆

(q,P)@(p,s-no-change∆(q))→ (q′ , P) ∈ ∆snc

q ∈ P ∪no-change∆

(q,P)@Π→ (q,P) ∈ ∆snc

a ∈ Σ

Π
a−→Π ∈ ∆snc

true

Π@Π→Π ∈ ∆snc

true

Π
〈〉
−→Π ∈ ∆snc

Figure 7.1: The transition rules of the Sha
↓ Asnc inferred from those of the Sha A.

How to generate the transition rules of Asnc from those of A is described in Fig-

ure 7.1. On states assigned on top-level (q,P), the set P is empty, so that only the

states in no-change∆ are safe for no change. This is why the definition of I snc and

Fsnc use P = ∅. When going down from some state (q,P) for which q is safe to not

change, i.e., q ∈ P ∪no-change∆, then the following rule is applied:

q ∈ P ∪no-change∆

(q,P)
〈〉
−→Π ∈ ∆snc

The evaluation on the lower level goes to the extra state Π, where it then loops until

going back to q on the upper level. When going down from some state (q,P) such

that q < P ∪no-change∆, then the following rule is applied:

〈〉
−→ q′ ∈ ∆ q < P ∪no-change∆

(q,P)
〈〉
−→ (q′ ,s-no-change∆(q)) ∈ ∆snc

The states in the set s-no-change∆(q) on the lower level safely will not make q change

on the upper level for any subhedge to come5.

When applied to the Sha in Figure 3.10 for [self-list-child-item], the construction

yields the Sha
↓ in Figure 7.2 which is indeed equal to the Sha

↓ from Figure 3.15 up

5We could detect more irrelevant subhedges by allowing q to change but only in a unique manner.
This can be obtained with the alternative definition: s-no-change′∆(q) = ∪r∈Qs-down∆(q, {r}). Comput-
ing this set would require quadratic time O(n |A|), while computing s-no-change∆(q) can be done in
linear time O(|A|).

186 Chapter 7. Complete Subhedge Projection

Figure 7.2: The safe-no-change projection dSha↓ Asnc constructed from the dSha
A for query [self-list-child-item] in Figure 3.10. Subhedge projection states are
colored in orange. Useless states and transitions leading out of schema ~N-List�
are omitted. State Π has an else transition labeled by wildcard letter “−”, which
stands for either letter list or item. This dSha↓ is equal to the dSha↓ in Figure 3.15
up to the state renaming 0 = (0, {}), 0′ = (0, {2,4}), 0′′ = (0, {1,3,4}), 1′ = (1, {2,4}),
1′′ = (1, {1,3,4}), 2′ = (2, {2,4}), 2′′ = (2, {1,3,4}), 3′ = (3, {2,4}), 4 = (4, {}). Recall that
no-change∆ = {2,3,4,5}.

to state renaming. When run on the hedge 〈list · 〈list · h1〉 · 〈item · h2〉〉 as shown

in Figure 3.16, it does not have to visit the subhedges h1 nor h2, since all of them

will be reached starting from the projection state Π.

7.3.2 Soundness

We next state and prove a soundness result for safe-no-change projection.

Theorem 2 (Soundness of Safe-No-Change Projection). If a ShaA is schema-complete
for some schema S, then safe-no-change projection for A preserves the language within
this schema: L(Asnc)∩S = L(A).

Proof. We have to prove that no more changing states q ∈ P ∪no-change∆ is sound.

If q ∈ no-change∆, this follows from the schema-completeness of ∆, so that one can

neither block on any hedge from the schema nor change the state. In the case q ∈ P ,

the intuition is that the state on level above - say r - can neither change, since

P = s-no-change∆(r), nor can the automaton block on any hedge from the schema

due to schema-completeness.

7.3. Safe-No-Change Projection 187

We first prove the inclusion L(A) ⊆ L(Asnc). Since L(A) ⊆ S by definition of

schemas, this implies L(A) ⊆ L(Asnc)∩S. The proof will be based on the following

three Claims 2.1a, 2.2a, and 2.3a. Note that schema-completeness is not needed for

this direction.

Claim 2.1a. Π
h−→Π wrt ∆snc for all hedges h ∈ HΣ.

The proof is straightforward by induction on the structure of h. It uses the last three

transition rules of ∆snc in Figure 7.1 permitting to always stay in Π for whatever

hedge follows.

Claim 2.2a. For all h ∈ HΣ, q ∈ Q, and P ⊆ Q such that q ∈ P ∪no-change∆:

(q,P)
h−→ (q,P) wrt ∆snc

We prove Claim 2.2a by induction on the structure of h.

Case h = 〈h′〉. In this case, we can use Claim 2.1a to show Π
h′−→Π wrt ∆snc and the

inference rules

q ∈ P ∪no-change∆

(q,P)
〈〉
−→Π ∈ ∆snc

q ∈ P ∪no-change∆

(q,P)@Π→ (q,P) ∈ ∆snc

in order to close the following diagram with respect to ∆snc:

(q,P)

Π h′ Π

(q,P)

〈〉

This proves (q,P)
h−→ (q,P) wrt ∆snc as required by the claim.

Case h = a. Since q ∈ P ∪no-change∆ we can apply the inference rule:

a ∈ Σ q ∈ P ∪no-change∆

(q,P)
a−→ (q,P) ∈ ∆snc

This proves this case of the claim.

Case h = ε. We trivially have (q,P)
ε−→ (q,P) wrt ∆snc.

188 Chapter 7. Complete Subhedge Projection

Case h = h′ · h′′. By induction hypothesis applied to h′ and h′′, we have: (q,P)
h′−→

(q,P) and (q,P)
h′′−−→ (q,P) wrt ∆snc. Hence (q,P)

h′ ·h′′−−−−→ (q,P) wrt ∆snc.

This ends the proof of Claim 2.2a. The next claim, in which the induction step is

a little more tedious to prove, is the key of the soundness proof. We define the

following predicate for all q′ ,q′′ ∈ Q and P ⊆ Q:

q′ ∼P q′′ iff (q′ = q′′ ∨ q′ ,q′′ ∈ P)

Claim 2.3a. Let h ∈ HΣ a hedge, q,q′ ∈ Q states and P ⊆ Q a subset of states such

that acc∆(P) ⊆ P and q < P ∪ no-change∆. If q
h−→ q′ wrt ∆ then there exists q′′ such

that (q,P)
h−→ (q′′ , P) wrt ∆snc and q′ ∼P q′′.

Proof. By induction on the structure of h.

Case h = 〈h′〉. The assumption q
h−→ q′ wrt ∆ shows that there exists states p0 ∈ 〈〉∆

and p ∈ Q closing the following diagram:

q

p0 h′ p

q′

〈〉

Let P ′ = s-no-change∆(q) and note that acc∆(P ′) ⊆ P ′. Since q < P ∪ no-change∆ we

can infer:

〈〉
−→ p0 ∈ ∆ q < P ∪no-change∆

(q,P)
〈〉
−→ (p0, P

′) ∈ ∆snc

q@p→ q′ ∈ ∆ q < P ∪no-change∆

(q,P)@(p,P ′)→ (q′ , P) ∈ ∆snc

Subcase p0 < P
′ ∪no-change∆. The induction hypothesis applies to h′ shows that

there exists p′ such that (p0, P
′)

h′−→ (p′ , P ′) wrt ∆snc and p ∼P p′. We distinguish the

two cases justifying the latter predicate:

Subsubcase p′ = p. Hence (p0, P
′)

h′−→ (p,P ′) wrt ∆snc, so we can close the diagram

as follows:

7.3. Safe-No-Change Projection 189

(q,P)

(p0, P
′) h′ (p,P ′)

(q′ , P)

〈〉

This shows that (q,P)
h−→ (q′ , P) wrt ∆snc, and thus the claim since q′ ∼P q′.

Subsubcase p,p′ ∈ P ′. Since p′ ∈ P ′ and P ′ = s-no-change∆(q) we have q@p′→ q in

∆. Hence we can close the diagram as follows:

(q,P)

(p0, P
′) h′ (p′ , P ′)

(q,P)

〈〉

Since p ∈ P ′ and q@p→ q′ in ∆ we have q = q′ by definition of P ′ = s-no-change∆(q).

This shows that (q,P)
h−→ (q,P) wrt ∆snc. Since q ∼P q the claim follows.

Subcase p0 ∈ P ′ ∪no-change∆. Claim 2.2a then shows that (p0, P
′)

h′−→ (p0, P
′) wrt

∆snc.

Subsubcase p0 ∈ P ′. Since p ∈ acc∆(p0) and acc∆(P ′) ⊆ P ′ it follows that p ∈ P ′ too.

By definition P ′ = s-no-change∆(q) and the completeness of ∆, the memberships

p0 ∈ P ′ and p ∈ P ′ imply that q@∆p0 = {q} = q@∆p. We can now close the diagram

below as follows:

(q,P)

(p0, P
′) h′ (p0, P

′)

(q,P)

〈〉

Subsubcase p0 ∈ no-change∆. In this case p0 = p so that q′ ∈ q@∆p0. Hence:

(q,P)

(p0, P
′) h′ (p,P ′)

(q′ , P)

〈〉

190 Chapter 7. Complete Subhedge Projection

Case h = a. Since q < P ∪no-change∆ we can apply the inference rule:

q
a−→ q′ ∈ ∆ q < P ∪no-change∆

(q,P)
a−→ (q′ , P) ∈ ∆snc

This shows that (q,P)
h−→ (q′ , P) validating the claim since q′ ∼P q′.

Case h = ε. In this case we have q = q′ and (q,P)
ε−→ (q,P), so the claim holds.

Case h = h1 · h2. Since q
h−→ q′ wrt ∆, there exists q1 ∈ Q such that q

h1−−→ q1 wrt ∆ and

q1
h2−−→ q′ wrt ∆. Since q < P ∪no-change∆, we apply the induction hypothesis on h1.

This implies that there exists q′1 such that:

(q,P)
h1−−→ (q′1, P) wrt ∆snc and q1 ∼P q′1

We distinguish the two cases of q1 ∼P q′1:

Subcase q1 = q′1. We also distinguish two subcases here:

Subsubcase q1 < P . The induction hypothesis applied to h2 yields:

∃q′′ . (q1, P)
h2−−→ (q′′ , P) wrt ∆snc ∧ q′ ∼P q′′

Hence

∃q′′ . (q,P)
h−→ (q′′ , P) wrt ∆snc ∧ q′ ∼P q′′

Subsubcase q1 ∈ P . By Claim 2.2a, we have (q1, P)
h2−−→ (q1, P). We also have q′ ∈

acc({q1}) and since we assume acc(P) ⊆ P , this implies q′ ∈ P . Hence (q,P)
h−→ (q1, P)

and q′ ,q1 ∈ P implying the claim with q′ ∼P q1.

Subcase q1,q
′
1 ∈ P . Since q′1 ∈ P , Claim 2.2a, implies (q′1, P)

h2−−→ (q′1, P) wrt ∆snc.

Thus (q,P)
h−→ (q′1, P) wrt ∆snc. Since q′ ∈ acc∆({q1}) and q1 ∈ P , it follows that

q′ ∈ acc∆(P) ⊆ P . Here, we used as in the previous subsubcase that acc(P) ⊆ P is

assumed by the claim. Let q′′ = q′1. Then we have (q,P)
h−→ (q′′ , P) wrt ∆snc and

q′ ,q′′ ∈ P showing the claim.

This ends the proof of Claim 2.3a.

7.3. Safe-No-Change Projection 191

Proof of inclusion L(A) ⊆ L(Asnc). Let h ∈ L(A). Then there exists q0 ∈ I and q ∈ F
such that q0

h−→ q. We distinguish two cases:

Case q0 ∈ no-change∆. By definition of no-change∆ and since q ∈ acc∆(q0) we have

q0 = q. Claim 2.2a shows that (q0,∅)
h−→ (q0,∅) wrt ∆snc and thus (q0,∅)

h−→ (q,∅) so

that h ∈ L(Asnc).

Case q0 < no-change∆. Claim 2.3a with P = ∅ shows that (q0,∅)
h−→ (q,∅) wrt ∆snc and

hence h ∈ L(Asnc).

This ends the proof of the first inclusion.

We next want to show the inverse inclusion L(Asnc)∩S ⊆ L(A). It will eventually

follow from the following three Claims 2.1b, 2.2b, and 2.3b.

Claim 2.1b. For any hedge h and state µ ∈ Qsnc, if Π
h−→ µ wrt ∆snc then µ = Π.

The proof is straightforward by induction on the structure of h: the only transition

rules of ∆snc with Π on the left hand side are inferred by the last three rules in

Figure 7.1. These require to stay in Π whatever hedge follows.

Claim 2.2b. For any hedge h, set P ⊆ Q, state q ∈ P ∪no-change∆, and state µ ∈ Qsnc:

if (q,P)
h−→ µ wrt ∆snc then µ = (q,P).

Proof. By induction on the structure of h. Suppose that (q,P)
h−→ µ wrt ∆snc.

Case h = 〈h′〉. There must exist states µ1,µ
′
1 ∈ Qsnc closing the following diagram:

(q,P)

µ1 h′ µ′1

µ

〈〉

Since q ∈ P ∪no-change∆, the following rule must have been applied to infer (q,P)
〈〉
−→

µ1 wrt ∆snc:
q ∈ P ∪no-change∆

(q,P)
〈〉
−→Π ∈ ∆snc

192 Chapter 7. Complete Subhedge Projection

Therefore µ1 = Π. Claim 2.1b shows that µ′1 = Π too. So µ must have been inferred

by applying the rule:
q ∈ P ∪no-change∆

(q,P)@Π→ (q,P) ∈ ∆snc

So µ = (q,P) as required.

Case h = a. The following rule must have been applied:

q ∈ P ∪no-change∆

(q,P)
a−→ (q,P) ∈ ∆snc

Hence, µ = (q,P).

Case h = ε. Obvious.

Case h = h1 · h2. There must exist µ1 such that (q,P)
h1−−→ µ1

h2−−→ µ wrt ∆snc. By

induction hypothesis applied to h1, we have µ1 = (q,P). We can thus apply the

induction hypothesis to h2 to obtain µ2 = (q,P).

This ends the proof of Claim 2.2b. We next need an inverse of Claim 2.3a.

Claim 2.3b. Let q ∈ Q, P ⊆ Q such that q < P ∪ no-change∆ and acc∆(P) ⊆ P . For

any h ∈ HΣ such that (q,P)
h−→ µ wrt ∆snc for some µ ∈ Qsnc and such that ∆ does not

have any blocking partial run on h starting from q, there exists q′ ,q′′ such that:

µ = (q′ , P), q
h−→ q′′ wrt ∆, and q′ ∼P q′′ .

Proof. By induction on the structure of h ∈ HΣ. We distinguish cases for all possible

forms h.

Case h = 〈h′〉. By definition of (q,P)
h−→ µ wrt ∆snc there must exist µ1,µ

′
1 ∈ Qsnc

such that the following diagram can be closed:

(q,P)

µ1 h′ µ′1

µ

〈〉

7.3. Safe-No-Change Projection 193

Since q < P ∪no-change∆, the following rule got applied to infer (q,P)
〈〉
−→ µ1 where

P ′ = s-no-change∆(q):
〈〉
−→ p ∈ ∆ q < P ∪no-change∆

(q,P)
〈〉
−→ (p,P ′) ∈ ∆snc

Hence, there exists p ∈ 〈〉∆ such that µ1 = (p,P ′). We fix such a state p arbitrarily.

Since ∆ does not have any blocking runs on h from q there exists p′ ,q′′ ∈ Q such that

p
h′−→ p′ and q@p′→ q′′ wrt ∆. Furthermore, ∆ does not have any blocking partial

run on h′ starting from p.

Subcase p ∈ P ′. In this case, we can apply Claim 2.2b to (p,P ′)
h′−→ µ′1 wrt ∆ in order

to show that µ′1 = (p,P ′). Since p ∈ acc∆({p}) and p ∈ P ′ = s-no-change∆(q) it follows

that q@∆p = {q}. Hence the following rule got applied to infer (q,P)
h−→ µ:

q@p→ q ∈ ∆ q < P ∪no-change∆

(q,P)@(p,P ′)→ (q,P) ∈ ∆snc

This shows that µ = (q,P). Let q′ = q so that µ = (q′ , P). Since p
h′−→ p′ wrt ∆ we have

p′ ∈ acc∆({p}) so that q@p′→ q wrt ∆ by definition of s-no-change∆({q}). Hence, we

can close the following diagram:

q

p h′ p′

q

〈〉

Let q′′ = q, so that q′ = q′′. It then holds that q′ ∼P q′′ and q
〈h′〉
−−−→ q′ wrt ∆, as

required by the claim.

Subcase p ∈ no-change∆. In this case p
h′−→ p′ wrt ∆ implies that p′ = p. Hence, we

can close the following diagram:

q

p h′ p

q′

〈〉

This shows that q
〈h′〉
−−−→ q′ wrt ∆.

194 Chapter 7. Complete Subhedge Projection

Subcase p < P ′ ∪no-change∆. By induction hypothesis applied to (p,P ′)
h′−→ µ′1 wrt

∆ there exists p′′ such that:

µ′1 = (p′ , P ′), p
h′−→ p′′ wrt ∆, and p′ ∼P ′ p′′ .

Since ∆ does not have blocking runs on h starting with q there exist q′′ such that

q@p′′→ q′′ wrt ∆. There are two ways to satisfy p′ ∼P ′ p′′:

Subsubcase p′ = p′′. We then have:

q

p h′ p′

q′

〈〉

This shows q
〈h′〉
−−−→ q′ wrt ∆.

Subsubcase p′ ,p′′ ∈ P . By definition of P ′ it follows that q′ = q = q′′. Hence:

q

p h′ p′′

q

〈〉

This shows q
〈h′〉
−−−→ q wrt ∆.

Case h = a. Since q < P ∪no-change∆, the following inference rule must be used:

q
a−→ q′ ∈ ∆ q < P ∪no-change∆

(q,P)
a−→ (q′ , P) ∈ ∆snc

So µ = (q′ , P) and q
a−→ q′ wrt ∆.

Case h = ε. Obvious.

Case h = h1 · h2. The judgment (q,P)
h−→ µ wrt ∆snc shows that there exists µ1 such

that (q,P)
h1−−→ µ1

h2−−→ µ wrt ∆snc. Since q < P ∪no-change∆, we can apply the induction

hypothesis to h1. It shows that there exists q′1 and q′′1 such that µ1 = (q′1, P), q
h1−−→

q′′1 wrt ∆ and q′1 ∼P q
′′
1 .

Subcase q′1 = q′′1 . Hence (q1, P)
h2−−→ µ wrt ∆snc.

7.3. Safe-No-Change Projection 195

Subsubcase q′1 < P ∪no-change∆. In this case, we can apply the induction hypoth-

esis to (q′1, P)
h2−−→ µ wrt ∆snc showing the existence of q′ such that µ = (q′ , P) and a

state q′′ such that q′1
h2−−→ q′′ and q′ ∼P q′′. Hence ∃q′′ . q h−→ q′′ wrt ∆ and q′ ∼P q′′, so

the claim holds.

Subsubcase q′1 ∈ P ∪no-change∆. Claim 2.2b applied to (q′1, P)
h2−−→ µ wrt ∆snc shows

that µ = (q′1, P).

Subcase q′1,q
′′
1 ∈ P . Recall that (q′′1 , P)

h2−−→ µ wrt ∆snc and q′′1 ∈ P . Claim 2.2b shows

that µ = (q′′1 , P) wrt ∆snc. We also have q
h1−−→ q′′1 wrt ∆. Since there are no blocking

partial runs on h starting from q there exist a state q′′ such that q′′1
h2−−→ q′′ wrt ∆.

Since q′1 ∈ P and P is closed by accessibility, we have q′′ ∈ acc({q′′1 }) ⊆ acc(P) ⊆ P .

From q
h1−−→ q′′1 wrt ∆, we get q

h−→ q′′ wrt ∆. Since q′′1 ,q
′′ ∈ P it follows that q′′1 ∼P q′′

and thus the claim holds.

This ends the proof of Claim 2.3b.

Proof of inclusion L(Asnc)∩ S ⊆ L(A). Let h ∈ L(Asnc)∩ S. Since h ∈ L(Asnc) then

there exists q0 ∈ I and q ∈ F such that (q0,∅)
h−→ (q,∅) wrt ∆snc. By Lemma 7.19 we

have that q0
h−→ q wrt ∆.

We distinguish two cases:

Case q0 ∈ no-change∆. Claim 2.2b shows that q = q0. Since A is schema-complete

for S, h ∈ S, and q0 ∈ I ∩no-change∆, Lemma 7.19 shows that q0
h−→ q0 wrt ∆. Since

q = q0 this yields h ∈ L(A).

Case q0 < no-change∆. Since A is schema-complete for S and h ∈ S there exist no

blocking runs on h that start in q0. Therefore, we can apply Claim 2.3b with P = ∅
to (q0,∅)

h−→ (q,∅) wrt ∆snc. This shows that q0
h−→ q wrt ∆ and hence h ∈ L(A).

This end the proof of the inverse inclusion, and thus of L(A) = L(Asnc).

The projecting in-memory evaluator of Asnc will be more efficient than that

non-projecting evaluator of A. Note, however, that the size of Asnc may be expo-

nentially bigger than that of A. Therefore, for evaluating a dSha A with subhedge

projection on a given hedge h, we may prefer to only compute the needed part of

Asnc on the fly. This part has size O(|h|) and can be computed in time O(|A| |h|), so

the exponential preprocessing time is avoided.

196 Chapter 7. Complete Subhedge Projection

Figure 7.3: A schema-complete dSha for the XPath filter [child-item]. It is a
counter example for the completeness of safe-no-change projection, see Figure 7.4.

Figure 7.4: The safe-no-change projection Asnc of the dSha A in Figure 7.3. It is
incomplete for subhedge projection with schema ~N-List� at the state (2, {1,3,5,6}):
this state is not a subhedge projection state, even though the prefixes 〈list · 〈item
and 〈item · 〈item leading to it are subhedge irrelevant.

7.3.3 Incompleteness

Safe-no-change projection may be incomplete for subhedge projection, so that

not all prefixes that are strongly subhedge irrelevant are mapped to subhedge

projection states. This is shown by the counter example dSha A for the XPath

filter [child-item] in Figure 7.3 with no-change∆ = {3,4,5,6} . More precisely, the

counter example is for the following nested regular expression:

child-item =def 〈(list+ item) · N-List · 〈item · N-List〉 · N-List〉 · N-List

Now the first tree of the hedge is labeled by list or item. The label of the first tree

is eventually followed by some subtree that is labeled by item.

The safe-no-change projection Asnc is given in Figure 7.4. Note that the prefix

u = 〈item〈item has the class [u]L(A)
S = 〈item〈item·NΣ, which is subhedge irrelevant,

7.4. Congruence Projection 197

Figure 7.5: The congruence projection dSha↓ Acgr(~N-List�) for the counter example
of the completeness of safe-no-change projection, i.e., the dSha A for the filter
[child-item] in Figure 7.3 with the schema final states FS = {0,5,6}. Note that
state {1}D3 that is reached over the prefix 〈list · 〈item and the state {2}D3 that is
reached over the prefix 〈item · 〈item are subhedge irrelevant and thus subhedge
projection states.

so u is strongly subhedge irrelevant for the language ~child-item� wrt schema

N-List. Nevertheless, it leads to the state (2, {1,3,5,6}) which is not a subhedge

projection state since 2 < {1,3,4,5,6}. The problem is that this state can still change

to (4, {1,3,5,6}). This state is somehow equivalent with respect to the filter but not

equal to (2, {1,3,5,6}).

Another incompleteness problem should be mentioned: Safe-no-change pro-

jection is sensitive to automata completion as noticed already earlier in Example

3.44. This is because a state may belong to no-change∆ before completion but not

any more after adding a sink. Nevertheless, such states never change on any tree

satisfying the schema. This problem applies, for instance, to example dSha in

Figure 3.10 for XPath query [self-list-child-item]. Therefore, it was important to

assume only schema-completeness for safe-no-change projection and not to impose

full completeness.

7.4 Congruence Projection

We present the congruence projection algorithm for detecting irrelevant subhedges

for regular hedge patterns with regular schema restrictions. We prove that congru-

ence projection is complete for subhedge projection, so resolving the incompleteness

of safe-no-change projection. For this, congruence projection may no more ignore

the schema, so we have to assume that the input schema is regular too.

198 Chapter 7. Complete Subhedge Projection

7.4.1 Motivation

Our starting motivation for congruence projection was to resolve the counter exam-

ple for the completeness of safe-no-change projection in Figure 7.4. Meanwhile, we

noticed that the incompleteness of safe-no-change projection does equally matter

for efficiency in many practical examples.

In the counter example for the completeness of safe-no-change projection in

Figure 7.4, some state is changed when processing an irrelevant subhedge. This

state change, however, moves to a somehow “equivalent” state. So what one would

like to detect is whether a state always remains equivalent – rather than unchanged

– when processing some irrelevant subhedge. The obvious question is then which

equivalence relation to choose?

7.4.2 Approach

Suppose that we want to test whether some hedge satisfying a regular schema S

belongs to a language L. In the restricted case of words without schema restrictions,

the idea is to use Myhill-Nerode’s congruence diff LΣ∗ , except that prefixes need to be

mapped to states as usual.

In the general case with schemas, however, the situation becomes more complex,

given that diff LS may fail to be an equivalence relation, as already illustrated in

Example 7.7. So it may not be a congruence. In order to deal with that, the

congruence projection work with difference relations such as diff LS directly, rather

than with their complements.

Furthermore, the treatment of the subtree nesting will require to update the

considered difference relation whenever moving down into some subtree of the

hedge.

7.4.2.1 Difference Relations on States

We next introduce a notion of difference relations on state of a dSha.

Definition 7.20. Let (Σ,Q,∆,_,_) be a dSha. A difference relation for ∆ is a symmetric
relation on states D ⊆ Q×Q such that for all h ∈ HΣ:

(q
h−→ q′ wrt ∆∧ p h−→ p′ wrt ∆∧ (q′ ,p′) ∈D) ⇒ (q,p) ∈D

The set of all difference relations for ∆ is denoted by D∆.

7.4. Congruence Projection 199

We call a subset Q ⊆ Q compatible with a difference relation D ∈ D∆ if Q2∩D = ∅.
This means that no two states of Q may be different with respect to D.

Definition 7.21. Let (Σ,Q,∆,_,_) be a Sha and D a difference relation for ∆. A subset
of states Q ⊆ Q is called subhedge irrelevant for D wrt ∆ if acc∆(Q) is compatible with
D. The set of all subhedge irrelevant subsets of states for D wrt. ∆ thus is:

dPrj∆(D) = {Q ⊆ Q | acc∆(Q)2 ∩D = ∅}

We consider subhedge irrelevance for subsets of states since the congruence

projection algorithm has to eliminate the nondeterminism that it introduces by a

kind of Sha determinization. Determinization is necessary in order to recognize

subhedge irrelevant prefixes properly: all single states in a subset may be subhedge

irrelevant while the whole subset is not.

A single state q ∈ Q is called subhedge irrelevant for D if the singleton {q} is

subhedge irrelevant for D. The set of all subhedge irrelevant single states of Q is

denoted by sPrj∆(D). In examples where no determinization is needed, it will be

sufficient to consider subhedge irrelevant single states.

7.4.2.2 Least Difference Relations

For any binary relation R ⊆ Q×Q let ldr∆(R) be the least difference relation on states

that contains R.

Lemma 7.22. (p1,p2) ∈ ldr∆(R) ⇔ ∃(q1,q2) ∈ R. ∃h ∈ HΣ. p1
h−→ q1 wrt ∆ ∧ p2

h−→
q2 wrt ∆.

Proof. The set {(p1,p2) ∈ Q2 | ∃(q1,q2) ∈ R. ∃h ∈ HΣ. p1
h−→ q1 wrt ∆∧ p2

h−→ q2 wrt ∆}
clearly is a difference relation that contains R and thus contains the least such

difference relation ldr∆(R). Conversely, each pair in the above set must be contained

in any difference relation containing R and thus in ldr∆(R).

Lemma 7.23. For any R ⊆ Q×Q, the difference relation ldr∆(R) is the value of predicate
D in the least fixed point of the ground Datalog program generated by the following
inference rules:

p,q ∈ Q

D(p,q) :− R(p,q).

p1
a−→ p2 wrt ∆ q1

a−→ q2 wrt ∆

D(p1,q1) :−D(p2,q2).

200 Chapter 7. Complete Subhedge Projection

p1@p→ p2 wrt ∆ q1@q→ q2 wrt ∆

D(p1,q1) :−D(p2,q2).

p,q ∈ Q

D(q,p) :−D(p,q).

Proof. The first inference rule guarantees that R ⊆ D. The three later inference

rules characterize difference relations D ∈ D∆: The second and third rules state that

differences in D are propagated backwards over hedges h. This is done recursively

by treating letter hedges h = a by the second rule and tree hedges h = 〈h′〉 by the

third rule. The fourth rule expresses the symmetry of difference relations D. So

the least fixed point of the Datalog program generated by the above rules contains

R and is the least relation that satisfies all axioms of difference relations, so it is

ldr∆(R).

Proposition 7.24. For any R ⊆ Q×Q the least difference relation ldr∆(R) can be com-
puted in time O(|A|2).

Proof. The size of the ground Datalog program computing ldr∆(R) from Lemma

7.23 is at most quadratic in the size of A, so its least fixed point can be computed in

time O(|A|2).

7.4.3 Algorithm

We now define the congruence projection algorithm by a compiler from dShas and

a set of schema final states to Sha
↓s, which when run on a hedge can detect all

subhedge irrelevant prefixes.

7.4.3.1 Inputs and Outputs

As inputs, the congruence projection algorithm is given a dSha A = (Σ,Q,∆, I ,F)

and a set FS with F ⊆ FS ⊆ Q. The dSha defines the regular language (or pattern) L =

L(A), while the regular schema S is recognized by the dSha A[F/FS] = (Σ,Q,∆, I ,FS).

So the same automaton A up to a change of final states – F versus FS – defines both

the language and the schema.

Example 7.25. In the example dSha in Figure 3.10 for the XPath filter [self-list-child-

item] with schema ~N-List�, we have F = {4} and FS = {4,5}. In the automaton for the
counter example [child-item] for safe-no-change projection in Figure 7.3, we have
F = {6} and FS = {5,6}.

7.4. Congruence Projection 201

We note that if L and S were given by independent Shas, then we can obtain a

common dSha A and a set FS as above by computing the product of the dShas for

L and S and completing it. As noticed in [Niehren et al. 2022a], it may be more

efficient to determinize the Sha for S in a first step, build the product of the Sha for

L with the dSha for S in a second, and determinize this product in the third step.

The congruence projection of A wrt. FS will maintain in its current configuration

a subset of states Q ⊆ Q and a difference relation on states in D ∈ D∆. Thereby

the congruence projection dSha↓ can always detect whether the current prefix is

subhedge irrelevant for L wrt. schema S, by testing whether the current set of states

Q is subhedge irrelevant for the current difference relation D.

7.4.3.2 Initial Difference Relation

The initial difference relation on states D∆,F,FS
init ∈ D∆ is induced from the difference

relation on prefixes diff LS as follows:

D
∆,F,FS
init = {(q′ ,q′′) | ∃(v′ ,v′′) ∈ diff LS. ∃q0 ∈ I. q0

hdg(v′)
−−−−−−→ q′ wrt ∆∧ q0

hdg(v′′)
−−−−−−→ q′′ wrt ∆}

The next lemma indicates how D
∆,F,FS
init can be defined from A and FS without

reference to the languages L = L(A) and S = L(A[F/FS]).

Lemma 7.26. D∆,F,FS
init = ldr∆(F × (FS \F))∩ acc∆(I)2.

Proof. For the one direction let (p′ ,p′′) ∈ D∆,F,FS
init . Then there exist nested words

(v′ ,v′′) ∈ diff LS and an initial state q0 ∈ I such that q0
hdg(v′)
−−−−−−→ p′ wrt ∆ and q0

hdg(v′′)
−−−−−−→

p′′ wrt ∆. Since v′ ,v′′ are nested words, hedge accessibility (p′ ,p′′) ∈ acc∆(I)2 fol-

lows. Furthermore, (v′ ,v′′) ∈ diff LS requires the existence of a hedge h ∈ HΣ such that

hdg(v′) ·h ∈ L and hdg(v′′) ·h ∈ S\L. Hence there are states q′ ∈ F and q′′ ∈ FS \F such

that p′
h−→ q′ and p′′

h−→ q′′. By Lemma 7.22 this implies that (p′ ,p′′) ∈ ldr∆(F×(FS\F)).

For the other direction let (p′ ,p′′) ∈ ldr∆(F × (FS \F))∩ acc∆(I)2. By Lemma 7.22,

property (p′ ,p′′) ∈ ldr∆(F×(FS\F)) shows that there exist states q′ ∈ F and q′′ ∈ FS\F
and h ∈ HΣ such that p′

h−→ q′ wrt ∆ and p′′
h−→ q′′ wrt ∆. From (p′ ,p′′) ∈ acc∆(I)2

it follows that there are nested words v′ ,v′′ ∈ NΣ and an initial state q0 ∈ I such

that q0
hdg(v′)
−−−−−−→ p′ wrt ∆ and q′0

hdg(v′′)
−−−−−−→ p′′ wrt ∆. Hence (v′ ,v′′) ∈ diff LS, so that

(q′ ,q′′) ∈D∆,F,FS
init .

As a consequence of Lemma 7.26 and Proposition 7.24, the initial difference

relation D∆,F,FS
init can be computed in time O(|A|2) from A and FS.

202 Chapter 7. Complete Subhedge Projection

Proposition 7.27 (Soundness of the initial difference relation). Let A = (Q,Σ,∆, I ,F)

be a complete dSha, F ⊆ FS ⊆ Q, L = L(A) and S = L(A[F/FS]). For any hedge h ∈ HΣ

and state q ∈ Q such that q0
h−→ q wrt ∆ for some q0 ∈ I , the nested word nw(h) is

subhedge irrelevant for L and S if and only if q is subhedge irrelevant for D∆,F,FS
init wrt. ∆.

Proof. We show that nw(h) is subhedge relevant for L and S if and only if q is

subhedge relevant for D∆,F,FS
init wrt. ∆.

“⇒” Let nw(h) be subhedge relevant for L and S. Then there exist hedges h′ ,h′′ ∈
HΣ and a nested word w ∈ NΣ such that:

nw(h) ·nw(h′) ·w ∈ L∧nw(h) ·nw(h′′) ·w ∈ S \L

Since A is deterministic and q0
h−→ q wrt ∆ for the unique q0 ∈ I it follows that there

exist states p′ ,p′′ ∈ Q, q′ ∈ F and q′′ ∈ FS \F such that:

q
h′−→ p′

hdg(w)
−−−−−−→ q′ wrt ∆∧ q h′′−−→ p′′

hdg(w)
−−−−−−→ q′′ wrt ∆

From q′ ∈ F and q′′ ∈ FS \ F it follows that (q′ ,q′′) ∈ D∆,F,FS
init . Since D∆,F,FS

init is a

difference relation, p′
hdg(w)
−−−−−−→ q′ wrt ∆ and p′′

hdg(w)
−−−−−−→ q′′ wrt ∆, this implies that

(p′ ,p′′) ∈ D∆,F,FS
init too. Hence, (p′ ,p′′) ∈ acc∆({q})2 ∩ D∆,F,FS

init , i.e., q is relevant for

D
∆,F,FS
init wrt. ∆.

“⇐” Let q be subhedge relevant for D∆,F,FS
init wrt. ∆. Then there exist some pair

(p′ ,p′′) ∈ acc∆({q})2 ∩D∆,F,FS
init . So there are hedges h′ and h′′ such that:

q
h′−→ p′ wrt ∆∧ q h′′−−→ p′′ wrt ∆

Since D∆,F,FS
init = ldr∆(F × (FS \F)) by Lemma 7.26, there exist a nested word w and a

pair (q′ ,q′′) ∈ Q2 so that either (q′ ,q′′) or (q′′ ,q′) belongs to F × (FS \F) and:

p′
hdg(w)
−−−−−−→ q′ wrt ∆∧ p′′

hdg(w)
−−−−−−→ q′′ wrt ∆

Hence nw(h) ·nw(h′) ·w in L and nw(h) ·nw(h′′) ·w ∈ S \L or vice versa. This shows

that nw(h) is relevant for L and S.

7.4. Congruence Projection 203

7.4.3.3 Updating the Difference Relation

For any difference relation D ⊆ D∆ and subset of states Q ⊆ Q, we define a binary

relation down∆Q (D) ⊆ Q×Q such that for all states p1,p2 ∈ Q:

(p1,p2) ∈ down∆Q (D) iff ∃q1,q2 ∈Q . (q1@∆p1,q2@∆p2) ∈D

For any subset of states Q ⊆ Q and difference relation D ∈ D∆ let DQ ∈ D∆ be the

least difference relation that contains down∆Q (D):

DQ = ldr∆(down∆Q (D))

Lemma 7.28. The difference relation DQ can be computed in time O(|A|2) from Q, ∆,
and D.

Proof. The binary relation down∆Q (D) can be computed in time O(|∆|2) from Q ,

D, and ∆. And the least difference relation ldr∆(down∆Q (D)) can be computed by

ground datalog in time O(|A|2) from down∆Q (D) by Proposition 7.24.

Example 7.29. Reconsider the dSha for the XPath filter [self-list-child-item] in
Figure 3.10 with the set of schema-final states FS = {4,5}. Since F = {4}, we
have FS \ F = {5}. The initial difference relation is D0 = D

∆,F,FS
init is the symmetric

closure of ({0} × {1,4,5}) ∪ {(1,4), (4,5)}. The subhedge irrelevant single states are
sPrj∆(D0) = {1,2,3,4,5} since only state 0 can access two states in the difference relation
D0, the final state in F = {4} and a non-final state that is schema-final in FS \ F = {5}
of some hedges. The difference relation down∆{0}(D

∆,F,FS
init) is the symmetric closure of

{1,2} × {3} which is equal to the difference relation D1 = D0{0} = ldr∆(down∆{0}(D0)).
Hence, the subhedge irrelevant single states are sPrj∆(D1) = {2,3,4,5} since from states
0 and 1 one can still reach both 1 and 3 while (1,3) ∈ D1. The difference relation
D2 = down∆{1}(D1) is the symmetric closure of {(1,2), (2,3)}. Hence, the subhedge irrele-
vant single states are sPrj∆(D2) = {1,2,3,4,5}. From state 1, in particular one can only
reach the states 1 and 3 which are not different for D2.

Projection states for the initial difference relation contain all states that are safe

for selection or safe for rejection with respect to the schema:

Lemma 7.30. All states in safe∆(F) and safe∆(FS\F) are subhedge irrelevant for D∆,F,FS
init .

We omit the proof since the result is not used later on.

204 Chapter 7. Complete Subhedge Projection

a ∈ Σ Q ∈ dPrj∆(D)

(Q,D)
a−→ (Q,D) ∈ ∆cgr

Q ∈ dPrj∆(D)

(Q,D)
〈〉
−→ (Q,D) ∈ ∆cgr

Q@P →Q′ ∈ ∆det Q ∈ dPrj∆(D)

(Q,D)@(Q,D)→ (Q,D) ∈ ∆cgr

Q
a−→Q′ ∈ ∆det Q < dPrj∆(D)

(Q,D)
a−→ (Q′ ,D) ∈ ∆cgr

Q < dPrj∆(D)

(Q,D)
〈〉
−→ (〈〉∆,DQ) ∈ ∆cgr

Q@acc∆(P)→Q′ ∈ ∆det Q < dPrj∆(D) P ∈ dPrj∆(DQ)

(Q,D)@(P ,DQ)→ (Q′ ,D) ∈ ∆cgr

Q@P →Q′ ∈ ∆det Q < dPrj∆(D) P < dPrj∆(DQ)

(Q,D)@(P ,DQ)→ (Q′ ,D) ∈ ∆cgr

Figure 7.6: The transitions rules ∆cgr of the congruence projection Acgr(S).

Given a dSha A = (Σ,Q,∆, I ,F) and a set F ⊆ FS ⊆ Q, we now construct the

congruence projection Acgr(S) as the following dSha↓:

Acgr(S) = (Σ,Qcgr,∆cgr, Icgr(S),Fcgr(S))

where the set of states, initial states, and final states are:

Qcgr ⊆ 2Q ×D∆

Icgr(S) = {(I,D∆,F,FS
init)}

Fcgr(S) =

(Q ,D∆,F,FS
init) |

 Q < dPrj∆(D∆,F,FS
init)⇒Q ∩F , ∅ ∧

Q ∈ dPrj∆(D∆,F,FS
init)⇒ acc∆(Q)∩F , ∅




The transition rules in ∆cgr are given by the inference rules in Figure 7.6.

For illustrating the construction and why determinization is needed, we recon-

sider Example 7.3, where schema restrictions have consequences that at first sight

may be counter intuitive.

Example 7.31 (Determinization during congruence projection is needed). Recon-
sider Example 7.3 with signature Σ = {a}, pattern L = {〈a〉} and schema S = L∪ {〈〉 · a}.
This language can be defined by the dSha A in Figure 7.7. The schema S can be defined by
the same automaton but with the schema-final states FS = {3,5} and F = {3}. The dSha
Acgr(S) produced by congruence projection is shown in Figure 7.8. The unique hedge 〈a〉

7.4. Congruence Projection 205

Figure 7.7: A dSha A for L(A) = {〈a〉}
and schema-final states FS = {3,5} for
the schema S = L(A)∪ {〈〉 · a}.

Figure 7.8: The congruence projection
Acgr(S) for the dSha A and the schema-
final states FS in Figure 7.7. It is equal
to the dSha↓ in Example 7.12 up to re-
naming of states.

corps/projection//counter-det/project/dot/det-stepwise.png

of the language L = L(A) is accepted in state ({3,4},D0), where D0= {(3,5), (5,3)}. The
unique hedge 〈〉 · a in S \ L is rejected: after reading the tree 〈〉, the automaton goes to
state ({3,4},D0) where it goes to a projecting sink ({5},D0) when reading the subsequent
letter a. We note that any hedge in 〈Σ∗〉 is accepted in state ({3,4},D0) by Acgr(S), even
though only the single hedge 〈a〉 belongs to L. This is sound given that the hedges in
〈(ε+ a · a · a∗)〉 do not belong to schema S anyway. We notice that ({3,4},D0) cannot be a
projection state, since the run on hedge 〈〉 · a must continue to the sink ({5},D0), so state
({3,4},D0) is subhedge relevant.

Note also that both individual states 3 and 4 are subhedge irrelevant for D0 while the
subset with both states {3,4} is subhedge relevant for D0, since (3,5) ∈ acc∆({3,4})2∩D0.
This shows that the determinizing construction is indeed needed to decide subhedge
irrelevance for cases such as in this example. Also notice that state 0 is subhedge
irrelevant for D1=∅. This is fine, since the acceptance of hedges of the form 〈h〉 · h′ by
Acgr(S) does indeed not depend on h. By contrast, it depends on h′, so that the subset of
states {3,4} cannot be subhedge irrelevant for D0.

Finally, let us discuss how the transition rules of dSha↓ Acgr(S) are inferred. The most
interesting transition rule is ({0},D0)@({0},D1)→ ({3,4},D0) in ∆cgr. It is produced
by the following inference rule where Q = P = {0}, acc∆(P) = {0,1,3,4,5}, Q′ = {3,4},
D = D0, and DQ = D1:

Q@acc∆(P)→Q′ ∈ ∆det Q < dPrj∆(D) P ∈ dPrj∆(DQ)

(Q,D)@(P ,DQ)→ (Q′ ,D) ∈ ∆cgr

This rules states that if P is subhedge irrelevant for DQ then all states accessible from
P must be tried out, since all of them could be reached by some different subhedge that

206 Chapter 7. Complete Subhedge Projection

Figure 7.9: The congruence projection Acgr(~N-List�) of the dSha A in Figure 3.10
for the XPath-like filter [self-list-child-item] with schema ~N-List�. Subhedge
irrelevant states are colored in orange. The underscore stands for any label, either
list or item.

got projected away. So one cannot know due to subhedge projection, into which state
of Q′ one should go. In order to stay deterministic, we thus go into all possible states,
i.e., into the subset Q′. In the example, these are all the states that can be reached when
reading some hedge in the pattern {〈h〉 | h ∈ HΣ}, given that the subhedges h ∈ Σ are not
inspected with subhedge projection.

Example 7.32 (XPath filter [self-list-child-item] with schema ~N-List�). The con-
gruence projection of the example dSha in Figure 3.10 is given in Figure 7.9. This dSha
is similar the safe-no-change projection in Figure 3.15, except that the useless state 2′ is
removed and that the four projection states are now looping in themselves, rather than
going to a shared looping state Π. It should also be noticed that only singleton state sets
are used there, so no determinization is needed there. As we will see, this is typical for
experiments on regular XPath queries where larger subsets do rarely occur.

Example 7.33 (Counter example for completeness of safe-no-change projection).

Reconsider the counter example for the completeness of safe-no-change projection, i.e.,
the dSha in Figure 7.3 for the XPath query [child-item] with schema final states
FS = {0,5,6}. Its congruence projection is shown in Figure 7.5. We note that the prefix
〈item.〈item leads there to the state {2}D3, which is a subhedge projection state since
2 is subhedge irrelevant for D3. In particular, note that acc∆({2}) = {2,4}, so no two
states accessible from 2 are different in D3. This means that the state 2 may still be
changed to 4 but then it does not become different with respect to D3. This resolves the
incompleteness issue with the safe-no-change projection on this example.

The first property for states (Q ,D) assigned by the congruence projection is that

7.4. Congruence Projection 207

Q is compatible with D. This means that no two states in Q are different with

respect to D. Intuitively, each state of Q is as good as each other except for leading

out of the schema. So if (Q ,D) is assigned to some prefix, and some suffix leads

from some state in Q to F, then it cannot lead to FS \F from some other state in Q .

Lemma 7.34. If some partial run of Acgr(S) assigns a state (Q,D) to some prefix then Q

is compatible with D.

We omit the proof since this instructive result will not be used directly later on.

Still compatibility will play an important role in the soundness proof.

7.4.4 Soundness

We next adapt the soundness result and proof from safe-no-change projection to

congruence projection.

Theorem 3 (Soundness of Congruence Projection). For any dSha A = (Q,Σ,∆, I ,F)

and set F ⊆ FS ⊆ Q the congruence projection of A with respect to FS preserves the
language of A within schema S = L(A[F/FS]), i.e.:

L(Acgr(S))∩S = L(A)

We note that S is a schema for A since F ⊆ FS. Furthermore, A is schema-complete

for S since A is deterministic and S = L(A[F/FS]).

Proof. The proof of the inclusion L(A) ⊆ L(Acgr(S))∩S will be based on the following

two claims:

Claim 3.1a. For all h ∈ HΣ, D ∈ D∆, and Q ∈ dPrj∆(D): (Q ,D)
h−→ (Q ,D) wrt ∆cgr.

We prove Claim 3.1a by induction on the structure of h. Suppose that Q ∈ dPrj∆(D).

Case h = 〈h′〉. The induction hypothesis applied to h′ yields (Q ,D)
h′−→

(Q ,D) wrt ∆cgr. We can thus apply the following two inference rules:

Q ∈ dPrj∆(D)

(Q ,D)
〈〉
−→ (Q ,D) ∈ ∆cgr

Q ∈ dPrj∆(D)

(Q ,D)@(Q ,D)→ (Q ,D) ∈ ∆cgr

in order to close the following diagram with respect to ∆cgr:

208 Chapter 7. Complete Subhedge Projection

(Q ,D)

(Q ,D h′ (Q ,D)

(Q ,D)

〈〉

This proves (Q ,D)
h−→ (Q ,D) wrt ∆cgr as required by the claim.

Case h = a. Since q ∈ dPrj∆(D) we can apply the inference rule:

a ∈ Σ Q ∈ dPrj∆(D)

(Q ,D)
a−→ (Q ,D) ∈ ∆cgr

This proves this case of the claim.

Case h = ε. We trivially have (Q ,D)
ε−→ (Q ,D) wrt ∆cgr.

Case h = h′ · h′′. By induction hypothesis applied to h′ and h′′ we have: (Q ,D)
h′−→

(Q ,D) and (Q ,D)
h′′−−→ (Q ,D) wrt ∆cgr. Hence (Q ,D)

h′ ·h′′−−−−→ (Q ,D) wrt ∆cgr.

This ends the proof of Claim 3.1a. The next claim is the key of the soundness proof.

For any difference relation D we define a binary relation depa(D) ⊆ 2Q × 2Q such

that for any two subsets of states Q ′ ,Q ′′ ⊆ Q:

(Q ′ ,Q ′′) ∈ depa(D)⇔

 Q ′ < dPrj∆(D)⇒Q ′ ⊆Q ′′ ∧ (1a)

Q ′ ∈ dPrj∆(D)⇒ (Q ′ ⊆ acc∆(Q ′′)∧Q ′′ ∈ dPrj∆(D)) (2a)

Furthermore, note that Q ′′ ∈ dPrj∆(D)∧Q ′ ⊆ acc∆(Q ′′) implies Q ′ ∈ dPrj∆(D) and

thus (Q ′ ,Q ′′) ∈ depa(D).

Claim 3.2a. Let h ∈ HΣ a hedge, Q ,Q ′ ⊆ Q subsets of states, and D ∈ D∆

a difference relation. If Q
h−→ Q ′ wrt ∆det then there exists Q ′′ ⊆ Q such that

(Q ,D)
h−→ (Q ′′ ,D) wrt ∆cgr and (Q ′ ,Q ′′) ∈ depa(D).

Proof. If Q ∈ dPrj∆(D) then (Q ,D)
h−→ (Q ,D) wrt ∆cgr by Claim 3.1a. Let Q ′′ = Q .

We then have Q ′ ⊆ acc∆(Q ′′) and Q ′′ ∈ dPrj∆(D) and thus Q ′ ∈ dPrj∆(D), so that

(1a) and (2a) of (Q ′ ,Q ′′) ∈ depa(D). So it is sufficient to prove the claim under the

assumption that Q < dPrj∆(D). The proof is by induction on the structure of h.

7.4. Congruence Projection 209

Case h = 〈h′〉. The assumption Q
h−→Q ′ wrt ∆det shows that there exists a subset of

states P ⊆ Q closing the following diagram:

Q

〈〉∆ h′ P

Q ′

〈〉

In particular, we have Q@P →Q ′ in ∆det. Let D ′ =DQ . Since Q < dPrj∆(D) we can

infer:
Q < dPrj∆(D)

(Q ,D)
〈〉
−→ (〈〉∆,D ′) ∈ ∆cgr

We have to distinguish two cases depending on whether 〈〉∆ belongs to dPrj∆(D ′) or

not.

Subcase 〈〉∆ < dPrj∆(D ′). The induction hypothesis applied to h′ yields the exis-

tence of P ′ ⊆ Q such that (P ,P ′) ∈ depa(D ′) and:

(〈〉∆,D ′) h′−→ (P ′ ,D ′) wrt ∆cgr

Subsubcase P < dPrj∆(D ′). Since (P ,P ′) ∈ depa(D ′) it follows that P ⊆ P ′. Hence,

P ′ < dPrj∆(D ′). Let Q ′′ ⊆ Q be such that Q@P ′→Q ′′ ∈ ∆det. We can then apply the

following inference rule:

Q@P ′→Q ′′ ∈ ∆det Q < dPrj∆(D) P ′ < dPrj∆(D ′)

(Q ,D)@(P ′ ,D ′)→ (Q ′′ ,D) ∈ ∆cgr

Hence we can close the diagram as follows:

(Q ,D)

(〈〉∆,D ′) h′ (P ′ ,D ′)

(Q ′′ ,D)

〈〉

This shows that (Q ,D)
h−→ (Q ′′ ,D) wrt ∆cgr, Since P ⊆ P ′, Q@P →Q ′ and Q@P ′ →

Q ′′ ∈ ∆det it follows that Q ′ ⊆Q ′′ and thus (Q ′ ,Q ′′) ∈ depa(D). This shows the claim

in this case.

210 Chapter 7. Complete Subhedge Projection

Subsubcase P ∈ dPrj∆(D ′). Since (P ,P ′) ∈ depa(D ′) it follows that P ⊆ acc∆(P ′) and

P ′ ∈ dPrj∆(D ′). Hence, we can apply the following inference rule for some Q ′′ ⊆HΣ:

Q@acc∆(P ′)→Q ′′ ∈ ∆det Q < dPrj∆(D) P ′ ∈ dPrj∆(D ′)

(Q ,D)@(P ′ ,D ′)→ (Q ′′ ,D) ∈ ∆cgr

Hence we can close the diagram as follows:

(Q ,D)

(〈〉∆,D ′) h′ (P ′ ,D ′)

(Q ′′ ,D)

〈〉

This shows that (Q ,D)
h−→ (Q ′′ ,D) wrt ∆cgr. Since P ⊆ acc∆(P ′), it follows from

Q@P →Q ′ and Q@acc∆(P ′)→Q ′′ in ∆det, that Q ′ ⊆Q ′′. Thus (Q ′ ,Q ′′) ∈ depa(D),

so the claim holds in this case too.

Subcase 〈〉∆ ∈ dPrj∆(D ′). Claim 3.1a shows that (〈〉∆,D ′) h′−→ (〈〉∆,D ′) wrt ∆cgr. Let

Q ′′ be such that Q@acc∆(〈〉∆)→ Q′′ ∈ ∆det. We can apply the following inference

rule:
Q@acc∆(〈〉∆)→Q ′′ ∈ ∆det Q < dPrj∆(D) 〈〉∆ ∈ dPrj∆(D ′)

(Q ,D)@(〈〉∆,D ′)→ (Q ′′ ,D) ∈ ∆cgr

We can thus close the diagram below as follows with respect to ∆cgr:

(Q ,D)

(〈〉∆,D ′) h′ (〈〉∆,D ′)

(Q ′′ ,D)

〈〉

This shows that (Q ,D)
h−→ (Q ′′ ,D) wrt ∆cgr. Since P ⊆ acc∆(〈〉∆), it follows from

Q@P → Q ′ and Q@acc∆(〈〉∆) → Q ′′ in ∆det that Q ′ ⊆ Q ′′ and thus (Q ′ ,Q ′′) ∈
depa(D).

Case h = a. Since Q < dPrj∆(D) we can apply the inference rule:

Q
a−→Q ′ ∈ ∆det Q < dPrj∆(D)

(Q ,D)
a−→ (Q ′ ,D) ∈ ∆cgr

7.4. Congruence Projection 211

Hence (Q ,D)
h−→ (Q ′ ,D) wrt ∆cgr. With Q ′′ = Q ′, the claim follows since (Q ′ ,Q ′′) ∈

depa(D).

Case h = ε. In this case we have Q = Q ′′ and (Q ,D)
ε−→ (Q ,D) wrt ∆cgr, so the claim

holds.

Case h = h1 · h2. Since Q
h−→Q ′ wrt ∆det there exists Q1 ⊆ Q such that Q

h1−−→Q1 and

Q1
h2−−→Q ′ wrt ∆det. By induction hypothesis applied to h1 there exists Q ′1 ⊆ Q such

that (Q ,D)
h1−−→ (Q ′1,D) wrt ∆cgr and (Q1,Q

′
1) ∈ depa(D).

Subcase Q1 ∈ dPrj∆(D). Since (Q1,Q
′
1) ∈ depa(D) it follows that Q1 ⊆ acc∆(Q ′1)

and Q ′1 ∈ dPrj∆(D). Furthermore, Claim 3.1a shows that (Q ′1,D)
h2−−→ (Q ′1,D) and

hence (Q ,D)
h−→ (Q ′1,D) wrt ∆cgr. Since Q ′ ⊆ acc∆(Q1) and Q1 ⊆ acc∆(Q ′1) it follows

that Q ′ ⊆ acc∆(Q ′1). Hence, (Q ′1,Q
′) ∈ depa(D) and (Q ,D)

h−→ (Q ′1,D).

Subcase Q1 < dPrj∆(D). In this case, we can apply the induction hypothesis

to Q1
h2−−→ Q ′ wrt ∆det showing that there exists Q ′′ ⊆ Q such that (Q ′1,D)

h2−−→

(Q ′′ ,D) wrt ∆cgr and (Q ′ ,Q ′′) ∈ depa(D). Hence, (Q ,D)
h−→ (Q ′′ ,D) wrt ∆cgr and

(Q ′ ,Q ′′) ∈ depa(D).

This ends the proof of Claim 3.2a.

Proof of inclusion L(A) ⊆ L(Acgr(S))∩S. Since S is a schema for A, we have L(A) ⊆ S

so that it is sufficient to show L(A) ⊆ L(Acgr(S)). Let h ∈ L(A). Then there exist q0 ∈ I
and q ∈ F such that q0

h−→ qwrt ∆. LetQ = {q}. SinceA is deterministic, it follows that

I
h−→Q wrt ∆det. By Claim 3.2a this implies the existence of a subset of states Q ′ ∈ Q

such that (Q ,Q ′) ∈ depa(D) and (I,D∆,F,FS
init)

h−→ (Q ′ ,D∆,F,FS
init) wrt ∆cgr. Furthermore,

(I,D∆,F,FS
init) ∈ Icgr(S). In order to prove h ∈ L(Acgr(S)) it is thus sufficient to show that

(Q ′ ,D∆,F,FS
init) ∈ Fcgr(S). We distinguish two cases:

Case Q ′ < dPrj∆(D∆,F,FS
init). Condition (1a) of (Q ,Q ′) ∈ depa(D), shows that Q ⊆ Q ′

so that q ∈Q ′. Since also q ∈ F, it follows that Q ′∩F , ∅. Thus, (Q ′ ,D∆,F,FS
init) ∈ Fcgr(S),

so that h ∈ L(Acgr(S)).

Case Q ′ ∈ dPrj∆(D∆,F,FS
init). Condition (2a) of (Q ,Q ′) ∈ depa(D) yields Q ⊆ acc∆(Q ′).

Hence, q ∈ acc∆(Q ′)∩F, so that (Q ′ ,D∆,F,FS
init) ∈ Fcgr(S), and thus h ∈ L(Acgr(S)).

This ends the proof of the first inclusion.

212 Chapter 7. Complete Subhedge Projection

We next want to show the inverse inclusion L(Acgr(S))∩S ⊆ L(A). It will eventually

follow from the next two claims.

Claim 3.1b. For any hedge h ∈ HΣ, difference relation D ⊆ D∆, projection state

Q ∈ dPrj∆(D) and state µ ∈ Qcgr: if (Q ,D)
h−→ µ wrt ∆cgr then µ = (Q ,D).

Proof. By induction on the structure of h ∈ HΣ. Suppose that (Q ,D)
h−→ µ wrt ∆cgr.

Case h = 〈h′〉. There must exist states µ1,µ
′
1 ∈ Qcgr closing the following diagram:

s

(Q ,D)

µ1 h′ µ′1

µ

〈〉

Since Q ∈ dPrj∆(D), the following rule must have been applied to infer (Q ,D)
〈〉
−→

µ1 wrt ∆cgr:
Q ∈ dPrj∆(D)

(Q ,D)
〈〉
−→ (Q ,D) ∈ ∆cgr

Therefore µ1 = (Q ,D). The induction hypothesis applied to (Q ,D)
h′−→ µ′1 wrt ∆cgr

shows that µ′1 = (Q ,D) too. So µ must have been inferred by applying the rule:

Q ∈ dPrj∆(D)

(Q ,D)@(Q ,D)→ (Q ,D) ∈ ∆cgr

Hence, µ = (Q ,D) as required.

Case h = a. The following rule must have been applied:

a ∈ Σ Q ∈ dPrj∆(D)

(Q ,D)
a−→ (Q ,D) ∈ ∆cgr

Hence, µ = (Q ,D).

Case h = ε. Obvious.

Case h = h1 · h2. There must exist some µ1 such that (Q ,D)
h1−−→ µ1

h2−−→ µ wrt ∆cgr. By

induction hypothesis applied to h1, we have µ1 = (Q ,D). We can thus apply the

7.4. Congruence Projection 213

induction hypothesis to h2 to obtain µ2 = (Q ,D).

This ends the proof of Claim 3.1b.

We next need an inverse of Claim 3.2a. For relating runs Acgr back to runs of A,

we define for any difference relation D another binary relation depb(D) ⊆ 2Q × 2Q

such that for any two subsets of states Q ′ ,Q ′′ ⊆ Q:

(Q ′ ,Q ′′) ∈ depb(D)⇔


(Q ′ ×Q ′′)∩D = ∅ ∧ (0b

Q ′ < dPrj∆(D)⇒Q ′′ ⊆Q ′ ∧ (1b

Q ′ ∈ dPrj∆(D)⇒Q ′′ ⊆ acc∆(Q ′) (2b

Claim 3.2b. Let Q ∈ Q be a subset of states that is compatible with a difference

relation D ∈ D∆. For any hedge h ∈ HΣ and state µ ∈ Qcgr with (Q ,D)
h−→ µ wrt ∆cgr

there exist a pair of subsets of states (Q ′ ,Q ′′) ∈ depb(D) such that µ = (Q ′ ,D) and

Q
h−→Q ′′ wrt. ∆det.

Proof. If Q ∈ dPrj∆(D) then Claim 3.1b shows that µ = (Q ,D). Let Q ′ = Q and

Q ′′ be the unique subset of states such that Q
h−→ Q ′′ wrt. ∆det. We have to show

that (Q ′ ,Q ′′) ∈ depb(D). Since Q
h−→ Q ′′, we have Q ′′ ⊆ acc∆(Q ′), so condition (2b

holds. Condition (1b holds trivially since Q ∈ dPrj∆(D). For condition (0b, note that

Q ∈ dPrj∆(D) implies acc∆(Q)2 ∩D = ∅. Furthermore, Q ′ ×Q ′′ ⊆ acc∆(Q)2, so that

(Q ′ ×Q ′′)∩D = ∅ as required.

We can thus assume that Q < dPrj∆(D). The proof is by induction on the structure

of h ∈ HΣ. We distinguish all the possible forms of hedges h ∈ HΣ:

Case h = 〈h′〉. By definition of (Q , P)
h−→ µ wrt ∆cgr there must exist µ1,µ

′
1 ∈ Qcgr

such that the following diagram can be closed:

(Q ,D)

µ1 h′ µ′1

µ

〈〉

Since Q < dPrj∆(D), the following inference rule got applied to infer (Q ,D)
〈〉
−→ µ1

214 Chapter 7. Complete Subhedge Projection

wrt ∆cgr where D ′ =DQ :

Q < dPrj∆(D)

(Q ,D)
〈〉
−→ (〈〉∆,D ′) ∈ ∆cgr

Hence µ1 = (〈〉∆,D ′). If 〈〉∆ < dPrj∆(D) then the induction hypothesis applied to

(〈〉∆,D ′) h′−→ µ′1 wrt ∆cgr show that there exists (P ′ , P ′′) ∈ depb(D ′) such that µ′1 =

(P ′ ,D ′) and 〈〉∆ h′−→ P ′′ wrt ∆det. Otherwise, the same can be concluded as we argued

at the beginning.

Subcase P ′ ∈ dPrj∆(D ′). The transition rule (Q ,D)@µ1→ µ must thus be inferred

as follows for some Q ′ ⊆ Q:

Q@acc∆(P ′)→Q ′ ∈ ∆det Q < dPrj∆(D) P ′ ∈ dPrj∆(D)

(Q ,D)@(P ′ ,D ′)→ (Q ′ ,D) ∈ ∆cgr

This shows that µ = (Q ′ ,D). So we have the following diagram:

(Q ,D)

(〈〉∆,D ′) h′ (P ′ ,D ′)

(Q ′ ,D)

〈〉

Let Q ′′ be the unique subset of states such that Q@P ′′→Q ′′ wrt ∆det. We can then

close the following diagram:

Q

〈〉∆ h′ P ′′

Q ′′

〈〉

From (P ′ , P ′′) ∈ depb(D ′) it follows (P ′ × P ′′) ∩D ′ = ∅, and thus (Q ′ ×Q ′′) ∩D =

∅, i.e., condition (0b of (Q ′ ,Q ′′) ∈ depb(D). Since P ′ ∈ dPrj∆(D ′), condition (2b

of (P ′ , P ′′) ∈ depb(D ′) yields P ′′ ⊆ acc∆(P ′). Since furthermore Q@P ′′ → Q ′′ and

Q@acc∆(P ′)→ Q ′ in ∆det, this yields Q ′′ ⊆ Q ′, so that conditions (1b and (2b of

(Q ′ ,Q ′′) ∈ depb(D) follow. Hence, (Q ′ ,Q ′′) ∈ depb(D). In summary, we have show

that µ = (Q ′ ,D), Q
〈h′〉
−−−→ Q ′′ wrt ∆det and (Q ′ ,Q ′′) ∈ depb(D) as required by the

claim.

7.4. Congruence Projection 215

Subcase P ′ < dPrj∆(D ′). The transition rule (Q ,D)@µ1→ µ must thus be inferred

as follows for some Q ′ ⊆ Q:

Q@P ′→Q ′ ∈ ∆det Q < dPrj∆(D) P ′ < dPrj∆(D)

(Q ,D)@(P ′ ,D ′)→ (Q ′ ,D) ∈ ∆cgr

This shows that µ = (Q ′ ,D) and that we can close the following diagram:

(Q ,D)

(〈〉∆,D ′) h′ (P ′ ,D ′)

(Q ′ ,D)

〈〉

Condition (0b of (P ′ , P ′′) ∈ depb(D ′) yields (P ′ × P ′′)∩D ′ = ∅. Let Q ′′ be the unique

subset of states such that Q@P ′′ → Q ′′ wrt. ∆det. Since D ′ ⊆ down∆
Q (D) and

(P ′ × P ′′) ∩D ′ = ∅, it follows from Q@P ′ → Q ′ and Q@P ′′ → Q ′′ wrt. ∆det that

(Q ′ ∩Q ′′)∩D = ∅. That is condition (0b of (Q ′ ,Q ′′) ∈ depb(D). Since P ′ < dPrj∆(D ′),

condition (1b of (P ′ , P ′′) ∈ depb(D ′) is P ′′ ⊆ P ′. From Q@P ′′→Q ′′ and Q@P ′→Q ′

it thus follows that Q ′′ ⊆ Q ′. Hence, conditions (1b and (2b of (Q ′ ,Q ′′) ∈ depb(D)

are valid too, so that (Q ′ ,Q ′′) ∈ depb(D) holds. Furthermore:

Q

〈〉∆ h′ P ′′

Q ′′

〈〉

This shows that Q
〈h′〉
−−−→ Q ′′ wrt ∆. The other two requirements of the claim, µ =

(Q ′ ,D) and (Q ′ ,Q ′′) ∈ depb(D), were shown earlier.

Case h = a. Since Q < dPrj∆(D), the following inference rule must be used:

Q
a−→Q ′ ∈ ∆ Q < dPrj∆(D)

(Q ,D)
a−→ (Q ′ ,D) ∈ ∆cgr

So µ = (Q ′ ,D), Q
a−→Q ′ wrt ∆det. Furthermore, since Q is compatible with D, and D

is a difference relation, Q ′ is compatible withD too. Hence (Q ′×Q ′)∩D = ∅ showing

condition (0b of (Q ′ ,Q ′) ∈ depb(D). Trivially, Q ′ ⊆Q ′ ⊆ acc∆(Q ′) so conditions (1b

and (2b of (Q ′ ,Q ′) ∈ depb(D) hold too. Hence (Q ′ ,Q ′) ∈ depb(D).

Case h = ε. Obvious.

216 Chapter 7. Complete Subhedge Projection

Case h = h1 · h2. Since (Q ,D)
h−→ µ wrt. ∆cgr there exists some µ1 ∈ Qcgr such that

(Q ,D)
h1−−→ µ1 and µ1

h2−−→ µ wrt ∆cgr. We can apply the induction hypothesis to h1.

Hence there exist subsets of states Q1,Q
′
1 ⊆ Q such that µ1 = (Q1,D), Q

h1−−→Q ′1 wrt

∆, and (Q1,Q
′
1) ∈ depb(D). We distinguish two cases:

Subcase Q1 ∈ dPrj∆(D). Since µ1 = (Q1,D)
h2−−→ µ wrt ∆cgr, Claim 3.1b shows in

this case that µ = (Q1,D) so that (Q1,D)
h2−−→ (Q1,D) wrt. ∆cgr. Condition (2b of

(Q1,Q
′
1) ∈ depb(D) and Q1 ∈ dPrj∆(D) imply that Q ′1 ∈ acc∆(Q1). Let Q2 be the

unique subset of states such that Q ′1
h2−−→ Q2 wrt. ∆det. Then Q2 ⊆ acc∆(Q ′1) so

that Q2 ⊆ acc∆(Q1) and thus condition (2b of (Q1,Q2) ∈ depb(D) holds. Condition

(1b of (Q1,Q2) ∈ depb(D) is trivial since Q1 ∈ dPrj∆(D). Since Q1 ∈ dPrj∆(D) and

Q1 ×Q2 ∈ acc∆(Q)2 it follows that Q1 ×Q2 ∩D = ∅, so condition (0b of (Q1,Q2) ∈
depb(D) holds too. Hence Q

h−→Q2 wrt ∆det and (Q1,Q2) ∈ depb(D).

Subcase Q1 < dPrj∆(D). Since Q1
h1−−→ Q ′1 and Q1 is compatible with difference

relation D, it follows that Q ′1 is compatible with D too. We can thus apply the

induction hypothesis to (Q1,D)
h2−−→ µ showing the existence of subsets of states

(Q2,Q
′
2) ∈ depb(D) such that µ = (Q2,D) and Q1

h2−−→Q ′2 wrt ∆. So we have Q
h−→Q ′2

wrt. ∆ and (Q2,Q
′
2) ∈ depb(D) as required.

This ends the proof of Claim 3.2b.

Proof of inclusion L(Acgr(S))∩ S ⊆ L(A). Let h ∈ L(Acgr(S))∩ S. Then there exists

a final subset of states Q ∈ Fcgr(S) such that (I,D∆,F,FS
init)

h−→ (Q ,D∆,F,FS
init) wrt ∆cgr.

Since I is a singleton or empty, it is compatible with D
∆,F,FS
init . Claim 3.2b thus

shows that there exists a subset of states Q ′ ⊆ Q such that I
h−→ Q ′ wrt. ∆det

and (Q ,Q ′) ∈ depb(D∆,F,FS
init). Condition (0b of (Q ,Q ′) ∈ depb(D∆,F,FS

init) shows that

(Q ,Q ′)∩D∆,F,FS
init = ∅. Since h ∈ S if follows that Q ′ ∩FS , ∅. The determinism of A

shows that Q ′ is a singleton. So there exists a state q′ ∈ FS such that Q ′ = {q′}.

Case Q < dPrj∆(D∆,F,FS
init). Condition (1b shows that Q ′ ⊆ Q , so that q′ ∈ Q . Since

Q ∈ Fcgr we have Q∩F , ∅. Since Q is compatible with D∆,F,FS
init , q′ ∈Q and Q∩F , ∅,

it follows that q′ < FS \F. Since q′ ∈ FS this implies q′ ∈ F and thus h ∈ L(A).

Case Q ∈ dPrj∆(D∆,F,FS
init). Condition (2b shows that Q′ ⊆ acc∆(Q), so that q′ ∈

acc∆(Q). Since Q ∈ Fcgr we have acc∆(Q)∩ F , ∅. Let q ∈ acc∆(Q)∩ F be arbitrary.

Since Q ∈ dPrj∆(D∆,F,FS
init), and (q′ ,q) ∈ acc∆(Q)2 it follows that (q,q′) < D∆,F,FS

init . Fur-

thermore, q ∈ F so that q′ < FS \F. In combination with q′ ∈ FS this implies q′ ∈ FS

7.4. Congruence Projection 217

so h ∈ L(A).

This ends the proof of the inverse inclusion, and thus of L(A) = L(Acgr(S))∩S.

7.4.5 Completeness

We next show the completeness of congruence projection for subhedge projection ac-

cording to Definition 7.16. Let A = (Σ,Q,∆, I ,F) be a complete dSha and F ⊆ FS ⊆ Q.

Automaton A defines the regular pattern L = L(A) and with the schema-final states

in FS the regular schema S = L(A[F/FS]). We first show that all subhedge irrelevant

states of difference relations are subhedge projection states Acgr(S) according to

Definition 7.9.

Lemma 7.35. If Q ∈ dPrj∆(D) then (Q,D) is a subhedge projection state of ∆cgr with
witness (Q,D).

Proof. We assume that q ∈ sPrj∆(D) and have to show that (Q ,D) is a subhedge

projection state of ∆cgr. We have to show that all transition rules starting with

(Q ,D) are permitted for a subhedge projection state (Q ,D) with witness (Q ,D).

They are generated by the following rules, all of which are looping:

a ∈ Σ Q ∈ dPrj∆(D)

(Q ,D)
a−→ (Q ,D) ∈ ∆cgr

Q ∈ dPrj∆(D)

(Q ,D)@(Q ,D)→ (Q ,D) ∈ ∆cgr

Q ∈ dPrj∆(D)

(Q ,D)
〈〉
−→ (Q ,D) ∈ ∆cgr

So if a partial run of Acgr(S) on a prefix u assigns some state (P ,D) with P ∈
dPrj∆(D), then (P ,D) is a subhedge projection state by Lemma 7.35, and thus

subhedge irrelevant by Proposition 7.11.

Lemma 7.36. Let A′ = A[I/〈〉∆], L′ = L(A′) and S′ = L(A′[F/FS]). If (〈〉∆,D)
hdg(u)
−−−−−→

(Q,D) wrt Acgr(S) for some nested word u ∈ NΣ and either

• Q < dPrj∆(D) and q ∈Q, or

• Q ∈ dPrj∆(D) and q ∈ acc∆(Q),

then there exists a nested word u′ ∈ classL′S′ (u) and q0 ∈ 〈〉∆ such that q0
hdg(u′)
−−−−−−→ q wrt ∆.

Proof. By induction on the length of u. Suppose that (〈〉∆,D)
hdg(u)
−−−−−→ (Q ,D)

wrt Acgr(S). In the base case, we have u = ε. Hence Q = 〈〉∆.

218 Chapter 7. Complete Subhedge Projection

Case Q < dPrj∆(D) and q ∈Q . Then 〈〉∆ = {q}. The unique run of A′ on u = ε starts

and ends in the tree initial state q ∈ 〈〉∆.

Case Q ∈ dPrj∆(D) and q ∈ acc∆(Q). Since Q ∈ dPrj∆(D), Lemma 7.35 shows that

(Q ,D) is a subhedge projection state, so that ε is subhedge irrelevant for L′ and S′

by Proposition 7.11. Hence, classL
′

S′ (ε) =NΣ. Furthermore, since q ∈ acc∆(Q), there

exists a hedge h and q0 ∈ I such that q0
h−→ q wrt ∆. Let u′ = nw(h). The run of A on

u′ then ends in q and u′ ∈ classL′S′ (u).

For the induction step, we distinguish the possible forms of the nested word u. So

there exist ũ,v ∈ NΣ and a ∈ Σ such that either of the following cases holds:

Case u = ũ · 〈 · v · 〉. Let (Q̃ ,D) be the state in which the run of (A′)cgr(S) on ũ ends.

Subcase Q̃ < dPrj∆(D). Let D ′ =DQ̃ . Then there exist P ⊆ Q such that (〈〉∆,D ′) v−→
(P ,D ′) wrt Acgr(S). So the run of (A′)cgr(S) on v goes to state (P ,D ′).

Subsubcase P ∈ dPrj∆(D ′). By construction of Acgr(S), we then have Q =

Q̃@∆acc∆(P). Since q ∈ Q there exist q̃ ∈ Q̃ and p ∈ acc∆(P) such that q̃@p → q

in ∆. By induction hypothesis, there exists v′ ∈ classL′S′ (v) such that the run of A′

on v′ ends in p. Hence the run of A on u′ = ũ · 〈 · v′ · 〉 ends in q, and furthermore,

u′ ∈ [u]LS.

Subsubcase P < dPrj∆(D ′). By construction of Acgr(S), we then have Q = Q̃@∆P .

Since q ∈ Q there exist q̃ ∈ Q̃ and p ∈ P such that q̃@p → q in ∆. By induction

hypothesis, there exists v′ ∈ classL′S′ (v) such that the run of A′ on v′ ends in p. Hence

the run of A on u′ = ũ · 〈 · v′ · 〉 ends in q, and furthermore, u′ ∈ [u]LS.

Subcase Q̃ ∈ dPrj∆(D). Then Q = Q̃ and q ∈ acc∆(Q̃). By induction hypothesis

applied to ũ there exists ũ′ ∈ [ũ]LS such that 〈〉∆
hdg(ũ′)
−−−−−−→ q. Since ũ is irrelevant for L

and S′ we have that ũ′ ∈ [u]LS.

Case u = ũ · a. Easier than the previous cases and thus omitted.

Lemma 7.37. Assume a partial run of Acgr(S) assign some state (Q,D) to a prefix
u ∈ prefs(NΣ). If Q < dPrj∆(D) and q ∈Q then there exists a prefix u′ ∈ [u]LS such that a
partial run of A assigns state q to u′.

7.4. Congruence Projection 219

Proof. By induction on the length of u. In the base case, we have u = ε. The partial

run of Acgr(S) on u assigns state (Q ,D) where Q = I and D = D
∆,F,FS
init . Suppose

that Q < dPrj∆(D) and q ∈ Q . Then I = {q}. The unique partial run of A on u = ε

ends in the initial state q ∈ I . For the induction step, let A′ = A[I/〈〉∆], L′ = L(A′)

and S′ = L(A′[F/FS]). We distinguish the possible forms of u. So there exist

ũ ∈ prefs(NΣ), v ∈ NΣ, and a ∈ Σ such that either of the following hold:

Case u = ũ ·〈 ·v. Let (Q̃ , D̃) be the state in which the partial run of Acgr(S) on ũ ends.

From Q < dPrj∆(D) it follows that Q̃ < dPrj∆(D̃). Furthermore, (〈〉∆,D)
v−→ (Q ,D)

wrt Acgr(S). So the partial run of (A′)cgr(S) on v goes to state (Q ,D). By induction

hypothesis, there exists v′ ∈ classL′S′ (v) such that the partial run of A′ on v′ ends in q.

Hence the partial run of A on u′ = ũ · 〈 · v′ ends in q, and furthermore, u′ ∈ [u]LS.

Case u = ũ·〈·v·〉. Let (Q̃ , D̃) be the state in which the partial run ofAcgr(S) on ũ ends.

From Q < dPrj∆(D) it follows that Q̃ < dPrj∆(D̃). Furthermore, (〈〉∆,D)
v−→ (P ,D) wrt

Acgr(S) for some P ⊆ Q.

Subcase P ∈ dPrj∆(D). Then Q = Q̃@∆acc∆(P). So there exists q̃ ∈ Q and p ∈
acc∆(P) such that q̃@p→ q in ∆. By Lemma 7.36 there exists v′ ∈ classL′S′ (v) such

that 〈〉∆
hdg(v′)
−−−−−−→ p wrt ∆. By induction hypothesis applied to ũ there exists an initial

state q0 ∈ I and a prefix ũ′ ∈ [ũ]LS such that that the partial run of A on ũ′ goes to

state q̃. Hence the partial run of A on u′ = ũ′ · 〈 · v′ · 〉 goes to q and u′ ∈ [u]LS.

Subcase P < dPrj∆(D). Then Q = Q̃@∆P . So there exists q̃ ∈Q and p ∈ P such that

q̃@p → q in ∆. By Lemma 7.36 there exists v′ ∈ classL′S′ (v) such that 〈〉∆
hdg(v′)
−−−−−−→ p

wrt ∆. By induction hypothesis applied to ũ there exists an initial state q0 ∈ I and

a prefix ũ′ ∈ [ũ]LS such that the partial run of A on ũ′ goes to state q̃. Hence the

partial run of A on u′ = ũ′ · 〈 · v′ · 〉 goes to q and u′ ∈ [u]LS.

Case u = ũ · a. Easier than the previous case and thus omitted.

The next lemma states the key invariant of congruence projection, which even-

tually proves it completeness for subhedge projection. For this we define for any

F ⊆ FS ⊆ F, the binary relation 0FFS
as the symmetric closure of F × (FS \F), i.e., for

all (q′ ,q′′) ∈ Q2:

q′ 0FFS
q′′⇔

 (q′ ∈ F ∧ q′′ ∈ FS \F) ∨
(q′ ∈ FS \F ∧ q′′ ∈ F)

220 Chapter 7. Complete Subhedge Projection

Lemma 7.38 (Key Invariant). Let A = (Q,Σ,∆, I ,F) a dSha, F ⊆ FS ⊆ Q, L = L(A) and
S = L(A[F/FS]). If Acgr(S) has a partial run on prefix u ∈ prefs(NΣ) to state (P ,D) ∈
2Q ×D∆ then for all (p′ ,p′′) ∈ P 2, (r ′ , r ′′) ∈D, and (v′ ,v′′) ∈ N 2

Σ
such that:

p′
hdg(v′)
−−−−−−→ r ′ wrt ∆ ∧ p′′

hdg(v′′)
−−−−−−→ r ′′ wrt ∆

there exist (u′ ,u′′) ∈ [u]LS, w ∈ suffs(NΣ), q′ 0FFS q
′′, and q0 ∈ I such that:

q0
hdg(u′ ·v′ ·w)
−−−−−−−−−−→ q′ wrt ∆ ∧ q0

hdg(u′′ ·v′′ ·w)
−−−−−−−−−−−→ q′′ wrt ∆

Proof. By induction on the number of dangling opening parenthesis of u.

In the base case, u does not have any dangling opening parenthesis, so u ∈ NΣ

is a nested word. In this case, D = D
∆,F,FS
init . So Acgr(S) has a partial run on nested

word u ∈ NΣ to (P ,D∆,F,FS
init) where P ⊆ Q. Let (p′ ,p′′) ∈ P 2, (r ′ , r ′′) ∈ D∆,F,FS

init , and

(v′ ,v′′) ∈ N 2
Σ

such that:

p′
hdg(v′)
−−−−−−→ r ′ wrt ∆ ∧ p′′

hdg(v′′)
−−−−−−→ r ′′ wrt ∆

It then follows that P < dPrj∆(D∆,F,FS
init). Therefore we can apply Lemma 7.37. It

shows that there exist nested words (u′ ,u′′) ∈ ([u]LS)2 and q0 ∈ I such that:

q0
hdg(u′)
−−−−−−→ p′ wrt ∆ ∧ q0

hdg(u′′)
−−−−−−→ p′′ wrt ∆

Since D∆,F,FS
init ⊆ ldr∆(F × (FS \F)) by Lemma 7.26, there exist a nested word w ∈ NΣ

and states q′ 0FFS
q′′ such that:

r ′
hdg(w)
−−−−−−→ q′ wrt ∆ ∧ r ′′

hdg(w)
−−−−−−→ q′′ wrt ∆

Then we have:

q0
hdg(u′ ·v′ ·w)
−−−−−−−−−−→ q′ wrt ∆ ∧ q0

hdg(u′′ ·v′′ ·w)
−−−−−−−−−−−→ q′′ wrt ∆

For the induction step let u = u1 · 〈 ·u2 for some prefix u1 ∈ prefs(NΣ) and nested

word u2 ∈ NΣ, so that u1 has one open dangling bracket less than u. Let Acgr(S) have

a partial run on nested word u ∈ NΣ to (P ,D). Let (P1,D1) be the state that this run

assigns to prefix u1. Then D = (D1)P1
. Let (p′ ,p′′) ∈ P 2, (r ′ , r ′′) ∈D, and (v′ ,v′′) ∈ N 2

Σ

such that:

p′
hdg(v′)
−−−−−−→ r ′ wrt ∆ ∧ p′′

hdg(v′′)
−−−−−−→ r ′′ wrt ∆

7.4. Congruence Projection 221

SinceD = (D1)P1
there exist (p′1,p

′′
1) ∈ (P1)2 and states (r ′1, r

′′
1) ∈D1 such that p′1@q′→

r ′1 and p′′1 @q′′→ r ′′1 . In particular, P1 < dPrj∆(D1) so that we can apply Lemma 7.37

It shows that there exist (u′2,u
′′
2) ∈ classL′S′ (u2) such that 〈〉∆

u′2−−→ p′ and 〈〉∆
u′′2−−→ p′′.

Let v′1 = 〈 · u′2 · v′ · 〉 and v′′1 = 〈 · u′2 · v′′ · 〉. Then p′1
hdg(v′1)
−−−−−−→ r ′1, p′1

hdg(v′′1)
−−−−−−→ r ′′1 wrt ∆.

By induction hypothesis applied to u1 – on which Acgr(S) has a partial run to state

(P1,D1) such that (p′1,p
′′
1) ∈ (P1)2, p′1

hdg(v′1)
−−−−−−→ r ′1, p′1

hdg(v′′1)
−−−−−−→ r ′′1 , and (r ′1, r

′′
1) ∈D – there

exist (u′1,u
′′
1) ∈ [u1]LS, w1 ∈ suffs(NΣ), q′ 0FFS

q′′ and q0 ∈ I such that:

q0
hdg(u′1·v′1·w1)
−−−−−−−−−−−→ q′ wrt ∆ ∧ q0

hdg(u′′1 ·v′′1 ·w1)
−−−−−−−−−−−−→ q′′ wrt ∆

Let u′ = u′1 · 〈 ·u
′
2 and u′′ = u′′1 · 〈 ·u

′′
2 and w = 〉 ·w1. The above then yields:

q0
hdg(u′ ·v′ ·w)
−−−−−−−−−−→ q′ wrt ∆ ∧ q0

hdg(u′′ ·v′′ ·w)
−−−−−−−−−−−→ q′′ wrt ∆

Furthermore, (u′ ,u′′) ∈ ([u]LS)2, so this was to be shown.

Proposition 7.39. Let A = (Q,Σ,∆, I ,F) a dSha, F ⊆ FS ⊆ Q, L = L(A) and S =

L(A[F/FS]). If Acgr(S) has a partial run on prefix u ∈ prefs(NΣ) to some state (P ,D) ∈
2Q ×D∆ so that P < dPrj∆(D), then the set [u]LS is subhedge relevant for L wrt S.

Proof. Suppose that Acgr(S) has a partial run on prefix u ∈ prefs(NΣ) to some state

(P ,D) ∈ 2Q×D∆ so that P < dPrj∆(D). Since P < dPrj∆(D) there exist acc∆(P)2∩D , ∅.
So there exist (p′ ,p′′) ∈ P 2, (r ′ , r ′′) ∈D, and (v′ ,v′′) ∈ N 2

Σ
such that:

p′
hdg(v′)
−−−−−−→ r ′ wrt ∆ ∧ p′′

hdg(v′′)
−−−−−−→ r ′′ wrt ∆

By Lemma 7.38 there exist (u′ ,u′′) ∈ [u]LS, w ∈ suffs(NΣ), q′ 0FFS
q′′ and q0 ∈ I such

that:

q0
hdg(u′ ·v′ ·w)
−−−−−−−−−−→ q′ wrt ∆ ∧ q0

hdg(u′′ ·v′′ ·w)
−−−−−−−−−−−→ q′′ wrt ∆

Hence, the set [u]LS is relevant for L wrt S.

Theorem 4 (Completeness of congruence projection). For any complete dSha
A = (Q,Σ,∆, I ,F) and set F ⊆ FS ⊆ Q, the congruence projection Acgr(S) is sound and
complete for subhedge projection for the regular pattern L(A) wrt the regular schema
S = L(A[FS/F]).

Proof. The soundness of congruence projection was shown in Theorem 3. For

proving the completeness, let u ∈ prefs(NΣ) be a nested word prefix that is strongly

222 Chapter 7. Complete Subhedge Projection

subhedge irrelevant for L wrt S. By definition of strong irrelevance, the class [u]LS
is irrelevant for L and S. Let (P ,D) be the unique state assigned by the partial run

of Acgr(S) to prefix u. Since [u]LS is irrelevant for L and S, Proposition 7.39 shows

that P ∈ dPrj∆(D). By Lemma 7.35, (P ,D) then is a subhedge projection state of

Acgr(S).

7.4.6 Automata Sizes

We next discuss the complexity of membership testing with complete subhedge

projection based on the in-memory evaluation of the input hedge by the congruence

projection of the input automaton.

Lemma 7.40. The number of states |Qcgr| is in O(2n
2+n) where n is the number of states

of A.

Proof. With the deterministic construction the states of Acgr(S) are pairs in 2Q ×
D∆. So, the maximal number of states of the congruence projection is |Qcgr(S)| =
2|Q| |D∆| ≤ 2n 2n

2
= 2n

2+n.

Chapter 8
Complete Suffix Projection

Abstract
Earliest dSha↓s detect language membership and non-membership at the
earliest prefix where it becomes certain. A Sha

↓ enjoys complete suffix
projection, so that its evaluator ignores the largest suffix of the input hedge
that is irrelevant for language membership, once language membership
or non-membership become certain. We present a compiler from deter-
ministic stepwise hedge automata to earliest dSha↓s. We show that earliest
dSha↓s for regular monadic queries enable earliest query answering for
top-down evaluation, both in-memory and in streaming mode.

Contents
8.1 Introduction . 224

8.2 Certainty . 226

8.2.1 Σ-Certain Membership . 226

8.2.2 Certain Non-membership . 227

8.3 Schema-Safety . 227

8.4 Certainty Automata . 229

8.4.1 Membership . 229

8.4.2 Non-membership . 232

8.4.3 Combining Both . 232

8.5 Earliest dSha↓s with Complete Suffix Projection 233

224 Chapter 8. Complete Suffix Projection

8.1 Introduction

We want improve the top-down membership testers for dShas from Section 3.4, so

that they can decide membership as early as possible during the evaluation, rather

than waiting until the evaluation has finished.

A membership tester for dSha inputs a dSha A = (Ω,Q,∆, I ,F) on a hedge h ∈ HΩ.

The two membership testers from Section 3.4 were obtained by first computing

~h�∆(I) in-memory or ~h�∆str(I,ε) in streaming mode, and once this is done, testing

whether some final state in F got returned. In this way, the decision is taken late

after the evaluation of h by A has finished.

In this chapter, we show how to compile any dSha to some earliest dSha↓, that

can detect language membership and non-membership at the earliest prefix where

it becomes certain. The top-down evaluator of the earliest dSha↓– in-memory or

in streaming mode – can be used for detecting certain membership and certain

non-membership at the earliest possible prefix. It guarantees complete suffix

projection, meaning that the largest suffix of the nested word of the input hedge is

projected away, that is irrelevant membership, i.e., for which language membership

or non-membership become certain.

The size of the earliest dSha↓ may be exponential larger than the size of the input

dSha. If the size blows up, then one can still generate the part of the earliest dSha↓

that is needed for evaluating the hedge of interest on-the-fly. This part is no larger

than the input hedge, so of linear size in the inputs of the membership problem.

We start with a running example for a dSha that will be used throughout the

current chapter, and also in Chapter 11.

Example 8.1. In Figure 8.1 we show a dSha A with signature Ω = Σ∪{x} where Σ = {a}.
It defines the monadic query Q = qryS(L(A)) with schema S = ~a∗ · 〈>〉 · >� where > is
the nested regular expression shown previously with ~>� =HΣ. When applied to a hedge
of the following form, where n ∈N and h,h′ ∈ HΣ:

a · . . . · a︸ ︷︷ ︸
n

·〈h〉 · h′

the query Q selects the nodes in 1, . . . ,n− 1 if h does not start with letter “a” and node n
otherwise.

Example 8.2. We continue the running Example 8.1. A successful run of automaton A
from Figure 8.1 on the hedge a3 · x · 〈a〉 · a ∈ HΩ is illustrated in top-down manner in
Figure 8.6. It shows that the node 3 is selected on the hedge h′ = a3 · 〈a〉 · a ∈ HΣ by the

8.1. Introduction 225

Figure 8.1: A dSha A for the monadic query Q = qryS(L(A)) on hedges with letters
in Σ = {a} that selects the nodes 1, . . . ,n−1 on hedges of the form an · 〈h〉 ·h′ if h does
not start with letter “a” and node n otherwise.

0 2 2 2 5

1 3

9 9
a a a x

a〈〉

a

Figure 8.2: A successful run of the dSha A in Figure 8.1 on the hedge a3 · x · 〈a〉 · a
showing that 3 ∈Q(a3 · 〈a〉 · a) where Q = qryS(L(A)).

226 Chapter 8. Complete Suffix Projection

monadic query defined by A, i.e., that 3 ∈Q(h′). The earliest prefix where membership
h ∈ L(A) becomes certain is aaax〈a, as any completion of this prefix to some hedge (in
the schema) is accepted by A. How this can be inferred from the run of A will become
clearer when compiling the dSha A to its earliest dSha↓ Ae(S) (see Figure 8.5).

8.2 Certainty

We first have to formally define what it means that membership or non-membership

become certain at some time point during top-down evaluation. We identify such

time points by nested word prefixes. This works for both top-down evaluators,

in-memory or in streaming mode.

8.2.1 Σ-Certain Membership

We start with a definition of certain language membership. Intuitively, a nested

word prefix is certain for membership to some language, if any hedge com-

pleting the nested word prefix is a member of the language. This is basically

the same concept as the notion of sufficiency for selection from Definition 1 of

[Gauwin et al. 2009b], except that for now, we only consider boolean queries (lan-

guage) rather than monadic queries.

In order to capture monadic queries later on, we introduce a slightly more general

certainty notion, that we call Σ-certainty for hedge in HΩ where Σ ⊆Ω. Compared

to [Al Serhali & Niehren 2023a], we here refine this notion so that it can be made

dependent on schemas L ⊆ S ⊆HΩ.

Definition 8.3. Let Σ ⊆ Ω and S ⊆ HΩ be a hedge schema and L ⊆ S a hedge lan-
guage satisfying this schema. We define that a nested word prefix v is Σ-certain for

membership in L with schema S as follows :

Σ-cert-memL
S(v) ⇔def ∀w ∈ suffs(NΣ). (v ·w ∈ nw(S)⇒ v ·w ∈ nw(L))

In other words, a nested word prefix v is Σ-certain for membership in L ⊆HΩ, if

any completion of v with letters from Σ to a hedge in S belongs to L.

Example 8.4. For instance, if Σ = {a} then the prefix v = aaax〈a is Σ-certain for the
language of the dSha A with signature Ω = {a,x} in Figure 8.1, since any completion of
v to some hedge without further x’es will be accepted by A.

8.3. Schema-Safety 227

8.2.2 Certain Non-membership

We next define certain non-membership in analogy to certain membership, except

that we now restrict ourselves to the full signature Ω. This is basically the notion

of sufficiency for rejection from Definition 2 of [Gauwin et al. 2009b].

Definition 8.5. We call a prefix v certain for non-membership in L ⊆HΩ with schema
L ⊆ S as follows:

cert-nonmemL
S(v) ⇔def ∀w ∈ suffs(NΩ). (v ·w ∈ nw(S)⇒ v ·w < nw(L)

Lemma 8.6. cert-nonmemL
S(v) ⇔Ω-cert-memL

S(v).

Proof. Obvious from the definitions.

Note that a nested-word prefix is suffix-irrelevant if and only if it is either certain

for membership or certain for non-membership.

8.3 Schema-Safety

Certain membership and non-membership to languages of dShas can be reduced

to schema safety problems, i.e., whether the current states is safe to reach some

final state if not going out of the schema.

Let A = (Σ,Q,∆, I ,F) be an Sha, S ⊆HΣ a schema, and P ⊆ Q. We define the set of

safe states leading to P when assuming schema S by:

safe∆S (P) = {q ∈ Q | ∀h ∈ S. ∀p ∈ Q. (q
h−→ p wrt ∆⇒ p ∈ P)}

Now suppose that there exists F ⊆ FS ⊆ Q such that S = L(A[F/FS]). This implies

L(A) ⊆ S ⊆HΣ in particular. The set of states that safely reach a subset P ⊆ Q for all

hedges that do not go out of the schema S then is:

safe∆FS
(P) = safe∆(P ∪FS)

We can now show that both notions of schema-safety coincide.

Lemma 8.7. Let A be a complete dSha, F ⊆ FS ⊆ Q, and S = L(A[F/FS]). For any
P ⊆ Q:

safe∆FS(P) = safe∆S (P)

228 Chapter 8. Complete Suffix Projection

Proof. We prove the two inclusions.

“⊆” Suppose that q ∈ safe∆FS
(P). Then acc∆(q) ⊆ P ∪ FS. So for any h ∈ HΣ it holds

that ~h�(q) ∈ P ∪FS. So for any h ∈ S, we have ~h�(q) ∈ P , i.e. h ∈ safe∆S (P).

“⊇” Suppose that q ∈ safe∆S (P). Then for any h ∈ S it holds that ~h�(q) ∈ P . Since A

is complete and deterministic, for any h ∈ S, we have ~h�(q) ∈ FS. So for any h ∈ HΣ

we have ~h�(q) ∈ P ∪FS. Hence, acc∆(q) ⊆ P ∪FS, and thus q ∈ safe∆FS
(P).

If A is deterministic and complete and S = L(A[F/FS]), then whether a state q of

A is safe for F with respect to schema S is a dSha inclusion problem (and thus in

polynomial time).

Lemma 8.8. For any complete dSha A = (Q,Σ,∆, I ,F), subset F ⊆ FS ⊆ Q, schema
S = L(A[F/FS]), and state q ∈ Q:

L(A[I/{q},F/FS]) ⊆ L(A[I/{q}])⇔ q ∈ safe∆S (F)

Proof. By Lemma 8.7 and the completeness of the dSha A, we have that safe∆S (F) =

safe∆FS
(F). Therefore, it is sufficient to show that:

L(A[I/{q},F/FS]) ⊆ L(A[I/{q}])⇔ q ∈ safe∆FS
(F)

Let us prove this:

“⇐”. Suppose that q < safe∆FS
(F). The definition of schema-based safety yields

acc∆({q})∩ (FS \F) , ∅. So there exists some hedge h ∈ HΣ such that q
h−→ FS \F wrt ∆.

In particular, q ∈ L(A[I/{q},F/FS]). By determinism, there exists no other transition

on h from q and thus q < L(A[I/{q}]). Hence L(A[I/{q},F/FS]) * L(A[I/{q}].

“⇒”. Suppose that q ∈ safe∆FS
(F). Let h ∈ L(A[I/{q},F/FS]). Then there exists q′ ∈ FS

such that q
h−→ q′ wrt ∆. Hence q′ ∈ acc∆({q}) so that acc∆({q}) ⊆ F ∪ (Q\FS) implies

q′ ∈ F. Thus, h ∈ L(A[I/{q}]).

8.4. Certainty Automata 229

Lemma 8.8 show that schema-safety is an automata inclusion problem. This

implies that schema-free safety, where S =HΣ, is a universality problem:

L(A[I/{q}]) =HΩ⇔ q ∈ safe∆(F)

This was stated in Lemma 5 of [Al Serhali & Niehren 2023a], which treated only

the schema-less case.

8.4 Certainty Automata

We next show that schema-safety can be used to detect certain language member-

ship and non-membership for languages of dShas with respect to some schema.

So let A = (Ω,Q,∆, I ,F) be dSha. We define for any Q ⊆ Q and q ∈ Q, such that

q@∆p is well-defined for some p ∈ Q, the following two sets:

sdown∆(q,Q) = safe∆(down∆(q,Q))

down∆(q,Q) = {p ∈ Q | q@∆p ∈Q }

Otherwise, if q@∆p is undefined for all p ∈ Q, then sdown∆(q,Q) is undefined.

8.4.1 Membership

For deciding Σ-certain membership for schema S based on schema safety, we define

a dSha↓ that we call the Σ-certain membership automata AΣ-cert-mem(S) as follows:

AΣ-cert-mem(S) = (Ω,QΣ-cert-mem,∆Σ-cert-mem, IΣ-cert-mem(S),FΣ-cert-mem)

It has the following sets of states:

QΣ-cert-mem = Q× 2Q

IΣ-cert-mem(S) = I × {safe
∆|Σ
S (F)}

FΣ-cert-mem = F × 2Q

The transition rules in ∆Σ-cert-mem are such that for all Q ⊆ Q, q,p ∈ Q, and qtreeinit ∈ 〈〉
∆

and a ∈Ω:
(q,Q)

〈〉
−→ (qtreeinit ,sdown∆|Σ(q,Q))

(q,Q)@(p,Q ′)→ (q@∆p,Q)

(q,Q)
a−→ (a∆(q),Q)

230 Chapter 8. Complete Suffix Projection

In the first component AΣ-cert-mem(S) behaves like A, while in the second compo-

nent it computes safety information. Therefore, L(A) = L(AΣ-cert-mem(S)). We next

show that the streaming evaluator of AΣ-cert-mem(S) detects Σ-certain membership at

any prefix.

Proposition 8.9. Let A = (Ω,Q,∆, I ,F) be a dSha and S ⊆ HΩ a schema. Let v ∈
prefs(NΩ) be a nested word prefix and Σ ⊆Ω such that ∆|Σ is complete. For any q ∈ Q,
Q ⊆ Q, qΣ-cert-mem(S)

init ∈ IΣ-cert-mem(S), and stack σ ∈ (QΣ-cert-mem)∗, such that:

((q,Q),σ) = ~v�∆
Σ-cert-mem

str (qΣ-cert-mem(S)
init ,ε)

it follows that:
Σ-cert-memL(A)

S (v)⇔ q ∈Q

Proof. If I = ∅ the IΣ-cert-mem(S) = ∅, so there is nothing to show. Otherwise I is

a singleton since A is deterministic. Let qinit ∈ I by the unique element of this

singleton. We then have qΣ-cert-mem(S)
init = (qinit,safe

∆|Σ
S (F)).

Nested word prefixes may contain dangling opening parenthesis but no dangling

closing parenthesis. We prove the equivalence for all v and A by induction on the

number of dangling opening parenthesis in v. So let σ ∈ (QΣ-cert-mem)∗ be a stack

such that:

((q,Q),σ) = ~v�∆
Σ-cert-mem

str (qΣ-cert-mem(S)
init ,ε)

In the base case, v does not have dangling opening parenthesis, so v is well-

nested. The transition rules of ∆Σ-cert-mem change the states in the first compo-

nent in the same manner than ∆. Furthermore, the subset Q of target states

in the second component remains unchanged when reading letters in Ω. The

same holds when processing nested words of trees 〈w〉 where w is well-nested:

the target set Q is pushed to the stack at the opening parenthesis and popped

from the stack at the closing parenthesis for continuation. Therefore, the assump-

tion ~v�∆
Σ-cert-mem

str (qΣ-cert-mem(S)
init ,ε) = ((q,Q),σ) implies that Q = safe

∆|Σ
S (F), σ = ε and

~v�∆(qinit) = q. Hence:

Σ-cert-memL(A)
S (v)⇔ S ⊆ L(A[qinit/q])

By Lemma 8.8 and the completeness of ∆|Σ, this is equivalent to q ∈ safe
∆|Σ
S (F) and

thus to q ∈Q .

For the induction step, we consider a nested word prefix v with at least one

dangling opening parenthesis. We split v at the first dangling parenthesis such that

8.4. Certainty Automata 231

0{9} 2{9} 2{9} 2{9} 5{9}

1{3} 3{3}

9{9} 9{9}
a a a x

〈〉

a

a

Figure 8.3: A successful run of the dSha↓ AΣ-cert-mem on hdg(aaax〈a〉a).

v = v1 ·〈 ·v2 for some v1 and v2. This implies that v1 ∈ nw(HΩ) in contrast to v2. Let:

((q1,Q1),σ1) = ~v1�
∆Σ-cert-mem

str ((qΣ-cert-mem(S)
init ,ε)

Since the word v1 is well-nested, we will reach the first dangling parenthesis

with the empty stack, so σ1 = ε and Q1 = safe
∆|Σ
S (F). Reading the first dangling

opening parenthesis in this configuration yields ~〈�∆Σ-cert-mem

str ((q1,Q1),ε) = ((t,Q2),γ)

where Q2 = sdown∆|Σ(q1,Q1) and γ = (q1,Q1). Let A2 = A[qinit/q
tree
init ,F/F2)] where

F2 = down∆(q1,Q1). Let I = (qtreeinit ,safe∆|Σ(F2)) be the initial state of AΣ-cert-mem
2 . Note

that safe∆|Σ(F2) = sdown∆|Σ(q1,Q1). The assumption ~v�∆
Σ-cert-mem

str (qΣ-cert-mem(S)
init ,ε) =

((q,Q),σ) implies:

~v2�
∆Σ-cert-mem

str (I,γ) = ((q,Q),σ)

Since the first dangling opening parenthesis of v will never be closed, the first stack

symbol γ is never popped when reading v2, so we have σ = γ · σ ′ for some stack σ ′.

Therefore, γ can be canceled out, showing:

~v2�
∆Σ-cert-mem

str (I,ε) = ((q,Q),σ ′)

Hence, Σ-cert-memL(A)
S (w) is equivalent to Σ-cert-memL(A2)

S (w2). By induction hy-

pothesis applied to v2 and A2, this is equivalent to q ∈Q .

Example 8.10. We illustrate Proposition 8.9 in Figure 8.3 at the dShaA = (Ω,Q,∆, I ,F)

from Figure 8.1. Recall that it has the signature Ω = Σx where Σ = {a}. Given that
∆|Σ is complete, Σ-certain membership of a3 · 〈a〉 · a to L(A) can be detected at the
earliest prefix aaax〈a, by running the streaming evaluator of the earliest automaton
AΣ-cert-mem. Note that the earliest automaton is a dSha↓ passing safety information top-
down (while dShas cannot pass any information top-down). We have safe∆|Σ({9}) = {9}
and sdown∆|Σ(5, {9}) = {3}. Hence, ~aaax〈�∆Σ-cert-mem

str (qΣ-cert-mem
init ,ε) = ((1, {3}),σ) where

the stack is σ = (5, {9}). Since 1 < {3}, membership is not yet Σ-certain. Indeed,
the Σ-completion a3 · x · 〈〉 is not accepted. After reading the next letter a, we have

232 Chapter 8. Complete Suffix Projection

~aaax〈a�∆Σ-cert-mem

str = ((3, {3}),σ). Since the current state 3 belongs to the current set of
safe states {3}, membership is Σ-certain, i.e., membership of all completions without
further x’es.

8.4.2 Non-membership

When interested in non-membership, we can reduce certain non-membership to

language L(A) to Ω-certain membership of L(A) by Lemma 8.6. This can be de-

cided by the Ω-certain membership automaton (A)Ω-cert-mem(S) for the complement

automaton A = (Ω,Q,∆, I ,F). It recognizes L(A) = L(A) since A was assumed to be

complete.

8.4.3 Combining Both

For earliest query answering in Section 11.2.3 on monadic query answering, we will

have to decide Σ-certainty for membership to L(A) and at the same time certainty of

non-membership to L(A). For doing both at the same time, we can use the product

of the Σ-certain membership automata AΣ-cert-mem(S) and the Ω-certain membership

automaton (A)Ω-cert-mem(S) where A is the complement automaton of A.

In order to achieve this, rather more directly, we define the Σ-certain automaton

AΣ-cert(S) as the following dSha↓:

AΣ-cert(S) = (Ω,QΣ-cert,∆Σ-cert, IΣ-cert(S),FΣ-cert)

It has the following set of states:

QΣ-cert = Q× 2Q × 2Q

IΣ-cert(S) = I × {safe
∆|Σ
S (F)} × {safe∆S (F)}

FΣ-cert = F × 2Q × 2Q

The transition rules in ∆Σ-cert-mem are such that for all subsets of states Q ,R,Q ′ ,R′ ∈
2Q, q,p ∈ Q, and qtreeinit ∈ 〈〉

∆ and a ∈Ω:

(q,Q ,R)
〈〉
−→ (qtreeinit ,sdown∆|Σ(q,Q),sdown∆(q,R))

(q,Q ,R)@(p,Q ′ ,R′)→ (q@∆p,Q ,R)

(q,Q ,R)
a−→ (a∆(q),Q ,R)

By construction, the projection of AΣ-cert(S) to components 1 and 2 of the states is

8.5. Earliest dSha↓s with Complete Suffix Projection 233

the Σ-certain membership automaton AΣ-cert-mem(S), and the projection of AΣ-cert(S)

to components 1 and 3 of the states is the certain non-membership automaton

(A)Ω-cert-mem(S).

Proposition 8.11. Let A = (Ω,Q,∆, I ,F) be a complete dSha and S ⊆ HΩ a schema.
Let v ∈ prefs(NΩ) be a nested word prefix and Σ ⊆ Ω. For any q ∈ Q, Q,R ⊆ Q, and
q
Σ-cert(S)
init ∈ IΣ-cert(S) such that:

((q,Q,R),σ) = ~v�∆
Σ-cert

str (qΣ-cert(S)
init ,ε)

holds for some stack σ ∈ (QΣ-cert)∗, then it follows that:

Σ-cert-memL(A)
S (v)⇔ q ∈Q and

cert-nonmemL(A)
S (v)⇔ q ∈ R

Proof. This is a consequence of Proposition 8.9 applied once for certain member-

ship, and once for certain non-membership via complementation.

8.5 Earliest dSha↓s with Complete Suffix Projection

We now want to compile any dSha to some earliest dSha↓ with suffix projection.

This earliest dSha↓ is not only able to detect Σ-certain membership and certain

non-membership at the earliest possible prefix, but also to stop the computation

there. When becoming Σ-certain for membership, it goes into a distinguished selec-

tion state, where it stays forever, and when becoming certain for non-membership

it blocks the run. We now formalize this notion of earliest dSha↓s.

Definition 8.12. Let Σ ⊆ ∆. A dSha↓ A = (Ω,Q,∆, I ,F) with schema S ⊆HΩ is called
Σ-earliest for S with complete suffix projection if there exists a state sel ∈ F such that
for all hedges h ∈ S the unique partial run R of A on h satisfies:

1. it goes to the state sel for exactly all those prefixes of nw(h) that are Σ-certain for
membership in L(A) wrt S, and

2. it blocks for all prefixes of nw(h) that are certain for non-membership in L(A) with S.

It should be noticed that whenever an earliest automaton goes to state sel for

some prefix, it has to remain there for any larger prefixes in prefs(nw(S)), since all

these prefixes will also be Σ-certain for membership. Since sel is final, any input

hedge in the schema whose nested word has a prefix leading to sel will be accepted.

234 Chapter 8. Complete Suffix Projection

This means that sel is a selection state of A with respect to S in the following

sense:

Definition 8.13. Let A = (Q,Σ,∆, I ,F) be a Sha
↓ with schema S ⊆HΣ. A state q ∈ Q is

called a selection state of A wrt. S if A is schema-complete for S and all runs of A on
hedges in S that contain q are successful.

Lemma 8.14. If A has a selection state q wrt S, then any hedge h ∈ S that has a partial
run with A ending in q is accepted, i.e., h ∈ L(A).

Proof. Suppose that a hedge h ∈ S has a partial run with A that ends in some

selection state q. Since A is schema-complete for S this partial run can be completed

to some run r ∈ run∆(h). Since q is a selection state of A wrt. S, it follows that r is

successful, so that h ∈ L(A).

The certainty automata can detect all suffixes that are certain for projection, but

they do neither project them nor return the result of the membership test. We

now present a compiler that maps Σ-certain dSha↓ AΣ-cert(S) to a Σ-earliest Sha↓s

Ae(S) with complete suffix projection. These will report Σ-certain membership

and certain non-membership at the earliest prefix that is suffix-irrelevant. In case

of certain non-membership they stop the computation, and in case of Σ-certain

membership they go into a special selection state in which they stay until the end.

For any dSha A and schema L(A) ⊆ S we define an dSha↓ Ae(S) as follows:

Ae(S) = (Σ,Qe,∆e, Ie(S),Fe)

as follows. Let sel be a fresh symbol for the special selection state. We define:

Qe = {(q,Q ,R) ∈ QΣ-cert | q <Q ∪R} ∪ {sel}
Ie(S) = {(q,Q ,R) ∈ Qe | q ∈ I} ∪ {sel | (q,Q ,R) ∈ IΣ-cert(S), q ∈Q \R}
Fe = {(q,Q ,R) ∈ Qe | q ∈ F} ∪ {sel}

The transition rules in ∆e are given in Figure 8.4.

Theorem 5. For any dSha A = (Σ,Q,∆, I ,F) and schema S ⊆ HΣ so that A is schema-
complete for schema S, the dSha↓ Ae(S) is Σ-earliest for S.

Proof. This follows from Proposition 8.11 and the construction, which blocks the

runs of AΣ-cert(S) once they become certain for non-membership, and goes to the

selection state sel once becoming Σ-certain for membership.

8.5. Earliest dSha↓s with Complete Suffix Projection 235

µ
a−→ µ′ ∈ ∆Σ-cert µ′ ∈ Qe

µ
a−→ µ′ ∈ ∆e

µ
a−→ (q,Q ,R) ∈ ∆Σ-cert q ∈Q \R

µ
a−→ sel ∈ ∆e

µ
〈〉
−→ µ′ ∈ ∆Σ-cert µ′ ∈ Qe

µ
〈〉
−→ µ′ ∈ ∆e

µ
〈〉
−→ (q,Q ,R) ∈ ∆Σ-cert q ∈Q \R

µ
〈〉
−→ sel ∈ ∆e

µ@µ′→ µ′′ ∈ ∆Σ-cert µ′′ ∈ Qe
µ@µ′→ µ′′ ∈ ∆e

µ@µ′→ (q,Q ,R) ∈ ∆Σ-cert q ∈Q \R
µ@µ′→ sel ∈ ∆e

a ∈ Σ∪ {〈〉}

sel
a−→ sel ∈ ∆e

µ ∈ Qe
µ@sel→ sel ∈ ∆e

Figure 8.4: The transition rules ∆e of the Σ-earliest automaton with complete suffix
projection, inferred from transition rules ∆Σ-cert of the Σ-certain membership and
non-membership automaton.

Example 8.15. In Figure 8.5, we present the earliest automaton Ae(S) for the dSha
A in Figure 8.1, up to removing useless sel transition rules. A successful run of the
earliest automaton Ae(S) on the hedge a3 · x · 〈a〉 · a is given in Figure 8.6. For the query
Q = qryS(L(A)). It shows that 3 ∈ Q(a3 · 〈a〉 · a) at the earliest prefix v = a3〈a where
3 ∈ Σ-cert-memL(A)

S (v), since reaching the selection state sel there for the first time.
Furthermore, the partial run on a2xa〈a is blocking, showing 2 < Q(a3 · 〈a〉 · a) at the
earliest prefix v = a3〈a too where 2 ∈ cert-nonmemL(A)

S (v).

236 Chapter 8. Complete Suffix Projection

Figure 8.5: The earliest automatonAe(S) for the dShaA in Figure 8.1, up to removing
useless sel transition rules.

0{9}{1,3,4,7} 2{9}{1,3,4,7} 2{9}{1,3,4,7} 2{9}{1,3,4,7} 5{9}{1,3,4,7}

1{3}{7} sel

sel sel
a a a x

〈〉

a

a

Figure 8.6: A successful run of the earliest dSha Ae(S) in Figure 8.5 on the hedge
a3 ·x · 〈a〉 ·a showing that 3 ∈Q(a3 · 〈a〉 ·a) where Q = qryS(L(A)) at the earliest prefix

v = a3〈a where 3 ∈ Σ-cert-memL(A)
S (v).

0{9}{1,3,4,7} 2{9}{1,3,4,7} 2{9}{1,3,4,7} 5{9}{1,3,4,7} 8{9}{1,3,4,7}

1{7}{3}

a a x a

〈〉

a

Figure 8.7: A blocking partial run of the earliest dSha Ae(S) in Figure 8.5 on the
hedge a2 · x · a · 〈a〉 · a showing that 2 < Q(a3 · 〈a〉 · a) where Q = qryS(L(A)) at the

earliest prefix v = a3〈a where 2 ∈ cert-nonmemL(A)
S (v).

Chapter 9
Combining Subhedge and Suffix
Projection

Abstract
We show how to combine Sha

↓s with selection states and Sha
↓s with sub-

hedge projection states in a generic manner. This permits to add subhedge
projection to earliest dSha↓s. We show that the integration of congruence
projection into an earliest dSha↓ leads to an earliest dSha↓ with complete
subhedge and suffix projection.

Contents
9.1 Combination Algorithm . 237

9.2 Soundness and Completeness . 238

9.3 Automaton Size . 240

9.4 Benchmark dSha for XPath Queries 240

9.1 Combination Algorithm

We show how to enhance earliest automata for dShas with subhedge projection.

This can be used to yield earliest membership testers with complete subhedge and

suffix projection.

Let S be a schema S and Aπ and Ae two Sha
↓s with schema S that recognize the

238 Chapter 9. Combining Subhedge and Suffix Projection

same language up to the schema:

L(Aπ)∩L(S) = L(Ae)∩L(S)

Furthermore, we assume that Ae has a selection state sel indicating certain mem-

bership at the earliest possible prefix.

In order to obtain earliest membership with subhedge projection, we combine

the two Sha
↓s into a single Sha

↓ Aπe = (Σ,Qπe , ∆πe , Iπe ,Fπe) basically running both

automata in parallel, but under a shared control. The state set of Aπe are as follows:

Qπe = (Qπ × (Qe \ {sel}))∪ {sel}
Iπe = (Iπ × (Ie \ {sel}))∪ {sel | sel ∈ Ie}
Fπe = (Fπ × (Fe \ {sel}))∪ {sel}

The transition rules in ∆πe are given by the in Figure 9.1. Any run of Aπe synchro-

nizes parallel runs of Aπ and Ae as follows: whenever Ae goes to sel, then Aπe does

so too, and whenever Aπ goes into a subhedge projection state then it makes Ae
jump over the subsequent subhedge.

9.2 Soundness and Completeness

We next show that the soundness and completeness of a projection algorithm are

preserved when combined with some earliest membership tester when assuming

determinism.

Proposition 9.1. Let Aπ and Ae be dSha↓s with the same schema S and the same
language up to the schema, i.e. L(Aπ)∩L(S) = L(Ae)∩L(S). The combination dSha↓

Aπe then has the same language up to schema S too. Furthermore, if Ae is earliest for S
then Aπe is earliest for S too and goes into some subhedge projection state whenever Aπ

does.

Proof. If q is a subhedge projection state of Aπ and r a state of Ae then (q,r) is a

subhedge projection state of Aπe . The evaluator for automaton Aπe runs Aπ and

Ae in parallel on the input hedge, while skipping subhedges starting in subhedge

projection states of Aπ. These include the subhedges starting in a projection state

when evaluating Aπe on h. By Proposition 7.11 applied to Aπ such subhedges are

irrelevant for L(Aπ) with respect to S since Aπ is assumed to be deterministic. Since

L(Aπ)∩S = L(Ae)∩S, skipping such subhedge does not affect acceptance by Ae for

9.2. Soundness and Completeness 239

q
a−→ q′ ∈ ∆π r

a−→ r ′ ∈ ∆e q < P r ′ , sel

(q,r)
a−→ (q′ , r ′) ∈ ∆πe

q
a−→ q′ ∈ ∆π r

a−→ sel ∈ ∆e
(q,r)

a−→ sel ∈ ∆πe

q
a−→ q′ ∈ ∆π r

a−→ r ′ ∈ ∆e q ∈ P r ′ , sel

(q,r)
a−→ (q′ , r) ∈ ∆πe

q@p→ q′ ∈ ∆π r@s→ r ′ ∈ ∆e r ′ , sel q < P

(q,r)@(p,s)→ (q′ , r ′) ∈ ∆πe

q@p→ q′ ∈ ∆π r@s→ sel ∈ ∆e
(q,r)@(p,s)→ sel ∈ ∆πe

q@p→ q′ ∈ ∆π r@s→ r ′ ∈ ∆e q ∈ P r ′ , sel

(q,r)@(p,s)→ (q′ , r) ∈ ∆πe

q
〈〉
−→ q′ ∈ ∆π r

〈〉
−→ r ′ ∈ ∆e q < P r ′ , sel

(q,r)
〈〉
−→ (q′ , r ′) ∈ ∆πe

q
〈〉
−→ q′ ∈ ∆π r

〈〉
−→ sel ∈ ∆e

(q,r)
〈〉
−→ sel ∈ ∆πe

q
〈〉
−→ q′ ∈ ∆π r

〈〉
−→ r ′ ∈ ∆e q ∈ P r ′ , sel

(q,r)
〈〉
−→ (q′ , r) ∈ ∆πe

a ∈ Σ∪ {〈〉}

sel
a−→ sel ∈ ∆πe

µ ∈ Qπe
µ@sel→ sel ∈ ∆πe

Figure 9.1: The transition rules ∆πe inferred from those of the Sha
↓s Aπ with

subhedge projection states P and Ae with selection state sel.

240 Chapter 9. Combining Subhedge and Suffix Projection

hedges inside schema S. Therefore the evaluator of Aπe is earliest with respect to S

too.

The above proposition shows that if Aπ is complete for subhedge projection then

Aπe is also complete for subhedge projection while being earliest in addition.

Theorem 6. For any complete dShas A with schema S, the dSha Acgr(S)
e(S) is earliest and

sound and complete for subhedge projection for schema S.

Proof. The congruence projection Acgr(S) is sound by Proposition 3 and complete for

subhedge projection wrt S by Theorem 4. The automaton Ae(S) discussed in Section

8.5 is earliest for S by Theorem 5. So their combination Acgr(S)
e(S) yields an earliest

automaton with complete subhedge projection wrt S by Proposition 9.1.

9.3 Automaton Size

We next discuss the complexity of earliest membership testing with complete

subhedge projection by an in-memory evaluator for Acgr(S)
e(S) .

Lemma 9.2. The number of states in Qcgr(S)
e(S) is in O(2n

2+2n+log(n)) where n = |Q|.

Proof. By Lemma 7.40 the number of states of Acgr(S) is in O(2n
2+n) where n = |Q|.

The number of states of Ae(S) is in O(n2n) and thus in O(2n+log(n)). The number of

states of Qcgr(S)
e(S) is thus in O(2n

2+n 2n+log(n)) which is in O(2n
2+2n+log(n))

9.4 Benchmark dSha for XPath Queries

We start from dSha defining monadic queries for the regular XPath queries A1-A8

from the XPathMark benchmark [Al Serhali & Niehren 2022] that are given in

Table 4.1. These XPath queries show most of the features of the regular fragment of

XPath. In Table 9.2, we added 14 further XPath path queries that we found useful

for testing too.

Deterministic Shas for A1-A8 were provided earlier in

[Al Serhali & Niehren 2023a]. For the other XPath queries we compiled

them to dShas via nested regular expression.

In order to produce the input dShas for our evaluators, we intersect these au-

tomata with a dSha for the schema ~N-List′x�∩~onex� where N-List′x is the schema

9.4. Benchmark dSha for XPath Queries 241

A0 child::site

A1_0a /site/*

A1_0b /site/@*

A1_0c /site//@*

A1_1a //bidder/personref[starts-with(@person,’person0’)]

A1_1d //bidder/personref[@person=’person0’]

A1_2 //person

A1_3 /site/regions/africa//@*

A1_4 /site/regions/africa/*

A1_5 /site/regions/*

A1_6 //closed_auction/annotation//keyword

A2_1 //closed_auction[descendant::keyword]

A4_0 /site/closed_auctions/closed_auction[annotation]/date

A4_1 /site[open_auctions]/closed_auctions

Figure 9.2: Additional regular XPath queries for XPathMark documents.

we use for hedge encodings of real-world Xml documents with x annotations.

Thereby we could identify the schema final states FS. We minimized and completed

the result. Figure 9.3 reports the size of the input dShas for our evaluators obtained

by the above procedure. For each dSha A, the size is given by two numbers size(n),

the first for the overall size and the second for the number of states n.

For the input dSha A of each query, we statically computed the whole dSha↓s

A
cgr(S)
e(S) while using the necessary parts of the determinization algorithm from

[Niehren et al. 2022a]. The size of the dSha↓s obtained and the number d of

difference relations are reported in Figure 9.3 too. The biggest size is 2091(504)

for the input dSha for A8. The largest number of difference relations d=24 is also

obtained for this query. So, indeed the size of these automata is much smaller than

one might expect from a construction that is highly exponential in the worst case.

The time for computing the earliest congruence projection took between 2.3 and

26 seconds.

We note that we have not yet computed the complete dSha↓s statically for safe-

no-change projection Asnc, pure congruence projection Acgr(S) and earliest query

answering Ae(S). We believe that these automata may become bigger than Acgr(S)
e(S)

that we constructed in a single shot.

242 Chapter 9. Combining Subhedge and Suffix Projection

Query dSha A A
cgr(S)
e(S) #diff-

ID m(n) size(#states) rel. d
A1 482(68) 1296(324) 16
A2 224(42) 316(82) 7
A3 320(53) 662(156) 10
A4 629(74) 1651(404) 18
A5 438(63) 1226(269) 13
A6 675(76) 2090(500) 22
A7 394(59) 728(184) 12
A8 648(79) 2091(504) 24
A0 203(40) 158(44) 5

A1_0a 224(42) 145(44) 6
A1_0b 203(39) 68(23) 5

Query dSha A A
cgr(S)
e(S) #diff-

ID m(n) size(#states) rel d
A1_0c 230(43) 238(62) 6
A1_1a 305(54) 384(101) 8
A1_1d 305(54) 382(101) 8
A1_2 194(39) 152(42) 5
A1_3 318(53) 672(159) 10
A1_4 312(52) 479(132) 10
A1_5 266(47) 293(84) 8
A1_6 265(47) 588(142) 9
A2_1 232(42) 295(78) 7
A4_0 392(59) 719(184) 12
A4_1 292(49) 287(78) 8

Figure 9.3: Size measures of deterministic automata for regular XPathMark

queries: size(#states), where #states is the number of states and size the overall size
of the automaton. For the input dSha A we have n = #states and m = size. It is
obtained by minimizing the accessible product of the query’s dSha with the dSha of
the schema S = xml-seq&one-x. We also show the overall size and number of states

of the earliest dSha↓ with complete subhedge and suffix projection Acgr(S)
e(S) obtained

by earliest congruence projection, and the number d of difference relations used for
congruence projection.

Figure 9.4: The earliest dSha↓ with complete subhedge and suffix projection for the
XPath query A0=child::site.

9.4. Benchmark dSha for XPath Queries 243

Figure 9.5: The earliest dSha↓ with complete subhedge and suffix projection for the
XPath query A1_0c=/site/@*.

Figure 9.6: The earliest dSha↓ with complete subhedge and suffix projection for the
XPath query A1_1a=//bidder/personref[starts-with(@person,’person0’)]

244 Chapter 9. Combining Subhedge and Suffix Projection

Figure 9.7: The earliest dSha↓ with complete subhedge and suffix projection for the
XPath query A2=//closed_auction//keyword

Figure 9.8: The earliest dSha↓ with complete subhedge and suffix projection for
XPathMark’s XPath query:

A5=/site/closed_auctions/closed_auction [descendant::keyword]/date

Chapter 10
Projecting Evaluators for Earliest
Membership

Abstract
We present top-down evaluators with subhedge and suffix projection for
dShas that may either run in-memory or in streaming mode. They rec-
ognize certain membership and non-membership at the earliest possible
event. Both evaluators run in constant time per non-projected event of the
input hedge, after a possibly exponential precomputation.

Contents
10.1 Early Evaluators with Projection . 245

10.1.1 In-Memory Evaluator . 246

10.1.2 Streaming Evaluator . 249

10.2 Earliest Membership with Projection 254

10.2.1 In-Memory Complexity . 254

10.2.2 Streaming Complexity . 255

10.1 Early Evaluators with Projection

We develop early deterministic top-down evaluators with subhedge and suffix

projection for dSha↓s in two modes. We start with an in-memory evaluator and

then adapt it to the streaming mode.

246 Chapter 10. Projecting Evaluators for Earliest Membership

~h�shp(q) =

 q if q ∈ Q∆
shp

~h�shp′ (q) else

~ε�shp′ (q) = q

~a�shp′ (q) = a∆(q)

~h · h′�shp′ (q) = ~h′�shp(~h�shp(q))

~〈h〉�shp′ (q) = q@∆(~h�shp(〈〉∆(q)))

Figure 10.1: The in-memory top-down evaluator with subhedge projection ~h�∆shp =

~h�shp :Q ↪→Q for a dSha↓ A = (Q,Σ,∆, I ,F) and a hedge h ∈ HΣ (See Definition 7.9

for Q∆
shp).

10.1.1 In-Memory Evaluator

We next show how to refine the transitions for Sha↓s with distinguished selection

states by early selection and subhedge projection. This yields a in-memory top-

down evaluator that reports certain membership once reaching some selection state,

while projecting irrelevant subhedges.

10.1.1.1 Adding Subhedge Projection

We start with the deterministic in-memory top-down evaluator for dSha↓s and

show how to refine it with subhedge projection. Note that this refinement does

neither support suffix projection nor early output.

For any hedge h ∈ HΣ and dSha↓ A = (Q,Σ,∆, I ,F), we presented in Section 3.4.1

the deterministic in-memory top-down evaluator:

~h�∆ = ~h� :Q→Q

The next objective is to to refine this evaluator such that it jumps over subhedges

whenever reaching some subhedge projection state. This leads to an in-memory

top-down evaluator with subhedge projection of type

~h�∆shp = ~h�shp :Q ↪→Q

that we define in Figure 10.1. The first rule says that subhedge projecting transitions

stay in subhedge projection states until the end of the current subhedge is reached.

This is correct by Lemma 7.10 under the condition that there are no blocking runs.

The other rules state that the evaluator behaves as without subhedge projection

10.1. Early Evaluators with Projection 247

otherwise.

Lemma 10.1. For all dSha↓s A = (Q,Σ,∆, I ,F) that is schema-complete for S, states
q ∈ Q, and hedges h ∈ S:

~h�shp(q) = ~h�(q)

Proof. We distinguish two cases:

Case q <Q∆
shp. Then for any p ∈ Q; ~h�shp(q) = q = ~h�(q) by definition of the pro-

jecting and non-projecting transitions.

Case q ∈ Q∆
shp. Then ~h�shp(q) = q. Since h ∈ S and A is schema-complete for S there

exists some run of A on h, and there exists q′ such that q′ = ~h�(q) is well-defined.

Since the deterministic and nondeterministic evaluators behave the same by Lemma

3.37, it follows that q
h−→ q′ wrt ∆. Lemma 7.10 shows that q

h−→ q wrt ∆. Again by

Lemma 3.37, this is equivalent to q = ~h�(q) and thus:

~h�shp(q) = q = ~h�(q)

10.1.1.2 Adding Early Output

We next refine the in-memory top-down evaluator with subhedge projection by

adding early output once reaching some selection state. When this happens, mem-

bership is certain. The following suffix is thus irrelevant and can be projected. Suffix

projection also applies if the run blocks, since then non-membership is certain.

Let S be a schema for A, and Q ⊆ Q a subset of selection states of A wrt. schema

S. Let sel be a fresh symbol. We start with a function that raises the exception sel

when applied to some state in Q and otherwise returns the state:

raise-selQ (q) =

 raise sel if q ∈Q
q otherwise

In Figure 10.2 we define the in-memory top-down evaluator with early output and

suffix and subhedge projection, which has the type:

~h�∆prj(Q) = ~h�prj(Q) :Q ↪→Q∪{sel}

248 Chapter 10. Projecting Evaluators for Earliest Membership

~h�prj(Q)(q) =

 try raise-selQ (q) catch sel then sel if q ∈ Q∆
shp

try ~h�prj′(Q)(raise-selQ (q)) catch sel then sel else

~ε�prj′(Q)(q) = q

~h · h′�prj′(Q)(q) = raise-selQ (~h′�prj(Q)(raise-selQ (~h�prj(Q)(q))))

~a�prj′(Q)(q) = raise-selQ (a∆(q))

~〈h〉�prj′(Q)(q) = raise-selQ (q@∆(raise-selQ (~h�prj(Q)(raise-selQ (〈〉∆(q))))))

Figure 10.2: The early top-down in-memory evaluator with subhedge and suffix
projection for a dSha↓ A = (Q,Σ,∆, I ,F) with schema S, a subset of selection states
Q for A wrt. schema S and a hedges h,h′ ∈ HΣ.

Whenever it moves to some state q, it applies the function raise-selQ (q), which raises

exception sel if q ∈Q and continues otherwise with q. So up to detecting whether

the current state belongs to Q and raising exception sel in this case, the evaluator

~h�∆prj(Q) behaves equal to ~h�∆shp. Raising exception sel is correct by definition of

selection states wrt. S: it requires that any partial run ending in some selection

state can be completed successfully for all hedges belonging to the schema S. So

once the exception is raised, membership can be reported in an early manner. We

do so by returning the marker sel.

Lemma 10.2. Let A = (Σ,Q,∆, I ,F) be a dSha↓ that is schema-complete for S and
Q ⊆ Q. For any state q ∈ Q, if no partial ∆-run on h that starts in q ends in Q then:

~h�∆shp(q) = ~h�∆prj(Q)(q)

Proof. If no partial ∆-run on h starting in q ends in Q , then the evaluator ~h�∆prj(Q)(q)

does not raise any exception, so all its calls of raise-selQ can be ignored. When

replacing raise-selQ by the identity in the definition of ~h�∆prj(Q) then it becomes

identical to ~h�∆shp. Hence:

~h�∆shp(q) = ~h�∆prj(Q)(q)

Proposition 10.3. Let A = (Σ,Q,∆, I ,F) be a dSha↓ that is schema-complete for S and
Q ⊆ Q be a subset of selection states. Then for all hedges h ∈ S:

h ∈ L(A) ⇔ ~h�∆prj(Q)(I)∩ (F ∪ {sel}) , ∅

10.1. Early Evaluators with Projection 249

Proof. Case 1: Suppose that some partial ∆-run on hedge h ∈ S starting with q

ends in Q . By Lemma 8.14, and since we assume schema-completeness and that

each state in Q is a selection state of A for S, and h ∈ S, this implies h ∈ L(A).

Furthermore, the call of the evaluator ~Q�prj′(h)(I) raises the exception sel, so

~Q�prj(h)(I) = sel. Hence, ~h�∆prj(Q)(I)∩ {sel} , ∅.

Case 2: Otherwise, no partial ∆-run on hedge h ∈ S starting with q ends in Q .

Lemma 10.2 thus show that:

~h�∆shp(I) = ~h�∆prj(Q)(I)

Furthermore, by Lemma 10.1 and schema-completeness we have:

~h�∆shp(I) = ~h�∆(I)

We can therefore conclude as follows:

h ∈ L(A) ⇔ ~h�∆(I)∩F , ∅
⇔ ~h�∆shp(I)∩F , ∅
⇔ ~h�∆prj(Q)(I)∩F , ∅

We note that evaluating nondeterministic Sha
↓s deterministically can be done

based on determinization. Note, however, that our objective was to avoid deter-

minization of Sha↓s since it raises additional challenges implying complexity issues

compared to the determinization of Shas.

10.1.2 Streaming Evaluator

We extend the streaming transition ~v�∆str for dSha↓s A = (Q,Σ,∆, I ,F) from Section

3.4.2 with subhedge projection to ~v�∆str,shp, in analogy to how we extended the

deterministic in-memory evaluator ~h�∆ to ~h�∆shp.

In Figure 10.3 we define the streaming evaluator with subhedge projection with

respect to ∆. It has the following type for any nested word factor v ∈ Σ̂∗:

~v�∆str,shp = ~v�str,shp :K ↪→K where K =Q×Q∗

The first equation in Figure 10.3 states that the subhedge projecting evaluator

250 Chapter 10. Projecting Evaluators for Earliest Membership

~v�str,shp(q,σ) =

 (q,σ) if v ∈ NΣ & q ∈ Q∆
shp

~v�str,shp′ (q,σ) if q <Q∆
shp

~ε�str,shp′ (q,σ) = (q,σ)

~v · v′�str,shp′ (q,σ) = ~v′�str,shp(~v�str,shp′ (q,σ))

~a�str,shp′ (q,σ) = (a∆(q),σ)

~〈�str,shp′ (q,σ) = (〈〉∆(q),σ · q)

~〈�str,shp′ (p,σ · q) = (q@∆p,σ)

Figure 10.3: The streaming evaluator with subhedge projection for a dSha↓ A =
(Q,Σ,∆, I ,F), where v,v′ ∈ Σ̂∗ are nested word factors, a ∈ Σ a letter, p,q,∈ Q states,
and σ ∈ Q∗ stacks.

jumps over nested words if the current state is a subhedge projection state. This

is correct since a subhedge projection state cannot be changed by any subhedge.

Otherwise, it behaves as the previous streaming evaluator.

Proposition 10.4. For any Sha
↓ A = (Σ,Q,∆, I ,F), state q ∈ Q, and nested word v ∈ NΣ

such that ∆ has no blocking partial run on hdg(v) starting from q:

~v�str,shp(q,ε) = ~v�str(q,ε)

Proof. The proof is by induction on the structure of h = hdg(v). Hence v = nw(h), so

that Lemma 3.39 yields:

~v�str(q,ε) = (~h�(q),ε)

Since we assume that A does not have any blocking run on h starting with q it

follows that ~h�(q) is defined. Let q′ = ~h�(q). Since the nondeterministic transitions

correspond to the deterministic evaluator by Lemma 3.37, it follows that q
h−→ q′

wrt ∆.

Subcase q ∈ Q∆
shp. Since A has no blocking partial run on h, Lemma 7.10 shows

that q
h−→ q′ wrt ∆ implies q = q′. By definition of streaming subhedge projecting

transitions we have:

~v�str,shp(q,ε) = (q,ε)

Hence:

~v�str,shp(q,ε) = (q,ε) = (~h�(q),ε) = ~h�str(q,ε)

Subcase q <Q∆
shp. By definition of the streaming evaluator with subhedge projec-

10.1. Early Evaluators with Projection 251

tion we have:

~v�str,shp(q,ε) = ~v�str,shp′ (q,ε)

We distinguish all possible forms of hedge h.

Subsubcase h = h′ · h′′. Let v′ = nw(h′) and v′′ = nw(h′′). Thus, v = v′ · v′′ = nw(h).

The definition of the streaming evaluator with subhedge projection shows:

~v′′ · v′�str,shp(q,ε) = ~v′�str,shp(~v′′�str,shp′ (q,ε))

= ~v′�str,shp(~v′′�str,shp(q,ε))

By induction hypothesis applied to the nested words v′ and v′′ we get:

~v′′�str,shp(q,ε) = ~v′′�str(q,ε)

~v′�str,shp(~v′′�str(q,ε)) = ~v�str(~v
′′�str(q,ε))

Hence, we can close this case as follows:

~v�str,shp(q,ε) = ~v�str(q,ε)

Subsubcases h = 〈h′〉 or h = a or h = ε. Straightforward.

A streaming evaluator with subhedge projection for deterministic Sha
↓s A on

hedges h can thus be obtained by computing the streaming transition relation with

subhedge projection for A of nw(h) starting with the initial configuration. This costs

time at most O(1) per letter of nw(h), i.e. constant time per event of the stream.

10.1.2.1 Adding Early Output

We next refine the streaming evaluator with subhedge projection by adding early

output once reaching some selection state. This works basically the same way as in

the in-memory case.

Let A = (Q,Σ,∆, I ,F) be a dSha↓. For any configuration in (q,σ) ∈ K = Q×Q∗ we

define:

raise-selKQ (q,σ) = (raise-selQ (q),σ)

Let S be a schema for A, and Q ⊆ Q a subset of selection states of A wrt. schema

S. In Figure 10.4 we define the streaming evaluator with early output and suffix

252 Chapter 10. Projecting Evaluators for Earliest Membership

~v�str,prj(Q)(κ) =

 try raise-selKQ (κ) catch sel then sel if v ∈ NΣ & κ ∈ Q∆
shp ×Q

∗

try ~Q�str,prj′(v)(κ) catch sel then sel else

~ε�str,prj′(Q)(κ) = κ

~v · v′�str,prj′(Q)(κ) = raise-selKQ (~v′�str,prj(Q)(raise-selKQ (~v�str,prj(Q)(κ))))

~a�str,prj′(Q)(κ) = raise-selKQ (~a�∆str,shp(κ))

~〈�str,prj′(Q)(κ) = raise-selKQ (~〈�∆str,shp(κ))

~〉�str,prj′(Q)(κ) = raise-selKQ (~〉�∆str,shp(κ))

Figure 10.4: The early streaming evaluator with subhedge and suffix projection
for a dSha↓ A = (Q,Σ,∆, I ,F) with schema S, a subset of selection states Q for A wrt.
schema S, nested word factors v,v′ ∈ Σ̂∗, and configurations κ ∈ K =Q×Q∗.

and subhedge projection of the following type for any nested word factor v ∈ Σ̂∗:

~v�∆str,prj(Q) = ~v�str,prj(Q) :K ↪→K∪{sel} where K =Q×Q∗

Whenever the early streaming evaluator with projection moves to some configu-

ration κ ∈ K, it applies the function raise-selKQ (κ), which raises the exception sel if

κ ∈Q ×Q∗ and continues with κ otherwise. So up to detecting whether the state of

the current configuration belongs to Q and then raising the exception sel, the eval-

uator ~h�∆str,prj(Q) behaves exactly like ~h�∆str,shp. Raising the exception sel is correct

by definition of selection states wrt. S: it requires that any partial run ending in

some selection state can be completed successfully for all hedges belonging to the

schema S. So once the exception is raised, certain membership can be reported in

an early manner. We do so by returning the marker sel.

Lemma 10.5. Let A = (Σ,Q,∆, I ,F) be a dSha↓ that is schema-complete for S, Q ⊆ Q,
and v ∈ NΣ. For any configuration κ = (q,σ) ∈ K =Q×Q∗ so that no ∆-run on hdg(v)

starting in q does end in Q:

~v�∆str,shp(κ) = ~v�∆str,prj(Q)(κ)

Proof. If no partial ∆-run on hdg(v) starting in q does end in Q , then the evaluator

~h�∆str,prj(Q)(κ) does not raise any exception, so all its calls raise-selQ can be safely

ignored. When replacing raise-selKQ by the identity in the definition of ~h�∆str,prj(Q)

then it becomes identical to ~h�∆str,shp. Hence:

~h�∆str,shp(κ) = ~h�∆str,prj(Q)(κ)

10.1. Early Evaluators with Projection 253

Proposition 10.6. Let A = (Σ,Q,∆, I ,F) be a Sha
↓ that is schema-complete for S and

Q ⊆ Q be a subset of selection states. Then for all hedges h ∈ S and states q ∈ Q:

h ∈ L(A) ⇔ ~nw(h)�∆str,prj(Q)(I × {ε})∩ ((F × {ε})∪ {sel}) , ∅

Proof. If I = ∅ then the proposition is trivial. Therefore, we can assume without

loss of generality that there exists qinit ∈ Q such that I = {qinit}.

Case 1: some partial ∆-run on hedge h ∈ S starting with q does end in Q . By

Lemma 8.14, this implies h ∈ L(A). In this case, the call of the evaluator

~nw(h)�str,prj′(Q)(qinit,ε) raises the exception sel, so that:

~nw(h)�str,prj(Q)(qinit,ε) = sel

Hence, in this case ~nw(h)�∆str,prj(Q)(I × {ε})∩ {sel} , ∅.

Case 2: no partial ∆-run on hedge h ∈ S starting in q ends in Q . Lemma 10.5 then

shows that:

~nw(h)�∆str,shp(qinit,ε) = ~nw(h)�∆str,prj(Q)(qinit,ε)

Furthermore, by Lemma 10.1 we have:

~nw(h)�∆str,shp(qinit,ε) = (~nw(h)�∆str(qinit),ε)

We can therefore conclude as follows:

h ∈ L(A) ⇔ ~nw(h)�∆str(I × {ε})∩ (F × {ε}) , ∅
⇔ ~nw(h)�∆str,shp(I × {ε})∩ (F × {ε}) , ∅
⇔ ~nw(h)�∆str,prj(Q)(I × {ε})∩ (F × {ε}) , ∅

Finally, note that nondeterministic Sha
↓s can be evaluated on streams based on

determinization. However, we prefer to avoid Sha
↓ determinization, since it raises

additional challenges compared to the determinization of Shas.

254 Chapter 10. Projecting Evaluators for Earliest Membership

10.2 Earliest Membership with Projection

By applying the early evaluators from Section 10.1 to the earliest Sha
↓s with

subhedge projection Acgr(S)
e(S) from Chapter 9 we can test membership in an earliest

manner and with complete subhedge and prefix projection.

10.2.1 In-Memory Complexity

We start by using the early in-memory early evaluator with projection from Section

10.1.1.

Corollary 10.7. We fix a signature Σ. For any complete dSha A = (Q,Σ,∆, I ,F) with
schema S ⊆HΣ and hedge h ∈ S, membership h ∈ L(A) can be decided at the earliest time
point when it becomes certain. In-memory, this requires time O(1) per non-projected
node of h after a preprocessing time of O(|Acgr(S)

e(S) |+n
3d +m s), where d is the number of

difference relations, s the number of subsets of safe states in Qcgr(S)
e(S) , and n = |Q|, and m

the overall size of A. The preprocessing time is also in O(22n2+4n+2log(n) +n3d +m s).

Proof. Since A is complete, Theorem 6 shows that Acgr(S)
e(S) is earliest and complete for

subhedge projection for schema S. The early in-memory evaluator with projection of

A
cgr(S)
e(S) can be run on any input hedge h ∈ S to compute ~h�prj(sel). This requires time

O(1) per non-projected node of h after a preprocessing time ofO(|Acgr(S)
e(S) |+n

3d+m s).

Since Σ is fixed, the size |Acgr(S)
e(S) | is bounded by O(|Qcgr(S)

e(S) |
2). Lemma 9.2 shows that

|Qcgr(S)
e(S) | is in O(2n

2+2n+log(n)), so |Acgr(S)
e(S) | is in O(22n2+4n+2log(n)), and thus also the

preprocessing time is also in O(22n2+4n+2log(n) +n3d +m s).

The upper bound O(|Acgr(S)
e(S) | + n

3d +m s) is often feasible in practice of dShas

for regular XPath queries, as we illustrated already in Figure 9.3 for the regular

XPathMark queries. For these queries we have n ≤ 2d. Therefore, the dominating

part is n3d which in the worst case of A8 for the XPathMark is around 11.8 million.

Should this not be the case, then we can still avoid precomputing Acgr(S)
e(S) from

the input dSha A and FS statically. As before, we can compute only the part of

this automaton needed for evaluating the input hedge h dynamically on-the-fly.

If this part is small, then the overall time and space will go down considerably.

Preprocessing will no more be needed at all, but the needed part of it has to be

done at running time. This part may be way smaller than O(|Acgr(S)
e(S) |+ n

3d +m s)

though.

10.2. Earliest Membership with Projection 255

10.2.2 Streaming Complexity

We next use the early streaming evaluator with projection from Section 10.1.2.

Corollary 10.8. Let A = (Q,Σ,∆, I ,F) be a complete dSha with language language
L = L(A), and F ⊆ FS ⊆ Q define schema S = L(A[F/FS]). Earliest membership with
complete subhedge projection for L wrt S can be tested in streaming mode for any
hedge h ∈ S in time O(1) per non-projected letter of nw(h) after a preprocessing time of
O(|Acgr(S)

e(S) |+n
3d +m s), where d is the number of difference relations and s the number

of safe subsets of states in Qcgr(S)
e(S) . The space required is in O(depth(h) + |Acgr(S)

e(S) |).

Proof. By Theorem 6 the dSha↓ Acgr(S)
e(S) is earliest and sound and complete for

subhedge projection. By Lemma 3.39 and Proposition 10.4 we can thus obtain a

earliest streaming membership tester with complete subhedge and suffix projection

for a hedge h ∈ S by running the early streaming evaluator with projection of Acgr(S)
e(S)

on the nested word nw(h), i.e., by computing ~nw(h)�str,prj(sel). Since this Sha
↓ is

deterministic, the streaming evaluation can be done in time O(1) per letter of nw(h)

after a preprocessing time of O(|Acgr(S)
e(S) |+n

3d +m s).

As for the in-memory case, the upper bound O(|Acgr(S)
e(S) | + n

3d +m s) is often

feasible in practice of dShas for regular XPath queries, as we will illustrated

already in Figure 9.3 for the regular XPathMark queries. The dominating part for

precomputing Acgr(S)
e(S) is again the term n3d. Should the static precomputation of

A
cgr(S)
e(S) not be possible, then it is sufficient to create only the needed part of the Sha

↓

A
cgr(S)
e(S) for the evaluation of the hedge h dynamically on the fly.

Finally notice that the upper bound for the memory consumption O(depth(h) +

|Acgr(S)
e(S) |) can be improved. In an dynamic approach where we do not precompute

A
cgr(S)
e(S) , we only need to store the needed part of Acgr(S)

e(S) for evaluating h, which may

be much smaller. More importantly, we do not necessarily have to store stacks of

size O(depth(h)), since stacks need not to be changed when projecting subhedges.

The sizes of the stacks that we need to store are in O(depth(relevantL(A)
S (h))) where

relevantL(A)
S (h) is the hedge obtained from h by removing all subhedges that are

strongly irrelevant for L(A) and S.

Example 10.9. For XPath queries like /a/b/c, storing stacks of depth 3 is sufficient
for a streaming evaluator, when having a counter available for counting the current
level of nodes in subhedges that are parsed but projected otherwise. In our example, we

256 Chapter 10. Projecting Evaluators for Earliest Membership

have depth(relevantL(A)
S (h)) ≤ 3 for all h ∈ S. Therefore, our streaming algorithm for this

query will run for any hedge in a “stackless” manner.

Streaming algorithms that may use only a finite memory and one counter are

called stackless in [Barloy et al. 2021]. For XPath queries with descendant axes,

however, our streaming approach will not be stackless, due to the lack of descendant

projection (see e.g. [Sebastian & Niehren 2016]). Furthermore, in the few cases with

descendant axes, where stackless processing is possible (see [Barloy et al. 2021] for

a characterization), one needs to use semi-group techniques to figure out how this

can be done.

Part IV

Querying

Abstract
We present the first earliest query answering algorithm with complete
subhedge and suffix projection for regular monadic queries on hedges.
We implemented our algorithm in streaming mode in the Astream tool,
which permits to answer regular XPath queries on Xml streams. Our
experiments show that complete subhedge and suffix projection make
Astream competitive in time efficiency with the best existing streaming
tools for regular XPath queries, while having lower latency and being more
memory efficient in cases where these are not earliest.

Contents
11 Earliest Query Answering for Regular Monadic Queries 261

12 Experiments on Regular XPath Evaluation on Xml Streams 283

13 Conclusion and Future Work 297

Bibliography 301

Introduction
Monadic query answering is the algorithmic task in which we are most interested

in this thesis. It is more difficult than pure membership testing. To clarify the

relationship, membership testing is sometimes also called Boolean query answering.

For monadic query answering it is no longer sufficient to check constraint of the

input structure; one must also select all those elements that satisfy some constraints.

258 Contents

Earliest query answering (EQA) is the problem to enumerate all certain query

answers, each at the earliest event when it becomes certain. While previously

studied for stream processing, we propose to explore EQA for top-down hedge

evaluation, which can operate either in-memory or in streaming mode. Specifically,

we investigate EQA for regular monadic queries on hedges, defined by deterministic

stepwise hedge automata.

We start with an algorithm for earliest monadic query answering with complete

subhedge and suffix projection. This algorithm applies to regular monadic queries

defined by deterministic stepwise hedge automata. Previously, no earliest query

answering algorithm existed for regular monadic queries on hedges with complete

subhedge projection. The use of stepwise hedge automata has proven to be crucial

for obtaining complete subhedge projection.

To develop our algorithm, we establish a novel link between certain query answer-

ing and non-answers, and Σ-certain membership and non-membership of regular

languages. This allows us to base our earliest query answering algorithm on the

earliest dSha↓s with complete subhedge and suffix projection from Part III.

We implemented our earliest query algorithm in streaming mode in the Astream

tool, which enables answering regular XPath queries on Xml streams. The high

efficiency of Astream is confirmed by our experimental results for regular XPath

queries of XPathMark benchmark and Lick and Schmitz’ benchmark harvested

from practical Xslt and XQuery programs.

Chapter 11
Earliest Query Answering for
Regular Monadic Queries

Abstract
We present an earliest query answering (EQA) algorithm with complete
subhedge and suffix projection that requires time O(c) per non-projected
event. The measure c is the concurrency of the query, i.e., the number of
alive candidates of the query at the event, independently of which algo-
rithm is chosen. Our EQA algorithm can evaluate any regular monadic
query either in streaming mode or top-down in-memory. In addition to the
time per event, our EQA algorithm requires a polynomial preprocessing
time n the size of the earliest dSha↓ with complete subhedge and suffix pro-
jection. This possible exponential preprocessing time can be avoided when
admitting time O(c m) per event, where m is the size of the deterministic
stepwise hedge automaton defining the query.

Contents
11.1 Introduction . 262

11.2 Certainty for Monadic Queries . 263

11.2.1 Certain Answers . 264

11.2.2 Certain Non-answers . 264

11.2.3 Deciding Certainty . 265

11.3 Candidate Automata . 267

11.3.1 Construction . 267

11.3.2 In-Memory Correctness . 269

262 Chapter 11. Earliest Query Answering for Regular Monadic Queries

11.3.3 Streaming Correctness . 273

11.4 Earliest Monadic Query Answering 277

11.4.1 Earliest Candidate Automata 277

11.4.2 Adding Subhedge Projection 280

11.1 Introduction

We study the problem of enumerating the answer set of regular monadic node selec-

tion queries on hedges. The objective is to produce all certain query answers during

a top-down traversal in the earliest manner. The only previously EQA algorithm

was presented by Gauwin et al. [Gauwin et al. 2009b]. It runs in streaming mode

on nested words, but cannot support top-down in-memory evaluation. Complete

suffix projection is supported under the terms of earliest rejection and selection,

but subhedge projection is missing. Furthermore, the worst case time complexity

per event is quite high at O(c n2), where the measure c is the concurrency of the

query, i.e., the number of alive candidates for the query at the event, independently

of which algorithm chosen, and n is the number of states of an earliest dNwa for

the query.

We present an EQA algorithm for regular monadic queries on hedges with com-

plete subhedge and suffix projection. It requires time O(c) per non-projected event.

Our EQA algorithm can run either in streaming mode or top-down in-memory.

In addition to the time per event, it requires polynomial preprocessing time in

the size of the earliest dSha↓ with complete subhedge and suffix projection. This

preprocessing is possibly exponential in the size of the input dSha defining the

query, but can be avoided when admitting time O(c m) per event, where m is the

number of states of the input dSha defining the query.

Our approach is to adapt the general ideas of Gauwin et al. from dNwas to

dShas, while integrating our subhedge projection algorithm. Gauwin’s quadratic

factor n2 can be removed when allowing for a polynomial preprocessing time in

the size of the earliest dSha↓ with complete subhedge and suffix projection. If not

permitting it, the quadratic factor n2 can be reduced to a linear factor m, where

m is the overall size of the input dSha defining the query. Furthermore, Gauwin’s

cubic preprocessing in time O(n3) is removed all over. The reduction of the factor

n2 to m per event and the removal for the O(n3) preprocessing are due to the fact

that hedge accessibility is less costly for dShas than for dNwas even without any

preprocessing.

11.2. Certainty for Monadic Queries 263

Rather than compiling to dNwas as done by Gauwin et al. we compile the queries’

automata to dSha↓. This change simplifies the presentation considerably and is

otherwise not relevant. We use the earliest dSha↓s with complete suffix projection

from Chapter 8, as a replacement of Gauwin’s earliest dNwas for selection and

rejection. We combine them with dSha↓s with complete subhedge projection as

proposed in Chapter 7. We then show how to run earliest dSha↓s with complete

suffix and subhedge projection in order to enumerate all query answers in an

earliest manner and with complete suffix and subhedge projection. The earliest

dSha↓ is created completely at preprocessing time, or partially on need at running

time.

It should also be noticed that both EQA algorithms use different inputs for

defining regular monadic queries. While, the dSha that our algorithm inputs can be

converted in linear time to a dNwa as required for input by Gauwin’s algorithm. The

converse conversion, however, may require exponential time, except for single entry

dNwas where linear time is enough. Since Nwa determinization is problematic for

non single entry Nwas as noticed by [Niehren & Sakho 2021] and discussed in Part

II, the only dNwas that could be obtained by determinization in practice are single

entry, and can thus be converted to dShas in linear time. Therefore, the difference

in the class of the input automata between both algorithm is of low relevance.

We implemented our new EQA algorithm in the Astream tool and applied it to the

regular XPath queries from the XPathMark collection [Franceschet 2005b] scaling

to huge documents, and to the regular XPath queries extracted from practical Xslt

programs by Lick and Schmitz [Lick & Schmitz 2022] but on smaller documents.

It turns out that Astream runs efficiently on huge Xml documents (>100GB) for all

queries with low concurrency. Some queries can be answered in streaming mode

where the best existing non earliest query answering algorithm failed to be earliest

[Debarbieux et al. 2015].

11.2 Certainty for Monadic Queries

We move from the problem of language membership, i.e. the answering boolean

queries, to the problem to answer monadic queries. Since we want to do it in an earli-

est manner, we have to lift the notions of certain membership and non-membership

to notions of certain answers and non-answers of a monadic query.

264 Chapter 11. Earliest Query Answering for Regular Monadic Queries

11.2.1 Certain Answers

In order to justify early selection, we need the concept of certain answers. Let S ⊆
HΣ be a schema, Q : S→ 2N be a monadic query with schema S, and v ∈ prefs(NΣ)

a nested word prefix.

Definition 11.1. A natural number π ∈ N is a certain answer of a monadic query
Q : S→ 2N at nested word prefix v if the following holds:

π ∈ CAQ(v) ⇔def π ∈ pos(v) ∧ ∀h ∈ S. v ∈ prefs(nw(h))→ π ∈Q(h)

A natural number π is thus a certain answer of query Q, with schema S, at nested

word prefix v, if π is a position of v that answers the query on all completions of v

to some hedge h ∈ S. Certain answers can be safely selected, independently of how

the prefix continues to evolve to some hedge in the schema.

Example 11.2. We reconsider dSha A from Figure 8.1 that defines the monadic query
Q = L(A) for the running EQA Example 8.1. It selects in the nodes 1, . . . ,n− 1 if h does
not start with letter “a” and node n otherwise.

The fact that position 3 is a certain query answer of Q at the prefix v = aaa〈a, i.e.,
3 ∈ CAQ(v) can be seen as follows. The subhedge h′′, that will follow v, is irrelevant
since prefix v leads to state 3 in the run, which can no more be changed by any hedge.
So when closing the subtree 〈h〉 where h = a · h′′, the apply rule 5@3→ 9 of A has to be
used. This leads to state 9, which is safe for selection on the upper level, showing that all
further continuations nw(h′) of prefix v ·nw(〈h〉) lead to acceptance.

11.2.2 Certain Non-answers

In analogy, we can define that π is certainly a non-answer of Q with schema S at

nested word prefix v.

Definition 11.3. A natural number π is certainly a non-answer of a monadic query
Q : S→ 2N at nested word prefix v if the following holds:

π ∈ CNAQ(v) ⇔def π ∈ nod(v) ∧ ∀h ∈ S. v ∈ prefs(nw(h))→ π <Q(h)

Once a node π becomes a certain non-answer then it can be safely rejected.

Example 11.4. The nodes π ∈ {1, ...,n−1}, for instance, are certain non-answers on our
example query at prefix v = an〈a, i.e., π ∈ CNAQ(v).

11.2. Certainty for Monadic Queries 265

Definition 11.5. We call a node π alive for a monadic query Q : S→ 2N at a nested
word prefix v if π is neither a certain answer nor a certain non-answer of Q at v:

π ∈ aliveQ(v) ⇔ π < CAQ(v)∧π < CNAQ(v)

The concurrency c of a monadic query Q at v is its number of alive nodes at prefix v.

Example 11.6. For the shorter prefix v = aaa〈, for instance, all n nodes in {1, . . . ,n}
are alive, so π ∈ aliveQ(v). This shows that the concurrency of this query at prefix v is
equal to n. Therefore, these nodes need to be stored by any top-down query answering
algorithm at this event.

11.2.3 Deciding Certainty

We next link certain query answers to certain Σ-membership from Definition 8.3.

Lemma 11.7. For any schema S ⊆ HΣ, prefix v ∈ prefs(NΣ), language L ⊆ HΣx , and
candidate α = [x/π] with π ∈ pos(v):

Σ-cert-memL
x-str(S)(v ∗α)⇔ π ∈ CAqryS(L)(v)

Proof. “⇒” For the forward implication, we assume Σ-cert-memL
x-str(S)(v ∗α). We

fix h ∈ S arbitrarily such that v ∈ prefs(nw(h)). Then there exists w ∈ Σ̂∗ such that

v ·w = nw(h). Let h′ = h ∗α. Note that h′ ∈ x-str(S) since α(x) = π ∈ nod(h). Since h′ =

nw((v∗α)·w), the certainty membership Σ-cert-memL
x-str(S)(v∗α) yields h′ ∈ L. Hence,

α ∈ qryS(L)(h). Since h ∈ S was arbitrary, this show that α(x) = π ∈ CAqryS(L)(v)

“⇐” For the backward implication, we assume π ∈ CAqryS(L)(v). We fix h′ ∈ x-str(S)

andw ∈ Σ̂∗ arbitrarily such that (v∗α)·w ∈ nw(h′). Let h = nw(v·w). Since h′ ∈ x-str(S)

it follows that h ∈ S. Furthermore v ∈ prefs(nw(h)), and since π is a certain answer

of qryS(L) on v, it follows that α(x) = π ∈ qryS(L)(h). Thus h′ = h ∗α ∈ L.

Proposition 11.8. Let A = (Σx,Q,∆, I ,F) be a dSha such that ∆|Σ is complete, and
S ⊆HΣ a schema. Let D0 ∈ IΣ-cert-mem(S), v ∈ prefs(NΣ), and π ∈ pos(v). Let:

((q,Q),σ) = ~v ∗ [x/π]�∆
Σ-cert-mem

str (D0,ε)

It then holds that:

π ∈ CAqryS(L(A))(v) ⇔ q ∈Q

266 Chapter 11. Earliest Query Answering for Regular Monadic Queries

Proof. Let α = [x/π] and ((q,Q),σ) = ~v ∗α�∆Σ-cert-mem

str (D0,ε).

“⇒" For the forward direction, we assume α(x) ∈ CAqryS(L(A))(v). Lemma 11.7

yields Σ-cert-memL(A)
x-str(S)(v ∗α). Since ∆|Σ is complete, Proposition 8.9 shows q ∈Q .

“⇐" For the backward direction, we assume that q ∈ Q . Since ∆|Σ is complete,

Proposition 8.9 shows Σ-cert-memL(A)
x-str(S)(v ∗α). Lemma 11.7 thus proves that α(x) ∈

CAqryS(L(A))(v).

We can now link certain query answers and non-answers to the earliest automa-

ton.

Proposition 11.9 (Characterizing certain query answers and non-answers). Let
A = (Σx,Q,∆, I ,F) be a complete dSha and S ⊆ HΣ a schema. Let D0 ∈ Ie(S). For any
prefix v ∈ prefs(NΣ):

- CAqryS(L(A))(v) = {π ∈ pos(v) | ∃σ ∈ (Qe)∗. (sel,σ) = ~v ∗ [x/π]�∆estr(D0,ε)}

- CNAqryS(L(A))(v) = {π ∈ pos(v) | ~v ∗ [x/π]�∆estr(D0,ε) is undefined}

Proof. Let (q0,Q0,R0) =D0 and π ∈ pos(v).

- Let ((q,Q),σ) = ~v ∗ [x/π]�∆
Σ-cert-mem

str ((q0,Q0),ε). By Proposition 11.9, we have π ∈
CNAqryS(L(A))(v) if and only if q ∈Q . This is equivalent to that there exists σ ∈ (Qe)∗

such that (sel,σ) = ~v ∗ [x/π]�∆estr(D0,ε).

- Let ((q,R),σ) = ~v∗[x/π]�∆
Σ-cert-mem

str ((q0,R0),ε). The complement automaton A =

(Σx,Q,∆, I ,F) has the same transition rules than A. By Proposition 11.9, we have π ∈
CNAqryS(L(A))(v) if and only if q ∈ R. Since q ∈ R, it follows that ~v∗[x/π]�∆estr(D0,ε) is

undefined.

This characterization can be used for deciding whether a node π is a certain

query answer or non-answer of qryS(L(A)) at prefix v. The proposition shows

that it is sufficient to run the earliest automaton Ae(S) on v∗[x/π] to compute ~v ∗
[x/π]�∆estr(D0,ε). If the result is undefined then π ∈ CNAqryS(L(A))(v). Otherwise, if

the result exists, π ∈ CNAqryS(L(A))(v) if and only if the result contains state sel.

11.3. Candidate Automata 267

11.3 Candidate Automata

We now move to the problem of how to answer monadic queries defined by dSha↓

in a top-down manner.

Any monadic query answering algorithm receives as inputs an automaton with

signature Σ∪ {x} defining the query and a hedge h ∈ HΣ. A naive query evaluation

algorithm guesses all possible nodes π of where to insert x into h, and runs A

on h∗[x/π] to see whether the guess was successful. In the worst case, however,

the algorithm has to buffer all candidates [x/π] where p ∈ pos(h). In a less naive

manner, the algorithm inserts x only at those nodes for which the current state has

an outgoing x-transition rule.

One idea to obtain such a naive query answering algorithm is to compile the

input dSha↓ to an infinitary dSha↓ – also called dSha↓∞ – which is like a dSha↓

except that its alphabet, state space, and rule set may be infinite. The top-down

evaluator of this dSha↓∞ on the input hedge then performs the guessing and testing

of the naive algorithm, either in-memory or in streaming mode.

11.3.1 Construction

Let x be the selection variable of the input dSha↓ defining the monadic query.

Our algorithm will generate a set of answer candidates [x/π] binding the selection

variable x to positions π of the input hedge. Since the input hedge is not fixed

at before hand, we have to consider the infinite set of potential candidates for all

possible input hedges:

Cands = {α | α : {x} ↪→N}

Let A = (Σx,Q,∆, I ,F) be the input dSha↓ defining the monadic query. We compile

A to the candidate automaton Acnd which is the following dSha↓∞:

cnd(A) = (Σ∪N,Qcnd,∆cnd, Icnd,Fcnd)

It has the infinite alphabet Σ∪N, which does not contain the selection variable x

any more, and the following set of states:

Qcnd = 2Q×Cands×2{x}

Icnd = {D0} where D0 = {(q, [],∅) | q ∈ I}
Fcnd = {D ∈ Qcnd | (q, [x,π],∅) ∈D, q ∈ F, π ∈N}

268 Chapter 11. Earliest Query Answering for Regular Monadic Queries

0[]∅ 2[]∅
5[x/1]∅

4 = 2@∆3
4 = 8@∆3
9 = 5@∆3

D
4[]∅

9[x/2]∅
4[x/1]∅

1[]∅
1[x/1]{x}
1[x/2]{x}

D=


2[]∅

8[x/1]∅
5[x/2]∅

3[]∅
3[x/1]{x}
3[x/2]{x}

 = E

E

a a

a

@
@
@

〈〉

Figure 11.1: The run of the candidate automaton cnd(A) for the dSha A in Figure 8.1
on the hedge a · a · 〈a〉.

The candidate automaton reads an input hedge h ∈ HΣ, guesses all possible node

π ∈ nod(h), and runs A on all hedges h∗[x/π] simultaneously. If the automaton goes

to some state D ∈ Qcnd and (q,α,V) ∈ D, then the candidate α was created by A,

when the node α(x) was visited before the current node by depth-first search. The

candidate α was then evaluated to state q. The set V ⊆ dom(α) contains x if x was

bound to some node α(x) in the context, i.e., outside the current subtree.

The set of transition rules of the candidate automaton ∆cnd contains the following

transition rules for all D,E ∈ Qcnd, a ∈ Σ, V ⊆ {x}, and π ∈N:

D
a−→ {(a∆(q),α,V) | (q,α,V) ∈D}

D
π−→ {(x∆(q), [x/π],∅) | (q, [],∅) ∈D} ∪D

D
〈〉
−→ {(p,α,dom(α)) | q

〈〉
−→ p ∈ ∆, (q,α,V) ∈D}

D@E → {(q@∆p,α′ ,V) | (q,α,V) ∈D, (p,α′ ,dom(α)) ∈ E,α ∈ {[],α′}}

When reading a position π ∈N in a state D that contains a triple with the empty

candidate (q, [],∅), a new candidate [x/π] is created, and the triple (x∆(q), [x/π],∅) is

added to D.

When starting a subtree, the current state D of Acnd is changed as follows: for any

triple (q,α,V) ∈ D, the next state of cnd(A) contains the triple (p,α,dom(α)) such

that q
〈〉
−→ p ∈ ∆. When ending a subtree, the state D of the parent hedge is applied

to the current state E as follows: any triple (q,α,V) ∈ D must be matched with

some triple (p,α′ ,dom(α)) ∈ E, so that Acnd can continue in q@∆p. Matching here

means that either α = α′ or, α′ = [x/π] and α = []. This is expressed by the condition

α ∈ {[],α′}. Note that if α = [] matches α′ = [x/π] then dom(α) = ∅ so that π was not

bound in the context. This is where the knowledge of the context is needed.

Example 11.10. Let A be the dSha in Figure 8.1. The run of the candidate automaton
cnd(A) on the hedge a · a · 〈a〉 is given in Figure 11.1. There, tuples in the states are

11.3. Candidate Automata 269

written without commas and parentheses, for instance (2, [],∅) as 2[]∅ and (1, [x/1], {x})
as 1[x/1]{x}. The run of cnd(A) first consumes a · a and goes into the state:

D = {2[]∅,8[x/1]∅,5[x/2]∅}

It contains the candidates [x/1] and [x/2] for the two leading a positions, plus
the empty candidate []. When opening the subtree 〈a〉, the run goes into the set
{1[]∅,1[x/1]{x},1[x/2]{x}}. The state of each of the candidates is set to the unique
tree initial state 1 ∈ 〈〉∆. Furthermore, the set memoizes that the candidates [x/1] and
[x/2] were bound in the context. It then consumes the letter a and reaches the state:

E = {3[]∅,3[x/1]{x},3[x/2]{x}}

When closing the subtree, the tuples of the parent’s states D in state q are matched
with the tuples of E in state p, as illustrated in the figure, so that one can apply rule
q@p→ q@∆p of A. The tuple in state 5 of D, for instance, matches the tuple in state 3 of
E, so cnd(A) continues the candidate [x/2] in state 9 = 5@∆3. Since 9 ∈ FA, position 2 is
selected, i.e. 2 ∈ qryS(L(A))(a · a · 〈a〉).

11.3.2 In-Memory Correctness

The correctness of the candidate automaton is stated by the following lemma.

Lemma 11.11. Let Icnd = {D0}. Then:

~ann-nod(h)�∆
cnd

(D0) = {(q,α,∅) | q ∈ ~h ∗α�∆(I), α : {x} ↪→ nod(h)}

Proof. If I = ∅ then D0 = ∅ and the lemma is trivial. Otherwise there exists a unique

state q0 ∈ Q such that I = {q0} and D0 = {(q0, [],∅)}.

We call a state D ∈ Qcnd admissible if any (q,α,V) ∈D satisfies V ⊆ dom(α). Note

that all states accessible from D0 via ∆cnd are admissible.

For any n ∈N and variable assignment α : {x} ↪→ {n, . . . ,n + |h| − 1} we define a

hedge h ∗n α ∈ HΣx by substituting in ann-nodn(h) the position α(x) if defined by x

and removing all other positions:

h ∗n α = ann-nodn(h)[α(x)/x][π/ε | π , α(x)]

Clearly, h ∗α = h ∗1 α. We call a state D ∈ Qcnd applicable to h with offset n if for all

(_, [x/π],V) ∈D it holds that π < n.

270 Chapter 11. Earliest Query Answering for Regular Monadic Queries

Claim 11.12. We will prove for all h ∈ HΣ, n ∈N, and admissible states D ∈ Qcnd that
are applicable with offset n:

~ann-nodn(h)�∆
cnd

(D)

=
{(~h ∗n [x/π]�∆(q), [x/π],∅)

∣∣∣ π ∈ {n, . . . ,n+ |h| − 1}, (q, [],∅) ∈D }
∪{(~h�∆(q),α,V)

∣∣∣ (q,α,V) ∈D }

With D = D0 and n = 0 this claim yields exactly the lemma. The proof of the

claim is by induction on the structure of h, using the facts that admissibility and

applicability are maintained while the offsets are adapted.

So let h ∈ HΣ, n ∈N, and D ∈ Qcnd an admissible state that is applicable with

offset n. We distinguish cases according to all possible forms of h:

Case h = a. We have ann-nodn(h) = a ·n and h ∗n [x/n] = a · x.

~ann-nodn(h)�∆
cnd

(D) = ~a ·n�∆cnd
(D)

= {(x∆(a∆(q)), [x/n],∅) | (q, [],∅) ∈D}
∪ {(a∆(q),α,V) | (q,α,V) ∈D}
= {(~a ·n�∆(q), [x/n],∅)

∣∣∣ (q, [],∅) ∈D }
∪ {(~a�∆(q),α,V)

∣∣∣ (q,α,V) ∈D }
= {(~h ∗n [x/n]�∆(q), [x/n],∅)

∣∣∣ (q, [],∅) ∈D }
∪ {(~h�∆(q),α,V)

∣∣∣ (q,α,V) ∈D }

Case h = ε. We have ann-nodn(h) = ε and h ∗n [] = ε.

~ann-nodn(h)�∆
cnd

(D) = ~ε�∆
cnd

(D)

= D

= {(~h ∗n [x/π]�∆(q), [x/π],∅)
∣∣∣ π ∈ ∅, (q, [],∅) ∈D }

∪ {(~h�∆(q),α,V)
∣∣∣ (q,α,V) ∈D }

Case h = h1 · h2. Let n1 = n + |h1|. Then we have ann-nodn(h) = ann-nodn(h1) ·
ann-nodn1

(h2). Hence:

~ann-nodn(h)�∆
cnd

(D) = ~ann-nodn1
(h2)�∆

cnd
(~ann-nodn(h1)�∆

cnd
(D))

LetD1 = ~ann-nodn(h1)�∆
cnd

(D), D2 = ~ann-nodn1
(h2)�∆

cnd
(D1) and n2 = n1 + |h2|. The

11.3. Candidate Automata 271

induction hypothesis applied to h1, D, and n yields:

D1 = ({(~h1 ∗n [x/π]�∆(q), [x/π],∅)
∣∣∣ π ∈ {n, . . . ,n1 − 1}, (q, [],∅) ∈D}

∪ {(~h1�
∆(q),α,V)

∣∣∣ (q,α,V) ∈D })

Note that D1 is applicable with offset n1. The induction hypothesis applied to h2,

D1, and n1 yields:

D2 = {(~h2 ∗n1 [x/π]�∆(q1), [x/π],∅)
∣∣∣ π ∈ {n1, . . . ,n2 − 1}, (q1, [],∅) ∈D1}

∪ {(~h2�
∆(q1),α,V)

∣∣∣ (q1,α,V) ∈D1 }

Hence,

~ann-nodn(h)�∆
cnd

(D)

= {(~h2 ∗n1 [x/π]�∆(~h1�
∆(q)), [x/π],∅)

∣∣∣ π ∈ {n1, . . . ,n2 − 1}, (q, [],∅) ∈D}
∪ {(~h2�

∆(~h1 ∗n [x/π]�∆(q)), [x/π],∅)
∣∣∣ π ∈ {n, . . . ,n1 − 1}, (q, [],∅) ∈D}

∪ {(~h2�
∆(~h1�

∆(q)),α,V)
∣∣∣ (q,α,V) ∈D }

Note that ~h2 ∗n1 [x/π]�∆(~h1�
∆(q)) = (~h1 · h2 ∗n [x/π]�∆(q) for any π ∈ {n, . . . ,n2 − 1},

and similarly, ~h2�
∆(~h1∗n[x/π]�∆(q)) = (~h1·h2∗n[x/π]�∆(q) for any π ∈ {n, . . . ,n1−1}.

Thus:

~ann-nodn(h)�∆
cnd

(D)

= {(~h1 · h2 ∗n [x/π]�∆(q), [x/π],∅)
∣∣∣ π ∈ {n, . . . ,n2 − 1}, (q, [],∅) ∈D}

∪ {(~h1 · h2�
∆(q),α,V)

∣∣∣ (q,α,V) ∈D }
= {(~h ∗n [x/π]�∆(q), [x/π],∅)

∣∣∣ π ∈ {n, . . . ,n+ |h| − 1}, (q, [],∅) ∈D}
∪ {(~h�∆(q),α,V)

∣∣∣ (q,α,V) ∈D }

Case h = 〈h1〉. Thus ann-nodn(h) = 〈n · ann-nodn+1(h1)〉. Let:

D ′ = {(〈〉∆(q),α,dom(α))
∣∣∣ (q,α,V) ∈D}

Thus D
〈〉
−→D ′ wrt ∆cnd and:

~ann-nodn(h)�∆
cnd

(D) = ~〈n · ann-nodn+1(h1)〉�∆cnd
(D)

= D@∆cnd
~n · ann-nodn+1(h1)�∆

cnd
(D ′)

= D@∆cnd
~ann-nodn+1(h1)�∆

cnd
(~n�∆

cnd
(D ′))

Let D1 =D ′ ∪ {(x∆(〈〉∆(q)), [x/n],∅)
∣∣∣ (q, [],∅) ∈D} and D2 = ~ann-nodn+1(h1)�∆

cnd
(D1).

272 Chapter 11. Earliest Query Answering for Regular Monadic Queries

Then:

~ann-nod(h)n�∆
cnd

(D) = D@∆cnd
~ann-nodn+1(h1)�∆

cnd
(D1) = D@∆cnd

D2

Let and n1 = n + |h1|. Note that D1 is applicable with offset n1. The induction

hypothesis applied to h1, D1 and n+ 1 shows:

D2 = {(~h1�
∆(q1),α,V)

∣∣∣ (q1,α,V) ∈D1}
∪ {(~h1 ∗n+1 [x/π]�∆(q1), [x/π],∅)

∣∣∣ π ∈ {n+ 1, . . . ,n1}, (q1, [],∅) ∈D1}

Thereby and by the definition of D1 we obtain:

D2 = {(~h1�
∆(〈〉∆(q))),α,dom(α))

∣∣∣ (q,α,V) ∈D}
∪ {(~h1�

∆(x∆(〈〉∆(q))), [x/n],∅)
∣∣∣ (q, [],∅) ∈D}

∪ {(~h1 ∗n+1 [x/π]�∆(〈〉∆(q)), [x/π],∅)
∣∣∣ π ∈ {n+ 1, . . . ,n1}, (q, [],∅) ∈D}

With this equation, we can develop the right hand side of the equation

~ann-nodn(h)�∆
cnd

(D) = D@∆cnd
D2 by applying the definition of the closing rule

of ∆cnd:

D@∆cnd
D2 = {(q@~h1�

∆(〈〉∆(q)),α,V)
∣∣∣ (q,α,V) ∈D}

∪ {(q@~n · h1�
∆(〈〉∆(q)), [x/n],∅)

∣∣∣ (q, [],∅) ∈D}
∪ {(q@~h1 ∗n+1 [x/π]�∆(〈〉∆(q)), [x/π],∅)

∣∣∣ π ∈ {n+ 1, . . . ,n1}, (q, [],∅) ∈D}

Note that the admissibility of D ensures above that [x/n] cannot match with any

(q, [], {x}) ∈D. We next apply the definition of ~〈h1〉�∆ to show:

D@∆cnd
D2 = {(~〈h1〉�∆(q),α,V)

∣∣∣ (q,α,V) ∈D}
∪ {(~〈n · h1〉�∆(q), [x/n],∅)

∣∣∣ (q, [],∅) ∈D}
∪ {(~〈h1 ∗n+1 [x/π]〉�∆(q), [x/π],∅)

∣∣∣ π ∈ {n+ 1, . . . ,n1}, (q, [],∅) ∈D}

Since h = 〈h1〉 we get:

D@∆cnd
D2 = {(~h�∆(q),α,V)

∣∣∣ (q,α,V) ∈D}
∪ {(~h ∗n [x/n]�∆(q), [x/n],∅)

∣∣∣ (q, [],∅) ∈D}
∪ {(~h ∗n [x/π]�∆(q), [x/π],∅)

∣∣∣ π ∈ (n+ 1, . . . ,n1), (q, [],∅) ∈D}
= {(~h�∆(q),α,V)

∣∣∣ (q,α,V) ∈D}
∪ {(~h ∗n [x/π]�∆(q), [x/π],∅)

∣∣∣ π ∈ (n, . . . , |h| − 1), (q, [],∅) ∈D}

Since ~ann-nodn(h)�∆
cnd

(D) =D@∆cnd
D2 the inductive statement follows.

11.3. Candidate Automata 273

We finally notice that the restriction of states D to be applicable with offset n is not

strictly necessary. The claim remains true when omitting it.

The candidate automaton thus computes the answer set of the query as follows:

Proposition 11.13 (Correctness of the candidate automaton). If D0 ∈ Icnd then:

qryS(L(A))(h) = {π | (q, [x/π],∅) ∈ ~ann-nod(h)�∆
cnd

(D0), q ∈ F}

Proof. LetD0 ∈ Icnd. If I = ∅ thenD0 = ∅ and the lemma is trivial. Otherwise, I = {q0}
for some q0 ∈ Q and D0 = {(q0, [],∅)}. Furthermore, let α = [x/π] for some π ∈N.

By Lemma 11.11, we have that q = ~h ∗ α�∆(q0) iff (q,α,∅) ∈ ~ann-nod(h)�∆
cnd

(D0).

Hence:

π ∈ qryS(L(A))(h) iff π = α(x) and h ∗α ∈ L(A)

iff π = α(x) and ~h ∗α�∆(q0) ∈ F
iff π = α(x) and ∃q ∈ F. (q,α,∅) ∈ ~ann-nod(h)�∆

cnd
(D0).

Corollary 11.14. qryS(L(A))(h) , ∅⇔ ann-nod(h) ∈ L(Acnd)

Proof. Let Icnd = {D0}. By Lemma 11.13, qryS(L(A))(h) , ∅ if and only if there exists

q ∈ F and α : {x} →N such that (q,α,∅) ∈ ~ann-nod(h)�∆
cnd

(D0). This is equivalent

to ~ann-nod(h)�∆
cnd

(D0) ∈ Fcnd and thus to ann-nod(h) ∈ L(Acnd).

11.3.3 Streaming Correctness

Lemma 11.15. Let A = (Q,Σ,∆, I ,F) be a dSha↓ with signature Σx such that ∆|Σ is
complete. Then there exists q0 such that I = {q0}. Then Icnd = {M0} where M0 =

{(q0, [],∅)}. Let v ∈ prefs(NΣ) be a nested word prefix and M ∈ Qcnd such that:

∃σ ′ . (M,σ ′) = ~ann-nod(v)�∆
cnd

str (M0,ε)

Then for any variable assignment α : {x} → pos(v), and q ∈ Q:

∃σ. (q,σ) = ~v ∗α�∆str(q0,ε) ⇔ ∃V . (q,α,V) ∈M

Proof. By induction on the structure of v. Let v ∈ prefs(NΣ) and M ∈ Qcnd such that:

∃σ. (M,σ) = ~ann-nod(v)�∆
cnd

str (M0,ε)

274 Chapter 11. Earliest Query Answering for Regular Monadic Queries

Consider a variable assignment α : {x} → pos(v), and q ∈ Q. In the base case, v is the

empty word:

Case v = ε. Then, ann-nod(v) = ε and ~ann-nod(v)�∆
cnd

str (M0,ε) = (M0,ε). Hence,

M =M0. On the other hand, ~v ∗α�∆str(q0,ε) is defined only if α = [], and then it is

equal to (q0,ε). So

∃V . (q,α,V) ∈M ⇔ q = q0 ∧α = []

⇔ (q,ε) = ~v ∗α�∆str(q0,ε)

⇔ ∃σ. (q,σ) = ~v ∗α�∆str(q0,ε)

For the inductive step, there are three cases depending on the type of the last letter

of v. Then, there are a ∈ Σ or v′ ,v′′ ∈ prefs(NΣ) such that:

Case v = v′ · a. So there exists π ∈N such that ann-nod(v) = ann-nod(v′) · a ·π. Let

(M ′ ,_) = ~ann-nod(v′)�∆
cnd

str (M0,ε). We consider two subcases depending on whether

α binds x to the last position π or not:

Subcase α = [x/π]. We have (q,α,_) ∈M iff exists q′ and q′′ such that (q′ , [],∅) ∈M ′

and q′
a−→ q′′

x−→ q ∈ ∆. By induction hypothesis, (q′ , [],∅) ∈ M ′ is equivalent to

(q′ ,_) = ~v′ ∗ []�∆str(q0,ε). Hence, (q,α,_) ∈M iff exists q′ and q′′ such that (q′ ,_) =

~v′ ∗[]�∆str(q0,ε) and q′
a−→ q′′

x−→ q ∈ ∆. And this is equivalent to (q,_) = ~v ∗α�∆str(q0,ε).

Subcase α , [x/π]. We have (q,α,_) ∈ M iff exists q′ such that (q′ ,α,_) ∈ M ′ and

q′
a−→ q ∈ ∆. By induction hypothesis, (q′ ,α,_) ∈ M ′ is equivalent to (q′ ,_) = ~v′ ∗

α�∆str(q0,ε). Hence, (q,α,_) ∈M iff exists q′ such that (q′ ,_) = ~v′ ∗ α�∆str(q0,ε) and

q′
a−→ q ∈ ∆. And this is equivalent to (q,_) = ~v ∗α�∆str(q0,ε).

Case v = v′ · 〈. Hence, ann-nod(v) = ann-nod(v′) · 〈. Let (M ′ ,_) =

~ann-nod(v′)�∆
cnd

str (M0,ε). If α binds some position to x then it must be a po-

sition of ann-nod(v′). So, (q,α,_,Q) ∈ M iff q = 〈〉∆ and there exist q′ ∈ Q and

Q ′ ⊆ Q such that (q′ ,α,_,Q ′) ∈ M ′ and sdown∆|Σ(q′ ,Q ′) = Q . By induction

hypothesis, (q′ ,α,_,Q ′) ∈ M ′ is equivalent to ((q′ ,Q ′),_) = ~v′ ∗ α�∆str(q0,ε).

Hence, (q,α,_,Q) ∈ M iff q = 〈〉∆ and there exist q′ ∈ Q and Q ′ ⊆ Q such that

((q′ ,Q ′),_) = ~v′ ∗ α�∆str(q0,ε) and sdown∆|Σ(q′ ,Q ′) = Q . The latter is equivalent to

((q,Q),_) = ~v ∗α�∆str(q0,ε).

Case v = v′ · 〈 · v′′ · 〉 and v′′ is well-nested. Let n = #Σ(v). We have ann-nod(v) =

ann-nod(v′) · 〈 · n · ann-nod(v′′)n+1〉. Let σ be the stack in the second component

of (M,_). The run of cnd(A) leading to (M,σ) must have the following form: Let

11.3. Candidate Automata 275

(M ′ ,σ) = ~ann-nod(v′)�∆
cnd

str (M0,ε), and

M0 = {(q0,α
′ ,dom(α′),sdown∆|Σ(q′ ,Q ′)) | (q′ ,α′ ,_,Q ′) ∈M ′}.

Let (M ′′ ,_) = ~n · ann-nod(v′′)�∆
cnd

str (M0,σ ·M ′). We distinguish two cases, depending

on whether α binds x to a position of v′ or not.

Case α = [x/π] where π ∈ pos(v′). We have v ∗α = (v′ ∗α) · 〈v′′〉. We consider both

implications independently.

“⇒” We suppose that (q,α,_,Q) ∈ M and have to show that ((q,Q),_) = ~v ∗
α�∆str(q0,ε). Since (q,α,_,Q) ∈ M there is (q′′ ,α, {x},S ′′) ∈ M ′′, (q′ ,α,_,Q) ∈ M ′

such that S ′′ = sdown∆|Σ(q′ ,Q) and q = q′@∆q′′. By induction hypothesis, (M ′ ,σ) =

~ann-nod(v′)�∆
cnd

str (M0,ε) and (q′ ,α,_,Q) ∈M ′ imply that there exists σ ′ such that

((q′ ,Q),σ ′) = ~v′ ∗α�∆str(q0,ε). The induction hypothesis applied to (q′′ ,α, {x},Q ′′) ∈
M ′′ implies that ((q′′ ,Q ′′),_) = ~v′′�∆str(〈〉∆,σ ′ · (q′ ,Q)). Since v′′ is well nested, the

stack component of ((q′′ ,Q ′′),_) must be unchanged, i.e. equal to σ ′ · (q′ ,Q). Hence,

we can apply the closing rule of A showing that ((q′@∆q′′ ,Q),σ ′) = ~v ∗α�∆str(q0,σ).

Since q′@∆q′′ = q it follows that ((q,Q),_) = ~v ∗α�∆str(q0,ε) as required.

“⇐” We suppose that ((q,Q),_) = ~v ∗α�∆str(q0,σ) and have to show that (q,α,_,Q) ∈
M. Let ((q′ ,Q ′),_) = ~v′ ∗α�∆str(q0,σ). By induction hypothesis, we have (q′ ,α,_,Q ′) ∈
M ′. Let ((q′′ ,Q ′′),_) = ~v′′�∆str(q0,σ · (q′ ,S ′). So Q ′′ = sdown∆|Σ(q′ ,S ′). By induction

hypothesis, we have (q′′ , [],_,Q ′′) ∈M ′′. Hence also (q′′ ,α, {x},Q ′′) ∈M ′′. The closing

rule permits to match the tuples with α of M ′ and M ′′ yielding (q′@∆q′′ ,α,_,Q ′) ∈
M. Since α can only belong to a single tuple of M it follows that q′@q′′ = q and

Q ′ = Q . Hence, (q,α,_,Q) ∈M.

Case α = [x/n]. So we have v ∗ α = v′ · 〈x · v′′〉. We consider both implications

independently.

“⇒” We suppose that (q,α,_,Q) ∈ M and have to show that ((q,Q),_) = ~v ∗
α�∆str(q0,ε). Since (q,α,_,Q) there are (q′′ ,α, {x},S ′′) ∈ M ′′ and (q′ , [],∅,Q) ∈ M ′

such that S ′′ = sdown∆|Σ(q′ ,Q) and q = q′@∆q′′. By induction hypothesis, (M ′ ,σ) =

~ann-nod(v′)�∆
cnd

str (M0,ε) and (q′ , [],∅,Q) ∈M ′ imply that there exists σ ′ such that

((q′ ,Q),σ ′) = ~v′ ∗ []�∆str(q0,ε). The induction hypothesis applied to (q′′ ,α, {x},Q ′′) ∈
M ′′ implies that ((q′′ ,Q ′′),_) = ~x ·v′′�∆str(〈〉∆,σ ′ · (q′ ,Q)). Since v′′ is well nested, the

stack component of ((q′′ ,Q ′′),_) must be unchanged, i.e. equal to σ ′ · (q′ ,Q). Hence,

we can apply the closing rule of A showing that ((q′@∆q′′ ,Q),σ ′) = ~v ∗α�∆str(q0,σ).

Since q′@∆q′′ = q it follows that ((q,Q),_) = ~v ∗α�∆str(q0,ε) as required.

276 Chapter 11. Earliest Query Answering for Regular Monadic Queries

“⇐” We suppose that ((q,Q),_) = ~v ∗α�∆str(q0,σ) and have to show that (q,α,_,Q) ∈
M. Let ((q′ ,Q ′),_) = ~v′�∆str(q0,σ). By induction hypothesis, we have (q′ , [],_,Q ′) ∈
M ′. Let ((q′′ ,Q ′′),_) = ~x ·v′′�∆str(q0,σ · (q′ ,S ′). So Q ′′ = sdown∆|Σ(q′ ,S ′). By induction

hypothesis, we have (q′′ ,α,_,Q ′′) ∈M ′′. The closing rule permits to match the tuple

with α in M ′′ with the tuple with [] of M ′. This yields (q′@∆q′′ ,α,_,Q ′) ∈M. Since

α can only belong to a single tuple of M it follows that q′@q′′ = q and Q ′ = Q .

Hence, (q,α,_,Q) ∈M.

Case else. So now either α = [] or α = [x/π] with π − n− 1 ∈ pos(v′′) and we have

v ∗α = v′ ∗ ·〈v′′ ∗α〉. We consider both implications independently.

“⇒” We suppose that (q,α,_,Q) ∈ M and have to show that ((q,Q),_) = ~v ∗
α�∆str(q0,ε). Since (q,α,_,Q) there are (q′′ ,α,∅,S ′′) ∈M ′′ and (q′ , [],∅,Q) ∈M ′ such

that S ′′ = sdown∆|Σ(q′ ,Q) and q = q′@∆q′′. By induction hypothesis, (M ′ ,_) =

~ann-nod(v′)�∆
cnd

str (M0,ε) and (q′ , [],_,Q) ∈M ′ imply that there exists σ ′ such that

((q′ ,Q),σ ′) = ~v′∗[]�∆str(q0,ε). The induction hypothesis applied to (q′′ ,α,_,Q ′′) ∈M ′′

implies that ((q′′ ,Q ′′),_) = ~v′′ ∗ α�∆str(〈〉∆,σ ′ · (q′ ,Q)). Since v′′ is well nested, the

stack component of ((q′′ ,Q ′′),_) must be unchanged, i.e. equal to σ ′ · (q′ ,Q). Hence,

we can apply the closing rule of A showing that ((q′@∆q′′ ,Q),σ ′) = ~v ∗α�∆str(init,σ).

Since q′@∆q′′ = q it follows that ((q,Q),_) = ~v ∗α�∆str(init,ε) as required.

“⇐” We suppose that ((q,Q),_) = ~v ∗ α�∆str(init,σ) and have to show that

(q,α,_,Q) ∈M. Let ((q′ ,Q ′),_) = ~v′�∆str(q0,σ). By induction hypothesis, we have

(q′ , [],_,Q ′) ∈M ′. Let ((q′′ ,Q ′′),_) = ~v′′ ∗α�∆str(q0,σ · (q′ ,S ′). So Q ′′ = sdown∆|Σ(q′ ,S ′).

By induction hypothesis, we have (q′′ ,α,_,Q ′′) ∈ M ′′. The closing rule permits

to match the tuple with α in M ′′ with the tuple with [] of M ′. This yields

(q′@∆q′′ ,α,_,Q ′) ∈M. Since α can only belong to a single tuple of M it follows that

q′@q′′ = q and Q ′ = Q . Hence, (q,α,_,Q) ∈M.

We can thus obtain an EQA algorithm by running the streaming evaluator of

the earliest automaton cnd(A). Without removing candidates that are certainly

non-answers, however, it would maintain and update many candidates that are no

more alive, leading to quadratic time in O(m2) even for bounded concurrency.

Certain non-answers can be detected in analogy to certain answers. For this we

can add a set of states that are safe for rejection. At the beginning, this is safe∆(Q\F)

later on we have to use the function sdown∆ to update it when moving down into

subtrees.

11.4. Earliest Monadic Query Answering 277

(0{9}{1,3,4,7})[]∅ (2{9}{1,3,4,7})[]∅
(5{9}{1,3,4,7})[x/1]∅

(2{9}{1,3,4,7})[]∅
(5{9}{1,3,4,7})[x/2]∅
(8{9}{1,3,4,7})[x/1]∅

sel[x/2]∅

(1{3}{7})[x/2]{x}
(1{7}{3})[x/1]{x} sel[x/2]{x}

a a

a

〈〉

Figure 11.2: A run of the earliest candidate automaton cnd(Ae(S)) for the dSha A in
Figure 8.1. The underlying earliest automaton Ae(S) is given in Figure 8.5.

11.4 Earliest Monadic Query Answering

The naive monadic query answering algorithm obtained by evaluating the candidate

automaton can be improved by making the automaton detect certain answers and

non-answers earlier. The objective is to no more buffer all answer candidates.

Instead, certain answers should be output to some output stream, while all certain

answers and non-answers should be removed from the candidate buffer.

We next show how to obtain top-down EQA algorithms for monadic queries

with complete suffix projection – either in-memory or in streaming mode. They

enumerate the certain answers and non-answers of a query in an earliest manner.

The enumerated certain answers may be shown to some user, while the enumerated

certain non-answers may be removed eagerly from the candidate buffer.

11.4.1 Earliest Candidate Automata

For regular monadic queries defined by dSha A we can obtained an EQA algorithm

with complete suffix projection by evaluating the earliest candidate automaton of A

that we define next.

For any dSha A over Σx, the earliest candidate automaton with complete suffix

projection is the dSha↓∞ cnd(Ae(S)). The top-down evaluator of the earliest candidate

automaton can decide at each prefix ann-nod(v), whether the node π is certain for

selection for x. The automaton cnd(Ae(S)) is the dSha↓∞ obtained from the earliest

automaton Ae(S) with complete suffix projection by constructing its candidate

automaton.

278 Chapter 11. Earliest Query Answering for Regular Monadic Queries

Example 11.16. For the dSha A in Figure 8.1, the earliest candidate automaton Ae(S)

constructed for the dSha A is given in Figure 8.5. An example run of the earliest
candidate automaton cnd(Ae(S)) = (Σ,Q′ ,∆′ , I ′ ,F′) is given in Figure 11.2. If M0 ∈ I ′

then it satisfies:

~a1a2〈3a4�∆′str(M0,ε) = ({sel[x/2]{x}},σ) where σ = 5{9}{1,3,4,7}

The run assigns the candidate [x/2] to the selection state sel, showing that node 2 is
a certain answer of qryS(L(A)). The fact that the candidate [x/1] is no more present,
by contrast, shows that node 1 is a certain non-answer of the query. It’s run by Ae(S)

blocked, so it was removed by the earliest candidate automaton. Also the run of Ae(S) on
the empty candidate [] blocked, so it got also removed.

Proposition 11.17 (Enumerating certain answers and non-answers). Let A be a
complete dSha with alphabet Σx. Let cnd(Ae(S)) = (Σ,Q′ ,∆′ , I ′ ,F′) and M0 ∈ I ′. If
v ∈ prefs(NΣ) is a prefix and (M,σ) = ~ann-nod(v)�∆

′
str(M0,ε) then:

- CAqryS(L(A))(v) = {π ∈ pos(v) | (sel, [x/π],V) ∈M}

- CNAqryS(L(A))(v) = {π ∈ pos(v) | @D@V . (D, [x/π],V) ∈M}

Proof. Let v ∈ prefs(NΣ) be a nested word prefix and (M,σ) = ~ann-nod(v)�∆
′

str(M0,ε).

Let D0 ∈ Ie(S).

- For any π ∈ pos(v), Corollary 11.9 shows that π ∈ CAqryS(L(A))(v) is equiva-

lent to ∃σ. (sel,σ) = ~v ∗ [x/π]�
∆e(S)
str (D0,ε). By Lemma 11.15 this is equivalent to

∃V . (sel,α,V) ∈M. Hence:

CAqryS(A)(v) = {π ∈ pos(v) | (sel, [x/π],V) ∈M}

- For any π ∈ pos(v), Corollary 11.9 shows that π ∈ CNAqryS(L(A))(v) is equivalent

to that ~v ∗ [x/π]�
∆e(S)
str (D0,ε) is undefined. By Lemma 11.15 this is equivalent to

@D@V . (D,α,V) ∈M. Hence:

CNAqryS(A)(v) = {π ∈ pos(v) | @D@V . (D, [x/π],V) ∈M}

Theorem 7 (Streaming EQA for Monadic Queries). Let A be a complete dSha with
alphabet Σx and schema S and Q = qryS(L(A)). Streaming EQA for query Q with

11.4. Earliest Monadic Query Answering 279

complete suffix projection on a hedge h ∈ HΣ can be done by either computing Ae(S)

statically or dynamically on the fly:

- in time O(c) per event, where c is the concurrency of query Q at the event, after a
precomputation in time O(|Ae(S)|), or

- in time O(c m) per event.

In both case, the memory is bounded by O(c depth(h) +O(|Ae(S)|).

Proof. Given a dSha A defining a monadic query, it is sufficient to run Ae(S) on

nw(h) in streaming mode, and to output the detected certain answers .

Let cnd(Ae(S)) = (Σ,Q′ ,∆′ , I ′ ,F′) and I ′ = {M0}. Let h ∈ S be a hedge and v ∈
prefs(nw(h) an event. Let:

(M,σ) = ~ann-nod(v)�∆
′

str(M0,ε)

By Proposition 11.17, we have

- CAqryS(L(A))(v) = {π ∈ pos(v) | (sel, [x/π],V) ∈M}

- CNAqryS(L(A)(v) = {π ∈ pos(v) | @D@V . (D, [x/π],V) ∈M}

It is sufficient to remove all tuples (sel, [x/π],V) ∈M from M and output π. Since

the partial runs of certain non-answers have all been blocked, only alive candidates

remain in the current state. Hence, the cost per event will be in O(c).

Either Ae(S) is precomputed statically, and in this case, the time per event stays

for doing one transition with cnd(Ae(S)) is in O(c), but a precomputation time in

O(Ae(S)) is needed.

Or else the transition rules of Ae(S) needed for evaluating h by cnd(Ae(S)) are

computed dynamically on-the-fly. For each transition of Ae(S) one needs to compute

acc∆(Q) for two sets Q ⊆ Q which can be done in O(m). So for each transition rule

of the candidate automaton cnd(Ae(S)) one needs time in O(c m).

This complexity for dShas improves on Gauwin et al. [Gauwin et al. 2009b] for

dNwas, which required time O(c n2) per event after O(n3) preprocessing time.

For monadic queries where c is bounded for all events and input hedges, the

complexity per event is reduced to O(m).

280 Chapter 11. Earliest Query Answering for Regular Monadic Queries

Corollary 11.18 (Top-Down In-Memory EQA for Monadic Queries). Let A be a
complete dSha with alphabet Σx and schema S and Q = qryS(L(A)). Top-down in-
memory EQA for query Q with complete suffix projection on a hedge h ∈ HΣ can be done
by either computing Ae(S) statically or dynamically on-the-fly. Note here that although
the hedge h is completely present in memory, the events would refer to the ones of the
top-down traversal of the hedge, and thus the per-event complexity:

- in time O(c) per event, where c is the concurrency of query Q at the event, after a
precomputation in time O(|Ae(S)|), or

- in time O(c m) per event.

Proof. This follows from Theorem 7 and the fact that streaming evaluation and

top-down in-memory evaluation are basically doing the same state transitions.

We finally notice that running the dSha↓s by using state-and-stack sharing

[Debarbieux et al. 2015], the running time per event can be reduced to:

- in time O(ne(S)) per event, where ne(S) is the set the number of states of Ae(S), and

a precomputation in time O(|Ae(S)|), or

- in time O(ne(S) m) per event.

11.4.2 Adding Subhedge Projection

In order to add congruence projection to the EQA algorithm with complete suffix

projection, we have to run the automaton Acgr(S)
e(S) . For adding earliest query answer-

ing to safe-no-change projection, we have to run the automaton Asnc
e(S) instead.

Example 11.19. The earliest congruence projection for the XPath-like query child∗-

list[child-item] on nested lists is shown in Figure 11.4. It binds x in state 2D1 after
having read a top-level list-element and then checks for the existence of a child element
item, going into selection state 1D3 once it is found. All other children of the top-level
list element are projected in state 2D3.

However, there is one additional issue with monadic queries: Nested word

prefixes cannot be considered as irrelevant for the subsequent subhedge, if the

selection variable x can be bound there, even if the acceptance doesn’t depend on

where it will be bound. This is since the position of the binding is to be returned by

any query answering algorithm.

11.4. Earliest Monadic Query Answering 281

Figure 11.3: The dSha for the XPath

query self::list[child::item].
The selection position is indicated
by x.

Figure 11.4: The earliest congruence projection A
cgr(~N-List�∩~onex�)
e(~N-List�∩~onex�)

for the dSha
A in Figure 11.3 with FS = {14,20}. It defines the query of the XPath

self::list[child::item].

Definition 11.20. We call a prefix v binding irrelevant for L and S it there does not
exist any hedge h containing x and suffix w such that v ·w ∈ nw(S) and v ·nw(h) ·w ∈
nw(L).

Our subhedge projecting evaluator can project only at subhedge irrelevant pre-

fixes that are also binding irrelevant. Given an dSha A and a set of schema final-

states FS, one can decide whether a prefix is subhedge irrelevant if the current state

q does accept hedges containing x but can access some other state that is not safe for

rejection and permits x-bindings. In ground Datalog, we can distinguish binding

irrelevant states q by imposing the following rules for all q,q′ ∈ Q:

binding_irrelev(q) :- state(q), not binding_relev(q).

282 Chapter 11. Earliest Query Answering for Regular Monadic Queries

binding_relev(q) :- not bind_x(q), acc(q,p), bind_x(p), not rej(p).

Note in our example of the XPath-like filter [self-list-child-item], that state 2D3 of

the dSha↓ Acgr(~N-List�∩~onex�)
e(~N-List�∩~onex�)

in Figure 11.4 is binding irrelevant, since x must be

bound on the top-level list element in state 2D1, so it cannot be bound on any

list element below.

Chapter 12
Experiments on Regular XPath
Evaluation on Xml Streams

Abstract
We describe the Astream tool which implements our EQA algorithms with
projections. It permits to answer regular XPath queries on Xml streams.
We show experimentally that complete subhedge and suffix projection
make Astream competitive in time efficiency with the best existing tools
for answering XPath queries on Xml streams.

Contents
12.1 Introduction . 284

12.2 Streaming Evaluation Tool: Astream 284

12.3 Experiments without projection: Linear increase with size 286

12.3.1 Scaling-Up Document Sizes without Subhedge Projection . . 286

12.3.2 Being Earliest . 287

12.3.3 Factorization . 287

12.4 Experiments with projection . 288

12.4.1 Evaluation Measures . 288

12.4.2 Earliest Congruence Projection 290

12.4.3 Earliest Safe-No-Change Projection 291

12.4.4 Comparison to External Tools 292

12.4.5 Experiments with Lick and Schmitz’ Benchmark 293

284 Chapter 12. Experiments on Regular XPath Evaluation on Xml Streams

12.1 Introduction

We discuss our implementation of the EQA algorithm for dShas with complete

subhedge and suffix projection from Chapter 11 in the Astream tool. Both safe-no-

change and congruence projection are supported, though only in streaming mode.

The application domain that the Astream tool targets is the answering of regular

XPath queries on Xml streams.

For the experimentation, we start the from collection of deterministic Shas collec-

tion constructed with the compiler from [Niehren & Sakho 2021] for the forward

regular XPath queries A1-A8 of the XPathMark benchmark [Franceschet 2005b]

in Figure 4.1 and the additional regular XPath queries that we used for testing

evaluators on XPathMark documents in Figure 9.2. We also use the 78 benchmark

dShas constructed for the subcorpus of regular XPath queries in Figure 6.2 selected

from Lick and Schmitz’ benchmark, as described in Chapter 6, and published in the

Software Heritage archive [Al Serhali & Niehren 2022]. These are regular XPath

queries from real-world Xslt and XQuery programs.

It turns out that congruence projection projects much more strongly than safe-

no-change projection for at least half of the benchmark queries. It reduces the

running time for all regular XPath queries considerably since large parts of the

input hedges can be projected away. In our benchmark, the projected percentage

ranges from 75.7% to 100% of the input stream. For XPath queries that contain

only child axes, the earliest query answering algorithm of Astream with congruence

projection becomes competitive in efficiency with the best existing streaming tool

called QuiXPath [Debarbieux et al. 2015], which however is not always earliest

for some queries. Our current implementation of earliest congruence projection

in Astream is slower by a factor of 1.3 to 2.9 than QuiXPath on the benchmark

queries. The improvement is smaller for XPath queries with the descendant axis,

where less subhedge projection is possible. Instead, some kind of descendant

projection would be needed. Still, even in the worst case in our benchmark, earliest

congruence projection with Astream is currently only by a factor of 13.8 slower

than QuiXPath.

12.2 Streaming Evaluation Tool: Astream

We are using and developing the Astream tool for answering monadic dSha queries

on Xml streams with schema restrictions. Version 1.01 of Astream was presented

12.2. Streaming Evaluation Tool: Astream 285

in [Al Serhali & Niehren 2023a] and supports earliest query answering without

projection. Given a dSha A defining a monadic query, a set of schema final states

FS and an Xml stream w, it constructs on-the-fly the needed part of the dSha↓ Ae(S)

while parsing w and evaluating A on the hedge encoding w.

For the FCT conference version [Al Serhali & Niehren 2023b], we enhanced As-

tream with safe-no-change projection. This leads to version Astream 2.01. It

constructs the earliest safe-no-change projection dSha↓ Asnc
e(S) on the fly while evalu-

ating the monadic query defined by A on the hedge encoding the Xml stream w.

Subhedge projection can be switched on or off, in order to compare both versions

without further implementation differences.

For the journal version [Al Serhali & Niehren 2024], we added earliest congru-

ence projection and integrated it into Astream leading to Astream 3.0.

Astream 3.0 is different from the two previous versions in that the dSha↓ Acgr
e(S) is

constructed statically and entirely, independently of the input hedge. We then use a

generic earliest streaming evaluator for Sha↓s that rejects in rejection states, selects

in selection states, and projects in all subhedge projection states. This evaluator

could also be run with Asnc
e(S) or Ae(S), as long as these do not grow too big.

It should be noticed that Acgr
e(S) turned out to be nicely small for our whole bench-

mark, while the other dSha↓s Asnc
e(S) and Ae(S) risk becoming bigger. As stated earlier,

we did not construct these dSha↓s so far for our benchmark queries. This is why

we continued to run the earliest streaming with safe-no-change projection with

Astream 2.01, while we used Astream 3.0 for earliest streaming with congruence

projection.

All Astream versions rely on Java’s abc-Datalog for computing the least fixed

points of Datalog programs in a bottom-up manner. Datalog programs are needed

for all logical reasoning: for computing subsets of states that are safe for rejection,

selection, or subhedge projection on all levels. Also, the difference relations are

computed based on Datalog. Note that earliest on-the-fly query evaluation requires

running Datalog during query evaluation, while with a static approach for con-

structing dSha↓s entirely, Datalog is only needed at preprocessing time during the

automaton construction.

286 Chapter 12. Experiments on Regular XPath Evaluation on Xml Streams

Figure 12.1: Running times of Astream 1.01 for streaming XPathMark queries on
Xml documents whose size scale from 27KB to 1.2GB. Only the running time of
query O1 is not scaling up linearly, and thus running out of time for 128KB already.
The concurrency of all other queries is bounded on these documents.

12.3 Experiments without projection: Linear increase with

size

In this section, we present our experiments with Astream 1.01, i.e, earliest query

answering without projection. We first test with a list of regular queries from

XPathMark on documents of sizes ranging from 27KB to to 1.2GB. The correctness

was shown by comparison to Saxon evaluator. We then analyze the behavior of

different queries with different concurrencies and compare it to the QuiXPath

tool. Finally, we discuss the needed optimization to handle queries with high

concurrency.

12.3.1 Scaling-Up Document Sizes without Subhedge Projection

We run Astream 1.01 without subhedge projection on Xml documents of increasing

size up to 1.2GB, but can also stream much larger documents >100GB. Up to 1GB,

we verified the correctness of the answer sets by comparison to Saxon’s in-memory

evaluator (which is limited to 1GB).

The running times on the scaling documents are reported in Figure 12.1. The

times grow linearly for all these queries given that their concurrency is bounded by

2, except for O1 where it grows quadratically, since its concurrency grows linearly

12.3. Experiments without projection: Linear increase with size 287

Figure 12.2: The quadratic running time of Astream 1.01 on XPath query O1 with
linear concurrency on Xml documents ranging from 27 KB to 5 MB.

with the size of the document. The quadratic growth can be observed clearly in

Figure 12.2 on smaller documents scaling from 27KB to 5MB.

On average, for A1-A8, Astream 1.01 is by a factor of 60 slower than QuiXPath,

so it requires minutes instead of seconds. This high execution time is expected

since we are running without any projection algorithm, while QuiXPath support

subtree and descendant projection.

12.3.2 Being Earliest

On the one hand side, QuiXPath cannot stream O2 on large documents, since it is

not earliest. Even though the concurrency of O2 per event is at most 1, linearly many

candidates are buffered by QuiXPath, until the buffer overflows for documents

larger than 5GB. O2 poses no problem to Astream since it is earliest, so it buffers

no more than one candidate per event.

12.3.3 Factorization

On the other hand, QuiXPath can stream queries with high concurrency (O1) due

to QuiXPath’s state and stack sharing, i.e., the sharing of the computations of all

concurrent candidates in the same state. All three Astream versions currently lack

288 Chapter 12. Experiments on Regular XPath Evaluation on Xml Streams

an alternative for factorizing the computations of multiple candidate that share the

same configuration. In Astream 1.01, the earliest automaton were built on-the-fly

while keeping safety sets for selection and rejection states, the configuration was

not a simple state and stack but also two additional sets of states, which made it

too costly to go for an approach through factorization, like state-and-stack sharing.

We believe that this constraint will be removed once the earliest automata is built

statically, as discussed in the next section.

Given that the computation time of Astream 1.01 per event is c ∗n where c = d

is the documents size for O1, the computation time for O1 is in O(d ∗n)per event,

and thus in O(d2 ∗n) for the whole document. The quadratic size increase in d of

Astream 1.01 can be seen in the experiments on smaller documents in Figure 12.2.

In the experiments on larger documents in Figure 12.1, Astream 1.01 runs out of

time for O1 on documents higher than 5MB.

12.4 Experiments with projection

We now turn to the experiments with projection. The primary tests are conducted

on queries from the XPathMark performance benchmark, given its scalability

with larger documents. Additionally, we present results for the Lick and Schmitz’

benchmark.

We first define the evaluation metrics used for the XPathMark tests, followed by

experiments with both congruence and safe-no-change projections. Next, we com-

pare the performance of the more efficient congruence projection with that of XPath.

Finally, we briefly present the results from the Lick and Schmitz’ benchmark.

12.4.1 Evaluation Measures

We want to measure the time for running the three streaming query evaluators for

all dShas obtained from the XPath expressions in the collection in Figures 4.1 and

9.2.

One advantage of the XPathMark benchmark is that it comes with a generator of

Xml documents to which the queries can be applied and that can be scaled in size.

We created an Xml document of size 1.1 GB, which is sufficiently large to make

streaming mandatory. Our experiments show that the efficiency of query evaluation

grows linearly with the size of the non-projected part of the Xml document. This

holds for each of our three evaluators. Therefore, measuring the time of the

12.4. Experiments with projection 289

evaluator on Xml documents of other sizes would not show any new insights,

except that memory consumption remains moderate too.

The time gain of projection for a query Q is the percentage of time saved by

projection during query evaluation when ignoring the pure document parsing time

tparse seconds:

time-gainQ = 100 ∗ (1− (tnoprojectQ − tparse)/(tprojectQ − tparse))

We can measure the time gain for earliest safe-no-change projection by Astream

2.01 and for earliest congruence projection by Astream 3.0, since projection can be

switched off in both of them. The disadvantage of the time gain is that it depends

on the details of the implementation.

The event gain is a better measure for the projection power. The parser sends a

stream of needed events to the Sha
↓, while ignoring parts of the input document

that can be projected away. For this, it must always be informed by the automaton

about what kind of events can be projected in the current state. The event gain of

projection event-gainQ is then the percentage of events that are recognized to be

irrelevant and thus no more created by a projecting evaluator for query Q. One

might expect that the time gain is always smaller than the event gain.

time-gainQ ≤ event-gainQ

Indeed, this will be confirmed by our experiments. We believe that these discrepan-

cies between these two measure indicate how much room remains for optimizing

the implementation of an evaluator. In this way, we can be observe that some room

for further optimizations in Astream 3.0 still remains.

We use Java’s XMLStreamReader Interface v1.0 from javax.xml.stream pack-

age to parse and stream Xml files in Scala. Parsing a 1.1 GB Xml documents

requires tparse = 15 seconds, while querying it without projection took us in aver-

age tnoprojectavg = 752 seconds, while varying from 600 to 900 seconds. The average

processing time for 1 MB is thus 0.72 seconds. Once knowing this, one can predict

the expected evaluation time from the size of the non-projected part of the Xml

document. It is:

event-gainQ ∗ 1100 ∗ 0.72 seconds + tparse seconds

Without projection, the parser generates 1,012,018,728 events for the 1.1GB Xml

document. This is the baseline for computing event-gainQ for all queries Q.

290 Chapter 12. Experiments on Regular XPath Evaluation on Xml Streams

Query #ans- time time event
ID wer in sec gain gain
A1 38267 29.3 98.1% 98.9%
A2 117389 171.8 77.9% 81.1%
A3 117389 33.4 97.4% 97.8%
A4 24959 33.2 97.8% 98.9%
A5 50186
A6 30307 45.9 96.9% 98.2%
A7 179889 30.5 98.0% 98.7%
A8 67688 37.8 97.3% 98.7%
A0 1 21.3 99.1% 100.0%

A1_0a 6 15.2 99.9% 100.0%
A1_0b 0 0.0 100.0% 100.0%
A1_0c 3600816 226.6 72.9% 75.7%
A1_1a 2 187.8 78.1% 80.3%
A1_1d 2 217.3 74.8% 80.3%
A1_2 1062965 238.2 68.2% 76.0%
A1_3 25074 16.2 99.1% 99.8%
A1_4 5170 17.5 99.7% 100.0%
A1_5 6 14.3 100.0% 100.0%
A1_6 117389 188.7 75.4% 81.1%
A2_1 50186 199.7 76.5% 81.1%
A4_0 91650 21.8 99.0% 99.3%
A4_1 1 12.0 100.0% 100.0%

Figure 12.3: Time gain and event gain by earliest congruence projection with
Astream 3.01 on a 1.1GB XPathMark stream.

We ran Astream with Scala v2.13.3, on a machine with the operating system

Ubuntu 20.04.06 LTS (64-bit). The machine is Dell Precision-7750 machine,

equipped with an Intel® Core™ i7-10875H CPU @ 2.30GHz × 16 and 32 GB

of RAM.

12.4.2 Earliest Congruence Projection

Recall that we were able to build statically all the automata for this collection and

thus, we are here using the earliest automata with congruence projection presented

in Figure 9.3. We present the measures of our evaluator with the earliest congruence

projection in Figure 12.3. The event gain is high, varying between 75.7% for A1_0c

to 100% for A0, A1_0a, A1_0b, A1_4, A1_5, and A4_1. The event gain for queries

without descendant axis is above 98.2%. For these queries, all subtrees that are not

12.4. Experiments with projection 291

on the main path of the query can be projected away. In particular, only subtrees

until a fixed depth have to be inspected. These are the queries A1, A4, A6-A8 and

A4_0 and the queries with event gain 100% listed above. The time gain for all these

queries is a little smaller than the event gain but still above 98.2%.

We next consider the second type of queries having the descendant axis, specifi-

cally A2, A1_0c, A1_1a, A1_1d, A1_2, A1_6, and A2_1. Intuitively, a lower event

gain is expected in these cases because subhedge projection with the descendant

axis cannot directly exclude an entire subtree under a given element; all descendant

elements must be inspected. For instance, the query A1_0c equal to /site//@*

must select all attributes of all elements under the root element site, requiring the

inspection of every Xml element in the document, for attribute presence, except for

the root element site.

The lower event gain reported for the aforementioned queries align with the

above expectation, showing percentages ranging from 75.7% to 81.1%. Also, these

queries exhibit a larger gap between time gain and event gain, which ranges from

2.2% to 5.7% and will be subject to future optimization. It is worth noting that

some of these queries combine multiple features at once, like queries A1_1a and

A1_1d which have descendant axis, filter with attributes, and string comparison.

The only exception to this trend for the queries having descendant axis are A3

and A1_3, with respective event gains of 97.8% and 99.8%. The reason behind this

high gain is that these queries starts from the root, with a child axis path of depth 3

before querying the descendant axis. This initial path allows for the exclusion and

projection of most elements under site that do not fit the specified path, with their

entire subtrees.

12.4.3 Earliest Safe-No-Change Projection

We compare earliest safe-no-change projection with the earliest congruence projec-

tion in see Table 12.4. For this we restrict ourselves to the queries A1−A8 from the

XPathMark in Table 4.1.

The XPath queries A1, A4, A6, A7, A8 don’t have descendant axes. The time gain

for safe-no-change projection on these queries is between 92.3− 98.9%. For earliest

congruence projection, the time gain was better for A1, A4, A6 with at least 96.6%.

For A7 and A8, the time gain of safe-no-change projection is close to the event gain

of congruence projection, but the time gain of congruence projection is 1.5% lower.

So we hope that an optimized version of congruence projection could outperform

292 Chapter 12. Experiments on Regular XPath Evaluation on Xml Streams

Query time (sec) time (sec) time gain time gain event gain
ID snc congr snc congr congr
A1 72.8 29.3 92.3% 98.1% 98.9%
A2 664.6 171.8 8.5% 77.9% 81.1%
A3 666.1 33.4 10.9% 97.4% 97.8%
A4 78.5 33.2 92.4% 97.8% 98.9%
A5 77.7 92.3%
A6 65.2 45.9 95.1% 96.9% 98.2%
A7 24.6 30.5 98.8% 98.0% 98.7%
A8 24.8 37.5 98.9% 97.3% 98.7%

Figure 12.4: Time gain for earliest safe-no-change and earliest congruence projec-
tion, and the event gain of earliest congruence projection.

safe-no-change projection in all cases.

The XPath queries with descendant axis are A2, A3, A5. For A2 and A3 in

particular, the time gain of safe-no-change projection is very low (not even 10.9%)

while congruence projection yields at least 77.9%. We believe that this is a bug in

our current implementation of safe-no-change projection, which may be prohibiting

the projection of attributes and text nodes for these queries (but not for the others).

Congruence projection on A2 gains 77.9% of time and 81.1% of events. This is

much better, but still far from the projection power for queries without descendant

axis. For A3, congruence projection gains 97.4% of time. This is much better

than for A2 since the descendant axis in A3 is at the end, while for A2 it is at the

beginning of the path. But even for A2, congruence projection is very helpful.

12.4.4 Comparison to External Tools

QuiXPath was shown to be the most efficient large coverage external tool for regular

XPath evaluation on Xml streams [Sebastian & Niehren 2016]. We therefore com-

pare the efficiency of congruence projection to QuiXPath in Table 12.5, and thereby

by transitivity to the many alternative tools. We note that QuiXPath performs early

query answering by compilation to possibly nondeterministic Nwas with selection

states, without always being earliest. Apart from this, it bases its efficiency on both

subtree projection and descendant projection.

The experiments with QuiXPath in [Sebastian & Niehren 2016] use the parse-

free time. We therefore do the same for congruence projection by reducing the

measured overall time by 15 seconds of parsing time.

Compared to the parsing-free times for the XPath queries without descendant

12.4. Experiments with projection 293

Query parse-free parse-free fract.
ID time (sec) time (sec)

QuiXPath congr. prj.
A1 11.0 14.3 1.3
A4 11.6 18.2 1.6
A6 10.7 30.9 2.9
A7 8.6 15.5 1.8
A8 8.8 22.5 2.6
A2 11.4 156.8 13.8
A3 11.5 18.4 1.6
A5 12.0

Figure 12.5: Comparison of of parse-free timings in seconds for XPathMark queries
with QuiXPath and earliest congruence projection.

axis, the earliest congruence projection demonstrates significant improvements..

On average, our projection is only slower by a factor of 1.3 - 2.9 than QuiXPath.

This shows that our implementation is already close to be competitive with the

existing Xml streaming tools, while being the only one guaranteeing earliest query

answering.

For query A2 with descendant axis, congruence projection is by a factor of

13.8 slower than QuiXPath. The reason is that QuiXPath supports descendant

projection, while congruence projection concerns only subhedge. For query A3

with a descendant axis at the end, congruence projection is only by a factor of 1.6

behind, so descendant projection seems less relevant here.

12.4.5 Experiments with Lick and Schmitz’ Benchmark

We reconsider the list of queries presented in Table 6.2. It contains queries from

five different projects: docbook, htmlbook, teixsl, treedown, and histei. We also

choose a single matching Xml document per project of size less than 2MB. As done

for the XPathMark benchmark, we attempted – and surprisingly succeeded – to

statically compute the earliest automaton for these queries. We show the results in

Table 12.2. The sizes we remarkably small for automata working top down where

size explosion is a common and expected behavior. Beside the below three queries,

with their respective measures:

12961 1629 (336)

12960 1651 (343)

04358 4223 (810),

294 Chapter 12. Experiments on Regular XPath Evaluation on Xml Streams

the rest of list have a size less than 900. We used these automata to test with

congruence projection. We could correctly answer all the queries in the list, yielding

the same answer set as with Saxon. The overall time for computing all the answer

sets was in 110000 ms on a Macbook pro Apple M1 laptop with 16GB of RAM.

With Saxon in-memory evaluation it required around 45000 ms. The low running

time of Astream reflects the low concurrency of all the queries on all these docu-

ments according to Theorem 7. There are 12 queries with concurrency 1, 47 with

concurrency 2, 6 with concurrency 3, and 12 with concurrency 4. Our efficiency

results for Astream thus show for the first time, that EQA is indeed feasible in

practical scenarios with queries of low concurrency.

Table 12.2: Size measures of earliest dSha↓s for regular XPath queries of
Lick and Schmitz’ benchmark from Table 6.2.

Query dSha A A
cgr(S)
e(S)

ID m(n) size(#states)

00744 119 (38) 191 (51)

01705 207 (45) 197 (40)

01847 178 (45) 180 (43)

02000 153 (38) 151 (27)

02086 209 (45) 201 (40)

02091 134 (41) 305 (85)

02194 110 (35) 136 (38)

02697 139 (38) 194 (44)

02762 114 (36) 182 (49)

02909 157 (46) 253 (69)

03257 194 (46) 601 (141)

03325 159 (38) 234 (44)

03407 157 (38) 230 (44)

03410 169 (38) 254 (44)

03864 133 (38) 182 (44)

04245 167 (38) 250 (44)

04267 121 (38) 181 (50)

04338 193 (48) 571 (138)

04358 683 (96) 4223 (810)

04953 169 (38) 254 (44)

05122 149 (41) 343 (87)

05219 180 (45) 426 (94)

12.4. Experiments with projection 295

05226 192 (45) 462 (94)

05460 142 (41) 374 (95)

05463 162 (45) 437 (107)

05684 183 (36) 130 (19)

05735 151 (44) 201 (56)

05824 103 (34) 158 (43)

06027 114 (36) 182 (49)

06169 137 (38) 190 (44)

06176 166 (40) 226 (48)

06415 207 (52) 861 (216)

06458 163 (38) 242 (44)

06512 135 (40) 348 (88)

06639 140 (41) 368 (95)

06726 112 (35) 139 (38)

06794 134 (39) 189 (47)

06808 135 (38) 186 (44)

06924 137 (38) 190 (44)

06947 141 (38) 198 (44)

07106 143 (38) 202 (44)

07113 317 (74) 350 (79)

08632 198 (50) 758 (174)

09123 248 (63) 552 (136)

09138 124 (37) 204 (52)

10337 149 (44) 245 (67)

10745 202 (54) 471 (121)

11160 135 (38) 186 (44)

11227 230 (57) 492 (122)

11368 172 (46) 608 (152)

11478 131 (40) 171 (48)

11780 154 (44) 205 (56)

11958 162 (45) 437 (107)

12060 112 (36) 178 (49)

12404 133 (41) 217 (60)

12514 224 (54) 788 (180)

12539 156 (45) 210 (58)

12960 286 (61) 1651 (343)

296 Chapter 12. Experiments on Regular XPath Evaluation on Xml Streams

12961 282 (60) 1629 (336)

12962 202 (51) 695 (163)

12964 198 (50) 685 (160)

13632 118 (33) 39 (9)

13640 130 (40) 170 (48)

13710 141 (38) 198 (44)

13804 131 (40) 242 (65)

14183 166 (46) 447 (110)

14340 101 (33) 122 (34)

15461 226 (56) 474 (123)

15462 180 (51) 264 (72)

15484 254 (64) 643 (147)

15524 175 (49) 225 (61)

15539 212 (55) 543 (136)

15766 204 (54) 391 (103)

15809 136 (41) 182 (51)

15848 168 (48) 241 (65)

17914 149 (42) 418 (106)

18330 119 (37) 186 (53)

Chapter 13
Conclusion and Future Work

In this dissertation, we introduced, implemented, and tested multiple algorithms

to provide a practical solution for the earliest query answering problem for regular

queries on hedges.

First, we developed a schema-based determinization algorithm for both finite

state automata (Nfas) and stepwise hedge automata (Shas). We proved its equiva-

lence to accessible determinization followed by schema-based cleaning and demon-

strated its better efficiency. This efficiency is supported by complexity bounds and

experimental results on a scalable set of queries. These deterministic automata

provided a strong foundation for finding a practical solution for query answering

algorithms with an automata-based approach.

We tested our newly introduced determinization algorithm on a corpus of for-

ward navigational XPath queries collected from practical online programs. The

results showed that schema-based determinization is successful where schema-less

methods fail, with 100% of the automata of the benchmark being determinized

efficiently and later minimized. These findings suggest that schema-based deter-

minization provides a practical solution for representing XPath queries with small

deterministic automata and brought us one step closer to answering our main

problem.

Next, we tackled the algorithmic problem of projection. We introduced subhedge

and suffix projection and demonstrated how to evaluate stepwise hedge automata in

a top-down manner using both techniques. To achieve this, we defined the notions

of irrelevant subhedges and suffixes. We then combined these techniques to obtain

earliest dSha↓s with complete subhedge and suffix projection, providing related

298 Chapter 13. Conclusion and Future Work

evaluators that detect certain membership and non-membership in an earliest

manner. These evaluators operate efficiently in both in-memory and streaming

modes.

Finally, we extended our algorithms and evaluators to handle monadic queries,

providing an earliest query answering (EQA) algorithm with complete subhedge

and suffix projection for regular monadic queries represented by deterministic step-

wise hedge automata. Our EQA algorithm operates in both streaming and top-down

in-memory modes, with a complexity of O(c) per non-projected event, where c is

the concurrency of the query, assuming the earliest dSha↓ with complete subhedge

projection is constructed statically. If the automaton is built dynamically on the

fly, the complexity becomes O(c m) per event, where m is the size of the automaton

defining the query. We updated our tool Astream with our EQA algorithms and

tested it on benchmarks where it proved competitiveness compared to the best

existing tools.

Future Work

As future work, it would be interesting to explore both algorithmic and practi-

cal aspects further. First, investigating descendant projection for stepwise hedge

automata to cover related path queries that rely on it, and finding a way to com-

bine it with both suffix and subhedge projections; although we have initiated this

work, time constraints have left it unfinished and not included in this dissertation.

Second, examining the feasibility of EQA beyond regular queries is essential, as it

would allow addressing a broader class, particularly queries with data joins that

are common in real-world applications. One potential approach is leveraging net-

works of automata, as previously explored by Sebastian[Sebastian 2016]. Finally,

investigating EQA for hyperstreams presents another intriguing research direction,

allowing for parallel query evaluation on streams rather than sequential processing,

the latter being the setting in our current work.

On the practical side, updating our compilers from nested regular expressions

to support the backward axis would enable handling broader fragments of XPath

queries. Additionally, we have yet to implement all evaluators, particularly the

in-memory ones. Exploring this direction and comparing our results with similar

tools, such as Saxon, would be beneficial. Applying our algorithms to query other

types of nested documents, such as Json, could also be an interesting extension.

Finally, improving and optimizing the current EQA implementation in streaming

299

mode would help reduce the execution time gap with other tools.

Bibliography

[Abiteboul et al. 1995] S. Abiteboul, R. Hull and V. Vianu. Foundations of

databases. Addison-Wesley, 1995.

[Abiteboul et al. 2000] S. Abiteboul, P. Buneman and D. Suciu. Data on the web:

from relations to semistructured data and XML. Morgan Kaufmann, 2000.

[Al Serhali & Niehren 2022] Antonio Al Serhali and Joachim Niehren. A Bench-
mark Collection of Deterministic Automata for XPath Queries. In XML Prague

2022, Prague, Czech Republic, 2022.

[Al Serhali & Niehren 2023a] Antonio Al Serhali and Joachim Niehren. Earliest
Query Answering for Deterministic Stepwise Hedge Automata. In Benedek

Nagy, editor, Implementation and Application of Automata, pages 53–65,

Cham, 2023. Springer Nature Switzerland.

[Al Serhali & Niehren 2023b] Antonio Al Serhali and Joachim Niehren. Subhedge
Projection for Stepwise Hedge Automata. In Henning Fernau and Klaus Jansen,

editors, Fundamentals of Computation Theory - 24th International Sym-

posium, FCT 2023, Trier, Germany, September 18-21, 2023, Proceedings,

volume 14292 of Lecture Notes in Computer Science, pages 16–31. Springer,

2023.

[Al Serhali & Niehren 2024] Antonio Al Serhali and Joachim Niehren. Complete
Subhedge Projection for Stepwise Hedge Automata. Algorithms, vol. 17, no. 8,

2024.

[Alur & Madhusudan 2004] Rajeev Alur and P. Madhusudan. Visibly pushdown
languages. In László Babai, editor, Proceedings of the 36th Annual ACM

302 Bibliography

Symposium on Theory of Computing, Chicago, IL, USA, June 13-16, 2004,

pages 202–211. ACM, 2004.

[Alur 2007] Rajeev Alur. Marrying Words and Trees. In 26th ACM SIGMOD-

SIGACT-SIGART Symposium on Principles of Database Systems, pages

233–242. ACM-Press, 2007.

[Angles et al. 2017] Renzo Angles, Marcelo Arenas, Pablo Barceló, Aidan Hogan,

Juan Reutter and Domagoj Vrgoč. Foundations of Modern Query Languages
for Graph Databases. ACM Comput. Surv., vol. 50, no. 5, September 2017.

[Arenas et al. 2014] Marcelo Arenas, Pablo Barceló, Leonid Libkin and Filip

Murlak. Foundations of data exchange. Cambridge University Press, 2014.

[Arenas et al. 2022] Marcelo Arenas, Pablo Barceló, Leonid Libkin, Wim Martens

and Andreas Pieris. Database theory. Open source at https://github.com/

pdm-book/community, 2022.

[Barcelo & Libkin 2005] P. Barcelo and L. Libkin. Temporal logics over unranked
trees. In 20th Annual IEEE Symposium on Logic in Computer Science (LICS’

05), pages 31–40, 2005.

[Barloy et al. 2021] Corentin Barloy, Filip Murlak and Charles Paperman. Stackless
Processing of Streamed Trees. In Proceedings of the 40th ACM SIGMOD-

SIGACT-SIGAI Symposium on Principles of Database Systems, PODS’21,

page 109–125, New York, NY, USA, 2021. Association for Computing Ma-

chinery.

[Benedikt & Jeffrey 2007] Michael Benedikt and Alan Jeffrey. Efficient and Expres-
sive Tree Filters. In Foundations of Software Technology and Theoretical

Computer Science, volume 4855 of Lecture Notes in Computer Science, pages

461–472. Springer Verlag, 2007.

[Benedikt et al. 2008] Michael Benedikt, Alan Jeffrey and Ruy Ley-Wild. Stream
Firewalling of XML Constraints. In ACM SIGMOD International Conference

on Management of Data, pages 487–498. ACM-Press, 2008.

[Bergougnoux et al. 2019] Benjamin Bergougnoux, Florent Capelli and Ma-

madou Moustapha Kanté. Counting minimal transversals of β-acyclic hy-
pergraphs. J. Comput. Syst. Sci., vol. 101, pages 21–30, 2019.

https://github.com/pdm-book/community
https://github.com/pdm-book/community

Bibliography 303

[Blackburn et al. 2001] Patrick Blackburn, Maarten de Rijke and Yde Venema.

Modal logic. Cambridge Tracts in Theoretical Computer Science. Cam-

bridge University Press, 2001.

[Bojanczyk & Walukiewicz 2008] Mikolaj Bojanczyk and Igor Walukiewicz. Forest
algebras. In Jörg Flum, Erich Grädel and Thomas Wilke, editors, Logic

and Automata: History and Perspectives [in Honor of Wolfgang Thomas],

volume 2 of Texts in Logic and Games, pages 107–132. Amsterdam University

Press, 2008.

[Carme et al. 2004] Julien Carme, Joachim Niehren and Marc Tommasi. Querying
Unranked Trees with Stepwise Tree Automata. In Vincent van Oostrom, editor,

Rewriting Techniques and Applications, 15th International Conference,

RTA 2004, Aachen, Germany, June 3-5, 2004, Proceedings, volume 3091 of

Lecture Notes in Computer Science, pages 105–118. Springer, 2004.

[Carney et al. 2002] Don Carney, Uundefinedur Çetintemel, Mitch Cherniack,

Christian Convey, Sangdon Lee, Greg Seidman, Michael Stonebraker, Nes-

ime Tatbul and Stan Zdonik. Monitoring Streams: A New Class of Data
Management Applications. In Proceedings of the 28th International Confer-

ence on Very Large Data Bases, VLDB ’02, page 215–226. VLDB Endowment,

2002.

[Ceri et al. 2012] S. Ceri, G. Gottlob and L. Tanca. Logic programming and

databases. Surveys in Computer Science. Springer Berlin Heidelberg, 2012.

[Chandrasekaran et al. 2003] Sirish Chandrasekaran, Owen Cooper, Amol Desh-

pande, Michael J. Franklin, Joseph M. Hellerstein, Wei Hong, Sailesh Krish-

namurthy, Samuel R. Madden, Fred Reiss and Mehul A. Shah. TelegraphCQ:
Continuous Dataflow Processing. In Proceedings of the 2003 ACM SIGMOD

International Conference on Management of Data, SIGMOD ’03, page 668,

New York, NY, USA, 2003. Association for Computing Machinery.

[Cleaveland & Steffen 1991] Rance Cleaveland and Bernhard Steffen. A Linear-
Time Model-Checking Algorithm for the Alternation-Free Modal Mu-Calculus.
In Kim Guldstrand Larsen and Arne Skou, editors, Computer Aided Verifi-

cation, 3rd International Workshop, CAV ’91, Aalborg, Denmark, July, 1-4,

1991, Proceedings, volume 575 of Lecture Notes in Computer Science, pages

48–58. Springer, 1991.

[Comon et al. 2002] H. Comon, M. Dauchet, R. Gilleron, F. Jacquemard, D. Lugiez,

S. Tison and M. Tommasi. Tree Automata Techniques and Applications. Avail-

304 Bibliography

able on:

verb!http://www.grappa.univ-lille3.fr/tata!

[Comon et al. 2007] Hubert Comon, Max Dauchet, Rémi Gilleron, Christof Löding,

Florent Jacquemard, Denis Lugiez, Sophie Tison and Marc Tommasi. Tree
Automata Techniques and Applications. Available online since 1997: http:

//tata.gforge.inria.fr.

[Cook 1971] Stephen A. Cook. The complexity of theorem-proving procedures. In

Proceedings of the Third Annual ACM Symposium on Theory of Comput-

ing, STOC ’71, page 151–158, New York, NY, USA, 1971. Association for

Computing Machinery.

[Cugola & Margara 2012] Gianpaolo Cugola and Alessandro Margara. Processing
flows of information: From data stream to complex event processing. ACM

Comput. Surv., vol. 44, no. 3, June 2012.

[Debarbieux et al. 2015] Denis Debarbieux, Olivier Gauwin, Joachim Niehren, Tom

Sebastian and Mohamed Zergaoui. Early nested word automata for XPath
query answering on XML streams. Theor. Comput. Sci., vol. 578, pages

100–125, 2015.

[Dietzfelbinger et al. 1994] Martin Dietzfelbinger, Anna R. Karlin, Kurt Mehlhorn,

Friedhelm Meyer auf der Heide, Hans Rohnert and Robert Endre Tarjan.

Dynamic Perfect Hashing: Upper and Lower Bounds. SIAM J. Comput., vol. 23,

no. 4, pages 738–761, 1994.

[Durand & Grandjean 2004] Arnaud Durand and Etienne Grandjean. The Com-
plexity of Acyclic Conjunctive Queries Revisited. Technical report, Université

de Paris 7, 2004.

[Fagin et al. 2003] Ronald Fagin, Joseph Halpern, Yoram Moses and Moshe Vardi.

Reasoning about knowledge. MIT Press, 01 2003.

[Fischer & Ladner 1979] Michael J. Fischer and Richard E. Ladner. Propositional
Dynamic Logic of Regular Programs. J. Comput. Syst. Sci., vol. 18, no. 2, pages

194–211, 1979.

[Florescu et al. 1998] Daniela Florescu, Alon Y. Levy and Dan Suciu. Query Con-
tainment for Conjunctive Queries with Regular Expressions. In Alberto O.

Mendelzon and Jan Paredaens, editors, Proceedings of the Seventeenth

ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database

http://tata.gforge.inria.fr
http://tata.gforge.inria.fr

Bibliography 305

Systems, June 1-3, 1998, Seattle, Washington, USA, pages 139–148. ACM

Press, 1998.

[Franceschet 2005a] Massimo Franceschet. XPathMark: An XPath Benchmark for
the XMark Generated Data. In Stéphane Bressan, Stefano Ceri, Ela Hunt,

Zachary G. Ives, Zohra Bellahsène, Michael Rys and Rainer Unland, editors,

Database and XML Technologies, pages 129–143, Berlin, Heidelberg, 2005.

Springer Berlin Heidelberg.

[Franceschet 2005b] Massimo Franceschet. XPathMark Performance Test.
https://users.dimi.uniud.it/~massimo.franceschet/xpathmark/

PTbench.html. Accessed: 2024-10-15.

[Frisch 2004] Alain Frisch. Regular Tree Language Recognition with Static Informa-
tion. In Exploring New Frontiers of Theoretical Informatics, IFIP 18th World

Computer Congress, TCS 3rd International Conference on Theoretical Com-

puter Science, pages 661–674, 2004.

[Gauwin & Niehren 2011] Olivier Gauwin and Joachim Niehren. Streamable Frag-
ments of Forward XPath. In 16th International Conference on Implementa-

tion and Application of Automata, pages 3–15, Blois, France, 2011. Long

version: http://www.grappa.univ-lille3.fr/ niehren/Papers/streamabili-

ty/0.pdf.

[Gauwin et al. 2008] Olivier Gauwin, Joachim Niehren and Yves Roos. Streaming
Tree Automata. Information Processing Letters, vol. 109, no. 1, pages 13–17,

2008.

[Gauwin et al. 2009a] Olivier Gauwin, Joachim Niehren and Sophie Tison. Bounded
Delay and Concurrency for Earliest Query Answering. In 3rd International

Conference on Language and Automata Theory and Applications, volume

5457 of Lecture Notes in Computer Science, pages 350–361. Springer Verlag,

2009.

[Gauwin et al. 2009b] Olivier Gauwin, Joachim Niehren and Sophie Tison. Earliest
Query Answering for Deterministic Nested Word Automata. In 17th Interna-

tional Symposium on Fundamentals of Computer Theory, volume 5699 of

Lecture Notes in Computer Science, pages 121–132. Springer Verlag, 2009.

[Gauwin et al. 2011] Olivier Gauwin, Joachim Niehren and Sophie Tison. Queries
on XML Streams with Bounded Delay and Concurrency. Information and

Computation, vol. 209, pages 409–442, 2011.

https://users.dimi.uniud.it/~massimo.franceschet/xpathmark/PTbench.html
https://users.dimi.uniud.it/~massimo.franceschet/xpathmark/PTbench.html

306 Bibliography

[Gauwin 2009] Olivier Gauwin. Streaming Tree Automata and XPath. PhD thesis,

Université Lille 1, 2009.

[Gécseg & Steinby 1984] F. Gécseg and M. Steinby. Tree automata. Akadémiai

Kiadó, Budapest, 1984.

[Genevès & Layaïda 2006] Pierre Genevès and Nabil Layaïda. A System for the
Static Analysis of XPath. ACM Trans. Inf. Syst., vol. 24, no. 4, page 475–502,

2006.

[Gienieczko et al. 2024] Mateusz Gienieczko, Filip Murlak and Charles Paperman.

Supporting Descendants in SIMD-Accelerated JSONPath. In Proceedings of

the 28th ACM International Conference on Architectural Support for Pro-

gramming Languages and Operating Systems, Volume 4, ASPLOS ’23, page

338–361, New York, NY, USA, 2024. Association for Computing Machinery.

[Gold 1967] E. Mark Gold. Language Identification in the Limit. Inf. Control., vol. 10,

no. 5, pages 447–474, 1967.

[Gottlob et al. 2003] Georg Gottlob, Christoph Koch and Reinhard Pichler. The
complexity of XPath query evaluation. In Proceedings of the Twenty-Second

ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database

Systems, PODS ’03, page 179–190, New York, NY, USA, 2003. Association

for Computing Machinery.

[Green et al. 2004] Todd J. Green, Ashish Gupta, Gerome Miklau, Makoto Onizuka

and Dan Suciu. Processing XML streams with deterministic automata and
stream indexes. ACM Trans. Database Syst., vol. 29, no. 4, pages 752–788,

2004.

[Grez et al. 2019] Alejandro Grez, Cristian Riveros and Martín Ugarte. A Formal
Framework for Complex Event Processing. In Pablo Barcelo and Marco Calautti,

editors, 22nd International Conference on Database Theory (ICDT 2019),

volume 127 of Leibniz International Proceedings in Informatics (LIPIcs), pages

5:1–5:18, Dagstuhl, Germany, 2019. Schloss Dagstuhl – Leibniz-Zentrum

für Informatik.

[Hosoya & Pierce 2003] Haruo Hosoya and Benjamin C. Pierce. XDuce: A Statically
Typed XML Processing Language. ACM Transactions on Internet Technology,

vol. 3, no. 2, pages 117–148, 2003.

[Hustadt 2001] Ullrich Hustadt. Temporal Logic: Mathematical Foundations and
Computational Aspects, Volume 2, Dov M. Gabbay, Mark A. Reynolds, and

Bibliography 307

Marcelo Finger. Journal of Logic, Language and Information, vol. 10, pages

406–410, 06 2001.

[Immerman & Kozen 1989] Neil Immerman and Dexter Kozen. Definability with
Bounded Number of Bound Variables. Inf. Comput., vol. 83, no. 2, pages

121–139, 1989.

[Kay 2004] Michael Kay. The saxon XSLT and XQuery processor.

https://www.saxonica.com.

[Kay 2010] Michael Kay. A Streaming XSLT Processor. In Balisage: The Markup

Conference 2010. Balisage Series on Markup Technologies, volume 5, 2010.

[Kay 2011] M. Kay. XSLT 2.0 and XPath 2.0 programmer’s reference. Wiley, 2011.

[Koch et al. 2004] Christoph Koch, Stefanie Scherzinger, Nicole Schweikardt and

Bernhard Stegmaier. FluXQuery: An Optimizing XQuery Processor for Stream-
ing XML Data. In Twenty-first ACM SIGACT-SIGMOD-SIGART Symposium

on Principles of Database Systems, pages 1309–1312, 2004.

[Kripke 1959] Saul Kripke. A Completeness Theorem in Modal Logic. J. Symb. Log.,

vol. 24, no. 1, pages 1–14, 1959.

[Kumar et al. 2007] Viraj Kumar, P. Madhusudan and Mahesh Viswanathan. Visibly
pushdown automata for streaming XML. In 16th international conference on

World Wide Web, pages 1053–1062. ACM-Press, 2007.

[Labath & Niehren 2015] Pavel Labath and Joachim Niehren. A Uniform Program-
ming Language for Implementing XML Standards. In SOFSEM 2015: Theory

and Practice of Computer Science - 41st International Conference on Cur-

rent Trends in Theory and Practice of Computer Science, Pec pod Sněžkou,

Czech Republic, January 24-29, 2015. Proceedings, pages 543–554, 2015.

[Lick & Schmitz 2022] Anthony Lick and Sylvain Schmitz. XPath Bench-
mark. https://archive.softwareheritage.org/browse/directory/

1ea68cf5bb3f9f3f2fe8c7995f1802ebadf17fb5. Accessed: 2024-10-15.

[Lick 2019] Anthony Lick. Logique de requêtes à la XPath : systèmes de preuve et
pertinence pratique. Theses, Université Paris-Saclay, 2019.

[Maneth & Nguyen 2010] Sebastian Maneth and Kim Nguyen. XPath Whole Query
Optimization. VLPB Journal, vol. 3, no. 1, pages 882–893, 2010.

https://www.saxonica.com
https://archive.softwareheritage.org/browse/directory/1ea68cf5bb3f9f3f2fe8c7995f1802ebadf17fb5
https://archive.softwareheritage.org/browse/directory/1ea68cf5bb3f9f3f2fe8c7995f1802ebadf17fb5

308 Bibliography

[Maneth et al. 2015] Sebastian Maneth, Alberto Ordóñez Pereira and Helmut Seidl.

Transforming XML Streams with References. In Costas S. Iliopoulos, Simon J.

Puglisi and Emine Yilmaz, editors, String Processing and Information Re-

trieval - 22nd International Symposium, SPIRE 2015, London, UK, Septem-

ber 1-4, 2015, Proceedings, volume 9309 of Lecture Notes in Computer Science,

pages 33–45. Springer, 2015.

[Marian & Siméon 2003] Amélie Marian and Jérôme Siméon. Projecting XML Doc-
uments. In VLDB, pages 213–224, 2003.

[Martens & Niehren 2007] Wim Martens and Joachim Niehren. On the Minimiza-
tion of XML Schemas and Tree Automata for Unranked Trees. Journal of

Computer and System Science, vol. 73, no. 4, pages 550–583, 2007.

[Marx 2004] Maarten Marx. Conditional XPath, the First Order Complete XPath
Dialect. In ACP SIGACT-SIGMOD-SIGART Symposium on Principles of

Database Systems, pages 13–22. ACM-Press, 2004.

[McNaughton & Papert 1971] Robert McNaughton and Seymour A Papert.

Counter-free automata (mit research monograph no. 65). The MIT Press,

1971.

[Mozafari et al. 2012] Barzan Mozafari, Kai Zeng and Carlo Zaniolo. High-
performance complex event processing over XML streams. In K. Selçuk Candan,

Yi Chen, Richard T. Snodgrass, Luis Gravano and Ariel Fuxman, editors,

Proceedings of the ACM SIGMOD International Conference on Manage-

ment of Data, SIGMOD 2012, Scottsdale, AZ, USA, May 20-24, 2012, pages

253–264. ACM, 2012.

[Muñoz & Riveros 2022a] Martin Muñoz and Cristian Riveros. Streaming Enumera-
tion on Nested Documents. In Dan Olteanu and Nils Vortmeier, editors, 25th

International Conference on Database Theory, ICDT 2022, Marchs 29 to

April 1, 2022, Edinburgh, UK (Virtual Conference), volume 220 of LIPIcs,
pages 19:1–19:18. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022.

[Muñoz & Riveros 2022b] Martin Muñoz and Cristian Riveros. Streaming Enumer-
ation on Nested Documents. In Dan Olteanu and Nils Vortmeier, editors,

25th International Conference on Database Theory, ICDT 2022, March 29

to April 1, 2022, Edinburgh, UK (Virtual Conference), volume 220 of LIPIcs,
pages 19:1–19:18. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022.

Bibliography 309

[Murata 2000] M. Murata. Hedge Automata: a Formal Model for XML Schemata. Web

page.

[Murlak et al. 2016] Filip Murlak, Charles Paperman and Michal Pilipczuk. Schema
Validation via Streaming Circuits. In Tova Milo and Wang-Chiew Tan, editors,

Proceedings of the 35th ACM SIGMOD-SIGACT-SIGAI Symposium on

Principles of Database Systems, PODS 2016, San Francisco, CA, USA, June

26 - July 01, 2016, pages 237–249. ACM, 2016.

[Neumann & Seidl 1998] Andreas Neumann and Helmut Seidl. Locating Matches
of Tree Patterns in Forests. In 18-th Conference on Foundations of Software

Technology and Theoretical Computer Science, 1998.

[Niehren & Sakho 2021] Joachim Niehren and Momar Sakho. Determinization and
Minimization of Automata for Nested Words Revisited. Algorithms, vol. 14,

no. 3, page 68, 2021.

[Niehren et al. 2022a] Joachim Niehren, Momar Sakho and Antonio Al Serhali.

Schema-Based Automata Determinization. In Pierre Ganty and Dario Della

Monica, editors, Proceedings of the 13th International Symposium on

Games, Automata, Logics and Formal Verification, GandALF 2022, Madrid,

Spain, September 21-23, 2022, volume 370 of EPTCS, pages 49–65, 2022.

[Niehren et al. 2022b] Joachim Niehren, Sylvain Salvati and Rustam Azimov. Jump-
ing Evaluation of Nested Regular Path Queries. In ICLP 2022 - 38th Interna-

tional Conference on Logic Programming, Haifa, Israel, July 2022.

[Niehren 2024] Joachim Niehren. Stepwise Hedge Automata are exponentially more
succinct than Forest Automata. in preperation.

[Okhotin & Salomaa 2014] Alexander Okhotin and Kai Salomaa. Complexity of
input-driven pushdown automata. SIGACT News, vol. 45, no. 2, pages 47–67,

2014.

[Olteanu 2007] Dan Olteanu. SPEX: Streamed and Progressive Evaluation of XPath.

IEEE Trans. on Know. Data Eng., vol. 19, no. 7, pages 934–949, 2007.

[Pair & Quéré 1968] Claude Pair and Alain Quéré. Définition et etude des bilangages
réguliers. Information and Control, vol. 13, no. 6, pages 565–593, 1968.

[Pitcher 2005] Corin Pitcher. Visibly Pushdown Expression Effects for XML Stream
Processing. In PlanX, 2005.

310 Bibliography

[Sakho et al. 2017] Momar Sakho, Iovka Boneva and Joachim Niehren. Complexity
of Certain Query Answering on Hyperstreams. In BDA 2017 - 33ème con-

férence sur la “ Gestion de Données - Principes, Technologies et Applications

”, Nancy, France, 2017.

[Sakho 2020] Momar Sakho. Certain Query Answering on Hyperstreams. Theses,

Université de Lille ; Inria, 2020.

[Schmidt et al. 2002] Albrecht Schmidt, Florian Waas, Martin Kersten, Michael J.

Carey, Ioana Manolescu and Ralph Busse. XMark: a benchmark for XML data
management. In Proceedings of the 28th International Conference on Very

Large Data Bases, VLDB ’02, page 974–985. VLDB Endowment, 2002.

[Schwentick & Zeume 2012] Thomas Schwentick and Thomas Zeume. Two-
Variable Logic with Two Order Relations. Logical Methods in Computer

Science, vol. Volume 8, Issue 1, March 2012.

[Sebastian & Niehren 2016] Tom Sebastian and Joachim Niehren. Projection for
Nested Word Automata Speeds up XPath Evaluation on XML Streams. In

International Conference on Current Trends in Theory and Practice of

Computer Science (SOFSEM), Harrachov, Czech Republic, 2016.

[Sebastian 2016] Tom Sebastian. Evaluation of XPath Queries on XML Streams with
Networks of Early Nested Word Automata. Theses, Universite Lille 1, 2016.

[Smullyan 2012] R.R. Smullyan. First-order logic. Ergebnisse der Mathematik und

ihrer Grenzgebiete. 2. Folge. Springer Berlin Heidelberg, 2012.

[Stockmeyer 1974] Larry J. Stockmeyer. The complexity of decision problems in
automata theory and logic. PhD thesis, Massachusetts Institute of Technology,

USA, 1974.

[Straubing 1994] H. Straubing. Finite automata, formal logic, and circuit complex-

ity. Progress in Computer Science and Applied Series. Birkhäuser, 1994.

[Thatcher 1967] J. W. Thatcher. Characterizing derivation trees of context-free gram-
mars through a generalization of automata theory. Journal of Computer and

System Science, vol. 1, pages 317–322, 1967.

[Vardi 1982] Moshe Vardi. The Complexity of Relational Query Languages (Extended
Abstract). In STOC, pages 137–146, 01 1982.

Bibliography 311

[Veanes et al. 2012] Margus Veanes, Pieter Hooimeijer, Benjamin Livshits, David

Molnar and Nikolaj Bjorner. Symbolic finite state transducers: algorithms and
applications. In Proceedings of the 39th Annual ACM SIGPLAN-SIGACT

Symposium on Principles of Programming Languages, POPL ’12, page

137–150, New York, NY, USA, 2012. Association for Computing Machinery.

[von Braunmühl & Verbeek 1985] Burchard von Braunmühl and Rutger Verbeek.

Input Driven Languages are Recognized in log n Space. In Marek Karplnski and

Jan van Leeuwen, editors, Topics in the Theory of Computation, volume 102

of North-Holland Mathematics Studies, pages 1 – 19. North-Holland, 1985.

[Yannakakis 1981] Mihalis Yannakakis. Algorithms for Acyclic Database Schemes. In

Proceeding of VLDB, pages 82–94, 1981.

[Yu 1997] Sheng Yu. Regular Languages. In Grzegorz Rozenberg and Arto Salo-

maa, editors, Handbook of Formal Languages, Volume 1: Word, Language,

Grammar, pages 41–110. Springer, 1997.

	Title
	Abstract
	Résumé
	Contents
	Chapter 1 : Introduction
	Context
	Logical Queries
	Streaming Query Answering

	Open Challenges
	Contributions
	Small dShas for Regular XPath Queries
	Subhedge Projection Algorithms for dShas
	Earliest Query Answering for dShas

	Further Related Work
	Complex Event Processing
	Xml Stream Processing
	Projection for XPath Queries
	Parallelism and Streams

	Outline
	Publication Comments

	Part I : Starting
	Chapter 2 : Preliminaries
	Mathematical Notation
	Words, Hedges and Nested Words
	Words
	Hedges
	Nested Words
	Hedge Traversals
	Nested Words Prefixes

	Regular Languages and Queries
	Regular Expressions
	Nested Regular Expressions
	Regular Monadic Queries
	Schema Constraints for x-Annotations

	Chapter 3 : Hedge Automata
	Finite State Automata on Words (Nfas)
	Syntax
	Semantics
	Size Measures
	Graphs
	Completion
	Runs
	Determinization
	Complementation
	Product and Intersection
	Accessibility
	Minimization
	Cleaning
	Infinitary NFAs
	Adding Else Rules

	Stepwise Hedge Automata (Shas)
	Syntax
	Semantics
	Size Measures
	Completion
	Runs
	Determinization
	Complementation
	Product and Intersection
	Hedge Accessibility
	Minimization
	Cleaning
	Infinitary Shas
	Else Rules
	Related Automata Models

	Downward Stepwise Hedge Automata (Sha s)
	Syntax
	Semantics
	Completion
	Runs
	Conversion between Shas and Sha s
	Determinization
	Minimization
	Relationship to Nwas

	Membership Testing
	In-Memory
	Streaming

	Schema-Completeness
	Schema-Based Cleaning
	Two-sorted Automata
	2-Sorted Shas
	2-Sorted Sha s

	Chapter 4 : Xml Documents and XPath Queries
	XML Documents
	Hedge Encoding of XML Documents
	General Encoding
	Schema of Hedge Encodings

	XPath
	Regular Fragment
	Non-regular Queries
	Types and Functions
	Answer Sets
	Variables

	XPath Benchmarks
	XPathMark Benchmark
	Lick and Schmitz' Benchmark

	Schema Constraints for x-Annotations
	Available Deterministic SHAs

	Part II : Determinization
	Chapter 5 : Schema-based Determinization
	Introduction
	Accessible Determinization
	Schema-Based Cleaning for NFAs
	Schema-Based Determinization for NFAs
	Schema-Based Cleaning and Determinization for SHAs
	Correctness Proof
	Scaling Experiments

	Chapter 6 : Benchmark of XPath Queries
	Introduction
	Subcorpus of Lick and Schmitz' Benchmark
	A Schema for Xml Documents
	Compiler to Automata
	Parser
	Nested Regular Expressions
	Compiler to SHAs
	Schema-Based Determinization
	Minimization
	Examples

	Testing Automata
	Membership for Samples
	Query Evaluation

	Automata Statistics
	XPathMark Benchmark
	Lick and Schmitz' Benchmark

	Example Automata for Lick and Schmitz' Benchmark

	III Projection
	Chapter 7 : Complete Subhedge Projection
	Introduction
	Definitions and Properties
	Irrelevant Subhedges
	Basic Properties
	Completeness for Subhedge Projection

	Safe-No-Change Projection
	Algorithm
	Soundness
	Incompleteness

	Congruence Projection
	Motivation
	Approach
	Algorithm
	Soundness
	Completeness
	Automata Sizes

	Chapter 8 : Complete Suffix Projection
	Introduction
	Certainty
	-Certain Membership
	Certain Non-membership

	Schema-Safety
	Certainty Automata
	Membership
	Non-membership
	Combining Both

	Earliest dSha s with Complete Suffix Projection

	Chapter 9 : Combining Subhedge and Suffix Projection
	Combination Algorithm
	Soundness and Completeness
	Automaton Size
	Benchmark dSha for XPath Queries

	Chapter 10 : Projecting Evaluators for Earliest Membership
	Early Evaluators with Projection
	In-Memory Evaluator
	Streaming Evaluator

	Earliest Membership with Projection
	In-Memory Complexity
	Streaming Complexity

	IV Querying
	Chapter 11 : Earliest Query Answering for Regular Monadic Queries
	Introduction
	Certainty for Monadic Queries
	Certain Answers
	Certain Non-answers
	Deciding Certainty

	Candidate Automata
	Construction
	In-Memory Correctness
	Streaming Correctness

	Earliest Monadic Query Answering
	Earliest Candidate Automata
	Adding Subhedge Projection

	Chapter 12 : Experiments on Regular XPath Evaluation on Xml Streams
	Introduction
	Streaming Evaluation Tool: Astream
	Experiments without projection: Linear increase with size
	Scaling-Up Document Sizes without Subhedge Projection
	Being Earliest
	Factorization

	Experiments with projection
	Evaluation Measures
	Earliest Congruence Projection
	Earliest Safe-No-Change Projection
	Comparison to External Tools
	Experiments with Lick and Schmitz' Benchmark

	Chapter 13 : Conclusion and Future Work

	Bibliography

