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Abstract 

This doctoral dissertation report presents an innovative fatigue assessment system 

for athletes, leveraging advancements in smart textile wearables to develop an 

intelligent garment monitoring system (IGS). The primary focus was on the design, 

fabrication, and evaluation of 3D textile biopotential electrodes, seamlessly integrated 

into compression garments, enabling real-time in monitoring of electrocardiography 

(ECG) and electromyography (EMG) signals during physical activities. 

A meticulous parametric design process was employed to optimize electrode 

design and configuration, considering critical factors such as diameter, height, and 

applied pressure, to ensure high-quality signal acquisition while prioritizing user 

comfort. The intelligent garment system incorporates strategically positioned 

electrodes, pioneering conductive channel designs, and adjustable fastening 

mechanisms to maintain a stable electrode-skin interface position and pressure 

throughout dynamic movements. 

The report is structured into five comprehensive chapters. The introductory 

chapter outlines the background, motivation, objectives, and scope of the study, 

emphasizing the significance of wearable technology in sports science and biomedical 

engineering. Chapter 2 provides a thorough review of the current state-of-the-art, 

covering bioelectric signals, fatigue assessment methods, smart textiles, and AI 

techniques in sports applications. 

Chapter 3 is dedicated to the design, fabrication, and evaluation processes of the 

intelligent garment system, including impedance tests using PVA artificial skin and 

real-world evaluations in cycling sports. Chapter 4 focuses on the rigorous testing and 

analysis of the system, describing the experimental setup, data preparation processes, 

and the application of advanced AI algorithms. State-of-the-art deep learning models, 

including Temporal Convolutional Networks (TCN), Gated Recurrent Units (GRU), 
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Long Short-Term Memory (LSTM), and Transformer architectures, were meticulously 

applied to the processed data to accurately predict fatigue levels. 

Chapter 5 summarizes the key findings, contributions, and implications of the 

research, discusses limitations, and proposes directions for future research. The study 

underscores the importance of continuous improvement and adaptation in enhancing 

intelligent garment systems for sports monitoring. 

The findings demonstrate the efficiency of the proposed fatigue assessment system 

in providing reliable, real-time insights into an athlete's fatigue state, offering 

invaluable information for optimizing training regimens, preventing injuries, and 

enhancing overall athletic performance. This research marks a significant breakthrough 

by integrating advanced textile engineering, sensor technology, and machine learning 

techniques into a unified smart compression cycling garment. For the first time, it 

enables synchronized monitoring of ECG and EMG signals during cycling. This 

advancement is supposed to help coaches and athletes adjust training plans in real-time, 

reducing the risk of fatigue-related injuries. 
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Résumé 

 Ce rapport de thèse de doctorat présente un système innovant d'évaluation de la 

fatigue pour les athlètes, en s'appuyant sur les avancées en matière de textiles 

intelligents pour développer un système intelligent de surveillance des vêtements (IGS). 

L'accent a été mis sur la conception, la fabrication et l'évaluation d'électrodes 

biopotentielles textiles 3D, intégrées de manière transparente dans des vêtements de 

compression, permettant une surveillance en temps réel des signaux 

d'électrocardiographie (ECG) et d'électromyographie (EMG) pendant les activités 

physiques. 

Un processus de conception paramétrique méticuleux a été utilisé pour optimiser 

la conception et la configuration des électrodes, en tenant compte de facteurs critiques 

tels que le diamètre, la hauteur et la pression appliquée, afin de garantir une acquisition 

de signaux de haute qualité tout en privilégiant le confort de l'utilisateur. Le système de 

vêtement intelligent intègre des électrodes stratégiquement positionnées, des canaux 

conducteurs de conception novatrice et des mécanismes de fixation réglables afin de 

maintenir une position et une pression stables de l'interface électrode-peau tout au long 

des mouvements dynamiques. 

Le rapport est structuré en cinq chapitres détaillés. Le chapitre d'introduction 

présente le contexte, la motivation, les objectifs et la portée de l'étude, en soulignant 

l'importance de la technologie portable dans les sciences du sport et l'ingénierie 

biomédicale. Le chapitre 2 présente un examen approfondi de l'état actuel des 

connaissances, couvrant les signaux bioélectriques, les méthodes d'évaluation de la 

fatigue, les textiles intelligents et les techniques d'intelligence artificielle dans les 

applications sportives. 

Le chapitre 3 est consacré aux processus de conception, de fabrication et 

d'évaluation du système de vêtement intelligent, y compris les tests d'impédance 

utilisant la peau artificielle PVA et les évaluations en situation réelle dans les sports 
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cyclistes. Le chapitre 4 se concentre sur les tests rigoureux et l'analyse du système, 

décrivant la configuration expérimentale, les processus de préparation des données et 

l'application d'algorithmes d'IA avancés. Des modèles d'apprentissage profond de 

pointe, notamment des réseaux convolutifs temporels (TCN), des unités récurrentes 

gérées (GRU), des mémoires longues à court terme (LSTM) et des architectures 

Transformer, ont été méticuleusement appliqués aux données traitées afin de prédire 

avec précision les niveaux de fatigue. 

Le chapitre 5 résume les principales conclusions, contributions et implications de 

la recherche, discute des limites et propose des orientations pour la recherche future. 

L'étude souligne l'importance d'une amélioration et d'une adaptation continues pour 

améliorer les systèmes de vêtements intelligents destinés à la surveillance du sport. 

Les résultats démontrent l'efficacité du système d'évaluation de la fatigue proposé, 

qui fournit des informations fiables et en temps réel sur l'état de fatigue d'un athlète, 

informations précieuses pour optimiser les programmes d'entraînement, prévenir les 

blessures et améliorer les performances athlétiques globales. Cette recherche marque 

une avancée significative en intégrant l'ingénierie textile avancée, la technologie des 

capteurs et les techniques d'apprentissage automatique dans un vêtement cycliste de 

compression intelligent unifié. Pour la première fois, ce vêtement permet une 

surveillance synchronisée des signaux ECG et EMG pendant le cyclisme. Cette avancée 

est censée aider les entraîneurs et les athlètes à ajuster les plans d'entraînement en temps 

réel, réduisant ainsi le risque de blessures liées à la fatigue. 
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CHAPTER 1 Introduction 

1.1 Context 

In recent years, the sportswear industry has experienced significant growth due to 

increasing health awareness and rising participation in sports activities. The trend 

towards worldwide fitness has become a major driver of the sports garment market, 

with consumer demand increasingly favoring more specialized and personalized 

sportswear. Statistics indicates that the popularization of nationwide fitness has 

catalyzed the emergence of activities such as trail running and road cycling. 

Furthermore, the expansion of sporting events and the corresponding increase in the 

number of subjects are anticipated to sustain and potentially amplify the market demand 

for sports apparel continuously. 

Due to the characteristics of certain long-duration sports, such as road cycling and 

marathon running, involving extended periods of activity and high-intensity exertion, 

athletes are at risk of experiencing muscle cramps that lead to muscle fatigue and 

sometimes serious injuries. Muscle fatigue can negatively impact athletic performance 

and grade, and in severe cases, can cause musculoskeletal injuries. These potential 

issues present significant concerns for sports enthusiasts. To address these risks, 

wearable monitoring garment has become an essential solution. These intelligent 

garments can provide real-time tracking of bioelectric signals and other key indicators 

of athletes during exercise, helping athletes and coaches identify the exact timing of 

muscle fatigue. This enables the creation of more effective training plans and better 

energy management, preventing sports injuries caused by excessive fatigue. By 

continuously monitoring physiological data, this technology can alert athletes to early 

signs of fatigue, allowing them to make timely adjustments to their activity levels. The 

application of wearable monitoring garment not only improves performance, but also 

plays a critical role in injury prevention, ensuring that athletes can train and compete 

more safely and effectively. 
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Based on the aforementioned context, athletes and sports enthusiasts require 

flexible wearable devices to effectively monitor their exercise fatigue and performance 

in real-time, providing timely feedback on physical conditions to prevent sports injuries. 

The advent and rapid development of smart wearable technology offers new avenues 

for real-time monitoring of athletic status for both, professional athletes and sports 

amateurs. However, traditional wearable monitoring devices, such as smartwatches, 

fitness trackers, and chest strap heart rate monitors, are often rigid or external, lacking 

portability, resulting in discomfort during use and a disconnect with the actual feeling 

of motion during competition. These devices fail to achieve seamless, unobtrusive 

monitoring and suffer from poor real-time adherence between sensors and muscles 

during activity, affecting signal stability. In the field of scientific sports training and 

sports medicine, traditional sports physiological monitoring equipment had problems 

such as significant material rigidity, poor portability, and low stability of fit. These 

issues made it more challenging to achieve the function of real-time acquisition of 

human bioelectric signals during long-time sports and had been a problem that needed 

to be solved. In addition, problems such as signal noise and motion artifacts also vastly 

reduce the reliability of physiological exercise monitoring.  

Increasingly sophisticated textiles, materials, and microelectronics have enabled 

wearable technology to be widely accessible and used in diverse ways in recent years[1, 

2]. Latest advancements in the field have introduced novel materials and structures that 

significantly enhance the capabilities of wearable technologies. These include 

metamaterials for advanced sensing[3], near-zero-index materials for enhanced sensor 

performance[4], nanoparticles for medical diagnostic applications[5], multi-functional 

structures offering a metamaterial perspective[6], metasurfaces for surface wave 

manipulation[7], plasmonics for optical and chiroptical response[8], and graphene-

based field-effect transistors for DNA detection[9]. Meanwhile, the miniaturization and 

integration of signal-monitoring devices into wearable systems are some future 

development trends[10]. Wearable technologies refer to intelligent electronic devices 

worn on the body to analyze and transmit various forms of data, such as signals 
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connected to human bodies and physical activities[11]. 

As advanced electronic technologies with a real-time signal sensing function, 

wearable technology can monitor various human bioelectric signals using multiple 

sensors integrated into the device. In addition to these sensors, wearable technology 

utilizes advanced algorithms and tools, such as machine learning to process and analyze 

the collected bioelectric signals. By providing real-time feedback, these algorithms 

enable the device to influence the wearer's physical and mental state[12], such as heart 

rate variability, stress levels, and sleep quality. As human bioelectric signals are 

consistently detected and monitored, and valuable information is abundantly generated, 

wearable technology allows individuals to track their progress, make informed 

decisions, and maintain a healthy lifestyle. 

Intelligent garment systems (IGS) are a subcategory of wearable technology. IGS 

are specialized wearables that integrate information technology and microelectronics 

into clothing. The evolution of IGS has been marked by significant milestones, such as 

the integration of IoT (Internet of Things) for seamless data transfer and the use of 

advanced materials like conductive textiles for improved comfort and functionality[13]. 

IGS refer to clothing or accessories with built-in sensors, electronics, and software 

to monitor, track or enhance various aspects of human physiology, such as health, 

performance, or comfort, as shown in Figure 1-1. The architecture of an IGS primarily 

consists of embedded sensors designed to monitor bioelectric signals. These sensors are 

interfaced with a controller unit responsible for initial data acquisition and processing. 

Following initial processing, the acquired data are transmitted to user-specific devices 

like mobile phones or desktop computers. This transmission can occur through a variety 

of communication channels, both wired and wireless, with Bluetooth being a commonly 

employed protocol. Once received, the data can be further uploaded to cloud storage 

systems for advanced analytical procedures. Examples of IGS products range from 

smart watches and smart compression garments to smart shoes and smart wristbands. 

Over the past few years, intelligent garment systems have been one of the hottest 

research topics as an emerging wearable technology. Among the different IGS, smart 
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textile wearables in compression garment form containing elastic fibers and yarns, 

become a promising candidate. These garments are particularly advantageous due to 

their gradient compression characteristics. They can apply specific mechanical pressure 

to targeted body areas as needed, stabilizing and supporting underlying tissues, and 

helping to alleviate discomfort caused by exercise or medical conditions. They offer 

benefits such as reducing muscle micro-damage, promoting blood circulation, 

accelerating the removal of metabolic waste, and enhancing comfort. As the 

applications of compression garments continue to expand, the functional development 

and application of smart compression garments for physiological monitoring will 

become a research focus in the future. 

 

Figure 1-1 Intelligent Garment System (IGS) 

The popularity of long-duration sports such as road cycling and marathon running, 

which involve prolonged periods of high-intensity exertion, underscores the necessity 

for effective solutions to monitor and prevent exercise-induced muscle fatigue. 

Traditional fatigue monitoring methods, such as the Borg Scale, rely on subjective self-

assessment and lack the precision and real-time feedback essential for optimizing 

performance and preventing injuries. Furthermore, conventional wearable monitoring 

devices are often rigid, bulky, and poorly integrated with the body, resulting in 

discomfort and unreliable data collection during dynamic sports activities. These 

limitations have impeded the widespread adoption of real-time fatigue monitoring in 
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sports. The advent of IGS has opened new avenues for the seamless and unobtrusive 

monitoring of physiological parameters during exercise. By integrating sensors, 

electronics, and data processing capabilities directly into garments, IGS present a 

promising solution for real-time fatigue assessment in sports. However, the 

development of reliable and effective IGS for sports applications faces several 

challenges, including the need for flexible and comfortable materials, robust sensor 

integration, and advanced data analysis techniques to extract meaningful insights from 

complex bioelectric signals. 

The objective of this thesis is to develop an intelligent knitted compression 

garment capable of real-time ECG and EMG monitoring during cycling activities. 

Additionally, an AI-based predictive model integrated to the IGS will forecast fatigue 

from physiological signals generated by the IGS sensors is developed. This is aimed at 

protecting athletes from fatigue-induced injuries and assisting coaches and athletes in 

designing training programs tailored to the athlete's individual condition. 

The study of development of an AI-based fatigue assessment system for athletes 

using smart textile wearables concerns several interconnected domains: 

1. Sports science and performance optimization: Understanding the physiological 

mechanisms of muscle fatigue and its impact on athletic performance is crucial for 

developing effective strategies to monitor, prevent, and manage fatigue in sports. The 

study aims to leverage advanced wearable technologies and data analytics to provide 

objective, real-time insights into an athlete's fatigue status, enabling evidence-based 

training and recovery interventions. 

2. Biomedical engineering: The development of intelligent garment monitoring systems 

relies on the integration of textile engineering, sensor technology, and biomedical signal 

processing. My research explores the design and fabrication of comfortable, high-

performance textile electrodes for capturing ECG and EMG signals, as well as the 

development of hardware and software components for data acquisition, transmission, 

and analysis. 

3. Artificial intelligence and machine learning: AI-based methods, such as deep learning, 
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have shown great promise in analyzing complex physiological signals and extracting 

relevant features for fatigue assessment. By applying state-of-the-art AI techniques to 

the data collected by the intelligent garment system, my study aims to develop accurate 

and personalized fatigue prediction models that can adapt to individual athletes' 

characteristics and sport-specific requirements. 

4. Wearable technology and IoT: The proliferation of wearable devices and the Internet 

of Things (IoT) has created new opportunities for continuous, remote monitoring of 

health and performance metrics. My research leverages these advancements to create a 

connected, user-friendly system that can seamlessly integrate into an athlete's training 

routine and provide actionable insights to athletes, coaches, and sports scientists. 

1.2 Objectives and Scope of the Study 

The main goal of this research is to create an advanced AI-based fatigue 

assessment system that is built into intelligent garment. This system will provide real-

time monitoring of athletes' bioelectric signals, particularly focusing on 

electrocardiography (ECG) and electromyography (EMG). By using intelligent 

garment systems (IGS), this study aims to improve the precision and ease of fatigue 

prediction, which will help boost athletic performance and prevent injuries. 

Specific Objectives: 

1. 3D textile electrodes developments: 

(1) Design and creation of 3D textile biopotential electrodes. 

(2) Characterization of the skin-to electrode impedance of 3D knitted silver electrodes. 

2. Design and Creation of Intelligent Garment System: 

(1) Development of integration of 3D knitted silver electrodes in compression garments 

and to make sure the garments are comfortable, flexible, and able to collect high-quality 

signals during physical activity. 

(2) Development of hardware and software systems for data acquisition, transmission 

and storage. 
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3. Development of Advanced AI Algorithms for fatigue assessments: 

(1) Realization of fatigue assessments by using developed intelligent garment system 

for cycling sports. 

(2) Development of AI-based algorithms, such as deep learning models, to process and 

analyze physiological signals (ECG and EMG). 

(3) Development of predictive models that can accurately predict fatigue levels based 

on real-time data acquisition. 

(4) Discussion on the challenges related to the stability, comfort, and accuracy of 

intelligent garment systems during extended physical activities. 

Scope of the Study: 

1. Sports Science and Performance Optimization: 

(1) Understanding the physiological mechanisms of muscle fatigue and how it affects 

athletic performance. 

(2) Using wearable technology to provide objective, real-time insights into an athlete's 

fatigue status, enabling evidence-based training and recovery interventions. 

2. Biomedical Engineering: 

(1) Combining textile engineering, sensor technology, and biomedical signal processing 

to create high-performance reliable textile electrodes. 

(2) Developing the necessary hardware and software components for effective data 

collection, transmission, and analysis. 

3. Artificial Intelligence and Machine Learning: 

(1) Applying cutting-edge AI techniques to analyze complex physiological signals and 

extract relevant features for fatigue assessment. 

(2) Developing personalized predictive models that can adapt to individual athletes' 

characteristics and sport-specific requirements. 
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1.3 Strategy to achieve the objectives 

To achieve the objectives of developing an AI-based fatigue assessment system 

for athletes using smart textile wearables, a detailed and multi-pronged strategy will be 

employed. This approach integrates advanced materials, innovative design, rigorous 

testing, and the application of cutting-edge artificial intelligence techniques to ensure 

the development of a comprehensive and reliable system. 

1. Design and Fabrication of Intelligent Garment Systems 

(1) Development of 3D knitted silver-plated electrodes: 

Electrode Design and Material Selection: Advanced textile engineering methods 

will be employed to develop 3D knitted silver electrodes. These electrodes will be 

designed to offer optimal electrical conductivity and mechanical durability. The aim is 

to integrate these electrodes seamlessly into compression garments, ensuring comfort 

and flexibility for the user. 

Optimization and Testing: A systematic design process will be followed to fine-

tune electrode parameters such as height, size, and pressure. Comprehensive testing 

will be conducted to ensure that the electrodes provide high-quality ECG and EMG 

signal acquisition under various conditions. 

(2) Integration of textile electrodes: 

Garment Integration: The developed 3D knitted silver electrodes will be 

strategically integrated into the intelligent garment. This integration will focus on 

maintaining wearer comfort and ensuring stable skin contact during physical activity. 

Electrical Connectivity: Low-resistance silver conductive wires will be 

incorporated into the garment to establish robust connections between the electrodes 

and the electronic components, ensuring reliable signal transmission. 

2. Real-Time Testing in Cycling Sports 

(1) Experimental Setup: 

Extensive testing of the intelligent garment system will be conducted in real-time 

sports scenarios, with a focus on cycling. Controlled experiments will be set up to 
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collect data on athletes' physiological responses during cycling sessions. 

(2) Performance Analysis: 

The performance of the intelligent garment system in capturing accurate 

bioelectric signals and providing reliable fatigue assessments will be thoroughly 

analyzed. 

3. Data Preparation and Processing 

(1) Data Collection and Preprocessing: 

A comprehensive data preparation process will be established, encompassing the 

collection, cleaning, and preprocessing of ECG and EMG data. This ensures the quality 

and consistency of the data used for training the AI models. 

(2) Hybrid Model Development: 

Hybrid models that combine ECG and EMG data will be developed to enhance 

the accuracy and reliability of fatigue predictions. These models will leverage the 

strengths of both data types to provide more comprehensive assessments. 

4. Application of Advanced AI Algorithms 

(1) Development of Deep Learning Models: 

Model Selection and Implementation: Various deep learning models, including 

Temporal Convolutional Networks (TCN), Gated Recurrent Units (GRU), Transformer 

models and Long Short-Term Memory (LSTM), will be developed to analyze the 

collected physiological data. 

(2) Training and Optimization: 

These models will be trained using data acquired from the intelligent garment 

system. The goal is to develop predictive algorithms that can accurately forecast fatigue 

levels based on real-time ECG and EMG signals. 

1.4 Structure of the Thesis 

This thesis is organized into five main chapters, each focusing on a specific aspect 

of developing and evaluating an AI-based fatigue assessment system for athletes using 



10 

 

smart textile wearables. 

Chapter 2 presents a comprehensive review of current knowledge and technologies 

in the relevant fields. It begins by discussing the principles and importance of 

bioelectric signals, specifically electrocardiography (ECG) and electromyography 

(EMG), in sports monitoring. Various methods for assessing fatigue are then explored, 

including the Borg Scale and other techniques used in sports activities. This chapter 

also examines smart textiles designed for sports applications, focusing on bioelectric 

textile electrodes and data processing systems for e-textiles. It concludes with an 

overview of AI methods for analyzing bioelectric signals and a survey of current 

commercial intelligent garment systems for sports monitoring. 

Chapter 3 explains the design, fabrication, and evaluation of the intelligent 

garment system developed in this study. It starts with the design and fabrication process 

for 3D textile biopotential electrodes. Their electrical performance is evaluated using 

impedance tests on PVA reference artificial skin. This chapter then outlines the 

fabrication of the complete intelligent garment, including garment design, hardware 

integration, and software development. It also discusses the integration of 3D knitted 

silver electrodes to ensure optimal signal quality and user comfort. 

Chapter 4 focuses on testing and analyzing the intelligent garment system in the 

context of cycling sports. It begins by describing the experiment setup and methodology 

used in real-world cycling scenarios. This is followed by a detailed explanation of the 

data preparation process for ECG, EMG, and hybrid ECG + EMG data. This chapter 

then presents the application of various deep learning models, including Temporal 

Convolutional Networks (TCN), Gated Recurrent Units (GRU), Long Short-Term 

Memory (LSTM), and Transformer models, for predicting fatigue based on the 

collected data. Finally, the results obtained are discussed, highlighting their 

implications for the effectiveness of the system in providing accurate and timely fatigue 

assessments. 

Chapter 5 summarizes the main findings of the research and highlights the study's 

contributions to the field of AI-based fatigue assessment in sports. It acknowledges the 
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limitations of the current work and suggests potential avenues for future research and 

development. The chapter also underscores the importance of continuous improvement 

and adaptation to enhance the system's capabilities and applications. 
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CHAPTER 2 State of the Art 

This chapter presents a comprehensive review of the current state of the art in 

bioelectric signal monitoring, fatigue assessment, and intelligent garment systems for 

sports applications. We begin by examining the fundamental aspects of bioelectric 

signals, with a focus on electrocardiography (ECG) and electromyography (EMG), and 

their relevance in sports monitoring. The chapter then explores various fatigue 

assessment methodologies, including the widely used Borg Scale, and discusses their 

applications in sports activities. 

A significant portion of this chapter is dedicated to the advancements in smart 

textiles for sports, particularly the development of bioelectric textile electrodes and data 

treatment systems. We analyze different electrode preparation techniques and their 

integration into intelligent garment systems. Furthermore, we investigate the 

application of artificial intelligence methods in processing bioelectric signals, 

highlighting recent innovations that have enhanced the accuracy and efficiency of 

signal analysis in sports contexts. The chapter concludes with an overview of current 

commercial intelligent garment systems, providing insights into their features, 

capabilities, and limitations. 

2.1 Bioelectric Signals 

Bioelectric signals refer to electrical signals produced by biological systems 

during biological events[14]. As shown in Figure 2-1, typical human bioelectric signals 

include electrocardiography (ECG), electromyography (EMG), 

electroencephalography (EEG), and electrooculography (EOG). Among these signals, 

electrocardiograms (ECGs), electromyograms (EMGs) and galvanic skin response 

(GSR) are the most commonly used bioelectric signals in human sport monitoring. 

These signals are pivotal in sports monitoring, giving precious information about an 

athlete's physiological state. By measuring these signals, experimenters and coaches 

can gain insight into an athlete's physical performance, fatigue, and overall health. 
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Recent advancements in Internet of Things (IoT) technologies have facilitated the real-

time collection and analysis of these bioelectric signals, particularly in sports 

environments. Wearable sensor devices can now monitor ECG patterns along with body 

acceleration, providing a comprehensive view of an athlete's physiological and physical 

state[15]. 

These bioelectric signals give precious perceptivity into an athlete's performance, 

health, and well-being and can help trainers, coaches, and athletes optimize training 

programs, help injury, and ameliorate athletic performance. For illustration, by 

measuring EMG, ECG, and GSR during a training session, coaches can adjust the drill's 

intensity. This can help to prevent overtraining and reduce the threat of injury. Also, by 

covering bioelectric signals during competition, trainers can make real-time adaptations 

to an athlete's strategy grounded on changes in their physiological state. In addition, 

advances in wearable technology have enabled the nonstop monitoring of bioelectric 

signals, allowing for the real-time analysis and interpretation of the data. 

 

Figure 2-1 Bioelectric Signals. 
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2.1.1 Electrocardiography (ECG) 

Electrocardiogram (ECG) is a bioelectric signal used for vital sign sensing and 

health monitoring methods and can provide information regarding the electrical activity 

of the heart[16, 17]. As an efficient non-invasive tool, it can measure the heart rate, 

examine the rhythm of heartbeats, diagnose heart abnormalities, recognize emotions, 

and identify biometric information[18]. ECG can be used to collect information about 

an athlete's heart health in long-last sports monitoring. 

As shown in Figure 2-2 (a), the left and right atria, the left and right ventricles, 

veins and arteries, and the ECG pathway constitute a simplified diagram of the heart. 

An electrocardiogram (ECG) records the heart's electrical signals as it contracts and 

relaxes. Figure 2-2 (b) shows that each beat is represented on an ECG as a series of 

moves called P, Q, R, S, and T. A period of ECG generally lasts 10-20 seconds and 

consists of several beats. The P wave represents the electrical activity of the atria as 

they contract to pump blood into the ventricles. The QRS complex represents the 

ventricles' rapid and synchronized electrical activity employed as they contract to pump 

blood out of the heart. The T wave represents the ventricles as they relax and refill with 

blood. These heights, ranges, and shapes can give important information about the 

heart's electrical exertion. It can help diagnose heart-meter diseases, heart attacks, and 

other heart problems. 
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Figure 2-2. (a) Diagram of heart structure; (b) Schematic diagram of ECG signal wave combination. 

The electrocardiogram (ECG) is pivotal in sports monitoring, furnishing precious 

information about an athlete's cardiovascular health and performance. The integration 

of ECG into wearable technology has enabled nonstop monitoring and real-time data 

analysis, allowing for optimized training programs and injury forestallment. The ECG 

monitors heart rate and detects implicit heart problems during physical exertion, like 

abnormal heart measures or arrhythmias, which may indicate heart conditions. This 

information is essential for athletes engaged in high-intensity conditioning, as it helps 

identify implicit health pitfalls and helps prevent severe injury or illness. Also, ECG 

can track changes in heart rate and meter during physical exertion, furnishing 

perceptivity into the athlete's heart response to different situations of exertion and the 

impact of training programs on performance.  

Multitudinous experimenters have tried to develop wearable systems that capture 

and dissect real-time ECG signals. These systems include the Tele-ECG monitoring 

system with textile electrodes[19], the wireless sensorized belt for simultaneous 

respiratory and cardiac signal acquisition[20], and the wearable exercise fatigue 

detection technology utilizing ECG and inertial sensor signals[21]. The significance of 

ECG signals in sports and physical activity lies in their potential to provide healthcare 
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professionals with crucial information for health management. However, current 

wearable systems need a better quality of bioelectric signal acquisition electrodes, 

which can limit their usefulness in practice. Several studies have been conducted to 

address these limitations to improve the quality of ECG signals, such as modifying 

textile electrodes[22]. In this context, a novel ECG classification algorithm has been 

developed specifically for wearable devices with limited computational resources[23]. 

The algorithm could greatly improve the feasibility of ECG monitoring in sports. 

A multimodal biosensing System-on-a-Chip (SoC) has also been developed to 

reliably acquire ECG, photoplethysmography, and bio-impedance signals[24]. This 

innovation could significantly enhance the reliability of wearable systems for ECG 

monitoring. Furthermore, the feasibility of using sportswear-type wearables for 

evaluating physical and physiological exercise intensity has been demonstrated[25], 

indicating the potential for ECG applications in sports to provide valuable insights into 

athletic performance. 

In the field of sports bioelectric monitoring, Electrocardiogram (ECG) sensors 

play a pivotal role in capturing cardiac electrical activities. These sensors 

predominantly operate through a mechanism that involves the use of electrodes to 

detect the electrical potential generated by the heart. The electrodes are often made of 

conductive materials like silver or gold to ensure high signal fidelity. The signal 

acquisition ICs in these sensors are designed to amplify the captured signals, providing 

a gain of around 32 dB and a bandwidth of 370 Hz[26]. Moreover, advancements in 

electrode structures have been made to suppress motion artifacts, thereby maintaining 

the stability of the signal quality during non-contact ECG acquisition[27]. It's worth 

noting that the energy efficiency and transmission delay are also critical factors in the 

operation of these sensors[28]. The integration of machine learning algorithms has 

further enhanced the capability to reconstruct ECG signals even under conditions of 

low to heavy movements[29]. 

The recent advancements in ECG applications in sports have shown the potential 

to enhance ECG signals and enable multi-dimensional monitoring. Building on recent 
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advancements in wearable technology, ECG monitoring in sports has undergone 

significant transformations. Notably, sports environments are now benefiting from IoT-

based systems specifically designed for real-time heartbeat tracking, employing 

advanced data classification techniques such as Radial-basis Function Network and 

Levenberg-Marquardt with Probabilistic Neural Network[15]. Complementing this, a 

recent study has underscored the diagnostic utility of ECG in sports cardiology, offering 

a comprehensive review of tailored electrocardiographic monitoring solutions[30]. 

However, limitations such as processing capacity and movement artifacts remain to be 

addressed. Future research should focus on improving the stability and reliability of 

ECG signals, increasing subject comfort, and developing advanced signal processing 

techniques to maximize the potential of wearable ECG systems. By doing so, it will 

enhance the ability to detect arrhythmias and accurately estimate exercise fatigue and 

improve the overall accuracy and practicality of wearable ECG devices. 

2.1.2 Electromyography (EMG) 

Electromyography (EMG) is a technique for recording biomedical electrical 

signals obtained from neuromuscular activities[31]. In long-last sports monitoring, 

EMG can be used to gather information about an athlete's muscle health and 

performance. In addition, EMG signals are further divided into nEMG and sEMG 

grounded on the system of accession. Needle EMG involves the insertion of a fine line 

electrode into the muscle to measure the electrical exertion of individual muscle fibers, 

while the other involves the use of electrodes placed on the skin to measure the 

electrical exertion of muscles. In comparison with nEMG, sEMG is better suited to the 

monitoring of sports and recreational activities. As illustrated in Figure 2-3, the 

contraction or activation of human muscles induces the generation of electrical 

impulses through muscle fibers and neurons, a phenomenon meticulously recorded 

through electrodes strategically positioned on the muscle surface. These impulses, 

innately composed of electrical signals emanated from muscle fibers, are reflective of 

the intricate dynamics encompassing both the muscles and the governing nervous 
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system, with the intensity and pattern of these impulses providing insightful 

information into their underlying operational mechanics. Following the acquisition of 

the Electromyography (EMG) signals, a subsequent step entails the execution of a series 

of analytical processes including smoothing, rectification, filtering, and root mean 

square of the raw signals, which are pivotal in delineating the precise status of the 

muscle condition. These procedural steps aid in the refinement of the data, enhancing 

the accuracy in understanding the complex interplay of muscular and neural activities, 

thereby facilitating a more nuanced interpretation of muscle states. In the field of sports 

science, sEMG has been increasingly adopted for real-time evaluation of muscle state 

and forecasting of future fatigue trends. Advanced sEMG systems have been developed 

that are cost-effective, portable, and wearable, specifically designed for sports and 

healthcare applications[32]. 

 

Figure 2-3 Schematic diagram of EMG signal generation and processing flow. 

Surface electromyography (sEMG) is increasingly used in sports science to 

monitor and assess muscular fatigue. By recording and analyzing the electrical activity 

produced by muscles during contraction via surface electrodes, sEMG enables real-time 

evaluation of muscle state and forecasting of future fatigue trends. This information is 

useful for optimizing training and injury prevention strategies. The position of muscle 



19 

 

activation measured by sEMG can be used to track changes and give precious feedback 

to athletes and trainers on areas that bear enhancement. The measurement of muscle 

activation over time also provides information on muscle fatigue, allowing for timely 

adjustments in training to prevent further fatigue. In addition to monitoring muscle 

activation and fatigue, sEMG is also used to assess muscle symmetry and balance, 

which is essential for optimizing performance by addressing any imbalances or 

asymmetries in muscle activation. Also, sEMG is used to cover muscle activation 

during specific exercises and movements, furnishing precious information to optimize 

training and ameliorate performance.  

In parallel to ECG sensors, Electromyography (EMG) sensors are instrumental in 

the realm of sports bioelectric monitoring, particularly for assessing muscle activities. 

These sensors primarily function through the detection of electrical potentials generated 

by muscle contractions. The electrodes in EMG sensors are often fabricated from 

conductive materials like silver chloride (Ag/AgCl) to ensure high signal fidelity[33]. 

Advanced signal processing techniques, have been employed to enhance real-time 

EMG signal interpretation, thereby improving the functionality of upper-limb artificial 

body[34]. Recent innovations have focused on the robustness of human-machine 

interactive control for myoelectric prosthetic hands, especially during arm position 

changes[35]. Moreover, pattern recognition algorithms have been increasingly 

integrated into EMG sensors to discern user intentions more accurately, thereby 

enhancing the human-machine interaction[36]. 

In recent times, there have been significant advancements in the field of sEMG 

signal accession for sports monitoring operations. Several studies have concentrated on 

developing cost-effective, movable, and wearable sEMG systems that can be used to 

cover human exertion during sports and in healthcare application[37-39]. Another study 

investigated the extent to which sEMG is adopted by professionals in the field of 

exercise and human movement[40]. Additionally, Spanu et al. made a significant 

contribution by developing and validating cost-effective and robust electrodes that 

provide adequate signal quality in dynamic conditions[41]. Campanini et al. presented 
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educational tools for teaching sEMG detection using electrode pairs and grids[42]. 

Despite these advancements, there are still limitations and challenges associated 

with the use of sEMG in wearable applications. One of the key challenges is improving 

the accuracy and reliability of sEMG signal acquisition in dynamic conditions. 

Furthermore, current sEMG systems can improve user-friendliness and comfort for 

long-term wear. Incorporating advanced signal processing techniques and electrode 

design could improve performance and increase the adoption of sEMG technology in 

the healthcare and sports industries. To achieve this, further research is needed to 

address the current limitations of sEMG in wearable applications. 

2.2 Fatigue Assessment 

2.2.1 Fatigue Definition 

Fatigue is a complex concept that involves a wide range of disciplines such as 

physiology, psychology and medicine. In the field of human performance, fatigue is 

defined as a symptom of decreased physical and cognitive function caused by the 

interaction of performance fatigability and perceived fatigability [43, 44]. Sport fatigue 

performance refers to a decrease in objective performance indicators over a specific 

period of time, whereas perceived fatigability includes sensory changes that regulate 

the integrity of the individual [43, 45]. 

This definition emphasizes the complex essence of fatigue, recognizing the 

interaction of physiological and psychological factors [46]. Sport fatigue performance 

is influenced by a variety of physiological processes, such as metabolite accumulation, 

energy substrate depletion, and altered neuromuscular function [47, 48]. The perceived 

fatigue performance, on the other hand, is characterized by an individual's sensory, 

emotional and cognitive processes, and can be modified by factors such as motivation, 

expectations and prior experiences [49, 50]. 

This fatigue definition framework provides a comprehensive approach to 

understanding the effects of fatigue on human performance, integrating findings from 
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different research areas [43]. By considering both motor and perceptual aspects of 

fatigue performance, researchers and practitioners can develop targeted interventions 

to mitigate the negative effects of fatigue on physical and cognitive function [44]. 

2.2.2 Borg Scale 

The Borg Scale or the Realized Perceived Exercise Intensity (RPE) scale is a 

widely used tool for assessing perceived fatigue performance during physical activity 

[51]. The scale was originally developed by Gunnar Borg to provide a subjective 

measure of an individual's perceived exercise intensity during exercise [52]. As shown 

in Table 2-1, The Borg Rating of Perceived Exertion (RPE) Scale ranges from 6 to 20, 

with 6 indicating "no exertion at all" and 20 representing "maximal exertion" [51]. The 

scale values are intended to correspond to heart rate values, with a score of 12 

corresponding to 120 beats per minute [53]. 

Table 2-1 

Borg rating of perceived exertion (RPE) scale 

Rating Description 

6 No exertion at all 

7 Extremely light 

8  

9 Very light 

10  

11 Light 

12  

13 Somewhat hard 

14  

15 Hard 

16  

17 Very hard 

18  

19 Extremely hard 

20 Maximal exertion 

The Borg scale has been widely used and has shown strong correlations with a 

large number of physiological indicators such as heart rate, oxygen consumption and 

blood lactate levels [54, 55]. It is consequently a useful tool for monitoring perceived 

exercise intensity and assessing perceived fatigue performance of individuals during 
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exercise [56], and has been applied in a multitude of settings, including athletic training, 

recovery, and clinical exercise testing [57, 58]. 

However, it is important to recognize that the Borg scale is a subjective measure 

that can be influenced by various psychological factors [59]. Individuals' RPE values 

may be influenced by their motivation, mood, and prior experiences, leading to 

variability in the relationship between RPE and physiological indicators [60]. In 

addition, the sensitivity of the scale to changes in exercise intensity may vary depending 

on the type and intensity of the activity performed [61]. 

Despite these limitations, the Borg scale is a widely used and practical tool for 

assessing perceived fatigue performance in sport [62]. Combined with objective 

measures of exercise fatigue performance, the Borg scale can provide valuable insights 

into an individual's overall fatigue experience and inform strategies to optimize human 

performance. 

2.2.3 Fatigue Evaluation for Sports Activities  

In the field of sports science, fatigue assessment plays a key role in optimizing 

performance and preventing overtraining syndromes [63]. A comprehensive assessment 

of fatigue in sports activities usually combines objective and subjective measures, 

taking into account both motor and perceived fatigue performance [64]. 

Objective measures of exercise fatigue performance can provide important 

insights into an athlete's physical capabilities and the extent of fatigue-induced 

performance decrements [65], and may include assessments of muscular strength, 

power output, endurance, and sport-specific skills [66, 67]. For example, a critical 

power test for a 3-minute all-out ride has been shown to be a reliable predictor of 

endurance performance in cyclists [68, 69]. Similarly, jump tests such as the following 

squat jump can be used to assess lower extremity strength and neuromuscular fatigue 

in a variety of sports [70, 71]. 

In addition to laboratory tests, field-based assessments of athletic fatigue 

performance can provide physiological valid measures of fatigue during sports 
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activities [72]. Time trials, sprint tests and sport-specific drills can be used to assess 

athlete performance under fatigue conditions [73, 74]. These assessments can help both 

coaches and sport scientists to identify weaknesses and develop training plans to 

increase an athlete's resistance to fatigue [75]. 

Subjective measures of perceived fatigue performance such as the Borg scale and 

questionnaires such as the Profile of Mood States (POMS) or the Recovery-Stress 

Questionnaire for Athletes (RESTQ-Sport) can provide valuable information about 

athletes' psychological state and subjective fatigue levels [76]. These measures can be 

useful in detecting overtraining, burnout, or other fatigue-related problems that may 

affect athletes' health and performance [77, 78]. 

Assessment of fatigue in sports activities requires a combination of objective and 

subjective measures of fatigue [43]. By monitoring changes in exercise and perceived 

fatigue performance over time, coaches and sport scientists can optimize training loads, 

prevent overtraining, and ensure that athletes recover adequately prior to competition 

[79, 80]. This holistic approach to fatigue management can improve athletic 

performance, reduce the risk of injury, and enhance overall athlete health [81]. 

2.3 Smart Textiles for Sports Activities 

2.3.1 Bioelectric Textile Electrodes 

Textile electrodes, a flexible and intelligent skin-friendly textile, can be closely 

integrated with intelligent clothing systems. Compared to traditional electrodes, textile 

electrodes offer many benefits when incorporated into intelligent garment systems, 

including comfort, flexibility, durability, concealment, skin-friendly contact, stability 

in time, and washability. 

Textile dry electrodes are a better alternative to traditional wet electrodes for 

bioelectric signal monitoring. Unlike traditional wet electrodes, which rely on a 

conductive gel to provide electrical connectivity to the skin, dry textile electrodes utilize 

conductive fibers integrated into the textile material. The skin equivalent circuit and 
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skin-electrode contact structure of the conventional wet electrode and textile dry 

electrode is shown in Figure 2-4. Compared with the gel medium of the conventional 

wet electrode, the dry textile electrode achieves signal transmission with the help of 

sweat[82], which has advantages in long-term sports. This results in a more comfortable, 

flexible, and interactive electrode that can be worn for a long time without causing skin 

vexation or discomfort. Also, the lack of gel reduces the setup time and minimizes the 

threat of impurity, making the monitoring process more effective and aseptic. These 

advantages make dry textile electrodes attractive for various bioelectric signal 

monitoring. In the field of wearable health monitoring, E-textile electrodes have 

surfaced as a pivotal innovation, harmonizing with the fabric of clothing for unintrusive 

and continuous bioelectric signal capture. These electrodes are engineered through 

sophisticated textile technologies, employing conductive fibers and polymers to ensure 

a high signal-to-noise ratio, rivaling that of conventional gel-based electrodes. The 

design philosophy behind E-textile electrodes is anchored in biocompatibility, 

flexibility, and resilience, offering a marked advantage over traditional electrodes that 

often necessitate skin preparation and are susceptible to motion artifacts. This 

adaptability renders them particularly invaluable in sports and healthcare scenarios 

where sustained, long-term monitoring is imperative. As we look to the future, the 

trajectory of wearable health monitoring is set to be influenced by advancements in 

sensor miniaturization, energy-efficient technologies, and real-time data analytics. 

These forthcoming innovations hold the potential to revolutionize both sports training 

and healthcare by facilitating more precise performance evaluations and enabling 

timely medical interventions. 
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Figure 2-4 Schematic diagram of skin equivalent circuit with the conventional wet electrode and 

dry textile electrode. 

Textile dry electrodes can be prepared using various techniques, including 

stitching, knitting, embroidering, electroplating, and chemical plating. The preparation 

method is chosen based on the desired properties and applications of the electrode, each 

offering advantages and challenges. The most common approach is stitching, where 

conductive yarns are sewn directly onto the textile substrate. For example, Arquilla et 

al. used silver nanoparticle-coated nylon yarns in an overlapping serrated pattern to 

create 3 cm x 3 cm textile electrodes with a resistance of 0.3 Ω (Figure 2-5. (a)), which 

were capable of recording ECG signals with distinguishable R and S peaks[83]. Milad 

et al. applied STOLL flat machine to knit plane textile dry electrodes and 3D textile dry 

electrodes with silver and carbon yarns (Figure 2-5. (b)) and evaluated the performance 

of these electrodes in long-term electrocardiographic monitoring[84]. Rajanna et al. 

created knitwear and silver textile electrodes by knitting silver and copper-nickel yarns 

onto a foam sponge substrate[85]. Both electrodes had a skin contact impedance of less 

than 1 MΩ/cm2, with the knitwear electrode having a square resistance of 46 Ω/sq and 

the silver textile electrode having a much lower square resistance of less than 1 Ω/sq. 
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Figure 2-5 (a) Silver nanoparticle-coated nylon electrodes. [83] (b) Schematic diagram of the （i）

front and (ii) back of a sample dry electrode[84]. 

Further preparation involves embroidering the conductive yarn on the fabric 

surface to reduce the skin-electrode interface impedance. The research team of Zhao et 

al. presented a knitted electrode with a mixture of reduced graphene oxide (RGO), 

sericin, and a water-retention polymer (Figure 2-6) that is capable of monitoring the 

bioelectric signals of the human body during long-lasting sport[86]. This electrode 

effectively reduces the electrode-skin interface impedance due to its unique 3D 

structure and water-retention material properties. Lee et al. used two conductive yarns, 

stainless steel, and silver, to embroider fabric dry electrodes on the compression 

garment. At the same time, silicone was applied to the designed embroidery pattern to 

increase the adhesion between the electrodes and the skin, thereby increasing the 

effective contact area. His study showed that the application of this method, combined 

with the appropriate garment pressure, could improve the accuracy of sEMG signal 

acquisition while increasing the comfort level[87]. 
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Figure 2-6 Schematic illustration of the 3D textile electrode fabrication process. [86] 

Another method of generating electrodes directly on the fabric is electroplating. 

This surface coverage method enables the deposition of conductive metals directly on 

the textile surface to generate electrodes. Plating technology mainly covers 

electroplating and chemical plating, the principles of electrolysis and redox 

respectively[88]. Electroplating allows for control over the thickness of the metallic 

coating, while chemical plating provides conductivity in all directions of the textile 

surface and uniformly deposited metallic coatings on complex geometries[89]. Ladan 

et al. applied silver-plated and carbon-containing nylon yarn to knit 

electrocardiographic electrodes by electroplating and carbon suffusion methods (Figure 

2-7(a)), respectively, and compared them with gold standard hydrogel electrodes for 

skin impedance before and after washing. The results showed that the performance of 

these two electrodes is comparable to that of gold-standard hydrogel electrodes and can 
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be effectively used for continuous monitoring of human bioelectric signals[90]. Das et 

al. fabricated conductive textiles through a chemical plating process, depositing 

nickel/copper/nickel/gold layers on polyester textiles, resulting in textiles with high 

electrical conductivity and stability[91]. Wu et al. metalized the "dye bath" by using a 

method based on chemical nickel-impregnated gold (ENIG), which allows complete 

penetration of metal ions into the textile structure and deposition of metal coatings on 

the surface of individual textile fibers (Figure 2-7(b)). This method helps maintain the 

textile's inherent structure and abrasion resistance and gives e-textiles high electrical 

conductivity, flexibility, and stretchability[92]. 

 

Figure 2-7 (a) Square and line patterns on the circular knitted silver yarn sample, flatbed knitted 

silver yarn sample, and flatbed knitted carbon yarn sample. [90] (b) Schematic of the ENIG process 

on textiles. [92] 

Screen printing, which involves applying carbon-based inks to textile substrates to 

create conductive patterns, is another common approach. Zhang et al. applied the 

chemical silver-plating method to assemble ECG fabric electrodes from conductive 

cloth, space wool, and double-sided adhesive conductive foam (Figure 2-8(a)). They 

discussed the effect of the fabric electrode surface on static and dynamic ECG quality 

after the conductive media coating. The results showed that the fabric electrode coated 

with conductive paste could effectively reduce the electrode-skin contact impedance 
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and acquire ECG signals more clearly[93]. Xu et al. used screen printing to apply 

aqueous graphene ink on cotton textiles(Figure 2-8(b)) and achieved a high Pearson 

correlation coefficient of 99.47% between the graphene electrode and the commercial 

Ag/AgCl wet electrode[94]. 

 

Figure 2-8 (a) Schematic diagram of the structure of the silver-plated fabric electrode. [93] (b) 

Preparation process of screen-printed graphene electrodes, the experimental setup for the screen 

printing, and photo of the fabricated graphene-coated electrode. [94] 

The interconnection of sensors with intelligent garment systems has garnered 

significant attention within e-textiles research. To attain the desired level of integration 

and functionality, a multitude of techniques have been employed for connecting sensors 

to these systems. Amongst the most widely employed methods, adhesive bonding, snap 

fasteners, pogo pins, and magnets are the four most prominent. 

Adhesive bonding, the most used method in e-textiles, encompasses several types 

of bonding, including non-conductive adhesive bonding (NCA), isotropic electrically 

conductive adhesives (ICA), and anisotropic conductive adhesives (ACA), as shown in 

Figure 2-9. The NCA bonding method has been adapted to create a connection between 

rigid circuit modules, and conductive textile interconnects using a thermoplastic film 

that is sandwiched between the two[95, 96]. ICA bonding involves the addition of a 
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conductive filler to an adhesive material. In contrast, ACA bonding is similar but 

employs a lower concentration of conductive filler, making it more suitable for fine-

pitch connectors[97-99]. 

 

Figure 2-9 Diagram of NCA, ECA, and ICA bonding. 

Snap fasteners, also called press studs or poppers, have been extensively employed 

as connectors in e-textiles. Despite their widespread usage, there is a need for further 

research to determine their viability as electronic connectors[100, 101]. Ozberk et al. 

demonstrated that snap fasteners could be used as an electrical interface for graphene-

coated fabric electrodes to monitor the sEMG signal in the dynamic state of the human 

body[102]. For long-lasting sport monitoring, however, we need to assess snap 

fasteners' durability, reliability, and performance under various conditions to determine 

whether and how well they are suited for use as electronic fabric connectors.  

Pogo pins, typically with a diameter ranging from 1-2 millimeters, have emerged 

as a standard solution for connecting rigid circuit modules with flexible circuitry in a 

garment. These pins offer a reliable and efficient way to connect within e-textile 

systems and have been widely used in various applications. Another method for 

connecting sensors to intelligent garment systems is to use magnets. Magnets have been 
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used either for alignment or as electrical contacts themselves[103]. This approach 

presents a unique solution for connecting sensors in e-textile systems, offering a non-

contact method for making electrical connections. Further research is needed to explore 

this approach's feasibility and limitations, particularly its ability to withstand various 

environmental conditions and its long-term performance. 

2.3.2 Data Treatment System for E-textile 

ECG signal processing involves preprocessing and feature engineering steps to 

reduce noise and interference in recorded ECG signals and extract relevant features for 

analysis. Preprocessing utilizes bandpass, low-pass, high-pass, notch, and median 

filters to eliminate various types of noise. Feature engineering involves extracting 

temporal, morphological, and statistical features in the spatial, frequency, or time-

frequency domains. Traditional methods use denoising and fiducial point extraction 

through direct or transform processes, while recent techniques employ mathematical 

computations and neural networks for faster processing. The accuracy of the extracted 

features significantly impacts the analysis performance, with the QRS complex being 

the most predominant feature. 

Preprocessing is essential in electrocardiogram (ECG) signal analysis to reduce 

interference and determine signal features[104]. Preprocessing aims to minimize noise 

and artifacts in the recorded ECG signals to prepare them for further analysis. Bandpass 

filters are commonly used for this purpose and effectively reduce noise sources like 

muscular noise, movement-related artifacts, power-line interference, baseline 

wandering, and high/low-frequency noise signals[105-113]. Low-pass filters (LPF) 

eliminate high-frequency components of the signals, while high-pass filters (HPF) 

eliminate low-frequency components[114, 115]. Notch filters eliminate DC offsets in 

signals[107, 114, 116, 117]. Median filters remove special effects and arbitrary or 

baseline wander noise[113, 118-121]. Other techniques, such as adaptive noise 

cancellation and leaky-based normalization, have also been proposed for noise 

reduction[122-124]. 
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Feature engineering (FE) is crucial for ECG signal analysis and consists of 

extracting different temporal, morphological, and statistical features from the periodic 

ECG signal pattern[125]. The accuracy of the extracted features impacts the analysis 

performance. These features can be acquired in the spatial, frequency, or time-

frequency domains[126]. Conventional signal processing techniques and machine 

learning models have been introduced to find ECG features such as the R-R interval, 

QRS complex, and others[127]. Traditional FE methods involve denoising the ECG 

signal and extracting fiducial points through direct or transformation methods like 

wavelet transform (WT) and discrete wavelet transform (DWT). However, current 

limitations in terms of processing time and computational constraints have resulted in 

the development of faster techniques using mathematical computations and neural 

networks[128]. These techniques rely heavily on accurately identifying features, with 

the QRS complex being the most predominant. 

Effective signal processing of sEMG signals is crucial for accurately assessing 

muscle fatigue in the sports domain. The preprocessing and feature extraction of sEMG 

signals are vital in obtaining accurate results. Recently, a multitude of techniques and 

features have been utilized to monitor changes in muscle activation and state over time, 

providing crucial information for sports training and rehabilitation. 

Raw sEMG data often contain power line interference and motion artifacts. 

Therefore, preprocessing techniques such as detrending, filtering, normalization, and 

windowing mitigate these issues[129-131]. For example, detrending removes trends 

(both linear and nonlinear slow shifts of the signal from zero level) on EMG. 

Detrending is typically performed as an initial step to reduce artifacts and improve the 

quality of the sEMG signal for further processing and analysis. It is essential for 

obtaining accurate measurements of muscle activation patterns and identifying changes 

in muscle function during physical exertion. Other methods used for preprocessing 

include Independent Component Analysis (ICA) and empirical mode decomposition 

(EMD)[132], Ensemble Empirical Mode Decomposition (EEMD) with Hilbert 

Transform (HT)[133], and Discrete Wavelet Transform (DWT)[134]. In estimating 
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muscle activity onsets, methods such as visual and automated methods[135], sample 

entropy (SampEn) analysis[136], and sequential Gaussian mixture model (GMM) have 

been proposed[137]. Regarding feature extraction, four main types of features are 

extracted from sEMG signals time-domain, frequency-domain, time-frequency domain, 

and nonlinear parameters[138-140]. Time-domain features include root mean square 

(RMS), integrated EMG (iEMG), zero-crossing rate (ZCR), waveform length (WL), 

the variance of electromyography (VAR), and mean absolute value (MAV)[141-145]. 

The RMS and iEMG values increase over time as muscle fatigue sets in, indicating 

changes in muscle activation intensity and human motion state[133, 146-148]. In the 

frequency domain, mean frequency (MF) and median frequency (MDF) represent the 

frequency of measured muscle CV and provide information about muscle fatigue, with 

MDF being more sensitive to muscle activity[149-151]. The time-frequency 

distribution of sEMG signals is also analyzed to provide comprehensive information 

about physiological muscle changes during exercise. 

2.4 AI Methods for Bioelectric signals 

The rapid advancement and integration of artificial intelligence (AI) into 

bioelectric signal processing, particularly in sports-related contexts, have unveiled a 

host of transformative developments. AI has significantly refined our ability to evaluate 

muscle activation, fatigue, and overall athletic performance by bolstering the efficiency 

and accuracy of preprocessing and feature extraction from sport-related bioelectric 

signals such as electrocardiograms (ECGs) and sEMG. Consequently, this has placed 

AI at the crux of applications spanning sports training, rehabilitation, and injury 

prevention, providing a robust foundation for more tailored and potent interventions. 

A summary of key research contributions in the field of AI-enhanced bioelectric 

signal processing in sports is presented in Table 2-2: 

Table 2-2 

AI approaches in bioelectric signal processing across diverse applications 

Author Application  Metrics Measured AI Methods 
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Emma Farago et 

al. [152] 

Wearable Smart 

Devices 

ECG and EMG Autoregressive, Markov 

Chain, Recurrent Neural 

Network Models 

Ali Raza et al. 

[153] 

Digital Healthcare ECG Transformer-based 

Autoencoders, Support 

Vector Data Description, 

Federated Learning 

Ali Raza et al. 

[154] 

ECG-based 

Healthcare 

ECG Deep Convolutional Neural 

Networks (CNN), 

Explainable Artificial 

Intelligence (XAI), 

Federated Learning 

Bruce Hopenfeld 

et al. [155] 

Sports Activities ECG Temporal Pattern Search 

(TEPS), Methodology to 

Mitigate Motion Artifacts 

Duan Na et al. 

[156] 

Accurate Recognition 

of Action Modes 

EMG Convolutional Neural 

Networks (CNN) 

Chengyu Liu et 

al.[157] 

Wearable ECG 

SmartVest System 

ECG Machine Learning (SVM) 

Alejandro 

Castillo-Atoche 

et al.[158] 

Sports Activities 

Monitoring 

ECG Convolutional Neural 

Network (CNN) 

Xiao Sun et 

al[159]. 

Sentiment 

Classification 

GSR Convolutional Neural 

Network, Long Short-Term 

Memory, Self-Attention 

Mechanism 

Shuvodeep Saha 

et al[160]. 

Cognitive State 

Change Classification 

GSR, PPG General Linear Chirplet 

Transform, Random Forest, 

Decision Tree, k-Nearest 

Neighbours 

In the field of motion artifact data processing, Emma Farago et al. delved into the 

application of three distinct AI-based methods: autoregressive models, Markov chain 

models, and recurrent neural network (RNN) models[152], Autoregressive models 

employ a linear combination of past observations to predict future values, offering 

simplicity and computational efficiency. Markov chain models, on the other hand, rely 

on the principle of “memorylessness”, where the future state depends solely on the 

current state, making them suitable for systems with short-term dependencies. However, 

it was the RNN models that stood out for their ability to capture long-term dependencies 

in the data, thereby proving to be the most effective in generating diverse motion artifact 
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data that closely emulated experimental data properties. While RNN models have 

shown superior performance, they are not without limitations. For instance, they are 

computationally more intensive and may require larger datasets for training. In 

scenarios where computational resources or data availability are constrained, 

autoregressive or Markov chain models may offer a more practical alternative. 

Emerging innovations in the field of artificial intelligence, including the advent of 

optimized recurrent neural network architectures and the application of transfer 

learning techniques, offer promising avenues for refining and augmenting the existing 

methods used in motion artifact data generation. 

In response to the limitations of existing simulation techniques, Farago's team 

introduced and compared three AI-based methods for generating motion artifact data—

autoregressive, Markov chain, and recurrent neural network models. Their work 

substantiated the recurrent neural network model as the most effective in generating 

diverse motion artifact data that closely emulated experimental data properties, thus 

enhancing the reliability of bioelectric signal quality analysis in sports applications. In 

a parallel vein, Ali Raza et al. from ENSAIT-GEMTEX Laboratory presented AnoFed, 

a pioneering federated learning framework that incorporated transformer-based 

Autoencoders and Support Vector Data Description[153]. This framework was 

developed to address the challenges of efficient and privacy-minded anomaly detection 

in bioelectric signals during sports activities. Notably, AnoFed leverages transformer-

based Autoencoders for feature extraction and Support Vector Data Description for 

anomaly detection, offering a comprehensive solution for ECG analysis in sports 

settings. The framework has shown promise for broader applications, including other 

types of bioelectric signals and healthcare scenarios outside of sports. This integration 

facilitated efficient, privacy-minded anomaly detection in bioelectric signals during 

sports activities. When applied to ECG analysis, the approach exhibited exceptional 

performance and computational efficiency, effectively tackling data privacy issues 

inherent to healthcare applications. In addition, Raza's team proposed an innovative 

federated learning framework that harmonized explainable artificial intelligence (XAI) 
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and deep convolutional neural networks (CNN) for ECG-based arrhythmia 

classification during sports, offering promising applicability across various healthcare 

and sports scenarios[154]. Furthermore, Bruce Hopenfeld et al. introduced a novel 

methodology that employs autocorrelation and TEPS for the extraction of persistent 

rhythms in the motion artifact record of the NSTDB. Their work has significant 

implications for enhancing the accuracy and reliability of ECG analysis in sports 

performance evaluation, especially in noisy environments.[155, 161, 162]. Focusing on 

the unique challenges of ECG data, they introduced the highly constrained temporal 

pattern search for multi-channel heartbeat detection during sports activities and 

proposed an innovative methodology to mitigate motion artifacts in waist-based ECGs. 

Their work has contributed to enhancing the accuracy and reliability of ECG analysis 

in sports performance evaluation. 

In a similar endeavor, Duan et al. adopted convolutional neural networks for 

efficient feature extraction and action classification in sEMG signals during sports 

activities[156]. Their approach of treating sEMG signal spectrograms as images 

demonstrated the efficacy of deep convolutional networks in gesture motion 

recognition during sports, underlining the promising potential of AI methods in sEMG 

signal processing for athletic performance assessment. On another front, Chengyu Liu 

et al. devised an innovative IoT-based wearable 12-lead ECG SmartVest system for 

real-time, continuous cardiovascular disease monitoring[157]. By confronting the real-

time signal quality assessment and lightweight QRS detection challenges, their novel 

methodology combining multiple signal quality indices and machine learning 

techniques improved the efficiency and reliability of ECG recordings, opening new 

possibilities for broad population monitoring. Moreover, Alejandro Castillo-Atoche et 

al. developed an integrated energy-aware technique and a CNN for a cardiac arrhythmia 

detection system wearable during sports training[158]. Their introduction of an ultra-

low-power microcontroller programmed with a dynamic power management strategy, 

coupled with a photovoltaic energy harvesting circuit, resulted in a significant extension 
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of battery life. With an arrhythmia detection precision of 98.6%, their proposed system 

exemplifies the potential of AI in effectively monitoring athletes' conditions. 

Innovations in AI-driven bioelectric signal processing have revolutionized sports-

related applications, providing enhanced efficiency, accuracy, and privacy in muscle 

activation, fatigue and performance assessment. The adoption of advanced methods 

including autoregressive, Markov chain, and recurrent neural networks, as well as 

federated learning and convolutional neural networks, has enabled breakthroughs in 

mitigating motion artifact contamination, ECG analysis, sEMG signal processing, and 

real-time monitoring. These advancements underscore the vital role of AI in sports 

training, rehabilitation, injury prevention, and healthcare scenarios, and pave the way 

for further research and development in this domain. 

2.5 Overview of Current Sports Monitoring Commercial 

Intelligent Garment System 

With adding fitness and health monitoring demand, the request for intelligent 

garment systems has recently seen significant growth. These systems use advanced 

cloth detectors and wearable technology to cover biometric data such as heart rate, 

respiration rate, and physical exertion. The data collected can be fluently transferred to 

a mobile operation, furnishing real-time feedback to athletes on their health and fitness. 

This section will present an overview of a selection of presently available intelligent 

garment systems that have commercial viability. 

Xiaomi Mijia Cardiogram T-shirt is an industry-leading intelligent garment system 

designed to enhance athletic performance with monitoring systems[163]. One of its 

primary functions is the capability to conduct electrocardiogram (ECG) monitoring, 

which involves the assessment of the electrical exertion of the heart. This capability is 

accomplished by the incorporation of technical sensors within the fabric of the t-shirt. 

The ECG data attained from these detectors offer discerning information about the heart 

rate and other parameters, enabling the monitoring of physical exertion and detecting 

any possible heart-related issues. Likewise, this ECG data can be transferred to a mobile 
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operation, furnishing athletes with immediate feedback and enabling them to make 

well-informed opinions regarding their exercise routines. This system distinguishes 

itself by focusing on cardiac health, making it particularly useful for athletes concerned 

with cardiovascular performance. 

Athos Shirt is an exemplar in intelligent garments designed to enhance athletic 

performance[164]. This shirt is equipped with muscle-tracking detectors that can cover 

the activation of muscle groups during exercise. The data collected by the detectors is 

transferred to a mobile operation, so the athletes can receive real-time feedback on their 

performance and identify areas for enhancement. The Athos Shirts are designed for 

comfort and are made from feather-light, porous materials, equipped with sweat-

wicking technology to keep the wearer cool and dry during intensive exercises. Unlike 

the Xiaomi Mijia, the Athos Shirt specializes in muscle activity, offering a unique set 

of data valuable for strength training and muscle development. 

Tymewear Smart Shirt is a novel intelligent garment system that optimizes athletic 

performance with monitoring systems[165]. It can measure breathing rate, which 

reflects the respiratory exertion of the runner. This system is unique in its ability to 

measure respiratory metrics, offering athletes insights into their aerobic capacity and 

stamina. The shirt has technical sensors embedded in the fabric that collect breathing 

data. This data reveals the runner's metabolic thresholds, training load, and VO2 max. 

Runners can use these parameters to adjust their training intensity, duration, and 

frequency according to their fitness goals and needs. The shirt also transfers the 

breathing data to a mobile application, which gives runners immediate feedback and 

helps them make informed decisions about their exercise routines. A visual 

representation of the TymeWear Smart Shirt is provided in Figure 2-10. 

Moreover, the shirt measures running power, force production, ground contact 

time, and cadence from sensors embedded in the fabric. These parameters help runners 

analyze their biomechanics and gait patterns and improve their running efficiency, 

performance, and injury prevention. Aaron H. et al. conducted two graded exercise test 

(GXT) trials to verify the reliability of the TymeWear Smart Shirt[166]. 
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Figure 2-10 External Layout of Tyme Wear Smart Shirt and Pod[166] 

OM Signal Bra (Figure 2-11) is an intelligent garment technology designed 

explicitly for women. OM Signal Bra incorporates advanced cloth detectors into a 

comfortable and protective sports bra and can track biometric data, including heart 

rate, respiration rate, and physical exertion situations. The data collected by the OM 

Signal Bra can be fluently transferred to a mobile operation, so users are informed 

about their health and fitness progress in real-time. The OM Signal Bra is designed 

with comfort and functionality and is made from high-quality, sweat-wicking 

material. 

 

Figure 2-11 OM Signal Bra.[167] 

Another product utilizing intelligent garment technology is the Hexoskin 

Smart[168]. As shown in Figure 2-12, this shirt has advanced cloth detectors knitted 

into the fabric that can cover various biometric data, including ECG, blood pressure, 
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activity level, skin temperature, etc.[169]. The data collected can be fluently transferred 

to a mobile operation, allowing users to cover their health and fitness progress in real-

time. The Hexoskin Smart Shirt is designed to be durable and accessible, with the 

capability to be washed and worn like a regular garment. Hexoskin Smart Shirt takes a 

more holistic approach by incorporating a range of biometric data, including ECG, 

blood pressure, activity level, and skin temperature. This makes it a versatile choice for 

athletes looking for comprehensive health monitoring. 

 

Figure 2-12 Hexoskin Smart Shirt. [169] 

In addition to these commercial intelligent garment systems, several other 

analogous products are also available. While this overview highlights some of the key 

commercial IGS available, it's worth noting that the wearable technology spectrum in 

sports is broad and continually expanding. These include Whoop Strap[170] and Nadi 

X Yoga Pants[171]. These products use advanced wearable technology to cover 

biometric data and give real-time feedback via a mobile app. They're designed to be 

comfortable and discreet, allowing individuals to cover their health and fitness without 

demanding a separate wearable device. Details of the representative commercial 

intelligent garment systems are shown in Table 2-3. 

 

Table 2-3 
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Details of the representative commercial intelligent garment system. 

Commercial 

Products 

 

Biometric 

data 

Washability Machine Wash Availability / 

Price 

Xiaomi Mijia 

Cardiogram T-

shirt[163] 

ECG Yes No €35.43 

Athos shirt[164] sEMG Yes Not recommended $298 

Tymewear[165] VO2 Max & 

Heart Rate 

Yes Yes $35/ Month 

OM Signal Bra[167] ECG Yes Yes $150 

Hexoskin Smart 

Shirt[168] 

ECG Yes Yes $499 

Whoop Strap[170] ECG Yes Yes $264/Year 

Nadi X Yoga 

Pants[171] 

sEMG Yes Yes $65 

While the table highlights some of the paramount commercial IGS available in the 

market, it's worth noting that the wearable technology spectrum in sports is broad and 

continually expanding. Beyond the field of Intelligent Garment Systems, the athletic 

domain has embraced a slew of other wearable devices. Activity trackers such as Fitbit 

and Garmin have gained immense traction for their role in optimizing athletes' daily 

physical activities. Intelligent shoes, with Under Armour's HOVR series as a notable 

example, have revolutionized footwear by embedding sensors that monitor crucial 

parameters like pace and stride length. Additionally, innovative sportswear, like 

Sensoria's heart rate monitoring sports bra, has bridged the gap between apparel and 

technology. Even minimalist devices, such as the Oura Ring, pack a punch by providing 

insights into metrics like body temperature and heart rate, aiding athletes in 

understanding recovery patterns. As the convergence between technology and 

sportswear deepens, athletes and trainers are better equipped than ever to harness data 

for performance enhancement. 

2.6 Conclusion 

The detailed review of the latest research in bioelectric signal monitoring, fatigue 

assessment, smart textiles and AI methods for sport revealed great progress and 
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opportunities for further study. ECG and EMG signals have been widely accepted as 

useful signs of an athlete's physical state, giving insight into heart health, muscle 

activity, and fatigue. New developments in wearable technology, especially in textile 

electrodes and smart garment systems, have allowed for non-stop, real-time tracking of 

these bioelectric signals during sports. 

However, the current state of wearable ECG and EMG monitoring systems still 

has some issues. Traditional gel-based electrodes, while giving reliable signal collection, 

are not ideal for long-term use due to problems like skin irritation and signal quality 

getting worse over time. Dry textile electrodes have come up as a promising option, 

offering better comfort and ease of use. But, the stability and signal quality of these 

electrodes can be affected by things like motion, different skin conditions, and how 

much pressure is between the electrode and skin. 

Fatigue assessment methods, such as the Borg scale and regular EMG analysis 

techniques, have been widely used to measure an athlete's perceived effort and muscle 

fatigue. While these methods give valuable insights, they often depend on subjective 

ratings or need data processing after exercise, limiting their use for real-time fatigue 

monitoring during sports. 

Putting smart textiles and intelligent garment systems together has opened up new 

ways for comfortable, non-stop monitoring of bioelectric signals. Commercial products 

like the Xiaomi Mijia Cardiogram T-shirt, Athos Shirt, and Hexoskin Smart Shirt have 

shown the potential of seamlessly adding sensors into clothing for ECG and EMG 

monitoring. However, these systems often face challenges in terms of signal quality, 

durability, and user comfort, especially during long-term use in active sports settings. 

Recent progress in AI methods, such as deep learning techniques, has shown 

promise in improving the accuracy and strength of bioelectric signal analysis for sports 

applications. Convolutional neural networks, recurrent neural networks, and 

transformer models have been used to pull out meaningful features and sort fatigue 

levels based on ECG and EMG data. However, the performance of these AI models can 
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be limited by things like data quality, differences between individuals, and the need for 

large, diverse training datasets. 

In this context, my study aims to address the shortcomings of existing wearable 

ECG and EMG monitoring systems by developing a new intelligent garment system 

designed specifically for real-time fatigue assessment in sports. The key innovations of 

my approach include: 

(1) The design and creation of 3D knitted silver electrodes that provide better comfort, 

durability, and signal quality compared to traditional textile electrodes. The detailed 

design process, considering factors such as electrode size, height, and pressure, ensures 

the best electrode-skin contact and minimizes motion-related signal noise. 

(2) The seamless integration of these electrodes into a compression garment, along with 

carefully designed conductive channels and adjustable fastening mechanisms, enables 

stable and reliable signal collection during dynamic sports activities. 

(3) The development of advanced AI algorithms, such as the LSTM model, that use the 

unique combination of ECG and EMG features to accurately predict fatigue levels in 

real-time. By including both time-based and static features, the model captures the 

complex interaction between heart and muscle factors contributing to fatigue. 

(4) The thorough testing and validation of the intelligent garment system in a realistic 

cycling sport scenario, showing its effectiveness in monitoring fatigue progression and 

providing personalized insights for athletes and coaches. 

By addressing the limitations of current wearable ECG and EMG monitoring 

systems and applying advanced textile engineering, sensor technology, and AI methods, 

my study aims to contribute to the development of practical, reliable, and user-friendly 

fatigue assessment tools for sports applications. The proposed intelligent garment 

system is designed to provide personalized fatigue predictions based on an individual's 

specific physiological data. By integrating knowledge from textile engineering, sensor 

technology, and AI, this study presents a fatigue monitoring solution that is tailored to 

the unique needs of each athlete. The testing and validation of the system in a realistic 

cycling scenario demonstrate its potential to support athletes in understanding their 
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individual fatigue patterns and making informed decisions about their training and 

recovery. While the system's primary focus is on personalized fatigue prediction, this 

research aims to lay the foundation for future advancements in fatigue monitoring 

technology. By developing a customizable approach to fatigue assessment, this study 

takes a step towards more effective and accessible tools that cater to the diverse needs 

of athletes across various sports and performance levels. Further research and 

refinement may be necessary to expand the system's capabilities and explore its 

potential applications in different sports contexts. Nonetheless, this study contributes to 

the ongoing efforts to harness technology for enhancing our understanding and 

management of fatigue in sports, ultimately empowering athletes to optimize their 

performance while minimizing the risks associated with excessive fatigue. 
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CHAPTER 3 Design, Fabrication, and 

Evaluation of Intelligent Garment Systems 

This chapter presents the development and assessment of an innovative Intelligent 

Garment System (IGS) for real-time bioelectric signal monitoring in sports applications. 

We begin by addressing the limitations of traditional electrode technologies and 

introduce a novel 3D knitted silver electrode design. The chapter details the systematic 

approach to electrode fabrication, optimization, and characterization, emphasizing the 

importance of parameters such as electrode geometry, applied pressure, and skin 

hydration levels on impedance performance. 

We then describe the integration of these optimized electrodes into a functional 

intelligent garment, discussing the strategic placement of ECG and EMG sensors, 

innovative conductive pathways, and the incorporation of data acquisition hardware. 

The chapter also outlines the development of accompanying software for real-time 

signal visualization and analysis. Through rigorous experimental procedures and 

comprehensive data analysis, this chapter aims to demonstrate the potential of our IGS 

for accurate, comfortable, and continuous physiological monitoring in dynamic 

sporting environments. 

IGS has revolutionized the field of bioelectrical signals monitoring. A critical 

aspect of IGS involves the development of electrodes for the monitoring of 

electrophysiological signals such as ECG, EMG, etc. to assess human physiological 

conditions[172-174]. Traditional clinical long-time monitoring practices have relied 

heavily on disposable adhesive silver/silver chloride (Ag/AgCl) electrodes for 

capturing these signals[175]. However, the practicality of these electrodes for long-term, 

continuous monitoring presents significant challenges. Despite the remarkable progress 

in wearable technology, the limitations of existing electrode technology remain a 

significant concern. The use of Ag/AgCl gel electrodes, while effective in the short term, 

is hindered by their inherent drawbacks. Skin irritation, caused by prolonged contact 

with the gel, poses discomfort and can lead to allergic reactions [176]. Moreover, the 
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gel's tendency to dehydrate over time results in the strong degradation of signal quality, 

rendering them unsuitable for long-term or daily use [177]. To address these issues, 

researchers have diligently sought alternatives, leading to the development of dry 

electrodes using conductive elastomeric materials [178-180]. Among these, conductive 

elastomeric materials have gained prominence, alongside innovative compositions such 

as Ag/G (silver-coated glass) composite materials [181], PDMS-CB 

(Polydimethylsiloxane-Carbon Black) conductive polymers [182, 183], and 

PEDOT:PSS (poly(3,4-ethylenedioxythiophene) polystyrene sulfonate) conductive 

composites [184-186]. The design of dry or semi-dry electrodes represents a significant 

enhancement to these developments, combining the hydration control of wet electrodes 

with the user-friendly attributes of dry types. These dry or semi-dry electrodes utilize 

super porous hydrogels to regulate electrolyte release through capillary action, 

effectively maintaining stable skin-electrode impedance and enhancing user comfort 

for extended wear [187, 188]. By incorporating materials like polyacrylamide and 

polyvinyl alcohol, these electrodes effectively reduce impedance and improve signal 

fidelity [189, 190]. This evolution illustrates a significant shift towards creating more 

adaptable electrodes that not only reduce skin irritation and improve wearer comfort 

but also maintain high conductivity and signal fidelity for ECG/EMG/EEG monitoring, 

offering substantial advantages over traditional Ag/AgCl electrodes [191]. Besides, in 

comparison to traditional Ag/AgCl electrodes, these electrodes offer significant 

advantages in terms of ease of use and non-invasiveness for electrocardiogram (ECG) 

monitoring. They, characterized by their lack of requirement for gel or other wetting 

agents, enable a quicker setup and are conducive to repeated long-term use without the 

risk of skin irritation common with their Ag/AgCl counterparts. However, despite their 

promise for revolutionizing ECG monitoring, they still encounter distinct challenges. 

Among them, the issues of breathability and comfort during extended periods of 

sporting activities are particularly notable. The integration of these electrodes into 

wearable technology for continuous health monitoring necessitates innovative solutions 

to enhance their adaptability and user experience, especially in dynamic and physically 
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demanding environments.  

In recent years, the domain of textile electrodes has witnessed a notable surge in 

scholarly interest, particularly regarding electrodes fabricated from silver threads. This 

heightened focus is largely due to the distinctive attributes of textile materials, which 

include inherent softness and comfort, coupled with their facile integration into 

wearable devices. Silver yarn electrodes, characterized by their superior electrical 

conductivity, stand out as a promising avenue for advancement in wearable 

technologies. As for the realization of conducting flexible surface for electrode, such as 

compression garments, the most used technologies are screen-printing [192-195], dip-

coating [196] and embroidery [197, 198]. However, they demonstrate some significant 

limitations. For instance, the durability of printed electronics on fabrics is a significant 

concern, particularly their ability to withstand the rigors of bending, stretching, abrasion, 

and repeated washing cycles [199]. Furthermore, dip-coating procedures exhibit 

inconsistencies in the surface texture and uniformity of conductive layers applied to 

textiles, which can result in fluctuations in electrical resistance. The control over the 

thickness of these layers is inherently limited, as it is contingent on the textile's surface 

morphology, tension within the substrate, and a range of processing parameters such as 

time, temperature, withdrawal speed, compound concentration, and the composition of 

the coating bath [200]. Embroidery technology, while adept at creating dense 

conductive surfaces, tends to produce structures that are excessively thick and rigid, 

consequently lacking in essential flexibility and stretchability [201].  

In contrast, electrodes developed through knitting technology not only preserve 

the fabric's natural elasticity and comfort but also seamlessly integrate electronic 

functionalities, ensuring minimal impact on the textile's inherent stretchability and 

softness. This method proves especially advantageous for compression garments, 

where maintaining the original textile properties while incorporating electronic 

capabilities is crucial. 

However, the contact issue between the electrodes and the human skin is crucial 

for the guarantee of the signal quality. The unstable physical contact introduces the 
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noise and distortions during the data acquisition because of the motion artifacts and 

varying contact pressures. Therefore, in this study, we propose a 3D format knitted 

textile electrode. The advancement in 3D knitted electrodes structure introduces a 

significant innovation in smart textile fabrication. This structure is inherently designed 

to accommodate complex shapes and functionalities, enabling a direct integration of 

electronic features into the textile's architecture and offering a one-step process that 

enhances the efficiency and feasibility of producing smart textiles. This methodology 

not only streamlines the manufacturing process but also opens new avenues for creating 

more sophisticated and integrated wearable technologies. 

3.1 Design, Fabrication, and Evaluation of 3D Textile 

Biopotential Electrodes 

3.1.1 Design and Fabrication of Textile Electrodes 

Our research focuses on the innovative design and fabrication of 3D knitted silver 

electrodes, tailored for real-time biopotential signals monitoring during long-term 

physical activities. As shown in Figure 3-1, compared to gel electrodes (left side), dry 

electrodes (right side) are more concise in the skin contact model, and due to the 

abandonment of gel, sweat can be a better conductive medium, and the conductivity of 

dry electrodes does not decrease as much as that of gel electrodes along the increase of 

the exercise duration. It may be observed on the left side of Figure 3-1, two RC parallel 

cells, one of them illustrates the skin to electrode impedance and the other one for the 

gel impedance. When the gel dehydrates the corresponding impedance modulus in the 

RC cell increases strongly making very difficult for the bio-signal acquisition. On the 

right side of Figure 3-1, there is only one RC cell for the skin to textile dry electrode 

impedance. Besides, since of the 3D structure, the physical contact between the 

electrode and the skin is improved compared with traditional coating/embroidered 

textile electrodes. Therefore, 3D knitted silver electrodes can help to enable extended, 

real-time physiological signal monitoring while ensuring user comfort and ease of use. 
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To achieve this goal, we have leveraged advanced silver fiber materials, a leading-edge 

solution in the field. Through a systematic exploration of various electrode parameters, 

such as height, size, and pressure, we have conducted skin-electrode impedance 

experiments to determine the optimal electrode design. By addressing the existing 

limitations of dry electrodes, our work paves the way for practical, real-time, and 

continuous physiological monitoring. This development holds considerable promise for 

applications in healthcare, sports, and everyday life, with potential implications for 

early diagnosis and management of various conditions. 

 

Figure 3-1. Skin contact model for gel and dry electrodes. 

In this study, 3D knitted silver electrodes were fabricated using silver-plated nylon 

thread (DTY 140D/3 Silver Fiber Filamentn, Kazhtex Technology Co., Ltd, Suzhou, 

China). Figure 3-2 presents the SEM (Scanning Electron Microscope) images of the 

silver-plated nylon thread, highlighting its detailed microstructure. The thread exhibits 

a diameter of 0.45 mm and an electrical resistance of 200 Ω/m. It is constructed from a 

three-ply yarn incorporating 48 individual filaments, specifically utilized for knitting 

the 3D electrodes. This configuration is chosen to ensure optimal electrical conductivity 

and mechanical durability, which are critical for the functionality of the textile 

electrodes. This thread is called “electrode yarn” in the garment. 

For the remaining components of the intelligent garment system, excluding the 



50 

 

electrodes, a high-elasticity nylon filament is employed. This filament (Yinrui Fiber 

Company, Shaoxing, China) is composed of a blend of 20D spandex and 40D nylon, 

with a spandex stretch ratio of 3.6. It is supplied by and is utilized for knitting the jersey 

stitch structures of the garment. The choice of this high-elasticity filament ensures that 

the garment maintains flexibility and comfort, essential for prolonged wear and 

practical usability in dynamic environments. This thread is called “structure yarn” in 

the garment. 

Regarding the connection between the 3D knitted silver electrodes and the 

hardware (ECG/MG ADC chips), customized composite silver conductive yarns were 

selected. The core yarn of this conductive yarn consists of 18 strands of silver-plated 

nylon filament with a high silver content, demonstrating an electrical resistance of less 

than 2.7 Ω/m. This low resistance is crucial for reducing signal attenuation and ensuring 

accurate data transmission. An insulating layer encases the core to prevent unintentional 

conductivity issues with adjacent wires, thereby enhancing the reliability of the system. 

The outermost layer is a braided silver shield, designed to serve as an electromagnetic 

interference (EMI) shield. This design is aimed at minimizing the influence of power 

frequency interference on the collected ECG/EMG signals, thus ensuring the 

acquisition of clearer and more stable signals. This yarn is called “transmission yarn” 

in the garment. 
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Figure 3-2. SEM of low silver-plated nylon thread. 

The textile electrodes are fabricated using a STOLL 72G knitting machine 

(STOLL, Germany). The base knitted fabric utilizes a jersey stitch with high-elasticity 

nylon filament (structure yarn), a choice predominantly favored for manufacturing 

compression garments due to its superior stretchability and comfort. Figure 3-3 

illustrates the structure of the 3D knitted silver electrode, which necessitates a 

harmonious combination of diverse knitting textures to achieve the envisioned complex 

3D construct. The electrode component, highlighted in yellow, employs silver-plated 

nylon thread (electrode yarn) and is meticulously knitted in a round shape using the 

double tuck stitch. This specific knitting technique not only enhances the conductivity 

of the electrodes but also contributes to the creation of a localized three-dimensional 

effect, crucial for the accurate detection of biopotential signals. 
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Figure 3-3. Structure of 3D knitted electrodes on the back side of fabric. 

The detailed view of the knitted fabric structure reveals the incorporation of 

conductive yarn for transmission purposes. The silver-colored conductive yarn is placed 

on the back surface of the fabric using a specialized knitting technique called the "drop 

stitch" structure. In this method, the conductive yarn is introduced into the fabric during 

the knitting process of the 3D electrodes. It enters the fabric from above and exits below, 

essentially "floating" on the back surface without being fully integrated into the main 

jersey knit structure. To ensure a smooth knitting process and prevent potential issues 

such as excessive yarn length, thread breakage, or needle collisions in the knitting 

machine, a specific type of stitch called the "double tuck" stitch is used at regular 

intervals. These stitches help to secure the conductive yarn in place and provide 

additional mechanical stability and durability to the electrodes. By employing this 

combination of drop stitch structure and double tuck stitches, the conductive yarn can 

be effectively incorporated into the fabric without compromising the overall integrity 

of the knitted structure.  

In the inset at the top right corner of Figure 3-3, the transition between the two 
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types of yarn (structure yarn and electrode yarn) is depicted, showcasing the application 

of localized intarsia techniques to seamlessly intertwine the differing yarns. The high 

elasticity of the nylon filament, contrasted with the non-elastic nature of the silver-

plated nylon thread, along with the difference in knitting densities, collaboratively 

produce a significant 3D effect. By adjusting the yarn tension in the STOLL flat knitting 

process, we can precisely control the height of the electrode. Increased yarn tension 

results in a more pronounced electrode protrusion, thereby amplifying the three-

dimensional effect and enabling meticulous control of the electrode's spatial attributes. 

This localized intarsia approach also aids in enclosing the edges of the electrodes, 

ensuring the stability of loop dimensions and preventing unraveling due to stretching 

or other external forces. 

The lower left corner insert of Figure 3-3 demonstrates the knitted hollow channel, 

which is the knitted hollow channel through drop stitch techniques. This channel is 

specifically engineered to house low-resistance silver conductive wires (transmission 

yarn), which function as a medium for connecting the 3D silver electrodes to electronic 

components. The design of the channel is critical, as it ensures the robust and reliable 

connection necessary for effective biopotential signal transmission. This feature 

enhances the overall functionality of the intelligent garment system by maintaining the 

integrity of the electrical connections under various conditions of wear and use. A 

completed 3D knitted silver electrode is shown in Figure 3-4.  
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Figure 3-4. 3D knitted silver electrode. (Top) Back side of the knitted fabric. (Bottom) Front side of 

the knitted fabric. 

Figure 3-5 presents the variations in electrode diameters and heights explored for 

impedance measurement. The diameter of the electrodes ranged from 1 cm to 3 cm, 

with increments of 0.5 cm. This range was chosen for its suitability in bioelectrical 

signal detection, as different electrode sizes can significantly influence the quality and 

specificity of the detected signals. Smaller electrodes can provide higher spatial 
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resolution, which is advantageous for detecting localized biopotential signals, whereas 

larger electrodes can capture broader signal areas, potentially improving signal stability 

and reducing noise. 

The height of the electrodes varied from 0.5 mm to 3 mm, in increments of 0.5 

mm. Adjusting the height allows for fine-tuning the contact interface between the 

electrode and the skin, which is essential for optimizing impedance and improving 

signal acquisition. Taller electrodes can penetrate deeper into the skin layers, potentially 

enhancing the contact quality and reducing contact impedance. This, in turn, can lead 

to a more accurate and stable signal acquisition, which is critical for applications such 

as ECG and EMG monitoring. 

 

Figure 3-5. Parametric design of 3D knitted electrodes by height and diameter 

These variations in electrode dimensions enable a comprehensive analysis of how 

different physical characteristics affect impedance and overall performance in 

biopotential signal detection. By systematically varying the diameter and height of the 

electrodes, we can identify the optimal dimensions that balance the need for precise 

signal detection with the practical considerations of electrode fabrication and user 

comfort. This detailed exploration helps in refining the electrode design, ensuring that 
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the final product provides reliable and high-quality biopotential signal detection for 

various biomedical applications. 

3.1.2 Evaluation of Textile Electrodes 

The circuit diagram (Figure 3-6) is purposefully designed to directly measure the 

impedance Zc2 of the skin-electrode contact in a three-lead configuration, drawing 

inspiration from the methodology presented by Emanuel Gunnarsson [202]. In this 

setup, segment Zb4 is effectively isolated from carrying any current, as it is connected 

in series with the high input impedance of the voltmeter. Consequently, the high-end 

potential of the voltmeter aligns precisely with the junction where impedances Zb3, Zb4, 

and Zc2 converge, specifically at one side of the skin-electrode contact Zc2. This leads 

to the simplified measurement equation 𝑉 =  𝑍𝑐2 ×  𝐼 , enabling the direct 

measurement of the skin-electrode contact impedance Zc2. 

 

Figure 3-6. Circuit for impedance test 

A key advantage of this methodological approach is that the impedance 

measurement does not rely on any assumptions about the symmetry or precise 
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knowledge of the surrounding tissue impedance, as these factors do not factor into the 

calculation. The only prerequisite is that the voltmeter's input impedance must be 

sufficiently high to prevent current leakage into that branch, a condition usually met by 

modern high-impedance voltmeters. Thus, this three-lead configuration is uniquely 

suited for directly measuring the skin-electrode contact impedance without resorting to 

estimations or indirect methods. Moreover, this three-lead approach overcomes 

limitations of traditional two-lead methods by not assuming uniformity of body and 

skin-electrode impedances across different anatomical locations. By focusing the 

measurement solely on the skin-electrode interface itself, it provides a direct and 

accurate characterization that is essential for the effective design and evaluation of 

textile electrodes used in wearable technologies. This method ensures precise 

measurement of the skin-electrode interface impedance, eliminating the need for 

assumptions about tissue impedance symmetry or comprehensive knowledge of 

surrounding tissue impedances, making it highly practical and suitable for real-world 

applications. 

The Ivium-n-stat impedance analyzer (Ivium Technologies Inc., Eindhoven, 

Netherlands) was employed to perform the impedance measurements. The complete 

electrode-skin impedance test setup is depicted in Figure 3-7 (a). To simulate the effects 

of skin pressure, stainless steel blocks were fabricated with pressure settings of 10 

mmHg, 20 mmHg, and 30 mmHg. These selected pressures are representative of those 

typically used in medical-grade compression garments and serve as meaningful 

reference points for evaluating the performance of compression textile electrodes [203, 

204]. 
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Figure 3-7. (a) Electrode-Skin impedance test setup. (b) Wet phantom and Dry phantom. (c) Upper 

and Lower layers of the skin phantom and mold. 

Skin phantoms made from agar have been commonly reported in literature for 

evaluating the performance of biopotential electrode designs [205-207]. However, the 

existing agar-based phantoms have only been validated for simulating the electrical 

characteristics of deeper tissue layers, such as the dermis and hypodermis, and only in 

higher frequency ranges. Furthermore, the hydration state of the skin, which can 

significantly impact skin impedance, cannot be readily modeled using conventional 

agar-based phantoms. 

To address these limitations and more accurately model skin behavior during 

physical activity, a novel two-layer skin phantom was adapted from the work of Goyal 

et al. [208]. This phantom can simulate the impedance of the skin in the frequency range 

of 1 Hz–1000 Hz, which encompasses the bandwidth of typical biopotential signals. 

Importantly, it also enables the modeling of different skin hydration levels in a 
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controlled manner by varying the porosity of the phantom's upper layer. The effects of 

varying porosity to represent distinct skin hydration states are visually apparent in the 

phantoms shown in Figure 3-7 (b). The "wet" phantom, with an upper layer porosity of 

0.28%, mimics well-hydrated skin, while the "dry" phantom, with a porosity of 0.16%, 

simulates dehydrated skin conditions. 

The layered structure of the skin phantom is illustrated in Figure 3-7 (c). The upper 

layer represents the stratum corneum, the outermost layer of the skin, while the lower 

layer corresponds to the deeper dermal and hypodermal tissue layers. To fabricate the 

upper layer, a mixture of polydimethylsiloxane (PDMS), carbon black (2.5% W/W) for 

increased conductance, and barium titanate (40% W/W) for enhanced dielectric 

properties was prepared and spin coated to a thickness of 100 µm, mimicking the 

thickness and electrical properties of the stratum corneum. As mentioned, the porosity 

of this upper layer was varied between 0.16% and 0.28% to simulate dry and wet skin 

conditions, respectively. 

The lower layer of the phantom, representing the deeper tissue layers, was 

fabricated using a polyvinyl alcohol (PVA) cryogel solution and a cyclical freeze-thaw 

process. The PVA solution was prepared by mixing 8.8 g of PVA with a 0.9% W/W 

saline solution. This mixture was then poured into a mold to a thickness of 5 mm and 

subjected to repeated freeze-thaw cycles to crosslink the PVA, resulting in a flexible 

and electrically stable cryogel that mimics the bulk impedance characteristics of the 

dermis and hypodermis. 

By combining a conductive, porosity controlled PDMS upper layer with a PVA 

cryogel lower layer, this novel skin phantom enables realistic modeling of both the 

stratum corneum and deeper tissues, while also allowing for controlled variation of skin 

hydration states. This makes it a valuable tool for evaluating the performance of textile 

electrodes under different skin conditions representative of real-world use scenarios. 

Figure 3-8 presents the impedance-frequency and phase-frequency 

characterization results for the 3D knitted electrodes, obtained under a constant pressure 

of 30 mmHg on a skin phantom with a porosity of 0.28%, simulating well-hydrated 
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skin. The data reveals two distinct trends that highlight the influence of electrode 

geometry on impedance performance, a critical consideration in the design of 

biopotential monitoring devices. 

 

Figure 3-8. Impedance measurement result for the circle electrode with 3 cm as diameter and 0.5 to 

3 mm as height under the pressure of 30 mmHg. (a) Impedance magnitude and (b) phase response. 

Firstly, for a given electrode configuration, the impedance magnitude exhibits a 

clear decrease with increasing frequency across the measured range of 1 Hz to 1000 Hz. 

This behavior is consistent with the typical frequency response of skin-electrode 

interfaces, where capacitive effects dominate at lower frequencies, leading to higher 

impedance values, while at higher frequencies, the resistive component becomes more 

prominent, resulting in lower impedance magnitudes. Secondly, the impedance 

magnitude at a fixed measurement frequency shows a notable dependence on the 

electrode height. Electrodes with smaller heights consistently display higher impedance 

values compared to their taller counterparts. This trend suggests that the electrode 

height plays a significant role in determining the skin-electrode contact impedance. A 
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plausible explanation for this observed relationship between electrode height and 

impedance lies in the internal structure of the 3D knitted electrodes. As the electrode 

height increases, the number of silver-plated conductive fibers within the electrode also 

increases. Under the same applied pressure, taller electrodes likely experience greater 

compression, leading to increased contact area between the internal conductive yarns. 

This results in a denser and more interconnected internal structure, which facilitates 

improved electrical conductivity and, consequently, lower contact impedance. 

It is particularly noteworthy that the electrodes with heights of 3 mm and 2.5 mm 

exhibit similar impedance profiles, consistently maintaining lower impedance values 

across the entire frequency range compared to the shorter electrodes. This observation 

hints at a potential threshold effect in the relationship between electrode height and 

impedance reduction. Beyond a certain electrode height, in this case, around 2.5 mm to 

3 mm, further increases in height may yield diminishing returns in terms of impedance 

improvement. 

The phase response data reveals the intricate electrical characteristics of the skin-

electrode interface. As depicted in Figure 3-8(b), all electrode configurations exhibit 

negative phase angles across the entire measured frequency range, indicating that the 

reactive component of the impedance dominates. The magnitude of the negative phase 

angle reflects the strength of the capacitive effects, with -90 degrees corresponding to 

purely capacitive behavior and -45 degrees representing equal resistive and capacitive 

contributions. 

At lower frequencies (1 Hz to 10 Hz), the phase angles for all electrode heights 

approach -50 degrees, suggesting a strong capacitive influence. This observation aligns 

with the expected behavior of the stratum corneum, the outermost layer of the skin, 

which acts as a dielectric material. The stratum corneum's high impedance and 

capacitive properties are particularly prominent at low frequencies, as the electrical 

current faces difficulty in penetrating this layer. As the frequency increases, the phase 

angles gradually become less negative, indicating a shift towards more resistive 

behavior. This trend can be attributed to the current's increased ability to penetrate the 
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stratum corneum and reach the more conductive deeper layers of the skin at higher 

frequencies, which aligns with the findings of several scholars' research [209, 210]. The 

phase angles for the 3 mm and 2.5 mm height electrodes converge to approximately -

35 degrees at 1000 Hz, suggesting that the resistive component becomes more 

significant at higher frequencies. 

Interestingly, the phase response curves for the 3 mm and 2.5 mm height electrodes 

remain remarkably close throughout the frequency range, with a maximum difference 

of only 4 degrees. This similarity implies that the electrical properties of the skin-

electrode interface, particularly the balance between resistive and capacitive 

components, do not vary significantly once the electrode height exceeds a certain 

threshold. This finding corroborates the notion of a threshold effect in the relationship 

between electrode height and impedance characteristics. Furthermore, the phase 

response curves for the shorter electrodes (with a height of 1 mm and 0.5 mm) exhibit 

a more gradual transition from capacitive to resistive behavior as the frequency 

increases. This slower transition suggests that the shorter electrodes may face greater 

difficulty in overcoming the capacitive barrier posed by the stratum corneum, possibly 

due to reduced contact area and less effective penetration of the conductive fibers into 

the skin. The phase response analysis provides valuable insights into the frequency-

dependent electrical behavior of the skin-electrode interface. The dominant capacitive 

effects at lower frequencies, attributed to the stratum corneum, gradually give way to 

more resistive behavior as the frequency increases and the current penetrates deeper 

into the skin. The similarity in phase response between the 3 mm and 2.5 mm height 

electrodes reinforces the presence of a threshold effect, beyond which further increases 

in electrode height have limited impact on the electrical properties of the interface. 

After understanding the influence of electrode height on impedance, we focused 

our investigation on electrodes with a height of 3 mm, which exhibited favorable 

impedance characteristics. Figure 3-9 presents the impedance magnitude and phase 

response of a 3 cm diameter circular electrode with a height of 3 mm applied to a skin 

phantom with a porosity of 0.28%, simulating well-hydrated skin under various levels 
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of applied pressure. 

 

Figure 3-9. The impedance-frequency characterization and phase-frequency characterization, 

performed under controlled conditions featuring a 3 cm diameter circular electrode with a height of 

3 mm and a skin model at 0.28% porosity. a) Impedance magnitude and b) phase response. 

The impedance magnitude data (Figure 3-9(a)) reveals a clear inverse relationship 

between the applied pressure and the skin-electrode contact impedance. As the pressure 

exerted on the electrode decreases from 30 mmHg to 0 mmHg, the impedance 

magnitude exhibits a corresponding increase, highlighting the significant role of 

pressure in determining the quality of the skin-electrode interface. This pressure-

dependent behavior is particularly pronounced at lower frequencies, where the 

impedance values show a more substantial variation with changing pressure. The plot 

effectively illustrates this trend, with the impedance magnitude progressively 

increasing as the applied pressure diminishes. This is in complete agreement with the 

previously reported work, as a higher-area electrode leads to lower impedance [211]. 

The relatively high skin-electrode impedance, on the order of mega ohms, obtained at 
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0 mmHg pressure suggests insufficient contact between the electrode and the skin 

phantom. This observation underscores the importance of maintaining adequate contact 

pressure to ensure reliable biopotential signal acquisition. 

The phase response data (Figure 3-9(b)) provides further insights into the electrical 

characteristics of the skin-electrode interface under varying pressure conditions. At 0 

mmHg pressure, the phase response indicates a dominant capacitive behavior, with 

phase angles approaching -90 degrees across the measured frequency range. This 

capacitive dominance can be attributed to the lack of effective contact between the 

electrode and the skin phantom, leading to a high impedance interface dominated by 

capacitive effects. As the applied pressure increases from 10 mmHg to 30 mmHg, the 

phase response curves exhibit a notable shift towards more resistive behavior, 

particularly in the higher frequency range (100 Hz - 1000 Hz). In this frequency range, 

the phase responses for pressures between 10 mmHg and 30 mmHg converge and 

remain within a narrow range, indicating that the electrical characteristics of the skin-

electrode interface become less sensitive to pressure variations once a certain level of 

contact is established. In the lower frequency range (1 Hz - 100 Hz), the phase responses 

for pressures between 10 mmHg and 30 mmHg show a slightly larger variation, with a 

maximum difference of 15 degrees. This suggests that the capacitive effects of the skin-

electrode interface are more sensitive to pressure changes at lower frequencies, where 

the stratum corneum's influence is more dominant. 

The observed pressure-dependent behavior of the skin-electrode impedance has 

significant implications for biopotential signal monitoring in sports applications. 

Consistent and reliable signal capture is crucial in these scenarios, where motion 

artifacts and varying contact pressures can introduce noise and distortions in the 

recorded signals. The results highlight the importance of maintaining adequate and 

stable contact pressure between the electrode and the skin to minimize impedance 

variations and ensure high-quality signal acquisition. Furthermore, the convergence of 

the phase response curves at higher pressures (10 mmHg - 30 mmHg) in the 100 Hz - 

1000 Hz frequency range suggests that once a sufficient level of skin-electrode contact 
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is achieved, further increases in pressure may have diminishing returns on the electrical 

characteristics of the interface. This finding can guide the design and application of 

biopotential monitoring systems, emphasizing the need to optimize contact pressure 

while considering factors such as user comfort and long-term wearability. 

In conclusion, the impedance and phase characterization results presented in 

Figure 3-9 demonstrate the significant influence of applied pressure on the skin-

electrode contact impedance and the electrical behavior of the interface. The inverse 

relationship between pressure and impedance magnitude, along with the pressure-

dependent shifts in phase response, underscore the importance of maintaining adequate 

and stable contact pressure for reliable biopotential signal monitoring in sports 

applications.  

It is important to stress that the ECG signal’s main power lies in 5 Hz–15 Hz [212, 

213], thus the signal quality evaluation may also be performed by calculating the power 

spectral density of the signal in the 5 Hz–15 Hz to that of the overall signal in 5 Hz–40 

Hz [214]. Therefore, it is important to measure the skin-to-electrode impedance in this 

frequency range (5 Hz–40 Hz). 

Figure 3-10 presents the impedance measurement results for electrodes with a 

fixed height of 3 mm and varying diameters, subjected to an applied pressure of 30 

mmHg on a wet skin phantom. The impedance magnitude (Figure 3-10(a)) and phase 

response (Figure 3-10(b)) provide valuable insights into the impact of electrode 

diameter on the electrical characteristics of the skin-electrode interface. 
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Figure 3-10. The impedance-frequency characterization and phase-frequency characterization, 

performed under controlled conditions featuring a height of 3 mm and a skin model at 0.28% 

porosity under the pressure of 30 mmHg. (a) Impedance magnitude and (b) phase response. 

A clear trend emerges from the impedance magnitude data: as the electrode 

diameter increases, the impedance magnitude exhibits a corresponding decrease. This 

inverse relationship between electrode size and impedance can be attributed to several 

factors. Firstly, larger diameter electrodes have a greater surface area in contact with 

the skin phantom, facilitating improved electrical coupling and current distribution 

across the interface. Secondly, electrodes with larger diameters inherently contain a 

higher quantity of silver-plated conductive fibers, which enhances their overall 

electrical conductivity. The combination of increased contact area and superior 

conductivity results in lower impedance values for electrodes with larger diameters. 

Interestingly, the impedance magnitude curves for electrodes with diameters ranging 

from 1.5 cm to 2.5 cm exhibit remarkable similarity, particularly at frequencies below 

10 Hz. In this low-frequency region, the differences in impedance between these 
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electrode sizes are minimal, suggesting the existence of a diameter range within which 

the impedance remains relatively stable. This observation hints at a potential optimal 

range for electrode diameter, where further increases in size may yield diminishing 

returns in terms of impedance reduction. The convergence of impedance curves for the 

1.5 cm to 2.5 cm diameter electrodes at low frequencies is particularly noteworthy, as 

this frequency range is of great importance for biopotential signal acquisition. Many 

physiological signals, such as ECG and EEG, have significant spectral content in the 

low-frequency region. The diameter-related impedance stability observed in this range 

suggests that electrodes within this size range may provide consistent and reliable signal 

capture, minimizing the impact of electrode size variations on signal quality. 

The phase response data (Figure 3-10(b)) provides further support for the 

diameter-related impedance stability phenomenon. The phase response curves for the 

2.5 cm and 3 cm diameter electrodes exhibit a high degree of similarity across the entire 

frequency range, with a maximum difference of only 5 degrees between them. This 

close agreement in phase response indicates that the electrical characteristics of the 

skin-electrode interface, particularly the balance between resistive and capacitive 

components, remain relatively consistent for electrodes within this size range. 

The findings presented in Figure 3-10 are in complete agreement with previously 

reported work, which has demonstrated that electrodes with higher surface areas 

generally exhibit lower impedance values. This consensus reinforces the validity of the 

observed trends and highlights the importance of electrode size considerations in the 

design of biopotential monitoring systems. From a practical standpoint, the diameter-

related impedance stability phenomenon has significant implications for the 

development and application of wearable biopotential monitoring devices. It suggests 

that designers have some flexibility in selecting electrode sizes within the identified 

stability range without significantly compromising impedance performance. 

The normalized magnitude, also known as normalized impedance, is a measure 

that allows for a comparative evaluation of electrode performance independent of their 

physical dimensions. This normalized magnitude is calculated as magnitude divided by 
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the surface area. By normalizing the impedance values with respect to the electrode 

area, the influence of electrode size is effectively eliminated, enabling a fair comparison 

between electrodes of different sizes or configurations [215]. This normalization 

technique is particularly valuable when assessing the intrinsic electrical properties and 

performance of electrodes, as it focuses on the inherent characteristics of the electrode-

skin interface rather than the effects of varying electrode geometries. 

Delving deeper into the normalized magnitude results presented in Figure 3-11 (a), 

it is evident that the 3D knitted silver textile electrodes exhibit lower normalized 

impedance than Ag/AgCl electrodes on wet skin across the frequency range of 10 Hz 

to 1000 Hz. This observation highlights the superior performance of textile electrodes 

in this frequency range under wet conditions, which can be attributed to several factors. 

Firstly, the inherent structural properties of the knitted textile electrodes, such as their 

high porosity and surface area, facilitate enhanced contact and conformability with the 

skin surface. This improved contact quality likely contributes to reduced impedance by 

minimizing the presence of air gaps or voids at the electrode-skin interface. Moreover, 

the hygroscopic nature of the textile material may promote the retention of moisture at 

the interface, further enhancing the conductive pathways and lowering the impedance 

in the wet state. 
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Figure 3-11. Impedance measurement results of 3D knitted silver electrodes and Ag/AgCl electrodes 

under dry and wet skin conditions. (a) Impedance magnitude and (b) phase response. 

However, at frequencies below 10 Hz, the normalized impedance of textile 

electrodes on wet skin surpasses that of Ag/AgCl electrodes. This phenomenon can be 

explained by the fundamental differences in the charge transfer mechanisms between 

the two electrode types. Ag/AgCl electrodes primarily rely on resistive coupling, 

facilitated by the presence of an electrolytic gel that establishes a low-impedance 

conductive pathway. In contrast, dry textile electrodes exhibit a combination of 

capacitive and resistive coupling, with the capacitive component becoming more 

dominant at lower frequencies. The higher capacitive reactance at low frequencies 

contributes to the increased normalized impedance observed for textile electrodes in 

this regime. 
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Under dry skin conditions, Ag/AgCl electrodes maintain lower normalized 

impedance compared to textile electrodes across most of the frequency range, except 

for the region around 1000 Hz where the textile electrode impedance dips below that of 

Ag/AgCl. This observation suggests that the performance of textile electrodes is more 

susceptible to variations in skin hydration levels, whereas Ag/AgCl electrodes can 

maintain relatively stable impedance characteristics even in the absence of additional 

moisture. The steeper slope of the textile electrode impedance curve indicates a stronger 

frequency dependence, with the impedance increasing more rapidly as the frequency 

decreases. This behavior can be attributed to the increasing influence of the capacitive 

component of the electrode-skin interface at lower frequencies, leading to higher 

impedance values. 

The phase response, depicted in Figure 3-11(b), provides complementary 

information regarding the frequency-dependent resistive and capacitive characteristics 

of the electrodes. For wet skin conditions, Ag/AgCl electrodes exhibit a phase close to 

0° in the frequency range of 100 Hz to 1000 Hz, indicating a predominantly resistive 

behavior. This observation aligns with the expectation of resistive coupling being the 

primary mechanism for Ag/AgCl electrodes, facilitated by the presence of the 

electrolytic gel. In contrast, the textile electrodes display a phase of approximately 40° 

across the entire frequency range, suggesting a significant contribution from capacitive 

coupling. The higher phase values for textile electrodes highlight the presence of a more 

complex electrode-skin interface, with both resistive and capacitive components 

playing a role in the overall impedance characteristics.  

The phase response under dry skin conditions further emphasizes the distinct 

behaviors of the two electrode types. Ag/AgCl electrodes maintain a relatively low 

phase, close to 0°, across the entire frequency range, confirming their primarily resistive 

nature even in the absence of additional moisture. On the other hand, textile electrodes 

exhibit higher phase values, reaching up to 40°, indicating a notable capacitive 

contribution to the impedance. This analysis confirms the dominant resistive behavior 

for the Ag/AgCl electrodes compared to the dry textile electrodes, echoing the distinct 

mechanistic principles that guide the behavior of Ag/AgCl and dry electrodes [216]. 

This observation underscores the challenges associated with dry electrode-skin 
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interfaces, where the lack of a conductive gel or moisture can lead to increased 

capacitive coupling and higher impedance values. 

In summary, the normalized impedance and phase response analysis presented in 

Figure 3-11 provides valuable insights into the performance and underlying 

mechanisms of 3D knitted silver textile electrodes compared to conventional Ag/AgCl 

electrodes. The textile electrodes demonstrate lower normalized impedance on wet skin 

in the 10 Hz to 1000 Hz range, suggesting their potential for superior performance in 

this frequency range under moist conditions. However, the textile electrodes exhibit 

higher impedance and phase values at lower frequencies and under dry skin conditions, 

highlighting the challenges associated with capacitive coupling and the absence of a 

conductive gel. These findings underscore the importance of further optimization 

efforts to enhance the low-frequency performance and moisture retention capabilities 

of textile electrodes, with the ultimate goal of achieving stable and reliable biopotential 

measurements across a wide range of skin conditions and frequency ranges. 

The comprehensive parametric design and impedance characterization of 3D 

knitted silver electrodes have culminated in the identification of the optimal electrode 

configuration for integration into intelligent garment systems. The meticulous 

impedance testing, conducted over a wide frequency range and under both dry and wet 

skin conditions, has provided compelling evidence for the superior performance of 

these electrodes compared to conventional Ag/AgCl electrodes. The unique material 

composition of the 3D knitted silver electrodes, coupled with their optimized geometric 

design, contributes to their excellent impedance characteristics. The inherent properties 

of the knitted structure, such as high porosity and surface area, facilitate improved 

conformability and contact with the skin surface, thereby reducing the impedance at the 

electrode-skin interface. Moreover, the hygroscopic nature of the textile material 

promotes moisture retention, further enhancing the conductive pathways and 

minimizing the impact of varying skin hydration levels on electrode performance. The 

ability of these 3D knitted silver electrodes to maintain lower impedance values across 

a wide frequency range, particularly in the 10 Hz to 1000 Hz band, highlights their 

suitability for capturing high-quality biopotential signals. This frequency range 
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encompasses many physiologically relevant signals, such as electrocardiography (ECG) 

and electromyography (EMG), making these electrodes well-suited for a variety of 

wearable health monitoring applications. Furthermore, the consistent performance of 

these electrodes under both dry and wet skin conditions underscores their adaptability 

and robustness. The capacity to maintain stable impedance characteristics, even in the 

absence of additional moisture or conductive gels, positions these electrodes as ideal 

candidates for long-term, continuous monitoring scenarios. This adaptability is 

particularly valuable in intelligent garment systems, where the electrodes may be 

subjected to varying environmental conditions and prolonged wear periods. 

The comprehensive parametric design and impedance characterization process has 

provided a solid experimental foundation for the integration of these 3D knitted silver 

electrodes into intelligent garment systems. By systematically evaluating the impact of 

electrode geometry and skin pressure on impedance characteristics, this study has 

established a robust framework for electrode selection and optimization. The insights 

gained from this research will guide the design and development of advanced wearable 

health technologies, ensuring the seamless integration of high-performance electrodes 

into intelligent garments. 

In conclusion, the rigorous experimental approach employed in this study has 

identified the optimal 3D knitted silver electrode configuration, with a diameter of 3 

cm, a height of 3 mm, and a skin pressure of 30 mmHg, as the most suitable for 

integration into intelligent garment systems. The lower impedance values, consistent 

performance across various environmental conditions, and adaptability to different skin 

hydration levels exhibited by these electrodes underscore their potential for reliable, 

long-term biopotential monitoring.  

3.2 Fabrication of the Intelligent Garment 

3.2.1 Garment Design and Fabrication 

The design of the intelligent garment, as depicted in Figure 3-12, incorporates a 
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sophisticated configuration to monitor both ECG and EMG signals. For ECG 

monitoring, two electrodes are strategically positioned at the chest area, with an 

additional electrode at the left side of abdomen, utilizing a single-lead approach. Given 

the susceptibility of the deltoid muscle on the arm and the erector spinae on the back to 

fatigue during sports activities, three electrodes are placed at each location to effectively 

capture EMG signals. In adherence to the guidelines established by the Consensus for 

Experimental Design in Electromyography (CEDE) project [217], the selection of 

EMG electrode for these muscles was conducted with meticulous consideration. The 

integration of electrodes not only enhances the accuracy of EMG signal measurements 

but also maintains the comfort of the athlete, which is paramount. 

 

Figure 3-12. Design of Intelligent garment system 

To further enhance the functionality of the intelligent garment system, ADC 

(analog-to-digital converter) chips of ECG and EMG, along with the Arduino Nano 33 

IoT, are positioned on the lower part of the back. This specific location was determined 

to be the most stable during sports activities, thereby minimizing displacement due to 
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motion and reducing any potential impact on the wearer's bodily perception. This 

strategic placement ensures that comfort is not compromised during activities such as 

riding. 

For the connection between sensors and electrodes, a previously mentioned 

channel design was employed. Low-resistance silver conductive wires (transmission 

yarn) are placed within these channels, providing a flexible connection that is barely 

noticeable to the wearer. In order to connect the ADC chips, the conductive wires are 

soldered in to 3.5 jack plug, as shown in Figure 3-13. This design represents an 

innovative attempt to balance comfort with functionality, allowing for seamless 

integration of the conductive pathways within the garment. 

 

Figure3-13 3.5 mm jack plug with conductive wires 

The Intelligent Garment System's front and back photos, as illustrated in Figure 3-

14. This assembly is adeptly integrated into the overall design of the system. Notably, 

the three-dimensional effect of the electrodes, which creates a concave surface on one 

side, can produce a convex bulge under skin pressure, potentially detracting from 

contact quality. To address this issue, laser-cut sponges matching the electrodes in size 

and thickness are used. These sponges are affixed with an insulating adhesive layer to 

ensure dimensional stability and maintain a close skin-electrode fit during use. 
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Figure 3-14. Front and back views of Intelligent garment system. (a) Front side of the garment. (b) 

Back side of the garment. 

The Consensus for Experimental Design in Electromyography (CEDE) project is 

an initiative aimed at establishing standardized guidelines for EMG recording and 

analysis[217]. According to the CEDE project's recommendations, maintaining a stable 

and secure electrode-to-skin interface is crucial for ensuring high-quality signal 

acquisition, particularly under the dynamic conditions typical of sports activities. The 

Intelligent Garment System addresses this requirement by incorporating adjustable 

Velcro straps strategically placed around the perimeter of each electrode. These straps 

enable precise regulation of pressure, ensuring that the electrodes remain firmly and 
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comfortably attached to the skin. 

The adjustable Velcro straps are designed to follow the CEDE project's advice on 

optimizing electrode performance through a customizable fit. By allowing wearers to 

adjust the tightness of the straps, the system ensures that the electrodes maintain 

consistent contact with the skin, reducing the risk of signal degradation due to 

movement or sweat. This adaptability is essential in sports, where athletes engage in a 

wide range of movements that could otherwise disrupt the electrode-skin interface. This 

adjustable feature significantly enhances the overall functionality of the intelligent 

garment, facilitating the accurate recording of EMG signals. A tighter fit, achieved 

through the precise adjustment of the Velcro straps, results in improved electrode 

performance by minimizing the movement and ensuring a stable contact area. This 

stability is crucial for capturing high-fidelity EMG signals, as any displacement can 

lead to signal artifacts and reduced data quality. Furthermore, the design of the Velcro 

straps takes into consideration the athlete's comfort and the need for ease of use. The 

straps are easily adjustable, allowing athletes to quickly modify the fit before, during, 

or after activities without requiring assistance. This user-friendly aspect ensures that 

athletes can maintain optimal electrode performance throughout their activities, 

contributing to more reliable and consistent data collection. The incorporation of 

adjustable Velcro straps around each electrode on the Intelligent Garment System is a 

thoughtful and practical solution to the challenge of maintaining a stable electrode-to-

skin interface. By allowing for customizable pressure regulation, the system adheres to 

the CEDE project's guidelines, enhancing the reliability and accuracy of EMG signal 

acquisition. This design not only improves electrode performance but also ensures 

athlete comfort and ease of use, making it a robust and effective tool for monitoring 

muscle activity during sports. 

The intelligent garment design incorporates several innovative elements to ensure 

high-quality signal acquisition for both ECG and EMG monitoring while maintaining 

the wearer's comfort during sports activities. The strategic placement of electrodes, the 

use of 3D knitted silver electrodes, the innovative channel design for conductive wires, 
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and the adjustable Velcro straps all contribute to the garment's enhanced functionality 

and reliability. 

3.2.2 Hardware Integration 

In terms of hardware, the architecture is shown in Figure 3-15. The intelligent 

garment system employs a sophisticated array of components to facilitate accurate and 

efficient physiological monitoring. Central to the ECG monitoring capability is the 

ADS1292R chip, a highly integrated analog front-end specifically designed for 

biopotential measurements. This chip offers high-resolution data acquisition, low noise, 

and low power consumption, making it an ideal choice for wearable applications where 

power efficiency and signal fidelity are paramount. For the detection of EMG signals, 

two SEN0240 ADC provided by OYMotion are utilized. These ADC are renowned for 

their sensitivity and reliability in capturing muscle activity, ensuring precise and real-

time monitoring of muscle fatigue and performance. The sensors are interfaced with a 

development board that features the Arduino Nano 33 IoT, a versatile microcontroller 

that integrates seamlessly with various sensors and components. The real photo of 

hardware for intelligent garment system is shown in Figure 3-16 
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Figure 3-15: Architecture of hardware design. 
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Figure 3-16. Photo of hardware for intelligent garment system 

The Arduino Nano 33 IoT plays a microcontroller role in this setup due to its 

advanced features, including built-in Wi-Fi connectivity. This connectivity enables the 

remote acquisition and transmission of real-time ECG and EMG data, facilitating 

continuous monitoring without the constraints of physical connections. The capability 

to transmit data wirelessly is crucial for applications involving dynamic and mobile 

subjects, such as athletes, where tethered solutions could hinder movement and 

performance. 

Powering the entire system is a 9V battery, chosen for its ability to provide a stable 

and sufficient power supply to all components. The battery ensures that the system can 

operate continuously over extended periods, which is essential for long-duration sports 

activities or monitoring sessions. 

This hardware configuration underscores the intelligent garment system’s 

capability to provide robust, real-time monitoring of critical physiological parameters. 

By leveraging advanced components like the ADS1292R chip and the Arduino Nano 
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33 IoT, coupled with high-quality SEN0240 EMG chips, the system ensures high 

accuracy, reliability, and user comfort. This setup not only enhances the performance 

monitoring of athletes but also represents a significant advancement in wearable health 

technology, offering insights that can be used to optimize training regimens, prevent 

injuries, and improve overall athletic performance. 

3.2.2 Software Development 

At the beginning of this section, it is important to discuss the sampling frequencies 

employed in the Intelligent Garment System. For the acquisition of EMG signals from 

the erector spinae and anterior deltoid muscles, a sampling frequency of 1000 Hz was 

chosen, as it is commonly used in EMG studies. This high sampling rate ensures that 

the system captures the full spectrum of EMG signals, which typically contain 

frequencies up to 500 Hz. By adhering to the Nyquist-Shannon sampling theorem, 

which states that the sampling frequency should be at least twice the highest frequency 

component of the signal, the 1000 Hz sampling rate guarantees that the EMG signals 

are accurately represented without aliasing. 

In contrast, a sampling frequency of 125 Hz was selected for the acquisition of 

ECG signals. This sampling rate is widely accepted as a standard in ECG monitoring 

systems, as it provides a balance between data resolution and system efficiency. Most 

of the relevant information in an ECG signal is contained within a frequency range of 

0.5 to 50 Hz. By sampling at 125 Hz, the system comfortably satisfies the Nyquist-

Shannon criterion for this frequency range, ensuring that the ECG signal is faithfully 

captured without significant loss of information. Moreover, using a lower sampling rate 

for ECG compared to EMG reduces the overall data throughput and storage 

requirements, optimizing system resources without compromising the quality of the 

acquired signals. 

The software of the Intelligent Garment System for Client PC enables the 

processing, visualization, and storage of the bioelectric signals acquired by the 

hardware. As illustrated in Figure 3-17, software of the Intelligent Garment System was 
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developed using the Qt framework to receive, display, and record the real-time ECG 

and EMG data transmitted wirelessly from the Arduino Nano 33 IoT. 

 

Figure 3-17 Software of the Intelligent Garment System 

The main window of the application features three dedicated charts that provide a 

visual representation of the athlete's physiological data. These charts, implemented 

using the powerful Qt Charts module, render the ECG signal, EMG of the erector spinae 

muscle, and EMG of the left anterior deltoid muscle respectively. The Qt Charts module 

offers a wide range of customization options for axes, series, and legends, enabling the 

creation of visually appealing and informative charts. Users can interact with the charts 

by zooming and scrolling, facilitating detailed examination of specific data segments 

and allowing for a more in-depth analysis of the athlete's performance. 

In addition to the graphical display, the application incorporates a text browser that 

serves as a log for the raw data packets received from the hardware. This feature proves 

invaluable for debugging purposes and data validation, as it allows developers and 

researchers to inspect the incoming data in its original format. The inclusion of a menu 

bar with options to reset the zoom level of each chart independently further enhances 

the user's ability to navigate and analyze the data, providing a more flexible and user-

friendly experience. 

To facilitate seamless wireless communication between the hardware and the 
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software, the application leverages the Qt Network module. By binding to a specified 

local IP address and port, the application can listen for incoming UDP packets from the 

Arduino Nano 33 IoT. Upon receiving a packet, the application employs robust parsing 

algorithms to extract the ECG and EMG values, ensuring data integrity and reliability. 

The extracted values are then used to update the corresponding charts and text browser 

in real-time, providing a live feed of the athlete's physiological state. 

Recognizing the importance of data persistence and post-session analysis, the 

application implements a comprehensive data logging functionality. When the "open" 

button is toggled, the application automatically creates a CSV file with a timestamp-

based filename in a designated directory. The CSV file is structured with well-defined 

headers for each signal type, allowing for easy interpretation and analysis of the logged 

data. As the application receives and parses the bioelectric signals, it appends the data 

to the CSV file along with a sequence number, ensuring a chronological record of the 

athlete's performance. This data logging feature empowers researchers and coaches to 

conduct in-depth post-session analysis, track the athlete's progress over time, and make 

informed decisions regarding training regimens and performance optimization 

strategies. 

The software development for the Intelligent Cycling Compression Garment 

System showcases the seamless integration of real-time data visualization, wireless 

communication, and data logging capabilities. By leveraging the robustness and 

efficiency of the Qt framework, the desktop application provides a reliable and high-

performance platform for monitoring and analyzing the athlete's physiological data. 

The modular design of the software allows for future enhancements and extensions, 

ensuring the system can adapt to evolving research needs and technological 

advancements. The intuitive user interface and interactive charting features enable users 

to easily interpret and explore the bioelectric signals. 
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CHAPTER 4 Testing and Analysis of 

Intelligent Garment System in Cycling Sport 

This chapter evaluates the performance of the intelligent garment system in 

cycling. We present a cycling fatigue test that mimics the varying intensity levels 

athletes experience during training or competition. The study combines conventional 

analysis methods with deep learning techniques to assess the system's ability to predict 

fatigue levels in real-time. We begin by describing the experimental setup, including 

the cycling protocol and subjective fatigue assessment using the Borg Rating of 

Perceived Exertion (RPE) scale. The chapter then analyzes electrocardiogram (ECG) 

and electromyography (EMG) data using statistical methods to examine heart rate 

variability and muscle fatigue patterns. 

To address limitations in conventional analysis, we explore artificial intelligence 

approaches. The chapter investigates several time-series deep learning models, 

including Temporal Convolutional Networks (TCN), Gated Recurrent Units (GRU), 

Transformers, and Long Short-Term Memory (LSTM) networks. These models are 

evaluated for their effectiveness in processing the ECG and EMG data from the 

intelligent garment system. 

4.1 Test Setup and Methodology 

As shown in Figure 4-1, the experimental setup used the Essential Exercise Bike 

EB 140 (Decathlon, France) to carry out a structured cycling plan designed to assess 

gradual levels of fatigue while allowing for optimal signal collection. 
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Figure 4-1 Cycling Test 

Table 4-1 Protocol of cycling plan 

Low pace 

(5 km/h) 

High pace 

(30 km/h) 

Low pace 

(5 km/h) 

High pace 

(30 km/h) 

Low pace 

(30 km/h) 

High pace 

(30 km/h) 

Low-intensity High-intensity Low-intensity High-intensity Low-intensity High-intensity 

7 min 3 min 7 min 3 min 7 min 3 min 

Sequence 1 Sequence 2 Sequence 3 

The protocol of cycling plan is illustrated in Table 4-1. The cycling test included 

three repeated sequences, each with two distinct phases: a 7-minute ride at a low pace 

phase of 5 km/h, followed right away by a 3-minute high-intensity sprint phase at 30 

km/h. This two-phase approach was carefully designed to bring out a wide range of 

physical responses, going from a resting state to one of increased physical stress and 

fatigue. Each cycling fatigue assessment session lasted a total of 30 minutes. One 

important part of this method was purposely leaving out rest periods between the two 

phases in each sequence. This unbroken change from low to high intensity cycling 

aimed to closely copy real-world athletic situations, where athletes often go through 

dynamic changes in effort levels without significant recovery breaks. By keeping the 

cycling fatigue assessment continuous, we wanted to capture the subtle interaction 

between varying levels of physical exertion and their impact on the quality and 

reliability of the ECG and EMG signals. This protocol choice was driven by the 

necessity to rigorously evaluate the robustness and signal quality of the 3D knitted 
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silver electrode in IGS under conditions that accurately simulate the demands of real 

sports activities. Factors like perspiration, rapid body movements, and variations in 

pressure at the electrode-skin interface can significantly affect signal quality during 

intense physical exertion. By putting the IGS through these realistic stressors without 

interruption, we aimed to comprehensively assess its performance and suitability for 

continuous, real-time monitoring of athletes' physiological parameters. 

To measure the subjective perception of fatigue during the cycling test, we used 

the well-known Borg Rating of Perceived Exertion (RPE) scale. This scale, which goes 

from 6 to 20, lets subjects self-report their level of perceived effort at any given moment 

during the exercise. For our study, we further combined several different evaluation 

grades in the Borg scale into four distinct fatigue levels: 0 (No fatigue), 1 (Slightly 

fatigued), 2 (Fatigued), and 3 (Extremely fatigued), as shown in Table 4-2. Throughout 

the cycling session, the subjects were instructed to verbally express their current level 

of fatigue whenever they felt a change in their fatigue state. This self-reported fatigue 

level, which we refer to as the "Fatigued Labeled State," was based entirely on the 

subjects' own perception and assessment of their fatigue at any given moment. By 

encouraging the subjects to report their fatigue levels as they experienced changes, 

rather than at predetermined intervals, the researchers were able to collect real-time 

data on the subjects' subjective fatigue states at different points during the exercise. This 

approach ensures that the subjective fatigue ratings are promptly and accurately reflect 

the real-time fatigue state during the cycling exercise. 

Table 4-2 Subjective scale 

Evaluation Grade Subjective Feelings Fatigued labeled State 

6 No exertion at all 

0. No fatigue 

7 Extremely light 

8  

9 Very light 

10  

11 Light 

1. Slightly fatigued 
12  

13 Somewhat hard 

14  

15 Hard 2. Fatigued 
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16  

17 Very hard 

18  

19 Extremely hard 
3. Extremely fatigued 

20 Maximal exertion 

The subjects selected for this study were regular cycling enthusiasts who were 

well-acquainted with the physical exertion and fatigue associated with the sport. This 

familiarity made them better equipped to accurately perceive and report their own 

fatigue levels during the experiment. To further enhance the reliability of their 

subjective assessments, each subject received a detailed introduction to the Borg Rating 

of Perceived Exertion (RPE) scale prior to the tests. This introduction ensured that the 

participants had a clear understanding of the fatigue classification method and could 

provide more consistent and reliable feedback on their perceived fatigue states 

throughout the cycling session. To ensure the repeatability and reliability of the findings, 

each subject completed three identical trials of the cycling experiment, with each trial 

conducted at 10 o'clock in the morning on separate days to minimize any potential 

variations caused by circadian rhythms or daily fluctuations in physical condition. 

These repeated measures design let us account for potential differences within 

individuals and assess the consistency of the intelligent garment system's performance 

across multiple sessions. 

Table 4-3 Basic information of subjects 

Number Age Height(cm) Weight(kg) BMI 

1 29 175 75 24.4 

2 23 178 77 24.3 

3 26 176 74 23.8 

4.2 Data Processing and Analysis 

In the previous section, we introduced the experimental protocol for the 30-minute 

cycling fatigue assessment. In this section, several traditional statistical methods were 

employed to analyze the data, focusing on the heart rate (HR) patterns and their 

relationship to fatigue. To facilitate the analysis, the calculation of Heart Rate (HR) was 

based on the formula defined as Formula (1). Specifically, HR was determined by the 
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frequency of R-R intervals, calculated as follows: 

 

Heart Rate (BPM) =
60

R-R Interval (seconds)
                         (1) 

This formula provides a direct measure of heart rate in beats per minute (BPM) by 

calculating the reciprocal of the time elapsed between two consecutive R-waves on the 

ECG, normalized to a minute. Utilizing the heart rate calculation method showed in 

Formula (1), we obtained heart rate variability curves for the entire 30-minute cycling 

test. This enabled us to track changes in heart rate over time and under different exercise 

intensities. 

Figure 4-2 presents the heart rate plots for each of the three subjects (4-2(a), 4-

2(b), and 4-2(c)) throughout the cycling test. Upon examination of these plots, a 

consistent trend emerges in the HR patterns for all three subjects. In the first low-

intensity cycling phases (blue regions), the HR values remain relatively stable, 

indicating a steady-state of cardiovascular and autonomic function. In contrast, during 

the high-intensity sprint phases (red regions), there is a rapid increase in HR, followed 

by a swift decrease in the subsequent low-intensity phases. 
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Figure 4-2 Plots of Heart Rate evolution in 3 subjects over a 30-minute Cycling Test: (a) Subject 1; 

(b) Subject 2; (c) Subject 3. 

The sharp increase in HR during the high-intensity sprints phase can be attributed 

to several physiological factors. Firstly, the sudden increase in exercise intensity leads 

to a rapid elevation in heart rate, which may result in greater beat-to-beat variability, 

thus increasing HR. Secondly, high-intensity exercise is associated with significant 

changes in breathing patterns, such as increased respiratory rate and depth, which can 

directly influence heart rate variability. Lastly, the abrupt onset of high-intensity 

exercise may trigger a swift response from the autonomic nervous system, leading to a 

temporary dominance of sympathetic activity and a corresponding increase in HR. 
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The rapid decrease of HR to a stable level during the low-intensity phases 

following each sprint suggests efficient autonomic regulation and a well-functioning 

cardiovascular system in all three subjects. This ability to quickly restore homeostasis 

after acute stress is crucial for maintaining performance and preventing excessive 

fatigue accumulation. Despite the consistent overall HR pattern, there are notable 

individual differences among the subjects. Subject 1 (Figure 4-2(a)) exhibits the most 

stable HR values during the low-intensity phases, with relatively uniform increases 

during the sprints, indicating a well-balanced autonomic response and a good capacity 

for recovery. Subject 2 (Figure 4-2(b)) shows slightly more variability in HR during the 

low-intensity phases, with more pronounced HR spikes during the sprints, suggesting 

a stronger autonomic response to high-intensity exercise. Subject 3 (Figure 4-1(c)) 

demonstrates the highest overall HR variability, both during the low-intensity phases 

and the high-intensity sprints, indicating a more intense autonomic response to exercise 

stress. These individual differences in HR variability may reflect varying levels of 

cardiovascular fitness, autonomic function, and adaptability to exercise. Subjects with 

higher cardiovascular fitness and more efficient autonomic regulation may exhibit more 

stable HR patterns and faster recovery after high-intensity bouts. In contrast, 

individuals with lower fitness levels or less efficient autonomic function may show 

greater heart rate variability and slower recovery. 

In terms of fatigue, the consistent HR patterns throughout the cycling test suggest 

that all three subjects were able to cope with the demands of the exercise protocol 

without showing signs of excessive fatigue accumulation. The stable HR during low-

intensity phases and the rapid recovery after high-intensity sprints indicate efficient 

cardiovascular and autonomic regulation, which are essential for maintaining 

performance and preventing fatigue. However, it is important to note that the 30-minute 

cycling test represents a relatively short duration of exercise, and the HR patterns 

observed may not fully reflect the potential for fatigue accumulation over longer 

periods or more intense exercise protocols. Future research should investigate HR 

responses during prolonged or more strenuous exercise to better understand the 
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relationship between HR variability and fatigue. 

Furthermore, the individual differences in HR patterns highlight the importance of 

personalized monitoring and training strategies. By assessing each athlete's unique HR 

response to exercise, coaches and sports scientists can tailor training plans to optimize 

performance, minimize fatigue, and reduce the risk of overtraining. Individualized HR 

monitoring can also help detect early signs of fatigue accumulation or autonomic 

imbalances, allowing for timely interventions and recovery strategies. In conclusion, 

the analysis of HR patterns during the 30-minute cycling test reveals a consistent trend 

of stable HR during low-intensity phases, rapid increases during high-intensity sprints, 

and swift recovery in all three subjects. While individual differences in HR variability 

exist, the overall pattern suggests efficient cardiovascular and autonomic regulation, 

with no clear signs of excessive fatigue accumulation within the context of this 

relatively short exercise protocol.  

In the study of muscle fatigue during the 30-minute cycling test, we focused on 

the electromyography (EMG) signals from the anterior deltoid and erector spinae 

muscles to assess changes indicative of muscle fatigue, particularly alterations in 

muscle fiber conduction velocity. To achieve this, we calculated the Median Frequency 

(MF) of the EMG signals. The following describes the detailed signal processing 

methodology employed: 

Firstly, to ensure the integrity of the EMG data for analysis, any DC offset present 

in the raw EMG recordings was removed using the mean subtraction method. This was 

achieved by calculating the mean value of the entire EMG signal and subtracting it from 

each data point. The purpose of removing the DC offset is to eliminate the constant 

component of the signal, centering the signal around zero, and laying the foundation 

for subsequent processing. 

Subsequently, the signal was subjected to a bandpass filtering process using a 2nd 

order Butterworth filter with a frequency range of 20-450 Hz. The lower cutoff 

frequency of 20 Hz was chosen to remove low-frequency noise, such as motion artifacts, 

while the upper cutoff frequency of 450 Hz was selected to preserve the relevant high-
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frequency components of the EMG signal. These cutoff frequencies are commonly used 

in EMG studies, as they effectively capture the primary frequency range of muscle 

activity while minimizing the influence of external noise and other non-relevant 

frequency components. The 2nd order Butterworth filter was chosen for its flat 

passband response and minimal ripple. This step was critical for focusing the analysis 

on the frequencies most relevant to muscle activity. 

Following bandpass filtering, the EMG signal was rectified by taking the absolute 

value of each point. This rectification is crucial as it transforms the signal into a purely 

positive form, simplifying the analysis of signal amplitude and power. Rectification is 

essential for subsequent processing steps, such as smoothing and amplitude analysis, as 

it ensures that all signal values are non-negative. 

To further process the rectified signal, a low-pass filter with a cutoff frequency of 

10 Hz was applied. The choice of a 10 Hz cutoff frequency was based on the desired 

level of smoothing, as it effectively removes high-frequency fluctuations while 

preserving the overall shape of the EMG envelope. This cutoff frequency is widely used 

in EMG studies to obtain a clear representation of muscle activation patterns over time. 

A 2nd order Butterworth filter was used for the low-pass filtering step to maintain 

consistency with the bandpass filter. This step produced a linear envelope of the EMG 

signal, which smooths out the rapid fluctuations and provides a clear representation of 

muscle activation patterns over time. 

Having processed the data through these steps, we focused on analyzing the 

frequency content of the EMG signals to identify patterns related to muscle fatigue. The 

power spectral density P(f) of the EMG signal was calculated using the Fourier 

transform (Formula (2)). The total power of the EMG signal was then computed by 

summing the power spectral density across all frequencies (Formula 3). 

To determine the Median Frequency (MF), we first calculated the cumulative 

power distribution by summing the power spectral density from the lowest frequency 

up to each successive frequency (Formula 4). The MF was then defined as the frequency 

at which the cumulative power distribution reached 50% of the total power (Formula 
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5). This calculation provides insight into the shift of frequency components, which is 

typically observed as a decrease in MF with increasing muscle fatigue due to reduced 

muscle fiber conduction velocities. 

 

𝑃(𝑓) = |𝑋(𝑓)|2                                (2) 

 

Total Power = ∑ 𝑃𝑁
𝑖=1 (𝑖)                           (3) 

 

𝐶(𝑓) = ∑ 𝑃
𝑓
𝑖=1 (𝑖)                               (4) 

 

Find 𝑓MF such that 𝐶(𝑓MF) ≥
1

2
Total Power                    (5) 

 

Figure 4-3 presents the MF plots for the anterior deltoid and erector spinae muscles 

of the three subjects throughout the cycling test. A consistent pattern emerges in the MF 

dynamics, particularly for subjects 2 and 3. During the low-intensity cycling phases, 

the MF values for both muscles gradually increase, indicating a recovery from muscle 

fatigue. In contrast, during the high-intensity sprint phases, the MF values exhibit a 

marked decrease, suggesting the onset of muscle fatigue and a reduction in muscle fiber 

conduction velocity. 
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Figure 4-3 Plots of median frequency variability in 3 subjects over a 30-minute cycling test: (a) 

Subject 1; (b) Subject 2; (c) Subject 3. 
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This fatigue pattern is evident in both the anterior deltoid and erector spinae 

muscles of subjects 2 and 3, with the MF values consistently declining during sprints 

and recovering during low-intensity phases. The pronounced decrease in MF during 

sprints suggests that the high-intensity exercise induces significant muscle fatigue, 

leading to a slowing of muscle fiber conduction velocity. The subsequent recovery of 

MF during low-intensity phases indicates a gradual restoration of muscle function and 

a reduction in fatigue. Interestingly, subject 1 exhibits a slightly different fatigue pattern 

in the erector spinae muscle compared to the other subjects. While the anterior deltoid 

muscle shows a similar trend of fatigue and recovery, the erector spinae muscle does 

not demonstrate fatigue during the first sprint phase. However, fatigue is evident in the 

erector spinae muscle during the second sprint phase, and notably, the muscle does not 

fully recover during the third low-intensity phase. This sustained fatigue leads to an 

accelerated fatigue rate during the final sprint phase, as reflected by a steeper decline 

in MF values. 

The individual differences in muscle fatigue patterns, particularly in the erector 

spinae muscle of subject 1, highlight the importance of personalized fatigue assessment 

and training strategies. The sustained fatigue in the erector spinae muscle of subject 1 

may indicate a slower recovery rate compared to the other subjects. This information 

can be valuable for coaches and athletes in designing targeted training programs to 

improve muscle endurance and optimize performance. The EMG analysis complements 

the findings from the HR analysis, providing a more comprehensive understanding of 

the physiological responses to the cycling test. While the HR patterns suggest efficient 

cardiovascular and autonomic regulation, the EMG results reveal the specific muscle 

fatigue dynamics during the test. The combination of these analyses offers valuable 

insights into the overall fatigue profile of the subjects and can guide the development 

of personalized training and recovery strategies. In conclusion, the analysis of EMG 

median frequency during the 30-minute cycling test reveals distinct patterns of muscle 

fatigue in the anterior deltoid and erector spinae muscles. The consistent decrease in 

median frequency during high-intensity sprints and the subsequent recovery during 
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low-intensity phases suggest a dynamic interplay between fatigue accumulation and 

recovery.  

Figure 4-4 presents the subjective fatigue ratings reported by three subjects during 

a 30-minute cycling session using the Borg scale. The Borg scale is a widely used tool 

for assessing perceived exertion and overall fatigue. 

 

Figure 4-4 Fatigue labeled state for 3 subjects for 30 minutes cycling: (a) Subject 1; (b) Subject 2; 

(c) Subject 3. 
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From the Figure 4-4, we can observe that all three subjects exhibit an increasing 

trend in their fatigue levels over time, with individual variations in the rate and 

magnitude of fatigue development. Subject 1 shows a steep increase in fatigue during 

the first 10 minutes, followed by a more gradual increase until the end of the session. 

Subject 2 demonstrates a relatively steady increase in fatigue throughout the 30-minute 

period. Subject 3 exhibits a more pronounced stepwise increase in fatigue, with notable 

jumps at around 7, 17, and 27 minutes. 

Interestingly, when comparing these subjective fatigue trends with the median 

frequency (MF) analysis of muscle fatigue discussed earlier, we can observe that the 

overall patterns are similar. However, the subjective fatigue ratings and MF-based 

fatigue indicators are not perfectly synchronized in real-time, suggesting that additional 

factors may contribute to the overall perceived fatigue experienced by the subjects. 

While these conventional methods provide valuable insights into fatigue through 

statistical trends and intuitive physiological data, they may overlook certain 

characteristic indicators that could contribute to a more comprehensive understanding 

of fatigue. The relationship between these potentially relevant features and fatigue may 

not be readily apparent or fully understood, leading to their potential omission from the 

analysis. 

However, it is important to understand that while these conventional methods 

provide valuable insights into fatigue through statistical trends and intuitive 

physiological data, they may overlook certain characteristic indicators that could 

contribute to a more comprehensive understanding of fatigue. The relationship between 

these potentially relevant features and fatigue may not be readily apparent or fully 

understood, leading to their potential omission from the analysis. 

To address this limitation and maximize the utility of the real-time ECG and EMG 

data acquired by the Intelligent Garment System, we propose an innovative approach 

in the following sections of this work. By leveraging the power of artificial intelligence 

(AI) and employing state-of-the-art time-series deep learning models, we aim to process 

and analyze the data in a more sophisticated manner. This AI-driven approach seeks to 
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uncover hidden patterns, correlations, and fatigue-related features that may be 

overlooked by conventional methods. Deep learning algorithms can be trained on large 

datasets containing both physiological measurements (such as MF, heart rate, and 

oxygen consumption) and subjective fatigue ratings. These models can learn to 

recognize complex, non-linear relationships between various physiological parameters 

and fatigue perception. By incorporating multiple physiological indicators and 

considering their temporal dynamics, deep learning models have the potential to 

provide a more comprehensive understanding of the fatigue process. Moreover, deep 

learning techniques can be used to develop personalized fatigue prediction models. By 

training models on individual-specific data, we can capture the unique fatigue patterns 

and responses of each subject. This could lead to the development of tailored 

interventions and training strategies that optimize performance and minimize the risk 

of fatigue-related injuries. 

4.3 Data Preparation for Deep Learning Model 

4.3.1 ECG Data 

To ensure consistency in data quantity between the ECG and EMG signals for 

input into the deep learning model, a spline interpolation method was applied to the 

ECG data. As our system acquires ECG signals at a sampling frequency of 125 Hz, 

which is lower than that of the EMG, the interpolation technique was employed to 

upsample the ECG data to match the 1000 Hz sampling rate of the EMG. This 

upsampling process preserves the original ECG waveform while increasing the number 

of data points, enabling seamless integration with the EMG data for subsequent analysis 

and modeling. 

The electrocardiogram (ECG) signals acquired from each subject across multiple 

experiments were processed and analyzed using the NeuroKit2 Python toolbox[218]. 

The raw ECG data underwent cleaning procedures to remove noise, baseline wander, 

and artifacts, ensuring signal quality for subsequent analysis. 
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To extract relevant features, the cleaned ECG signal was segmented using a sliding 

window approach with a window size of 2 seconds and a step of 1 second. This allowed 

for the capture of important ECG patterns while maintaining temporal information. 

Within each window, NeuroKit2 was employed to perform R-peak detection, heart rate 

calculation, and feature extraction. 

A comprehensive set of 72 ECG features was extracted, as shown in Table 4-4. 

These features encompass various aspects of the ECG signal, including time-domain, 

frequency-domain, and non-linear measures. Notable features include heart rate 

variability (HRV) parameters such as SDNN, RMSSD, and pNN50, which provide 

insights into the autonomic nervous system's influence on cardiac activity. Frequency-

domain features like HF, VHF, and LF offer information about the power distribution 

across different frequency bands. Non-linear features, including entropy measures 

(ApEn, SampEn, ShanEn) and fractal dimensions (HFD, KFD), capture the complexity 

and self-similarity of the ECG signal. 

Table 4-4 ECG features 

Number ECG Feature Number ECG Feature Number ECG Feature 

1 ECG Rate Mean 25 HRV LnHF 49 HRV Cd 

2 HRV MeanNN 26 HRV SD1 50 HRV Ca 

3 HRV SDNN 27 HRV SD2 51 HRV SDNNd 

4 HRV RMSSD 28 HRV SD1SD2 52 HRV SDNNa 

5 HRV SDSD 29 HRV S 53 HRV DFA alpha1 

6 HRV CVNN 30 HRV CSI 54 HRV MFDFA 

alpha1 Width 

7 HRV CVSD 31 HRV CVI 55 HRV MFDFA 

alpha1 Peak 

8 HRV MedianNN 32 HRV CSI 

Modified 

56 HRV MFDFA 

alpha1 Mean 

9 HRV MadNN 33 HRV PIP 57 HRV MFDFA 

alpha1 Max 

10 HRV MCVNN 34 HRV IALS 58 HRV MFDFA 

alpha1 Delta 

11 HRV IQRNN 35 HRV PSS 59 HRV MFDFA 

alpha1 

Asymmetry 

12 HRV SDRMSSD 36 HRV PAS 60 HRV MFDFA 

alpha1 Fluctuation 
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13 HRV Prc20NN 37 HRV GI 61 HRV MFDFA 

alpha1 Increment 

14 HRV Prc80NN 38 HRV SI 62 HRV ApEn 

15 HRV pNN50 39 HRV AI 63 HRV SampEn 

16 HRV pNN20 40 HRV PI 64 HRV ShanEn 

17 HRV MinNN 41 HRV C1d 65 HRV FuzzyEn 

18 HRV MaxNN 42 HRV C1a 66 HRV MSEn 

19 HRV HTI 43 HRV SD1d 67 HRV CMSEn 

20 HRV TINN 44 HRV SD1a 68 HRV RCMSEn 

21 HRV HF 45 HRV C2d 69 HRV CD 

22 HRV VHF 46 HRV C2a 70 HRV HFD 

23 HRV TP 47 HRV SD2d 71 HRV KFD 

24 HRV HFn 48 HRV SD2a 72 HRV LZC 

To ensure consistent data dimensions and facilitate further processing, the 

extracted ECG features were resampled to a fixed length of 1800 using cubic spline 

interpolation. This step preserves the overall shape and trends of the features while 

standardizing the data representation. The resampled features were organized into a 

structured data frame, and irrelevant or redundant columns were removed to optimize 

the dataset. 

Lastly, a time series was generated to represent the start time of each 2-second 

window, allowing for the alignment of feature values with their respective time points. 

This temporal information is crucial for understanding the dynamics and trends of the 

ECG features over time. The ECG data has a scale of (30*60-1) *2000, where (30*60-

1) represents the total number of 2-second windows in a 30-minute recording (1799), 

and 2000 denotes the number of data points within each 2-second window. On the other 

hand, the ECG features exhibit a scale of (30*60-1) *72, where (30*60-1) signifies the 

total number of 2-second windows (1799), and 72 denotes the number of extracted 

features for each window. 

4.3.2 EMG Data 

The electromyogram (EMG) data, collected from the anterior deltoid and erector 

spinae muscles, underwent feature extraction to quantify muscle activation patterns. 

The raw EMG signals were processed using a sliding window approach, with a window 
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size of 2 seconds and a step of 1 second, consistent with the ECG data processing. 

Within each window, the EMG envelope was calculated, providing a smooth 

representation of the muscle activation levels. From the EMG envelope, several time-

domain features were extracted, as listed in Table 4-5. These features include the root 

mean square (RMS), integrated EMG (iEMG), mean frequency (MF), and median 

power frequency (MPF). 

Table 4-5 EMG features 

Number EMG Feature 

1 RMS 

2 iEMG 

3 MF 

4 MPF 

The RMS feature quantifies the average amplitude of the EMG signal, reflecting 

the overall muscle activation level. The iEMG feature represents the area under the 

EMG envelope curve, providing a measure of the total muscle activity within the 

window. The MF and MPF features, derived from the frequency-domain analysis of the 

EMG signal, offer insights into the frequency content and power distribution of the 

muscle activation. In addition to these frequency-domain features, time-domain 

measures such as mean, minimum, and maximum values of the EMG envelope were 

calculated. These features capture various aspects of muscle activation, including the 

average activation level, the lowest and highest activation points within the window. 

The extracted EMG features for each muscle were appended to separate lists, 

maintaining the distinction between the anterior deltoid and erector spinae. This 

approach allows for the independent analysis and comparison of muscle-specific 

activation patterns. The feature lists were then converted to data frames, providing a 

structured format for further analysis and integration with other data sources. By 

extracting a comprehensive set of EMG features, including both time-domain and 

frequency-domain measures, the study aims to characterize muscle activation patterns 

and investigate their associations with ECG features and other physiological variables. 

These EMG features serve as valuable inputs for statistical analysis, pattern recognition, 

and machine learning techniques, facilitating the identification of meaningful patterns 
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and potential biomarkers related to muscle function and fatigue. 

The raw EMG data acquired from the erector spinae muscle (EMG1) and the 

anterior deltoid muscle (EMG2) exhibits a scale of (30*60-1) *2000 for each respective 

muscle. This scale is derived from the total number of 2-second windows in a 30-minute 

recording, which is calculated as (30*60-1), resulting in 1799 windows. Each window 

comprises 2000 data points, capturing the fine-grained temporal dynamics and 

activation patterns of the muscles under investigation. In parallel, the extracted EMG 

features for both the erector spinae muscle (EMG1) and the anterior deltoid muscle 

(EMG2) demonstrate a scale of (30*60-1) *4. This scale is a product of the total number 

of 2-second windows (1799) and the number of features extracted from each window 

(4). 

4.3.3 Input data for machine learning 

In this study, we propose a novel approach to integrate and analyze ECG and EMG 

data using a combination of deep learning and traditional machine learning techniques. 

As illustrated in Figure 4-5, the input to our model consists of three distinct datasets: 

ECG data, EMG data from the anterior deltoid muscle (EMG1), and EMG data from 

the erector spinae muscle (EMG2). To leverage the complementary information 

provided by these modalities, we concatenate these three datasets along the feature 

dimension, creating a unified input representation. 
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Figure 4-5 Neural Network Architecture Diagram 

The concatenated input is then fed into a deep learning model, which serves as a 

feature extractor. This model is designed to capture the intricate patterns and 

relationships present in the combined ECG and EMG data. Through multiple layers of 

nonlinear transformations, the deep learning model learns a compact and informative 

representation of the input. The output of this feature extraction process is a 512-

dimensional feature vector, denoted as H in Figure 4-5. 

To further enhance the representational power of our approach, we incorporate 

hand-crafted features derived from the individual ECG, EMG1, and EMG2 datasets. 

These features, referred to as ECG features, EMG1 features, and EMG2 features, are 

concatenated with the 512-dimensional feature vector H obtained from the deep 

learning model. This concatenation step allows us to combine the automatically learned 

features with domain-specific knowledge captured by the hand-crafted features. 

The resulting concatenated feature vector, which now encompasses both the deep 

learning-based representation and the hand-crafted features, is passed through a 

Multilayer Perceptron (MLP) for further processing. The MLP is a type of feedforward 

artificial neural network that consists of an input layer, one or more hidden layers, and 

an output layer. Each neuron in the hidden and output layers applies a nonlinear 

activation function to the weighted sum of its inputs, enabling the network to learn 
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complex decision boundaries and capture high-level abstractions. 

In our proposed framework, the MLP takes the concatenated feature vector as 

input and processes it through its fully connected layers. The hidden layers of the MLP 

learn to extract higher-order relationships and interactions among the features, allowing 

for a more comprehensive understanding of the ECG and EMG dynamics. The output 

layer of the MLP produces the final predictions or classifications based on the learned 

representations. 

4.4 Application of Deep Learning Model for Predicting 

4.4.1 Temporal Convolutional Network (TCN) 

The Temporal Convolutional Network (TCN) model was implemented and 

evaluated for its effectiveness in predicting fatigue levels based on ECG and EMG 

signals. The architecture of the TCN model, as illustrated in Figure 4-6, consists of 

multiple convolutional layers with increasing dilation factors, followed by a global 

average pooling layer and a fully connected layer for classification. This structure 

allows the model to efficiently learn temporal patterns and dependencies in the input 

data. The model parameters, such as the number of channels (64, 128, 256), number of 

classes (4), number of epochs (100), learning rate (0.0005), batch size (32), kernel size 

(3), dropout rate (0.2), were carefully selected to optimize the model's performance and 

generalization ability. The loss function is Cross-Entropy. The optimizer is ADAM. 
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Figure 4-6 TCN model structure 

Table 4-6 presents the accuracy metrics across the five folds for each of the three 

subjects, demonstrating that the TCN model achieves reasonable accuracy in predicting 

fatigue levels, with some variability across subjects and folds. 

Table 4-6 Accuracy metrics across five folds for three subjects in TCN 

Subjects Flod 1 Flod 2 Flod 3 Flod 4 Flod 5 

1 78.66% 73.70% 75.12% 65.92% 69.65% 

2 80.27% 70.79% 71.57% 73.50% 74.61% 

3 82.50% 79.00% 76.33% 71.50% 75.33% 

Figure 4-7 displays the confusion matrices obtained from TCN model for each 

subject. These matrices provide a detailed breakdown of the model's performance, 

showing the percentage of correctly classified samples for each fatigue level. The 

confusion matrices indicate that TCN model achieves reasonable accuracy in predicting 
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fatigue levels across all subjects, although there is room for improvement. 

 

Figure 4-7 Confusion matrix of three subjects in TCN model 

The performance metrics of TCN model are summarized in Table 4-7, including 

accuracy, precision, recall, F1 score, and area under the receiver operating characteristic 

curve (AUC). These metrics provide a comprehensive evaluation of the model's 

predictive capabilities. Notably, the AUC values range from 84.16% to 87.87%, 

indicating the model's strong discriminatory power in distinguishing between different 

fatigue levels. 

Table 4-7 Recognition performance of three subjects in TCN model. 
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Number Accuracy Precision Recall F1 AUC 

1# 76.24% 76.38% 76.24% 76.18% 84.16% 

2# 80.65% 80.77% 80.65% 80.59% 87.10% 

3# 81.80% 81.79% 81.80% 81.68% 87.87% 

Figures 4-8 illustrates the training and test loss, as well as the training and test 

accuracy, respectively, across the three subjects. These graphs provide insights into the 

model's learning behavior and generalization ability. The convergence of the model 

during training and its reasonable performance on the test data are evident from these 

figures. 

 

Figure 4-8 (a)Training and test loss comparison across three subjects in TCN model (b) Training 

and test accuracy comparison across three subjects in TCN model 

However, the varying performance across subjects highlights the individual 

differences in physiological responses to fatigue and the challenges in developing a 

one-size-fits-all fatigue prediction model. The results suggest that personalized 

approaches and further refinement of the model architecture and hyperparameters may 

be necessary to improve the predictive performance for everyone. Despite these 
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challenges, the TCN model demonstrates promise in capturing temporal dependencies 

and learning discriminative features for fatigue prediction. Its ability to handle 

sequential data, such as ECG and EMG signals, makes it a suitable candidate for 

integration into the intelligent garment system. The TCN model's architecture, with its 

dilated causal convolutions, allows for efficient learning of long-term dependencies 

while maintaining a manageable number of parameters. This is particularly 

advantageous for real-time fatigue monitoring in wearable devices, where 

computational efficiency is crucial. The application of the TCN model to predict fatigue 

levels based on ECG and EMG signals shows promising results, with room for 

improvement. The model's performance varies among the three subjects, emphasizing 

the need for personalized fatigue monitoring and the development of adaptive models. 

Nevertheless, the TCN model's ability to capture temporal dependencies and its 

computational efficiency make it a suitable choice for integration into the intelligent 

garment system for real-time fatigue monitoring.  

4.4.2 Gated Recurrent Unit (GRU) 

Gated Recurrent Unit (GRU) model, a variant of the recurrent neural network 

(RNN), was implemented and evaluated for its effectiveness in predicting fatigue levels 

based on ECG and EMG signals. The GRU architecture addresses the vanishing 

gradient problem and captures long-term dependencies more effectively than traditional 

RNNs. The model architecture, as illustrated in Figure 4-8, consists of multiple GRU 

layers followed by a multilayer perceptron (MLP) classifier. The key hyperparameters 

of the model were tuned to optimize performance, with a hidden size of 512 for the 

GRU layers, 4 GRU layers, 100 training epochs, a learning rate of 0.0001, a batch size 

of 64, and an MLP hidden dimension of 1024. 



108 

 

 

Figure 4-9 GRU model structure 

Table 4-8 presents the accuracy metrics across the five folds for each of the three 

subjects, indicating that the GRU model achieves relatively lower accuracy compared 

to the TCN model. 

Table 4-8 Accuracy metrics across five folds for three subjects in GRU 

Subjects Flod 1 Flod 2 Flod 3 Flod 4 Flod 5 

1 68.24% 51.36% 67.16% 78.11% 88.31% 

2 70.79% 45.65% 68.09% 83.75% 93.99% 

3 74.00% 68.50% 72.67% 59.17% 73.50% 

Figure 4-10 displays the confusion matrices obtained from the GRU model for 

each of the three subjects, providing insights into the model's performance in predicting 
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fatigue levels. The results suggest that the GRU model may not be as well-suited as the 

TCN model for capturing the temporal dependencies in the ECG and EMG signals for 

fatigue prediction. 

 

Figure 4-10 Confusion matrix of three subjects in GRU model 

Table 4-9 summarizes the performance metrics obtained from the GRU model, 

including accuracy, precision, recall, F1 score, and area under the receiver operating 

characteristic curve (AUC) for each subject. The accuracy of the GRU model ranges 

from 69.57% to 72.45%, indicating that it correctly predicts the fatigue level for a 

moderate portion of the samples. The precision and recall values are also relatively 
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lower compared to the TCN model, suggesting a higher occurrence of false positives 

and false negatives. The F1 scores, which provide a balanced measure of precision and 

recall, range from 69.39% to 72.34%. The AUC values, ranging from 79.71% to 

81.64%, indicate that the GRU model's ability to discriminate between different fatigue 

levels is somewhat limited compared to the TCN model. 

Comparing the performance metrics across the three subjects, we observe that 

Subject 2 achieves the highest accuracy of 72.45%, followed by Subject 1 with an 

accuracy of 70.64% and Subject 3 with an accuracy of 69.57%. The precision, recall, 

and F1 score follow a similar trend, with Subject 2 exhibiting slightly better 

performance compared to the other two subjects. The AUC values are also highest for 

Subject 2 at 81.64%, while Subject 1 and Subject 3 have AUC values of 80.42% and 

79.71%, respectively. 

Table 4-9 Recognition performance of three subjects in GRU model. 

Number Accuracy Precision Recall F1 AUC 

1# 70.64% 70.83% 70.64% 70.64% 80.42% 

2# 72.45% 72.40% 72.45% 72.34% 81.64% 

3# 69.57% 69.36% 69.57% 69.39% 79.71% 

Figures 4-11 illustrates the training and test loss, as well as the training and test 

accuracy, respectively, across the three subjects for the GRU model. These graphs 

provide insights into the model's learning behavior and generalization ability. The 

convergence of the model during training and its reasonable performance on the test 

data are evident from these figures. 
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Figure 4-11 (a)Training and test loss comparison across three subjects in GRU model (b) Training 

and test accuracy comparison across three subjects in GRU model 

The lower performance of the GRU model compared to the TCN model suggests 

that the GRU architecture may not be the most suitable choice for predicting fatigue 

levels based on the given ECG and EMG signals. The GRU model's ability to capture 

long-term dependencies and temporal patterns in the data may be limited, leading to 

suboptimal performance. 

Several factors could contribute to the GRU model's lower performance. First, the 

temporal dependencies and patterns in the ECG and EMG signals related to fatigue may 

be more complex and require a more sophisticated architecture to capture effectively. 

The GRU model's simpler structure compared to the TCN model may not be sufficient 

to learn these intricate patterns. Second, the GRU model's ability to handle long-term 

dependencies may be limited, as it relies on a single gating mechanism to control the 

flow of information. In contrast, the TCN model's dilated causal convolutions allow for 

a larger receptive field and more efficient capture of long-term dependencies. 
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Furthermore, the GRU model's performance may be affected by the limited 

amount of training data available for each subject. With a smaller dataset, the model 

may struggle to generalize well and capture the full range of fatigue-related patterns in 

the ECG and EMG signals. The TCN model's convolutional architecture and ability to 

share weights across time steps may be more resilient to limited data scenarios. GRU 

model's lower performance compared to the TCN model indicates that it may not be the 

most suitable choice for predicting fatigue levels based on the ECG and EMG signals 

in the context of the intelligent garment system. The GRU model's limitations in 

capturing complex temporal dependencies and its potential sensitivity to limited 

training data make it less desirable for this specific application.  

4.4.3 Transformer 

Transformer model, a deep learning architecture that has gained significant 

attention in natural language processing, was explored to investigate its applicability in 

predicting fatigue levels based on ECG and EMG signals. The Transformer model 

leverages attention mechanisms and self-attention to capture long-term dependencies 

in sequential data. The model architecture, as illustrated in Figure 4-12, consists of 

multiple encoder layers, each incorporating multi-head self-attention mechanisms and 

feed-forward neural networks. Key hyperparameters were tuned to optimize 

performance, with 2 encoder layers, a hidden size of 64, 4 attention heads, a feed-

forward network dimension of 256, and a dropout rate of 0.1. 
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Figure 4-12 Transformer model structure 

Transformer model was trained and evaluated using a 5-fold cross-validation 

approach, consistent with the methodology employed for TCN and GRU models. The 

input features encompassed both the sequence data (ECG and EMG signals) and 
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additional static features, and the model was trained to classify the input data into one 

of the four fatigue levels. Table 4-10 presents the accuracy metrics across the five folds 

for each of the three subjects, indicating that the Transformer model exhibits the lowest 

accuracy among the three models investigated. 

Table 4-10 Accuracy metrics across five folds for three subjects in Transformer 

Subjects Flod 1 Flod 2 Flod 3 Flod 4 Flod 5 

1 47.39% 48.39% 45.27% 47.76% 51.00% 

2 50.10% 54.35% 54.93% 51.84% 58.14% 

3 59.00% 58.17% 62.00% 59.17% 59.83% 

Figure 4-13 presents the confusion matrices obtained from the Transformer model 

for each of the three subjects. The results indicate that the Transformer model exhibits 

the lowest accuracy among the three models investigated, suggesting that it may not be 

well-suited for capturing the temporal dependencies and nuances in the ECG and EMG 

signals for accurate fatigue prediction. 
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Figure 4-13 Confusion matrix of three subjects in transformer model 

Table 4-11 summarizes the performance metrics achieved by the Transformer 

model, including accuracy, precision, recall, F1 score, and area under the receiver 

operating characteristic curve (AUC) for each subject. Across all subjects, the 

Transformer model demonstrates lower performance compared to TCN and GRU 

models. The accuracy ranges from 46.52% to 56.83%, precision and recall values are 

relatively low, F1 scores range from 46.30% to 56.46%, and AUC values span from 

64.34% to 71.22%. 

Table 4-11 Recognition performance of three subjects in Transformer model. 
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Number Accuracy Precision Recall F1 AUC 

1# 46.52% 47.05% 46.52% 46.30% 64.34% 

2# 53.99% 54.94% 53.99% 52.01% 69.32% 

3# 56.83% 56.84% 56.83% 56.46% 71.22% 

Figures 4-14 illustrates the training and test loss, as well as the training and test 

accuracy, respectively, across the three subjects in Transformer model. These graphs 

provide insights into the model's learning behavior and generalization ability. The 

convergence of the model during training and its reasonable performance on the test 

data are evident from these figures. 

 

Figure 4-14 (a)Training and test loss comparison across three subjects in Transformer model (b) 

Training and test accuracy comparison across three subjects in Transformer model 

The suboptimal performance of the Transformer model in this study suggests that 

its architecture, despite its remarkable success in natural language processing tasks, 

may not be directly transferable to the domain of fatigue prediction using physiological 

signals. Several factors could contribute to the Transformer model's ineffectiveness in 

capturing the relevant patterns and dependencies in the ECG and EMG signals. 
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First, the inherent differences between text data and time series signals, such as 

ECG and EMG, could pose challenges for the Transformer model. The self-attention 

mechanism, which is highly effective in capturing long-range dependencies in text, may 

not be as well-suited for the specific temporal patterns and characteristics of 

physiological signals related to fatigue. 

Second, the limited amount of training data available for each subject may hinder 

the Transformer model's ability to learn and generalize effectively. Transformer models 

typically require large amounts of data to achieve optimal performance, and the 

relatively small dataset in this study could be insufficient for the model to capture the 

complex patterns associated with fatigue. 

Furthermore, the Transformer model's architecture, with its multiple encoder 

layers and self-attention mechanisms, may introduce additional complexity that is not 

necessarily beneficial for the task at hand. The increased complexity could lead to 

overfitting, especially when dealing with limited training data, resulting in poor 

generalization and lower performance on unseen data. Transformer model, despite its 

prominence in other domains, does not appear to be well-suited for predicting fatigue 

levels based on the ECG and EMG signals collected by our intelligent garment system. 

The model's performance falls short of TCN and GRU models, with lower accuracy, 

precision, recall, F1 score, and AUC values across all subjects. The inherent differences 

between text data and physiological signals, limited training data, and the model's 

complexity are likely factors contributing to its suboptimal performance in this specific 

application. 

4.4.4 Long Short-Term Memory (LSTM) 

Long Short-Term Memory (LSTM) model, a variant of recurrent neural networks 

(RNNs), was employed to predict fatigue levels based on the ECG and EMG signals 

collected by the Intelligent Garment System. The architecture of the LSTM model, as 

illustrated in Figure 4-15, consists of several components that work in harmony to 

extract meaningful features and make accurate predictions. 
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Figure 4-15 LSTM model structure 

LSTM model's architecture is characterized by four stacked LSTM layers, each 

containing 512 hidden units. This stacked architecture allows the model to learn 

hierarchical representations of the data, with each layer capturing increasingly abstract 

and complex patterns. The choice of 512 hidden units per layer strikes an optimal 

balance between the model's expressive capacity and computational efficiency. The 

output from the LSTM layers undergoes further processing through a dense layer with 

1024 hidden units, serving as a critical feature transformation and dimensionality 

reduction step. The transformed features are then fed into a final output layer with four 

units, corresponding to the four fatigue levels. 
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The LSTM model's training process is carefully designed to optimize its 

performance and generalization ability. The model is trained for 100 epochs using the 

Adam optimizer with a learning rate of 0.001 and a batch size of 64. These 

hyperparameters were determined through extensive experimentation and fine-tuning. 

To mitigate overfitting, a dropout regularization technique with a rate of 0.2 is applied 

to the LSTM layers. 

Table 4-12 presents the accuracy metrics across five folds for each of the three 

subjects, demonstrating the LSTM model's exceptional performance. The model 

achieves high accuracy values consistently across all folds and subjects, ranging from 

81.84% to 90.50%. These results highlight the LSTM model's ability to effectively learn 

and generalize from the training data, capturing the intricate patterns and dependencies 

associated with different fatigue levels. 

Table 4-12 Accuracy metrics across five folds for three subjects in LSTM 

Subjects Flod 1 Flod 2 Flod 3 Flod 4 Flod 5 

1 82.63 84.12 83.83 84.08 81.84 

2 89.17 87.62 87.43 87.43 88.76 

3 87.00 90.50 89.33 87.50 90.33 

Table 4-13 summarizes the overall performance metrics for each subject, further 

emphasizing the LSTM model's exceptional predictive capabilities. The model achieves 

accuracies ranging from 83.30% to 88.60%, precision and recall values consistently 

above 83%, and F1 scores exceeding 83% for all subjects. These high values indicate 

the model's ability to correctly identify and classify fatigue levels with great precision 

and sensitivity. Moreover, the AUC values, ranging from 88.87% to 92.40%, 

demonstrate the model's outstanding discriminative power in distinguishing between 

different fatigue levels. 

Table 4-13 Recognition performance of three subjects in LSTM model. 

Number Accuracy Precision Recall F1 AUC 

1# 83.30% 83.34% 83.30% 83.23% 88.87% 

2# 87.73% 87.71% 87.73% 87.67% 91.82% 

3# 88.60% 88.60% 88.60% 88.56% 92.40% 

Figure 4-16 presents the confusion matrices for each subject, offering a detailed 

breakdown of the LSTM model's performance across the four fatigue levels. The 



120 

 

confusion matrices reveal that the model accurately predicts a significant proportion of 

samples in each fatigue category, with a high concentration of correct predictions along 

the main diagonal. This fine-grained analysis highlights the LSTM model's capacity to 

capture the subtle nuances and patterns associated with different fatigue states, enabling 

precise and reliable predictions. 

 

Figure 4-16 Confusion matrix of three subjects in LSTM model 

Figures 4-17 illustrates the training and test loss, as well as the training and test 

accuracy, respectively, across the three subjects in LSTM model. The graphs 

demonstrate the model's stable and consistent learning process, with the loss decreasing 
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steadily and the accuracy increasing over the epochs. The convergence of the training 

and test curves indicates that the model generalizes well to unseen data, minimizing 

overfitting and achieving robust performance. 

 

Figure 4-17 (a)Training and test loss comparison across three subjects in LSTM model (b) 

Training and test accuracy comparison across three subjects in LSTM model 

The superior performance of the LSTM model compared to the other models (TCN, 

GRU, and Transformer) can be attributed to several factors. First, the LSTM 

architecture's ability to capture long-term dependencies and retain relevant information 

over time makes it particularly well-suited for analyzing time series data such as ECG 

and EMG signals. The LSTM's gating mechanism allows it to selectively remember or 

forget information, enabling it to capture the complex temporal patterns associated with 

fatigue. 

Second, the LSTM model's architecture, with its stacked layers and carefully 

chosen hyperparameters, demonstrates a well-designed approach to fatigue level 

prediction. The multiple LSTM layers enable the model to learn hierarchical 
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representations, capturing both low-level and high-level patterns in the data. The dense 

layer provides additional discriminative power, enhancing the model's ability to 

differentiate between fatigue levels. 

LSTM model's superior performance in predicting fatigue levels based on ECG 

and EMG signals makes it the most suitable choice for integration into the Intelligent 

Garment System. Its ability to capture long-term dependencies and learn hierarchical 

representations enables it to accurately assess fatigue levels in real-time.  

4.5 Results and Discussion 

The cycling test, which simulated different intensity levels typical of a training or 

competition session, allowed us to evaluate the intelligent garment system's 

performance in a realistic setting. We collected and analyzed ECG and EMG data from 

three subjects to assess the system's fatigue prediction capabilities using both traditional 

methods and advanced deep learning techniques. 

The conventional ECG analysis showed consistent HR across all subjects. HR was 

stable during low-intensity phases, indicating steady cardiovascular and autonomic 

function, while high-intensity sprints caused rapid HR increases followed by quick 

decreases. These findings suggest that the garment system can effectively capture HR 

changes related to different levels of physical effort. 

EMG analysis of the anterior deltoid and erector spinae muscles revealed muscle 

fatigue dynamics. The EMG signal's median frequency (MF), a known fatigue indicator, 

gradually increased during low-intensity phases and markedly decreased during high-

intensity sprints, especially in Subjects 2 and 3. Subject 1 showed a slightly different 

erector spinae fatigue profile. These results demonstrate the system's ability to detect 

and measure muscle fatigue in real-time, showing its potential for personalized 

monitoring. 

To improve the system's predictive capabilities, we used advanced deep learning 

techniques, including TCN, GRU, Transformers, and LSTM models. The models were 

trained and evaluated using 5-fold cross-validation after data preprocessing. TCN 
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model showed reasonable accuracy in predicting fatigue levels, with slight performance 

variations among subjects. The GRU and Transformer models performed lower than 

expected, suggesting they may not be the best choice for this application. 

The LSTM model emerged as the most promising approach, with its architecture 

combining stacked LSTM layers for temporal feature extraction and an MLP for static 

feature integration and classification. It achieved impressive results across all 

evaluation metrics, consistently demonstrating high accuracy, precision, recall, F1 

score, and AUC values for all subjects. The confusion matrices further confirmed its 

superior performance. 

These findings have important implications for developing intelligent garment 

systems in sports and fitness. They highlight the importance of combining multiple 

physiological signals for comprehensive fatigue assessment and the potential of deep 

learning techniques, particularly LSTM, for enhancing wearable monitoring systems. 

The results also emphasize the need for personalized fatigue monitoring strategies and 

lay the foundation for further exploration of intelligent garment systems in various 

physical activities. 

In conclusion, the intelligent garment system effectively predicted fatigue levels 

during cycling, with the LSTM model significantly enhancing its predictive capabilities. 

However, more research is needed to address individual variability, explore the system's 

applicability to other activities, and refine the models for improved accuracy and 

personalization. Continuing advancements in wearable technology and artificial 

intelligence can optimize athletic performance, prevent injuries, and promote overall 

well-being. 
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CHAPTER 5 Conclusion 

5.1 Summary of Finding 

This doctoral thesis presents a comprehensive study on the development and 

evaluation of a novel fatigue assessment system for athletes using smart clothing and 

artificial intelligence techniques. The research encompasses several key aspects, 

including the design and fabrication of 3D knitted silver electrodes, their integration 

into compression garments, and the application of advanced AI models for real-time 

fatigue prediction based on ECG and EMG signals. 

One of the main focuses of this thesis was the optimization of electrode design 

through a parametric approach. By systematically exploring various electrode 

parameters, such as diameter, height, and applied pressure, the research aimed to 

identify the optimal configuration for achieving high-quality signal acquisition while 

ensuring user comfort. The findings suggest that electrodes with a diameter of 3 cm, a 

height of 3 mm, and an applied pressure of 30 mmHg provide the best balance between 

signal quality and user experience. These insights contribute to the advancement of 

smart clothing design and highlight the importance of considering both technical and 

ergonomic factors in the development of wearable health monitoring systems. 

Another significant aspect of this research was the seamless integration of the 

optimized 3D knitted silver electrodes into compression garments. The resulting 

intelligent garment system features strategically placed electrodes, conductive channels 

for signal transmission, and adjustable fasteners to maintain a stable electrode-skin 

interface during dynamic movements. This innovative design approach not only ensures 

reliable signal acquisition but also enhances user comfort and ease of use, making it 

suitable for real-world applications in sports and athletic performance monitoring. 

To evaluate the effectiveness of the developed system, rigorous testing was 

conducted in the context of cycling sports. A comprehensive experimental setup was 

designed to simulate real-world cycling conditions, and a data preparation process was 
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established to ensure the quality and consistency of the collected ECG and EMG signals. 

The study employed a range of state-of-the-art AI models, including Temporal 

Convolutional Networks (TCN), Gated Recurrent Units (GRU), Long Short-Term 

Memory (LSTM), and Transformer architectures, to predict fatigue levels based on the 

acquired physiological data. 

Among the tested AI models, the LSTM architecture demonstrated the most 

promising results, accurately assessing fatigue levels in real-time based on the ECG and 

EMG signals. The LSTM model's ability to capture long-term dependencies and 

temporal patterns in the data proved crucial for reliable fatigue prediction. This finding 

highlights the potential of AI techniques, particularly deep learning approaches, in 

enhancing the capabilities of wearable health monitoring systems and enabling 

personalized training and recovery strategies for athletes. 

Furthermore, the study showcases the successful integration of knowledge from 

multiple disciplines, including textile engineering, sensor technology, biomedical 

signal processing, and artificial intelligence. This interdisciplinary approach has led to 

the development of a comprehensive and innovative solution for fatigue assessment in 

sports, demonstrating the potential for collaboration across different fields to drive 

advancements in wearable technology and athletic performance monitoring. 

In addition to the technical aspects, the research also emphasizes the practical 

implications of the developed system. The ability to provide real-time, accurate insights 

into an athlete's fatigue state opens new possibilities for optimizing training plans, 

preventing injuries, and ultimately improving athletic performance. The findings 

suggest that the intelligent garment system can serve as a valuable tool for coaches, 

trainers, and athletes, enabling data-driven decision-making and personalized 

interventions. 

5.2 Contributions of the Study 

This research has made several significant contributions to the field of wearable 

technology for sports monitoring, specifically in developing an AI-based fatigue 
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assessment system using smart textile wearables. The key contributions are as follows: 

(1) Development of Advanced 3D Knitted Silver Electrodes: 

The study introduced a novel design and fabrication process for 3D knitted silver 

electrodes. These electrodes demonstrated superior performance in terms of signal 

quality and stability compared to conventional Ag/AgCl electrodes, especially in wet 

skin conditions. The optimized electrode configuration, with a diameter of 3 cm and a 

height of 3 mm, represents a significant advancement in textile-based biosensing 

technology. 

(2) Integration of Electrodes into an Intelligent Garment System: 

The research successfully integrated the developed 3D knitted silver electrodes 

into a comprehensive intelligent garment system. This system incorporated strategically 

placed ECG and EMG sensors, along with innovative conductive pathways and 

adjustable fastening mechanisms. The design ensured both effective signal acquisition 

and user comfort, addressing a critical challenge in wearable sports monitoring 

technology. 

(3) Comprehensive Evaluation in Real-Time Cycling: 

The intelligent garment system was rigorously tested in realistic cycling, providing 

valuable insights into its performance and reliability in dynamic sports environments. 

This practical evaluation adds credibility to the system's potential applications in real-

time sports monitoring. 

(4) Integration of Multiple Physiological Signals: 

By combining ECG and EMG data in the fatigue prediction model, the study 

demonstrated the value of a multi-modal approach to physiological monitoring. This 

integrated approach provides a more comprehensive assessment of an athlete's fatigue 

state than single-signal methods. 

(5) Implementation of Advanced AI Algorithms for Fatigue Prediction: 

The study explored and compared various deep learning models for fatigue 

prediction, including TCN, GRU, Transformer, and LSTM architectures. The LSTM 

model, in particular, demonstrated superior performance in accurately predicting 
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fatigue levels based on ECG and EMG signals. This represents a significant step 

forward in real-time, personalized fatigue monitoring for athletes. 

(6) Advancement in Personalized Sports Monitoring: 

The research highlighted individual differences in fatigue patterns and 

physiological responses, emphasizing the importance of personalized monitoring 

approaches. This contribution aligns with the growing trend towards individualized 

training and performance optimization in sports science. 

These contributions collectively advance the field of wearable technology for 

sports monitoring, offering new possibilities for real-time, accurate, and non-invasive 

fatigue assessment. The developed system and methodologies provide a foundation for 

future research in sports science, wearable technology, and personalized health 

monitoring. 

5.3 Limitations and Future Work 

While this study has made significant contributions to the field of wearable 

technology for sports monitoring, it is important to acknowledge its limitations and 

identify areas for future research: 

(1) Sample Size and Diversity: 

The current study was conducted with a limited number of subjects, all of whom 

were male. Future work should expand the sample size and include a more diverse 

group of subjects, considering factors such as gender, age, and fitness levels. This 

expansion would enhance the generalizability of the findings and potentially reveal 

additional insights into individual variations in fatigue patterns. 

(2) Long-term Durability of Textile Electrodes: 

Although the 3D knitted silver electrodes showed promising performance, their 

long-term durability under repeated use and washing cycles was not extensively tested. 

Future research should focus on assessing and improving the longevity of these 

electrodes to ensure their reliability in real-world, long-term applications. 

(3) Environmental Factors: 
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The cycling tests were conducted in a controlled indoor environment. Future 

studies should investigate the system's performance under various environmental 

conditions, such as different temperatures, humidity levels, and outdoor settings, to 

ensure its reliability across diverse sporting scenarios. 

(4) Range of Sports Activities: 

While the current study focused on cycling, future work should extend the 

application of the intelligent garment system to a broader range of sports activities. This 

expansion would help validate the system's versatility and potentially lead to sport-

specific adaptations of the fatigue prediction models. 

(5) Real-time Processing Capabilities: 

The current system relies on post-hoc data analysis. Future developments should 

focus on implementing real-time processing capabilities, allowing for immediate 

feedback to athletes and coaches during training or competition. 

(6) Integration with Other Physiological Markers: 

While the study combined ECG and EMG data, future research could explore the 

integration of additional physiological markers, such as skin temperature or respiratory 

rate, to further enhance the accuracy of fatigue prediction. 

(7) Customization of AI Models: 

The AI models developed in this study, while effective, were not personalized to 

individual athletes. Future work could explore adaptive learning techniques that allow 

the models to fine-tune their predictions based on an individual's unique physiological 

responses over time. 

(8) User Experience and Comfort: 

Although efforts were made to ensure user comfort, more comprehensive studies 

on the long-term wearability and user acceptance of the intelligent garment system are 

needed. This could include extended wear trials and user feedback studies. 

(9) Power Management and Battery Life: 

Future research should focus on optimizing the power consumption of the system 

to extend battery life, potentially exploring energy harvesting technologies to enhance 
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the system's autonomy during prolonged use. 

(10) Data Privacy and Security: 

As the system collects sensitive physiological data, future work should address 

robust data encryption and secure transmission protocols to ensure user privacy and 

compliance with data protection regulations. 

Addressing these limitations and pursuing these future research directions will 

further advance the field of wearable technology for sports monitoring, potentially 

leading to more accurate, versatile, and user-friendly systems for fatigue assessment 

and performance optimization in sports. 
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