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Abstract

This thesis consists of two parts. In the first one we study bicategories enriched over a
monoidal bicategory, as defined by Garner–Shulman. The novelty is the introduction
of a braiding on the base bicategory, which allows us to form opposites and tensor
products of enriched bicategories. This lets us build a novel theory of ends and coends
in this context.
The second part concerns the notion of Mackey 2-functors as introduced by Balmer–
Dell’Ambrogio for studying the bicategorical structures arising from finite group ac-
tions throughout equivariant mathematics. We prove that the bicategory of Mackey
2-motives (namely the target of the universal Mackey 2-functor) admits a canonical
monoidal structure. This is combined with the results of the first part in order to
define a Day convolution product of Mackey 2-functors. In its turn, the latter product
allows us to redefine the notion of a Green 2-functor simply as being a pseudomonoid
in the braided monoidal bicategory of Mackey 2-functors. This is a conceptual clar-
ification of the theory, in that now we can see the perfect analogy to the classical
theory of Mackey and Green functors in the representation theory of finite groups.
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Introduction

Bicategories were first introduced in [Bén67] as both a vertical categorification of the no-
tion of category, as well as an horizontal categorification of the notion of monoidal cate-
gory. There, the complication brought by non-strict categorical constraint is justified by the
number of examples provided which would be excluded by more rigid requirements (those
defining a 2-category, most notably). One of the first examples introduced in [Bén67] is
the bicategory of spans of a category with pullbacks C, which consists of the same objects
as those of C, while morphisms from an object X to an object Y are pairs of morphisms
in C of the form X ← P → Y called “spans”. Pullbacks, which are unique only up to iso-
morphisms (whence the non-strictness of the definition) are used to form the composition,
while morphisms between two such spans X ← P → Y and X ← P ′ → Y are morphisms
between P and P ′ making the obvious triangles commute. Spans provide rich categorical
and algebraic structures: they serve very generally as a place to look for adjunctions (as
shown in [LWW10]), and they often inherit some structure from the base category. A suf-
ficiently interesting case of study is the bicategory of spans of the (2,1)-category gpd of
finite groupoids, considered together with its faithful morphisms, and more in general of a
spannable pair (Definition 3.2.2). This notion was developed in order to formally axiom-
atize and understand the following phenomenon, involving most notably finite groups and
their representation theory. If C is a category and G′ → G a functor, the induced functor
CG → CG′ often have a left and a right adjoint. If moreover C is linear and G′ → G is
of "finite type", there is a strong tendency for the two adjoints to coincide (see [Law86],
Section 2). This axiomatization is done in in [BD20] by means of Mackey pseudofunctors,
which were introduced there first.

Mackey pseudofunctors, which categorify in various precise senses usual Mackey functors
(introduced by Dress and for which we refer to [Web00]) aim then to describe properties
of adjunctions which happen to hold in the context of the representation theory of finite
groups. Bicategories of spans and suitable variations are the right objects where to look for
encoding these properties, resulting in universal objects for this theory. Such variations are
called Mackey motives in this context, in analogy with the universal object for cohomology
theories in algebraic geometry.

Just to make some examples of Mackey pseudofunctors across mathematics, one can con-
sider the operation of associating, to a variable groupoid G, the category of representation
Mod(kG), the stable module category Stab(kG), the derived category D(kG), or topolog-
ical objects such as the stable homotopy category of G-spectra SH(G) and many others.
For a wider class of example we refer to section 4 in [BD20]. All of these objects M(G)
enjoy the property of being (contravariantly) functorial in the groupoid, defining hence a
pseudofunctor

M : gpdop −→ Add

4
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into the 2-category of additive categories, additive functors and natural transformations.
Most importantly, they also admit isomorphic left and right adjoints for the restriction

M(G)

M(H)

i∗ i∗i! a a

whenever i : H ↪→ G is an inclusion (a faithful functor) of groupoids.
A natural notion of monoidal product is available on these categories in most of the ex-

amples, and provides the notion of Green pseudofunctor. At a first stage, one can say that
a Mackey pseudofunctorM is a Green pseudofunctor if eachM(G) is actually a monoidal
additive category, and if this structure is compatible with inductions and restrictions, in
an appropriate sense. As conjectured in [Del22], a suitable monoidal structure on the bi-
category of Mackey pseudofunctors should give a direct and more elegant definition of a
Green pseudofunctor as just being a pseudomonoid with respect to this monoidal structure.
This happens to be true and, generalizing the same phenomenon for the 1-categorical case,
it’s done via the Day convolution product by seeing the bicategory of Mackey pseudofunc-
tors as the bicategory of additive pseudofunctors from the universal category of motives to
Add. The main goal of this thesis is to set up the categorical definitions and constructions
necessary to verify this conjecture. More in detail, Mackey motives consist of an additive
bicategory Mot such that the bicategory of Mackey pseudofunctors Mack is biequivalent to
the bicategory of enriched (additive) pseudofunctors

PsFun⊕(Mot,Add).

Using this description of the bicategory of Mackey pseudofunctor, we can study a Day
convolution structure on it. A necessary step is, however, to define a monoidal structure on
the bicategory of motives.

Also, a general theory of bicategories enriched over a monoidal bicategory is then treated
in Chapter 1. The main reference for what has been defined and developed at this point is
[GS15]. In this work we deal with further fundamental constructions requiring some sort of
symmetry, such as the opposite enriched bicategory (Section 1.6) and the tensor product of
enriched bicategories (Section 1.7).

Then, the correct notion of Day convolution on the enriched pseudofunctor bicategory
PsFun⊕(Mot,Add) requires to set a precise definition and prove elementary properties of
enriched bi(co)ends. This is done in Chapter 2.

Eventually, in Chapter 3, we prove that the cartesian product of gpd induces a monoidal
structure on Mot, allowing to use the machinery of the previous chapters and consider a
convolution product on the enriched bicategory of enriched pseudofunctors, which provides
a natural notion of tensor product of Mackey pseudofunctors. The generality in which
the theory of the first two chapters is developed allows to treat the case of enrichment
on the monoidal bicategory of additive categories. Moreover, is moved by the prospect of
considering variations of the same problem in which Mackey pseudofunctors take values
in different and possibly more complicated bicategories than Add. The examples involve
additive derivators and stable (additive) derivators ([Gro13]).



Chapter 1

Enriched bicategories

Throughout this chapter we are going to introduce and work with explicit constructions
involving enrichment of bicategories. In the classical (1-categorical) setting one can consider
the notion of enriched category over a monoidal category, and this generalizes both the
notion of category (when the monoidal category is Set with its cartesian structure) and of
monoid in a monoidal category (when the enriched category has just one object). Once
precise definitions are settled down, the same happens in the context of bicategories, which
are the usual weakening of the concept of Cat-category.

We use the same definition of bicategory enriched over a monoidal bicategory which is
used in [GS15], on the other hand, the notion of braiding for a monoidal bicategory also had
already been introduced in [Mcc00]. However, what the authors of [GS15] are careful not to
do, is to consider constructions for enriched bicategories which require a braiding. The main
original result of this chapter will be the construction of the opposite enriched bicategory
Cop, for C a bicategory enriched over a braided monoidal bicategory. This fundamental
construction turns out to be unexpectedly involved, but once established will allow us, in
the next chapter, to talk about ends and coends in the enriched bicategorical context.

1.1 Monoidal bicategories
In this first section we recall the notion of monoidal bicategory. With a notion of tricategory
available (e.g. at [GPS95]), one could just say that a monoidal bicategory is a tricategory
with one object. That is basically what we are going to do, but in a way that will allow us
to appreciate how this notion is at the same time a vertical categorification of the notion of
monoidal category. The classical commutative diagrams required for a monoidal category
(the two Mac Lane’s coherence axioms) are in fact replaced by further structure, namely
two 2-isomorphisms, which will then satisfy a new requirement.

Let us first recall the notion of bicategory, following the classical reference [Bén67].

1.1.1 Bicategories
Definition 1.1.1. A bicategory B is the data of

• A class of objects B0

6
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• For every pair of objects a, b a category B(a, b) together with composition and unit functors

◦ = ◦a,b,c : B(b, c)× B(a, b) −→ B(a, c),

u = ua : 1 −→ B(a, a);

(By 1 we mean the terminal category with one object and one morphism)

• Natural isomorphisms (called associator and left and right unitors)

B(c, d)× B(b, c)× B(a, b) B(c, d)× B(a, c)

B(b, d)× B(a, b) B(a, c)

◦×id

id×◦

◦

◦

⇒α

1× B(a, b) B(a, b)× 1

B(b, b)× B(a, b) B(a, b) B(a, b)× B(a, a) B(a, b)

∼=
ub×id ⇒λ id×ua

∼=

⇒ρ

◦ ◦

such that for every a k→ b
h→ c

g→ d
f→ e the following two associativity and identity coherence

axioms hold true:

(f(gh))k f((gh)k)

((fg)h)k f(g(hk))

(fg)(hk)

α

f◦αα◦k

α α

(AC)

commutes in B(a, e).
f(idg)

(f id)g fg

f◦λα

ρ◦g

(IC)

commutes in B(c, e).

Remark 1.1.2. Observe that each of the natural isomorphisms α, λ and ρ depends each time
on the objects of B involved, but we avoid to make that explicit for the sake of readability.
Moreover, there’s an unspoken isomorphism of categories

(B(c, d)× B(b, c))× B(a, b) ∼= B(c, d)× (B(b, c)× B(a, b))

in the definition of α, so that the latter should be more precisely read
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(B(c, d)× B(b, c))× B(a, b) B(c, d)× (B(b, c)× B(a, b))

B(b, d)× B(a, b) B(c, d)× B(a, c)

B(a, c)

◦×id

∼=

⇒α
id×◦

◦ ◦

The natural notion of morphism between bicategories is that of pseudofunctor, expressing
the fact that since there are no strict equalities of morphisms (fg)h = f(gh), idf = f or
f id = f in a bicategory, but just structural isomorphisms α,λ and ρ, it’s usually too much
in real examples to require strict preservation of composition and unit.

Definition 1.1.3. A pseudofunctor F : B → C between bicategories consists of an object
Fa of C for every object a in B, together with functors

F = Fa,b : B(a, b)→ C(Fa, Fb),

and natural isomorphisms

B(b, c)× B(a, b) B(a, c) 1 B(a, a)

C(Fb, Fc)× C(Fa, Fb)) C(Fa, Fc) C(Fa, Fa)

F×F

◦

F

ua

uFa
⇒un F

◦

⇒fun

expressing pseudonaturality and satisfying, for every a f→ b
g→ c

h→ d, the following axioms,
namely the commutativity of the following diagrams in the respective hom-categories:

(Fh ◦ Fg) ◦ Ff F (hg) ◦ Ff F ((hg)f)

Fh ◦ (Fg ◦ Ff) Fh ◦ F (gf) F (h(gf))

α

fun◦Ff fun

F (α)

Fh◦fun fun

(PF1)

idFb ◦ Ff F (idb) ◦ Ff Ff ◦ idFa Ff ◦ F (ida)

F (f) F (idb ◦ f) F (f) F (f ◦ ida)

un◦Ff

λ fun

Ff◦un

ρ fun

F (λ) F (ρ)

(PF2)

Remark 1.1.4. Pseudofunctors between two bicategories B and C assemble into a bicate-
gory themselves, denoted PsFun(B, C). A 1-morphism of pseudofunctors F,G : B → C is a
pseudonatural transformation. A 2-morphism is a modification (definitions 1.1.5 and 1.1.6
below).

Definition 1.1.5. A pseudonatural transformation t : F ⇒ G, consists of a family of 1-
morphisms ta : Fa→ Ga and, for every u : a→ b, an invertible 2-morphism

Fa Ga

Fb Gb

ta

Fu Gu⇐tu

tb
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such that the following axioms (unitality, functoriality and naturality) are satisfied:

Fa Ga

Fa Ga

ta

F id Gid⇐tid

ta

=

Fa Ga

Fa Ga

ta

F id
un⇐ Gid= un−1

⇐

ta

(PTU)

Fa Ga

Fc Gc

F (vu)

ta

G(vu)⇐tvu

tc

=

Fa Ga

Fb Gb

Fc Gc

Fu

F (vu)

ta

fun⇐

Gu

G(vu)

⇐tu
fun−1

⇐
Fv

tb

Gv⇐tv

tc

(PTF)

for every composable pair of arrows a u→ b
v→ c, and

Fa Ga

Fb Gb

ta

Fu Gu′⇐tu Gu Gα⇐

tb

=

Fa Ga

Fb Gb

ta

Fu′Fu
Fα⇐ Gu′⇐tu′

tb

(PTN)

for every 2-cell α : u′ ⇒ u.

Definition 1.1.6. A modification M : t V s between pseudonatural transformations of
pseudofunctors F,G : B → C

B C⇐s⇐t

F

G

M
V

consists of a 2-morphism Ma : ta ⇒ sa of C for every object a of B, such that for every
u : a→ b the square

(Gu)ta (Gu)sa

tb(Fu) sb(Fu)

id◦Ma

tu su

Mb◦id

(1.1)

commutes in the hom category C(Fa,Gb).
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1.1.2 Monoidal structure
At this point we want to define for a bicategory the appropriate concept of monoidal struc-
ture. Part of this structure is just as the usual structure of monoidal category and consists
of three families of adjoint equivalences, called a, `, r below, which can be seen at the same
time as a generalization of

• The equivalences of categories

(C × D)× E ' C × (D × E),

1× C ' C ' C × 1.

to the case where we no longer consider necessarily the cartesian product of categories
but any other ⊗ : B × B → B on a bicategory which then may not be Cat.

• The structure α, λ, ρ in the definition of bicategory, which include the notion of
monoidal category as its one-object case.

What properly concerns the higher structure is nonetheless the fact that coherences required
for a usual monoidal category (i.e. bicategory with one object), namely the commutativity
of the pentagon and of the triangle diagrams in axioms (AC) and (IC), are replaced by
further structure, two 2-isomorphisms π and µ fitting those diagrams and satisfying some
axioms.

Remark 1.1.7. One of the axiom satisfied by the structure of a monoidal bicategory sheds
light on a deep connection between higher categories and cohomology theory, which is known
better in its 1-dimensional case. A well known part of the theory of 2-groups, as explained
e.g. in [BS07], is a classification result. A 2-group G is given by a bicategory with one
object ∗, in which 1-cells are weakly invertible and 2-cells are invertible. To such a G one
can associate a group G of isomorphism classes of 1-cells under the composition and an
abelian group A of endomorphism of the identity id∗. Moreover, since π1 acts on π2, an
action of the first one on the latter, by letting g · γ be the whiskering

∗ ∗ ∗ ∗g g−1

⇐γ

Eventually, one can associate to this data a function α : G3 → A, given on a triple (g1, g2, g3)
by the associator (also called α, as usual)

∗ ∗ ∗

g−1
3 (g−1

2 g−1
1 )

(g−1
3 g−1

2 )g−1
1
g1(g2g3)

(g1g2)g3

⇐a
−1

⇐a

and this function being a 3-cocycle relies on the coherence axiom for the associator. The
classification result states then that the equivalence classes of 2-groups are determined by
tuples (G,A, ρ, α) where G is a group, A a G-module, ρ an action of G on A and α : G3 → A
a 3-cocycle. The coherence constraint for the associator comes then from the condition of
a function G3 → A to be a 3-cocycle (historically, at least, but one could say vice versa,
depending on the point of view). Then, the correspondence will work similarly one level up,
so that the notion of 4-cocycle will determine the constraint for the pentagonator π.
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Definition 1.1.8. Let B be a bicategory. A monoidal structure on B is provided by a tuple
(B,⊗,1, a, `, r, π, µ), where

• ⊗ : B × B → B and 1 : 1 → B are pseudofunctors called respectively tensor and identity.
We allow us to denote by 1 also the object 1(∗) in B, the image of the only object in the
terminal bicategory 1.

• a, `, r, the (monoidal) associator, left and right unitors, are adjoint equivalences in the
bicategories PsFun(B3,B) and PsFun(B,B)

B × B × B B × B

B × B B

⊗×id

id×⊗

⊗⇒a

⊗

B B

B × B B B × B B

1×id id×1

⊗ ⊗

⇒` ⇒r

• π, called 2-associator, or pentagonator, is an invertible modification (2-cell in PsFun(B4,B))
with components

(A⊗ (B ⊗ C))⊗D A⊗ ((B ⊗ C)⊗D)

((A⊗B)⊗ C)⊗D A⊗ (B ⊗ (C ⊗D))

(A⊗B)⊗ (C ⊗D)

aA,B⊗C,D

⇐πA,B,C,D

A⊗aB,C,DaA,B,C⊗D

aA⊗B,C,D aA,B,C⊗D

depicted as

π

a1 a 1a

a a

• µ, called 2-unitor, an invertible modification (2-cell in PsFun(B2,B)) whose components
are

A⊗ (1⊗B)

(A⊗ 1)⊗B A⊗B

A⊗lB

⇐µA,B
a

rA⊗B
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depicted as

µ

a 1`

r1

These data are subject to the following axioms of Remarks 1.1.10 and Remark ?? below.

Remark 1.1.9. A first axiom to which the data of monoidal bicategory is subject to is the
following coherence, the non-abelian 4-cocycle condition (see Remark 1.1.7) and is a string
diagrammatic version of the one object case in the definition of a tricategory [GPS95]:

(1a)1 aa1 1a 1(1a)

1π

π

π

(a1)1

1(a1)

1a 1a

1a

aaa

a1

a(11)a

(a1)1
a

a

a1

a

(1a)1 aa1 1a 1(1a)(a1)1

aaa

π1

a1a1

π

π

1(1a)

(11)a

a
a

a

1a

=

Then, other two axioms are required for the structure of a monoidal bicategory.

Remark 1.1.10. It is customary (as in [GPS95]) to give the definition of monoidal bicat-
egory considering some further useful structure. Precisely, two more 2-unitors δ and γ are
usually given (the right one and the left one), going as

1⊗ (A⊗B)

(1⊗A)⊗B A⊗B

`

`⊗B

a

⇐γ

A⊗ (B ⊗ 1)

(A⊗B)⊗ 1 A⊗B

A⊗r

⇐δ
a

r

and two more axioms are required. This structure can, though, be defined starting from π
and µ as follows. Let us start from the 2-cells



CHAPTER 1. ENRICHED BICATEGORIES 13

a1 (1r)1

1µ−1

µ

π

a−1

a

a

a

1a 1(1`)

1`

(11)`

r1

1a 1`

π

µ

µ−11

1(`1)

a−1 a−11

a

a

a

(1`)1

r1

(r1)1

(which are going to be δ1 and 1γ) and go as

(A⊗ (B ⊗ 1))⊗ C

((A⊗B)⊗ 1)⊗ C (A⊗B)⊗ C

C ⊗ (1⊗ (A⊗B))

C ⊗ ((1⊗A)⊗B) C ⊗ (A⊗B)

(id⊗r)⊗id

⇐

a⊗id

r⊗id

id⊗`

⇐

id⊗(`⊗id)

id⊗a

and further compose, once we fix C = 1, defining:

δ1

a 1r

r

r1

r

r

r−1

r

r

a1
(1r)1

δ =
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1γ

a `

1(`1)

`

`

`−1

`

`

1a
1`

γ =

`1

Now, the so called left and right normalization axioms, state the following equalities of
2-cells

a(1`)1a1(r−11)1

1γ−1

π

µ

a

a 1(`1)

1`

1a

a a

a
r−1(11)

r−11

a(1l)1a1(r−11)1

a

µ1

=

(r1)1

r1

and
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a 1(r−11) 1a 1(1`)

π

µ

a

a

ar−11

a

(11)`

1`

a

1µ

a 1(r−11) 1a 1(1`)

a

=

1(r1)

r1

δ−11

a1

(1r)1

r1

1.2 String diagrams
We assemble in this section our conventions for the use of string diagrams. The fundamental
results allowing the use of this notation and of its rules are to be found in [JS91], where
Joyal and Street formalized for the first time the theory of string diagrams for monoidal
categories.

Construction. The following notation assumes that we work in a 2-category, but it can be
used for bicategories as justified by the Strictification Theorem for bicategories. Given a
2-cell α, its string diagrammatic representation is constructed via its Poincaré dual. More
precisely, we use as convention the following directions: we write and read the 1-cells from
left to right, while the direction of 2-cells is from top to bottom. For example, a 2-cell

B C

A D

E

g

hf

k l

⇐φ

will be represented by placing a labeled dot, or disk, at the center of the 2-cell, while 1-
morphisms will be represented by wires delimiting areas associated to each object. Objects,
and that is one of among the advantages of this formalism, will usually be implicit. That
means φ will be represented as
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φA

B C

D

E

hgf

k l

or, as usual, just as

φ

k l

f g h

This construction works if, as we said, we orient the direction of 1-cell from left to right and
of 2-cell from top to bottom. Please observe that the string diagrammatic representation of
a 2-cell will, nonetheless be the same regardless the different orientations in which one can
represent the latter. By that, we intend that wires will always be oriented appropriately,
following the orientation just explained above. On top and at the bottom there will be the
sequences of composed morphisms constituting respectively the domain and the codomain
of the 2-cell. The pasting composition of two such cells, for example

F G

A B C

E D

q

p ⇐ψ t

f

k

g

⇐φ h

l

is then represented as a “vertical” composition

φ

k l

f g h

p

ψ

q t h

p



CHAPTER 1. ENRICHED BICATEGORIES 17

There are some rules for general bicategories. Some of them are just the translation
into this formalism of general structure (2-cells) and axioms (equalities of 2-cells) for any
pseudonatural transformation or modification.

Remark 1.2.1. The structure and the axioms for a pseudonatural transformation t : F ⇒ G
translate in string diagrams as the data of a 2-cell

tYFu

tX Gu

for every u : X → Y . The axioms that this structure satisfy are then

(PTU) For every object X

tXF id

tX Gid

=

tX GidX

tXF idX

(idFX)

(idGX)

(PTF) For every composable X u→ Y
v→ Z

=

tX G(vu)

F (vu) tZ

tX G(vu)

F (vu) tZ

Gu Gv

Fu Fv

tY

(PTN) For every α : u′ → u

tX Gu′

Gα

tYFu

tX Gu′

tYFu

Fα

=
Fu′

Gu

For what concerns modifications, let’s say MX : tX ⇒ sX , the axiom translate directly
from 1.1 as the identity for every u : X → Y .
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tX Gu

sYFu

tX Gu

sYFu

=
Fu

Gu

MX

MY

sX tY

1.2.1 Calculus rules for monoidal bicategories
We write this section in order to explain some useful rules arising with the interplay of the
monoidal structure and the string diagrammatic representation.

Remark 1.2.2. Let B be a monoidal bicategory. Let us consider the rules concerning the
monoidal associator and unitors. Whenever (f, g, h) : (A,B,C) → (A′, B′, C ′) is an arrow
in B3, one can consider the two tensored morphisms f ⊗ (g⊗ h) and (f ⊗ g)⊗ h. Since a is
a pseudonatural transformation, it comes with an invertible 2-cell af,g,h in B depicted as

a f ⊗ (g ⊗ h)

(f ⊗ g)⊗ h a

Therefore, by taking this isomorphism, or its inverse, we get a string diagrammatic rule
stating that we can shift parenthesis in tensored triples of morphisms by switching its
composition with either a or a−1. Crossing with the left and right unitors give, for the same
reason, 2-cells

r f

f ⊗ 1 r

` f

1⊗ f `

Also, from now on, the tensored morphisms in string diagrams will just be denoted by
juxtaposition.

Remark 1.2.3. The argument in Definition 1.1.10 used to define the left and right monoidal
unitors γ and δ suggests another rule saying that we can “loop a right (or left) unitor”
around a 2-cell whenever every 1-morphism in this cell happens to be the identity of 1 in
every exterior last (or first) component. This gives a new 2-cell that no longer involves the
identity of the tensor unit. Moreover, different ways to loop this r around a 2-cell, such as
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ξ1

f

f1

r

r

g1

g

ξ1

f

f1

r−1

g1

g

r−1

= ξ1

f

f1

g1

g

r−1

r

= ξ1

f

f1

g1

g

r−1

r

=

provide the same morphism. This is a consequence of the equality, for every f : A→ B, of
the following 2-cells

A A⊗ 1 A

A⊗ 1 A B ⊗ 1 B

B ⊗ 1 B B

r−1

⇐η f⊗1 f

r−1

f⊗1

r

f

=

⇐rf r

r−1

⇐ η

⇐ r∗f

r

due to the definition of the mate r∗f and the triangular identity for the adjoint equivalence
defining r.

The following remark basically says the converse of the previous one also holds true.

Remark 1.2.4. The operation of looping an r (respectively `) around a 2-cell ξ gives
precisely ξ1 (respectively 1ξ). This equality directly comes from the naturality of ` as a
pseudonatural transformation (axiom (PTN)) saying that

1⊗A 1⊗B 1⊗A 1⊗B

A B A B

1f

` `⇐`f =

1g

`

1f

⇐1ξ

`⇐`g
f

g

⇐ξ
g

which expresses as string diagram as

1f `

=

1f `

f

g`

ξ

1ξ

g`

1g

Thus, it’s clear that
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1f

`

ξ

1f

f

g

`

1ξ

`

1g

1g

=

`

=g

1g

1ξ

`

`−1

`

`−1

Another useful observation is the following one.

Lemma 1.2.5. Let a, b be two adjoint equivalences in a bicategory, and suppose them to be
isomorphic via α : a⇒ b. Then, the two right and left mates αR and αL of α coincide:

α α

a

b

b−1

a−1

a

b

a−1

b−1

=

Proof. It suffices to see that both are inverses of the same morphism, which is any of the
mates of α−1, let’s say the left one (the one in which 1-cells are bent to the left):

α−1(α−1)L =

a

b

a−1

b−1

One has on one hand that this is inverse to αR via
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α−1

α

a

b

a

b

=

α−1

α

b

b

a

a−1 a−1

a−1a−1

= ida−1αR ◦ (α−1)L=

α−1

α

a

b

a

b
=

α

α−1

a

a

b

b−1

b−1

= idb−1(α−1)L ◦ αR=

b−1

b−1

On the other hand, the fact that (α−1)L is also inverse to αL is a plain application of the
triangular identities.

1.3 Enrichments
The idea is to enrich a bicategory over a monoidal bicategory V, giving rise to the notion of
V-bicategory C. This is going to be a parallel generalization of both the notion of bicategory
(for the case V = Cat, with its usual cartesian monoidal structure) and of pseudomonoid in
V (when the enriched bicategory has just one object). Just as for the 1-categorical version of
the story, an enriched bicategory is not a bicategory with some property, nor a bicategory
with some further structure.

1.3.1 Pseudomonoids
Definition 1.3.1. Let V be a monoidal bicategory. A pseudomonoid M in V is the data of

• An objectM of V

• 1-morphisms of V called multiplication and unit

m : M⊗M−→M
u : 1 −→M

• Invertible 2-morphisms of V

M⊗M⊗M M⊗M

M⊗M M

m×id

id×m

m

m

⇒α
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1⊗M M⊗ 1

M⊗M M M⊗M M

∼=
u⊗id ⇒λ id⊗u

∼=

⇒ρ

m m

subject to MacLane coherence axioms, that express as equality of pasting diagrams as
follows:

M⊗M⊗M M⊗M

M⊗M⊗M⊗M M⊗M⊗M

M

M⊗M⊗M M⊗M

id⊗m

m

id⊗id⊗m

m⊗id⊗id

id⊗m⊗id

m⊗id

id⊗m⇐ id⊗ α

m⊗id

⇒α⊗ id

m

⇒α

(AC)
=

M⊗M⊗M M⊗M

M⊗M⊗M⊗M

M⊗M M

M⊗M⊗M M⊗M

id⊗m

m⊗id m

id⊗id⊗m

m⊗id⊗id
m

⇒α

m⊗id

id⊗m

∼=

m
⇐ α

(Observe that the clockwise side of the pentagon for the usual associativity coherence cor-
respond to the first cell, while the counterclockwise to the second one. Also, we require

M⊗ 1⊗M

M⊗M⊗M M⊗M

M⊗M M

id⊗u⊗id

id⊗`

m⊗id

id⊗m

⇒id⊗ λ

m

m

⇒α

(IC)
=

M⊗ 1⊗M

M⊗M⊗M M⊗M

M⊗M M

id⊗u⊗id

id⊗`

r⊗id

m⊗id

ρ⊗ id
⇒ m

∼=

m

where the first cell corresponds to the clockwise composition of the triangle in the usual
identity coherence, and the second one to the counterclockwise.

Remark 1.3.2. It is convenient to translate these coherence axioms as string diagrams.
This will make explicit use of every isomorphism from the monoidal structure of the bicat-
egory V, which are usually hidden in the classical diagrammatic version stated above. The
axiom (AC) then becomes
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m(11) a−1 m1 m

α1

α

1α

π

(11)m a m1m

m

a−1 (m1)1

m1

(1m)1

a1

a
1m

a 1(m1)

1a

1(1m)

1m

a a

m(11) a−1 m1 m

(11)m a m1m

α

α

m1

a

1m

1m
m1

m

=

while the identity coherence (IC) becomes

1(u1) a−1 m1 m

1` m 1` m

1(u1) a−1 m1 m

α

1λ

ρ1

µ−1

=

(1u)1

a−1 r1

a

1m

m

a

1.3.2 V-bicategories
We are then ready to give the definition of a V-bicategory appreciating how the previous
concepts of pseudomonoid as well as of bicategory fit into it.

Definition 1.3.3 ([GS15] Definition 3.1). Let V be a monoidal bicategory. A V-bicategory
C is the data of

• A class of objects C0

• For every pair of objects c, d in C0 an object C(c, d) in V, called hom-objects, together with
composition and unit 1-morphisms, for every tiple of objects c, d, e

m : C(d, e)⊗ C(c, d) −→ C(c, e)
uc : 1 −→ C(c, c)
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• 2-isomorphisms in V (called associator and left and right unitors)

C(e, f)⊗ C(d, e)⊗ C(c, d) C(e, f)⊗ C(c, e)

C(d, f)⊗ C(c, d) C(c, f)

id⊗m

m⊗id m

m

⇒α

1⊗ C(c, d) C(c, d)⊗ 1

C(d, d)⊗ C(c, d) C(c, d) C(c, d)⊗ C(c, c) C(c, d)

ud⊗id

`

⇒λ
r

id⊗uc ⇒ρ

m m

subject to the enriched version of coherence axioms (AC) and (IC) below, expressed as
identities of 2-cells

C(d, e)⊗ C(c, d)⊗ C(a, c) C(d, e)⊗ C(a, d)

C(d, e)⊗ C(c, d)⊗ C(b, c)⊗ C(a, b) C(d, e)⊗ C(b, d)⊗ C(a, b)

C(a, e)

C(c, e)⊗ C(b, c)⊗ C(a, b) C(b, e)⊗ C(a, b)

id⊗m

m

id⊗id⊗m

m⊗id⊗id

id⊗m⊗id

m⊗id

id⊗m⇐ id⊗ α

m⊗id

⇒α⊗ id

m

⇒α

(AC)
=

C(d, e)⊗ C(c, d)⊗ C(a, c) C(d, e)⊗ C(a, d)

C(d, e)⊗ C(c, d)⊗ C(b, c)⊗ C(a, b)

C(c, e)⊗ C(a, c) C(a, e)

C(c, e)⊗ C(b, c)⊗ C(a, b) C(b, e)⊗ C(a, b)

id⊗m

m⊗id m

id⊗id⊗m

m⊗id⊗id

∼=
m

⇒α

m⊗id

id⊗m m
⇐ α

and
C(d, e)⊗ 1⊗ C(c, d)

C(d, e)⊗ C(d, d)⊗ C(c, d) C(d, e)⊗ C(c, d)

C(d, e)⊗ C(c, d) C(c, e)

id⊗ud⊗id

id⊗`

⇒id⊗ λ

m⊗id

id⊗m

m

m

⇒α
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(IC)
=

C(d, e)⊗ 1⊗ C(c, d)

C(d, e)⊗ C(d, d)⊗ C(c, d) C(d, e)⊗ C(c, d)

C(d, e)⊗ C(c, d) C(c, e)

id⊗ud⊗id

id⊗`

r⊗id

m⊗id
ρ⊗ id
⇒

m
∼=

m

Remark 1.3.4. We wrote in this classical diagrammatic way the axioms (AC) and (IC)
for a V-bicategory for sake of clarity, but please note how one could be clearer and be more
precise (showing associators) by considering, instead, the string diagrammatic version of the
coherence axioms for pseudomonoid of Remark 1.3.2.

Example 1.3.5. There is a unit V-bicategory J consisting of one object ∗, and hom-object
J (∗, ∗) = 1. This is precisely the pseudomonoid structure of the tensor unit, provided by
u∗ = id: 1 → J (∗, ∗) and composition m : 1 ⊗ 1 → 1 equivalently give by the left or the
right monoidal unitor for the monoidal unit.

One should define at this point also a notion of morphism of V-bicategories, by general-
izing the notion of pseudofunctor.

1.3.3 V-pseudofunctors
Definition 1.3.6. Let V be a monoidal bicategory. A V-pseudofunctor F : B → C between
V-bicategories is the data of a map on objects F0 : B0 → C0 together with, for every pair
of objects a, b in B, 1-morphisms of V still denoted by F = Fa,b : B(a, b) → C(Fa, Fb) and
2-isomorphisms

B(b, c)⊗ B(a, b) B(a, c) 1 B(a, a)

C(Fb, Fc)⊗ C(Fa, Fb)) C(Fa, Fc) C(Fa, Fa)

F⊗F

◦

F

ua

uFa
⇒un F

◦

⇒fun

subject to the axioms analogue to (PF1) and (PF2) in the definition of pseudofunctor, which
express as equality of pasting diagrams:

B(c, d)⊗ B(b, c)⊗ B(a, b) B(c, d)⊗ B(a, c)

B(b, d)⊗ B(a, b) B(a, d)

C(Fc, Fd)⊗ C(Fb, Fc)⊗ C(Fa, Fb)

C(Fb, Fd)⊗ C(Fa, Fb) C(Fa, Fd)

F⊗F⊗F

◦⊗id

id⊗◦

◦

◦

F⊗F

⇒α

F

◦⊗id

⇒fun⊗ F

◦

⇒fun
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(PF1)
=

B(c, d)⊗ B(b, c)⊗ B(a, b) B(c, d)⊗ B(a, c)

B(a, d)

C(Fc, Fd)⊗ C(Fb, Fc)⊗ C(Fa, Fb) C(Fc, Fd)⊗ C(Fa, Fb)

C(Fb, Fd)⊗ C(Fa, Fb) C(Fa, Fd)

F⊗F⊗F

id⊗◦

◦

F⊗F

F

◦⊗id

id⊗◦

⇒F ⊗ fun

◦

⇒fun

◦

⇒α

(PF1)

and

1⊗ B(a, b) B(a, b)

B(b, b)⊗ B(a, b)

C(Fb, Fb)⊗ C(Fa, Fb) C(Fa, Fb)

`

ub⊗id

uFb⊗F F
un⊗ F
⇒

F⊗F

◦

⇐

λ

◦

⇒fun

=

1⊗ B(a, b) B(a, b)

1⊗ C(Fa, Fb)

C(Fb, Fb)⊗ C(Fa, Fb) C(Fa, Fb)

`

id⊗F

uFb⊗F F∼=
uFb⊗id ∼=

∼=

⇒λ

◦

(PF2)

B(a, b)⊗ 1 B(a, b)

B(a, b)⊗ B(a, a)

C(Fa, Fb)⊗ C(Fa, Fa) C(Fa, Fb)

r

id⊗ua

F⊗uFa F
F ⊗ un
⇒

F⊗F

◦

⇐

ρ

◦

⇒fun

=

B(a, b)⊗ 1 B(a, b)

C(Fa, Fb)⊗ 1

C(Fa, Fb)⊗ C(Fa, Fa) C(Fa, Fb)

r

F⊗id

F⊗uFa F∼=
id⊗uFa ∼=

∼=

⇒λ

◦

We invite the reader to look at [GS15] for a string diagrammatic version.

Remark 1.3.7. The point in translating notions to the enriched context is that the hom-
objects B(a, b) are no longer categories, but objects in V, and hence we need to reformulate
axioms without referring to its objects. This basic obstacle, which obviously is fundamen-
tally linked to enrichments even in the 1-categorical setting, can be dealt with by using the
following bicategorical vocabulary. By a 1-morphism f : c→ d in a V-bicategory C we mean
a 1-morphism in V of the form

f : 1→ C(c, d).

This perfectly consolidated trick in enriched category theory (see [Kel05]) carries a transla-
tion of the notion of composition: given f : c→ d and g : d→ e, we have then a composition
defining gf :

1 1⊗ 1 C(d, e)⊗ C(c, d) C(c, e).' g⊗f ◦
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Here, the isomorphism 1 → 1 ⊗ 1 is r−1
1
∼= `−1

1 (see Lemma 2.1 [GS15]). That means, the
composition is only defined up to an isomorphism. We can moreover talk about 2-morphisms
between 1-morphisms in C, and they’re just defined to be the 2-morphisms in V between
them. They obviously compose vertically, while horizontally, for

c d e

f

f ′

⇐α

g

g′

⇐β

a pair of 2-morphisms in C, we get β ∗ α as the whiskered 2-cell

1 ' 1⊗ 1 C(d, e)⊗ C(c, d) C(c, e).

g′⊗f ′

g⊗f

β⊗α
⇐

◦

1.3.4 V-pseudonatural transformations
The dictionary between enriched and classical morphisms won’t allows us to define verbatim
a V-pseudonatural transformation as a usual pseudonatural transformation. The reason
is explained in the following example, and consists of a problem shared with the usual
1-categorical version of enriched category theory.

Example 1.3.8. Let us call a naive pseudonatural transformation between two enriched
pseudofunctors F,G : B → C the data of tB : 1→ C(FB,GB) and, for every u : 1→ B(A,B)
an invertible 2-morphism

C(GA,GB)⊗ C(FA,GA)

1 ∼= 1⊗ 1 C(FA,GB)

C(FB,GB)⊗ C(FB,FB)

◦

⇐tu

Gu⊗tA

tB⊗Fu ◦

such that axioms (PTN), (PTF) and (PTU) of Definition 1.1.5 hold true.
Consider then the cartesian monoidal bicategory Cat × Cat, as well as the Cat × Cat-

bicategory C with two objects A,B and the only non-trivial hom-objects B(A,B) = (T,∅),
while B(X,X) = 1 = (T, T ) for X = A,B, with T being the terminal category. Then,
consider the Cat× Cat-pseudofunctor

F : B −→ Cat× Cat

mapping the two objects onto a fixed category C, and defined on hom-objects as

uC,C : B(X,X) = 1 −→ Cat× Cat((C, C), (C, C))
(uC ,∅) : B(A,B) = (T,∅) −→ Cat× Cat((C, C), (C, C))

Then, one would definitely want enriched pseudonatural transformations F ⇒ F to exist,
because, more precisely, one would want them to correspond to pairs of endo-pseudonatural
transformations of the pseudofunctors B → Cat induced by post-composition of F with the
canonical projections. However, no naive one can be found since no pair of functors goes
1 = (T, T )→ B(A,B) = (T,∅), hence no enriched morphism exists from A to B.
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Therefore, the definition of V-pseudonatural transformation will not be the naive trans-
lation, but rather the following:

Definition 1.3.9. Let F,G : B → C be V-pseudofunctors. Then, a V-pseudonatural trans-
formation t : F ⇒ G is the data of a family of morphisms ta : 1→ C(Fa,Ga) and, for every
pair of objects a, b, a 2-isomorphism

B(a, b) C(Ga,Gb)

C(Fa, Fb) C(Fa,Gb)

G

F ta
∗⇐tab

tb∗

(see Remark 1.3.10 for the definition of t∗aandtb∗) satisfying the unitality axiom (PTU):

1 1

B(a, a)

C(Fa, Fa) C(Ga,Ga) C(Fa, Fa) C(Ga,Ga)

C(Fa,Ga) C(Fa,Ga)

u u u uu

∼=

⇐

un−1

F G

⇐un

ta∗ t∗a

(PTU)
=

ta∗ t∗a

taa
⇐

and the functoriality axiom (PTF);
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C(Fb, Fc)⊗ C(Fa, Fb) B(b, c)⊗ B(a, b) C(Gb,Gc)⊗ C(Ga,Gb)

B(a, c)

C(Fa, Fc) C(Fa,Gc) C(Ga,Gc)

C(Fb, Fc)⊗ C(Fa, Fb) B(b, c)⊗ B(a, b) C(Gb,Gc)⊗ C(Ga,Gb)

C(Gb,Gc)⊗ C(Fa, Fb)

C(Fb,Gc)⊗ C(Fa, Fb) C(Gb,Gc)⊗ C(Fa,Gb)

C(Fa, Fc) C(Fa,Gc) C(Ga,Gc)

m

F⊗F G⊗G

m

m

F G

⇐ fun−1 ⇐fun

tac
⇐

tc∗

(PTF )
=

t∗a

m

tc∗⊗id

G⊗GF⊗F

G⊗F

m

id⊗t∗a

tbc ⊗ F
⇐

G⊗ tab
⇐

t∗b⊗id id⊗tb∗

m

∼=

m

tc∗

∼=

t∗a

∼=

Remark 1.3.10. First, observe that the 2-dimensional structure of an enriched pseudonat-
ural transformation expands as

C(Ga,Gb)⊗ 1 C(Ga,Gb)⊗ C(Fa,Ga)

B(a, b) C(Fa,Gb)

1⊗ C(Fa, Fb) C(Fb,Gb)⊗ C(Fa, Fb)

id⊗ta

m

F

G

⇐tab

tb⊗id

m

(1.2)

Also, it is interesting to observe how this definition boils down to the definition of pseudonat-
ural transformation in the non-enriched setting. The structure is provided by considering,
for every u : a→ b, the morphism tu given by whiskering tab with u : 1→ B(a, b). Unitality
and functoriality axioms for a pseudonatural transformations evidently correspond to the
same (PTU) and (PTF) given in the definition of enriched pseudonatural transformation.

What is remarkable is that the naturality axiom in the definition of pseudonatural trans-
formation is now included in the property of each 2-cell, since it just boils down to the
well-definedness of the horizontal composition of two 2-cells
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C(Ga,Gb)

1 B(a, b) C(Fa,Gb)

C(Ga, Fb)

t∗a

⇐tab

u′

u

⇐α

G

F tb∗

Remark 1.3.11. A natural thing for the V-pseudofunctors between V-bicategories C and
D would be to assemble into a V-bicategory V-PsFun(C,D), promoting then the previously
introduced notion of V-pseudonatural transformation into an object

V-PsFun(C,D)(F,G)

of V, whenever F,G : C → D are V-pseudofunctors. But in order to do so, we need the
theory of bi(co)ends (see Proposition 2.3.1 and Definition 2.3.3). So far, V-PsFun(C,D) is
just a bicategory, with V-pseudonatural transformation and V-modifications as 1 and 2-cells:

Definition 1.3.12. Let F,G : B → C be V-pseudofunctors and s, t : F ⇒ G be V-pseudonatural
transformations between them. A V-modification M from t to s (denoted M : tV s) is the
data of a family of 2-cells in V

1 C(Fa,Ga)⇐Ma

ta

sa

such that the following equality of 2-cells holds:

C(Ga,Gb)⊗ 1 C(Ga,Gb)⊗ C(Fa,Ga)

B(a, b) C(Fa,Gb)

1⊗ C(Fa, Fb) C(Fb, Fb)⊗ C(Fa, Fb)

id⊗ta

m

F

G

⇐tab

tb⊗id

sb⊗id

m

⇐Mb ⊗ id

=

C(Ga,Gb)⊗ 1 C(Ga,Gb)⊗ C(Fa,Ga)

B(a, b) C(Fa,Gb)

1⊗ C(Fa, Fb) C(Fb, Fb)⊗ C(Fa, Fb)

⇐id⊗Ma

id⊗sa

id⊗ta

m

F

G

⇐sab

sb

m
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equationally written as Mb1 ◦ tab = sab ◦ 1Ma.

Remark 1.3.13. As argued in Section 4 of [GS15], the structure defined so far defines the
tricategory of V-bicategories, whenever V is a monoidal bicategory.

1.3.5 Closed monoidal bicategories
We want to define the notion of closed monoidal bicategory. It will follows that such a
monoidal bicategory V is also canonically a V-bicategory. Definition A.0.3 of pseudoadjunc-
tion given in Appendix A will be crucial.

Definition 1.3.14. A monoidal bicategory V is said to be left closed if for every object
A ∈ V the pseudofunctor −⊗A : V → V is part of a pseudoadjunction −⊗A a [A,−].

Let’s take some time in order to make explicit the involved structure explicit. To have a
closed monoidal bicategory means then to have a monoidal bicategory as in Definition 1.1.8
together with, for every object A, two pseudonatural transformations

ηA : id =⇒ [A,−⊗A]

εA : [A,−]⊗A =⇒ id

plus modifications s, t having components

B ⊗A [A,B ⊗A]⊗A [A,B] [A, [A,B]⊗A]

B ⊗A [A,B]

Fη

⇒sB εF

ηG

⇐tB Gε

satisfying the swallowtail equations (A.3) and (A.4).

Proposition 1.3.15. A closed monoidal bicategory V has a canonical structure of V-
bicategory.

Proof. The hom-objects are defined as V(A,B) = [A,B]. The composition morphism

m : [B,C]⊗ [A,B] −→ [A,C]

is defined to be the adjoint under −⊗A a [A,−] of the composition

([B,C]⊗ [A,B])⊗A a−→ [B,C]⊗ ([A,B]⊗A)
id⊗εAB−→ [B,C]⊗B εBC−→ C

The unit morphism 1→ [A,A] is the adjoint of the left monoidal unitor

`A : 1⊗A→ A.

It remains to identify the higher structure α, λ, ρ and to show that it satisfies the axioms
(AC) and (IC).

In order to find λ, of the form

1⊗ [A,B]

[B,B]⊗ [A,B] [A,B]

`[A,B]

uB⊗id ⇒λ

m
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we can first transpose the diagram, finding (from now on we avoid to explicit the tensor
sign for sake of space and readability)

(1[A,B])A

[A,B]A

([B,B][A,B])A [B,B]([A,B]A) [B,B]⊗B B

(uB [A,B])⊗A

`[A,B]A

εAB

a idεAB εBB

and then expand it, in order to fill it with naturality isomorphisms. Then, by transposing
that back, we can define the result to be the desired 2-cell λ.

(1[A,B])A

([B,B][A,B])A 1([A,B]A) [A,B]A

[B,B]([A,B]A) [B, 1B]B 1B

[B,B]B B

(uB [A,B])A
a

`[A,B]A

a

⇒ au11

uB([A,B]A) ηB1 ε
A
B

1εAB

`[A,B]A

⇒γ

⇒s1

εAB

[B,B]εAB

∼=

[B,`B ]B

εB1B

`

⇒`

εBB

⇒ε`

The unlabeled 2-isomorphism comes here directly from the definition of uB = [B, `B ]ηB1
and the tensoring of the left and the right 2-unitor from the bicategory structure of V. The
right 2-unitor is given indeed by a perfectly symmetric construction, and for what concerns
the 2-associator we first observe that for every pseudoadjunction F a G and every map
f : FA→ D there’s a 2-isomorphism

FA D

FGFA FGD

f

FηA

FGf

⇐ εD (1.3)

defined by the composition

FA FA D

FGFA FGDFηA

⇒ sA

f

FGf

⇒ εfεFA εD
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In other terms, the 2-isomorphism above is indeed an isomorphism f ⇒ εD ◦ F (f), for the
transpose f being GfηA. The 2-associator α can thus to be defined as a 2-cell of the form

[C,D]([B,C][A,B])

([C,D][B,C])[A,B] [C,D][A,C]

[B,D][A,B] [A,D]

1ma

m1 m

m

⇒α

corresponding, via the adjunction −⊗A a [A,−], to

([C,D]([B,C][A,B]))A ([C,D][A,C])A

(([C,D][B,C])[A,B])A [C,D](([B,C][A,B])A) [C,D]([A,C]A)

[C,D]([B,C]([A,B]A)) [C,D]C

([C,D][B,C])([A,B]A) [C,D]([B,C]B)

([B,D][A,B])A ([C,D][B,C])B D

[B,D]([A,B]A) [B,D]B

(1m)1

a aa1

(m1)1

a
⇒π−1 1a

1(m1)
⇒a1m1

1εAC

1(1εAB)

⇐

(εfs)
−1

εDC

⇒am11

m(11)

(11)εAB

a 1εBC

a
m1

a

⇐

a11ε

1εAB

∼=
εBD

⇐

(εfs)
−1

for the morphism f as in notation of (1.3) being the compositions which transposes to m.
The verification of associativity and identity coherence axioms for this structure is left to
the (very) willing reader.

1.4 Braided monoidal bicategories
Braided monoidal categories are categories equipped with an isomorphism A⊗B → B ⊗A
for every pair of objects A,B. The requirements that this map satisfy (the so called hexagon
identities), require that if we have three tensored objects A ⊗ B ⊗ C, then swapping the
first two (B ⊗ A⊗ C) and then the resulting last two (B ⊗ C ⊗ A), then we find the same
thing as directly swapping A with B⊗C. Same thing (the second hexagon identity) for the
symmetric operation starting with C. Even if the operation described may sound more like
a commutative triangle (two operations equal one operation), there are of course associators
involved, hence the hexagonal shape.

In the bicategorical context, with no surprise, these hexagons are replaced by two 2-
isomorphism, satisfying (and that is maybe more surprising) a sizable set of fairly non-trivial
axioms.
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Definition 1.4.1. Let (B,⊗,1, a, l, r, π, µ) be a monoidal bicategory. A braided structure
on it is the data of a pseudonatural equivalence

B2 B2

B

σ

⊗ ⇐β ⊗

together with invertible modifications (2-cells in PsFun(B3,B)) called R and S having com-
ponents

A(BC) (BC)A

(AB)C B(CA)

(BA)C B(AC)

β

aa

βC
⇐RABC

a

Bβ

and

(AB)C C(AB)

A(BC) (CA)B

A(CB) (AC)B

β

a−1a−1

Aβ

⇐SABC

a−1

βB

satisfying the following four braiding axioms (see [Mcc00] and [Gur11b] for the pasting
diagrammatic form):

(β1)1 a1 a 1(β1) 1a 1(1β)(β1)1 a1 a 1(β1) 1a 1(1β)

aaβaa1 aaβaa1

π−1

π

R

π−1

1R

R

π−1

R1

=

a1
a

1a

1a

1a
β

a a

β1
a 1β

a

β(11)

(β1)1

a1

a a

β1 a 1β

(11)β

1(1β)

a1

(1β)1

a
1a

1a

(BA1)

The second one, perfectly symmetric and involving S, instead of R
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1(1β) 1a−1 a−1 (1β)1 a−11 (β1)1

a−1a−1βa−11a−1

π∗

π−1∗

S

π∗

S1

S

π∗

1S

=

1a−1

a−1

a−11

a−11

a−11
β

a−1 a−1

1β
a−1

β1

a−1

(11)β

1(1β)

1a−1

a−1

1β

a−1

β1

β(11)

(β1)1

1a−1

1(β1)

a−1 a−11

a−11

1(1β) 1a−1 a−1 (1β)1 a−11 (β1)1

a−1a−1βa−11a−1

(BA2)

The third one
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R

π

1SS1

π−1 π−1

a−11 a β a 1a−1 a−1

β1 a 1β

1a−1a−11

a a

(1β)1
a−11

(β1)1

β(11)

1(1β)

(11)β a−1 a1 (1β)1

1a−1

1(β1)

a−11a1(β1)a

=

a−11 a β a 1a−1 a−1

π−1

S

π−1

π−1

β(11)(11)β a−1 a1 (1β)1a−11a1(β1)a

1R R1

a−1 a−1

1β β1

a−1

a1

1a

a a

a

1a

a1

(BA3)

a

and eventually
1β a−1 β1aβ1

S−1

S

R−1

R

a−1 a−1

β

β

1β a−11β a−1 β1a

a−1 a−1

a 1β a−11β a−1 β1a a

1β a−1 β1aβ1

a a

β

β

aa

=(BA4)

Remark 1.4.2. Observe that we have a string diagrammatic rule telling us that we can
switch the order of a tensored pair of morphisms by switching its composition with β.
This is again (similarly to what happens with the associator a, see Remark 1.2.2) a direct
translation of the naturality 2-isomorphisms
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A⊗B B ⊗A

A′ ⊗B′ B′ ⊗A′

β

f⊗g g⊗f⇐βf,g

β

and again this rule is used in stating the axioms above without explicitly label the corre-
sponding 2-cell

β gf

βfg

Moreover, naturality of β (axiom (PTN)) gives us the equality

β fg β fg

g′f ′ β g′f ′ β

ξχ

χξgf

f ′g′
=

Remark 1.4.3. A further structure which is considered in the literature and which we are
not going to use throughout this work is the notion of sylleptic structure, which consists
of an invertible morphism from the identity to β2 satisfying another bunch of axioms (see
Remark 3.5.11). Full details about that can be found in [Mcc00]. An even further axiom
for a syllepsis defines the notion of symmetric monoidal bicategory.

Proposition 1.4.4. In any braided monoidal bicategory there are isomorphisms

A⊗ 1 1⊗A 1⊗A A⊗ 1

A A

βA,1

r ⇐
`

β1,A

` ⇐ r

relating β, r, ` and respectively called K`,r and Kr,`.

Proof. Let us define the first one, from `β to r, and let us do that by using Remark 1.2.3,
and hence by defining a morphism of sort

C ⊗ (A⊗ 1) C ⊗ (1⊗A)

C ⊗A

1β

1r ⇐
1`

and then looping an ` around once fixed C = 1. In string diagram, this last morphism is
given by



CHAPTER 1. ENRICHED BICATEGORIES 38

R−1

µ

δ

δ−1

1`

1r

a

a

r

r
ββ−11

a β

1r

r1

a

1β

=id⊗K`,r

The second morphism Kr,l : rβ ⇒ ` is similarly defined starting from

δ

S−1

δ−1

µ−1

a−1

β
a−1

1β 1r

β−1

r

1r

1`

id⊗Kr,l=

and then looping an ` around that, too.

Lemma 1.4.5. Let f, g : A → B be two morphisms in a monoidal bicategory and consider
the morphisms id⊗ f, id⊗ f : 1⊗ A→ 1⊗B. For every 2-cell θ : id⊗ f ⇒ id⊗ g, there is
an equality of 2-cells
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θ ` θ
1f

1g

f

g

r−1`−1

1f

1g
β

f1

g1

g

f

r=

Proof. The argument consists of inserting in the right hand side the isomorphismKr,` : rβ ⇒
`, together with its inverse, in order to find

θr−1

1f

1g

f1

g1

g

f

K

K−1

`

r

r

β

β

and then by letting them slide - by the modification property of K - over f (the morphism
K) and under g (the morphism K−1), in order to cancel them out on the other side.

1.5 Strictification results
We dedicate this section to recollect the state of art of strictification results for monoidal and
braided monoidal bicategories. The underlying reasons for this theory is that unlike what
happens for a bicategory, which is always biequivalent to a 2-category, the same does not
hold for a tricategory, not even for the one-object case, the one of monoidal bicategories. For
the latter, a notion of product of 2-categories known as the Gray product is fundamental.
This is a tool particularly well suited for dealing with coherence, since it is a product on the
category of strict 2-categories (hence fairly manageable in practice), but with respect to the
usual cartesian product introduces a flexibility allowing to detect non-strict structures.
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1.5.1 Gray tensor product
Given two 2-categories C and D, their cartesian product C × D is a construction defining
a left 2-adjoint − × D to the 2-functor 2Fun(D,−). There is a well known construction
replacing the cartesian product and allowing the introduction of some weakening. This
notion was first introduce by Gray in [Gra74]. If we call the category of 2-categories and
2-functors 2Cat, one possible definition of the Gray product is as the 2-category C ⊗G D
such that there is a natural isomorphism of sets

2Cat(C ⊗G D, E) ∼= 2Cat(C, 2FunPs(D, E)),

where 2FunPs(D, E) is the 2-category whose objects are 2-functors D → E , 1-cells are
pseudonatural transformations, and 2-cells are modifications between them. The Gray
product defines a symmetric monoidal structure on 2Cat. By unwinding this definition,
we discover that any 2-functor

F : C ⊗G D −→ E

is essentially given by pseudonatural transformations F (f,−) : F (C,−) ⇒ F (C ′,−) with
components F (f,−)D : F (C,D)→ F (C ′, D), that is the data of invertible 2-cells

F (C,D) F (C ′, D)

F (C,D′) F (C ′, D′)

F (f,−)D

F (C,g)
∼
⇐ F (C,g)

F (f,−)D′

for every f : C → C ′ and g : D → D′ satisfying the unitality, functoriality and naturality
axioms. Therefore, that is the structure that we get when we define a semi-strict monoidal
2-category, also known as a Gray monoid. This definition is given in [Cra98], and before by
Baez and Neuchl in (a first version of) [BN20].

Definition 1.5.1. A semi-strict monoidal structure on a 2-category C is the data of an
object 1 in C and a 2-functor

−⊗− : C ⊗G C → C

such that the strict associativity and unitality constraint hold true, that is

−⊗ (−⊗−) = (−⊗−)⊗−,

1⊗− = −, −⊗ 1 = −.

Remark 1.5.2. Semi-strict monoidal 2-categories are a special case of monoidal bicate-
gories. This can be checked at [Gur06], Section 5, where the notion of cubical pseudofunctor
is treated. Cubical pseudofunctor are precisely those pseudofunctors between 2-categories
C × D → E that (Gurski shows) correspond precisely to strict 2-functor C ⊗G D → E . If
we consider then the tensor product 2-functor C ⊗G C → C defining a semi-strict monoidal
2-category, we get that this is a pseudofunctor (a cubical one, in particular), and hence it
equips the 2-category C with the structure of a monoidal bicategory.
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The point, roughly speaking, is that the replacement of the cartesian product of 2-
categories by the Gray product (reason for the adjective semi-strict) introduces a weakening
that allows us to find for any monoidal bicategory a monoidal biequivalence onto a semi-
strict monoidal 2-category. This result is a special (one object) case of the general coherence
theorem for tricategories which can be found in [GG09]:

Theorem 1.5.3 (Coherence for tricategories). Any monoidal bicategory is monoidally biequiv-
alent to a semi-strict monoidal bicategory

Let us come to the braided case. Crans in [Cra98] also defines a braided structure on
a semi-strict monoidal 2-category. This structure and its axioms are the ones given at
Definition 1.4.1: the pseudonatural equivalence β, modifications R, S and the four braiding
axioms, applied to a semi-strict monoidal 2-category, which is in particular a monoidal
bicategory. Moreover, some further compatibility of R and S are demanded (see below).
Let us call σG the symmetry for 2-categories under the Gray tensor product.

Definition 1.5.4. Let B be a semi-strict monoidal bicategory. A braided structure on B
consists of a pseudonatural equivalence of 2-functors

B ⊗G B B ⊗G B

B

σG

⊗ ⊗
⇐β

and two modifications

ABC BCA ABC CAB

BAC ACB

β

β1

1β

β

1β

β1

⇐R ⇐S

satisfying the following strict version of the four braiding axioms:
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R

1R
=

S−1

S

=

R−1

S

S1 1S

1R−1 R−11

=

β1 1β

1β β1

β1 1β β1

1β β1 1β

β

1β1β11 11β

R

R1

β

S

S1
=

S

1S

R−1

R

β1 1β 1ββ1

1β1β11 11β

1β1 β1111β 1β1 β1111β

β β

(BA1)

(BA2)

(BA4)

(BA3)
β

1ββ1

1β β1

1β1 1β1
11β

11β

β11

β11

β

β

β

β

β1 1β β1

1β β1 1β

Moreover, β,R, S are required to satisfy the following constraints: two commutative squares
for every object A
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A1 1A 1A A1

A A A A

β β

and the following identities of 2-cells (where squares commutes by the two previous condi-
tions)

AB AB1 B1A BA

AB BA1 BA
β

β

β1 1β
⇐R

=

AB A1B 1BA BA

AB 1AB AB

β

β1 1β β

⇐R

=

idβ

AB 1AB AB1 AB

A1B

AB

β

β1 1β

⇐R
= idid

Similarly, three more conditions for S.

A fundamental result for the rest of the work is then the following result, for which we
refer to Theorem 27 of [Gur11b].

Theorem 1.5.5. Any braided monoidal bicategory is braided monoidally equivalent to a
semi-strict braided monoidal 2-category.

In the literature, other use of this strictification results, which allows to heavily simplify
computations, can be found at [DX24].
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1.6 The enriched opposite bicategory
The braiding on the monoidal bicategory V is fundamental for most of our constructions.
In this section we define the structure of V-bicategory Cop, for a given V-bicategory C. The
braiding is, as usual, necessary for defining the composition.

Definition 1.6.1. Let V be a braided monoidal bicategory. For any V-bicategory C, there’s
a V-bicategory Cop called enriched opposite bicategory defined as having the same objects of
C and the hom-objects Cop(c, d) = C(d, c). The composition

c : Cop(d, e)⊗ Cop(c, d) −→ Cop(c, e)

is defined as the composite

C(e, d)⊗ C(d, c) β−→ C(d, c)⊗ C(e, d)
c−→ C(e, c),

and the unit is the very same morphism as that of C

uc : 1 −→ Cop(c, c) = C(c, c).

The left associator λ is defined in terms of the right associator ρ for C as the following
composite 2-cell:

1⊗ C(d, c)

C(d, c)⊗ 1

C(d, c)⊗ C(d, d)

C(d, d)⊗ C(d, c) C(d, c)

ud⊗id

`
β

∼= id⊗ud r

∼=

c=

⇒ρ

c

β

The above isomorphisms are the naturality of β and the morphism Kr,` of Proposition 1.4.4,
so that as a string diagram we have

cu1

ρ

K

`

cβ

1u

β
r

λ =

Analogously, it works for the right unitor
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C(d, c)⊗ 1

1⊗ C(d, c)

C(d, d)⊗ C(d, c)

C(d, c)⊗ C(d, d) C(d, c)

id⊗ud

rβ

∼= ud⊗id
`

∼=

c=

⇒λ

c

β

This last morphism has, then, a string-diagrammatic representation as
c1u

λ

K

r

cβ

u1

β
`

ρ =

For what concerns the associator, we can define it like the following pasted diagram

C(f, e)C(e, d)C(d, c) C(f, e)C(e, c)

C(f, e)(C(e, d)C(e, d))

(C(e, d)C(f, e))C(d, c) C(d, c)C(e, d)C(f, e) C(e, c)C(f, e)

C(f, d)C(d, c) C(d, c)C(f, d) C(f, c)

idβ

βid

cid

idc

β

β

idc

β
cid

cid

idc ⇒α−1 c

β c

Here, triangles commute by definition, the two areas on the bottom and on the right side
can be filled with the naturality isomorphism for β, while for the remaining square we have
(remembering how we are omitting the monoidal associators in the above diagram) the 2-cell
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S

R−1

ββ1 a−1

a 1β β

a

1β

β

β1
a

Therefore, we have

S

R−1

a

1β

a

1β

β

β1
a

1c

α−1

c1 c

c

c

β
1c

c1

a

1c

β1 c1 β

c

α =

We need now to verify the coherence axioms for the V-bicategory Cop. This appar-
ently trivial task requires quite a lot of effort if made without assuming strictification. We
nonetheless provide here a complete proof, since it was drawn up prior to our understanding
of the power of the strictification theorems, as well as to provide, to anyone who wished,
the complete structure that appears in the case of non-strict monoidal bicategories. See
Remark 1.7.2.

Proposition 1.6.2. Let C be a V-bicategory. The morphisms u, c and α, ρ, λ of Definition
1.6.1 define Cop as a V-bicategory.

Proof. It has to be proved that the two axioms for a V-bicategory hold true. Let’s start with
the identity coherence (IC), saying that we should have equalities in V of the two 2-cells
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1(u1) a−1 c1 c

1` m 1` c

1(u1) a−1 c1 c

α

1λ

ρ1

µ−1

=

(1u)1

a−1 r1

a

1c

c

a

Let us expand the right hand side, in order to find

S

R−1

1β

a

1β

β

β1
a

α−1

c1 c

c

β

1c

c1

a

1c

β1 c1 β

c

β

c

a−1

a

1(u1)

α

1ρ

1r

1Kr,`

1`

1(1u)
1β

1λ

Thus, let us shift 1ρ over β, turning it into ρ1
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S

R−1

1β

a

1β

β

β1
a

α−1

c1 c

c

β

c1

a

1c

β1 c1 β

c

β

c

a−11(u1)

ρ1

1r

1Kr,`

1`

1(1u)

(1u)1

Now, in the highlighted part we observe that we can stretch a

S

R−1

1β

a

1β

β

β1
a

α−1

c1 c

c

β

c1

1c

β1 c1 β

c

β

c

a−11(u1)

ρ1

r1

1Kr,`

1`

1(1u)

a

1(u1)

(1u)1

Here, we observe that we can use (IC) for C, and at the same time expand 1K (defined at
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Proposition 1.4.4), finding

S

R−1

1β

a

1β

β

β1
a

c1 c

c

β

1c

β1 c1 β

β

c

a−11(u1)

r1

1(1u)

a

1(u1)

1λ

µ

1r

a

δ

S−1

δ−1

µ−1

a−1

β
a−1

β−1

r

1r

1`

a−1

Now, we are allowed to make the counit and the unit for a to meet, finding
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S

R−1

1β

a

1β

β

β1
a

c1 c

c

β

1c

β1 c1 β

β

c

a−11(u1)

r1

1(u1)

1λ

µ

1r

a

δ

S−1

δ−1

µ−1

a−1

β
a−1

β−1

r

1r

1`

a−1

Then, observe that, always by the modification property, we can make the whole S and R−1

to pass under 1(u1).
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S

R−1

1β

a

1β

β

β1

a

c1 c

c

β

1c

β1 c1 β

β

c

a−11(u1)

r1

1(u1)

1λ

µ

1r

a

δ

S−1

δ−1

µ−1

a−1

β
a−1

β−1

r

1r

1`

a−1

Hence, we can cancel out S and its inverse, by linking β1’s in the highlighted part. Moreover,
we can make 1λ pass over β, turning it into λ1.
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R−1

a

1β

β

a

c1 c

c

β

β1 c1 β

β

c

a−11(u1)

r1

(1u)1

λ1

µ

1r

a

δ

δ−1

µ−1

a−1

β
a−1

β−1

r

1r

1`

(u1)1

Now we can link β’s, and eventually confront the result with the initial right hand side of
the (IC), which then become
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1` β

1(u1) a−1 c1 β

µ−1

(1u)1

a−1
r1

a

c

c

λ1

K`,r1

c1β1

(u1)1

β1

`1

R−1

a

1β

β

a

c1 c

β

β1 c1

β

β

c

a−11(u1)

r1

(1u)1

λ1

µ

1r

a

δ

δ−1

µ−1

a−1

β
a−1

β−1r

1r

1`

(u1)1

r1

`1

=

β1

This equality happens eventually to be true whether the highlighted part is equal to K1.
This can be seen by linking β’s, turning it into
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R−1

a

1β

β

a

β

r1

µ

1r

a

δ

δ−1

a−1

β

β

r

1r

`1β1

β−1

r1

which is precisely 1K (Proposition 1.4.4) with a loop of β around, namely K1. This proves
the identity coherence. Now, let us focus on the associativity coherence. Let us start with
the left hand side of the axiom below. We can recognize the three components α1, α and
1α, together with π.
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S1

R−11

α−11

a1

(β1)1

a1

a−11

S

R−1

α−1

a

β1

a
a−1

1S

1R−1

1α−1

1a

1(β1)

1a−1

π

1c ca(11)c

c

1(1β)

1c

1(1β)

1a

a

a1

a−1c(11) c1 c

β

c

β1(1β)1

1(β1) 1β

1c

c1

1(1c)

1(c1)

(1c)1

(c1)1

β

β

1c

c1

a

a

1(1c)

1β

1β

1(c1)

1a

1β

c1

(1c)1(1β)1

(c1)1
a−1

β1

β1

The associativity coherence axiom states that this is equal to the right hand side in the
diagram below
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S

R−1

α−1

S

R−1

α−1

a−1c(11) c1 c

β1 c1

β

1β

a

β1

β
β

c

c

c
c1

1c

1c

(11)c a 1c

1β

β
a

1c

c11c

c1

β

1β

1c

a

a−1

a−1

β1

β

c

β

a

Where, we can recognize the two α. Let us slide then, in the left hand side, 1α−1 and α−11
over the β’s they have at their right. This will turn them respectively in α−11 and 1α−1.



CHAPTER 1. ENRICHED BICATEGORIES 57

S1

R−11

1α−1

a1

(β1)1

a1
a−11

S

R−1

α−1

a

β1

a
a−1

1S

1R−1

α−11

1a

1(β1)

1a−1

π

1c ca(11)c

c

1(1β)

1c

1(1β)

1a

a

a1

a−1c(11) c1 c

β

c

β1(1β)1

1(β1)

1β

1c

c1

1(1c)

1(c1)

(c1)1

β

β

c1

a

a

1(1c)

1β

1β

1(c1)

1a

1β

1c
(1c)1

(1β)1

(c1)1
a−1

β1

β1

1(1c)

c1

1a

1(c1)

c1

(1c)1

(c1)1

a1

(1c)1

β

Now, by modification property of the composite R−1S, we can let the 1(c1) wire out of
1α−1 (and entering in α−11 as (1c)1) pass of the right. We find then
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S1

R−11

1α−1

a1

(β1)1

a1
a−11

S

R−1

α−1

a

β1

a
a−1

1S

1R−1

α−11

1a

1(β1)

1a−1

π

1c ca(11)c

c

1(1β)

1c

1(1β)

1a

a

a1

a−1c(11) c1 c

β

c

β1(1β)1

1(β1)
1β

c1

β

β

c1

a

a

1(1c)

1β

1β

1(c1)

1a

1β

1c
(1c)1

(1β)1

(c1)1
a−1

β1

β1

1(1c)

c1

1a

1(c1)

c1

(c1)1

a1

(1c)1

β

1β

At this point, we want to use axiom (AC) for the V-bicategory C, in its form
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a−1 a1 a 1a 1(1c) 1c c

1α−1

α−1

α−11

a−1 (c1)1 c1 c

=

a−1 a1 a 1a 1(1c) 1c c

a−1 (c1)1 c1 c

π

α−1

α−1

(1c)1

1(c1) 1c

c(11)

a

c

(11)c

1c

c1

a

In order to do so, we need to make the a−1 on the left to appear. Therefore, we introduce
the two isomorphisms id ∼= a−1a and a−1a ∼= id as follows.
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S1

R−11

1α−1

a1

(β1)1

a1
a−11

S

R−1

α−1

a

β1

a−1

1S

1R−1 α−11

1a

1(β1)

1a−1

π

1c ca(11)c

c

1(1β)

1c

1(1β)

1a

a

a1

a−1c(11) c1 c

β

cβ1(1β)1

1(β1) 1β

c1

β

β

c1

a

a 1(1c)

1β

1β

1(c1)

1a

1β

1c
(1c)1

(1β)1

(c1)1
a−1

β1

β1

1(1c)

c1

1a

1(c1)

c1

(c1)1

a1

(1c)1

β

1β

a

a−1

a

a−11 a−1

Then we apply the associativity coherence axiom for C and find
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S1

R−11

a1

(β1)1

a1
a−11

S

R−1

a

β1

a−1

1S

1R−1

1a

1(β1)

1a−1

π

1c ca(11)c

1(1β)

1c

1(1β)

1a

a

a1

a−1c(11) c1 c

β

β1(1β)1

1(β1) 1β

β

β

a

a

1(1c)

1β

1β

1(c1)

1a

1β

(1c)1
(1β)1

(c1)1
a−1

β1

β1

c1

β
1β

a−1

a−11

π

α−1

α−1

a

a a

(11)c

1a

a−1

1c
c

c
1c

c1

c(11)

(c1)1

1(1c)

a

c1
c

a

At this point, let us rearrange the components of the 2-cell, by simplifying the resulting
counit-unit of a. Moreover, by the naturality axiom for β, let us slide the highlighted β over
the composite of R−11 and S1, which become then 1R−1 after 1S.
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1S

1R−1

S

R−1

a

β1

a−1

1S

1R−1

1a

1(β1)

1a−1

π

1c ca(11)c

1(1β)

1c

1(1β)

1a

a

a1

a−1c(11) c1 c

1(β1) 1β

β

a

a

1(1c)

1β

1β

1(c1)

1a

1β

(c1)1

a−1

π

α−1

α−1
a

a

(11)c

1c
c

c

1c

c1

c(11)

(c1)1

a

c1
c

a

1a−1

1(β1)

1a

1(1β)1(1β)

(1β)1

β

β

β

1a−1

1β
β

1(c1)

1(1c)

a1

a

β

β

1(1c)

Then, by the modification property, we can slide the various combination of tensor pseudo-
functors applied to the highlighted 1-cell under S, and find



CHAPTER 1. ENRICHED BICATEGORIES 63

1S

1R−1

S

R−1

a

β1

a−1

1S

1R−1

1a

1(β1)

1a−1

π

1c ca(11)c

1(1β)

1c

1(1β)

1a

a

a1

a−1c(11) c1 c

1β

β

a

a

1(1c)

1β

1β

1(c1)

1a

(c1)1

a−1

π

α−1

α−1
a

a

(11)c

1c
c

c

1c

c1

c(11)

(c1)1

a

c1
c

a

1a−1

1(β1)

1a

1(1β)
1(1β)

β

β

1a−1

1β
β

1(c1)

1(1c)

a1

a

β

β

1(1c)(11)β

(11)β

At this point, we aim to use the braiding axiom BA2. In order to do so, we need first to
insert an identity in its form π∗ ◦ π∗−1, for π∗ the mate

π∗

a−1 a−1

1a−1 a−11a−1

= π

a−1a−1

1a−1a−1a−11

π

a−1a−1

1a−1a−1a−11

=

Observe that the second equality is a general fact for every invertible 2-cell between adjoint
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equivalences (Lemma 1.2.5). We get then the 2-cell

1S

1R−1S

R−1

a

β1

a−1

1S

1R−1

1a

1(β1)

1a−1

π

1c ca(11)c

1(1β)

1c

1(1β)

1a

a

a1

a−1c(11) c1 c

1β

β

a

a

1(1c)

1β

1β

1(c1)

1a

(c1)1

a−1

π

α−1

α−1
a

a

(11)c

1c
c

c

1c

c1

c(11)

(c1)1

a

c1
c

a

1a−1

1(β1)

1a

1(1β)
1(1β)

β

β

1a−1

1β
β

1(c1)

1(1c)

a1

a

β

β

1(1c)(11)β

(11)β

π∗

π∗−1

a

a

a−1

a−11

1a−1

1β

1a

Observe that we can now link the pair of highlighted 1-cells, in order to get
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1S

1R−1S

R−1

a

β1

1S

1R−1

1(β1)

1a−1

π

1c ca(11)c

1(1β)

1c

1(1β)

1a

a

a1

a−1c(11) c1 c

1β

β

a

a

1(1c)

1β

1β

1(c1)

1a

(c1)1

a−1

π

α−1

α−1
a

a

(11)c

1c
c

c

1c

c1

c(11)

(c1)1

a

c1
c

a

1a−1

1(β1)

1a

1(1β)
1(1β)

β

β

1a−1

1β
β

1(c1)

1(1c)

a1

a

β

β

1(1c)(11)β

(11)β

π∗

π∗−1 a

a−1

a−11

1β

1a

1a

a−1

1a−1

Then, we are going to rearrange the the terms, introducing also an overlap of the two
highlighted morphisms. This will allow us to recognize the left hand side of BA2 in the
following form:
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S

π∗

1S

1(1β) 1a−1 1(β1)

a−1 β a−1

β1

(β1)1a−11a−1

1a−1

1β a−1

a−1

=
(BA2)

a−1 β a−1 a−1

1(1β) 1a−1 1(β1) (β1)1a−11a−1

π∗

π∗−1

S

π∗

S1

1a−1 1a−1

a−1

a−11

β1

a−11

1a−1

β

a−11

a−1

1β

The rearranged 2-cell has then the following form
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1S

1R−1
S

R−1

a

β1

1S

1R−1

1(β1)

1a−1

π

a

1c ca(11)c

1(1β)

1c

1(1β)

a−1c(11) c1 c

1β

β

1(1c)

1β

1β

1(c1)

1a

(c1)1

a−1

π

α−1

α−1
a

a

(11)c

1c
c

c

1c

c1

c(11)

(c1)1

a

c1
c

a

1a−1

1(β1)

1a

1(1β)

1(1β)

β

β

1a−1

1β

β

1(c1)

1(1c)

a1

a

β

β

1(1c)(11)β

(11)β

π∗

π∗−1

a−1

a−11

1β

1a

a−1

1a−1

a

a−1

and via the above braiding axiom it becomes equal to the following. Let us, at the same
time, rewrite the non-involved π∗ in terms of π.
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1S

1R−1

R−1

a

1R−1

1(β1)

1a−1

π

1c ca(11)c

1(1β)

1c

1(1β)

a−1c(11) c1 c

β

1(1c)

1β

1β

1(c1)

1a

(c1)1

a1

π

α−1

α−1
a

a

(11)c

1c
c

c

1c

c1

c(11)

(c1)1

a

c1
c

a

1a−1

1(β1)

1a

1(1β)

1(1β)

β

β
1a−1

1β

β 1(c1)

1(1c)

a1

a

β

β

1(1c)

(11)β

(11)β

1β

1a

aπ∗

π∗−1

S

π∗

S1

π−1

a−1

a−11

β1

1a−1

1β

a−1 a−1

1a

a

a

a

a−11

β

1a−1

a−11

a−1

a
1a

a−11

a

a

(β1)1

The next step is to simplify the upper left π and π∗
−1

. Let us focus on the part enclosed by
the dashed line of the diagram involving them, together with the π∗ and 1S at their right.
We can isolate this part of the diagram below and work on it separately, finding
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π

π∗−1

π

1S

= π

a

π∗−1

π

1S

π a

1S

a a−1a−1 β

=

a−1 a−11 a (11)β

1(1β)

a

a 1a−11(β1) 1a

a a−1a−1 β a−1 a−11 a (11)β a 1a−11(β1) 1a

a a−1a−1 β a−1 a−11 a (11)β a 1a−11(β1) 1a

β

β

β 1β

1β

1β

a−1

a−1

a−1

a1

a1

1a−1

1a

a

1a

1(1β)

1(1β)

1a−1

1a

a

If we replace then the last result in the dashed area, we find then
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1S

1R−1

R−1

a

1R−1

1(β1)

1c ca(11)c

1(1β)

1c

1(1β)

a−1c(11) c1 c

β

1(1c)

1β

1β

1(c1)

1a

(c1)1

π

α−1

α−1
a

a

(11)c

1c
c

c

1c

c1

c(11)

(c1)1

a

c1
c

a

1a−1

1(β1)

1a

1(1β)

1(1β)

β

β

1β

β 1(c1)

1(1c)

a1

a

β

β

1(1c)

(11)β

(11)β

1β

1a

S

π∗

S1

π−1

a−1

a−11

β1

1a−1

1βa−1

a−1

a

a−11

a 1a

a−11

a

a

(β1)1

π

a

a−1

1a

a−1

The next step is the use of axiom BA1 in its following form, where we can recognize the
highlighted nodes in its left hand side:
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a1 a 1a a−1 β1 a 1a−11(β1) 1a 1(1β)

a1 a β a a

π

R−1

1R−1

a1 a 1a a−1 β1 a 1a−11(β1) 1a 1(1β)

a1 a β a a

=

π

π−1

R−11

π

R−1

(BA1)

a

a

(β1)1
a1 a

a
(1β)1

a1

a a

1β

β1

β a

a1

1a

1β

In order to do so, we introduce two identities in the form of nested loops, since we need a1
and a to appear. Also, we rearrange some strings, which is always possible by the triangular
identities.
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1S

1R−1

R−1

a

1R−1

1(β1)

1c ca(11)c

1(1β)

1c

1(1β)

a−1c(11) c1 c

β

1(1c)

1β

1β

1(c1)

1a

(c1)1

π

α−1

α−1a

a

(11)c

1c
c

c

1c

c1

c(11)

(c1)1

a

c1
c

a

1a−1

1(β1)

1a

1(1β)

1(1β)

β

β

1β

β

1(c1)

1(1c)

a1

a

β

β

1(1c)1β

1a

S

π∗

S1

π−1

a−1

a−11

β1

1a−1

1βa−1

a−1

a

a−11

a 1a

a−11

a

a

(β1)1

π

a

a−1

1a

a−1

1a

a1

a

a

1β

a

β1

The diagram then becomes
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1S

1R−1

1(β1)

1c ca(11)c

1(1β)

1c

1(1β)

a−1c(11) c1 c

β

1(1c)

1β

1β

1(c1)

1a

(c1)1

α−1

α−1a (11)c

1c
c

c

1c

c1

c(11)

(c1)1

a

c1
c

a

1a1(1β)

β

1β

β

1(c1)

1(1c)

β

β

1(1c)

S

π∗

S1

π−1

a−1

a−11

β1

1a−1

1βa−1

a−1

a

a−11

a 1a

a−11

a

a

(β1)1

π

a

a−1

1a

a−1

a1

a

a

1β

R−11

π

R−1

π−1

π

a

a

(β1)1
a1

β1 a

1(1β)

a

1β

β

a
a1

a

Please observe that there is at this stage, if we exclude, together with the α, α−1, the two
cells S and R−1, a certain symmetry that may recall us of the right hand side of axiom BA3
in its following form
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R−1

π−1 π−1

S

a−11 β1 a 1β1a−1

a

a−1

1a 1β a−1 β1 a1

a−11 β1 a 1β1a−1

a

a−1

1a 1β a−1 β1 a1

π

1SS1

π−1 π−1

π

1R−1 R−11

=
(BA3)

a1

a−1

(β1)11(1β)
a−1

a

1a

(1β)1

1(β1)

1a

β1 1β

a−1 a−1

a

Indeed, the area delimited by the dashed line is precisely this term on the right, which can
then be replaced by the much easier left hand side, giving:
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1c ca(11)c

1(1β)

1c

a−1c(11) c1 c

β

1(1c)

1β

1β

1(c1)

(c1)1

α−1

α−1

a

(11)c

1c

c

c

1c

c1

c(11)

(c1)1

a

c1
c

a

1a

β

1β

β

1(c1)

1(1c)

β

β

1(1c)

S

π∗

a−1

a1

β1

1a−1

1β

a−1

a−1

a

a−1

1a

a−1

a

π

R−1

β1 a

1(1β)

a

1β

β

a

a1

R−1

π−1

S

π−1

a−1

β

a

a−1

Now, once the highlighted 1-morphisms are linked between them in pairs, all of the instances
of π simplify two by two, since are each linked to its inverse, and what remains is
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1c ca(11)c

1(1β)

1c

a−1c(11) c1 c

β

1(1c)

1β

1β

1(c1)

(c1)1

α−1

α−1

a

(11)c

1c

c

c

1c

c1

c(11)

(c1)1

a

c1
c

a

β 1β

β
1(c1)

1(1c)

β
β

1(1c)

S
β1

1β
a−1

a−1

a

a−1

1a

a−1

a

R−1

β1

1(1β)

1β

β

a

R−1

S

a−1

β

a

a−1

Eventually, with minor adjustments, this can be written as
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1c ca(11)c

1c

a−1c(11) c1 c

β

1β

1β

1(c1)

(c1)1

α−1

α−1

a

(11)c

1c

c

c

1c

c1

c(11)

(c1)1

a

c1

c

a

1β

1(c1)
1(1c)

β

β

1(1c)

S

1β

1a

a

R−1

β1

1(1β)

1β

β

a

R−1

S a

β

a

β1

1(1c)

a

and if we slide the upper and lower highlighted 1-morphisms respectively under and over the
composites R−1S, what we find is indeed the original right hand side of axiom (AC).

1.7 Tensor product of V-bicategories
The second example of constructions allowed by the braiding is the tensor product of V-
bicategories.

Definition 1.7.1. Le V be a braided monoidal bicategory and B, C be two V-bicategories.
Their product B ⊗ C is defined as having objects the class product Ob(B) × Ob(C), and as
hom-objects B ⊗ C((b, c), (b′, c′)) the monoidal product B(b, b′) ⊗ C(c, c′). The rest of the
structure is defined in the proof of the Theorem 1.7.3 below.

Remark 1.7.2. In the following we will occasionally assume the strictification result for
monoidal bicategories recalled in Section 1.5. In general, not every braided monoidal bicat-
egory is biequivalent to a strict one, but it is to a semi-strict braided monoidal 2-category.
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This allows us to suppose the monoidal structure a, `, r to be identity 1-cells, and simplifies
our computation a lot.

Theorem 1.7.3. Let V be a braided monoidal bicategory, and let B, C be V-bicategories.
Then, the tensor product of V-bicategories B ⊗ C has a structure of a V-bicategory.

Proof. The structure is defined as follows: the unit is

u : 1
r−1

1−→ 1⊗ 1
u⊗u−→ B(b, b)⊗ C(c, c).

The choice of r1 instead of `1 is simply conventional, the two are in fact isomorphic (Lemma
2.1 [GS15]). The composition is

m : B(b′, b′′)C(c′, c′′)B(b, b′)C(c, c′) B(b′, b′′)B(b, b′)C(c′, c′′)C(c, c′) B(b, b′′)C(c, c′′)1β1 mm

As said, this way of writing hides the presence of associators. More precisely, the morphism
m is, without semi-strictification, defined to be the composite

a−1 a1 (1β)1 a−11 a (1.4)

Let us come to the associator and the unitors. We will use an underlined 1 for the identity
of a tensor product of two objects. This will be a coherent choice, since so far we used
underlining for the new structure (u,m), and here, the identity of a hom-object of the
tensor product of two V-bicategories will in fact be a pair of tensored identities.

The left unitor is going to be a 2-cell of the form

1B(b, b′)C(c, c′)

11B(b, b′)C(c, c′) 1B(b, b′)1C(c, c′)

B(b′, b′)C(c′, c′)B(b, b′)C(c, c′) B(b′, b′)B(b, b′)C(c′, c′)C(c, c′) B(b, b′)C(c, c′)

r−11
`

1β1

uu1

∼=

u1u1
``

⇒β
−1
u

1β1 mm

⇒λλ

written, as a string diagram in the strict version, as

λ =

mmuu1 1β1

λλ

S−11
•β1

β−11
1β1

u1u1
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with the bullet standing for the appropriate monoidal unitor. In strict terms, the right
unitor has the following definition as a string diagram

1uu 1β1 mm

ρρ

1R−1 •

1β1

1β

1β

u1u1

ρ =

The associator α is given by the following 2-cell.
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B
(c
,d

)C
(z
,w

)B
(b
,c

)C
(y
,z

)B
(a
,b

)C
(x
,y

)
B

(c
,d

)C
(z
,w

)B
(b
,c

)B
(a
,b

)C
(y
,z

)C
(x
,y

)
B

(c
,d

)C
(z
,w

)B
(a
,c

)C
(x
,z

)

B
(c
,d

)B
(b
,c

)C
(z
,w

)C
(y
,z

)B
(a
,b

)C
(x
,y

)
B

(c
,d

)B
(b
,c

)B
(a
,b

)C
(z
,w

)C
(y
,z

)C
(x
,y

)
B

(c
,d

)B
(a
,c

)C
(z
,w

)C
(x
,z

)

B
(b
,d

)C
(y
,w

)B
(a
,b

)C
(x
,y

)
B

(b
,d

)B
(a
,b

)C
(y
,w

)C
(x
,y

)
B

(a
,d

)C
(x
,w

)

1
1
β

1

1
β

1
1

1
m
m

1
β

1
1
β

1
∼ = 1
β

1

m
m

1

⇒
β
m 1
m

1
m

m
1
m

1
m
m

⇒

β
−

1
m

1
β

1

⇒

α
α m
m

The isomorphism on the top left corner (the one without a name) is given by the following.
Let us use general letters replacing the hom-objects:
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XAY BZC XAY ZBC

XY AZBC

XY ABZC XY ZABC

11β1

∼=

1β11

1β11

1β1

11β1

1R−11
⇒⇐

1S1

That means, in terms of string diagrams, we can pack it in the following:
mm1β1mm11β11

αα

1S1

1R−11

11β1 1β1 mm1mm

1β1

1β11

11β1

1m1m

1β1

m1m1

1β1

α =

This finishes to set up the definition of the structure of V-bicategory for B ⊗ C. Let us now
prove the axioms, starting with (AC). The left hand side is
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mm1β1

αα

1S1

1R−11

11β1

1β1 mm

1mm

1β1

1β11

11β1

1m1m

1β1

m1m1

1β1

αα1

1S11

1R−111

1β11

1β111

11β11

1m1m1

1β11

m1m11

1β11

1αα

11S1

11R−11

11β1

11β11

111β1

11m1m

11β1

1m1m1

11β1

mm11 1β11 mm11β111

1mm1

11β11

mm1

1mm11β111mm111β1

1β11

Let us consider the highlighted string 1mm1 and slide it past the 2-cell on the right by
using the modification property. The aim is to assemble all the instances of α, allowing a
simultaneous use of axioms (AC) for B and C. The above 2-cell becomes
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mm1β1

αα

1S1

1R−11

11β1

1β1 mm

1mm

1β1

1β11

11β1

1m1m

1β1

m1m1

1β1

αα1

1S11

1R−111

1β11

1β111

11β11

1m1m1

1β11

m1m11

1β11

1αα

11S1

11R−11

11β1

11β11

111β1

11m1m

11β1

1m1m1

11β1

mm11 1β11 mm11β111

1m1m1

11β11

mm1

1mm11β111mm111β1

1β11

•

•

1β1

1β1

With the bullet here indicating the evident unitors. Then, we can slide 1β1 over αα1, and
1β1 under 1αα by naturality of β, and find
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mm1β1

αα

1S1

1R−11

11β1

1β1 mm

1mm

1β1

1β11

11β1

1m1m

1β1

m1m1

1β1

α1α1

1S11

1R−111

1β11

1β111

11β11

1β11

m1m1

1β11

1α1α

11S1

11R−11

11β1

11β11

111β1

1m1m

11β1

11β1

mm11 1β11 mm11β111

11β11

mm1

1mm11β111mm111β1

1β11

•

•

1m1m1

m1m1

1m1m

1β1

1β1

m1m1m1

11m1m

Now, we see that we can apply on the right the axioms of associativity coherence. Also,
let us focus on the left highlighted area, which, by sliding the unitors, and applying axioms
(BA2) and (BA1), become
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1S1

1R−11

11β1

1β1

1β11

11β1

1β1

1β1

1R−111

1β111

11S1

111β1

1β11

• •

• •

1β11
1β11

1β11 1β1

1β1

1β111

111β1

1β11

11β1 11β1

11β1
11β1

1S1

1R−11

1R−111

11S1

11β1

1β11

1β1

• •

• •

1β11

1β11

11β1

11β1

= =

1β1

1β1

1β111

111β1

1β11

11β1

•

•

11β1

1β1

• •

• •

1β11

1β11

11β1

11β1

1S1

1S1

1R−11

1R−11

•

•

11β1

11β1

1β11

1β1

1β1

Then let us replace this, together with the other term of associativity coherence. This gives
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mm1β1

αα

1β1 mm

αα

1S11

1β11

1β111

11β11

1β11

m1m1

11R−11

1β1

11β11

111β1

1m1m

11β1

mm11 1β11 mm11β111

11β11

1mm11β111mm111β1

m1m1

1m1m

1β1

1β1

m1m11

11m1m

•

1S1

•

•

11β1

1β1

1S1

1R−11

1R−11

•

•

1β11

11β1

1β11

1β1

1β1

• •

•

11β1

11β1

1β11

1β1

m1m1
1β11

1β11

11β1

11β1

mm

Then, let us focus on the highlighted part. We can introduce unitors on the external left
string, in order to push it on top of 1S11 and at the bottom of 11R−11, we get
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1S1

1S1

1R−11

1S1

1R−11

1R−11

•

•

•

•

•

•

•

•

11β11

•

•

1β11

1β1

11β1

1β1

1β1

11β1

1β11

111β1

1β11

1β11

1β11

1β111

1β11

1β11

11β1

11β1

1β11

1β1

11β1

11β1

11β1

Then, we can first observe that there’s an equality

•

• •

•

11β1 11β1

1β11 1β11

11β11 1β1=

so that we can replace 11β11 by 1β1. Let us then insert two unitors on each of the two
highlighted strings, and push them on top of the two 1S1 and at the bottom of the two
1R−11. What we get is then

1S1

1S1

1R−11

1S1

1R−11

1R−11

•

•

•

•

1β1

•

•

1β11

1β1

11β1

1β1

1β1111β1

1β11

1β11

1β11

1β111

1β11

1β11

11β1

11β1

1β1

11β1

11β1

•

•

•

•

1β1 1β1
11β1

1β1

1β1

1β11β1

1β1
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Now, by axiom (BA3), this turns out to be

1S1

1R−11

•

•

•

•

•

•

1β11

1β1

11β1

1β1

1β1111β1

1β11

1β11

1β11

1β111

11β1

11β1

•

•

•

•

1β1
1β1

11β1

1β1

1β1

1β11β1

1β1

1S1

1R−11

Then, if we replace this, we get
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mm1β1

αα

1β1 mm

αα

m1m1

1β1

1m1m

mm11 1β11 mm11β111

1mm11β111mm111β1

m1m1

1m1m

1β1

1β1

m1m11

11m1m

1β1

m1m1

•

1S1

1R−11

1S1

1R−11

•

•

•

•

•

•

•

•

•

1β1
11β1

11β1

11β1

1β11

1β111

1β11

1β1

1β1

1β11β1

1β1

1β1

11β1

1β1

1β11

mm1β1

Then, we can again insert and push the unitors in order to find across the two 2-cells 1R−11
and 1S1, in order to get
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mm1β1

αα

1β1 mm

αα

m1m1

1β1

1m1m

mm11 1β11 mm11β111

1mm11β111mm111β1

1m1m

1β1

1β1

m1m11

11m1m

1β1

m1m1

1S1

1R−11

1S1

1R−11

•

•

•

•

•

•

11β1

1β11

1β11

11β1

11β1

1β11

mm1β1

1β11

•

•

1β1

1β1

1β1

1β1

11β1

11β1

1β11

1β11

11β1

m1m1

1m1m

Eventually, sliding the two highlighted morphisms leads to the right hand side of axiom
(AC) for B ⊗ C, as desired. Let us now come to the identity coherence axiom, which under
the assumption of working with semi-strict braided monoidal 2-categories, we recall, has the
following form

α

1λ

ρ1

1u1 m1 m 1u1 m1 m

m m

=

Then, our left hand side, by definition of λ and α is
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mm1β1mm11β11

αα

1S1

1R−11

11β1

1β1 mm

1mm

1β1

1β11

11β1

1m1m

1β1

m1m1

1β1

1λλ

1S−11

•1β1

1β−11

11β1

1u1u1

1uu1

We can then slide 1λλ to the right of 1β1, by naturality, and it turns into 1λ1λ, and then
move 1u1u1 on the left of the 2-cell formed by 1R−11 and 1S1. We find
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mm1β1mm11β11

αα

1S1

1R−11

11β1

1β1 mm

•

1m1m

1β1
1β11

11β1

1β1

m1m1

1β1

1λ1λ

1S−11
•

1β1

1β−11

1u1u1

1uu1

1u1u1

We recognize at this point the possibility to use (IC) for both B and C and get
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mm1β1mm11β11

1S1

1R−11

11β1

1β1 mm

•

1β1
1β11

11β1

1β1

1β1

1S−11
•

1β1

1β−11

11β1

1uu1

1u1u1

ρ1ρ1

1β1

1u1u1

m1m1

1β11

At this point we can link the two instances of 1β1 as follows,



CHAPTER 1. ENRICHED BICATEGORIES 94

mm1β1mm11β11

1S1

1R−11

11β1

1β1 mm

1β1
1β11

11β1

1β1

1β1

1S−11
•

1β1

1β−11

11β1

1uu1

1u1u1

ρ1ρ1

1u1u1 m1m11β11

•

1β−11

It suffices then to let 1ρ1ρ to slide over 1β1. This turns the 2-cell to
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mm1β1mm11β11

1S1

1R−11

11β1

1β1 mm

1β1
1β11

11β1

1β1

1β1

1S−11
•

1β1

1β−11

11β1

1uu1

ρρ1

1u1u1

1β11

•

•

1β−11

Eventually, we can argue that
1β11

1S1

1R−11

11β1

1β1
1β11

11β1

1β1

1β1

1S−11
•

1β1

1β−11

•

•

1β−11

=

1β11

1R−11 •

1β1

1β1

and this will conclude the proof, since the result is then ρ1 whiskered with m, i.e. the right
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hand side of (IC). The last claim follows in fact by the following equality, where the dashed
part has been loosen and the corresponding wires have been linked.

1β11

1S1

1R−11

11β1

1β1
1β11

11β1

1β1

1β1

•

•

1β−11

=

1R−11
•

1β1

1β1

1S1
•

1β1

1β1

1β11

11β1

1β−11

The former two 2-cells are then easily seen to be equal by applying the modification property
and then simplifying as follows:

1β11

1S1

1R−11

11β1

1β1
1β11

11β1

1β1

1β1

•

•

1β−11

=

1β11

1S1

1R−11

11β1

1β1

1β1

•

•

1β−11

1β−11

1β1

which eventually is



CHAPTER 1. ENRICHED BICATEGORIES 97

1R−11

1β1

1β1

1S1

1β1

1β1

1β11

11β1

•

•
1β1

1β11

1S1

1R−11

11β1

1β1

1β1

•

•

1β−11

1β1

1β1

=1β1

Remark 1.7.4. It is an interesting phenomenon the fact that for both the case of the
opposite V-bicategory and the case of the tensor product of V-bicategories, we have the
following. On one hand, the proof of the identity coherence does not require the use of the
braiding axioms, but it is crucial for the braiding to be an equivalence. On the other hand,
the associativity coherence make a heavy use of braiding axioms, but the argument would
be perfectly fine even if β were not invertible. This could reflect a more general pattern that
is probably worth studying in more detail.

1.8 Monoidal enriched bicategories
The following definition generalize in a straightforward manner the definition of monoidal
bicategory (see Definition 1.1.8) in that it defines a monoidal V-bicategory as a “generalized”
monoid structure on a V-bicategory. For that, it is fundamental the notion of tensor product
of V-bicategories explored in Section 1.7.

Definition 1.8.1. A monoidal structure on a V-bicategory B is the data of

• � : B ⊗ B → B and u : J → B tensor and unit V-pseudofunctors

• a, `, r adjoint equivalences in the bicategories V-PsFun(B⊗3,B) and V-PsFun(B,B)

B⊗3 B⊗2

B⊗2 B

�⊗id

id⊗�

�⇐a

�

B⊗2 B⊗2

B B B B

�

⇐`
�

⇐r
u⊗id

id id

id⊗u
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• Invertible V-modifications π,µ

π

a1 a 1a

a a

µ

a 1`

r1

satisfying the non-abelian 4-cocycle condition 1.1.9.

Remark 1.8.2. The picture sketched in the following diagram (where the dashed arrows
stand for “categorifies to”, horizontally and vertically)

monoidal V-bicategory

monoidal V-category
(= pseudomonoid in V-category)

V-Bicat

monoid in V V-category

V

allows us to observe how the definition of monoidal structure on a (V-)bicategory should
directly generalize to the appropriate notion of pseudomonoid in whatever should be the
correct definition of a monoidal tricategory. That is, the structure provided by tensor, unit,
a, `, r and π, µ, seen as cells of what a monoidal tricategory would be - together with the
non-abelian 4-cocycle condition - define the second (or third, depending on where we start
the counting) order categorification of the notion of monoid object.



Chapter 2

Enriched bi(co)ends

Ends and coends are universal objects associated to a functor of type F : Cop×C → D. The
most essential explanation for the importance of these objects is related to the ubiquity of
functors of this sort.

The deeper motivation for the study of these objects, is that functors of this sort gen-
eralize modules (profunctors), and hence their study is at least as fruitful in understanding
categories as the study of module theory is in understanding rings. From this viewpoint,
ends and coends generalize homs and tensor products of modules, two essential notions of
all linear algebra.

A first bicategorical treatment of the theory of ends and coends can be found in [Cor16].
The theory developed below reduces to its case if the base monoidal bicategory is Cat with
its cartesian monoidal structure.

In this chapter, in particular, we will use all the time the opposite construction and the
tensor product of enriched bicategories.

2.1 Extra-pseudonaturality
In this section we introduce the enriched version of the notion of extra-pseudonatural trans-
formation between V-pseudofunctors P,Q of sort

P : E ⊗ Bop ⊗ B −→ D
Q : E ⊗ Cop ⊗ C −→ D.

The non-enriched case was introduced in [Cor16]. Axioms that we are going to deal with are
a lot, but still they are reduced in size by passing to the enriched context, just as it happens
for usual pseudonatural transformations. Moreover, by keeping in mind that for every axiom
(concerning B) we have a symmetric one (concerning C), everything reduces to keeping
track of unitality, functoriality (as for pseudonatural transformations) and compatibility
with parameters. What we get for free in the enriched context is naturality. We specify at
the outset that because of the considerable space that writing the axioms for such structures
requires, we will often use intuitive (and frequent in literature) abbreviations, such as Pebb′
to mean P (e, b, b′) (and the same for Q), or omitting to explicitly write the parameter e if
it happens to not being crucially involved in a specific diagram.

99
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Definition 2.1.1. Let P : E ⊗Bop ⊗B → D and Q : E ⊗ Cop ⊗C → D be V-pseudofunctors.
An (enriched) extra-pseudonatural transformation from P to Q, denoted i : P ..⇒ Q, consists
of, for every pair of objects b in B, c in C,

• An enriched pseudonatural transformation

i−,b,c : P (−, b, b)→ Q(−, c, c)

• Two 2-isomorphisms in V

B(b, b′) D(P (e, b′, b), P (e, b, b))

D(P (e, b′, b), P (e, b′, b′)) D(P (e, b′, b), Q(e, c, c))

P (e,−,b)

P (e,b′,−) (ie,b,c)∗⇐ie,bb′,c

(ie,b′,c)∗

(2.1)

and
C(c, c′) D(Q(e, c′, c′), Q(e, c, c′))

D(Q(e, c, c), Q(e, c, c′)) D(P (e, b, b), Q(e, c, c′))

Q(e,−,c′)

Q(e,c,−) (ie,b,c′ )
∗⇐ie,b,cc′

(ie,b,c)
∗

(2.2)

satisfying:
unitality, saying that for every triple of objects e, b, c it holds

1

D(P (e, b, b), P (e, b, b)) D(P (e, b, b), P (e, b, b))

D(P (e, b, b), Q(e, c, c))

1

B(b, b)

D(P (e, b, b), P (e, b, b)) D(P (e, b, b), P (e, b, b))

D(P (e, b, b), Q(e, c, c))

u u

i∗

=

i∗

u uu

(EU1)
=

⇐

un−1

P (e,b,−) P (e,−,b)

ie,bb,c
⇐

⇐un

i∗ i∗
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which can shortly be written, together with the analogue for C, as

idie,b,c∗uP (e,b,b)
= un−1ie,bb,cun, (EU1)

idie,b,c∗uQ(e,c,c)
= un−1ie,b,ccun. (EU2)

functoriality, expressing how ibb′′,c relates to ibb′,c and ib′b′′,c for every triple of objects
b, b′, b′′ in B (and similarly for objects in C) by saying that

B(b′, b′′)B(b, b′) Bop(b′, b)Bop(b′′, b′)

D(Pb′′b′ , Pb′′b′′)D(Pb′′b, Pb′′b′) D(Pb′b, Pbb)D(Pb′′b, Pb′b)

B(b, b′′) = Bop(b′′, b)

D(Pb′′b, Pb′′b′′) D(Peb′′b, Pebb)

D(P (e, b′′, b), Q(e, c, c))

β

m

Pb′′−Pb′′−

= m

P−bP−b

m m

fun⇐

Pb′′− P−b

fun−1

⇐

ib′′c∗ ibc∗

ibb′′,c⇐

is equal to the following 2-cell
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B
(b
′ ,
b′
′ )
B

(b
,b
′ )

B
(b
,b
′ )
B

(b
′ ,
b′
′ )

D
(P
b
′′
b
′ ,
P
b
′′
b
′′
)D

(P
b
′′
b
,P

b
′′
b
′ )

∼ =
D

(P
b
′ b
,P

b
b
)D

(P
b
′′
b
,P

b
′ b

)

D
(P
b
′′
b
′ ,
P
b
′ b
′ )
D

(P
b
′′
b
,P

b
′′
b
′ )

D
(P
b
′ b
,P

b
′ b
′ )
D

(P
b
′′
b
,P

b
′ b

)

D
(P
b
′′
b
,P

b
′ b
′ )

D
(P
b
′′
b
′ ,
Q
c
c
)D

(P
b
′′
b
,P

b
′′
b
′ )

D
(P
b
′ b
,Q

c
c
)D

(P
b
′′
b
,P

b
′ b

)

D
(P
b
′′
b
,P

b
′′
b
′′
)

D
(P
b
′′
b
,Q

c
c
)

D
(P
b
′′
b
,P

b
b
)

β

P
(b
′′
,−

)P
(b
′′
,−

)

P
(−
,b
′ )
P

(b
′′
,−

)

P
(−
,b

)P
(−
,b

)

P
(b
′ ,
−

)P
(−
,b

)

(i
b
′′
,c

) ∗
1

m

⇐
i b
′ b
′′
,c
⊗
P

(b
′′
,−

)
⇐
i b
b
′ ,
c
⊗
P

(−
,b

)

(i
b
,c

) ∗
1

m

m

(i
b
′ ,
c
) ∗

1

m

(i
b
′ ,
c
) ∗

1

⇐
m
i
b
′′
c

⇐
m
−

1
i
b
′ ,
c

(i
b
′ ,
c
) ∗
⇐
m
i
b
′ ,
c

⇐
m
−

1
i
b
,c

m
m

(i
b
′′
,c

) ∗
(i
b
,c

) ∗

which can shortly be written, together with its symmetric analogue, as

fun−1 ◦ ibb′′,cfun = ib′b′′,c ⊗ P (b′′,−) ◦ ibb′,c ⊗ P (−, b), (EF1)
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fun−1 ◦ ib,cc′′ fun = Q(c,−)⊗ ib,cc′ ◦Q(−, c′′)⊗ ib,c′c′′ . (EF2)

And compatibility, between the parameters and the variables, expressed by the equality of
diagrams

E(
e,
e′

)
⊗
B

(b
,b
′ )

D
(P
e
b
′ b
,P

e
′ b
′ b

)D
(P
e
′ b
′ b
,P

e
′ b
′ b
′ )

D
(Q

e
c
c
,Q

e
′ c
c
)D

(P
e
b
′ b
,P

e
b
b
)

D
(P
e
b
′ b
′ ,
P
e
′ b
′ b
′ )
D

(P
e
b
′ b
,P

e
b
′ b
′ )
D

(Q
e
c
c
,Q

e
′ c
c
)D

(P
e
b
′ b
,P

e
b
′ b
′ )

D
(P
e
b
′ b
′ ,
Q
e
′ c
c
)D

(P
e
b
′ b
,P

e
b
′ b
′ )

D
(Q

e
c
c
,Q

e
′ c
c
)D

(P
e
b
′ b
,Q

e
c
c
)

D
(P
e
b
′ b
,P

e
′ b
′ b
′ )

D
(P
e
b
b
,Q

e
′ c
c
)D

(P
e
b
′ b
,P

e
b
b
)

D
(P
e
b
′ b
,Q

e
′ c
c
)

P
−
,b
′ ,
b
P
e
′ ,
b
′ ,
−

Q
−
,c
,c
P
e
,−
,b

P
−
,b
′ ,
b
′P
e
,b
′ ,
−

Q
−
,c
,c
P
e
,b
′ ,
−

m

⇐
i e
e
′ ,
b
′ ,
c
1

1
i e
b
c
∗

i∗ e
b
c
1

i e
′ b
′ c
∗
1

m

i∗ e
b
′ c

1
1
i e
b
′ c
∗

∼ =

m

∼ =

m

i e
′ b
′ c
∗

∼ =

m

⇐
1
i e
,b
b
′ ,
c

⇐
m
i
e
′ b
′ c

=
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E(
e,
e′

)
⊗
B

(b
,b
′ )

D
(P
e
b
′ b
,P

e
′ b
′ b

)D
(P
e
′ b
′ b
,P

e
′ b
′ b
′ )

D
(Q

e
c
c
,Q

e
′ c
c
)D

(P
e
b
′ b
,P

e
b
b
)

D
(P
e
b
′ b
,P

e
′ b
′ b

)D
(P
e
′ b
′ b
,P

e
′ b
b
)
D

(P
e
b
b
,P

e
′ b
b
)D

(P
e
b
′ b
,P

e
b
b
)

D
(P
e
b
′ b
,P

e
′ b
′ b

)D
(P
e
′ b
′ b
,Q

e
′ c
c
)

D
(P
e
,b
′ ,
b
,P

e
′ ,
b
,b

)

D
(P
e
b
′ b
,P

e
′ b
′ b
′ )

D
(P
e
b
b
,Q

e
′ c
c
)D

(P
e
b
′ b
,P

e
b
b
)

D
(P
e
b
′ b
,Q

e
′ c
c
)

P
−
,b
′ ,
b
P
e
′ ,
b
′ ,
−

Q
−
,c
,c
P
e
,−
,b

P
−
,b
′ ,
b
P
e
′ ,
−
,b

P
−
,b
,b
P
e
,−
,b

1
i e
′ b
′ c
∗

m

∼ =

i∗ e
b
c
1

1
i e
′ b
c
∗

m
m

1
i e
b
′ c
∗

⇐
i e
e
′ ,
b
,c

1

m

⇐
m
−

1
i
e
′ b
c i e
′ b
c
∗

i e
′ b
′ c
∗

m

⇐
1
i e
′ ,
b
b
′ ,
c

⇐
m
i
e
′ b
′ c

⇐
m
e
b
′ c

shortly written as

iee′,b′,c ⊗ Pe,b′,− ◦Q−c,c ⊗ ie,bb′,c = P−,b′,b ⊗ ie′,bb′,c ◦ iee′,b,c ⊗ Pe,−,b (EC1)

P−,b,b ⊗ ie′,b,cc′ ◦ iee′,b,c ⊗Qe,c′,− = iee′,b,c′ ⊗Qe,−,c ◦Q−,c,c′ ⊗ ie,b,cc′ . (EC2)

Remark 2.1.2. If V = Cat, by whiskering the two structural 2-cells (2.1) and (2.2), with an
enriched morphisms g : 1→ B(b, b′) and h : 1→ C(c, c′) respectively, we get the non-enriched
version of the structure, that is, the 2-isomorphisms ig,c and ib,h
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P (e, b′, b) P (e, b, b) Q(e, c′, c′)

P (e, b′, b′) Q(e, c, c) Q(e, c, c′)

P (e,g,b)

P (e,g,b′) ig,c ⇐

ie,b,c′

ie,b,c ib,h ⇐ Q(e,h,c′)

ie,b′,c Q(e,c,h)

and the corresponding axioms which can easily be checked to be those given in [Cor16].

There is a notion of morphism of extra-pseudonatural transformations, which will as-
semble them into a category.

Definition 2.1.3. Let j, j′ : P ..⇒ Q be extra-pseudonatural transformation of V-pseudofunctors
P : Bop ⊗ B → D and Q : Cop ⊗ C → D. A morphism Γ: j → j′ is the data of an indexed
family of 2-morphisms in V

Γb,c : jb,c =⇒ j′b,c

such that the following equalities hold true for all pairs (b, b′) and (c, c′) of objects of B and
C respectively:

B(b, b′) D(Pb′b, Pbb)

D(Pb′b, Pb′b′) D(Pb′b,Qcc)

P (−,b)

P (b′,−) ⇐jbb′,c (jb,c)∗

(jb′,c)∗

(j′
b′,c)∗

⇐(Γb′,c)∗

=

B(b, b′) D(Pb′b, Pbb)

D(Pb′b, Pb′b′) D(Pb′b,Qcc)

P (−,b)

P (b′,−) ⇐j
′
bb′,c (jb,c)∗(j′b,c)∗

j′
b′,c

(Γb,c)∗
⇐

(2.3)

C(c, c′) D(Qc′c′, Qcc′)

D(Qcc,Qcc′) D(Pbb,Qcc′)

Q(−,c′)

Q(c,−) ⇐jb,cc′ (jb,c′ )
∗

(jb,c)
∗

(j′b,c)
∗

⇐(Γb,c)
∗

=

C(c, c′) D(Qc′c′, Qcc′)

D(Qcc,Qcc′) D(Pbb,Qcc′)

Q(−,c′)

Q(c,−) ⇐j
′
b,cc′ (jb,c′ )

∗(j′
b,c′ )

∗

(j′b,c)
∗

(Γ
b,c′ )

∗

⇐
(2.4)

This definition clearly gives rise to a category V-PsNate(P,Q).

Remark 2.1.4. A few observations of straightforward verification are useful:

(i) Extra-pseudonatural transformations are preserved by any pseudofunctor. If F : D →
H is a V-pseudofunctor between V-bicategories, and i : P ..⇒ Q is an extra-pseudonatural
transformation betweenD-valued pseudofunctors, then F (i) defines an extra-pseudonatural
transformation FP ..⇒ FQ.

(ii) Extra-pseudonatural transformations are preserved by adjunctions. Let L : D → E
and R : E → D form a pseudoadjunction L a R between V-bicategories, and P,Q be
pseudofunctors
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L : D E :R

Cop ⊗ C
P Q

Then, any extra-pseudonatural transformation P ..⇒ RQ defines an extra-pseudonatural
transformation LP

..⇒ Q, and vice versa. The proof is really straightforward: if
i : P

..⇒ RQ is an extra-pseudonatural transformation, then each component of the
transposed j : LP

..⇒ Q is clearly defined to be jc,d = εQ(d,d) ◦ L(ic,d). The very same
works at the level of 2-cells. The structural

C(c, c′) D(LP (c, c′), LP (c, c))

D(LP (c′, c), LP (c′, c′)) D(LP (c′, c′), Q(d, d))

LP (−,c)

LP (c′,−) ⇐jcc
′,d (jc,d)∗

(jc,d)∗

is defined to be the whiskering of

C(c, c′) D(LP (c, c′), LP (c, c))

D(LP (c′, c), LP (c′, c′)) D(LP (c, c′), LRQ(d, d))

LP (−,c)

LP (c′,−) ⇐L(icc′,d) L(ic,d)∗

L(ic′,d)∗

with (εD(d,d))∗ : D(LP (c, c′), LRQ(d, d))→ D(LP (c′, c′), Q(d, d)). The extra-pseudonaturality
axioms are then preserved by pseudofunctoriality.

(iii) With a bit of attention one can see that an enriched extra-pseudonatural transforma-
tion i : P ..⇒ Q between V-pseudofunctors

P : E ⊗ Bop ⊗ B −→ D
Q : E ⊗ Cop ⊗ C −→ D

consists of the same data of an enriched extra-pseudonatural transformation P op ..⇒
Qop between the V-pseudofunctors

P op : Eop ⊗ (Bop)op ⊗ Bop −→ Dop

Qop : Eop ⊗ (Cop)op ⊗ Cop −→ Dop.

Remark 2.1.5. Observe that if the unit of a monoidal bicategory is not terminal, the
constant pseudofunctor is not a concept that exists in general between enriched bicategories.
However, there’s a unit V-bicategory J (Example 1.3.5), and for every V-bicategory D and
every object D in it, a constant object V-pseudofunctor is defined from this V-bicategory
into D:

∆D : J −→ D.

The object part is clearly defined by mapping the object ∗ to the object D, while the hom
part is given by the unit arrow of D. Thanks to the canonical equivalence J op ⊗ J ' J ,
we can also consider constant V-pseudofunctors of type J op ⊗ J → D.
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In the following we are going to work mainly with extra-pseudonatural transformations
whose domain or codomain is a constant pseudofunctor in the sense of Remark 2.1.5. There-
fore, it is customary and convenient to introduce the following notion.

Definition 2.1.6. A biwedge over a V-pseudofunctor P : E ⊗ Bop ⊗ B → D is an extra-
pseudonatural transformation D ..⇒ P from a constant pseudofunctor over an object D in
D to P . Dually, a bicowedge is an extra-pseudonatural transformation P ..⇒ D.

A result similar to but fairly less trivial than Remark 2.1.4 (ii), is the following propo-
sition, asserting that a closedness pseudoadjunction maps biwedges to bicowedges.

Proposition 2.1.7. Let V be a closed monoidal bicategory, M a V-bicategory, a, y objects
in V and P : Mop ⊗M→ V a V-pseudofunctor. Then, biwedges of the form

y
..⇒ [P (−,−), a]

bijectively correspond to bicowedges of the form

y ⊗ P (−,−)
..⇒ a.

Proof. Suppose a bicowedge with components kn : y → [P (n, n), a] is given. Then it is clear
how to define the correspondent k′n : y ⊗ P (n, n) → a via the internal adjunction. The
remaining part is the structural 2-cell

B(n, n′) [y ⊗ P (n′, n), y ⊗ P (n, n)]

[y ⊗ P (n′, n), y ⊗ P (n′, n′)] [y ⊗ P (n′, n), a]

y⊗P (−,n)

y⊗P (n′,−) ⇐k
′
nn′ (k′n)∗

(k′
n′ )∗

Now, we are going to prove that there is an isomorphism

B(n, n′) [y ⊗ P (n′, n), y ⊗ P (n, n)]

[[P (n′, n′), a], [P (n′, n), a]]

[y, [P (n′, n), a]] [y ⊗ P (n′, n), a]

y⊗P (−,n)

[P (n′,−),a]

k′n∗

k∗
n′

∼=

'

(2.5)

and, similarly, there will be a symmetric one which together will allow us to fill the following
diagram with isomorphisms whose composite will define k′n,n′ .
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B(n, n′) [y ⊗ P (n′, n), y ⊗ P (n, n)]

[[P (n′, n′), a], [P (n′, n), a]]

[[P (n, n), a], [P (n′, n), a]] [y, [P (n′, n), a]]

[(y ⊗ P (n′, n), y ⊗ P (n′, n′)] [y ⊗ P (n′, n), a]

y⊗P (n′,−)

y⊗P (−,n)

[P (−,n),a]

[P (n′,−),a]

⇐knn′

k′n∗

k∗
n′

k∗n

'

k′
n′ ∗

For the sake of space, we define the isomorphism (2.5) on each “object” f , but then it is not
a conceptual challenge to translate it in enriched terms. By remembering how both k′ and
the adjunction isomorphism are explicitly given, we find out that one has to consider the
extra-pseudonaturality structure of the counit together with the structural morphism kf , in
order to find the isomorphism:

y ⊗ P (n, n) [P (n, n), a]P (n, n)

y ⊗ P (n′, n) [P (n, n), a]P (n′, n) a

[P (n′, n′), a]P (n′, n) [P (n′, n), a]P (n′, n)

kn1

∼= εP (n,n)

⇐εP (f,n)

1P (f,n)

kn1

kn′1

1P (f,n)

⇐kf
−11 [P (f,n),a]1

[P (n′,f),a]1

εP (n′,n)

Similarly, the symmetric one can also be constructed. Now, the so defined k′nn′ is easily
seen to satisfy bicowedges axioms, straightforwardly following for the correspondent axioms
for k.

The prototypical example of a V-pseudofunctor of sort Cop⊗C → V is the hom-pseudofunctor.

Definition 2.1.8 (Hom V-pseudofunctor). The V-pseudofunctor C(−,−) : Cop ⊗ C → V is
defined on an object (c, c′) to be C(c, c′), while for every pair of objects (c, c′), (d, d′) the
morphism

Cop ⊗ C((c, c′), (d, d′)) −→ [C(c, c′), C(d, d′)]

is defined as the transposition under the adjunction −⊗ C(c, c′) a [C(c, c′),−] of the map

Cop(c, d)⊗ C(c′, d′)⊗ C(c, c′) id⊗m−→ Cop(c, d)⊗ Cop(d′, c) m−→ C(d, d′). (2.6)

This also defines V-pseudofunctors C(c,−) : C → V and C(−, c′) : Cop → V. The further
structure of V-pseudofunctor is given below. For example, on C(c,−), we have
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un =

1 C(d, d)

[C(c, d),1⊗ C(c, d)] [C(c, d), C(d, d)⊗ C(c, d)]

[C(c, d), C(c, d)]

ud

η η

`∗

(ud⊗id)∗

⇒λ−1
∗

⇒ηud

m∗

The definition of

C(b, d)⊗ C(a, b) C(a, d)

[C(c, b), C(c, d)][C(c, a), C(c, b)] [C(c, a), C(c, d)]

C(c,−)⊗C(c,−)

m

C(c,−)

m

⇒fun

is done using how the multiplication in V is defined (1.3.15) and considering the 2-cell

C(a, d)

[C(c, a), C(a, d)C(c, a)]

C(b, d)C(a, b) [C(c, a)C(c, d)]

[C(c, a), C(b, d)C(a, b)C(c, a)]

[C(c, a), C(b, d)C(c, b)]

[C(c, b), C(c, d)][C(c, a), C(c, b)] [C(c, a), [C(c, b), C(c, d)]C(c, b)]

[C(c, a), [C(c, b)C(c, d)][C(c, a)C(c, b)]C(c, a)]

η

[1,m]

m

η

C(c,−)C(c,−)

⇐ ηm

[1,m1]

[1,1m]

[1,C(c,−)C(c,−)1]

⇐

[1,α]−1

[1,m]

(?)

⇒η
−1
C(c,−)C(c,−)

η

[1,ε]

[1,1ε]

where (?) is the 2-cell consisting of the the functor [C(c, a),−] applied to
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C(b, d)C(c, b) C(b, d)C(c, b)

C(b, d)C(a, b)C(c, a) C(c, d)

[C(c, b), C(b, d)C(c, b)]C(c, b)

[C(c, b), C(c, d)]C(c, b)

[C(c, b), C(b, d)C(c, b)]C(a, b)C(c, a)

[C(c, b)C(c, d)][C(c, a)C(c, b)]C(c, a)

[C(c, b), C(b, d)C(c, b)][C(c, a), C(a, b)C(c, a)]C(c, a)

η1

m
1m

∼=
η⊗m

η11

ηη1

ε

⇐ ε−1
m

[1,m]1

⇐

1s−1
C(a,b)

∼=
ε

∼=1m

[1,m]m

1ε

⇐ ε−1
m

1ε

[1,m][1,m]1

⇒s
−1
C(b,d)

Similar constructions can be done for the pseudofunctors C(−, c′) and C(−,−).

Now that we established how C(−,−) enjoys a structure of V-pseudofunctor for any
V-bicategory C, we can state the following.

Proposition 2.1.9. Le F : B → C be a V-pseudofunctor between V-bicategories. Then, each
component of F induces a V-pseudonatural transformation

tF : B(−,−) =⇒ C(F−, F−)

of V-pseudofunctors Bop ⊗ B → V.

Proof. Each component of tF is defined on the nose by the components of F

tFb,b′ = Fb,b′ : B(b, b′) −→ C(Fb, Fb′).

The structural 2-isomorphism is of the form

Bop ⊗ B((a, a′), (b, b′)) [C(Fa, Fa), C(Fb, Fb′)]

[B(a, a′),B(b, b′)] [B(a, a′), C(Fb, Fb′)]

C(F−,F−)

B(−,−) (tF
a,a′ )

∗⇐t(a,a′),(b,b′)

tF
b,b′ ∗

Since each component of C(−,−) is defined as the transpose ofm◦1⊗m (as in 2.6), and since
the V-pseudofunctor C(F−, F−) is the composition C(−,−) ◦F op⊗F , the diagram that we
look for is shaped, and the 2-cell t(a,a′),(b,b′) defined, as the following using pseudonaturality
and extra-pseudonaturality of the unit η for the adjunction.
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Cop(Fa, Fb)C(Fa′, F b′)

Bop(a, b)B(a′, b′) [C(Fa, Fa′), C(Fb, Fa)C(Fa′, F b′)C(Fa, Fa′)]

[B(a, a′), C(Fa, Fb)C(Fa′, F b′)B(a, a′)]

[B(a, a′),B(b, a)⊗ B(a′, b′)⊗ B(a, a′)] [C(Fa, Fa′), C(Fb, Fb′)]

[B(a, a′), C(Fa, Fb)C(Fa′, F b′)C(Fa, Fa′)]

[B(a, a′),B(b, b′)]

[B(a, a′), C(Fb, Fb′)]

η

η

F op⊗F

η

⇐ηFa,a′

[1,m◦1m]

[F,1]

⇐ηF op⊗F

[1,1F ]

∼=

[1,(F⊗F )1]

[1,m◦1m]

(tF
a,a′ )

∗

∼=

[1,m◦1m]

[1,F ]

The verification of the axioms of V-pseudofunctor are left to the reader.

2.1.1 Examples
A good motivation for introducing the notion of extra-(pseudo)natural transformation, or at
least of (bi)wedge, is Proposition 2.1.10. Also, we can appreciate how extra-naturality arise
very naturally in the context of enriched category theory. Later in this section we provide
some other examples of extra-pseudonaturality, relating it to usual enriched pseudonatural-
ity. All of these examples generalize well known cases treated in [Kel05], and the feeling
is that these two notions of extra and plain (pseudo)naturality are so linked by canonical
constructions bringing one to the other, that one could use the same term in order to mean
any of the two, and the number of variables makes everything clear. Nonetheless, we prefer
to keep different terminologies, since the amount of structure brought by the bicategorical
setting could make the reading already complicated enough for the reader.

Proposition 2.1.10. Let F,G : C → D be V-pseudofunctors. A V-pseudonatural transfor-
mation α : F ⇒ G defines an extra-pseudonatural transformation

α̂ : 1
..⇒ D(F (−), G(−)),

and vice versa.

Proof. On the level of 1-cell, the data are of course the very same (α̂c = αc), that is a
morphism in V

1 −→ D(F (c), G(c))
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for every c in C. In order to make the higher structure correspond, we prove how 2-cells

C(c, c′)⊗ 1 D(Gc,Gc′)

D(Fc, Fc′) D(Fc,Gc′)

G

F α∗c⇐αcc′

αc′ ∗

(2.7)

and
C(c, c′) [D(Fc′, Gc′),D(Fc,Gc′)]

[D(Fc,Gc),D(Fc,Gc′)] [1,D(Fc,Gc′)]

D(F−,Gc′)

D(Fc,G−) α∗
c′⇐α̂cc′

αc
∗

(2.8)

respectively of the structure of pseudonatural transformation and of extra-pseudonatural
transformation, are mapped, up to a 2-isomorphism, one to the other via the pseudoadjunc-
tion − ⊗ 1 a [1,−]. It suffices thus to show how this pseudoadjunction maps each of the
two sides of one square into a 1-cell in V isomorphic to the correspondent side of the other
square.

First observe that the morphism α∗c ◦G should properly be written as

C(c, c′)⊗ 1
G−→ D(Gc,Gc′)

id⊗αc−→ D(Gc,Gc′)⊗D(Fc,Gc)
m−→ D(Fc,Gc′).

The transpose of (2.7) is then

C(c, c′) [1, C(c, c′)] [1,D(Gc,Gc′)]

[1, C(c, c′)] ⇐ᾱcc′ = [1, αcc] ∗ η1 [1,D(Gc,Gc′)⊗D(Fc,Gc)]

[1,D(Fc, Fc′)] [1,D(Fc′, Gc′)⊗D(Fc, Fc′)] [1,D(Fc,Gc′)]

η1

η1

[1,G]

[1,id⊗αc]

[1,F ] [1,m]

[1,αc′⊗id] [1,m]

The top-right side of this square is then isomorphic to the bottom-left side of (2.8) via the
2-isomorphism

C(c, c′)

[1, C(c, c′)⊗ 1] D(Gc,Gc′)

[1,D(Gc,Gc′)⊗ 1] [D(Fc,Gc),D(Gc,Gc′)⊗D(Fc,Gc)]

[1,D(Gc,Gc′)⊗D(Fc,Gc)] [D(Fc,Gc),D(Fc,Gc′)]

[1,D(Fc,Gc′)]

η1
G

A(1,G⊗1)

⇒ η1
G

ηD(Fc,Gc)
η1

[1,id⊗αc]

⇒ (ηαc)−1

[D(Fc,Gc),m]
α∗c

[1,m)]

⇒ [αc,m]−1

α∗c
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given by composing the structural isomorphism of the pseudonatural transformation

η1 : id⇒ [1,−⊗ 1],

of extra-pseudonatural transformation

ηD(Gc,Gc′) : D(Gc,Gc′)
..⇒ [−,D(Gc,Gc′)⊗−]

(see Theorem A.1.2), and of pseudonatural transformation

[−,m] : [−,D(Gc,Gc′)⊗D(Fc,Gc)]⇒ [−,D(Fc,Gc′)].

A perfectly analogous 2-cell exhibit the isomorphism between the other two sides. That is,
we can define the higher structure of α̂ to be the composition

α̂cc′ = [αc,m]−1 ◦ (ηαc)−1 ◦ η1
G ◦ [1, αc,c′ ] ◦ (η1

F )−1 ◦ ηαc′ ◦ [αc′ ,m]

We are now going to see how axioms correspond. First, observe how axioms to be checked
are here, for both structures, just the respective unitality and functoriality. The structure
of the proof is analogous for both. Thus, since pretty huge diagrams are involved, we limit
ourselves to prove unitality:

idα∗c◦u =

1

C(c, c)

[D(Fc,Gc),D(Fc,Gc)] [D(Fc,Gc),D(Fc,Gc)]

[1,D(Fc,Gc)]

uu u

D(Fc,G−) D(F−,Gc)

α̂cc
⇐

⇐

un−1 ⇐un

α∗c α∗c

(2.9)

for the extra-pseudonatural α̂ : 1
..⇒ D(F−, G−) build from the pseudonatural α : F ⇒ G.

The right hand side can then be written, using the definition of unitors for the pseudofunc-
tor D(F−, G−) (see Definition 2.1.8) and the fact that the unitor of the composition of
pseudofunctor is the composition of the unitors, as



CHAPTER 2. ENRICHED BI(CO)ENDS 114

[D(Fc,Gc),1⊗D(Fc,Gc)] 1 [D(Fc,Gc),1⊗D(Fc,Gc)]

C(c, c)

D(Gc,Gc) D(Fc, Fc)

[D(Fc,Gc),D(Gc,Gc)⊗D(Fc,Gc)] [D(Fc,Gc),D(Fc, Fc)⊗D(Fc,Gc)]

[D(Fc,Gc),D(Fc,Gc)] [D(Fc,Gc),D(Fc,Gc)]

[1,D(Fc,Gc)]

`∗

⇐ η−1
u

u

η η

u u

`∗

G F

⇐ un−1 ⇐un
⇐ηu

η η
λ∗
⇐

−1

m∗

λ∗
⇐

m∗

α̂cc
⇐

αc∗ αc∗

If we focus on un−1 ◦ α̂cc ◦ un, we can expand

1

C(c, c)

D(Gc,Gc) [1, C(c, c)] D(Fc, Fc)

[1,D(Gc,Gc)] [1,D(Fc, Fc)]

[D(Fc,Gc),D(Gc,Gc)⊗D(Fc,Gc)] [D(Fc,Gc),D(Fc, Fc)⊗D(Fc,Gc)]

[1,D(Fc,Gc)]

u
u u

G F

⇐ un−1

η

⇐un

η

η
[1,F ][1,G]

⇐ ηG

η

η

⇐ηF

[1,αc∗](ηαc [αc,m])−1

⇐

[1, αcc]
⇐ [1,αc∗] ηαc [αc,m]⇐

α∗c◦m∗ α∗c◦m∗

and observe that from the naturality and the functoriality of the pseudonatural transforma-
tion η : id⇒ [1,−⊗ 1] we have equality
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C(c, c)

D(Gc,Gc) [1, C(c, c)] D(Fc, Fc)

[1,D(Gc,Gc)] [1,D(Fc, Fc)]

[1,D(Fc,Gc)]

G F
η

η
[1,F ][1,G]

⇐ ηG ⇐ηF
η

[1,αc∗] [1,αc∗]

[1⊗ αcc]
⇐

=

C(c, c)

D(Gc,Gc) D(Fc, Fc)

[1,D(Gc,Gc)] D(Fc,Gc) [1,D(Fc, Fc)]

[1,D(Fc,Gc)]

G F

η
αc∗ η

αc∗

αcc
⇐

[1,αc∗]
η

⇐η−1
αc∗

[1,αc∗]

⇐ ηαc∗

Therefore, one can use unitality for the pseudonatural transformation α, which says

un−1αccun = id.

This allows us to consequently simplify the rest of the structure on both sides of the 2-cell,
showing how indeed (2.9) holds true. The proof for the functoriality axiom, though quite
more space-consuming, follows a similar structure.

Proposition 2.1.11. Let F : B ⊗ C → D be a V pseudofunctor. Then, for every pair of
objects b, b′ in B, the family of morphisms{

F (−, c) : B(b, b′) −→ D(F (b, c), F (b′, c))
}
c

defines an extra-pseudonatural transformation.

Proof. The argument is the same used in [Kel05] 1.8 (c).

There is at least another property expressing an interplay between naturality and extra-
naturality that worth to be generalized to this bicategorical context and which will be
essential in proving Fubini theorem in Section 2.5. It is the following, and is a generalization
of a fact which can be found in [Kel05].

Lemma 2.1.12. Let F,G : B → C, and H : B ⊗ Bop ⊗ B → C be three V-pseudofunctors.
Suppose moreover to have families of morphisms

αa,b : Fa −→ H(a, b, b)

βa,b : H(a, a, b) −→ Gb
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carrying each at the same time a structure of natural transformation in the variable a and
of extra-pseudonatural transformation in the variable b (α) and the converse for β. Then,
the family

Fa
αa,a−→ H(a, a, a)

βa,a−→ Ga

is part of an enriched pseudonatural transformation.

Proof. The proof is a matter of defining the higher structure for this pseudonatural trans-
formation, which can be produced as

B(a, b) B(Ga,Gb)

B(Haaa,Haab)

B(Habb,Haab) B(Fa,Haab) B(Haaa,Gb)

B(Habb,Hbbb) B(Habb,Gb)

B(Fa, Fb) B(Fa,Hbbb) B(Fa,Gb)

G

Haa−

Ha−b

H−bb

F

⇐βa,ab

β∗a,a

α∗a,a
βa,b∗

α∗a,b

βa,b∗

∼= βa,b∗

∼=

α∗a,a
βb,b∗

⇐αab,b
α∗a,b

∼=
α∗a,b

αb,b∗ βb,b∗

⇐αa,ab

⇐βab,b

The reader can verify with no surprise how unitality and functoriality for both structures
(extra and plain pseudonatural transformation) will provide unitality and functoriality for
this pseudonatural transformation.

2.2 Definition of V-bi(co)ends
The definition of enriched bi(co)ends, as most of concepts in 2-category theory, generalize
the 1-categorical definition of enriched (co)end by introducing as part of the structure a
2-isomorphism that weakens the universal property. Then, this 2-isomorphism is subject
to two axioms (BC1 and BC2 below, for bicoends), which at first could sound arbitrary
and complicated. However, it is convenient to keep in mind as of now that these two
axioms correspond precisely to essential surjectivity and fully faithfulness of an equivalence
exhibiting the bicoend of a pseudofunctor P : Bop ⊗ B → D as a representing object of the
functor V-PsNate(P,−) (Proposition 2.2.6 and Remark 2.2.8).
As usual for universal properties in enriched category theory, the definition is first given for
V-valued pseudofunctors, and then the general case is provided representably. Otherwise,
the resulting definition would be too weak for most of purposes.

2.2.1 V-valued bi(co)ends
Definition 2.2.1. Let P : Bop ⊗ B → V be a V-pseudofunctor. The (enriched) bicoend of

P is, if it exists, an object
∫ b

P (b, b) of V together with an (enriched) extra-pseudonatural
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transformation i : P ..⇒
∫ b

P (b, b) (to the constant pseudofunctor) such that the following

two axioms hold true.

(BC1) For any object x in V and any extra-pseudonatural transformation j : P
..⇒ x there’s

a 1-cell j̃ :
∫ b
P (b, b)→ x, and for every a in B a 2-isomorphism Ja∫ b

P (b, b)

P (a, a) x

j̃

⇐Ja
ia

ja

giving the following identity of 2-cells:

B(a, c) [P (c, a), P (a, a)]

[P (c, a), P (c, c)] [P (c, a),
∫ b
P (b, b)]

[P (c, a), x]

P (−,a)

P (c,−)
ia∗

ja∗

jc∗

⇐jac

j̃∗

Ja∗
⇐

=

B(a, c) [P (c, a), P (a, a)]

[P (c, a), P (c, c)] [P (c, a),
∫ b
P (b, b)]

[P (c, a), x]

P (−,a)

P (c,−)
ia∗

jc∗

ic∗
⇐iac

⇐Jc∗
j̃∗

compactly stated as
jac ◦ Ja∗ = Jc∗ ◦ iac,

and
(BC2) For every pair of 1-cells h, k :

∫ b
P (b, b)→ x and any family of 2-cells Γa : hia ⇒ kia

such that

B(a, c) [P (c, a), P (a, a)]

[P (c, a), P (c, c)] [P (c, a),
∫ b
P (b, b)]

[P (c, a),
∫ b
P (b, b)] [P (c, a), x]

P (−,a)

P (c,−)
ia∗

ia∗

⇐iac

ic∗
h∗⇐Γa∗

k∗

=
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B(a, c) [P (c, a), P (a, a)]

[P (c, a), P (c, c)] [P (c, a),
∫ b
P (b, b)]

[P (c, a),
∫ b
P (b, b)] [P (c, a), x]

P (−,a)

P (c,−)
ia∗

⇐iac

ic∗

ic∗

h∗⇐Γc∗

k∗

there is a unique 2-cell γ : h⇒ k such that Γa = γ ∗ ia.

Remark 2.2.2. Compare the above definition with the one in [Cor16], after whiskering
the structure with a morphism f : 1 → B(a, c). Any extra-pseudonatural transformation
j : P

..⇒ x induces a pair (j̃, {Ja}a) such that for every morphism f : a→ c∫ b
P (b, b) x

P (a, a) P (c, a) P (c, c)

j̃

Ja
⇒

jf
⇒

ia ja

f∗ f∗

jc =

∫ b
P (b, b) x

P (a, a) P (c, a) P (c, c)

j̃

Jc
⇒

ia if
⇒

f∗ f∗

jc
ic

The second axiom also specialize to the non-enriched case, since whenever (h, k, {Γa}a) are
as required, then it holds for every f : a→ c∫ b

P (b, b) x
∫ b
P (b, b)

P (a, a) P (c, a) P (c, c)

h

Γa
⇒

k

if
⇒

ia
ia

f∗f∗

ic
=

∫ b
P (b, b) x

∫ b
P (b, b)

P (a, a) P (c, a) P (c, c)

h k

Γc
⇒

ia if
⇒

f∗f∗

ic
ic

And under this circumstances, the axiom in [Cor16] demand the existence of a unique 2-cell
γ : h⇒ k such that Γa = γ ∗ ia.

Remark 2.2.3. Dually, one can define the opposite notion of biend. Given a V-pseudofunctor
P : Bop ⊗ B → V, an enriched extra-pseudonatural transformation

∫
b
P (b, b)

..⇒ P defines a
biend whether the equivalent (in virtue of Remark 2.1.4 (iii)) data

P op ..⇒
∫
b

P (b, b)

defines a bicoend.

Proposition 2.2.4. Let P : Bop⊗B → V be a V-pseudofunctor with a bicoend
∫ b
P (b, b). If

j : P
..⇒ x is an extra-pseudonatural transformation, then the induced pair (j̃, {Ja}) in BC1

is unique up to a unique isomorphism, meaning that if (` :
∫ b
P (b, b)→ x, {Ha : `ia ⇒ ja})

is another pair satisfying
jac ◦Ha = Hc ◦ iac (2.10)

then, there’s a unique isomorphism ϕ : l ∼= j̃ such that
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∫ b
P (b, b)

P (a, a) x
j̃⇐Ja

`

⇐ϕia

ja

=

∫ b
P (b, b)

P (a, a) x

`

⇐Ha

ia

ja

Proof. Consider the family of 2-cells Γa := H−1
a ◦ Ja in the 2-cell below

P (a, a)
∫ b
P (b, b)

∫ b
P (b, b) x

ia

ia ja

⇐H−1
a

⇐Ja
j̃

`

Now, the triple (j̃, `, {Γa}) is as required by axiom BC2, in the sense that we have equality
of 2-cells

iac ◦ Γa = iac ◦H−1
a ◦ Ja

(2.10)
= H−1

c ◦ jac ◦ Ja = H−1
c ◦ Jc ◦ iac = Γc ◦ iac.

Whence, the unique isomorphism γ : j̃ ∼= ` whose inverse is the desider one, making Γa =
γ ∗ ia, and therefore Ha = Ja ◦ (γ−1) ∗ ia.

As a straightforward consequence we have the essential uniqueness of the bicoend object.

Corollary 2.2.5. The bicoend of a V-pseudofunctor P : Bop ⊗ B → V is unique up to
equivalence in V.

Proof. If i : P ..⇒ x, i′ : P
..⇒ y are two bicoends for P , then we have induced morphisms

ĩ′ : x → y and ĩ : y → x fitting, together with the respective 2-isomorphisms, the following
diagram.

x

y

P (a, a) x

ĩ′
idx

⇐

ĩ⇐

ia

i′a

ia

Therefore, if we consider the identity morphism for x, together with the identity 2-cell of ia,
we get, by Proposition 2.2.4, the desired isomorphism idx ∼= ĩĩ′, and similarly idy ∼= ĩ′ĩ.

At this stage, the two bicoend axioms, which may look kind of obscure at first, deserve
an explanation that will make them much clearer. The key point lies in the following propo-
sition, which provides a higher point of view on bi(co)ends by defining them as representing
objects.

Proposition 2.2.6. Let P : Bop ⊗ B → V be a pseudofunctor admitting a bicoend. Then,
there is for every object x in V an equivalence, pseudonatural in x, between the categories

V(

∫ b

P (b, b), x) ' V-PsNate(P, x). (2.11)
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Dually, if P admits a biend, there is for every x an equivalence

V(x,

∫
b

P (b, b)) ' V-PsNate(x, P ). (2.12)

Proof. Let us us prove the first statement, and call i : P ..⇒
∫ b
Pbb the bicoend of P . The

dual statement will clearly follow a symmetric argument. The equivalence is here explicitly
given on one side as the precomposition

V(

∫ b

P (b, b), x) −→ V-PsNate(P, x) (2.13)

defined on a k :
∫ b
P (b, b) → x to be the extra-pseudonatural transformation k ◦ i with

components (k ◦ i)b = k ◦ ib, and, on morphisms γ : k ⇒ h, the obvious whiskering γ ∗ i, with
components given by γ ∗ ib : kib ⇒ hib. One needs to check is that γ ∗ i actually defines a
morphism of extra-pseudonatural transformation, which is the equality

B(b, b′) [Pb′b, Pbb]

[Pb′b, Pb′b′] [Pb′b, x]

P (−,b)

P (b′,−) kib∗⇐(ki)bb′

(kib′ )∗

(hib′ )∗

⇐(γib′ )∗

=

B(b, b′) [Pb′b, Pbb]

[Pb′b, Pb′b′] [Pb′b, x]

P (−,b)

P (b′,−) (kib)∗(hib)∗⇐(hi)bb′

(hib′ )∗

γib∗⇐

This is true, since expanding the composition of both sides of the squares we find both
squares to be equal to the horizontal composition γ∗ibb′ .

[Pb′b, Pbb]

B(b, b′) [Pb′b,
∫ c
Pcc] [Pb′b, x]

[Pb′b, Pb′b′]

ib∗

⇐ibb′

P (−,b)

P (b′,−) h∗

k∗

ib′ ∗

⇐γ∗

Fully faithfulness of (2.13) is now precisely axiom BC2, which states indeed that for all
families Γb : kib ⇒ hib defining a morphism of extra-pseudonatural transformations there
is a unique morphism h ⇒ k in the domain category which is mapped on it by precom-
position with i. On the other hand, axiom BC1 says that for all objects j : P

..⇒ x in the
codomain category, there exists a j̃ :

∫ b
Pbb → x in the domain and an isomorphism of

extra-pseudonatural transformations J : j̃ ◦ i ∼= j, which is just essential surjectivity.

2.2.2 Arbitrary-valued bi(co)ends
Now, the general definition of a bi(co)end valued in any V-bicategory D can be given rep-
resentably.
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Definition 2.2.7. Let P : Bop⊗B → D be a V-pseudofunctor, where D is any V-bicategory.
A biend for P is an object

∫
b
P (b, b) in D together with an extra-pseudonatural transforma-

tion i :
∫
b
P (b, b)

..⇒ P such that for every object d in D the extra-pseudonatural transfor-
mation

D(d, i) : D(d,

∫
b

P (b, b))
..⇒ D(d, P (−,−))

is a biend for D(d, P (−,−)) : Bop ⊗ B → V.
A bicoend for P is an object

∫ b
P (b, b) in D together with an extra-pseudonatural trans-

formation i : P
..⇒
∫ b
P (b, b) such that for every object d in D the extra-pseudonatural

transformation

D(i, d) : D(

∫ b

P (b, b), d)
..⇒ D(P (−,−), d)

is a biend for D(P (−,−), d) : Bop ⊗ B → V.

It follows immediately the pair of equivalences in V

D(d,

∫
b

P (b, b)) '
∫
b

D(d, P (b, b)), (2.14)

D(

∫ b

P (b, b), d) '
∫
b

D(P (b, b), d). (2.15)

Proposition 2.3.4 will witness that this definition of bi(co)end is coherent with the previous
one for the case D = V.

Remark 2.2.8. We want to have the analogue result of Proposition 2.2.6 in the case of
D-valued bi(co)ends for an arbitrary V-bicategory D. In order to do so, we need to "gather"
the category of bicowedges V-PsNate(P, d) into an object in V. In other words, we want an
object V-PsFune(P, d) giving the desired equivalence

D(

∫ b

P (b, b), d) ' V-PsNate(P, d).

for every object (and constant pseudofunctor) d. The obvious choice is hence to define
V-PsFune(P, d) :=

∫
b
D(P (b, b), d) (compare that with Definition 2.3.3), and then use (2.14).

2.3 The enriched pseudofunctor bicategory
In the non-enriched setting, we have the following result, expressing pseudonatural trans-
formations as a biend:

Proposition 2.3.1 (Biend formula for PsNat). Let L, S : C → D be pseudofunctors between
bicategories. Then, the bicoend of the pseudofunctor

D(L−, S−) : Cop × C → Cat

exists, and there’s an equivalence of categories

PsNat(L, S) '
∫
c

V(Lc, Sc).
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Proof. We are going to show that evd : PsNat(L, S)→ D(Ld, Sd) mapping γ 7→ γd is part of
the data of a terminal extra-pseudonatural transformation, and then conclude by uniqueness
of biends up to equivalence. We need the rest of the structure, the 2-isomorphisms, for every
g : d→ d′

PsNat(L, S) D(Ld, Sd)

D(Ld′, Sd′) D(Ld, Sd′)

evd′

evd

g∗⇐evg

g∗

given on any γ : L⇒ S by

g∗γd = Sg ◦ γd −→ γd′ ◦ Lg = g∗γd′

which is nothing but the isomorphism of pseudonaturality for γ.
Now, in order to prove terminality, let τ be another extra-pseudonatural transformation

Y
..⇒ D(L−, S−). We can just set τ̃ : Y → PsNat(L, S) to be the functor mapping y 7→ τ̃(y)

defined by τ̃(y)d = τd(y), and therefore the diagram

Y PsNat(L, S)

D(Ld, Sd)

τd

τ̃

=
evd

is (even strictly) commutative.

By virtue of the previous result, we are now ready to properly enrich the enriched functor
bicategory. The following lemma will provide the structure induced for unit and composition
for hom-objects.

Lemma 2.3.2. Let F,G,H : C → D be V-pseudofunctors, and suppose the relevant biends
to exist. There are extra-pseudonatural transformations

uF : 1
..⇒ D(F−, F−)

and
mF,G,H :

∫
c

D(Gc,Hc)⊗
∫
c

D(Fc,Gc)
..⇒ D(F−, H−).

Proof. For what concerns uF , one can define it via Proposition 2.1.10 to be the same data
of the V-pseudonatural id : F ⇒ F . One has hence each 1-component at d given (coherently
with the notation) as uFd : 1→ D(Fd, Fd).

Each d-component of the second claimed to be extra-pseudonatural transformation is
the composition∫

c
D(Gc,Hc)⊗

∫
c
D(Fc,Gc) D(Fd,Hd)

D(Gd,Hd)⊗D(Fd,Gd)

kd⊗jd

md

m
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and 2-isomorphisms are built in the following way. For reasons mostly of space and read-
ability, we define the structure as if one could evaluate it at an object f in C(d, d′). It is
routine, then, to translate it in more general enriched terms. The idea, in order to construct
mf , which is

C(d, d′) [D(Fd′, Hd′),D(Fd,Hd′)]

[D(Fd,Hd),D(Fd,Hd′)] [
∫
c
D(Gc,Hc)⊗

∫
c
D(Fc,Gc),D(Fd,Hd′)]

D(F−,Hd′)

D(Fd,H−) ⇐mdd′ m∗

m∗

at an object f , is to separately use the structures of k and j. The notation in the following
is that parenthesis stand for hom-objects in D, and in the end we omit variables. As usual,
juxtaposition stands for the tensor product. Then mf is given by

(Gd′, Hd′)(Fd′, Gd′) (Fd′, Hd′)

(Gd′, Hd′)
∫
C(FG) (Gd′, Hd′)(Fd,Gd′)

∫
C(GH)

∫
C(FG) (Gd′, Hd′)(Fd,Gd) (Fd,Hd′)

∫
C(GH)(Fd,Gd) (Gd,Hd′)(Fd,Gd)

(Gd,Hd)(Fd,Gd) (Fd,Hd)

m

1Ff∗
∼=

Ff∗
1jd′

1jd

∼=

m

∼=

kd′⊗jd′

kd′1

1jd

kd⊗jd

1Gf∗

Gf∗1kd′1

kd1

m

∼=
Hf∗1

m

Hf∗

⇐1jf

∼=

∼= ⇐kf1

Extra-pseudonatural transformation axioms, then follow from the correspondent for j and
k.

Let us now enhance the structure of the bicategory V-PsFun(C,D) to a V-bicategory,
which we will refer as JC,DK, in order to distinguish from the plain bicategory.

Definition 2.3.3 (The V-bicategory of V-pseudofunctors). Let V be a monoidal bicategory
and C,D be two V-bicategories, then JC,DK is the V-bicategory:

• objects are the V-pseudofunctors F : C → D

• each hom-object JC,DK(F,G) (also denoted as V-PsNat(F,G)) is the object in V defined
by the biend ∫

c

D(Fc,Gc)
id−→ D(Fd,Gd)

of the V-pseudofunctor D(F−, G−) : Cop ⊗ C → V.
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• the unit is defined via the extra-pseudonatural transformation uF : 1
..⇒ D(F−, F−) of

Lemma 2.3.2, which provides a unique pair (uF , {Ud})

1
∫
c
D(Fc, Fc)

D(Fd, Fd)

uFd

uF

⇒Ud
id

(2.16)

• The composition is defined analogously as induced by the other extra-pseudonatural trans-
formation m of Lemma 2.3.2. That is,∫

c
D(Gc,Hc)⊗

∫
c
D(Fc,Gc)

∫
c
D(Fc,Hc)

D(Fd,Hd)

m̃

md id
⇒Md (2.17)

• The left unitor λ is defined via the equivalence (2.12) by defining (each component of) a
morphism of extra-pseudonatural transformations (biwedges) by composing the inverses
(sic!) of U and M , and the unitor λ for D as follows.

1⊗
∫
c
D(Fc,Gc)

D(Fd, Fd)⊗
∫
c
D(Fc,Gc) 1⊗D(Fd,Gd) D(Fd,Gd)

∫
c
D(Fc,Gc)

D(Fd, Fd)⊗D(Fd,Gd)

∫
c
D(Fc, Fc)⊗

∫
c
D(Fc,Gc)

uFd1
1jd

`

uF 1

∼=

1jd

`

uFd1

jd

m

id1

m̃

id⊗jd

∼=

∼=
⇒U
−1
d 1

⇒λ

M
−1
d⇐

(2.18)
Similarly, the right unitor.

• The associator α is analogously built as corresponding to a morphism of extra-pseudonatural
transformations (biwedges). The latter having components as follows, where the arrows
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without a name clearly are just the tensor products of the structural biend morphisms.∫
c
D(Gc,Hc)

∫
c
D(Fc,Gc)

∫
c
D(Ec, Fc)

∫
c
D(Gc,Hc)

∫
c
D(Ec,Gc)

D(Gd,Hd)D(Fd,Gd)D(Ed, Fd) D(Gd,Hd)D(Ed,Gd)

D(Fd,Hd)D(Ed, Fd) D(Ed,Hd)

∫
c
D(Fc,Hc)

∫
c
D(Ec, Fc)

∫
c
D(Ec,Hc)

1m̃

m̃1

m̃

1m

m1 m⇒α

m

m̃

kd

⇒Md

⇒1Md

⇒M
−1
d 1

⇐M−1
d

(2.19)

Coherence identities (IC) and (AC) can then be proved with these definitions, and then be
transposed again via (2.12). The proof is an easy check.

Proposition 2.3.4. Let M be a V-bicategory, for V a closed braided monoidal bicategory,
and P : Mop ⊗M → V a V-pseudofunctor for which the coend i : P (−,−)

..⇒
∫m

P (m,m)
exists. There is, for every object a in V, an equivalence in Vï∫ m

P (m,m), a

ò
'
∫
m

[P (m,m), a].

Proof. The proof uses essential uniqueness of enriched biends. For, it suffices to prove that
the extra-pseudonatural transformation

[i, a] :

ï∫ m

P (m,m), a

ò
..⇒ [P (−,−), a]

is terminal. Let us take another extra-pseudonatural k : y
..⇒ [P (−,−), a] and claim that

each component of k provide, via a chain of equivalences of hom-categories for the bicategory
V,

k : y −→ [P (n, n), a]

k′n : y ⊗ P (n, n) −→ a

k′′n : P (n, n)⊗ y −→ a

jn : P (n, n) −→ [y, a],

the component of another extra-pseudonatural transformation j : P (−,−)
..⇒ [y, a]. The

structure of extra-pseudonatural transformation of

y ⊗ P (n, n) −→ a

can be deduced from the previous step by means of Proposition 2.1.7. The structures for k′′
is then easily deduced from the braiding, and the fact that at the last step we also find an
extra-pseudonatural transformation j is given by Remark 2.1.4 (ii). Thus, by the bicoend
property we get j̃ :

∫m
P (m,m)→ V(y, a) and, for every n the 2-iso Jn
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∫m
P (m,m)

P (n, n) [y, a]

j̃

⇐Jn

jn

in

satisfying the bicoend axioms. Then, we can consider the equivalence of categogires

Φ: V(

∫ m

P (m,m), [y, a]) −→ V(y, [

∫ m

P (m,m), a])

and define k̃ = Φ(j̃),Kn = Φ(Jn). Biend axioms are then automatic to be checked, being
preserved by pseudofunctors.

Proposition 2.3.5. The enriched biend construction defines a V-pseudofunctor∫
B

: JBop ⊗ B,DK −→ D (2.20)

P 7−→
∫
b

P (b, b) (2.21)

Proof. On hom-objects the biend pseudofunctor is defined via the map

V-PsNat(P,Q) −→ D(

∫
b

P (b, b),

∫
b′
Q(b′, b′)),

which by definition of the enriched pseudonatural transformation object and the isomor-
phism (2.14) is the same thing as a map

k̃ :

∫
b,b′
D(P (b, b′), Q(b, b′)) −→

∫
b′
D(

∫
b

P (b, b), Q(b′, b′)), (2.22)

which we define as the induced by the extra-pseudonatural

k :

∫
b,b′
D(P (b, b′), Q(b, b′))

..⇒ D(

∫
b

P (b, b), Q(−,−))

defined in turn on each component by the composition

kd :

∫
b,b′
D(P (b, b′), Q(b, b′))

id,d−→ D(P (d, d), Q(d, d))
j∗d−→ D(

∫
b

P (b, b), Q(d, d)).

Here, i and j are clearly the biend structure for the pseudonatural transformation objects
and for

∫
b
P (b, b), respectively. Analogously, it works for bicoends. The rest of the structure

consists of un and fun. The first goes as

1
∫
b,b′
D(Pbb′, P bb′)

∫
b
D(
∫
b′
Pb′b′, P bb)

uP

u∫
b Pbb

k̃⇒un
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and is a 2-cell of morphisms 1 →
∫
b′
D(Pb′b′,

∫ b
Pbb). It can therefore be defined via the

equivalence (2.12) of Proposition 2.11 by establishing a morphism of extra-pseudonatural
transformations, each of whose d-components is given by

1
∫
b,b′
D(Pbb′, P bb′)

D(Pdd, Pdd)

D(
∫
b
Pbb, Pdd)

D(
∫
b′
Pb′b′,

∫
b
Pbb)

∫
b
D(
∫
b′
Pb′b′, P bb)

uP

uPdd

u∫ b Pbb

id,d

k̃

jd
∗

jd∗

'

id

⇒Ud

∼= ⇒ Kd

∼=

Where Ud is the 2-iso of (2.16), Kd is induced together with (2.22) and the other two
isomorphisms arise by a general fact for every closed bicategory and by definition of the
structure of biend `. It is no surprise that this composition defines a morphism of extra-
pseudonatural transformations, as one can easily check since bothK and U are, by definition.
The construction of fun differs then more technically than conceptually from the case of
un.

2.4 Yoneda lemma
In this section we prove a version of the Yoneda lemma for enriched bicategories. Our
definition of the Yoneda pseudofunctor will be possible thanks to the following Proposition,
stating that the constructions of the tensor product of V-bicategories in Section 1.7 and of
the enriched pseudofunctor enriched bicategory in Section 2.3 define a pseudoadjunction.

Proposition 2.4.1. For B, C,D three V-bicategories, there’s a biequivalence of bicategories

V-PsFun(B ⊗ C,D) ' V-PsFun(B, JC,DK). (2.23)

Proof. The argument is standard. If we start with a V-pseudofunctor F : B ⊗ C → D, we
can define F̂ : B → JC,DK by letting

F̂ : B −→JC,DK
b 7−→ F̂ b : c 7−→ F (b, c)

C(c, c′) ub1−→ B(b, b)C(c, c′) F−→ D(F (b, c), F (b, c′))

For what concerns the hom-object part of the pseudofunctor F̂ , we define the morphism

B(b, b′) −→ JC,DK(F̂ b, F̂ b′) =

∫
c

D(F (b, c), F (b′, c))

to be the map induced by biend property from the extra-pseudonatural transformation with
components ic = F (−, c) : B(b, b′)

..⇒ D(F (b, c), F (b′, c)) (Proposition 2.1.11). Verification
that this defines a biequivalence are a tedious though not conceptually challenging task, and
we refer to the analogous argument explained at Proposition 4.3.4 in [Lor21].
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Definition 2.4.2. The Yoneda pseudofunctor y : Cop → JC,VK is defined to be the image
under the biequivalence (2.23) of the V-pseudofunctor C(−,−) : Cop ⊗ C → V. Concretely,
on objects, y is the V-pseudofunctor mapping c to the V-pseudofunctor yc = C(c,−).

Lemma 2.4.3 (Yoneda). Let F : C → V be a V-pseudofunctor. There is a V-equivalence of
V-pseudofunctors ∫

d

[C(−, d), Fd] ' F.

Proof. The argument uses essential uniqueness for enriched biends. Therefore, each c-
component of this equivalence of V-pseudofunctors is going to be an equivalence in V

Fc
'−→
∫
d

[C(c, d), Fd] (2.24)

provided by a suitable extra-pseudonatural transformation

i : Fc
..⇒ [C(c,−), F (−)]. (2.25)

The latter is defined by the following correspondence

Fc,− : C(c,−)⇒ [Fc, F (−)]

1
..⇒ [C(c,−), [Fc, F (−)]]

1
..⇒ [Fc, [C(c,−), F (−)]]

i : Fc
..⇒ [C(c,−), F (−)],

where steps are respectively given by Proposition 2.1.10, by the equivalence [C(c,−), [Fc, F (−)]] '
[Fc, [C(c,−), F (−)]], and by Remark 2.1.4 part (ii), for the adjunction − ⊗ Fc a [Fc,−],
which eventually give an extra-pseudonatural of sort (2.25) as desired. Now if j : x

..⇒
[C(c,−), F (−)] is a biwedge, we claim that one can consider

j̃ = εFc ◦ jc ⊗ uc : x −→ [C(c, c), F c]⊗ C(c, c) −→ Fc,

as terminal morphism. In other terms, we want to prove (2.24) by showing that there is an
equivalence of categories

V(x, Fc) ' V-PsNate(x, [C(c,−), F (−)]) (2.26)
f 7−→ i ◦ f (2.27)

εFc ◦ jc ⊗ uc ←− [ j (2.28)

As one can see, the definition of the extra-pseudonatural transformation witnessing Fc as
a biend is fairly involved and requires a few non-trivial steps. Therefore, let us make more
clear what is happening by looking at "objects" of our objects in V. Then, to reconstruct
the proof in the properly enriched case will be a easy though meticulous exercise (left to the
reader). Let us then understand the steps required to define i, whose each component id is
defined by the following long composition
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id =

Fc a

[C(c, d),1C(c, d)]Fc (id, a)

[C(c, d), [Fc, Fd]]Fc (f 7→ Ff, a)

[C(c, d)Fc, [Fc, Fd]Fc]Fc ((f, b) 7→ (Ff, b), a)

[C(c, d)Fc, Fd]Fc ((f, b)
ev7→ Ff(b), a)

[Fc C(c, d), Fd]Fc ((b, f)
ev7→ Ff(b), a)

[[C(c, d), F c C(c, d)], [C(c, d), Fd]]Fc (g 7→ (h 7→ ev(g(h))), a)

[Fc, [C(c, d), Fd]]Fc (p 7→ (h 7→ Fh(p)), a)

[C(c, d), Fd] h 7→ Fh(a)

η1

(Fc,−)∗1

(−⊗Fc)1

ε∗1

β∗1

[C(c,d),−]1

η∗1

ε

Then, to prove the equivalence (2.26) one can start on one hand with a map f : x→ Fc and
exhibit an isomorphism

[C(c, c), F c]

Fc ∼= [C(c, c), F c]C(c, c)

x Fc

1ucic

εf

f

This is given be the functoriality for F , since one has(
h 7→ Fh(f(p))

)

f(p)
(
h 7→ Fh(f(p)), idc

)

p f(p) ∼= F (idc)(f(p))

1ucic

εf

f
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On the other hand, if we start with an extra-pseudonatural j : x
..⇒ [C(c,−), F (−)] we need

an isomorphism

[C(c, c), F c]C(c, c)

[C(c, c), F c] ∼= Fc

x [C(c, d), Fd]

ε
1uc

idjc

jd

On objects, this is

p 7→ jc(p) 7→ jc(p)(idc) 7→ (h 7→ Fh(jc(p)(idc))),

in one direction, while clearly h 7→ jd(p) in the other. The structural 2-isomorphism of j

x [C(c, d), Fd]

[C(c, c), F c] [C(c, c), Fd]

jd

jc ⇐jh C(c,h)∗

Fh∗

then concludes the proof.

An analogous argument allows to prove the opposite version of the Yoneda lemma.

Proposition 2.4.4 (co-Yoneda). There is, for F : Cop → V a V-pseudofunctor, a V-
equivalence of V-pseudofunctors

F '
∫ d

C(−, d)⊗ F (d)

2.5 Fubini rule
A main result for (co)ends is the exchange rule, saying that the operation of taking (co)ends
for several variable functors

P : Cop × Bop × C × B → D

can be done all at once (on the category C×B) or either one variable at a time, and the result
is the same, no matter the order. This is called, for the similarity with the well known calcu-
lus rule, the Fubini theorem. There’s a canonical argument, working also for bicategories, as
shown for bicoends in [Cor16], consisting of building a canonical equivalence between the de-
sired bicoends. Generalizing [Lor21], we can prove the result with a more elegant argument
which realizes the operation of taking V-valued bicoends (the V-pseudofunctor (2.20)) as a
right pseudoadjoint, and concludes by general uniqueness properties of pseudoadjunctions.
Also, the following Remark will be used in order to avoid an explicit definition of one of the
two triangulators, which is apparently quite non-trivial to find explicitly.
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Remark 2.5.1. The strictification theorem for pseudoadjunctions (Theorem A.0.6) tells us
that the data of a pseudoadjunction (pseudofunctors, unit, counit and the two triangulators)
is sufficient, by altering one of the two triangulators, to also have a proper pseudoadjunction,
meaning that the swallowtail equations are satisfied. This requires, anyway, to initially have
both triangulators. However, if we do not have available of one of the two, we can sometimes
(under the condition explained below) reconstruct it by imposing one of the swallowtail
equations to be true. If for example we have s, it is sufficient to consider the equation

idε =

id FG

FG FGFG

FG

ε

⇐Σεε
−1ε εFG

FGε

FηG

⇐Ft

⇐sG

and define what is going to be ε ∗ Ft to be the 2-cell

FG id

FG FGFG FG

ε

FηG

εFG

FGε

⇐ Σε,ε ε⇐ (sG)−1

For this to be sufficient to provide a definition of t, one clearly has to ensure that the functor
ε ∗ F : PsNat(G,G)→ PsNat(FG, id) is fully faithful.

Theorem 2.5.2. The V-pseudofunctor∫
B

: JBop ⊗ B,VK −→ V

admits a left pseudoadjoint HB : V → JBop ⊗ B,VK.

Proof. The V-pseudofunctor HB is defined on objects to be

HB(a) = B(−,−)⊗ a,

and on hom-objects as the map

V(a, a′) −→
∫
b,b′

[B(b, b′)⊗ a,B(b, b′)⊗ a′] = V-PsNat(HB(a), HB(a′))

induced by the extra-pseudonatural familyß
B(c, c′)⊗− : V(a, a′)→ [B(c, c′)⊗ a,B(c, c′)⊗ a′]

™
c,c′
.
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The unit and the counit for the pseudoadjunction are then defined as follows. Each compo-
nent of the unit

ηa : a −→
∫
b

(B(b, b)⊗ a)

is the map induced by biend property via the extra-pseudonatural transformation u⊗id : 1⊗
a

..⇒ B(−,−) ⊗ a. The P -component of the counit is provided by the pseudonatural trans-
formation having components

(εP )b,b′ : B(b, b′)⊗
∫
c

P (c, c)
P (b,−)⊗ib−→ [P (b, b), P (b, b′)]⊗ P (b, b)

ε→ P (b, b′),

where ε = εP (b,b′) is the counit for the closedness pseudoadjunction. There is a non-evident
fact, here, since a priori there is no evident reason for εP so defined to be a morphism of
pseudofunctors. The crucial point is Lemma 2.1.12, which applies to this setting thanks to
the fact that ε is both pseudonatural and extra-pseudonatural depending on which variable
we focus on (Theorem A.1.2). Triangulators are then the remaining part of the structure.
Let us start with s

HB HB ◦
∫
B ◦HB

HB

HBη

εHB⇒s

which is, for every object a in V and every pair of objects c, c′ in B, a 2-cell in V

B(c, c′)⊗ a B(c, c′)⊗
∫
b
(B(b, b)⊗ a)

B(c, c′)⊗ a

1ηa

(εB(−,−)⊗a)c,c′⇒(sa)c,c′

Remember how the pseudofunctor B(c,−) is defined, as the transpose of the multiplication
via the adjunction −⊗ B(c, c) ` [B(c, c),−]. That means, explicitly

B(c,−) : B(c, c′)
ϑ−→ [B(c, c),B(c, c′)B(c, c)]

m∗−→ [B(c, c),B(c, c′)].

for ϑ the unit for the closedness adjunction. The triangulator (sa)c,c′ is then defined to be
the following composite.
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B(c, c′)a B(c, c′)
∫
b
(B(b, b)a)

B(c, c′)B(c, c)a [B(c, c)a,B(c, c′)B(c, c)a]B(c, c)a [B(c, c)a,B(c, c′)a]B(c, c)a

B(c, c′)B(c, c)a

B(c, c′)a

1ηa

1u1 1ic
(B(c,−)a)ic

ϑ1

m∗1

ε1

ε1

m1

⇒1J

⇒ρ
−11

∼=

⇒s
′

⇒εm1

for J the morphism induced by biend property together with η, and s′ the triangulator for
the closedness pseudoadjunction. We are going to define the other triangulator by imposing
one of the swallowtail equations to be true. The strictification theorem will then conclude
the proof, since the two swallowtail equations will then automatically be satisfied. In order
to do so, we can use Remark 2.5.1 and limit ourselves to directly prove the equivalence

ε ∗ B(=,=): V-PsNat(
∫
,

∫
) ' V-PsNat(B(=,=)⊗−,−).

mapping each member fP of a natural family of morphisms fP :
∫
P →

∫
P to the pseudo-

natural transformation with components

B(b, b′)⊗
∫
P B(b, b′)⊗

∫
P [Pbb, Pbb′]Pbb Pbb′

1f P (b,−)⊗ib ε

This functor has indeed an explicit inverse, given by mapping a pseudonatural transforma-
tion g : B(−,−)⊗

∫
P → P to the morphism

∫
P →

∫
P induced by

∫
P

∫
P

B(b, b)⊗
∫
P

P (b, b)

˜g◦u1

ub1

ib

gb,b

The fact that this defines an equivalence of categories is exhibited with the following iso-
morphisms
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B(b, b′)
∫
P B(b, b′)

∫
P

B(b, b′)B(b, b)
∫
P

B(b, b′)Pbb

Pbb′ [Pbb, Pbb′]Pbb

1 ˜g◦u1

1u1

gbb′

1ib

⇒Jb

1gbb

P (b,−)1

ε

(natg)
∼=

for one composition of the functors, and for the other one

∫
P

∫
P

B(b, b)
∫
P Pbb

B(b, b)Pbb [Pbb, Pbb′]Pbb Pbb

f

uf u1
ib

1ib
u1

P (b,−)1 ε

∼=

∼=

∼=

Corollary 2.5.3 (Fubini). Let P : Bop ⊗ B ⊗ Cop ⊗ C → V be a V-pseudofunctor. Then,
there are equivalences of V-pseudofunctors∫

B
◦
∫
C
'
∫
B⊗C
'
∫
C
◦
∫
B

Proof. Since we ensured that the V-pseudofunctor
∫
B
has a left pseudoadjoint B(−,−)⊗ =,

then, also ∫
B⊗C

: J(B ⊗ C)op ⊗ (B ⊗ C),VK −→ V

has a left pseudoadjoint (B ⊗ C)(−,−,−,−)⊗ =, which is actually defined as (B(−,−) ⊗
C(−,−))⊗ =. The monoidal associator then provides an equivalence between this V-
pseudofunctor and the composition

V C(−,−)⊗=−→ JCop ⊗ C,VK B(−,−)⊗=−→ J(B ⊗ C)op ⊗ (B ⊗ C),VK

which is the composite of two left pseudoadjoints. Then, it is straightforward, generalizing
the well known argument for usual adjunctions, that pseudoadjunctions can compose, as well
as the fact that pseudoadjoints to equivalent V-pseudofunctors are equivalent. Therefore, we
get that the composition

∫
C ◦
∫
B is equivalent to the V-pseudofunctor

∫
B⊗C . Analogously,

by symmetry we can show that this is also equivalent to
∫
B ◦
∫
C .
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Remark 2.5.4. The Fubini theorem for arbitrary D-valued V-pseudofunctors P : Bop ⊗
Cop ⊗ B ⊗ C → D is then given representably via the Yoneda lemma

D(d,

∫ b ∫ c

P (b, c, b, c)) '
∫ b ∫ c

D(d, P (b, c, b, c))

'
∫ b,c

D(d, P (b, c, b, c)) ' D(d,

∫ b,c

P (b, c, b, c)).

2.6 Kan extensions of pseudofunctors
In this section we introduce a notion of Kan extension for enriched pseudofunctors valued in
the base V of the enrichment. To be more precise, we are going to define what based on the
literature should be called local Kan extension. The work of Garner–Shulman [GS15] intro-
duces a notion of pointwise Kan extension for enriched pseudofunctors, defined in terms of
weighted bi(co)limits. In this setting, where we are going to treat extensions of pseudofunc-
tors into the base monoidal bicategory V, we are going to define pointwise Kan extension
via certain bi(co)ends (see Remark 2.6.3), and we will show (Theorem 2.6.2) that they are
in fact also local Kan extensions.

In particular, this result will make clear the universal property of the Day convolution
in Section 2.7. Our discussion, as mentioned, will only cover the case of the extension
along any V-pseudofunctor of a V-valued V-pseudofunctors. The vast literature on the 1-
categorical version of the subject allows to see left Kan extensions as coends whenever the
target category is cotensored over the base of the enrichment. Dually, we also can see right
Kan extension as ends whenever the target is tensored over the base of the enrichment.
Our choice of V for the target is then a particularly specific context allowing both of these
descriptions, but it will be sufficient for our purposes.

Definition 2.6.1. Let V be a monoidal bicategory,M, C two V-bicategories and T : M→ V,
K : M→ C two V-pseudofunctors. A V-pseudofunctor L : C → V together with an enriched
pseudonatural transformation α : T → LK (equivalently, a 1-cell α : 1 −→

∫
m
V(Tm,LKm))

M V

C

T

K ⇐α L

is said to be a (local) left Kan extension of the V-pseudofunctor T along K if the following
composition is an equivalence V-PsNat(L, S) ' V-PsNat(T, SK) in V:∫

c

V(Lc, Sc)
˜jK⊗α−→

∫
m

V(LKm,SKm)⊗
∫
m

V(Tm,LKm)
◦−→
∫
m

V(Tm,SKm).

The morphism j̃K is induced by the biend property as∫
c
A(Lc, Sc)

∫
c
A(LKm,SKm)

A(LKn, SKn)

jKn

˜jK

⇐JKn
in

The V-pseudofunctor L will also be denoted as PsLanKT .
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Theorem 2.6.2. Let V be a braided monoidal bicategory, C andM two V-bicategories, and
T : M → V as well as K : M → C, V-pseudofunctors. Suppose that for every c ∈ C the
bicoend

ηc : C(K−, c)⊗ T (−)
..⇒
∫ m

C(Km, c)⊗ Tm

exists. Then, so does the left Kan extension L = PsLanKT computed as

PsLanKT (c) =

∫ m

C(Km, c)⊗ Tm.

Proof. The argument proving the desired equivalence follows this chain of computations,
generalizing the one which can be found in [Mac71].

V-PsNat(L, S) '
∫
c

[Lc, Sc]

'
∫
c

ï∫ m

C(Km, c)⊗ Tm,Sc
ò

(2.14)
'

∫
c

∫
m

[C(Km, c)⊗ Tm,Sc]

Fubini'
∫
m

∫
c

[C(Km, c)⊗ Tm,Sc]

'
∫
m

∫
c

[Tm, [C(Km, c), Sc]]

(2.14)
'

∫
m

ï
Tm,

∫
c

[C(Km, c), Sc]

ò
Yoneda'

∫
m

[Tm,SKm]

' V-PsNat(T, SK)

Remark 2.6.3. The bicoend
∫ m

C(Km, c) ⊗ Tm is what should be called pointwise Kan

extension of T along K, in the sense that we have it computed at a “point” c.

2.7 Day convolution
Let us start with a brief recollection of the 1-categorical version of the story. If (C,�,1)
is a monoidal category enriched on a closed complete and cocomplete symmetric monoidal
category V, then we can equip the category of functors from C to V with a convolution
product defined as the coend

(F ⊗
Day

G)(X) =

∫ C,C′

C(C � C ′, X)⊗ F (C)⊗G(C ′).

An equivalent way to define this tensor product is as a left Kan extension of the exterior
product F �G : C × C → V along the monoidal product functor � : C × C → C
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C × C V

C

F�G

� ⇐α F ⊗
Day

G

The universal property of the left Kan extension gives a natural isomorphism between sets
of natural transformations

Nat(F ⊗
Day

G,H) ∼= Nat(F �G,H(−�−)).

Definition 2.7.1. Let (C,�,1) be a monoidal V-bicategory, and let F,G : C → V be two
V-pseudofunctors. The Day convolution product of the V-pseudofunctors F and G is defined
by the composition

F ⊗
Day

G : C V-PsFun((C ⊗ C)op ⊗ C ⊗ C) V.C(−�−,=)⊗F (−)⊗G(−)
∫ C⊗C

More explicitly, it is the V-pseudofunctor whose evaluation at x in C as the enriched bicoend
of the V-pseudofunctor

C(−�−, x)⊗ F (−)⊗G(−) : (C ⊗ C)op ⊗ C ⊗ C → V. (2.29)

Proposition 2.7.2. If F,G,H : C → V are V-pseudofunctors, and (C,�) is a monoidal
V-bicategory as above, then there is an equivalence in V

VPsNat(F ⊗
Day

G,H) ' VPsNat(F �G,H(−�−)).

Proof. It’s an immediate consequence of Theorem 2.6.2 and the definition of Kan extension.

Proposition 2.7.3. The Day convolution product defines a V-pseudofunctor

− ⊗
Day
− : JC,VK⊗ JC,VK −→ JC,VK.

Proof. The result uses pseudofunctoriality of the monoidal tensor pseudofunctor of V and of
the operation of taking bicoends. More precisely, from the pseudofunctoriality of ⊗V there
is a V-pseudofunctor

JC,VK⊗ JC,VK −→ J(C ⊗ C)op ⊗ (C ⊗ C), JC,VKK
(F,G) 7−→ C(−�−,=)⊗ F (−)⊗G(−)

Then, we can compose with the bicoend pseudofunctor
∫ C⊗C , and this composite clearly

gives − ⊗
Day
−.

Remark 2.7.4. The following Lemma should be true for bicategories of pseudofunctors
taking values in a more general V-bicategory D than V-PsFun(C,V). However, a notion of
bicategory tensored over V should be introduced. Also, we state a weak form since it suffices
for our goals. It should be clear at this point that most of biequivalences of bicategories
which are also enriched can be enhanced to enriched biequivalences.
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Lemma 2.7.5. Let C be a V-bicategory. There is a biequivalence induced by precomposition
with the Yoneda pseudofunctor

V-PsFunc(JC,VK, JC,VK) '−→ V-PsFun(Cop, JC,VK).

between the bicategory of weighted bicolimit-preserving V-pseudofunctors from the pseudo-
functor V-bicategory and the one of all V-pseudofunctors from Cop.

Proof. The correspondence, induced by y : Cop → JC,VK, is given by

V-PsFunc(JC,VK, JC,VK) −−−−→←−−−− V-PsFun(Cop, JC,VK)
F 7−−−−→ F ◦ y∫ c

V-PsNat(y(c),−)⊗ L(c)←−−−− [ L

On one hand, if we start with F , we go back and forth and apply the result to G : C → V,
we find, by iterating different form of Yoneda and by the preservation of bicoends,∫ c

V-PsNat(y(c), G)⊗ F (y(c)) =

∫ c ∫
c′
V(y(c)(c′), G(c′))⊗ F (y(c))

'
∫ c

G(c)⊗ F (y(c))

' F
Å∫ c

G(c)⊗ y(c)

ã
' F (G).

On the other hand, if we start by L : Cop → V-PsFun(C,V) and apply it to d, we get∫ c

V-PsNat(y(c), y(d))⊗ L(c) =

∫ c ∫
c′
V(y(c)(c′), y(d)(c′))⊗ L(c)

'
∫ c

L(c)⊗
∫
c′
V(y(c)(c′), y(d)(c′))

'
∫ c

L(c)⊗ y(d)(c)

' L(d).

The fact that this correspondence is pseudofunctorial directly follows from the pseudofunc-
toriality of the construction involved.

Proposition 2.7.6. Let (C,�) be a (braided) monoidal V-bicategory. Then, the Day con-
volution defines a (braided) monoidal structure on the V-bicategory JC,VK.

Proof. One first needs to check that − ⊗
Day
− : JC,VK⊗ JC,VK→ JC,VK is a V-pseudofunctor.

The unit pseudofunctor is then defined to be

u = y ◦ u : J −→ C −→ JC,VK,
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for J the unit V-bicategory, u the unit for the monoidal V-bicategory C, and y the Yoneda
V-pseudofunctor. Now observe that the Day convolution is actually a particular case of the
Yoneda extension provided in the correspondence of Lemma 2.7.5. There is, in other terms,
an equivalence y(c) ⊗

Day
y(c′) ' y(c�c′), provided by two iterations of the co-Yoneda lemma:

y(c) ⊗
Day

y(c′) =

∫ c1,c2

C(c1 � c2,−)⊗ C(c, c1)⊗ C(c′, c2)

'
∫ c1

C(c, c1)⊗
∫ c2

C(c1 � c2,−)⊗ C(c′, c2)

'
∫ c1

C(c, c1)⊗ C(c1 � c′,−)

' y(c� c′).

Therefore, there is an equivalence of V-pseudofunctors

Cop ⊗ Cop Cop

JC,VK⊗ JC,VK JC,VK

�op

y⊗y y'

⊗
Day

(2.30)

and this will allow to lift the whole structure via the biequivalence of Lemma 2.7.5. Consider
the monoidal structure for C

C⊗3 C⊗2

C⊗2 C

�⊗id

id⊗�

�⇐a

�

C⊗2 C⊗2

C C C C

�

⇐`
�

⇐r
u⊗id

id id

id⊗u

And let us call F`, Fr, Fa the V-pseudofunctors domains of respectively `, r, a, as well as
G`, Gr, Ga the respective codomains. Consider then in general terms F,G : D⊗n → E , and
suppose to have extensions of F and G along the Yoneda pseudofunctor, that is pseudo-
functors F ′, G′ and equivalences

Dop⊗n Eop Dop⊗n Eop

JD,VK⊗n JE ,VK JD,VK⊗n JE ,VK

F op

y⊗n ' y

Gop

y⊗n y

F ′

'

G′

(2.31)

Then, let us claim that there is an equivalence of categories

V-PsNat(F ′ ◦ y⊗n, G′ ◦ y⊗n) ' V-PsNat(G,F ). (2.32)

That is because a V-pseudonatural transformation γ : F ′ ◦ y⊗n ⇒ G′ ◦ y⊗n consists of, for
every object d in D⊗n, a morphism in V

γd : 1 −→ JE ,VK(F ′(y⊗n(d)), G′(y⊗n(d))).
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The latter is, by (2.31) and Yoneda lemma∫
e

[F ′(y⊗n(d))(e), G′(y⊗n(d))(e)] '
∫
e

[y(F (d))(e), y(G(d))(e)]

'
∫
e

[C(Fd, e), C(Gd, e)]

' C(Gd, Fd).

Hence, γd correspond to a map 1→ C(Gd, Fd). The same equivalences in V determine also
the structural 2-cell corresponding to γdd′ . This establishes the equivalence (2.32). Now
observe that in virtue of the definition of the unit u for JC,VK and the equivalence (2.30),
the situation depicted for these pseudonatural F ⇒ G is the very same of `op : G` ⇒ F`,
and similarly of rop and aop. The picture is that we are building parallelepipeds on each of
the structures `op, rop, aop with parallel Yoneda pseudofunctors

Cop ⊗ Cop

Cop Cop

JC,VK⊗ JC,VK

JC,VK JC,VK

⇐

`op
�

y⊗y

u⊗id

y y

⊗
Day

u⊗id

and looking for a top face to define the monoidal left unitor for JC,VK. This is provided by
computation (2.32) and Lemma 2.7.5. The same works for r and a. Now, let’s come to the
higher level structure. Consider π and µ for (C,�). These are 2-cells in the V-bicategories
V-PsFun(C⊗4, C) and V-PsFun(C⊗2, C). Each component of the V-modification π is a 2-cell
in V

1 C(((eb)c)d, e(b(cd)))

1a◦a◦a1

a◦a

⇐πebcd

Therefore, π is a V-modification defined between V-pseudonatural transformations them-
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selves going from F = � ◦ �1 ◦ �11 to G = � ◦ 1� ◦11�

C⊗4 C⊗4

C⊗3 C⊗3 C⊗3 ∼= C⊗3

C⊗3
π
V C⊗2

C⊗2 C⊗2 C⊗2 C⊗2

C C

�11 11�

1�1

�11 11�

a1⇒

�1 1�

1�

�1

�1

1�

1a ⇒

1� �1 ⇒ a
�a⇒

� �

⇒a

� �

(2.33)

Thus, F and G so defined clearly are again such as in (2.31), with extensions F ′, G′ obtained
by simply replacing occurrences of � with ⊗

Day
. Let us now consider the opposite version of

(2.33)

Cop⊗4 Cop⊗4

Cop⊗3 Cop⊗3 Cop⊗3 ∼= Cop⊗3

Cop⊗3
πop

V C⊗2

Cop⊗2 Cop⊗2 Cop⊗2 Cop⊗2

Cop Cop

�op11 11�op

1�op1

�op11 11�op

a1⇐

�op1 1�op

1�op

�op1

�op1

1�op

1a ⇐

�op1 1�op ⇐ a

�op
a⇐

�op �op

⇐a

�op �op

and build parallelepipeds along parallel Yoneda pseudofunctors. The same equivalences
(2.32) and that of Lemma 2.7.5 (on 1- and 2-morphisms respectively, i.e. in both of cases
on V-modifications) will make π correspond to the desired modification
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JC,VK⊗4 JC,VK⊗4

JC,VK⊗3 JC,VK⊗3 JC,VK⊗3 ∼= JC,VK⊗3

JC,VK⊗3
π

V JC,VK⊗2

JC,VK⊗2 JC,VK⊗2 JC,VK⊗2 JC,VK⊗2

JC,VK JC,VK

⊗
Day

11 11 ⊗
Day

1 ⊗
Day

1

⊗
Day

11 11 ⊗
Day

a1⇒

⊗
Day

1 1 ⊗
Day

1 ⊗
Day

⊗
Day

1

⊗
Day

1

1 ⊗
Day

1a ⇒

⊗
Day

1 1 ⊗
Day ⇒ a

⊗
Daya⇒

⊗
Day

⊗
Day

⇒a

⊗
Day

⊗
Day

The non-abelian 4-cocycle condition on π then follows from the same condition on π. An
analogous work can be done for µ, γ, δ, and the correspondent normalization axioms.

A similar argument also works for the braided structure and the braiding axioms. R is
in fact a modification of the following sort

C⊗3 C⊗3 C⊗3 C⊗3

C⊗2 C⊗2
R
V C⊗3

C⊗2 C⊗2 C⊗2 C⊗2

C C

�1

1�

1�

�1

1σ

1� �1σ

β

⇐

� �

σ1

1� �1
a

⇐

�

β

⇐

� � �

=
=

β1

⇐

a

⇐

1β

⇐

and it can be lifted via the correspondent equivalences to the same structure on the enriched
pseudofunctor V-bicategory.



Chapter 3

Mackey pseudofunctors

A starting point for the process of categorifying the notion of Mackey functor is the observa-
tion (which can be found in [SP07]) that the Mackey formula can be expressed in a natural
fashion via categorical notions. Let i : H ⊆ G and j : K ⊆ G be subgroups of a finite group,
and consider an equivariant object such as a representation over a fixed ring k of, let’s say,
H. That is precisely a kH-module N , and the Mackey formula tells that one can compute
the restriction to K of the induction of N to G without necessarily knowing the induction on
G, via a choice of representatives in the set of double cosets H\G/K = {[x] = HxK, x ∈ G}
as

ResGKIndGHN
∼=

⊕
x∈H\G/K

IndKHx∩KcxResHH∩xKN.

Here, we recall the notation for conjugate subgroups xH = {x−1hx, h ∈ H}, and similarly
Kx = {xkx−1, k ∈ K}. Also, cx : Repk(H∩xK)→ Repk(Hx∩K) is the functor induced by
Hx ∩K → H ∩ xK mapping g 7→ xgx−1. If one allows oneself to deal with the more general
notion of groupoid, one can observe that the very same double coset arise in the categorical
construction of forming pseudopullbacks. Consider the groupoid

∐
[x]∈H\G/K H∩xK, whose

set of objects can be evidently be indicated as {[x] = HxK} (one for each connected
component), and observe that there are two groupoid morphisms (functors)∐

[x]∈H\G/K
H ∩ xK

H K

p q

mapping evidently on objects, and defined on morphisms to be

p : g 7→ g and q : (g = xkx : [x]→ [x]) 7→ k.

Also, there is an (invertible) natural transformation∐
[x]∈H\G/K

H ∩ xK

H K

G

p q

i

∼⇒
γ

j

(3.1)

143
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defined by γ[x] = x−1. Whenever g = xkx−1 : [x]→ [x] the natural square

∗ ∗

∗ ∗

γ[x]

ip(g)=g k=jq(g)

γ[x]

commutes in G. This natural isomorphism happens to be a pseudopullback (see Definition
3.1.3), and this leads to consider another more natural way to express the Mackey formula
(the one in the definition of a Mackey pseudofunctor 3.2.5). In this chapter we are going to
recollect some definitions, constructions and results from the theory of Mackey pseudofunc-
tors and Mackey motives. The main reference is [BD20], where the theory is introduced and
developed.

3.1 Pseudopullbacks
Definition 3.1.1. Let G be a 2-category. A comma square over a cospan f : A→ C ← B :g
of 1-morphisms in G is an object f/g together with a 2-cell

f/g

A B

C

p q

f

γ
⇒

g

such that the two following properties hold true.

(a) For every triple s : T → A, t : T → B, δ : fs ⇒ gt, there’s a unique h : T → f/g such
that

T

f/g

A B

C

s th

=
p q

=

f

γ
⇒

g

=

T

A B

C

s t

f

δ
⇒

g

We will write 〈s, t, δ〉 for such an induced h.

(b) For every pair of 1-cells h, h′ : T → f/g and every pair of 2-cells τA, τB such that

T

f/g

A B

C

h′ph

⇒ τA
q

p

f

γ
⇒

g

=

T

f/g

A B

C

h qh′

q

p

⇒τB

f

γ
⇒

g
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There’s a unique τ : h→ h′ such that pτ = τA and qτ = τB .

Example 3.1.2. Comma squares in Cat can be constructed explicitly as follows: for a
cospan of functors F : C → E ← D :G the category F/G has objects triples (C,D, γ) with
C in C, D in D and γ : F (C) → G(D) a morphism in E , while a morphism (C,D, γ) →
(C ′, D′, γ′) is a pair (α : C → C ′, β : D → D′) such that the square

FC FC ′

GD GD′

γ

Fα

γ′

Gβ

commutes. Then, functors C ← F/G→ D are the evident projections, so that each (C,D, γ)-
component of the natural transformation in the comma square

F/G

C ⇒ D

E

πC πD

F G

is precisely γ : FC → GD

On one side, the notion of comma square can be specialized to the notion of iso-comma
square by demanding γ to be invertible and the property (a) to hold for every invertible δ.
This last notion is what deserves the name of 2-pullback. Clearly, in (2, 1)-categories G the
two notions coincide. On the other hand, (iso-)comma squares happens to be too restrictive
for our purposes, in the precise sense that they are not preserved by biequivalences. A more
adequate notion is the one of pseudo-comma, and its subsequently defined "iso" version of
pseudopullback (also called Mackey squares in [BD20]).

Definition 3.1.3. Let G be a (2,1)-category with comma squares. A 2-cell

P

A B

C

qp

f

α
⇒

g

is called a pseudopullback if the induced morphism

〈p, q, α〉 : P −→ f/g

is an equivalence in G.

Example 3.1.4. As explained in Remark 2.2.7 in [BD20], for a cospan i : H ↪→ G←↩ K :j
of inclusion of subgroups, there’s a non-canonical equivalence of categories∐

[x]∈H\G/K

H ∩ xK ∼−→ i/j,

exhibiting the 2-cell (3.1) as a pseudopullback over the given cospan.
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Proposition 3.1.5. Let G be a (2,1)-category, f : A→ C ← B :g be a cospan admitting a
comma square and

P

A B

C

qp

f

α
⇒

g

a 2-cell. Then α is a pseudopullback if and only if the functor

G(T, P ) −→ G(T, f)/G(T, g) (3.2)
h 7−→ (ph, qh, αh) (3.3)

is an equivalence of categories for all objects T .

Proof. This is Proposition 2.1.11 [BD20]. The proof goes by observing how conditions (a)
and (b) for comma squares precisely give essential surjectivity and fully faithfulness for the
functor (3.2).

Remark 3.1.6. Proposition 3.1.5 suggests that we can (and we do, in this very moment)
define pseudopullbacks by the equivalent condition, even in the case comma squares happen
not to exist in G. In fact, one could directly define pseudopullbacks as pseudo limits over

the diagram

3.2 Mackey pseudofunctors
We consider now the hypotheses that are assumed on our base (2,1)-category G and its
distinguished class of morphisms J. Basically, these are an abstraction of the properties of
the (2,1)-category of finite groupoids and its faithful morphisms, but to move from these to
a more general setting will become necessary, especially in Section 3.4.

Definition 3.2.1. A 2-category G is said to be extensive if it admits finite coproducts and
if the pseudofunctor between comma 2-categories

G/H × G/K −→ G/(H tK)

(f : P → H, g : Q→ K) 7−→ (f t g : P tQ→ H tK)

is a biequivalence.

Definition 3.2.2. An essentially small extensive (2,1)-category G together with a class of
1-cells J (2-full subcategory) is said to be a spannable pair if

• J contains all equivalences, is closed under composition, 2-isomorphism, and every
map in J is faithful. Moreover, if ij ∈ J, so is j.

• For every cospan of 1-cells H i→ G
v← K with i in J, the pseudopullback
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P

H K

G

ṽ ĩ

i

γ
⇒

v

exists in G. Moreover, ĩ still belongs to J.

• For every finite family {u` : H` → G} the coproduct maps u :
∐
H` → G (exists and)

is in J if and only if every u` is.

Moreover, such a pair (G,J) is said to be cartesian if G and J also admit finite products.

Example 3.2.3. The main examples of spannable and cartesian pairs to keep in mind are
the (2,1)-category G = gpd of finite groupoids with its class of all 1-cells J, or with its class
of faithful 1-cells gpdf . Cartesian pairs are also the comma 2-categories (gpd/G, gpdf/G)
for every object G. The pair (gpdf , gpdf ) is spannable, but not cartesian, since the product
projections are not faithful.

Remark 3.2.4. If (G,J) is cartesian, so is (G×G,J×J). Every property is easily deduced
componentwise.

Definition 3.2.5. Let (G,J) be a cartesian pair, and C be an additive bicategory (Definition
B.0.11). A pseudofunctorM : Gop → C is a C-valued Mackey pseudofunctor for (G,J) if the
following conditions hold true.

(i) Additivity: For every finite family {G`} the canonincal map

M(
∐

G`)→
⊕
M(G`)

is an equivalence. In other words,M preserves finite products.

(ii) Induction: For every i : H → G in J, the morphism i∗ =M(i) : M(G)→M(H) in C
has a left adjoint i! and a right adjoint i∗

(iii) Mackey formulas: For every pseudopullback

P

H K

G

p q

i

γ
⇒

v

(3.4)

with i (and q) in J, the left and right mates γ! and (γ−1)∗ defined as

γ! =

M(H) M(G) M(K)

M(H) M(P ) M(K)

i!

⇒η i∗

v∗

q∗ ⇒ε

p∗

⇒γ∗

q!

(3.5)
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(γ−1)∗ =

M(H) M(G) M(K)

M(H) M(P ) M(K)

i∗

⇐ε i∗

v∗

q∗ ⇐η

p∗

⇐(γ∗)−1

q∗

(3.6)

are isomorphisms.

(iv) Ambidexterity: For every i in J there’s an isomorphism i! ∼= i∗.

It is useful for our next purposes to introduce a broader definition of a Mackey pseudo-
functor, expressing the presence of just a left adjoint for every restriction, along which any
pseudopullback has an invertible mate.

Definition 3.2.6. A left Mackey pseudofunctor is a pseudofunctor F : Gop → C into an
additive bicategory preserving products, i.e. F(

⊔
Gi) '

⊕
F(Gi), and such that:

(a) For every 1-cell i in J, the 1-cell Fi admits a left adjoint (Fi)! in C

(b) For any pseudopullback γ along an i in J, its left mate γ! is invertible:

P FP

X Y FX FY

Z FZ

qp (Fq)!

⇐γ!
γ
⇒

i v

Fp

(Fi)! Fv

Remark 3.2.7. Analogously, one defines a right Mackey pseudofunctor F : Gop → C by
demanding the existence of right adjoints (Fi)∗ to Fi for every i in J, as well as the corre-
spondent right mates to be invertible. Often, moreover, it will be convenient to talk about
pseudofunctors that enjoy all the properties of a (left, or right) Mackey one, except perhaps
additivity, and not necessarily having target an additive bicategory, but any bicategory.

Definition 3.2.8. A left quasi-Mackey pseudofunctor F : Gop → C into any bicategory C is
a pseudofunctor such that conditions (a) and (b) of definition 3.2.6 hold true.

There is a natural notion of morphisms between all of these objects, regardless being
left, right (see Remark 3.2.10 below) or quasi.

Definition 3.2.9. A morphism of (left, quasi-)Mackey pseudofunctors t : F1 ⇒ F2 for
(G,J) is a pseudonatural transformation such that for every i in J, the mate (t−1

i )! of t−1
i ,

defined as

F1X F2X

F1Y F2Y

tX

(F1i)! (F2i)!⇐(t−1
i )!

tY

=

F1X F2X F2Y

F1X F1Y F2Y

⇒ η

tX

⇒ t−1
i

(F2i)!

⇒ ε

(F1i)!

F1i

tY

F2i

is invertible.

Remark 3.2.10. For a morphism t : F1 ⇒ F2 between Mackey pseudofunctors, the right
mate
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(ti)∗ =

F1X F1Y F2Y

F1X F2X F2Y

i∗ tY

i∗⇐ε i∗⇐ti ⇐η

tX

i∗

is also invertible. For a morphisms between Add-valued Mackey pseudofunctors t : F1 ⇒ F2

this is proved at Proposition 6.3.1 in [BD20]. One can check that the proofs involved only
require additivity of the target bicategory, but not specifically being Add.

Definition 3.2.11. C-valued (left, quasi-)Mackey pseudofunctors for (G,J), together with
morphisms of (left, quasi-)Mackey and all modifications between pseudofunctors form bi-
categories denoted (`q)MackC(G,J). The ` evidently standing for left, the q for quasi.

Clearly, one can independently consider either being left (or right) or being quasi-Mackey.
We adopt intuitive and obvious variations in the name of the correspondent bicategory.

Remark 3.2.12. For the definition of (left, right) Mackey pseudofunctor M : Gop → C is
not actually necessary to require the target bicategory C to be additive, but just to have
biproducts.

However, we demand that since this is the case in many application, and since we have
the feeling that it could be interesting to consider and develop more general enrichments in
the target bicategory. For example, additive derivators (see [Gro13]).

3.3 The bicategory of Mackey 2-motives
In order to construct a universal category for the Mackey pseudofunctors, the idea realized
in [BD20] is to start from G and freely add left adjoints to morphisms in J. Then, this
bicategory will be symmetrized at the level of 2-cells so that the left and right adjoints will
coincide. In other words, as first step we are going to define a universal category for left
Mackey pseudofunctors.

Definition 3.3.1. Let (G,J) be a spannable pair. The bicategory Span = Span(G,J) is
defined by having

• 0-cells those of G;

• 1-cells H → G are spans of 1-cells in G;

H
u←− P i−→ G

with i in J

• 2-cells from H
u← P

i→ G to H u← Q
i→ G are equivalence classes of triples [α1, a, α2]

H P G

H Q G

⇒ α1

u i

a

v j

⇒α2

under the equivalence relation (α1, a, α2) ∼ (β1, b, β2) if and only if there is a 2-cell
ϕ : a⇒ b of G giving ϕα1 = β1 and β2ϕ = α2.
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The composition functor

◦K,H,G : Span(H,G)× Span(K,H) −→ Span(K,G)

is provided by forming pseudopullbacks. On objects, the composition functor maps the pair

(H
v← P

j→ G,K
u← Q

i→ H) to (K
uṽ← R

jĩ→ G) defined by the pseudopullback

R

P Q

K H G

ĩṽ

iu

γ
⇒

jv

On morphisms, the composition functor is defined by inducing a map as follows. Consider
two 2-cells [α1, a, α2] and [β1, b, β2], represented below together with the composition of
1-cells provided by pseudopullbacks:

R

K P Q G

H R′

K P ′ Q′ G

H

ṽ ĩ

a

u

i

γ ⇒

α1⇒

v

j

b

⇐

α2
ĩ′ṽ′

i′

u′
γ′ ⇒

⇒ β1
j′

v′

⇒β2

The 2-cell γ′ induces by the pseudopullback property an equivalence g : R′ → (i′/v′), while
the composition

R

P Q

P ′ Q′

H

ĩṽ

a i

γ
⇒

bv

i′

⇒α2
⇒ β1

v′

induces a morphism f : R→ (i′/v′). One can then define the composition
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K P R Q G

i′/v′

K P ′ R′ Q′ G

a

u ṽ ĩ

f

j

b
⇒ α1 =

g−1

=

∼=∼=

⇒β2

u′ ṽ′ ĩ′ j′

where the strictly commutative squares arise by definition of f , while the unlabeled isomor-
phism come from the definition of g and the isomorphism gg−1 ∼= id.

Remark 3.3.2. Observe how the construction in Definition 3.3.1 does not require exten-
sivity on G. However, this requirement is presented in order to induce from coproducts in
G biproduct in the span bicategory, on objects and locally on morphisms.

Proposition 3.3.3. Let (G,J) be a spannable pair. Then Span(G,J) has biproducts, induced
by coproducts in G, and is locally semi-additive. More precisely, ∅ is the zero object, and
the diagram

G H

G G tH H

G H

is a biproduct diagram for G,H. The diagrams

∅ P1 t P2

H G H G

(u1,u2) (i1,i2)

provide the zero morphism and the direct sum of two morphisms H ← Pk → G, for k = 1, 2.

Proof. This is Proposition 3.15 [Del19].

This last Proposition allows us to consider Span+ (Definition B.0.8), the bicategory with
the same objects and with the additive completion of Span(H,G) on every hom-category.
The bicategory Span+ is then an additive bicategory (see Definition B.0.11), and we can
consider (left) Mackey pseudofunctors valued in it. The first example of a pseudofunctor
valued in Span+ that we deal with is the canonical morphism

ι : Gop ↪→ Span ↪→ Span+.

The two following properties show that such a canonical map is a left Mackey pseudofunctor,
and though they are proved in [BD20] for Span, they clearly hold true for Span+, too.

Proposition 3.3.4. For every i : H → G in J there is in Span(G,J) an adjunction

(H
id←− H i−→ G) a (G

i←− H id−→ H)

for every i : H → G in J.
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Proof. This is Proposition 5.1.21 in [BD20].

Proposition 3.3.5. For every pseudopullback

P

H K

G

p q

i

γ⇒
u

in G with two parallel sides

i, q in J, the mate γ! of the 2-cell γ∗ in Span(G,J) is an isomorphism.

Proof. This is Lemma 5.1.25 in [BD20].

Corollary 3.3.6. The canonical pseudofunctors ι : Gop → Span is a left Mackey pseudo-
functor. The composition with the additive completion

Gop ι−→ Span ↪→ Span+

is a Mackey pseudofunctor.

Proof. This is a plain combination of Proposition 3.3.3, Proposition 3.3.4 and Proposition
3.3.5.

We are now ready to state and appreciate a fundamental result in the theory, exhibiting
the bicategory of spans as a universal object for left Mackey pseudofunctors.

Theorem 3.3.7. Let (G,J) be a spannable pair. Let C be any additive bicategory and
F : Gop → C be a left Mackey pseudofunctor. Then there is an additive pseudofunctor
F? : Span(G,J)→ C such that

Gop C

Span(G,J)

ι

F

F?

is commutative. Moreover, such a F? is unique up to a unique isomorphism. Conversely,
any additive pseudofunctor Span(G,J)→ C precomposed with ι enjoy the properties of a left
Mackey pseudofunctor.

Proof. This is Theorem 5.2.1 in [BD20]. Actually, the proof there is for the non-additive
case, that is for a left quasi -Mackey pseudofunctors F into any bicategory C. However,
under the hypothesis of F being left Mackey, together with C being additive, the result
makes F correspond to an additive pseudofunctors Span → C. The fact that F? preserves
biproducts is fairly obvious:

F?(
⊕

Gi) = F?(ι(
⊔
Gi)) = F(

⊔
Gi) '

⊕
F(Gi) =

⊕
F?(ιGi) =

⊕
F?(Gi).

It then follows from the general theory of additive bicategories that F? preserves then direct
sums of morphisms, too (Proposition A.7.14 [BD20]).

Remark 3.3.8. A symmetric result holds for a right Mackey pseudofunctor G by replac-
ing the bicategory Span(G,J) by its 2-cell dual Span(G,J)co, and hence giving rise to an
extension

G? : Span(G,J)co → C.
along the morphism Gop → Span(G,J)co. The latter is the pseudofunctor mapping u : H →
G to the 1-cell [G

u← H = H] and β : u⇒ v to [id, β−1, id].
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Now, Theorem 5.3.7 in [BD20] makes also morphisms of left Mackey pseudofunctors and
pseudonatural transformation of pseudofunctors Span→ C correspond. Whence the biequiv-
alence between the bicategory of C-valued left Mackey pseudofunctors and the bicategory
of additive pseudofunctors

`MackC(G,J) ' PsFun⊕(Span(G,J), C).

Observe that, by virtue of Remark B.0.9, the two bicategories above are also biequivalent
to PsFun⊕(Span+(G,J), C). The additivity may not necessarily hold on both sides and
the equivalence would still hold true. More precisely, we can consider left quasi -Mackey
pseudofunctors on the left hand side and the whole family of pseudofunctor from the (non-
additive completed!) bicategory of spans to C on the right hand side, that is

`qMackC(G,J) ' PsFun(Span(G,J), C).

At this point, the theory developed in [BD20] also defines the universal object for Mackey
pseudofunctors, by doubling 2-cells in Span. The idea behind this is that once we add a left
adjoint to the image of every morphism in J through the canonical inclusion Gop → Span,
we can turn adjunctions in two sided ones with a very general construction. Precisely, we
have

Lemma 3.3.9. Let (G,J) be a spannable pair. Each hom category Span(H,G) admits
pullbacks. Moreover, the composition functor preserves them in each variable.

Proof. This is Proposition 5.4.1, together with Lemma 5.4.14 in [BD20]

Definition 3.3.10. Let (G,J) be a spannable pair. The bicategory Mot = Mot(G,J) is
defined to be the local span bicategory ‘Span (Definition C.0.4, possible thanks to Lemma
3.3.9). It has then the same objects as those of Span, while on each hom-category we consider
the ordinary category of spans (Definition C.0.1)

Mot(H,G) = ¤�Span(H,G).

Remark 3.3.11. As for spans, it turns out that coproducts in G induce biproducts on
Mot(G,J), as well as biproduct on its hom-categories. This is proved for G a subcategory
of gpd at Proposition 7.1.3 [BD20], but thanks to the above result for Span (Proposition
3.3.3), we can conclude by using the following lemma.

Lemma 3.3.12. Let B be a bicategory for which the local span bicategory B̂ is possible.
If B has biproducts and is locally semi-additive, then B̂ inherits biproducts and local semi-
additivity.

Proof. This is an easy consequence of the definition, since for X ⊕ Y to be a biproduct in
B it means to have equivalences

B(Z,X ⊕ Y )
∼−→ B(Z,X)× B(Z, Y )

B(X ⊕ Y, Z)
∼−→ B(X,Z)× B(Y,Z)

For, it suffices to take the usual span of these equivalent categories, and find the canonical
equivalences



CHAPTER 3. MACKEY PSEUDOFUNCTORS 154

B̂(Z,X ⊕ Y )
∼−→ ¤�B(Z,X)× B(Z, Y ) ∼= ÿ�B(Z,X)×◊�B(Z, Y ) = B̂(Z,X)× B̂(Z, Y )

and similarly B̂(X ⊕ Y,Z)
∼−→ B̂(X,Z)× B̂(Y,Z) The same argument exhibits the isomor-

phism required for B̂(X,Y ) = ÿ�B(X,Y ) to have biproducts.

Corollary 3.3.13. Let (G,J) be a spannable pair. Then, Mot(G,J) inherits biproducts of
objects and biproducts on hom-categories from the inclusion

Span(G,J) ↪→ Mot(G,J).

Therefore, we can consider the additive completion of the bicategory of motives.

Definition 3.3.14. For a spannable pair (G,J) we define the bicategory of additive motives
to be the additive completion Mot+(G,J) of the (locally additive) bicategory of motives.

Mot+ is then additive, and we can evaluate Mackey pseudofunctors in it. A first example
of such a Mackey pseudofunctor will be the canonical map

mot : Gop −→ Mot ↪→ Mot+.

This follows form Proposition 6.1.11 of [BD20] and Lemma 3.3.12. From now on, we under-
stand bicategories of both spans and motives to be their additive completion, even if not
specified.

For what concerns the universal property of the bicategory of motives, it is expressed in
terms of a slightly more restrictive notion, since the operation of doubling 2-cells doesn’t
just produces isomorphic, but properly equal two sided adjoints. Therefore, it’s convenient
to set the following definition

Definition 3.3.15. A rectified Mackey pseudofunctor Gop → C for (G,J) is one such that
for every i in J left and right adjoints to i∗ coincide, i! = i∗, and such that the isomorphisms
(γ−1)∗ and γ! of (3.5) are each others’ inverses for every pseudopullback γ.

Proposition 3.3.16. Let (G,J) be a spannable pair, C be an additive bicategory and F : Gop →
C a rectified Mackey pseudofunctor. Then, there’s a unique - up to unique isomorphism -
additive pseudofunctor F̂ : Mot(G,J)→ C extending F along mot.

Proof. This is Theorem 6.1.13 in [BD20].

Proposition 3.3.17. Let t : M⇒N be any pseudonatural transformation between Mackey
pseudofunctors Gop → C into an additive bicategory C. Then, t extends to a pseudonatural
transformation M̂ ⇒ N̂ if t is a morphism of Mackey pseudofunctors. Conversely, if
s : M̂ ⇒ N̂ is any pseudonatural transformation, then s ◦ mot : M⇒ N is a morphism of
Mackey pseudofunctors.

Proof. This follows from Theorem 6.3.1 at [BD20]. Even if there it is proved only for
C = Add, the proof is essentially the same.

The bicategorical version of the universal property follows immediately.

Corollary 3.3.18. The precomposition with mot : Gop → Mot(G,J) provides a biequivalence
of bicategories

MackC(G,J) ' PsFun⊕(Mot(G,J), C).
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3.4 Monoidal structure on motives
The goal of this section is to consider the cartesian structure of the cartesian pair (G,J),
and use it in order to induce a braided monoidal structure on the bicategory of additive
motives.

Lemma 3.4.1. Let G be a 2-category with products. Then, the product 2-functor × : G×G→
G preserves comma squares and pseudopullbacks which exist in G.

Proof. This is just the fact that limits commute with limits, plus that products of equiva-
lences are equivalences.

Proposition 3.4.2. The pseudofunctor

F : Gop × Gop ×op

−→ Gop ι−→ Span

admits an extension

Gop × Gop Gop Span

Span× Span

ι×ι

×op
ι

⊗

making the diagram strictly commute. Moreover, this extension is unique up to a unique
isomorphism restricting to the identity on F .

Proof. The proof is an application of Theorem 5.2.1 [BD20] using G × G instead of G,
together with the fact that Span(G× G,J× J) ' Span(G,J)× Span(G,J). The hypothesis
of Theorem 5.2.1 asks for F to be left quasi-Mackey. Hence, we need to check that for every
1-cell (i1, i2) ∈ J×J, the arrow F(i1, i2) admits an adjoint in Span, and this is true thanks
to the fact that J is closed under products of 1-cells and that the property holds true for
the left quasi-Mackey pseudofunctor ι : G → Span. Similarly, for any pseudopullback γ in
G×G, its image under the product 2-functor is again a pseudopullback (Lemma 3.4.1), and
hence Fγ is the image of a pseudopullback via the left Mackey pseudofunctor ι, so it has
an invertible mate.

The goal of this section is to prove that the pseudofunctor defined in Proposition 3.4.2
defines a braided monoidal structure on the bicategory of spans, and also on that of motives.
The following analogous result also hold true.

Proposition 3.4.3. The pseudofunctor

H : Gop × Gop ×op

−→ Gop −→ Mot

admits a unique up to unique isomorphism extension

Gop × Gop Gop Mot

Mot×Mot

mot×mot

×op

⊗
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Proof. The proof is perfectly analogous to the one of Proposition 3.4.2, and is based on
Theorem 6.1.13 in [BD20]. In order to apply this result one need to ensure H to be such
that:

(a) There are two equal left and right adjoints i! a F(i) a i∗ for every 1-cell i in J. And
this is true being true for Gop ↪→ Mot, and J being closed under products.

(b) Both mates of any comma square are isomorphisms. For that we can use the fact that
comma squares are preserved by the product pseudofunctor (Lemma 3.4.1), and again
by the fact that mot sends comma squares with two parallel sides in J to 2-cells with
invertible mates.

(c) For every comma square γ it holds (γ−1)∗ = (γ!)
−1. Again, we have that comma

squares are preserved by the product pseudofunctor and that the condition holds true
for mot by Proposition 6.1.11 in [BD20].

Propositions 3.4.2 and 3.4.3 define then pseudofunctors underlying the monoidal struc-
ture on the bicategory of spans and motives respectively. From Theorem 5.3.7 and Theorem
6.3.6 in [BD20] we have that these monoidal structures are the images of the two pseudo-
functors F and H towards the biequivalences

`MackSpan(G× G,J× J) ' PsFun⊕(Span× Span,Span)

and

MackMot(G× G,J× J) ' PsFun⊕(Mot×Mot,Mot).

Analogously, for every natural n, we have biequivalences

`MackSpan(G
n,Jn) ' PsFun⊕(Spann,Span). (3.7)

MackMot(G
n,Jn) ' PsFun⊕(Motn,Mot) (3.8)

and clearly we can dop the additivity on both sides, finding, for the non-additive completed
bicategory of spans and motives,

`qMackSpan(G
n,Jn) ' PsFun(Spann,Span). (3.9)

qMackMot(G
n,Jn) ' PsFun(Motn,Mot) (3.10)

We want now to use these biequivalences to lift all the structure of the monoidal bicat-
egory (Gop,×op). That means, tensor and the identity pseudofunctors (Propositions 3.4.2
and 3.4.3), but also associator, unitors, pentagonator and 2-unitors. In order to do so, we
needed first to ensure that tensor and unit pseudofunctors are (once composed with the
canonical Gop → Mot), objects in the bicategory qMackMot(G,J).
Then, it is time to show that a, `, r and π, µ provide in the same way pseudonatural transfor-
mations and modifications in the bicategory qMackMot(Gn,Jn) for the correct arity n. For
the modifications the lift will be automatic, since all possible modifications are considered
in this bicategory. Then, we will see that we can also lift the relations that they satisfy.
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In order to do so, we need first to prove this key lemma, suited for the definition of mor-
phism of Mackey pseudofunctors. We suspect this result to be known yet, because of the
vast literature on mate theory, but we prove it here since we were not able to find it any-
where, as well as for the reader’s convenience, who may use it as a toy model for a string
diagrammatic proof.

Lemma 3.4.4. Let B be a bicategory, v! a v and u! a u be two adjunctions between 1-
morphisms, a, b two adjoint equivalences and α a 2-isomorphism, fitting into the following
diagram.

B A A′

B B′ A′

u!

u

a

v⇒ηu

b

⇒α

v!

⇒εv

Then, the above composite 2-cell is an isomorphism v!b
∼⇒ au!.

Proof. The 2-cell in question, α! for short, is depicted as a string diagram as

α

ηu

εv

u

v

b

a

b v!

u! a

where notationally we consider 1-cells going from left to right and 2-cells going from top to
bottom.

By assumption, besides the left adjoints of u and v and the inverse of α, we have invertible
units and counits for the two adjoint equivalences b−1 a b and a−1 a a. With these
ingredients, the string diagram notation forces us to define the inverse of α! as the 2-cell

α−1

ε−1
b

ηa

εb

η−1
a

ηv

εu

u! a

b v!

b

va

u

b−1

a−1

β =
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The following steps show how composition β ◦ α! gives the identity.

α−1

ε−1
b

ηa

εb

η−1
a

ηv

εu

u! a

b v!

b

va

u

b−1

a−1

α

ηu

εv

u

v

b

a

b v!

and the highlighted edge can be contracted by a triangular identity for the adjunction u! a u,
giving

α−1

ε−1
b

ηa

εb

η−1
a

ηv

b v!

b

va

u

b−1

α

εv

b v!

a

a−1

b

v

Now, by the a triangular identity for b, this is equal to
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α−1

ε−1
b

ηa

εb

η−1
a

ηv

b v!

b

va

u

b−1

α

εv

b v!

a

a−1

b

v

ε−1
b

η−1
b

and the highlighted part now clearly compose to the identity of b−1b, providing

α−1

ε−1
b

ηa

η−1
a

ηv

b v!

va

u

b−1

α
εv

b v!

a

a−1

v

η−1
b

b

Now, α and α−1 simplify, and everything that remains is again the identity by the
triangular identity for the composition of adjoints.
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ε−1
b

ηa

η−1
a

ηv

b v!

b−1

εv

b v!

a−1
η−1
ba

v
=

b v!

b v!

The proof of the fact that the other composite α! ◦β = id follows the same structure.

We are now ready to prove the following result.

Theorem 3.4.5. Let (G,J) be cartesian. Then the monoidal structure given by the cat-
egorical product on G ( i.e. the coproduct in Gop) extends to a monoidal structure on the
bicategory Span via the inclusion ι : Gop → Span.

Proof. In order to prove the statement we need first of all to make the monoidal structure
explicit. The unit is clearly given by the composition of pseudofunctors

1
1−→ Gop ↪→ Span,

while the tensor pseudofunctor is the one defined in Proposition 3.4.2. The two are the
correspondent under the biequivalence (3.9) of the pseudofunctors ι1 and ι×op, which are
left quasi-Mackey (hence in the left hand side of (3.9)), for n respectively equal to 0 and 2.
Let’s now consider the left unitor ` for the monoidal structure on (G,×)

G× G

G G

×

⇐`

id

1×id

and let’s look at its image by the 2-functor (−)op on bicategories (this is actually a 3-functor),
which goes as (−)op : BiCatco → BiCat (1-covariant and 2-contravariant), giving

Gop × Gop

Gop Gop

×op⇐

`op

id

1×id

Let us call L the upper composite pseudofunctor of two sides of this triangle. Then, let’s
define ` to be the whiskering ι`op

Gop Gop Span

id

L

⇐

`op ι
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and unpack this definition: ` is the data of a family of 1-equivalences `G : G → 1 × G in
Span coming from Gop, along with, for every morphism u : H → G in G, an invertible 2-cell
`u in Span (coming, again, from one of Gop)

G 1×G

H 1×H

`G

u∗ 1×u∗⇐`u

`H

subject to the usual requirement of unitality, functoriality and naturality (Definition 1.1.5).
What we want to prove is that ` : ι ⇒ ιL is a morphism of left quasi-Mackey pseud-

ofunctors, so that we can look at its correspondent via the biequivalence (3.9) for n = 1.
Hence, we first need to ensure ιL to be left quasi-Mackey. This is a straightforward conse-
quence of Proposition 3.3.4 and Proposition 3.3.5, since L preserves J and pseudopullbacks:
if j : H → G is in J, then L(j) = id1 × j : 1×H → 1×G, and being J closed by products
and containing isomorphisms this also is in J. Also, quite clearly, if γ is a pseudopullback,
then so is 1× γ (since pseudopullbacks are preserved by the product pseudofunctor).

Now, by definition of morphism of (left, quasi-)Mackey pseudofunctors, we need to check
that the mate of `−1

u is an isomorphism. Such a mate (`−1
u )! is

1×G G H

1×G 1×H H

(1×u)∗

`G

u∗

u!

(1×u)!

⇐ ε

`H

⇐ `−1
u

⇐ η

Hence, we immediately conclude from Lemma 3.4.4. A completely analogous construction
leads us to define the right unitor r and the associator a, as well as to observe that these
are morphisms of left quasi-Mackey pseudofunctors. This allows us to look at their image
in the bicategories PsFun(Spann,Span), for n = 3 in the case of a, and n = 1 for ` and r:

Span3 Span2

Span2 Span

⊗×id

id×⊗

⊗⇐a

⊗

Span2 Span2

Span Span Span Span

⊗

⇐`
⊗

⇐r
1×id

id id

id×1

For what concerns the higher structure, we can start again from (π, µ, γ, ρ), 2-cells in
PsFun(Gn,G) for a suitable n (equal to 4 for π and 2 for the 2-unitors), part of the monoidal
structure of (G,×). These are all modifications of the form
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Gn G⇐α2⇐α1

F1

F2

M
V

If we look at what happens after applying the 3-functor (−)op, one can check that it is
3-covariant, and hence we end up with a modification

(Gn)op Gop

⇐

αop
2

⇐

αop
1

Fop
1

Fop
2

Mop

V

This is to say that we can just define π, µ (as well as γ, ρ) as a whiskering of πop and
µop (and eventually γop, ρop) with ι. This explicitly means that each component, e.g. πG,
will be defined as the 2-cell in Span given by ι(πG). Then, we can consider their image
in PsFun(Spann,Span) via the usual biequivalence, since the 2-cells of `qMackSpan(Gn,Jn)
consist of all possible modifications. Axioms defining a monoidal bicategory are then satisfied
by pseudofunctoriality of the biequivalence.

Now, the very same proof will prove part of the next result, saying that we can actually
transfer the monoidal structure of the categorical product to a monoidal structure also on
the bicategory of motives:

Theorem 3.4.6. The cartesian monoidal structure on Gop extends to a monoidal structure
on the bicategory Mot.

Proof. The proof is analogous to the previous one and uses an analogous result to that used
in the previous one, namely the biequivalence (3.10). It’s clear how tensor and unit are
defined: one has the composite

mot ◦ 1 : 1 −→ Gop −→ Mot

and the extension (from Proposition 3.4.3):

Gop × Gop Gop Mot

Mot×Mot

mot×mot

×op
mot

�

It has to be shown that associator and unitors defined by whiskerings ` = mot`op, r = motrop

a = motaop, for `, r, a the monoidal structure for G, are 1-cells in qMackMot(Gn,Jn). But
our new structure is clearly the image of the structure built in Theorem 3.4.5 via the
pseudofunctor

PsFun((Gop)n,Span) −→ PsFun((Gop)n,Mot)

induced by the inclusion Span ↪→ Mot. Hence, the isomorphic mates in Span will still remain
isomorphisms in Mot, and as before this allows the lifting.
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3.5 The braided monoidal bicategory Add

In this section we start to deal with the case where V is the braided monoidal bicategory
Add. As a bicategory, Add has additive categories as objects, additive functors as 1-cells,
and natural transformations between them as 2-cells. The monoidal product of two additive
categories C and D is subsequently defined in terms of the usual monoidal product of Ab-
categories. Moreover Add is in fact a 2-category, since like for Cat composition is the usual
composition of functors, and hence is strict.

Remark 3.5.1. As for any enrichment, Ab-Cat enjoys a monoidal structure induced by the
one in Ab. The unit is Z, seen like any ring as an Ab-category with one object. The tensor
product (denoted ⊗Z as the monoidal product of Ab, for sake of readability) of two Ab-
categories C,D is the Ab-category C ⊗ZD having objects pairs of objects (C,D) in C0×D0,
and hom-objects C ⊗Z D((C,D), (C ′, D′)) = C(C,C ′) ⊗Z D(D,D′). There’s no reason for
this structure to pass to the 2-subcategory Add. However, there is a universal constructions
allowing to avoid this problem.

Definition 3.5.2. If C is an Ab-category, one can consider its additive hull C⊕, which is
the additive category defined by finite lists of objects in C, and the evident matrices of maps
in C as morphisms. More precisely, a morphism [c1, . . . , cn]→ [d1, . . . dm] in C⊕ is an m×n
matrix

(
fjk
)
j,k

with fjk : ck → dj in C

The additive hull construction (see for example [DT14] for more details) defines a 2-
functor

Ab-Cat −→ Add

which is left 2-adjoint to the inclusion Add ↪→ Ab-Cat, and is hence in particular such that
for all additive categories D there is a natural equivalence of functor categories

Add(C⊕,D)
'−→ Ab-Cat(C,D). (3.11)

This allows us to define a monoidal product of additive categories.

Definition 3.5.3. The monoidal structure on the 2-category Add of additive categories is
defined by the unit 1 = Z⊕ and the tensor product C ⊗D = (C ⊗ZD)⊕. The composition of
two elementary tensor morphisms (f ⊗ g) ◦ (f ′ ⊗ g′) is defined to be the elementary tensor
(ff ′ ⊗ gg′).

Remark 3.5.4. It is convenient to fix notation for addressing general elements of an additive
completion of a linear category. Objects of C⊕ are lists of objects in C, and morphisms are
matrices. A suggestive way to denote the list [c1, . . . , cn] is using the direct sum symbol⊕n

k=1 ck. Therefore, in particular, an object in a tensor product of additive categories
C ⊗ D = (C ⊗Z D)⊕ will be a list of pairs

⊕n
k=1(ck, dk).

Remark 3.5.5. Part of the structure of monoidal 2-category can be defined via the Yoneda
lemma. Each component `C of, let’s say, the monoidal left unitor `, is given from the chain
of equivalences of enriched functor categories, for every additive category C′,

Hom(1⊗ C, C′) ' Hom((1⊗Z C)⊕, C′)
(3.11)
' Hom(1⊗Z C, C′)

' Hom(1,Hom(C, C′))
(3.11)
' Hom(Z,Hom(C, C′))

' Hom(Z⊗Z C, C′) ' Hom(C, C′).
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Analogous arguments show how to construct the right unitor, but this does not work for
the associator1 The crucial point, even in 1-dimensional category theory, is that given a
full reflective subcategory of a monoidal category one can always define a tensor product
by tensoring in the largest category and then reflecting into the subcategory. However, this
need not be associative. The Day reflection theorem ([Day72]) gives conditions under which
this works (for the 1-categorical setting). In our case, we can define the associator explicitly
as follows.

Definition 3.5.6. Given a general object in (A⊗ B)⊗ C, which we denote

n⊕
i=1

( `(i)⊕
k=1

(aik , bik), ci
)
,

we let the associator to be the functor defined (on objects)

aA,B,C : (A⊗ B)⊗ C −→ A⊗ (B ⊗ C)
n⊕
i=1

Å `(i)⊕
k=1

(aik , bik), ci

ã
7−→

n⊕
i=1

`(i)⊕
k=1

(
aki , (bki , ci)

)
.

The definition on morphisms follows very naturally: if

f :

n⊕
i=1

Å o(i)⊕
r=1

(air , bjr ), ci

ã
−→

m⊕
j=1

Å p(j)⊕
k=1

(ajk , bjk), cj

ã
,

then f is a matrix

f =

Ö
f11 . . . f1n

...
...

fm1 . . . fmn

è
where each fji is a morphism

o(i)⊕
r=1

((air , bir ), ci) −→
p(j)⊕
k=1

((ajk , bjk), cj).

That means, each fij is itself a matrix of size p(j)× o(i). That means,

f =

âÅ
f11

kr

ã
k,r

. . .

Å
f1n

kr

ã
k,r

...
...Å

fm1
kr

ã
k,r

. . .

Å
fmn

kr

ã
k,r

ì
.

The morphism a(f) is then the matrix that we obtain by removing the internal parenthesis
in the matrix defining f . Its size is then

∑m
j=1 p(j)×

∑n
i=1 o(i), and each entry is then seen

as a one-entry matrix.
1Thanks to Steve Lack for pointing this out to me.
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Remark 3.5.7. One can then carefully but easily verify that this structure makes the
pentagon strictly commutative:

m⊕
j=1

(n(i)⊕
i=1

p(k)⊕
k=1

(ajik , (bjik , cji)), dj

) m⊕
j=1

n(i)⊕
i=1

p(k)⊕
k=1

(ajik , ((bjik , cji), dj))

m⊕
j=1

(n(i)⊕
i=1

(p(k)⊕
k=1

(ajik , bjik ), cji

)
, dj

) m⊕
j=1

n(i)⊕
i=1

p(k)⊕
k=1

(ajik , (bjik , (cji , dj)))

m⊕
j=1

n(i)⊕
i=1

(p(k)⊕
k=1

(ajik , bjik ), (cji , dj)
)

a

1aa1

a a

Therefore, one can choose π to be precisely the identity, and clearly the non-abelian 4-cocycle
condition 1.1.9 is satisfied. On the other hand, the monoidal unitor µ is not, unfortunately,
the identity: the triangle

(A⊗ 1)⊗B A⊗ (1⊗B)

A⊗B

a

r1 1`

is not strictly commutative in Add, since the diagram

m⊕
j=1

(n(k)⊕
k=1

(ajk , ujk), bj

) m⊕
j=1

n(k)⊕
k=1

(ajk , (ujk , bj))

m⊕
j=1

(n(k)⊕
k=1

ajk , bj

)
∼=

m⊕
j=1

n(k)⊕
k=1

(ajk , bj)

a

r1 1`

requires a canonical but non-identical isomorphism to commute. However, µ has a mate
which is the identity: it can in fact easily be checked that the square

(A⊗ 1)⊗B A⊗ (1⊗B)

A⊗B A⊗B

a

1`r−11

strictly commutes, and then that one can consider
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=id
µ∗

r−11 a 1`

The very same argument can be carried out for γ and δ, the two unitors which can be
considered part of the structure, and which are useful in order to state the axioms. They
can’t be chosen themselves to be identical, but their mates

(1⊗A)⊗B 1⊗ (A⊗B) (A⊗B)⊗ 1 A⊗ (B ⊗ 1)

A⊗B A⊗B A⊗B A⊗B

a

`

a

1r`−11 r−1γ∗ δ∗

do. This argument comes from a work in progress by Vanessa Miemietz and Fiona Torzewska
[MT25], who kindly helped me to sort this thing out by sharing their research with me. Then,
one observes in the end that the structure and the axioms for a monoidal bicategory can
easily be given in terms of these mates. For example, the left normalization axiom for the
structure π, µ∗, γ∗, δ∗ becomes

a(1`)1a1(r−11)1

π

a

a 1(`1)

1`

1a

a
a

a r−1(11)

r−11

a(1l)1a1(r−11)1

a

µ∗1

=

µ∗

1γ∗−1

This axiom, and similarly the right normalization, are then trivially true, since all of the
2-cells involved are identical. Also, they are equivalent to our original left and right normal-
ization axioms by simply applying triangular identities for the adjunctions involved. More
precisely, the equality above implies the usual left normalization axiom for the structure
defined by π = id,

µ = µ∗

r1

a `1
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and similarly γ and δ. This concludes that Add has a structure of monoidal bicategory.

Let us now come to the definition of the braiding.

Definition 3.5.8. Given the monoidal bicategory Add, we define a pseudonatural trans-
formation

Add×Add Add×Add

Add

σ

⊗ ⊗
⇐β

on a pair of additive categories A,B to be the functor

A⊗B −→ B ⊗A
m⊕
j=1

(aj , bj) 7−→
m⊕
j=1

(bj , aj)

and similarly, on a morphism, switching components of each entry of the matrix giving that
morphism.

Remark 3.5.9. With the above definition, we can conclude that Add is a braided monoidal
bicategory. In fact, the rest of the structure R and S, can be chosen to be identical, and then
to automatically satisfy the four braiding axioms of Definition 1.4.1, which only involve R,S
and π, also defined to be the identity in the monoidal structure (Remark 3.5.7). The reason
why R and S can be chosen to be identities, just reduces to checking the commutativity of
the hexagon diagrams. For example, the one defining R is⊕

k

⊕
j

(
akj , (bkj , ck)

) ⊕
k

⊕
j

(
(bkj , ck), akj

)

⊕
k

Å⊕
j

(akj , bkj ), ck

ã ⊕
k

⊕
j

(
bkj , (ck, akj )

)

⊕
k

Å⊕
j

(bkj , akj ), ck

ã ⊕
k

⊕
j

(
bkj , (akj , ck)

)

β

aa

β1

a

1β

and similarly for the one defining S.

We have hence proved the following proposition.

Proposition 3.5.10. With the definition above, Add is equipped with a structure of braided
monoidal bicategory.

Remark 3.5.11. There is a further structure that one can consider on a braided monoidal



CHAPTER 3. MACKEY PSEUDOFUNCTORS 168

bicategory, and is that of a syllepsis ν : β ◦ β ⇒ id:

B × B B × B

B × B
ν
V id⊗

B

σ

⊗ ⊗

σ=

ββ

The definition for the syllepsis axioms can be found in [GO13]. They are the following

(BA)C B(AC) (BA)C B(AC)

(AB)C B(CA) = (AB)C B(CA)

A(BC) (BC)A A(BC) (BC)A

a

1β−1 1β

a

1ββ−11β1

a

⇐S
∗

β1

a

⇐R

β−1

a

β−1

β a

ν∗ν∗

ν∗

and

A(CB) (AC)B A(CB) (AC)B

A(BC) (CA)B = A(BC) (CA)B

(AB)C C(AB) (AB)C C(AB)

a−1

β−11 β1

a−1

β11β−11β

a−1

⇐R
∗

1β

a−1

⇐S

β−1

a−1

β−1

β a−1

ν∗11ν∗

ν∗

Moreover, for a sylleptic monoidal bicategory, to be symmetric means to satisfy the following
further axiom

BA AB

AB BA

β

ββ

β

ν
=

BA AB

AB BA

β

ββ

β

ν

Therefore, one can observe that the identity can be taken as a syllepsis for Add, and the
axioms will hold true, since for Add the two braiding structures R and S are also defined
to be the identity.

To sum up, we have the following.

Proposition 3.5.12. The bicategory Add, with the structure above, is a symmetric monoidal
bicategory.
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3.5.1 Bilimits and bicolimits in Add

As well known, the right notion of limits and colimits in enriched category theory uses the
notion of weights, which are V-valued V-functors replacing the constant functor ∆1, when
V is different than Set. In the bidimensional setting we can define the following.

Definition 3.5.13. Let F : P → K be a V-pseudofunctor and W : Pop → V a weight. The
bicolimit of F weighted by W is an object W ? F in K together with an equivalence of
V-pseudofunctors

K(W ? F,=) ' V-PsNat(W,K(F (−),=))

Dually, one can define a bilimit for W : P → V to be an object {W,F} together with a
V-pseudonatural equivalence

K(c, {W,F}) ' V-PsNat(W,K(c,G(−)))

for all c in K.

The way this definition comes out relates to the non-enriched (and 1-dimensional) case
in the following way. For a limit over a diagram G : P → K, we have

K(a, LimG) ∼= PsNat(const(a), G) ∼= PsNat(∆1,K(a,G−)),

so that it becomes natural to consider any enriched functor F , instead of ∆1: P → Set.
The point that is worth to remark is again (as for the definition of extra-naturality) the fact
that the constant enriched functor doesn’t even exist in general.

The goal of this section is to prove that Add-valued bi(co)ends exist. This can be done
by proving that bi(co)ends can be expressed using bi(co)limits, ad that Add admits all
bi(co)limits

Remark 3.5.14. The following result should be possibly stated and proved in a more
general flavor, but we prove it for the monoidal bicategory V = Add because it is easier to
work with objects of the hom-objects. However, the proof is done in sufficiently enriched
terms in a way that allows to recognize the steps for a proper adaptation to a general V.

Proposition 3.5.15. Let V = Add. Suppose P : Bop ⊗ B → V is a V-pseudofunctor. Then
its bicoend (in the sense of Definition 2.2.1) can be computed as the hom-weighted bicolimit
B(−,−) ? P .

Proof. By definition of weighted bicolimit, our goal is to prove the equivalence

[

∫ b

P (b, b), a] ' V-PsNat(B(−,−), [P (−,−), a]).

The latter is by definition
∫
b,b′

[B(b, b′), [P (b′, b), a]] '
∫
b

∫
b′

[B(b, b′), [P (b′, b), a]], via Fubini,
while the first is equivalent to

∫
b
[P (b, b), a]. Hence, it suffices to prove an equivalence of

V-pseudofunctors

[P (−,=), a] '
∫
b

[B(−, b), [P (b,=), a]] : Bop ⊗ B −→ V

On each object (d, c) of Bop ⊗ B, then, one has to prove the equivalence [P (c, d), a] '∫
b
[B(c, b), [P (b, d), a]]. Using essential uniqueness of biends, we aim to exhibit a biend stuc-

ture
i : [P (c, d), a]

..⇒ [B(c,−), [P (−, d), a]].
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The morphism ib is defined by mapping a morphism w : P (c, d)→ a in V to

B(c, b)
w⊗P (−,d)−→ [P (c, d), a]⊗ [P (b, d), P (c, d)]

m−→ [P (b, d), a].

From now on we, use the assumption of working in V = Add. On the 2-dimensional
component, if , for f object in B(c, b), is defined by

[P (c, d), a] [B(c, b), [P (b, d), a]]

[B(c, c), [P (c, d), a]] [B(c, c), [P (b, d), a]]

ib

ic B(c,f)∗⇐if

[P (f,d),a]]∗

having components simply provided by the functoriality for P (−, d): for all w : P (c, d)→ a

B(c, b)

B(c, c) [P (b, d), a]

[P (c, d), a]

ib(w)

⇐(if )w

B(c,f)

ic(w) [P (f,d),a]

is defined by having each component at h object in B(c, c)

((if )w)h : ib(w)(fh) = w ◦P (fh, d)
w∗fun−1

−→ w ◦P (h, d)◦P (f, d) = ic(w)(h)◦P (f, d). (3.12)

Such an i, being a transposition obtained from the pseudonatural

[P (−, d), a] : B(−,−)⇒ [[P (−, d), a], [P (−, d), a]]

evaluated at c in the first variable, happens to be extra-pseudonatural. It remains to prove
that the extra-pseudonatural transformation i is terminal. Let

j : x
..⇒ [B(c,−), [P (−, d), a]]

be an extra-pseudonatural transformation. We look for the pair (j̃, {Jb})

x [P (c, d), a]

[B(c, b), [P (b, d), a]]

jb

j̃

⇒Jb ib

witnessing terminality. The morphism j̃ is defined to be

j̃ : x
jc⊗uc−→ [B(c, c), [P (c, d), a]]B(c, c)

ε−→ [P (c, d), a],

so that we look for an invertible Jb whose components for each object e in the additive
category x will be of the form

(Jb)e : jb(e) −→ ib(ε(jc(e), idc))
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Now, by definition of ib and of the counit, to give such a natural isomorphism (Jb)e of
additive functors B(c, b) → [P (b, d), a] means to give, for every object f in the additive
category B(c, b), an invertible map

((Jb)e)f : jb(e)(f) −→ jc(e)(idc) ◦ P (f, d).

This is precisely given by the extra-pseudonatural structure of j. By hitting the structural
jcb with f : 1→ B(c, b), we find

x [B(c, b), [P (b, d), a]]

[B(c, c), [P (c, d), a]] [B(c, c), [P (b, d), a]]

jb

jc [B(f,c),1]⇐jf

[1,[P (f,d),1]]

which is indeed a natural transformation whose components

(jf )e : jb(e) ◦ B(c, f)→ [P (f, d), a] ◦ jc(e)

are themselves natural transformations of functors B(c, b)→ [P (b, d), a]. If we evaluate such
a natural transformation at the object idc we find, as desired, an invertible map

((Jb)e)f := ((jf )e)idc : jb(e)(f) −→ jc(e)(idc) ◦ P (f, d).

Then, it remains to prove the biend axioms.
Let us call Q(−,−) = [B(c,−), [P (−, d), a]] the pseudofunctor in question. The first

axiom for i to define a biend then says that the following equality of 2-cells should hold
true:

B(c, b) [Q(b, b), Q(c, b)]

[B(c, c), [P (c, d), a]] [x,Q(c, b)]

[[P (c, d), a], Q(c, b)]

Q(−,b)

Q(c,−)

i∗b
⇐icb

j∗b

i∗c

⇐J∗b

j̃∗

=

B(c, b) [Q(b, b), Q(c, b)]

[B(c, c), [P (c, d), a]] [x,Q(c, b)]

[[P (c, d), a], Q(c, b)]

Q(−,b)

Q(c,−)
j∗b

⇐jcb

i∗c

j∗c

⇐J∗c
j̃∗

That means, we want the square

[B(c, f), [P (b, d), a]] ◦ jb [B(c, c), [P (f, d), a]] ◦ jc

[B(c, f), [P (b, d), a]] ◦ ib ◦ j̃ [B(c, c), [P (f, d), a]] ◦ ic ◦ j̃

jf

1∗Jb 1∗Jc

if∗1

(3.13)
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to commute in the additive category [x, [B(c, c), [P (b, d), a]]] for each f in B(c, b). Let us eval-
uate the two sides of (3.13), which are natural transformations of functors x→ [B(c, c), [P (b, d), a]],
at an object e in x.

jb(e) ◦ B(c, f) [P (f, d), a] ◦ jc(e)

ib(j̃(e)) ◦ B(c, f) [P (f, d), a] ◦ ic(j̃(e))

(jf )e

(Jb)e∗B(c,f) [P (f,d),a]∗(Jc)e

(if )j̃(e)

Again, this is a square of natural transformations of (additive) functors B(c, c)→ [P (b, d), a],
and hence we can evaluate it at a morphism h : c→ c, finding (using the definition of J)

jb(e)(fh) jc(e)(h) ◦ P (f, d)

jc(e)(idc) ◦ P (fh, d) jc(e)(idc) ◦ P (h, d) ◦ P (f, d)

((jf )
e
)
h

((jfh)
e
)
idc

((jh)e)idc
∗P (f,d)

((if )
j̃(e)

)
h

(3.14)

Now, by keeping in mind the definition of if at (3.12), it should be clear that this equality
is precisely given by the functoriality axiom for the extra-pseudonatural transformation j.
That axiom gives, in its evaluation at composable arrows c h→ c

f→ b, and then at e object
in x, the commutativity of the following square of natural transformations

[P (f, d), a] ◦ (jc)e ◦ B(c, h)

jb(e) ◦ B(c, f) ◦ B(c, h) [P (f, d), a] ◦ [P (h, d), a] ◦ jc(e)

jb(e) ◦ B(c, fh) [P (fh, d), a] ◦ jc(e)

[P (f,d),a]∗(jh)e(jf )
e
∗B(c,h)

jb(e)∗fun

(jfh)
e

fun−1∗jc(e)

If we evaluate it at idc, we get precisely the equality (3.14) desired

jb(e)(fh) jc(e)(h) ◦ P (f, d)

jc(e)(idc) ◦ P (fh, d) jc(e)(idc) ◦ P (h, d) ◦ P (f, d)

((jf )
e
)
h

((jfh)
e
)
idc

((jf )
e
)
idc
∗P (f,d)

jc(e)∗fun−1

Let us now prove the second biend axiom, which in general states that whenever `, k : x→
[P (c, d), a] are two morphisms and {Γa : im`⇒ imk} indexed by objects m in B is a family
of maps such that
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B(c, b) [Q(b, b), Q(c, b)]

[Q(c, c), Q(c, b)] [[P (c, d), a], Q(c, b)]

[[P (c, d), a], Q(c, b)] [x,Q(c, b)]

Q(−,b)

Q(c,−)

⇐icb

i∗b

i∗b

i∗c

⇐Γ∗b

`∗

k∗

= (3.15)

B(c, b) [Q(b, b), Q(c, b)]

[Q(c, c), Q(c, b)] [[P (c, d), a], Q(c, b)]

[[P (c, d), a], Q(c, b)] [x,Q(c, b)]

Q(−,b)

Q(c,−) ⇐icb
i∗b

i∗c

i∗c
⇐Γ∗c `∗

k∗

There is a unique γ : `⇒ k such that for all m in B it holds im ∗γ = Γm. Now if we evaluate
(3.15) at f in B(c, b), we find a commutative square of natural transformation

ib(`(e)) ◦ B(c, f) ib(k(e)) ◦ B(c, f)

[P (f, d), a] ◦ ic(`(e)) [P (f, d), a] ◦ ic(k(e))

(Γb)e∗B(c,f)

(if )
`(e)

(if )
k(e)

[P (f,d),a]∗(Γc)e

which, evaluated at h, give an equality

`(e) ◦ P (fh, d) k(e) ◦ P (fh, d)

`(e) ◦ P (h, d) ◦ P (f, d) k(e) ◦ P (h, d) ◦ P (f, d)

((Γb)e)fh

`(e)∗fun−1 k(e)∗fun−1

((Γc)e)h∗P (f,d)

Now if we specialize this commutative square at idc, we are allowed to glue on both sides
the commutative squares provided by the pseudofunctoriality axiom for P (−, d):

`(e) ◦ P (f, d) `(e) ◦ P (f idc, d) k(e) ◦ P (f idc, d) k(e) ◦ P (f, d)

`(e) ◦ P (f, d) `(e) ◦ P (idc, d) ◦ P (f, d) k(e) ◦ P (idc, d) ◦ P (f, d) k(e) ◦ P (f, d)

P (ρ,d)−1

ρ=id

((Γb)e)fidc

fun−1

P (ρ,d)

fun−1 ρ=id

un∗P (f,d) ((Γc)e)h∗P (f,d) un−1∗P (f,d)

(3.16)
Observe how we use the fact that we are dealing with a 2-category V = Add, so that ρ is
the identity and the composition with the identity is strict. If, moreover, we specialize at
c = b and f = id, then we can define γe to be the resulting composition of the two (equal)
morphisms above by the appropriate unitors un : `(e) = `(e) ◦ idP (c,c) → `(e) ◦ P (idc, d)
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and un−1 : k(e) ◦ P (idc, d) → k(e) ◦ idP (c,c) = k(e). Now, it follows that for all m object
in B, we have (im ∗ γ)e = im(γe) (as functor applied on a morphism), which evaluated at
f : c → m gives (im(γe))f = γe ∗ P (f, d), which is precisely the lower side of (3.16), and
which, by commutativity of the same, is equal to the upper side (for b = m), which is
precisely ((Γm)e)f .

Definition 3.5.16. A sub-(V-)bicategory K′ ⊂ K is said to be bireflexive if there exists a
left pseudoadjoint to the inclusion (V-)pseudofunctor.

Proposition 3.5.17. Let W : P → Add,W ′ : Pop → Add be weights and F : P → Add an
additive pseudofunctor. Then, F admits a bilimit {W,F} and a bicolimit W ′ ? F .

Proof. We claim that {W,F} is given by the object Add-PsNat(W,F ), which is the additive
category having objects the Add-pseudonatural transformations, and morphisms modifica-
tions between them. The proof then follows

V(a,

∫
p

V(Wp,Fp)) '
∫
p

V(a,V(Wp,Fp))

'
∫
p

V(a⊗Wp,Fp)

'
∫
p

V(Wp,V(a, Fp))

which exactly means V(a,V-PsNat(W,F )) ' V-PsNat(W,V(a, F−)). For what concerns
weighted bicolimits the argument consists of observing that the 2-category (i.e. Cat-enriched
category) Ab-Cat of categories enriched in abelian groups admits 2-colimits (the usual en-
riched 1-categorical colimits when the base of the enrichment is Cat), and hence in par-
ticulars bicolimits. The bicategory Add is a bireflexive 2-full sub-bicategory of Ab-Cat.
Therefore, we have a pseudofunctor Ab-Cat → Add which creates bicolimits. In general,
If L a U : K′ ↪→ K is a reflexive sub-bicategory, F : P → K′ and W : Pop → V are V-
pseudofunctors, one has that

W ? F ' L(W ? UF ).

The proof follows by

K′(L(W ? UF ), a) ' K(ColimFUF,Ua)

' V-PsNat(F,K(UF (−), Ua))

' V-PsNat(F,K′(F (−), a)).

For more detailed references about weighted bi(co)limits, see [GS15]. We have now the
vocabulary to express the enriched version of Theorem 3.4.6. Here, of course, the bicategory
of motives is intended to be in its additive version.

Theorem 3.5.18. The cartesian monoidal structure on G extends to a monoidal structure
on the Add-bicategory Mot.

Proof. Let’s start from the fact that the structure (Mot,�,1, a, `, r, π, µ) defines a monoidal
bicategory (that is, satisfies the non-abelian 4-cocycle condition). Thus, it suffices to show
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that such structural cells in Bicat, that is pseudofunctors �,1, pseudonatural transforma-
tions a, `, r and modifications π, µ, are actually also families of cells in Add-Bicat. Let
us denote (as a common convention throughout this work) with the same symbol ⊗ both
the tensor product in Add and the induced tensor product in Add-Bicat. Then, to say
that � : Mot ⊗ Mot −→ Mot is an enriched pseudofunctor means that it defines on each
hom-category an additive functor

φ : Mot(G,G′)⊗Mot(H,H ′) −→ Mot(G�H,G′ �H ′).

For such a functor φ to be additive means to be additive in each variable. So, consider for
each let’s say f = (H

f1← P
f2→ H ′) in Mot(H,H ′), and pair of maps g = (G

g1← Q
g2→ G′), g′ =

(G
g′1← Q′

g′2→ G′). Since the direct sum of motives is induced by the coproduct in G, we have
that the image of g ⊕ g′ through the functor φ(−, f) is

φ(g ⊕ g′, f) = (G×H (g1,g
′
1)×f1←− (Q tQ′)× P (g1,g

′
1)×f2−→ G′ ×H ′)

which is, since products distribute over coproducts,

(G×H (g1×f1,g
′
1×f1)←− Q× P tQ′ × P (g1×f2,g

′
1×f2)−→ G′ ×H ′) = φ(g, f)⊕ φ(g′, f).

Let us now consider the associator and the unitors, which we claim to define enriched
pseudonatural transformation. That is, the structure of pseudonatural transformation of,
let’s say `

Mot×Mot

1×Mot Mot

�

⇐`
u×id

also defines a structure of enriched pseudonatural transformation

Mot⊗Mot

1⊗A Mot Mot

�

⇐`
′

u⊗Aid

where here 1 is the unit Add-bicategory, having one object and hom-category Z⊕. On each
1-cell component `′G : Z⊕ −→ Mot(1×G,G) is defined by mapping the n-tuple object to the
direct sum

⊕
n `G. So defined, this is the image of `G via the canonical additive functor

Mot(1×G,G) −→ Add(1,Mot(1×G,G)) (3.17)

This makes `′G evidently additive. For what concerns the higher structure `′u, for u : H → G,
define the pseudonatural transformation `′H,G

Mot(H,G) Mot(H,G)

Mot(1×H, 1×G) Mot(1×H,G)

id

⊗◦(u⊗Aid) `H
∗

⇐`
′
HG

`G∗
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by letting (`′HG)u = `u. Since no other requirement holds for morphisms of additive func-
tors, this is automatically a cell in Add-Bicat. Similarly, it works for right unitor and
associator. Then, enriched pseudonatural transformation axioms easily follow from those
of natural transformation. For modifications, one can consider again the canonical additive
functor 3.17, for the appropriate F and G between which are defined the pseudonatural
transformations consisting of domain and codomain of π and µ, and define each component
of the enriched modification to be the image through this additive functor (at the level of
1-cells) of the component of the non-enriched one. The modification axiom easily follow, as
well as the non-abelian 4-cocycle condition for π.

3.6 Green pseudofunctors
In this section we deal with the case where a monoidal structure is given on the target A of a
Mackey pseudofunctor for (G,J). An enhancement of the notion of a Mackey pseudofunctor
F : Gop → A in this context arise then naturally by requiring a monoid structure in the
bicategory PsFun(Gop,A) which is compatible with the adjunctions. In order to properly
express this compatibility, we need to distinguish between two possible ways of considering
pairings of pseudofunctors. All these notions are to be found in greater detail at [Del22]; the
new results are Theorem 3.6.7 and its Corollary 3.6.8, which use the machinery of the Day
convolution in order to furnish a conceptually clearer definition of a Green pseudofunctor.

3.6.1 Internal and external pairings
Definition 3.6.1. LetM,N : Gop → A be two pseudofunctors valued in a monoidal bicat-
egory A. Then we set

M�N : Gop × Gop M×N−→ A×A ⊗−→ A,

M⊗N : Gop ∆−→ Gop × Gop M�N−→ A

where ∆ denotes the diagonal 2-functor. These operations on pseudofunctors are respec-
tively called external and internal tensor product.

Proposition 3.6.2. Let A be a braided monoidal bicategory. The mapping (M,N ) 7→
M ⊗ N together with the pointwise braiding, define a braided monoidal structure on the
bicategory PsFun(Gop,A), where all structural equivalences are defined diagonally.

Proof. It is easy to check that the monoidal structure of A induce a monoidal structure on
the pseudofunctor category, by defining pointwise associators and unitors. The same is true
for the braided structure. Axioms of braided monoidal bicategory directly descend from
those for A.

Definition 3.6.3. LetM,N ,L : Gop → A be three pseudofunctors. An internal pairing is
a pseudonatural transformation of the form

� : M⊗N −→ L.

An external pairing is a pseudonatural transformation of the form

� : M�N −→ L(−×−).
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These two concepts are in fact the same in virtue of the adjunction

C × C C.
×

∆

⊥

Namely, we have

Proposition 3.6.4. For any triple of pseudofunctorsM,N ,L : Gop → A there’s a canonical
equivalence of categories

PsNat(M⊗N ,L) ' PsNat(M�N ,L(−×−)).

Proof. This is Proposition 4.10 in [Del19].

We are going to use the following definition of Green pseudofunctor.

Definition 3.6.5. An A-valued Green pseudofunctor M for a cartesian pair (G,J) is a
pseudomonoid object

� : M⊗M−→M

in the braided monoidal bicategory PsFun(Gop,A) such that the underlying monoid object
is a Mackey pseudofunctor for (G,J), and such that the corresponding (via 3.6.4) exterior
product M �M → M(− × −) is a morphism of quasi-Mackey pseudofunctors in each
variable.

Remark 3.6.6. The exterior productM�N of Mackey pseudofunctorsM,N : Gop → A
is not a Mackey pseudofunctor for (G × G,J× J). The problem clearly arise in additivity
and for the basic reason that (a+ b)(c+ d) 6= ac+ bd, since

M�N ((H1, G1) t (H2, G2)) =M�N (H1 tH2, G1 tG2)

=M(H1 tH2)⊗N (G1 tG2)
∼= (M(H1)⊕M(H2))⊗ (N (G1)⊕N (G2))

is generally different from

(M(H1)⊗N (G1))⊕ (M(H2)⊗N (G2)) =M�N (H1, G1)⊕M�N (H2, G2).

However, if we just supposeM and N to be quasi-Mackey, then

• The exterior productM�N is quasi-Mackey. On can easily check indeed that there
are, for (i, j) in J× J, adjunctions

i! ⊗ j! a i∗ ⊗ j∗ a i∗ ⊗ j∗

as well as that unit and counit are given by tensoring the unit and counit for each
adjunction of i and j separately, and hence every pseudopullback (γ1, γ2) in G×G will
have isomorphic mates given by tensoring isomorphic mates for γ1 and γ2.

• As a consequence, since the diagonal pseudofunctor ∆: Gop → Gop × Gop evidently
maps Jop in Jop×Jop, the internal productM⊗N also happens to be quasi-Mackey,
for (G,J).
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• The pseudofunctor M(− × −) : Gop × Gop → A is quasi-Mackey for (G × G,J × J),
since J is supposed to be closed under products.

For clarifying notations, please observe that what in [BD20] is called a J-bimorphism is the
same thing as a morphism of quasi-Mackey pseudofunctors for (G×G,J×J). In even other
terms, this is also a (J× J)!-pseudonatural transformation

The aim is now to prove that for Mackey pseudofunctorsM,N ,L, to have a morphism of
quasi-Mackey t : M�N → L(−×−) is necessary and sufficient to extend it to a pseudonat-
ural transformation between the extended pseudofunctors on motives M̂� “N → L̂(−⊗−).

Theorem 3.6.7. Let M,N ,L : Gop → A be Mackey pseudofunctors and t : M � N →
L(−×−) a morphism of quasi-Mackey (Definition 3.2.9). Then t extends to a pseudonatural
transformation

M̂� “N t̂−→ L̂(−⊗−)

of pseudofunctors Mot×Mot→ A. Conversely, if F ,G,H : Mot→ A are three pseudofunc-
tors, then any pseudonatural transformation F � G → H(− ⊗ −) induces a morphism of
quasi-Mackey pseudofunctors via the restriction along mot×mot.

Proof. From the morphisms t of quasi-Mackey pseudofunctors for G × G, we get for every
G1 and G2 in G two pseudonatural transformation of Mackey pseudofunctors

M(G1)⊗N (−)
t1−→ L(G1 ×−)

M(−)⊗N (G2)
t1−→ L(−×G2)

Thus, by the universal property of Mackey motives, these extend bijectively to a pair of
pseudonatural transformations

M(G1)⊗ “N (−) ∼= ¤�M(G1)⊗N (−)
“t1−→ ⁄�L(G1 ×−) ∼= L̂(G1 ⊗−)

M̂(−)⊗N (G2) ∼= ¤�M(−)⊗N (G2)
“t2−→ ⁄�L(−×G2) ∼= L̂(−⊗G2)

Where the above isomorphisms easily follow from the essential uniqueness of the extension,
as explained in the two diagrams below

Gop A A

Mot

N

mot

M(G1)⊗−

N̂ ¤�M(G1)⊗N (−)

Gop Gop A

Mot

Mot

mot

G1×−

mot

L “L
G1⊗− ¤�L(G1×−)
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Eventually, this data (“t1,“t2) is the same as a pseudonatural transformation

t̂ : M̂� “N → L̂(−⊗−).

Then, we can conclude the following.

Corollary 3.6.8. M is a Green pseudofunctor if and only if it is a pseudomonoid for the
Day convolution product.

Proof. From Theorem 3.6.7 we get that a Green pseudofunctor � : M⊗M → M is the
same as a pseudomonoid objectM in PsFun(Gop,A) which is a Mackey pseudofunctor whose
tensor structure induces a pseudonatural transformation

� : M̂� M̂ → M̂(−×−).

By Proposition 2.7.2, we get that this is the same as a pseudomonoid Mackey pseudofunctor
M whose tensor structure induces a pseudonatural transformation M̂ ⊗

Day
M̂ → M̂. Now,

is has to be shown that the rest of the pseudomonoid structure of M induces in this way
a pseudomonoid structure on M̂. This is true since the correspondence of pseudonatural
transformation described above is functorial. Precisely, there are equivalences of categories

PsNat(M̂ ⊗
Day
M̂,M̂) ' PsNat(M̂� M̂,M̂(−×−))

' qMack(M�M,M(−×−)),

and this injects faithfully into the whole category of pseudonatural transformations PsNat(M⊗
M,M) ' PsNat(M �M,M(− × −)) in which axioms for the structure of pseudomonoid
hold true by hypothesis.
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Appendix A

Pseudoadjunctions

There are various extents to which we can relax the notion of adjunction, which for ordinary
categories is expressed in two equivalent ways, for functors

F : C D :G

as the existence of set isomorphisms

φ : D(FC,D) ∼= C(C,GD) :ψ (A.1)

natural in C,D, or as the existence of natural transformations

η : idC ⇒ GF

ε : FG⇒ idD
(A.2)

satisfying the two triangle identities

F FGF G GFG

F G

Fη

= εF

ηG

= Gε

Now, it’s also useful to have in mind how these two notions coincide. If the isomorphisms
of sets are given we can define

ηC = φ(idFC), εD = ψ(idGD),

while if the two natural transformations η and ε are given, we have the isomorphism of sets
given by

D(FC,D) −−−−→←−−−− C(C,GD)

f 7−−−−→ Gf ◦ ηC
εD ◦ Fg ←−−−− [ g

In the context of bicategories, there are many ways to generalize the notion of adjunction.
At a first attempt one could simply consider the following definition.
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Definition A.0.1. F : C −→←− D :G a couple of pseudofunctors between bicategories is said
to form a biadjunction if there exists for every C,D an equivalence of categories

D(FC,D) ' C(C,GD)

pseudonatural in C,D.

To give a biadjunction, sometimes together with the adjective incoherent is the same as
to give, together with pseudonatural transformations η, ε, a pair of invertible modifications
s and t, called triangulators, filling the triangular identities. The proof of this fact is a fairly
straightforward generalization of the usual 1-categorical proof, in which modifications s and
t serve as isomorphisms witnessing the equivalence D(FC,D) ' C(C,GD).

A more coherent way of defining this notion is, then, to demand the equivalences to be
adjoint equivalences. This translate in our context to a coherence condition that triangu-
lators must satisfy. These conditions are called swallowtail equation (see below). This is
the notion to which we reserve the name pseudoadjunction. It is interesting to observe that
at this point one could also require, generalizing the notion in an orthogonal direction, the
adjoint equivalence to be just an adjunction. This notion was first developed at [BP88], and
many authors call it lax 2-adjunction. The translation in terms of triangulators then does
not change, except for the fact that the two triangulators satisfying the swallowtail equation
are no longer required to be invertible.

Therefore, we directly use the internal notion of pseudoadjunction, defined as follows.
This bicategorical definition immediately adapts to the enriched context.

Remark A.0.2. We are working in the tricategory V-Bicat (see [GS15], Section 4 for a
detailed description of its structure of tricategory). Thanks to strictification results recalled
in Section 1.5, we are allowed to assume this tricategory to be a Gray category, which is the
multiple object version of a Gray monoid (or semi-strict monoidal 2-category). See [GPS95]
for much more on this definition. That means, concretely, a tricategory in which we assume
composition and unitality to be strict (like in a strict 3-category), but for every two pairs of
composable arrows (H,K), (H ′,K ′) and 2-cells α : H → H ′ and β : K → K ′, interchangers
are given. Namely, structural isomorphisms

H ◦K H ◦K ′

H ′ ◦K H ′ ◦K ′

Hβ

αK ⇐Σα,β αK′

H′β

satisfying the following axioms.

(i) If α = id: H → H, then Σα,β = idHβ , as well as if β = id: K → K, then Σα,β = idαK .

(ii) For all α : H → H ′, β : K → K ′, γ : L→ L′, it holds

HKL HKL′

HK ′L HK ′L′

HKγ

HβL ⇐HΣβ,γ HβL′

HK′γ

=
HKL HKL′

HK ′L HK ′L′

HKγ

HβL ⇐ΣHβ,γ HβL′

HK′γ
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HKL HKL′

H ′KL H ′KL′

HKγ

αKL ⇐Σα,Kγ αKL′

H′Kγ

=
HKL HKL′

H ′KL H ′KL′

HKγ

αKL ⇐ΣαK,γ αKL′

H′Kγ

HKL HK ′L

H ′KL H ′K ′L

HβL

αKL ⇐Σα,βL αK′L

H′βL

=
HKL HK ′L

H ′KL H ′K ′L

HβL

αKL ⇐Σα,βL αK′L

H′βL

(iii) For all φ : α⇒ α′ and ψ : β ⇒ β′, it holds

HK HK ′

H ′K H ′K ′

Hβ

αKα′K
⇐Σα,β

αK′

H′β

H′β′

φK
⇐

⇐H ′ψ

=

HK HK ′

H ′K H ′K ′

Hβ

Hβ′

α′K

⇐Σα′,β′
αK′α′K

H′β′

⇐Hψ

φK ′

⇐

(iv) For every composable H α→ H ′
α′→ H ′′ and K β→ K ′

β′→ K ′′ it holds

HK HK ′ HK ′′ HK HK ′′

H ′K H ′K ′ H ′K ′′ =

H ′′K H ′′K ′ H ′′K ′′ H ′′K H ′′K ′′

Hβ

αK

Hβ′

⇐Σα,β αK′ ⇐Σα,β′ αK′′

H(β′β)

(α′α)K ⇐Σα′α,β′β (αα)K′′
H′β

α′K

H′β′

⇐Σα′,β α′K′ ⇐Σα′,β′ α′K′′

H′′β H′′β′ H′′(β′β)

The rest of this section will highlight, because of our interests, the case of V-Bicat, but
the proofs will hold true for general Gray-categories.

Definition A.0.3. Let F : C → D andG : D → C be V-pseudofunctors between V-bicategories.
We say that they form a pseudoadjunction, and that F is left pseudoadjoint to G, if the
following data are given:

• pseudonatural transformations, called unit and counit η : idC ⇒ GF , ε : FG⇒ idD

• invertible modifications, called triangulators
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F FGF G GFG

F G

Fη

⇒s εF

ηG

⇐t Gε

and satisfies the following two axioms, the swallowtail equations:

idC GF

GF GFGF

GF

η

η GFη⇐Σ−1
ηη

ηGF

GεF⇐tF
⇐Gs = idη, (A.3)

idD FG

FG FGFG

FG

ε

⇐Σ−1
εεε εFG

FGε

⇐Ft
⇐sG

FηG

= idε (A.4)

Remark A.0.4. Definition A.0.3 also works for a Gray category, by replacing the words
pseudofunctors, pseudonatural transformations and modification with 1-cells, 2-cells and
3-cells, respectively.

Remark A.0.5. Like any equivalence of categories can always be improved to an adjoint
equivalence, we get that any biadjunction (Definition A.0.1) can always be improved to a
pseudoadjunction, by a specific choice of the triangulators. This result was first proved in
[Gur11a] for adjoint equivalences, and then in [Pst14] for general biadjunctions with a dif-
ferent argument, but also in a slightly different context than ours. The following adaptation
of Gurski’s argument is a tricategorical version of the theorem working in particular in this
setting of V-bicategories, once we use the strictification result for tricategories.

Theorem A.0.6 (Strictification Theorem for pseudoadjunctions). Let F : C → D, G : D →
C be V-pseudofunctors, or, more generally, 1-morphisms of a Gray-category, together with
ε, η, s, t the data of a pseudoadjunction, but suppose it only satisfies one of the swallowtail
equations. Then, it also satisfy the other one.

Proof. Suppose that the data satisfy the identity

idε =

id FG

FG FGFG

FG

ε

⇐Σ−1
ε,εε εFG

FGε

FηG

⇐Ft

⇐sG (A.5)
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(The other implication is obviously similar.) Then, let us first observe that the data of a
pseudoadjunction suffices to have an equivalences of categories

V-PsNat(F, F ) −→ V-PsNat(id, GF ) (A.6)
f 7−→ Gf ◦ η (A.7)

and

V-PsNat(G,G) −→ V-PsNat(FG, id) (A.8)
g 7−→ ε ◦ Fg. (A.9)

In fact, the two have explicit inverses given by mapping h 7→ εF ◦ Fh and k 7→ Gk ◦ ηG,
and the triangulators are the isomorphisms providing the equivalences: we have indeed the
two isomorphisms

id

GF GF

GFGF GF

η h h

η−1
h

⇐
GFh GFη

GεF

⇐Gs

=

F

FGF F

FGF F

Fη
f

εF

FGf
f

εF

⇐s

εf
⇐

=

for (A.6), and similarly with t for (A.8). Therefore, in order to prove the second equation

idη =

id GF

GF GFGF

GF

η

⇐Σ−1
η,η

η GFη

ηGF

GεF

⇐tF

⇐Gs

it suffices to prove the equality after the application of the equivalence ε ∗ F (−). That is,
let us start with

FGF

F FGFGF FGF F

FGF

FGFη

⇐FΣ−1
ηη

Fη

Fη

FGεF εF

FηGF

⇐FGs

⇒ FtF

(A.10)
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The 2-cell ε ∗ FGs in the top part of the above (A.10) can now be rewritten, using axioms
(i), (iii) and (iv) for the interchanger, as

FGF F

FGFGF

FGF F

εF

FGFη

Σε,idF
⇐

FGεF

εF

FGs
⇐

=

FGF F

FGFGF FGF

FGF F

εF

FGFη Fη

Σ−1
ε,εF◦Fη

⇐
FGεF εF

εF

s
⇐

=

FGF F

FGFGF FGF

FGF F

εF

FGFη ⇐Σ−1
ε,Fη Fη

εFGF

FGεF ⇐Σ−1
ε,εF εF

εF

s
⇐

On the other hand, we see that we can rewrite εF ∗ FtF ∗ Fη in (A.10) by first using the
swallowtail equation that we are assuming (A.5), which gives

FGFGF FGF F F FGF FGFGF FGF

F FGF FGF F

FGεF εF Fη FηGF FGεF

εFGF
⇐Σε,εF εF

=

Fη

FηGF

εF

⇒ FtF s−1GF

(A.11)
Then, we can consider again axioms (i) and (iii), which allows to rewrite the left part of
the latter as

F FGF FGFGF F FGF FGFGF

= FGF

F FGF F FGF

Fη FηGF

εFGF

Fη

Fη

FηGF

εFGF
εF

Fη

⇐ΣidF ,η

s−1GF ΣεF◦Fη,η

⇐⇐s−1
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which in turn, thanks to axioms (iv), allows to rewrite (A.11) as

F FGF FGFGF FGF

FGF

F FGF F

Fη

Fη

FηGF

⇐ΣFη,η

FGεF

εFGF

⇐Σε,εF εF

FGFη

εF
⇐ΣεF,η⇐s−1

Then, let us reassemble the two computations. The term (A.10) becomes

FGF F FGF

F FGF FGFGF FGF F

FGF F FGF

εF

⇐FΣ−1
ηη FGFη

Fη

⇐Σ
−1
ε,Fη ⇐Σ

−1
ε,εF

εFFη

Fη

Fη

FηGF

⇐ΣFη,η

εFGF

FGεF

⇐ΣεF,η εFGF

εF
⇐Σε,εFFGFη

εF Fη

εF

⇐s

⇐s−1

Axiom (ii), in all of its parts, allows us to recognize that FΣηη = ΣFη,η, ΣεF,η = Σε,Fη and
Σε,εF = Σε,εF . Therefore we can simplify all the interchangers and the above becomes

F FGF F FGF F
Fη εF

Fη εF

⇐s−1

⇐s

which eventually is the identity idεF◦Fη. The last claim follows by the general fact that
in a monoidal category, in our case the endomorphism category of F under (horizontal)
composition, if σ : 1 → A is an isomorphism, then one has that the morphisms A ⊗ A →
A⊗ 1 ∼= A and A⊗A→ 1⊗A ∼= A are equal. This follows from the commutativity of



APPENDIX A. PSEUDOADJUNCTIONS 188

A⊗A 1⊗ 1 A⊗A

A⊗ 1 1⊗ 1 1⊗A

A 1 A

σ⊗σ

A⊗σ

σ−1⊗σ−1

σ⊗A
σ⊗1

ρ ρ=λ

1⊗σ−1

λ

σ σ−1

given by naturality of the unitors and the exchange law for the tensor functor.

A.1 Parametric pseudoadjunctions
In this section we are going to introduce the notion of a parametric family of pseudoad-
junctions (most notably, this will be the case of a closed monoidal bicategory), and we will
see how this is naturally linked to the notion of extra-pseudonaturality. Moreover, we are
going to argue via the Yoneda lemma how the family of pseudoadjunction given for a closed
monoidal bicategory can indeed be turned in a unique way into a parametric one.

Definition A.1.1. A parametric family of pseudoadjunctions is a pair of pseudofunctors
F : E × D → C and G : Eop × C → D together with, for every e in E a pseudoadjunction
F (e,−) a G(e,−), and the resulting equivalences are part of a pseudonatural transformation:

φ : C(F (−, d), c)⇒ D(d,G(−, c))

for every c in C, d in D.

Theorem A.1.2. If F,G is a parametric family of pseudoadjunctions, then units and
counits define extra-pseudonatural transformations

ηd : d
..⇒ G(−, F (−, d))

and
εc : F (−, G(−, c)) ..⇒ c

Proof. From the natural isomorphism

C(F (e, d), c) D(c,G(e, c))

C(F (e′, d), c) D(c,G(e′, c))

φe

C(F (f,d),c) D(c,G(f,c))⇐φf

φe′

given by the parametric family, and since φ : g 7→ R(c, g)◦ηcd, we get for every g : F (e, d)→ c
an isomorphism

(φf )g : G(f, e) ◦G(e, g) ◦ ηcd
∼⇒ G(e′, g ◦ F (f, d)) ◦ ηc

′

d .

Now if we take c = F (e, d) and g = id, we specialize the isomorphism above to a pseudo-
natural transformation
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d G(c, F (c, d))

G(c′, F (c′, d)) G(c′, F (c, d))

ηcd

ηc
′
d G(f,F (c,d))⇐jf

G(c′,F (f,d))

which is indeed the data of an extra-pseudonatural transformation ηd : d
..⇒ G(−, F (−, d)).

Then, unitality, functoriality and naturality axioms for j are easily seen to be true from the
correspondent axioms on the pseudonatural transformation φ. The proof for ε follows an
analogous pattern.

Remark A.1.3. In a closed monoidal bicategory V, the class of adjunctions {−⊗a a [a,−]}a
can always be improved to a parametric family. This depends on how one defines [−,−]
as a pseudofunctor in its first variable (the parametric one). It suffices to observe that if
f : a→ a′, one can consider the morphism imposing the commutativity of the diagram

V(b⊗ a′, c) V(b, [a′, c])

V(b⊗ a, c) V(b, [a, c])

V(b⊗f,c)

'

'

and then define [f, c] : [a′, c] → [a, c] to be the map detected by the dashed arrow via the
Yoneda lemma.



Appendix B

Additivity for bicategories

Definition B.0.1. A category C is said to be semi-additive if admits finite coproducts,
finite products and the canonical morphism

C tD −→ C ×D

is an isomorphism. The term used to refer to both is biproduct. A morphism of semi-
additive categories is a functor that preserves products. This data, together with natural
transformations between these functors, defines a 2-category SAdd.

Remark B.0.2. As proved in [Lac12], it actually suffices for the product and coproduct to
be isomorphic via any other map, in order to have a semi-additive category.

Definition B.0.3. A category C is said to be additive if it admits finite products and it’s
enriched over the category Ab of abelian groups. An additive functor is just an Ab-functor.
Together with enriched natural transformations, this form a 2-category Add.

Remark B.0.4. It’s known that on a semi-additive category we have a natural structure of
category enriched in the category of abelian monoids. The monoid structure of each hom-set
C(X,Y ) is given setting f + g to be

X
∆−→ X ⊕X f⊕g−→ Y ⊕ Y ∇−→ Y.

On the other hand, the group structure on hom-sets of any semi-additive category is neces-
sarily equal to this one.

Remark B.0.5. (i) An additive category has coproducts, and they are isomorphic to
products, hence it is semi-additive.

(ii) Any additive functor preserves products, and any product preserving functor between
additive categories is additive. This is a consequence of Remark B.0.4.

(iii) Eventually, an Ab-natural transformation gives clearly rise to a non-enriched one. This
is quite remarkable, and that is the reason why we allows ourselves to call additive
also the morphisms of semi-additive categories.

This gives a (1- and 2-)fully faithful 2-functor

Add ↪→ SAdd. (B.1)
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Definition B.0.6. If C is a semi-additive category, one can consider the additive category
C+ given by the same objects as those of C, and by setting C+(X,Y ) = C(X,Y )+ to be
the abelian group completion of the abelian monoid C(X,Y ) (Remark B.0.4). This (−)+

construction provide a section for the bireflexive inclusion B.1.

Now, some constructions are presented for bicategories, in order to fix the terminology
used throughout this work.

Definition B.0.7. A bicategory B is said to be locally (semi-)additive if its hom-categories
are (semi-)additive and the composition functor is additive (preserves products). A mor-
phism of locally semi-additive bicategories is a pseudofunctor which is additive (preserves
products) on each hom-categories, i.e. a locally additive pseudofunctor. Locally additive
pseudofunctors between locally (semi-)additive bicategories C and D assemble into a bicat-
egory PsFun⊕(C,D).

Definition B.0.8. Given a locally semi-additive category B, its locally additive comple-
tion is the bicategory B+ having the same objects as B, and hom-categories B+(X,Y ) =
B(X,Y )+.

Remark B.0.9. It is straightforward to prove that if B is a locally semi-additive bicategory,
and C is locally additive, then the canonical comparison

PsFun+(B+, C) '−→ PsFun+(B, C)

between bicategories of locally additive pseudofunctors is a biequivalence.

Remark B.0.10. A locally additive bicategory B obviously has a natural structure of
Add-bicategory.

Definition B.0.11. A bicategory B is said to be additive if it is locally additive (equiva-
lently, if it is has a structure of Add-bicategory) and admits biproducts.

Definition B.0.12. A pseudofunctor F : B → B′ between additive bicategories is additive
if it preserves products and is locally additive.

A priori, one could have a pseudofunctor F : B → C between additive bicategories which
is locally additive but not additive (since local additivity does not require to preserve prod-
ucts). However, this cannot happen. In other terms, additive bicategories injects 1-faithfully
into locally (semi-)additive ones

Proposition B.0.13. Any locally additive pseudofunctor F : B → C between additive bicat-
egories is additive.

Proof. One only need to prove that such a locally additive F preserves products. This follows
by applying on each hom-category the fact that Ab-functors preserve direct sums.

Definition B.0.14. A zero object in a bicategory B is an object 0 such that, for every X,
there exist two equivalences of categories (natural in X)

B(0, X)'T'B(X, 0),

where T denotes the terminal category with one object ∗ and one morphism.
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Definition B.0.15. Let B be a bicategory with a zero object. Then we define the initial
and terminal morphism for an object X (respectively iX and tX) as the images (unique up
to isomorphism) of ∗ under the equivalences T ' B(0, X) and T ' B(X, 0) respectively.

Lemma B.0.16. Given a category C equivalent to the terminal category T , there is for any
pair of functors F,G : T → C a unique natural transformation F ⇒ G.

Proof. Call E : C → T the supposed to exist equivalence. A natural transformation α : F ⇒
G consists of a unique arrow in C given by α∗ : F∗ → G∗, but there’s just one such arrow
since

HomC(F∗, G∗) ∼= HomT (EF∗, EG∗) = HomT (∗, ∗) = {∗}.

Proposition B.0.17. Let B be a bicategory with a zero object and suppose the initial and
terminal morphisms to be two-sided adjoints. Then for any two objects X,Y in B, the
morphism iY tX : X → Y is a zero object in the category B(X,Y ).

Proof. By the general theory of internal adjunctions applied to tX a iX , we have for every
f : X → Y a bijection [f, iY tX ] ∼= [fiX , iY ], provided by composing a 2-cell α with ε below

X Y

0 0

tX

f

⇐ε

⇐αiX

iY

From Lemma B.0.16 we have that only one 2-cell exists between fiX and iY , being such
given by a pseudonatural transformation between functors T → B(0, Y ), we conclude that
iY tX is terminal. Analogously, we can consider the adjunction iY a tY , providing a bijection
[iY tX , f ] ∼= [tX , tY f ], and conclude that iY tX is also initial.

Example B.0.18. It is not in general the case that the pointed object iY tX in B(X,Y )
is a zero object. It suffices, indeed, to consider a locally discrete additive bicategory such
as the bicategory of abelian groups Ab. Its hom-categories are Ab(H,G) in which the zero
morphism z : H → G is not initial nor terminal, since no 2-morphism is given between z
and any other f : H → G.

Remark B.0.19. In a bicategory B with binary products, coproducts and a zero object,
there’s a canonical map

X1 tX2 → X1 ×X2

induced by (id, 0X1,X2
) : X1 → X1 ×X2 and (0X2,X1

, id) : X2 → X1 ×X2.

Definition B.0.20. A bicategory B is said to have biproducts if it has a zero object, binary
products and coproducts, and the canonical morphism X1tX2 → X1×X2 is an equivalence.
In this case, we usually refer to both by X1 ⊕X2.

Remark B.0.21. A bicategory with biproducts needs not to be locally semi-additive and
a locally semi-additive bicategory needs not to have biproducts. However, in a locally
semi-additive bicategory every existing product is also a coproduct. That is an immediate
consequence of the definition of product and coproduct and of the Yoneda lemma.



Appendix C

Spans of (bi)categories

In this section we recall the definitions of the span constructions for categories and bicate-
gories.

Definition C.0.1. Let C be a category with pullbacks. Then its span category Ĉ is the
category defined by having the same objects of C and as morphisms C → D equivalence
classes of spans

P

C D

gf

of morphisms in C. Two such spans (f, g), (f ′, g′) are considered equivalent whether there
is a morphism h making

P

C D

P ′

f g

h

f ′ g′

commute. Composition is formed by taking pullbacks. (see RemarkC.0.2 below). We denote

(−)? : C −→ Ĉ and (−)? : Cop −→ Ĉ

the two functors mapping f 7→ f? = [id, f ] and f 7→ f? = [f, id].

Remark C.0.2. The 1-category of spans defined above is the truncation τSpan(C, C) of
the bicategory of spans in Definition 3.3.1. That means, we first consider C as a discrete
(2,1)-category. Then, together with all of its morphism this defines a spannable pair (Defi-
nition 3.2.2, apart from having finite products and coproducts, which are not needed in the
definition of the span bicategory), and we hence consider Span(C, C). Eventually, we identify
every two isomorphic pair of morphisms.

The ordinary category of spans enjoy the following properties.
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Lemma C.0.3. The span construction Ĉ of a category with pullbacks C is such that

• Every pullback preserving functor F : C → D induces a functor F̂ : Ĉ → D̂ commuting
with (−)? and (−)?, defined by [f, g] 7→ [Ff, Fg].

• Every natural transformation α : F ⇒ G of pullback preserving functors C → D induces
a natural transformation α̂ : F̂ ⇒ Ĝ defined to be α̂C = (αC)?.

• commutes with products (÷C × D ' Ĉ × D̂).
Proof. This is Lemma 1.5.4 in [BD20].

Then, we’re able to see the requirements needed to perform the same span construction
but locally, on a bicategory B.

Definition C.0.4. Let B be a bicategory such that

a Each hom-category B(X,Y ) has pullbacks.

b Composition functor − ◦ − preserves pullbacks in each variable.

The local span bicategory B̂ is the bicategory having objects the same of B, and hom-
categories B̂(X,Y ) = ÿ�B(X,Y ). The composition functor is defined via Lemma C.0.3 thanks
to condition (b). Explicitly, it is the unique functors making

B(Y, Z)× B(X,Y ) B(X,Z)

B̂(Y, Z)× B̂(X,Y ) B̂(X,Z)

B(Y, Z)op × B(X,Y )op B(X,Z)op

◦

(−)?×(−)? (−)?

◦̂

(−)?×(−)?

◦op

(−)?

commute. Unitors and associator are the image of those of B via the canonical (−)? : B → B̂.
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