
Doctoral School: MADIS-631

Towards Modeling and
Supervision of Multilevel

Stochastic Systems of Systems: A
Hypergraph Approach.

PhD THESIS
to obtain the degree of

Doctor of University of Lille
Speciality : Computer science and

automation

Defended by

Abbass CHREIM

prepared at
CRIStAL CNRS-UMR 9189 defended on December 5, 2024

at CRIStAL, Lille

Jury

Reviewers : Pr. François CHARPILLET - INRIA Est., France
Pr. Hichem ARIOUI - Université d’Évry, France

President of the jury : Pr. Olivier Simonin - INSA-Lyon, France
Examiners : Pr. MO JAMSHIDI - University of Texas, USA

Pr. Taha CHETTIBI - Université de Blida, Algérie
Dr. Anne-Lise GEHIN - Université de Lille, France
Dr. Yiwen CHEN - INSA-Hauts de France, France

Supervisor : Pr. Rochdi Merzouki - Université de Lille, France

Ecole Doctorale: MADIS-631

Vers la modélisation et la
supervision des systèmes de

systèmes stochastiques
multiniveaux : Une approche par

hypergraphe.

THÈSE
soumise à l’Université de Lille en vue de l’obtention de

Doctorat
Spécialité : Informatique et automatique

par

Abbass chreim

préparée au laboratoire
CRIStAL CNRS-UMR 9189

soutenue le 5 Decembre 2024
à CRIStAL

Jury

Rapporteurs : Pr. François CHARPILLET - INRIA Est., France
Pr. Hichem ARIOUI - Université d’Évry, France

Président du jury : Pr. Olivier Simonin - INSA-Lyon, France
Examinateurs : Pr. MO JAMSHIDI - University of Texas, USA

Pr. Taha CHETTIBI - Université de Blida, Algérie
Dr. Anne-Lise GEHIN - Université de Lille, France
Dr. Yiwen CHEN - INSA-Hauts de France, France

Directeur de thèse : Pr. Rochdi Merzouki - Université de Lille, France

Towards Modeling and Supervision of
Multilevel Stochastic Systems of Systems: A

Hypergraph Approach.

Abstract

System-of-Systems (SoS) face significant challenges, including heterogene-
ity, scalability, and complex interactions among component systems (CSs).
These systems typically operate in dynamic environments, introducing uncer-
tainty and stochastic behavior. Many existing studies tend to oversimplify
these complexities, with some focusing only on the dynamics of CSs without
adequately addressing their structure, mission, and goals. Additionally, lim-
ited research has focused on supervising SoS under such conditions. Graph
models, such as hypergraphs (HG), have proven effective in modeling the
structure of SoS, while stochastic and weighted hypergraphs have been suc-
cessfully employed to manage stochasticity in other complex systems. In this
thesis, the Multi-Level Stochastic Hypergraph (MLSHG) model is introduced
to address the challenges of modeling stochastic SoS. The model adheres to the
key properties of SoS as defined by Maier, distinguishing it from traditional
complex systems. A novel algorithm for supervising large-scale SoS is also
proposed, integrating bottom-up monitoring with top-down reconfiguration
to achieve long-term goals. The proposed framework supports resilience in
these complex systems through recovery mechanisms based on redundancy.
In a case study on a mushroom harvesting SoS, the model demonstrated
clear advantages in addressing SoS modeling challenges compared to existing
methodologies. The results showed that incorporating stochastic disturbances
with an adaptive threshold enabled early reconfiguration during supervision,
reducing deviations from the final goal. The capability-based reconfiguration
method exhibited low computational time, scaling linearly with the number
of CSs, thereby improving the system’s scalability. The resilience scenario
results further demonstrated that incorporating both stand-in and stand-by
redundancy mechanisms enhances the resilience of these complex systems.
Keywords: System of Systems (SoS), Modeling and Simulation
(M&S), Hypergraph (HG), Stochastic systems, Supervision, Re-
silience

i

Vers la modélisation et supervision de systèmes
de systèmes stochastiques : Un modèle

d’hypergraphe stochastique à plusieurs niveaux.

Résumé

Les Systèmes de Systèmes (SdS) font face à des défis majeurs, notamment
en termes d’hétérogénéité, de scalabilité et d’interactions complexes entre
les composants systèmes (CS). Ces systèmes fonctionnent généralement
dans des environnements dynamiques, introduisant de l’incertitude et des
comportements stochastiques. De nombreuses études existantes ont tendance
à simplifier à l’excès ces complexités, certaines se concentrant uniquement
sur la dynamique des CS sans aborder adéquatement leur structure, mission
et objectifs. De plus, peu de recherches se sont concentrées sur la supervision
des SdS dans de telles conditions. Les modèles graphiques, tels que les hyper-
graphes (HG), se sont révélés efficaces pour modéliser la structure des SdS,
tandis que les hypergraphes stochastiques et pondérés ont été employés avec
succès pour gérer la stochasticité dans d’autres systèmes complexes. Dans
cette thèse, le modèle Hypergraphe Stochastique Multi-Niveaux (MLSHG)
est introduit pour relever les défis de la modélisation des SdS stochastiques.
Le modèle respecte les propriétés clés des SdS telles que définies par Maier, ce
qui le distingue des systèmes complexes traditionnels. Un nouvel algorithme
pour superviser les SdS à grande échelle est également proposé, intégrant une
surveillance ascendante avec une reconfiguration descendante afin d’atteindre
des objectifs à long terme. Le cadre proposé soutient la résilience dans ces
systèmes complexes grâce à des mécanismes de récupération basés sur la
redondance. Dans une étude de cas sur un SdS de récolte de champignons, le
modèle a démontré des avantages clairs pour relever les défis de modélisation
des SdS par rapport aux méthodologies existantes. Les résultats ont montré
que l’incorporation de perturbations stochastiques avec un seuil adaptatif a
permis une reconfiguration précoce pendant la supervision, réduisant ainsi
les écarts par rapport à l’objectif final. La méthode de reconfiguration basée
sur les capacités a montré un faible temps de calcul, évoluant de manière
linéaire avec le nombre de CS, améliorant ainsi la scalabilité du système. Les
résultats du scénario de résilience ont également démontré que l’incorporation
des mécanismes de redondance stand-in et stand-by renforce la résilience de
ces systèmes complexes.

ii

Mots clés: Système de Systèmes (SdS), Modélisation et simu-
lation, Hypergraphe (HG), Systèmes stochastiques, Supervision,
Résilience

iii

This thesis is dedicated to my parents, Fatimah HAMMOUD and Adnan
CHREIM, for their love, endless support and everything they have given me.

iv

Acknowledgments

I would like to express my deepest appreciation to my supervisor, Prof.
Rochdi Merzouki, for his unwavering support and guidance over the past four
years, beginning with my Master’s studies. His vast knowledge, insightful
suggestions, and expertise have been invaluable to my learning experience. I
am endlessly inspired by his professionalism and dedication. His mentorship
has been indispensable in bringing this research work to fruition.

I am sincerely grateful to Dr. Yiwen Chen, Dr. Othman Lakhal, and Mr.
Abdelkader Belarouci for their expertise and vast experience in this research
field, which greatly aided me throughout my journey.

My heartfelt thanks also go to my thesis reviewers: Prof. François
Charpillet and Prof. Hichem Arioui, and the other jury members: Prof. Taha
Chettibi, Prof. Olivier Simonin, Dr. Anne-Lise Gehin, Dr. Yiwen Chen,
and Prof. Mo Jamshidi, for their time and insightful comments, which have
helped improve this work.

Many thanks to my colleagues in the SoftE group and other CRIStAL
groups: Abdeslam Smahi, Jun Jiang, Loic Bal, Yehya Sharif, Rim Abdallah,
Brayen, Alexandre D’hooge, and Francescan Maccarini. They have always
been friendly and willing to help.

Special thanks to my friends in Lille: Rkein, Shmaysani, Hnayno, Achour,
Khalil, Tekko, GH, Ismail, Taha, Khalaf, and Amhaz. Your support, joy, and
laughter have been pillars of strength for me throughout this journey.

To my parents, your unconditional love and trust have been a constant
source of strength. Thank you for always being there.

To my brothers, Ali and Mohamad, and my sisters, Zaynab and Walaa,
your unwavering support and encouragement have motivated me to keep go-
ing, even during the most challenging moments. Thank you.

Contents

1 Introduction 1
1.1 General introduction . 1
1.2 Industrial Context . 3
1.3 Contractual context of the thesis 4
1.4 Scientific context of the thesis 4
1.5 Thesis objectives . 5
1.6 Research problem statement and formulation 6
1.7 Thesis methodology . 8
1.8 Main contributions . 8
1.9 Disseminated results . 9
1.10 Thesis organization . 9

2 System of systems: State of art 11
2.1 Introduction . 11
2.2 System of systems terminology 12

2.2.1 History and definition 13
2.2.2 Properties . 17
2.2.3 Applications . 18

2.3 Modeling methods . 19
2.3.1 Behavioral modeling 20
2.3.2 Organisational modeling 21

2.4 Supervision of SoS . 31
2.4.1 Definition . 31
2.4.2 Monitoring . 33
2.4.3 Reconfiguration . 34

2.5 Resilience of SoS . 35
2.5.1 Definition . 36
2.5.2 Methods . 36
2.5.3 Resilience metrics . 37

2.6 Conclusion . 42

3 Contribution to organisational modeling of stochastic SoS 43
3.1 Introduction . 43
3.2 Stochatic system of systems 44
3.3 Multi-level Stochastic hypergraph modeling 45

3.3.1 Individual CSs . 46
3.3.2 Hierarchical Structure 51

vi Contents

3.3.3 Interactions . 52
3.3.4 Verifying Properties of System-of-Systems 55

3.4 Case study: Mushroom harvesting SoS 57
3.4.1 Introduction . 58
3.4.2 System complexity . 59
3.4.3 Multi-level Mushroom harvesting modeling 60
3.4.4 Hypergraph representation 60
3.4.5 Implementation . 67
3.4.6 Results and discussion 69

3.5 Conclusion . 72

4 Supervision of stochastic SoS 76
4.1 Introduction . 76
4.2 Threshold design . 77
4.3 Supervision algorithm . 79

4.3.1 Monitoring . 81
4.3.2 Reconfiguration . 83

4.4 Case study . 86
4.4.1 Real time Supervision of mushroom harvesting SoS . . 86
4.4.2 Monitoring of mushroom harvesting SoS 87
4.4.3 Reconfiguration of mushroom harvesting SoS 88
4.4.4 Implementation . 91
4.4.5 Results and discussion 93

4.5 Conclusion . 99

5 Resilience of stochastic SoS 103
5.1 Introduction . 103
5.2 MLSHG for resilient SoS . 104

5.2.1 Adaptability . 104
5.2.2 Stand-in redundancy 105
5.2.3 Stand-by redundancy 105

5.3 Resilience algorithm . 105
5.4 Resilience quantification . 108
5.5 Case study . 111

5.5.1 Resilient mushroom farm 111
5.5.2 Results and discussion 112

5.6 Conclusion . 115

6 Conclusion 118
6.1 General conclusions . 118
6.2 Perspectives . 121

Contents vii

6.2.1 Behavioral modeling 121
6.2.2 Supervision and resilience 121
6.2.3 Mushroom harvesting simulation 122

Appendices 123

A Flexsim simulation 125
A.1 3D Model . 125
A.2 Process Flow . 129

Acronyms 134

Bibliography 136

List of Figures

1.1 Modeling the SoS using a hypergraph (HG) [Khalil 2012] . . . 6

2.1 BG multi-level modeling of Intelligent Transport System
[Kumar 2017] . 21

2.2 SoS modeling methods . 22
2.3 Graphical representation of multi-level ABM by [Soyez 2015] . 24
2.4 Bigraph proposed by [Wachholder 2015]: Place graph on the

left, Link graph on the right 25
2.5 Non directed graph . 26
2.6 Directed graph . 26
2.7 Weighted graph . 26
2.8 Hypergraph composed of six vertices and four hyperedges . . . 27
2.9 Hierarchical representation of HG by [Khalil 2012] 28
2.10 HG set-based representation (left) and the graphical Hierarchi-

cal representation (Right) [Khalil 2012] 29
2.11 Baysian network . 31
2.12 SOS modeling methodes . 32
2.13 (a) System performance and (b) recovery effort [Vugrin 2010] . 39
2.14 System performance used in [Balchanos 2014] 40
2.15 The performance for the SoS used in [Tran 2016], denoted as

y(t), represents the response to a single threat event occurring
within the time interval from t0 to tfinal. The minimum per-
formance level during this period is ymin. The system reaches
steady-state performance at time tSS, with a recovered perfor-
mance level of yR. The desired performance level is yD. 42

3.1 Graphical representation of SoS using hypergraph (a) Set rep-
resentation (b) Hierarchical representation 47

3.2 MLSHG methodology . 48
3.3 Hypergraph with assigned attributes 49
3.4 Example of attributes assigned to PCSs at t1 50
3.5 Hypergraph example . 52
3.6 Hypergraph dynamics . 55
3.7 Multi-level Mushroom harvesting modeling 61
3.8 Mushroom farm component systems 61
3.9 Hypergraph representation of musrhoom harvesting SoS 62
3.10 Mature Mushrooms in a single chamber (MN(t)) 64

List of Figures ix

3.11 Simulation environment . 68
3.12 Mature mushrooms . 68
3.13 Human operator . 69
3.14 Robot . 70
3.15 The number of mature mushrooms with time and the total

mushroom yield with time and the harvesting rate in different
scenarios . 71

4.1 Supervision algorithm . 82
4.2 Function decomposition . 84
4.3 Reference scenario . 89
4.4 Simulation environment . 92
4.5 Mushroom harvesting hypergraph representation 93
4.6 Performance of SoS and MCSs in the Over-Capacity Scenario

with a Constant Threshold . 94
4.7 Performance of SoS and MCSs in the Over-Capacity Scenario

with a adaptive Threshold . 96
4.8 Performance of SoS and MCSs in the Under-Capacity Scenario

with a Constant Threshold . 97
4.9 Performance of SoS and MCSs in the Under-Capacity Scenario

with a adaptive Threshold . 98
4.10 Comparison of the average computational time between the

SAT solver used in the HG model of [Khalil 2012] and the
capability-based reconfiguration in the MLSHG model across
different scenarios. 100

5.1 Flowchart of the resilience algorithm 106
5.2 SoS performance over a period of interest for a single disturbance109
5.3 The performance of (a) mushroom beds and (b) SoS as a func-

tion of time for a multiple failure 113
5.4 Hpergraph evolution of the resilience scenario for different epochs117

A.1 3D model. 125
A.2 Mushroom bed (Rack) dimension 126
A.3 Properties of human operator 127
A.4 Human operators scheduling 128
A.5 Mushroom generation. 129
A.6 Mushroom inspection. 130
A.7 Human operators heuristics 131
A.8 Robot heuristics. 132
A.9 Stochastic failures. 132
A.10 Supervision algorithm. 133

List of Tables

2.1 SoS applications . 19

3.1 Harvesting capability . 70
3.2 Comparison between the MLSHG and the most relevant studies

in terms of SoS modeling. 75

4.1 Deviation from final goal for different scenarios 95
4.2 Different tested scenarios and the corresponding computational

times obtained. 102

5.1 Average mission performance (Kg/h) by operators 114
5.2 Performance metrics for first and second recovery 115

Chapter 1

Introduction

Contents
1.1 General introduction 1

1.2 Industrial Context . 3

1.3 Contractual context of the thesis 4

1.4 Scientific context of the thesis 4

1.5 Thesis objectives . 5

1.6 Research problem statement and formulation 6

1.7 Thesis methodology . 8

1.8 Main contributions . 8

1.9 Disseminated results . 9

1.10 Thesis organization . 9

1.1 General introduction

As technology and industry continue to advance, systems are becoming in-
creasingly complex and larger in scale. This complexity stems from the in-
tricate nature of their components, which often operate and are managed
independently, while cooperating, exchanging information, and evolving dy-
namically. These challenges are further compounded by the need for real-time
collaboration and interaction among systems. In response to this growing com-
plexity, the concept of a System of Systems (SoS) [Maier 1998] has gained
widespread adoption. An SoS refers to an integrated collection of Compo-
nent Systems (CSs) that function independently yet collaborate to achieve
a common goal, resulting in emergent behavior that exceeds the capabilities
of each individual system.

The integration of these complex systems, however, brings forth sev-
eral significant challenges, such as heterogeneity, complex interactions,
and scalability. Addressing these challenges becomes especially difficult

2 Chapter 1. Introduction

when attempting to model and analyze such systems. Various studies
and models have been proposed in the literature to tackle these issues (
[Kumar 2017, Khalil 2012, Soyez 2015]), but many of them tend to consider
a specific behaviour of the complexity of SoS by focusing only on a subset
of challenges. Furthermore, these systems often operate in dynamic environ-
ments characterized by uncertainty, which introduces stochastic elements
that impact the performance and behavior of certain CSs. However, existing
models lack the capability to effectively represent both deterministic and
stochastic CSs in an integrated manner.

While hypergraphs have proven effective in modeling the structure of
SoS [Khalil 2012], capturing the stochastic aspects of such systems remains
a challenge. Recent advancements in stochastic hypergraphs have demon-
strated their potential in modeling stochasticity in other complex systems,
but they have yet to be fully explored in the context of SoS. To address this
gap, we propose in this thesis the Multi-level Stochastic Hypergraph
(MLSHG) model. This model is designed to capture the structure, hetero-
geneity, and scalability of SoS while integrating stochastic elements, providing
a comprehensive framework for modeling and supervising complex, dynamic
systems.

While it is important to model the structure and behavior of these systems,
it is equally crucial to ensure that global missions and goals are consistently
met, especially during critical events like disturbances. This creates a need
for decision-making support and supervision tools that enable monitoring
and reconfiguration, which are still limited in the current literature for SoS.
To address this gap, this thesis focuses on developing a supervision strategy
to manage system capacity during disturbances of a stochastic SoS, ensuring
that long-term objectives are achieved. By combining monitoring and recon-
figuration, the proposed framework aims to improve system resilience and
adaptability in changing environments.

On the other hand, resilience, which refers to the ability of an SoS to
recover from failure, has been addressed through various algorithms. These
algorithms often rely on redundancy mechanisms that help the system
recover by providing backup or alternative functionalities. Since this thesis
focuses on performance-based resilience, it is important to quantify this re-
silience. Therefore, a resilience metric is adapted to measure and evaluate
the resilience of an SoS, helping us assess the system’s ability to maintain
performance and recover from disruptions effectively.

To apply the proposed modeling, supervision, and resilience strategies, a
case study is conducted on a mushroom harvesting System-of-Systems.
In this case study, the framework is applied to the system, considering it a
Stochastic System of Systems (SSoS) where the performance of both

1.2. Industrial Context 3

mushrooms and human operators is influenced by uncertainty and can be
modeled using probabilities. The supervision scenario focuses on managing
the capacity of the mushroom farm—including both human operators and
robots—to meet its objectives, while the resilience scenario aims to provide
recovery mechanisms and quantify the farm’s resilience in the face of disrup-
tions.

1.2 Industrial Context

This thesis work is developed in the framework of the cooperation with Uni-
versity of Lille and La ferme Gontière, which is a mushroom production
farm founded in 1961 in Wervicq, and has been relocated in Comines, in the
north department of France in 1986. It produces mushrooms of all sizes, both
white and pink, which are packaged in trays or sold in bulk. The company
focuses on ultra-fresh mushrooms, harvested the same day to be available in
stores the following day. Today, La Ferme de la Gontière is a mid-sized com-
pany employing 250 people, and its mushroom market is both national and
international.

The mushroom production process is a prime example of a large-scale
SoS. It involves multiple stages, including compost preparation, harvesting,
discharge, cooling, storage, and transport. However, a key challenge lies in the
harvesting phase, which is labor-intensive, repetitive, and generally unattrac-
tive to human workers. This makes it difficult to recruit staff for harvesting
tasks, and worker fatigue often leads to early departures. Given the rapid
growth of mushrooms, which double in size within a day, it is crucial to har-
vest them promptly once they reach maturity.

To address this issue, the farm plans to explore the feasibility of integrating
collaborative robots to assist human workers in the mushroom harvesting
process. The key challenge is managing the combined resources of human labor
(operators) and robots to meet the farm’s production targets. This large-scale
system, comprising 30 chambers, 150 workers, and additional robots, must be
designed to effectively handle this task.

Uncertainties arise from both the unpredictable growth of mushrooms and
variations in labor performance, which can result in failures. Thus, it is crucial
to adopt an appropriate model that accurately represents these subsystems
and their interactions while ensuring scalability.

4 Chapter 1. Introduction

1.3 Contractual context of the thesis

This research work was conducted within the framework of the CueiBot
project, funded by the regional Hauts-de-France (HDF) program on In-
dustry, with the BPI-France1. The project aims to develop a robotic SoS
(System of Systems) solution for mushroom harvesting at the Gontière farm.
The objective is to support the picking teams in the event of a shortage of hu-
man labor, while maintaining the same quality standards as human operators.
The robotic system will be designed to detect and locate mature mushrooms,
perform the picking process, and assist in transferring the harvested mush-
rooms to a conveyor system.

An in-depth study will be carried out to determine the appropriate size and
deployment strategy for the robotic systems to ensure optimal productivity,
while integrating these systems with the picker teams to control and supervise
the mushroom picking process.

The CueiBot project consists of the following parts:

• Development and design of a SoS robotic concept for mushroom han-
dling.

• Study of mushroom gripping mechanisms.

• Vision system study for mushroom detection and localization.

• Management and planning of labor and the proposed robotic systems.

However, the thesis work focuses solely on the management and planning
of the robotic SoS and human labor using Modeling and Simulation (M&S)
techniques.

1.4 Scientific context of the thesis

This research work has been conducted at the Research Center in Computer
Science, Signal and Automation of Lille (CRIStAL UMR CNRS 9189) within
the SoftE (System of Systems Engineering) team2 of the ToPSyS (Tolerance
Prognosis System of Systems) group3. The research team main topic is the
automation of large scale systems, known with its class of system of System
Engineering (SE). The aim of this thesis is to address the scientific challenges
related to the modeling and supervision of System of Systems (SoS) that are

1reference DOS0191049/00
2https://www.cristal.univ-lille.fr/equipes/softe/
3https://www.cristal.univ-lille.fr/gt/topsys/

1.5. Thesis objectives 5

large-scale, heterogeneous, adaptive, and contain stochastic components. The
scientific context concerns the following:

• Provide a new framework that can describe the structure of a SoS, as
well as the performance, missions, capabilities, and interactions
of individual subsystems, while also handling stochastic components.

• Propose supervision strategies for managing such complex systems by
detecting disturbances and performing reconfiguration, and study
and quantify their resilience.

The research has been carried out under the supervision of Prof. Rochdi
Merzouki, Professor at the University of Lille.

1.5 Thesis objectives

System of Systems (SoS) is a topic that has recently gained significant
attention, particularly in applications that are large-scale and complex. How-
ever, existing studies on modeling such systems have notable limitations.
Some focus exclusively on modeling the behavior of physical components with-
out clearly defining the structure, objectives, or providing decision-making
tools. Others fail to adequately address heterogeneity, and only a few ex-
plore the stochasticity present in certain components. Moreover, model-
based approaches for SoS supervision in these contexts remain scarce in the
literature. To overcome these challenges, we aim to achieve several key objec-
tives:

• Model the structure, missions, and functions of different components
within heterogeneous SoS, including stochasticity in some component
systems.

• Manage the capacity of SoS by detecting failures (monitoring) and per-
forming reconfiguration to achieve SoS objectives through supervision
methodologies.

• Study the resilience of these SoS and quantify their resilience by propos-
ing suitable metrics.

• Validate our proposed methodologies by applying them to the mush-
room harvesting SoS, enabling the M&S of this type of large-scale sys-
tem, managing its capacity in case of disturbances, and studying and
quantifying its resilience.

6 Chapter 1. Introduction

1.6 Research problem statement and formula-
tion

A System of Systems (SoS) is a collection of interacting and independent
Component Systems (CSs) that collaborate to achieve a common goal, which
surpasses the capabilities of the individual systems. Despite the increasing
prevalence of SoS in various large-scale, complex applications, existing models
struggle to fully capture the multi-dimensional nature of SoS, which includes
heterogeneous, adaptive, and stochastic components. The operational capac-
ity of such SoS must be managed through effective supervision methodologies
to ensure that the desired mission is achieved. However, the literature lacks
sufficient methodologies to adequately address this need.

Figure 1.1: Modeling the SoS using a hypergraph (HG) [Khalil 2012]

Consider a multi-level SoS where the n-th CS at level l is denoted as CSn,l.
The architecture of this system can be described as a graph. In [Khalil 2012],
a Hypergraph (HG) is proposed, represented as H = (V,E), where V is the
set of vertices and E is the set of hyperedges, to model the SoS. The vertex set
V = {v1, v2, . . . , va0} represents the CSn,0 as nodes, where a0 is the number
of CSs at level 0 in the hypergraph. The hyperedge set E = {e1, e2, . . . , em}
represents the relationships between CSs, where m is the total number of CSs
at levels higher than 0, as shown in Fig. 1.1. Each CS is assigned a mission
composed of k functions represented by the set: Rt

SoS = {qt1, . . . , qtk}, and its

1.6. Research problem statement and formulation 7

corresponding performance set: P t
SoS = {pt1, . . . , ptk}. The mission represents

the desired performance, and by comparing the mission and performance, we
can identify whether the global mission is satisfied. This performance can be
affected by stochastic or deterministic behavior depending on each CS.

The key research statement is to manage the operational capacity
of the SoS by minimizing the residual between the desired mis-
sion and the current performance of the SoS, which is composed of
heterogeneous, deterministic, or stochastic CSs, in the presence of
major disturbances4. This ensures the satisfaction of the SoS mis-
sion while respecting the main properties of the SoS introduced by
[Maier 1998].

This can be formulated as follows:

minimize |r(t)| =

∣∣∣∣∣
k∑

s=1

(
qts | Rt

SoS − pts | P t
SoS

)∣∣∣∣∣ ,
subject to :

− λ ≤ r(t) ≤ λ,

0 ≤ ε ≤ εmax,

Rt
n,0 ̸= Rt

n′,0 (managerial independence),

qts | Rt
SoS =

b∑
i=0

ai∑
p=1

qts | Rt
p,i (emergent behavior),

(1.1)

where r(t) is the residual, λ is the threshold designed to indicate whether the
desired mission is satisfied, ε is the number of disturbances, and εmax is the
maximum number of disturbances. b is the total number of levels, and ai is
the number of CSs at level i. Rt

SoS = {qt1, . . . , qtk} is the mission set of the
SoS, and P t

SoS = {pt1, . . . , ptk} is the corresponding performance set. It should
be noted that the term qti | Y will be used frequently in this thesis, which
denotes the value of function i in set Y at time t.

Thus, the challenge involves developing models and algorithms that rep-
resent different aspects of modeling, accounting for both deterministic and
stochastic components, while managing the capacity by providing effective
supervision and decision-making support to ensure that the SoS mission is
satisfied.

4Definition: It refers to internal or external events that disrupt normal SoS operations,
leading to abnormal or degraded performance, which requires intervention or adaptation to
restore functionality.

8 Chapter 1. Introduction

1.7 Thesis methodology

To address the problematics of this thesis, the work is divided into three main
stages: Modeling and Simulation (M&S), Supervision, and Resilience.

Modeling and Simulation: This stage involves proposing a new framework
that describes individual CSs and their interactions. It aims to overcome
challenges such as heterogeneity, stochasticity, scalability, and functional
decomposition. The model should respect key SoS properties and be
validated by modeling and simulating an appropriate case study.

Supervision: This stage focuses on developing algorithms for capacity man-
agement to ensure long-term objectives are met. The algorithm will be
validated through simulation scenarios.

Resilience: The resilience stage consists of proposing new resilience mech-
anisms that allow the SoS to recover from failures. Additionally, the
resilience of the SoS will be quantified using appropriate metrics.

1.8 Main contributions

Following the methodology presented in the previous section, the following
contributions are discussed in this thesis:

• A new framework called the Multi-level Stochastic Hypergraph (ML-
SHG) model is developed for modeling SoS, addressing the challenges
discussed earlier [Chreim 2024b, Chreim 2024a].

• A supervision algorithm, consisting of bottom-up monitoring for detect-
ing disturbances and top-down reconfiguration, is proposed to ensure
long-term objectives are met [Chreim 2024b].

• Resilience mechanisms (stand-in and stand-by redundancy) have been
introduced for system recovery, and a resilience metric is proposed for
quantifying resilience[Chreim 2024a].

• The MLSHG framework and the algorithms are applied to the mush-
room harvesting SoS using the Flexsim software tool [Chreim 2024b,
Chreim 2024a, Chreim 2023].

1.9. Disseminated results 9

1.9 Disseminated results

Journals
• Chreim, Abbass, et al. "Towards Supervision of Stochastic System of

Systems Engineering: A Multi-Level Hypergraph Approach." IEEE Ac-
cess (2024).

International conferences
• Chreim, Abbass, Yiwen Chen, and Rochdi Merzouki. "Stochastic hyper-

graph model for resilient system of systems: A case study on mushroom
harvesting system." 2024 19th Annual SoSE Conference (SoSE). IEEE,
2024.

• Chreim, Abbass, Abdelkader Belarouci, and Rochdi Merzouki. "AI-
agent-based modeling for Supervision a System of Systems for Mush-
room Harvesting." 2023 18th Annual System of Systems Engineering
Conference (SoSe). IEEE, 2023.

1.10 Thesis organization

This thesis manuscript is organized as follows:

• Chapter 2: State of the art on System of Systems (SoS). This
chapter presents the state of the art on SoS, covering their history, def-
inition, properties, and applications. Existing modeling methods
are discussed along with their limitations to outline the research gap. In
terms of supervision, only a limited number of studies have addressed
this issue, and relevant works are highlighted to guide the development
of our methodology. Additionally, resilience methods are reviewed,
and some existing resilience metrics are presented, along with their
limitations.

• Chapter 3: Contribution to organisational modeling of stochas-
tic SoS. The third chapter introduces our modeling framework, the
Multi-level Stochastic Hypergraph (MLSHG) model, which de-
scribes the hierarchical structure of the SoS, the individual CSs,
which may exhibit stochastic behaviors, and their interactions. A case
study on a mushroom harvesting SoS is conducted to validate our
framework. The M&S of this system are detailed, with a comparison
between the proposed model and related studies, focusing on key SoS
challenges such as heterogeneity, complex interactions, stochas-
ticity, and scalability.

10 Chapter 1. Introduction

• Chapter 4: Supervision of stochastic SoS. In this chapter, we
propose our supervision strategy by introducing an algorithm that com-
bines bottom-up monitoring and top-down reconfiguration. This
approach enables disturbance detection and implements appropriate
adaptations to maintain normal operation that serves achieving long
term goal. We explain the design of the threshold that triggers recon-
figuration alarms. The results of the supervision scenario for the mush-
room harvesting SoS are presented, along with a discussion comparing
computational time with relevant studies.

• Chapter 5: Resilience of stochastic SoS. This chapter introduces
how the proposed model enhances the resilience of SoS. The supervi-
sion algorithm is modified to integrate resilience mechanisms, such
as stand-in and stand-by redundancy. Additionally, a resilience
metric is proposed to effectively measure the system’s resilience. The
results of the resilience scenario applied to the mushroom harvesting
SoS are presented, followed by an in-depth discussion.

• Chapter 6: Conclusion. In the final chapter, we summarize the PhD
work and its contributions, discuss some limitations, and outline
potential future directions.

Chapter 2

System of systems: State of art

Contents
2.1 Introduction . 11

2.2 System of systems terminology 12

2.2.1 History and definition 13

2.2.2 Properties . 17

2.2.3 Applications . 18

2.3 Modeling methods . 19

2.3.1 Behavioral modeling 20

2.3.2 Organisational modeling 21

2.4 Supervision of SoS . 31

2.4.1 Definition . 31

2.4.2 Monitoring . 33

2.4.3 Reconfiguration . 34

2.5 Resilience of SoS . 35

2.5.1 Definition . 36

2.5.2 Methods . 36

2.5.3 Resilience metrics . 37

2.6 Conclusion . 42

2.1 Introduction

A model is an abstract representation of reality that aims to capture essen-
tial aspects of a system without perfectly reconstructing it [Muller 2000]. It
focuses on representing the behavior and critical properties of components,
while deliberately simplifying or omitting less relevant details. This selective
representation is crucial, as models allow for the simulation of systems, which
is more cost-effective and practical than real-world testing. In addition to

12 Chapter 2. System of systems: State of art

cost-efficiency, modeling aids in understanding system behaviors, predicting
outcomes, and evaluating different strategies for supervision and control.

A model must effectively represent the complexity of the system and its
components to evaluate and predict performance accurately, and to explore
various supervision strategies. Multi-level modeling [Mostafavi 2011] is par-
ticularly valuable for managing this complexity, as it enables the breakdown of
the system into more manageable layers or levels of abstraction. This is espe-
cially important in the context of SoS, which comprises large-scale components
with diverse functionalities that interact dynamically. By using multi-level
models, these interactions are better managed and evaluated, allowing for an
understanding of how changes at different levels impact the overall system.

Throughout this chapter, the definitions of SoS proposed in the litera-
ture will be presented, along with a review of the historical development of
this field. The various applications of SoS will be discussed, as well as the
existing modeling methods, whether they focus on the dynamics of CSs or
organizational aspects. Special attention will be given to graphical techniques
and multi-level frameworks that support the development of the methodology
later in this thesis. Additionally, since the literature on SoS supervision is
limited, several methods and tools that could inform the development of our
own supervision methodology will be examined. Finally, resilience methods
for these systems will be presented, and the metrics used to quantify resilience
will be discussed.

2.2 System of systems terminology

In the dynamic technology and industry world of today, the growing interde-
pendence and complexity of various components require a holistic approach to
problem-solving. This is where the concept of System Engineering (SE)
comes in. A system is more than the sum of its components, it is a complex in-
terconnected element working together to achieve a common goal. In engineer-
ing, science, and everyday life, the concept of a system encompasses a dynamic
set of components with interdependent functions, collectively contributing to
the achievement of specific objectives. [Lightsey 2001] has compiled a list of
widely used definitions of SE, and proposes the following summary :

Definition 1 systems engineering is an interdisciplinary engineering
management process that evolves and verifies an integrated, life-cycle balanced
set of system solutions that satisfy customer needs.

As our understanding of systems deepens, it becomes necessary to extend our
engineering methodologies beyond individual systems to meet the challenges

2.2. System of systems terminology 13

posed by their large-scale integration and interaction. This brings us to the
field of System of Systems Engineering (SoSE). Whereas traditional sys-
tems engineering focuses on optimizing the performance of individual systems,
the shift to SoSE involves orchestrating the complexities that arise when these
systems interface and collaborate.

2.2.1 History and definition

A System of Systems (SoS) is a collection of interacting, interrelated, and in-
dependent Component Systems (CSs), which collaborate to achieve tasks that
no individual system can accomplish in isolation. The history of SoS can be
traced back to the mid-20th century. While references to it have appeared in
various research papers, such as [Ackoff 1971, Jackson 1984, Boulding 1956],
the concept has not been clearly defined or comprehensively addressed in the
manner we understand SoS today. The evolution of SoS began in the 1990s,
driven by the escalating complexity of systems where the foundational theory
of SoS was established, introducing crucial definitions and characteristics that
recognized the need for a more integrated and collaborative approach to ad-
dress intricate challenges stemming from the interconnected nature of modern
systems, researchers have proposed numerous definitions of SoS based on their
understanding of the concept, but there is no universally accepted definition.
The first definition of SoS was established by [Eisner 1991], who considers SoS
to be a set of independently acquired systems, each subjected to a systems
engineering process, whose operations result in a multi-functional solution of
an overall mission, his main contribution focused on the role of computer tools
in SoS development. In addition, he listed some key features that allow SoS
to be applied to any SE case in the context of computer engineering, namely:

• Subsystems are acquired under centralized control.

• Completely autonomous from the program manager.

• Subsystems are coupled and interoperate.

• System is largely uni-functional.

• Trade-offs are carried out to achieve optimal performance.

• System largely satisfies a single mission,

Subsequently, Kotov [Kotov 1997] considered SoS as large-scale, dis-
tributed, concurrent systems that are composed of complex systems. Maier
[Maier 1998] has also identified a SoS as a set of collaboratively integrated

14 Chapter 2. System of systems: State of art

systems that possess operational and management independence of their com-
ponents. He proposed a taxonomy and basic principles that are used today
by many researchers and engineers in many fields when designing a SoS. In
addition, Krygiel [Krygiel 1999] defines a SoS as a set of different systems so
connected or related that they produce results impossible to achieve by the
individual alone.

Besides defining the concepts of SoS, researchers have significantly con-
tributed to the evolution of SoS through their work in various ways. For in-
stance, Carlock and Fenton [Carlock 2001] highlighted that enterprise SoS fo-
cuses on integrating traditional systems engineering activities with the strate-
gic planning and investment analysis of the enterprise. In the same year, Sage
and Cuppan [Sage 2001] proposed that an SoS exists when the five Maier char-
acteristics are applied, providing a comprehensive study of SoS in engineering
and management terms.

Furthermore, Keating et al. [Keating 2003] defined SoS as a meta-system
consisting of complex, autonomous, and integrated systems with diverse tech-
nologies, operations, and geographical areas. They also conducted a detailed
review of SoS in terms of design, deployment, and operation, discussing various
perspectives and potential future work. Bar-Yam et al. [Bar-Yam 2004] ex-
plored specific characteristics of SoS such as evolutionary development, emer-
gent behavior, self-organization, and adaptation, drawing insights from the
fields of biology, sociology, and the military.

DwLaurentis et al. [DeLaurentis 2005b] delved into the perspectives of SoS
in decision-making within transportation systems, while Boardman and Sauser
[Boardman 2006] introduced new characteristics of SoS, including autonomy,
membership, connectivity, divergence, and emergence. They differentiated
between systems and SoS in terms of structure, behavior, and realization.
Sloane et al. [Sloane 2007] proposed an architecture for SoS modeling, where
CSs act as service providers guiding the emergence of SoS.

Simpson and Dagli [Simpson 2008] analyzed the characteristics and at-
tributes of SoS, encompassing flexibility, adaptability, modular design, open
interfaces, and more. Gorod [Gorod 2008] provided a detailed overview of
SoS, while DeLaurentis [DeLaurentis 2008] identified a taxonomy for mod-
eling and analyzing SoS. Collectively, these contributions have enriched the
understanding and development of SoS in various domains.

In 2008, Jamshidi made a significant contribution to the field of SoS by pre-
senting two comprehensive books [Jamshidi 2008a, Jamshidi 2008b] covering
various aspects, including principles, architecture, and applications. In these
books, Jamshidi not only addressed the fundamental principles but also ex-
plored the complex architectures underlying systems of systems, highlighting
the intricate interrelationships between the CSs. His work went beyond mere

2.2. System of systems terminology 15

compilation, as he provided insightful analyses and perspectives on how these
principles and architectures manifest themselves in real-world applications.
He has compiled a wealth of knowledge from previous work, synthesizing and
refining existing definitions to present a more coherent and nuanced under-
standing of SoS:

Definition 2 System of systems are large-scale integrated systems that are
heterogeneous and independently operable on their own but are networked to-
gether for a common goal.

Definition 3 System of systems is a ’supersystem’ comprised of other ele-
ments that themselves are independent complex operational systems and in-
teract among themselves to achieve a common goal. Each element of a SoS
achieves well-substantiated goals even if they are detached from the rest of the
SoS.

Furthermore, DiMario [DiMario 2009] explored the collaboration among
autonomous systems within the SoS framework, setting a foundation for un-
derstanding system interactions. Building on this, Sauser et al. [Sauser 2010a]
employed biological analogies to offer insights into SoS behavior, offering a
fresh perspective on system interactions. In parallel, Ender [Ender 2010] in-
troduced a M&S framework that supports architecture-level analysis, partic-
ularly in defense applications, where the use of neural networks plays a key
role in simulating complex behaviors.

Similarly, Dauby and Upholzer [Dauby 2011] suggested an approach us-
ing evolutionary algorithms and ABM, which provided increased flexibil-
ity and autonomy in SoS simulations. Meanwhile, Cooksey and Mavris
[Cooksey 2011] contributed by applying game theory to SoS modeling, ex-
panding the range of strategic decision-making tools available. Complement-
ing these efforts, Zhou et al. [Zhou 2011] addressed broader issues in System
of Systems Engineering (SoSE) and proposed a computational method for SoS
modeling after reviewing existing approaches.

Khalil et al. [Khalil 2012] further advanced SoS modeling by introducing
a graphical approach based on hypergraphs, offering a visual and mathemat-
ical representation of system interactions. Similarly, Darabi and Mansouri
[Darabi 2013] focused on competition and collaboration within SoS, model-
ing these dynamics to assess their effects on autonomy and belongingness
among constituent systems. In a related effort, Klein and Vliet [Klein 2013]
performed a systematic review of SoS architecture research, categorizing and
analyzing the key contributions in this field.

In the context of mission-critical systems, Silva et al. [Silva 2015] devel-
oped mKAOS, a conceptual model that specifically addresses mission descrip-
tion in SoS, filling a gap in the existing literature. In addition, Vierhauser et

16 Chapter 2. System of systems: State of art

al. [Vierhauser 2016] tackled the challenges of SoS monitoring by proposing a
flexible framework that can be applied to various architectures and technolo-
gies, enhancing system oversight. Similarly focusing on system architecture,
Bondar et al. [Bondar 2017] explored emergent behavior in SoS and recom-
mended the use of agent-based simulation and integration with SysML and
UML to guide the development of SoS architectural models. Their work also
evaluated several architecture frameworks such as Zachman, TOGAF, and
FEAF.

Shifting to performance measurement, Bourne et al. [Bourne 2018] pro-
posed a new SoS-based perspective on performance measurement and man-
agement (PMM), emphasizing key features like autonomy, connectivity, and
emergence. This shift is argued to be more suitable for handling complex
and uncertain environments compared to traditional PMM approaches based
on control systems. In addition, Uslar et al. [Uslar 2019] contributed to the
power and energy domains by offering a comprehensive framework for design-
ing and validating complex systems.

Fortino et al. [Fortino 2020] expanded this research into the Internet of
Things (IoT) domain, reviewing methodologies and tools within the SoSE
framework. They highlighted the key characteristics of IoT systems such as
interoperability, scalability, and autonomy. On a broader scale, Iwanaga et
al. [Iwanaga 2021] called for a holistic SoS research approach, emphasizing
the involvement of researchers, stakeholders, and policymakers in co-creating
solutions for socio-environmental challenges.

Kozma et al. [Kozma 2021] introduced the System of Systems Lifecycle
Management (SoSLM) approach, which extends the Product Lifecycle Man-
agement (PLM) model to address the challenges of deploying, operating, and
maintaining large-scale SoS in automation systems. Their work bridged the
gap between lifecycle management and SoS.

Chatterjee et al. [Chatterjee 2022] focused on designing SoS architectures
to balance resilience and affordability, providing insights into achieving op-
timal trade-offs. In a more technical approach, Raman et al. [Raman 2023]
used machine learning classifiers and formal methods to analyze emergent be-
havior in SoS. Their method, demonstrated through a case study involving
autonomous UAV swarms, tackles the challenge of ensuring confidence in com-
plex systems with emergent properties, especially in SoS scenarios. Finally,
Huang et al. [Huang 2023] addressed the task-oriented SoS architecture se-
lection problem by proposing a hybrid solution that combines reinforcement
learning and evolutionary algorithms to optimize architecture design.

The previously reviewed works of literature in this discussion constitute
invaluable chronicles that illuminate the historical evolution of SoS and SoSE
over time. These works trace the path of these concepts as they respond to the

2.2. System of systems terminology 17

growing complexity of modern systems. Focusing on the development of SoS,
these writings not only dissect the theoretical foundations, but also propose
practical solutions to a whole range of challenges. From structural analysis
and control to supervision, fault detection and isolation, M&S, optimization
and decision-making, these works constitute a comprehensive exploration of
the multifaceted dimensions of SoS and SoSE. In so doing, they not only
contribute to the theoretical foundations of these fields, but also provide ac-
tionable insights and methodologies. Furthermore, these literary works delve
into crucial aspects of resilience and sustainability, recognizing the evolving
landscape of systems engineering and the imperative to address contemporary
issues in a holistic, forward-looking manner.

2.2.2 Properties

Despite the numerous definitions of SoS proposed in the literature, a univer-
sally accepted definition remains elusive, highlighting the evolving and dy-
namic nature of the field. Various researchers have offered different conceptu-
alizations, reflecting the complexity and multi-dimensionality of SoS. However,
despite this diversity, certain common characteristics consistently emerge, al-
though expressed differently across studies. Key properties such as emergent
behavior, interoperability, and the integration of independent systems form
the foundation upon which a coherent understanding of SoS can be estab-
lished. By acknowledging and embracing these fundamental characteristics,
researchers can better navigate the complexities surrounding SoS, paving the
way toward a more refined and widely applicable definition. While a singu-
lar definition may remain elusive, the collective recognition of these essential
properties provides a practical framework for the ongoing development and
refinement of the SoS concept.

In this work, the focus is on considering the five fundamental properties
proposed by Maier [Maier 1998] as a baseline for developing SoS. These dis-
tinctive traits set SoS apart from typical complex systems and serve as a guid-
ing framework for a more precise understanding of their nature. These char-
acteristics must be present in all constituent or Component Systems (CSs),
namely:

• Operational independence: A CS is required to operate indepen-
dently and function autonomously, irrespective of the presence or con-
nection to other CSs within the SoS. Even when detached from the
larger SoS framework, a CS maintains its distinct operational mode and
possesses dedicated resources.

• Managerial independence: Each CS within the SoS manages its own

18 Chapter 2. System of systems: State of art

operations separately without regard of the other CSs. These operations
serve a useful independent mission that is different from the mission of
the other CSs and the SoS mission.

• Geographic dispersion: All CSs are dispersed over a vast geographi-
cal area and exchange information as part of their interactions, but no
physical elements or energy are shared.

• Emergent behavior: The global mission and functionality of the SoS
is achieved by the emergent behavior arising from the collaboration of all
CSs. This crucial characteristic underscores the cooperative nature of
CSs, emphasizing that the collective actions of multiple systems, rather
than any single one, are essential for achieving the global objectives and
functionality of the SoS.

• Evolutionary and adaptive development: SoS are constantly evolv-
ing over time. This implies that organizational structure and functions
adapt dynamically, along with mission operations, in response to overall
mission adjustments or external disturbances. This evolution may in-
volve the addition or elimination of CSs to meet changing requirements
and challenges faced by the SoS.

When modeling SoS, it is crucial to adhere to the set of fundamental prop-
erties stated above that collectively define the basis of these systems. These
properties serve as a decisive test to determine whether an aggregation of
elements and CSs truly constitutes a SoS. Indeed, any entity aspiring to be
recognized as a SoS must demonstrate that it adheres to these properties.
However, in cases where certain CSs show notable alignment with most of
these properties while lacking others, an alternative classification known as
a Virtual Component System (VCS), as proposed by Soyez [Soyez 2015], be-
comes relevant. It should be noted that some of these properties should be
verified for individual CSs, including managerial independence, operational
independence, and geographic distribution. Other properties, such as emer-
gent behavior and evolutionary development, must be verified at the global
SoS level.

2.2.3 Applications

SoS is applied in a variety of fields, offering solutions to complex problems
by integrating multiple individual systems into a coherent whole. In defense
[Owens 1996], SoS are used for command and control [Tran 2016], where inter-
connected military systems work in synergy to improve situational awareness

2.3. Modeling methods 19

and decision-making. In the transport sector [DeLaurentis 2005b], SoS facili-
tates the efficient management of interconnected networks, optimizing traffic
flow and enhancing safety. Furthermore, SoS principles are being applied in
healthcare [Price 2022] to integrate various medical systems, enabling patient
care and data exchange between healthcare providers in a seamless manner.
In agriculture, SoS approach plays a crucial role in optimizing farming oper-
ations and increasing agricultural productivity. It enhances understanding of
interoperability across heterogeneous infrastructure [Weinert 2020a], facilitat-
ing seamless integration and interaction among various agricultural systems.
These applications and others are showcased in Table 2.1, highlighting the
versatility and importance of the SoS paradigm for addressing complex chal-
lenges across various sectors.

Domain Reference
Defence [Owens 1996] [Tran 2016] [Lubas 2017]
Agriculture [Weinert 2020b]
Healthcare [Sloane 2008] [Price 2022]
Transportation [DeLaurentis 2005a]
Energy management [Zhao 2018]
Maritime [Mahulkar 2009] [Mansouri 2009]
Civil aviation [Mordecai 2016]
Biology [Sauser 2010b]
Smart grid [Ibne Hossain 2020]
Unmanned aerial vehicle swarm [Kerr 2020]

Table 2.1: SoS applications

2.3 Modeling methods

In the field of complex SE, SoS modeling stands out as a vital discipline
facilitating the understanding, analysis and design of interconnected and in-
dependent systems at different scales. SoS modeling encompasses a multidi-
mensional approach, incorporating behavioral, and organizational methods.
Each facet plays an essential role in fully capturing the complex dynamics
and emergent behaviors inherent in SoS architectures.

Behavioral modeling is the fundamental framework for understanding
how the individual components of an SoS interact and function. It examines
the actions, processes and decision-making mechanisms of each CS, represent-
ing their operational characteristics, dynamic behavior and performance under

20 Chapter 2. System of systems: State of art

various conditions. By abstracting complex behaviors into manageable repre-
sentations, behavioral modeling makes it possible to predict system responses
and identify potential failures.

Organisational or Structural modeling, on the other hand, focuses
on clarifying the physical and organisational structure of interconnected CSs
within an SoS. It examines the relationships, dependencies, and interfaces
among various CSs and their interactions, thereby facilitating the visualization
and analysis of system architectures. Through structural modeling, engineers
can gain insights into system composition, hierarchy, and connectivity, crucial
for assessing scalability, adaptability, and resilience of SoS configurations.

In the literature, there are few studies on behavioral modeling in SoS, as
it does not directly address the main objective of ensuring the common goal
is achieved across the system. Instead, it tends to focus on individual compo-
nents. However, most existing modeling methods describe the organizational
structure of SoS, which can be divided into different classes. In the following
section, we present the most relevant existing modeling methods.

2.3.1 Behavioral modeling

As previously stated, behavioral modeling refers to understanding the behav-
ioral dynamics of physical components. Below, existing tools are cited, namely
Bond Graph (BG) and System Dynamics (SD), for behavioral modeling.

2.3.1.1 Bond Graph

A Bond Graph (BG) is a graphical representation of a physical dynamic
system, depicting the flow of energy between system components through
power bonds. It can describe the flow of energy between Physical Component
Systems (PCSs)), allowing us to understand the interaction between them us-
ing pairs of vertices and junctions {S,A}. For instance, [Kumar 2017] utilized
BG to model the dynamics of vehicles , aiming to enhance traffic flow, reduce
congestion, and contribute to sustainable transport solutions (Fig. 2.1).

2.3.1.2 System Dynamics

On the other hand, System Dynamics (SD) [Barbrook-Johnson 2022] is a
computational modeling method used to analyze the behavior and dynamics
of complex systems over time. This approach utilizes feedback systems the-
ory and is commonly implemented through simulation models to understand,
design, and predict system behaviors under various scenarios. SD provides
a methodology for modeling and testing dynamic behavioral hypotheses, of-
fering an equivalent model to mathematical formulations [Sohn 1985]. For

2.3. Modeling methods 21

Figure 2.1: BG multi-level modeling of Intelligent Transport System
[Kumar 2017]

example, [DeLaurentis 2005a] discussed the application of SD and Control
Theory Robustness methods in understanding future transportation SoSs.

2.3.2 Organisational modeling

While some studies have addressed behavioral modeling, most researchers fo-
cus on organizational modeling, as it offers a better understanding of the
structure of interconnected subsystems within complex and highly hetero-
geneous SoS. This approach facilitates mission and functional decomposi-
tion, leading to more efficient design, analysis, and optimization of the overall
system. Researchers primarily concentrate on modeling the organizational as-
pects of SoS through various architectural frameworks, often without delving
deeply into the behavioral dynamics of individual constituent systems.

To this end, various modeling tools and techniques have been developed
and employed for the structural and organizational analysis of SoS and com-
plex systems. These tools help visualize, analyze, and optimize the relation-
ships and interactions among subsystems. Below are some commonly used
modeling tools and methods, categorized into three main classes: AI-based
models, Agent-Based Modeling (ABM), and graphical modeling, as
shown in Fig. 2.2.

22 Chapter 2. System of systems: State of art

Figure 2.2: SoS modeling methods

2.3.2.1 AI-based modeling

AI-based modeling leverages artificial intelligence to optimize decision-
making, communication, and coordination between interconnected CSs within
a SoS. This approach significantly enhances the organizational aspects of SoS
by enabling dynamic adaptability, efficient resource allocation, and seamless
interoperability, which collectively improve the overall management and col-
laboration within complex system networks. For example, [Lin 2023] intro-
duced a deep reinforcement learning approach to optimize task allocation and
coordination between CSs, ensuring that systems are assigned tasks according
to their capabilities, much like how roles are defined in an organization. Ad-
ditionally, this approach supports dynamic reconfiguration, allowing systems
to adapt to evolving conditions, which mirrors how organizations evolve to
meet new challenges. This not only enhances the modeling of SoS in terms
of structure but also in how systems collaborate to achieve shared objectives.
However, the paper focuses on relatively simple interactions between systems
performing the same task, whereas real-world interactions tend to be more
complex.

Moreover, [Nilsson 2024] proposed AI-driven techniques to improve dy-
namic communication and adaptability between heterogeneous systems.
These techniques include AI-based methods for automatic message transla-
tion, ontology alignment, and autonomous decision-making, enabling systems
to collaborate seamlessly and reconfigure without manual intervention. Such
capabilities help manage the coordination and interaction between systems,

2.3. Modeling methods 23

ensuring that the SoS functions efficiently while adapting to changes, thus
improving both the organizational structure and functionality of the SoS.

Despite these advancements, AI-driven solutions face notable limitations.
They heavily depend on the availability of large, high-quality datasets for
training, which may not always be accessible, especially in real-world SoS
environments characterized by diverse systems. Furthermore, implementing
AI solutions in large, heterogeneous SoS can require sophisticated architec-
tures and significant computational resources, which can lead to substantial
overhead and practical challenges.

2.3.2.2 Agent-based modeling

Agent-Based Modeling (ABM) has been widely used in modeling SoS
[Feng 2023, de Amorim Silva 2020], where agents operate autonomously, in-
teracting with their environment and communicating with other agents. ABM
involves simulating the interactions and behaviors of autonomous agents, each
representing a CS, which helps capture emergent behaviors and complex dy-
namics within the SoS. This approach enables a deeper understanding of how
individual systems collaborate and adapt within a larger network. For ex-
ample, [Soyez 2015] employed a multilevel ABM to explore both static and
dynamic SoS, focusing on how systems evolve in terms of overall goals and
missions. The study conducted a comparative analysis between ABM and
Multi-agent Systems (MAS), where agents operate based on their individual
perspectives, communicate with other agents, and adhere to their own rules
and resources.

[Soyez 2015] described the SoS as a group of CSs (agents), with attributes
that depict both static and dynamic behaviors within the SoS framework, as
shown in Figure 2.3. The study classified Level 0 physical CSs as elementary
CSs, while higher-level CSs were termed top CSs. Additionally, virtual CSs
were introduced to represent components that temporarily deviate from the
typical properties of SoS. This modeling framework was applied to intelligent
autonomous vehicles within the European InTraDE (Intelligent Transporta-
tion for Dynamic Environment) project, aimed at automating port container
logistics.

Although ABM is a powerful tool for modeling SoS, it faces challenges
in accurately capturing the full range of emergent behaviors in large-scale
systems, and decision-making becomes more complex as the scale and intricacy
of the system increase.

24 Chapter 2. System of systems: State of art

Figure 2.3: Graphical representation of multi-level ABM by [Soyez 2015]

2.3.2.3 Graphical modeling

Graphical approaches offer suitable solutions for describing the structure
of a SoS. They aid designers in examining various organizational aspects and
dependencies. It help to capture the relationships and interactions within
complex systems [Christensen 2007]. By representing entities as nodes and
their interactions as edges, graph models can effectively map out the intricate
web of connections that helps in understanding system behavior, optimizing
performance, and improving decision-making in the design and operation of
SoS [Harrison 2016]. This method is particularly useful in SoS, where multi-
ple independent systems collaborate to achieve higher-level objectives. In this
section, various graphical models are discussed, including: bi-graph, simple
graph, directed graph, undirected graph, weighted graph, Hyper-
graph, and weighted and stochastic Hypergraph. Additionally, it is
explained how some of these models have been applied to SoS modeling.

• Bi-Graph: A bigraph is a graphical tool that consists of two graphs:
one representing the placement of CS nodes and the other representing
the relations between them. The link graph in bigraphs describes the
interaction patterns among systems, enabling the representation of di-
rect connections and interrelations between systems in a given scenario.

2.3. Modeling methods 25

[Wachholder 2015] used bipartite graphs (Fig. 2.4) to address the lack
of research in modeling approaches that consider both the structure and
dynamics of SoS for emergent behavior. They explored the potential of
bi-graphs in enabling context-sensitive interaction and reaction rule or-
chestration, which is essential for coping with the increasing complexity
of modern software systems.

Figure 2.4: Bigraph proposed by [Wachholder 2015]: Place graph on the left,
Link graph on the right

• Simple Graph: Simple graphs consist of a finite set of nodes (also
called vertices) connected by edges (links) that represent elements and
their relationships. Consider a graph G = (V,E) with a vertex set
V and an edge set E. The vertex set V = {v1, v2, . . . , vn}, where vi
for i = 1, 2, . . . , n represents the vertices in the graph. The edge set
E = {ei,j = {vi, vj} | vi, vj ∈ V and vi ̸= vj} represents the relationships
between two vertices.

A non-directed graph (see Fig. 2.5) G = (V,E) is a simple graph
with no orientation in the edges, while a directed graph G = (V,E),
where E = {ei,j = (vi, vj) | vi, vj ∈ V and vi ̸= vj}, is a simple graph
with directions on the edges, as shown in Fig. 2.6.

A weighted graph G = (V,E,W) is a simple graph with informa-
tion associated with each edge called weights. The weight set W =

{wi,j = w(vi, vj) | vi, vj ∈ V and vi ̸= vj} provides supplementary in-
sights about the relationship between the vertices, as shown in Fig. 2.7.
Moreover, stochastic graph [Rezvanian 2016] in which weights associ-
ated with edges are random variables is a better graph model for real
word application where the nature varies with time.

Graphs have been used for modeling processes in complex systems
[Jalving 2019]. For example, [Myhan 2023] used graphs for modeling

26 Chapter 2. System of systems: State of art

Figure 2.5: Non directed graph

Figure 2.6: Directed graph

Figure 2.7: Weighted graph

2.3. Modeling methods 27

and analyzing the structure of a grain drying line, demonstrating the
effectiveness of these approaches in the agri-food industry. However,
in complex systems where the structure possesses multiple dependen-
cies, simple graphs cannot represent these dependencies, as edges only
represent the relation between two vertices.

• Hypergraph: A Hypergraph (HG) is a generalization of a graph
where edges, called hyperedges, can connect any number of vertices, not
just two. In this context, [Khalil 2012] introduced a Hypergraph model
for SoS modeling, which allows for a detailed representation of SoS by
capturing multi-way relationships that traditional graph models cannot
depict Fig. 2.8. This approach proves particularly useful in SoS, as it
illustrates the intricate network of dependencies and interactions among
various CSs.

Figure 2.8: Hypergraph composed of six vertices and four hyperedges

From a mathematical point of view, a HG can be depicted as H =

(V,E) with a vertex set V and a hyperedge set E. The vertex set
V = {v1, v2, ..., vn}, where vi, i = 1, 2, ..., n represents a vertex in the
HG. The hyperedge set E = {e1, e2, ..., em}, where ej = {vi1 , vi2 , ..., vik}.
The interaction and the information exchange between hyperedges is
what differentiates hypergraphs from hypersets [Chemero 2008].

28 Chapter 2. System of systems: State of art

In the context of multi-level SoS modeling, the physical CSs in level 0
(CSn,0) are represented as vertices, and the managerial CSs (CSn′,l) are
presented as hyperedges in higher levels as shown in Fig. 2.9. There
are two ways to represent graphically the HG for a specific SoS: the
first one is similar to the set-based representation, where we add
links between the hyperedges, and the second one is the hierarchical
representation as illustrated in Fig. 2.10.

Figure 2.9: Hierarchical representation of HG by [Khalil 2012]

The Hypergraph (HG) proposed by [Khalil 2012] has been used to model
a SoS as a Constraint Satisfaction Problem (CSP). This approach cal-
culates satisfaction degrees and key performance indicators, facilitat-
ing Fault Detection and Isolation (FDI) of various CSs. Additionally,
the author introduced an algorithm combining top-down reconfiguration
with bottom-up monitoring for robust, online supervision. However, this
method was limited to a specific type of SoS with low heterogeneity,
specifically mechatronic systems, and cannot be easily applied to highly
heterogeneous SoS that include stochastic components.

• Stochastic and weighted Hypergraph: A weighted HG H =

(V,E,W) has weights associated with its hyperedges, augmenting tradi-
tional hypergraphs by adding a quantitative measure to the connections
between nodes. This enhancement offers supplementary insights into

2.3. Modeling methods 29

Figure 2.10: HG set-based representation (left) and the graphical
Hierarchical representation (Right) [Khalil 2012]

the relationships among nodes within the same hyperedge and accom-
modates more complex associations among multiple participants.

The mathematical representation of weighted HG is represented by H =

(V,E,W) with vertex set V and hyperedge set E an weight set W .
The vertex set V = {v1, v2, ..., vn}, where vi, i = 1, 2, ..., n represents
the vertex in HG. The hyperedge set E = {e1, e2, ..., em}, where ej =

{vi1 , vi2 , ..., vik}. The indicator function of HG H is defined as follows:

I(vi, ej) =

{
1, if vi ∈ ej,

0, otherwise.
(2.1)

Let W = [wij] denote the weight of vertex vi in hyperedge ej, where

wij ̸= 0, if vi ∈ ej (2.2)

In addition, wij may not be equal to wij′ if j ̸= j′ because the weight
of each vertex may vary at different hyperedge. Let |ej| denote the
cardinality of hyperedge ej, that is, the number of vertices in hyperedge
ej. If for arbitrary j = 1, 2, ...,m, |ej| = 2, HG H degenerates to an
undirected graph.

Weighted hypergraphs have been studied across various domains. For
example, Chodrow [Chodrow 2023] introduced nonbacktracking spectral
clustering specifically designed for nonuniform hypergraphs. Building
upon this, Galuppi [Galuppi 2023] extensively investigated the spectral
theory of weighted hypergraphs, while Stephan [Stephan 2022] explored

30 Chapter 2. System of systems: State of art

the non-backtracking spectra in sparse random hypergraphs. Addi-
tionally, Ko [Ko 2022] scrutinized growth patterns in real-world hyper-
graphs, significantly enhancing our comprehension of their evolutionary
dynamics.

Recent advancements in weighted and stochastic hypergraphs have pro-
vided new insights into complex relational systems. For example,
[Ran 2020] applied HG models in vehicular fog computing to repre-
sent cooperative networks of vehicles, underscoring the significance of
stochastic modeling in dynamic and unpredictable environments. Sim-
ilarly, [Bassoli 2021] investigated energy and latency in 5G cloud radio
access networks, demonstrating how stochastic HG models can enhance
system performance under uncertainty.

Weighted hypergraphs can also represent the addition and retrieval
of nodes, as demonstrated by Guo [Guo 2014], making them suitable
for SoS modeling where the number of CSs may change stochastically.
They play an important role in capturing and understanding the in-
herent uncertainties, complexities, and dynamic behaviors of CSs and
the SoS as a whole. In adition, Weighted hypergraphs help capture
the probability-dependent interactions between these CSs, impacting
the organizational modeling and emergent behavior of the SoS, as CSs
can appear or disappear unpredictably or based on specific distributions
[Mohsin 2019].

• Bayesian network: Bayesian Networks are graphical models that
represent probabilistic relationships among a set of variables. They
are widely used for analyzing component failures in complex systems
[El-Awady 2023]. In these networks, nodes represent variables, and
edges represent probabilistic dependencies between them, as shown in
Fig. 2.11.

In the context of SoS modeling, Bayesian Networks are used to ac-
count uncertainties presented in interactions and behaviors, for example,
[Han 2013] utilized event tree methods and Bayesian Networks to quan-
tify interdependencies and assess risks by analyzing how disruptions in
one system can propagate to others. Bayesian Networks were employed
to represent causal relationships between systems under uncertainty,
helping to quantify interdependencies by including various parameters
and factors to estimate how systems affect each other. Although this
work addresses the quantification of interdependency with uncertainties,
it lacks tools to assist decision-makers in making better decisions during
the SoS development process.

2.4. Supervision of SoS 31

Figure 2.11: Baysian network

The summary of these SoS modeling methods is presented in Fig. 2.12.

2.4 Supervision of SoS

System supervision involves a series of activities that monitor and man-
age the performance, security, and functionality of technological systems. It
ranges from the tracking of system operation to guarantee proper performance
and identification of the root cause of problems in implementation, which up-
dates and maintains security protocols. Proper supervision of the system
will ensure the reliability, efficiency, and security of the components within
the system, which translates to an operational support for organizations and
prevention of downtime.

2.4.1 Definition

In intelligent systems, supervision encompasses not only capturing a snap-
shot of the process but also adapting to new situations where potential risks
arise, requiring the detection of deviations from desired outcomes for effective
adaptation [Gleirscher 2023].

In social systems, supervision is an intricate field encompassing vari-
ous aspects of social management and control [Hämberg 2013] while some

32 Chapter 2. System of systems: State of art

Figure 2.12: SOS modeling methodes

2.4. Supervision of SoS 33

researchers differentiate supervision from control by emphasizing that super-
vision involves management and instruction, aiming to monitor the actual
state of affairs.

There are other definitions of supervision. For example, process supervi-
sion is a set of activities for determining the state or condition of the process
and controlling it to ensure that it remains in a safe regime [Natarajan 2012].
The condition determines whether the process is normal or abnormal, with
deviations from normal behavior being detected as abnormalities.

While most studies focus on the Modeling and Simulation (M&S) of SoS
[Mittal 2015], there is limited research on the supervision of these complex sys-
tems. SoS supervision involves methods and tools used to maintain sys-
tem performance, ensuring that the SoS operates as expected and meets its
global objectives, even in the presence of disturbances. It consists of handling
disturbances during the monitoring stage and adapting the architecture dur-
ing the reconfiguration stage [Khalil 2012]. This process requires a robust
architecture or network to be effective [Li 2018]. Additionally, performance
modeling plays a critical role in predicting stochastic system behavior during
the early design stages and managing performance risks [Modaber 2024].

2.4.2 Monitoring

Disturbances can significantly impact the performance of complex systems
that depend on intricate interactions and precise conditions. Even minor
disruptions can compromise their functionality. To mitigate these risks and
maintain system efficiency, robust monitoring mechanisms are essential.

Failure is a type of disturbance that necessitates the detection of failed CSs
[Hyun 2023]. Prognostic and diagnostic methodologies are typically used in
this detection, incorporating diagnostic systems characterized by quick detec-
tion, isolability, robustness, and error estimation [Venkatasubramanian 2005].
In SoS, this can be achieved by generating a set of fault indicators called Ana-
lytical Redundancy Relations (ARRs) [Staroswiecki 2001] that is the residual
between the actual and the normal performance.

Another type of disturbance is the presence of extra CSs, leading to over-
capacity. This requires evaluating the contribution of individual CSs to the
overall SoS using specific metrics or attributes [Wang 2019].

Due to the unpredictable nature of disturbances, many studies have em-
ployed stochastic models to understand their effects in complex systems. For
example, [Wang 2023] explores how power systems maintain synchronization
despite random disturbances, which is particularly important with the inte-
gration of solar and wind power. In the context of single-system control,
[Do 2016] examined how to control the trajectory of underactuated ships un-

34 Chapter 2. System of systems: State of art

der stochastic disturbances. The aim is to design controllers capable of han-
dling both predictable and random disturbances, ensuring that ships follow a
set path accurately. While most studies focus on single systems encountering
random disturbances, there is a notable lack of research on the supervision of
SoS under similar conditions.

Other models have employed stochastic approaches to represent dis-
turbances in complex systems. For example, the Markovian model in
[Oyewole 2020] effectively captures failures in cyber-physical power systems.
Similarly, [Goldbeck 2019] utilized a stochastic asset failure model to assess
failure propagation probabilities in urban infrastructure resilience. Binomial
modeling is also a suitable approach for representing disturbances in indepen-
dent components [Fan 2018], making it appropriate for stochastic SoS.

Monitoring is a crucial stage of supervision that addresses these distur-
bances. It involves the continuous observation of the system’s performance to
identify deviations from normal operation early. In multi-level frameworks,
this stage is conducted in a bottom-up manner, starting with detecting distur-
bances at the physical level and propagating the information to higher-level
organizations [Khalil 2012].

Monitoring distributed systems requires gathering and displaying infor-
mation about process interactions to support performance evaluation. Due
to the presence of multiple control points in distributed systems, traditional
sequential monitoring techniques are often inadequate. A central control can
be employed to monitor nondeterministic events more effectively [Joyce 1987].

Real-time monitoring, in particular, relies on models to define expected
performance and detect deviations from it. Effective real-time monitoring
combines advanced diagnostic methods, robust data collection, and sophisti-
cated analytical tools to ensure systems continue functioning efficiently and
reliably, even in the presence of disturbances. By rapidly identifying devia-
tions from expected behavior, these models allow for timely interventions and
adjustments, helping to maintain the integrity and functionality of complex
systems despite unpredictable disruptions.

2.4.3 Reconfiguration

The dynamic nature of SoS, including the evolving behaviors of subsystems,
changing goals and missions, and the disturbances that arise, requires a con-
tinuous response. Adaptation and mission reallocation, which involve
reorganizing the SoS and reassigning functionalities to maintain normal per-
formance, are essential for achieving global objectives [Chen 2023].

This process occurs during the reconfiguration phase, conducted in a top-
down manner within multi-level supervision frameworks [Khalil 2012]. In

2.5. Resilience of SoS 35

this phase, high-level organizations make decisions and reallocate functions
to lower-level CSs. This hierarchical approach ensures that the system can
efficiently adapt to changes and disturbances. High-level decision-makers eval-
uate the system’s current status and decide on necessary adjustments, which
are then implemented at the lower levels. By redistributing tasks and re-
sources, the system can maintain optimal performance and continue to meet
its global goals, even in a dynamic and changing environment.

Some reconfiguration methods, such as AI-based approaches, rely
on data to reallocate missions and resources [Ibrar 2020], For example,
[Gaiardelli 2024] used an AI-based framework for resource allocation and task
offloading in a reconfigurable Internet of Vehicular Networks (IoV) to dy-
namically manage and distribute resources within a complex and dynamic
network environment. However, these methods require large amounts of data,
which may not always be available. However, these methods often require
large datasets, which are not always available. Other methods focus on con-
straint satisfaction and optimization algorithms. For example, [Khalil 2012]
applied the Constraint Satisfaction Problem (CSP) for reconfiguration, where
constraints are assigned to high-level managerial CSs (represented as hy-
peredges in the HG) and evaluated using specific indicators. To solve the
CSP, a backtracking algorithm was employed [Van Beek 2006], which has
been widely used to find optimal solutions by exploring all possible options
[Ayadi 2022, Li 2022, Mechqrane 2020]. The problem of these algorithms that
are computationally expensive and poses challenges for large-scale systems.

Alternatively, capability-based reconfiguration [Antzoulatos 2015] is fast
and less computationally intensive, which improves the scalability of SoS
[Antzoulatos 2017]. In this context, capability refers to abstract descriptions
of what a CS can accomplish [Scrimieri 2023]. Moreover, [Nelson 2019] em-
phasized the importance of mapping activities to system functions and assign-
ing them to CSs, supporting missions reconfiguration and adaptation based
on system capabilities where these missions must be evaluated to ensure that
the global goal is achieved [Gao 2023].

2.5 Resilience of SoS

Recently, resilience has become an increasingly important in system design,
as researchers prioritize it over robustness due to its ability to handle un-
foreseen challenges and disturbances [Tran 2015]. While robust systems are
engineered to prevent failure through resistance, resilient designs emphasize
adaptability and recovery. This shift in focus is essential because disruptions
and shocks are inevitable, and systems cannot always avoid failures. Rather

36 Chapter 2. System of systems: State of art

than solely aiming to prevent breakdowns, resilience ensures that systems can
absorb disturbances, adapt to changing conditions, and bounce back effec-
tively. By designing with resilience in mind, systems can maintain stability
and functionality even in the face of uncertainty, enhancing their long-term
sustainability.

Resilience in SoS is crucial because it enables the system to adapt and
recover from disruptions, ensuring continuous operation even in the face of
failures. This adaptability is vital for maintaining the overall performance
and reliability of complex, interconnected systems. Resilience and supervision
are related concepts, particularly in these complex systems. Supervision pri-
marily focuses on monitoring and reconfiguration for capacity management,
ensuring that system resources are effectively allocated and disruptions are
detected early. However, resilience goes beyond basic monitoring and ca-
pacity management. It emphasizes the system’s ability to withstand, adapt
and recover from disruption by employing different reconfiguration strategies
[Dui 2023, Wang 2022].

2.5.1 Definition

Various definitions of resilience have been proposed in the literature. For
example, [Tran 2015] offers the following definition of resilience:

Definition 4 (Resilience:) The ability to maintain or recover desired capa-
bilities in a timely manner when faced with a threat or disturbance, through
well-informed design and adaptation.

This definition is grounded in resilience characteristics such as the ability
to provide the desired capability, the graceful and detectable degradation of
function or capability when faced with disruption, the ability to maintain or
recover degraded capabilities, and the ability to adapt to evolving threats and
operating conditions—often through reconfiguration and replacement—while
ensuring affordable and effective performance, as discussed in [Neches 2013,
Madni 2009, Haimes 2009].

2.5.2 Methods

Researchers have focused on methods for designing resilient systems. In re-
silience engineering, there are two main approaches: qualitative and quan-
titative methods [Vugrin 2010]. Qualitative resilience methods emphasize
descriptive, non-numerical analysis, assessing system properties, behaviors,
and vulnerabilities using expert judgment, case studies, or scenario analysis.

2.5. Resilience of SoS 37

These methods provide insights into how systems respond to disruptions and
help identify resilience strategies.

In contrast, quantitative resilience methods involve numerical assessment
and modeling, using measurable data, mathematical models, and statistical
techniques to estimate system resilience, monitor performance, and predict
recovery times. In SoS, where performance-based resilience is the primary fo-
cus, precise measurement of system performance and interactions is essential.
Quantitative methods, which facilitate objective analysis, scalability, and pre-
dictive modeling, are particularly well-suited for managing the complexity of
large, interconnected systems.

In SoS, reconfiguration methods focusing on standby redundancy rely
on extra components as backup systems that replace failed ones. For in-
stance, [Turnquist 2013] utilize redundant and backup systems, combined with
linear programming and stochastic optimization, to design resilient SoS net-
works. However, these methods can be costly due to the need for additional
components. Alternatively, adaptability-based methods utilize existing func-
tional or stand-in redundancy to compensate for failed components by op-
timizing the performance of the SoS through reconfiguration. These methods
usually rely on graphs or networks that can evolve to compensate for node
failures [Chatterjee 2023]. For example, [Sun 2024] used deep reinforcement
learning for resilient swarm UAV SoS, formulating it as an optimization prob-
lem. Similarly, [Uday 2015] employ stand-in (functional) redundancy, also
framing it as a performance optimization problem. However, these network-
based SoS formulations often address only a single layer and involve limited
heterogeneity. Additionally, not all SoS possess sufficient functional redun-
dancy to recover from failures, and at some point, it may be necessary to add
external redundancies. This is why some researchers have suggested increasing
redundancies in complex systems [Jackson 2013, Watson 2021].

2.5.3 Resilience metrics

SoS resilience quantification involves using specific metrics to measure the
system’s ability to absorb, adapt to, and recover from disruptions. These
metrics often assess aspects such as robustness, recovery time, and perfor-
mance degradation during failures. The need for such metrics arises from the
increasing complexity and interdependence of modern SoS, where failures in
one component can propagate across the entire system, leading to significant
disruptions. Resilience quantification helps answer critical questions, such as
which system—System A or System B—is more resilient under given condi-
tions. By providing measurable data, these metrics enable a direct comparison
of systems’ resilience, helping in the design of more robust SoS, optimizing

38 Chapter 2. System of systems: State of art

resource allocation, and ensuring that the system can adapt and recover ef-
ficiently. This ultimately enhances long-term sustainability in dynamic and
unpredictable environments.

For example, the authors in [Vugrin 2010] introduce quantitative metrics
for assessing resilience by analyzing system performance over time. They
evaluate resilience costs through the measurement of recovery effort. Figure
2.13 illustrates their conceptualization of system resilience and the associated
recovery effort. The systemic impact SI is defined as an integral-based metric:

SI =

∫ tf

t0

[TSP (t)− SP (t)] dt, (2.3)

where TSP (t) represents the target system performance, SP (t) represents
the actual system performance, t0 denotes the time of the disruption event,
and tf marks the time when recovery is complete. Similarly, the total recovery
effort TRE is calculated as:

TRE =

∫ tf

t0

RE(t) dt, (2.4)

where RE(t) represents the recovery effort at time t. Additionally, the
authors propose two supplementary metrics that combine a weighted sum of
the systemic impact and the total recovery effort.

However, this approach faces challenges in differentiating between systems
that may have similar integrated values but exhibit vastly different dynamic
behaviors. Moreover, it does not distinguish between the absorption and
recovery aspects of resilience.

On the other hand, [Balchanos 2012b] introduced a model called TIRE-
SIAS, a resilience framework for complex and dynamic systems. This
framework comprises a set of capability-based metrics designed to en-
able quantitative resilience comparisons between potential system designs
[Balchanos 2012a, Balchanos 2014]. These metrics rely on measurements of
system performance (see Fig. 2.14) and are used to assess and compare the
absorptive and restorative capacities of different designs.

The ability of a system to absorb a disturbance is captured by the aver-
age degradation rate, ADR, and the time-averaged performance degradation,
tMCdeg, which are calculated as follows:

ADR =
MC0 −MCmin

tmin − t0
, (2.5)

tMCdeg =
1

tmin − t0

∫ tmin

t0

[MC0 −MC(t)] dt, (2.6)

2.5. Resilience of SoS 39

Figure 2.13: (a) System performance and (b) recovery effort [Vugrin 2010]

40 Chapter 2. System of systems: State of art

where MC0 represents the original desired mission capability or perfor-
mance level, MCmin is the minimum mission performance level, tmin is the
time at which MCmin is reached, and t0 marks the time when the disturbance
occurs.

The ability of a system to recover capabilities lost due to a disturbance is
measured by the average recovery rate, ARR, and the time-averaged perfor-
mance recovery, tMCrec, given by:

ARR =
MCSS −MCmin

tSS − tmin
, (2.7)

tMCrec =
1

tSS − t1

∫ tSS

t1

[MCSS −MC(t)] dt, (2.8)

where MCSS is the steady-state performance level, and t1 marks the start
of the system’s recovery process. While this approach accounts for different
resilience capabilities, it focuses on a single disruption and does not take into
account the possibility of multiple disruptions.

Figure 2.14: System performance used in [Balchanos 2014]

To overcome these challenges, [Tran 2016] proposed a new resilience metric
calculated from SoS performance data, y(t). This metric uses specific data
points identified from the performance data, notionally shown in Fig. 2.15.
Using the SoS performance data, the resilience metric R, is calculated as:

R = ρσ
[
δ + ζ + 1− τ (ρ−δ)

]
(2.9)

2.5. Resilience of SoS 41

where 0 ≤ R ≤ λ, and the terms in this equation are referred to as
resilience factors. Each resilience factor captures an important aspect of a
resilient system. The resilience factors are calculated as:

σ = total performance factor =
∑tfinal

t0
y(t)

yD(tfinal − t0)
(2.10)

δ = absorption factor =
ymin

yD
(2.11)

ρ = recovery factor =
yR
yD

(2.12)

τ = time factor =
tSS − t0
tfinal − t0

(2.13)

ζ = volatility factor (2.14)

where yD is the desired system performance level, ymin is the minimum
system performance level, yR is the recovered performance level, t0 is the time
of disturbance, tmin is the time at which the system reaches the minimum
performance level, and tSS is the time when the system reaches steady-state
performance.

Considering multiple failures, a total resilience metric, Rtotal, is calculated
from individual R values as:

Rtotal =

∑NT

i=1wiRi∑NT

i=1 wi

(2.15)

where NT is the number of threat events (i.e., CS failures) and the weights
wi are coefficients of an exponentially weighted moving average, defined as:

wi = (1− α)NT−i (2.16)

with a smoothing factor α = 0.06.
This metric accounts for different resilience aspects considering multiple

failures. However, given that most reconfiguration methods are based on
redundancy (both stand-in and stand-by), adding redundancy factors to this
metric can provide more insights into maintaining functionality during failures
and recovering more effectively.

42 Chapter 2. System of systems: State of art

Figure 2.15: The performance for the SoS used in [Tran 2016], denoted as
y(t), represents the response to a single threat event occurring within the
time interval from t0 to tfinal. The minimum performance level during this

period is ymin. The system reaches steady-state performance at time tSS, with
a recovered performance level of yR. The desired performance level is yD.

2.6 Conclusion

The current literature highlights the growing interest of researchers in the SoS
domain, particularly when addressing large-scale and complex systems. Al-
though a unified definition of SoS is still lacking, certain characteristics and
properties distinguish SoS from traditional complex systems. Most studies
have focused on modeling the structure and organization of SoS, including the
missions, functions, and interactions of their CSs. While recent research has
shifted towards data-driven approaches, these methods require large datasets,
which are not always available, especially in early-stage design. Graphical
models have demonstrated efficiency in SoS modeling; however, they continue
to face limitations in representing complex interactions, heterogeneity, scala-
bility, decision-making processes, and stochastic components.

To address these challenges, there is a need for a comprehensive framework
that can overcome these limitations. Such a framework should support the
supervision of complex systems, ensuring they maintain normal operations.
In terms of resilience, the literature shows that most recovery methods fo-
cus on either adaptation and stand-in redundancy or backups and stand-by
redundancy. There is a growing emphasis on the importance of developing
metrics to quantify resilience and further improve the robustness of SoS.

Chapter 3

Contribution to organisational
modeling of stochastic SoS

Contents
3.1 Introduction . 43

3.2 Stochatic system of systems 44

3.3 Multi-level Stochastic hypergraph modeling 45

3.3.1 Individual CSs . 46

3.3.2 Hierarchical Structure 51

3.3.3 Interactions . 52

3.3.4 Verifying Properties of System-of-Systems 55

3.4 Case study: Mushroom harvesting SoS 57

3.4.1 Introduction . 58

3.4.2 System complexity . 59

3.4.3 Multi-level Mushroom harvesting modeling 60

3.4.4 Hypergraph representation 60

3.4.5 Implementation . 67

3.4.6 Results and discussion 69

3.5 Conclusion . 72

3.1 Introduction

Modeling a SoS refers to the abstract definition of the structure, behavior, and
interactions of its CSs. Compared with conventional single-system modeling,
modeling SoS presents several challenges due to the inherent complexity of
the relationships among multiple CSs [Maier 1998].

This chapter focuses on modeling the structure of the SoS in terms of
mission and function allocation, along with their associated performance. It

44
Chapter 3. Contribution to organisational modeling of stochastic

SoS

also considers the existence of CSs within the SoS that may be affected by
stochastic processes, as well as the capabilities of each CS. By proposing our
framework, the Multi-level Stochastic Hypergraph (MLSHG) model, it will
be demonstrated how heterogeneous CSs can be modeled while accounting for
stochasticity. Inspiring from the formalism of [Soyez 2015], attributes will be
incorporated for each CS to describe the dynamic organizational properties of
these subsystems.

Additionally, the interactions will be discussed using edge-dependent
weights [Chitra 2019], which encompass various attributes. These attributes
include the existence of relationships, related functions, and both stochas-
tic and deterministic dynamic interactions. The stochastic and deterministic
dynamic interaction attributes are able to describe both the predictable and
unpredictable interactions among CSs. The stochastic multi-way relationships
among CSs can be well described with the help of the edge-dependent weight
function.

The proposed framework will be verified against Maier’s properties, and
its application to a detailed case study will be explained. This verification
demonstrates the framework’s applicability and effectiveness in capturing the
complexity and dynamics of an SoS.

3.2 Stochatic system of systems

Researchers have extensively studied SoS in the presence of stochastic behav-
ior across various domains to incorporate uncertainty and model failures, and
disturbances. Studies such as [Khabarov 2008, Doulgeris 2012, Panteli 2015,
Mo 2016, Dhulipala 2021] have demonstrated the importance of considering
stochastic elements to capture the real-world complexity and variability within
SoS. These investigations primarily focus on understanding how randomness
and unpredictability affect the performance and reliability of SoS. However,
despite these efforts, there remains a lack of an explicit and comprehensive
definition of what constitutes a Stochastic System of Systems (SSoS). To ad-
dress this gap, a clear and precise definition is proposed, aiming to standardize
the terminology and framework for future research in this critical area.

Definition 5 (Stochastic System of Systems (SSoS)) A Stochastic
System of Systems is a large-scale integrated system that is heterogeneous
and independently operable on its own but networked together for a common
goal, with inherent stochastic properties. These stochastic properties include
random variations, uncertainties, and probabilistic behaviors that influence
the interactions, performance, and the total number of Component Systems.

3.3. Multi-level Stochastic hypergraph modeling 45

In the following section, a novel framework for modeling SSoS will be pro-
posed, along with an explanation of the methodology and the steps involved.

3.3 Multi-level Stochastic hypergraph modeling

Multi-level frameworks are crucial for handling the complexity of complex
systems [Mostafavi 2011]. In a SoS, this means representing and analyzing
the interactions and dependencies among multiple CSs that work together to
achieve overall goals. By using multi-level models, researchers and engineers
can study the organization, function distribution, and dynamic interactions
within an SoS [Soyez 2015, Khalil 2012, Kumar 2017]. This approach helps
identify potential weaknesses, optimize resource use, maintain normal opera-
tion and improve system resilience against both predictable and unpredictable
disruptions.

To this end, the SoS is divided into a multi-level organization to better
manage its complexity and interactions. At Level 0 are the Physical Compo-
nent Systems (PCSs), which serve as the fundamental building blocks of the
SoS. These consist of various physical systems that may be heterogeneous in
nature, meaning they can differ significantly in terms of functionality, design,
and operation. PCSs are responsible for executing the primary tasks and op-
erations that directly contribute to the SoS’s overall objectives. Examples of
PCSs include mechatronic systems, social systems, and biological systems.

At levels higher than 0, Managerial Component Systems (MCSs) are intro-
duced. These systems represent the organizational and managerial structures
that oversee and coordinate the activities of the PCSs. MCSs have authority
over their respective subsystems and are responsible for strategic decision-
making, resource allocation, and ensuring that the various PCSs work to-
gether harmoniously to achieve the SoS’s goals. The MCSs handle high-level
planning, policy-making, and operational adjustments needed to maintain the
efficiency and effectiveness of the SoS.

To represent this decomposition of the SoS, let H = (V,E,W) denote the
weighted hypergraph, where V is the vertex set, E is the hyperedge set, and
W is the edge-dependent weight set.

The vertex set V = {v1, v2, . . . , vn} represents the vertices in the hyper-
graph, with each vertex vi for i = 1, 2, . . . , n corresponding to PCSs within
the SoS. The hyperedge set E = {e1, e2, . . . , em} consists of hyperedges cor-
responding mainly to MCSs, where each hyperedge ej = {vi1 , vi2 , . . . , vik}
represents a relationship or interaction among a subset of vertices. The fol-
lowing sections explain how each type of CS is represented through vertices
and hyperedges by defining them and assigning dynamic properties and at-

46
Chapter 3. Contribution to organisational modeling of stochastic

SoS

tributes.
The weight set W is defined as edge-dependent weights to describe the

interactions within the SoS. These weights capture not only the information
exchange between CSs but also represent multiple properties of the interac-
tions, such as the stochastic existence among the CSs, providing a detailed
representation of the dynamics within the SoS.

Figure 3.1 depicts the graphical representation of the SoS using a hy-
pergraph (set hypergraph and its hierarchical representations). This figure
shows the different types of CSs, their indexes, levels CSindex,level, and the
interactions. This formalism is proposed by [Khalil 2012], who also demon-
strated different types of hypergraph representations. The interconnections
between the hyperedges differentiate the nested hypergraph from a hyperset
[Chemero 2008]. In this thesis, the focus is only on nested hypergraphs where
there are interconnections between CSs. This representation presents a snap-
shot of the evolving SoS at a specific time and requires additional properties
and attributes to describe the dynamics of a stochastic SoS.

By combining multi-level modeling with hypergraph theory and incorpo-
rating the organizational properties that describe a SSoS, the MLSHG model
has been developed. This framework leverages the strengths of both multi-
level modeling and hypergraph representations to effectively capture the com-
plexity and dynamics of SSoS. The methodology for the MLSHG model is
illustrated in Fig. 3.2 and is detailed in the following sections.

3.3.1 Individual CSs

Starting by defining individual CSs, these are subsystems within the SoS that
vary based on their level and properties. These properties include organiza-
tional aspects such as missions, performance, capabilities, and whether they
satisfy their desired missions. To capture these distinctions, the types of CSs
in a multilevel SoS are defined below.

Definition 6 (Physical Component System (PCS)) At physical level 0,
a PCS can only be viewed as a vertex in hypergraph H. It represent social,
mechatronic, or biological entity, to better describe heterogeneity in terms of
behavior, the n-th CS at physical level 0 is denoted as CSj

n,0, where j represents
whether the CS is stochastic (SCS) (see Definition 8) or deterministic (DCS).

CSj
n,0 =

{
SCSn,0, if j = 1,

DCSn,0, if j = 0.
(3.1)

To interpret the dynamics of a PCS, several attributes are assigned to
represent its organizational properties as shown in the Fig. 3.3. A PCS can

3.3. Multi-level Stochastic hypergraph modeling 47

(a)

(b)

Figure 3.1: Graphical representation of SoS using hypergraph (a) Set
representation (b) Hierarchical representation

48
Chapter 3. Contribution to organisational modeling of stochastic

SoS

Figure 3.2: MLSHG methodology

be depicted as:

CSj
n,0 =

〈
Dt

n,0, P
t
n,0, Qn,0, R

t
n,0, A

t
n,0, C

t
n,0

〉
, (3.2)

The attributes related to CSj
n,0 are defined as follows respectively:

Dt
n,0: Dt

n,0 = {dt1, ..., dtk}. A set of time-dependent attributes that rep-
resent the current deterministic performance of specific functions of CSj

n,0

where k is the number of global functions, for SCS Dt
n,0 = ∅ . If CSj

n,0 is DCS
and does not perform Function 1 at time t, then dt1 = 0.

P t
n,0: P t

n,0 = {pt1, ..., ptk}. A set of time-dependent attributes that repre-
sent the current stochastic performance of specific functions of CSj

n,0 where
k is the number of global functions, for DCS P t

n,0 = ∅. If CSj
n,0 is SCS and

does not perform Function 1 at time t, then pt1 = 0.

Qn,0: Qn,0 = {q1, ..., qk}, A set of capability functions of CSj
n,0 in the

SoS that represents the capacity functionalities that CSj
n,0 can realize, where

q1 is the quantification of function 1, assuming that all functions are quantified.

Rt
n,0: Rt

n,0 = {qt1, ..., qtk}, A set comprising the quantification of desired
functions for CSj

n,0 at time t is assigned from a higher-level CS, where these
functions represent the mission M t

n,0 = {function1, ..., functionk} of CSj
n,0 .

3.3. Multi-level Stochastic hypergraph modeling 49

Figure 3.3: Hypergraph with assigned attributes

If CSj
n,0 does not been assigned Function 1 at time t, then qt1 = 0.

At
n,0: Binary stochastic attribute that describes whether CSj

n,0 is com-
posed of the SoS. For an arbitrary fixed instant tf , A

tf
n,0 = 1 if CSj

n,0 is present
in SoS at time tf . Otherwise, Atf

n,0 = 0.

Ct
n,0 : A satisfaction attribute that indicates whether the constraint as-

sociated with CSj
n,0 is met. This constraint is defined by the achievement

of the desired mission Rt
n,0 based on the current performance P t

n,0, and is
formulated as follows:

Ct
n,0 =

{
1, if |r(t)| ≤ λ,

0, if |r(t)| ≥ λ,
(3.3)

where r(t) represents the residual between the desired functions of the
mission Rt

n,0 and the current performance P t
n,0. This formulation is similar

CSP proposed by [Khalil 2012]. It is important to note that, since we assume
performance disruptions only occur for SCS and not for DCS, this attribute
is considered satisfied (Ct

n,0 = 1) always for DCS.
Note that the assumption is that all functions can be quantified and the

performance, capability, desired mission, and mission satisfaction attributes
have the same length for all PCSs. Even if some of them do not perform
specific functions, the value associated with these functions is set to zero. This

50
Chapter 3. Contribution to organisational modeling of stochastic

SoS

Figure 3.4: Example of attributes assigned to PCSs at t1

formalism is considered in order to facilitate the development of algorithms
for function decomposition and mission allocation later.

To illustrate this methodology, the example in Fig. 3.4 is used to compare
the attributes assigned to two PCSs at t1. The global mission is composed of
three functions, as shown in the figure. For CS0

1,0, which is a DCS (j = 0),
it performs two functions (Function 1 and Function 2), where the quantified
values of these functions are represented by Rt1

1,0. The deterministic perfor-
mance and capability are Dt1

1,0 and Q1,0, respectively. It is part of the SoS at t1
(At1

1,0 = 1), and its desired functions (1 and 2) are satisfied (Ct1
1,0 = {1, 1, 0}).

For CS1
5,0, which is an SCS (j = 1), it performs two functions (Function

2 and Function 3), where the quantified values of these functions are repre-
sented by Rt1

5,0. The stochastic performance and capability are P t1
5,0 and Q5,0,

respectively. It is part of the SoS at t1 (At1
5,0 = 1), and its desired functions (2

and 3) are satisfied (Ct1
5,0 = {0, 1, 1}).

Definition 7 (Managerial Component Systems (MCSs)) A high-level
organizational component for an arbitrary CS at managerial level l, where
l ≥ 1, can be both a vertex and/or a hyperedge in the HG H. Additionally,
this CS can be a stochastic or deterministic hyperedge, represented by the index
j, similar to that of the vertex.

3.3. Multi-level Stochastic hypergraph modeling 51

CSj
n,l =

〈
Dt

n,l, P
t
n,l, Qn,l, R

t
n,l, A

t
n,l, C

t
n,l, Fn,l

〉
, (3.4)

Since an MCS has authority over subordinate CSs, it has an additional
attribute that represents its managerial properties, denoted by the Fn,l at-
tribute. This attribute addresses the question of how to assign functions and
missions to subordinate CSs based on its own mission and functions and is
defined as follows:
Fn,l = {fn,l,n′,j; (1 ≤ j ≤ l − 1)(1 ≤ n′ ≤ al−j)} where al−j is the number of
CSs in level l− j, and fn,l,n′,j is a mapping function that assigns the functions
of the CSj

n,l to the subordinate system (CSn′,l−j), fn,l,n′,j = 0 if the n’-th CS at
level l-j does not belong to the set of subordinate systems governed by CSj

n,l.

Definition 8 (Stochastic Component System (SCS)) A Physical Com-
ponent System (PCS) at level 0, denoted as CSj

n,0, or a Managerial Component
System (MCS) at level l, denoted as CSj

n,l, is considered stochastic if it has
a stochastic performance attribute P t

n,l influenced by its stochastic behavior,
which, in turn, affects its existence At

n,l.

A SCS can be modeled using a stochastic process and is represented as
CSj

n,l = SCSn,l if j = 1. Otherwise, CSj
n,l is considered deterministic and

is represented as CSj
n,l = DCSn,l if j = 0.

3.3.2 Hierarchical Structure

A vertex CSj
n,l belongs to hyperedge CSj′

n′,l+k, i.e.,

CSj
n,l ∈ CSj′

n′,l+k, (3.5)

implies that the n-th CS in level l is supervised by the n′-th CS at level l+ k.
An example is shown in Fig.3.5. Because CS0

1,0, CS0
2,0, CS1

5,0 are supervised
by CS0

1,1 in managerial level 1, CS0
1,1 can be viewed as a hyperedge composed

of vertices CS0
1,0, CS0

2,0, CS1
5,0, that is,

CS0
1,1 = {CS0

1,0, CS0
2,0, CS1

5,0}. (3.6)

At the same time, CS0
1,1 together with CS0

3,0, CS1
4,0 are supervised by

CS0
1,2 at a higher managerial level 2. In this occasion, CS0

1,1 can be viewed as
a vertex and CS0

1,2 is a hyperedge, which can be expressed as

CS0
1,2 ={CS0

1,1, CS0
3,0, CS1

4,0} (3.7)
={{CS0

1,0, CS0
2,0, CS1

5,0}, CS0
3,0, CS1

4,0}.

52
Chapter 3. Contribution to organisational modeling of stochastic

SoS

Figure 3.5: Hypergraph example

It can be observed that CS0
1,2 is also a hyperedge of elements CS0

3,0, CS1
4,0

and the set CS0
1,1 = {CS0

1,0, CS0
2,0, CS1

5,0}. In this way, the organizational
relationships among multi-level CSs can be described flexibly. Note that this
HG example is a snapshot at a specific moment, and the organization and
structure of the HG may vary over time.

3.3.3 Interactions

The weight set W in the HG H = (V,E,W) represents the edge-dependent
weights assigned to vertices within the hyperedges. The weight of a vertex in
a hyperedge is defined as:

W = {W (v, e) | ∀v ∈ V, ∀e ∈ E}.

In the MLSHG framework, the weight of a vertex CSj
n,l within a hyperedge

CSj′

n′,l+k is defined by the following attributes to describe the interactions
among multiple CSs with both stochastic and deterministic characteristics:

W (CSj
n,l, CSj′

n′,l+k) =< Rt
n,l,n′,l+k, DI tn,l,n′,l+k,

SI tn,l,n′,l+k, A
t
n,l,n′,l+k > .

(3.8)

The attributes related to CSj
n,l are defined as follows respectively:

Rn,l,n′,l+k: The quantification of sub-mission set of CSj
n,l consists of

functions assigned by CSj′

n′,l+k. The function qt1 in Rt
n,l,n′,l+k depicted by

3.3. Multi-level Stochastic hypergraph modeling 53

(qt1|Rt
n,l,n′,l+k) is obtained by :

qt1|Rt
n,l,n′,l+k = fn′,l+k,n,k(q

t
1|Rt

n′,l+k), (3.9)

which implies the functions of CSj
n,l that are monitored by CSj′

n′,l+k is a part
of its own functions performed in the entire SoS.

DI tn,l,n′,l+k: Deterministic dynamic interaction vector of CSj
n,l with

CSj′

n′,l+k and other CSs supervised by CSj′

n′,l+k. Thus, the dimensions of
DI tn,l,n′,l+k are equal to the number of CSs supervised by CSj′

n′,l+k, i.e., the
cardinality of hyperedge |CSj′

n′,l+k|. That is

dim(DI tn,l,n′,l+k) = |CSj′

n′,l+k|. (3.10)

For example, refering to hyperedge (3.6) in Fig.3.5, the corresponding DI t1,0,1,1
can be described as

DI t1,0,1,1 = [DICS0
1,0,CS0

1,1
(t),

DI
CS0

1,1

CS0
1,0,CS0

2,0
(t), DI

CS0
1,1

CS0
1,0,CS1

5,0
(t)],

(3.11)

where DI
CS0

1,1

CS0
1,0,CS0

2,0
(t) and DI

CS0
1,1

CS0
1,0,CS1

5,0
(t) represent the deterministic dynamic

interactions between CS0
1,0 and CS0

2,0, and CS0
1,0 and CS1

5,0, respectively, under
the supervision of CS0

1,1. Additionally, DICS0
1,0,CS0

1,1
(t) represents the deter-

ministic dynamic interaction between CS0
1,0 and CS0

1,1, since CS1
5,0 is a SCS

it implies that DI
CS0

1,1

CS0
1,0,CS1

5,0
(t) = 0.

SIn,l,n′,l+k: Stochastic interaction vector of CSj
n,l with CSj′

n′,l+k and other
CSs supervised by CSj′

n′,l+k. Similarly, the dimensions of SIn,l,n′,l+k are equal
to the number of CSs supervised by CSj′

n′,l+k, i.e.,

dim(SI tn,l,n′,l+k) = |CSj′

n′,l+k|. (3.12)

Similarly, refering to hyperedge (3.7) in Fig.3.5, the corresponding SI t1,1,1,2
can be described as

SI t1,1,1,2 = [SICS0
1,1,CS0

1,2
(t),

SI
CS0

1,2

CS0
1,1,CS0

3,0
(t), SI

CS0
1,2

CS0
1,1,CS1

4,0
(t)],

(3.13)

where SI
CS0

1,2

CS0
1,1,CS0

3,0
(t) and SI

CS0
1,2

CS0
1,1,CS1

4,0
(t) represent the stochastic interactions

between CS0
1,1 and CS0

3,0, and CS0
1,1 and CS1

4,0, respectively, under the super-
vision of CS0

1,2. Additionally, SICS0
1,1,CS0

1,2
(t) represents the stochastic inter-

action between CS0
1,1 and CS0

1,2. Since CS0
3,0 and CS0

1,2 are DCSs it implies

that SICS0
1,1,CS0

1,2
(t) =SI

CS0
1,2

CS0
1,1,CS0

3,0
= 0 .

54
Chapter 3. Contribution to organisational modeling of stochastic

SoS

At
n,l,n′,l+k: Binary stochastic attribute that describes whether CSj

n,l is un-
der the supervision of CSj′

n′,l+k at time t. For an arbitrary fixed instant tf ,
CSj

n,l is supervised by CSj′

n′,l+k only if both CSj
n,l and CSj′

n′,l+k present in the
SoS, which suggests

∀tf , A
tf
n,l,n′,l+k = 1 only if Atf

n,l = 1&A
tf
n′,l+k = 1. (3.14)

The relationship between At
n,l of CSj

n,l in the entire SoS and At
n,l,n′,l+k of CSj

n,l

under the supervision of CSj′

n′,l+k can be expressed as follows:

P (A
tf
n,l,n′,l+k = 1),∀tf ,

=P (A
tf
n,l,n′,l+k = 1|Atf

n,l = 1 ∧ A
tf
n′,l+k = 1)

∗ P (A
tf
n,l = 1 ∧ A

tf
n′,l+k = 1),

(3.15)

where P (A
tf
n,l,n′,l+k = 1|Atf

n,l = 1 ∧ A
tf
n′,l+k = 1) represents the conditional

probability of A
tf
n,l,n′,l+k = 1 when A

tf
n,l = 1 and A

tf
n′,l+k = 1. In addition,

considering the independence between A
tf
n,l and A

tf
n′,l+k for an arbitrary tf , it

follows that
P (A

tf
n,l = 1 ∧ A

tf
n′,l+k = 1)

= P (A
tf
n,l = 1) ∗ P (A

tf
n′,l+k = 1)

(3.16)

Substituting (3.16) into (3.15), one has

P (A
tf
n,l,n′,l+k = 1),∀tf ,

=P (A
tf
n,l,n′,l+k = 1|Atf

n,l = 1 ∧ A
tf
n′,l+k = 1)

∗ P (A
tf
n,l = 1) ∗ P (A

tf
n′,l+k = 1).

(3.17)

To better interpret the stochastic organization of SoS related to the at-
tributes At

n,l, an illustrative example is provided in Fig. 3.6. The figure depicts
SoS hypergraphs at three distinct instants: t1, t2, and t3. At instant t1, all
CSs are present and colored black. This indicates that the stochastic existence
attributes satisfy At1

n,0 = 1, n = 1, 2, ..., 5 and At1
n,1 = 1, n = 1, 2. Nevertheless,

at time t2, CS0
1,0 and CS0

2,0 are removed from the SoS. This is why vertices
CS0

1,0 and CS0
2,0 are colored gray in the figure. This implies the stochastic

existence attributes satisfy At2
1,0 = 0 and At2

2,0 = 0. Moreover, at instant t3,
the Component Systems CS1

5,0 and CS0
1,1 of higher level are further removed

from the SoS (vertices CS0
1,0 and hyperedge CS0

1,1 are colored gray), which
reveals that the stochastic existence attributes satisfy At3

n,0 = 0, n = 1, 2, 5

and At3
1,1 = 0.

3.3. Multi-level Stochastic hypergraph modeling 55

Figure 3.6: Hypergraph dynamics

3.3.4 Verifying Properties of System-of-Systems

As previously stated, an SoS exists when Mair’s characteristics are respected
[Sage 2001]. From the MLSHG perspective, this can be expressed as follows:

• Managerial independence: CSs within an SoS are not only capable of op-
erating independently but are also managed independently, each CS has
its own management structure, decision-making processes, and different
mission or priorities that are separate from the SoS as a whole.

In the MLSHG model,CSj′

n′,l′ and CSj′′

n′′,l′′ of a system CSj
n,l are manage-

rially independent when their missions are different:

∀j, j′, j′′ ∈ {0, 1},∀CSj′

n′,l′ , CSj′′

n′′,l′′ ∈ CSj
n,l :

Rt
n′,l′ ̸= Rt

n′′,l′′ .
(3.18)

For example in Fig.3.5, CS0
1,0 and CS1

5,0 in CS0
1,1 are managerial inde-

pendent when:
Rt

1,0 ̸= Rt
5,0 (3.19)

• Operational independence: For a system to be considered a SoS, each
of its CSs must be operationally independent. This means that if the
SoS were broken down into its individual components, each one would
still be capable of performing its functions and fulfilling its intended
purposes independently.

This is only applicable if it has its own resources that enable it to perform
autonomously. In the MLSHG model, CSj′

n′,l′ and CSj′′

n′′,l′′ of a system

56
Chapter 3. Contribution to organisational modeling of stochastic

SoS

CSj
n,l are operationally independent if each possesses its own resources

s.
∀j, j′, j′′ ∈ N,∀CSj′

n′,l′ , CSj′′

n′′,l′′ ∈ CSj
n,l :

sn′,l′ ̸= ∅ ∧ sn′′,l′′ ̸= ∅ ∧ sn′,l′ ∩ sn′′,l′′ = ∅.
(3.20)

In Fig.3.5, CS0
1,0 and CS1

5,0 in CS0
1,1 are operational independent when:

s1,0 ̸= ∅ ∧ s5,0 ̸= ∅ ∧ s1,0 ∩ s5,0 = ∅. (3.21)

• Geographic distribution: Refers to the physical dispersion of the com-
ponents of a SoS across different locations. In the MLSHG model, CSj′

n′,l′

and CSj′′

n′′,l′′ of a system CSj
n,l are geographic distributed if their physical

state ϕph are distinct:

∀j, j′, j′′ ∈ N,∀CSj′

n′,l′ , CSj′′

n′′,l′′ ∈ CSj
n,l :

ϕph
n′,l′ ∩ ϕph

n′′,l′′ = ∅.
(3.22)

In Fig.3.5, CS0
1,0 and CS1

5,0 in CS0
1,1 are geographic distributed when:

ϕph
1,0 ∩ ϕph

5,0 = ∅. (3.23)

• Emergent behavior: All CSs within CSj
n,l cooperate to achieve their

global mission, which cannot be accomplished by each CS independently.
From the MLSHG perspective, this implies that the sum of all functions
of under CSs is equal to the global functions that represent the global
mission:

(∀1 ≤ o ≤ k) :

(qto|Rt
n,l) =

l−1∑
i=0

ai∑
p=1

(qto|Rt
p,i)

(3.24)

In Fig.3.5, suppose that CS0
1,1 posses K functions, CS0

1,0, CS1
5,0 and

CS0
2,0 in CS0

1,1 generate an emergent behavior when:

(∀1 ≤ o ≤ k) :

(qto|Rt
1,1) = (qto|Rt

1,0 + qto|Rt
5,0 + qto|Rt

2,0)
(3.25)

It should be noted that (qi|Y) means the quantifies value of function i

in set Y .

• Evolutionary development: The SoS evolves over time, meaning that
the functions and sub-missions are adapted according to the change in
the global mission through a reconfiguration strategy. This is possible

3.4. Case study: Mushroom harvesting SoS 57

when the quantification set Rt
n,l of mission M t

n,lis changed over time.
Therefore, for all CSs these changes are formulated as :

∃ti, tj ∈ R, ti ̸= tj

Rti
n,l ̸= R

tj
n,l

(3.26)

For example in Fig.3.5, the functions of CS0
1,0 changes over time and:

∃ti, tj ∈ R, ti ̸= tj

Rti
1,0 ̸= R

tj
1,0

(3.27)

In addition, new CSs can be added or removed from the SoS depending
on certain stochastic processes, such that there is at least one CS whose
existence is represented by the attribute At

n,l where :

∃ti, tj ∈ R, ti ̸= tj

Ati
n,l ̸= A

tj
n,l

(3.28)

To illustrate this, the example in Fig. 3.6 is considered, where:

t1, t2 ∈ R, t1 ̸= t2

At1
1,0 ̸= At2

1,0

(3.29)

It should be noted that some of these characteristics were verified for
individual CSs, including managerial independence, operational inde-
pendence, and geographic distribution. Other characteristics, such as
emergent behavior and evolutionary development, must be verified at
the global SoS level. If a component system CSj

n,l lacks some of these
properties, it is referred to as a Virtual Component System (VCS)
[Soyez 2015].

3.4 Case study: Mushroom harvesting SoS

To validate this framework, a case study is conducted on a mushroom
harvesting system, which includes stochastic behavior in heteroge-
neous subsystems. The system is considered an SSoS composed of bi-
ological systems (mushrooms), social systems (human operators),
and mechatronic systems (robots). Both stochastic and deterministic be-
haviors emerge within these subsystems, contributing to the overall emergent
behavior of the entire system, with the primary mission being the successful
harvesting of mushrooms.

58
Chapter 3. Contribution to organisational modeling of stochastic

SoS

3.4.1 Introduction

Mushroom production has emerged as an important agricultural sector,
attracting attention for its unique characteristics and the valuable products
it generates. The industry involves several stages, from the initial cultivation
of fungal mycelium to the final harvesting of mushrooms.

As mushrooms grow on animal and plant wastes such as horse manure,
cereal seeds, wheat straw, rice straw, sugarcane waste, and others, production
begins with composting. The main aim of composting is to make nutrients
more easily accessible to the mushroom mycelium [Panayi 2017]. The second
stage consists of filling the compost-containing substrate into specific beds in
several chambers, where environmental conditions such as temperature, hu-
midity and oxygen levels are precisely controlled, after filling the chamber, The
mushroom mycelium spawn is applied to the compost where the mushroom
production cycle begins, when the mushroom mycelium reaches its maturity
threshold, mushroom initiation occurs lasting a few days, These mushrooms
grow very quickly, doubling in size within 24 hours, and we need to pick them
at a very precise time, since if we pick them early, we won’t get the expected
yield. The total life cycle of mushrooms is estimated at around 6 weeks, with
initiation starting after 4 weeks.

In the world of mushroom cultivation, the development of these mysterious
fungus frequently takes the form of an intriguing interaction between deter-
ministic and stochastic processes. There is still some intrinsic stochasticity in
the mushroom growth cycle, despite growers’ painstaking control of elements
like temperature, humidity, and substrate composition to optimize conditions
for mycelium development and fruiting. Randomness is influenced by environ-
mental variability, genetic variety among spore or mycelial strains, and the
dynamic nature of microbial interactions in the substrate. The timing and
yield of mushroom flushes can therefore be unpredictable, even with careful
environmental management. This stochastic aspect makes mushroom farming
an exciting combination since it forces growers to adjust to changing results
and highlights the adaptability and tenacity of these incredible creatures. To
this end, taking these uncertainties into account when modeling allows to
obtain more realistic results in the mushroom industry [Banasik 2019].

Unlike traditional farming techniques, where mushroom production relies
heavily on the expertise of human operators, modern mushroom farms are
entering a new era of agricultural innovation. These cutting-edge facilities
are adopting advanced technologies such as sensor networks, automated en-
vironmental controls and the integration of autonomous harvesting systems,
including conveyors and harvest-assist robots [Hu 2019] to compensate for
the well-known labour shortage in mushroom production [Reed 2001]. These

3.4. Case study: Mushroom harvesting SoS 59

technological advances are revolutionizing mushroom cultivation by improv-
ing precision and efficiency throughout the production process. Thanks to
these new technologies, mushroom growers are ready to meet the growing de-
mand for these mushrooms, while reducing labor-intensive tasks and costs and
guaranteeing consistent quality [Huang 2021].

In this study, the focus is on the harvesting stage of mushroom production
by considering the harvesting system as a complex system, which can be
viewed as a SSoS composed of heterogeneous CSs. Human operators are
the primary CSs in this industry, but the demanding and repetitive nature of
harvesting tasks has led to a decline in the attractiveness of these manual jobs.
Additionally, the occurrence of random injuries can impact the performance
of these social systems. To address these challenges, robots are introduced as
supplementary CSs. While robots are not intended to entirely replace human
operators—since they are not as effective—they contribute to social resilience
by compensating for the shortage of human operators required for mushroom
harvesting. Furthermore, mushrooms themselves are considered biological
CSs, possessing their own resources and exhibiting stochastic behavior.

As a result, the proposed framework is explored by applying it to this sys-
tem. In the following sections, the complexity of the system is explained, each
CS is modeled, and the application of the MLSHG model for organizational
modeling of this SSoS is demonstrated.

3.4.2 System complexity

The use of this framework for modeling the system is necessary because of its
complexity, which makes traditional modeling techniques inadequate. This
complexity creates challenges in the modeling process, mainly due to the be-
havioral and organizational aspects. Because of these complex factors, a more
advanced modeling approach is needed, as traditional methods may not fully
capture the detailed interactions and structure within the system. These com-
plexities can be summarized as follows:

• Heterogeneity of CSs: As previously mentioned, the system comprises
social, biological, and mechatronic systems. For example, in the case of
mushrooms, their growth rate depends on various parameters such as
temperature, humidity, and compost quality. Additionally, robot perfor-
mance is subject to specific constraints when performing the harvesting
task. Human operators also perform according to specific schedules and
rules, and they possess their own decision-making capabilities.

• Interaction and emergent behavior: Changes in the performance of CSs,
as well as interaction between them, affect the overall objective and pro-

60
Chapter 3. Contribution to organisational modeling of stochastic

SoS

duction. For example, robots and operators must interact with mush-
rooms by inspecting their condition, and human-robot interaction must
be guaranteed for better collaboration and to avoid collisions.

• Dynamics, Adaptability and learning: The system evolves rapidly
(mushrooms double their size within 24 hours), and all CSs have to
adapt to this dynamic.

• Scenario complexity: Different scenarios, such as variations in produc-
tion quantity, number of robots and their capacities, or environmental
conditions, can lead to very different results.

3.4.3 Multi-level Mushroom harvesting modeling

In modeling the mushroom harvesting process on a farm using the MLSHG
approach, the complex network of components is systematically decomposed
to ensure efficient and effective management. In Fig. 3.7, an overview of the
multi-level decomposition is presented, where, at the highest level of abstrac-
tion, the farm itself is the primary system, composed of various chambers.
Each chamber represents a distinct subsystem with specific organizational
properties, designed to manage its functions. Within these chambers are sev-
eral beds with different levels and bays where mushrooms grow. Human op-
erators or labors are central PCSs, serving as the main resources assigned
to harvest specific beds. To enhance efficiency and precision, robots are in-
troduced as additional PCSs, working alongside human operators to auto-
mate tasks and carry out specific mushroom harvesting activities. The imple-
mentation of a multi-level organizational model facilitates adaptive functional
decomposition, enabling efficient system simulation and addressing supervi-
sion and resilience challenges. This systemic approach provides a thorough
and integrated methodology for mushroom farming, establishing a robust and
adaptable SoS essential for successful agricultural operations.

3.4.4 Hypergraph representation

Figure 3.8 illustrates the distribution of CSs within the Farm SoS. In Figure
3.9, the corresponding HG representation at a specific instance, denoted as t,
is presented. The mathematical nested set-based representation of hierarchical
structure is depicted as follows:

3.4. Case study: Mushroom harvesting SoS 61

Figure 3.7: Multi-level Mushroom harvesting modeling

Figure 3.8: Mushroom farm component systems

62
Chapter 3. Contribution to organisational modeling of stochastic

SoS

Figure 3.9: Hypergraph representation of musrhoom harvesting SoS

CS0
1,3 ={CH0

1,2} (3.30)
={{B0

1,1, B
0
2,1, B

0
3,1, B

0
4,1}}

={{{MS1
1,0,MS1

2,0, ...H
1
3,0, H

1
6,0, H

1
11,0, Rb01,0},

{MS1
4,0,MS1

5,0, ...H
1
2,0, H

1
7,0, H

1
10,0, Rb02,0},

{MS1
7,0,MS1

8,0, ...H
1
4,0, H

1
8,0, H

1
9,0, Rb04,0},

{MS1
9,0,MS1

10,0, ...H
1
1,0, H

1
5,0, H

1
12,0, Rb03,0}}}.

It should be noted that all MCSs are considered as DCS (j = 0) in this
case study, as it is assumed that these organizational components always exist
in the SoS and do not exhibit proper stochastic behaviors. Howevere PCSs,
may be either SCS or DCS based on their behavior.

The global mission of this SSoS is to achieve a mushroom harvesting rate
that meets market demand. To ensure the success of this harvesting mission,

3.4. Case study: Mushroom harvesting SoS 63

three main functions must be performed: growing, harvesting, and inspec-
tion. Mushrooms must grow at the desired rate to fulfill this mission, and the
mature mushrooms should be inspected and detected before being harvested.
The SoS mission is defined as M t

1,3 = {growing, harvesting, inspection}, and its
corresponding quantifying set is Rt

1,3 = {qtgrowing, q
t
harvesting, q

t
inspection}. These

should then be decomposed across CSs based on their capabilities. The defi-
nitions of each CS are in the following subsections.

3.4.4.1 Mushroom

This is considered as SCS, and a vertex in level 0 (PCS) with the following
representation:

MS1
n,0 =

〈
∅, P t

n,0, Qn,0, R
t
n,0, A

t
n,0, C

t
n,0

〉
, (3.31)

Mushrooms exhibit stochastic behavior (Dt
n,0 = ∅). Their primary functional

capability is to grow in their bed, represented by Qn,0 = {qgrowing, 0, 0}. The
desired time-varying growth function is Rt

n,0 = {qtgrowing, 0, 0}, whereas the ac-
tual grow rate performance is denoted by P t

n,0 = {ptgrowing, 0, 0}. A mushroom
is considered to exist in the SoS only when it reaches its maturity threshold,
indicated by Atm

n,0 = 1, and disappears from the SoS when it is harvested, in
which case Ath

n,0 = 0.
The growth of mushrooms is influenced by several environmental factors,

such as humidity and temperature. Various studies have attempted to opti-
mize these factors [De La Croix 2022]. Other research has focused on statis-
tically modeling mushroom behavior [Panayi 2023], while some studies have
approached the problem through mathematical modeling [Chanter 1978]. De-
spite these efforts, modeling the behavior of mushrooms over time remains a
significant challenge due to the extensive amount of data required, which is
not currently available. As a result, detailed behavior modeling falls outside
the scope of this study.

However, the growth of a group of mushrooms can be estimated by pre-
dicting the expected number of mature mushrooms over time. This estimation
assumes that their growth behavior follows an exponential function, as sug-
gested by [Chanter 1978]. By leveraging expert knowledge and historical data
collected from a mushroom farm called "Ferme de la Gontière" in Comines,
France, the number of mature mushrooms over time can be estimated.

The number of mature mushrooms, MN(t), in a single chamber can be
modeled using the curve shown in Fig. 3.10, which represents the expected
number of mature mushrooms over time. This curve indicates that all mush-
rooms should reach maturity 7 days after the initial growth phase begins, with
DM representing the final number of mature mushrooms.

64
Chapter 3. Contribution to organisational modeling of stochastic

SoS

Figure 3.10: Mature Mushrooms in a single chamber (MN(t))

The stochastic existence attribute At
n,0 of each mushroom is assumed to

be independent and identically distributed (i.i.d) for an arbitrary instant t.
In addition, At

n,0 is assumed to obey the Bernoulli distribution at each time
t, that is, {

P (At
n,0 = 1) = p(t);

P (At
n,0 = 0) = 1− p(t),

(3.32)

where p(t) is a time-varying function that represents the probability of a mush-
room maturing at time t. The formulation of p(t) was approximated using the
number of mature mushrooms MN(t). For arbitrary time t, the sum of all
existence attributes At

n,0 obeys a binomial distribution, which can be depicted
by

P (
DM∑
n=1

At
n,0 = k) =

(
n

k

)
p(t)k(1− p(t))n−k, (3.33)

with k = 0, 1, 2, ..., DM . In addition, the expectation of
∑DM

n=1 A
t
n,0 satisfies

E(
DM∑
n=1

At
n,0) = DM ∗ p(t). (3.34)

Thus, the number of mature mushrooms MN(t) can be used to approximate
the maturity probability p(t),

E(
DM∑
n=1

At
n,0) = DM ∗ p(t) ≈MN(t), (3.35)

which yields

p(t) ≈ MN(t)

DM
. (3.36)

3.4. Case study: Mushroom harvesting SoS 65

3.4.4.2 Human operator

A Human operator is treated as an SCS and a vertex in level 0 PCS with the
following representation:

H1
n,0 =

〈
∅, P t

n,0, Qn,0, R
t
n,0, A

t
n,0, C

t
n,0

〉
, (3.37)

Its stochastic attribute P t
n,0 = {0, ptharvesting, 0} reflects the operator’s harvest-

ing performance. The desired harvesting function is Rt
n,0 = {0, qtharvesting, 0},

and its capability function is Qn,0 = {0, qharvesting, 0}. These social systems
operate in shifts during the day only. Additionally, during their shift, they
exist in the SoS only if they are performing normally (At

n,0 = 1), meaning that
the desired harvesting mission is satisfied (Ct

n,0 = 1).
To enhance the modeling of stochastic performance degradation for H1

n,0,
a Bernoulli distribution with a probability of degradation is applied at each
time step for each human operator, which may result in CSs failure. The
probability of degradation is either assumed or based on expert input (e.g.,
5%).

3.4.4.3 Robot

A robot system is considered as a DCS and a vertex at level 0 PCS with the
following representation:

Rb0n,0 =
〈
Dt

n,0, ∅, Qn,0, R
t
n,0, A

t
n,0, C

t
n,0

〉
, (3.38)

Its deterministic performance attribute Dt
n,0 = {0, dtharvesting, dtinspection} in-

cludes the performance of the robot’s harvesting and inspection functions since
the robot is equipped with cameras that can inspect the mushroom’s status
and a gripper for harvesting. The desired harvesting and inspection functions
are represented by Rt

n,0 = {0, qtharvesting, q
t
inspection}, which are assigned from

high MCSs. The capability functions are Qn,0 = {0, qharvesting, qinspection},
representing the maximum capacity the robot can perform. The robot
operates continuously during the day and night, as indicated by At

n,0 = 1, and
since it is assumed to be a DCS, there is no stochasticity in the performance.

3.4.4.4 Mushroom beds

Mushroom beds are hyperedges (MCS) with a higher level of management. A
bed has specific attributes and is described as follows:

B0
n,1 =

〈
Dt

n,l, ∅, Qn,l, R
t
n,l, A

t
n,l, C

t
n,l, Fn,l

〉
, (3.39)

66
Chapter 3. Contribution to organisational modeling of stochastic

SoS

The mushroom bed is assigned harvesting and inspection functions, its
deterministic attribute Dt

n,0 describes the related to these functions, in
addition At

n,l = 1 if there is at least one mushroom in the bed, Fn,l represents
the function that assigns the under CSs functions .

3.4.4.5 Chambers

Chambers are hyperedges (MCS) with a higher level of management. The
chamber has specific attributes and is described as follows:

CH0
n,1 =

〈
Dt

n,l, ∅, Qn,l, R
t
n,l, A

t
n,l, C

t
n,l, Fn,l

〉
, (3.40)

This MCS has deterministic attribute Dt
n,l representing the harvesting and

inspection functions. Fn,l is the mapping function of these functions under
the CSs functions. A CS chamber always exists when at least one of its lower
CSs exists (At

n,l = 1).

3.4.4.6 Interactions

A mushroom component system MS1
n,0 in a hyperedge bed B0

n′,l has a weight
defined as follows:

W (MS1
n,0, B

0
n′,l) =< Rt

n,0,n′,l, ∅,
∅, At

n,0,n′,l > .
(3.41)

The mushroom is PCS with no information exchange with other CSs, thus
no deterministic or stochastic interactions occur. The growing function of the
mushroom within the bed is given by Rt

n,0,n′,l = {qtgrowing, 0, 0}. The condition
At

n,0,n′,l = 1 holds true only if both MS1
n,0 and B0

n′,l exist, as stated previously.
A human operator H1

n,0 in a hyperedge bed B0
n′,l has a weight defined as

follows:
W (H1

n,0, B
0
n′,l) =< Rt

n,0,n′,l, DI tn,0,n′,l,

SI tn,0,n′,l, A
t
n,0,n′,l > .

(3.42)

Where Rt
n,0,n′,l = {0, qtharvesting, 0} represents the desired harvesting functions,

DI tn,0,n′,l represents the interaction (information exchange) with other deter-
ministic CSs, such as the robot’s performance, and SI tn,0,n′,l represents the
interaction (information exchange) with other stochastic CSs, such as the
performance of other human operators. The condition At

n,0,n′,l = 1 holds true
only if H1

n,0 performs the desired mission assigned by CH0
n′,l.

Similarly, a robot Rb00,l in a hyperedge bed B0
n′,l has a weight defined as:

W (Rb0n,0, B
0
n′,l) =< Rt

n,0,n′,l, DI tn,0,n′,l,

SI tn,0,n′,l, A
t
n,0,n′,l > .

(3.43)

3.4. Case study: Mushroom harvesting SoS 67

Where Rt
n,0,n′,l = {0, qtharvesting, qtinspection} represents the harvesting and in-

spection functions, DI tn,0,n′,l represents the interaction with deterministic CSs,
such as the performance of other robots, and SI tn,0,n′,l represents the inter-
action with the stochastic performance of human operators. The condition
At

n,0,n′,l = 1 holds true only if Rb1n,0 performs the desired mission assigned
by B0

n′,l. Note that it is assumed robots are equipped with cameras, allow-
ing for the precise detection of mushrooms within the bed, which is why the
inspection function is assigned to them.

3.4.5 Implementation

When applying the MLSHG framework to the mushroom harvesting SoS,
FlexSim, a professional simulation tool for business systems across various
industries, was used and adapted to reflect the multi-level SoS framework.
The higher-level organizations (MCSs), represented by hyperedges (such as
"chambers" or "beds"), differ from the Level 0 CSs in their supervisory roles
and function assignment capabilities.

In FlexSim, the designed attributes of the framework—representing perfor-
mance, mission, satisfaction of mission, and stochastic existence—are reflected
by the labels associated with each CS. The exchange of performance informa-
tion between CSs models their interactions. The functionality of each CS is
developed using the Process Flow tool, which enables the creation of logic
models and custom functionalities through the use of blocks and custom code
snippets in C++ to simulate the logic and flow of processes within a complex
system.

The managerial independence property is maintained by assigning each CS
an independent mission that is performed based on its own logic, developed
using logic flow and reflecting the real heuristics of the farm. Each CS in the
simulation possesses its own resources, and even if the SoS farm and central
management are separated, each CS will continue its operation independently,
thereby respecting the operational independence property.

Fig. 4.4 presents a 3D visualization of a single chamber containing four
beds (each pair positioned together with similar dimensions of real work farm),
along with human operators and robots, the description of these CSs in the
simulation is decribed below:

• Mushrooms (Fig.3.12): At time 0, representing the initiation , mature
mushrooms are generated in the beds at random positions based on
a time-dependent binomial distribution, as explained before, each one
weighs 30 g.

68
Chapter 3. Contribution to organisational modeling of stochastic

SoS

Figure 3.11: Simulation environment

Figure 3.12: Mature mushrooms

3.4. Case study: Mushroom harvesting SoS 69

Figure 3.13: Human operator

• Human operator (Fig.3.13) : After two days from initiation, human op-
erators begin harvesting mature mushrooms and placing them onto a
conveyor system located next to the mushroom beds. These conveyors
transport the mushrooms to the packaging and storage stages. The hu-
man operator CSs work in 8-hour shifts during the day, following specific
harvesting heuristics. They harvest the mushrooms slot by slot, start-
ing from one level of the bed, and once all mushrooms from that level
are collected, they move to the next level. This logic is implemented in
Flexsim using the logic flow tool, representing the managerial indepen-
dence of these CSs within the SoS. The average harvesting capability
of these CSs is shown in Table 3.1 (based on expert informations from
the mushroom farm "Ferme de la Gontière" in Comines, France.). Since
these are SCSs, their performance may decline, potentially leading to
failures.

• Robot (Fig.3.14) : Robots begin harvesting alongside human operators,
though with lower capabilities as shown in Table 3.1. However, unlike
human operators, robots work continuously day and night without expe-
riencing fatigue. They follow similar harvesting heuristics as the human
operators, implemented in Flexsim’s logic flow for each robot. Addition-
ally, it is assumed that the robots are equipped with cameras to detect
the status of the mushrooms. This information is then shared with other
CSs by storing the data on mature mushrooms in a list accessible to all
CSs within the Flexsim simulation.

3.4.6 Results and discussion

The simulation was run for 7 days, collecting data on the number of mature
mushrooms in the chamber over time, the total harvested mushrooms, and

70
Chapter 3. Contribution to organisational modeling of stochastic

SoS

Figure 3.14: Robot

Harvesting rate
(Kg/h)

Human operator 30
Robot 10

Table 3.1: Harvesting capability

the harvesting rate. These results are plotted in Fig. 3.15 to compare the
outcomes of different scenarios.

From the initiation day, the number of mature mushrooms in the chamber
begins to increase, following a binomial process. After two days, the number
of mature mushrooms starts to decrease as the harvesting process begins.
The harvesting rate varies depending on the number of human operators and
robots, as shown in the figure. In the scenario with 12 human operators, the
harvesting rate drops to zero at night since no harvesting occurs during that
time. However, in the other two scenarios, the process continues both day
and night, as robots operate around the clock.

In scenario 3, where there are 12 human operators and 4 robots, the total
mushroom yield reaches 13.3 tonnes. This increase is due to the higher number
of CSs with harvesting functions. In contrast, reducing the number of CSs
leads to lower yields. Scenarios 1 (12 human operators) and 2 (10 human
operators and 2 robots) produce nearly the same yield of 10.6 tonnes, even
though human operators are more efficient at harvesting. This is because
robots can work continuously, day and night, compensating for the reduced
number of human operators over the long term.

The fluctuations in the harvesting rate are caused by the stochastic nature
of mushroom CSs, as they are randomly generated in different locations and
vary in their growth stages over time. It was also observed that the higher the
number of resources, the greater the performance fluctuations. This is due

3.4. Case study: Mushroom harvesting SoS 71

Figure 3.15: The number of mature mushrooms with time and the total
mushroom yield with time and the harvesting rate in different scenarios

72
Chapter 3. Contribution to organisational modeling of stochastic

SoS

to resources occasionally pausing to avoid collisions with others and to locate
unharvested slots. Additionally, since human operators function as SCSs,
their performance may degrade, leading to CS failures and a subsequent drop
in the harvesting rate, as shown in Fig. 3.15. In real-world scenarios, this
decline is typically due to fatigue.

3.5 Conclusion

In this chapter, we introduced the MLSHG model for modeling SSoS. This
model represents individual CSs based on their performance, missions, ca-
pabilities, mission satisfaction, and presence within the system. Ad-
ditionally, interactions between these subsystems are captured using edge-
dependent weights. The MLSHG model accommodates both stochastic
and deterministic CSs (SCSs and DCSs), as well as physical and managerial
CSs (PCSs) and MCSs).

The MLSHG model effectively addresses several significant challenges. A
detailed explanation of these challenges is provided below, along with a com-
parison to other existing studies.

• Behavior: This pertains to the model’s capacity to capture the dynam-
ics of PCSs. The BG model utilized in [Kumar 2014, Kumar 2017] has
been employed to analyze this dynamic behavior of PCSs.

• Multi-level Organization: This refers to the model’s capability to
depict a complex SoS within a multi-level hierarchical framework. This
approach simplifies complexity and facilitates the distribution of mis-
sions and objectives. The models presented in [Khalil 2012, Soyez 2015,
Kumar 2017, Dridi 2020, Mohsin 2020, Delsing 2022] effectively illus-
trate the organizational aspects of their methodologies.

• Heterogeneity: This pertains to the diversity among the CSs that
comprise the broader SoS. The model must incorporate various func-
tions or services among these CSs to meet the overall objectives. The
models discussed in [Soyez 2015, Dridi 2020, Mohsin 2020, Delsing 2022]
effectively manage these functionalities across different CSs.

• Stochasticity: This refers to the model’s ability to capture and rep-
resent stochastic behavior CSs. While there are relatively few studies
addressing this aspect, [Mohsin 2020] tackled the challenge using the
SAM-SoS (Stochastic Software Architecture Model), with a specific fo-
cus on software architecture.

3.5. Conclusion 73

• Scalability and Computational Efficiency: Scalability pertains to
the system’s capacity to expand or contract its components, capabilities,
and resources while preserving performance. It is crucial for the model
to remain computationally efficient to be applicable in real-world scenar-
ios. The ABM presented in [Soyez 2015] is scalable, as ABM typically
decentralize computations to individual agents, effectively addressing
these challenges.

• Dynamic Adaptation: This refers to the system’s capability to
modify its behavior, structure, or functions in response to real-
time changes. The models presented in [Khalil 2012, Kumar 2017,
Dridi 2020, Mohsin 2020, Delsing 2022] enable the SoS to adapt to par-
ticular conditions by adjusting its architecture.

• Complex interactions: This pertains to the capability to manage
various relationships and dependencies among CSs, rather than concen-
trating solely on individual interactions. The studies in [Khalil 2012,
Soyez 2015, Kumar 2017, Dridi 2020, Delsing 2022] effectively model
these complex interactions.

The proposed MLSHG model addresses all these aspects except for be-
havioral modeling, as its multi-level framework emphasizes the structure, per-
formance, functions, and capabilities of heterogeneous CSs, including mush-
rooms, human operators, and robots, while effectively capturing their complex
interactions. Furthermore, the model accommodates both stochastic and de-
terministic CSs. It is designed to be scalable, computationally efficient, and
capable of dynamic adaptation in response to disturbances. Table 3.2 sum-
marizes the comparison between the proposed MLSHG and related studies.

In a case study, the mushroom harvesting SoS, which includes social,
physical, and biological components, is modeled using the MLSHG frame-
work. The model captures the system’s functions, performance, capabilities,
and interactions between its components. To improve function allocation and
reduce complexity, additional managerial components such as mushroom beds
and chambers are introduced. The simulation was performed using Flexsim
over a single flush cycle (7 days) to analyze the outcomes of various scenarios.

Although the simulation results are close to what it was expected in a real
farm environment, further calibration is required using additional data. This
is necessary because certain assumptions were made, particularly in model-
ing the mushroom growth process. Despite these limitations, the simulation
serves as a powerful tool for farmers during the early stages of system design.
It enables them to evaluate and compare different outcomes under various

74
Chapter 3. Contribution to organisational modeling of stochastic

SoS

scenarios, providing insights into how different factors like different number
of resources may impact production.

For effective real-time management, additional steps are necessary to
enhance the model’s practical use. Specifically, the system needs to be contin-
uously monitored to detect any disturbances that could affect the growth and
harvesting process. This monitoring will allow for adjustments to be made
in real time, ensuring that the system operates efficiently and meets produc-
tion goals. Moreover, the implementation of reconfiguration methods will be
critical to maintain the performance. These techniques, which will be further
developed in the following chapter, will allow the system to adapt dynamically
and support farmers in managing their operations more effectively.

3.5. Conclusion 75

M
ul

ti
-le

ve
l

D
yn

am
ic

C
om

pl
ex

M
et

ho
d

R
ef

er
en

ce
B

eh
av

io
r

or
ga

ni
sa

ti
on

H
et

er
og

en
ei

ty
St

oc
ha

st
ic

ity
Sc

al
ab

ili
ty

ad
ap

ta
ti

on
in

te
ra

ct
io

ns

H
G

[K
ha

lil
20

12
]

p
✓

p
p

p
✓

✓

B
G

[K
um

ar
20

14
]

✓
p

p
p

p
p

p

A
B

M
[S

oy
ez

20
15

]
p

✓
✓

p
✓

p
✓

B
G

&
H

G
[K

um
ar

20
17

]
✓

✓
p

p
p

✓
✓

M
eM

So
S

[D
ri

di
20

20
]

p
✓

✓
p

p
✓

✓

Sy
sM

L
[D

el
si

ng
20

22
]

p
✓

✓
p

p
✓

✓

M
LS

H
G

O
ur

m
et

ho
d

p
✓

✓
✓

✓
✓

✓

Table 3.2: Comparison between the MLSHG and the most relevant studies
in terms of SoS modeling.

Chapter 4

Supervision of stochastic SoS

Contents
4.1 Introduction . 76

4.2 Threshold design . 77

4.3 Supervision algorithm 79

4.3.1 Monitoring . 81

4.3.2 Reconfiguration . 83

4.4 Case study . 86

4.4.1 Real time Supervision of mushroom harvesting SoS . . 86

4.4.2 Monitoring of mushroom harvesting SoS 87

4.4.3 Reconfiguration of mushroom harvesting SoS 88

4.4.4 Implementation . 91

4.4.5 Results and discussion 93

4.5 Conclusion . 99

4.1 Introduction

In the previous chapter, the modeling of SSoS was explained using the pro-
posed MLSHG model. This SSoS integrates multiple independent CSs, with
the goal of achieving higher levels of functionality and performance. These CSs
often operate in uncertain and dynamic environments, exhibiting stochastic
behaviors due to inherent randomness and unpredictable interactions among
their components. Supervising such SSoS poses a significant challenge,
requiring advanced methodologies to ensure reliability and consistent perfor-
mance.

The stochastic nature of an SSoS arises from various sources of uncertainty,
including both internal and external random fluctuations. These uncertain-
ties can propagate through interconnected subsystems, leading to emergent
behaviors that are difficult to predict and control. Internal fluctuations

4.2. Threshold design 77

may cause performance degradation, potentially resulting in the failure of
CSs. External fluctuations, on the other hand, can lead to mismanage-
ment of the SoS’s capacity. This mismanagement may result in an excessive
number of CSs, causing system over-capacity and waste, particularly in sup-
ply systems. That separating internal and external fluctuations is crucial for
effective capacity management as it helps in identifying the root causes of
capacity issues, thereby enabling more precise adjustments to manage system
loads in complex systems.

The objective is to manage the capacity of the SSoS by effectively con-
trolling the number of CSs in over-capacity situations and ensuring that
the SoS can adapt and reallocate functions in under-capacity scenarios, all
while still achieving its overall goals through strategic supervision.

While supervision of deterministic SoS is achieved by maintaining a normal
mode of operation [Khalil 2012], supervising an SSoS is more complex due
to the difficulty in distinguishing between normal and abnormal modes of
operation. In this study, the focus is on achieving the long-term goals of the
SoS while maintaining a normal operational mode. This normal mode can
be attained over time by verifying the performance of the SoS’s time-varying
mission and checking against specific thresholds that should account for these
stochastic aspects.

Supervision in this context involves multiple stages, including moni-
toring, reconfiguration, and control of the SoS to ensure it functions as
intended despite stochastic fluctuations. This includes the development of
algorithms and strategies that can adaptively adjust the system’s operation.

4.2 Threshold design

The design of the threshold for achieving long-term goals requires care-
ful consideration of the time-varying performance of missions, as previously
mentioned. It’s crucial to account for the cumulative impact of these missions
over time to ensure the successful attainment of long-term objectives. In this
study, a novel approach to goal achievement is proposed by formulating it as
the integral of these time-varying missions. This method allows for a com-
prehensive evaluation of each mission’s contribution to the overall objective,
considering both short-term and long-term impacts.

Once the final goal is established, it is important to determine an ac-
ceptable threshold for the residual of the accumulated missions, typically
expressed as a percentage of the final goal. This percentage can also be ap-
plied to time-varying missions, ensuring that the accumulated missions remain
aligned with the overall goal. It is important to note that, in this study, it is

78 Chapter 4. Supervision of stochastic SoS

assumed that all functions and missions are quantifiable.
By verifying the performance of the time-varying mission through the fol-

lowing equation:
|d(t)ref − d(t)i| < λ0d(t)ref, (4.1)

where λ0 is a constant (e.g., λ0 = 0.1), d(t)ref = d(t)opt + δ(t) is the reference
performance of the mission, composed of the optimal performance d(t)opt and
some time-varying uncertainty δ(t) used as a reference for comparison, and
d(t)i is the current scenario performance.

we can prove that:∫ t

t0

|d(t)ref − d(t)i| dt <
∫ t

t0

λ0d(t)ref dt (4.2)

This inequality represents that the final goal condition is satisfied.
Given the performance verification condition:

|d(t)ref − d(t)i| < λ0d(t)ref (4.3)

Both sides of the inequality can be integrated, provided that both functions
are continuous and integrable over [t0, t], with respect to t from t0 to t:∫ t

t0

|d(t)ref − d(t)i| dt <
∫ t

t0

λ0d(t)ref dt (4.4)

This becomes: ∫ t

t0

|d(t)ref − d(t)i| dt < λ0

∫ t

t0

d(t)ref dt (4.5)

This represents the condition that the integrated deviation from the ref-
erence performance remains within a fraction λ0 of the integrated reference
performance, ensuring that the cumulative performance adheres to the final
goal condition.

To account stochastic disturbances and for early detection and recon-
figuration, the constant threshold for time-varying missions can be adapted
as follows:

λt
SoS = λ0d(t)ref × g(ε(t)), (4.6)

where λ0 is the fixed threshold set by experts and g(ε(t)) adjusts the adaptive
threshold based on stochastic disturbances.

4.3. Supervision algorithm 79

4.3 Supervision algorithm

Short- and long-term objectives are crucial for managing complex sys-
tems [Paut 2021]. To address these, a supervision algorithm is developed
consisting of bottom-up monitoring and top-down reconfiguration, as
illustrated in Fig. 4.1, to maintain performance and ensure the achievement
of long-term global goals. While other studies focus on interaction failures
[Maksuti 2021], the bottom-up monitoring in this study involves measuring
performance, detecting, and eliminating failed CSs based on the satisfaction
of missions, represented by the attribute Ct

n,0.
The top-down reconfiguration process includes function decomposition (see

Fig. 4.2), eliminating extra CSs, and capability-based reconfiguration. By re-
moving extra CSs in over-capacity scenarios and reconfiguring the SoS through
capability-based adjustments in under-capacity scenarios, this approach ef-
fectively addresses issues of over-capacity and under-capacity in large-scale
systems, improving capacity management.

Algorithms 1 and 2 detail the different stages of the proposed real-time
supervision process. Starting with setting the number of levels b, the number
of CSs in each level al, the declaration of CSs, and the establishment of the SoS
global mission, which is composed of k functions. This SoS mission represents
the desired performance d(t)ref for the system. Thresholds are then defined,
and performance data are collected from the simulation. The detection and
elimination of failed CSs are carried out by generating the residuals between
the desired function set Rt

n,0 and the actual performance sets P t
n,0 and Dt

n,0,
followed by a comparison with the CS threshold λCS to determine whether
the CS mission is satisfied. This process is conducted in a bottom-up manner.

In the top-down approach, functions are decomposed over the CSs through
the function Fn,l, where the desired functions of a CS are the sum of all as-
signed functions from the higher-level CSs. During the reconfiguration stage,
the residual of SoS performance to the SoS threshold λt

SoS is compared. If an
over-capacity is detected, the hyperedges with the most over-capacity is iden-
tified and the last CS added will be eliminated . If under-capacity is detected,
the capability of the existing CSs to compensate for the failed one is checked.
This methodology ensures effective capacity management of the SoS.

It should be noted that since disturbances are only assumed in SCSs, the
residual for failure detection is only checked for these subsystems, using the
performance attribute P t

n,l. Additionally, all MCSs are considered as DCSs,
with the performance attribute Dt

n,l.
Further explanation, along with the corresponding mathematical represen-

tations, is described in the following sections.

80 Chapter 4. Supervision of stochastic SoS

Algorithm 1 Real time Supervision algorithm (Part 1)

///Declaration

b← levels

S ← {al; (al ∈ N)(0 ≤ l ≤ b)}

//Input CSs sets and attributes

V ← {CSj
n,0; 1 ≤ n ≤ a0}

for l← b to 1 do

El ← {CSj
n,l; 1 ≤ n ≤ al}

//Define thresholds

λCS ← CSthreshold

λt
SoS ← SoSthreshold

//Initialize global functions

Rt
1,b = {qt1, ..., qtk}

k ← |Rt
1,b|

while True do

///Monitoring

//Data performance collection from simulation

Pr ← {P t
n,l; 1 ≤ n ≤ al, 0 ≤ l ≤ b}

Dr ← {Dt
n,l; 1 ≤ n ≤ al, 0 ≤ l ≤ b}

//Detecting and eliminating failed PCSs

D ← {d ∈ R : (∃1 ≤ n ≤ a0)(∃1 ≤ j ≤ k)

(d = qtj |Rt
n,0 − ptj |P t

n,0)}
if (∃d ∈ D)(d > λ) then

/Get the first failed PCS index

n′ ← (∃1 < j < k)((qtj |Rt
n′,0 − ptj |P t

n′,0) > λCS)

/Eliminate PCS with n’ index from SoS

Ct
n′,0 ← 0

At
n′,0 ← 0

4.3. Supervision algorithm 81

Algorithm 2 Real time Supervision algorithm (Part 2)

///Reconfiguration

//Function decomposition
for l← (b− 1) to 0 do

Rt
n′,l ← {x ∈ R : (∃1 ≤ j ≤ (b − l))(∃1 ≤ n ≤ al+j)(∃1 ≤ i ≤ k)(x =∑b−l
j=1

∑al+j

n=1(fn,l+j,n′,j(q
t
i |Rt

n,l+j))}(∀1 ≤ n′ ≤ al)

//Check over-capacity
if (

∑k
s=1(q

t
s|Rt

1,b − dts|Dt
1,b)| < −λt

SoS) then

//Check over-capacity MCS

B(x, y) =
∑k

i=1(q
t
i |Rt

x,y)− (dti|Dt
x,y)

n1, l1← (∀1 ≤ l ≤ b)(∀1 ≤ n ≤ al)(B(n1, l1) > B(n, l))

//Eliminate extra PCS

n2← (∀1 ≤ n ≤ a0)((CSj
n,0 ∈ CS0

n1,l1) ∧ (
∑t

t0
pti|P t

n2,0 <
∑t

t0
pti|P t

n,0))

At
n2,0 ← 0

//Check under-capacity
else if (

∑k
s=1(q

t
s|Rt

1,b − dts|Dt
1,b)| > λt

SoS) then

/Check PCSs with similar capabilities
if (∃1 ≤ n ≤ a0)(∃1 ≤ i ≤ k) then

((qi|Qn,0 = qi|Qn′,0) ∧ (qti |Rt
n,0 = 0))

/Obtain the first CS capable of replacing the failed PCS

n′′ ← (∃1 ≤ i ≤ k)((qi|Qn′′,0 = qi|Qn′,0) ∧ (qti |Rt
n′′,0 = 0))

/Reallocate failed functions

qti |Rt
n′′,0 ← (qti |Rt

n′′,0 + qti |Rt
n′,0)(∀1 ≤ i ≤ k)

else

Print(’Recovering is not possible’)

4.3.1 Monitoring

The monitoring stage of the supervision algorithm is a crucial initial phase,
conducted in a bottom-up manner and composed of two primary components:
performance measurement and failure detection.

Performance measurement, is conducted from level 0 to level b, as the
performance of higher-level CSs depends on the performance of lower-level
CSs. Data is collected from all CSs through simulation and stored in two
distinct sets: one for SCSs, represented as Pr ← {P t

n,l; 1 ≤ n ≤ al, 0 ≤ l ≤ b},

82 Chapter 4. Supervision of stochastic SoS

Figure 4.1: Supervision algorithm

4.3. Supervision algorithm 83

and another for DCSs, represented as Dr ← {Dt
n,l; 1 ≤ n ≤ al, 0 ≤ l ≤ b}.

This data is essential for detecting and verifying any deviations in global
performance from the desired performance, particularly in scenarios of over-
capacity and under-capacity.

Failure detection is performed at level 0 for PCSs, ensuring that any de-
graded PCSs are identified and removed early in the process. The process
begins by calculating the residuals for all PCSs:

D ← {d ∈ R : (∃1 ≤ n ≤ a0)(∃1 ≤ j ≤ k)(d = qtj|Rt
n,0 − ptj|P t

n,0)} (4.7)

This expression represents the residual between the desired function j in
set Rt

n,0, denoted by qtj|Rt
n,0, and its actual performance ptj|P t

n,0. The residual
d is stored in the set D for all functions and PCSs at level 0, as long as n and
j satisfy their respective conditions.

These residuals are then compared against predefined thresholds to deter-
mine if any PCS has failed to satisfy its mission requirements through the
condition:

(∃d ∈ D)(d > λ) (4.8)

If a failure is detected, the index of the first failed CS is identified as:

n′ ← (∃1 < j < k)((qtj|Rt
n′,0 − ptj|P t

n′,0) > λCS) (4.9)

The satisfaction attribute for the failed CS is then set to zero:

Ct
n′,0 ← 0 (4.10)

Finally, the failed CS is eliminated by setting its stochastic existence to
zero:

At
n′,0 ← 0 (4.11)

Through this dual approach, the monitoring stage ensures that the system
operates efficiently by maintaining data integrity for performance verification
and promptly removing any failed CSs from the SoS, thus preparing the system
for reconfiguration.

4.3.2 Reconfiguration

The reconfiguration stage is conducted in a top-down manner and is composed
of three primary components: function decomposition, capability-based recon-
figuration in the case of under-capacity scenarios, and the elimination of extra
CSs in the case of over-capacity scenarios.

84 Chapter 4. Supervision of stochastic SoS

Figure 4.2: Function decomposition

In the function decomposition phase, the desired functions that represent
the mission are decomposed from the top-down over all CSs, as illustrated in
the Fig. 4.2. This decomposition is performed through the assigned functions
Fn,l of the MCSs (Fn,l is defined in the modeling chapter), formulated as
follows:

Rt
n′,l ← {x ∈ R : (∃1 ≤ j ≤ (b− l))(∃1 ≤ n ≤ al+j)

(∃1 ≤ i ≤ k)(x =
b−l∑
j=1

al+j∑
n=1

fn,l+j,n′,j(q
t
i |Rt

n,l+j))}

(∀1 ≤ n′ ≤ al)

This expression represents the desired quantified functions for CSi
n′,l, as-

signed from all higher-level MCSs. It is formulated as the sum of the con-
tributions from all relevant MCSs , noting that if CSi

n′,l does not belong to
CSi′

n,l+j, then fn,l+j,n′,j = 0.
over-capacity checking is done by verifying that the residual between the

reference performance (desired mission) and the current SoS performance is
less than the negative of the threshold:

(
k∑

s=1

(qts|Rt
1,b − dts|Dt

1,b)| < −λt
SoS) (4.12)

If an over-capacity is detected, the system identifies the most over-
capacityed MCS with index n1 and level l1, defined as:

B(x, y) =
k∑

i=1

(qti |Rt
x,y)− (dti|Dt

x,y) (4.13)

4.3. Supervision algorithm 85

n1, l1← (∀1 ≤ l ≤ b)(∀1 ≤ n ≤ al)(B(n1, l1) > B(n, l)) (4.14)

Next, the system determines the index n2 of the last added PCS within
this most over-capacityed MCS:

n2← (∀1 ≤ n ≤ a0)((CSj
n,0 ∈ CS0

n1,l1) ∧ (
t∑
t0

pti|P t
n2,0 <

t∑
t0

pti|P t
n,0)) (4.15)

This means that all PCSs are checked, and the one in the most over-
capacitated MCS with the lowest performance over time is identified. This
helps confirm that the last added PCS was the cause of the over-capacity in
the MCS.

Finally, the identified PCS is eliminated by setting its stochastic existence
to zero:

At
n2,0 ← 0 (4.16)

In an under-capacity scenario, this condition is checked when the residual
between the reference performance (desired mission) and current SoS perfor-
mance is greater than the threshold:

k∑
s=1

(qts|Rt
1,b − dts|Dt

1,b)| > λt
SoS (4.17)

If this condition is detected, capability-based reconfiguration is performed
to compensate for the degraded performance. The system checks for CSs that
have a similar capability with failed CS detected in the monitoring phase,
with the following condition:

(∃1 ≤ n ≤ a0)(∃1 ≤ i ≤ k)((qi|Qn,0 = qi|Qn′,0) ∧ (qti |Rt
n,0 = 0)) (4.18)

This expression means that if any PCS has the same capability as the failed
PCS but is not currently performing that function, it indicates that it is
capable of taking over the failed functions.

Then, the system identifies the first CS with index n′′ that is capable of
performing the functions of the failed CS:

n′′ ← (∃1 ≤ i ≤ k)((qi|Qn′′,0 = qi|Qn′,0) ∧ (qti |Rt
n′′,0 = 0)) (4.19)

86 Chapter 4. Supervision of stochastic SoS

Finally, the functions of the failed CS are reallocated to this newly identi-
fied CS:

qti |Rt
n′′,0 ← (qti |Rt

n′′,0 + qti |Rt
n′,0)(∀1 ≤ i ≤ k) (4.20)

This top-down reconfiguration approach ensures that the system remains
flexible and responsive, adapting to changing conditions while maintaining the
overall mission objectives.

4.4 Case study

To validate the proposed supervision methodology, it is applied to a mushroom
harvesting system, conceptualized as a SSoS composed of heterogeneous CSs.
These CSs exhibit both deterministic and stochastic behaviors that interact
to achieve a common goal: efficient mushroom harvesting.

The stochastic behaviors include the growth patterns of mushrooms, which
result in an unpredictable number of mature mushrooms being distributed
randomly across the harvesting area at any given time. Another stochastic
element is the degradation of human operators’ performance, which can vary
due to factors such as fatigue [Nicholls 2004], leading to fluctuations in the
overall effectiveness of the SSoS.

On the other hand, the deterministic behavior is primarily exhibited by
the robotic systems integrated into the harvesting process. These robots
are designed with the specific purpose of compensating for the performance
degradation of human operators. The deterministic nature of the robots’ ac-
tions ensures a consistent level of performance, thereby stabilizing the overall
functionality of the SoS despite the inherent uncertainties introduced by the
stochastic components.

By applying the proposed real-time supervision methodology using the
MLSHG model to the mushroom harvesting SoS, the goal is to demonstrate
its effectiveness in managing the complex interactions between deterministic
and stochastic behaviors, ultimately enhancing the reliability and efficiency
of the harvesting process.

4.4.1 Real time Supervision of mushroom harvesting SoS

In the real time supervision of the mushroom harvesting SoS, the primary
objective is to meet the daily harvesting yield within a specified time frame,
typically within a single day, to ensure that market demands are fulfilled. This
objective is achieved by maintaining a consistent harvesting rate throughout
the day. Since human performance is critical to the reliability of agricultural

4.4. Case study 87

systems and harvesting operations [Yahia 2010, Purfürst 2011], fluctuations
in performance and potential failures of human operators at certain times can
lead to a reduction in the harvesting rate, resulting in an under-capacity that
deviates from the target and threatens the achievement of the final yield goal.

Conversely, an over-capacity in the harvesting rate, which may occur if
additional human operators are introduced, can cause an excessive deviation
from the target, potentially leading to the loss of a portion of the mushroom
yield. This imbalance could arise from improper handling or premature har-
vesting, which can negatively impact the overall yield.

Effective capacity management is crucial in agricultural operations and is
a key factor in their success. Proper supervision and management of capac-
ity are essential to prevent and address situations of both over-capacity and
under-capacity [Vukelić 2014].

In this chapter, the focus is on achieving the target harvesting quantity
as the long-term goal of the supervision methodology. At the same time,
maintaining an optimal harvesting rate is identified as the critical mission of
the SoS. By prioritizing these objectives, the supervision methodology is de-
signed to ensure that the capacity of the mushroom harvesting SoS is managed
efficiently and reliably, minimizing deviations from the desired outcomes.

Before applying the supervision algorithm, the mushroom harvesting SoS is
modeled in terms of structural and HG representation. This includes modeling
individual CSs and their interactions, covering aspects such as performance,
capability, desired missions, and stochastic existence. The modeling is done
using the MLSHG model, as detailed in previous Chapter.

4.4.2 Monitoring of mushroom harvesting SoS

4.4.2.1 Performance measurement

Monitoring the mushroom harvesting SoS is the initial stage in the supervi-
sion algorithm. This stage includes measuring the performance of the CSs,
beginning with the primary PCSs at Level 0. At this level, the stochastic
performance of human operators is assessed in relation to their harvesting
tasks, while the deterministic performance of robots is evaluated in terms of
their inspection and harvesting functions. Additionally, the performance of
the mushroom growth mission is measured.

These performance data are then propagated to higher-level MCSs to as-
sess their organizational performance. Specifically, this involves evaluating
the mushroom beds at Level 1 and the chambers at Level 2. Subsequently,
the performance data is aggregated to determine the current performance of
the global SoS, which represents the entire mushroom harvesting operation.

88 Chapter 4. Supervision of stochastic SoS

It is important to note that in this work, its assumed that only the har-
vesting function’s performance is susceptible to fluctuations, primarily due to
failure of human operators. Further its assumed that other functions maintain
consistent performance over time.

4.4.2.2 Failure detection

In addition to measuring performance, the monitoring phase should also in-
clude the detection of failed PCSs. The measured stochastic performance
of human operators, P t

n,0, the measured deterministic performance of robots,
Dt

n,0, and the measured stochastic performance of mushrooms, P t
n,0, are com-

pared against the desired performance of the mission, Rt
n,l, to generate a

residual d. This residual is then compared to their respective performance
thresholds, λ.

These thresholds can vary depending on whether the system is a human
operator, robot, or mushroom, as determined by experts in the field. How-
ever, for the sake of simplicity, it is assumed that all PCSs share the same
threshold, which indicates whether they are reliable. If a PCS is detected
as unreliable, the system removes it from the mushroom harvesting SoS by
setting its satisfaction attribute Ct

n,l and its stochastic existence At
n,l to zero.

4.4.3 Reconfiguration of mushroom harvesting SoS

4.4.3.1 Function decomposition

Reconfiguration is the second phase of the supervision algorithm, performed
after detecting and removing failed PCSs and acquiring the performance
data of the SoS. This phase involves the decomposition of functions from
the higher SoS level down to the PCSs. The functions of the SoS mission,
Rt

1,3 = {qtgrowing, q
t
harvesting, q

t
inspection}, are first decomposed across the chambers

of the farm. These functions are then further decomposed over the mushroom
beds within each chamber, and subsequently, over the PCSs (mushrooms, hu-
mans, robots) associated with each bed. This decomposition is guided by the
Fn,l attribute in each MCS, which assigns functions based on the capabilities
of the respective CSs.

4.4.3.2 Reference scenario

While the monitoring and reconfiguration are performed in real-time, the gen-
eration of the reference scenario is done offline. This reference scenario repre-
sents the normal mode of operation on the farm and is generated by collecting
real data from the mushroom farm "Ferme de la Gontier" in Lille, France,

4.4. Case study 89

Figure 4.3: Reference scenario

along with information from experts and certain assumptions, as illustrated
in the Fig.4.3.

• Real Data:

– Chamber and bed dimensions.

– Dimensions and weight of mature mushrooms.

– Number of beds within a single chamber.

• Expert Information:

– Average final number of mature mushrooms per bed.

– Average harvesting rate of human operators.

– Expected average harvesting rate of robots.

– Number of human operators assigned to each chamber and bed.

– Harvesting heuristics used by human operators.

– Average daily harvesting yield.

• Assumptions:

90 Chapter 4. Supervision of stochastic SoS

– Exponential growth in the number of mature mushrooms over time.
– The capability of each PCS is assumed to be the average perfor-

mance value for each one.

In this study, the reference scenario only includes human operators since
the objective is to study the incorporation of robots to compensate for the
performance degradation of the farm.

4.4.3.3 Threshold

To raise the alarm for over-capacity or under-capacity, the performance devi-
ation should be compared with a threshold. The final acceptable deviation is
considered 10% in the harvesting yield for a single day, representing the long-
term goal. It has been previously verified that using this percentage for time-
varying performance ensures the final goal is met. Therefore, the constant
threshold considered for mission performance is defined as λt

SoS = λ0d(t)ref,
where λ0 = 0.1.

To account for stochastic disturbances, the adaptive threshold in equation
4.6 is considered where:

λt
SoS = λ0d(t)ref × g(ε(t)), (4.21)

where λ0 = 0.1 is the fixed value, and

g(ε(t)) =

(
1− ε(t)

6

)
,

with ε(t) representing the number of failed or additional human opera-
tors at each time step, and 6 being the maximum number of disturbances.
This adaptive term accounts for the stochastic nature of disturbances, mak-
ing the threshold more sensitive and allowing for robust reconfiguration. If
the number of disturbances reaches 6, the threshold becomes zero, meaning
the alarm is always raised as the maximum stochastic disturbance limit has
been exceeded.

4.4.3.4 Over-capacity scenario

If the residual between the reference performance of the mushroom farm,and
the current global performance of the farm, is less than the negative threshold,
it indicates that the current performance will lead to an over-capacity. In this
case, the system first identifies the mushroom bed (MCS at Level 1 in the
HG) experiencing overcapacity. Then, the system identifies the human oper-
ator who was recently added and caused this overcapacity, and subsequently
removes them from the system.

4.4. Case study 91

4.4.3.5 Under-capacity scenario

If the residual between the reference performance of the mushroom farm ,
and the current global performance of the farm, exceeds the threshold, it
indicates that the current performance will lead to an under-capacity and that
some human operators have failed. In this situation, the system searches for
robots with similar capabilities that are not currently performing harvesting
functions to compensate for the failed human operators. If no suitable robots
are available, it means that reconfiguration is not possible.

While its known that maintaining performance degradation within the
threshold ensures the final yield goal is achieved, it is also possible to meet
the final target even if failures occur late in the harvesting process and no
reconfiguration is made to compensate for them. This is because the final
target is based on the integration of time-varying performance.

4.4.4 Implementation

The MLSHG model introduced in the modeling chapter is applied to the
mushroom harvesting SoS and implemented in FlexSim, following a similar ap-
proach to the previous setup. Attributes of higher-level MCSs and lower-level
PCSs are represented using labels, while the functionality of each component
system is designed using the Process Flow tool. Furthermore, the proposed
algorithm, which includes both monitoring and reconfiguration stages, is also
implemented through Process Flow.

The simulation setup remains consistent with the previous implementa-
tion, using a single chamber with four mushroom beds, as shown in Fig. 4.4.
However, this time, the simulation is run for a single shift (the first harvesting
day) to monitor the system and implement necessary reconfigurations. The
reference scenario is simulated first to establish baseline performance and set
the final yield goal. This scenario involves only human operators perform-
ing the harvesting tasks, as is typical in real-world farms. In contrast, other
scenarios introduce disturbances reflecting both over- and under-capacity con-
ditions, allowing robots to compensate for the degradation in human operator
performance.

Recognizing the importance of capacity management in the simulation,
two scenarios are considered: under-capacity and over-capacity. In the under-
capacity scenario, failures in human operator performance are modeled, which
may occur due to fatigue in real situations. In the over-capacity scenario, the
addition of extra operators is modeled, which could result from mismanage-
ment on the farm in real scenarios. Both scenarios are modeled stochastically
using a binomial distribution, and each is tested against the constant and

92 Chapter 4. Supervision of stochastic SoS

Figure 4.4: Simulation environment

adaptive thresholds introduced in Section 4.4.3.3.

• Over-capacity: At each time step, new human operators were added
with a probability of 5%, with a maximum addition of six operators.

• Under-capacity: At each time step, the probability of human operator
failure was 5%, with a maximum failure of six operators.

The initial number of CSs and the initial SoS architecture, representing the
different levels of organization, are shown in Fig. 4.5. Additionally, separate
tests were conducted to evaluate the scalability of the proposed MLSHG. Since
computation time is primarily consumed during the reconfiguration stage,
where resource and function reallocations are performed to satisfy the SoS
threshold constraint, the focus is on comparing the capability-based reconfig-
uration proposed in this study with the backtracking method suggested by
[Khalil 2012]. Khalil formulated the CSP as a SAT problem and listed several
SAT solvers that could be used.

In this study, the method proposed in the algorithm is compared with
the state-of-the-art SAT solver, CP-SAT-LP [Perron 2023], implemented us-
ing the Python library "OR-Tools," which has been recently applied to vari-
ous optimization and constraint problems [Tsouros 2024]. Different scenarios,
involving varying numbers of MCSs and PCSs, were tested to compare the
computational time of both methods.

4.4. Case study 93

Figure 4.5: Mushroom harvesting hypergraph representation

4.4.5 Results and discussion

Afterward, the performance data of the mushroom harvesting SoS are col-
lected, plotted and compared with the reference performance. It is important
to note that although the global mission comprises three functions (growing,
harvesting, and inspection), in this study, it is assumed that the growing and
inspection functions are always maintained. Only the harvesting function is
affected, as the fluctuations occur solely in the human operators who perform
the harvesting tasks. Therefore, the plot and comparison focus exclusively on
the performance related to the harvesting function.

In the over-capacity scenario with a constant threshold, four PCSs were
added stochastically at various time steps: H1

13,0, H1
14,0, H1

15,0, and H1
16,0 at

t = 1, 2, 4, and 6 hours, respectively, into MCSs B0
2,1 (Bed 2), B0

1,1 (Bed 1),
B0

4,1 (Bed 4), and B0
3,1 (Bed 3), as shown in Fig. 4.6. For the first disturbance,

the system did not initiate reconfiguration, as the SoS performance did not
exceed the threshold. However, for the subsequent three disturbances, the
system responded by eliminating the additional PCSs once the performance
exceeded the threshold.

In the over-capacity scenario with an adaptive threshold, the same distur-

94 Chapter 4. Supervision of stochastic SoS

Figure 4.6: Performance of SoS and MCSs in the Over-Capacity Scenario
with a Constant Threshold

4.4. Case study 95

bances were introduced using the same sampling seed. However, the system
was able to eliminate the added CSs more effectively due to the greater sen-
sitivity of the adaptive threshold, which facilitated earlier reconfiguration, as
shown in Fig. 4.7. The impact of this adaptation was evident in the deviation
from the final goal, measured by the total weight of harvested mushrooms.
The deviation was 6.9% with a constant threshold, compared to just 1% with
the adaptive threshold, as shown in Table 4.1.

Scenario Harvested mushrooms
(Tonnes)

Deviation

Reference (Optimal scenario) 2.87 0%
over-capacity adaptive threshold 2.9 1%
over-capacity constant threshold 3.09 6.9%
under-capacity adaptive thresh-
old

2.65 7.6%

under-capacity constant thresh-
old

2.61 9%

Table 4.1: Deviation from final goal for different scenarios

In the under-capacity scenario with a constant threshold, three failures
occurred: H1

7,0, H1
3,0, and H1

5,0 at t = 1, 3, and 5 hours, in MCSs B0
2,1 (Bed

2), B0
1,1 (Bed 1), and B0

4,1 (Bed 4), respectively. The threshold was exceeded
during the second failure, prompting the deployment of all available robots
(Rb01,0, Rb02,0, Rb03,0, and Rb04,0) to compensate for the performance degradation
in MCSs B0

2,1 and B0
1,1, as shown in Fig. 4.8. However, no reconfiguration was

performed during the third failure since all available robots had already been
deployed, which caused the SoS performance to decrease below the threshold.

In the under-capacity scenario with an adaptive threshold, the same fail-
ures were observed because the same seed was used. However, the SoS re-
sponded to the first failure by deploying two robots (Rb01,0 and Rb02,0) to the
degraded MCS B0

2,1 (Bed 2), and two robots (Rb03,0 and Rb04,0) to MCS B0
1,1

(Bed 1) during the second failure, as shown in Fig. 4.9. No reconfiguration
was performed during the third failure, as the system had already utilized all
available resources. The deviation from the final goal, in terms of total har-
vested mushrooms, is summarized in Table 4.1 where the adaptive threshold
scenario exhibited less degradation, with a 7.6% deviation compared to a 9%
deviation in the constant threshold scenario.

These results demonstrate that using a constant threshold, as in
[Khalil 2012], increases deviation from the final goal since stochastic failures
are not considered. In contrast, incorporating stochastic disturbances into

96 Chapter 4. Supervision of stochastic SoS

Figure 4.7: Performance of SoS and MCSs in the Over-Capacity Scenario
with a adaptive Threshold

4.4. Case study 97

Figure 4.8: Performance of SoS and MCSs in the Under-Capacity Scenario
with a Constant Threshold

98 Chapter 4. Supervision of stochastic SoS

Figure 4.9: Performance of SoS and MCSs in the Under-Capacity Scenario
with a adaptive Threshold

4.5. Conclusion 99

the adaptive threshold significantly reduces deviation from the final goal, en-
abling more robust and timely adaptation. Additionally, even if the drop in
performance exceeds the threshold and no reconfiguration is implemented due
to the lack of available resources, the final goal can still be achieved. This is
because the goal is formulated as the integral of time-varying performance,
and the timing of failures influences this deviation. Specifically, if failures
occur near the end of the process, the deviation from the final goal will be less
significant compared to failures that occur earlier in the process. The results
from the FlexSim simulation were obtained for a single chamber. However,
due to the high computational demands of this software and our limited com-
putational resources, the remaining scenarios are implemented using a custom
Python code to compare the computational time during the reconfiguration
stage. The different scenarios are shown in Table 4.2, which includes varying
numbers of MCSs (chambers and beds), PCSs (human operators and robots),
different numbers of failures, and the average computational time for each
method.

The graph in Fig. 4.10 shows that as the number of CSs increases, the
computational time of the SAT solver used by [Khalil 2012] grows exponen-
tially. This occurs because the method is based on backtracking algorithms,
which attempt to find the best solution by checking all possible solutions. For
example, with N MCSs and M PCSs, this requires checking MN solutions,
which is not suitable for large-scale SoS. On the other hand, the computa-
tional time for the capability-based reconfiguration used in the MLSHG model
is significantly lower. This method checks the capabilities of the available CSs
and assigns replacements for failed ones, resulting in computational time that
scales linearly with the number of CSs.

Comparison of the average computational time between the SAT solver
used in the HG model of [Khalil 2012] and the capability-based reconfiguration
in the MLSHG model across different scenarios. Although the capability-
based reconfiguration may not always provide the optimal solution that fully
satisfies all mission constraints, it delivers an acceptable solution in a very
short time. Additionally, it has been shown that the adaptive threshold,
which accounts for stochastic disturbances and triggers early reconfiguration,
helps minimize deviations.

4.5 Conclusion

In this chapter, the MLSHG framework is applied for real-time supervi-
sion of SSoS. The proposed methodology consists of an algorithm capable
of real-time monitoring and reconfiguration using the defined attributes

100 Chapter 4. Supervision of stochastic SoS

Figure 4.10: Comparison of the average computational time between the
SAT solver used in the HG model of [Khalil 2012] and the capability-based

reconfiguration in the MLSHG model across different scenarios.

4.5. Conclusion 101

associated with CSs in the MLSHG framework. This approach takes into
account both long-term goals and time-varying missions.

In the monitoring stage, the objective is to measure the performance of
all CSs, which helps evaluate the satisfaction of missions and detect failures.
This process is conducted from the bottom up in the multi-level framework. In
the reconfiguration stage, functions are decomposed from the top down, and
the SoS performance is evaluated and compared with thresholds to determine
whether the system is operating in a normal or abnormal mode. This approach
aids in capacity management and raises alarms for reconfiguration in over-
and under-capacity situations. If an over-capacity situation is detected, the
system responds by removing extra CSs, while in an under-capacity situation,
the system responds by reallocating functions and missions to other available
CSs to compensate for degraded performance.

The proposed approach has been applied to the mushroom harvesting sys-
tem, considered as an SSoS with heterogeneous CSs. The social and bio-
logical CSs were modeled stochastically to reflect uncertainty and stochastic
disturbances in the SoS, while the robot was modeled as a deterministic CS
to help compensate for and reconfigure the system. Various scenarios were
tested, including under- and over-capacity situations with constant and adap-
tive thresholds.

The results showed that this approach effectively achieved long-term goals.
As the number of CSs increased, the computational time of the pro-
posed capability-based reconfiguration grew linearly and remained sig-
nificantly lower compared to methods that seek the optimal solution. Al-
though this method does not always provide the best solution for satisfying
the mission, it demonstrated that early reconfiguration and accounting for
stochastic disturbances through the adaptive threshold help reduce devi-
ations from the final goal. While this framework was specifically applied to
agriculture, it is suitable for other large-scale systems operating in uncertain
environments, such as smart cities, supply chains, and military operations,
due to its ability to handle stochasticity, scalability, and high complexity

To create the reference scenario, real data, expert insights from an actual
farm, and some assumptions are used to simulate a comparable scenario in-
volving a single chamber, similar to a real farm setup. However, for a more
accurate and calibrated simulation, additional data would be required. De-
spite this, since our main objective was to compare performances, the devel-
oped approach was sufficient for evaluating the MLSHG framework and the
supervision algorithm.

This supervision methodology enables the SSoS to recover; however, as-
sessing the ability of the SSoS to recover will be addressed in the resilience
study in the next chapter.

102 Chapter 4. Supervision of stochastic SoS

Sc
en

ar
io

M
C

Ss
(C

ha
m

be
rs

+
be

ds
)

P
C

Ss
(H

um
an

op
er

at
or

s
+

ro
bo

ts
)

Fa
ilu

re
s

SA
T

so
lv

er
(K

ha
lil

et
al

.
(2

01
2)

[K
ha

lil
20

12
])

:
Av

g.
T

im
e

(s
ec

-
on

ds
)

C
ap

ab
ili

ty
-b

as
ed

re
co

nfi
gu

ra
ti

on
(M

LS
H

G
):

Av
g.

T
im

e
(s

ec
on

ds
)

1
1

+
4

10
+

4
1

0.
05

0.
00

1
2

2
+

8
15

+
4

1
0.

3
0.

00
4

3
3

+
12

26
+

4
2

4.
06

0.
00

5
4

4
+

16
36

+
6

3
15

0.
00

79
5

5
+

20
43

+
6

4
41

.3
0.

01
1

6
6

+
24

50
+

8
5

87
.5

0.
01

8

Table 4.2: Different tested scenarios and the corresponding computational
times obtained.

Chapter 5

Resilience of stochastic SoS

Contents
5.1 Introduction . 103

5.2 MLSHG for resilient SoS 104

5.2.1 Adaptability . 104

5.2.2 Stand-in redundancy 105

5.2.3 Stand-by redundancy 105

5.3 Resilience algorithm 105

5.4 Resilience quantification 108

5.5 Case study . 111

5.5.1 Resilient mushroom farm 111

5.5.2 Results and discussion 112

5.6 Conclusion . 115

5.1 Introduction

In the previous chapter, the use of the MLSHG model for the supervision
of SoS was explained, introducing a supervision methodology that consists
of monitoring and reconfiguration. This methodology provides the essential
tools that enable the system to adapt in the event of disturbances. The ability
of the SoS to adapt and recover is what we define as resilience.

While some researchers focus on robustness [Davendralingam 2013], which
is the ability to resist failures, others have suggested prioritizing resilience, as
failures in SoS are unavoidable due to their complexity and emergent behavior
[Madni 2009]. In this chapter, it is intended to build on the tools developed
for supervision and introduce suitable recovery mechanisms to ensure the re-
silience of these complex systems.

Some resilience methodologies suggest including anticipation
[Moradi 2018, Woods 2015]; however, this thesis focuses on SSoS, where

104 Chapter 5. Resilience of stochastic SoS

disturbances are inherently unpredictable. As a result, the emphasis shifts to
recovery and adaptation. In highly dynamic and stochastic environments,
anticipating every failure is impractical, making the system’s ability to recover
quickly and maintain its core operations even more crucial. Therefore, the
following definition of resilient SSoS is proposed:

Definition 9 The resilience of a Stochastic System of Systems
(SSoS) is its ability to absorb, adapt, and recover from unpredictable fail-
ures, ensuring the continuation of normal operations, even with degraded per-
formance.

This resilience is achieved by proposing a methodology based on the pres-
ence of redundancies in the SoS and functional adaptation. To ensure
comprehensive evaluation, this resilience should be quantified using suitable
metrics that account for various resilience factors. In the following sections,
we explain how the MLSHG model supports resilience strategies, introduce
the proposed resilience algorithm and metric, and conclude by presenting the
simulation results.

5.2 MLSHG for resilient SoS

The MLSHG model described in the modeling chapter is considered to sup-
port the resilience of SoS. The model, which captures the performance, mis-
sion, and capability of CSs, is well-suited for modeling performance-based
resilient SoS, as the goal is to maintain desired performance. Since most
recovery methods emphasize redundancy and adaptability, it is important
to ensure that our model can incorporate these aspects. In this thesis, a dis-
tinction is made between stand-by and stand-in redundancy, as defined
by [Uday 2014], with both being treated as dynamic properties that evolve
over time. These redundancies, along with the adaptability aspects of our
model, are detailed in the following sections.

5.2.1 Adaptability

It refers to the system’s capacity to adjust its operations and structure
to accommodate changes or disturbances. In SoS, it resembles Maier’s
[Maier 1998] fifth characteristic, ’Revolutionary and adaptive develop-
ment,’ as an evolutionary perspective necessitates a system to be adaptable,
capable of responding to unknown future conditions. In MLSHG, a SoS is
deemed adaptable when its CS’ functions change over time in response to

5.3. Resilience algorithm 105

alterations in the global SoS goal or internal disturbances, for CSj
n,0:

∀j ∈ {0, 1},∃t1, t2 ∈ R, Rt1
n,0 ̸= Rt2

n,0 (5.1)

This implies that there are two points in time where the desired functions
differ, indicating that the CS evolves over time.

5.2.2 Stand-in redundancy

It’s also called functional redundancy, and it is noted that there are mul-
tiple ways to execute tasks and achieve functionalities. From the MLSHG
perspective, for a given time t1, the SoS has functional redundancy if at least
one PCS has at least a quantified function (qt1i |R

t1
n,0) less than its capability

functions (qi|Qn,0) where (qi|Y) means the quantifies value of function i in set
Y :

∃CSj
n,0 ∈ CSj′

n′,l,

(∀j, j′ ∈ {0, 1})(∃1 ≤ i ≤ k)(((qi|Qn,0) ̸= 0) =⇒
(qi|Qn,0 > qt1i |R

t1
n,0)),

(5.2)

This formulation implies the existence of a PCS capable of performing
certain functions at a higher level than its current performance. Therefore, it
is assumed that the performance of all PCSs is controllable.

5.2.3 Stand-by redundancy

It refers to the presence of at least one additional PCS as a backup CS
(not operating), capable of replacing the failing one due to the similarity in
at least one function at a given time t1:

∃CSn,0, CSn′,0 ∈ V,

((∀qt1i ∈ Rt1
n,0)(q

t1
i = 0)) ∧ ((∃1 ≤ j ≤ k)((qt1j |R

t1
n′,0) ̸= 0

∧(qj|Qn,0)× (qj|Qn′,0) ̸= 0)

(5.3)

5.3 Resilience algorithm

Based on the developed framework, an algorithm based on Top-down re-
configuration and Bottom-up monitoring is created for recovering from
failures, it enables the model to adapt by considering the dynamics of both
stand-in and stand-by redundancies. Given the costliness of operating
backup systems, we prioritize recovery using functional redundancy over uti-
lizing the backup systems. Fig. 5.1 illustrates the flowchart of the developed
algorithm.

106 Chapter 5. Resilience of stochastic SoS

Figure 5.1: Flowchart of the resilience algorithm

The bottom-up monitoring is the same stage described in the supervi-
sion chapter, which includes performance measurement and failure detection.
Failure detection is performed by generating the residual between the actual
performance of the CSs and the desired performance, and then comparing
this residual to a threshold. In top-down reconfiguration, the functions are
decomposed similarly to the supervision algorithm. However, when failures
are detected, it employ the stand-in and stand-by mechanisms for recovery.
The following pseudo-algorithm (3,4) explains the different steps of the re-
silience algorithm.

The algorithm represents the different steps while accounting for b layers
and al, the number of CSs in layer l. At each iteration, the first failed CS is
detected, and both types of redundancy (stand-in and stand-by) are checked
for PCSs to identify a functional or backup CS that can compensate for the
failure, allowing the system to adapt to potential disturbances. The previously
proposed definitions of stand-in and stand-by redundancies are applied, while

5.3. Resilience algorithm 107

the remaining steps follow the same process as the supervision algorithm.

Algorithm 3 Resilience algorithm (Part 1)

///Declaration

b← levels

S ← {al; (al ∈ N)(0 ≤ l ≤ b)}

//Input CSs sets and attributes

V ← {CSj
n,0; 1 ≤ n ≤ a0}

for l← b to 1 do

El ← {CSj
n,l; 1 ≤ n ≤ al}

//Define thresholds

λCS ← CSthreshold

λt
SoS ← SoSthreshold

//Initialize global functions

Rt
1,b = {qt1, ..., qtk}

k ← |Rt
1,b|

while True do

///Monitoring

//Data performance collection from simulation

Pr ← {P t
n,l; 1 ≤ n ≤ al, 0 ≤ l ≤ b}

Dr ← {Dt
n,l; 1 ≤ n ≤ al, 0 ≤ l ≤ b}

//Detecting and eliminating failed PCSs

D ← {d ∈ R : (∃1 ≤ n ≤ a0)(∃1 ≤ j ≤ k)(d = qtj |Rt
n,0 − ptj |P t

n,0)}
if (∃d ∈ D)(d > λ) then

/Get the first failed PCS index

n′ ← (∃1 < j < k)((qtj |Rt
n′,0 − ptj |P t

n′,0) > λCS)

/Eliminate PCS with n’ index from SoS

Ct
n′,0 ← 0

At
n′,0 ← 0

108 Chapter 5. Resilience of stochastic SoS

Algorithm 4 Resilience algorithm (Part 2)

///Reconfiguration

//Function decomposition
for l← (b− 1) to 0 do

Rt
n′,l ← {x ∈ R : (∃1 ≤ j ≤ (b − l))(∃1 ≤ n ≤ al+j)(∃1 ≤ i ≤ k)(x =∑b−l
j=1

∑al+j

n=1(fn,l+j,n′,j(q
t
i |Rt

n,l+j))}(∀1 ≤ n′ ≤ al)

//Check SoS failure
if |

∑k
s=1(q

t
s|Rt

1,b − dts|Dt
1,b)| > λSoS then

//Check Stand-in redundancies
if (∃1 ≤ n ≤ a0)(∃1 ≤ i ≤ k) ((qi|Qn,0) ̸= 0) =⇒ (qi|Qn,0 > qti |Rt

n,0) then

/Get the index of the most functionally redundant CS

B(x) =
∑k

i=1(qi|Qx,0)− (qti |Rt
x,0)

n′′ ← (∀1 ≤ n ≤ a)(B(n′′) > B(n))

/Reallocate failed CS functions to redundant CS

qi|Rt
n′′,0 ← (qi|Rt

n′′,0 + qi|Rt
n′,0)(∀1 ≤ i ≤ k)

//Check Stand-by redundancies
else if (1 ≤ n ≤ a0)(∀qti ∈ Rt

n,0) (qti = 0)) ∧ ((∃1 ≤ j ≤ k)((qtj |Rt
n′,0) ̸= 0

∧(qj |Qn,0)× (qj |Qn′,0) ̸= 0) then

/Get backup CS indexe

n′′′ ← (∀qti ∈ Rt
n′′′,0)(q

t
i = 0) ∧ ((∃1 ≤ j ≤ k)((qtj |Rt

n′,0) ̸= 0 ∧ (qj |Qn′′′,0) ×
(qj |Qn′,0) ̸= 0)

/Allocate failed CS functions to backup CS

Rt
n′′′,0 ← Rt

n′,0

else

Print(’Recovering is not possible’)

5.4 Resilience quantification

To quantify resilience, capability-based metrics should be used to assess
the system’s ability to absorb, adapt, and recover from disturbances. These
metrics must be suitable for the developed framework and aligned with the
focus on performance-based resilience. They should encompass the different
stages of performance resilience. In Fig. 5.2, the performance of a SoS is plot-
ted, illustrating the pre-disturbance epoch, the absorption epoch, the recovery

5.4. Resilience quantification 109

Figure 5.2: SoS performance over a period of interest for a single disturbance

epoch, and the steady-state epoch.
The resilience metric R, proposed by [Tran 2016], which includes perfor-

mance, absorption, recovery, and recovery time factors, is adapted in our
formalism to incorporate redundancy factors and is depicted as follows:

R = ρσ(δ + 1− τ (ρ−δ))β (5.4)

where 0 ≤ R ≤ ∞, and the terms in this equation are referred to as
resilience factors. Each resilience factor captures an important aspect of a
resilient system. The resilience factors are calculated as:

σ = total performance factor =

∑tfinal
td

y(t)

yd(tf − td)
(5.5)

δ = absorption factor =
ymin

yd
(5.6)

ρ = recovery factor =
yr
yd

(5.7)

τ = recovery time factor =
tS − td
tf − td

(5.8)

β = redundancy factor =
Re

dSoS
(5.9)

where yd is the desired system performance level, ymin is the minimum
system performance level, yr is the recovered performance level, td is the time
of disturbance, tmin is the time at which the system reaches the minimum
performance level, and tS is the time when the system reaches steady-state
performance. Re is the redundancy, encompassing both functional and backup
capabilities in the SoS, and dSoS is the performance of the SoS.

110 Chapter 5. Resilience of stochastic SoS

The performance, absorption, recovery, and recovery time factors are de-
fined and detailed in [Tran 2016, Tran 2015], and can be summarized as fol-
lows:

• Total performance factor: This measures the total performance data
over the period of interest.

• Absorption factor: This measures the system’s ability to absorb the
effects of a disruption.

• Recovery factor: This evaluates the system’s ability to restore perfor-
mance levels after a disruption.

• Recovery time factor: This measures the temporal aspects repre-
sented by the time required for the system to reach a steady state after
a disruption.

The redundancy factor is added to represent the available capability
relative to the desired performance of the System of Systems (SoS) mission.
This factor captures the SoS’s available capacity to compensate for degraded
performance during operation.

The Re is the redundancy, encompassing both functional and backup ca-
pabilities in the SoS, which is defined as the difference between the total SoS
capability and its current performance:

Re =
k∑

i=1

((
qti | QSoS

)
−
(
dti | Dt

SoS

))
(5.10)

Here, qti | QSoS represents the capability of function i in the SoS, where
QSoS is the set of capabilities of all functions in the SoS. Similarly, dti | Dt

SoS

denotes the actual performance of function i, and Dt
SoS is the set of perfor-

mances of all functions in the SoS. The total number of functions is denoted
by k.

The performance of the SoS, dSoS, is given by:

dSoS =
k∑

i=1

(
dti | Dt

SoS

)
(5.11)

It should be noted that, this resilience metric, it ignores the volatility factor
by assuming that the SoS possesses sufficient redundancy to enable recovery.

Similar to [Tran 2016, Tran 2015] and Considering multiple failures, a total
resilience metric, Rtotal, is calculated from individual R values as:

5.5. Case study 111

Rtotal =

∑NT

i=1wiRi∑NT

i=1 wi

(5.12)

where NT is the number of failures that require recovering (not all failures
require recovering) and the weights wi are coefficients of an exponentially
weighted moving average, defined as:

wi = (1− α)NT−i (5.13)

with a smoothing factor α = 0.06.

5.5 Case study

The mushroom harvesting SoS is used as a case study to apply our re-
silience methodology through the MLSHG model. The hierarchical structure
of this system is detailed in the modeling chapter, representing the differ-
ent levels and the physical subsystems (PCSs: mushrooms, robots, hu-
man operators) as well as the managerial subsystems (MCSs: chambers
and beds) and their interactions. The scenario considered is adapted to
reflect the resilience methodology, incorporating stand-in and stand-by re-
dundancy mechanisms. The following sections explain the importance of
performance-based resilience in mushroom farming, particularly in har-
vesting operations, and present the simulation results along with a dis-
cussion.

5.5.1 Resilient mushroom farm

Recent findings show that the current resilience of European farming systems
is primarily focused on maintaining performance, but they lack the necessary
adaptability for long-term resilience [Meuwissen 2020]. This highlights the
importance of providing frameworks to shift toward resilience and recovery, as
well as assessing resilience to evaluate the effectiveness of such methodologies
[Meuwissen 2019].

Similar to other food services, the mushroom harvesting SoS is labor-
intensive and faces sudden labor shortages, which can degrade performance
[Karan 2021]. This sudden labor shortage can be modeled using stochastic
methods, such as a binomial process, similar to the approach discussed in the
supervision chapter.

In farming systems, resilience practices include labor reallocation
through adaptability and the implementation of new technologies

112 Chapter 5. Resilience of stochastic SoS

[Manevska-Tasevska 2021]. In mushroom harvesting, the focus is on recov-
ery by applying stand-in and stand-by redundancy mechanisms, reallocat-
ing the functions of human operators, increasing their harvest-
ing performance, and incorporating robots (backups) when necessary.
This adaptability will enhance the sustainability of these farming systems
[Darnhofer 2010].

5.5.2 Results and discussion

The resilience scenario consists of a single chamber with four mushroom beds,
similar to Fig. 4.4, involving 12 human operators with varying performance
levels and 4 robots as backups. The simulation is run for a single shift (8
hours on the first harvesting day). The drop in performance of the human
operators is modeled stochastically using a binomial distribution, similar to
the supervision scenario. The resilience algorithm, which incorporates stand-
by and stand-in redundancy mechanisms, is implemented using the logic flow
tool in FlexSim.

The results of the simulation are plotted in Fig. 5.3, showing the per-
formance of the MCSs (mushroom beds) and the overall SoS performance.
Three failures occurred, leading to a drop in SoS performance. For the first
failure, the system did not respond as the performance drop was within
the threshold. For the second and third failures, the system incorporated
redundancy mechanisms to recover. To better analyze these results, the
simulation time is decomposed into six epochs, each representing a stage of
the resilience scenario, as shown in the figure.

For the first failure, the system eliminated human operator 7 H1
7,0 from

mushroom bed 2 B0
2,1, resulting in a performance drop in epoch 2. However,

no response was required since the performance drop remained within the
threshold, as mentioned previously.

For the second failure, the system eliminated human operator 3 H1
3,0 from

mushroom bed 1 B0
1,1, which led to a performance drop in epoch 3. The system

was able to recover by activating the stand-in redundancy mechanism. This
involved increasing the performance of human operators 6 H1

6,0 and 12 H1
12,0

to their maximum capacity, which was 30 kg/h. The system thus successfully
recovered from the failure.

For the third failure, human operator 4 H1
4,0 was eliminated from mush-

room bed 1 B0
1,1 in epoch 5, leading to another drop in performance. The

system employed both stand-in and stand-by redundancy mechanisms to re-
cover. Initially, it increased the performance of human operator 11 H1

11,0 to
the maximum level. Since no functional redundancy was left, the robot back-
ups Rb01,0, Rb02,0, Rb03,0, Rb04,0 were incorporated to aid in recovery during epoch

5.5. Case study 113

Figure 5.3: The performance of (a) mushroom beds and (b) SoS as a
function of time for a multiple failure

114 Chapter 5. Resilience of stochastic SoS

5.
The changes in the performance of human operators are highlighted in red

in Table 5.1, representing both the elimination (performance = 0) and the
increase in performance when the stand-in redundancy recovery mechanism
is activated. It should be noted that this is the average over a period of time,
and the actual performance exhibits some uncertainty due to the stochastic
nature of mushroom growth. Additionally, in this simulation, it is assumed
that the performance of human operators can be controlled, whereas in real-
life scenarios, this is more challenging.

Epoch 1 2 3 4 5 6
Operator 1 30 30 30 30 30 30
Operator 2 25 25 25 25 25 25
Operator 3 25 25 0 0 0 0
Operator 4 20 20 20 20 0 0
Operator 5 30 30 30 30 30 30
Operator 6 20 20 30 30 30 30
Operator 7 20 0 0 0 0 0
Operator 8 30 30 30 30 30 30
Operator 9 25 25 25 25 25 25
Operator 10 30 30 30 30 30 30
Operator 11 25 25 25 25 30 30
Operator 12 20 20 30 30 30 30

Table 5.1: Average mission performance (Kg/h) by operators

Moreover, the initial HG representation, along with its evolution, is
shown in Fig. 5.4, illustrating the elimination of failed PCSs in epochs 2, 3,
and 5, as well as the reallocation of backup PCSs in epoch 6. This evolution
demonstrates the ability of the SoS to reallocate PCSs to MCSs, proving the
adaptability of the proposed model.

To evaluate the proposed model and quantify the resilience of the
mushroom harvesting SoS, the resilience metric proposed in Section 5.4 is
calculated. This metric includes absorption, recovery time, redundancy, and
performance factors for the first recovery (epoch 3), which incorporates the
stand-in redundancy mechanism, and the second recovery (epoch 5), which
incorporates both stand-in and stand-by redundancy mechanisms. The results
are shown in Fig. 5.2.

For the absorption factor, both epochs exhibit similar values. However,
for the recovery factor, the second recovery has a higher value, as backup
CSs are incorporated to increase the SoS performance. Regarding recovery

5.6. Conclusion 115

time, the first recovery has a lower value than the second, since employ-
ing functional adaptation is faster than using both functional and backup
redundancies. The performance factor is higher in the second recovery,
demonstrating that using both stand-in and stand-by mechanisms improves
performance. Finally, for the redundancy factor, the first recovery shows a
higher value due to greater redundancy, while the second recovery, with fewer
available redundancies, has a lower value.

This comparison highlights the differences between multiple failures; how-
ever, the main focus is on the overall resilience of the SoS over time. To
quantify this, the total resilience metric is calculated as 0.2317, using the
proposed equation from Section 5.4. A higher value of this metric indicates
greater resilience in the SoS. By utilizing this metric, the question of which
system, A or B, is more resilient can be answered.

First recovery
(Stand-in redun-
dancy)

Second recovery
(Stand-in and stand-
by redundancy)

Absorption factor δ 0.9097 0.8889
Recovery factor ρ 1.0022 1.0321
Time factor τ 0.4 0.7
Redundancy factor β 0.3333 0.2667
Performance factor σ 0.7607 0.8239
Ri 0.2517 0.2139
Wi 0.94 1
Rtotal 0.2317

Table 5.2: Performance metrics for first and second recovery

5.6 Conclusion

In this chapter, the MLSHG model is applied and explained in the context
of achieving resilience in SSoS. While the model demonstrates its capability
for modeling and supervising SoS, it also shows support for adaptability and
redundancy properties. Additionally, a resilience algorithm was proposed,
consisting of bottom-up monitoring and top-down reconfiguration. While the
monitoring process is similar to the supervision algorithm introduced in the
previous chapter, the reconfiguration relies on stand-in and stand-by redun-
dancy mechanisms. This algorithm prioritizes stand-in (functional) redun-
dancy over backups, as incorporating additional components increases oper-
ating costs.

116 Chapter 5. Resilience of stochastic SoS

To quantify the performance-based resilience scenario and evaluate the pro-
posed methodology, a resilience metric is proposed that incorporates total
performance, absorption, recovery, time, and redundancy factors, accounting
for multiple failures. In the FlexSim simulation, this resilience scenario is ap-
plied to the mushroom harvesting SoS, which experiences stochastic failures
of human operators. The results demonstrated strong recovery capabilities
through redundancy mechanisms, enabling quick recovery after failures. It is
important to note that the resilience of the SSoS is highly dependent on re-
dundancy (both functional and backup). While increasing redundancy makes
the SSoS more resilient, the question remains regarding the additional cost
required to implement more redundancies.

5.6. Conclusion 117

Figure 5.4: Hpergraph evolution of the resilience scenario for different epochs

Chapter 6

Conclusion

Contents
6.1 General conclusions . 118

6.2 Perspectives . 121

6.2.1 Behavioral modeling 121

6.2.2 Supervision and resilience 121

6.2.3 Mushroom harvesting simulation 122

6.1 General conclusions

This thesis aims to contribute to the modeling and supervision of System
of Systems (SoS). The current literature highlights several key challenges in
modeling SoS, including describing the heterogeneity of functions and the dy-
namic performance of Component Systems (CSs), understanding the complex
interactions between these CSs and their structure, as well as accounting for
stochastic CSs that may unpredictably join or leave the SoS. Existing works
reveal the lack of a comprehensive framework that addresses these challenges
simultaneously. To overcome these issues, the Multi-level Stochastic Hyper-
graph (MLSHG) model was presented in Chapter 3, with its key benefits
summarized as follows:

• The structure of the SoS is described using multi-level modeling to man-
age complexity. At level 0, the Physical Component Systems (PCSs) are
represented as vertices in the Hypergraph (HG). At higher levels, the
Managerial Component Systems (MCSs) are represented as hyperedges
in the HG, encompassing groups of PCSs.

• Each of these CSs is assigned attributes that describe its performance,
functions, capabilities, stochastic existence, and mission satisfaction.
This formalism allows the representation of heterogeneous CSs with
varying functions and capabilities, while also distinguishing between

6.1. General conclusions 119

stochastic and deterministic CSs. For stochastic CSs, the stochastic
existence attribute can be modeled using probabilities and distributions.

• The interactions between CSs are described using edge-dependent
weights that account for their stochastic existence, information ex-
change, and sub-functions within the hyperedges.

• The proposed model is validated to ensure it adheres to the key prop-
erties outlined by [Maier 1998], which distinguish SoS from traditional
complex systems.

While only a few studies have explored the supervision of this type of
SoS, in Chapter 4, the supervision methodology is proposed by introducing an
algorithm that integrates real-time monitoring and reconfiguration. During
the monitoring stage, the objective is to assess the performance of all CSs,
which helps evaluate mission satisfaction and detect failures. This process is
conducted bottom-up within the multi-level framework. In the reconfiguration
stage, functions are decomposed top-down, and SoS performance is evaluated
against predefined thresholds to determine whether the system is operating
normally or abnormally. This approach supports capacity management and
triggers alarms for reconfiguration in both over-capacity and under-capacity
scenarios.

In over-capacity situations, the system responds by removing excess CSs,
while in under-capacity scenarios, it reallocates functions and missions to
other available CSs to compensate for degraded performance. The results
demonstrated that this approach effectively achieves long-term goals. As the
number of CSs increases, the computational time of the proposed capability-
based reconfiguration grows linearly and remains significantly low (≈ 0.02 s)
compared to methods that seek optimal solutions, thereby enhancing scalabil-
ity. Although this approach does not always guarantee the optimal solution
for mission satisfaction, it shows that accounting for stochastic disturbances
through an adaptive threshold allows for early reconfiguration and helps min-
imize deviations from the final goal.

This need for adaptability leads to the concept of resilience, defined as
the ability to maintain normal operations and desired performance. While
the supervision methodology laid the foundation for monitoring and reconfig-
uration, Chapter 5 expands on this by focusing on resilience strategies. Re-
searchers have explored performance-based resilience through methods aimed
at recovery after failures. In this context, key recovery strategies are intro-
duced, such as stand-in and stand-by redundancy mechanisms, with a focus on
prioritizing stand-in (functional) redundancy over backups, as adding extra
components increases operational costs. These strategies require flexibility

120 Chapter 6. Conclusion

and redundancy, which are inherently supported by the proposed MLSHG
model.

To assess the effectiveness of these resilience strategies, a resilience metric
was adapted by incorporating the redundancy factor alongside other factors
such as performance, absorption, recovery, and recovery time. This metric
evaluates the system’s ability to recover from multiple failures and facilitates
the comparison of resilience across different systems.

The practical application of these concepts is demonstrated in the case
study on mushroom harvesting. Recent mushroom farming activities have
highlighted the physically demanding and repetitive nature of harvesting
tasks, leading to staffing difficulties and reduced productivity due to worker
fatigue. By incorporating robots to assist human workers, the case study
shows how effectively managing both human and robotic resources can im-
prove productivity and meet yield goals, reinforcing the value of the proposed
approach.

To model the mushroom farming system as a large-scale SoS, the MLSHG
model is applied. The system consists of social components (human opera-
tors), biological components (mushrooms), and mechatronic systems (robots),
all working together to achieve the desired yield. The MLSHG model captures
the functions, performance, capabilities, and interactions of these components.
To further manage complexity and enhance resource allocation, additional
managerial components like mushroom beds and chambers were introduced
into the model. While the simulation closely mirrors real-world scenarios,
further calibration, particularly for mushroom growth modeling, is required.
Nevertheless, this approach provides valuable insights to farmers in the early
design stages, allowing them to evaluate and compare various resource alloca-
tion strategies and production outcomes, thereby supporting more informed
decision-making

When applying the supervision algorithm to this SoS, the desired yield
goals were achieved by detecting disturbances in human operators and adjust-
ing performance accordingly. The final deviation from the goal was reduced
using an adaptive threshold (from 9% to 7.6% in under-capacity scenarios
and from 6.9% to 1% in over-capacity scenarios). Moreover, the resilience
algorithm enabled us to explore various redundancy mechanisms, such as in-
troducing additional robots as backups or increasing the capacity of human
operators to support recovery. The system’s resilience was assessed using the
proposed metric, and the results showed that incorporating backups improved
the performance factor, although the recovery time factor increased. It can
be concluded that increasing redundancy improves the resilience of the mush-
room harvesting SoS. However, the cost implications of implementing these
redundancies remain an important consideration for future work.

6.2. Perspectives 121

6.2 Perspectives

6.2.1 Behavioral modeling

The proposed framework focuses primarily on the structural and organiza-
tional aspects of SoS, addressing many of the limitations identified in the
literature. However, the dynamic behavior of Physical Component Systems
(PCSs) is not explicitly modeled. This is a significant omission in the context
of SoS, as understanding the dynamics of PCSs is essential for identifying and
diagnosing the root causes of failures and performance degradation. In ad-
dition, the framework assumes that Managerial Component Systems (MCSs)
are always observable by PCSs and that the links between them remain intact,
which is not always the case in real-world scenarios.

By explicitly modeling the behavior of PCSs, it becomes possible to study
failures in the interactions and links between CSs and to develop solutions
for restoring functionality. For example, modeling the dynamics of PCSs
using state-space models can help simulate and analyze their performance
over time. Furthermore, by designing distributed observers, the observability
of MCSs can be maintained, even in cases where communication links between
CSs fail. This approach would allow the system to continue functioning under
degraded conditions by reallocating tasks or reconfiguring its structure based
on the observed state of the remaining components.

Incorporating behavioral modeling, such as state-space models, into the
framework would significantly enhance its robustness, providing a more com-
prehensive solution for managing failures and ensuring continued performance
within the SoS. It would also address critical issues, such as the failure of
communication links and degraded interactions between CSs, offering prac-
tical solutions for maintaining system resilience and operational efficiency in
complex environments. This is especially crucial when designing the SoS from
scratch. However, this also brings additional challenges, such as shifting the
modeling approach from a monolithic system to an SoS, while still ensuring
that the SoS respects the key properties proposed by [Maier 1998].

6.2.2 Supervision and resilience

The reconfiguration algorithms proposed for resilience and supervision are
heuristic-based, and while they provide good solutions in a short time, they
do not guarantee the best possible solution. In more complex scenarios, where
many functions must be considered within the SoS, these heuristic-based al-
gorithms may not be sufficient. To address this, optimization methods with
low computational complexity that can handle multi-objective optimization

122 Chapter 6. Conclusion

functions should be further investigated, especially those that can account for
stochastic failures. Methods such as Genetic Algorithms (GA), Markov De-
cision Processes (MDP) (reinforcement learning), and Particle Swarm Opti-
mization (PSO) are promising candidates for future exploration. These meth-
ods can efficiently explore large solution spaces while balancing computational
time and solution quality.

6.2.3 Mushroom harvesting simulation

The simulation of mushroom harvesting is based on certain assumptions, par-
ticularly when representing the growth of mushrooms. For a more accurate
simulation, it would be beneficial to precisely model the growth process. While
traditional methods rely on mathematical models, more recent approaches are
primarily data-driven. In the future, AI models could be proposed for mod-
eling mushroom growth. For instance, data in the form of images taken by
cameras placed throughout the farm could be collected over time. With the
application of appropriate AI models, this data could be analyzed to track
the growth of mushrooms, enabling the development of more accurate growth
functions.

Appendices

Appendix A

Flexsim simulation

The simulation in FlexSim consists of two branches: the 3D model and Pro-
cess Flow. The 3D model is used to visualize the various components of the
simulation, while the Process Flow defines the functionalities of each compo-
nent.

A.1 3D Model

Fig. A.1 shows the 3D model that visualizes the different components of the
mushroom harvesting SoS. The dimensions used in the simulation (specifically
for the mushroom beds, see Fig. A.2) are based on the dimensions from "Ferme
de la Gontière."

Figure A.1: 3D model.

126 Appendix A. Flexsim simulation

Figure A.2: Mushroom bed (Rack) dimension

A.1. 3D Model 127

Regarding the develloped attributes of the MLSHG model its implemented
using attributes assigned as labels for each component, for example Fig. A.3
show the properties of human operator 8 that include the labels associated.

Figure A.3: Properties of human operator

The human operators work in 8-hour shifts during the day, 5 days a week.
This schedule is implemented using the Time Table feature in FlexSim, as
shown in Fig. A.4.

128 Appendix A. Flexsim simulation

Figure A.4: Human operators scheduling

A.2. Process Flow 129

A.2 Process Flow

Using the process flow tool in FlexSim, we coded the functionalities of the
different stages of the simulation. The first stage involves the generation of
mushrooms, where mushrooms are considered as stochastic CSs and are gen-
erated using a binomial distribution. Fig. A.5 illustrates the process flow
for generating mushrooms in different mushroom beds (racks). In the cus-
tom code, we implemented sampling from the binomial distribution, and the
"create object" function is used to randomly generate mushrooms within the
racks.

Figure A.5: Mushroom generation.

The mushrooms generated over time are considered mature and ready for
harvesting. In real-life scenarios, these mushrooms are inspected before the
harvesting process begins. In our modeling and simulation, we assume that
robots are equipped with cameras to inspect the mushrooms. To represent
this functionality, we store the generated mushrooms in a list that is acces-
sible to different components. The Process Flow related to this inspection is
illustrated in Fig. A.6.

After storing the mushrooms in a list, the functions are decomposed within

130 Appendix A. Flexsim simulation

Figure A.6: Mushroom inspection.

the SoS, and human operators receive their assigned tasks and missions, pri-
marily focusing on harvesting specific mushroom beds. Each operator per-
forms their harvesting tasks based on their individual perspectives. To repre-
sent this, the heuristics of the human operators are coded using the process
flow tool, as shown in Fig. A.7, ensuring that each operator functions inde-
pendently, both operationally and managerially.

Similarly, robots have their own heuristics developed using the process flow
tool, as shown in Fig. A.8. These heuristics focus primarily on harvesting a
single level within the bed, slot by slot, starting either from left to right or
right to left, and then moving to the next level once all mature mushrooms in
the current level have been harvested.

Since human operators are considered stochastic CSs, their performance
may degrade, leading to potential failure and their elimination from the SoS.
This degradation is modeled using the process flow tool, with a binomial
distribution implemented in custom code, as shown in Fig. A.9.

For the supervision algorithm, Fig. A.10 illustrates the monitoring stage,
which is conducted bottom-up by measuring the performance of PCSs, prop-
agating the information to higher levels, and detecting disturbances. The
reconfiguration stage, conducted top-down, allows for function decomposition
and reallocation.

A.2. Process Flow 131

Figure A.7: Human operators heuristics

132 Appendix A. Flexsim simulation

Figure A.8: Robot heuristics.

Figure A.9: Stochastic failures.

A.2. Process Flow 133

Figure A.10: Supervision algorithm.

Acronyms

ABM Agent-Based Modeling. 15, 21, 23, 73, 75

ARRs Analytical Redundancy Relations. 33

BG Bond Graph. 20, 72, 75

CS Component System. 6, 7, 17, 19, 23, 24, 35, 41, 44–46, 50, 51, 55–57, 59,
63, 66, 67, 72, 79, 83, 85, 86, 101, 104–106

CSP Constraint Satisfaction Problem. 28, 35, 49, 92

CSs Component Systems. 1, 6–9, 12–14, 17, 18, 20, 22, 23, 27, 28, 30, 33,
35, 42–46, 51–57, 59, 60, 63, 65–67, 69, 70, 72, 73, 76, 77, 79, 81, 83–88,
92, 95, 99, 101, 104, 106, 114, 118, 119, 121

DCS Deterministic Component System. 46, 48–50, 62, 65

DCSs Deterministic Component Systems. 53, 72, 79, 83

FDI Fault Detection and Isolation. 28

GA Genetic Algorithms. 122

HDF Hauts-de-France. 4

HG Hypergraph. 6, 24, 27–30, 35, 50, 52, 60, 75, 87, 90, 114, 118

IoT Internet of Things. 16

IoV Internet of Vehicular Networks. 35

M&S Modeling and Simulation. 4, 5, 8, 9, 15, 17, 33

MAS Multi-agent Systems. 23

MCS Managerial Component System. 51, 65, 66, 84, 85, 88, 90, 95

MCSs Managerial Component Systems. ix, 45, 50, 62, 65, 67, 72, 79, 84, 87,
91–93, 95, 97, 99, 102, 111, 112, 114, 118, 121

MDP Markov Decision Processes. 122

Acronyms 135

MLSHG Multi-level Stochastic Hypergraph. viii–x, 2, 8, 9, 44, 46, 48, 52,
55, 56, 59, 60, 67, 72, 73, 75, 76, 86, 87, 91, 92, 99–105, 111, 115, 118,
120

PCS Physical Component System. 46, 51, 63, 65, 66, 83, 85, 88, 90, 105

PCSs Physical Component Systems. viii, 20, 45, 49, 50, 60, 62, 72, 83, 85,
87, 88, 91–93, 99, 102, 105, 106, 111, 114, 118, 121

PLM Product Lifecycle Management. 16

PMM performance measurement and management. 16

PSO Particle Swarm Optimization. 122

SAM-SoS Stochastic Software Architecture Model. 72

SCS Stochastic Component System. 46, 48–51, 53, 62, 63, 65

SCSs Stochastic Component Systems. 69, 72, 79, 81

SD System Dynamics. 20, 21

SE System Engineering. 4, 12, 13, 19

SoS System of Systems. viii, ix, 1–10, 12–24, 27, 28, 30, 33–37, 40, 42–47,
49, 53–57, 60, 63, 67, 69, 72, 73, 77, 79, 83–88, 91–93, 95, 98, 99, 101,
103–105, 108–116, 118–121

SoSE System of Systems Engineering. 4, 13, 15–17

SoSLM System of Systems Lifecycle Management. 16

SSoS Stochastic System of Systems. 2, 44–46, 57, 59, 72, 76, 77, 86, 99, 101,
103, 104, 115, 116

VCS Virtual Component System. 18, 57

Bibliography

[Ackoff 1971] Russell L Ackoff. Towards a system of systems concepts. Man-
agement science, vol. 17, no. 11, pages 661–671, 1971. (Cited on
page 13.)

[Antzoulatos 2015] Nikolas Antzoulatos, André Rocha, Elkin Castro, Lavin-
dra de Silva, Tiago Santos, Svetan Ratchev and José Barata. Towards
a capability-based framework for reconfiguring industrial production
systems. IFAC-PapersOnLine, vol. 48, no. 3, pages 2077–2082, 2015.
(Cited on page 35.)

[Antzoulatos 2017] Nikolas Antzoulatos, Elkin Castro, Lavindra de Silva, An-
dré Dionisio Rocha, Svetan Ratchev and José Barata. A multi-agent
framework for capability-based reconfiguration of industrial assembly
systems. International Journal of Production Research, vol. 55, no. 10,
pages 2950–2960, 2017. (Cited on page 35.)

[Ayadi 2022] Zouhayra Ayadi, Wadii Boulila, Imed Riadh Farah, Aurelie
Leborgne and Pierre Gancarski. Resolution methods for constraint
satisfaction problem in remote sensing field: A survey of static and
dynamic algorithms. Ecological Informatics, vol. 69, page 101607,
2022. (Cited on page 35.)

[Balchanos 2012a] Michael Balchanos, Yongchang Li and Dimitri Mavris.
Towards a method for assessing resilience of complex dynamical
systems. In 2012 5th International Symposium on Resilient Control
Systems, pages 155–160. IEEE, 2012. (Cited on page 38.)

[Balchanos 2012b] Michael Gregory Balchanos. A probabilistic technique for
the assessment of complex dynamic system resilience. 2012. (Cited on
page 38.)

[Balchanos 2014] Michael G Balchanos, Jean Charles Domerçant, Huy T
Tran and Dimitri N Mavris. Metrics-based analysis and evaluation
framework for engineering resilient systems. In 2014 7th International
Symposium on Resilient Control Systems (ISRCS), pages 1–7. IEEE,
2014. (Cited on pages viii, 38 and 40.)

[Banasik 2019] Aleksander Banasik, Argyris Kanellopoulos, Jacqueline M
Bloemhof-Ruwaard and GDH Claassen. Accounting for uncertainty
in eco-efficient agri-food supply chains: A case study for mushroom

Bibliography 137

production planning. Journal of cleaner production, vol. 216, pages
249–256, 2019. (Cited on page 58.)

[Bar-Yam 2004] Yaneer Bar-Yam. The Characteristics and Emerging
Behaviors of System of Systems, 2004. [Online; accessed 17-January-
2024]. (Cited on page 14.)

[Barbrook-Johnson 2022] Pete Barbrook-Johnson and Alexandra S. Penn.
System dynamics, pages 113–128. Springer International Publishing,
Cham, 2022. (Cited on page 20.)

[Bassoli 2021] R. Bassoli, F. Granelli, S. T. Arzo and M. Di Renzo. Toward
5G cloud radio access network: An energy and latency perspective.
Transactions on Emerging Telecommunications Technologies, vol. 32,
no. 1, page e3669, 2021. (Cited on page 30.)

[Boardman 2006] John Boardman and Brian Sauser. System of Systems-the
meaning of of. In 2006 IEEE/SMC international conference on system
of systems engineering, pages 6–pp. IEEE, 2006. (Cited on page 14.)

[Bondar 2017] Sergej Bondar, John C Hsu, Alain Pfouga and Josip
Stjepandić. Agile digital transformation of System-of-Systems
architecture models using Zachman framework. Journal of Industrial
Information Integration, vol. 7, pages 33–43, 2017. (Cited on page 16.)

[Boulding 1956] Kenneth E Boulding. General systems theory—the skeleton
of science. Management science, vol. 2, no. 3, pages 197–208, 1956.
(Cited on page 13.)

[Bourne 2018] Mike Bourne, Monica Franco-Santos, Pietro Micheli and An-
drey Pavlov. Performance measurement and management: a system
of systems perspective. International Journal of Production Research,
vol. 56, no. 8, pages 2788–2799, 2018. (Cited on page 16.)

[Carlock 2001] Paul G Carlock and Robert E Fenton. System of Systems (SoS)
enterprise systems engineering for information-intensive organizations.
Systems engineering, vol. 4, no. 4, pages 242–261, 2001. (Cited on
page 14.)

[Chanter 1978] DO Chanter and JHM Thornley. Mycelial growth and the
initiation and growth of sporophores in the mushroom crop: a
mathematical model. Microbiology, vol. 106, no. 1, pages 55–65, 1978.
(Cited on page 63.)

138 Bibliography

[Chatterjee 2022] Abheek Chatterjee, Richard Malak and Astrid Layton.
Ecology-inspired resilient and affordable system of systems using
degree of system order. Systems Engineering, vol. 25, no. 1, pages
3–18, 2022. (Cited on page 16.)

[Chatterjee 2023] Abheek Chatterjee, Cade Helbig, Richard Malak and Astrid
Layton. A comparison of graph-theoretic approaches for resilient
system of systems design. Journal of Computing and Information Sci-
ence in Engineering, vol. 23, no. 3, page 030906, 2023. (Cited on
page 37.)

[Chemero 2008] Anthony Chemero and Michael T Turvey. Autonomy and
hypersets. BioSystems, vol. 91, no. 2, pages 320–330, 2008. (Cited on
pages 27 and 46.)

[Chen 2023] Zhiwei Chen, Ziming Zhou, Luogeng Zhang, Chaowei Cui
and Jilong Zhong. Mission reliability modeling and evaluation for
reconfigurable unmanned weapon system-of-systems based on effective
operation loop. Journal of Systems Engineering and Electronics,
vol. 34, no. 3, pages 588–597, 2023. (Cited on page 34.)

[Chitra 2019] Uthsav Chitra and Benjamin Raphael. Random walks on
hypergraphs with edge-dependent vertex weights. In International con-
ference on machine learning, pages 1172–1181. PMLR, 2019. (Cited
on page 44.)

[Chodrow 2023] Philip Chodrow, Nicole Eikmeier and Jamie Haddock.
Nonbacktracking spectral clustering of nonuniform hypergraphs. SIAM
Journal on Mathematics of Data Science, vol. 5, no. 2, pages 251–279,
2023. (Cited on page 29.)

[Chreim 2023] Abbass Chreim, Abdelkader Belarouci and Rochdi Merzouki.
AI-agent-based modeling for Supervision a System of Systems for
Mushroom Harvesting. In 2023 18th Annual System of Systems Engi-
neering Conference (SoSe), pages 1–6. IEEE, 2023. (Cited on page 8.)

[Chreim 2024a] Abbass Chreim, Yiwen Chen and Rochdi Merzouki.
Stochastic hypergraph model for resilient system of systems: A case
study on mushroom harvesting system. In 2024 19th Annual System of
Systems Engineering Conference (SoSE), pages 294–299. IEEE, 2024.
(Cited on page 8.)

[Chreim 2024b] Abbass Chreim, CHEN Yiwen, Abdeslem Smahi, Jun Jiang
and Rochdi Merzouki. Towards Supervision of Stochastic System of

Bibliography 139

Systems Engineering: A Multi-Level Hypergraph Approach. IEEE
Access, 2024. (Cited on page 8.)

[Christensen 2007] Claire Christensen and Reka Albert. Using graph concepts
to understand the organization of complex systems. International Jour-
nal of Bifurcation and Chaos, vol. 17, no. 07, pages 2201–2214, 2007.
(Cited on page 24.)

[Cooksey 2011] K Daniel Cooksey and Dimitri Mavris. Game theory as a
means of modeling system of systems viability and feasibility. In 2011
Aerospace Conference, pages 1–11. IEEE, 2011. (Cited on page 15.)

[Darabi 2013] Hamid R Darabi and Mo Mansouri. The role of competition
and collaboration in influencing the level of autonomy and belonging in
system of systems. IEEE Systems Journal, vol. 7, no. 4, pages 520–527,
2013. (Cited on page 15.)

[Darnhofer 2010] Ika Darnhofer, Stéphane Bellon, Benoît Dedieu and Re-
becka Milestad. Adaptiveness to enhance the sustainability of farming
systems. A review. Agronomy for sustainable development, vol. 30,
pages 545–555, 2010. (Cited on page 112.)

[Dauby 2011] Jason P Dauby and Steven Upholzer. Exploring behavioral
dynamics in systems of systems. Procedia Computer Science, vol. 6,
pages 34–39, 2011. (Cited on page 15.)

[Davendralingam 2013] Navindran Davendralingam and Daniel DeLaurentis.
A robust optimization framework to architecting system of systems.
Procedia Computer Science, vol. 16, pages 255–264, 2013. (Cited on
page 103.)

[de Amorim Silva 2020] Rafael de Amorim Silva and Rosana T Vaccare
Braga. Simulating systems-of-systems with agent-based modeling: a
systematic literature review. IEEE Systems Journal, vol. 14, no. 3,
pages 3609–3617, 2020. (Cited on page 23.)

[De La Croix 2022] Ntivuguruzwa Jean De La Croix, Mukanyiligira Didaci-
enne and Sibomana Louis. Fuzzy logic-based shiitake mushroom farm
control for harvest enhancement. In 2022 10th International Sym-
posium on Digital Forensics and Security (ISDFS), pages 1–6. IEEE,
2022. (Cited on page 63.)

[DeLaurentis 2005a] Daniel DeLaurentis. Understanding transportation as a
system-of-systems design problem. In 43rd AIAA aerospace sciences
meeting and exhibit, page 123, 2005. (Cited on pages 19 and 21.)

140 Bibliography

[DeLaurentis 2005b] Daniel DeLaurentis. Understanding Transportation as
System-of-Systems Design Problem. 01 2005. (Cited on pages 14
and 19.)

[DeLaurentis 2008] Daniel A DeLaurentis. Appropriate modeling and analysis
for systems of systems: Case study synopses using a taxonomy. In
2008 IEEE International Conference on System of Systems Engineer-
ing, pages 1–6. IEEE, 2008. (Cited on page 14.)

[Delsing 2022] Jerker Delsing, Géza Kulcsár and Øystein Haugen. SysML
modeling of service-oriented system-of-systems. Innovations in Systems
and Software Engineering, pages 1–17, 2022. (Cited on pages 72, 73
and 75.)

[Dhulipala 2021] Somayajulu LN Dhulipala, Henry V Burton and Hiba
Baroud. A Markov framework for generalized post-event systems
recovery modeling: From single to multihazards. Structural Safety,
vol. 91, page 102091, 2021. (Cited on page 44.)

[DiMario 2009] Michael J DiMario, John T Boardman and Brian J Sauser.
System of systems collaborative formation. IEEE Systems Journal,
vol. 3, no. 3, pages 360–368, 2009. (Cited on page 15.)

[Do 2016] Khac Duc Do. Global robust adaptive path-tracking control of
underactuated ships under stochastic disturbances. Ocean Engineer-
ing, vol. 111, pages 267–278, 2016. (Cited on page 33.)

[Doulgeris 2012] G Doulgeris, T Korakianitis, P Pilidis and E Tsoudis.
Techno-economic and environmental risk analysis for advanced marine
propulsion systems. Applied energy, vol. 99, pages 1–12, 2012. (Cited
on page 44.)

[Dridi 2020] Charaf Eddine Dridi, Zakaria Benzadri and Faiza Belala. System
of systems engineering: Meta-modelling perspective. In 2020 IEEE
15th International Conference of System of Systems Engineering
(SoSE), pages 000135–000144. IEEE, 2020. (Cited on pages 72, 73
and 75.)

[Dui 2023] Hongyan Dui, Meng Liu, Jiaying Song and Shaomin Wu.
Importance measure-based resilience management: Review,
methodology and perspectives on maintenance. Reliability Engi-
neering & System Safety, vol. 237, page 109383, 2023. (Cited on
page 36.)

Bibliography 141

[Eisner 1991] Howard Eisner, John Marciniak and Ray McMillan.
Computer-aided system of systems (S2) engineering. In Confer-
ence Proceedings 1991 IEEE International Conference on Systems,
Man, and Cybernetics, pages 531–537. IEEE, 1991. (Cited on
page 13.)

[El-Awady 2023] Ahmed El-Awady and Kumaraswamy Ponnambalam.
Bayesian networks for failure analysis of complex systems using
different data sources. In Engineering Reliability and Risk Assessment,
pages 1–17. Elsevier, 2023. (Cited on page 30.)

[Ender 2010] Tommer Ender, Ryan F Leurck, Brian Weaver, Paul
Miceli, William Dale Blair, Philip West and Dimitri Mavris.
Systems-of-systems analysis of ballistic missile defense architecture
effectiveness through surrogate modeling and simulation. IEEE Sys-
tems Journal, vol. 4, no. 2, pages 156–166, 2010. (Cited on page 15.)

[Fan 2018] Mengfei Fan, Zhiguo Zeng, Enrico Zio, Rui Kang and Ying
Chen. A stochastic hybrid systems model of common-cause failures
of degrading components. Reliability Engineering & System Safety,
vol. 172, pages 159–170, 2018. (Cited on page 34.)

[Feng 2023] Yimin Feng, Chenchu Zhou, Qiang Zou, Yusheng Liu, Jiyuan Lyu
and Xinfeng Wu. A goal-based approach for modeling and simulation
of different types of system-of-systems. Journal of Systems Engineering
and Electronics, vol. 34, no. 3, pages 627–640, 2023. (Cited on page 23.)

[Fortino 2020] Giancarlo Fortino, Claudio Savaglio, Giandomenico Spezzano
and MengChu Zhou. Internet of things as system of systems: A review
of methodologies, frameworks, platforms, and tools. IEEE Transac-
tions on Systems, Man, and Cybernetics: Systems, vol. 51, no. 1,
pages 223–236, 2020. (Cited on page 16.)

[Gaiardelli 2024] Sebastiano Gaiardelli, Michele Lora, Stefano Spellini and
Franco Fummi. RRPDG: A Graph Model to Enable AI-Based
Production Reconfiguration and Optimization. IEEE Transactions on
Industrial Informatics, 2024. (Cited on page 35.)

[Galuppi 2023] Francesco Galuppi, Raffaella Mulas and Lorenzo Venturello.
Spectral theory of weighted hypergraphs via tensors. Linear and Multi-
linear Algebra, vol. 71, no. 3, pages 317–347, 2023. (Cited on page 29.)

142 Bibliography

[Gao 2023] Yuan Gao, Jieyuan Cheng, Yongliang Tian and Hu Liu. Machine
Learning-Based Evaluation of the Contribution Effectiveness in SoS
Missions. IEEE Systems Journal, 2023. (Cited on page 35.)

[Gleirscher 2023] Mario Gleirscher. Supervision of Intelligent Systems: An
Overview. Applicable Formal Methods for Safe Industrial Products:
Essays Dedicated to Jan Peleska on the Occasion of His 65th Birthday,
pages 202–221, 2023. (Cited on page 31.)

[Goldbeck 2019] Nils Goldbeck, Panagiotis Angeloudis and Washington Y
Ochieng. Resilience assessment for interdependent urban infrastructure
systems using dynamic network flow models. Reliability Engineering
& System Safety, vol. 188, pages 62–79, 2019. (Cited on page 34.)

[Gorod 2008] Alex Gorod, Brian Sauser and John Boardman.
System-of-systems engineering management: A review of modern
history and a path forward. IEEE Systems Journal, vol. 2, no. 4,
pages 484–499, 2008. (Cited on page 14.)

[Guo 2014] Jin-Li Guo and Xin-Yun Zhu. Weighted Hypernetworks. arXiv
preprint arXiv:1408.4355, 2014. (Cited on page 30.)

[Haimes 2009] Yacov Y Haimes. On the definition of resilience in systems.
Risk Analysis: An International Journal, vol. 29, no. 4, 2009. (Cited
on page 36.)

[Hämberg 2013] Eva Hämberg. Supervision as control system: the design of
supervision as a regulatory instrument in the social services sector in
Sweden. Scandinavian Journal of Public Administration, vol. 17, no. 3,
pages 45–64, 2013. (Cited on page 31.)

[Han 2013] Seung Yeob Han and Daniel DeLaurentis. Development
interdependency modeling for system-of-systems (SoS) using Bayesian
networks: SoS management strategy planning. Procedia Computer
Science, vol. 16, pages 698–707, 2013. (Cited on page 30.)

[Harrison 2016] Willie K Harrison. The role of graph theory in system of
systems engineering. IEEE Access, vol. 4, pages 1716–1742, 2016.
(Cited on page 24.)

[Hu 2019] Xiaomei Hu, Zhaoren Pan and Shunke Lv. Picking path
optimization of agaricus bisporus picking robot. Mathematical Prob-
lems in Engineering, vol. 2019, pages 1–16, 2019. (Cited on page 58.)

Bibliography 143

[Huang 2021] Mingsen Huang, Long He, Daeun Choi, John Pecchia and
Yaoming Li. Picking dynamic analysis for robotic harvesting of
Agaricus bisporus mushrooms. Computers and Electronics in Agri-
culture, vol. 185, page 106145, 2021. (Cited on page 59.)

[Huang 2023] Yang Huang, Aimin Luo, Tao Chen, Mengmeng Zhang, Bang-
bang Ren and Yanjie Song. When architecture meets RL+ EA:
A hybrid intelligent optimization approach for selecting combat
system-of-systems architecture. Advanced Engineering Informatics,
vol. 58, page 102209, 2023. (Cited on page 16.)

[Hyun 2023] Sangwon Hyun, Jiyoung Song, Eunkyoung Jee and Doo-Hwan
Bae. Timed pattern-based analysis of collaboration failures in
system-of-systems. Journal of Systems and Software, vol. 198, page
111613, 2023. (Cited on page 33.)

[Ibne Hossain 2020] Niamat Ullah Ibne Hossain, Morteza Nagahi, Raed
Jaradat, Chiranjibi Shah, Randy Buchanan and Michael Hamilton.
Modeling and assessing cyber resilience of smart grid using Bayesian
network-based approach: a system of systems problem. Journal of
Computational Design and Engineering, vol. 7, no. 3, pages 352–366,
2020. (Cited on page 19.)

[Ibrar 2020] Muhammad Ibrar, Aamir Akbar, Syed Rooh Ullah Jan, Mian Ah-
mad Jan, Lei Wang, Houbing Song and Nadir Shah. Artnet: Ai-based
resource allocation and task offloading in a reconfigurable internet of
vehicular networks. IEEE Transactions on Network Science and Engi-
neering, vol. 9, no. 1, pages 67–77, 2020. (Cited on page 35.)

[Iwanaga 2021] Takuya Iwanaga, Hsiao-Hsuan Wang, Serena H Hamilton,
Volker Grimm, Tomasz E Koralewski, Alejandro Salado, Sondoss El-
sawah, Saman Razavi, Jing Yang, Pierre Glynnet al. Socio-technical
scales in socio-environmental modeling: Managing a system-of-systems
modeling approach. Environmental Modelling & Software, vol. 135,
page 104885, 2021. (Cited on page 16.)

[Jackson 1984] Michael C Jackson and Paul Keys. Towards a system of
systems methodologies. Journal of the operational research society,
vol. 35, pages 473–486, 1984. (Cited on page 13.)

[Jackson 2013] Scott Jackson and Timothy LJ Ferris. Resilience principles
for engineered systems. Systems Engineering, vol. 16, no. 2, pages
152–164, 2013. (Cited on page 37.)

144 Bibliography

[Jalving 2019] Jordan Jalving, Yankai Cao and Victor M Zavala. Graph-based
modeling and simulation of complex systems. Computers & Chemical
Engineering, vol. 125, pages 134–154, 2019. (Cited on page 25.)

[Jamshidi 2008a] Mohammad Jamshidi. System of systems engineering: in-
novations for the 21st century. Deakin University, 2008. (Cited on
page 14.)

[Jamshidi 2008b] Mohammad Jamshidi. Systems of Systems Engineering:
Principles and Applications. 2008. (Cited on page 14.)

[Joyce 1987] Jeffrey Joyce, Greg Lomow, Konrad Slind and Brian Unger.
Monitoring distributed systems. ACM Transactions on Computer Sys-
tems (TOCS), vol. 5, no. 2, pages 121–150, 1987. (Cited on page 34.)

[Karan 2021] Ebrahim Karan and Sadegh Asgari. Resilience of food, energy,
and water systems to a sudden labor shortage. Environment Systems
and Decisions, vol. 41, no. 1, pages 63–81, 2021. (Cited on page 111.)

[Keating 2003] Charles Keating, Ralph Rogers, Resit Unal, David Dryer,
Andres Sousa-Poza, Robert Safford, William Peterson and Ghaith
Rabadi. System of systems engineering. Engineering Management
Journal, vol. 15, no. 3, pages 36–45, 2003. (Cited on page 14.)

[Kerr 2020] Chad Kerr, Raed Jaradat and Niamat Ullah Ibne Hossain.
Battlefield mapping by an unmanned aerial vehicle swarm: Applied
systems engineering processes and architectural considerations from
system of systems. IEEE Access, vol. 8, pages 20892–20903, 2020.
(Cited on page 19.)

[Khabarov 2008] Nikolay Khabarov, Elena Moltchanova and Michael Ober-
steiner. Valuing weather observation systems for forest fire
management. IEEE Systems Journal, vol. 2, no. 3, pages 349–357,
2008. (Cited on page 44.)

[Khalil 2012] Wissam Khalil, Rochdi Merzouki, Belkacem Ould-Bouamama
and Hafid Haffaf. Hypergraph models for system of systems supervision
design. IEEE Transactions on Systems, Man, and Cybernetics-Part A:
Systems and Humans, vol. 42, no. 4, pages 1005–1012, 2012. (Cited
on pages viii, ix, 2, 6, 15, 27, 28, 29, 33, 34, 35, 45, 46, 49, 72, 73, 75,
77, 92, 95, 99, 100 and 102.)

Bibliography 145

[Klein 2013] John Klein and Hans van Vliet. A systematic review of
system-of-systems architecture research. In Proceedings of the 9th In-
ternational ACM Sigsoft Conference on Quality of Software Architec-
tures, QoSA ’13, page 13–22, New York, NY, USA, 2013. Association
for Computing Machinery. (Cited on page 15.)

[Ko 2022] Jisung Ko, Yeonwoo Kook and Kyomin Jung. Growth patterns
and models of real-world hypergraphs. Knowledge and Information
Systems, 2022. (Cited on page 30.)

[Kotov 1997] Vadim Kotov. Systems of systems as communicating structures,
volume 119. Hewlett Packard Laboratories, 1997. (Cited on page 13.)

[Kozma 2021] Dániel Kozma, Pál Varga and Felix Larrinaga. System
of systems lifecycle management—a new concept based on process
engineering methodologies. Applied Sciences, vol. 11, no. 8, page 3386,
2021. (Cited on page 16.)

[Krygiel 1999] Annette J Krygiel. Behind the wizard’s curtain: An integration
environment for a system of systems. National Defense University,
1999. (Cited on page 14.)

[Kumar 2014] Pushpendra Kumar, Rochdi Merzouki, Blaise Conrard, Vin-
cent Coelen and Belkacem Ould Bouamama. Multilevel modeling of
the traffic dynamic. IEEE Transactions on Intelligent Transportation
Systems, vol. 15, no. 3, pages 1066–1082, 2014. (Cited on pages 72
and 75.)

[Kumar 2017] Pushpendra Kumar, Rochdi Merzouki and Belkacem Ould
Bouamama. Multilevel modeling of system of systems. IEEE transac-
tions on systems, man, and cybernetics: systems, vol. 48, no. 8, pages
1309–1320, 2017. (Cited on pages viii, 2, 20, 21, 45, 72, 73 and 75.)

[Li 2018] Jichao Li, Jiang Jiang, Kewei Yang and Yingwu Chen. Research
on functional robustness of heterogeneous combat networks. IEEE
Systems Journal, vol. 13, no. 2, pages 1487–1495, 2018. (Cited on
page 33.)

[Li 2022] Hongbo Li, Yaling Wu, Minghao Yin and Zhanshan Li. A
portfolio-based approach to select efficient variable ordering heuristics
for constraint satisfaction problems. In 28th International Conference
on Principles and Practice of Constraint Programming (CP 2022).
Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2022. (Cited on
page 35.)

146 Bibliography

[Lightsey 2001] Bob Lightsey. Systems engineering fundamentals. Defense
acquisition univ ft belvoir va, 2001. (Cited on page 12.)

[Lin 2023] Menglong Lin, Tao Chen, Honghui Chen, Bangbang Ren and
Mengmeng Zhang. When architecture meets AI: A deep reinforcement
learning approach for system of systems design. Advanced Engineering
Informatics, vol. 56, page 101965, 2023. (Cited on page 22.)

[Lubas 2017] Debra Greenhalgh Lubas. Department of defense system of
systems reliability challenges. In 2017 Annual Reliability and Main-
tainability Symposium (RAMS), pages 1–6. IEEE, 2017. (Cited on
page 19.)

[Madni 2009] Azad M Madni and Scott Jackson. Towards a conceptual
framework for resilience engineering. IEEE Systems Journal, vol. 3,
no. 2, pages 181–191, 2009. (Cited on pages 36 and 103.)

[Mahulkar 2009] Vishal Mahulkar, Shawn McKay, Douglas E. Adams and
Alok R. Chaturvedi. System-of-Systems Modeling and Simulation
of a Ship Environment With Wireless and Intelligent Maintenance
Technologies. IEEE Transactions on Systems, Man, and Cybernet-
ics - Part A: Systems and Humans, vol. 39, no. 6, pages 1255–1270,
2009. (Cited on page 19.)

[Maier 1998] Mark W Maier. Architecting principles for systems-of-systems.
Systems Engineering: The Journal of the International Council on
Systems Engineering, vol. 1, no. 4, pages 267–284, 1998. (Cited on
pages 1, 7, 13, 17, 43, 104, 119 and 121.)

[Maksuti 2021] Silia Maksuti, Ani Bicaku, Mario Zsilak, Igor Ivkic, Bálint
Péceli, Gábor Singler, Kristóf Kovács, Markus Tauber and Jerker Dels-
ing. Automated and secure onboarding for system of systems. IEEE
Access, vol. 9, pages 111095–111113, 2021. (Cited on page 79.)

[Manevska-Tasevska 2021] Gordana Manevska-Tasevska, Andrea Petitt, Sara
Larsson, Ivan Bimbilovski, Miranda PM Meuwissen, Peter H Feindt
and Julie Urquhart. Adaptive governance and resilience capacity of
farms: The fit between farmers’ decisions and agricultural policies.
Frontiers in Environmental Science, vol. 9, page 668836, 2021. (Cited
on page 112.)

[Mansouri 2009] Mo Mansouri, Alex Gorod, Thomas H Wakeman and Brian
Sauser. Maritime transportation system of systems management
framework: A system of systems engineering approach. International

Bibliography 147

Journal of Ocean Systems Management, vol. 1, no. 2, pages 200–226,
2009. (Cited on page 19.)

[Mechqrane 2020] Younes Mechqrane, Mohamed Wahbi, Christian Bessiere
and Kenneth N Brown. Reordering all agents in asynchronous
backtracking for distributed constraint satisfaction problems. Artificial
Intelligence, vol. 278, page 103169, 2020. (Cited on page 35.)

[Meuwissen 2019] Miranda PM Meuwissen, Peter H Feindt, Alisa Spiegel,
Catrien JAM Termeer, Erik Mathijs, Yann De Mey, Robert Finger,
Alfons Balmann, Erwin Wauters, Julie Urquhartet al. A framework to
assess the resilience of farming systems. Agricultural Systems, vol. 176,
page 102656, 2019. (Cited on page 111.)

[Meuwissen 2020] Miranda PM Meuwissen, Peter H Feindt, Peter Midmore,
Erwin Wauters, Robert Finger, Franziska Appel, Alisa Spiegel, Erik
Mathijs, Katrien JAM Termeer, Alfons Balmannet al. The struggle of
farming systems in Europe: looking for explanations through the lens
of resilience, 2020. (Cited on page 111.)

[Mittal 2015] Saurabh Mittal, Mark Ruth, Annabelle Pratt, Monte Lu-
nacek, Dheepak Krishnamurthy and Wesley Jones. System-of-systems
approach for integrated energy systems modeling and simulation. Tech-
nical report, National Renewable Energy Lab.(NREL), Golden, CO
(United States), 2015. (Cited on page 33.)

[Mo 2016] Hua-Dong Mo, Yan-Fu Li and Enrico Zio. A system-of-systems
framework for the reliability analysis of distributed generation systems
accounting for the impact of degraded communication networks. Ap-
plied Energy, vol. 183, pages 805–822, 2016. (Cited on page 44.)

[Modaber 2024] Mahtab Modaber, Martijn Hendriks, Marc Geilen, Twan
Basten and Jeroen Voeten. A Method for Building Trustworthy Hybrid
Performance Models for Cyber-Physical Systems of Systems. IEEE Ac-
cess, 2024. (Cited on page 33.)

[Mohsin 2019] Ahmad Mohsin, Naeem Khalid Janjua, Syed MS Islam
and Valdemar Vicente Graciano Neto. Modeling approaches for
system-of-systems dynamic architecture: Overview, taxonomy and
future prospects. In 2019 14th Annual Conference System of Systems
Engineering (SoSE), pages 49–56. IEEE, 2019. (Cited on page 30.)

[Mohsin 2020] Ahmad Mohsin, Naeem Khalid Janjua, Syed MS Islam and
Muhammad Ali Babar. SAM-SoS: A stochastic software architecture

148 Bibliography

modeling and verification approach for complex system-of-systems.
IEEE Access, vol. 8, pages 177580–177603, 2020. (Cited on pages 72
and 73.)

[Moradi 2018] A Behrang Moradi, B Nicolas Daclin and C Vincent Chapurlat.
Analysing eco-system of ‘Ilities’ for resilience evaluation in systems of
systems. In Proc. Int. Conf. Model., Optim. Simul., pages 1–7, 2018.
(Cited on page 103.)

[Mordecai 2016] Yaniv Mordecai, Ori Orhof and Dov Dori. Model-based
interoperability engineering in systems-of-systems and civil aviation.
IEEE Transactions on Systems, Man, and Cybernetics: Systems,
vol. 48, no. 4, pages 637–648, 2016. (Cited on page 19.)

[Mostafavi 2011] Ali Mostafavi, Dulcy M Abraham, Daniel DeLaurentis and
Joseph Sinfield. Exploring the dimensions of systems of innovation
analysis: A system of systems framework. IEEE Systems Journal,
vol. 5, no. 2, pages 256–265, 2011. (Cited on pages 12 and 45.)

[Muller 2000] Pierre-Alain Muller and Nathalie Gaertner. Modélisation objet
avec uml, volume 514. Eyrolles Paris, 2000. (Cited on page 11.)

[Myhan 2023] Ryszard Myhan, Ewelina Jachimczyk and Marek Markowski.
The Use of Graph Theory for Modeling and Analyzing the Structure
of a Complex System, with the Example of an Industrial Grain Drying
Line. Processes, vol. 11, no. 10, page 2812, 2023. (Cited on page 25.)

[Natarajan 2012] Sathish Natarajan, Kaushik Ghosh and Rajagopalan Srini-
vasan. An ontology for distributed process supervision of large-scale
chemical plants. Computers & Chemical Engineering, vol. 46, pages
124–140, 2012. (Cited on page 33.)

[Neches 2013] Robert Neches and Azad M Madni. Towards affordably
adaptable and effective systems. Systems Engineering, vol. 16, no. 2,
pages 224–234, 2013. (Cited on page 36.)

[Nelson 2019] Travis Nelson, John M Borky and Ronald M Sega.
System-of-systems quality attribute-based architectural alternatives.
IEEE Systems Journal, vol. 14, no. 3, pages 3844–3854, 2019. (Cited
on page 35.)

[Nicholls 2004] Andrew Nicholls, Leon Bren and Neil Humphreys. Harvester
productivity and operator fatigue: working extended hours. Interna-
tional journal of forest engineering, vol. 15, no. 2, pages 57–65, 2004.
(Cited on page 86.)

Bibliography 149

[Nilsson 2024] Jacob Nilsson, Saleha Javed, Kim Albertsson, Jerker Delsing,
Marcus Liwicki and Fredrik Sandin. Ai concepts for system of systems
dynamic interoperability. Sensors, vol. 24, no. 9, page 2921, 2024.
(Cited on page 22.)

[Owens 1996] William A Owens. The emerging us system-of-systems. Num-
ber 63. National Defense University, Institute for National Strategic
Studies, 1996. (Cited on pages 18 and 19.)

[Oyewole 2020] Peju Adesina Oyewole and Dilan Jayaweera. Power system
security with cyber-physical power system operation. IEEE Access,
vol. 8, pages 179970–179982, 2020. (Cited on page 34.)

[Panayi 2017] Efstathios Panayi, Gareth W Peters and George Kyriakides.
Statistical modelling for precision agriculture: A case study in optimal
environmental schedules for Agaricus Bisporus production via variable
domain functional regression. PLoS One, vol. 12, no. 9, page e0181921,
2017. (Cited on page 58.)

[Panayi 2023] Efstathios Panayi, Gareth W Peters and George Kyriakides.
Correction: Statistical modelling for precision agriculture: A case
study in optimal environmental schedules for Agaricus Bisporus
production via variable domain functional regression. Plos one, vol. 18,
no. 1, page e0280374, 2023. (Cited on page 63.)

[Panteli 2015] Mathaios Panteli and Pierluigi Mancarella. Modeling and
evaluating the resilience of critical electrical power infrastructure to
extreme weather events. IEEE Systems Journal, vol. 11, no. 3, pages
1733–1742, 2015. (Cited on page 44.)

[Paut 2021] Raphaël Paut, Rodolphe Sabatier, Arnaud Dufils and Marc
Tchamitchian. How to reconcile short-term and long-term objectives
in mixed farms? A dynamic model application to mixed fruit
tree-vegetable systems. Agricultural Systems, vol. 187, page 103011,
2021. (Cited on page 79.)

[Perron 2023] Laurent Perron, Frédéric Didier and Steven Gay. The
CP-SAT-LP Solver (Invited Talk). In 29th International Conference
on Principles and Practice of Constraint Programming (CP 2023).
Schloss-Dagstuhl-Leibniz Zentrum für Informatik, 2023. (Cited on
page 92.)

[Price 2022] Alex Price, Nels Knutson and Cihan Dagli. Using
System-of-Systems Optimization for Healthcare: A Use Case in

150 Bibliography

Radiation Oncology. In 2022 IEEE International Systems Conference
(SysCon), pages 1–5. IEEE, 2022. (Cited on page 19.)

[Purfürst 2011] F Thomas Purfürst and Jörn Erler. The human influence on
productivity in harvester operations. International Journal of Forest
Engineering, vol. 22, no. 2, pages 15–22, 2011. (Cited on page 87.)

[Raman 2023] Ramakrishnan Raman, Nikhil Gupta and Yogananda Jeppu.
Framework for Formal Verification of Machine Learning Based
Complex System-of-Systems. Insight, vol. 26, no. 1, pages 91–102,
2023. (Cited on page 16.)

[Ran 2020] M. Ran and X. Bai. Vehicle cooperative network model based on
hypergraph in vehicular fog computing. Sensors (Basel, Switzerland),
vol. 20, no. 8, page 2269, 2020. (Cited on page 30.)

[Reed 2001] JN Reed, SJ Miles, J Butler, M Baldwin and R Noble.
AE—Automation and emerging technologies: Automatic mushroom
harvester development. Journal of Agricultural Engineering Research,
vol. 78, no. 1, pages 15–23, 2001. (Cited on page 58.)

[Rezvanian 2016] Alireza Rezvanian and Mohammad Reza Meybodi.
Stochastic graph as a model for social networks. Computers in Hu-
man Behavior, vol. 64, pages 621–640, 2016. (Cited on page 25.)

[Sage 2001] Andrew P Sage and Christopher D Cuppan. On the systems
engineering and management of systems of systems and federations of
systems. Information knowledge systems management, vol. 2, no. 4,
pages 325–345, 2001. (Cited on pages 14 and 55.)

[Sauser 2010a] Brian Sauser, John Boardman and Dinesh Verma. Systomics:
Toward a biology of system of systems. IEEE Transactions on Systems,
Man, and Cybernetics-Part A: Systems and Humans, vol. 40, no. 4,
pages 803–814, 2010. (Cited on page 15.)

[Sauser 2010b] Brian Sauser, John Boardman and Dinesh Verma. Systomics:
Toward a Biology of System of Systems. IEEE Transactions on Sys-
tems, Man, and Cybernetics - Part A: Systems and Humans, vol. 40,
no. 4, pages 803–814, 2010. (Cited on page 19.)

[Scrimieri 2023] Daniele Scrimieri, Omar Adalat, Shukri Afazov and Svetan
Ratchev. An integrated data-and capability-driven approach to the
reconfiguration of agent-based production systems. The International
Journal of Advanced Manufacturing Technology, vol. 124, no. 3, pages
1155–1168, 2023. (Cited on page 35.)

Bibliography 151

[Silva 2015] Eduardo Silva, Thais Batista and Flavio Oquendo. A
mission-oriented approach for designing system-of-systems. In 2015
10th System of Systems Engineering Conference (SoSE), pages 346–
351, 2015. (Cited on page 15.)

[Simpson 2008] Joseph J Simpson and Cihan H Dagli. System of systems:
Power and paradox. In 2008 IEEE International Conference on System
of Systems Engineering, pages 1–5. Ieee, 2008. (Cited on page 14.)

[Sloane 2007] Elliot Sloane, Thomas Way, Vijay Gehlot, Robert Beck, James
Solderitch and Elzbieta Dziembowski. A hybrid approach to modeling
SOA Systems of Systems using CPN and MESA/Extend. In 2007 1st
Annual IEEE Systems Conference, pages 1–7. IEEE, 2007. (Cited on
page 14.)

[Sloane 2008] Elliot Sloane. Systems of systems (sose) engineering for the 21
st century healthcare enterprise. In 2008 2nd Annual IEEE Systems
Conference, pages 1–4. IEEE, 2008. (Cited on page 19.)

[Sohn 1985] Tae-Won Sohn and Julius Surkis. System dynamics: A
methodology for testing dynamic behavioral hypotheses. IEEE trans-
actions on systems, man, and cybernetics, no. 3, pages 399–408, 1985.
(Cited on page 20.)

[Soyez 2015] Jean-Baptiste Soyez, Gildas Morvan, Rochdi Merzouki and
Daniel Dupont. Multilevel agent-based modeling of system of systems.
IEEE Systems Journal, vol. 11, no. 4, pages 2084–2095, 2015. (Cited
on pages viii, 2, 18, 23, 24, 44, 45, 57, 72, 73 and 75.)

[Staroswiecki 2001] Marcel Staroswiecki and G Comtet-Varga. Analytical
redundancy relations for fault detection and isolation in algebraic
dynamic systems. Automatica, vol. 37, no. 5, pages 687–699, 2001.
(Cited on page 33.)

[Stephan 2022] Lucas Stephan and Yuanzhi Zhu. Sparse random hypergraphs:
Non-backtracking spectra and community detection. In 2022 IEEE
63rd Annual Symposium on Foundations of Computer Science (FOCS).
IEEE, 2022. (Cited on page 29.)

[Sun 2024] Qin Sun, Hongxu Li, Yuanfu Zhong, Kezhou Ren and Yingchao
Zhang. Deep reinforcement learning-based resilience enhancement
strategy of unmanned weapon system-of-systems under inevitable
interferences. Reliability Engineering & System Safety, vol. 242, page
109749, 2024. (Cited on page 37.)

152 Bibliography

[Tran 2015] Huy T Tran. A complex networks approach to designing resilient
system-of-systems. 2015. (Cited on pages 35, 36 and 110.)

[Tran 2016] Huy T Tran, Jean Charles Domerçant and Dimitri N
Mavris. A network-based cost comparison of resilient and robust
system-of-systems. Procedia Computer Science, vol. 95, pages 126–
133, 2016. (Cited on pages viii, 18, 19, 40, 42, 109 and 110.)

[Tsouros 2024] Dimosthenis Tsouros, Senne Berden and Tias Guns. Learning
to learn in interactive constraint acquisition. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 38, pages 8154–
8162, 2024. (Cited on page 92.)

[Turnquist 2013] Mark Turnquist and Eric Vugrin. Design for resilience in
infrastructure distribution networks. Environment Systems & Deci-
sions, vol. 33, pages 104–120, 2013. (Cited on page 37.)

[Uday 2014] Payuna Uday and Karen B Marais. Resilience-based system
importance measures for system-of-systems. Procedia Computer Sci-
ence, vol. 28, pages 257–264, 2014. (Cited on page 104.)

[Uday 2015] Payuna Uday and Karen Marais. Designing resilient
systems-of-systems: A survey of metrics, methods, and challenges.
Systems Engineering, vol. 18, no. 5, pages 491–510, 2015. (Cited on
page 37.)

[Uslar 2019] Mathias Uslar, Sebastian Rohjans, Christian Neureiter, Filip
Pröstl Andrén, Jorge Velasquez, Cornelius Steinbrink, Venizelos
Efthymiou, Gianluigi Migliavacca, Seppo Horsmanheimo, Helfried
Brunneret al. Applying the smart grid architecture model for designing
and validating system-of-systems in the power and energy domain: A
European perspective. Energies, vol. 12, no. 2, page 258, 2019. (Cited
on page 16.)

[Van Beek 2006] Peter Van Beek. Backtracking search algorithms. In Founda-
tions of artificial intelligence, volume 2, pages 85–134. Elsevier, 2006.
(Cited on page 35.)

[Venkatasubramanian 2005] Venkat Venkatasubramanian. Prognostic and
diagnostic monitoring of complex systems for product lifecycle
management: Challenges and opportunities. Computers & chemical
engineering, vol. 29, no. 6, pages 1253–1263, 2005. (Cited on page 33.)

Bibliography 153

[Vierhauser 2016] Michael Vierhauser, Rick Rabiser, Paul Grünbacher, Klaus
Seyerlehner, Stefan Wallner and Helmut Zeisel. ReMinds: A flexible
runtime monitoring framework for systems of systems. Journal of Sys-
tems and Software, vol. 112, pages 123–136, 2016. (Cited on page 16.)

[Vugrin 2010] Eric D Vugrin, Drake E Warren, Mark A Ehlen and R Chris
Camphouse. A framework for assessing the resilience of infrastructure
and economic systems. Sustainable and resilient critical infrastructure
systems: Simulation, modeling, and intelligent engineering, pages 77–
116, 2010. (Cited on pages viii, 36, 38 and 39.)

[Vukelić 2014] Nataša Vukelić and Vesna Rodić.
FARMERS’MANAGEMENT CAPACITIES AS A SUCCESS
FACTOR IN AGRICULTURE: A REVIEW. , vol. 61, no. 3, pages
805–814, 2014. (Cited on page 87.)

[Wachholder 2015] Dominik Wachholder and Chris Stary. Enabling emergent
behavior in systems-of-systems through bigraph-based modeling. In
2015 10th System of Systems Engineering Conference (SoSE), pages
334–339. IEEE, 2015. (Cited on pages viii and 25.)

[Wang 2019] Zhao Wang, Sifeng Liu and Zhigeng Fang. Research
on SoS-GERT network model for equipment system of systems
contribution evaluation based on joint operation. IEEE Systems Jour-
nal, vol. 14, no. 3, pages 4188–4196, 2019. (Cited on page 33.)

[Wang 2022] Hongping Wang, Yi-Ping Fang and Enrico Zio.
Resilience-oriented optimal post-disruption reconfiguration for
coupled traffic-power systems. Reliability Engineering & System
Safety, vol. 222, page 108408, 2022. (Cited on page 36.)

[Wang 2023] Zhen Wang, Kaihua Xi, Aijie Cheng, Hai Xiang Lin, André CM
Ran, Jan H van Schuppen and Chenghui Zhang. Synchronization of
power systems under stochastic disturbances. Automatica, vol. 151,
page 110884, 2023. (Cited on page 33.)

[Watson 2021] BC Watson, A Chowdhry, MJ Weissburg and B Bras. A New
Resilience Metric to Compare System of Systems Architecture. IEEE
Syst. J. 1–12, 2021. (Cited on page 37.)

[Weinert 2020a] Benjamin Weinert and Mathias Uslar. Challenges for System
of Systems in the Agriculture Application Domain. In 2020 IEEE 15th
International Conference of System of Systems Engineering (SoSE),
pages 000355–000360, 2020. (Cited on page 19.)

154 Bibliography

[Weinert 2020b] Benjamin Weinert and Mathias Uslar. Challenges for system
of systems in the agriculture application domain. In 2020 IEEE 15th
International Conference of System of Systems Engineering (SoSE),
pages 000355–000360. IEEE, 2020. (Cited on page 19.)

[Woods 2015] David D Woods. Four concepts for resilience and the
implications for the future of resilience engineering. Reliability engi-
neering & system safety, vol. 141, pages 5–9, 2015. (Cited on page 103.)

[Yahia 2010] W Ben Yahia, Philippe Polet, Frédéric Vanderhaegen and N Tri-
cot. Human Factors in Studies of the Safety and Reliability of
Agro-Equipment. IFAC Proceedings Volumes, vol. 43, no. 13, pages
13–18, 2010. (Cited on page 87.)

[Zhao 2018] Bo Zhao, Xiangjin Wang, Da Lin, Madison M Calvin, Julia C
Morgan, Ruwen Qin and Caisheng Wang. Energy management of
multiple microgrids based on a system of systems architecture. IEEE
Transactions on Power Systems, vol. 33, no. 6, pages 6410–6421, 2018.
(Cited on page 19.)

[Zhou 2011] Bo Zhou, Aleksandra Dvoryanchikova, Andrei Lobov and Jose
Luis Martinez Lastra. Modeling system of systems: A generic method
based on system characteristics and interface. In 2011 9th IEEE Inter-
national Conference on Industrial Informatics, pages 361–368. IEEE,
2011. (Cited on page 15.)

Towards Modeling and Supervision of Multilevel
Stochastic Systems of Systems: A Hypergraph

Approach.

Abstract: System-of-Systems (SoS) face significant challenges, including
heterogeneity, scalability, and complex interactions among component
systems (CSs). These systems typically operate in dynamic environments,
introducing uncertainty and stochastic behavior. Many existing studies tend
to oversimplify these complexities, with some focusing only on the dynamics
of CSs without adequately addressing their structure, mission, and goals.
Additionally, limited research has focused on supervising SoS under such
conditions. Graph models, such as hypergraphs (HG), have proven effective
in modeling the structure of SoS, while stochastic and weighted hypergraphs
have been successfully employed to manage stochasticity in other complex
systems. In this thesis, the Multi-Level Stochastic Hypergraph (MLSHG)
model is introduced to address the challenges of modeling stochastic SoS.
The model adheres to the key properties of SoS as defined by Maier,
distinguishing it from traditional complex systems. A novel algorithm for
supervising large-scale SoS is also proposed, integrating bottom-up monitor-
ing with top-down reconfiguration to achieve long-term goals. The proposed
framework supports resilience in these complex systems through recovery
mechanisms based on redundancy. In a case study on a mushroom harvesting
SoS, the model demonstrated clear advantages in addressing SoS modeling
challenges compared to existing methodologies. The results showed that
incorporating stochastic disturbances with an adaptive threshold enabled
early reconfiguration during supervision, reducing deviations from the final
goal. The capability-based reconfiguration method exhibited low computa-
tional time, scaling linearly with the number of CSs, thereby improving the
system’s scalability. The resilience scenario results further demonstrated that
incorporating both stand-in and stand-by redundancy mechanisms enhances
the resilience of these complex systems.

Keywords: System of systems (SoS), Modeling and Simulation (M&S),
Hypergraph (HG), Stochastic systems, Supervision, Resilience

	Title
	Abstract
	Résumé
	Contents
	List of Figures
	List of Tables
	Chapter 1 : Introduction
	General introduction
	Industrial Context
	Contractual context of the thesis
	Scientific context of the thesis
	Thesis objectives
	Research problem statement and formulation
	Thesis methodology
	Main contributions
	Disseminated results
	Thesis organization

	Chapter 2 : System of systems: State of art
	Introduction
	System of systems terminology
	History and definition
	Properties
	Applications

	Modeling methods
	Behavioral modeling
	Organisational modeling

	Supervision of SoS
	Definition
	Monitoring
	Reconfiguration

	Resilience of SoS
	Definition
	Methods
	Resilience metrics

	Conclusion

	Chapter 3 : Contribution to organisational modeling of stochastic SoS
	Introduction
	Stochatic system of systems
	Multi-level Stochastic hypergraph modeling
	Individual CSs
	Hierarchical Structure
	Interactions
	Verifying Properties of System-of-Systems

	Case study: Mushroom harvesting SoS
	Introduction
	System complexity
	Multi-level Mushroom harvesting modeling
	Hypergraph representation
	Implementation
	Results and discussion

	Conclusion

	Chapter 4 : Supervision of stochastic SoS
	Introduction
	Threshold design
	Supervision algorithm
	Monitoring
	Reconfiguration

	Case study
	Real time Supervision of mushroom harvesting SoS
	Monitoring of mushroom harvesting SoS
	Reconfiguration of mushroom harvesting SoS
	Implementation
	Results and discussion

	Conclusion

	Chapter 5 : Resilience of stochastic SoS
	Introduction
	MLSHG for resilient SoS
	Adaptability
	Stand-in redundancy
	Stand-by redundancy

	Resilience algorithm
	Resilience quantification
	Case study
	Resilient mushroom farm
	Results and discussion

	Conclusion

	Chapter 6 : Conclusion
	General conclusions
	Perspectives
	Behavioral modeling
	Supervision and resilience
	Mushroom harvesting simulation
	Appendices
	Flexsim simulation
	3D Model
	Process Flow

	Acronyms
	Bibliography

	Appendices
	Appendix A

	Acronyms
	Bibliography

