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Abstract
École doctorale MADIS-631

PhD in Computer Science

Melodic and Descriptor Patterns: A Computational Approach for Digitisation,

Annotation, and Analysis of Slovenian Folk Song Ballads

by Vanessa Nina BORSAN

This thesis focuses on combining digital archiving and music analysis derived from

ethnomusicological practices and methods that are rooted in computational sciences,

especially those found in the field of Music Information Retrieval (MIR). The anal-

ysis and other tasks focus on the collection of Slovenian folk song ballads, which

trigger a number of questions in terms of methodology and data interpretation. In

the broadest sense, the thesis provides three contributions.

First, it digitises and publishes a dataset of 402 monophonic transcriptions of

Slovenian folk song ballads, which had previously been accessible only in physical

archives and editions. These transcriptions, enriched with metadata and annota-

tions, are made available through the open-source platform Dezrann. The dataset,

along with its accompanying materials, includes detailed information on the history

of the corpus and its melodic transcriptions, as well as a variety of music annota-

tions.

Second, it introduces pattern matching algorithms specifically designed for this

folk song dataset. These algorithms, implemented using Python libraries, address

four distinct tasks: melodic sequence matching, two descriptor set-based matching

tasks, and a combination of both. By using bitwise operators and compressed suf-

fix arrays, the method proves to be a time- and space-efficient solution for pattern

discovery and classification. The flexibility of these methods encourages their appli-

cability beyond the introduced corpus to other types of (music) collections.

Finally, it critically engages with the disciplinary intersections of MIR and ethno-

musicology, examining the challenges and opportunities for collaboration between

these fields. While MIR provides powerful tools for large-scale music analysis, this

research highlights the difficulties in adapting computational techniques to the nu-

anced, context-rich materials often encountered in ethnomusicology. Through case

studies and evaluations, the thesis demonstrates the potential for integrating algo-

rithmic methods with traditional musicological approaches while also addressing

the institutional and disciplinary barriers that have hindered such cross-disciplinary

work.
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Résumé

École doctorale MADIS-631

Doctorat en informatique et applications

Motifs mélodiques et contextuels: Une modélisation informatique pour la

digitalisation, l’annotation et l’analyse de chansons narratives Slovéniennes

Vanessa Nina BORSAN

Cette thèse explore l’intégration de l’archivage numérique et de l’analyse musicale,

en s’appuyant sur des méthodes ethnomusicologiques et computationnelles, notam-

ment en récupération d’informations musicales (MIR). L’étude porte sur une collec-

tion de ballades folkloriques slovènes, soulevant des questions méthodologiques et

interprétatives. Elle apporte trois contributions principales.

Premièrement, elle numérise et publie un corpus de 402 transcriptions mono-

phoniques de ballades slovènes, jusqu’alors accessibles uniquement sous forme physique.

Ces transcriptions, enrichies de métadonnées et d’annotations, sont mises à disposi-

tion via la plateforme open-source Dezrann, accompagnées d’informations sur leur

historique et leur notation mélodique.

Deuxièmement, la thèse développe des algorithmes de recherche de motifs adap-

tés à ce corpus. Implémentés en Python, ces algorithmes traitent quatre tâches : la

correspondance de séquences mélodiques, deux formes d’analyse par descripteurs,

et une combinaison des deux. Grâce aux opérateurs binaires et aux tableaux de suf-

fixes compressés, la méthode offre une solution efficace pour l’identification et la

classification de motifs, applicable à d’autres collections musicales.

Enfin, la thèse analyse les relations entre la MIR et l’ethnomusicologie, exami-

nant les défis et opportunités de collaboration. Bien que la MIR fournisse des outils

puissants pour l’analyse musicale, l’adaptation des techniques computationnelles

aux matériaux ethnomusicologiques reste complexe. À travers des études de cas,

cette recherche explore l’intégration des méthodes algorithmiques aux approches

traditionnelles et identifie les obstacles institutionnels freinant ces collaborations in-

terdisciplinaires.
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Chapter 1

Introduction

Contemporary computational (ethno)music(ology) research has introduced novel

ways of exploring musical materials, from comparative and big corpora studies to

encouraging new queries and research questions that were unimaginable in the pre-

computational era.

This thesis bridges ethnomusicology, computer science, and text algorithmics in

an effort to establish an efficient method for music pattern matching and provide a

dataset that can accommodate such tasks.

Recognising the scarcity of well-documented, freely accessible datasets, the the-

sis first took one step back to digitise, model, and publish materials that, until now,

existed only in printed and physical form within archives. The thesis provides a

dataset of 402 monophonic transcriptions of Slovenian folk song ballads with meta-

data and annotations.

In developing a methodology for organising, annotating, and analysing these

materials, as well as designing time- and space-efficient algorithms for handling

specific melodic patterns and matching the query descriptor set, several challenges

emerged. These challenges expanded the scope of the thesis, encompassing fields

such as digital archiving, music libraries, and even media studies. The latter served

as a foundation for exploring how such computational contributions benefit both

Music Information Retrieval (MIR) and the ethnomusicological community.

The central research question explores: ’How can we identify melodic patterns

in folk song phrases while also considering a diverse palette of contextual descrip-

tors?’ This inquiry not only seeks to determine how melodic patterns can be found

within folk song phrases but also examines how contextual descriptors influence

the understanding and exploration of such patterns and music per se, particularly

in orally transmitted folk music. While this serves as the overarching inquiry, the

thesis expands upon it by addressing various interdisciplinary challenges. These are

structured around five key objectives, which aim to:

• Objective 1: Digitise, organise, curate, and thoroughly document the materials

of selected Slovenian folk song ballads.

• Objective 2: Annotate the materials and create a publicly accessible digital

dataset on the Dezrann platform, completed with these annotations.
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• Objective 3: Develop algorithms for melodic and descriptor pattern matching

tailored to these materials, while remaining flexible enough to accommodate

other research queries.

• Objective 4: Provide a multi-step evaluation of these contributions and con-

duct two case studies to test the algorithms’ performance as well as (contex-

tual) flexibility.

• Objective 5: Examine the role of this contribution, and similar computational

methods, within the frameworks of ethnomusicology and related fields, while

critically assessing the pitfalls, benefits, miscommunications, and impact. Ad-

ditionally, to evaluate potential next steps for such methodologies.

Although each objective warrants individual attention, it is important to note

that they are closely interrelated, with most objectives overlapping throughout each

chapter of the thesis. To offer the reader an overview of the thesis structure, I provide

a brief summary that follows the chapters in a somewhat linear fashion.

1.1 Thesis Chapter Organisation

1.1.1 Related Work

At the outset, in Chapter 2, I introduce the relevant work that supports the ma-

jority of the stated objectives. First, I focus on ethnomusicological approaches to

collecting, organising, and structuring datasets for analysis, highlighting different

principles, from adapting materials to fit somewhat Western classical systems, to

modifying these systems or offering alternative solutions to accommodate various

types of music, such as cantometrics.

The discussion then shifts from broader analytical models to more specific ideas

on how certain musical elements should be symbolically represented, highlighting music

notation (it being the centre of this thesis), such as David Huron’s concept of view-

ing melodic lines as contours or arches. Both sections conclude by exploring the

computational application of these principles in contemporary research, address-

ing various hierarchical levels of music representation—from interrelated elements

within a score to larger systems that connect scores and corpora based on shared

features.

Speaking of computational methods, the next step was to introduce the existing

methods for digitising and analysing these materials. This part includes a summary of

available datasets, noting the various approaches to addressing these challenges. For

instance, while some collections focus on gathering diverse materials in one place,

others adapt digital archiving techniques to suit specific musical traditions. I also

address the varying usability of such datasets, depending on the quality, quantity,

accessibility, and format of the digital materials.



1.1. Thesis Chapter Organisation 3

The final section of this introductory chapter focuses on a specific type of digital

music analysis of such materials: pattern matching using principles from text algo-

rithmics. It begins by providing an overview of key contributions in the field, cov-

ering both online and offline, as well as exact and approximate, pattern matching

methods. These approaches, along with their adaptations for music tasks, are then

introduced through examples of single and multi-parameter music pattern match-

ing, highlighting the most significant contributions from MIR.

1.1.2 Slovenian Folk Song Ballads

The thesis then addresses the digitised dataset of 402 Slovenian folk song ballads,

including explaining the terminology behind the dataset’s name (Chapter 3). Since

the songs were collected, transcribed, and curated over different historical periods,

from the early 1900s to the late 1990s, I also examined the changes and advance-

ments in practice, tools, and methodology, and how these developments may have

influenced the materials.

Before diving into pattern matching analyses on these songs, I introduce the

structure, annotation system, and general statistics, along with initial explanations,

to provide a clearer understanding of the potential results and how they should be

interpreted. Lastly, for easier orientation, I also explain how all of these materials are

organised on the digital platform Dezrann, providing notes on the availability and

licenses.

1.1.3 Pattern Matching Tasks

Following the related work and dataset introduction, I elaborate on the key pattern

matching problems and outline methodologies for the proposed algorithms, cate-

gorised as melodic sequence, descriptor, and mixed pattern matching, split into 4 dif-

ferent problems (Chapter 4). Problem 1 involves identifying occurrences of a short

melodic sequence in the dataset using a compressed suffix array and bitarray. Prob-

lem 2 focuses on single descriptor set matching using bit vectors and bitwise op-

erators. Problem 3 allows multiple descriptor elements per query, using inverted

dictionaries to retrieve corresponding IDs. Finally, Problem 4 combines melodic se-

quences and descriptors to identify instances where both match the query. The chap-

ter provides further problem definitions for each of these, as well as ensures the data

encoding and pattern matching task explanations with examples.

1.1.4 Evaluation

Next, I provide a brief overview of what should be evaluated when considering

computational tasks on music, highlighting key points from various MIR contribu-

tions (Chapter 5). The evaluation is then divided into three parts. First, performance

evaluation assesses time and memory usage for data conversion and the four pat-

tern matching algorithms, alongside a brief commentary on their implementation



4 Chapter 1. Introduction

in Python. Second, a case study on Slovenian folk song ballads involves a classifi-

cation task using single descriptor set (Problem 2) and melodic sequence (Problem

1) pattern matching. Third, another case study introduces a different pre-existing

corpus, focusing on a new classification task with multiple descriptor set match-

ing (Problem 3), meaning to allow multiple descriptor elements per descriptor to be

considered in a query, and adapted melodic sequence matching. Finally, the chap-

ter concludes with evaluation on the broader use of these methodologies in real-life

music research, addressing both advantages and limitations.

1.1.5 MIR and (Ethno)musicology

Before drawing conclusions, the thesis expands on the points raised in the evalua-

tion, focusing on the final objective: examining the role of this contribution, and sim-

ilar computational methods, within the frameworks of ethnomusicology and related

fields (Chapter 6). It critically assesses the pitfalls, benefits, miscommunications, and

impact of these approaches. The discussion seeks to identify the underlying causes

of limitations in computational music research, while also considering broader chal-

lenges in knowledge transfer between various actors and subdisciplines, even those

not directly connected, yet very relevant, to the pattern matching methodology. To

address these issues, the discussion focuses on three main areas: (1) the relation-

ship to new media and technologies (in research), (2) the foundations of specific

disciplinary theoretical concerns, and (3) the structure of disciplines and supporting

institutions.

1.1.6 Conclusion

The thesis concludes with a brief summary of the key topics covered in the preceding

chapters, along with an assessment of each of the five objectives. It concludes by

suggesting future research directions that remain unexplored or should be further

investigated within similar studies.
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Chapter 2

Related Work

Statement: This chapter includes an extended version of literature review from my published

paper at ISMIR 2023 [33] and a submitted paper to Ethnomusicology Forum [34] (in re-

view).

Rooted in the confluence of ethnomusicology, digital humanities, and computa-

tional analysis, this thesis delves into the intersections of digital archiving, the in-

novative use of text algorithmics, particularly in music pattern matching tasks, and

Slovenian folk song. Beginning with an overview of ethnomusicological thought to

contextualise the materials and methodology of the thesis, the section outlines the

cultural nuances shaping musical traditions, segueing into the structures and or-

ganisations of digital archives where preservation meets computational processing

and a variety of material formats. The thesis provides a detailed review of existing

projects with commentary on their contents, usability and accessibility. Laying the

groundwork for the representation and annotation of digitised musical data, the re-

view of related work also focuses on the way data is represented in such datasets

or archives, along with their pros and cons. Lastly, by first acknowledging the con-

tributions of pattern matching in text algorithmics, the chapter concludes with an

exploration of music pattern discovery and similar tasks, and their potential as a

computational methodology to elucidate musical structures.

2.1 Ethnomusicological Framework

In the introductory segment of the state-of-the-art review, I will explore pivotal in-

sights from ethnomusicology and related fields, acknowledging their essential in-

fluence on the development of computational systems in music research. Due to the

extensive contributions from these disciplines, my examination will focus specifi-

cally on the elements that are most pertinent to the thesis topic, its resources, and

methodological approaches.

In the last few decades, a large attention has been paid to identify the effective

computational research methods for non-Western art music, many of which trace

back to the pre-computational era. For example, the foundational works of Samuel

Bayard [14] and James R. Cowdery [60], Kurt Blaukopf [26, 326], Isabelle Mills [207],
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and also the contributions of Alan Lomax and colleagues [182, 262, 325], Alan P. Mer-

riam [206], Mantle Hood [115], and Timothy Rice [251], have laid the groundwork

for contemporary ethnomusicological studies. These pioneering efforts continue to

inspire modern computational ethnomusicology, particularly in tune matching, pat-

tern matching tasks, and the development of music ontology, taxonomy, and topol-

ogy.

To provide the needed context for the key tasks of this thesis, it is important to

trace the historical development of ethnomusicological methodologies. Understand-

ing their evolution sheds light on how these early contributions shaped current state

of research and influenced the integration of computational techniques in music re-

search. This historical perspective highlights the progression from traditional eth-

nomusicological approaches to the sophisticated computational methods employed

today.

2.1.1 On Music Data Representation

Starting with Bayard, his theoretical framework addressed the nuances in tune de-

velopment, by explaining the relationship between recording and origin time, and

the selection of descriptors for understanding music patterns, emphasising the sub-

jectivity of these observations [14]. He discussed tonal range, rhythm, melodic pro-

gression, the sequence of stressed notes, and notably introduced the concept of tune

family, a notion closely aligned with computational music research. The concept

tune family [14], was used to categorise groups of tunes that share a common ances-

tor in oral transmission. More precisely, Bayard defined a tune family as “a group of

melodies showing basic interrelation by means of constant melodic correspondence,

and presumably owing their mutual likeness to descent from a single air that has as-

sumed multiple forms through processes of variation, imitation, and assimilation”

[14].

“Although Bayard laid much important groundwork, he did not provide suffi-

cient models for these potential applications” [60]. Instead of combining descriptors

for the tune as a whole, Cowdery suggested three principles for working with folk

song material - the outlining, conjoining, and recombining principle. The first one

“allows us to compare wholes to wholes, and the second provides for comparing

sections to sections” [60]. The third one combines the first and second by taking

the melodic combinations as a system of potentialities instead of a fixed chain of

events, showing that “motives can recombine in various ways, expanding or con-

tracting, to make new melodies which still conform to the traditional sound.” Both

contributions were acknowledged in computation, particularly in folk music pattern

matching and sequence alignment [315, 312, 311, 321, 264, 29, 35, 246, 235, 266].

Computational work with data also demands a comprehensive systematic break-

down of what and how we annotate and analyse, as methodological handbook of

defining basic music parameters for folk song analysis by Sergio de la Ossa [224].

He discussed the analysis of song, melodic, rhythmic and lyric structure, scale types,
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ranges, and other music descriptor categories. The revised concept of Alan Lomax,

which was recently enhanced by Anna Lomax Wood and others, proposed an al-

ternative method for encoding musical things [182, 325] - cantometrics, a numerical

encoding system that can identify patterns in singing styles and musical structures

across cultures, aiming to understand cultural and its social aspects. It correlates

music and cultural factors, offering insights into human behavior and societal rela-

tionships. Similar principles were close to many ethnomusicologists of the time, for

example, Valens Vodušek [310].

In contrast to the all-encompassing systems, David Huron, among others, fo-

cused on a single descriptor, such as melodic contour [121]. He emphasised the

perceptual relevancy and importance of melody direction over absolute pitch val-

ues, and identified nine common melodic archetypes for melodic phrases. These

were based on the relationships between initial and final pitch values and a median

of middle pitch values, which in turn were supposedly a more perceptually relevant

description of melodic character than absolute note values (Figure 3.6).

In contemporary computational ethnomusicology, with accumulated data over

the decades and digitisation improvements, researchers are able to manage datasets

considerably larger than those available to earlier studies, which has heightened in-

terest in quantitative analyses. Nonetheless, there remains a strong emphasis on

qualitative aspects, incorporating both content (referring to any number of musical

descriptors) and context (encompassing discursive, socio-political, cultural, perfor-

mance, and other practices related to the music). Many computational studies un-

derstand that music entities responsible for the observed materials “are linked by

various types of relationships,” which contribute to the understanding of music as a

whole [273], or incorporate the information on “genre” and regions [220], or include

multiple layers of music content, and context as descriptors (music and/or metadata)

by observing a number of phenomenons, for example, including (super)area and

(super)type information [219] and other “non-musical” traits correlated with differ-

ent types of music content, such as rhythm, melody, patterns, and anti-patterns [49].

Most studies, however, remain within these realms, or extend their non-musical fea-

tures to at most lyric and/or perceptual ideas, as done in [144, 148, 202]. An exten-

sive overview of various manual and computational approaches, including several

of the studies mentioned, was presented by Maria Panteli [228, 227]. Panteli dis-

tinguishes between manual and computational methods and examines both audio

recordings and music notation for each approach. Her overview provides details on

the size and brief description of each corpus, the number and type of descriptors

used, and a summary of the main findings from each study, along with the primary

references.
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The results, annotations, and data representations in computational ethnomusi-

cology are often presented as is, thus as the ground truth1. This concept is prob-

lematic, particularly with verbally transmitted information. The limited symbolic

representations and artificial classifications rarely capture the actual concept of those

materials. At best, they are biased textual summaries—if one considers Western mu-

sic notation and annotations as quasi-text. This can lead to significant distortions in

understanding the complexities of the studied music matters (Section 2.3).

In Cowdery’s words, “[a] traditional musician will not evaluate a new tune or

version by comparing it to some faceless archetype [...]. To understand this pro-

cess, we must look for the overlapping and flexible ways in which musicians work

with their materials rather than looking for categories to impose from outside” [60].

And, while observing from the distance without imposing a certain type of a non-

compatible classification could be the key contribution of computation in the long

term (instead of considering only the takes of the “natives” or originate from our

own biased position), this is a task yet to be mastered in computational music anal-

yses. What is already possible, however, is to include some contextual meaning.

Pendlebury stressed, that “[t]he examination of tunes in the contexts of their source

documents elucidates the cultural factors that influenced their reuse over history,

such as the development of print technology, military campaigns, trends in com-

mercial theatre, and the mass production and use” [235].

The concerns raised in the presented studies, as well as in those that follow, do

not have straightforward solutions. It is important to understand that the critique

should not be framed as a conflict between ethnomusicology and newer computa-

tional approaches, as both fields have their own shortcomings and face their own

sets of criticisms [227]. Many of the recognised challenges remain, particularly those

related to restricted access to data, unbalanced collections, ambiguity in defining

the ground truth, incorrect or misinterpreted metadata, and the methodologies of

corpus creation, among others [227]. To address some of these issues, I will begin

by examining collection practices, their influence on (meta)data representation and

curation, and the challenges of their digitisation and accessibility.

2.1.2 The Fieldwork: On Collectors and Annotators

Behind the representation and analysis of the materials, there is the indispensable

role of transcribers and collectors. First, they influence the materials by using the

1In computer science, “ground truth” typically refers to a set of data that is considered the ulti-
mate reference or the most accurate representation of reality against which models and algorithms are
evaluated. This concept is used in fields where data is “objectively” measured and validated, such
as image recognition or natural language processing. However, when applied to digital humanities
and digital musicology, the notion of ground truth becomes truly problematic. In these fields, the in-
terpretation of cultural, historical, and artistic data is often subjective and context-dependent. What
is considered “true” or “accurate” may vary widely depending on cultural perspectives, theoretical
frameworks, and methodological approaches. Presenting data as ground truth in these contexts risks
oversimplifying complex cultural phenomena and imposing a false sense of objectivity on inherently
interpretative disciplines.
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symbols (music notes and text) to transcribe a tradition that is typically transmitted

orally.

Second, as Jack Goody pointed out, the transcriber becomes the “new audience,”

effectively distancing the informant from their usual performance context. This cre-

ates a layer of interpretation and potential distortion between the original expres-

sion and its recorded, staged, or transcribed form. As a result, the informant may

be inclined to choose a performance or version that is most likely to entertain the

audience, easiest for them to understand, or simplest for the informant to recall in

the new context [98]”.

Third, there is the influence of socio-political considerations (what should or

should not be collected, and the methods used) as well as the impact of technologi-

cal advancements, such as recording devices, which continually alter the way mate-

rial is transmitted from its original oral form to newer media (written, transcribed,

recorded, photographed, and so on). Dictation, as opposed to recorded transcrip-

tion, posed even greater challenges for capturing music and dance compared to spo-

ken text or lyrics, especially before the advent of tape recorders and cameras. This is

because the notation used for documenting these standardised communicative acts

was non-linguistic, less widely known, and therefore more challenging to use [98].

Although recording devices mitigated some (but certainly not all) obstacles, such as

inaccuracies in repeated songs and time constraints for transcription, the symbolic

notational system remained in use, along with many of its inherent problems (some

of which have already been discussed).

Only by comprehending the assembled materials and the specific ideas of col-

lection processes, along with their organisation and structuring, one can begin to

explain and synthesise. Until then, these encodings and the algorithms that com-

pare the encoded materials are, akin to Floridi’s concept of genes, “a type of pre-

dictive and procedural information [...] [which as] dynamic procedural structures

[...] together with other essential environmental factors, contribute to controlling

and guiding the development of organisms. [...] [They represent] information for

something, not [yet] about something” [87].

2.1.3 Final Remarks: Frameworks

The processes of fieldwork, transcription, and data conservation in different peri-

ods consider different practices. Hence, when examining collected materials, the

more information we gather, the closer we come to Luciano Floridi‘s knowledge [87].

While some points may seem distant from music research, his basic structure aids

our understanding of why stopping at a primary level is insufficient. He stresses,

that “[t]he idea is that information can be quantified in terms of a decrease in data

deficit. [...] These are raw data, not yet semantic information. [. . . ] When they be-

come meaningful, they constitute semantic content [...]. When semantic content is

also true, it qualifies as semantic information.” The truth remains a subject for a
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broader discussion; nevertheless, the greater the diversity of information, the more

intriguing the inquiry becomes.

The choice of collected information is not only practical but also a theoretical

concern. Within the realms of ethnomusicological pursuits, as Rice points out, vari-

ous truths can emerge “from different social and historical positions, interpretations

of meaning, plumbing reflexively the depths of individual experience [...].” This in-

tegral and indispensable “paradigm shift,” if overlooked, can become a source of

confusion in ethnomusicological theory [251], as several collections are “a product

of its time” [95], meaning that they are collected, transcribed, and analysed within

various historical settings.

Similar ideas influenced Rice’s concept of ethnomusicological theorising, which

consists of 1 plus 4 steps [251]. The first, data collection, is occasionally considered

the preface, a precondition that must be fulfilled before research. However, by in-

evitably attributing meaning to data during collection, he understood it as the initial

stage. Rice defined the next four stages, organising, structuring, explaining, and syn-

thesising, by further dividing them into 15 separate activities [251]. Among all, he

was particularly critical of the common omission of the final step, synthesis, which

has become even more challenging to achieve with the increasingly popular big data

analyses.

2.2 Digital Archives and Datasets

The organisation, explainability, and accessibility of digital archives, along with the

format, quality, and quantity of their contents, are pivotal for the computational

exploration and synthesis of music materials. Although my focus is on ethnomusi-

cological content, the following principles are applicable to other types of materials

as well. By Rice, the process of organising involves four key steps: “(1) analysing

and describing the data, (2) classifying and categorising the data, (3) labelling cat-

egories and classes, and (4) listing categories in some orders’ [251]. In the fields of

comparative and computational ethnomusicology, however, the approaches to or-

ganising music are often inconsistent [240], which can affect the quality and utility

of research outcomes.

Some researchers apply Western music organising and analysis theories as their

framework [297, 54, 7, 68, 1, 224], while others tailor their analysis approaches to

the unique characteristics of their research material [45, 38, 223, 48]. Then there

are those, who strive for a consensus between different materials, striving towards

multicultural comparisons [180, 263, 134, 325, 225].

The methodologies used to describe music, such as classification, categorisation,

and labelling, as well as the hierarchical ordering of these categories and classes,

depend heavily on the organisation of the observed material (as shown in the ref-

erenced studies). To establish a digitised music dataset, it is thus sensible to first
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develop a comprehensive framework that addresses both the collection of new ma-

terials and the structuring mechanisms.

Excluding the digital archives that only consist of lists of indexed works or scans

of physical material, there are currently more than 15 digitised folk song datasets,

some of which are publicly available. Then there are those who discuss the state of

folk song materials in digital archives [177, 294, 300, 240], or review existing datasets

[191]. While it is not feasible to detail every project, I will briefly introduce the vari-

ous methods used for collecting and organising practices of digital folksong datasets.

Datasets can be distinguished by content’s diversity, quantity and quality of

(meta)data, the motivation for digitisation, content type (notations, audio, lyrics),

and varied online availability. The content can be separated into multiple tradition

datasets [260, 23, 238, 325], or a selection of culturally resembling content, such as

Greek [191, 230], Indian [284, 281], Dutch [147], Latin [278, 258], Basque [50], and

Georgian [255, 270], purposefully focusing on ethnomusicological research [293, 239,

147, 325], pattern matching tasks [54, 150, 49, 219, 245, 53, 266], and others, mood or

emotion recognition tasks [191, 236, 104], and similar.

Not all data is necessarily of the same type. They can consist of any combina-

tion of text, scores, audio, lyrics (if applicable), even images or video content, and

metadata, and are released under various accessibility and reproducibility licenses.

Thus, after taking these factors into account and assessing the context and reliability

of the data, it becomes more feasible to form a clearer understanding of the future

use of digitised materials, which play a significant role in scientific discovery and

practice. For instance, a dataset with downloadable scores but minimal metadata

is valuable for tasks focusing on music structure like melodic pattern matching and

machine learning for similarity recognition. However, without adequate metadata

and supporting research, this material may not be suitable for ethnomusicological

studies beyond the specific collection project. Conversely, materials with abundant

metadata, images, and other computationally unreadable or non-downloadable for-

mats are limited in the scope of computer processing. The data reluctant to the

open-source principles is commonly considered to be an inadequate contribution to

the scientific community [323, 186, 319]. Below, I provide a summary of available

datasets that go beyond publicly available scans, with information on content, ac-

cessibility and other commentary.

2.2.1 An Overview of Digital Archives and Datasets

The Appendix A lists 46 distinct collections, ranging from broad compilations like

The Essen Folksong Collection, Dunya, and RISM to those focused on specific top-

ics such as Jingju, Dutch folk songs, and Carnatic music. While most datasets are

publicly accessible online, many come with usage restrictions. Of these collections,

the majority is licensed under some form of Creative Commons Attribution, while

some provide no copyright or licensing information, and the remaining are partially

open, typically available for research and educational purposes, but with stricter
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limitations on commercial usage (Figure 2.2). The materials include a combination

of notated scores, audio, lyrics (where applicable), metadata, and annotations (Fig-

ure 2.1a), and they vary in the level of research conducted to further elucidate or

promote each collection.

The Appendix A provides an overview of selected digital datasets and archives,

together with a primary reference, URL, as detailed information on licensing as pos-

sible, a short description of the content, the specification of content type (notated

scores, audio, lyrics, metadata, annotations), as well as a set of informal annotations

on usage categories (for additional information on music corpora and relevant stud-

ies, refer to [227, 228]).

The latter assume 4 different user groups based on the following criteria: En-

thomusicologically appropriate materials are materials that are well-documented and

accompanied by sufficient metadata. The interface and sources should be accessi-

ble without requiring computational skills and should be readable in standard pro-

grams such as Excel, PDF viewers, and similar tools. Availability to download the

data is not necessary. Education materials must comply with the similar standards

that apply to ethnomusicological research. An interactive platform and/or well-

explained materials are valued, and the availability of annotations on the platform

is considered an added benefit. MIR research requires at least some data, such as

music scores, recordings, or metadata, to be easily downloaded without special ef-

fort, and this data should not be copyrighted, at least for research purposes. The

dataset should contain more than just a few examples, and annotations of technical

descriptors of those sources are an added advantage. For general public, the interface

or webpage must be user-friendly, and data descriptions should be clear and easy

to understand for everybody. Video and audio recordings are highly beneficial. In

certain cases, digital archives can serve as “reference” tools for searching, such as

index databases.

To name a few examples (see also statistics on these in Figure 2.1b), the Comp-

Music Dataset of Indian Music Tonic, which features annotated tonic pitches of the

lead artist, is primarily suited for MIR research, while the Dutch Song Database,

with its comprehensive descriptions (but somewhat inaccessible scores and anno-

tations), better suits ethnomusicological and related studies. Only a few of these

collections, such as Etnofon or the Digital Collections of the Library of Congress, are

usable for the general public. The content types and these are sorted into 3 general

categories (Y=available/appropriate; X=unavailable/not appropriate, O=partially

available/appropriate).

In addition, I provide a detailed description of the key dataset for this thesis–

Slovenian folk song ballads–explaining the collection practices that influenced the

materials (Section 3.2.1), digitisation process and its representation on digital plat-

form Dezrann with data availability and licensing details (Section 3.4), as well as in-

troduce the annotation system and statistic on these annotations (and other (meta)data)

(Section 3.2.2 and 3.3).
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Before moving to the said corpus, I will highlight related work that had an im-

mense impact on structuring such datasets, including the discussions on (digital)

music representation and annotations, as well as introduce grounds for exploring

and analysing these materials, focusing on pattern matching methodology.

(A) Most common types (Y=yes and O=limited) of materials in the reviewed datasets are
audio recordings, while the least present are the scores or music notation. Some type of
metadata is available in all but four examples, where this was not possible to determine
(?=undetermined).

(B) The reviewed datasets and archives most commonly tailored to the needs of
MIR and other computational tasks, while they are not suited for general public
or music education purposes.

FIGURE 2.1: Statistics on datasets’ and digital archives’ material availability and potential
usage by categories. See Section 2.2.1 for further explanation on the categories and labels.
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FIGURE 2.2: The types of licensing or copyright protecting the materials in the reviewed
datasets in Appendix A. The most common form is some type of Creative Commons license
(leftmost, light green) for at least part of the materials, followed by other arrangements such
as specific usage descriptions, alternative licenses, and similar agreements (rightmost, light
purple) . In six cases, the copyright information is not provided (center, dark blue).

2.3 Music Representation and Annotation

The diversity of music information has given rise to numerous debates regarding

its representation at all levels, ranging from music notation and audio signals to

broader, non-music-specific structures, such as the development of typologies and

taxonomies.

Starting with the larger, typologies are conceptual frameworks primarily em-

ployed for systematic comparisons. They are constructed categories that define ob-

jects in opposition to something else, such as in distinguishing contours [2, 121, 7,

59], cadences versus non-cadences [148], and patterns versus anti-patterns [49].

Taxonomies, on the other hand, are broader, quantitative classifications. They

sort individual objects into large categories based on measurable characteristics and

define their hierarchical or relational positions within these categories, forming ho-

mogeneous groups. Examples in music include the Hornbostel-Sachs musical in-

strument classification [117, 170], and classifications of folk music genres [245, 220,

263].

Additionally, ontologies, which comprise structured frameworks for organising

and categorising musical knowledge, defining relationships between various mu-

sical concepts such as genres, instruments, and performances. These frameworks

facilitate tasks in Music Information Retrieval (MIR), music archiving, and analy-

sis, thereby significantly advancing digital (ethno)music-ology and enhancing music

recommendation systems, as elaborated in [244, 243, 61, 252, 240], among others.
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In this section, I will primarily address three categories–typologies, quasi-taxo

-nomies, and ontologies–in relation to music annotations. None of these represent

fixed or stable structures; therefore, to fully understand them within the “digital”

realm, it is essential to begin by exploring various types of music data encodings

and data representations.

2.3.1 Music Representation

In the context of annotating and analysing musical content, a significant challenge

emerges concerning the representation of data. This issue is exacerbated by the in-

herent ambiguity of the concept of music itself, which eludes any uniform descrip-

tion. Images and texts are represented through better-defined means—pixels and

alphanumeric symbols, respectively. In contrast, the domain of music lacks a uni-

versally accepted “best” representation, and thus faces many challenges [67, 114].

Music can also manifest in the forms of various notational systems, text, speech,

images, video, or audio, each necessitating distinct representation strategies and fur-

ther fragmenting the unity of music representation. According to [308], the repre-

sentation levels of music matters can be roughly split into four categories, which

are either physical2, signal3, symbolic4, or knowledge5. Their system omits the direct

incorporation of image or video.

In the scope of this thesis—which primarily focuses on music notation and meta-

data—I find the use of their symbolic category to be the most crucial for further con-

sideration.

The choice of music representation, much like the datasets that emerge from

them, is influenced by the context of its application—whether for archival purposes,

digital production, performance settings, or other uses. Some of the most common

representation systems in computational contexts include MusicXML (which is also

a predominant input format for this thesis), .sib, Finale, MIDI [256, 78, 118], Base-40

[111], ABC, LilyPond [221], GUIDO music notation [116, 248], and MEI [61, 252].

Technological advancements, artificial intelligence and machine learning are con-

tinually driving the evolution of music representation, enabling a more nuanced

analytical capabilities and making any standardisation in the scope of data repre-

sentation challenging. Furthermore, there are cultural, socio-economic, and ethical

considerations, particularly in how music from diverse traditions is represented and

preserved. Last but not least, music representation has been greatly impacted by the

2These are partial characteristics of sound objects and scenes in terms of geometrical descriptions
and include other physical properties such as mass, elasticity, and viscosity.

3Signal representations treat music as a continuous flow of information both in time and ampli-
tude. This category typically includes audio signals that can be digital or analog and are essential for
applications that require the raw audio data without any abstraction or symbolic interpretation.

4These are discrete musical events such as notes, chords, and rhythms. Symbolic representations
are content-aware and describe events in relation to formalised music theory concepts.

5They are generally textual structured formalizations of knowledge about musical objects, often
utilised in digital music libraries and MIR. As they consist of both music representation formats AND
music annotations. The more complex the structures, the further they move away from topology and
turn to taxonomy. These are further treated in the Section 2.3.2.
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interdisciplinary connections between music and fields such as mathematics, psy-

chology, and linguistics, each of which once again re-defined the way music should

be represented and used (see different dataset usages in aforementioned [228]).

All of this combined presents challenges for data annotation, as the content of the

representation dictates how annotations are formulated and what they encompass.

Moreover, these are fundamental requirements for computational analysis, where

diverse representations directly affect the complexity of data modeling and analysis,

thereby influencing the outcomes of research endeavors.

2.3.2 Music Annotations

Music annotations involve adding remarks, symbols, or comments to music repre-

sentation (score, audio representation, image, text, and other). They serve as a guide

for music interpretation, performance, as well as are found useful for most algo-

rithmic processes. They specify dynamics, articulation, technical instructions, and

emotional or stylistic ideas, encompassing both musical and non-musical elements.

Often referred to as descriptors or features, they detail various aspects and provide

critical insights for executing and understanding the score (and the music matters

behind it).

They serve as fundamental ground for most computational music research [46,

301], and are, within the realms of MIR, commonly categorised into two main types.

The first type includes foundational components of music such as melody, harmony,

rhythm, and texture, which outline the formal structure and other musical elements.

Along with others, these aid in constructing higher-level representations, often for-

mulated as multi-dimensional or multi-layered systems or protocols. Such frameworks

behave similarly to a taxonomy or rather an ontology, as they not only represent

individual elements but also delineate and interlink relationships within individ-

ual compositions or across multiple corpora. They enhance the efficacy of compu-

tational analysis and technically (although not always efficiently) facilitate the ex-

change of data among corpora and researchers.

Recent scholarly efforts broadened the scope of semantic annotations in music

research, extending beyond traditional links between metadata and musical compo-

nents to include annotations that capture mood and emotion. This expansion has

enriched the field of music matters, as indicated by studies such as those detailed in

[104].

Foundational Music Annotations

This category pertains to annotations which, within the domains of MIR, compu-

tational music analysis, and digital libraries for musicology, are regarded as funda-

mental for the exploration of various musical patterns. These annotations delineate

and identify structural elements such as motifs, phrases, and sections, and they also

label a diverse array of musical events.
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In certain instances, the annotation process6 is entirely automated [234, 105, 39,

194, 215]. Conversely, there are several cases, where the annotation is (partially)

manually curated [267, 314, 265, 312, 231, 52, 19].

The structure of music can be expressed as in describing isolated events, indi-

vidual layers, or, on the other hand, summaries or groupings of music events, for

example by using Schenkerian analysis [129, 195, 92, 15] or the Generative Theory

of Tonal Music [173, 88, 109, 92, 112]. The latter relies on both, music theory and a

cognitive, perceptual understanding of music structures.

It is not uncommon to see Western classical music theory applied to define these

annotations. However, the ethnomusicological domain, as well as more recent con-

tributions in MIR [99], indicate that there may be discrepancies. When considering

the perception of music across different languages and cultures, verbally-transmitted

music, or music outside the more “established” music theories, there are issues re-

lated to the naming and the purpose of naming various aspects of the musical phe-

nomenon in such applications and generalisations.

Phrases. It is commonly understood that a phrase represents a segment of a larger

music piece. This segmentation is delineated through a range of musical descriptors

such as melodic, rhythmic, harmonic, and lyrical elements (if present), along with

perceptual characteristics and other musical factors. Hence, although being under-

stood as a segment of something, its definition can vary greatly among corpora, thus

there is no single universal conception of this descriptor.

To annotate phrase segments in a music piece, the first appearance of a certain

sequence is usually considered as a reference for all subsequent ones. The borders

of phrases in music that is close to Slovenian folk songs can be determined by either

rhythmic or lyric breaks, cadence detection [148], and similar, or a combination of

multiple descriptors.

In monophonic music, phrases are primarily compared by their melodic mate-

rial. Although the rules for annotating variations are not entirely standardised, the

relationships between phrases within a single music piece are usually marked using

(capital) letters of the Latin alphabet in alphabetical order, starting with A. The next

contrasting part is labeled as B, and so forth [224, 83]. To describe minor variations,

extensions or further subdivisions, notations such as A’, A+, lowercase letters (a, b,

...), or similar, are used [224].

The same approach can be utilised for annotations of phrases based on rhythmic

properties and verse/rhyme structure [95]. In cases where multiple patterns, such

as melody and lyrics are observed separately within the same piece, the annotation

system can be adapted to differentiate between them. One approach is to use capital

letters for one pattern and lowercase letters for the other (if not already applied to

another annotation type). Alternatively, letters from the beginning of the alphabet

6An extensive study on computational methods for music structure analysis and segmentation was
conducted by [259, 183].
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can be used for one pattern type, while letters from the middle of the alphabet for

the other, enabling a clear distinction between the two types of patterns [157, 95].

Melodic Contours. The annotations of phrases can be labelled according to the

note-to-note or interval-to-interval melodic sequences; however, they can also be

annotated by examining the broader melodic structures, such as melodic contours.

In the case of the Slovenian folk song ballads corpus, the transcriptions of many

songs were unreliable (Section 3.2.1). Even those that closely resembled the field

recordings only stand in place of approximate transcriptions of sung pitches and

merely refer to the approximate structure of all verses, rarely annotating the minor

differences among individual verses7.

The contour annotations, providing an overview of the pitch movement of in-

dividual melodic phrases, are thus much more suitable for analysing verbally-trans

-mitt-ed music and recordings, where determining absolute pitch values is challeng-

ing or even redundant (Section 2.1). Although this can become more difficult if one

is to consider non-monophonic examples, as well as music with rather extensive

melodic lines that may not be easily split into smaller segments.

Annotations of contours can be symbolically represented as sequences of the

characters 0 (unchanged), + (ascending), and - (descending), with each symbol in-

dicating the pitch relationship to the subsequent tone [7]. Alternatively, annotations

can utilise cosines [59], curves [38], or predefined types of arches [121]. This thesis

adopts the latter, Huron’s nine types of contours, these being ascending, descend-

ing, horizontal-ascending, horizontal-descending, descending-horizontal, ascend-

ing-horizontal, convex, concave, and horizontal. They are calculated by analysing a

completed sequence (in our case, a phrase), by taking the first and the last value (in

our case, MIDI value) of the pitch sequence and comparing it to the average of all

the intermediate pitches (see Section 3.2.2).

Rhythm, Beat, Meter. Similarly to melodies, rhythmic patterns can be annotated

based on their structure, length, and combinations.

The simplest or highest differentiation among rhythmic structures is to divide

and annotate them into binary or ternary groups based on the meter. These may

pertain to an entire tune or a specific phrase or measure, which is common in tunes

with multiple meters.

Rhythmic values can be annotated as individual temporal events (especially in

terms of audio analysis), or with values relative to the meter or a fundamental unit

(typically, a quarter note equals 1.0, an eighth note equals 0.5, and so on). They

can also be annotated as approximations, where subsequent rhythmic events are

described in relation to the preceding one—whether they are longer, shorter, or of the

same duration. Moreover, specific systems tailored to individual corpora’s nuances

7Meaning, if verses 3 and 10 were sung differently, but the rest followed a similar structure, the
latter would be favoured and transcribed.
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can facilitate this process. For instance, [39] undertook a study annotating various

types of Turkish usuls based on their rhythmic combinations. On the other hand, [7]

investigated the nuances of upbeats and downbeats at different levels. Furthermore,

[27] explored additional models for computational analysis of rhythmic patterns.

If the music is not taught within strict theoretical frameworks, such as the afore-

mentioned Turkish classical music, Western classical, jazz, or popular music, it can

be challenging to annotate exact rhythmic patterns. This difficulty is already present

in some forms of jazz and related music, let alone entirely verbally-transmitted folk

songs. In line with what is described in Section 2.3.2, rhythmic transcriptions of field

recordings and live performances (of folk songs) are rarely a reflection of a complete

performance, but rather a sketch or a summary. In our case, this is particularly ev-

ident in the rhythmic aspect, as many subjects did not maintain a strict rhythmic

structure while singing. They would often pause briefly to breathe, provide spoken

explanations, return to the beginning of a verse, or recall the subsequent lines and

verses, and then accelerate to avoid forgetting, and so forth.

Harmony and Scale. In MIR, as well as in the practices of music theorists and mu-

sicologists, various types of harmony annotations exist. These include chord and

key recognition labels, as well as scale analysis annotations, employed to extract

and annotate harmonic information from the provided music data (see examples of

annotating scalar and harmonic degrees in Figures 2.3, 2.4, and 2.5). While these an-

notations are predominantly conducted on polyphonic music (for example, [237]),

the formal functions can also be analysed in monophonic tunes, based on the preva-

lent scale or mode.

In the case of annotating Slovenian folk songs, although some harmonic labels

were initially incorporated and analysed [33], comparisons among different under-

standings of harmonic frameworks revealed substantial differences. Firstly, these

differences in various styles of annotations were too significant to provide a ba-

sis for deriving “averages”. Secondly, these songs were not conceived within the

frameworks of Western classical music forms at their time/origin. Consequently,

harmonic labelling was omitted, raising questions about the purpose and potential

outcomes of such an endeavour.

The same issue occurred with scales. Following [224, 180] and similar stud-

ies, the provided annotations include only the number of different tones or pitch

classes, rather than names of the scales. While theoretically possible, naming the

scales would offer little insight and could even be misleading in relation to the ac-

tual object of observation, as well as would unnecessarily impose labels foreign to

that particular music practice.
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FIGURE 2.3: This figure illustrates various methods for annotating scale degrees, presented
from top to bottom. These include representation as C-major as a single descriptor, or rep-
resenting each scalar degree alphabetically; using a solfege-based system (with “do” indi-
cating either the first degree of any scale or fixed to a specific pitch, such as C, regardless of
its position in a scale); through scale degree notation; enumerated based on position within
the scale (using Arabic numerals or alternatively, Latin letters); depicted through chromatic
relationships (denoted as W for whole step, H for half step); and via intervallic relationships,
specifically showing only major seconds (M2) and minor seconds (m2), among others.

FIGURE 2.4: This is a brief example of annotating chords with either scale degrees in a certain
key or by using the chord names. An extended version of harmonic annotations is seen in
Figure 2.5

Multidimensional Annotation Models and Protocols

Regardless of the content type—whether music collections, literary works, or other

forms of data—the principles of annotation have evolved to ensure the accessibil-

ity, preservation, and usability of cultural and musical data. Unlike simpler annota-

tion approaches, multidimensional annotations connect multiple hierarchically varied

musical events, condensing them into a single annotation (per score) or a bundle of

annotations (per corpus).

Digitised material gains substantial value when it transcends the role of mere

“storage” and becomes a foundation for computational processing and research ac-

tivities such as searching, analysis, and generation. Achieving this potential, partic-

ularly with diverse datasets or corpora, often requires robust annotation protocols

and models.

One such model is the International Committee for Documentation Conceptual
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FIGURE 2.5: An example of a polyphonic Slovenian folk song variant titled Prisilno daleč
omožena / Forcibly Wed from Afar, sourced from the archives of the Ethnomusicology Institute
ZRC SAZU, with harmonisation by Franc Kramar. The figure illustrates various methods
of annotating musical elements, including strong beats (indicated by green arrows), types
of cadences (PAC=perfect authentic cadence), and two methods of annotating harmonic de-
grees (Figure 2.4). Additionally, phrase labels (ABB') are shown. While a polyphonic song
provides a solid basis for annotating harmony, this approach may not always be feasible or
appropriate.

Reference Model (CIDOC CRM), which provides a framework for representing com-

plex spatial, temporal, and conceptual relationships within cultural heritage infor-

mation. While CIDOC CRM is model-agnostic and not inherently tied to any specific

implementation language, it can be used with the OWL (Ontology Web Language)

[201] to support formal ontological reasoning and semantic web applications. Intro-

ducing RDF (Resource Description Framework) at this point is essential, as OWL is

meaningful primarily as a representation built on RDF. RDF allows for the encoding

of data in a structured, graph-based format, facilitating interoperability and seman-

tic enrichment.

The potential of these models is demonstrated in studies such as [94], where

OWL and CIDOC CRM are used to navigate diverse cultural heritage data, includ-

ing geographic toponyms, and systematically organise content based on its com-

plexity. However, while CIDOC CRM provides a broad and flexible framework, its

effectiveness depends heavily on specific use cases and implementations.

The semantic web’s approach to music ontology has been explored by various

authors [243, 240]. Some have noted that while ontological and taxonomical cate-

gories can cover many types of music data, more detailed labelling tailored to spe-

cific cultural and research contexts is often required. This can lead to (partial) data

incompatibility across studies, even when using the same reference models (e.g.,

CIDOC CRM, FRBR (Functional Requirements for Bibliographic Records)). Com-

patibility, therefore, is not merely a binary state but a layered and context-dependent

concept, influenced by the intended use of the models and the differing perspectives

and goals of each research initiative.

A prominent and longstanding structure in music data representation is MEI

(Music Encoding Initiative) [61, 252], along with its more recent extension, MELD

[318, 320] (Figure 2.6). While MEI primarily uses an XML-based format inspired by

the TEI (Text Encoding Initiative), MELD extends this by incorporating RDF, which
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is often encoded in JSON-LD rather than XML. This hybrid approach allows MELD

to leverage both MEI’s established methodologies for representing music notation

and RDF’s flexibility for linking diverse types of multimedia and metadata. Such

multidimensional annotation frameworks enhance transparency in corpus descrip-

tions and enable a precise definition of relationships between a musical piece and its

associated data, including metadata, album covers, videos, lyrics, and collections.

Although this thesis does not focus on constructing multilayered annotation sys-

tems, it recognises the significance of established systems in the field. These sys-

tems are particularly relevant to the organisation of materials on platforms such as

Dezrann (Section 3.4), where our data is stored and made available for interaction.

It is also of great importance for how the annotations are organised and sorted, with

or without these models.

FIGURE 2.6: The MELD semantic framework [318]. Annotations address music segments
embodied in a published score (MEI) resource. “A music-generic core is linked to but sep-
arable from domain-specific entities instantiating concrete music sections. (Top right) Key:
External ontologies in bold italics. frbr: Functional Requirements for Bibliographic Records
Core; ldp: Linked Data Platform Vocabulary; meld: MELD Vocabulary; mo: Music Ontol-
ogy; motivation: MELD-specific oa motivations; oa: Web Annotation Ontology; pop, popRole,
popSec: Pop music domain-specific semantics; prov: PROV Namespace; rdf: RDF Concepts;
rdfs: RDF Schema; skos: Simple Knowledge Organization System; so: Segment Ontology.”

Lastly, it is worth mentioning Measure Maps [100], a versatile and streamlined

format developed for representing bar-level information in digital musical scores.

This is one of the approaches, which enhances the accuracy and computational in-

telligibility of comparisons and analyses across various encodings. As an interopera-

ble standard, Measure Maps significantly bolster the functionality of detailed music

encoding systems such as MEI and others.

All these ideas relate to what Oliver Brown and others, particularly in cognitive

science and AI, discuss within the framework of conceptual spaces. In these multi-

dimensional spaces, broadly speaking, we perceive some objects as being closer to
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each other than others. Brown illustrates this with the example of pitch and har-

mony in music, where certain notes (such as octaves and fifths) are perceived as

harmonically closer than others (like semitones), despite their physical proximity on

instruments like the piano or guitar. The situation becomes vastly more complicated

when comparing different kinds of music, forms, and cultures. Therefore, it is clear

that these spaces, however broad, do not encompass every situation but rather pro-

vide an understanding of limited material within specific frames of music reasoning

[37].

2.4 Pattern Matching in Text Algorithmics

We are constantly seeking patterns to organise the data we perceive daily, whether

it pertains to ordinary tasks or complex scientific inquiries. One field that has sig-

nificantly advanced in pattern discovery is bioinformatics, which merges disciplines

such as biology, chemistry, physics, computer science, software engineering, mathe-

matics, and statistics to address the complexities inherent in vast biological datasets.

In bioinformatics, a wide array of computational, statistical, and programming meth-

ods are applied to model biological phenomena and tackle essential questions. No-

tably, standardised analytical frameworks, particularly in genomics, are utilised for

tasks like gene identification and related analyses, such as elucidating the genetic

underpinnings of diseases, distinctive adaptations, and desirable traits. These meth-

ods also aid in examining variations across populations and organising protein se-

quences.

Bioinformatics employs various modelling principles, including text mining, im-

age processing, and signal processing, to approach diverse data formats. These prin-

ciples have extended beyond biology and genetics to fields like clinical medicine,

agriculture, environmental science, pharmaceutics, finance, and digital humanities.

In digital humanities, they aid in tasks such as text analysis, historical research, lin-

guistics, speech recognition, audio compression, and music analysis. The latter,

which forms the central focus of this thesis, frequently employs string matching

or similar alignment approaches to identify patterns in melodic and rhythmic se-

quences.

This thesis will focus on two main types of pattern matching: exact and approx-

imate string matching (for extensive details on these, see [103, 62]). Initially, it will

provide a brief overview of selected pattern matching tasks in bioinformatics. Subse-

quently, it will explore how these methods can be adapted for music pattern match-

ing tasks in MIR. The selection between exact and approximate string matching de-

pends on the complexity of the task, as well as the type and context of the data used.

Each category encompasses several methods that differ in performance, capability,

and efficiency, achieving various levels of accuracy.
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In the following subsections, I will briefly describe each of the two categories,

accompanied by some examples. Initially, I will explore these categories within the

realms of text algorithmics, and subsequently, within the realms of MIR research.

The general task we address here is that, given:

• A pattern p of length m starting at position 1,

• A text t of length n starting at position 1,

We try to find all occurrences of the pattern p within the text t. This involves deter-

mining every position i in t such that the substring of t starting at i and of length m

is equal (or similar, see Section 2.4.2) to p.

2.4.1 Exact String Matching

There can be two further subdivisions of exact string matching8 - online and offline.

First, online exact string matching methods process the input text incrementally,

thereby providing immediate result without necessitating or storing and sorting the

entire text in advance. Some of the algorithms for this task are Aho-Corasick, Boyer-

Moore, Rabin-Karp and Knuth-Morris-Pratt (KMP).

Conversely, the offline exact string matching algorithms, which typically pre-

process (and store) the text, utilising data or indexing structures such as suffix tries,

suffix trees, and suffix arrays. These structures allow for a more time efficient re-

peated searches within the same string structures. Suffix trees, for instance, facilitate

quick searches for substrings, while the Burrows-Wheeler transform (BWT) with

FM-index is especially useful for rapidly matching patterns in large, compressed

text databases.

Online String Matching

Knuth-Morris-Pratt (KMP). One of the most known algorithms for this type of

pattern discovery was proposed by Donald Knuth, James H. Morris and Vaughan

Pratt [138, 63]. The idea behind their algorithm is that upon encountering a mis-

match after a series of matches, there is already knowledge of certain characters

in the text for the subsequent window9. This allows the algorithm to bypass re-

matching the characters that are guaranteed to match, thereby enhancing the search

process.

First, KMP pre-processes the pattern p to create a partial match table, which in-

dicates the longest proper prefix10 of the substring p[1...m] which is also a suffix11

8The categorisation presented here is not the sole method for distinguishing between various exact
string matching algorithms. An alternative categorisation, accompanied by explanations of several
algorithms discussed in this chapter, can be found in [108].

9In this context, the “window” refers to the current segment of the text that is being compared to
the pattern as the algorithm slides the pattern across the text.

10A “prefix” here is any substring that starts from the beginning of the pattern and extends to any
intermediate point.

11A “suffix” is any substring that ends at the end of the pattern and begins from any intermediate
point.
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of this substring. Then, in contrast to naive approaches12, it uses the partial match

table to skip unnecessary comparisons in the string t (Figure 2.7).

It operates with a worst-case time complexity of O(n + m), where n is the length

of the text and m is the length of the pattern. The space complexity for storing the

partial match table is O(m).

FIGURE 2.7: An example of the KMP algorithm. A pattern p = abc is searched in text t
= abbcaabcbcabba. The algorithm initially checks from position 1 of the text t, and upon
encountering a mismatch at position 3, it shifts to the next possible position, allowing it to
resume matching from the third position onward. Consequently, the algorithm successfully
identifies p at position 6 in t.

Rabin-Karp. It is another online exact pattern matching algorithm proposal by

Richard M. Karp and Michael O. Rabin, which employs hashing to search for one

or multiple patterns within a text [242]. It does so by calculating the hash of the pat-

tern and compares it against the hash values of substrings in the text of equal length

to the pattern. If a hash match is detected, due to collision handling, it performs a

verification of the match through a detailed comparison to finally confirm the ex-

act match. Unlike naive methods and similar to KMP (with its partial match table),

it allows the algorithm to filter out non-matching substrings quickly, reducing the

number of direct character comparisons (Figure 2.8).

This algorithm has an average and best-case time complexity of O(m+ n), where

m is the pattern length and n is the text length, and its worst-case complexity rises

to O(mn).

Offline String Matching

Suffix Trie, Suffix Tree, and Suffix Array. A suffix trie is constructed as an uncom-

pressed structure where each node represents a single character, with every suffix

represented as a path from the root. The time complexity for building a suffix trie is

O(n2), and the space complexity is also O(n2), due to the need to store each character

of every suffix separately.

12The naive approach to pattern matching involves straightforward, brute-force methods that com-
pare each element of the pattern to each segment of the text or sequence, without any preprocessing or
optimisation.
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FIGURE 2.8: An application of the Rabin-Karp algorithm, searching for the pattern p = abc

in t = abbcaabcbcabba. In both cases, the algorithm first calculates the hash values for the
query pattern p and the subsequences using predetermined hash values for each character:
a = 1, b = 2, and c = 3. For text t, the hash is computed for every 3-gram, meaning
a substring of length 3. For example, given a string of “abcdef”, the 3-grams are “abc”,
“bcd”, “cde”, and “def”. Within all hash values of trigrams of t, it detects four instances,
where the hash values match that of the query p. The algorithm then verifies these matches
by comparing each candidate subsequence (meaning each trigram, a portion of t) directly
with the query pattern p. Only those matches that also match the sequence of characters in
trigrams are returned as valid matches. Thus, in this case, the sequence “abc” is confirmed
wherever it appears exactly as such in the text - at position 6 of t.

On the other hand, a suffix tree (Figure 2.9, also [198]) is formed as a compressed

structure with branches for each suffix. The time complexity for building a suffix tree

is O(n), and the space complexity is also O(n), where n is the length of the string.

Third, unlike the suffix trie and tree, which are hierarchical data structures with

nodes and edges, a suffix array is a linear array of integers representing the starting

positions of the suffixes in lexicographical order (Table 2.1). The time complexity for

constructing a suffix array is O(n log n) or O(n) for constant size alphabet, using ad-

vanced algorithms, while the space complexity is O(n). A more detailed description

of variations of such arrays was provided by [63].

Burrows-Wheeler Transform and FM-index. Burrows-Wheeler Transform (BWT)

algorithm [41], also known as block-sorting compression [193], is used to compress

the input data. It re-organises the characters of a text in a reversible fashion. Un-

like some of the other sorts, it has the ability for the original text (or string) to be

reconstructed in reverse by storing only the data in the last column (observe the last

column of the sorted rotations in Table 2.2). The transformed text, denoted BWT(t),

is composed by concatenating the final characters from each lexicographically sorted

cyclic rotation of t (Table 2.2). This transformed text is not only easier to compress

but can also be efficiently stored using nHk(t) + o(n) bits, where Hk is the k-th order

empirical entropy of t [253]. Its convenience and potential applications as well as

optimisation were reviewed, explored, and extended by [193, 3, 257, 253], among

others.

Building upon the BWT, the FM-index (Full-text index in Minute space) by [81,

80, 280], integrates a count table C and a function Occ(p, i). The table C[p] counts lex-

icographically smaller letters of each character, and Occ(p, i) tracks the occurrences
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FIGURE 2.9: An offline pattern matching algorithm searches for the pattern p = abc in a
suffix tree of t = abbcabcabba$. Appending “$” (or any other “special” symbol) to the
string ensures proper lexicographic ordering of suffixes, makes all suffixes unique, ensures
correct ranking, and clearly defines the end of the string for pattern matching. From this
string, we first build a suffix tree (as opposed to a suffix trie, where each character in the
suffix is a node, and each suffix is a path from the root), where, to achieve linear space
complexity, labels of branches are pairs indicating the starting position and length of the
substring they represent, rather than storing each substring explicitly. This way, the space
used is proportional to the length of the string, not the number of suffixes. The algorithm
starts at the root and progresses to p1=“a”. It follows the nodes of t down the branch by
progressing through letters in p, until matching all letters of p with (a part of) t. Due to its
efficiency, the algorithm only needs to iterate through 2 nodes until finding the exact starting
position (5) of p in t.

of p up to position i in BWT(t) (see Tables 2.3 and 2.4). This architecture enables effi-

cient pattern searching through fast backward searches and substring queries with-

out fully decompressing the string. The FM-index optimises both time and space,

performing searches in O(m) time, where m is the length of the query p and n is the

length of the text t, while requiring less memory compared to earlier methods.

The FM-index normally consists of BWT string, first column (F), or rather that (F)

represented by the count array (C) (Table 2.3), and/or the occurrence table (Occ) (Ta-

ble 2.4). The latter logs the frequency of each character in the BWT up to each index

i, which is used for dynamically determining character positions during backward

searches. The count array, if used, can tabulate cumulative counts of characters in

the BWT that are lexicographically smaller than each character, and facilitates swift

range calculations for backward search operations. However, given the potential for

high space consumption, these are frequently replaced by bit arrays as a less space-

consuming alternative to achieve similar functionality.

Thus, bit arrays (Table 2.5) can, especially when integrated with rank_c(w, i)13,

which calculates the number of occurrences of character c up to a specific position i in

13w= string, i = position
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Index Start Position

in t
Sorted Suffix

1 15 $

2 14 a$

3 5 aabcbcabba$

4 11 abba$

5 1 abbcaabcbcabba$

6 6 abcbcabba$

7 13 ba$

8 12 bba$

9 2 bbcaabcbcabba$

10 3 bcaabcbcabba$

11 9 bcabba$

12 7 bcbcabba$

13 4 caabcbcabba$

14 10 cabba$

15 8 cbcabba$

TABLE 2.1: Suffix array for the string t = abbcaabcbcabba$. Searching the pattern p = abc

by using the suffix array, starts at the first position (position 6 in t) at index 6, and in other
positions at index 3, index 5, index 9, index 10, and index 13. To find the exact occurrences
of p, we start the binary search for the substring abc within the suffixes listed, and then
locate the suffixes that start with abc by checking the sorted suffixes. For example, we begin
by comparing abc with the middle suffix in the array. If the suffix matches, note the position.
If the suffix is lexicographically smaller, move to the upper half of the array, or else, if the
suffix is larger, move to the lower half of the array.

the string w, replace the aforementioned components (an example of that is exempli-

fied by the functions available in the SDSL library [93]). Rank operations determine

the number of occurrences of a character up to a specified position, such as using

rankb(“abacabcaaca′′, 10) = 2 to count how many times b appears up to the 10th

position in a selected string, while select operation finds the position of a specific

occurrence, for example, selecta(“abacabcaaca′′, 3) = 5 identifies the position of the

third occurrence of a.

While both approaches offer distinct benefits, bit arrays equipped with rank and

select structures may sometimes prove more space-efficient than an FM-index built

out of count, particularly when handling texts in which certain characters occur in-

frequently or when the alphabet size remains relatively modest—such as in text se-

quences encoding up to 12-tone melodies.

2.4.2 Approximate String Matching

When discussing approximate string matching, which implies that our pattern query

p may only partially match the string t due to variations in length, additional or

fewer characters, among other factors, three primary considerations emerge. First,

there are the metrics, which broadly quantify the differences between the two strings,

describing how close or distant the compared strings are.
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Cyclic Rotations Sorted Rotations

abbcaabcbcabba$ $abbcaabcbcabba

bbcaabcbcabba$a a$abbcaabcbcabb

bcaabcbcabba$ab aabcbcabba$abbc

caabcbcabba$abb abba$abbcaabcbc

aabcbcabba$abbc abbcaabcbcabba$

abcbcabba$abbca abcbcabba$abbca

bcbcabba$abbcaa ba$abbcaabcbcab

cbcabba$abbcaab bba$abbcaabcbca

bcabba$abbcaabc bbcaabcbcabba$a

cabba$abbcaabcb bcaabcbcabba$ab

abba$abbcaabcbc bcabba$abbcaabc

bba$abbcaabcbca bcbcabba$abbcaa

ba$abbcaabcbcab caabcbcabba$abb

a$abbcaabcbcabb cabba$abbcaabcb

$abbcaabcbcabba cbcabba$abbcaab

TABLE 2.2: Cyclic Rotations and Sorted Rotations of abbcaabcbcabba$ with BWT
(abcc$abaabcabbb) highlighted in bold.

Component Value

First Column (F) $aaaaabbbbbbccc

BWT abcc$abaabcabbb

Count Array (C) C[a] = 1, C[b] = 6, C[c] = 12, C[$] = 0

TABLE 2.3: FM-index Structure for abbcaabcbcabba$. It stores BWT as well as count array
(C), C[p] counts lexicographically smaller letters than each character in BWT up to any given
position (retrieved from the first column (F), see rotations in Table 2.2). Meaning, C[$] = 0,
because there is no character smaller than $, C[a] = 1, because there is only 1 occurrence
of 1 character smaller than a, and so on. FM-index also stores the occurrence array (occ) as
displayed in Table 2.4.

Following these, two broad types of algorithms for the approximate matching

problem were gradually developed. First, the exact solutions, which provide a precise

answer by computing the edit distance or the exact number of operations required

to transform the pattern into a substring of the text (or vice versa). Conversely, ap-

proximations estimate the string rather than determining the exact measure. The lat-

ter, unlike exact solutions, are much less computationally demanding, as they can

significantly reduce computational requirements, especially when dealing with ex-

tensive datasets. However, they compromise a degree of precision, rendering them

potentially unsuitable in certain contexts.

Metrics

Richard Hamming introduced the so called Hamming distance, a “geometrical model”

for the 2n points in {0, 1}n space. It is a metric by setting D(p, t), both of the same

length, to equal the number of coordinates, where pi ̸= ti, effectively counting the

substitutions required to change p into t.
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Index a b c

1 1 0 0
2 1 1 0
3 1 1 1
4 1 1 2
5 1 1 2
6 2 1 2
7 3 1 2
8 4 1 2
9 5 1 2
10 5 2 2
11 5 3 2
12 5 4 2
13 5 5 2
14 5 6 2
15 5 6 3

TABLE 2.4: The cumulative frequency of each character a up to position i in the BWT string
T of initial string t, where T = abcc$abaabcabbb and t = abbcaabcbcabba$. Each entry occ(c,
i) in the table for a character c at position i is calculated as: occ(c, i) = occ(c, i-1) + 1, if the
character at position i is c, otherwise occ(c, i-1).

Index BWT BA (“a”) BA (“b”) BA (“c”)

1 a 1 0 0
2 b 0 1 0
3 c 0 0 1
4 c 0 0 1
5 $ 0 0 0
6 a 1 0 0
7 b 0 1 0
8 a 1 0 0
9 a 1 0 0
10 b 0 1 0
11 c 0 0 1
12 a 1 0 0
13 b 0 1 0
14 b 0 1 0
15 b 0 1 0

TABLE 2.5: This table shows an example of bitarrays (BA) for characters a, b, and c in
abcc$abaabcabbb. The method is an alternative approach to the occurrence array (Occ)
(Table 2.4). It can be used to efficiently mark specific positions of characters and enable
rank/select operations within the BWT.

As summarised by [22], Vladimir Levenshtein [175] expanded the concept to

incorporate insertions and deletions in addition to substitutions. This was further

developed to include transpositions or swapping, as introduced in [66], and is now

known as the Damerau-Levenshtein distance. The Levenshtein distance (Figure 2.10)

counts the minimum number of these operations needed to transform p into t, and in

the Damreau-Levenshtein version, also considers counting reversals, which involve
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interchanging the order of two adjacent symbols.

The Levenshtein distance leva,b(i, j) is computed as:

leva,b(i, j) =
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otherwise.

where:

• a: The first input string.

• b: The second input string.

• i: The current index in the first string a.

• j: The current index in the second string b.

FIGURE 2.10: Two examples of the Levenshtein distance (or edit distance). Using the de-
scribed method, we can compute the minimum number of deletions, insertions, or substi-
tutions required to align p with t or to transform p into t. In the first example, only one
substitution is required, resulting in a distance of 1. In the second example, one substitution
and one insertion are necessary, yielding a distance of 2.

Apart from Hamming and Levenshtein distance, there are other types of edit

distance approaches, such as the longest common subsequence (LCS), which also com-

putes insertion and deletion, but does not include the substitution, the Jaro distance,

which only considers transposition, and others.

Exact Solutions

Expanding upon simple metrics of computing distances between two strings, other

algorithms compute the cost or score differences between two text sequences and

also consider their context14. This allows the scoring system to become more com-

plex and adaptable to different scenarios, meaning that the cost of a substitution

could be adjusted to be more “costly” than an insertion, if that is sensible for the

specific case. These algorithms are typically implemented using dynamic program-

ming and can accommodate both global and local variations or alignments.

14In text sequence comparison, the cost/score quantifies differences based on operations like inser-
tion, deletion, and substitution. Advanced algorithms may also consider the context of these differ-
ences and adjust the scoring system, accordingly.
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The first of the two approaches is best represented through the Needleman-Wunsch

algorithm [216]. It was designed for the alignment of the entire text from start to end.

Similarly to distance metrics, it initialises the first row and column of a matrix based

on gap penalties, and then fills in the rest of the matrix based on scores calculated

from matches, mismatches, and gaps. The goal is to find the highest possible score,

which represents the best way to align the entire text sequence (Figure 2.11).

FIGURE 2.11: An example of the Needleman-Wunsch algorithm for global sequence align-
ment, using sequences abcaaba and babca. This method uses a scoring system instead of
distance metrics (like in Levenshtein distance) to determine alignment. The matrix calcu-
lates alignment scores based on a scheme of +1 for matches and -1 for mismatches or gaps,
initialized with sequential gap penalties. Scores are derived from the best values of neigh-
boring cells (left, top, or diagonal top-left), with red diagonal lines indicating the optimal
alignment path from the matrix’s start to the bottom-right cell, where the total score (1) rep-
resents the best alignment.

Resembling Needleman-Wunsch, the Smith-Waterman algorithm [282], developed

11 years later, supports both global and local alignments. Specifically tailored for lo-

cal alignment, it identifies regions of similarity within longer text, making it particu-

larly effective for aligning the pattern or text wih multiple subsequences within the

initial text. The matrix used is quite similar to Needleman-Wunsch, but, unlike its

predecessor, it allows for scores to be reset or for negative scores to be zeroed. This

feature enables alignments to start and end anywhere within the text, ultimately

pinpointing the best local alignment (Figure 2.12).

Both algorithms are highly accurate for text sequence alignment tasks; however,

due to their matrix-based approach, where the computation of each cell alone is

computed in constant time, the overall time complexity of these algorithms is typi-

cally quadratic. Consequently, they are computationally expensive and impractical

for large-scale applications unless modified. Alternative approaches are often used

in such cases, but these typically involve other compromises, such as reduced “ac-

curacy”.
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FIGURE 2.12: An example of Smith-Waterman algorithm for local sequence alignment, using
sequences babcab and abac aligned vertically and horizontally, respectively. The matrix ini-
tialises with zeros and computes scores based on a pre-set scoring scheme of +1 for matches
and -1 for mismatches or gaps. Each cell’s score is derived from the maximum of three possi-
ble predecessors (left, top, or top-left diagonal), adjusted by the match or mismatch penalty.
Among others, we display 3 possible alignments, all scoring in 2. The first two (blue and
orange) display alignment of a short substring (ba or ab) without indels or mismatches. The
third, red diagonal lines indicate the optimal path of the two substrings abac and abc, where
one insertion or deletion, thus one indel, is required for alignment.

Approximations

As previously noted, algorithms that provide exact solutions are often computa-

tionally intensive. Therefore, approximations are commonly employed in pattern

matching tasks. Most widely used algorithms for this approach simplify the decision-

making process by employing heuristics. Alternatively, some algorithms may begin

with a potential solution and be iteratively refined. The particular methodology was

not the primary focus of the pattern matching task in this thesis; thus, the description

of these algorithms will be relatively brief.

One of the possible executions for such pattern matching is BLAST (Basic Lo-

cal Alignment Search Tool) [6]. This tool performs text sequence alignment queries

against both public and personal databases through web-based interface, applica-

tion, or by using the BLAST code, of which many low-level functions can perform

independently from the provided interface [188]. As reviewed in the cited hand-

book, BLAST uses heuristic algorithm to identify the local alignments. It details

on each pairwise sequence alignment starting with the sequence identifier and a

full definition line followed by the length of the sequence, and provides both the

E-value15, and bit score16 with additional information on the number of identities,

substitutions, and gaps. The alignment is visually laid out with the query sequence

on top, the text sequence below, and markers such as dashes for gaps and pluses

for substitutions, designed to facilitate human readability and quick analysis. As

15E-Value: The e-value quantifies the number of expected hits by chance when searching a database,
serving as a measure of the probability that a particular sequence alignment is significant. Lower
e-values indicate more significant alignments [188].

16Bit Score: The bit score measures the statistical significance of a sequence alignment, with higher
scores indicating greater similarity between sequences. Scores below 50 are generally considered un-
reliable [188].
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observed by [200], however, BLAST is no exception when it comes to trading off

between speed and sensitivity.

A faster and more sensitive search tool for sequence alignment PatternHunter

proposed by [187] uses a seed-based heuristics approach, where the seeds (or small

instead of larger search strings) are optimally spaced between one another. Unlike

BLAST, which typically uses contiguous (successive) k-mers (substrings of length k)

as seeds, PatternHunter uses alternating k-mers. For example, it selects every 11th

letter as part of a seed pattern. This alternative seeding strategy helps in skipping

over certain positions, potentially offering a different sensitivity and specificity pro-

file in detecting sequence similarities. It follows a two-step analysis process as well

as has the ability to use multiple seeds simultaneously, both of which increase the

algorithm’s sensitivity. Similar solutions were proposed by FASTA [178], BLAT [132],

and similar.

2.5 Pattern Discovery and Matching in MIR

Music pattern analysis in the field of MIR is extensively studied. The challenges

of this topic extend beyond algorithms, encompassing diverse music forms, repre-

sentations (signal, symbolic, or textual), extended music content, and cultural meta-

data. In music, as well as in other cases, a pattern usually describes an event—be

it a melodic or rhythmic sequence, repeated words or phrases in lyrics, metadata,

or other elements—that is repeated more than once. There is no single definition of

a music pattern, as this heavily relies on what we understand as music, what we

consider as events in that music, and what we recognise as repetition (see [53] for an

extended overview of this matter).

When considering symbolic music representation, such as music notation, au-

thors addressing the pattern matching problem generally rely on existing or adapted

principles in music theory and music analysis [51, 5, 247, 43, 165] by focusing on mu-

sic elements such as structure (phrases, parts, etc.), melody, harmony, and rhythm.

It can consider them individually, in pairs or as multi-dimensional objects.

When working with these music materials, MIR is covering a large palette of

tasks, which either relate to pattern discovery/inference, pattern matching or com-

paring sequences. All of these depend on how the music elements are represented.

Thus, these processes begin by encoding the music data representations into single-

dimension strings of symbols, such as basic symbolic strings or slightly more complex

indexed structures, such as n-grams, suffix tries and trees, as well as suffix arrays

and compressed structures, such as BWT with FM-index. On the other hand, there

are multi-dimensional object that cover anything from tuples (pitch, time) and few-

parameter schemes to larger models mentioned in (Section 2.3.1). These can be struc-

tured as a set, but also as geometry-based schemes.
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2.5.1 Single Dimension Pattern Discovery

This category focuses on single-dimension pattern discovery and related tasks. It is

challenging to clearly distinguish between different representations and approaches,

as many studies, while concentrating on a specific task, often engage in supplemen-

tary research activities such as classification, encoding, annotation, supplementary

analyses, and similar. Additionally, discussing pattern discovery or matching in

isolation is not practical, as the objectives in MIR, such as archiving, comparing

datasets, identifying patterns within a single dataset, or optimising algorithm ef-

ficiency, can vary significantly from one study to another. Nonetheless, based on the

discussions in Sections 2.3 and 2.4 on music data representation and general pattern-

related tasks, this section will be divided into three subcategories with intention to

summarise the topic as systematically as possible.

First, dynamic programming for single-dimension string matching breaks the prob-

lem into simpler sub-problems, solving each once and storing the results. This

method is effective for sequence alignment, using matrices to efficiently compute

optimal alignments. Notable examples include the Needleman-Wunsch and Smith-

Waterman algorithms, previously acknowledged in Section 2.4.2. As already men-

tioned in that section, while these methods prove useful for pattern matching tasks,

they usually run in quadratic time, meaning they are not especially time-efficient.

In contrast, indexing structures like suffix trees, suffix arrays, and inverted indexes

pre-process the text to create a data structure that allows for fast pattern searching

and retrieval. These structures enable quick lookups by efficiently organising the

data, making them ideal for large databases and repeated queries. These can be as

time-efficient as linear time.

Additionally, n-grams and k-mers are often used in conjunction with indexing

structures to break sequences into smaller parts, and potentially, if used in such (or

similar) manner, further enhancing the speed and accuracy of pattern matching.

Dynamic Programming

Dynamic programming techniques, such as the Longest Common Subsequence (LCS)

and edit distance algorithms, are often employed to efficiently compare and align

these sequences, accommodating variations and transpositions. By leveraging these

methods, researchers can uncover recurring motifs, thematic material, and structural

similarities within musical compositions.

One of the most well-known and at the same time one of the early computa-

tional approach for sequence alignment of monophonic melodies in MIR was done

by [208]. They used and extended the Levenshtein distance to accommodate music-

related scenarios (Figure 2.13).

Other examples are based on exact solutions for local and global alignment, such

as Smith-Waterman and Needleman-Wunsch. Although originally utilised in text

algorithmics for sequence alignment, they offer good robust methods for pattern
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FIGURE 2.13: The Mongeau-Sankoff method [208] extends the concept of approximate pat-
tern matching (Section 2.4.2) to melodic sequences by considering both, pitch and duration.
Unlike, for example, the Levenshtein distance, it also includes operations such as consoli-
dation (replacing several elements with a single one; for instance, the second and third unit
in upper example to a single note unit in bottom example) and fragmentation (replacing a
single element with multiple), in addition to the standard operations of deletion, insertion,
and replacement.

matching tasks in MIR. I will highlight two examples. that utilised the Needleman-

Wunsch algorithm. First, [263, 266], detailed in Figure 2.14, compared Japanese

and English folk song melodies, while the second [307, 150, 306, 29, 124, 305], par-

tially detailed in Figure 2.15, have conducted pattern marching on several studies

on Dutch folk song corpus, focusing on the phenomenon of tune families. Authors

of the latter explored the distance measure of melodic similarity through different

variants of local and global alignments.

FIGURE 2.14: This paper [266] explored the similarities between Japanese and English folk
songs. (A) Two english folk songs as scores. (B) The same two songs represented as a se-
quence of alphabetic characters with marked differences (red for substitution, e.g., a note in
one example has to be substituted to match the first example, blue for insertion or deletion,
and bold/regular, to indicate whether the note function in each song is stroger or weaker).
Among other methods, they used Needleman-Wunsch algorithm, not only to pursue dis-
played score alignment, but to confirm that evolution of songs behaves very similarly across
both folk song types. By observing the dynamics of insertions, deletions and substitutions,
they indicated that the first tend to be more common than the latter in both cultures. The
substitutions are, on the other hand, more likely to occur between neighboring notes.
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FIGURE 2.15: The proposal by [150] treats musical scores as sequences of multi-feature repre-
sentations. In addition to pitch and duration, it considers features such as score time, accent,
and bar. Their pattern discovery algorithm, based on an extended version of the Needleman-
Wunsch algorithm (Section 2.4.2), applies single substitution scoring functions (focused on
individual melodic features), combination functions (that can align multiple features simul-
taneously), and gap penalty functions. The pattern matching aims to identify tune families
in Dutch folk songs, using previously manually identified “average” representations of each
expected family. (Right) Image indicates the matches to the uppermost score to the 3 incipits
below, in order of resemblance as sorted by the algorithm.

Pattern Indexing

Indexing approaches are a relevant continuation of the methods described above,

as they are able to involve more information, as well as allow for a more varied

approach and faster searching.

Suffix Tries, Trees & Arrays. These structures exhibit improved time efficiency

compared to non-indexed string configurations. By storing varying amounts of

data, they eliminate the need for redundant information storage with each iteration.

The sequential musical data is thus represented in a tree-like or comparable indexed

structure, ensuring optimal data management and retrieval.

A very early example in this direction is [125], who executed approximate sequence-

based pattern matching by employing suffix arrays to identify all transpositions,

inversions, retrogrades17, and retrograde inversions18 of melodic segments across

Palestrina’s masses, allowing for the detection of varied forms of core melodies.

17Jeppesen defines a retrograde as a musical sequence that is played in reverse order. This means
taking a melodic line and playing the notes from the end back to the beginning, thus creating a mirror
image of the original sequence in time.

18Jeppesen’s retrograde inversions involve reversing the order of a musical sequence while also in-
verting the intervals. This means that not only are the notes played backward, but the direction of each
interval (up or down) is also reversed. For example, if the original sequence goes up a major third, the
retrograde inversion would go down a major third at the corresponding point in the sequence.
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Burrows-Wheeler Transform (BWT) in Music Information Retrieval (MIR). As

previously discussed in Section 2.4.1, the BWT [41, 193, 3, 257] paired with the

FM index [280] enhances text compressibility and search efficiency for string-based

pattern matching. As a methodological extension of the previous two approaches,

this method is advantageous for rapid retrieval, particularly in the context of music

streaming services and digital libraries. However, it has seen very limited applica-

tion in music research.

One music-centred study [47] utilised this for the hierarchical sorting of music

by genres, composers, and similar categories. Further extending its application to

music pattern analyses, [27] demonstrated how BWT and its inverse (iBWT) are use-

ful in both analysing and generating rhythmic variations, thus proving invaluable

for systematic organisation and creative composition in music. Additionally, the po-

tential of the BWT for rhythmic, melodic and audio signal analysis is recognised in

[317, 27, 333]; however, those studies do not directly apply BWT to music.

N-grams. Another approach is to consider the n-grams, a rather common tech-

nique in computational musicology [209] that derives from the field of computa-

tional linguistics (similar to k-mers in bioinformatics and related fields). It has been

widely used in statistical natural language processing, as well as in music research.

In the latter, it usually proceeds to divide musical sequences into overlapping events,

facilitating both exact and approximate string matching. For exact matching, these

substrings enable segment-by-segment comparison, streamlining the search for iden-

tical sequences. In approximate matching, n-grams quantify similarity by counting

the overlap of these substrings between sequences, allowing for a defined tolerance

of variation. This method is used to handle specific variations in musical data, such

as slight deviations in melody or rhythm [233, 329, 153, 328].

To detail one example, [302] uses the n-gram (or note) indexing and hashing by

first splitting numerous music sequences into smaller n-note segments. This method

allows for approximate matching, accommodating variations in musical sequences,

which is essential for robust music retrieval in large databases. The use of hashing

and indexing enables searches to be conducted in sub-linear time, making it partic-

ularly effective for searching through extensive music collections.

Another instance is the Melodic Signature Index (MSI) from the NEUMA project

[57]. Their system supports both exact and approximate string-based searches using

an algebraic signature-based index for efficient pattern matching across large mu-

sic databases. It uniquely handles transposition and rhythm adjustments in exact

searches, as well as employs a similarity function for approximate queries (Figure

2.16).

Adapted to variation and changes in music, skipgrams allow for the inclusion of

non-adjacent elements in sequences, capturing relationships between items that are

not directly contiguous. This capability is particularly valuable in music analysis,

where it enables the identification of patterns and structures in polyphonic music



2.5. Pattern Discovery and Matching in MIR 39

FIGURE 2.16: Figure 3 in [57] demonstrates an exact search method for matching sequences
of pitch intervals akin to a given pattern p, whilst disregarding rhythm. The pattern p is
preprocessed to generate three signatures: the initial n-gram s1, the final n-gram s2, and the
intermediate section sp that follows s1. By hashing s1 and s2, one identifies records matching
these signatures, and only considers pairs of records in the same voice and at the appropri-
ate distance based on offsets. It should be noted that although this thesis typically uses p
and t for pattern and text comparison, this figure retains the original annotations for easier
reference to the original paper, thus substituting t with s.

that involve non-simultaneous events. This extended version of n-grams, displayed

and described in Figure 2.17, was adapted by [82]. Skipgram architecture was also

proposed by [110]. The latter employed skipgram architecture of Word2vec to model

polyphonic music by treating segments of Beethoven’s piano sonatas as analogous

to words in text.

2.5.2 Multidimensional Tasks

Multidescriptor Tasks

A multi-parametric or multi-descriptor pattern matching employs a larger context

of a certain melodic event by including more descriptors, such as contour, rhyth-

mic values, onsets, cadences, as well as a number of metadata information. As it

considers multiple different representations of music, the methods of encoding and

pattern matching may be varied and/or combined (including the aforementioned

string-based pattern matching, n-grams, and similar).

Some examples in music research are [168, 167, 166, 165] (Figure 2.18), all of

which explored pattern discovery task through multi-parametric closed pattern and

cyclic sequence mining with a one-pass approach to efficiently identify complex,

repeating patterns, including heterogeneous patterns, in large datasets.
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FIGURE 2.17: In [82], authors proposed a pattern discovery algorithm, extending the n-
gram method by employing the so-called skipgrams. These constitute a method for iden-
tifying patterns within sequential data. The fundamental concept involves searching for
recurring sequences of items, wherein the items within a sequence need not be directly ad-
jacent. The skipgram algorithm operates by iterating through the input data one item at a
time, maintaining a record of “prefixes,” which are partial sequences that possess the po-
tential to be extended into complete skipgrams. For each item encountered, the algorithm
assesses whether it can be appended to any of the existing prefixes without exceeding a pre-
determined sequence length. If feasible, a new, elongated prefix is generated. Upon a prefix
attaining the desired length, it is classified as a skipgram and incorporated into the out-
put. (Left) A “voice-leading schema” (Figure 1 [82]) shown in two ways: (a) as a simplified
representation using scale degrees, and (b) as it might appear in an actual piece of music.
The notes in the schema do not all have to happen at the same time. (Right) Figure 2 [82]
shows an example of how skipgrams can be applied to polyphonic music. The highlighted
notes are a part of a skipgram, and the lines between them show the different “stages” of
the pattern. The distance between notes is measured by the time between their onsets. This
skipgram represents the same pattern as the schema in Figure 1.

In a different series of studies, Darrel Conklin et al. explore the possibilities of

describing music events by pitch, rhythm, and contour, as well as adding a number

of metadata classifications. Based on his earlier work [55], each sequence in the

corpus is stored to and searched within a suffix tree, they continue their research on

a corpus of Cretan folk songs [54], adding information on the so-called (super)type

and (super)area (for example, if syria is the area on a Cretan island, then east or west

part of the island would be super-areas), to further differentiate between rhythmic-

melodic patterns (Figures 1 and 2 in [54]).

Another example is the utilisation of the algorithm MGDP (Maximally Gen-

eral Distinctive Pattern), which originated from Conklin’s earlier study [51]. This

method identifies musical parameters that are strongly associated with a particular

genre, composer, region, or period, but are infrequent in other contexts.

While these examples were generally monophonic, Conklin also pursued a multi-

descriptor pattern matching on polyphonic music, especially counterpoint, by using

the vertical viewpoint technique on a pre-defined feature set (Figure 2.19).

He also extended his approach to analyse Basque folk songs, discovering pat-

terns within a specific “genre” by identifying anti-patterns (sequences less frequently

present in that sub-corpus) [49, 219]. This approach derived from [11] and has been

variably used to define patterns versus anti-patterns, or corpora versus anti-corpora,

across different datasets. Examples include the aforementioned Basque folk songs,



2.5. Pattern Discovery and Matching in MIR 41

FIGURE 2.18: Cyclic pattern matching. The two figures illustrate three examples of cyclic
representation and mining models by Olivier Lartillot, which consider repeating patterns as
cycles. (Left) The Figure 1 from [168] (a similar example is displayed in Figure 4 of [167]) sets
the initial pattern ABCDE as the basis for the cycles. As the music progresses, the pattern
is subjected to variations and embellishments, yet, due to its multi-dimensional description,
the underlying cyclic structure is able to persist. (Center) The Figure 11.9 from [165], the
three-note pattern GCEb repeats twice, establishing a cycle. The algorithm recognises this
and represents it as a single cyclic construct, simplifying the representation and avoiding the
proliferation of redundant patterns. It also adapts to variation, as in cycle 4 the interval (-5m)
is replaced by a more general descending contour (-), while in cycle 5, the algorithm adapts
the model to include the new regularity of the pitch Ab and the descending perfect fifth (-
4). (Right) A Figure 11.3 from [165] shows a trie-like pattern (Section 2.4.1) representation,
where the white dot is the root, while the other nodes are shown in black dots. Each note
description is beside its node, except interval descriptions, which are shown along the edges
between nodes. Arrows point from more specific to less specific patterns.

as well as Dutch folk songs studied by another research group [146].

Geometry-based Pattern Matching

A widely used approach for encoding data in multi-parametric pattern matching

within music is through geometry-based representation. This technique represents

musical features as geometric entities and utilizes distance metrics like Euclidean

distance or cosine similarity. By organising musical data into geometric spaces, these

methods facilitate tasks such as music similarity detection and content-based music

retrieval, allowing for efficient comparison and retrieval. Furthermore, advanced

techniques like nearest neighbor search and graph-based methods are particularly

effective in identifying similar patterns within polyphonic music collections.

For example, [204, 203, 205] proposed a method wherein musical scores were

transformed into multidimensional vector-based representations, treating each as

points in Euclidean space. They employed SIA(TEC), COSIATEC (Compression-

Oriented Suffix Array Interval Technique with Equivalence Class Transformation),

and SIAMESE (Suffix Array Interval Matching with Equivalence class Extraction

and Suffix Extensions) algorithms for approximate geometric pattern matching. These

techniques facilitate the detection of both complete and partial matches within the

dataset, with COSIATEC offering a more compact representation of significant pat-

terns.

In another example, [184] used a geometric representation of onset and pitch

of melodic segments (as MIDI). They pursued approximate pattern matching by

weight matrix W based on the score and the given weight function, which measures

deviations of the translated pattern from the score.
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FIGURE 2.19: This paper [56] applies a vertical viewpoint (VVP) technique, which uses a
feature set (left) to describe the bits of scores by using qual, (harmonic interval: cons (P1,
m3, M3, P5, m6, M6) and diss (other intervals)), time (temporal relationship between two
voices: st (starting together), b-sw (bottom voice starts), t-sw (top voice starts)), and bc, tc
to describe melodic contour of either top or bottom voice: ++ (leap up) , - - (leap down), +
(step up), - (step down), = (unison). The extracted patterns are then scored using an odds
ratio that compares their probability in the corpus with their probability in a background
model, to ensure the inclusion of distinctive rather than merely frequent patterns. For the
pattern discovery task, this paper applied 2 methodologies, antipattern method (they created
anticorpus out of contrasting pieces), and null model method, which estimated the probability
of patterns based on its constituent features in the corpus. Their technique was proved to be
rather efficient for exploring polyphonic music.

Next, [296] applied a stream segregation algorithm to a Johann Sebastian Bach

corpus to identify streams in music compositions represented as MIDI files. These

files are converted into musical graphs where vertices represent music notes, and

edges indicate melodic and harmonic relationships between the notes.

Then, [79] worked with a subset of scores from the Essen folk melody collection

[267], represented in multiple dimensions, including pitch, interval, content, and

contour. They performed (predominantly geometric) approximate pattern matching

using MDS (multidimensional scaling), which compared these multiple dimensions,

including pre-processed normalized melodic phrases and extracted contour vectors

(using equidistant sampling points).

Last but not least, [172] analysed polyphonic classical music, represented as a

set of points in an Euclidean plane (onset, pitch). They used exact and approximate

pattern matching of those points by geometric hashing and vector-based indexing.

2.6 Conclusion

This chapter aimed to summarise the majority of studies related to the topic of this

thesis. It began with an overview of ethnomusicological methods, leading to more

specific issues related to digital archives that support the thesis’s data collection, the

digitisation of materials along with their annotations, and the construction of the

analytical model.

The second part focused on supporting the computational methodology, high-

lighting general contributions in the field of text algorithmics as a basis for the cho-

sen methodology on music pattern discovery and related tasks.

The issues discussed in the first part will be further developed in the next Chap-

ter 3, where I will introduce the dataset of Slovenian folk song ballads, providing

primary explained analyses results and statistical information. These topics will
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also be partially addressed in the last Chapter 6, offering a critical discussion on

the integration of ethnomusicological studies within MIR, and vice versa.

The pattern-matching contributions, on the other hand, will primarily support

Chapters 4 and 5, where the main focus will be on introducing and evaluating the

developed algorithmic methodology for pattern matching tasks. This methodology

combines melodic sequences with descriptor queries, aiming to integrate knowledge

on the organisation of materials and, more importantly, to combine single-parameter

string algorithms with multiparametric pattern matching.
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Chapter 3

Dataset: Introducing Slovenian

Folk Song Ballads

Statement: This chapter includes an expanded contribution from my published paper at IS-

MIR 2023 [33] and a paper submitted to Ethnomusicology Forum [34].

This chapter provides a gradual exploration of the Slovenian Folk Song Ballads

dataset. It begins with a definition of key terminologies, including folksong, ballad,

and Slovenian, to establish a foundational understanding essential for the usage and

analysis of the data.

The text proceeds with a comprehensive introduction to the corpus. I first collect

the palette of thoughts that have been made on these songs to explain their histor-

ical context. Then, I detail the latest contribution we [34] made to the current, now

digitised dataset’s organisation along with a number of new annotations. This is

followed by statistical analysis of the dataset, offering insights into various patterns

and trends present in the established digital collection.

Additionally, a subsequent part is devoted to a commentary on music sequence

analysis, addressing potential misinterpretations of the corpus with supporting socio-

historical context on how these were transcribed and curated.

Finally, the chapter provides a detailed account of the dataset’s integration into

the Dezrann platform, outlining its organisational structure and accessibility for fur-

ther scholarly research and analysis. It also describes the scripts used to integrate

the corpus and its annotations into the platform.

3.1 Terminology

3.1.1 What is a (Folk) Song?

There are many different perspectives on what constitutes a folk song. Generally, it

is interpreted as an orally-transmitted song, composed of a melodic line and vocals

with lyrics, whose primary function revolves around human events. The definition

of a folk song has undergone a profound transformation, shaped by the scholarly

discourse that has evolved over the decades.
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Cecil Sharp’s collections regarded folk songs as valuable representations of na-

tional heritage, emphasising their preservation due to their perceived role in ex-

pressing the “authentic” national spirit [276]. However, Béla Bartók, through his de-

tailed study in Hungarian Folk Music [13], challenged this somewhat romanticised

perspective, presenting folk songs as complex and sophisticated structures that not

only inspired contemporary music but also demonstrated their merit for scholarly

attention, surpassing their value as mere cultural artefact.

In 1960s, Bruno Nettl broadened the scope, as he underscored their role in the so-

cial processes and the ongoing cultural transmission, moving away from the notion

of static musical pieces to vibrant elements of communal interaction [217].

Still in the 60s, the aforementioned Lomax [181] advanced the notion of folk

songs as deep-seated expressions of cultural identity, offering a novel lens through

his cantometrics methodology, which correlates song styles with cultural traits. This

marked a shift from viewing folk songs merely as musical expressions to recognising

them as intricate narratives intertwined with cultural practices.

Later on, Ruth Finnegan [85], further integrated the study of folk songs as the

dynamic field of verbal arts, portraying them as living components of oral traditions

that actively shape and are shaped by the narratives of community life.

Lastly, David Atkinson and Steve Roud [9], critiqued earlier conceptions and

presented folk songs as continually evolving entities. Their research highlighted

how these songs are not merely relics but are actively influenced by changing so-

cial contexts and media interactions, thereby enriching our understanding of their

adaptability and enduring relevance. Similar thought was later also adopted by

Rice [251].

These and other scholarly thoughts have collectively transformed the under-

standing of folk songs from static historical artefacts to viewing them as dynamic

cultural processes that both reflect and influence, but most importantly, are embed-

ded in the social practices.

Contrary to the common belief that a folk song emanates from communal cre-

ation, it is often the work of an individual who crafts it spontaneously, adopted and

repeatedly adapted by the community [156]. The content of the songs is made up

of everyday speech and familiar folk song formats, blending reality with imagina-

tive ideas on certain subjects, habits, figures, and similar. The portrayal of historical

events in folk songs, hence not a direct reflection but rather interpreted through the

lens of the people, adhering to the stylistic and expressive nuances of folk speech.

Melodies support the structure of lyrics, generally serving more as a carrier for

the words than as a musical illustration of the text. The alignment of the mood of

the lyrics with the melody is not typically a concern; it is regular for the melody

or lyrics to be interchangeable among different songs as long as they fit the metric

and rhythmic frameworks. And even then, minor adaptations are often made to

accommodate such (ex)changes [156].
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A significant distinction highlighted between “art” and “folk” songs is that the

melodies of the latter are not commonly transmitted through music notation, while

the lyrics may have existed in printed form. The ownership—and indeed, copy-

right—of these songs does not concern the creators [156]. This does not imply the

absence of an “original author”, but rather, due to the songs being adopted and

transformed by the people, that the concept of authorship and rights are not priori-

tised and practiced within these types of music things, at least not in the same sense

as this is practiced in the frames of artist (or composer) centered music (for example,

refer to [272]).

The transmission of folk songs across generations fosters a traditional yet non-

mandatory character. The life of a folk song lies between enduring tradition and

evolving genres, forms, and melodies. This dynamic is driven by the community’s

creative engagement, both in preserving accepted forms and in innovating new ones

[156].

Folk songs in Slovenia were formally classified as such after the Second World

War. Previously, they were commonly referred to as “national songs” or “songs of

the nation” (Slovenian: narodna pesem). The national emphasis gradually gave way

to the notion of the “folk” or the “people”. However, both terms, “national” and

“folk”, remain in use to this day.

In our case, I primarily refer to the type of folk song commonly recognised as a

ballad or narrative song, with our main reference being [95]. However, it is impor-

tant to note that much of what I describe before and in the following sections also

applies to a broader range of folk songs, as well as the practices involved in their

collection and preservation. Additionally, numerous folk song collections from dif-

ferent Slovenian regions have been compiled simultaneously, with ballads being just

one among many. To elaborate further on this specific type of folk song, I will ex-

plain the terminology and outline the most common features that define a folk song

as a ballad.

3.1.2 What is a Folk Song Ballad?

A folk song ballad1, also referred to as a narrative folk song, is one of the forms of

traditional folk music that tells a story through its lyrics. Originating in Europe, folk

ballads have persisted through the centuries, maintaining their relevance in com-

munities, where oral tradition remains strong [322]. There is a range of diversity

in form and content, which reflects the ballads’ evolution over time as being trans-

mitted verbally across generations, leading to numerous variations and adaptations

[322].

The role of a ballad is conveying cultural values and historical events, serving

as a means of preserving and communicating communal histories, societal norms,

and collective experiences. Apart from that, they also recount legends, fairy tales,

1For a deeper study on this topic, see also [254].
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family faiths, and anecdotes, showcasing a diverse range of subjects from romance

to tragedy and heroism [322, 89]. The form is usually concise, focusing on a pivotal

moment of action or conflict. Characters are sketched with minimal detail, with

their motivations and backgrounds often implied rather than explicitly described.

This brevity and directness contribute to the dramatic impact of the ballad, often

enhanced by incremental repetition and, in slightly newer examples, refrains [89].

The structure of a ballad is typically strophic, meaning it is divided into verses or

stanzas that follow a consistent, repetitive rhyme and meter scheme. This form fa-

cilitates recollection and oral transmission, which was especially crucial in cultures

with limited literacy or whose processes mainly relied on non-textual communica-

tion [89]. However, ballads have evolved over time, adapting to the social and cul-

tural contexts of different regions. For instance, while British and American ballads

are typically rhymed and strophic, other variations such as the Russian byliny and

Balkan ballads are unrhymed and unstrophic.

In 1966, Slovenian researchers officially adopted a common definition that “a bal-

lad is a song that tells a dramatically emphasised story [154]”. Additionally, Golež

Kaučič summarised various definitions and genre classifications in international

folklore studies, emphasising that “a ballad is defined through genre and tradition”

[131], as well as through previously mentioned oral transmission. Furthermore, as

found by the cited authors above, ballads dramatically recount the story of an event

and its outcome. They are embedded in the process of variant creation, maintaining

a dynamic relationship with the context, fulfilling specific functions within individ-

ual communities [131].

Donald Knight Wilgus [322] introduced a systematic method for categorising tra-

ditional narrative songs, particularly ballads. This type-indexing approach classifies

ballads based on their narrative content, themes, and structural descriptors. It con-

siders common themes such as love and betrayal, and formal elements like rhyme

schemes and stanza forms. This indexing method not only organised ballads for

easier study and comparison but also situated them within their cultural and histor-

ical contexts, providing a comprehensive tool for researchers in folklore, ethnology

and musicology. A similar approach was taken for the collection and curation of

Slovenian folk song ballads related to this thesis [95].

3.1.3 What is “Slovenian”?

Here, I will be concise. Instead of delving into a historical discourse on the shifting

borders of Slovenian territories, I will focus on defining what is considered Slove-

nian within the context of the collection this thesis incorporated. This approach en-

sures clarity in understanding the cultural and geographical parameters that frame

the collection’s contents, but does not provide the complexities of extensive histori-

cal detail.
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The perception of what should be collected as a Slovenian folk song, including

the folk song ballads in question, changed over time. Slovenia declared its indepen-

dence in 1991, and has territory-wise belonged to Habsburg monarchy, The King-

dom of Yugoslavia, FPR Yugoslavia (Federal People’s Republic of Yugoslavia), and

SFR Yugoslavia (Socialist Federal Republic of Yugoslavia), to name the most recent.

It was geographically, politically and otherwise structurally reshaped several times,

and with that, the thought of what is deemed as Slovenian, changed as well.

In the context of the collection, the classification labelled as “Slovenian” was fun-

damentally based on the Slovenian ethnic territory, eschewing contemporary na-

tional borders. It exclusively included songs in the Slovenian language (encompass-

ing dialects), and separately categorised variants found within Slovenian territory

that were sung in Serbian or Croatian [95].

The aggregation of songs was meticulously organised and analysed within the

framework of regions, such as Upper Carniola, Inner Carniola, Lower Carniola,

Styria, and Prekmurje. Predominantly recorded in rural settlements, these songs

and their variants capture a snapshot of cultural evolution from the 19th century to

today—some regions have experienced significant urbanisation, while others have

markedly stagnated and depopulated [95] 2 (see an example of displaying appear-

ances in different regions for a song type Nevesta detomorilka / Infanticide bride in Fig-

ure 3.1).

3.2 Corpus Introduction

Our collection features 402 Slovenian folk song ballads, sourced from the archives

of the Ethnomusicology Institute ZRC SAZU, compiled over various time periods

(Section 3.2.1). For the purpose of this thesis, we are releasing digitised scores, lyrics,

annotations, and available recordings. Currently, only the first verse of each ballad is

included in the digitised collection, although it is important to emphasise that these

ballads traditionally contain multiple verses3. Each melody-lyric pair has already

been categorised into thematic groups based on the lyrics [95], and further enriched

with detailed metadata and annotations.

One of the key contributions of this project has been curating and modelling both

the previously available and newly created data. This involved not only combining

information from various sources, but also re-organising and, as the new informa-

tion keep coming to light, re-adapting a significant amount of annotations to fit the

new framework. Additionally, we developed a robust system that allowed us to add

new annotations to the existing data. Annotations are structured into two main cat-

egories: the first describes the song as a whole (focused on the entirety of the first

verse), while the second details individual melodic phrases within each song.

2A comprehensive geographical explanation of the regional annotations with regional and
historically-informed maps can be found in the cited source.

3The full lyrics (all that an individual or a group of singers performed) are available in the physical
archives of the Ethnomusicology Institute ZRC SAZU and in [95].
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FIGURE 3.1: The figure displays an example from Slovenske ljudske pesmi 5 [130]. It indicates
the appearance spots of the song type Nevesta detomorilka / Infanticide Bride in different Slove-
nian regions with approximate dates. The legend was translated. The original can be found
in the cited source.

This section will introduced how the dataset is organised and what kinds of an-

notations it entails, which will be the basis for the provided the statistical informa-

tion. But first, it will focus on introducing the collection (and conservation) practices,

that had an (in)direct influence on the construction of the observed corpus, its digi-

tisation process and analysis.

3.2.1 Collection practices in Slovenia

The materials from the utilised dataset in this thesis, akin to those delineated earlier,

exhibit considerable diversity in terms of their provenance, content, context, and

other pertinent variables. The sketches, notes and transcriptions, along with subse-

quent recordings, span from the early 19th to the late 20th century. Throughout this

time period, discernible shifts occurred in the methodologies and technologies em-

ployed for data acquisition, inevitably impacting the present state of these materials.

Despite undergoing multiple instances of aggregation within similar repositories, all

of these materials did not inherently possess substantial commonalities from their

inception.
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The Pre-Recordings Era

Chronologically, the collection comprises songs from a period before sound record-

ing devices, mainly, only lyrics manuscripts from various smaller collections and

notes of ethnographers, linguists, travelers, and similar (for example, Emil Kory-

tko (1813–1839), Oroslav Caf (1814–1874), Anton Breznik (1881–1944), Matija Majar

Ziljski (1809–1892), ...).

However, many of these were included in a monumental collection by Karel

Štrekelj (1859-1912), and later Joža Glonar (1885-1946), who in 1895-1923 edited nu-

merous volumes of Slovenian folk songs titled Slovenske narodne pesmi. Glonar was

the first to sort them into thematic sections, where each song was assigned a number,

and first provided rules for lyrics transcriptions.

Štrekelj and Glonar opted for a simplified dialectal transcription corresponding

to the abilities of the transcribers, and the general public. The basic dialectal sys-

tem is in use until this day. Early collectors, lacking transcription skills, or due to

the collection manners and socio-political goals of the time, did not pay great at-

tention to melodic transcriptions, which were, hence, rarely considered. Glonar,

with a more detailed definition of a folk song, completed the collection process by

publishing a total of 8686 songs and 1944 units of “supplement material”, adding

introductory verses or stanzas, and what was not considered an authentic material

beforehand. Each song included the recording location in parentheses, while other

information was in footnotes (recorder’s name, location, sometimes date and time,

source, textual variations from unpublished versions). Despite several uncertain-

ties (what qualifies as a folk song, missing or inconsistent metadata), he encouraged

forming systematic collection regulations.

Earliest transcriptions of melodies deemed to be uncertain as well [151]. Those

of Franjo Kuhač (1834-1911), are mainly taken from the editions published in his col-

lections for voice and piano accompaniment (Kuhač 1878-1881), while Stanko Vraz

(1810-1851) only annotated sketches of the melodies. The few included in our collec-

tion, due to their unreliability (i.e., not matching the notations of the texts metrically,

rhythmically, and being melodically unusually transcribed), share little with the rest

of the materials and thus cannot be properly compared.

In 1906, when the Austrian government financed a large project of collecting all

folk songs (including melodies) of all Austrian lands, The Committee for the Collection

of Slovene National Songs with Their Melodies was established. The collectors, largely

amateurs, were summoned by a public call (OSNP 1907). They were given a set

of strict regulations [332], where it was especially stressed that the songs collected

should be transcribed as sung originally and not to be freely harmonised, neverthe-

less, a practice many collectors exercised (Franc Kramar and Ciril Pregelj [95]). It

was not allowed to interfere with the lyric, song structure, and not to transcribe the

tunes that resembled the ones which were previously collected. The latter, seem-

ing sensible at the time, unfortunately, disabled the tracing minor changes in song

evolution. This project was supposed to be based on a systematic foundation, but
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the inability to record the fieldwork, as well as the loose relationship of collectors

towards the regulations, made transcriptions unreliable. The editors of the collec-

tion had no supplementary material for re-evaluation of the, commonly, intuitively

collected data. Moreover, today’s user has to rely on both.

As the project concerned many different nations under a single Habsburg monar-

chy, it involved many socio-cultural, political, and methodological compromises.

These included establishing what was to be collected, considering song popularity

(“What constitutes a folk song?”), genre (ballads, work songs, lullabies, folk theatre,

...), “nationality” or the language of the material (German, Austrian, Slovenian, ...),

and song sorting (by lyrics, dialects, regions, ...) [214]. Many melodic transcriptions

by these transcribers seem simplified and/or inaccurately transcribed. For instance,

collectors mostly transcribed individual singers, not groups, leaving out otherwise

very rich polyphonic singing tradition [143]. It was not only the lack of skills but

conversely, also the thorough Western music education that interfered with the tran-

scription processes, favoring aesthetically more pleasing “Western-sounding” tune

harmonisations over the folk practices, hence such transcriptions cannot be consid-

ered as the “exact” reflection of the folk song of the time [155, 143]. Numerous pub-

lications of folk songs from the OSNP campaign underwent a series of redactions,

but the folk family ballads generally remained unedited (one example of the original

transcription from 1910 by Franc Kramar can be observed in Figure 3.2).

FIGURE 3.2: Transcription notes of the song Ta star purgar za mizo sedi (titled as “Micika” in
the notes), as transcribed by Franc Kramar. The song can be found in SLP 5 [95] as song
type 237 (Oče določa usodo hčere / A father determines his daughter’s fate) variant 3 (refer to
the example on Dezrann). This transcription, dated January 18th, 1910, includes musical
notation and the first, second, fourth, fifth, and sixth verses of the lyrics. The stamp on both
pages indicates that the transcription was prepared for the OSNP collection of folk songs, of
which the Slovenian contribution was curated by the Committee for the Collection of Slovene
National Songs with Their Melodies (Section 3.2.1).
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Phonograph Recordings Era

By the 1920s, folk song researchers aimed towards collecting both, notated melodies

and recordings, however, the road towards these practices was long. It was Štrekelj,

who “planned extensive and systematic recordings of folk songs and aimed to create

an archival sound collection of recordings on wax cylinders”. He prepared detailed

instructions for recording archiving and usage [161]. During that period, extensive

debates arose whether recordings should supplement or replace manual symbolic

transcriptions. These discussions primarily centred on preserving the “authentic”

folk song form [332], but also on resolving the accuracy of polyphonic annotations

and other transcription issues in music, for which the Western notation may be insuf-

ficient [161]. Initially, melodies or lyrics emerged independently, and subsequently,

as the research field evolved, these elements converged with additional metadata

information [214]. With technological progress, sound recording soon became feasi-

ble. However, the committee responsible for purchasing such devices initially failed

to understand the use of recordings beyond a “substitute” for lacking transcription

skills. Consequently, Štrekelj was not successful in convincing the Slovenian com-

mittees to purchase audio equipment in his lifetime, resulting in his work being

confined to symbolic music transcriptions [162, 161].

In 1914, Matija Murko (1861–1952) managed to acquire the first phonograph,

which Juro Adlešič (1884–1968) first used in that spring to record folk songs from

White Carniola [161]. The appearance of the phonograph brought about “a new

methodological approach to documenting and studying folk songs” [161]. From

then on, researchers did no longer have to complete their transcribing in real-time,

and informants did not need to repeat the song, as recordings allowed playback, en-

abling better transcriptions based on a single performance rather than approximate

live repetitions.

Researchers could shift their focus to performance styles, voice characteristics,

precise tempo, and non-tempered melodies, and even emotions and expressions.

This progress sparked new debates, like those of Stanko Vurnik (1898–1932), Valens

Vodušek (1912–1989), Zmaga Kumer (1924–2008), and Julijan Strajnar (1936) [143].

Through re-listening, re-recording, converting phonograph cylinders, and using new

-er tape recording devices after 1995 [160], they gained new insights of the collected

folk songs.

Nevertheless, aesthetic, moral, and political influences of that time continued

to shape decision-making processes, determining which songs should be collected

as “Slovenian”. If they were deemed not “authentic” enough, the songs were ex-

cluded from the collection and further research. It was the fusion of the concept of

“authenticity” and cultural nationalism [20] that was present in the methodology of

collecting folk songs in the Slovenian space.

The developing recording media, however, had a great control over the quan-

tity, length and quality of information, and the amount of (acoustic) data (e.g., less

capable medium forced one to favour shorter over longer examples, to be selective
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of what to record, whether to interrupt the performance), and to cut out conversa-

tions with the singers. The more mundane the media and the evolved the fieldwork

practice (see some photographs of fieldwork in Slovenia in Figure 3.3), the more sub-

ject‘s attitude towards the presence of technology and researchers changed, which

influenced the performance as well.

With persistent fieldwork and methodology evolution, researchers strongly ad-

vocated for a comparative approach. Vodušek streamed towards incorporating el-

ements like context, phonetics, and lyrics. Following the global trends [206, 180],

Vodušek pushed beyond material preservation practices for two reasons. First, he

considered music a non-static phenomenon, and second, he claimed that to define

Slovenian folk song, one must compare it against presumably non-Slovenian mate-

rial [310]. At the time, several “musical” issues persisted with the recordings [179],

but on a larger scale, similar thinking triggered changes in material collection, con-

servation, and methodology.

FIGURE 3.3: Two different photographs of Marko Terseglav’s (1947-) fieldwork from (Up)
1975 and (Down) 1987 (Source: Etnofon).
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Digital Era

Recording processes eventually developed, not only in the scope of field record-

ing, but also in terms of transcribing, reproducibility and accessibility. Gramophone

records, then CDs, later digital formats such as .mp3, .wav, digital archives, YouTube,

Spotify, and other audio-visual platforms, provoked the re-thinking of the conserva-

tion practices and research, in general. The need for the digital required the physical

materials to be consistently (re)organised. Hence, Drago Kunej and Rebeka Kunej

systematised the protocols for collecting (recording and archiving) [163], analysing

and digitising music material [291].

There have been several projects that have made folk songs digitally available,

such as radio broadcasts (RTV - internal archive, podcast Slovenska zemlja v pesmi in

besedi), a YouTube channel of the Ethnomusicology Institute ZRC SAZU and other

institutes, as well as scientific projects, such as Etnofletno, Klik v domovino, Folk

Music Heritage, CD and book editions, and the latest ongoing project Etnofon (2023),

a digital collection of all the institute’s past and present sound publications. Some

of these recently digitised materials have also been computationally annotated and

analysed [293, 33]. Following the latest physical edition of these songs [95], [293] fo-

cused on analysing the conceptual structure and themes within the lyrics, for which

the musical contents were first digitised and computationally processed. More re-

cently, [33], as part of this thesis, concentrated on further digitally curating the col-

lection and making it accessible to a wider audience. In addition to digitising the

pre-existing musical materials, this work incorporated metadata and musical an-

notations of the melodic content, encompassing the songs and their corresponding

melodic phrases, and developed an analytical model for pattern discovery within

these materials.

3.2.2 Current Dataset Organisation and Annotations

We are introducing the new and the first digitally accessible version of the 402 folk

song ballads from Slovenian regions, previously collected, curated and digitised by

several members of the Ethnomusicology Institute ZRC SAZU and their external

colleagues. In this section, we will discuss on the dataset’s structure is divided into

metadata on the entire corpus, melodic song phrases and their corresponding de-

scriptors. The descriptors are divided into non-music descriptors (metadata), lyrics

(verse structure) and music descriptors.

The structuring of the non-music descriptors was adopted from previously men-

tioned collections and archives that gathered, organised and curated the sources.

Some of these non-music descriptors or metadata were adapted to fit the computa-

tional system, as well as some, where sensible, were also translated to English (more

precisely the names of regions, type title, and the first line of the first verse).

The lyric descriptors were also partially borrowed from the systems behind the

Slovenian folk song collection and were further curated by current members of the
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Ethnomusicology Institute ZRC SAZU. These include the first verse, as well as met-

ric and rhyme verse structure.

Lastly, there are music descriptors. These consider several high-level elements of

music, such as contour, phrase, “scale”, and time signature, among others. Below, I

will introduce one by one, and then, some statistical data on introduced descriptors

with preliminary analyses4.

Metadata

The songs in our dataset have been previously organised into 36 distinct topic types,

each having from one to as many as 103 variants. They were transcribed or recorded

in 22 different regions, with the majority in Styria, Upper Carniola, and Lower

Carniola (Table 3.2). The transcriptions and/or recordings with identifiable years

of origin span across 68 different years. The earliest year traces back to 1819, while

the most recent transcription was done in 1995 (Table 3.2). Each type was assigned

a topic title, but the context of the individual song was further determined by the

beginning of the first verse of each song.

The majority of songs in the dataset were performed by solo female singers (Ta-

ble 3.2 and Figure 3.4), followed by solo male singers. Klobčar [137], for instance,

investigates the prominence of female singers as the primary bearers of folk songs,

especially the ballads, proposing that this shift occurs after the songs lose their origi-

nal social significance and men lose interest. That same study also draws the connec-

tion between women singers and these songs within the context of identity-building

during the national process.

Given that our collection primarily consists of monophonic tunes, the represen-

tation of group singing is considerably lower. While other collections of Slovenian

folk song ballads do include polyphonic (or more commonly homophonic) arrange-

ments, the majority of recorded or transcribed ballad songs are monophonic, even

though many of these were originally sung homophonically. Therefore, the preva-

lence of monophonic tunes is not necessarily indicative of their performance style in

spontaneous settings but rather a consequence of the collection methodology (more

detail on this is provided in 3.2.1)

4To put it briefly, the digitization of the Slovenian folk song ballad collection involved a multi-phase
process. Prior to this thesis, fieldwork spanned different eras, capturing melodies and lyrics through
audio and video recordings, followed by curated versions in various publications, including [95]. Lost
digital files necessitated re-scanning books, and songs were manually transcribed into the musicXML
format. During this thesis, the work expanded to curate and correct transcriptions by comparing man-
ual, book, and digital editions. Additional examples were added, and missing metadata was provided
using Excel tables and musicXML. Comprehensive annotation, both manual and computational, was
achieved using Python libraries and custom scripts developed within this thesis. Finally, textual an-
notations and musicXML scores were converted into JSON/LilyPond formats to enable seamless inte-
gration and visualization on the Dezrann platform.
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Nonetheless, the thesis focuses on monophonic melodies. Consequently, the

analysis of musical descriptors presented here will be based on the information gath-

ered from monophonic material, as this, among other, facilitates a more consistent

computerised comparison.

FIGURE 3.4: The count of male (solo/group), female (solo/group), mixed group and un-
known singers in the dataset of Slovenian folk song ballads the eras before and after 1940s.

Music Descriptors

Music descriptors (Table 3.4) can pertain to either the content of the music or repre-

sent the music content itself. Below, I provide explanations for each descriptor sepa-

rately. These were primarily extracted computationally and refined through manual

editing and redaction.

Time signature(s). These are noted in the order of their first appearance in whole

songs. For individual phrases, the relevant time signature for each phrase is labelled

independently, regardless of the song’s overall time signatures.
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Descriptor Categories / Explanation Example

ID Derives from the printed collection and
follows the sequence: type, variant,
additional marker

256.2.A2

Type One type title/enumeration per song Mačeha in sirota / The
Stepmother and Her Stepchild

Variant The first verse of the song Pšenička na polju že zori /
Wheat in the field is already
ripening

Region Regional information on where the song
was transcribed or recorded

Dolenjska / Lower Carniola

Transcriber or
Collector

The person who collected or transcribed
the song

Etnomusicology Institute ZRC
SAZU (Zmaga Kumer)

Year Year of transcription/recording 1963
Singer(s) Name The person who performed the song Frančiška Lavrič
Singer(s) Type Type is based on singer’s gender, e.g.,

female or male solo, female or male
group, mixed group

F_Solo (female solo)

TABLE 3.1: Non-music descriptors or metadata of Slovenian Folk Song Ballads corpus, indicat-
ing descriptor type, the categories or explanation of that descriptor followed by an example.

Song Types (35) Regions (22) Transcription Year (67) Singer Type (6)

286 (103) Styria (111) 1957 (37) Female Solo (292)
252 (82) Upper Carniola (86) 1970 (31) Male Solo (39)
287 (45) Lower Carniola (52) 1908 (21) Unknown (52)
256 (44) Raba (HU) (35) 1907 (16) Female Group (14)
267 (28) Prekmurje (34) 1961 (16) Mixed Group (5)

TABLE 3.2: The most frequent song types, regions, transcription years, and types of singers,
with the respective number of categories and occurrences in the Slovenian Folk Song Ballads
corpus shown in parentheses.

Upbeat. This data specifies the number of quarter notes in an upbeat measure at

the start of a tune (for example, 1.0 = 1 quarter note).

A number of music note units. This represents the total count of note units in a

score, regardless of their duration. For example, both a quarter note and an eighth

note are counted as 1 unit each.

The number of measures. This descriptor indicates the number of all measures in

a score representation of individual songs, including upbeats.

Range. The entire song’s range is expressed in two ways: first, as a melodic interval

(for instance, m7 for minor 7th, M6 for major 6th, P8 for perfect 8th, and so on), and

second, as an integer representing semitones (M6 for major 6th = 9, P8 for perfect

8th = 12, and so on).

Pitch mean. The pitch mean of the entire song is expressed in an average MIDI

value, with up to 2 decimals.
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Descriptor Categories / Explanation Example

ID See Table 3.1 256.2.A2
Verse Structure
(meter)

A number or set of numbers indicating the
number of syllables in a phrase.

6

Verse Structure
(rhyme)

An alphabetic character (starting from M) indi-
cating the rhyme pattern of the final word in a
phrase, plus two types of refrain: full (R), where
an entire verse line is a refrain, or half (r), where
part of a verse line is a refrain. Refrains gen-
erally consist of non-lexical vocables, such as
“tralala” (286.23), “jupajde” (156.16.A3), or re-
peated words (273.7).

MNOPOP

TABLE 3.3: Lyrics descriptors of the Slovenian Folk Song Ballads corpus, indicating the de-
scriptor type, the categories or explanations of that descriptor, followed by an example.

Descriptor Categories / Explanation Example

ID See Table 3.1 256.2.A2
Time signature Time signature(s) of the song in order of

first appearance.
6/8

Upbeat Upbeat expressed in quarter notes. Example provided in the full
dataset.

Note count Total number of notes in the song. 37
Measure count Total number of measures in the song. 9
Range Melodic range expressed as an interval

and in semitones.
m9 (13)

Pitch mean Mean pitch of a song in MIDI notation. 65.94
Pitch direction Relationship between the first and final

pitch, indicating ascending, descending,
or equal.

Ascending

Tone set Number and set of unique pitch classes
in a song.

7: G, A, B, C, D, E, F#

Leading Tone Indicates the presence or absence of the
leading tone or f# in respect to the score’s
transpositions to G.

YES

Phrase number Number of melodic phrases, enumerated
in order of appearance.

6

Phrase labels Alphabetic characters indicating melodic
relationships among phrases. The same
letter indicates an identical, transposed,
or partially adapted melody (considering
lyrics, range, or singing mistakes). Major
differences are marked with a new letter.

AABABA

Contours The melodic shape of individual phrases
in a tune.

↗, ↘↗, ↗, ↘↗, ↗,
↘↗

TABLE 3.4: Music descriptors of the Slovenian Folk Song Ballads corpus, indicating descriptor
type, the categories or explanation of that descriptor, followed by an example.

Pitch direction. This descriptor indicates the relationship between the first and last

notes of the song. Annotations include “+” for ascending, “-” for descending, and

“=” for the song starting and ending on the same pitch.

Pitch variety or scale size. It quantifies the number of distinct pitch classes present

in the score, disregarding octaves. It assigns a numerical value without specifying a
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particular scale name.

Tone set. This information complements pitch variety by listing distinct pitch classes

as letters without octaves, such as 5: E, C, A, B, and D, indicating the unique pitch

classes present in the score.

Leading tone. To enhance the specification of each song’s tonal space, the anno-

tation indicates the presence or absence of a leading tone. Considering the dataset,

where all tunes were previously transposed to G, the leading tone refers to F#. This

detail further determines whether the song can be thought of as sung in major tonal-

ity or not.

The number of phrases. This data provides a numerical annotation for the number

of phrase units in each song. In the context of individual phrases, it labels each

phrase with its ordinal number within the song, rather than the cumulative count

of all phrases. Phrases were determined by combining the knowledge of no verse

structure, punctuation marks in lyrics, and pauses in a tune.

Phrase labels. These alphabetical annotations denote melodic deviations among

phrases in each song. The initial phrase is designated as “A,” and subsequent phrases

are labelled alphabetically, if their melody differs. If a phrase repeats the melodic

material, it is assigned the same letter as the first appearance. This descriptor was

simplified from [33] (Figure 3.5).

FIGURE 3.5: The song Pšenička na polju že zori / The wheat in the field is already ripening (type
256.A2, variant 2) with labels (up to bottom) of melodic phrase structure (AABABA), con-
tours (↗,↘↗,↗,↘↗,↗,↘↗), and rhyme (MNOPOP) and syllable (998989) verse struc-
tures. This example is a screenshot of an interactive score and annotations visualisation on
Dezrann. (see Section 3.4).

Contours. These were computed for phrases only by the principle of Huron’s melodic

arches (Sections 2.1 and 2.3). The computation involves analyzing the first and last

MIDI values of the phrase and calculating the mean of all the values in between,

provided there are more than 3 notes in the phrase. The annotations currently en-

compass all 9 Huron’s types of melodic contours or arches (Figure 3.6).
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1. CONVEX (CVX) 2. CONCAVE (CCV)

3. ASCENDING (ASC) 4. DESCENDING (DESC)

5. ASCENDING HORIZONTAL (AH) 6. HORIZONTAL ASCENDING (HA)

7. DESCENDING HORIZONTAL (DH) 8. HORIZONTAL DESCENDING (HD)

9. HORIZONTAL (H)

FIGURE 3.6: The 9 contour types by Huron [121] computed with MIDI values, where the
first and the last MIDI value stand in place of the first and the last pitch, while the middle
value describes an average MIDI value of all intermediate pitches.
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Melodic sequence. These were converted to alphanumeric sequences, represent-

ing note names and octaves, capturing detailed pitch information (for example, A4

= approx. 440 Hz). In some of the analyses, the octave information was omitted,

and for the rest, the sequences were further converted into enumerated semitone

interval successions. This conversion simplifies the representation of the musical

data, focusing solely on the pitch relationships between notes without considering

the octaves.

Verse - metric structure. These are numerical annotations, labelling the metric

structure of the verse or several syllables in each phrase (see the upper bottom labels

in Figure 3.5). We acknowledge two types of syllabic annotations, the “general”,

which describes the general idea of all verses, and “specific”, which annotates the

specific phrase of the published first verse.

Verse - rhyme structure. We took the rhyme structure annotations from the large

collection of Slovenian folk song ballads. The annotations follow the alphabetical

order, starting with the letter M, except R, which refers to refrain and r, which refers

to a partial refrain within a larger structure [158, 95] (Figure 3.5). For this corpus, the

two largest types (ID 252 and 286) were re-evaluated by members of Ethnomusicol-

ogy Institute ZRC SAZU.

3.3 Statistical Overview

This section focuses on statistical information on 402 songs of the introduced corpus

and the added descriptors, introduced in the previous section. The statistical analy-

sis includes the majority of the music descriptors, such as scale, range, intervals, and

structural labels of both lyrics and melody, as well as specific correlations between

non-music and music descriptors, and melodic sequences.

Starting with time signatures, the songs were typically sung in 2/4, 3/4, 4/4

or a mix of the first two. Melodic range usually falls somewhere between a minor

seventh and a perfect octave. Extremely narrow melodies, covering a range of less

than a perfect fifth, are exceptionally rare. Generally, songs tend to conclude on a

higher tone, rather than an equal or descending one (to the starting tone), most of

which are a third (B), first (G) or fifth (D) degree. Ten examples end on different

tones. The melodies of these deviate from the resolution on the tonic chord’s notes,

often due to errors such as incorrect notation (Vraz’s melody sketches like 248.1;

example 3.71 in Figure 3.7), lack of transposition to G-major (259.3; example 3.72

in Figure 3.7), or inaccuracies in singing as indicated by the collector’s notes (257.6,

286.100). Another possibility is that the song follows an older mode outside the

major-minor melodic systems prevalent in the periphery of present-day Slovenia

(283.6, 248.20, . . . ; examples 3.73 and 3.74 in Figure 3.7).
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1. 248.1 (Untitled)

2. 259.3 (“Otroci imajo hudo mater / The children have a strict mother”)

3. 283.6 (“Kota, Kotalena”)

4. 248.2 (“Iden v bojno, iden, Jerokovič Jüri / I go to war, I go, Jerokovič Jüri”)

FIGURE 3.7: Song examples with resolution “abnormalities” in respect to “tonic” (G): 3.71
(approximate sketch by Stanko Vraz), 3.72 (not transposed), and 3.73 and 3.74 (not in major-
minor modes).
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Most melodies are composed of approximately six or seven different pitch classes;

however, examples of “few-tone” melodies (pentatonic, tetratonic, and tritonic) also

exist. Among the 25 different combinations of pitch classes, more than half derive

from the (G-)major scale or (G-)major scale without the third degree (Table 3.5).

Some descriptors are worth observing in direct relation to phrases (Tables 3.6

and 3.7). There are seven different sizes of phrase structure, ranging from two to

eight, with the most common being a structure of four phrases, which are mostly

composed of contrasting melodic material. In terms of labels, ABCD is the most rep-

resented descriptor sequence of a song in the corpus, followed by AB and ABAB.

Lyric-wise, the metric structure most commonly consists eight-seven syllables, fol-

lowed by six-syllable verses. We note that this is a generalised structure, which tends

to be often inconsistent among verses in a song. The most common rhyme type is

MNMN, followed by four contrasting parts, MNOP and two contrasting parts MN.

TS R PD PC (number) PC (toneset)

3/4 (142) P8 (101) ↗ (179) 6 (182) G, A, B, C, D, E, F# (145)
2/4 (94) m7 (99) → (116) 7 (148) G, A, B, C, D, F# (92)
4/4 (84) M6 (66) ↘ (108) 5 (65) A, B, C, D, E, F# (41)
3/8 (23) M9 (32) - 4 (4) G, A, B, C, D, E (36)
6/8 (19) P5 (27) - 8 (2) A, B, C, D, E (20)
3/4+4/4 (12) m9 (21) - 3 (1) G, A, B, C, D (20)
7/8 (5) m6 (20) - 2 (1) G, A, B, D, E, F# (7)
2/4+3/4 (4) M7 (13) - - G, B, C, D, E, F# (6)
3/4+2/4 (3) m10 (6) - - B, C, D, E, F# (6)
5/8 (3) M10 (6) - - G, A, B, D, F# (5)

TABLE 3.5: Metadata on time signature (TS), range (R), pitch direction (PD), and pitch classes
(tone set) (PC) in the dataset of Slovenian Folk Song Ballads.

Phrase
Count

PL (Melody) SL PL (Verse)

4 (256) ABCD (133) 8-7 (236) MNMN (106)
2 (84) AB (72) 6 (49) MNOP (78)
6 (29) ABAB (36) 7 (41) MN (66)
3 (23) AABC (21) 6-5 (29) ? (39)
5 (6) ABCB (13) 8 (24) MNNO (26)
8 (5) ABCDCD (10) 10-9 (9) MNOPOP (16)
- ABBC (12) 10 (8) Unsegmented text (11)
- AA (12) Heterometric (3) MN? (6)
- ABC (11) 9 (2) MNN (5)
- AABA (10) ? (2) MNRN (5)

TABLE 3.6: Analysis of phrase counts per song, phrase label (PL) combinations for both
melody and lyrics, and the syllabic structure of lyric verses (SL) in the Slovenian Folk Song
Ballads dataset.

3.3.1 On Year-Related Correlations

These are the correlations between various musical descriptors and the year of tran-

scription. While numerous studies investigate how tone sets, range, and length may
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Contour Combinations First Phrase (9) Last Phrase (9)

↗↘ (16) ↗ (120) ↗↘ (178)
↗,↗↘ (12) ↗↘ (96) ↘ (129)
↗,↗→,↗↘,↗↘ (12) ↘ (64) →↘ (43)
↗,↗↘,↗,↗↘ (10) ↘↗ (58) ↘↗ (18)
↘↗,↗↘,↗↘,↘ (10) ↗→ (24) ↗→ (15)
↘,↘ (10) →↘ (15) ↗ (9)
↗↘,↘ (6) →↗ (11) ↘→ (8)
↗,↗,↗→,↗↘ (6) → (11) →↗ (2)
↗↘,↗↘,↗↘,↗↘ (6) ↘→ (4) → (1)
↗,↗→,↗→,↗↘ (6) - -

TABLE 3.7: Analysis of contour combinations, as well as for the first and last phrases of
individual songs from the Slovenian Folk Song Ballads dataset.

evolve with the age of a song, this study is constrained by data availability, which

limits a more comprehensive exploration of the era from which a transcription of

a variant originated. Since only the year of transcription is known, our findings

provide an overview of descriptors across “older” (before or during the 1940s) and

“newer” (after the 1940s) eras. The largest number of older songs were collected

in Styria, while the largest number of newer songs come from Upper Carniola (Fig-

ure 3.9). We recognise that a singer in a specific year in the newer era might have

performed songs from both categories as well as there have been many more similar

variants collected from one region, while others remain underrepresented. This sub-

tlety adds complexity to our analysis, making it difficult to distinguish songs solely

based on the provided year.

3.3.2 On Transcriber-Related Correlations

When speaking of the eras, we must also consider transcriber’s style or bias (Section

3.2.1), as we are actually comparing transcriptions of that year, and not the origin

year of the actual song. We took the most common transcribers before and after

the 1940s (Figure 3.8), and compared several descriptors. While most of these are

equally (un)common for the two groups or cannot be further inspected due to the

unbalanced data (45 for older versus 262 examples for newer transcriptions), the

smallest tone set, and the metric verse structure of eight syllables almost exclusively

appears in older examples (Figure 3.10), both of which confirm some of Vodušek’s

manual observations [310]. Older tunes were also more commonly transcribed in

6/8 time signature, had a wider range (m9, m10), a larger phrase number (eight), and

rarely consisted of more than three contrasting melodic parts (ABCB, ABC, ABAB).

Similar to “year-related” correlations, there is a level of unreliability of older tran-

scriptions, unbalanced data and the fact that some tunes have many very similar

variations from the same era (Section 3.3.4).



66 Chapter 3. Dataset: Introducing Slovenian Folk Song Ballads

FIGURE 3.8: Most represented transcribers, with the number of transcribed songs and the
years of transcriptions.

3.3.3 On Region-Related Correlations

Further information can be retrieved about the differentiation among the most rep-

resented regions. However, in some regions, many variants have been collected for

the same song, whereas in others, only one or two were recorded, resulting in unbal-

anced data. For the purpose of the analysis, five of the most frequent regions (Table

3.2) are included in a brief descriptor analysis.

3.3.4 On Music Descriptors

The metric structure of verse was found to be one of the most common descriptors

when differentiating between eras, regions, or types. This is expected for several

reasons. Firstly, songs tend to adapt to verse rather than vice versa (Sections 3.1.2

and 3.2). Secondly, each type shares most of the content of the first verse. Thirdly,

some types are more popular in certain regions, leading to the dominance of one

verse type over another in those regions.

Mixed metric structrures (8-7, 6-5, 10-9, . . . ) account for 69% of the corpus com-

pared to simpler structures. As anticipated by Vodušek, in correlation with the tran-

scription era, the metric structures of newer songs are more commonly mixed, than

in older, where simpler structure is more common (Figure 3.10). The opposite is

true for rhyme, for which more older cases correspond with MNOP, while younger

songs tend to be structured repetitively as MNMN, MN, or MNNO (Figure 3.11). No

region was particularly notable in the analysis of lyric structure (suggested further

reading [298]).
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FIGURE 3.9: Songs before/after 1940s per region (not all regions are shown).

Similar to lyric metric structures, mixed time signatures are more commonly

found in newer than in older transcriptions (Figure 3.12). The latter were generally

transcribed in either 2/4, 3/4, or 4/4, or the combination of at most two of those.

The 6/4 or 5/4 are only found in older songs. We found that, in relation to region,

most songs in 2/4 are found in Raba (about 80% of all songs from region), followed

by the ones from Prekmurje (about 45%), and Styria (about 30%). The most common

meter for Upper Carniola is 3/4 (about 35%), and for Lower Carniola 4/4 (about

38%). All of there structures highly depend on collection practices. As described in

Section 3.2.1 the more contemporary, the more data, meaning that the mixed time

signatures, for example, could be a result of transcription style rather than the actual

age of the song.

However, that is not entirely true for contours, as they provide a coarse represen-

tation of melodic sequences and do not rely of absolute accuracy of the transcription.

Second, contours are more significantly influenced by phrase position than other de-

scriptors. For instance, the most prevalent contour is convex (down-up-down), more

frequently found in the last phrase than the first, contrasting with other contour

types (Table 3.7). Notably, descending arches are more common in the last phrase,

while ascending arches predominantly occur in the first phrases. While it is hard to

claim the overall relevance of these results, the trend is well visible. First phrases

tend to generally go up, while last phrases go down [121].

For the middle phrases, the results are more mixed. These results are valid for

all five regions regarding the last phrase (descending or convex contour in over 50%

cases per region), but not consistent for the first. Ascending contour is most repre-

sented in Upper (about 50%) and Lower Carniola (about 40%), concave (about 50%)

and ascending (about 20%) in Raba, convex (about 40%) and concave (about 20%) in
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FIGURE 3.10: Most frequent (more than 1%) metric structure of lyrics before/in or after
1940s.

Prekmurje, and interestingly, descending (about 30%) and ascending (about 30%) in

Styria. We found no direct connection between contours and the era of transcription.

The correlations between year and tone set did not show any large differences. It

was, however noticeable, that the full G-major scale is most common in the regions

of Raba and Prekmurje (about 60%). In the other three, G-major scale is present at

about 40%. The smallest tone sets are found in Prekmurje (three and two), while the

largest are found in Lower Carniola (eight). Most songs in all regions include six or

seven pitch classes.

3.3.5 Melodic Sequence Analysis

Melodic phrases typically consist of about eight tones, with each pair of subsequent

tones a minor second apart, and within a range of a perfect fifth. The majority of

melodies are syllabic. To explore melodic relationships between phrases among

types and variants, we tested the most frequent melodic sequences from the two

most common types, 252 and 286.

Sub-sequences, consisting of the first and last four tones of a phrase, rarely oc-

cur in other types or in the same position of the same phrase, or correspond to the

most frequent combinations. This varies among songs. For instance, the f#-a-d-c

usually appears in the first position of the third phrase of type 286. In opposite,

some melodic material is shared between types 252 and 277 (Figure 3.13), but no

more than two subsequent phrases (out of four). One of the most frequent short pat-

terns, found in types 286 and 252, and in the full dataset, is a concluding “cadence”

of b-a-g. Entire melodies within our collection are seldom transferable, but may be
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FIGURE 3.11: Most frequent (more than 1%) rhyme types in songs before/in or after 1940s.

found other types, contexts, or folk song genres beyond this particular collection.

Additional digitised collections are needed for further exploration.

It is important to note that melodic transcriptions themselves are approxima-

tions, so exploring such melodies with absolute tone values without metadata may

not be the most fruitful approach. A good example for this is the case of “few-tone”

melodies. Ethnomusicological research describes these as being of older historical

origins than those, with more than 5 tones. They were preserved in the song tra-

dition that was collected in the 20th and 21st centuries, mainly in ritual songs and

the musical tradition of peripheral and cross-border regions. As ballads did not

commonly belong to ritual ceremonies, I will stress the second. The musical char-

acteristics of peripheral or cross-border regions, unlike those of central Slovenia,

more often show an intertwining with the musical characteristics of the folk music

of neighboring cultures, and in some cases these regions are (were) culturally more

isolated from the musical influences of other practices. In our corpus, we identified a

tone set for each song and examined those, containing three to five tones, i.e. tritone

to pentatonic melodies. The tri-tone set was found in only one song, the four-tone

set in two, and the five-tone set in 47. The following examples show how additional

field material (metadata, sound recording, etc.) shed light on the processes that need

to be considered when using the dataset for computational music analysis.

First, a tri-tone song could be a mere coincidence or error in the data acquisition

process, or, since an example of the song is sung by a singer from Raba, nowadays a

Hungarian region, where the Slovene minority lives, its “few-tone” structure is the

result of contact with neighboring cultures. It could also display the preservation of

older layers of tradition in the rather isolated spaces. However, the audio recording

and metadata reveal that the singer sang another verse of the song and that was
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FIGURE 3.12: The most frequent time signatures (more than 1%) in songs before/in or after
1940s.

not recorded by the recorders. The second stanza is melodically different and more

reminiscent of a rhythmic rendition of counting.

Second, certain pentatonic melodies (252.21/A3) exhibit similarities with hepta-

tonic melodies (252.24/A3). These melodies come from separate regions, one from

Prekmurje and the other from Upper Carniola. Nonetheless, it is plausible that the

transcription of either melody could be flawed, oversimplified, or fail to account for

singing errors, which often become apparent only upon hearing subsequent verses.

In another pentatonic example, 257.6 the transcriptor’s note reveals that the singer

sang only a fragment of the song, meaning the full melody was not captured.

Lastly, pentatonic melodies with a gradual movement and a narrow range of

song type 256/A3 come from the same melodic base, but they are recorded in very

different landscapes. Two cases in Notranjska, two in Styria, one in Lower Carniola

and one in Prekmurje. The comment of ethnomusicologist Urša Šivica that refers

to examples of polyphony, reveals, that this melody “began to appear more consis-

tently in the second half of the 20th century, namely in a wide ethnic territory (data

for Carinthia and Littoral are not available). After 1956, as many as 33 melodies out

of 39 recorded belong to the mentioned melody” [95].

3.4 Data Release and Dezrann Integration: Structure and Code

Having outlined the background, structure, and representation of the various con-

tents, I will now explain how all of this information is integrated into the Dezrann

platform. Additionally, I will provide an overview of the available data, specifying

the associated licenses and where the data can be accessed.
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1. 252.113 (Lansko leto sem se ženiw / Last year I got married)

2. 252.121 (Lansko leto sem se uženu / same as above)

3. 252.125 (Lansko leto sem se vženu / same as above)

4. 252.129 (Lansko leto sem se ženo / same as above)

5. 277.19 (Sonce se je že nagnilo / The sun has already set)

FIGURE 3.13: The initial melodic phrase (pattern d-d-d-e), characteristic of type 252, is repli-
cated with notable similarity (transposed an octave lower) in the identical position (initial)
of the same phrase number (one) within the variant of type 277. The figure features a selec-
tion of labeled type 252 variants 113, 121, 125, and 129, juxtaposed with a congruent variant
19 derived from type 277.
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3.4.1 Dataset Release

The dataset (scores in .musicXML, recordings in .mp3, metadata, and annotations

in .csv/.json files) is released under the open CC BY-NC-SA 4.0 license and avail-

able for download through Algomus Data Repository and git. We also release the

songs on the Dezrann open-source platform, where all annotations for each song

are visualised, and, when audio files are available, synchronised to the scores. The

Dezrann visualisations of the corpus are set to default with the initial preassigned

labels, which can be altered, deleted or added by the user. If the original predicts mi-

nor melodic variations for one or more verses, these are, for now, excluded, but can

be found in other editions [95]. The whole digitised corpus is also being assigned a

permanent DOI.

3.4.2 The Dezrann Interface

Dezrann. The Dezrann platform hosts ten curated corpora, which collectively in-

clude over 1500 music pieces and more than 35000 analytical labels. These corpora

are represented in various forms of data, such as scores, audio files, and video con-

tent, as well as detailed annotations and metadata. The platform integrates different

representations of music, allowing users to view and interact with scores (using Lily-

pond/Verovio), waveforms, and spectrograms, all synchronized with correspond-

ing audio/video content. Corpora included in Dezrann are carefully selected and

curated, as well as have individual ratings regarding the quality of each individual

element (audio, score, corpus, musical-time, and synchronisation). Some corpora,

like the Weimar Jazz Database and Mozart Piano Sonatas, contain specific musico-

logical or analytical annotations, while others focus on a diverse range of musical

traditions, expanding the scope of research beyond the Western classical canon (see

[91, 12]).

Slovenian Folk Song Ballads. One of such corpora is the Slovenian folk song bal-

lads5. The corpus on Dezrann consists of 402 scores with annotations, of which 22

also include the recordings, synchronised to the displayed first verse. The digitised

dataset includes a brief introduction to the contents with references and a list of

scores with a search bar (Figure 3.14). Currently, each song is described by region,

type, first verse “title”, singer’s name, reference to the pyhisical collection [95] and

year of transcription/recording.

Music-wise, it provides a quick overview of pitch classes, meter and metric struc-

ture of the verse, as well as provides information on the types of data available (for

instance, a music note symbol for score, heaphones symbol for recording, and a

crown for annotations). More metadata can be retrieved by moving one’s mouse

over the (i) symbol next to the verse’s “title”.

5https://www.dezrann.net/explore/slovenian-folk-songs, accessed on 4th October 2024.
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Next, a visalisaton of individual score is available with the annotation of phrase’s

melodic and verse’s metric structure, contours and syllables per verse. These can be

deleted, edited, or added by individual users. The score can be displayed in both,

symbolic music notation and as wave form (individually or simultaneously) (Figure

3.15).

While the Dezrann interface is available in 7 languages [12], most information on

the said corpus is available in two languages, Slovenian and English, with short cor-

pus summaries in other languages (French, Italian, Greek, German, and Croatian).

(A) Front page of the Slovenian Folk Song Ballads dataset.

(B) More information/metadata on an individual song.

FIGURE 3.14: The figure shows the front page of the Slovenian Folk Song Ballads dataset on
the platform Dezrann. The top image displays the main interface, while the bottom image
shows the additional information a user can retrieve by hovering over the (i) symbol.

3.4.3 The Integration

To accommodate Dezrann’s formats and interface, an integration script was neces-

sary to consolidate the scores, recordings, and annotations, which were previously
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FIGURE 3.15: The figure displays the Dezrann visualisation of the score Ta star purgar za
mizo sedi / The old purgar sits at the table (slp-237-5). It shows both symbolic notational and
waveform representation with annotations.

stored in separate files. To incorporate those (and potential changes) to the platform,

we wrote a script that enables easier conversion.

Scores and Recordings

This is not the first corpus that the Dezrann platform has integrated; therefore, an

existing script was utilised for this purpose. All scores are accessible via Git, and it

is precisely these files that are operational on Dezrann. The same applies to record-

ings. The Dezrann interface facilitates direct synchronisation of uploaded recordings

with their corresponding scores. It generates a so-called .dez file, which enables the

system to maintain synchronisation of the score based on user input, or even allows

switching between multiple synchronisation sources when several recordings are

available for a single score, although this is not applicable to the dataset in question.

Metadata and Annotations

The corpus was initially equipped with all the necessary data, but it did not fully

align with the default metadata display settings on Dezrann. As the first folk song

corpus to be integrated into the platform, certain adjustments were required. At first,

the scores had not been annotated within Dezrann but were instead maintained in

an Excel file, which necessitated some integration efforts. However, due to the flex-

ibility of the Dezrann framework, these were straightforward to implement. New
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categories were created for annotations, and since both the annotations and scores

were stored in a spreadsheet, the implementation process for both was quite similar.

We also modified field names, such as region, year of transcription, and tone

set, while removing irrelevant fields like opus number, composer, as these songs

did not have these. Additionally, I advocated for the ability to download metadata,

recognising that ethnomusicological research relies as much, if not more, on this

data as it does on the musical materials themselves. The integration script worked

with two types of files—song-centred and phrase-centred annotations—depending

on the required output.

Metadata. The first was used to extract metadata, such that it first began with the

acquisition of Slovenian folk song metadata in relation to musical scores with a com-

mon ID from an Excel spreadsheet. This spreadsheet contained comprehensive de-

tails on each song, including types, variants, and musical notations which were cru-

cial for the subsequent processing steps. To handle and transform the musical data

effectively, two Python functions were developed.

First, sort_pitch_classes with a string input, which was designed to sort mu-

sical pitch classes into a predefined musical order, enhancing the consistency of data

presentation. The function parses the input string to extract pitch classes sorts them

according to their musical order from “C” to “B”, and then outputs a sorted comma-

separated string. Second, slovenian_toneset considered the regional variations in

musical notation, and replaced the pitch class “Bb” with “B” and “B” with “H”,

aligning with Slovenian musical notation practices. This adjustment was essential

for when Dezrann is used in Slovenian language as opposed to the English version.

Each song in the dataset was iteratively processed to generate a unique identifier

which coincides with the ID with the corresponding score, and standardise pitch

notation using the sort_pitch_classes function.

A comprehensive metadata dictionary was compiled post-processing, which was

then serialised into a JSON file (slp-metadata.json), to facilitate integration with the

Dezrann platform. The output includes some of the pre-assigned data, such as con-

tributors, editors, collection number, and others, while also incorporating informa-

tion on type “titles” in both Slovenian and English, and musical data, such as the

first line of the variant, poetic meter, region of origin, pitch classes (processed for

both standard and Slovenian notation), and year of transcription (for visualisation

of the resulting file see Figure 3.14). When applicable, it also included recording

data.

Annotations. The script related to annotations processes musical data into a phrase-

centred spreadsheet containing various attributes of Slovenian folk songs.

As the script iterates through each record of the DataFrame, it consolidates fields

such as type, variant, and additional marks into a unique identifier for each piece,

which correspond with the IDs found in both metadata annotations as well as score
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and sycnhronisation files. For every piece, the script generates multiple labels con-

cerning musical contours, phrases, and verses (all as described in Section 3.2.2), stor-

ing them in a structured dictionary. One of the functions, contour_conversion, is

employed to translate descriptive musical contour labels (for example, CVX, CCV)

into more friendly and recognisable symbols (for instance,↗↘,↘↗).

All labels are subsequently serialised into JSON format and saved in files named

after each song’s unique ID. Moreover, the script manages the dataset’s filenames,

particularly amending naming discrepancies and eliminating placeholders stem-

ming from missing data.

Some considered parameters like upbeat and similar are not of a main priority

in our corpus analyses, but they provide a foundational basis for synchronising la-

bels and visualising the score. Despite the presence of this information, along with

measure numbers and phrase boundaries, there were still errors in the scores due to

inconsistent or changing meters. To address this, we implemented the Measure Map

methodology [100] to align the two sources effectively.

Building on our understanding of the context, structure, trends, and integration

of the dataset, the next chapter will explore how patterns from this corpus were ex-

tracted and introduce the contributed methodologies supporting four distinct pat-

tern matching tasks.
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Chapter 4

Pattern Matching Task

Statement: Some parts of this chapter were expanded from the published paper at ISMIR

2023 [33], however the majority of the following content is new.

4.1 Introduction

In the previous chapters, I introduced foundational concepts from ethnomusicolog-

ical practices, along with digital analysis methodologies pertinent to the materials

informing this thesis as well as contextualised the corpus of Slovenian folk song bal-

lads within its newly digitised framework, elucidating its structure and annotations.

This chapter will progress to detailing the development and structuring of data and

algorithms for pattern matching tasks (the rightmost part of Figure 4.1 and Figure

4.2). The initial version of key algorithms was introduced in [33]; however, other

methods have since been added to extend the possibilities of resolving different pat-

tern matching problems. We will detail on both, older and newer approaches.

FIGURE 4.1: The process from physical scores to digitisation and annotation, followed by
encoding for pattern matching tasks.

The methods are categorised into three general groups: melodic sequence, descrip-

tor, and mixed pattern matching. Before delving into each of these, as shown in the

leftmost part of Figure 4.2, we will address the encoding of the data previously dis-

cussed in Section 3.2, particularly the encoding that directly depends on the pattern

matching methodologies.
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FIGURE 4.2: The process of data encoding of our dataset. (Top) First, there are the melodic
sequences (in our case, phrases), which are stripped of octaves, sharps and flats, and then,
together with the rest of the sequences in the dataset, concatenated to a single suffix array
and bit vector. (Bottom) Each of these sequences has a number of descriptors, for which we
introduce two approaches. The first out of two descriptor set matching algorithms converts
descriptors of each phrase to a single bitarray, while the second one exercises an inverted
approach, assigning IDs of phrases to each of the possible descriptor elements.

The pattern matching algorithms address 4 general problems (Pn):

1. P1 (melodic pattern matching) considers a short melodic sequence, such as “G4

A4 B4”. The algorithm identifies every occurrence of that sequence within the

provided dataset, which, in our cases, encompasses all melodic phrases of the

Slovenian folk song ballads collection along with their associated details.

2. P2 (descriptor set matching) omits the melodic queries and instead considers

one to several descriptors with zero to at most one associated element, such

as an ascending contour and a 3/4 time signature. It searches for all song

phrases in the dataset that correspond to the selected descriptors with their

associated elements. The method also allows ignoring certain descriptors or

interchanging between different combinations of descriptors.

3. P3 (multiple descriptor set matching) focuses on descriptors as well. However,

here, multiple descriptor elements can be associated with a single selected de-

scriptor, meaning there can now be zero, one, or several descriptor elements as-

sociated with descriptor category. For example, an ascending or horizontally

ascending contour, and 3/4 or 6/8 time signature. Similar to P2, it searches

for all song phrases that correspond to any (but at least one) of the provided

descriptor elements per descriptor.

4. P4 (mixed pattern matching) focuses on combining melodic and descriptor

pattern matching. It considers both, melodic sequence (for instance, “G4 A4

B4” (P1)), with corresponding descriptors, such as ascending contour and a

3/4 time signature (P2). Or, in turn, pairs melodic sequence query with a de-

scriptor query (P3), such as ascending or horizontally ascending contour and

a 3/4 or 6/8 time signature. In both cases, the pattern is considered to be a
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match when both melodic and descriptor problems are resolved, meaning, the

melodic sequence and descriptors must match one or more phrases in the pro-

vided dataset.

Notably, P4 improves efficiency compared to querying melody and descriptors

separately, as it first filters out non-matching melodic sequences, reducing the

number of comparisons needed for descriptor matching. This pre-filtering step

eliminates songs that do not match melody-wise before descriptor matching is

applied, thereby narrowing down the dataset and optimising computational

performance. This efficiency is realised in implementation and presents future

potential for further reducing search complexity.

In the following sections, I will first describe the fundamental data representa-

tions and their relationships, and later, move on to detailing the individual pattern

matching tasks highlighted above.

4.1.1 Definitions

We consider a dataset D = {(p1, d1), (p2, d2), . . . , (pi, di), . . . , (pn, dn)}, where n is

the number of phrases in a set, and i is the index or identifier, which, in our case,

is the song phrase ID. Each entry is split into a sequence pi and its corresponding

descriptors di.

Pitch sequence. A pitch sequence pi in D is an alphabetic representation of an

individual phrase of individual song, regardless of their octave, sharps and flats, and

rhythmic values1. For example, a first phrase of a song displayed in Figure 4.4, “G4

B4 D5 D5 E5 D5 D5 B4 A4 G4”, would be represented as p239.10.A.1 = “gbddeddbag”.

Descriptors. Each phrase has a corresponding list of descriptors which consists

of a selection of descriptors Categories = (∆1, ∆2, ∆3, . . . , ∆t, . . . , ∆m), where m is a

number of a descriptor, and ∆t is a specific descriptor, such as contour, time signature,

or similar. Each ∆t must have at least one value belonging to the finite set of values

V(∆t). For instance, let us consider 5 descriptors from our dataset2:

(

∆
1, ∆

2, ∆
3, ∆

4, ∆
5
)

= (POS, LBL, CONT, SYLB, TS)

1This step was facilitated as the majority of songs in the dataset were previously transposed to a G-
centred tonal space, which minimised the impact of sharps and flats on the analysis. The exclusion of
octaves was similarly justified, as contours, scales, and ranges were precomputed and included among
the descriptors, providing a more precise understanding of melodic shape and range for focused anal-
ysis.

2POS = phrase position, LBL = phrase label, CONT = contour, SYLB = verse syllables, TS = time sig-
nature. If indicated in the process, the descriptors can extend to any metadata information, including
regions, titles, singers, and similar.
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where:

V(∆1) = {First, Middle, Last},

V(∆2) = {A, B, C, D},

V(∆3) = {↗,↘,↗→,↘→,↘→,↗↘,↘↗,→↘,→↗,→},

V(∆4) = {10, 9, 8, 7, 6, 5},

V(∆5) = {2/4, 3/4, 3/8, 6/8, 4/4}.

For P2, a single descriptor sequence d is a list consisting of a single element for each

V(∆t), defined as d = (d1, . . . , dt, . . . , dm), where each dt ∈ V(∆t) ∪ {⋆}. The special

value ⋆ indicates that the descriptor is to be ignored. For example, a sequence may

be d = (First, A,↗, 7, 2/4), where we consider all of the descriptors V(∆t), meaning

POS, LBL, CONT, SYLB, and TS. If some descriptors are wished to be ignored, such

as d = (First, ⋆,↗, ⋆, 2/4), the ⋆ informs the algorithm to exclude LBL (V(∆2)) and

SYLB (V(∆4)) from the pattern matching task.

Conversely, P3 addresses multiple descriptor sequences md = (md1, md2, . . . , mdm),

where mdt ⊂ V(∆t) denotes a set of descriptors, potentially containing multiple

descriptors per category. For example, md = ({First}, {A}, {↗, ↘}, {6, 7, 8}, {2/4,

4/4}), or if we want to omit a descriptor, md = ({First}, ⋆, {↗, ↘}, {6, 7, 8}, {2/4,

4/4}), where ⋆ is the empty set.

Dataset. Each phrase pi of D is associated with a descriptor sequence di = (d1
i , . . . , dm

i )

and dt
i ∈ V(∆t) for 1 ≤ t ≤ m.

Given a first song phrase of song 239.10.A (Figure 4.4), the dataset entry con-

sists of melodic sequence p239.10.A.1 = “gbddeddbag” and corresponding descriptors

d239.10.A.1 = (First, A,↗↘, 8, 3/4). An overview of the entire data encoding is pre-

sented in Figure 4.3. This will be elaborated upon in detail as each individual prob-

lem is addressed.

4.1.2 Problem Statement

P1: Melodic pattern matching Given a melody p, find every i, where the melodic

sequence p is a substring of pi. For example, if p = “bac”, it should be found as a

match with p239.10.A.1 at position 1 (Figure 4.4).

P2: Descriptor set matching Given one descriptor sequence d, find every i, such

that di = d. For instance, if d = (First, ↗↘, A, M, 8), it will be matched with the

descriptors of p239.10.A.1, hence the match will equal to 239.10.A.1. However, if d =

(Last,→↘, B, ⋆, 8), then p239.10.A.2 will be found as a match (Figure 4.4).

P3: Multiple descriptor set matching Given a list of descriptor sets md = (md1,

. . . , mdm), find every i, such that di = (d1
i , dt

i , . . . , dm
i ) and di ∈ mdt or mdt = ⋆.
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For example, if md = ({↗↘}, {A, B}, {M}, {8}), then descriptors of p239.10.A.2

will be matched, while if md = ({↗↘,→↘}, {A, B}, {M, N}, {8, 9}), then both, de-

scriptors of p239.10.A.1 and p239.10.A.2 will be matched with md (Figure 4.4). The final

matches are expressed as a set of song IDs as integers i.

P4: Mixed pattern matching (melody + descriptors) Given (p, d) or (p, md), find

every i, such that both pi and di match the query. For example, if p = “gbd” and md

= ({↗↘,→↘}, {A, B}, {M, N}, {8, 9}), p239.10.A.1 is a match, but if p = “bac”, then

it is matched with p239.10.A.2 (Figure 4.4).

FIGURE 4.3: The dataset encoding scheme for all, melodic sequence, and two types of descrip-
tors. D is a dataset, which holds pairs of sequences pi and a corresponding descriptors di.
Within the latter, there are several descriptor elements dt

i per descriptor ∆t. These belong
to a set of possible descriptor values V(∆t), where ∆t is a pre-selected descriptor category.
(Left) The purple (darkest) squares show Sp which is a concatenated string of all pi in D.
The latter is described by two additional elements, a suffix array saSp

and a bit vector bvSp
.

(Right) The orange (light) colored squares in the center describe the data structure Dinv of
descriptors. This structure is composed of keys ∆t and a subset of keys xt

j where the values
are the corresponding dataset entry IDs (i). The green (darker) colored squares on the left
represent an alternative to that method, where each di is converted to a bit array bv(di) and
stored in Dbit.

FIGURE 4.4: The song Margareta lepo poje / Margareta sings beautifully (type 239/A, variant
10) with 2 phrases, labeled (Top to Bottom) with melodic phrase structure (A, B), contours
(↗↘,→↘), verse structure in terms of a rhyme (M, N) and syllables (8, 8). This example is
a screenshot of an interactive score and annotations visualisation on Dezrann.
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4.2 Melodic Sequence Pattern Matching (P1)

4.2.1 Problem Definition

Given a query melody p and a dataset D composed of a set of sequences and corre-

sponding descriptors D = {(p1, d1), (p2, d2), . . . , (pi, di), . . . , (pn, dn)}, the objective

is to efficiently find all occurrences of p in D, where p is a substring of pi.

4.2.2 Melodic String Encoding

The melodic string is encoded in two stages. First, the spaces, sharps, and flats

are removed from each sequence, which in our case is a melodic phrase, and a $

symbol is added to the end of each one. For instance, a melodic phrase string “G4

B4 A4 B4 F#4 A4”, as described above, is transformed into the prepared phrase string

p1 = “gbabfa$”

All pi are concatenated into a single string Sp = p1 p2 · · · pi · · · pn, with each

phrase pi ending with $.

Now a single string, Sp is further transformed into one suffix array saSp
and one

bit array bvSp
. The suffix array sorts the suffixes lexicographically. Simultaneously,

the bvSp
marks positions within the string: 0 for non-$ characters and 1 for $, aiding

in identifying phrase boundaries and lengths within the suffix array. The bvSp
= b1

. . . b|Sp| is defined as bi = 1 if Sp[i] = $, otherwise bi = 0.

4.2.3 Melodic Pattern Matching Task

The Algorithm 1, which considers a melodic query p and a dataset D first retrieves

the phrases and their exact starting positions from a suffix array in linear time, and

then filters these matches with bitwise operators. An index data structure such as a

compressed suffix array is computed and stored to retrieve all occurrences of a pitch

sequence.

When a melodic query p is matched at position k in Sp, the corresponding identi-

fier i—which, in our specific case, is the ID of each phrase of each song in the dataset,

and its position in pi are retrieved using the pre-computed bvSp
. This process utilises

the functions rank1(bvSp
, k) and select1(bvSp

, k), which determine, respectively, the

number of occurrences of 1 in the prefix of length k of bvSp
, and the index of the k-th

1 in bvSp
.

Hence, we retrieve set of of tuples i, j, such that the query p occurs in phrase pi

at position j within pi with i = rank1(bvSp
, k), and j = k− select1(bvSp

, i).

Retrieving the phrases and positions of a query, meaning a pitch sequence p of

length m, is done in time O(m + occ), where occ is the number of occurrences of p in

Sp provided that rank and select operations are performed in constant time.
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Algorithm 1 Melody Match Algorithm

1: Input: Melodic query p, dataset D, suffix array saSp
, bit vector bvSp

2: Output: A set of of tuples (i, j), such that p occurs in phrase pi of D at the position
j.

3: Use the suffix array saSp
to locate all positions k where the query p matches a

substring in Sp

4: Initialise matches← ∅

5: for each matched position k in Sp do

6: i← rank1(bvSp
, k)

7: j← k− select1(bvSp
, i)

8: matches← matches∪ {(i, j)}
9: end for

10: return matches

4.2.4 Example

Consider the melodic query p = “bac” and a dataset D represented by saSp
and bvSp

,

of which all pi were converted to a single string Sp = “gbddeddbag$bdcbacbbag$”

and indexed by saSp
and bvSp

. The encoding to p, saSp
, and bvSp

, returns:

Sp = “gbddeddbag$bdcbacbbag$”,

saSp
= [23, 22, 11, 16, 20, 9, 15, 19, 8, 18, 12, 2, 14, 17, 7, 13, 6, 3, 4, 5, 21, 10, 1],

bvSp
= [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1].

• Suffix Array Search: To find the starting positions of the query p in the con-

catenated string Sp, we use the suffix array (refer to Section 2.4.1 and Table

2.1 on how suffix array is constructed). In this example, the result is k = 15,

indicating that the pattern “bac” begins at position 15 in Sp.

• Bit Vector Mapping: Next, we use the bvSp
to determine which phrase contains

the substring. We apply rank1(bvSp
, k), which tells us how many 1s there are

up to position k = 15 in the bvSp
. In this case, the result is i = 1, indicating

that the pattern first occurs in the second substring (or, in our instance, song

phrase) of Sp. Using select1(bvSp
, i), we find the first 1 in the bvSp

at position 11.

• Final Position Calculation: To determine the exact position within the second

substring, we use the formula j = k− select1(bvSp
, i), where k = 15 (from the

suffix array) and select1(bvSp
, 1) = 11. This gives j = 4, meaning the query p

starts at the 4th position in the second substring of Sp.

The first (and only) tuple we obtain in matches (returned by Algorithm 1) is (4, 2)

can then be converted to a phrase identifier i (of pi), and an exact phrase position.

In our case, this would mean that the searched query was found at position 4 of

phrase 2.
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4.3 Descriptor Pattern Matching

This encoding and pattern matching methodology was initially introduced as a single-

descriptor pattern matching in [33], meaning only one descriptor element per de-

scriptor category was considered per matching task (P2). Subsequently, a second

methodology was developed to accommodate multiple descriptor elements per de-

scriptor, necessitating a slightly modified approach. This latter development neces-

sitated a restructuring of the encoding phase, impacting both the encoding of the

dataset and the potential queries, as well as initiated a new pattern matching al-

gorithm. Both methods will be defined, explained, and will include examples of

implementation in the following subsections.

4.3.1 Problem Definition

Descriptor set matching with bitwise operators. Given a descriptor query d, where

d = (d1, d2, d3, . . . , dm), and each element dt for 1 ≤ t ≤ m is a descriptor chosen from

a specific pre-selected descriptor category ∆t, or is ignored (⋆), we aim to identify all

instances, the query d matches the descriptors of i.

Multiple descriptor set matching with inverted dictionary. Given a descriptor

query md = (md1, md2, . . . , mdt, . . . , mdm), where each mdt ⊂ V(∆t) we aim to iden-

tify all i in dataset D such that di = (di
1, di

2, ..., di
t, ...di

m), matches at least one di
t per

∆t.

4.3.2 Descriptor Set Matching with Bitwise Operators (P2)

First, I detail one of the two approaches for descriptor pattern matching, that con-

verts the dataset into bits, and then, performs the single-query pattern matching as

described in the subsection above.

Dataset encoding. Let us consider dataset D, where di are the descriptors of pi.

The latter is, in this case, turned into a sequence of bits bv(di) per di (Algorithm

2), such that it first considers the selected descriptor categories of interest, and then

constructs a reference dictionary R of which the keys are all selected descriptor cat-

egories ∆t, and their values are all possible associated descriptor elements (Figure

4.5).

Each descriptor V(∆t) can be represented by bt bits, with bt = ⌈log2 |(∆
t)|⌉. Here,

each value dt
i ∈ V(∆t) is associated with a bitarray bvt

i . Each descriptor sequence di

is then stored as a bitarray bv(di).

Each section of bits in a bitarray bv(di) is allocated for a specific descriptor

bv(dt
i), where each descriptor’s bit length may vary. The bitarray can be represented

as:
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bv(di) = bv(d1
i ) . . . bv(dm

i )

Each bv(dt
i ) in the bitarray represents a different descriptor. or example, con-

sider the descriptor sequence di = (First, A,↗↘, 4/4), where the bitarray bv(di) =

00 0 1111 000 “00” represents the phrase position (“First”), “0” represents the phrase

label (“A”), “1111” represents the contour type (“↗↘”), and “010” represents the

time signature (“4/4”) (refer to Figure 4.5).

The exact number of bits allocated to each unique descriptor element and their

order within bv(di) are determined by a bit reference dictionary R, retrieved from

the list of selected descriptor Categories and those, available in D. The length of each

bit segment, and consequently the total size of the bitarray bv(di), depends on the

diversity of descriptor elements within ∆t.

Algorithm 2 Dataset and Query Conversion, and Reference Dictionary Creation

1: Input: descriptor sequence d, dataset D, Categories
2: Output: A set of integers i, such that di matches d
3: Initialize matches← ∅

4: R← Categories, D
5: π(d)← bv(d), R
6: Dbit ← D R
7: µ← Categories
8: return (π(d), Dbit, µ(d))

Algorithm 3 Descriptor Set Matching with Bitwise Operators

1: Input: π(d), Dbit, µ(d)
2: Output: matches, a set of integers i, such that bv(di) matches π(d)
3: Initialize matches← ∅

4: for bv(di) in Dbit do

5: masked_query← π(d) AND µ(d)
6: masked_descriptors← bv(di) AND µ(d)
7: xor_result← (masked_query XOR masked_descriptors)
8: result← all bits of xor_result
9: if all bits of result→ 0 then

10: matches← matches∪ i
11: end if

12: end for

13: return matches

Pattern matching task. Reflecting on the problem definition presented at the be-

ginning of this section, we aim to identify similar entries within a dataset based on

their descriptors. Given a descriptor query d, and a converted dataset D stored as
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FIGURE 4.5: Descriptor pattern matching with bitwise operators. The method compares the
query bitarray π(d) against each converted dataset entry bv(di). It also applies a mask µ(d)
that determines which Categories are to be compared and which to be left out. We provide
two examples, in each of which two out of four possible descriptors are considered: Left
example considers phrase label (A) and contour (↗↘), while the Right includes the phrase
label and time signature. The bitarrays for both the query and dataset entries are generated
using (Far right) the pre-computed reference dictionary R, which is used for converting (fol-
low the blue arrows) both the dataset (Dataset D conversion on the right) and query into
bitarrays. (Bottom) A green arrow and a square indicate a match was found, while a red ar-
row and a square point out a mismatch (with a mismatched element highlighted in a white
square).

Dbit (refer to Figure 4.3), the method searches for all instances where bit represen-

tation π(d) of the query matches bv(di), optionally applying a mask µ(d) (see defi-

nition below and Figure 4.5), a bitarray of the same length as π(d), and considering

only the bits of π(d) in positions where mask bits equal to 1 (Algorithm 3).

As indicated in the encoding section, each descriptor ∆t is represented by ⌈log2

|V(∆t)|⌉ bits, each value xt
j in V(∆t) being associated with a specific bitarray. Each

descriptor sequence di = (d1
i , d2

i , d3
i , . . . , dt

i , . . . , dm
i ) is stored as a concatenation of a

bitarray of selected descriptors bv(di) = (bv(d1
i ), bv(d2

i ), bv(d3
i ), . . . , bv(dt

i), . . . , bv(dm
i ))

(see Algorithm 2 for data encoding, and Algorithm 3 for single descriptor set match-

ing).

A descriptor query d, where d = (d1, d2, . . . , dt, . . . , dm), is associated with two

bit masks µ(d) = µ1 . . . µm and π(d) = π1 . . . πm, where











































µt = πt = 0 . . . 0

if dt = ⋆,

where ⋆ represents the descriptors we wish to ignore,

µt = 1 . . . 1 and πt = bv(dt)

otherwise.

Checking whether a descriptor d matches a descriptor di is done in O(1) time,

provided that the bitarray fit in one machine word, with the following procedure:
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[(bv(di) XOR π(d)) AND µ(d)] = 0.

Example. If we consider our dataset D of phrase entries from Slovenian folk song

ballads with accompanying metadata, the initial step for each row is to identify the

extracted phrase melody sequence and its corresponding metadata. An identifier i is

then constructed for each entry, or in our case, each song phrase. When comparing

descriptors alone, we proceed to encode the selected query and subsequently engage

in pattern matching.

Given descriptor query d = (F, A, ↗↘, 4/4), then its default associated masks

are µ(d)= 1111111111 and π(d) = 0001111010 (see reference dictionary R in Figure

4.5).

Now, let us consider a D where d239.10.A.1 = (First, A, ↗↘, 3/4). Its associated

bitarray is bv(d239.10.A.1) = 0001111000. Since [bv(d239.10.A.1)XORπ(d)ANDµ(d)] =

000000000, d matches d239.10.A.1, hence i=239.10.A.1 would be returned as a result

in the set of matches.
For example, if d = (⋆, A,↗↘, ⋆), where ⋆ represents a descriptor we wish to

ignore, then

µ(d) = 00 · 1 · 1111 · 000

bv(d239.10.A.1) = 00 · 0 · 1111 · 000

π(d) = 00 · 0 · 1111 · 101

bv(d239.10.A.1) XOR π(d) = 00 · 0 · 0000 · 010

bv(d239.10.A.1) XOR πd AND µ(d) = 00 · 0 · 0000 · 000

However, if, for instance, d = (⋆, A, ⋆, 4/4), the result of

bv(d239.10.A.1) XOR π(d) AND µ(d) = 0000000111

This leads to a mismatch, even though the phrase label (A) matches, because

the time signature is also considered. In this case, our query specifies a 4/4 time

signature, whereas d239.10.A.1 has a time signature of 3/4 (Figure 4.4 for the song

example, and Figure 4.5 for visualisation example).

In the example provided, d239.10.A.1 represents an example in our dataset, a spe-

cific song phrase that is to be compared against our query d. The mask applied

in this context is µ(d) (as defined in the paragraph titled Pattern matching task and

shown in Figure 4.5). The comparison process involves matching bv(d239.10.A.1) us-

ing the XOR, as well as AND bitwise operators. This is due to the mask that is taken

into account, ensuring that any potential mismatches at the initial and final descrip-

tor elements of π(d) (the bitarray representation of the query d) are disregarded (⋆),

thereby enabling the two examples to align (refer to the bits highlighted in blue).
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4.3.3 Multiple Descriptor Set Matching with Inverted Dictionary (P3)

Second descriptor matching technique considers multiple descriptor entry, meaning,

one can select zero, one, or multiple values per descriptor category.

Dataset encoding. In contrast to the previous approach, this method requires en-

coding D into a single inverted dictionary of dictionaries, Dinv. This structure is

constructed by first including all selected descriptors, ∆t, as the primary keys, with

their corresponding values, V(∆t). Each key xt
j of each main key ∆t represents an

entry in the dictionary ∆t and is linked to its associated values, the identifier i. Each

element in di that corresponds to xt
j is thus mapped within Dinv (Figure 4.3).

For example, consider the descriptor POS (representing positions within a se-

quence). The dictionary Dinv might look like this: POS: {F: {ID1, ID3}, M: {ID4}, L:

{ID2, ID5}}. Here, F (First), M (Middle), and L (Last) are keys under the descriptor

POS, each associated with a set of identifiers that indicate which songs or sequences

correspond to these positions. This inverted structure allows for efficient retrieval of

sequences without requiring further data conversion, unlike the bitwise operators

approach, which necessitates encoding before pattern matching (Section 4.1.1).

Let us consider three of our song phrases as an example (see visualisations of

each in Figure 4.6):

D= {(p239.8.A.1, d239.8.A.1), (p252.76.1, d252.76.1), (p279.2.B.1, d279.2.B.1)} with selected

Categories = (POS, LBL, CONT), where:

d239.8.A.1 = (F, A,↗↘)

d252.76.1 = (F, A,↗↘)

d279.2.B.1 = (F, A,↘→)

Then, the Dinv of D is constructed as:

Dinv =
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F : {239.8.A.1, 252.76.1, 279.2.B.1, . . .} ,

M : {} ,

L : {}











,

CONT :

{

↗↘: {239.8.A.1, 252.76.1, . . .} ,

↘→: {279.2.B.1, . . .}

}

,

. . .
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Pattern matching task. The Algorithm 4 provides a method for P3, which aims to

consider multiple possible descriptor elements of the same descriptor ∆t in a query

md. It operates as follows:

• Let dataset D represent our dataset, containing melodies and a corresponding

list of descriptors.
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(A) Margareta, Margareta (239.8.A)

(B) Lansko leto sem se oženu / Last year I got married (252.76)

(C) Ko mlado dekle šlo je u tujino / When a young maiden went abroad (279.2.B)

FIGURE 4.6: Three annotated examples of songs from the collection of Slovenian folk song
ballads on the platform Dezrann.

• Let Dinv denote the inverted dictionary constructed from D where ∆t is a key

in Dinv, and xt
j is a key of ∆t, of which the corresponding values are identi-

fiers i. Each element dt
i corresponds to the descriptor xt

j in Dinv. Avoiding the

descriptor is expressed with a ⋆.

Given a query

md = (
{

x1
1, x1

2, x1
3

}

, {⋆} ,
{

x2
1
}

,
{

x3
1, x3

2
}

)

The algorithm first checks whether the descriptor is found in selected Categories

= (∆1, ∆2, ∆3), for example (POS, LBL, CONT), and then finds all instances of pi,

where the ∆t and xt
j match one of the selected descriptor elements in md query, for

example, {{F}, {A}, {↗↘}}.
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Let ∆t be an individual key, and let xt
j be a of each ∆t. If ∆t is associated with

multiple xt
j , then matches for xt

j are stored as a separate set of identifiers S(xt
j).

To establish a single identifier set S(∆t) per descriptor ∆t, we compute the union

of all possible sets S(xt
j).

Given two sets A(∆t) and B(∆t), each containing identifiers, the method always

computes their union, denoted A(∆t) ∪ B(∆t). This results in a single set that in-

cludes all distinct elements present in either A(∆t), B(∆t), or both.

The process is repeated for each ∆t in a query md, such that we acquire exactly

one set per considered ∆t.

If a query contains multiple V(∆t), resulting in multiple sets of identifiers i, then

the intersection of all these sets is performed. This ensures that the final set of

matches includes only the IDs i, which have at least one xt
j for each ∆t in common.

Algorithm 4 Descriptor Set Matching with Inverted Dictionary

1: Input: A multiple descriptor query md, a dictionary Dinv

2: Output: A set of IDs i, where md matches with di of pi

3: Initialise matches← ∅

4: for descriptor_set in md do

5: identifiers← ∅

6: if descriptor_set ̸= ⋆ then

7: for value in descriptor_set do

8: identifiers← identifiers∪Dinv[descriptor_set][value]

9: end for

10: else

11: identifiers← Dinv[descriptor_set][value]

12: end if

13: matches← matches ∩ identifiers

14: end for

15: return matches

Implementation example. Let us revisit Figure 4.6 and consider the following ex-

ample:

Categories = (POS, LBL, CONT)

a query

md = ({F} , {A} , {↗↘,↘,↗})

and suppose that

D = {(p239.8.A.1, d239.8.A.1), (p252.76.1, d252.76.1), (p279.2.B.1, d279.2.B.1)} (Figure 4.6).
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We initialise pattern matching by finding the matching IDs from the dataset that

align with F for POS, resulting in:

pos_ids = {239.8.A.1, 252.76.1, 279.2.B.1}

We repeat the process for the LBL descriptor A, and again identify the IDs:

label_ids = {239.8.A.1, 252.76.1, 279.2.B.1}

from the dataset.

As CONT descriptor query contains more than one descriptor element, we per-

form a union over the set {↗↘,↘,↗}, resulting in

cont_ids = {239.8.A.1, 252.76.1}

Finally, by computing the intersection of these sets,

matches = pos_ids∩ lbl_ids∩ cont_ids = {239.8.A.1, 252.76.1} ,

we obtain the final set of matches. This procedure utilises union operations to

gather potential matches from each descriptor category and employs intersection

operations to narrow down to IDs common across all criteria, ensuring that the final

set of matches

{239.8.A.1, 252.76.1}

satisfies all the conditions specified in the query, leaving out the song phrase, of

which the contour (it being →↘) does not match with any of those, found in our

query md.

4.4 Mixed Pattern Matching (P4)

This section provides a concise overview of the methods previously discussed, demon-

strating how they are integrated to achieve mixed pattern matching. By “mixed”, we

mean the simultaneous matching of melodies and descriptors. Specifically, given a

dataset D, we aim to find all matches for two types of combined queries: p with

d to match melodic sequences and single descriptors using bitwise operators, or p

with md to match melodic sequences along with multiple descriptor elements per

descriptor using inverted dictionaries.

Pattern matching task.

• Melody Matching: Initially, the algorithm attempts to find a match for the

provided melody (Section 4.2). Upon identifying a match, it proceeds to the

descriptor matching phase.
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• Descriptor Matching: Descriptors are then matched using the selected method,

either by utilising bitwise operations (Section 4.3.2) or the inverted dictionaries

(Section 4.3.3).

• No Melody Match: In the absence of a melody match, or subsequently a de-

scriptor match, the algorithm moves on to the next entry in the dataset.

Result: The algorithm returns all matches with their identifiers, along with the pi

and queried pattern’s positions within the phrase, and listing the matched descrip-

tors di of that particular entry.

Implementation example. We will once again refer to Figure 4.6 and assume our

dataset D = {(p239.8.A.1, d239.8.A.1), (p252.76.1, d252.76.1), (p279.2.B.1, d279.2.B.1)}. Given se-

lected descriptor categories, Categories = (LBL, CONT), and a mixed query, we have:

• p = “ddb” and d = (A,↗↘), which corresponds to song phrase index 252.76.1.

• p = “bd” and md = ({A} , {↗↘,→↘}), which correspond to song phrase

indices 239.8.A.1 and 279.2.B.1.

4.5 Conclusion

This chapter introduced four distinct pattern matching problems: P1 (melodic se-

quence), P2, P3, and P4. All of these propose a separate algorithm (with an exception

of P4, which is a culmination of P1 and P2 or P3), which was methodologically ex-

plained.

The effectiveness and utility of these (and other) pattern matching techniques

vary significantly depending on the type of music, the specific nature of the input,

and the diverse research questions posed. This necessitates adaptable methodolo-

gies. Whilst P1 addresses an efficient comparison of melodic sequences, it is insuf-

ficient, for example, for music that has developed outside of the Western classical

music tradition or similar notational music systems, such as verbally transmitted

music. Thus, our method, especially with P2 and P3, by incorporating descriptor

pattern matching, offers a framework that extends beyond conventional approaches

to include more context-sensitive and diverse musical interpretations. The descrip-

tor methods thereby complement the sequential queries effectively.

Optionally, some descriptors are possible to be integrated into P1, where the re-

sults can be further refined, using the information on the phrase number and the

exact position. Adding these to our query ensures, that only the matches satisfy-

ing both the position within the phrase and phrase number criteria are returned by

finding the intersection of the filtered results. Furthermore, although these method-

ologies have been primarily applied to music, they may also be extendable to non-

musical queries.
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The following chapters will follow these conclusions by providing an extensive

evaluation of the introduced methods, focusing technical performance, as well as

testing the methods on two case studies. The first case study will focus on the main

corpus, specifically Slovenian folk song ballads, and the second case study will ex-

amine an existing digitised collection of children’s songs.
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Chapter 5

Implementation and Evaluation

When reviewing and comparing contributions, particularly the more “technical”

ones within the scope of MIR, it is evident that they almost invariably include some

form of evaluation. Given the wide range of music tasks and queries considered in

this field, one is prompted to reflect on what exactly is being assessed, what these

assessments truly reveal about their contributions, and who finds these results valu-

able.

Interdisciplinary research, such as MIR, presents considerable challenges in terms

of evaluation. As noted by Downie [70], a general issue is that “there has been

no way for research teams to scientifically compare and contrast their various ap-

proaches.” Several authors have emphasised [71, 70, 86, 303, 126, 77, 295] the need

for a more holistic approach that encompasses all aspects of the algorithms, includ-

ing their interactions with the materials used and the diverse profiles of the individ-

uals involved.

On one hand, [71, 70] call for adopting ready-made evaluation methods from

similar fields, such as text algorithmics. However, they also frequently argue that

music information tends to be more (or too) complex1 or unsuitable for a direct

transfer of those methods to MIR. The authors also emphasise the difficulty in find-

ing and/or storing large testing collections that cover all types of notation, audio,

annotations, and different music genres. As mentioned in Section 2.3, there are nu-

merous ways to link music data, making it difficult to evaluate them collectively,

as they are often very distinct from one another. Additionally, they acknowledge,

that there are endless possibilities for music queries, many of which do not originate

from real-world examples, leading to potentially misleading evaluations2.

Next, Downie discusses the concepts of relevance, precision, and recall. While

these are suitable in particular cases, they cannot replace a comprehensive evalua-

tion, as the definitions of what is relevant, precise, and so forth, are far from being

objectively answerable in all instances. To this end, Downie hopes that, by mak-

ing the query records as data-rich as possible, a “reasonable person” standard could

1There is no uniform understanding of what music is. It encompasses several components such as
rhythm, melody, text, and praxis, among others, all of which can be easily varied, and yet represent
a very similar content. Music also comes in many formats and encodings, making the processes of
methodology and its evaluation even more challenging.

2A similar view is also put forward by [126] and [295].
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emerge as the criterion for judging the relevance of returned items. That is, there

should be enough information contained within the query records that reasonable

persons would concur as to whether a given returned item satisfied the intention of

the query. The validity of the “reasonable person” assumption would, of course, be

subject to empirical verification [70].

Lastly, he mentions issues of accessibility and intellectual property laws. While it

is true that much more data is available now compared to 2004, questions regarding

ownership and publication rights remain persistent challenges in developing con-

sistent, well-informed collections of music.

Since then, a line of comprehensive ideas on how to build these frameworks for

evaluating such algorithms, especially in terms of computational music co-creativity,

has been succinctly proposed. One such example is [126], who introduces the con-

cept of the four Ps or perspectives. She argues that, in their case, computational cre-

ativity should be assessed beyond the commonly narrow focus, which only consid-

ers the process3 and product4. In her view, computational creativity, being a human-

related process, should also account for the person or producer5 and the press or envi-

ronment6. All four Ps contribute to the novelty and value of the proposed method,

meaning that discussing only a few aspects (or Ps) limits the range of areas and

disciplines that may find these ideas valuable [126].

A similar caution regarding how we evaluate, or rather validate, methods and

their experiments was proposed by [295]. They reflect on validity7, which assesses

the legitimacy of the conclusions drawn from an experiment or study. In the context

of MIR research, they draw on the four types of validity classification by [275]8,

which are essential for ensuring the robustness, reliability, and generalisability of

systems across diverse datasets and real-world scenarios. The authors indicate that,

“[a]n experiment does not possess ‘truth value’. Validity is a property of a conclusion

made given evidence collected from an experiment.”

The components of an experiment—units, treatments, design, observations, and

setting—have major consequences for the validity of conclusions drawn from it,

whether it is statistical conclusion validity, internal validity, construct validity, or ex-

ternal validity” [295]. This is crucial because, as has already been previously stressed

by [303], “reaching wrong conclusions from evaluation experiments may not only

hamper the proper development of our field, but also make us follow completely

wrong research directions.”

Building on the discussed matters above and upgrading the Figure 4 from [303]

(Figure 5.1), the most important considerations in our evaluation is to: 1. clearly

3“What the creative individual does to be creative” [126].
4“What is produced as a result of the creative process” [126].
5The individual agent [human or machine] that is creative.” [126].
6“The environment in which the creativity is situated” [126].
7Validity addresses whether the findings are credible and reflect the real-world phenomena they

intend to represent, ensuring that the results are not merely artifacts of the specific experimental setup
but can be generalised to broader contexts.

8These concepts are found in [303] as well.
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communicate what is being evaluated and the reasons for it, 2. evaluate from multi-

ple perspectives, and 3. understand the limitations of the testing corpus and method-

ology (state where evaluation is corpus-specific rather than a generalised result),

which will be based on real-world data. Evaluating pattern matching is not a grate-

ful task as, evident from the discussion as well as Chapter 2, different (ethno)music

(ological) studies rarely agree on what a pattern is and what is the most meaningful

result of such approach.

FIGURE 5.1: MIR process from task creation to evaluation. (Up) Figure 4 from [303]. (Down)
Suggestion for an update of that figure with the inclusion of new user/data interaction with
the existing task.

This chapter, hence, is dedicated to a comprehensive evaluation of the algorithms

and findings presented in this thesis. We begin by examining the most technical as-

pects, such as algorithm performance and the accuracy metrics associated with spe-

cific classification problems. This examination is further enriched by a discussion

of the metrics results, aiming to go beyond mere numerical data to critically as-

sess whether it is even possible to design or formulate meaningful patterns for such

studies, and to understand what the accuracy of these patterns truly represents. Fur-

thermore, we investigate whether employing more “complex” patterns can improve

these outcomes.

To address the first, we begin by evaluating the execution time of all phases,

namely dataset conversion, descriptor pattern matching, and melodic pattern matching

(P1), using the Slovenian folk song ballads corpus (SLP). The descriptor approaches

are divided into two categories, assessing both the bitarray (P2) and inverted (P3)

methods.

Following this technical evaluation, we assess the functionality in both, technical,

(e.g., accuracy/metrics on a classification problem) and circumstantial evaluation of
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the algorithms through two distinct case studies. The first case study focuses on

the SLP corpus, examining the tune families within the most represented song type

in the collection. The second case study utilises the corpus from a GMGM project

(Glasba mladih po 1945 in glasbena mladina Slovenije/Youth music since 1945 and Jeunesse

Musicale), a collection of children’s songs, to evaluate the suitability of this corpus

for children in comparison to the SLP corpus, which was not curated specifically

for a younger audience, centering the problem around melodic parameters, such as

range and intervals. Each case study involves different corpora, with varying levels

of metadata and annotations, and applies different algorithms.

Finally, we synthesise the findings from all three sections to provide a compre-

hensive discussion on the evaluation of the proposed approaches, extending the

analysis beyond mere statistics. It is important to note that, by excluding eval-

uations from various user profiles, the assessment does not necessarily reflect the

general performance of the algorithms, but rather their effectiveness within the de-

fined scope. Given that this algorithm is intended to interact with diverse research

queries, descriptors, and datasets, we will discuss why an algorithm that performs

well in our specific context may perform poorly with another dataset or query, and

vice versa.

5.1 Performance Evaluation

5.1.1 Implementation

P1: Melodic Sequence. Melodic sequence pattern matching was implemented us-

ing the Python library pysdsl. Specifically, we utilised pysdsl.SuffixArrayBit

compressed and pysdsl.BitVector for string encoding. The pattern matching pro-

cess employed the rank and select functions to search for specific patterns within

the encoded strings.

P2: Descriptors. For descriptors conversions and matching in P2, the Python li-

brary bitarray was used. Both datasets and queries were converted into bit arrays.

Pattern matching was performed using Python’s XOR and AND operators, with and

without masks, to identify matches between dataset and query descriptor sets.

P3: Descriptors. Descriptor matching for P3 was implemented using set opera-

tions, specifically union and intersection, to evaluate the relationships between

different descriptors. Additional operations were performed using standard Python

functions related to dictionary manipulation.

Testing Environment. All testing was performed in Jupyter Notebook on a Mac-

Book Air (M2, 2022) with 16 GB of RAM.
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5.1.2 Performance

Here, we provide a detailed evaluation of the time and memory metrics (Table 5.2)

for various code implementations, noted above. The time metrics represent the av-

erage execution duration for each loop iteration, reported in microseconds (µs) or

milliseconds (ms), along with their respective standard deviations. These measure-

ments assess the consistency and performance efficiency of each implementation.

The memory metrics, reported in mebibytes (MiB), include the peak memory usage

and the incremental memory consumption during the execution of the program.

These metrics explain the memory efficiency and potential overhead introduced by

different implementations, as noted above.

Data Conversion. First, we evaluated the data conversion methods (Table 5.1).

Both methods were tested using the same input: the first method converts the de-

scriptors into bitarrays (P2), while the second method stores them in inverted dic-

tionaries (P3). When applying mixed pattern matching, the the melodic input and

output remains unchanged whether it is paired with P2 or P3. In terms of melody,

the dataset is stored as a single saSp
and bvSp

for the melody, and bitarrays (P2) or

Dinv descriptor dictionary (P3) for the corresponding descriptors. The P2 approach

also creates and stores a bit reference table in addition to the two, which is used

to convert the potential descriptor query to a suitable format. Although the differ-

ences between the two conversion methods for descriptors are minor, the evaluation

favours the P3 approach, which is both more time- and space-efficient.

Melodic Pattern Matching (P1). As previously mentioned, there is only one method

for melodic pattern matching (as described in Section 4.2). For the evaluation, the

input melodic pattern query was set to p = bag. We searched for all instances of this

sequence within the corpus of Slovenian folk songs and retrieved 362 instances. Ad-

ditionally, we applied two parameters, that technically derive from the descriptors,

considering only the sequences which start in the first position of a phrase, regard-

less of the phrase number, which filtered the results down to 20 instances. Both

methods were evaluated through multiple iterations to determine the mean or peak

performance, as shown in Table 5.3.

Descriptors Set Matching (P2 & P3). Next, we compare two types of descriptor

pattern matching. The P2 method allows the input query with the selected descrip-

tors of time signature, phrase label, contour and verse syllables, to provide only a

single descriptor element xt
j per descriptor ∆t. In this case, the query is composed

of:

d = (3/4, A,↗↘, 4)
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In contrast, the P3 method can match several descriptor elements dt
j per descrip-

tor category ∆t. If we take the same descriptors as above, then the input query is:

md =

({

3
4

}

, {A} , {↗↘,↘} , {1, 4}
)

While the query format for the method of P3 fits as is, the one of P2 requires refer-

encing the pre-constructed dictionary of bits to convert our query to bitarray, before

proceeding with the match. Additional time is required for each label combination

we wish to test. If we wish to compare different descriptor elements with P2, it must

execute separate functions for each descriptor element combination (with always

allowing one per descriptor). Due to conversion and smaller flexibility in terms of

adding descriptors, as shown in Table 5.2, the method of P2 is evaluated as being less

efficient in terms of both time and memory. We also tested mixed pattern matching,

adding melodic query and matching to both (Table 5.4).

Metric Problem Mean Standard Deviation (±)

Time

P2 (Ref. Dict) 167 µs 30.2 µs
P2 (Dataset) 271 ms 467 µs
P3 48.5 ms 1.1 ms

Peak Memory
P2 (Ref. Dict) 225.95 MiB -
P2 (Dataset) 227.12 MiB -
P3 225.94 MiB -

TABLE 5.1: Data conversion evaluation (7 runs, 10 loops each). P3 involves a single step,
whereas P2 requires two distinct steps: first, creating a reference dictionary, and then con-
verting the dataset (see Algorithm 2). These two steps should therefore be considered to-
gether for a comprehensive comparison. Notably, the relative values of the Mean and Stan-
dard Deviation here and in the following examples provide insights into the stability and
consistency of the conversion processes, highlighting potential performance variability be-
tween the methods.

Metric Problem Mean Standard Deviation (±)

Time

P2 (Query Conversion) 2.64 µs 615 ns
P2 (Descriptor Matching) 866 µs 16.8 µs
P3 674 µs 170 µs

Peak Memory
P2 (Query Conversion) 227.97 MiB -
P2 (Descriptor Matching) 227.97 MiB -
P3 240.16 MiB -

TABLE 5.2: Descriptor evaluation for P2 and P3 (7 runs, 10 loops each). P3 is executed in a
single step, while P2 involves two steps: first, converting the query to bits (see Algorithm 2),
followed by the descriptor set matching (see Algorithm 3). The two steps should be regarded
together.
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Problem Metric Mean Standard Deviation (±)

Melodic Pattern Matching
Time 365 µs 40.4 ns
Peak Memory 227.31 MiB -

Filtering
Time 44.5 µs 328 µs
Peak Memory 227.31 MiB -

TABLE 5.3: Melodic pattern matching evaluation (7 runs, 10 loops each). In addition to
melodic pattern matching, a filtering function was included and evaluated, which accounts
for both the position of the pattern within a phrase and the phrase’s position within the song.

Metric Problem Mean Standard Deviation (±)

Time

P2 914 µs 310 µs
P3 1.13 ms 414 µs

Peak Memory
P2 192.67 MiB -
P3 192.66 MiB -

TABLE 5.4: Mixed pattern matching evaluation for P2 and P3 (7 runs, 10 loops each). The
evaluations for each P are best understood in the previously provided evaluations (sepa-
rately for melody and descriptors), which detail the steps more clearly.

5.2 Case Study: Slovenian Folk Song Ballads

Statement: This case study is a slightly edited version that was published in paper [33].

We conducted the first case study using 103 monophonic variants of type 286

— Nevesta detomorilka, a song well-established in the European folk song tradition,

particularly noted for its widely known theme of an infanticidal bride. A subtype of

this song in our corpus, labelled 286.T1, consists of 34 tunes, which have been man-

ually classified as a subtype due to their melodic similarity. These tunes frequently

exhibit similar melodic patterns at the beginning or end of specific phrases, such as

the fad as a middle phrase starting pattern or the bag as a final phrase ending pattern

(Figure 5.2).

We developed combined melody and/or descriptor queries, which assumed the

main features of the specific phrases of subtype 286.T1. These queries were then

evaluated as a binary classification problem: for instance, can we accurately identify

the 34 phrases of 286.T1 and distinguish them exclusively from other phrases based

on melodic features and its descriptors?

Some notes on the dataset. This case study [33], was conducted using the first

version of the algorithm and annotated dataset9. The primary differences from the

current version are as follows:

1. the dataset was later slightly extended with additional phrases after re-exami-

na-tion with experts from the Institute of Ethnomusicology ZRC SAZU; 2. the phrase

9Algomus Data, http://www.algomus.fr/data, accessed on 4th October 2024.
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labels of the dataset were simplified; 3. the dataset initially included harmonic la-

bels for the beginning and ending segments of phrases, which were later omitted

due to their ambiguity, as discussed in previous chapters; and 4. the algorithm for

descriptor pattern matching was originally based entirely on the method using bit-

wise operators, which precluded the comparison of multiple descriptor elements

within a single descriptor category.

Despite these differences, the majority of the objectives that remain relevant to-

day were already apparent in the methodology used at that time.

FIGURE 5.2: Three variants (out of 34) of the subtype 286.T1 with similar short melodic
patterns in the same phrase positions (in colored squares).

5.2.1 Pattern Matching

Table 5.5 illustrates that simple melody queries consisting of 1 to 3 notes achieve rea-

sonable recall rates (50%–80%), although they exhibit limited precision. By carefully

selecting and adding highly relevant descriptors, both precision and recall gradually

improve, ultimately leading to higher F1 scores.

The ddb melody query alone produces 93 matches: 18 are True Positives (TP),

but 75 of them are False Positives (FP) unrelated to the first phrase of 286.T1 tunes.

Incorporating a phrase position descriptor (F, first) refines the query, while adding

relevant contour (↗) and starting harmonic information (HS) of a dominant (D) fur-

ther enhances specificity. This query (F, ↗, HSD) results in only 2 False Positives

(FP), achieving a precision of up to 0.88, with minimal sensitivity loss. The ag pat-

tern in the last phrase, characterised by a convex contour and a harmonic ending,

is a noteworthy example. Given the enhanced harmonic stability typically found in

verse endings, the inclusion of the starting harmonic label (HS) of a tonic (T) as a

stable harmony descriptor proves effective in this context.

However, including too many or irrelevant descriptors can lead to poor results.

For instance, the cbb pattern is primarily found at the end of the middle phrase.

Requiring a stable harmonic framework (ending harmonic label (HE) as T) for mid-

dle phrase endings reduces precision, as it is less common in those positions (Table

5.6). Another interesting instance is the fad pattern, occurrences of which are almost

evenly split into two contours. If we matched (fad, M, ↗↘ or ↗→), we would



5.3. Case Study: Children’s Songs Collection 103

obtain 23 True Positives with a precision of 0.82 and a recall of 0.82. Consequently,

the descriptor pattern matching algorithm was, as anticipated, extended to accom-

modate the matching of a subset of multiple descriptors within the same category,

rather than solely relying on one descriptor element per descriptor.

5.2.2 Patterns as Building Blocks

Melody and descriptor patterns have versatile applications beyond classification. In

our case, the most effective queries incorporate position descriptors, suggesting that

we should consider phrases and their positions in songs as building blocks for pattern

matching.

It is noteworthy that studying the “False Positives” (matches outside of 286.T1)

is expected to yield intriguing results, shedding light on the transmission of musical

material among tunes and vice versa. For instance, the ag pattern in the last phrase,

exhibiting a↗↘ contour and ending with HE, is not only specific to 286.T1 but also

appears in 14 tunes of type 252 (A Widower at His Wife’s Grave). The shared section

of the melodic line in the two tunes has identical descriptors, although its positions

may vary (scores not shown).

Comparing outcomes across multiple corpora may provide insight into the ex-

tent to which these melodic ideas are unique to (Slovenian) folk songs.

5.3 Case Study: Children’s Songs Collection

Youth magazine Ciciban had its first issue in 1945. Since then, it was a great deal of

Slovenian children’s lives. It includes didactic, entertaining and overall educational

contents in all literary forms, as well as illustrations and music, and Q&A section,

where children can learn more about what they are interested in. It issued works

of many established cartoonists, youth writers and poets, as well as composers, and

has been a great tool for parents, teachers and other educational workers. The maga-

zine’s primary goal is to provide high-quality content for aesthetic education, cover-

ing verbal, visual, and musical arts, while also supporting intellectual, physical, and

social development [222, 309]. Ciciban, originally aimed at pre-school children and

those up to ten years old, has shifted its focus over the last 15 years to cater mainly to

younger students [309]. The project GMGM, among other tasks, digitised a corpus

of 123 music examples10 (mainly composed, arranged, or curated children’s (folk)

songs with lyrics) from the earliest issues (1948–1991) of Ciciban magazines. For the

purpose of testing the algorithm proposed in this thesis, we took the entirety of the

examples with existing annotations, as well as added some based on the available

data.
10Slovenska mladinska in otroška glasba 1945–1991, https://korpusi.musiclab.si/, accessed on 4th

October 2024.
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Query (melody + descriptors) TP FP FN Precision Recall F1

d None 1 (34) 28 1191 6 0.02 0.82 0.04
d F 28 327 6 0.08 0.82 0.14
d F, HSD 27 189 7 0.12 0.79 0.22
d F,↗, HSD 21 48 13 0.30 0.62 0.41

ddb None 1 (34) 18 75 16 0.19 0.53 0.28
ddb F 18 32 16 0.36 0.53 0.43
ddb F, HSD 17 21 17 0.45 0.50 0.47
ddb F,↗, HSD 14 2 20 0.88 0.41 0.56

fad None 3 (33) 24 24 9 0.50 0.73 0.59
fad M 24 14 9 0.63 0.73 0.68

fad M,↗↘ 11 2 22 0.85 0.33 0.48
fad M,↗→ 12 3 21 0.80 0.36 0.50

cbb None 3 (33) 25 71 8 0.26 0.76 0.39
cbb M 25 39 8 0.39 0.76 0.52

cbb M,↗→ 11 3 22 0.79 0.33 0.47
cbb M, HET 1 3 32 0.25 0.03 0.05

ag None 4 (34) 27 481 7 0.05 0.79 0.10
ag L 27 165 7 0.14 0.79 0.24
ag L,↗↘ 23 54 11 0.30 0.68 0.41
ag L,↗↘, HET 23 51 11 0.31 0.68 0.43

TABLE 5.5: This table is a part of analyses published in [33]. Evaluation of melody/descrip-
tor queries seen as classification queries intended to match phrases 1, 3, and 4 of the melodic
tune subtype 286.1 (34 first and last phrases, 33 third phrases) against all 1502 phrases of
the dataset. We computed True Positives (TP), False Positives (FP), False Negatives (FN),
and from those, precision, recall, and F1-score. Bold values are discussed in the text. The as-
sessed descriptors are phrase position (F=first, M=middle, L=last), harmonic labels (Phrase
starting on a HSD=Dominant, or ending on a HET=tonic), and contours (↗=ascending,
↗↘=convex,↗→=ascending horizontal).
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T D ?T ?D ?

First HS 25% 54% 9% <1% 12%
HE 22% 27% 15% 7% 29%

Middle HS 16% 36% 14% 6% 28%
HE 21% 16% 18% 6% 40%

End HS 19% 32% 10% 5% 34%

HE 60% <1% 20% None 19%
Total HS 19% 40% 11% 5% 25%

HE 32% 15% 18% 5% 32%

TABLE 5.6: This table is part of the analysis published in [33]. The starting harmonic HS

and ending harmonic HE functions in relation to phrase positions demonstrate a consistent
pattern. Phrases typically initiate on a dominant (D) and conclude on a tonic (T). However,
there is ambiguity with the functions “?T”, “?D”, and “?”, as they can be interpreted as
either T or D, influenced by previous and following pitch values or bars, making the exact
annotation spot unclear.

5.3.1 Corpus Structure

The GMGM corpus mainly includes music notation with (some) lyrics (see the exam-

ple in Figure 5.3). The publicly available metadata is currently relatively scarce, mak-

ing it challenging to extend queries with contextual or accompanying information.

In most cases, the title and composer (if applicable) are annotated, along with music

descriptors such as time signature, key, ambitus in semitones, number of measures,

melodic sequence in MIDI and alphabetic pitch values, as well as numerical rela-

tive values describing the melody as an intervallic sequence. All of these descriptors

were presumably automatically retrieved, as no manual annotators are specified.

Unlike the corpus of Slovenian folk song ballads, the GMGM corpus is not split

into phrases. However, the provided online annotations do include information on

rhythmic sequences and the beginning positions of each measure in relation to note

(or rest) units for both rhythm and melody.

Due to the difficulty in navigating between breaks in lyrics and/or rhythm, the

task of automatically segmenting the melodies was too challenging for our short

case study. The only two units one could consider were individual measures or full

songs, with the latter being chosen. We later added annotations on the maximum

and minimum pitch values of the range, as well as interval mean and median, and

re-grouped the information on melodic range and intervals as described below in

the following subsection.
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FIGURE 5.3: Two examples of the same song, Zajček zobke brusi / The Rabbit is Sharpening
His Teeth, composed by the Slovenian composer Janez Bitenc and set to the lyrics of Neža
Maurer from the youth magazine Ciciban (1961–62). (Top) A scanned example from the
Ciciban magazine; (Bottom) a digitised transcription from the GMGM collection[290].

5.3.2 Defining a Children’s Song: Melodic and Other Key Characteristics

According to Fran11, a digital repository of Slovenian dictionaries and linguistic re-

sources, the term ciciban specifically refers to a pre-school child, or less commonly,

to children in the early grades of primary school. As highlighted in the introductory

paragraph of this section, the content of the early issues of the magazine, including

its musical materials, was primarily aimed exactly at pre-school children and young

children up to the age of ten.

Consequently, the question arises: how can we determine whether the materials

are genuinely aimed at the intended young audience, how to locate such songs in

11Fran, https://fran.si/133/sskj2-slovar-slovenskega-knjiznega-jezika-2/4464617/ciciban, accessed
on 4th October 2024.
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other repertoire, and how do (and if) these songs differ from those in other collec-

tions, such as the Slovenian folk song ballads? More specifically, to what extent can

we distinguish the two corpora based on their melodic features. Unlike the ques-

tions addressed in the internal analysis of the primary corpus—such as fieldwork

bias, tune families, melodic contours, phrase structures, and so forth—the music ex-

amples from Ciciban prompt an external and education-oriented enquiry. To deter-

mine what makes these songs suitable in any form of music education for children as

opposed to other corpora, we focused on research in music pedagogy, particularly

studies concerning children’s vocal range and the intervallic structure of melodic

lines. Additionally, we concentrated on studies commonly referenced or conducted

in the Slovenian area.

While it is notable that studies on song repertoire in primary music education

and earlier stages of a child’s interaction with music consider more than just the

melodic aspect of songs (such as lyrics, origin, popularity, rhythm, and more), the

melodic range and its intervallic features are crucial in selecting songs manageable

for young children to perform. In two studies [292, 141], a survey was conducted

regarding the importance of various musical features for music education. The ma-

jority of teachers who participated in these surveys confirmed that melodic difficulty

(in terms of intervallic leaps) and vocal range are important or very important fac-

tors (all but two participants in [141] responded this way, as did 94.7% of participants

for range and 95.4% for melodic intervals in [292]). A slightly smaller proportion of

respondents also considered rhythm to be important. The least important features

were the selection of composers and song popularity.

Building on the research conducted by [292, 141], as well as the studies reviewed

in one or both of these (for example, [176, 30]), and others (see the literature reviewed

by [292, 141]), we propose two general criteria for classifying songs based on their

suitability for children: vocal range and melodic structure, which form the basis for

the classification task in our evaluation.

Melodic Range. By summarising several studies, we can consider that children up

to ages 10-12 can generally be categorised into two groups. The first group consists

of preschoolers and sometimes also includes first-grade students, typically aged 4-6,

and the second starts around 7 and extends up to 12 year-olds. In general, people

can produce up to an octave and a half when singing, varying with the respect of

their musical training and physical development [292].

In terms of music perception, by the age of 5, children begin to recognise dif-

ferent pitch registers, and by age 6, they can discriminate between simpler melodic

patterns. While intervals and range become gradually perceivable around the age of

6, it is not until around age 9 that the majority of non-musically trained children are

capable of developing a sense of tonality and harmony [141].

There is some disagreement regarding the ideal vocal range for children of dif-

ferent ages, however, most sources define the range for younger children (up to 6 or
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7 years old) as somewhere between C4 or D4 and A4 to C5. For children aged 8 to

12 years, the range is generally defined as somewhere between A3 to D4 and C5 to

E5, and in fewer cases, up to G5 (Figure 5.4).

FIGURE 5.4: Approximate melodic ranges for two age groups of children, based on reviewed
literature in Section 5.3.2. (Top) Melodic range for children up to 6 or 7 years old. While C4
is sometimes challenging, it is generally included in the preferred range for this age group.
(Bottom) Melodic range for children aged 8 to 12 years old. Notes above E5 are seldom
referenced in the literature for this age group.

A comprehensive summary of various studies on children’s vocal range can be

found in [292, 141], where a table summarising these ranges is provided on page 139

of [176]. The study summarised by Winnifred Adelmann [334, 141] suggests that the

range for younger children should be between C4 and A4 (or G#4), noting that very

high or very low tones are not ideal. This range is also specified to be appropriate

for preschoolers in [185, 261, 289], while C4 to C5 is specified there as an appropriate

range for children 6 to 8 years old in the first two, or up to 10 years old in the latter.

The same range of C4 to C5 is also mentioned to be the most common for children

from 5 to 6 years old in [169], stressing that most children struggle to reach below

C4.

In contrast, Bogdana Borota [30] recommends a range of approximately D4 to B4

(or C5 for 6-year-olds) as preferable for younger children.

It is worth noting that while we can discuss an approximate vocal range, some

researchers also emphasise the importance of tessitura, which refers to the most com-

fortable vocal range for the participants being observed. Although we did not ex-

plore this aspect further, it may be worth considering in future research.

Finally, it should be stressed that teachers in the (music) education process gen-

erally have the ability to transpose or adjust songs if necessary. However, the songs

curated for children are intended to be, for the most part, appropriate without such

adjustments.

Melodic Intervals. The mentioned studies and their reviewed literature support a

preference for pentatonic, major, and minor scales in melodic structure. Before the
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age of 8, children do not consciously perceive intervals, although most can distin-

guish between different pitch heights a few years earlier. The perception of actual

keys or tonalities typically does not develop until after the age of 8, thus the focus

should be put on the relative values, meaning the consecutive intervals.

There are some discrepancies regarding which intervals are easier for children to

sing. However, most agree that consonant intervals—particularly major and minor

thirds, as well as potentially the perfect fourth, perfect fifth, and octave—should be

preferred [292, 335, 141, 334]. The use of seconds is less clear. Although they are the

smallest intervals in diatonic scales (besides unison), minor seconds are considered

difficult to perform when several appear consecutively in a chromatic order. Out-

side of this context, as an isolated sequence of two pitches, major and minor seconds

are generally considered the easiest intervals for younger children to sing [292, 335].

Easier melodies also tend to include two to three consecutively repeated tones, de-

scend in pitch (especially from the dominant to tonic), use repetitive material, and

avoid modulation [292, 335].

5.3.3 Melodic Filters

In this section, I will introduce four melodic filters, grouped into two categories:

more restrictive and less restrictive, based on melodic interval jumps and range.

These filters were constructed in reference to the literature reviewed in the previous

section. The first set consists of highly restrictive filters, tailored to the smallest pos-

sible range and intervals appropriate for younger children, while also taking into

account the limitations of the corpus. The second set of filters, less restrictive and

still easily manageable by slightly older children, allows for a somewhat larger range

and broader melodic intervals.

Melodic Filters Definition. I constructed two types of filters: range filters (here-

after, RF1 and RF2) to define the upper and lower pitch boundaries, and interval

filters (hereafter, IF1 and IF2) to constrain the intervallic relationships between con-

secutive pitches in a melodic sequence.

In IF1, I excluded the minor second if it occurred more than twice in succession

(i.e., before and after the observed interval) to avoid excessive chromatic movement.

While this step could be refined by further developing the methodology for subse-

quent pitch relations, it remained as described here, given that this refinement was

beyond the primary focus of the thesis.

More precisely (Figure 5.6), I defined the range filters (RF), and interval filters

(IF), to help to classify whether songs are children-appropriate or not.

• RF1: pitches from D4 to A4.

• RF2: pitches from A3 to C5.
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FIGURE 5.5: Statistics on 4 melodic filters applied in various combinations (RF1 and RF2

= range filter 1 and 2, IF1 and IF2 = intervals filter 1 and 2, ANY = at least one out of two
per range and one per interval). We compared two corpora: GMGM (light purple bars,
songs from the Ciciban youth magazine collection) and SLP (dark blue bars, a collection of
Slovenian folk song ballads). The results indicate that the children-centered and curated
corpus (GMGM) performed significantly better than the general folk song collection (SLP)
when applying melodic restraints across all filtering combinations.

• IF1: the allowed intervallic jumps are minor second (m2) and major second

(M2), minor third (m3) and major third (M3), and unison (P1).

• IF2: the intervallic jumps should be no larger than perfect fifth (P5).

Other filters. Although we did not address the tessitura for each age group, I in-

corporated an additional criterion: the overall range in terms of interval regardless

of starting and ending pitch (as opposed to the RF, which sets the lower and upper

boundaries of the melody, but does not set a strict distance between the two). This

was done in consideration of studies suggesting that a smaller range of different

pitches generally results in a less challenging song. Using these additional filter, we

are able to identify songs that may have a slightly larger upper and/or lower range,

but do not extend to, for example, more than an octave, fifth, or similar.

Lastly, we further support an analysis of melodic intervals, focusing on trigrams

of consecutive melodic intervals as the basis for sequence pattern matching (as op-

posed to using absolute values, as in the first case study). Our goal here was to fur-

ther support the preference for smaller interval sequences over larger jumps. While
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FIGURE 5.6: Visualisation of all four melodic filters, with (Upper Staff) RF1 extending from
D4 to A4, RF2 extending from A3 to C5, (Middle Staff) IF1 allowing subsequent melodic
intervals from minor second (m2) (limited repetition to avoid highly chromatic melodies,
see Section 5.3.2) to major third (M3), (Lower Staff) and IF2 incorporating all intervals of IF1

plus perfect fourth (P4) and perfect fifth (P5).

we tested various sequences, we decided to discuss on only the smallest possible se-

quences in the evaluation, specifically those consisting of unison (P1), minor second

(m2), and major second (M2).

5.3.4 Results and Evaluation

Statistics. We constructed the filter boundaries as previously described and ap-

plied them to the existing descriptors of the two corpora. Songs that matched any of

the filters were assigned new descriptors based on the corresponding filter groups.

All four filters were applied as such to every song, including those from the Slove-

nian folk song ballads. We then analysed the statistics for both corpora (see Figure

5.5).

The figure shows that more than half of the GMGM songs (63%) comply with

RF2 (of which some also fit with RF1), and with IF2 (of which some fit with IF1 as

well) in any combination (see ANY in Figure 5.5), whereas this is true for only 12%

of the SLP songs. More than half of the GMGM songs comply with either RF2 (52%)

or IF2 (59%). Although RF1 is very restrictive, about 26% of the GMGM songs, but

only about 2% of the SLP songs comply. Applying IF1 (as well as that combined with

RF1) managed to identify only 3% of the GMGM songs and 0.25% of the SLP songs.

In all categories, the GMGM corpus better complies with these filters than the SLP

corpus, despite the latter, overall, being a collection of relatively simple songs.
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RF IF Range (MI) Melody TP (GMGM) FP (SLP) FN (GMGM) TN (SLP) Precision Recall F1

X X X P1-P1-P1 119 83 4 320 0.59 0.97 0.73

1 X X X 32 9 91 394 0.78 0.26 0.39
1 1 X X 4 1 119 402 0.80 0.03 0.06
1 1, 2 X X 31 5 92 398 0.86 0.25 0.39
1, 2 1, 2 X X 77 48 46 355 0.62 0.63 0.62

1, 2 1, 2 X P1-P1-P1 65 11 58 392 0.86 0.53 0.65

1, 2 1, 2 X P1-P1-M2 77 23 46 380 0.77 0.63 0.69

1, 2 1, 2 X P1-M2-M2 103 32 20 371 0.76 0.84 0.80

1, 2 1, 2 X M2-M2-M2 107 91 16 312 0.54 0.87 0.67

1, 2 1, 2 X m2-m2-m2 4 3 119 400 0.57 0.03 0.06

1, 2 1, 2 FIFTH OR SIXTH P1-M2-M2 76 16 47 387 0.83 0.62 0.71

X X ABOVE EIGHT X 21 63 102 340 0.25 0.17 0.20

TABLE 5.7: Evaluation of case study 2, where we calculate True Positives (TP), False Pos-
itives (FP), False Negatives (FN), True Negatives (TN), precision, recall, and F1 scores for
various combinations of descriptor queries, incorporating two melodic filters for minimum
and maximum range (RF: 1 and 2), and melodic intervals (IF: 1 and 2), with additional cat-
egories of range expressed in melodic interval (MI), at times combined with short melodic
patterns, converted to relative values of melodic intervals between each subsequent tone.
The focus is on identifying songs deemed suitable for younger children, as hypothesised
in Section 5.3. The primary corpus under investigation is the GMGM corpus, a collection of
children’s songs sourced from Ciciban magazines, which is compared against the SLP corpus
(Slovenian folk song ballads, see Chapter 3, and Sections 3.2.1 and 5.1).

Results. As noted in the statistical breakdown, the GMGM corpus exhibits a better

suited match for the pre-set filters across all predefined parameters, including filters

for maximum and minimum range, and intervallic melodic movement.

Table 5.7 presents different sets of queries based on the introduced filters and is-

sues discussed earlier. Unlike the SLP example where we used single descriptor set

matching (Section 4.3.2), we applied the multidescriptor sections matching method

(Section 4.3.3) and performed melodic pattern matching or mixed pattern match-

ing (Section 4.4) using relative values rather than absolute values for the observed

sequences.

I looked at this matter as a classification problem. I tried to classify songs be-

tween GMGM and SLP, and see if the 4 pre-set filters (RF1, RF2, IF1, and IF2) are

sufficient conditions for classification of the two corpora or not.

We assumed both, GMGM corpus of 123 songs (True Positives, False Negatives),

and 402 SLP songs (False Positives, True Negatives) as our “ground truth”. In addi-

tion to the 4 filters for minimum/maximum range (in pitch) and maximum interval

jumps, the classification task also considered range (expressed as an interval be-

tween the lowest and highest pitch value, regardless of that value) and short melodic

patterns (as interval sequences) (Table 5.7).

First, we applied a sequence of unisons, which resulted in one of the highest F1

scores (0.73) in our evaluation, retrieving almost all (119 out of 123) GMGM exam-

ples. Next, we tested the RF1, and then added IF1. The latter performed particularly

poorly with the F1 score falling to 0.06. As shown in the statistics, it is very rare

to find songs with such strict restrictions in either collection. When allowing either

of the two filters (applying a query of (P3) as md = {IF1, IF2} , {RF1, RF2}), TP in-

creases, as many more GMGM songs are matched; however, this also results in the
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inclusion of a number of SLP songs, lowering the F1 score to 0.62 (see Figure 5.5:

ANY, and Table 5.7: 5th row).

By separately incorporating melodic sequences of three unisons (P1-P1-P1), two

unisons and a major second (P1-P1-M2), one unison and two major seconds (P1-

M2-M2), and three major seconds (M2-M2-M2), both precision and recall increased

to the point where we could predict the most true positives and the fewest false

positives and negatives. This resulted in the highest F1 score of 0.8 when including

the melodic sequence P1-M2-M2. We then took this melodic sequence and added

the additional interval range filter of a fifth and a sixth, which also performed well,

achieving an F1 score of 0.71.

I confirmed that chromatic movement of the melody (m2-m2-m2...) is very un-

likely to be considered attractive or simple for singing, as both corpora performed

poorly, resulting in the lowest F1 score of 0.06. Additionally, we confirmed that a

range (Range (MI)) above an octave is very unlikely to be linked to children’s songs,

with an F1 score of 0.2.

5.3.5 Conclusion

While the descriptor set matching with multiple descriptors was sufficient to demon-

strate that the GMGM corpus aligns better with the constraints of children-appropriate

songs, incorporating mixed pattern matching with relative melodic sequences en-

hanced our understanding of the differences between the corpora, thereby improv-

ing the evaluation of classification task.

However, we undertook a rather challenging task, as both corpora are intended

for non-professional singers, resulting in many similarities, particularly in terms of

melodic limitations12. We acknowledge that these parameters alone are insufficient

to fully determine the appropriateness of songs for children. Future research could

explore identifying specific repetitive patterns in melody or rhythm that are used

to teach different pitch heights, keys, or rhythmic patterns, as well as observing the

tune length and structure, and examining the topics and structures of the lyrics.

Furthermore, extracting additional descriptors from the provided musical ele-

ments could allow for a more comprehensive analysis of the songs. Better documen-

tation of the songs, along with real-life feedback, such as children’s and teachers’

responses to the material, would help address this issue more thoroughly. If we had

access to more information or related corpora at the time of this study, we could have

compared different children’s songbooks or examined the same collection across dif-

ferent eras, among other possibilities.

Overall, despite evaluating two corpora with such similar material, the GMGM

corpus proved to be a relatively good example of how to compose appropriate chil-

dren’s songs. The corpus itself has proven useful and could potentially serve as

12This presumably shows the influence and invaluable role of data curation. In the case of SLP, it
aimed to preserve musical heritage, while GMGM’s curation focused on carefully selecting songs for
children’s music education and entertainment.
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valuable training data for various machine learning and AI tasks related to chil-

dren’s music education. Given its strong alignment with the melodic scope com-

monly found in music pedagogy research, it could also be effectively utilised for

further educational purposes.

5.4 Discussion

We tested the algorithms presented in Chapter 4 on two distinct corpora. Initially,

we tested the melodic pattern matching and descriptor set matching with bitwise

operator, by applying the melodic and descriptor pattern matching techniques to

Slovenian folk song ballads. Our findings indicate that employing slightly longer

melodic patterns and incorporating additional descriptors enhanced precision, par-

ticularly when attempting to distinguish between different tune types within and

across various folk song categories. We concluded that, although descriptor and

melodic patterns can be individually identified in different songs, the position of

our fundamental structural parts, meaning phrases, plays a pivotal role in recognis-

ing the overall pattern of a song. This is especially evident in relation to contour

sequences and the harmonic function patterns at the beginning and end of phrases.

Secondly, we posed a distinctly different research question, grounded in peda-

gogical, didactic, and educational research on music perception and performance

in young children. We focused on the most common features identified in these

studies, particularly those related to melody. Our investigation aimed to determine

whether the GMGM corpus, which presumably comprises only songs intended for

children, aligns with these criteria. Furthermore, we sought to establish whether

these standards could be applied to identify suitable songs in other corpora, such as

Slovenian folk song ballads. Although we acknowledge that appropriate songs for

children encompass other musical parameters, our findings confirm that the GMGM

corpus adheres to the extended criteria for essential children’s songs, particularly

regarding melodic structure and related descriptors. Moreover, it can be seen as a

solid foundation for identifying similar features in more general corpora, or used

to automatically generate suitable music examples for children. Finally, by utilising

a corpus not directly related to our primary research focus, we demonstrated the

versatility of the proposed pattern matching methodology.

In both cases, we showed the intention of including as much information on and

about music as possible, and hence, joined the research that advocates for extended

music studies. While it is interesting and insightful to observe music notation, the

format itself has many pitfalls and shortcomings, and with it, the corresponding

methodology for its exploration. In order to evaluate these algorithms, neither time-

space performance statistics nor focused case studies suffice. We acknowledge that

first, these algorithms, in its current form, cannot be autonomously utilised by any
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researcher with modest to none computational skills. We also understand the short-

coming of the algorithms focusing on only notational parameter of the songs, com-

pletely bypassing audio-visual aspects that complements it.

Finally, it is worth noting that, although we aimed to address reasonable and

insightful research questions, there remains significant potential in incorporating

additional contextual information both, in the scope of existing methodology, and

as its possible future methodological extension. This would enable the algorithm to

consider a more nuanced socio-historical context, including the usage, transcription,

and archiving of the materials, as well as the discourse surrounding these songs,

their perceived value (thus, the socio-economic angle) and the roles of and relation-

ships between performers and the audience.

To our knowledge, no such comprehensive and inclusive analysis has been un-

dertaken in the field of music pattern matching or music research more broadly.

Therefore, this evaluation should serve as an invitation to move beyond the con-

fines of music feature pattern matching, notation, or isolated parameters (rhythm,

melody, harmony, and similar). Addressing these broader aspects may open the

door to more robust theoretical frameworks, leading to clearer insights into the fu-

ture direction and purpose of both MIR and musicological studies. In the following

and concluding chapter, we will expand on the latter, touching the indispensible

dynamics between the two fields, problematising and evaluating MIR’s position in

musicology and vice versa.
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Chapter 6

Discussion: MIR and

(Ethno)musicology

Statement: This chapter extends on thoughts developed in two published contributions [31]

and [32].

The thesis provided detailed review of knowledge and methodological progress

at the nexus of computation and (ethno)musicology as well as introduced a com-

putational approach for music pattern analysis. In order to understand its place in

the MIR community, I dedicated some time to observe the relationships between the

two sides in interaction, meaning (ethno)musicology and MIR. The findings were

discussed in two published contributions, first the introduction and editing of a

cross-disciplinary special issue of Musicological Annual, centred around the topics

of computational musicology [32], and in conjunction with other authors, the paper

published at ISMIR 2023 [31].

The latter explored the dynamics between MIR and musicology through a case

study, which focused on the accessibility and usability of MIR productions for mu-

sicological research. It involved an analysis of ten years’ worth of papers from the

International Society for Music Information Retrieval (ISMIR) spanning from 2012 to

2021. More than 1000 citations of ISMIR papers were reviewed, revealing that only

51 subsequent works published in musicological venues drew from the findings of

28 ISMIR papers. The final results indicated that most contributions from ISMIR

rarely reach musicology or humanities.

Since then, the topic was once again extended in order to try to identify and ad-

dress the obstacles that lead to discordance between these closely related disciplines.

6.1 Introduction

The emergence of new technologies inevitably brings about changes. This trend is

not only prevalent in modern times but has been apparent since the inception of

any form of tools. The first significant change, marking a fundamental difference

between humans and animals, occurred with Homo sapiens, who was the first to
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fully transform the core technique of human motor behavior: tools ceased to be di-

rectly attached to the human body, instead introducing a detachment that created a

discontinuity between body parts and tools (such as clothing, pliers, hammers, and

so on) [174]. Advancing further, the detached tool facilitated detached movement,

meaning that physical actions to execute a task were replaced by the tools them-

selves (for instance, reaching the target using a bow instead of the hand). Eventually,

detached machines and memory emerged (e.g., clocks, and later, computers). And

lastly, with the emergence of AI, the borders between human and technology shifted

again, which prompted numerous physical and cognitive adaptations.

New tools lead to individual adaptations, and have induced numerous changes

in social (or socio-economical) structures. For instance, the invention of writing and

broader literacy partially transitioned reliance from faith and the wisdom of the local

elder townsmen to verifiable facts and science [98]. Similarly, the gradual decentral-

ization of the human workforce in production processes can be seen as machines

extending beyond human capabilities, rather than the opposite [279].

(Music) research. In the field of research, the introduction of new tools often stim-

ulates increased scholarly activity and the expansion of potentialities [279]. Such

developments can result in the establishment of new disciplines, the emergence of

novel fields of study, the replacement of existing disciplines, or, at the very least, a

significant transformation of their methodologies. Music studies have experienced

precisely this trajectory, evolving from the creation of musical instruments and nota-

tional systems to the advancement of recording technologies and digital tools. Each

of these innovations has required careful consideration and has prompted the adop-

tion of new methodological approaches, both within the discipline and in interdisci-

plinary contexts.

Although it is evident that MIR and (ethno)musicology do not consistently share

the same perspectives, the idea of “new” methodologies superseding “traditional”

ones predates the development of computationally aided projects and development

in, what we perceive at this moment, “newer” tools.

In the recent history of music research, there was first resistance to recording

devices and new collection practices (Section 3.2.1), and methodologically-speaking

as well as to empirically-centred approaches, which were mostly in the domain of

systematic musicology (and later, ethnomusicology) (for a detailed review, refer to

[232]).

Expanding on the provocative inquiry “Who stole systematic musicology?”, Le-

man observed that systematic musicology had (already) lost control over its own

identity [171]. He highlighted that the early conflicts within the various branches of

musicology had evolved. Now, these branches combined all share similar tensions

with, once again, newer concepts put forward by MIR and related research, as well

as neuroscientists and psychologists. These disciplines have increasingly embraced
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the empirical study of music, further complicating the landscape of musicological

research.

The advent of empirical research methods, growing interest in music as a com-

plex phenomenon, and technological advancements have broadened the scope of

music research to include various academic disciplines. This expansion has led to

significant changes in the structures of these fields, impacting and encourage the de-

velopment of new areas such as MIR, evolutionary (ethno)musicology, music psy-

chology, popular music research, and the anthropology of music, among others.

While skepticism persists among some regarding the unconditional embrace of

emerging collaboratory changes, for others, technologies and related methodologi-

cal shifts are seen as a natural extension for quantitative, big-data, and empirical mu-

sic analyses [58]. Music research began to be conceptualised as an interdisciplinary

domain comprising “somewhat equal” sub-disciplines, including musicology and

MIR. Discussing these collaborations, [218, 313], many underscored the advantages

of multidisciplinary projects in broadening the boundaries of isolated disciplines to

achieve more comprehensive outcomes.

In contrast, others warned that in “an era in which interdisciplinarity has become

a kind of mantra, verbally subscribed to by nearly everyone, disciplines continue to

police their own boundaries [18].” Similarly, [171] and [232] highlighted that al-

though they valued the discussions and involvement in interdisciplinary projects, it

remained rare for researchers to step outside the boundaries of their own disciplines.

Furthermore, the transfer of knowledge is far from seamless between computational

scientists and musicologists (as well as other disciplines), resulting in ideas expand-

ing inadequately, if at all [271]. Skepticism continued regarding the unconditional

acceptance of the emerging collaborative changes, and thus, recognising the need

for improvements in knowledge transfer was deemed imperative [268].

In 2005, [58] critically addressed the prospects and challenges of collaborations

between MIR and musicology, many of which were revisited by [72]. The latter

further examined the implications of new technologies and reflected on the interdis-

ciplinary dynamics during the first 10 years of ISMIR, the principal MIR community.

He highlighted its shortcomings, such as the inability to communicate the produced

tools to the user (performer, musicologists, ...), favoring low-level over high-level

features and audio over other symbolic music representations, and so forth. These

and other unresolved issues persistently hinder collaboration to this day [58], par-

tially due to the inability to pinpoint the theoretical, methodological, and institu-

tional origins of the persistent miscommunication among all involved parties.

To tackle the most persistent issues encountered in knowledge transfer between

disciplines, at least three topics need to be considered: the incorporation of and

relationship to new media and/or technologies, as well as the foundations, structure,

and theoretical concerns behind the notion of disciplines and institutions.
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6.2 The Influence of New Media and Technology

In recent years, a growing number of musicologists, along with humanities research

-ers in general, have shown a preference for working with digital materials over

physical ones [74]. However, the application of computation to their music research

is diverse. There are general-purpose software tools, such as word processors or

spreadsheet editors, and music-oriented software, such as Sibelius, Finale, and Au-

dacity. Additionally, there are programming music/MIR platforms and libraries,

such as Humdrum [120], music21 [64], Librosa [199], and Essentia [28]. Further-

more, there are methods and algorithms developed by the MIR community, as ex-

emplified by [165, 208, 44, 84], among others (see [268] for a detailed review). None

of these are clearly distinct from one another as well as in most cases, including our

own project1, combine more than one of the above. While computer usage is preva-

lent among most researchers, there are fewer musicologists, as well as humanities

and social science scholars, who adopt or contribute to the “making” of computa-

tional methodologies, one of those being the project of this thesis, introduced in the

previous chapters. With the rise of new media and computational advancements,

both music and our relationship to it underwent significant transformations [189].

Given the expanding scope of what is considered significant in the realm of music, it

raises the question of whether familiarity with computational languages, or at least

the ability to understand the concepts of contemporary computational processes, is

becoming essential for research endeavors.

The methodological visions of “fundamentally-renewed” music research, accord-

ing to [304], had “not [yet] taken over the majority of musicological scholarship.”

Nonetheless, the methodology of research has already shifted, as there is an ascend-

ing trend of new research tools and digitised (music) data representations, a lot of

them consciously used by musicologists, and if not them, music researchers from

other (emerging) domains.

Computational methods assist researchers in handling larger and more varied

datasets, but, would musicologists agree that “working with [these] datasets [have]

open[ed] up new areas of musicology [58]?” Or, has this shift made the “common”

musicological concerns obsolete and evoked new areas of research, which are now

(almost) independent from the musicological domain? Who are the tools made for

and what are the origins of resistance from these new inventions?

1We used excel sheets to make the first annotations, pdf readers to acquire all information on the
dataset, MuseScore to edit the song examples, music21 to automatically extract some music descrip-
tors, and created our own set of algorithms for pattern matching tasks.
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6.2.1 The Surface

In the process of epochal technological change, there has never been a sudden re-

placement of old technology for a brand-new solution, nor was this technology ini-

tially considered an extension of human capabilities, but rather as a separate “en-

tity”. The adoption of new technologies thus typically occurred through a gradual

process of transition rather than an immediate change of medium. This process,

in a computational sense, took advantage of “the known,” thus familiar images of

gadgets or encouraged the usage through the “instinctive” features that resembled

physical actions of an old apparatus, a predecessor of the new medium. These types

of mediators are employed to facilitate the understanding of the basic functionality

of the digital tool, even though the underlying mechanisms of it may be entirely

incomprehensible to an average user.

In contrast to the leisurely (or similar) use of digital gadgets, the computational

analysis and research (of music) has undergone a much less gradual leap. The

background of most computationally analytical (music) tools are driven by adapted

mathematical operations woven into a web of algorithms and ciphers that have little,

if anything at all in common with the “older”, more familiar symbolic representa-

tion of an object or the process of (physical, music) analysis. The abrupt transition

from the physical world to the realm of incomprehensible code has made the process

of integration more challenging for (music) researchers with limited computational

skills2.

Instead of experiencing a transitional moment, the musicologist is confronted

with abstract algorithms and their ready-made products, such as sequences of “math-

ematical” symbols describing or representing musical phenomena. For the majority

of researchers who cannot or choose not to adopt computational processes like ma-

chine learning, neural networks, or even simpler algorithmic structures, inadequate

familiarity with methodological procedures hinders their ability to utilise the results

obtained from such analyses. Simply put, they may not understand how or where

these solutions emerged from. Hence, since most new technologies (or languages)

for music analysis “skipped” the transitional era, they are often incomprehensible or

non-intuitive for the average musicologist. As a result, these computational prod-

ucts fail to communicate effectively with them.

There seems to be a “clear disconnect between how MIR tasks are designed to

evaluate systems, and how end users are supposed to use those systems [...] [mak-

ing them] difficult and costly to implement [268]”. Consequently, the results, pro-

duced by such processes also become unusable, as the “involvement in the wheel of

algorithms is indispensable for musicological research [189].”

I have introduced several projects that deemed to overcome this loop alongside

2For example, while the introduced methods for this thesis’ project remain in the scope of this
“sudden” transition, the platforms, such as Dezrann try to facilitate the severity of changes or mediate
between the older and newer medium.
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of this thesis. However, it still holds that if such obfuscation fails to deter the aver-

age user of an algorithmically guided interface, such as the automatic retouching of

images with smartphones or the current trend of casually creating iconographic im-

ages with linguistic markers, active involvement in the inner workings of algorithms

becomes indispensable for the research work of the musicologist (and others). The

urge to engage in the latter primarily stems from functional reasons, whereas par-

ticipation in everyday digital activities is largely determined by the desire to freely

control the outcome of our interactions, rendering a thorough understanding of the

underlying mechanisms irrelevant as long as one feels engaged.

The “surface”, according to the upper discussion and surveys like [123], which

addressed the relationship between “regular researchers” and the emergence of new

technologies, suggests, that “[...] efforts should be made into supporting the devel-

opment of their digital skills and providing usable, useful and reliable software cre-

ated with a ”musicology-centred” design approach.” Otherwise, the “data richness

will lead to information overload [65].” As [65] expressed in 2012, there are many

tools for music collection and analysis, of which many “suffer from various short-

comings, such as specificity to a certain repertoire or approach, lack of robustness

and flexibility, flawed user interfaces, or output is difficult to interpret.”

A similar concern has been expressed by others, such as [149] and [196], or, for

textual analysis [69]. All of them advocate not only for a more accessible and flexi-

ble computational methods, but also express the need to understand what these methods

do and how. Alongside epistemological confusion and other (methodological) draw-

backs, a similar problem was stressed by Aucouturier and Bigand. Their dialogue-

style paper also revealed (among others) similar flaws and introduced some prospects

for collaborations between MIR and music research (specifically music cognition)

[10]3.

6.2.2 The Core

In the process of transductive ergomimesis, as defined by Magnusson, “new digi-

tal media drastically reposition the people” [189] and repeatedly evoke new (mo-

tor) skills and techniques, professions, and multidisciplinary actions (see also [136]).

“What new instruments translate from earlier technologies are not simply the simu-

lation of an interface, but a whole constellation of embodied contexts, where trained

movements, musical actions, human-instrument relationships and other processes

are translated to a technology of a different material substratum (from the organic

to the digital material) [189].” The challenges of contemporary music research are to

understand these changes while simultaneously undergoing similar transformation.

3The process from digitising to analysing Slovenian folk songs tried to remedy the “distance” be-
tween MIR and ethnomusicology such that it, more or less successfully, pursued the collaboration with
various different profiles of researchers and their institutions.
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This section has already highlighted that new media technologies continuously

influence our development, both as individuals and as a collective community, cul-

ture, society, and beyond. Insights from works such as [98, 174, 136, 192, 212, 274,

279, 190], along with discussions of the prominence, evolution, and challenges of

“new technology” in historical narratives and both past and contemporary popular

culture, emphasise the evolving nature of our attitudes and relationships towards

technologies that were once considered novel. It is often overlooked that certain

everyday technological inventions of the past were, at one point, groundbreaking

innovations. While some segments of society, driven by diverse motivations, read-

ily embrace “the new”, others maintain a sense of hesitancy.

While it may appear that computers, and more recently AI, have led to the most

significant impacts, and although the degree of automation introduced by AI does

set the current changes apart from those of previous eras, feelings of “technopho-

bia,” “technonostalgia,” or similar resistance towards new technological ideas have

been common in nearly every historical period (for example, the resistance against

recording devices in earlier decades of 20th century of ethnomusicological fieldwork

in Slovenia, as noted in Chapter 3.2.1).

Hence, the discontinuity between fields such as MIR and musicology, poten-

tially caused by new technologies4, is not solely due to the inability to utilise the

tools themselves, but also the incapacity to contextualise one’s position in relation

to these technological advances. This often entails abandoning “traditional” and

well-established methods, a cost that some are not immediately willing to incur.

Contrary to those who work with or directly create new media, the dissonance

between the two groups may also lie in understanding what constitutes “new” tech-

nologies, as this definition is far from universal across different social groups. This

uneven understanding of the subject can immediately (and partially) hinder fluent

knowledge transmission.

A previously mentioned survey review [269] describes that MIR community’s

main concern is to create (“objectively”) powerful tools, reach the user (leisurely lis-

tener), or have more datasets, but fail to properly address the reproducibility of their

research. Thus, the next issue that needs to be (re)considered is no longer the mere

technological shift, but the functionality of fundamental, theoretical ideas behind

the new-established sphere of all (computational) music matters.

6.3 Theoretical Concerns

Musicological study frequently focuses on the internal structure of music, analysing

aspects such as harmony, melody, rhythm, form, and instrumentation. However, it

4For instance, a notable and one of the oldest documented instances of apprehension towards tech-
nology can be found in a dialogue between Socrates and Phaedrus, where the former expresses gen-
uine concerns about the written word compared to the spoken word, and the potential negative con-
sequences it may have on one’s memory abilities [107].
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sometimes overlooks external factors like socio-economic and historical context, cul-

tural influences, or performance practices, which allows for a thorough exploration

of music’s intricacies, meanings, and relationships.

New computational methodologies are gradually encouraging the the scope of

musicological studies to move beyond traditional music analysis theories. These

methodologies incorporate assumptions from disciplines such as acoustics, mathe-

matics, and iconography, as well as subfields of computer science and others, along-

side the foundational elements of music theory.

In response to Downie’s call for improvements [72], some authors discussed re-

fined measurements that need to be considered regarding data collection and inter-

pretation, for “obtaining or accessing high-quality datasets remains a serious hurdle,

especially on a large scale” [241]. These hurdles limit the (digital) quality of music

research, but not only that. All music cannot be collected and/or represented in the

same manner, and it is not feasible to investigate and discuss all research queries

within identical methodological frameworks [196, 213]. They believe that this issue

should be considered not only by musicologists, but should also be of equal impor-

tance for the field of MIR. Schüler and Huron argued that mutual theoretical awareness

is essential for musicologists and MIR researchers [122, 271]. Due to the imposed im-

portance of theory and “practice” (one of the key components of MIR), some suggest,

that there must exist a cyclical collaboration between the disciplines [149].

In fields such as MIR, research questions are often addressed using methodolo-

gies rooted in the natural sciences, treating the data as “objective.” However, schol-

ars in the humanities frequently raise concerns about this approach, particularly

when it comes to studying “human” or “societal” aspects such as music. There is

a prevailing fear that this type of research can lead to detached results and interpre-

tations, or a lack thereof, and tends to prioritise “facts” and their assessments, which

are often equated with algorithmic success [69, 196] (see the introductory paragraphs

of Chapter 5 discussing evaluation practices in MIR). Similar arguments, regarding

theoretical concerns of what “matters” in music research have, however, already

been used long before the emergence of MIR.

The theoretical debates concerning the fundamental aspects of music research

hence predate the existence of MIR. Within the realm of musicology and related

disciplines, ongoing discussions have centered around inquiries into the essence of

musical significance, the contextual influences shaping its interpretation, the subjec-

tive nature of meaning attribution, and the methodological frameworks employed.

These deliberations underscore the interdisciplinary character of music scholarship,

which integrates insights from diverse fields such as philosophy, sociology, anthro-

pology, and psychology to deepen our comprehension of music’s role within human

culture and experience.

Apart from the already mentioned disputes among different subfields of musi-

cology, it is worth noting that the disagreements also occur on the level of music
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theory versus musicology, as described in, for example, Does Music Theory Need Mu-

sicology? [4], or How We Got Into Analysis, and How to Get Out [133]. Therefore, com-

putational processes must take into account the ongoing debates within music schol-

arship and integrate these disputes into their research methodologies. Depending

solely on prior music scholarship is inadequate, given that knowledge progression

and theory development within this domain does not follow a linear (“proof-based”)

path.

6.3.1 The Transparency of Algorithmic Tools

When addressing possible dispute resolutions, many authors emphasise the neces-

sity for numerous scholars to actively participate in shaping the framework and

methodologies. This involvement requires a high degree of algorithmic transparency.

“[I]n the long run, the most “useful” computational analyses will be the ones that are

interactive, confronting a human user with the results of computational analysis and

allowing that user to modify or intervene in the procedure to arrive at an acceptable

or interesting result [196].”

Although authors commonly stress the need for a more transparent “background”

of the methodology, the computational methods rarely consist of “universally appli-

cable” models and thus remain very limited in certain areas - such as the analysis

of vertical musical structures in relation to horizontal ones, the lack of a strategy for

exploring non-Western or non-tempered musical notations (and recordings), mu-

sic theory versus interpretation with societal factors and so on. Additionally, with

the uneven distribution of resources, the digitisation of music material is dispro-

portionately more common in Western institutions, while musical traditions with

smaller coverage remain both physically and methodologically less represented in

the (computer-supported) research landscape. The collection and accessibility of

diverse musical material primarily depends on the direction of financial and infras-

tructural resources, which are often over-determined by its “market” value and/or

attractiveness5.

If it holds true that “the humanities are not a mere afterthought, simply studying

and critiquing the effects of computational methods. [Their theory] can provide

ways of thinking differently”, as implied by Drucker [73] and similarly by Morreale

[211], then the question arises: which specific existing theories and ideas, if any, play

a role in either uniting or dividing these fields? Given the inherent tensions within

these domains, what contributions can they offer to the emerging interdisciplinary

field and how? Can these matters be communicated by resolving the transparency

and representation of digitised resources and algorithms alone?

5For example, all of the materials used in this thesis had to be digitised, modeled and annotated as
part of self-initiated first (pre-)step of the thesis and had not (and probably would not) exist in such
format had it not been for this particular project and its flexible funding.
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6.3.2 Theoretical Foundations

Huron suggested that there should exist the obligation for both parties (MIR and

musicology) to familiarise themselves with each other’s methodologies [122]. Addi-

tionally, [10] highlighted the importance of knowing which parts of whose method-

ology are to be used for a fruitful collaboration. However, [171] sees the “failure”

of collaboration in the notion of the absence of “concrete planned goal at long term,

except some vague idea of what all these research activities are up to [171].” He

suggests solving the gap by inducing multi-modality, introducing context-based ap-

proaches into empiricism [171]. A more reserved argument in [232] implies that the

wall is set by the feeling of superiority on both sides [232].

Although I am not aware of any concrete theoretical solutions in MIR, some

humanities scholars [5, 69, 210] have begun to explore “computationally-inspired”

alternatives to data handling, suggesting that the theoretical frameworks that pre-

ceded computational advancements may be insufficient, and that new methodolo-

gies should be leveraged to shape new theoretical perspectives6.

What authors seem to disagree on is whether the objective should involve a grad-

ual collaborative effort to comprehend and integrate (the entirety of) each other’s

theoretical concepts, and computationally replicate the ideas of musicological his-

tory (whichever these may be), or, instead to focus on establishing new theoretical

foundations. If choosing the latter, the new foundations would need to facilitate a

more comprehensive approach to researching the phenomenon of “music” within a

contemporary, technologically enriched environment, rather than relying on vague

notions [171] and momentary collaborative inspiration.

In our previous contribution [31], we discussed on the collaboratory struggles

through theory of games or play by Johan Huizinga [119], and then Roger Caillois

[42], in which we conclude that games (or science) can only be played when all par-

ties are in agreement with the particular rules, and these rules are mainly composed

of institutional organisation and theoretical ideas that support it. MIR is indeed

a multidisciplinary environment, however, most of the participants (deriving from

natural rather than humanities or social sciences), already play by similar rules (or

speak the same language, or form their posture towards musical matters within a

similar discourse practice).

As a result, the multidisciplinary activity within MIR continues to be relatively

restrictive, and despite surveys [268], it has not adequately addressed all of the con-

straints mentioned by Stephen Downie about 15 years ago [72]. Furthermore, there

has been a lack of genuine initiative to establish any theoretical basis for MIR activ-

ity, which transcends a mere comprehension of each other’s work. Instead, it should

be a comprehensive examination of individual disciplines and the establishment of

a unified research subject or objective. Subsequently, it involves reaching a consen-

sus that can foster effective collaboration, whilst also contributing to the long-term

6Moretti, for example, challenged the concept of canonical literary works with distant reading,
analysing a large corpus of novels that never entered the closely curated canon.
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legitimisation of their multidisciplinary actions. Merely adapting to each other’s

rules seems akin to attempting to play both football and handball simultaneously,

where the distinct nature of each sport’s regulations inevitably precludes reaching a

consensus based solely on plausibly shared materials. On the other hand, we must

consider a possibility that certain disciplines may find their common objective(s)

sooner than others, suggesting that there may be more MIRs, some of which more,

and other less, compatible.

6.4 The Notion of Discipline and Institution

In the context of the discordance within the intricate web of various music research

paradigms, two overarching issues have been dissected: the inexorable advance-

ment of new technologies and the inflexibility in the evolution of underlying theo-

retical frameworks. The latter alludes to the third obstacle, which is that the efficacy

of contemporary academia is heavily dependent on the structuring of institutional

space.

6.4.1 The X-Disciplinarity in Contemporary (Music) Academia

Many of the mentioned authors (and possibly others) who have explored compu-

tation in music research often tackle the potential issues through the prism of dis-

ciplinary (dis)agreements. Some focus on the potential for their expansion, while

others address the tensions between technical or scientific music research disciplines

and those oriented towards history, humanities, or social sciences (the latter of which

usually fall somewhere in-between). More specifically, Becker asked whether “our

failure [is] due to our own shortcomings in not becoming thoroughly versed in the

protocols and expectations of another discipline? Or, was the failure due to too strin-

gent protocols and expectations for publication in a [...] journal?”, concluding that

some disciplinary barriers may be unbreachable due to rigid institutional formations

[18].

What commenced as experiments of technological capabilities in the field of

computer-assisted music research, is now evolving into a whole new institutional

discipline or, better still, a group of sub-disciplines of MIR. Most of the researchers

in this movement originate from technical and natural sciences which, with a desire

to analyse music, have organised themselves into groups, such as ISMIR or SMC

(Sound and Music Computing), as well as conferences such as AIMC (AI and Music

Creativity), and similar. In the era of an overwhelming flood of data, the multi-

disciplinary methodology and applied focus of MIR projects enabled these ideas to

migrate to natural sciences in general as well as the social sciences and humanities.

In addition to research activity, music information methodologies began to appear

in many academic curricula, although to this day they are rarely independent from

another, more established discipline (such as computer science, acoustics, physics,

music studies - musicology, composition, music theory; and so on).
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With the expansion of the field, the domain of the MIR is becoming increasingly

heterogeneous, although groups such as ISMIR, despite expanding their initiative,

maintain some (unofficial) niche preferences or trends, especially when it comes to

questions of methodology7. Apart from the already mentioned communities, a wide

variety of computational methods for studying, teaching, or making music are also

appearing elsewhere, for example, in contributions to Empirical Musicology Re-

view (EMR), Systematic Musicology (SysMus), International Association of Music

Libraries (IAML), Folk Music Analysis (FMA), International Conference on Artifi-

cial Intelligence in Music, Sound, Art and Design (EvoMUSART), and other, more

occasional interdisciplinary publications and events.

The pace of emerging multidisciplinary craze is forecasting more drastic changes

in the forseeable future for all disciplines, “but we’ve got to put in place the [insti-

tutional] conditions to make it actually happen [58]”. Hence, we must ask ourselves

- what is a concept of a discipline and what does it take for it to actually change,

transform?

6.4.2 The Concept of an Academic Discipline

Mentioned authors commonly debate about the limitations and hurdles of disci-

plines, but rarely address the pitfalls of “inherent” concept of a “discipline” itself,

and by extension, the almost omnipresent contemporary institutional framework of

academia.

The divisions of research into fields or disciplines are ever-changing processes.

Roughly summarised, if the Ancient Greeks preoccupied themselves with the fields

of logics, ethics, physics, and metaphysika (metaphysics, philosophy), medieval minds

set the terms for septem artes liberales, split into quadrivium (arithmetics, geometry,

astronomy, and music) and trivium (grammatics, rhetorics, dialectics) [159]. Later

on, the disciplinary matters were divided into different variations of “natural” and

“humanities, social” sciences. Pantin and Kuhn offer further classification of natural

sciences into restrictive or mature (for example, mathematics) versus non-restrictive or

non-mature, of which the latter needs, due to its loose (theoretical) structure, to con-

cern itself with the first, the paradigm of which is firmly set (for example, biology),

but not vice versa [229, 152, 159]. Slightly later, the one-dimensionality is replaced

by at least three dimensions, such as hard/soft, pure/applied, and life system/non-

life system sciences and similar categories, which separate researchers by their ob-

ject/subject and methodology of research, work organisation and types of output

(manuscripts versus reports, papers, individual versus group work, theoretical con-

siderations versus product development, etc.) [24, 140, 106, 16, 159]. All of these

categories, as Becher suggests [16], can intertwine, thus the classifications are not to

be taken as absolute. A more specific overview of disciplinary construction is taken

7Trends can be observed on the surface level, meaning the percentage of thematic selection of yearly
accepted proceedings to the ISMIR conference as well as the topics of awarded papers and popularity
in citations of the selected papers in the years to follow.
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by Wallerstein, who observes the situation within the social sciences [316], and Ko-

rsyn, who specifically addresses these matters through the lense of music studies

[142].

Nevertheless, the fundamental distinction between hard sciences (natural sci-

ences) and soft sciences (social sciences, humanities), a division still acknowledged

today, lies in their respective methodologies. Hard sciences rely on precise measure-

ments and the validation of new discoveries, often leading to the assimilation or

replacement of older findings, thus exhibiting a linear progression of events. In con-

trast, soft sciences engage in detailed synthesis and reinterpretation of ideas span-

ning historical and contemporary eras, while grappling with phenomena that span

across past, present, and future epochs [159]. Both hard and soft sciences can oper-

ate in pure or applied contexts where, in the applied realm, both disciplines produce

tangible outcomes: hard sciences yield products or techniques such as medical tools,

computer applications, or patents, while soft sciences result in guidelines, laws, or

educational textbooks.

These and especially further disciplinary divisions “have all struggled continu-

ously on a number of different fronts - intellectual, ideological, and political” [316],

to maintain their individual activity, “reputation” and prosper within academic (and

social) distribution of power. The latter is measured by universally accepted systems

[316] (acquired financial means, e.g., economic capital (see [36]), and to some extent,

academic hierarchical positions, points and award systems, e.g., social and cultural

capital) 8, or are established on a more symbolic level (symbolic capital, (see [36])),

which is being constantly re-shaped through a chain of historical and socio-political

processes or events.

What occurs when multidisciplinarity arises, particularly involving disciplines

from diverse “generalised” spheres characterised by varying means of economic,

social, cultural, and symbolic capital? For cooperation to occur, at least one of the

disciplines involved must align with the system of the primary institution that (fi-

nancially) initiates the collaboration. The determination of who possesses the re-

sources to initiate such participation seldom arises solely from individual scientific

endeavors. Instead, it typically emerges from internal dynamics within the academic

world (research institutes, academia), which adapt to evolving trends in the exter-

nal environment (the state, economy, politics). These external forces often invest in

science with public or private resources [159].

All of the above often complicates the conditions for the free interdisciplinary

(or similar) transformation of academic work and curricula, the latter being a key

stakeholder in maintaining the status quo of the individual disciplines [159], and is

severely restrictive for the flow of knowledge between disciplines and their institu-

tional carriers. The emergence of fields like MIR has instigated numerous changes

8It was especially the Bologna Process for higher education that further empowered these divisions,
especially by restructuring the productivity scoring in academia, which encourages competition and
the need for constant justification of individuals (and their discipline) on the “academic market” by
“universal” markers that are by no means universally applicable.
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within traditional music disciplines. However, the challenge lies in the fact that

the pressure to reconfigure organisational structures based on new intellectual cate-

gories is tackled on a country-by-country, university-by-university, project-by-project

basis [316].

Wallerstein suggests that in addition to the current disciplinary frameworks,

there should be “new avenues for dialogue and exchange beyond (and not merely

between) the existing disciplines [316]”. He argues for the need to “amplify the or-

ganisation of intellectual activity without attention to current disciplinary bound-

aries [316]”. This viewpoint underscores an awareness of the continually evolv-

ing nature of disciplinary processes, indicating that wisdom is not monopolized,

and knowledge is not reserved solely for individuals with specific university de-

grees [316]. While this notion is appreciated, those who have the opportunity to

explore interdisciplinary realms often face challenging circumstances. For instance,

they may encounter difficulties navigating diverse academic scoring systems across

multiple disciplines, face hurdles in securing positions that value their multidisci-

plinary background, and/or find themselves obliged to teach conventional courses

unrelated to their research interests, among other obstacles.

The disciplinary structures, primarily focused on administrative and financial

concerns, often exert significant pressure on scholars, leading them either to tran-

scend university frameworks to pursue their work [316] or to exit academia alto-

gether. Despite calls for multidisciplinary approaches, many scholars who choose

to remain within these structures persist in justifying the importance of their “pri-

mary” discipline. They do so by adhering to canonical works, using the vocabulary

of a specific disciplinary discourse, and contributing their domain-specific exper-

tise to interdisciplinary projects rather than collaboratively developing new, shared

areas with adapted theoretical frameworks.

6.5 Conclusion

In conclusion, this chapter has examined the complex relationship between mu-

sicology and Music Information Retrieval (MIR), highlighting both the potential

for collaboration and the significant barriers that exist between these (and simi-

lar) fields. While this discussion may initially seem peripheral to the main focus

of the thesis, it is essential to understanding the broader academic and practical

challenges that shape the future of this work. Building on two key contributions—a

cross-disciplinary issue of Musicological Annual on computational musicology and

a study presented at ISMIR 2023—this chapter has revealed the limited impact of

MIR research on musicological scholarship. Despite the large amount of contribu-

tions produced by MIR, only a small percentage of it finds its way into musicological

discourse, underscoring the need for greater cross-disciplinary engagement.

Furthermore, by addressing the broader theoretical issues of technological im-

pact, academic discipline formation, and internal conflicts, this chapter draws on
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Korsyn’s concept of disciplinary legitimation to explain why these barriers persist.

The tensions within and between fields like MIR and musicology are not just prac-

tical but deeply rooted in how (and why) these disciplines define their purpose and

identity. While this thesis does not offer definitive solutions, it provides a critical

lens through which these disciplinary divisions can be examined. Ultimately, it en-

courages further introspection and dialogue across academic boundaries to foster

more meaningful collaboration in the future.
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Chapter 7

Conclusion

7.1 Summary

This thesis explored the potential of pattern matching methods to accommodate the

transcriptions of orally transmitted folk songs from Slovenian regions. The method-

ological focus was on integrating melodic pattern matching with a set of additional

descriptors and metadata, while maintaining or enhancing the algorithmic efficiency

of such tasks. Furthermore, the research aimed to provide a viable and well-documented

dataset that conforms to these methods, serving as a resource for future endeavors

by the research or educational community.

As the work undertaken spans a range of diverse topics, I will summarise the

contributions by revisiting the initial objectives. As stated, the goal of Objective 1

was to digitise, organise, curate, and thoroughly document materials from selected

Slovenian folk song ballads. This was achieved by curating the digitised, though not

yet digitally published, scores and annotating them with complementary metadata

where possible [33, 34].

Additionally, we examined all factors influencing these sources, ensuring that

the dataset is not mistaken for a ”ground truth” corpus on how Slovenian folk songs

sound. Rather, it is presented as a reflection of singing trends, available musical

knowledge, and the continually evolving practices of collection and digitisation.

Both statistical information and in-depth discussions are provided on specific top-

ics, such as few-tone melodies, the challenges of harmonisation, and the relationship

between the year of collection and the age of the song.

Second, as a continuation of the previous objective, Objective 2 aimed to anno-

tate the materials and create a publicly accessible digital dataset on the Dezrann

platform. This was accomplished by developing a system for retrieving annota-

tions, either automatically or manually, including features such as phrase numbers,

melodic contours, phrase labels (melody, verse), time signatures, tone sets, and sim-

ilar attributes. Upon completing the annotation and curation of the materials, the

collection, along with most of the annotations, was transferred to the Dezrann plat-

form. The complete scores, accompanied by metadata, lyrics, and annotations, are



134 Chapter 7. Conclusion

now visualised and publicly accessible, as well as released as open data [12]1.

Third, Objective 3 focused on designing algorithms capable of incorporating as

much of the available data as possible. We developed algorithms that accommodate

the format of our dataset while remaining flexible enough to handle other types of

queries and materials with minimal adjustments. For the purposes of this thesis, we

designed three different algorithms, each dealing with melodic sequences, descrip-

tors, or a combination of both. A portion of this contribution can also be read in the

published paper at ISMIR 2023 [33].

Descriptor pattern matching was divided into two groups: the first handled only

one descriptor element per query (e.g., querying for a convex contour but not any

others), while the second approach introduced multiple descriptor queries, allow-

ing for the inclusion of multiple elements per descriptor (e.g., convex or descending

contour, and similar). This approach afforded us greater flexibility, which is partic-

ularly important when working with orally transmitted music, as such music often

loses exact information when transferred into symbolic notation, like scores.

Fourth, Objective 4 aimed to expand the evaluation of the methodology by di-

viding it into a technical performance assessment, two real-life case studies, and a

broader discussion on the principles within the wider context of music research.

Fifth, Objective 5 extended the evaluation and [31] discussions by assessing the

overall contribution of MIR to fields such as ethnomusicology, and vice versa. This

prompted reflection on why certain issues in one discipline do not easily translate

to the other, highlighting three underlying causes: (1) miscommunication regarding

the relationship to new media and technologies in research, (2) the foundations of

distinct disciplinary theoretical frameworks, and (3) the structural organisation of

disciplines and research institutions.

7.2 General Contribution

The five objectives ensured five key contributions. First, the project successfully

included underrepresented music in the digital space, thereby enriching existing

MIR datasets. Both, the open license and the thorough documentation of the dataset

ensure that a wide range of studies can benefit from it.

Second, it established the dataset on a digital platform that not only allows for

visualisation of the data, but also enables users to interact with it by adding or re-

moving annotations. This makes the dataset accessible and useful not only to the

MIR community, but also to those with limited computational knowledge.

Third, in our exploration of the structures and melodic patterns of Slovenian folk

songs, along with their descriptors (a process later repeated with children’s songs),

1Dezrann platform, https://www.dezrann.net/explore/slovenian-folk-songs, accessed on
4th October 2024; Slovenian Folk Song Ballads dataset, https://gitlab.com/algomus.fr/

slovenian-folksongs, accessed on 4th October 2024.
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we found that the proposed algorithms, which combine melodic content with de-

scriptors, offer a valuable tool for discovering insights into the characteristics of

these songs. Moreover, the introduced methods are adaptable, as they do not rely

on predefined assumptions about what constitutes a song, descriptor or a sequence,

and do not require precise information on the type of music one is researching. And,

while our particular descriptors cannot be directly transmitted onto corpora that

are not close to the music structure and research endeavors of this thesis, it is ex-

actly this that confirmed the flexibility as crucial. By thoroughly examining it on

two different cases and reflected on such methods being applied in MIR in general,

we demonstrated that not all descriptors are universally applicable to describe all

content. Nonetheless, most corpora would probably share the finding that individ-

ual (melodic) sequences rarely provide enough understanding on the corpus for the

findings to be informative, thus some form of descriptors is necessary.

Fourth, an evaluation supported the aforementioned goals and sparked a debate

on the usefulness of these principles, suggesting the need to extend such method-

ologies to a broader range of sources beyond music notation.

Lastly, we conducted a brief analysis of ISMIR’s impact on musicology and re-

lated fields, exploring the reasons behind the dissonances between these disciplines.

This analysis initiated a debate on the need for changes across at least three key

areas.

7.3 Future Perspectives

With all contributions in mind, this type of work can still hardly be considered com-

plete. However, what can be concluded is this kind of relationship between pattern

matching and ethnomusicology—or more broadly, music, the humanities, and social

sciences.

Some of the most important perspectives, in my opinion, are: (1) connecting

different formats of the same music, (2) incorporating “non-musical” ideas and dis-

cussions as an integral part of a unified analytical framework, (3) better defining the

purpose and reasoning behind this work, supported by theoretical justification, and

(4) using this understanding to enhance the exchange of ideas between disciplines.

This contribution, while focused on music scores and providing as much context

as possible, remained critical of the initial ideas behind such analyses. Future work

should certainly explore musical features like polyphonic melodies, rhythm, scales,

and harmonies. Moreover, it should move beyond a single music format to offer

more comprehensive insights into music as a whole.

One key realisation during this project was that music transcends the confines of

notation, audio recordings, and similar formats. Music is a relationship—between

people, symbolic forms, and cultures and supporting social structures, rituals, and

needs. As computational tools evolve, it is essential to rethink how we can use them

to extend music studies beyond simply replicating manual analysis with more data.



136 Chapter 7. Conclusion

The descriptor method introduced here provides a foundation, but expanding the

methodology to handle multiple formats and integrate textual or discourse-based

contexts would further enhance our understanding of music and its significance.

Lastly, we must address the issues raised in the chapter on the dynamics be-

tween MIR and ethnomusicology: what we do, how we do it, and why. This more

theoretical line of inquiry is crucial for enabling the advancements discussed earlier.

Establishing a strong foundation for future computational approaches will not only

foster more fruitful interdisciplinary collaborations but also ensure that data and

computation are used more responsibly, effectively, and sustainably.
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Appendix A

Ethnomusicological Datasets

The following table gives an overview of some ethnomusicological datasets, includ-

ing references, URLs, content descriptions, and details on the availability of notation

(♪), recordings/audio (�), lyrics (�), metadata (�), and annotations (Ò). The ta-

ble also provides licensing information and assesses the datasets’ suitability for eth-

nomusicological research (ER), music education (ME), computational music analy-

sis/processing (MIR), and general public use (GP). Full details on the latter classifi-

cation can be found in Section 2.2.1. The symbols under the availability and usabil-

ity categories indicate: Y = available/usable, N = not available/usable, O = partially

available/usable, ? = undetermined with available data.
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şarki
vocal

d
ataset

[ 75]
U

R
L

R
ecord

ings
of
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[39] Barış Bozkurt et al. “Usul and Makam Driven Automatic Melodic Segmentation for
Turkish Music”. In: Journal of New Music Research 43.4 (2014), pp. 375–389.
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[130] Marjetka Golež Kaučič. “Slovene Folk Song at the Crossroads of Influences, Contacts,
and Oppositions of East, West, North, and South”. In: Slovene Studies 29.1-2 (Jan.
2007), pp. 3–18.
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