

Acknowledgments

First and foremost, I would like to express my deepest gratitude to the jury mem-

bers for their valuable time, insights, and feedback on my work. Your contributions

have been invaluable to the completion of this thesis.

I am deeply grateful to my supervisor, Nicolas, for his continuous support,

guidance, and patience throughout this journey. Your expertise and encouragement

have been essential in helping me navigate the challenges of my research.

To my former supervisor Vincent, who continued to be a source of guidance

and support. Your willingness to offer advice, despite the distance and circum-

stances, meant more to me than words can express.

I extend my sincere thanks to our team leader Stéphane, whose lessons on

teamwork and collaboration have been instrumental in my personal and profes-

sional growth. A special thank you to Professor Anne, who entrusted me with the

responsibility of teaching alongside her. Your support, guidance, and invaluable

advice, both in teaching and in working as part of the team, have been crucial to

my development as an educator and researcher.

To my team members, thank you for the stimulating discussions, the experi-

ences shared, and the moments of teamwork and fun that made this journey all the

more memorable.

I owe my deepest gratitude to my parents, Edward and Marie, who supported

my decision to leave and pursue a PhD abroad. Your continuous support and belief

in my potential gave me the strength to persevere. To my brother Charbel, who

always stood by my parents side during my absence. I want to thank you for your

support to me, for the funny and best moments we shared together. You will always

be my beloved little brother ;)

To my extended family, starting with my beloved grandmother, Teta Alice, you

are truly the best and I will never forget what you taught me! To my uncles, aunts,

cousins, and “sisters”, I love you all dearly. Your love and encouragement have

been a constant source of strength.

To my former colleagues, thank you for your support and encouragement through-

out this journey. Your belief in me helped me stay motivated.

To my friends in Lebanon and my second family in France, you have made so

many things easier for me. Your kindness and friendship have been a blessing, and

I am forever grateful for the comfort and joy you brought into my life.

To my beloved country, your resilience in these difficult times inspires me to

keep pushing forward. I hold onto my love for you and hope for lasting peace.

Abstract

Successful software requires constant modifications. To guarantee the continuous

proper functioning of the applications, developers need to understand them well,

particularly by having an accurate map of the dependencies between the parts they

are modifying. However, some of these dependencies are not easily identified.

For example, in an Android application, there are dependencies between the Java

source code and XML parts, some of which are materialized by a generated “R”

Java class. Another example is software that connects to a database, where SQL

queries are embedded within the source code of this software (such as in Java,

.NET, etc.). These queries refer to database entities like tables and stored proce-

dures. We call such dependencies external because they are introduced by some

agent external to the source code. We call such dependencies external because

they are introduced by some agent external to the source code. They are not eas-

ily detectable as they exist between parts (like different programming languages,

different tiers ...).

In this thesis, we developed a generic tool named Adonis, which uses reusable

patterns to identify dependencies. We implemented this tool in the Pharo program-

ming language and validated it across various open source and industrial projects.

During implementation, we realized the need for a search engine capable of identi-

fying parts of external dependencies, regardless of their source code language, their

depth within the code, or the complexity of their location. To address this need, we

created MoTion, a declarative pattern matching language capable of defining pat-

terns and matching objects or trees of objects in imported models in Pharo, as well

as matching text strings using regular expressions. Additionally, we discovered that

external dependencies are sometimes incorrectly established, potentially leading to

program flaws. Identifying these dependencies is crucial for developers to make in-

formed decisions on correcting or removing them to avoid potential issues or side

effects. We developed an approach to detect such incorrect external dependencies,

based on both literature and our research findings, and validated this approach on

the same open source and industrial projects as for Adonis.

Keywords: External dependencies,incorrect dependencies, software quality, pat-

tern matching.

Résumé

Un logiciel réussi nécessite des modifications constantes. Pour garantir le bon

fonctionnement continu des applications, les développeurs doivent bien les com-

prendre, notamment en ayant une carte précise des dépendances entre les parties

qu’ils modifient. Cependant, certaines de ces dépendances ne sont pas facilement

identifiables. Par exemple, dans une application Android, il existe des dépendances

entre le code source Java et les parties XML, dont certaines sont matérialisées par

une classe Java "R" générée. Un autre exemple est le logiciel qui se connecte à

une base de données, où des requêtes SQL sont intégrées dans le code source de ce

logiciel (comme en Java, .NET, etc.). Ces requêtes font référence à des entités de

base de données telles que des tables et des procédures stockées. Nous appelons

ces dépendances externes car elles sont introduites par un agent externe au code

source. Elles ne sont pas facilement détectables car elles existent entre des parties

(comme différents langages de programmation, différentes couches, etc.).

Dans cette thèse, nous avons développé un outil générique nommé Adonis,

qui utilise des modèles réutilisables pour identifier les dépendances. Nous avons

implémenté cet outil dans le langage de programmation Pharo et l’avons validé

sur divers projets open source et industriels. Au cours de l’implémentation, nous

avons réalisé la nécessité d’un moteur de recherche capable d’identifier des parties

de dépendances externes, indépendamment de leur langage de code source, de leur

profondeur dans le code ou de la complexité de leur emplacement. Pour répon-

dre à ce besoin, nous avons créé MoTion, un langage de correspondance de motifs

déclaratif capable de définir des modèles et de faire correspondre des objets ou des

arbres d’objets dans des modèles importés dans Pharo, ainsi que de faire corre-

spondre des chaînes de texte à l’aide d’expressions régulières. De plus, nous avons

découvert que les dépendances externes sont parfois établies de manière incorrecte,

ce qui peut entraîner des défauts dans le programme. Identifier ces dépendances est

crucial pour que les développeurs puissent prendre des décisions éclairées sur leur

correction ou leur suppression afin d’éviter des problèmes ou des effets secondaires

potentiels. Nous avons développé une approche pour détecter ces dépendances ex-

ternes incorrectes, basée à la fois sur la littérature et nos résultats de recherche, et

avons validé cette approche sur les mêmes projets open source et industriels que

pour Adonis.

Mots-clés: Dépendances externes, dépendances incorrectes, qualité logicielle,

correspondance de motifs.

Contents

1 Introduction 1

1.1 Context . 1

1.2 Problem Statement . 2

1.3 Contributions . 2

1.4 Thesis Outline . 3

1.5 List Of Publications . 4

2 State of the Art 5

2.1 Existing Approaches . 5

2.1.1 Existing Detectors . 5

2.1.2 Categorization of the Tools 8

2.1.3 Correctness of External Dependencies 9

2.2 Pattern Matching . 11

2.2.1 Pattern Matching for Graphs 11

2.2.2 Pattern Matching in GPLs 14

2.2.3 Pattern Matching Language Features 15

2.2.4 Some Existing Object Pattern Matching Languages 16

2.3 Conclusion . 17

3 External Dependencies Detection 19

3.1 Introduction . 20

3.2 Structuring the Domain . 21

3.2.1 Definitions . 21

3.2.2 Categorization . 22

3.3 External Dependencies in Multiple External Agents 24

3.3.1 Google Web Toolkit (GWT) 24

3.3.2 Remote Method Invocation (RMI) 25

3.3.3 Hibernate . 26

3.3.4 Pharo Comments . 28

3.4 External Dependencies Detection 30

3.4.1 Key Considerations . 30

3.4.2 Decomposing the Problem 31

3.4.3 Reusable Patterns . 33

3.5 Adonis: External Dependencies Detector 34

3.5.1 Implementation . 34

3.5.2 Usage . 35

3.6 Evaluating Adonis . 36

3.6.1 Experiment setup . 36

3.6.2 Projects . 37

x Contents

3.6.3 Results of the Experiment 41

3.7 Threats to Validity . 44

3.8 Conclusion . 44

4 Declarative object matching in Pharo 47

4.1 Introduction . 48

4.2 Motivation . 49

4.3 Traditional Pattern Matching in Pharo 50

4.3.1 Syntax . 50

4.3.2 Examples . 51

4.4 MoTion . 52

4.4.1 Simple Pattern Example 53

4.4.2 MoTion Grammar . 54

4.4.3 Pattern Operators . 55

4.4.4 Using MoTion . 59

4.5 Implementation Notes . 60

4.5.1 A Simple Extension . 61

4.5.2 Changing the Syntax . 62

4.6 Comparison of MoTion and Traditional Matching in Pharo 63

4.6.1 Syntax and Expressiveness 63

4.6.2 Matching Speed . 64

4.6.3 Matching Characteristics 65

4.7 Use Cases of MoTion . 65

4.7.1 External Dependencies 65

4.7.2 Refactoring Source Code 66

4.7.3 Backend for Other Pattern Matching 67

4.8 Lessons learned . 68

4.8.1 Comparison with Pre-existing 68

4.8.2 Most Used Features . 69

4.8.3 Missing Feature . 71

4.9 Conclusion . 71

5 Evaluating External Dependencies 73

5.1 Introduction . 73

5.2 External Dependencies Correctness 74

5.2.1 What are Incorrect Dependencies? 74

5.2.2 Multiplicities . 75

5.2.3 Types of Incorrect Dependencies 77

5.3 Incorrect Dependencies for different external agents 78

5.3.1 Incorrect Dependencies in GWT 79

5.3.2 Incorrect Dependencies in RMI 79

5.3.3 Incorrect Dependencies in Pharo Comments 80

5.3.4 Incorrect Dependencies in Hibernate 81

Contents xi

5.4 Incorrect Dependencies Detection with Adonis 84

5.4.1 External Dependencies Detection with Adonis 84

5.4.2 Adaptation of Adonis to Reveal Incorrect Dependencies . 85

5.5 Evaluating Incorrect External Dependencies Detection 86

5.5.1 Experiment setup . 86

5.5.2 Manual findings for projects 86

5.5.3 Results of the Experiment 91

5.6 Threats to validity . 91

5.7 Conclusion . 93

6 Conclusion And Future Work 95

6.1 Summary . 95

6.2 Future work . 97

6.2.1 Pattern Matching . 97

6.2.2 External Dependencies 98

Bibliography 99

List of Figures

2.1 Example of Graph Pattern . 11

2.2 Example of a simple RDF graph 12

3.1 Different external dependencies groups 26

3.2 Example of Edit mode for ‘SpListPresenter’ class comment in Pharo 29

3.3 Example of View mode for ‘SpListPresenter’ class comment in Pharo 29

3.4 Adonis Rules and patterns . 32

3.5 Adonis usage in Moose . 35

3.6 ExternalDependency Object . 36

4.1 Pharo traditional patten matching tool 50

5.1 Illustrating multiplicities in external dependencies 76

5.2 The four types of incorrect external dependencies 77

List of Tables

2.1 Summary of external dependencies found in literature 9

2.2 Summary of incorrect dependencies found in literature 10

2.3 Pattern matching characteristics in Object Oriented programming

languages. (1) Matching Types, (2) Planned, (3) For types only, (4)

RBParseTreeSearcher, (5) Only Pharo AST nodes. 17

3.1 Selected projects to experiment Adonis 38

3.2 Results of manual count for containers, entities and external de-

pendencies for all experiments 38

3.3 Results of manual count for containers, entities and external de-

pendencies for all experiments 41

3.4 Precision and recall ratios for Adonis 42

3.5 Execution time for all experiments using Adonis 42

3.6 Patterns used in Adonis . 43

4.1 Speed comparison . 64

4.2 Characteristics comparison . 65

5.1 Literrature external dependency errors and our classification . . . 78

5.2 Incorrect dependencies between Java annotations (reference enti-

ties) and XML elements (resource entities) in GWT 79

5.3 Incorrect dependencies between client ans server in RMI 80

5.4 Incorrect dependencies between Pharo classes and comments . . . 81

5.5 Incorrect dependencies of Hibernate 81

5.6 Incorrect dependencies detection for public projects 87

5.7 External dependencies case studies of manual counting 89

5.8 External dependencies case studies using Adonis 92

5.9 Incorrect dependencies of external agents 92

CHAPTER 1

Introduction

Contents

1.1 Context . 1

1.2 Problem Statement . 2

1.3 Contributions . 2

1.4 Thesis Outline . 3

1.5 List Of Publications . 4

1.1 Context

In modern software, the usage of multiple programming languages and multiple

tiers to develop one program is dominant. This results in the existence of multiple

components that depend on each other to ensure a proper functioning of this pro-

gram. These components can be for example a Java program (first tier) intended

to be used by a group of clients, that is connected to a database (second tier) and

depends on it to handle the data provided by these clients. That is to say, a flow of

dependencies exist between the Java program and the database. We refer to these

dependencies in our thesis as external dependencies. The way those external de-

pendencies are established is usually by agents like frameworks. Such programs

require a solid understanding from the developers and maintainers that need to un-

derstand how different components depend on each others, more specifically the

external dependencies that are established between the components. The identi-

fication of such external dependencies is becoming more and more challenging,

specially there are few identification tools to show and lead the developers to their

existence. And if they exist, they are limited to specific frameworks.

We propose in this thesis a new tool that reveals the existence of those external

dependencies to the developers. Our tool has a simple goal: provide it with the

necessary information like the program that you are analyzing and the agent used,

and it will provide you with the external dependencies that you are searching for.

We were contacted by companies to analyze their programs. They provided

us with some of their programs, as for the other programs that we could not have

2 Chapter 1. Introduction

access to, we searched for projects developed using the same agents on GitHub

and started our work. During our first investigations, we discovered the existence

of incorrect external dependencies because they violated the rules that defines how

they should be established. So we decided in a later stage to adapt our tool in way

to be able to filter the correct and incorrect external dependencies.

To conduct our investigation in this thesis, we used the Pharo programming

language [Black 2009]. Pharo is an open-source, dynamically-typed, reflective,

object-oriented programming language inspired by Smalltalk. It also serves as an

integrated development environment (IDE) built entirely in itself. However, our

findings are not confined to Pharo alone and can be applied to other programming

languages like Java, or Python.

1.2 Problem Statement

In this thesis, we study how we can support the identification of the external de-

pendencies between components. Specifically, we address three problems:

1. Detection problem. Understand how these external dependencies are estab-

lished, and how the entities that relate those external dependencies can be

found. Is there a way to create a generic tool, able to identify them regard-

less of the agent used? We address this problem in Chapter 3.

2. Searching engine problem. The entities that constitute these external depen-

dencies are part of the programs. What are the searching engines that can be

used to find tokens in programs? How can we express search patterns that

are reusable? How they can be used in our case? Is there any limitations?

We explore more this problem in Chapter 4.

3. Correctness problem. We need an approach to help us distinguish between

correct and incorrect external dependencies. What are incorrect external de-

pendencies? How to identify them? We address this problem in Chapter 5.

1.3 Contributions

The main contribution of this thesis are:

1. Identification and detection of external dependencies. We defined and cat-

egorized external dependencies. We created common approach that helped

us structure the way to find those dependencies. We created a tool that we

named Adonis, and validate it over public and private projects.

2. Searching for tokens in programs. We created a new declarative pattern

matching tool capable of defining patterns suitable for the description of en-

tities and we validate it on our projects and with other developers.

1.4. Thesis Outline 3

3. Validation of external dependencies. We created a novel approach, that

clarifies what are the different incorrect external dependencies that can be

found. We extended Adonis to filter the correct and incorrect dependencies

then run the experiments over the same projects.

1.4 Thesis Outline

The thesis is organized as follows:

• In Chapter 1, we introduce the challenge of managing external dependencies,

arise when different components like different programming languages or

tiers are used in the development process.

• In Chapter 2, we review various approaches from the literature for detecting

external dependencies and classify the approaches that address their correct-

ness. Furthermore, we explore two primary methods for pattern matching:

graph-based pattern matching and pattern matching in general-purpose lan-

guages (GPLs).

• In Chapter 3, we explore external dependencies in details and give multiple

examples. We present Adonis, its usage and how patterns can be reused

to allow a flexible extension of it to cover more external agents. We run

experiments on public and private projects, present the results, validate them

and show the needs of using pattern matching and revealing incorrectness.

• In Chapter 4, we present MoTion, as a new declarative pattern matching

DSL (Domain-Specific Language) in Pharo. We discuss its implementation

promoting its extensibility. We compare the traditional pattern matching lan-

guage in Pharo with MoTion and show the results. We comment on some real

use cases where MoTion was used by developers in software analysis tasks

including Adonis. From these use cases, we derived some lessons learned on

the most useful features of MoTion or what improvements can be done.

• In Chapter 5 we focus on identifying and detecting incorrect external depen-

dencies by linking their correctness to the minimal and maximal multiplici-

ties of involved entities. We introduced the types of incorrect dependencies

on these multiplicities, and we validate the approach categorizing prior re-

search and examples. We enhance Adonis to detect with common Pharo

statements the incorrect dependencies and run experiments on public and

private projects.

• Finally in Chapter 6, we conclude our thesis and present the future work.

1.5 List Of Publications

The list of papers published in the context of the thesis is listed below in chrono-

logical order:

Pattern matching in Pharo.

[Hosry 2023b] - Workshop Paper

Aless Hosry, Vincent Aranega, Nicolas Anquetil, Stéphane Ducasse.

International Workshop on Smalltalk Technologies: IWST 23, Aug 2023, Lyon,

France.

https://hal.science/hal-04217930.

External dependencies in software development.

[Hosry 2023a] - Conference Paper

Aless Hosry, Nicolas Anquetil.

International Conference on the Quality of Information and Communications Tech-

nology, Sep 2023, Aveiro, Portugal.

https://hal.science/hal-04217300.

MoTion: A new declarative object matching approach in Pharo.

[Hosry 2024] - Journal Paper

Aless Hosry, Vincent Aranega, Nicolas Anquetil.

Journal of Computer Languages.

https://doi.org/10.1016/j.cola.2024.101290.

https://hal.science/hal-04217930
https://hal.science/hal-04217300
https://doi.org/10.1016/j.cola.2024.101290

CHAPTER 2

State of the Art

Contents

2.1 Existing Approaches . 5

2.1.1 Existing Detectors . 5

2.1.2 Categorization of the Tools 8

2.1.3 Correctness of External Dependencies 9

2.2 Pattern Matching . 11

2.2.1 Pattern Matching for Graphs 11

2.2.2 Pattern Matching in GPLs 14

2.2.3 Pattern Matching Language Features 15

2.2.4 Some Existing Object Pattern Matching Languages 16

2.3 Conclusion . 17

In this chapter, we review various approaches from the literature for detecting

external dependencies. Additionally, we classify research that addresses their cor-

rectness. Finally, we present two main approaches for pattern matching: graph

pattern matching and pattern matching in GPLs. We considered both approaches

to incorporate their features, aiming to develop a new pattern matching language in

Pharo that helps identifying the parts forming an external dependency.

2.1 Existing Approaches

In the literature, many solutions exist for analyzing different types of external de-

pendencies. We first present the different publications found before proposing a

classification scheme for them.

2.1.1 Existing Detectors

Yu and Rajlich [Yu 2001] discussed “hidden dependencies”. Their goal is to study

such dependencies in order to enhance the software comprehension that is a pre-

requisite of any change. They define hidden dependency as a “relationship between

6 Chapter 2. State of the Art

two seemingly independent components and it is caused by a data flow inside of a

third software components”. However, their work is limited to monolingual appli-

cations and the components within them.

Shatnawi et al. [Shatnawi 2019] developed an eclipse plugin named DeJEE that

is able to analyze J2EE applications and draw a call dependency graph of the mul-

tilanguage dependencies in J2EE applications. Their approach relies on parsing

the source and using KDM models to extract the dependencies. Their approach is

applicable for J2EE and they intend to extend it to cover other frameworks. How-

ever, using KDM can be challenging because it standardizes the representation of

model entities regardless of the programming language and runtime platform. This

standardization can limit KDM’s ability to accurately represent some components

where dependencies exist, potentially resulting missing results.

BabelRef, developed by Nguyen et al. [Nguyen 2012], is a tool that automati-

cally detects dependencies between generated client artifacts (HTML and JavaScript)

and server-side artifacts (PHP). It uses object matching and applies dynamic analy-

sis with a single tree-based structure known as the D-model [Nguyen 2011], specif-

ically designed for server-side PHP code. However, a major limitation of this

approach is the need to execute each PHP page to conduct a full analysis of the

project. This requirement makes the tool less practical for those studying projects

they cannot run, or for analyzing legacy programs, which often have complex struc-

tures that must be understood before each page can be executed. This approach is

counterproductive for developers because these tools are generally meant to assist

them in understanding the project, whereas here it necessitates a prior understand-

ing of the project before they can use the tool.

EdgeMiner is a tool developed by Yinzhi et al. [Cao 2015] to automatically de-

tect callbacks for Android framework applications created using Java source code.

The analysis is performed statically on the source code and returns a list of call-

backs that were identified using object matching, for example, when callbacks are

introduced by an implemented Java interface. The authors also provided a different

method of implementing callbacks using XML resources in Android applications,

although their strategy does not address their detection.

Hecht et al. [Hecht 2018] developed another approach that detects the depen-

dencies established in J2EE applications using codified rules. Their work includes

detection of dependencies established between multiple languages or tiers, gener-

ated on run-time or established using callbacks. Still, the approach is limited to the

J2EE framework, and it is not clear how it can be extended to other frameworks.

Polychniatis et al. [Polychniatis 2013] proposed a static method for detecting

cross-language links based on matching lexically common tokens between two pos-

sibly dependent modules. The detection algorithm is then followed by applying

specific filters, such as filtering frequent tokens and omitting one-character tokens.

This approach is relatively generic, and can be applicable for many frameworks as

no parsing is required However, it lacks accuracy because many tokens can have

identical values but be used in different contexts, similar to two buttons with the

2.1. Existing Approaches 7

same ID in a program that are distinct from one another.

Grichi et al. [Grichi 2020] made a study on 10 Java Native Interface (JNI) open-

source multilanguage systems to identify dependencies between Java and C++

using the Static Multilanguage Dependency Analyzer (S-MLDA) to detect static

cross-language links and the Historical Multilanguage Dependency Analyzer (H-

MLDA) based on software co-changes to identify links that could not be detected

statically. However, this approach is limited for developers who only have access

to the latest version of the software and not its historical versions.

GenDeMoG, which is a tool developed by Pfeiffer and Wąsowski [Pfeiffer 2011],

allows specifying intercomponent dependency patterns statically for artifacts in

systems. The tool relies on parsing languages, querying source code objects each

time, and retrieving the possible dependencies between different artifacts. How-

ever, GenDeMoG requires a customized “Component Descriptor Model” for each

project to express patterns and match dependencies, even if the same framework is

used across different projects.

Mayer and Schroeder [Mayer 2012] created a generic approach to understand-

ing, analyzing, and refactoring cross-language code by directly specifying and ex-

ploiting statically semantic links in multi-language programs. Their tool, XLL, was

developed using QVT-Relations (QVT-R), where a set of rules for cross-language

links per language is defined as a relation inside a transformation block, after pars-

ing the source code, and introduces for the first time the idea of cross-language

link correctness. However, relying solely on parsers and metamodels is not always

a feasible solution, especially when dealing with concatenated strings in another

source code (such as SQL queries embedded in Java), where parsing becomes par-

ticularly challenging.

Dsketch is a tool created by Cossette and Walker [Cossette 2010] and used by

developers to specify patterns and match blocks of code in any programming lan-

guage using lexical matching. After identifying the artifacts, Dsketch starts look-

ing statically for possible links between the languages of these artifacts, following

a set of steps predefined by the author. While relying solely on lexical matching

can speed up execution and yield quick results, it may compromise accuracy.

Soto-Valero et al. [Soto-Valero 2021] suggested a new automatic approach to

identify third-party Java dependencies statically in Maven projects, remove un-

needed classes, repackage used classes into a different dependency, and regenerate

the XML configuration file to refer to the new dependencies. The objective of their

approach is to create a minimum project binary that only contains code required

for the project and eliminates “bloated dependencies”. As such, they discussed

dependency correctness (or incorrectness in the case of bloated dependencies).

Kempf et al. [Kempf 2008] introduced an approach that could be applicable to

enhance the refactoring of cross-language links between Java and Groovy. Their

approach is completely static and relies on searching over source code objects, as

Groovy and Java can easily interact with each other. In order to accelerate the

searching engine, the authors propose filtering the classes on which, for example,

8 Chapter 2. State of the Art

the method call is executed, creating a hierarchy scope, and starting a second search

following the method inside the limiting hierarchical scope.

Meurice et al. [Meurice 2016] created a static analysis approach that allows de-

velopers to identify and analyze database access locations from Java systems using

Hibernate, JDBC and JPA. Their analysis relied on traversing ASTs and reaching

the APIs used to call the databases and parsing the SQL queries. The queries being

parsed are complex and concatenated in the source code. While their approach is

beneficial when extracting comprehensive query information, it may be more ef-

fort than necessary for dependency analysis, where developers often only need to

extract specific details like table names and columns.

2.1.2 Categorization of the Tools

We classify the presented work in different categories (summarized in Table 2.11):

Dependency type: Many of the papers are considering dependencies existing in

cross-language applications [Cossette 2010,Grichi 2020,Kempf 2008,Mayer 2012,

Pfeiffer 2012, Shatnawi 2019, Polychniatis 2013, Soto-Valero 2021], like be-

tween Java source code and an XML configuration file, multi-tier [Nguyen 2012]

like between a client application and a server one, callbacks [Cao 2015] from

external libraries, or generated files [Nguyen 2012] like the R class in An-

droid or the files generated by J2EE, or HTML and Javascript generated by

PHP;

Analysis: We saw that both static [Yu 2001,Cao 2015,Cossette 2010,Grichi 2020,

Kempf 2008, Mayer 2012, Pfeiffer 2011, Shatnawi 2019, Polychniatis 2013,

Soto-Valero 2021] and dynamic [Hecht 2018, Nguyen 2005, Shatnawi 2019]

analyses could be used by the tools;

Matching strategy: There are two different strategies used: Object matching [Yu 2001,

Cao 2015,Cossette 2010,Hecht 2018,Kempf 2008,Mayer 2012,Nguyen 2012,

Pfeiffer 2011, Soto-Valero 2021] works on a model of the application and

looks for specific objects in the model, lexical matching [Grichi 2020, Shat-

nawi 2019,Polychniatis 2013] works directly on the source text (Java, XML,

. . .);

Engine: Finally, some approaches are based on rules [Yu 2001, Cossette 2010,

Grichi 2020,Hecht 2018,Kempf 2008,Mayer 2012,Nguyen 2012,Pfeiffer 2012]

that should be defined by the users of such tools to identify dependencies,

while others can automatically [Cao 2015,Shatnawi 2019,Polychniatis 2013,

Soto-Valero 2021] discover them because rules are predefined by their im-

plementors.

2.1. Existing Approaches 9

Table 2.1: Summary of external dependencies found in literature

Name
Dependency

Type
Analysis

Matching

strategy
Engine

Supported

agents

[Yu 2001] Data Dependencies Static Object Rule Specific

[Cao 2015] Callbacks Static Object Automatic Specific

[Cossette 2010] Cross-language Static Object Rule Generic

[Grichi 2020] Cross-language Static Lexical Rule Specific

[Hecht 2018] alla Dynamic Object Rule Specific

[Kempf 2008] Cross-language Static Object Rule Specific

[Mayer 2012] Cross-language Static Object Rule Generic

[Nguyen 2012] M-tiersb, Gen.c Dynamic Object Rule Specific

[Pfeiffer 2011] Cross-language Static Object Rule Generic

[Shatnawi 2019] Cross-language Static/Dyn. Lexical Automatic Specific

[Polychniatis 2013] Cross-language Static Lexical Automatic Generic

[Soto-Valero 2021] Cross-language Static Object Automatic Specific

aMulti-tiers, generated files, callbacks, cross-language
bMulti-tiers
cGenerated files

We can see that only one paper considers multiple dependency types (Hecht et

al. [Hecht 2018]: cross-language, multi-tiers, callbacks, and generated files). Also,

two papers, Pfeiffer and Wąsowski [Pfeiffer 2011], and Soto-Valero et al. [Soto-

Valero 2021], consider dependency correctness by identifying when a dependency

should not exist. Additionally, we found that some approaches are generic (not spe-

cific to frameworks) [Polychniatis 2013,Pfeiffer 2011,Mayer 2012,Cossette 2010],

while others work only for specific languages and frameworks [Yu 2001, Shat-

nawi 2019, Nguyen 2012, Cao 2015, Hecht 2018, Grichi 2020, Soto-Valero 2021,

Kempf 2008].

2.1.3 Correctness of External Dependencies

In their work, other researchers noticed the existence of incorrect external depen-

dencies. They all note the importance of detecting these incorrect external depen-

dencies to improve the quality of the software projects.

Pfeiffer and Wąsowski [Pfeiffer 2012] created TexMo, as a prototype of multi-

language development environment, to detect cross-languages links and help gen-

erating visualization, navigation and so on. They were the first ones to introduce

the idea of correct dependencies between components where cross-languages links

are established. They introduced the idea of multiplicities “TexMo relations are

1For completion, we include Yu et al. in the table although, as already said, they consider a

different type of dependency

10 Chapter 2. State of the Art

always many-to-one relations between references and keys”.

Mayer and Schroeder [Mayer 2012] created a generic approach to understand-

ing, analyzing, and refactoring cross-language code by directly specifying and ex-

ploiting semantic links in multi-language programs using QVT-Relations (QVT-R).

Their approach considered searching for incorrect cross-language links where arti-

facts can be “missing”, and errors generated on execution time.

Soto-Valero et al. [Soto-Valero 2021] discussed “bloated dependencies”, which

are software libraries or packages included but not used at all by the project. They

suggested a new automatic approach to identify third-party Java dependencies stat-

ically in Maven projects. Their methodology allows removing unneeded classes,

repackaging used classes into a different dependency, and regenerating the XML

configuration file to refer to the new dependencies.

Jafari et al. [Jafari 2021] studied the dependency smells generated after using

the npm ecosystem to install libraries. They applied their study over JavaScript

projects and identified 7 dependency smells: Pinned, URL, Restrictive Constraint,

Permissive Constraint, No Package-Lock, Unused and Missing dependency similar

to “bloated dependency” defined previously. According to them, those dependency

smells can cause security problems, bugs, dependency breakages, and other main-

tenance issues.

Cao et al. [Cao 2022] studied the impact of dependency smells for Python

projects. They identified 3 different types of dependency smells: “missing de-

pendency”, “bloated dependency” and “Version Constraint Dependency”. Version

Constraint Dependency is related to referring the same library but with different

versions, multiple times in the same project. In this case, developers should put

more efforts into maintaining numerous version constraints to ensure the consis-

tency of dependency declarations in the project.

In summary, Table 2.2 presents all the types of incorrect external dependencies

identified in the literature. They are organized into three columns, with each col-

umn grouping together types of incorrect dependencies that share the same type

under different names.

Table 2.2: Summary of incorrect dependencies found in literature

Mayer/Schroeder [Mayer 2012] missing

Jafari et al. [Jafari 2021] missing unused

Cao et al. [Cao 2022] missing bloated vers. const.

Pfeiffer/Wąsowski [Pfeiffer 2011] broken

Soto-Valero et al. [Soto-Valero 2021] bloated

12 Chapter 2. State of the Art

An RDF graph is equivalent to a set of triples, of node-labeled edge-node, to

represent the data [Thakkar 2017,Deutsch 2022], and SPARQL [Consortium 2013]

is the language that is capable of handling large-scale analytical operations over

RDF graphs [Thakkar 2017]. It uses a syntax with patterns expressed in triple

form (subject-predicate-object) [Krause 2016] using a combination of variables

and specific resources or literals. The objects and subjects match nodes, and the

predicates match edges.

1 SELECT DISTINCT ?name

2 WHERE {

3 ?instance athlete ?athlete .

4 ?instance medal Gold .

5 ?athlete label ?name .

6 }

Listing 2.1: SPARQL example

Listing 2.1 is a simple example of a SPARQL query to extract the names of

every gold medal (excluding duplicates) from an RDF graph (see Figure 2.2). Line

1 is used to retrieve distinct (duplicates removed) names from the data returned by

the query. The patterns are expressed in the where clause between lines 3 and 5.

Names suffixed by “?” are variables that can match any node in the graph. Line

3 matches ?instance and ?athlete to 2 nodes related by an athlete edge.

Line 4 requires that the ?instance also be linked to a Gold node by the medal

edge. Line 5 matches the ?name variable to the node related to the ?athlete

node through a label edge. This ?name is returned by the query (line 1).

Figure 2.2: Example of a simple RDF graph

Key points:

2.2. Pattern Matching 13

• SPARQL allows expressing the structure of the data looked for without wor-

rying about how deep in the whole graph of data it is or how complex it

is.

• In lines 3 and 5, ?athlete has been reused to match the same value multi-

ple times in the same pattern.

• Additionally, patterns are expressed in a declarative way allowing developers

to add as many patterns as they need.

A PG models the data as a mixed multi-graph, where both nodes and edges can

be labeled and attributed [Deutsch 2022]. Various querying languages can be used

for PGs like Gremlin APIs [Rodriguez 2015], and some declarative graph query

languages like Cypher by Neo4j [Francis 2018], GSQL by TigerGraph [Deutsch 2020],

PGQL by Oracle [S, imonca 2022], or Graph Pattern Matching Language (GPML)

which is able to run CRUD operations [Deutsch 2022]. In addition, there are

some experimental solutions in both industry and academia, like G-CORE [An-

gles 2018].

Gremlin is considered a graph traversal language, allowing the exploration of

complex relationships through various nodes in the graph using traversals like Re-

cursive Traversal [Rodriguez 2015].

1 g.V().has("name","marko").

2 repeat(out()).times(5).

3 values("name")

Listing 2.2: Gremlin recursive example

A Gremlin traversal is a sequential movement through the steps, which are rep-

resented by nodes and edges in a data graph. It initiates from all nodes in the graph

and traverses the path until the endpoint predefined by the developer is reached

successfully among the graph. Listing 2.2 is a recursive traversal expressed in

Gremlin that consists of selecting 5 persons named marko. In line 1 g.V() is

the starting point of the traversal where g refers to the target graph of the match

and V() denotes all nodes selection of g. Then, .has("name", "marko")

filters the nodes to only those for which the property name is equal to marko. In

line 2, repeat(out()) will repeat the previous match to get all possible results.

Then .times(5) limits the repetition to 5 occurrences. And finally for line 3,

values("name") property of value name is retrieved after moving recursively

five steps forward.

Key points:

• The main advantage of this matching technique is that it helps the developers

specify a path to be traversed, with unlimited numbers of nodes and edges.

14 Chapter 2. State of the Art

It is adopted by many other languages for matching PG graphs like Cypher

and PGQL.

• It is also possible to specify repeated searches to return all possible matches.

• Repeated searches risk falling into an endless cycle in the presence of cyclic

relationships. Therefore, they can be limited to a maximum number of repe-

titions using times().

2.2.2 Pattern Matching in GPLs

Pattern matching is one of the main features of functional programming languages

[Ryu 2010] like Haskell2. With the evolution of object-oriented programming, pat-

tern matching has increasingly found its way into this paradigm [Kohn 2020]. Gen-

eral Purpose Languages now have pattern matching capabilities like Java, which

implemented pattern matching in the Amber3 project; Python4; or Rust5.

Such languages involve matching objects based on their types and/or field val-

ues, and many of them introduced the conditional match like “switch subject

case pattern” in Java or Python.

1 record Point(int x, int y) { }

2 enum Color { RED, GREEN, BLUE; }

3 ...

4 String typ;

5 switch (obj) {

6 case null −> typ="Null pointer";

7 case String s −> typ="A String";

8 case Color c −> typ="A Color";

9 case Point p −> typ="A Point";

10 case int[] ia −> typ="An Array of int";

11 default −> typ="Something else";

12 }

Listing 2.3: Java Pattern Matching Example Java 21

Listing 2.3 exposes a pattern matching example in Java 21, where object match-

ing is applied using the switch case statement. Lines 1 and 2, define the data

structures that are used in the matching. Line 4 defines a variable that will hold a

description of the type of obj (line 5). The switch statement performs the match-

ing by looking for the first case that will match obj in lines 6 to 11.

Key points:

2Haskell https://www.haskell.org/tutorial/patterns.html
3Amber project https://openjdk.org/projects/amber/
4Python https://peps.python.org/pep-0000/
5Rust https://doc.rust-lang.org/book/ch18-00-patterns.html

https://www.haskell.org/tutorial/patterns.html
https://openjdk.org/projects/amber/
https://peps.python.org/pep-0000/
https://doc.rust-lang.org/book/ch18-00-patterns.html

2.2. Pattern Matching 15

• Object pattern matching helps define structural objects to be matched.

• Some languages allow to match an object not only on its structure, but also

on the value an attribute should have.

We found several libraries that complement programming languages by intro-

ducing pattern matching capabilities. Tom [Pierre-Etienne 2003] [Balland 2007]

and Rascal [Klint 2011] integrate with Java, Kiama [Sloane 2009] integrates with

Scala, and pyZtrategic [Rodrigues 2024] integrates with Python. Tom and Rascal

cover features that were not covered natively by Java like Path traversal, Recur-

sive traversal, Object matching and List pattern. Kiama, Rascal and pyZtrategic

enable transformation through the definition of strategies. These strategies employ

pattern matching to identify the terms requiring transformation. Strategy execu-

tion in Kiama can proceed in different directions either top-down or bottom-up.

This capability opens up the possibility of traversal in various directions, but it still

requires additional investigation concerning its relevance in pattern matching.

2.2.3 Pattern Matching Language Features

We now consider what features have been proposed in different pattern matching

tools/languages. This will be an inspiration for designing our own pattern matching

language.

Klint et al. [Klint 2011] state that a rich pattern language should provide string

matching based on regular expressions, matching of abstract patterns, and matching

of concrete syntax patterns. To reach a stage where developers are able to express

any pattern compatible with the shape of the object they are looking for, a list of

“features” must be provided by the language and applied using multiple operators

or methods.

Previously in the literature, some authors have listed features supported by Ras-

cal or Python [Klint 2011, Kohn 2020].

We first consider features found in graph pattern matching. Graph matching is

famous for specifying patterns similarly to database SQL queries.

Declarative patterns help the developers define specific patterns that look like the

results of matching, without caring about how these patterns will be matched.

Using this paradigm leads to reduced development’s time, increased main-

tainability, quick learning for pattern expression, and live preview changes

without impacting the whole analysis process [Imbugwa 2021]. We oppose

it to Imperative paradigm which consists of defining the computational steps

to complete the matching process.

Path traversal refers to visiting elements (i.e. nodes and edges) in a graph in some

algorithmic fashion [Rodriguez 2012]. It helps the developers traverse nested

structures while matching patterns.

16 Chapter 2. State of the Art

Recursive traversal is needed to apply recursive search over deep structures, es-

pecially when developers ignore the depth of elements being searched for.

Repeated search is a feature related to the number of returned matches, where

some languages can repeat the search to find all possible matches found,

while others stop searching after finding the first match. A more flexible

solution offers to specify the maximum number of matches that are expected,

allowing to repeat the search without incurring the risk of infinite loops.

We now consider additional features of object matching. Some of these features

would not make sense in graph patterns (such as object matching). We also add here

some features that are inspired by pattern matching in functional languages such as

non-linear patterns:

Object matching is dedicated to match objects based on their types and properties,

which can be methods with return values or instance variables.

Literals (strings, numbers, integers) simply match themselves. They can be used

to specify the value of an object’s property.

Non-Linear pattern (sometimes called unification) allows the developers to use

the same variable multiple times that should always match the same value in

the pattern.

Wildcards represent a placeholder, an anonymous property that can be matched

and is not used afterwards.

Nested pattern allows sub-patterns definition inside a pattern.

List pattern supports the matching of a sequence of patterns taking into consider-

ation their order. For example specifying that a pattern must be matched at

the end of a list or in the middle.

Logical matcher allows the possibility of combining multiple patterns in a boolean

expression.

Negation may allow to express a simpler pattern when searching for bindings that

do not conform to a particular criteria.

2.2.4 Some Existing Object Pattern Matching Languages

We studied existing pattern matching languages to understand what features they

offer. The goal of our matching language will be to offer all these features. We

considered the top OO languages used in 2022 according to github6: C#, C++, Java,

6https://octoverse.github.com/2022/top-programming-languages, consulted on may 2nd, 2024

https://octoverse.github.com/2022/top-programming-languages

2.3. Conclusion 17

Characteristics C# Java Pharo (4) Python Ruby Rust Scala

Paradigm D&I D&I I D&I D&I D&I D

Path traversal x x x

Recursive traversal x

Repeated search x

Object matching x (1) (5) x x x x

Wildcard x x x x x x x

Nested pattern x x x x x x x

List pattern x (2) x x

Literals x x x x x x x

Logical matcher x x x x x x

Negation x (3) x x

Non-Linear pattern x x x

Table 2.3: Pattern matching characteristics in Object Oriented programming lan-

guages.

(1) Matching Types, (2) Planned, (3) For types only, (4) RBParseTreeSearcher, (5)

Only Pharo AST nodes.

Javascript, Python, Ruby, Typescript (three more languages are not OO: C, PHP,

Shell). We added Rust and Scala that are well known for their pattern matching

capabilities. And we added a library in Pharo (RBParseTreeSearcher) because this

is the language we are working with.

Table 2.3 shows the features supported by different OO languages that have

native pattern matching capabilities.

Without surprise, Object matching is well supported. Nested pattern and Wild-

card are also two features that are common. On the other hand, it shows that

features like Path traversal, Recursive traversal, Repeated search, List pattern and

Non-Linear pattern are not universally supported by object matchers.

We are interested in creating an object matching language that could be used

to match objects in models, taking into consideration that features like Repeated

search, Non-Linear pattern, List pattern, Recursive traversal and Path traversal

are also important for such matching languages, in order to provide developers

with the possibility to create patterns in a flexible way, allowing deep matching for

deeply recursive models.

2.3 Conclusion

In this chapter, we presented previous work related to external dependencies detec-

tion and pattern matching. For external dependencies, we reviewed earlier research

across different categories, examined approaches that assess their correctness, and

discussed the types of incorrect dependencies identified by other authors. Regard-

ing pattern matching, we covered prior work on graph matching and object match-

ing in GPLs, highlighting the features supported by each approach.

CHAPTER 3

External Dependencies Detection

Contents

3.1 Introduction . 20

3.2 Structuring the Domain . 21

3.2.1 Definitions . 21

3.2.2 Categorization . 22

3.3 External Dependencies in Multiple External Agents 24

3.3.1 Google Web Toolkit (GWT) 24

3.3.2 Remote Method Invocation (RMI) 25

3.3.3 Hibernate . 26

3.3.4 Pharo Comments . 28

3.4 External Dependencies Detection 30

3.4.1 Key Considerations . 30

3.4.2 Decomposing the Problem 31

3.4.3 Reusable Patterns . 33

3.5 Adonis: External Dependencies Detector 34

3.5.1 Implementation . 34

3.5.2 Usage . 35

3.6 Evaluating Adonis . 36

3.6.1 Experiment setup . 36

3.6.2 Projects . 37

3.6.3 Results of the Experiment 41

3.7 Threats to Validity . 44

3.8 Conclusion . 44

20 Chapter 3. External Dependencies Detection

3.1 Introduction

Repeated modifications are necessary for successful software. This cycle of mod-

ifications is known as software evolution. When performed by developers or tools

(e.g., refactoring tools) without enough knowledge of the applications, mainte-

nance will lead to decreased software quality [Kaur 2015]. The knowledge required

involves identifying all incoming and outgoing dependencies of a software artifact

to be modified. We define dependency as the need for one component to rely on an-

other component in order to fully operate as expected. Developers are more likely

to miss “hidden dependencies” than explicit dependencies and thus introduce bugs

into software [Vanciu 2010].

Yu and Rajlich [Yu 2001] talked about hidden dependencies as a relationship

between two seemingly independent components. Such dependencies are hard to

maintain and are considered by the authors as design faults, because they violate

the rule: “if class A is unaware of the existence of class B, it is also unconcerned

about any change to B”. They give example of 2 components that affect the same

data flow of a software. They both ignore the existence of each other, but both

affect the same data flow through another third component, that makes calls to

them. According to the authors, this results in hidden dependencies between the

2 components since they are managing the same data flow without knowing each

other.

We are interested in dependencies that are hidden, and additionally introduced

by external tools or agents like Android1, GWT2, J2EE3, ODBC4, etc. Contrary

to Yu et al. definition, such dependencies are inevitable and therefore not design

faults. We call them external dependencies: a dependency between two compo-

nents that is created through an external agent. These external dependencies are

established in between different programming languages or separate programs or

various files. But “external” refers to the fact that the dependency is introduced by

an external agent, not to the fact that the components are external. For example,

a GUI framework like JavaFX will offer widgets like a Button and callbacks on

these widgets (setOnAction(EventHandler)). The dependency between a

button and its handler is not clear in the source code if one does not know how

JavaFX works. It is handled externally, even if both components are defined in the

same file.

Examples of such “external agents” are frameworks working with a variety of

programming languages suited for different objectives such as building user inter-

faces, handling logic, and querying databases. Other external agents allow different

projects to collaborate, for example in client/server (multi-tier) applications.

In this chapter, we explore the external dependencies. Our objective is to equip

1Android android.com
2Google Web Toolkit gwtproject.org
3Java 2 Platform, Enterprise Edition oracle.com/java/technologies/appmodel.html
4Open Database Connectivity wikipedia.org/wiki/Open_Database_Connectivity

android.com
gwtproject.org
oracle.com/java/technologies/appmodel.html
wikipedia.org/wiki/Open_Database_Connectivity

3.2. Structuring the Domain 21

developers with a tool that identifies all external dependencies within their pro-

grams. Detecting these dependencies is not a simple task, as they often involve

components spread across different places, potentially running on separate ma-

chines, and sometimes written in various languages at different positions or in dif-

ferent files in the same program. Understanding external dependencies is vital for

developers working with unfamiliar or legacy programs. It provides insights into

how the various components are interconnected and function together, facilitating

a deeper understanding of the program’s structure.

We found that there is no clear, unique definition in the literature of what an ex-

ternal dependency is. That’s why we will go over the following points that outline

our strategy in this chapter to detect external dependencies:

1. We list in this chapter all the categories of external dependencies we found

in previous work [Yu 2001] and [Hecht 2018]. We add one more category

that matches our general definition of external dependencies;

2. We list the commonalities between all the categories that we found and pro-

pose a single approach for external dependency detection;

3. We validate our approach with a tool and experiment it on 4 projects devel-

oped using 4 different external agents.

The rest of this chapter is organized as follows: Section 3.2 provides definitions

of the domain and enumerates the various categories of external dependencies. In

Section 3.3, we explore, for several external agents, how external dependencies are

introduced. In Section 3.4, we introduce our approach and how we decompose our

problem. This is followed by Section 3.5 where we present our tool, also we show

how it was implemented and how it works. We experiment our tool in Section 3.6,

where we present the validation process through 4 experiments, accompanied by a

discussion of the results, followed by threats to validity in Section 3.7. Finally, we

conclude the chapter with a summary and future directions in Section 3.8.

3.2 Structuring the Domain

In this section, we will further structure the domain by clarifying external depen-

dencies and detailing their categories as derived from the literature.

3.2.1 Definitions

We define external dependencies as dependencies between two entities: one entity

is defined, and the other refers the defined entity. We call the two entities involved

in an external dependency, resource and reference. A resource entity is a software

entity that exists independently within a program and can be referenced. Examples

include database tables, classes, methods, attributes, or a GUI button defined in

22 Chapter 3. External Dependencies Detection

XML. A reference entity is a location in source code or documentation that refers

to a resource entity, such as a SQL query referencing a database table, a client pro-

gram calling a method in a server program, or a program setting an action handler

on a GUI button.

In the context of an external dependency, both entities are encapsulated in con-

tainers, they are part of the developed program. For instance in a client/server

application, a client method may invoke an API method developed on the server

side. The dependency exists between the statement on the client side invoking the

API method, and the latter that is defined on the server side. The containers are both

classes encapsulating the methods, whereas the resource entity is the API method

defined on the server side, and the reference entity is the statement invoking this

API.

Various external agents lead to the presence of these external dependencies.

Examples include external agents that work with multiple programming languages,

like Android5, GWT6, J2EE7, Hibernate8 etc., where each language answers a dif-

ferent need such as building user interfaces, handling logic and querying databases.

3.2.2 Categorization

In our literature review, we discovered that external dependencies cannot be con-

fined to a single category, a finding particularly highlighted in the work of Hecht et

al. [Hecht 2018]. We also observed that while some studies focused on detecting a

single category of external dependencies, others addressed multiple categories, as

summarized in Table 2.1 in Chapter 2. Below, we provide a list of the categories of

external dependencies identified in the literature along with an additional category

that we propose as another potential classification:

Cross-language links are those between components written in different languages.

For example, in the GWT framework where XML can be used to define the

UI and Java is used to handle the behavior. The dependency between Java

and XML appears in the Java code using annotations such as @UiField

and @UiHandler, that are essential in GWT to be used to refer to the XML

elements defined in the XML UI files (see Section 3.3.1).

If any change affects the XML component, for example renaming a referred

XML element using one of these Java annotations, the developer must apply

in parallel the same change on the dependent Java component, otherwise the

dependency is broken and the application might fail at runtime. This seems

to be the kind of external dependencies most studied (see Table 2.1). Such

dependencies may be difficult for the developers to detect as they imply a

5Android https://www.android.com
6Google Web Toolkit gwtproject.org
7Java 2 Platform, Enterprise Edition oracle.com/java/technologies/appmodel.html
8Hibernate https://hibernate.org

https://www.android.com
gwtproject.org
oracle.com/java/technologies/appmodel.html
https://hibernate.org

3.2. Structuring the Domain 23

good understanding of the external agent used [Mushtaq 2017]. In another

example, Android also expresses the GUI in an XML file and the behavior in

Java code, but the dependencies are not materialized in the same way. This

is not limited to GUI, other Cross-language dependencies can be found for

example when an SQL query (in a String) references the tables and columns

of an external database.

Multi-tiers dependencies appear in applications with a distributed architecture.

For example, they can store data on one or more database servers, the busi-

ness logic runs on an application server, the presentation logic is deployed on

a web server, and the user interface runs on a web browser [Neubauer 2005].

Thus, in a call established between a client and server application using Java

RMI, the client program must be aware of the structure of interfaces that

extend java.rmi.Remote in order to invoke their methods and make a

successful call to the server tier. Again, such calls between tiers depend on

the external agent used, yet changes to one tier could require corresponding

updates to the second.

Callback dependencies are often used by libraries to allow the user to get back

control from library’s elements. For example, in the JavaFX graphical li-

brary, a Button widget can give back control to the application upon end-

user interaction through the setOnAction(EventHandler) callback.

Kempf et al. [Kempf 2008] mention it for the Android framework. How-

ever, we will exclude this category from our study because they are easier to

detect as the relationship is directly stated within the code. . Our focus is

on more external dependencies that we ignore which reference is targeting

which resource and vice versa.

File generation dependencies appear when an external agent or tool generates

additional files, predefined in configuration files and parsed on deployment

time, able to generate additional components linked with the existing ones of

the project [Hecht 2018]. Such dependencies are hidden until the project is

deployed or executed, and during the analysis phase, a developer or an anal-

ysis tool may not be aware of their existence. These dependencies may be

accompanied by other kinds, for example, Android generates a R class that

allows to link the Java code to XML components (Cross-Language depen-

dencies). In the context of J2EE, Hecht et al. use dynamic analysis to detect

these File generation dependencies.

Documentation dependencies is a new category that we propose. It exists when

the documentation refers to the source code. For example, the JavaDoc has

special annotations to refer to classes, methods or their parameters. Some

refactoring is able to detect and modify the comments when a component

is renamed. These dependencies might be considered less critical because

24 Chapter 3. External Dependencies Detection

they don’t affect the behavior of the application. Yet they are important for

the readability and understandability of the source code. In this case, the

“external agent” introducing the external dependencies might be considered

to be the human reader.

As noticed above, these categories are not mutually exclusive and actually fre-

quently co-existent.

3.3 External Dependencies in Multiple External Agents

Numerous external agents support external dependencies. Throughout our research,

we collaborated with several companies whose programs are built using a diverse

range of these external agents. These companies required comprehensive analy-

sis and engineering work on their programs, which motivated us to focus on these

external agents for our studies. Additionally, our team is using Pharo in order to

develop tools to enhance the analysis and engineering. Recognizing the potential

of Pharo, we have also undertaken an analysis of Pharo’s classes comments. In

this section, we will introduce these external agents and outline the categories of

external dependencies available for each one.

3.3.1 Google Web Toolkit (GWT)

Google Web Toolkit (GWT9), is a framework to develop web applications using

a combination of Java and XML. In GWT Java components (class attributes or

methods) are “linked” to widgets described in XML files through the annotations

@UiField and @UiHandler. For example, Listing 3.1 shows how an attribute

on line 3 is referring to a Window defined in Listing 3.2 as an XML element (lines

1 to 5). Similarly, the Java method on line 5 is linked to the Button widget on lines

2 to 4 of the XML file. GWT requires that the Java and XML files be located in the

same folder and have the same name (without their respective extensions: .java

and .xml).

1 public class ApplicationSettingsDialog implements Editor<

ApplicationSettings> {

2

3 @UiField

4 protected Window window;

5

6 @UiHandler("saveButton")

7 public void onLoginClicked(SelectEvent event) {

8 window.hide();

9GWT https://www.gwtproject.org

https://www.gwtproject.org

3.3. External Dependencies in Multiple External Agents 25

9 }

10 }

Listing 3.1: GWT Java

1 <gxt:Window ui:field="window" pixelSize="300, 110" modal="true"

headingText="Global Settings" focusWidget="{saveButton}">

2 <gxt:button>

3 <button:TextButton ui:field="saveButton" text="Save" />

4 </gxt:button>

5 </gxt:Window>

Listing 3.2: GWT XML

GWT external dependencies are classified as cross-languages links, involving

dependencies between two different languages: Java and XML.

3.3.2 Remote Method Invocation (RMI)

Remote Method Invocation (RMI10) in Java allows to build distributed applications

where a client part can call server methods running in a different JVM.

A Java interface is needed (TheRemoteInterface in the below example).

It extends java.rmi.Remote and declares methods that can throw java.rmi.

RemoteException.

On the server side, a class (TheServerClass) implements this interface and

defines the service methods (line 1 in Listing 3.3). An instance of this class is

registered in the RMI registry (lines 3 and 4 in Listing 3.3).

1 public class TheServerClass implements TheRemoteInterface { ... }

2 ...

3 Registry registry = LocateRegistry.createRegistry(<port number>);

4 registry.bind("rmi://localhost/TheServerClass", new TheServerClass());

Listing 3.3: RMI server code

On the client side, an instance of this interface is obtained from the RMI registry

(Listing 3.4) and calls to its methods will be forwarded to the server application.

1 Registry registry = LocateRegistry.getRegistry(<number>);

2 TheServerInterface instance = (TheServerInterface) registry.lookup("

rmi://localhost/TheServerClass");

Listing 3.4: RMI client code

10RMI https://docs.oracle.com/javase/8/docs/technotes/guides/rmi/index.html

https://docs.oracle.com/javase/8/docs/technotes/guides/rmi/index.html

3.3. External Dependencies in Multiple External Agents 27

table tb_article created in Listing 3.5 (line 1). In the mapping file (List-

ing 3.6) a mapping to this table is created (line 2). Here the database table is

the resource entity and the reference entity is the part table="tb_article".

Note that there is another external dependency to the database column id in

line 4 of Listing 3.6, but we will not consider it in our examples.

1 CREATE TABLE tb_article (

2 id SERIAL PRIMARY KEY,

3 ...

4

Listing 3.5: Database Table and Column Template

Group 2: The second group of external dependencies exists between some Java

classes defined in the program, and the mapping files referring to these classes.

In the same example, line 2 of Listing 3.6 has a reference to the Java persis-

tence class ArticleInfo (defined in Listing 3.7). This class is the re-

source entity. Note that there is no direct external dependency between the

Java class and the database table. Note also that more recent versions of

Hibernate create such a direct external dependency because they put a Java

annotation on the class referring to the database table. This clearly shows

that external dependencies are fully dependent on the external agent used.

1 <hibernate−mapping>

2 <class name="ArticleInfo" table="tb_article">

3 <id name="id" type="java.lang.Integer">

4 <column name="id" />

5 <generator class="native" />

6 </id>

7 </class>

8 ...

9

Listing 3.6: Hibernate Mapping file

Group 3: The third group of external dependencies exist between the HQL queries

and the mapped Java classes. For example, in Listing 3.8, line 3, FROM

ArticleInfo creates an external dependency to the Java class defined in

listing 3.7.

1 public class ArticleInfo {

2 private Integer id;

3 public Integer getId() {

4 return id;

5 }

6 public void setId(Integer id) {

7 this.id = id;

8 }

9 ...

10 }

Listing 3.7: Java persistence Class

28 Chapter 3. External Dependencies Detection

Group 4: Finally, this group represents the external dependencies existing be-

tween the program and the database through all the previous groups. In other

words, the external dependencies of this group exist between HQL queries

and the database tables, without referring directly to those tables, but they

are established through the Java persistence classes and the mapping files.

They are needed because, with the older version of Hibernate (using map-

ping files), each of the three preceding ones alone cannot guarantee the cor-

rect execution of the program. For example, the HQL query in Listing 3.8

is referring to a persistence class ArticleInfo (line 2). This is a group 3 de-

pendency that can be verified. But without the mappings (group 1 and 2

dependencies), there is no way to guarantee that the query can run.

1 StringBuilder hql = new StringBuilder("SELECT *");

2 hql.append("FROM ArticleInfo a");

3 hql.append("WHERE a.id = :articleID");

4

Listing 3.8: Embeded SQL Query Example

Note that group 4 dependencies are similar to what we would have if devel-

opers were using JDBC, directly referring to the database table in SQL (not

HQL) queries without using Hibernate.

In summary, we identified various categories of external dependencies, ranging

from multi-tiers (like group 1 and group 4) to cross-languages links (like group 2

and group 3). Each group was identified based on components, where an entity is

defined in one component and referenced in another.

3.3.4 Pharo Comments

In this section, we will present the external dependencies that exist between Markdown-

formatted comments and Pharo classes.

Comments are commonly used to improve program comprehension, helping

with tasks such as usage and maintenance of the classes and their methods. In

Pharo, each class has a comment section that can be filled with necessary informa-

tion using Markdown. The external dependencies exist between the references to

the classes from the comments. According to our classification in Section 3.2.2,

these external dependencies fall under the “Documentation” category.

Figure 3.2 is an example of SpListPresenter class comment in Pharo, in

Edit mode. To refer to the classes in Pharo from the comments, a developer can use

the backticks (‘) like ‘SpListPresenter‘, ‘SpAbstractListPresenter‘,

‘SpComponentListPresenter‘ and ‘SpTablePresenter‘.

The display of this comment is shown in figure 3.3, where the class names are

displayed in blue and clickable, which can help developers navigate to the cor-

responding class in Pharo. We identify in this example 4 external dependencies,

where each one is a reference from the comment to a class defined in Pharo.

30 Chapter 3. External Dependencies Detection

3.4 External Dependencies Detection

Various detectors in the literature have been implemented to detect several cat-

egories of external dependencies. The majority of them were focusing on spe-

cific category of external dependencies [Cao 2015, Cossette 2010, Kempf 2008,

Mayer 2012, Pfeiffer 2011, Shatnawi 2019, Polychniatis 2013, Soto-Valero 2021].

The others covered additional categories [Hecht 2018, Nguyen 2012]. Addition-

ally, not all the work implemented in the literature was intended to cover addi-

tional external agents [Nguyen 2012, Cao 2015, Soto-Valero 2021, Kempf 2008,

Meurice 2016]. But some of them did [Shatnawi 2019,Polychniatis 2013,Grichi 2020,

Pfeiffer 2011, Mayer 2012, Cossette 2010].

In our work, we want to implement an approach that is: (i) easily extendible to

cover external agents, and (ii) generic for all categories we introduced previously

in 3.2.2. In this section, we present the list of considerations which we want our

approach to fulfill in order to respond to both needs. Then we decompose the prob-

lem in order to accelerate the process of finding external dependencies. Finally, we

present the concept of reusable patterns, which allows a faster and easier extension

of the tool to be created.

3.4.1 Key Considerations

In order to respond to our needs, we need to take into consideration several points,

some of them were considered by previous researchers in their work:

Dependency categories: In our case, there is no limitation, we are interested in

external dependencies coming from multi-tier programming, cross-language

programming, the generation of files during the installation process and doc-

umentations.

Searching strategy: We need a way to search in source files [Di Grazia 2023] in

order to find the correspondent entities and relate them. For that we will

proceed by using pattern matching, as it will help us describe patterns and

apply the match over the source code, and find what we are seeking for.

Matching strategy: We have two different matching strategies: Lexical matching

and Object matching.

In our case, we will use both strategies, taking advantage of whatever tools

are already available for a given language, and how complex the position of

an entity can be.

Engine: We saw in Section 2.1.1 of Chapter 2 that some publications [Shatnawi 2019,

Polychniatis 2013, Soto-Valero 2021] propose automatic solutions that are

able to discover dependencies without the user specifying where to look for

3.4. External Dependencies Detection 31

them. All of these are specific to one given external agent except Polychniatis

et al. [Polychniatis 2013] which may produce many false positives.

We prefer to implement a rule-based engine where we specify for each ex-

ternal agent where to look for dependencies.

Analysis: As for any software analysis approach, one can use static or dynamic

analysis. The static approach is usually favored. It is easier to apply across

various programming languages (and other languages too) and across appli-

cation contexts.

We will use this solution too.

File generation dependencies have been covered dynamically by Hecht et

al. [Hecht 2018]. That is a limitation of our approach for this dependency

type.

Following these key considerations, we decided to use Pharo12 to implement

our solution. One of the primary reasons for selecting Pharo is the Moose plat-

form. Moose13 is a free and open-source platform designed for software and data

analysis. It provides a rich set of tools (like Moose importer and Moose query) and

parsers that enable us to import and parse models, using metamodels (like Famix-

Java14 to represent the structure and relationships of a Java program) facilitating

software analysis and re-engineering tasks. This capability is crucial for our so-

lution, specially when applying object matching strategy over models to find the

resource and reference entities.

For object matching, we created and used MoTion15, a new declarative pattern

matching language developed in Pharo. MoTion is detailed in Chapter 4.

Additionally, like many languages, Pharo has a regular expression library and

adds another layer of versatility to our approach. Regular expressions are a power-

ful tool for text processing, allowing us to perform lexical analysis across various

programming languages, documentation, and tiers. This flexibility is essential for

managing external dependencies and ensuring that our solution can adapt to differ-

ent software environments.

3.4.2 Decomposing the Problem

To simplify the implementation of our solution, we decompose the dependency

identification problem into two parts:

First, we look for Containers, software components that may contain a refer-

ence entity or a resource entity. Containers are usually large components, such

12Pharo https://pharo.org/
13Moose https://modularmoose.org
14FamixJava https://modularmoose.org/moose-wiki/Users/famix-java/famix-java
15MoTion https://github.com/alesshosry/MoTion

https://pharo.org/
https://modularmoose.org
https://modularmoose.org/moose-wiki/Users/famix-java/famix-java
https://github.com/alesshosry/MoTion

3.4. External Dependencies Detection 33

Now that we decomposed the problem, we can start locating containers and

entities,by relying on pattern matching (lexical or object).

3.4.3 Reusable Patterns

Having a solution with no limitation for external agents, allows us to have reusable

patterns, specially for external agents who share the same programming languages.

For example, searching for an XML element according to one of its attribute names

can be done whether this is an XML configuration file, an XML layout file or even

an HTML file. It would therefore be applicable to external dependencies detection

in J2EE, GWT, Android, Angular etc...

For a given language, patterns can be used for container or entity detection.

Each pattern can be expressed declaratively given the object type and its properties

in form of key-value pairs.

Consider the below pattern description for finding annotations in Java model,

imported in Pharo using FamixJava MetaModel: (i) we need a way to precise the

type of the object that we are trying to match, which is FamixJavaModel. After

precising the type, (ii) we need to restrict our research; since we are looking for

annotations in this object, we have to use the property allAnnotationTypes

that return a collection of objects of type FamixJavaAnnotationType. In

later steps we start restricting this property to be able find our match. After that,

(iii) we need to precise that each object of this collection may have a property

name equal to UiField or UiHandler, and another property value to extract

in order to match it later with the description of the XML elements defined in the

corresponding XML file. Such patterns can be encapsulated in methods with input

parameters, which values can be set differently each time depending on the external

agent in question.

Finally, the strategies presented in this section, will help the developers to enable a

flexible extension of Adonis to support new external agents:

Decomposing the problem allows the generation of common methods like “find-

ResourceContainers” and “findReferenceEntityFor(referenceEntity)” for each

external agent, and inside, rules can be set to call specific patterns to locate

those containers and entities.

Reusable patterns strategy allows them to reuse existing patterns, thus reduces

time of development and testing of new patterns.

34 Chapter 3. External Dependencies Detection

3.5 Adonis: External Dependencies Detector

We implemented our solution and name our tool Adonis16. In this section, we will

explain how Adonis was implemented, what are the supported external agents and

categories and then how it can be used.

3.5.1 Implementation

Adonis is implemented in Pharo as an open source and free package. The tool has

a main class Adonis, from which derive subclasses representing each external

agent. The main class has mandatory methods like getReferenceContainers

and getReferenceEntities that should be implemented by each subclass,

following our definition of external dependencies and our strategy of decompos-

ing the problem to locate containers and entities, in addition to common methods

to be used by subclasses like buildResourceEntityFor(element) and

defineExternalDependency. Detection rules must be implemented in 4

methods for all external agents: getReferenceContainers, getReference

Entities, getResourceContainers and getResourceEntities.

Adonis supports for the moment 4 different external agents (GWT, RMI, Hiber-

nate and Pharo comments), thus 3 different categories of external dependencies as

explained in Section 3.2.2: cross-languages links, multi-tiers and Documentation.

Additionally, 3 external agents are in progress: GWT RPC17 (Remote Procedure

Call), Spring18 and JDBC19 (Java Database Connectivity) which is almost the same

as Group 3 in Hibernate between HQL and Java classes, except that Java classes

must be replaced by SQL Database tables.

For the matching strategies, we used both lexical and object matching using

MoTion and regular expressions:

• GWT: we used Object matching. Parsers and metamodels for both languages

(XML and Java) existed in Moose.

• RMI: again Object matching is used here. For RMI things are more com-

plicated than GWT, as we needed to traverse the AST of the model in order

to be able to find invocations of the client to the server, in addition to the

registered server API in the registry.

• Hibernate: we used both, object matching and lexical. For XML mapping

files, Java and the database, we used object matching. However, for HQL

(which is the same as SQL), we decided to proceed with lexical matching,

16https://github.com/alesshosry/Adonis
17RPC https://www.gwtproject.org/doc/latest/tutorial/RPC.html
18Spring https://spring.io
19JDBC https://docs.oracle.com/javase/8/docs/technotes/guides/jdbc/

https://github.com/alesshosry/Adonis
https://www.gwtproject.org/doc/latest/tutorial/RPC.html
https://spring.io
https://docs.oracle.com/javase/8/docs/technotes/guides/jdbc/

3.6. Evaluating Adonis 37

presented previously in Section 3.2.2. We want real case (concrete) and legacy

projects having various external dependencies.

In order to validate point (i) “the approach can identify external dependen-

cies”, we will rely on 5 metrics: we will count manually the number of resource

containers, reference containers, resource entities, reference entities and external

dependencies for each external agent and compare them with the results of Adonis.

We chose to count the number of containers and entities because our approach is

relying on targeting them first. Then it consists on relating the entities that con-

struct the external dependencies conveniently, which is why we want to count them

also. We will do this for all 4 projects, then run Adonis, extract the same data of the

same metrics and check the accuracy of Adonis by comparing the results in terms

of precision (the number of true positives divided by the number of true positives

plus the number of false positives) and recall (the number of true positives divided

by the number of true positives plus the number of false negatives). We will also

track the execution time to assess how much we can reduce the time required for

searching external dependencies.

To validate point (ii) “it works for different types of dependencies”, we experi-

ment with different projects developed using different external agents.

Finally, to validate point (iii) “we can reuse patterns across external agents”, we

will count the number of patterns in total and see how many patterns are reused.

3.6.2 Projects

In this section we present the projects used for our experiment and our findings

(number of containers, entities and external dependencies) for each one them fol-

lowing a manual investigation.

Table 3.1 lists all different projects that we analyze. We have selected 4 differ-

ent projects:

1. For GWT, we chose Traccar project20. It is an open project created in 2012,

it has 3 different branches, but we analyzed the project using legacy branch

because it was developed with GWT. Traccar-legacy has 100 commits and 2

contributors until 2015 (date of last commit on the branch). It has a total 34

Java classes, 2 KLOC and 13 XML files.

2. For RMI we chose the open source project UniScore 21, which is developed

using two separate software: client and server. The project was created in

2020 and has a track record of 104 commits and 3 contributors. Uniscore-

Server is the server part sub-project of 41 classes and 6 KLOC. Uniscore-

Client is the client part sub-project of 50 classes and 7 KLOC.

20https://github.com/traccar/traccar-web/tree/legacy
21https://github.com/redhawk96/UniScore

https://github.com/traccar/traccar-web/tree/legacy
https://github.com/redhawk96/UniScore

38 Chapter 3. External Dependencies Detection

Table 3.1: Selected projects to experiment Adonis

External

Agent
Project Classes KLOC

Open /

Closed

Number of

Commits

Number of

Contributers

GWT Traccar22 34 2 Open 100 2 (Until 2015)

RMI UniScore23 91 13 Open 104 3

Hibernate – 1K 116 Closed – –

Pharo

Comments
Pharo24 14K 882 Open 29K 209

Table 3.2: Results of manual count for containers, entities and external dependen-

cies for all experiments

External Resource Reference External Ex. deps. /

agent Containers Entities Containers Entities dependencies Ref. ents.

GWT 10 60 10 69 69 100 %

RMI 1 54 14 48 48 100 %

Hibernate G.1 1,140 86 51 51 42 82 %

Hibernate G.2 1,338 49 51 51 49 96 %

Hibernate G.3 1,338 49 334 424 414 97 %

Hibernate G.4 1,140 86 334 424 378 89 %

Pharo

Comments
1 14,159 557 5351 5282 98 %

3. For Hibernate the company gave us access to a client registration program. It

uses an Oracle database to store the necessary data. The program comprises

116 KLOC and includes a total of 1,338 classes and the database contains 86

tables.

4. For Pharo Comments experiment, we created a new clean image of Pharo 12,

build number 1525, which is the latest stable Pharo version at the moment.

In total this version of Pharo has more than 14K classes per image and 882

KLOC, more than 29K commits and 209 contributors.

Next, we show our findings for each project in table 3.2.

In an initial analysis for table 3.2, comparing the number of entities for each

external agent reveals some patterns. For example, in GWT, the number of refer-

ence entities exceeds that of resource entities, suggesting that some resources are

referred multiple times. However, in the case of RMI the opposite occurs, there are

fewer reference entities than resource entities, indicating that not all resources are

3.6. Evaluating Adonis 39

referred. Additionally, when a certain number of reference entities target certain re-

sources, we would expect to find the same number of external dependencies, which

is the case of GWT and RMI where we found a ratio of 100% of reference entities

are included in external dependencies. Yet, this is not true for Hibernate and Pharo

Comments, where some reference entities point to non-existent resources, leading

to lower number of external dependencies than expected, which explains why the

ratios for these external agents vary between 82% and 98%.

Now we explain how we proceeded with our manual investigation and we dis-

cuss in details our findings.

For the GWT external agent, we identified 10 .ui.xml files (resource con-

tainers) and 10 Java classes (reference containers); We found 69 annotations (re-

source entities) in those Java classes and in parallel 60 XML elements (resource

entities) defined in the XML files (XML elements referred by Java; others can be

defined and have IDs without necessarily being referred); We found 69 external de-

pendencies (the number of reference entities with a valid resource entity). During

this investigation, we discovered that multiple resource entities are defined in XML

but never referred to in Java. For example, for the DeviceView container, only

12 out of 16 resource entities were referred to. This is allowed in the GWT frame-

work and is not considered a flaw (we will come back to this later in Chapter 5).

Moreover, the comparison between “Resource Entities” and “External Dependen-

cies” columns shows that the number of external dependencies can be larger than

the number of referred resource entities, indicating that some resource entities are

referred by both Java annotations. For example, in the UsersDialog container,

we found 8 external dependencies for only 6 reference entities. Two references to

removeButton and addButton can be found in the source code. Again, this

is allowed in the GWT framework and is not considered a flaw.

For the RMI experiment, we identified 1 java interface (resource container),

and 14 java classes with calls to client servers (reference containers). In the java

interface we identified 54 public methods signatures defined (resource entities) and

48 invocations for instances of this interface (reference entities). We identified a

total of 48 external dependencies (the number of reference entities with a matching

resource entity). We noticed that only 26 resource entities out of 54 were referred,

which results in 28 resource entities that were created but never referred. Having

this amount of unused resource entities is considered a bad practice in RMI since

the API server methods were created but never used. Moreover, we also noticed that

some server APIs were referred more than once. This explains why we found 26

referred resource entities, but also 48 external dependencies. For example, for the

DashboardContentPanel class, we can see that none of the resource entities

was referred more than once, which is not the case for ExamContentPanel

class, where we found addLogActivity was referred twice. This explains why

we found 9 external dependencies instead of 8 in this class (reference container).

This is considered a normal practice in RMI.

For Pharo Comments, we applied our study on one image (resource container),

40 Chapter 3. External Dependencies Detection

that contains 14K Pharo classes (resource entities) intended to be referred by the

comments. We extracted programmatically those classes. Then programmatically

also we extracted all the comments that may contain references to such classes and

found 557 comments (reference containers). We found a total of 5351 tokens as

CamelCase between backticks (reference entities). We counted the external depen-

dencies and found 5282 of reference entities with correspondent resource entities.

With a manual investigation, we found that some of these entities are referring

to missing classes that are deprecated and removed from the newer Pharo versions,

whereas 6 others are referring just to descriptions of icons in Pharo IDE like “Help”

and “Remove”.

For Hibernate, we proceeded group by group but we cannot disclose the de-

tailed results since it is a private project. Following are some data:

• For Group 1, between database and mapping files, we looked at the SQL

schema and found that the database has 1,140 entities (resource containers)

among them 86 SQL tables (resource entities). We identified using 51 XML

mapping files (reference containers) and 10 attributes table within class

XML element in these files (reference entities), meaning that not all tables

are mapped in the program. We found 42 external dependencies (the number

of reference entities with a matching resource entity). This means that 9

references in the mapping files were referring to tables that do not exist in

the database. This is a bad practice in Hibernate and can cause issues at

runtime.

• For Group 2, between the mapping files and the Java classes, we identi-

fied 1,338 Java classes (resource containers) and among them we filtered 49

classes as resource entities referred by the mappings. We had 51 reference

containers and 51 resource containers identified in Group 1. This means that

there are 2 classes referred in the mapping files but missing in the program.

Also this is a bad practice and can cause issues on execution time. This

resulted in 49 external dependencies.

• For Group 3, between HQL and the mapped Java classes, we have 1,338

resource containers and 49 resource entities counted previously. As for the

references, we noticed that all the HQL queries were embedded in classes

starting with “Dao”. So to simplify our investigation, we searched among

these classes. We found in these classes that HQL queries are concate-

nated. Some of them include references to the mapped classes without key

words like “From” and “Update”, which can be a limitation for Adonis, as

we are doing a static analysis and relying on regular expressions to search

for such keywords among the strings to identify table names. We extracted

334 queries fragments (reference containers) and extracted 424 table names

(reference entities). This indicates that there are classes referred more than

once in HQL queries. We ended up by counting 414 external dependencies

3.6. Evaluating Adonis 41

Table 3.3: Results of manual count for containers, entities and external dependen-

cies for all experiments

External Resource Reference External

agent Containers Entities Containers Entities dependencies

GWT 10 60 10 69 69

RMI 1 54 14 48 48

Hibernate G.1 1,140 86 51 51 42

Hibernate G.2 1,338 49 51 51 49

Hibernate G.3 1,338 49 331 421 411

Hibernate G.4 1,140 86 331 421 375

Pharo

Comments
1 14,159 557 5351 5282

which is the number of reference entities with a matching resource entity.

We found 424-414 = 10 entities referring directly to the database instead of

using the mappings, which is considered a bad practice in Hibernate. This

was a lengthy task, but it was the only way to complete our validation.

• For Group 4, between the database and the HQL queries, we have the re-

sources from Group 1 (database entities) and references from Group 3 (HQL

queries in Java code). We linked the database tables, the mappings and the

extracted table names and found 378 external dependencies. This indicates

that 424-378 = 46 queries were used but referring incorrectly to the database.

We investigated more, and found that this resulted from the incorrect map-

pings found for groups 1, 2 and 3.

At the end, the manual validation required the usage of multiple tools collect the

data for different external agents, additionally between 20 and 25 hours of work to

extract this data and to count the external dependencies. The results of this counting

are published here 25.

3.6.3 Results of the Experiment

In this section, we will present the results provided by Adonis in Table 3.3. We

compare the results with our manual findings in table 3.2. Then we show how

many patterns were created and how they can be reused.

After running Adonis, we found for GWT, RMI, Hibernate G.1, Hibernate

G.2 and Pharo Comments experiment the exact same results as the manual count.

However, for Hibernate G.3 and Hibernate G.4, Adonis missed some reference

25Manual counting results https://doi.org/10.5281/zenodo.13820410

https://doi.org/10.5281/zenodo.13820410

42 Chapter 3. External Dependencies Detection

Table 3.4: Precision and recall ratios for Adonis

External Resource Reference External

agent Containers Entities Containers Entities dependencies

Pre./Rec. Pre./Rec. Pre./Rec. Pre./Rec. Pre./Rec.

GWT 100% / 100% 100% / 100% 100% / 100% 100% / 100% 100% / 100%

RMI 100% / 100% 100% / 100% 100% / 100% 100% / 100% 100% / 100%

Hibernate G.1 100% / 100% 100% / 100% 100% / 100% 100% / 100% 100% / 100%

Hibernate G.2 100% / 100% 100% / 100% 100% / 100% 100% / 100% 100% / 100%

Hibernate G.3 100% / 100% 100% / 100% 100% / 99% 100% / 99% 100% / 99%

Hibernate G.4 100% / 100% 100% / 100% 100% / 99% 100% / 99% 100% / 99%

Pharo

Comments
100% / 100% 100% / 100% 100% / 100% 100% / 100% 100% / 100%

Table 3.5: Execution time for all experiments using Adonis

External agent Execution time (in seconds)

GWT < 1

RMI 8

Hibernate 75

Pharo 2

entities and external dependencies, because three HQL query fragments were con-

catenated separately without any indicator suggesting they contained table names.

We also measured the execution time for each experiment, with the findings

summarized in Table 3.5. At first glance, tasks that previously required hours,

could now be completed in a maximum of 75 seconds for Hibernate, and under 9

seconds for the other experiments as shown in this table.

Following these results, we validated that Adonis is able to detect external de-

pendencies successfully (point (i)), with promising precision and recall ratios for

all projects varying between 99% and 100% as per table 3.4. Additionally, the im-

plementation of Adonis covered various external agents. Each one of them covered

one (and more for Hibernate) category of external agents. This validates point (ii),

as despite the variety of these categories, we were able to create each time follow-

ing the same methodology, a set of patterns, rules and methods to find containers,

entities, and then external dependencies.

In terms of reusable patterns, we developed a total of 11 object patterns and 5

lexical patterns summarized in table 3.6. They are encapsulated in methods with

input parameters, which can be used to construct the patterns, thus making them

3.6. Evaluating Adonis 43

Table 3.6: Patterns used in Adonis

Pattern
Usage

number
Comment

getCamelCases 1

selectQuery 1 Reusable for JDBC

insertQuery 1 Reusable for JDBC

deleteQuery 1 Reusable for JDBC

joinQuery 1 Reusable for JDBC

defineDeclParamForType: 1

getFileFromDirectoryBasedOnName 1

defineJavaAnnotationNameWithAttributes: 1

defineJavaAnnotationNameWithoutAttributes: 1

defineJavaDeclStatementforString: 1

defineJavaInheritanceFor: 1 Reusable for RPC

getFromFASTJavaMethodEntityAStringLike: 1

defineJavaDeclStatement:forMethod: 1

defineInvocationWithArgs:usingInvocator: 1

defineInvocationWithoutArgs:usingInvocator: 1

defineXMLPatternfollowingAttributeName:

value:XMLType:
2 Reusable for Spring

flexible patterns that can be reused for multiple matches. The lexical matching

patterns are applied for HQL/SQL queries and Markdown comments. Currently,

only 2 patterns were reused to search for XML attributes and XML files in GWT

and Hibernate. This low reuse is due to the variety of programming languages

used by the external agents, which means there are no patterns applied for the same

language that can be reused multiple times, which limits the validation of point

(iii).

For future external agents, the same XML pattern could be reused for Spring

external agent that is under construction. Moreover, we have one (Java) pattern

applied for RMI, which could also be used for RPC, as both require searching

for inheritances from the Remote interface (for RMI) and the RemoteService

interface (for RPC). This makes 3 out of 11 object patterns which could lead to an

expected a total of 27% of reusable object patterns, where 1 of them will be reused

3 times.

Additionally, we have 5 lexical patterns: 4 for HQL and 1 for Markdown. Here

we have 4 lexical patterns used for Hibernate, which should be reused for JDBC

to extract table names from SQL queries, leading to an expected total of 80% of

lexical reusable patterns.

44 Chapter 3. External Dependencies Detection

3.7 Threats to Validity

In this section we present the threats to validity following the experiments and their

validation.

Internal Validity We selected projects developed using various external agents,

that use various languages (Java, Pharo, XML, Markdown and HQL) to

prove generalizability. External dependencies are handled differently by

these agents. Despite that were able to deal with this variety and detect ex-

ternal dependencies through Adonis.

As for the reusable patterns, we proved that XML pattern could be reused

for different external agents that deal with XML. However, we do not know

if others also can be reused. To avoid this possible bias, we are planning to

expand the range of external agents.

External Validity We tried to ensure big and small projects, open and closed. We

also tried to cover a wide range of external agents (RMI, GWT, Pharo and Hi-

bernate) to cover all types of external dependencies discussed in this chapter

(except callbacks).

Construct Validity We used metrics directly related to our research. We counted

containers, entities, external dependencies and patterns, which are core to our

approach. Execution time was also measured, though we recognize this met-

ric requires further investigation, particularly for smaller projects like those

using GWT and RMI. Larger projects would provide a more robust evalua-

tion of this metric. These measures aim to accurately represent the effective-

ness of our approach in detecting external dependencies.

Conclusion Validity Our approach demonstrated success in detecting external de-

pendencies across the analyzed projects that use different languages. We

know that if our approach could work for these languages, then it should

work for others similar to them like C# and HTML. However, for GWT and

RMI, we only tested small projects. We need to run experiments on larger

ones to better understand how robust our approach is. We tried to expand

more our research for Hibernate, but the projects 26 we found were not sig-

nificant and did not help us to judge enough.

3.8 Conclusion

In this this chapter we saw that various external agents are used to create various

types of software. These external agents rely on a set of rules specific to each

one to establish external dependencies. We acknowledge the existence of multiple

26Hibernate open source projects experimenthttps://doi.org/10.5281/zenodo.13886550

https://doi.org/10.5281/zenodo.13886550

types of external dependencies such as multi-tiers, cross-language links in polyglot

programming and documentation. We also state that even if each external agent

connects its languages or tiers in a unique way, a common approach emerges. This

approach is based on finding the correct containers that lead to the identification of

specific entities defined according to the external agent’s rules. To design a detector

that can achieve the usage goals successfully, we established a set of considerations

and based on them, we developed our tool Adonis with the flexibility of defining or

using existing patterns to limit the number of containers, detect entities, and link

them following each external agent rules that we experimented with two different

projects. We found that there is a need to search over source files (wether source,

documentations, comments ...) using object and lexical search. To apply that, we

created a pattern matching that can apply object matching using its specific syn-

tax and lexical matching using regular expressions. We explore more the pattern

matching library in later chapter. We validated our tool by running 4 experiments

using different external agents. Following our validation we found that the preci-

sion and recall ratios vary between 99% and 100%. Finally, following the comple-

tion of the experiments, we observed that several of the defined resource entities

remained unused or were missed. This observation prompts a further discussion

regarding the potential flaws and errors that may arise from external dependencies.

We will explore more these issues and their implications in Chapter 5.

CHAPTER 4

Declarative object matching in Pharo

Contents

4.1 Introduction . 48

4.2 Motivation . 49

4.3 Traditional Pattern Matching in Pharo 50

4.3.1 Syntax . 50

4.3.2 Examples . 51

4.4 MoTion . 52

4.4.1 Simple Pattern Example 53

4.4.2 MoTion Grammar . 54

4.4.3 Pattern Operators . 55

4.4.4 Using MoTion . 59

4.5 Implementation Notes . 60

4.5.1 A Simple Extension . 61

4.5.2 Changing the Syntax . 62

4.6 Comparison of MoTion and Traditional Matching in Pharo . . . 63

4.6.1 Syntax and Expressiveness 63

4.6.2 Matching Speed . 64

4.6.3 Matching Characteristics 65

4.7 Use Cases of MoTion . 65

4.7.1 External Dependencies . 65

4.7.2 Refactoring Source Code 66

4.7.3 Backend for Other Pattern Matching 67

4.8 Lessons learned . 68

4.8.1 Comparison with Pre-existing 68

4.8.2 Most Used Features . 69

4.8.3 Missing Feature . 71

4.9 Conclusion . 71

48 Chapter 4. Declarative object matching in Pharo

4.1 Introduction

We identified in the previous chapter the need for a good object matching tool in

our detection of external dependencies. We now turn to this topic and present the

pattern matching tool used in Adonis.

Pattern matching is the process of checking whether a given pattern matches a

given value or not [Klint 2011]. Many pattern matching languages exist in the lit-

erature listed in Chapter 2, Section 2.2. They are used in different contexts with the

main purpose: searching for tokens somewhere in files, graphs, objects... similar

to a specific description expressed and called “pattern”. We found in the literature

an interesting list of features for pattern matching.

However, those features are split into two main groups: features frequent in

graph pattern matching and features frequent in object pattern matching. Software

models are huge graphs of objects. We need features from both kinds of pattern

matchers.

In Pharo we have a pattern matching language to apply object matching which

we refere in this thesis as “traditional pattern matching” and we have regular ex-

pressions to apply lexical matching. However we will see that it does not fit our

needs to deal with the variety of external agents we are working with.

In this chapter we report on our efforts to implement a new object pattern

matching tool in Pharo, that supports all features grouped in Chapter 2, Section 2.2.

We explore an approach to pattern definition influenced by pattern matching for

graphs and for objects to propose to developers a flexible way of searching and ex-

tracting information from objects. This is concretized in MoTion 1, a new declara-

tive object matching language and tool implemented in Pharo. MoTion allows the

definition of declarative patterns, combining features from both pattern matching

for graphs and for objects.

The structure of the chapter is the following: In Section 4.2 we propose exam-

ples from the literature illustrating the need for pattern matching in modern soft-

ware development. In Section 4.3 we present the traditional matching language in

Pharo. Then, in Section 4.4 we describe the syntax of MoTion, a new declarative

object pattern matching language implemented in Pharo. Some implementation

details are discussed in Section 4.5 promoting the flexibility and extensibility of

MoTion. We compare the traditional pattern matching language with Pharo and

show the results in Section 4.6. We comment on some real use cases (Section 4.7)

where MoTion was used by developers in software analysis tasks. From these use

cases, we derived some lessons learned (Section 4.8) on the more useful features

of MoTion or what improvement path lays before us. We close the chapter in Sec-

tion 4.9 with our conclusions and discussion of future work.

1https://github.com/doubleBlind/MoTion

https://github.com/doubleBlind/MoTion

4.2. Motivation 49

4.2 Motivation

When programming applications deal with large amount of data, developers often

need to search for specific objects in the data. This happens when working in real-

world domains such as biology, transport and social networks. An example of such

graph analysis is illustrated by the work of Thakkar et al., describes how to extract

the age of the eldest person knowing a person named “Marko” in a big graph of

people [Thakkar 2017].

Software engineering daily activities also involve searching for source code

elements. This is often done by representing the source code as a graph of objects

(for example in an Abstract Syntax Tree) and searching for the “right object” inside

this graph. For example, Mohamed and Kamel [Mohamed 2018] describe how to

reverse engineer an application, looking for design pattern instances. For this, the

authors suggested using static code analysis and following a set of heuristics, like

identifying inheritance between classes and node selection inside methods based

on their types. Searching is also needed when transforming (or refactoring, or

restructuring) the code into a new form. This can be done by looking for a specific

software element and transforming it into a new one, or by modifying it in a new

form [Klint 2011].

Doing this kind of search in a GPL (General Programming Language) means

going through sets of objects, selecting some of them, and then navigating to their

children looking for specific properties (like attributes with a given value), . . .

A better solution for this is to use a pattern matching language that will allow

describing the sub-graph of objects one is looking for and letting it find all the

matching occurrences in the whole graph of objects. The common pattern matching

tools relieve the users from specifying how to traverse the whole graph, letting them

concentrate on the description, in a specific notation, of the searched pattern.

1 public ColoredTree

2 makeGreen(ColoredTree t) {

3 return visit(t) {

4 case red(l, r) => green(l, r)

5 };

6 }

Listing 4.1: Rascal example

Listing 4.1 is an example extracted from the work of Klint et al. of a trans-

formation rule expressed in Rascal, where method makeGreen defined in line

2 takes ColoredTree t as input parameter and replaces red nodes by green

ones [Klint 2011]. The visit in line 3 is used to traverse all tree nodes and

apply the rule expressed in line 4 using => operator, where the Left Hand Side

(LHS) pattern red(l,r) is transformed into the Right Hand Side (RHS) pattern

green(l,r). This example illustrates the capabilities of pattern matching to

4.3. Traditional Pattern Matching in Pharo 51

(‘#) Literal pattern nodes. To verify that the matched node is a literal, a back-

tick can be followed by the hash sign. “‘#lit size” is an example where

‘#lit can match an integer 3, a string foo or even a collection such as

#(a b c). It will not match “self asString”.

(‘@) List pattern nodes. Is used to match zero, one or more nodes in the AST. For

example, “|‘@args1 t1 ‘@args2|” returns a successful match with |

t1 t2 t3 t4| where args1 will be empty and args2 matches t2 t3

t4.

(“) Double Back-tick. It is used to perform a recursive search. This implements

the deep match characteristic. It entails searching for patterns not only on

the surface level of the source code, but also examining their internal struc-

ture. For example, ““@vars + 1” matches any selector followed by + 1,

additionally, it will internally check if this selector is already constructed by

another selector followed by +1, such as (myNum + 1) + 1 + 5, where

the first match of ‘@vars’ is myNum + 1 and the second is myNum found

by the deep match.

(‘.) Statement pattern nodes. To match statements, a developer can use a back-

tick followed by a period. Such patterns ‘.Statement1. match a single

statement in Pharo such as “self assert: myVal size equals:

11.” . It can also be combined with the list pattern (‘@.) to search for a list

of successive statements, such as “‘@.statements” which will success-

fully match “x := 1. y := 2. z := OrderedCollection

new ”.

(‘{ }) Block Pattern Nodes Is a free-form test where, inside the curly braces, one

puts a Pharo block, receiving a node as a parameter and returning a boolean

whether this node matches or not. For example: “ ‘{:node|node isVar

iable and:[node isGlobal]} become:nil ” is a pattern that

matches a message become: with a nil argument, where the receiver is a

global variable.

4.3.2 Examples

After describing the syntax and capabilities of the Pharo traditional pattern match-

ing language, we will go through how to use this syntax with a handful of methods

defined in RBParseTreeSearcher in this section. This purpose of this section

is to how pattern matching can be used to identify a Pharo statement, a process that

can be applied to any programming language, where external dependencies entities

are embedded. While this chapter focuses on pattern “matching”, it is important

to note that the same syntax can be used with a couple of methods implemented in

RBParseTreeWriter class to perform some source code transformations.

52 Chapter 4. Declarative object matching in Pharo

1 searcher := RBParseTreeSearcher new.

2 searcher

3 matches: ’@rcv put’

4 do: [:aNode :answer | contextDictionary := searcher context].

5 searcher executeTree: (RBParser parseExpression: ’self put’).

Listing 4.2: Traditional pattern matching over source code sample in Pharo

Listing 4.2 provides an example of traditional pattern matching in Pharo of a

match for a parsed tree of an expression, where the receiver “self”, invokes the

“put” message. This type of search for method invocations in source code is also

useful in identifying external dependencies identification, such as searching inside

client-server applications for server APIs invocations.

In line 1, searcher variable is declared as an RBParseTreeSearcher

object. The message #matches:do: is sent to this variable in line 2 to start

the match, where matches: accepts the pattern expressed using the syntax in-

troduced in the previous section, and do: accepts a block of code that is executed

only when the match succeeds. On success, all matches are stored in a dictionary

(context), where each key represents a part of the pattern, like “@rcv” and the value

contains the matched source code. In cases where the key matches multiple source

code fragments, they are encapsulated in a list and stored in the value in pairs with

the convenient key. In this example, when the block is executed, it enables storing

all matches of context in contextDictionary. To start matching patterns,

the developer needs to use method #executeTree: that takes as input a parsed

source code object, such as line 5, using RBParser parseExpression.

In conclusion, this section introduced the traditional pattern matching language

in Pharo. We provided a list of symbols that define its syntax and outlined the key

features of the language. An example was also presented to demonstrate its us-

age for matching a method invocation. From this description, we identify a major

limitation of the traditional pattern matching language: its focus on Pharo AST

(Abstract Syntax Tree) matching. Every match must be compatible with the Pharo

AST, and its syntax closely resembles Pharo, with only minor differences in the

symbols used. Additionally, there is a significant limitation in feature availabil-

ity, as several features listed in Chapter 2 Section 2.2 are not supported by this

traditional pattern matching language.

4.4 MoTion

We just saw that traditional pattern matching in Pharo is not good enough. In

this section we present MoTion, a new object pattern matching language in Pharo.

MoTion is needed to apply generic matching following our needs for external de-

pendencies detection.

A pattern matching language works on a finite set of objects that we will call a

4.4. MoTion 53

model. Examples of models are: the Pharo AST of a method, the DOM of an XML

document, the objects loaded from a JSON file,. . . MoTion can deal with Pharo

objects independently of the model containing the data. It combines both features

for graph pattern matching and object matching listed previously, and by doing

so, it enables expressing patterns declaratively and applying matches to complex

object structures.

In the next sections, we give a first overview of the pattern language with a

concrete example. We also present the grammar of the pattern matching language

and explain the semantics of each element of the language.

4.4.1 Simple Pattern Example

Before explaining in detail the syntax of MoTion, we give a simple example of a

pattern used to detect all classes or interfaces that extend a given interface (named

’Remote’). It works on Famix models [Anquetil 2020]. The pattern starts

1 FamixJavaModel % {

2 #’allTypes>entities’ <=>

3 FamixJavaInterface % {

4 #’superInheritances>superclass>name’

5 <=> ’Remote’ .

6 #’isStub’ <~=> true.

7 } as: ’foundInterface’.

8 }

Listing 4.3: External dependencies searching pattern

by matching an instance of class FamixJavaModel (line 1) and looking in its

allTypes property (line 2). This means that if it is not given a FamixJavaModel,

it will not match anything. allTypes returns a special object that is a wrapper

around a collection of all types defined in the model (classes, interfaces,. . .). To

get this collection, we use its entities property. Note that if the object returned

by allTypes has no entities property, then the pattern just fails to match

anything.

The result of line 2 is a collection of objects on which we apply the operator

“<=>” with the sub-pattern in lines 3 to 7. The operator “<=>” is polymorphic and

for a collection of objects, it will try to match its sub-pattern to any object in the

collection.

This sub-pattern matches an object of class FamixJavaInterface (line 3),

and looks in its superInheritances property (line 4), then in the superclass

property of the returned object, then in the name property of this other returned

object. Here again, the operator “>” is polymorphic and handles collections of

objects (in the pattern superInheritances>superclass) differently than

single objects (in the pattern superclass>name).

54 Chapter 4. Declarative object matching in Pharo

Line 5, if the name matches the string ’Remote’2, the engine checks for the

next sub-pattern (line 6) which states that the matched object of line 3 (an instance

of FamixJavaInterface) should also have a isStub property that should

not match the boolean true (this is different from saying it should match false

because it could also be nil).

Finally in line 7, if a matching FamixJavaInterface is found, it is bound

to the key foundInterface in the final result. This result will be returned, and

the object matched can be retrieved from it.

4.4.2 MoTion Grammar

In this section we present the grammar of MoTion in order to clarify its usage in

upcoming sections. It must be noted however that, due to the nature of Pharo,

this grammar is somehow artificial because it is not implemented in a specific

parser. MoTion is implemented as extension methods on existing classes (see also

Section 4.5). In this grammar, the non-terminals hPharoClassi, hPharodLiterali,
hPharoSymboli, and hPharoStringi, refer to normal elements of Pharo (respec-

tively, a class name, a literal, a symbol and a string).

hPatterni ::= hLiteralPatterni
| hPharoClassi hPercentagei ‘{’ hPropertiesi ‘}’

hLiteralPatterni ::= hPharoLiterali ‘asMatcher’

hPercentagei ::= ‘%’

| ‘%%’

hPropertiesi ::= (hPropertyi hSpaceShipi hValuei)*

hPropertyi ::= hPropertyElementi
| hTraversali

hSpaceShipi ::= ‘<=>’

| ‘<~=>’

hValuei ::= hPharoSymboli
| hPatterni
| hNonLinearPatterni
| hListPatterni

hPropertyElementi ::= hPharoSymboli

2The Remote interface of Java RMI.

4.4. MoTion 55

hTraversali ::= hPathTraversali
| hRecursiveTraversali

hPathTraversali ::=

hPharoSymboli (‘>’ hPathNamei)*

hPathNamei ::= hPharoStringi | ‘_’

hRecursiveTraversali ::=

hPharoSymboli ‘*’ (‘>’ hPathNamei ‘*’)*

hNonLinearPatterni ::= ‘#@’ hPharoStringi

hListPatterni ::= ‘{’ (hListItemi ‘.’)* ‘}’

hListItemi ::= hNonLinearPatterni
| hPharoLiterali
| ‘_’

| ‘*_’

4.4.3 Pattern Operators

In this section, we outline the features offered by MoTion, which are essential for

expressing any pattern required to detect external dependencies in our work. For

each feature, we will demonstrate how it can be leveraged using the implemented

syntax.

• hLiteralPatternis are Pharo literals used as patterns. For example ’A sample

text here’ asMatcher and 1 asMatcher. Literal patterns match

exactly their literal value. This is useful for specifying the value that a prop-

erty of an object must have.

• The hSpaceShipi operator tries to match a hPropertyi (of an object) on the left

with a hValuei on the right. Note: the tilde version is a negation, it specifies

that the hPropertyi should not match the hValuei; It is the only way to specify

a negation in MoTion.

As noted before, it is a polymorphic operator depending on the content in the

hPropertyi. If this is an object, the operator tries to match this object to the

hValuei; If it is a collection, the operator tries to match any element of the

collection to the hValuei.

• To define an object pattern, one specifies its type using the hPharoClassi fol-

lowed by the hPercentagei operator like in: ClassA % {} . ‘%’ matches

direct instances of the class, whereas ‘%%’ matches instances of the class or

any of its subclasses.

56 Chapter 4. Declarative object matching in Pharo

• These two operators can express sub-patterns and the properties of the matched

object inside the curly braces. Object properties are instance variable acces-

sors.

The curly braces act as a conjunction of sub-patterns specifying the values

that properties should match. It can be seen as a Logical matcher.

The following pattern matches an object of class ClassA, with a hPropertyi:
property1, having the hValuei: aValue1, and property2 having the

hValuei: aValue2.

ClassA % {

#’property1’ <=> aValue1.

#’property2’ <=> aValue2.

}

The sub-patterns could also be more complex (see below, Nested pattern).

This mechanism contributes to the seamless addition of various properties,

in a declarative way.

• The hPercentagei, combined with the hSpaceShipi operator, also allows to

express Nested pattern where a first object is matched, then a second object

in one of the properties of the first is matched. One may express a sub-

pattern on this second object. For example, the following pattern matches an

instance of ClassA with aValue1 in its property1, and an instance of

ClassB in its property2. This second object must have aValue3 in its

property3.

ClassA % {

#’property1’ <=> aValue1.

#’property2’ <=> ClassB %% {

#’property3’ <=> aValue3.

}

}

• Non-Linear pattern is obtained using the “@” operator followed by a name

(for example: @x). This allows to store a matched object in the “variable” to

reuse it somewhere else in the pattern.

• Wildcard (“_”) can be used to indicate a property whose name is not known,

when one only cares for its value:

ClassA % {

#_ <=> aValue.

}

4.4. MoTion 57

This pattern matches an instance of ClassA with an unnamed property

matching the value aValue.

• The “>” operator implements Path traversal by allowing to “chain” multiple

properties in a pattern. Such paths help reducing complex pattern’s expres-

sion, by accessing a chain of objects and their properties:

The following pattern first matches an instance of ClassA, then it takes

the object in its property1 and the value in property2 of this second

object. This value should match aValue.

ClassA % {

#’property1>property2’ <=> aValue.

}

This notation allows expressing in a concise way a path in a graph of objects.

The same result could be obtained with the pattern:

ClassA % {

#’property1’ <=> Object %% {

#’property2’ <=> aValue

}

}

Note that the “>” operator is also polymorphic. Similarly to “<=>”, if one of

the objects in the path is a collection, the operator will look for an element

of this collection that allows to continue the search, that is to say that has a

property matching the remaining part of the pattern.

• MoTion allows to perform Recursive traversal through a “*” operator com-

bined with the Path traversal operator “>”. In a chain of objects, one may

know the initial property and the final one, but not know how long the chain

of objects is.

ClassA % {

#’property1>repeatedProp*’ <=> aValue.

}

This pattern will match first an instance of ClassA, then the object in its

property property1 then it will match a chain of objects all having a prop-

erty repeatedProp and one of them containing the value aValue. The

match ends with this last object.

58 Chapter 4. Declarative object matching in Pharo

• The hRecursiveTraversali operator may also be combined with a wildcard

(“_”).

ClassA % {

#’property1>_*>propN’ <=> aValue.

}

This pattern will match first an instance of ClassA, then the object in its

property property1 then a chain of objects with unknown properties end-

ing with an object having a property propN with value aValue.

• It is possible to match List pattern using the hListePatterni and declaring

how the list should look like. Note that this is not the same operator as

hPercentagei (see above). This operator allows to express that given elements

in a list should match specific patterns.

{#’@x’. #’@x’}

This pattern matches a list containing exactly two elements that are the same

(use of a named variable).

• The repetition operator (“*”) may also be used in a list to indicate an unspec-

ified number of elements.

{#’@x’. #’*_’. #’@x’}

This pattern, matches a list with first and last elements equal and of unspeci-

fied length (obviously at least 2).

Note that ’*_’ is used in list matching whereas ’_*’ is a repeated wildcard

used in Recursive traversal.

• To express that one element is part of a collection, MoTion offers a shortcut.

To check if the value 5 is part of a collection (contained in the property

someProperty of an instance of ClassA) one can use the pattern:

ClassA % {

#someProperty <=> {#’*_’. 5. #’*_’}

}

But, thanks to the already presented polymorphism, of the hSpaceShipi op-

erator, the same can be expressed with a shortcut:

4.4. MoTion 59

ClassA % {

#someProperty<=> 5

}

This, however, could also match an instance of ClassA with a property

someProperty containing exactly the value 5 (with no collection).

• Finally, there is another operator for Logical matcher: orMatches:. It

allows to express a disjunction of two patterns (one or the other match). (Re-

member that hPercentagei implements a conjunction of patterns within the

curly braces.)

ClassA % {

#someProperty <=> (5 orMatches: 6)

}

This pattern matches an instance of ClassAwith a property someProperty

matching the value 5 or the value 6.

4.4.4 Using MoTion

First, one gets a “matcher” by calling the asMatcher method. We showed an

example of this at the beginning of Section 4.4.3: “1 asMatcher” creates a

matcher that only matches the value “1”.

Second, a matcher has a match: method that allows it to try to match the

argument.

The result of match: is a MatchingResult. It includes a boolean property

isMatch indicating whether the match was successful or not. It also has the

property matchingContexts which is a collection of MatchingContext

objects. Each of these contexts includes again a boolean field isMatch and a

dictionary of its bindings.

The following creates a matcher that matches anything and binds it to the “foo”

symbol (first line). The pattern is run on the string ’text’. The last line will

answer true as the match was successful.

pattern := #’@foo’ asMatcher.

result := pattern match: ’text’ .

result isMatch.

To get the binding of foo in this small example, one would do (bindings

returns a dictionary and at: is the standard method to access an element of a

dictionary):

60 Chapter 4. Declarative object matching in Pharo

result matchingContexts first

bindings at: ’foo’.

This will return the string ’text’.

Bindings can also be created with the as: method. It is used to bind the result

of a pattern that will be kept in the result’s bindings. For example, in Listing 4.3,

it is used to store the result of the sub-pattern in lines 3 to 7 (the matched Famix-

JavaInterface).

Finally, to simplify getting the result of the bindings one is mostly interested in,

there is a method collectBindings: that accepts a collection of (interesting)

keys as a parameter and returns their values matched by a pattern. In case there is

no match, the return is an empty collection.

pattern := #’@foo’ asMatcher.

results := pattern

collectBindings: {#foo }

for: ’text’ .

This puts in results a collection of dictionaries (here there is only one) with

the binding for the #foo symbol. The result is a collection because there could be

several matchings (for example with a disjunction operator). The collection holds

dictionaries because we could ask for several bindings in the first parameter of the

method.

4.5 Implementation Notes

In this section, we present the implementation of MoTion as an open source library

in Pharo, and show how it can be easily extended in order to enrich its syntax, thus

providing more features for pattern matching.

MoTion uses the flexibility of Pharo syntax to implement the operators and en-

able the creation of additional operators or the specialization of existing operators.

For example the “% {}” operator is implemented as a method on Class3 so that

this expression is valid in Pharo:

ClassA % {

...

}

We saw in the previous section that some operators are polymorphic (“<=>”

and “>”). This is implemented through a polymorphic #match:withContext:

method (not further described here).

3Actually, the method is % and the curly braces are the argument of the method.

4.5. Implementation Notes 61

In the following subsections, we propose some examples of implemented ex-

tensions, but more details about this implementation can be found on the open

source hub of the project. In addition, a chapter will be published in an upcoming

book: New tools in Pharo4.

In summary the implementation relies on:

• A class Matcher responsible for matching a pattern to a model with the

method match: (see also Section 4.4.4). It has 19 subclasses performing

some operators (like %) or literals as patterns,. . .

• Classes MatcherResult and MatcherContext that hold the result of

a matching. An instance of MatcherResult is obtained as the returned

value of the match: method (see above)

• Class MotionPath to implement the various path features: hPropertyElementi
(ie. #name), Wildcard (ie. #_), Path traversal (ie. >),. . .

It has six subclasses all implementing a method resolveFrom:.

• Six implementations of a method asMatcher added to pre-existing classes

Array, Boolean, Class, Number, String, and Symbol. They convert a literal

or Object to a pattern (ex: ’A sample text here’ asMatcher).

• Methods % and %% implemented in Class to allow expressing Object match-

ing (ie. hPharoClassi % {}).

• the hSpaceShipi methods (ie. <=> and <⇠=>) added to class Object

4.5.1 A Simple Extension

Listing 4.3 showed an example of a pattern on a Famix model. We actually imple-

mented an extension of MoTion for Famix, since many external agents are using

Java language which can be represented in Pharo using Famix metamodel.

In Famix, the properties of entities can represent:

• “Famix properties” that contain “Famix primitive types” (Numbers, String

or Boolean);

• associations that point to another Famix entity (a FamixJavaMethod invokes

multiple other FamixJavaMethods);

• composition relationships (a FamixJavaClass contains multiple FamixJavaMeth-

ods).

4https://github.com/SquareBracketAssociates/NewToolsInPharo, consulted on May 2nd, 2024;

book in writing at this date.

https://github.com/SquareBracketAssociates/NewToolsInPharo

62 Chapter 4. Declarative object matching in Pharo

Because the properties are meta-described, one can manipulate them program-

matically. We therefore experimented with modifying the behavior of the path

operator (“>”) to navigate only composition relationships. We also added another

operator to preserve the previous behavior of the path operator.

4.5.2 Changing the Syntax

Another experiment could be to change the syntax of MoTion. This was a request

from some users who wanted easier syntax for MoTion usage. For this, we pro-

posed to replace the operators with keyword messages: The “% {}” operator could

be replaced by the message “instanceWithProperties:”; “<=>” operator

could be replaced by the message “objectMatches:”, and the <⇠=> operator

could be replaced by the message “objectDoesNotMatch:”.

We illustrate these changes on the pattern example of Listing 4.3. The result

is shown in Listing 4.4 with the changes highlighted in bold. It’s important to

emphasize that both patterns are valid and interpreted by MoTion in exactly the

same way. We just added “synonym” methods.

1 FamixJavaModel instanceWithProperties: {

2 #’allTypes>entities’ objectMatches:

3 ((FamixJavaInterface instanceWithProperties:{

4 #’superInheritances>superclass>name’

5 objectMatches: ’Remote’ .

6 #’isStub’ objectDoesNotMatch: true.

7 }) as: ’foundInterface’)

8 }

Listing 4.4: MoTion operator replaced by Pharo message

The downside of this approach is that we need to put parentheses around the

sub-patterns. Here, the “as:” message (line 7) could “collide” with the new key-

word messages (objectMatches: on line 2 and instanceWithProperties:

on line 3) and be mistaken for a composed keyword message (objectMatches:as:

or instanceWithProperties:as:). This is an issue that did not arise with

the use of symbols because of the precedence of binary messages in Pharo. Note

also that, instead of the inner parentheses, we could actually have created the

instanceWithProperties:as: method that would first call instance-

WithProperties: and then as: on its result.

4.6. Comparison of MoTion and Traditional Matching in Pharo 63

4.6 Comparison of MoTion and Traditional Match-

ing in Pharo

By leveraging MoTion’s syntax, users can specify complex patterns to match ob-

jects based on various criteria, as we chose MoTion syntax to be expressed declar-

atively. In terms of capabilities, MoTion has been impacted by other matchers like

the ones stated in 2 in addition to RBParseTreeSearcher such as deep search and

anonymous variables. Since both matchers have some common capabilities, we

decided to perform a comparison of matching using the same Pharo 11 image for

both of them. We took some basic source code templates, some of which are search

rules implemented as examples in the rewrite tool.

4.6.1 Syntax and Expressiveness

• The first example, shown in Listing 4.5, checks if the source code has a selec-

tor #ifTrue:ifFalse:. With RBParseTreeSearcher, specifying patterns

to detect the receiver and the list of arguments inside the blocks is mandatory,

while in MoTion, this specification could be skipped as the developer is only

interested in knowing if the selector is invoked in this code or not.

• Patterns of the second example in Listing 4.6, are inspired by the third rule

of the rewriter tool, whose purpose is to check if nil exists in ifNil to

remove it by applying a transformation rule. For this rule, the RBParse-

TreeSearcher pattern is more efficient as it is able to precisely position nil

inside ifNil:. This cannot be done by MoTion, as it cannot precisely de-

termine the nil position in the used blocks.

• The third example, shown in Listing 4.7, is inspired by rule 8 of the rewriter

tool, which consists of matching a select: method that contains a receiver

followed by not, to be replaced in a later stage by reject:. Again, the

precision of not position is mandatory in this example, which is possible

by RBParseTreeSearcher as it is able to express the possible existence of

temporary variables and statement lists, followed by not positioned at the

end inside the block. While that is not possible in MoTion, as the properties

declared inside the pattern and associated with some values or subpatterns,

do not take into consideration their order.

1 "-- RBParseTreeSearcher --"

2 ‘@receiv ifTrue: [‘@args1] ifFalse: [‘@args2].

3

4 "-- MoTion --"

5 RBMessageNode % {

6 #’selector>value’ <=> #ifTrue:ifFalse:

7 }

64 Chapter 4. Declarative object matching in Pharo

Listing 4.5: Match #ifTrue:ifFalse:

1 "-- RBParseTreeSearcher --"

2 ‘@receiver ifNil: [nil] ifNotNil: ‘@arg

3

4 "-- MoTion --"

5 RBMessageNode % {

6 #’selector>value’ <=>#ifNil:ifNotNil:.

7 #’arguments>body>statements>value’ <=> nil

8 }.

Listing 4.6: Remove unessecary #ifNil

1

2 "-- RBParseTreeSearcher --"

3 ‘@receiver select: [:‘each |

4 | ‘@temps |

5 ‘‘@.Statements.

6 ‘‘@object not]

7

8 "-- MoTion --"

9 RBMessageNode % {

10 #’selector>value’ <=> #’select:’.

11 #’children*>selector>value’ <=> ’not’

12 }.

Listing 4.7: Replace #select: by #reject:

4.6.2 Matching Speed

Table 4.1: Speed comparison

Pattern

RBParseTreeSearcher Speed

for 100 000 executions

per second

MoTion Speed

for 100 000 executions

per second

Listing 4.5 0.101 0.433

Listing 4.6 0.98 1.705

Listing 4.7 0.411 1.389

While both languages excel in pattern matching capabilities, RBParseTreeSearcher

has been recognized for its superior speed compared to MoTion as it is dedicated to

matching only Pharo ASTs. It is optimized for this only, while MoTion is entirely

generic and can match any object at any depth, implying more computation and

thus more time to execute.

4.7. Use Cases of MoTion 65

4.6.3 Matching Characteristics

After comparing the speed of match for both languages, we list in Table 4.2 the

characteristics explained in Chapter 2 and if they are applied for each one of them:

Based on both comparisons, it is evident that RBParseTreeSearcher exhibits su-

perior performance compared to MoTion, despite the latter being a more generic

pattern matching language.

Table 4.2: Characteristics comparison

Characteristics / Languages MoTion RBParseTreeSearcher

Declarative patterns x

Path traversal x

Recursive traversal x x

Repeated search x x

Object matching x Pharo AST

Literals x x

Non-Linear pattern x x

Wildcard x x

Nested pattern x

List pattern x x

Logical matcher x

Negation x

4.7 Use Cases of MoTion

We used MoTion in some of our projects and presented it to other people to use in

their projects. We report here some of these experiments. We will summarize the

lessons learned from these experiments in Section 4.8.

4.7.1 External Dependencies

MoTion was used for in our main project “Adonis” as the searching engine for en-

tities of external dependencies presented in Chapter 3. With MoTion we were able

to deal with polyglot software, developed using several programming languages or

tiers at the same time. This is the case for example of GWT applications that use

Java and XML, or RMI systems where two applications (client and server) must

cooperate.

In order to be able to detect dependencies in these projects, we used MoTion

to create more generic patterns that could be reused for different frameworks. For

example, searching for an XML attribute was used for GWT applications, but could

be reused in other cases.

66 Chapter 4. Declarative object matching in Pharo

Our running example (Listing 4.3) comes from this experiment. It was already

presented and explained in Section 4.4.1.

We noticed in this work, the use of multiple features of MoTion together for

many patterns:

• structured patterns for complex objects such as FamixJavaModel % {...}

(line 1) and FamixJavaInterface % {...} (line 3);

• traversal paths expressed in this listing in lines 2 and 4, that allow matching

chains of objects;

• negative search (line 6).

• declarative pattern which allowed us to add as many properties as we want

to specify more the description of the pattern

4.7.2 Refactoring Source Code

Our next use case is a developer who used MoTion for a refactoring task over a

Java application with a model that contains more than 1.5 million entities.

The problem was to detect all the invocations of method get on an object

config (the receiver) with argument a specific key (config.get(aKey)).

This needed to be done on a representation of the AST of the method to be able to

modify the AST after.

The developer created the pattern in Listing 4.8.

1 FASTJavaMethodEntity % {

2 #’children*’ <=> FASTJavaMethodInvocation % {

3 #’receiver>name’ <=> #’config’.

4 #name <=> #get.

5 #’arguments>primitiveValue’ <=> aKey.

6 } as: #configInvocation

7 }

Listing 4.8: Reverse engineering pattern

The pattern was applied to FAST-Java, a member of the Famix family special-

izing in modeling Java ASTs. It starts by matching a FASTJavaMethodEntity

(ie. a method node) and looks at its children for a FASTJavaMethodInvocation

(line 2). Because this invocation could be at any depth in the AST, he used the

“*” operator (Recursive traversal). On the invocations matched, it looks for the

receiver’s name which should be “config” (line 3). The name of the invocation

(method invoked) should be “get” (line 4). The argument of the invocation should

be an object with the property “primitiveValue” matching aKey (line 5). Here, the

key is a parameter that can change for different searches.

We noted in this work:

4.7. Use Cases of MoTion 67

• The Recursive traversal which was necessary because the invocation is at

different depths in the AST in different methods.

• The ease of use, the developer was able to work alone after a small presenta-

tion of MoTion syntax of only half an hour.

• The need for “named sub-patterns” that could be reused to compose complex

patterns. Actually this feature exists but the developer did not think about it.

The solution is simply to put a pattern in a variable that can be reused to build

more complex patterns.

As an example Listing 4.9 presents a rewritten version of the pattern repre-

sented in Listing 4.8 (even though there is no sub-pattern reuse there). Vari-

ables are highlighted to help read the pattern.

1 childrenPath := #’children*’.

2 receiverNamePath := #’receiver>name’.

3 argsVal := #’arguments>primitiveValue’.

4

5 subPattern := FASTJavaMethodInvocation % {

6 receiverNamePath <=> #’config’.

7 #name <=> #get.

8 argsVal <=> aKey.

9 } as: #configInvocation.

10

11 FASTJavaMethodEntity % {

12 childrenPath <=> subPattern.

13 }

Listing 4.9: Reverse engineering pattern decomposed

4.7.3 Backend for Other Pattern Matching

In our work [Hosry 2023b], we compared MoTion to RBParseTreeSearcher.

It is a pattern matching language to search over the Pharo AST (and possibly

rewrite the AST with RBParseTreeWriter).

We compared MoTion to RBParseTreeSearcher class, by applying a search

over the same Pharo AST, with both matching languages. Listing 4.10, shows the

two patterns, used to check if the AST contains a selector #ifTrue:ifFalse:.

The patterns in RBParseTreeSearcher syntax (line 1) look similar to the

original Pharo source code, except that some operators are used to help describe

the pattern. Here, we are using the backtick operator (‘@) to refer to a list of

nodes in the AST. The pattern ‘@receiv can match multiple nodes that behave

as a receiver for the #ifTrue:ifFalse: message, and the blocks can contain

68 Chapter 4. Declarative object matching in Pharo

multiple arguments inside, that are different from each other after naming them

args1 and args2.

In MoTion (line 3 to 5), we defined a pattern of type RBMessageNode, and

used a traversal path to match the selector searched for.

1 ‘@receiv ifTrue: [‘@args1] ifFalse: [‘@args2].

2

3 RBMessageNode % {

4 #’selector>value’ <=> #ifTrue:ifFalse:

5 }

Listing 4.10: Pharo AST matcher

We noted in this work:

• With RBParseTreeSearcher, specifying patterns to detect the receiver and

the list of arguments inside the blocks is mandatory, while in MoTion, this

specification could be skipped as the developer is only interested in knowing

if the selector is invoked in this code or not.

• We found that RBParseTreeSearcher is faster. This should be expected as

it is a matching language dedicated to only Pharo ASTs, while MoTion is a

generic and can match any object at any depth, implying more computation

and thus more time to execute.

• RBParseTreeSearcher lacks some capabilities, like the ability to express path

traversal (see Table 2.3 for the features of this matching language).

4.8 Lessons learned

In this section, we summarized the take-outs of our experiments, both positive and

negative.

4.8.1 Comparison with Pre-existing

We compared the performances of MoTion and RBParseTreeSearcher patterns for

Pharo AST search. MoTion was slower. We suppose this comes from the fact that

RBParseTreeSearcher is fine tuned for matching Pharo AST nodes. For example it

lacks some capabilities that MoTion has and makes the matching more computa-

tionally demanding.

We are considering whether it would be possible to compile MoTion patterns

to make them more efficient. This is the subject of future work.

We conducted an experiment comparing pattern matching (MoTion) with tra-

ditional programming approaches using the reverse engineering example described

4.8. Lessons learned 69

in Listing 4.8. For the traditional programming, we implemented a new class with

three methods totaling 30 lines of code.

These methods are contained within a single class. To use them, an instance of

the class must be created.

The results obtained are equivalent to those achieved with the MoTion pattern

encapsulation using as: #configInvocation.

In summary:

• The user code is longer, one class, three methods, 30 lines instead of a 7 lines

pattern;

• Recursive traversal (#’children*’ in MoTion) required to implement a

recursive method;

• Searching in the list of arguments (#’arguments> primitiveValue’

<=> aKey) required to loop over the values returned by arguments to

check their primitiveValue;

• The Non-Linear pattern (as: #configInvocation in MoTion) sim-

plifies collecting the results that can be later retrieved with #collectBindings:

for:. Traditional programming requires taking care of how results are re-

turned by each method to collect and return them at the end;

• The class and methods created are very specific to the problem considered

and another pattern would require reinventing a new solution with a possibly

very different strategy.

4.8.2 Most Used Features

In the experiments reported, we found the following features to be the most used:

Object matching is the main feature used in all patterns. This is due to the fact

that we are in an object oriented language and the things to match are objects.

MoTion, however, unlike Tom or Rascal, can work with any object structure

and doesn’t require its own definition of the classes to express patterns on

them.

We worked with many different models (FamixJava, FASTJava, XML-DOM,

Pharo AST, mistletoe model) without having to specify anything specific in

MoTion other than the patterns themselves.

Repeated Search helped developers to collect all the matches of a pattern. Mo-

Tion does not stop after the first match is found, it stops when the leaf is

reached. For now, this option seems to be enough for most common uses.

However, we set a future target of adding a feature to limit the number of

70 Chapter 4. Declarative object matching in Pharo

searches, which will be useful for some cases to prevent cyclic looping. A

difficult issue will be to find a succinct syntax to express this feature.

Traversal Path is very useful to match nested objects by simply describing the

path to reach them in a concise way. This makes the pattern more readable

and understandable by the user.

It was used for example in Listing 4.3 (line 4) to navigate from an object,

to its superInheritances, then the superclass of this object, and

finally the name of the last object.

Resursive traversal is very helpful in searching for properties with unknown depth

in a tree, or even for unspecified property with a concrete value. It was used

for example in Listing 4.8 (line 2) to find an invocation that was at an un-

specified depth in the AST.

There is a risk with this feature of entering an infinite loop if the graph is

cyclic. In our example we used the children property which is a contain-

ment tree and assures us that the search will end.

For future implementations, we are planning to add a limit number for the

recursive search like (*numberOfSearches) that will prevent it from run-

ning forever.

Wildcards not only helped developers express ignored properties, we also dis-

covered another important usage of it. It was used by some developers to

express multiple properties having common sub-properties, and the latter are

the ones that interest the developers for search.

Non-linear pattern was very beneficial for developers dealing with cross-language

applications, as it allowed them to express patterns in testing experiments to

match the same value of a property in 2 different languages, like configura-

tion keys defined in an XML file and referred to in a Java method.

Being able to express non-linear patterns was really useful in the context of

matching YAML configuration files5 (experiment not presented here), where

those files can have very different structures and the same information needs

to be matched in different parts of the data and at different depths.

On the opposite, list patterns were not used explicitly in our experiments. They

appear in the “short cut form” in some patterns (eg. Listing 4.3, line 2) when a

pattern matches a list and the “<=>” operators allow to look for one element of the

list.

We used it only in one example (not presented here), in Iguala for the Napari

project, to describe in one line the precedence of some values in a list.

5Specifically, GitHub Actions files.

4.9. Conclusion 71

4.8.3 Missing Feature

Debugging patterns is a known difficulty in pattern matching.

MoTion can return a false match in cases where patterns were expressed in-

correctly (the pattern does not actually match what the user wants). Some help

is required for the user to find these mistakes. We started to implement simple

solutions, but more needs to be done.

Note, however, that the experiments were related to program analysis, and that

may have biased the result based on the features most commonly used. To ensure

and quantify well the degree of usefulness of each feature, a bigger study should

be conducted, considering the use of MoTion in different contexts.

4.9 Conclusion

In this chapter, we introduce MoTion, a new generic object pattern matching lan-

guage for Pharo Smalltalk. A pattern matching language specifically tailored to

match Pharo ASTs is already included in Pharo using RBParseTreeSearcher

class. We presented it and gave examples of matching Pharo ASTs, however it is

not generic enough. On the other hand, MoTion can match ASTs and, more gen-

erally, any Pharo object, and it can be used on-the-fly, i.e. it is not required to

redefine artifacts, like object signatures, to use it (opposed to Tom).

In order to create a new object pattern matching language that can offer de-

velopers some capabilities like searching among objects with deep depth, defining

non-linear patterns, and applying list matching, we have extracted a couple of fea-

tures known to be adopted by graph and object pattern matching and applied them

to MoTion.

We gave an example of MoTion and then presented the syntax in detail. We ex-

plained the functionality of each operator and how a match can be applied using dif-

ferent Pharo messages implemented, like #match: and #collectBindings:

form:.

We also presented the implementation of MoTion and how it can be extended

if needed. We applied some small modifications to some operators to replace them

with more human readable messages.

We compared MoTion with the traditional pattern matching language imple-

mented n Pharo, and found that in terms of speed, the former is faster than the

latter, however MoTion proved to be more generic and matching the characteristics

stated in Chapter 2.

In order to prove its feasibility, we presented MoTion to a couple of developers

familiar with Pharo, who work in the reverse engineering domain and software

analysis for external dependencies extraction. Developers shared their positive

experience and requested a couple of features, such as debugging, that we will

introduce in our future work. We also compared MoTion syntax with RBParse-

TreeSearcher to check its feasibility for matching Pharo ASTs. We are planning

for the future to change its backend to rely completely on MoTion, as we were able

to find some cases where the match is not yielding the correct results at the end.

Ultimately, we concluded by enumerating the lessons we had learned that had

not been taken into account when our matching language was first implemented.

For example, developers employed wildcards to indicate anonymous properties as

well as the fact that multiple properties occasionally share the same sub-property,

the value of which is the one we are interested in matching.

Lastly, we have discussed external dependencies in Chapter 3 and how they can

be detected using Adonis. We identified two main challenges: first, the need to

locate the entities involved in external dependencies, which was addressed in this

chapter by creating MoTion, the new declarative pattern matching tool in Pharo.

Second, we need to assess the validity of external dependencies, including whether

any entities might be missing, unused, or subject to other issues. In the next chapter,

we will further explore the correctness of external dependencies to address this

challenge.

CHAPTER 5

Evaluating External Dependencies

Contents

5.1 Introduction . 73

5.2 External Dependencies Correctness 74

5.2.1 What are Incorrect Dependencies? 74

5.2.2 Multiplicities . 75

5.2.3 Types of Incorrect Dependencies 77

5.3 Incorrect Dependencies for different external agents 78

5.3.1 Incorrect Dependencies in GWT 79

5.3.2 Incorrect Dependencies in RMI 79

5.3.3 Incorrect Dependencies in Pharo Comments 80

5.3.4 Incorrect Dependencies in Hibernate 81

5.4 Incorrect Dependencies Detection with Adonis 84

5.4.1 External Dependencies Detection with Adonis 84

5.4.2 Adaptation of Adonis to Reveal Incorrect Dependencies . . 85

5.5 Evaluating Incorrect External Dependencies Detection 86

5.5.1 Experiment setup . 86

5.5.2 Manual findings for projects 86

5.5.3 Results of the Experiment 91

5.6 Threats to validity . 91

5.7 Conclusion . 93

5.1 Introduction

Developers must have in-depth knowledge of programs in order to ensure they will

continue to perform properly. This knowledge comes after understating how the

different software components are connected to each other and how they interact,

including external dependencies. In previous chapters we presented the external

74 Chapter 5. Evaluating External Dependencies

dependencies, their multiple categories and our approach based on tracking the

corresponding “containers” and “entities” in order to identify those external de-

pendencies.

Our tool, Adonis, was evaluated using the projects introduced in Chapter 3.

During this evaluation, we discovered cases where extra resource entities were de-

fined but never used, as well as reference entities that pointed to missing resource

entities. We classify such inconsistencies as incorrect external dependencies, and

this chapter is devoted to their identification and detection.

To address the challenge of identifying and detecting incorrect external depen-

dencies, we propose an approach with the following key contributions:

• A comprehensive identification of all types of incorrect external dependen-

cies.

• A detailed evaluation of our approach’s accuracy for detection of incorrect

external dependencies using projects developed with various external agents

that was conducted on the same set of projects previously used for detecting

external dependencies.

The chapter is structured as follows: Section 5.2 sets the vocabulary used in

the chapter and explains our approach to identify incorrect external dependencies.

Section 5.3 lists for some external agents, the different types of incorrect external

dependencies that can be found. In Section 5.4 we explain how Adonis and can be

used to filter incorrect external dependencies. We evaluate Adonis in Section 5.5

where we list the details of the experiment and present the results of the detection

with the limitations we faced and we list the threats of validity in Section 5.6.

Finally, we end up with a conclusion, in Section 6.1.

5.2 External Dependencies Correctness

In this section, we explain the concept of incorrect external dependencies and their

impact on a program. Additionally, we provide a detailed list of the types of incor-

rect dependencies we identified, drawing from both the literature and our experi-

ments.

5.2.1 What are Incorrect Dependencies?

We saw in Chapter 2 that some studies on detecting external dependencies also

took into consideration when these dependencies were incorrect. They looked for

“missing”, “broken”, “bloated”, “excessive”, “unused” and “version constraint”

dependencies. These incorrect dependencies can:

• cause errors at compile or execution time, when a resource entity is supposed

to exist but is missing (eg. executing a SQL query embedded in Java program

and referring to an absent database table) [Jafari 2021] ;

5.2. External Dependencies Correctness 75

• make a program larger than necessary or a compilation longer than necessary,

because some entities are included in the distribution but never used (eg.

unneeded includes) [Soto-Valero 2021];

• cause inconsistent or incorrect behavior, when reference entities exist (eg. if

there are several handlers for the same event on a button) and the external

agent orders them randomly or chooses one incorrectly [Cao 2022];

• make the maintenance process more complex than required due to the pres-

ence of “dead dependencies” (dependencies to no longer existing resource

entity) [Soto-Valero 2021].

We found that some past studies identify incorrect dependencies in a very spe-

cific context that would not be generally applicable. For example, in the work of

Jafari [Jafari 2021], the “Pinned Dependency” smell —when one keeps referring to

an old library version even if it was upgraded— is more related to libraries manage-

ment practices than correctness of external dependency: the old library still exists,

but it is considered bad project management practice to use it, what is incorrect is

not the external dependency itself.

Our primary focus is on incorrect dependencies that go undetected by tools like

compilers. For instance, consider embedded SQL queries that reference a missing

table in a database. Since the SQL query is embedded as a string within the Java

code, this type of incorrect external dependency isn’t identified during compila-

tion. Furthermore, as long as the method containing the query is not executed, the

program runs without issue. The problem arises only when the method is executed,

leading to a program failure.

5.2.2 Multiplicities

We saw in Section 2.1.3 in Chapter 2 several examples of incorrect external depen-

dencies in the literature, for example when Pfeiffer and Wąsowski [Pfeiffer 2012]

introduced the idea of multiplicity with errors for many-to-one external dependen-

cies. According to them, an incorrect external dependency occurs when a required

resource entity is missing, that is to say a mandatory minimal multiplicity of 1 is

not met.

The idea of multiplicity is an obvious candidate to express possible restrictions

on the external dependencies. However, it is not sufficient to look only for mini-

mal multiplicity of one end (resource entity). We therefore decided to look at the

minimal and maximal multiplicity at both ends of the external dependency. In each

case, we give examples of resource and reference entities. Figure 5.1 illustrates this

discussion:

Optional entities have a minimum multiplicity of 0. This is the case of the refer-

ence entity in the figure.

76 Chapter 5. Evaluating External Dependencies

Figure 5.1: Illustrating multiplicities in external dependencies

An example of optional resource entity is the case of HTML/CSS, a HTML

tag (reference entity) may have an attribute class="..." referring to a

nonexistent CSS class (resource entity). This is not considered an error be-

cause many HTML classes may exist that do not have corresponding CSS

class.

An example of optional reference entity is that of a table in a database that

is not used in any SQL query of a given project (although, if the table is

not used in any query of any project, one might consider whether it is really

needed).

Mandatory entities have a minimum multiplicity of 1. This is the case of the

resource entity in the figure.

An example of a mandatory resource entity is for a database table used in an

SQL query, the table must exist in the database or the query will not run.

An example of a mandatory reference entity could be in group 3 of our Hi-

bernate example explained in Section 3.3.3 of Chapter 3: All Java persistent

classes mapped to a database table should be used in the project. Not doing

so would not produce any error, but it would probably be a bad smell (a dead

class in the project).

Unique entities have a maximum multiplicity of 1. This is the case of the reference

entity in the figure.

An example of a unique resource entity is server API: there can be only one

service defined with the same signature on the server side.

An example of a unique reference entity is group 2 of our Hibernate example

explained in Section 3.3.3 of Chapter 3: A Java persistence class can appear

in only one mapping (it cannot be mapped to two different tables).

Non-Exclusive entities have a maximum multiplicity ‘⇤’. This is the case of the

resource entity in the figure.

An example of a Non-Exclusive resource entity is in the Android framework,

a drawable (ex: an image) used in a mobile app, must be saved in multiple

folders (drawable-hdpi, drawable-ldpi) under the same name. The frame-

work chooses the right resource entity at run time depending on the screen

resolution of the terminal.

78 Chapter 5. Evaluating External Dependencies

Table 5.1: Literrature external dependency errors and our classification

Missing Excessive Non-exclu. Non-exclu.

Ressource Resource Resource Reference

Mayer/Schroeder [Mayer 2012] missing - - -

Jafari et al. [Jafari 2021] missing unused - -

Cao et al. [Cao 2022] missing bloated - const.

Pfeiffer/Wąsowski [Pfeiffer 2011] broken - - -

Soto-Valero et al. [Soto-Valero 2021] - bloated - -

while others are considered code smells. Our goal is to enable developers to detect

these incorrect external dependencies to prevent such issues.

We now map our types to the incorrect external dependencies types to the types

found in the literature (check Chapter 2 Section 2.2):

Mayer and Schroeder: In [Mayer 2012], Mayer and Schroeder introduce the idea

of “Missing artifact”. This corresponds to our Missing resource type and we

actually took the term from them;

Jafari et al.: In [Jafari 2021] two dependency smells are discussed that can be

mapped to our incorrect dependencies types: “Missing dependencies” map

to our Missing resource type; “Unused dependency” maps to our Excessive

resource type;

Cao et al.: In [Cao 2022], the authors have three types of dependency smells:

“Missing dependency” maps to our Missing resource type; “bloated depen-

dency” maps to our Excessive resource type, and; “Version Constraint De-

pendency” maps to our Non-Exclusive reference type;

Pfeiffer and Wąsowski: In [Pfeiffer 2012], our Missing resource type is called

“Broken dependency”;

Soto-Valero et al.: In [Pfeiffer 2012], the concept of “Bloated dependency” is pro-

posed which maps to our Excessive resource type;

We found no mention in the literature of Non-Exclusive resource.

5.3 Incorrect Dependencies for different external agents

In this section, we present the various types of incorrect dependencies that can be

found for different external agents mentioned in this thesis: GWT, RMI, Pharo

comments and Hibernate.

5.3. Incorrect Dependencies for different external agents 79

5.3.1 Incorrect Dependencies in GWT

We present in this section for GWT framework, the types of incorrect dependencies

that can be found between Java annotations (reference entities) in Java classes and

XML elements (resource entity) in the XML layout files, according to our classifi-

cation introduced previously. These types are summarized in Table 5.2 (“-” means

the error type does not apply).

Table 5.2: Incorrect dependencies between Java annotations (reference entities)

and XML elements (resource entities) in GWT

Missing Excessive Non-exclu. Non-exclu.

Resource Resource Resource Reference

error - error error

We explain now for those external dependencies which type of incorrect depen-

dencies might affect them and why:

• The minimum multiplicity for the resource entity (XML element) is 1, the

element referred must exist or it would be a Missing resource;

• The maximum multiplicity for the resource entity (XML element) is 1, each

XML element must have a unique ID or it would be a Non-Exclusive re-

source;

• The minimum multiplicity for the reference entity (Java annotation) is 0, not

all XML elements need to be referred by Java annotations, as not all of those

elements must be necessarily handled by Java, so no possible Excessive re-

source;

• The maximum multiplicity for the reference entity (Java annotation) is 1: the

same element must be referred only once by each Java annotation (once by

using @UiHandler and/or once by using @UiField), or it would be a

Non-Exclusive reference;

From this, we deduce the following possible incorrect dependency: Missing

resource, Non-Exclusive resource and Non-Exclusive reference.

5.3.2 Incorrect Dependencies in RMI

We will now present the types of incorrect dependencies for RMI, between the API

services (resource entities) defined on the server side and the client invocations

(reference entities) for these services, according to our classification. These types

are summarized in Table 5.3 (“smell” means the type is not correct according to

80 Chapter 5. Evaluating External Dependencies

Table 5.3: Incorrect dependencies between client ans server in RMI

Missing Excessive Non-exclu. Non-exclu.

Resource Resource Resource Reference

error smell - -

the definition of the external agent but does not produce an error, and “-” means the

incorrectness type does not apply).

We explain now for those external dependencies which type of incorrect depen-

dencies might affect them and why:

• The minimum multiplicity for the resource entity (API service) is 1, the API

service referred must exist or it would be a Missing resource;

• The maximum multiplicity for the resource entity (API service) is 1, the API

service must be unique or it would be a Non-Exclusive resource. However

this is handled in RMI as the services are defined by the interfaces where

Java does not allow defining the same method signature more than one time

in the same interface, therefore this cannot happen;

• The minimum multiplicity for the reference entity (client invocation) is 1, as

each defined service must be referred by the client, otherwise, the program

becomes larger unnecessarily and this would be an Excessive resource smell;

• The maximum multiplicity for the reference entity (client invocation) is ⇤, the

same server API can be referred as much as needed by the client program,

therefore no possible Non-Exclusive reference.

From this, we deduce the following possible incorrect dependency: Missing

resource and Excessive resource.

5.3.3 Incorrect Dependencies in Pharo Comments

We will now present the examples of incorrect dependencies between the referred

classes (reference entities) in comments and Pharo actual classes (resource entities)

according to our classification. These examples are summarized in Table 5.4 (“-”

means the error type does not apply).

We explain now for those external dependencies which type of incorrect depen-

dencies might affect them and why:

• The minimum multiplicity for the resource entity (Pharo class) is 1, the class

referred must exist or it would be a Missing resource;

5.3. Incorrect Dependencies for different external agents 81

Table 5.4: Incorrect dependencies between Pharo classes and comments

Missing Excessive Non-exclu. Non-exclu.

Resource Resource Resource Reference

error - - -

• The maximum multiplicity for the resource entity (Pharo class) is 1 or it

would be Non-Exclusive resource. However, Pharo does not allow creating 2

classes with the same name, therefore this cannot happen.

• The minimum multiplicity for the reference entity (comment of a class) is

0, not all classes need to be referred by the comments; sometimes when a

class is created it can be commented and referred using text like “this class

is doing ...”, therefore no possible Excessive resource.

• The maximum multiplicity for the reference entity (comment of a class) ‘⇤’:

the same class can be referred multiple times whether in the same comment

or others, specially when it has a large usage like Dictionary class, there-

fore no possible Non-Exclusive reference.

From this, we deduce the following possible incorrect dependency: Missing

resource.

5.3.4 Incorrect Dependencies in Hibernate

We will now present the types of incorrect dependencies in Hibernate according

to the our classification. These types are summarized in Table 5.5 (“smell” means

the type is not correct according to the definition of the external agent but does not

produce an error, and “-” means the incorrectness type does not apply).

Table 5.5: Incorrect dependencies of Hibernate

Missing Excessive Non-exclu. Non-exclu.

Ressource Resource Resource Reference

Group 1 error - - smell

Group 2 error - - smell

Group 3 error smell - -

Group 4 error - - -

We look at examples in different groups, explaining for each which type might

affect them and why:

82 Chapter 5. Evaluating External Dependencies

Group 1: These are the dependencies between the XML elements (reference en-

tities) in the .hbm.xml mapping file to the database SQL tables (resource

entities).

• The minimum multiplicity for the resource entity (database table) is 1,

the mapped table must exist or it would be a Missing resource;

• The maximum multiplicity for the resource entity (database table) is

1 or it would be Non-Exclusive resource. However Oracle does not

allow creating the same table more than once, except for different users.

Therefore this cannot happen.

• The minimum multiplicity for the reference entity (XML element) is

0, not all tables need to be mapped in a specific project, therefore no

possible Excessive resource.

• The maximum multiplicity for the reference entity (XML element) is 1:

It is preferable to apply a single mapping to a database table in Hiber-

nate, but it also allows several mappings to the same table. However

this could be considered a bad practice in some situations, the devel-

opers might want to have it reported as a bad smell and it would be

Non-Exclusive reference.

From this, we deduce the following possible incorrect dependencies: Missing

resource, and Non-Exclusive reference (possible smell).

Group 2: These are the dependencies between the XML elements (reference enti-

ties) in the .hbm.xml mapping file to the Java persistent classes (resource

entities).

• The minimum multiplicity for the resource entity (Java class) is 1, the

class mapped must exist or it would be a Missing resource.

• The maximum multiplicity for the resource entity (Java class) is 1 or

it would be Non-Exclusive resource. However, Java does not allow

creating 2 classes with the same name, therefore this cannot happen.

• The minimum multiplicity for the reference entity (XML element) is

0, not all Java classes are mapped, only the persistent ones (since we

did not consider the newer version of Hibernate with annotation in our

example, there is no easy way to know which classes are persistent

classes), therefore no Excessive resource.

• The maximum multiplicity for the reference entity (XML element) ‘⇤’:

There can be several mappings (thus several tables) for one class, but

again this should probably be considered a bad smell, therefore a Non-

Exclusive reference.

5.3. Incorrect Dependencies for different external agents 83

From this, we deduce the following possible incorrect dependencies: Missing

resource, and Non-Exclusive reference (possible smell).

Group 3: These are the dependencies between the injected class names (reference

entities) in HQL queries and the Java persistent classes (resource entities).

• The minimum multiplicity for the resource entity (Java class) is 1, the

class used (queried) must exist or it would be a Missing resource.

• The maximum multiplicity for the resource entity (Java class) is 1, a

Java persistence class name in a query must be non-ambiguous (refer

to exactly one persistent class) or it would be Non-Exclusive resource.

However, Java does not allow creating 2 classes with the same name,

therefore this cannot happen.

• The minimum multiplicity for the reference entity (class name in HQL

query) is 1: it is not mandatory in Hibernate that all persistent classes

be used in queries, but not doing so can be considered a bad smell as

the unused persistent classes are dead codeExcessive resource;

• The maximum multiplicity for the reference entity (class name in HQL

query) is ‘⇤’, several queries can use the same persistent class, therefore

no Non-Exclusive reference.

From this, we deduce the following possible incorrect dependencies: Missing

resource and Excessive resource (possible smell).

Group 4: These are the dependencies between the injected class names (reference

entities) in HQL queries and the SQL database tables (resource entities) that

can be deduced from the “transitive closure” of the three other groups.

• The minimum multiplicity for the resource entity (database table) is 1,

the table indirectly used (through the persistent class) in a query must

exist or it would be a Missing resource.

• The maximum multiplicity for the resource entity (database table) is 1,

a table name indirectly referred to in a query must be non-ambiguous

(it must reference exactly one table) or there would be Non-Exclusive

resource. However, we have seen previously that this is not the case,

therefore it would not happen.

• The minimum multiplicity for the reference entity (HQL query) is 0,

not all tables need to be (indirectly) used in queries, so no Excessive

resource.

• The maximum multiplicity for the reference entity (HQL query) is ‘⇤’,

several queries can (indirectly) refer to the same table, so no Non-

Exclusive reference.

84 Chapter 5. Evaluating External Dependencies

From this, we deduce the following possible incorrect dependency: Missing

resource.

In conclusion, it is evident that all four types of incorrect dependencies are

deduced either from existing literature or from among variant external agents. Note

that three types of incorrect dependencies are represented in past literature, and 1

type (Non-Exclusive Resource) was never considered.

5.4 Incorrect Dependencies Detection with Adonis

In this section, we first remind the readers of Adonis implementation already pre-

sented in Section 3.5 of Chapter 3, then we explain how this implementation was

adapted and how we use it to detect not only correct but also incorrect external

dependencies.

5.4.1 External Dependencies Detection with Adonis

Adonis is developed in Pharo and performs a static analysis to detect external de-

pendencies. It has heuristics to link each reference entity to the corresponding

resource entity.

• Adonis follows a two steps process where it searches first for containers hold-

ing resource/reference entities. This is done by using a pattern matching lan-

guage in Pharo named MoTion (see Chapter 4), that facilitates traversing the

models and the Abstract Syntax Trees (ASTs) when necessary.

• Once these containers are identified, it continues to search for entities through

pattern matching.

• Adonis offers a “library” of heuristics (ie. searching patterns) for each exter-

nal agent (GWT, RMI,. . .). Each specific external agent is handled by a class

implementing the methods #getReferenceContainers and #getRef

erenceEntities.

• The result is a collection of ExternalDependency objects, each con-

taining a referenceEntity and a resourceEntity objects.

• Adonis also offers a library of “atomic” patterns that can be reused between

external agents. For example, a pattern designed to search over XML files

based on a specific attribute can be applied to configuration files such as

pom.xml for Maven projects, as well as UI files in Android and GWT

projects.

5.4. Incorrect Dependencies Detection with Adonis 85

5.4.2 Adaptation of Adonis to Reveal Incorrect Dependencies

We modified Adonis to handle both correct and incorrect external dependencies in

two phases:

1. First Step: Adonis searches for all reference and resource entities and orga-

nizes them into a collection of ExternalDependency objects.

2. Second Step: Adonis applies filters per each external agent, resulting in two

main collections: detectedIncorrectExternalDependencieswhich

contains incorrect external dependencies, and detectedExternalDepen

dencies which contains correct external dependencies as initially imple-

mented (see above 3.5.1).

To generate the second collection, Adonis evaluates the first-step results per

each object: when resource entity is nil, this indicates that the type of incorrect de-

pendency is Missing resource. When reference entity is nil, this indicates that the

type of incorrect dependency is Excessive resource. When duplicated references

are found, this indicates that the incorrect dependency is of type Non-Exclusive

reference. When duplicated resources are found, this indicates that the incorrect

dependency found is of type of Non-Exclusive resource. The rest is considered

correct external dependencies. These filters are applied per external agent, for ex-

ample for RMI Adonis applies filters to search for Missing resource and Excessive

resource only.

We created a class to represent each type of incorrectness and we explain below

this implementation:

Missing Resource: We report reference entities without a corresponding resource

entity when this is not allowed (for example a comment with a reference to a

class that does not exist). To represent it, we created a new class MissingRe

sourceDependencywhich contains only a ReferenceEntity object.

Excessive resource: We report resource entities without any corresponding refer-

ence entity when this does not make any sense (for example a server API

that was created but not invoked by any client). To represent it, we created

a new class ExcessiveResourceDependency which contains only a

ResourceEntity object.

Non-Exclusive resource: We report multiple resource entities linked to one ref-

erence entity when it is not allowed (for example in GWT we cannot have

duplicate XML element IDs in the same XML layout file). To represent it, we

created a new class NonExclusiveResourceDependency which con-

tains a ReferenceEntity object and a collection of ResourceEntity

objects.

86 Chapter 5. Evaluating External Dependencies

Non-Exclusive reference: We report multiple reference entities linked to one re-

source entity when it is not allowed (for example having duplicate Java an-

notations in the same Java class). To represent it, we created a new class

NonExclusiveReferenceDependency which contains a Resource

Entity object and a collection of ReferenceEntity objects.

5.5 Evaluating Incorrect External Dependencies De-

tection

In this section we explain how we conducted several experiments in order to vali-

date if our modification helps revealing incorrect dependencies. So we first explain

how the validation process was conducted; then we run Adonis and we try to re-

veal the results to be compared to what we extracted manually, then we end up by

discussing the limitations of our approach.

5.5.1 Experiment setup

In this section we explain how we chose the projects and how we run the experi-

ments.

Concerning the list of projects, we are using the same ones listed in Chapter 3,

Section 3.6. In our initial analysis, we manually identified the existence of incorrect

external dependencies, and now we seek to validate Adonis against those findings.

To validate that “our modification helps revealing incorrect dependencies”, we will

rely on four metrics: we will count manually the number of incorrect dependencies

for all four types identified previously in Section 5.2.3 and we will run Adonis on

the projects and compare its results with our findings by measuring the recall and

precision ratios. For the projects which we did not find certain types of incorrect

external dependencies, but we know that these types could be found for the external

agents used to develop them, we will inject them manually and see if Adonis is able

to detect the expected injections.

5.5.2 Manual findings for projects

In this section we present our findings (number of Missing resources, Excessive

resources, Non-Exclusive resources and Non-Exclusive references) for each project

following a manual counting.

Concerning the counting of incorrect external dependencies for GWT, we ex-

pect to find incorrect dependencies of type Missing resource, Non-Exclusive re-

source and/or Non-Exclusive reference. However, following the experiment we

found 0 incorrect dependencies in Traccar project. To be able to proceed with the

validation process, we decided to manually inject such incorrect dependencies as

per below explanations:

5.5. Evaluating Incorrect External Dependencies Detection 87

Table 5.6: Incorrect dependencies detection for public projects

External agent Incorrectness type Original After

counting injection

GWT Missing resource 0 4

Excessive resource - -

Non-Exclusive resource 0 4

Non-Exclusive reference 0 1

RMI Missing resource 0 2

Excessive resource 29 29

Non-Exclusive resource - -

Non-Exclusive reference - -

Pharo Comments Missing resource 69 69

Excessive resource - -

Non-Exclusive resource - -

Non-Exclusive reference - -

• Missing resource: We selected randomly two XML files out of 10 (UserSet-

tingsDialog.ui.xml and UserDialog.ui.xml) and we removed four XML ele-

ments already detected as resource entities for external dependencies which

IDs are “saveButton” and “cancelButton” in each file. Each one of them

is referred once using @UiHandler key. This results in existence of four

incorrect dependencies in our project of type Missing resource.

• Excessive resource: This type is not possible with GWT (see Section 5.3.1).

• Non-Exclusive resource: We selected randomly two XML files (Archive-

View.ui.xml and DeviceDialog.ui.xml) out of 10 and duplicated four XML

elements which IDs are “saveButton”, “cancelButton”, “loadButton” and

“clearButton”. Each one of them is already referred once, so after the in-

jection, we have now four incorrect external dependencies of type Non-

Exclusive resource.

• Non-Exclusive reference: We selected randomly one Java class (UsersDia-

log) out of 10 and duplicated the references by using @UiHandler key for

“addButton”. We could not use @UiField because this key is not referring

the XML element by embedding their names as String, instead it is rely-

ing on defining instances which cannot be duplicated in the same Java class.

Now we have one new incorrect external dependency of type Non-Exclusive

reference.

For RMI, the incorrect dependencies expected to be found are Missing resource

and/or Excessive resource. The server APIs are intended for external use by the

88 Chapter 5. Evaluating External Dependencies

client and are typically not used internally by the server. We counted 29 incorrect

external dependencies of type Excessive resource in UniScore project, leading to a

percentage of 37% of external dependencies that are incorrect in the project (29 in-

correct / (29 incorrect + 48 correct) * 100). Those findings are the result following

of our manual count. We did not find Missing resource dependencies. In order to

proceed with the validation process, we injected such incorrectness manually. So

we removed two method signatures from the interface on the server side (we could

do it because both client and server are separated) and kept the calls to them from

the client side. Now we expect to find for UniScore project two additional incorrect

dependencies of type Missing resource.

For Pharo Comments, the incorrect dependencies expected to be found are

of type Missing resource. Usually this type of incorrect dependencies is common

in Pharo comments because of upgrades, where some classes were removed, but

the corresponding comments were not updated. Although this issue does not im-

pact Pharo’s functionality, it can mislead developers by suggesting the presence

of non-existent classes. We found 69 references in the comments without a re-

source, thus incorrect external dependencies of type Missing resource. After our

investigation, we found that these incorrect external dependencies result because of

removed classes between Pharo versions, or because also referring to button names

using single backticks and CamelCase syntax, same as for referring classes.

For Hibernate, finding incorrect external dependencies is specific per each

group. Table 5.7 presents the results of our manual finding. The cases that are

not possible for Hibernate (as shown in Table 5.5) are marked as “-”. The first col-

umn labeled as Group, contains the name of each type of group in hibernate. The

second column labeled as Incorrect dependency type indicates the various types of

incorrect external dependencies, as identified in Section 5.2. The third column con-

tains the number found for each type. After our first report, the company updated

its database and added additional tables. The numbers in parentheses are the new

values obtained after getting a second version of the SQL schema model.

For Hibernate Group 1, we found a total of nine incorrect dependencies:

• Missing resource: We found nine missing resource incorrect dependencies.

Those findings are for references from the mapping files to the database SQL

tables. After getting the second version of the database, we found that seven

SQL tables were created, reducing by that the number of missing resources

incorrect dependencies to two.

• Excessive resource: This type is not possible Hibernate Group 1 (see Sec-

tion 5.3.4).

• Non-Exclusive resource: This type is not possible Hibernate Group 1 (see

Section 5.3.4).

• Non-Exclusive reference: We found 0 incorrect external dependencies of this

type, meaning that every table in the database is mapped once. We selected

5.5. Evaluating Incorrect External Dependencies Detection 89

Table 5.7: External dependencies case studies of manual counting

Dependency type Incorrect dependency type Total

Group 1

Missing Resource 9 (2)

Excessive Resource -

Non-Exclusive Resource -

Non-Exclusive Reference 0

Group 2

Missing Resource 2

Excessive Resource -

Non-Exclusive Resource -

Non-Exclusive Reference 0

Group 3

Missing Resource 12

Excessive Resource 2

Non-Exclusive Resource -

Non-Exclusive Reference -

Group 4

Missing Resource 58 (12)

Excessive Resource -

Non-Exclusive Resource -

Non-Exclusive Reference -

randomly one mapping file and duplicated it. By that we duplicate the ref-

erence to the same SQL table. Now we have one new incorrect external

dependency of type Non-Exclusive reference for this group.

For Hibernate Group 2, we found a total of two incorrect dependencies:

• Missing resource: We found two missing resource incorrect dependencies.

Those findings are for references from the mapping files to two missing Java

classes.

• Excessive resource: This type is not possible Hibernate Group 2 (see Sec-

tion 5.3.4).

• Non-Exclusive resource: This type is not possible Hibernate Group 2 (see

Section 5.3.4).

• Non-Exclusive reference: We found 0 incorrect external dependencies of this

type, meaning that each mapped Java class is referred once only, and each

mapped table is referring to a single Java class. However, to validate our

approach, we selected randomly one mapping file and duplicated it. By that

we duplicate the reference to the same Java class. Now we have one new in-

correct external dependency of type Non-Exclusive reference for this group.

For Hibernate Group 3, we found a total of 14 incorrect dependencies:

90 Chapter 5. Evaluating External Dependencies

• Missing resource: We found 12 Missing resource incorrect dependencies.

Those findings are for 12 queries, that were actually SQL queries, not pass-

ing through Hibernate but referring to the actual names of the tables in the

database.

• Excessive resource: We found two incorrect external dependencies of type

Excessive resource. This means that two Java classes were mapped but never

used by the HQL queries. By checking more deeply, we realized that these

two mapped classes, are actually the ones that are not mapped correctly to the

database. Following further discussions with the developers from the private

company, we found that these are old tables that were removed, but the de-

velopers forgot to remove their mappings from the Java program. They will

not cause runtime issues, but they increase the program size unnecessarily

and mislead developers.

• Non-Exclusive resource: This type not possible for Hibernate Group 3 (see

Section 5.3.4).

• Non-Exclusive reference: This type not possible for Hibernate Group 3 (see

Section 5.3.4).

Finally for Hibernate Group 4, where external dependencies are established

through the previous groups, we found a total of 58 incorrect dependencies:

• Missing resource: We found 58 incorrect dependencies of type missing re-

source incorrect dependencies. With further investigation, we found 46 queries

referring correctly to Java persistency classes, but these latter ones are not

mapped correctly to database tables having nine references from the map-

ping files with Missing resources (Group 1 initial results). And we found 12

queries (from group 3), referring directly to the table names disregarding the

mappings. This is an expected behavior for old systems where Hibernate was

introduced late in the development process. After the update of the database,

and adding missing tables, this number of Missing resource incorrect depen-

dencies was reduced to 12 (row 1 of Group 4), because the classes referred by

the queries are now mapped to existing tables in the database, keeping only

queries with direct references to tables which is a flaw when using Hibernate.

• Excessive resource: This type is not possible for Hibernate Group 4 (see

Section 5.3.4).

• Non-Exclusive resource: This type is not possible for Hibernate Group 4 (see

Section 5.3.4).

• Non-Exclusive reference: This type is not possible for Hibernate Group 4

(see Section 5.3.4).

5.6. Threats to validity 91

The numbers in parentheses reflect the results after updating the SQL schema

model to include additional tables. SQL tables represent the resource entities for

groups 1 and 4. The inclusion of the Missing resources in the updated schema re-

duced the number of incorrect dependencies to two for group 1 and 12 for group

4. Note that this update could not and did not correct the number of Missing Re-

sources and Excessive Resources in groups 2 and 3. For this they would have to

change their .hbm.xml files and/or Java code. Our findings for the initial status

of the projects before injection is found here 1.

5.5.3 Results of the Experiment

In this section, we will present the results of incorrect external dependencies count-

ing using Adonis. We compare those results to the manual findings in previous sec-

tion and deduce the precision and recall ratios for incorrect external dependencies

counting.

For GWT, RMI and Pharo comments, we had exactly the same results as shown

in table 5.6. Since those results revealed with Adonis and Pharo conform to the

manual counting, with no false positive results neither true negative, this leads to a

precision and recall ratios of 100%.

However for Hibernate, the results were not the same for groups 3 and 4 as

shown in Table 5.8 due to a limitation in our approach. This limitation is because

the analysis would take all strings and also look for names of mapped class names

in them, which limits the findings for Missing Resources.

We see in table 5.9 that most of the results are perfect (100% precision and

recall). The few lesser recalls (groups 3 and 4) for Missing resource are due to the

static analysis of the queries that are built from string concatenation. We knew that

this was a limitation of our analysis, but it is difficult to do better with a statical

analysis. Putting a spy on the database to intercept all incoming queries (as done

by [Meurice 2016]) would ease this identification, but as all dynamic analyses, it

would then depend on the scenarios ran being exhaustive (ie. invoking all possible

queries). This is usually something that is also difficult to guarantee.

In summary, we adapted Adonis to detect incorrect external dependencies as-

sociated with various external agents. After running the tool and performing a

manual verification, the results matched our expectations with a major limitation

for Missing resources identification for group 3, but a recall and precision ratios

varying between 79% and 100% for the others.

5.6 Threats to validity

In this section we present the threats to validity following the experiments and their

validation.

1Manual counting results https://doi.org/10.5281/zenodo.13820410

https://doi.org/10.5281/zenodo.13820410

92 Chapter 5. Evaluating External Dependencies

Table 5.8: External dependencies case studies using Adonis

Dependency type Incorrect dependency type Total

Group 1

Missing Resource 9 (2)

Excessive Resource -

Non-Exclusive Resource -

Non-Exclusive Reference 0

Group 2

Missing Resource 2

Excessive Resource -

Non-Exclusive Resource -

Non-Exclusive Reference 0

Group 3

Missing Resource 0

Excessive Resource 2

Non-Exclusive Resource -

Non-Exclusive Reference -

Group 4

Missing Resource 46 (0)

Excessive Resource -

Non-Exclusive Resource -

Non-Exclusive Reference -

Table 5.9: Incorrect dependencies of external agents

Missing

Resource

Excessive

Resource

Non-exclu.

Resource

Non-exclu.

Reference

Pre./Rec. Pre./Rec. Pre./Rec. Pre./Rec.

G.1 100% / 100% - - 100% / 100%

G.2 100% / 100% - - 100% / 100%

G.3 0% / 0% 100% / 100% - -

G.4 100% / 79% - - -

5.7. Conclusion 93

Internal Validity In this chapter, we presented a list of incorrect external depen-

dencies and their impact (errors or potential smells) that can result from them.

While these are real ones that need to be discovered by the developers, fur-

ther exploration with additional external agents is needed to see if more er-

rors may emerge. We selected public and industrial projects that we ignore

how they were developed, thus we ignore the existence of incorrect external

dependencies. Our investigations (manual and using Adonis) proved the ex-

istence of some incorrect dependencies, but not all the types existed in the

projects we chose. This is why we decided to go for random manual in-

jection of the uncovered types of incorrect external dependencies and detect

them using Adonis.

External Validity We chose a variety of projects, real concrete and with various

sizes, in order to check if incorrect external dependencies exist. This variety,

proved that despite the size of the project, incorrect external dependencies

exist with ratios varying between a minimum of 0% for GWT and a maxi-

mum of 37% for RMI.

Construct Validity We used metrics directly related to our research regarding in-

correct external dependencies. We counted Missing resource, Excessive re-

source, Non-Exclusive resource and Non-Exclusive reference and checked

the ratios for precision and recall for each project. To count the results man-

ually, we relied for small projects on counting the files and checking inside

the references. For large projects, we proceeded differently. We relied for

Pharo on extracting programmatically the comments and place them into

Google sheets. We used one script to extract the references to classes and

another one to create rows in excel and place values in cells. Then we used

simple formulas to do the counting. And for Hibernate, we followed a trick

provided by developers to check the queries only inside Java classes that start

with “Dao”. So we extracted them and put them again in Google Sheet and

counted using formulas.

Conclusion Validity Regarding conclusion validity, our approach demonstrated

success in detecting incorrect external dependencies across the analyzed projects,

with a major limitation for Hibernate Group 3. However, to strengthen our

statistical conclusions, we need to expand our analysis to a larger range of

projects, and cover additional external agents to see if the 4 identified types

of incorrect external dependencies exist.

5.7 Conclusion

In this chapter, we focused on identifying and detecting incorrect external depen-

dencies. To achieve this, we proposed linking the correctness of external dependen-

cies to the minimal and maximal multiplicities of the entities involved, introducing

four 4 types of incorrect external dependencies based on these multiplicities. We

validated our approach by categorizing prior research and examples from various

external agents.

Additionally, we enhanced Adonis, an open-source and extensible tool, to in-

clude the detection of incorrect external dependencies for the supported external

agents. Upon running the tool, we successfully identified existing incorrect ex-

ternal dependencies, though not all of them existed in the provided projects. To

thoroughly validate our approach, we applied targeted modifications to inject more

incorrect external dependencies, re-ran Adonis, and compared the results to assess

the tool’s effectiveness in detecting the injections.

Finally, to validate the accuracy of our results, we manually counted all iden-

tified incorrect dependencies. We achieved perfect precision for many types of

dependencies, although we did encounter some limitations.

CHAPTER 6

Conclusion And Future Work

Contents

6.1 Summary . 95

6.2 Future work . 97

6.2.1 Pattern Matching . 97

6.2.2 External Dependencies . 98

In this chapter, we summarize the findings of our research and we present the

future work following these findings.

6.1 Summary

In this thesis, we focus on detecting external dependencies, established between

resource and reference entities through external agents like frameworks. We de-

veloped Adonis, a tool that identifies such dependencies, and tested it on various

projects using different external agents.

Throughout our research, we encountered two main challenges: locating the

entities forming the external dependencies and evaluating their validity, including

missing, unused, or other issues.

To address the first challenge, we created MoTion, a declarative pattern match-

ing tool in Pharo. MoTion combines features of graph and object matching, allow-

ing the creation of flexible patterns that enable lexical and object matching. We

used MoTion to define patterns that Adonis relies on to search for the relevant en-

tities. For each external agent, we chosed lexical or object matching based on our

needs.

Finally, we enhanced Adonis to detect both correct and incorrect external de-

pendencies based on multiplicity. Revealing incorrect dependencies is crucial to

help developers avoid potential negative impacts, such as runtime or compile-time

errors, or subtle issues like code smells that could mislead developers in under-

standing the true nature of external dependencies. We validated Adonis across

various external agents and projects, demonstrating its effectiveness in identifying

both correct and incorrect dependencies.

96 Chapter 6. Conclusion And Future Work

In the following lines, we summarize the research problems discussed in this

thesis and our contributions.

Chapter 2

• We presented the existing approaches for detecting external dependencies;

• We categorized the tools following different categories: dependency type,

analysis technique, matching strategy and searching engine;

• We presented the tools that considered correctness of external dependencies

in the literature and listed the types found;

• We also explored pattern matching tools for both graph matching and object

matching and summarized their features.

Chapter 3

• We explored external dependencies in details and we listed four categories

of them;

• We showed how external dependencies are established in external agents;

• We explained our approach to search for containers and entities, and how we

can make an automated detection tool easily extendible by reusing predefined

patterns;

• We showed our tool, Adonis, how ir was implemented following our ap-

proach and how it can be used, then we validate it on private and public

projects and discussed the results.

Chapter 4

• We presented traditional pattern matching in Pharo and gave examples of it;

• We presented MoTion, a new declarative pattern matching language that can

be used to search for tokens in objects;

• We explained the implementation and showed how it can be extendible to

cover additional features or recover existing ones;

• We made a comparison between MoTion and the traditional matching and

show the limitations of the latter;

• We listed the use cases of MoTion including how it is used in Adonis, and

from these use cases we learned new lessons and got feedback from the users.

6.2. Future work 97

Chapter 5

• We explored incorrect external dependencies and explained how we can de-

tect them based on multiplicity. From this we derived 4 different types of

incorrect external dependencies;

• We showed for each external agent in study, what types of incorrect external

dependencies may exist;

• We explained how we adapted Adonis to return all the results needed includ-

ing correct and incorrect external dependencies;

• We validated the adapted Adonis on the same public and private projects

Chapter 3 and discussed the results.

6.2 Future work

In this section, we present several perspectives that push us forward to continue our

research concerning the external dependencies extraction and the pattern matching.

6.2.1 Pattern Matching

Debugging Debugging patterns is a well known challenge in the field of pattern

matching. In MoTion, false matches can occur when the user incorrectly

expresses a pattern, meaning the pattern does not accurately reflect their in-

tended match criteria. This can lead to unexpected results, making it difficult

for users to identify where the issue lies. This is the main request raised by

the users of MoTion. To address this, we begun implementing basic debug-

ging tools to assist users in pinpointing errors. That relies on commenting the

parts of the patterns (mainly properties) an rerun the match again with less

description (because less properties are used), thus higher chances of match.

However, these solutions are just a starting point, and further research is nec-

essary to provide more comprehensive support for identifying and resolving

issues while pattern matching with MoTion.

Limited recursive search We are facing also another issue with MoTion, where

looping takes long time in some cases when doing a recursive search. This is

frequent when matching ASTs for example or for large models when using

Recursive traversal. To stop that, we suggest to add a new feature that allows

precising the number of recursive traversals, to set the limit of looping.

98 Chapter 6. Conclusion And Future Work

6.2.2 External Dependencies

Artificial Intelligence as a searching engine? We have seen that previously in the

literature, researchers relied on lexical matching or object matching. Whereas

we rely on both, by choosing the matching based on our needs. For exam-

ple for the comments we chose lexical matching, since it was not worth it to

parse comments in Pharo where regular expressions were enough. We did

the same for HQL queries in Hibernate. However, in such cases, it would

be worth to try using the Artificial Intelligence to have more accurate results

and make sure we do not miss any information, like table name available in

a String alone without any marker in comments without CamelCase format.

We did minor experiment on AI platforms like ChatGPT, where we extracted

the whole method from a Java class, containing concatenated HQL strings,

and asked the platform to reveal the table names from them. We also ex-

tracted a complete comment for a Pharo class and asked the platform to tell

us where the class names were in these comments. We got promising results,

and we believe this is a new research perspective that should be explored in

the future.

Additional external agents? Future work will focus also on extending our tool to

support a wider range of external agents, such as Spring and JDBC. This ex-

pansion will allow us to validate the concept of reusable patterns, particularly

as these agents cover languages like XML (previously addressed through

GWT and Hibernate) and SQL (previously addressed through Hibernate).

Additionally, it will provide an opportunity to further test the robustness of

Adonis and assess the validity of its results for correct and incorrect external

dependencies.

Bibliography

[Angles 2017] Renzo Angles, Marcelo Arenas, Pablo Barceló, Aidan Hogan, Juan

Reutter and Domagoj Vrgoč. Foundations of modern query languages for

graph databases. ACM Computing Surveys (CSUR), vol. 50, no. 5, pages

1–40, 2017.

[Angles 2018] Renzo Angles, Marcelo Arenas, Pablo Barceló, Peter Boncz,

George Fletcher, Claudio Gutierrez, Tobias Lindaaker, Marcus Paradies,

Stefan Plantikow, Juan Sequedaet al. G-CORE: A core for future graph

query languages. In Proceedings of the 2018 International Conference on

Management of Data, pages 1421–1432, 2018.

[Anquetil 2020] Nicolas Anquetil, Anne Etien, Mahugnon Honoré Houekpetodji,

Benoît Verhaeghe, Stéphane Ducasse, Clotilde Toullec, Fatija Djareddir,

Jérôme Sudich and Mustapha Derras. Modular Moose: A new genera-

tion of software reengineering platform. In International Conference on

Software and Systems Reuse (ICSR’20), numéro 12541 de LNCS, pages

119–134, December 2020.

[Anquetil 2022] Nicolas Anquetil, Miguel Campero, Stéphane Ducasse, Juan-

Pablo Sandoval and Pablo Tesone. Transformation-based Refactorings: a

First Analysis. In International Workshop of Smalltalk Technologies, 2022.

[Balland 2007] Emilie Balland, Paul Brauner, Radu Kopetz, Pierre-Etienne

Moreau and Antoine Reilles. Tom: piggybacking rewriting on java. In

Proceedings of the 18th international conference on Term rewriting and

applications, RTA’07, pages 36–47, Berlin, Heidelberg, 2007. Springer-

Verlag.

[Black 2009] Andrew P. Black, Stéphane Ducasse, Oscar Nierstrasz, Damien Pol-

let, Damien Cassou and Marcus Denker. Pharo by example. Square Bracket

Associates, Kehrsatz, Switzerland, 2009.

[Cao 2015] Yinzhi Cao, Yanick Fratantonio, Antonio Bianchi, Manuel Egele,

Christopher Kruegel, Giovanni Vigna and Yan Chen. EdgeMiner: Auto-

matically Detecting Implicit Control Flow Transitions through the Android

Framework. In NDSS, 2015.

[Cao 2022] Yulu Cao, Lin Chen, Wanwangying Ma, Yanhui Li, Yuming Zhou and

Linzhang Wang. Towards better dependency management: A first look

at dependency smells in python projects. IEEE Transactions on Software

Engineering, 2022.

http://dx.doi.org/10.1007/978-3-030-64694-3_8
http://dx.doi.org/10.1007/978-3-030-64694-3_8
http://dx.doi.org/10.1007/978-3-030-64694-3_8
http://dx.doi.org/10.1007/978-3-030-64694-3_8

100 Bibliography

[Consortium 2013] World Wide Web Consortiumet al. SPARQL 1.1 overview.

2013.

[Consortium 2014] World Wide Web Consortiumet al. RDF 1.1 concepts and ab-

stract syntax. 2014.

[Cossette 2010] Brad Cossette and Robert J Walker. DSketch: Lightweight, adapt-

able dependency analysis. In Proceedings of the eighteenth ACM SIG-

SOFT international symposium on Foundations of software engineering,

pages 297–306, 2010.

[Deutsch 2020] Alin Deutsch, Yu Xu, Mingxi Wu and Victor E Lee. Aggregation

support for modern graph analytics in TigerGraph. In Proceedings of the

2020 ACM SIGMOD International Conference on Management of Data,

pages 377–392, 2020.

[Deutsch 2022] Alin Deutsch, Nadime Francis, Alastair Green, Keith Hare, Bei

Li, Leonid Libkin, Tobias Lindaaker, Victor Marsault, Wim Martens, Jan

Michelset al. Graph pattern matching in GQL and SQL/PGQ. In Proceed-

ings of the 2022 International Conference on Management of Data, pages

2246–2258, 2022.

[Di Grazia 2023] Luca Di Grazia and Michael Pradel. Code search: A survey of

techniques for finding code. ACM Computing Surveys, vol. 55, no. 11,

pages 1–31, 2023.

[Francis 2018] Nadime Francis, Alastair Green, Paolo Guagliardo, Leonid Libkin,

Tobias Lindaaker, Victor Marsault, Stefan Plantikow, Mats Rydberg, Pe-

tra Selmer and Andrés Taylor. Cypher: An evolving query language for

property graphs. In Proceedings of the 2018 international conference on

management of data, pages 1433–1445, 2018.

[Grichi 2020] Manel Grichi, Mouna Abidi, Fehmi Jaafar, Ellis E Eghan and Bram

Adams. On the impact of interlanguage dependencies in multilanguage

systems empirical case study on java native interface applications (JNI).

IEEE Transactions on Reliability, vol. 70, no. 1, pages 428–440, 2020.

[Hecht 2018] Geoffrey Hecht, Hafedh Mili, Ghizlane El-Boussaidi, Anis

Boubaker, Manel Abdellatif, Yann-Gaël Guéhéneuc, Anas Shatnawi, Jean

Privat and Naouel Moha. Codifying hidden dependencies in legacy J2EE

applications. In 2018 25th Asia-Pacific Software Engineering Conference

(APSEC), pages 305–314. IEEE, 2018.

[Hosry 2023a] Aless Hosry and Nicolas Anquetil. External Dependencies in Soft-

ware Development. In International Conference on the Quality of Informa-

tion and Communications Technology, pages 215–232. Springer, 2023.

Bibliography 101

[Hosry 2023b] Aless Hosry, Vincent Aranega and Nicolas Anquetil. Pattern

matching in Pharo. In International Workshop on Smalltalk Technology

(IWST’23), Grenoble, France, August 2023.

[Hosry 2024] Aless Hosry, Vincent Aranega and Nicolas Anquetil. MoTion: A

new declarative object matching approach in Pharo. Journal of Computer

Languages, page 101290, 2024.

[Imbugwa 2021] Gerald Birgen Imbugwa, Luiz Jonatã Pires de Araújo, Mansur

Khazeev, Ewane Enombe, Harrif Saliu and Manuel Mazzara. A case study

comparing static analysis tools for evaluating SwiftUI projects. In Journal

of Physics: Conference Series, volume 2134, page 012022. IOP Publish-

ing, 2021.

[Jafari 2021] Abbas Javan Jafari, Diego Elias Costa, Rabe Abdalkareem, Emad

Shihab and Nikolaos Tsantalis. Dependency smells in javascript projects.

IEEE Transactions on Software Engineering, vol. 48, no. 10, pages 3790–

3807, 2021.

[Kaur 2015] Uttamjit Kaur and Gagandeep Singh. A review on software mainte-

nance issues and how to reduce maintenance efforts. International Journal

of Computer Applications, vol. 118, no. 1, pages 6–11, 2015.

[Kempf 2008] Martin Kempf, Reto Kleeb, Michael Klenk and Peter Sommerlad.

Cross language refactoring for eclipse plug-ins. In Proceedings of the 2nd

Workshop on Refactoring Tools, pages 1–4, 2008.

[Klint 2011] Paul Klint, Tijs van der Storm and Jurgen Vinju. EASY Meta-

programming with Rascal. In João Fernandes, Ralf Lämmel, Joost Visser

and João Saraiva, editeurs, Generative and Transformational Techniques

in Software Engineering III, volume 6491 of Lecture Notes in Computer

Science, pages 222–289. Springer Berlin / Heidelberg, 2011.

[Kohn 2020] Tobias Kohn, Guido van Rossum, Gary Brandt Bucher II, Talin and

Ivan Levkivskyi. Dynamic pattern matching with Python. In Proceedings

of the 16th ACM SIGPLAN International Symposium on Dynamic Lan-

guages, pages 85–98, 2020.

[Krause 2016] Christian Krause, Daniel Johannsen, Radwan Deeb, Kai-Uwe Sat-

tler, David Knacker and Anton Niadzelka. An SQL-based query language

and engine for graph pattern matching. In Graph Transformation: 9th In-

ternational Conference, ICGT 2016, in Memory of Hartmut Ehrig, Held as

Part of STAF 2016, Vienna, Austria, July 5-6, 2016, Proceedings 9, pages

153–169. Springer, 2016.

102 Bibliography

[Libkin 2016] Leonid Libkin, Wim Martens and Domagoj Vrgoč. Querying

graphs with data. Journal of the ACM (JACM), vol. 63, no. 2, pages 1–53,

2016.

[Mayer 2012] Philip Mayer, Andreas Schroeder and Welf Löwe. Cross-Language

Code Analysis and Refactoring. In In Proceedings of the International

Workshop on Source Code Analysis and Manipulation, 2012.

[Mayer 2014] Philip Mayer and Andreas Schroeder. Automated multi-language

artifact binding and rename refactoring between Java and DSLs used by

Java frameworks. In ECOOP 2014–Object-Oriented Programming: 28th

European Conference, Uppsala, Sweden, July 28–August 1, 2014. Pro-

ceedings 28, pages 437–462. Springer, 2014.

[Meurice 2016] Loup Meurice, Csaba Nagy and Anthony Cleve. Static analy-

sis of dynamic database usage in java systems. In Advanced Informa-

tion Systems Engineering: 28th International Conference, CAiSE 2016,

Ljubljana, Slovenia, June 13-17, 2016. Proceedings 28, pages 491–506.

Springer, 2016.

[Mohamed 2018] Khaled Abdelsalam Mohamed and Amr Kamel. Reverse engi-

neering state and strategy design patterns using static code analysis. Inter-

national Journal of Advanced Computer Science and Applications, vol. 9,

no. 1, 2018.

[Mushtaq 2017] Zaigham Mushtaq, Ghulam Rasool and Balawal Shehzad. Multi-

lingual source code analysis: A systematic literature review. IEEE Access,

vol. 5, pages 11307–11336, 2017.

[Neubauer 2005] Matthias Neubauer and Peter Thiemann. From sequential pro-

grams to multi-tier applications by program transformation. In Proceed-

ings of the 32nd ACM SIGPLAN-SIGACT symposium on Principles of

programming languages, pages 221–232, 2005.

[Nguyen 2005] Tien Nguyen, Ethan Munson and John Boyland. An Infrastructure

for Development of Object-Oriented, Multi-level Configuration Manage-

ment Services. In Internationl Conference on Software Engineering (ICSE

2005), pages 215–224. ACM Press, 2005.

[Nguyen 2011] Hung Viet Nguyen, Hoan Anh Nguyen, Tung Thanh Nguyen and

Tien N Nguyen. Auto-locating and fix-propagating for HTML validation

errors to PHP server-side code. In 2011 26th IEEE/ACM International

Conference on Automated Software Engineering (ASE 2011), pages 13–

22. IEEE, 2011.

http://dx.doi.org/10.1109/SCAM.2012.11
http://dx.doi.org/10.1109/SCAM.2012.11
http://dx.doi.org/10.1109/SCAM.2012.11
http://dx.doi.org/10.1109/SCAM.2012.11

Bibliography 103

[Nguyen 2012] Hung Viet Nguyen, Hoan Anh Nguyen, Tung Thanh Nguyen and

Tien N Nguyen. BabelRef: detection and renaming tool for cross-language

program entities in dynamic web applications. In 2012 34th International

Conference on Software Engineering (ICSE), pages 1391–1394. IEEE,

2012.

[Pfeiffer 2011] Rolf-Helge Pfeiffer and Andrzej Wąsowski. Taming the confusion

of languages. In European Conference on Modelling Foundations and Ap-

plications, pages 312–328. Springer, 2011.

[Pfeiffer 2012] Rolf-Helge Pfeiffer and Andrzej Wąsowski. Texmo: A multi-

language development environment. In European Conference on Modelling

Foundations and Applications, pages 178–193. Springer, 2012.

[Pierre-Etienne 2003] Moreau Pierre-Etienne, Christophe Ringeissen and Marian

Vittek. A pattern matching compiler for multiple target languages. In In-

ternational Conference on Compiler Construction, pages 61–76. Springer,

2003.

[Polychniatis 2013] Theodoros Polychniatis, Jurriaan Hage, Slinger Jansen, Eric

Bouwers and Joost Visser. Detecting cross-language dependencies gener-

ically. In 2013 17th European Conference on Software Maintenance and

Reengineering, pages 349–352. IEEE, 2013.

[Rodrigues 2024] Emanuel Rodrigues, José Nuno Macedo, Marcos Viera and João

Saraiva. pyZtrategic: A Zipper-Based Embedding of Strategies and At-

tribute Grammars in Python. In ENASE, pages 615–624, 2024.

[Rodriguez 2012] Marko A Rodriguez and Peter Neubauer. The graph traversal

pattern. In Graph data management: Techniques and applications, pages

29–46. IGI global, 2012.

[Rodriguez 2015] Marko A Rodriguez. The gremlin graph traversal machine and

language (invited talk). In Proceedings of the 15th Symposium on Database

Programming Languages, pages 1–10, 2015.

[Ryu 2010] Sukyoung Ryu, Changhee Park and Guy L Steele Jr. Adding pat-

tern matching to existing object-oriented languages. In ACM SIGPLAN

Foundations of Object-Oriented Languages Workshop, volume 5. Citeseer,

2010.

[Shatnawi 2019] Anas Shatnawi, Hafedh Mili, Manel Abdellatif, Yann-Gaël

Guéhéneuc, Naouel Moha, Geoffrey Hecht, Ghizlane El Boussaidi and

Jean Privat. Static code analysis of multilanguage software systems. arXiv

preprint arXiv:1906.00815, 2019.

104 Bibliography

[Shen 2021] Bo Shen, Wei Zhang, Ailun Yu, Zhao Wei, Guangtai Liang, Haiyan

Zhao and Zhi Jin. Cross-language Code Coupling Detection: A Prelimi-

nary Study on Android Applications. In 2021 IEEE International Confer-

ence on Software Maintenance and Evolution (ICSME), pages 378–388.

IEEE, 2021.

[Sloane 2009] Anthony M Sloane. Lightweight language processing in Kiama. In

International Summer School on Generative and Transformational Tech-

niques in Software Engineering, pages 408–425. Springer, 2009.

[Soto-Valero 2021] César Soto-Valero, Nicolas Harrand, Martin Monperrus and

Benoit Baudry. A comprehensive study of bloated dependencies in the

maven ecosystem. Empirical Software Engineering, vol. 26, no. 3, page 45,

2021.

[Thakkar 2017] Harsh Thakkar, Dharmen Punjani, Sören Auer and Maria-Esther

Vidal. Towards an integrated graph algebra for graph pattern matching

with gremlin. In Database and Expert Systems Applications: 28th Interna-

tional Conference, DEXA 2017, Lyon, France, August 28-31, 2017, Pro-

ceedings, Part I 28, pages 81–91. Springer, 2017.

[Vanciu 2010] Radu Vanciu and Václav Rajlich. Hidden dependencies in software

systems. In 2010 IEEE International Conference on Software Maintenance,

pages 1–10. IEEE, 2010.

[Yu 2001] Zhifeng Yu and Václav Rajlich. Hidden dependencies in program

comprehension and change propagation. In Proceedings 9th Interna-

tional Workshop on Program Comprehension. IWPC 2001, pages 293–299.

IEEE, 2001.

[S, imonca 2022] Iuliana S, imonca, Alexandra Corbea and Anda Belciu. Analyti-

cal Capabilities of Graphs in Oracle Multimodel Database. In Education,

Research and Business Technologies: Proceedings of 20th International

Conference on Informatics in Economy (IE 2021), pages 97–109. Springer,

2022.

	Introduction
	Context
	Problem Statement
	Contributions
	Thesis Outline
	List Of Publications

	State of the Art
	Existing Approaches
	Existing Detectors
	Categorization of the Tools
	Correctness of External Dependencies

	Pattern Matching
	Pattern Matching for Graphs
	Pattern Matching in GPLs
	Pattern Matching Language Features
	Some Existing Object Pattern Matching Languages

	Conclusion

	External Dependencies Detection
	Introduction
	Structuring the Domain
	Definitions
	Categorization

	External Dependencies in Multiple External Agents
	Google Web Toolkit (GWT)
	Remote Method Invocation (RMI)
	Hibernate
	Pharo Comments

	External Dependencies Detection
	Key Considerations
	Decomposing the Problem
	Reusable Patterns

	Adonis: External Dependencies Detector
	Implementation
	Usage

	Evaluating Adonis
	Experiment setup
	Projects
	Results of the Experiment

	Threats to Validity
	Conclusion

	Declarative object matching in Pharo
	Introduction
	Motivation
	Traditional Pattern Matching in Pharo
	Syntax
	Examples

	MoTion
	Simple Pattern Example
	MoTion Grammar
	Pattern Operators
	Using MoTion

	Implementation Notes
	A Simple Extension
	Changing the Syntax

	Comparison of MoTion and Traditional Matching in Pharo
	Syntax and Expressiveness
	Matching Speed
	Matching Characteristics

	Use Cases of MoTion
	External Dependencies
	Refactoring Source Code
	Backend for Other Pattern Matching

	Lessons learned
	Comparison with Pre-existing
	Most Used Features
	Missing Feature

	Conclusion

	Evaluating External Dependencies
	Introduction
	External Dependencies Correctness
	What are Incorrect Dependencies?
	Multiplicities
	Types of Incorrect Dependencies

	Incorrect Dependencies for different external agents
	Incorrect Dependencies in GWT
	Incorrect Dependencies in RMI
	Incorrect Dependencies in Pharo Comments
	Incorrect Dependencies in Hibernate

	Incorrect Dependencies Detection with Adonis
	External Dependencies Detection with Adonis
	Adaptation of Adonis to Reveal Incorrect Dependencies

	Evaluating Incorrect External Dependencies Detection
	Experiment setup
	Manual findings for projects
	Results of the Experiment

	Threats to validity
	Conclusion

	Conclusion And Future Work
	Summary
	Future work
	Pattern Matching
	External Dependencies

	Bibliography

