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Résumé

Les sociétés humaines sont devenues de plus en plus dépendantes des services numériques, qui
sont désormais omniprésents dans presque tous les aspects de la vie quotidienne et des secteurs
économiques. Cette augmentation du nombre de logiciels est étroitement liée à l’essor et au renou-
vellement rapide des appareils numériques, tant pour les consommateurs que pour l’infrastructure
réseau et informatique. Cependant, cette tendance génère une empreinte environnementale qui ap-
parait incompatible avec les limites planétaires. Les logiciels peuvent être un facteur important de
cette empreinte environnementale croissante: les déploiements de logiciels influent la consommation
d’énergie, et le besoin de logiciels de plus en plus sophistiqués nécessite une plus grande puissance de
calcul, accélérant ainsi la fabrication et le renouvellement fréquent des appareils. Il est donc nécessaire
d’identifier des leviers d’action holistiques pour réduire l’empreinte environnementale des logiciels.
Cependant, les approches actuelles se concentrent souvent uniquement sur la phase d’utilisation, en
prenant en compte uniquement la consommation d’énergie et l’empreinte carbone, négligeant ainsi
d’autres aspects critiques de l’impact environnemental qui occurrent tout au long du cycle de vie du
logiciel.

Dans cette thèse de doctorat, je combine différentes approches issues de divers domaines de
recherche pour identifier des leviers significatifs pour réduire l’empreinte environnementale des
logiciels. Dans un premier temps, j’évalue les avantages et les inconvénients des analyses top-down
pour évaluer l’empreinte carbone du secteur des Technologies de l’Information et de la Communication
(TIC), et je démontre leur intérêt pour évaluer l’impact du secteur sur d’autres catégories d’impact,
notamment sur les métaux et les minéraux. En m’appuyant sur la tendance à la hausse observée,
j’adopte ensuite une méthodologie bottom-up pour développer des outils et des méthodologies
permettant d’évaluer et d’identifier des leviers de réduction dans divers aspects de l’empreinte
environnementale des services numériques. Plus précisément, j’évalue l’empreinte environnementale
des services cloud et des appareils utilisateurs avec une pensée cycle de vie, tout en proposant
une nouvelle méthodologie pour suivre systématiquement les incertitudes découlant des sources de
référence et des choix de modélisation au sein de ces estimations. Pour aller au-delà de la phase
d’usage et de l’empreinte énergétique des logiciels, je propose également une méthodologie et un
outil associé pour évaluer de manière holistique les impacts occurants tout au long du cycle de vie du
logiciel.
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L’estimation d’impacts n’est cependant que la première étape dans l’écoconception des logiciels.
J’explore donc les différentes responsabilités des composants logiciels, et introduis un modèle
conceptuel pour aider les différentes parties prenantes du logiciel à définir des métriques pour
réduire l’empreinte environnementale des logiciels, dans leurs domaines de responsabilité. Dans ce
cadre conceptuel, j’introduis une nouvelle métrique de qualité architecturale qui se concentre sur la
minimisation du gaspillage de ressources induit par l’architecture du logiciel, en tant que solution
simple et implémentable. De plus, je propose une approche pratique pour que les acteurs du logiciel
s’efforcent d’atteindre une proportionnalité entre leur empreinte environnementale et l’évolution de
l’usage au fil du temps.



Abstract

Human societies have become increasingly dependent on digital services, which now influence nearly
every aspect of daily life and economic sectors. This increase in software services is closely tied to the
rise and rapid renewal of digital devices, both for consumers and backbone infrastructure. However,
this trend results in an environmental footprint that seems incompatible with planetary boundaries.
Software can be a significant driver of this environmental footprint: software deployments steer energy
consumption, and the need for increasingly sophisticated software requires greater computing power,
thereby accelerating the manufacturing and rapid turnover of devices. As such, there is a need to
identify holistic action levers to reduce the environmental footprint of software. However, current
approaches often focus solely on the use phase, considering only energy consumption and carbon
footprint, thereby overlooking other critical aspects of environmental impact that occur throughout
the software’s entire life cycle.

In this PhD thesis, I combine different approaches from various research fields to identify mean-
ingful levers to reduce software environmental footprint. First, I assess the benefits and drawbacks
of top-down analyses to assess the ICT sector’s carbon footprint, and demonstrate their benefit to
assess the sector’s contribution to other impacts, specifically metals and minerals. Building on the
observed upward trend, I then adopt a bottom-up methodology to develop tools and methodologies for
assessing and identifying hotspots in various aspects of the environmental footprint of digital services.
Specifically, I assess the environmental footprint of cloud services and user devices from a life cycle
perspective, while proposing a novel methodology to systematically track uncertainties arising from
reference sources and modeling choices within these estimations. To move beyond the usage phase
and energy footprint of software, I also propose a methodology and associated tool to holistically
assess impacts along the entire software life cycle. Impact assessment, however, is only the first step
toward software ecodesign. I, therefore, examine the different liabilities of software components and
introduce a conceptual model to help software stakeholders define actionable metrics for reducing
the environmental footprint of software within their areas of responsibility. Within this conceptual
framework, I introduce a new architectural quality metric that focuses on minimizing resource waste
induced by the architecture of software, as a straightforward implementable solution. Additionally, I
propose a practical approach for software stakeholders to strive towards proportionality between their
environmental footprint and the evolution of usage over time.
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Chapter 1

Introduction

1.1 Motivation

1.1.1 Context

Six out of the nine planetary boundaries introduced by Rockstrom, defining the limits within which
humanity can safely operate to avoid destabilizing the Earth’s critical environmental systems, have
been exceeded [5]. Regarding the climate change boundary, Freitag et al. [1] estimate, based on
previous studies [6–8], that in 2020 between 2.1% and 3.9% of worldwide greenhouse gas emissions
could be attributed to the digital sector.

The latest Intergovernmental Panel on Climate Change (IPCC) report [9] states that emissions of
greenhouse gas from human activities are responsible for approximately 1.1°C of global warming
since 1850–1900 and that—unless there is an immediate, rapid, and large-scale reduction—limiting
it to +1.5°C will be out of reach. To make its fair contribution to achieving this objective, the ICT
sector is challenged to adopt a more sustainable approach and reduce its environmental footprint.
Moreover, the environmental impact of ICT extends beyond its contribution to climate change. It also
plays a role in the transgression of other planetary boundaries, primarily through the production and
operation of both consumer and infrastructure devices.

1.1.2 Problem statement

Faced with this challenge, the software industry is challenged to reduce its environmental foot-
print. Although often perceived as immaterial, software is heavily reliant on ICT infrastructure,
driving its energy consumption and requiring ever-increasing computing power, thus accelerating the
manufacturing and rapid turnover of devices.

Therefore, it is essential to rigorously assess the environmental footprint of software in order to
identify and implement meaningful action levers to mitigate its impact. However, existing approaches
primarily focus on energy consumption, addressing only a fraction of the environmental strain caused
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by software. These methods frequently overlook the life cycle costs of the hardware involved and
only partially consider environmental impacts beyond climate change. By centering their analysis on
energy, they also limit their scope to the usage phase of software, neglecting the broader software life
cycle, including the development phase.

Impact estimation is the first step in reducing the environmental footprint of software, yet defining
actionable metrics from a technical perspective remains a significant challenge. The modular nature
of software architecture complicates the assessment of each component’s individual contribution to
the overall reduction potential. Since not all components possess the same potential to reduce the
overall impact, it is essential to focus efforts on those with the highest reduction potential.

In this thesis, we aim to address the following research question: Which actionable strategies can
be identified and implemented to holistically reduce the environmental impact of software?

1.2 Contributions

This thesis is structured into four main parts:

Background: Chapter 2 explores the relationship between the growth of the ICT sector and its
environmental impact, with a particular emphasis on its material footprint. We then examine current
impact assessment methodologies employed at both macro and micro levels, evaluating their potential
as well as their limitations. Finally, we explore the notion of software environmental footprint,
examining existing research on the intersection of software and environmental sustainability goals.

ICT sector’s footprint: In Chapter 3, we compare the boundaries used in ICT environmental
footprint studies to the United Nations (UN)’s economic definition of the sector. Subsequently, we
demonstrate how the use of Environmentally Extended Input-Output Analysis (EEIOA) can produce
estimates that align with this economic definition. Applying this approach, we assess the evolution
of the ICT sector’s carbon footprint and identify its primary drivers. Additionally, we conduct an
analysis of its material footprint, while also highlighting the limitations of this approach.

Software’s footprint: Zooming in from the environmental impact of the whole digital sector,
Chapter 4 focuses on the footprint of software-based systems. We propose advancements in the
methods and tools for assessing the environmental footprint of software: we introduce a new bottom-
up approach and accompanying tool for assessing the environmental footprint of cloud instances,
along with a method to systematically track uncertainties arising from reference sources and modeling
choices. This approach is demonstrated through the modeling of end-user devices. Lastly, we adopt
a broader perspective on the environmental footprint of software, beyond hardware resources, and
develop a tool and methodology to assess its environmental impact across the entire software lifecycle.
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Reducing: In Chapter 5, we introduce a conceptual model that considers the responsibility of
various software components and stakeholders in reducing the environmental footprint. Building
on this foundation and with a focus on architecture, we propose a new quality metric designed to
reduce resource waste. This metric offers a straightforward, implementable solution to reduce the
environmental footprint of software components by treating them as distinct entities, rather than as
a monolithic system. Finally, we propose a practical approach for software stakeholders to achieve
proportionality between their environmental footprint and the evolution of the functional unit over
time.

In addition to addressing the research goal, all tools and data generated throughout this dissertation
have been made publicly available as open-source or open-data in repository: https://github.com/
tibosmn/phd-thesis. This encourages the reproducibility of our results and facilitates future research
in the field.

1.3 List of Scientific Publications

Parts of this thesis are adapted from the following publications:

1. T. Simon, D. Ekchajzer, A. Berthelot, E. Fourboul, S. Rince, and R. Rouvoy, “BoaviztAPI: a
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Chapter 2

Background

2.1 Digital Sector Growth and Environmental Impact

2.1.1 The Staggering Growth of the ICT Sector

Societies have become increasingly dependent on digital services, which are now in nearly every
aspect of daily life and economic activity. The ongoing digital transformation of modern societies
has led to a proliferation of devices, the expansion of network boundaries and capacity, as well as the
construction of additional data centers to support the delivery of these services.

According to Cisco’s Annual Internet Report covering 2018 to 2023 [14], the total number
of internet-connected devices increased from 3.9 billions in 2018 to 5.3 in 2023. North America,
followed by Western Europe, exhibited the highest adoption rate during this period. Notably, IoT
devices showed the most rapid growth, with the number of devices per capita increasing from 2.4 to
3.6 over the same period. Accordingly, per the International Telecommunication Union (ITU) [15],
67% of the global population is now connected to the internet, thus leaving 33% offline. This marks a
significant increase in internet connectivity, rising from 1 billion people in 2005 to 5.4 billion in 2023.
However, this inequality of access results in a digital divide, defined as the gap between those who
have access to ICT technologies and those who do not [16]. The digital divide presents a substantial
threat to the potential benefits of universal ICT access, which has the capacity to foster a global
community characterized by improved living standards and enhanced social welfare.

To accommodate with this rapid growth in connectivity and usage, the backbone infrastructure has
expanded tremendously. In France, Ahmed and Coupechoux [17] estimate that the total operational
power consumption of cellular base stations has grown at a Compound Annual Growth Rate (CAGR)
of 18.18%, a trend further accelerated by the introduction of 5G technology. According to CISCO, the
global cloud data centers traffic has been growing at a 25% CAGR between 2016 and 2021 [18]. As
of 2023, Pilz and Heim [19] estimate that around 10,000 and 30,000 datacenters exist globally, with
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approximately 140 facilities having a capacity over 100 megawatt (MW). For comparison, French
Nuclear power plants generate between 900 MW and 1300 MW [20].

As data centers continue to experience substantial growth [21], their associated environmental
impacts are likely to increase, further hindering the path toward the sector’s sustainability. According
to the Central Statistics Office of Ireland [22], data centers accounted for 5% of all metered energy
consumption in 2015, a figure that rose to 21% by 2022. In comparison, urban and rural households
contributed respectively to 19% and 10% to metered energy consumption.

2.1.2 Carbon Footprint Trends

The hosting infrastructure is estimated to contribute between 18% and 45% to the ICT sector’s global
carbon footprint [1, 7, 23, 24].

According to Freitag et al. [1], based on previous studies [6–8], the sector was responsible for
between 2.1% and 3.9% of greenhouse gas emissions in 2020. While estimating and collecting
accurate data within the ICT sector is challenging due to its vast size, complexity, and variability [25–
27], the authors also argue that the sector’s carbon footprint continues to grow when it should be
decreasing. Indeed, authors estimate based on the projections of the ITU [28] that to stay within the
1.5°C global warming limit, the sector’s emissions must be reduced by 42% by 2030, 72% by 2040,
and 91% by 2050, ultimately achieving net-zero emissions by 2050 to align with the climate change
planetary boundary. The Science Based Targets initiative (SBTi) has set targets for the ICT sector
to reduce greenhouse gas emissions by 45% by 2030 relative to 2015 levels and by 90% by 2050 to
align with the climate change planetary boundary.

However, despite their public goals of reaching carbon neutrality, both Microsoft and Amazon
reported increases in their carbon footprints in their 2024 Environmental Sustainability Reports .
Microsoft increased by 29.1% compared to 2020 [29], with scope 3 emissions—primarily driven by
supplier purchases and client usage—accounting for 96.3% of their total carbon footprint. Similarly,
Google reported a 48% increase in GHGs emissions compared to 2019 [30], which was "primarily
due to increases in data center energy consumption and supply chain emissions".

2.1.3 Sector’s Materiality

While studies frequently focus on the environmental footprint associated with the energy consumption
of ICT, they often overlook the impact of hardware production, which can be significantly greater [31].
For instance, Gupta et al. [32] showed that reducing a data center’s energy consumption alone fails to
reduce its carbon emissions, as hardware manufacturing can play a bigger role in its environmental
impact. Moreover, the environmental impacts of ICT extend beyond climate change, as the sector also
contributes to the transgression of other planetary boundaries, as evidenced in Europe in [33].

Furthermore, achieving net-zero GHGs emissions by 2050 [34] will require a significant shift
away from fossil fuels, with the majority of energy sources transitioning to electricity. Until 2030,
this implies a massive ramp-up of critical mineral immobilization to shift our energy infrastructure,
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including renewable production facilities (e.g. solar farms and wind turbines), stationary storage,
and non-carbonated transportation. A mineral is considered critical when it serves an essential role
for energy production, distribution and storage, and when geological, political, or technical reasons
may hinder its supply chain. As a matter of fact, the short-term availability of critical minerals
may jeopardize the necessary manufacture of electricity plants, storage infrastructures, and electrical
vehicles [35].

ICT has an ever-growing demand for minerals [36], both in quantity and diversity, contributing to
critical mineral immobilization for its extensive materiality through the spread of data centers, network
infrastructures, and devices. Many studies on critical minerals supply chains do not take into account
the impact of ICT’s constant growth, which has remained a blind spot in the forward-looking transition
studies [37]. Yet, the manufacturing of our surrounding digital devices (workstations, screens,
tablets, smartphones, desktops, laptops, and even data centers) requires from critical minerals [38].
Emsbo et al. even claim that manufacturing a smartphone requires minerals covering up to two-thirds
of the periodic table [37].

In a world where natural resources are finite, recycling is often proposed as a solution, particularly
in light of the increasing generation of e-waste. The Global E-waste Monitor [39] estimates that
the cumulative world generation of e-waste rose from 44.4 megaton (Mt) in 2014 to 62 Mt in 2022,
and is expected to grow to 82 Mt by 2030. This rise is attributed to higher consumption rates of
Electrical and Electronic Equipments (EEE), shorter product life cycles, and limited repair options.
The improper disposal of e-waste leads to significant global disparities and notably causes irreversible
pollution to soil [40], and seafood [41]. Unfortunately, recycling activities have been unable to curb, or
even match, this growth: only 13.8 Mt were officially documented as properly collected and recycled
in 2022. In the European Union, it is estimated that less than 40% of e-waste is recycled [42]. This
figure, however, only reflects the proportion of collected electronic equipment and does not account
for the actual recovery of materials from these devices.

Bashroush et al. [43] demonstrate through two recycling scenarios that the most critical server
components cannot be fully recovered, and that a significant portion cannot be recycled at all.
Unfortunately, current state-of-the-art recycling technologies are unable to produce the high-purity
substances required to manufacture ICT components. The ICT sector uses alloys containing highly
diluted minerals, notably for miniaturization and short-lived devices, hence limiting their recycling
potential to around 1 % [38, 44]. Moreover, for recycling to take place, the product or infrastructure
must have reached the end of its lifecycle and be properly collected, which necessarily takes time,
while the ongoing energy transitions require the rapid deployment of an important quantity of new
infrastructure. For example, copper is currently immobilized for 45 years, on average [45], which
seriously limits its availability for recycling. Therefor, for the next two decades our society massively
depends on resources of primary origin [38]. This implies that if the risks associated with critical
mineral depletion are not addressed quickly, global progress towards net-zero will be significantly
hampered [46].
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For several decades, numerous studies [37, 47, 38, 45] have examined the interdependence of
the energy transitions to mineral resources of primary and secondary origins—obtained from mining
and recycling [44], respectively. In this context, given the consensual objective of limiting GHG
emissions [48] and the acknowledged limited availability of mineral resources, researchers and
policy makers need data to support the energy transition and possible upcoming race for minerals.
Unfortunately, research communities are still missing adequate analysis tools and metrics to properly
evaluate and design effective policies to mitigate the mineral footprint of ICT. Suitable data is not
yet available, as existing studies mainly rely on the combination of bottom-up Life Cycle Assessment
(LCA) data and top-down market data to assess the ICT sector’s environmental footprint [1]. When
mineral depletion is considered, it is thus typically measured through the Abiotic resource Depletion
Potential (ADP) impact category, which aggregates various minerals into a single category, hindering
detailed studies of individual minerals (e.g. their criticality, grades, recycling, etc.). Furthermore,
this indicator has been criticized for assuming that ultimate reserves are a good proxy for extractable
reserves and for failing to account for resource quality and accessibility after extraction [49].

In Chapter 3, we introduce a novel approach for evaluating the evolution of the ICT sector’s
environmental footprint across multiple impact categories, and notably conduct an analysis on specific
minerals.

2.2 Environmental Impact Assessment Methodologies

2.2.1 Bottom-Up vs. Top-Down Approaches

Different methodologies and standards are defined and often used in combination to assess the
environmental footprint of the ICT sector, as well as for specific products and services. Such
approaches for calculating environmental impacts can be categorized as either top-down or bottom-up.
A top-down approach starts by examining the entire system, using aggregate statistics and input-output
relationships to model its overall behavior. From this broad perspective, the system is subsequently
decomposed into smaller components, allowing analysis and insights at the sub-system or element
level. For example, Chan et al. [50] employ this approach to model the energy intensity of the
Internet. By dividing the total estimated energy consumption by the traffic over a given period,
they derived an intensity metric expressed in kWh per gigabyte of data transferred. This metric can
then be used at a smaller scale to estimate the energy consumption of individual internet exchanges.
Unfortunately, top-down approaches generally suffer from an averaging bias, a distortion that occurs
when the average of a dataset misrepresents the underlying data or masks important variations, which
limits their usefulness in identifying specific action levers. For instance, in the case of modeling the
Internet’s energy intensity, such an approach only reveals two broad reduction levers: either reducing
the amount of data transferred or lowering the overall energy footprint of the ICT sector.
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In contrast, a bottom-up approach is based on direct observations from specific case studies [51],
which are then generalized to represent larger-scale systems. Schien et al. [52] use this approach to
model the energy intensity of the Internet, by scaling the energy consumption of devices within a
simulated Internet Service Provider (ISP) network. This approach directly captures changes made to
the system directly, without relying on structural changes, as seen in a top-down approach. As such, it
allows for the identification of the specific contribution of each resource to the overall environmental
impact. However, this approach may be less representative due to the risk of overgeneralization and
the potential to mask significant differences arising from variability between the assessed and the
installed systems.

Most studies on the environmental footprint of the ICT sector combine both top-down and bottom-
up approaches to obtain more accurate estimations [1]. For example, Malmodin and Lundén [8] used a
bottom-up approach to assess the environmental impact of user devices, while employing a top-down
approach for data centers and networks.

2.2.2 Life Cycle Assessment

A well-established bottom-up approach is Life Cycle Assessment (LCA), as defined by the ISO
14040 [53]. An LCA is the study of the potential environmental impacts contribution of a product
or service across its entire life cycle—i.e., from raw material acquisition to waste management via
production and use phases. It is both employed in both the industrial and academic context [54, 55].
The analysis is performed for a specific Functional Unit (FU), a quantitative measure of the functions
provided by the product or service [56], allowing to compare two systems with the same FU from an
environmental perspective. By using a systematic overview and perspective, the LCA approach helps
to identify the shifting of a potential environmental burden between life cycle stages or individual
processes [57]. A screening LCA is simpler to conduct and is established based on readily available
data [58], and thus provides a high-level view of impacts to identify the main sources and those that
require deeper examination.

Ekvall [59] defines two types of LCA: attributional, which aims at describing the environmental
properties of a life cycle and its subsystems, and consequential which aims at describing the effect of
changes within the life cycle. Whereas a consequential LCA aims at describing the long-term effect of
changes induced by the product or service and thus support decisions in the long term, an attributional
one maps the environmental impacts that a product can be made accountable for and is thus better
suited to support decisions that aim at improving its life cycle processes [60].

As described in Figure 2.1, the term Cradle to Gate refers to a partial LCA that covers the
environmental impact of a product from the extraction of raw materials (the cradle) to the point where
the product leaves the manufacturing process and is ready for shipping to the consumer (the gate).
This approach focuses on the production and manufacturing stages and does not include the potential
impacts of the product’s use or disposal. On the other hand Cradle to Grave is a comprehensive
LCA approach that includes all stages of a product’s life cycle. This method extends beyond the
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Environmental Footprint

Cradle to gate

Cradle to grave

Extraction Production Distribution Use End of life

Fig. 2.1 Comparison of Cradle-to-Gate and Cradle-to-Grave Boundaries

manufacturing stage to cover the use, disposal, and potential recycling of the product, effectively
capturing the potential environmental impacts from raw material extraction through to the end of the
product’s life [56].

For ICT products and services, comprehensive analyses from Cradle to Grave remain publicly
scarce, and the quality of the resulting data varies significantly. When openly available, their scope
and system boundaries are not always explicitly stated or consistent with other studies [1], and the
uncertainty of the results is rarely quantified [61]. In the case of modular products, such as servers,
hardware configurations can have a substantial impact on the asset’s environmental impact. In such
a case, LCA can suffer from an empty-shell bias, where only unrealistically low-end configuration
modelings are published, potentially underestimating the true environmental impact.

Lack of reference data and uncertainties

Truncation errors can occur in LCA due to the inability to fully analyze the entire complexity of
production chains. As a result, certain upstream chains have to be cut-off, leading to potential
inaccuracies and underestimations [62]. These omissions are not the only source of uncertainty within
LCAs, as the ecosystem often lacks sufficient data on the environmental impact of the resources
it consumes [63], resulting in reference data associated with high uncertainties [64]. Additionally,
most Life Cycle Inventory (LCI) databases are closed-source, which hinders the goal of conducting
transparent and reproducible research [65].

Arushanyan et al. [66] notably emphasize that rapid technological development is a significant
source of variability in LCA results, impacting the entire life cycle of ICT products and services.
They also identify another source of variability arising from the assumptions and hypotheses made
during the modeling process. Furthermore, the authors highlight that one of the key challenges in
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ICT-related LCAs is the thorough documentation of these assumptions and modeling hypotheses,
which is essential for ensuring transparency and consistency in the assessment.

The lack of openly available data, the complexity of ICT systems and their variability make it
difficult to assess their impact. For instance, while Andrae et al. [67] estimate the worldwide data
centers consumption to be around 299 terawatt-hours (TWh) in 2020, China’s State Grid Energy
Research Institute released a report stating that Chinese data centers consumption alone was around
200 TWh the same year [68].

While ICT-related LCA is associated with high levels of uncertainties, the uncertainty of results
is rarely quantified [61, 69]. To tackle these limitations, Hischier et al. [70] proposes a systematic
sensitivity analysis as a solution, as assumptions made at the data inventory level significantly influence
the outcomes. Unfortunately, such extensive analyses are time-consuming due to the large data flows
to handle.

The handling of uncertainties in LCAs is not limited to the ICT sector [71]. Indeed, the result
interpretation phase in LCA is particularly critical and can become subjective and time-consuming.
One common approach to assess uncertainties in LCA is the Monte Carlo method [72]. However,
it requires a high number of simulations, resulting in a high calculation time [73], and is based on
scenarios arbitrarily defined in the sensitivity analysis step. To improve the clarity of interpretation,
fuzzy sets have been proposed and adopted as means to quantify and propagate imprecision and
uncertainties within various LCA steps [74–76]. However, despite being promising, fuzzy logic is not
yet implemented in LCA software [73]. To the best of our knowledge, such methodology has not yet
been used within ICT-related LCAs, a field involving particularly high uncertainties.

Limitations

While an LCA reveals direct environmental effects, it does not capture the broader role of ICT as
an enabling technology [77]. Notable limitations of LCA include its inability to account for higher
order effects such as rebound effects [78]. Additionally, end-of-life impacts are often excluded in
ICT-related LCAs due to the scarcity of data on e-waste collection and recycling rates [33, 79].

In Section 4.2, we present a methodology designed to systematically evaluate uncertainties
originating from reference data sources, propagate these uncertainties throughout the LCA process,
and pinpoint their contributions to the overall uncertainty in the results.

2.2.3 Environmentally Extended Input-Output Analysis

Environmentally Extended Input-Output Analysis (EEIOA) is a top-down environmental impact
assessment approach based on Input-Output Analysis (IOA), a subfield of economic analysis that
models economic systems as networks of exchanges of goods and services between defined economic
sectors. This approach was first introduced by Leontief [80], who examined how changes within
one economic sector can influence and impact other sectors within the economy. IOA employs an
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economy-wide top-down perspective, representing the interlinkages between different branches of
a national economy or various regional economies. Multi-Regional Input-Output (MRIO) models
extend this approach to cover the entire global economy, in a format consistent with the recommended
accounting systems proposed by the UN, allowing for international comparisons across countries
and regions. The data for these models are expressed in monetary flows and are typically reported
annually using national statistics.

In IOA, the economy is characterized by a network of input-output relationships structured in a
matrix format, where each sector both consumes inputs from and supplies outputs to other sectors and
to final demand. This structure allows IOA to assess the broader economic repercussions of changes
in one sector, by tracking the interdependencies among various producing and consuming sectors
within an economy. Specifically, IOA measures the relationship between a given set of demands
for final goods and services and the inputs required to meet those demands. By integrating data on
production inputs, such as the resources required, EEIOA enables the calculation of indicators related
to output intensities [81].

By analyzing the embedded environmental footprint within monetary flows, for instance using
metrics like kgCO2eq / $, EEIOA enables the assessment of a sector’s environmental footprint across
multiple categories, such as GHGs, water consumption, and land use. These factors are derived by
combining, normalizing, and adjusting environmental data with economic data to calculate relevant
coefficients [82]. This method can help identify emerging trends and critical areas of concern by
determining the total upstream resource requirements and associated environmental impacts necessary
to meet the final demand of a country or an industry [62]. By tracing inter-business and inter-
country monetary flows back to final consumption, this approach enables the assessment of upstream
environmental impacts. It does so by utilizing translation factors to account for various environmental
consequences, providing a comprehensive analysis of the broader environmental footprint associated
with economic consumption. EEIOA has notably been employed to evaluate the upstream footprint
for nations [83], households [84], and final goods [85]. The main advantage of input-output analysis
is that it allows calculating material footprints for all products or industries, also those with very
complex global supply chains, as the whole economic system is included in the calculation system
[86, 87]

The most common philosophy in the EEIOA literature is consumer responsibility [88], where the
ultimate responsibility for environmental impacts is assigned to the end consumer who purchases a
good or service [89]. The hypothesis assumed is that the consumer, being at the very end of the value
chain, bears the accumulated environmental impacts incurred during production. The key assumption
in EEIOA is that all material use and environmental impacts are driven by final demand and that all
material use can be attributed to elements of final demand, following a consistent accounting logic.
This approach ensures that double counting is avoided, as the production emissions across the full
upstream supply chain are allocated only once to final consumption [90].

Using EEIOA with China as a case study, Zhou et al. [91] observed a rapid growth in embodied
emissions within the ICT sector, attributing this primarily to the expanding final demand for ICT
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products. San Miguel et al. [92] used MRIO to evaluate the environmental and socio-economic
sustainability of ICT, particularly in telecommunication networks. They used EEIOA to assess the
carbon footprint and employment generation for internet services in six geo-demographic zones,
providing a complementary approach to traditional process-based LCA. The study found that most
ICT network carbon emissions and employment were associated with the manufacturing of end-user
devices in China. The annual carbon footprint of the ICT network in Lima was about three times
higher than estimates from conventional LCA, highlighting the difficulties in comparing results from
different methodologies due to variations in system boundaries, disaggregation levels, and database
precision.

Lutter et al. [62] identified two key disadvantages of using EEIOA. The first major drawback is that
EEIOA relies on aggregated economic sectors and product groups, operating under the assumption that
each sector produces a homogeneous product. This means that when a single sector produces different
products with potentially very different material intensities or carbon footprints, these are averaged
together, potentially obscuring significant variations. The second limitation lies in the assumption
of proportionality between monetary and physical flows. Price disparities between industries can
occur, particularly when aggregating various types of materials [93]. This assumption may result in
inaccuracies when evaluating environmental impacts, as monetary values may not precisely reflect the
actual physical resource consumption or the associated environmental burden.

In Section 3.2, we use EEIOA to assess the carbon footprint of the ICT sector and correlate the
results with reference studies

2.3 Software Environmental Footprint

While the environmental footprint of ICT primarily arises from hardware, it can be argued that
software nonetheless holds a share of responsibility. Indeed, the energy consumption of ICT is
steered by software deployments. The rise of device manufacturing is driven by the development and
deployment of increasingly sophisticated software, that is ever more demanding in computing power.
Furthermore, e-waste generation is partly driven by software-induced obsolescence: new software
generally requires more computing resources, driving the need for renewing existing equipment and in
some cases features may even be arbitrarily restricted or updates discontinued on functional hardware.

In 1997, Nathan Myhrvold, the Chief Technology Officer of Microsoft, defined his four laws
of software [94] predicting that the size and complexity of software would continue to increase
indefinitely, as follows:

• Software is a gas: it expands to fit the container it is in

• Software grows until it becomes limited by Moore’s Law

• Software growth makes Moore’s Law possible: people buy new hardware because software
requires it
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• Software is only limited by human ambition and expectation: we’ll always find new applications
and new users

Nearly thirty years later, these laws remain largely valid, as evidenced by the continually expanding
software services industry [95]. However, they can be seen as incompatible with the realities of a
finite world, underscoring the responsibility of the software industry to shift this paradigm in order to
operate within planetary boundaries.

Of course, one can also rightfully argue that software holds significant potential to enhance
understanding of the climate crisis, particularly through the creation and application of climate
models [96], as well as supporting mitigation and adaptation strategies [97]. Nonetheless, it is
essential that the development and deployment of software also align with sustainability goals.
Current efforts to improve software sustainability, however, predominantly concentrate on reducing its
energy consumption through performance optimizations [98]. These include strategies such as energy-
efficient virtual machine placement in data centers [99], energy monitoring throughout software
release cycles [100], and addressing energy-related code smells [101].

However, as previously discussed in Subsection 2.1.2, the energy consumed during the usage phase
of a service or product may not always be the primary driver of its environmental impact. Therefore,
adopting a more holistic approach that considers the entire life cycle and broader environmental
impact categories is essential.

2.3.1 Software Environmental Footprint Estimation Approaches

Several standards have been proposed to estimate the environmental footprint of digital services.
While not strictly focusing on software, these approaches target software-based systems and includes
software’s footprint by taking into account the devices and equipment required to run it.

The ITU L.1410 [102] standard complements the ISO 14040 [53] and 14044 [56] and proposes a
Methodology for environmental life cycle assessments of information and communication technology
goods, networks and services. It defines a set of requirements that LCA practitioners should strive
for, as compliance may not always be feasible. In the specific context of ICT services, a three-tier
architecture can be considered—encompassing end-user devices, networks, and data centers.

It was refined in France by the General Principles for the Environmental Labelling of Consumer
Products, Methodological Standard for the Environmental Assessment of Digital Service [103], which
aims to provide a set of common rules to assess and inform consumers about the environmental
impact of digital services. This includes methodologies to assess the footprint of ISP and hosting
services in datacenters. The Greenhouse Gas Protocol Product Life Cycle Accounting and Reporting
Standard (Product Standard) [104] gives requirements and guidance for organizations to quantify and
report an inventory of GHGs emissions and removals associated with a specific product. The GHG
protocol ICT’s Sector Guidance [105] define the assessment of software life cycle GHGs impact with
predefined phases (material acquisition and preprocessing, production, distribution and storage, use,
and end of life), and consider the software development. However, unlike the LCA approaches, it
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uses a single category of impact and only accounts for GHGs emissions. Besides, upstream emissions
such as buildings, are not taken into account.

Industry working groups dedicated to addressing the environmental footprint of ICT have also
suggested alternative methodologies for estimating the footprint of software-based systems. The Green
Software Foundation defines the Software Carbon Intensity (SCI) [106], methodology to compute
the rate of carbon emissions per functional unit for a software system, which was a standardized in
2024 as ISO/IEC 21031 [107]. It takes into account both energy consumption and reserved hardware
embodied emissions, but only covers GHGs emissions and the usage phase of a project, not its
development. The Sustainable Digital Infrastructure Alliance (SDIA) proposes a methodology to
compute the carbon emissions of server-side applications [108]. This approach encompasses both
energy consumption and embodied carbon emissions, but only accounts for backend impacts and
excludes those of the network and end-user devices.

2.3.2 Software Development Life Cycle

The environmental footprint of a software development may be impacted by several factors, spanning
human factors to infrastructure choices. When developing software, developers typically follow docu-
mentation and guidelines aimed at optimizing maintainability, performance, and usability. However,
there is a notable lack of guidance and knowledge on how to reduce the environmental impact of their
work [109], as well as the absence of comprehensive sustainability models [110–114]. Despite this,
developers are generally willing to adopt sustainability practices if such models and guidelines are
made available and can be easily integrated into their workflows [115].

To define a Software Development Life Cycle (SDLC), the international standard ISO 12207 [116],
entitled Systems and software engineering - Software life cycle processes, defines a set of processes
organized as requirements, design, implementation, testing, deployment, maintenance and retire-
ment [117]. In projects, these life cycle processes can further be organized in different models, such
as Waterfall, V-Model, Scrum. . . [118]

Trends in green computing studies published since 2012 indicate a clear and growing interest in
the field [119]. Several approaches have been proposed [112, 120, 121, 111, 113, 117] that aim to
leverage software life cycle models to minimize the environmental impact of software development and
operation. Some authors suggest utilizing the software life cycle to reduce the environmental impacts
of the different processes. For instance, Kumar et al. [120] propose the Green Star model, which
assesses and rates each process of the SDLC based on its environmental impact. Lami et al. [121] look
at the sustainability factors of software processes and propose specific reduction objectives, including
carbon footprint, energy consumption, waste generation, and travel. Additionally, they introduce new
processes to ensure that these sustainability objectives are met throughout the software life cycle.

SDLC processes can also be used to reduce the environmental impact of the resulting software
itself. Shenoy et al. [117] propose specific changes to the SDLC and offer guidelines for each process
to achieve this goal. Similarly, Dick and Naumann [112] introduce processes specifically aimed at
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ensuring the product sustainability, such as sustainability reviews and sustainability retrospectives.
The GREENSOFT model and its associated metrics [113, 111] provide a comprehensive conceptual
framework that addresses both process and product sustainability, emphasizing the importance of
considering software products throughout their entire life cycle.

To the best of our knowledge, only two papers tried to assess the carbon footprint of software
products’ life cycle. The first attempt was conducted by Taina et al. [122], where the authors proposed
different approaches to assess the carbon footprint of phases on an artificial software project. By
giving estimates for each phase, they emphasize that the way software is developed and delivered
matters, as well as how usable it is. They mostly focus on energy consumption and paper printing, but
conclude that traveling would dominate the result, if included. Kern et al. [123] focused on whether
employee commuting should be included in software carbon footprint assessment, and conduct two
case studies on micro-enterprises in Germany. They compute factors of impact for this context to give
an impression of the magnitudes, and show that the distribution of environmental impacts between
the build and the run phases can vary greatly depending on the number of copies sold. Both of these
approaches do not cover the complete life cycle of the resources used, especially the impact of ICT
equipment manufacturing, but only account for their energy consumption.

In Section 4.3, we develop a methodology and associated tool to assess the environmental impact
of software from a life cycle perspective, extending the analysis beyond its usage phase.

2.3.3 Sustainable software

Despite being commonly perceived as immaterial, software is continuously expanding its strain on
digital infrastructures and devices, whose rapid renewal and growth impede the progress of our society
toward achieving Sustainable Development Goals (SDGs). Sustainable development was defined in the
Bruntland report [124] as the "development that meets the needs of the present without compromising
the ability of future generations to meet their own needs", and its three dimensions as social, economic
and environmental. Lago et al. [125] introduce a fourth dimension of sustainability for software: the
technical pillar, as the long-term use of software-intensive systems and their appropriate evolution
in a constantly changing execution environment. Hilty et al. [126] describe the sustainable use of a
system as not jeopardizing its ability to fulfill a function for a given period.

Koziolek [127] considers long-living software as sustainable if it can be cost-efficiently maintained
and evolved over its entire life cycle. Penzenstadler et al. [128] present two interpretations of the term
sustainable software: its purpose being to support sustainability goals, or its code being sustainable,
agnostic of its purpose.

The UN proposed 17 SDGs to address poverty, inequality, climate change, environmental degrada-
tion, peace, and justice [129]. Calero et al. [130] studied their integration with the two interpretations
of sustainable software, and concluded that both approaches are complementary and necessary to
support them. Examples of software projects whose purpose is to support sustainability goals can
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be found in Open Sustainable Technology [131] curated list of open-source projects that "sustain a
stable climate, energy supply, biodiversity and natural resources."

For the second interpretation of software sustainability,—i.e.,, focusing only on technical as-
pects while being agnostic of its purpose—Calero et al. [132] defined two categories of indicators:
resource-oriented ones that cover the sustainable use of the planet, and well-being ones that measure
the fulfillment of human needs. They stress the importance of combining both to quantify sustainable
development. Hilty’s framework [126] classifies the positive and negative effects of ICT on the
environment among three orders of effect. The first-order, or direct effect, encompasses the negative
environmental impacts of ICT hardware life cycle. The second-order, or effect of use, covers optimiza-
tion and substitution effects, as well as obsolescence and induction effects. Finally, the third-order
or systemic effects considers the long-term reaction of the dynamic socio-economic system to the
availability of ICT services, notably rebound effects. For Calero et al. [133], the second and third
orders of effect depend on factors out of developer’s control at development time.

However, suitable and actionable metrics to foster sustainability from a software architect’s point
of view are still lacking. Penzenstadler et al. [134] argue that software environmental sustainability
must be explicitly considered as a nonfunctional requirement in the software engineering process.

Following the ISO 25010 [135], Jagroep et al. [136] frame sustainability as a quality attribute,
and focus on resource consumption sub-characteristics. They argue that software architecture can
help in considering software as interrelated components rather than a single complex entity, to find
the drivers of its energy consumption. While advancing five quality metrics they focus on energy
consumption as a sustainability driver, thus overlooking hardware embodied environmental footprint.
Lago et al. [137] introduced the Sustainability Assessment Framework, which allows to assess quality
attributes and identify interplay between these attributes with respect to their impact on the different
pillars of sustainability.

Taking the viewpoint of cloud infrastructure consumers instead of providers, Vos et al. [138]
suggest 18 architectural optimization tactics, yet they also consider exclusively energy efficiency.
To evaluate the sustainability of cloud software architectures, Fatima et al. [139] notably identified
the following quality attributes: resource utilization, scalability, and elasticity. Taina et al. [140] has
proposed multiple green software quality factors, including feasibility (how resource efficient it is to
develop, maintain, and discontinue software) and efficiency (how resource efficient it is to execute
software).

All of these software architecture sustainability metrics have similar objectives: to reduce waste
and save resources.

However, they overlook waste resulting from resource over-provisioning, allocating more comput-
ing resources than necessary for the actual workload, which can occur when systems are designed
to handle peak loads but remain underutilized for most of their operation. These metrics also fail to
consider the functional usefulness of software, specifically how effectively it satisfies user require-
ments in relation to its resource consumption. Notably, even if a software application is optimized
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for computational efficiency, it may still consume a significant amount of resources while providing
limited functional value, ultimately contributing to indirect resource waste.

While there is a growing demand for more and more processing capabilities production clusters
are observed to function at sub-optimal utilization levels, primarily due to excessive resource reser-
vation by software applications [141]. Delimitrou and Kozyrakis [141] demonstrated on a Twitter
production cluster, that CPU utilization is consistently below 20%, even though reservations reach up
to 80% of total capacity. Memory use is higher, 40–50%, but still differs from the reserved capacity.
Reiss et al. [142] showed similar results on a Google cluster, which achieves CPU utilization of
25–35% and memory utilization of around 40%, with 75% and 60% of available capacity reserved,
respectively. A Microsoft study [143] unveiled that 75% of jobs submitted to a production cluster
were over-provisioned, with as much as 10 times more resources than necessary for 20% of the
jobs. Although trial and error can assist software stakeholders in determining the optimal amount of
computing resources needed, resource reservation was observed as mainly static: over one month, over
80% of periodic jobs showed no adjustments in their resource provisioning. Sustainability awareness
has started to be integrated into software architecture evaluation methods [144], but still lacks suitable
metrics that encompass the environmental consequences of over-reserved hardware resources.

In Chapter 5, we propose a conceptual framework intended to guide software stakeholders in the
design of software ecodesign metrics. Within the domain of software architecture, we introduce two
novel metrics specifically targeting resource waste induced by software design choices.

Background: The growth of the ICT sector has been accompanied by an increase in its
environmental footprint, making it imperative for the sector to actively contribute to the path
toward sustainable development. For the environmental pillar, this requires not only accounting
for all phases of the life cycle of hardware involved, rather than focusing solely on energy
consumption, but also tracking and reducing environmental impacts across various impact
categories. Resource depletion and mineral footprints, in particular, remain a blind spot,
especially in light of the ongoing energy transition.
At the software level, efforts to identify actionable reduction levers remain largely theoretical
and lack concrete metrics. When metrics do exist, they primarily address energy consumption,
thus overlooking critical issues such as resource waste resulting from over-reservation of
resources.



Chapter 3

Assessing the Environmental Impact of the ICT
Sector through Environmentally Extended
Input-Output Analysis

Given the systems’ complexity and rapid evolution, the ICT sector still struggles to understand its
environmental impact and lacks openly available data to facilitate such assessments.

The GHGs emissions of the ICT sector has been estimated by three main studies: [67, 7, 8].
Freitag [1] et al. conducted the tedious work of bringing the studies to similar scopes in order to
compare and assess them, as well as exchanging with their authors to obtain more up-to-date estimates.

These studies employ a hybrid approach by combining both bottom-up and top-down methodolo-
gies. However, they primarily rely on GHGs footprint assessed through attributional LCAs, which
limits their ability to conduct meaningful analyses of evolutionary trends, and incurring truncation
error resulting in omitting upstream emissions coming from the supply chain in their accounting. In
this chapter, we first compare the boundaries of these reference studies with the Organisation for
Economic Co-operation and Development (OECD)’s definition of the ICT sector. Following this, we
utilize EEIOA to examine the evolution of the ICT sector’s GHGs footprint, thereby assessing the
validity of claims regarding the sector’s emissions trend. Finally, we employ EEIOA to evaluate the
upstream material footprint of the ICT sector, focusing specifically on three key metallic elements:
copper, tin, and nickel.

3.1 Understanding the Sector Boundaries

As outlined in Subsection 2.3.1, the ITU L.1410 [102] provides a methodology for determining the
environmental footprint of ICT solutions using three tiers: data centers, networks, and consumer
devices. These tiers are typically considered as the boundaries when assessing the direct environmental
impact of the ICT sector as a whole.
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However, the definition of these boundaries, particularly concerning consumer devices, varies
across different studies, resulting in outcomes that are difficult to compare. Moreover, this boundary
of ICT is narrower than that defined by the United Nations Statistics Division (UNSD), which
encompasses a broader range of economic activities related to the sector, notably service industries
such as software. In this section, we first compare the carbon footprint estimates from key reference
studies of the ICT sector and then examine the OECD economic definition of the ICT sector.

3.1.1 Sector Boundaries in Reference Environmental Footprint Studies

Andrae et al. [6] focus primarily on the use stage and the cradle-to-gate (cf. Subsection 2.2.2) produc-
tion electricity footprint of a limited number of ICT devices, as well as the energy consumption of the
infrastructure for networks and data centers. Consequently, their assessment only considers the elec-
tricity footprint, excluding other manufacturing aspects related to the carbon footprint. Additionally,
transport and end-of-life treatment are not included. The authors employ a bottom-up approach for
user devices, using LCAs combined with predicted sales numbers. The consumer devices in the study
include desktops, monitors, laptops, smartphones, tablets, ordinary mobile phones, phablets, mobile
broadband modems, TVs, and home entertainment systems. However, it excludes personal drones,
robots, driverless automotive, portable batteries, printers and multi-function devices, digital and video
cameras, music players and similar digital media devices, network-connected white goods, smart
thermostats, home energy management systems, security systems, and satellites. For data centers
and networks, the study uses top-down traffic data trends from Cisco for the use phase and estimates
the associated electricity usage based on literature. To assess the production phase energy footprint,
the researchers arbitrarily consider a fixed share of the total electricity use: 5%, 10%, and 15% for
their best, expected, and worst-case scenarios, respectively. They calculate the electricity consumed
to produce all devices in use in a given year, regardless of when these devices were manufactured.
Consequently, this approach may furthermore underestimate the production energy for user devices.

Belkhir and Elmeligi [7] include both the production and operational energy of ICT for consumer
devices in their analysis. However, they consider the embodied carbon of data centers and networks to
be negligibly small, and therefore only account for their operational energy. The analysis includes user
devices such as desktops, laptops, displays, tablets, and smartphones, while all other ICT equipment
is out of scope, including TVs, set-top boxes, and printers. For each considered consumer device,
they calculate a Lifecycle Annual Footprint in kgCO2eq per year by dividing the total production
energy by the expected lifetime of each consumer product. To determine the embodied carbon
footprint for a given year, this ratio is then multiplied by the number of devices sold during that year.
For data centers, the analysis includes servers, communication, storage, cooling, and power. For
communication networks, it includes customer premises access equipment (CPAE), office networks,
telecom operators, cooling, and power. The estimates for data centers are derived from 2008 data
provided by [145], while the network estimates are based on data from the period 2007-2012 as
reported by [146]. The range of estimates in this study is significantly smaller than those reported
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Andrae [6] (including TVs) Belkhir [7]
Malmodin (in [1]) Malmodin(updated in [147])

Min Max Min Max

Consumer devices
Usage 350 550 143,9 202

375
228

Embodied - - 176,4 417,7 208

Networks
Usage 110 149 269,1

183,5
168

Embodied - - 0 34

Data centres
Usage 160 165 494,9

127
95

Embodied - - 0 30
3 tiers total embodied 138 209

Total 620 864 1084,3 1383,7 685,5 763

Table 3.1 Comparison of ICT Footprint in tCO2eq (Excluding TVs) Across Reference Studies

in [6], primarily due to uncertainties in the carbon footprint of user devices, particularly desktops
and displays. The authors indicate in [1] that including TVs could contribute an additional 435 TWh
solely from operational energy use. For data centers, their estimate is notably the largest, largely due
to the assumption of a Power Usage Efficiency (PUE) of 2.

Malmodin and Lundén [8] adopt a broader scope in their analysis, which includes not only the ICT
sector but also the Entertainment & Media sector. Their analysis of consumer devices encompasses a
wide range of products, including phones, desktops, laptops, computer peripherals, cameras, displays,
TVs, audio devices, gaming consoles, and some Internet of Things (IoT) devices. Additionally,
they consider "Other digital technologies or trends," which specifically include wearables such as
smart watches and fitness trackers, smart energy meters, control units, surveillance cameras, public
displays, payment terminals, and internet-connected communication devices in vending machines.
Their methodology aligns with the principles used in the two aforementioned studies, as they combine
sales numbers with LCAs for user devices. However, for networks and data centers, their estimates
are derived from extrapolations based on data collected from company reports, and these estimates
fall within the lowest range of the three studies.

The respective carbon footprints for the ICT sector in 2020, as reported in these reference studies,
are presented in Table 3.1. The comparison of these studies reveals substantial differences, primarily
due to variations in their scopes and methodologies. For instance, while Andrae’s study encompasses
a broader scope than that of Belkhir, it reports emissions that are up to two times lower, underscoring
inconsistencies in how boundaries are defined. A particularly significant source of discrepancy lies in
the reporting of embodied emissions, where considerable variation is observed between the studies.
Andrae’s study lacks detailed data for emissions, whereas Belkhir reports substantially higher values.
These wide-ranging results reflect the considerable uncertainties and methodological differences that
complicate the accurate estimation of the ICT sector’s environmental impact.

3.1.2 Sector Boundaries According to the International Standard Industrial Classifi-
cation

The ISIC is a system designed to classify worldwide economic data by industry. Developed by
the UNSD, it is periodically revised to reflect changes in the global economy and advancements in
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industries. ISIC covers a wide range of economic activities, from agriculture and manufacturing to
services and government functions.

The classification system is structured hierarchically in a four-level structure representing different
levels of detail: sections are divided into divisions, which are further divided into groups, and these
groups are divided into classes. For example:

• Section D - Manufacturing

– Division 15 - Manufacture of food products and beverages

* Group 151 - Production, processing, and preservation of meat, fish, fruit, vegetables,
oils, and fats

· Class 1511 - Production, processing, and preserving of meat and meat products

The ISIC Revision 3.1 [148], released in 2002, proposes an alternate aggregation for the ICT
sector, encompassing economic activity generated by the production of ICT goods and services,
following the boundaries standardized by the OECD.

Manufacturing industries included are intended to fulfill the function of information processing
and communication, including transmission and display, or must use electronic processing to detect,
measure, and/or record physical phenomena or to control a physical process. Service industries
included should enable the function of information processing and communication by electronic
means.

Table 3.2 Economic Classification of the ICT Sector in ISIC v3.1

Division Class Description ISIC definition This approach
30 - Manufacture of office, ac-
counting and computing ma-
chinery

3000 Manufacture of office, accounting and
computing machinery

✓ ✓

31 - Manufacture of electrical
machinery and apparatus,
N.E.C

3110 Manufacture of electric motors, genera-
tors and transformers

✗

✗
3120 Manufacture of electricity distribution

and control apparatus
✗

3130 Manufacture of insulated wire and cable ✓

3140 Manufacture of accumulators, primary
cells and primary batteries

✗

3150 Manufacture of electric lamps and light-
ing equipment

✗

3190 Manufacture of other electrical equip-
ment n.e.c.

✗

32 - Manufacture of radio,
television and communication
equipment and apparatus

3210 Manufacture of electronic valves and
tubes and other electronic components

✓

✓

3220 Manufacture of television and radio
transmitters and apparatus for line tele-
phony and line telegraphy

✓

Continued on next page
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Table 3.2 – Continued from previous page

Division Class Description ISIC definition This approach
3230 Manufacture of television and radio re-

ceivers, sound or video recording or
reproducing apparatus, and associated
goods

✓

33 - Manufacture of medical,
precision and optical
instruments, watches and clocks

3311 Manufacture of medical and surgical
equipment and orthopaedic appliances

✗

✗3312 Manufacture of instruments and appli-
ances for measuring, checking, testing,
navigating and other purposes, except
industrial process control equipment

✓

3313 Manufacture of industrial process con-
trol equipment

✓

3320 Manufacture of optical instruments and
photographic equipment

✗

3330 Manufacture of watches and clocks ✗

51 - Wholesale trade and
commission trade, except of
motor vehicles and motorcycles

5110 Wholesale on a fee or contract basis ✗

✗

5121 Wholesale of agricultural raw materials
and live animals

✗

5122 Wholesale of food, beverages and to-
bacco

✗

5131 Wholesale of textiles, clothing and
footwear

✗

5139 Wholesale of other household goods ✗

5141 Wholesale of solid, liquid and gaseous
fuels and related products

✗

5142 Wholesale of metals and metal ores ✗

5143 Wholesale of construction materials,
hardware, plumbing and heating equip-
ment and supplies

✓

5149 Wholesale of other intermediate prod-
ucts, waste and scrap

✗

5151 Wholesale of computers, computer pe-
ripheral equipment and software

✓

5152 Wholesale of electronic parts and equip-
ment

✓

5159 Wholesale of other machinery, equip-
ment and supplies

✗

5190 Other wholesale ✗

64 - Post and
telecommunications

6411 National post activities ✗

✓6412 Courier activities other than national
post activities

✗

6420 Telecommunications ✓

71 - Renting of machinery and
equipment without operator and
of personnal and household
goods

7111 Renting of land transport equipment ✗

✗

7112 Renting of water transport equipment ✗

7113 Renting of air transport equipment ✗

Continued on next page
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Table 3.2 – Continued from previous page

Division Class Description ISIC definition This approach
7121 Renting of agricultural machinery and

equipment
✗

7122 Renting of construction and civil engi-
neering machinery and equipment

✗

7123 Renting of office machinery and equip-
ment (including computers)

✓

7129 Renting of other machinery and equip-
ment n.e.c.

✗

7130 Renting of personal and household
goods n.e.c.

✗

72 - Computer and related
activities

7210 Hardware consultancy ✓

✓

7221 Software publishing ✓

7229 Other software consultancy and supply ✓

7230 Data processing ✓

7240 Data base activities ✓

7250 Maintenance and repair of office, ac-
counting and computing machinery

✓

7290 Other computer related activities ✓

Table 3.2 presents the divisions and classes that are part of the ICT sector, along with their
respective description. One can note that these categories are outdated when compared to the current
state of the ICT industry. The sector has undergone significant changes since 2002, with notable
omissions such as the lack of a dedicated class for data centers (which are comprised within data
processing and database activities). ISIC is periodically revised to account for these ongoing changes
in the global economy and advancements within industries.

The latest ISIC revision released in 2008, the fourth one, redefines the industries encompassed
within the ICT sector. It stipluates that The production (goods and services) of a candidate industry
must primarily be intended to fulfill or enable the function of information processing and communi-
cation by electronic means, including transmission and display”. As illustrated in Table 3.3, these
updated categories more accurately reflect the contemporary structure of the ICT sector. However, the
top-down approach that we use is based on the less granular 3.1 revision of ISIC, a limitation that will
be further examined in the subsequent section.

3.2 Evolutionary Trends in the Sector’s Carbon Footprint

Bottom-up approaches employed by current reference studies suffer from different boundaries,
between themselves as well as with economic standards. They rely on LCAs, which inherently
imply truncation error resulting in omitting upstream emissions coming from the supply chain
(cf Subsection 2.2.2). To adjust for such omissions when assessing the ICT sector environmental
footprint, Freitag et al. [1] used EEIOA to assess the ratio of supply chain typically omitted by LCA
methodologies. They estimate that truncation error causes an omission of around 40% of the total
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Class Description
ICT manufacturing industries

2610 Manufacture of electronic components and boards
2620 Manufacture of computers and peripheral equipment
2630 Manufacture of communication equipment
2640 Manufacture of consumer electronics
2680 Manufacture of magnetic and optical media

ICT trade industries
4651 Wholesale of computers, computer peripheral equipment and software
4652 Wholesale of electronic and telecommunications equipment and parts

ICT services industries
5820 Software publishing

6110 Wired telecommunications activities
6120 Wireless telecommunications activities
6130 Satellite telecommunications activities
6190 Other telecommunications activities

6201 Computer programming activities
6202 Computer consultancy and computer facilities management activities
6209 Other information technology and computer service activities

6311 Data processing, hosting and related activities
6312 Web portals
9511 Repair of computers and peripheral equipment
9512 Repair of communication equipment

Table 3.3 Economic Classification of the ICT Sector in ISIC Rev. 4

embodied carbon and around 18% of the use phase carbon. They draw these findings from their
previous studies[149, 150] which uses data from the UK government, which is not representative of a
worldwide approach.

However, global EEIOA data is publicly available, notably in Exiobase [151], allowing for more
granular handling of truncation errors compared to the generalization of national ratios. As such, we
can assess the ICT sector’s environmental footprint shifting from current bottom-up approaches [1]
to top-down one (cf. Subsection 2.2.1), capable of capturing impacts from the entire supply chain.
EEIOA was employed by Charpentier et al. [152] to assess the carbon footprint of the ICT sector and
to compare the results with reference studies. However, this analysis was limited to a single year and
did not encompass other impact categories.

3.2.1 EEIOA theoretical background

While Multi-Regional Input-Output (MRIO) tables are generally employed for macroeconomic global
analysis, encompassing inter-country and inter-industry flows, this study limits its scope to focus
specifically on the environmental impacts within the ICT sector on a global scale. To achieve this,
we adopt a single-region economy model that excludes imports and exports, thereby simplifying the
equations by treating the model as representative of the global economy.
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Fig. 3.1 Matrices of Input-Output Analysis (IOA)

Input Output Analysis

The foundation of IOA lies in the representation of global inter-industry monetary flows represented
via the transaction matrix Z, defined for k industries as follows:

Z =


Z1,1 Z1,2 · · · Z1,k

Z2,1 Z2,2 · · · Z2,k
...

...
. . .

...
Zk,1 Zk,2 · · · Zk,k

 (3.1)

As such, Zi j represents the trade from industry i to industry j, where i is thus the buyer and j the
supplier.

Similarly, the global final demand is represented using matrix Y , where Yid represents the demand
for category d for industry i. Examples of demand categories include final consumption expenditure
by the government, households, or non-profit organizations, changes in inventories, and gross capital
formation, . . . Matrices are represented graphically in Figure 3.1

The total final demand for industry i, denoted as yi is obtained by summing across all demand
categories:

yi = ∑
d=0

Yid (3.2)

The total industry output xi represents the total value of goods and services produced by an
industry or sector within an economy, encompassing both intermediate goods used as inputs in the
production process and final goods sold to consumers. Consequently, the total industry output xi for a
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given industry i can be described as the sum of inter-industry demand, where i is the supplier for j,
plus the total final demand yi:

xi = ∑
j=0

Z ji + yi (3.3)

The direct requirement matrix A represents the amount of input required from each industry to
produce one unit of output in each industry. It is calculated by multiplying global inter-industry flows
Z with the diagonalized and inverted industry output x:

A = Zx̂−1 (3.4)

Building on the linear economy assumption inherent to IOA and the established Leontief demand-
style modeling approach [153], the total output of industries can be determined for any given vector
of final demand y by using the total requirement matrix, also known as the Leontief matrix L. It
represents, for each industry, all direct and indirect inputs required along the supply chain to produce
one unit of output delivered to final demand.

Here, I denotes the identity matrix, which is sized equivalently to the direct requirement matrix A.
The calculation involves multiplying the final demand vector y by the Leontief matrix L, enabling the
determination of the total output required across industries to meet the given final demand:

x = (I−A)−1y = Ly (3.5)

This multiplication effectively captures the total production needed, considering both direct and
indirect inputs across the entire supply chain, to satisfy the specified final demand.

Environmentally Extended Input-Output

As detailed in Subsection 2.2.3, IOA can be extended with various factors of production, notably to
represent environmental impacts. In EEIOA, these are represented using the impact factors matrix F ,
where each row is an environmental impact category, and each column an industry.

Similarly to Equation 3.4, the normalized impact matrix S for an industry output x can thus be
obtained via:

S = Fx̂−1 (3.6)

To account for environmental impacts, two perspectives are employed: Production-Based Account-
ing (PBA) and Consumption-Based Accounting (CBA). PBA measures the environmental impacts
generated within a region due to the production of goods and services, including those destined for
export [154]. Under this approach, the region is held responsible for all emissions resulting from
its production activities, irrespective of where the products are ultimately used or who accounts
for the final demand [155, 156]. In contrast, CBA considers all environmental impacts associated
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Fig. 3.2 Comparative Scopes of Production-Based Accounting (PBA) and Consumption-Based Ac-
counting (CBA)

with the goods and services consumed within a region, regardless of where they are produced. This
method attributes emissions to the region based on its consumption patterns, meaning that emis-
sions from imported products are distributed to their regions of origin [157, 158]. The difference of
Production-Based Accounting (PBA) and CBA accounting are summarized in Figure 3.2.

The distinction between these two approaches underscores a key difference in assigning respon-
sibility: PBA focuses on the producers within the region, while CBA places responsibility on the
consumers, taking into account the entire global supply chain. However, in our approach, we consider
a single global region, which limits the applicability of distinguishing between exports and imports,
as these flows are nonexistent in this context. Nonetheless, inter-industry flows still occur, enabling us
to trace their impacts, particularly regarding the upstream footprint of the ICT sector. Therefore, we
employ Consumption-Based Accounting (CBA) to assess the upstream emissions that originate from
the supply chain as well as direct emissions.

To compute the CBA impact of an industry i, the impact induced by each supplying industry j
in fulfilling the total final demand yi should be summed. Specifically, this involves accounting for
the contributions of all industries i that supply inputs to industry j to meet its final demand. The
direct impact of industry i itself is calculated when j = i, representing the emissions or environmental
impacts directly associated with the production activities of industry i.

Di
cba = ∑

j=0
Li j × yi ×S j (3.7)
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Similarly, to compute the PBA impact of an industry i, including both its direct and downstream
impacts, all flows originating from other industries j that require inputs from industry i to fulfill their
own final demand y j should be summed as follows:

Di
pba = ∑

j=0
L ji × y j ×Si (3.8)

The PBA perspective accounts for the total environmental impact associated with industry i by
considering not only its direct emissions but also the downstream effects as it supplies goods and
services to other industries j.

EEIOA database

There are several EEIOA databases available, each providing its own unique set of impact factors and
transaction matrices. Some notable databases include:

• EXIOBASE1: A detailed multi-regional EEIOA database that covers 44 countries and 5 rest-
of-the-world regions, focusing on a wide range of environmental indicators.

• EORA2: A global multi-regional input-output (MRIO) database that provides detailed accounts
for over 190 countries, covering a broad spectrum of environmental data.

• GTAP (Global Trade Analysis Project)3: An input-output database with global coverage,
widely used for economic and environmental policy analysis, including energy use and green-
house gas emissions.

• WIOD (World Input-Output Database)4: A database offering time-series of world input-
output tables linked with environmental and socio-economic data for 40 countries plus the rest
of the world.

• OECD Inter-Country Input-Output (ICIO)5: Provides input-output tables and environmental
data for OECD and major non-OECD economies, enabling analysis of global supply chains.

• USEEIO (U.S. Environmentally Extended Input-Output Model)6: Developed by the U.S.
EPA, this database is specific to the U.S., focusing on environmental impacts across different
sectors.

• Eurostat7: These are European environmental accounts linked to the national accounts, includ-
ing input-output tables.

1https://www.exiobase.eu/
2https://worldmrio.com/
3https://www.gtap.agecon.purdue.edu/
4http://www.wiod.org/
5https://www.oecd.org/sti/ind/inter-country-input-output-tables.htm
6https://www.epa.gov/land-research/us-environmentally-extended-input-output-useeio-model
7https://ec.europa.eu/eurostat/web/environment/environmental-economy

https://www.exiobase.eu/
https://worldmrio.com/
https://www.gtap.agecon.purdue.edu/
http://www.wiod.org/
https://www.oecd.org/sti/ind/inter-country-input-output-tables.htm
https://www.epa.gov/land-research/us-environmentally-extended-input-output-useeio-model
https://ec.europa.eu/eurostat/web/environment/environmental-economy
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We chose to use Exiobase 3 because it provides a broader range of environmental impact categories
beyond GHGs emissions, which is particularly useful in our subsequent analysis of the mineral and
material footprint. Additionally, Exiobase 3 covers an extensive time period up to recent years and
includes numerous of economic sectors. It is also part of an ongoing academic research project, based
on open-source data and methodologies. However, there are some drawbacks to using Exiobase. One
limitation is that it utilizes the ISIC 3.1 classification, which may not fully reflect the current structure
of the ICT industry as discussed in Subsection 3.1.2. Additionally, a portion of the data in Exiobase 3
is now-casted, meaning that it is estimated using available data and statistical models before official
data is released [159].

Specifically, we use Exiobase 3.8.2 [160], and Pymrio 0.5.3 [161] to handle the data in Python,
notably the built-in industry and country aggregation.8 We use the industry by industry classification,
based on the fixed product sales assumption, meaning that an industry’s output is sold to other
industries and final demand in fixed proportions, and these proportions do not change as production
scales up or down. EXIOBASE provides data in constant prices to account for inflation, ensuring that
environmental footprint comparisons over time reflect real changes in production and consumption
rather than just price level fluctuations [82].

Table 3.2 outlines the ISIC divisions included in the ICT sector within this approach. Since
Exiobase only provides data down to the division level and not to the class level, the scope of our
analysis differs slightly from the standard ISIC classification. Within a given division, not all classes
are included in the ISIC definition of the ICT sector. This limitation requires us to make decisions to
avoid either broadening the scope too much or, conversely, omitting critical components of the ICT
sector. For instance, in the case of Post and Telecommunications, postal activities are included in our
analysis to ensure that telecommunications activities are fully captured. On the other hand, activities
such as the renting and wholesale of computers are excluded from our analysis, as including them
would require us to consider the entire wholesale or renting sector, rather than focusing specifically
on ICT-related goods and services.

3.2.2 ICT carbon footprint using EEIO

From the 126 impact categories available in Exiobase, we use GHG emissions AR5 (GWP100) |
GWP100 (IPCC, 2010), meaning that we consider GHGs emissions according to the IPCC Fifth
Assessment Report (AR5) with a Global Warming Potential (GWP) for 100 years [162].

Figure 3.3 presents a comparison of GHGs emissions from the ICT sector across various reference
studies, with boundaries normalized by Freitag et al. [1], alongside Exiobase data for the years 2015
and 2020. Notably, Malmodin’s study is the only one to suggest a decrease in the ICT sector’s carbon
footprint, while also reporting the lowest emissions among the four studies. In contrast, Andrae’s
study exhibits a substantial margin of error, particularly related to consumer devices, resulting in
significant variability in its estimates. Exiobase is positioned at the higher end of the emissions’

8https://pymrio.readthedocs.io/en/latest/math.html

https://pymrio.readthedocs.io/en/latest/math.html
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Fig. 3.3 Comparison of GHGs Emissions: Exiobase vs. Reference Studies for 2015 and 2020, with
Boundaries Normalized by [1]

spectrum, except when compared to Andrae, whose estimates fall within the upper range of all the
studies considered.

As previously discussed, these discrepancies can be attributed to variations in the reference data
used in the studies. Nonetheless, the emissions reported by Exiobase are within the same order of
magnitude as those in the reference studies despite adopting a different approach, offering a credible
basis for comparison. However, similarly to [163], the common finding that EEIOA-based carbon
footprints should be higher than LCA-based carbon footprints could not be confirmed. Interestingly,
Exiobase suggests a stagnation in the ICT sector’s carbon footprint between 2015 and 2020, which
hide more complex variations.

Exiobase is updated regularly with more up-to-date data. For each year, both economic and envi-
ronmental data are handled using the same scope, boundaries, and methodologies. This consistency
allows for reliable comparisons of footprints across multiple years, facilitating the identification of
trends over time.

Figure 3.4 illustrates the evolution of the GHGs footprint within the disaggregated ICT sector,
revealing a general upward trend in carbon emissions across all industries over the 25-year period. For
each year, Equation 3.7 is applied using the four industries that comprise the ICT sector according to
ISIC v3.1 (cf. Subsection 3.1.2). While Figure 3.3 indicated a similar footprint for the sector between
2015 and 2021, this figure provides a more nuanced perspective. It shows that emissions levels rose
steadily from 1995 to 2015, followed by a slower rate of increase between 2015 and 2020, and then a
new spike in 2021, aligning more closely with findings from reference studies.
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Fig. 3.4 Evolution of the GHGs Emissions Trends of the ICT Sector (CBA, 1995-2021)

The Post and Telecommunications industry exhibits more moderate growth in emissions compared
to other sectors. The Manufacture of Office Machinery and Computers shows an increase after
2000, but its overall emissions remain lower relative to other industries. In contrast, the service
industry Computer and Related Activities experiences a significant spike starting around 2010, with
emissions rising sharply and eventually surpassing those of Post and Telecommunications by the end
of the period. Despite the steady growth in ICT services, the manufacturing industries continue to
dominate GHGs emissions. This indicates that the environmental impact from producing electronics
and communications equipment is increasing more rapidly than that of service-oriented sectors,
suggesting that the manufacturing processes tied to ICT infrastructure are a significant driver of
emissions growth.

If we break down the ICT GHGs emissions for 2020 using Equation 3.7, as shown in Figure 3.5,
it is evident that direct emissions are relatively low compared to upstream emissions induced by
device manufacturing supply chain. Among upstream emissions, the energy sector has the most
substantial impact, primarily due to coal-based production. However, it is not the only upstream
sector contributing to emissions, highlighting that focusing exclusively on energy consumption is
insufficient to reduce the environmental footprint of ICT.

The reference studies use a more restricted scope of the ICT sector compared to the ISIC’s
definition of economic activities. This can be partly attributed to the usage of bottom-up approach,
which involves considering the number of devices sold and their footprint through LCAs. However,
this approach introduces two major sources of uncertainty: the number of devices accounted for
each and the impact assessments methods used. In contrast, the EEIOA approach aligns with the
economic definition of sectors and employs a top-down methodology. This approach simplifies the
analysis by providing a more comprehensive accounting based on financial flows but sacrifices some
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Fig. 3.5 Breakdown of Direct and Upstream GHGs Emissions in the ICT Sector (2020)

granularity in feedback compared to the bottom-up approach. We also observe that a more recent
ISIC classification could lead to improved data accuracy.

However, the EEIOA method allows for an easier assessment of the sector’s footprint on other
impact categories, which we will explore in the next section.

3.3 Evaluating the ICT Sector’s Mineral Footprint Using EEIOA

As discussed in Subsection 2.1.3, the sector’s footprint is not solely limited to carbon emissions, and
its ramification goes further than global warming. However, the interdependent nature of EEIOA
notably facilitates the elucidation of critical links between the ICT sector and mineral industries.

3.3.1 Analysis on specific minerals

For metals and minerals, Exiobase primarily utilizes data from the World Mineral Statistics developed
by the British Geological Survey [164], along with data from the International Minerals Statistics and
Information published by the US Geological Survey [165], and the World Mining Data provided by
the Austrian Ministry for Economy and Labour [166].

In this section, we focus on three critical elements: copper, nickel, and tin. Copper is essential
for data centers, particularly in servers, power distribution, cooling, and interconnections.9 Nickel
is crucial for energy storage in batteries due to its high energy density, stability, thermal safety, and
excellent electrical conductivity. Tin is a key component in solder because of its low melting point,

9https://www.visualcapitalist.com/sp/copper-the-critical-mineral-powering-data-centers/

https://www.visualcapitalist.com/sp/copper-the-critical-mineral-powering-data-centers/
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good conductivity, and strong adhesive properties. It is often alloyed with other metals, such as lead
or silver, to enhance its properties, which complicates its recycling potential.

Copper, nickel, and tin ore consumption demonstrate an increasing consumption trend by the ICT
sector, as illustrated in Figure 3.6, which sum the footprint of individual sectors using Equation 3.7 in
a manner similar to Figure 3.5. During this period, copper consumption by the sector nearly doubled,
the use of nickel ores has significantly escalated since 2010, and the consumption of tin ores follows a
similar upward trajectory, albeit at a less pronounced rate. The drop in 2015 can be explained by a
global recession in the mining sector, which was driven by weaker global demand and the slowdown in
China’s economic growth [167]. However, these trends are anticipated due to the surge in ICT device
production, which ultimately drives up the demand for metal and mineral resources. Nevertheless,
considering planetary boundaries, this upward trend can be seen as unsustainable given the finite
availability of these critical resources, especially in the context of the ongoing energy transition (cf.
Subsection 2.1.3).

Assessing the consumption patterns of a single sector is not sufficient to comprehend the com-
plexities of mineral footprints. Figure 3.7 illustrates the trends for copper, nickel, and tin ores among
the five largest consumer sectors along with the ICT sector, revealing similar upward trends across all
sectors. Notably, the Construction sector emerges as the largest consumer of these minerals. For all the
examined minerals, the ICT sector shows the lowest consumption levels, significantly overshadowed
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by the five major industries. This disparity underscores potential future challenges in securing these
essential minerals, especially when the needs of the ICT sector compete with those of the largest
consumers.

3.3.2 Challenges and Limits of the Methodology

While using EEIOA to assess mineral footprint allows for trend analysis, showing an increasing
consumption of minerals each year, it is accompanied by high uncertainties. Figure 3.8 displays the
normalized cumulative share of the 10 largest consumers of minerals between 1995 and 2021. For
each metal and mineral available within Exiobase, except for uranium and thorium ore, the major
consumers show consistent responsibility across the minerals. This suggests that while the extraction
quantities taken from mineral databases are accurate, the normalization process to monetary flows
hinders granular analysis for individual minerals.

As discussed in Section 3.1, the reference studies on the environmental footprint of the ICT
sector primarily rely on hybrid approaches, notably based on LCAs. These approaches, however,
inherit limitations associated with the ADP indicator, which aggregates various abiotic resources,
thereby hindering detailed analyses of specific metals and minerals. Although Exiobase provides
data on metals and minerals, it remains limited and insufficient to fully address these challenges.
Future research may benefit from employing alternative databases, such as the Global Material Flows
Database,10 as used in [62]. Nevertheless, Exiobase remains the most comprehensive database for
representing material extractive sectors.

10https://www.resourcepanel.org/global-material-flows-database

https://www.resourcepanel.org/global-material-flows-database
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The analysis of the ICT sector using EEIOA, and specifically Exiobase, reveals that although
the consumption of metals and minerals by the ICT sector has increased significantly since 1995, it
remains a relatively low consumer compared to other sectors. The Construction sector, in particular,
has experienced the most rapid growth in mineral consumption. Given the potential future depletion
of available minerals and their respective criticality Subsection 2.1.3, the ICT supply chain could face
uncertainty in securing essential resources.

Mineral impacts are multi-faceted and need metrics shared among several domains to be under-
stood and collectively acted upon. The assessment of mineral impacts cannot be correctly captured
by a single indicator, as the kgCO2eq indicator captures climate ones. Indeed, available resources
widely differ per host mineral, as do financial, environmental & social mining costs. Depending on
its criticality, a single mineral can block the whole ICT supply chain, even if used only in limited
quantity. [168] case study highlights that climate change has negatively impacted mines over the
past decade, yet most infrastructure is designed with outdated climate assumptions, and adaptation
planning is limited.

All the more, sourcing by-products aggravates supply difficulties. By-products, contrarily to main
or co-products, result from smelting & refining and generate less than 1 % of a mine’s revenue. Their
concentration and, therefore, their economic reality for mining investors, is only known once the mine
is in operation and its smelting & refining infrastructure is running [47]. The unavailability of a single
one—caused by any supply issue of their main companion minerals—may, therefore, affect the sector
as a whole. In future research, the application of EEIOA could be employed to analyze the impacts on
the ICT sector by utilizing more comprehensive and current databases containing detailed information
on metals and minerals.
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ICT sector’s footprint: Reference studies on the ICT sector’s environmental footprint vary in
their boundary definitions, and differ from the economic definition of the sector. All of these
studies employ a hybrid bottom-up and top-down approach, which perpetuates the limitations
of the ADP impact indicator in LCA, as it aggregates multiples metals and minerals into a
single category. This aggregation hinders meaningful analysis of the sector’s mineral footprint.
Environmentally Extended Input-Output Analysis (EEIOA) is a top-down approach that com-
bines economic and environmental data, enabling the study of environmental impacts embed-
ded in monetary flows. This method enables the assessment of a sector’s upstream footprint,
including the mineral supply chain of the ICT sector. By using normalized data, EEIOA also
facilitates trend analysis, demonstrating both the increasing GHGs emissions and mineral
consumption of the ICT sector.
In this chapter, we apply this approach to address the absence of trend data concerning the
environmental footprint across multiple impact categories within the ICT sector, while main-
taining alignment with its economic definition. However, such analyses remain constrained by
the quality of the reference environmental data, resulting in significant uncertainty.



Chapter 4

Bottom-Up Approaches to Evaluating Software
Environmental Footprint

While macro-level top-down studies are essential for driving transformative change and impulse
policymaking, they fall short of providing concrete, actionable insights that software practitioners can
readily apply. Given the growing environmental footprint of the ICT sector assessed in Chapter 3,
digital services should acknowledge their responsibility and transition towards more sustainable
practices.

However, as mentioned in Subsection 2.3.3, software practitioners currently lack the appropriate
tools and models to accurately assess and reduce the environmental impact of their work. When such
models are available, they often fall short of offering a comprehensive perspective, as they tend to
focus solely on energy consumption, while overlooking emissions and impacts generated during the
other stages of hardware life cycle.

In this chapter, we propose bottom-up tools designed to provide actionable insights that align with
the three-tier framework defined in the ITU L.1410 [102], addressing two of these tiers: backend in-
frastructure and user devices. We also present a systematic methodology for assessing and identifying
sources of uncertainties in environmental analyses. Finally, we conclude with the development of a
tool that enables comprehensive life cycle analyses of software products, encompassing all phases of
the Software Development Life Cycle (SDLC) and addressing a wide range of impact categories.

4.1 Assessing Cloud Services’ Environmental Impacts

Confronted with the growing environmental footprint of backend infrastructures, major cloud
providers, including AWS [169], Azure [170], and GCP [171], have introduced tools that enable
customers to assess the carbon footprint associated with their cloud usage. However, the underlying
methodologies adopted by these actors have not been subjected to rigorous transparency procedures,
which presents a significant threat to ensuring the consistency of results between tools. This lack of
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transparency results in inconsistencies that hinder the comparability of results, due to variations in the
scope considered and allocation methods employed.

To address these limitations, the open source project Cloud Carbon Footprint (CCF) [172]
introduced a provider-agnostic approach, but its calculation remains constrained by several factors.
For the resource extraction & manufacturing phase, the impacts are systematically estimated based
data from the Dell R740 LCA [2], irrespective of the actual hardware components present in the
system under study, thus potentially leading to an empty-shell bias (defined in Subsection 2.2.2).
Power consumption is modeled using benchmarks that measure power at the machine level [173],
which the CCF associates with cloud instances based on CPU architecture. However, CPU architecture
appears to be an inadequate proxy for estimating power consumption, not only for the CPU itself
but even more so for the entire machine. For instance, in a storage server, the primary source of
power consumption is typically the hard drives, underscoring the need for a more granular power
model tailored to each specific component. Moreover, since this approach does not consider the actual
load factor of the hosting platform, it overlooks the potentially significant unused resources, whose
environmental impact is entirely disregarded.

All of these methodologies currently used to assess the environmental impact of cloud infras-
tructures focus exclusively on the carbon footprint dimension. However, cloud infrastructures also
have significant environmental impacts on other dimensions, such as those resulting from metal
extraction [174, 33, 175]. This narrow focus on carbon, often referred to as carbon tunnel vision [176],
obscures other environmental issues that could become critical and potentially risks enabling the
transfer of environmental category to another [177, 178].

Developing a comprehensive understanding of the environmental implications of cloud computing
equipment and services, including servers and instances, is essential for informed decision-making. In
this section, we define a methodology that leverages openly accessible data to ensure that the results
are transparent, reproducible, and verifiable. Two types of open data are used:

• Market & technical data: characteristics of components, devices, and cloud instances available
on the market.

• Impact factors: which convert physical quantities into environmental impacts. Those factors
are extracted from publicly available life cycle assessments.

Modeling approaches As illustrated in Figure 4.1, the environmental impacts of a cloud platform
are mostly modeled using a bottom-up approach, whereby the impacts of each resource required to
fulfill the service it provides are aggregated. Unlike a top-down approach, such as EEIOA Section 3.2,
this method enables the identification of the proportional contribution of each resource to the overall
environmental impacts. The impacts of the technical and building environment are allocated on the
cloud platform using a top-down approach.
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Fig. 4.1 Modeling Approach Used for Estimating Environmental Impacts of a Cloud Platform and Its
Instances

4.1.1 Server Environmental Footprint Modeling

Following a bottom-up approach (cf. Figure 4.1), the assessment of the environmental impacts of
cloud instances starts with a component-level assessment of servers. Their impacts are then aggregated
and integrated with the technical and building environment to constitute a cloud platform, which is
subsequently allocated into individual cloud instances.

In this section, we define the foundational layer of the model—the estimation of a server’s
environmental impact—and further validate it against the LCA of a Dell R740 [2]. This modeling
approach is implemented within the open-source project BoaviztAPI [179]. While similar bottom-up
methods already exist to do so [180], our approach aims to deliver a more detailed and comprehensive
calculation of the embodied footprint, multi-criteria impacts, and a calculation of the usage impact
specific to our use case.

In the rest of this thesis, variables denoted as F represent impact factors, which quantify the
environmental impacts associated with a specific unit of measurement, while we denote with I

environmental impacts that do not depend on a given quantity and are thus expressed solely in the
impact unit. For example F die

cpu is the impact factor quantifying the impact of one mm2 of CPU die
while I cpu

case is a fixed-cost environmental impact for CPU manufacturing, which does not depend on
the surface area of the die.

For both F and I variables, we propose reference values for the following impact criteria:
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Constant Impact Value Unit

F die
cpu

GWP 1.97 kgCO2eq /mm2
ADP 5.87e−07 kgSbeq/mm2
PE 2.65e+01 MJ/mm2

I base
cpu

GWP 9.14 kgCO2eq
ADP 2.04e−02 kgSbeq
PE 156.43 MJ

F die
f lash

GWP 2.20 kgCO2eq /cm2
ADP 6.30e−05 kgSbeq/cm2
PE 2.73e+01 MJ/cm2

I base
ram

GWP 5.22 kgCO2eq
ADP 1.69e−03 kgSbeq
PE 74.00 MJ

I base
ssd

GWP 6.34 kgCO2eq
ADP 5.63e−04 kgSbeq
PE 73.98 MJ

I e
hdd

GWP 3.11e+01 kgCO2eq
ADP 2.50e−04 kgSbeq
PE 2.76e+02 MJ

F e
psu

GWP 2.43e+01 kgCO2eq /kg
ADP 8.30e−03 kgSbeq/kg
PE 3.52e+02 MJ/kg

I e
motherboard

GWP 6.61e+01 kgCO2eq
ADP 3.69e−03 kgSbeq
PE 8.36e+02 MJ

I e
assembly

GWP 6.68 kgCO2eq
ADP 1.41e−06 kgSbeq
PE 6.86e+01 MJ

I e
rack

GWP 1.50e+02 kgCO2eq
ADP 2.02e−02 kgSbeq
PE 2.20e+03 MJ

Table 4.1 Impact Constants Extracted from [3] by Boavizta [4]

• Abiotic Resource Depletion of minerals and metals (ADP), which assesses the use of minerals
and fossil raw materials. This indicator is a model for assessing the contribution of mineral and
metal extraction to their progressive scarcity, using antimony grams equivalent as a metric [181].

• Primary Energy (PE), which includes all energy, direct and indirect, used in any phase of the
life cycle. This represents the total cumulative energy demand of the assessed system [182].

• Global Warming Potential (GWP), which evaluates the effects on global warming. This well-
known indicator is also a model linking greenhouse gas emissions to global warming. It is
expressed in grams of CO2 equivalent [162].

Embodied impact of a physical server

The impact assessment relies on the life cycle modeling of hardware components, encompassing their
most important phases: raw material acquisition, and manufacturing, collectively termed as embodied
impacts, annoted e. In all subsequent equations, embodied impact factors F e are amortized over the
life cycle expectancy D (in hours) to obtain the embodied impact for one hour of usage.
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CPU For most electronic components, the primary source of impacts lies in the process of engraving
semi-conductors [183]. Consequently, their impacts directly depend on both their die size and the
engraving technology employed.

For CPUs, the die size in mm2 is multiplied by the corresponding impact factor F die
cpu with a base

impact I base
cpu (containing packaging, heatsink socket, and transportation) to obtain an environmental

impact factor per hour of usage:

F e
cpu =

diecpu ×F die
cpu +I base

cpu

D
(4.1)

For both of these impact constants, we propose default values developed in Table 4.1 over the
three considered impact categories in Table 4.1, based on a 14 nm engraving process.

CPU die sizes are extracted from the TechPowerUp CPU specs database [184]. Crowd-sourced
characteristics for more than 1750 CPU models are available within the BoaviztAPI.1

Using Equation 4.1 for two CPU units with a die size of 6.94 cm2, the non-amortized embodied car-
bon footprint is estimated at 45.62 kgCO2eq , while it accounts for approximately 46.76 kgCO2eq in
Dell’s LCA.

NAND memory The impact factors per hour of both SSD and RAM sticks are obtained with the
Equation 4.2, albeit utilizing distinct impact factors for their respective density and capacity.

∀ f lash ∈ {ssd,ram} : F e
f lash =

capacity
density ×F die

f lash +I base
f lash

D
(4.2)

For the twelve 32GB sticks using a density of 1.79 GB/mm2 sourced from [3], we obtain
534.60 kgCO2eq using Equation 4.2, while the Dell LCA reports 553.33 kgCO2eq .

The server combines multiple SSD disks. Considering a density of 19GB/cm2 extracted from [185],
we obtain 52.65 kgCO2eq for the 400 GB disk with Equation 4.2, and 3,607.77 kgCO2eq for the 8
3.84 TB ones, versus 64.1 kgCO2eq and 3,373.5 kgCO2eq for the R740, respectively. More up-to-
date crawled SSD densities are available within BoaviztAPI.2

Others Apart from CPU, memory, and storage, other components are required for a server which
we categorized as others.

The Power Supply Unit (PSU)’s embodied impact is estimated at 72.71 kgCO2eq using the impact
factor F e

psu and the R740 PSU weight of 2,992 kg [2]. The rest of the component’s impact factor is

1https://github.com/Boavizta/boaviztapi/blob/main/boaviztapi/data/crowdsourcing/cpu_specs.csv
2https://github.com/Boavizta/boaviztapi/blob/main/boaviztapi/data/crowdsourcing/ssd_

manufacture.csv

https://github.com/Boavizta/boaviztapi/blob/main/boaviztapi/data/crowdsourcing/cpu_specs.csv
https://github.com/Boavizta/boaviztapi/blob/main/boaviztapi/data/crowdsourcing/ssd_manufacture.csv
https://github.com/Boavizta/boaviztapi/blob/main/boaviztapi/data/crowdsourcing/ssd_manufacture.csv
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Fig. 4.2 Bottom-Up Modeling of the Manufacturing Environmental Impacts of a Dell R740, with
Characteristics Defined in [2], Using Our Approach

static in our approach and computed as follows:

F e
others =

I e
motherboard +I e

psu +I e
assembly +I e

casing

D
(4.3)

By using the open source factors provided in Table 4.1, the remaining server’s components account
for 295.49 kgCO2eq , compared to 207.07 kgCO2eq reported in the R740 LCA.

Total The total embodied impact factor of a server per hour of usage is finally calculated as the sum
of its components’ impacts as follows:

F e
server = F e

cpu +F e
ram +F e

storage +F e
others (4.4)

This results in a total modeled life cycle value—i.e. non-amortized by D—of 4,536.13 kgCO2eq against
a 4,244.76 kgCO2eq baseline reported in the Dell R740 LCA [2]. However, without transparent
factors, modeling methodology, and allocation choices provided, this 6.42% variation cannot be
further detailed, emphasizing the need for open methodologies.

The comprehensive evaluation of environmental impacts across various categories is depicted
in Figure 4.2, emphasizing the necessity of adopting holistic methodologies in impact assessments
to achieve thorough evaluations of ICT impacts. These impacts vary across different impact cate-
gories, highlighting the need to avoid carbon-centric perspectives to reveal potential shifts in impact
distribution among various categories.
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Usage impact of a physical server

The total energy consumption of a server Eserver, in Wh, is calculated as the sum of its components
(C) respective power consumption Pc, in W, over a given duration T , in hours:

Eserver = ∑
c∈C

(Pc ×T ) (4.5)

To obtain the associated environmental impact factor for one hour of usage F u
server, this consump-

tion is multiplied by the impact factor Fem representing the electricity mix—i.e., the environmental
impacts associated to the production and transport of energy.

4.1.2 Modeling a Cloud Platform and Its Services

According to Figure 4.1, the subsequent stage of the modeling process is to analyze the impacts of
cloud platforms, which will be used in the assessment of cloud instances.

Embodied & usage impacts of a cloud platform

We define a cloud platform as the aggregation of a cluster of servers and their technical and building
environment required to provide cloud services. A cloud platform offers a pool of resources assigned
to cloud services: virtual CPU (vCPU), virtual RAM (vRAM), storage, and shared resources—power
supply, motherboard, casing and technical environment.

To account for the embodied impacts of the technical and building environment, we refer to the
study published by ARCEP [186], which reports on embodied impact factors per m2 of a server room.
The technical environment includes the building, generators, chillers, inverters, and batteries, as well
as a wide range of equipment such as electrical and network cables, lighting, fuel oil storage tanks, etc.
Knowing the electricity consumption per m2 and the PUE used in the study [186], we infer the embod-
ied impacts of the technical environment F e

DC as 2.265e−02 kgCO2e/kWh, 5.740e−01 MJ/kWh, and
1.016e−06 kgSbeq/kWh for respectively GWP, PE and ADP criteria. As such, the embodied impact
of the technical and building environment (without network equipments) can be estimated for a given
energy consumption E as follows:

I e
env(E ) = E ×F e

DC (4.6)

In order to account for the usage impacts of the technical and building environment, the PUE of
the cloud infrastructure is applied to the usage impacts of the server. The PUE is defined as the ratio
of electricity consumed by the facility to the electricity consumed by the IT equipment [187].

The usage impacts are therefore defined as follows for a given energy consumption E , using the
electricity mix Fem:

I u
env(E ) = E × (PUE −1)×Fem (4.7)
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Embodied & usage impacts of a Cloud instance

A cloud instance is modeled as a part of a cloud platform. Its impacts encompass both a share of the
technical and building environment impacts, Ienv, and a share of each of the servers’ components
impact factor Fr, where r denotes the resource (vCPU, vRAM, . . . ). This share is computed for each
component using the quantity assigned to the instance Qu

res over the total available resources on the
platform Qu

res. Such quantity Q materializes as vCPU for CPUs and GB for RAM and disks. For
the others resources, which are not explicitly assigned to a cloud instance—i.e. motherboard, PSU,
assembly, and casing (cf. Equation 4.3)—we have chosen an allocation based on vCPU, although this
may depend on the type of cloud instance.

Finst = Ienv(Einst)+ ∑
r∈{cpu,

ram,ssd,others}

Qu
r (instance)×Fr

Qu
r (plat f orm)

(4.8)

Equation 4.8 allows to obtain the instance embodied and usage impacts for an hour, each share is
multiplied by the cloud platform total impacts for the resource (Fr). This assumes that the server
is used continuously over its lifetime. To estimate the share of technical and building environment
associated with the instance, Equation 4.6 is used with the instance energy consumption Einst . For
one-hour usage, this energy consumption is estimated using Equation 4.5, using the ratio Qu

r (instance)
Qu

r (plat f orm)

to obtain for each component the share to allocate to the instance.
To illustrate the aforementioned approach, we consider a cloud platform comprising a single

server with technical characteristics and environmental impacts defined in Subsection 4.1.1, with a
lifespan of 5 years. We consider that the infrastructure is hosted in France where Fem is equal to
0,098 kgCO2eq /kWh [188]. The PUE is set arbitrarily to 1.5. CPU power is estimated at 104.75 W,
and each SSD disk consumes 5.7 W.

The impact of a year of usage for a cloud instance with 4 vCPUs, 8 GB of RAM, and 80 GB
of SSD storage are estimated using Equation 4.8 in Figure 4.3. This highlights the advantages of a
bottom-up approach, which allows for the identification and analysis of the environmental footprint
of individual components within the overall system. One can observe that contrary to the server in
Figure 4.2, the impact of SSDs is smaller due to a small share of disks reserved. The technical and
building environment substantially increase the total impacts, both embodied and usage. Using an
alternative emission factor Fem, such as 0,0580 kgCO2eq /kWh proposed for France in 2023 [189],
would yield comparable trends. However, locating the cloud platform in a different country with
different energy production sources could result in significantly different outcomes.

4.1.3 Limits and Future Work

This approach does not cover the entire perimeter of a cloud infrastructure, including third-party
services hosted in the cloud platform that serve multiple customers. These can be technical services,
such as the control plane, or customer services, such as billing. In addition, the usage impacts of
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Fig. 4.3 GWP Impact of a Cloud Instance Hosted in France with 4 vCPUs, 8 GB of vRAM, and 80
GB of SSD Storage, Used for One Year (Calculated Using Equation 4.8)

non-server IT equipment, such as network equipment, are not taken into account. This also minimizes
the impacts of the technical and building environment, as we do not consider their consumption
when applying the PUE. Finally, we do not consider servers in idle states, that are part of the cloud
infrastructure and allow for rapid and important scaling. This exclusion is primarily due to the
necessity of empirically validating an appropriate allocation ratio for such resources. This assumes
that all servers are allocated and occupied, which is not always the case [190]. These exclusions mean
that certain parts of the infrastructure impacts remain unallocated to customers.

In addition, our allocation strategy poses some issues. It assumes that no resource is overcom-
mitted (when a resource is used by two or more cloud instances at the same time). If a resource is
overcommitted [191], all the instances sharing a physical resource would double account its impacts.

While a top-down approach would allow for a broader scope, the bottom-up approach allows
us to pinpoint which part of the cloud instance is responsible for the most impacts, empowering
stakeholders to identify actionable reduction levers. The implementation in BoaviztAPI [179] has
been notably utilized by companies, such as Orange,3 Sweep,4 and Sami,5 as well as for conducting
GHGs assessments in France. The research community has also used it as a basis to estimate and
reduce various ICT aspects’ environmental footprint, such as Kubernetes scheduling, AI, infrastructure
management. . . [192–197].

The currently released version, accessible at https://dataviz.boavizta.org/serversimpact, lacks the
cloud platform aspect defined in this chapter, and only goes to server level, thus undermining the
associated environmental footprint.

3https://orange.fr
4https://sweep.net
5https://sami.eco

https://dataviz.boavizta.org/serversimpact
https://orange.fr
https://sweep.net
https://sami.eco
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4.2 Addressing Uncertainties through Fuzzy Logic

When assessing the environmental impact of digital services, the ITU L.1410 [102] standard also
includes end-user equipment, or user devices (see Subsection 2.3.1). LCAs depend on LCI databases
for secondary data, which provide reference environmental impact factors for various resource types.
However, in the fast-evolving ICT sector, such data are often unavailable (cf. Subsection 2.2.2),
resulting in the use of substitutes which can introduce significant inaccuracies within the results.

Furthermore, the embodied impact data for these devices can only be estimated and thus cannot
be empirically validated. The lack of a definitive ground truth for comparison complicates the process
of quantifying uncertainties. Additionally, impact estimation inherently involves allocation choices
made during the modeling process. The results of such analyses then tend to be broad estimates
with significant uncertainty, which are often insufficiently quantified and documented, yet have a
substantial influence on the final outcomes.

In this section, we introduce a novel approach utilizing Fuzzy Logic for the aggregation of
secondary sources and the systematic assessment of associated uncertainties. We then demonstrate
how this approach enables stakeholders to identify sources of uncertainty within the environmental
impact assessment modeling process, particularly concerning allocation choices related to end-user
devices.

4.2.1 Secondary Data

Assessing Uncertainty with Data Quality Indicators

To address the lack of reference data in the assessment of ICT environmental impacts, it is necessary
to combine multiple data sources, each of which may vary in quality and provide potentially divergent
estimates. For instance, manufacturers report various embodied impacts of a smartphone such as
33, 57, or 94 kgCO2eq [198–200]. Such variations can be caused by divergences in characteristics,
manufacturing process, or the LCA methodology and study boundaries chosen. They can significantly
influence the final estimated impacts and should be propagated within all computations to be exposed
in the final estimation.

Consequently, we propose to adjust the relative weight assigned to each of these sources in the final
results according to their relative quality. To quantify this quality, each LCI source is evaluated using
a DQI, following the method introduced by Weidema et al. [201]. Specifically, the DQI of a source
covers 3 key aspects: its reliability, temporality, and technological correlation. The technological
correlation highlights the similarity between the variable assessed by the source and the variable
to model. For instance, when assessing the efficiency of a smartphone charger, studies regarding
smartphone chargers have a higher technological correlation than studies focusing on laptop chargers.
The temporality assesses the obsolescence of the source: older sources are deemed less representative
than newer ones. For instance, a source published within the last 3 years is considered very recent,
while a source published over 9 years ago is considered highly obsolete. This obsolescence is driven
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Score Correlation Temporality Reliability
1 Not representative of >10 years Expert opinion

the regarded variable
2 Representative <10 years Peer-reviewed

of a similar variable expert opinion
3 Representative of the <6 years Manufacturer data

regarded variable
4 Highly representative <3 years Peer-review

of the regarded variable manufacturer data

Table 4.2 Assessment Criteria for the DQI of a Secondary Source

by both advancements in estimation methods and changes in manufacturing and production processes
over time. Finally, the reliability reflects the level of confidence placed in the provenance of the source.
A peer-reviewed source authored by the device manufacturer is assigned the highest reliability, while
a non-peer-reviewed expert opinion has the lowest one.

In contrast to Weidema et al. [201], geographical correlation is not accounted for, as most of the
ICT hardware is produced within a limited geographical area. The completeness parameter is also
omitted, as its purpose is to account for the limitations of sampling methods, which is not relevant in
the LCA of ICT devices. Indeed, LCA focuses on a given subject, and results are not expected to vary
between instances of this subject.

Within this approach, DQI scores rely on 4 possible values per indicator, instead of the 5 provided
by [201], and the scale is reverted—a higher DQI indicates a higher quality—so that DQI can be used
as coefficients when aggregating a collection of sources. Hence, each category is assessed on a scale
ranging from 1 to 4, and the overall data source DQI is computed as the sum of these individual scores.
Table 4.2 maps the possible values for each category to the corresponding quality indicator. The total
DQI of a single source can thus vary between 3 and 12. For instance, a source that is representative of
the variable, published by the manufacturer and peer-reviewed, but published more than 10 years ago
gives a total DQI of 9.

Fuzzy logic

While multiple sources should be considered to capture a more comprehensive reference impact,
averaging these values can lead to errors. Indeed, extreme values and variability are not inherently
incorrect and would not be captured by an average value, and thus each source should be weighted by
their respective DQI as they do not have consistent quality. To address this constraint, we build on
fuzzy logic, following the methodology introduced in [202]. In fuzzy logic, variables are not defined
by a strict value in R, but rather by a function µs : R→ 0..1 capturing the degree of membership
of a value with a given fuzzy set s. A membership degree µs(v) of 1 indicates the certainty that a
value v of x is possible, whereas a membership degree of 0 reflects that the fuzzy set does not cover
this value. Given this definition, two crisp sets are of interest: the core capture the range of values
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Value ( kgCO2eq ) Year DQI Source
27 2019 10 https://www.ademe.fr/sites/default/files/assets/documents/poids_carbone-biens-equipement-201809-rapport.pdf
33 2019 10 https://www.ademe.fr/sites/default/files/assets/documents/poids_carbone-biens-equipement-201809-rapport.pdf
39 2019 10 https://www.ademe.fr/sites/default/files/assets/documents/poids_carbone-biens-equipement-201809-rapport.pdf

49.8 2016 10 https://www.ericsson.com/en/reports-and-papers/research-papers/life-cycle-assessment-of-a-smartphone
65.25 2014 7 http://www.apple.com/environment/reports/docs/iPhone5s_product_environmental_report_sept2013.pdf
46.2 2014 7 http://www.apple.com/environment/reports/docs/iPhone5c_product_environmental_report_sept2013.pdf
83.6 2014 7 https://www.apple.com/environment/reports/docs/iPhone6_PER_Sept2014.pdf
93.5 2014 7 https://www.apple.com/environment/reports/docs/iPhone6Plus_PER_Sept2014.pdf
45.3 2016 9 https://www.apple.com/environment/pdf/products/iphone/iPhone_7_PER_sept2016.pdf
54.2 2017 9 https://www.apple.com/environment/pdf/products/iphone/iPhone_7_Plus_PER_sept2017.pdf
47.3 2017 9 https://www.apple.com/environment/pdf/products/iphone/iPhone_8_PER_sept2017.pdf
39.1 2017 9 https://www.apple.com/environment/pdf/products/iphone/iPhone_SE_PER_sept2017.pdf
64.7 2017 9 https://images.apple.com/environment/pdf/products/iphone/iPhone_X_PER_sept2017.pdf
57.9 2016 7 https://consumer.huawei.com/en/support/product-environmental-information/
49.4 2016 7 https://consumer.huawei.com/en/support/product-environmental-information/
49.3 2017 8 https://consumer.huawei.com/en/support/product-environmental-information/
66.5 2017 8 https://consumer.huawei.com/en/support/product-environmental-information/
66.5 2017 8 https://consumer.huawei.com/en/support/product-environmental-information/
65.4 2018 9 https://consumer.huawei.com/en/support/product-environmental-information/
74.9 2018 9 https://consumer.huawei.com/en/support/product-environmental-information/
60.38 2018 10 https://consumer.huawei.com/en/support/product-environmental-information/
67.02 2018 10 https://consumer.huawei.com/en/support/product-environmental-information/
40.4 2013 9 http://kth.diva-portal.org/smash/get/diva2:677729/FULLTEXT01.pdf
32.79 2020 10 https://www.fairphone.com/wp-content/uploads/2020/07/Fairphone_3_LCA.pdf
38.98 2016 9 https://www.fairphone.com/wp-content/uploads/2016/11/Fairphone_2_LCA_Final_20161122.pdf
68.7 2019 10 https://publications.jrc.ec.europa.eu/repository/bitstream/JRC116106/jrc116106_jrc_e4c_task2_smartphones_final_publ_id.pdf
88.5 2022 10 https://www.arcep.fr/uploads/tx_gspublication/etude-numerique-environnement-ademe-arcep-volet02_janv2022.pdf
82.99 2020 11 https://jyx.jyu.fi/handle/123456789/71853

Table 4.3 Secondary Sources for the Carbon Impact of Smartphones and Their Respective DQI Scores

with the highest possibility of being correct, while the support represents the values with a non-null
membership degree.

A fuzzy number is a special case of a fuzzy set that is convex, normalized, and defined in R as a
piece wise continuous membership function. As such, they act as fuzzy intervals. We use Trapezoidal
Fuzzy Numbers (TrFN), that represents fuzzy numbers with a membership function defined as a
trapezoidal shape, where the support is wider than the core and both are crisp intervals. As such, the
core is the interval [mL,mR], and the support ranges in [L,R], hence resulting in the TrFN fuzzy set
< L,mL,mR,R >. Then, Weckenmann et al. computes the TrFN for any set of sampled points with
Equations 4.9–4.12, with x representing the weighted average of the sampled variable, and Cv the
coefficient of variation [202]. Therefore, x and Cv account for both variations in sources regarding a
variable, but also variations in quality.

mL =
x

1+(0.5×Cv)
(4.9)

mR = x× (1+(0.5×Cv)) (4.10)

L = mL − x× (
1

1+(0.5×Cv)
− 1

1+(2.5×Cv)
) (4.11)

R = mR +(x×2×Cv) (4.12)

To illustrate such intervals, Figure 4.4 depicts the TrFN capturing the embodied impact of a
smartphone using the sources and DQI of Table 4.3. To account for quality variations in secondary
sources, the main vertical axis is the DQI of each estimated impact in the aggregated secondary

https://www.ademe.fr/sites/default/files/assets/documents/poids_carbone-biens-equipement-201809-rapport.pdf
https://www.ademe.fr/sites/default/files/assets/documents/poids_carbone-biens-equipement-201809-rapport.pdf
https://www.ademe.fr/sites/default/files/assets/documents/poids_carbone-biens-equipement-201809-rapport.pdf
https://www.ericsson.com/en/reports-and-papers/research-papers/life-cycle-assessment-of-a-smartphone
http://www.apple.com/environment/reports/docs/iPhone5s_product_environmental_report_sept2013.pdf
http://www.apple.com/environment/reports/docs/iPhone5c_product_environmental_report_sept2013.pdf
https://www.apple.com/environment/reports/docs/iPhone6_PER_Sept2014.pdf
https://www.apple.com/environment/reports/docs/iPhone6Plus_PER_Sept2014.pdf
https://www.apple.com/environment/pdf/products/iphone/iPhone_7_PER_sept2016.pdf
https://www.apple.com/environment/pdf/products/iphone/iPhone_7_Plus_PER_sept2017.pdf
https://www.apple.com/environment/pdf/products/iphone/iPhone_8_PER_sept2017.pdf
https://www.apple.com/environment/pdf/products/iphone/iPhone_SE_PER_sept2017.pdf
https://images.apple.com/environment/pdf/products/iphone/iPhone_X_PER_sept2017.pdf
https://consumer.huawei.com/en/support/product-environmental-information/
https://consumer.huawei.com/en/support/product-environmental-information/
https://consumer.huawei.com/en/support/product-environmental-information/
https://consumer.huawei.com/en/support/product-environmental-information/
https://consumer.huawei.com/en/support/product-environmental-information/
https://consumer.huawei.com/en/support/product-environmental-information/
https://consumer.huawei.com/en/support/product-environmental-information/
https://consumer.huawei.com/en/support/product-environmental-information/
https://consumer.huawei.com/en/support/product-environmental-information/
http://kth.diva-portal.org/smash/get/diva2:677729/FULLTEXT01.pdf
https://www.fairphone.com/wp-content/uploads/2020/07/Fairphone_3_LCA.pdf
https://www.fairphone.com/wp-content/uploads/2016/11/Fairphone_2_LCA_Final_20161122.pdf
https://publications.jrc.ec.europa.eu/repository/bitstream/JRC116106/jrc116106_jrc_e4c_task2_smartphones_final_publ_id.pdf
https://www.arcep.fr/uploads/tx_gspublication/etude-numerique-environnement-ademe-arcep-volet02_janv2022.pdf
https://jyx.jyu.fi/handle/123456789/71853
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sources. Then, weighted secondary sources are converted to a TrFN, visible on the secondary vertical
axis, with a support ranging from 31 to 102 kgCO2eq (i.e., L to R), and a core between 48 and
65 kgCO2eq (i.e., mL to mR). While various data distributions may be reported in practice, due to the
lack of samples available, we assume that any variable we consider is expected to follow a normal
distribution over a large enough set of secondary sources. This assumption reflects the convergence of
estimation and assesses the relevance of TrFN as an appropriate structure for capturing uncertainties
of estimations.

4.2.2 Modeling Hypotheses

Digital services extensively rely on devices with limited lifespans, necessitating an impact assessment
that considers not only their energy consumption but also a share of their embodied footprint, i.e.,, the
environmental impacts across their entire life cycle. This is particularly relevant for battery-powered
devices, such as smartphones, tablets, or laptops, whose lifespans are closely tied to their usage
patterns. Specifically, charging a battery reduces its capacity over time, implying that a battery can
only undergo a limited number of charge cycles before its becoming unusable, mandating users to
replace either the battery or the entire device. Notably, 37% of mobile phone users report that they did
not attempt to repair their device following a malfunction, including battery failures [203]. In such
cases, the entire device would be replaced instead of the battery, further increasing environmental
impacts.

Allocating the embodied impact of ICT devices to specific software applications remains a
complex challenge. Unlike energy consumption, which directly results from software usage, the
depreciation of a device’s embodied footprint necessitates allocation decisions to derive the direct
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Label Name Unit L ml mr R

Cmax Maximum battery cycles Cycles 328.720505 500.069021 661.158732 1005.793661
Bcap Battery capacity Amp-hour 1.727551 2.618037 3.449889 5.228173
Ibat.
e Battery embodied impact kgCO2eq 0.723200 1.166300 1.626300 2.622600

R Battery to device replacement ratio % 0.089186 0.170800 0.287163 0.549948
R Avg. batteries replacements / 1.000000 1.000000 1.000000 1.000000
Ce f f Charger efficiency % 59.038467 68.603889 74.518370 86.591849
V Battery Voltage Volts 3.789900 3.808500 3.817900 3.836600
Fem Global lectricity mix kgCO2eq 0.297775 0.557436 0.911557 1.706440

Table 4.4 Fuzzy TrFNs Model of Battery-Powered Devices Characteristics (Data provided by Green-
spector)

embodied impact corresponding to the FU. This allocation is frequently time-based, distributing the
embodied impact of devices across the days (or hours) of their expected lifespan. As a result, the
more intensively a device is used on a daily basis, the lower its environmental impact becomes when
measured on a per-hour basis. However, this approach, as seen in Subsection 4.1.1, implicitly assumes
that the device is used at full capacity throughout its lifespan, leading to an underestimation of the
embodied footprint per hour if the device is not consistently used at maximum capacity.

Allocating Embodied Impact Through Battery Wear

To address the issue of time-based allocation of the embodied impact of user devices, we propose
a modeling approach specifically designed for battery-powered devices. Our hypothesis assumes
that the more a software drains the device’s battery, the higher its associated environmental impact
is. Consequently, the embodied impact of the device is allocated proportionally to the total energy
capacity the device can hold over its entire lifespan.

Table 4.4 introduces the TrFN variables to model battery-powered devices, along with their value
provided by the company Greenspector.6 The battery capacity Bcap and the maximum number of
battery cycles Cmax—the maximum complete charges that the battery can sustain while remaining
usable—are used to account for the total battery capacity over its lifetime Btotal assessed as:

Btotal =Cmax ×Bcap (4.13)

The battery’s embodied impact (Ibat.
e ) accounts for the various environmental impacts, including its

manufacturing and transportation. This impact is also incorporated into the overall device embodied
impact (Idevice

e ), as defined in Subsection 4.2.1.
The primary assumption underlying this hypothesis is that the device’s battery has a finite number

of charge cycles, and therefore a limited lifespan. Once this lifespan is exhausted—when Cmax is
reached—the user will either replace the battery, with a probability of R, or replace the entire device,
with a probability of 1−R. Additionally, R represents the average number of battery replacements

6https://greenspector.com/

https://greenspector.com/
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a user is willing to perform in such situations, i.e., how many times a user who opts to replace the
battery will repeat this action.

If the battery is not replaced (with the probability 1−R) the total device embodied footprint
(Idevice

e ) is depreciated over the total quantity of energy that the battery can hold in its lifespan (Btotal):

(1−R)× Idevice
e

Btotal
(4.14)

However, when the battery is replaced (with the probability R), its own embodied impact (Ibat.
e ) is

fully depreciated over its own lifespan, but only a portion of the embodied impact of the remainder
of the device (Idevice

e − Ibat.
e ) is depreciated. For example, if the user replaces the battery once, the

device will have two batteries over its lifetime, meaning only half of the device’s embodied impact is
depreciated over the lifespan of each battery. The embodied impact of the battery (Ibat.

e ) is depreciated
based on its capacity, while the embodied impact of the remainder of the device (Idevice

e − Ibat.
e ) is

depreciated over the total number of batteries it will contain in its lifespan, R+1, where R represents
the number of additional batteries:

R× (Ibat.
e + Idevice

e −Ibat.
e

1+R )

Btotal
(4.15)

Finally, we can allocate the embodied footprint of battery-powered devices per unit of electric
charge as the impact factor Fbat.

e :

Fbat.
e =

R× (Ibat.
e + Idevice

e −Ibat.
e

1+R )+(1−R)× Idevice
e

Btotal
(4.16)

The usage impact factor (Fbat.
u ) is estimated by considering the battery’s voltage (V ) and the

electricity mix impact (Fem), while also taking into account the charger’s efficiency (Ce f f ):

Fbat.
u =

V ×Fem

Ce f f
(4.17)

Thus, the sum of Fbat.
e and Fbat.

u provides the total impact factor per unit of energy Fdevice, which
represents the environmental impact per unit of energy discharge (in amp-hours) caused by a digital
service on a battery-powered device:

Fdevice = Fbat.
e(d) +Fbat.

u(d) (4.18)

4.2.3 Identifying and Mitigating Uncertainty

This allocation approach enables a more representative distribution of the embodied footprint of users’
devices compared to traditional time-based methods. However, the inclusion of various variables and
modeling choices introduces inherent uncertainties into the analysis.
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Fuzzy logic provides a systematic approach for managing these uncertainties by enabling arith-
metic operations between fuzzy sets, such as addition, subtraction, multiplication, and division. For
instance, the sum of two fuzzy sets, represented as [a1,a2,a3,a4] and [b1,b2,b3,b4], is calculated as
[a1 +b1,a2 +b2,a3 +b3,a4 +b4]. Similarly, multiplication apply element-wise between sets. In the
case of division and substraction, the divisor and subtrahend set is inverted, yielding the operation
[a1/b4,a2/b3,a3/b2,a4/b1] [a1 − b4,a2 − b3,a3 − b2,a4 − b1]and [204]. In our context, both the
multiplier and the divisor are positive values. Any real number x ∈R can be converted into a fuzzy set
in the form [x,x,x,x], allowing for the combination of real numbers and fuzzy sets in mathematical
operations. Consequently, the result of an equation containing fuzzy sets will also be a fuzzy set [205].

Since fuzzy sets encapsulate both the value and the uncertainty of any variable, arithmetic opera-
tions inherently propagate uncertainties throughout each stage of the modeling process. Therefore,
by using fuzzy logic in environmental assessments, uncertainties can be systematically calculated
and propagated without the need to define specific sensitivity scenarios, such as best- or worst-case
scenarios. This ensures that the results reflect the full spectrum of potential estimates and their
associated uncertainties.

Relative contribution in arithmetic operations

In this approach, we apply the core methodology [206] for the defuzzification of TrFNs, and obtain
both an absolute value and the corresponding uncertainty. The core methodology defines the average
of mL and mR as the central value, expressed as TrFNcentral =

mL+mR
2 . The symmetric margin of

uncertainty is then calculated as the difference between the central value and either mL or mR.
Accordingly, the uncertainty of any fuzzy set is determined by the following equation:

TrFNuncertainty = TrFN.mR −TrFNcentral (4.19)

For example, the Fem variable defined in Table 4.4 has a value of 0.73±0.18, where 0.73 is the
central value and 0.18 represents the uncertainty margin.

However, while a single variable may have a relatively large uncertainty, it may not significantly
impact the overall uncertainty in the final result. On the contrary, a variable with a relatively small
uncertainty can largely impact the total uncertainty.

To uncover the uncertainties introduced by modeling choices, it is essential to study how they
propagate through each calculation step and determine the contribution of each variable to the total
uncertainty. Specifically, in any arithmetic operation involving variables A and B that yields a result
C, it implies to quantify how much of the uncertainty originates from A and how much from B. To
achieve this, we use the arithmetic operations of Fuzzy Logic. In the case of addition, i.e., A+B =C,
the absolute uncertainties of each TFN are simply added:

Cadd
uncertainty = Auncertainty +Buncertainty
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Similarly, for subtraction, the absolute uncertainties are subtracted:

Csub
uncertainty = Auncertainty −Buncertainty

In Figure 4.5, we vary mL and mR for both A and B proportionally, and assess the resulting
uncertainty of C for both operations. It can be observed that multiplication behaves in a linear manner,
meaning that the uncertainty of C can be derived by summing the uncertainties contributed by A and
B:

Amult
share +Bmult

share =Cmult
uncertainty

To compute the uncertainty each component of the TrFN is multiplied, such that:

Cmult = [A1 ×B1,A2 ×B2,A3 ×B3,A4 ×B4]

As such, the uncertainty of C for multiplication is expressed as:

Cmult
uncertainty = (A.mR×B.mR)− (A.mL×B.mL)+(A.mR×B.mR)

2

To determine the contribution of A to C, we fix B at its central value, i.e.,

B f ixed = [TrFNcentral,TrFNcentral,TrFNcentral,TrFNcentral]

and calculate:
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Amult
share = (A.mR×B f ixed)−

(A.mL×B f ixed)+(A.mR×B f ixed)

2
(4.20)

Similarly, to assess the contribution of B to the uncertainty of C, we hold A fixed at its central value.
This approach allows us to isolate the uncertainty contributions from both A and B in the multiplication
operation.

For the division, Figure 4.5 illustrates that the operation is not linear, meaning the uncertainty
of C is not directly proportional to the uncertainties of A and B. This non-linearity means that the
uncertainty in C cannot be calculated by simply summing the uncertainties from A and B. For example,
when A is divided by B, small variations in B can significantly impact the result, particularly when the
lower bound of B approaches zero.

As shown in Figure 4.6, this non-linearity leads to a more complex propagation of uncertainty
in the division of TFNs. While the cumulative sum of A and B—assessed by fixing either A or B
as detailed in the multiplication case—does not equal the total uncertainty of C, it is consistently
less. The gap between the cumulative uncertainty and the total uncertainty narrows as the values
decrease. Given this observation, we choose to treat the sum of uncertainties from A and B as a valid
approximation for our assessments, acknowledging a slight loss of precision due to the unaccounted
difference in the sum.
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Uncertainty tree

By evaluating the relative contribution of all variables in Equation 4.18, it becomes possible to
systematically trace the sources of uncertainty in the final result. To achieve this, we construct the
uncertainty tree depicted in Figure 4.7, where each node represents a calculation step and each leaf
corresponds to a variable from Table 4.4. The calculations proceed from the bottom of the tree
upwards, starting by computing absolute values.

For example, if A = [1,2,3,4] and B = [5,6,10,12], then:

C = A×B = [1×5,2×6,3×10,4×12] = [5,12,30,48]

Following Equation 4.19, the uncertainty of C is calculated as:

Cuncertainty =C.mR −Ccentral = 30− 12+30
2

= 9

To determine the share of uncertainty contributed by A in this multiplication, we use Equation 4.20:

Amult
share = (3×8)− (2×8)+(3×8)

2
= 4

Where B f ixed = 6+10
2 = 8.

Similarly, for B we obtain: Bmult
share = 5.

To assess the relative contribution of A (and similarly for B), we calculate the percentage:

Apercentage =
Ashare

Cuncertainty
×100

By applying this methodology to each step in the modeling process, we can construct the full
uncertainty tree, tracking the relative contributions of each variable and ultimately determining the
total uncertainty for Fdevice from Equation 4.18.
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The uncertainty tree alone is not sufficient to precisely identify the sources of uncertainty, which
ultimately reside in the individual variables. However, by performing a tree traversal we can generate
the plot shown in Figure 4.8, that compares the uncertainty of each variable to the uncertainty it
induces in the final calculation of Fdevice. This type of analysis allows to pinpoint the contribution
of each variable to the overall uncertainty, even in cases where the variable itself has relatively
low uncertainty. For instance, the variable Ibat.

e may have an individual uncertainty of 15%, yet it
contributes less than 1% to the overall modeling uncertainty. In contrast, Fem contributes the most to
the overall uncertainty, exceeding the relative uncertainty it holds individually. This highlights the
critical role of certain variables in driving overall uncertainty, even if their own uncertainty is initially
not the highest.

The analysis of the primary contributors to uncertainty enables the identification of variables that
should be more precisely specified, allowing experts to significantly reduce the overall uncertainty in
the results. Notably, fuzzy sets can be replaced with fixed values derived from physical measurements
or additional information about the specific devices used by the software studied. This systematic
analysis and uncertainty propagation offer a significant advantage over traditional Monte Carlo
simulations commonly used in LCA, which typically require the definition of discrete scenarios to
identify such drivers of uncertainty.

4.2.4 Limits and Future Work

It is generally assumed that the lifespan of battery-powered devices is determined solely by the lifespan
of their battery, with the assumption that users replace their devices once the battery becomes unusable.
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However, this hypothesis may overlook other factors influencing the decision to replace these devices.
In particular, it does not account for hardware and software obsolescence. Battery-powered devices,
such as older smartphones, may be replaced due to performance issues, such as slowness in running
recent applications, outdated operating systems that are no longer compatible with newer applications,
or the availability of more advanced models on the market.

A limitation of the approach we applied lies in the defuzzification process, specifically the core
method, which considers only the core interval and, thus, only two points out of four of the TrFN.
In future work, alternative defuzzification approaches, such as the Expected Interval or the Central
Interval, should be investigated to more effectively capture the variability of the data within the
modeling process and its resulting outputs. Additionally, from a scientific perspective, the Life Cycle
Assessment (LCA) method lacks empirical validation regarding its overall results [207]. Therefore,
even though using fuzzy logic in LCA for ICT services provides a systematic approach to evaluate
and propagate uncertainties, the resulting outcomes still lack empirical validation.

4.3 Assessing the Environmental Footprint of Software Life Cycle

In the previous sections, we followed the established three-tier architecture to assess the environmental
footprint of digital services, focusing on two of these tiers: backend infrastructure and user devices.
Although the production footprint of software is mentioned in the ITU L.1410 [102] standard, it is
almost entirely overlooked in real-world analyses. Most assessments focus solely on the usage phase of
software, omitting the rest of its lifecycle. In this section, we propose a holistic approach that delivers
actionable insights to identify potential shifting between SDLC phases, such as development and usage,
but also hotspots among the various resources consumed to produce and operate software services.
The objective is to address the following research question: How does a holistic perspective provide
actionable insights to reduce software environmental footprint? To achieve this, we have developed a
model and an associated tool designed to facilitate the estimation of software’s environmental impact,
throughout its life cycle across various categories. As recommendations to lower software project
impacts cannot be generalized due to their uniqueness, we propose a simple and flexible way to model
and adapt to different development models and SDLC.

4.3.1 Approach

When designing this methodology, our goals are threefold. It needs to be: 1. holistic by providing
a comprehensive perception of the impacts resulting from a software project across its complete
lifecycle, 2. actionable by delivering actionable insights to project stakeholders, 3. easy to use to
enforce a widespread adoption.

To meet our first objective, we elected to follow the core principles of an attributional screening
LCA, as introduced in Subsection 2.2.2. The perimeter we take into account in our methodology
includes all the resources consumed when performing the activities identified in the SDLC, but also
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other activities to consider a complete cradle-to-grave view (cf. Subsection 2.2.2) of the impacts
arising from the ICT project under study. This includes for example (and not exhaustively) the
distances traveled to sell the product, the man-days required for its development, the production and
deployment of ICT equipment and the impact of end-user devices. This offers a high-level view of
the impacts and supports identifying key causes within the processes. Additionally, such a holistic
perspective allows the identification of potential burden shifts between life cycle phases or resources.

For a software product, such a shift can occur when reducing the hardware resources required,
and thus the usage phase impact, by adopting a more efficient programming language. However,
this programming language might incur longer development time, which will increase the impacts
occurring during the building phase. Impact shifts can also occur between categories, for instance
when replacing servers with more energy-efficient ones, thus decreasing the climate change impact,
while increasing the land pollution and resource depletion due to the manufacturing of new hardware.

Similarly to Subsection 4.1, the adoption of a bottom-up approach allows us to meet our second
objective: delivering actionable insights. Once stakeholders have identified major impact sources in
their project, they can investigate the effect of decisions taken at a micro-scale on a larger scale. Our
approach therefore equips stakeholders with a new Key Performance Indicator (KPI) to consider the
environmental impacts of their decisions and assess if the benefit outweighs the cost next to others,
such as security level, financial costs, redundancy, high availability. . .

Meeting our third objective, namely "ease of use", is generally difficult when using a bottom-up
approach with a large scope. We answer this challenge by proposing a simple and flexible way of
modeling a project’s resources and activities, which allows using the same methodology for projects
using different development models. Our estimates rely on an impact dataset (named secondary
data in LCA vocabulary), that we have consolidated from existing openly available sources. Finally,
we elect to simplify inventory and data collection by using a static view of the project, which we
introduce in the following section.

Software life cycle modeling

To adapt to the context of each stakeholder, software life cycle modeling must be adaptable to all
types of SDLC models, while keeping a consistent environmental impact computation methodology
and reference sources, and thus ensuring a standardized means of comparison across different models.

To do so, it is represented as a static view rather than a time-based one, such as a timeline, to
lower the granularity of inputs required while keeping their relevance. For instance, it is not required
for stakeholders to detail on each day how many developers worked on the project, the number of
test servers used, which would be tedious without an automation, but rather the number of man-days
and server-hours consumed on a given period. Instead of a day-to-day basis, time is flattened and
the life cycle is modeled as a tree, as depicted in Figure 4.9. In this example, the project contains
two key phases, build and run, which can contain sub-phases, such as selling, development, and
hosting. Stakeholders are able to add, move, and remove phases and sub-phases to model their SDLC,
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Fig. 4.9 Illustrative Example of a Software Life Cycle Tree

no matter the model and processes or phases they choose. To assist in this process, we propose
predefined trees that model the most common life cycles, which they can fully customize to model
more accurately their daily activities.

Each phase consumes resources to be completed, which can be of multiple kinds. The phase
coding consumes man-days, but also server-hours for developers to test their products. As software
projects use common resources, we propose a default dataset with their associated environmental
impact, which the model then uses to compute the whole software life cycle impact. This way, we
allow stakeholders to set their resources usage accordingly to their needs and policies, in the right
life cycle phases, while keeping the same computation methodology between multiple typologies of
projects.

Environmental impact computation

As the project life cycle is flattened as a tree representation, its whole environmental impact, repre-
sented as an aggregate of impact categories, can be computed using a tree traversal:

Ipro ject = ∑
phase∈phases

Iphase (4.21)

Each phase of the project—or node of the tree—can consume resources and require sub-phases.
For example, the phase build requires the sub-phase development, which consumes man-days resources.
As such, the environmental impact of a phase is the sum of its consumed resources, including the ones



4.3 Assessing the Environmental Footprint of Software Life Cycle 61

consumed by its sub-phases:

Iphase = ∑
res∈R

Ires + ∑
s∈subphases

Is (4.22)

The impact of a given phase mostly depends on the resources it consumes. Each one is estimated
from the declared quantity weighted to its associated impact factor F , which gives an environmental
impact per functional unit consumed, such as a vCPU-hour, a plane-kilometer. . . A resource impact
Ires is therefore computed as:

Ires = Qres ×Fres (4.23)

The quantity must be expressed in the same unit as the impact factor in order to obtain envi-
ronmental impact. However, as the model uses a flattened time representation, this quantity cannot
directly express recurring events such as a product owner going to meet the customer every month,
by plane, for 6 months. The quantity is therefore aggregated from multiple fields: amount, the
number of functional units used, period, the length of the resource consumption, and frequency. For
instance, for the impact factor plane, expressed by kilometer per passenger, the amount will be 100
plane-kilometers.passenger, the frequency every month, and the period a year, giving a quantity equal
to 12,000 plane-kilometers.passenger, which corresponds to the impact factor functional unit.

If an impact factor is given by a time-based functional unit, such as vCPU-per-hour, the quantity
field has to contain a time unit. A period of usage is therefore mandatory and the frequency field
cannot be used in isolation anymore, to avoid canceling out the time unit. The field duration is added
to represent a recurring scenario: to model a vCPU used two hours per day for a year, the duration will
be a year, the frequency every day, and the duration two hours. The quantity value is thus computed
as follows:

Q =
amount ×duration× period

f requency
(4.24)

Environmental Model

To foster widespread adoption of our approach to assess software environmental impact, we developed
a web application shown in Figure 4.10 as well as an API implementing our approach, available on
Github.7 This application provides software project stakeholders with an easy way to model the life
cycle of their project and get a first overview of the associated environmental impacts to quickly
identify hotspots in their projects. They can model and save their project characteristics, through
phases and resources consumed, and analyze the resulting impact from various standpoints.

Tree view Shown at the center of Figure 4.10, the tree view defines the project life cycle, by
modeling its phases as nodes. Each node can be moved or deleted, and new ones can be created at
all levels. Stakeholders can adopt a life cycle granularity that suits their study scope, which they

7https://github.com/Orange-OpenSource/SoftwareLifecycleEnvImpact

https://github.com/Orange-OpenSource/SoftwareLifecycleEnvImpact
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Fig. 4.10 Screenshot of the Web Application Implementing Our Approach

can refine iteratively by updating the tree. Standard predefined life cycle trees are proposed to start
modeling from the most common SDLC models.

Resources inputs By switching to editing mode, the resources consumed by each phase can be
updated. A form assists in conforming with the associated impact factor unit, while allowing entering
time-based events despite the overall static view.

Impact factors The impact factors are exposed by the API, and cannot be updated when modeling
projects. Keeping the reference values in a single place, rather than distributing them, as spreadsheets
for instance, avoids data tempering that would make comparisons between projects or solutions
impossible. It also allows updating at once all the projects modeled using these impact factors, when
refining their values.

Results To identify impact hotspots and shifts, the resulting environmental impact for the chosen
impact category is displayed on the left side of the application, shown in Figure 4.10. The top figure is
the Sankey diagram of the impact combined between the phases and resources, which is then refined
solely by phases, as shown in Figure 4.11, and by resource, as shown in Figure 4.12. For the impact
by resource, all impact categories are also reported simultaneously, as depicted in Figure 4.14.

Comparison Each project can contain multiple models, which can be used to compare different
approaches and scenarios. Shown on the left-hand side of Figure 4.10, these models can be compared
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Phase/Activity Inception Elaboration Construction Transition
Management 368.4 1263.0 3332.9 736.7
Environment/CM 263.1 842.0 1666.5 263.1
Requirements 999.9 1894.5 2666.3 210.5
Design 499.9 3789.0 5332.7 210.5
Implementation 210.5 1368.2 11331.9 999.9
Assessment 210.5 1052.5 7999.0 1263.0
Deployment 78.9 315.7 999.9 1578.7

Table 4.5 Software Effort Distribution of GitLab Using COCOMO II (Person-Months)

between them, using a side-by-side view of the environmental impact described previously, as well as
a direct comparison by resources shown in Figure 4.13.

Physical quantities Each physical quantity, such as ones expressed in CO2e, is represented as a
numerical value and a unit of measurement. Our implementation uses the Pint library [208], which
allows conversions between units as well as ensures their consistency in computations.

4.3.2 Findings

This section demonstrates the benefits of our approach. We use the Gitlab open-source project to
estimate a sampled application life cycle, considering the source code repository for modeling the
building phase and the documented hardware requirements for the usage phase.

Using the CLOC tool [209], we extracted 6,241,291 Source Lines of Code (SLOC) from the
project repository [210]. We used this value as an input for a Constructive Cost Model II (COCOMO
II), the most commonly-used algorithmic method for software development cost estimation defined
by Bohem et al. [211]. Using a post mortem approach on an already developed application offers
an estimation of the effort required to build a software, as well as its distribution among phases. To
obtain a standard software effort distribution, we leave COCOMO cost drivers, such as team cohesion,
programmer’s capability, and multi-site developments with their default values. We obtained the effort
distribution shown in Table 4.5.

As discussing the COCOMO potential limits is out of the scope of this analysis, we consider the
effort distribution as representative of a project this size, rather than the actual effort accomplished to
design and develop the Gitlab application.

To model the usage phase, we adopted the Gitlab hosting reference architecture for 50,000
users [212]. We chose the largest one, considering that the application is designed to be as scalable as
its biggest instantiation, requiring more effort than for a smaller one, such as for 500 users. Hosting an
instance requires hosting services not developed in-house by Gitlab, such as Sidekiq or PostgreSQL,
which is realistic for a real-world application. We only consider these services hosting impact and not
their development, as done by Kern et al. [123]. As the requirements do not specify a storage size, we
used the default repository size limit of 10 GB by project, and considered 2 projects per user with a
3× data redundancy; thus obtaining a total of 3,000 TB of data to store. We do not include end-users
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in our case study, considering that their usage environmental impact—i.e., mainly through energy
consumption—would be marginal in contrast to the manufacturing impact of their device, and that the
property of the device does not rest on using Gitlab or not.

In this case study, we assume the development and hosting in France, and we use the corresponding
impact factors.

Shifts between phases

As demonstrated in Section 4.2, the hypotheses taken when modeling and reference values used with
possibly high margins of error imply uncertainty in an environmental impact assessment, to which
there is no ground truth to compare. This implies caution when treating with absolute values, but
stakeholders can identify impact hotspots and shifts using a high-level perspective, by manipulating
orders of magnitude obtained through a common methodology and reference values.

We first focus on a specific impact category, Climate Change indicated in CO2e, to show how
modeling a software life cycle environmental impact can provide actionable insights to lower its
environmental impact.

Phases When applying the methodology described in Subsection 4.3.1 with a run phase duration of
15 years, we obtained the distribution of tCO2e emitted shown in Figure 4.11. The impact is largely
dominated by the building phase, emitting approximately 14 tCO2eq , while the running phase is
relatively low with roughly 279 tCO2eq emitted.

This highlights the importance of adopting a life cycle approach, as covering only the software
through its usage, which is commonly done, can hide the vast majority of impact which occur during
its development: more than 95% in this case.

The build phase and its sub-phases only consume people resources. As such, their environmental
impact distribution is the same one as the COCOMO software effort 4.5, where the construction
activity dominates the man-days required, resulting in more than 64% of the build phase CO2e
emissions, especially for implementation, assessment, and design phases.

Amortization Figure 4.11 highlights that in an ad-hoc development, the build phase can largely
prevail over software’s overall life cycle environmental impact. However, a project the size of Gitlab
requires to be hosted for an unrealistically long duration to reach the tipping point where its run phase
impact will be equal to the build phase. With a constant build phase emitting 13,945 tCO2eq and
a year of run emitting 18.614 tCO2eq , this tipping point is thus identified as roughly 749 years of
usage. As Gitlab is hosted simultaneously across multiple instances, we consider a hosting-year as
a single instance hosted for a year. This implies, for instance, that 200 GitLab instances operating
over a span of four years would be sufficient to reach this tipping point, a scenario that is certainly
attainable for a successful project.
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Fig. 4.11 Distribution of kgCO2eq Among Life Cycle Phases

Shifts between resources consumed

A life cycle approach allows stakeholders to identify the most impactful phases and uncover impacts
hidden by focusing on a single one, but does not provide actionable insight to reduce their respective
impact. As defined in Subsection 4.3.1 a phase does not have a direct impact, it inherently comes
from the resources it consumes. By using a similar holistic approach for resources, stakeholders can
identify hotspots and shifts in their environmental impact.

Hotspots

The Sankey diagram of Figure 4.12 depicts the flows of tCO2e emitted by the consumption of the
different resources across the project life cycle. It models a project where impacts are at the tipping
point between the build and run phases, previously defined and established at 749 hosting-years. This
provides a more realistic distribution of impacts sources and avoid having the people resource impact
largely dominating the overall one.

For one day, the people resource emits roughly 1.21e-2 tCO2eq and is constituted of transportation,
a laptop and an external monitor, as well as an office. While the monitor and laptop impacts are
relatively low, the office accounts for almost half of the impact, emitting 6,178 tCO2eq . Transportation
emits the other half, 7,326 tCO2eq , based on a representative usage mix of car, motorbike, public
transport and bike usage in France [213, 214] and their associated impact factors [215]. Among these,
the car accounts for more than 95% of the overall commuting environmental impact and ultimately
becomes one of the main impact hotspots among all resources consumed throughout the software
life cycle. We thus concur with Kern et al. [123] that commuting can be a key impact on the overall
environmental impact of a software life cycle, not only on the building phase.
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Manufacture and usage

Figure 4.12 shows that, despite the 758 vCPU and 1636 GB of memory required to host Gitlab
instances, the 300 TB of storage largely prevails over the overall CO2e emissions. Among the
8,853 tCO2eq emitted, more than 95% comes from its manufacturing. By acknowledging only its
usage impact—i.e., energy consumption—it would be considered a relatively low source of impact.
However, when accounting for the hardware’s complete life cycle, its manufacturing represents one
of the primary sources of emissions on the overall project, further underscoring the importance of
embodied emissions, as discussed in Subsection 4.1. Additionally, storage emerges as a significant
hotspot in the overall project life cycle. Identifying such hotspot allows stakeholders to uncover hidden
impacts, as well as prioritize actions, such as prolonging hardware life expectancy or decreasing the
number of allocated resources.

Compare scenarios

To compare different approaches, Figure 4.13 depicts a hypothetical scenario contrasting a model at
the tipping point between its build and run phase impacts, and a more hardware-intensive scenario.
In the latter case, the overall number of person-months required is reduced by 20%, resulting in less
efficient software that requires double the hardware resources to host an instance.

Figure 4.13 points out the main drivers of emissions shifts between both approaches. The decrease
of person-month required results in cars and offices emissions lowering by almost 2,650 tCO2eq . It is
however not sufficient to compensate for the increase of hardware-related ones, resulting in an overall
emissions increase of 2299 tCO2eq . By modeling and comparing different scenarios, stakeholders
can quickly get insights into the relative impact shifts between different implementation choices.
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Fig. 4.13 Consequences of a 20% Reduction in Required Effort

Multicriteria

We focused on the climate change impact category to highlight how the methodology can help
stakeholders to identify impact shifts between phases and hotspots between resources, and highlight
the importance of considering their life cycle impacts. However, an environmental impact is an
aggregate of impact categories, and an impact can also shift between these categories.

To identify this shift, Figure 4.14 shows a holistic view of resources’ environmental impact along
all categories of impact proposed in the tool. Due to the scarcity of open-source data, we were not able
to find relevant multi-categories impact factors for transport and buildings. Thus, the figure focuses
on the software use phase, which uses hardware resources with environmental impact data sourced
from [216].

Following the category of impact looked at, the order of magnitude between the main sources can
vary greatly. When focusing on climate change, a decision such as replacing processors with newer
and more energy-efficient ones can reduce their contribution to this impact category. It will however
increase their contribution to other categories, such as water depletion and resource depletion with
a possibly worse environmental impact. Furthermore, a holistic view of multiple categories further
highlights the major role of hardware manufacturing on the software hosting environmental footprint.

Figure 4.14 displays each category separately and in its respective unit, which can complicate
the decision-making process. To better understand their relative magnitude and importance, the
ISO 14044 [56] defines optional steps of an LCA: normalization and weighting. Each indicator result
is transformed by dividing it by a reference value, such as the one given by Sala et al. [217]. This
allows for identifying and prioritizing the relevant categories, as well as obtaining a single score by
conducting another optional step, grouping. However, as there is no broadly accepted method for
weighting and grouping yet [218], we chose not to aggregate impact categories and to report them
separately to stakeholders.
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Fig. 4.14 Environmental Impact of Resources in the Run Phase

4.3.3 Limits and Future Work

Gitlab is used as a sampled case study to show the methodology and the actionable insights it offers on
a realistic dataset of a complex application, but the impact cannot be considered as these of the project
itself. Defining a scope, even if it causes truncation error (cf. Subsection 2.2.2), is essential to a life
cycle approach, as considering all upstream resources would be too large and thus impossible. As we
limit our build scope to values obtained through the COCOMO effort estimation methodology, some
key elements are missing for an organization, such as supporting employee infrastructure, accountancy,
human resources, etc. Furthermore, the Gitlab company is all-remote, thus not using offices each
day, which plays a key role associated with commuting in our impacts modeling. Their employees
work across 65 countries, which we do not consider as we did not add work-related travel. We used a
"black-box" approach using the source code repository and documented hardware requirements as a
best-effort solution, but encourage stakeholders to use the more precise project values available to
them, and impact factors better suited to their context to obtain the best insights from the model.

We chose not to consider Continuous Integration / Continuous Delivery (CI/CD) runners in our
use case, as they would be predominant over the hosting impact. While relevant for the Gitlab product
LCA, it is a peculiar use case, highly resource-intensive thus with a high impact. Using the default
SaaS runner configuration with 1 vCPU and 3.75 GB of RAM, as well as the 10,000 minutes per
month or shared runner time allocated to premium users, we obtain just about 12.77 tCO2eq per
month for the runners, while the overall hosting impact is roughly 1.55 tCO2eq .

As it uses an attributional approach, our model will be limited to delivering insights into its intrinsic
characteristics, but not into the side effects that might occur. An ICT product life cycle analysis
will only reveal the first-order effects, not its role as an enabling technology (cf. Subsection 2.2.2).
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For instance, reducing the commuting impact by encouraging employees to work from home will
reduce the project’s overall impact from the model’s perspective, but teleworking may also increase
the overall distance traveled as stated by Caldarola and Sorrell [219]. Offices-related impacts such
as energy consumption for heating, cooling and lighting will be transferred to employees’ homes.
Hook et al. [220] concluded through a systematic review that economy-wide energy savings due to
teleworking are typically modest, and can even be negative or nonexistent.

We highlight the importance of considering software’s environmental impact over its complete
life cycle, and not only its usage through energy consumption. However, the ecosystem lacks data
on the environmental impact of resources it uses, as highlighted in Subsection 2.2.2, all the more
multi-criteria impact, which we demonstrate the importance of throughought this chapter. Our model
outputs are strongly correlated to its reference values, and we modeled an environmental impact
using impact factors from France where the electricity is low carbon. In this context, we observed a
smaller resource usage than manufacturing footprint, but this cannot be generalized and we encourage
stakeholders to use impact factors corresponding to their context.

Finally, we state in Subsection 2.3.3 that in the literature second- and third-order effects, notably
rebound effects, are influenced by factors beyond the control of developers at the time of software
conception. In contrast, this approach adopts a more holistic view of software, extending beyond the
development phase. At the development level, however, developers could engage with issues such
as software obsolescence, incorporating more holistic considerations that extend beyond immediate
technical concerns. In the following chapter, we examine the potential strategies for developers to
mitigate the environmental footprint of software and consider the broader responsibilities of software
stakeholders in promoting ecodesign principles, notably in addressing impacts beyond first-order
effects.

Evaluating software environmental footprint: Approaches to assessing the environmental
footprint of software primarily focus on energy consumption and adopt three tiers architecture:
user devices, data centers, and networks. However, reliable and openly available reference data
on the embodied footprint of the hardware is still scarce. Open-source tools and methodologies,
such as those proposed in this chapter, are essential for enabling comparable, provider-agnostic
analyses. We demonstrate that, to obtain actionable insights, analyses should employ bottom-
up modeling, as it enables the identification of more granular reduction levers. These tools
must also facilitate the assessment, identification, and reduction of uncertainties arising from
secondary data, as well as from allocation and modeling choices.
Taking a more holistic approach, which extends beyond the established three-tier architecture
to account for the software life cycle footprint, reveals the significant environmental costs
associated with the building phase. The impact of this phase is largely driven by employee
commuting and the environmental footprint of office spaces.



Chapter 5

Towards Ecodesign: Reducing Software
Environmental Impact

In Chapter 4, we proposed various approaches and tools to assess the environmental footprint of
software. However, solely estimating software environmental footprint is a first step toward ecodesign,
which aims to "reduce adverse environmental impacts throughout the life cycle of a product.",
according to ISO 14006:2020 [221].

In this chapter, the objective is to identify actionable technical levers that technical stakeholders can
employ to reduce the environmental footprint of software, with a particular emphasis on microservices
within cloud architectures. To achieve this, we first introduce a conceptual model that outlines the
liabilities of architecture in software’s environmental impact. Then, we propose two quality metrics
for software architecture: we introduce the concept of resource and environmental waste caused by
software architecture, and conclude with the idea of software environmental impact proportionality.

5.1 Attributing Environmental Liability Across Software Components

Most quality metrics prioritize energy consumption as the key factor in reducing software’s environ-
mental footprint, while neglecting the embodied impact of hardware, which we show the importance
of in Chapter 4. Additionally, a narrow focus on usage overlooks the strain imposed on natural
resources essential for the manufacturing of ICT devices (cf. Section 3.3). As such, there is a need
for quality metrics to adopt a broader perspective than existing approaches that focus on energy
consumption by encompassing also hardware to shed light on the consequences of over-reserving
resources in software architecture.

The environmental impact attributed to a deployed software (thus excluding its development cost)
can be considered as the combination of multiple contributing factors: its requirements, implementa-
tion and infrastructure.
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Fig. 5.1 Software Environmental Footprint Liability Framework

Figure 5.1 illustrates these factors with a triangle structure, where these environmental impacts
materialize through the infrastructure, which lies at the foundational level of the triangle by offering
the physical devices and platform solutions that are required to host software services. This level
answers the needs expressed by the implementation, which itself fulfills the functional and non-
functional needs of requirements.

The possibilities to decrease the first-order environmental impact (cf. Subsection 2.3.3) of a
deployed software are thus threefold: lowering the requirements through features or performance,
optimizing the implementation through code or architecture, or optimizing the infrastructure.

Consequently, despite each triangle side’s environmental impact indirectly stemming from the
infrastructure, each one bears the responsibility to mitigate it. If one side fails to address the pressure
it places on the other sides of the triangle, it will impede the ability of the other sides to alleviate their
own pressures, creating a cascading effect that ultimately amplifies the overall environmental impact.

We thus define liability as the responsibility for each of the three sides’ acts and omissions.
Each one exhibits its respective levers that can influence others to reduce—or increase—the overall
software environmental impact. All these factors are interdependent: if one reduces waste, such as
the infrastructure using resource over-subscription, but others do not, such as features demanding
excessively high-performance levels, the final environmental impact may not decrease.

Such conceptual liability model can be used by researchers to define new metrics aimed at reducing
the environmental footprint of the resulting software notably in the context of software sustainability
(cf Subsection 2.3.3). This approach can also be employed to mitigate the environmental footprint of
software beyond first-order effects, by incorporating functional dimensions in addition to technical



72 Towards Ecodesign: Reducing Software Environmental Impact

considerations. In the reminding of this chapter, we specifically focus on architecture’s role towards
sustainable software. As it is included within the implementation side, its liability lies in reducing the
pressure it exerts on the infrastructure, while adhering to requirements of features and performance.
In this case, such pressure materializes through computing resources reserved and used.

5.2 Defining a New Quality Metric for Reducing Wasted Resources

Within the conceptual model presented in Figure 5.1, we can derive concrete metrics and KPIs that
are actionable at the implementation level, enabling software technical stakeholders to contribute to
reducing the environmental footprint within their liability. In this section, we propose two quality
metrics specifically designed to minimize waste induced by software architecture, particularly in the
context of microservices deployments.

5.2.1 Identifying Wasted Resources

Waste, defined by the Cambridge Dictionary as an unnecessary or wrong use of resources,1 has
been extensively studied as an improvement factor across various domains of software engineering,
particularly through the adoption of lean practices in the SDLC. For production systems, Womack
et al. [222] introduced the concept of Lean Thinking, which focuses on identifying and eliminating
waste within a value stream. In this context, waste refers to activities that do not create value for
the customer, are unnecessary, and therefore should be removed. This concept was adapted from
manufacturing to software engineering through the 7 principles of Lean Software Development [223].

However, lean development is primarily a tool for financial cost-efficiency rather than environ-
mental impacts reduction—although it can have secondary benefits in reducing the software life
cycle’s environmental footprint (cf. Section 4.3). Waste has also been studied from the perspective
of infrastructure management (cf. Subsection 2.3.3), and we propose a paradigm shift focusing on
the reduction of waste in computing resources induced by software architecture, adhering to the
conceptual model presented in Section 5.1.

Software-induced waste, whether from over-provision or static reservation of resources, carries
environmental consequences beyond energy consumption (Section 2.1) for which software bears
responsibility. Software projects are typically sized based on an often overestimated peak usage
scenario, leading to resources being reserved over time and rarely scaled down or adjusted dynamically
to match the actual needs of architectural components. As a result, most ICT infrastructures continue
to operate at low usage levels (cf. Subsection 2.3.3), failing to reduce their associated environmental
footprint. To identify such unsustainable practices in software architecture, we define the quality
metric wasted resource as the «resources that are provisioned by an application though unused»,
aiming to uncover sustainability antipatterns only through extended observation periods [224].

1https://dictionary.cambridge.org/dictionary/english/waste

https://dictionary.cambridge.org/dictionary/english/waste
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Given a period [t0; t1], the quality metric wasted resource, denoted as Wr for a given resource
r, thus depicts the area between provisioned (Pr) and used (Ur) resources. We note Pr(t0, t1) the
amount of resources provisioned during that period, and Ur(t0, t1) the amount of resources used during
that same period.

Pr(t0, t1) =
∫ t1

t0
Pr(t)dt (5.1)

Ur(t0, t1) =
∫ t1

t0
Ur(t)dt (5.2)

For a given computing resource (i.e., memory or CPU), the wasted resources can then be defined as
follows:

∀r ∈ {cpu,mem} : Wr(t0, t1) = max(Pr(t0, t1)−Ur(t0, t1),0) (5.3)

5.2.2 Architectural case study

We use two benchmarks to demonstrate the consequences of waste induced by software architecture.
We use the same software, allowing for a direct comparison between two deployments. As such, the
same requirements are maintained through identical sets of features and performance thresholds (cf.
Figure 5.1), and the code remains unchanged. However, the infrastructure platform differs, as we
deploy the software using two distinct models on the same physical machine: Container-as-a-Service
(CAAS) and a Infrastructure-as-a-Service (IAAS). The benchmarks were conducted on an HP Z6 G4
workstation, equipped with 96 GB of RAM, two Xeon Gold 5118 CPUs (2.30 GHz, 48 cores), a 5 TB
SSD, and running Ubuntu 22.04.

To achieve this, we deploy the open-source application Gitlab,2 version 17.5. In both CAAS
and IAAS, the deployment follows the reference architecture and resource reservation designed to
accommodate a workload of up to 2,000 users,3 while adhering to the application performance
thresholds.

Input workload. To simulate the application’s usage, we use the Gitlab Performance Tool,4 which
conduct performance load testing across the diverse features, routes, and components of the application
and assess the completion of performance threshold for each of them. We apply a varying workload
to simulate a real application usage, simulating varying users (between 200 and 2,000). We purposely
reach the maximum workload of 2,000 users once, representing a software’s usage that does not
consistently peak. Between tests, we incorporate a 15-minute pause to allow the application to scale
down appropriately before scaling up again. We monitor the system for 14 hours to also observe its
response to periods of inactivity.

2https://gitlab.com/gitlab-org/gitlab
3https://docs.gitlab.com/ee/administration/reference_architectures/2k_users.html
4https://gitlab.com/gitlab-org/quality/performance

https://gitlab.com/gitlab-org/gitlab
https://docs.gitlab.com/ee/administration/reference_architectures/2k_users.html
https://gitlab.com/gitlab-org/quality/performance
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Gitlab on CaaS. To study a CAAS architecture, we deploy the Gitlab Helm chart5 within k3d,6,
a tool facilitating the creation of containerized k3s clusters.7 When using this approach, each
component of the application is deployed as a set one or several pods, whose number automatically
adapts to the workload. This provides a very dynamic allocation of resources. The monitoring of
hardware resources is done using kube-prometheus-stack,8 which deploys kube-state-metrics [225]
and prometheus-node-exporter [226].

Gitlab on IaaS. To deploy a cluster of virtual machines, the combination of libvirt9 and QEMU10 is
adopted. Gitlab is deployed using the Linux package.11 When using this approach a set of virtual
machines is created to host the application’s components, and resource allocation is static. Hardware
resources monitoring is achieved through the built-in Gitlab Prometheus exporter.12

5.2.3 Results

Figure 5.2 depicts the induced waste on CPU and memory, respectively Wcpu and Wmem, for the
same workload on both CAAS and IAAS studied for 14 hours (cf. Subsection 5.2.2). Typically,
one can observe that a dynamic reservation strategy considerably reduces wasted resources, as
computing requirements mostly evolve following the load level. One can also note their significance
in statically-provisioned software solutions. This is particularly striking in the case of statically
provisioned memory, which is twice larger than what is constantly used by the application, without
many variations. In the case of dynamically provisioned memory, however, we observe that wasted
resources are consequently smaller thanks to an aggressive reservation mechanism.

Using the approach outlined in Subsection 4.1, we assess the GHGs footprint associated with
the reservation of monitored resources, particularly CPU and memory. To provide a more accurate
representation of the environmental impact of a cloud platform compared to that of the workstation
used (cf. Subsection 5.2.2), we utilize the previously mentioned infrastructure footprint. Given that
our assessment is based on a sampled application over a relatively short period of time, we do not
include the storage footprint in this analysis. Figure 5.3 logically reflects trends similar to those
observed in resource usage and reservation (Figure 5.2), due to the proportionality inherent in the
impact assessment methodology. The figure, however, highlights a significant footprint associated
with usage impact, due to the CPU-intensive nature of the application. Although static allocation
results in considerable carbon waste, dynamic allocation shows higher usage footprint peaks.

5https://gitlab.com/gitlab-org/charts/gitlab
6https://github.com/k3d-io/k3d
7https://github.com/k3s-io/k3s
8https://github.com/prometheus-community/helm-charts/tree/main/charts/

kube-prometheus-stack
9https://libvirt.org/

10https://www.qemu.org/
11https://docs.gitlab.com/omnibus/installation
12https://docs.gitlab.com/ee/administration/monitoring/prometheus

https://gitlab.com/gitlab-org/charts/gitlab
https://github.com/k3d-io/k3d
https://github.com/k3s-io/k3s
https://github.com/prometheus-community/helm-charts/tree/main/charts/kube-prometheus-stack
https://github.com/prometheus-community/helm-charts/tree/main/charts/kube-prometheus-stack
https://libvirt.org/
https://www.qemu.org/
https://docs.gitlab.com/omnibus/installation
https://docs.gitlab.com/ee/administration/monitoring/prometheus
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Low usage leads to high waste While being sized for peak usage in IAAS infrastructure, few
applications reach it or have a constant load at a high-stress level. Most of their lifetime is spent with
an intermittent load, which is not reciprocated in their mainly static resource reservation.

Figure 5.4 illustrates the relationship between Wcpu and Wmem for both architectures deployed. It
demonstrates the distinct levels of wasted resources and the correlation between computing resources,
and highlights that for both computing resources, an architecture wasting CPU will likely also waste
memory.

Furthermore, in the case of statically-provisioned resources, it is striking that most of the period is
characterized by low usage, resulting in a notable accumulation of wasted resources.

Wasted resources depicts that the distribution of resource utilization levels highlights that most
of the time is spent under low load levels, which is contradictory to a provision for peak usage.
Its inclusion as a software architecture quality metric would help stakeholders identify such waste,
towards more sustainable practices in the long-term.

Breakdown by software service An application-level perspective is useful for highlighting un-
sustainable patterns but lacks actionable insights for software architects. Software environmental
footprint is often treated as a single complex entity instead of acknowledging the interconnected com-
ponents that it consists of, which fails to deliver detailed insights into problematic components [136].
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As such, wasted resources metric should be assessed independently for each component to obtain
more finely-grained feedback, based on Equation 5.3. Software architecture is particularly suited to
finding the root causes of such wastes, as it allows us to consider components rather than software as
a monolith.

Figure 5.5 outlines the share of wasted-to-used resources for all Gitlab architecture’s components
in a CAAS architecture. These components do not share the same responsibility in the overall software-
induced wasted resources. According to the one looked at, the ratio of wasted-to-used resources can
vary significantly among these components. Moreover, following the computing resource considered
the behavior can be different, though a correlation is discernible. While some components waste
almost all their reserved resources, some others use them fully. It is crucial to address components that
emerge as the primary contributors to wasted resources as they play a pivotal role in environmental
inefficiency.

While a relative comparison provides a good way to identify the main sources of wasted resources,
it is only the first step to dive deeper into software-induced waste and better understand its root
causes. For real-world applications, such assessments should be conducted over longer period of
time, to strive towards the overall reduction of the strain placed on the infrastructure, and indirectly
the environmental impact. In ever-evolving software architectures, constant monitoring can uncover
sustainability antipatterns and induced environmental impacts that can be easily avoided.
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Fig. 5.6 Reducing Wcpu and Wmem via Adjusted Provisioning Strategies

5.2.4 Outcomes of Reducing Wasted Resources

In Section 5.1, we argued that the liability of the implementation triangle side to reduce the pressure
placed on the infrastructure while conforming to requirements, notably in features and performance. In
this section, we illustrate, how continuous monitoring of wasted resources enables software architects
to uncover unsustainable resource reservation patterns and promptly implement corrective actions.

In the case of a static resource reservation mechanism, the reduction of wasted resources can be
achieved by enhancing the correlation between provisioned resources and their observed usage. For
example, in our benchmark, we were able to reduce Wcpu by 32% and Wmem by 80%, as shown in
Figure 5.6, by sizing closer to the maximum resource used, while still adhering to requirements: the
same features and level of performance.

Limitations

In the case of dynamically provisioned resources, we observed in Figure 5.2 that wasted resources
were already relatively low, and further reduction would yield marginal results for a considerable
investment. However, it can also be observed in this figure that wasted resources are often none, as
used resources may exceed provisioned one. While beneficial when aiming to lower wasted resources,
it appears contradictory to the responsibility of the implementation, which is to lower the pressure it
places on the infrastructure. Is it reasonable to keep the infrastructure triangle side unaware of the
actual computing resource requirements of a software?

Moreover, in a multi-tenant environment, such as a cloud infrastructure, resource availability
is not ensured unless explicitly provisioned, potentially compromising the performance standards
that software architecture should uphold. More importantly, it mandates the infrastructure to over-
provision computing resources, fostering unsustainable patterns resulting from software architecture
behaviors.

Therefore, to complement the wasted resources metrics and address such limitations, a comple-
mentary metric can be used stolen resources, illustrated in Figure 5.7. Stolen resources represents
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the share of resources an architecture uses without explicit reservation to the implementation side for
their provision:

∀r ∈ {cpu,mem} : Sr(t0, t1) = max(Ur(t0, t1)−Pr(t0, t1),0) (5.4)

5.3 Seeking Proportionality in Software Environmental Footprint

The limitation of the wasted resources metric is that, although it addresses the issue of unused
resources, it does not offer a thorough assessment of how efficiently resources are utilized. However,
improving resource consumption remains essential, as software can still exhibit high resource usage
even under periods of low activity and workload. For example, software may experience problems
such as memory leaks or shadow processes. To address this, we propose a novel approach that
evaluates software resource usage in relation to the evolution of its Functional Unit (FU).

5.3.1 Conceptual Modeling

According to the definition of a FU in Subsection 2.2.2, it serves as a reference point for quantifying
the performance of a product or service in relation to its primary function. The FU therefore reflects
how much of the service or product is being provided for the assessment.

In the context of software, the FU can take various forms. For example, it could be performance-
related and be measured by the average response time to a request, the number of users served, or
using more traditional performance quality metrics. This FU is not necessarily limited to technical
aspects; it can also encompass non-technical outcomes, such as the financial benefits generated by
the software or its critical importance within an industrial system. Importantly, the FU represents
performance over a specified time period, rather than a singular, temporary observation.

In this approach, all resources utilized by the software to fulfill the FU are attributed to that
specific function. In the example of the GitLab application, we define it as the number of packets
transmitted by the application over a 14-hour period. Consequently, all associated resources and
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resulting impacts are allocated to this defined quantity. Therefore, the ecodesign of a software
application involves minimizing the environmental footprint per unit of workload and evaluating the
proportionality between this FU evolution and the observed resource consumption and associated
impact.

Ideally, the environmental impact of a software and subsequently its components should be directly
proportional to their usage: if a component remains unused, it should not generate any impact. Each
component should strive to handle its workload as resource-efficiently as possible, thus minimizing its
environmental footprint. Not monitoring this relationship may lead to the emergence of sustainability
antipatterns, where components with low usage still contribute disproportionately high environmental
impacts.

Resource usage is considered optimal when software components handle a workload w while
consuming the minimum possible resources. A straightforward approach to defining this optimal
resource consumption is to assume that it is strictly proportional to the minimum observed usage.
Therefore, for a given workload w, the ideal resource consumption resideal for any resource (such as
CPU, memory, or energy consumption) is expressed as:

resideal(w) = resmin ×w (5.5)

In this context, considering w as the number of packets transmitted, the constant resmin can be
determined as:

resmin = min0≤t≤T
resso f tware(t)

packetstransmitted(t)
(5.6)

Where t ∈ T reflects the time in a period T , during which we calculate the minimal value of the
resso f tware over packetstransmitted ratio, without considering the workload w.

Such a simple approach however lacks actionable insights for developers, by having a single
parameter to optimize. As such, we elect for a more complex modeling with the following format:

resoptimal(w) = a×wb + c (5.7)

This formula models resource usage as a function of workload, where a serves as the scaling
factor that defines the baseline amount of resources required per unit of workload. This coefficient
establishes the initial relationship between workload and resource consumption. The exponent b
governs how resource usage scales with the workload in a non-linear fashion. Specifically, when
b < 1, it indicates diminishing marginal costs, meaning that as workload increases, the additional
resources required per unit of workload decrease. This pattern is often observed with resources such as
memory, which tends to exhibit high idle consumption and decreasing incremental costs as workload
rises. The term c represents this idle resource consumption, reflecting the constant usage of resources
even in the absence of workload. This idle cost is independent of the workload and accounts for the
system’s baseline consumption.
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These different factors provide software engineers with various levers for optimizing resource
efficiency. Reducing the scaling factor a would lower the baseline resource consumption per unit
of workload, leading to more efficient resource use for individual tasks. Decreasing the exponent
b would result in greater efficiency gains at higher workloads, making the system less sensitive to
increases in workload. Finally, reducing the idle cost c would minimize resource usage when the
system is idle, thereby reducing the baseline overhead during periods of inactivity. Together, these
adjustments would result in a more efficient system, characterized by lower resource consumption
both when idle and as workload scales.

5.3.2 Results

To show the benefits of resource proportionality, we consider the CAAS architecture deployment of
GitLab, as it demonstrated the lowest level of wasted resources in Subsection 5.2.2. The deployment
characteristics and workload remain unchanged, but in addition to monitoring memory and CPU
resource usage, we also track CPU energy consumption per microservice using the PowerAPI software
power meter [227]. While energy consumption was modeled in Figure 5.3, we now directly measure
it as we focus specifically on usage footprint optimizations. Energy consumption is more closely
tied to workload fluctuations, necessitating finer-grained monitoring. This allows for more detailed
environmental impact modeling, considering both embodied and usage footprints, in line with the
methodology outlined in Subsection 4.1.

Figure 5.8 illustrates the modeling of these three resources using Equation 5.7. On the left, a
scatter plot displays the observed resource consumption against the number of transmitted packets,
highlighting their relationship. As seen in the previous section, most data points are concentrated
in the lower range of transmitted packets, reflecting the fact that the workload rarely reaches peak
levels. For each component, resideal is calculated using Equation 5.5, demonstrating that real-world
applications do not exhibit strict proportionality by default.

To determine the initial values of a, b, and c, the curve fitting function from the Scikit-learn library
[228] is used. This function uses non-linear least squares optimization to align the model with the
data. By providing the observed workload over the period as input and the corresponding resource
usage as output, the curve fitting algorithm iteratively adjusts a, b, and c to minimize the difference
between predicted and actual resource usage. This approach yields the most accurate estimates of
these parameters, offering a precise representation of the relationship between workload and resource
consumption, including both non-linear scaling and idle usage.

However, these factors should be arbitrarily reduced in order to work towards reducing resource
consumption. In the Optimized scenario, each of the derived factors a, b and c is reduced by 10%.
The effect of this optimization over the observed period is displayed on the right. For CPU usage,
the reduction primarily affects peak periods, as CPU consumption is already largely proportional
to the workload, with minimal idle consumption. In contrast, for memory, the reduction mainly
impacts idle consumption, which is substantial, resulting in a usage pattern that is less dependent on
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Fig. 5.8 Optimizing Resource Use Through Proportionality with Software’s Functional Unit
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workload fluctuations. Finally, for energy consumption, similarly to CPU usage, the optimization
flattens consumption peaks, leading to a more consistent and efficient usage profile.

Estimating the environmental footprint of the infrastructure using the approach and data developed
in Subsection 4.1 demonstrates that a 10% improvement in the parameters a, b, and c could result
in a 24.88% reduction in Global Warming Potential (GWP) over the observed period and given
workload. Figure 5.9 illustrates this reduction, showing that the observed values consistently exceed
the optimized GWP, with a significant and persistent gap between the two. Both the observed and
ideal GWP curves exhibit fluctuations throughout the day, peaking during periods of higher activity
and dropping during lower usage, induced by the proportional impact modeling of the workload on
emissions.

As in Subsection 5.2.3, such analysis can be conducted at the software component level, as
demonstrated in Figure 5.5, to identify the components that deviate the most from the ideal. By
pinpointing these components, stakeholders can prioritize optimizations where the greatest gains in
resource efficiency and reduction in environmental impact can be achieved.

In real-world applications, prioritizing action levers based on their relative effectiveness in
reducing emissions and optimizing resource usage is essential. Figure 5.10 presents the potential
reduction in GHGs achieved by optimizing each parameter individually, as well as by optimizing
all parameters simultaneously. Varying a, b, and c individually shows distinct trends in workload
reduction. In the Gitlab CAAS benchmark, optimizing a leads to proportional benefits, while
adjusting c, the idle cost, produces negligible results. The results reveal that optimizing the b
parameter, which represents the marginal cost, offers the greatest reduction potential, particularly up
to 80%, at which point the optimization of a becomes more significant. However, such high-level
optimizations are largely theoretical. The curve illustrating the cumulative effect when all parameters
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are adjusted together, indicates a higher potential for optimization when multiple parameters are
modified simultaneously, compared to changing them individually. This analysis should be repeated
for different software systems, as the unique characteristics of each application may affect the
generalizability of these findings. Nevertheless, this type of analysis enables stakeholders to identify
the most impactful action levers for reducing emissions and optimizing resource efficiency.

Sotware ecodesign: Developing software-specific technical mitigation levers must align with
their respective areas of responsibility and liability of software stakeholders. For software
architecture, a practical and rapidly implementable solution is implementing technical quality
metrics addressing resource waste, often the result of over-sizing systems to accommodate for
peak usage. Additionally, software architecture enables more detailed analyses by viewing
software as a collection of components, rather than a monolithic entity.
A key principle in resource management is ensuring proportionality between the software’s
environmental impact and its functional usefulness. However, software ecodesign should not
be confined solely to optimizing implementation and infrastructure; it must also address the
functional aspects of the software itself, ensuring that it aligns with planetary boundaries at
every level of design and operation.



Chapter 6

Conclusion

In this thesis, we draw upon methodologies from various research fields to identify meaningful action
levers, aimed at holistically estimating and reducing the environmental impact of software. First, we
employ economic tools to provide a broad overview of the ICT sector environmental footprint as
a whole. Building on prior research, we demonstrate the continuous growth of the sector’s GHGs
emissions since 1995. Then, we propose an approach of such methodology to assess the sector’s
material footprint evolution, while underscoring the inherent challenges and uncertainties involved
in conducting such analyses. In the second chapter, we transition from macro-level assessments to
micro-level analyses by proposing new tools and methodologies to assess the various environmental
impacts of software. We particularly emphasize on the uncertainties inherent to such analyses, while
also highlighting the need for a holistic perspective to take sourced decisions to reduce software
footprint. Finally, we build upon these analyses, methodologies and tools to reflect on the liability of
software in mitigating the sector’s overall environmental impact. Based on a conceptual model, we
introduce two new metrics suitable for software architecture: wasted resources and proportionality.

6.1 Perspectives

6.1.1 Short-term

The ICT sector still struggles to fully understand its environmental footprint. In future research,
EEIOA could be employed as a way to better understand the intricacy of its supply chain, particularly
by accounting for the embodied footprint of hardware. This approach could help generalize the
inclusion of embodied impacts in impact reduction strategies by providing open-data, rather than
focusing exclusively on energy consumption. A more thorough analysis of the supply chain would also
enhance the consideration of other environmental impact categories associated with the ICT sector,
such as water usage and land use. Additionally, this methodology could be utilized for prospective
scenario analysis, particularly to explore the sector’s reliance on the mineral supply chain. However,
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our research identified limitations in the quality of environmental data within the database used,
mandating for research using alternative databases. The results should be challenged using alternative
quantification methods, such as material flow analysis (MFA), to more thoroughly evaluate the validity
of the findings obtained.

The scarcity of data, combined with the prevalence of closed-source methodologies, hinders
meaningful comparisons of environmental footprints. To address this, both the research and software
communities should work toward the development of open-source commons, including tools and
methodologies such as BoaviztAPI, partially introduced in Subsection 4.1. In the short term, I
plan to incorporate uncertainty management into this tool, which is already widely recognized by
industry stakeholders in France. This enhancement will allow users to interpret the results as orders
of magnitude, emphasizing that these tools generate estimations rather than precise measurements.
Furthermore, it highlights that these estimations are strongly influenced by allocation choice, which
can have a substantial impact on the final results. Additionally, I aim to integrate more advanced
modeling techniques, particularly those developed in this thesis, including approaches that account
for wasted resources in cloud infrastructures.

The limited quality of data on the embodied environmental footprint of ICT hardware is often
cited as a justification for focusing solely on energy consumption. In future research, I plan to expand
upon the conceptual liability model introduced in this thesis to create actionable metrics for software
stakeholders. These metrics will go beyond energy consumption, highlighting the material impact of
digital infrastructures, which is frequently neglected when energy is the sole focus.

6.1.2 Long-term

Focusing solely on software optimization is only a first step toward rethinking the future of software
within planetary boundaries. While software stakeholders are accustomed to using KPI to monitor
and improve various aspects of software, the ecodesign of software cannot be reduced to the addition
of new metrics alone.

Ecodesign must be integrated into every phase of the SDLC, to weigh the environmental costs
against the benefits of the implementation of a solution. Further research should not only aim to
optimize software to fulfill its functional requirements in the most efficient way, but also to critically
evaluate the intended goals of software in light of planetary boundaries. Importantly, the responsibility
for ecodesign cannot only rest with technical stakeholders. It requires a broader, interdisciplinary
approach to ensure that the future of software development truly with sustainability goals.
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