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Abstract

Individuals with severe motor impairment, such as those with Locked-in Syn-
drome, face substantial challenges when using traditional, gaze-dependent brain-
computer interfaces (BCIs). These systems require directing the gaze toward
specific targets, which becomes unfeasible for individuals with limited or no eye
control. This work addresses this limitation by developing gaze-independent
BCI methods, focusing on improving covert visuospatial attention (VSA), where
users can direct their attention to a target without corresponding eye movements.
A key contribution is the compensation for event-related potential (ERP) la-
tency jitter, a variability that negatively impacts decoding performance in covert
VSA. By handling this jitter, the proposed method enhances communication ac-
curacy without requiring gaze control, making BCIs more usable for individuals
with motor impairments.

Beyond gaze independence, this work also advances general ERP decoding
techniques by refining the structure of linear and multilinear estimators. These
methods improve accuracy across a range of BCI settings, particularly when
training data are limited. The introduction of structured regularization in both
linear and multilinear models enhances interpretability and reduces training
time and computational complexity. This allows for more efficient training and
contributes to generalizability, allowing for more reliable systems that are adapt-
able to various contexts and user needs.

The proposed methods were validated in experiments involving both healthy
individuals and seven individuals with severe physical impairment and impaired
eye-motor control. These experiments demonstrated the robustness of the novel
decoding methods, showing that the system could effectively decode covert at-
tention even when direct gaze was impossible.

Keywords: brain-computer interface, electroencephalography, event-related
potentials, visuospatial attention, (multi)linear decoding, physical impairment



Samenvatting

Personen met ernstige motorische beperkingen, bijvoorbeeld het insluitings-
syndroom, ervaren aanzienlijke uitdagingen bij het gebruik van traditionele vi-
suele brein-computer interfaces (BCI’s). Deze systemen vereisen gerichte oogbe-
wegingen wat onpraktisch is voor personen met beperkte of zonder oogbeweg-
ingscontrole. Dit werk ontwikkelt BCI-technieken onafhankelijk van de blik, met
nadruk op bedekte visuospatiële aandacht (VSA) – aandacht zonder overeenkom-
stige oogbewegingen. Een belangrijke bijdrage is het compenseren van vari-
abiliteit in de timing van event-gerelateerde potentialen (ERP’s), een factor
met een negatieve impact op de decodering van bedekte VSA. Door dit aan
te pakken, verbetert de nauwkeurigheid van communicatie die onafhankelijk is
van oogcontrole. Dit maakt BCI’s bruikbaar voor personen met oog-motorische
beperkingen.

Naast onafhankelijkheid van oogbewegingen, verbetert dit werk ook algemene
ERP decodering door de structuur van lineaire en multilineaire technieken te
verfijnen. Deze methoden verhogen de nauwkeurigheid in verschillende BCI-
toepassingen, vooral wanneer kalibratiegegevens beperkt zijn. Gestructureerde
regularisatie van lineaire en multilineaire modellen verhoogt de interpretateer-
baarheid en verlaagt de trainingstijd en computationele complexiteit. Dit draagt
bij aan efficiëntere training en generalisatie, wat de ontwikkeling van betrouw-
baardere systemen toelaat, aangepast aan verschillende contexten en gebruik-
ersbehoeften.

De voorgestelde methoden zijn gevalideerd in experimenten met gezonde
deelnemers en zeven individuen met een ernstige fysieke beperking en vermin-
derde controle over oogbewegingen. De resultaten wijzen op de robuustheid
van de nieuwe decodeermethoden, waarbij werd aangetoond dat het systeem
bedekte VSA effectief kan decoderen, zelfs zonder directe blik.

Trefwoorden: brein-computer interface, electro-encefalografie, event-related
potentials, visuospatiële aandacht, (multi)lineaire decodering, fysieke beperking-
en
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Résumé

Les individus ayant des handicaps moteurs sévères, tels que ceux atteints de syn-
drome d’enfermement, rencontrent des défis considérables lors de l’utilisation
d’interfaces cerveau-ordinateur (BCI) traditionnelles. Ces systèmes nécessitent
de orienter le regard, une tâche impraticable pour les personnes ayant un con-
trôle oculaire limité ou inexistant. Ce travail vise à pallier cette limitation en
améliorant des méthodes de BCI indépendantes du regard et en optimisant la
décodage de l’attention visuo-spatiale (VSA) cachée, où l’ utilisateurs oriente
son attention sans mouvements oculaires correspondants. Une contribution clé
de ce travail est la compensation de la variabilité de latence des potentiels évo-
qués (ERP), laquelle impacte la performance de décodage de VSA cachée. En
gérant cette variabilité, la méthode proposée améliore la précision de la commu-
nication sans nécessiter de contrôle du regard, rendant les BCI plus utilisables
pour les personnes ayant des handicaps moteurs.

Au-delà de l’indépendance du regard, le travail fait également progresser les
techniques générales de décodage ERP en affinant la structure des estimateurs
linéaires et multilinéaires. Ces méthodes améliorent la précision de classifica-
tion dans une gamme de conditions BCI, en particulier lorsque les données
d’entraînement sont limitées. L’introduction de régularisation structurée dans
les modèles linéaires et multilinéaires améliore l’interprétabilité des classifica-
teurs et réduit le temps d’entraînement ainsi que la complexité computationnelle.
Cela permet un entraînement plus efficace et contribue à la généralisation, ce
qui permet le dévelopment des systèmes plus fiables qui s’adaptent à divers
contextes et besoins des utilisateurs.

Les méthodes proposées ont été validées lors d’expériences impliquant à la
fois des individus en bonne santé et sept individus avec des handicaps physiques
sévères et un contrôle oculomoteur altéré. Ces expériences ont démontré la
robustesse des nouvelles méthodes de décodage, montrant que le système pouvait
efficacement décoder l’attention cachée même lorsque l’observation directe de la
cible était impossible.

Mots-clés : interfaces neuronales directes, électroencéphalographie, poten-
tiels évoqués, attention visuo-spatiale, decodage (multi-)linéaire, handicapés
moteurs
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SNR signal-to-noise ratio

SSPGI severe speech, physical and gaze impairment

SSPI severe speech and physical impairment

SSVEP steady-state visually evoked potential

STBF spatiotemporal beamformer

STBF-emp STBF with empirical covariance estimation

STBF-shrunk STBF with shrunk covariance estimation

STBF-struct structured spatiotemporal beamformer

SVM support vector machine

TBI traumatic brain injury

tLDA block-Toeplitz linear discriminant analysis

UCD user-centered design

VSA visuospatial attention

WCBLE Classifier-based Latency Estimation with Woody iterations
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Chapter 1

Brain-computer interfaces

Children of Dune – Frank Herbert
People with severe speech and physical impairment (SSPI) due to neurode-

generative disease, stroke, traumatic brain or spine injury become entirely re-
liant on caregivers or family members in their day-to-day routine. Would it not
be great if we could help them regain some quality of life by making them more
independent?

The most basic ability any independent human being needs is interaction
with their environment. In its core essence, this is the ability to communicate
intentions, emotions, frustrations, or thoughts such that they might be acted
on. For an able-bodied person, physical interaction happens through body move-
ments, while communication is usually done through speech and body language.
Both require sending signals through the body’s nervous system to control mus-
cles. Not everyone has this capability.

The key problem for severely paralyzed individuals is that the mind wants
to go where the body cannot follow. Could we therefore not design a system
that directly interacts with the mind? This system can then form an interface
between the mind and any kind of technology, like a robot arm or speech syn-
thesizer, interacting with the world on the user’s behalf. Such a device is the
brain-computer interface (BCI)1, a system that directly couples actions in the
‘real world’ to the mental state of the user.

BCIs started as a speculative concept in the 1970’s [277]. Now, they have
gradually evolved from methods developed in the 1990’s to establish basic com-
munication from minimal brain activity (yes/no, left/right, . . . ) [299] into so-
phisticated interaction schemes that restore or enhance many capabilities by
bypassing defective parts of the nervous or muscle system. By now, classic BCIs
methods are starting to mature outside the lab setting and can be used as assis-
tive communication technology by individuals with severe speech and physical
impairment [298, 166]. Impressive cutting-edge experimental examples include

1Sometimes also termed brain-machine interface (BMI) when coupled to a physical actu-
ator, like a robot arm or an exoskeleton. The term BCI is usually preferred for assistive
technology and communication devices.
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a brain-spine interface allowing a paraplegic individual to walk again [154], a BCI
translating internal speech to a facial avatar speaking the imagined text [165],
and fast communication through decoding imagined handwritten symbols [289].
Recently, the idea has also gained popular traction through Elon Musk’s Neu-
raLink [182] initiative, which imagines a multipurpose BCI.

In general, devices processing direct inputs from the central nervous system
are useful for rehabilitation and medical diagnosis or treatment. Additionally,
they bring a new paradigm to human-computer interaction, especially when
paired with virtual or augmented reality [171]. Ultimately, they have always
been especially promising as assistive technology for people limited in their
communication ability. It is this BCI-controlled communication where our fo-
cus lies, as it offers a transformative means for individuals with severe motor
impairments to regain functional independence to write and speak through as-
sistive technology. This allows them to talk to their loved ones and caregivers,
exercise hobbies, and makes many aspects of daily life more accessible.

1.1 A direct interface to the brain

Simply put, a BCI records the user’s brain activity, extracts some relevant
output from this brain activity, and couples this output to a function of a device
as illustrated in fig. 1.1. Optionally, the user can then observe the action of the
device and adapt their behavior or brain activity accordingly, closing the loop2.

Let’s break this definition down and focus on its separate parts. First of all,
we need to identify a signal that is a direct representation of what is going on in
the brain. Multiple signals can be recorded from the brain, including blood flow
and magnetic or electrical activity. For several reasons laid out in section 1.2,
the electrical modality is especially interesting.

The recorded brain activity forms only one part of the interaction scheme
presented in fig. 1.1. It would be inefficient to search all brain activity randomly
for the desired output. Instead, knowing the specific activity to target would
help significantly. A BCI operates under a specified paradigm, which defines
how interaction is conducted. This typically means instructing the user to
perform a task, like attending to a flickering stimulus. Background knowledge
from neuroscience research allows us to couple specific brain activity with the
information or actions conveyed via the BCI. The brain signal now modulates
this information. In turn, detecting this signal can trigger an action, like typing
the intended letter A or B in fig. 1.1. The BCI paradigm includes both the
method of stimulation (if applicable) and the user’s task, and is often closely
tied to the feedback mechanism in a closed-loop system. As shown in section 1.3,
BCI paradigms vary widely based on different brain systems.

2The BCI Society [254] has recently formalized this into the following definition: “A brain-
computer interface is a system that measures brain activity and converts it in (nearly) real-
time into functionally useful outputs to replace, restore, enhance, supplement, and/or improve
the natural outputs of the brain, thereby changing the ongoing interactions between the brain
and its external or internal environments. It may additionally modify brain activity using
targeted delivery of stimuli to create functionally useful inputs to the brain.”
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Figure 1.1: The BCI loop. The user interacts with the BCI via a specific
paradigm, in this case involving visual stimulation. Electrical neural signals are
recorded, and neurophysiological features related to the paradigm are extracted.
Using machine learning, a decision can then be made based on these features,
which can be presented back to the user. In a closed-loop BCI, this feedback
allows the user to adapt to the BCI.



Another critical component of a successful BCI is identifying brain signa-
tures related to the paradigm within the recorded activity. The brain’s elec-
trical activity is weak compared to environmental noise from electronic devices
and interference. Additionally, the brain continuously processes information
and carries out ‘background tasks’, which generate more brain activity. The
desired activity often originates from specific brain regions or networks. This
signal can be difficult to isolate from all other brain and environmental activity.
It is similar to trying to hear a single speaker at a noisy party where every-
one is shouting. Some interference can be filtered out through preprocessing
(see section 1.4) and by selecting the correct signal representation (i.e., feature
extraction), but retrieving or decoding the relevant signal remains challenging.
Supervised machine learning can help solve this. The information encoded in
the brain signal can be retrieved by the decoder and used to determine the
desired BCI output. Section 1.5 reviews some common decoding techniques.

Finally, the loop can be closed by coupling this to a device or actuator.
There are two aspects to this. On the one hand, the BCI gains its function
by allowing the user to interact with their environment. For a communication
system, this means coupling the decoded information to, e.g., a virtual keyboard
or speech synthesizer. On the other hand, the actions performed by the BCI can
themselves alter the user’s cognitive state or brain activity, creating an adaptive
system. This happens either directly through electrical neurostimulation, as is
the case for adaptive deep brain stimulation in Parkinson’s disease or for the
cochlear implant as a hearing aide, or indirectly through sensory stimulation.
The latter involves specific, paradigm-related, sensory input, like tactile feedback
for movement BCI [75], or simply presenting selected actions back to the user.
The user’s brain will then adapt through learning, causing changes in behavior
or strategy. Neuroplasticity, the brain’s ability to adapt and reinforce specific
neural pathways, can have a positive impact on BCI performance and gives rise
to rehabilitation applications.

To summarize, a BCI can facilitate direct interaction with the central ner-
vous system. To do this, information is modulated in the brain signal according
to the BCI paradigm by stimulating the user or having them perform a task.
Their brain signal is subsequently recorded and preprocessed to clean it. Rele-
vant features that contain aspects of the modulated signal are extracted, and the
modulated information is retrieved by the decoder, a machine learning model.
This information can then be acted on, and the loop is closed if this action
affects the user. Let us take a look at each of these elements separately in the
next section.

1.2 Recording technologies

The brain’s activity can be recorded using various neuroimaging technologies.
These can range from brain scans [285] using functional magnetic resonance
imaging (fMRI) to more portable technologies like the acoustic signals obtained
by functional ultrasound imaging (fUS) [316], and functional near-infrared spec-
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troscopy (fNIRS) [31]. These technologies all measure blood oxygen levels or
blood flow, resulting in the hemodynamic signal. This signal indirectly reflects
brain activity through metabolic reactions to an increas or decreas in activity.
Usually, it reacts too slowly to reflect the real-time activity that is of interest
in BCI for communication, and it carries little information other than the brain
region from where it is originating.

A better signal candidate is the neuronal electrical activity. The brain con-
tains 86 billion neurons, which are highly interconnected cells that are the small-
est units of information processing. The action potential and its related post-
synaptic potential are electrical pulses occurring when a neuron receives input
from other neurons and is activated. The firing of a neuron, or the combined
firing of groups of synchronized neurons, thus generates an electrical field in and
near the brain, which can be measured using electrodes. The related discipline
is electrophysiology.

Because of the desirable high temporal resolution [63] and practicality of
electrophysiology, we will focus only on methods to record electromagnetic ac-
tivity originating from neuronal action potentials and postsynaptic potentials.
The magnetic field of the brain can be measured using magnetoencephalography
(MEG) [164]. While MEG is non-invasive and results in high-quality signals, the
necessary equipment is rather expensive and impractical. Recent advances have
been made using optically pumped magnetometers (OPM-MEG) [295], but this
technology still falters outside of lab conditions. As a consequence, the BCI
field relies heavily on the electrical activity of the brain.

1.2.1 Invasive electrophysiology

The invasiveness of the technology forms an important concept in determining
its suitability for a given application and user. As illustrated in fig. 1.2, invasive
electrodes can often measure a very specific brain region and can result in better
signal quality, at the cost of the risks involved with brain surgery.

Specifically, invasive methods are less noisy and come with an increased spa-
tial resolution, meaning they can extract a signal from a specific brain region
or even a set of neurons of interest. This makes it easier to retrieve a signal
with a known origin from the brain, which might be leveraged by the paradigm
to modulate information. Generally, microelectrodes penetrating the cortex are
considered to have the highest spatial resolution. These are needles with a di-
ameter smaller than 10 ţm and one or multiple electrodes that extend several
millimeters into the cortex. Microelectrodes can measure the Local Field Po-
tential (LFP), the extracellular potential of a small group of neurons, or even
intracellular single neuron action potential spikes. They come in single-electrode
form, or, more popularly, in microelectrode arrays. Well-known examples are
the Utah array [161], the more recent NeuraLink implant [182], and IMEC’s
Neuropixels 2.0 [248].

Larger implanted electrodes (usually a few millimeters in size) are referred
to as intracranial electroencephalography (EEG) (iEEG). Depth electrodes, like
those found in in stereo-EEG, can be used for BCI [302] and other applications,
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like closed-loop adaptive control for Deep Brain Stimulation to mitigate Parkin-
son’s disease symptoms [15]. Depth electrodes are longer rods with multiple
electrodes that can extend deeper into the brain. Since these still penetrate the
cortex, electrodes that sit on top of the cortex are more popular, as they are con-
sidered less invasive. Electrocorticography (ECoG) is a powerful method with
many applications in BCI [234] and epilepsy diagnosis. Newer developments like
micro-ECoG (ţECoG), with a higher number of smaller electrodes per surface
area (recording from sites with diameter of 10s of micrometers instead of ± 1
cm) [240], allow for more precise measurements.

Some impressive recent breakthroughs in speech and motor BCI for com-
munication have been realized using invasive microelectrode arrays [289] and
ţECoG [165]. Furthermore, recent advances in recording technology focus on
improving implant durability and resolution [248], and on balancing the invasive-
ness tradeoff by finding new, minimally invasive ways to record from closer to the
cortex. The Synchron Stentrode [169], for instance, can be delivered through the
bloodstream via a catheter, removing the need for open brain surgery. Neverthe-
less, surveys [113, 114, 33] in different potential communication BCI user groups
consistently show that non-invasive technology is preferred over implanted elec-
trodes, unless the added value of invasive BCI is sufficiently large [125]. This
provides justification for focusing part of the current research effort on non-
invasive BCI.

1.2.2 Electroencephalography

EEG is the de facto non-invasive electrophysiology standard in clinical neurology
practice as well as in BCI research. Developed since 1924 [25], it is cheap
and relatively practical and offers great temporal sampling resolution up to
thousands of Hz. EEG measures the electrical potential over time at a given
electrode relative to a reference electrode in volts (V), often on the scale of
microvolts (ţV). As it is easily applicable on the outside of the scalp, many
practical consumer-grade EEG headsets exist in the form of (often wireless)
electrode caps or helmets. Current consumer systems sometimes feature dry
electrodes, but clinical and research systems often use active electrodes with
preamplifiers and electrolyte gel to reduce impedance for improved signal quality,
which slightly decreases practicality, since they require a trained individual to
properly administer. Nevertheless, it is the most accessible BCI technology for
both users and researchers.

The major drawback of EEG is its poor spatial resolution [73]. Since they
sit on the outside of the scalp, electrodes are large and distant relative to the
neurons in the cortex they ought to measure. Furthermore, the layers of skull
and cerebrospinal fluid in between can attenuate the signal and cause volume
conduction [36], which results in electrodes measuring a mixture of activity
from sources elsewhere in the brain. This also has a negative effect on spectral
resolution. The noise problem mentioned earlier is also prominently present in
EEG recordings. In addition to picking up brain activity other than that of the
region of interest, EEG also records other artifacts from the environment, the

19



power supply, nearby electrical equipment, or the user’s muscle movements [269].
Combined, this means EEG is inherently noisy.

Despite its noisy nature, EEG is the recording methodology of choice for our
BCI because of its wide acceptance by users. To counteract the noise present in
our recording, we must on the one hand evoke strong, informative brain activity
using a suited BCI paradigm, and on the other hand pick a suited decoder which
can isolate the signal of interest and filter out the noise.

1.3 Paradigms

1.3.1 Active & passive BCIs

The BCI paradigm [304, 186] is the key to translating brain activity into use-
ful output actions, since it defines which neural responses will be elicited and
captured as features. A paradigm can be loosely seen as a way of interacting
with the BCI. According to Zander and Kothe [310], they can be arranged by
their reliance on external stimulation and the engagement of the user as shown
in fig. 1.3.

In contrast to paradigms that require the user’s active participation, for in-
stance through redirecting attention or initiating imagined actions, paradigms
free of this requirement are classified as passive BCI. From the user’s point of
view, this concept is probably the most attractive, since their cognitive state
would be inferred from just their brain activity. However, without active user
participation, it can be hard to establish reliable communication or control.
Therefore, passive BCI are currently used for control tasks that require input,
like emotional affect [261, 146, 179], workload [311] or fatigue [5] detection, or,
more dependent on stimulation, error detection [172]. Aside from control, clin-
ical applications are found in the diagnosis of a multitude of neurological and
psychological disorders through various forms of neuroimaging or monitoring,
in resting state or while performing a specific task. Nevertheless, active partici-
pation facilitates training data collection for supervised machine learning, since
the conditions can be more easily controlled by the user or the stimulation.

Paradigms that do require high active participation can be split up into ac-
tive BCI and reactive BCI. Active BCI paradigms encode endogenous activity
initiated by the user, such as imagined movement or imagined speech. These
tasks can encode complex information, but current non-invasive communication
methods often limit the considered domain to a few movement directions to con-
trol a cursor, or a few words [199]. Invasive recordings are necessary for decoding
more complex encoded activities like imagined natural speech [165] or meaning-
ful motor trajectories, like handwritten symbols [289] or sign language [34]. Ac-
tive BCI also has clinical applications in the form of neurofeedback [96], where
the user adapts mental strategies to perform active self-regulation of their brain
activity which is presented to them, causing a feedback loop.

Active paradigms are subject to large inter-subject variability due to the
complexity of the performed tasks. They might require extensive user training
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and are sensitive to correct task instruction. Imagined speech or movements, or
mental strategies in general, can be performed in a multitude of ways, which
can themselves have different neural representations for separate individuals.
This can make it hard to adapt the BCI to specific individuals, causing poor
performance and giving rise to the concept of BCI illiteracy [7]3.

1.3.2 Reactive BCIs

Reactive BCI take another approach by providing a discrete set of sensory stim-
ulations towards which the user’s attention can be directed. Compared to ac-
tive BCI, reactive paradigms can more easily induce fatigue due to the constant
stimulation. These paradigms are also somewhat less intuitive compared to, e.g.,
speech, and their expressive power is limited by how many different stimuli can
effectively be presented and attended to within a reasonable timeframe. Nev-
ertheless, reactive BCI work well with EEG recordings, and, most importantly,
they work for most people [6, 64].

Reactive BCI can be realized in multiple ways, depending on the stimulation
used. Some examples include the following: In the steady-state somatosensory
evoked potentials paradigm [211], the user can attend to one of multiple vi-
brotactile stimulations in different limbs, which encodes the information of the
attended limb in the brain signal. In auditory paradigms, information can be
modulated by the volume, tone, pitch, or spatial origin of presented sounds, to
which the user can attend [127]. Most common are the visual paradigms. These
can be more performant since they allow the user to use their visual system, one
of the most evolved sensory systems in humans.

The major visual paradigms rely on steady-state visually evoked poten-
tial (SSVEP), code-modulated visually evoked potential (cVEP), oddball, and
motion-onset visually evoked potential (mVEP) brain responses. In SSVEP, in-
formation is modulated by the frequency of a stimulus attended among many
that each flicker continuously at different frequencies [49]. In cVEP, the stimuli
flicker instead with distinct on-off patterns, which can be correlated with the
brain activity to retrieve the attended stimulus [250]. Instead of stimulating all
possible selections at once, the oddball paradigm stimulates them one by one
with single flashes [198]. Since the times of stimulation of each target are known,
and time-points at which an attention signature is detected can be correlated to
selected targets. MVEP is usually similarly time-modulated, but stimuli make

3Recently, the concept of BCI illiteracy is increasingly being seen as outdated. Instead of
attributing poor performance to the user’s inherent limitations, critiques point out that the
issue lies more with the design of the systems themselves. BCI systems often fail to account
for individual variability in brain anatomy and cognitive strategies. As a result, what has been
labeled as ‘illiteracy’ may, in fact, be a reflection of systems that are not flexible enough to
adapt to different users. This perspective shifts the responsibility to the individual, rather than
recognizing that better, more adaptive systems could overcome many of these performance
challenges, thus standing in the way of progress. Moreover, the term ‘illiteracy’ itself carries
negative connotations, implying a user deficiency that reinforces normative assumptions, when
in reality, a more inclusive approach to design could enhance BCI accessibility for a wider range
of individuals. This evolving view calls for a reframing of the problem, focusing on improving
the adaptability of BCIs rather than labeling users as illiterate [21, 257].
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sudden movements in specific directions instead of flashing. Information is then
also carried by movement direction [149, 148].

The BCI paradigms mentioned above can also be combined to gain perfor-
mance. Straightforward examples are activating or deactivating SSVEP stim-
ulation with a motor command [186], or combining multiple visual paradigms
by stimulating along multiple dimensions at once. Han et al. [97] recently used
this strategy, combining frequency and phase coding in SSVEP with the mVEP
and oddball paradigms to develop an efficient BCI where one of 200 targets can
be accurately selected with only 800 ms of stimulation.

1.4 Preprocessing

EEG preprocessing is a critical step in brain-computer interface (BCI) systems,
as it significantly improves the quality of the recorded data for subsequent analy-
sis and classification. Common preprocessing techniques in BCI systems include
rereferencing, band-pass and notch filtering, and independent component anal-
ysis (ICA).

Rereferencing is an essential first step, where the potential of each EEG chan-
nel is recalculated relative to a common reference point, such as the average of
all electrodes (common average reference) or a selected neutral set of electrodes.
This technique helps reduce noise common across all channels, improving signal
clarity and enhancing the accuracy of subsequent processing steps.

Band-pass filtering is then usually applied to isolate the frequency ranges of
interest by removing frequencies that are too high or too low to contain relevant
neural signals. Band-pass filters eliminate slow drifts and high-frequency noise,
such as muscle artifacts or environmental electrical interference, improving the
signal-to-noise ratio (SNR). Additionally, notch filtering can be used to remove
strong power line interference4. This interference can heavily contaminate EEG
recordings and even leak through when outside the passband of a previous filter.
Notch filtering efficiently attenuates this narrowband noise without affecting the
surrounding frequencies.

Finally, to address artifacts like eye blinks and saccades that can significantly
distort the EEG signal, ICA is performed [61]. ICA is a blind source separation
technique that decomposes the EEG data into statistically independent com-
ponents. Components corresponding to eye movements, eye blinks, and other
bodily or environmental artifacts can be identified, either visually based on their
characteristic topographies and time courses, or statistically, and then removed.
This leads to cleaner data for subsequent processing, especially in the case of
visual BCI paradigms. Since eye movement plays a role in the paradigm, it
can strongly be present in the signal and correlate with the task, forming a
confounding factor for studying control based solely on brain activity.

Together, these preprocessing steps ensure that only the relevant neural
signals are passed on to the feature extraction and classification stages in BCI
applications, improving the accuracy and reliability of the system.

4Typically at 50 Hz in Europe.
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1.5 Decoders

1.5.1 Design principles

After preprocessing and extracting features, machine learning algorithms can
perform BCI decoding. Machine learning decoders use some training data for
which the performed tasks are known, and learn to recognize the activity elicited
by the task in recorded data. The training data can be either obtained from the
BCI user themselves or from other users. In the first case, the user would per-
form a short calibration session before using the BCI, where they are instructed
to perform a known task. This calibration session can be eliminated by training
the decoder on preexisting labeled data from other sessions and users, but this
is harder due to the variability between subjects and sessions.

If the goal is to eliminate the per-session calibration, one can also use a
decoder pre-trained on an existing dataset of the same task. This is compli-
cated by large variability in measured brain responses between subjects and
even between different sessions within the same subject [92, 230]. Therefore,
pre-trained decoders must either be trained on a very large, diverse sample of
subjects, or some form of transfer learning must be applied. Nevertheless, in
practice, pre-trained models or models using transfer learning often still require
some per-session fine-tuning, which necessitates some calibration. Instead, it is
better to opt for keeping the calibration time as short as possible by using an
algorithm that can learn from very few training samples. This can work well
but requires strong regularization [271].

Decoder choice is heavily dependent on constraints set by the paradigm and
the application. The number of output degrees of freedom, the serial or parallel
nature of performed tasks, and whether the paradigm is active or reactive, all
need to be taken into account. One of these choices is whether to solve a
regression or classification problem. In regression, a continuous output variable
is predicted for a new sample, while classification attempts to sort it into one
of a set of discrete classes. Regression can be useful in BCIs for applications
like mapping imagined movement to an external robot arm. For communication
BCIs, however, conveying information in a symbolic manner is often of interest.
Many applications resemble virtual keyboards or map a user’s actions to discrete
words, predefined actions, or letters for full control. Hence, such problems often
present themselves as classification tasks.

1.5.2 Implementation & evaluation

Lotte et al. [155] and Xu et al. [304] present a relatively recent overview of state-
of-the-art classification algorithms for decoding. Classic linear methods, such
as common spatial patterns (CSP) feature extraction for motor imagery [201]
and canonical correlation analysis (CCA) for SSVEP [184], and linear discrim-
inant analysis (LDA) for event-related potential (ERP) classification [244] still
perform relatively well, given some regularizing constraints or extensions. Multi-
linear techniques exploiting the tensor structure of neural signals are also promis-
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ing [155]. Riemannian Geometry [19] is a popular and robust new strategy. Fur-
thermore, they lend themselves well to applications like adaptive learning [23]
or transfer learning [312]. Riemannian Geometry classifiers are often considered
the current state-of-the-art. Finally, deep learning [26] is also sometimes con-
sidered, albeit only when sufficiently large training datasets are available. If
decoders tailored to a specific user that keep the calibration session as short as
possible are of interest, not enough training data is available to properly train
a deep learning model.

Usually, a decoder makes a prediction for a given trial while operating the
BCI. A trial is the smallest unit on which a selection decision can be made, for
instance, one imagined movement or one repetition of flashing all targets in a
visual ERP BCI. Accuracy is a valuable metric to assess decoder performance in
the classification case. Accuracy is calculated as the proportion of correct selec-
tions to all selections made. It should be carefully interpreted in the presence of
imbalanced data and always compared to the random chance accuracy level in
the presence of more than two possible selections per trial. Alternatively, area
under the receiver-operator characteristic curve (ROC-AUC) is also a measure
of classifier predictive power but is more suited for evaluation of classification
of single epochs of data and in the presence of imbalanced data, e.g., when
comparing single ERPs. Higher ROC-AUC usually translates to a higher target
selection accuracy.

Finally, an important concept in the evaluation of a BCI decoder, and of
BCIs in general, is information transfer rate (ITR). ITR reflects how fluently a
BCI can be used for communication and can be calculated as

ITR = Q

(
log2 N + P log2 P + (1− P ) log2

1− P

N − 1

)
(1.1)

ITR is expressed in bits/s and is dependent on N , the number of different options
that can be selected per trial5, P , the selection accuracy of the decoder, and Q,
the number of trials per second. The parameters N , P , and Q of this formula
give us some insight into the building blocks of a successful, high-ITR BCI. To
improve performance, we can aim to 1) increase N by selecting a paradigm and
interface that offer a broad range of informative selections per trial, 2) increase
P by engineering more performant machine learning methods for decoding, and
3) increase Q by selecting a paradigm that allows fast stimulation or responses.

1.6 A case study: the visual oddball BCI

The visual oddball paradigm is a reactive, stimulus-dependent, BCI paradigm
with all the benefits and drawbacks. Nevertheless, it can score relatively high
on the ITR parameters established above. The brain response of interest is the
visual ERP, which can be accurately measured and decoded from non-invasive
EEG signals with a relatively low computational effort and short calibration

5Given that selections are independent of each other. This formula requires some adapta-
tions in the case of sequential or hierarchical selection.
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time. First established by Farwell and Donchin [71] in 1988, it is well supported
by literature and has been proven to work for those with severe speech and
physical impairment in day-to-day home use [298].

1.6.1 Stimulation paradigm

One by one, visual elements on a computer screen are intensified for a short
period of time by changing in color, brightness, or size. Intensifications of
different targets are usually 100-200 ms apart and last for about 100 ms [237].
On each flash observed by the user, specific brain activity is elicited. If one of
these intensified elements is rare with respect to the others, i.e., it is the odd-one
out or oddball, this brain activity is altered. A stimulus can be rare either due
to its inherent properties like color or location. Crucially, this is also the case
if it is ‘marked’ as rare by the user, e.g., by paying explicit attention to only a
given stimulus and not the others or counting how many times it occurs. If these
visual elements represent letters, and we know the timing of the intensifications
of each letter, we can now establish communication by detecting for which letter
an oddball response was present in the brain signal at its time of intensification.

ITR in the oddball paradigm is optimized by intensifying multiple targets
at once in a row-column strategy and using a sequence of selections, giving rise
to the classic matrix speller of Farwell and Donchin [71]. Other optimizations
increase response SNR, like using flashing face images as intensifications [122]
or adding distinct colors and shapes to the stimuli [263]. The number of targets
in a visual oddball BCI is limited by the crowding effect, which imposes a
limit on how close targets can be to each other while not distracting the user’s
attention [237, 145]. This may be overcome by making hierarchical selections
of stimuli representing groups of selections [264].

Together with SSVEP, oddball paradigms are most frequently used in visual
BCI. There are, however, indications that users prefer oddball stimulation over
SSVEP, which can cause eye strain and fatigue due to the continuous oscillatory
stimulation of all targets at once [304]6. Furthermore, SSVEP relies more on
directing the gaze at the intended target than oddball, detracting from the
concept of control independent from muscle movement.

1.6.2 The event-related potential

The time-domain response elicited immediately after the intensification of a
stimulus is known as the visual ERP [157]. An ERP is a waveform consisting of
multiple components. Some of these components are modulated by whether the
stimulus was an oddball or not. These components appear as positive peaks and
negative troughs in the ERP waveform. They follow a naming scheme based
on polarity (Negative or Positive) and latency (e.g., N2 or N200 for a nega-
tive component after ±200 ms). The component most prominently modulated

6Recent work mitigates this by making SSVEP stimulation more comfortable without com-
pormising selection accuracy through high-frequency low-contrast stimulation [136].
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(a) Stimuli are flashed while the EEG
is recorded.
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(b) The P3 matrix speller interface. En-
tire rows or columns flash at once.
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(c) The idealized ERP evoked by an at-
tended stimulation in a single channel.
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(d) The idealized ERP evoked by an
unattended stimulation in a single
channel.

by attention is called the P3 (positive deflection after ±300 ms). Some BCI7.
Therefore, oddball paradigms are frequently referred to as P3(00) paradigms.
However, due to the equally important contributions of other ERP components
in decoding, as we will show later, this could be considered a misnomer. Thus,
we will adhere to the oddball paradigm naming.

The visual ERP components primarily include P1, N1, P2, N2, and P3.
Each component is characterized by specific latency, amplitude, and neural ori-
gins. These factors influence the perception of visual stimuli and attentional

7In ERP analysis, components are sometimes referred to with the timing around which
they occur (e.g., N170, negative after 170 ms), or by their rank in order of occurrence (N1,
the first negative component). The timing nomenclature is based on average latencies for
neurotypical individuals, but is seldom correct for specific BCI users due to the large variability
across ERP stimulation paradigms and subjects, and can also depend on the user’s pathology.
Furthermore, as we will see later, this work focuses specifically on the intra-session variability
in ERP latency, explicitly assuming the latencies are not fixed. Therefore, we adhere to the
ranking nomenclature. Fortunately, for the visual oddball paradigm, the rankings do roughly
correspond to their expected timings, i.e., P1=P100, N1=N100, etc.
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mechanisms [158].

The P1 component occurs approximately 100 ms after stimulus presenta-
tion. This component reflects initial visual processing and is primarily linked to
activity in the primary visual cortex. P1 is particularly sensitive to gaze fixation,
where the gaze is directed toward a stimulus. When a stimulus is fixated on,
the amplitude of P1 increases, reflecting the enhanced processing of that visual
input. In contrast, P1 shows less modulation when stimuli are attended to via
attention without direct gaze.

The N1 component peaks around 150 to 200 ms post-stimulus. It represents
an extension of sensory processing related to both gaze fixation and attention.
For attended stimuli, the amplitude is greater, indicating prioritization for fur-
ther cognitive processing. This highlights a more selective form of attention
allocation, demonstrating the impact of both types of attention on visual pro-
cessing.

The P2 component occurs between 200 to 300 ms. It reflects higher-order
processing, particularly in contexts demanding stimulus evaluation and feature
detection. P2 is sensitive to attention. When participants actively engage with
specific features or categories of stimuli, P2 shows increased amplitude. Con-
versely, P2 may be less responsive when gaze is not directed toward the stimulus
but attention is still maintained.

The N2 component peaking around 200 to 350 ms is associated with cog-
nitive control processes such as conflict monitoring and inhibition. It is partic-
ularly pronounced in tasks requiring differentiation between competing stimuli.
N2 reflects the allocation of attentional resources required to resolve conflicts,
irrespective of whether the gaze is directly on the competing stimuli or not.
Higher amplitudes in N2 are seen when cognitive demands increase, indicating
the influence of attention strategies.

The P3 component is elicited in oddball paradigms and peaks around 300
ms post-stimulus. It reflects attentional engagement and the processing of rare
or unexpected events. The P3 is typically subdivided into two subcomponents:
P3a and P3b. The P3a is associated with the allocation of attention to novel or
unexpected stimuli, indicating the initial detection of a change in the environ-
ment. It is particularly responsive to stimuli that capture attention, whether
through gaze fixation or attention. P3a typically exhibits a frontal distribution
and peaks earlier than P3b.

Conversely, the P3b relates to the evaluation of the stimulus. It involves the
updating of cognitive resources in response to task relevance. This subcompo-
nent is typically observed over parietal regions. P3b is elicited when participants
must process the stimulus meaningfully, often requiring a decision or response.
Both P3a and P3b amplitudes are sensitive to the probability of occurrence and
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the participant’s attentional focus, showing how attentional strategies affect
cognitive processing.

The late positive potential (LPP) is a later component occurring beyond
400 ms. Sustained attention and emotional processing of stimuli are reflected in
the LPP. Typically enhanced for emotionally salient or motivationally relevant
information, the LPP serves as an indicator of cognitive appraisal beyond mere
recognition tasks. This component can be influenced by attention when the
participant evaluates the emotional significance of stimuli, even if gaze is not
directed at them.

In summary, ERP components such as P1, N1, P2, N2, P3, and LPP collec-
tively elucidate the neural underpinnings of visual processing and attentional
mechanisms. These components not only inform the design of an effective odd-
ball BCI system but also enhance our understanding of the cognitive processes
involved in visual attention. This includes both gaze fixation and attention. Un-
derstanding these components is essential for optimizing BCI protocols and im-
proving user interaction, particularly in contexts involving visual oddball tasks.

1.6.3 Preprocessing & feature extraction

For ERP analysis, the EEG is usually band-pass filtered between 0.5 Hz and 16
Hz. Re-referencing can be done to average mastoids to highlight the contribution
of the P3 component. In addition to the steps outlined in section 1.4, the
signal is usually cut into epochs for ERP analysis. These are time windows
surrounding the stimulus event. They usually include some baseline interval
before the stimulus, which can be used to normalize the response.

The epochs contain values representing the voltage of a specific channel
relative to the reference at a specific time relative to the stimulus. In ERP
classification, they are usually directly used as features, by concatenating all C
channels of length S time samples in the matrix format epoch X ∈ R

C×S into
one feature vector x ∈ R

CS such that x = vec(X).

1.6.4 Decoders

Due to the unfavorable SNR of ERPs, it is often not feasible to accurately decode
the encoded information based on just one example. Therefore, classification
algorithms are trained on a set of epochs but are often evaluated on an average
of multiple epochs. These averages are constructed over multiple stimulations of
the stimulus representing a given selection, enhancing the SNR. The drawback,
however, is that performing these multiple stimulations takes more time. To
optimize the ITR, the trade-off between the number of repetitions, stimulation
speed, and decoding performance must be carefully balanced. Performant clas-
sifiers can shift this balance to the benefit of ITR. Several techniques are suited
to decode ERPs. Below are some methods that can achieve state-of-the-art
performance and are relevant to this work.
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Linearily constrained minimum-variance (LCMV) beamforming

Linear decoding techniques such as the LCMV beamformer [292] generally work
well for classifying ERP epochs. LCMV beamforming learns a weight vector
w ∈ R

CS from a set of epochs that can be multiplied with the feature vector
x of a new epoch to obtain a prediction score. The weights are obtained by
minimizing the variance of the output

argmin
w

w⊺Cw⊺ (1.2)

under the linear constraint
a⊺w = 1 (1.3)

with activation pattern a ∈ R
CS the difference between the average of fea-

ture vectors of the attended and non-attended epochs in the training data, and
C ∈ R

CS×CS the background covariance matrix which can be estimated empir-
ically from the training data. This is then solved by the method of Lagrange
multipliers as

w =
C−1a⊺

aC−1a⊺
(1.4)

Linear discriminant analysis (LDA)

LDA is a more well-known method that is, in fact, nearly equivalent to LCMV
beamforming [265] under certain conditions. It assumes normally distributed
data with a different mean per class but a common covariance. Similar to LCMV
beamforming, LDA learns a weight vector w ∈ R

CS which satisfies

argmax
w

w⊺Sbw

w⊺Sww
(1.5)

The between-class scatter matrix Sb ∈ R
CS×CS models the variability between

the expected responses, while the within-class scatter matrix Sw ∈ R
CS×CS

models the expected noise. The optimization criterion corresponds to finding a
projection that maximizes the spread between classes (signal) while minimizing
the spread within classes (noise). w can be obtained as the eigenvector of S−1

w Sb

corresponding to the largest eigenvalue.
There is one caveat with these linear methods, however: the number of values

(= C · S) is usually relatively high compared to the size of the training dataset,
since calibration time should be kept minimal. Therefore, strong regularization,
such as covariance/scatter shrinkage, should be applied. Regularization can
also be performed by retaining structure in the data, such as in the case for the
multilinear methods presented by Lotte et al. [155].

Block-Toeplitz linear discriminant analysis (tLDA)

Another example of this is tLDA [244], which assumes temporal stationarity
in the background noise to regularize the problem. It does this by imposing
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a block-Toeplitz structure to the within-class scatter Sw matrix of LDA. This
means

Sw =




S(1,1)
w S(1,2)

w · · · S(1,C)
w

S(2,1)
w S(2,2)

w · · · S(2,C)
w

...
...

. . .
...

S(C,1)
w S(C,2)

w · · · S(C,C)
w


 (1.6)

consists of C × C temporal scatter matrices S(c1,c2)
w ∈ R

S×S corresponding to
a pair of channels (c1, c2), such that every temporal scatter matrix has the
Toeplitz structure

S(c1,c2)
w =




s
(c1,c2)
1 s

(c1,c2)
2 · · · s

(c1,c2)
S

s
(c1,c2)
2 s

(c1,c2)
1 · · · s

(c1,c2)
S−1

...
...

. . .
...

s
(c1,c2)
S s

(c1,c2)
S−1 · · · s

(c1,c2)
1




(1.7)

The structuring is performed by setting all elements to the average of their
corresponding block-subdiagonal and subsequently applying shrinkage regular-
ization. This method is simple yet effective, reaching state-of-the-art decoding
performance.

Riemannian geometry

Alternative methods that currently work well include non-linear methods using
Riemannian geometry [19]. Methods leveraging Riemannian geometry use a
different feature extraction method. They do not use the raw epoch values but
rather operate on the spatial covariance of an epoch. These covariance matrices
Ci are symmetric and should have only positive eigenvalues; hence they lie on
the Riemannian manifold of symmetric positive definite matrices, which defines
the distance metric

δR (C1,C2) =
∥∥∥log

(
C

− 1
2

1 C2C
− 1

2
1

)∥∥∥ (1.8)

This geodesic distance metric is naturally suited for this type of data and has
some desirable properties, like invariance to linear transformations, which result
in a robustness particularly useful for BCI applications [20].

With this distance defined, the epochs can either be directly classified on
the Riemannian manifold using a minimum distance to the mean classifier, or
they can be projected to the tangent space. This is a Euclidean space that
locally approximates the Riemannian distance, which allows us to apply regular
machine learning methods like an SVM or LDA. To enhance classifications of
ERPs which rely on time-domain information, which would otherwise be lost
in the spatial representation of the extracted feature, the class averages can
be concatenated as additional channels to the epochs, embedding the temporal
structure in the feature [19]. To improve performance even further, the ERPs
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can be decomposed by a method like XDAWN before calculating the extended
covariances [143].

These decoders define the last building blocks of our visual oddball BCI. Yet,
the overview until now has been rather theoretical. Interesting and complex chal-
lenges arise when applying these concepts outside of the lab in augmented and
assistive communication technologies for users with severe speech and physical
impairment.

1.7 The gaze-dependence problem

In a nutshell, we can state that BCIs decode brain activity with the aim to
establish a direct communication pathway bypassing speech and other forms of
muscular activity [183, 47]. They have raised great hopes for individuals devoid
of these abilities, for whom BCIs can provide a means to communicate or to
control devices.

Furthermore, the EEG-based visual event-related potential (ERP)-based
oddball interface is an effective and proven method [298, 239]. Targets are
shown in short flashes on a computer screen that evoke an ERP when observed,
which can be detected in the EEG signal. The ERP consists of multiple com-
ponents, some of which are modulated by perception and the attention of the
user. Decoding this modulation allows for information transfer controlled by
the user’s brain activity, as sketched in fig. 1.1.

However, when carefully examining the properties of the ERP components,
we notice that while attention plays a role in the modulation of specific compo-
nents, some part is also related to visual perception. How a stimulus is perceived,
and, as a consequence, which ERP components are modulated, is directly related
to whether the user gazes directly at it (i.e., fixates their gaze on the target)
or not. Indeed, research has shown that visual oddball BCIs cannot operate
efficiently when the user does not direct their gaze onto the desired target [38,
78].

This leads to a problem that is not often addressed: a visual BCI is dependent
on the gaze of the user, and hence on muscle control. This is exactly what BCIs
for augmented and assistive technology try to avoid. The BCI target popula-
tion consists of individuals with severe physical impairment due to with various
degrees of paralysis, or even with Locked-in Syndrome (LiS), the complete loss
of muscle control with preserved consciousness. While BCIs are most attrac-
tive as a solution for individuals with SSPI, studies paradoxically often report
poor performance in exactly this group. This is caused by a multitude of fac-
tors, including diminished electrophysiological responses and cognitive defects
linked to the pathophysiology, psychological factors such as the “extinction of
goal directed thinking” phenomenon in complete impairment, and, importantly,
sensory impairments such as vision and oculomotor defects [236]. While visual
BCIs often rely on visual sensory functions, it is precisely this group of patients
that could benefit from them, that lacks adequate eye motor control. Equally
often, participants with gaze impairments were excluded from the study.
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Different degrees of eye motor impairment can render visual BCIs uncom-
fortable or outright impossible to use. When operating a visual BCI, the usual
rapid series of forced saccades followed by fixation is tiring over time, even for
healthy control subjects. A suitable alternative would allow the user to keep
their eyes in an at-rest position of their choice while operating the BCI. This
points to the need for gaze-independent solutions, which we will explore further
in chapter 2 and the rest of this thesis.
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Chapter 2

Gaze-independent visual

BCIs

Egan et al. [65]
The last paragraph of section 2.2, section 2.1.2, and the first paragraph of sec-
tion 2.3 were adapted from Van Den Kerchove et al. [272].

2.1 Eye motor impairment in BCI users

One of the goals of brain-computer interfacing is establishing a communication
channel that does not rely on speech or muscular activity, which in turn can pro-
vide solutions to individuals with severe speech and physical impairment (SSPI).
In the strictest interpretation, this means that an interface should not rely on
the control of eye muscles used to redirect the gaze or for blinking. It is exactly
this potential of BCIs that makes them suitable as assistive communication
devices.

2.1.1 Incidence of eye motor impairment

SSPI is often caused by damage to the central or peripheral nervous system,
either through congenital diseases (cerebral palsy (CP), Friedreich’s Ataxia
(FRDA), . . . ), neurodegenerative (Amyotrophic Lateral Sclerosis (ALS), Multi-
ple Sclerosis (MS), . . . ) or acquired (stroke and traumatic brain injury (TBI)).
Many individuals in these groups are unfortunately also afflicted by some form
of eye motor impairment, requiring BCIs adapted to their condition. Table 2.1
reports the relatively high frequencies of eye motor impairment, which can range
from minor (nystagmus, 1, other eye tremors 2, gaze fixation fatigue or discom-

1Involuntary, rhythmic, and repetitive eye movements recognizable by their consistent di-
rectionality (horizontal, vertical, or rotational).

2These can include square-wave jerks, saccadic intrusions, microtremors, or microsaccades
while resting or fixating the gaze.
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ALS MS Stroke CP FRDA DMD SMA LiS

Minor 50% 31% 40-70% + 100% + -
Severe 33% 3% + 60-100% >5% - - 98%
Complete 17%5 - + - - - - 2%

Table 2.1: Incidence of eye motor impairment in selected BCI user target pop-
ulations. ALS: Amyotrophic Lateral Sclerosis, MS: Multiple Sclerosis, DMD:
Duchenne’s Muscular Dystrophy, SMA: Spinal Muscular Atrophy, CP: cerebral
palsy, LiS: Locked-in Syndrome. +: frequent, −: infrequent.

fort, . . . ), to severe (partial ophthalmoplegia 3, involuntary movements, im-
paired pursuit, . . . ), and even complete ophthalmoplegia4 or eye motor paresis.
This not only affects vision and coordination but also their ability to operate a
visual BCI [79].

Among the most affected are those recovering from stroke [216, 228], and
most of all those with due to brainstem or cerebellar stroke [173, 30]. Stroke can
lead to the most severe severe or even complete eye motor impairment from the
onset of their condition, resulting in the Locked-in Syndrome (LiS). However,
case study reports [204, 87] show that even in individuals with LiS due to stroke,
the group with a complete lack of eye motor control is very small.

ALS is progressive disease affecting motor neurons. This initially results
in general weakness and loss of muscle tone, but eventually leads to full body
paralysis. Although eye movement is often cited as one of the longest preserved
capabilities in ALS, studies show that minor issues are still fairly common [126,
93, 175]. The bulbar-onset variant is characterized by an early loss of speech and
increased involvement of eye motor symptoms [93]. Furthermore, Hayashi, Kato,
and Kawada [105] show that as ALS progresses past the point of independent
breathing, symptoms will eventually also involve eye muscle paralysis. One of
the goals of BCI has always been to support these individuals to ensure quality
of life.

Various forms of eye movement abnormalities also occur often in MS. MS
is a neurodegenerative disease involving demyelination of nerves. Eye motor
abnormalities are especially well studied [181, 217, 45, 238, 214] and are often
used as diagnostic tools. These abnormalities can be minor or severe, seldom
progressing to complete paralysis. However, MS often comes with vision loss,
further complicating interaction with visual BCIs.

FRDA is a neurodegenerative disease affecting the spinal cord, peripheral
nervous system, and cerebellum, resulting in an impairing loss of muscle coor-
dination. This almost always heavily affects eye movements [70, 110, 81, 52],
with various forms of involuntary movements and trouble pursuing or fixating
on targets. They also gradually have more trouble speaking but often retain

3Weakness or limited paralysis of one or more of the muscles that control eye movement,
leading to restricted eye motion, but not complete paralysis. Often, a specific movement
direction (up-down, left-right) is preserved.

4Full eye movement paralysis.
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some muscular control.
Another group that is heavily affected, is CP [72]. Additionally, individuals

with other neurodegenerative diseases like Spinal Muscular Atrophy (SMA) [10]
and Duchenne’s Muscular Dystrophy (DMD) [159] are sometimes also interested
in BCI use, but their eye motor capabilities are mostly preserved.

2.1.2 Gaze impairment and Locked-in Syndrome

We believe it is generally not opportune to delve too deeply into the under-
lying ophthalmological and neurological mechanisms for each of the specific
conditions, or even the exact symptoms. In clinical reality, every BCI user has
different symptoms, which lead to their own unique set of preserved capabilities
and visual skills. From a solution-oriented BCI engineering point of view, the
etiology of the symptoms can be abstracted away. Instead of categorizing users
by their etiology, we will refer to those who might benefit from BCI assistive
communication technology as having severe speech and physical impairment
(SSPI), in line with the terminology used by Fried-Oken et al. [79]. If they have
eye motor impairment that affects their use of visual BCI or eye-tracking solu-
tions, we use the term severe speech, physical and gaze impairment (SSPGI)
(see fig. 2.1).

The most severely impaired of the user groups above constitute the LiS
group, which forms one of the main BCI interest groups. In this work, we use
the term LiS for a situation of (near) complete paralysis and difficulties or the
inability to communicate independently, even with assistive technology. This
corresponds to classes one and two defined by Wolpaw et al. [297]6. Hence,
some degree of severe or complete eye motor impairment is usually necessary to
qualify as locked-in7.

In general, the group of locked-in individuals with complete loss of eye motor
function is very small. Hence, it would be interesting to focus BCI development
efforts on the larger population of individuals with SSPGI who currently slip
through the cracks of the assistive technology offerings. These are individuals
whose severe eye motor impairment prevents them from using eye-tracking-based
solutions. They currently use their remaining motor control to communicate by

6“The first class consists of people who are truly totally locked-in (e.g., due to end-stage
ALS or severe cerebral palsy), who have no remaining useful neuromuscular control of any sort,
including no eye movement. [ . . . ] This class is very small. [ . . . ] The second class of potential
BCI users comprises those who retain a very limited capacity for neuromuscular control. This
group includes people who retain some useful eye movement or enough limb muscle function
to operate a single-switch system. Such control is often slow, unreliable, or easily fatigued.
This group is much larger than the first.” [297]

7Multiple definitions of LiS are encountered in BCI and neurological literature. Some
definitions include only those with tetraplegy without eye movements used for communications.
Others distinguish Complete Locked-in Syndrome (CLIS) with full body paralysis, including
no eye motor control at all, from a LiS state with some preserved eye movements or minor
motor output. While some definitions only include stroke or TBI with damage to specific
regions in the brain (midbrain, brainstem, or cerebellum) [242], it can also generally refer to
the state of full body paralysis or loss of muscle tone incurred in neurodegenerative diseases,
combined with the inability to speak, such as occurs in late-stage ALS.

36



BCI users

severe speech and

physical impairment (SSPI)

severe speech,
physical and gaze

impairment (SSPGI)

Locked-in
Syndrome

(LiS)

Figure 2.1: Venn diagram of potential users of assistive technology. Patients
with severe speech and physical impairment (SSPI) are the general target pop-
ulation. If eye gaze-based solutions are not properly suited for an individual,
they have severe speech, physical and gaze impairment (SSPGI). Individuals
with LiS have no muscular control left, or it is very limited, such as the ability
to communicate through a binary switching system. BCIs are especially relevant
for the last two groups, as they are not able to use eye tracking solutions.

indicating symbols on a letterboard with great effort, or signal with upward eye
movements or blinks to confirm prompted letters. They require a caregiver or
relative to interpret their signals and crave the ability to communicate indepen-
dently, which is crucial to retaining an acceptable quality of life.

This brings us back to the gaze-dependence problem in visual BCI: Tra-
ditional visual BCI scenarios require the user to overtly direct both their visu-
ospatial attention (VSA) and gaze toward the screen target they intend to select.
However, a critical challenge arises when users rely solely or in part on covert
VSA, which involves directing VSA without corresponding eye gaze. In these
cases, classical solutions often fall short of the widely accepted 80% target selec-
tion accuracy threshold [38, 78, 264, 226] deemed necessary for a comfortable
user experience [186], calling for alternative, gaze-independent solutions.

In this work, we will use the term gaze-independent to mean ‘dealing ex-
plicitly with the fact that a user cannot control their gaze.’ In the context of
a visual BCI, this means that the user’s visuospatial attention and their gaze
do not necessarily coincide. There are multiple approaches to implement gaze-
independence in a BCI. The next section highlights some noteworthy examples.
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2.2 State-of-the-art

2.2.1 Gaze-independent modalities

Gaze-independent event-related potential (ERP)-based BCIs [223, 8] can be re-
alized in three ways. Firstly, active BCI communication paradigms relying on
endogenous activation from the user do not rely on sensory stimulation. Ex-
amples of this are imagined movement or imagined speech paradigms. Active
paradigms can yield very high information transfer rates [289, 165], both due to
their intuitiveness and the complexity that can be captured in commands, but
they often do so only when paired with invasive recording. Non-visual reactive
paradigms that use, for example, auditory [95] and somatosensory [37] stimula-
tion do not rely on gaze redirection but also result in lower information transfer
rates (ITRs) compared to visual paradigms. A survey by Riccio et al. [223]
from 2012 reported that ITRs ranged between 1 and 10 bits/min for auditory
paradigms and 0.5 and 5 bits/min for tactile [223].

On the tactile front, recent studies use steady-state somatosensory evoked
potentials [211] or tactile oddball paradigms [280] These are analogous to the
steady-state visually evoked potential (SSVEP) and visuall oddball paradigms.
Instead of visual stimulation, however, they use physical vibrotactile pulses
stimulation at different spatial locations and/or frequencies [98]. Some note-
worthy advancements have achieved an ITR of 14.77 bits/min [151] and 20.73
bits/min [107] with a tactile oddball paradigm through highly optimized stimu-
lation. Still, other recent tactile BCI studies [106, 98, 121, 144, 66] fail to exceed
5 bits/min.

Auditory BCIs are similarly implemented as paradigms oddball or steady-
state stimulation with spatial or tone modulation. Zhang, Zhou, and Jiang [313]
report that recent decoding methods can reach 16.99 bits/min ITR, but, in
general, auditory BCIs are also limited in their speed and usually outperformed
by visual paradigms [222].

While auditory and somatosensory stimulation on their own might yield poor
ITR, Yin et al. [308] showed that these modalities can provide added value in
gaze-independent settings when coupled with visual oddball stimulation in a hy-
brid paradigm. Their solution using the P3 components of bimodal stimulation
reached an ITR of 14.94 bits/min. In general, their approach is interesting as
it follows a philosophy that relies on establishing as many communication path-
ways as possible. Auditory and tactile stimulation can even be paired to create
a fully non-visual, hybrid BCI, with a reported ITR of 11.66 bits/min [313].

Yet, auditory and somatosensory BCIs also suffer from increased mental ef-
fort in operation and from user-dependent variability [239, 221]. Severens et al.
[239] showed that the visual Hex-o-Spell [264] outperformed a somatosensory al-
ternative in participants with ALS whose eye motor capabilities were effectively
impaired. However, non-visual stimulation modalities are still valuable for de-
veloping BCIs for individuals affected with severe vision loss or blindness [187,
229], which can occur in some cases of LiS [204].
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2.2.2 Gaze-independent visual stimulation

This leads us to the second approach: current visual stimulation paradigms can
be optimized so that the stimuli are always present in the field of view, either
overtly [3, 300, 150] or covertly [213, 141]. Some noteworthy examples include
the GIBS Block Speller [213], the GeoSpell interface [8], and the rapid serial
visual presentation (RSVP) speller [2]. The RSVP paradigm, in particular, is a
prime contender for a performant gaze-independent BCI. Lin et al. [150] reported
an average online ITR of 20.259 bits/min using a paradigm with subsequently
flashing sets of three characters filling the user’s field of view.

We make a distinction here between spatially organized interfaces, where
multiple targets are displayed at the same time at different spatial locations,
and temporally organized interfaces, like RSVP, where targets or small sets of
targets (e.g. 3) are shown consecutively. The Hex-o-Spell, GeoSpell, and GIBS
Block Speller are spatially organized, while variants of the RSVP paradigm are
temporally organized. Lin et al. [150] follow the philosophy that spatially or-
ganized interfaces have historically not performed well in the presence of gaze
impairment. However, we argue that spatially organized interfaces generally
have a much higher ITR in healthy controls. For instance, a regular matrix-
based speller can achieve an ITR of up to 30 bits/min. With the right set of
adaptations, spatial attention could potentially also bring added value to indi-
viduals with SSPGI. While spatial interfaces are indeed more gaze-dependent
than temporal interfaces, they also provide an extra channel that can be used
to transfer information, i.e., the location of the stimulus.

As an alternative to spatial attention, non-spatial visual attention (feature
attention) can also be exploited, such as attention to stimulus color, shape,
or symbol [314, 263, 117]. The RSVP speller is already an example of this,
relying on the user to attend to the appearance of the intended character to
type. Visual stimulation paradigms relying on alternative types of attention
can modulate specific extra ERP components that either improve performance
because they embed extra information in the brain signal [306] or because they
are more sensitive to stimulation in the visual periphery [232]. Nevertheless,
solely relying on alternative types of attention can also suffer from reduced
information transfer rates [50]. Furthermore, the previously mentioned systems
were typically tested only in settings where the user was required to focus on a
central fixation point while selecting peripheral targets. This entails that they
still rely to some extent on eye motor control, often necessitating central gaze
fixation.

2.2.3 Gaze-independent decoding

Thirdly, stimuli can be presented in a standard BCI paradigm, but visuospa-
tial attention can be decoded separately from gaze direction. Aloise et al. [8]
aimed to bridge the performance gap between covert and overt VSA decoding
performance. They compared classical linear and non-linear ERP classifiers
on a covert attention oddball ERP paradigm dataset. The results revealed no
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significant performance improvement in covert VSA decoding for any of the
investigated decoders.

More recent work has made advances in decoding lateralized covert VSA by
harnessing the N2pc ERP component [255, 221, 283]. The amplitude of the N2pc
component in the contralateral hemisphere is directly modulated by the location
of covert VSA. Another approach is directly decoding covert shifts in VSA from
spectral content [260]. These methods are promising, but to date often require a
slower stimulation pace or cannot display as many targets as the classical ERP
BCI paradigms. As with the alternative modality approach, they are currently
only helpful as extra communication channels in a hybrid paradigm. Xu et
al. [305] reached an ITR of 23.56 bits/min by detecting the N2pc component
while performing SSVEP stimulation. Egan et al. [65] also showed an increase
in SSVEP performance by concurrently decoding the covert VSA shift from
spectral content, but their study only used two stimulation targets. In general,
we conclude that gaze-independent decoding in the fast-paced reactive ERP
paradigm leveraging spatial attention remains underexplored.

2.3 Research objectives

To summarize, for individuals with SSPGI, gazing directly at a screen target may
be uncomfortable, impractical, or even impossible. Hence, assistive devices that
rely on eye tracking are often inefficient for them. Consequently, while visual
BCIs hold great promise for these individuals, if they do not suffer from severe
vision loss, conventional gaze-dependent BCI solutions do not meet their needs
due to the absence of gaze control. Therefore, the development of decoding
strategies that account for covert VSA becomes crucial in the pursuit of high-
performance gaze-independent BCIs.

The general goal of this PhD is to tackle the gaze-dependence problem in
the visual oddball BCI. Section 2.2 showed that visual BCI paradigms are a
good candidate for a performant gaze-independent BCI. While the central gaze
fixation of most visual gaze-independent paradigms still relies to some extent
on eye motor control, we aim to circumvent this. In such an interface, stimuli
can be presented in a standard BCI paradigm, but visuospatial attention can
be decoded separately from gaze position, which do not necessarily need to
coincide.

This leads us to adopt the following central hypothesis: it is possible to
improve the (gaze-independent) accuracy of a spatially organized visual oddball
ERP-based brain computer interface by using a suited decoding strategy.

To test this hypothesis, we chose a suitable interface, innovate on decoder
development and test if these innovations improve BCI performance in a mean-
ingful way. Accordingly, we collected data from healthy control subjects to test
proposed decoders, and the findings have been verified in experiments with in-
dividuals with SSPGI, including individuals with LiS, focusing both accuracy
and comfort.

The specific target of improving BCI performance under these conditions is

40



embedded within a broader goal of enabling effective communication for those
with SSPGI. Ultimately, we wish to design a comfortable interface that allows
them to maximally exploit their residual gaze capabilities. We believe this can
be done with a non-invasive, spatially organized visual BCIs with high ITR.
Finally, our efforts also aim to improve ERP decoding performance in general,
which will also contribute to their effectiveness in both gaze-dependent and
gaze-independent settings.

2.4 Approach

2.4.1 Decoder design

During this PhD, we explored different lines of decoding strategies, trying to
tackle several challenges, be they general problems in ERP decoding or those
that arise specifically from gaze-independence. Examples of these challenges
include the lack or decrease in the amplitude of specific ERP components, and
the increased non-stationarity of the signal. As mentioned, state-of-the-art de-
coders have poor performance in covert attention settings. The general goal is
thus to design a machine learning classifier that represents the ERP signal in
a way that makes it more robust to the problems occurring in covert attention
conditions.

Regularized spatiotemporal beamforming

Due to the decreased amplitude of the N1 and P3 components in covert attention
settings [264], the signal-to-noise ratio (SNR) of the ERP is lower than in overt
attention settings. Therefore, a straightforward way to reach satisfactory gaze-
independent decoding performance may be to increase overall ERP decoding
performance.

To address this, we improved upon an in-house developed, state-of-the-art
ERP decoder, the spatiotemporal beamformer (STBF) [292], by reformulating
this classifier as a linear discrimination problem and imposing regularizing con-
straints by structuring the noise covariance matrix (STBF-struct). Furthermore,
these regularizing constraints impose temporal stationarity on the background
noise, yielding insights for our next efforts to cope with the non-stationarity
of the P3 signal component. This approach has been published by Van Den
Kerchove et al. [271] and will be described in chapter 3.

Tensor discriminant analysis

In the context of BCI decoding, extracting robust and discriminative features
from multidimensional neural data is critical. Tensor decoding methods offer
a powerful approach by preserving the multiway structure of electroencepha-
lography (EEG) data while optimizing class separability. Unlike traditional
methods that flatten data, TDA operates directly on tensors, making it partic-
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ularly suited for BCI applications, where signals are structured across multiple
channels and time points.

A relatively well-known example is Higher Order Discriminant Analysis
(HODA) [212] It projects tensors onto subspaces optimized for class separation,
similar to linear discriminant analysis (LDA) but extended to multidimensional
data. HODA has been applied to various BCI tasks, including ERP and motor
imagery (MI) decoding, enabling the extraction of class-relevant features while
reducing the data’s dimensionality.

While HODA is effective, it is limited by its reliance on a rigid core struc-
ture, which may not fully capture the complexity of neural data in some sce-
narios. To address this, Block-Term Tensor Discriminant Analysis (BTTDA)
introduces a more flexible block-term structure. BTTDA iteratively extracts
multiple blocks of discriminative information, which can help in capturing more
complex patterns in neural data. While BTTDA is not specifically tailored to
gaze-independent BCI decoding, specific tensorizations of neural data can of-
fer advantages in coping with several obstacles arising from gaze-independence.
The proposed BTTDA method will be discussed in chapter 4.

Classifier-based Latency Estimation with Woody iterations

The previous two methods did not yet yield specific results in gaze-independent
decoding. The following approach is targeted at improving decoding perfor-
mance in gaze-independent settings by accounting for a known property of the
covert attention ERP response.

P3 latency generally falls between 350 ms and 600 ms [157], but this value
is heavily dependent on the subject and the task and can vary from trial to
trial [196]. The work of [12] illustrates that the variation in single-trial P3
latencies is important in gaze-independent decoding and has been hampering
covert VSA decoding performance. We reprised their hypothesis, stating that
jitter compensation through latency estimation and alignment improves covert
VSA performance and extended it by developing a decoder.

Existing latency estimation methods are either not applicable to the classifi-
cation problem of labeling unseen data, or are not robust enough to deal with the
low SNR of the ERP. Classifier-based Latency Estimation (CBLE) as described
by Mowla, Huggins, and Thompson [177] is a technique that can leverage ERP
latency estimation in a decoding setting, but our results show that it yields no
improvement in gaze-independent settings. We improved upon this technique
and extended it to a probabilistic and iterative method, named Classifier-based
Latency Estimation with Woody iterations (WCBLE). This approach has been
published by Van Den Kerchove et al. [272] and is presented and evaluated on
simulated data in chapter 5. We have also collected datasets to evaluate this
approach on real ERP data in gaze-independent settings.
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2.4.2 Data collection

The CVSA-ERP dataset

In the first series of experiments, we recorded data using this interface from
healthy participants. The goal of these experiments was to benchmark gaze-
independent ERP decoding algorithms. We denote this dataset as the Covert
Visuospatial Attention ERP dataset (CVSA-ERP). This study was approved by
the Ethics Commission of University Hospital Leuven (S62547). To simulate the
dissociation between the eye gaze and the intended target (VSA), which could
occur in individuals with gaze impairment, healthy participants were cued to
operate the BCI in specific VSA conditions.

We chose a visual oddball interface to study and adapt to the effects of eye
motor impairment on the ERP, using both existing state-of-the-art decoders
and our own proposed decoders. Using a hexagonal layout interface, similar to
the visual Hex-o-Spell proposed by Treder and Blankertz [264], we presented six
flashing circular targets (without letters or symbols) to the participant while the
EEG and electro-oculogram (EOG) were recorded, along with eye gaze using eye
tracking. The Hex-o-Spell was chosen since it is optimized for gaze-independent
performance and because it has already been tested in individuals with SSPI
by Severens et al. [239].

The interface can be operated in different VSA conditions, as illustrated
in fig. 2.2. In the overt case, users gazed at the cued target they were also
mentally attending; in the covert case, users gazed at the center of the screen
while mentally attending to the cued target. We introduced a VSA condition
that is understudied in the context of gaze-independent BCI development: split
VSA. In split VSA, the user mentally focuses on one cued target while gazing
at another (the distractor). This last option has been scarcely studied but
completes the options to dissociate gaze and visuospatial attention, allowing us
to investigate the effect of (the lack of) gaze control on BCI performance. This
dataset and the performance of our proposed WCBLE decoder have also been
published by Van Den Kerchove et al. [272] and will be presented in chapter 6.
Performance is also evaluated on a publicly available dataset.

Case studies with gaze-impaired individuals

After collecting data from healthy participants and developing initial decoders,
we conducted a study with seven individuals with SSPGI to evaluate the im-
pact of eye motor deficits on BCI performance. This study recruited participants
from neurorehabilitation centers and specialized care homes, including partici-
pants with conditions such as ALS, FRDA, and stroke.

The primary aim was to assess whether gaze-independent decoding strategies
could improve BCI performance in this group. We used the visual Hex-o-Spell
interface [264], adapting the task by adding a free VSA setting, where partic-
ipants could operate the interface without being required to fixate their gaze.
This setting allowed us to investigate how participants with varying eye motor
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(a) Overt VSA. Gaze and VSA coincide
on a target.

(b) Covert VSA. Gaze rests on the cen-
ter of the screen, while VSA is directed
towards a target.

d=1

d=2

d=3

(c) Split VSA. VSA is directed towards
a target, while the gaze rests on an-
other.

(d) Free VSA. The user is free to direct
their gaze as they deem most comfort-
able. All previous VSA conditions are
possible.

Figure 2.2: Visuospatial attention (VSA) conditions defined in our hexagonal
spatial ERP paradigm interface. Full lines indicated gaze fixation, dashed lines
VSA.



capabilities naturally interacted with a BCI, compared to standard overt and
covert VSA tasks.

The hypothesis was that gaze-independent decoders, such as WCBLE, would
improve performance in covert and free VSA conditions compared to standard
decoders like block-Toeplitz linear discriminant analysis (tLDA). We aimed to
determine if calibration in an overt VSA setting could also enhance performance
in free and covert conditions, leveraging residual eye motor control during cal-
ibration to improve overall BCI accuracy for gaze-impaired users. The results
of this study are presented in chapter 7.
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Chapter 3

Kronecker-structured linear

decoding

Ancient Algerian riddle
This chapter, except tables 3.1 to 3.4, was published as Van Den Kerchove et al.
[271].

3.1 Introduction

There are multiple state-of-the-art P3 classification methods, like support vec-
tor machines (SVMs) [253], deep learning models [276, 32], and Riemannian
Geometry classifiers [19]. While these models often return a high classification
accuracy, there is a need for lightweight models – lightweight models lead to
fast off-line analyses and can be transferred to consumer-grade hardware. When
moving towards plug-and-play solutions, brain-computer interface (BCI) calibra-
tion sessions should be short and model training times low. The spatiotemporal
beamformer (STBF) [274, 292] belongs to this class of event-related potential
(ERP) decoding models as it achieves state-of-the-art performance and is fast
to train. Earlier work has shown that it is possible to apply the spatiotemporal
beamformer to multiple time-locked visual BCI paradigms, including the P3 odd-
ball paradigm, steady-state visually evoked potential (SSVEP), code-modulated
visually evoked potential (cVEP) [294], and the motion-onset visually evoked
potential (mVEP) [147].

This work shows that the original spatiotemporal beamformer [292] can fall
short in performance when BCI calibration data are restricted. We also show
that the spatiotemporal beamformer does not scale well for higher spatial and
temporal resolution cases. As a response to these issues, we introduce a regular-
ization method that exploits prior knowledge about the spatiotemporal nature of
the electroencephalography (EEG) signal to improve the accuracy for low data
availability settings and speed up the classifier training time, thereby consid-
erably reducing memory usage. Similarly structured regularization approaches

46



have been applied to other linear ERP classifiers [86, 279] and have shown sig-
nificant increases in performance.

3.2 Materials & methods

3.2.1 Notation

We represent matrices with bold capital letters, vectors with bold lowercase
letters, fixed scalars with uppercase cursive letters and variable scalars with
cursive lowercase letters. The epoched EEG data with N epochs, C channels,
and S samples are represented in epoch format as {Xn ∈ R

C×S}Nn=1 or flattened
vector format by concatenating all channels for each epoch. Flattening results
in {xn ∈ R

CS}Nn=1 such that xn = vec(Xn). The real covariance matrix of the
epochs in vector format is denoted by C, estimators thereof as Ĉ.

3.2.2 Spatiotemporal beamforming

linearily constrained minimum-variance (LCMV)-beamforming was initially in-
troduced to EEG analysis as a filter for source localization [273] to enhance the
signal-to-noise ratio (SNR). Van Vliet et al. [274] first applied the spatiotempo-
ral LCMV-beamformer as a method for the analysis of ERPs. The extension
to the combined spatiotemporal domain [274] and the data-driven approaches
proposed by Treder et al. [265] and Wittevrongel and Van Hulle [292] allow for
its application to classification problems.

For the following analyses, we assume that all EEG channels are normalized
with zero mean and unit variance without loss of generality. Solving eq. (3.1)
under the linear constraint given by eq. (3.2) returns the filter weights w defining
the spatiotemporal LCMV-beamformer.

argmin
w

w⊺Cw⊺ (3.1)

a⊺w = 1 (3.2)

These weights minimize the variance of the output of the filter while enhancing
the signal characterized by the constraint. a = vec(A) is the data-driven ac-
tivation pattern, a template of the signal of interest maximizing the difference
between two classes of epochs, here denoted as the ‘target’ (T) and ‘non-target’
(NT) class. The activation pattern is then determined as follows:

a =
1

NT

∑

T

xn −
1

NNT

∑

NT

xn (3.3)

The method of Lagrange multipliers then gives the closed-form solution to
the minimization problem posed by eq. (3.1) and eq. (3.2) as:

w =
C−1a⊺

aC−1a⊺
(3.4)
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The beamformer can be applied to epochs (unseen or not) as:

yn = wxn (3.5)

resulting in a scalar output per epoch. The linear constraint in eq. (3.2) ensures
that the beamformer maps epochs containing a target response to a score close
to one and, conversely, epochs not containing a target response to a score close
to zero.

3.2.3 Covariance matrix regularization

While the spatiotemporal beamformer, in theory, achieves optimal separation
between target and non-target classes, in analogy to linear discriminant analy-
sis [265], it does not always perform well on unseen data. The main challenge
is to find a good estimator for the inverse covariance matrix C−1 since the real
underlying covariance matrix generating the data is, in principle, unknown.

Empirical covariance estimation

Earlier spatiotemporal beamformer studies [292, 291, 293, 294] use the empirical
covariance and inverse covariance calculated as follows:

Ĉemp =
1

N − 1

N∑

n=1

xnx
⊺

i (3.6)

Ĉ−1
emp = Ĉ+

emp (3.7)

The Moore-Penrose pseudoinverse, +, ensures a solution exists when Ĉemp is
singular. fig. 3.1a and fig. 3.1b respectively show examples of the empirical
estimators of the covariance and the inverse covariance matrices. The empirical
estimator suffers from performance and stability issues if the number of epochs
N used or estimation is not much larger than the number of features CS [247,
129].

Shrunk covariance estimation

The shrinkage covariance estimator creates a better conditioned inversion ma-
trix problem and generally performs better when applied to unseen data. The
estimators for the covariance and inverse covariance are given by:

Ĉα = (1− α)Ĉemp + α
Tr(Ĉemp)

CS
I (3.8)

Ĉ−1
α = Ĉ+

α (3.9)

with 0 < α < 1. Analogous to L2 regularization of the beamforming problem,
shrinkage reduces the ratio between the smallest and largest eigenvalues of the
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covariance matrix by strengthening the diagonal. fig. 3.1c and fig. 3.1d respec-
tively show examples of the shrunk estimator of the covariance and the inverse
covariance matrices.

Earlier work [147] applied shrinkage regularization to ERP decoding with
the spatiotemporal beamformer and showed competitive performance compared
to other state-of-the-art decoding techniques like stepwise LDA or SVM. The
abovementioned work chooses the shrinkage coefficient α as a fixed hyperparam-
eter. However, its optimal value depends on the number of training epochs, the
covariance matrix’s dimensionality, and the independence and variance of the
data, which can vary across evaluation settings and per session. The optimal
value for α can be found with a line search using cross-validation, but this can
be a costly procedure.

Methods exist to estimate an optimal shrinkage value from the data directly.
Most notable among these are the Ledoit-Wolf procedure [138], Rao-Blackwell
Ledoit-Wolf [48], and Oracle Approximating Shrinkage [48]. A more recent
estimation method [259] emulates a leave-one-out cross-validation (LOOCV)
scheme expressed by the data-driven closed-form estimate:

α = 1−

N
N−1 Tr(Ĉ

2
emp)−

2
CS

[
Tr(Ĉemp)

]2
+ 1

CS
Tr(Ĉ2

emp)

− 1
N(N−1)

∑N
n=1 ||xn||

4
2

N2−2N
(N−1)2 Tr(Ĉ2

emp)−
2

CS

[
Tr(Ĉemp)

]2
+ 1

CS
Tr(Ĉ2

emp)

+ 1
N(N−1)2

∑N
n=1 ||xn||

4
2

(3.10)

We opt for the LOOCV shrinkage estimator because it avoids some of the as-
sumptions made by Ledoit and Wolf [138] and Chen et al. [48] and because it
generalizes to structured covariance estimation as described in section 3.2.3.

Spatiotemporal beamforming with Kronecker-Toeplitz structured co-
variance

Exploiting prior knowledge about the spatiotemporal structure of the EEG sig-
nal leads to a more regularized estimator of the covariance. When viewing the
example of empirical spatiotemporal EEG covariance in fig. 3.1a, it becomes
clear that this matrix consists of a block pattern of repeated, similar matrices.
Due to the multi-channel nature of the signal, we assume that the covariance of
spatiotemporal EEG epochs is a Kronecker product of two smaller matrices [180,
59, 115], as expressed by:

Ĉstruct = Ŝ⊗ T̂ (3.11)

with ⊗ the Kronecker product operator. Ŝ ∈ R
C×C and T̂ ∈ R

S×S respectively
correspond to estimators of the spatial and temporal covariance of the data.
Furthermore, because the temporal covariance of the EEG-signal is stationary
(i.e., it is only dependent on interval length between covarying time samples) [28],
it is assumed to have a Toeplitz-matrix structure:

T̂i,j = T̂i+1,j+1 (3.12)
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Property 1 then leads to eq. (3.13) to estimate the inverse covariance.

Property 1 (U ⊗ V)+ = U+ ⊗ V+ for any non-singular matrices U and
V [137].

Ĉ−1
struct = Ŝ+ ⊗ T̂+ (3.13)

Finally, based on property 2, eq. (3.4) can be reformulated more efficiently
as eq. (3.14).

Property 2 (U ⊗ V) · vec(W) = vec(VWU⊺) for any matrices U ∈ R
P×P ,

V ∈ R
Q×Q and W ∈ R

P×Q [153].

ŵstruct =
Ŝ+A⊺T̂+

a · vec
(
Ŝ+A⊺T̂+

) (3.14)

Using eq. (3.14) removes the need to calculate the full, high dimensional
Kronecker product Ŝ+⊗T̂+. Figure 3.1e and fig. 3.1f respectively show examples
of the structured covariance and inverse covariance estimators, consisting of a
spatial Kronecker factor (fig. 3.1g and fig. 3.1h) and a temporal component
(fig. 3.1i and fig. 3.1j).

The Kronecker approach has shown significant performance yields in differ-
ent linear spatiotemporal EEG and MEG applications [60, 115, 22, 85, 86]. Vliet
and Salmelin [279] have applied a Kronecker-structured covariance estimator to
ERP classification with linear models in a post-hoc fashion. Our work goes fur-
ther by embedding the Kronecker structure in the spatiotemporal beamformer
training process, using a data-adaptive shrinkage method, and regularizing the
covariance further by imposing a Toeplitz structure on the temporal covariance.

Kronecker-Toeplitz structured covariance estimation

The question remains how to estimate Ŝ and T̂. While the Flip-Flop and
Non-iterative Flip-Flop algorithms [156, 286, 290] can estimate Kronecker or
Kronecker-Toeplitz structured covariances, new results show that a fixed point
iteration is more efficient [288, 287]. After each iteration, the spatial and tem-
poral covariances matrices are scaled to unit variance to ensure the fixed point
iteration converges. Finally, shrinkage can also be introduced in the Fixed Point
Iteration to improve stability and achieve more robust regularization [287, 91,
22, 35]. The spatial and temporal covariance matrices are shrunk at every fixed-
point iteration with shrinkage factors βk and γk before matrix inversion in the
next iteration.

Combined, this leads to the iterative estimation algorithm described by the
following equations:

S̃k+1 =
1

N

N∑

n=1

X⊺

nT̂
+
k Xn (3.15a)
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(a) (b) (c)

(d)

(e)

(f) (g) (h)

(i)

(j)

Figure 3.1: Different estimators of the covariance and inverse covariance of 100
epochs of data from Subject 01 for channels Fz, Cz, Pz, and Oz and time samples
between 0.1s and 0.6s. Regularized estimators of the inverse covariance exhibit
less extreme values and have a sparser structure. (a,f) Empirical covariance
and inverse covariance matrices. (b,g) Shrunk covariance and inverse covari-
ance matrices with α = 0.14 as determined by the closed-form LOOCV method.
(c,h) Kronecker-Toeplitz structured covariance and inverse covariance matrices.
(d,e) Spatial Kronecker factor of the Kronecker-Toeplitz structured shrunk esti-
mator and its inverse. (i,j) Temporal Kronecker factor of the Kronecker-Toeplitz
structured shrunk estimator and its inverse.

T̃k+1 =
1

N

N∑

n=1

XnŜ
+
k X

⊺

n (3.15b)

S̃
(β)
k+1 = (1− βk+1)S̃k+1 + βk+1

Tr(S̃k+1)

C
I (3.16a)

T̃
(γ)
k+1 = (1− γk+1)T̃k+1 + γk+1

Tr(T̃k+1)

S
I (3.16b)

Ŝk+1 =
C

Tr
[
S̃
(β)
k+1

] S̃(β)
k+1 (3.17a)

T̂k+1 =
S

Tr
[
T̃

(γ)
k+1

] T̃(γ)
k+1 (3.17b)

Ŝ0 and T̂0 can be initialized to any positive definite matrix. We choose to
use the identity matrices I

C×C and I
S×S . After each iteration, all diagonals of
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R̂k+1 are set to their mean values to ensure that R̂k+1 and T̂k+1 are Toeplitz
structured.

Xie et al. [303] show that the LOOCV estimates for the optimal values of
βk+1 and γk+1 also yield a closed-form solution for the Kronecker fixed-point-
iteration algorithm:

βk+1 = 1−

N
N−1 Tr(

˜̂
§2k+1)−

2
C

[
Tr(S̃k+1)

]2
+ 1

C
Tr(S̃2

k+1)

− 1
N(N−1)

∑N
i=1

[
Tr(XiT̂

+
k X

⊺

i )
2
]

N2−2N
(N−1)2 Tr(S̃2

k+1)−
2
C

[
Tr(S̃k+1)

]2
+ 1

C
Tr(S̃2

k+1)

+ 1
N(N−1)2

∑N
i=1

[
Tr(XiT̂

+
k X

⊺

i )
2
]

(3.18a)

γk+1 = 1−

N
N−1 Tr(T̃

2
k+1)−

2
S

[
Tr(T̃k+1)

]2
+ 1

S
Tr(T̃2

k+1)

− 1
N(N−1)

∑N
n=1

[
Tr(X⊺

nS
+
k Xn)

2
]

N2−2N
(N−1)2 Tr(T̃2

k+1)−
2
S

[
Tr(T̃k+1)

]2
+ 1

S
Tr(T̃2

k+1)

+ 1
N(N−1)2

∑N
n=1

[
Tr(X⊺

nŜ
+
k Xn)

2
]

(3.18b)

The shrinkage parameters 0 < βk+1 < 1 and 0 < γk+1 < 1 should be re-
determined after each iteration. The Oracle Approximation Shrinkage method
can also be used to determine βk+1 and γk+1 [48, 303] but performs worse for
spatiotemporal EEG data since not all assumptions are met.

3.2.4 Dataset

We use the dataset from Wittevrongel and Van Hulle [292], containing P3 odd-
ball EEG recordings of 21 healthy subjects since it is a high-quality dataset with
a high number (32) of electrodes and concurrently recorded EOG responses for
ocular artifact rejection. Nine targets were arranged on a monitor before the
subject during an experimental session. The subject was asked to pay attention
to a cued target for a block of stimulations. The stimulations in a block are
organized in 15 separate subsequent trials. A trial is defined as 9 stimulations
in which each target is flashed precisely once per trial. Each target was cued
four times, resulting in a dataset consisting of 36 blocks (4860 stimulations) per
subject. Each stimulation will correspond to a single epoch in the preprocessed
dataset. See Wittevrongel and Van Hulle [292] for a complete description of the
dataset and the recording procedure.

3.2.5 Software and preprocessing

Data processing and classifier analysis were performed in Python using Scikit-
Learn (v1.0.1) [205] and SciPy (version 1.7.1) [278]. The preprocessing pipeline
was implemented using the MNE-Python toolbox (v0.24.0) [88]. The dataset
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was converted to BIDS-EEG format [208] and managed and loaded with MNE-
BIDS (version 0.9) [11]. The Riemannian classifier from section 3.2.6 was im-
plemented using pyRiemann (v0.2.7). Statistical tests were performed in R
(v4.1.2).

The EEG recorded at 2048 Hz was re-referenced off-line to the average of the
mastoids. The reference electrodes were dropped from the analysis. Data were
subsequently filtered between 0.5 Hz and 16 Hz using forward-backward filtering
with a fourth-order Butterworth IIR filter. The EEG signal was corrected for
ocular artifacts using Independent Component Analysis (ICA) by rejecting com-
ponents that correlated with the bipolar EOG channels vEOG and hEOG using
iterative Z-score thresholding. Components with a Z-scored pearson correlation
coefficient exceeding 3 times the standard deviation of the Z-scored correlation
coefficients of other components, were iteratively rejected until none that exceed
the threshold remained. Finally, epochs were cut from 0.1s to 0.6s after stimu-
lus onset. No baseline correction was performed since this affects the temporal
covariance of the data, violating the Toeplitz structure assumption [28].

3.2.6 Classification

Cross-validation scheme per subject

We use a variation of grouped fold cross-validation per subject to evaluate the
classifiers. We apply 4-fold cross-validation by splitting the blocks of each sub-
ject into four continuous folds. Unlike regular cross-validation, we only use a
single fold to train the classifiers while using the other three folds for validation.
This scheme results in a training set of 9 blocks of 135 epochs each. We chose
this approach since we are primarily interested in the performance of the classi-
fiers in the case of low data availability. The classification task is to determine
the cued target for each block. The fraction of correctly predicted cues provides
the accuracy of a classifier. Data from all trials are used in the training fold,
while classifier validation is performed multiple times per fold, each time using
an increasing amount of trials (i.e., using the first trial, using the first two trials,
etc. until all 15 trials are used). For each of the 9 stimulated targets, the aver-
ages over the corresponding epochs across the utilized trials are used to predict
the cued target in that block. The target with the maximal classifier score was
then chosen as the predicted cued target. Before training the classifiers, a Z-
score normalization transformation was developed on the training data to scale
all EEG channels to unit variance. This transformation was then applied to the
validation data.

Spatiotemporal beamformer classifier

Before calculating the STBF, the signal was downsampled to 32 Hz or twice
the low-pass frequency 16 Hz, resulting in 17 time samples between 0.1 and
0.6s. According to the Nyquist Theorem, more samples would not contain more
information hence the minimum temporal resolution is chosen to reduce the
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dimensionality of the covariance and improve its condition number. The acti-
vation pattern is the difference between the averages of epochs in response to
cued targets and the averages of those in response to non-cued targets. We
constructed three variations of the spatiotemporal beamformer the STBF with
empirical covariance estimation (STBF-emp) as in section 3.2.3, the STBF with
shrunk covariance estimation (STBF-shrunk) as in section 3.2.3, and the struc-
tured spatiotemporal beamformer (STBF-struct) with LOOCV shrinkage for
the Kronecker factors as in section 3.2.3.

Riemannian geometry classifier

We opted for a Riemannian geometry-based classifier to compare our results.
The Riemannian model (XDAWN+RG) uses the XDAWN spatial filter com-
bined with Riemannian geometry in tangent space as implemented by Barachant
[18]. This classifier uses four XDAWN spatial filters and each epoch’s empirical
spatial covariance matrix. The target with the maximum score is the prediction
of the cued target. XDAWN+RG was trained and validated without down-
sampling using epochs at the original sample rate of 2048 Hz. Preliminary
experimentation revealed that best performance in low and high data availabil-
ity setting was achieved when no shrinkage was applied to the estimation of
XDAWN filters or the subsequent covariance matrices for this specific dataset.
Hence, no shrinkage regularization will be applied to XDAWN+RG in further
experiments.

3.3 Results

3.3.1 Minimum required fixed-point iterations

The fixed point iteration algorithm described in eqs. (3.15a) to (3.17b) esti-
mates the Kronecker-Toeplitz structured covariance for the STBF-struct classi-
fier. Fixed-point iteration is an iterative procedure starting from (in our case)
non-informed initial guesses for the spatial and temporal covariance matrices.
As a stopping criterion, one could impose a threshold on the difference in out-
come of successive steps, e.g., based on the covariance norm or the classifier
accuracy. However, few iterations or even just one [44] suffice to achieve satis-
factory performance in practice.

fig. 3.2 confirms these results for the STBF-struct classifier. Using more than
one fixed-point iteration does not significantly improve the accuracy across the
amounts of training data and the number of trials used for evaluation. Hence,
only one iteration is used for the STBF-struct classifier, leading to a drastic
speed-up of the training process.

3.3.2 Classifier accuracy for limited training data

It is of interest to keep the calibration time before BCI operation as short as
possible. We mimic this problem by training the classifier with as few training
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(b) Results for 1, 2, and 5 trials using all nine training blocks in the training folds.

Figure 3.2: Average cross-validated STBF-struct accuracy using one trial per
block over all 21 subjects relative to the number of iterations used to estimate the
Kronecker-Toeplitz structured shrunk covariance. Shaded area represents a 95%
confidenced interval obtained through 1000 bootstrapping iterations. Accuracy
does not improve when using more than one iteration.

epochs as possible. We evaluate the performance of all classifiers for different
levels of available training data and apply the cross-validation procedure nine
times (the number of blocks in the training fold) for all subjects, keeping the
corresponding number of blocks in the training folds and dropping the rest.
Figure 3.3, fig. 3.5 and tables 3.1 to 3.4 shows each classifier’s accuracy relative
to the data availability and trials used for agveraging. We statistically compare
the two newly proposed classifiers, STBF-struct and STBF-shrunk with different
levels of training data availability using a one-sided Wilcoxon signed-rank test
with Holm correction for the multiple pairwise comparisons between classifiers.
Statistical comparisons were performed for trial table 3.5a, two table 3.5b and
five trials table 3.5c.

The tables show that STBF-struct has a significant advantage over STBF-
shrunk when the number of training blocks is low, with significance p = 0.005
and an accuracy increase of 4,14%. for a single training block and testing trial.
This effect is present for 1-, 2- and 5-trial evaluation, up to 3, 4 and 3 blocks
respectively, but the advantage decreases when adding more training blocks.
Both STBF-struct and STBF-shrunk perform significantly better than STBF-
emp for all evaluated settings, with p < 0.001 for all number of training blocks
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Figure 3.3: Accuracy of the different classifiers for all 21 subjects relative to
the number of blocks available for training. One block consists of 135 epochs
and corresponds to 27 seconds of stimulation. Accuracies are shown for the
evaluation settings averaging over 1, 2, and 3 trials of testing stimuli. fig. 3.5
contains results for all numbers of trials. While STBF-emp is unstable when
little training data are available, regularization of the covariance matrix (STBF-
shrunk and STBF-struct) drastically improves performance.

and testing trials, with accuracy increase of 6.92 and 2.78%. respectively for
a single training block and testing trial. Compared to XDAWN+RG, STBF-
struct also has significantly higher accuracy in almost all evaluated settings,
except when using only one training block, with significance p < 0.001 and
an accuracy increase of 5.20%. when using all 9 training blocks and 1 testing
trial. STBF-shrunk does not outperform XDAWN+RG when training data is
low (up to 3,3 and 2 blocks respectively for 1, 2 and 5 testing trials), but gains a
significant advantage when using more training data, with significange p = 0.001
and an accuracy increase of 5.33%. when using all 9 training blocks and 1 testing
trial.

3.3.3 Classifier training time

In order to evaluate the training time of the investigated classifiers, the cross-
validation scheme is run for each subject. For this analysis, downsampling to
32 Hz was also performed for the XDAWN+RG classifier for fair comparison.
fig. 3.4 shows the measured training times. These results were obtained using a
laptop with an Intelő Core i7-8750H CPU and 16GB of RAM.

Figure 3.4 shows that the training time of STBF-struct has a lower me-
dian training time (0.06 s) than STBF-shrunk (0.33 s), STBF-emp (0.30 s) and
XDAWN+RG (0.20 s) when training on all available data and using 32 channels.
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Figure 3.4: Training time boxplots of different classifiers and individual results
for all training folds for all subjects using 32 channels and a sampling rate of 32
Hz. Using structured covariance estimation greatly reduces training time.

3.4 Discussion

3.4.1 Classification accuracy

As evidenced by fig. 3.3 and table 3.5, the regularized classifiers STBF-shrunk
and STBF-struct significantly improve the classification accuracy compared to
the original STBF-emp for all numbers of training blocks indicated. We believe
there are three reasons for this. First and foremost, the empirical covariance ma-
trix in STBF-emp becomes ill-conditioned when the number of available training
epochs is smaller than the number of features (N < CS), rendering its inver-
sion with the Moore-Penrose pseudoinverse unstable. This is the case STBF-
emp when N = CS = 32 ∗ 17 = 544, after which the accuracy of STBF-emp
starts to increase. This effect is visible in fig. 3.3, where the accuracy starts
increasing when using more than four training blocks, amounting to 540 epochs.
The noticeable dip in accuracy when using around 540 epochs can be explained
by numerical effects in the pseudoinverse for very small eigenvalues [29, 220,
233, 132]. Regularization of the covariance matrix with shrinkage ensures that
the covariance matrix is non-singular and better conditioned so it can stably
be inverted. Second, covariance regularization introduces a trade-off between
variance and bias of the model [138]. Better performance on unseen data can
be achieved when some model variance is traded for extra bias. Regularization
reduces extreme values present, as shown in fig. 3.1, resulting in a classifier with
better generalization. Third, the true spatiotemporal covariance matrix may
vary throughout BCI sessions, e.g., due to movement of the EEG-cap, changing
impedances of electrodes, subject fatigue, the introduction of new spatiotempo-
ral noise sources, and other possible confounds. A regularized covariance matrix
should better account for changes in true covariance. Note that the LOOCV
method in principle assumes that the covariances of the training data and un-
seen data are the same. Because the covariance might have changed for unseen
data, the shrinkage estimate obtained with LOOCV is probably still an underes-
timation of the optimal – but unknown – shrinkage coefficient that would yield
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the best classification accuracy for the unseen data.
Another observation is the significantly better accuracy score of STBF-struct

over STBF-shrunk when the amount of available training data is small (< 540
epochs). This property is an attractive advantage in a BCI setting since it is
desirable to keep the calibration (training) phase as short as possible without
losing accuracy. The accuracy advantage of the structured estimator is a con-
sequence of the Kronecker-Toeplitz covariance structure, which is informative
for the underlying process generating the epochs, if it is assumed that the EEG
signal is a linear combination of stationary activity generated by random dipoles
in the brain with added noise [180, 60, 86]. Hence, STBF-struct can utilize this
prior information to better estimate the inverse covariance. The increase in ac-
curacy for small training set sizes can also be explained by the smaller number
of parameters necessary to estimate the inverse covariance (see section 3.4.2),
increasing the stability of matrix inversions.

When compared to the state-of-the-art XDAWN+RG classifier, we conclude
that STBF-struct reaches similar accuracy when using only one block of train-
ing data, with accuracies of and 34.70% 32.5% respectively and p = 0.086. The
authors suspect this is due to both classifiers having insufficient training in-
formation to reach satisfactory classification accuracy. When more data are
available, STBF-struct reaches significantly better accuracies. Combined with
the benefits laid out in section 3.4.2, this makes it an attractive option for ERP
classification. STBF-shrunk does not show decisive accuracy improvements over
XDAWN+RG using a few training blocks, but this improves as the training data
increases.

3.4.2 Time and memory complexity

As mentioned above, inverting the full CS × CS dimensional covariance ma-
trix to construct STBF-emp and STBF-shrunk can be costly and unstable, in
particular in high-resolution settings with many EEG channels or time samples.
Constructing the full covariance and inverse covariance matrices also requires a
considerable amount of memory. The structured covariance estimator of STBF-
struct has two advantages here.

First, because of property 1 and property 2 there is no need to calculate or
keep in memory the full cs × cs symmetric covariance and inverse covariance
matrices for STBF-struct; they can instead be replaced by two smaller symmet-
ric matrices respectively of dimensions c× c and s× s. Furthermore, since the
temporal component of the Kronecker product is Toeplitz-structured, it only
requires s parameters to estimate. While the inverse covariance of STBF-emp

and STBF-shrunk is defined by
CS(CS + 1)

2
=

32 · 17(32 · 17 + 1)

2
= 122 128

parameters accounting for the symmetric nature of covariance, the structured es-

timator only requires
C(C + 1)

2
+S =

32(32 + 1)

2
+17 = 545 unique parameters.

This reduction in parameters to estimate reduces memory usage and contributes
to the regularization effect for low data availability settings. The inverse covari-
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ances of STBF-emp and STBF-struct, represented as 32∗17×32∗17 symmetric
matrices of single-precision real floating point numbers for weight calculation,
use 9.03MiB of memory. The 32× 32 and 17× 17 matrices of STBF-struct only
require 5.12KiB.

Second, structured estimation has better time complexity. Covariance esti-
mation and inversion occupy the largest part of the STBF training time. For
STBF-emp and STBF-shrunk, the time complexity of this process is described
by O(NC2S2+C3S3). Thanks to Property 1, the complexity can be reduced to
O(NS2S2 +C3 + S3) for the structured estimator of STBF-struct. The results
presented in fig. 3.4 confirm that STBF-struct is much faster in operation than
other classifiers.

Since the training times of all STBF-based classifiers are already in the order
of tenths of seconds, the question arises whether the improvements achieved by
using the structured estimator would be relevant in practice. However, the au-
thors believe that these results could significantly impact some use cases of the
spatiotemporal beamformer, like high spatial or temporal resolution ERP analy-
ses (e.g., C >> 32,S >> 256). One example is single-trial ERP analysis with a
high-temporal resolution to extract ERP time features. Such higher-resolution
analyses can later be incorporated into an ERP classification framework. In
addition, the speed-up provided by structured estimation yields a faster off-line
evaluation of the STBF ERP classifier, where often multiple cross-validation
folds, subjects, and hyperparameter settings need to be explored, which can
quickly increase runtime. Improvements in computation speed and memory
usage can remove the need for dedicated computation hardware and enable
running group analyses on a personal computer.

3.5 Conclusion

While it is possible to regularize the spatiotemporal LCMV beamformer classifier
for ERP detection with other methods such as by employing feature selection,
by adding regularizing penalties to the cost function beamforming problem, or
by crafting a cleaner activation pattern, our work focused on estimation meth-
ods for the spatiotemporal covariance. We introduced a covariance estimator
using adaptive shrinkage and an estimator exploiting prior knowledge about the
spatiotemporal nature of the EEG signal. We compared these estimators with
the original spatiotemporal beamformer and a state-of-the-art method in an off-
line P3 detection task. Our results show that the structured estimator performs
better when training data are sparsely available and that it can be computed
faster and with substantially less memory usage. Since these algorithms are not
paradigm-specific, the conclusions can be generalized to other ERP-based BCI
settings.

Future work should focus on introducing more robust regularization strate-
gies using prior knowledge, such as shrinking the spatial covariance to a popula-
tion mean or a priorly known matrix based on sensor geometry or characterizing
the temporal covariance as a wavelet or autoregressive model. More accurate
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results could be obtained by expressing the covariance as the sum of multiple
Kronecker products to account for spatial variation in temporal covariance. It
could also be interesting to explore the impact of covariance regularization on
transfer learning of the STBF between subjects to alleviate calibration entirely.
Finally, it could be insightful to evaluate the proposed algorithms in a real-world
on-line BCI setting.
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3.A STBF-struct selection accuracies

blocks 1 2 3 4 5 6 7 8 9
trials

1 34.70 42.86 47.22 50.04 53.00 54.41 56.44 57.98 58.60
2 48.28 61.51 66.89 71.03 74.87 76.32 77.25 78.62 79.45
3 56.48 71.21 76.81 80.64 83.55 85.85 87.26 87.96 88.71
4 62.83 78.22 82.80 84.74 88.01 89.73 91.18 92.28 92.99
5 67.86 82.10 86.38 88.32 91.27 92.77 93.65 94.66 95.41
6 72.18 85.63 88.62 91.09 93.17 94.22 95.06 95.94 96.52
7 75.62 86.82 91.45 93.03 94.40 95.46 95.94 96.43 96.96
8 76.76 87.39 91.89 93.92 95.06 96.34 96.56 96.91 97.18
9 77.95 89.51 93.08 94.66 95.37 96.65 97.09 97.40 97.66
10 79.81 90.17 93.52 95.11 95.81 96.69 97.00 97.27 97.62
11 80.95 91.45 94.22 95.81 96.47 97.18 97.40 98.02 97.75
12 82.28 92.33 94.49 95.94 96.52 97.27 97.53 97.62 97.75
13 83.82 92.59 95.24 96.12 96.52 97.05 97.40 97.62 97.88
14 84.26 92.99 95.50 96.25 96.83 97.44 97.80 97.97 97.93
15 85.76 93.61 95.24 96.12 96.83 97.71 97.80 98.10 98.06

Table 3.1: Accuracies (%) for STBF-struct.
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3.B STBF-shrunk selection accuracies

blocks 1 2 3 4 5 6 7 8 9
trials

1 30.56 39.51 45.33 48.41 50.62 54.32 56.44 57.89 58.73
2 44.36 57.45 63.80 68.30 71.83 75.62 76.68 79.54 80.34
3 53.17 68.17 74.56 78.31 81.70 85.23 87.21 88.14 88.93
4 59.83 74.96 80.25 84.44 87.87 89.68 91.27 92.37 93.25
5 64.42 78.92 84.13 87.87 90.74 92.20 93.65 94.58 95.02
6 68.52 82.36 86.60 90.43 92.50 93.78 95.37 96.16 96.47
7 71.47 84.70 88.93 92.06 93.83 95.19 95.99 96.87 97.13
8 73.46 87.21 90.52 93.12 94.80 96.34 97.00 97.27 97.31
9 76.63 87.65 91.45 94.00 95.55 96.65 97.31 97.40 97.44
10 78.09 88.49 92.15 94.14 95.81 96.74 97.31 97.49 97.53
11 78.53 90.78 93.21 95.41 96.25 97.00 97.57 97.62 97.71
12 79.32 91.40 93.25 95.41 96.25 97.40 97.44 97.66 97.62
13 80.47 91.89 93.56 95.37 96.30 97.22 97.57 97.62 97.75
14 81.35 92.72 94.14 95.68 96.16 97.35 97.75 97.75 97.88
15 82.50 92.77 94.22 95.90 96.38 97.53 97.84 98.06 98.24

Table 3.2: Accuracies (%) for STBF-shrunk.
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3.C STBF-emp selection accuracies

blocks 1 2 3 4 5 6 7 8 9
trials

1 27.78 30.29 25.26 19.97 34.17 40.83 46.03 50.26 52.34
2 39.90 42.15 33.99 26.37 46.52 56.48 63.49 68.30 71.74
3 47.71 51.28 41.18 28.84 56.61 67.11 74.60 79.37 82.19
4 54.76 58.16 45.90 34.44 62.65 74.38 81.00 84.92 87.83
5 59.17 63.10 51.10 36.11 67.50 79.54 85.71 89.02 91.71
6 63.23 67.90 54.63 38.80 71.38 83.20 88.14 91.36 93.47
7 64.81 71.08 58.73 41.49 74.29 86.60 91.49 93.78 94.71
8 67.77 73.46 60.98 42.55 77.69 88.49 92.42 94.71 95.37
9 70.28 75.44 64.02 44.80 78.92 89.15 94.09 95.41 96.30
10 72.49 77.47 65.34 46.87 80.91 91.31 94.53 96.21 96.65
11 73.24 79.28 66.84 49.12 81.83 91.45 94.93 96.43 96.83
12 74.34 80.47 69.49 50.00 83.86 92.11 95.02 96.56 96.91
13 75.04 82.32 70.77 51.28 84.70 93.25 95.55 96.69 97.13
14 76.37 83.16 71.43 51.63 86.99 93.43 95.94 97.05 97.18
15 77.69 83.86 72.57 53.75 87.39 93.87 96.25 97.31 97.62

Table 3.3: Accuracies (%) for STBF-emp.
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3.D XDAWN+RG selection accuracies

blocks 1 2 3 4 5 6 7 8 9
trials

1 32.05 40.87 44.44 45.37 47.53 48.63 49.82 51.23 53.40
2 45.81 57.19 61.20 63.67 66.71 69.62 71.43 73.06 75.00
3 54.94 66.45 72.09 73.81 76.54 78.62 80.91 82.76 84.04
4 61.07 73.02 77.91 82.14 83.20 85.32 86.77 88.67 90.04
5 65.30 78.26 81.88 83.55 86.64 88.45 89.73 92.28 93.08
6 68.69 80.51 84.08 87.35 88.84 91.49 92.37 93.61 94.49
7 71.78 83.38 87.08 89.15 90.56 92.90 93.69 94.44 95.77
8 74.34 84.79 88.84 90.78 91.89 93.43 94.58 95.50 96.03
9 77.16 86.07 89.81 92.28 93.25 94.49 95.37 95.81 96.65
10 78.44 87.08 90.34 92.77 93.43 94.80 95.68 95.99 96.56
11 79.45 89.02 90.96 93.34 94.58 95.59 96.47 96.56 97.31
12 80.78 89.95 91.40 93.47 94.49 95.90 96.69 96.91 97.09
13 82.23 90.65 91.75 94.00 95.06 95.86 96.56 97.00 97.31
14 83.77 91.05 92.06 93.96 95.28 96.47 96.69 97.66 97.62
15 84.30 91.18 92.72 94.62 95.63 96.03 96.74 97.44 97.44

Table 3.4: Accuracies (%) for XDAWN+RG.
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Figure 3.5: Accuracy of the different classifiers for all 21 subjects relative to
the number of blocks available for training. One block consists of 135 epochs
and corresponds to 27 seconds of stimulation. Accuracies are shown for the
averaging over different numbers of trials, ranging from 1 to 15.



3.E Statistical comparisons
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Table 3.5: Statistical significance of differences in classifier performance. p-
values calculated by one-sided Wilcoxon signed-rank test with Holm correction
using one testing trial for different classifiers and levels of data availability. p-
values < 0.05 are considered significant.
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Chapter 4

Block-term tensor

discriminant analysis

Han Solo in Star Wars Episode IV: A New Hope This chapter was submitted
for publication as Van Den Kerchove et al. [270].

4.1 Introduction

Brain-computer interfaces (BCIs) have the potential to bypass defective neural
pathways by providing an alternative communication channel between the brain
and an external device. These interfaces find applications in the development
of neuroprosthetics and assistive technologies, among other applications [296].
To achieve their functionality, BCIs record and process neural data obtained
through a neuroimaging technique, with electroencephalography (EEG) being
the most popular.

4.1.1 Tensors & tensor methods

Due to its multichannel time series structure, EEG data, like most neural signal
acquisition modalities used for BCIs, naturally exist as multiway data, captur-
ing information in both spatial and temporal domains. Common preprocessing
transformations, such as time-frequency transformation, time-binning, or inte-
grating information across multiple subjects or conditions, can further expand
the data into additional analytic domains. This can result in high-dimensional
datasets which are usually flattened into a set of sample vectors, stripping the
original data from its structure. Yet, the intrinsic multiway structure of neural
data [67] is well-suited for representation as tensors, or multiway arrays, where
each domain is represented as a tensor mode. Tensors provide a structured data
representation for this highly dimensional multiway data. This in turn paves
the way to the development of tensor methods which can counteract some of the
drawbacks of the dimensionality problem. Tensor methods are machine learning
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techniques that consider each tensor mode separately, reducing a given problem
into partial, per-mode problems.

These tensor methods decompose a tensor into a lower dimensional struc-
ture of a core tensor and factor tensors. The most common approaches adhere
to either the Tucker structure or the PARAFAC structure. A Tucker decom-
position reduces an input tensor of size (D1,D2, . . . ,DK) to a dense tensor
of size (r1, r2, . . . , rK) with rk ≤ Dk using a set of per-mode factor matrices.
Effective unsupervised tensor decomposition and approximation in the Tucker
format can be achieved using the Higher Order Singular Value Decomposition
(HOSVD) [57, 243]. Alternatively, the PARAFAC structure can be used. Here,
the tensor is decomposed into a sum of rank-1 tensors, each the product of a
scalar and a vector per mode. This is equivalent to a Tucker structured de-
composition with all core elements off the hyperdiagonal set to 0. One way of
obtaining an unsupervised PARAFAC decomposition is through the Canonical
Polyadic Decomposition [109, 185].

While commonly used, these Tucker or PARAFAC structures might still
not be able to efficiently represent relevant neural information in a compressed
format. The block-term tensor structure is a generalization of the Tucker and
PARAFAC structures. It represents the tensor as a sum of Tucker structured
terms. If the number of terms is equal to 1, it is equivalent to the Tucker struc-
ture; if the rank of each term is equal to 1, it is equivalent to the PARAFAC
structure. The generalized structure can be calculated in an unsupervised way
using the Block-Term Decomposition [55, 56, 58, 227]. Performance of methods
leveraging either the Tucker and PARAFAC structures are heavily dependent on
the prior choice of hyperparameters describing the multilinear rank or the num-
ber of rank-1 terms. The block-term structure is more flexible than either the
Tucker or the PARAFAC structures, since it is not constrained to problems that
cannot be expressed by one of these structures and the chosen hyperparameters.
However, this increased flexibility also increases the number of hyperparameters
to both the number of terms and the multilinear rank of each term.

4.1.2 Supervised tensor decomposition

If the decompositions are not full rank, the Tucker, PARAFAC and block-term
structures are not unique and can be obtained by optimizing different criteria.
Given the low signal-to-noise ratio and specific, task-related output expected
in a BCI application, supervised feature extraction and machine learning tech-
niques are favored [155] over the unsupervised decomposition methods presented
above. A decomposition that is helpful for classification purposes should ide-
ally optimize the discriminability between classes in the resulting core tensors,
which can be considered as extracted features. In this philosophy, the Tucker
decomposition can also be obtained using Higher Order Discriminant Analysis
(HODA) [307, 212, 80], which optimizes class separability in the Fisher sense,
analogous to linear discriminant analysis. Extracted features can subsequently
be further classified, most commonly using linear discriminant analysis (LDA)
or a support vector machine (SVM) to predict class labels.
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Variants of HODA have been applied to BCI problems such as event-related
potential (ERP) [191, 108] and motor imagery (MI) [152, 40] decoding with
positive results [155]. Recent work proposes adaptations such as suited objec-
tive functions and regularization [120, 123, 4]. Discriminant tensor features
have also been extracted in the PARAFAC structure through manifold opti-
mization [80]. However, it is not immediately obvious if either the Tucker or
PARAFAC structure are most suited to represent the neural data of interest for
the BCI paradigm and for decoding.

Recent research has shown that supervised decoders adopting a more flexible
structure can improve BCI performance. Promising results have been achieved
for regression tasks using Higher Order Partial Least Squares [41] and Block-
Term Tensor Regression (BTTR) [68, 69]. BTTR has also been adapted into
a classification variant [42] but this leaves room for improvement. Instead of
optimizing features directly for class separability, a dummy independent variable
was regressed towards, and the method cannot be extended to a multi-class
setting. Furthermore, structures employed in these regression approaches are
still more constrained than what could be achieved with a full block-term tensor
structured decomposition optimized for discriminability, since they rely on a low-
rank common subspace between the input and classification labels. Huang et al.
[112] propose a supervised approach for finding multiple discriminant multilinear
spectral filter terms and apply it to motor imagery BCI, but their decomposition
is also restricted in flexibility, since the solution can only extract rank (r1, r2, 1)
with mode 3 corresponding to the frequency domain.

4.1.3 A block-term structured model for classification

A block-term decomposition that is directly optimized for discriminability and
with a good choice of ranks and number of terms might better represent the
behavior of generators of neural activity through increased flexibility, or might
achieve better regularization through increased sparsity. An alternative view
on the same approach goes as follows: If HODA with a well-chosen multilin-
ear rank extracts some discriminant features from the input tensor, it is likely
that it does not yet retrieve all useful information due to the restriction fol-
lowing from its Tucker structure. Could we therefore not keep using HODA to
extract discriminant Tucker structured terms as long as decoding performance
increases?

We propose to implement this idea as a new supervised feature extraction
tensor method that is a generalization of the aforementioned HODA algorithm
and is more suited for the extraction of discriminant features while adhering to a
flexible and efficient block-term tensor structure. This work features the follow-
ing contributions: 1) We develop a forward model for HODA. It can reconstruct
a given input tensor from the extracted features. 2) This allows us to introduce
a state-of-the-art BCI feature extraction method based on the block-term tensor
structure, named Block-Term Tensor Discriminant Analysis (BTTDA). 3) We
evaluate a BCI decoder based on BTTDA and its special PARAFAC-structured
case on decoding tasks for both ERP and MI paradigm BCI datasets.
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Figure 4.1: A visualization of the multilinear projection obtained by Higher
Order Discriminant Analysis (HODA) applied to a third-order tensor sample
X with shape (D1,D2,D3). HODA finds projection matrices Uk such that
maximal discriminability between classes is achieved in the projected latent
tensors G with reduced dimensionality (r1, r2, r3).

4.2 Methods

4.2.1 Notation

Tensors are indicated by bold underlined letters X, matrices by bold letters U,
fixed scalars by uppercase letters K, and variable scalars as lowercase letters k.
The nth sample of a tensor dataset with N samples is written as X(n). A tensor

X ∈ R
D1×D2×···×DK can be unfolded in mode k to a matrix Xk ∈ R

(Dk×
∏K

j ̸=k
Dj),

by concatenating all mode j ̸= k fibers. The tensor-matrix product of tensor X

with matrix U along a given mode k is written as X×kUk. For ease of notation,
let X×{U} = X×1U1×2U2 · · ·×KUK . When skipping one of the modes k, this
is written as X×−k {U} = X×1U1×2U2 · · ·×k−1Uk−1×k+1Uk+1 . . .×K UK .

4.2.2 Higher Order Discriminant Analysis

Higher Order Discriminant Analysis [212] is a supervised tensor-based feature

extraction technique. Let
{
X(n) ∈ R

D1×D2×···×DK
}N

n
be a set of N tensors of

orderK. HODA finds projection matrices Uk for each mode k that project a
given X to a latent tensor G ∈ R

r1×r2×···×rK , usually with lower dimensionality
(r1 ≤ D1, r2 ≤ D2, . . . , rK ≤ DK) using tensor-matrix mode products:

G = X× {U} (4.1)

as visualized in fig. 4.1.
Analogous to the HOSVD, HODA is a dimensionality reduction decompo-

sition that results in a dense latent tensor G, and imposes an orthogonality
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constraint on Uk to ensure uniqueness. However, while for the HOSVD decom-
position the projection matrices are chosen to minimize the reconstruction error,
the projection matrices Uk of HODA are optimized for maximal discriminability
of tensors G(n) belonging to classes with labels cn. This is a desirable property
in a classification setting where samples are high-dimensional tensors.

HODA optimizes discriminability in the Fisher sense, by optimizing the
Fisher ratio ϕ between the latent tensors G(n):

ϕ =

∑C
c Nc

∥∥∥Ḡ(c)− ¯̄G
∥∥∥
2

F∑N
n

∥∥G(n)− Ḡ(cn)
∥∥2
F

(4.2)

for C classes with each Nc samples. Ḡ(c) is the mean of latent tensors of class c,
and ¯̄G the mean of these class mean latent tensors. If the ranks (r1, r2, . . . , rk)
are set a priori, the goal is now to find the optimal projection matrices:

{U∗} = argmax
{U}

ϕ (4.3)

which is solved through the HODA algorithm. To start, Uk are initialized
to orthogonal matrices, e.g. as random orthonormal matrices, by a per-mode
Singular Value Decomposition (SVD), or as the partial HOSVD of all stacked
tensors in the dataset. At each iteration, the algorithm loops through the modes
and fixes all projections but Uk corresponding to mode k. It then finds a partial
latent tensor:

G−k = X×−k {U} (4.4)

Subsequently, a new projection matrix Vk can be found analogous to Linear
Discriminant Analysis by constructing the within-class scatter matrix:

S−k,w =

N∑

n

G̃−k,k(n) · G̃
⊺

−k,k(n) (4.5)

with G̃−k(n) = G−k(n)− Ḡ−k(cn), and the between-class scatter matrix:

S−k,b =
C∑

c

Nc
˜̄G−k,k(c) ·

˜̄G⊺

−k,k(c) (4.6)

with ˜̄G−k(c) = Ḡ−k(c) −
¯̄G−k, and solving for the rk leading eigenvectors in

the eigenvalue problem:

S−k,b − φkS−k,w = VkΛV
⊺

k (4.7)

with φk = Tr (U⊺

kS−k,bUk) /Tr (U
⊺

kS−k,wUk) using the Uk obtained in the
previous iteration. Finally, the orthogonal transformation invariant projections
Uk are obtained by calculating the per-mode total scatter matrices:

Sk,t =

N∑

n

Xk(n) ·X
⊺

k(n) (4.8)
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Algorithm 1 The HODA backward solution.

Require: {X(n)}Nn , {cn}
N
n , (r1, r2, . . . , rK), Imax, ϵ

1: Uk ← orthonormal matrix ∈ R
Dk×rk ∀k

2: Sk,t ←
∑N

n Xk(n) ·X
⊺

k(n) ∀k
3: i← 1
4: repeat
5: for k = 1, 2 . . . ,K do
6: G(n)−k ← X(n)×−k {U} ∀n

7: S−k,w ←
∑N

n G̃−k,k(n) · G̃
⊺

−k,k(n)

8: S−k,b ←
∑C

c Nc
˜̄G−k,k(c) ·

˜̄G⊺

−k,k(c)
9: Vk ← largest rk eigenvectors of

S−k,b − φkS−k,w

10: Uk ← largest rk eigenvectors of
VkV

⊺

kSk,tVkV
⊺

k
11: end for
12: i← i+ 1
13: until i = Imax or ||U

(i)
k −U

(i−1)
k || < ϵ ∀k

and finding the rk leading eigenvectors of:

VkV
⊺

kSk,tVkV
⊺

k = UkΛU
⊺

k (4.9)

at each iteration [284]. The iterative process halts after a fixed number of itera-
tions, or when the update of each Uk is lower than a predetermined threshold.
The full HODA procedure is summarized in algorithm 1.

To apply HODA in a classification setting, the projections are first learned
on a training dataset with known class labels. Next, these projections are used
to extract latent tensors from the tensors in the training dataset. These latent
training tensors are then reshaped (vectorized) into feature vectors g = vec(G)
and used to train a decision classifier with the corresponding class labels. At
the evaluation stage, the projections learned from the training dataset are used
to extract latent tensors from an unseen test dataset with unknown class labels,
which can also be vectorized and passed on to the trained decision classifier.

To avoid overfitting and improve performance in low sample size settings, the
HODA problem can be regularized by shrinking the partial within-class scatter
matrices [212] with a shrinkage factor αk at each step such that the eigenvalue
problem becomes:

S
(−k)
b − φ [(1− αk)S−k,w + αkI] = VkΛV

⊺

k (4.10)

As in Linear Discriminant Analysis, the shrinkage parameter αk can also be
estimated in a data-driven way in HODA [123], e.g., using the Ledoit-Wolf
procedure [139] at every iteration.
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Figure 4.2: The forward projection for HODA. By calculating activation pat-
terns Ak, the original tensor X can approximately be reconstructed as X̂ from
projected latent tensor G. The reconstruction is accurate up to an error term
E , such that X = X̂ + E . Ak are chosen such that the variability captured in
the latent tensor is maximally expressed in the reconstructed tensor X̂ and not
in the error term E .

4.2.3 A forward model for HODA

As a prerequisite to the proposed BTTDA model, we must find a way to re-
construct the original data tensor X as accurately as possible from G after
dimensionality reduction. This is usually referred to as finding a corresponding
forward model. While a backward model extracts latent sources or properties
from the observed data based on some task-related criterion or on prior domain
knowledge, a forward model is a generative model that expresses the observed
data in terms of these latent properties or sources that are given. Forward mod-
els are useful for, among other things, interpretability and data compression.

The HODA projection in eq. (4.1) is an example of a backward model. A
straightforward and computationally efficient candidate for a corresponding for-
ward model, visualized in fig. 4.2, is given by:

X = G× {A⊺}+ E = X̂+ E (4.11)

with activation patterns Ak ∈ R
Dk×rk , reconstructed tensor X̂, and error term

E .
A forward model should ensure that reconstruction error is minimized. In

other words, variation captured in the latent tensor should be maximally cap-
tured by the reconstruction term X̂ = G × {A⊺}, and not by the error term
E [104]. Hence, we aim to minimize the expected value of the cross-covariance
between the noise term and the extracted latent tensors:

{A∗} = argmin
{A}

E [vec (E(n)) vec (G(n))]n (4.12)

73



Algorithm 2 The HODA forward solution.

Require: {G(n)}Nn , {X(n)}Nn , Imax, ϵ
1: Ak ← Uk ∀k
2: i← 1
3: repeat
4: for k = 1, 2 . . . ,K do
5: X−k(n)← [G(n)×−k {A}]k ∀n

6: Ak ← argminAk

∑N
n [Xk(n)−AkX−k(n)]

2

7: end for
8: i← i+ 1
9: until i = Imax or ||A

(i)
k −A

(i−1)
k || < ϵ ∀k

or, equivalently [202, 104],

{A∗} = argmin
{A}

N∑

n

[
X(n)− X̂(n)

]2
(4.13)

= argmin
{A}

N∑

n

[X(n)−G(n)× {A}]
2 (4.14)

This least squares tensor approximation problem can be solved efficiently using
the alternating least squares algorithm [24], iteratively fixing all but one of the
activation patterns such that:

Ak = argmin
Ak

N∑

n

[Xk(n)−Ak (G(n)×−k {A})k]
2 (4.15)

at every iteration, which can be solved directly by ordinary least squares. The
activation patterns are initialized to the weights {U} of the backward model.
Similar to fitting the backward model, the iterative process for the forward
model halts after a fixed number of iterations or when the update of each Ak

is lower than a predetermined threshold. The full algorithm to determine the
HODA forward projection is listed in algorithm 2.

The forward model could alternatively be specified in the classical manner
by linear regression or with the solution of Haufe et al. [104], but this would
require vectorizing the tensor representation. While the reconstruction error
might be reduced, we would lose the computational efficiency and regularizing
constraints of the tensor form. More efficiently, the forward model could be ob-
tained through other tensor regression methods, like Higher Order Partial Least
Squares. This method still requires fitting more parameters than our proposed
model, on top of additional hyperparameters defining the dimensionality of the
common subspace. An attractive property of our multilinear forward model for
HODA is that it estimates exactly as many parameters as the backward model,
with the intuition that it should not disproportionally contribute to overfitting.
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Figure 4.3: A forward model for Block-Term Tensor Discriminant Analysis
(BTTDA). BTTDA can extract more features than HODA by iteratively find-
ing a latent tensor G(b) in a deflation scheme. The HODA backward projection
is first applied. Next, the input data is reconstructed via the HODA forward
model and the difference between the two is found. Finally, this process is re-
peated with this difference as input data, until a desired number of blocks B
has been found.

4.2.4 Block-Term Tensor Discriminant Analysis

After defining the forward model, we can construct our proposed block-term ten-
sor model. Assuming the latent tensors G obtained by the backward projection
of HODA do not achieve perfect class separation, the error term E in eq. (4.11)
should still contain some discriminative information, which can be exploited
to improve classifier performance. Useful features can still be extracted from
E = X− X̂, so it is further projected onto another core tensor G(2) (assuming
G as G(1)).

We thus extend the HODA feature extraction scheme to Block-Term Tensor
Discriminant Analysis (BTTDA). BTTDA finds multiple discriminative blocks,
such that its forward model adheres to the block-term tensor structure:

X =

B∑

b

G(b) ×
{
A(b)

}
+ E (4.16)

for B extracted latent tensors G(b) and residual error term E . The BTTDA
model is further illustrated by fig. 4.3. The block-term structure of this model
implies that it is a generalization of both the Tucker-structured HODA and
PARAFAC-structured discriminant feature extraction. If B in eq. (4.16) is set
to one, BTTDA is equivalent to HODA; if at each term b the rank of the core
tensor (r

(b)
1 = r

(b)
2 = . . . = r

(b)
k = 1), a PARAFAC structure is assumed.

Since BTTDA is specified above as a forward model, a backward procedure
is required which finds the latent tensors G(b) given X for BTTDA to be useful
as a feature extraction method. The extracted features represented by the
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Algorithm 3 BTTDA.

Require: {X(n)}Nn , {cn}
N
n , {(r

(b)
1 , r

(b)
2 , . . . , r

(b)
K )}Bb

1: E(n)← X(n) ∀n
2: for b = 1, 2, . . . ,B do

3: {U(b)} ← HODA on {E(n)}Nn and {cn}
N
n with rank (r

(b)
1 , r

(b)
2 , . . . , r

(b)
K )

4: G(b)(n)← E(n)× {U(b)} ∀n

5: {A(b)} ← Forward hoda on {G(b)(n)}Nn
and E

6: Ê(n)← G(b)(n)× {A⊺(b)} ∀n

7: E(n)← E(n)− Ê(n)∀n
8: end for

latent tensors G(b) can be computed through a deflation scheme summarized in
algorithm 3. For each block b, the latent tensor is extracted using the HODA
backward projection in eq. (4.1) from the residual error term of the previous
block E

(b−1):

G(b) = E
(b−1) ×

{
U(b)

}
(4.17)

This residual error term is calculated by finding the difference between the previ-
ous error and its reconstruction after backward and forward HODA projection:

E
(b) = E

(b−1) − Ê
(b−1)

= E
(b−1) −G(b) ×

{
A⊺(b)

}
(4.18)

with E
(0) = X.

The resulting latent tensors can be vectorized and concatenated into one
single feature vector per input tensor:

g =
[
vec

(
G(1)

)
vec

(
G(2)

)
· · · vec

(
G(B)

)]
(4.19)

so that they can be classified in a similar manner to HODA.

4.2.5 Model and feature selection

Similar to the unsupervised Block-Term Decomposition, the performance of
BTTDA is heavily dependent on the rank (r

(b)
1 , r

(b)
2 , . . . , r

(b)
K ) and on the number

of blocks B. If these are not known a priori, i.e., if they cannot be set based on
insights into the data generation process, a model selection step is necessary in
order to determine the optimal values for r

(b)
k and B.

Furthermore, HODA, and by extension BTTDA, can extract a substantial
amount of redundant features, which can be dropped after projection and before
proceeding to the classification step [212]. Specifically, in BTTDA redundant
features can accumulate over the number of blocks, hampering performance.
Relevant features can be retained by calculating the univariate Fisher score for
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Algorithm 4 Greedy model selection.

Require: {X(n)}Nn , {cn}
N
n ,Bmax,α

1: for b = 1, 2, . . . ,Bmax do
2: for r = 1, 2, 4, . . . ,maxk Dk do
3: rk ← min(r,Dk) ∀k
4: σ(b)

r ← Cross-validated BTTDA+LDA classification score for
{X(n)}Nn and {cn}

N
n with ranks

{(r
(c)
1 , r

(c)
2 , . . . , r

(c)
K )∀ c ≤ b} and features where

p(i) < α
5: end for
6: σ

(b)
∗ ← maxr σ

(b)
r

7: r
(b)
∗ ← argmaxr σ

(b)
r

8: r
(b)
k ← r

(b)
∗ ∀k

9: end for
10: B ← argmaxb σ

(b)
∗

all features. The Fisher score ϕ(i) for feature i is obtained as:

ϕ(i) =

∑C
c Nc (ḡi(c)− ¯̄gi)

2

∑N
n (gi(n)− ḡi(cn))

2
(4.20)

The features can then either be sorted by ϕ(i), and a given number of features
retained for classification, or the decision to retain a feature can be made by
a threshold on the statistical p-values corresponding to the ϕ(i). We opted for
the latter strategy since it does not require redetermining the optimal number
of features to retain at each block.

Combined, this results in hyperparameters B for the number of blocks, the
threshold value for feature retention, and the ranks of the individual blocks.
While we can reasonably set the feature selection p-value threshold to 0.05, B
and the block ranks must be tuned to select a performant feature extraction
model. While these hyperparameters can be set through cross-validation, this
can be computationally expensive. To reduce the computational cost of model
selection, algorithm 4 proposes a heuristic model selection algorithm that lever-
ages cross-validation in a greedy way per block, to iteratively find the optimal
rank for the next block given the ranks of the previous block. The area un-
der the receiver-operator characteristic curve (ROC-AUC), or the accuracy in
the case of a balanced multi-class problem, of classification of extracted feature
vectors after feature selection is used as a cross-validation score. Finally, the
series of blocks can be truncated to the point with the highest validation score
to determine B.

Alternatively, a special case of BTTDA can be constructed using only rank-
one blocks such that the resulting forward model adheres to the PARAFAC
structure. The optimal number of rank-one blocks can be found by truncating
as above. We refer to this strategy as PARAFACDA.
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Dataset Sub. Chan. Cls. Trials
Epoch
len. (s)

S. freq.
(Hz)

Sess. /
Runs

ERP
BNCI2014-008 [224] 8 8 2 3500/700 1 256 1
BNCI2015-003 [92] 10 8 2 1500/300 0.8 256 1

MI
BNCI2014-001 [252] 9 22 4 144 4 250 2/6
BNCI2014-004 [140] 9 3 2 180 5 250 5

Table 4.1: MOABB datasets used for evaluation, with the number of subjects
(Sub.), the number of EEG channels (Chan.), the number of classes (Cls.), the
number of trials or trials per class for ERP datasets (Trials), the epoch length
(Epoch len.), the sampling frequency (S. freq.), the number of sessions per sub-
ject (Sess.) and the number of runs. Adapted from Aristimunha et al. [14] and
Chevallier et al. [51].

4.3 Experiments

4.3.1 Datasets and decoders

We evaluated our proposed model in two offline EEG-based BCI decoding prob-
lems: the event-related potential (ERP) and motor imagery (MI) paradigms
using a selection of the openly available MOABB benchmarking datasets [14].
Two ERP and two MI datasets were retained to reduce computational demand.
Details about these datasets are found in table 4.1. For the ERP datasets, the
task is to distinguish target from non-target ERPs, while the MI datasets consist
of distinguishing different imagined limb movements. Within-session classifica-
tion performance was assessed using stratified 5-fold cross-validation to calculate
the area under the receiver operating characteristic curve (ROC-AUC).

To use HODA as a decoder, it is paired with LDA to classify the extracted
feature (HODA+LDA), with hyperparameters rk. Similarly, we implemented
BTTDA+LDA with the proposed BTTDA feature extraction with hyperparam-
eters r(b)k for each block b and the number of blocks 1 ≤ B ≤ 16. Additionally, we
also introduce PARAFACDA+LDA, which is the special case of BTTDA+LDA
where each r

(b)
k = 1, with B and the feature selection threshold as only hyper-

parameters. Hyperparameters were determined separately for each fold using
nested stratified 5-fold cross-validation, and, for BTTDA+LDA, in conjunction
with the greedy model selection algorithm in algorithm 4. For HODA+LDA, as
well as for the HODA blocks in BTTDA+LDA, we chose r = r1 = r2 = . . . = rK
with possible values 1, 2, 4, 8, . . . ,maxk Dk to reduce computational cost. Other
HODA and BTTDA hyperparameters were set to Bmax = 10, ε = 1× 10−8 and
Imax = 128.

Furthermore, as additional comparison methods, we used the methods eval-
uated by Chevallier et al. [51]. For the ERP datasets, these were the Rieman-
nian Geometry-based methods using augmented ERP covariance matrices with
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and without SVD dimensionality reduction features for a Minimum Rieman-
nian Distance to Mean classifier (ERPCov+MDM and ERPCovSVD+MDM),
augmented ERP covariance matrices after XDAWN [225] filtering paired with
a Riemannian Minimum Distance to Mean classifier or a projection to tan-
gent space and a support vector machine (XDAWNCov+MDM and XDAWN-
Cov+TS+SVM), and LDA applied after XDAWN filtering (XDAWN+LDA).
For the MI datasets, the comparison methods were selected from Riemannian
methods. These include projection onto the Riemannian tangent space com-
bined with an ElasticNet classifier (TS+EL), a Fisher Geodesic Minimum Rie-
mannian Distance to Mean classifier and the classification of augmented co-
variance matrices projected onto the Riemannian tangent space with a support
vector machine (ACM+TS+SVM). Additionally, we report the performance of
the Common Spatial Patterns filter and a frequency filterbank combined with a
support vector machine (CSP+SVM and FilterBank+SVM, respectively). We
refer to Chevallier et al. [51] for implementation details of these comparison
methods.

4.3.2 Event-Related Potentials

ERPs are spatiotemporal features, with each sample forming a 2nd order tensor
with K = 2 modes (a matrix), representing EEG channels and time samples per
epoch. EEG signals for the evaluated datasets were recorded at the sample rate
given by table 4.1 and band-pass filtered between 1 Hz and 24 Hz. The signals
were cut into epochs starting from stimulus onset with a dataset-specific length
given by table 4.1. For HODA+LDA, PARAFACDA+LDA, and BTTDA+LDA
decoders, epochs were downsampled to 48 Hz. For the BNCI2014-008 and
BNCI2015-003 datasets, this resulted in matrices of dimensionality (8, 48) and
(8, 38), respectively.

Table 4.2 lists the cross-validated ROC-AUC for all evaluated decoders.
The highest performance is achieved with the proposed BTTDA+LDA. One-
sided Wilcoxon signed-rank tests with a significance level of α = 0.05 reveal
that both PARAFACDA+LDA and BTTDA+LDA significantly outperform
HODA+LDA in both the BNCI2014-008 (PARAFACDA+LDA: p = 0.0039,
BTTDA+LDA: p = 0.0039) and the BNCI2015-003 (PARAFACDA+LDA: p =
0.0001, BTTDA+LDA: p = 0.0049) datasets. No significant difference was
found between BTTDA+LDA and PARAFACDA+LDA.

4.3.3 Motor Imagery

For MI, discriminatory information is represented in the EEG data as Event-
Related Synchronizations/Desynchronizations (ERS/Ds). Contrary to the time-
domain analyses performed on ERPs, ERS/Ds are usually well discerned in the
time-frequency domain. Hence, for the MI task, we transform the EEG signal
into the time-frequency domain, forming 3rd order tensors, with K = 3 modes
representing the channels, frequencies, and time bins.
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Pipelines BNCI2014-008 BNCI2015-003

ERPCov+MDM 74.30±9.77 76.79±10.95
ERPCovSVD+MDM 75.42±9.91 76.93±11.26
XDAWNCov+MDM 77.62±9.81 83.08±7.55
XDAWN+LDA 82.24±5.26 78.62±7.19
XDAWNCov+TS+SVM 85.61±4.43 82.95±8.57

HODA+LDA 83.25±6.25 82.57±7.52
PARAFACDA+LDA 86.19±4.62 84.85±7.93
BTTDA+LDA 86.43±4.51 85.08±7.36

Table 4.2: Area under the receiver operating characteristic curve for cross-
validated within-session evaluation for HODA and our proposed decoders
PARAFACDA and BTTDA evaluated on 2 event-related potential datasets.
Scores for other decoders were taken from Chevallier et al. [51]. BTTDA
reaches the highest performance for both evaluated datasets, closely followed
by PARAFACDA.

The MI datasets listed in table 4.1 were first band-pass filtered between 8
and 30 Hz and cut into epochs with time windows as specified by table 4.1. Next,
time-frequency transformation was performed using a complex Morlet wavelet
convolution, with 16 wavelet frequencies logarithmically spaced between 8 and
32 Hz. The number of wavelet cycles c varied with wavelet frequency f as
c = 0.7 ∗ f . Features were extracted by taking the log-transformed envelope of
the complex wavelet transformation and averaging each epoch along the time
axis into time bins of length 1/4s. For the BNCI2014-001 and BNCI2014-004
datasets, this resulted in tensors of dimensionality (22, 4, 16) and (3, 4, 18), re-
spectively.

table 4.3 lists the cross-validated classification scores for the evaluated motor
imagery datasets. Note that, in line with Chevallier et al. [51], accuracy is
reported for the multi-class classification problem in BNCI2014-001, while ROC-
AUC was reported for the binary classification problem in BNCI2014-004. For
the BNCI2014-001 dataset, HODA+LDA and our proposed decoders do not
reach satisfactory performance compared to the comparison methods, yet both
PARAFACDA+LDA and BTTDA+LDA improve upon HODA+LDA, and for
BTTDA+LDA this difference is significant (p = 0.0269). For the BNCI2014-
004 dataset, the performance gap with comparison methods is smaller, but no
significant differences were found between HODA+LDA, PARAFACDA+LDA,
and BTTDA+LDA.

4.3.4 Block contribution

To analyze the contribution of extra feature blocks extracted by BTTDA over
the first one found by HODA, we pick an ERP (K = 2) dataset (BNCI2014-008)
and an MI (K = 3) dataset (BNCI2014-001). We report within-session ROC-
AUC scores for training, validation, and test data as a function of the number
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Pipelines BNCI2014-001 BNCI2014-004

CSP+SVM 66.88±15.22 79.27±15.68
FilterBank+SVM 66.53±12.05 80.39±16.05
FgMDM 70.14±15.13 79.28±15.25
TS+EL 72.38±14.85 79.75±15.44
ACM+TS+SVM 77.82±12.23 82.67±15.33

HODA+LDA 53.51±15.32 80.88±16.78
PARAFACDA+LDA 54.34±15.62 81.18±17.01
BTTDA+LDA 55.13±15.22 80.60±16.71

Table 4.3: Classification score for cross-validated within-session evalua-
tion for HODA+LDA and our proposed decoders PARAFACDA+LDA and
BTTDA+LDA evaluated on 2 motor imagery datasets. Scores for other de-
coders were taken from Chevallier et al. [51]. Accuracy is listed for BNCI2014-
001, and ROC-AUC for BNCI2014-004. BTTDA outperforms HODA and
PARAFACDA for BNCI2014-001 but does not reach performance comparable
to the current state-of-the-art. For BNCI2014-004, PARAFACDA and BTTDA
perform approximately on par with HODA and the current state-of-the art.

of blocks, shown in fig. 4.4. Training and validation folds were taken from
the model selection procedure. Additionally, the Normalized Mean Squared
Error (NMSE) is reported for the reconstructed from the truncated BTTDA

decomposition X̂
(B)

=
∑B

b G(b) ×
{
U(b)

}
. NMSE is calculated as:

NMSE
(
X, X̂

(B)
)
=

∑N
n

∥∥∥X(n)−X(B)
rec (n)

∥∥∥
2

F∑N
n ∥X(n)∥

2
F

(4.21)

4.4 Discussion

4.4.1 Contribution

The results listed in table 4.2 and Table 4.3 show that, for the tested ERP
datasets, BTTDA+LDA and PARAFACDA+LDA reach state-of-the-art decod-
ing performance by exceeding all comparison methods for the two evaluated
datasets, but for MI datasets, results fall short of those of comparison methods.
Performance on the MI classification task could, however, be greatly influenced
by the exact tensorization method used, i.e., the time-frequency transform in
this case, which is not the main focus of this work.

Nevertheless, when considering the relative improvement over the original
HODA model, our results show that BTTDA+LDA performs consistently on par
or higher than HODA+LDA, with performances of respectively 86.43 > 83.25
and 85.08 > 82.57 for ERP datasets and 55.13 > 53.51 and 80.60 < 80.88
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Figure 4.4: Normalized Mean Square Error (NMSE) (left), and difference in
classification score for the training and validation for the ERP datasets (top row)
and the MI dataset (bottom row) of the greedy model selection procedure (right),
as a function of the number of BTTDA blocks b. While NMSE monotonically
decreases for the evaluated datasets, better class separation will be achieved,
but eventually overfitting occurs and validation and test scores will drop, or
plateau due to feature selection.

for MI datasets. The classification score obtained by BTTDA+LDA was also
slightly higher than that of the restricted PARAFACDA+LDA for the ERP
datasets (86.43 > 86.19 and 85.06 > 84.85 respectively) and one of the MI
datasets (55.13 > 54.34 and 80.60 < 80.88 respectively), but these results were
not significant, and further studies with more datasets and subjects should show
whether this holds. Figure 4.4 shows that there is added value in finding ex-
tra blocks over the first HODA block. While no proof is given, we notice that
NMSE monotonically decreases, indicating that since the training score keeps
increasing, this suggests that eventually all the variation in the signal will be
explained by the model while still extracting features that are maximally dis-
criminant. Eventually, the number of blocks will reach a point of diminishing
validation score returns, when adding extra features to the decision classifier
increases its risk of overfitting instead of adding extra useful discriminatory in-
formation. Together with the improved classification scores presented, these
results point to the potential of our more flexible model block-term or its spe-
cial PARAFAC-structured case over a Tucker-structured model given proper
block and rank selection. Since the optimal ranks for HODA+LDA were also
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Figure 4.5: BTTDA and PARAFACDA can find a sparser expression of the
discriminant information captured by the dense, Tucker-structured HODA algo-
rithm.

determined through cross-validation, BTTDA+LDA can improve over the first
HODA block. If validation shows that this is not possible, such as is the case for
BNCI2014-004, the BTTDA model is truncated to the first HODA block and
little performance is lost.

We assume the main benefit of BTTDA is that it can more easily discover
relevant features while being more parsimonious due to its block-term struc-
ture compared to HODA’s full Tucker structure, as illustrated by fig. 4.5. The
same discriminative information captured by a relatively large Tucker-structured
core tensor could be expressed more sparsely with a small number of block-
terms, while avoiding redundant features. The PARAFAC structure employed
in PARAFACDA is even more sparse, which could be a benefit or a drawback
depending on the amount of regularization required, or on the true underlying
structure of the data.

Alternatively, the enhanced performance could also stem from the modeled
data covariance. Since HODA estimates one within-class scatter matrix S−k,w ∈
R

Dk×Dk per mode, its overall model of the data scatter is determined by these
per-mode scatter matrices as a Kronecker product S−1,w⊗S−2,w⊗· · ·⊗S−K,w,
which corresponds to the assumption that the EEG data is drawn from a multi-
linear normal distribution [189]. However, it is known that the EEG covariance
cannot fully be expressed as a single Kronecker product, but rather is more
accurately modeled by a sum of multiple Kronecker products [27, 244]. Since
BTTDA iteratively fits HODA models to the residual error, it will be able to
express the full covariance structure given sufficient blocks.

Additionally, the forward modeling step inherent to BTTDA results in an
interpretable model since we can use the activation patterns or the forward
projection to inspect the neural patterns corresponding to the relevant discrimi-
natory information at each block [104]. Figure 4.6 shows the activation patterns
of two blocks obtained from the BNCI2014-008 dataset as well as the forward
projection of the difference between the averages of the mean latent tensor per
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Figure 4.6: Spatial (left two columns) and temporal (middle column) activation
patterns and condition contrasts (right column) obtained after forward projec-
tion of the latent features for 2 blocks of rank (2, 2) of BTTDA fit on the full
dataset BNCI2014-008. The separate blocks approximately model different ERP
components.

class (contrasts) after forward projection. While the weights of the backward
projection are uninterpretable [104], the activation patterns and contrasts after
forward projection clearly show that ERP components can be recognized and
separated into different BTTDA blocks. Given informed or correctly tuned hy-
perparameters, this method could be used to e.g., separate ERP components or
neural processes based on the task-related information in the class labels.

4.4.2 Model selection and dimensionality

BTTDA trades in the rigid HODA model for increased model complexity with
more hyperparameters to tune, which could open up a setting where perfor-
mance can be improved. This turns tensor discriminant analysis into a model
selection procedure instead of a projection optimization procedure. Despite fa-
vorable results in BCI decoding, the applications of the proposed BTTDA model
are limited mainly by this model selection approach used to determine the indi-
vidual block ranks. While our proposed greedy model selection algorithm is a
step in the right direction, the high computational cost of setting hyperparame-
ters through cross validation can still hinder the portability of decoders relying
on BTTDA.

Due to its heuristic nature, the greedy algorithm does not always result in the
set of ranks with the highest achievable performance. In combination with the
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fact that the feature selection cutoff parameter was fixed somewhat arbitrarily, it
is clear that thorough hyperparameter optimization could improve performance.
Furthermore, it is clear that our proposed model selection procedure does not
necessarily result in an optimal set of blocks that group coherent projections
within the same block, according to some desirable metric. Examples of this are
sparsity, pattern interpretability, minimal or maximal between- or within-block
feature correlation, decreasing discriminability, etc. Finally, the completeness
of the presented results is limited by the artificial restriction in hyperparameter
choice. We imposed (r1 = r2 = . . . = rk) to reduce the computational demand
of the performed experiments. In a sense, this goes against the proposition of
increased model flexibility. It might well be that BTTDA in some cases offers
little added value over the Tucker-structured HODA, when both are given free
choice of rank. Future efforts should focus on automatic parameter setting, e.g.,
using sparsity or information criteria such as the ones used in Block-Term Tensor
Regression [68] or other statistical measures based on the model’s application.

Another limitation is that BTTDA might yield a disproportionate improve-
ment for datasets with a low number of features relative to sample size, while
being less effective for datasets with more features. This is reflected in our ERP
results (low dimensionality vs. high number of trials) compared to the MI re-
sults (higher dimensionality due to third-order tensorization vs. lower number
of trials). We expect a dimensionality limit beyond which the forward modeling
step cannot accurately regress from the low-dimensional latent tensors to the
high- dimensional original tensors, introducing error in the input data for the
next block, which can stack up over blocks. Since the forward multilinear least
squares problem is underdetermined, it is prone to numerical instability, which
calls for regularization of the forward modeling procedure, but this would intro-
duce another hyperparameter. It should also be thoroughly investigated what
the impact is of going beyond second- and third-order cases to higher-order
tensors, since this could have a large impact on the model. Other tensoriza-
tion methods of the EEG data, like time-lagged Hankel tensors [200], or tensors
across subjects or sliding windows, etc., could also be of interest if they are
appropriately chosen based on prior knowledge of the dataset.

4.5 Conclusion

We have introduced Block-Term Tensor Discriminant Analysis (BTTDA), a
novel, tensor-based, supervised dimensionality reduction technique optimized
for class discriminability, which adheres to the block-term tensor structure.
BTTDA is a generalization of Higher Order Discriminant Analysis (HODA) and
can also be applied as a special sum-of-rank-one tensors PARAFACDA model.
The model is obtained by iteratively fitting HODA in a deflation scheme, lever-
aging a novel forward modeling step.

Via an accompanying heuristic model selection procedure, BCI decoders
using BTTDA feature extraction can significantly outperform decoders based
on HODA and reach state-of-the-art decoding performance on event-related
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potential problems (second-order tensors) and scores on par with or higher than
HODA in motor imagery problems (third-order tensors). Moving from the rigid
Tucker tensor structure of HODA to the more flexible block-term structure shifts
the problem from finding optimally constrained multilinear projections to model
and feature selection.

Introducing a flexible block-term tensor model as the underlying structure
reformulates tensor discriminant analysis as a model selection problem. This
allows performance to be traded off for model complexity and the number of
features, to find a setting that is more effective for decoding. Because of its
general implementation and minimal assumptions on data structure, BTTDA
can equally be applied to classification for other neuroimaging modalities (MEG,
ECoG, fNIRS, fMRI, EMG, ...) or to tensor classification problems in other
fields.
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Chapter 5

ERP latency estimation and

alignment

Brom in Eragon – Christopher Paolini Section 5.2.3, sections 5.3.1 to 5.3.3
(including figs. 5.2 and 5.3), and the third-to-last paragraph of section 5.5 were
published as part of Van Den Kerchove et al. [272].

5.1 Introduction

Electroencephalography (EEG)-based visual oddball brain-computer interfaces
(BCIs) establish communication with paralyzed individuals by decoding ERPs
obtained from time-modulated flashing stimuli (see fig. 1.1). These ERPs con-
sist of multiple ERP-components, peaks and troughs in ERP waveform (see
fig. 1.4d). These components each have their own distinct amplitude and la-
tency. ERP component latency can reflect a wide range of cognitive, neuro-
physiological, and clinical properties, that can be confounding factors in the
development of BCIs [157]. Latency is often assessed as the timing of an ERP
co, **kwargsmponent peak, obtained after averaging over trials. Latencies of
non-averaged, single-trial ERPs should capture even more relevant information,
yet they are very hard to measure due to the low signal-to-noise ratio (SNR)
of single-trial ERPs. Within-session variability of ERP latency, called ERP
latency jitter, has been shown to influence BCI accuracy [256]. This effect is es-
pecially prominent when bringing BCI development from the lab to the clinical
setting. For instance, Zisk et al. [318] showed that ERP jitter was significantly
higher in 6 Amyotrophic Lateral Sclerosis (ALS) patients (1350 ms2) compared
to neurotypical controls (553 ms2). Aricò et al. [12] showed that P3 latency
jitter negatively correlated (ρ = 0.17) with BCI accuracy in a covert GeoSpell
interface. Here the user does not gaze directly at the targets, such as is the
case for individuals with severe speech, physical and gaze impairment (SSPGI).
Therefore, properly accounting for ERP latency jitter can contribute to the
development of gaze-independent visual BCIs.
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Figure 5.1: The smearing effect. When obtaining an ERP template through
averaging, high jitter causes a decrease in peak amplitude and a deformation of
the shape of the waveform.

5.1.1 Neural origins of ERP latency jitter

While the classic ERP model assumes a constant ERP response over trials, re-
search has shown that cortical evoked potentials show significant trial-to-trial
jitter [267]. Experiments show that latency jitter in ERPs is the result of the
interaction of the evoked activity with ongoing dynamics in the brain [102, 131,
53, 13]. According to the Firefly model of event-related activity [39], the latency
of an evoked potential results from a combination of the modulation of oscillat-
ing activity that is time-locked, but not necessarily phase-locked to stimulus
onset, and a delay caused by ongoing neurophysiological processes that are not
necessarily related to the task [249, 176]. If these processes are related to the
BCI task at hand, such as attention and visual processing, jitter could have a
significant impact on ERP decoding.

5.1.2 Implications for ERP analysis

The presence of latency jitter introduces multiple issues to ERP analysis, the
most prominent of which is the smearing effect, as illustrated in fig. 5.1. In ERP
analysis, single-trial ERPs are usually averaged per condition to cope with the
unfavorable SNR. When averaging over multiple identical responses with jittered
latencies, the shape and amplitude of the average do not reflect the properties
of the original signal. Because the amplitude of the average is lower, the SNR
will also be negatively impacted. More generally, the smearing effect leads to
difficulties interpreting ERP results and making inferences about amplitude or
latency effects because these are entangled when using averaging [157].

The smearing effect equally impacts the SNR of information captured by a
classifier’s parameters when training with a procedure that does not account
for this jitter, and thus also affects its performance [256]. As an illustrative
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example, think of an linear discriminant analysis (LDA) ERP classifier that uses
class averages over ERP epochs to construct its between-class scatter matrix.
These per-class averages will be affected by the smearing effect and will be less
effective templates for ERP retrieval. Similarly, the noise model in LDA assumes
stationarity and subtracts the class-wise averages from the signal to calculate
the within-class scatter matrix, which will then also be affected. Hence, effective
latency estimation and jitter compensation can contribute to higher decoding
performance.

5.1.3 Benefits of latency estimation

As we will see later, a common approach to counteract the smearing effect is
to correct single-trial ERPs for jitter before averaging. This can be done by
estimating the latency of each single-trial ERP and aligning them before av-
eraging. Latency estimation has multiple advantages: (1) Latency-based ERP
alignment can help reveal the true shape and properties like peak amplitude and
latency of ERPs across experimental conditions. These are variables of interest
for testing electrophysiological and behavioral hypotheses. Additionally, latency
estimation allows for the extraction of other descriptors from a set of single-trial
ERPs, like amplitude or latency variance [116], which can also be of interest as
studied variables. For instance, in the work of Saville et al. [231], the inter-trial
latency variability itself is determined as a correlate of working memory perfor-
mance. (2) Counteracting the smearing effect will boost the signal-to-noise ratio
of averaged ERPs by increasing the amplitude of the ERP signal. This in turn
can reveal smaller or more jittered ERP components which would otherwise
be obscured or blurred due to desynchronization. These deblurred templates
can then be used for analysis of the ERP waveform, or as templates of the sig-
nal of interest in BCIs [12]. (3) Finally, the introduction of latency estimation
and alignment generally improves BCI classification performance. Single-trial
latencies can be used as features to improve classification [100]. Furthermore,
compensating for inter-trial differences, especially when extended to inter-ses-
sion or inter-subject differences, can aid in transfer learning or generalization
across subjects and protocols [119].

5.2 Literature

5.2.1 Single-component approaches

The simplest method to estimate single-trial latency is peak picking. Here, the
latency of an ERP is determined as the time-point of its maximum (or mini-
mum) amplitude relative to stimulus onset. While straightforward, this method
does not perform well in low SNR conditions, unless combined with filtering.
Filtering can suppress the noise contaminating EEG trials, lowering the risk of
picking a noise peak instead of a true peak of the ERP. Several filtering ap-
proaches have been developed to be used in conjunction with peak-picking, in
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the time domain [43, 163, 128, 188, 246, 83, 54] and in the time-frequency do-
main [219, 284, 111]. The aforementioned analysis and performance prediction
method proposed by Aricò et al. [12] estimates the single-trial P3 latencies of
attended epochs by P3 peak-picking after filtering in the time-frequency domain
and corrects for jitter by temporally aligning all target epochs to the average
latency, i.e., by shifting the epochs in time such that the P3 peaks all fall at the
same time instance. Filtering can also be done in the spatial domain. The spa-
tial filter can be constructed using principal component analysis (PCA) [196],
independent component analysis (ICA) [262, 124, 168], or as a spatial LCMV
beamformer [265].

Template matching is generally preferred to peak picking. The algorithm
proposed by Woody [301] in 1976 is a simple and elegant latency estimation
method that is still being used and is even considered among the more perfor-
mant techniques for ERPs [258, 196]. It starts with an average ERP as a rough
estimation of the aligned template ERP, and iteratively refines this template by
determining at each step the time point of maximum cross-correlation of this
template with all single-trial ERPs and aligning them on these time points to
form the next template. Similarly, cross-correlation template matching can be
combined with filtering. Souloumiac and Rivet [245] use the XDAWN technique
to construct a spatial filter before template matching the spatially filtered signal.
Iturrate et al. [119] uses a spatiotemporal filter. Instead of aligning the latencies
to obtain the template for the next iteration, weighted averaging can also be
used [82].

Despite good performance, the iterative scheme of Woody’s algorithm has
a risk of converging to a local optimum. To avoid this, a fitness function can
be defined to jointly optimize the set of single-trial ERP latencies, which can
be optimized with a genetic algorithm [207]. Alternative methods are based
on graph optimization [62], hidden process models [130], or by fitting an ERP
model with maximum likelihood estimation [90, 268, 170, 218].

5.2.2 Multi-component approaches

In the previous section, we have abstracted away the fact that ERPs are multi-
component signals, which is not taken into account by the aforementioned meth-
ods. Multiple components can be time-locked to different events or neurophys-
iological processes and therefore are not necessarily time-locked to each other.
They each can have different latency variabilities. The presence of more than one
component can hamper the performance of some latency estimation algorithms,
and it is often only possible to extract the latencies of the largest component
present [196]. When aligning trials to one component and averaging, this will
introduce blurring in the other components [193].

Most of the algorithms above can be adapted to work on multiple ERP
components by carefully selecting peaks or pre-determined regions of interest.
Hardiansyah, Pergher, and Van Hulle [100] use an SNR boosting method, ap-
plied to a specific time-window for each ERP component to extract a latency
per component. Methods based on spatial decomposition filters like PCA, ICA,
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or XDAWN can be leveraged to utilize multiple of their components as filters,
resulting in multiple time series where peak picking or Woody’s algorithm can
be applied. In general, however, these algorithms lack an integrated approach
to deal with multiple ERP components. A clear evaluation of the performance
of these methods in multi-component settings is lacking.

Some algorithms separate components into (sets of) stimulus- and response-
locked component clusters based on their latency distributions [124, 251, 315,
309]. These algorithms do, however, require a response button trigger signal
as input to determine the response time, which is not always present or ap-
plicable in an ERP experiment, especially in the case of BCIs. The RIDE
algorithm [197, 195, 281, 194, 193] is able to do this without entirely relying
on the response time and can separate stimulus-locked, response-locked, and
multiple central component clusters. Others, like spatial filtering methods that
use decomposition methods to determine the spatial filter, can be modified to
separate components [196].

Finally, the smearing problem can also be overcome by algorithms that are
not based on ERP component latency estimation but use time-warping-based
methods to enhance the shape of the averaged template ERP, like Dynamic
Time Warping [94, 282, 319], Correlation-Optimized Warping [241], or Fast
Variational Alignment [76]. These methods work fundamentally differently from
the latency estimation methods, and cannot directly be used to extract latency
features.

5.2.3 Contribution

Most of these methods suffer from a common drawback: they cannot be used in
a decoding scheme to improve performance for incoming epochs with unknown
class labels that contain either a target or non-target ERP response. They
can be used offline on a set of labeled epochs for testing hypotheses concerning
latency and jitter, for aligning templates, or for BCI performance prediction,
but not for ERP classification. While some of the aforementioned methods
could be adapted to perform classification tasks, few studies investigate how
to exploit this latency estimation for jitter-resistant decoding. Hardiansyah,
Pergher, and Van Hulle [100] incorporated single-trial latencies in classification
by peak-picking within a given ERP time window, unaware of the class of the
epoch under investigation. The Classifier-based Latency Estimation (CBLE)
algorithm by Thompson, Warschausky, and Huggins [256] also explicitly applies
latency estimation in a decoding setting. Thompson, Warschausky, and Huggins
[256] initially formulated CBLE as an offline performance prediction method.
Later, its output was successfully adapted to compensate for jitter to improve
decoder performance [177, 317].

Time-series classification algorithms [1] that are robust to jitter can be used
in a decoding setting, but, in general, have scarcely been applied to ERP de-
coding. Data augmentation involving jittering the training data [133, 317] and
Riemannian Geometry methods using spatial covariances as features [16] have
both been shown to perform well in the presence of ERP jitter. In this work, we
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opted to apply CBLE because it has successfully been applied to classify jittered
ERP. We adapt the CBLE to an iterative method akin to Woody’s scheme that
can better compensate for jitter, to improve covert VSA decoding performance.

5.3 Materials & methods

5.3.1 Classifier-based Latency Estimation

Consider a training set of N EEG epochs with C channels of S samples {Xtrain
n ∈

R
C×S}Nn=1 This dataset has a corresponding set of training labels ltrain ∈
{target, non-target}Nn=1, and a similar testing set of M epochs {Xtest

m ∈ R
C×S}Mm=1.

We assume that the sampling period is T , i.e., that the sample with index s is
sampled at time sT . In the following, we use the matrix slicing notation to de-
note row or column intervals extracted from a matrix. For instance, X[:, s1 : s2]
denotes all columns of X with indices between s1 (included) and s2 (excluded).

CBLE, summarized in section 5.A, works by training a first-stage classifier
C(θ, f) defined within a time period [s1 : s2] with a set of parameters θ and a
decision function f(X[:, s1 : s2], θ) → y outputting a classification score y ∈ R

for a given epoch X, such that

θ = trainC({X
train
n [:, s1 : s2]}

N
n=1, l

train) (5.1)

Then, f can be applied to all (possibly overlapping) slices of length s2 − s1 of
an epoch X, resulting in a vector of score values y = [y1 . . . yR]

T ∈ R
R such

that
ys = f(X[:, s : s+ (s2 − s1)], θ) ∀s ∈ 1, . . . ,R (5.2)

with R = S − (s2 − s1). To leverage CBLE for ERP classification, the score
vectors y can be arranged in matrices Ytrain ∈ R

N×R and Ytest ∈ R
M×R.

These can be further classified by training a second-stage classifier on Ytrain and
class labels ltrain. However, the resulting score-over-time vectors per epoch still
suffer from jitter. For classification, we follow the approach of Mowla, Huggins,
and Thompson [177], using a maximum-level hierarchical Daubechies-4 wavelet
transform to reduce dimensionality before classification with the second-stage
classifier. In the CBLE-decoder, it is this wavelet transform that decreases the
sensitivity to latency differences, actively compensating for ERP latency jitter.

When using a simple spatiotemporal linear classifier as first-stage classifier,
CBLE is equivalent to the first iteration of Woody’s algorithm with the spa-
tiotemporal classifier weights as template. Thompson, Warschausky, and Hug-
gins [256], Mowla, Huggins, and Thompson [177], and Mowla et al. [178] show
that CBLE is relatively independent of the first-stage classifier for BCI accuracy
prediction and for ERP classification. Therefore, we opt to use the variant of
Linear Discriminant Analysis with block-Toeplitz regularized covariance matrix
(tLDA) proposed by Sosulski and Tangermann [244], as the first-stage classifier
and logistic regression as second stage.
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5.3.2 Robust latency features

The ERP decoding method based on CBLE introduced by Mowla, Huggins,
and Thompson [177] does not make use of the extracted latencies, only pass-
ing score matrix Y on to the second-stage classifier. Furthermore, previous
CBLE works [256, 178] only used these latencies to correlate them with neu-
rophysiological processes or to predict decoder performance. We noticed that,
while CBLE performance was unaffected, the classification performance of our
proposed method can be improved if the estimated latencies are also made avail-
able as features to the second-stage classifier, after a square transform for linear
separability [256].

However, including these latency features gives rise to the following issue
when classifying unseen data. The CBLE latency estimate is defined only for
target epochs as starget = argmaxs ys. This is the point in time where the target
class reaches the largest separation from the background noise and non-target
class, indicating the target ERP is most likely to occur here. However, in a
classifier test phase, it is not known a priori whether an unseen epoch is a
target or a non-target epoch. This problem is solved by defining an estimated
latency per class starget and snon−target for every epoch, regardless of its actual
class. The estimated class latencies can then be used as features for training
and testing the second-stage classifier. This way, the latencies of the testing
data can be presented to the second-stage classifier without knowledge of the
testing data class labels, making them useful in decoding.

In a similar manner to the target latency, the non-target latency could be
defined as snon−target = argmin

s
ys. However, this is problematic since it is not

evident how to estimate the latency of, e.g., a P3 ERP component for a non-
target epoch, since the non-target class is characterized by the absence of this
component. 1. In fact, y can have multiple local minima or entirely lack distinct
peaks for non-targets, rendering the minimum estimate meaningless.

Instead, we opt for a more robust, probabilistic definition of class latencies.
This robust estimation method yields latencies that (1) are more meaningful as
input for the second-stage classifier, and (2) lead to smoother convergence in
our proposed iterative alignment scheme for Classifier-based Latency Estimation
with Woody iterations (WCBLE), which heavily relies on exact latency estima-
tion. Assume classifier C(θ, f , Pr) now can also output a probability per class
Pr(l|X[:, s1 : s2)], θ) for a given epoch X, a feature of many common classifiers.
Analogous to equation 5.2, we can now write

Pr(X, θ, l, s) =
1

R
Pr(X[:, s : s+ (s2 − s1)], θ, l) ∀s ∈ 1, . . . ,R (5.3)

The latency features assuming the epoch belongs to a given class given by
l ∈ {target, non-target} are then defined as the median of the corresponding

1Depending on the stimulation and experimental design, ERP components can be present
in one experimental condition or class and missing in another, or appear in multiple classes
at different amplitudes. In the latter case, it could be possible to estimate the latency of an
ERP in the conditions where it appears, but if its amplitude is lower or negligible in some
conditions, latency estimates will be less accurate, hence this case is still problematic.
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distributions
sl = median [Pr(s|X, θ, l)] (5.4)

Note that Pr(s|X, θ, non-target) = 1 − Pr(s|X, θ, target). The median of the
probability distribution over time is more robust to outliers and noise than the
maximum or minimum score. For the non-target case, the median approach
tends towards the center of a near-uniform distribution, resulting in a more
consistent latency estimate over trials as compared to the minimum approach.

5.3.3 Classifier-based Latency Estimation with Woody it-

erations

To improve performance over CBLE, we propose WCBLE a new algorithm in-
spired both by CBLE and the aforementioned Woody iteration scheme. Instead
of using CBLE to estimate the features of a second-stage classifier directly,
CBLE latency estimation is used as a step in a Woody iteration scheme. While
the Woody algorithm iteratively enhances the SNR of an ERP template to cross-
correlate with the data, WCBLE iteratively re-estimates the parameters of the
first-stage classifier. To improve convergence and perform well in a classifica-
tion setting, WCBLE aligns both targets and non-targets to their corresponding
estimated latencies.

The WCBLE algorithm is presented in section 5.B. Its training phase is vi-
sualized in fig. 5.2. The initial training epochs {X(1)

n }
N
n=1 are set to {Xtrain

n }Nn=1.
At every iteration, classifier C is trained like in CBLE:

θ(i) = trainC({X
(i−1)
n [:, s1 : s2]}

N
n=1, l

train) (5.5)

Next, latency s
(i)
ln

is determined for every epoch X(i) corresponding to its class

label ln using eq. (5.4). Finally, the training epochs X(i+1) for the next itera-

tion are determined by aligning each original training epoch to the latency s
(i)
ln

corresponding to its respective class label.

X(i+1)
n = align(Xtrain

n , s
(i)
ln
) ∀n = 1, . . . ,N (5.6)

Aligning is performed by shifting and zero-padding the signal to the right if
the latency is negative relative to the time window onset, and to the left if
positive, by the difference between the latency and the window onset. The
process halts after a fixed number of iterations or when the estimated set of
latencies has been encountered before, indicating it ended up in a loop. In the
end, the procedure should result in enhanced classifier parameters θ∗, closer
to those when there would be no jitter between epochs. Note that using the
median approach for robust latency estimation results in a smoother yet longer
convergence process compared to the maximum/minimum approach. We can
then apply the classifier with enhanced parameters θ∗ in a CBLE manner to
unseen epochs as illustrated in fig. 5.3 to obtain a vector of scores over time as
in section 5.3.1 and the estimated latencies as in section 5.3.2.
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Figure 5.2: The Classifier-based Latency Estimation with Woody iterations
(WCBLE) training phase. (1) The first-stage classifier is trained on a set of
epochs. (2) It is then applied to time-shifted copies of the epochs, yielding
scores and class probabilities over time. (3) The medians of the probability
distributions are assumed as the class latencies. (4) The epochs are aligned by
shifting in time based on their corresponding class latencies by shifting in time.
(5) The spatiotemporal classifier is then retrained on the aligned epochs for the
next iteration. (6) On convergence, the scores and latencies obtained from the
last iteration are used to train the second-stage classifier.
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Figure 5.3: The Classifier-based Latency Estimation with Woody iterations
(WCBLE) test phase. (1) The first-stage classifier obtained from the training
phase is applied to time-shifted copies of the epochs, yielding scores and class
probabilities over time. (2) The medians of these probability distributions are
assumed as the new class latencies. (3) The scores and class latencies are input
to the trained second-stage classifier, which predicts the label of the epochs.



5.3.4 Synthetic data generation

Since it is hard to obtain ground truth measures of ERP latencies, we first
evaluate our approach with synthetic data. In chapter 6, the proposed algorithm
will be applied to real EEG data.

To verify our approach, we simulated synthetic 16 channel EEG data with
standard 10-20 electrode positions using the simulate_evoked method of the
MNE (version 1.8) [88] software package. ERPs were generated by projecting a
sine wave pulse source time course in a dipole in the left hemisphere to the scalp
electrodes using a boundary element method forward model [174] and MNE’s
fsaverage source space and anatomy. Pink temporal noise is generated by
passing Gaussian noise through an infinite impulse response filter with transfer

function
B(z)

A(z)
=

1

1− 1z−1 + 0.15z−2
. Pink spatial noise is also added, using a

noise covariance matrix constructed from the cosine distances between electrode
positions and scaling it by the inverse of the resulting spatial covariance. We
refer to Gramfort et al. [89] for implementation details.

The source time course is defined by the following function:

s(t, l) =




a sin (2πf (t− l)) if l −

1

2f
< t < l +

1

2f
0 otherwise

(5.7)

over time t, with latency l, amplitude a = 1× 10−7V, and frequency f = 4.
100 target epochs containing the evoked potential and noise and 100 non-

target epochs containing only noise were simulated. The target epochs were
jittered by setting the latency offset l of each target epoch to a random latency
drawn from a normal distribution with 0 mean and standard deviations of re-
spectively σ = 0.1, 0.2, 0.3s. The noise was scaled at 32 different noise levels,
with the SNR of a target epoch ranging from 0 to -31 dB, with

SNR = 10 log10
Var [s(t, 0)]

Var (noise)
(5.8)

A sample of the simulated evoked data is displayed in fig. 5.4.

5.4 Results

5.4.1 Latency estimation

We compared our proposed WCBLE algorithm to CBLE on a latency estimation
task using the Pearson correlation coefficient ρ at different jitter and SNR lev-
els. For both CBLE and WCBLE, target latencies were extracted in a 10-fold
cross-validation scheme using the robust median latency method after fitting
the model. WCBLE’s maximum iteration number was set to 64. Results are
presented in fig. 5.5. A 95% confidence interval on each measure was obtained
through bootstrapping with 1000 permutations.
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Figure 5.4: Simulated target (bottom half of epochs) and non-target (top half of
epochs) evoked data and their average (red: target, yellow: non-target, shaded
area: standard deviation). Targets contain a sine wave pulse, jittered by σ. 32
EEG channels with varying levels of noise were simulated using a forward model,
channel C3 is plotted here.
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Figure 5.5: Correctness of estimated latency for varying jitter (σ) and SNR
introduced in synthetic evoked target data, measured as Pearson correlation
coefficient ρ between estimated and ground truth latencies. WCBLE estimates
latencies more accurately in the presence of noise and high jitter.

As the SNR decreases, both CBLE and WCBLE can accurately estimate
evoked potential latencies up to a given threshold. After this threshold, correla-
tion between estimated and ground-truth latencies will start decreasing. How-
ever, we notice that this threshold occurs later for WCBLE than for CBLE
for all evaluated jitter levels, indicating that WCBLE is more robust in the
presence of pink spatiotemporal noise. At around -28 dB, WCBLE does not
significantly outperform CBLE anymore, and both methods get overtaken by
the strong presence of noise.

5.4.2 Classification

Analogous to the previous experiment, 10-fold cross-validated classification ac-
curacy between target and non-target epochs was assessed. Here, WCBLE was
compared to CBLE, but both also to their base classifier block-Toeplitz linear
discriminant analysis (tLDA). CBLE and WCBLE classifiers were implemented
as described in section 5.3, with both the wavelet-transformed score time series
and square-transformed latencies as input to a second-stage logistic regression
classifier with L2-norm regularization (C = 0.2).

Figure 5.6 shows that the classification accuracy of all three methods de-
creases with σ and SNR, yet WCBLE outperforms both CBLE outperforms
tLDA since its performance declines less steeply. This difference is particularly
large when σ is higher (σ = 0.2 and σ = 0.3 s) and SNR is not yet high, with
accuracies of respectively 77.50% for WCBLE, 17.00% for CBLE and 9.50% for
tLDA when σ = 0.3 and SNR = -23 dB. WCBLE always scored better than
CBLE and tLDA, except for σ = 0.1 and SNR < 27dB, at which point both
CBLE and WCBLE performed below the chance level of 50%.
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Figure 5.6: Decoding performance, measured as binary classification accuracy,
for CBLE, WCBLE, and their first stage classifier tLDA for varying introduced
jitter (σ) and SNR in synthetic evoked target and non-target data. WCBLE
decoding performance is robust to more noise and jitter than the other methods.

5.5 Discussion & conclusion

In this work, we introduced a new ERP latency estimation and decoding method
that applies a spatiotemporal classification iteratively along the time dimension
of the data, refining the dataset at each iteration by aligning trials. The al-
gorithm combines Classifier-based Latency Estimation (CBLE) with Woody’s
template matching iteration scheme and is therefore named Classifier-based La-
tency Estimation with Woody iterations (WCBLE). Our method attempts to
model the spatial and temporal activation of each ERP component, as well as
its latency distribution. Through the first-stage classifier, it takes into account
the spatial and temporal structure of EEG background noise and the trials from
the classes to discriminate.

The key finding of the simulation study presented in section 5.4 is that
WCBLE is robust to higher evoked potential jitter and lower SNR than CBLE.
It could therefore be a better candidate to apply in ERP analysis and decoding in
those cases where jittered ERP data is of interest. At a certain noise threshold (-
27 dB for σ = 0.1 s, -26 dB for σ = 0.2 s and -23 dB for σ = 0.3 s), both methods
begin to fail, but WCBLE delivers higher accuracy (> 75%) at intermediate
SNR levels than CBLE, likely due to the iterative alignment process.

In general, noise beyond a certain level will overwhelm both CBLE and
WCBLE performance, making it impossible to accurately estimate latencies or
perform meaningful classification. When latencies cannot be properly estimated,
aligning epochs using WCBLE does not help to improve classification.

As shown, the proposed method is suitable for BCI decoding settings as
well as single-trial ERP latency analyses. In the case where there is only one
data class present, the first-stage classifier can be replaced by a spatiotemporal
filter. Instead of outputting a classification score, this filter should now output
a metric representing the presence of a template response in the signal. A
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suitable candidate is the spatiotemporal linearily constrained minimum-variance
(LCMV)-beamformer [274], described in chapter 3. The activation pattern can
be set to the average of the set of trials to analyze, and it can be refined at each
WCBLE iteration by taking the average of aligned trials.

Finally, we argue that tLDA is a suitable first-stage classifier. Firstly, impos-
ing a Toeplitz-covariance structure strongly regularizes the problem [244, 271],
benefiting decoding performance. Secondly, this method has a synergy with
CBLE since both make the same assumption about the short-time stationarity
of the EEG background noise within an epoch. CBLE does not retrain the
first-stage classifier for each time shift but rather trains it once within the given
window. After training, the classifier parameters represent some information
about the expected ERP waveform and background noise. By applying the
trained classifier to different time shifts, it assumes this ERP waveform can
be shifted in time, but since the classifier’s information about the background
noise was only obtained from the initial window, CBLE assumes its properties
do not vary throughout the epoch. The block-Toeplitz covariance structure of
tLDA also assumes that the background noise represented by this covariance
after subtracting the class averages is stationary within the epoch [244].

The main limitation of the proposed method is its lack of capacity to handle
multi-component ERP data. In real ERP analysis settings, multiple components
are usually present, and each component has a distinct contribution to class
discriminability and latency distribution. A single-component method will yield
issues in interpretability and convergence in the presence of other components,
as it can ‘lock-on’ to a given component cluster and flatten out the others. This
can be avoided, however, by the choice of a proper region of interest isolating
solely the component of interest. Current work focuses on extending WCBLE
to a multi-component setting, on the one hand to improve latency estimation
and decoding performance on real ERP data, and on the other hand to apply it
as an ERP component separation method in the fashion of Ouyang et al. [196].

The proposed implementation theoretically supports processing multi-class
data, but the convergence and correctness of the WCBLE solution is yet to be
properly studied for this case.
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5.A CBLE algorithm

Algorithm 5 CBLE
Train

Input: {Xtrain
n }Nn=1, l

train, C(·, f , Pr), s1, s2
1: θ ← trainC({X

train
n [:, s1 : s2]}

N
n=1, l

train) ▷ Train stage 1
2: for n = 1 . . . N do ▷ Feature extraction for stage 2
3: for s = 1 . . . R do
4: ytrainn,s ← f(Xtrain

n [:, s : s+ (s2 − s1)], θ)
5: end for
6: strainn,target ← median

[
Pr(s|Xtrain

n , θ, target)
]

7: strainn,non−target ← median
[
Pr(s|Xtrain

n , θ, non-target)
]

8: end for

Output: θ,Ytrain, straintarget, s
train
non−target

Evaluate

Input: {Xtest
m }Nm=1, C(θ, f , Pr), s1, s2

1: for m = 1 . . .M do ▷ Feature extraction for stage 2
2: for s = 1 . . . R do
3: ytestm,s ← f(Xtest

n [:, s : s+ (s2 − s1)], θ)
4: end for
5: stestm,target ← median

[
Pr(s|Xtest

m , θ, target)
]

6: stestm,non−target ← median
[
Pr(s|Xtest

m , θ, non-target)
]

7: end for

Output: Ytest, stesttarget, s
test
non−target
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5.B WCBLE algorithm

Algorithm 6 WCBLE
Train

Input: {Xtrain
n }Nn=1, l

train, C(·, f , Pr), s1, s2

1: X
′

n ← X
train
n ∀ n = 1 . . . N ▷ Train stage 1

2: repeat
3: θ

∗ ← trainC({X
′

n[:, s1 : s2]}
N−1
0 , ltrain)

4: for n = 1 . . . N do
5: sn ← median

[

Pr(s|X′

n, θ
∗, ln)

]

6: X
′

n ← align(Xtrain
n , s∗n)

7: end for
8: until convergence or maximum iterations reached
9: for n = 1 . . . N do ▷ Feature extraction for stage 2

10: for s = 1 . . . R do
11: y

train
n,s ← f(Xtrain

n [:, s : s+ (s2 − s1)], θ
∗)

12: end for
13: s

train
n,target ← median

[

Pr(s|Xtrain
n , θ∗, target)

]

14: s
train
n,non−target ← median

[

Pr(s|Xtrain
n , θ∗, non-target)

]

15: end for

Output: θ
∗,Ytrain, straintarget, s

train
non−target

Evaluate

Input: {Xtest
m }Nm=1, C(θ

∗, f , Pr), s1, s2

1: for m = 1 . . .M do ▷ Feature extraction for stage 2
2: for s = 1 . . . R do
3: y

test
m,s ← f(Xtest

n [:, s : s+ (s2 − s1)], θ
∗)

4: end for
5: s

test
m,target ← median

[

Pr(s|Xtest
m , θ∗, target)

]

6: s
test
m,non−target ← median

[

Pr(s|Xtest
m , θ∗, non-target)

]

7: end for

Output: Y
test, stesttarget, s

test
non−target
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Chapter 6

Compensating ERP jitter

for gaze-independence

Sherlock Holmes in
A Scandal in Bohemia – Arthur C. Doyle This chapter was published as part
of Van Den Kerchove et al. [272].

6.1 Introduction

The decoding methods described in chapter 3 and chapter 4 are general attempts
at increasing ERP decoding accuracy. Given the problem statement of this work,
we are also interested in targeted methods that would specifically advance the
development of gaze-independent visual brain-computer interfaces (BCIs) (see
section 2.2). Methods that directly enhance gaze-independent decoding through
optimizing decoder design have not been widely studied (see section 2.2.3). We
assume that advances in gaze-independent decoding can be made if properties
of covert visuospatial attention (VSA) that affect performance can be identified
and accounted for. The latency estimation and alignment approach proposed
in chapter 5 was specifically designed for this purpose.

Aricò et al. [12] observed higher variability in single-trial P3 peak latencies
relative to stimulus onset during covert VSA (529 ms2) compared to overt VSA
(2562 ms). This latency variability contributes to reduced covert VSA decod-
ing performance. While they proposed an analysis and performance prediction
method, they did not provide a decoding solution. They suggested that compen-
sating for latency jitter could enhance covert VSA decoding, but did not verify
this hypothesis directly. Additionally, Hardiansyah, Pergher, and Van Hulle
[100] developed a classifier for covert VSA ERPs, exploiting single-trial latency
features in combination with amplitude features for classification with a support
vector machine. They demonstrated the positive influence of single-trial ERP
component latency features on covert VSA inference, yet did not attempt to
correct the amplitude features for these latencies.
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Furthermore, as mentioned in section 2.2.2 and section 2.4.2, our goal is
also to explore more flexible gaze-independent settings than the usual covert
VSA with central gaze fixation reported in most literature. Frenzel, Neubert,
and Bandt [78] introduced a similar protocol to the proposed split VSA setting
(see fig. 2.2d). They showed that it is possible to perform split VSA and that,
in this case, visuospatial attention and gaze direction can be decoded separately
using classical ERP techniques. To the best of our knowledge, this is the sole
study that investigated split attention in ERP-based BCIs. However, Frenzel,
Neubert, and Bandt [78] considered their interface only for the case where the
user actively intends to select both targets determined by the gaze and the VSA.
In the split VSA setting considered in our work, we instruct the participant to
ignore the distractor and only attend to the cued target, as we are interested in
decoding the visuospatial attention only.

6.2 Materials & methods

6.2.1 Data collection

We evaluate our approach on a dataset specifically recorded for this study, de-
signed to probe different modalities of covert VSA, and on the publicly available
BNCI2014-009 dataset [9].

CVSA-ERP dataset

We recorded a dataset to validate our approach. The Covert Visuospatial Atten-
tion ERP (CVSA-ERP) dataset consists of 15 participants, mean age 26.34±3.04
years. This study was approved by the Ethics Commission of University Hospi-
tal Leuven (S62547). Each subject performed different VSA conditions (overt,
covert, and split), illustrated in Figure 6.1 (top row). Using a hexagonal layout
interface, similar to the visual Hex-o-Spell proposed by Treder and Blankertz
[264], we presented six flashing targets (without letters or symbols) to the partic-
ipant while the electroencephalography (EEG), electrooculogram (EOG), and
the participant’s eye gaze using eye tracking were recorded. The VSA conditions
described in the first row of Figure 6.1 are considered.

In contrast to the protocol proposed by Frenzel, Neubert, and Bandt [78],
split VSA was performed by instructing the participant to attend to the intensifi-
cations of the cued target and ignore the intensifications of the distractor target.
Since we assume there will be an effect depending on the distance between the
attended target and the distractor, we discern three split VSA sub-conditions:
the distractor is either clockwise or counterclockwise directly next to the at-
tended target (d = 1), there is one other target between the attended target
and the distractor (d = 2), or the distractor is opposite the intended target
(d = 3).

EEG for the CVSA-ERP dataset was recorded using a SynAmps RT am-
plifier (Compumedics Neuroscan, Australia) at 2048 Hz and 62 Ag/AgCl ac-
tive electrodes arranged in the international 10-10 layout fitted to a standard
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d=1

d=2

d=3

Gaze

Visuospatial attention

Intensification

overt covert

covert

split

CVSA-ERP

BNCI2014-009

overt

Figure 6.1: Interfaces and visuospatial attention (VSA) conditions in the CVSA-
ERP and BNCI2014-009 datasets. In the CVSA-ERP oddball BCI interface,
screen targets are intensified one after the other in pseudorandom order while
the participant can either pay overt, covert, or split VSA to the cued target. In
the BNCI2014-009 overt VSA interface, entire rows and columns are intensified
at once. In its covert counterpart, groups of 6 letters are intensified one after
the other, partly relying on feature attention.

electrode cap (EASYCAP GmbH, Germany), with electrodes located at AFz
and FCz as ground and reference, respectively. Using electrolyte gel, electrode
impedances were brought below 5kΩ. Electrodes TP9 and TP10, used for off-
line re-referencing, were directly attached to the skin using stickers for better
contact. The power line frequency in Belgium is 50 Hz. The participant’s
eye gaze was registered using an EyeLink 1000 Plus eye tracker (SR Research,
Canada) in non-fixation mode.

Participants signed an informed consent form and were seated at a distance of
60 cm from a CRT-emulating monitor (VPixx Technologies, Canada) operating
at a refresh rate of 120 Hz, displaying 6 circular white targets with a diameter
of 4.15ř visual angle and laid out on a hexagon with a radius of 12.28ř of
visual angle centered on the midpoint of the screen, conforming to the interface
proposed by Treder and Blankertz [264] (fig. 6.3a). A hexagonal layout interface
with an empty center and a low number of targets counteracts target crowding,
and as long as the subjects gaze is within the hexagon of targets, no other
target can be between the subjects gaze and a covertly attended target. Targets
are full-contrast white and were intensified by scaling them to a larger size
(5.60ř of visual angle, see fig. 6.3b) instead of changing the contrast to avoid
Troxler-fading1 [264] in the peripheral visual field. Stimuli were presented using
PsychoPy (version 2023.1.3) [206].

The participant was instructed to press the space bar when ready for a block
of stimulations. Then, one target was indicated as the cue, and the participant

1The optical illusion of disappearing unchanging stimuli experienced when visually fixat-
ing [266].
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Figure 6.2: Contrast between target (color) and non-target, and distractor (gray)
and non-target grand average event-related potentials per VSA condition and
dataset. Overt VSA yields a strong modulation of the N1 component in both
datasets; the P3 amplitude decreases with the degree of split VSA. In split
VSA, N1 and P2 are more prominently evoked by the distractor, while the P3
is evoked by the target.

was instructed to count the number of intensifications of the cued target during
the following block of stimulations. After pressing the space bar again, a blue
crosshair appeared, and the subject was instructed to fixate their gaze on the
blue crosshair for the duration of the stimulation block (fig. 6.3c and fig. 6.3d).
The position of this crosshair determined the VSA condition for this trial: overt
VSA when the crosshair was at the same location as the cued target, covert VSA
when the crosshair appeared in the center of the screen, and split VSA when
the crosshair appeared on a different target than the cued one. After pressing
the space bar again and a delay of 5 seconds, the stimulation block started.

All targets were intensified for a duration of 100 ms in pseudorandom order.
The inter-stimulus-interval (inter-stimulus interval (ISI)), the time between the
onsets of subsequent intensifications, was variable and consisted of a fixed 300
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(a) The stimulation interface based on
the visual Hex-o-Spell BCI [264].

(b) When a target is intensified, it is
enlarged for a very short time.

(c) In the overt and split VSA settings,
the participant is cued to fixate on one
of the targets.

(d) In the covert VSA setting, the par-
ticipant is cued to fixate at the center
of the interface.

Figure 6.3: Layout and visual elements of the experimental stimulation interface
used in recording the CVSA-ERP dataset.

ms interval (of which 100 ms with an intensified target onscreen) with 200 ms
of uniform jitter added, resulting in an ISI between 200 and 400 ms. ISIs
were jittered to counteract steady-state effects and residue in averaging. A
longer ISI will increase component amplitude and aid in counteracting temporal
autocorrelation for higher statistical test precision. In a block of stimulations,
each target was intensified a pseudorandom number of times between 10 and 15.
This led to stimulation blocks with an average duration of 26.25 seconds. After
a block of stimulations, an input prompt appeared to enter the mentally counted
number of intensifications. After inputting this number, the subject was allowed
to pause until pressing the space bar again. In total, six blocks were presented
for overt VSA, six blocks for covert VSA, 12 blocks for split (d = 1) VSA, 12
blocks for split (d = 2) VSA, and 6 blocks for split (d = 3) VSA, covering all
possible combinations of VSA conditions, cued targets, and crosshair locations.

The experiment started with a sequence of five non-recorded practice stim-
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ulation blocks, one for each of the five VSA conditions. During these practice
blocks, the participant received feedback about their gaze position and counting
accuracy. Counting the instructions and the participant’s response to the input
prompts, a block lasted about 30 seconds. In sum, the experiment featured
approximately 45 minutes of stimulation time. After blocks 14 and 28, the par-
ticipant was allowed to take a longer break. Including these longer breaks, the
experiment lasted approximately one hour.

BNCI2014-009 dataset

The BNCI2014-0092 dataset [9] was used in the analysis performed by Aricò
et al. [12]. It contains data from 10 subjects (median age 24.5± 1.9 years) who
performed two spelling tasks illustrated in the second row of fig. 6.1: using the
P3 Matrix speller interface to exploit overt VSA, and the GeoSpell covert VSA
interface. To use the GeoSpell interface, the participant gazes at the fixation
point at the center of the screen, while groups of characters flash simultaneously
in a circular layout around the fixation point. The user directs their visuospatial
attention to the location where the intended letter is expected to appear, and
when it does, a P3 ERP component is expected to be evoked. This results in
a specific setting where both visuospatial attention and feature attention (the
attended letter) are exploited. For a detailed description of the paradigm and
dataset, we refer to Aloise et al. [9].

6.2.2 Data processing and analysis

Preprocessing

Analysis was performed using Python and the MNE software package (version
1.3.1) [88]. All datasets were band-pass filtered between 0.1 Hz and 20 Hz with
a 4th-order Butterworth filter. Bad channels in the data were automatically de-
tected using the RANSAC method [74] and rejected. The recorded EEG was re-
referenced offline to the average of the mastoid electrodes TP9 and TP10. Next,
the EEG signals were corrected for eye movement artifacts using Independent
Component Analysis (ICA). Since we have access to electrooculogram (EOG)
data for the CVSA-ERP dataset, components correlating significantly with the
EOG were rejected. For the BNCI2014-009 dataset, ICA components were man-
ually rejected. Finally, the EEG signal was divided into epochs ranging from
100 ms before stimulus onset to 700 ms after stimulus onset and down-sampled
to 128 Hz. In both datasets, only 16 channels were kept for analysis (Fz, FCz,
Cz, CPz, Pz, Oz, F3, F4, C3, C4, CP3, CP4, P3, P4, PO7, and PO8).

Decoders

We compared the two latency-based methods Classifier-based Latency Estima-
tion with Woody iterations (WCBLE) and Classifier-based Latency Estimation

2https://bnci-horizon-2020.eu/database/data-sets
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(CBLE) as described in section 5.3, with their base classifier block-Toeplitz lin-
ear discriminant analysis (tLDA) and with Riemannian Geometry approaches
that rely on spatial covariance as features. Together with tLDA, Riemannian
Geometry generally achieves state-of-the-art decoding performance [155]. We
implemented two Riemannian Geometry pipelines. The first estimates shrunk
covariances from the ERPs filtered with 6 XDAWN filters, projects these covari-
ances to a tangent space, and classifies the result using L2-regularized logistic
regression (XDAWNCov-TS-LR) [46]. Secondly, we adopted the pipeline from
Aydarkhanov et al. [16], as their work shows favorable performance in the pres-
ence of single-trial ERP latency jitter. Shrunk spatial covariance matrices were
estimated from epochs that were augmented by concatenating the average tar-
get and average non-target ERP as extra channels, projected to tangent space,
and classified using L2-regularized logistic regression (ERPCov-TS-LR).

To evaluate performance, 6-fold cross-validation without shuffling was per-
formed for both datasets. At each fold, classifiers were trained on five target
selection blocks (300 epochs) and tested on one block (60 epochs) without over-
lap for CVSA-ERP. For each subject and run in the BNCI2014-009 dataset,
classifiers were trained on five symbol selections (480 epochs) and tested on one
symbol selection (96 epochs) without overlap at each fold. A window ranging
from 0 ms to 600 ms after stimulus onset was used for CBLE and WCBLE.
With epochs ranging from -100 ms to 700 ms relative to stimulus onset, this
allows for extracting latencies ranging from -100 ms to +100 ms.

6.3 Results

6.3.1 BCI decoding performance

We evaluated the BCI decoding performance in a single-trial classification ex-
periment, as well as in a target selection experiment reflecting BCI operation.

Figure 6.4 shows a comparison of area under the receiver-operator character-
istic curve (ROC-AUC) for all pairs of tLDA, CBLE, and WCBLE for single-trial
classification to investigate the contributions of CBLE and WCBLE relative to
their first-stage classifier tLDA. For this evaluation, epochs were rejected when
the peak-to-peak amplitude exceeded 800 ţV, and for the CVSA-ERP dataset, if
the user’s gaze differed by more than 10 degrees of visual angle from the fixation
crosshair.

Wilcoxon signed-rank tests controlled for multiple comparisons by Benjamini
and Hochberg’s False Discovery Rate procedure (FDR) revealed that for the
BNCI2014-009 dataset, WCBLE significantly outperformed tLDA (∆ROC−AUC =
0.019, p = 0.004) and CBLE (∆ROC−AUC = 0.016, p = 0.036) for covert
VSA, but was significantly outperformed by tLDA in overt VSA decoding (∆ROC−AUC =
−0.004, p = 0.040). For the CVSA-ERP dataset, WCBLE also achieved signif-
icantly better covert VSA performance than tLDA (∆ROC−AUC = 0.023,
p = 0.041) and CBLE (∆ROC−AUC = 0.036, p = 0.024). We found no
significant difference in WCBLE performance over tLDA in the split VSA con-
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Figure 6.4: Difference in cross-validated single-trial classification area under
the receiver-operator characteristic curve (%.) between CBLE, WCBLE, and
their first-stage classifier tLDA. 95% confidence intervals were determined using
k = 1000 bootstrapping. Our proposed WCBLE decoder outperforms tLDA
and CBLE for covert and split (d = 3) VSA. CBLE scores on par with tLDA.

ditions in the CVSA-ERP dataset, but results show a clear trend of increased
WCBLE performance over tLDA and CBLE as d increases. CBLE failed to
significantly outperform its first-stage classifier tLDA in all evaluated VSA con-
ditions. Table 6.1 reports all single-trial classification scores for all considered
models, datasets, and conditions.

Section 6.3.1 shows the cross-validated BCI selection accuracy on the BNCI2014-
009 and the CVSA-ERP datasets for all investigated decoders. Accuracy was
determined by, for each block, selecting the character with the highest (stage-two
if applicable) classifier score and comparing it to the cued target. Significance
was calculated using one-sided Wilcoxon signed-rank tests (p = 0.05) corrected
for FDR over decoders. For this evaluation, no epochs were rejected to keep the
trial-based structure of BCI operation intact. For all datasets and VSA condi-
tions, CBLE scores approximately on par with tLDA. Yet, WCBLE yields an
improved decoding accuracy for covert VSA in both datasets, which is greatest
for smaller numbers of repetitions and decreases as the number of repetitions
increases. This covert VSA accuracy increase over tLDA is significant in the
BNCI2014-009 dataset for 1 and 3 repetitions, and in CVSA-ERP for 1-5 and
10 repetitions. Furthermore, while we reported a relative decrease in single-trial
ROC-AUC for WCBLE in overt VSA, this does not seem to result in a consis-
tent decrease in target selection accuracy. No significant increase of WCBLE
over other methods was found in split VSA. While Riemannian methods are
significantly outperformed by tLDA, CBLE, and WCBLE in the BNCI2014-009
dataset, they perform approximately on par with tLDA and WCBLE in CVSA-
ERP.

Overall, we observed a 5.10%pt. accuracy increase with WCBLE over tLDA
for covert VSA in the BNCI2014-009 dataset and 5.55%pt. in the CVSA-ERP
dataset. These results compare to the performance gain reported by Zisk et al.
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Figure 6.5: Cross-validated target selection accuracy for all decoders plotted as a
function of the number of test repetitions in different VSA conditions. WCBLE
generally achieves the highest covert VSA target selection accuracy.

[317]. They observed a 5.63%pt. accuracy increase with 1-10 selection repeti-
tions over step-wise Linear Discriminant Analysis (SWLDA) for 6 participants
with Amyotrophic Lateral Sclerosis (ALS), whose SWLDA performance also
suffered from jitter. Note that interpretation of this comparison may be chal-
lenging due to differences in interface design (number of targets, ISI), subject
population, EEG recording procedure, and available training data.

6.3.2 Gaze-independence through cross-condition transfer

To further back our claim of gaze-independence in the case where eye motor
control cannot be assumed, we evaluate our proposed decoder in a transfer
learning setting between VSA conditions. While performing overt attention re-
quires gaze redirection for each target selection, performing covert or split VSA
continuously still requires sustained gaze fixation, which might be impaired in
those who could benefit from such an application. Studying the transfer be-
tween conditions simulates what happens when the user performs different VSA
conditions throughout the experimental session. Furthermore, if our decoder
performs well in transfer-learning settings, it must capture some information
about the ERP responses that is independent of the VSA condition, and hence
does not depend on gaze redirection to perform these conditions. We introduce
an additional setting of interest here, namely a combination of VSA conditions,
which represents those cases where the user cannot redirect their gaze and hence
can be in any one of the VSA conditions depending on the target they attend
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Figure 6.6: Difference in cross-validated ROC-AUC (%.) between Classifier-
based Latency Estimation (CBLE) and Woody CBLE (WCBLE) across condi-
tions for the CVSA-ERP and BNCI2014-009 datasets, respectively. A decoder
is each time trained on a visuospatial attention (VSA) condition and tested on
all VSA conditions. WCBLE yields an improvement in most non-overt VSA
settings, indicating it is more invariant to eye gaze than CBLE and tLDA.

to. For BNCI2014-009, this is implemented as an equal mix of overt and covert
VSA; for CVSA-ERP, the combined condition represents an equal mix of overt,
covert, and split VSA, disregarding parameter d.

Figure 6.6a and fig. 6.6b show the pairwise differences in area under the ROC
curve (∆ROC-AUC) between the investigated decoders. In this evaluation, bad
epochs were rejected as in section 6.3.1. When comparing CBLE and tLDA,
we do not observe large differences in any of the evaluated settings, similar to
the within-subject conditions, with the greatest ROC-AUC difference -2% for
training in split (d = 2) VSA and overt VSA. On the contrary, when considering
the comparisons between WCBLE and tLDA, we see that performance is on
par or greater using WCBLE for most conditions, except for within-overt VSA
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Figure 6.7: Jitter characterized as the interquartile range (IQR) of target epochs
for different VSA conditions. Overt VSA exhibits lower jitter than other con-
ditions. Significance of differences was determined with two-sided Wilcoxon
signed-rank tests with False Discovery Rate correction on per-subject jitter
(∗ = p < 0.05, ∗∗ = p < 0.01, ∗ ∗ ∗ = p < 0.001, ∗ ∗ ∗∗ = p < 0.0001).

decoding, with the greatest ROC-AUC difference +4% for training in split (d =
2) VSA and testing in overt VSA.

6.3.3 Jitter analysis

Finally, an analysis is performed to quantify the jitter presence in the different
VSA conditions. To obtain comparable results across VSA conditions, WCBLE
was evaluated per session and trained on all combined VSA conditions as in sec-
tion 6.3.2. Since all conditions have the P3 in common, the estimated latencies
can be interpreted as P3 latencies. Results are shown in fig. 6.7.

Two-sided Wilcoxon rank-sum tests on jitter, expressed as the interquartile
range (IQR) of the estimated latencies of target trials, revealed that overt VSA
exhibited significantly lower jitter than all other conditions for both datasets,
with jitter equal to overt: 32 ms and covert: 56 ms (p < 0.001) for BNCI2014-
009, and overt: 33 ms, covert: 77 ms (p < 0.001), split (d = 1): 72 ms (p =
0.006), split (d = 2): 77 ms (p = 0.002) and split (d = 3): 72 ms (p = 0.002) for
CVSA-ERP. No other significant differences were found. p-values were corrected
for the family-wise error rate using Bonferroni correction.

6.4 Discussion

Figure 6.4 shows that WCBLE significantly improves covert VSA decoding. This
is advantageous for the development of a class of ERP-BCI interfaces for users
who prefer to rest their gaze on a fixation cross on the screen, avoiding the
effort of redirecting their eye gaze for every selection. Furthermore, the perfor-
mance gain over the first-stage classifier in split VSA (d = 3) and between-VSA
condition transfer settings are promising for users with even less eye motor
control who may experience involuntary eye movements or fixation fatigue and

114



hence cannot keep their gaze fixed throughout an entire BCI operation ses-
sion. WCBLE would allow them to operate a BCI comfortably while directing
their gaze to whichever portion of the screen they prefer, even when there is
another target present or this location varies during the course of operation.
Although WCBLE did not significantly improve overt VSA single-trial decod-
ing, section 6.3.1 shows that this does not negatively impact target selection
accuracy. While target selection accuracy also did not improve for split VSA,
the increase in single-trial performance in split (d = 3) shows that an iterative
alignment procedure has the potential to improve over CBLE and its first-stage
classifier in this case as well.

We believe the relative increase in performance of our proposed decoder in
covert and split VSA, and the lack thereof in overt VSA, could stem from the
following: (1) Covert and split VSA exhibit higher P3 jitter than overt VSA. In
covert and split VSA, participants have to execute a dual task by dissociating
their visuospatial attention and gaze fixation. Evidence shows that ERP latency
variability is higher when attention is divided [215, 12]. Aricò et al. [12] also
partly attribute higher latency jitter to the covert VSA task performed in the
BNCI2014-009 dataset, since the GeoSpell interface requires both spatial and
feature attention. (2) In overt VSA, the first-stage classifier can rely mostly on
the modulation of early visually evoked potentials (VEPs) like N1 rather than on
the P3 [264]. These VEPs are closely related to visual processing, hence exhibit
lower jitter, contrary to P3, which is more prone to the effects of attention and
workload [111], reducing the contribution of alignment. (3) This property can
also result in the estimation of VEP latencies instead of the P3 latency, and
WCBLE would in this case fail to increase the P3 signal-to-noise ratio (SNR),
which still could be somewhat jittered in overt VSA. (4) Aligning to the P3
will lower the SNR of early VEPs, while aligning to VEPs will lower P3 SNR,
since they are not time-locked to each other. (5) Covert and split VSA ERPs
may exhibit lower SNR than overt VSA due to lower P3 amplitudes or even due
to the presence of higher P3 jitter itself. Higher SNR in overt VSA results in
higher decoding performance of state-of-the-art classifiers, leaving less room for
relative improvement in this case.

Although it is not immediately clear if WCBLE actively corrects for higher
P3 jitter present in covert and split VSA compared to overt VSA, we justify our
approach in a similar manner to Hardiansyah, Pergher, and Van Hulle [100] by
observing that the increased discrimination performance of a machine-learning
model accounting for jitter forgoes the need for characterizing the underlying
physiological processes, while still objectively quantifying the presence of jitter
between data classes. Furthermore, some evidence points toward higher P3 jitter
as the main contributing factor. While Figure 6.2 shows no visible smearing
effect in the shape of the ERPs, the more quantitative analysis on latencies
presented in section 6.3.3 indicates the opposite. Additionally, Aricò et al. [12]
prove that P3 jitter does play a non-negligible role in covert VSA by comparing
performance between overt and covert VSA, while including or excluding early
VEPs. This analysis showed that the absence of the N1 and other early VEPs
is not the only factor hampering covert VSA decoding performance. However,
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the large increase in accuracy for covert VSA reported by Aricò et al. [12]
(60% to 95% with a window focusing on only the P3 component) could also be
explained by overfitting on artifacts amplified by aligning, since their method is
not evaluated on unseen data, as opposed to ours.

We also argue that WCBLE does not only enhance the P3 signal, but ef-
fectively reduces the negative impact of noise that would otherwise mask the
ERP response, thereby increasing the discriminative ability of the decoder. This
process likely results in more reliable feature extraction, especially in conditions
with high jitter.

We found that CBLE did not improve gaze-independent decoding perfor-
mance significantly and also did not increase performance over its first-stage
classifier in overt VSA, contrary to what was reported by Mowla, Huggins, and
Thompson [177]. While they report that CBLE is relatively independent of the
first-stage classifiers evaluated in their work, it is evident here that applying
any given classifier in the CBLE scheme does not necessarily increase its perfor-
mance. In our case, this could be due to characteristics of the tested dataset,
e.g., the presence of jitter or the generally higher performance of tLDA com-
pared to the first-stage classifiers tested by Mowla, Huggins, and Thompson
[177], leaving less performance to be gained.

Thompson, Warschausky, and Huggins [256] already attempted applying
CBLE in an iterative scheme but did not report any results due to convergence
issues. We mitigated this by combining the robust latency estimation presented
in section 5.3.2 with the alignment of both target and non-target epochs. Align-
ing only the target epochs containing the jittered P3 component is prone to
overfitting by aligning non-discriminative noise that is present in both classes,
such as environment noise, oscillatory background rhythms, or non-modulated
VEPs. If SNR is low, residual noise varying slightly between classes could
dominate the expected response of the first-stage classifier and subsequently
dominate WCBLE from the start, preventing convergence to a meaningful solu-
tion. Our procedure circumvents this problem by aligning both classes to the
time points where the expected separation between classes is greatest. This way,
noise of which the latencies are estimated in a given iteration will be perfectly
time-locked in all classes in the next iteration. The first-stage classifier can then
more easily suppress this noise since it is now clear it is present in both classes
and non-discriminative. This aids the method in converging to a more robust
classifier by iteratively increasing SNR for both classes and class separation over
time.

Zisk et al. [317] addressed P3 jitter inparticipants ALS by augmenting the
training data once with time-shifted copies based on CBLE-estimated jitter.
While we aim to train the first-stage classifier without the effects of jitter in
its parameters, they do the opposite by intentionally jittering the training data.
As their focus was on ALS and inter-session stability, they did not assess how
their method interacts with visuospatial attention. We achieved a similar per-
formance gain with our jitter compensation method, but argue that our method
can cope with more granular latency differences, as Zisk et al. [317] augment
the data with just one positive and negative time shift.
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Hardiansyah, Pergher, and Van Hulle [100] decoded covert VSA more effec-
tively by contributing single-trial latency and amplitude features for decoding.
Contrary to our approach, they did not correct these amplitude features for
the jitter in their latencies by, e.g., aligning trials to achieve better separabil-
ity. Hence, their approach would not, in principle, render the classifier more
robust to jitter. Furthermore, we incorporated estimated latency features in
both CBLE and WCBLE, yet only WCBLE improved covert VSA performance.
This shows that the incorporation of latency features is not the only driver of
covert VSA decoding performance increase.

Despite encouraging results, our study faces some limitations that we plan
to tackle in the future. Firstly, multiple ERP components can be time-locked
to different neural processes, each with its own jitter, hampering the perfor-
mance of single-trial latency estimation and their interpretability. Adaptations
could be made to incorporate prior time windows or probability distributions on
the latency of specific ERP components or to simultaneously estimate a set of
multiple component (clusters) latencies per ERP, such as in Residue Iteration
Decomposition [196]. Future efforts should investigate how strong spatiotem-
poral filtering can be combined with methods that allow for a more flexible
non-stationarity of the ERP, like Dynamic Time Warping (DTW) or other tech-
niques borrowed from time series classification, or methods that explicitly model
multiple time displacements present in one ERP.

Secondly, performance might be improved by venturing beyond the classical
target/non-target binary classification problem. Due to, for example, the per-
ifoveal stimulus cruciform model [275], covert and split VSA responses might
differ based on the relative position in the field of view of their related stimulus,
which could be exploited in a multi-class classification problem. Similarly, ex-
plicitly taking into account the characteristics of the distractor ERP response
might have a beneficial effect. Thirdly, results were obtained in an offline and
within-session evaluation, which does not reflect true BCI operation. Using mul-
tiple sessions with online feedback, the user could optimize their performance
over time by controlling attention or gaze. Finally, since this work was con-
ducted with applications for individuals with severe speech, physical and gaze
impairment (SSPGI) in mind, we should highlight that the gaze of participants
in the conducted experiments was cued and fixed, which is per definition impos-
sible for the end user group we consider. In chapter 7, we present a study to
further investigate whether the studied VSA conditions are appropriate and to
what extent they occur when individuals with SSPGI operate a BCI.

6.5 Conclusion

Our aim was to improve gaze-independent BCI performance for spatially or-
ganized visual event-related potential (ERP) paradigms by using a suitable de-
coder. Earlier results on BCI performance in covert visuospatial attention (VSA)
performance prediction have shown that accounting for single-trial latency jitter
could improve gaze-independent decoding performance. We applied Classifier-
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based Latency Estimation (CBLE) as a decoder robust to latency jitter, but
found no increase in gaze-independent decoding performance. To remedy this,
we improved CBLE by adapting it into CBLE with Woody iterations (WCBLE),
an iterative scheme using probabilistic latency estimation. Results for WCBLE
within and across VSA condition decoding show that gaze-independent BCI per-
formance can be improved at the decoding stage. Overt decoding performance
was not improved, but our proposed method can provide added value for users
who are unable to operate a visual BCI in overt attention mode. Later studies
should confirm whether our findings hold in individuals with severe physical im-
pairment and a variety of eye-motor impairments, and develop a solution that
is capable of properly handling multiple non-time-locked ERP components.
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6.A Single-trial classification performances

dataset BNCI2014-009 CVSA-ERP

VSA condition overt covert overt covert
split

(d = 1)
split

(d = 2)
split

(d = 3)

ERPCov-TS-LR 90.00 74.50 79.56 68.80 66.90 72.52 72.14
XDAWNCov-TS-LR 90.44 74.64 81.13 67.80 66.83 72.59 71.36
tLDA 94.74 78.90 86.60 71.11 70.97 75.50 74.74
CBLE 94.97 79.28 85.59 69.77 70.87 74.67 74.65
WCBLE 94.28 80.84 85.25 73.38 70.84 75.81 76.87

Table 6.1: Cross-validated single-trial classification ROC-AUC (%) for all eval-
uated models, visuospatial attention conditions, and datasets.
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6.B Cross-condition transfer classification per-

formances

test overt covert
split

(d = 1)
split

(d = 2)
split

(d = 3)
combined

classifier train

CBLE overt 85.59 66.68 63.92 60.22 60.11 66.25
covert 68.51 69.77 70.52 68.50 70.29 75.08
split (d = 1) 64.11 67.81 70.87 69.60 69.44 75.04
split (d = 2) 60.48 67.59 69.99 74.67 72.88 75.96
split (d = 3) 59.32 69.66 68.51 72.95 74.65 75.18
combined 68.77 73.71 74.36 76.41 75.14 72.73

tLDA overt 86.60 67.40 64.15 59.80 59.39 66.85
covert 68.78 71.11 70.17 69.25 70.64 74.69
split (d = 1) 65.72 68.00 70.97 70.53 69.52 75.07
split (d = 2) 60.69 68.40 70.48 75.50 72.69 76.75
split (d = 3) 59.37 69.10 69.40 72.56 74.74 75.61
combined 69.71 73.64 74.81 76.01 75.68 73.78

WCBLE overt 85.25 68.80 66.07 63.02 62.22 68.60
covert 72.75 73.38 72.02 70.16 72.06 76.30
split (d = 1) 68.07 70.04 70.84 72.42 71.05 75.56
split (d = 2) 64.53 70.84 72.07 75.81 73.97 77.70
split (d = 3) 63.79 72.21 70.57 72.80 76.87 76.05
combined 71.09 73.36 74.53 76.07 76.26 75.15

Table 6.2: Cross-condition transfer classification performance (cross-validated
ROC-AUC) for all evaluated models in the CVSA-ERP dataset. Each decoder is
trained on one VSA condition and tested across all VSA conditions to evaluate
gaze-independence and transfer learning performance.
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test overt covert combined
classifier train

CBLE overt 94.97 63.59 83.13
covert 67.00 79.28 73.01
combined 93.81 73.36 83.17

tLDA overt 94.74 62.22 82.70
covert 67.34 78.90 73.51
combined 94.01 72.55 83.16

WCBLE overt 94.28 65.04 82.51
covert 69.40 80.84 75.87
combined 92.77 76.10 84.20

Table 6.3: Cross-condition transfer classification performance (cross-validated
ROC-AUC) for all evaluated models in the CVSA-ERP dataset. Each decoder is
trained on one VSA condition and tested across all VSA conditions to evaluate
gaze-independence and transfer learning performance.
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Chapter 7

Case studies

Juliette

7.1 Introduction

Brain-computer interface (BCI) assistive technologies for communication [167]
target individuals with severe speech and physical impairment (SSPI) [209]. Vi-
sual BCIs, which rely on the interpretation of visual stimuli by the user, offer
several advantages in this context. They can work with non-invasive record-
ing technology and can use rapid stimulation. This makes them well-suited for
real-time communication tasks.

Yet, there is a large comorbidity between SSPI and eye motor impairment [79].
Impairments such as nystagmus (uncontrolled eye movements), diplopia (double
vision), and ophthalmoplegia (eye paralysis) can significantly hinder the ability
to use visual BCIs. These impairments make it difficult for BCI users to fo-
cus on or track visual stimuli accurately, reducing their performance with BCIs
that rely on visual cues [162, 79, 203]. Unfortunately, it is again for this group
that eye tracking solutions also perform poorly, making them more reliant on
potential developments in BCI that do not rely on eye gaze.

Eye motor impairments are presumed to reduce performance in operating vi-
sual oddball BCIs (see chapter 2 for an overview), since users cannot comfortably
redirect their gaze at the desired target, i.e., perform overt visuospatial attention
(VSA). This is usually circumvented by designing gaze-independent BCIs [223].
These interfaces either avoid visual stimulation or exploit some form of covert
VSA, where the gaze and VSA do not coincide.

Several studies with visual oddball BCIs show that performance drops when
not fixating the intended target [38, 264, 226], necessitating gaze-independent
solutions. These studies build on the assumption that BCI users with severe
speech, physical and gaze impairment (SSPGI) would feel comfortable operating
an interface in pure covert VSA with central fixation. One could argue that a
BCI that is only verified to work when central fixation is maintained could also
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be considered gaze-dependent. This does not account for the residual eye motor
capabilities of most people with SSPI, the (dis)comfort they experience while
performing gaze fixation and other confounding factors resulting from their eye
motility.

It is a striking constatation that studies reporting on gaze-independent visual
BCI with people with SSPI and eye-motor impaired are very few. Results are
usually different from those obtained with healthy control participants in the lab,
due to difference in capabilities, brain response, equipment and environment.

Lesenfants et al. [142] tested a BCI using gaze-independent steady-state
visually evoked potential (SSVEP) in six participants with Locked-in Syndrome
(LiS) yet only exceeded chance level accuracy in two. More recently, Peters
et al. [210] performed a trial with two participants with late-stage Amyotrophic
Lateral Sclerosis (ALS) and visual impairment. Their SSVEP interface was
not optimized for gaze-independence, but the system showed high accuracy,
outperforming an eye tracking alternative. It would be of interest to verify if
such results can be replicated with participants with other conditions, and with
a visual oddball BCIs.

Orhan et al. [192] and Oken et al. [190] tested the rapid serial visual presen-
tation (RSVP) speller with individuals with LiS.

Severens et al. [239] evaluated the visual Hex-o-Spell [264] on 5 participants
with ALS and showed that this visual oddball interface optimized for gaze-
independence can outperform a tactile BCI. While this speaks to the power of
visual paradigms even in groups that are expected to have eye motor impairment,
they did not verify the gaze direction of participants during the experiment. It
was suggested that participants were performing overtly. Participants with ALS
also had a substantially lower accuracy than healthy controls (58% vs. 88%).

Our previous study, presented in chapter 6 also used the visual Hex-o-Spell
interface [272]. This work partially accounted for the idea that BCI users with
SSPGI might not fully rely on central gaze fixation and evaluated settings that
are not strictly dependent on this. We showed gaze-independent performance
can be improved in healthy subjects using a suited decoding strategy that ac-
counts for latency jitter in covert VSA responses. Yet, there is a strong need
for verification of these results in an applied setting with people with SSPI.

Eventually, one of the end goals of this research line is to develop gaze-
independent BCI for people that are fully locked-in and have no option left
than to use a BCI. However, this group is very small and it is often a challenge
to recruit them into a study and perform experiments with them [297]. Individ-
uals with less severe paralysis or in less progressed disease stages that struggle
with eye-tracking technology could also benefit from solutions tailored to their
specific situation. Therefore, we aim to apply the concepts from earlier work
and literature to people with SSPI and various degrees of motor impairment in
a visual oddball BCI. The objectives of this case study are as follows: 1. Explore
capabilities and experienced comfort of individuals with SSPGI, when operat-
ing a visual BCI, 2. evaluate the performance of a gaze-independent visual BCI
for this group, 3. verify if this performance can be improved with a suitable
decoding strategy.
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7.2 Materials & methods

7.2.1 Recruitment

Participants were recruited across the Neuromuscular Reference center at Uni-
versity Hospital Leuven (Leuven, Belgium), TRAINM Neuro Rehab Clinics
(Antwerp, Belgium), the Neurorehabilitation Unit at University Hospital Lille
(Lille, France), and a specialized care home (France). Experiments were per-
formed under the supervision of their treating physician. Participants were
recruited based on the following criteria. To qualify for inclusion, participants
must:

1. be at least 18 years old and no older than 60 years,

2. belong to class 2 or 3 according to the BCI user selection criteria presented
by Wolpaw et al. [297],

3. have limitations to the extent or comfort of their eye motor control

Participants were excluded if they:

1. had a diagnosis of a major medical condition, including any major neuro-
logical or psychiatric disorder other than those of interest based on inclu-
sion criteria 2, and 3

2. had a predisposition to or a history of any kind of epileptic seizures, in-
cluding photosensitive epilepsy,

3. had a severe loss in vision or hearing that would significantly impair par-
ticipation in the experiment,

4. are currently using specific psychoactive medications or substances that
could affect the outcome.

5. were unable to understand the experiment instructions and cooperate,

6. had any other limitations preventing them from performing the given task.

In total, 11 individuals were contacted. Of these, which one person with
Multiple Sclerosis (MS) was excluded based on criterion 3. One person recover-
ing from traumatic brain injury (TBI) was excluded based on both 2 and 4, and
one person recovering from stroke based on 1. One further person recovering
from a stroke was excluded due to technical difficulties during the experimental
session. Vision was assessed using a LogMAR chart [17].

Ultimately, 7 participants were retained. Of these, one participant was diag-
nosed with bulbar-onset ALS, three with Friedreich’s Ataxia (FRDA) an three
were recovering from stroke. We refer to section 2.1.1 for a short description of
these conditions. Table 7.1 lists the included participants and their diagnoses.
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ID Diagnosis Age Sex Hand. Speech Trach. Communication W KB

PA1 bulbar-onset ALS 58 M L anarthric no tablet 3 4
PB1 FRDA 41 M L dysarthric no verbal 3 3
PB2 FRDA 43 F R dysarthric no verbal 3 3
PB4 FRDA 48 M R dysarthric no verbal 3 3

PC2 brainstem stroke 43 M R anarthric yes
prompting
+eye movement

2 4

PC3 brainstem stroke 43 F R anarthric yes letterboard 2 3

PC4
left cerebellar stroke
(trombosis of the
basilar artery)

54 M R anarthric yes letterboard 2 3

Table 7.1: Included participants with their diagnosis and capabilities. Trach.:
underwent a tracheostomy, W: classification according to Wolpaw et al. [297]1,
KB: classification according to Kübler and Birbaumer [134]2.

7.2.2 Visual skills and eye tracking and eye motor exami-

nation

Self-reported eye motor and visual abnormalities were recorded according to
the relevant visual BCI skills presented by Fried-Oken et al. [79]. These include
visual acuity, visual fixation, eyelid function, ocular motility, binocular vision,
and field of vision. Additionally, participants and their caregivers were asked
about eye tremors (nystagmus or other) and other involuntary eye movements.

As an objective metric, we implemented and performed the automated Neu-
roEye eye movement test proposed by Hassan et al. [103] using calibration-free
eye tracking to check if it revealed any further eye motor abnormalities. This
was not the case.

Finally, we also recorded gaze position throughout the experimental session
to register the participant’s gaze relative to the stimulated BCI targets.

7.2.3 BCI stimulation

The BCI stimulation procedure was based on the Hex-o-Spell [264] implemen-
tation presented by Van Den Kerchove et al. [272]. Similar to this study, the
task consists of counting the flashes of a cued target among 6 round, flashing
targets laid out in a hexagonal pattern in the field of view of the user. We refer
to section 6.2.1 for implementation details.

Three different VSA settings were explored. In the overt VSA setting, the
participant was instructed to fixate on the cued target or try to the maximum
extent of their visual skill, even if experiencing slight discomfort. In the covert

1See page 36 footnote 6.
2“With minor degree of impairment, we refer to patients who had only slightly impaired

limb movement and normal speech. Under the category moderate impairment, we summa-
rized those patients with restricted limb movement (wheelchair-bound) and unaffected speech
or intact limb movement without speech. [ . . . ]Patients who were almost tetraplegic with re-
stricted speech were considered majorly impaired. Categories four and five were the LIS and
the CLIS, respectively." [134]
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PA1 PB1 PB2 PB4 PC2 PC3 PC4

Visual fixation 
 
 
 
 
 
 


Eyelid function 
 


Ocular motility 
 
 & & 


Binocular vision 
 & &

Field of vision 
 


Involuntary movement 
 & 
 
 


Visual acuity (logMAR) 0.0 0.0 0.6 0.2 0.0 0.7 0.6

Table 7.2: Visual skills of the included participants. Visual BCI skills [79]
were assessed with a combination of self-reported issues by the subject and the
NeuroEye [103] test. 
 impaired, & severely impaired. logMAR: lower is
better.

VSA setting, the participant was instructed to fixate on the center of the screen,
to the extent of their ability. An additional free VSA setting was introduced.
Here, the participant was instructed to perform the task as they deemed most
comfortable. This allowed us to investigate the user’s natural way of operating
the BCI given their individual set of visual skills. If the participant was not
fully paralyzed, they were instructed not to move their head. The cued split
attention setting proposed by Van Den Kerchove et al. [272] was not studied
here, as we were interested in natural VSA operation settings for gaze-impaired
individuals.

To make the interface suitable for use by individuals with SSPI [79], the
number of blocks was decreased to 6 per VSA setting. Inter-stimulus interval
(ISI) was increased to 200±50 ms to decrease task difficulty. The experiment
also started with a training block in each condition, where the participant was
instructed with feedback on their performance to ensure they understood and
were able to perform the task.

7.2.4 Data collection & preprocessing

During the recording session, participants were positioned in their wheelchair in
front of a table. Stimuli were presented on an Acer Predator Helios laptop with
an 18" screen (Acer, Inc., Taiwan) placed at a 60 cm distance. A Cedrus Stim-
Tracker (Cedrus Corp., CA, USA) ensured synchronization of stimuli with the
recorded electroencephalography (EEG). Eye tracking was performed through-
out using the Tobii X2-30 Compact (Tobii Technology AB, Sweden) portable
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Figure 7.1: A participant with the stimulation and recording setup.

eye tracker placed at the bottom of the laptop screen.
EEG was recorded at 1000 Hz using the Neuroscan Neuvo portable amplifier

(Compumedics Neuroscan, Australia) connected to a second laptop for registra-
tion. The EEG headset used 18 active AgCl electrodes (EASYCAP GmbH,
Germany) placed on a cap according to the international 10-20 layout. Using
electrolyte gel, electrode impedances were reduced below 10 kΩ. Additionally,
the electrooculogram (EOG) was recorded.

The EEG was band-pass filtered between 0.5 and 16 Hz. Bad channels were
rejected using the RANSAC algorithm [74] and visual inspection. Next, the
EEG was re-referenced to the average of mastoid electrodes TP9 and TP10,
and independent component analysis (ICA) was performed to reject artifactual
components based on correlation with the EOG or by visual inspection. Epochs
were cut from -0.1 to 0.9 s relative to stimulus onset, and no baseline correction
was performed in order to meet the assumptions.

Eye tracking data was cleaned by fusing left and right gaze into one channel
for the horizontal and vertical gaze position. If both were present for a given
sample, the fused channel was the mean of both values. If at a given sample
either the left or the right eye was not detected for a given channel, the value
of the other one was adopted. If both were missing, the gaze position remained
unset at that time point, and no interpolation was performed of the employed
classifiers.

7.2.5 BCI decoding

We evaluated the recorded data using the Classifier-based Latency Estimation
with Woody iterations (WCBLE) [272] and block-Toeplitz linear discriminant
analysis (tLDA) [244] classifiers, as well as the Riemannian approach XDAWN-
Cov+TS+LDA [46]. For WCBLE, a region of interest from 0 ms to 800 ms
relative to stimulus onset was used while the epoch was cropped to -100 ms to
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900 ms. For the other decoders, the epoch was cropped between 0 ms and 800
ms, which resulted in maximal performance. Decoding scores were obtained
using 6-fold cross-validation where folds corresponded to stimulation blocks.

7.3 Results

7.3.1 Visual skill and eye tracking analysis

Table 7.2 details the eye motor impairments and vision of the included partic-
ipants. All participants reported some degree of fatigue or discomfort when
fixating. Participant PA1 had the mildest impairment, only reporting fatigue
when fixating for prolonged times. The FRDA participants were mostly af-
fected by eye tremors and impaired pursuit. PB2 suffered from especially severe
horizontal oscillating involuntary eye movements. Eye motor function of partici-
pants PC2, PC3, and PC4 was most severely affected. Participant PC2 was only
able to look up and down and had a deviation in the left eye causing diplopia,
but this was corrected by a prism glass. Participant PC3 only retained partial
motility of the right eye, while the left eye was permanently closed. Participant
PC4 had one deviated eye with a corneal abscess affecting the motility and
vision in the right eye, and reducing motility in the left.

Given these information, we aimed to shed more light on the actual capabili-
ties of individuals with SSPGI regarding performing overt VSA and central gaze
fixation, as well as to investigate how relevant these two settings are when the
gaze is not cued. Figure 7.2 maps gaze position relative to the stimuli across con-
ditions. These results should be interpreted with care, as the eye tracker to some
degree relies on functioning eye motility. The participant’s position relative to
the eye tracker might have shifted throughout the experimental session despite
our best efforts, e.g., because they needed aspiration of their tracheostomy.

PA1 had relatively intact gaze control and was able to correctly perform
the cued overt and covert settings. When gaze was uncued, he fixated on the
cued target. This was also mostly the case for PB1, although eye tracking
revealed that he chose not to perform central gaze fixation when cued in at
least one of the stimulation blocks. We were unable to record his gaze near the
bottom-left stimulus position, either due to eye tracker failure or because the
participant was not comfortable fixating on this position. Eye tracker calibration
did not succeed for subject PB4, but given transformation of gaze positions to
the stimulus space, they were assumed to be overtly performing the free task.

PB2 was able to perform overt VSA and central fixation to some extent, yet
eye tracking shows a larger spread in gaze position compared to PA1 and PB1.
In the free VSA condition, however, she preferred to attend stimuli covertly
when the gaze was uncued. This was confirmed by the participant.

The overt and central gaze fixation settings were also not properly adapted
to participant PC4. In the free VSA condition, eye tracker results show that his
gaze was usually near the bottom two targets, indicating some degree of covert
or split VSA.
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5ř

PA1, overt VSA PA1, covert VSA PA1, free VSA

PB1, overt VSA PB1, covert VSA PB1, free VSA

PB2, overt VSA PB2, covert VSA PB2, free VSA

PB4, overt VSA PB4, covert VSA PB4, free VSA

PC4, overt VSA PC4, covert VSA PC4, free VSA

Figure 7.2: Distribution of the recorded gaze position during the experimental
session in the three VSA conditions. Crosshairs represent stimulus positions,
with the orange ones cued during the given condition. Subjects PB2 and PC4
preferred covert BCI operation, with PB2 resting gaze near the middle of the
screen, and PC4 near the bottom.



It was technically impossible to register gaze position with the Tobii X2-
30 Compact for participants PC2 and PC3 since they both had one eye that
was occluded respectively by the prism glass and the eyelid. Both participants
reported they could not fixate on some of the stimuli.

7.3.2 BCI decoding performance

Figure 7.3 shows single-trial area under the receiver-operator characteristic
curve (ROC-AUC) in the evaluated VSA settings for the different decoders.

In the overt VSA setting, the evaluated decoders performed similarly on
average (WCBLE 75.58%, XDAWNCov+TS+LDA 74.24%, tLDA 75.99%). In
the covert VSA setting with cued central gaze fixation, performance deteri-
orated, but WCBLE significantly improved performance over the base classi-
fier tLDA in this condition (WCBLE 62.49%, XDAWNCov+TS+LDA 59.42%,
tLDA 59.05%). Decoding performance for this task was at chance level for
participants PB4 and PC3.

However, WCBLE did not improve tLDA performance in the free VSA set-
ting, but XDAWNCov+TS+LDA performance was slightly lower here (though
not significantly). (WCBLE 74.15%, XDAWNCov+TS+LDA 71.88%, tLDA
74.27%). More interestingly, we noticed that performances of the decoders in
free VSA were close to those in the overt VSA. A substantial decrease in per-
formance from the overt setting to the free setting was observed for subjects
PC3 (WCBLE: 70.31>62.14 %, XDAWNCov+TS+LDA: 65.78>62.18 %, tLDA:
70.49>63.76 %) and PC4 (WCBLE: 65.56>55.71 %, XDAWNCov+TS+LDA:
62.02>54.24 %, tLDA: 66.12>57.08 %). For PB2, who also relied on covert VSA
during the uncued free VSA according to gaze tracking setting, the decrease in
performance was also present, but not as substantial (WCBLE: 82.76>78.88 %,
XDAWNCov+TS+LDA: 80.74>77.99 %, tLDA: 83.21>78.84 %).

7.3.3 Cross-condition calibration

As an alternative approach to selecting the most suitable decoder, we used tLDA
as the base decoder and verified whether performance could be improved if BCI
users with gaze impairment performed the calibration session relying maximally
on their residual gaze control.

Figure 7.4 shows that, on average, covert VSA decoding improved when
training with overt VSA. This was especially true for participants PA1, PB2,
and PC3. Note that, according to eye tracking data, participants PB1, PB4,
and PC4 did not always perform cued central gaze fixation in the covert VSA
setting, which might have affected the results.
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Figure 7.3: Decoding performance in different VSA settings reported as single-
trial ROC-AUC. Free VSA is generally on par with performance in the overt
VSA setting. Performance in the covert VSA setting with central gaze fixation is
lower, but can be improved with the WCBLE decoder. 95% confidence intervals
were calculated using 1000 bootstrapping repetitions.
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Figure 7.4: Decoding performance when calibrating the tLDA decoder in a
given VSA setting, and evaluating it in another, reported as single-trial ROC-
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the covert VSA setting with central gaze fixation improved when calibrating
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7.4 Discussion

7.4.1 Gaze-independent operation & decoding

Due to the heterogeneous nature of the participants’ conditions, it is difficult to
draw general conclusions. This study should therefore be seen as a collection
of case studies, highlighting different obstacles encountered in developing gaze-
independent visual oddball BCIs for individuals with SSPGI. Nevertheless, we
would like to highlight some aspects that might be of interest for the further
development of this class of BCIs.

True gaze-independent visual BCIs should not rely on gaze fixation. Hence,
our analysis centers around the free VSA condition. Eye tracking results pre-
sented in section 7.3.1 confirm our assumption that voluntary covert VSA can
occur in individuals with SSPGI. We also confirmed part of the results from Van
Den Kerchove et al. [272] presented in chapter 6, which state that decoding of
covert VSA with central gaze fixation can be improved by accounting for latency
jitter. We showed that this also holds for individuals with SSPGI.

Contrary to our assumptions, however, we have shown that this does not
necessarily improve covert VSA when gaze fixation is not cued. One possible
explanation is that actively performing central gaze fixation increases task load.
This, in turn, can reduce overall performance, even though the participant might
have otherwise performed covert VSA, but would not be occupied with main-
taining strict central gaze fixation. This extra task demand is not present in
the free VSA condition, so there is less performance to be gained. Furthermore,
cued central gaze fixation combined with counting flashing stimuli in the visual
periphery is an explicit example of a dual task. Dual tasks have been shown
to increase P3 latency jitter [215, 12, 272], which is what WCBLE accounts for.
Hence, increased P3 jitter might be more related to maintaining central gaze
fixation than to the actual covert VSA aspect.

The seemingly stable performance across overt and free VSA could be mis-
interpreted as an indication that the Hex-o-Spell BCI already works well for
individuals with SSPGI, and no optimization is needed. However, we assume
that overt VSA performance was also decreased in some subjects or for some
blocks if the participant was not able to comfortably perform the task. Never-
theless, the large difference between the free VSA setting and the covert VSA
setting with central gaze fixation is food for thought about the applicability of
solutions developed with central fixation in mind.

Individuals with all but the most severe gaze impairments will likely retain
some degree of gaze direction in visual BCI operation, which can drastically
boost performance. Subject PB2 exemplifies this: his free VSA performance
is on par with his overt VSA performance, although eye tracking showed that
he relied mostly on overt VSA when cued to do so, and mostly on covert VSA
when gaze was uncued. This is also supported by our results on cross-condition
calibration presented in section 7.3.3, which show that leveraging residual eye
motor control to fixate targets during the calibration phase can improve per-
formance in some settings. This is likely due to the increased P3 component
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amplitude in overt VSA, which improves the discriminative power of a classifier
trained on this data. Cueing this overt gaze fixation only during the calibration
phase leaves the user free to operate in the manner that is most comfortable
for them in the operation phase. Early VEPs in the training data could also
contribute in those cases where the participant was not able to perform covert
VSA with central gaze fixation.

7.4.2 Limitations

Despite results that prompt interesting reflections on gaze-independent BCI
approaches, there are some limitations to the presented results that need to be
addressed in current and future work.

First and foremost, this study works with a limited sample size, which does
not represent the full spectrum of individuals with SSPI and SSPGI, and their
specific symptoms and skills. Individuals with FRDA met the inclusion criteria,
but they are usually not considered one of the typical interest groups for BCI
communication assistive technology, partly due to the rarity of the disease and
partly due to its progression. It would be most interesting to verify these results
with individuals with LiS and no eye movement capability at all.

Another limiting factor is the difficulty experienced in correctly interpreting
eye tracker results in studies with individuals with gaze impairments. If eye
tracking is possible at all, it is not guaranteed that the user is able to success-
fully perform the calibration procedure. Further experiments should be carried
out with a stationary eye tracker with more advanced capabilities, although sys-
tems using a head fixator or headrest should be avoided. This is not practical
when working with wheelchair-bound individuals who might have undergone a
tracheostomy and may suffer from spasticity.

In this study, user comfort in the different conditions was not objectively
measured. Instead, it was assumed that participants operated most comfort-
ably in the free VSA condition. To properly contextualize performance results,
they should be coupled with metrics evaluating the user’s requirements with a
measure of usability, comfort and perceived effort, like the NASA Task Load
Index [101] and other metrics proposed in the user-centered design framework
for BCIs [135]. Performance might, after all, be traded off for user comfort. Eye
motor disability could also have been assessed more objectively [79], using, e.g.,
the Revised Coma Recovery Scale [84] or the NSUCO oculomotor exam [160].

Finally, the stimulation procedure parameters from Van Den Kerchove et
al. [272] were adapted to make the counting task accessible to the BCI users
with SSPGI. However, the number of repetitions and ISI were not optimized
to achieve maximal information transfer rate (ITR). An interface that aims to
maximize ITR could necessitate more and faster gaze redirections, which might
result in different conclusions regarding the comfort and the effect of visual skill.
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Chapter 8

Conclusion &

recommendations

The Reverend Mother Gaius Helen
Mohiam in Dune – Frank Herbert,
originally from Søren Kierkegaard Section 8.1.1 was published as part of Van
Den Kerchove et al. [271].

8.1 Contributions

This work aimed to improve the performance of visual gaze-independent BCIs,
in general and when applied to individuals with eye motor impairment, by devel-
oping novel decoding strategies and evaluating their effectiveness. We addressed
the limitations of current gaze-dependent BCIs by proposing methods that ex-
ploit covert visuospatial attention (VSA) and reduce the reliance on eye gaze.
The following key contributions were made:

8.1.1 Developed ERP decoders

We introduced a covariance estimator using adaptive shrinkage (STBF-shrunk)
and an estimator exploiting prior knowledge about the spatiotemporal nature of
the EEG signal (STBF-struct). We compared these estimators with the original
formulation of the spatiotemporal (STBF-emp) beamformer and a state-of-the-
art Riemannian Geometry method (XDAWN+RG) in an off-line P3 detection
task on an existing dataset. Our results show that the structured estimator
results in an accuracy increase of up to 4 %. compared to shrinkage regular-
ization. y when training data are sparsely available. Results can be computed
faster and with substantially less memory usage. Since these algorithms are not
paradigm-specific, the conclusions can be generalized to other ERP-based BCI
settings. These results have been published in Van Den Kerchove et al. [271].
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Next, Block-Term Tensor Discriminant Analysis (BTTDA) was introduced
as a tensor-based decoder that better captures the multidimensional nature of
ERP data. By preserving the structure of neural data, BTTDA can cope with
noise and other challenges arising from gaze-independent BCIs, yielding robust
results under certain conditions. Results show that BTTDA and its special sum-
of-rank-one structured case improved over Higher Order Discriminant Analysis
(HODA) and can reach state-of-the-art decoding performance for ERPs. This
work is submitted as Van Den Kerchove et al. [270].

Finally, we developed the Classifier-based Latency Estimation with Woody
iterations (WCBLE) decoder, specifically designed to address the challenges
posed by P3 latency jitter in covert VSA settings. Latency variability is a
well-known issue in ERP decoding, particularly when users engage in covert
attention, where the timing of the P3 component fluctuates significantly across
trials. Traditional decoders struggle in these settings due to the inconsistent
timing of brain responses, which can reduce the robustness and accuracy of ERP
decoding. The WCBLE decoder mitigates this issue by introducing an iterative
process to estimate and align ERP latencies across trials. This is performed
in such a way that discriminative power of the ERP signal is preserved and
enhanced. The method has been published in Van Den Kerchove et al. [272].
We designed this method to improve decoding where unseen incoming test data
is not yet known. WCBLE was first tested on synthetic data to evaluate its
effectiveness under conditions of controlled latency variability and noise. These
results showed that it is robust to higher noise and jitter compared to a non-
iterative method in a latency estimation task. Decoding accuracy was higher
in high jitter and noise settings compared to the non-iterative method and a
state-of-the-art decoder.

8.1.2 Gathered datasets

The CVSA-ERP dataset consists of recordings of 15 healthy participants, mean
age 26.38±3.15 years. The dataset was presented in Van Den Kerchove et al.
[272]. The experiment in this dataset implemented a visual oddball BCI with
six circular targets in a hexagonal layout. The gaze fixation of participants was
carefully controlled to dissociate the visuospatial attention of the participant
and their eye gaze. This allowed us to study the effects of gaze-independence on
ERP decoding. The CVSA-ERP dataset gives us insight into the ERP dynamics
in overt, covert, and the novel split VSA condition, and confirms our hypothesis
that P3 jitter has a significant impact on performance in covert and split VSA.
It also confirmed that the effects of covert VSA on ERP component amplitude
hold for split VSA.

Additionally, we gathered data from 7 individuals with severe speech, physi-
cal and gaze impairment (SSPGI) with conditions such as Amyotrophic Lateral
Sclerosis (ALS), Friedreich’s Ataxia (FRDA) and stroke. These participants
exhibited varying degrees of eye motor impairment, such as involuntary eye
movements, ophthalmoplegia, and gaze fixation fatigue. The data provide in-
valuable real-world evidence on how gaze-independent BCIs perform in popula-
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tions that experience eye motor difficulties. This dataset allowed us to evaluate
the proposed decoding strategies in clinical settings and highlighted the practical
challenges of implementing gaze-independent BCIs in these user groups.

8.1.3 Investigated gaze-independent visual BCIs

We evaluated our proposed WCBLE algorithm, its non-iterative counterpart,
and state-of-the-art decoders on the CVSA-ERP dataset as well as on a pub-
licly available dataset [8] that also contains the overt and covert VSA condi-
tions. We evaluated the BCI decoding performance in a single-trial classifi-
cation experiment, as well as in a target selection experiment reflecting BCI
operation. Performance was significantly different between decoders, but this
result was significantly dependent on the VSA condition and the dataset. While
WCBLE was slightly outperformed by the state-of-the-art in overt VSA decod-
ing (94.28<94.74 and 85.25<86.60 % ROC-AUC), it increased covert VSA de-
coding (80.84>78.90 and 73.38>71.11 % ROC-AUC).

For the split attention conditions in the CVSA-ERP dataset, WCBLE yielded
a significant improvement over CBLE and the state-of-the-art method only in
some cases. These results were corroborated by analyzing selection accuracy,
which showed similar behavior for both datasets, except in overt VSA, where
accuracy was not harmed by the lower single-trial selection performance of
WCBLE.

To further study the gaze-independent performance of these algorithms,
transfer learning between VSA conditions was studied to simulate conditions
where an individual with gaze impairment can end up in different VSA set-
tings within a BCI operation session due to their lack of proper motor control.
When trained and evaluated on overt VSA data, our proposed WCBLE algo-
rithm results in a small but significant decrease in performance compared to the
state-of-the-art (85.25>86.60 and 94.74>94.28 % ROC-AUC), consistent with
the within-condition results. For all other pairs of training and evaluation VSA
conditions, however, WCBLE was equal to or significantly better with increases
exceeding 4 % ROC-AUC.

Later case studies explored gaze-independent BCI performance in individu-
als with severe speech and physical impairment (SSPI) and varying eye motor
impairments. Participants showed different levels of gaze control, with some
using overt VSA, while others preferred covert VSA, resting their gaze and
mentally attending to targets.

The WCBLE decoder improved decoding accuracy in covert VSA settings
with cued central gaze fixation. This is of interest for gaze-independent decoding,
but not as optimal as when the gaze fixation was uncued. The latter was tested
in the free VSA setting. Here, participants were generally more comfortable
when allowed to use their preferred gaze strategy. Decoding performance in free
VSA was often comparable to overt VSA, showing the system’s flexibility.

Revisiting the hypotheses put forward in section 2.3, we conclude that we
have proposed several techniques that did, in effect, improve visual oddball ERP-
based BCI decoding accuracy, and at least one technique that does so specifically
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under conditions relevant for gaze-indepent BCI. It was not conclusively proven,
however, that these results have a meaningful impact on on-line BCI assistive
technology use by individuals with SSPGI.

Together, the obtained results do show that there is an interest in developing
a new class of ERP-BCI interfaces for users that prefer to choose their own gaze
strategy, to avoid the effort of redirecting their eye gaze to different spatial
locations on the stimulation screen in manners that might be uncomfortable for
them.

8.2 Current & future work

On the decoder development side, we have partially implemented some interest-
ing extensions of the proposed methods. The Kronecker-structured beamformer
can be generalized to the linear discriminant analysis (LDA) case. Furthermore,
we obtained promising results when extending the single Kronecker product co-
variance model to a sum of Kronecker product terms, since the electroencepha-
lography (EEG) covariance is probably better expressed by such a structure [27].
The Kronecker-LDA approach has also been extended to the combined space-
time-frequency domain, where more information can be modeled at the cost of
increased dimensionality. A properly structured covariance model can strongly
regularize the problem.

To overcome the limitations introduced by the presence of multiple ERP
components in latency estimation, we have also developed a multi-component
version of the WCBLE algorithm. This algorithm should be able to separate
mixed ERP component clusters based on their temporal coherence, in a similar
manner to Ouyang et al. [196]. It could also yield favorable decoding results in
a broader range of settings than overt VSA, since it should be able to account
for the presence of both visual and attentional ERP components.

In gaze-independence decoding, our current efforts focus on – counterintu-
itively – integrating eye tracking into the decoding strategy. Since we are able
to explicitly discern overt, covert, and split VSA from the ERP, and different
decoders perform best in different settings, it could be helpful to derive the cur-
rent setting from the gaze position and the ERP, and propose the most suited
decoder for a given data point. This could allow us to select the best classifier
using eye tracking.

Coincidentally, making advances in gaze-independent decoding also builds
towards a solution for the Midas Touch Problem in visual BCI. Here, a BCI user
sometimes accidentally selects a target while not intending to give any input.
Decoding of true intention independent of eye gaze, with the option of gazing
without paying visuospatial attention to a stimulus, would counteract this, and
be a valuable addition to a BCI assistive technology device.

We also aim to apply the tensor approach to gaze-independent decoding.
The problems introduced by jitter could be accounted for, as in WCBLE, by
alignment, but also by other methods that model the possible time shifts. In
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ordering the data as a Hankel tensor1, we should have a data representation
that is more robust to jitter, at the cost of increased dimensionality. This
increased dimensionality can then be countered by a tensor method like HODA
or BTTDA.

Finally, we wish to expand our experimentation with individuals with SSPGI.
As the work presented in this thesis started during the COVID-19 pandemic,
experimentation was delayed and the envisioned application could not be val-
idated within the time frame of the doctoral project. To complete this work,
we aim to revisit the participants with an on-line experiment and satisfaction
assessment to establish the usability of the proposed interface according to the
principles of user-centered design (UCD) and compare its information transfer
rate (ITR) to the state-of-the-art literature.

8.3 Limitations and recommendations

8.3.1 Decoding: keep it linear; structure it

Throughout this thesis, we noticed that linear or multilinear decoding methods
consistently outperform non-linear methods, such as SVMs or those based on
Riemannian Geometry. Within these linear models, regularization (shrinkage,
covariance structure, tensor structure/rank) is of paramount importance, since
neural data is inherently multivariate and BCI calibration time is minimized.
Proper regularization should impose some specific structure on the linear model,
ideally reflecting properties of the signal. When faced with a new problem and
few data relative to dimensionality, it is a good first instinct to pick a simple,
restrictive structure.

However, the brain is a complex organ, so neural data is not linear in origin.
These regularizing assumptions based on prior knowledge are likely only super-
ficially true. When optimizing for performance, it will soon become clear that,
given a more flexible model, there are settings where these assumptions can be
broken to better describe the ongoing interactions. For example, spatiotempo-
ral beamforming or LDA with Kronecker-structured covariance improves perfor-
mance in low sample sizes but is outperformed by more flexible methods, such
as LDA using a Kronecker-sum covariance model or block-Toeplitz linear dis-
criminant analysis (tLDA) when the training sample size increases. Similarly,
BTTDA offers more flexibility than HODA.

This calls for the development of more flexible (multi-)linear models that
still rely on some structure but are combined with efficient model selection,
such as the methods proposed in conjunction with BTTDA. These models try
to combine the best of both worlds.

1Adding an extra mode with time-shifted copies of the temporal response per channel.
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8.3.2 Optimize user experience

While our work with BCI users with SSPGI resulted in interesting preliminary
findings, it is currently impossible to make claims about the experience in long-
term home use of the proposed systems as assistive technology. This work
focused heavily on classification methods and solving problems arising from
gaze-independence through decoding. Since these decoders were evaluated by
collecting data and performing tests later using cross-validation, only off-line
performances have been reported.

To gain proper insight in the performance of a system that actually sup-
ports end-users, performance in an on-line experiment should be reported. The
interface, now a collection of white circles, should be adapted to include mean-
ingful selection elements, like groups of letters or icons and selection feedback
should immediately be presented to the user. The performance metric then
also captures effects of user engagement, learning and strategy adaptation. The
measured brain activity and the proper execution of the task by the participant
are, after all, partially dependent on their sense of completing a task that is tan-
gible, entertaining and directly useful for them. The participant then becomes
an active BCI assistive technology user, instead of just a near-passive observer
in an abstract data collection experiment.

Furthermore, classification performance is only one aspect of what makes
a BCI desirable as assistive technology. An interesting approach here is to
consider the problem from a UCD [118] perspective. UCD is a framework for
effective optimization and evaluation of usability in product design, which has
successfully been applied to BCI development [235, 135, 99]. BCIs as assistive
technologies for users with particular and individual physical and psychological
requirements form a perfect use case for such a framework.

One of the main principles of UCD is to address the entire user experience.
As mentioned before, this includes measuring effectiveness, in the form of e.g.
selection accuracy. UCD goes beyond this by also assessing efficiency and user
satisfaction Similarly to effectiveness, efficiency can objectively be measured as
the ITR achieved in – importantly – on-line operation.

Satisfaction, on the other hand, is a more subjective quality. Neverthe-
less, optimizing user satisfaction is the penultimate goal in application design.
Satisfaction depends on factors such as performance (in the form of efficiency
and effectiveness), comfort, and user perception. It must be assessed through
subjective questionnaires following realistic, on-line application use[135]. Only
focusing on evaluating effectiveness through classification performance is a prag-
matic approach, because a researcher can perform a single data collection and
iterate on the results offline. Yet, this can be too limiting when seeking to design
the most usable interface for a specific group of users.

The optimal approach should unify decoder development, choice of para-
digm, and interface design, as advocated by Pan et al. [198] and Fouad et al.
[77], by integrating both engineering and clinical perspectives. Performance
and abilities likely depend to a great degree on the user, so off-line decoding
performance in healthy controls is probably not a good predictor of on-line
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decoding performance and ITR in individuals with SSPI. Incremental gains
in decoding performance for a specific paradigm might also be outweighed by
how well that paradigm is adapted to the user, factoring in their skills and
abilities. Longitudinal research should follow several user groups, specifically
those with gaze impairment, and experiment with specific paradigms, interfaces,
and decoders for a given BCI user.

8.3.3 Work with individuals with SSPI

A logical point arising from this is the question of how to set up an effective
research project that aims to optimize BCI user experience, in the context of
the topics presented in this work. Another valuable principle of UCD principle
points the way: encouraging early and active involvement of end-users. This
entails that, ideally, individuals with SSPI should be involved at every stage of
the research project, from conceptualization to evaluation. A good rule of thumb
is that research should solve problems with the users, not for them, implying
that research projects should start from the needs of the BCI user population.

Instead of choosing a research target and then moving on to decoder de-
velopment, data collection with healthy controls, patient studies, and finally,
verification in on-line operation, it could be more effective to start the other
way around. In a mature field like visual oddball BCI, the research project can,
after a thorough literature review, immediately start with on-line experimenta-
tion involving individuals with SSPGI and an adequately chosen, existing BCI
system. It should then become apparent where challenges for the envisioned
user population lie. As an example, Fried-Oken et al. [79] share an overview of
their experiences from this step, specifically concerning eye motor impairment
in visual BCI. After that, hypotheses can be formed on how to mitigate these
challenges through interface optimization or choice, taking into account the full
picture of the capabilities and skills of the users. These hypotheses can then be
verified in experiments with the users and/or a population of healthy controls.
Finally, the decoder can be optimized, only if it is strongly suspected that effects
will hold in on-line operation.

Unfortunately, this approach might also be one of the least practical ways to
set up a 4-year research project, such as in the context of a doctoral thesis. It
can only work if the proper facilities can be gathered immediately from the start,
such as ethical approval, access to patients, and on-line BCIs experimentation
systems. It is therefore important that research labs maintain a long-term work-
ing collaboration with patient centers, so that new projects can immediately be
verified with the user population. This also allows interested users to compare
multiple systems and guide development. The fact that a user has previous
BCI experience is often seen as a confounding factor in off-line studies. When
the research is in a phase that heavily depends on user experimentation, this is
actually a strength, since the user can help the researcher gain insight into what
works and what does not work for them, and where research efforts should be
focused.

Similarly, there is value in maintaining a working, on-line, in-house BCI
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system that can be iterated upon and adapted if necessary. Given this sys-
tem’s design and data gathered from earlier use, experiments can be supported
by advance calculations of hypothetical ITR, ensuring that on-line or off-line
experiments reasonably reflect real-world operation, and no effort is wasted ex-
ploring settings that will not achieve satisfactory performance. For example,
why study a specific number of repetitions or inter-stimulus interval (ISI), if
they would not be practical to achieve a high ITR, but could still influence
decoding performance? Having access to (or implementing) a working, on-line
BCI prototype early on allows for the implementation of the full UCD frame-
work throughout the research project. It opens the door for iterative design
with interaction between developers and end-users, yet another UCD principle.

This top-down or iterative approach is probably not suited for all types
of BCI research If a novel BCI paradigm is still in an early phase, the focus
should lie on creating limited, fundamental experiments to develop a method
to decode the brain activity of interest and working bottom-up from there to
a proof of concept of an end-user application. Yet, in visual oddball BCI, the
challenge no longer lies in generating this proof of concept but in translating
it into usable technology. Here, the top-down approach might help to avoid
prematurely solving problems which may not necessarily arise further down
the road. UCD could improve the quality of study outcomes by enabling the
reporting of realistic, interpretable metrics, and by taking into account the
human aspect of working with instead of for BCI users.
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