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Automated deep learning: algorithms and software

for the energy sustainability

Abstract

Current technologies only allow storage by expensive and inefficient means, which

makes it difficult to store electricity on a large scale. For the grid to function prop-

erly, electricity fed into the grid must match electricity used at all times. Historically,

and still today, production resources are planned in advance of demand to maintain

this balance. It is therefore crucial to forecast electricity consumption as accurately as

possible. The integration of renewable energies, whose production is intermittent and

dependent on weather conditions, is making the balance increasingly unstable. Managing

this is becoming more complex, making forecasting wind and photovoltaic production

now essential.

Statistical learning models are used to make consumption and production forecasts.

These models take past values and data from explanatory variables and use them to

model the signal. To build efficient models, one must choose the input variables, the

type of model, and its parameters. Given the vast number of signals to be forecasted, it

would be beneficial to automate these choices to create competitive models. Automated

Machine Learning (AutoML) is the process of automating the generation of learning

models optimized according to the use case. Over the last ten years, numerous AutoML

tools have been developed. However, most of them focus on optimizing classification

or regression models on tabular data, or on optimizing neural network architectures

for image or text processing. These tools are not appropriate for optimizing electricity

consumption and production forecasting models.

This thesis is a progress towards automating the generation of time series forecasting

models required for power system management. The research work focused on develop-

ing the DRAGON Python package, which offers a range of tools for specific yet widely

used models: neural networks. DRAGON can be used to create flexible search spaces en-

compassing a wide variety of neural networks by simultaneity optimizing the architecture

and the hyperparameters. They are encoded by Directed Acyclic Graphs (DAGs), where

the nodes are operations, parameterised by various hyperparameters, and the edges are

the connections between these nodes. To navigate these graph-based search spaces

and optimize their structures, the package proposes various search algorithms based on

meta-heuristics and bandits-approaches. This thesis details how DRAGON is used for

electricity consumption and production forecasts, enabling state-of-the-art models to be

generated for these two industrial use cases.

v





Optimisation de réseaux de neurones : algorithmes et

logiciel pour un système électrique durable

Résumé

Les technologies actuelles ne permettant le stockage que par des moyens coûteux

et peu efficaces, l’électricité reste difficile à stocker à grande échelle. Pour le bon

fonctionnement du réseau, il est ainsi important qu’à tout instant, l’électricité injectée

dans le réseau soit égale à l’électricité consommée. Historiquement et encore aujourd’hui,

pour maintenir cet équilibre, les moyens de production sont planifiés par anticipation de la

demande; d’où l’importance de prévoir aussi précisément que possible la consommation

électrique. Avec l’intégration massive des énergies renouvelables dont la production

est intermittente et dépendante des conditions météorologiques, la production devient

de plus en plus instable et la gestion de l’équilibre se complexifie : des prévisions des

productions éolienne et photovoltäıque sont désormais indispensables.

Les prévisions de consommation et de production sont réalisées à l’aide de modèles

d’apprentissage statistique, qui modélisent le signal en se basant sur ses valeurs passées

et des données de variables dites explicatives. Pour construire un modèle performant,

il est nécessaire de choisir les variables explicatives considérées, le type de modèle ainsi

que sa paramétrisation. Au vu du très grand nombre de signaux à prévoir, il pour-

rait être intéressant d’automatiser ces choix pour créer automatiquement des modèles

compétitifs. Le Machine Learning automatisé, également appelé AutoML pour Auto-

mated Machine Learning, est le processus d’automatisation de la génération de modèles

d’apprentissage optimisés en fonction du cas d’usage. De nombreux outils d’AutoML

ont été développés depuis une dizaine d’années, mais la plupart se concentrent sur

l’optimisation de modèles de classification ou de régression sur des données tabulaires,

ou sur l’optimisation d’architectures de réseaux de neurones pour le traitement d’images

ou de textes. Ils ne sont donc pas forcément adaptés à la prévision de séries temporelles

telles que la consommation ou production électrique.

Cette thèse est un premier pas vers l’automatisation de la génération de modèles

pour les prévisions des séries temporelles nécessaires à la gestion du système électrique.

Les travaux de recherche se sont concentrés sur le développement du package Python

DRAGON, qui propose divers outils pour optimiser des modèles bien particuliers, mais

largement utilisés: les réseaux de neurones. Le package rend possible la création

d’espaces de recherche plus ou moins flexibles, qui permettent d’englober une grande

diversité d’architectures et d’optimiser à la fois l’architecture et les hyperparamètres. Ces

espaces de recherche sont encodés par des graphes acycliques dirigés, où les nœuds sont

des opérations, paramétrées par divers hyperparamètres, et les arêtes sont les connexions

entre ces nœuds. Afin de naviguer dans ces espaces de recherche à base de graphes et

d’en optimiser les structures, divers algorithmes de recherche à base de métaheuristiques

et de bandits sont proposés dans le package. Après une présentation de DRAGON, cette

thèse détaille comment ce package est utilisé pour les prévisions de consommation et de

production électrique et permet de générer des modèles à l’état de l’art dans ces deux

cas d’usage industriels.

vii





Remerciements
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de mes papiers (en voici une pour la route )). J’espère avoir récupéré un peu de tes
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scientifique. Passer d’une relation d’amies proches à une relation d’encadrement n’est
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Symbols

The manuscript uses the following symbols throughout, with additional notations occa-

sionally defined within specific chapters or sections.

Domain Symbol Description

General i, j Samples index

D Dataset

Dtrain Training set

Dvalid Validation set

Dtest Test set

X Input features

Y Output target

f Machine learning model

t Timestamp index

N Number of samples

H Number of daily instants

F Number of input features

Automated Machine Learning ℓtrain Training Loss function

ℓ AutoML Loss function

T Search Algorithm budget

K Search Algorithm population

Ω Search space

λ Set of hyperparameters

Λ Hyperparameters search space

α Neural network architecture

A Architectures search space

δ Neural network weights

∆ Weights search space

Γ Graph encoding a neural network
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Chapter 1

Introduction

The objective of this thesis is to propose methodologies and tools for optimizing deep

neural networks employed for load consumption and wind production forecasting. In

this chapter, we first present the industrial context motivating this work: the need for

many forecasting models to manage electricity systems. Then, we introduce the need

for tools to automatically create effective models for forecasting tasks and present the

field of Automated Machine Learning (AutoML). We finally detail how AutoML has been

used to tackle the energy forecasting task. The rest of the chapter is devoted to the

description of our contributions.
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1.1. Industrial Context 3

1.1 Industrial Context

1.1.1 The Electricity Sector

1.1.1.1 Presentation of the electrical system

In this thesis, we study the electricity sector. Electricity is still difficult to store at large

scale. The existing storage methods such as batteries, pumping or hydrogen remain

inefficient or expensive and have a limited capacity. Moreover, at any given time, the

amount of electricity fed into the grid must match the amount of electricity consumed.

Therefore it is essential for the electrical network to maintain a strict balance between

load and production. If the imbalance is too great, the system runs the risk of blackout.

The electricity system is expected to be reliable. It means the customers wish to be

supplied with the energy requested with a very high degree of confidence. In other words,

when someone turns on a light switch, they assume the signal will come on immediately.

Thus, historically, and still today, the balance between load and production is maintained

by first forecasting the load and then adjusting the production resources accordingly. It

is therefore crucial to forecast electricity consumption as accurately as possible.

To meet the challenges of climate change, European countries are planning to invest

heavily in renewable energies to decarbonise the electricity sector. For example, wind

power generation in Europe is expected to increase from 204 GW per year in 2022 to

more than 500 GW in 20301. Some of these renewables, such as wind and solar pho-

tovoltaic (PV), are intermittent: their production depends on weather. Therefore, their

integration increases uncertainty on the production side and requires accurate forecasts

for production in addition to load.

In the event of an imbalance, the Transmission System Operator (TSO), which is

responsible for balancing supply and demand at national or regional level, must call on

reserve resources to compensate for over- or under-production. These reserve resources

are flexible power plants whose production can be changed at short notice. They are

potentially large emitters of greenhouse gases. This is why good forecasting is essential

when integrating renewable energies to achieve energy sustainability.

1.1.1.2 Electricity market

Maintaining this balance is all the more complex given that electricity production and

supply depend on a competitive market. Since February 1997, the European electricity

market has been gradually liberalised at the request of the European Union. Prior to

that date, the markets in most European countries were non-competitive and organised

around four major monopolies: generation, transmission (high-voltage lines), distribution

and sales to businesses and consumers. Prices were set nationally by governments or

regulators, and customers could not choose their electricity supplier. Following market

1https://ec.europa.eu/commission/presscorner/detail/en/ip_23_5185

https://ec.europa.eu/commission/presscorner/detail/en/ip_23_5185
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liberalisation, only the transmission (managed by TSOs - Transmission System Oper-

ators) and distribution (managed by DSOs - Distribution System Operators) parts of

the market remained monopolised. In France, these are managed by RTE and ENEDIS

respectively.

Production and sales, on the other hand, have become commercial activities involving

all kinds of players, such as independent producers, traders, brokers, etc. The various

players in the market draw up contracts for the supply or production of electricity over

various time horizons in order to maximise financial gains. Each time horizon corresponds

to a specific market with its own rules. The forward market is the long-term market,

for energy sales or purchase contracts with a horizon of up to several years. The spot

market is the day-ahead market. This is the central market that sets the “final” price

of electricity, hour by hour, according to supply and demand. The intra-day market is

used to correct schedules in the event of, for example, a generation system failure or a

bad weather forecast. The near real-time balancing market allows the TSO to ensure a

balance between generation and load at each time step.

The contracts will dictate what producers must inject into the grid and what suppliers’

customers must consume. Producers and suppliers are responsible for guaranteeing their

own balance. The TSO is responsible for maintaining the global balance, calling on

reserve resources in the event of imbalances and imposing financial penalties on producers

or suppliers who are responsible for imbalances.

The market is common to all European countries, allowing international contracts

and physical exchanges of electricity to take place. While prices vary by country, they

are often significantly affected by load or production in neighboring countries. A typical

example is Germany’s overproduction of wind power during periods of very favourable

wind conditions. To maintain its balance, it sells it surplus of electricity to its neighbors.

These countries will see their spot prices fall as a result of this influx of electricity. Local

producers of energy that is more expensive than wind power will be forced to turn off

some of their power plants.

1.1.1.3 Electricité de France

This thesis was funded and carried out in partnership with EDF (Électricité de France).

EDF is the main producer and supplier of electricity in France and one of the largest

electricity company in Europe and the world. It produces electricity from a diverse mix

of sources, including nuclear, renewable and fossil fuels. Prior to the liberalisation of the

electricity market in France, EDF operated as a monopoly. It was the sole provider of

electricity in France, controlling every aspect of generation, transmission, distribution and

supply. It was therefore essential to have forecasting tools for both load and production

before the liberalisation of the market, and this need has only increased since.
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1.1.2 Forecasting for the energy sustainability

1.1.2.1 Various forecasting tasks

With this brief introduction to the electricity sector, we begin to see the different (and

numerous) load and renewable production forecasting needs of the various market players

such as EDF. These needs are first and foremost a means of ensuring the smooth opera-

tion of the network in a context of increasing electrification and the massive introduction

of renewable energies, but they are also a tool of financial optimization for the various

players. In addition, the accelerating flow of data, and its greater reliability and precision

at ever finer temporal and spatial scales, is enabling the emergence of more complex and

accurate learning models, such as machine learning models or neural networks, which

were hardly ever used before.

In this thesis we focus on load forecasting and wind energy forecasting. The dif-

ferent market participants (generators, traders, TSOs, DSOs, municipalities, etc.) have

different needs for forecasts to ensure the smooth operation of the grid (especially for

TSOs and DSOs) or to optimize trading strategies. These forecasts may have different

horizons, different levels of aggregation and be applied to different geographical areas.

Forecast horizons can range from nowcasting, e.g. hourly forecasts, to several years.

Short-term forecasting helps to schedule production and make offers on the intraday or

spot markets. Longer horizons will be crucial to plan power plants maintenance or to

intervene on the futures market. Very long-term production and load trends (several

decades) are also of interest for projects involving the construction or renovation of

large production facilities such as offshore wind farms, dams or nuclear power plants.

Statistical forecasting methods are mainly used for short horizons but the very long ones

are made using modelling methods.

Secondly, the level of aggregation depends on the need. Regarding the load forecast,

electricity suppliers such as EDF have more or less extensive customer portfolios, resulting

in different levels of aggregation of electricity load. On a larger scale, TSOs are interested

in the total load of their perimeter, which may represent the entire national load, as is the

case for RTE in France, or a large region, as is the case for the German TSOs Amprion,

EnBW, Tennet and 50Hertz Transmission, which divide the country into four regions.

Similarly, for electricity production, the aggregation depends on the amount of wind

farms an owner has. A wind farm owner needs to know her farm’s production in order

to make offers to the market at different horizons, depending on whether she wants to

intervene in the spot or futures market. The TSO needs forecasts for all the intermittent

energy produced in its area. These forecasts, added to those for consumption, make it

possible to anticipate potential imbalances that could arise and call up sufficient reserve

resources to ensure the stability of the grid.

Examples of electricity signals are shown in Figure 1.1.
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(a) Hourly french load in January 2022.
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(b) Hourly french household load in February
2009.
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(c) Hourly french wind power in January 2022.
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(d) Hourly turkish turbine production in Jan-
uary 2018.

Figure 1.1: Load and wind production signals at various aggregation levels

1.1.2.2 Modelling

Let’s formalize the forecasting setting. For each time step t, a value Xt ∈ E con-

taining various explanatory variables useful for the forecast (historical loads, weather

variables, economical factors) is associated to a target time series realization Yt ∈ F .

For (Xt, Yt) ∈ E × F , the forecasting problem aims to find a forecasting model f such

that:

E → F

f : Xt 7→ f(Xt) = Ŷt ,

where Ŷt ∈ F will be the forecasted value of Yt by the model f . In the case of load and

renewable production forecasting, the ensembles E and F can be of various kinds, and

the model f depends on those ensembles. In what follows, we focus on point forecast,

namely F ⊂ R. In this case, the forecasted value Yt might be the load of a given set of

consumers or the power generated by a given set of power plants at time t.

Time series models Both load and production can be seen as a time series. Thus Yt

can be predicted using one of the last known values. In this case we can write Xt = Yt−τ ,

where τ ∈ N⋆. Typically, τ might correspond to a couple of hours or days, and there-

fore E = F ⊂ R. The model f can be restricted to the identity, namely Ŷt = Xt = Yt−k,

to get a persistence model. Despite its great simplicity, such a model can be difficult to

beat in certain applications, especially when the forecast horizon modeled by τ is short

or when the level of aggregation is low as mentioned by Siebert (2008). Persistence

modeling is regularly used as a baseline in the literature.
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The longer the forecasting horizon, the less information from a single point will be

sufficient to forecast the target value. In order to learn signal patterns, seasonality

and trends, time series forecasting models were developed based on several past time

steps. In this case, if n ∈ N⋆ is the number of input values, E = F F . The simple

moving average model: Ŷt =
1
F

∑F+τ
i=k Xt−i and its variants such as the Autoregressive

Integrated Moving Average (ARIMA) model (Amini et al., 2016; Juberias et al., 1999)

can be used to model the signal. Another popular but simple statistical model is the

exponential smoothing, which is a weighted sum of past observations with exponentially

decreasing importance of past data (see Taylor 2008 or Nowicka-Zagrajek and Weron

2002 for applications to load forecasting and Milligan et al. 2003 for an application to

wind power forecasting).

More recently, machine learning and deep learning models have been used to model

the complex relationship between historical time steps and current values. For instance,

Recurrent Neural Networks (RNN) such as Long Short-Term Memory (LSTM) or Gated

Recurrent Unit (GRU) have been designed to treat time series data and have been used

extensively for electricity forecasting (see Almalaq and Edwards 2017 for applications to

load forecasting and Shi et al. (2018) for applications to renewable energy forecasting).

Within the deep learning community, there has been a growing interest in attention-

based models such as the Transformer model (see e.g., Vaswani et al. 2017), due to

their significant impact on Natural Language Processing (NLP) tasks. Naturally, they

have also been tried on electrical time series (see for example Novaes et al. 2021 or Jin

et al. 2021).

Time series modelling is a good starting point to forecast load and production data,

but the complexity of these signals lies in the fact that although they are time series,

they are strongly influenced by external variables. Therefore forecasting their future

values can also be seen as a regression problem. This is even truer as the forecast

horizon is growing. Past data becomes then less and less sufficient to obtain good

forecasts. Furthermore, in the industrial context, completely removing past data from

the set of explanatory variables can help improve the models interpretability and ensure

good forecasts even in the case of data stream issues.

Explanatory Variables Load and production signals are influenced by a lot of external

variables. For renewable energy forecasting, weather conditions play a big role in explain-

ing the target. For example, the power generated by a wind turbine depends directly on

the wind speed. The relationship between the two can be described by a power curve.

The physical theoretical formula is given by (Siebert, 2008):

Yt = f(Xt) =
ρair
2

cp × Ar ×X3
t ,

where Yt ∈ R+ is the turbine power, ρair is the air density, Ar is the area swept by the

turbine, cp is the turbine power coefficient and Xt ∈ R+ is the wind speed at time t at
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(a) Theoretical power curve. (b) Hourly Turkish wind turbine power as a
function of the wind speed at the turbine level.

(c) Hourly French wind load factor in 2021 and
2022 as a function of the French average wind
speed at 100 meters.

(d) Hourly French wind load factor in 2021 and
2022 as a function of the French maximum
wind speed at 100 meters.

Figure 1.2: Wind load factor as a function of wind speed. For the Figures 1.2c and 1.2d,
a least squares polynomial regression of order 3 has been fitted.
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hub height. In practice, it is difficult to observe a weather variable. It is then replaced

by the forecast from a given weather model with a given forecast horizon. This function

is only valid up to a certain value of maximum wind speed, at which point the turbine

is stopped to prevent damage. Figure 1.2a shows the typical shape of this function.

Looking at a real signal as in Figure 1.2b, where the hourly power production of a

Turkish turbine2 is plotted as a function of the hourly wind speed value at turbine level,

the theoretical power curve appears, although many points remain at zero for any wind

speed. This may be due to the shutdown of the plant for economic or maintenance

reasons. At the scale of French wind power production, a similar form can be found by

plotting the French hourly wind load factor as a function of the French mean wind speed

at 100 metres, as shown in Figure 1.2c, and the French maximum wind speed, as shown

in Figure 1.2d.

Weather variables also influence the load. Temperature, cloud coverage or wind

speed for instance may have an impact. Among them, temperature is usually one of

the most important due to heating and cooling equipment. The relationship between

French national load and temperature is depicted in Figure 1.3a. The typical pattern

is an increasing load when the temperature drops, due to the large number of electric

heaters in France, followed by a certain minimum as the temperature falls, before rising

again due to air conditioning. This dependence still exists at lower levels of aggregation,

but is less pronounced. For example, the dependence on local temperature of the dataset

Hebrail and Berard (2006), which contains the individual load of a house in the south

of Paris between 2006 and 2010, is shown Figure 1.3b. It is more difficult to find a

relationship between the temperature and the load signal.

Lifestyles also influence the load, which can therefore vary according to various cal-

endar variables such as the month, day of the week, school holiday periods, etc. On a

national scale, for example, there is a marked difference between weekdays and week-

ends, as shown Figure 1.3c. Industries shut down at weekends, which explains this drop

in load. On the other hand, at the individual level, rest days show the highest load, as

shown Figure 1.3d. In this figure, in addition to the duality of weekdays and weekends,

we can see two days that show a sort of in-between pattern: Wednesday and Friday.

Weekdays and temperature are only two examples of the explanatory variables that may

influence the load. In practice, the useful explanatory variables depend on the type of

consumers, the geographical area or the level of aggregation.

Regression Models The complexity of forecasting electrical signals lies in the fact

that they are halfway between time series and regression. Pure time series models are

applicable in some cases, but can be limiting in others if they do not include explanatory

variables. Regression models often assume independent and identically distributed data,

which is not really the case for these signals, even if the historical target data is not

included in the input vector.

2https://www.kaggle.com/berkerisen/wind-turbine-scada-dataset

https://www.kaggle.com/berkerisen/wind-turbine-scada-dataset
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(a) Hourly french load in 2021 and 2022 as a
function of the average temperature in °C.
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(b) Hourly french household load in Sceaux
(south of Paris) during the year 2009 as a func-
tion of the local temperature in °C.
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(c) Average hourly french load in 2021 and
2022 by weekday.
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(d) Average load of a french single household
in Sceaux (south of Paris) during the year 2009
by weekday.

Figure 1.3: Effects of the temperature and the weekday on the load at various levels of
aggregation (national and individual levels).
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Statistical and machine learning techniques have been developed to capture these

complex dependencies. These range from ARIMAX models (Hong and Fan, 2016),

support vector machines (Mohandes, 2002), random forests (Dudek, 2015) or gradient

boosting algorithms (Taieb and Hyndman, 2014), as reviewed by Zhang et al. (2021),

to deep learning models (Almalaq and Edwards, 2017; Massaoudi et al., 2021). Typi-

cally, dependencies on past data as well as explanatory variables can be modelled using

architectures that mix recurrent and convolutional layers.

In the case of load forecasting, to assume that the load signal is a sum of effects

depending on external variables is an efficient way of capturing the dependencies on

them. The models used are therefore mostly linear regressions, where each coefficient is

applied to a (possibly) non-linear function of a given explanatory variable or a subset of

explanatory variables. These non-linear functions may be splines in the case of generalised

additive models (GAMs), applied to different explanatory variables, crossed or not. GAMs

have been introduced for the load by Pierrot and Goude (2011) and Fan and Hyndman

(2011). They have been very successful for load forecasting and won a number of

competitions (see, for example, Nedellec et al. 2014 and Farrokhabadi et al. 2022).

Some works such as Nagy et al. (2016) has been done to apply them to wind power

forecasting.

For models functioning almost as pure regression models, the impact of recent load

forecasts can be incorporated via calibration models. These treat the model forecasts as

a time series and modify them using past data to correct the model. These two-stage

models are a way to efficiently treat the forecasting of electrical signals as a hybrid time

series and regression task. Recalibration methods can range from auto-regressive (AR)

corrections to more complex algorithms. For example, Ba et al. (2012a) proposed an

online learning algorithm to track the smoothing functions of additive models and thus

adapt load models to an ever-changing environment, and Vilmarest (2022) studied the

use of Kalman filters to recalibrate various machine models for load forecasting.

More complex settings For all the works mentioned above, the target variable Yt ∈ R
is forecast from an input vector Xt ∈ RF . But recently, new formats of data have

been explored, such as satellite images (for example, Jasiński (2019) used nightlight

images to forecast the load of an area of Poland and Le Guen (2021) forecast short-term

solar energy with fisheye images) or weather grids, to incorporate a spatial dimension

into weather data. Weather grid data such as Numerical Weather Prediction (NWP)

data may be used in the same way as image data where each channel represents a

weather variable. del Real et al. (2020) used the weather grids provided by the French

meteorological system to forecast French national consumption and Bosma and Nazari

(2022) demonstrated the interest of using numerical NWP grids to forecast wind and

solar production in California. To handle these spatio-temporal datasets, several deep

learning models, mostly based on convolutions, have been studied. Finally, in the case

of load forecasting, even more original input formats have been tried, such as text data
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(Obst et al., 2024; Bai et al., 2022) or mobility data (Doumèche et al., 2023).

Similarly, the output data can be more complex than a scalar. For example, several

time steps can be predicted at once. This can be useful for the specific application (e.g.

knowledge of the evolution of the time series), but it can also create more robust mod-

els or help to capture longer term dependencies. For probabilistic forecasting, multiple

outputs might also be used. In the case of point forecasting, a single value - the mean -

is output. But in order to have more information on the model uncertainty, probabilistic

forecasting approaches have been developed where several quantiles can be forecast in-

stead of just the mean. Probabilistic forecasting was investigated by de Vilmarest et al.

(2023) for GAMs applied to probabilistic load forecasting and Yu et al. (2019) for hybrid

neural networks applied to probabilistic regional wind power forecasting. The quantile

forecasting can be done with one model per quantile or with a multi-output including all

quantiles. Finally, multivariate forecasting might also be of interest for both load and

production forecasting, to simultaneously forecast the consumption of several households

or regions, or the production of various turbines or power plants. Graph Neural Networks

(GNNs) are particularly well suited to treat this type of data (see for example Khodayar

and Wang 2018, Khodayar et al. (2021) or Campagne et al. 2024 for applications to

wind power and load forecasting respectively).

In summary, the electric system relies on a tremendous number of forecasting prob-

lems. The forecasts are based on different input and output data formats, which means

that the models used can vary significantly from one application to another. Further-

more, any improvement in forecasting has a significant financial impact. To meet this

need for high-performance models for various forecasting problems, tools must be de-

veloped to automatically generate models for any given forecasting task. The field of

research surrounding the automated creation of efficient machine models is called Auto-

mated Machine Learning (AutoML). In the context of energy forecasting, AutoML can

be a solution for finding performing models more efficiently and with less human input.

1.2 Automated Machine Learning (AutoML)

Automated Machine Learning (AutoML) is a rapidly evolving field of research with the

objective of automating machine learning pipelines, which typically consist of several

components, including data processors, feature extractors, and machine learning algo-

rithms. A machine learning expert must explore many potential choices to find the right

components for a specific task (e.g., image classification, time series forecasting, text

generation). The right choices are made through experience, intuition, and experimen-

tation. Designing a good machine learning pipeline for a given task is challenging for

non-experts and experts new to the task, and it remains so regardless of expertise level.

Two main sub-problems are Hyperparameter Optimization (HPO) and model se-

lection. Hyperparameters must be optimized for a machine learning model that has
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already been chosen. In contrast, model selection entails choosing the most suitable

machine learning model with pre-determined hyperparameters, which are optimized for

each candidate model. In contexts where the machine learning model is not imposed

due to external factors, simultaneous optimization of model and hyperparameters is more

complex but also more interesting. This is known as CASH, or Combined Algorithms Se-

lection and Hyperparameters optimization. When the models in consideration are limited

to neural networks, the model selection process involves automating the design of the

neural network architecture (e.g., the number and type of neurons, and the connections

between them), and is referred to as Neural Architecture Search (NAS). When HPO

is integrated with NAS, the resulting optimization problem is designated as Automated

Deep Learning, or AutoDL.

All these different optimization problems have three main elements in common: the

search space, the search algorithm, and the performance evaluation.The search space

must contain all possible combinations of the elements to optimize.The search algo-

rithm is used to navigate through the search space to find good configurations, and

the performance evaluation is used to estimate the performance of the solutions in the

search space. In the following section, we will present a formal definition of the AutoML

problem and describe how these three elements have been designed for hyperparameter

optimization, architecture search, and AutoML systems.We will focus on those elements

that we believe are most relevant for this thesis. For a more comprehensive overview,

please refer to the book Hutter et al. (2019), which defines the essential elements of Au-

toML, and the article Baratchi et al. (2024), which outlines the current state-of-the-art

in AutoML.

1.2.1 Problem Definition

AutoML is based on several optimization problems that must be formally defined. The

objective is to design optimization algorithms that optimize the (hyper-)parameters of

machine learning models, which are themselves optimization algorithms. For instance,

in linear regression, predictions are a linear combination of features. The objective is to

identify the optimal combination, which is achieved by minimizing the mean squared error

between the predictions and the actual values. In decision trees, the splits are optimized

to reduce impurity measures such as the Gini index. In Support Vector Machines (SVMs),

optimization involves identifying the maximum distance between classes. In the field of

deep learning, backpropagation is employed to adjust weights and biases, aiming to

minimize the loss function. This process enables the capture of intricate relationships

present in data. This thesis does not delve into the algorithms that train a given machine

learning model. An AutoML algorithm will optimize the maximum size of splits in a

regression tree, the maximum depth of the tree, or determine whether a support vector

regressor will perform better on a given task, but will not optimize the values of the splits.

We therefore distinguish between two concepts: model training and model optimization.
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Task Definition We consider the supervised learning task, which involves learning a

function f from a random variable X ∈ E to a target variable Y ∈ F . The goal is

to approximate the true underlying relationship between X and Y , namely the condi-

tional expectation E(X,Y )∼pX,Y
(Y |X), where pX,Y is the joint distribution of (X, Y ).

Given a dataset D containing independent and identically distributed (i.i.d.) realizations

of (X, Y ), the task is to find a function f that minimizes a loss function over D. This loss

function ℓtrain
(
f(X), Y

)
measures the discrepancy between the predicted values f(X)

and the actual values Y .

Definition 1.2.1 (Model training). Given a machine learning model fδ, with δ ∈ ∆

its trainable parameters, training the model fδ according to a training loss func-

tion ℓtrain, means finding the optimal parameters δ⋆ such that:

δ⋆ ∈ argmin
δ∈∆

E(X,Y )∼pX,Y

[
ℓtrain

(
fδ(X), Y

) ]
. (1.1)

The trained model is denoted fδ⋆ .

We denote Ω the search space containing all the models considered for this task (which

could be different models for model selection, or the same model with different hy-

perparameters for hyperparameters optimization). The model optimization is done by

evaluating the performance of the already trained models fδ⋆ ∈ Ω with regards to an

objective (loss) function ℓ.

Definition 1.2.2 (Model optimization). Given a search space Ω,the model optimiza-

tion problem consists in finding the optimal trained model f ⋆
δ⋆ ∈ Ω which minimizes

an objective function ℓ:

f ⋆
δ⋆ ∈ argmin

f∈Ω
E(Xi,Yi)∼pX,Y

[
ℓ
(
fδ⋆(Xi), Yi

) ]
. (1.2)

In practice, we do not have access to the expectations. So we minimise the losses ℓtrain
and ℓ on samples of i.i.d. data. To avoid overfitting, we use two different datasets Dtrain

and Dvalid to perform the two tasks. Thus, the expectation is approximated with:

ℓ : Ω → R
f 7→ ℓ

(
fδ̂,Dvalid

)
,

where ℓ
(
f,D

)
is the loss of the model f evaluated on the dataset D and δ̂ are the

optimal trainable parameters of f calculated when training the model on a training

dataset Dtrain:

δ̂ ∈ argmin
δ∈∆

ℓtrain
(
fδ,Dtrain

)
,
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where the loss used to train the model f on a dataset D is denoted ℓtrain
(
f,D

)
and may

be different from ℓ. As mentioned above, this thesis does not discuss the the algorithms

that train a machine learning model but they may depend on some hyperparameters

such as the optimizer or the batch size which may be included in Ω. The model op-

timization problem definition here is generic, but can be specified for model selection,

hyperparameter optimization, neural architecture search, and CASH problems, depend-

ing on the search space. For the CASH problems, two optimization loops can be nested,

since certain hyperparameters depend on the type of model. Definition 1.2.2, the search

space is Ω, the search algorithm indicates how to find the argmin element f ∈ Ω, and

the performance evaluation is characterised by the loss function ℓ.

f̂ ∈ argmin
f ∈ Ω

ℓ(f, D)

Search Algorithm

Search Space

Performance
Evaluation

The challenge in AutoML will be to define these three elements correctly to conduct

an efficient search.

Training a machine learning model is a long and resource-consuming process. Fur-

thermore, this training is stochastic and dependent on the datasets chosen, namely,

Dtrain and Dvalid. Optimizing such an expensive, noisy and black-box function is chal-

lenging and requires good search algorithms. A search algorithm is typically given a

certain budget, T ∈ N⋆, to find the best configuration. This budget can be defined as

a specific number of model trainings or a given running time, etc. It is typically much

smaller than the number of configurations within the search space. The algorithm must

therefore evaluate the most promising solutions within this budget, leveraging past con-

figuration evaluations to do so. This implicitely assumes that there is a distance between

configurations, and that two relatively close configurations from the search space will

perform similarly. A search algorithm must find the right balance between exploration

and exploitation. It must evaluate a large number of distant solutions in the search space

and intensify the search for promising solutions and the configurations close to them.

This notion of distance can be difficult to define in search spaces that contain different

types of hyperparameters (e.g. categorical) or complex objects to represent the models

(e.g. tree or graph structures). Given the long training times for machine learning, some

algorithms use resource allocation to speed up the process. This involves splitting up the

training process (for example, using only a subset of Dtrain or train for a small number

of epochs for a neural net) to free up resources for promising models, allowing more

exploration.

Finally, performance evaluation must identify the best model for a dataset of interest,

but which also has a good generalisation capacity on unseen data. To prevent over-

fitting, the configurations might be trained on train dataset Dtrain and evaluate on a
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different dataset Dvalid as mentioned above. A final Dtest may assess the final score of

the AutoML framework. Techniques such as cross-validation can also be applied, but

not in the case of energy time series forecasting as the samples are not i.i.d. For this

particular task, the three datasets follow each other in time, the oldest being Dtrain and

the most recent Dtest as shown Figure 1.4. The hypothesis implied by this setting is

that the three datasets share the same distribution pX,Y (X, Y ).

Time

Dtrain Dvalid Dtest

Figure 1.4: Data splits over time.

The definition of the three elements: the search space, the search algorithm and the

performance evaluation depends on the task at hand. We will detail examples of such

choices for the Hyperparameters optimization, the Neural Architecture Search, and the

general AutoML tasks.

1.2.2 Hyperparameters optimization

The Hyperparameter optimization Problem (HPO) is finding the optimal hyperparame-

ters for a given machine learning model. We have already chosen the machine learning

model to optimize and are looking to find the best version of that model for a given

dataset.

1.2.2.1 Search Space

The hyperparameters of a machine learning model are most commonly encoded using

an array of fixed size, with each variable containing the value for a hyperparameter.

They can be either numerical or categorical. Numerical hyperparameters, such as the

maximum depth of a regression tree or the learning rate of a neural network, are a subset

of N (for integer hyperparameters) or R (for float hyperparameters). They fall within a

range between two extreme values. Categorical hyperparameters are discrete and have no

order between the candidate choices. For example, the k-nearest neighbor classifier can

take different functions to compute the weights of each point within the neighborhoods.

These hyperparameters are generally encoded using numerical encodings, such as one-hot

encodings, within the array. Furthermore, there may also exist dependencies within the

hyperparameters. Some hyperparameters are only valid if certain other hyperparameters

have been chosen. For example, the kernel coefficient gamma of a support vector

regression model is only valid for certain kernel types. These are called conditional

hyperparameters. Tree-based structures or variable-size arrays are possible choices for

search spaces containing conditional hyperparameters. For an overview of mixed and
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conditional search spaces, see Gamot (2023). The majority of research on search spaces

for HPO focuses on reducing the search space as detailed by Baratchi et al. (2024).

This can be achieved through expertise, historical data, search space analysis, and the

importance of hyperparameters, as demonstrated by the functional analysis of variance

(ANOVA, see Hutter et al. 2014).

1.2.2.2 Search Strategy

Once the search space is defined, several search strategies can be implemented to find

the best configurations. The simplest and most straightforward approach would be to ex-

haustively evaluate all configurations from the search space, referred to as a grid search.

This approach is particularly efficient when the search space is small and the hyperpa-

rameters are encoded as discrete elements. Continuous variables should be mapped to a

set of discrete values. However, search spaces are often too extensive to perform a grid

search, as the number of configurations to evaluate grows exponentially with the num-

ber of hyperparameters. An alternative approach is to use the random search method

introduced by Bergstra and Bengio (2012), where configurations are randomly sampled

from the search space. This approach is easy to implement and distribute across multiple

devices, and it may already be a strong baseline to beat. However, more sophisticated

strategies have been developed to select future configurations for evaluation based on

prior evaluations.

Bayesian optimization Bayesian optimization (Frazier, 2018) is a sequential opti-

mization technique commonly used to optimize black-box functions. It is based on two

main components: a surrogate model that approximates the unknown objective function

and an acquisition function that selects the next element in the search space to be eval-

uated. The surrogate model is employed to estimate the probability of a score within the

search space as a function of the scores of previously evaluated points. The objective

is to ensure that the surrogate model can be efficiently minimized. It is updated a pos-

teriori each time a new configuration is evaluated, preserving the information from past

evaluations to select future evaluations wisely. In the context of HPO, the surrogate

model is employed to approximate the function that maps a set of hyperparameters to

the corresponding performance score.

The various Bayesian optimization approaches to HPO that exist in the literature

tend to differ in the type of surrogate model and fit function. In terms of surrogate

models, Gaussian processes (Garrido-Merchán and Hernández-Lobato, 2020) and Ran-

dom Forests, used for example by the SMAC package from Hutter et al. (2011) and

Lindauer et al. (2022), have been studied in several papers. The advantage of random

forests over Gaussian processes is that they can handle different types of hyperparam-

eters, whereas Gaussian processes, without any data transformation, can only handle

continuous hyperparameters. Regarding the acquisition function, the expected improve-
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ment is commonly used by the community. It consists of two terms representing the

expected performance at a given point and the associated uncertainty. The two terms

represent the exploitation and exploration trade-offs mentioned above. Other sampling

functions can also be used, such as the upper confidence bound (Hoffman and Shahriari,

2014) or the entropy search (Hennig and Schuler, 2012).

Another Bayesian optimization variant frequently used in HPO is the Tree-structured

Parzen Estimator (TPE), introduced by Bergstra et al. (2011). TPE replaces Gaussian

processes with a non-parametric model that divides the search space into densities of

“good” and “bad” configurations based on previously evaluated points. This makes it

well suited to handling both continuous and categorical hyperparameters in larger, more

complex search spaces. The learning function of TPE aims to select new configurations

that maximize the expected improvement, ensuring a balance between exploring unknown

regions and exploiting promising configurations.

Bandits Algorithms Continuous bandit algorithms conceptually close to Bayesian op-

timization, such as GP-UCB and KernelUCB (see, respectively, Srinivas et al. 2010 and

Valko et al. 2013), which extend the classical Upper-Confidence Bound (UCB) algorithm,

have been massively used for optimization and, eventually, HPO. They rely on a notion

of distance between configurations. Discrete bandit approaches without distance have

also been introduced, such as Hyperband (Li et al., 2018), which dynamically allocates

resources to different configurations by treating the process as a multi-armed bandit

problem. Hyperband operates through a series of iterations, during which configura-

tions receive progressively more resources (e.g., training time or data) based on their

early performance. This approach enables the rapid discarding of configurations with

poor performance, thereby favoring those with potential. This approach is particularly

well-suited for large search spaces, reducing the overall computational cost by avoiding

exhaustive evaluation of all possible configurations. As a result, Hyperband is a highly

effective solution for deep neural networks and other resource-intensive models.

Reinforcement Learning Bandits can be regarded as a specific type of Reinforcement

Learning (RL) algorithms. Other RL-based algorithms (Jomaa et al., 2019) have also

been applied to HPO. In RL-based HPO, an agent adjusts hyperparameters iteratively

to maximize a reward signal, typically defined by the model’s performance on validation

data. This approach enables the adaptive, stepwise refinement of hyperparameters and

can be particularly useful in conditional search spaces.

Evolutionary Algorithms Another popular approach is evolutionary algorithms (EA).

Inspired by natural selection, EA works by evolving a population of hyperparameters

configurations over successive generations (Young et al., 2015). EA typically includes

operations such as selection, mutation, and crossover to modify the configuration, allow-

ing the exploration of complex search spaces in a non-deterministic manner. Mutation
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can be thought of as a function that selects the new value within the neighborhood

of the current value. Crossover combines two or more configurations to transfer the

good genes to the offspring. The two operators represent respectively exploitation and

exploration respectively.

Gradient-based optimization Finally, gradient-based optimization methods offer an

efficient approach to HPO for differentiable models and continuous hyperparameters,

particularly in deep learning settings. Methods such as bi-level optimization leverage

gradients of the model’s validation loss, automlloss, with respect to the hyperparameters

to directly update them, leading to substantial reduction in search time (Franceschi et al.,

2018). While gradient-based methods are highly efficient, they are generally limited to

continuous and differentiable hyperparameters, which poses challenges when applied to

categorical or discrete settings.

For a more comprehensive and recent review of HPO search spaces, search algorithms

and systems, see the work of Baratchi et al. (2024).

1.2.3 Neural Architecture Search

Among the various model selection approaches, one sub-field has garnered significant

attention: Neural Architecture Search (NAS). Rather than selecting the optimal match

among a range of machine learning algorithms, NAS focuses exclusively on deep neural

networks, aiming to optimize their architecture. The variables that a NAS algorithm

should optimize can be divided into two categories: training hyperparameters and archi-

tectural parameters. Training hyperparameters, such as the learning rate or optimizer

type, influence the training procedure (i.e. Definition 1.2.1). Architectural parameters,

such as the type or number of layers, define the network architecture. While NAS is

conceptually similar to HPO, representing the architecture of a neural network is more

complex. Depending on the number of design choices contained in the search space,

the connections between layers and the hyperparameters of these layers can be modeled,

making direct array representations quickly insufficient.

1.2.3.1 Search Space

In Neural Architecture Search (NAS) frameworks, the search space should contain all

possible neural architectures suitable for a given problem, which can become large and

complex.

Macro-level search space One of the earliest approaches was NEAT (for NeuroEvo-

lution of Augmenting Topologies, see Stanley and Miikkulainen 2002). NEAT represents

the architecture at the neuron level and demonstrates the potential to evolve both net-

work weights and topologies for complex tasks. Over a decade later, the focus shifted

to gradient descent for network weights (a topic not covered in this thesis), and more
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Figure 1.5: Adjacency matrix and path-based representations for macro-level search
spaces. The figure has been reproduced from the paper White et al. (2020).

constrained macro-level search spaces were introduced. These macro-level search spaces

explore entire layers and network-wide parameters, including the number and type of

layers, connections, and filter sizes (but not the trainable weights).

Macro-level search spaces were utilized by Baker et al. (2022), who introduced

MetaQNN, a reinforcement learning-based method for automatically generating high-

performance Convolutional Neural Network (CNN) architectures. The architecture is a

sequence of a maximum number of layers. Each layer is associated with several can-

didate operations, including convolution, pooling, and feed-forward. Each operation is

associated with a specific set of hyperparameters, including termination hyperparameters

that determine the final layer of the architecture. The neural networks are represented

as graphs, with operations defined on the nodes.

Common representations for those graphs, as detailed by White et al. (2020), are

through the adjacency matrix on one side, which represents the architecture as a list

of edges and operations, or path-based approaches, which represent the architecture as

a set of paths from the input to the output. One-hot and categorical encodings are

then used to pass the configuration to various search algorithms. Figure 1.5 illustrates

both representations and encodings. These approaches impose significant constraints on

the representable network diversity. The number of nodes and the number of candidate

operations are restricted. Additionally, the hyperparameters of the latter cannot be

optimized.
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Weights sharing To accelerate the search strategy, weight sharing, also known as

one-shot architecture search, was implemented. The search space is contained within

a single large network capable of emulating any architecture considered. Training is

conducted on this extensive architecture, and at the completion of the training process,

the optimal sub-architecture is retained, as illustrated in Figure 1.6. SMASH, a one-shot

architecture search method introduced by Brock et al. (2018), involves gradually pruning

a super-network by setting some branches to zero to obtain the final model. This rep-

resentation can be memory-expensive, as it requires the simultaneous training of all the

candidate choices. The macro-level approach offers greater flexibility in exploring novel

architectures; however, it is less efficient computationally. Researchers have explored

more constrained and efficient alternatives due to the vastness of macro-level search

spaces.

Input 2Input 1 Input 3

Concat

1x1

3x3

3x3
5x5

5x5

Pool

Identity

Sum

In super-network
& sub-architecture

In super-network

Figure 1.6: An example of a one-shot cell that receives three inputs, concatenates them,
applies a 1 × 1 convolution operation, followed by multiple other operations, and finally
sums the result together. A sub-architecture, denoted by solid edges, can be evaluated
by disabling inputs and operations by zeroing them out.

Cell-based search space The period between 2017 and 2019 saw a number of sig-

nificant contributions to NAS in computer vision tasks, including works from Zoph and

Le (2016), Zoph et al. (2018), Real et al. (2019), Liu et al. (2018d), or Elsken et al.

(2019). Successful computer vision architectures, such as ResNet (He et al., 2016), are

characterised by repetitive patterns of convolutional and pooling layers. This has led to

the introduction and exploration of cell-based search spaces.

In this paradigm, a neural network consists of one or more cells that are stacked

repetitively. Each cell is represented as a small Directed Acyclic Graph (DAG), as shown

in Figures 1.7a and 1.7b. The nodes in the graph correspond to operations selected from

a predefined set. These operations generally include 3×3 and 5×5 convolutions, pooling,

and occasionally more advanced operations such as dilated convolution or separable con-

volution. The DAG edges denote the connections between these operations. Typically,
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the input connections for each node are limited to two, a design choice that simplifies

the architecture while ensuring that the graph remains manageable. Additionally, the

number of nodes within a cell is often fixed, allowing the entire cell to be encoded as a

fixed-length vector, which facilitates the application of various optimization algorithms

(Zoph et al., 2018).

Hierarchical search space Hierarchical search spaces (Liu et al., 2018c) build upon

the cell-based concept by organizing cells within a higher-level structure. This approach

enables architectures with multiple levels or modules, offering a more sophisticated frame-

work for complex tasks. In these spaces, architectures can be constructed by stacking

different types of cells (e.g., reduction cells for downsampling and normal cells for feature

extraction) in a multi-level configuration (see Figure 1.7), resulting in highly expressive

models. Hierarchical search spaces enable NAS algorithms to adapt network depth,

width, and cell composition dynamically, potentially resulting in more complex architec-

tures suitable for a broader range of tasks (Liu et al., 2018a).

input

output

(a) Normal cell

input

output

(b) Reduction cell

input

output

(c) Architecture built by stacking the cells.

Figure 1.7: Example of an architecture found with a hierarchical search space based on
two cells: normal and reduction cells.
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Morphing-based search space Recently, morphing-based search spaces, such as

ProxylessNAS by Cai et al. (2018b), have been proposed as an efficient alternative,

particularly useful when starting from a strong, manually designed base model. In this ap-

proach, the search algorithm starts with an existing architecture and iteratively “morphs”

it by adding or modifying layers, connections, or filter sizes. This approach, character-

ized by its constrained yet adaptive nature, has been shown to reduce the computational

burden compared to a full search. Rather than generating entirely new architectures

from scratch, the search focuses on incremental modifications.

Embeddings To leverage search algorithms that operate in continuous search spaces,

efforts have been made to develop embedding-based search spaces. These spaces rep-

resent architectures as embeddings in a continuous latent space. These embeddings

are typically learned using techniques such as variational autoencoders (Chatzianastasis

et al., 2021) or graph neural networks (White et al., 2020). Embedding-based search

spaces have proven effective in handling diverse architectures and supporting fine-grained

optimization. However, they may face challenges in capturing complex architectures.

Context-free grammars Recognising that NAS has primarily been applied to over-

engineered, restrictive search spaces (e.g. cell-based) that have not given rise to truly

novel architectural patterns (White et al., 2023), recent advances in NAS have intro-

duced the use of context-Free Grammars (CFGs) to construct hierarchical search spaces.

This approach, as described in Schrodi et al. (2024) and illustrated Figure 1.8, exploits

the recursive nature of CFGs to generate highly expressive and comprehensive search

spaces that can encompass a wide range of architectural patterns. By using CFGs, re-

searchers can define a unifying framework that allows for efficient exploration of both

micro and macro architectural levels, promotes regularity, and allows for the incorporation

of user-defined constraints. This method has shown promise in improving the efficiency

and effectiveness of NAS by allowing search across complete architectures rather than

limited aspects, paving the way for the discovery of novel and high-performing neural

network designs.

S → Sequential(S, S, S)
→ Sequential

(
Residual(S, S, S),

Residual(S, S, S), linear
)

→ Sequential
(
Residual(conv, id, conv),

Residual(conv, id, conv), linear
)

S S S
Level 1

S S

S S S S linear
Level 2

id id

conv conv conv conv linear
Level 3

Figure 1.8: Context-free grammar based search space from Schrodi et al. (2024). On the
right is the graph representation of the function composition of the neural architecture
from the equation on the left.
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NAS’s diverse search spaces enable it to address a range of challenges, striking a

balance between flexibility, creativity, and efficiency for specific tasks. Cell-based and

hierarchical spaces are particularly effective for achieving high performance at manageable

search costs, while macro-, morphing- and embedding-based spaces provide flexibility to

search for complex or customized architectures. The selection of search space is therefore

a critical factor in NAS, directly impacting both the computational feasibility and the

effectiveness of the search.

1.2.3.2 Search Strategy

The primary challenge in NAS search strategies is the complex and often discrete nature

of the search space. This includes connectivity patterns and operations that do not fit

into a continuous vector like traditional hyperparameters. This discrete nature of the

space poses significant challenges to the application of search strategies. Researchers

have developed several NAS methods, which are usually applicable for a specific type of

search space.

Reinforcement-Learning RL-based NAS, as seen in Zoph and Le (2016), was among

the first approaches, where an RL controller sequentially generated architectures by pre-

dicting discrete decisions, like selecting layer types or connections, and received rewards

based on the model’s accuracy. Despite its flexibility, this approach is computationally

intensive, as each new architecture requires training from scratch, making it costly in

terms of time and resources. To overcome such inefficiencies, Efficient NAS (ENAS)

introduced by Pham et al. (2018) exploits the idea of supernetwork by searching for

an optimal subgraph within a large computational graph representing all design choices.

These approaches avoid having to train each candidate model from scratch. How-

ever, weight sharing can sometimes lead to suboptimal final architectures, as the shared

weights may not transfer perfectly to individually trained architectures.

Differentiable search The DARTS (Differentiable Architecture Search) method in-

troduced by Liu et al. (2018d) made another significant step by transforming NAS into

a differentiable problem. DARTS employs a supernetwork, assigning a probability to

each candidate operation of being selected in the final architecture. These probabilities

are optimized by gradient descent with respect to the validation loss. The optimization

process is illustrated Figure 1.9 This approach significantly reduces search time, making

NAS feasible on single GPU setups. However, DARTS relies on approximating the archi-

tecture selection in a differentiable way, which does not directly translate to the discrete

selections required in actual neural networks, sometimes resulting in architectures that

are less robust.
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Figure 1.9: Differentiable Architecture Search (DARTS) optimization scheme. Step 1 is
depicted Figure 1.9a: operations on the edges are initially unknown. Step 2 is depicted
Figure 1.9b: continuous relaxation of the search space by placing candidate operations
on each edge. Step 3 is depicted Figure 1.9c: joint optimization of the probabilities and
the model weights by solving a bilevel optimization problem. Finally, step 4 is depicted
Figure 1.9d: inducing the final architecture from the learned probabilities.

Evolutionary Algorithms Evolutionary algorithms (EA) provide an alternative solu-

tion by leveraging genetic programming techniques to explore the search space. Amoe-

baNet, introduced by Real et al. (2019), incorporates mutations, crossover, and selection

to systematically evolve a population of architectures within a hierarchical cell-based

search space. This approach is highly flexible and adapts well to graph representations;

however, it often requires substantial computational resources.

Bayesian optimization Bayesian optimization (BO) with Gaussian processes is only

applicable to continuous variables. To apply BO on NAS, one strategy is to enforce a

continuous search space using embedding methods, as it has been done by Chatzianas-

tasis et al. (2021). Alternatively, new distance metrics have been proposed to measure

the similarity between graph-based NAS encoding configurations, such as the network

morphology metric from AutoKeras (see Jin et al. 2019). When employing tree-based

surrogate models, continuous representations are no longer necessary. For instance,

Mendoza et al. (2016) employed the Bayesian optimization (BO) with the random forest

surrogate model from SMAC.

Together, these approaches reflect the diversity and complexity of NAS search algo-

rithms. The discrete nature of the search space necessitates innovative methods beyond

traditional optimization techniques, and each strategy balances trade-offs between effi-

ciency, search space fidelity, and computational demands.
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1.2.4 AutoML systems

Based on the search spaces and search algorithms mentioned above, AutoML systems

have been developed by both academia and industry to address model selection, HPO,

NAS, or directly the CASH problem. Some of these systems have been implemented as

no-code interfaces, allowing users with limited or no experience in machine learning to

access cutting-edge solutions directly.

Early developments in the 2010s led to the emergence of frameworks such as Auto-

WEKA (see Thornton et al. 2013) in 2013. The framework is based on the WEKA library

and uses Bayesian optimization for automated model selection and hyperparameter opti-

mization. Auto-WEKA relies on a large search space of algorithms and hyperparameters,

making it versatile but resource intensive. Following Auto-WEKA, TPOT (Olson and

Moore, 2016) introduced genetic programming for optimizing scikit-learn (Kramer and

Kramer, 2016) machine learning pipelines, potentially creating complex pipelines, and

Auto-sklearn (Feurer et al., 2015), developed in 2015, integrates meta-learning and en-

semble construction.

Commercial solutions began to emerge with companies like DataRobot3 (founded

in 2012), which automates the end-to-end machine learning process with a no-code

interface. Optuna (Akiba et al., 2019), developed by Preferred Networks and introduced

in 2017, is a hyperparameter optimization framework that uses cutting-edge algorithms

for efficient search and pruning that can be applied across various machine learning

frameworks. Google Cloud AutoML (Bisong et al., 2019), introduced in 2018, provides

a suite of tools for building custom machine learning models with minimal coding and

support for various data types.

AutoML systems dedicated to automated deep learning or NAS started with Au-

toKeras (Jin et al., 2019), introduced in 2018 and based on the Keras library, which

focuses on neural architecture search using Bayesian optimization. The NAS framework

for Pytorch called Auto-PyTorch was released in 2020 and combines neural architecture

search with hyperparameter optimization, supporting tabular data (Zimmer et al., 2021)

and time series forecasting (Deng et al., 2022).

Recently, AutoML libraries based on a variety of models have been developed. For

example, AutoGluon (see Erickson et al. 2020 for the tabular version and Shchur et al.

2023 for the time series one), developed by Amazon in 2020, supports multimodal data

(see Tang et al. 2024) with stacking and ensembling, providing flexibility but facing inter-

pretability challenges due to model complexity and the black-box nature of its algorithms.

Its competitor, FLAML (Wang et al., 2021), from Microsoft Research in 2021, prioritizes

efficiency with lightweight search strategies, making it suitable for resource-constrained

environments.

Finally, basic models have also been studied, such as TabPFN (Hollmann et al., 2023),

published in 2023, which uses a transformer-based approach for small tabular data sets,

3https://www.datarobot.com/

https://www.datarobot.com/
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providing fast performance but limited to smaller data sizes. A study by Gijsbers et al.

(2024) compared some of these systems on various regression and classification tasks

and found that AutoGluon consistently had the highest average rank in their benchmark.

Many of these systems, such as Auto-sklearn, TPOT, and Optuna, are widely used in

both academic research and industrial applications due to their robust performance and

flexibility.

1.3 AutoML for energy forecasting

Having established the value of AutoML for the electricity sector and reviewed the major

developments in this area, we now review how these two areas have been combined to

date. A small number of studies have been conducted using HPO, AutoDL, and AutoML

methods for load and production forecasting tasks.

1.3.1 AutoML systems

A number of the setups mentioned in Section 1.1.2 for production and load forecasting

can be represented as a regression problem on tabular data. The various explanatory

variables can be put into a one-dimensional vector Xt ∈ RF , where F ∈ N⋆, which can

be mapped into the target variable Yt ∈ R via a regressor model. A number of papers

have used this representation to successfully apply AutoML frameworks to load and wind

power forecasting.

Therefore, Wang et al. (2019b) applied AutoML to the load forecasting problem

for the first time. Specifically, they used two systems, namely Auto-sklearn (Feurer

et al., 2015) and TPOT (Olson and Moore, 2016), and showed that AutoML can reduce

the effort to build performing predictive models for the load forecasting task. More

recently, Meng et al. (2022) compared the performance of tabular AutoGluon (Erickson

et al., 2020), tabular AutoPytorch (Zimmer et al., 2021), and Auto-Keras (Jin et al.,

2019) on a regional short-term load forecast, and found that AutoGluon outperformed

the other two AutoML frameworks on this dataset, and Koutantos et al. (2024) used

FlaML (Wang et al., 2021), AutoML by H2O. AI (LeDell and Poirier, 2020) and AutoTS

(Wang et al., 2024) to forecast the national Greek load. Kovalevsky et al. (2022)

estimated the coefficients of a wind turbine power using Auto-WEKA (Thornton et al.,

2013), Hyperopt-sklearn (Komer et al., 2014) and Auto-Sklearn. They showed that

forecasts using the power curve estimated by the AutoML frameworks were better than

those obtained with theoretical power predictions based on physical approximations. Tu

et al. (2022) performed hyperparameter optimization on deep learning models for wind

power forecasting using Optuna (Akiba et al., 2019) or SMAC3 (Lindauer et al., 2022)

and argued that the AutoML frameworks did not perform this task well enough to be

preferable to manually designed models.
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This work demonstrates the potential of HPO and AutoML systems for load and

production forecasting. The representation of forecasting problems as regression prob-

lems allows the state-of-the-art AutoML frameworks from the tabular data community

to be directly applied in a fairly powerful way. However, the articles that apply these

frameworks to load and wind power forecasting tasks generally limit themselves to com-

paring AutoML methods with each other or with fairly simple baselines, rather than with

state-of-the-art forecasting models. One might speculate that their performance might

be somewhat lower because regressors on tabular data assume that the rows are inde-

pendent and identically distributed, which is not the case between different time steps

of load or production curves.

1.3.2 Automated Deep Learning

Most automated deep learning research focuses on optimizing convolutional and recur-

rent network architectures applied to image or text data. These are difficult to apply

to load and production data. However, some work has been done on optimizing neural

networks for energy time series forecasting. The general approach is to use HPO tech-

niques and include some architecture-related hyperparameters in the optimization, such

as the number of layers.

Therefore, Firmin et al. (2021) used various metaheuristics and ensembling tech-

niques to optimize the hyperparameters of a deep learning model to forecast French load

consumption. Architectural hyperparameters such as the number of layers and whether or

not to add a dropout layer were among the elements to be optimized. Pujari et al. (2023)

implemented an evolutionary-based HPO framework to optimize a deep convolutional

LSTM architecture for wind power forecasting. Jalali et al. (2021) used a reinforcement

learning algorithm to optimize a stacked architecture of nonlinear autoregressive neural

network, wavelet neural network, and LSTM to model the wind characteristic data to

predict the wind power. Finally, Yang et al. (2024) extended the Efficient Architecture

Search (EAS) framework of Cai et al. (2018a), originally created to optimize convolu-

tional architectures, and added recurrent neural networks to the available layers. They

applied their work to load and wind power forecasting.

The search spaces in these works are mostly arrays of fixed size containing the

various hyperparameters to be optimized. These approaches reveal a clear gap in the

literature: there is a need for effective ways to encode architectures for tasks broader

than image and text processing. While these architectures consist of repetitive patterns

of the same layer sequences, other tasks require models that combine different types of

layers, with hyperparameters that affect performance almost as much as the architecture

itself. Such models cannot be represented within existing search spaces, nor are current

search algorithms versatile and efficient enough to handle such a large number of design

choices. While this observation is made here in the context of energy forecasting, it

has also been noted by Tu et al. (2022) for applications related to climate change that
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deal with physically constrained problems or spatio-temporal data, and by Baratchi et al.

(2024), who noted the lack of AutoDL search spaces designed for more diverse types of

data, whether unstructured, temporal, or spatio-temporal.

1.3.3 Open problems

The research teams at EDF have developed highly sophisticated models for forecasting

load and wind power production. However, as the number of signals to be forecasted

continues to grow, there is an increasing need for automating the creation of efficient

forecasting models. AutoML is an ideal community for addressing this challenge. How-

ever, the tools developed to date are limited to regressors for tabular data, time series

forecasting models, and neural networks for images and text data. These approaches

are insufficient for meeting the needs of energy forecasting. They struggle to effectively

handle time series data, which often includes dependencies on numerous explanatory

variables in various formats (e.g., weather grids, calendar indicators, graphs, text). Ad-

ditionally, these tools are limited in their ability to incorporate advanced energy fore-

casting techniques, such as generalized additive models (GAMs) or CNN-LSTM neural

networks, into their search space. This thesis aims to address these identified issues,

thereby bridging the gap between the work of the AutoML community in automating

the creation of high-performance machine learning models and the specific model re-

quirements of electricity forecasters.The research directions we consider most promising

in this context fall into three main categories.

1. Search Spaces. The search spaces from the literature do not encompass some

of the state-of-the-art models for production and load forecasting such as GAMs

or various neural networks.

2. Search Algorithms. A search space encompassing a wide range of models is not

only very large, but also made up of a variety of objects. This complicates the

search process. The development of new algorithms that are both efficient and

versatile is essential. These algorithms should be capable of handling a variety of

models and their diverse representations.

3. Creating a software for electricity forecasters. AutoML softwares are de-

signed with one primary focus: their users. Electrical forecasting applications are

diverse. It is crucial to provide a tool that is both efficient and easy to use, while

also allowing users to customize it to their specific needs. The search space, search

algorithm, and performance evaluation must be sufficiently modular to adapt to

various and complex tasks. Additionally, users should have the flexibility to inte-

grate their own expertise, either to accelerate the search process or to enhance the

performance of the system.
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1.4 Contributions

This thesis is an initial step in addressing these challenges by optimizing deep neural

networks for load and production forecasting. There is a clear opportunity here, as

while neural networks are already used in many areas such as image and text processing,

they are not yet widely used for time series forecasting or regression – including in the

energy sector. AutoDL has centered on enhancing architectures in domains where deep

learning has already demonstrated exceptional performance. The next step is to assess

its potential in areas where it has not yet demonstrated its capabilities.

In this thesis, we introduce DRAGON, for DiRected Acyclic Graph optimizatioN, an

open-source Python package offering multiple tools to optimize deep neural networks

for various applications. DRAGON is a toolbox that can be used to create AutoML

frameworks for specific applications. Our contributions are separated into two Parts.

In Part II we present the algorithmic approach developed for AutoDL and introduce

DRAGON, the software we have created to support this work. In Part III we detail how

DRAGON can be used for energy sustainability with applications to load and wind power

forecasting.

An algorithmic framework for the optimization of deep neural networks archi-

tecture and hyperparameters. While Neural Architecture Search has seen significant

study in recent years, the proposed works generally utilize rigid, manually-designed search

spaces. These optimization frameworks are effective for image and text-based tasks, but

extending them to other areas is challenging.

In this work, we propose a new method for encoding Deep Neural Networks (DNNs)

that allows for more flexible search spaces than those existing in the literature. As in

many of the search spaces in the literature mentioned above, whether at the micro or

macro level, DNNs are encoded by Directed Acyclic Graphs (DAGs), where the nodes

are operations. However, in most cases, these operations belong to a fixed, reduced list,

and the hyperparameters cannot be optimized. In contrast, our representation allows for

the inclusion of any PyTorch operation selected by the user within the search space. It

is also possible to choose the hyperparameters to optimize and in which range of values.

This approach enables the creation of novel DNN structures by combining different

operations (e.g., convolutional, recurrent, attention-based, etc.). Finally, in addition to

the operations, the structure of the DAG is fully optimized. In contrast to the search

spaces documented in the literature, there are no restrictions on the number of edges

that can arrive at a node.

We are proposing specific neighborhoods and evolution search operators to modify

and optimize those graphs. These search operators are compatible with any metaheuristic

that can manage mixed search spaces. We demonstrate the value of such a search

space and search operators on a time series forecasting benchmark implementing an

evolutionary algorithm. The results demonstrate the superiority of our AutoDL approach,
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surpassing state-of-the-art handcrafted models and AutoML techniques for time series

forecasting on multiple datasets, while also enabling the creation of innovative neural

architectures.

Keisler, J., Talbi, E.-G., Claudel, S. Cabriel, G. An algorithmic framework for

the optimization of deep neural networks architectures and hyperparam-

eters. Journal of Machine Learning Research (JMLR), 2024.

Mutant-UCB: towards flexible and efficient search algorithms. It is not possible

to manipulate the DAGs with complex nodes used in our search space for most efficient

search algorithms, such as BO or gradient-based methods. Given the design of the

neighborhoods, the evolutionary algorithm was the obvious choice to navigate this space.

However, it should be noted that the experiments required a significant amount of time,

in comparison to other AutoDL frameworks. To address this challenge, we developed

a novel approach, dubbed Mutant-UCB, to enhance the efficiency of the evolutionary

algorithm. This algorithm integrates a bandit-approach with evolutionary operators.

This approach maintains the flexibility of the evolutionary algorithm while enhancing

resource allocation and selection processes. To illustrate the versatility of Mutant-UCB,

the algorithm is presented in the generic context of model selection, with experiments

conducted within our search space to optimize deep neural networks (DNNs) for image

classification. The efficacy of Mutant-UCB is demonstrated by its superior performance

in comparison to a random search, the previously utilized evolutionary algorithm, and

the bandit-based algorithm Hyperband, as evidenced by experiments conducted on three

open-source datasets.

Brégère, M., Keisler, J. A Bandit Approach with Evolutionary Operators for

Model Selection: Application to Neural Architecture optimization for Im-

age Classification International Conference on Knowledge Discovery and Data

Mining (ACM SIGKDD), International Workshop on Resource-Efficient Learning

for Knowledge Discovery, 2024.

Packaging and tutorial for DRAGON. The DAG-based search space and the various

search algorithms (including the evolutionary algorithm and Mutant-UCB) that might

be used with it have been implemented as an open-source package called DRAGON4.

The package offers different levels of customization so that DRAGON can be applied to

more or less complex tasks, and provides a distributed version of the search algorithms on

High Performance Computing (HPC) hardware. The DRAGON package is an effective

toolbox for developing AutoDL tools for a wide range of DNN applications. We have

4The package documentation is available online: https://dragon-tutorial.readthedocs.io

https://dragon-tutorial.readthedocs.io
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successfully used it to build the AutoDL frameworks EnergyDragon and WindDragon,

which are specifically designed for load and wind power forecasting tasks.

EnergyDragon: automated deep learning for load fore-

casting. We developed EnergyDragon, an automated deep

learning framework, using DRAGON to address the load fore-

casting task. The forecasting setup is a pure regression one,

with past load data excluded from the input features. Ener-

gyDragon automatically selects the features fed to the DNNs

during the DNN training in an innovative way and optimizes

the architecture and the hyperparameters of the models. We

demonstrate that EnergyDragon can identify novel neural net-

works that surpass existing load forecasting methods and other AutoDL approaches on

both French and Norwegian load signals.

Keisler, J., Claudel, S., Cabriel, G., Brégère, M. Automated load forecasting.

International Conference on Automated Machine Learning (AutoML), 2024.

Beyond EnergyDragon: automated spatio-temporal weather modeling for load

forecasting. This initial AutoDL approach for load forecasting demonstrated signifi-

cant promise; however, the forecasting pipeline was not yet fully automated in the initial

version of EnergyDragon. The input weather data was already processed using domain

knowledge. Weather forecasts from various weather stations were aggregated to create

a unique and fixed national indicator. However, it is important to note that the spatio-

temporal dependencies of load to weather may change over time or from one signal to

another. It is evident that spatial variations do not have a uniform impact, given that

consumers are not evenly distributed across the territory. In contrast, temporal varia-

tions can have delayed effects on load due to the thermal inertia of buildings. We had

the conviction that DNNs were capable of automatically extracting relevant information

from raw observations from different weather stations. Consequently, we have integrated

an automated representation of spatio-temporal weather modeling for load forecasting

into EnergyDragon. The results demonstrate the competitiveness of this approach and

its superior performance in comparison to the domain-based weather representation that

has been employed in the framework to date.

Keisler, J., Brégère, M. Automated spatio-temporal modeling for load fore-

casting. International Ruhr Energy Conference (INREC), Best paper award, 2024.

WindDragon: automated deep learning for regional wind power forecasting

from wind speed maps. We addressed a secondary use case with DRAGON: regional
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wind power forecasting, leading to the development of WindDragon. We successfully

performed short-term (1 to 6 hour horizon) wind power forecasting for the twelve French

regions by representing the problem as a regression task over a Numerical Weather Pre-

dictions (NWP) wind speed map. Our findings demonstrated the superior performance

of WindDragon over forecasts from the French TSO, as well as a handcrafted neural

network and other models developed by the regional wind power forecasting community

for each region. The use of Mutant-UCB as a search algorithm was instrumental in

rapidly identifying effective models for each region. A preliminary version appeared in:

Keisler, J., Le Naour, E. WindDragon: Enhancing Wind Power Forecasting

with Automated Deep Learning. International Conference on Learning Rep-

resentations (ICLR), Tackling Climate Change with Machine Learning Workshop,

2024.

The manuscript incorporates the extended version:

Keisler, J., Le Naour, E. WindDragon: Automated Deep Learning for re-

gional wind power forecasting. Submitted, 2024.

1.5 Structure of the thesis

The structure of the manuscript and the links between the chapters are illustrated Fig-

ure 1.10. The chapters content are detailed below. Part II introduces the algorithmic

objects created for Automated Deep Learning in this thesis as well as the package im-

plementation of these objects.

• Chapter 2 presents a new encoding strategy for Directed Acyclic Graph-based

Deep Neural Networks (DNNs). This encoding allows the creation of a large

variety of DNNs, making it applicable to a wide range of data types and tasks. To

navigate efficiently in such a search space, search operators are defined to modify

the representations. They are used to implement an evolutionary algorithm. The

effectiveness of the representation and search algorithm is demonstrated on a time

series forecasting benchmark.

• Chapter 3 introduces Mutant-UCB, a new model selection algorithm that combines

the bandit approach and evolutionary operators. This search algorithm is designed

to overcome some of the shortcomings of the evolutionary algorithm. By using

resource allocation and a bandit-based selection strategy, it becomes more efficient

than the evolutionary algorithm of Chapter 2. We prove this by comparing the

two algorithms on our search space using three datasets for image classification.
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Figure 1.10: Contents and organization of the thesis manuscript

• Chapter 4 provides a tutorial on the DRAGON package, which is the Python

implementation of the DAG search space and the various search algorithms. The

tutorial lists the package objects, gives examples of how to use them, and details

how the software can be distributed on HPC clusters.

Part III presents how DRAGON has been successfully applied to energy forecasting tasks.

• Chapter 5 introduces EnergyDragon, an automated deep learning framework for

load forecasting. EnergyDragon automates the feature selection and optimizes the

architecture and hyperparameters to forecast load consumption. The experiments

on the French and Norwegian national load signals demonstrate the effectiveness

of EnergyDragon.

• Chapter 6 iterates over Chapter 5 to further automate the deep learning pipeline for

load forecasting. This chapter details the integration of weather data processing

automation into EnergyDragon.

• Chapter 7 introduces WindDragon, an automated deep learning framework for

wind power forecasting. WindDragon generates DNNs to regress from numerical

weather prediction grids to the wind power signal for the twelve French regions.

Finally, Part IV concludes the manuscript.
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• Chapter 8 presents a global summary of the thesis and identifies some perspectives

to develop DRAGON, currently focused on neural networks, into a more generic

AutoML tool, encompassing other models and other types of learning.



Part II

Automated Deep Learning:

algorithms and software
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Chapter 2

An algorithmic framework for the

optimization of deep neural networks

architectures and hyperparameters

In this chapter, we introduce the algorithmic framework for the optimization of deep

neural networks architectures and hyperparameters that serves as a basis for the package

DRAGON. We first detail how the representations of Deep Neural Networks (DNNs)

within Automated Deep Learning systems are limited to apply them to tasks other than

image or text processing. We take the example of time series forecasting to support

our argument. We then propose a new way of encoding DNNs that allows for more

flexible search spaces than those existing in the literature. We used Directed Acyclic

Graphs (DAGs), where the nodes are DNNs layers. They can be any PyTorch operation

parameterized by any hyperparameters that the user wants to include in the search

space. We propose specific neighborhoods and evolution search operators to modify

and optimize those graphs. These search operators can be used with any metaheuristic

capable of handling mixed search spaces. We demonstrate the relevance of such a

search space and search operators on a time series forecasting benchmark implementing

an evolutionary algorithm. The results show that our framework approach outperforms

state-of-the-art handcrafted models and AutoML techniques for time series forecasting

on numerous datasets while being able to create innovative neural architectures.

Keisler, J., Talbi, E-G., Claudel, S., and Cabriel, G. An algorithmic framework

for the optimization of deep neural networks architectures and hyperpa-

rameters. Journal of Machine Learning Research (JMLR) 2024.
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2.1 Introduction

With the recent successes of deep learning in many research fields, deep neural networks

(DNN) optimization stimulates the growing interest of the scientific community (Talbi,

2021). While each new learning task requires the handcrafted design of a new DNN,

automated deep learning facilitates the creation of powerful DNNs. Interests are to

give access to deep learning to less experienced people, to reduce the tedious tasks of

managing many parameters to reach the optimal DNN, and finally, to go beyond what

humans can design by creating non-intuitive DNNs that can ultimately prove to be more

efficient.

Optimizing a DNN means automatically finding an optimal architecture for a given

learning task: choosing the operations and the connections between those operations and

the associated hyperparameters. The first task is known as Neural Architecture Search

(Elsken et al., 2019), also named NAS, and the second, as Hyperparameters Optimization
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(HPO). Most works from the literature try to tackle only one of these two optimization

problems. Many papers related to NAS (White et al., 2021; Loni et al., 2020; Wang et al.,

2019a; Sun et al., 2018; Zhong et al., 2020) focus on designing optimal architectures

for computer vision tasks with stacked convolution and pooling layers. Because each

DNN training is time-consuming, researchers tried to reduce the search space by adding

many constraints preventing from finding irrelevant architectures. These strategies are

relevant in the case of computer vision or NLP, where the models to be trained are huge

and the high performance architectures are well identified. However, there is a gap in

the literature regarding the use of NAS and HPO for problems where neural networks

could be efficient, but the relevant models have not been clearly identified.

To fill this gap, we introduce DRAGON (for DiRected Acyclic Graphs OptimizatioN),

a new optimization framework for DNNs based on the evolution of Directed Acyclic

Graphs (DAGs). The encoding and the search operators are highly flexible and may be

used with various deep learning and AutoML problems. We ran experiments on time

series forecasting tasks and demonstrate on a large variety of datasets that DRAGON

can find DNNs which outperform state-of-the-art handcrafted forecasters and AutoML

frameworks. In summary, our contributions are as follows:

• The precise definition of a flexible search space based on DAGs, for the optimization

of DNN architectures and hyperparameters. This search space may be used for

various tasks, and is particularly useful when the performing architectures for a

given problem are not clearly identified.

• The design of efficient neighborhoods and variation operators for DAGs. With

these operators, any metaheuristic designed for a mixed and variable-size search

space can be applied. In this chapter, we investigate the use of an asynchronous

evolutionary algorithm.

• The validation of the algorithmic framework on a popular time series forecast-

ing benchmark (Godahewa et al., 2021). We compare ourselves with 15 hand-

crafted statistical and machine learning models (Godahewa et al., 2021) as well

as 6 AutoML frameworks on 27 datasets (Shchur et al., 2023). We show that

DRAGON outperforms the 21 models from this baseline on 11 out of 27 datasets.

The only competitive model is the AutoML framework AutoGluon (Shchur et al.,

2023), which outperforms the baseline on 10 out of 27 datasets and was beaten

by DRAGON on 14 out of 27 datasets.

The chapter is organized as follows: we review Section 2.2, the literature on deep

learning models for time series forecasting and AutoML. Section 2.3 defines our search

space. Section 2.4 presents our neighborhoods and variation operators within the evo-

lutionary algorithm. Section 2.5 details our experimental results obtained on a popular

time series forecasting benchmark. Finally, Section 2.6 gives a conclusion and introduces

further research opportunities.
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2.2 Related Work

2.2.1 Deep Learning for Time Series Forecasting

Time series forecasting has been studied for decades. The field has been dominated

for a long time by statistical tools such as ARIMA, Exponential Smoothing (ES), or

(S)ARIMAX, this last model allowing the use of exogenous variables. It now opens itself

to deep learning models (Liu et al., 2021b). These new models recently achieved great

performances on many datasets. Three main parts compose typical DNNs: an input

layer, several hidden layers and an output layer. In this chapter we apply our framework

to optimize the hidden layers for a given time series forecasting task (see Figure 2.5). In

this part, we introduce usual DNN layers for time series forecasting, which can be used

in our search space.

The first layer type from our search space is the fully-connected layer, or Multi-Layer

Perceptron (MLP). The input vector is multiplied by a weight matrix. Most architectures

use such layers as simple building blocks for dimension matching, input embedding or

output modelling. The N-Beats model is a well-known example of a DNN based on

fully-connected layers for time series forecasting (Oreshkin et al., 2020).

The second layer type (LeCun et al., 2015) is the convolution layer (CNN). Inspired

by the human brain’s visual cortex, it has mainly been popularised for computer vision.

The convolution layer uses a discrete convolution operator between the input data and

a small matrix called a filter. The extracted features are local and time-invariant if the

considered data are time series. Many architectures designed for time series forecasting

are based on convolution layers such as WaveNet (Oord et al., 2016) and Temporal

Convolution Networks (Lea et al., 2017).

The third layer type is the recurrent layer (RNN), specifically designed for sequential

data processing, therefore, particularly suitable for time series. These layers scan the

sequential data and keep information from the sequence past in memory to predict its

future. A popular model based on RNN layers is the Seq2Seq network (Cho et al., 2014).

Two RNNs, an encoder and a decoder, are sequentially connected by a fixed-length

vector. Various versions of the Seq2Seq model have been introduced in the literature,

such as the DeepAR model (Salinas et al., 2020), which encompasses an RNN encoder

in an autoregressive model. The major weakness of RNN layers is the modelling of long-

term dynamics due to the vanishing gradient. Long Short-Term Memory (LSTM) and

Gated Recurrent Unit (GRU) layers have been introduced (Hochreiter and Schmidhuber,

1997; Chung et al., 2014) to overcome this problem.

Finally, the layer type from our search space is the attention layer. The attention

layer has been popularized within the deep learning community as part of Vaswani’s

transformer model (Vaswani et al., 2017). The attention layer is more generic than the

convolution. It can model the dependencies of each element from the input sequence

with all the others. In the vanilla transformer (Vaswani et al., 2017), the attention
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layer does not factor the relative distance between inputs in its modelling but rather the

element’s absolute position in the sequence. The Transformer-XL (Dai et al., 2019), a

transformer variant created to tackle long-term dependencies tasks, introduces a self-

attention version with relative positions. Cordonnier et al. (2020) used this new attention

formulation to show that, under a specific configuration of parameters, the attention

layers could be trained as convolution layers. Within our search space, we chose this last

formulation of attention, with the relative positions.

The three first layers (i.e. MLP, CNN, RNN) were frequently mixed into DNN

architectures. Sequential and parallel combinations of convolution, recurrent and fully

connected layers often compose state-of-the-art DNN models for time series forecasting.

Layer diversity enables the extraction of different and complementary features from input

data to allow a better prediction. Some recent DNN models introduce transformers

into hybrid DNNs. In Lim et al. (2021), the authors developed the Temporal Fusion

Transformer, a hybrid model stacking transformer layers on top of an RNN layer. With

this in mind, we built a flexible search space which generalizes hybrid DNN models

including MLPs, CNNs, RNNs and transformers.

2.2.2 Search Spaces for Automated Deep Learning

Designing an efficient DNN for a given task requires choosing an architecture and tuning

its many hyperparameters. It is a difficult, fastidious, and time-consuming optimization

task. Moreover, it requires expertise and restricts the discovery of new DNNs to what

humans can design. Research related to the automatic design and optimization of DNNs

has therefore risen this last decade (Talbi, 2021). The first challenge in automatic deep

learning (AutoDL), and more specifically neural architecture search (NAS), is search

space design. Typical search spaces for Hyperparameters Optimization (HPO) are a

product space of a mixture of continuous and categorical dimensions (e.g. learning rate,

number of layers, batch size), while NAS focuses on optimizing the topology of the DNN

(White et al., 2023). Encoding a DNN topology is a complex task because the encoding

should not be too broad and allow too many architectures to keep the search efficient.

On the contrary, if the encoding is too restrictive, we may miss promising solutions and

novel architectures. This means before creating the search space we need to choose

which DNNs or type of DNNs are relevant or not to the problem at hand. Once we have

decided on this broad set of DNNs, we define the search space following a set of rules

(Talbi, 2021):

• Completeness: all (or almost all) relevant DNNs from this broad set should be

encoded in the search space.

• Connectedness: a path should always be possible between two encoded DNNs in

the search space.
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• Efficiency: the encoding should be easy to manipulate by the search operators (i.e.

neighborhoods, variation operators) of the search strategy.

• Constraint handling: the encoding should facilitate the handling of the various

constraints to generate feasible DNNs.

A complete classification of encoding strategies for NAS is presented in Talbi (2021)

and reproduced Figure 2.1. We can discriminate between direct and indirect encodings.

With direct strategies, the DNNs are completely defined by the encoding, while indirect

strategies need a decoder to find the architecture back. Amongst direct strategies,

one can discriminate between two categories: flat and hierarchical encodings. In flat

encodings, all layers are individually encoded (Loni et al., 2020; Sun et al., 2018; Wang

et al., 2018a, 2019a). The global architecture can be a single chain, with each layer

having a single input and a single output, which is called chain structured (Assunção

et al., 2019), but more complex patterns such as multiple outputs, skip connections,

have been introduced in the extended flat DNNs encoding (Chen et al., 2024). For

hierarchical encodings, they are bundled in blocks (Pham et al., 2018; Shu et al., 2020;

Liu et al., 2018b; Zhang et al., 2019). If the optimization is made on the sequencing of

the blocks, with an already chosen content, this is referred to as inner-level fixed (Camero

et al., 2021; White et al., 2021). If the optimization is made on the blocks’ content

with a fixed sequencing, it is called outer level fixed. A joint optimization with no level

fixed is also an option (Liu et al., 2019). Regarding the indirect strategies, one popular

encoding is the one-shot architecture (Bender et al., 2018; Brock et al., 2018). One

single large network resuming all candidates from the search space is trained. Then the

architectures are found by pruning some branches. Only the best promising architectures

are retrained from scratch.

Solution Encoding

Direct Indirect

Flat Hierarchical

Chain
structured

Extended
Flat DNNs

Outer
Level fixed

Inner
Level Fixed

No level
fixed

One-shot

Figure 2.1: Classification of encoding strategies for NAS (Talbi, 2021).

Our search space can be categorized as a direct and extended flat encoding. It is

based on the representation of DNNs by DAGs. This representation is very popular

among the NAS community and is used by cell-based search spaces such as NAS-Bench-

101 inspired by the ResNet architecture (Ying et al., 2019), as well as one-shot represen-

tation such as the DARTS framework (for Differentiable Architecture Search) proposed
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by Liu et al. (2018d). In cell-based search spaces, DNNs are represented by repeated

cells encoded as DAGs, where each node is an operation belonging to a well-defined list,

typically: convolution of size 1, 3, or 5, pooling of size 3, skip connection, or zeroed

operation for an image classification task for example. The graphs are then represented

either as vectors using path encoding, or as adjacency matrices. In the case of path

encoding, different search algorithms can be used, such as Bayesian optimization (White

et al., 2021), reinforcement learning (Zoph et al., 2018), particle swarm optimization

(Wang et al., 2019a), or evolutionary algorithms (Xie and Yuille, 2017), for which clas-

sical mutation and crossover operators are usually used and consist in modifying the

elements of the path. Adjacency matrices, on the other hand, are more complex objects

to optimize. The matrix itself represents the connections within the graph and is usually

accompanied by a list representing the nodes content. In the literature, these matrices

have been optimized directly with random search algorithms (Irwin-Harris et al., 2019)

or indirectly with neural predictors based on auto-encoders (see for example Zhang et al.

2019 or Chatzianastasis et al. 2021). In the case of one-shot representations, an initial

large graph containing all the considered DNN is pruned with a certain search algorithm

to only keep the best possible subgraph (and thus the best possible DNN). Various search

algorithms can be used to simplify this meta-graph (Bender et al., 2018) like evolutionary

algorithm (Guo et al., 2020). One of the most widely used techniques is DARTS (Liu

et al., 2018d), where each edge is associated with a candidate operation, assigned to a

probability of being retained in the final subgraph, optimized by gradient descent. The

candidate operations can be quite commons: convolution or pooling layers for instance,

such as for cell-based search spaces, but Chen et al. (2024) proposes to use DARTS with

other types of operations, such as inter-variable attention, for multivariate time series

prediction. While cell-based and one-shot architecture search spaces have proven to be

efficient for tasks like image classification or language processing, White et al. (2023)

pointed out that current NAS search spaces are not very expressive and prevents finding

highly novel architectures. This problem is amplified when dealing with tasks for which

no known architectures have yet been found.

Compared to these search spaces, the one we define in this chapter is more flexible.

We address the optimization of both the architecture and the hyperparameters. We

do not fix a list of possible operations with fixed hyperparameters, as is done in these

works, but leave the user free to use any operation coded as PyTorch nn.Module and

to optimize any chosen parameters. Furthermore, we do not fix the generic form of

our graph as a maximum number of incoming or outgoing edges and we allow to ex-

pand or reduce the graphs. DRAGON is capable of generating innovative, original, yet

well-performing DNNs. This flexibility may hinder the framework’s ability to find good

DNNs compared to the NAS state-of-the-art for well-known tasks such as image classifi-

cation or language processing. However, in cases where DNNs have not been extensively

studied and well-performing architectures have not yet been found, such as time series

forecasting, DRAGON may be an efficient DNN designer. Finally, we encode our DAGs
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using their adjacency matrices and provide evolutionary operators to directly modify this

representation. To our knowledge, neither such a large search space nor such operators

have been used in the literature.

2.2.3 AutoML for Time Series Forecasting

The automated design of DNNs called Automated Deep Learning (AutoDL), belongs

to a larger field (Hutter et al., 2019) called Automated Machine Learning (AutoML).

AutoML aims to automatically design well-performing machine learning pipelines, for a

given task. Works on model optimization for time series forecasting mainly focused on

AutoML rather than AutoDL (Alsharef et al., 2022). The optimization can be performed

at several levels: input features selection, extraction and engineering, model selection and

hyperparameters tuning. Initial research works used to focus on one of these subproblems,

while more recent works offer complete optimization pipelines.

The first subproblems, input features selection, extraction and engineering, are spe-

cific to our learning task: time series forecasting. This tedious task can significantly

improve the prediction scores by giving the model relevant information about the data.

Methods to select the features are among computing the importance of each feature on

the results or using statistical tools on the signals to extract relevant information. Next,

the model selection aims at choosing among a set of diverse machine learning models the

best-performing one on a given task. Often, the models are trained separately, and the

best model is chosen. In general, the selected model has many hyperparameters, such

as the number of hidden layers, activation function or learning rate. Their optimization

usually allows for improving the performance of the model.

Nowadays, many research works implement complete optimization pipelines combin-

ing those subproblems for time series forecasting. The Time Series Pipeline Optimization

framework (Dahl, 2020), is based on an evolutionary algorithm to automatically find the

right features thanks to input signal analysis, then the model and its related hyperparam-

eters. AutoAI-TS (Shah et al., 2021) is also a complete optimization pipeline, with model

selection performed among a wide assortment of models: statistical models, machine

learning, deep learning models and hybrids models. Closer to our work, the framework

AutoPytorch-TS (Deng et al., 2022) is specific to deep learning models optimization for

time series forecasting. The framework uses Bayesian optimization with multi-fidelity

optimization. Finally, a recent work from Amazon (Shchur et al., 2023) introduces a

time series version to their AutoML framework, AutoGluon, leveraging ensembles of

statistical and machine learning forecasters.

Except for AutoPytorch-TS, cited works covering the entire optimization pipeline for

time series do not deepen model optimization and only perform model selection and

hyperparameters optimization. However, time series data becomes more complex, and

there is a growing need for more sophisticated and data-specific DNNs. Our framework

DRAGON, presented in this chapter, only tackles the model selection and hyperparam-
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eters optimization parts of the pipeline. We made this choice to show the effectiveness

of our framework for designing better DNNs. If we had implemented feature selection,

it would have been harder to determine whether the superiority of our results came from

the input features pool or the model itself.

2.3 Search Space Definition

The development of our optimization framework DRAGON requires the definition of a

search space, an objective function and a search algorithm. In this section, we formulate

the handled optimization problem and then we detail DRAGON’s search space and its

characteristics.

2.3.1 Optimization Problem Formulation

Our optimization problem consists in finding the best possible DNN for a given time

series forecasting problem. To do so, we introduce an ensemble Ω representing our

search space, which contains all considered DNNs. We then consider our time series

dataset D. For any subset D0 = (X0, Y0) ∈ P(D), where P(D) is the powerset of D,

we define the objective function ℓ as:

ℓ : Ω×P(D) → R
f ×D0 7→ ℓ

(
f(D0)

)
= ℓ
(
Y0, f(X0)

)
.

The explicit formula for ℓ depends on the dataset at hand and will be given later

for the experiments from this chapter. Each element f from Ω is a DNN defined as an

operator parameterized by three parameters. First, its architecture α ∈ A. The search

space of all considered architectures is called A and will be detailed in SubSection 2.3.2.

Given the DNN architecture α, the DNN is then parameterized by its hyperparameters

λ ∈ λ(α), with λ(α) the search space of the hyperparameters induced by the architecture

α and defined SubSection 2.3.3. Finally, α and λ generate an ensemble of possible

weights ∆(α, λ), from which the DNN optimal weights δ̂ are found by gradient descent

when training the model. The architecture α and the hyperparameters λ are optimized

by our framework DRAGON.

We consider the multivariate time series forecasting task. Our dataset D = (X, Y )

is composed of a target variable Y = {yt}Nt=1, with yt ∈ RH the target value at the time

step t, and a set of explanatory variables (features) X = {xt}Nt=1, with xt ∈ RF1×F2 .

The size of the target Y at each time step is H, and F1, F2 are the shapes of the

input variable X at each time step. We choose to represent xt by a matrix to extend

our framework’s scope, but it can equally be defined as a vector by taking F2 = 1.

DRAGON can be applied to univariate signals by taking H = 1. We partition our time

indexes into three groups of successive time steps and split accordingly D into three
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datasets: Dtrain, Dvalid and Dtest.

After choosing an architecture α and a set of hyperparamaters λ, we build the DNN

fα,λ and use Dtrain to train fα,λ and optimize its weights δ by stochastic gradient descent

with respect to the training loss ℓtrain (the training loss and the objective function might

be different depending on the use case):

δ̂ ∈ argmin
δ∈∆(α,λ)

(
ℓtrain(f

α,λ
δ ,Dtrain)

)
.

We use a forecast error of the DNN parameterized by δ̂ on Dvalid as our objective

function to assess the performance of the selected α and λ. The best architecture and

hyperparameters are optimized by solving:

(α̂, λ̂) ∈ argmin
α∈A

(
argmin
λ∈λ(α)

(
ℓ(fα,λ

δ̂
,Dvalid)

))
.

The function (α, λ) 7→ ℓ(fα,λ

δ̂
,Dvalid) corresponds to DRAGON’s objective function.

We finally will evaluate the performance of DRAGON by computing the objective function

on Dtest using the DNN with the best architecture, hyperparameters and weights:

ℓ(f α̂,λ̂

δ̂
,Dtest).

In practice, the second equation optimizing α and λ can be solved separately or jointly.

If we fix λ for each α, the optimization is made only on the architecture and is referred to

as Neural Architecture Search (NAS). If α is fixed, then the optimization is only made on

the model hyperparameters and is referred to as Hyperparameters Optimization (HPO).

DRAGON allows to fix α or λ during parts of the optimization to perform a hierarchical

optimization: ordering optimization sequences during which only the architecture is

optimized, and others during which only the hyperparameters are optimized. In the

following, we will describe our search space Ω = (A × {λ(α), α ∈ A}).

2.3.2 Architecture Search Space

First, we define our architecture search space A. We propose to model a DNN by a Di-

rected Acyclic Graph (DAG) with a single input and output (Fiore and Devesas Campos,

2013). A DAG Γ = (V,E) is defined by its nodes (or vertices) set V = {v1, ..., vn} and

its edges set E ⊆ {(vi, vj)|vi, vj ∈ V}. Each node v represents a DNN layer as defined

Section 2.2.1, such as a convolution, a recurrence, or a matrix product. To eliminate

isolated nodes, we impose each node to be connected by a path to the input and the

output. The graph acyclicity implies a partial ordering of the nodes. If a path exists from

the node va to a node vb, then we can define a relation order between them: va < vb.

Acyclicity prevents the existence of a path from vb to va. However, this relation order

is not total. When dealing with symmetric graphs where all nodes are not connected,



2.3. Search Space Definition 47

Input

v1v2

v3

v4

Output

(a) Architecture

Input

v1

v2

v3

v4

Output

1 1 1

1

1

1 1

1

(b) Adjacency matrix representation

Combiner

Operation

Params

Act. function

(c) Inside node vi

Figure 2.2: DNN encoding as a Directed Acyclic Graph (DAG). The elements in blue
(crosshatch) are fixed by the framework, the architecture elements from α are displayed
in beige and the hyperparameters λ are in pink (dots).

several nodes’ ordering may be valid for the same graph. For example Figure 2.2a, the

orderings v1 > v2 and v2 > v1 are both valid.

Hence, a DAG Γ is represented by a sorted list L, such that |L| = m, containing the

graph nodes, and its adjacency matrix M ∈ {0, 1}m×m (Zhang et al., 2019). The matrix

M is built such that: M(i, j) = 1 ⇔ (vi, vj) ∈ E. Because of the graph’s acyclicity,

the matrix is upper triangular with its diagonal filled with zeros. The input node has

no incoming connection, and the output node has no outcoming connection, meaning∑m
i=1Mi,1 = 0 and

∑m
j=1Mm,j = 0. Besides, the input is necessarily connected to

the first node and the last node to the output for any graph, enforcing: M1,2 = 1 and

Mm−1,m = 1. As isolated nodes do not exist in the graph, we need at least a non-zero

value on every row and column, except for the first column and last row. We can express

this property as: ∀i < m :
∑m

j=i+1Mi,j > 0 and ∀j > 1 :
∑m

i=j+1 Mi,j > 0. Finally,

the ordering of the partial nodes does not allow a bijective encoding: several matrices

M may encode the same DAG.

To summarize, we have A = {Γ = (V,E) = (L,M)}. The graphs Γ are parame-

terized by their size m which is not equal for all graphs. As we will see in Section 2.4.1

the DNNs size may vary during the optimization.

2.3.3 Hyperparameters Search Space

For any fixed architecture α ∈ A, let’s define our hyperparameters search space induced

by α : λ(α). As mentioned above, the DAG nodes represent the DNN hidden layers. A

set of hyperparameters λ, also called a graph node, is composed of a combiner, a layer

operation and an activation function (see Figure 2.2c). Each layer operation is associated

with a specific set of parameters, like output or hidden dimensions, convolution kernel
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size or dropout rate. We provide Appendix A.1 a table with all available operations and

their associated parameters. The hyperparameters search space λ(α) is made of sets λ

composed with a combiner, the layer’s parameters and the activation function.

First, we need a combiner as each node can receive an arbitrary number of input

connections. The parents’ latent representations should be combined before being fed to

the operation. Taking inspiration from the Google Brain Team Evolved Transformer (So

et al., 2019), we propose three types of combiners: element-wise addition, element-wise

multiplication and concatenation. The input vectors may have different channel numbers

and the combiner needs to level them. This issue is rarely mentioned in the literature,

where authors prefer to keep a fixed channel number (Liu et al., 2018d). In the general

case, for element-wise combiners, the combiner output channel matches the maximum

channel number of latent representation. We apply zero-padding on the smaller inputs.

For the concatenation combiner, we consider the sum of the channel number of each

input. Some operations, for instance, the pooling and the convolution operators, have

kernels. Their calculation requires that the number of channels of the input vector is

larger than this kernel. In these cases, we also perform zero-padding after the combiner

to ensure that we have the minimum number of channels required. We use the node

order to create our DNN. We build the nodes one at a time, following their order in L.

The first node is created using the data input shape as argument. After its creation we

compute and gather its output shape. Then, for each following node, we compute the

layer operation input shape according to the output shapes of the connected nodes and

the combiner. After building the operation we compute its output shape for the next

layers. Finally, as depicted Figure 2.2c, each node ends with an activation function. The

hyperparameters optimized for each node can be found Appendix A.1.

To summarize, we define every node as the sequence of combiner → layer → activa-

tion function. In our search space λ(α), the nodes are encoded by Python objects having

as attributes the combiner name, the layer corresponding to the operation set with the

hyperparameters encoded as a PyTorch Module followed by the activation function. The

set L is a variable-length list containing each node.

2.4 Search Algorithm

The search space from DRAGON Ω = (A × {Λ(α), α ∈ A}) defined in the previous

section is a mixed and variable space: it may contain integers, float, and categorical

values, and the dimension of its elements, the DNNs, is not fixed. We need to design

a search algorithm able to efficiently navigate through this search space. While several

metaheuristics can solve mixed and variable-size optimization problems (Talbi, 2023),

we chose to start with an evolutionary algorithm. This metaheuristic was the most

intuitive for us to manipulate Directed Acyclic Graphs. It has been used to optimize

graphs in other fields, for example on logic circuits (Aguirre and Coello Coello, 2003). In

Section 2.5 we compare our model to other simple metaheuristics: the Random Search
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and the Simulated Annealing, but the design of more complex metaheuristics using our

search space and their comparison with the evolutionary algorithm are left to future

work.

2.4.1 Evolutionary Algorithm Design

Evolutionary algorithms represent popular metaheuristics which are well adapted to solve

mixed and variable-space optimization algorithms (Talbi, 2023). They have been widely

used for the automatic design of DNNs (Li et al., 2023). The idea is to evolve a randomly

generated population of DAGs to converge towards an optimal DNN. An optimal solution

for a time series forecasting task is defined as a DNN minimizing a forecasting error.

As training a DNN is expensive in time and computational resources, we implemented

an asynchronous version, also called steady-state, of the evolutionary algorithm. This

version is more efficient on High-Performance Computing (HPC) systems as detailed

by Liu et al. (2018c). At the beginning of the algorithm, a set of K random DNNs is

generated. Each solution is train on Dtrain and evaluate on Dvalid to create a population

of size K. Then, for a certain number of iterations or a fixed time budget T , once a

processus is free, a selection operator selects two solutions from the population. Those

solutions are modified using crossover and mutation operators to create two offsprings.

Those are trained and evaluated by the free process. Then, for each offspring, if its

loss ℓ is less than the worst loss from the population, the offspring replaces the worst

individual. Using an asynchronous version instead of the classical one avoids waiting for

a whole generation to be evaluated and saves some time. The complete flowchart is

shown Figure 2.3.

DRAGON’s search space defined Section 2.3 is not directly efficient with common

mutation and crossover operators. Therefore, we had to define evolution operators

specific for our search space. Those operators can be used with various metaheuristics:

a mutation operator for example can be used as a neighborhood operator for a local

search. We split the operators into two categories: hyperparameters specific operators

and architecture operators. The idea is to allow a sequential or joint optimization of the

hyperparameters and the architecture. All the candidate operations which can be used

in the the graphs nodes do not share the same hyperparameters. Thus, drawing a new

layer means modifying all its parameters and one can lose the optimization made on the

hyperparameters of the previous operation. Using sequential optimization, the algorithm

can first find well-performing architectures and operations during the architecture search

and then fine-tune the found DNNs during the hyperparameters search.

2.4.2 Architecture Evolution

In this section, we introduce the architecture-specific search operators from DRAGON.

By architecture, we mean the search space A defined above: the nodes’ operation and
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Figure 2.3: Evolutionary algorithm flowchart.

the edges between them.

Mutation. The mutation operators are simple modifications inspired by the Graph

Edit Distance (Abu-Aisheh et al., 2015): insertion, deletion and substitution of both

nodes and edges. Given a graph Γ = (L,M), the mutation operator will draw the set

L′ ⊆ L and apply a transformation to each node of L′. Let’s have vi ∈ L′ the node

that will be transformed:

• Node insertion: we draw a new node with its combiner, operation and activation

function. We insert the new node in our graph at the position i + 1. We draw

its incoming and outgoing edges by verifying that we do not generate an isolated

node.

• Node deletion: we delete the node vi. In the case where it generates other isolated

nodes, we draw new edges.

• Parents modification: we modify the incoming edges for vi and make sure we

always have at least one.

• Children modification: we modify the outgoing edges for vi and make sure we

always have at least one.

• Node modification: we draw the new content of vi, the new combiner, the oper-

ation and/or the activation function.
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Thanks to these mutation operators, we make our search space connected, as explained

in Section 2.2. In fact, by successively using these operations, we can move from any

graph to any other, since the Graph Edit Distance can be used with any pair of graphs.

Crossover. The second architecture-specific operator we implemented is a crossover.

The idea is to inherit patterns from two parents to create two offsprings. The original

crossover is applied to two vectors. It exchanges two parts of these vectors. In our

case, the individuals are graphs. Let’s say we have two parents Γ1 and Γ2. The first

step is to randomly select one subgraph from each parent, Γ1 ⊂ Γ1 and Γ2 ⊂ Γ2 to

exchange (see Figure 2.4a). Next the two offspring Γ′
1 and Γ′

2 are generated from Γ1

and Γ2 by removing Γ1 and Γ2, as shown Figure 2.4b. Next, we need to define the

position at which each of the subgraphs will be inserted into the host graph. The idea

is to preserve the overall structure of the graph. In other words, if the subgraph was

at the beginning of the parent graph, it should also be at the beginning of the child

graph, and vice versa. We denote here, for a node v ∈ Γ, p(v,Γ) its position in the

graph Γ, and P (Γ) = {p(v,Γ), v ∈ Γ} the set of all nodes positions in Γ. We compute

the future positions of each node v ∈ Γ1 in Γ′
2 sequentially, starting with the first node,

v1 ∈ argminv∈Γ1
p(v,Γ1). The position p(v1,Γ

′
2) of v1 in the graph Γ′

2 can be computed

as:

p(v1,Γ
′
2) ∈ argmin

p∈P (Γ′
2)

(|p− p(v1,Γ1)|)

The positions from the following nodes {v2, ..., vg} ∈ Γ1 are computed to respect the

structure of Γ1 and Γ1:

p(vi,Γ
′
2) = min

(
p(vi,Γ1)− p(vi−1,Γ1) + p(vi−1,Γ

′
2), |Γ′

2|+ |Γ1|
)

Finally, as shown Figure 2.2a, the rows and columns corresponding to the nodes

from Γ1 and Γ2 are inserted in the adjacency matrices of Γ′
2 and Γ′

1 at the previously

computed positions. If the process has generated orphan nodes, we randomly generate

the necessary connections.

2.4.3 Hyperparameters Evolution

One of the architecture mutations consists in disturbing the node content. In this case,

the node content is modified, including the operation. A new set of hyperparameters

is then drawn. To refine this search, we defined specific mutations for the search space

Λ(α). In the hyperparameters case, edges and nodes number are not affected. As for

architecture-specific mutation, the operator will draw the set L′ ⊆ L and apply a trans-

formation on each node of L′. For each node vi from L′, we draw hi hyperparameters,

which will be modified by a neighboring value. The hyperparameters in our search space
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(a) 1st step: we select the two subgraphs Γ1 ⊂ Γ1 and Γ2 ⊂ Γ2 that would be exchanged.
They are highlighted with dotted lines and darker colors.
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Figure 2.4: Crossover operator illustration.
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belong to three categories:

• Categorical values: the new value is randomly drawn among the set of possibili-

ties deprived of the actual value. For instance, the activation functions, combiners,

and recurrence types (LSTM/GRU) belong to this type of categorical variable.

• Integers: we select the neighbors inside a discrete interval around the actual value.

For instance, it has been applied to convolution kernel size and output dimension.

• Float: we select the neighbors inside a continuous interval around the actual

value. Such a neighborhood has been defined for instance to the dropout rate.

2.5 Experimental Study

In this section, we describe how we evaluated DRAGON on a time series forecasting task.

In the first three sections (Section 2.5.1, Section 2.5.2 and Section 2.5.3), we define our

experiments: the time series dataset we used, the models and AutoML frameworks

we compared to DRAGON, and the meta-architecture we defined specifically for time

series. Then, in the next three sections (Section 2.5.4, Section 2.5.5 and Section 2.5.6)

we present and analyze the results. Finally, the last two sections (Section 2.5.7 and

Section 2.5.8) discuss the limitations of the work and give some hints for further work.

2.5.1 Baseline

We compared our framework to two baselines. The first consists of 15 handcrafted

models (Godahewa et al., 2021), the second is more recent and compares 6 AutoML

frameworks specifically designed for time series forecasting (Shchur et al., 2023).

Handcrafted models. These are statistical, machine learning and deep learning mod-

els that were built and optimized by hand. We first have 5 traditional univariate fore-

casting models: Simple Exponential Smoothing (SES), Exponential Smoothing (ETS),

Theta, Trigonometric Box-Cox ARMA Trend Seasonal (TBATS), Dynamic Harmonic

Regression ARIMA (DHR-ARIMA) and 8 global forecasting models: Pooled Regression

(PR), CatBoost, Prophet, Feed-Forward Neural Network (FFNN), N-BEATS, WaveNet,

Transformer and DeepAR. The last 5 models are Deep Neural Networks. Refer to the

original paper (Godahewa et al., 2021) and the Monash Time Series Forecasting Repos-

itory website1 for more information about the models and their implementation. Finally,

Shchur et al. (2023) also provides the univariate forecasting model SeasonalNaive and

the global deep learning model Temporal Fusion Transformer (TFT).

AutoML frameworks. Shchur et al. (2023) compares 6 AutoML frameworks specif-

ically designed for time series forecasting. They first used 4 AutoML frameworks that

1https://forecastingdata.org/

https://forecastingdata.org/
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are based on automated tuning of statistical models: AutoARIMA, AutoETS, Auto-

Theta, and StatsEnsemble. The first three automatically tune the hyperparameters of

the ARIMA, ETS and Theta models for each time series individually. The optimization

of the parameters is based on an information criterion. The last one, StatEnsemble,

takes the median of the predictions of three statistical models. Then, they included

the AutoDL framework AutoPyTorch-Forecasting, which optimizes the architecture and

hyperparameters of DNNs using a combination of Bayesian and multi-fidelity optimiza-

tion and then uses the model ensemble. Finally, AutoGluon-TS, the AutoML framework

proposed by Shchur et al. (2023), relies on the ensemble techniques of local models such

as ARIMA, Theta, ETS, and SeasonalNaive, as well as global models such as DeepAR,

PatchTST, and Temporal Fusion Transformer. While it is interesting to compare our-

selves with these state-of-the-art AutoML techniques, it is worth remembering that our

framework does not yet provide an ensembling technique, and the scores obtained during

optimization are based on the predictions of a single DNN.

2.5.2 Experimental Protocol

We evaluated DRAGON on the established benchmark of Monash Time Series Forecast-

ing Repository (Godahewa et al., 2021). This archive contains a benchmark of more

than 40 datasets, from which we selected the 27 that Shchur et al. (2023) used for their

experiments. The time series are of different kinds and have variable distributions. More

information on each dataset from the archive is available Section Appendix A.2. This

task diversity allows to test DRAGON generalization and robustness abilities.

For these experiments, we configured our algorithm to have a population of K =

100 individuals and we set the total budget to T = 8 hours. We investigated a joint

optimization of the architecture α and the hyperparameters λ. We ran our experiments

on 5 cluster nodes, each equipped with 4 Tesla V100 SXM2 32GB GPUs, using PyTorch

1.11.0 and Cuda 10.2.

We took the data, the data generation functions, the training parameters (batch

size, number of epochs, learning rate), the training and prediction functions (ℓtrain, a

mean squared error in this case) from the Monash Time Series Forecasting Repository,

and we only changed the models themselves. We also kept for each time series the

forecast horizon and the lag used in the repository. We believe our comparison is fair

to the handcrafted and automatically designed models. Finally, to evaluate the models’

performance, we used the same metric and metric implementation as in the repository.

The objective function ℓ in this case is then the Mean Absolute Scaled Error (MASE),

an absolute mean error divided by the average difference between two consecutive time

steps (Hyndman and Koehler, 2006). Given a time series Y = (y1, ...,yn) and the

predictions Ŷ = (ŷ1, ..., ŷn), the MASE can be defined as:

MASE(Y, Ŷ ) = n−1
n

×
∑n

t=1 |yt−ŷt|∑n
t=2 |yt−yt−1| .
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In our case, for f ∈ Ω, D0 = (X0, Y0) ⊆ D, we have:

ℓ
(
Y0, f(X0)

)
= MASE

(
Y0, f(X0)

)
.

2.5.3 Search Space

The generic search space defined Section Section 2.3 introduces a brick, the Directed

Acyclic Graph, which cannot directly be our search space. We used it to define a meta-

architecture as represented Figure 2.5, which can directly replace the repository’s models.

The meta-architecture begins with the DAG Γ, which may be composed with various

one-dimensional candidate operations (e.g. 1D convolution, LSTM, MLP). They can be

found with their associated hyperparameters Appendix A.1. The DAG Γ is followed by a

Multi-layer Perceptron (MLP) used to retrieve the time series output dimension, as the

number of channels may vary within Γ. This search space is designed specifically for time

Time Series input

DNN:fα,λ
δ

Directed Acyclic
Graph: Γ = fα,λ

Multi-layer Perceptron

Time Series Prediction

Figure 2.5: Meta-architecture for Monash time series datasets.

series forecasting, but it could be modified for other tasks. For example if we want to use

it for image classification, we would need a first graph with two-dimensional candidate

operations, followed by a flatten layer, followed by a second graph with one-dimensional

candidate operations and a final MLP layer.

2.5.4 Results

We report a summary of the results Table 2.1. According to this summary, DRAGON

outperforms all algorithms on 11 out of 27 datasets (41%). The second best algorithm,

AutoGluon, was the only algorithm able to beat DRAGON on more than a third of the

datasets. The direct competitor of DRAGON, namely AutoPytorch which is another

AutoDL framework, was only able to beat it on 7 datasets out of 27 (26%). More
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Algorithm(s) Wins Losses Champion Failures

SES 1 25 0 1
Theta 6 20 0 1
TBATS 6 20 0 1
ETS 8 18 1 1

(DHR-)ARIMA 4 21 0 2
PR 1 25 0 1

CatBoost 1 25 0 1
FFNN 0 26 0 1

N-BEATS 0 26 0 1
WaveNet 2 23 0 2

Transformer 0 26 0 1
DeepAR 1 25 1 1
TFT 4 23 0 0

SeasonalNaive 1 26 0 0
Prophet 2 24 1 1

AutoPytorch 7 20 0 0
AutoARIMA 4 20 0 3
AutoETS 8 19 0 0
AutoTheta 9 16 0 2

StatEnsemble 9 15 3 3
AutoGluon 13 14 10 0
DRAGON - - 11 0

Table 2.1: Performance comparison of the baseline algorithms with DRAGON (based
on the MASE metric) on 27 datasets. Wins corresponds to the number of datasets
where the method produced a smaller loss than DRAGON, Losses corresponds to the
number of datasets where the method produced a larger loss than DRAGON, Champion
corresponds to the number of datasets where the method produced the smallest loss,
and Failures corresponds to the number of datasets where the method failed.
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detailed results can be found Table 2.2, and visual representations of the DNNs found

for some time series can be found Figure 2.6. The content of the Γ graph is shown in

yellow, while the last MLP layer is shown in pink.

tourism quarterly

add,MLP,436,gelu

MLP,leaky_relu

(a) Tourism Quarterly

m1 yearly

concat,Attention1D,4,conv,softmax

concat,Identity

concat,Dropout,0.5241619743212671

concat,Identity 1

add,MLP,268,swish

concat,Identity 2

mul,Attention1D,4,conv,id

concat,MLP,300,gelu

MLP,gelu

(b) M1 Yearly

m4 hourly

add,Attention1D,7,random,softmax

concat,1DCNN,13,gelu

concat,Identity

mul,Attention1D,2,random,elu

add,Dropout,0.21022065413900148

MLP,sigmoid

(c) M4 Hourly

covid death

concat,MLP,430,sigmoid

add,Dropout,0.7410721529003726

concat,Attention1D,7,random,gelu

MLP,leaky_relu

(d) Covid Death

Figure 2.6: Best DNNs output by DRAGON for several time series.

To have a more visual comparison of the different algorithms from the baseline, we

used the performance profile as defined by Dolan and Moré (2002). We name P the set

of the 27 datasets, S the set of the 22 algorithms from the baseline and lp,s the final

score (loss) of the algorithm s ∈ S on the dataset p ∈ P. We define the performance

ratio rp,s of s on p as:

rp,s =
lp,s

min{lp,s : s ∈ S}
.

From this we can define the performance profile as the probability for the algorithm
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Table 2.2: Mean MASE for each dataset. We did not report all the individual scores from the
handcrafted baseline, but the best score from the 15 models for each time series. The grayed values
correspond to the minimal loss for the corresponding dataset.
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s ∈ S that the performance ratio on any dataset is within a factor τ ∈ R of the best

possible ratio:

ρs(τ) =
1

27
size{p ∈ P : rp,s ≤ τ} ,

the function ρs is the (cumulative) distribution function for the performance ratio. We

compute the performance profile for each algorithm from the AutoML baseline, which

can be found Figure 2.7. From the performance profile, we can see that compared to

Figure 2.7: Performance profile ρs(τ) for each algorithm s from the AutoML baseline,
with τ ∈ [1, 7].

the baseline, DRAGON has an error close to the best for every dataset. It is also the

only algorithm for which the performance ratio is less than two for all datasets. This

diagram also suggests that the performance of AutoPytorch and AutoGluon are not that

different.

2.5.5 Computation Time

To be consistent with the other algorithms from the baseline, we set a fixed time budget

of 8 hours for our experiments. But in most cases the algorithm found the best solution

in less time than this. Figure 2.8 represents the time convergence of DRAGON for each

dataset. For almost every one of them, a close solution to the final one was found in



2.5. Experimental Study 60

Figure 2.8: Computation time of DRAGON for each dataset. The curves represent the
time when the best loss so far has been found for each dataset.
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less than an hour. For some datasets like M4 weekly or M1 Quarterly, DRAGON did not

improve the results after the first hour. The models from the baseline train faster, with

AutoGluon for example having an average runtime of 33 minutes (Shchur et al., 2023).

However, those algorithms are based on Machine Learning models, wherease the runtime

of AutoPytorch, the other AutoDL framework was set to 4 hours for each datasets. The

training time of DNNs are indeed usually higher than for traditional machine learning

models. We think we can improve our training time using a multi-fidelity approach.

Indeed, with our evolutionary algorithm, every DNN is trained for 100 epochs before

being evaluated. With a multi-fidelity approach we could speed up the identification of

good performing models and stop training the worst ones sooner.

2.5.6 Best Models Analysis

In the AutoDL literature, little effort is usually made to analyze the generated DNNs. Shu

et al. (2020) found that architectures with wide and shallow cell structures are favored

by the NAS algorithms, which do not generalize well. We performed a light analysis on

the best models found by DRAGON to see if our framework favors such structures as

well. In this section we try to answer some questions about the results of our framework.

To do so, we first define some structural indicatore. We computed them on the best

model found for each time series dataset and summarize this in the Table 2.3:

• Nodes: Number of nodes (i.e. operations) in the graph.

• Width: Network width, which can be defined as the maximum of incoming or

outgoing edges to all nodes in the graph.

• Depth: The depth of the network, which is the size of the longest path in the

graph.

• Edges: The number of edges relative to the number of nodes in the graph. It

indicates how complex the graph can be and how sparse the adjacency matrix is.

• The last 7 indicators correspond to the number of occurrences of each layer type

within the DNN.

Does DRAGON always converge to complex models or is it able to find simple DNNs?

From the Table 2.3 we see that the models found are really small compared to a

transformer model for example, and all have less than 8 hidden layers, while we let the

algorithms have cells with up to 10 nodes. Moreover, two models consist of only one

layer, such as the one displayed Figure 2.6a. Another indicator of model simplicity is the

percentage of feed-forward and identity layers found in the best models. The feed-forward

layer (also called MLP Table 2.3) is the most frequent layer, as it appears on average

at least once per graph, although more complex layers such as convolution, recurrence
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Dataset Nodes Width Depth Edges MLP Att CNN RNN Drop Id Pool
m3 monthly 6 3 4 12 2 1 1 1 0 0 1
covid death 3 1 3 3 1 1 0 0 1 0 0
m3 quarterly 4 2 3 6 1 0 0 2 0 1 0
vehicle trips 4 3 4 8 1 0 0 1 0 0 2
m1 yearly 8 5 5 17 2 2 0 0 1 3 0

m4 monthly 6 3 4 12 2 1 1 1 0 0 1
m3 other 4 4 3 8 2 1 0 1 0 0 0

tourism quarterly 1 1 1 1 1 0 0 0 0 0 0
pedestrian 2 2 2 3 0 0 1 0 1 0 0
nn5 daily 5 5 3 12 1 1 1 0 0 2 0

Web Traffic 7 4 6 16 2 2 2 0 0 1 0
m1 quarterly 1 1 1 1 1 0 0 0 0 0 0
tourism yearly 7 3 6 15 2 1 1 0 1 1 1

electricity weekly 7 5 7 18 3 1 1 0 0 2 0
m4 hourly 5 4 5 11 0 2 1 0 1 1 0

electricity hourly 3 3 3 5 0 1 0 0 0 2 0
m3 yearly 6 4 5 13 1 2 0 0 0 3 0
m4 weekly 2 2 2 3 1 0 0 0 0 1 0
m4 daily 2 2 2 3 0 1 0 0 0 1 0

nn5 weekly 2 2 2 3 1 0 1 0 0 0 0
kdd cup 7 6 5 17 2 1 2 1 1 0 0
hospital 4 4 3 8 1 0 2 1 0 0 0

m1 monthly 2 1 2 2 1 0 0 0 0 1 0
fred md 5 4 3 9 0 1 1 0 1 1 1
car parts 7 3 6 15 2 1 1 0 1 1 1

Mean 4.40 3.08 3.60 8.84 1.20 0.80 0.64 0.32 0.32 0.84 0.28

Table 2.3: Structural indicators of the best model for each dataset found by DRAGON.

or attention layers are less frequently selected in our search space. This proves that

even without regularization penalties, our algorithmic framework does not systematically

search for overly complicated models.

Does DRAGON always converge to similar architectures for different datasets?

The structural indicators for all datasets from Table 2.3 are significantly different for

each dataset, which means that the framework does not converge to similar architectures.

As we set the seed, the initial population of size K is identical for each dataset, but then

the performance of the evaluated models affects the creation of the following graphs,

leading to different final models optimized for each time series. Furthermore, Figure 2.9

shows that DRAGON can find different performing architectures for the same dataset.

What is the diversity of the operations within the best models?

The MLP layer is definitively the most used operation within the candidates ones.

On average, each model from Table 2.3 is using at least one MLP layer. Interestingly the

CNN and Attention layers are more often used than RNN layers, which were designed

for time series. Another intersting insight is that every candidate operation has been at

least picked once, which states the operations diversity within the best models.

Are the best models still “deep” neural networks or are they wide and shallow as

stated in Shu et al. (2020)?
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To answer this question, the observations from Shu et al. (2020) do not necessary

apply to our results. Our models are on average a bit deeper than wide, bearing in mind

that the indicators do not take into account the last MLP as shown Figure 2.5. If we were

doing multi-fidelity in the future, this observation might change as one of the reasons

mentioned in the paper for wider DNNs is the premature evaluation of architecture before

full convergence.
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concat,MLP,362,leaky_relu

MLP,gelu

(a) MASE: 0.653

electricity_weekly
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concat,1DCNN,57,sigmoid

concat,MLP,313,leaky_relu
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concat,MLP,84,relu

MLP,swish

(b) MASE: 0.654

Figure 2.9: Two different models having similar good performance on the Electricity
Weekly dataset (best MASE: 0.644).

2.5.7 Ablation Study

We chose two datasets, M1 monthly and Tourism monthly, in order to reduce the num-

ber of experiments we had to perform, as the benchmark was quite large. We compared

four search algorithms for both datasets; these were random search, a population based

evolutionary algorithm (EA) with alternating optimization of hyperparameters and ar-

chitecture, as well as a version with joint optimization, and, lastly, simulated annealing.

To explore the search space, we used an exponential multiplicative monotonic cooling

schedule in our simulated annealing algorithm: Tempk = Temp0.α
k. We evaluated 40

neighborhood solutions at each iteration to accomplish this. To ensure fairness between

each search algorithm, we conducted five experiments with different seeds (0, 100, 200,

300, and 400), and parameterised the algorithms to evaluate 4000 DNNs. The results

of this study are presented Table 2.4.

The findings suggest that the most exploratory algorithms, specifically the random

search algorithm and the evolutionary algorithm, yielded better results than the more

locally focused, ie: the simulated annealing. The findings imply the presence of several

potential solutions in the search space, but none of them could be accessed by the
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Search Algorithm M1 Monthly Tourism Monthly

Random search 1.098± 0.006 1.645± 0.018
EA joint mutation 1.073± 0.004 1.450± 0.003

EA alternating mutation 1.080± 0.005 1.451± 0.004
Simulated Annealing 1.141± 0.044 2.640± 0.037

Table 2.4: Comparison between several search algorithms over two datasets: M1 Monthly
and Tourism Monthly. Each configuration has been ran with five different seeds.

simulated annealing algorithms from their starting points. The Figure 2.10 indicates

that the most effective DNN was achieved with the help of simulated annealing when

Temp = Tempmax. This suggests greater exploration by the algorithm. Additionally,

the random search method produced favorable results. The assessment of 4000 solutions

for the Tourism Monthly dataset and M1 dataset was completed within 12 minutes and

4 hours respectively, thanks to the parallelisation of the solution. This shows that the

search space has been suitably designed for our problem. However, it does not achieve the

same level of performance as our evolutionary algorithms, highlighting the significance of

our variational operators. Ultimately, both types of mutation produce very similar results.

We compared the convergence of both algorithms using Figure 2.11. We note that the

mean loss of the populations is more stable in the case of joint mutation, without the

two phases present in the alternate version. Additionally, the alternate version converges

a bit faster towards a the final solution.
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Figure 2.10: Simulated annealing algorithm for the M1 Monthly dataset with seed=100,
MASE=1.120.

2.5.8 Nondeterminism and Instability of DNNs

An often overlooked robustness challenge with DNN optimization is their uncertainty in

performance (Summers and Dinneen, 2021). A unique model with a fixed architecture
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(a) M1 Monthly dataset, with seed=400. Left: MASE=1.084, right: MASE=1.073.
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(b) Tourism Monthly dataset, with seed=200. Left: MASE=1.453, right: MASE=1.448.

Figure 2.11: Evolutionary algorithm’s population mean loss and best individual’s loss
through generations. Left: the mutation operator alternate between optimizing only the
architecture, then the hyperparameters. Right: the mutation operator jointly optimize
the architecture and hyperparameters.

and set of hyperparameters can produce a large variety of results on a dataset. Fig-

ure 2.12 shows the results on two datasets: M3 Quarterly and Electricity Weekly. For

both datasets, we selected the best models found with our optimization and drew 80

seeds summing all instability and nondeterministic aspects of our models. We trained

these models and plotted the MASE Figure 2.12. On the M3 Quarterly, the MASE

reached values two times bigger than our best result. On the Electricity Weekly, it went

up to five times worst. To overcome this problem, we represented the parametrization

of stochastic aspects in our models as a hyperparameter, which we added to our search

space. Despite its impact on the performance, we have not seen any work on NAS, HPO

or AutoML trying to optimize the seed of DNNs. Our plots of Figure 2.12 showed that

the optimization was effective as no other seeds gave better results than the one picked

by DRAGON. However, since the seed does not contain any optimizable information,

trying to tune it can lead to overfitting. In order to avoid this type of problem, the rest

of the manuscript presents other solutions for stabilizing the neural networks found and

reduce the seed’s effects on the performance.
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Figure 2.12: MASE histogram of the best model performances with multiple seeds for
two datasets.

2.6 Conclusion and Future Work

In this chapter, we introduce a novel algorithmic framework to optimize jointly the

architectures of DNNs and their hyperparameters. We initially presented a search space

founded on Directed Acyclic Graphs, which is flexible for architecture optimization and

also allows fine-tuning of hyperparameters. We then develop search operators that are

compatible with any metaheuristic capable of handling a mixed and variable-size search

space. We prove the efficiency of our framework on a task rarely tackled by AutoDL or

NAS works: time series forecasting. On this task where the performing DNNs have not

been clearly identified, our framework shows superior forecasting capabilities compare to

the state-of-the-art in AutoML and handcrafted models.

Although we obtained satisfactory results compared to our baseline, we note that

our algorithm runs slower than AutoGluon, its main competitor, and does not improve

it much. However, we would like to point out that AutoGluon produces mixtures of

machine learning models, while our framework produces a single DNN. To be more

competitive in terms of computation time and results, we could consider using multi-

fidelity techniques to identify and eliminate unpromising solutions more quickly, using

multi-objective techniques to increase the value of simpler, easier-to-train DNNs, and

taking inspiration from AutoGluon and AutoPytorch techniques and blending DNNs and

machine learning predictors to further improve forecasting accuracy. Moreover, for each
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generated architecture, we optimize the hyperparameters using the same evolutionary

algorithm. However, hyperparameters play a large role in the performance of a given

architecture, and it could be interesting to investigate an optimization that alternates

between specific search algorithms for the architecture and for the hyperparameters. In

fact, while the graph structure representing the architecture is difficult to manipulate,

once fixed, the hyperparameter search space can be considered as a vector that could

be optimized with more efficient algorithms such as Bayesian or bi-level optimization,

allowing a greater number of possibilities to be evaluated.

Furthermore, given our search space and search algorithms’ universality, we could

extend our framework to several other tasks. Indeed, only the candidate operations

included as node content are task-related, and the representation of DNNs as DAG is

not. Further research can test our framework on various learning tasks, necessitating

the creation of new operations, such as 2-dimensional convolution and pooling, for the

treatment of images, for example. Additionally, this framework can also function as

a cell-based search space, utilising normal and reduction cells as opposed to a single

convolution operation.

Finally, our study demonstrates that incorporating a variety of cutting-edge DNN

operations into a single model presents a promising approach for enhancing the perfor-

mance of time series forecasting. We consider these models as innovative within the deep

learning community, and further research investigating their efficacy could be interested.



Chapter 3

A Bandit Approach With

Evolutionary Operators for Model

Selection: Application to Neural

Architecture Optimization for Image

Classification

In this chapter, we are introducing a new algorithm that is compatible with our search

space and more efficient than the evolutionary algorithm used in the previous search

space. Our search space includes graph structures that are difficult to handle for most

efficient search algorithms, such as Bayesian optimization or gradient-based methods.

Given the design of the neighborhoods, the evolutionary algorithm was the obvious

choice to navigate this space. However, this algorithm is slow because it gives the

same amount of resources to every configuration, even if they are not promising. The

proposed algorithm of this chapter, named Mutant-UCB, integrates a bandit-based ap-

proach with evolutionary operators, leveraging the flexibility of the evolutionary algorithm

while enhancing resource allocation and selection processes. To illustrate the versatility

of Mutant-UCB, the algorithm is presented in the generic context of model selection,

with experiments conducted within our search space to optimize deep neural networks

(DNNs) for image classification. The efficacy of Mutant-UCB is demonstrated by its

superior performance in comparison to a random search, an evolutionary algorithm, and

the bandit-based algorithm Hyperband, as evidenced by experiments conducted on three

open-source datasets. It is important to note that in this chapter, the variable t does not

refer to a timestamp within a time series, but rather to an algorithm iteration. The vari-

able N will refer to a number of training instances, not a number of samples. Finally,

the other chapters focus on minimizing an objective loss function, while this chapter

addresses maximizing an accuracy function.

68
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3.1 Introduction

Accuracy of machine learning models significantly depends on some parameters which

cannot be modified during training. As the number of parameter combinations to be

tested exponentially increases with the number of these parameters, it becomes costly

and time-consuming to optimize them. Automating the selection of promising models,

usually referred to as AutoML (Automated Machine Learning), is a fast-growing area

of research (see Hutter et al. 2019 for a quite recent book). We approach the model

selection problem in a general manner without any restrictions on the nature of the hyper-

parameters, such as the types of machine learning models, neural network architectures,

or hyper-parameters of random forests. Our aim is to find the best model without

making any assumptions about the task, model type, or reward to maximize. We assume

that we have access to an infinite number of possible models and set a predetermined

budget of resources T , used to train the models. These resources are allocated to

the models in the form of “sub-trains”, such as iterations, data samples or features.

The final (and hopefully the best) model is chosen by finding a good trade-off between
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exploration (training a large number of models) and exploitation (allocating a large

budget to promising models). This process may fall under the umbrella of multi-armed

bandits (see Lattimore and Szepesvári 2020 for an in-depth review).

In this chapter, we treat model selection as an instance of best-arm identification

in infinite-armed bandits. We propose a new model selection algorithm, called Mutant-

UCB: an Upper Confidence Bound (UCB)-based algorithm (see Auer et al. 2002 for

UCB’s original idea) that incorporates a mutation operator from the evolutionary algo-

rithms. This operator creates a new model from the neighborhood of the model selected

by the bandit algorithm. Unlike most model selection algorithms, Mutant-UCB makes

no assumptions about the solutions encoding, also called search space, or the reward

function to be maximized, making it suitable for a wide range of configurations. The

use of a UCB-type algorithm and adaptive resource allocation allows exploration of the

search space, while the mutation operator effectively directs the search towards promising

solutions. Results on a neural networks optimization problem demonstrate the relevance

of this approach.

We begin this chapter by presenting the setup of our bandit model selection approach

in Section 3.2 and we position ourselves in relation to the state of the art. Mutant-UCB,

the algorithm we develop, is presented in Section 3.3. Section 3.4 is dedicated to

experiments on the optimization of deep neural networks: we validate the performance

of Mutant-UCB on three open-source image classification datasets. Finally, Section 3.5

discusses the advantages of Mutant-UCB compared to the state of the art and opens

new research perspectives.

3.2 Model selection problem setup: a bandit approach

3.2.1 Literature Discussion

Naive strategies for model selection are Grid or Random Search. More sophisticated

strategies address model selection as a sequential learning problem. Two approaches

stand out: configuration selection methods sequentially select new models (“close”

to promising models) to train, while configuration evaluation methods allocate more

resources (training time) to promising models. The first approach suggests that accuracy

is regular with respect to some distance between models implying the existence of an

underlying space. Therefore, two models that are close to each other will have similar

performance. The second approach, on the other hand, makes no assumptions about

the potential (smooth) links between model performances.

Evolutionary methods. Among the configuration selection methods, evolutionary al-

gorithms have been popular for many years (see, e.g., Young et al. 2015 and Jian et al.

2023). Starting from an initial set of configurations, they evolve them towards perform-

ing models using unitary operators like the mutation (little change in the configuration).
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Even complex operators involving more than two configurations like the crossover are

considered by Strumberger et al. (2019). These algorithms are highly versatile and can

be applied to a wide range of setups. The literature presents different methods that vary

in terms of search spaces, i.e. the way configurations are encoded. The operators used

to generate the new population typically depend on this encoding. Usually, the configu-

rations are represented as character strings or lists and can be modified using bit-string

mutations and combined with k-point crossovers (see Eiben and Smith 2015 for more

details). But recent works, mostly for neural networks architecture optimization, tried to

design other representations and operators. For instance a tree-based mutation operator

to optimize recurrent neural networks is proposed by Rawal and Miikkulainen (2018).

Awad et al. (2021) use differential evolutionary operators to optimize neural network

hyper-parameters and architectures. One disadvantage of the evolutionary algorithms

is the large number of parameters involved, such as the population size, the selection

function, or the elitism rate. Choosing the appropriate values for these parameters can

be complex.

Bayesian optimization. Bayesian optimization has recently emerged as a more ef-

ficient approach than evolutionary methods in AutoML (see, among others, Malkomes

et al. 2016, Zoph and Le 2016 and Kandasamy et al. 2018). It is a sequential opti-

mization technique commonly used to minimize black-box functions. Those algorithms

are based on two main components, a surrogate model that approximates the unknown

black-box function, and an acquisition function that selects the next element in the

search space to be evaluated. One major limitation of these acquisition functions is their

reliance on strong assumptions about the black-box function and the search space (see

Garrido-Merchán and Hernández-Lobato 2020 for further details). Therefore, we did not

employ a Bayesian optimization algorithm in our experiments as we aimed to avoid mak-

ing any assumptions about the smoothness, distance or continuity of the search space

or the reward function.

Bandits approaches. Firstly, still in the field of Bayesian optimization, the extensions

GP-UCB and KernelUCB (see, Srinivas et al. 2010 and Valko et al. 2013, respectively) of

the classical UCB bandit algorithm and more recent algorithms largely inspired by them

(see, e.g., Dai et al. 2024) have been massively used for optimization and eventually

model selection. The BayesGap algorithm introduced by Hoffman et al. (2014) connects

Bayesian optimization approaches and best arm identification, assuming correlations

among the arms. More recently, Huang et al. (2021) sees the neural architecture search

as a combinatorial multi-armed bandit problem which allows the decomposition of a large

search space into smaller blocks where tree-search methods can be applied more effec-

tively and efficiently. Configuration evaluation approaches have also been investigated in

an infinite or multi-armed bandit framework. At each iteration of the algorithm, a new

arm/model can be drawn from an infinite search space containing the models and added
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to the set of models already (more or less) trained. Karnin et al. (2013) proposes the

Sequential (or Successive) Halving algorithm, which splits the given budget evenly across

an optimal number of elimination rounds, and within a round, pulls arms in a uniform

manner. It comes with solid theoretical guarantees that have recently been improved

by Zhao et al. (2023). Li et al. (2018) proposes the Hyperband algorithm, a robust

extension of Sequential Halving, and applies it to deep neural networks hyperparameters

optimization. Moreover, Shang et al. (2019) introduces D-TTTS, an algorithm inspired

by Thompson sampling. Hybrid methods combine adaptive configuration selection and

evaluation: Terayama et al. (2021) proposes a rule to stop training a model prematurely

based on the predicted performance from Gaussian Process; in addition, Kandasamy

et al. (2016) extends GP-UCB to enable sequential model training (and thus resource

allocation).

Best-arm identification in infinite-armed bandits. The stochastic infinite-armed

bandit framework has been introduced and studied for the cumulative reward maximiza-

tion problem by Berry et al. (1997) and Wang et al. (2008). Carpentier and Valko

(2015) and Aziz et al. (2018) study best armed identification problem in this framework.

Theoretical results attest to the performance of their strategies (SiRI and extensions;

α,ϵ-KL-LUCB, respectively).

3.2.2 Contributions

The main contribution of this study is the Mutant-UCB algorithm, which incorporates

operators from evolutionary algorithms into the UCB-E (Upper Confidence Bound Explo-

ration) algorithm introduced by Audibert et al. (2010). It combines both configuration

evaluation and configuration selection approaches: it is sequential in computation and

picks a (generally promising) model thanks to a UCB-based criteria. Then it either

continues its training (resource allocation) or creates and starts training a new model

derived from the selected one thanks to the “mutation” operation of an evolutionary al-

gorithm. This last possibility is based on the intuition that the expected “mutant model”

accuracy will be close to that of the original model. While bandit approaches have been

used to design the “selection” operator for evolutionary algorithms by Li et al. (2013),

to our knowledge this is the first time that operators from evolutionary algorithms are

incorporated into a bandit algorithm.

Afterwards, we compare Mutant-UCB to a Random Search, the evolutionary algo-

rithm proposed Chapter 2 and the Hyperband algorithm introduced by Li et al. (2018)

on three open source data sets collected for image classification: CIFAR-10 (Krizhevsky

et al., 2009), MRBI (Larochelle et al., 2007) and SVHN (Netzer et al., 2011). For a fair

comparison, Mutant-UCB and the evolutionary algorithm under consideration share the

same mutation operation.
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3.2.3 Set-up

In the infinite-armed bandit framework, when a new arm k is pulled from the reservoir,

the expectation of the accuracy of the associated model µk pulled from the search space

is assumed to be an independent sample from a fixed distribution. With T a fixed

budget, at each round t = 1, . . . , T , an arm It is picked and a sub-train (allocation

of a resource) is performed on the associated model. This model is then evaluated on

a validation data set Dvalid using an accuracy function acc we aim to maximize. This

accuracy corresponds to the reward at. After T rounds, we select the final arm ÎT . In

what follows, the untrained model associated with arm k is denoted fk, and after Nk

sub-trains we denote it fNk
k .

3.3 UCB-based algorithm incorporating mutation op-

erators from evolutionary algorithms

3.3.1 A brief reminder of the UCB-E algorithm

Designed for best arm-identification in a K-multi-armed bandit problem, the UCB-E

algorithm proposed by Audibert et al. (2010) is recalled in Algorithm 1. This highly

exploratory policy is based on the principle of optimism in the face of uncertainty, in

the spirit of the UCB algorithm introduced by Auer et al. (2002). It aims to find

the best model among K untrained models f1, . . . , fK sampled from the search space.

The algorithm starts by K rounds of deterministic exploration: it performs a first sub-

train per model and observes the accuracies ak = acc
(
f 1
k , Dvalid

)
. At each round

t = K + 1, . . . , T , and for each k, it computes the empirical mean accuracy µ̂k,t from

the previous rewards associated with arm k:

µ̂k,t =
1

Nk,t

t−1∑
s=1

at1Is=k with Nk,t =
t−1∑
s=1

1Is=k . (3.1)

Then, it chooses the arm optimistically:

It ∈ argmax
k∈{1,...K}

{
µ̂k,t +

√
E

Nk,t

}
, (3.2)

performs a sub-train on the associated model and receives the reward:

at = acc
(
f
NIt,t+1

It
, Dvalid

)
.

For the sake of readability, the iteration index for the counting Nk and empirical mean

µk variables in Algorithms 1 and 2 have been removed. These variables are updated
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throughout the iterations.

The core issue is the tuning of the exploration parameter E. Audibert et al. (2010)

show that the optimal value depends on the difficulty of the underlying bandit problem,

which has no reason to be known in advance.

Algorithm 1: UCB − E

Inputs:
T budget
E exploration parameter
K number of untrained models

Initialization
Sample K untrained models f1, . . . , fK
For k = 1, 2, . . . , K

Perform a first sub-train on fk which becomes f 1
k

Get the reward ak = acc
(
f 1
k ,Dvalid

)
Define Nk = 1, µ̂k = ak

For t = K + 1, K + 2, . . . , T

Choose It ∈ argmaxk∈{1,...K}

{
µ̂k +

√
E
Nk

}
Perform a sub-train: model f

NIt
It

becomes f
NIt+1

It

Get the reward at = acc
(
f
NIt+1

It
, Dvalid

)
Update µ̂It =

1
NIt+1

(
at +NItµ̂It

)
and NIt = NIt + 1

Output:

Model f
N

ÎT

ÎT
where ÎT ∈ argmaxk∈{1,...K} µ̂k

3.3.2 Main contribution: the Mutant-UCB algorithm

Mutant-UCB, presented in Algorithm 2, incorporates two main ideas into UCB-E. First

of all, there is no point in multiplying the number of sub-trains for the same model: there

generally comes a time when it is no longer useful, so we can potentially define a maxi-

mum number of sub-trains N . Note that this idea of a maximum quantity of resources

that can be allocated to a single model was already present in the Hyperband algorithm

proposed by Li et al. (2018). Furthermore, in model selection, it is not uncommon for

similar models to perform similarly, which is why configuration selection methods may be

so effective in this task. In general, the main problem lies in defining a distance between

models: search spaces are usually high-dimensional and hyper-parameters are of various

kinds (learning rate, type of activation function, number of neurons, etc.). While the

notion of distance between two models is not easy to define, evolutionary algorithms

offer a good compromise: they breed new individuals through crossover and mutation

operations. Crossover operations mix two individuals, while mutation operations can be

applied to a single individual in order to create “mutants”, involving some tiny changes.
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Those “mutants” can be seen as neighbors of the initial point. We could therefore

imagine that a model chosen by the algorithm could mutate to give rise to a new one,

with the intuition that the mutant and its original model will have similar accuracies.

To our knowledge, the inclusion of mutation operators of evolutionary algorithms in a

bandit algorithm is completely new.

Like the UCB-E algorithm, Mutant-UCB starts with the first sub-train of K models.

At each round t = K + 1, . . . , it still chooses the next arm optimistically, by resolving

Equation (3.2). For an arm k, we recall that Nk,t is the number of times the arm has

been picked before round t - see Equation (3.1). We now introduce Nk,t, the integer

that counts the number of times the model associated with arm k has been trained.

Once arm It is picked, with pt = 1−N It,t/N :r a sub-train is performed on f
NIt,t

It
with probability pt orr a mutation is performed on f

NIt,t

It,t
with probability 1− pt.

The mutation is performed on the trained model f
NIt,t

It
- and not just fIt - to include

the case where certain parameters of the model optimized during training (e.g., weights

of neuron networks) are passed on to its mutant. We detail the mutation operation

for our use-case in Section 3.4. When a mutation occurs, a new model is created, a

first sub-train is performed and the model is added to the list of potential models to be

retained at the end of the algorithm. Thus, the number of models K increases by one

each time a mutant model is created.

Remark 3.3.1. When a new model comes into play, it is very likely to be quickly

chosen by the algorithm, even if its accuracy is not good: the algorithm must explore

this new possibility. The “sleeping bandit” framework, in which new arms may be added

and/or become unavailable during the algorithm execution, is studied by Kleinberg et al.

(2010). It proposes a very natural extension of UCB: the Awake Upper Estimated Reward

algorithm and shows there is no need to adapt the confidence bounds.

The probability pt decreases as the model goes along its sub-trains and guarantees

that it will not be trained more than N times. The more the model has been trained, the

more likely it is to mutate when selected. The underlying idea is that further training will

probably have little effect or even over-fit in the case of neural networks, and that if the

algorithm selects this already well-trained model, it is because it may have good accuracy

(and it will probably be the same for a mutant model). Note that the probability pt is

linear in NIt,t; this choice is arbitrary and we could quite easily have chosen another type

of relationship, e.g., pt = 1 − exp(NIt,t − N). The algorithm ends with a finalization

phase: the best model, in terms of average accuracy, ÎT is selected among the initial

models and the mutant models and its training is completed with N − N ÎT ,T−N+2

additional sub-trains.

Remark 3.3.2. The idea of integrating mutation operations comes from an implicit

assumption about the distribution of the expectation of the accuracies of mutant models,
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Algorithm 2: Mutant-UCB

Inputs:
T budget
E exploration parameter
K initial number of models
N maximum number of sub-trains that can be allocated

to a single model
Initialization

Sample K untrained models f1, . . . , fK
For k = 1, 2, . . . , K

Perform a first sub-train on fk which becomes f 1
k

Get the reward ak = acc
(
f 1
k ,Dvalid

)
Define Nk = Nk = 1, µ̂k = ak

For t = K + 1, K + 2, . . . , (T −N + 1)

Choose It ∈ argmaxk∈{1,...K}

{
µ̂k +

√
E
Nk

}
Sample Xt ∼ B(pt) with pt = 1−N It/N
If Xt = 1:

Perform a sub-train: model f
NIt
It

becomes f
NIt+1

It

Get the reward at = acc
(
f
NIt+1

It
, Dvalid

)
Update µ̂It =

1
NIt+1

(
at +N Itµ̂It

)
, NIt = NIt + 1

and N It = N It + 1
Else :

Update the number of models K = K + 1

Create a mutant model fK from f
NIt
It

Perform a first sub-train on fK which becomes f 1
K

Get the reward at = acc
(
f 1
K ,Dvalid

)
Define NK = NK = 1, µ̂K = at
Update NIt = NIt + 1

Finalization
Select the best model ÎT ∈ argmaxk∈{1,...K} µ̂k

Finalize its training by performing N −N ÎT
sub-trains

Output: fN
ÎT
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e.g.,

E
[
µk

∣∣ fk is amutant of f
Nj

j

]
= µj .

Theses kind of assumption in our case study are discussed in Appendix B.3.

3.3.3 Hardware implementation

We implemented Mutant-UCB in an HPC environment, on multiple GPUs, using par-

allelization to allocate resources as efficiently as possible. So, if we have D GPUs, we

create D + 1 processes, one worker per GPU plus one master process. Once a d worker

process is available, the master process assigns it a model f from the population using

the equation 3.2. If f is to be trained, it is removed from the population and trained

by the d process on its associated GPU. The f model cannot then be selected by the

next d′ process that presents itself to the master process. At the end of its training, the

f model is reintegrated into the population, and its errors and counters are updated.

Therefore, most of the time when a worker process is free, the D− 1 others are all busy

training their models. Thus, the selection of the next arm to be drawn is based on a

population of size K − D + 1. If the selected model is mutated, the mutant is taken

by the process to be trained, and the initial model is returned to the population. On

average, D models are trained and evaluated in parallel.

3.4 Experiments

In this section, we evaluate the performance of the Mutant-UCB algorithm, on neural

networks optimization. In order to highlight the advantages of our method, we put

ourselves in a case where we make no assumptions about the smoothness of the reward

function acc and we do not consider any distance between the elements fk from our

search space. We therefore compare our methods with three algorithms that are ap-

plicable in this case: a Random Search, the Hyperband algorithm and an evolutionary

algorithm. This neural networks optimization is applied to three image classification

data sets.

3.4.1 Experiment design

Data sets. We performed our experiments using three image classification data sets,

also used by Li et al. (2018) to introduce the Hyperband algorithm: CIFAR-10 Krizhevsky

et al. (2009), Street View House Numbers (SVHN Netzer et al. 2011) and rotated MNIST

with background images, also called MRBI Larochelle et al. (2007). These first two data

sets contain 32× 32 RGB images, while MRBI contains 28× 28 gray-scale images. The

labels for each data set are converted to integers between 0 and 9. We split each data

set into a training, a validation and a testing set. The training set is used to optimize
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the model weights (namely to perform the sub-trains), while the validation set is used to

evaluate the configurations in the selection model algorithms (i.e. to get the rewards).

Finally, the accuracies of the configuration selected by the algorithms are computed on

the testing set to assess their quality. CIFAR-10 has 35k image on the train set, 15k on

the validation set and 10k on the test set, SVHN has 51k, 22k and 26k and MRBI 10k,

2k and 50k data points on the three sets respectively. For all data sets we standardized

the images so the input has a mean of zero and a standard deviation of one.

Search space: the pool of possible configurations. We used the DRAGON frame-

work introduced Chapter 2 to encode our neural networks. In this framework, neural

networks are represented as directed acyclic graphs (DAGs), where the nodes represent

the layers (e.g., recurrent, feed-forward, convolutional) and the edges represent the con-

nections between them. The task on which we want to try our algorithms is image

classification. To do so, we define a generic search space (the pool of possible configu-

rations fk) with DRAGON, dedicated to the task at hand. Any sampled configuration

fk will be made of two directed acyclic graphs. The first one processes 2D data, and

can be made of 2D convolutions, 2D pooling, normalization and dropout layers. The

second one consists in a flatten layer followed by MLPs (Multi-Layers Perceptrons) and

normalization layers. A final MLP layer is added at the output of the model to con-

vert the latent vector into the desired output format. The framework includes operators,

namely mutations and crossovers to modify and thus optimize the graphs. The mutation

operators modify the neural network architecture by adding, removing or modifying the

nodes and the connections in the graph. They can also be applied within the nodes, on

the neural network hyper-parameters (e.g., convolution layer kernel size or an activation

function). Crossover involves exchanging parts of two graphs.

Sub-trains. We trained our neural networks using a cyclical learning rate, as proposed

by Huang et al. (2022). When the learning rate is low, the neural network reaches a

local minimum. Right after, the learning rate goes up again taking the model out of the

local minimum. We consider in our experiments that a sub-train is one of this loop, with

learning rate getting from its maximum to its minimum. We let N be the maximum

number of sub-trains for a given element fk from our search space.

Baselines. Random Search, the Evolutionary Algorithm (EA), Hyperband and Mutant-

UCB have all been implemented so that they can be used with the same search space

implementation. They all use the same training and validation functions to assess the

neural networks performance, and share a common budget, namely T . For Random

Search, we randomly select KRS = T/N neural networks. For each of them we per-

form N sub-trains, resulting in T sub-trains in total. For the Evolutionary Algorithm, we

implemented an asynchronous (or steady-state) version. Compared to the standard algo-

rithm, the steady-state evolutionary algorithm of Liu et al. (2018c) enhances efficiency
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on High-Performance Computing (HPC) by producing two offsprings from the population

as soon as a free process is available, rather than waiting for the entire population to

be evaluated. We set an initial population of size KEA, where the deep neural networks

are randomly initialized. We perform N sub-trains on each of these models. Then, we

evolve the population using the mutation and crossover operators from Chapter 2. If a

generated offspring is better than the worst model from the population, it replaces it.

During the optimization procedure, we generate T/N −KEA offsprings and we perform

N sub-trains on each, resulting in a total of T sub-trains. For Hyperband we ran the

algorithm with its parameters R and η such that the total number of sub-trains is T and

that each model can be trained only N times (see, Li et al. 2018 for further details).

The algorithm Mutant-UCB starts with an initial population of KMutant and runs

with a budget of T . For a fair comparison, EA and Mutant-UCB use the same mutation

operators. We set KEA << KMutant ≲ KRS. Indeed, as each configuration is fully

trained in the evolutionary algorithm, KEA must be much lower than T/N to allow the

creation of a sufficient number of offsprings. Similarly, Mutant-UCB mutation operator

will create new configurations during the optimization procedure. However the evolu-

tionary algorithm will generate even more individuals with the crossover, so KMutant may

be higher than KEA. We then set KMutant a bit smaller than T/N . We emphasize that,

with the creation of offsprings and mutants, the final number of evaluated models by the

evolutionary algorithm and Mutant-UCB will be much higher than KEA and KMutant,

respectively. In addition, Random Search and the evolutionary algorithm fully train each

configuration tested (of which there are T/N), while Hyperband and Mutant-UCB allow

some of them to be partially trained (resulting in a final population of more than T/N

configurations).

3.4.2 Results

Table 3.1: Number of tested models and accuracies (in %) of the best model for Random
Search (RS), asynchronous evolutionary algorithm (EA) and Mutant-UCB on CIFAR-10,
MRBI and SVHN data sets.

Data set CIFAR-10 MRBI SVHN

RS 1 000 · 75.3 1 000 · 75.5 1 000 · 90.7
EA 1 000 · 77.1 1 000 · 79.5 1 000 · 91.9
Hyperband 2 400 · 75.4 2 400 · 75.9 2 400 · 91.0
Mutant-UCB 3 399 · 79.5 3 463 · 80.5 3 471 · 92.4

We run the experiments with T = 10, 000, N = 10 and E = 0.05 for Mutant-UCB.

The tuning of the parameter E for Mutant-UCB is not as important as for the UCB-E

algorithm. We only need the algorithm to not explore too much, since the mutation
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(a) CIFAR-10.

(b) MRBI.

(c) SVHN.

Figure 3.1: Accuracy of the best model over computational time for Random Search
(RS), asynchronous evolutionary algorithm (EA) and Mutant-UCB on CIFAR-10, MRBI
and SVHN data sets.
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operator represents an additional form of exploration. Indeed, in the UCB-E algorithm,

parameter E is responsible for managing the balance between exploration (through the

execution of a few sub-trains for numerous models) and exploitation (through the ex-

ecution of numerous sub-trains for a few models). Here, the Mutant-UCB algorithm

incorporates two forms of exploration: firstly, through the sub-training of numerous

models (which is also linked to the initial number of models K), and secondly, through

the generation of mutants. If E is relatively large, numerous models will be tested,

with a correspondingly smaller number of mutants generated (such an algorithm would

be similar to Random Search). Conversely, if E is relatively small, a limited number of

models will be fully trained, resulting in a substantial number of mutants being generated

from them (such an algorithm would be similar to an evolutionary algorithm without the

crossover operator, selecting only the best models at each iteration). A discussion on

the tuning of the exploration parameter E can be found Appendix B.2.

Each sub-trains contains 10 epochs, resulting in a maximum of 100 training epochs,

and the learning rate is set to 0.01. Each experiment is run on a HPC environment using

20 NVIDIA V100 GPUs.

We display Table 3.1 the maximum accuracies and the number of tested models

for each algorithm from our baseline. We see that Mutant-UCB outperforms Random

Search, the evolutionary algorithm and Hyperband for every data sets. The use of the

mutation operator seems to be the primary factor in this performance. Indeed, the

evolutionary algorithm comes well ahead of Hyperband and Random Search. It would

seem that digging around promising solutions leads to better configurations. However,

resources allocation also seems to be a key factor. Hyperband is in fact slightly better

than Random Search, and converges much faster, as it can be seen in Figure 3.1. The

computation times to perform the T iterations vary a lot between the algorithms and the

task at hand. The hardware definitely has an impact on this, but the resources allocation

will also play a crucial role. Throughout the paper there is an implicit assumption that a

sub-train’s budget in terms of memory and time is independent of the model, which is not

entirely correct. Indeed, performing more sub-trains on configurations which are more

complex take generally a longer time and affect the total duration of the experiment.

Mutant-UCB, with both the mutation operator and the resources allocation has the

fastest convergence and yields the better accuracies. Appendix B.1 details the models

found by the different algorithms.

3.5 Discussion

This work presents Mutant-UCB, an innovative model selection algorithm, which com-

bines a UCB-based bandit algorithm with evolutionary algorithm operators. Most con-

figuration selection approaches, such as Bayesian optimization or continuous bandit al-

gorithms, typically consider a normed vector space to represent the pool of possible con-

figurations. These approaches assume that the reward function is smooth, meaning that
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two configurations that are close in the underlying vector space lead to close accuracies.

Mutant-UCB and the other algorithms in the baseline do not require any smoothness

assumptions. Besides, thanks to its resource allocation, Mutant-UCB demonstrates a

high exploratory potential. It can evaluate more models within a similar budget com-

pared to Random Search or evolutionary algorithms. For example, on the MRBI data

set, with a budget T = 10, 000, Mutant-UCB evaluated 3, 500 configurations, while

the Evolutionary Algorithm and Random Search only evaluated 1, 000. The use of a

mutation operator, on the other hand, reinforces the exploitation of promising solutions

and allows us to reach much higher performance configurations than Hyperband and

Random Search. The mutation can be viewed as a concept of proximity: a mutant and

its original model are close together, as defined by the chosen operator (which does not

require any normed vector space). It remains more permissive than the operators of the

evolutionary algorithm. In particular, the crossover from the evolutionary algorithm re-

quires homogeneity between the elements of the search space, unlike Mutant-UCB. Thus,

Mutant-UCB could be used with a search space that combines various machine learning

models, such as neural networks, random forests, or boosting; as soon as we define a

mutation operator for each type of model. Finally, the Mutant-UCB algorithm is highly

scalable in an HPC environment because configurations are evaluated independently and

asynchronously, in contrast to Hyperband and classical evolutionary algorithms, which

evaluate populations synchronously. In summary, Mutant-UCB has several advantages

that make it an attractive algorithm, in addition to its baseline-beating performance

demonstrated in the previous section. One disadvantage is the need to store the weights

of all previous configurations evaluated. This is because the pool of solutions on which

we apply the UCB part of the algorithm is not limited, unlike the other algorithms from

the baseline.

Prospects. The experiments demonstrate the relevance of Mutant-UCB. A challenge

for further work would be to obtain an upper bound on the simple regret of this algorithm

to attest a theoretical performance. In this best-arm identification problem for infinite-

armed bandit framework; the simple regret will be the accuracy of the best possible model

minus the accuracy of the model selected by the algorithm. To obtain theoretical results,

we believe that it will be necessary to introduce some concepts from sleeping bandits

due to the creation of mutants (see, e.g., Kleinberg et al. 2010 and contextual bandits

to model the proximity between mutants and their original models (see, among other Li

et al. 2010). One of the most challenging aspects of the analysis will be to select an

appropriate hypothesis regarding the distribution of rewards conditionally to the chosen

arm. The classical stochastic bandit assumptions are not applicable in this context, as

they suggest that, conditionally to the chosen arm, the accuracy does not depend on the

number of sub-trains performed. However, empirical evidence indicates that performing

multiple sub-trains enhance performance. Furthermore, in order to legitimize the idea

of integrating mutation operations, and hopefully get the simple regret bound, it seems
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essential to add an assumption about the distribution of the accuracies of mutants.

It should also be noted that the HPC environment and the neural network training

duration puts us in a context where rewards arrive with a delay (namely, in a delayed

bandits framework - see, e.g., Vernade et al. 2020) and not all arms are available at all

times (sleeping bandits again).

The strategy for creating mutant models is independent of the choice of bandit

algorithm used to select the arms. Alternative approaches, other than those based on

UCB, could be considered.

In this chapter we applied Mutant-UCB to a very generic problem: neural networks

optimization for image classification. The flexibility of this algorithm means that it can

be applied to a wide range of problems. A natural extension of this work would be to

apply Mutant-UCB to a variety of tasks, models and search spaces where state-of-the-art

algorithms, by their very nature, would be limited or even unusable.



Chapter 4

DRAGON: a Python package for

Automated Deep Learning

In this chapter, we propose a tutorial on the Python package

DRAGON, which implements the DAG-based search space

and the various search algorithms mentioned in the previ-

ous two chapters (including the Evolutionary Algorithm and

Mutant-UCB). DRAGON is presented as an automated deep

learning toolbox that offers different levels of customization

to create task-specific AutoDL frameworks for any given task.

The package is organized around three main concepts: the

search space, the search operators, and the search algorithms.

In the following, we will explain how they are implemented and how they can be used.

We conclude with a more applied section that gives a more concrete example of how

the package can be used. This chapter is not intended to be an exhaustive presentation

of the package. More information, especially about the implementation, can be found

in the documentation1.
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4.1 Introduction

DRAGON, for DiRected Acyclic Graphs optimization, is an open source Python package

designed to optimize the hyperparameters and architectures of deep neural networks. It

implements the algorithmic framework proposed Chapter 2. In this framework, Deep

Neural Networks are encoded as Directed Acyclic Graphs (DAGs), where the nodes can

be any Pytorch operations parameterized by some optimizable hyperparameters and the

edges are the connections between them. While the framework is already presented

as more flexible than the AutoDL approaches in the literature (e.g., the possibility to

choose candidate operations, optimization of hyperparameters, and no constraints on

connections), its implementation, called DRAGON, offers even more choices to the user.

This chapter provides a detailed overview of the package and illustrates its customization

options. Unlike most AutoDL or AutoML packages in the literature such as AutoGluon

(Erickson et al., 2020), Auto-Keras (Jin et al., 2019) or AutoPytorch (Zimmer et al.,

2021), DRAGON is not a no-code package. It is not enough to write .fit and then

.predict to get results with DRAGON. To use the package, the user must define an

appropriate search space, a meta-architecture, and procedures for training and validation.

Although this implementation requires more initial effort, it allows for a wide range of

tools tailored to different problems. The search space consists of objects that fall into

three main categories: search space variables, search operators, and search algorithms.

The search space variables are Python objects able to encode various elements such

as integers or arrays. These variables can be combined to represent more complex

objects such as neural network layers or DAGs. While a variety of encodings are already

available in the package, we will detail how to create custom variables to further extend

the package with other representations.

To navigate within the search space and modify the configurations within it, mu-

tation or neighborhood operators are defined for each variable. The idea is to slightly

modify a representation to obtain one of its neighbors. The assumption is that if the

original configuration gave good results, then there must be other configurations in its

neighborhood that perform equally well or better. As with variables, the package comes

with ready-made functions, but these operators can also be customized.
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These search operators can be used by search algorithms. To date, four algorithms

have been implemented in DRAGON: a Random Search, HyperBand (Li et al., 2018),

the Evolutionary Algorithm, and Mutant-UCB respectively introduced Chapters 2 and 3.

The former two do not need to change the configurations and therefore do not need

mutation operators while the latter do use them. These four algorithms depend on the

same Python class, which is described in detail in this tutorial. It manages the storage

of evaluated configurations and the potential distribution of the algorithm in a High-

Performance Computing (HPC) environment. This implementation makes it easy to

add new search algorithms without having to manage the hardware.

Finally, the part not covered by DRAGON at all, the performance evaluation, is

presented in the form of examples. It consists of creating a neural network from elements

in the search space, training it, and validating it.

4.2 Search Space variables

The search space design is based on an abstract class called Variable, originally pro-

posed within a hyperparameters optimization package called zellij2. This class can rep-

resent various objects from float to tree-based or array-like structures. Each child class

should implement a random method, which represents the rules defining the variable and

how to generate random values. The other method to implement is called isconstant

and specifies whether the variable is a constant or not. Variables can be composed to

represent more or less complex objects. Among the composed variables, some have been

created specifically for the DAG encodings. A variable can be extended by Addons to

implement additional features such as the search operators detailed in Section 4.3. The

structure of a Variable definition is the following:

1 from dragon.search_space.base_variables import Variable

2

3 class CustomVar(Variable):

4

5 def __init__(self , label , ** kwargs):

6 super(CustomVar , self).__init__(label , ** kwargs)

7 """

8 The label is the unique identifier of a variable.

9 """

10

11 def random(self , size=None):

12 """

13 Create ‘size ‘ random values of the variables

14 """

15

16 def isconstant(self):

17 """

2https://zellij.readthedocs.io/en/latest/

https://zellij.readthedocs.io/en/latest/
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18 Specify is a variable is a constant or not.

19 This function might depends on the variable attributes

.

20 """

All the variables ihnerit from the abstract class Variable. An example of the imple-

mentation of a variable for an integer can be found below:

1 class IntVar(Variable):

2 """

3 IntVar

4 Defines a Variable discribing integer variables.

5

6 Parameters

7 ----------

8 label : string

9 Label of the variable.

10 lower : int

11 Lower bound of the variable.

12 upper : int

13 Upper bound of the variable

14 """

15 def __init__(

16 self , label , lower , upper , ** kwargs):

17 super(IntVar , self).__init__(label , ** kwargs)

18 self.low_bound = lower

19 self.up_bound = upper + 1

20

21 def random(self , size=None):

22 """

23 ‘size ‘ integers are randomly drawn form the interval ‘[

low_bound , up_bound]‘.

24 """

25 return np.random.randint(self.low_bound , self.up_bound ,

size , dtype=int)

26

27 def isconstant(self):

28 """

29 An IntVar is a constant if the upper and the lower bounds

are equals.

30 """

31 return self.up_bound == self.low_bound

4.2.1 Base variables

The base variables implement basic objects such as integers, floats or categorical vari-

ables. Each of them is associated with a Variable, defining what values an object can

take. For example, an integer object is implemented by the example variable IntVar
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suggested above. It takes as arguments the lower and upper bounds defining the range

of values the integer might take.

1 from dragon.search_space.base_variables import IntVar

2

3 v = IntVar("An integer variable", 0, 5)

4

5 v.random ()

6 3

In this example, the variable v defines an integer taking values from 0 to 5. When calling

v.random(), the script returns an integer from this range, here 3. The base variables

available in DRAGON are listed in Table 4.1. Note that the features from a CatVar

Table 4.1: Base variables

Type Variable Name Main Parameters
Integer IntVar Lower / upper bound
Float FloatVar Lower / upper bound
Categorical (string,
etc)

CatVar Features: list of possible choices

Constant (any object) Constant Value: constant value

variable might include objects from the class Variable and non-variables objects.

4.2.2 Composed variables

The base variables can be composed to create more complex objects such as arrays of

variables.

1 from dragon.search_space.base_variables import *

2

3 a = ArrayVar(

4 IntVar("int1" ,0,8),

5 IntVar("int2" ,4,45),

6 FloatVar("float1" ,2,12),

7 CatVar("cat1", ["Hello", 87, 2.56])

8 )

9

10 a.random ()

11 [5, 15, 8.483221226216427 , ’Hello’]

Here we have created an array of four different elements: two integers, one between 0

and 8 and the other between 4 and 45, a float between 2 and 12, and a categorical vari-

able that takes values between ["Hello", 87, 2.56]. For example, an ArrayVar can

represent a list of hyperparameters of a machine learning model. Unlike the CatVar fea-

tures attribute that may contain Variable and non-Variable elements, the attributes

of composed variables must inherit from the class Variable. This means that we cannot
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create an ArrayVar with a simple 5 as argument. To include a constant integer, we

have to encode it using a Constant variable.

Table 4.2: Composed variables

Definition Variable Name Main Parameters
Array of Variables ArrayVar List of Variable
Repeated Variable Block Variable that will be repeated and

the number of repetitions.
Random number of
repetitions

DynamicBlock Variable that will be repeated and
the maximum number of repeti-
tions.

4.2.3 Deep Neural Networks Encoding

Both base and composed variables have been used to encode Deep Neural Networks

architecture and hyperparameters.

4.2.3.1 Operations and hyperparameters encoding

Deep Neural Networks are made of layers. In DRAGON’s case, those layers are nn.Module

from PyTorch. The user can integrate any base or custom nn.Module, but has to wrap

it into a Brick object. This Python class takes an input shape and some hyperparam-

eters as arguments and initializes a given nn.Module with these hyperparameters so it

can process a tensor of the specified input shape. The forward pass of a Brick can

directly apply the layer to an input tensor, or it can be more complex and transform

the input data before the operation. Finally, the abstract class Brick also implements

a modify operation method. It takes an input shape and modifies the shape of the

operation weights so that it can take as input a tensor of shape input shape. This

method is applied when the Deep Neural Network is created or modified.

1 import torch.nn as nn

2 from dragon.search_space.cells import Brick

3

4 class Dropout(Brick):

5 """

6 Dropout

7 Implementation of a dropout layer as a DRAGON candidate

operation.

8

9 Parameters

10 ----------

11 input_shape : tuple

12 Shape of the incoming vector.

13 rate : float
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14 Probability of an element to be zeroed.

15 """

16 def __init__(self , input_shape , rate):

17 super(Dropout , self).__init__(input_shape)

18 self.dropout = nn.Dropout(p=rate)

19 def forward(self , X):

20 X = self.dropout(X)

21 return X

22 def modify_operation(self , input_shape):

23 pass

1 from dragon.search_space.cells import Brick

2 import torch.nn as nn

3

4 class MLP(Brick):

5 """

6 MLP

7 Implementation of a linear layer as a DRAGON candidate

operation.

8

9 Parameters

10 ----------

11 input_shape : tuple

12 Shape of the incoming vector.

13 out_channels : int

14 Size of each output sample.

15 """

16 def __init__(self , input_shape , out_channels):

17 super(MLP , self).__init__(input_shape)

18 self.in_channels = input_shape [-1]

19 self.linear = nn.Linear(self.in_channels , out_channels)

20 def forward(self , X):

21 X = self.linear(X)

22 return X

23 def modify_operation(self , input_shape):

24 d_in = input_shape [-1]

25 diff = d_in - self.in_channels

26 sign = diff / abs(diff) if diff != 0 else 1

27 pad = (int(sign * ceil(abs(diff)/2)),

28 int(sign * floor(abs(diff)/2)))

29 self.in_channels = d_in

30 self.linear.weight.data =

31 nn.functional.pad(self.linear.weight , pad)

The two blocks of code above show the implementation of a Dropout layer and an MLP

(Multi-Layer Perceptron), respectively. While the wrapping of the Dropout layer into a

Brick object requires minimal modifications, the MLP wrapping necessitates some effort

to implement the modify operation method. Indeed, the shape of the weights of an

nn.Linear operation depends on the input tensor dimension.
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The variable encoding a Brick is called HpVar. It takes as input a Constant or

a CatVar containing a single or several layers implemented a Bricks, as well as a

dictionary of hyperparameters. If a CatVar is given as input operation, all the Bricks

contained in the CatVar’s features should share the same hyperparameters.

1 from dragon.search_space.bricks import MLP

2 from dragon.search_space.base_variables import Constant , IntVar

3 from dragon.search_space.dag_variables import HpVar

4

5 mlp = Constant("MLP operation", MLP)

6 hp = {"out_channels": IntVar("out_channels", 1, 10)}

7 mlp_var = HpVar("MLP var", mlp , hyperparameters=hp)

8 mlp_var.random ()

9 [<class ’dragon.search_space.bricks.basics.MLP’>,

10 {’out_channels ’: 9}]

1 from dragon.search_space.bricks import LayerNorm1d , BatchNorm1d

2 from dragon.search_space.base_variables import CatVar

3 from dragon.search_space.dag_variables import HpVar

4

5 norm = CatVar("1d norm layers", features =[ LayerNorm1d , BatchNorm1d

])

6 norm_var = HpVar("Norm var", norm , hyperparameters ={})

7 norm_var.random ()

8 [<class ’dragon.search_space.bricks.normalization.BatchNorm1d ’>,

{}]

These two examples show how to use HpVar with a Constant and a CatVar operation

respectively. Here, the CatVar is made here of two versions of normalization layers which

share the same hyperparameters (none in this example). The only hyperparameter that

can be optimized for the MLP layer is the size of the output channel, here, an integer

between 1 and 10. To facilitate the use of DRAGON, operations (such as convolution,

attention, pooling, or identity layers) as Brick and their variable HpVar are already

implemented in the package.

4.2.3.2 Node encoding

DRAGON implements Deep Neural Networks as computational graphs, where each node

is a succession of a combiner, an operation and an activation function, as detailed in

Chapter 2. The operation is encoded as a Brick, as mentioned above. The combiner

unifies the (potential) multiple inputs the node might have into one unique tensor. The

combiners available in DRAGON are add, mul and concat and are encoded as strings.

The activation function can be any PyTorch implemented or custom activation function.

An nn.Module object called Node takes as inputs these three elements to create a node.

A Node implements several methods. The main ones are:

• set operation: takes as input a variable input shapes containing the input

shapes of the incoming tensors. The method uses the combiner to compute the
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operation input shape and initialize the operation weights with the right shape.

The initialized operation is then used to compute the node output shape. This

value will be used by the set operation methods from the child nodes of the

current one.

• modification: modifies the input shapes, the combiner, the operation or the

hyperparameters of the node. The modification can happen after a mutation or

a change in the input tensor shape. If the operation is not modified, the method

modify operation from the Brick object is called only to modify the weights

without creating a new operation. This way, weights’ optimization does not restart

from the beginning.

• set: automatically chooses between the set operation and modification

methods depending on the context.

• forward: computes the node forward pass from the combiner to the activation

function.

The Variable corresponding to a Node is called NodeVariable. It takes as input

a Constant or a CatVar for the combiner and the activation functions. The operation

is implemented as an HpVar as mentioned above. However, a node can have multiple

candidate operations, all of them implemented as different HpVar objects. In this case,

instead of directly being given as an HpVar, they are contained within a CatVar. The

CatVar features will contain the different HpVar. An example is given below.

1 from dragon.search_space.base_variables import CatVar

2 from dragon.search_space.bricks_variables import activation_var

3

4 # Operation encoded as a ‘CatVar ‘ of ‘HpVar ‘

5 operations = CatVar("Candidates", [mlp_var , norm_var ])

6 candidates = NodeVariable(

7 label="Candidates",

8 combiner=CatVar("Combiner", features =["add", "concat"]),

9 operation=operations ,

10 activation_function=activation_var("Activation")

11 )

The activation functions are encoded through the activation var object. It is a default

CatVar implemented within DRAGON which contains the basic activation functions from

PyTorch. The random method from the NodeVariable randomly selects a combiner,

an activation function, an operation (in case of a CatVar operation), and draws random

hyperparameters.

4.2.3.3 DAG encoding

Finally, the last structure presented is the DAG, which (partially) encodes a Deep

Neural Network. The object that encodes the graphs is called AdjMatrix and is
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also a nn.Module. It takes as arguments a list of nodes and an adjacency matrix

(a two-dimensional array) representing the edges between these nodes. A method

assert adj matrix is used to evaluate the correct format of the adjacency matrix

(e.g, right number of rows and columns, upper triangular, diagonal full of zeros). The

directed acyclic structure of the graph allows ordering the nodes as explained in Chap-

ter 2. Just like the Node object, the AdjMatrix implements a method set that takes as

an argument input shape and calls the method set from each node in that order. The

forward pass computation is also done in this order. During the forward computation,

the outputs are stored in a list to be used for later nodes of the graph that have them

as input.

The Variable that represents the AdjMatrix is called EvoDagVariable. It takes

as input a DynamicBlock whose repeated variable would be a NodeVariable. This

NodeVariable will have its operation encoded as CatVar in case of multiple candidate

layers. A random AdjMatrix is created by first drawing the number of nodes from the

graph. Then a random value of NodeVariable is drawn for each node. Finally an

AdjMatrix of the right dimension is created.

Figure 4.1 below illustrates how the elements are linked together. The hierarchical

composition of the variables creating a DAG allows optimization at various levels, from

the graph structure to any operation hyperparameters. Hyperparameters or operations

can be imposed to reduce the search space by passing certain operations with constant

hyperparameters Constant. This way, we can reconstruct more constrained search

spaces close to cell-based search spaces.

4.3 Search Operators

Once the search space is defined, a simple random search can be used to find good

configurations. However, training a deep neural network is a long and resource-intensive

process. Therefore, the search algorithm must train neural networks as little as possi-

ble. It is therefore essential to use information from previous training and evaluation. By

identifying good solutions, they can be modified to optimize their performance. To make

these modifications, a neighbor attribute can be associated with each of the variables

defined in Section 4.2. They can be thought of as neighborhood or mutation operators.

These attributes are added using Addons. A Addon is an object that is linked to an-

other. It allows extending functionalities of the other object (in this case a Variable)

without modifying its implementation. DRAGON provides an implementation of one

neighborhood per variable, but users can implement their own. A neighborhood is a

class inheriting from the abstract class VarNeighborhood, which is an Addon. It should

have the following structure:

1 class CustomInterval(VarNeighborhood):

2 """

3 CustomInterval
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AdjMatrix
=

EvoDagVariable

Matrix: adjacency matrix representing
the edges between nodes

Operations: list of Nodes
= =

DynamicBlock NodeVariables

Node
=

NodeVariable

Combiner = Constant or CatVar

Operation(s) and hp = HpVar or CatVar of HpVar

Activation function = Constant or CatVar

Operation and
hyperparameters

= HpVar

Brick or list of Bricks (PyTorch operations)
= Constant or CatVar

Hyperparameters = dictionary of base variables
(e.g., FloatVar, CatVar)

Figure 4.1: Summary of DAG Encoding within DRAGON

4 Addon used to determine the neighbor function of a Variable.

5

6 Parameters

7 ----------

8 variable : Variable , default=None

9 Targeted Variable.

10 neighborhood : any , default=None

11 Parameter of the neighborhood

12 """

13 def __call__(self , value , size =1):

14 """

15 Function defining how to choose ‘size ‘ neighbors

surrounding the variable ‘value ‘.

16 """

17

18 @VarNeighborhood.neighborhood.setter

19 def neighborhood(self , neighborhood):

20 """

21 Set the neighborhood parameter (e.g., probability to mutate

ArrayVar values).

22 """

23 self._neighborhood = neighborhood

24

25 @VarNeighborhood.target.setter

26 def target(self , variable):
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27 """

28 Provide the CustomInterval object with information about

the related ‘Variable ‘.

29 """

30 self._target = variable

Here is an example of a neighborhood defined for the IntVar variable. The neighborhood

selects new values within an interval surrounding the current one, parameterized by an

interval size:

1 from dragon.search_space.addons import VarNeighborhood

2

3 class IntInterval(VarNeighborhood):

4 def __call__(self , value , size =1):

5 """

6 Get the upper bound for the interval:

7 the minimum between [current value + neighborhood] and

8 [the maximum value the variable can take].

9 """

10 upper = min(value + self.neighborhood + 1, self.target.

up_bound)

11

12 """

13 Get the lower bound for the interval:

14 the maximum between [current value - neighborhood] and

15 [the minimum value the variable can take].

16 """

17 lower = max(value - self.neighborhood , self.target.

low_bound)

18

19 res = []

20 for _ in range(size):

21 v = np.random.randint(lower , upper)

22 while v == value:

23 v = np.random.randint(lower , upper)

24 res.append(int(v))

25

26 return res if size > 1 else res [0]

27

28 @VarNeighborhood.neighborhood.setter

29 def neighborhood(self , neighborhood):

30 self._neighborhood = neighborhood

31

32 @VarNeighborhood.target.setter

33 def target(self , variable):

34 self._target = variable

This IntInterval is assigned to the Variable while we define it:

1 from dragon.search_space.base_variables import IntVar

2
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3 v = IntVar("An integer variable", 0, 5, neighbor=IntInterval(

neighborhood =1))

4 v.neighbor (4) # Example usage

5 # Output: 3

4.3.1 Base and composed variables

The neighborhood operators available for base and composed variables within DRAGON

are listed in Table 4.3. If a composed variable has a neighbor addon, then all the values

Table 4.3: Base and composed neighborhoods

Type Variable Name Neighbor Name Main Parameters
Integer IntVar IntInterval Interval size
Float FloatVar FloatInterval Interval size
Categorical (string,
etc)

CatVar CatInterval

Constant (any ob-
ject)

Constant ConstantInterval

Array of Variables ArrayVar ArrayInterval

Fix number of re-
peats

Block BlockInterval

Random number of
repeats

DynamicBlock DynamicBlockInterval Neighborhood of
the DynamicBlock

size

composing this variable should have a neighbor addon. For example with a Block:

1 from dragon.search_space.base_variables import Block , FloatVar

2 from dragon.search_algorithm.base_neighborhoods import

BlockInterval , FloatInterval

3

4 content = FloatVar("Float example", 0, 10, neighbor=

FloatInterval (2))

5 a = Block("Block example", content , 3, neighbor=BlockInterval ()

)

6

7 a.neighbor ([2, 1, 6])

8 [2, 1.3432682541165653 , 7.886611679292923]

In this example, the Block’s value is a FloatVar variable. Neighbor addons are given

to both Variables. The addon BlockInterval makes use of the FloatInterval to

create the new value.

4.3.2 DAG encoding neighborhoods

Besides the base and composed variables, the ones used for DAG encoding, namely

HpVar, NodeVariable and EvoDagVariable also have implemented neighborhoods.
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4.3.2.1 Operation neighborhood

The HpVar neighborhood is called HpInterval. Its arguments are an operation and a

set of hyperparameters. It selects among the operation and the various hyperparameters

the ones that will be mutated. The mutation applied to the operation is not more likely

to be called than the hyperparameters one. It does not have any effect if the operation

is a Constant. The chosen hyperparameters are mutated according to their neighbor

addon. The HpInterval object returns the new operation and hyperparameters. It is

possible to modify this operator to increase the probability of modifying the operation or

to prevent hyperparameter mutations before a certain iteration of the search algorithm.

4.3.2.2 Node neighborhood

If the operation within a NodeVariable is encoded as a HpVar, then its neighborhood

will be the HpInterval. But, in the case of CatVar of HpVar, when dealing with

candidate operations implemented in various HpVar, the neighborhood for the operation

is called CatHpInterval. This neighborhood chooses between modifying the current

operation or drawing a completely new one. It takes as argument a probability p ∈ [0, 1]

of only modifying the current operation (by default equal to 0.9). With a probability

p, the function will look for the HpVar corresponding to the current value and call

the HpInterval of this variable. The matching is done by looking at the features

attribute if the HpVar operation is a CatVar or the value attribute if the operation is

a Constant. With a probability 1− p, a new layer is drawn (with a new operation and

new hyperparameters), by calling the random function of the CatVar.

The neighborhood class associated with a NodeVariable is called NodeInterval.

It selects among the combiner, the operation and the activation function what is to

be modified. For the selected elements, their neighbor attributes are invoked. In the

current implementation, the chances for modifying any of these three elements are the

same, which may be changed.

4.3.2.3 DAG neighborhood

The EvoDagVariable neighborhood class is called EvoDagInterval. This neighbor-

hood may perform five types of mutations, mentioned Chapter 2:

• Adding a node

• Deleting a node

• Modifying a node

• Modifying the input connections of a node

• Modifying the output connections of a node
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First, it randomly selects the nodes to be modified. A parameter nb mutations can

be set to limit the number of nodes modified. For each selected node, the allowed

mutations can be different. For example, if the selected node is the last one, its outgoing

connections cannot be changed. If the maximum number of nodes is reached, the add

mutation cannot be used. For each node, once the set of allowed mutations has been

defined, one value from that set is drawn and performed. After a mutation, some tests

are performed to ensure a correct adjacency matrix structure and to adjust connections

if necessary. This prevents nodes from having no incoming or outgoing connections. By

modifying the nodes and edges, the input tensors of each node may have changed shape.

In this case, the node’s operation is modified by calling its modification to adjust the

weights.

4.3.3 Crossover

Besides the neighborhood operators, a crossover has been implemented to use DRAGON

with an evolutionary algorithm. The crossover is not an Addon, it is a simple class

implementing a two-point crossover. The crossover call method takes as input two

individuals ind1 and ind2 which should be array-like variables, with the same types of

Variables at each position. Two index points from arrays are picked randomly. The

segment between those two index points is swapped between the parents. For each

element of this segment, if one of them is an AdjMatrix variable, then the DAG-based

crossover is used. The DAG-based crossover takes as input two AdjMatrix elements

and perform the following operations:

• Selects the indexes of the operations that would be exchanged in each graph.

• Removes the corresponding lines and columns from both adjacency matrices.

• Computes for each exchanging node, the index in the other graph where it will be

inserted.

• Inserts the new rows and columns within both adjacency matrices.

• Asserts no nodes without incoming or outgoing connections are remaining within

the matrices.

• Asserts the new matrices are upper-triangular.

• Creates new AdjMatrix variables with the new nodes and matrices.

The DAG-based crossover is presented in more detail Chapter 2.
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4.4 Search Algorithms

4.4.1 Main structure

The variables and their operators respectively defined in Sections 4.2 and 4.3 can be

used to implement various search algorithms. DRAGON uses an abstract class called

SearchAlgorithm to structure the algorithms.

1 class SearchAlgorithm:

2 """ SearchAlgorithm

3 Abstract class describing the general structure of a search

algorithm.

4 The classes inheriting from the ‘SearchAlgorithm ‘ abstract

class should implement a ‘select_next_configuration ‘ and a ‘

process_evaluated_configuration ‘ methods.

5

6 Parameters

7 ----------

8 search_space: ‘Variable ‘

9 ‘Variable ‘ containing all the design choices from the

search space. It should implement a ‘random ‘ method and a ‘

neighbor ‘ one if necessary.

10 n_iterations: int

11 Number of iterations.

12 population_size: int

13 Size of the randomly initialized population.

14 evaluation: function

15 Performance evaluation function. Takes as argument a

set of configuration and the unique index of this configuration.

Returns the performance and the model built.

16 """

17 def __init__(self , search_space , n_iterations , population_size ,

evaluation):

18 self.search_space = search_space

19 self.n_iterations = n_iterations

20 self.population_size = population_size

21 self.evaluation = evaluation

22 self.min_loss = np.inf

23

24 def run(self):

25 # Generate the first population of configurations

26 self.population = self.create_first_population ()

27

28 # Evaluate and process each of these configurations

29 for i, p in enumerate(self.population):

30 loss = self.evaluation(idx)

31 self.process_evaluated_configuration(idx , loss)

32 if loss < self.min_loss:

33 self.min_loss = loss
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34

35 t = population_size

36 # While the number of iterations has not been reached

37 while t < n_iterations:

38 # Select the next configurations

39 idx_list = self.select_next_configurations ()

40 for idx in idx_list:

41 # Evaluate the configurations

42 loss = self.evaluation(idx)

43 # Process the evaluated configuration

44 self.process_evaluated_configuration(idx , loss)

45 if loss < self.min_loss:

46 self.min_loss = loss

47 t += 1

Listing 4.1: Example of a search algorithm

This pseudo-code is a highly simplified, schematic version of the SearchAlgorithm

class to help illustrate its main aspects. The class input arguments depend on the appli-

cation. The search space is a (composed) Variable that can represent all considered

configurations. The evaluation function takes a configuration as input, builds the

model, trains and evaluates it, and then returns a loss value representing its perfor-

mance. This function depends on the tasks at hand and should be implemented by the

user. It is important to note that the class SearchAlgorithm is made to minimize a

value, and thus the evaluation function should return a loss, not a reward. The num-

ber n iterations represents the amount of calls to the evaluation function during

training. The SearchAlgorithm class assumes that all search algorithms go through

an initialization phase where a certain population is randomly generated and evaluated.

Then, until a maximum number of iterations is reached, a configuration is selected

and evaluated by a select next configuration function, specific to the algorithm in

question. Depending on the performance obtained, the algorithm will process this con-

figuration with the process evaluated configuration function. A pseudo-code of a

select next configuration function for the Evolutionary Algorithm is given below.

1 def select_next_configurations(self):

2 parent_1 , parent_2 = tournament_selection(self.population)

3 offspring_1 , offspring_2 = crossover(parent_1 , parent_2)

4 offspring_1 = self.search_space.neighbor(offspring_1)

5 offspring_2 = self.search_space.neighbor(offspring_2)

6 return [offspring_1 , offspring_2]

Listing 4.2: Evolutionary Algorithm selection of next configurations

It first selects two parent configurations using a tournament selection strategy. The

parents are then modified using a crossover and the mutations implemented as neighbor

attributes. When implementing a new search algorithm using the SearchAlgorithm

structure, this function has to be specified.
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4.4.2 Storage management for Deep Neural Networks

The objects encoding DAG such as the Bricks, Nodes, and AdjMatrix are all nn.Module

that contain trained weights. Therefore, they can take up a lot of memory. To prevent

the system from handling too many neural networks, the configurations are cached while

the search algorithm is running and only loaded for evaluation or to create a new con-

figuration by mutating them. For this purpose, each configuration is assigned a unique

number called idx. A storage dictionary summarizes all the information needed by

the search algorithm for each configuration. All algorithms require the loss for each

configuration. However, some algorithms leveraging resource allocation may need addi-

tional information such as the number of resources a configuration has already received.

The storage dictionary is updated during the process evaluated configuration.

A pseudo-code of the one used by Mutant-UCB is given below.

1 def process_evaluated_configuration(self , idx , loss):

2 # If the configuration has already been evaluated

3 if idx in self.storage.keys():

4 self.storage[idx][’Loss’] = loss

5 self.storage[idx][’UCBLoss ’] = (loss +

6 self.storage[idx][’N_bar’]*

7 self.storage[idx][’UCBLoss ’])/

8 (self.storage[idx][’N_bar ’]+1)

9 # Count number of time the configuration has been picked

10 self.storage[idx][’N’] +=1

11 # Count number of time the configuration has been trained

12 self.storage[idx][’N_bar’] +=1

13 else:

14 self.storage[idx] =

15 {"N": 1, "N_bar": 1, "UCBLoss": loss , "Loss": loss}

Listing 4.3: Mutant-UCB configuration processing function

This function should also be specified when implementing a new search algorithm.

The file-based backup system also makes it easy to resume an aborted optimization.

The SearchAlgorithm class incrementally saves a CSV file containing information

about previously evaluated configurations. This file is used to find the stage where

the search algorithm stopped and to continue the search. This is done using the

recover optimization method of the class.

4.4.3 Distributed version through MPI

The class SearchAlgorithm allows the distribution of the algorithms on multiple com-

putation nodes of a High Performance Computing (HPC) architecture. This is based

on a Message Passing Interface (MPI) with the mpi4py package3. The search algorithm

relies on a master process and several workers processes, each assigned to a GPU. The

3https://mpi4py.readthedocs.io/en/stable/

https://mpi4py.readthedocs.io/en/stable/
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Master
→ Randomly draws configura-
tions
→ Selects the next configura-
tion to evaluate (may perform
mutations, crossover...)
→ Processes the evaluated
configuration
→ Identifies the best model

Worker 1
→ Associated with GPU 1
→ Evaluates the configuration
sent by the master
→ Stores the configuration

Worker n
→ Associated with GPU n
→ Evaluates the configuration
sent by the master
→ Stores the configuration

Configuration

Loss

Configuration

Loss

Figure 4.2: MPI implementation of the search algorithms with curved arrows.

master process performs the algorithm’s main steps such as creating the population or

selecting the next configurations. It dynamically sends configurations to the workers to

evaluate. As soon as a process finishes an evaluation, the master processes the returned

model and selects the next one to send to the worker. The worker processes can be

associated with a unique GPU. They perform the training and evaluation of the config-

uration sent by the master. An illustration of the implementation can be found below.

As training a neural network is the most time-consuming part of the search algorithm,

distributing the part to several devices makes DRAGON search algorithms more efficient

and easily scalable on HPC infrastructures. The SearchAlgorithm class activates by

itself the MPI version by looking if the package mpi4py is available.

4.4.4 Implemented Algorithms

It is possible to implement new search algorithms that extend or not the SearchAlgorithm

class. However, some are already available within the package and ready to be used. A

Random Search, HyperBand (Li et al., 2018), an Evolutionary Algorithm, and, Mutant-

UCB are implemented. For a given application they require the implementation of a

search space, a performance evaluation function and the setting of some required pa-

rameters such as the path to save the configurations, or the number of iterations.

1 from dragon.search_algorithm.mutant_ucb import Mutant_UCB

2

3 # Initialize the search algorithm with required arguments

4 search_algorithm = Mutant_UCB(search_space ,

5 save_dir="save/test_mutant", T=20, N=5, K=5, E=0.01 ,

6 evaluation=loss_function)

7 # Launch the optimization
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8 search_algorithm.run()

Listing 4.4: Example use of Mutant-UCB

4.5 Performance evaluation

DRAGON can be used for a wide range of applications. To apply the package to a

particular task, one needs to:

• Create an appropriate search space with the variables introduced in Section 4.2.

• Select (or implement) a search algorithm such as those presented in Section 4.4.

Depending on the type of search algorithm, it will be necessary to associate

neighbor attributes to the variables in the search space, as described in Sec-

tion 4.3.

• Implement a performance evaluation function.

This function should take as input a configuration (and the index of that configuration

in the case of search algorithms implemented in the package), and return a loss corre-

sponding to the evaluation of the configuration. The loss and the way it is calculated

depends on the task at hand. In general, it is necessary to build a neural network from

the configuration, train it and validate it on data sets. Let’s take the example of a

problem classifying a vector X ∈ Rn, with n ∈ N⋆, into 10 different classes. We want

to find the best model among any type of architecture that takes an input of size n and

outputs a vector of 10 values. This type of architecture can be represented by a DAG.

However, to constrain the output to be of dimension 10, a final layer converting the

output tensor of any size from the DAG to a vector of size 10 is necessary. The DAG

and the output layer are associated together within a nn.Module called MetaArchi in

the following example.

1 class MetaArchi(nn.Module):

2 """ MetaArchi

3 Meta -architecture of the neural networks which should be

optimized.

4

5 Parameters

6 ----------

7 args : dict

8 Dictionary containing a solution from the search space.

9 input_shape : tuple

10 Shape of the input vector.

11 """

12 def __init__(self , args , input_shape):

13 super ().__init__ ()

14 # Number of features , here equals to n
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15 self.input_shape = input_shape

16

17

18 # The Neural Network will be optimized through a DAG

19 self.dag = args[’Dag’]

20 self.dag.set(input_shape)

21

22 # We set the final layer

23 self.output = args["Out"]

24 self.output.set(self.dag.output_shape)

25

26 def forward(self , X):

27 out = self.dag(X)

28 return self.output(out)

Listing 4.5: Meta Architecture class definition

The class MetaArchi takes as arguments the variable args which contain the con-

figuration indicating how to build the model and input shape indicating the shape

of the tensors that will be processed. The argument self.dag is an AdjMatrix and

self.output is a Node. Their methods set were explained Section 4.2. They adjust

the nn.Module weights to ensure they can handle tensors with the right input shape.

The search space used to create the variable args is specified by the user. In the follow-

ing example, we create a search space made of a DAG only having MLP and Identity

layers as candidate operations.

1 from dragon.search_space.bricks_variables import (

2 mlp_var , identity_var , operations_var , mlp_const_var , dag_var ,

node_var

3 )

4 from dragon.search_space.base_variables import ArrayVar

5 from dragon.search_operators.base_neighborhoods import

ArrayInterval

6

7 # Candidate operations for the DAG: MLP and Identity layers

8 candidate_operations = operations_var(

9 "Candidate operations", size=10,

10 candidates =[ mlp_var("MLP"), identity_var("Identity")]

11 )

12 dag = dag_var("Dag", candidate_operations)

13

14 # Output layer with a Softmax activation function for

classification

15 out = node_var(

16 "Out",

17 operation=mlp_const_var(’Operation ’, 10),

18 activation_function=nn.Softmax ()

19 )

20

21 # Global search space
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22 search_space = ArrayVar(

23 dag , out , label="Search Space", neighbor=ArrayInterval ()

24 )

Listing 4.6: Definition of the classification task search space

Finally, the last step is to implement a training and validation strategy to assess the

performance of a configuration from the search space. This can be done by splitting the

available dataset into a train and validation set.

1 def train_model(model , data_loader):

2 # Model training through gradient descent

3 loss_fn = nn.CrossEntropyLoss ()

4 optimizer = torch.optim.SGD(model.parameters (), lr =0.05)

5 model.train ()

6 for _ in range (2):

7 for X, y in data_loader:

8 optimizer.zero_grad ()

9 y = y.squeeze ()

10 pred = model(X)

11 loss = loss_fn(pred , y)

12 loss.backward ()

13 optimizer.step()

14 return model

15

16 def validate_model(model , data_loader):

17 # Compute the prediction of the trained model on a validation

set

18 loss_fn = nn.CrossEntropyLoss ()

19 model.eval()

20 test_loss , correct = 0, 0

21 with torch.no_grad ():

22 for X, y in data_loader:

23 y = y.squeeze (1)

24 pred = model(X)

25 loss = loss_fn(pred , y).item()

26 test_loss += loss

27 prediction = pred.argmax(axis =1)

28 correct += (prediction == y).sum().item()

29 accuracy = correct / len(data_loader.dataset)

30 return accuracy

31

32 def loss_function(args , idx , *kwargs):

33 labels = [e.label for e in search_space]

34 args = dict(zip(labels , args))

35 model = MetaArchi(args , input_shape =(16,))

36 model = train_model(model , train_loader)

37 accuracy = validate_model(model , val_loader)

38 print(f"Idx = {idx}, loss = {1 - accuracy}")

39 # Return the loss

40 return 1 - accuracy , model
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41

42 loss , model = loss_function(search_space.random ())

Listing 4.7: Model training, validation, and loss computation

The function loss function can be passed to any DRAGON search algorithm as the

evaluation function. The search space object can be passed as the search space

argument.

1 from dragon.search_algorithm.ssea import SteadyStateEA

2

3 search_algorithm = SteadyStateEA(search_space , n_iterations =20,

population_size =5, selection_size =3, evaluation=loss_function ,

save_dir="save/test_ssea/")

4 search_algorithm.run()

5 )

Listing 4.8: Definition of the DAG-based search space

4.6 Conclusion

In this chapter, we have seen how the search presented in Chapter 2 and the search al-

gorithms from Chapters 2 and 3 are implemented as a Python package called DRAGON.

We have described the package’s main objects: variables build search spaces, search op-

erators, and search algorithms. We have highlighted what is already available and ready

to use, what can be adapted, and what needs to be implemented by the user. Although

the package may be difficult to understand for someone new to machine learning, it is

quite similar to the Pytorch package and can be easily handled by its users. Only the

main features of DRAGON are described here. The implementation of each function is

described in the documentation 4.

Since the idea behind DRAGON is to provide tools that can be adapted to a wide

range of AutoDL problems, it was challenging to design a “no-code” package. However,

the tools in the package can be used to build such a framework for specific applications.

In Part III of the manuscript, we show how DRAGON can be used to create such frame-

works for predicting electricity consumption and wind production, with the creation of

EnergyDragon and WindDragon respectively. These frameworks are “no-code” packages

that can be used by machine learning novices.

4https://dragon-tutorial.readthedocs.io/en/latest/

https://dragon-tutorial.readthedocs.io/en/latest/


Part III

Applications to the energy

sustainability

107



Chapter 5

Automated Deep Learning for load

forecasting

This chapter presents an application of the DRAGON package to create an Automated

Deep Learning framework for load forecasting. Specifically, we tackle the task of forecast-

ing a country’s consumption using only external factors, such as weather and calendar

variables, without feeding the model with historical data for the target value. This type of

model is particularly useful for production planning when there are data stream problems.

This forecasting problem is very similar to a regression problem. While regression-based

models, in particular Generalized Additive Models (GAMs), are currently effective, the

emergence of new explanatory variables and the need to refine the temporality of the sig-

nals to be forecasted encourages the exploration of new methodologies, in particular deep

learning models. However, Deep Neural Networks (DNNs) struggle with this task due

to the lack of data points and the different types of explanatory variables (e.g., integer,

float, or categorical). In this chapter, we explain why and how we used Automated Deep

Learning (AutoDL) to find performing DNNs for load forecasting. In the end, we cre-

ated an AutoDL framework called EnergyDragon1 by using the tools from the DRAGON

package presented Chapter 4 and applying them to load forecasting. EnergyDragon au-

tomatically selects the features embedded in the DNN training in an innovative way and

optimizes the architecture and the hyperparameters of the networks. We demonstrate

on the French load signal that EnergyDragon can find original DNNs that outperform

state-of-the-art load forecasting methods as well as other AutoDL approaches.

Keisler, J., Claudel, S., Cabriel, G. and Brégère, M. Automated Deep Learning

for load forecasting International Conference on Automated Machine Learning

(AutoML) 2024.

1The code is available here: https://github.com/JulieKeisler/automl.git.
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5.1 Introduction

Currently, large-scale electricity storage is expensive and relies on inefficient systems. To

ensure the safety and smooth operation of the electricity system, it is critical to maintain

a strict balance between production and load at all times. Managing this balance relies

primarily on the flexibility of programmable power plants which can anticipate electricity

demand and adjust their activity accordingly. Load forecasting is essential to program

these power plants and to ensure grid stability. Every year, power system operators need

forecasting models to provide them with load trends for the coming year and to serve

as the basis for short-term forecasts. These models are based on various explanatory

variables such as weather (temperature in particular has a strong impact on load) or

calendar variables (e.g. load tends to vary between weekdays and weekends). Historical

load can be used as a target to train these models for earlier periods, but the one-year

forecast horizon makes it unusable as a model input. For this reason, statistical and

machine learning methods typically used in time series forecasting are not efficient for

this problem. Regression methods, on the other hand, work very well. Over the year,

these initial models are then “re-calibrated” with adaptive online learning methods (e.g.,

online expert aggregation, see Gaillard 2015 or Kalman filter, see Vilmarest 2022) using

the lagged data as it becomes available. For example, the re-calibration can be used

for day-ahead forecasting to help scheduling production resources for the next day. The

re-calibration part is beyond the scope of this chapter, which focuses on the stationary

model.

The models used in industry and winning load forecasting competitions (see Far-

rokhabadi et al. 2022 for a recent one) are regression-based models such as Generalized

Additive Models (GAMs) or tree-based models. However, to improve performance and
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robustness, and to respond to new industrial challenges such as the integration of new

data or the need to forecast at increasingly finer time steps, interest is growing in deep

neural networks (DNNs). This is a natural step, as DNNs have proven to be highly

effective in fields such as computer vision and natural language processing (NLP). The

literature on load forecasting with DNNs mainly approaches it from a time series point

of view, using recurrent networks on recently lagged load, which is not applicable in our

case. Moreover, DNNs are known to be poorly efficient on tabular regression (Grinsztajn

et al., 2022). In our case, the lack of available data (compared to computer vision or

NLP datasets, for example) is an additional challenge. The variables used as inputs to

the models also have a major impact on performance and may be different from those

that work well for the regression models. Nevertheless, we were able to create a DNN

with a specific set of explanatory variables that achieves good performance while being

slightly below the state of the art. We turned to Automated Deep Learning (AutoDL)

to improve on this first model.

In this chapter, we explain how we were able to effectively use AutoDL for load fore-

casting. We tested several existing methods in the literature, which could not compete

with the state-of-the-art, and finally developed our own AutoDL framework: Energy-

Dragon. It uses the search space of the DRAGON package presented Chapter 4, but

includes some innovations such as an original feature selection efficient for load forecast-

ing and a faster search algorithm. Our framework makes it possible to find DNNs that

outperform the state of the art in load forecasting by optimizing both their architectures

and hyperparameters. We demonstrate its performance on an industrial use case: French

load. Finally, we designed EnergyDragon to be understandable and appealing to load

forecasting experts who may be new to deep learning. In summary, our contributions

are as follows:

• An explanation of our strategy for applying AutoDL to a real-world application,

namely load forecasting.

• The AutoDL framework EnergyDragon, an application of DRAGON for load fore-

casting applications.

• A new feature selection method, embedded in the training of DNNs, that is efficient

for load forecasting.

• An application of our results to a concrete use case: the French load forecasting.

We show that our approach outperforms the state-of-the-art and other AutoDL

techniques.

We begin this chapter by presenting in Section 5.2 why and how we applied AutoDL

to load forecasting and position ourselves with the literature. In Section 5.3, we intro-

duce the design of EnergyDragon, an AutoDL framework for load forecasting. Finally,
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Section 5.4 details our experimental results obtained on a real-world use case: the fore-

cast of the French load. Section 5.5 concludes the chapter and presents further research

opportunities.

5.2 Deep Learning and AutoDL for load forecasting

The load signal can be explained almost entirely by a set of explanatory variables that

do not include past data. Therefore performing models tend to be based on regression

rather than time series techniques. Multiple linear regressions (MLRs) can be used

to calculate the relationships between multiple variables. However, the relationships

between load and some exogenous variables are not linear and these models require

the specification of functional forms for these variables. The generalized additive models

(GAMs) for example, model the nonlinear effects using a spline basis (Pierrot and Goude,

2011). These models, highly accurate for load forecasting, are used in industry and

have won several competitions (see for example Nedellec et al. 2014). In this chapter,

we are interested in DNNs for load forecasting. Many existing works are based on a

setting where past load is immediately available and use time series techniques. For

example, Sehovac and Grolinger (2020) uses a sequence-to-sequence recurrent network

on historical load with data every five minutes, Rahman et al. (2018) and Mamun et al.

(2019) use LSTM (Long-Short Term Memory) models on lagged data and temperature

for day-ahead forecasting. Novaes et al. (2021), Zhou et al. (2021) and L’Heureux

et al. (2022) tried a transformer-based load forecaster using historical and calendar data

for residential load data. Other works, closer to our setting, use DNNs with more

explanatory variables or for longer forecast horizons. For example, Farsi et al. (2021)

and He (2017) use parallel LSTM/CNN (Convolutional Neural Network) models with

different forecast horizons and features, and del Real et al. (2020) forecasts the French

load using temperature grids and calendar features as inputs within a CNN. Among all

the proposed models, we built a competitive DNN based on CNN and MLP (Multi-Layer

Perceptron) layers, called CNN/MLP in the following, whose architecture is closed to

Farsi et al. (2021) and He (2017) (we detail this architecture in Appendix C.1.1).

Finding better DNNs for a given task can be done with Automated Deep Learning.

AutoDL is a branch of Automated Machine Learning (AutoML) whose goal is to au-

tomatically find the best possible DNN for a given problem. AutoDL itself consists of

two subproblems, the search for the best architecture, called Neural Architecture Search

(NAS), and, for a fixed architecture, the search for the best hyperparameters, called

HyperParameters Optimization (HPO). NAS approaches require the definition of a good

search space representing all possible solutions. Most search spaces from the literature

(Hutter et al., 2019) offer to optimize architectures suitable for computer vision tasks

based on CNN layers, pooling layers, and skip connections. Closer to our setting, the

AutoPytorch framework has been introduced for tabular (Zimmer et al., 2021) and time

series (Deng et al., 2022) data. We tested this framework on our problem (see Sec-
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tion 5.4), which could not beat the CNN/MLP model. Then, inspired by Chen et al.

(2024) and their work on NAS for multivariate time series forecasting, we used the

DARTS (for Differential-Architecture Search, see the original paper Liu et al. 2018d) to

relax our original architecture (our search space is given Appendix C.2). Encouraged by

the good results of DARTS, we further relaxed our search space using the DRAGON

framework proposed Chapter 4, originally introduced for time series forecasting. Com-

pared to the DARTS approach, where the number of layers and the hyperparameters are

fixed, the search space defined by DRAGON is more flexible (see Section 5.3.1).

Based on this framework, we created EnergyDragon, which uses the search space of

DRAGON, but includes candidate operations specifically designed for load forecasting

(see Appendix C.1.2) as well as an innovative feature selection method. The CNN/MLP

based architecture depends highly on the input variables. Most AutoDL approaches do

not address this issue, which is irrelevant in computer vision or NLP. Surprisingly, neither

does Auto-Pytorch, while Grinsztajn et al. (2022) identified the lack of robustness of

models to non-informative features as one of the reasons why DNNs perform poorly on

tabular data compared to tree-based models. Outside the AutoDL community, feature

selection is a widely discussed topic in the literature. Typical approaches include filter

methods, wrapper methods, and embedded methods (Li et al., 2017). Filter methods

select features based on statistical measures. Wrapper methods train the models with

multiple subsets of features and evaluate the features importance based on performance.

They are more computationally expensive than filter methods, but can be more efficient.

Finally, embedded methods integrate feature selection into the model training process

by penalizing the contribution of less important features. In this work, we took inspira-

tion from the DARTS framework and developed our own embedded method, which is

described in detail in Section 5.3.2.

5.3 EnergyDragon

In this section, we describe EnergyDragon, our DNNs optimization framework for load

forecasting. Section 5.3.1 briefly presents the search space used, which is built using

tools from Chapter 4. Next, the following subsections details our contributions to the

original framework, adapting it to load forecasting. In Section 5.3.2, we present the

objective function. It covers not only network evaluation, but also the feature selection.

Due to the specific setting used for the load forecasting task, different from the time

series used in Chapter 2, we had to constrained the search space defined Section 5.3.1

using a meta-architecture presented Section 5.3.3. Finally, Section 5.3.4 introduces our

search algorithm, an asynchronous evolutionary algorithm.
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Figure 5.1: DNN encoding as a directed acyclic graph (DAG), as proposed by Chapter 2.

5.3.1 Search Space

The search space used in our framework was presented Chapters 2 and 4 and is defined

as Ω = (A × {Λ(α), α ∈ A}), where A is the set of all considered architectures

and Λ(α) is the set of all considered hyperparameters induced by the architecture α.

Each architecture α ∈ A is represented by a DAG Γ, where the nodes are the DNN

layers and the edges are the connections between them (see Figure 5.1a). The graph

adjacency matrix M ∈ Rm×m is used to encode Γ, where m is the number of nodes (see

Figure 5.1b), along with a sorted list containing the node hyperparameters L, where

|L| = m. In summary, A = {Γ = (M,L)}. Each architecture α ∈ A induces a

hyperparameter search space Λ(α). The chosen hyperparameters of all layers from an

architecture α are placed in a vector denoted as λ ∈ Λ(α). As shown in Figure 5.1c,

the layer type: convolution, recurrence, identity, etc., belongs to the architecture search

space A, but the layer type parameters: filter size, output shape, etc., the combiner, and

the activation function are part of Λ(α). The combiner is a function used to combine

the multiple inputs of the node. The architecture search space allows multiple input

connections, and the incoming vectors can have different shapes. They are combined by

the combiner. See Chapters 2 and 4 for more information about this search space.

5.3.2 Objective function

Our objective is to find the DNN f̂ ∈ Ω having the lowest forecast error on a given load

signal. We consider a load dataset D, containing the load signal and the explanatory

variables. For any subset D0 = (X0, Y0), the objective function ℓ is defined as:

ℓ : Ω×D → R
f ×D0 7→ ℓ

(
f(D0)

)
= ℓ
(
Y0, f(X0)

)
,
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where the explicit formula for ℓ depends on the task and will be explicitly given Sec-

tion 5.4. Each DNN f ∈ Ω is parameterized by:

• α ∈ Λ, its architecture, optimized by the framework.

• λ ∈ Λ(α), its hyperparameters, optimized by the framework, where Λ(α) is induced

by α.

• δ ∈ ∆(α, λ), the DNN weights, where ∆(α, λ) is generated by α and λ and

optimized by gradient descent when training the model.

In the following, N represents the number of days in the data set (i.e: the number of

data samples), H the number of time steps within a day, and F the number of available

explanatory variables. The data set D = (X, Y ) consists of Y = {yt}Nt=1 ∈ RN×H the

target variable and X = {xt}Nt=1 = {xi}Fi=1 ∈ RN×H×F the explanatory variables. The

optimization aims to find an optimal subset of explanatory variables:

X̂ = {xj}j∈P({1,...,F}) ⊆ X.

To do this, we introduce ∀j ∈ J1, F K : pj ∈ {0, 1} such that

xj ∈ X̂ ⇔ pj = 1 .

To use gradient descent to find the optimal features, our indicators p = (p1, . . . , pF ) are

relaxed:

w = {sigmoid(wj)}Fj=1 ∈ [0, 1]F with wj ∈ R and pj = 1wj>0 .

We partition our time indexes into three groups of successive time steps and split

accordingly D into three datasets: Dtrain, Dvalid, and Dvalid. After choosing an archi-

tecture α and a set of hyperparameters λ, the DNN fα,λ is built and trained on Dtrain

with respect to a training loss ℓtrain. The training of fα,λ is divided into two parts. We

consider E = Ew + Eδ as the total number of training epochs. The number of epochs

when the feature vector w and the weights δ are jointly optimized is called Ew. Starting

at epoch Ew + 1, w is transformed to p using the equation pj = 1wj>0. Then δ is op-

timized until the end of the training. Two different losses are used during the training.

In the first part, when the current epoch e ≤ Ew, an L1 penalty is added to ℓtrain, like

in the LASSO regression (Tibshirani, 1996), to restrain the number of selected features.

We define the joint model and features loss ℓ̃train as:

ℓ̃train : Ω× [0, 1]F ×D → R

fα,λ
δ × w ×D0 7→ ℓtrain

(
fα,λ
δ (D0)

)
+ ϵ×

F∑
i=1

|wi| .
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When the current epoch e < Ew, the training dataset is used to select the best features:

ŵ ∈ argmin
w∈[0,1]F

(
min

δ∈∆(α,λ)

(
ℓ̃train

(
fα,λ
δ , w, (Xtrainw, Ytrain)

)))
.

As e = Ew is reached, Xtrainŵ is converted to X̂train and optimize the model weights

during the last epochs:

δ̂ ∈ argmin
δ∈∆(α,λ)

(
ℓtrain

(
fα,λ
δ , (X̂train, Ytrain)

))
.

The objective function with the DNN parameterized by δ̂ on Dvalid is used to assess

the performance of the selected α and λ. The architecture and hyperparameters are

optimized using:

(α̂, λ̂) ∈ argmin
α∈A

(
argmin
λ∈λ(α)

(
ℓ
(
fα,λ

δ̂
, (Xvalidŵ, Yvalid)

)))
.

Finally, the framework output is the objective function with the best architecture, hy-

perparameters, weights and features on the test dataset:

ℓ
(
f α̂,λ̂

δ̂
, (Xtestŵ, Ytest)

)
.

Chapter 2 highlighted that the DNNs produced by DRAGON were quite unstable.

To fix this, our DNNs are trained with a cyclic learning rate, as suggested by Huang

et al. (2022), during the second part of DNN training (when Ew < e ≤ Ew +Eδ = E).

When the learning rate is low, the neural network reaches a local minimum. We store its

weights at that moment, creating an intermediate model. Immediately after that, the

learning rate increases again, bringing the model out of the local minimum. At the end

of training, the forecasts of the best intermediate models are averaged.

5.3.3 Meta-Architecture

Each DNN f ∈ Ω should map an input X ∈ RB×H×F into a target Y ∈ RB×H , where B

represents the size of the batch. The generic search space defined Section 5.3.1 should

be restrained to architectures that map a two-dimensional input to a one-dimensional

output. Therefore, each model fα,λ ∈ Ω consists in two DAGs Γ1 and Γ2. The graph Γ1

is made of two-dimensional layers operations to treat the matrix X and is parameterized

by α1 and λ1. A flattened layer follows Γ1 to transform the two-dimensional latent

representation into a one-dimensional one. The graph Γ2 is then made of one-dimensional

layers operations and is parameterized by α2 and λ2. We have α = [α1, α2] and λ =

[λ1, λ2]. A final output layer maps the output shape of Γ2 to H. The operations that
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Input: xt ∈ RH×F

DNN: fα,λ
δ

2D DAG: Γ1 = fα1,λ1

Flatten

1D DAG: Γ2 = fα2,λ2

Feed-forward layer

Forecasted load: yt ∈ RH

Figure 5.2: Daily meta-model for load datasets.

can be chosen at the nodes of Γ1 and Γ2 are given Appendix C.3. A representation of

the meta-model is displayed Figure 5.2.

5.3.4 Search Algorithm

In this work, we used an asynchronous (or steady-state) evolutionary algorithm (SSEA)

as our search algorithm. However, the framework is implemented so that other search

algorithms can be used. In our experiments (see Section 5.4), SSEA is compared with

simple random search (RS). Training a DNN is very expensive in terms of time and com-

putational resources. We have access to HPC (High-Performance Computing) resources

and exploit them by using the steady-state algorithm introduced Chapter 2. At the be-

ginning of the algorithm, a set of K random DNNs is generated. They will all have small

architectures with a small number of layers m. The idea is to start the optimization with

simple DNNs to reduce the chance of ending up with overly complex, heavy and unstable

DNNs. The weights of the initial features δ can be initialized to uniform random values,

zeros, or ones. Then, each initial solution is trained and evaluated on Dtrain and Dvalid to

create our population of size K. For a certain number of iterations T , once a processus

is free, two solutions from our population are chosen using a tournament selection. We

use the crossover and mutation operators suggested by Chapter 2 to create two offspring

that would be trained and evaluated by the free process. Then, for each offspring, if its

loss ℓ is less than the worst loss from the population, the offspring replaces the worst

individual. Using an asynchronous version instead of the classical one avoids waiting for

a whole generation to be evaluated and saves some time.
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5.4 Experiments

In this section, EnergyDragon performance are evaluated on the French load from March

2019 to March 2020, just before the first lockdown. We have used a rather old year

because it is the last year with a stable regime. Since this year, the French load has

experienced large perturbations during the COVID lockdowns or the energy crisis. Com-

paring the performance of steady-state models, which is the subject of this chapter, over

periods that are too volatile, without a re-calibration mechanism, is irrelevant. This issue

is further discussed Section 5.5.

5.4.1 Dataset

The dataset comes from the website of the French Transmission System Operator2

(RTE) and contains the French national load data at half-hourly intervals. Therefore,

each day contains H = 48 time steps. We trained our models from March 2015 to

March 2019 and compare the performance from March 2019 to March 2020. We used

the Mean Squared Error as ℓtrain to optimize the models weights and the Mean Absolute

Percentage Error (MAPE) as ℓ. Given a load series Y = (y1 . . .yN) and the forecasts

Ŷ = (ŷ1, . . . ŷN), we have:

MAPE(Y, Ŷ ) =
1

N

N∑
i=1

∣∣yi − ŷi

yi

∣∣.
For this dataset thirty-four explanatory variables can be used. The weather data contains

the national temperature along with exponential smoothing variants of parameters going

from 0.7 to 0.998, wind and cloud cover. Calendar features include the day of the week,

the month, the year, if the day correspond to a public holidays or a surrounding day.

5.4.2 Baseline

We compare our results to models at the state-of-the-art in load forecasting: a Gen-

eralized Additive Model (GAM) used in the industry, the CNN/MLP model and to

two AutoML/AutoDL approaches: AutoPytorch (Zimmer et al., 2021) and a version

of DARTS (Liu et al., 2018d) applied on the handcrafted DNN. AutoPytorch includes

the hyperparameters tuning, model selection and ensembling of simple regression mod-

els such as Random Forest, Support Vector Machine (SVM) or Catboost for example,

therefore they are not directly included in the baseline.

Generalized Additive Model The GAMs are state of the art for load forecasting

(see among others Pierrot and Goude 2011 or Wood 2017). The output Y is explained

2https://www.rte-france.com/eco2mix

https://www.rte-france.com/eco2mix
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as the sum of smooth functions of the explanatory variables: Y = g1(X1) + g2(X2) +

g3(X3, X4)+. . . where the gi are linear or a special type of piecewise polynomial functions

called splines. The GAM developed for this use case is instantaneous, meaning that a

model is fitted for each of the 48 time steps of the day. For our experiments, we chose

a GAM that is used in the industry and therefore cannot reveal its explicit formula. The

GAM takes about twenty explanatory variables as input.

Deep Neural Networks We included our CNN/MLP inspired by Farsi et al. (2021)

and He (2017) in our baseline. Unlike the GAM, a single model is used to predict the

48 time steps of the day. The input variables are divided into two groups of about ten

features. One group is processed by parallel one-dimensional convolutions and the other

by feed-forward layers. The branches are then concatenated and processed by more

feed-forward layers. The detailed architecture can be found Appendix C.1.1. The model

was trained with the Adam optimizer (Kingma and Ba, 2017) during 500 epochs.

AutoPytorch We used the tabular regression API of AutoPytorch3. This framework

combines an AutoML pipeline for traditional regression models (e.g., RandomForest,

CatBoost or LightGBM) with the tuning of DNNs. The search-space used for the

AutoDL part is made of MLPs, residual connections and Normalization Layers. The

framework does not allow us to map two-dimensional inputs to one-dimensional targets,

so each moment of the day was forecasted independently. The hour of the day and

the instant were added as explanatory variables. For a fair comparison, the same global

optimization budget was set for both AutoPytorch and EnergyDragon: 24 hours, and

the same budget by model: 15 minutes. Two versions are used in the baseline: with the

traditional regression baseline and with only the AutoDL part (fairer with EnergyDragon).

DARTS We optimized the CNN/MLP architecture using the DARTS (Liu et al.,

2018d) algorithm. The search space is described in detail in Appendix C.2. In short,

parts of the original architecture are replaced with DARTS cells. Each cell is a DAG

where the links represent candidate operations. During optimization, multiple opera-

tions are considered for each link and are associated with a probability of being selected.

These probabilities are optimized by gradient descent. At the end of the optimization,

the operation with the highest probability is chosen in the final architecture. The model

weights and the operation probabilities are optimized alternatively, with 500 epochs for

the weights and 200 epochs for the probabilities, using the Adam optimizer Kingma and

Ba (2017).

EnergyDragon For EnergyDragon (hereafter called ED),the global time budget is

fixed to 24 hours. The features are optimized during 500 epochs and the weights during

3https://github.com/automl/Auto-PyTorch/tree/master

https://github.com/automl/Auto-PyTorch/tree/master
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200 epochs. For the steady-state evolutionary algorithms, the initial population size is

set to K = 100. A DNN cannot be trained for more than 15 minutes. The baseline

compared five versions of ED. One with a random search algorithm, called ED RS, the

other versions use the steady-state evolutionary algorithm. ED SSEA is implemented

with the mutation operators of DRAGON but without the crossover, and ED SSEA

Crossover uses the crossover. Finally, ED SSEA CNN/MLP and ED SSEA Crossover

CNN/MLP include the MLP/CNN model in the initial population. This means that 99

models are randomly initialized and the remaining one is the CNN/MLP model.

5.4.3 Results

Model MAPE RMSE (in MW)

GAM 1.398% 929.8

AutoPytorch 17.999% 10641.7
AutoPytorch with the traditional baseline 2.022% 1243.2
CNN/MLP (handcrafted DNN) 1.721% 1164.6
DARTS 1.600% 1085.6
ED RS 1.374% 902.3
ED SSEA 1.258% 851.4
ED SSEA Crossover 1.190% 837.8
ED SSEA Crossover CNN/MLP 1.182% 816.3
ED SSEA CNN/MLP 1.131% 803.4

Table 5.1: MAPE and RMSE of the different models from our baseline. The reference
model is the GAM and the best model is highlighted in bold.

We evaluated each algorithm from the baseline on the French load signal. Each

version from ED was run using 20 GPUs V100, and AutoPytorch using 2 Quadro RTX

6000 which are faster than the V100. We used in total approximatively 336 GPU-hours.

Each algorithm was run with a global seed of 0 to ensure reproducibility. The results can

be found in Table 5.1. In addition to the MAPE function, the Root Mean Squared Error

is (RMSE) is also reported. For all proposed versions, the results of the EnergyDragon

algorithms beat all other models from the baseline. The AutoPytorch framework had

the worst results, even with the traditional models. The lack of feature selection may

explain these results. Our CNN/MLP handcrafted model was slightly improved by the

DARTS framework, but both versions cannot compete with the reference model (GAM).

Among the ED results, the random search got the worst results, which demonstrates

the performance of our search algorithm (see Appendix C.4.3 for convergence plots).

Although the CNN/MLP model does not outperform the GAM, it is still useful to use it as

an input for ED. In fact, both versions with and without crossover with the CNN/MLP in



5.5. Conclusion 120

the initial population outperformed the versions without. Finally, the crossover helped to

improve the performance of ED without the CNN/MLP as input, but the best version of

ED was with the CNN/MLP and without the crossover. The initial population of this last

algorithm already contains a good candidate (the CNN/MLP model), and therefore does

not need as much exploration (with the crossover) as the version without the CNN/MLP.

The models found by EnergyDragon for each setup can be found in Appendix C.4.1. The

best version of EnergyDragon: ED SSEA CNN/MLP improves the predictions of GAM

by 19%. Figure 5.3 shows the forecast of GAM and ED SSEA CNN/MLP for the last

week of November. Forecasts from other algorithms can be found in Appendix C.4.2.

The forecast signals have similar shapes for GAM and ED SSEA CNN/MLP, but GAM

has a larger bias and overpredicts the load. More details on the experimental results

can be found in Appendix C.4, as well as another case study on the Norwegian load

Appendix C.5.

2019-11-25 2019-11-26 2019-11-27 2019-11-28 2019-11-29 2019-11-30 2019-12-01 2019-12-02

50000

55000

60000

65000

70000

M
W

 v
al

ue
s

Ground truth GAM ED SSEA CNN/MLP

Figure 5.3: Load power forecasting for the last week of November 2019. The ground
truth is displayed in dotted line, the GAM forecast is drawn with a blue line whereas
the forecast from the best version of EnergyDragon (ED SSEA CNN/MLP) is drawn in
yellow.

5.5 Conclusion

This chapter explains how we applied AutoDL to a real-world application: load forecast-

ing. The existing works in the AutoDL community were not sufficient to be used directly

in our case, and we had to develop our own AutoDL framework, EnergyDragon. This

framework is able to automatically select input features and optimize DNN architectures

and hyperparameters to generate performing models. We demonstrate on the French

load signal that EnergyDragon is able to outperform a state-of-the-art model in load

forecasting: a generalized additive model used in the industry as well as an AutoML

framework designed for tabular regression: AutoPytorch. Future work should focus on

automatically re-calibrating the models found by EnergyDragon so that they can be used

for short-term forecasting in rather erratic periods. In addition, the industry requires the
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interpretability of the forecasting models. DNNs are known to be black boxes, and to

be accepted as an industrial solution, we will have to work on finding ways to interpret

their forecasts.



Chapter 6

Automated Spatio-Temporal

Weather Modeling for Load

Forecasting

In this chapter, we further optimize the pipeline started with EnergyDragon for auto-

mated load forecasting introduced Chapter 5. The load signal is highly dependent on

meteorological variables (temperature, wind, sunshine). These dependencies are com-

plex and difficult to model. On the one hand, spatial variations do not have a uniform

impact because population, industry, and wind and solar farms are not evenly distributed

across the territory. On the other hand, temporal variations can have delayed effects on

load (due to the thermal inertia of buildings). With access to observations from differ-

ent weather stations and simulated data from meteorological models, we believe that

both phenomena can be modeled together. In today’s state-of-the-art load forecasting

models, including EnergyDragon introduced Chapter 5, the spatio-temporal modeling of

the weather is fixed. In this chapter, we aim to take advantage of the automated repre-

sentation and spatio-temporal feature extraction capabilities of deep neural networks to

improve spatio-temporal weather modeling for load forecasting. We compare our deep

learning-based methodology with the state-of-the-art on French national load. This

methodology could also be fully adapted to forecasting renewable energy production.

Keisler, J. and Brégère M. Automated Spatio-Temporal Weather Modeling

for Load Forecasting. International Ruhr Energy Conference (INREC), Best

paper award, 2024.
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6.1 Introduction

The cost of large-scale electricity storage remains high, and the current systems in use

remain inefficient. Furthermore, the secure and smooth operation of the power grid

depends on maintaining a constant and precise balance between electricity production

and demand. The aforementioned equilibrium is achieved via the adaptability of pro-

grammable power plants, which modify their production in accordance with load fore-

casts. It is therefore essential to have accurate forecasts of both electricity demand and

the output of renewable energy sources in order to schedule power plants and maintain

grid stability. The two signals depend on meteorological variables, specifically tempera-

ture, wind speed, and solar radiation, which vary in both space and time. As consumer

demand and renewable energy generation facilities are not evenly distributed across a

given area, variations in meteorological conditions at a particular location will affect these

signals. In addition, temporal weather variations can have a delayed effect, particularly

with regard to the load, due to the thermal inertia of buildings and the reactivity of con-

sumers. It can be assumed that the manner in which temporal and spatial variations in

weather patterns are modelled has a significant impact on the efficacy of the forecasting

models.

This chapter concentrates on short-term load forecasting with a forecast time horizon

of one day. Such forecasts enable power system operators to make adjustments to

production and spot market prices. This signal is challenging to forecast due to its

dependence on a multitude of variables, including meteorological factors (temperature,

wind, etc.) and calendar-related elements (holidays, weekdays, etc.). Consequently, the

models employed in the industry and those that have been successful in load forecasting

competitions (see Farrokhabadi et al. 2022, for a recent example) are regression-based

models, such as Generalized Additive Models (GAMs) or tree-based models. In general,
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lagged load is not employed. While this variable offers valuable insight, it can also limit

the model’s interpretability by reducing the importance of other variables. Furthermore,

the model would become unusable in case of data stream issues. To address this challenge

while leveraging the insights offered by lagged load, a promising approach is to construct

a static model only based on the explanatory variables and then recalibrate this model

by adjusting certain parameters a posteriori using lagged load. For instance, Ba et al.

(2012b) proposes adaptive learning algorithms that combine additive models with a

recursive least squares filter, while Vilmarest (2022) employs a Kalman filter to perform

an online adaptation of the weights of their models.

Despite their impressive performance in various fields, such as computer vision and

natural language processing, deep neural networks (DNNs) are still not widely used in the

load forecasting community. However, recent work presents promising results for load

forecasting using DNNs. In particular, Chapter 5 proposed EnergyDragon, a deep neural

network optimization framework designed for load forecasting. EnergyDragon automati-

cally finds high-performance neural networks for the static part of load forecasting models

and is able to outperform state-of-the-art regression models. Since neural networks have

demonstrated their ability to extract relevant features from data in a variety of formats,

we thought it would be interesting to try them on raw spatio-temporal weather data to

see if they could automatically find more relevant spatio-temporal representations than

the fixed ones used in the state of the art. In summary, this chapter contributions are

as follows:

• A DNN-based spatio-temporal weather modeling for load forecasting, which im-

proves on the static modeling currently in use while remaining interpretable.

• The integration of this weather modeling approach into the framework Energy-

Dragon.

• An application of our results to a concrete use case: the day-ahead French load

forecasting over a turbulent period: sobriety during the year 2023.

We start this chapter by presenting in Section 6.2 the state of the art in short-term

load forecasting: regression-based models, EnergyDragon and recalibration methods. In

Section 6.3, we show how to learn the actual spatio-temporal modeling approach with

DNN. Section 6.4 introduce how to incorporate the spatio-temporal weather modeling

into EnergyDragon. Finally, Section 6.5 details our experimental results obtained on a

real-world use case: the French national load forecasting. Section 6.6 concludes the

chapter and presents further research opportunities.

6.2 Related Work

The load signal can be explained almost entirely by a set of explanatory variables that

do not include the past target data. Consequently, the majority of performing models
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are based on regression rather than time series techniques. Multiple Linear Regressions

(MLRs) can be used to calculate the relationships between multiple variables. How-

ever, the relationships between load and some exogenous variables are not linear, and

thus, these models require the specification of functional forms for these variables. For

instance, Generalized Additive Models (GAMs) employ a spline basis to model the non-

linear effects, as detailed in (Pierrot and Goude, 2011). These models, which are highly

accurate for load forecasting, are used in industry and have been the winners of several

competitions (see, for example, Nedellec et al. 2014).

DNNs have dominated the fields of computer vision and natural language processing

for some years now. They offer the ability to process data in a variety of formats - e.g.,

text, images, graphs - make them particularly interesting for load forecasting, which

depends on a large number of explanatory variables that may come from data sets in

a variety of formats. Recently, they have also revolutionized the field of weather fore-

casting, proving more effective than physic-based forecasting models (see for example

Pathak et al. 2022 and Lam et al. 2023). While the initial work was based on gridded

reanalysis data, McNally et al. (2024) have shown that DNNs could also be effective

in extracting spatio-temporal features directly from raw weather data. In the field of

load forecasting, they are currently less widely used than multilinear regression models.

However, Chapter 5 we demonstrated that by optimizing the structure and hyperparam-

eters of DNNs, it is possible to develop models that surpass the current state of the art.

In this chapter, we optimized DNNs using the DRAGON package presented Chapter 4.

The models are represented using Directed Acyclic Graphs (DAGs). The search space is

defined as Ω = (A×{Λ(α), α ∈ A}), where A is the set of all considered architectures

and Λ(α) is the set of all considered hyperparameters induced by the architecture α.

Each architecture α ∈ A is represented by a DAG Γ, where the nodes are the DNN layers

and the edges are the connections between them. See Chapter 5 for more information

about this search space.

Finally, this chapter deals with short-term forecasting of electricity consumption.

The COVID crisis and recent european energy crises have highlighted the importance of

models that can rapidly adapt to new contexts. This is why research in the field has

focused on different techniques for online model adaptation. These include the Kalman

filter adaptation of Generalized Additive Models (GAMs), which won the post-covid

electricity load forecasting competition (see Farrokhabadi et al. 2022 and De Vilmarest

and Goude 2022). The adaptation is done by multiplying the GAM effects vector by a

linear correction. Let’s have xt ∈ RD our features vector, with D ∈ N⋆, yt ∈ R the

target and ŷt ∈ R the forecasted target. The static GAM model can be defined as:

ŷt =
D∑
i=1

fi(xt).

Let’s have f(xt) = [fi(xt)]
D
i=1 the GAM effects vector, the adaptation is done by fitting
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a vector θt ∈ RD called state, such that:

ŷt =
D∑
i=1

θi,tfi(xt) + ϵt = θTt f(xt) + ϵt (6.1)

θt+1 = θt + ηt, (6.2)

where ϵt ∼ N(0, σ2) and ηt ∼ N(0, Q), with σ2 and Q are time-invariant and assumed

to be known. The algorithm achieves the estimation of the state θt by computing its

state posterior distribution as a Gaussian distribution: θt|(xs, ys)s<t ∼ N(θ̂t, Pt). The

algorithm relies on the choice of σ and Q. Vilmarest (2022) suggests an iterative grid

search. In this work, we propose to apply a state vector θt on the last layer of a DNN

and to optimize σ and Q directly through the EnergyDragon framework, as any other

hyperparameter.

6.3 Weather Modeling with Deep Neural Networks

for load forecasting

In this work, we aim to forecast at each time step t ∈ [1, . . . , N ], with N ∈ N⋆, a daily

load variable yt ∈ RH , using a features vector xt = (wt, ct) ∈ (RH×V×I ×RH×F ), where

N represents the number of days in the data set and H the number of time steps within

a day. The features vector xt is made of two elements: wt gathering the spatio-temporal

weather data and ct containing the other F ∈ N explanatory variables such as calendar

data (e.g., months, years holidays). The vector wt ∈ RH×V×I contains the forecasts

at time t from different weather stations, or from a forecasted weather grid, produced

by, for example, a NWP model. The dimension I ∈ N⋆ corresponds to the number of

spatial points (i.e., the number of weather stations in the first case and the number of

grid points in the second) and V ∈ N⋆ to the number of weather variables present in wt

(e.g., temperature, wind speed, solar radiation).

6.3.1 Spatio-Temporal weather modeling

In order to be integrated into load forecasting models, spatio-temporal weather is deter-

ministically transformed into “electrical” weather. Several functions are applied in order

to reduce the information and extract what will be most useful for load forecasting.

These functions have been defined with industry expertise, but are not adapted to a

particular dataset or period. An example of such functions for the french load signal are

given by the French Transmission System Operator called RTE1.

1https://www.services-rte.com/files/live/sites/services-rte/files/

documentsLibrary/2022-04-01_REGLES_MA-RE_SECTION_2_F_3590_en

https://www.services-rte.com/files/live/sites/services-rte/files/documentsLibrary/2022-04-01_REGLES_MA-RE_SECTION_2_F_3590_en
https://www.services-rte.com/files/live/sites/services-rte/files/documentsLibrary/2022-04-01_REGLES_MA-RE_SECTION_2_F_3590_en
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Ponderation The first step is to switch back from the multi-variate, spatial signal to an

aggregated univariate signal. The I spatial locations are not necessarily evenly distributed

throughout the considered region and do not contribute equally to the electrical weather.

For instance locations in densely-populated parts have more weights than others located

in isolated areas. Let’s denote wv,i
h ∈ R the forecast of the weather variable v (e.g.

temperature) at time step h of the location i, and ai ∈ [0, 1] the weight of the location

i. The weights are shared accross the variables v. The aggregated signal at time h can

then be written as:

wv
h =

I∑
i=1

aiwv,i
h . (6.3)

This behavior can easily be reproduced with a Multi-Layer Perceptron (MLP):

wv
h = Awv

h + b, with wv
h = [wv,i

h ]Ii=1, A = [ai]Ii=1 and b = 0 (6.4)

However, a Deep Neural Networks requires the scaling of the input data. Each v variable

is scaled independently, so that variables with large amplitudes (e.g. temperature) do

not override the others. We scale each location i independently and denote w̃v,i
h =

(wv,i
h − minv,i)/(maxv,i − minv,i) the min-max scaled version of wv,i

h , with minv,i =

min
h∈[1,...,H]

wv,i
h ∈ R and maxv,i = max

h∈[1,...,H]
wv,i

h ∈ R. If we consider the aggregated target

to also be scaled, with minv = min
h∈[1,...,H]

wv
h ∈ R and maxv = max

h∈[1,...,H]
wv

h ∈ R, we have:

w̃v
h =

wv
h −minv

maxv −minv =
( I∑

i=1

aiwv,i
h −minv

)
/(maxv −minv)

=
I∑

i=1

w̃v,i
h (maxv,i −minv,i) + minv,i −minv

)
/(maxv −minv)

=
I∑

i=1

ai
maxv,i −minv,i

maxv −minv w̃v,i
h +

I∑
i=1

minv,i −minv

maxv −minv

= Avw̃
v
h + bv

,

with:

• w̃v
h = [w̃v,i

h ]Ii=1,

• Av = [ai(maxv,i −minv,i)/(maxv −minv)]Ii=1,

• bv =
∑I

i=1(minv,i −minv)/(maxv −minv).

Therefore, we need one MLP to aggregate each of the V weather variables (e.g., tem-

perature or wind speed), resulting in V MLP layers.
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6.3.2 Temperature smoothing

Load does not respond instantaneously to changes in the weather. In particular, temper-

ature effects are more gradual due to the thermal inertia of buildings. This is why the

concept of smoothed temperature is useful for understanding the factors that influence

electricity consumption. Exponential smoothing is typically employed in this context.

We denote, for a day t, Tt = [Tt,1, . . . ,Tt,H ] ∈ RH the aggregated temperature and

Tt = [Tt,1, . . . ,Tt,H ] ∈ RH the smoothed version. We define:

Tt,1 = (1− ν)Tt,1 + νTt−1,H , and, ∀i ∈ [2, H] : Tt,i = (1− ν)Tt,i + νTt,i−1, (6.5)

where ν ∈ [0, 1] is the smooth coefficient, which can be optimized.

Recurrent Neural Networks Smoothed temperature requires at each time step t to

pass Tt,H ∈ R to the next time step t+1. Such information passing can be reproduced

by Recurrent Neural Networks (RNNs), which are designed with a memory vector. The

equations of a recurrent neural network with input Tt ∈ RH and output Tt ∈ RH can

be written as:

Tt = ϕ(TtW
T
1 + b1 +Tt−1W

T
2 + b2) ,

where ϕ is an activation function (typically non-linear), and W1 ∈ RH×H , W2 ∈ RH×H ,

b1 ∈ RH and b2 ∈ RH are some parameters which can be learned through gradient

descent. For writing simplicity, we now index our temperature by t⋆, such that, if

t⋆ = {t, i}, we have, if i < H:{
t⋆ = {t, i+ 1}
else, t⋆ + 1 = {t+ 1, 1}.

Let τ > 0. To compute Tt⋆ based on the smoothed temperature at instant t⋆ − τ ,

Tt⋆−τ , and the sequence of temperatures Tt⋆−τ+1, . . . ,Tt⋆ , we have:

Tt⋆−τ+1 = Tt⋆−τ

Tt⋆−τ+1 = (1− ν)Tt⋆−τ+1 + νTt⋆−τ

... =
...

Tt⋆ =
τ−1∑
s=0

νs(1− ν)Tt⋆−s + ντTt⋆−τ . (6.6)
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Based on Equation (6.6), by setting:

W1 =


(1− ν) 0 0 . . . 0

ν(1− ν) (1− ν) 0 . . . 0
...

...
...

...
...

νH−1(1− ν) νH−2(1− ν) νH−3(1− ν) . . . (1− ν)

 ,

W2 =


0 . . . 0 ν

0 . . . 0 ν2

...
...

...
...

0
... 0 νH

 ,

and b1 = b2 = 0,

It is possible to induce a recurrent neural network (RNN) to learn the behaviour defined

by the exponential smoothing model, as set out in Equation (6.5). Nevertheless, this

configuration results in the network optimizing a total of O(H2) parameters. In the

context of seeking novel approaches to temperature smoothing, the utilization of a

recurrent neural network (RNN) is a logical choice. On the other hand, if the objective

is to restrict the network to exponential smoothing, with optimization limited to the ν

smoothing coefficient, the necessity for optimizing a vast number of parameters renders

the process complex and may ultimately prove inefficient. For this reason, we propose

a new DNN layer that enables the efficient computation of one or more exponential

smoothings over several batches, with only the smoothing coefficients as parameters to

optimize.

Exponential Smoothing Layer Let’s consider a batched input of size B ∈ N⋆, con-

taining the temperature from the days t−B to t: Tt−B:t = [Tt−B, . . . ,Tt] ∈ RB×H . The

exponential smoothing layer first reshape this data into a size BH, to treat all sequences

at once. We then use Equation (6.6), with τ = H ×B − 1 to compute Tt−B:t:
Tt⋆−τ

Tt⋆−τ+1
...

Tt

 =


1 0 0 . . . 0

ν 1 0 . . . 0
...

...
...

...
...

ντ ντ−1 ντ−2 . . . 1




Tt⋆−τ

(1− ν)Tt⋆−τ+1
...

(1− ν)Tt⋆

 ,

Tt⋆−τ :t⋆ = M ×
[
Tt⋆−τ | (1− ν)Tt⋆−τ+1:t⋆

]
, with, ∀i ≥ j : Mi,j = νi−j . (6.7)

Finally, we reshape Tt⋆−τ :t⋆ ∈ RHB back to the original shape Tt−B:t ∈ RH×B. The

matrix M is constructed during the forward pass as its shape and formula depend on

the batch size B. Given that the coefficient ν belongs to [0, 1], it is encoded through a
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sigmoid: ν = Sigmoid(ν) = 1/
(
1+ exp(−ν)

)
∈ [0, 1] for ν ∈ R, where ν would be the

weight optimized through back-propagation.

In our search space we let the optimization framework choose between the Expo-

nential Smoothing Layer, a RNN layer, a Long-Short Term Memory (LSTM) layer and

a Gated Recurrent Unit (GRU) layer, to perform the smoothing operation (see Sec-

tion 6.4.2).

6.3.3 Online learning

The last layer of the search space from Chapter 5 is a linear layer, transforming an input

ht ∈ RH×D into an output yt ∈ RH , where yt is the load consumption for the day t,

H the number of instants during the day and D ∈ N⋆ is the hidden dimension within

the network before the last layer. Let’s name AD ∈ RD and bD ∈ R respectively the

weights and bias matrices of this last MLP layer, we have:

yt = ADht + bD =
D∑
i=1

aiDh
i
t + bD. (6.8)

To adapt our DNN, we use a daily Kalman state vector θt ∈ RD to adapt the coefficients

of Equation (6.8):

ỹt = θTt (ADht + bD) =
D∑
i=1

θit(a
i
Dh

i
t + bD) + ϵt (6.9)

θt+1 = θt + ηt, (6.10)

where ϵt ∼ N(0, σ2) and ηt ∼ N(0, Q). Vilmarest (2022) suggests to use iterative

grid search for σ ∈ R the diagonal coefficients of Q ∈ RD×D. This search can be

quite expensive, with a complexity of O(LD2), where L is number of values that the

coefficients of Q may take. We experimented empirically that the number of coefficients

of the last MLP layer is usually larger than the number of coefficient of the GAMs. The

iterative grid search was not usuable in this case, therefore we included the optimization

of σ and the coefficients of Q within EnergyDragon search space (see Section 6.4.2).

6.4 Automated weather modeling

This Section presents the integration of the various elements presented in Section 6.3,

namely the weather modeling and Kalman adaptation modules, into EnergyDragon with

the objective of optimizing them.
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6.4.1 Objective function

The objective is to identify the optimal DNN f̂ ∈ Ω with the lowest forecast error on

a given load signal with a short forecast horizon (e.g., 24 hours). The load dataset,

denoted by D, contains the spatio-temporal W data, the explanatory variables C and

the target (the load signal) Y . For any subset D0 =
(
(W0, C0), Y0

)
, the objective

function ℓ is defined as:

ℓ : Ω×D → R
f ×D0 7→ ℓ

(
f(D0)

)
= ℓ
(
Y0, f(W0, C0)

)
.

Each DNN f ∈ Ω is parameterized by:

• α ∈ A, its architecture, optimized by the framework.

• λ ∈ Λ(α), its hyperparameters, optimized by the framework, where Λ(α) is in-

duced by α. The hyperparameters include Q and σ from the Kalman adaptation.

It should be noted that the shape of Q depends on the architecture and hyperpa-

rameters of the networks.

• δ ∈ ∆(α, λ), the DNN weights, where ∆(α, λ) is generated by α and λ and

optimized by gradient descent when training the model.

The optimization process is done in several steps. First, the optimal DNN weights

δ̂ ∈ ∆(α, λ) for a given architecture α ∈ A and set of hyperparameters λ ∈ Λ(α) are

found using gradient descent with respect to the training loss ℓtrain over the training set

Dtrain =
(
(Wtrain, Ctrain), Ytrain)

)
= (Xtrain, Ytrain):

δ̂ ∈ argmin
δ∈∆(α,λ)

(
ℓtrain

(
fα,λ
δ (Xtrain, Ytrain)

))
.

Once the DNN is trained, the performance of the selected α and λ are evaluated on Dvalid

using ℓ. As Q and σ are part of λ, the evaluation is done using the Kalman recalibration

of the model. First, the state vector θ ∈ RH×D is estimated on the last MLP layer of

the trained DNN fα,λ

δ̂
using Equations (6.9) and (6.10). Let’s have Θλ

(
fα,λ

δ̂
(Xvalid)

)
the recalibration of fα,λ

δ̂
(Xvalid) as defined Equation (6.9). The architecture α and

hyperparameters λ are optimized as:

(α̂, λ̂) ∈ argmin
(α,λ)∈(A×Λ(α))

(
ℓ
(
Θλ

(
fα,λ

δ̂
(Xvalid)

)
, Yvalid

))
.

The framework output will be the objective function ℓ computed using the DNN

with the best architecture, hyperparameters, weights and calibration using Kalman on

the test dataset:
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ℓ
(
Θλ̂

(
f α̂,λ̂

δ̂
(Xtest)

)
, Ytest

)
.

In the following section (6.4.2), we explicit our search space, defined by A and Λ(α).

6.4.2 Search space

The search space used in this work extends the one from Chapter 5 by adding a weather

modeling and a Kalman module, and is depicted Figure 6.1. Each DNN f ∈ Ω maps

two batched inputs: wb ∈ RB×H×V×I containing the spatio-temporal weather and cb ∈
RB×H×F containing the other explanatory variables into a target yb ∈ RB×H , where

B ∈ N⋆ represents the size of the batch.

DNN: fα,λ
δ

Weather input:
wb ∈ RB×H×V×I

Features input:
cb ∈ RB×H×F

Weather Modeling: λw

Ponderation Layer

Smoothing Layer 2D DAG: Γ1 = fα1,λ1

Flatten

1D DAG: Γ2 = fα2,λ2

Feed-forward layer

Kalman adaptation: λK

Forecasted load: yb ∈ RB×H

Concatenation

Figure 6.1: Daily meta-model for load datasets from Chapter 5, with the integration of
the weather modeling and the Kalman adaptation modules.

Weather Modeling The weather input designated as wb, is initially processed by a

Weather Modeling module containing V ponderation layers and a smoothing layer as

defined Section 6.3. Each of the V weighting layers, designated as v is associated with

an MLP layer, enabling the I signals to be weighted into Fv signals, with I >> Fv.

This enables the network to identify multiple potential weightings. The Fw =
∑V

v=1 Fv

weighted signals are then concatenated into a vector of size B × H × Fw. The FT
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signals corresponding to aggregated temperatures are smoothed by a smoothing layer

being either a recurrent network (RNN, LSTM or GRU), or an exponential smoothing

layer as defined in Section 6.3. They are then concatenated to the vector, now of size

B ×H × (Fw + FT ). The set of hyperparameters for the Weather Modeling module is

called λw and include the V output dimensions of the weighting layers for each of the V

variables, as well as the type of layer used for smoothing along, with the hyperparameters

associated with that layer.

Load Forecasting Network The vector generated by the Weather Modeling module

is merged with the other vector of features, designated as cb, resulting in a vector xb

of size B × H × (Fw + FT + B), which is then fed to the load forecasting model.

This model is identical to the one used in Appendix C.4. The load forecasting network

should map xb ∈ RB×H×(Fw+FT+F ) into the target yb ∈ RB×H . For this, two DAGs Γ1

and Γ2 are used. The graph Γ1 is made of 2-dimensional layers operations to treat the

2-dimensional input and is parameterized by α1 and λ1. A flattened layer follows Γ1 to

transform the 2-dimensional latent representation into a 1-dimensional one. The graph

Γ2 is then made of 1-dimensional layers operations and is parameterized by α2 and λ2.

We have α = [α1, α2] and λ = [λ1, λ2]. A final output layer maps the output shape of

Γ2 to H.

Finally, a Kalman adaptation is made using two last hyperparameters Q and σ. We

call λK this hyperparameter set. To summarize, our search space can be written as:

(α, λ) = ({α1, α2}, {λw, λ1, λ2, λK}) ∈
(
A × Λ(α)

)
.

6.5 Experiments

In this section, we evaluate the efficacy of our weather modeling and Kalman adaptation

techniques on the French load dataset from January 2023 to May 2024. In contrast with

Chapter 5, which compares data from a relatively stable and distant period, our analysis

focuses on a more dynamic and operational context. The training period spans from

2018 to 2022 and encompasses both the global pandemic caused by the SARS-CoV-2

virus and the subsequent energy crisis at the end of 2022. The test period encompasses

the winter of 2023, during which consumers were encouraged to voluntarily reduce their

consumption, a period commonly referred to as the “sobriety period”.

6.5.1 Data

The load dataset was obtained from the website of the French Transmission System

Operator (RTE)2 and contains the French national load data at half-hourly intervals.

Therefore, each day contains H = 48 time steps. The models were trained from January

2https://www.rte-france.com/eco2mix

https://www.rte-france.com/eco2mix
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2018 to December 2022 and subsequently evaluated from January 2023 to May 2024.

The training was minimizing the training loss ℓtrain, which is the Mean Squared Error

for those experiments. The objective funtion ℓ is the Mean Absolute Percentage Error

(MAPE). Given a load series Y = (y1 . . .yN) and the forecasts Ŷ = (ŷ1, . . . ŷN),

MAPE(Y, Ŷ ) = 1/N
∑N

i=1

∣∣(yi− ŷi)/yi

∣∣ . The weather data set comprises three-hourly

weather forecasts for 32 weather stations across France (see Figure 6.2). These forecasts

are provided by Meteo France3. Prior to employing this data in our forecasting models,

we performed a temporal linear interpolation. The other explanatory features used to

explain the load data are calendar features including the day of the week, the month,

the year, and whether the day in question fell on a public holiday or a surrounding day.

Figure 6.2: Location of the 32 french weather stations from our spatio-temporal weather
dataset.

6.5.2 Baseline

We compare our results to models at the state-of-the-art in load forecasting: the day-

ahead load forecast provided on RTE website, a Generalized Additive Model (GAM) used

in the industry and EnergyDragon as proposed Appendix C.4.3. In the case of the GAM

model, a single model is calibrated for each instant, resulting in a total of 48 models.

The training set was modified by removing periods corresponding to lockdowns that

were implemented during the pandemic caused by the novel coronavirus. EnergyDragon

produces daily forecasts of H = 48 values, necessitating the use of a single model for

all instants. A “Covid” feature has been incorporated into the model to indicate which

periods corresponding to lockdowns are retained in the training set. With the exception

of the “Covid” variable, the features are identical between the GAM and EnergyDragon

models. The weather variables utilized in this study correspond to the weather at the 32

3https://www.data.gouv.fr/fr/organizations/meteo-france/

https://www.data.gouv.fr/fr/organizations/meteo-france/
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stations, with the data weighted and smoothed in accordance with the recommendations

outlined in the RTE report on incorporating climatic contingencies into consumption

forecasts4. Both models are recalibrated in an identical manner, utilising a Kalman filter

that is updated on a daily basis with data from two days ago. To optimize Q and σ for

the GAM model, an Iterative Grid Search was employed with the years 2020 to 2022 as

validation set. For EnergyDragon, the years 2018 to 2020 were used as training dataset

(Dtrain) and the years 2021 and 2022 as validation set (Dvalid). Concerning the RTE

model, no information is given on the structure of the model or its recalibration. For

our model, later called ED Weather Modeling (for EnergyDragon Weather Modeling),

which includes space-time weather modeling, we remove all weather-related features

from EnergyDragon (all weather variables and their smoothed versions).

6.5.3 Results

Model MAPE Recalibration MAPE

RTE - Not specified 2.316%
GAM 7.429 Kalman 2.019%

EnergyDragon 2.988 Kalman 1.947%
ED Weather Modeling 3.501 Kalman 1.848%

Table 6.1: Results over 2023 - May 2024

We evaluated each algorithm from the baseline on the French load signal. Both

versions from EnergyDragon were run using 20 GPUs V100. The search algorithm used

for the optimization is the steady-state evolutionary algorithm used in Chapter 5. The

initial population is of size 100. Each algorithm was run with a global seed of 0 to

ensure reproducibility. The results can be found in Table 6.1 and support the findings of

Chapter 5. Indeed, even during an erratic period, EnergyDragon managed to beat the

static version of GAM. As anticipated, GAM’s Kalman recalibration is superior to Ener-

gyDragon’s static version, thereby validating the incorporation of a DNN recalibration

brick. This addition, in combination with the optimization of σ and Q, have proven to

be effective, as evidenced by the superior performance of the recalibrated EnergyDragon

model in comparison to both RTE and GAM-Kalman. With regard to the incorporation

of the weather modeling module, in the recalibrated version it enables us to achieve

a slight improvement (5%) in mean absolute percentage error (MAPE) compared to

EnergyDragon.

4https://www.services-rte.com/files/live/sites/services-rte/files/

documentsLibrary/2022-04-01_REGLES_MA-RE_SECTION_2_F_3590_en

https://www.services-rte.com/files/live/sites/services-rte/files/documentsLibrary/2022-04-01_REGLES_MA-RE_SECTION_2_F_3590_en
https://www.services-rte.com/files/live/sites/services-rte/files/documentsLibrary/2022-04-01_REGLES_MA-RE_SECTION_2_F_3590_en
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During the optimization phase, we noticed that the exponential smoothing layer

exhibits superior performance in comparison to alternative modules. As Figure 6.3 shows,

there are rapidly no RNNs left in the new DNNs created. We noticed they are no

longer employed after the 200th neural network is created (the initial population is 100

individuals, and ultimately, more than 2.000 models are evaluated during optimization).

An examination of the output of the weather modeling module reveals the manner in

which the DNN has modeled the weather. This modeled weather can then be compared

to the data supplied by RTE, which was used in the GAMs and EnergyDragon models.

Figures 6.4 and 6.5 show a comparison between the data as modeled by the functions

given by RTE, and the one found by two DNNs using the Weather Modeling modules

and achieving good performance (respectively 2.1% and 1.85% of MAPE). We can see

that DNN’s modeling close from that proposed by RTE, without being identical. It’s

interesting to notice, for example, that wind is almost identically represented, while for

temperature we have two different aggregations. One is very close to the signal proposed

by RTE, the other is opposite and larger in amplitude. As for smoothing, while Figure 6.5

has a smoothing fairly close to that used in the GAM and EnergyDragon models, for

Figure 6.4 the first smoothing coefficient is much lower.

Figure 6.3: Number of DNNs created having a Recurrent Neural Network as smoothing
layer through time.

Finally Figure 6.6 shows the models found by EnergyDragon with and without the

weather modeling part. We focused on the core of the network without showing the

weather modeling brick, to only compare the load forecasting network. The structure

of EnergyDragon with the weather modeling network shown Figure 6.6b is a lot simpler

than the one without shown Figure 6.6a. It can be hypothesized that the weather is

represented in a more comprehensible way for the DNN thanks to the weather modeling

module. As a result, fewer transformations would be required to output the load forecast.
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(a) Dotted line: the wind signal aggregated using weights from RTE, used in the GAM and
EnergyDragon models. Solid line: the wind signal aggregated by the weather modeling
module.
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(b) Dotted line: the temperature signal aggregated using weights from RTE, used in the
GAM and EnergyDragon models. Solid lines: two aggregated temperature signals found
by the weather modeling module.
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Optimized temp 0 smoothed with alpha = 0.574
Optimized temp 1 smoothed with alpha = 1.000

RTE temp smoothed with alpha  ~ 0.80
RTE temp smoothed with alpha ~ 0.98

(c) Dotted line: the smoothed temperature signals used in the GAM and EnergyDragon
models. Solid lines: the two aggregated temperature signals smoothed by the weather
modeling module.

Figure 6.4: Comparison between the weather as modeled within the GAM and Ener-
gyDragon models, versus the weather modeled by the DNN based Weather Modeling
module, for a model having a MAPE of 2.1%
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(a) Dotted line: the wind signal aggregated using weights from RTE, used in the GAM and
EnergyDragon models. Solid line: the wind signal aggregated by the weather modeling
module.
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(b) Dotted line: the temperature signal aggregated using weights from RTE, used in the
GAM and EnergyDragon models. Solid line: the aggregated temperature signal found by
the weather modeling module.
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(c) Dotted line: the smoothed temperature signals used in the GAM and EnergyDragon
models. Solid line: the aggregated temperature signal smoothed by the weather modeling
modeling module.

Figure 6.5: Comparison between the weather as modeled within the GAM and Ener-
gyDragon models, versus the weather modeled by the DNN based Weather Modeling
module, for a model having a MAPE of 1.85%
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Input Features

add,Identity,Tanh

add,MLP,34,LeakyReLU

mul,Dropout,0.0607993869225379,SiLU

Flatten

add,Attention1D,9,random,493,GELU

mul,MLP,205,Identity add,LayerNorm1d,SiLU

add,LayerNorm1d,SiLU 1

concat,BatchNorm1d,ReLU

concat,MaxPooling1D,8,SiLU

MLP,48,Identity()

(a) Best model found by EnergyDragon
without the automated weather modeling
part.

Weather Modeling +
Input Features

mul,TemporalAttention,8,2,random,SiLU

add,Identity,SiLU

concat,MLP,17,SiLU

add,Identity,SiLU 1

add,Identity,SiLU 2

Flatten

concat,Identity,SiLU

MLP,48,Identity()

(b) Best model found by EnergyDragon
with the automated weather modeling
part.

Figure 6.6: Best models found by EnergyDragon without and with the automated
weather modeling module.
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6.6 Conclusion

Finally, this chapter builds on the work presented in Chapter 5 on automated deep learn-

ing for load forecasting. That chapter proposed a framework, called EnergyDragon, for

optimizing the architecture and hyperparameters of deep neural networks specifically

designed for load forecasting. This new chapter improves on the previous one by incor-

porating an automated spatio-temporal weather modeling approach based on DNN and

a recalibration module based on Kalman filtering. The effectiveness of our approach is

evaluated in a more dynamic and operational context, namely the French national load

during the sobriety period.

To automate the spatio-temporal representation of the weather, we have maintained

a close alignment with the functions used in the state of the art for load forecasting. In

the Section 6.5, we show that the representations identified by our DNNs are close to

those used in the other models from our baseline. This approach has the advantage of

remaining interpretable, allowing a comparison between the DNN-generated model and

the insights derived from domain expertise. However, these preliminary results could

probably be further improved by incorporating more sophisticated layers of DNNs and

taking advantage of over-parameterization.



Chapter 7

WindDragon: Automated Deep

Learning for regional wind power

forecasting

In this chapter, we present a second application of DRAGON to energy sustainability,

namely regional wind power forecasting. Achieving net-zero carbon emissions by 2050 will

require the integration of significant wind power capacity into national power grids. How-

ever, the inherent variability and uncertainty of wind power poses significant challenges

to grid operators, particularly in maintaining system stability and balance. Accurate

short-term forecasting of wind power is therefore essential. This chapter presents an in-

novative framework for regional-level wind power forecasting over short-term horizons (1

to 6 hours) using an automated deep learning regression framework called WindDragon,

built with the tools of the DRAGON package introduced in Chapter 4. Specifically

designed to process wind speed maps, WindDragon automatically builds deep learn-

ing models using Numerical Weather Prediction (NWP) data to provide state-of-the-art

wind power forecasts. We perform extensive evaluations on data from France for the

year 2020, benchmarking WindDragon against a variety of baseline frameworks, including

both deep learning and traditional methods. The results show that WindDragon achieves

significant improvements in forecast accuracy over the baseline approaches, highlighting

its potential to improve grid reliability in the face of increased wind power integration.

Keisler, J. and Le Naour, E. WindDragon: Automated Deep Learning for

regional wind power forecasting. Submitted, 2024.
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7.1 Introduction

Global context To meet the 2050 net zero scenario envisaged by the Paris Agreement

(United Nations Convention on Climate Change, 2015), wind power stands out as a

critical energy source for the future. Remarkable progress has been made since 2010,

when global electricity generation from wind power was 342 TWh, rising to 2,100 TWh

in 2022 (International Energy Agency (IEA), 2023). The IEA targets approximately

7,400 TWh of wind-generated electricity by 2030 to meet the zero-emissions scenario.

However, to realize the full potential of this intermittent energy source, accurate forecasts

of wind power generation are needed to efficiently integrate it into the power grid.

Regional wind power forecasting Most of the work in the literature on wind power

forecasting is done at a local scale, i.e. an individual wind farm or turbine. In this

paper we focus on a more global scale, the aggregated production of a country or a large

region. Regional wind power generation forecast is critical in the context of the European

electricity market for several reasons. (i) First, a short-term forecast of up to 48 hours

is useful for the spot (day-ahead) market, which sets the “final” price of electricity hour

by hour according to supply and demand. (ii) Secondly, Short-term forecasts are useful

for the TSO (Transmission System Operator), which has to ensure the balance between

supply and demand on the transmission network within its perimeter. (iii) Finally, in the

longer term, up to a few days, regional wind power forecasts can be used to anticipate

downturns. They correspond to a situation in which a large amount of renewable energy

is fed into the grid at the same time. Renewable energies indeed have market priority

over, for example, nuclear or coal, which are more expensive to produce.

Wind power generation forecast at a global scale can be done in two ways, either

by forecasting each farm in the region (or even each wind turbine) and then adding

these forecasts together, or by directly forecasting the aggregated signal. The first

method is impractical for the majority of operators, as it requires production data for

each park, which is confidential. Moreover, even in cases where the data is available,
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Wang et al. (2017) pointed out that having forecast system for each wind farm in the

region considered can be too costly for some forecast service providers. In this paper we

focus on wind power generation forecast at a global scale.

Contributions In this chapter, we propose to leverage the spatial information in NWP

wind speed maps for national wind power forecasting by exploiting the capabilities of DL

models. The overall methodology is illustrated in Figure 7.1. To fully exploit the potential

of DL mechanisms, we introduce WindDragon, an automated deep learning framework

that uses the tools in the DRAGON package introduced Chapter 2 and Chapter 4.

WindDragon attempts to automatically design well-performing neural networks for short-

term wind power forecasting using NWP wind speed maps. WindDragon’s performance

will be benchmarked against conventional computer vision models such as Convolutional

Neural Networks (CNNs) as well as standard baselines in wind power forecasting. The

contributions of this work can be summarized as follows:

• We develop a novel automated deep learning framework specifically tailored to

forecast aggregated wind power generation from wind speed maps.

• The proposed framework, named WindDragon, is designed to fully leverage the

spatial information embedded in wind speed maps and can accommodate increases

in installed capacity, making it adaptable and reusable.

• We conduct extensive experiments that demonstrate that WindDragon, when com-

bined with Numerical Weather Prediction (NWP) wind speed maps, significantly

outperforms both traditional and state-of-the-art deep learning models in wind

power forecasting.

Predicted  wind 
speed map

Numerical Weather Predictions (NWP) 6-hours ahead

Step 2: Pass the wind 
speed maps through the 
proposed regressor 

Prediction of the regional wind 
power generation

For a given hor izon h : 

Step 1: Get wind speed 
maps predictions from 
the NWP model

Deep Learning
regressor

Figure 7.1: Global scheme for wind power forecasting. Every 6 hours, the NWP model
produces hourly forecasts. Each map is processed independently by the regressor which
maps the grid to the wind power corresponding to the same timestamp.
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7.2 State-of-the-art

Wind power forecasting at the level of a single wind farm is a mature discipline (Jonkers

et al., 2024) on forecast horizons ranging from the next minutes to the next days (see

Kariniotakis 2017 for a book on the subject). However, the regional forecasting remains

largely unexplored in the literature (Higashiyama et al., 2018).

7.2.1 Regional wind power forecasting

Transfer strategy Some studies have attempted to take advantage of the wealth of

research at the turbine or wind farm scale to forecast regional wind energy. The general

idea is to apply a forecasting model to wind turbines or farms whose data are available

within the region and use a transfer function to move from local to regional data. For

instance, Pinson et al. (2003) mentioned a model based on online persistence scaled

with a ratio of the total installed capacity in the region and the capacity of wind farms

for which online measures are available. Camal et al. (2024) forecasted the production

of any wind farm in the control area of a TSO, taking into account the information

collected from other wind farms. The method combines feature selection, regularization

and local-learning via conditioning on recent production levels or on expected weather

conditions.

Input dimension reduction Approaches that have attempted to forecast regional

wind production directly from meteorological data such as NWP maps, or by incorpo-

rating operational variables from the (potentially numerous) wind farms in the region,

have quickly run into the problem of the large size of the input data. Camal et al.

(2024) noticed that at the scale of a region or of a country, the number of explanatory

variables grows linearly with the number of explanatory sites or the number of variables

considered per site. Both statistical and Machine Learning models face in this case the

curse of dimensionality. Therefore, regularization or feature selection was investigated to

mitigate the high dimensionality of the input features. Siebert (2008) used a clustering

algorithm based on k-means and a mutual information-based feature selection algorithm

to determine the best set of features for the forecast model. Lobo and Sanchez (2012)

searched for samples with similar weather conditions. Davò et al. (2016) leveraged the

principal component analysis (PCA) method to reduce the dimension of the data sets

when forecasting regional wind power and solar irradiance. Wang et al. (2017) reduced

the dimension of the NWP grid with the selection of minimum redundancy character-

istics (mRMR) and PCA. They then applied a weighted average learning strategy to

forecast the production of a Chinese region. In the work from Wang et al. (2018b),

the spatio-temporal weather data is represented using a distance-weighted kernel density

estimation model (DWKDE) which is the basis for a feature selection method based on

mRMR. Finally, Wang et al. (2019c) performed probabilistic forecast with regular vine
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copulad to reduce the weather dataset.

Although this input reduction is necessary for most Machine Learning models, deep

learning models have demonstrated high capacities for extracting complex features from

high-dimensional data.

7.2.2 Deep Learning for wind power forecasting

Deep learning models have been highly investigated for wind power forecasting both at

the turbine level and at the regional aggregation level. A large variety of architectures

have been used, depending on the input data available and the features that are sought

to be extracted.

Yu et al. (2021) recognized the abilities of the deep learning model for non-linear

mapping and massive data handling and used a feedforward neural network based on

historical wind power and NWP information for regional wind power forecasting. To

model the time dependencies of the wind power time series, many worked leveraged

recurrent neural networks and their variants (long short-term memory or gated recurrent

unit) such as Liu et al. (2021a) or Alkabbani et al. (2023). The interactions between

several wind farms have been investigated using the Transformer model by Lima et al.

(2022) and using graph neural networks by Qiu et al. (2024). The direct use of DNN

directly on wind speed map has been tackled using convolutional neural networks (CNNs)

which had shown strong capabilities for extracting relevant features from image data.

Higashiyama et al. (2018) used 3-dimensional CNNs to forecast the production of a

single wind farm based on NWP grids. Bosma and Nazari (2022) and Jonkers et al.

(2024) proposed day-ahead regional wind power forecasting CNNs which architecture

was inspired by Computer Vision models such as ResNet (see He et al. (2016)).

The challenge of wind power forecasting is that it combines dependencies to weather

variables but remains a times series. Therefore architectures mixing various types of layers

have been investigated to capture various dependencies. Miele et al. (2023) compared

the performance of CNN-LSTM with a multi-modal neural network with two branches:

one for the NWP grid and one for past data, for a single wind farm. Zhou and Lu

(2023) combined convolution, LSTM and attention layers to forecast the production of

a wind farm. Given this large variety of possible architectures, ones might want to use

automated tools to find the best one for the dataset at hand.

7.2.3 Automated Deep Learning

Main concepts The research field related to the automation of deep neural network

design is called Automated Deep Learning (AutoDL). It belongs to a more global re-

search area called Automated Machine Learning (AutoML) which studies the automatic

design of high-performance Machine Learning models. As any AutoML approaches, Au-

toDL systems consist of three main components: the search space, the search strategy
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and the performance evaluation. The search space should contain all the considered

neural networks architectures and hyperparameters which is the set of all available de-

sign choices, like the number and type of layers in the neural network, the connection

between the layers or the training parameters, like the learning rate. The search strategy

will determine how to navigate within the search space to select promising configura-

tions. The bigger the search space, the more sophisticated the search strategy should

be for effective exploration. The performance evaluation will assess the performance of

the candidate configurations until the search strategy finds a suitable neural network

(usually best configuration found after a given number of evaluations).

AutoDL for wind power forecasting A few works have applied AutoDL to wind

power forecasting, such as Tu et al. (2022) or Jalali et al. (2022). However, these

approaches are limited to optimizing the hyperparameters of one type of architecture,

possibly integrating a few architectural hyperparameters such as the number of layers.

The AutoDL community has developed a large number of tools to optimize neural net-

work architectures more broadly, but as Tu et al. (2022) points out, the search spaces

used by these approaches are tailored to Computer Vision and Natural Language Pro-

cessing tasks. For example, Hutter et al. (2019) reviewed many approaches based on

(hierarchical) cell-based search spaces, where the neural networks are represented as a

sequence of small iterated Directed Acyclic Graphs (DAGs) called cells. The architecture

of the cell is optimized and then the pattern is repeated throughout the network. Such

an approach is efficient for Computer Vision tasks, where models that repeat sequences

of convolutional pooling layers and skip connections are very powerful. Another popular

approach is DARTS, proposed by Liu et al. (2018d), which uses a meta-architecture that

is designed to include all possible architectures. The general structure of the network

is fixed, and for each layer several candidate operations are possible. Each is associ-

ated with a probability of being chosen, which is optimized by gradient descent. This

approach, which is effective for generating architectures based on 3 × 3 or 5 × 5 con-

volutions, has a very limited search space and assumes that the subgraph obtained by

keeping only the operation with the highest probability for each layer is the optimal

graph. More diverse tasks have been tackled by the AutoDL framework AutoPytorch,

which offers a version for tabular data, described in Zimmer et al. (2021), and for time

series forecasting, see Deng et al. (2022), providing search spaces of MLPs and residual

connections for the tabular version, and various encoder/decoder blocks for the time se-

ries version to cover several state-of-the-art architectures in time series (e.g: TFT from

Lim et al. 2021, NBEATS from Oreshkin et al. 2020, or DeepAR from Salinas et al.

2020). All search spaces for the above AutoDL approaches have been restricted to allow

effective searching. This observation is shared more generally by recent reviews such as

White et al. (2023) on AutoDL and Baratchi et al. (2024) on AutoML. In the case of

wind production forecasting, as indicated by Tu et al. (2022), we would like to have a

search space for designing architectures that combine different types of layers such as
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MLPs, CNNs, or attention, that also have computational graphs that are more complex

than a linearly sequential architecture, and whose hyperparameters can be optimized,

as they are crucial in this type of task. The AutoDL package DRAGON, introduced in

Chapter 2, provides tools for designing such search spaces.

7.2.4 DRAGON package

DRAGON, or DiRected Acyclic Graphs optimizatioN, is an open-source Python package1

offering tools to conceive Automated Deep Learning frameworks for diverse tasks. The

package is based on three main elements: building bricks for search space design, search

operators for those bricks and search algorithms.

Search space DRAGON offers several building bricks to encode deep neural networks

architectures and hyperparameters. The network structures are represented as Directed

Acyclic Graphs, where the nodes represent the layers and the edges the connection

between them. The layers are encoded by a succession of three elements: a combiner,

an operation and an activation function. As no constraint is made on the graph structure,

each node may receive an arbitrary number of incoming inputs of various size. They are

gathered into a single input through the combiner. The operation can be any PyTorch

building block parametrized by a set of hyperparameters. The DRAGON user has to

specify which kind of building blocks the search space should contain, and for each, the

associated hyperparameters. Besides the DAGs, the user can chose to optimize other

hyperparameters such as the learning rate, the output shape of the last layer, etc. The

hyperparameters may be numerical or categorical. The graph encoding can be used

to represent the entire structure, but it is also possible to design more specific search

spaces for certain applications. For example, it is possible to combine different graphs

for a Transformer-type structure (see Vaswani et al. 2017 for an introduction to the

Transformer model), with one graph for the encoder part and another graph for the

decoder part, in order to impose a two-part structure.

Performance evaluation The search space is designed for a specific performance

evaluation strategy, which will assess the score of a given configuration from the search

space. In the case of DRAGON, the user has to define its own performance evaluation.

Given an element from the search space, the performance evaluation should at least

build a PyTorch model and perform any type of training/validation process on the data.

Search Operators Each building blocks from DRAGON comes with a neighbor at-

tribute that defines how to create a neighboring value from a representation. Those

operators can be seen as mutations in the case of an evolutionary algorithm or neigh-

borhood operators for a simulated annealing or a local search. In the case of an integer

1https://dragon-tutorial.readthedocs.io/en/latest/

https://dragon-tutorial.readthedocs.io/en/latest/
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for example, the neighbor attribute will pick the new value in a range surrounding the

actual one. For the DAGs, it is possible to add or delete nodes, or to modify the edges

and the nodes contents.

Search Algorithms The package implements several search strategies which may use

the search operators and can be distributed in a high performance computing (HPC)

environment. Besides the random search, Hyperband (see Li et al. (2018)), an evolu-

tionary algorithm and Mutant-UCB presented in Chapter 3 are available. They take as

input the search space and the performance evaluation designed by the user and return

the best configuration.

7.3 WindDragon

We used the tools provided by DRAGON to create WindDragon, an AutoDL frame-

work for regression on wind speed maps towards regional wind power forecasting. The

framework takes as input two datasets Dtrain and Dvalid. Each dataset D is made up of

pairs (Xt, Yt) for several time steps t, where Xt ∈ R2 is a wind speed map and Yt ∈ RR

are the associated wind production values, one for each of the R regions. The frame-

work is first creating wind speed maps by region r: Xr
t . Two datasets Dr

train = (Xr, Y r)

and Dr
valid = (Xr, Y r) are put together for each region r with these regional wind speed

maps and the associated regional production. WindDragon aims at finding, for each

region r, the optimal model f̂ r from a search space Ω with respect to a loss function ℓ

such that:

f̂ r ∈ argmin
f∈ Ω

ℓ
(
fδ̂,D

r
valid

)
, (7.1)

where the model fδ̂ corresponds to the model f ∈ Ω trained on Dr
train.

7.3.1 Search space and performance evaluation

Data processing The input data Xt contains the wind speed map corresponding to

the whole country and has to be divided into regional data. As shows Figure 7.2 for a

specific region (here Auvergne-Rhône-Alpes), wind turbines are not evenly distributed

across the administrative regions. Therefore, instead of using them, we draw areas

around each wind farm in the region and took the convex hull of all the considered

points. The result is a seamless map Xr
t ⊂ Xt ∈ R2 that includes local wind turbines

with no gaps to disrupt the models. The areas surroundings the wind farms are drawn

according to a distance parametrized by a parameter called g ∈ N⋆. When g gets higher,

the convex hull becomes larger. Installed capacity data - corresponding to the maximum

wind power a region can produce - for each region and each time step t is available and

updated every three months. It was collected and used to scale the wind power target
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Figure 7.2: Data preparation for the region Auvergne-Rhône-Alpes. The wind farms
are represented in red. The first image shows the distribution of wind farms across the
administrative region.

to train the models. Training the model f on the region r with respect to the training

loss ℓtrain, means finding the model optimal weights δ̂ ∈ ∆ such that:

δ̂ ∈ argmin
δ∈∆

ℓtrain
(
fδ(X

r),
Y r

cr
)
, (7.2)

where cr ∈ R is the installed capacities for the region r and Dr
train = (Xr, Y r). The

evaluation of the model f on Dr
valid is made on the de-normalized value of Y r.

Wind Map Xt

Deep Neural Network

2D Graph Γ1

Flatten

1D Graph Γ2

MLP

Wind Production

forecast Yt

Figure 7.3: WindDragon’s
meta model for wind power

forecasting

Search space Each model f ∈ Ω has to forecast a

one-dimensional output Y r
t ∈ R from a two-dimensional

input: the wind speed map Xr
t ∈ R2. Therefore, each

neural network from Ω is made of two Directed Acyclic

Graphs as represented in Figure 7.3. A first graph Γ1

processes two-dimensional data and can be composed

by convolutions, pooling, normalization, dropout, and

attention layers. Then, a flatten layer and a second

graph Γ2 follow. This one is composed by MLPs, self-

attention, convolutions and pooling layers able to treat

one-dimensional. A final MLP layer is added at the end of

the model to convert the latent vector to the desired out-

put format. The detailed operations and hyperparameters

available within WindDragon are detailed in Table 7.1.

Regarding the parameters external to the architecture,

the weather map size parameter g is also optimized. The

search space is then: [Γ1,Γ2, o, g] where o represents the

final MLP layer, which is a constant.

Performance Evaluation The performance evaluation takes as input a region r and

a configuration from the search space and will:
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• Construct the datasets Dr
train and Dr

valid from Dtrain and Dvalid according to the

parameter g parameterizing the grid size, from the configuration.

• Build the model f with the elements from the configuration and train the model

on Dr
train according to Equation (7.2).

• Evaluate the performance of fδ̂ on Dr
valid according to Equation (7.1).

Table 7.1: Layers available and their associated hyperparameters in the WindDragon
search space (for the first and the second graph).

Layer type Graph concerned Optimized hyperparameters

Identity Both -

Fully-Connected (MLP) Both Output shape Integer

Self-Attention Both

Initialization type [convolution, random]

Heads number Integer

Output dimension Integer

1D Convolution 1D Graph Γ2
Kernel size Integer

Output dimension Integer

2D Convolution 2D Graph Γ1
Kernel size Integer

Output dimension Integer

1D Pooling 1D Graph Γ2
Pooling size Integer

Pooling type [Max, Average]

2D Pooling 2D Graph Γ1
Pooling size Integer

Pooling type [Max, Average]

1D Normalization 1D Graph Γ2 Normalization type [Batch, Layer]

2D Normalization 2D Graph Γ1 Normalization type [Batch, Layer]

Dropout Both Dropout rate Float

7.3.2 Search Algorithm

Regarding the search algorithm, four are available within DRAGON: the Random Search,

HyperBand (Li et al., 2018), an Evolutionary Algorithm, and Mutant-UCB. In Chapter 3

introducing this last algorithm, the four are compared and Mutant-UCB appears as the

most efficient one.
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Mutant-UCB This algorithm combines a multi-armed bandits approach with evolu-

tionary operators. Each model f ∈ Ω corresponds to an arm, and choosing an arm

corresponds to a partial training of the model. Indeed, training a neural networks takes

a lot of time, and a lot of algorithms such as the Random Search or the Evolutionary

Algorithms give the same amount of resources for all the evaluated configurations. It

means such algorithms are loosing a lot of time and computational resources on bad

configurations. Resource allocation strategies used for example by HyperBand, allows

to gradually attribute ressources to the most promising solutions. A partial training

can then be for example a training on a small set of data or with a small number of

epochs. In short, Mutant-UCB generates a population of K ∈ N⋆ of random configu-

rations. For each arm k from this population, a partial training is made to get a first

loss ℓk. Then, at each iteration i, an arm Ii from the population is drawn following an

Upper-Confidence-Bound strategy:

Ii ∈ argmin
k∈{1,...K}

{
ℓ̂k −

√
E

Nk

}
,

where: ℓ̂k is the average loss for all the previous partial trainings of the model associated

to the arm k, E is the exploration parameters and Nk the number of time the arm k

has been picked. Once the arm Ii is chosen, with a probability 1 − N̄Ii/N , the model

is mutated, otherwise, a new partial training is done. The value N corresponds to the

maximum number of partial trainings a model can have (to prevent overfitting) and N̄Ii

corresponds to the number of time the model associated to Ii has been trained. In

the case of a mutant creation, the number of arms K increases and the new model is

partially trained for the first time. For more information on Mutant-UCB please refer to

Chapter 3.

Partial trainings In the original paper, the partial trainings were done on a small

number of epochs. For WindDragon, we changed it to be a small number of epochs on

a given region. Instead of running one version of Mutant-UCB, we ran Mutant-UCB for

all the regions. We indeed make the assumption that a similar architecture will fit for

all the regions, even if some layers or hyperparameters might change from one region to

another. The input Xr might be of different shapes for different regions. This shape

change is handle by DRAGON when building the neural network f . The layers and DAGs

from the package may be adapted by weights cropping or padding to any new shape

during the network initialization. Splitting the training between different regions follows

the spirit of Mutant-UCB, where the loss minimized to pick the future arm relies on the

empirical mean of the various partial trainings of a model f . The performance across

the regions might be different, and converging towards a model generally good over all

regions can be done by taking this empirical mean. To reduce the variance between the

performance of the region, the loss ℓ considered to evaluate a model f on a given region
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would be an error function (such as the mean squared error, the mean absolute error

or a variant) of f , divided by this same error function but of a reference model. See

Section 7.4 for more information.

7.4 Experiments

Datasets The wind speed maps used are 100-meter high forecasts at a 9 km resolution

provided by the HRES2 model from the European Centre for Medium-Range Weather

Forecasts (ECMWF). The maps are provided at an hourly time step and there are 4

forecast runs per day (every 6 hours). Only the six more recent forecasts are used here

as the forecasting horizon of interest is six hours. The hourly french regional and national

wind power generation data as well as the french TSO hourly forecasts and the installed

capacities values come from the ENTSOE-E Transparency Platform3.

Baselines We use the following baselines to compare hourly forecasts for a horizon h

(h ∈ {1, ..., 6}):

• Persistence: Given access to forecasts every 6 hours derived from the ground truth

situation, the wind power value is also available at the same interval. Persistence

involves replicating this value for the subsequent six hours. Therefore, the model

predicts wind power generation at future time t + h as equal to the observed

generation at current time t.

• XGB on Wind Speed Mean: Forecasts wind power at t + h using a two-

step approach as depicted Figure 7.4: (i) Compute the mean wind speed for the

considered region at t+ h using NWP forecasts. (ii) Apply an XGBoost regressor

(Chen and Guestrin, 2016) to predict power generation based on the computed

mean wind speed.

Step 1 : Compute the 
wind speed  mean

inside the convex hull

Step 2 : Applied an 
XGboost regressor

Figure 7.4: Visual illustration of the XGB two-steps approach on the Auvergne-Rhône-
Alpes region.

2https://www.ecmwf.int/en/forecasts/datasets/set-i
3https://transparency.entsoe.eu/

https://www.ecmwf.int/en/forecasts/datasets/set-i
https://transparency.entsoe.eu/
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• Convolutional Neural Networks (CNNs). Use the same training setup as

WindDragon: forecasts wind power at t+h using the NWP forecasted wind speed

map. CNNs can efficiently regress a structured map on a numerical value by

learning local and spatial patterns (LeCun et al., 1995). In addition, the weight

sharing induced by the convolutional mechanism reduces the number of learned

weights compared to alternative deep learning mechanisms like dense (Haykin,

1994) or self-attention layers (Vaswani et al., 2017). This feature makes CNNs

particularly effective when dealing with relatively small amounts of data. Figure 7.5

shows the architecture of the CNN baseline we implemented. We used a simple

grid search to optimize the hyperparameters (e.g. the number of layers, the kernel

sizes, the activation functions).
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Figure 7.5: CNN architecture applied on the Grand Est region.

• French TSO (RTE). The european TSOs have to provide Current, IntraDay and

Day-Ahead wind and solar forecasts. We have used the Current forecast within our

baseline to put the results into perspective with operational values. The forecasting

methods and horizons are not detailed. The regulatory article4 only states that the

published ”Current” forecast is the latest update of the forecast. The information

is regularly updated and published during intra-day trading. It is the closest setup

of our experiments.

Experimental setup We used the years from 2018 to 2019 to train the models, and

the data from 2020 is used to evaluate how the models perform. All the neural networks

were trained using the Adam optimizer. The CNN was trained for 200 epochs. Mutant-

UCB was run for 72 hours, with N = 10, K = 600, E = 0.01 and 20 epochs by partial

training. The CNN model was given as input to the search algorithm. Among the first K

models initialized, 10 had the CNN architecture, with values of g ranging from 1 to 10.

The CNN losses were used to scale the regional errors for WindDragon. Mutant-UCB

was distributed over 20 V100 GPUs and ran for 72 hours.

4https://transparencyplatform.zendesk.com/hc/en-us/articles/

16648445340180-Generation-Forecasts-for-Wind-and-Solar-14-1-D

https://transparencyplatform.zendesk.com/hc/en-us/articles/16648445340180-Generation-Forecasts-for-Wind-and-Solar-14-1-D
https://transparencyplatform.zendesk.com/hc/en-us/articles/16648445340180-Generation-Forecasts-for-Wind-and-Solar-14-1-D
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Results We computed two scores: Mean Absolute Error (MAE) in Megawatts

(MW), showing the absolute difference between ground truth and forecast, and Nor-

malized Mean Absolute Error (NMAE), a percentage obtained by dividing the MAE

by the average wind power generation for the test year. The MAE gives an idea of the

amount of energy contained in the errors, while the NMAE enables performance to be

compared between regions. We run experiments for each of the 12 French metropolitan

regions and then aggregate the forecasts to derive national results. The national fore-

casting results are presented in Table 7.2, while detailed regional results can be found in

Table 7.3.

Table 7.2: National results: sum of the regional forecasts for each models. The best
results are highlighted in bold and the best second results are underlined.

WindDragon RTE CNN XGB on mean Persistence

MAE (MW) NMAE MAE (MW) NMAE MAE (MW) NMAE MAE (MW) NMAE MAE (MW) NMAE

France 300.0 6.6 % 482.1 10.6% 369.0 8.1 % 416.7 9.2 % 779.7 17.3 %

Table 7.3: Regional results. The best results are highlighted in bold and the best second
results are underlined.

WindDragon CNN XGB on mean Persistence

Region MAE (MW) NMAE MAE (MW) NMAE MAE (MW) NMAE MAE (MW) NMAE

Auvergne-Rhône-Alpes 19.3 14.8 % 19.6 15.0 % 29.2 22.4 % 28.7 22.0 %

Bourgogne-Franche-Comté 30.0 13.6 % 34.1 15.4 % 42.3 19.1 % 58.7 26.6 %

Bretagne 33.7 13.2 % 38.0 14.9 % 47.1 18.4 % 67.2 26.3 %

Centre-Val de Loire 50.5 14.2 % 57.3 16.1 % 61.9 17.5 % 96.7 27.3 %

Grand Est 108.2 10.8 % 130.5 13.1 % 148.8 14.9 % 251.2 25.1 %

Hauts-de-France 140.7 10.6 % 167.6 12.7 % 178.8 13.5 % 320.1 24.2 %

Île-de-France 6.2 20.5 % 7.2 23.7 % 7.5 24.9 % 9.5 31.5 %

Normandie 27.4 11.8 % 30.8 13.2 % 36.8 15.8 % 55.9 24.0 %

Nouvelle-Aquitaine 37.8 13.8 % 44.0 16.4 % 53.7 19.6 % 77.9 28.4 %

Occitanie 51.1 12.3 % 55.8 13.5 % 91.6 22.1 % 96.3 23.2 %

PACA 3.2 29.7 % 3.5 32.4% 4.5 41.4 % 4.3 39.5 %

Pays de la Loire 34.1 12.5 % 39.0 14.3 % 41.9 15.4 % 74.9 27.5 %

The results in Table 7.2 highlight three key findings:

(i) Improved performance with aggregated NWP statistics. Using the average

of NWP-predicted wind speed maps coupled with an XGB regressor significantly

outperforms the naive persistence baseline. It shows that the signal is closer to

a regression problem than to a time series forecasting one. It is also interesting
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to note that this simple model is already better than the signal produced by the

French TSO.

(ii) Gains from full NWP map utilization. More complex patterns can be captured

by using the full predicted wind speed map, as opposed to just the average, thereby

improving forecast accuracy. In this context, the CNN regressor applied to full

maps yielded gains of 47 MW (11.5%) over the mean-based XGB.

(iii) WindDragon’s superior performances. WindDragon outperforms all baselines,

showing an improvement of 69 MW (19%) over the CNN. On an annual basis,

this corresponds to approximately 600 GWh. The average French citizen consumes

between 2,500 and 3,000 kWh5 of electricity per year. Therefore, 600 GWh per

year is equivalent to the consumption of around 200,000 French inhabitants. The

results underscore WindDragon’s effectiveness in autonomously discovering the op-

timal deep-learning configurations for wind power regression. Moreover, Table 7.3

indicates the improvement is effective across all regions. During the optimization,

WindDragon managed to find, for each region, a model outperforming each one

from the baseline. The found architectures vary a bit from one region to another.

Examples of the models output by WindDragon for various regions can be found

Figures D.1, D.2, D.3, D.4 and D.5. The architectures mix various layers such as

convolutions, pooling and normalization layers. The structures are very similar to

a large two-dimensional graph, efficiently extracting spatial information from the

input wind speed map and a small one-dimensional graph. The hyperparameters

are however unique for each model.

Forecasts comparison In Figure 7.6, we present the aggregated national wind power

forecasts using both WindDragon and the CNN baseline during a given week. While both

models deliver highly accurate forecasts, it’s important to highlight that WindDragon

demonstrates superior accuracy, particularly during the high production level at the end

of the signal. Figure D.6 show visual comparisons of all baseline performances on this

same week. It appears that the models perform well at different times. For example,

the RTE forecast is best for the small production spike in the middle of the day on

11 January, but much less good for the production dip on the night of 10 January.

These differences in performance open the way to mixtures of models to further improve

forecasts.

Performance analysis We compared the performance of the two best baselines, CNN

and WindDragon, in more detail. Figure 7.7 shows the absolute errors and the normalised

absolute errors by hour of the day and by month. In general, WindDragon is significantly

better than CNN at all times of the day and in all months. On Figures 7.7a and 7.7b,

5based on the average European per capita consumption (Statista Research Department, 2022)
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Figure 7.6: Wind power forecasts for a week in January 2020. The figure displays the
ground truth as dotted lines, and the forecasts from the two top-performing models,
WindDragon and the CNN.

the dotted line represents the hour when a new NWP forecast arrives (every 6 hours).

For the first two forecasts of the day (at midnight and 6 am), the performance of both

models decreases as the forecast horizon increases. This is much more marked in the

case of CNN, whose performance deteriorates dramatically, particularly at 6 am (when

the forecast horizon is therefore 6 hours). This observation is less true for the later hours

of the day. As for the months, the differences are more pronounced in summer, when

wind power production is lower. Finally, we have plotted Figure 7.8 the mean absolute

errors of CNN and WindDragon per quantile of the wind power distribution. We can

see from this distribution that the two curves diverge particularly at the first quantile,

where the production values are extremely low, and at the last quantile, where they are

extremely high. The two curves never cross, demonstrating the homogeneous superiority

of WindDragon over CNN.

Mutant-UCB time convergence Mutant-UCB ran for 72 hours on 20 GPUs. How-

ever, we saved the values of the models found by the algorithm as it ran so that we could

analyse its convergence time. Figure 7.9a shows the best NMAE found per time step for

each region. We can see that the performance converges very quickly during the first

2 hours of the algorithm before stabilising. Only a few regions such as Ile-de-France,

Auvergne-Rhône-Alpes and Centre-Val de Loire show improvements in the last hours.

Figure 7.9b zooms in on the first three hours of the algorithm. Except for PACA and

Ile-de-France, most regions fall below 15% of NMAE in about an hour. Thus, although

Mutant-UCB would have to be run for a long time to achieve very good performance,

it is possible to obtain correct models in just one hour.
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(b) Normalized hourly error
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Figure 7.7: Errors comparison between WindDragon and the CNN. The dotted vertical
lines on Figures 7.7a and 7.7b represent the beginning of the new NWP forecast.
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Figure 7.8: Error repartition of the CNN and WindDragon over 20 quantiles.
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Figure 7.9: Mutant-UCB convergence: NMAE through time for each region.
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7.5 Conclusion

This chapter presents WindDragon, an Automated Deep Learning framework for fore-

casting regional wind power. WindDragon automated the creation of performing Deep

Neural Networks leveraging Numerical Weather Prediction wind speed maps to deliver

wind production forecasts. We demonstrate on the french national and regional wind

production data that WindDragon can find deep neural networks outperforming tradi-

tional and state-of-the-art deep learning models in regional wind power forecasting.

WindDragon, like many AutoML systems is limited by its high running time compared

to handcrafted baselines. However, this duration should be compared to the time spent

creating powerful models by hand which is often hard to measure. Besides, once the

model has been found, the inference speed remains competitive with other deep learning

models. Nevertheless, future work could focus on reducing this running training time

through even more efficient search algorithms or by reducing the search space. This

gained efficiency could also be achieved by reducing the input weather map dimension,

through unsupervised representation techniques, for example. The high number of model

training and evaluations could be leveraged by creating a mix of models instead of just

identifying the best one by region. Section 7.4 highlighted that the baseline models

produced quite different forecasts. These differences, if complementary, could enable a

mix of models to achieve better performance.

Finally, with the rise of data-driven weather forecasting tools, the accuracy of weather

forecasting has increased at various forecast horizons (Ben Bouallègue et al., 2024) and

for multiple weather variables. With its non-dependency on past data, our methodology

could easily be applied to longer forecast horizons (to be used for other industrial use

cases) but also for photovoltaic (PV) regional forecasting, by applying it to solar radiation

maps generated by NWP models.
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Chapter 8

Towards Automated Machine

Learning for energy sustainability

8.1 Synthesis

This thesis is a progress towards bridging the gap between AutoML systems and their

application to energy sustainability. It focuses on Automated Deep Learning through

the development of a Python package called DRAGON, which allows the optimization

of neural network architectures and hyperparameters. For each of the identified research

directions from Section 1.3.3, here is what was presented in this thesis.

Search Spaces. We have proposed in Chapter 2 a new search space for representing a

wide variety of Deep Neural Networks (DNNs). The DRAGON search space can be used

to build models of varying complexity using a representation of DNNs in the form of

Directed Acyclic Graphs (DAGs). The nodes of these DAGs can be any user-requested

PyTorch operation whose hyperparameters to optimize are also chosen.

We then applied DRAGON’s representation tools to different problems: time series

forecasting in Chapter 2, image classification in Chapter 3, load forecasting in regres-

sion format in Chapter 5, wind power forecasting using Numerical Weather Predictions

(NWP) wind speed maps in Chapter 7, demonstrating the wide variety of search spaces

that can be constructed with DRAGON.

The different applications also provided an opportunity to demonstrate the extent

to which the search space can be constrained. In Chapter 2, almost no constraints are

placed on the search space, which consists of a single DAG for forecasting time series. On

the contrary, in Chapter 6, for models combining weather modelling and load forecasting,

the search space is much more constrained, with parts of the structure fixed where only

the hyperparameters are optimized, and others where it is modelled by a DAG.

DRAGON’s multimodal capabilities were also demonstrated, processing tabular data

in Chapter 5, images in Chapter 3, weather grids in Chapter 7 and time series in Chap-
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ters 2 and 6.

Search Algorithms. The flexibility of the search space, which contains a variety of

objects, makes it difficult to optimize. While random search and its variants based on

resource allocation such as HyperBand (Li et al., 2018) are directly applicable, classical

algorithms such as Bayesian optimization, gradient descent or evolutionary algorithms

often rely on notions of proximity between elements, distance, or underlying numerical

spaces (potentially high dimensional) where representations could be positioned, which

are difficult to define with such objects.

We leveraged the notion of proximity by defining neighborhoods for each type of

object in Chapter 2, which can also be seen as mutation operators. For hyperparameters,

classical neighborhoods were used (e.g. intervals for integers, other values for categorical

variables). Regarding graphs, mutations inspired by the edit distance were developed.

These mutations can be applied to our highly flexible structures, allowing nodes or edges

to be added or removed, the contents of nodes to be modified, etc.

Thanks to these neighborhoods, it is possible to develop various meta-heuristics

such as local search, simulated annealing and evolutionary algorithms. We quickly saw

the potential of the latter algorithm on time series, but it seemed rather inefficient for

evaluating a large number of configurations because it spent a lot of time evaluating

bad solutions. We therefore proposed Mutant-UCB in Chapter 3, an algorithm that uses

a UCB strategy to allocate resources, while retaining the mutation of the evolutionary

algorithm to intensify the search for good solutions. We have shown that this algorithm

is very effective in image classification and wind forecasting, and can be used to evaluate

a large number of models.

In Chapter 5 we also explored the possibility of integrating parts of the neural net-

work creation automation into the gradient descent weight optimization, specifically for

variable selection. The use case was load forecasting, which relies on a very large number

of variables, making the objects very large to optimize using the evolutionary or Mutant-

UCB algorithm. Automated deep learning in this case was therefore achieved by mixing

an evolutionary approach with an approach similar to that used by DARTS specifically for

feature selection. A probability of selection, optimized by gradient descent, was assigned

to each of these features.

Creating a tool for electricity forecasters. Most AutoML tools are aimed at a broad

audience new to machine learning. They are therefore offered as “no code” packages

where the user has to provide very few elements. These approaches are very useful for

giving inexperienced people access to state-of-the-art methods. In the context of this

thesis, the tool to be developed was aimed at researchers in R&D who have experience

using machine learning in developing forecasting tools, but who want to automate de-

cisions that are tedious to make by hand, in order to achieve better performance more

quickly. For this reason, as presented in Chapter 4, we have chosen to develop DRAGON
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as a generic toolbox that allows the development of specific AutoDL sub-packages for

a given application with minimal effort. In Chapters 5, 6 and 7 we showed how to use

this toolbox as a domain expert to create “no-code” packages such as EnergyDragon

and WindDragon, designed for load and production forecasting respectively.
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In the next section, we outline some perspectives for future work aimed at developing

DRAGON into an AutoML framework.

8.2 Perspectives: AutoML for energy sustainability

In this thesis, we have developed DRAGON, a tool that initially focuses on the opti-

mization of neural networks. In order to make DRAGON more useful for the forecasting

community, but also for others, several research perspectives stand out. First, as pre-

sented in Section 1.1.2, many models can be used to forecast production and load.

These include GAMs, which are particularly effective for load forecasting and which

would benefit from an optimization tool with a representation specific to their particu-

lar structure. Secondly, it could be interesting to have search algorithms that allow a

choice between different machine learning models (e.g. a search space containing neural

networks, GAMs, Random Forests, etc.) for a given problem. Mutant-UCB seems to

be a good candidate for this task, as it has the ability to evolve each configuration

independently (thus not requiring uniform representations for all configurations) and to

evaluate a very large number of models. Chapter 6 also introduced the problem of online

learning with correction of the neural network via Kalman filters. With new electricity

usages (e.g. sobriety, electrical vehicules) and the growing investment into wind power

energy as well as the emergence of new technologies, load and wind power signal dis-

tributions and their relation towards explanatory variables change over time. Therefore,

high performing models at a given time can become quickly obsolete. Online AutoML,

mentioned by Baratchi et al. (2024), is a good avenue of research for this problem. Fi-

nally, AutoML takes a lot of computing time and resources. To make DRAGON usable

by as many people as possible, and to reduce its energy impact, it is crucial not only to

work on its frugality, but also to use it as a global model for several similar forecasting

problems, so that only one model needs to be optimized. These ideas are discussed in

more detail below.

8.2.1 DRAGAM: optimizing GAMs with DRAGON

GAMs are generally considered to be the state of the art in load forecasting (Antoniadis

et al., 2024). In any case, they are widely used by EDF forecasters. In this context, they

link the random variable Y to be explained and the explanatory variables X via regular

functions hj (e.g. piecewise polynomial functions, c2 functions):

E
[
Y | X

]
=
∑
j

hj(X) .

The choice of hj functions, namely the GAM formula, includes the choice of explanatory

variable(s) considered and the regularity. It must be made before the model is trained and
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has a major impact on its performance. Typically, the hj are spline functions of various

types (e.g. cubic splines, B-splines, P-splines), where each king can be applied to specific

variables, and are parameterized by a complexity level (the spline degree). Few works

have been done to fully optimize this structure, while many design choices are left to the

user and have a dramatic impact on performance. Chouldechova and Hastie (2015) and

Cus (2020) introduced GAMSEL and GAGAM respectively to select the input features

and the splines applied to each of them. However, they are very limited in design choices

compared to the GAMs developed for load forecasting. Work is in progress on DRAGAM,

which will extend DRAGON to provide specific encodings for GAMs. In the same way

that DAGs have been used for neural networks, a specific representation will be used

for GAMs to automate the choice of explanatory variables, with specific spline types for

each type of variable and their level of complexity. The aim is to create a search space

able of encompassing all the models used for load forecasting. As with the DAGs, new

mutation operators will have to be created so that the DRAGON search algorithms can

be reused. The aim of this work is also to automate online learning systems for GAMs,

such as the Kalman filter, as has been done for neural networks Chapter 6.

8.2.2 Towards model selection

The extension of DRAGON’s tools for creating DRAGAM and optimizing GAMs opens

the way to model selection with DRAGON. The idea of allowing a search algorithm

to choose between neural networks, GAMs and why not other regression or time series

models would be very interesting to explore in the context of forecasting. The user could

define search spaces for each type of model, specific to the task at hand, and a search

algorithm could select configurations from each of these search algorithms to find the

best possible model. Mutant-UCB is an ideal candidate due to its ability to work with

complex structures, the fact that it considers each configuration drawn as independent

of the others (and therefore does not require a single uniform search space), and its

potential to evaluate a large number of models. It would be necessary to reconsider

the budget allocated to each configuration (a neural network, for example, takes much

longer to train than a GAM). Taking this idea a step further, the objective function could

also be revised to search for the best mix of models, rather than the best model. Work

such as Gaillard (2015) has shown that mixing successful forecasting models improves

the final forecast. A good mix consists of models that provide complementary forecasts.

It could be different types of models (for example, a GAM and a random forecast), but

also models trained on different types of data (for example, a deep neural network trained

on weather maps and a time series model trained solely on past data), or similar models

but trained on different training periods with models specialised for forecasting summer

or winter data. We could also imagine models trained with different loss functions,

including quantile loss functions, squared or absolute errors. An AutoML framework

evaluates a very large number of models and could take advantage of these massive
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evaluations to find the best mix of structures rather than the best structures. It will

then be necessary to find functions that can efficiently identify these best mixes without

having to evaluate all possible combinations, which can become very costly.

8.2.3 Online AutoML

Electricity time series, and in particular electricity load, are non-stationary, unstable and

may be subject to perturbations (covid, sobriety, new electricity uses, energy crisis).

Models therefore need to be constantly adapted (Obst et al., 2021) and their hyper-

parameters may also need to be adapted. It can therefore be interesting to approach

AutoML in an online-learning context. In this work, we have looked at the adaptation

of a neural network with a Kalman filter. This is a first step towards online-learning, but

more needs to be done. The optimization of the model and its adaptation is done in a

static framework. As mentioned Section 1.2.1, the AutoML task in this thesis consider

that the distribution L(X, Y ) is identical between Dtrain, Dvalid and Dtest. However

this hypothesis becomes false in the context of these disturbances. The optimal model

found in this static framework can therefore quickly become obsolete. Online AutoML

has been studied first by Celik et al. (2023), which proposes a flexible and practical

AutoML system for online adaptive learning pipelines. Adapting this type of framework

to DRAGON could be particularly useful for energy forecasters.

8.2.4 Frugality and explainability

The development of a tool as versatile as DRAGON for the optimization of neural net-

works was made possible by access to a large number of GPUs. Most of the experiments

in this manuscript were carried out on 20 V100 GPUs over several hours. Access to such

a large number of GPUs is still quite rare, which may limit the use of DRAGON, and

no work has yet been done to reduce the structures obtained so that they are not too

cumbersome to use in an operational context. Future work could lead to the gradual

pruning of the graphs generated by DRAGON, or at the end of the optimization, in order

to limit the structures that are too complex. The aim would be to find the so-called

“lottery ticket”, introduced by Frankle and Carbin (2018), which hypothesises that there

exists a minimal subgraph of a neural network that leads to the same performance. This

approach could be applied directly to the graph structure by removing nodes with weights

or gradients close to zero, or by penalising the objective function. In addition, simplifying

the networks could also make them easier to explain. This idea is very important when

using neural networks in a real context. For example, in the context of forecasting for

the electricity market, it is important to understand why a model has made a prediction,

especially if it is wrong. The importance of variables, for example, can be useful in

identifying whether an input variable was inaccurate.
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8.2.5 Global models

The idea of frugality can also be approached by creating global models, where a single

optimized model is used for different tasks, rather than optimizing one model per task. In

Chapter 7, for forecasting wind power, we used the same search strategy to optimize the

hyperparameters and architecture for all regions at the same time. This approach avoided

the need to run WindDragon on each region. However, we retained the idea of a single

model for each time series. Global models go even further in that they apply directly

to all tasks. They therefore require consistent inputs and outputs across the different

datasets. This kind of approach has been tested in the context of forecasting load at

the interface between the transmission and distribution networks (TSO/DSO). There

exist more than 2,000 contact points, resulting in 2,000 unique forecasting problems

for which it is impossible to have a single model, whether optimized via AutoML or

not. The idea was therefore to use a single global model to fit and forecast all the

time series simultaneously. We compared several models, including a GAM, a random

forest, a simple feed-forward neural network, and a deep learning model optimized with

DRAGON. We obtained encouraging preliminary results on a small number of series

(about fifty). For each of these 50 series, we were able to build an optimized an unique

GAM model and compare it with the global models. The model found by DRAGON was

by far the best, outperforming even the local models. We also tested using zero-shot

learning to forecast unseen series, an experiment that gave very good results. A paper

on this will be published soon.
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P. Gaillard. Contributions à l’agrégation séquentielle robuste d’experts : travaux sur
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Appendix of Chapter 2

A.1 Available Operations and Hyperparameters

Operation Optimized hyperparameters

Identity -
Fully-Connected (MLP) Output shape Integer

Attention
Initialization type [convolution, random]

Heads number Integer
1D Convolution Kernel size Integer

Recurrence
Output shape Integer

Recurrence type [LSTM, GRU, RNN]

Pooling
Pooling size Integer
Pooling type [Max, Average]

Dropout Dropout Rate Float

Table A.1: Operations available in our search space and used for the Monash time series
archive dataset and their hyperparameters that can be optimized.

Activation functions, ∀x ∈ RD

• Id: id(x) = x

• Sigmoid: sigmoid(x) = 1
1+e−x

• Swish: swish(x) = x× sigmoid(βx) = x
1+e−βx

• Relu: relu(x) = max(0, x)

• Leaky-relu: leakyRelu(x) = relu(x) + α×min(0, x), in our case: α = 10−2

• Elu: elu(x) = relu(x) + α×min(0, ex − 1)
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• Gelu: gelu(x) = xP(X ≤ x) ≈ 0.5x(1 + tanh[
√

2/π(x+ 0.044715x3)])

• Softmax: σ(x)j =
exj∑D

d=1 e
xd

∀j ∈ {1, . . . , D}
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A.2 Monash Datasets Presentation

Dataset Domain Nb of series Multivariate Lag Horizon

Carparts Sales 2674 Yes 15 12
Elec. hourly Energy 321 Yes 30 168
Elec. weekly Energy 321 Yes 65 8
Fred MD Economic 107 Yes 15 12
Hospital Health 767 Yes 15 12
KDD Nature 270 No 210 168
M1

monthly
Multiple 1001 No 15 18

M1 quart. Multiple 1001 No 5 8
M1 yearly Multiple 1001 No 2 6

M3
monthly

Multiple 3003 No 15 18

M3 other Multiple 3003 No 2 8
M3 quart. Multiple 3003 No 5 8
M3 yearly Multiple 3003 No 2 6
M4 daily Multiple 100000 No 9 14
M4 hourly Multiple 100000 No 210 48

M4
monthly

Multiple 100000 No 15 18

M4 quart. Multiple 100000 No 5 8
M4 weekly Multiple 100000 No 65 13
NN5 daily Banking 111 Yes 9 56
NN5 weekly Banking 111 Yes 65 8
Pedestrians Transport 66 No 210 24
Tourism
monthly

Tourism 1311 No 2 24

Tourism
quart.

Tourism 1311 No 5 8

Tourism
yearly

Tourism 1311 No 2 4

Traffic
weekly

Transport 862 Yes 65 8

Vehicle
trips

Transport 329 No 9 30

Table A.2: Information about the Monash datasets (Godahewa et al., 2021).
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Appendix of Chapter 3

B.1 Models found by the algorithms

We set the same general seed for each algorithm and data set: CIFAR-10, MRBI and

SHVN. This means that the initial pool of solutions is exactly the same for each algorithm

and for the three data sets. Hyperband and Random Search found exactly the same

architecture, indicating that the best configuration was at the beginning of this pool.

Indeed, despite the fact that Hyperband looks at more than twice as many configurations

as Random Search, it resulted in the same configuration as Random Search. Hyperband’s

best results come from the fact that 10 sub-trains are probably too many for this model,

which overfits in the case of Random Search. More surprisingly, the best model for

Hyperband and Random Search, shown in Figure B.1, is identical for all three data sets.

Image

Conv2d,44,4,ReLU

AvgPool2d,10,LeakyReLU

Conv2d,44,3,LeakyReLU

Flatten

Identity,Relu

BatchNorm1d

BatchNorm1d,ReLU

MLP,104,ReLU

MLP,10,Softmax

Figure B.1: Best model found for CIFAR-10, MRBI and SVHN by Random Search and
Hyperband
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CIFAR-10 (3, 32, 32)

Conv2d,10,2,LeakyReLU

Conv2d,28,3,Linear

MaxPool2d,8,Linear

Flatten

Identity

Identity,LeakyReLU

Identity 2

BatchNorm1d,Linear

BatchNorm1d,LeakyReLU

MLP,363,LeakyReLU 1

Identity 1

BatchNorm1d,LeakyReLY

MLP,363,LeakyReLU

BatchNorm1d,Linear 1

MLP,472,LeakyReLU

MLP,10,Softmax

(a) Evolutionary algorithm.

CIFAR-10 (3, 32, 32)

Conv2d,44,4,ReLU

AvgPool2d,10,LeakyRelu

Conv2d,44,3,LeakyReLU

Flatten

MLP,396,Linear

BatchNorm1d,LeakyReLU

BatchNorm1d,ReLU

MLP,484,Linear

MLP,10,Softmax

(b) Mutant-UCB.

Figure B.2: Best configurations found by the evolutionary algorithm and Mutant-UCB
on the CIFAR-10 data set.

Thanks to their evolutionary tools, the evolutionary algorithm and Mutant-UCB

where able to create more performing configurations. Figure B.2 shows the models

found by both algorithms on the CIFAR-10 data set. The one found by Mutant-UCB, in

Figure B.2b, is really close to the original one from the pool displayed Figure B.1. The

mutation operator was used to add more MLP layers at the end of the neural network

which helps improving the model accuracy. On the other hand, the structure shown Fig-

ure B.2a, found by the evolutionary algorithm is very different. In this algorithm, a new

configuration is created by crossing two parents with the crossover and then applying

a mutation to one of the offspring. This double transformation allows to move much

further away from the initial pool of solutions. In the case of the CIFAR-10 data set,

this led the algorithm to consider very complex structures, which was not necessary to

obtain good performance.

B.2 Discussion on the exploration parameter tuning

We discuss here the tuning of the exploration parameter E of Mutant-UCB. We run

experiments on the toy MNIST data set (see Deng, 2012) with T = 10 000, N = 10

and various values for E. Results are in Table B.1. Figure B.3 shows that the exploration

parameter tuning does not impact that much the algorithm performance. Thanks to the

limitation in the sub-train allocations, it is difficult to over-exploit, since in this case
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Algorithm Mutant-UCB

E = 0.01 2 853 · 98.5
E = 0.05 2 828 · 98.7
E = 1 2 629 · 97.2
E = 5 2 393 · 96.7
E = 10 2 435 · 97.6

Table B.1: Number of tested models and accuracy (in %) of the best model for Mutant-
UCB run with various exploration parameters.

more and more mutants are created. On the other hand, over-exploration is possible. If

E is too large, few models get a lot of sub-trains. While these conclusions shed some

light on the parameterization of E, they are not a priori generalizable to any dataset.

Figure B.3: Maximum accuracy over computation time for the algorithm Mutant-UCB
ran with various exploration parameters (E = 0.01, E = 0.05, E = 1, E = 5 and
E = 10) and an initial population of K = 500 on MNIST data set.

B.3 Mutants accuracy distributions

We consider here height configurations, trained on the toy MNIST data set (see Deng,

2012), of various accuracies. For each model, we generate and train 4 000 mutants. In

Figure B.4, we plot in purple the accuracies boxplots of the mutants from this height

configurations. These boxplots are ordered according to the accuracy of the parent

model. The boxplot in pink represents the accuracies of the random search on MNIST.
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Figure B.4: Mutants distributions for the MNIST data set. For eight configurations
with various accuracies we trained and evaluated 4 000 mutants. The boxplots in purple
represent the accuracies distribution for each configurations, ordered by their accuracy.
The boxplot in pink represents the random search.

In black, we plot the function x 7→ x. Empirical means of mutant accuracies do not lie

on the first bisector (i.e the black line). This means the equation

E
[
µk

∣∣ fk is amutant of f
Nj

j

]
= µj ,

does not hold. It is furthermore difficult to come up with any reasonable assumption

concerning a potential link between the accuracies of a parent and its mutants. This

question requires further study using different data sets and mutation operators. How-

ever, this can be costly from a computational perspective.
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Appendix of Chapter 5

C.1 Handcrafted DNN for load forecasting

C.1.1 Architecture

Figure C.1 shows the CNN/MLP architecture we have handcrafted for load forecasting.

As described Section 5.4, the model has two inputs with different features. One is

handled by two parallel convolutions and the other by an MLP. The three branches are

then concatenated and fed into another MLP layer. The input data is a bit different

than in EnergyDragon, where XEnergyDragon ∈ RH×F . In the CNN/MLP model, the

features are split into XConv and XFeed, which contain FC and FF features, respectively,

so that FC + FF = F . Within XConv and XFeed, the features are concatenated into a

one-dimensional vector, i.e. XConv ∈ RHFC and XFeed ∈ RHFF .

Convolution
1D

Average
Pooling 1D

Flatten

Convolution
1D

Average
Pooling 1D

Flatten

MLP

Concatenation

MLP

Convolution input Feed input

Figure C.1: CNN/MLP Architecture
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To represent the CNN/MLP model in EnergyDragon and to include it in the initial

population, we had to make some adjustments. The input data is two-dimensional:

XEnergyDragon ∈ RH×F , so we set the first DAG Γ1 to an identity layer and we apply the

three branches to the flattened data. The architecture of this new model is shown in

Figure C.2. The architecture shown with EnergyDragon gives slightly worse results than

the original one.

Input Features

add,Identity,Identity

Flatten

add,MLP,50,ReLU

add,Conv1d,48,10,same,ReLU add,Conv1d,12,12,same,ReLU

concat,MLP,150,ReLU

add,AVGPooling1D,5,Identity add,AVGPooling1D,5,Identity 1

add,MLP,50,ReLU 1

MLP,48,Identity()

Figure C.2: CNN/MLP Architecture represented with EnergyDragon.

C.1.2 Self-attention

Before creating a fully automated framework for finding neural networks for load forecast-

ing, we searched for DNNs that might be interesting for our problem. The Transformer

model (Vaswani et al., 2017), which has recently achieved state-of-the-art results in

several areas, naturally caught our attention. We tried to use it on our problem, but

without much success: we tried different hyperparameters and the load prediction em-

bedding from the Informer (Zhou et al., 2021), but we could not go below 4% of MAPE.

However, one of the major innovations of the Transformer is the self-attention layer. In

the vanilla Transformer model, the attention layer is position-invariant, meaning that no

assumption is made about the order of the inputs, and the permutation of the input

data does not change the result. Therefore, in the original Transformer (Vaswani et al.,

2017), the absolute position Pdata of the data Xdata in the data set is added to the input
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data: X = Xdata + Pdata. The attention scores can then be defined as:

A = XWQW
T
KX

T = (Xdata + Pdata)WQW
T
K(Xdata + Pdata)

T ,

where WQ and WK are the query and key weights matrices from the original self-

attention.

Later, Dai et al. (2019) introduced relative encoding in their Transformer XL. The

idea is to consider only the position difference between query and key instead of the

absolute position. They redefined the attention score between a query xq and a key xk

∈ Xdata:

Aq,k = xT
q W

T
QWKxk + xT

q W
T
QŴKrk−q + uTWKxk + vT ŴKrk−q ,

where rk−q is a coding of the relative position, u and v are new attention parameters

optimized by backpropagation. From this new attention formulation, Cordonnier et al.

(2020) proved that by setting some conditions, the attention layer can be forced to learn

as a 2D convolutional layer.

We implemented the attention layers as defined by Cordonnier et al. (2020) for one-

and two-dimensional data, and set a parameter “initialization” to indicate whether the

layer weights should be initialized to perform a convolution, or if they should be ran-

domized. We replaced the convolutions from the CNN/MLP architecture with these

self-attention layers, and compared the performance of three different models: the orig-

inal CNN/MLP architecture, a self-attention/MLP architecture with the self-attention

weights initialized as a convolution, and a self-attention/MLP architecture with ran-

domized self-attention weights. We compared the performance of these models on our

data for 10 different seeds. The results are shown in Figure C.3. The models with

Figure C.3: MAPE on the RTE dataset for three versions of the CNN/MLP model
trained with 10 different seeds.

self-attention layers perform better than the original model, reducing the average MAPE

from 1.60% for the original model to 1.51% and 1.48% for the convolution and ran-
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dom initializations, respectively. This last model even reached a MAPE of 1.40%. We

included this self-attention layer in the search spaces of DARTS and EnergyDragon as

detailed Appendices C.2 and C.3.

C.2 DARTS

Differential Architecture Search, also called DARTS, was introduced by Liu et al. (2018d),

originally for computer vision and NLP tasks. The cell-based search space is composed

of either stacked cells to form a convolutional network, or recursively connected cells

to form a recurrent network. Each cell is defined as a DAG with N nodes x(i) (latent

representations) and edges O(i,j) connecting the nodes (operations). Each DAG has two

input nodes and one output. For convolutional cells, the input nodes are the outputs of

the two previous cells. For recurrent cells, the input nodes are the input at the current

step and the state carried over from the previous step. The cell output is obtained by

concatenating all intermediate nodes. An intermediate node is defined as the sum of

all previous latent representations after a candidate operation: x(j) =
∑

i<j O
(i,j)(x(i)).

The goal of DARTS is to find the best operations between each node. The main idea

introduced by DARTS is the relaxation of the search space. A set of candidate opera-

tions O (e.g., convolution, linear, or identity layers) is associated with each connection.

Each candidate o ∈ O is assigned a probability parametrized by a real αo ∈ R of being

part of the final architecture. The relaxed operation between the nodes i and j can be

defined as :

ō(i,j) =
∑
o∈O

exp(α
(i,j)
o )∑

o′∈O exp(α
(i,j)
o′ )

o(i,j) .

At the beginning of the search, the parameters are uniformly initialized for all candidate

operations. Then, during model training, the αo and the network weights are updated

alternately using gradient descent. Finally, an argmax function is used to select the

candidate operation with the higher probability to build the final architecture. DARTS

is a popular framework in the NAS community because it is easy to implement and fast

compared to other optimization techniques. It does not require training all new solutions

picked from the search space from scratch. The final architecture is a subgraph of the

meta-architecture. A drawback of this method is that there is no theoretical guarantee

that the optimal subgraph of an optimal meta-architecture is an optimal solution.

Inspired by the work of Chen et al. (2024), where DARTS is used to optimize a DNN

for multivariate time series forecasting, we applied DARTS to optimize the CNN/MLP

architecture. As in the CNN/MLP model, the general structure of the search space

(see Figure C.4a) consists of two inputs. Each input is handled by a dedicated DARTS

cell. The Conv cell (see Figure C.4b) replaces the two convolutional branches of the
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CNN/MLP model. The first Feed cell replaces the first MLP branch and the Second

replaces the last MLP branch. Each cell has a maximum of Nc = 4 nodes and the

candidate operations oi,j on each connection are those from the original architecture:

e.g., Conv1d/Pooling layers for the Conv cell (see Figure C.4b) or MLP/Identity layers

for the Feed cells (see Figure C.4c). We also added zero operations and Attention layers

as defined Appendix C.1.2 to our search space, with the same hyperparameters as the

convolutional layers.

XConv ∈ RH×FC XFeed ∈ RH×FF

Conv Cell

Flatten

Feed Cell 1

Concat

Fully-connected
Layer

Feed Cell 1

Output

(a) General Structure

1

2

...

NC

o1,2 o1,NC

o2,NC

(b) Conv Cell structure

1

2

...

Nf

o1,2 o1,NF

o2,NF

(c) Feed Cell Structure

Figure C.4: DARTS Search Space for load forecasting.

C.3 EnergyDragon search space details

The layers (operations) used in our search space are detailed Table C.1. Most layers

are adapted or used in both Γ1 (two-dimensional data) and Γ2 (one-dimensional data),

except for the Temporal Attention and the Spatial Attention, which are specific to Γ1.

Given an input data X ∈ RH×f×d, where f and d would be two latent dimensions within

the DNN, the attention matrix is the same as defined Appendix C.1.2:

Attention(X) = softmax(XWQW
T
KX

T +XWQŴ
T
KδR + uW T

KX
T + vŴ T

k δR)XWO + bO ,
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Layer type Optimized hyperparameters

Identity -

Fully-Connected (MLP) Output shape Integer

Self-Attention

Operation dimension [temporal, spatial] (Γ1

only)
Initialization type [convolution, random]
Heads number Integer
Output dimension Integer

1D/2D Convolution
Kernel size Integer
Output dimension Integer

1D/2D Pooling
Pooling size Integer
Pooling type [Max, Average]

1D/2D Normalization Normalization type [Batch, Layer]

Dropout Dropout rate Float

Table C.1: Layers available and their associated hyperparameters in the EnergyDragon
search space (for Γ1 and Γ2). The self-attention layer is explained Appendix C.1.2)

with WQ and WK the query and key weight matrices. In the Temporal Attention case,

WQ,WK ∈ RH×d×Nh×2 and in the Spatial attention case, WQ,WK ∈ Rf×d×Nh×2,

where Nh ∈ N+ is the head number. The Temporal Attention computes attention

scores between the time steps as depicted Figure C.5a, whereas the Spatial Attention

computes attention scores between the features, as shown Figure C.5b.

C.4 Additional experimental results

In the Section we give more information one the experimental results presented Sec-

tion 5.4. The Appendix C.4.1 detail the different architectures and hyperparameters

found by the versions of EnergyDragon presented Section 5.4. Appendix C.4.2 present

the forecast of various algorithms from our baseline over the last week of November. The

EnergyDragon convergences over time are given Figure C.12. Finally, Appendix C.4.4

discuss the features use by the GAM, the CNN/MLP and the different versions of Ener-

gyDragon.

C.4.1 Models found by the algorithms

Respectively Figures C.6, C.7, C.8, C.9 and C.10 represent the architectures and hyper-

parameters found by ED RS, ED SSEA, ED SSEA Crossover, ED SSEA Crossover CN-
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(b) Spatial attention: the attention scores
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Figure C.5: Spatial and Temporal Attentions vizualisation, applied on X = {xt}Ht=1 =
{xi}Fi=1 ∈ RH×F .

N/MLP and the best algorithm ED SSEA CNN/MLP. The model found by the Random

Search is very simple and based only on the Spatial Attention layer defined Appendix C.3,

which computes attention scores between the features. All the found architectures use

Input Features

concat,SpatialAttention,27,25,conv,LeakyReLU

Flatten

concat,Conv1d,43,155,same,GELU

MLP,48,Identity()

Figure C.6: Architecture found by ED RS. Best MAPE=1.374%.

the attention layers presented Appendix C.1.2. This confirms our first experiments show-

ing that our self-attention layers is efficient for load forecasting. The architectures found

by the versions with crossover are more complex, with more layers and connections than

the versions without crossover. The appearance of many identity layers invites us to

think about pruning our graphs for future work on EnergyDragon. It seems that certain

nodes are not necessarily useful, and it might be a good idea to automatically remove

them during optimization to avoid ending up with architectures that are too complex

or difficult to interpret. The best architecture, which achieves a MAPE of 1.131% as

shown in Figure C.10, is quite simple. Finally, it is difficult to conclude whether including

the CNN/MLP as input to EnergyDragon affects the architecture found. Our intuition

is that including the CNN/MLP probably has an influence on the selected features. A

deeper discussion can be found Appendix C.4.4.
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Input Features

concat,Identity,SiLU

add,Conv2d,44,21,same,Identity

mul,SpatialAttention,23,21,conv,ReLU

concat,Identity,ReLU

mul,LayerNorm2d,Identity

Flatten

concat,Conv1d,46,439,same,Sigmoid

concat,Conv1d,5,28,same,SiLU

add,LayerNorm1d,GELU

MLP,48,Identity()

Figure C.7: Architecture found by ED SSEA. Best MAPE=1.258%.

C.4.2 Weekly comparative visuals of all baseline forecasts

Forecasts from various models of our baseline for the last week of November can be

found in Figure C.11. Most models have the same shape and, like GAM, overpredict

during this week. AutoPytorch without the traditional baseline produces a constant

signal as shown in Figure C.11d, which explains its poor MAPE and RMSE. We compare

in Figure C.11b the forecast of DARTS with the output of the CNN/MLP model. Using

DARTS allowed to improve the overprediction of CNN/MLP, but DARTS is still higher

than ED SSEA CNN/MLP as shown in Figure C.11c.

C.4.3 EnergyDragon convergence

Figure C.12 shows the loss of the best model over time for ED RS, ED SSEA, ED SSEA

Crossover, ED SSEA Crossover CNN/MLP, and ED SSEA CNN/MLP. We can see that

most versions converge to their best model in less than 10 hours, even if we let the

algorithm run for another 10 hours. The versions that include the CNN/MLP in their

initial population converge much faster than the version without. ED SSEA CNN/MLP,

which gave the best result, converged in a little more than 4 hours.

C.4.4 Features

Part of the features used in our experiments cannot be revealed due to industrial con-

fidentiality. Therefore, we have renamed our 33 features from f0 to f33. Some are

weather variables like temperature or wind. Others are general calendar features: the
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Input Features

concat,MLP,20,ELU

mul,AVGPooling2D,2,3,ELU

concat,LayerNorm2d,ELU

concat,SpatialAttention,10,21,conv,LeakyReLU

add,SpatialAttention,11,5,random,LeakyReLU

add,Identity,Tanh

concat,Identity,ReLU

Flatten

mul,Identity,SiLU

add,Conv1d,36,208,same,LeakyReLU

concat,Attention1D,6,random,94,GELU

concat,MLP,387,ReLU

mul,Identity,Identity

concat,MaxPooling1D,23,SiLU

concat,Attention1D,5,conv,336,GELU

add,Conv1d,41,177,same,LeakyReLU

MLP,48,Identity()

Figure C.8: Architecture found by ED SSEA Crossover. Best MAPE=1.190%.
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Input Features

mul,Identity,Identity mul,AVGPooling2D,9,5,SiLU

concat,SpatialAttention,12,21,conv,LeakyReLUconcat,SpatialAttention,14,27,random,ReLU

concat,TemporalAttention,15,11,conv,ELU

add,Conv2d,2,53,same,ReLU

concat,Conv2d,2,53,same,ELU

Flatten

add,AVGPooling1D,1,LeakyReLU

add,MLP,385,LeakyReLU

add,MLP,385,LeakyReLU 1

add,AVGPooling1D,1,LeakyReLU 1

concat,Conv1d,5,252,same,Tanh

add,LayerNorm1d,ReLU

MLP,48,Identity()

Figure C.9: Architecture found by ED SSEA Crossover CNN/MLP. Best MAPE=1.182%.

Input Features

add,SpatialAttention,18,21,conv,SiLU

add,MLP,17,LeakyReLU

Flatten

add,Conv1d,13,142,same,Identity

concat,Conv1d,28,472,same,SiLU

concat,MLP,386,Tanh

mul,Attention1D,9,conv,281,LeakyReLU

add,AVGPooling1D,30,GELU

MLP,48,Identity()

Figure C.10: Architecture found by ED SSEA CNN/MLP. Best MAPE=1.131%
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(c) DARTS vs ED SSEA CNN/MLP
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Figure C.11: Comparison of the forecasts from various algorithm over the last week of
November 2019.
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Figure C.12: Loss of the best model over time for the different versions of EnergyDragon
used in our experiments Section 5.4.

month, the week of the day, or more related to France, like the holidays or the time

shift. We present in Figure C.13 the features selected by the models. The GAM use

very different features compared to the other models, as stated Section 5.1. All versions

of EnergyDragon selected a number of features close to the number of features used by

GAM and CNN/MLP. This means that our LASSO penalization is efficient. Finally, the

versions of EnergyDragon with CNN/MLP as input selected a number of features close

to the number used by CNN/MLP. As mentioned Appendix C.4.1, this can explain the

faster convergence of the version with CNN/MLP as input.
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Figure C.13: Features selected by the GAM, CNN/MLP and the various versions of
EnergyDragon used in our experiments. The features name cannot be revealed due to
the industrial confidentiality, and are renamed to f0, . . . , f33.

C.5 Norwegian Use Case

In this Section, we present the results of a reduced baseline on another case study: the

hourly Norwegian Load for the year 2018.

C.5.1 Dataset

The dataset comes from the ENTSO-E (European Network of Transmission System

Operators for Electricity) transparency platform1 and contains the Norwegian national

load data at hourly intervals. Each day contains H = 24 time steps. We trained our

models from 2014 to 2017 and compare the performance to the year 2018 using the

MAPE (ℓMAPE). For this dataset, we have access to 34 variables, including weather

and calendar features. We have also anonymized these features in the following plots.

C.5.2 Baseline

We reduced the full baseline presented Section 5.4 by taking AutoPytorch with the

traditional baseline (AutoPytorch), an open-source regression model, the Generalized

Additive Model (GAM), and EnergyDragon with the steady-state algorithm, with and

1https://transparency.entsoe.eu/load-domain/r2/totalLoadR2/show?

https://transparency.entsoe.eu/load-domain/r2/totalLoadR2/show?
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Figure C.14: Norwegian load power forecasting for the last week of November 2018.
The ground truth is displayed in dotted line.

without the crossover (ED SSEA and ED SSEA Crossover). The setup for each model

from the baseline is the same as Section 5.4.

Model MAPE RMSE (in MW)

GAM 2.430% 474.0

AutoPytorch 3.429% 660.7
ED SSEA 2.196% 465.7
ED SSEA Crossover 2.019% 426.3

Table C.2: MAPE and RMSE of the different models from our baseline on theNorwegian
dataset. The reference model is the GAM and the best model is highlighted in bold.

C.5.3 Results

The results can be found in Table C.2. They are similar to those found for the French

use case. AutoPytorch with the traditional baseline is the worst model, with a MAPE

41% higher than the reference MAPE given by the GAM model. EnergyDragon was able

to improve the GAM forecast even without the inputs from the CNN/MLP model. As

in the French case, the crossover helped the algorithm to converge to a better result.

This last model produced the best result, improving the GAM MAPE by 17%. The

RMSE indicates that Norwegian residents consume less electricity than French residents.

The comparison of the forecast for all models can be found Figure C.14. All models

got the correct curve shape, but except for the ED SSEA Crossover model, all models

underestimated the load.
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C.5.4 EnergyDragon Results Analysis

Figure C.15 and Figure C.16 show the DNNs found by ED SSEA and ED SSEA Crossover

respectively on the Norwegian dataset. The conclusions of Appendix C.4.1 do not hold

anymore, since the best model found by ED SSEA Crossover does not use an attention

layer. This dataset is a bit simpler, with only 24 values per day, resulting in a smoother

signal than the French load with 48 values per day, and it can explain the use of Convo-

lution layers instead of Attention layers to produce smoother predictions. The two DNNs

are very different, with no common substructures, but compared to the french use case,

the version with crossover did not produced an overly complicated DNN compared to

the version without crossover. The features selected by both versions of EnergyDragon

Input Features

concat,LayerNorm2d,Identity mul,AVGPooling2D,8,2,Tanh

concat,MLP,49,Tanh

Flatten

add,Identity,Tanh

mul,MaxPooling1D,26,LeakyReLU

add,Attention1D,15,conv,418,LeakyReLU

add,Conv1d,22,504,same,Identity

add,MLP,99,Tanh

MLP,48,Identity()

Figure C.15: Architecture found by ED SSEA on the Norwegian dataset.

can be found Figure C.17. The version without crossover selected 17 features, whereas

the version with the crossover selected 13 features. Both models only have 6 features in

common. Finally, Figure C.18 shows the loss of the best model found so far over time for

ED SSEA and ED SSEA Crossover. Both models converged in less than 5 hours, even

if we let them run for another 20 hours. The crossover version converged very quickly,

in less than an hour and a half. This fast convergence can explain the simple DNN

compared to the DNNs obtained with the Crossover versions for the French use case.

This good DNN was found before the algorithm used too many successive crossovers.
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Input Features

add,Dropout,0.5840846679917152,ReLU add,MLP,38,GELU

mul,AVGPooling2D,10,2,Sigmoid mul,LayerNorm2d,Tanh

concat,Conv2d,2,28,same,Tanh

Flatten

concat,Identity,ELU

concat,LayerNorm1d,ELUmul,Conv1d,17,380,same,ReLU

concat,MaxPooling1D,2,Identity

MLP,48,Identity()

Figure C.16: Architecture found by ED SSEA Crossover on the Norwegian dataset.
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Figure C.17: Features selected by ED SSEA and ED SSEA Crossover for the Norwegian
dataset. The features name cannot be revealed due to the industrial confidentiality, and
are renamed to. f0, . . . , f34.
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Figure C.18: Loss of the best model over time for the different versions of EnergyDragon
on the Norwegian dataset.
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Appendix of Chapter 7

D.1 Models found by WindDragon for various regions

Grid Size 11

mul,MLP,451,SiLU

add,LayerNorm2d,Identity

mul,Conv2d,8,162,True,Tanh

mul,LayerNorm2d,SiLUadd,Conv2d,1,16,True,LeakyReLUadd,LayerNorm2d,Identity 1

mul,Conv2d,10,32,True,Sigmoid

add,MaxPooling2D,3,GELU

add,LayerNorm2d,Identity 2

add,AVGPooling2D,10,SiLU

Flatten

concat,AVGPooling1D,15,Tanh

mul,Identity,Identity

add,MLP,1,Identity

Figure D.1: Architecture found by WindDragon on Grand Est.

D.2 Forecasts comparison
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Grid Size 6

mul,MLP,451,SiLU

add,LayerNorm2d,Identity

mul,Conv2d,8,162,True,Tanh

mul,LayerNorm2d,SiLUadd,Conv2d,1,16,True,LeakyReLUadd,LayerNorm2d,Identity 1

mul,Conv2d,10,32,True,Sigmoid

add,MaxPooling2D,3,GELU

add,LayerNorm2d,Identity 2

add,AVGPooling2D,9,ELU

Flatten

concat,AVGPooling1D,9,Identity

add,Identity,ELU

add,MLP,1,Identity

Figure D.2: Architecture found by WindDragon on Auvergne-Rhône-Alpes.

Grid Size 7

mul,MLP,451,SiLU

mul,Conv2d,8,162,True,Tanh

add,LayerNorm2d,Identity 1

add,MaxPooling2D,3,GELU

add,LayerNorm2d,Identity 2

add,LayerNorm2d,Identity

add,Conv2d,1,16,True,LeakyReLU

add,AVGPooling2D,10,SiLU

Flatten

concat,AVGPooling1D,15,Tanh

mul,Identity,Identity

add,MLP,1,Identity

Figure D.3: Architecture found by WindDragon on Hauts-de-France.
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Grid Size 6
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add,LayerNorm2d,Identity

add,Conv2d,1,16,True,Sigmoid

mul,Conv2d,10,32,True,Sigmoid

mul,Conv2d,8,162,True,Tanh

add,BatchNorm2d,SiLUadd,LayerNorm2d,Sigmoid

concat,MaxPooling2D,3,GELU

add,LayerNorm2d,Identity 1

add,AVGPooling2D,10,SiLU
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mul,Identity,Identity

add,MLP,1,Identity

Figure D.4: Architecture found by WindDragon on Île-de-France.

Grid Size 4

mul,MLP,451,SiLU

add,LayerNorm2d,Identity

mul,Conv2d,8,162,True,Tanh

mul,LayerNorm2d,SiLUadd,Conv2d,1,16,True,LeakyReLUadd,LayerNorm2d,Identity 1

mul,Conv2d,10,32,True,Sigmoid

add,MaxPooling2D,3,GELU

add,LayerNorm2d,Identity 2

add,AVGPooling2D,10,GELU

Flatten

concat,AVGPooling1D,15,Tanh

mul,Identity,Identity

add,MLP,1,Identity

Figure D.5: Architecture found by WindDragon on Occitanie.
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Figure D.6: Weekly comparative visuals
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