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Abstract xv

Parallel hyperparameter optimization of spiking neural networks

Abstract

Artificial Neural Networks (ANNs) are a machine learning technique that has become indispensable.
By learning from data, ANNs make it possible to solve certain complex cognitive tasks. Over the
last three decades, ANNs have seen numerous major advances. These advances have enabled the
development of image recognition, large language models, or text-to-image conversion. Undeniably,
ANNs have become an invaluable tool for many applications, and this growing interest led in 2020 to
the boom of generative models. However, several new barriers could put the brakes on the interest
in these models. The first brake is the end of Moore’s Law, due to the physical limits reached by
transistors. But also, while research has long focused on the predictive performances of ANNs, other
aspects have been neglected. These include energy efficiency, robustness, security, interpretability,
transparency and so ona. This is why we need to go beyond von Neumann architectures for reducing
the energy footprint, and the neuromorphic approach is a serious breakthrough candidate through
biomimicry of the human brain via Spiking Neural Networks (SNNs).
Unfortunately, SNNs are currently struggling to outperform conventional methods. As they are
more recent and therefore less studied, a better approach to their design could make it possible to
combine performance and low-energy cost. That is why the automatic design of SNNs is studied
within this thesis, with a focus on HyperParameter Optimization (HPO). The aim is to improve the
HPO algorithms and to better understand the behavior of SNNs regarding their hyperparameters.

Keywords: spiking neural networks, hyperparameter optimization, global optimization, parallel
computing, decomposition-based optimization, bayesian optimization

Optimisation parallèle des hyperparamètres des réseaux impulsionnels

Résumé

Les Réseaux de Neurones Artificiels (RNAs) sont une technique d’apprentissage machine devenue
aujourd’hui incontournable, permettant de résoudre certaines tâches cognitives complexes par un
apprentissage automatique. Depuis ces trois dernières décennies, les RNAs ont connu de nombreuses
avancées majeures. Ces avancées ont permis le développement de la reconnaissance d’images, des
modèles de langage géants ou de la conversion texte-image. Indéniablement, les RNAs sont devenus
un outil précieux ayant mené, depuis 2020, au boom des modèles générationnels. Cependant, certaines
barrières pourraient freiner l’intérêt pour ces modèles. Notamment, la fin de la loi de Moore, due
aux limites physiques atteintes par les transistors. Mais, tandis que la recherche s’est longtemps
concentrée sur les performances prédictives des RNAs, d’autres aspects ont été négligés. C’est le cas
de l’efficacité énergétique, mais également de la robustesse, de la sécurité, de l’interprétabilité, de
la transparence, etca. Il faut donc aller au-delà des architectures de von Neumann afin de réduire
l’empreinte énergétique, et l’approche neuromorphique est un candidat de rupture sérieux utilisant le
biomimétisme du cerveau via des Réseaux de Neurones à Impulsions (RNIs).
Toutefois, les RNIs peinent à surpasser les performances des RNAs. Les RNIs étant plus récents, et donc
moins étudiés, une meilleure approche de leur conception pourrait permettre d’allier performances et
faible coût énergétique. C’est pourquoi la conception automatique des RNIs est étudiée dans cette
thèse. L’intérêt est notamment porté sur l’Optimisation des HyperParamètres (OHP). Ainsi, nous
étudions l’impact de l’OHP sur les RNIs, et l’impact des RNIs sur l’OHP. Le but étant d’améliorer
les algorithmes utilisés et de mieux comprendre le comportement des RNIs au regard de leurs
hyperparamètres.

ahttps://futureoflife.org/open-letter/pause-giant-ai-experiments/

Mots clés : réseaux de neurones à impulsions, optimisation des hyperparamètres, optimisation glo-
bale, calculs parallèles, optimisation par décomposition, optimisation bayésienne
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Extended thesis abstract

Artificial Neural Networks (ANNs) are a machine learning technique that has become indis-
pensable. By learning from data, ANNs make it possible to solve certain complex cognitive
tasks. Over the last three decades, ANNs have seen numerous major advances. These in-
clude convolution networks and attention mechanisms. These advances have enabled the
development of image recognition, large language models, and text-to-image conversion.
Undeniably, ANNs have become an invaluable tool for many applications, such as chemistry
with AlphaFold, translation with DeepL, archaeology, healthcare, and recently, in February
2024, video generation with Sora.

In 1943, McCulloch and Pitt’s work on the formal neuron allowed Rosenblatt to give
birth to the first ANNs known as perceptrons in 1958. Machine learning then went through
periods of disinterest, due to theoretical obstacles such as the NP-completeness of the
problems tackled, technological issues such as limited computing power, and budgetary
constraints. Since the 1990s, we’ve seen an exponential revival of interest1 in ANNs thanks to
the democratization of graphics processing units (GPUs). This growing interest led to the first
artificial intelligence spring in the 2010s, and since 2020 to the boom of generative models.
However, several new barriers could put the brakes on the interest in these models. The
first is the end of Moore’s Law, due to the physical limits reached by transistors. The second
is energy consumption. Indeed, while research has long focused largely on the predictive
performances of ANNs, other aspects have been neglected. These include energy efficiency,
robustness, security, interpretability, transparency, and so on2.

This is why we need to go beyond von Neumann architectures, which currently slow
down calculation throughput because of the separation of processing and memory units.
The neuromorphic approach is a serious breakthrough candidate for reducing the energy
footprint of machine learning. Indeed, this mode of calculation is based on Spiking Neural
Networks (SNNs), which are closer to the biological brain. The human brain consumes only
20 watts to perform numerous complex cognitive tasks simultaneously. So, the challenge
of neuromorphic computing is to considerably reduce the energy consumption of current
models through biomimicry. Neuromorphic computing could also enable advances in other
cross-disciplinary research fields, such as neuroscience3.

Today, SNNs are struggling to outperform conventional methods. As they are more recent
and therefore less studied, a better approach to their design could make it possible to combine
performance and low-energy cost. That is why the automatic design of SNNs is studied
within this thesis, with a focus on HyperParameter Optimization (HPO). A hyperparameter
is a parameter controlling various aspects of the training phase of a SNN, but whose value
cannot be determined by training. Thus, we study the impact of HPO on SNNs and the
impact of SNNs on HPO. The aim is to improve the HPO algorithms and to better understand
the behavior of SNNs regarding their hyperparameters.

In the literature, the HPO is treated in the same way, whether for ANNs or SNNs. However,
the “No Free Lunch theorem” specifies that there is no universal algorithm that is significantly
efficient for all optimization problems. A consequence of this theorem is that, without prior
knowledge of the problem, it is impossible to optimize efficiently. That is, we need a clear
definition of the problem before selecting an HPO algorithm. So, while ANNs and SNNs
share common properties, SNNs are known for their unique behaviors. In particular, the
literature shows that the performances of SNNs are highly sensitive to their architecture and

1https://ourworldindata.org/grapher/artificial-intelligence-parameter-count
2https://futureoflife.org/open-letter/pause-giant-ai-experiments/
3https://www.ebrains.eu/
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hyperparameters. Consequently, blindly applying the same methodologies to both ANNs
and SNNs could negatively affect the performances of the HPO algorithm, and hence the best
solution obtained.

In this thesis, we propose a state of the art of the HPO methods used on SNNs. Such a
survey has never been done for SNNs. Next, we take a closer look at commonly used HPO
algorithms, such as genetic algorithms or Bayesian optimization.

The first contribution concerns the generalization of a family of algorithms based on the
decomposition of the search space to optimize a continuous function. We call this family
“fractal-based decomposition algorithms”. A software package, named Zellij, has been created
to generalize these approaches and facilitate their design. Comparative experiments show
the advantages and disadvantages in terms of scalability in dimension of these algorithms. In
particular, we are studying deterministic algorithms such as DIRECT, SOO, FDA, and many
other versions, all implemented with Zellij.

The following contributions concern large-scale and long-run (100 h each) parallel ex-
periments about HPO applied to SNNs, on the Jean Zay supercomputer. We applied and
parallelized a large-scale Bayesian approach to improve the resource management within
limited budget experiments. We describe a certain type of SNNs known as silent networks.
Experimentation demonstrates the negative impact of these silent networks on the perfor-
mance and convergence of the HPO algorithm. A solution using early stopping combined
with constrained optimization allows improving HPO performances. Comparisons between
algorithms and various analyses of the optimization and results will be presented.

Finally, based on the obtained results and to considerably speed up HPO, we propose to
combine the previous approach with multi-fidelity optimization. We demonstrate empirically
a significant decrease in the required budget while maintaining competitive performances.
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Résumé étendu de la thèse

Les Réseaux de Neurones Artificiels (RNAs) sont une technique d’apprentissage machine
devenue aujourd’hui incontournable. Par un apprentissage à partir de données, les RNAs
permettent de résoudre certaines tâches cognitives complexes. Depuis ces trois dernières dé-
cennies, les RNAs ont connu de nombreuses avancées majeures. Notamment avec les réseaux
de convolution ou les mécanismes d’attention. Ces avancées ont permis le développement de
la reconnaissance d’images, des modèles de langage géants ou de la conversion texte-image.
Indéniablement, les RNAs sont devenus un outil précieux pour de nombreuses applications.
Comme en chimie avec AlphaFold, la traduction avec DeepL, en archéologie, en santé, ou
récemment, en février 2024, la génération de vidéo avec Sora.

En 1943, les travaux de McCulloch et Pitt sur le neurone formel faciliteront la naissance
des premiers RNAs appelés perceptrons, et décrits pour la première fois par Rosenblatt
en 1958. L’apprentissage machine a par la suite connu des périodes de désintérêt dues à
des freins, théoriques comme la NP-complétude des problèmes abordés, technologiques
comme la limitation de la puissance de calcul, ou encore budgétaires. Depuis les années
1990 et aidé par la démocratisation des processeurs graphiques (GPUs), nous observons un
regain d’intérêt exponentiel4 pour les RNAs menant au printemps de l’intelligence artificielle
dans les années 2010, et depuis 2020 au boom des modèles générationnels. Cependant, de
nouvelles barrières pourraient freiner l’intérêt pour ces modèles. Le premier frein est la fin
de la loi de Moore due aux limites physiques atteintes par les transistors. Le second frein est
la consommation énergétique. En effet, tandis que la recherche s’est longtemps concentrée en
grande partie sur les performances prédictives des RNAs, d’autres aspects ont été relégués au
second plan. C’est le cas de l’efficacité énergétique, mais également de la robustesse, de la
sécurité, de l’interprétabilité, de la transparence, etc5.

C’est pourquoi il faut aller au-delà des architectures de von Neumann qui, aujourd’hui, à
cause de la séparation des unités de calcul et de mémoire, ralentissent le débit des calculs.
Ainsi, l’approche neuromorphique est un candidat de rupture sérieux afin de réduire l’em-
preinte énergétique de l’apprentissage machine. En effet, ce mode de calcul repose sur les
Réseaux de Neurones à Impulsions (RNIs), plus fidèles au cerveau biologique. Le cerveau
humain consomme uniquement 20 watts pour effectuer simultanément de nombreuses tâches
cognitives complexes. Ainsi, par biomimétisme, le pari de l’informatique neuromorphique
est de réduire considérablement la consommation énergétique des modèles actuels. Le neu-
romorphique pourrait aussi permettre des avancées dans d’autres domaines de recherche
transverses comme les neurosciences6.

Aujourd’hui, les RNIs peinent à surpasser les performances des méthodes classiques.
Ceux-ci étant plus récents, et donc moins étudiés, une meilleure approche de leur conception
pourrait permettre d’allier performances et faible coût énergétique. C’est pourquoi la con-
ception automatique des RNIs est étudiée dans cette thèse. L’intérêt est notamment porté sur
l’Optimisation des HyperParamètres (OHP). Un hyperparamètre est un paramètre contrôlant
divers aspects de l’apprentissage des RNIs, mais dont la valeur ne peut pas être déterminée
par l’apprentissage. Ainsi, nous étudions l’impact de l’OHP sur les RNIs et l’impact des
RNIs sur l’OHP. Le but étant d’améliorer les algorithmes utilisés et de mieux comprendre le
comportement des RNIs au regard de leurs hyperparamètres.

Dans la littérature, que ce soit pour les RNAs ou RNIs, l’OHP est traité de la même
manière. Or, le “No Free Lunch theorem” spécifie quil nexiste pas dalgorithme universel

4https://ourworldindata.org/grapher/artificial-intelligence-parameter-count
5https://futureoflife.org/open-letter/pause-giant-ai-experiments/
6https://www.ebrains.eu/
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significativement efficace pour tous les problèmes doptimisation. Une conséquence de ce
théorème est que, sans connaissances préalables du problème, il est impossible doptimiser
efficacement. Cest-à-dire que lon ne peut pas choisir un algorithme doptimisation avant
davoir réellement défini le problème. Ainsi, bien que RNAs et RNIs partagent des propriétés
communes, les RNIs sont connus pour leurs propriétés uniques. La littérature fait notamment
état d’une extrême sensibilité des performances des RNIs par rapport à leur architecture et à
leurs hyperparamètres. Par conséquent, appliquer aveuglément les mêmes méthodologies
aux RNAs et RNIs pourrait nuire aux performances de lalgorithme doptimisation, et donc de
la meilleure solution obtenue.

Dans cette thèse, nous décrirons dans un premier temps, sous la forme d’un état de l’art,
les méthodes d’OHP utilisées sur les RNIs. Un tel exercice n’ayant jamais été fait pour les
RNIs. Ensuite, nous décrirons plus précisément les algorithmes d’OHP couramment utilisés,
comme les algorithmes génétiques ou l’optimisation Bayésienne.

La première contribution concerne la généralisation d’une famille d’algorithmes se fon-
dant sur la décomposition de l’espace de recherche afin d’optimiser une fonction continue.
Nous appelons cette famille “Fractal-based decomposition algorithms”. Un logiciel, nommé
Zellij, a été créé dans le but de généraliser ces approches et de faciliter leur conception. Des
expériences comparatives permettent de montrer les avantages et les inconvénients de ces
algorithmes lors du passage à l’échelle en hautes dimensions. Nous étudions notamment
des algorithmes déterministes comme DIRECT, SOO, FDA et de nombreuses autres versions,
toutes implémentées par Zellij.

Les contributions ultérieures portent sur de longues expériences (100 h) d’OHP parallèle
appliqué aux RNIs, à large échelle et effectuées sur le superordinateur Jean Zay. Nous utilisons
et parallélisons une approche Bayésienne à large échelle permettant une meilleure gestion
des ressources dans le cadre d’un budget d’optimisation limité. De plus, nous décrivons un
certain type de RNIs, que l’on appelle “réseaux silencieux”. L’expérimentation permet de
démontrer l’effet néfaste de ces réseaux silencieux sur les performances et la convergence de
l’algorithme d’OHP. Une solution utilisant un arrêt prématuré de l’entrainement, combiné
à de l’optimisation contrainte, permet d’améliorer les performances de l’OHP. Diverses
comparaisons entre algorithmes et des analyses de l’optimisation et des résultats seront
présentées.

Finalement, fort des résultats obtenus, nous proposons de combiner l’approche précé-
dente avec de la multi-fidélité afin d’accélérer considérablement l’OHP. Nous montrons
empiriquement une réduction conséquente du budget nécessaire à l’optimisation tout en
conservant des performances compétitives.
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Chapter1
Introduction to Spiking Neural
Networks

Neuromorphic computing is a recent and interdisciplinary research field ranging from
computational neuroscience [90] to electronic engineering [296]. In these past years, Neu-
romorphic ML has evolved rapidly, but there is still a long way to go to reach predictive
performances of usual ML [47, 294, 238]. Our standpoint within the manuscript is from the
ML and global optimization communities. Neuromorphic ML is peculiar as it is strongly tied
to assumptions and advances of the two previous fields. We need to place ourselves on a
spectrum between the biologically plausible and the electronically feasible. But, thanks to
the rise of efficient simulators that have quickly evolved since the beginning of this thesis,
the ML-practitioner can decide which hypothesis or constraints he can discard. This allows
to integrate usual ML techniques without being circumscribed to neurosciences or neuro-
morphic electronics. Hence, this chapter aims at describing and explaining our approach to
neuromorphic ML.

1.1 Beyond von Neumann and silicon

In 1965, Gordon Moore observed that the number of transistors on a microchip would double
approximately every two years; this statement was later popularized in 1975 by Carver
Mead as the Moore’s law [279]. Meanwhile, in 1974 Robert H. Dennard pointed out that as
transistors shrink, their power density remains constant, enabling faster clock speeds without
significantly increasing power consumption [48].

Although manufacturers tend to follow both empirical laws, over the last few years the
miniaturization of MOSFET run into fundamental physical limits by reaching atomic scales.
Therefore, further gains in traditional CPU speed and energy efficiency become increasingly
difficult because of quantum effects and heat dissipation [265].

These incoming hard limitations have driven the development of parallel computing
architectures like multicore processors and distributed systems. While improving chip
performances by shrinking MOSFET and maintaining competitive energy consumption,
today’s performances are also obtained by scaling horizontally across multiple processors
rather than increasing individual CPU speed. Indeed, the inherent SISD nature of a basic
CPU limits its efficacy on certain tasks. For that reason, modern architectures include
dedicated components named accelerators, especially for AI applications. One of the most
widespread accelerators, known as GPU, allows SIMD information processing at a larger
scale than multicore CPUs. Over the past 25 years, the popularization of GPUs and SIMD

1
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Figure 1.1: Flynn’s information processing taxonomy.

processing has accelerated the development of AI, and in particular neural networks where
heavy matrix-matrix and matrix-vector operations are essential. Then, with the advent of
the IoT and embedded systems, even more specialized chips, such as ASICs, are needed to
maximize performances for very specific tasks.

Despite exponential improvements since about 50 years, the organization of hardware
components still follows the same von Neumann architecture, which was first formalized in
1945 within the First Draft of a Report on the EDVAC [278]. The flexibility of this fundamental
architecture allowed the design of numerous systems, mostly characterized by physically
separated processing and memory units. Today, this separation results in the so-called
von Neumann bottleneck, where performances in terms of operations and energy [128] are
mostly limited by data transfer between the memory and processing units. To mitigate this
phenomenon, intermediate smaller but faster memories named cache are placed in between
the main memory and CPU. However, one has to consider a tradeoff between parallelism and
memory, as cache is known to be more energy-consuming [128, 25].

The today’s top performances of AI models on cognitive tasks, such as image recognition
or text generation, are mainly achieved by ANNs. The popularization of AI solutions and
their performances are achieved at the expense of the energy efficiency 1. In March 2023,
following the astonishing success of GPT-4, an open letter asked to refocus research on other
objectives than predictive performances 2. As we reach the physical limits of the current
paradigm, reducing energy consumption of AI technologies becomes crucial.

Beyond von Neumann systems, more radical approaches are being explored to overcome
previous bottlenecks, such as quantum or optical computing. By the end of the 1980s, Carver

1https://hai.stanford.edu/news/2023-state-ai-14-charts
2https://futureoflife.org/open-letter/pause-giant-ai-experiments/

https://hai.stanford.edu/news/2023-state-ai-14-charts
https://futureoflife.org/open-letter/pause-giant-ai-experiments/
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Mead introduced another disruptive architecture called neuromorphic computing [238, 175].
This architecture aims to explore brain-inspired analog computing, betting that biomimetic
technologies would dramatically improve AI energy efficiency.

Indeed, the human brain can perform various cognitive tasks simultaneously with a power
of about 20 watts [227, 296]. Whereas modern GPUs such as an NVIDIA Tesla V100, requires
about 300 watts. Therefore, neuromorphic computing consists in processing information
using more biologically plausible ANNs, known as SNNs. By mimicking how the brain works,
neuromorphic computing also contributes to neuroscience, from which it takes its inspiration
to model brain dynamics, neurons, and synapses [90].

Elementary components of a brain are its billions of neurons and trillions of synapses,
corresponding to colocated processing and memory units [227, 296]. Information and
communications within a brain take the form of action potentials, named spikes and are
considered as timed events.

Hence, neuromorphic computing and SNNs are bound to some constraints [238, 296]:

• Collocated processing and memory: As within the brain, SNNs components can at the same
time process and memorize information. Conversely to von Neumann architectures, the
memory component is physically local and closely connected to the neuron or synapse.
Global information transfer is very limited, if not forbidden.

• Massively asynchronous parallelism: All neurons and synapses of a SNN are in theory
fully independent and event-based. A neuron integrates potential and does computa-
tions only when being woken up by sparse events.

• Scalability: As information is processed by brain-like neural networks, scaling the
system means adding more neurons and synapses.

1.2 Neuromorphic hardware

Basic CPUs are the versatile component of von Neumann architectures, able to complex
operations and SISD information processing. Some architectures are MIMD such as multicore
systems with the Intel Xeon Phi or parallel computers. A GPU is made of numerous simple
cores working in a synchronous SIMD fashion, allowing high-throughput computations. The
neuromorphic approach could be considered a large-scale MIMD approach with numerous
simple colocated computing cores and memory units. Hence, in a SNN, a neuron is a single
independent and asynchronous computing unit with colocated memory. However, one
major challenge of neuromorphic is the efficient hardware implementation of SNNs while
maintaining competitive computation speed and energy efficiency.

Neuromorphic computing is a recent research field trying to overcome von Neumann
architecture; many disruptive hardware approaches and components are considered [25, 294,
296, 67, 34]. We distinguish three hardware platforms:

• Analog: This approach uses physic properties of silicon to model brain-like behaviors,
such as the first approach of Carver Mead in 1980.

• Digital: Here usual boolean gates with MOSFET technologies are used to simulate
SNNs.

• Mixed: A combination of both previous strategies helps to overcome some of their
drawbacks.
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Usual digital architectures include TrueNorth [4], SpiNNaker [198] or Loihi [42, 41].
While these chips are being discarded, since the beginning of this thesis in 2021, the neuro-
morphic community gave birth to many other digital technologies. This flourishing dynamic
in electronics illustrates that neuromorphic is rapidly evolving.

In 2021, Intel released the Loihi2 [197] with a consumption of about 1 watt. The chip can
instantiate up to 1 million neurons and a maximum of 120 million synapses. The same year,
SpiNNaker2 was released, allowing to model 152 thousand neurons and 152 million synapses
with 152 ARM cores, consuming between 2 and 5 watts. One year later, the Akida 1000
from Brainship was offered for sale 3. During the same year, two chips from SynSense were
also released, a 28nm 1000 neurons chip named Xylo [22], and the Speck SoC including an
analog DVS sensor and a digital processing unit [292]. Digital chips are more or less flexible,
allowing to instantiate various neuron models or certain architectures, such as convolution.

Using analog components for core computations is usually justified by a closer imitation
by-design of biological components, while maintaining yet improving computation or energy
performances [294, 227]. Implementing biological dynamics directly by the component
design allows improving chip compactness. One of the most popular approaches, exploits
the subthreshold regime of transistors, where currentvoltage properties become exponential.
Such a mode allows modeling neuronal dynamics with a higher fidelity [25, 128, 227]. For
example, Neurogrid [143] or ROLLS [220] use such a technology. However, these approaches
are uncommon as they are prone to errors, newer, noisier, and harder to produce than their
digital counterpart [227, 34, 67].

Neuromorphic computing represents an opportunity to explore new electronic compo-
nents. For now, there is no standard implementation [294], and many other approaches are
promising. Non-volatile memories with memristors can model synapses [296], for example
with resistive random-access memory. Other disruptive approaches are also considered, such
as spintronic [267] or organic electronics [271].

A more flexible, programmable, and popular digital approach are FPGA, or even their
analog counterpart FPAA. These highly flexible chips help designing architectures for specific
tasks [25, 296, 34, 67]. They use an array of programmable logic blocks that can be connected
and configured by using a hardware description language such as VHDL.

1.2.1 Neuromorphic simulator

In this thesis, we mainly focus on the algorithmic part of SNNs. To overcome the hardware
bottleneck, one can mimic behaviors of SNNs using simulators on CPUs and GPUs. De-
pending on the use case, one has to carefully select the most suitable simulator. Thus, we
can define different families of simulators. From biologically plausible ones (Brian2[252],
NEURON[113], NEST[91]) to ML-based ones (SLAYER [247], Norse[212], snnTorch[64], Bind-
snet[105], SpikkingJelly [72]). Some are GPU-accelerated (Brian2GeNN, PyTorch-based sim-
ulators); others can convert simulated models to hardware implementable ones (Nengo [18],
Lava 4). Some simulators are desgined around specific learning rules, from Hebbian-based
ones to gradient-based learning (SLAYER [247], SpikingJelly [72]). Selecting a simulator
can also be done according to a certain network topology, such as convolution (CSNN [67],
SpykeTorch [186]). Simulators often have a Python interface but can be written in C++ [252,
91], even Scala [24] or based on PyTorch [105, 72]. The more recent ones can also be based
on Jax, such as Rockpool 5 or Spyx [109].

Thus, selecting a simulator is a tough task for newcomers within the SNNs community, as

3https://brainchip.com/akida-neural-processor-soc/
4https://lava-nc.org/
5https://rockpool.ai/

https://brainchip.com/akida-neural-processor-soc/
https://lava-nc.org/
https://rockpool.ai/
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one has to deal with multiple standards [294]. For instance, convolution can be implemented
with weight-sharing, which breaks the local memory property of SNNs, or by using a complex
topology of excitatory and inhibitory filters [105] instantiable on neuromorphic hardware.
Moreover, the flourishing number of simulators shows a growing interest in neuromorphic
computing, but at the cost of reproducibility issues. Mastering and understanding various
simulators can be a time-consuming task, which can be worsened by a lack of documentation
or code standardization. To better select a simulator according to a use case, some simulator
benchmarks can be found in [151, 173].

This growing number of simulators demonstrates the richness of the community, but also
gives rise to major problems. We have to contend with a lack of standardization, generating
difficulties of reproducibility and comparability between different works [294]. A few works
tried unifying some simulators and hardware implementation. The PyNN [43] simulator
combines Brian, NEST and NEURON simulators within a single descriptive language. A
recent work published in August 2024, known as the Neuromorphic Intermediate Repre-
sentation (NIR) [211], has drawn attention by unifying 7 modern simulators and 4 digital
hardware platforms.

1.3 Machine Learning and Artificial Neural Networks

Linear regression is one of the most basic ML models. For example, suppose that money can
– linearly – buy happiness. If we sample the incomes of some individuals and ask them to
rate their level of happiness, we should see a linear relation between incomes and happiness.
Then, a reasonable linear model on the incomes can be written as f (x) = θ0 +θ1x+ ε, with
two parameters to be determined, resp. θ0 the intercept and θ1 the regression coefficient. The
distances between the linear function and sampled points are prediction errors, denoted ε
following a zero-mean Gaussian distribution. The values of the parameters θ0 and θ1 are
fitted or trained on the samples.

Example: Linear regression

θ0
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ε
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H
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p
in
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Data Points
Regression Line

One major challenge is to break the linearity of the models when data follows a more
complex distribution. To do so, techniques like polynomial regression, basis functions, or
splines [131], are partial solutions if data can be explained by polynomial or specific as-
sumptions. Some of these models, like feature maps or Gaussian processes, are discussed
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in chapter 3 within the global optimization scope. Furthermore, due to the curse of dimen-
sionality, a major challenge arises when a phenomenon is explained by tens or thousands of
features, which can have a significant impact on modeling.

ANNs are ML models able to approximate non-linear and high dimensional data. They
are computational models initially inspired by biological neural networks. For almost 80
years, the ANN community has been through many ups and downs, dating back to the
1940s [234]. Today, they form the foundation of modern ML, drawing considerable attention
because of their exceptional performances in a wide range of applications such as image
recognition, natural language processing, translation, etc.

The first use of an artificial neuron to model logical functions, such as AND and OR, dates
back to 1943 with Warren McCulloch and Walter Pitts. They demonstrate that networks
of binary neurons are at least as powerful as a Turing machine, laying the foundations of
artificial neural structures. In 1949, a psychologist named Donald Hebb was the precursor of
biological learning and the modern STDP rule. He gave birth to Hebbian learning stating that
“Neurons that fire together, wire together” [169].

In 1958, Frank Rosenblatt developed the Perceptron, the first network able to do binary
classification and able to solve linearly separable problems. The Perceptron was trained by an
algorithm developed in 1951 by Herbert Robbins and Sutton Monro. The authors described
the early stage of the SGD algorithm. In 1965, Ivakhnenko described the first multilayer
neural network, which was later trained using SGD by Shun’ichi Amari in 1967.

But, the limitations of the Perceptron and current neuron models led to a decline of
interest within the 1970s, a period referred to as the first AI winter. In the 1980s, the
backpropagation algorithm, first described in 1970 by Seppo Linnaimaa, was rediscovered
and applied to neural networks by researchers such as Geoffrey Hinton, Paul Werbos, David
Rumelhart or David Parker. The backpropagation algorithm was applied on CNNs in 1989
by Yann LeCun for image recognition. The early stage of CNNs can be traced back to the
Neocognitron proposed by Kunihiko Fukushima in 1979, inspired by works of Hubel and
Wiesel on the visual cortex of cats. These works paved the way to modern pattern recognition.

By the end of the 1990s, ANNs suffered from their high complexity compared to other
methods such as SVMs. But, the popularization of GPUs for scientific computing in the
2000s allowed significant acceleration of linear algebra computation, which led to the Deep
Learning revolution and DNNs. In 1998, one of the first concrete applications was proposed
by Yann LeCun with one of the first DNN known as LeNet-5, outperforming other ML
approaches for handwritten character recognition.

The 2010s was the decade of the AI spring, a period of rapid development of various
methods, and during which DNNs achieved breakthrough performances. A pivotal moment
came in 2012 when AlexNet, a deep CNN developed by Alex Krizhevsky, Geoffrey Hinton,
and their team, obtained the best performances on ImageNet. AlexNet ushered in the
widespread use of CNNs in computer vision tasks. From 2012 to 2017, extensive research led
to the arrival of generative AI. The popularization of LSTM and RNN gained popularity for
handling sequential data like text, speech, and time series. In 2014, Ian Goodfellow suggested
a new image generation network named GANs. It relies on the game theory between two
adversarial networks, a generator, and a discriminator.

A key turning point in natural language processing occurred in 2017 with the introduc-
tion of the Transformer model in the paper "Attention is All You Need". Unlike previous
models, Transformers discarded recurrence and convolutions, relying entirely on attention
mechanisms to model relationships between words. Transformers enabled faster training and
scaling and became the backbone of numerous neural language processing advancements.

Since 2020, and thanks to the major breakthrough of Transformers, Large Language
Models (LLM) have become increasingly popular, leading to a boom in generative models.
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Figure 1.2: Number of parameters of major AI models through time. Data are
from https://ourworldindata.org/grapher/artificial-intelligence-parameter-count

A frantic race for predictive performance ensued, involving ever larger and more energy-
intensive models, which is illustrated in figure 1.2. In 2024, we currently observe a boom in
image, video, text, and sound generation.

1.3.1 Breaking the linearity

In this section, we introduce some formalism about ANNs and SNNs, but more details are
given in chapter 2 about ML and HPO.

The core idea behind ANNs is to simulate the way neurons in the brain communicate and
learn from data. To do so, artificial neurons are simple computational units that receive input
signals. They apply a non-linear differentiable function to it and generate an output. Neurons
are organized in layers: an input layer receiving data, hidden layers extracting features, and
an output layer providing the predictions. Neurons are connected via synapses weighted by
w. These weights define the strength of the input and output signals of a neuron. Stacking a
certain number of hidden layers gives a DNN capable of extracting complex features from the
data and learning intermediate representations. Neural networks are mostly characterized
by their weights expressed as matricesW (i), ∀i ∈ ~1, l� for l layers. We can already notice that
ANNs involves costly matrix-matrix multiplications, which can become a major drawback
for large models. The weights have to be fitted on inputs, so to reduce the prediction errors
of the model, this phase is called training. These fundamentals are illustrated in figure 1.3.

Neurons

A neuron transforms its inputs by passing them into two functions:

• the transfer function, usually a sum of all the inputs.

• the activation function, a non-linear and continuously differentiable function modifying
the input and determining how much the neuron outputs.

In a feed-forward network, at least one neuron has to be non-linear, so the Universal
Approximation Theorem holds [98, 117]. The theorem states that a feedforward neural
network with a single hidden layer can approximate any continuous function, given sufficient
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Figure 1.4: Graph of an artificial neuron.

neurons and appropriate activation functions. This theorem demonstrates the theoretical
power of neural networks as universal function approximators, meaning they can model a
wide variety of complex functions to an arbitrary degree of accuracy.

A neuron can be described as a computational graph of, an activation function a; the
outputs of the transfer function u are denoted z, those of a are written o, and the inputs are
denoted x. Then, an activation function of a neuron maps x ∈ Rn into R. A trainable bias
b can be added within the transfer function, allowing affine transformation. The artificial
neuron is illustrated in figure 1.4. The transfer function u w.r.t. incoming weights w, is
usually denoted u(x) =w⊺x+b.

Concerning the activation function, a wide range of choices is available with different
properties. For example, the sigmoid function can help to model probability distributions,
while the ReLU is widely used in image recognition [98]. Some activation functions are
illustrated in figure 1.5.

Example: Modeling a probability distribution

Let’s take a binary classification task. We want to determine the probability of the
inputs to be True or False, i.e. P(x = True). Then because P(x = True) ∈ [0,1], a
convenient activation is the sigmoid function mapping a continuous input into [0,1]:
a(x) = 1

1+exp(−x) .

We can write the outputs of a layer k with weights W (k) and bias vector b(k), in a ma-
trix form: o(k) = a(k)(z(k)) = a(k)(u(k)(o(k−1))) = a(k)(W (k)

⋅o(k−1) +b(k)). Then, the forward
pass with inputs x, of a fully connected neural network with l layers can be written as a
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Figure 1.5: Some activation functions of a neural network.

composition of functions:

o(l) = (a(l) ○u(l) ○a(l−1) ○u(l−1) ○ ⋅ ⋅ ⋅ ○a(1) ○u(1))(x) ,

with g(1) and u(1) the transfer and activation functions of the first layer, and o(l) are the
outputs from the network.

Example: Computations of layer 2 from figure 1.3b

o(2) = a(2)(W (2)
⋅o(1) +b(2))

= a(2)([w(2)1 ,w(2)2 ,w(2)3 ] ⋅o
(1) +b(2))

= a(2)
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1.3.2 Backpropagation of the errors

Suppose now that inputs x, e.g. incomes, are associated with a response y, e.g. happiness. We
want the neural network to approximate any y according to any x. Thus, we build d pairs of
inputs and responses X ×Y ≜ [(x1,y1),⋯,(xd ,yd)], with d sufficiently high to approximate y.

We need a function defining the correctness of an approximation ŷ = o(l), i.e. the outputs
of the last layer of a neural network. We write such a function L ∶R×R→R and we name it
the loss function.

Extracting relevant features from input data involves setting the weights W of a neural
network NW , in order to minimize the approximation errors defined by the expected loss
E(L ∣ NW ,X ×Y).
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Computing the gradients

To update the weights, the gradient of the prediction errors has to be backpropagated through
the network, which is possible thanks to the differentiability of the acquisition and the loss
functions regarding their inputs. The BP of the gradient is based on the chain rule stating
that for two differentiable functions f and g, if h = f ○ g then h′ = (f ′ ○ g)g ′.

Considering, rk the number of neurons at layer k, z(k)i the output of the transfer function,

o(k)i the outputs of the activation function of neuron i at layer k, and w(k)j,i the weight between
node i at layer k and node j at layer k −1. The gradient of the loss L w.r.t. the weights at a
layer 1 ≤ k ≤ l is given by:

∂L

∂w(k)j,i
=
∂L

∂o(k)i
⋅
∂o(k)i

∂z(k)i
⋅
∂z(k)i

∂w(k)j,i
, (1.1)

with ∂L

∂o(l)i
= L′(y,o(l)i ) the derivative of the loss function at the last layer l, and

∂o(k)i
∂z(k)i

= a′(z(k)i )

the derivative of the activation.

For a layer k, we write δ(k)i =
∂L

∂o(k)i
a′(z(k)i ), and

∂z(k)i
∂w(k)j,i

= ∂

∂w(k)j,i
(
rl−1
∑
n=1
w(k)n,i o

(k−1)
n ) = o(k−1)j . Then:

∂L

∂w(l)j,i
= δ(l)i o(l−1)j ,

∂L

∂b(l)i
= δ(l)i . (1.2)

For a neuron i at layer 1 ≤ k < l, we write the errors as:

δ(k)i = a
′(k)(zki )

rk+1
∑
n=1

δ(k+1)n w(k+1)j,i . (1.3)

After the forward pass the values o(k) and z(k) are known. Therefore, by using equations 1.2
and 1.3 we can iteratively compute δ(k) from the output layer to the input layer; the gradient
is backpropagated for all triplets (x,y, ŷ). This is illustrated in algorithm 1 for a feed-forward
network where the previous variables are vectorized.

Algorithm 1 BP for a feed-forward network

1: for each y ∈ Y do
2: δ(l)← L′(y, ŷ)a′(l)(z(l))
3: for k← l −1 to 1 do
4: δ(k)← a′(k)(z(k))δ(k+1)W (k+1)

5:
∂Ly

∂W (k) ← δ(k)ok−1

6:
∂Ly

∂b(k)
← δ(k)

7: ∂L
∂W (k) ←

1
∣Y∣∑

∂Ly

∂W (k)

8: ∂L
∂b(k)

← 1
∣Y∣∑

∂Ly

∂b(k)

9: Update(W (k),b(k)) Gradient descent algorithm

Gradient descent

In algorithm 1, line 9 updates the weights and biases using the mean of the gradient com-
puted on each pair (x,y) and predictions ŷ. Because the activation function is differentiable
and because we can compute the gradient of the loss w.r.t. the weights and biases for every
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neuron, first-order gradient-based optimizers can be applied to iteratively update W and b.
The basic algorithm of gradient descent at each iteration t is given by:

W (k)
t+1 =W

(k)
t −λ∇

∂L

∂W (k)
t

,

b(k)t+1 = b(k)t −λ∇
∂L

∂b(k)t
,

(1.4)

with λ∇ the learning rate.
Computing the gradient on all (x,y) ∈ X ×Y is costly if there is a high number of pairs.

For that reason, a solution is mini-batch SGD [23]. Here, instead of updating the weights
once the gradient is computed for all pairs, we compute the gradients on subsets of the pairs,
i.e. batches. The parameters are updated for each subset X ′ ×Y ′ ⊂ X ×Y , until all gradients
for all (x,y) contributed to the update. Because gradient descent is an iterative algorithm,
multiple forward and backward passes on all batches have to be computed. A single forward
and backward pass, followed by parameter updates for all batches, is named an epoch.

To accelerate the optimization and go beyond local optima, a momentum β∇ can be
integrated into the equations. For example, on the weights update:

∆W (k)
t+1 = β∇W

(k)
t −λ∇

∂L

∂W (k)
t

,

W (k)
t+1 =W (k)

t −λ∇
∂L

∂W (k)
t

+β∇∆W
(k)
t .

(1.5)

State-of-the-art optimizer for ANNs such as ADAM [147] uses two momentum, β∇1, β∇2.

Example: Gradient descent
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f (x) = x2

y = f ′(x0)(x−x0)+ f (x)

1.3.3 Architectures and topology

The topology of a network describes how neurons are connected to each others. This was
previously described in figure 1.3. Neurons are usually grouped into layers, for which we
define the transfer and acquisition functions, the number of neurons, and other properties of
that layer.
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Feed-forward neural network

A feed-forward network is a set of layers stacked in such a way that the flow of information
goes in one direction, from the inputs to the outputs. This is the most basic neural network,
also namedmulti-layer perceptron. There is no cycle, and the forward path is similar to the one
given in equation 1.3.1. The number of hidden layers allows finding complex relationships
within the inputs. The complexity of the network, i.e. the depth and number of neurons,
allows the networks to extract intricate features. It introduces a hierarchy between features;
the deeper the network, the more abstract the extracted information. However, adding more
hidden layers also increases computational complexity, which can influence the bias-variance
tradeoff. Therefore, one has to carefully balance the number of layers and neurons. An
example of a feed-forward fully connected ANN is given in figure 1.3.

Recurrent neural network

Conversely to feed-forward ANNs, RNNs allows cycles within the topology. RNNs are usually
applied to time-series, as they can model some sort of memory. The recurrent connections
allow modeling temporal dependencies and relationships in data. However, RNNs becomes
less effective with long-term dependencies due to issues like vanishing gradients, limiting
their ability to capture long-term features.

A solution to this are cells, which are a more complex model of neurons. For example,
the LSTM or GRU allow learning how to forget information by controlling the impact of
previous information on the cell’s internal state.

Example: RNN
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Layer 2

In Out

Convolutional neural network

CNNs are widely used in image recognition, and more generally when there is a spatial
dependency between inputs. A CNN is mainly defined by its filters, which are small matrices
of weights. These filters are rolled over the spatial data to extract patterns automatically. For
example, this allows to detect edges, textures, and shapes within an image. CNNs reduce
the number of weights by applying the same weights (matrix) for each location where the
filter is applied. This is called weight sharing. Thus, having multiple filters rolling over
the data allows learning and finding different patterns within the whole image regardless
of the position. Depending on the property of the CNN layer, the network can act as a
dimensionality reduction technique. For example, applying a filter to an image can produce
a smaller image containing relevant features.

We can already notice a challenge of CNNs when applied to neuromorphic computing:
non-locality of the weight sharing. Indeed, the weights of a CNN involve global information
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shared across neurons.

Example: CNN filter
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1.3.4 Usual challenges and remarks

ML models come with a set of significant challenges that can impact their performances
or scalability. We previously discussed the impact of the energy consumption of usual AI
and the necessity to move to another computational paradigm as neuromorphic computing.
But most AI problems are NP-hard and rely on big data. In the following sections, we
discuss some usual issues of ML such as overfitting, high dimensionality, or computational
complexity.

Curse of dimensionality

The curse of dimensionality refers to various phenomenons arising within high dimensional
spaces.

First, high dimensionality has impacts on the geometry and combinatorics [273]. Dividing
a d−cube into a grid of size g involves gd smaller hypercubes of equal size. This property
has an impact on some algorithms described in chapter 3. That is why the grid search
algorithm does not scale with the dimensionality. Another geometrical phenomenon occurs
on hyperspheres; their hypervolume (Hausdorff measure) tends to zero [273].

It also has impacts on sampling and distances. Because the hypervolume grows expo-
nentially with the dimension, the number of necessary samples to efficiently approximate
the number of dimensions also grows exponentially. But, in ML not all dimensions are
independent, and some coordinates are usually collinear [273] which simplifies the geometry.
Still, efficiently approximating a high dimensional function implies enough data, leading to
Big data issues about storage or computational complexity.

Another phenomenon is the concentration of the norms, causing lower and lower inter-
pretability of some distances [1, 181].

However, sometimes the dimensionality can be used to our advantage, a phenomenon
known as the blessing of dimensionality. In chapter 3, we describe how feature mapping can
make non-linearly separable data linearly separable into a higher dimensional space.

Bias-Variance tradeoff

The bias-variance tradeoff, describes the balance between two sources of errors that affect
model performances:
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• The bias describes errors due to an oversimplistic model failing at capturing relevant
patterns within the data. This can also be explained by a lack of relevance between
inputs and responses.

• The variance errors are due to overfitting, i.e. the model captures the random noise
within data. This can be explained by a model that is too complex, which can make it
sensitive to noise and can deteriorate its generalizability.

Achieving an optimal tradeoff between bias and variance is crucial for building models
that generalize well to new data. That is why in a ANN balancing, the number of layers and
neurons is crucial to prevent under- and overfitting.

Example: Overfitting
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No Free Lunch Theorem

In optimization and ML, the No Free Lunch Theorem states that there is not a universal
algorithm superior to all others across all possible problems [288]. This happens because
algorithms assume certain properties about the problem they are trying to solve, but these
assumptions may not be true across all scenarios.

A consequence of this theorem is that optimizing a problem or fitting a MLmodel requires
minimal knowledge about the task. Thus, their performances depend on how well these
assumptions align with the properties of the specific problem. This theorem emphasizes how
important it is to choose the right algorithm for a given task, as no algorithm can outperform
all others in every circumstances.

Supervised and unsupervised learning

In this manuscript, we tackle both supervised and unsupervised learning applied to SNNs.
In supervised learning, a model is trained using inputs X and labels or responses Y . The

objective is to minimize the error between the predicted values and the actual labels by
learning a mapping from inputs to outputs. Thus, the ML model has to extract relevant
features from the inputs explaining the given labels.



1.4. Toward Spiking Neural Networks 15

In unsupervised learning, there is no explicit label or response. The algorithm is not
guided and has to discover hidden patterns, structures, or relationships within the inputs.
Since there are no labels, unsupervised learning relies solely on the characteristics of the data
to guide its learning process.

1.4 Toward Spiking Neural Networks

SNNs are analog networks embracing a more biologically inspired and event-based approach
compared to their counterpart, traditional ANNs. The distinctive characteristics of SNNs,
such as in-memory and local computations, make them impractical for execution on usual
von Neumann architectures. As previously discussed, they are computed on specialized
neuromorphic hardware platforms, such as SpiNNaker [198] or Loihi [41]. SNNs use time as
a resource for computations and communications [170]. A spike is a timed event mimicking
the action potential, also named nerve impulses. In its simplest version and within digital
hardware, a spike can be considered a binary event. Some more biologically accurate ap-
proaches can model the event by a bell-like function describing the intensity of the impulse
through time. A spiking neuron is defined by ordinary differential equations w.r.t. time.
It has a membrane potential describing its electrical potential, i.e. its excitation level. Once
the membrane potential reaches a threshold, the neuron fires a spike at its output. These
specificities make SNNs energy efficient, massively scalable, and parallelizable due to the
theoretical asynchronicity between the neurons. SNNs rely on the dynamics between spikes
within the network. Today and within an algorithmic point-of-view, when modeling with
SNNs we face four major challenges [294, 238, 246]:

• Although SNNs are theoretically better than ANNs, their predictive performances
remain inferior to that of ANNs [170, 214].

• Today, tools for modeling ANNs are well-developed. Even if newcomers like Jax are
becoming increasingly popular, libraries like Pytorch or TensorFlow are standards
that can be chosen by default by beginners. However, concerning the SNNs, there are
dozens of simulators and libraries, mostly because neuromorphic computing ranges
within a spectrum from neuroscience to electronics. Even for neuromorphic ML we can
count many simulators: snnTorch, spykeTorch, Norse, Lava, Nengo, SpikingJelly, Spyx,
Rockpool, Bindsnet, Sinabs, Auryn, PySNN, N2S3, CSNN, SNAXX, etc.

• There is no established and satisfying neuromorphic benchmark broadly adopted by
the community [294, 238]. Usual benchmarks for ANNs as MNIST, are widely used
within the SNNs community. But it is uncertain if these benchmarks really emphasize
the type of problems SNNs are made for [294].

• The choice of a training algorithm is still debated [257, 195]. Three main approaches
are available, ANN-to-SNN conversion, plasticity rules, or surrogate gradient back-
propagation. In-hardware training remains challenging. There is no consensus on the
best algorithm to train SNNs, even if gradient-based approaches usually obtain the best
performances.

1.4.1 Information coding

Spikes are a crucial component of SNNs. While ANNs compute with integers or floats,
spikes are events used for communications and computations within SNNs. [170] A digital
spike can be modeled as a binary timed event impacting the computation of weight-signal
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multiplications compared to ANNs. To tackle usual digital datasets such as MNIST [153] or
CIFAR-10 [149], these have to be converted. Other datasets are naturally neuromorphic such
as DvsGesture [10] or DvsLip [263] as they are recorded by neuromorphic sensors.

A spike train can encode information in three major ways inspired by different biological
coding [101, 11, 26], such as in the visual cortex [121]:

• Rate coding: The information is encoded within the spiking frequency (e.g. count or
population rate).

• Temporal coding: The information is encoded within the spike timings (e.g. TTFS).

• Mixed coding: The information is both encoded by frequency and timings (e.g. burst
coding).

When data is not directly encoded into spike trains, it has to be converted into spikes.
The most popular way of doing it is Poisson coding [110]. It consists of converting a digital
value into a spike frequency. The higher the digital value, the higher the frequency. A major
drawback of such an approach is that it necessitates a lot of spiking activity to obtain good
predictive performances, whereas fewer spikes can significantly decrease the latency [201].

Temporal encoded data is more challenging as it is more sensitive to noise and often
results in lower predictive performances [235]. In frequency coding, the information is
averaged through time, while a small perturbation within a spike timing modifies the carried
information by temporal coding. However, such a coding method generates much less
spiking activity. The most popular temporal conversion method is known as TTFS. Within
an encoding time window, TTFS consists in encoding high digital values into earlier spikes,
while lower values are converted into later spikes. Another approach, known as rank-order
coding, defines the information encoded within the order of the spikes and not necessarily
within their precise timing [266].

To prevent any information loss from digital-to-spikes conversions, the best datasets
are the ones that are naturally neuromorphic, e.g. obtained using DVS cameras [161] or
artificial cochlea [291]. These datasets are the most promising and maybe consensual ones
for benchmarking SNNs [294]. The encoding and decoding methods are further discussed in
chapter 2 within the HPO scope.

1.4.2 Neuron model

Spiking neurons contribute to modeling biological processes and execute computations
in a more brain-like and energy-efficient manner. In a ANN, a neuron always receives
digital information that is processed by the transfer and activation functions. Moreover, a
ANN neuron always outputs digital information. Whereas, a SNNs incorporates the time
dimension within its computations. Therefore, a neuron within a SNN, models temporal
dynamics and event-based communications, meaning that a neuron does not always output a
signal. Neurons in SNNs are sensitive not only to the strength of the inputs but also to the
timing of spikes. The dynamic of a spiking neuron is illustrated in figure 1.6, where on the
left are the input spikes, in the middle the membrane dynamic of a spiking neuron, and on
the right the spiking outputs of that neuron.

One of the first neuron models, known as the IF and first described by Louis Lapicque in
1908 [152], is one of the simplest models defined by the following differential equation:

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

C dV
dt = I , ifV < Vth

V = Vreset , else
, (1.6)
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Figure 1.6: Graph of a spiking neuron.

with C the membrane capacitance, I the input current (spikes), Vth the threshold and V the
membrane potential. Once V reaches Vth, the IF neuron fires a spike at its output. We further
discuss a more advanced model known as the LIF in chapter 2. The latter is widely used in
neuromorphic ML.

One of the most biologically accurate neurons, detailed in 1952 by Hodgkin and Hux-
ley [114], describes the dynamic of the giant axon of a squid. It consists of 4 differential
equations; 9 others describe 3 gating variables, and 3 other equations use gating variables to
describe ionic flows within the neuron. Due to its complexity, this neuron is untractable to
neuromorphic hardware and even within large-scale SNNs simulation.

The Izhikevich neuron [130] is an in-between. The model is simpler than the Hodgkin &
Huxley neuron, but sufficiently complex to be more biologically accurate than the IF and LIF
neurons. It consists of 2 differential equations and 5 parameters. According to the settings of
the parameters, this neuron model describes various behaviors, such as the thalamo-cortical
neuron, a resonator, a bursting neuron, etc. Even if the Izhikevich model is simpler than
the Hodgkin & Huxley neuron, it is rarely used in neuromorphic ML which is dominated by
LIF-like neurons.

Example: IF neuron
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1.4.3 Training spiking neural networks

Training a SNN is challenging as the gradient of the dynamic of a spiking neuron w.r.t. a spike
train is uninformative. Therefore, usual BP algorithms cannot be applied. We distinguish
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three approaches to train a SNN: Hebbian or plasticity rules, surrogate gradient, and ANN-
to-SNN conversion. These three approaches have different application cases, and depending
on the problem, they have advantages and drawbacks.

Hebbian rules and local learning

Hebbian learning is a biologically plausible unsupervised learning rule relying on the quote
“neurons wire together if they fire together” [169]. So, the weights W of a SNN are updated
locally and according to the spiking activity of pre- and post-synaptic neurons. Because these
rules are local, they can be easily implemented on neuromorphic hardware.

STDP is an implementation of Hebbian learning [275]. While the standard Hebb rule
relies on the exact timing of the pre- and post-synaptic neurons activity, STDP has several
properties:

• Weights can grow or decay in the absence of activity.

• Post-synaptic spikes alone have effects.

• Pre-synaptic spikes alone have effects.

• Weights modifications rely on the timing differences between pre- and post-synaptic
spikes.

• There is a dependency with the current synaptic weight.

There exists many variations of the STDP rules [275]. Almost all rules reinforce or depress
a weight according to ∆t = tpost − tpre, with tpost the timing of a post-synaptic spike, and tpre
the timing of a pre-synaptic spike. If ∆t is negative, then the weight is decreased, as we
consider that a pre-synaptic spike occurring shortly after a post-synaptic spike does not
contribute to the firing process of the post-synaptic neuron. Conversely, if ∆t is positive,
then the post-synaptic spike can be partly explained by the pre-synaptic one, so the weight
is increased. The closer ∆t is to 0, the stronger the weight modification, which allows
learning unsupervised temporal dependencies. While STDP can be easily instantiated on
neuromorphic hardware [134], its performances are lower than the other training approaches.
Moreover, to classify labeled data, STDP-based approaches require a decoder to read the
outputs of the SNN. Supervised STDP rules, such as the reward-modulated STDP [185] can
help overcome an additional training of a decoder. The standard STDP rule is given by:

∆wpre,post = ∑
tpre

∑
tpost

W (tpost − tpre)

W (∆t) =

⎧⎪⎪
⎨
⎪⎪⎩

Apree−∆t/τpre ∆t > 0
Aposte∆t/τpost ∆t < 0

(1.7)

with Apre > 0 and Apost < 0 the learning rates, τpre and τpost time constants. One major
drawback of this equation is that it needs to iterate over all previous pre- and post-spikes to
determine ∆wpre,post. In chapter 2, we study a practical application of equation 1.7 and the
effect of its parameters.

Other type of training

While STDP and Hebbian learning offer ways to perform in-hardware training, the resulting
predictive performances are a major drawback. A solution is to perform the training offline
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by using a simulator, and then instantiate the trained network within the neuromorphic
hardware.

A straightforward approach is to convert an ANN trained via offline BP on spiking data,
and then convert it into a hardware-friendly SNN for energy-efficient inference [238, 195,
228]. The challenge here is to find the right mapping between components of the ANN and
the ones of the SNN. The conversion process usually assumes that the firing rate of SNNs
is proportional to the activation of neurons from a ANN. But the downside is a decrease in
performances during conversion, making the performance of SNNs behind that of ANNs.

Another approach is to directly apply the BP algorithm to SNN [247, 193]. However, in
a SNN the activation function a of a classical ANN neuron is replaced by the dynamic of
a spiking neuron, for which the gradient is uninformative. Then, a surrogate is applied to
compute a usable gradient of the output spiking activity. A surrogate function approximates
the firing process of a neuron with a differentiable function with informative gradient. This
approach enables SNNs to be trained end-to-end on usual tasks directly from the spiking
activity. Surrogate gradient training has helped unlock the full potential of SNNs, making
them more competitive with conventional ANNs while retaining their advantages in terms of
energy efficiency. However, usual BP algorithms cannot be instantiated within neuromorphic
hardware, as it is non-local in space and time. We further discuss surrogate gradient and its
parameters in chapter 2.

1.4.4 Topologies of spiking neural networks

While usual architectures such as feed-forward or RNN can be equally used with SNNs.
Neuromorphic computing offers unique architectures thanks to its properties. For instance,
inspired by the biological brain, within a SNN we distinguish two types of neurons:

• The excitatory neuron outputs a positive action potential, exciting other connected
neurons.

• The inhibitory neuron outputs a negative action potential, decreasing the membrane
potential of other connected neurons. When the inhibition is sufficiently strong to
prevent other neurons from spiking, it can model a WTA mechanism where only one
neuron can fire a spike at a time by inhibiting all other neurons.

In 2015, Peter Diehl and Matthew Cook proposed an unsupervised SNN architecture,
obtaining competitive performances on MNIST compared to ANNs. The authors used a SOM
architecture combined with lateral inhibition, STDP training, and max-spike decoding [51].

The architecture consists of an input layer, an excitatory layer, and an inhibitory layer.
Both layers have strictly the same number of neurons. Each excitatory has a respective
mirrored inhibitory neuron. The weights between inputs and the excitatory layer are trained
by STDP. Two sets of weights connect the excitatory and the inhibitory layers. An excitatory
neuron is connected all-to-all with the inhibitory layer, except for its respective mirrored
neuron. Inhibitory neurons have fixed weights and one-to-one connections toward their
respective excitatory neurons. The excitatory layer is also the output layer, and the dynamic
between both layers models a WTA mechanism.

The architecture allows each neuron from the excitatory layer to specialize in a certain
pattern of the input data. Indeed, for a given pattern, the specialized excitatory neuron will
fire a spike toward its mirrored inhibitory neuron. In return, the excited inhibitory neuron
will prevent all other non-specialized excitatory neurons from firing. Because STDP relies
on the spiking activity between two neurons, thanks to the WTA a single neuron will fire
according to an input pattern. This mechanism enables the reinforcement of the weights
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Figure 1.7: 1D Dielh & Cook self-organizing map. For clarity, the synapses of the middle
neurons are not represented. Dotted lines illustrate inhibitory synapses with a fixed negative
weight. While solid lines are excitatory synapses.

between the inputs and the excitatory layer for that single neuron on the specific pattern. For
example, to classify MNIST, each neuron will be specialized into the recognition of a digit.
The architecture is illustrated in figure 1.7.

Another unique architecture is reservoir computing [305]. It consists of a RNN with
random weights, i.e. the reservoir. Then an output layer is connected all-to-all with the
reservoir. Only the connection between the output and the layer can be learned. The weights
of the reservoir are randomly fixed. This approach is usually applied when no direct training
of the SNN is possible. Usually, the output layer is trained via BP, or another ML approach
can learn to decode the outputs of the reservoir.

Because convolution involves non-local weight-sharing, CSNNs are challenging. Such
architecture can be directly handled by design within the neuromorphic hardware [292].
Or, by using combinations of small Dielh & Cook maps, one can mimic convolution [231,
232]. The major drawback of this approach is the huge number of synapses needed to mimic
non-local convolution.

1.5 Motivations

We previously described the baseline of this thesis. While the demand and cost of AI grow
significantly, focusing on other objectives than solely on the predictive performances becomes
crucial. Therefore, energy-efficient solutions such as SNNs are of the upmost interest. By
rethinking the von Neumann architecture and usual silicon chips, SNNs could offer a serious
alternative for certain tasks. Today, Neuromorphic ML has two major challenges. This first
one concerns electronic engineering and how to design an energy-efficient neuromorphic
chip by using various disruptive technologies. The other challenge concerns the algorithmic
behind SNNs. In this thesis, we focus on the latter, and we consider that some current
constraints of the hardware can be bypassed by using simulators. For example, convolution
involves weight sharing, but the most recent neuromorphic hardware can instantiate some
convolution layers [292, 197, 116].

At the beginning of this thesis in late 2021, the major algorithmic issues bounded to SNNs
were:

1. Predictive performances

2. The training algorithm

3. Information encoding and decoding
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4. Benchmarking

5. Standardized tools

These challenges were broadly shared among pre-2022 surveys [100, 227, 257, 107, 214,
264, 218, 236, 42, 275, 11, 101, 281, 208, 92, 165]. However, among all previous surveys,
there is one blind spot: HPO. We previously described some components of SNNs and
their parameters, e.g. the neuron threshold Vth. Such parameters that are not learned by
the training algorithms are called hyperparameters. The major challenge is how to set these
hyperparameters efficiently to optimize given performance metrics.

In 2008, the authors of [209] suggested a more in-depth investigation of tuning the
hyperparameters of a spiking reservoir. Some very early works in 2010 applied HPO to
SNN [289, 243]. The first thesis deeply investigating modern HPO applied to SNNs was the
one of Maryam Parsa in 2020 [202]. The author applied a Bayesian optimization approach to
multiple training algorithms, such as neuroevolution, surrogate gradient, and conversion. It
also investigates mono- andmulti-objective optimization and hardware implementation. This
thesis is a milestone in HPO applied to SNNs as it considers HPO as the main subject of study.
However, the search spaces of hyperparameters are limited; they are heavily discretized to
reduce the complexity of the HPO. The author investigates the impact of the optimization
on the SNNs performance metrics and the impact of some hyperparameters. The thesis
compares its optimization approach to grid search, concluding that grid search is the less
efficient algorithm. But very little analysis is dedicated to the HPO process itself when
applied to SNNs and how it gets to the optimized solution.

1.5.1 Research question

In chapter 2, we review the literature of HPO applied to SNNs. We see that HPO is often
considered a secondary task, and very little analysis is performed on the process. HPO of
SNNs is performed the same way as HPO of usual ML models and ANNs. Indeed, we usually
consider the optimized function as fully black-box, e.g. the predictive performances. That is,
only the inputs and outputs of this black-box are used by the HPO algorithm. The inputs are
the hyperparameters and data, the inside of the black-box is the SNN, and the outputs are
the considered performance metrics.

Today, in the way HPO is applied to SNNs, we could replace the black-box containing the
SNN by any other ANNs model applied to the same task without having to modify the HPO
algorithm. Only the search space would change. The No Free Lunch theorem indicates that
we cannot efficiently do optimization without prior knowledge about the problem.

Here we have an issue, why the usual HPO algorithms applied to ANNs would perform
equally when applied to SNNs?

Thus, the research question through this manuscript is:

How can we improve HPO of SNNs by investigating both, the impact of HPO on the
performances of SNNs, and the impact of SNNs on the performances of HPO?

1.6 Outline

In chapter 2 we formalize HPO and we discuss the state-of-the-art of HPO applied to SNNs.
This chapter is the first attempt to survey the main works investigating HPO of SNNs. We
describe almost all hyperparameters that will be later optimized and their local impact on
the SNNs dynamics. In chapter 3, we describe more in depth the usual algorithms used
for HPO. We start by describing metaheuristics. We then move to Bayesian optimization
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and end up with multi-fidelity state-of-the-art HPO approaches. Likewise, we conclude
the chapter by discussing the parallelization strategies of previous algorithms within a
distributed environment.

Then, the following chapters detail the contributions of the thesis. In chapter 4, we
formalize a new family of algorithms named fractal-based decomposition algorithm. We in-
troduce a software and theoretical framework called Zellij. These algorithms hierarchically
decompose the search space to better optimize; they are based on the “divide-and-conquer”
principles. We also discuss the relationship between Bayesian optimization and fractal-based
decomposition. In chapter 5, we introduce the concept of silent networks, and we investigate
their impact via large-scale HPO experiments on the Jean Zay supercomputer. We empirically
show that SNNs have an impact on the performances of HPO. We study the HPO process,
the optimized solutions, and the sensitivity of hyperparameters. Finally, in chapter 6, we
leverage silent networks and multi-fidelity to significantly accelerate the search process.



Chapter2
Automated machine learning and
spiking neural networks

Selecting a ML model is a tough task. This process relies on the knowledge of the problem
and of the user. This phase requires human-in-the-loop interactions, which, beyond its
knowledge, also implies intuition and all our human biases prone to errors.

We consider a certain task, for example, predicting the daily electricity consumption of a
country. The problem can be described as a time-series regression problem. To predict a daily
value, one could look at what previously happened. But how far in the past should we focus
our interest12 hours, 24 hours, weekly, etc. At first glance, one could be tempted to apply a
24-hour time window or any of its multiples (6, 12, 48...). But counter-intuitive values might
also result in similar yet better forecasting performances. Meanwhile, add to the historical
electricity consumption other features such as meteorological data. Then interactions of the
time window with the data become less and less intuitive.

If the time window cannot be learned by our hypothetical ML model, then it is a HP and
the process of tuning its value to optimize the quality of the predictions from the model is
called HPO.

A ML model can have tens, even hundreds of HPs. In HPO, the human-in-the-loop
interaction is reduced to the choice of a ML model, HPO optimizer, the HPs selection, and the
definition of the search space. For this reason, HPO offers a higher flexibility in the design of
a solution for a given ML task, including exploration of counter-intuitive possibilities.

A higher level problem, known as AutoML, generalizes HPO by automating the selection
of an appropriate ML model for a given task.

2.1 Hyperparameter Optimization

AutoML is a recent research domain that was first formalized by Auto-weka and ICML
workshops in 2014 [244]. But model selection and HPO are much older (resp. 1970s and
1990s) [244, 123]. Thus, this thesis aims at better understanding HPO and its mechanism
when applied to SNNs to better inform and tackle more challenging problems such as NAS
or AutoML. AutoML of ANNs can be divided into two subproblems, HPO and NAS [108,
260, 123, 16, 20]. Another sub-problem, known as Meta-learning, i.e. learning to learn, is
also part of AutoML. It aims at applying, optimizing, and generalizing ML models across
problems, tasks, and datasets.

Throughout this manuscript, the focus is on the HPO problem, as a more profound
understanding of this problem applied to SNNs is necessary before efficiently tackling harder

23
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Figure 2.1: Types of features

ones such as NAS. The design of ANNs and DNNs also falls into the range of problems
tackled by AutoML [299]. Manual tuning helps to better understand the impact of some HPs
but can lead to contradictory results due to the complex interactions between HPs, ANN
architecture and the data [249]. Therefore, AutoML can help to inform two of the most
important challenges bound to DL which are interpretability and explainability [20].

2.1.1 Formal definition

The formal definitions of the next subsections are mainly inspired by the following books [131,
242, 123].

Abstract machine learning model

In classification or regression problems, a ML model A is applied to a dataset D made of rows
and columns, resp. records and features. Features can be of different natures, as described in
figure 2.1: continuous, discrete, nominal, or ordinal.

In this thesis, we focus on SNNs applied to classification tasks. So a dataset is divided
into a qualitative response Y and p different predictors (rows) X = X1, . . . ,Xp, where p is
the size of the dataset. Each predictor is a vector of q features, ∀i ∈ ~1,p�, Xi = (x1, . . . ,xq).
Then, a dataset D is made of pairs D ≜ X ×Y . The response here is made of classes, e.g.
Y = {cat, dog, duck, cat, . . .}.

Example: Dataset

X x1 x2 ⋯ xq Y

Citric acid Sulphites . . . Sugar Province

X1 0.0 7.4 ⋯ 1.9 Alsace y1

X2 0.0 7.8 ⋯ 2.6 Mosel y2

⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮

Xp 0.4 7.8 ⋯ 2.3 Sicily yp
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X
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Aλθ

YAssumption Y =Aλθ(X)

Figure 2.2: Modeling "natural" probability distribution of data with ML.

Definition 1 (Model [131, 16]). Let D ≜X ×Y a dataset made of predictors and response. A model
A of X on Y parameterized by θ and hyperparameterized by λ defines a relationship between X
and Y as:

Y =Aλθ(X)+ ε , (2.1)

where ε is a random error independent of X .

So, selecting a model Aλθ is one of the first assumptions made by the user on the natural
probability distribution of the data. This is illustrated by figure 2.2. AutoML tends to replace
this manual selection by instead automatically choosing a ML model among a set of models
and according to a quality metric on the predictions.

To evaluate the prediction errors of Aλθ(X) on Y , we define l as a loss function that needs
to be maximized, i.e. maximize the quality of the predictions or minimize the prediction
errors.

Definition 2 (Generalized Loss Function). Given a domain D and the set of all possible models
A. A loss function l is defined as

l ∶ A×D→R+ , (2.2)

then the risk function is the expected loss of a model Aλθ ∈A, w.r.t. a probability distribution D over
A, namely:

LD ≜ E
z∼D
[l (Aλθ, z)] . (2.3)

So over a given dataset D ≜X ×Y = (z1, . . . ,zp) = ((X1,y1), . . . ,(Xp,yp)) we have:

LD ≜
1
p

p

∑
i=1
l (Aλθ, zi) . (2.4)

Definition 3 (Model parameters [16]). Model parameters θ ∈Θ are chosen among a set Θ during
the training phase on Dtrain, of a model Aθ.

Definition 4 (Training). The training problem of a model Aθ can be defined as the maximization
of a risk function LD over a training dataset sampled from the natural distribution Dtrain ⊂D. To
find an optimal set of parameters θ⋆ ∈Θ we write:

θ⋆ ∈ argmax
θ∈Θ

LD(Aθ,Dtrain) (2.7)
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Example: Loss function

In classification problems the accuracy of the predictions is given by:

Accuracy(Aλθ,X ,Y) =
1
p

p

∑
i=1

1
{Aλθ(Xi)=yi}

(2.5)

Or the MSE in regression tasks:

MSE(Aλθ,X ,Y) =
1
p

p

∑
i=1
∥Aλθ(Xi)−yi∥

2 (2.6)

Example: Parameters

Examples of a set of parameters θ could be:

• Coefficients of a linear regression: y = θ0 +θ1x1.

• Lenghtscales l of a RBF kernel in a GP regression: K(x,x′) = σ2exp(−(x−x
′
)
2

2l2 ).

• Weights W of a ANN or SNN.

• Split points and node value of a decision tree.

• Centroids in K-means clustering.

Definition 5 (Testing). To assess the final performances of a trained Aθ⋆ , a hold-out dataset
Dtest ⊂D is used over the risk function LD such that:

LD(Aθ⋆ ,Dtest) (2.8)

We described the usual training and testing of a ML model without any tuning. When
additional steps are involved in the design of a ML solution, an intermediate additional set
Dvalid is needed.

Dataset management in AutoML

Usually, data is prepared, cleaned, and sometimes augmented to prevent overfitting [108].
In this work, very little data pre-processing will be applied, as usual high-quality and
curated benchmarks will be used. Thus, we are not concerned about data collection, but
pre-processing specific to SNN and neuromorphic computing will be discussed in section 2.2.

As previously said, overfitting can be partly caused by a lack of data. In chapter 1 we
explain the bias-variance tradeoff of ML as a potential source of overfitting. In AutoML, even
when manually tuning a model for a given task, a less known bias is introduced. Indeed,
tuning the architecture in NAS or HPs in HPO on the hold-out dataset, can result in a model
that overfits the architecture or HPs [20, 120].

Usually, a dataset D is split into a training Dtrain, and testing (a.k.a. hold-out) Dtest datasets.
Then Dtest should remain untouched until the very final phase of testing the generalizability
of the selected and trained model. But, because AutoML requires an additional step between
the training and testing, one should not select a ML model and perform AutoML on Dtest.
This is illustrated in figure 2.3.
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Figure 2.3: Training - Validation - Test splits of a dataset

So, because Dtest must remain unseen during AutoML, a third split, known as the valida-
tion set Dvalid, is introduced. The AutoML (or any tuning) optimizes the performances of the
model on the validation dataset. Once done, the performances of the tuned model are finally
assessed on Dtest. This method does not prevent overfitting but emphasizes it if it exists.

Another approach is Nested cross validation [20, 120]. It addresses an issue of cross-
validation when used with AutoML, and where the optimization would be still applied on
the Dtest folds. Nested cross validation consists in two cross-validation loops; the first one
splits the full data D into i ∈ ~1,K� folds, Dtrain,i and Dtest,i . An inner loop is applied on all
Dtrain,i to build j ∈ ~1,Q� inner-folds s.t. D′train,i and Dvalid,j (see figure 2.4).

Nested cross validation gives an unbiased estimation of the performances of the AutoML
process, but does not return an optimal set of HPs. One can select a combination of HPs
among the returned ones and evaluate its performances by retraining and testing it on a full
train-test split.

Nonetheless, the major issue with cross-validation and nested cross-validation is that
it involves multiple evaluations on different sets of a single solution and multiple inner
AutoML. We will see afterward that when the evaluation of a ML model or the AutoML is
expensive, these solutions are intractable.

In figures 2.3 and 2.4, the objective is to maximize the losses L of a ML model A according
to its parameters θ and hyperparameters λ.

Hyperparameter Optimization

Conversely to a parameter, a HP is fixed before the training of Aλθ and cannot be learned. A
HP should have an impact on at least one of the optimized objectives, or on other practical
considerations such as hardware memory.

Definition 6 (Hyperparameter). A hyperparameter is a parameter fixed before the training of
a ML model Aλθ hyperparameterized by a set of HPs λ ∈Ω, where Ω is the set of all possible HPs
combinations.

Like data, HPs can be of various types, continuous, discrete, categorical, etc. Compared
to manual tuning, the advantage of HPO is the higher flexibility offered by the design of Ω.

HPO consists of two nested maximization problems, one on Dtrain and the other on Dvalid.
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Figure 2.4: Nested cross validation

Definition 7 (HPO). Given a ML model Aλθ, s.t. θ ∈Θ, λ ∈Ω, a parameter space Θ, a search space
Ω, a training dataset Dtrain ⊂D, a validation dataset Dvalid ⊂D and a single or two different risk
functions L(1,2)D . The mono-objective HPO process can be written as:

λ⋆ ∈ argmax
λ∈Ω

L
(1)
D (A

λ
θ⋆ ∣θ

⋆ ∈ argmax
θ∈Θ

L
(2)
D (A

λ
θ,Dtrain) ,Dvalid) . (2.9)

Note that in definition 7, one can use two different loss functions for HPO and the training
phase of a neural network. For example in classfication tasks, the training can optimize the
binary crossentropy, while the HPO optimizes the accuracy.

The algorithm 2 describes sequential HPO using an abstract optimizer denoted as O. This
optimizer takes the previous HPs combination and its associated loss, the search space Ω

Example: Hyperparameter

Example of hyperarameters could be:

• Lagrange multiplier in Ridge regression.

• Kernel type in SVM (RBF, Matèrn 5/2, ...).

• Number of neurons of a ANN or SNN.

• Maximum depth of a decision tree.

• Number of neighbors in K-Nearest Neighbors.
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and returns the next set of HPs to evaluate. In practice, the line 17 is replaced by a training
algorithm, i.e. gradient backpropagation for ANNs. In this algorithm, HPs combinations are
evaluated one after each other. Strategies as EA return batches of HPs combinations. Thus,
we discuss in chapter 3 parallelization strategies to accelerate the HPO process.

Algorithm 2 Sequential HPO

Inputs:
1: Dtrain Training set
2: Dvalid Validation set
3: Dtest Test set
4: A∅∅ ML algorithm to be tuned
5: LD Risk function
6: O Optimizer
7: Ω Search space

Outputs: Aλ
⋆

θ⋆ , losstest
8: λ⋆←∅ Best HPs combination
9: θ⋆←∅ Best parameters

10: bestL←−∞ Best validation loss
11: λ←∅
12: θ←∅
13: loss←−∞
14: while stopping criterion not met do
15: λ←O(λ,loss,Ω)
16: θ′ ∈ argmax

θ∈Θ
LD (A

λ
θ,Dtrain) Train

17: lossvalid←LD (A
λ
θ′ ,Dvalid)

18: if lossvalid > bestL then
19: λ⋆← λ
20: θ⋆← θ′

21: bestL← lossvalid

22: losstest←LD(A
λ⋆

θ⋆ ,Dtest)

Constrained optimization

Constrained HPO consists of tuning models while being under specific constraints, such as
limited computational resources or budget [123, 260]. Unlike unconstrained optimization
freely searching over Ω, constrained HPO incorporates these practical limitations directly
into the HPO process. This ensures that the resulting ML models achieve high-performance
and meet essential real-world requirements. Such approaches help ML to be more applicable
and effective in practical deployment.

In practice, some HPs values are incompatible with each other and can result in unfeasible
solutions. Thus, modeling constraints helps to improve the coherence of Ω toward technical
or real-world requirements.

A constraint can be known and directly modeled within the search space Ω. For example,
the parameters of a CNN with stride, padding, and dilation (see section 2.2), result in precise
constraints defined by an equation. Other constraints are hidden or black-box [99], i.e. a
violation can only be noticed by training or validating a model.

To address constraints, in this work we adopt two approaches. Penalization consists in
modifying the output of LD(Aλθ,Dvalid) so to reflect the value (if measurable) of the violation.
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The second method, known as rejection, discards solutions violating the constraint. This
approach will be applied to hard constraints such as hardware memory limitations. Other
approaches can be applied in specific cases [260]. Repairing transforms an unfeasible solution
into a feasible one, whereas preserving adapts the optimizer O so to sample only valid
solutions [260].

In chapters 5 and chapters 6, measurable black-box constraints will be applied to the
HPO of SNNs. We consider a set of n real valued constraints C ≜ {c1, . . . ,cn}. Hence, we can
rewrite the definition 7 so to handle these constraints. A constraint c is considered violated if
c ≥ 0:

λ⋆ ∈ argmax
λ∈Ω

L
(1)
D (A

λ
θ⋆ ∣θ

⋆ ∈ argmax
θ∈Θ

L
(2)
D (A

λ
θ,Dtrain) ,Dvalid) , s.t. ∀c ∈ C, c < 0 . (2.10)

Multi-objective optimization

In section 2.2, works tackling multi-objectives are presented. In real-world applications, op-
timizing a single criterion is often too simplistic. The usual single-objective HPO maximizes
the prediction quality of a ML model. In multi-objective HPO, the optimizer has to achieve a
tradeoff among several and often conflicting criterions (accuracy, memory, latency, etc.) [123].
This process typically results in a Pareto front, i.e. a set of non-dominated solutions where no
single solution is superior across all objectives. Like constrained optimization, this approach
provides greater flexibility and enables the development of models that better meet the
diverse requirements of real-world applications.

Considering a set of n objectives written as a risk-like function (definition 2)
F ≜ {f1, . . . , fn}, where f1 = LD as we always optimize predictions’ quality. The focus is on
multi-objective HPO and not on the specific training of a ML model. So multi-objectives
HPO can be written as:

λ⋆ ∈ argmax
λ∈Ω

(f1(Aλθ⋆ ,Dvalid), . . . , fn(A
λ
θ⋆ ,Dvalid)) ,

s.t. θ⋆ ∈ argmax
θ∈Θ

LD(A
λ
θ,Dtrain) .

(2.11)

Multi-fidelity optimization

Multi-fidelity [20] optimization accelerates the AutoML by considering models with varying
degrees of accuracy and fidelity. High-fidelity models are often computationally intensive
and time-consuming. Whereas, lower-fidelity models are usually considered less precise but
much faster to evaluate. In ANNs and DNNs, fidelity can be explained by the number of
epochs or the size of the training set. Then, by allowing the optimization process to have
the hand on components or HPs describing fidelities, AutoML incorporates both higher and
lower-fidelity models to improve the search strategy. By gathering knowledge from both
high- and low-fidelity sources, multi-fidelity optimization can reduce its computational cost,
allowing faster convergence toward an optimal solution.

2.1.2 Neural Architecture Search

NAS is a method for automatically building neural network architectures (depicted in fig-
ure 2.5) aiming to find an optimal ANN design for a given task [123, 108, 260, 244]. By
exploring a search space of possible architectures, NAS algorithms search for the best combi-
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Example: Modeling a drop of water.

This non-ML example allows understanding how the fidelity of a simulation impacts
its quality. The better the simulation, the higher the computational cost.

nations of layers, topology, and sometimes HPs to maximize LD. This process often involves
reinforcement learning, EA, or gradient-based methods to guide the search efficiently.
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Figure 2.5: Example of different network architectures

An ANN architecture can be modeled by a DAG made of a finite number of nodes. A
node represents one operation (convolution, pooling, linear, attention-based, etc.) or a series
of operations. So, the search space Ω of a NAS models the set of all possible architectures
and topologies among a set of defined layer operations (nodes).

NAS is not addressed in this manuscript. However, it is discussed briefly, as only a limited
number of studies have applied NAS to SNNs. Additionally, our contributions could also be
applied to NAS.

2.1.3 Advantages, common issues and remarks

Beyond simplifying and improving the design of ML solutions, AutoML allows fair compar-
isons between models [123, 290]. Because HPs are bounded to specific tasks and problems,
comparing performances of a model with default HPs to a model with manually or auto-
matically tuned HPs appears arbitrary [16, 123, 16, 260, 20, 290, 20, 244]. AutoML also
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helps to improve ML interpretability by heavily exploring numerous and counter-intuitive
configurations and architectures.

However, AutoML, HPO and NAS suffer from multiple drawbacks. While reducing
arbitrary user decisions, human-in-the-loop interactions are still necessary within different
steps of the process [123, 16, 20, 290, 120, 244]:

• Algorithm selection: Selecting the optimizer requires prior knowledge about the prob-
lem and is prone to the No Free Lunch theorem. Additionally, the choice should be
informed by available resources, budget, model’s computational complexity, conver-
gence rate, etc.

• Search space: Identifying relevant HPs for given metrics, their bounds, or nodes
operations in NAS, is left to the discretion of the user. Wrongly adding an unnecessary
HP to a search space exponentially increases its geometrical complexity due to the curse
of dimensionality. Moreover, search spaces are complex regarding the heterogeneity of
the HPs’ nature (discrete, continuous, categorical, etc.).

• Benchmarking: Benchmarking AutoML algorithms is a challenging task. Notably,
because of the wide variety and computational complexity of the problems. Some
initiative exists, such as the COCO [103] benchmark for continuous global optimization.
HPOBench [59] could also be considered for specific HPO tasks. Thus, performances
of optimizers cannot be ensured for all ML problems. The benchmarking efforts aim
to evaluate optimizers on the most common problems, helping to infer what could
be the results when an optimizer is applied to similar tasks. Defining comparability
metrics and properties is necessary. A tradeoff between convergence speed and solution
quality is necessary when dealing with a restricted budget. Should we prefer heuristics
or metaheuristics to algorithms with proved and bounded convergence?

• Replicability and randomness: Results of most ML models are subject to stochasticity.
Even optimizers have their own HPs and so are sensitive to certain families of prob-
lems. AutoML and ML involve many layers of software and hardware: linear algebra,
programming language, operating systems, drivers, data storage, etc. Because of these,
exactly replicating results appears to be nearly impossible.

• Overtuning, overfitting and generalization: The almost ideal approach would be a
systematic use of nested cross validation, which is in practice untractable to expensive
problems. Even the train-validation-test splits are not always used, particularly with
manual tuning and within the SNNs community [294].

• Black-box optimization: Usually AutoML is applied to black-box objective function of
ML model where information is almost inaccessible, e.g. no derivatives.

• Scalability: AutoML is subject to the curse of dimensionality, making optimizers more
or less efficient according to the problem. Scalability also concerns parallelization,
which is discussed in chapter 3. For instance, GS scales poorly in dimensions but is
embarrassingly parallel, whereas BO scales better but is trickier to parallelize.

• Stopping criterion and budget: Defining a sufficient budget or when to stop the opti-
mization algorithm is challenging [20]. For algorithm comparisons, a fixed number of
evaluations is usually set, as it is independent of any hardware platform. However, it
can appear unfair when algorithms have to do costly computations to identify a new
candidate to evaluate (e.g. GP-based BO). Another approach would be to set a minimum
required risk function value to reach before stopping, but it involves the knowledge of a
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feasible performance. Convergence or stagnation-based stopping involves knowledge of
the problem and of the algorithm, so to prevent stopping the optimization too early. For
instance, because of an intensive exploration, improvement of the current best-known
solution cannot be ensured before exploiting the gathered information. In this thesis,
our main stopping criterion is time because the resources are limited, shared among
multiple users, and expensive in terms of electricity consumption. The HPO algorithm
has to be as fast as possible to ensure minimum performances.

2.2 Hyperparameter Optimization of Spiking Neural Net-
works

While HPO is a well-established approach in ML where it plays a growing role in the design
of efficient models, its application to SNNs introduces unique challenges and opportunities.
In the following lines, we describe how usual HPO algorithms are applied indiscriminately
to both ANN and SNNs. Thanks to the following state-of-the-art, in chapters 5 and 6
we introduce how the adaptation of HPO strategies improves the process. Indeed, the
temporal dynamics and event-driven nature of SNNs demand close attention for tuning HPs.
Transitioning HPO methodologies from traditional ML to SNNs involves addressing these
complexities to fully harness the potential of neuromorphic computing.

The objective of the following sections is to understand the impact of all HPs at the
component scale. Their behavior on the network performances are discussed in chapters 5
and 6.

2.2.1 Common hyperparameters

One of the first steps of HPO described in section 2.1, is the HPs selection and search space
design. We saw that AutoML aims at limiting the human-in-the-loop interactions. Hence, the
few steps in which user knowledge is needed are crucial [123, 290, 16, 260]. The garbage-in,
garbage out concept, usually linked to data science, can be transposed to HPO as optimizing
in a poorly defined search space results in worthless optimization. Then, selecting relevant HPs
and defining their domain in such a way that reachable solutions range from intuitive to
counter-intuitive, or from unfeasible to feasible, is challenging.

Manual tuning and single HP studies are commonplace in the ANNs community [249] as
well as in the SNNs community. Because neuromorphic computing ranges from neuroscience
to electronic [238], HPs are often set by default according to biology [88, 298, 130, 114].
However, HPs combinations cannot be generalized to all ML tasks [125] because of the No
Free Lunch theorem. Conversely to ANNs, SNNs are known to be very sensitive to their
HPs [28, 102, 195]. The complexity of the neuron model and its numerous HPs impact the
local and global dynamics of the networks. This underlies the necessity to better explore
HPO of SNNs.

HPO of SNNs is sparsely explored in the literature [195], and hardly ever addressed from
the AutoML perspective. Parameter (definition 3) and HP (definition 6) are sometimes used
interchangeably [293]. The frontier between parameters and HP becomes blurry in some
scenarios. For example, in neuroevolution [237], parameters, some HPs and the architecture
are jointly optimized via an EA strategy. Hence, some parameters of the EA become the
HPs [206, 203] to be optimized, e.g. population size or mutation rate. We consider the
synaptic weights W of a SNN to be its parameters by default. Sometimes other aspects can
be learned. This is the case for the synaptic delays in SLAYER [247] or the neuron leakage in
PLIF [70].
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Some works might employ ambiguous terms and sometimes deviate from the usual
HPO standards described in section 2.1. Names of AutoML frameworks, such as NNI [180]
or Optuna [3], are sometimes wrongly employed as the optimizer name (see chapter 3).
Describing the hardware used, experiment duration, or even computational cost of training is
not widely spread. To improve reproducibility and peer review, the community could greatly
benefit from systematic information on the technical details. In the HPO standpoint, such
information is of the upmost importance, as it allows to better estimate room for maneuver.
Indeed, the choice of the optimizer, the allocated resources, or the budget is significantly
different if a SNN takes a few minutes or hours to train.

We propose to group SNNs HPs into 5 groups, used in tables 2.1, 2.2 and 2.3:

• G1 : Neuron model

• G2 : Learning rule

• G3 : Architecture

• G4 : Encoding and decoding

• G5 : Resource, system management and regularization HPs

Neuron model

The neuron is the main component of a SNN. It describes how a network integrates asyn-
chronous spikes or action potentials through time. Because neuromorphic computing covers
numerous domains, a wide range of neuron models is available depending on the task,
bio-plausibility, or hardware [89, 130, 114, 42, 225, 246, 257].

In this work, we focus on the LIF neuron [90, 33, 193]:

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

τleak
dV
dt = −(V −Vrest)+RI , ifV < Vth

V = Vreset , else
. (2.12)

The spiking output of this neuron at a time t is modeled by

s[t] ≜

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

1 , ifV [t] > Vth

0 , else
, (2.13)

or sometimes [193] written using the Heaviside step function H :

s ≜H(V −Vth) . (2.14)

Then, equation 2.12 can also be written as:

dV
dt
≜ −

1
τleak

((V −Vrest)+RI)+ s(Vreset −Vth) (2.15)

Parameters are, V the membrane potential, I the synaptic current, t the time, τleak
membrane decay time constant, R membrane resistance, Vth membrane threshold, Vrest
membrane resting potential and Vreset the membrane reset potential.

Equations 2.12 and 2.13 describe the most common model of a LIF. In the literature,
other notations describe similar dynamics. For instance in [51], the LIF equation uses
architecture-specific HPs (e.g, Eexc and Einh). Additionally, the way a differential equation is
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implemented can differ from a simulator to another. In Brian2 [252] the equation is solved
by using numerical methods such as Euler-Maruyama or Runge-Kutta methods [102]. This
variability in the implementations may cause reproducibility issues. Furthermore, owing to
the sensitivity of the neuron HPs, results can diverge significantly when transitioning from
one simulator to another or when transitioning from simulation to hardware implementations.
Hence, it is important to have precise documentation about neurons, but also about other
SNN components (e.g. learning rules). A challenge when designing the search space for an
HPO, is to define the boundaries of these HPs. Then, it is essential to study the behaviors of
the selected simulator or hardware to define these bounds.

Nonetheless, we can find common HPs to the different implementations of a LIF. The two
most important ones appear to be the threshold Vth and the leakage time constant τleak. If the
implementation is more biologically accurate, we can include a reset Vreset or a resting Vrest
potential. These HPs can also be considered as it modifies the dynamic. It also introduces
some constraints, as Vreset < Vth and Vrest < Vth, which complicates the search space definition
and HPO process. The ability of LIF to filter noise and act like a filter is one of its main
advantages [33]. HPO becomes an interesting approach to adapt LIF HPs to a given noisy
problem.

We can extend the dynamic of equation 2.12 by adding a refractory period tref, i.e. a
period during which a neuron that has recently spiked becomes inactive. This HP is often
expressed in milliseconds or time steps depending on the hardware or simulator.

Example: Membrane dynamic of a LIF

0 5 10 15 20 25 30 35 40 45 50

−0.5

0.5

1.5

Vth

Vrest

Vreset

1/τleak
tref = 10RI

H(V −Vth)

I

t

V

The above example allows understanding all HPs of a LIF at the neuron scale. The
impacts of HPs at the network scale is discussed in chapters 5 and 6.

To tackle the dead neuron problem, one can also extend equation 2.12 with a certain form
of homeostasis called adaptive threshold [257, 51]. This mechanism is modeled by two HPs:
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θ⊕ and τθ. Then, the dynamic of a single neuron becomes:

τ dVdt = −(V −Vrest)+RI

dθ
dt = −

θ
τθ

} if V < Vth +θ

V = Vreset

θ = θ +θ⊕
} else

(2.16)

One drawback of adding refractory period or threshold adaptation mechanisms is the
increase in memory and computational complexity [25]. It also complicates the search in a
HPO scenario, as it increases the dimensionality of the search space. Their implementation
might also differ according to the software simulator or hardware platform.

Thanks to SNNs properties, it is theoretically possible to individually tune each neuron
HPs. As well as for plasticity rules, which could be locally defined for each synapse. However,
it is practically infeasible to tune each neuron and synapse HPs due to the combinatorial
explosion of possible solutions. An alternative could be a high dimensional HPO considering
HPs by groups of neurons or layer by layer (see chapter 6).

Example: Adaptive LIF
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Figure 2.6: LIF (left) and Adaptive LIF (right).

Learning rules

In this manuscript, we consider two learning rules: the standard STDP [90, 275], and
surrogate gradient backprogragation [193, 247].

The unsupervised STDP equations described in chapter 1 equation 1.7, are untractable as
it implies keeping in memory all spike timings. To approximate theoretical STDP, a trick
is to use traces of pre- and post-synaptic activity (apre,apost) for each neuron. A trace is a
time-dependent local memory of the previous spiking activity of a neuron. Many equations
and versions of STDP are available.
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Figure 2.7: Impact of HPs on STDP.

The STDP learning rule (Bindsnet) can be written as:

τpre
dapre
dt = −apre

τpost
dapost
dt = −apost

apre = apre +Apre

w =w−λpreapost

⎫⎪⎪
⎬
⎪⎪⎭

if a pre-synaptic spike occurs

apost = apost +Apost

w =w+λpostapre

⎫⎪⎪
⎬
⎪⎪⎭

if a post-synaptic spike occurs

(2.17)

This learning rule introduces 6 HPs. The scale of the traces (Apre,Apost), i.e. ratios of
long-term potentiation. It also introduces, the time constants describing the decay of the
neuron traces τpre and τpost, and (λpre,λpost) the learning rates describing the strength of a
weight variation when a pre- or post-synaptic spike occurs. With this learning rule, each
neuron must implement an additional differential equation describing the trace of previous
spikes. This unsupervised learning rule is often combined with a decoder, e.g. a supervised
learning rule or another supervised ML approach. STDP is depicted in figure 2.7 where a
weight variation relies on the timing between tpre and tpost.

STDP based learning is easily implementable on neuromorphic hardware [134], while
gradient-based training is more challenging as it involves non-local memory [304, 38].

In chapter 1 we defined BP as an offline alternative to train SNNs. However, BP cannot be
directly and easily applied as the spiking activity sj(t) at a time t of a neuron j is defined
as a Dirac-delta function [193]: sj(t) = ∑

t′∈Cj
δ(t − t′) , where Cj are the spikes timing of the

neuron j. This function is constant everywhere, except at 0 where it is equal to∞. Hence,
the gradient of the spiking function is uninformative and unusable for BP. Therefore, a
differentiable surrogate function is used to instead approximate the spiking function.

In this manuscript, we use two surrogate gradient-based approaches. The first one is
known as SLAYER [247]. It was initially applied to SRM neurons. SLAYER2 available within
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(a) Sigmoid surrogate function in SpikingJelly.
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Figure 2.9: Impact of HPs in different surrogate gradient functions.

the LAVA-DL1 simulator, allows backpropagation with adaptive LIF neurons.
To apply BP to SNNs, it is necessary to define the loss and its partial derivative ∂L

∂W (l) w.r.t.

the weights W (l) at a layer l. For a classification task, output neurons are associated with a
label and have to output a certain rate or number of spikes at a time t within a time interval
t ∈ Tint:

eout(t) = ∫
Tint
sout(t′)− ŝ(t′)dt′ . (2.18)

With eout(t) the output error at the last layer at a time t. The target spike train ŝ is in practice
translated into two spike rates: one for the neuron representing the right label νT (True),
and another νF (False) describing a spiking rate for the other output neurons. Actually,
equation 2.18 is simply the MSE loss between the output spiking rate of output neurons and
the required output rates.

SLAYER adopts a strategy consisting in modeling the transition probability between non-
spiking to spiking states of a neuron. This is done by using a surrogate function at a given
time t:

ρ(t) =G∇ ⋅ exp(
min(V −Vth,0)

τ∇
) , (2.19)

where G∇ scales the gradient by a constant to modify the gradient flow across layers, and
tackle vanishing or exploding gradients. The HP τ∇ describes the relaxation of the spike func-
tion. In SpikingJelly [72], it can be the sigmoid function σ(x) ≜ σ(V −Vth) = 1

1+exp(−α∇(V−Vth))

with α∇ a HP defining the quality of the approximation. The derivative is given by ∂σ
∂x =

σ(x)(1−σ(x)). Other functions can also be used, such as the arctangent [70]. These surrogates
and their HPs are illustrated in figure 2.9.

In SLAYER 2, the gradients of the error according to the weights W (l) at layer l are
accumulated through time and expressed by:

∂L

∂W (l)
= ∫

T

0
δ(l+1)(t)(o(l)(t))

⊺
dt , (2.20)

where o(l)(t) is the signal output of layer l. The surrogate is used in the computation of the

1https://lava-nc.org/dl.html

https://lava-nc.org/dl.html
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errors:
δ(l)(t) = ρ(l)(t)W (l+1)δ(l+1) , (2.21)

with δout ≜ ∂L
∂oout (e.g. the MSE on the output spiking rates and targeted rates (νT,νF)).

Now, the gradient is informative and can be backpropagated with usual optimizers such
as ADAM [147]. Thus, we therefore return to usual HPs from the gradient descent with the
learning rate λ∇ or momentum β∇.

To reduce the number of HPs in the neuron model, a few works aim at incorporating some
HPs into the gradient computations. This is the case for the PLIF [70] neuron, where τleak
becomes a learnable parameter:

st =H(ψt −Vth) , Vt =ψt(1−St)+VresetSt , ψt = Vt−1 +
1
τleak

(−(Vt−1 −Vreset)+ It) , (2.22)

where ψt, St, It, and Vt are values at a discretized time-step t. The variable Vt is the membrane
potential, It is the input current, and st is the output spike described by the Heaviside step
function H . Because τleak is learned, only an HP τinit has to be set by the user to initialize
τleak.

Architecture related hyperparameters

SNNs introduce two types of neurons. The inhibitory neurons emit a negative post-synaptic
potential, often modeled by a negative weight between the inhibitory neuron and others.
Conversely, excitatory neurons produce a positive post-synaptic potential [257, 51]. These
two types of neurons are frequently found in reservoir computing and RNN [305, 218]. They
allow modeling more complex dynamics and a higher biological plausibility. In this type of
network, the ratio between excitatory and inhibitory neurons can be optimized.

Furthermore, this dynamic becomes essential in most SNNs trained by STDP. It forms
the basics to introduce competition between neurons, such as WTA or lateral inhibition
mechanisms. It enables certain neurons to only respond to distinct spiking patterns. The
WTA is a broader strategy often used to perform the classification task at the last layer of
a SNN by allowing only one neuron to spike at a time. The strength of the excitation or
inhibition is modeled by fixed weights between layers. These strengths can be optimized
within HPO. In a Diehl & Cook like SOM [51] the strength of excitation and inhibition can
model whether a soft lateral inhibition [106] or a WTA.

ANNs and SNNs share similar architectures, and so common HPs. The most common one
is the feed-forward fully connected network made of l ∈N⋆ layers, where a layer 1 ≤ i ≤ l is
defined by a number of neurons n(i). Here, n(i) can be optimized, and no specific constraints
are needed except n(i) ∈N⋆. The lower and upper bounds can be defined considering memory,
computational, or search space complexities [259].

Concerning CNNs, two approaches exist. On the one hand, there is the usual approach
with weight sharing during the training, involving non-local shared memory. On the other
hand, lateral inhibition can be used in a CSNNs without weight sharing [231, 88]. In a
local memory CSNNs, each filter is made of a spiking SOM [231]. It also requires additional
inhibitory connections between filters and no weight sharing. This approach greatly increases
the memory footprint of a local memory CSNN compared to the usual CNN. Both methods,
local-memory CSNN and non-local-memory CSNN can be considered, even on neuromorphic
hardware [116, 292, 137]. The two approaches have common HPs, such as the number of
filters, the kernel size (k(i)), dilation (d(i)), stride (s(i)), or padding (p(i)) for a layer i. While
tuning the number of filters is straightforward, k(i), d(i), s(i), and p(i) presents a significant
challenge as these HPs are under complex constraints. These involve constrained dynamic
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Example: 2D gradient descent
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Figure 2.13: λ∇ = 0.1, β∇ = 0.8

Examples of different learning rates applied to gradient descent on the function
f (x1,x2) =

5
4(x1 + 6)

2 + (x2 − 8)2 (from [242]). The arrows show the gradient vector
field scaled by its norm. In (2.10), λ∇ can be considered acceptable face to the con-
vergence. In (2.11), λ∇ is too high as the gradient descent overshoot the optimum. In
(2.12), λ∇ is too low as it converges too slowly. The example (2.13) illustrates gradient
descent accelerated by the momentum.

search spaces [259]. Indeed, for each input dimension I of each convolutional layer i, the
constraint is:

⌊
I +2p(i) −d(i)(k(i) −1)−1

s(i)
+1⌋ ≥ 1 . (2.23)

Hence, s(i), d(i) and p(i) are often fixed and only k(i) is optimized by restraining its bounds
to only feasible solutions [88], or by selecting different convolutional architectures [205].

Encoders and decoders

The encoding of input data is a hot topic within the SNNs community. The usage of analog
DVS datasets, rate- or latency-encoded numerical datasets is subject to debates [294, 238,
235, 26]. In our HPO standpoint a question remains: Is the choice of an encoder or preprocessing
could be simply solved by HPO which would select the best encoder for a given problem [213]?

Usually, the MNIST dataset [153] and other numeric datasets, are converted into spikes
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Example: CNN filter

d(i) = 1

s(i) = 6

p(i) = 1

d(i)(k(i)−1)+ k(i) = 1(3−1)+3

Example of a k(i) = (3×3) convolution filter sliding to the right with a step of s(i) = 6.

using a Poisson distribution [110]. Other methods exist, such as Time-To-First-Spike, Phase
or Rank coding [11]. These methods have a common HP T describing the sampling time, i.e.
the maximum time duration a data is exposed to the network or time needed to encode a
numerical value into spikes.

In [101], authors investigate the impact of each encoding methods and sampling time
on a SOM accuracy, latency, and synaptic operations. They studied the impact of pruning,
quantization, noise, synaptic noise, and synaptic fault for four encoding schemes within
neuromorphic systems. They trained SNNs on the MNIST and FashionMNIST datasets.
Surprisingly, TTFS coding appears to have the best performances, but it is less robust to
noise.

For DvsGesture [10], no encoding is needed. However, due to the high temporal resolu-
tions, a preprocessing is often required before passing data to the network. In [35], authors
gathered spikes at a 1 microsecond time resolution, resulting in T = 150 timesteps also called
frames.

Because the outputs of a SNN are spikes, a decoder is necessary to translate spikes into
a workable value. Particularly with SNNs trained by unsupervised STDP. In this case, a
supervised decoder needs to be trained.

We focus on classification tasks, but different decoders might be used according to the
application [235]. Decoding outputs is challenging as the selected decoder might not be the
best one for a given problem or network [150]. Some decoders are bound to the architecture
of the SNN. Max spikes or Average spikes work well when the output layer is under a lateral
inhibition or WTA mechanism [51]. In [106], a comparison between different approaches
is made. It includes unusual ones such as n-grams. Other ML-based methods can be used,
but are untractable to neuromorphic hardware. For instance, softmax regression [305] or
SVM [68]. In [235], authors showed the impacts and the relation between encoders and
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decoders on the quality of SNNs performances for different types of tasks. Concerning
gradient-based SNNs applied to a classification task, the training process usually assigns an
output neuron to a target class. In SLAYER [247], different loss functions are available to
decode outputs such as max spikes, spike rate, or spike timing.

Example: Encoding pixels
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Above is an example of Poisson encoding, and below is an example of TTFS encoding
of three pixels.

Resource, system management and regularization hyperparameters

In this section, we discuss other HPs that cannot be classified within the previous categories
or that are less studied in the SNNs community. We can consider generic HPs grouped within
the training pipeline of ANNs and SNNs, e.g. number of epochs or batch size. For STDP based
SNNs implementing batch computation is harder due to the online training. Nonetheless,
some specific rules or adaptations exist, showing effects on the SNN performances [233, 55].
While for SNNs trained by surrogate gradient, it is straightforward and similar to usual
ANN [29].

Other HPs are linked to specific methods, such as weight normalization [51, 194], dropout
rate [194], regularization terms [194, 200] or pruning [224, 60]. These HPs can leverage the
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homogeneity of the spiking activity within the network, akin to mechanisms of homeostasis.
HPs from these methods can also be optimized within HPO because it has an impact on the
performances, the spiking activity, and overfitting. Many other HPs we did not mention
could also be tuned. These can be related to the hardware [203], quantization, parallelization,
multi-fidelity, etc.

Example: Pruning and dropout
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Figure 2.14: Feed Forward Architecture
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Figure 2.15: Pruning
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Figure 2.16: Neurons dropout

Example of pruning and dropout applied to a feed-forward network. Here, ni corre-
sponds to the number of neurons per hidden layer. Pruning is generally described as
discarding synapses with a weight lower than a certain value. Dropout can be expressed
as a probability to discard a neuron.

2.3 Related works

2.3.1 STDP-based SNNs

In [31], a SMBO approach was applied to a spiking Reservoir made of SRM neurons and
trained with STDP. The dataset is made of artificially generated time series. Seven HPs were
optimized. Some are linked to STDP, such as both traces of time constant (τpre, τpost) and
ratios of long-term potentiation (Apre, Apost). One HP is linked to the neuron model. Three
other HPs describing network topology (initial inhibitory and excitatory strength) are also
optimized. Experiments indicate that the initial value of inhibitory weights, and the HP of
the neuron model have a greater impact on the accuracy than the learning rates of STDP.
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However, no analysis of the spiking activity is made to explain these results. The authors
suggest a more advanced study and the use of a better BO technique.

EAs are also applied to such problems. In [217], the Diehl & Cook SOM architecture [51]
trained using STDP in a federated learning environment is used to classify MNIST and
FashionMNIST. The authors applied 5 different metaheuristics, Cuckoo Search, Whale Opti-
mization, Polar Bears, Grasshopper Optimization and Salp Swarm. The best accuracies found
were respectively 89% and 82%. Six HPs were optimized: number of neurons, excitatory
strength, inhibitory strength, neuron threshold, threshold potential decay, and µ a STDP
coefficient specific to their work. Similarly, Guo et al. optimized the same architecture using
a GA. To reduce the network latency and maximize its performances, the fitness function is
made of the accuracy and the sum of time constants. They optimized θ⊕ for the threshold
adaptation, both STDP learning rates, and both pre- and post-synaptic traces time constants.
They achieve 86.54% accuracy on Poisson-encoded MNIST. Their work highlights that time
constants with high values give higher accuracies but slower convergence. The authors also
studied the impact of the approximation made by numerical methods (Euler and third-order
Runge-Kutta) on the accuracy and FPGA implementation. They pointed out the high sen-
sitivity of SNNs to their HPs and the computational complexity of simulated SNNs. Their
training took up to 11 hours for a simple two layers SOM architecture.

In [241], the authors did not perform an HPO, but have empirically demonstrated the
relation between accuracy and the number of output neurons of a RBM trained with STDP.
The higher the number of neurons, the better the accuracy. They achieved a maximum of
89.4% of accuracy on MNIST.

STDP-trained SNNs with Locust Lobula Giant Movement Detector (LGMD) model was
also optimized in [230]. They used RS, three BO techniques, DE and Self-adaptive DE.
Authors were able to optimize up to 18 different HPs of 4 similar architectures implemented
using Brian2 [252]. They applied these models to the detection of looming and nonlooming
stimuli on an in-situ DVS recorded UAV dataset.

Classifying DvsGesture using STDP is a tough task, notably due to the spatio-temporal
features and to the heterogeneous distribution of spikes among classes. In [88], a CSNN com-
bined with a reservoir was used. Outputs are decoded with a logistic regression. The authors
compared different networks with hand-tuned HPs linked to the architecture and topology.
HPs of STDP, neuron model, and homeostasis are fixed. They achieved a 65% of accuracy
with a network of 3.1764 millions of parameters. DvsGesture was also classified in [129]. The
authors applied a combination of unsupervised STDP and supervised Tempotron on a SOM
like architecture. The model achieved 60.37% of accuracy on an augmented dataset. The
authors manually studied the impact of the inhibition strength (see D&H architecture [51,
106]) and the number of neurons. It appears that training with augmented data and a large
number of neurons gives the best accuracy.

The work in [262] is more neuroscience-oriented. The authors optimized 6 HPs using
cross validation and BO applied on classification of electroencephalography (EEG) measure-
ments. The architecture is made of a reservoir followed by a deSNN. The deSNN encodes
spatio-temporal spiking patterns from the reservoir. The output generates a static vector
representation, which is passed to a supervised decoder, here a SVM. Most of the HPs (4) are
linked to a complex ML-based encoding method, and the two other ones describe the deSNN.

Table 2.1 sums up some of HPO techniques applied to STDP-based learning. HPO
algorithms range from Manual (Man.) tuning to BO. HPs are grouped according to their
SNNs components. Each group contains the number of HPs tuned during the optimization
or manually studied. One can notice that HPs linked to the neuron model (G1) are not
often optimized. Usually, the architecture’s HPs (G3) are tuned. The learning rates (G2)
are sometimes optimized. In the G4 group, i.e. encoding and decoding, the sampling
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time T is frequently considered as well as the decoder [106]. It is important to notice
that the optimization is typically mono-objective and maximizes the classification accuracy.
Sensitivity (Sens), Precision (Prec) and Specificity (Spec) are considered in [230], but not
within a multi-objective HPO. The total number of studied HPs is described in the column
"#". A question mark ’?’ indicates the absence or ambiguity of information.

2.3.2 Gradient-based SNNs

As in usual gradient-trained ANNs, HPs are often manually studied one-by-one, trying to
infer general behaviors. In [249], some ANNs behaviors are studied for several architectures
and datasets. For example, the authors discussed various subjects independently, such as
underfitting, overfitting, batch size, learning rate, momentum, and weight decay. Similar
works also exist within the SNNs community. In [295], the authors manually reviewed
diverse SNN components on multiple architectures and datasets such as SHD, SSC, NMNIST,
DvsGesture, MNIST and CIFAR10. A close attention is dedicated to the LIF neuron by
performing an ablation study on its leakage, recurrent connections, and reset mechanism.
The temporal resolution of input data was also investigated. The authors show that the
absence of leakage significantly reduces generalization, especially when temporal resolution
is low. Surprisingly, adding recurrent connections between neurons decreases performances.
It is noticed that leakage and recurrent connections have a higher impact than the resetting
mechanism.

Energy consumption and spiking activity are also of interest for gradient-based SNNs.
In [35], the authors discuss the impact of sparse convolutions on the internal spiking activity
of the network on the DvsGesture dataset. They have also explored the impact of the sample
duration on the accuracy. They concluded that the longer the sample duration, the better the
accuracy, until a certain value, after which accuracy remains almost constant. Furthermore,
they performed a GS to fix the HP α∇ used to approximate the gradient of the Heaviside
function.

BOHB was used on CIFAR-100 classified by the S-ResNET38 architecture. The algorithm
optimizes a 3 HPs search space made of: leakage τleak, timesteps T and learning rate λ∇ [274].
BOHB [69] is a multi-fidelity state-of-the-art algorithm for HPO [20]. It combines BO[84]
and Successive halving [158]. The authors also did a comparison between accuracy and
sample duration. They have tested 10, 20, 30, 40, and 50 timesteps and showed a relation
between the leakage factor of the LIF and time steps. Empirical results emphasize that
by reducing the number of time steps, one can adapt the leakage to counterbalance the
accuracy loss due to shorter samples. Moreover, other works based on surrogate gradient
show the impact of the neuron threshold on the accuracy [2]. Another work [15] studied the
impact of the LIF on performances and proposed a new version of adaptive LIF allowing
resonance. The authors showed that the LIF responds to a higher input spike frequency by a
higher amplitude of the membrane V . Whereas the adaptive LIF reacts to certain frequencies
depending on its HPs. Experimental results are obtained on RSNN and LSTM architectures
trained by SLAYER to classify the SHD dataset [39]. HPO with Hyperband [158] was applied
on some adaptive-LIF HPs. Using previously optimized solutions, other HPs were manually
investigated on different datasets (SSC and ECG). The authors discuss the high impact of
the leakage constant τleak and SLAYER’s HPs (G∇ and τ∇) on LIF networks. But it is unclear
which HPs were optimized.

HPO was also applied on a 3 layers CSNN trained by NormAD [150]. The authors
obtained an accuracy of 98.17% on MNIST where pixel intensities are directly converted
into input current. The work manually optimized images’ presentation time T , number of
convolution filters k(i), and learning rates λ∇. For current-based encoded MNIST, the authors
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Table 2.1: Summary of hyperparameter optimization of STDP trained networks.

Sim./Hard. Data Arch. Train Opt. G1 G2 G3 G4 G5 # Obj. Src

Brian2
Custom

QUAV DVS
LGMD STDP 2 EAs, 3 BOs 6 4 8 0 0 18

Acc, Sens,
Prec, Spec

[230]

Bindsnet
MNIST, Fash-
ionMNIST (P)

SOM STDP 5 EAs 2 1 3 0 0 6 Acc [217]

Brian2, FPGA MNIST SOM STDP GA 1 5 3 0 0 9
Acc, time
constants

[102]

Bindsnet MNIST SOM STDP Man. 0 0 2 1 1 4 Acc [106]

Bindsnet DVS-Gesture
CSNN +
Reservoir

STDP Man. 0 0 4 0 0 4 Acc [88]

? DVS-Gesture SOM
STDP +

Tempotron
Man. 0 0 3 0 1 4 Acc [129]

N2S3 MNIST RBM STDP Man. 0 0 1 0 0 1 Acc [241]

MegaSim,
FPGA

MNIST,
DVS-Poker

SNN STDP Man. 1 1 1 0 1 4 Acc [297]

Spyker MNIST CSNN STDP GS 1 0 0 0 0 1 Acc [245]

Matlab EEG
Reservoir +
deSNN

STDP BO 0 0 0 4 2 6 Acc [262]
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empirically show that a 100ms exposition time is optimal. Lower and higher values result in
lower accuracy.

Manual optimization was also applied on G3 HPs (architecture) [21]. In this work,
a hybrid CNN-SNN network of adaptive LIF neurons is optimized to classify the TIMIT
dataset [85]. The CNN part is used to encode waveforms into spikes that are then classified
by the SNN. The authors investigate each HP separately. They optimized the number of
layers and number of neurons for each layer of the SNN. Their experiments indicate that
more neurons or layers do not necessarily result in better performances. They optimized
the duration in milliseconds of a simulation time step, i.e. time resolution, showing that
higher resolution significantly increases the computation cost of the training. However, it
does not improve the performances. For a time resolution of 5ms the duration of an epoch is
about 21 minutes, while for 1ms the cost is multiplied by 7, reaching 156 minutes per epoch.
Furthermore, manual tuning was applied to the number of CNN filters and to the proportion
of connectivity between feedforward layers.

In [240], the authors recorded a 19400 radar-based hand gestures dataset and classified it
using a CSNN of LIF neurons trained by surrogate gradient. The arctan function was used
to approximate the derivative of the Heaviside function H ′. The authors properly divided
the dataset into train-validation-test splits and used the Optuna [3] library to perform HPO
on 5 HPs: the learning rate of ADAM λ∇, weight decay (L2 regularization [131]), the LIF
threshold, and leakage, resp. Vth and τleak. The quality of the gradient approximation α∇
is also considered. Unfortunately, the authors did not precise the algorithm used for HPO,
but 200 solutions were evaluated to tune these HPs. Similarly, in [199], GS, RS and BO were
applied on the learning rate λ∇, the true and false outputs spiking rates, resp. νT and νF.
The work focuses on a CSNN applied to MNIST and audio MNIST encoded into spikes. RS
appears to perform better, but too little information about the process is given to conclude
strongly. In [222], BO was also used to optimize a 1 hidden layer feed-forward SNN of LIFs
to classify SHD. The authors studied meta-learning (MetaL) using the MAML algorithm and
applied HPO to tune 5 HPs: the 2 learning rates from MAML, batch size, the number of
neurons, and the target firing rates at the SNN output.

HPO of SNNs was investigated in astronomy to detect Radio Frequency Interference [219].
The authors optimized a two fully connected layers (2-l) SNN to classify simulated data based
on the HERA dataset. HPO was addressed by the TPE [284] algorithm on 4 HPs: the batch
size, number of epochs, number of encoding timesteps T , and the LIF leakage τleak. The same
optimization algorithm was applied in [226] where a CSNN trained on a bank account fraud
dataset was tuned. The experiments sampled about 50 to 200 HPs combinations and focused
on 7 HPs: learning rate and momentum of Adam λ∇, β1∇, β2∇, LIF threshold Vth for each 3
layers, and the leakage τleak.

2.3.3 Other approaches

EONS [237] is a neuroevolution strategy using EA to tune parameters and hyperparameters
of SNNs. Here, the application is strongly linked to the neuromorphic hardware (Caspian
neuromorphic computing system). Parsa et al. [203] applied BO and GS on EONS. They show
that BO performs better than GS in terms of accuracy. BO optimized a search space of 54
432 000 countable solutions made of up to 11 HPs. They have empirically demonstrated that
HPs of the encoding method and hardware have a greater impact than HPs of the GA used to
train SNNs. The same authors [204] applied H-PABO, a multi-objective BO, on two and three
objectives: network performances, energy consumption, and number of synapses.

Tournament Selection was used to optimize a SNNs trained by ANN-to-SNN conver-
sion [144]. The authors optimized an objective function combining accuracy, spiking activity,
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Table 2.2: Summary of hyperparameter optimization of SNNs trained by surrogate gradient.

Sim./Hard. Data Arch. Train Opt. G1 G2 G3 G4 G5 # Obj. Src

slayer-
PyTorch

DVS-Gesture CSNN SLAYER H-BO 0 4 2 1 1 8 Acc, Lat [205]

LAVA-DL NMNIST CSNN SLAYER lavaBO 3 2 0 0 0 5 Acc [251]

Pytorch
CIFAR-10,
CIFAR-100

S-Resnet SG BOHB 1 1 0 1 0 3 Acc [274]

Custom
CUDA-C

MNIST CSNN NormAD Man. 0 1 1 1 0 3 Acc [150]

Tensorflow
Monkey J
Maze

LFADS SG PBT 0 1 0 0 4 7 R2 [139]

snnTorch FSDD CSNN SG BO, RS 2 0 0 1 0 3 Acc [156]

snnTorch
Radar Hand
Gesture

CSNN SG ? 2 3 0 0 0 5 Acc [240]

Pytorch TIMIT CNN-SNN SG Man. 0 0 4 1 0 5 PER [21]

?
MNIST, Audio

MNIST
CSNN SG GS, RS, BO 0 3 0 0 0 3 Acc [199]

snnTorch HERA 2-l SNN SG TPE 1 0 0 1 2 4
Acc, MSE,
AUROC,

AUPRC, F1
[219]

snnTorch SHD 1-l SNN MetaL, SG BO 0 2 1 0 2 5 Acc [222]

snnTorch
Bank Account

Fraud
CSNN SG TPE 4 3 0 0 0 7 FPR, Recall [226]
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and inference time to evaluate the performances of a RNN classifying names according to
their origin language. Three HPs were optimized: the neuron threshold Vth, input spiking
frequency, and T the sample duration. The authors compared optimized HPs to the three
selected objectives, and deduced that HPO allows to find more accurate and energy-efficient
solutions with lower inference time. ANN-to-SNN conversion was investigated in [207]. The
authors optimized the ANN HPs before the conversion to a SNN. However, no analysis of the
impact of the HPO is made. They have implemented the network on the Intel Loihi neuro-
morphic chip [41] by applying network quantization. A power consumption comparison is
made between CPUs, GPUs, and Loihi chips [41].

2.3.4 Discussion and remarks

In the previous sections, we presented works applying HPO to SNNs. In figure 2.17, the usual
workflow of HPO applied to SNNs is presented. One can distinguish the blackbox containing
the data preprocessing, the network, the decoding, a simplified training-validation loop, and
most importantly, the input and output spikes. Outside the blackbox are the data, the mono-
or multi-objective HPO algorithm, and the computation of the different objectives.

Blackbox

Hyperparameters

● Threshold
● Learning rate
● ...

Errors

● Accuracy
● MSE/RMSE
● KL divergence
● ...

Spikes

● Spiking activity
● Energy 

approximation

Other

● Latency
● Energy 

consumption

M
u

lt
i-

O
b

je
ct

iv
e

s

Training data

● Encoding
● Denoising
● Rescaling
● ...

Preprocessing

● Classification
● Regression
● Control

Decoding
Spiking Neural Network

Mode

Valid. data

Validation

TrainingNext 
batch

Input 
spikes

Output 
spikes

Stop ?

Figure 2.17: Usual workflow of HPO applied to SNNs

To sum up, the HPO of SNNs is a problem characterized by several properties:

• Black-box: Information such as the derivatives of the objective function w.r.t. HPs are
inaccessible. Data, HPs and prediction errors are the only available information.

• Expensive: Evaluating a single solution takes fromminutes to hours. It requires specific
hardware such as neuromorphic chips or GPU-acceleration. The budget allocated to
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Table 2.3: Summary of hyperparameter optimization of spiking neural networks with various training algorithms.

Sim./Hard. Data Arch. Train Opt. G1 G2 G3 G4 G5 # Obj. Src

NengoDL,
Loihi

Cell U-net Conv. ? 1 2 0 0 4 ? Acc [207]

Tensorflow
PASCAL VOC,
MS COCO

Tiny YOLO Conv. BO 1 0 0 0 0 8
Acc, Spikes,

Lat
[144]

TENNLab,
DANNA2,
mrDANNA

Iris, Radio EONS EONS BO 0 3 0 5 0 8 Acc, En. , Size [204]

TENNLab,
DANNA2

Pole-Balance EONS EONS H-PABO, GS 1 3 0 5 0 11 Acc [203]

Brian2 MNIST, KTH Reservoir ∅ SBO, CMA-ES 2 0 6 1 0 9 Acc [305]
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HPO (e.g. time, money, electricity) is limited.

• Noisy: The evaluation of a single HPs combination is stochastic, i.e. evaluating multiple
times the same solution returns different objective values.

• High dimensional: The search space is made of tens of HPs. In this manuscript, we
focus on automating the search of a wide choice of HPs. Indeed, SNNs have more HPs
than ANNs due to a more complex neuron model.

• Sensitive: SNNs are known to be very sensitive to their HPs. Slightly disturbing the
value of an HP can result in wholly different results. We can link this phenomenon to a
low-conditioned objective function.

In numerous works, HPO was not the main focus of the article. Often, HPO is used to
tune some HPs of new approaches or applications. The process itself and its results are rarely
studied. This lack of interest in the process results in very little information about it. But
more importantly, there is a lack of information about the methodological standard in which
the work takes place. In some cases, this lack of information turns out to produce unreliable
and irrelevant results.

Here is a non-exhaustive list of recommendations gathered throughout this thesis, that
could help to improve readability, reproducibility, peer review, and reliability of HPO applied
to SNN:

• Data:

– Specify the dataset and its repository. If unusual, describe how it is made or give a
direct reference to it.

– Specify the pre-processing steps and its HPs including spike encoding and encod-
ing timesteps. Precising the final shape of data at the input of a SNN helps to
understand the process.

– Specify the splits and their size or proportions: train-valid-test splits, cross-
validation or nested cross-validation.

– If not usual or ambiguous, specify the response and its type. In other words, what
is predicted by the SNN and if it is a regression or a classification task.

• Search space:

– If ambiguous, specify and describe all HPs optimized by HPO and their bounds.
Moreover, describing how they are sampled could help improve the HPO.

– If ambiguous, do not mix within a table, parameters, fixed, and optimized HPs.
Describing fixed HPs is a plus, but giving a reliable source code can overcome this.

– Specify what are the learned parameters and the optimized HPs. In specific cases,
some HPs of SNNs can be trained by gradient descent [70].

• Neuron, Architecture, training:

– Describe the SNN architecture or give a direct reference to it.

– If there is a baseline configuration, giving its performances, training time, and
memory footprint (e.g. number of parameters) greatly helps in designing an HPO.

– Specify the type of training and the optimized loss.
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– Specify or give a direct reference to equations of the neuron model and learning
rules.

– Specify how the output spikes are decoded.

– Giving the number of epochs and batch sizes helps designing a HPO. It allows an
estimation of the required computational resources.

• Simulator:

– If used, specify the simulator or a source code of a custom one.

• Hardware:

– Specify the type of hardware or the fabric if a grid or cluster of ressources is used.

– Specify if any parallelization methods are applied and how they are used to
accelerate the HPO. For instance, indicate if CUDA or MPI is needed.

• Software:

– Indicate the programming language and its version.

– Specify the major packages, their versions, and what they are used for.

– Give a repository with the source code and results of the experiments.

• HPO:

– Specify the optimization algorithm and its configuration. Occasionally, we see a
confusion between the HPO software and the optimizer.

– Indicate what metric is optimized through HPO and what are the objectives. Is it
maximization or minimization? Is it mono- or multi-objective? Is it constrained?
Is it multi-fidelity? To avoid any ambiguity, mention on which split (validation)
the optimization is performed.

– Specify the stopping criterion: convergence, budget, minimal required perfor-
mances, etc.

– Give the experiment duration and the number of sampled solutions. Indeed, from
time to time, some works insufficiently optimize very high-dimensional search
spaces with less than or a few hundreds of evaluations.

– If the algorithm has to converge, analyze the convergence of the HPO, e.g. EA or
BO. We should be able to answer the following question: "Are the results found by
random or through a converging process?"

– If train-validation-test splits are used, we should always select the best solution
found by HPO using the performances on the validation set. Then report the
final performances on the test set without any further tuning, even manual. The
optimized solution can be retrained multiple times to estimate its stochasticity. To
clear up any confusion, one can report training, validation, and test performances.

– Even manual tuning requires at least a train-validation-test split. Once optimized
and tested, a solution should not be tuned further.

– HPO can be very costly and time-consuming. If possible, comparisons between
several algorithms on multiple runs are needed to determine which approach
is better. However, the computational cost of HPO is a major drag on strong
comparisons. Such comparative works are often practically insoluble.



Chapter3
Algorithms for Hyperparameter
Optimization

In chapter 2, we described the formalization of HPO. Once the problem is defined, the
HPs selected, and the search space built, the choice of an optimization algorithm also
has to be informed by the available budget and resources. Among works tackling HPO
of SNNs and beyond manual tuning, the usual algorithms applied to HPO of ANNs are
similarly deployed on SNNs. The following lines discuss the basic strategies often applied
for both HPO of ANNs and SNNs. The algorithms are presented, as well as a description
of their parallelization within a distributed environment. In the previous state-of-the-
art, we noticed that optimization algorithms used for HPO of SNNs come from various
families; the two main ones are Metaheuristics [259, 253, 166] and SMBO [122, 123]. These
algorithms are characterized by a common property: they can be applied to black-box
functions. Furthermore, these two families can be distinguished by the usage or not of an
additional ML model. Indeed, in SMBO, a trainable model interpolates the objective function,
e.g. the accuracy of a SNN w.r.t. its HPs.

The No Free Lunch Theorem drives this chapter, there is no single universal algorithm
for all problems. All the following algorithms have their advantages and drawbacks. A
thorough description is necessary to better understand the choices in chapters 5 and 6. In this
manuscript, we do not tackle hyperheuristics [253, 301], which could help better select an
algorithm. For now, these approaches are untractable due to the computational complexity
of simulating and training SNNs. However, meta-learning was already applied to some SNNs
tasks [222].

In the face of computationally expensive NP-hard problems, parallelizing optimization
algorithms is unavoidable. Formalization of parallel metaheuristics dates back to the end
of the 1990s to the beginning of the 2000s [6, 95, 176] with software frameworks such as
ParadisEO [27]. Technological advances strongly bound this field. In 2008, the first Petascale
architecture with 1015 double precision operations per second was achieved with the IBM
Roadrunner supercomputer1. Today’s challenge is to make optimization algorithms scale
to Exascale, first reached in 2022 by the Frontier supercomputer2. Recent architectures are
converging toward GPU acceleration for AI. Thus, in this manuscript, we mainly focus on
distributed parallelization with GPU-accelerated grid computing applied to HPO of SNNs.

This chapter essentially details line 16 of algorithm 2 (the optimizer O), and how this
algorithm could be parallelized according to the choice of O. As a reminder, a solution to the

1https://top500.org/lists/top500/2008/11/
2https://top500.org/lists/top500/2022/06/
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HPO problem is a set of HPs λ ∈Ω, from a search spaceΩ. Additionally, the objective function
is optimized by an HPO algorithm (e.g. BO), and a loss function is optimized by the training
algorithm of a SNN or ANN (e.g. gradient descent). Both objective function and loss function
can sometimes describe the same value. For instance, the training algorithm can optimize the
MSE on a training dataset, and an HPO algorithm can minimize the MSE on the validation
dataset (see chapter 2 for details).

3.1 Grid search and random search

GS is one of the most popular algorithms for HPO. It is an exhaustive algorithm consisting of
discretizing the search space into a finite number of solutions. Box-constrained discrete and
continuous values are equidistantly spaced on a grid of dimension d [20, 123, 19]. Thus, GS
consists in evaluating all possible solutions without any particular selection strategy. The
search space Ω is described by the grid itself. GS is close to a certain form of manual tuning
consisting in fixing HPs while varying a single one, as applied to ANNs [249] or SNNs [295,
106].

Usually, GS is used as a baseline comparison with other more advanced techniques [203,
199, 245]. But, GS is outperformed by BO, making BO-based algorithms state-of-the-art in
HPO. The major drawback of GS is its poor scalability in dimension. Indeed, if the size of
the grid is g, then gd solutions have to be evaluated. Such computational complexity grows
exponentially w.r.t. the dimension d (number of selected HPs).

An alternative to GS is RS. The algorithm consists in randomly selecting independent
and identically distributed HPs combinations with no particular strategy. Conversely to GS,
RS scales better in dimension and has higher performances [19]. Since the hypervolume
(e.g. Lebesgue or Hausdorff measures) grows exponentially, uniformly sampling points to
efficiently cover Ω do not scale. Other types of sampling could be employed to better cover
Ω with a limited number of samples. For instance, LHS or low discrepancy sequences with
Sobol, Kronecker, or Halton sampling [56]. Customized GS can be used to initialize other
optimization algorithms. In chapters 5 and 6, we discuss how to define HP-specific sampler
to handle multiplicative or additive effects, or to bias the sampling using prior knowledge and
toward known promising solutions. Nonetheless, both GS and RS are very basic algorithms,
which are described in algorithms 3 and 4. These methods are outperformed by guided
algorithmic approaches, discussed in the next sections.

Algorithm 3 Sequential GS

Inputs:
1: Ω Discretized search space
2: for each λ ∈Ω do
3: Evaluate(λ)

Algorithm 4 Sequential RS

Inputs:
1: Ω Search space
2: while stopping criterion not met do
3: Evaluate(Random(Ω))



3.2. Metaheuristic approaches 55

Example: GS and RS
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Figure 3.1: GS with a grid size of 5.
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Figure 3.2: RS with 64 points.

Examples of GS and RS applied to the 2-dimensional Styblinski-Tang function.

3.2 Metaheuristic approaches

Today, finding the global optimum of NP-hard problems is practically unsolvable in a rea-
sonable time. Many real-world problems are black-box, noisy, multimodal, non-convex,
and high dimensional. Usual optimization algorithms such as convex optimization fail at
solving these problems [259]. A heuristic is an optimization algorithm specifically designed
for a problem or a problem instance. Usually, heuristics do not guarantee convergence
toward the global optimum, but they return good-quality solutions within an acceptable
budget [253, 259]. The prefix meta refers to a higher level of abstraction. Hence, meta-
heuristics are problem-independent and more general heuristics [253, 259]. Compared to
some exact algorithms described in chapter 4, metaheuristics trade exactness for efficiency.
Metaheuristics are designed to be flexible, adaptable to various problems (e.g. continuous
optimization, combinatorial problems, discrete problems, mixed problems), and capable of
finding suitable solutions in high-dimensional search spaces. Such optimization algorithms
are one of the favorite candidates for HPO [108, 260, 123, 16, 20].

Metaheuristics are mainly nature-inspired algorithms. Their design can rely on biological
evolution (EA), swarm intelligence (PSO) or even physics (SA). Usually, the quality of a
solution – the objective value – is named a fitness. But we do not employ the term fitness to
avoid any ambiguities through the chapters.

HPs can be of various type, continuous with the neuron threshold Vth, discrete with
the number of neurons n(lf amily) of a layer l, categorical with the neuron model (IF, LIF,
Izhikevitch). So our solution is of mixed types, and Ω is a mixed searchspace [261], i.e.
Ω ≜Ω1 ×Ω2 ×⋯.

Metaheuristics are characterized by the exploration-exploitation tradeoff. Exploration
consists in gathering general information about the search space, i.e. trying low-confidence –
high-risk solutions, and seeking very diverse solutions to identify promising areas. Exploita-
tion refines this information by improving more thoroughly prior knowledge. For instance,
RS is an exploration-only algorithm, while Local search is exploitation-only.

Local search is a hill-climbing heuristic starting from a given solution. Then, it samples
new candidates within the neighborhood of the current solution of interest. If a neighbor
improves the current solution, the algorithm moves to this neighbor. Therefore, the efficacy
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of a metaheuristic also relies on the definition of an efficient neighborhood.

Example: Neighborhood

N(p)
V

p

Example of a neighborhood given by the neighborhood function N(p) (the lighter ball)
and centered at a point p within a space V .

The high flexibility of metaheuristics allows one to have the hand on many aspects of the
algorithms. Indeed, metaheuristics allow easy fine-tuning of memory consumption. This
flexibility facilitates the instantiation of the algorithm on a wide range of hardware, from low-
memory embedded systems to high-performance computing clusters. For example, single-
solution and sequential metaheuristics like SA require less memory than Tabu Search [94].
For instance, population-based methods like GA can be adjusted by tuning the population
size so to use more or less memory. Furthermore, practitioners can influence the exploration-
exploitation balance of the search process by adjusting the neighborhood structure and the
variation operators, i.e. algorithmic components of a metaheuristic (mutation, crossover, or
selection in GA). This customization allows for fine-tuning of the metaheuristic’s behavior to
better suit the problem’s properties.

The degree of greediness in a metaheuristic can also be adjusted. It defines how it
focuses on improving the current solution versus exploring new areas of the search space.
For example, algorithms like Tabu Search allow the incorporation of long and short-term
memories that prevent the algorithm from revisiting recently explored solutions. In contrast,
other strategies, as SA, might prioritize local improvements. This creates a more greedy
approach that quickly converges to good solutions, but which lacks of exploration.

Metaheuristics are inherently suitable for parallelization, which is critical for solving
large-scale optimization problems (see section 3.4).

3.2.1 Simulated Annealing

SA [272] is a local search strategy inspired by the annealing process in metallurgy. This
metaheuristic is rarely applied to HPO [75, 268, 260], and to our knowledge was never
applied to SNNs. Yet, some works try implementing neuromorphic annealing processes [300].
In the context of HPO, SA starts with an initial set of HPs and evaluates its performances, i.e.
objective values. It then iteratively explores the HPs space by making small random changes
to the current HPs. The key feature of SA is its ability to escape local optima by occasionally
accepting worse solutions, according to an acceptance probability. This probability is based
on a value named the temperature which decreases over time, i.e. the annealing.

The annealing or cooling schedule modifies the temperature through iteration, allowing SA
to balance exploration and exploitation. Initially, the temperature is high, so the algorithm
can easily accept worse solutions, enhancing exploration of Ω. As the temperature decreases,
the algorithm becomes more conservative. It slowly focuses on exploitation as the acceptance
probability decreases, allowing SA to converge toward an optimal or near-optimal set of HPs.
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SA can be used in HPO to refine the best solution found by a global optimizer, or to test
if a baseline solution is easily optimizable within its neighborhood. The SA pseudocode is
described in algorithm 5. The acceptance probability P at iteration i is usually defined as
exp(−Yi−Ycurt○i

), with Yi the objective value from the neighbor λi of the current solution λcur.
The current objective value is denoted Ycur, and the current temperature t○i . The cooling
schedule T ○ is a decreasing function, converging to 0.

Algorithm 5 SA

Inputs:
1: λ0 Initial solution
2: N Neighborhood function
3: f Objective function
4: P Acceptance probability
5: U Uniform distribution
6: T ○ Temperature function
7: Y0← f (λ0)
8: i ← 1
9: λcur← λ0 Current solution

10: Ycur← Y0
11: while stopping criterion not met do
12: t○i ← T

○(i) Current temperature
13: λi ←N(λcur)
14: Yi ← f (λi)
15: if P(t○i ,Yi ,Ycur) < U(0,1) then
16: λcur← λi
17: Ycur← Yi
18: i ← i +1

return best of λi

SA is a local search strategy that can suffer from lack of exploration, and it requires many
evaluations to converge. To globally optimize Ω metaheuristics from the EAs family can be
considered.

3.2.2 Evolutionary Algorithms

EA is inspired by biological evolution and based on making a population of solutions evolves
through iterations. For instance, within our HPO problem, a population is made of vectors of
HPs. The population has to slowly converge toward exploitation of promising areas of Ω.

Different EAs were applied to address HPO of SNNs [230, 217, 102]. Another application
of EAs on SNNs known as neuroevolution [77, 61], combines EA with ANN or SNN design
and training. Instead of using gradient backpropagation or Hebbian rules to optimize
neural networks, neuroevolution evolves simultaneously the architecture and weights of the
networks. This approach allows for the automatic and simultaneous discovery of network
topologies, optimal parameters, and HPs. It can be considered a combination of HPO, NAS
and training. Because EAs are metaheuristics that can be applied to black-box problems,
neuroevolution can sometimes be an acceptable first approach to some complex ML models.
HPO was also applied on neuroevolutive SNNs [204, 203] where the optimized HPs are the
parameters of the EA.

In this section, we focus on GA [115] which was also applied to HPO of SNNs [102].
Additionally, GA was one of the first unsuccessful algorithms used in this thesis. This is
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discussed in chapter 5.
A GA is usually made of 3 components, selection, mutation and crossover. We can also

consider a fourth component known as elitism. In GAs, a solution is called an individual. An
element of a solution is a chromosome, i.e. a single HP value from a single HPs combination. A
batch of solutions is a population. A generation is an iteration of the algorithm consisting in the
creation of a new population. The children from the crossover between selected individuals
are called the offsprings.

The first step of a GA is to initialize a population of HPs combinations. This initialization
is usually done randomly. But as for RS, different samplers can be used, such as LHS, low
discrepancy sequences, or even heuristics approaches [259, 260].

The selection operator determines which individuals from the population will contribute
to the offspring by selecting those with higher objective values. This operator balances
exploitation of good solutions and exploration of new HPs combinations. In GAs, the selection
allows the convergence of the population toward optimal or near-optimal solutions. Various
selection methods can be used to ensure that the best solutions have a higher chance of being
chosen in the next generation, e.g. roulette or tournament selections. The main difficulty
of a good selection is to maintain diversity within the next generations while allowing the
algorithm to converge in a reasonable time.

The crossover simulates reproduction. The chromosomes from pairs of selected individuals
are interchanged to create the offspring, i.e. allowing offspring to share some similarities
with their parents. This operator contributes to diversity within the next population. Popular
crossover strategies are single-point, multi-point, or uniform crossover. Each of these defines
how chromosomes of parents are selected and recombined. By effectively mixing supposedly
good chromosomes of the parents, crossover helps GAs to explore the search space more
efficiently toward promising areas.

The mutation can be considered as an exploration component of a GA. It introduces
random changes to the children of the offspring, resulting in a higher diversity of the next
population within a certain neighborhood. Mutation prevents the algorithm from becoming
trapped in local optima by allowing the exploration of new and local areas of Ω.

Example: Crossover and mutation

0.9 52 36 0.1 0.8

1.5 13 11 0.7 0.5

⊕

1.5 13 36 0.1 0.8

0.9 52 11 0.7 0.5

Ô⇒
crossover

1.5 12 36 0.1 0.8

0.9 52 11 0.8 0.5

//

mutation

The above figure illustrates a one-point crossover (red dashed line), and a random
mutation selecting a neighbor of one chromosome (HP).

The elitism operator describes how to create the new population from the current one and
the offspring. Usually, the k worst individuals of the old population are replaced by the k
best individuals from the offspring. Elitism also impacts the convergence and the diversity of
the populations.

Algorithm 6 illustrates the workflow and the four operators of a GA. One can notice the
simplicity and flexibility of GA offered by the component in lines 7, 8, 9 and 11.

EAs are usually more efficient than GS and RS [20, 160, 9]. Nonetheless, a major drawback
of these approaches is the necessity of numerous evaluations. It becomes a bottleneck when
the objective function is expensive to evaluate.
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Algorithm 6 GA

Inputs:
1: Ω Search space
2: f Objective function
3: G Number of generations
4: P0←RandomPopulation(Ω) Initialize population
5: Y0← f (P0)
6: for i ← 1 to g do
7: selected← SELECT(Pi−1)
8: offspring←CROSSOVER(selected)
9: offspring←MUTATE(offspring)

10: Yoffspring← f (offspring)
11: Pi , Yi ← ELITISM(Pi−1,offspring,Yi−1,Yoffspring)

return best of Pg

CMA-ES is a state-of-the-art EA designed for continuous optimization problems. Similarly
to GA, the algorithm iteratively improves a population of solutions to optimize the search
space and objective function. CMA-ES starts with an initial population drawn from a
multivariate normal distribution, characterized by a mean vector µ and a covariance matrix Σ.
At each iteration, it generates the offspring by sampling from this distribution. The algorithm
evaluates their objective values and then updates µ and Σ based on the best-performing
solutions. The mean vector is shifted towards better regions of the search space, while the
covariance matrix is adapted to capture the correlations between variables and adapt itself
to the landscape of Ω. Its top performances are assessed on the COCO benchmark [103].
CMA-ES was also applied to HPO of ANNs [168] but also on SNNs [305].

This algorithm is a good transition to BO which also extracts probabilistic information
about evaluated solutions to better optimize.

3.3 Surrogate Model-Based Optimization

The following content is mainly inspired by this book [84].
SMBO is an optimization approach used when the objective function f is expensive

in terms of time, budget, cost, resources availability, etc [122, 221, 123]. For that reason,
state-of-the-art HPO algorithms applied to expensive ML are from this family. Instead of
directly optimizing the objective function, SMBO builds a surrogate model, i.e. a costless
approximation of the actual objective function. This surrogate is faster to evaluate. By
optimizing the surrogate instead of directly sampling the actual objective function, SMBO
allows to sample more cautiously solutions that will be evaluated on the original function.

Popular surrogate models are GP, Random Forest, Deep GP, SVM, ANN, etc. The op-
timization process involves iteratively updating the surrogate model based on previously
evaluated points. A SMBO algorithm constantly updates its prior knowledge or its belief
about the objective function. SMBO efficiently balances exploration and exploitation of the
search space by focusing on promising areas while limiting costly evaluations.

3.3.1 Bayesian modeling

Among the SMBO algorithms, we focus on one of the most popular algorithms named GP-
based BO, a.k.a. Kriging [84]. BO iteratively creates an archive of actual observations to build
an observation model on the objective function.
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Example: Surrogate modeling
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The observed value y is noisy and distributed around the value of the objective function
φ = f (λ) at λ. If f is noiseless, then y =φ.

In an observation model, y is assumed to be explained by a stochastic process relying on φ:
p(y ∣ λ,φ). We can model noisy observations by y =φ+ε. This model is known as the additive
Gaussian noise, with ε a zero-mean Gaussian observation error scaled by σnoise. Hence, the
Gaussian observation model becomes

p(y ∣ λ,φ,σ) = N(y;φ,σ2
noise) , (3.1)

Example: Validation accuracy of a SNN

Let’s consider the accuracy of a SNN LD (Aλθ⋆ ,Dvalid) from a combination of HPs λ. The
observed accuracy y at λ is corrupted by noise applied to an ideal noiseless objective
function value φ at λ. The supposedly Gaussian noise is scaled by σnoise.

In a Bayesian approach, one has to bring knowledge about the distribution of the objective
values φ. This prior knowledge is then refined by successively observing noisy values y from
f at λ. To do so, we define three principles, also illustrated in figure 3.3:

• the prior: p(φ ∣ λ) is an assumption, a belief, on the distribution of φ.

• the likelihood: p(y ∣ λ,φ) describes the distribution of how likely we can observe y at λ if
distributed around φ.

• the posterior: p(φ ∣ λ,y) is used to update the prior according to observations y.

Then, the Bayes’ theorem is used to update the posterior distribution,

p(φ ∣ λ,y) =
p(φ ∣ λ)p(y ∣ λ,φ)

p(y ∣ λ)
. (3.2)

We consider an archive of known observations defined by observation pairs, s.t. D ≜
(λ,y) = [(λ1,y1), . . . ,(λn,yn)].
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assumption inference reality (y)

p(φ ∣λ)

prior

p(φ ∣D)

posterior

p(y ∣λ,φ)

likelihood

p(φ ∣λ,y) =
p(φ ∣λ)p(y ∣λ,φ)

p(y ∣λ)

p(φ ∣D) ∝ p(φ ∣λ)p(y ∣λ,φ)

Figure 3.3: Illustration of Bayesian inference

According to Bayes’ theorem defined by equation 3.1, the impact of observations on a set
of noiseless objective function values φ is proportional to the prior and the likelihood

p(φ ∣ D) ∝ p(φ ∣λ)p(y ∣λ,φ) . (3.3)

Let a prior process p(f ) be a belief on a function f , and a posterior process p(f ∣ D) informed
by observations. Then to compute p(f ∣ D), the set φ is extended to f such that

p(f ∣ D) = ∫ p(f ∣λ,φ)p(φ ∣ D)dφ . (3.4)

The approximation of f informed by observations D relies on the prior process, i.e. the initial
assumption about f and the posterior on φ.

3.3.2 Gaussian processes

GPs [223] are Bayesian ML models used as surrogates in BO. They are non-parametric as
they are observation models relying on an archive of observations D. A GP regressor uses a
multivariate normal distribution to model the landscape of the actual objective function, e.g.
the accuracy of a SNN on a validation set. Then the prior process on f is written

p(f ) = GP(f ;µ,K) , (3.5)

with µ the mean function µ(λ) = E[φ ∣ λ] describing the expected objective function value
φ = f (λ) at λ. Usually, the observations are standardized to have a zero-mean. The kernel
function K gives the covariance matrix computed on each pair of positions (λ,λ′) and
objective values (φ,φ′).

The kernel K is a symmetric function defined as K(λ,λ′) = Cov(φ,φ′ ∣ λ,λ′) , and the
resulting covariance matrix has to be PD.

Definition 8 (Symmetric kernels). Let Λ be a non-empty set. A function K ∶ Λ ×Λ → R is
symmetric if,

∀(λ1,λ2) ∈Λ, K(λ1,λ2) =K(λ2,λ1) . (3.6)
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Definition 9 (Positive definite kernels). Let Λ be a non-empty set. A symmetric function
K ∶ Λ×Λ→R is a PD kernel if,

∀n ∈N, ∀λ1, . . . ,λn ∈Λ ,∀c1, . . . ,cn ∈R,
n

∑
i=1

n

∑
j=1
cicjK(λi ,λj) ≥ 0 . (3.7)

The multivariate distribution from a GP of a set of positions λ and objective values φ is
written

p(φ ∣λ) = N(φ;µ,Σ) , (3.8)

where µ and Σ are the means and covariance computed on all elements of φ using µ(λ) and
K(λ,λ′).

3.3.3 Inferring with a GP

Marginalization

A n−dimensional random vector of multivariate normal random variables λ = (λ1, . . . ,λn)⊺

following a multivariate normal distribution s.t. p(λ) = N(λ;µ,Σ) can be marginalized. It
means that we can extract any vector λ′ ⊂λ and model its marginal distribution by dropping
unused elements from the mean vector µ and covariance matrix Σ.

Assuming a partitioning

λ =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

λ1

λ2

⎤
⎥
⎥
⎥
⎥
⎥
⎦

,

withmarginal distributions p(λ1) = N(λ1;µ1,Σ11) and p(λ2) = N(λ2;µ2,Σ22). We can rewrite
the distribution of λ as

p(λ) = N
⎛
⎜
⎝

⎡
⎢
⎢
⎢
⎢
⎢
⎣

λ1

λ2

⎤
⎥
⎥
⎥
⎥
⎥
⎦

;

⎡
⎢
⎢
⎢
⎢
⎢
⎣

µ1

µ2

⎤
⎥
⎥
⎥
⎥
⎥
⎦

,

⎡
⎢
⎢
⎢
⎢
⎢
⎣

Σ11,Σ12

Σ21,Σ22

⎤
⎥
⎥
⎥
⎥
⎥
⎦

⎞
⎟
⎠
, (3.9)

where Σ12 and Σ21 are cross-covariance between both partitions.
So, any vector of observations y from f with a marginal distribution p(y) = N(y;m,C)

shares a joint multivariate normal distributions with a GP on f

p(f ,y) =
⎛
⎜
⎝

⎡
⎢
⎢
⎢
⎢
⎢
⎣

f

y

⎤
⎥
⎥
⎥
⎥
⎥
⎦

;

⎡
⎢
⎢
⎢
⎢
⎢
⎣

µ

m

⎤
⎥
⎥
⎥
⎥
⎥
⎦

,

⎡
⎢
⎢
⎢
⎢
⎢
⎣

K κ⊺

κ C

⎤
⎥
⎥
⎥
⎥
⎥
⎦

⎞
⎟
⎠
, (3.10)

with the cross-covariance κ(λ) =Cov[y,φ ∣ λ] between observations y and the function value
at λ.

Conditioning

Considering a similar partition as in equation 3.3.3, we can condition y1 according to a
known measurement of y2 by using

p(y1 ∣ y2) = N(y1;µ1 ∣ 2,Σ11 ∣ 2) , (3.11)

µ1 ∣ 2 = µ1 +Σ12Σ
−1
22(y2 −µ2) , (3.12)

Σ11 ∣ 2 =Σ11 +Σ12Σ
−1
22Σ21 . (3.13)
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Example: Mean and covariance matrices

Considering an archive of 3 observations y = (y1,y2,y3) at positions λ, and an unknown
observation y at position υ. Considering a gaussian process GP on function f described
by mean function µ and a kernel K on a multivariate normal distribution, we can write

p
⎛
⎜
⎝

⎡
⎢
⎢
⎢
⎢
⎢
⎣

λ

υ

⎤
⎥
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⎞
⎟
⎠
= N
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⎟
⎟
⎠

,

with µi = µ(λi) and Σij =K(λi ,λj). By using conditioning, we can deduce the distribu-
tion of υ according to λ

p(y ∣ y,λ,υ) = N(y;µυ ∣ λ,Συυ ∣ λ) , µυ ∣ λ = µυ+ΣυλΣ
−1
λλ(y−µ) , Συυ ∣ λ =Συυ+ΣυλΣ

−1
λλΣλυ .

Exact approximations

In the noise-free case, an observation of f at positions λ reveals the exact value of φ = y.
Let a function f be modeled with a GP s.t. p(f ) = GP(f ;µ,K), and an archive D = (λ,φ)

of observations sharing a joint distribution with the GP. Using equations 3.11, 3.12 and 3.13,
we can condition the GP with D such that

p(f ∣ D) = GP(f ;µD,KD) , (3.14)

µD(λ) = µ(λ)+K(λ,λ)Σ
−1
(φ−µ) , (3.15)

KD(λ,λ
′) =K(λ,λ′)−K(λ,λ)Σ−1K(λ,λ′) , (3.16)

where µ and Σ are respectively the mean vector and covariance matrix of the observations D.
The mean function µ and kernel K are the same as the ones defined in section 3.3.2.

Noisy approximations

In the noisy case, observations y =φ+ ε of f at λ are corrupted by homoskedastic noise. The
corruption ε is independent of φ and is normally distributed around a zero-mean scaled by
σnoise. We write the archive of observations D = (λ,y).

Then the marginal distribution of observations y is given by

p(y ∣λ,σnoise) = N(y;µ,Σ+ Iσ2
noise) . (3.17)

By conditioning the GP with noisy observations y, we obtain the GP posterior

p(f ∣ D,σnoise) = GP(f ;µD,KD) , (3.18)

µD(λ) = µ(λ)+K(λ,λ)(Σ+ Iσ2
noise)

−1(y −µ) , (3.19)

KD(λ,λ
′) =K(λ,λ′)−K(λ,λ)(Σ+ Iσ2

noise)
−1K(λ,λ′) . (3.20)

Now considering a position λ, the potential noisy observation y at λ is given by the
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predictive distribution informed by the archive D and denoted

p(y ∣ λ,D,σnoise) = N(y;µ,σ2 +σ2
noise) , (3.21)

with µ = µD(λ) and σ2 =KD(λ,λ).

Example: Exact and noisy approximations

x

y

sin(x) 2σ µ D

Figure 3.4: GP on a noiseless function.

x

y

sin(x) + ε 2σ µ D

Figure 3.5: GP on a noisy function.

3.3.4 GPs training via marginal likelihood

A GP is a ML model similar to the abstract model Aλ
θ described in chapter 2, but applied to

continuous optimization. The objective is to fit the GP to a dataset D, i.e. the archive of the
evaluated solutions.

Since, a GP is mainly described by its prior functions µ and K , we can parameterize these
functions for a higher flexibility. It allows modeling complex functions dynamically, learning
from observations, and reducing the impact of the prior selection. The parameters of GPs are
often called hyperparameters in the GPs literature, but here we call them parameters with the
same definition as in chapter 2.

The prior process of a GP parameterized by θ is described as

p(f ∣ θ) = GP (f ;µ(λ;θ),K(λ,λ′;θ)) . (3.22)

One advantage of GPs is the differentiability of the marginal likelihood w.r.t. the parame-
ters of µ and K . Since, the logarithm function is strictly increasing and we aim at maximizing
the likelihood, it is common practice to maximize the log likelihood using

L(θ) = logp(y ∣λ,θ) = −
1
2
[α⊺(y −µ)+ log∣V ∣ +n log2π] , (3.23)

with n the number of observations, V =Σ+σ2
noiseI , and α = V −1(y −µ). This formula comes

from the logarithm of the probability density function of a multivariate normal distribution.
Using the logarithm function also simplifies the computations of the gradient. The partial

derivative of L(θ) w.r.t. the mean, if not a zero-mean, is given by:

∂L
∂θ
=α⊺

∂µ
∂θ

. (3.24)
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The partial derivative w.r.t. the variance is written:

∂L
∂θ
=
1
2
[α⊺

∂V
∂θ

α−Tr(V −1
∂V
∂θ
)] . (3.25)

If µ and K are differentiable w.r.t. θ, GPs can be trained by usual first-order gradient
descent algorithms as described in chapter 1, or second-order quasi-Newton methods such as
the L-BFGS algorithm [76].

3.3.5 Numerical instability and computational complexity

In this section, we briefly discuss issues with exact GPs. In practice, efficiently inferring
with a GP requires advanced linear algebra to compute matrix-matrix and matrix-vector
multiplications. The applied numerical methods need to be accelerated, justifying the use of
a dedicated GPU in chapters 5 and 6. We briefly describe how heavy computations are usually
performed, but advanced numerical methods for GP are not the focus of this manuscript.
More information can be found in [82, 40, 96, 178].

One major drawback of GP-based BO is the scalability of the covariance matrix Σ. Indeed,
the size of Σ grows quadratically with the number of observations, so its memory complexity
is of O(n2). But, its inversion Σ−1 is the major challenge. First, the kernel K needs to be
symmetric, PD, and is prone to numerical instability. This can result in an unpredicted
non-PD matrix during the optimization.

When inferring and training, three operations are costly [82]:

• solving the linear problems, V −1b with b a vector of size n

• computing the log determinant, log∣V ∣

• computing the trace, Tr(V −1 ∂V∂θ )

Commonly, the Cholesky decomposition is used to compute the inverse of the PD matrix
Σ. A PD real matrix A can be decomposed into a lower triangular matrix L and its transpose
s.t. A = LL⊺, and A−1 = L−1(L−1)⊺. The inversion complexity with Cholesky decomposition is
of O(n3) with 1

2n
3 operations [148]. For that reason, it is sometimes preferable to switch to

iterative methods, such as conjugate gradient and iterative Lanczos algorithm [82, 178]. It
gives an approximation of b ≈Ay without explicitly computing the inverse of Σ. Thus, the
computational complexity is reduced at the expense of inference quality.

Due to the numerical instability of iterative methods, a jitter can also be added to the
diagonal of the covariance matrix. Usually, the jitter is a small value of 10−6.

GP-based BO is efficient when the objective function is computationally expensive. How-
ever, because of the heavy computations required for inference, the balance between the
number of evaluations and time to convergence face to the total optimization budget (e.g.
time) is challenging. In the case of a considerable archive of observations, relaxing some GP
hypothesis opens the doors to variational and approximate GPs [163, 111]. In variational
GPs for instance, a subset of m ≤ n points is used for a sparse GP approximation. Typically,
Nyström approximations are low-rank approximation methods where the covariance matrix
Σ is approximated using a representative subset of the archive, D′ ⊆ D.

3.3.6 Kernel functions

We previously described an abstraction of the mean µ and kernel K functions, both parame-
terized by θ. We assume a zero-mean µ(λ) ≡ 0.
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A feature map is a function that maps input λ ∈Rd to a feature space F ; φ ∶ Rd →F . Here,
the function φ has no link to exact observations of a GP. Such an approach can help to classify
non-linearly separable data by making them linearly separable into a higher dimensional
space.

Example: Feature mapping

Feature mapping

A kernel is a function relying on the blessing of dimensionality; it can be considered a
replacement of the dot product [87]. A kernel K ∶Rd ×Rd →R is written:

K(λ1,λ2) ≜ ⟨φ(λ1),φ(λ2)⟩ , (3.26)

with φ a nonlinear feature map function and ⟨⋅, ⋅⟩ an inner product. Usually, it is not necessary
to explicitly define φ and F . A kernel computes input vectors into a higher dimensional
space without explicitly mapping inputs into this higher space.

We can distinguish different types of kernels:

• Anisotropic stationary kernels are translation invariant: K(λ1,λ2) =KS(λ1 −λ2).

• Isotropic stationary kernels are functions of the distance between inputs: K(λ1,λ2) =
KI(∥λ1 −λ2∥).

• Non-stationary kernels directly depend on the inputs: K(λ1,λ2).

In the context of GPs, kernels are considered a similarity measure between points, as depicted
in figures 3.6 with isotropic kernels.

By carefully selecting a kernel, one can inject knowledge about the landscape of the
function. To fit prior knowledge to information gathered through iterations, a training phase
of the parameters of the GP is necessary.

In table 3.1 a few kernel functions and their parameters are presented. Their effects on the
predictive distribution and the covariance matrix are illustrated within the two last columns.
Moreover, the impact of the lengthscales and noise on the approximation is depicted in
figure 3.7. Finally, kernels can be combined to refine the desired behaviors. One can add or
multiply kernels; they can also be decomposed according to dimensions.

3.3.7 Acquisition functions

The principle of BO is to sample more carefully points. To do so, we use a GP shaped
with a mean and kernel functions, and trained on an iteratively growing archive of known
observations. The acquisition function determines what are the most promising points within
the surrogate by balancing the trade-off between exploration and exploitation [84, 282]. In
other words, it can determine high- or low-confidence areas of the search space. Instead of
directly sampling the posterior process, BO maximizes the acquisition function. By doing so,
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Table 3.1: Some kernels and their parameters.

Equation K(λ,λ′) p(y) = N (λ;0,K(λ,λ′))
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Figure 3.6: Isotropic kernels

BO ensures that new evaluations are sufficiently informative and efficient to progressively
refine the GP. Hence, BO is an optimization algorithm with a nested optimization algorithm
applied to the acquisition function. Because the cost of evaluating the posterior process
requires fewer efforts than the actual objective function, one can optimize the acquisition
function with metaheuristics such as GA, gradient-based algorithms if differentiable, or by
simply sampling with low discrepancy sequences. The complete workflow of BO is illustrated
in figure 3.8 and algorithm 7. We denote the predictions of the predictive distribution from a
GP at position λ as p(y ∣ λ,D,σnoise) = f ∗(λ). Usual acquisition functions are described below.

Probability of improvement

The PI describes the probability of finding a better observation at a position λ compared to
the best objective value found so far ybest:

PI(λ;D) = Pr(f ∗(λ) < ybest)

=Φ (
ybest−µD(λ)
KD(λ,λ)

)
, (3.27)

with Φ(λ) = 1√
2π

λ

∫
−∞

exp(−12t
2)dt, the Gaussian cumulative density function

Expected improvement

The EI gives the expected marginal gain of a sample λ compared to the best objective value
found so far ybest:

EI(λ;D) =E[max(0, f ∗(λ)−ybest)]

= (ybest −µD(λ))Φ (
ybest−µD(λ)
KD(λ,λ)

)+KD(λ,λ)φ(
ybest−µD(λ)
KD(λ,λ)

)
, (3.28)

with Φ the Gaussian cumulative density function and φ the Gaussian probability density
function.
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(a) ` = 5, σnoise = 1 (b) ` = 10, σnoise = 1 (c) ` = 50, σnoise = 1

(d) ` = 5, σnoise = 0.1 (e) ` = 10, σnoise = 0.1 (f) ` = 50, σnoise = 0.1

(g) ` = 5, σnoise = 0.01 (h) ` = 10, σnoise = 0.01 (i) ` = 50, σnoise = 0.01

Figure 3.7: RBF with different parameters on f (λ) = sin3(λ)+0.1λ+ ε. The dashed line is the
mean function.
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Lower and upper confidence bound

The LCB combines the uncertainty and the expected objective value by computing the
quantile of the predictive distribution:

LCB(λ;D) = q(π;λ,D)

= inf{y′ ∣ Pr(y ≤ y′ ∣ λ,D) ≤π}

= µD(λ)−βK(λ,λ)

, (3.29)

with π ∈ [0,1] the quantile, and β the exploration HP describing the exploration-exploitation
tradeoff. In the case of a maximization problem, the UCB is given by µD(λ)+βK(λ,λ).

3.3.8 Toward multi-fidelity Bayesian optimization for HPO

Usually, in multi-fidelity HPO applied to ML, the fidelity HP to be optimized is the size
of the training dataset Dtrain. To do so, a proportion πtrain ∈ (0,1] of Dtrain is extracted s.t.

πtrain =
∣D
′
train∣

∣Dtrain∣
, with the extracted subset D′train ⊆ Dtrain. A ML model trained iteratively does

not require the full training dataset to get an approximation of its performances. For example,
the performances of a ANN trained by SGD can be evaluated after each epoch or batch. Thus,
in multi-fidelity HPO the algorithm can balance more efficiently the budget attributed to
the evaluation of a combination of HPs. The fidelity HP πtrain has to be tuned by the HPO
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Algorithm 7 BO

Inputs:
1: Ω Continuous search space
2: f Objective function
3: KD Kernel function
4: µD Mean function
5: D = {(λ1, f (λ1), . . . ,(λn, f (λn)} Initial Data
6: O Inner optimizer/sampler
7: Acqf Acquisition function
8: while stopping criterion not met do
9: µD,KD ←Update(µD,KD,D) eq. 3.19, 3.20

10: µD,KD ←Train(GP(f ;µD,KD),D) Fit the GP on the archive with eq. 3.23, 3.24, 3.25
11: λ′←Optimize(Acqf(µD,KD),O) eq. 3.21
12: D←D⋃{(λ′, f (λ′)}

return best of (λ⋆, f (λ⋆) ∈ D

algorithm. It can be optimized by two main approaches [20]:

• Considering that a higher πtrain always results in a higher objective value.

• Considering that a higher πtrain may not necessarily translate into a higher accuracy, e.g.
in case of overfitting.

In this chapter, we focus on the first assumption. The second is discussed in chapter 6. We
consider an objective function f , a budget b and a maximum budget bmax. An approximated
and budgeted version of f is written f (⋅;b) s.t. f (⋅;bmax) = f (⋅).

Successive Halving

The SH algorithm is a multi-armed bandit algorithm where each arm models a HPs com-
bination λ [132, 158, 69]. If a ML model can be trained iteratively and its performances
approximated for each iteration, then SH can be applied with fidelity HPs.

Considering a fixed maximum budget bmax, SH balances this budget by favoring promis-
ing candidates. At the first iteration, SH starts by evaluating n HPs combinations on the
smallest budget. Then, n performances are approximated (e.g. on Dvalid) and HPs combina-
tions are sorted by their objective values. Among the n evaluated combinations, a proportion
1
η of the best ones are selected to be trained further by increasing their dedicated budget
by η. The process is repeated until the maximum budget is reached. Thus, SH assigns a
higher fidelity to the best HPs combinations, while the algorithm discards the worst ones
through iterations. One disadvantage of SH is its strong dependence on the initial sets of n
combinations. The process is described in algorithm 8.

Hyperband

Hyperband [158] is an improvement of SH, it is also a multi-armed bandit method for HPO. It
uses a nested SH and an adaptive budget to tackle the balance of the budget of SH. Hyperband
balances both the following cases:

• A high number of HPs combinations n with low fidelity, i.e. many configurations with
low cost.

• A small n with high fidelity, i.e. few configurations with high cost.
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Example: UCB on a noiseless function
f

(λ
)

sin(λ) 2σ µ D optimized UCB

λ

U
C
B

µ(λ) + βσ(λ) samples best

The UCB was applied to maximize the function f (λ) = sin(λ). One can see the posterior
process of the GP using an archive of 8 observations (black dots), the optimization
of the UCB is performed using random sampling (green triangles). Then the sample
maximizing the UCB is selected and evaluated using f (red lines and dots).

Hyperband balances n and bmax by successively applying SH such that each SH run has
the same budget. This principle is depicted in algorithm 9.

Tree-structured Parzen Estimator

Considering a minimization problem, TPE is a SMBO algorithm similar to GP-BO [284, 285].
But, instead of modeling p(y ∣λ,D), the TPE algorithm models p(λ ∣ y,D). The algorithm
models the probability to observe a HPs combination for a given objective value. To do so,
TPE uses KDE as surrogates, such as Gaussian mixture models.

The archive D of observations is partitioned into two groups, i.e. two densities:

p(λ ∣ y,D) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

g(λ ∣ Dg) , if y < y⋆

b(λ ∣ Db) , if y ≥ y⋆
, (3.30)

with g the surrogate on good observations, b the surrogate on bad observations. Observations
are partitioned within the good archive Dg = (λg ,yg) = {(λ,y) ∈ D ∣ f (λ) < y

⋆} and bad archive
Db = (λb,yb) = {(λ,y) ∈ D ∣ f (λ) ≥ y

⋆}. The value y⋆ is determined according to a quantile
γ s.t. p(y < y⋆) = γ . The HP γ is fixed by the user, ensuring that a minimum number of
observations is used for Dg . Both KDEs are given by:

p(λ ∣ Dg) =wgp(λ)+w⊺gK(λ,λg ∣ `g)

p(λ ∣ Db) =wbp(λ)+w
⊺
bK(λ,λb ∣ `b)

, (3.31)

with p(λ) a prior on the distribution (usually Gaussian) of λ weighted by wg and wb. The
kernel K is different from the one previously described for GPs. In KDE, a kernel is used to
estimate the per-dimension underlying probability distribution of observations λ. A kernel
has dimension-wise lengthscales (`g ,`b). Good and bad observations are weighted by wg and
wg . Different kernels can be used for different dimensions.
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Algorithm 8 SH

Inputs:
1: Ω Continuous search space
2: n Size of the initial batch
3: b0 Initial budget
4: bmax Maximum budget
5: η Scaling
6:
7: b← b0
8: L←Random(Ω,n) Sample n configurations
9: while b ≤ bmax do

10: y ← f (L;b) Evaluate L with budget b
11: L← Topk (L,y,⌊

∣L∣
η ⌋)

12: b← ηb
return best of (L,y)

Algorithm 9 Hyperband

Inputs:
1: Ω Continuous search space
2: b0 Initial budget
3: bmax Maximum budget
4: η Scaling
5:
6: smax← ⌊logη

bmax
b0
⌋

7: for s ∈ {smax, smax −1, . . . ,0} do
8: n← ⌈ smax+1

s+1 ηs⌉
9: L←Random(Ω,n) Sample n configurations

10: b← ηsbmax
11: while b ≤ bmax do Inner bracket (SH)
12: y ← f (L;b) Evaluate L with budget b
13: L← Topk (L,y,⌊

∣L∣
η ⌋)

14: b← ηb
return best of among all (L,y)
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Example: SH
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The transparent dotted lines are discarded HPs combinations. In this example, η = 2
and the fidelity hyperparameter is the proportion πtrain of the training dataset Dtrain.

Unlike trained kernels for GPs, in TPE the lengthscales ` are approximated by heuris-
tics [285] such as the Scott’s rule for the univariate Gaussian kernel in BOHB:

∀i ∈ {g,b}, ∀d ∈ ~0,D�, `(d) ≈ 1.059N−1/5i min
⎛

⎝
σ,

Q1(λ(d)i )−Q3(λ(d)i )
1.34

⎞

⎠
, (3.32)

where Q1 and Q3 are the first and third quartiles of observations λ(d)i at dimension d, with
Ni = ∣Di ∣.

There is no former training of models g and b using an optimizer as for GPs or ANNs.
The lengthscales are determined by a heuristic, and the weights (wg ,wb) are determined by a
uniform heuristic [284]:

∀w ∈wg , w = 1
Ng+1

∀w ∈wb, w = 1
Nb+1

. (3.33)

TPE solves a EI maximization problem to efficiently sample HPs combinations s.t.:

EI(λ) ∝
g(λ ∣ Dg)

b(λ ∣ Db)
. (3.34)

So, the next point to evaluate with the actual objective function is selected by sampling HPs
combinations s, according to the distribution g(λ ∣ Dg) with wg and `g fitted on Dg . Then,
the most promising sample s⋆ is selected with

s⋆ ∈ argmax
s

g(s ∣ Dg)

b(s ∣ Db)
.

The whole TPE process is described in algorithm 10.
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Algorithm 10 TPE

Inputs:
1: Ω Continuous search space
2: f Objective function
3: D = {(λ1, f (λ1)), . . . ,(λk , f (λk))} Initial dataset of k randomly computed solutions
4: γ Split quantile
5:
6: while stopping criterion not met do
7: Dg ,Db ← Split(D,γ)
8: wg ,wb ←Update(wg ,wb,Dg ,Db)
9: `g ,`b ←Update(`g ,`b,Dg ,Db)

10: g(λ ∣ Dg) ←wgp(λ)+w⊺gK(λ,λg ∣ `g)
11: b(λ ∣ Db) ←wbp(λ)+w

⊺
bK(λ,λb ∣ `b)

12: Sample(p(s) = g(λ ∣ Dg))

13: s⋆ ∈ argmax
s

g(s ∣ Dg)
b(s ∣ Db)

14: D←D⋃(s⋆, f (s⋆))
return best of D

Bayesian Optimization HyperBand

BOHB is a state-of-the-art HPO algorithm [69, 20]. It combines Hyperband and TPE to better
sample HPs combinations. Hence, BOHB relies on Hyperband to determine the number of
solutions to evaluate, and the budget allocated to these solutions. The algorithm combines
multi-fidelity and SMBO applied to expensive HPO of ML models. The pseudocode of the
sampling used in BOHB is given in algorithm 11; it replaces line 10 of algorithm 9. All
evaluations are kept on all budgets, so to enrich the two KDEs computed on the biggest
budget. Here the archive of points D can be grouped by a budget B, DB. An archive of
observed solution with budget B, DB can be split into good and bad archives, resp. DBg and
DBb.
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Algorithm 11 BOHB (sampling)

Inputs:
1: Ω Continuous search space
2: f Objective function
3: D = {(λ1, f (λ1)), . . . ,(λk , f (λk))} Dataset of n computed solutions
4: γ Split quantile
5: ρ Probability of random runs
6: Nmin Minimum number of observations
7:
8: B←max{B ; ∣DB∣ ≥Nmin +2}
9: if (U(0,1) < ρ)∨ (b = ∅) then

10: return Random(Ω)
11: else
12: DBg ,DBb ← Split(DB,γ,B)
13: wBg ,wBb ←Update(wBg ,wBb,DBg ,DBb)
14: `Bg ,`Bb ←Update(`Bg ,`Bb,DBg ,DBb)
15: g(λ ∣ DBg) ←wBgp(λ)+w⊺BgK(λ,λBg ∣ `Bg)

16: b(λ ∣ DBb) ←wBbp(λ)+w
⊺
BbK(λ,λBb ∣ `Bb)

17: Sample(p(S) = g(λ ∣ DBg))

18: s⋆ ∈ argmax
s

g(s ∣ DBg)
b(s ∣ DBb)

19: return s⋆

3.4 Parallel HPO

In practice, efficiently tackling NP-hard problems involves parallel and distributed opti-
mization. Distributed optimization is challenging, one has to handle memory, homogeneous
and heterogeneous computational resources (CPUs,GPUs), network communications, and
fault tolerance. The memory can be shared or distributed, involving different parallel pro-
gramming approaches (OpenMP or MPI). A system can be accelerated or not, for example
via GPUs. These methods significantly reduce computation time and enhance scalability.
Parallel optimization has several advantages [259]. The main goal of parallelization is to
accelerate the optimization process, which can also be used to solve problems that cannot be
tackled sequentially in a reasonable amount of time. It can also improve the performances of
the optimized solution and the robustness of the algorithm.

In the following sections, we will explore how parallel and distributed optimization can
accelerate HPO of previously described algorithms.

Parallelization of metaheuristics can be divided into three levels of granularity [259, 260]:

• Algorithmic: Here, different instances of algorithms are executed in parallel. They can
be independent or cooperative.

• Iteration: This model describes a parallelization of a single iteration of a sequential
algorithm.

• Solution – Objective function: Here, the evaluation of a single evaluation is accelerated
via parallelization of its internal computations.

In this manuscript, we mainly focus on the iteration level. Indeed, the evaluation of SNNs is
expensive, although GPU-accelerated, and we have access to a few numbers of accelerators
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Figure 3.9: Master–worker parallelization approach.

(about 16). Thus, running multiple algorithmic instances in parallel is not reasonable
regarding the cost of the problem and limited time budget (see chapters 5 and 6).

Considering the limited number of resources and the cost of the objective function (from
minutes to hours), communication time is negligible and the master–worker approach is
relevant. This approach is illustrated in figure 3.9. In case of communication bottleneck,
other approaches such as work-stealing [53] can be considered.

Two common approaches are synchronous and asynchronous parallelization, each with
distinct advantages and tradeoffs [259, 8]. In synchronous parallelization, all worker nodes
evaluate candidate solutions simultaneously, and the optimization process waits for all
evaluations to complete before proceeding to the next iteration. This approach ensures
consistency across updates, but may suffer from idle time if some evaluations take longer
than others, leading to inefficiencies in resource utilization. This is illustrated in figure 3.10.

In contrast, asynchronous parallelization allows the optimization process to proceed as
soon as any worker finishes its evaluation, without waiting for all others to achieve. This
method tends to be more efficient, as it reduces idle time and can adapt to varying evaluation
times, but it may introduce inconsistencies in updates as newer solutions may be based on
outdated information from slower workers.

3.4.1 Parallel Grid Search and Random Search

The parallelization of GS is straightforward [299, 20, 290] as all points to be evaluated are
known in advance and so independent of each other. GS is a “brute-force” – exhaustive search;
all points have to be evaluated. Thus, the master-worker approach is not even necessary,
as points can be partitioned in advance among processes. In the case of high variability of
computation time of the objective function, a master-worker or work-stealing approach could
better balance the workload.

RS is even more straightforward than GS [299, 20, 290]. Since all points are i.i.d. and
there is no peculiar structure of the bounded search space, RS can be parallelized at the
algorithm level by running within each process an instance of RS.

3.4.2 Parallel Simulated Annealing

Parallelizing SA is challenging as it is a sequential S-metaheuristic [259], also named
trajectory-based algorithm [7]. The first synchronous approach would be to sample sev-
eral neighbors of the current solution instead of one. It allows the master-worker approach
because a set of solutions is evaluated in parallel. At the algorithm level, the multi-start
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Figure 3.10: Illustration of synchronous parallelization. The communication and evaluations
between the master and workers can be done asynchronously. The next iteration of the HPO
algorithm is computed once all k evaluations are done.
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Figure 3.11: Illustration of asynchronous parallelization. There is no proper iteration of HPO.
The algorithm asynchronously receives and generates on-demand solutions.
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strategy consists in launching multiple SA from various starting solutions. Concerning the
asynchronous approach, the synchronization barrier of the strategy described earlier could be
relaxed. It allows not to wait for the full evaluation of the neighborhood to compute the next
walk, and eventually to move to a newly better solution from a previous neighborhood [259].

3.4.3 Parallel Genetic Algorithm

Parallelizing GA is also straightforward. It is classified as a P-metaheuristic in [259], and its
parallelization has been well documented since the beginning of the 2000s [8, 6, 176, 7]. The
sequential nature of the GA operators complicates the parallelization at the iteration level.
Within the master-worker approach, the master handles operators and the workload balance,
while workers only compute objective values from received solutions.

GA can be synchronously parallelized by sending solutions from the current population
to workers. Once all solutions are evaluated, the master can compute the next population
using the evolutionary operators. The behavior of the algorithm is not altered with such
an approach, which essentially improves the efficiency when the objective function is com-
putationally expensive [7]. To parallelize asynchronously a GA, the steady-state approach
alters line 11 of algorithm 6 by only replacing one individual from the current population.
Steady-state GA generates only one offspring on the workers’ demand [259, 8].

Other approaches partition the population so it can be distributed among processes.
Sparse communications between processes, e.g. migration in island models [7], allows
limited interactions between subpopulations. A finer-grain approach, known as cellular
algorithms, introduces neighborhood in terms of communications. It maps solutions to
processes [259, 7, 8], and solutions can only be altered by its neighborhood. One key
component of a cellular algorithm is a sufficiently large population size to ensure diversity,
which is an issue considering our expensive HPO problem.

3.4.4 Parallel Gaussian Process-based Bayesian Optimization

GP-BO is hardly parallelizable, as it is an inherently single-solution and sequential algo-
rithm [290].

Instead of sampling a single solution from the acquisition function, batch BO allows
sampling a batch of various and optimized points. One of the most popular synchronous
batch-BO is the qEI [93, 287, 280, 32] allowing to sample batches of q promising solutions.

Considering an archive D and a batch of q solutions λb = {λ1, . . . ,λq}, qEI can be expressed
as:

qEI(λb) =E[max(max
λ∈λb

λ−ybest,0)] . (3.35)

In practice, to prevent computing the equation 3.35 with Monte-Carlo simulations [93], a
complex closed-form of this equation allows for fast computations of the qEI [32].

Other approaches exist to sample a batch of sufficiently diversified solutions from the
acquisition function.

Local penalization [97] penalizes already selected and maximized samples from the
acquisition function. To do so, we suppose that the objective function is Lipschitz continuous
(discussed in chapter 4), and we use the output of the GP to estimate two parameters defining
the penalization around the current maximized sample. Thus, by iteratively maximizing
and penalizing a single solution from the acquisition function, this method builds a batch of
various solutions. By penalizing pending evaluations, local penalization can also be used in
asynchronous parallelization of batch-BO [78].
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Another approach for asynchronous parallelization, known as fantasizing [250], consists
in using the GP posterior distribution to impute values of pending evaluations. By condition-
ing these fantasized solutions with the current GP we obtain a fantasy, i.e. a possible future
GP if the approximations of the pending evaluations were true. The acquisition function
needs to be revisited and redefined as a costly integral. This can be a drawback for large
batches of solutions or when fast optimization of the acquisition function is required.

TS is one of the easiest and most straightforward ways to generate batches of solutions
and asynchronously parallelize BO [138, 78]. The approach comes from the bandit and
reinforcement learning communities. It replaces the acquisition function by themaximization
of a batch of candidates sampled from the GP predictive distribution. By using TS no
acquisition function is optimized, which makes the approach much cheaper than fantasies
and local penalization [78]. The stochasticity of TS ensures an inherent diversity within the
batches of candidates.

3.4.5 Parallel multi-fidelity HPO

SH is embarrassingly parallel as well as GS and RS [157]. A synchronous way of parallelizing
SH and Hyperband is to simply distribute the survivor HPs combinations among processes,
and sample a new bracket when some processes become idle [158]. Or, one can also parallelize
SH at the algorithmic level by running multiple independent instances. The ASHA algorithm
proposes an asynchronous version of SH by allowing incorrect promotion of a solution to be
evaluated with the next fidelity [157]. If a process has a non-promotable solution, then it is
discarded, and a new configuration is randomly sampled with a minimum fidelity. Thus,
ASHA allows continuously having solutions being evaluated and promoted according to the
current state of the algorithm.

In BOHB [69], the parallelism can be tackled within the TPE and Hyperband parts.
Similarly to the TS approach for BO, the diversity of a batch of candidates from the EI
maximization of TPE is ensured by leveraging the size of the batch of candidate solutions.

The Hyperband algorithm can be parallelized by launching multiple iterations (line 8

of algorithm 9) at the same time, and parallelizing at the iteration level the inner SH loop.
So, configurations can be sampled on-demand by multiple parallel Hyperband instances
using TPE. Once an inner SH ends, another is launched. This approach is well suited for the
master-worker paradigm, as the archive D of points is shared among all parallel Hyperband
runs. Hence, when asking for a batch of solutions to the master, the sampled batch will be
up-to-date using all currently evaluated solutions among all parallel processes.



Chapter4
Partition-based global optimization

Continuous relaxation allows tackling the hyperparameter optimization problem by usual
continuous Bayesian optimization. This formulation expands the range of algorithm families.
One of them, inherited from the divide-and-conquer and branch-and-bound approaches,
structures the search space by hierarchically and iteratively decomposing it into progressively
smaller subspaces. In the following chapter, we delve into a generalization of some of these
approaches, which we name FBD algorithms. We present a unified framework based on a
self-similar geometrical object, a fractal, to decompose the search space. This framework
is made of four other components: a tree search, a scoring, exploration, and exploitation
methods. Within the first experimental section, several algorithms are instantiated and
compared using the COCO benchmark. The experimental results emphasize the modularity
of the framework and behaviors of such algorithms in terms of efficiency and scalability.
Under our framework, we then propose a new FBD algorithm relying on Latin Hypercube
Sampling.

4.1 Fractal-based decomposition algorithms

Throughout the following development, we consider a maximization problem, as described in
chapters 2 and 3. Conversely to the previous chapter, we do not currently consider expensive
functions in terms of computation time, memory, budget, etc. Still, the problem is black-
box, non-linear, non-convex, and derivative-free. The optimized function can be written as
follows: f ∶Ω ⊂Rd →R. The search space Ω ⊂Rd is a compact subset of the n−dimensional
continuous set Rd . Then the maximization consists in finding the global optimum x⋆ and is
defined by:

x⋆ ∈ argmin
x∈Ω

f (x) . (4.1)

In this section, we investigate a specific class of optimizers, FBD algorithms, inspired by
divide-and-conquer strategies, which utilize a hierarchical decomposition of the search space.
Two families of algorithms partitioning the search space to optimize a function are studied
and helped to design the following framework. FBD models heuristic approaches, such
as the FRACTOP [46] or FDA [192]. FBD also models some algorithms from Lipschitzian
optimization with DIRECT [135, 136] and optimistic optimization with the SOO [188]
algorithm.

Existing mathematical frameworks, such as the MSO, already generalize some aspects of
Lipschitzian and optimistic optimization partition-based optimizers. FBD aims to include
improper partition with overlapping subspaces, allowing to model a broader category of

81
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Figure 4.2: Example of a tree-like data structure for bisection-based FBD algorithms, applied
to f (x) = −xsin(x)−xcos(2x)− x6

algorithms, including heuristics such as FDA. To do so, in FBD we define a fractal as a high
dimensional geometrical object structuring the search space. It is also a subset of an initial
search space or of another fractal, and a node of a tree data structure.

FBD is structured around five search components: fractal, tree search, scoring, exploration,
and exploitation. The fractal geometrical object partitions the search space in a structured way.
Such partitioning approaches, as described in MSO [58], can be modeled via a tree-like data
structure. This partitioning process is illustrated in figure 4.2, with a 1-d bisection. This
figure highlights the close relation between the partition of the search space and the tree
structure. However, the dynamic of the hierarchical partition, i.e. how to decompose the
search space while optimizing, is handled by the four other components. This dynamic is
first described by the tree search algorithms, which at each iteration selects a set of nodes,
fractals, to further decompose. This selection relies on a criterion defined as the scoring
component and describing the probability of a subspace to contain the global optimum. To
evaluate how promising a fractal is, an exploration component, restrained to this fractal,
samples solutions and their objective value. Finally, to overcome a lack of intensification,
an exploitation component only bounded to the whole search space, is applied to the most
promising fractal at a given iteration.

Such a compartmentalized approach allows translating the search components into
software bricks within a generic Python framework named Zellij1. Zellij allows the design of
new optimization algorithms by combining search components and also the implementation
of alternative components thanks to a high level of abstraction. Comparatively to EA [301], by
doing so, Zellij opens doors to hyper-heuristic and automatic design of FBD algorithms [254].

4.2 Preliminaries

In this section, we introduce a brief description of the basic concepts and search components
from FBD algorithms.

1The Zellij software is available under GitHub https://github.com/ThomasFirmin/zellij.

https://github.com/ThomasFirmin/zellij
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Definition 10 (Search space). Let us define a continuous search space Ω of dimension n as a
closed and bounded subset of a metric space:

Ω = L×U =
n

∏
i=1
[li ,ui] , (4.2)

with L,U ⊂Rn, the infima and suprema, such that ∀i ∈ [1, ...,n], li < ui and ∀x ∈Ω, ∀i ∈ [1, ...,n],
li ≤ xi ≤ ui .

Assumption 1. For convenience, we consider a measure set (Ω,Σ,µ), where Σ is a σ -algebra on
the power set of Ω and µ is a valid measure.

Definition 11 (Fractal). A fractal F :

1. is a closed and bounded subset of a search space : F ⊆Ω, i.e. it is compact regarding the
Heine-Borel theorem.

2. is a non-empty set: F ≠ ∅ .

3. is mesurable: F ∈Σ .

4. is a child of an ancestor fractal (parent) denoted AF .

5. has K children, CF ≜ {c1, . . . ,cK}. With a finite K ∈N .

6. is a node of a rooted tree structure: F ∈ T .

7. is the root of T if F =Ω .

8. is characterized by a set of m properties computed using inheritance of AF : P (F,AF) ≜
{p1(F,p1(AF , . . .)), . . . ,pm(F,pm(AF , . . .))} .

We first consider the case of a partial partition, as defined in the MSO framework. We
temporarily define β(F) the boundaries of a fractal S. Then, two fractals Fi ,Fj ∈Σ are said to
be disjoint at the borders, denoted by the ⩀ symbol, if and only if:

Fi⩀Fj = ∅ ⇐⇒ Fi⋂Fj = β(Fi)⋂β(Fj) (4.3)

This property ensures that two fractals are considered disjoint even with a common boundary.
Later in this chapter, the notion of boundaries will be discarded to the profit of measures of
overlapping and coverage of a set of fractals.

As defined in MSO [58], a collection of disjoint and non-empty subsets of Σ is called a
partial partition.

Definition 12 (Partial partition). Considering a measure space (Ω,Σ,µ), with Ω a search space
as defined in 10, and Σ = P(Ω). A finite collection of fractals, indexed by I , F ⊆Σ = {Fi}i∈I is a
partial partition of Ω if all paired elements are disjoint at the borders:

∀i, j ∈ I, i ≠ j Ô⇒ Fi⩀Fj = ∅ (4.4)

The union of a partial partition of Ω is called its support. Thus, a partition of Ω is a partial
partition for which the union of its elements is equal to Ω. The search space Ω is the support
of this partition.
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Definition 13 (Partition). Considering a measure space (Ω,Σ,µ), withΩ a search space as defined
in 10, and Σ = P(Ω). A partial partition, indexed by I , F = {Fi}i∈I is a partition ofΩ if its support
is Ω :

(∀i, j ∈ I, i ≠ j Ô⇒ Fi⩀Fj = ∅)∧(⋃F =Ω) (4.5)

We temporarily consider that children CF of a fractal F, are a partition of F, i.e. ⋃CF = F.
As a consequence, a FBD algorithm iteratively builds a partition. To do so, a fractal from a
partition can also be partitioned. Thus, a set G ⊆Σ is a hierarchy on Ω if paired elements are
disjoint at the borders or nested.

Definition 14 (Hierarchy). Considering a measure space (Ω,Σ,µ), with Ω a search space as
defined in 10, and Σ = P(Ω). A collection G ⊆Σ, indexed by I such that G = {Fi}i∈I , is a hierarchy
on Ω if :

∀i, j ∈ I, i ≠ j Ô⇒ (Fi⩀Fj = ∅)∨(Fi ⊆ Fj)∨(Fj ⊆ Fi) (4.6)

Definition 15 (Leaves). Considering a measure space (Ω,Σ,µ), with Ω a search space as defined
in 10, and Σ = P(Ω). A hierarchy on Ω, G = {Fi}i∈I . The collection of leaves L ⊆ G are fractals that
have no child:

L = {l ∈ G ∣ Cl = ∅} (4.7)

Definition 16 (Hierarchy of partitions). Considering a measure space (Ω,Σ,µ), with Ω a search
space as defined in 10, and Σ = P(Ω). A hierarchy G = {Fi}i∈I on Ω, indexed by I , is also a
hierarchy of partitions if the union of its leaves L w.r.t 15 is Ω :

(∀i, j ∈ I, i ≠ j Ô⇒ (Fi⩀Fj = ∅)∨(Fi ⊆ Fj)∨(Fj ⊆ Fi))∧⋃L =Ω (4.8)

It is important to notice the relations between previously described concepts. The leaves L
of a hierarchy of partitions on G, are also a partition on G, i.e. (∀Fi ,Fj ∈ L, Fi ≠ Fj Ô⇒ Fi⩀Fj = ∅)∧
(⋃L =Ω).

A FBD algorithm iteratively and dynamically builds a hierarchy G on Ω. As illustrated in
figure 4.2, a hierarchy G on Ω , is then modeled by a rooted tree T , where nodes are fractals.
Thus, fractals can be indexed by their level, i.e. depth, within the tree. For a given fractal F,
a property is dedicated to the level, plevel(F,AF) = l, with 1 ≤ l ≤D, where l = 1 is the level of
the root Ω, and D is the maximum depth of the tree. Considering the K children of AF , these
can be indexed by 1 ≤ i ≤K . Another property defines the indexing, pindex(F,AF) = i.

Minimal properties of fractals are given by, P (F,AF) = {plevel(F,AF), pindex(F,AF)}. As
in [58], one can group fractals by properties. For example, {F ∈ L ∣ pindex(F,AF) = 1}, groups
all fractals that are the first child of their ancestor.

To simplify notations, we write a fractal F(l,i), a node from a tree T of level l, child number
i of AF(l,i) .

At each iteration, a FBD algorithm, selects at least one leaf from L to further partition it
by creating its children. Such a process is called a refinement. Given a partition, e.g. leaves L
of a hierarchy of partitions G, a refinement consists in building a finer grained partition L′ by
selecting F ∈ L and building L′ = {L∖F}⋃{ci ∈ CF ∣ 1 ≤ i ≤K}

Definition 17 (Refinement). Considering a measure space (Ω,Σ,µ), with Ω a search space as
defined in 10, and Σ = P(Ω). Given, a partition F ⊆Ω, a selected fractal F and its K children CF .
A refinement F ′ of F is written:

F ′ ≜ (F ∖F)⋃CF (4.9)

Figure 4.2 illustrates a hierarchy of partitions on Ω , with G = { A , B , C , D , E , F }.

Indeed,⋃G = Ω . For instance, nodes E and F are disjoint at the borders, i.e. E ⩀ F = ∅ ⇐⇒
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E ⋂ F = β ( E )⋂β ( F ) = {3.75}, and nested within its ancestor; parent node, A E =A F = D ,

i.e. ( E ⊂ D ) ∧ ( F ⊂ D ). The fractal C is a leaf of G because C C = ∅. Moreover, the

collection of leaves L = { B , C , E , F } is a hierarchy of partitions on Ω , because ⋃L = Ω .
Considering F , with K = 2 and C F = {G , H }. The refinement L′ of L would be, L′ =

{ B , C , E , G , H }, and G′ = { A , B , C , D , E , F , G , H }.

4.3 Background and related works

Since the 1980s, the first mathematical frameworks [215, 118] generalizing algorithms
decomposing the search were proposed. One of the first is LO, conjointly suggested in 1972
by Piyavskii [216] and Shubert [248]. In this section, we introduce various frameworks, from
the DTB by Sergeyev [239], to the MSO framework of Al-Dujaili [58]. Then, popular FBD
algorithms are presented, coming from various communities, as the metaheuristics or LO
families.

4.3.1 Piyavskii and Shubert algorithm

Initially, the Piyavskii-Shubert algorithm [216, 248], is a deterministic algorithm from the
LO family. It maximizes 1-dimensional continuous search spaces w.r.t. 10. The objective
function is assumed to be blackbox and the only assumption is Lipschitz continuity, i.e. a
certain smoothness ensuring limited variations of the objective function. This assumption is
illustrated in figure 4.4.

A Lipschitz continuous function should not violate the following constraint within the
search space Ω:

∀x,x′ ∈Ω, ∣f (x)− f (x′)∣ ≤ L ∣x−x∣ , (4.10)

where L is a positive constant. There are several benefits to making this assumption. It
facilitates proving convergence towards a global optimum. Additionally, the algorithm is
deterministic and requires only setting, or knowing L.

In dimension 1, the LO algorithm is a FBD algorithm as it iteratively partitions the closed
interval Ω = [l,u]. By replacing x′ from equation 4.10, Lipschitz continuity can be applied to

0 0.5 1 1.5 2 2.5 3
−4

−3

−2

−1

0

1

2

3

4

−K K

∣f (x)− f (x′)∣ ≤K ∣x−x′∣

x
0 0.5 1 1.5 2 2.5 3

−4

−3

−2

−1

0

1

2

3

4

δ

ε

∣x−x′∣ < δ Ô⇒ ∣f (x)− f (x′)∣ < ε

x

Figure 4.4: Examples of Lipschitz continuity (left) and uniform continuity (right). If the
curve crosses the red zone, then the function is not Lipschitz or uniformly continuous.
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any closed interval [a,b] ⊆Ω:

f (x) ≥ f (a)−L(x−a)

f (x) ≥ f (b)+L(x−b)
(4.11)

For maximization, at each iteration, for all leaves of the hierarchy of partitions, the next points
to evaluate are computed using X(a,b,f ,L) = a+b2 +

f (b)−f (a)
2L . A prediction on f (X(a,b,f ,L)) is

then computed using B(a,b,f ,L) = f (a)+f (b)2 +L(b−a). The interval with the lowest prediction,
i.e. B-score, is then selected to be further refined. The combination of X(a,b,f ,L) and
B(a,b,f ,L) allows building the cone that might contain the function. The Piyavskii-Shubert
algorithm estimates an interval-wise Lipschitz constant by successively refining intervals
(fractals) into smaller ones. Three iterations of the algorithm are illustrated in figure 4.6.

However, this algorithm has several drawbacks. Indeed, one has to assume the constant
L to be known. If L is mistuned, then the algorithm could converge slowly. The second
drawback is its poor scalability. Indeed, within a n−dimensional search space, the algorithm
needs to compute all 2n vertices. These issues will be solved in 1993 with the DIRECT [135]
algorithm.

4.3.2 DIRECT: Dividing Rectangles

The DIRECT algorithm, is also part of the LO family. It is initially a modification of the
Piyavskii-Shubert algorithm [248, 216], solving its scalability and unknown L issues. It also
assumes that the objective function is Lipschitz-continuous, with a positive constant L w.r.t.
4.10.

Conversely to the Piyavskii-Shubert algorithm, the partitioning of DIRECT consists in
sampling the center of all sub-hyperrectangles. Thus, at the first iteration, only the center of
Ω is sampled, instead of its 2d vertices. On top of that, DIRECT assumes L to be unknown
and iteratively estimates it.

To do so, equation 4.11 is modified to focus the search around the center c of the subspaces,
instead of its boundaries:

f (x) ≥ f (a)−L(x− c), if x ≤ c ,

f (x) ≥ f (b)+L(x− c), otherwise .
(4.12)

Then, the upper bound for a given subspace F can be written: B(F,c,f ,L) = f (c) + Lσ(F),
where σ measures the size of F.

To build the hierarchy of partitions, the algorithm refines fractals by a series of trisections
on the longest sides. The choice of the cutting sides relies on the quality of previously
sampled centers. The partitioning strategy is illustrated in figure 4.8.

One can notice that in the computation of 4.12 and B, L still must be known. To solve these
issues, DIRECT introduces the concept of POH, a strategy that selects the most promising
fractals to be refined [135]. POH can be considered the computation of a Pareto front between
the size of hyper-rectangles and their fitness values, i.e. a convex hull, preventing a lack of
exploration due to over-dividing small subspaces. The POH is illustrated in figure 4.9, where
the Pareto front is depicted in dotted blue. Non-POH are symbolized by square-red points.

Despite the improvement of Piyavskii-Shubert algorithm, DIRECT has several drawbacks.
There is a poor balance between exploration and exploitation, and the computational com-
plexity is subject to the curse of dimensionality. Many modifications of DIRECT have been
proposed in the literature to counterbalance some of these drawbacks [136]. For instance, a
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Figure 4.9: Potentially optimal rectangles according to their size (σ ) and their center (f (c)).
Teal-diamond dots are POH.
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Figure 4.11: A single refinement of a hyper-rectangle in SOO.

DIRMIN [164] tackles the lack of local optimizer by applying a truncated Newton method
after a certain number of iterations. The DIRECT-L algorithm introduced by Gablonsky [81],
reduces the global drag, a phenomenon consisting in over-refinement of local solutions. An-
other version, DIRECT-R [73], improves the exploration-exploitation tradeoff by making
the parameter ε adaptive. Additionally, modifying the geometry of the partition itself can
help improve DIRECT depending on the problem. For instance, by using simplices [306] or
Voronoï cells [162].

All these modifications try to overcome DIRECT’s lower performances in high dimensions,
low convergence rate when trapped by local optima, or lack of a local optimizer.

4.3.3 DOO, SOO, NMSO: Optimistic Optimization

DOO and SOO generalizes the DIRECT algorithm [188, 189]. These algorithms make a strong
assumption on the existence of a semi-metric l. This assumption simplifies the Lipschitz-
continuous property by assuming a local smoothness around the global optimum x⋆ [188]
:

∀x ∈Ω, f (x⋆)− f (x) ≤ l(x⋆,x) .

DOO is used when l is known; otherwise, SOO is more adapted. The strength of these
algorithms, is their low number of parameters and the proof of a convergence bound. Both
algorithms are deterministic. At each iteration and at each level of the partition tree, the
best fractal is selected according to the evaluation of a representative solution inside it (e.g.
center). Both algorithms use a trisection to partition Ω, but applied differently compared to
DIRECT, as seen in figure 4.11
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Ð→

Figure 4.13: A single refinement of a hyper-cube in FRACTOP.

In SOO, the balance between exploration and exploitation relies on the tree search
algorithm. It consists in selecting, within the tree and in descending order, the best fractal
at each level only if no other fractals from previous levels are better. DOO and SOO are
linked to the multi-armed bandit problem and Monte Carlo Tree Search [189]. This is why
these algorithms apply the optimism in the face of uncertainty principle. It consists of favoring
poorly explored areas where the uncertainty is the highest. In addition, a stochastic version,
inspired by the UCB-1 algorithm [174], named Sto-SOO has been designed for noisy loss
function, where each fractal has to be evaluated multiple times [270].

NMSO [57], based on SOO, modifies the tree search algorithm, i.e. the fractal selection
strategy, focusing on depth-wise expansions, and where fractals can become unpromising
under certain criteria. It performs well on black-box optimization with expensive functions
and a low budget. It uses a trisection, and more generally, k-section, to partition the space
into hyper-rectangular subspaces. NMSO computes the center of each hyper-rectangle as its
representative point. NMSO, compared to SOO, tends to be more exploitive by favoring deep
trees. However, compared to DIRECT and SOO, NMSO has more parameters, a total of four,
impacting its sensitivity, the exploration-exploitation tradeoff, and the partition size.

4.3.4 FRACTOP, FDA and PolyFRAC: FBDmetaheuristics

FRACTOP is one of the first metaheuristic based on fractal decomposition [46]. It uses
hypercubes (figure 4.13) to decompose the search space, a genetic algorithm (see 6) to explore
each fractal, and simulated annealing (see 5) to exploit a promising fractal.

The algorithm implements a fuzzy measure, named belief, to determine the fitness of a
fractal. Let’s define pscore(F,AF) = Belief(F,AF ,XF , x̂), a property of a fractal F defining its
score, with XF the points sampled in F and x̂ the current best solution found:

Belief(F,AF) = γBelief(AF ,AAF)+ (1−γ)
f (XF)

f (x̂)
exp(1−

f (XF)

f (x̂)
) , (4.13)

with γ ∈ [0,1] the influence of the ancestor on the child’s score, and Belief(Ω,∅) = 0.
One major drawback of this algorithm is its poor scalability in high dimensions due to an

exponential complexity (2d) to build a d-dimensional partition of equal-sized hypercubes.
The FDA metaheuristic partly solves the curse of dimensionality problem of FRAC-

TOP [192] at the expense of full coverage of the search space, and so to a convergence toward
the global optimum. Indeed, the improper partitioning of Ω is made by 2d hyper-spheres, as
seen in figure 4.15.

FDA has a lower partitioning complexity compared to FRACTOP, but at the cost of
overlapping fractals due to an inflation ratio α. This ratio partially reduces the lack of space
coverage implied by the hyperspheres decomposition. FDA quickly acquires information
about fractals by applying the PHS algorithm to each of them. It computes three points: the
center of the hypersphere and two opposite points equidistant to the center. To score an



90 CHAPTER 4. Partition-based global optimization

1)→ Ð→
inf late
ÐÐÐÐ→
α=1.75

2)→ Ð→
inf late
ÐÐÐÐ→
α=1.75

Figure 4.15: Two refinements in FDA.

explored fractal, FDA uses the DTTB solution found so far.
To counterbalance the lack of coverage, and improve the intensification phase of FDA, an

algorithm only bounded by Ω and named ILS, allows reaching some uncovered space. The
ILS is similar to a coordinate descent algorithm starting from the deepest and most promising
fractal.

The polyFRAC algorithm is a modification of FDA [142]. Rather than using hyperspheres,
polyFRAC partitions the space using Voronoï cells. The algorithm computes an approxima-
tion of these fractals, since finding the vertices (i.e. d-faces) of a Voronoï cell is a complex
procedure that does not scale in dimension.

4.3.5 Frameworks for partition-based algorithms

One of the first frameworks proposed in 1987 by Horst and Tuy [118, 119], precursors
of branch-and-bound [166], describes a common structure. The authors give a proof of
convergence for different partitioning algorithms, such as the Shubert algorithm [248] or
ones within the Pintér’s class [215]. They suggested a conceptual algorithm, including a
definition of a partition of a subset F ⊆Ω based on boundaries of F; β(F). They proposed an
indirect definition of a refinement, i.e. a nested partition, using two sets, P containing selected
subsets to be refined and R the remaining ones. This approach was later improved with the
Divide-the-Best Algorithm (DBA) framework [239]. DBA suggests a higher level of abstraction
by including parameters of subsets, additional information about evaluations (derivatives),
and an improved abstraction of the selection strategy, allowing to refine multiple subsets at
the same iteration. Later, in [58], a K−ary tree structure is proposed to model a hierarchical
partition of the search space. The authors proposed the Multi-Scale Optimization (MSO)
framework and an analysis of its convergence using the Hölder condition, boundedness and
sphericity of subspaces.

Other more specific studies [255, 254], proposed to break down DIRECT-based algorithms
into a partitioning strategy, i.e. the partition and evaluation of a subset, and selection scheme, i.e.
our tree search component. The authors proposed a different combination of three selection
and partitioning strategies. The three investigated selection strategies are an improvement of
the POH from DIRECT, an aggressive one, and a two-step-based Pareto selection. Concerning
the partition, the selection can be combined with bisections, 1-dimensional trisections (e.g.
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SOO) and d-dimensional trisections (e.g. DIRECT). The proposed algorithms can sample
the center of the hyperrectangles, two diagonal points, or two vertices. By combining these
components, they designed 12 different DIRECT-type algorithms and showed that a proper
combination of algorithmic components results in different behaviors and performances on
specific problems and situations.

These, works and frameworks pave the way toward hyperheuristics and automated design
of optimization algorithms based on the partition of the search space. Decomposing this fam-
ily of algorithms into search components might result in similar works about hyperheuristics
applied to population-based metaheuristics [301].

4.4 Zellij: An algorithmic framework for FBD algorithms

This section introduces the basic concepts and search components of the Zellij framework.
Conversely to previously described works, we cannot propose a theoretical convergence
within our framework, as we cannot ensure, for all cases described in section 4.4.1, that the
global optima x⋆ is always reachable. Modeling heuristics comes at the expense of ensuring a
proof of global convergence.

In Zellij, a fractal F, is a self-similar geometrical object that does not depend on any
information besides the nature of its ancestor. The inheritance from the parent AF during the
creation of F is the only acceptable transfer of information between fractals. This is modeled
by the properties P (F,AF). For example, the Belief(F,AF) w.r.t. 4.13, can be partly computed
as the score of the parent Belief(AF ,AFAF ) can be inherited, but the current best solution
found x̂ must be shared across fractal.

Thus, to prevent combinatorial explosion in terms of memory, a child F can only compute
its properties by considering AF and cannot append P (AF ,AAF), and so on. This is one of the
drawback of the inheritance-only property, as we cannot model algorithms based on shared
information between fractals. For example, the Multilevel Coordinate Search algorithm [124]
cannot be modeled. Indeed, points are sampled after the creation of a fractal and at the
borders of hyperrectangles, so they can belong to different fractals, involving the transfer
of information between already created fractals. Therefore, the number of properties m is
globally fixed for all fractals. The inheritance prevents communication overhead during
parallelization of any fractal-based algorithm.

In 4.2, we described proper partitions and hierarchy of partitions onΩ. To model heuristic
and metaheuristic approaches, we need a less restrictive definition of a partition w.r.t. 13.
To that end, in the following lines we will consider covers and improper K-covers. Five
properties characterize an improper K-cover on Ω: partition size, building complexity,
coverage, overlap, and memory complexity (see Table 4.1 and Figure 4.21). Unlike existing
mathematical frameworks [239, 58, 118], some parts of fractals can be outside their parents
and can overlap. Two fractals with overlapping boundaries can be considered a special case
of negligible overlapping. Therefore, in Zellij, we do not define the boundaries of a fractal F,
often written as a function of F: ∂F [118], δ(F) [239], β(F) [58]...

In Zellij, exploring and exploiting the rooted tree defined in 4.2 is essential to thoroughly
selecting the next fractals to refine. This is done by a tree search algorithm, sometimes
referred to as selection strategy in the literature. Many tree search algorithms can be used,
from MCTS [189] to usual search algorithms, such as Best First Search (BFS) [45], Iterative
deepening Depth-First Search [49] or Epsilon Greedy Search [269] Considering practical and
hardware implementations, reducing the search space or tackling memory issues can be
done by pruning strategies, such as Beam Search [80]. In Zellij, such an approach consists in
deleting fractals from the tree.
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In global optimization, high performance requires a trade-off between the exploration of
the search space and the exploitation of the acquired knowledge. One has to find the best
strategy for this dilemma [259, 253, 166, 183]. In Zellij, non-explored fractals should be
visited to ensure that all fractals are evenly explored and that search is not confined to a
reduced number of fractals. Exploitation (i.e. intensification) into a reduced region of the
search space uses that knowledge (e.g. best-found fractals) to improve it. The promising
fractals are searched more thoroughly in the hope of finding better solutions.

Sampling in high dimensional search spaces is a critical task, as it is not always easily
tractable to all geometries. Moreover, one does not sample in the same way in a hypercube or
in a hypersphere. In DIRECT [135] and SOO [188], only the centers of the hyperrectangles
are sampled. In our framework, we consider both deterministic and stochastic sampling.
We also consider unique or multiple points methods to sample inside a fractal, such as in
FRACTOP. The exploration can be done in a passive way (e.g. Markov Chain Monte Carlo
sampling, low discrepancy sequences [56]) or in an active way (e.g. metaheuristics [258, 253,
166], surrogate-based optimization [83]).

Once a fractal has been explored, information about its fitness is available. The scoring
component uses this knowledge to compute a score defining how promising a fractal is. This
score is then used by the tree search, with other properties of a fractal. Different scoring
components are used in the literature, such as minimum, mean, median, DTTB [192, 142], or
belief [46].

According to certain criteria, e.g. no more improvement or high confidence, a more
intensive search can be applied to a fractal; this will be the exploitation component of Zellij.
The component is not necessarily restrained to a fractal F, such as in FDA with the ILS only
bounded by Ω. One can use local search strategies such as gradient-based algorithms or
SA [258, 253, 166].

The Zellij workflow is described in Figure 4.16. One can identify the five search com-
ponents, their interactions, and their algorithmic behaviors. The two For each instructions
correspond to line 14 and line 16 of Algorithm 16. Two tests are made at each iteration;
the stopping criterion corresponds to the while loop at line 13, and the maximum depth
test of the tree T to the line 17 in Algorithm 16.

Because each search component is independent of another, it allows instantiating various
strategies for fractals, tree search, exploration, exploitation, and scoring search components.
One can for instance reproduce FRACTOP by using Hypercubes, Best First Search, Belief, a GA
for the exploration and a SA for the exploitation. Some components can be optional, notably
in DIRECT or SOO, for which there is no explicit exploitation or scoring components. Other
search components and instantiation of various FBD algorithms will be described throughout
the next sections.

The purpose of Zellij is to propose a modular framework to facilitate the design of FBD
algorithms through a high-level generalization, and thanks to the five independent search
components implemented as software bricks. The following paragraphs will further describe
the components and introduce some theoretical background to FBD algorithms.

4.4.1 Geometrical fractal object

The fractal search component within Zellij framework allows structuring high dimensional
search spaces to better explore and exploit them. Several types of fractals can be used in
the decomposition of the search space, going from hyperspheres [192], hypercubes [46, 135,
188] to more complex structures such as Voronoï cells [142, 162] (see Figure 4.21). This
geometrical object has a great impact on the behaviors of FBD algorithms.

In 4.2 we described a partition 13, a hierarchy 14, a hierarchy of partitions 16 and a
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refinement 17, which can also be found in usual frameworks [118, 239, 58]. To model
heuristic approaches such as FDA, we extend these previous frameworks to covers and
improper K-covers.

To extend the flexibility of the frameworks, we denote by π ∶ F,P (F,AF) → CF the partition
operator, i.e. a function taking a fractal F, its properties, and returning a collection of its K
children CF . Thus, we can redefine the partition according to π. Further properties of π will
be detailed by the end of this section.

Definition 18 (K-partition). Consider a measure space (Ω,Σ,µ), withΩ a search space as defined
in 10, and Σ = P(Ω). A K-partition of a fractal F ⊆Ω by its K children CF obtained with a function
π ∶ F,P (F,AF) → CF , is written:

F = ⋃π(F,P (F,AF))

= ⋃CF

= ⋃{c ∈ CF ∣∀s,c ∈ CF , s ≠ c, c⩀s = ∅}

(4.14)

Nonetheless, this definition is still too restrictive to model algorithms like FDA. First, we
need to allow overlapping, i.e. dropping the disjoint at the borders (⩀) condition. A collection
of fractals, for which Ω is included in the union of its elements, is called a cover.

Definition 19 (Cover). Consider a measure space (Ω,Σ,µ), with Ω a search space as defined
in 10, and Σ = P(Ω). A cover of Ω is a finite collection of fractals, indexed by I , F = {Fi}i∈I such
that their union includes Ω :

Ω ⊆⋃
i∈I
Fi (4.15)

We can extend this definition to the partition operator π and any fractal, so to a K-cover:

Definition 20 (K-cover). Consider a measure space (Ω,Σ,µ), with Ω a search space as defined
in 10, and Σ = P(Ω). A K-cover of a fractal F ⊆Ω by its K children CF obtained with a function
π ∶ F,P (F,AF) → CF , is written:

F ⊆ ⋃π(F,P (F,AF))

⊆ ⋃CF

(4.16)

Figure 4.17, illustrates a K-cover of a 2-dimensional Ω with rectangles.
Notice how in our framework, π and any component can make use of any additional

information about a fractal F with P (F,AF). For instance, a measure of the size of a fractal.
In DIRECT [81] the σ -function can be of different types, such as σ2 or σ∞. Thus in DIRECT,
psize(F,AF) = σ∞(F) ∈ P (F,AF).

Using a given fractal F, one can build a recursive K-cover of Ω. Indeed, the refinement
described in 17, is still applicable to K-covers using the partition operator π. For readability,
we write π(F,P (F,AF)) as π(F).

Definition 21 (Hierarchical K-refinement). Consider a measure space (Ω,Σ,µ), withΩ a search
space as defined in 10, and Σ = P(Ω). Let D be the number of successive refinements of a fractal
F(l,j,i) ⊆Ω obtained by a function π ∶ F,P (F,AF) → CF .

We write j ∈ ~1,El�, with El the number of fractals that have been refined l times, and i ∈ ~1,K�
the ith set of a K-cover of a superset j. A hierarchical K-refinement of F(l,j,i) of maximum level D
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A

B
C

D

⋃F ∖Ω

Fi⋂Fj ,Fi ,Fj ∈ F

E

Figure 4.17: Example of a cover of Ω by a collection F = {A,B,C,D,E}. The solid-green part
corresponds to overlapping between fractals. Dotted-gray is the part of fractals outside the
search space Ω represented by a thick line.

(i.e. depth) is written as:

∀l ∈ ~2,D −1�, ∃(x,y,j) ∈ (~1,El−1�,~1,K�,~1,El�), F(l,x,y) ⊆⋃π(F(l,x,y))

⊆
K

⋃
i=1
F(l+1,j,i)

(4.17)

Here, a subset identified by (l, j, i) corresponds to the fractal at level l, child number i
of the fractal j at level l −1. An appropriate data structure used to model Definition 21 is a
K-ary rooted tree. Hence, one can rewrite the initial search space Ω as the root of this tree:
F(1,0,1) =Ω, where E0 = ∅. A fractal is now considered as a node of a K-ary rooted tree T .
Figure 4.18 shows an example of a 2-refinement of depth 4, of a 2D square using a bisection,
drawn as a red dotted line, along the longest side.

For a fixed l ∈ ~1,D −1�, one can write the set A(l) of supersets (ancestors) at level l that
have children at level l + 1. Let us denote a leaf at the level l of a tree T as ○[l, j, i]. An
interesting property of using a K-ary tree on a K-refinement that covers Ω is that the initial
search space is a subset of the union of all the leaves.

Theorem 1. Consider a measure space (Ω,Σ,µ), with Ω a search space as defined in 10, and
Σ = P(Ω). Let Ω be the root of a K-ary tree T of maximum depth D. For all 1 < l ≤D, the union
of all leaves L = {○[l, j, i] ∈ T ∣ C○[l,j,i] = ∅}, children of nodes numbered by ~1,El−1� as defined in
Definition 21, contains Ω:

Ω = F(1,0,1) ⊆
D

⋃
l=2

El−1
⋃
j=1

K

⋃
i=1
○[l, j, i] (4.18)

Proof. We consider a k-ary rooted tree T (d) of depth d, with 1 < d ≤D. Considering A(l) the

set of fractals at level l having children at level l +1: ⋃A(d−1) ⊆
Ed−1
⋃
j=1

k
⋃
i=1
○[d,j, i]

If we remove all ○[d,j, i] from T (d), we obtain a tree T (d−1). So, the leaves of T (d−1) at level
d −1 can be written as {○[d −1, j, i],A(d−1)}.

Thus, ⋃A(d−2) ⊆
Ed−2
⋃
j=1

k
⋃
i=1
○[d −1, j, i]⋃A(d−1)
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Fractal of ID 4 at level 3, 
child n°2 of parent ID 2

Figure 4.18: Example of a 2-refinement of depth 4, with a bisection along the longest side.

and so on, until T (1):

Ω ⊆A(1) ⊆
k
⋃
i=1
○[2,1, i]⋃A(2)

For simplicity, one can write all leaves ○[l, j, i] of T (d), a tree T of depth d, as L
T (d) .

Theorem 1 is valid for a K-cover as defined in 20, allowing overlapping fractals. Moreover,
a part of a fractal can lie outsideΩ. In Zellij only parts insideΩ are considered as the fractals
are trimmed to Ω.

Nonetheless, the current framework does not allow modeling algorithms like FDA, which
uses hyperspheres [192] and where fractals do not necessarily fully cover Ω.

We previously described the basic principles of fully covering fractal-based decomposition
algorithms. To extend our framework to improper covers, i.e. a collection of fractals that only
covers a significant part of Ω, we have to measure what the overlap and coverage are for FBD
algorithms.

By considering a tree T (d) and (Ω,Σ) a measurable set, we can write L
T (d) ⊆ Σ and

L
T (d) ∈ Σ. We define a measure, µ ∶ Σ→ [0,+∞]. A stricter condition is applied to µ, µ(F) =

0 ⇐⇒ F = ∅. Hence, the result of a hierarchical K-refinement cannot be made of null sets.
Because π cannot produce null sets, and because the maximum tree depth D is finite, we can
define a measure of the coverage of Ω by L

T (d) and between fractals, i.e. coverage of certain
areas by at least two fractals.

Definition 22 (Coverage). Let (Ω,Σ,µ) a measure space, and two fractals A,B ⊆Ω, A,B ∈Σ and
B ⊆A. A measure of the coverage of A by B can be written as:

C(A,B) = µ(∁
A
B) (4.19)
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⋃F ∖Ω

O(F)

C(F ,Ω)

Figure 4.19: 2-dimensional illustration of covering and overlap applied on a FDA scheme.

However if B ⊈A such as in FDA:

C(A,B) = µ(A∖(A⋂B)) (4.20)

From Equation 4.20 we can infer B∖A, the part of B outside A.

One can distinguish two types of coverage: C(Ω,⋃LT (d))measures the coverage of the
search space by L

T (d) , and C(F(l,j,i),⋃π(F(l,j,i))) measures the coverage of a fractal by its
children.

Definition 23 (Overlap). Let (Ω,Σ,µ) a measure space, and A ≠ ∅ a countable collection of
fractals such that ∀n ∈N,∀an ∈A ∶ an ∈Σ and ⋃

n∈N
an ∈ Σ. A measure of the overlap between all an

can be written as:

O(A) = µ
⎛

⎝

∣A∣−1

⋃
i=1

∣A∣

⋃
j=i+1
(ai⋂aj)

⎞

⎠
(4.21)

Coverage and overlap properties are illustrated in Figure 4.19 as a 2-dimensional FDA
scheme. One can see, in hatched-red, the uncovered space and in solid-green the overlap
between fractals. Moreover, because of the inflation of hyperspheres, the dotted-gray space
represents parts of the fractals outside Ω.

As the monotonic property of measures is not strict, A ⊆ B Ô⇒ µ(A) ≤ µ(B), one cannot
say that L

T (d) covers Ω by only looking at C(Ω,⋃LT (d)). Thus, several assumptions are
made. For continuous dimensions, we consider that ⋃LT (d) covers Ω if C(Ω,⋃LT (d)) = 0,
even if ⋃LT (d) does not include Ω boundaries. To describe the necessary assumptions of an
improper K-cover, we have to clearly define the partition operator π.

Definition 24 (Partition operator). Consider a measure space (Ω,Σ,µ), with Ω a search space as
defined in 10, and Σ = P(Ω). A partition operator is a function π ∶ F,P (F,AF) → CF , describing
how to create children CF ≜ {c1,c2, . . . ,cK} of a given fractal F ⊆Ω such that :

1. Children cannot be empty nor null sets:

∀i ∈ [1, . . . ,K] , ci ∈ CF , (ci ≠ ∅)∧(µ(ci) > 0)
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2. The union of the children cannot be empty, and its measure is significant:

(⋃CF ≠ ∅)∧(µ(⋃CF) > 0)

3. The intersection between children must be part of the search space or can be empty:

(⋂CF ⊆Ω)∨ (⋂CF = ∅)

4. Two children are strictly different subsets, and a child cannot be a subset of another:

∀i, j ∈ [1, . . . ,K] , i ≠ j, ci ,cj ∈ CF (ci ≠ cj)∧(ci /⊆ cj)

5. A subset of a child must be part of its ancestor and the measure of their intersection must be
significant:

∀i ∈ [1, . . . ,K] , ci ∈ CF , (ci⋂Aci ≠ ∅)∧(µ(ci⋂Aci) > 0)

6. A child must be significantly smaller than its ancestor:

∀i ∈ [1, . . . ,K] , ci ∈ CF , µ(ci) < µ(Aci)

Even if, definition 24 allows modeling many improper K-covers, open questions remain
about stricter conditions that could be applied to the definition of the partition operator.
Notably, about enforcing the part of a child outside its parent to be significantly smaller
than the part inside it; µ(ci⋂Aci)≫ µ(ci ∖Aci). Which could also be applied to all children;
µ(⋃CF⋂ACF)≫ µ(⋃CF ∖ACF).

By using definitions 11, 22, 23 and 24, we can now modify Theorem 1 for an improper
K-cover.

Definition 25. Let Ω be a search space, Σ = P(Ω) a σ -algebra on Ω, and (Ω,Σ,µ) a measure
space. Ω is the root of a K-ary partition tree T (d) of depth d and L

T (d) are its leaves. C(., .) and
O(., .) are measures of the coverage and overlapping between fractals. We suppose that L

T (d) is not
a null set and µ(A) = 0 ⇐⇒ (A = ∅)∨(⋃A = ∅). Then, a given decomposition-based algorithm is
said to be:

1. Preservative: If the union of the leaves covers the search space;
∀d > 1, C(Ω,⋃LT (d)) = 0 and:

(a) Proper: If the fractals never significantly overlap;
O(L

T (d)) = 0

(b) Improper: If the fractals significantly overlap;
O(L

T (d)) > 0

Then,
µ(Ω) = µ(⋃LT (d)) (4.22)

2. Sacrificial: If the union of the leaves does not cover the search space;
∀d > 1, C(Ω,⋃LT (d)) > 0 and:

(a) Lowly: If children do not cover their ancestor for the first decomposition of the search
space;
∀l > 1, C(F(l,i,j),⋃π(F(l,i,j))) = 0 and C(Ω,⋃π(Ω)) > 0. Then,

µ(Ω) > µ(⋃LT (d)) (4.23)
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with ∀d > 1, µ(⋃LT (d)) ≤ µ(⋃LT (d+1))

(b) Highly: If after every refinement children do not cover their ancestor;
∀l > 1, C(F(l,i,j),⋃π(F(l,i,j))) > 0 and ⋃π(F(l,i,j))∖F(l,i,j) = ∅. Then, ∀d > 1,

µ(Ω) > µ(⋃LT (d)) > µ(⋃LT (d+1)) (4.24)

(c) Unbounded: If after every refinement a part of the children are outside their ancestor;
∀l > 1, C(F(l,i,j),⋃π(F(l,i,j))) > 0 and ⋃π(F(l,i,j))∖F(l,i,j) ≠ ∅. Then, we cannot infer
any relations between measures of the leaves:

µ(Ω) > µ(⋃LT (d)) ⋚ µ(⋃LT (d+1)) (4.25)

Proof. We consider a K-ary rooted tree T of depth d, with 1 < d ≤D. This tree is denoted as
T (d), and the leaves of T (d) as L

T (d) . One can consider a partition operator π defined by
definition 24.

Preservative:
If ∀d > 1, C(Ω,∪L

T (d)) = 0.
Then Ω = ∪L

T (d) , because by construction ∪L
T (d) ⊆Ω and

C(A,B) = 0 ⇐⇒ µ(A∖(A⋂B)) = 0
⇐⇒ A = B

So, we have:
Ω =⋃LT (d) Ô⇒ µ(Ω) = µ(⋃LT (d))

Lowly sacrificial:
If ∀d > 1, C(Ω,∪L

T (d)) > 0 and C(F(d,j,i),∪π(F(d,j,i))) = 0. Then, Ω ⊃ ∪L
T (d) Ô⇒ µ(Ω) >

µ(∪L
T (d))

and ∪L
T (d) ⊆ ∪LT (d+1) .

So we have,
∀a ∈ L

T (d) , π(a) ∈ LT (d+1)
Ô⇒ µ(a) ≤ µ(⋃π(a))

Ô⇒ µ(⋃LT (d)) ≤ µ(⋃LT (d+1))

Highly sacrificial:
If ∀d > 1, C(Ω,∪L

T (d)) > 0, C(F(d,j,i),π(F(d,j,i))) > 0 and ∪π(A)∖A = ∅ (Subsets cannot have
solutions outside their parents).
Then, Ω ⊃ ∪L

T (d) Ô⇒ µ(Ω) > µ(∪L
T (d))

and ∪L
T (d) ⊃ ∪LT (d+1) .

So we have,
∀a ∈ L

T (d) , π(a) ∈ LT (d+1)
Ô⇒ µ(a) > µ(⋃π(a))

Ô⇒ µ(⋃LT (d)) > µ(⋃LT (d+1))

Unbounded sacrificial:
If ∀d > 1, C(Ω,∪L

T (d)) > 0, C(F(d,j,i),π(F(d,j,i))) > 0 and ∪π(A)∖A ≠ ∅.
Then, Ω ⊃ ∪L

T (d) Ô⇒ µ(Ω) > µ(∪L
T (d))

and ∪L
T (d) ⊃ ∪LT (d+1) . If µ(∪π(A)∖A) = 0, then the part of π(A) outside A is negligible, so
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behaviors are similar to highly sacrificial:

∀a ∈ L
T (d) , π(a) ∈ LT (d+1)

Ô⇒ µ(a) > µ(π(a)⋂a)+µ(⋃π(A)∖A)

Ô⇒ µ(a) > µ(⋃π(a))

Ô⇒ µ(⋃LT (d)) > µ(⋃LT (d+1))

Otherwise, if µ(∪π(A)∖A) > 0, then we need additional information or constraints to deter-
mine the inequalities.

This theorem describes behaviors of an improper Hierarhical K-cover where leaves might
overlap or not fully cover Ω.

Preservative algorithms describe a partition that covers Ω, no matter whether there is
overlap between leaves or not, as we consider ∪L

T (d) . The proper preservative situation, is
comparable to previous frameworks [118, 239, 58], where two fractals A and B are disjoint if
and only if: A⩀B, with negligible overlapping on the borders.

However, lowly sacrificial algorithms describe leaves of the tree that do not fully cover Ω,
but where children of the fractal cover its parent. In this case, a part of the search space is
lost only at the first refinement of Ω.

For highly sacrificial-based algorithms, one only considers fractals that cannot expand
outside their parents. If so, it becomes hard to define the notion of sacrifice, as we can
imagine a decomposition where successive children do not fully cover their parents and shift
outside an ancestor fractal. This can be the case in unbounded situations, where children
may cover space outside their ancestors. Therefore, the choice of π and its combination with
the other search components is crucial.

These different situations are described in figure 4.20. Proper-preservative in figure 4.20a
based on SOO preserves the initial search space Ω, no space is lost. Figure 4.20b illustrate a
case of an improper-preservative algorithm where overlapping fractals fully cover Ω. Low-
sacrifice fractals in figure 4.20c are here based on Sierpinski triangles. Such fractals sacrifice
space of Ω to use a geometry based on triangles. And finally, the examples on figure 4.20d
and 4.20e, based on an FDA scheme, sacrifice space after each refinement. The unbounded
sacrificial example shows how difficult it can be to describe overlapping and coverage when
children can expand outside their ancestors.

In FDA [192], the algorithm considers the inscribed hypersphere as the initial search space.
The algorithm ”sacrifices” points between the hypercube and the inscribed hypersphere; then
children do not necessarily cover their ancestors and can shift outside because of the inflation
ratio. Therefore, FDA can be considered as an unbounded sacrificial algorithm. Nonetheless,
if the inflation ratio is not applied, then FDA becomes a highly sacrificial algorithm.

Five properties can inform the choice of the fractal component: the coverage, the overlap-
ping, the partition size K , the computational complexity O(π) of the partition operator π,
and the data structure of a fractal. These properties are illustrated in table 4.1 with various
example from the literature.

According to the partition size K , the hypercube [46] and simplices [306] are not scalable
for high dimensional search spaces. Because K grows exponentially, O(π) does not scale
either. Even so K scales, such as with the Voronoï cell where the number of seeds (centers)
is a parameter, π is not always adapted to high dimensions. Indeed, popular algorithms
computing the Voronoï diagram are well studied for 2D and 3D (e.g. QuickHull [14],
Fortune’s algorithm [79], Bowyer-Watson algorithm [286]). However, they suffer from the
curse of dimensionality. Hence, one has to use heuristics to approximate Voronoï cells in high
dimensions [162, 229, 182, 276, 141], such as SpokeDart with hyperplane sampling [182].
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(a) Proper preservative (b) Improper preservative (c) Lowly sacrificial

(d) Highly sacrificial (e) Unbounded sacrificial

Figure 4.20: 2-dimensional illustrations of definition 25. The hatched-red area corresponds
to uncovered space resulting from successive decomposition: C(Ω,∪L

T (d)). Solid-green
corresponds to overlapping: O(L

T (d)).

A drawback of such approaches is that the partition becomes dynamic. When refining a
fractal, new cells are created, and then the whole diagram should be re-computed to consider
children’s boundaries. Other hypervolumes showed in Figure 4.21 are easier to compute, and
further details can be found in [135, 46, 192, 188].

Now, considering the coverage and overlap properties, the major drawback of hyper-
spheres compared to other hypervolumes is the poor coverage of Ω by L

T (d) . If C(Ω,LT (d))
and C(F(l,j,i),⋃π(F(l,j,i))), are strictly superior to 0, then the partition does not fully cover
the search space or a parent fractal. According to [192], the inflation ratio applied on hyper-
spheres can reduce the substantial lack of coverage by increasing the overlap. However, we
have to mention the impact of the curse of dimensionality on such objects. Indeed, if we look
at the Hausdorffmeasure of a unit hypersphere, the hyper-volume and the hyper-surface tend
to zero as the dimension tends to infinity. This can explain the empirical results obtained
in [192], indicating that the deeper the decomposition tree, the lower FDA performs.

Figure 4.21 illustrates that 2D representations are misleading. Even if they are intuitive
and allow to better understand basic principles, we cannot infer behaviors in high dimensions
by only looking at 2D or 3D drawings. Thus, the choice of a fractal can be informed by
carefully examining the properties defined in Table 4.1.

4.4.2 Tree search

Before each refinement, a fractal candidate has to be selected to be further refined. As
previously described, a K-hierarchical refinement can be modeled by a K-ary rooted tree.
The expansion of this tree relies on a tree search algorithm, written as a function τ selecting
Q unique fractals among all L

T (d) :

τ ∶ L
T (d) , P (LT (d)), pscore(LT (d)) → {e1, ...,eQ} , (4.26)

where ∀q ∈ [1, ...,Q] ∶ eq ∈ LT (d) , 1 ≤Q ≤ s. The property vector pscore(LT (d)) ⊂ Rs of size s =
∣L
T (d) ∣, describes the scores of leaves. The properties of the leaves are denoted P (L

T (d)) =

{P (F,AF)∣∀F ∈ LT (d)} and pscore(LT (d)) = {pscore(F,AF)∣∀F ∈ LT (d)}.
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Table 4.1: Example of fractals and their properties

Sl,j,i n-cube
Trisec-
tion

Bisec-
tion

n-
sphere

Voronoï Simplex

Parti-
tion size

k 2n 3 2 2n c a n!

Parti-
tion

building
com-

plexity

O(π) O(n) O(n) O(n) O(n) O(2n) b O(n!)

Cover-
age of Ω

C(Ω,⋃LT (d)) 0 0 0 > 0 0 0

Chil-
dren
cover-
age

C(A,⋃π(A)) 0 0 0 > 0 0 0

Overlap O(L
T (d)) 0 0 0 > 0

0 or
> 0 c 0

Data
struc-
ture

∅

center
and side
length

2 points
of size n

2 points
of size n

center
and

radius
See c

n+1
points
of size n

Exam-
ples

∅ [46] [188] [210] [192]
[162,
142]

[306]

aNumber of centroids defined by the user.
bValid for usual algorithms, we can reduce this complexity by approximating the Voronoï diagram in high

dimensions. This complexity, also depends on c, the number of centroids. But here we consider the complexity
depending on the dimension n.

cIt depends on the algorithm used to compute the diagram. It can be a set of vertices for the QuickHull
algorithm or a set of hyperplanes for sampling methods. An exact algorithm or a heuristic approach impacts
the properties.
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(a) (b) (c)

(d) (e) (f)

Figure 4.21: Various examples of fractals in 2 dimensions: (a) hypercubes, (b) bisections, (c)
trisections, (d) hyperspheres, (e) dynamic Voronoï, (f) simplices.

One can instantiate tree search algorithms using an OPEN and CLOSED lists [45], as de-
scribed in algorithm 12. The OPEN list contains unexplored or unexploited fractals. The
CLOSED list contains expanded fractals. Thus, the tree search component is a rule defining
how to append non-expanded fractals to these lists and how to select them. The CLOSED list
is generally used to prevent the algorithm from selecting expanded fractals.

Algorithm 12 OPEN-CLOSE
Inputs:
1: OPEN = L

T (d)

2: CLOSE
3: Q
4: P (OPEN) Properties of OPEN

Outputs: FQ Selected fractal
5: FQ ← SELECT(OPEN,CLOSE,Q,P (OPEN))
6: OPEN← OPEN∖FQ
7: CLOSE← CLOSE⋃FQ
8: return FQ

As the exploration and exploitation tradeoff is a major challenge in global optimization,
the selection of the tree search algorithm requires a peculiar attention for a K-hierarchical
refinement. For example, on one hand, BrFS is mostly inefficient within a FBD algorithm.
Indeed, all fractals at a certain level will be decomposed before selecting fractals of the next
level. See line 5 of algorithm 13.

On the other hand, and conversely to BrFS, DFS always selects the deepest fractals, which
is illustrated in line 5 of algorithm 14. Hence, DFS can be considered a greedy exploitation
only, whereas BrFS is a greedy exploration only algorithm [65]. Both strategies are ineffective,
as the scores given to fractals do not impact the selection. We lose the notion of hierarchy
between fractals. Their behaviors are illustrated in figure 4.22 for different tree search
algorithms.

In FDA, a sorted DFS, called Move-up, favor the selection of deep fractals to rapidly apply
the ILS. By using a more exploitive tree search, FDA emphasizes greedy exploitation of deep
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Algorithm 13 BrFS

Inputs:
1: OPEN ≜ L

T (d)

2: CLOSE
3: plevel(OPEN) Level property of fractals

Outputs: FQ Selected fractal
4: FQ ← argmin

F∈OPEN
plevel(F,AF)

5: OPEN← OPEN∖FQ
6: CLOSE← CLOSE⋃FQ
7: return FQ

Algorithm 14 DFS

Inputs:
1: OPEN ≜ L

T (d)

2: CLOSE
3: plevel(OPEN) Level property of fractals

Outputs: FQ Selected fractal
4: FQ ← argmax

F∈OPEN
plevel(F,AF)

5: OPEN← OPEN∖FQ
6: CLOSE← CLOSE⋃FQ
7: return FQ

fractals, which can lead to a lack of exploration.
To replace DFS or BrFS, an efficient and greedy candidate could be the BFS algorithm [45].

Instead of focusing on plevel(F,AF) fractal’s property, BFS selects the fractal with the best
score property; pscore(F,AF).

Algorithm 15 BFS

Inputs:
1: OPEN ≜ L

T (d)

2: CLOSE
3: pscore(OPEN) Score property of fractals

Outputs: FQ Selected fractal
4: FQ ← argmax

F∈OPEN
pscore(F,AF)

5: OPEN← OPEN∖FQ
6: CLOSE← CLOSE⋃FQ
7: return FQ

Some of these tree search algorithms are more complex and can be stochastic (e.g. Epsilon
Greedy Search, Diverse Best First Search [126]), others allow a parameterization of the
exploration-exploitation tradeoff (e.g. Cyclic best First Search [184]).

In the DIRECT algorithm, a complex algorithm is used. The POH strategy, iteratively esti-
mates the Lipschitzian constant L by grouping fractals according to their score pscore(F,AF)
and sizes psize(F,AF). In DIRECT, the score corresponds to the center of F and its size is
determined by a σ function, which can be the Euclidean distance between the center and
one of the fractal’s vertex. Many other variations of DIRECT are based on this selection
strategy [81, 73, 136].
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(a) (b) (c)

(d) (e) (f)

Figure 4.22: Fractal decomposition with hypercubes applied on 2D Styblinski-Tang function
with various tree search: (a) Depth First Search, (b) Breadth First Search, (c) Best First Search,
(d) Beam Search, (e) Cyclic Best First Search, (f) Epsilon Greedy Search.

The notion of sacrifice defined in definition 25 also concerns tree search algorithms and
pruning techniques. For time and memory complexity reasons, it can be necessary to prune
some leaves. For instance, in the BS algorithm [80], only a given number of leaves are stored
and selected.

4.4.3 Scoring fractals

We previously defined pscore(F,AF), a real value defining the quality of a fractal. This value
summarizes gathered information about F. To compute pscore(F,AF), we define a scoring
method γ assigning a quality value to a given fractal F and a finite set of solutions S restricted
to F. Such as in [118, 239], γ is similar to the characteristic value defining the probability that
a fractal contains the global optimum:

γ ∶ F, P (F,AF), S , f ∣F (S) →R (4.27)

The scoring method γ takes a fractal F, a sample of solutions S restricted to the region of
F, and their corresponding objective values f ∣F (S). The function returns a score within R
which defines the quality of F. The properties of the leaves, denoted P (F,AF), can also be
considered. For example, concerning FRACTOP and the Belief, in equation 4.13, the score of
AF is used to compute γ(F,P (F,AF),S , f ∣F (S)) .

In DIRECT and SOO, γ can be written as γ(F,P (F,AF),c, f ∣F (c)) = f ∣F (c), where c is the
center of F.

In FDA, the algorithm maximizes the DTTB solution found so far among all sampled
solutions. So γ(F,P (F,AF),X , f ∣F (X)) =max

x∈X

f ∣F(x)
∥x−BSF∥ , where X = {c−α rF√

n
, c, c+α rF√

n
}. Here,

c is the center of the hypersphere F, rF its radius, α the inflation ratio [192], BSF is the best
solution found so far, and n is the dimension of the problem.

The combination between τ (tree search) and γ (scoring) is essential, and has different
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purposes concerning the exploration and exploitation tradeoff. Finally, τ and γ can use
additional information modeled within properties P (F,AF), such as a measure of the size
of a fractal. For example, the σ function in DIRECT, with σ2 or σ∞, measures the size of
hyperrectangles according to their level or the length of their longest side [81].

4.4.4 Exploration and exploitation strategies

The scoring component γ requires information about the landscape of F, i.e. S and f ∣F (S).
The exploration component gathers this information, and so the quality of the scoring and the
exploration-exploitation tradeoff also relies on this. As previously defined in the sections 4.3
and 4.4, once the confidence within the quality of a fractal reaches a certain criterion, one
can exploit or intensify, the search within and around this fractal.

The exploration Explore and exploitation Exploit components are defined by the follow-
ing functions applied on a fractal F:

Explore ∶ F, P (F,AF) → S , f ∣F (S)

Exploit ∶ F, P (F,AF) → S , f (S) ,
(4.28)

where S is a finite set of sampled points restricted to the region of the fractal F. Notice that
Exploit is not restricted by F.

Sampling in hyperrectangles or hypercubes is a simple procedure. One can apply all
sampling methods or metaheuristics using search spaces as defined by 10. For example,
low discrepancy sequences such as Sobol, Halton, and Kronecker methods can be used [56].
Sampling in a hypersphere requires a few tricks to satisfy the equation of a n-ball. The
Box-Muller method can be a solution [277, 187, 104]. However, sampling inside a Voronoï
cell (i.e. polytope) is a complex procedure. One could use methods to approximate the
Lebesgue measure [86], hit-and-run sampling [36], hyperplanes sampling [182], or MCMC
sampling [30]. For active algorithms, such as metaheuristics (e.g. local search, evolutionary
algorithms, swarm optimization), one must adapt the search operators (e.g. neighborhood,
mutation, crossover, velocity update) to the fractal geometry.

Finally, if the algorithm lacks of exploitation, one could apply an optional exploitation
algorithm within leaves. This is the case for FRACTOP or FDA, with resp. a SA or ILS.

It is a thorough task to select an exploration and an exploitation search components.
The budget allocated to Explore and Exploit, can be informed by the cost of the objective
function, the maximum depth D of the tree, or the partition size K . A budget that is too high
for Explor can result in a low exploitation phase. Whereas, a budget that is too low for the
exploration phase can result in expensive exploitation within areas of low confidence.
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Algorithm 16 Fractal-based decomposition algorithm

Inputs:
1: Ω Initial search space
2: D Maximum depth
3: Explore Exploration strategy
4: Exploit Exploitation strategy
5: π Fractal decomposition function
6: τ Tree search
7: γ Scoring

Outputs: x̂ Best solution found
8: x̂←∞
9: OPEN←{Ω} List of non-expanded fractals

10: CLOSED←{⋅} List of expanded fractals
11: current←{Ω}
12: scores←{+∞}
13: while stopping criterion not reached do
14: for each leaf ∈ current do
15: children← F(leaf) Decomposition
16: for each child ∈ children do
17: if level(child) <D then
18: R,values← Explore(child)
19: score← γ(child,R,values)
20: Append child to OPEN

21: Append score to scores

22: if min(values) < x̂ then
23: x̂←min(values)
24: else
25: values← Exploit(child)
26: if min(values) < x̂ then
27: x̂←min(values)
28: Append leaf to CLOSED
29: index← Index of leaf in OPEN

30: Remove element at index from OPEN

31: Remove element at index from scores

32: current← τ(OPEN,scores)
return x̂
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4.5 Instantiating algorithms within Zellij

This section introduces how to instantiate some popular FBD algorithms within Zellij. More-
over, it shows how one can extend these algorithms using various search strategies for the
different components. These algorithms are presented per search component in table 4.2.

4.5.1 FDA

Fractal

FDA decomposes the search space Ω by using 2n hyperspheres, with n the dimensionality.
The initial center C1 of Ω is computed by C1 =

U+L
2 , with U and L the upper and lower

bounds. The radius of the hypersphere of center C1 is r1 = U−L2 . Then the region of F(l,i,j) is
defined by the hypersphere of center Cl,i,j and its radius rl at level l. To simplify notation,
only C.,.,. are considered instead of the region F(.,.,.). Centers are points of size n from the
search space, C(.,.,.) ∈Ω. The partition operator π is defined by:

π(Cl,.,.,P (Cl,.,.,ACl,.,.)) = {Cl+1,.,j =Cl,.,. +(−1)
j(rl − rl+1)e⃗j}j∈~1,n� ,

where e⃗j is the unit vector at dimension j and rl+1 =
rl

1+
√
2
.

Exploration

The PHS, i.e. the exploration component, computes the center of the current hy-
persphere and two symmetrical points as previously defined in section 4.4.3. So,
Explore ∶ F(l,i,j), P (F(l,i,j),AF(l,i,j)) →X , f ∣F(l,i,j) (X), where

X = {Cl,i,j −α
rl
√
n
, Cl,i,j , Cl,i,j +α

rl
√
n
} ,

where α > 1 is the inflation ratio. Points that could sampled outsideΩ because of the inflation,
are trimmed to the borders of the search space.

Scoring

From the 3 previously sampled points, the scoring method is defined by taking the maximum
of a slope such that,

γ ∶ F,P (F,AF),X , f ∣F (X)) →max
x∈X

f ∣F (x)

∥x−BSF∥
,

where BSF is the best solution found so far. One issue with BSF, is that it is a global infor-
mation that varies through iterations, and that needs to be shared accross all fractals. This
information cannot be shared through inheritance.

Tree search

Concerning the tree search component, i.e. Move-Up, it is comparable to a sorted DFS
algorithm. Here, the best fractal of maximum current depth d is selected at each iteration,
only if it is not a fractal of maximum depth D. The Move-Up algorithm is described in
Algorithm 17.
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Algorithm 17Move-Up

Inputs:
1: OPEN ≜ L

T (d) Leaves
2: d Current depth
3: D Maximum depth
4: γ Scoring component
5:

Outputs: A Selected fractal
6: if d =D then
7: depth← d −1
8: else
9: depth← d

10: A←∅
11: while (A = ∅)∧(depth>1) do
12: leaf = {F(depth,i,j) ∈ OPEN}∀i,j
13: A← argmin

a∈leaf
(γ(a))

14: depth← depth−1
15: OPEN← OPEN∖A
16: CLOSE← CLOSE⋃A
17: return A

Exploitation

The ILS is similar to a greedy coordinate search. It is defined in [192, 191] and in algorithm 18.
The algorithm iterates through all n axes until a stopping criterion is met. At each iteration,
the ILS samples two symmetrical points on the current axis, centered on the best current
point. The first considered point is the center of the fractal in which the ILS is executed. At
each iteration, the two sampled points are determined by a step ω from the current best
point. Then, if one of these points is better than the current one, the ILS moves toward this
point and considers it as the new current best point. When the ILS has iterated through all
axes, and if no improvement of the center occurred, then ω is decreased and the algorithm
restarts iterating through the axes.

4.5.2 SOO and NMSO

Fractal

SOO and NMSO divide the search space Ω by using trisections (K = 3) along the current
longest side of the ancestor AF . Similarly to the Definition 10, here the region of a fractal
F(l,i,j) is defined by a hyperrectangle of bounds Ll,i,j and Ul,i,j . So, a fractal F(l,i,j) is defined
by the pair Ll,i,j ,Ul,i,j . The partition operator can be written,

π((Ll,.,., Ul,.,.),P (F(l,.,.),AF(l,.,.))) = {(Ll,.,. + k ⋅ ` ⋅ e⃗`, Ul,.,. −(K − k −1) ⋅ ` ⋅ e⃗`)}k∈~0,K−1� ,

where ` is the index of the longest dimension – or side – of F(l,i,j), and e⃗` is the unit vector at
index `.
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Algorithm 18 ILS

Inputs:
1: F A fractal
2: C Center of F
3: rf Radius of F
4: ρ Reduction factor
5: d Dimension
6: ω← rf
7: center←C
8: improvement← False

9: while stopping criterion not met do
10: for i ← 1 to d do
11: ∆←ω× e⃗i Step
12: X ← {center−∆, center, center+∆}
13: best← argmax

x∈X
f (x)

14: if f (center) < f (best) then
15: center← best

16: improvement← True

17: if improvement then
18: improvement← False

19: else
20: ω← ρ×ω

return center

Exploration

The exploration component of SOO and NMSO, consists in computing the center of each
fractal. So, Explore ∶ F(l,i,j), P (F(l,i,j),AF(l,i,j)) → S , f ∣F(l,i,j) (S), where

S = {
Ul,i,j +Ll,i,j

2
} ,

Scoring

Then, the scoring component is the objective value of the center γ(F,P (F,AF),S , f ∣F (S)) =
f ∣F (S). Here, the scoring component does not have much impact on the algorithm. The
exploration-exploitation tradeoff is mainly explained by the tree search algorithm.

Tree search

The tree search of SOO consists in selecting, within the tree T (d) in a top-down manner, the
best fractal at each level only if it is better than all fractals of previous levels. This component
is described in algorithm 19.

The tree search of NMSO is more complex; we give here an overview of the algorithm;
more details about the implementation are found in [57] and the source code 2. This
component balances in width and depth, the exploration of T (d). To do so, the algorithm
builds sequences of depth first search selection. Then, according to a criterion based on
the slopes between the centers of the children of a fractal and their sizes, NMSO restarts a

2https://github.com/ash-aldujaili/NMSO/tree/master

https://github.com/ash-aldujaili/NMSO/tree/master
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Algorithm 19 SOO tree search

Inputs:
1: OPEN ≜ L

T (d) Leaves
2: d Current depth
3: D Maximum depth
4: γ Scoring component
5:

Outputs: A Selected fractals
6: depth← 1
7: vmax←+∞
8: A←{⋅}
9: while depth <min(d,D) do

10: leaf = {Sdepth,i,j ∈ OPEN}
11: α← argmin

a∈leaf
(γ(a))

12: if (α ≠ ∅)∧(γ(α) ≤ vmax) then
13: A←A∪{α}
14: vmax← γ(α)

15: depth← depth+1
16: OPEN← OPEN∖A
17: CLOSE← CLOSE⋃A
18: return A

new sequence from one of the highest (low level), non-expanded fractals. The fractals from
stopped sequences are put in a basket. If after a certain number of iterations, these leaves
from the basket are visited – and not refined – a certain number of times according to their
quality, then they are selected to resume the stopped sequences.

Exploitation

SOO and NMSO do not have any exploitation component. The balance between exploration
and exploitation is mainly guided by the tree search component. As the depth of the tree is
supposed to be infinite, a part of the budget could be allocated to an exploitation component
applied to the best fractal once SOO or NMSO are stopped.

4.5.3 DIRECT

The instantiation of DIRECT within Zellij is based on the following user guide [74].

Fractal and Exploration

Like SOO and NMSO, DIRECT is based on trisections applied to hyperrectangle of bounds
Ll,.,. and Ul,.,. for a level l. Unlike other algorithms, the partition operator first requires the
exploration of the fractal in order to sort the axis – or sides of the fractal – of maximum
length. Then, a series of trisections along all axes of maximal sizes is iteratively applied to
the resulting central hyperrectangles.

The exploration of a fractal F(l,.,.) can be written has: Explore ∶ F(l,.,.), P (F(l,.,.),AF(l,.,.)) →
S , f ∣F(l,.,.) (S), where

S = {Cl,.,. −δe⃗j , Cl,.,. +δe⃗j}j∈I ,
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with the center of a fractal Cl,.,. =
Ul,.,.−Ll,.,.

2 , the set I containing the indices of the axis of
maximum size for a given fractal, I = argmaxi∈~1,n�(Ul,.,. × e⃗i −Ll,.,. × e⃗i), and δ is equal to one
third of the longest side of a given fractal, δ =max(Ul,.,. −Ll,.,.) /3. Once a hyperrectangle has
been explored, the resulting points along all axes of maximum sizes are used to iteratively
trisects the fractal; refer to [74] for more details. The combination of the partitioning factor
and Explore is detailed in algorithm 20. Lines 6 to 10 can be considered the Explore search
component.

Algorithm 20 DIRECT partition operator

Inputs:
1: F Fractal
2: LF Fractal lower bounds
3: UF Fractal upper bounds
4: n dimension

Outputs: CF
5: CF ←{.} Children
6: c← UF+LF

2 Center
7: Lc, Uc ← LF ,UF
8: δ←max(UF−LF3 ) 1/3 of maximum side length
9: I ← argmax

i∈~1,n�
(UF −LF)× e⃗i Longest axis

10: w←{wi =min(f (c−δe⃗i), f (c+δe⃗i))}i∈I
11: I ′←Reorder(I,w) Sort I in a descending order according to w
12: for i ∈ I ′ do
13: child1← (Lc,Uc −2δ× e⃗i)
14: child2← (Lc +2δ× e⃗i ,Uc)
15: Lc, Uc ← Lc +δ× e⃗i ,Uc −δ× e⃗i
16: c← (Lc, Uc)
17: CF ←CF⋃{child1,child2}

Tree Search

The tree search algorithm of DIRECT is complex and bounds the Lipschitz constant of leaves
L
T (d) by building the set of POH, i.e. a tradeoff between the score of a fractal and its size.

The selection of POH is described in Algorithm 21 and is based on [74]. For each leaf, the
algorithm builds three sets of fractals according to their size. One set is made of leaves that
are of equal size, and two others are made of leaves that are bigger, respectively smaller,
than the current leaf. Then, by computing different inequalities, the algorithm determines
whether the Lipschitz constant can be bound or not. So, here we have to include the size of
fractals to their properties, psize(F(l,.,.),AF(l,.,.)) = σ(F(l,.,.)), where σ is a measure of the size
of a hyperrectangle [81]. In the pseudocode, the best fractal found so far (the best center)
is denoted BSF, ε > 0 is a small value defining how a score of a fractal should exceed BSF to
be considered better. As in SOO and NMSO the scoring of a fractal is the objective value
of its center, and there is no exploitation component. Most of the algorithm relies on the
partitioning and the tree search. Two extensions of DIRECT, known as DIRECT-L [81], and
DIRECT-R [73], slightly modify the algorithm 21 and the measure σ , to obtain different
behaviors.
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Algorithm 21 POHs

Inputs:
1: OPEN ≜ L

T (d) Leaves
2: d Current depth
3: D Maximum depth
4: γ Scoring component
5: ε
6: BSF Best solution found
7:

Outputs: A POHs
8: A←{⋅}
9: for each a ∈ OPEN do

10: I1 = {b ∈ OPEN ∣σ(b) < σ(a)}
11: I2 = {b ∈ OPEN ∣σ(b) > σ(a)}
12: I3 = {b ∈ OPEN ∣σ(b) = σ(a)}
13: if γ(a) ≤ γ(b), ∀b ∈ I3 then
14: maxI1 =max

b∈I1
(
γ(a)−γ(b)
σ(a)−σ(b))

15: minI2 =min
b∈I2
(
γ(b)−γ(a)
σ(b)−σ(a))

16: if BSF = 0 then
17: err = −ε+ γ(BSF)−γ(a)

∣γ(BSF)∣ +
σ(a)⋅minI2
∣γ(BSF)∣

18: else
19: err = −γ(a)+σ(a) ⋅minI2
20: if (minI2 −maxI1 > 0)∧ (err ≥ 0) then
21: A←A∪{a} a is a POH
22: OPEN← OPEN∖A
23: CLOSE← CLOSE⋃A
24: return A
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4.6 Experimental setup

The objective of these comparisons is to illustrate the workability of our software framework
by instantiating several popular algorithms within the Zellij framework. One can also
evaluate their scalability and their sensitivity according to the different search components:
fractal, tree search, scoring, exploration, and exploitation components. We summed up all 11
implemented algorithms and their different search components in table 4.2.

To illustrate the flexibility of Zellij we modified some search components from the pre-
vious algorithms. The Move-Up algorithm of FDA is replaced by a BFS consisting, at each
iteration, of selecting the Q best nodes from L

T (d) . FDA-based algorithms using BFS are
denoted, FDA-BFS and FDA-DBFS.

Similarly, BFS was applied to SOO(SOO-BFS). The advantage of using BFS instead of BS is
that all fractals are kept. So in SOO-BFS, the entirety of the search space remains accessible;
however, BFS might modify its rate of convergence.

We also test FDA and FDA-DBFS, a version with a deeper tree. The maximum depth
D was set to 5 for FDA and FDA-BFS and to 10 for FDA-D and FDA-BFS. Additionally, we
replaced the DTTB (γ) of FDA by a centered version, CDTTB, of it (FDA-C). The measure is
centered on the best solution found so far,

γ ∶ F,X , f ∣F (X),P (F,AF) →min
x∈X
(
f (x)− f (BSF)

∥x−BSF∥
) .

The optimization algorithms were evaluated on the BBOB benchmark from the Com-
paring Continuous Optimizer framework [103]. This benchmark is made of 24 functions
with peculiar properties such as, separability, ill-conditioning, multi-modality and weak
structured multi-modality. Each function has 15 different instances, and are available for
6 dimensions, n ∈ {2,3,5,10,20,40}. COCO compares algorithms on the number of solved
problems, under a given tolerance ∆f = 10−8, such that,

f (x̂) ≤ f (x⋆)+∆f , (4.29)

where x⋆ is the known global optimum and f (x̂) is the acceptable optimum to consider a
problem as solved. Then COCO computes a metric called the ERT, based on the number of
problems solved and the budget of the optimization. Here, the budget, budget, is the number
of function evaluations, and it depends on the dimensionality of the problem, budget = 104 ⋅n,
as in [57].

COCO is based on the number of problems solved. Hence, to extend the comparison,
we also analyze the best solutions found for all problems, which might not follow the
equation 4.29. To do so, we use the two-sided Wilcoxon signed-rank test and corresponding
mean ranks for each of the 11 algorithms. We perform this test for each subclass of functions
and dimension. Thus, we were able to see their reliability. We define an error rate, p-value,
of 5% for the statistical test. The two hypotheses are:

• H0: The two samples come from the same distribution.

• H1: The two samples come from different distributions.

The two-sided Wilcoxon signed-rank test is based on the mean of the ranking of all 11
algorithms for each subclass of functions and for each dimension. Summing these means and
taking the lowest results is not enough to determine if an algorithm is better than another.
Indeed, giving a rank to an algorithm for a function is arbitrary. An algorithm ranked second
is not necessarily and significantly worse than the first one. We resumed the comparison
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Table 4.2: Instantiated algorithms using Zellij

Algo-
rithm

π τ Explor Exploit γ Depth Source

FRAC-
TOP

n-cube BFS GA SA Belief 4 [46]

FDA n-sphere Move-Up PHS ILS DTTB 5 [192]

FDA-BFS n-sphere BFS a PHS ILS DTTB 5 This work

FDA-C n-sphere Move-Up PHS ILS CDTTB 5 This work

FDA-D n-sphere Move-Up PHS ILS DTTB 10 [192]

FDA-
DBFS

n-sphere BFS a PHS ILS DTTB 10 This work

SOO 3-section alg.19 b Center ∅ ∅ hmax
c [188]

SOO-BFS 3-section BFS a Center ∅ ∅ hmax
c This work

NMSO 3-section See [57] Center ∅ ∅ 600 [188]

DIRECT 3-section All POH Center ∅ ∅ 600 d [135]

DIRECT-
L

3-section
1 POH
per level

Center ∅ ∅ 600 d [81]

DIRECT-
R

3-section
Adaptive
POH

Center ∅ ∅ 600 d [73]

aAt each iteration Q = n(dimension) nodes are returned.
bIf the best fractal at a given level is worse than one from previous levels, then it is not selected [188].
cHere hmax = 10

√

log(n104)3 [50].
dThe maximum depth is set to 600, as the maxdeep variable in the original FORTRAN implementation. In

the original code, a maxdiv variable, set to 3000, limits the number of successive decomposition of a fractal. In
Zellij, when the difference between an infimum and a supremum is inferior to a value ε set to 1e−16, the fractal
cannot be decomposed anymore.
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between ranks and statistical test in Figures 4.26, Figure 4.27 and Figure 4.28. These figures
can be read column by column. Each column represents comparisons of an algorithm (column
label) with all other 10 algorithms (row labels). As an example, in Figure 4.28, for dimensions
3, if we focus on DIRECT-L (last column), we can compare it with SOO (sixth row). The color
indicates that there is statistical evidence that DIRECT-L is better than SOO. In Figure 4.26,
Figure 4.27 and Figure 4.28, there are three color codes:

• Solid-Grey: α > 0.05, we cannot reject the null hypothesis.

• Gridded-Green: α ≤ 0.05 and rank(columni) < rank(rowj). We can reject the null
hypothesis, and the algorithm with the label of the column i has a lower rank (is better)
than the algorithm of the row j.

• Dotted-Red: α ≤ 0.05 and rank(columni) > rank(rowj). We can reject the null hypothe-
sis, and the algorithm with the label of the column i has a higher rank (is worse) than
the algorithm of the row j.

All experiments were carried-out on Grid’5000 [13], a large-scale and flexible testbed for
experiment-driven research. We used a multi-CPUs cluster containing Intel Xeon Gold 5220
of 18 cores, each CPU has 96 GiB of RAM.

4.7 Results analysis and discussion

4.7.1 Sensitivity to the dimensionality

The initial observations from, figures 4.24, 4.25, 4.27 and 4.28, reveal that for dimensions
from 2 to 40, while FDA-based algorithms perform poorly on low dimensional problems,
they can maintain certain performances when dimension scales. Except for FDA-D and
FDA-DBFS always performing worse than FDA algorithms with a shallow tree. This confirms
results obtained in [192], illustrating that the deeper the tree, the lower the performances
of FDA. For dimension 40, performances of FDA-based algorithms are comparable to SOO,
SOO-BFS and NMSO.

DIRECT-based algorithms are one of the best performing ones in low dimensionalities,
with performances comparable to SOO and NMSO. However, it scales poorly, except for
multi-modal functions, where all DIRECT algorithms perform better than FDA ones. This
can be explained by the overconfidence of FDA to exploit fractals. DIRECT remains worse
than SOO and NMSO.

It is important to notice the low number of successes in solving high dimensional problems
in figures 4.24 and 4.25, 4.27. Therefore, the two-sidedWilcoxon signed-rank tests illustrated
in figures 4.26, 4.28, and 4.28, provide additional in-depth analysis.

So, the algorithms that scale the best up to dimension 40, appear to be SOO, NMSO and
FDA. However, because FDA and SOO-BFS are greedy algorithms, they perform poorly in
lower dimensions because they seem to be easily trapped into local optima.

4.7.2 Sensitivity to the tree search

In the following lines, we focus on FDA-BFS, SOO-BFS and FDA-BFS. Concerning, SOO-BFS,
it is clear that the original tree search algorithm performs better than the BFS. So, replacing
this search component from SOO by one that is too greedy has a significant impact on the
performances of the algorithms. The same observations can be made for FDA, FDA-BFS and
FDA-DBFS.
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(c) Dimension 5
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Figure 4.23: Empirical cumulative distribution according to the budget divided by the
dimensions for each functions’ subclass and dimension 2, 3 and 5.
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(b) Dimension 20
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(c) Dimension 40
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Figure 4.24: Empirical cumulative distribution according to the budget divided by the
dimensions for each functions’ subclass and dimension 10, 20 and 40.
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(b) Dimension 3
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(c) Dimension 5
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(d) Dimension 10
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(e) Dimension 20
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(f) Dimension 40

Figure 4.25: Empirical cumulative distribution according to the budget divided by the
dimensions for all functions and dimensions.

Concerning DIRECT, DIRECT-R and DIRECT-L, it appears that biasing DIRECT toward
exploitation (DIRECT-L) helps to scale the algorithm to higher dimensions. While in Fig-
ure 4.25, DIRECT-L solves almost always more problems than DIRECT, their performances
(in ERT according to budget) for dimension 40 are comparable. To break the tie, the two-
sided Wilcoxon signed-rank tests in figures 4.26, 4.28 show that DIRECT-L is more likely to
find a better solution than DIRECT, even if it cannot always solve the problem. However,
DIRECT-R seems to be worse than DIRECT and DIRECT-L.

This section illustrates how fractal-based decomposition algorithms are sensitive to the
tree search algorithm and its parametrization. So, particular attention is needed to the design
of this search component.

4.7.3 Sensitivity to function properties

Concerning separable functions, NMSO and SOO are two of the top algorithms, no matter
the dimensions. When comparing the ERT in Figures 4.23 and 4.24, their performances
in solving low dimensional problems are comparable to DIRECT-L and DIRECT. However,
when dimensions grow, FDA-based algorithms, except FDA-D and FDA-DBFS, benefit from
their exploitation components to scale. When ERT and statistical tests are compared together,
the exploitation component makes FDA competitive with NMSO and SOO, yet NMSO seems
slightly superior.

For low dimensional (2, 3 and 5) and well-conditioned problems, SOO, DIRECT, NMSO
and FDA seems to perform similarly with a dominance of NMSO, SOO and DIRECT-L, in
figure 4.23. However, when the dimension scales, FDA becomes better, except for dimension
40, for which SOO, FDA and NMSO have similar behaviors.

Ill-conditioned problems are harder, and algorithms have difficulties scaling when the
dimension grows. NMSO, DIRECT-L and SOO seem to dominate low dimensional problems.
And, once again, for higher dimensions, FDA scales better. For dimension 40, FDA, SOO
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(b) Dimension 3 (c) Dimension 5

Figure 4.26: Pair Wise Wilcoxon test for each functions’ subclass and dimensions 2, 3 and
5. Solid-Grey: Statistically unsignificative (α > 0.05). Gridded-Green: Better. Dotted-Red:
Worse.
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(a) Dimension 10
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(b) Dimension 20 (c) Dimension 40

Figure 4.27: Pair Wise Wilcoxon test for each functions’ subclass and dimensions 10, 20 and
40. Solid-Grey: Statistically unsignificative (α > 0.05). Gridded-Green: Better. Dotted-Red:
Worse.
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(a) Dimension 2 (b) Dimension 3 (c) Dimension 5

(d) Dimension 10 (e) Dimension 20 (f) Dimension 40

Figure 4.28: Pair Wise Wilcoxon test for all functions and dimensions. Solid-Grey: Statisti-
cally unsignificative (α > 0.05). Gridded-Green: Better. Dotted-Red: Worse.

and NMSO have similar performances, even if they solve fewer problems than FDA. This
can be explained by the exploitation component of FDA, allowing the algorithm a faster
convergence.

As mentioned in [192], the ILS of FDA seems to take advantage of separable functions,
and can be easily dragged toward local optima. The multi-modal problems illustrate these
behaviors, while SOO and NMSO are the best performing algorithms in high dimensions (10,
20, and 40), followed by DIRECT-based algorithms. The same behaviors are observable for
weakly structured multi-modal problems, except that FDA performs better than DIRECT-based
algorithms for dimension 40 and has similar performances compared to SOO and NMSO.

Finally, it appears that to design an efficient fractal-based algorithm, an exploitation com-
ponent allows to significantly improve performances and convergence on certain problems.
However, a greedy exploitation component, unable to escape from local optima, can decrease
the performance of an algorithm. Thus, the balance between exploration and exploitation
seems to rely on combining an exploitation component, an efficient partition of the search
space, and a not too greedy tree search.
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4.8 Fractal decomposition based on Latin Hypercubes

In this section, we introduce a new FBD algorithm based on a LHS decomposition. In
the previous sections, we noticed that there is no perfect fractal geometry to partition the
search space Ω. A hypercubic partition involves 2n children, while FDA with hyperspheres
and despite the inflation, covers less and less space w.r.t. higher dimensionality. SOO or
DIRECT are proper preservative algorithms, but they lack scalability because of the trisection
partitioning, which requires deeper and deeper 3−ary rooted trees to scale.

Thus, LHS partitioning could be an alternative to hyperspheres. It keeps the geometrical
properties of hypercubes, while a child reduces exponentially the space covered by the
ancestor. Indeed, in SOO a child only reduces one dimension of its ancestor by 3, whereas a
child hypercube from a 3-dimensional Cartesian 3-grid reduces all dimensions by 3 at once.
However, it highly sacrifices ancestor space, as it only selects g > 1 hypercubes among gn

hypercubes from a grid of size g at dimension n.

4.8.1 Latin Hypercube Sampling

LHS is a stratified Monte Carlo sampling method [127]. In LHS, the range of each variable
is divided into equally probable intervals, forming a n−dimensional grid of size g. A value
is then sampled randomly within each interval. LHS ensures that each interval for every
variable is sampled only once. This reduces the likelihood of clustering and enhances
coverage across the entire input space. The result is a stratified sampling method where the
points are distributed more uniformly than in simple random sampling, making LHS an
efficient sampling method for high-dimensional spaces with a limited number of samples.

A LHS within the unit hypercube [0,1]n of dimension n, can be described by d i.i.d.
random permutations σk of {0, . . . ,g − 1}, with 1 ≤ k ≤ d, g ∈ ~2,N� and N a finite upper
bound [167]. Then the bounds Li ×Ui of all sampled hypercube 1 ≤ i ≤ g are given by:

∀1 ≤ i ≤ g ,

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

Li =
1
g × [σ1[i], . . . ,σd[i]]

⊺

Ui =
1
g +Li

. (4.30)

By using LHS fractals, we have the hand on the partition size and the size of the sampled
hypercubes, as g is a tunable parameter. Usually in LHS, a single i.i.d. point Xi is uniformly
sampled within each sampled hypercube such that Xi ∼ U(Li ,Ui). But, for the application
within a FBD algorithm, we consider this part as the Explor component, and we only evaluate
the center of the sampled hypercube.

4.8.2 Nested Latin Hypercube Partition

We now consider nested LHS as a FBD algorithm prototype. Then, the bounds of g children
from permutations σk w.r.t. the bound of their direct ancestor A, regarding the length of the
ancestor hypercube lA, and its lower bounds LA, are given by:

∀1 ≤ i ≤ g ,

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

Li = LA +
lA
g ×[σ1[i], . . . ,σd[i]]

⊺

Ui =
lA
g +Li

. (4.31)

We can extend equation 4.31 to a tree T (d) of depth d. Thus, for a fixed grid size g from
the unit hypercube (root), the length of a single Latin hypercube at depth d is given by
l = 1÷ gd . At each refinement, we are generating a grid of gn hypercubes among which only g
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Example: LHS and nested LHS

Figure 4.29: LHS with a grid size of 5×5. Figure 4.30: Nested LHS.

(Left) Example of a LHS with g = 5, the g permutations are {σ1,σ2} =

{{0,1,2,3,4},{4,2,5,1,3}}. (Right) Example of 2 nested LHS with g = 5.

hypercubes are selected. Then at each refinement, a proportion of 1− 1
g(n−1)

of the ancestor
space is sacrificed. Through a hierarchical refinement, all the sides of the root fractal Ω are
reduced exponentially, while exponentially sacrificing space.

We assume continuity of the function f ∶ Ω→R, and Ω is a non-empty compact metric
space from Rn, as stated in previous sections. By construction, any fractal is also a compact
from Rn. Consequently, by the extreme value theorem, the function f is bounded within any
fractal F; ∃l,u ∈ F, s.t. f (l) = inf

x∈F
f (x) and f (u) = sup

x∈F
f (x). By definition, the global optimum

x⋆ within F(1,0,1) =Ω, is defined by x⋆ ≜ sup
x∈Ω

f (x). For simplicity, we suppose that x⋆ cannot

be on a border. Otherwise, x⋆ can belong to all fractals from πgrid(Ω). LHS divides the search
space into a n−grid of size g. The first step is to partition Ω with gn closed and bounded
hypercubes which are disjoints at the borders; we write the grid-partitioning function πgrid,
and ∀Fi ,Fj ∈ πgrid(Ω), Fi ≠ Fj , (Fi⩀Fj = ∅) . Then, the optimal cell F⋆ from πgrid is defined
by:

∃!F⋆ ∈πgrid(Ω), sup
x∈F⋆

f (x) = f (x⋆) .

The partitioning function of a LHS decomposition, πLHS, selects a subset from πgrid;
πLHS(F) ⊂ πgrid(F). If we consider x⋆ as unique and without prior knowledge about the
distribution of x⋆ w.r.t. Ω, the probability that a fractal F ∈πgrid(Ω) contains x⋆, is given by:

P(x⋆ ∈ F ∣ F ∈πgrid(Ω),g,n) =
1
gn

. (4.32)

Because selecting all gn fractals from πgrid does not scale with n, LHS samples g fractals from
πgrid with the function πLHS. In LHS each cell has the same probability of being selected.
Thus, the probability that x⋆ belongs to one fractal from πLHS(Ω) is given by:

P(x⋆ ∈πLHS(Ω) ∣ g,n) =
1
gn−1

. (4.33)

Proof. Considering a LHS built by n permutations σ~1,n� of the set {0, . . . ,g −1}. We write the
matrix formed by stacking all σk as Σ = [σ1, . . . ,σn]⊺, where each column describes a single
hypercube. Each permutation σk has g! different designs, and thus Σ has (g!)n−1 designs, as
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the first permutation σ1 can be fixed. For a given cell – hypercube – Fk described by a column
within Σ, the position of this column is not relevant to describe Fk. Then, for a fixed Σ, all
rearrangements of the columns describe the same LHS configuration. We have g! columns
rearrangement. So, the total number of LHS designs is given by:

card(All) =
(g!)n−1

g!
.

To determine the probability of selecting a cell, we can fix this cell, i.e. forbid a value
of the sets {0, . . . ,g − 1} for the d permutations. Then, the number of LHS configurations,
including this fixed cell, is given by:

card(1 fixed cell) =
((g −1)!)n−1

g!
.

Finally, the probability of a fixed cell F ∈πgrid(Ω) to be selected by πLHS(Ω) is given by:

P(F ∈πLHS(Ω) ∣ F ∈πgrid(Ω),g,n) =
card(1 fixed cell)

card(All)
=

1
gn−1

.

For now, without any refinement, we can notice that a design based on LHS partitioning
cannot scale in high dimensions, as lim

n→∞
1 / gn−1 = 0. We consider the optimal fractal F⋆ from

the first refinement of Ω as the coarse-grain neighborhood of x⋆. The probability of being
within the biggest possible neighborhood of a nested LHS partition, decreases exponentially
regarding the dimensionality. We can easily deduce for a nested LHS after d refinements, that
the probability of x⋆ of being within a fractal F(d,.,.) at level d, and child of a fractal F(d−1,.,.),
converges toward 0 even faster. Indeed, we suppose that at each level we know which fractal
from this level is optimal, and that we directly refine it, without refining non-optimal fractals.
Therefore, the probability that πLHS samples the optimal fractal at each level is given by:

P(x⋆ ∈πLHS (F(d−1,.,.)) ⊂πLHS (F(d−2,.,.)) ⊂ ⋅ ⋅ ⋅ ⊂πLHS (F(1,0,1)) ∣ g,n) = (
1
gn−1
)

d

. (4.34)

To counterbalance this, instead of using a destructive partition function, meaning that
the ancestor is removed from the OPEN list of the tree search component, suppose we can
apply multiple times πLHS to Ω. We compute the probability of not selecting the optimal
fractal F⋆ with s multiple i.i.d. calls to πLHS(Ω) with:

P(x⋆ ∉
s

⋃
i=0
πLHS(Ω) ∣ g,n) = (1−

1
gn−1
)

s

.

We now consider, the minimal grid size g = 2, i.e. the biggest coarse-grain neighborhood
around x⋆. We want to determine s such that the probability of not selecting F⋆ with πLHS(Ω)

is inferior to 1 / 2; P(x⋆ ∉
s
⋃
i=0
πLHS(Ω) ∣ g = 2,n) ≤ 1 / 2. The goal is to determine a minimal

budget proportional to s for a given dimension n. This is illustrated within figure 4.31
for different values of g. The black-dotted line illustrates the budget used in the previous
experimental section with COCO. We suppose that only one point is sampled within each
fractal.

Hence, we can deduce that at the second level (the first refinement of Ω), sampling the
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Figure 4.31: Number of minimum calls s to πLHS(Ω)multiplied by the number g of sampled
fractals for each calls , so that the probability that x⋆ does not belong to sampled fractals is

lower than 1 /2; P(x⋆ ∉
s
⋃
i=0
πLHS(Ω) ∣ g,n) ≤ 1 /2 with g ∈ {2,3,5,10,20,40}.

biggest possible fractal containing x⋆ is far from being trivial, and does not scale with the
dimensionality as it requires an exponential number of calls to πLHS. A solution to bound s
would be to consider forbidden positions within the grid. These positions are determined
by the previously sampled fractals from πLHS. We can consider LHS as the g−non-attacking
rooks problem [5, 179]. The problem of iteratively sampling LHS while including forbidden
positions is known as the problem of arrangement with forbidden positions. However, such an
approach is untractable. First, including forbidden positions would involve a bottleneck as
the number of possible fractals within a grid is exponential, while we are only sampling s ⋅ g
fractals. Secondly, including forbidden positions would complicate the LHS sampling, as it
involves saving an exponential number of positions to sample without collisions. Computing
a probability of collision w.r.t. to s involves knowing all previous sampled fractals in order to
use the inclusion-exclusion principle [179].

Example: Forbidden positions

s = 1 s = 2 s = 3 s = 4 s = 5

4.8.3 Other components

Because we need an exponential number of fractals to maximize the probability that x⋆

belongs to at least one of the fractals at level 2, we have decided to only sample the center
of each fractal. Furthermore, because at each iteration g fractals are evaluated, we can use
the information gathered among fractals and share it using inheritance. The information
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is leveraged to compute a form of UCB inspired by [283]. Regarding a child fractal ci ∈ CF ,
CF =πLHS(F), we write the center of ci as Xci :

Xci = {
Uci +Lci

2
} ,

with Uci and Lci as the upper and lower bounds of ci . So, the scoring of ci is given by:

∀ci ∈ CF , γ(ci , f (Xci)) = f (Xci)+

¿
Á
ÁÀ2log(

π2N 2

6η
)Var({f (x)}x∈Explor(πLHS(F))) ,

with η ∈ (0,1) and N the number of function evaluations. The objective is to build a heuristic
inferring the variance within a child fractal according to the variance within the ancestor.
This variance relies on all points computed within all child fractals of πLHS(Ω). Here, as we
consider a maximization problem, the scoring is maximized. Otherwise, the variance should
be subtracted to f (Xci).

As we cannot efficiently ensure that x⋆ belongs to a fractal, we adopt the same exploitation
strategy as FDA, i.e. the ILS which is only bounded to Ω and not to a child fractal. Instead of
applying the ILS once a fractal has reached the maximum depth D of the tree T (D), we divide
the algorithm into a partition–exploration and exploitation phases. We define a balance of
the budget between these two phases. Once the partition–exploration phase ends, the fractals
are sorted, and the ILS is iteratively applied to the best ones until no budget is left. We fixed
the budget allocated to the partition–exploration phase at 20%.

We use the same tree search as SOO described in algorithm 19, except that Ω is always
added by default to the selected fractals, so the algorithm can generate children of Ω at each
iteration. Furthermore, we fix the maximum depth D of the tree with D = ⌈log( lg )⌉, with l
the minimum acceptable length of the deepest fractal. This allows us to decide what is an
acceptable neighborhood for the ILS according to g. For the following experiments, we fixed
l = 10−4.

4.8.4 Experimentation

To ensure the relevance of our approach, we compare it to a random multi-start ILS. Meaning
that the partition–exploration is replaced by random sampling with the same budget as
the LHS-based approach. We compare it to an exploration–exploitation budget tradeoff
of 1%, 20%, and 70% (1RndILS, 20RndILS, 70RndILS). The approach is also compared to
FDA, SOO and DIRECT. We are testing 4 different grid sizes, g ∈ {2,6,10,20}, and different
values of η ∈ {0.05,0.5,0.99}. The experiment names are encoded as follows: 20g2HI, for 20%
exploration–exploitation tradeoff, g2 for g = 2 grid size, and HI for High Impact η (LI: Low
Impact, MI: Medium Impact).

In figures 4.32, 4.33, 4.34 and 4.35, we clearly notice how our LHS-based approach
scales. At low dimensions n ∈ {2,3,5}, the LHS-based algorithms with a small grid size
g ∈ {2,6} perform better than FDA and random multi-start ILS. We can assume that nested
LHS performs better than FDA, as it does not definitely discard space. All the space is still
accessible, but stochastically. But for these dimensions, the LHS-based algorithms have
weaker performances than DIRECT and SOO. At dimension n = 10, LHS-based algorithms
become better than DIRECT, LHS algorithms are still better than random multi-start ILS
and FDA. For dimensions n ∈ {20,40}, LHS-based algorithms have statistically equivalent
performances compared to SOO. They are still better than FDA, DIRECT, 1RndILS and
70RndILS. But there is no statistical difference with 20RndILS. In other words, for such high
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dimensions, the LHS-based approach is losing its ability to efficiently cover relevant subspaces
of Ω. The fact that 1RndILS and 70RndILS perform worse, illustrates the difficult tradeoff
between exploration–exploitation or partition–exploration–exploitation. These results are
coherent with the theoretical behaviors depicted in figures 4.31 where at the first refinement
and with low grid sizes, the probability that x⋆ ∈ πLHS with a probability of 50% becomes
almost unreachable within the given budget after dimension 10.

Concerning the number of problems solved in figures 4.32, 4.33 and 4.34, we clearly
distinguish that FDA performs the worst between n = 2 and n = 5. Then, for dimensions
n ≥ 10, we start distinguishing the lower performances of SOO and DIRECT. It is worth
noticing that FDA and LHS-based algorithms perform well on convex–separable functions
and well-conditioned ones, with 50 to 60% of these problems solved. Meaning that these
algorithms struggle when small variations of a point x induce high variations of the response
f (x) (less than 40% problems solved for ill-conditioned functions). The most challenging
functions are multi-modal ones; this could indicate that these algorithms are easily trapped
by global optima. Indeed, as FDA and LHS-based algorithms heavily rely on the naive ILS
algorithm, if this algorithm gets trapped, then it is less likely to reach the global optimum.
This also explains the good performances on convex–separable functions, as reaching x⋆ can
be done via a naive hill-climbing algorithm.

Concerning the grid size, it is clear that a too high g results in lower performances, which
can also be explained by the previous theoretical investigations of nested Latin Hypercube
partitioning.
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(c) Dimension 5
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Figure 4.32: Empirical cumulative distribution according to the budget divided by the
dimensions for each functions’ subclass and dimension 2, 3 and 5.
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(a) Dimension 10
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(b) Dimension 20
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(c) Dimension 40
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Figure 4.33: Empirical cumulative distribution according to the budget divided by the
dimensions for each functions’ subclass and dimension 10, 20 and 40.
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(b) Dimension 3
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(c) Dimension 5
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(d) Dimension 10
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(e) Dimension 20
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Figure 4.34: Empirical cumulative distribution according to the budget divided by the
dimensions for all functions and dimensions.

(a) Dimension 2
(b) Dimension 3 (c) Dimension 5

(d) Dimension 10 (e) Dimension 20 (f) Dimension 40

Figure 4.35: Pair Wise Wilcoxon test for all functions and dimensions. Solid-Grey: Statisti-
cally unsignificative (α > 0.05). Gridded-Green: Better. Dotted-Red: Worse.
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4.9 Conclusion

In this chapter, we introduced Zellij3, a general, unified, and flexible framework for FBD
algorithms. A FBD algorithm is made of five search components, i.e. software bricks:

• Fractal: Describes the geometry used for a K-hierarchical cover of the search space. The
partition operator π generates children of a given fractal and ensures the self-similarity.

• Tree search: Allows a certain dynamic in the iterative creation of the K-ary rooted tree
modeling the K-hierarchical cover. This dynamic is ensured by a function τ selecting
the next fractals to refine, balancing the exploration-exploitation tradeoff, and the
width-depth balance of the tree expansion.

• Scoring: The result of this component is used by the tree search and allows summarizing
knowledge about a fractal into a single value describing its quality, i.e. how promising
it is. To do so, the function γ uses the output of the exploration component to return a
quality value.

• Exploration: The exploration component is an optimization algorithm, a metaheuristic,
or a sampling method allowing to quickly retrieve knowledge about a fractal. Thus,
the Explore function takes a fractal and returns a list of sampled solutions and their
objective values.

• Exploitation: Once the confidence within a fractal quality is high enough, an intensive
local search can be applied to the fractal and its neighborhood. The goal of the Eploit
function is to refine the knowledge about a fractal to improve the best solution known.

Thanks to the modularity provided by Zellij, allowing us to prototype new algorithms
quickly, we were able to model various decomposition-based algorithms such as DIRECT,
SOO, FRACTOP, FDA and much more. The obtained experimental results illustrate the role
of all five search components and their impacts on the performances and the exploration-
exploitation tradeoff.

In a long term, the automatic design of FBD algorithms could be tackled by using hyper-
heuristic approaches to find the best combination of search components and for specific
problems [254]. Such approaches were already applied to population-based algorithms [301].

Concerning, LHS-based algorithms, we have empirically illustrated that we can perform
similarly, yet better than FDA across all studied dimensions. However, the algorithm suffers
from the curse of dimensionality, as it is less and less able to cover enough space to ensure
covering x⋆ with a certain probability. But conversely to FDA, the sacrifice of the search
space is stochastic and not linked to the fractal geometry itself. It is important to mention
that in high dimensions, the performances of the algorithms rely heavily on the exploitation
component Exploi. In low dimensions (n ≤ 10), the partitioning of the search clearly has some
advantages, as it allows detecting confidence regions where to start a local search. However,
while the dimension grows n ≥ 20, the relevance of the partition is greatly diminished as the
algorithms perform the same as a random multi-start local search. Thus, our LHS-based
algorithms offer an alternative to the n−sphere partition component of FDA for both low and
high dimensions. Our sotchastic sacrificial LHS-algorithm is not a perfect solution to tackle
high dimensional problems, but it opens doors to improvements and other investigations.
As we consider the objective function continuous with a bounded searchspace, applying the
Heine-Cantor theorem could allow investigating FBD algorithms under the scope of surrogate

3https://github.com/ThomasFirmin/zellij

https://github.com/ThomasFirmin/zellij
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models based on high dimensional piecewise constant approximations of functions, similarly
to Riemann integration. Because FBD algorithms are modeled by a K−ary rooted tree, we
could also see FBD algorithms from a regression tree perspective. Some early works suggest
moving toward FBD-surrogate approaches [44, 177, 283]. Indeed, the approach could be
improved by considering a Bayesian strategy [177], as with the BaMSOO algorithm [283]. In
LHS-based algorithms, instead of uniformly sampling fractals, one could integrate previous
knowledge to model a posterior distribution, P(F ∈ πLHS(AF) ∣ D), with D an archive of
previously sampled fractals or points, associated to their scores or function values. Then,
instead of producing i.i.d. and uniformly distributed fractals, πLHS could produce a set of g
fractals, optimized according to an acquisition function informed by a posterior distribution.

Furthermore, combining FBD and BO could also open doors to new parallelization tech-
niques of BO algorithms. Indeed, in chapter 3 we described how difficult it is to parallelize
BO. Therefore, by partitioning the search space into sub-problems, and because fractals are
fully independent sub-spaces, one could parallelize a BO–FBD algorithm by generating di-
verse batch of fractals or solutions. At the algorithmic levels, we could also think of multiple
and collaborative distributed instances of a BO–FBD algorithms on distinct fractals, like the
island model for EA algorithms [259, 6, 7].
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Chapter5
Silent networks: a vicious trap for
Hyperparameter Optimization

Designing an efficient search space Ω is difficult. The first step is to select relevant HPs. The
peculiar characteristics of SNNs contribute to a rich choice of HPs, notably concerning the
neuron model [89]. However, a counterpart is that SNNs are known to be very sensitive to
their numerous HPs [102, 203, 205], making their HPOs challenging.

In chapter 2 we described a few SNN-specific HPs, all having impacts on the 5 described
groups. Furthermore, we noticed that within the HPO of SNNs literature, many search spaces
had a limited number of HPs. Occasionally, the search spaces are heavily discretized to
reduce the complexity at the expense of the flexibility. The HPs of the neuron model are
rarely optimized, while they actively contribute to the network dynamic. Then our objective
is to optimize a higher dimensional and flexible search space with more HPs, especially those
of the neuron model.

In conjunction with chapter 2, we write theMLmodel asAλθ =N
λ
θ , a SNNN parameterized

by θ (weights W and biases b), and hyperparameterized by λ.

5.1 Preliminary experiments

The following experiments were one of the first done during this thesis. They were run
on 16 NVIDIA GTX 1080 TI GPUs for 62 hours on Grid’5000, a large-scale and flexible
computation grid [13]. The first architecture to be optimized was the Diehl & Cook SOM,
trained by STDP on Poisson encoded MNIST, which was described in chapter 1. The dataset
is divided into Dtrain, Dvalid and Dtest (48000,12000,10000 images). The reported accuracies
are on Dvalid. For these preliminary –failed – experiments, we did not go as far as the test
phase. We used the BindsNET [105] simulator because it handles GPU acceleration.

We tried to optimize 15 HPs; most of them are described in chapter 2, and summed up
in table D.1. The fixed HPs are given in 5.4. There are two layers, {exc, inh}, a HP can be
indexed by the layer. The strength of excitation and inhibition between the two layers are
denoted by f (exc) and f (inh). The HP “Norm” describes weight normalization, consisting
in making the sum of all pre-synaptic weights of a neuron equal to the HP value. We can
already notice that we are optimizing the highest number of HPs from the G1 group (8);
within the literature, the maximum is 6 (see chapter 2).

We applied a GA to the problem. The maximum training and validation accuracy are
respectively equal to 15.1% and 20.6%. In 62 hours, about 758 solutions were tested, but
most of them have an accuracy between 10% and 20%. The evaluated solutions are illustrated

135
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in figure 5.1a and 5.1c. The HPs combinations are sorted by evaluation order; the first
combination was the first evaluated, and the last one was the last evaluated. Even if the
algorithm seems to hardly converge toward 20%, there is something wrong.

In figure 5.1e, we plot the validation accuracy w.r.t. to the number of spikes produced
during the validation phase. It appears that there is a connection between accuracy and
spiking activity.

Based on this experience, we modified the GA parameters and operators to sample
solutions likely to emit a sufficient number of spikes. Now, the maximum validation accuracy
reached 86.6%, and results are presented in figures 5.1b, 5.1d and 5.1f. But, despite 617
evaluations, the algorithm did not converge and the spiking activity is still an issue. The
computation time of a single solution ranges from 11.6 minutes to 4.5 hours, with an average
of 2 hours per evaluation. For the rest of the manuscript, BO approaches are used for the
reasons discussed in chapter 2. Especially because the evaluation of a solution is expensive,
and the budget is limited. To observe convergence of the HPO algorithm, we need more
resources and longer experiments.

What is the impact of the spiking activity on the HPO?
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(a) Sampled HPs combinations and accuracy from
the first experiment.
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(b) Sampled HPs combinations and accuracy from
the second experiment.
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(c) Histogram of accuracies from the first experi-
ment.
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(d) Histogram of accuracies from the second ex-
periment.
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(e) Accuracy according the spiking activity from
the first preliminary experiment.
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(f) Accuracy regarding the spiking activity from
the second preliminary experiment.

Figure 5.1: Results of preliminary experiments.
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5.2 Infeasible solutions, early stopping and black-box con-
straints

The search spaces contain infeasible solutions that output no or only a few spikes during the
training or validation phases; we call such a mode a silent network. Finding them is difficult,
as many HPs are highly correlated to the architecture and to the dataset. The following
sections describe the strategies used to leverage these silent networks within the HPO process.

5.2.1 Silent networks and infeasible solutions

Another challenge of SNNs is the signal loss problem induced by a decreasing firing rate
through layers [302, 145]. This phenomenon limits the depth of SNNs since too deep SNNs
might result in networks unable to output spikes [35]. In this work, we extend this problem
to deep and shallow networks outputting an insufficient spiking activity to perform a specific
task. We call these infeasible solutions “silent networks”, as the lack of spiking activity is not
only explained by the depth of the network but also by mistuned HPs or architecture.

Explaining silent networks by only considering the depth of a network is misleading,
especially when performing HPO. Indeed, one can imagine a binary classification problem
in which no output spikes correspond to class 0, and an output spiking activity to class 1.
The input data is made of spikes and contains both classes. One can solve this problem
using a shallow network of two layers (inputs and outputs) made of LIF neurons, with a
resting potential set to 0. Then, the neuron threshold of the output layer can be set to infinity
because nothing prohibits this. Considering a finite number of input spikes, neurons, and
synapses with finite weights, then we obtain a shallow network unable to spike – a silent
network. This network is an infeasible solution as output spikes were expected.

We just framed one challenge of HPO, which is designing a viable search space, and
finding bounds of the decision variables. In the previous thought experiment, the lower
bound of the threshold is straightforward, while the upper one is more challenging. To define
it, information about the inputs, topology, spike frequency, or other HPs is needed. Even
with this information, a question remains:

Does the threshold itself solely explain the silent network?

We can extend this question to broader architectures, neuron models and HPs.
In a mono- or multi-objectives HPO, a SNN, its training, validation, computations of the

errors, and other information, are considered as a fully blackbox. The optimization algorithm
has only access to the outputs of this blackbox. This process was described in chapter 2 in
figure 2.17. In a classification task, the output of the blackbox is usually the accuracy of
the network on the validation dataset. In this case, the decoder (e.g. average spike or max
spike) becomes a trap for HPO. Indeed, the decoder can create a link between non-spiking
outputs and a class, value, or action. If we look at the previous binary classification problem
with a silent network, then the average accuracy will be about 50% (random). Here, the
error is to consider a 50% accuracy silent network, similar to a 50% accuracy spiking network.
This is what the HPO algorithm is doing. Because of the blackbox, spiking and non-spiking
networks with equal objectives are considered the same.

Conversely to ANNs that always output information, SNNs can output nothing.

This nothing is the absence of events. It can be considered as information if a class is attributed
to nothing, or an absence of information – which is an information – if the SNN is silent.
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Moreover, in many works, the minimization of the energy consumption of a network
is tackled by considering the spiking activity within a multi-objectives context where the
number of spikes or number of neurons has to be minimized [204, 144, 52]. The trap in this
context is more vicious. Here, a silent network doing nothing can be considered better than a
SNN with low spiking activity.

A simple solution to avoid silent networks during HPO, would be to sufficiently restrain
the bounds of the search space to only consider non-silent networks. However, by doing so,
one forgets the complex correlations of HPs with accuracy and spiking activity. Indeed, by
strongly restraining the search space, one can reject many suitable solutions. This becomes
even harder in high dimensional HPO for deep SNNs. This problem is even more crucial
and difficult when energy consumption or spiking activity has to be minimized. Indeed, one
needs to find the frontier between silent and low-spiking networks.

5.2.2 Early stopping

A way to accelerate HPO process is to early detect silent networks and to prevent useless,
expensive computations. Indeed, in the current workflow, no matter if a network is spiking
or not, samples are presented until the whole dataset is processed and until all epochs are
computed. No matter the outputs, the equations of neurons and learning algorithm are still
computed. This phenomenon gets worse when the network is trained with Hebbian based
rules:

If neurons do not fire, then synapses do not wire together.

In this work, we define an early stopping criterion based on the percentage of images
that did not emit at least α spikes, during the presentation of a sample from the dataset.
A network can sometimes be only active for a few data points, since it can be made of an
imbalanced number of spikes. In figure 5.2a, one can see that class 1 of MNIST produces
fewer spikes than others. Figure 5.2b shows that for DvsGesture, these disparities are more
pronounced and are seen among data of the same class. For example, wider or narrower
gestures produce more or less spikes. The training pipeline of a SNN under early stopping is
described in algorithm 22; it can be easily extended to epochs and batches of larger size. This
early stopping allows interrupting the training if a certain percentage β of data does not emit
at least α spikes. For example, during the training phase, if at least β = 5% of the data have
not emitted at least α = 1 spike when presented to the network, the training is interrupted.

We can extend this stopping criterion to other layers, such as the inhibitory layer in a
Diehl & Cook architecture [51]. This layer enables neurons from the excitatory layer to
specialize into a certain spiking pattern. Thus, to learn, the architecture requires spikes at
both the output and at the inhibitory layers.

The α and β HPs can be set according to input data, architecture, or training algorithm.
For instance, in SLAYER, the outputs require a certain rate of spikes, and the BP can enforce
the network to spike. Whereas in a SOM trained by STDP, if there are no output spikes, then
there is neither training nor weights update.

So for SLAYER, β can be greater than for networks trained by STDP. For SNNs trained
by SLAYER, α can be set according to the number of expected output spikes, with a certain
tolerance since the gradient can enforce spiking activity. It is also important to define β
according to the training time. Spending time training a silent network is time that cannot
be spent on training promising networks with minimum spiking activity.

We now have a more practical definition of what silent networks are, depending on the
values of α and β. The objective is to prevent a network from being stopped during training
because of a lack of spiking activity on certain data.
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Algorithm 22 SNN training pipeline with early stopping for 1 epoch and no batch

Inputs:
1: N Network
2: Xtrain Training data
3: Ytrain Training labels
4: S Number of samples
5: α Minimum spiking activity
6: β Maximum of non spiking data
7:

Outputs: N Trained network
8: i ← 1
9: count← 0 Number of non spiking data

10: out←∅ Output spikes
11: while (count/S ≤ β)∧ (i ≤ S) do
12: out← Train(N ,Xtrain[i],Ytrain[i])
13: if SUM(out) < α then
14: count← count +1
15: i ← i +1

return N
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5.2.3 Black-box constraints

The early stopping criterion allows detecting silent networks, and so prevents useless and
costly computations. By spending less time on silent networks, the HPO can evaluate more
networks within a given runtime. However, we can improve this by considering silent
networks within the HPO process. Indeed, to accelerate the exploration of the search space,
one could forecast the spiking activity of a network to avoid sampling within areas of the
search space containing silent networks. However, predicting the exact spiking activity of a
SNNs is in practice difficult. We can only get the exact spiking activity by passing data to the
network and retrieving its outputs.

There are various means to handles constraints in HPO, rejecting, penalizing, repairing,
or preserving [259]. Because of the stochasticity and unpredictability of the spiking activity
of SNNs, repairing, and preserving strategies are ruled out. Therefore, constraints on the
spiking activity are blackbox as we cannot formally model them via an equation. In our
specific context, it is not advisable to systematically reject silent networks. Indeed, a network
that has been early stopped does not necessarily have low performances. Multi-fidelity shows
that we can obtain good performances with a reduced dataset [106]. Thus, the validation
accuracy of a silent network that does not follow constraints is still computed, as some
samples of the data might output spikes.

We apply a penalization by rewriting the early stopping to create a violation value:

∑
c∈C
max(

countc
d
−βc,0) , (5.1)

where d is the size of the training dataset, and C is a set of constraints on different layers. If
∃c ∈ C ∶ countcS > βc for at least one epoch, the training is interrupted and penalized by at least a
positive value, which slightly varies depending on the number of non-spiking data within
batches. So, when constraints are met, it describes an acceptable proportion of silent data
during training. Thanks to black-box constraints, one of the objectives of the HPO is to avoid
sampling silent networks to prevent the training from being stopped because of a lack of
spiking activity.
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5.3 Experimental setup

5.3.1 High dimensional and constrained Bayesian Optimization

In section 5.2, we described what silent networks are. We designed a spike-based early
stopping criterion and associated black-box constraints. Then, the following sections describe
how we tackle black-box constrained optimization described in chapter 2.

The preliminary experiments with a GA failed due to the high number of necessary
evaluations to make the algorithm converge within a limited budget. Therefore, BO ap-
proaches are now preferred. To handle black-box constraints, we have selected SCBO [62],
an algorithm based on TuRBO [63]. Both algorithms overcome the scalability issues of BO
with high dimensional search spaces. Both TuRBO and SCBO are based on BO [84], which
was described in chapter 3. These two new algorithms use trust regions, i.e. a subset of the
search space Ω. The scalability is ensured by a zoom-in–zoom-out strategy according to the
best current solution. Both algorithms and their parallelization are described in appendix A.

5.3.2 Search spaces definition

All experiments are summed up in table 5.1. The codes of experiments names are read
as follows: optimization algorithm - training algorithm - dataset, where the opti-
mization algorithm can be S or T for SCBO or TuRBO (used in section 5.5). The training
algorithm is described by STDP for STDP, SLAY for SLAYER/LAVA-DL and SuGr (Surogate
Gradient) for BP/SpikingJelly. The datasets are MNIST for Poisson encoded MNIST and DVS

for DvsGesture.
We optimized up to 21 HPs, by designing 6 experiments, and so 6 different search spaces,

to study behaviors of HPO on SNNs trained with STDP, SLAYER and BP with PLIF neurons,
on digital Poisson encoded MNIST and the neuromorphic DvsGesture datasets.

The search spaces and best HPs found by the optimization are summed up in appendix D
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Table 5.1: Setup of all 6 experiments

Experiment Dataset Data shape Architecture Training Simulator HPs ci

S-STDP-MNIST MNIST B.100.1.28.28 SOM STDP BindsNET 18 2

S-STDP-DVS DvsGesture B.100.2.128.128 SOM STDP BindsNET 19 2

S-SLAY-MNIST MNIST B.25.1.28.28 CSNN [247] SLAYER LAVA-DL 20 1

S-SLAY-DVS DvsGesture B.50.2.128.128 CSNN [247] SLAYER LAVA-DL 21 1

S-SuGr-MNIST MNIST B.25.1.28.28 CSNN [70] SG SpikingJelly 12 1

S-SuGr-DVS DvsGesture B.50.2.128.128 CSNN [70] SG SpikingJelly 13 1

and categorized into five HPs groups, from G1 to G5. In all 6 experiments, we optimized HPs
of the neuron model (G1), training algorithm (G2), architecture (G3), decoder or loss (G4),
and training pipeline (G5).

HPs of the encoders are fixed. Indeed, preliminary experiments optimizing the encoding
method (Poisson Encoded vs. Time-To-First-Spike) and the presentation time (T ) ranging
from 10 to 300ms, showed a very high dependency of the accuracy on these HPs. This strong
correlation greatly affected the impact of more subtle HPs. These encoding HPs could be
optimized in a multi-objective context, where number of spikes and accuracy are concurrent
objectives. Moreover, T has also a great impact on the training time, memory complexity,
and latency of the network. The greater T , the more expensive are the computations and
memory usage. That is why T is optimized in chapter 6.

For experiments S-STDP-MNIST and S-STDP-DVS, most of the HPs of the neuron model are
optimized for both layers. The list of optimized and fixed HPs, their bounds, and optimized
values are given in appendix D.

The architecture of S-STDP-MNIST is the SOM found in [51]. The architecture of S-STDP-
DVS, is slightly different and instantiates a distance-based soft lateral inhibition. Neurons
that are close together strongly inhibit each other, and conversely [106, 129]. In S-STDP-DVS

because DvsGesture is a more challenging dataset, SVM and Log Regression can learn to
decode the spikes of the network outputs if selected by the HPO algorithm. These two
decoders are often used in the literature, even if it is not considered a fully spiking solution.
This experiment also introduces the “Reset interval” HP [129], which prevents too high
temporal dependency on previous frames. During the presentation of DVS data, neuron
parameters are periodically reset to their initial state. All architectures are summed up in
table 5.2.

Concerning experiments S-SLAY-MNIST and S-SLAY-DVS based on SLAYER, both used
architecture can be found in [247], and are detailed in table 5.2. Instead of SRM neurons used
in the original paper, in this work we have decided to use LIF neurons with adaptive threshold.
The architecture used for S-SuGr-MNIST and S-SuGr-DVS are the same as described in [70],
with two Ndown blocks, i.e., the convolution layer, batch normalization layer, and pooling
layer. A dropout layer was added after the last convolutional block.

In experiments S-STDP-MNIST and S-SLAY-DVS, and considering both the excitatory and
inhibitory layers, the training of the networks is under two stopping criteria and their
corresponding constraints. For S-STDP-MNIST, SNNs are expected to output at least α = 5
spikes at the excitatory layer and at least α = 1 spike at the inhibitory layer for at least
90% (β = 10%) of the training dataset. In S-STDP-DVS, because of the higher complexity of
DvsGesture, we allow a higher flexibility, α = 1 and β = 30% for both stopping criteria.

In experiments S-SLAY-MNIST and S-SuGr-MNIST, the parameters of the stopping criteria
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Table 5.2: Architecture details of all 6 experiments.

Experiment Architecture Neuron model Encoding

S-STDP-MNIST Inputs → Outputs↔ Inhibitory Adaptive LIF
(chapter 2)

Poisson

S-STDP-DVS Inputs → Outputs↔ Inhibitory Adaptive LIF
(chapter 2)

DVS

S-SLAY-MNIST
Inputs → Convolution → Avg.Pooling →

Convolution → Avg.Pooling → Outputs
Adaptive LIF
(chapter 2)

Poisson

S-SLAY-DVS

Inputs → Avg.Pooling → Convolution →

Avg.Pooling → Convolution →

Avg.Pooling → FeedForward → Outputs

Adaptive LIF
(chapter 2)

DVS

S-SuGr-MNIST

Inputs → Convolution → Normalization

→ Avg.Pooling → Convolution →

Normalization → Avg.Pooling →

Outputs

PLIF (chapter 2) Poisson

S-SuGr-DVS

Inputs → Avg.Pooling → Convolution →

Normalization → Avg.Pooling →

Convolution → Normalization →

Avg.Pooling → FeedForward → Outputs

PLIF (chapter 2) DVS

are set to α = 3 and β = 5%. In S-SLAY-DVS and S-SuGr-DVS, α = 1 and β = 30%. We allow a
higher flexibility as the number of samples within DvsGesture is much lower than MNIST.

The boundaries of the HPs heavily implied in the spiking activity, such as, Vth (neuron’s
threshold), Vreset (neuron’s reset potential), τleak (leakage) or tref (refractory period) were
defined by uniformly sampling random combinations of HPs on a reduced subset of MNIST
and DvsGesture, until some networks present a minimal spiking activity. However, we did
not try to prevent silent networks, so to define a more general search space. The boundaries
of the HPs having an impact on the memory complexity (e.g., number of neurons, number of
kernels, kernel size, or batch size) were set according to the available memory on a single
GPUs. The number of epochs was set according to computation time of a single solution and
the budget of one experiment. To bias the initial combinations of HPs for SCBOs, these are
sampled differently according to their additive or multiplicative effect, or to bias the sampling
toward known suitable solutions. For instance, the leakage τleak of a neuron, because of
its multiplicative effect, is sampled according to a log-uniform distribution. When values
closer to the upper bound need to be sampled with a higher probability, the log-uniform
distribution is reversed (R-LogUniform).

5.3.3 Simulators and datasets

To overcome the hardware bottleneck, one can mimic the behaviors of SNNs by using
simulators. Depending on the use case, the selection of the most suitable simulator has
to be made carefully. Thus, we have selected BindsNET [105] since it handles biologically
inspired training algorithms (2-factor STDP, 3-factor STDP), it is based on PyTorch, so it
can be accelerated on GPU. BindsNET also implements different neuron models, such as the
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IF, LIF or Izhikevich models. One can also find different encoding methods such as Poisson
or Rank encoding and decoding methods such as Average Spikes [71], Max Spikes [241], or
n-gram [106]. BindsNET is used for experiments S-STDP-MNIST and S-STDP-DVS; the HPs are
presented in tables D.2 and D.3. We also used a second simulator, LAVA-DL, as it is also based
on PyTorch, and it implements the SLAYER [247] BP-based training algorithm. Experiments
S-SLAY-MNIST and S-SLAY-DVS summed-up in tables D.4 and D.5 were simulated with LAVA-
DL. Moreover, to study the effect on silent networks of including certain HPs that impact the
spiking activity within the gradient backpropagation, we also used SpikingJelly [72]. Then,
for experiments S-SuGr-MNIST and S-SuGr-DVS presented in tables D.6 and D.7, the PLIF
neurons were used, allowing to train the membrane time constant τleak.

Performances of SNNs are often assessed on standard ANNs classification datasets, such
as the Poisson encoded MNIST [305, 150, 51, 106, 231]. But these benchmarks should be
considered a proof-of-concept for SNNs, and spiking analog dataset should be preferred
to test SNNs performances [294, 214, 172]. Therefore, we have selected two benchmarks:
Poisson encoded MNIST [153] and DvsGesture [10].

In this work, MNIST was encoded within 100 frames, the shape of the data is the following:
B.T .C.H.W , for batch size, frames, channels, height, and width (B.100.1.28.28). The number
of frames is 3.5 time lower than in [51]. No other transformation was made, such as denoising
or centering. For S-SLAY-MNIST and S-SuGr-MNIST, T was set to 25 [247].

Concerning DvsGesture, spikes were accumulated within 100 or 50 frames, overlapping
spikes during this process are considered as a single spike. Data was denoised using a
20000ms temporal neighborhood. Both ON and OFF channels are considered, so the shape is
B.100.2.128.128. The Tonic [155] Python package was used to process the data. In experi-
ments, S-SuGr-DVS and S-SuGr-DVS, T was set to 50. Due to its higher pixel and temporal
resolutions, the DvsGesture dataset presents a more challenging problem by increasing the
complexity in terms of topology, memory usage, and computational demands.

Both datasets were divided into training, validation, and testing datasets of respective
sizes 48000, 12000 and 10000 for MNIST. DvsGesture is divided into sets of sizes 862, 215
and 264. The optimized accuracy is the one obtained on the validation dataset, and the final
results of the best solution found are assessed on the testing datasets.

5.3.4 Hardware and software specifications

Long-run experiments were carried out on the GPU partition of the Jean Zay supercomputer.
Each experiment lasted for 100h, and 15 NVIDIA Tesla V100 with 32 GB of RAM were
dedicated to the computation of SNNs, one additional GPU was used to compute the GPs of
SCBO or TuRBO. A single experiment represents a total of 1600 GPU hours, 100 GPU hours
dedicated to SCBO or TuRBO, and 1500 GPU hours to train SNNs. The 16 GPUs are grouped
by clusters of 4, containing 2 Intel Cascade Lake 6248 processors of 20 cores each; a single
cluster cumulates a total of 160 GB of RAM.

The experiments were parallelized using OpenMPI interfaced by the python library
mpi4py. BindsNET and SpikingJelly are fully based on PyTorch, while LAVA-DL also com-
piles custom CUDA code, all three can easily be run onto NVIDIA GPUs.

5.3.5 Algorithmic details

SCBO and TuRBOwere implemented and instantiated using Zellij1 and BoTorch[12]. Apart
from the constraint part, both algorithms share the same parameters. We used a zero-mean
function. For the covariance function, different combinations of Matérn kernel (1/2, 3/2

1https://github.com/ThomasFirmin/zellij
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and 5/2) were tested to model different landscapes of the covariance function. We kept
the Matèrn5/2 since it was the most suitable one. Additive models were discarded as they
generated numerical instability, particularly for the constraint models.

5.4 Computational results on large-scale experiments

5.4.1 Analysis of the HPO process

In the following lines, an analysis of the impact of silent networks on SCBO is made. In
figures 5.4a to 5.4f, a single horizontal line corresponds to the starting and ending dates of
the evaluation of a single SNN. The upper part of these graphs, after a break of the y-axis,
zooms on the best computed accuracies. This representation emphasizes the ability of SCBO
to detect silent networks and focus on fully trained SNNs with high accuracy. The observed
drops in accuracy and computation time for S-STDP-MNIST, S-SLAY-MNIST, S-SLAY-DVS and
S-SuGr-MNIST, are explained by the reset of the trust region once it shrank to its limits [63,
62]. Then, new random points are sampled, computed, added to the list of existing ones, and
SCBO restarts the process. Additionally, one can notice, thanks to the zoom-in, a multiscale
convergence of the optimization, particularly in figure 5.4c. It illustrates that improving
the best-known HPs combination becomes more and more difficult, and requires more and
more resources. For example, in figure 5.4d, reaching 80% validation accuracy can be done
in less than 5 hours, while to reach 90% accuracy, the optimization needed about 40 hours,
and to improve this solution by 4% (up to 94%) about 40 additional hours were required.
This phenomenon is even more emphasized during experiments S-SLAY-MNIST and S-SuGr-

MNIST where improvements are about 0.1% accuracy. This illustrates how difficult it can be
to reach state-of-the-art accuracy. Moreover, these state-of-the-art accuracy is not always
computed using a train-validation-test split, meaning that some could be biased by manual
tuning [120].

The impact of silent networks on the sampling and budget are presented in table 5.3. The
second column represents the total number of sampled solutions, i.e. HPs combinations. The
third describes the proportion of silent networks among all sampled solutions. This third
column should be compared with the fourth column describing the proportion of the budget,
in GPU hours, spent on computing silent networks. During S-STDP-MNIST, one can observe
in table 5.3 that while almost 73% of the evaluated networks were stopped, silent networks
only consumed about 36% of the 1500 GPU hours. So, for S-STDP-MNIST, the early stopping
criterion and constraints prevented significant worthless and expensive computations of
silent networks. Indeed, figure 5.4a emphasizes the focus of SCBO on fully trained networks
after evaluating numerous silent networks, resulting in high validation accuracies.

Concerning S-STDP-DVS, the HPO failed to focus on feasible solutions. Only 407 networks
were computed, and among them about 92% were stopped. Conversely to other experiments,
about 86% of the time budget was spent on computing silent networks. These can be
explained by the expensive computation time, which can reach up to 50 hours for a shallow
network of 2 layers on BindsNET. The SOM architecture might not be suited for such a task,
as it involves about 107 parameters for only two layers.

Similar behaviors to S-STDP-MNIST are observed in S-SLAY-MNIST, S-SLAY-DVS, S-SuGr-
MNIST and S-SuGr-DVS. These experiments converge much faster toward better solutions than
S-STDP-MNIST. Because LAVA-DL and SpikingJelly appear to be less time-consuming than
BindsNET, more networks can be computed during the optimization process. In table 5.3,
by considering silent networks, their low impact on the budget is even more emphasized
compared to S-STDP-MNIST. In S-SLAY-MNIST, 47.1% of the trainings were stopped, but
only consumed 1.7% of the total GPU hours. Similarly, for S-SLAY-DVS, about 40.4% of the
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(a) S-STDP-MNIST (b) S-STDP-DVS

(c) S-SLAY-MNIST (d) S-SLAY-DVS

(e) S-SuGr-MNIST (f) S-SuGr-DVS

Figure 5.4: Computation start date to end date compared to accuracy of each SNN.
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Table 5.3: Proportion of silent networks during HPO

Experiment # eval. % silent % budget

S-STDP-MNIST 868 72.7 36.3

S-STDP-DVS 407 92.1 85.9

S-SLAY-MNIST 2392 47.1 1.7

S-SLAY-DVS 2063 40.4 3.7

S-SuGr-MNIST 2333 28.1 0.2

S-SuGr-DVS 1044 27.5 2.1

networks were stopped because of a low spiking activity; their computation costed about
3.7% of the total budget.

Regarding S-SuGr-MNIST, obtaining good accuracy seems easier compared to S-STDP-

MNIST and S-SLAY-MNIST, resulting in a faster convergence of SCBO. So, we can suppose that
integrating additional parameters (τleak) into the training improves the results. However,
once these good first accuracies are obtained, it becomes much harder to improve them.
Stabilizing and improving solutions by only 0.01% requires intensive computations, which
can question the usage of MNIST to compare SNNs. Such a stagnation observed in figure 5.4e
might be explained by limitations of the model or of the search space. Even if τleak is learned,
some networks are still stopped because of a lack of spiking activity; about 28.1% of sampled
solutions were stopped. Nonetheless, their impact on the total budget is almost negligible,
0.2%. This might emphasize the performances of SpikingJelly compared to their counterparts.
Lower impacts are also observed in S-SuGr-DVS, where 27.5% of the networks were stopped,
consuming about 2.1% of the budget. This higher impact on the budget, compared to the one
in S-SuGr-MNIST, can be explained by a higher β = 30%, so silent networks are trained longer
before being stopped.

In S-SuGr-DVS, fewer networks were sampled compared to S-SLAY-DVS, as it appears
that SCBO focused the optimization on more expensive solutions. According to table 5.6, the
best solution found for S-SuGr-DVS has 10 times more parameters than S-SLAY-DVS. This
has an impact on the duration of computing one epoch: 5.56 minutes for the best solution
from S-SLAY-DVS, while the one obtained in S-SuGr-DVS lasts for about 10.62 minutes. This
can explain that S-SLAY-DVS converged faster than S-SuGr-DVS.

In S-STDP-MNIST, S-SLAY-MNIST, S-SLAY-DVS, S-SuGr-MNIST and S-SuGr-DVS the opti-
mization algorithm was able to find suitable solutions with good accuracy by considering
silent networks as a part of the HPO process. Although we have more general search spaces
with higher dimensionalities and wider bounds compared to similar works [203, 204, 205,
31, 217, 102]. SCBO was able to scale in dimension, and by modeling black-box constraints,
SCBO prevented sampling silent networks. An interesting point emphasized by all 6 experi-
ments and shown in figure 5.4 is that early stopped networks, visible by a red horizontal line,
can quickly have acceptable accuracies. This confirms that multi-fidelity HPO, i.e. training
on smaller subsets of the training dataset, can be applied to SNNs.
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Table 5.4: Best performances obtained using SCBO and BindsNet

S-STDP-MNIST

Decoder Train % Valid % Test %

MaxSpike 86.0±1.1 86.3±1.7 86.8±1.6

AverageSpike 86.4±0.8 86.6±1.5 87.1±1.3

2-gram 86.8±1.6 88.2±1.7 88.8±1.4

LogReg 89.5±0.5 89.9±1.1 90.5±1.0

SVM 90.1±0.4 90.2±1.1 90.8±1.2

Epochs (Retrained) 8 Parameters 1 895 266

Time/Epoch 138 mins Trainable parameters 624 848

S-STDP-DVS

Decoder Train % Valid % Test %

MaxSpike 16.7 23.1 ∅

AverageSpike 15.6 23.1 ∅

2-gram 14.2 15.6 ∅

LogReg 9.4 21.4 ∅

SVM 9.7 18.5 ∅

Epochs (Retrained) ∅ Parameters 11 508 864

Time/Epoch Stopped Trainable parameters 11 272 192

5.4.2 Analysis of the best solutions found

Information about the best solution found by SCBO is presented in table 5.4, 5.5 and 5.6.
Optimized HPs combinations are summed up in appendix D. Concerning S-STDP-MNIST and
S-STDP-DVS accuracies for all decoders are presented.

The best solutions found for S-STDP-MNIST, S-SLAY-MNIST and S-SLAY-DVS, were re-
trained on a larger number of epochs, and then, the final classification on the untouched
testing dataset was made to assess solutions’ performances and stochasticity. Concerning
S-STDP-DVS, that failed, we decided to not intensively retrain the best network since it was
stopped during training; it has a high computation time and low performances (23%). This
emphasizes the difficulty of obtaining acceptable results in a reasonable amount of time
with STDP on DvsGesture. This can be explained by an unsuitable architecture or by the
sensitivity of the HPs and the difficulty of defining a viable search space. S-STDP-DVS was
run several times with different configurations; by reducing the search space or modifying
the preprocessing of input data, similar results were obtained. Comparatively, S-SLAY-DVS
and S-SuGr-DVS, achieved better accuracies, with much fewer efforts and less computation
time.

In S-STDP-MNIST, considering the optimized decoder (MaxSpike), the best testing accu-
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Table 5.5: Best performances obtained using SCBO and LAVA-DL

S-SLAY-MNIST

Loss Train % Valid % Test %

Rate 98.91±0.12 98.57±0.25 98.80±0.19

Epochs (Retrained) 100 Parameters 161 852

Time/Epoch 5.14 mins Trainable parameters 161 844

S-SLAY-DVS

Loss Train % Valid % Test %

Rate 100.00±0.0 89.12±4.86 84.66±4.36

Epochs (Retrained) 50 Parameters 48 046 540

Time/Epoch 5.56mins Trainable parameters 48 046 528

Table 5.6: Best performances obtained using SCBO and SpikingJelly

S-SuGr-MNIST

Loss Train % Valid % Test %

Rate 99.96±0.01 99.29±0.07 99.47±0.10

Epochs (Retrained) 100 Parameters 2 900 457

Time/Epoch 3.84 mins Trainable parameters 2 900 457

S-SuGr-DVS

Loss Train % Valid % Test %

Rate 99.71±0.29 90.51±3.01 83.52±5.11

Epochs (Retrained) 50 Parameters 125 901 468

Time/Epoch 10.62mins Trainable parameters 125 901 468
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racy is equal to 88.4% which is similar to AverageSpike. Considering other decoders, the
maximum testing and validation accuracies are achieved by the SVM with respectively 92%
and 90.3%. The 2-gram decoder has a maximum of 90.2% on the testing dataset, which is
the best accuracy among low complexity decoders. The values of the optimized HPs f (exc)

and f (inh) are high; this indicates a convergence of the HPO toward a WTA mechanism with
MaxSpike. Decoding outputs using spike counts and complex machine learning methods
gives better results, at the expense of higher complexity and non-neuromorphic solutions.
Compared to [51], we were able to achieve similar performances considering the number of
neurons, but with 3.5 times less exposition time (T = 100), and so lower latency and spikes.
In [51], the authors achieved 87.0% with 400 neurons, 91.9% with 1600, and 95.0% with
6400, using a T = 350ms exposition time. However, our training dataset was smaller due
to the additional testing set. Moreover, in our case, a single image is not passed multiple
times to the network until reaching a minimum of 5 output spikes [51]. This condition was
modeled by a black-box constraint on the outputs and was met for 97.34% of the images
during training.

Compared to S-STDP-MNIST, S-SLAY-MNIST achieves a better accuracy of 98.80%±0.19
with convolutions, pooling, and about 11 times fewer parameters. The training time per
epoch is much cheaper, about 5 minutes for a single epoch, while the other architecture
on BindsNET needs 138 minutes for one epoch. In S-SLAY-MNIST, we were able to easily
obtain better accuracy, with a sampling duration (T ) 4 times lower than S-STDP-MNIST.
Compared to SpikingJelly in S-SuGr-MNIST, with almost 18 times more parameters and a
shorter computation time of about 4 minutes, the best accuracy obtained on Poisson encoded
MNIST in this paper is about 99.47±0.10. This is close to the baseline architecture [70] with
99.63% accuracy obtained on a testing set. The baseline is trained for 1000 epochs, while our
solution is trained for 100 epochs; if it was retrained for 1000 epochs, it would have taken
about 64 hours.

Compared to S-STDP-DVS, in S-SLAY-DVS, it is much easier to obtain good accuracies in
less time, with more epochs and parameters. We found a testing accuracy of 84.66%±4.36.
However, we faced overfitting during intensive training of the best solution found; the
training accuracy is at 100% while validation and testing are much lower. This can be partly
explained by the smaller training set (862 samples) compared to some other datasets. By
using PLIF and SpikingJelly in S-SuGr-DVS, equivalent performances were obtained but with
3 times more parameters and a cost of about 10.62 minutes per epoch, while the solution
from S-SLAY-DVS has a cost of about 5.56 minutes per epoch.

5.4.3 Analysis of the hyperparameters

We can extract the lengthscales of the GPs to interpret the sensitivity of the HPs w.r.t. the
validation accuracy, and constraint on the spiking outputs. However, the GPs are trained on
a batch of solutions biased toward the area of convergence of the algorithm, amplified by
the trust region. Moreover, HPs are optimized regarding a dataset, a SNN architecture, and
search space; hence, extracting general behaviors is delicate. Besides, there is a link between
the GP modeling the constraints and the GP modeling accuracy, since enough spiking activity
is necessary to obtain good accuracies. Therefore, the analysis of the lengthscales helps to
understand some choices, but is far from being absolute. As illustrated in chapter 3, the
lengthscales (`) define the “width” of the covariance function. Thus, for a Matérn5/2 kernel,
a short lengthscale results in high variability for a small HP value variation, and conversely
for a long lengthscale.

In figure 5.10, the first observation is that HPs are more or less sensitive w.r.t. the
simulator, the architecture, and dataset. The neuron threshold Vth appears to be sensitive
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Figure 5.5: Single HP sensitivity in S-STDP-MNIST

across all experiments. Even if for some experiment it is unclear. In S-SLAY-MNIST, Vth
is sensitive w.r.t. the constraint and so to the spiking activity, while in S-SLAY-DVS, Vth is
sensitive w.r.t. the accuracy. But, for the reasons previously discussed, these behaviors might
be the two faces of the same coin, as enough spiking activity is necessary to obtain good
accuracy. Moreover, because of this constraint–accuracy duality, the GPs can learn hazardous
rules, such as in S-SLAY-MNIST with the number of epochs being sensitive w.r.t. constraint
but not to the accuracy. These anomalous behaviors illustrate that the GPs are not learning
causalities, but correlations yet coincidence.

But by combining some lengthscales with single HP–Accuracy and HP–Constraint plots,
we can have some insights about HPs sensitivity. For example, in S-STDP-MNIST, the learning
rates λpre and λpost are highly sensitive to both accuracy and constraint. Which is also
illustrated in figure 5.5. We can notice that a high λpost and low λpre are preferred. Meaning
that a weight is strongly reinforced if a post-synaptic spike occurs after a pre-synaptic spike,
and that a weight is weakly decreased if a pre-synaptic spike occurs after a post-synaptic
spike. Lastly for S-STDP-MNIST, we can notice that the optimization favored low V (exc)th

and high V (exc)rest , the spiking activity is regulated by a refractory period tref of about 5, a
high τleak (slow leakage), high excitatory and inhibitory strengths (f (exc), f (inh)). Thus, the
best performing networks are made of a highly spiking excitatory layer with a strong WTA
mechanism.

For S-SLAY-MNIST there is less to say; the problem appears to be easier as there are
less sensitive HPs. The momentum β∇1 and β∇2 do not seem very sensitive (within the
boundaries), as well as the learning rate, with efficient values in [0.001,0.04] and lower ones
in [0.4,0.1]. Concerning νT, it also has a low sensitivity, and optimal values are in [0.5,0.9].
For the sensitive HPs w.r.t. constraints, it is an all-or-nothing. That is, if there are enough
spikes, then the constraints are met for almost all images. The constraint value is almost
always minimal (-0.05) if the network is not silent. This means that the gradient appears to
be efficient to enforce spiking activity. Whereas, compared to S-STDP-MNIST, minimizing the
constraint seems harder. The HPs sensitivity of Vth, τu is depicted in figure 5.6. We also show
τ∇ and G∇ describing the quality of the gradient surrogate, and that seems sensible w.r.t. the
accuracy.

Regarding S-SLAY-DVS and because DvsGesture is a harder task, the sensitivity is even
more emphasized. We illustrate it in figure 5.7 with Vth, τu, τ∇ and G∇. The comparison
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Figure 5.6: Single HP sensitivity in S-SLAY-MNIST

Figure 5.7: Single HP sensitivity in S-SLAY-DVS

between this figure and figure 5.6 illustrates that HP are sensitive regarding the dataset.
Although integrating τleak as a learnable parameter should reduce the sensitivity toward

silent networks, within S-SuGr-MNIST and S-SuGr-DVS we still observe a certain sensitivity
of the HPs with the accuracy and spiking activity. We illustrate this by selecting Vth, τinit
the initial value of τleak, λ∇ the learning rate, and β∇2 the second momentum of the ADAM
optimizer. Once again, we observe a higher sensitivity of the HPs on DvsGesture compared
to S-SuGr-MNIST. This is illustrated in figure 5.8 and 5.9.

To conclude, it is clear that it is easier to reach high accuracy with surrogate gradient-
based experiments on MNIST, as the HPs appear less sensitive, even if many silent networks
are still generated.
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Figure 5.8: Single HP sensitivity in S-SuGr-MNIST

Figure 5.9: Single HP sensitivity in S-SuGr-DVS



5.4. Computational results on large-scale experiments 155

Dec.

Epoch

n(exc)

λpre

λpost

f (exc)

f (inh)

Norm

V (exc)th

V (exc)rest

t(exc)ref

θ⊕

τθ

τ(exc)leak

V (inh)th

V (inh)rest

t(inh)ref

τ(inh)leak

0
1
2
3
4

L
en

gt
hs
ca
le
s

(a) HPs sensitivity in S-STDP-MNIST

Epoch

Batch

νT

νF

F(1)ilter

F(2)ilter

k(1)

k(2)

λ∇

β∇1

β∇2

τ∇

G∇

Vth

θ⊕

τu

τleak

τθ

τref

Dropout

0
1
2
3
4

L
en

gt
hs
ca
le
s

(b) HPs sensitivity in S-SLAY-MNIST
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(c) HPs sensitivity in S-SLAY-DVS
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(d) HPs sensitivity in S-SuGr-MNIST
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Figure 5.10: Lengthscales from the GPs
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5.5 Ablation studies, sensitivity analysis and discussions

In this section, the experimental setup and search spaces are the same as in section 5.3. The
following studies demonstrate the contributions of the previously described approach. Only
the sensitivity analysis is computed on 16 NVIDIA A100 during 15 hours on a cluster of
GPUs within Grid’5000 [13].

5.5.1 Ablation studies

The following experiment serves as an ablation study and a baseline comparison. Indeed,
we compare our result obtained by asynchronous SCBO with the synchronous TuRBO from
BoTorch [12, 63]. The hyperparameters between experiments in section 5.3 and the following
ones are the same. The only difference is that in TuRBO there is no black-box constraint, and
so SNNs cannot be stopped. However, we simulate early stopping to detect a network that
should have been stopped according to the same α and β described in section 5.3. So in the
figures 5.11a, 5.11b, 5.11c and 5.11d, networks marked as stopped are not actually stopped; it
only indicates that at a given moment of their training, they were considered as silent. We
compute these supplementary experiments on SLAYER-LAVA-DL and PLIF-SpikingJelly, as
the gradient can enforce a spiking activity conversely to STDP. Our goal is to demonstrate
that even with gradient-based training, silent networks still appear. With BindsNET on
the SOM architecture, if there are no spikes, then there is no training. Another objective of
the following experiments, T-SLAY-MNIST, T-SLAY-DVS, T-SuGr-MNIST and T-SuGr-DVS, is
to determine if considering silent networks within the optimization process has a positive or
negative impact on the performances and on the budget.

To evaluate the impact on the budget, new figures (5.12, 5.13, 5.14, 5.15) show the
proportions of the consumed budget by trained SNNs, categorized by validation accuracies,
at a given point of the optimization process. Thus, one can see after x GPU hours which
proportions of these x GPU hours were allocated to compute SNNs, grouped in increments
of 10% validation accuracy.

When comparing convergence between SCBO and TuRBO, figure 5.11 illustrates how
silent networks can impact the convergence of the optimization algorithm. It is clear that in
T-SLAY-MNIST and figure 5.11a, the algorithm did not have the necessary budget to converge.
However, the obtained accuracy is still competitive with S-SLAY-MNIST. Once again, this
indicates that MNIST might be too simple a problem for this architecture. Regarding the
allocation of the budget for S-SLAY-MNIST, as shown in figure 5.12, at 300 GPU hours,
the worst-performing silent networks, identified by a validation accuracy between 0 and
20%, consumed only about 3 to 4% of the total 300 GPU hours. More than 50% and up to
76% were spent on high-performing networks with an accuracy greater than 90%. While
during T-SLAY-MNIST about 35 to 43% of the budget was constantly dedicated to computing
low-performing networks that could have been stopped.

Interesting behaviors can be seen in figures 5.13 and 5.11b. Both S-SLAY-DVS and T-

SLAY-DVS were able to converge toward similar accuracy. Nevertheless, in S-SLAY-DVS, the
end of the first exploitation phase happened after about 58 hours, while this exploitation
phase for T-SLAY-DVS ended after 80 hours. This can be explained by figure 5.13 and after
300 GPU hours, where T-SLAY-DVS allocated more than 50% of the resources to compute
networks having about 10% accuracy, and that could have been stopped. At the same period,
only 10% of the budget was dedicated to > 80% accuracy SNNs. Whereas S-SLAY-DVS at 300
GPUhours, spent between 20 and 25% of the budget on computing silent networks, and
between 30 and 40% was used for computing SNNs of about 80 to 90% validation accuracy.
In both cases, as the algorithms converge, the impact of the bad decisions at the beginning
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Table 5.7: Best performances obtained using TuRBO and LAVA-DL

T-SLAY-MNIST

Loss Train % Valid % Test %

Rate 98.24±1.07 97.98±0.95 98.38±0.73

Epochs (Retrained) 100 Parameters 105 034

Time/Epoch 2.02 mins Trainable parameters 105 026

T-SLAY-DVS

Loss Train % Valid % Test %

Rate 100.00±0.0 92.59±3.24 87.69±3.98

Epochs (Retrained) 50 Parameters 585 767 541

Time/Epoch 5.60mins Trainable parameters 585 767 529

of S-SLAY-DVS and T-SLAY-DVS decreases. In the end, almost 15% of the budget was lost on
worthless computations for T-SLAY-DVS and only about 5% for S-SLAY-DVS. So in this case,
considering silent networks and implementing an early stopping, allows to better balance
the resources. Indeed, in both S-SLAY-DVS and T-SLAY-DVS, networks considered non-silent
(non-stopped) are almost always guaranteed to have high accuracies ≥ 80%. For non-silent
networks, the impact on the budget of bad solutions (< 20% accuracy) is negligible.

Regarding PLIF-based SNNs using SpikingJelly with T-SuGr-MNIST and T-SuGr-DVS,
silent networks are still observed, but with a lower impact on the budget. Both experiments
converged toward a network that should have been stopped, i.e. considered silent. This shows
limitations and potential improvements of the proposed stopping criterion and constraints.
Still, their convergences seem slower than the ones observed in S-SuGr-MNIST and S-SuGr-

DVS. In figures 5.14 and 5.15, it is clear that among networks that should have been stopped,
some of them have an impact on the budget while having low accuracies ≤ 20%. For T-SuGr-
MNIST and at 300 GPU hours, between 10 and 15% of the budget was spent on worthless
computations, regarding T-SuGr-DVS it is about 35%. Once again, because of the convergence,
this impact tends to decrease through time.

So, to increase the efficacy of the optimization algorithm during HPO of SNNs, considering
silent networks helps in increasing the convergence speed. Indeed, by better allocating
resources to SNNs having a sufficient spiking activity, it increases the chances of obtaining
high accuracy.

However, one of themajor drawbacks of our approach, illustrated in figures 5.11, 5.12, 5.13, 5.14
and 5.15, is that the early stopping can discard a non-negligible amount of good solutions.
These are considered silent at a certain step of the training process. While waiting for, a few
additional training steps can make these misclassified silent networks non-silent. Therefore,
future works could improve the approach by considering the evolution of the spiking activity
during training or by being more patient and careful before triggering the early stopping.
Even if in S-SLAY-MNIST, S-SLAY-DVS, S-SuGr-MNIST and S-SuGr-DVS, SNNs considered as
silent could have resulted in high accuracies, no significant loss of performances in terms of
validation accuracies was seen compared to experiments using TuRBO.

The previous experiments and the ones from sections 5.4 are summed up in table 5.9. The



158 CHAPTER 5. Silent networks: a vicious trap for Hyperparameter Optimization

(a) T-SLAY-MNIST (b) T-SLAY-DVS

(c) T-SuGr-MNIST (d) T-SuGr-DVS

Figure 5.11: Computation start date to end date compared to accuracy of each SNN optimized
by TuRBO.

Table 5.8: Best performances obtained using TuRBO and SpikingJelly

T-SuGr-MNIST

Loss Train % Valid % Test %

Rate 99.97±0.01 99.35±0.10 99.47±0.10

Epochs (Retrained) 100 Parameters 2 939 421

Time/Epoch 2.31 mins Trainable parameters 2 939 421

T-SuGr-DVS

Loss Train % Valid % Test %

Rate 99.88±0.12 93.75±2.22 87.12±2.65

Epochs (Retrained) 50 Parameters 146 273 535

Time/Epoch 10.57mins Trainable parameters 146 273 535
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(a) S-SLAY-MNIST

(b) T-SLAY-MNIST

Figure 5.12: Allocation of the budget during the optimization on MNIST using LAVA-DL

(a) S-SLAY-DVS

(b) T-SLAY-DVS

Figure 5.13: Allocation of the budget during the optimization on DvsGesture using LAVA-DL
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(a) S-SuGr-MNIST

(b) T-SuGr-MNIST

Figure 5.14: Allocation of the budget during the optimization on MNIST using SpikingJelly

(a) S-SuGr-DVS

(b) T-SuGr-DVS

Figure 5.15: Allocation of the budget during the optimization on DvsGesture using Spiking-
Jelly
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Experiment Archi. Simulator HPs ci Acc. # % silent Hrs %budget

With constraints and early stopping

S-STDP-MNIST SOM BindsNET 18 2 90.8±1.2 868 72.7 100 36.3

S-STDP-DVS SOM BindsNET 19 2 FAIL (∼ 23.1) 407 92.1 100 85.0

S-SLAY-MNIST CSNN LAVA-DL 20 1 98.80±0.19 2392 47.1 100 1.7

S-SLAY-DVS CSNN LAVA-DL 21 1 84.66±4.36 2063 40.4 100 3.7

S-SuGr-MNIST CSNN SpikingJelly 12 1 99.47±0.10 2333 28.1 100 0.2

S-SuGr-DVS CSNN SpikingJelly 13 1 83.52±5.11 1044 27.5 100 2.1

Without constraints and early stopping

T-SLAY-MNIST CSNN LAVA-DL 20 0 98.38±0.73 951 85.5 100 88.0

T-SLAY-DVS CSNN LAVA-DL 21 0 87.69±3.98 1305 30.5 100 27.0

T-SuGr-MNIST CSNN SpikingJelly 12 0 99.47±0.10 1693 68.7 100 73.3

T-SuGr-DVS CSNN SpikingJelly 13 0 87.12±2.65 695 69.6 100 72.6

Table 5.9: Summary of all long run experiments.

column ci gives the number of constraints, Acc. is the accuracy on the hold out test dataset
Dtest, HPs is the number of optimized HPs. The column Hrs is the budget of the experiment
in hours, and %budget is the proportion of the budget spent on computing silent networks.
The column # is the number of evaluated HPs combinations, and % silent is the proportion of
silent networks.



162 CHAPTER 5. Silent networks: a vicious trap for Hyperparameter Optimization

5.6 Conclusion

HPO of SNNs is challenging. This problem is often solved by thinking of the SNN as a fully
blackbox. The spiking activity of SNNs is usually considered within a multi-objective context,
where it is minimized so to obtain better energy efficiency.

However, ignoring that a SNN needs a minimal spiking activity, is ignoring the silent
network problem explained by mistuned HPs or architecture. Therefore, during the HPO,
SNNs should be instead considered as a graybox, where information about its behaviors is
used to better sample solutions.

Regularly, search spaces are low dimensional and strongly bound to only good solutions.
In this work, we have shown that we can define general and scalable high dimensional search
spaces containing many silent networks while maintaining performances of the HPO process
for expensive SNNs. By leveraging infeasible solutions, we can increase the efficiency of the
exploration of search spaces. This is done by a combination of a spike-based early stopping
criterion and its associated black-box constraints. The early stopping criteria prevent useless
computation by interrupting the training when a certain proportion of the data did not
output enough spikes. The SCBO algorithm ensures scalability in high dimension and
models the constraints to prevent sampling silent networks. Our approach was generalized to
the two most popular families of training algorithms known as plasticity rules and surrogate
gradient BP. For both cases, experimental results emphasize the value of our strategy, which
maintains good performances within a generalized, high dimensional search space. Moreover,
because of the early stopping criterion, computation time of a single SNN is stochastic. This
stochasticity is handled by the asynchronous parallelization of the optimization algorithm
on a heterogeneous multi-node and multi-GPU Petascale architecture.

The next step in to even more accelerate HPO. Therefore, in chapter 6 we leverage silent
networks and multi-fidelity optimization.



Chapter6
Accelerating Hyperparameter
Optimization with Multi-Fidelity

In chapter 5, we emphasized the negative impact of silent networks on HPO. By detecting
them via a heuristic, we can better balance the workload focusing on networks with a
minimal spiking activity, preventing the costly and worthless computation of some low-
accuracy networks. To do so, we applied an early stopping criterion and integrated specific
blackbox constraints within the optimization algorithm.

We described silent networks, which are SNNs unable to output enough spikes for a
given task because of mistuned HPs or architecture. This concept is a generalization of
the signal loss problem [302, 145] explained by a too-deep SNN. Because spiking datasets
have heterogeneous spiking activity for and within each class, early stopping is based on
per-sample spiking activity. If one can detect that a proportion βtrain of samples outputting
less than α spikes, is greater than a given proportion β (βtrain ≥ β), then the training is stopped
and the SNN is considered a silent network. We combine the early stopping with blackbox
constraints, indirectly measuring the spiking activity: cout ≤ 0 ⇐⇒ βtrain −β ≤ 0. A negative
or positive value of cout is an indication that the training phase has been stopped or fully
completed. Therefore, the constraints force the HPO algorithm to find HPs combinations
carrying out the training process.

By doing so, we can accelerate the convergence of the algorithm by sometimes a few tens of
hours. But it still requires considerable efforts to obtain convergence and good performances.

The environmental impact of previous long-run experiments on Jean Zay, is estimated to
0.435 tons of CO2 emissions for the 1500 GPU hours. The electricity consumption of each
long-run experiment costed about, in May 2024, 576 EUR, 625 USD or 4521 CNY. The total
emissions, including experiments in section 5.3, experiment design, test, and debugging, are
about 1.126 tons of CO2, for a cost of about 14893 EUR, 16160 USD or 116872 CNY.

To reduce the budget of HPO and so its cost, we can combine the early stopping and
blackbox constraints with multi-fidelity optimization. Furthermore, previous results em-
phasize that some very early stopped SNNs can have acceptable performances, leading the
way to even more accelerated HPO by considering multi-fidelity, i.e., training on smaller
subsets of Dtrain. In this chapter, we apply a more general approach to multi-fidelity, known
as cost-aware BO. The following sections explain why and how we can scale the optimization
up to 46 HPs while reducing the budget drastically and maintaining performances. This is
the highest number of HPs optimized concerning HPO of SNNs in the literature.

Moreover in this chapter, we discard the BindsNET simulator due to its notably lower
computational performances compared to LAVA-DL and SpikingJelly. Calibrating and

163
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designing networks on BindsNET is also harder than with LAVA-DL and SpikingJelly. Lastly,
the performances on DvsGesture are deceptive compared to the laborious work put in
designing various experiments for this dataset using BindsNET. Surrogate-based BP offers
undeniably better performances with much fewer efforts. Because we discard the SOM
architecture, we now focus on a single constraint cout on the output of the SNN.

6.1 Multi-fidelity and spiking neural networks

In this section, we quickly review some works presented in chapter 2, but under a multi-
fidelity point-of-view.

Hyperparameters definitely have an impact on the computation time of SNNs. In [205],
the cost was considered within a multi-objective approach, so to maximize the accuracy while
minimizing the training time per epoch. The authors have demonstrated that high accuracy
can be obtained in less training time. As a result, intensive and expensive training is not
necessary to obtain competitive accuracy.

Another work [274] used a multi-fidelity BO algorithm known as BOHB, based on the
Hyperband algorithm [69]; both algorithms are described in chapter 2. The authors optimized
a 3 HPs search space (leakage, time-steps, learning rate) to classify CIFAR-10 and CIFAR-
100 with the S-Resnet38 architecture. However, the impact of the multi-fidelity on the
optimization process (the training set size πtrain) was not investigated. BOHB maximizes the
fidelity HP, i.e. πtrain the size of the training subset from Dtrain. BOHB assumes that higher
fidelity always results in better performances [20]. However, as described in [20], multi-
fidelity HPO can be divided into two groups, one for which the previous assumption holds,
and another one where higher fidelity does not necessarily result in better performances,
notably in the case of overfitting. We illustrate multi-fidelity on Dtrain in figure 6.1.

In our SNNs problem, specifically when they are simulated, several HPs can control
a certain fidelity, i.e. the complexity of the simulator [105, 252]. In BindsNET [105], the
temporal granularity, named dt, in milliseconds, controls the number of time steps during
the simulation. In Brian2[252], one can choose between different numerical integration
methods such as Euler or Runge-Kutta algorithms, which also affects the performances [102].
Usually, and for non-event-driven simulators, spikes of a sample are accumulated within
a certain number of frames T . This HP also influences the performances of the SNN. The
higher the number of frames, the higher the computation time, but not necessarily the better
the performances [150, 159].

6.1.1 Improved early stopping and constraints

The early stopping criterion described in chapter 5, is based on two HPs, α describing the
minimum number of output spikes for a single sample from Dtrain, and β the maximum
acceptable proportion of samples outputting less than α spikes. During the training, after
each batch, the proportion βtrain of non-spiking samples is computed. If βtrain ≥ β, the training
is stopped. We can extend this to πtrain ∈ (0,1], a HP defining the proportion of the initial
Dtrain used for training. To improve the detection of silent networks, β now describes the
proportion of samples from the subset D′train ⊆ Dtrain, outputting less than α spikes. So, as
described in algorithm 23, which can be easily extended to batches of data, the early stopping
is now based on the subset ofDtrain proportional to πtrain. Thus, selecting a convenient β relies
on the minimum value of πtrain and on the size of Dtrain. Moreover, instead of computing a
constraint on the proportion of samples outputting less than α spikes, cout ≜ βtrain −β, we
rewrite it as the proportion β′train of samples that have outputted at least α spikes before the
network being stopped:
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Figure 6.1: Multi-fidelity AutoML on the training dataset. The optimization of λi HPs is
conjoined to the one of πtrain

cout ≜ 1−β′train −β . (6.1)

So we obtain a stochastic value (depending on the shuffling of the dataset), describing
how far the training of N went before being stopped. If the training of N was not stopped,
then cout < 0. A hypergeometric distribution can model the probability of encountering non-
spiking samples within the first n samples from D′train during training. If X is the number
of non-spiking samples encountered after n draws, then X ∼Hypergeometric(n,K, ∣D′train∣).
However, we cannot know a-priori the values of K , i.e., the number of non-spiking samples
in D′train. Moreover, this value K may vary through epochs. Thus, in probability, the higher K ,
the lower β′train and the sooner N should be stopped. Therefore, one of the objectives of the
optimization algorithm is to minimize cout to ensure minimal per-sample spiking activity.

6.1.2 Cost aware Bayesian optimization

Difficulties arise when dealing with multi-fidelity. A solution to this is MOGP, allowing
to jointly model with a single GP, all discrete fidelities [78]. MOGPs allow the transfer
of information between levels of fidelities. In [78], the authors proposed a multi-fidelity
approach to TuRBO implying discrete fidelities, modeled by a MOGP outputting a M-
dimensional mean and aM ×M co-variance matrix for each sample from the posterior, where
M is the number of fidelities. A major drawback of this approach is the discretization of a
single HP describing the fidelity. We saw that when SNNs are simulated, the fidelity can be
expressed as a combination of different HPs that can have large bounds or be continuous.
Moreover, some fidelity HPs (e.g. T ) might sometimes result in lower performances when
their value is increased. Thus, a solution to our problem is to consider a generalization of
multi-fidelity BO, known as Cost-Apportioned Bayesian Optimization (CArBO) [154]. Here,
the idea is to train two GPs, one for estimating the actual objective function, and a second
to impute the computational cost of a HPs combination. The algorithm then optimizes an
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Algorithm 23 SNN training with improved constraint

Inputs:
N λ
θ Network
Dtrain Training data
πtrain Proportion of Dtrain
epochs Number of epochs
α Minimum spiking activity
β Maximum proportion of non spiking samples

Outputs: N λ
θ⋆ , β

′
train

D′train← SUBSET(Dtrain,πtrain) Exctract πtrain% from Dtrain
out←∅ Output spikes
i,e← 1
while (βtrain ≤ β)∧ (e ≤ epochs) do

nscount← 0 Number of non spiking samples
scount← 0 Number of spiking samples
while (βtrain ≤ β)∧ (i ≤ ∣D′train∣) do

out← Train(N λ
θ ,D

′
train[i])

if SUM(out) < α then Number of output spikes
nscount← nscount+1
βtrain←

nscount

∣D′train∣
Ratio of non spiking samples

else
scount← scount+1
β′train =

scount

∣D′train∣
Ratio of spiking samples

i ← i +1
e← e+1

return N λ
θ⋆ , β

′
train
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acquisition function known as the cost-cooling EIpu:

EI-cool(λ) ≜
EI(λ)
C̃(λ)κ

, (6.2)

where λ is a HPs combination and C̃ the positive mean from the GP posterior distribution
(on the costs) for a given sample λ. The annealing parameter κ, a function decreasing from 1
to 0, describes the contribution of the cost on the EIpu. This allows the algorithm to focus
on cheap computations at the beginning and on expensive ones by the end of the remaining
budget. When κ→ 0, the acquisition function becomes the usual EI. Unfortunately, a major
drawback of EIpu is its difficult tractability toward asynchronous parallelization.

6.1.3 Cost aware Thompson sampling

In the following section, we describe our modification of the SCBO algorithm, specifically
designed for our HPO problem, so to handle the cost of evaluations. We named this algorithm
CASCBO. The following description is based on appendix A.

In SCBO [62], TS replaces the acquisition function, and is adapted to black-box con-
straints. In this work, the accuracy, the constraint on the outputs, and the cost are mod-
eled by their respective GP. For simplicity, we write the performances of a network as
f (λ) ≜Accuracy(N λ

θ⋆ ,Dvalid), the value of the constraint for the HPs combination λ is written
cout(λ), and cost(λ) is the positive computational cost of training N λ. Therefore, CASCBO
maintains 3 Gaussian Processes for the 3 previous functions. The resulting prior distributions
are written :

p(f (λ) ∣ D(acc)) = GP (µ
D(acc) ,KD(acc)) ,

p(cout(λ) ∣ D(c)) = GP (µ
D(c) ,KD(c)) ,

p(cost(λ) ∣ D(cost)) = GP (µ
D(cost) ,KD(cost)) ,

(6.3)

where D(acc), D(c), and D(cost) are the archives of the accuracy, constraint values, and costs
regarding the computed solutions λ. The mean functions are denoted µ(⋅)

D
, and K(⋅)

D
are the

covariance matrices. For simplicity, we write a realization of p(f (λ) ∣ D(acc)), p(cout(λ) ∣ D(c)),
and p(cost(λ) ∣ D(cost)) as rf , rcout and rcost. TuRBO, SCBO and CASCBO, build batches of
realizations B, and extract a potentially optimal subset S ⊂ B by redefining the relation is
better than (≻) between two potentially optimal candidates λ1 and λ2 (see A).

Inspired by the EIpu [154], described by equation 6.2, and to include cost in equation A.6,
we propose to compute a greedy improvement based on the current best solution λbest, with
∆(λ) = f (λbest) − f (λ) or ∆r(λ) = f (λbest) − rf (λ). Then, according to the sign of ∆(λ), the
improvement will be weighted or penalized by E[cost(λ) ∣ µ

D(cost) ,KD(cost)]. If cout is positive,
then it should be penalized by E[cost(λ) ∣ µ

D(cost) ,KD(cost)]. We define the score functions to
be minimized for a given HPs combination s ∶ λ→R for actual sampled values in the archive,
and sr ∶ λ→R for realizations, such that:

s(λ) =

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

∆(λ) / cost(λ)κ(∆t) , if (∆(λ) < 0)∧ (cout(λ) < 0)

∆(λ)× cost(λ)κ(∆t) , if (∆(λ) ≥ 0)∧ (cout(λ) < 0)

cout(λ)× cost(λ)κ(∆t) , if cout(λ) < 0

. (6.4)
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sr(λ) =

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

∆r(λ) / rcost(λ)κ(∆t) , if (∆r(λ) < 0)∧ (rcout(λ) < 0)

∆r(λ)× rcost(λ)κ(∆t) , if (∆r(λ) ≥ 0)∧ (rcout(λ) < 0)

rcout(λ)× rcost(λ)
κ(∆t) , if rcout(λ) < 0

, (6.5)

with ∆t the remaining budget at a time t and κ ∶ R→ [0,1] the annealing function strictly
decreasing to 0.

Then, λ1 ≻ λ2 if (cout(λ1) < 0) ∧ (cout(λ2) ≥ 0); otherwise, λ1 ≻ λ2 if s(λ1) < s(λ2) . For a
realization, λ1 ≻ λ2 if (rcout(λ1) < 0) ∧ (rcout(λ2) ≥ 0; otherwise, λ1 ≻ λ2 if sr(λ1) < sr(λ2). In
other words, if λ1 follows the constraints while λ2 violates at least one of them, then λ1 ≻ λ2.
But if both λ1 and λ2 follow or violate the constraints, then the scoring functions are used.
So at each iteration, CASCBO returns a batch of candidates S, containing HPs combinations
λ with the best greedy improvement per cost unit if ∆r(λ) is negative. Otherwise, it should
return the less costly λ compared to the potential loss of performances. If none of the
realizations are feasible, then it will return the solutions with the minimum constraint
violation penalized by the cost. The best solution found so far λbest, is not solely based on the
validation accuracy but is determined by equations 6.4 applied to the archives of actually
sampled and computed HPs combinations.

6.2 Experimental setup

In this study, 18 distinct experiments were conducted. We optimize a search space of 22 HPs
applied globally to the network, and search spaces of up-to 46 HPs applied layer-wise. We
classify MNIST [153] and NMNIST [196], with the same CSNN architecture as described
in chapter 5. Furthermore, we also optimized the architecture from [17] made of 3 hidden
feed-forward layers (see table 6.1) to classify the SHD dataset with a search space of 13
HPs applied globally and another one of 21 HPs applied layer-wise. The experiments using
SpikingJelly have less HPs since the neuron model is simpler than the one of LAVA-DL.
We add two new HPs, πtrain ∈ (0,1] the proportion of Dtrain used to extract the training set
D′train ⊆ Dtrain. And we add the number of frames (duration T ) to encode a sample to the list
of fidelity HPs. Other HPs, also have an impact on the evaluation cost, such as the batch size
or the number of epochs. We discarded the DvsGesture dataset, as it has too few samples to
efficiently apply multi-fidelity HPO using the πtrain HP.

We use LIF and PLIF neurons with respectively the LAVA-DL and SpikingJelly simulators.
We use the previously described CASCBO algorithm for HPO, and we compare the algorithm
to RS on the search spaces with the highest number of HPs.

Batches from the datasets have the following shape : B.T .C.H.W , i.e. batch size, frames,
channels, height, and width. The batch size and number of frames are HPs to be tuned.
The MNIST, NMNIST and SHD datasets follow the same pattern, respectively (B.T .1.28.28),
(B.T .2.34.34) and (B.T .1.700). The Tonic [155] Python package was used to load and convert
DVS data into frames. Both MNIST and NMNIST have the same number of samples. They
are divided into training (Dtrain), validation (Dvalid), and test (Dtest) sets of respective sizes
48000, 12000, and 10000. The SHD dataset contains fewer samples than previous datasets
but was still divided into three subsets of sizes 6524, 1632, and 2264. All validation sets are
randomly extracted from the training sets while keeping class proportions. A cluster of GPU
from Grid5000 [13] was used for computations. A total of 16 NVIDIA A-100 (40 GB) were
used; one of them was dedicated to the computation of CASCBO. Each node contains 4 GPUs,
a 32-core AMD EPYC 7513 (Zen 3) CPU and 512 GiB of RAM. CASCBO was parallelized
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Table 6.1: Architecture details of SNNs architectures applied to SHD.

Experiment Architecture Neuron model Encoding

21-C-SLAY-SHD

Inputs → FeedForward →

FeedForward → FeedForward →

Outputs

Adaptive LIF
(chapter 2)

LAUSCHER [37]

42-C-SLAY-SHD

21-R-SLAY-SHD

42-R-SLAY-SHD

13-C-SuGr-SHD

PLIF (chapter 2)
21-C-SuGr-SHD

13-R-SuGr-SHD

21-R-SuGr-SHD

using OpenMPI, instantiated with Zellij1 and BoTorch [12].
We adopt a similar experiment name coding as in chapter 5: number of HPs-algorithm-

training-dataset. Thus, the experiments are, 22-C-SLAY-MNIST, 46-C-SLAY-MNIST,
15-C-SuGr-MNIST, 21-C-SuGr-MNIST, 22-C-SLAY-NMNIST, 46-C-SLAY-NMNIST, 15-C-

SuGr-NMNIST, 21-C-SuGr-NMNIST, 21-C-SLAY-SHD, 42-C-SLAY-SHD, 21-C-SuGr-SHD and
21-C-SuGr-SHD. For RS we have, 46-R-SLAY-MNIST, 46-R-SLAY-NMNIST, 42-R-SLAY-SHD,
21-R-SuGr-MNIST, 21-R-SuGr-NMNIST, and 21-R-SuGr-SHD. These experiments are summed
up in table 6.2. Experiments on NMNIST last for 40 hours, as NMNIST is more computation-
ally expensive than MNIST. The other experiments have a duration of 14 hours. A practical
reason for these HPO time budgets is the availability of resources that are easily accessible
for 14 hours straight, while resources for longer experiments are harder to schedule. All
search spaces are available in appendix E.

1https://github.com/ThomasFirmin/zellij
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Table 6.2: Summary of experiments

Experiments α,β Budget HPs Simulator Archi. Dataset Source

Cost Aware SCBO

22-C-SLAY-MNIST 5,3% 224 22 LAVA-DL CSNN MNIST

99.36 ±
0.05 [247]

46-C-SLAY-MNIST 5,3% 224 46 LAVA-DL CSNN MNIST

15-C-SuGr-MNIST 5,3% 224 15 SpikingJelly CSNN MNIST

21-C-SuGr-MNIST 5,3% 224 21 SpikingJelly CSNN MNIST

22-C-SLAY-NMNIST 5,3% 640 22 LAVA-DL CSNN NMNIST

99.20 ±
0.02 [247]

46-C-SLAY-NMNIST 5,3% 640 46 LAVA-DL CSNN NMNIST

15-C-SuGr-NMNIST 5,3% 640 15 SpikingJelly CSNN NMNIST

21-C-SuGr-NMNIST 5,3% 640 21 SpikingJelly CSNN NMNIST

21-C-SLAY-SHD 10,1% 224 21 LAVA-DL 3-layers SHD

70.58 ±
1.9 [17]

42-C-SLAY-SHD 10,1% 224 42 LAVA-DL 3-layers SHD

13-C-SuGr-SHD 10,1% 224 13 SpikingJelly 3-layers SHD

21-C-SuGr-SHD 10,1% 224 21 SpikingJelly 3-layers SHD

Random Search

46-R-SLAY-MNIST 5,3% 224 46 LAVA-DL CSNN MNIST 99.36 ±
0.05 [247]

21-R-SuGr-MNIST 5,3% 224 21 SpikingJelly CSNN MNIST

46-R-SLAY-NMNIST 5,3% 640 46 LAVA-DL CSNN NMNIST 99.20 ±
0.02 [247]

21-R-SuGr-NMNIST 5,3% 640 21 SpikingJelly CSNN NMNIST

42-R-SLAY-SHD 10,1% 224 42 LAVA-DL 3-layers SHD 70.58 ±
1.9 [17]

21-R-SuGr-SHD 10,1% 224 21 SpikingJelly 3-layers SHD
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6.3 Results and discussion

6.3.1 Analysis of the best solutions

Results presented in Table 6.2 are selected according to the best accuracy on Dvalid found
by CASCBO, and final accuracy is computed on Dtest. To evaluate stochasticity of the best
solutions, SNNs are retrained multiple times during 100 epochs. To our knowledge, in
the literature of HPO applied to SNNs, we optimized the highest number of HPs while
maintaining competitive accuracies on standard benchmarks. Although experiments 46-
C-SLAY-MNIST, 46-C-SLAY-NMNIST, 42-C-SLAY-SHD, 21-C-SuGr-MNIST, 21-C-SuGr-NMNIST,
21-C-SuGr-SHD, are more difficult due to the higher number of HPs, but this does not always
translate into lower accuracies. Due to potential overfitting noticed in chapter 5, we replaced
the ADAM optimizer by SGD and a learning rate schedule for image recognition tasks.
Despite unsuccessful experiments with regularization methods to handle overfitting, such
as L2 or neuron dropout, we replaced ADAM by SGD, since some works indicate that SGD
generalizes better than ADAM for image recognition tasks [140, 303].

In Table 6.2, one can even observe better performances when HPs are optimized layer-
wise. However, it is not always the case, and this difference tends to be less pronounced for
PLIF-SpikingJelly experiments, maybe because more parameters are optimized (W ,θ,τleak).

Concerning experiments 22-C-SLAY-MNIST, 46-C-SLAY-MNIST, 22-C-SLAY-NMNIST, 46-
C-SLAY-NMNIST, and compared to the baseline results trained by SLAYER [247], we can notice
that our results are more stochastic, even if they are close to the baseline, and slightly better
for 46-C-SLAY-NMNIST. We assume this stochasticity might be explained by the usage of
adaptive LIF rather than SRM neurons. An additional source of uncertainty may arise from
the difference in simulators used. The baseline was computed using the original SLAYER
simulator2, whereas we used SLAYER-2 from LAVA-DL. Moreover, our networks are trained
on fewer data points than the given baseline. Indeed, in chapter 2 we discussed a good
practice [120, 20] in HPO consisting of having three subsets of data, Dtrain, Dvalid and Dtest,
to prevent overfitting the HPs and to guarantee a certain degree of generalizability. When
doing HPO, a bias is introduced because of an additional step in the design of a SNN.

Concerning PLIF-SpikingJelly experiments, 15-C-SuGr-MNIST and 21-C-SuGr-MNIST are
better than the SLAYER baseline [247], but despite the same architecture, more parameters
are optimized. The experiments 15-C-SuGr-NMNIST and 21-C-SuGr-NMNIST obtained far
better performances (99.33±0.10, 99.24±0.29) than the baseline at 99.20±0.02. In these
experiments, switching from SRM to PLIF neurons improves the performances.

Additionally, for all MNIST and NMNIST experiments we observe better performances
on Dtest than on the validation set Dvalid, which is a clue that the approach generalizes well,
despite higher performances on Dtrain.

Concerning experiments 21-C-SLAY-SHD,42-C-SLAY-SHD, the results indicate that by tun-
ing HPs, one could significantly improve the accuracy of handcrafted architecture presented
in [17]. The baseline obtained a validation accuracy of 70.58±1.9 with SLAYER and 78.01±0.2
with EXODUS (a SLAYER-based alternative), while we obtained up to 92.2% testing accuracy.
We also observe an indication of potential overfitting since the differences between training,
validation, and test accuracies are clear. We notice a loss of about 9% accuracy between
the validation and the testing accuracies. Indeed, for 21-C-SLAY-SHD the training accuracy
reaches 100% with a maximum validation accuracy of 99.20%, the test accuracy drops to a
maximum of 91.29%. A similar behavior is observed for 42-C-SLAY-SHD.

Although performances on SHD with PLIF-SpikingJelly are still better than the baseline,
we clearly observe overfitting. This overfitting can be explained by more training parameters

2https://bitbucket.org/bamsumit/slayer

https://bitbucket.org/bamsumit/slayer
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Table 6.3: Results and performances of best solutions from all experiments

Experiments HPs Train Valid Test # %sil. Hrs %bud. Cost

With constraints and early stopping

22-C-SLAY-

MNIST
22 97.62 ±

0.94
97.36 ±
0.74

97.56 ±
0.70

2073 55.3 14 2.2 1229

46-C-SLAY-

MNIST
46 99.66 ±

0.12
99.06 ±
0.13

99.06 ±
0.14

1823 70.5 14 1.6 6106

15-C-SuGr-

MNIST
15 99.80 ±

0.02
99.24 ±
0.09

99.37 ±
0.06

2932 40.8 14 1.0 631

21-C-SuGr-

MNIST
21 99.92 ±

0.01
99.33 ±
0.07

99.41 ±
0.05

2263 61.4 14 1.3 1628

22-C-SLAY-

NMNIST
22 94.75 ±

2.81
94.51 ±
2.75

94.96 ±
2.26

2291 57.0 40 0.6 4255

46-C-SLAY-

NMNIST
46 98.94 ±

0.46
98.18 ±
0.34

98.85 ±
0.38

3666 55.9 40 4.0 1523

15-C-SuGr-

NMNIST
15 99.89 ±

0.02
99.18 ±
0.06

99.33 ±
0.10

6461 27.1 40 0.6 636

21-C-SuGr-

NMNIST
21 99.76 ±

0.04
99.06 ±
0.09

99.24 ±
0.29

8492 17.6 40 0.4 345

21-C-SLAY-

SHD
21 94.21 ±

0.67
98.62 ±
0.58

89.55 ±
1.74

3469 45.5 14 1.6 437

42-C-SLAY-

SHD
42 99.99 ±

0.01
98.47 ±
0.67

90.19 ±
2.43

2367 49.2 14 2.1 1029

13-C-SuGr-

SHD
13 99.97 ±

0.03
94.24 ±
2.51

78.67 ±
4.81

1775 69.9 14 2.3 1805

21-C-SuGr-

SHD
21 99.95 ±

0.03
93.90 ±
4.81

78.40 ±
2.39

2199 85.5 14 3.0 3571

Without constraints and early stopping

46-R-SLAY-

MNIST
46 68.44 ±

9.16
82.82 ±
9.30

85.95 ±
8.76

689 82.9 14 82.7 2914

21-R-SuGr-

MNIST
21 72.22 ±

19.35
76.22 ±
19.36

76.35 ±
19.77

686 99.7 14 99.8 2577

46-R-SLAY-

NMNIST
46 94.44 ±

1.76
95.32 ±
1.83

95.37 ±
1.93

1925 87.7 40 84.7 5231

21-R-SuGr-

NMNIST
21 94.86 ±

0.08
95.45 ±
0.92

95.50 ±
0.81

2042 99.9 40 99.9 1732

42-R-SLAY-

SHD
42 98.63 ±

0.79
93.38 ±
3.25

85.31 ±
4.53

595 94.8 14 93.9 1641

21-R-SuGr-

SHD
21 99.93 ±

0.04
94.45 ±
1.13

78.91 ±
1.88

366 80.1 14 74.0 4938
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and by the dataset itself. Indeed, we split the original training dataset into Dtrain and Dvalid,
while we kept the originalDtest untouched for better comparison with the literature. However,
in the way SHD is made, the sound records in the original testing dataset are made with
different speakers than the original training dataset. Thus, the training and validation splits
are made of the same speakers, while the test dataset Dtest is made with different speakers
than Dtrain and Dvalid. Therefore, SHD could be extended with a validation dataset with new
speakers for HPO and manual tuning. Future neuromorphic datasets should consider this
possibility to perform fair and better HPO.

In figure 6.2, we used the t-SNE algorithm [171] to apply dimensionality reduction on
evaluated solutions produced by CASCBO. One can see there exist different areas (clusters
of points) of the search space containing good solutions, meaning that there is not a unique
suitable HPs combination. The darkest and biggest clusters, in all figures, indicate groups of
solutions that are mostly silent networks. We can deduce that some part of the search space,
distinct from the ones with high-accuracy solutions, contains many infeasible solutions, i.e.
silent networks. So, multi-fidelity combined with constraints and early stopping allows for
quick escape from areas where silent networks are located.

For experiments 13-C-SuGr-SHD and 21-C-SuGr-SHD, in figure 6.2 we distinguish large
clusters of bad solutions. This illustrates the difficulty of doing HPO for these experiments.
Whereas for their LIF-SLAYER counterparts, 21-C-SLAY-SHD and 42-C-SLAY-SHD, we can
clearly distinguish clusters of bad and good solutions.

For NMNIST experiments 15-C-SuGr-NMNIST and 21-C-SuGr-NMNIST, we clearly distin-
guish multiple clusters of good solutions, while there is one very compact cluster of bad
solutions. According to the colors, there is clearly a binary partition of the sampled solutions
for these two experiments. This is an additional clue comforting that for PLIF-SpikingJelly
experiments on MNIST–NMNIST, as soon as there is enough spiking activity we can ensure
high accuracy. For LIF-SLAYER experiments on NMNIST, the bad clusters appear less com-
pact. We can better distinguish the gradient of colors between multiple clusters, meaning
that minimum spiking activity is necessary to obtain suitable solutions, but this does not
solely explain top accuracy.

Concerning the πtrain HP, as illustrated in figure 6.3, it is not always necessary to use the
full training dataset to obtain good accuracies. With proper parameter tuning, we can reach
about 96% of accuracy with only using 10% of Dtrain on MNIST. Most of the dataset is then
used to refine the accuracy to reach about 99% validation accuracy. Similar behaviors can be
observed on NMNIST. For the SHD dataset, we clearly distinguish the loss of accuracy when
πtrain is lower.

Concerning the HP describing the number of frames T , and illustrated in figure 6.4.
For experiments 22-C-SLAY-MNIST, 46-C-SLAY-MNIST, 22-C-SLAY-NMNIST, and 46-C-SLAY-

NMNIST, the minimal number of frames to obtain validation accuracies > 95% is of about
30. However, for PLIF-SpikingJelly experiments, even 10 frames gives acceptable results.
For 21-C-SLAY-SHD, when T > 300, the validation accuracy decreases drastically, while in
42-C-SLAY-SHD the best solutions are around 325 < T < 400. This illustrates the intricate
relationships between HPs, emphasizing that the performances of SNNs rely on complex
combinations of HPs.

6.3.2 Analysis of CASCBO

In this section, we analyze the behaviors of CASCBO during the optimization process. The
table 6.2 sums up the number of evaluated HPs combinations (#), the proportion of sampled
silent networks (%sil.), their influence on the budget in GPU hours (%budg.), and the training
cost in seconds, of the best solution found.
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(a) 22-C-SLAY-MNIST (b) 46-C-SLAY-MNIST (c) 22-C-SLAY-NMNIST

(d) 46-C-SLAY-NMNIST (e) 21-C-SLAY-SHD (f) 42-C-SLAY-SHD

(g) 15-C-SuGr-MNIST (h) 21-C-SuGr-MNIST (i) 15-C-SuGr-NMNIST

(j) 21-C-SuGr-NMNIST (k) 13-C-SuGr-SHD (l) 21-C-SuGr-SHD

Figure 6.2: t-SNE applied on all evaluated solutions returned by CASCBO. The lighter or
yellower the point, the higher the validation accuracy.
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(a) 22-C-SLAY-MNIST (b) 46-C-SLAY-MNIST (c) 22-C-SLAY-NMNIST

(d) 46-C-SLAY-NMNIST (e) 21-C-SLAY-SHD (f) 42-C-SLAY-SHD

(g) 15-C-SuGr-MNIST (h) 21-C-SuGr-MNIST (i) 15-C-SuGr-NMNIST

(j) 21-C-SuGr-NMNIST (k) 13-C-SuGr-SHD (l) 21-C-SuGr-SHD

Figure 6.3: Accuracy according to πtrain for all CASCBO experiments.
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(a) 22-C-SLAY-MNIST (b) 46-C-SLAY-MNIST (c) 22-C-SLAY-NMNIST

(d) 46-C-SLAY-NMNIST (e) 21-C-SLAY-SHD (f) 42-C-SLAY-SHD

(g) 15-C-SuGr-MNIST (h) 21-C-SuGr-MNIST (i) 15-C-SuGr-NMNIST

(j) 21-C-SuGr-NMNIST (k) 13-C-SuGr-SHD (l) 21-C-SuGr-SHD

Figure 6.4: Accuracy according to T for all CASCBO experiments.
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Concerning LIF-SLAYER experiments, one can see that while almost half of the sampled
solutions are silent networks (70% for 46-C-SLAY-MNIST), their impact on the budget is
greatly diminished, from 0.6% up to only 4%. Additionally, figure 6.5 illustrates that most
of the silent networks are sampled at the very beginning of the optimization (red lines)
when πtrain and the costs are low. Then, CASCBO can quickly converge toward fully trained
networks (black lines).

In chapter 5, the HPO on MNIST with a budget of 1600 GPU hours, the LIF-SLAYER
experiment obtained a maximum of 98.99% accuracy, and 99.57% for PLIF-SpikingJelly.
According to the results presented in table 6.3, here with 7.6 times less budget (224 GPU
hours), we obtained for search spaces of 22 HPs, a maximum of 98.26% and 99.43%. Whereas,
for the search spaces of 46 HPs, we get 99.20% and 99.46% validation accuracies. Despite
a slight decrease in performances, we still obtained competitive accuracy with much less
budget. Moreover, the switch from ADAM to SGD did not help to improve the performances
and seems to have generated noisier solutions.

Figure 6.6 illustrates the acceleration between experiments from chapter 5 on MNIST, and
the multi-fidelity experiments. The experiments 22-C-SLAY-MNIST and 15-C-SuGr-NMNIST

are rescaled within a 100 hours timescale. We clearly see the advantage of the cost-aware
approach. Indeed, 22-C-SLAY-MNIST converges in 11 hours and 15-C-SuGr-MNIST in 9 hours,
while S-SLAY-MNIST converges in 62 hours and S-SuGr-MNIST in 40 hours. For 46-C-SLAY-
MNIST and 21-C-SuGr-MNIST, in figure 6.5 the convergence is slower, but the search space is
much bigger, making the optimization noisier.

Concerning PLIF-SpikingJelly experiments, for 15-C-SuGr-MNIST and 21-C-SuGr-MNIST,
similar behaviors are observed, compared to their LIF-SLAYER counterparts. Between 40%
and 60% of silent networks are sampled, but they only consumed about 1% of the budget.
However, for 15-C-SuGr-NMNIST and 21-C-SuGr-NMNIST, only 17% to 27% of silent networks
are generated and consumed less than 1% of the budget. This can be explained by faster
convergence with the SpikingJelly simulator and a focus on cheap networks. Therefore, 14
hours (224 GPU hours) are sufficient to obtain top-performing accuracy with SpikingJelly
on NMNIST. In these two experiments, about 2.5 hours are needed to reach about 98.75%
validation accuracy, and about 7.5 additional hours are needed to obtain 99.00% accuracy.

However, while SpikingJelly performs better than LIF-SLAYER on MNIST and NMNIST,
it is clear that the convergence is more challenging on SHD. Even if the number of optimized
HPs is lower than for LIF-SLAYER experiments. It can be explained by a higher rate of
silent networks within the search spaces of SpikingJelly experiments on SHD, and a focus on
expensive networks. We have:

• 21-C-SLAY-SHD: 45.5% of evaluations are silent networks, and costed 437 GPU hours.

• 13-C-SuGr-SHD: 69.9% of evaluations are silent networks, and costed 1805 GPU hours.

• 42-C-SLAY-SHD: 49.2% of evaluations are silent networks, and costed 1029 GPU hours.

• 21-C-SuGr-SHD: 85.5% of evaluations are silent networks, and costed 3571 GPU hours.

This illustrates the sensitivity of SNNs regarding the classification task, the HPs, the architec-
ture, and simulators.

The differences in number of evaluated solutions between all experiments can be ex-
plained by a focus of CASCBO on more or less costly solutions; this is explained by a higher
or lower number of epochs, batch sizes, or frames T .

Finally, these experiments illustrate how difficult it is to improve performances by about
0.25% accuracy, as depicted in figure 6.5. Moreover, experiments on MNIST and NMNIST
can quickly obtain very high accuracy, while we see slower convergence for SHD experiments.
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(a) 22-C-SLAY-MNIST (b) 46-C-SLAY-MNIST (c) 22-C-SLAY-NMNIST

(d) 46-C-SLAY-NMNIST (e) 21-C-SLAY-SHD (f) 42-C-SLAY-SHD

(g) 15-C-SuGr-MNIST (h) 21-C-SuGr-MNIST (i) 15-C-SuGr-NMNIST

(j) 21-C-SuGr-NMNIST (k) 13-C-SuGr-SHD (l) 21-C-SuGr-SHD

Figure 6.5: Computation start date to end date compared to accuracy of each SNN optimized
by CASCBO.
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(a) S-SLAY-MNIST (b) 22-C-SLAY-MNIST (c) S-SuGr-MNIST (d) 22-C-SuGr-MNIST

Figure 6.6: Comparison between results obtained on MNIST between experiments of chap-
ter 5 and 6.

These challenges emphasize even more our approach when compared to baseline networks,
which are designed and trained on solely a training and test datasets. While we have to train
on a smaller training set by splitting the original training dataset into Dtrain and Dvalid.

6.3.3 Comparison with Random Search

We applied the RS algorithm to the largest search spaces to compare the relevancy of CASCBO.
It allows us to determine if the optimized results obtained with CASCBO are explained by
random or by a converging process. We also investigate how resources and budgets are
distributed in RS in order to determine whether good solutions are common or not.

According to table 6.3, we can say that 21-C-SuGr-SHD failed. Indeed, the maximum test
accuracies for RS and CASCBO are of about 80.79%, indicating that CASCBO is as good
as random on SHD with PLIF-SpikingJelly. These results can reinforce our doubts about
overfitting due to more parameters with PLIF-SpikingJelly. For experiments 13-C-SuGr-SHD
and 21-C-SuGr-SHD, to explain lower performances, a hypothesis could be that the higher
number of parameters decreases the impact of HPs, resulting in overfitting. Because RS does
not try to maximize the validation accuracy, it can result in better generalization, explaining
its better performances. Thus, it reinforces our previous discussions about the SHD dataset
used in HPO. But, it is clear that the 42-C-SLAY-SHD was a success as the maximum test
accuracy is equal to 92.62%, while 42-R-SLAY-SHD with RS obtained 89.84%. Nonetheless,
compared to 21-C-SuGr-SHD, 42-C-SLAY-SHD and 42-R-SLAY-SHD have a much bigger search
space. Such a high dimensionality makes the optimization by random sampling harder. We
refer to chapter 1 and our discussions about the curse of dimensionality.

All other CASCBO experiments performed better than RS. The 46-C-SLAY-MNIST exper-
iment obtained a minimum accuracy of 98.92%, and reaching up-to 99.20%, while 46-R-
SLAY-MNIST obtained a maximum of 94.71% with a much noisier solution. Additionally, we
observe an overfitting for the best solution returned by RS, as depicted in figure 6.7. The
same goes for 46-C-SLAY-NMNIST with a minimum test accuracy of 98.47% and a maximum
of 99.23%, while 46-R-SLAY-NMNIST obtained a maximum of 97.30. To better understand the
comparisons, we refer to the previous sections discussing how hard it is for the optimization
to improve a solution by 0.25%.

For PLIF-SpikingJelly, the differences between CASCBO and RS on MNIST and NMNIST,
tend to be less pronounced. First because the training optimizes more parameters, and
secondly because the search spaces have less HPs than LIF-SLAYER experiments. However,
the results obtained by CASCBO are still better. The RS experiment 21-R-SuGr-MNIST
obtained a maximum of 96.12%, while 21-C-SuGr-MNIST was able to achieve a minimum
test accuracy of 99.36% with a maximum of 99.46%. We notice that the best solution found
by RS is much noisier than the one found by CASCBO. We can explain that CASCBO finds
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(a) 46-S-SLAY-MNIST. (b) 46-R-SLAY-MNIST.

Figure 6.7: Learning curves summary of the best solutions from two experiments.

less noisy solutions because BO naturally handles noisy evaluations within the kernel (see
chapter 3).

Concerning 21-R-SuGr-NMNIST, the maximum test accuracy is equal to 96.31%, while
the maximum accuracy for the CASCBO counterpart 21-C-SuGr-NMNIST reaches 99.53%
For MNIST and NMNIST, we clearly observe these 0.25% validation accuracy gaps, which
are also observed on the test accuracy. These gaps are also observed on SHD between 42-

R-SLAY-SHD and 42-C-SLAY-SHD, illustrating the advantages of optimization compared to
RS. Furthermore, we notice that most of the sampled solutions by RS are silent networks;
the proportions of networks that should have been stopped range from 80% to 99.99%.
Thus, we can question how the resources and budget are used by RS. This is illustrated by
figures 6.8, 6.9, and 6.10.

For MNIST experiments, we clearly distinguish a focus on accuracies > 90% by CASCBO.
While for RS, less than 5% of the budget is used for this accuracy bin. It is even worse for
21-R-SuGr-MNIST where at least 60% of the budget is spent on computing networks with
accuracies < 20%. We observe the same phenomenon in NMNIST experiments.

Concerning SHD experiments, it is less pronounced. For 21-C-SLAY-SHD we clearly
observe that reaching accuracies > 90% is harder than on MNIST. For 21-R-SLAY-SHD, it is
even worse; not a single sampled solution has a validation accuracy higher than 90%. We can
clearly assess that accuracies > 30% are very uncommon. Furthermore, in 21-R-SLAY-SHD, we
can say that having enough spiking activity is not enough to ensure high accuracy according to
non-stopped networks. While for 46-R-SLAY-MNIST and 46-R-SuGr-NMNIST, a high spiking
activity almost ensures accuracies > 60% with random HPs, as soon as this randomness
generates output spikes. This confirms that for these datasets, the major challenge is to refine
accuracies > 99%. For 21-C-SuGr-SHD, we better understand the difficulties to obtain high
accuracy solutions, but in 21-R-SuGr-SHD, we also notice how uncommon good SNNs are.
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(a) 46-C-SLAY-MNIST

(b) 46-R-SLAY-MNIST

(c) 21-C-SuGr-MNIST

(d) 21-R-SuGr-MNIST

Figure 6.8: Allocation of the budget during multi-fidelity experiments on MNIST.



182 CHAPTER 6. Accelerating Hyperparameter Optimization with Multi-Fidelity

(a) 46-C-SLAY-NMNIST

(b) 46-R-SLAY-NMNIST

(c) 21-C-SuGr-NMNIST

(d) 21-R-SuGr-NMNIST

Figure 6.9: Allocation of the budget during multi-fidelity experiments on NMNIST.
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(a) 46-C-SLAY-SHD

(b) 46-R-SLAY-SHD

(c) 21-C-SuGr-SHD

(d) 21-R-SuGr-SHD

Figure 6.10: Allocation of the budget during multi-fidelity experiments on SHD.
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6.4 Conclusion

In this chapter, we leveraged multi-fidelity optimization to handle HPs influencing the cost
of training a SNN. The expensiveness of SNNs can be explained by diverse HPs, such as
the temporal resolution of the simulator, the size of the network, or the size of the training
dataset. We designed a new BO approach called CASCBO, based on SCBO [62], allowing
to consider the cost of evaluations, constraints, and high dimensional search spaces. To
improve the detection of silent networks and reduce their negative influence on the budget, we
redefined specific constraints. These are based on the number of samples that output at least,
and not at most, α spikes for a certain layer. This new definition follows a hypergeometric
law, giving a stronger quantitative and probabilistic meaning to the constraints.

Experiments indicate that CASCBO can optimize high dimensional and constrained
search spaces, including fidelity HPs. These HPs have an effect on the training time of SNNs,
and so on the budget allocated to silent networks. The proposed methodology makes the
impact of silent networks negligible, allowing to define a more general and flexible search
space. The optimization process can quickly stabilize the high sensitivity of SNNs to their HPs
before tackling expensive evaluations. Our approach empirically indicates that expensive
evaluation on the full training dataset is not necessary to obtain high accuracy. Despite
the complexity of the problem, the presented results remain competitive compared to their
baseline accuracies, even better. On SHD, we demonstrate that we can considerably improve
a default solution by doing some tuning. Moreover, compared to the PLIF-SpikingJelly
approach, we also illustrate how sensitive the performances are regarding the simulator,
neuron model, and training algorithm. While SpikingJelly obtained about 80% accuracy on
SHD, SLAYER reached almost 93%. We illustrate that for most of the experiments, CASCBO
performs better than RS. Moreover, because CASCBO handles noisy evaluations by design,
some clues indicate that the algorithm can find more robust solutions than RS by selecting
less noisy HPs combinations while obtaining better accuracies.

Additionally, when doing HPO and to prevent overfitting the HPs [120], a more rigorous
approach is necessary. It includes train, validation, and test subsets, meaning that we train on
fewer data compared to the baselines, which improves the generalizability of our solutions.
Thus, further studies are necessary to tackle this overfitting, including better neuromorphic
datasets for HPO and AutoML, including at least a train-validation-test split.

Finally, it is clear that compared to results from chapter 5, we can drastically accelerate
the convergence by using multi-fidelity while dividing by 7 the necessary budget.
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This thesis explores hyperparameter optimization for spiking neural networks through both
algorithmic and neuromorphic-ML approaches. The first three chapters of this manuscript
give the rich and necessary background to understand both HPO and SNNs. We motivate
the investigation on neuromorphic computing by the necessity to study other aspects of
modern AI technologies. Among these other considerations that have been put aside for
too long, the energy consumption of predictive models is becoming a crucial challenge,
and SNNs could efficiently balance predictive performances and energy efficiency. We first
described how usual synchronous ANNs work, before shifting toward the unique properties
of SNNs. These peculiar models are closer to the biology. They mimic asynchronous neurons
by replacing the activation function with a complex and highly hyperparameterized ordinary
differential equation regarding time. According to Maass [170], SNNs use time as a resource
for communications and computations. They replace floating-point information by timed
events known as spikes. The dynamics within a SNN rely on the asynchronous transfer and
the integration of these spikes between neurons. Consequently, considering SNNs similar to
ANNs in the sense they are both blackboxes mimicking some sort of brain-like structure is a
pitfall. This led to the Neurobench initiative [294], questioning the benchmarking of SNNs,
and asking the following question: “Can we fairly compare SNNs with ANNs on usual digital
benchmarks?”. While SNNs are known by their high sensitivity to their HPs and the difficulty
of their tuning [217, 28, 102, 195], in the literature the HPO of SNNs does not differ from the
HPO of ANNs. Although the HPO algorithm is selected a priori regarding the knowledge
about ANNs, we forgot to clearly define the specificities of SNNs from the HPO standpoint.
Therefore, we ended chapter 1 with a discussion on the No Free Lunch Theorem, implying
the necessity to have prior knowledge about the problem before selecting an optimization
algorithm. From these discussions, we coined the following research question:

How can we improve HPO of SNNs by investigating both the impact of HPO on the
performances of SNNs, and the impact of SNNs on the performances of HPO?

In chapter 2, we propose the first work reviewing HPO of SNNs, tackled automatically or
manually. We conclude that most of the works investigate very few HPs. The search spaces
are limited, even discretized. The maximum search space size was of 18 HPs with an HPO of
an architecture applied on an in-situ dataset. Moreover, the numerous HPs of the neuron
model are rarely optimized altogether. Hence, our objective was to optimize more HPs from
all five HPs groups: neurons model, learning rule, architecture, encoding–decoding, and HPs
of the training pipeline. In chapter 3, we described the usual algorithms for HPO, ranging
from metaheuristics to multi-fidelity Bayesian optimization. Then, the thesis contribution
begins at chapter 4.

Thesis contributions

In chapter 4, we described a new family of algorithms named fractal-based decomposition
algorithms. After reviewing the usual divide-and-conquer algorithms, we introduced a gen-

185
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eral and flexible framework unifying three families of algorithms: DIRECT-based algorithms
from the global optimization community, SOO from the multi-armed bandits family, and FDA
from the metaheuristic community. A FBD algorithm is defined by five search components:
fractal, tree search, scoring, and exploration. These components are translated into software
bricks within Zellij. Zellij is a Python library helping to instantiate FBD algorithms and
create new search components. We reproduced many popular FBD algorithms, including
DIRECT and some of its other versions, SOO and its improvement NMSO, and FDA. We
empirically demonstrate the behaviors of the search component on the COCO benchmark,
and we focus on the scalability of these algorithms. Not only that, but we observed that while
DIRECT and SOO are proper preservative algorithms, unbounded sacrificial algorithms like
FDA can scale and reach top performances thanks to a local search counterbalancing the
sacrificed space. Furthermore, we proposed to leverage LHS to partition the search space, and
while the proposed algorithm can perform better than FDA in low and high dimensions, we
observed that the algorithm struggles to scale. Further investigations, discussed in the future
works sections, could help to improve this new highly sacrificial algorithm. Therefore, we
also proposed a new highly sacrificial algorithm based on a Latin Hypercube decomposition.
The algorithm presents some limitations but is better than FDA in low dimensions while
being at least as efficient in higher dimensions.

In chapter 5 we tackled HPO of SNNs. The preliminary naive experiments indicate
that during HPO many solutions have a very low validation accuracy, close to a random
classification. We empirically demonstrate that there is a relationship between these bad
accuracies and the spiking activity. We defined a new type of SNNs named silent networks.
These networks output whether noise or no spikes. This lack of spiking activity can be
explained by mistuned HPs. But, the usual blackbox workflow associated with the training of
SNNs can learn to decode these noisy spikes or the absence of events by wrongly associating a
class to nothing. We ended these discussions on preliminary experiments with some remarks
and questions:

• What is the impact of SNNs on HPO?

• Is there a difference between a spiking SNN and a silent SNN, both with random
accuracies?

• Concerning STDP learning, if neurons do not fire, then synapses do not wire together.

To leverage silent networks, we designed an indirect spike-based early stopping criterion to
prevent worthless and costly computations. While stopping criteria are usually employed
to prevent overfitting, this new one does not improve the generalizability of SNNs but
aims at accelerating the convergence of HPO. Additionally to the early stopping, we have
associated blackbox constraints to prevent the HPO from sampling silent networks with a
high risk of being stopped. Therefore, the constraints force the HPO to sample SNNs for
which the training can be carried out. Because of the early stopping, the evaluations of HP
combinations become highly stochastic, which is a major challenge for parallelization of the
HPO algorithm. Indeed, the training of a SNN can now last from a few tens of seconds to
hours. Moreover, the problem is expensive, blackbox-constrained and high-dimensional.
Hence, we have selected the SCBO algorithm that we have asynchronously parallelized on
the GPU partition of the Jean Zay supercomputer. We performed long-run experiments with
a budget of 1600 GPU hours, and we compared our approach to the synchronous TuRBO
algorithm, the unconstrained version of SCBO.

The results strongly suggest that we can accelerate the convergence of about hundreds of
GPU hours, while maintaining the performances. We clearly illustrate the negative impact of
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silent networks on the optimization, where more than 50% of the budget can be spent on
computing networks that could have been stopped with the early stopping. We have also
illustrated that we can ensure a minimum accuracy as soon as there is enough spiking activity.
But, depending on the dataset and simulator, the spiking activity does not solely explain the
validation accuracy. As discussed in chapter 2, AutoML and HPO have their own scientific
interests and benefits [20, 16, 123, 290, 19, 259] compared to manual tuning. Therefore,
beyond usual AutoML, investigating HPO of SNNs and tailoring optimization algorithms to
this peculiar problem allows to more efficiently design SNNs with a reduced cost. Chapter 5
is a step toward tailored HPO applied to SNNs. To improve HPO of SNNs by considering
silent networks, a tradeoff must be made between the optimal allocation of resources and the
potential loss of high-risk–high-reward solutions that may be misclassified as silent. Indeed,
we noticed that our early stopping might wrongly detect silent networks, indicating that our
approach can be improved.

In chapter 6, we investigate multi-fidelity HPO of SNNs. The experiments in chapter 5
required an enormous budget to converge. The bill for the electricity consumption of the
experiments in chapter 5 reaches about 15000. In that regard, it is necessary to reduce the
budget of HPO to make it affordable. We noticed in chapter 5 that some early stopped
networks can have acceptable validation accuracies. Meaning that a full training is not
necessary to retrieve some information about a HPs combination. Therefore, multi-fidelity
HPO leverage low-cost – low-fidelity information to sample more efficiently high-cost –
high-fidelity HPs combinations. But, because in this thesis SNNs are simulated, the fidelity
can be explained by numerous HPs. For this reason, we adapted the asynchronous SCBO
algorithm to a generalization of multi-fidelity known as cost-aware optimization. With
this approach, we were able to reduce by 7 the budget necessary for convergence while
maintaining competitive performances. With such a reduced budget, we performed 18
experiments with search spaces of up to 46 HPs, and we compared CASCBO to RS. We
have empirically demonstrated that random HPs combinations in such high dimensional
spaces generate mostly silent networks with low validation accuracies. We illustrate that HPs
combinations with a minimum spiking activity are outliers, and that high accuracy SNNs in
such high dimensional search spaces are uncommon.

Through chapters 5 and 6, we illustrate the major differences in terms of performances
between simulators. We had to face some failures. We failed at obtaining and reproducing
results on DvsGesture with an architecture trained by STDP on BindsNET. The necessary
efforts to obtain suitable results on BindsNET with STDP to classify DvsGesture were such
that we discarded this approach for the rest of the thesis. There is no doubt that modern
surrogate gradient approaches outperform STDP in terms of performances, but also ease
of design. However, local learning and neuromorphic-hardware-friendly learning rules
should be deeper investigated; SNNs are unique models not only by their neurons, but also
by their learning rules, clearly different from ANNs. In chapter 6, we have illustrated on
the SHD dataset that according to the simulator and the approach, we can obtain entirely
different performances. While the PLIF-SpikingJelly trains the neuron leakage, we observed
overfitting and a clear loss of accuracy compared to the LIF-SLAYER approach.

Lastly, SNNs are clearly sensitive to their HPs, which can generate infeasible solutions.
But SNNs are also sensitive to the simulator, their instantiation, and to the dataset. Before dis-
carding a new approach, learning rule, neuron model, or simulator having bad performances,
maybe it requires a prior HPO to identify a suitable baseline. Moreover, comparing two SNNs
approaches without the same level of HPO is unfair. On SHD, we have demonstrated that
with a HPO of 14 hours, we can improve a baseline architecture by almost 20% test accuracy.
Thus, stating that a new SNNs approach is better than another, while they did not receive the
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same efforts in terms of design, is misleading regarding SNNs sensitivity.

HPO can improve significantly the predictive performances of SNNs, and silent SNNs
have a significant impact on the HPO.

Future works

Because fractals from FBD algorithms are fully independent subsets of the original search
space, we claim that FBD are a serious candidate for massive parallelization within dis-
tributed Peta- or Exa-scale architectures. Thus, future work should focus on finding common
parallelization techniques for FBD algorithms. Some early works [191, 133, 256, 66] have
already investigated limited parallelization of some FBD algorithms, but it is now necessary
to scale these on modern large-scale distributed architectures. Investigating sacrifice-based
approaches is also of interest, and could help improve FBD algorithms regarding convergence
time or memory limitation.

In the long term, the automatic design of FBD algorithms could be of interest. Indeed,
thanks to the modularity of Zellij, we could tailor FBD algorithms to specific tasks, notably
by using hyper-heuristic approaches to find the best combination of search components [254].
Such approaches were already applied to population-based algorithms [301]. Adapting
FBD algorithms to HPO is challenging. State-of-the-art HPO algorithms are mostly from
the SMBO family. Some works [177, 283] combine both FBD and BO algorithms, showing
a decrease in the number of necessary evaluations to converge. Hence, leveraging these
BO-FBD algorithms could help design for expensive HPO. Investigating such an algorithmic
paradigm could also enable new methods for parallelizing Bayesian optimization. Therefore,
tackling HPO of SNNs with FBD algorithms first requires further investigations within two
research axes:

• Combining BO and FBD algorithms, such as with the BaMSOO algorithm [283]. Such
a combination could help BO scales in dimension. Furthermore, it could also open
doors to new ways of parallelizing BO. Indeed, as discussed in chapter 3, one has to
face major challenges to synchronously or asynchronously parallelize BO.

• Large-scale parallelization of FBD algorithms on Exascale architectures. Some prop-
erties of a FBD approach, such as the independence and inheritance mechanism of
fractals, could help design new optimization approaches while considering by design
its parallelization.

Concerning HPO of SNN. Future works will focus on multi-objective optimization, where
finding the frontier between low-spiking and silent networks is crucial. Indeed, the de-
scribed constraints could be considered secondary objectives to be minimized. Applying our
methodology to cost-aware multi-objective HPO of SNNs where minimizing the number of
spikes is important while maintaining a minimum spiking activity. Finally, the strategy could
also be considered within a NAS framework. Only a few works have tackled this problem
applied to SNNs [190, 146]. Indeed, designing feasible solutions is difficult. Hence, being
able to quickly determine whether a given architecture is silent or not could improve the
optimization process.

Future works could also focus on improving the constraints. Indeed, in chapters 5
and 6 we observed that some SNNs are misclassified as silent networks, while having a
high accuracy. Occasionally, because the gradient can force the network to have a spiking
activity, the constraint could implement a patience, waiting to see if the spiking activity
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is increasing, thus preventing SNNs misclassified as silent. It could also be interesting to
study the impact on the learning curves of these misclassified silent networks. We noticed
that some of these SNNs converge slower. Our hypothesis is that the gradient has to first
compensate for the lack of spiking activity before focusing on refining the weights regarding
the loss. We could also combine the evolution of the spiking activity with HPO based on
learning curve interpolation [54]. Moreover, investigating a Meta-learning [222] approach
leveraging constraints and early stopping could help to determine common non-silent HPs
combinations or architectures across tasks and problems.

Finally, investing on hybrid CPU-GPU-Neuromorphic clusters could definitely help to do
on-hardware HPO of SNNs, and go beyond with hardware-aware HPO.
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AppendixA
Trust Region and Scalable
Constrained Bayesian Optimization

A.1 Trust Region Bayesian Optimization

To clear up any ambiguity in the context of TuRBO and SCBO, D describes the archive of
computed solutions. The validation accuracy computed after training and validation of a
SNN is written as the objective function f . So f (λ) = LD(N λ

θ⋆ ,Dvalid) (see chapter 2).
SCBO and TuRBO instantiate trust regions to restrict the search within regions where

the surrogate model is considered reliable, helping to focus on promising areas. These trust
regions increase the scalability in high dimensional search spaces. In TuRBO and SCBO a
trust region L is a hypercubic subspace of a continuous search spaceΩ, of side length l; L ⊆Ω.
The trust region is always centered on the best current solution λbest, and at each iteration,
the algorithm returns a batch of s solutions sampled within L using TS and the posterior
distribution; S = {λ1, . . . ,λs} such that:

∀λ ∈ S, p(y ∣ λ,D,σnoise) = N(y;µD(λ),KD(λ,λ)+σ2
noise) . (A.1)

TS is a bandit algorithm. Initially, we create a larger batch B ⊃ S of b random solutions.
Then, instead of optimizing the acquisition function, we sample n possible outcomes (real-
izations) from the posterior and for each element of B. We write r(λ) a single realization
sampled with the posterior p(y ∣ λ,D,σnoise). We define the relation operator is better than as
≻. Then for two solutions λ1 and λ2 we have:

λ1 ≻ λ2 ⇐⇒ f (λ1) > f (λ2), or (A.2)
λ1 ≻ λ2 ⇐⇒ r(λ1) > r(λ2) . (A.3)

(A.4)

Then, to extract S ⊂ B s.t. ∣S ∣ = s, we select the top s with equation A.3 solutions according to
their maximum possible outcome among n realizations.

The equation A.2 is used to update the trust region L. We define nsuccess and nfail the
number of successes or fails at improving the best current solution λbest. At each iteration,
a batch S is generated and if maxf (S) > f (λbest), then a counter successes is increased,
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Figure A.1: Flowshart of BO and TuRBO. The dashed lines illustrate the alternative for
TuRBO.

otherwise fails is increased. So, the length l of a trust region is updated according to:

l ← l ×2, if success ≥ nsuccess

l ← l /2, if fails ≥ nfail
. (A.5)

Once the trust region becomes sufficiently small, i.e. l ≤ ε, it is reset to its default size, still
centered on λbest. The update of a trust region L is described in algorithm 24. The alternative
workflow of TuRBO is illustrated in A.1.

A.2 Scalable Constrained Bayesian Optimization

SCBO introduces a black-box approach, in this work the constraints are the ones defined in
equation 5.1. SCBO models each constraint by a dedicated GP. So, we write c(λ) the actual
constraint value of λ, and rc(λ) a realization from the posterior distribution of the GP on c.

Therefore, the algorithm needs to redefine the comparison between two solutions, λ1 and
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λ2. We say that λ1 is better than λ2; λ1 ≻ λ2, if:

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

f (λ1) > f (λ2) , if ∀c ∈C, (c(λ1) < 0)∧ (c(λ2) < 0)

ν(λ1) < ν(λ2) , if (ν(λ1) ≥ 0)∧ (ν(λ2) ≥ 0)

ν(λ2) ≥ 0
⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

r(λ1) > r(λ2) , if ∀c ∈C, (rc(λ1) < 0)∧ (rc(λ2) < 0)

νc(λ1) < νc(λ2) , if (νc(λ1) ≥ 0)∧ (νc(λ2) ≥ 0)

νc(λ2) ≥ 0

, (A.6)

with ν the total constraint violation of a given λ such that ν(λ) ≜ ∑
c∈C

max(c(λ),0) and

νc(λ) ≜ ∑
c∈C

max(rc(λ),0).

Based on the equation A.6, the update of the trust region L is described in algorithm 24.
At each iteration and according to a potential improvement of the current λbest, SCBO will
shrink or expand the trust region L after nfail failures or nsuccess successes at improving
λbest.

A.3 SCBO with asynchronous trust regions

The parallelization of SCBO is necessary since the early stopping criterion generates a
high variability in the computation time of SNNs. The asynchronous strategy consists in
maximizing the workload of processes by keeping a continuous flow of solutions. Thus, TS
was used to replace the acquisition function, since it can be parallelized asynchronously [112].
The asynchronous parallelization of SCBO is described in figure A.2 and algorithm 25.

The main data structure used for asynchronous parallelization consists in maintaining
a FIFO queue with candidates solutions (λ) waiting to be evaluated within idle worker
processes (one process per GPU). A master process has to compute SCBO, send candidates to
workers, receive evaluations from the workers, and store these evaluations. If the size of the
FIFO queue decreases to a certain threshold, the master worker updates the GPs of SCBO
with newly computed solutions. This process is described in figure A.2. However, due to
the stochasticity of the evaluations, induced by the early stopping described in section 5.2
and other HPs (e.g. batch size, epochs, etc.), we cannot ensure that trust regions are always
updated with the same number of evaluated solutions. Consequently, the trust region may be
updated while expensive evaluations of previous batches of candidates are still pending. As
a result, at a given iteration i, some solutions from previous batches may be located outside
the current trust region, as it has been updated with less costly solutions.

To solve the previously described asynchronous problem, we propose to temporally
link candidates to the trust regions it were sampled in. We write LI the trust region at
the iteration I , and Li the trust region at a given previous iteration i < I . We rewrite the
batch of candidates S as BI the batch of solutions at I . This batch is made of pairs (λi,j ,Li),
where λi,j is an evaluated solution (i.e. accuracies and black-box constraints are known)
and the jth candidate from Thompson sampling at a previous iteration i. So, at iteration I ,
BI ∶= {(λi,j ,Li)∣ i < I, 0 ≤ j ≤ b} ∖B0,...,I−1, are the evaluated solutions returned by the master
process when the size of the FIFO queue is under the threshold. The new trust region update
is described in algorithm 25. The main idea is that while costly solutions are being computed,
SCBO can exploit a cheaper trust region. If a costly solution, once evaluated, improves the
current best solution and is outside the current trust region, then LI is restored to the state



220 APPENDIX A. Trust Region and Scalable Constrained Bayesian Optimization

Algorithm 24 Trust region update

Inputs:
1: S = {λ1, . . . ,λb} batch of computed

solutions
2: f Objective function (validation accuracy)
3: λbest
4: l Length of current trust region
5: nsuccess
6: successes Current number of successes
7: nfail
8: fails Current number of fails
9:

Outputs: l, fails, successes, λbest
10: best← argmax

λ∈S
f (λ)

11: if best ≻ λbest then Use eq.A.2, A.3 or
A.6

12: λbest← best

13: successes← successes+1
14: else
15: fails← fails+1
16: if fails ≥ nfail then
17: l ← l /2
18: sucesses← 0
19: fails← 0
20: if successes ≥ nsuccess then
21: l ← l ×2
22: sucesses← 0
23: fails← 0

Algorithm 25Asynchronous Trust region up-
date
Inputs:
1: BI = {. . . ,(λi,j ,Li), . . .} batch of computed

solutions
2: f Objective function (validation accuracy)
3: λbest
4: L, l Current trust region and length
5: nsuccess
6: successes Current number of successes
7: nfail
8: fails Current number of fails
9:

Outputs: L, l, fails, successes, λbest
10: best← argmax

λ∈B
f (λ)

11: if best ≻ λbest then Use eq.A.2, A.3, or
A.6

12: λbest← best

13: if best ∈ L then
14: successes← successes+1
15: else
16: L← Lbest
17: l ← lbest
18: successes← successesbest +1
19: fails← 0
20: else
21: if ∃λ ∈ B, λ ∈ L then
22: fails← fails+1
23: if successes ≥ nsuccess then
24: l ← l ×2
25: sucesses← 0
26: fails← 0
27: if fails ≥ nfail then
28: l ← l /2
29: sucesses← 0
30: fails← 0
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Figure A.2: Workflow of SCBO.

at which the best costly solution was sampled. This allows asynchronous SCBO to retrieve
cheap and relevant information while computing expensive solutions. In algorithm 25, li
corresponds to the length of Li and successesi corresponds to the number of successes of Li .
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AppendixB
Sensitivity analysis on the stopping
criterion

To better evaluate the impact of the stopping criterion and its HPs α and β, the following
section discusses additional experiments using the same configuration as S-SLAY-MNIST.
These experiments were conducted over 15 hours with 16 different configurations; α ∈
{1,5,10,20,40} and β ∈ [0.05,0.1,0.2,0.4]. Understanding how these new HPs work may help
improve the approach and avoid misclassification of silent networks.

In figure B.1, one can see that when the minimum required number of spike per data
points (α) is high, and the proportion β is low, the number of sampled silent networks
increases, impacting the budget significantly. This can be explained by the fact that enforcing
high spiking activity without allowing a certain tolerance causes many networks to fail to
meet the requirement within a few training steps. Indeed, when β is low, only a few samples
have to emits less than α spikes to make the SNN stop. When β increases with high α = 20,
we can notice a decrease in the proportion of silent networks. Conversely, when α is high
and β is low, the number of silent networks decreases, along with their impact on the budget.
So mid-values appears to be a reasonable tradeoff between the number of detected silent
networks and proportion of the budget dedicated to them.

Further studies with neuromorphic datasets could help better understand their behaviors.
A reasonable assumption could be that when high spiking activity is required, a higher
tolerance for the proportion of non-spiking samples is necessary. This would allow the
gradient to have sufficient budget to meet the requirement before being interrupted by early
stopping. However, higher tolerance can also mean a higher budget spent on silent networks.
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Figure B.1: Sensitivity analysis of S-SLAY-MNIST. Upper left: number of silent SNNs accord-
ing to α and β. Upper right: number of evaluated SNNs according to α and β. Lower left:
proportion of sampled silent networks according to α and β. Lower right: proportion of the
budget spent on computing silent networks according to α and β



AppendixC
Analysis of the asynchronous
parallelization.

In this appendix we analyse how the asynchrnous parallelization of SCBO better balance the
workload. In the figures C.1 to C.4, we illustrate the load balancing among GPUs using a
Gantt chart. We accumulated the toal working and iddle time of the processes. We compare
asynchronous SCBO with the synchrnous TuRBO, which have the same performances as
discussed in chapter 5. Because of the synchronization barrier in synchronous TuRBO, we
clearly see that during the 100 hours experiments, all the GPUs are iddle for about 10 hours.
Thus, about 150 GPUs hours are lost by doing nothing. Because of the high stochasticity
between evaluations of HPs combinations processes have to wait for each other before
computing the next iteration of TuRBO. While, considering asynchrnous parallelization of
SCBO, the idle time of processes is almost equal to 0 hour.
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(a) S-SLAY-MNIST

(b) T-SLAY-MNIST

Figure C.1: Gantt chart for experiments on MNIST using LAVA-DL
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(a) S-SuGr-MNIST

(b) T-SuGr-MNIST

Figure C.2: Gantt chart for experiments on MNIST using SpikingJelly
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(a) S-SLAY-DVS

(b) T-SLAY-DVS

Figure C.3: Gantt chart for experiments on DvsGesture using LAVA-DL
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(a) S-SuGr-DVS

(b) T-SuGr-DVS

Figure C.4: Gantt chart for experiments on DvsGesture using SpikingJelly
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AppendixD
Search spaces of chapter 5

In this appendix we present all search spacesΩ of all experiments from chatper 5, the bounds
of the HPs and their optimized values.
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Table D.1: HPs of preliminary experiments

Group HPs Bounds

G1

V (exc)th [−50,−0.05]

t(exc)ref ~0,20�

θ(exc)⊕ [0.001,0.5]

τ(exc)θ [1e6,1e7]

τ(exc)leak [10,200]

V (inh)th [−40,−0.1]

t(inh)ref ~0,20�

τ(inh)leak [1,20]

G2
λpre [1e−4,1e−2]

λpost [1e−4,1e−2]

G3 n(exc) ~30,2000�

G4
T ~10,250�

Encoder {Poisson,TTFS}
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Table D.2: S-STDP-MNIST

HP Bounds Optimized Sampler Type Group

λpost [1e−4,1e−2] 0.00084 R-LogUniform Continuous G2

λpre [1e−4,1e−2] 0.0088 LogUniform Continous G2

n(exc) ~20,2000� 797 Uniform Discrete G3

Decoder
{Average,

Max, 2-gram,
3-gram}

Max Random choice Categorical G4

Epochs ~1,3� 2 Uniform Discrete G5

Norm [78.4,784] 123.38 Uniform Continuous G5

Excitatory layer

V (exc)th [−59,0] -57.6 Uniform Continuous G1

V (exc)rest [−70,−60] -60.8 Uniform Continuous G1

τ(exc)leak [5,5000] 4166.8 LogUniform Continuous G1

t(exc)ref ~0,20� 6 Uniform Discrete G1

θ⊕ [0.001,0.5] 0.044 LogUniform Continuous G1

τθ [1e6,1e7] 2041798 LogUniform Continuous G1

f (exc) [0.5,500] 356.9 LogUniform Continuous G3

Inhibitory layer

V (inh)th [−40,0] -22.8 Uniform Continuous G1

V (inh)rest [−60,−45] -51 Uniform Continuous G1

τ(inh)leak [5,5000] 1516.15 LogUniform Continuous G1

t(inh)ref ~0,20� 19 Uniform Discrete G1

f (inh) [0.5,500] 433.6 LogUniform Continuous G3

Fixed

V (exc)reset -60 Continuous G1

V (inh)reset -45 Continuous G1

τpre 20 Continuous G2

τpost 20 Continuous G2

Early stopping

HP Excitatory Inhibitory Type Group

α 5 1 Discrete G5

β 0.1 0.1 Continuous G5



234 APPENDIX D. Search spaces of chapter 5

Table D.3: S-STDP-DVS

HP Bounds Optimized Sampler Type Group

λpost [1e−4,1e−2] 0.00491 R-LogUniform Continuous G2

λpre [1e−4,1e−2] 0.00977 LogUniform Continous G2

n(exc) ~20,1000� 344 Uniform Discrete G3

Decoder
{Average,

Max, 2-gram,
SVM, Log}

Max Random choice Categorical G4

Epochs ~1,3� 1 Uniform Discrete G5

Norm [3276.8,32768] 17522.71 Uniform Continuous G5

Reset
interval

~5,100� 20 Uniform Discrete G5

Excitatory layer

V (exc)th [−59,60] -27.4 Uniform Continuous G1

V (exc)rest [−140,−60] -111.0 Uniform Continuous G1

τ(exc)leak [5,5000] 2475.24 LogUniform Continuous G1

t(exc)ref ~0,40� 11 Uniform Discrete G1

θ⊕ [0.1,1] 0.972 LogUniform Continuous G1

τθ [1e6,1e7] 16783940 LogUniform Continuous G1

f (exc) [1,500] 22.32 Uniform Continuous G3

Inhibitory layer

V (inh)th [−40,40] 2.81 Uniform Continuous G1

V (inh)rest [−120,−45] -75.85 Uniform Continuous G1

τ(inh)leak [5,5000] 761.38 LogUniform Continuous G1

t(inh)ref ~0,40� 36 Uniform Discrete G1

f (inh) [1,500] 66.05 Uniform Continuous G3

Fixed

V (exc)reset -60 Continuous G1

V (inh)reset -45 Continuous G1

τpre 20 Continuous G2

τpost 20 Continuous G2

Early stopping

HP Excitatory Inhibitory Type Group

α 1 1 Discrete G5

β 0.1 0.3 Continuous G5
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Table D.4: S-SLAY-MNIST

HP Bounds Optimized Sampler Type Group

Vth [0.4,4] 1.727 Uniform Continuous G1

τleak [0.01,0.2] 0.0674 LogUniform Continuous G1

θ⊕ [0.001,0.25] 0.089 LogUniform Continuous G1

τθ [0.01,0.5] 0.327 LogUniform Continuous G1

τref [0.1,0.99] 0.388 R-LogUniform Continuous G1

τu [0.1,0.99] 0.7100 Uniform Continuous G1

λ∇ [1e−3,1e−1] 0.0151 LogUniform Continuous G2

β∇1 [0.8,1.0] 0.86 LogUniform Continuous G2

β∇2 [0.8,1.0] 0.91 R-LogUniform Continuous G2

G∇ [0.1,1] 0.52 LogUniform Continuous G2

τ∇ [0.005,1] 0.0058 LogUniform Continuous G2

νT [0.1,0.9] 0.47 LogUniform Continuous G4

νF [0.01,0.09] 0.059 LogUniform Continuous G4

Epochs ~1,40� 22 Uniform Discrete G5

Batch ~20,200� 114 R-LogUniform Discrete G5

Dropout [0.01,0.90] 0.356 LogUniform Continuous G5

1st Convolutional layer

F(1)ilter ~1,128� 26 Uniform Discrete G3

k(1) ~4,12� 5 Uniform Discrete G3

2nd Convolutional layer

F(2)ilter ~1,128� 40 Uniform Discrete G3

k(2) ~4,12� 4 Uniform Discrete G3

Fixed

Padding 0 Discrete G3

Stride 1 Discrete G3

Dilation 1 Discrete G3

Pooling See [247] G3

Early stopping

HP Outputs Type Group

α 3 Discrete G5

β 0.05 Continuous G5
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Table D.5: S-SLAY-DVS

HP Bounds Optimized Sampler Type Group

Vth [0.1,1] 0.58 Uniform Continuous G1

τleak [0.01,0.9] 0.8571 LogUniform Continuous G1

θ⊕ [0.001,0.4] 0.3163 LogUniform Continuous G1

τθ [0.01,0.5] 0.3163 LogUniform Continuous G1

τref [0.1,0.99] 0.1397 R-LogUniform Continuous G1

τu [0.1,0.99] 0.5621 Uniform Continuous G1

λ∇ [1e−3,1e−1] 0.0769 LogUniform Continuous G2

β∇1 [0.8,1.0] 0.8077 LogUniform Continuous G2

β∇2 [0.8,1.0] 0.8292 R-LogUniform Continuous G2

G∇ [0.1,1] 0.7449 LogUniform Continuous G2

τ∇ [0.005,1] 0.4073 LogUniform Continuous G2

νT [0.1,0.9] 0.46 LogUniform Continuous G4

νF [0.01,0.09] 0.085 LogUniform Continuous G4

Epochs ~1,15� 14 Uniform Discrete G5

Batch ~1,20� 6 R-LogUniform Discrete G5

Dropout [0.01,0.90] 0.0198 LogUniform Continuous G5

1st Convolutional layer

F(1)ilter ~1,36� 5 Uniform Discrete G3

k(1) ~4,48� 21 Uniform Discrete G3

2nd Convolutional layer

F(2)ilter ~1,128� 13 Uniform Discrete G3

k(2) ~4,48� 19 Uniform Discrete G3

Dense layer

n(3) ~64,2048� 446 Uniform Discrete G3

Fixed

Padding 0 Discrete G3

Stride 1 Discrete G3

Dilation 1 Discrete G3

Pooling See [247] G3

Early stopping

HP Outputs Type Group

α 1 Discrete G5

β 0.3 Continuous G5
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Table D.6: S-SuGr-MNIST

HP Bounds Optimized Sampler Type Group

Vth [0.1,4] 1.0855 Uniform Continuous G1

τinit [1,40] 16.91 LogUniform Continuous G1

θ⊕ [0.001,0.25] 0.1419 LogUniform Continuous G1

λ∇ [1e−3,1e−1] 0.0178 LogUniform Continuous G2

β∇1 [0.8,1.0] 0.8025 LogUniform Continuous G2

β∇2 [0.8,1.0] 0.9202 R-LogUniform Continuous G2

Epochs ~1,40� 27 Uniform Discrete G5

Batch ~20,200� 127 R-LogUniform Discrete G5

Dropout [0.01,0.90] 0.427 LogUniform Continuous G5

1st Convolutional layer

F(1)ilter ~1,128� 53 Uniform Discrete G3

k(1) ~4,12� 4 Uniform Discrete G3

2nd Convolutional layer

F(2)ilter ~1,128� 100 Uniform Discrete G3

k(2) ~4,12� 8 Uniform Discrete G3

Fixed

Padding 0 Discrete G3

Stride 1 Discrete G3

Dilation 1 Discrete G3

Pooling See [247] G3

Early stopping

HP Outputs Type Group

α 3 Discrete G5

β 0.05 Continuous G5
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Table D.7: S-SuGr-DVS

HP Bounds Optimized Sampler Type Group

Vth [0.1,4] 0.8223 Uniform Continuous G1

τinit [1,40] 28.11 LogUniform Continuous G1

θ⊕ [0.001,0.25] 0.1419 LogUniform Continuous G1

λ∇ [1e−3,1e−1] 0.0376 LogUniform Continuous G2

β∇1 [0.8,1.0] 0.8510 LogUniform Continuous G2

β∇2 [0.8,1.0] 0.9170 R-LogUniform Continuous G2

Epochs ~1,15� 14 Uniform Discrete G5

Batch ~1,20� 3 R-LogUniform Discrete G5

Dropout [0.01,0.90] 0.389 LogUniform Continuous G5

1st Convolutional layer

F(1)ilter ~1,36� 12 Uniform Discrete G3

k(1) ~4,48� 4 Uniform Discrete G3

2nd Convolutional layer

F(2)ilter ~1,36� 17 Uniform Discrete G3

k(2) ~4,48� 24 Uniform Discrete G3

Dense layer

n(3) ~64,2048� 697 Uniform Discrete G3

Fixed

Padding 0 Discrete G3

Stride 1 Discrete G3

Dilation 1 Discrete G3

Pooling See [247] G3

Early stopping

HP Outputs Type Group

α 1 Discrete G5

β 0.3 Continuous G5



AppendixE
Search spaces of chapter 6

In this appendix we present all search spaces Ω of all experiments from chapter 6. Here,
HPs with a superscript indicate that it can be applied to the layer. And convolution layer is
denoted by ci , a average pooling layer by ai , a linear layer by i, and the ouput layer by o.
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Table E.1: 22-C-SLAY-MNIST,46-C-SLAY-MNIST,22-C-SLAY-NMNIST,46-C-SLAY-NMNIST, 46-
R-SLAY-MNIST,46-R-SLAY-NMNIST

HP Bounds Sampler Type Group

πtrain [0.1,1.0] R-LogUniform Continuous G5

Epochs ~1,20� Uniform Discrete G5

Batch ~30,300� R-LogUniform Discrete G5

T ~10,50� LogUniform Discrete G4

F(1,2)ilter ~1,48� Uniform Discrete G3

k(c1,c2) ~4,12� Uniform Discrete G3

νT [0.1,0.9] LogUniform Continuous G2

νF [0.01,0.09] LogUniform Continuous G2

τ∇ [0.005,1] LogUniform Continuous G2

G∇ [0.1,1] LogUniform Continuous G2

λ∇ [0.001,0.1] LogUniform Continuous G2

β∇ [0.8,0.999] R-LogUniform Continuous G2

γ∇ [0.9,1.0] R-LogUniform Continuous G2

V (c1,c2,a1,a2,a3,o)th [0.5,8] R-LogUniform Continuous G1

τ(1,2,3,o)θ [0.01,0.5] LogUniform Continuous G1

θ(c1,c2,a1,a2,a3,o)⊕ [0.05,0.4] R-LogUniform Continuous G1

τ(c1,c2,a1,a2,a3,o)u [0.05,0.5] LogUniform Continuous G1

τ(c1,c2,a1,a2,a3,o)leak [0.01,0.2] LogUniform Continuous G1

τ(c1,c2,a1,a2,a3,o)ref [0.05,0.5] LogUniform Continuous G1

Dropout(a1,a2,a3) [0.01,0.90] LogUniform Continuous G5

Early stopping

HP Excitatory Inhibitory Type Group

α 5 1 Discrete G5

β 0.03 0.3 Continuous G5
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Table E.2: 21-C-SLAY-SHD,42-C-SLAY-SHD and 42-R-SLAY-SHD

HP Bounds Sampler Type Group

πtrain [0.2,1.0] R-LogUniform Continuous G5

Epochs ~1,35� Uniform Discrete G5

Batch ~20,300� R-LogUniform Discrete G5

T ~200,400� LogUniform Discrete G4

n(1,2,3) [100,1000] Uniform Discrete G3

νT [0.1,0.9] LogUniform Continuous G2

νF [0.01,0.09] LogUniform Continuous G2

τ∇ [0.005,1] LogUniform Continuous G2

G∇ [0.1,1] LogUniform Continuous G2

λ∇ [0.001,0.1] LogUniform Continuous G2

β∇1 [0.8,0.999] LogUniform Continuous G2

β∇2 [0.8,0.999] R-LogUniform Continuous G2

V (1,2,3,o)th [0.5,10] R-LogUniform Continuous G1

τ(1,2,3,o)θ [0.01,0.5] LogUniform Continuous G1

θ(1,2,3,o)⊕ [0.05,0.5] R-LogUniform Continuous G1

τ(1,2,3,o)u [0.05,0.5] LogUniform Continuous G1

τ(1,2,3,o)leak [0.01,0.2] LogUniform Continuous G1

τ(1,2,3,o)ref [0.05,0.5] LogUniform Continuous G1

Dropout(a1,a2,a3,o) [0.01,0.90] LogUniform Continuous G5

Early stopping

HP Excitatory Inhibitory Type Group

α 10 1 Discrete G5

β 0.1 0.3 Continuous G5
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Table E.3: 15-C-SuGr-MNIST,46-C-SuGr-MNIST,15-C-SuGr-NMNIST,21-C-SuGr-NMNIST,21-
R-SuGr-MNIST and 21-R-SuGr-NMNIST

HP Bounds Sampler Type Group

πtrain [0.1,1.0] R-LogUniform Continuous G5

Epochs ~1,20� Uniform Discrete G5

Batch ~20,200� R-LogUniform Discrete G5

T ~10,50� LogUniform Discrete G4

F(1,2)ilter ~1,128� Uniform Discrete G3

k(c1,c2) ~4,12� Uniform Discrete G3

λ∇ [0.001,0.1] LogUniform Continuous G2

α(1,2,o)∇ [2,10] Uniform Continuous G2

β∇ [0.8,0.999] R-LogUniform Continuous G2

γ∇ [0.9,1.0] R-LogUniform Continuous G2

V (1,2,o)th [0.1,4] LogUniform Continuous G1

τ(1,2,o)init [1,40] LogUniform Continuous G1

Dropout [0.01,0.90] LogUniform Continuous G5

Early stopping

HP Excitatory Inhibitory Type Group

α 5 1 Discrete G5

β 0.03 0.3 Continuous G5
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Table E.4: 15-C-SuGr-SHD,21-C-SuGr-SHD and 21-R-SuGr-SHD

HP Bounds Sampler Type Group

πtrain [0.15,1.0] R-LogUniform Continuous G5

Epochs ~1,35� Uniform Discrete G5

Batch ~20,300� R-LogUniform Discrete G5

T ~200,400� LogUniform Discrete G4

n(1,2,3) ~50,1000� LogUniform Discrete G3

λ∇ [0.001,0.1] LogUniform Continuous G2

α(1,2,3,o)∇ [2,10] Uniform Continuous G2

β1∇ [0.8,0.999] LogUniform Continuous G2

β2∇ [0.8,0.999] R-LogUniform Continuous G2

V (1,2,3,o)th [0.1,2] R-LogUniform Continuous G1

τ(1,2,3,o)init [1,40] LogUniform Continuous G1

Dropout(1,2,3) [0.01,0.90] LogUniform Continuous G5

Early stopping

HP Excitatory Inhibitory Type Group

α 1 1 Discrete G5

β 0.2 0.3 Continuous G5
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Table E.5: Optimized HPs for 22-C-SLAY-MNIST and 22-C-SLAY-NMNIST.

HP 22-C-SLAY-MNIST 22-C-SLAY-NMNIST

πtrain 0.9980 0.9716

T 47 35

Epochs 5 17

Batch 31 27

νT 0.7945 0.8114

νF 0.0656 0.0853

F(1)ilter 34 20

F(2)ilter 19 32

k(c1) 4 4

k(c2) 5 4

λ∇ 0.0335 0.0172

β∇ 0.9156 0.9333

γ∇ 0.9408 0.9468

τ∇ 0.0314 0.2552

G∇ 0.5481 0.6122

Vth 6.0349 1.6787

θ⊕ 0.1616 0.3283

τu 0.1446 0.3081

τleak 0.0791 0.01288

τθ 0.1057 0.2304

τref 0.3211 0.1328

Dropout 0.1712 0.1378
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Table E.6: Optimized HPs for 46-C-SLAY-MNIST, 46-C-SLAY-NMNIST, 46-R-SLAY-MNIST and
46-R-SLAY-NMNIST

HP 46-C-SLAY-MNIST 46-C-SLAY-NMNIST 46-R-SLAY-MNIST 46-R-SLAY-NMNIST

πtrain 0.8129 0.9974 0.8327 0.9901

T 45 36 48 39

Epochs 19 8 15 15

Batch 207 120 290 32

νT 0.8546 0.7561 0.5110 0.5526

νF 0.0227 0.0101 0.0502 0.0163

F(1)ilter 32 40 28 34

F(2)ilter 44 34 45 47

k(c1) 4 4 7 4

k(c2) 5 5 7 9

λ∇ 0.0507 0.0569 0.0481 0.0043

β∇ 0.8853 0.8333 0.9193 0.9658

γ∇ 0.9829 0.9869 0.9745 0.9926

τ∇ 0.0085 0.0065 0.5646 0.3314

G∇ 0.5937 0.3181 0.7996 0.1992

V (c1)th 5.7737 0.6141 1.0663 0.6598

θ(c1)⊕ 0.3850 0.1612 0.0804 0.1446

τ(c1)u 0.1165 0.1205 0.2442 0.0682

τ(c1)leak 0.1907 0.0144 0.0444 0.0354

τ(c1)θ 0.2594 0.0101 0.3344 0.3510

τ(c1)ref 0.3564 0.1593 0.0638 0.1964

Dropout(c1) 0.0147 0.0276 0.4312 0.2249

V (c2)th 4.0787 5.0541 6.9742 3.0413

θ(c2)⊕ 0.3219 0.2588 0.0683 0.1438

τ(c2)u 0.4200 0.1635 0.0593 0.1569

τ(c2)leak 0.1726 0.1449 0.0239 0.1838

τ(c2)θ 0.3021 0.1738 0.3776 0.3900

τ(c2)ref 0.1156 0.1681 0.2708 0.1758

Dropout(c2) 0.5381 0.0276 0.7616 0.2092

V (a1)th 0.9959 7.8059 2.5748 4.3888

θ(a1)⊕ 0.3350 0.3625 0.1796 0.3996

τ(a1)u 0.4860 0.3943 0.3185 0.3978

τ(a1)leak 0.0830 0.0392 0.1968 0.1194

τ(a1)θ 0.3243 0.1786 0.2354 0.2558

τ(a1)ref 0.4394 0.4677 0.1907 0.4713

V (a2)th 3.0561 3.1575 4.4542 2.1897

θ(a2)⊕ 0.3304 0.3676 0.2252 0.3095

τ(a2)u 0.1401 0.1724 0.4450 0.1319

τ(a2)leak 0.0770 0.0796 0.1225 0.1673

τ(a2)ref 0.1239 0.0223 0.3727 0.3043

τ(a2)θ 0.0583 0.1806 0.2357 0.1477

V (o)th 7.4354 4.3996 3.1200 6.7648

θ(o)⊕ 0.2106 0.3537 0.2244 0.1225

τ(o)u 0.2735 0.4544 0.0853 0.1356

τ(o)leak 0.1510 0.1120 0.1264 0.1721

τ(o)θ 0.2587 0.2669 0.3257 0.3871

τ(o)ref 0.3480 0.2498 0.1404 0.3081
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Table E.7: Optimized HPs for 21-C-SLAY-SHD.

HP 21-C-SLAY-SHD

πtrain 0.99239

T 218

Epochs 23

Batch 23

νT 0.83802

νF 0.08633

n(1) 812

n(2) 916

n(3) 756

λ∇ 0.03604

β∇1 0.92042

β∇2 0.97725

τ∇ 0.20942

G∇ 0.59046

Vth 1.84118

θ⊕ 0.14305

τu 0.19730

τleak 0.19234

τθ 0.05070

τref 0.07131

Dropout 0.05741
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Table E.8: Optimized HPs for 42-C-SLAY-SHD and 42-R-SLAY-SHD.

HP 42-C-SLAY-SHD 42-R-SLAY-SHD

πtrain 0.9879 0.5883

T 373 297

Epochs 33 30

Batch 28 50

νT 0.8237 0.3272

νF 0.0188 0.0265

n(1) 481 511

n(2) 400 865

n(3) 500 523

λ∇ 0.02592 0.0859

β∇1 0.86872 0.8953

β∇2 0.94445 0.9403

τ∇ 0.01319 0.1442

G∇ 0.94366 0.9937

V (1)th 2.48522 3.0269

θ(1)⊕ 0.37921 0.3187

τ(1)u 0.36796 0.1685

τ(1)leak 0.14137 0.1445

τ(1)θ 0.38948 0.1554

τ(1)ref 0.08658 0.3111

Dropout(1) 0.02790 0.3502

V (2)th 5.85936 7.9735

θ(2)⊕ 0.39584 0.2537

τ(2)u 0.28018 0.4443

τ(2)leak 0.19229 0.1637

τ(2)θ 0.21494 0.0721

τ(2)ref 0.44235 0.2434

Dropout(2) 0.15651 0.0130

V (3)th 4.34834 3.1136

θ(3)⊕ 0.25340 0.0812

τ(3)u 0.45007 0.1472

τ(3)leak 0.08682 0.1552

τ(3)θ 0.27034 0.2326

τ(3)ref 0.49979 0.4342

Dropout(3) 0.16562 0.6449

V (o)th 7.07539 5.3926

θ(o)⊕ 0.12721 0.1460

τ(o)u 0.41306 0.3875

τ(o)leak 0.03961 0.1626

τ(o)θ 0.39940 0.1979

τ(o)ref 0.12302 0.0860
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Table E.9: Optimized HPs for 15-C-SuGr-MNIST and 15-C-SuGr-NMNIST.

HP 15-C-SuGr-MNIST 15-C-SuGr-NMNIST

πtrain 0.9606 0.9707

T 14 29

Epochs 12 7

Batch 20 24

F(1)ilter 43 28

F(2)ilter 30 28

k(c1) 7 4

k(c2) 5 11

λ∇ 0.0359 0.0825

β∇ 0.9915 0.9836

γ∇ 0.9700 0.9873

Vth 0.2770 0.4731

τinit 8.4894 3.6402

Dropout 0.4552 0.0301

α∇ 6.6500 9.6322
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Table E.10: Optimized HPs for 21-C-SuGr-MNIST, 21-C-SuGr-NMNIST, 21-R-SuGr-MNIST
and 21-R-SuGr-NMNIST

HP 21-C-SuGr-MNIST 21-C-SuGr-NMNIST 21-R-SuGr-MNIST 21-R-SuGr-NMNIST

πtrain 0.9356066393 0.8861 0.5495 0.8155

T 33 16 25 31

Epochs 16 7 17 14

Batch 24 23 20 84

F(1)ilter 44 41 36 37

F(2)ilter 47 31 26 26

k(c1) 5 4 6 7

k(c2) 6 7 5 7

λ∇ 0.0817 0.0801 0.0927 0.0597

β∇ 0.9887 0.9822 0.9421 0.9836

γ∇ 0.9881 0.9252 0.9114 0.9810

V (1)th 0.4475 0.9799 0.7130 2.8845

τ(1)init 23.7849 5.0497 7.4296 1.8623

α(1)∇ 7.5882 8.3793 8.5698 6.8077

V (2)th 1.0771 0.7824 1.4678 0.7025

τ(2)init 2.2235 3.6341 16.4193 28.1352

α(2)∇ 8.6832 5.6028 7.5396 4.7738

V (o)th 0.6145 0.1828 0.1519 0.5309

τ(o)init 15.0652 3.8413 16.0378 6.7250

α(o)∇ 5.3247 5.8989 5.1481 4.7587

Dropout 0.4762 0.2472 0.0842 0.7477
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Table E.11: Optimized HPs for 13-C-SuGr-SHD.

HP 13-C-SuGr-SHD

πtrain 0.9603

T 392

Epochs 30

Batch 110

λ∇ 0.0844

β∇1 0.8120

β∇2 0.9879

f (1) 671

f (2) 708

f (3) 834

Vth 0.9289

τinit 36.0365

Dropout 0.0681
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Table E.12: Optimized HPs for 21-C-SuGr-SHD and 21-R-SuGr-SHD.

HP 21-C-SuGr-SHD 21-R-SuGr-SHD

πtrain 0.9998 0.9853

T 316 379

Epochs 24 11

Batch 25 24

λ∇ 0.0548 0.0197

β∇1 0.8211 0.9182

β∇2 0.9408 0.9114

f (1) 670 843

f (2) 443 410

f (3) 625 145

V (1)th 0.7758 1.1965

τ(1)init 22.5689 4.1225

Dropout(1) 0.0255 0.2998

V (2)th 1.1974 0.9027

τ(2)init 28.6416 15.6550

Dropout(2) 0.1092 0.1864

V (3)th 0.7724 1.7210

τ(3)init 32.4351 5.9083

Dropout(3) 0.5234 0.0763

V (o)th 1.1812 1.9450

τ(o)init 16.8020 32.7867



252 APPENDIX E. Search spaces of chapter 6



AppendixF
Description of all hyperparameters

In this appendix we describe all optimized hyperparameters.
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Table F.1: Hyperparameter descriptions

HP Description Group

Vth Neuron threshold. G1

Vrest Neuron resting potential. G1

Vreset Neuron reset potential. G1

tref Refractory period in time steps. G1

θ⊕
Added value to the threshold, for threshold adaptation

mechanism.
G1

τleak Neuron leakage time constant. G1

τinit Initial Neuron leakage time constant for PLIF. G1

τθ
Threshold adaptation time constant. Makes the threshold

decrease through time.
G1

τref Refractory period time constant for SLAYER. G1

τu Time constant for current decay. G1

(τpre,τpost) Traces time constant of STDP. G2

(λpre,λpost) Learning rate of pre- and post- synaptic spikes in STDP. G2

λ∇ Learning rate of gradient descent. G2

(β∇1,β∇2) Momentum of ADAM. G2

τ∇ Relaxation of the spike function gradient in SLAYER. G2

G∇
Controls the gradient flow across layers, and handles vanishing

or exploding gradient in SLAYER.
G2

α∇ Quality of the gradient approximation in SpikingJelly. G2

n(i) Number of neurons for layer i G3

F(i)ilter Number of filters in a convolution layer i. G3

k(i) Size of filters in a convolution layer i. G3

Padding Padding HP for convolution layer i. G3

Stride Stride HP for convolution layer i. G3

Dilation Dilation HP for convolution layer i. G3

νT Output spiking rate for true neurons in SLAYER G4

νF Output spiking rate for false neurons in SLAYER G4

Decoder Algorithm used to decode outputs of Hebbian-trained SNNs. G4

T Encoding time window. G4

Epochs Number of epochs. G5

Batch Batch size. G5

Dropout
Probability of removing neurons and their connections during

training.
G5

Norm.
Weight normalization. Value at which the sum of neuron weights

must be equal.
G5

Reset interval Time between two resets of neurons to their initial state. G5

πtrain
Proportion of the training dataset used in multi-fidelity

optimization.
G5

α Number of minimum output spikes for early stopping. G5

β Proportion of non-spiking outputs for early stopping. G5
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Computer programs

Listing G.1: FDA with Zellij
1 from zellij.core import (

2 ArrayVar,

3 FloatVar,

4 Loss,

5 Experiment,

6 Threshold,

7 Minimizer,

8 IThreshold,

9 )

10 from zellij.strategies.fractals import ILS, DBA

11 from zellij.strategies.fractals.sampling import PHS

12 from zellij.strategies.tools import Hypersphere, DistanceToTheBest ,

MoveUp

13 from zellij.utils.converters import FloatMinMax, ArrayDefaultC

14 from zellij.utils.benchmarks import Rosenbrock

15
16
17 dim = 5 # Dimensionality of the problem

18 fun = Rosenbrock() # Raw objective function

19
20 # Wrap the objective function within the Loss object

21 # to extand its funcitonnalities

22 lf = Loss(

23 objective=[Minimizer("obj")], # Define the objective to

optimize

24 )(fun)

25
26 # Define the decision variables as an Array of variables

27 # Use a converter as we are in [0,1]

28 values = ArrayVar(converter=ArrayDefaultC())

29 for i in range(dim): # Define variables for all dimensions

30 values.append(

31 FloatVar(

32 f"float_{i+1}",

255



256 APPENDIX G. Computer programs

33 fun.lower,

34 fun.upper,

35 converter=FloatMinMax(),

36 )

37 ) # Use a converter for each FloatVar to redefine the range in

[0,1]

38
39 # Build the search space using previously defined variables

40 # With save_points=True

41 # The search space is a fractal of type Hyperpshere

42 # A fractal will "remember" computed points within it

43 sp = Hypersphere(values, save_points=True)

44
45 # Define the exploration as the Potential optimal Hypersphere

Search

46 explor = PHS(sp, inflation=1.75)

47 # Define the exploitation as the Intensive Local Search

48 exploi = ILS(sp, inflation=1.75)

49
50 # Define the stopping criterion for PHS which computes only 3

points at each round

51 # if the attribute of PHS "current_calls" > 3, then stop sampling

with PHS

52 stop1 = Threshold(

53 None, "current_calls", 3

54 ) # set target to None, DBA will automatically asign it.

55
56 # Define the stopping criterion for the ILS

57 # if the attribute of ILS "step" < 1e-16, then stop sampling with

ILS

58 stop2 = IThreshold(exploi, "step", 1e-16)

59
60 # Define the stopping criterion of the experiments

61 # if the number of calls to the loss function > dim*10^4 then stop

62 stop3 = Threshold(lf, "calls", dim * 10**4)

63
64 # Define the tree search component as MoveUp with a maximum depth

of 5

65 ts = MoveUp(sp, 5)

66
67 # Combine all component into a DBA algorithm

68 dba = DBA(

69 sp,

70 MoveUp(sp, 5),

71 (explor, stop1),

72 (exploi, stop2),

73 scoring=DistanceToTheBest(lf), # Define the scoring component

74 )

75
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76 # Define the experiments by combining the optimizer, loss function,

stopping

77 exp = Experiment(

78 dba, lf, stop3, verbose=True, save="testfda"

79 ) # save results into a folder

80 exp.run()

81 print(f"Best�solution:�f({lf.best_point})={lf.best_score}")
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Listing G.2: SOO with Zellij
1 from zellij.core import (

2 ArrayVar,

3 FloatVar,

4 Loss,

5 Experiment,

6 Threshold,

7 Minimizer,

8 )

9 from zellij.strategies.fractals import DBASampling, CenterSOO

10 from zellij.strategies.tools import Section, Min, SooTreeSearch

11 from zellij.utils.converters import FloatMinMax, ArrayDefaultC

12 from zellij.utils.benchmarks import Rosenbrock

13
14
15 dim = 5

16 fun = Rosenbrock()

17
18 lf = Loss(objective=[Minimizer("obj")])(fun)

19
20 values = ArrayVar(converter=ArrayDefaultC())

21 for i in range(dim):

22 values.append(

23 FloatVar(

24 f"float_{i+1}",

25 fun.lower,

26 fun.upper,

27 converter=FloatMinMax(),

28 )

29 )

30
31 # The search space is a fractal of type Section

32 # here we are using a 3-section

33 sp = Section(values, section=3)

34
35 # The explore component samples the center of the fractal

36 explor = CenterSOO(sp)

37 # Exploitation is optional

38
39 # Experiment stopping criterion

40 stop2 = Threshold(lf, "calls", dim * 10**4)

41
42 # Use DBASampling, a variation of DBA

43 # Allows to sample in one shot all points from

44 # one iteration of explor applied to all selected fractals

45 dba = DBASampling(sp, SooTreeSearch(sp, float("inf")), explor,

scoring=Min())

46 exp = Experiment(dba, lf, stop2, save="soo")

47 exp.run()

48 print(f"Best�solution:f({lf.best_point})={lf.best_score}>={fun.
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optimum*dim}")
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Listing G.3: NMSO with Zellij
1 from zellij.core import (

2 ArrayVar,

3 FloatVar,

4 Loss,

5 Experiment,

6 Threshold,

7 Minimizer,

8 BooleanStop,

9 )

10 from zellij.strategies.fractals import DBA, CenterSOO

11 from zellij.strategies.tools import NMSOSection, Min,

NMSOTreeSearch

12 from zellij.utils.converters import FloatMinMax, ArrayDefaultC

13 from zellij.utils.benchmarks import Rosenbrock

14
15
16 dim = 5

17 fun = Rosenbrock()

18
19 lf = Loss(objective=[Minimizer("obj")])(fun)

20
21 values = ArrayVar(converter=ArrayDefaultC())

22 for i in range(dim):

23 values.append(

24 FloatVar(

25 f"float_{i+1}",

26 fun.lower,

27 fun.upper,

28 converter=FloatMinMax(),

29 )

30 )

31
32 # The search space is a fractal of type Section

33 # here we are using a 3-section

34 sp = NMSOSection(values, section=3)

35
36 # The explore component samples the center of the fractal

37 explor = CenterSOO(sp)

38 # Stopping criterion of CenterSOO

39 # If it was already computed for a given fractal, then stop

40 # sampling this fractal

41 stop1 = BooleanStop(explor, "computed")

42
43 # Experiment stopping criterion

44 stop2 = Threshold(lf, "calls", dim * 10**4)

45
46 basket = sp.size

47 alpha = 1e-1 * sp.size

48 beta = alpha
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49
50 dba = DBA(

51 sp,

52 NMSOTreeSearch(sp, float("inf"), V=basket, alpha=alpha, beta=

beta),

53 (explor, stop1),

54 # Exploitation is optional

55 (None, None),

56 # Score a fractal with the minimum computed value

57 scoring=Min(),

58 )

59 exp = Experiment(dba, lf, stop2, verbose=False)

60 exp.run()

61 print(f"Best�solution:f({lf.best_point})={fun.optimum*dim-lf.
best_score}")
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Listing G.4: DIRECT with Zellij
1 from zellij.core import (

2 ArrayVar,

3 FloatVar,

4 Loss,

5 Experiment,

6 Threshold,

7 Minimizer,

8 BooleanStop,

9 )

10 from zellij.strategies.fractals import DBADirect, DirectSampling

11 from zellij.strategies.tools import Direct, Nothing,

PotentiallyOptimalRectangle , Sigma2

12 from zellij.utils.converters import FloatMinMax, ArrayDefaultC

13 from zellij.utils.benchmarks import Rosenbrock

14
15 dim = 5

16 fun = Rosenbrock()

17
18 lf = Loss(objective=[Minimizer("obj")])(fun)

19
20 values = ArrayVar(converter=ArrayDefaultC())

21 for i in range(dim):

22 values.append(

23 FloatVar(

24 f"float_{i+1}",

25 fun.lower,

26 fun.upper,

27 converter=FloatMinMax(),

28 )

29 )

30
31 # measurement defines how to measure the size

32 # of a Direct fractal

33 sp = Direct(values, measurement=Sigma2())

34
35 explor = DirectSampling(sp)

36 stop1 = BooleanStop(

37 explor, "computed"

38 ) # set target to None, DBA will automatically asign it.

39
40 stop2 = Threshold(lf, "calls", 1000)

41
42 # Use DBADirect algorithm, as in Direct the exploration

43 # is made BEFORE the partitioning

44 dba = DBADirect(

45 sp,

46 PotentiallyOptimalRectangle(sp, 600),

47 (explor, stop1),

48 (None, None),
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49 scoring=Nothing(),

50 )

51 exp = Experiment(dba, lf, stop2, save="test_direct")

52 exp.run()

53 print(f"Best�solution:f({lf.best_point})={lf.best_score}")
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Listing G.5: LHS with Zellij
1 from zellij.core import (

2 ArrayVar,

3 FloatVar,

4 Loss,

5 Experiment,

6 Threshold,

7 Minimizer,

8 )

9 from zellij.strategies.fractals.dba import DBALHS

10 from zellij.strategies.tools.scoring import UCB

11 from zellij.strategies.fractals.sampling import Center

12 from zellij.strategies.tools import LatinHypercubeUCB , SOOUCB

13 from zellij.utils.converters import FloatMinMax, ArrayDefaultC

14 from zellij.utils.benchmarks import Rosenbrock

15
16 import numpy as np

17
18 ########################################################

19 # No extra ILS HERE see provided code within chapter 4 #

20 # Here we describe the partition-exploration part #

21 ########################################################

22
23 dim = 5 # Dimensionality of the problem

24 fun = Rosenbrock() # Raw objective function

25
26 # Wrap the objective function within the Loss object

27 # to extand its funcitonnalities

28 lf = Loss(

29 objective=[Minimizer("obj")], # Define the objective to

optimize

30 )(fun)

31
32 # Define the decision variables as an Array of variables

33 # Use a converter as we are in [0,1]

34 values = ArrayVar(converter=ArrayDefaultC())

35 for i in range(dim): # Define variables for all dimensions

36 values.append(

37 FloatVar(

38 f"float_{i+1}",

39 fun.lower,

40 fun.upper,

41 converter=FloatMinMax(),

42 )

43 ) # Use a converter for each FloatVar to redefine the range in

[0,1]

44
45
46 eps = 1e-4

47 gsize = 20
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48 nu = 0.5

49
50 eps = 1 / eps

51 levels = int(np.ceil(np.log(eps) / np.log(gsize)))

52 if 1 / gsize**levels < eps:

53 levels -= 1

54
55 sp = LatinHypercubeUCB(values, levels, grid_size=gsize, strength=1)

56
57 sample = Center(sp)

58
59 dba = DBALHS(sp, SOOUCB(sp, levels, nu=nu), sample, scoring=UCB())

60
61 stop3 = Threshold(lf, "calls", dim * 10**4)

62 exp = Experiment(

63 dba, lf, stop3, verbose=True, save="testlhs"

64 ) # save results into a folder

65 exp.run()

66 print(f"Best�solution:�f({lf.best_point})={lf.best_score}")
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Parallel hyperparameter optimization of spiking neural networks

Abstract

Artificial Neural Networks (ANNs) are a machine learning technique that has become indispensable.
By learning from data, ANNs make it possible to solve certain complex cognitive tasks. Over the
last three decades, ANNs have seen numerous major advances. These advances have enabled the
development of image recognition, large language models, or text-to-image conversion. Undeniably,
ANNs have become an invaluable tool for many applications, and this growing interest led in 2020 to
the boom of generative models. However, several new barriers could put the brakes on the interest
in these models. The first brake is the end of Moore’s Law, due to the physical limits reached by
transistors. But also, while research has long focused on the predictive performances of ANNs, other
aspects have been neglected. These include energy efficiency, robustness, security, interpretability,
transparency and so ona. This is why we need to go beyond von Neumann architectures for reducing
the energy footprint, and the neuromorphic approach is a serious breakthrough candidate through
biomimicry of the human brain via Spiking Neural Networks (SNNs).
Unfortunately, SNNs are currently struggling to outperform conventional methods. As they are
more recent and therefore less studied, a better approach to their design could make it possible to
combine performance and low-energy cost. That is why the automatic design of SNNs is studied
within this thesis, with a focus on HyperParameter Optimization (HPO). The aim is to improve the
HPO algorithms and to better understand the behavior of SNNs regarding their hyperparameters.

Keywords: spiking neural networks, hyperparameter optimization, global optimization, parallel
computing, decomposition-based optimization, bayesian optimization

Optimisation parallèle des hyperparamètres des réseaux impulsionnels

Résumé

Les Réseaux de Neurones Artificiels (RNAs) sont une technique d’apprentissage machine devenue
aujourd’hui incontournable, permettant de résoudre certaines tâches cognitives complexes par un
apprentissage automatique. Depuis ces trois dernières décennies, les RNAs ont connu de nombreuses
avancées majeures. Ces avancées ont permis le développement de la reconnaissance d’images, des
modèles de langage géants ou de la conversion texte-image. Indéniablement, les RNAs sont devenus
un outil précieux ayant mené, depuis 2020, au boom des modèles générationnels. Cependant, certaines
barrières pourraient freiner l’intérêt pour ces modèles. Notamment, la fin de la loi de Moore, due
aux limites physiques atteintes par les transistors. Mais, tandis que la recherche s’est longtemps
concentrée sur les performances prédictives des RNAs, d’autres aspects ont été négligés. C’est le cas
de l’efficacité énergétique, mais également de la robustesse, de la sécurité, de l’interprétabilité, de
la transparence, etca. Il faut donc aller au-delà des architectures de von Neumann afin de réduire
l’empreinte énergétique, et l’approche neuromorphique est un candidat de rupture sérieux utilisant le
biomimétisme du cerveau via des Réseaux de Neurones à Impulsions (RNIs).
Toutefois, les RNIs peinent à surpasser les performances des RNAs. Les RNIs étant plus récents, et donc
moins étudiés, une meilleure approche de leur conception pourrait permettre d’allier performances et
faible coût énergétique. C’est pourquoi la conception automatique des RNIs est étudiée dans cette
thèse. L’intérêt est notamment porté sur l’Optimisation des HyperParamètres (OHP). Ainsi, nous
étudions l’impact de l’OHP sur les RNIs, et l’impact des RNIs sur l’OHP. Le but étant d’améliorer
les algorithmes utilisés et de mieux comprendre le comportement des RNIs au regard de leurs
hyperparamètres.

ahttps://futureoflife.org/open-letter/pause-giant-ai-experiments/

Mots clés : réseaux de neurones à impulsions, optimisation des hyperparamètres, optimisation glo-
bale, calculs parallèles, optimisation par décomposition, optimisation bayésienne
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