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Estimation de l’efficience et de la productivité :  

Nouvelles perspectives 

pour les entreprises et l’industrie 

 

Résumé de la thèse : 

Cette thèse se propose d’analyser à la fois théoriquement et empiriquement l’impacte 

de certaines hypothèses dans la construction des frontières d’efficience sur la productivité et  la 

performance des organisations d’une manière générale, ainsi que d’étudier les mécanismes 

susceptibles de contrôler leur efficience. Pour atteindre cet objectif, on s’intéresse 

particulièrement dans nos applications empiriques aux secteurs : bancaire, énergétique, et 

l’agriculture.  

La vocation des frontières d’efficience et de la mesure de productivité est d’évaluer 

l’inefficience existante dans les unités de production que les dirigeants de l’organisation veulent 

mettre dans son fonctionnement optimal. Ces méthodes d’évaluation de la performance 

s’appliquent aussi bien au secteur privé qu’au secteur public et leur utilisation a pour but de 

comparer le comportement des organisations à travers l'espace et au fil du temps, ou les deux à 

la fois. C’est ainsi que ces mesures sont utilisées pour analyser l’efficience relative des entités 

de production (personnes, projets, processus, entreprises, industries, etc.) au sein des grandes 

organisations (par exemple, des agences bancaires dans une banque). En outre, ces méthodes 

principales d’analyses comparatives (benchmark) peuvent être utilisées dans une industrie 

donnée ou à travers des industries, qui peuvent être limitées au nivaux nationale ou 

international, etc. 

Pour ce faire, on constate que les notions d’efficience et de productivité ont été 

intégrées à différents nivaux dans la formulation de la politique économique et dans différentes 
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pratiques de gestion. Par exemple, ces mesures d’efficience peuvent être utilisées dans 

l'application de la réglementation par plafonnement des prix dans les services publics où les 

organismes de réglementations et les entreprises font grand usage de ces nouvelles techniques 

pour argumenter le niveau des gains d’efficience, qui doivent être imposées sur les firmes 

individuelles ou au niveau de l’industrie. De ce fait, l’utilisation de ces méthodes a été intégrée 

dans les manuels de règlement élaborés par les institutions internationales à l’instar de la 

Banque mondiale. Les principaux travaux de recherches qui viennent à l’esprit lorsqu’on évoque 

l’application de ces modèles pour mesurer la performance de différentes organisations sont 

ceux, entre autres, de Coelli et al. (2003), Jamasb et Pollitt (2001), et Jamasb et al. (2003).  

Pour mesurer la performance de l’entreprise par le concept d’efficience, les études de 

recherche montrent plusieurs méthodes qu’ont été développées et utilisées pour réaliser cet 

objectif. Littéralement, le concept d’efficience de la production contient différentes approches 

qui estiment les frontières de production afin d’analyser la performance de l’entreprise par les 

séries temporelles, à travers les sections, ou par un panel de donnés. Ces approches utilisent les 

spécifications de frontière de la technologie qui sont estimées par des méthodes paramétriques 

ou non paramétriques (voir Bogetoft et Otto (2011) ou Coelli et al. (2005)). Dans ce travail de 

recherche, on adopte l’approche non paramétrique qui permet de déterminer les bonnes 

pratiques de la technologie par l’enveloppement directe des observations qui sont fixées sur la 

limite de l’ensemble de production possible. L’estimation non paramétrique de la frontière 

utilise la programmation mathématique pour envelopper les données aussi étroitement possible 

sous réserve de certaines hypothèses maintenues. En bref, on se focalise ici sur les deux célèbres 

méthodes d’analyse qui se basent sur l’approche non paramétrique de frontière. La méthode 

connue sous le nom FDH («l’enveloppe de libre disposition») et la méthode alternative qui est 

célèbre sous le nom DEA («Analyse d’Enveloppement de Données»). Dans le cas de FDH la 

technologie de production suppose seulement une forte disponibilité d’entrées (inputs) et de 
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sorties (outputs), tandis que la méthode DEA ajoute à cette supposition l’hypothèse de convexité 

et permet ainsi de faire des combinaisons linéaires des unités de productions observés. Briec et 

al. (2004) ont montré la différence entre les estimateurs de technologie convexe (DEA) et non 

convexe (FDH), en soulignant que l’impact de la convexité affecte les valeurs des fonctions de 

coûts et que le deux technologies convexe et non convexe peuvent être combinés avec des 

différentes suppositions de rendement d’échelle. 

Le principal objectif de cette thèse est de parvenir à illustrer l'importance de la 

convexité dans une grande variété de frontières de production. Afin d'illustrer cet objectif, trois 

sujets représentent le noyau de cette dissertation : (1) L’utilisation de capacité optimale et la 

redistribution dans un réseau de branches bancaires allemand ; (2) Une comparaison des indices 

de productivité Malmquist et Hicks-Moorsteen se concentrant sur l’infaisabilité ; (3) Les 

économies d’échelle et les rendements d’échelle dans les modèles non paramétriques. 

 

1. La capacité d’utilisation optimale et la réallocation de ressources bancaires: le cas 

de réseau d’agences bancaires d’une banque Allemande. 

Dans ce chapitre, on propose de mesurer la performance opérationnelle de réseaux 

d’agences bancaires par des nouveaux indicateurs de performance. Pour ce faire, on utilise la 

notion de capacité d’utilisation sur laquelle se base le modèle industriel de réallocations 

factorielles, qui permet de déterminer la structure optimale de réseaux d’agences bancaires.  

En adoptant l’approche non paramétrique, on cherche à atteindre deux objectifs dans ce 

chapitre: 

1. Montrer comment le modèle de court terme de Johansen peut être utilisé pour développer 

des scénarios qui permettent la réallocation des entrées (inputs) et sorties (outputs) sur un 

réseau bancaire afin d'améliorer sa performance. 
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2. Illustrer comment la convexité peut affecter les résultats du modèle de Johansen à court 

terme. 

En littérature, ce modèle industriel a été utilisé pour mesurer la capacité d’utilisation des 

entreprises industrielles, car ce modèle propose une possibilité de substitutions entre les inputs 

et les outputs. C’est ainsi que ce modèle peut intervenir pour optimiser la performance 

opérationnelle de banques, surtout dans les cas où on ne peut pas changer les inputs fixes à court 

terme. En outre, ce modèle permet de tracer la frontière des substitutions possibles et le 

changement de technologie qui en résulte au cours du temps. 

L’approche adoptée dans cette étude pour mesurer la performance opérationnelle se sert 

du modèle industriel qui permet de faire face aux surcapacités des intrants (inputs), 

particulièrement celles qui sont fixes. L’application empirique est menée sur un échantillon de 

142 agences bancaires d’une société financière allemande durant l’année 1998. Le secteur 

bancaire est un secteur particulièrement intéressant du point de vue de la répartition des centres 

de décision. Après avoir discuté ces données, nous essayons d’appliquer notre contribution 

méthodologique et de proposer de nouvelles mesures de performance opérationnelle pour ces 

agences bancaires. Cette approche a pour objectif de mettre à la disposition des managers en 

charge du réseau bancaire de nouveaux indicateurs de performance compréhensibles, 

interprétables et robustes qui leur permettent de prendre les meilleures décisions possibles. 

Dans notre approche méthodologique plusieurs mesures de performance ont été 

introduites et comparées avec des mesures plus classiques comme la mesure de l’efficience 

technique. Les résultats sont obtenus après avoir calculés les trois principaux indicateurs de 

performance telle que l’indicateur de l’efficience technique ordinaire, l’indicateur de la capacité 

d’utilisation et celui de la capacité d’utilisation définie selon Johansen (1972). 

Les résultats empiriques montrent que la technologie de production non convexe est plus 

commode et plus fiable pour détecter l’inefficience chez les agences bancaires que la 
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technologie traditionnelle basée sur la convexité qui est souvent adoptée dans les méthodes 

d’estimation (benchmark). Le modèle industriel à court terme étant le principal indicateur 

d’efficience utilisé dans cette étude propose différents scénarios susceptibles d’aider les 

décideurs à améliorer la performance. Ces scénarios sont bien détaillés dans ce chapitre, ainsi 

que les intérêts managériaux qui peuvent en être tirés. Ils consistent essentiellement à une 

fermeture potentielle de certaines agences de ce réseau bancaire avec la préservation des 

services offerts. Ceci est confirmé par les résultats obtenus avec ce modèle pour le cas de 

technologie non convexe à l’aide des autres mesures de performances. Plusieurs scenarios 

supplémentaires sont ajoutés comme autant de conséquences, tel que le transfert des employées 

et la fixation d’objectifs alternatifs comme l’agrégation des outputs. 

Du point de vue empirique, plusieurs limites peuvent être mentionnées. En premier lieu, 

on constate que les informations liées à l’environnement géographique méritent d’être intégrées 

dans le modèle. En outre, l’intensité concurrentielle doit être défini et intégré dans ce model, 

sachant que pour arriver à pallier toutes les limites, le model utilisé peut devenir inapplicable, 

vue le grand nombre de contraintes mises en place. 

On peut finalement dire que l’application de la mesure de l’efficience, l’analyse par la 

notion de capacité d’utilisation et le modèle industriel à court terme sont des outils fiables est 

efficaces pour mesurer l’efficience qui permet d’identifier les bonnes pratiques de performance. 

L’utilité de ce modèle industriel exige qu’il soit intégré dans le système de décisions 

stratégiques en tant que outil de planification aux niveaux des opérations d’agences bancaires. 

 

2. Comparaison entre deux principaux indices de productivité: Malmquist et Hicks-

Moorsteen 

L’objectif de ce chapitre est d’expliciter d’un point de vue empirique le problème 

d’infaisabilité rencontrée souvent lors de l’utilisation des indices de productivité Malmquist, 
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étant un indice de quantité qui mesure dans l’orientation d’inputs ou d’outputs, et Hicks-

Moorsteen, qui mesure simultanément une contraction d’inputs et une expansion d’outputs. Ces 

deux indices qui mesurent le changement de productivité durant différentes périodes se fondent 

dans leurs définitions sur la fonction de distance définie par Shephard (1970). 

L’indice de productivité de Malmquist a été largement utilisé dans la littérature. 

Cependant cet indice de quantité a montré qu’il n’est pas toujours un indice de changement de 

productivité. Cet indice peut aussi souffrir de plusieurs infaisabilités lors de son application, qui 

sont due à ses fonctions de distances d’inputs et d’outputs qui pourraient être parfois indéfinies. 

Cette infaisabilité est rarement rapportée par les études empiriques, sauf à quelques exceptions à 

l’instar de travaux de Mukherjee et al. (2001).  

En revanche, l’indice de productivité Hicks-Moorsteen a prouvé son aptitude de 

mesurer le changement de productivité et ceci est dû au fait qu’il est bien défini par les fonctions 

de distance en inputs et outputs. Hélas, l’utilisation de cet indice dans les travaux de recherche 

est limitée, bien qu’il soit utilisé par plusieurs travaux de recherche en tant que un bon indicateur 

de changement de productivité. Il convient à noter que l’indice de Hicks-Moorsteen est dérivé à 

partir de l’indice de Malmquist que Diewert (1992) avait défini comme un ratio des indices des 

quantités des outputs et des inputs qui se basent sur les fonctions de distance, cette idée a été 

inspirée auparavant par Hicks et Moorsteen et développée plus tard par Bjurek (1996). 

En général l’utilisation des indices de Malmquist et Hicks-Moorsteen est relativement 

facile comparée aux autres indices de productivité Fisher et Törnqvist qui ne sont que des cas 

spéciaux des indices de Malmquist, comme Caves et al. (1982) l’avaient montré, dans la mesure 

où les deux premier indices ne sont pas très exigeants en terme d’information, par exemple les 

prix ne sont pas nécessaires. Néanmoins, les deux derniers indices ont l’avantage en terme de 

programmation comme ils ne nécessitent pas l’estimation des fonctions de distance, mais ils 

exigent les prix des inputs et des outputs pour être calculés.  
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Dans ce travail, la comparaison méthodologique entre les deux principaux indices de 

productivité, Malmquist et Hicks-Moorsteen qui se fondent dans leurs mesures sur la frontière 

d’efficience, est faite après avoir estimés les deux indices en adoptant une approche non 

paramétrique basée sur la programmation linéaire. Cette comparaison a pour objectif d’illustrer 

comment les infaisabilités de l'indice de productivité de Malmquist sont conditionnées par des 

hypothèses sur la technologie, en particulier (i) l’analyse de court terme par rapport à celle de 

long terme, (ii) convexe par rapport au non-convexe (iii) le rendement d’échelle constant par 

rapport à l’hypothèse de rendements d’échelle flexible. 

L’application empirique dans ce chapitre est menée sur deux principales catégories de 

données. La première est un échantillon pris de l’article d’Ivaldi et al (1996). Il s’agit de la 

quantité de fruit français produite durant trois ans. La deuxième catégorie correspond à la 

quantité de riz cultivé dans les champs de petits agriculteurs des Philippines, et ce pendant sept 

années. Après avoir discuté ces données en détail, les mesures de productivité par Malmquist et 

Hicks-Moorsteen ont été appliquées pour déterminer le changement de productivité sur ces deux 

différentes activités. Ces différentes mesures ont été estimées selon les deux approches convexes 

et non convexes, avec rendements d’échelle constants et variables.  

C’est ainsi que les résultats de chaque indice sont différents selon l’approche sous 

jacente adoptée. Plus précisément, l’indice de Malmquist a montré plusieurs infaisabilités dans 

le cas de rendement d’échelle variable, tandis que l’indice de Hicks-Moorsteen a donné toutes 

les estimations demandées avec les différentes technologies sans aucune infaisabilité. Par contre 

le pourcentage d’infaisabilité est très élevé, lorsque la mesure de changement de productivité est 

prise dans le temps discret par l’indice de Malmquist, cette réalité peut être constaté plus claire 

aux niveaux des observations individuelles. 

Malgré l’inexistence d’infaisabilités dans les mesures des deux indices avec la 

technologie de rendement d’échelle constant, l’indice de Malmquist a montré qu’il n’est pas 
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toujours un indicateur de changement de productivité adéquat. En revanche, l’indice de Hicks-

Moorsteen est apparu comme l’indice le plus pratique pour estimer le changement de 

productivité en tenant compte les différentes approches. 

Bien que cet indice de « Hicks-Moorsteen » soit moins utilisé, il mérite une attention 

particulière dans une perspective d’utilisation et de développements futurs. Cette conclusion 

n’exclue pas l’utilisation de l’indice de Malmquist comme mesure fiable du changement de 

productivité local. Toutefois, ce dernier pouvant être sujet aux infaisabilités, le manager sera en 

possibilité de recourir à l’indice de Hicks-Moorsteen qui constitue une alternative pérenne de 

mesure de productivité. 

 

3. Economie d’échelle et le rendement d’échelle dans les modèles non paramétriques : 

Exploration de l'impact de la convexité 

En théorie de production, différentes méthodes non paramétriques sont utilisées pour 

mesurer l’efficience technique ainsi que l’efficience d’échelle pour des organisations de tout 

genre. La méthode basée sur l’enveloppe de libre disposition (FDH), tel qu’elle est introduite 

par Deprins et al. (1984), est conçue pour détendre l'hypothèse de la convexité sur laquelle se 

base les modèles convexes traditionnels connus sous le nom DEA (Analyse d’Enveloppement 

de Données).  

Afin l’usage potentiel de l’approche FDH, Kerstens et Vanden Eeckaut (1999) ont 

introduit des hypothèses de rendement d’échelle spécifiques dans sa formulation de base ; ils ont 

également proposé une nouvelle méthode pour caractériser les rendements d’échelle dans les 

technologies non-convexes. Briec et al. (2004) ont également développé des fonctions de coût 

non-convexes qui sont toujours supérieures ou égales à leurs homologues convexes. Ces auteurs 

ont de surcroit comparé les différentes décompositions traditionnellement convexes avec leurs 

équivalents non-convexes. 
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L’idée principale de ce chapitre est d’explorer la différence entre l'efficience technique 

et l'efficience d'échelle ainsi que les éventuelles différences entre la caractérisation des 

économies d'échelle et des rendements d'échelle basées sur l’estimation de la fonction de coût et 

les technologies convexes et non-convexes. Tout ceci a pour objectif d’illustrer la façon dont la 

convexité de la technologie et la fonction de coût affecte : 

1. la décomposition entre l’efficience technique et l’efficience d’échelle dans le contexte des 

coûts et celui de la production. 

2. la caractérisation des économies d'échelle et des rendements d'échelle pour les observations 

individuelles. 

Dans l'analyse empirique, nous utilisons les données de producteurs français de fruits, 

ainsi que des centrales Chiliennes d’hydroélectriques. Les résultats empiriques montrent la 

différence entre l’efficience technique et l’efficience d’échelle basées sur des technologies 

convexes et non-convexes, ainsi que les fonctions de coûts estimées. En outre, ces résultats 

illustrent les différences entre la caractérisation des économies d'échelle et des rendements 

d'échelle pour les observations individuelles, suivant les fonctions des coûts convexes et non 

convexes ainsi que les technologies. Évidemment, pour les observations inefficientes une telle 

caractérisation est conditionnée par une orientation choisie de mesure. 

Il est certain que tout ceci a des conséquences importantes sur les décisions 

d’investissement et certaines notions clés de l’économie à l’instar de la notion de d’utilisation de 

capacité. 

 

Mots-clés: Les réseaux d’agences bancaires, Efficience, Capacité, Réallocation, Indice  de 

Productivité de Malmquist, Indice de Productivité de Hicks-Moorsteen, Infaisabilités, Efficience 

d’Echelle, Rendements d’Echelle, Convexité. 
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Frontier Estimation of Efficiency and Productivity: 

Some New Perspectives for Firms and Industry 

 

Summary of the PhD: 

This thesis contributes to the efficiency and production frontier literature by adopting a 

managerial focus to provide a few new solutions to managers. There is in fact one recurrent 

theme in this PhD: we illustrate the importance of convexity in a wide variety of production 

frontier modeling settings. Three topics represent the core of this dissertation: (1) Optimal 

capacity utilization and reallocation in a German bank branch network; (2) A comparison of 

Malmquist and Hicks-Moorsteen productivity indices focusing on infeasibilities; (3) Scale 

economies and returns to scale in non-parametric models. The first chapter shows how the short 

run Johansen model can be used to develop scenarios to manage the reallocation of inputs and 

outputs over a bank branch network so as to improve its performance and then, we illustrate how 

convexity affects these results for the short run Johansen model. The second chapter describes 

how infeasibilities of the Malmquist productivity index are conditioned by assumptions on 

technology, in particular (i) short-run versus long-run analysis, (ii) convex versus non-convex, 

and (iii) constant versus flexible returns to scale assumptions. Finally, the third chapter explores 

the difference between the technical efficiency and the scale efficiency as well as the eventual 

differences between the characterization of economies of scale and returns to scale based on 

convex and non-convex technology and cost function estimations. 

 

Keywords: Bank branch network, Efficiency, Capacity, Reallocation, Malmquist Productivity 

Index, Hicks-Moorsteen Productivity index, Infeasibilities, Scale efficiency, Returns to scale, 

Convexity. 
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General Introduction 

 

1. REVIEW OF THE LITERATURE AND RECENT RESEARCH 

DEVELOPMENTS 

The last two decades have witnessed an unprecedented interest in efficiency 

measurement in the academic literature. This has also led to a massive amount of publications 

reporting on the efficiency and productivity growth measures in a wide variety of industries in 

the private sector as well as in the public sector. Examples of well-studied sectors for which 

surveys of the literature are available include banking (see Hughes and Mester (2008)), education 

(Worthington (2001)), health care (Ozcan (2008)), insurance (Cummins and Weiss (2000)), 

railways (Nash and Smith (2008)), water industry (Abbott and Cohen (2009)), among others.  

But, efficiency measurement and derived measures of productivity growth have also 

entered the domain of policy formulation and practical management at various levels. One can 

think first and foremost about the role of efficiency measurement in implementing price cap 

regulation in utilities, where both regulators and firms make ample use of these new techniques 

to argue about the level of the efficiency gains to be imposed on individual forms or the industry 

level. The use frontier-based efficiency and productivity notions has become integrated in the 

handbooks for regulation developed by international institutions like the World Bank (e.g., 

Coelli et al. (2003)). Jamasb and Pollitt (2001) offer a survey on the countries implementing 

such performance benchmarking schemes in the electricity sector, while Jamasb et al. (2003) 

discuss survey results from regulators on the gaming issues that can occur when implementing 

such yardstick competition.  

In addition, efficiency and productivity measurement has meanwhile found its way to 

management in certain industries. Because of evident reasons of discretion and secrecy, such 
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implementations of frontier benchmarking are much less documented in published sources. 

Therefore, we just mention two documented managerial applications.  

First, Fried et al. (1995) document how the trade association of USA credit unions 

(CUNA) has got involved in an almost continuous effort to deliver its members monitoring 

services to control the evolution of their efficiency and productivity using simple to understand 

non-convex frontier models. While access restrictions temper competition among credit unions, 

these frontier models help their members improving their strategic positioning relative to 

commercial banks and other financial institutions, with whom they are in competition at the 

local level. 

Second, Sherman and Ladino (1995) describe how a small regional bank in the USA 

with a limited network has managed to use traditional frontier benchmarking models to realize 

substantial cost savings to generate the necessary internal financing for a major expansion 

strategy. Combined with field visits and an activity analysis by questionnaires, this bank in the 

end managed to economize $6 million of the potential $9 million total expenses indicated by the 

frontier methods as being wasted. 

 

Benchmarking analysis represents a key tool in business economics. Two main 

activities of any manager controlling and supervising an organization are on the one hand 

monitoring (assessing how the firm is doing over time), and benchmarking (comparing firm 

performance with respect to its main competitors). While both activities aim to enhance 

performance, monitoring is clearly oriented towards the internal organization, while 

benchmarking by definition takes an external perspective (e.g., Balk (2003)). 

Benchmarking can ideally be conceived as the search for and the emulation of the best 

practices in an industry. Through benchmarking, a firm can deduce whether it has managed to 

adapt best or worst practices. Knowing its relative performance, it can target to maintain its 
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eventual superiority or to close the eventual gap relative to its best practice competitors (Camp 

(1998)). While benchmarking is probably an age-old idea, it’s origin is nowadays often related 

to the activities of Xerox in 1980 when it compared its photocopier production in the USA with 

those of Fuji-Xerox in Japan. This has been quickly followed by a widespread adaptation by 

firms in search for improvements (Voss et al. (1997)).  

 

Traditionally, organizations in different industries have used some simplified efficiency 

or productivity measures (e.g., partial productivity measures, also sometimes known as Key 

Performance Indicators (KPIs)) as a basic benchmarking tool to assess the efficiency and 

effectiveness of firms. While these tools offer a myriad of ratios or indicators indicating some 

aspect of performance, it is often hard if not impossible to aggregate this variety of ratios or 

indicators into some summary measure. This way of tackling measurement problems in 

production is often based on the strong tradition to use a variety of ratios in accounting, business 

and finance (see, e.g., Bragg (2002) for an overview).  

More recently, some managers and policy makers have discovered that inefficiencies 

can be better identified by using frontier-based efficiency or productivity measures, since these 

allow taking into account the multidimensional nature of modern production technologies in 

industries and services. The use of well-defined efficiency measures has the double advantage of 

offering a simple aggregate indication of performance over several dimensions and having a 

measure with a meaningful economic interpretation. For instance, input-oriented efficiency 

measures normally have a cost interpretation which allows results to be immediately translated 

into budgetary policies.  

 

These methods of performance assessment apply to the private as well as to the public 

sector. Furthermore, these methods are relevant for both the production of goods and services. 
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The purpose of frontier-based efficiency or productivity measures is to compare the behavior of 

organizations over time, across space, or both. Furthermore, this performance measurement can 

be used to analyze the relative efficiency of production entities (individuals, projects, processes, 

firms, industries, etc.) within larger organizations (e.g., bank branches within a bank). 

Furthermore, such benchmarking comparisons can be made within a given industry or across 

industries, can be limited to the national level or may even have an international character, etc. 

We first quickly review the most relevant efficiency and productivity notions and 

explain how to make them operational. Farrell (1957) introduced the idea of best-practice 

frontiers and provided the first measurement scheme for efficiency by distinguishing between 

technical and allocative efficiency. More recent work has created more elaborate taxonomies by 

adding scale and structural efficiencies (see, e.g., Färe et al. (1994)).  

First, technical efficiency requires production to be situated on the boundary of the 

production possibility set or technology. Technology summarizes all possibilities of 

transforming inputs into outputs. A producer is technically inefficient if production occurs in the 

interior of technology. Second, structural efficiency is a special case of technical efficiency. A 

technically efficient producer is structurally efficient if production is situated in the economic 

(uncongested) region of production. Structural inefficiency happens when production faces 

some form of congestion, whereby some of the inputs have negative marginal products. Third, 

scale efficiency measures the eventual divergence between the actual and ideal scale of 

production. The ideal scale of production is represented by a long run competitive equilibrium 

situation, whereby production satisfies constant returns to scale. An organization is scale 

efficient if its production occurs on a constant returns to scale frontier. Otherwise, it is scale 

inefficient. Finally, allocative efficiency is defined by a point on the boundary of technology 

satisfying a given objective of the organization, given certain constraints on prices and 
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quantities. Organizations are often assumed to be minimizing costs. A technically efficient 

producer is then allocatively inefficient if observed costs are situated above minimal costs. 

 

To estimate production frontiers, a variety of methods have been developed for 

analyzing time series, cross-section or panel data. For convenience, this discussion focuses on 

cross-section data. Once frontiers are estimated, productivity changes can be derived from 

measuring the shifts in the frontier over time. To measure performance, the literature contains 

several approaches that can be used to specify and measure the efficiency of firms. These 

approaches employ frontier specifications of technology that are estimated by either parametric 

or non-parametric methods: 

• The parametric approach assumes that the boundary of technology can be represented by a 

particular functional form with a finite number of parameters; 

• The non-parametric approach directly envelops the observations in the sample while 

imposing minimal regularity axioms on the technology. 

These methods are different from one another in terms of the underlying behavioral 

assumptions and data requirements. But more importantly, these methods differ to the extent 

that these allow for random error or not: 

• Stochastic methods allowing for measurement error in addition to inefficiency; 

• Deterministic methods assume that observations are measured without error. 

Combining both of these distinctions yields a four-way classification. Surveys of all methods 

confounded are available in Bogetoft and Otto (2011) and Coelli et al. (2005). The present PhD 

focuses on non-parametric deterministic approaches and ignores the other methods. Specialized 

surveys focusing on the non-parametric deterministic frontier estimation methods are Ray 

(2004) and Thanassoulis et al. (2008), among others.  
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Deterministic non-parametric methods obtain a best practice technology by directly 

enveloping the observations on the boundary of the production possibility set. These extremal 

estimators use mathematical programming to envelop the data as tightly as possible subject to 

certain maintained assumptions. These production assumptions are far less restrictive than the 

ones used in other approaches. We briefly present two families of important technologies. A 

production technology only assuming strong input and output disposability is known as the free 

disposal hull (FDH). Strong input disposability implies that any given level of outputs remains 

feasible if any of the inputs increases. Strong output disposability means that it is always 

possible to reduce outputs with given inputs. An alternative production technology adds 

convexity to the assumptions maintained by FDH. Convex non-parametric frontiers, known as 

Data Envelopment Analysis (DEA) models, allow for linear combinations of observed 

production units. Briec et al. (2004) have shown that the convex technology estimators indicate 

larger or equal amounts of inefficiency compared the non-convex technology and especially that 

the impact of convexity also affects the values of cost functions: convex cost functions indicate 

lower or equal values compares to non-convex cost functions. This observation is related to the 

properties of the cost function in the outputs. Both convex and non-convex families of 

technologies can be combined with various assumptions regarding returns to scale (see Briec et 

al. (2004)).  

 

Many of analysts in the economics and management literature have looked at the notion 

of capacity utilization and its ability to help assessing the performance of organizations. In the 

theoretical production literature, the capacity notion comes in at least two varieties: a technical 

(engineering) and an economic capacity concept (see, e.g., Johansen (1968) and Nelson (1989)). 

The former concept of capacity utilization considers only the physical information on inputs and 



 27 

outputs, while the later notion includes the price information and founds its measure mostly on 

the cost function.  

A bit surprisingly, the majority of the frontier estimation literature has –often 

implicitly– taken a long run perspective (assuming that all inputs and/or outputs are under 

managerial control) and has almost completely ignored the capacity utilisation notion as a bridge 

concept between a short-run and a long-run analysis.  

Johansen (1968) defined capacity utilization by using a non-parametric production 

frontier indicating the maximum potential output that could be produced per unit of time with 

existing plant and equipment, assuming no restriction of variable inputs. This capacity notion 

has been used in several studies applying this concept at the industry level (e.g., Coelli et 

al. (2002)).  

 

Finally, while the overview so far has been mainly limited to a static evaluation of 

performance, it is equally important to be able to evaluate performance over time. A variety of 

productivity indices aim to measure the total factor productivity (TFP) of firms and sectors. 

Rather famous productivity indexes widely used by economic analysts are the Malmquist and 

Hicks-Moorsteen productivity indices on the one hand and the Fisher and Törnqvist productivity 

indices on the other hand. Both the Malmquist and Hicks-Moorsteen productivity indexes do not 

require input and output prices, but require a detailed knowledge of the technology obtained 

from combining a variety of efficiency measures. By contrast, the other productivity indexes 

need data on input and output prices to aggregate the quantity information on inputs and outputs, 

but they have to make stronger assumptions than the two former productivity indexes (e.g., 

assume allocative efficiency). These different productivity measures have been surveyed by, for 

instance, Diewert (1992) or Diewert and Nakamura (2003).  
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2. OBJECTIVES OF THE STUDY, METHODS, AND ACHIEVEMEN TS 

There is in fact one recurrent theme in this PhD: to illustrate the importance of 

convexity in a wide variety of production frontier modeling settings. The next subsections 

describe in more details how this principal objective is articulated into the three main chapters. 

Each of these chapters aims to fill up some gaps in the literature as well as to provide a few new 

solutions to managers. 

 

2.1. Optimal capacity utilization and reallocation in a German Bank Branch Network 

Bank management traditionally monitors the operational performance of its branch 

network by a variety of tools. Massive amounts of studies have assessed banking efficiency. 

Fewer studies have considered bank branch network efficiency, mostly within a single bank 

network. Studies analyzing retail banking efficiency using frontier methods have amply shown 

how bank management can monitor the operational efficiency of its central services and of its 

branch network by means of these new tools (see, e.g., Oral and Yolalan (1990)). Rather 

common managerial uses of frontier benchmarking results for the management of a branch 

network include: efficiency measures can be used to set cost and revenue targets, to identify 

branches in need of an internal audit, to select the best branches to train new employees to adopt 

best practices, to induce learning practices by putting together weak and strong performers, etc.  

While the measurement of the efficiency of bank branch networks has become fairly 

standard, few managerial tools are available to optimize existing bank branch networks while 

somehow correcting for existing inefficiencies and accounting for targets, common resource 

constraints, and policy concerns of various kinds. One can find a small literature that starts from 

efficiency measures at the firm level to come up with some reallocation of resources at the 

industry or network level. Examples among a large variety of research proposals include the 

articles by Athanassopoulos (1995), Golany and Tamir (1995), Lozano and Villa (2004), among 
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others. To our knowledge, no article so far has managed to discover a common structure in these 

proposals.  

To start from firm foundations, we have therefore in opted to stick close to a variation 

of the short-run industry model initially proposed in Johansen (1972). This model received quite 

a bit of discussion in the economics literature at the time (e.g., Førsund and Hjalmarsson 

(1983)). In particular, Dervaux et al. (2000) have linked this model to the frontier-literature by 

introducing frontier-based estimates of capacity utilization. This refined short-run industry 

model has been adapted to analyze excess capacities in fisheries while offering a large choice of 

policy options in Kerstens et al. (2006).  

The chapter makes use of the sample of 142 German bank branches in the year 1998 

described in Porembski et al. (2005), the only database on a banking network we could lay our 

hands on. Given this origin of our data, we have no price information, which limits our choice of 

capacity utilization concepts drastically. Instead of measuring some cost-based capacity notion, 

we are forced to settle for a plant capacity notion (see Johansen (1968)).  

This chapter’s specific objectives are to: 

(i) show how the short run Johansen model can be used to develop scenarios to manage the 

reallocation of inputs and outputs over a bank network so as to improve its performance, and  

(ii) illustrate how convexity affects the results from the short run Johansen model. 

 

To the best of our knowledge, these goals have not been illustrated in the existing literature.  

 

This chapter is joint work and has been published in the following book: 

Kerstens, K., B.A. Moulaye Hachem, I. Van De Woestyne, N. Vestergaard (2010) 

Optimal Capacity Utilization and Reallocation in a German Bank Branch Network: 
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Exploring Some Strategic Scenarios, in: A. Tavidze (ed) Progress in Economics 

Research (Volume 16), New York, Nova Science, p. 35-61. 

Notice that subsection 4.3 is new and has not been part of this publication. 

 

2.2. Malmquist and Hicks-Moorsteen Productivity Indices and Infeasibilities 

Frontier efficiency methods have been widely used to obtain estimates of total factor 

productivity indices in a discrete time framework. Especially the Malmquist productivity index 

has been very popular, among others since it allows to decompose dynamic performance into 

technical change (movements of the production frontier) on the one hand and changes in 

technical efficiency (changes in the relative positioning with respect to the moving production 

frontier) on the other hand. Some studies have reported that this index shows some 

infeasibilities caused by its undefined underlying output or input distance functions (the inverses 

of the corresponding radial efficiency measures). By contrast, the less popular Hicks-Moorsteen 

productivity index is known to be feasible under standard assumptions. 

While managers are supposed to care most about profits, they should also take great 

interest in productivity change. Indeed, it has been argued that changes in total factor 

productivity (TFP) are the main impetus for changes in profits. Balk (2003: 6) has phrased this 

aptly as follows: “the most encompassing measure of productivity change, TFP change, is 

nothing but the ‘‘real’’ component of profitability change. Put otherwise, if there is no effect of 

prices then productivity change would coincide with profitability change.” Therefore, the 

continuous monitoring of the evolution of productivity should be an implicit if not an explicit 

concern for managers. The absence of such information due to infeasibilities complicates this 

task. 

This chapter has the specific goal to: 
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illustrate how infeasibilities of the Malmquist productivity index are conditioned by assumptions 

on technology, in particular (i) short-run versus long-run analysis,  

(ii) convex versus non-convex, and  

(iii) constant versus flexible returns to scale assumptions. 

 

These goals have not been systematically explored in the existing literature. In the 

empirical part of the chapter, we apply these theoretical issues on the agriculture sector by 

taking two panel data sets available from published sources. The first data contains an 

unbalanced panel of three years of French fruit producers, while the second data set concerns a 

small balanced panel of smallholder rice farmer in the Tarlac region of the Philippines observed 

over seven years. 

 

This chapter is joint work and an earlier version has been published as a discussion paper: 

Kerstens, K., B.A. Moulaye Hachem, I. Van De Woestyne (2010) Malmquist and Hicks-

Moorsteen Productivity Indices: An Empirical Comparison Focusing on Infeasibilities, 

Lille, LEM (Document de travail 2010-09), 25 pp. 

Notice that this chapter is currently under review.  

 

2.3. Scale Economies and Returns to Scale in Non-Parametric Models: Exploring the 

Impact of Convexity 

Non-parametric frontier efficiency methods are popular estimate technical and scale 

efficiencies of various organisations. The Free Disposal Hull (FDH) imposes a free disposal 

assumption on inputs and outputs, but relaxes the convexity assumption underlying the 

traditional convex models. Kerstens and Vanden Eeckaut (1999) introduce specific returns to 

scale assumptions into the basic FDH model and propose a new goodness-of-fit method to infer 

the characterization of returns to scale for non-convex technologies. Finally, Briec et al. (2004). 
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also propose non-convex cost functions that are always larger or equal to their convex 

counterparts and they relate the traditional convex decomposition into technical, scale, allocative 

and overall efficiency with its non-convex counterparts.  

 

This chapter has the specific goal to: 

illustrate how convexity on technology and cost function affects 

(i) the decomposition between technical and scale efficiencies in a production and cost context,  

(ii) the characterization of economies of scale and returns to scale for individual observations. 

 

Again, these goals have –to the best of our knowledge- not been systematically explored 

in the economic or operations research literatures. In this chapter we explore these differences 

between technical and scale efficiencies based on both traditional convex and these rather new 

non-convex technology and cost function estimations. In the literature, estimates based on the 

cost function have never been reported. Equally important, we also point to the eventual 

differences between the characterization of economies of scale and returns to scale for convex as 

well as non-convex cost functions and technologies for individual observations. For the purpose 

of empirical illustration, we apply these efficiency decomposition on the agriculture sector and 

on the hydro electricity industry. The first data contains an unbalanced panel of three years of 

French fruit producers, the other hydro-electric power generation plant data are observed on a 

monthly basis for a single year. 

 

This chapter is joint work with the PhD supervisor.  
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Chapter 1: 

Optimal Capacity Utilization and Reallocation 

in a German Bank Branch Network:  

Exploring Some Strategic Scenarios 

 

 

Abstract:  

Quite a few studies have considered efficiency at the bank branch level by comparing mostly a 

single branch network, while an abundance of studies have focused on comparing banking 

institutions. However, to the best of our knowledge no study has ever assessed performance at 

the level of the branch bank network by looking for ways to reallocate resources such that 

overall performance improves. Here, we introduce the Johansen-Färe measure of plant capacity 

of the firm into a multi-output, frontier-based version of the short-run Johansen industry model. 

The first stage capacity model carefully checks for the impact of the convexity assumption on 

the estimated capacity utilization results. Policy scenarios considered for the short-run Johansen 

industry model vary in terms of their tolerance with respect to existing bank branch 

inefficiencies, the formulation of closure policies, the reallocation of labor in terms of integer 

units, etc. The application to a network of 142 bank branches of a German savings bank in the 

year 1998 measures their efficiency and capacity utilization and demonstrate that by this 

industry model approach one can improve the performance of the whole branch network. 

 

Keywords: Bank Branch Network, Efficiency, Capacity, Reallocation  

 

JEL classification: G21, M11. 
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1. INTRODUCTION 

In today’s integrated financial markets, banks face increasing competition for market 

share. The rapid changes in market conditions (e.g., disintermediation and deregulation trends, 

successive merger waves, new competition from the non-financial sector) raise a number of 

important questions from a regulatory perspective about the structure of the banking industry. 

But, equally important are the strategic issues related to the management of these financial 

service providers offering a wide range of increasingly complex products. Against this 

background, the issue of bank efficiency has become rather prominent, since inefficient banks 

may not survive these continuous challenges, especially when the sector implements massive 

investments in IT to foster productivity growth (improved information management, new 

delivery channels, etc.). While the literature on the efficiencies of banking institutions has been 

summarized from various perspectives (see, among others, Berger (2007), Berger and 

Humphrey (1997), Goddard et al. (2001), and the focused surveys on consolidation of Amel et 

al. (2004) and Berger et al. (1999)), the literature analyzing the drivers of performance in 

financial services delivery remains rather limited (see Harker and Zenios (2001)) as does the 

literature on the management of bank branch networks (see Paradi et al. (2004) for a survey). 

An abundant amount of studies has focused on comparing banking institutions, while 

fewer studies have studied efficiency at the bank branch level by comparing mostly a single 

branch network. However, to the best of our knowledge no study has ever assessed the 

performance at the level of the branch bank network by looking for ways to reallocate resources 

such that overall performance of the network improves. To put this topic in perspective, we first 

briefly summarize the efficiency literature on banking institutions and bank branch networks. 

Then, we expand on the reasons why the management of a branch network requires new models 

and how the short-run Johansen industry model shows some promise in this respect. 
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In view of the dual role of financial institutions as providers of transactions and as 

intermediates transferring funds from savers to investors, in the efficiency literature one finds 

mainly two types of models to measure the flow of services in a given period (see Berger and 

Humphrey (1997)):  

• Production approach: Banks are considered as service providers to account holders that 

perform transactions and process documents for depositors (e.g., checks, loan applications, 

credit reports, etc.). Outputs are defined in terms of numbers of transactions or documents 

processed. Only current expenses related to physical inputs like labor and capital and their 

associated costs are considered, while interest payments are ignored. As a consequence, only 

input prices for physical inputs are considered.  

• Intermediation approach: Banks are intermediating funds between savers and investors. The 

flow of services is seen as proportional to the stock of financial value in the accounts (e.g., 

value of loans, deposits, etc.). Outputs are defined in terms of financial value terms. In 

addition to the physical inputs, also the input of funds is considered. Costs therefore contain 

current expenses and interest payments and input prices for physical inputs and financial 

inputs are taken into account. 

Both approaches have their relative advantages (see again Berger and Humphrey (1997)). 

The intermediation approach is more appropriate for evaluating entire banking institutions, since 

interest expenses are an important part of total costs and need to be minimized to guarantee 

overall cost minimization or profit maximization. The production approach is most suitable for 

bank branches, since intermediation is organized at a higher level. Certain studies employ both 

approaches. 

Since the seminal article of Berger et al. (1997), some progress had been made in 

analyzing bank branch efficiency. Some key results from this limited literature can be 

summarized as follows. (i) There are scale economies at the branch level. But, the excess costs 
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of over-branching are rather low due to the relative flatness of average cost curves. Furthermore, 

additional revenues gained from the convenience offered to the customers at the network level 

probably compensate these additional costs due to scale inefficiency. (ii) The large dispersion of 

technical inefficiencies at the branch level implies that technical inefficiencies at the bank level 

are understated, since even efficient banks are likely to have some inefficient branches. 

(iii) Bank management only imperfectly controls the costs of branch offices through its 

procedures, incentives and supervision. The quality of local management remains a crucial 

determinant of branch performance. Further conclusions on bank branch efficiency are found in 

the surveys of Berger and Humphrey (1997) and Paradi et al. (2004). International comparative 

network studies are still extremely rare (see Athanassopoulos et al. (2001) or McEachern and 

Paradi (2007) for exceptions). 

Bank management has always monitored the operational efficiency of its branch network 

by a variety of tools to measure its performance. Traditional tools to measure efficiency are 

based on financial ratios (such as Return on Assets, Return on Equity, or similar ratios). While 

ratios provide a great deal of information about financial performance in comparisons across 

time or relative to other banks’ performance, these tools have well-known limitations. An 

alternative approach is the use of deterministic or econometric frontier efficiency analysis using 

a production approach or eventually using accounting information (as it turns out that financial 

and production performance tends to be rather correlated: see, e.g., Elyasiani et al. (1994) or 

Feroz, Kim and Raab (2003)). Some success stories of using frontier benchmarking in 

evaluating branch networks have been well-documented (see, e.g., Sherman and Ladino (1995) 

or Athanassopoulos and Giokas (2000)). Straightforward uses of frontier benchmarking for 

managing branch networks have equally been testified in a variety of written sources. In 

particular, efficiency scores, rankings and frontier projections have, among others, been used as 

an instrument to reformulate budgetary and revenue targets; to identify branches needing a 



 37 

thorough internal audit; to rewrite internal procedures and test the implications of these reforms 

on performance; to induce a learning process for current personnel by assembling both weak and 

good performers and eventually move best-practice managers to poor performing branches; to 

train new employees at best practice branches, etc. 

However, the rapid technological changes have led to the introduction of new delivery 

systems (Automatic Teller Machines (ATM), electronic fund transfer of point of sale 

(EFTPOS), phone and internet banking, e-money, centralized call centers, etc) that risk to erode 

away the earlier dominance of the brick-and-mortar bank branch. This increasing competition of 

distribution channels goes hand in hand with an increasing number of bank branches in the USA 

(Thirtle (2007)), even though these branches are becoming more concentrated in the networks of 

just a few institutions (due to industry consolidation). Though Thirtle (2007) finds no systematic 

relationship between branch network size and overall institutional profitability, which seems to 

suggest that banks somehow optimize the size of their branch network as part of an overall 

strategy, her findings do suggest that banks with mid-sized branch networks (101–500 branches) 

may be at a competitive disadvantage in branching activities relative to banks with larger branch 

networks. Together with the common knowledge that there remain unexploited scale economies 

at the branch level whereby the additional cost of “overbranching” seems to be compensated by 

the gains in additional revenues from providing extra customer convenience (see above), these 

findings point to the conclusion that the management of branch networks is going to remain a 

major challenge for the years to come. 

While measuring the efficiency of bank branch networks is fairly standard, few if any 

managerial tools are available to optimize existing bank branch networks while correcting for 

existing inefficiencies and accounting for targets of various kinds. A burgeoning literature exists 

that starts from efficiency measurements at the individual firm (plant or subunit) level to come 

up with some reallocation of resources at the level of the industry (firm). Early examples of such 
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articles include Athanassopoulos (1995), Färe et al. (1992), Golany and Tamir (1995), Li and 

Ng (1995), among others. Meanwhile, a series of additional publications have appeared, 

including, for instance, Asmild et al. (2009), Giménez-García et al. (2007), Korhonen and 

Syrjänen (2004), and Lozano and Villa (2004). However, it is difficult to see a common 

structure in this large variety of research proposals. Furthermore, since few empirical 

applications exist and experience with practical implementations seems absent (at least it is not 

reported in publications), it is difficult to assess the relative advantages of these models from a 

managerial viewpoint. To the best of our knowledge, none of these reallocation models has ever 

been applied to the banking sector. 

We have therefore opted to stick to a short-run industry model initially proposed in 

Johansen (1972) which received at least a minimum of discussion in the economics literature 

(see, e.g., Førsund and Hjalmarsson (1983) or Hildenbrand (1981)). Furthermore, it has been 

linked to the frontier-literature in Dervaux et al. (2000) who introduce frontier-based estimates 

of plant capacity (see Johansen (1968)) as a foundation for this short-run industry model, 

thereby distinguishing between variations in technical efficiency and capacity utilization. This 

methodological refined model has been applied in analyzing excess capacities in fisheries and 

further extended in Kerstens et al. (2006). Starting from the ex-post fixity of investments in 

production capacities, this short-run Johansen (1972) model allows for some substitution 

possibilities by reallocating inputs and outputs among the units composing the industry while 

eliminating technical inefficiencies and major variations in capacity utilization among units. 

Furthermore, over time substitution and technical change can be traced via shifts in successive 

short-run industry models. None of the other above mentioned models accounts for the notion of 

production capacity or distinguishes clearly between technical inefficiency and variations in 

capacity utilization. As far as we know, this short-run industry model has never been applied to 

banking. 



 39 

Since the goal of performance benchmarking in this case is prospective (i.e., providing 

management with strategic information to actually improve performance), there are strong 

reasons to believe that many people object to unobservable projection points implied by the 

traditional convexity hypothesis. This is evidenced in remarks, scattered in the literature, on the 

problems encountered in communicating the results of efficiency measurement to decision 

makers. We offer three examples. In a study applying convex nonparametric frontier methods to 

measure bank branch efficiency, Parkan (1987: 242) notes: “The comparison of a branch which 

was declared relatively efficient, to a hypothetical composite branch, did not allow for 

convincing practical arguments as to where the inefficiencies lay.” In a similar vein, Bouhnik et 

al. (2001: 243), apart from criticizing extreme low scaling, also state: “… it is our experience 

that managers often question the meaning of convex combinations that involve what they 

perceive to be irrelevant DMUs.” Finally, Epstein and Henderson (1989: 105) report similar 

experiences in that managers simply question the feasibility of the hypothetical projection points 

resulting from convex nonparametric frontiers. Thus, avoiding convexity may facilitate the 

implementation of frontier-based decision support models.1 Therefore, in this contribution a lot 

of attention is devoted to testing for the impact of the convexity assumption in estimating 

capacity and in the results of the short-run industry model. 

This contribution is structured as follows. We introduce in Section 2 the Johansen-Färe 

measure of plant capacity of the firm into a multi-output, frontier-based version of the short-run 

Johansen industry model. The first stage capacity model carefully checks for the impact of the 

convexity assumption on the estimated capacity utilization results. Policy scenarios considered 

for the short-run Johansen industry model vary in terms of their tolerance with respect to 

existing bank branch inefficiencies, the formulation of closure policies, the reallocation of labor 

in terms of integer units, etc. The data set of 142 bank branches of a German savings bank in the 

                                                 
1 We thereby ignore the theoretical arguments against convexity based upon, for instance, the indivisibilities in 
production. See, e.g., Scarf (1994). 
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year 1998 is introduced in Section 3. The application to this German network of bank branches 

in Section 4 measures their efficiency and capacity utilization and demonstrate that by this 

industry model approach one can improve the performance of the whole branch network. A final 

section concludes and tries to outline some promising avenues for further research. 

 

2. METHODOLOGY 

2.1. Introduction 

The theory of production is based on efficient technologies (production frontiers) and 

their value duals (such as minimal cost functions and maximum profit functions) and on 

envelope properties yielding cost-minimizing input demand functions and revenue maximizing 

output supply functions. In theory, emphasis is placed on efficient production and its 

consequences, and the evocative term “frontier” is applied to functions characterizing these 

boundaries. Using either parametric or nonparametric approaches, the standard cost structure is 

typically generated by imposing a specific functional form on the data and by obtaining the best 

fit by minimizing the deviations from the estimated structure. Efficiency measurement implies 

comparison between actual and optimal performance positioned on the relevant frontier. This 

frontier is called “best-practice”, since it is an empirical approximation of the true but unknown 

frontier. The parametric approach is stochastically attempting to distinguish noise from 

inefficiency which requires strong assumptions, while the nonparametric approach does not run 

the risk of misspecification of the functional form but noise is not taken into account.2 

We first offer several definitions to understand the mechanism of efficiency measurement. In 

general, efficiency analysis can be carried out at many levels of aggregation (i.e., at the plant, 

firm, industry or economy–wide level). The choice of level of aggregation is determined by – 

                                                 
2 This is of course a simply presentation, but it presents the two essential differences between both approaches. For 
example, in recent years there has been a lot of work on the statistical foundation of the nonparametric approach: 
see Simar and Wilson (2008) for an overview. 
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among other things – availability of data and the purpose of the study. Here, we focus on the 

linkages between the efficiency both at the firm (branch) level and the industry (branch 

network) level. Economic efficiency has both a technical and allocative component. Technical 

efficiency is generally about avoiding waste, i.e., reducing the use of inputs given output levels 

or increasing outputs given input levels (see Koopmans (1951) for a formal definition). 

Allocative efficiency is referring to optimal proportions in outputs and inputs connected to 

prevailing relative prices.  

When it comes to measurement of technical efficiency, the so-called Debreu (1951)-Farrell 

(1957) measure is used. In an output-augmenting orientation, the Debreu-Farrell measure is 

defined as the maximum radial expansion in all outputs that is feasible with given technology. 

From an engineering capacity concept, Johansen (1968) defined plant capacity as the maximal 

amount of output that can be produced per unit of time with an existing plant and its equipment 

without any restrictions on the availability of variable inputs. Capacity arises due to fixity of one 

or more inputs, and is thereby inherently a short-run concept. Färe (1984) formally showed the 

existence of plant capacity for certain types of production functions, while Färe et al. (1989) 

made the concept operational by using the Debreu-Farrell measure to calculate firm level 

capacity levels using nonparametric frontier approximations of technology. Their approach 

assumes that firms cannot exceed their use of fixed factors, but that their use of variable factors 

is unconstrained. A best-practice technology or frontier is constructed and the current output of 

each firm is evaluated against the maximum potential output at full capacity utilization, called 

“capacity output”. 

Summing these firm-level capacity outputs across firms offers an estimate of the aggregate 

industry capacity output. Comparing this aggregate industry capacity output to current industry 

output provides a measure of overcapacity at the industry level. However, neither firm-level 

technical measures nor firm-level capacity levels allow for reallocation of inputs and outputs 
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across firms, precluding insight into the optimal restructuring and configuration of the industry. 

For example, the plant capacity measure implicitly assumes that production of capacity output is 

feasible and that the necessary variable inputs are available. In many other situations, relevant 

questions at the industry level are: What is the optimal firm-structure given the current 

aggregate output? How should the reallocation of inputs and outputs be performed between the 

firms? How does the reallocation look like if certain policy issues are taken into account? And 

what are the costs of pursuing these policy issues in terms of allocating more inputs than 

necessary? 

To answer these questions, we combine the plant capacity notion (Johansen (1968)) at the 

individual and industry levels using a multiple-output and frontier-based version of the short-run 

Johansen (1972) sector model, a methodological refinement developed in Dervaux et al. (2000) 

and applied in, e.g., Kerstens et al. (2006). The short-run Johansen (1972) sector model analyses 

the industry structure resulting from underlying ex post firm-level production structures. 

Investment decisions imply a putty-clay production structure: while firms may eventually 

choose ex ante from a catalogue of production options exhibiting smooth substitution 

possibilities, most firms face fixed coefficients ex post and have a capacity that is entirely 

conditioned by the investment decision made. The short-run industry model nevertheless 

exhibits substitution possibilities when inputs and outputs can be reallocated across the units 

composing the industry. Over time, substitution and technical change can be traced via shifts in 

successive short-run industry models. 

The revised short-run Johansen (1972) model proceeds in two phases. In a first step, the 

Johansen-Färe capacity measure determines capacity production for each individual firm at the 

production frontier. Second, this firm-level capacity information is employed in the industry 

model by a planning agency to select the level of activity at which individual firm capacities are 

utilized with the objective of minimizing fixed industry inputs given total outputs and capacities 
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and the current state of technology. Following Dervaux et al. (2000) and Kerstens et al. (2006), 

the optimal industry or branch network configuration can be found by minimizing the total use 

of fixed inputs given that each firm cannot increase its use of fixed inputs and the production of 

the industry is at least at the current level.3 The output level of each firm in this type of model is 

the capacity output estimated from the firm-level capacity model. 

 

2.2. Definitions of Efficiency, Plant Capacity, and the Short-Run Industry Model 

To develop these production models formally, the production technology S transforms inputs 

1( ,..., ) N
Nx x x += ∈ℝ  into outputs 1( ,..., ) M

Mu u u += ∈ℝ  and summarizes the set of all feasible 

input and output vectors: { }( , ) : can produceN MS x u x u+
+= ∈ ℝ . Let J be the number of 

firms/units ( { }1,...,j J∈ ). The N-dimensional input vector x is partitioned into fixed factors 

(indexed by f) and variable factors (indexed by v): ( , )v fx x x= . To determine the capacity 

output or technical efficiency, a radial output-oriented efficiency measure 

{ }0( , ) max : ( , )E x u x u Sθ θ= ∈  is computed relative to a frontier technology providing the 

potential output given the current use of inputs, where restrictions on input use determine the 

precise nature of the measure.  

Nonparametric inner-bound approximations of the true technology can be presented by the 

following set of production possibilities, assuming strong disposal of inputs and outputs and 

variable returns to scale (VRS): 

                                                 
3 Remark that, when appropriate price information is available, the technical optimization (in terms of primal or 
quantity based aspects) in both stages of the short-run Johansen industry model can be replaced by alternative 
economic capacity notions in the first stage and economic objective functions (e.g., industry cost functions as in 
Førsund and Hjalmarsson (1983), or industry revenue or profit functions) in the second stage. In the first stage, 
economic capacity notions based on, e.g, the cost function can be employed (e.g., Prior (2003)). 
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where { },C NCΛ ∈ , with { }J
jC z += ∈ℝ  and { }{ }: 0,1J

j jNC z z+= ∈ ∈ℝ . VRSS ,Λ  assumes 

strong disposability of input and outputs, variable returns to scale, and it imposes either the 

traditional convexity (C) assumption or an alternative non-convexity (NC) hypothesis. From 

activity analysis, z is the vector of intensity or activity variables that indicates the intensity at 

which a particular activity is employed in constructing the reference technology by forming 

convex combinations of observations constituting the best practice-frontier.  

From this same technology, a plant capacity version is defined by dropping the 

constraints on the variable input factors. This leads to Johansen’s model definition of plant 

capacity whereby the availability of variable factors is unrestricted:  
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where Λ

 

is again defined as above. To remain consistent with the plant capacity definition, in 

which only the fixed inputs are bounded at their observed level, the variable inputs in the 

production model (2) are allowed to vary at will to exploit the full capacity of outputs 

conditioned by the fixed inputs.  

The efficiency measure 1θ  is found by solving the linear programming problem for each 

firm 1,2,...,j J=  relative to the production possibilities set with unrestricted variable inputs 

given by (2):  

 { }
1

,
1 1

,

ˆmax : ( , )
j

j

j j VRS

z
x u S

θ
θ θ Λ∈ . (3) 
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The scalar 1θ  informs us by how much the production of each output of firm j can be increased. 

In particular, capacity output for firm k of the mth output is *
1

kθ  multiplied by the actual 

production ukm. Hence, capacity utilization based on observed output (subscript ‘oo’) is: 

 
*
1

1
oo

k
k

CU
θ

= . (4) 

Färe et al. (1994) note that this ray CU measure may be biased downwards, because 

there is no guarantee that the observed outputs are produced in a technically efficient way. The 

technical efficiency measure can be obtained by evaluating each firm 1,2,...,j J=  relative to 

the production possibility set VRSS ,Λ . The outcome ( 2θ ) shows by how much production can be 

increased using the given vector of inputs: 

 { }
2

,
2 2

,
max : ( , )

j
j

j j VRS

z
x u S

θ
θ θ Λ∈ . (5) 

The technically efficient output vector is *2
kθ  multiplied by observed production for each output. 

Total industry output can be found by aggregating the firm-level technically efficient output 

*
2

k
kuθ  of each firm. Likewise, the aggregate industry capacity output can be found as the sum of 

firm-level capacity outputs (*1
k

kuθ ). The unbiased ray measure of capacity utilization given 

technically efficient output (subscript ‘eo’) is then: 

 
*
2
*
1

k
k
eo k

CU
θ
θ

= . (6) 

The focus here is on reallocation of resources between branches in a network by 

explicitly allowing improvements in technical efficiency and capacity utilization rates. The 

model is developed in two steps as follows. In the first step, from model (3), an optimal activity 

vector z*k is provided for firm k and hence capacity output and its optimal use of fixed and 

variable inputs can be computed: 
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1 1 1

; ;
J J J

k k k
km j jm kf j jf kv j jv

j j j

u z u x z x x z x
= = =

= = =∑ ∑ ∑ . (7) 

In a second step, these “optimal” frontier figures (capacity output and capacity variable 

and fixed inputs) at the branch level are used as parameters in the industry model. In particular, 

the industry model minimizes the industry use of fixed inputs in a radial way such that the total 

production is at least at the current total level, or at a desired target level in the model extension 

developed below, by a reallocation of resources between firms or branches. Reallocation is 

allowed based on frontier production outputs and inputs used in each branch. In the short-run, it 

is assumed that current capacities cannot be exceeded either at the branch or industry level. 

Define Um as the industry output level of output m and Xf (Xv) as the aggregate fixed (variable) 

inputs available to the sector of factor f (v): 

 
1 1 1

,  and
J J J

m jm f fj v vj
j j j

U u X x X x
= = =

= = =∑ ∑ ∑ . (8) 

The formulation of the multi-output and frontier-based short-run Johansen (1972) 

industry model can then be specified as: 
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 (9) 

Rather than reflecting a returns-to-scale hypothesis, the variables w now indicate which firms’ 

capacity is utilized and by how much. The components of the activity vector w are bounded 

above at unity, such that current capacities can never be exceeded. The first constraint prevents 

total production by a combination of firm capacities from falling below the current output levels. 

The second constraint means that the total use of fixed inputs (right-hand side) cannot be less 
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than the use by a combination of firms. The third constraint calculates the resulting total use of 

variable inputs. Note that the total amount of variable inputs is a decision variable. The objective 

function is a radial input efficiency measure focusing on the fixed inputs solely. This input 

efficiency measure has a fixed-cost interpretation at the industry level. The activity vector w 

indicates which portions of the line segments representing the firm capacities are effectively 

used to produce outputs from given inputs.  

To sum up, the optimal solution to this simple LP gives the combination of firms or 

branches that can produce the same or more outputs with less or the same use of fixed inputs in 

aggregate.4 It measures the combined impact of the removal of any inefficiency, the exploitation 

of existing plant capacities, and the reallocation of inputs and outputs. Notice that an alternative 

could be to have an efficiency measure focusing on the expansion of industry outputs that has a 

revenue interpretation.  

From a managerial point of view, the optimal solution of this short-run industry model 

provides information at two levels. First, at the level of the network it indicates the aggregate 

amount of variable inputs that is needed to realize the multiple aggregate outputs from given 

fixed aggregate inputs. If the optimal value of the aggregate variable inputs decision variable is 

larger than the current amount of aggregate variable inputs, then this implies additional 

recruitments are needed. Otherwise, a reduction in staff levels is required. 

Second, at the level of the individual production units (bank branches) the model yields a 

complete planning for service production. Per unit, one obtains optimal fixed ( **
jfj wx ) and 

variable ( **
jvjwx ) inputs as well as optimal outputs ( **

jjmwu ). This may imply reallocations of 

inputs: fixed and variable inputs may be redistributed among units. Obviously, adjusting fixed 

inputs may be costly (e.g., renegotiating an existing office rental contract) and may furthermore 

                                                 
4 In fact, this short-run industry model is geometrically speaking a set consisting of a finite sum of line segments 
known as a zonotope (see Hildenbrand (1981: 1096)). 
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require time to implement (e.g., legal terms of notification prevent immediate changes). Equally 

so, adjusting variable inputs may be subject to a series of constraints (especially labor is under 

legal protection). This plan may also imply reallocations of outputs: this simply means that one 

adjusts the output targets within the planning horizon so as to better exploit the existing capacity 

of the whole network. Obviously, this may imply accompanying policy measures that are not 

necessarily part of the model (e.g., marginal changes in global and local marketing campaigns in 

an effort to gear consumer demand towards these targets). 

 

2.3. Short-Run Industry Model: Additional Scenarios 

Now, we turn to a discussion of some additional scenarios that extend the frontier-based 

short-run industry model to adapt to managerial concerns.  

 

1.  Restriction on number of branches: 

Assume the number of branches should be restricted to N. Since the variable wj represents the 

utilization of the corresponding branch, this restriction can be modeled with the following 

constraints: 

 

{ }
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b j J
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By adding these constraints to model (9), it becomes a mixed integer program. The binary 

variable bj indicates whether the corresponding branch is used in the optimal solution or not. 

The amount by which it is used can then be read from variable wj. 

 

2.  Allow for existing inefficiency  

The capacity outputs and the corresponding optimal fixed and variable inputs as 

computed in (7) presuppose that all eventually existing technical inefficiency can be eliminated 
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in an effort to exploit the existing capacity of production. However, starting from the optimal 

activity vector * * *
1( ,..., )k k k

Jz z z=  obtained from solving model (3), it is also possible to define 

capacity outputs and the corresponding optimal fixed and variable inputs while maintaining the 

existing levels of technical inefficiency by computing: 

 * * * * * *

1 1 12

1
; ;

J J J
k k k

km j jm kf j jf kv j jvk
j j j

u z u x z x x z x
θ = = =

= = =∑ ∑ ∑ . (11) 

Hence, while the optimal fixed and variable inputs remain the same, the capacity outputs are 

maintained or scaled down by the measured amount of technical inefficiency (2θ ). Referring to 

the capacity output in (7) as the fully efficient one, the adjustment in (11) is called the fully 

inefficient capacity output. Both these capacity outputs can be considered special cases of the 

100α % inefficient capacity output and the corresponding optimal fixed and variable inputs that 

can be defined as: 

 * * * * * *

1 1 12

1
( ) ; ; ,

1 ( 1)

J J J
k k k

km j jm kf j jf kv j jvk
j j j

u z u x z x x z xα
α θ = = =

= = =
+ − ∑ ∑ ∑  (12) 

with 0 1α≤ ≤ . Clearly, the 0% inefficient capacity output corresponds with the fully efficient 

capacity output, while the 100% inefficient capacity output coincides with the fully inefficient 

capacity output. When fully inefficient capacity output are used in the short-run industry model, 

this implies that one measures the impact of reallocation only. 

 

3. Restrictions on the personnel transfer 

Assuming the number of employees is a variable input, personnel transfer for a given 

branch with respect to the current situation is then measured by the difference between the 

optimal variable input resulting from the industry model and the observed variable input (i.e., 

*
vj j vjx w x− ). It could be meaningful to allow personnel transfer only in integer multiples of some 

unit β . For instance, 0.5β =  would mean that the number of employees must change in 
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multiples of one half (e.g., because the basic unit of a labor contract in some countries is either a 

part-time of a full-time contract). Since this change can be either positive (reflecting an increase 

in number of employees) or negative (referring to a decrease), this condition can be modeled by 

the constraint: 

 *
1 2( )vj j vjx w x i iβ− = − , (13) 

with i1 and i2 integer variables. The difference of both integer variables measures exactly the 

change in personnel expressed in units of β  (e.g., 0.5β =  means this difference of integer 

variables measures personnel change in half units). Note that adding this type of constraint 

transforms model (9) to a mixed integer problem. 

 

4. Imposing alternative aggregate output targets 

If it is possible to impose alternative target values on the outputs, then the first set of 

constraints in model (9) needs to be changed to: 

 *

1

(1 )
J

jm j m m
j

u w Uγ
=

≥ +∑  , (14) 

with 1mγ ≥ − . A value of 0mγ ≥  (implying 1 1mγ+ ≥ ) means that the aggregate output m of the 

industry model must be at least 100 mγ % larger than the current industry level of output m. 

Obviously, positive values correspond with increases, while negative values reflect decreases 

with respect to the current industry level of output m. If all 0mγ = , then no alternative target 

values are proposed and the original model (9) is obtained based upon observed aggregate 

outputs. 

Remark that, in general, imposing a positive target value (i.e., above the output 

aggregate) additionally restricts the constraints. This leads to worse objective function values in 

the case of a minimization problem. Put differently, a positive target value leads to a higher 

efficiency measure θ . Ultimately, too large positive target values may result in infeasibilities. 
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By contrast, negative target values (i.e., below the output aggregate) relax the corresponding 

constraint, which results in a lower or equal efficiency measure value. Whether this 

phenomenon actually occurs, however, depends on the status of the corresponding constraint 

and on its relation with other constraints. For instance, adding a negative target value to a 

nonbinding output constraint has no influence on the optimal solution. Even if an output 

constraint is binding, other binding output constraints could prevent a reduction of the efficiency 

measure θ  when adding a negative target value.  

 

Additional scenarios that could eventually be envisioned are: (i) limiting the range of 

plant capacity utilization for the units in the optimal solution (see, e.g., Kerstens et al. (2006)), 

and (ii) aggregating some of the outputs to reduce the number of dimensions (at the risk that the 

required more spectacular changes are more difficult to implement). 

 

3. DATA: BANK BRANCHES OF A GERMAN SAVINGS BANK 

Data are obtained from the article by Porembski et al. (2005). These authors analyze a 

sample of 142 German bank branches in the year 1998. In this work, we measure the efficiency 

of these branches of a German savings bank and demonstrate that by a different industry model 

approach one can improve the efficiency over the whole network. 

German thrift institutions are owned by communities or counties. Today, these 

institutions participate in all types of banking activities, either directly or through a central 

institution that is commonly owned. These banks are independent of each other, but share a 

number of resources. An important characteristic of these banks is that the goal of profit 

maximization is conditioned by the requirement of providing services to their stakeholders (e.g., 

community or county, to small businesses, and the middle-class). For example, nobody who 

wants to open an account can be rejected. These special characteristics cause some serious 
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problems, since, for instance, it is not allowed to restrict branches to regions with profitable 

customer bases only. Moreover, increased competition is faced due to the globalization of 

financial markets, the spread of internet banking, and the increasing operational cost of 

personnel, whereas interest rates and profits have been decreasing over the last few years. This 

explains why these banks are very keen on increasing their productivity. 

The bank analyzed is among the ten largest of its type in Germany. Its total assets in 

1998 were in the tens of billions US $. To develop the bank branch industry model, we follow 

Porembski et al. (2005) and basically adopt a so-called, production approach to defining the 

transformation of banking inputs into financial services. Bank branches are considered as 

service providers to account holders performing transactions and processing documents. Outputs 

are therefore normally defined in terms of the numbers of transactions or documents processed. 

The outputs chosen cover most of the products offered by a branch and the level of 

disaggregation is high (e.g., one distinguishes between demand deposits for business and for 

households). However, very often, and also in this case, detailed transaction flow data are 

unavailable, whence the stock of the number of accounts of various types is employed instead. 

Furthermore, only physical inputs like labor and capital and their associated costs are taken into 

account. Actually, around 60% of the operating costs are due to personnel. Hence, the labor 

input is one of the most important at the branch level. A major part of the remaining operating 

costs are building and equipment costs. Since these costs are very difficult to determine (e.g., the 

corresponding book value is often biased), the input office space serves as a surrogate input 

measure.  

Listing the inputs and outputs constituting the production technology in detail, the 

following inputs are available: 

• Employees (number); 

• Office space (square meters); 



 53 

whereby the units of measurement are put in between braces. Notice that it is common to 

consider office space as a fixed input that cannot be modified in the short-run. Hence, 

employees are the sole variable inputs. In addition, there is information on the following 11 

output dimensions: 

• Private demand deposits (accounts); 

• Business demand deposits (accounts); 

• Time deposits (accounts); 

• Saving deposits (accounts); 

• Credits (accounts); 

• Bearer securities (accounts); 

• Recourse guarantees (accounts); 

• Bonds (accounts); 

• Investment deposits (accounts); 

• Insurances (contracts); 

• Contributions to a building society (contracts). 

Descriptive statistics, including mean, variance, skewness, the minimum and the 

maximum, for these input and output dimensions are reported in Table 1. We can make the 

following observations. First, there is a lot of variation among these bank branches as witnessed 

by the standard deviation. Furthermore, the positive skewness of the distribution reveals the 

dominance of certain large units, mainly reflecting substantial differences in size. Second, notice 

that some branches do not seem to produce time deposits, recourse guarantees, or insurance 

since these outputs are zero at the minimum. This may reveal a variety of patterns of 

specialization among this sample bank branches. In addition, the last row contains the sum of all 

inputs and outputs at the level of the branch network. This serves as a benchmark to assess the 

impact of the various scenarios in the industry models. 
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< Table 1 about here > 

 

4 EMPIRICAL RESULTS  

First, we report extensively on the estimation results of the plant capacity measure and 

its underlying efficiency measures. We thereby focus on the impact of the convexity hypothesis 

and the impact of correcting the capacity definition for the presence of technical inefficiency or 

not. Thereafter, we turn to the basic results from the short-run industry model and also 

investigate the implied reallocations at the level of the individual branches. We thereby report 

on a series of different scenarios. Finally, we offer some examples of results at the individual 

branch level to show the level of detail at which these models provide guidelines. 

 

4.1. Estimation of Plant Capacity: Testing for Convexity 

Descriptive statistics for the capacity-related efficiency measure (1θ ), the ordinary 

technical efficiency measure (2θ ), and the plant capacity measure (eoCU ) are reported in Table 

2 for both the convex and non-convex case. Four key observations can be made: (i) the output-

oriented inefficiency measures are on average much higher in the convex case than in the non-

convex case; (ii) in the non-convex case all bank branches except three are technically efficient 

in contrast to just about 40% of observations in the convex case; (iii) two thirds of all branches 

(97) operate at full capacity in the non-convex case compared to about one fifth (33) in the 

convex case; and (iv) these phenomena result in rather low average measures of capacity 

utilization in the convex case compared to the non-convex case. 

< Table 2 about here > 

The difference between the densities of the output efficiency measures obtained with the 

convex and non-convex models as well as the resulting ray CU measure can be tested with a 

statistic developed by Li (1996) and later refined by Fan and Ullah (1999). This test statistic has the 
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critical advantage to be valid for dependent and independent variables, the former dependency 

being typical for frontier estimators. The null hypothesis states the equality of both distributions. 

Table 3 summarizes the obtained results. In total, three efficiency measures (1θ , 2θ  and eoCU ), 

both in the convex and non-convex case, are compared two by two. Notice that the symmetry of the 

table immediately follows from the symmetry of the test itself. The values of these test statistics 

must be compared with the reference value for the target significance level. A value higher than the 

reference value leads to a rejection of the null hypothesis (implying that both density distributions 

can be considered statistically different). Table 3 also shows the conclusion depicted with symbols 

when tested for a significance level of 1%: an asterisk (*) is used when the null hypothesis is 

rejected (different densities) and an equality sign (=) flags that the null hypothesis cannot be 

rejected (equal densities). We notice that all density distributions can be considered different, 

except for 1θ  and eoCU  in the non-convex case. The latter exception is explained by the fact that 

only three observations are technically inefficient ( 2 1θ > ) in the non-convex case (hence, the ratio 

eoCU  is inevitably very close related to 1θ ). In conclusion, statistical tests indicate that these 

efficiency measures follow different distributions. Put differently, adding the traditional convexity 

hypothesis is not as innocuous as it is traditionally assumed. 

< Table 3 about here > 

Table 4 reports descriptive statistics of plant capacity inputs and outputs for two 

variations: (i) convex vs. non-convex; and (ii) full efficiency vs. full inefficiency. These results 

need to be contrasted with the descriptive statistics on the inputs and outputs of the original data 

in Table 1. Comparing Tables 4 and 1, one immediately observes that: (i) the capacity inputs 

remain on average close to the observed inputs, while the choice for the output orientation of 

efficiency measurement implies that capacity outputs are quite above observed outputs; (ii) this 

divergence between capacity and observed outputs is more substantial for the convex case than 

for the non-convex case; and (iii) the difference between capacity outputs without and with 
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technical inefficiency is again largest in the convex case. This analysis serves to underscore the 

importance of the convexity axiom and, to some lesser extent, the impact of eliminating 

technical inefficiency or not. 

< Table 4 about here > 

 

4.2. Short-Run Industry Model: Basic Results and Additional Scenarios 

Instead of using the fully efficient capacity output in the short-run Johansen industry 

model formulated in (9), the fully inefficient capacity output (11) as well as the 100α % 

inefficient capacity output for a given α  (12) can be employed, leading to a series of variations 

of this basic model. By examining these different models, the impact of allowing for 

inefficiency can be measured in combination with the difference between convex and non-

convex estimates of capacity.  

Table 5 summarizes exactly this impact of both convexity and inefficiency on several 

key decision variables. First, there is the influence on the optimal industry efficiency 

measure *θ . In the next row, the influence on the number of branches is reported for which full 

capacity is used in realizing at least the aggregate outputs with only a fraction of the fixed 

aggregate inputs. Similarly, the next rows indicate the number of branches that are only partially 

used or not used at all to realize the set of constraints in model (9).  

< Table 5 about here > 

In the convex case, the effect of allowing for inefficiency is noticeable. We observe, for 

instance, an increase of the efficiency measure with 0.1 when allowing for all existing technical 

inefficiency (this is a relative increase of 17%). Since capacity outputs are lower when one 

allows for inefficiency, it is harder to economize on fixed inputs and an increase of its optimal 

value can indeed be expected. Furthermore, notice that the full efficiency case only utilizes 106 

of the 142 branches. Since the number of branches only partially used is limited to only three, 
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this means that 33 branches are not used at all to implement the optimal solutions obtained in 

the Johansen industry model. This is quite a substantial amount (23.2% of the total number of 

branches), making one doubt whether such solution is implementable in practice. When 

inefficiency is allowed for, then the number of unused branches is reduced to 28 (19.7%), which 

remains considerable.  

Remark that, contrary to what one may expect, the branches that are no longer used in 

the optimal solution remain not necessarily the same when moving from the fully efficient to the 

fully inefficient case. Put differently, the 28 branches observed with zero capacity in the fully 

efficient scenario are not necessarily contained in the 33 branches that are no longer utilized in 

the fully efficient scenario. Examining the individual branches, we detect 11 of the 28 branches 

that are used in the fully efficient case but not used at all in the fully inefficient scenario. Except 

for one, these are even used at full capacity. 

We end by looking at the results in the non-convex case. With respect to the optimal 

efficiency value *θ , we notice only a minor increase of 0.003 (this is a relative increase of only 

0.4%) when moving from the fully efficient to the fully inefficient industry model. From the 

individual results per branch, it can be observed that there is no shift in the optimal solution. 

Thus, all branches used at full capacity in the fully efficient case are also maintained at full 

capacity in the fully inefficient scenario. The same holds true for the branches used at partial 

capacity and for those that are no longer used at all. Only a minor change can be detected in the 

capacity of two branches used at partial capacity. Consequently, the effect of allowing 

inefficiency in the non-convex case can be neglected. The same holds for the other decision 

variables reported in this case, since there is no difference at all. Intermediate inefficiency levels 

for the non-convex model are therefore of limited interest in this particular study.  

Notice that the number of unused branches reduces to 24 (16.9%) which is substantially 

lower compared to the convex model (33 in the fully efficient scenario and 28 in the fully 
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inefficient case). From additional examination of individual branch results, it can be noticed that 

the 24 branches that are no longer used following the non-convex methodology are not 

necessarily contained in the unused branches according to the convex methodology. Indeed, 

with respect to full efficiency, 11 branches are found with zero capacity in the non-convex case, 

but with full capacity in the convex case. In the fully efficient scenario, even 13 branches can be 

detected having zero capacity according to the non-convex methodology, but with full capacity 

following the convex methodology. This underscores that the fundamentally different nature of 

the convex and non-convex technologies may have far reaching managerial consequences. 

To complement Table 5, Figures 1a and 1b trace the evolution of the industry efficiency 

measure as a function of a given α  for the convex and non-convex cases respectively. As could 

already be anticipated from considering the extreme cases in Table 5, the function for the convex 

case is much steeper because industry efficiency changes over a wider range. The relative flatness 

of this function in the non-convex case is related to the small amount of technical inefficiency that 

can be detected under this assumption in the first place. 

< Figures 1a and 1b about here > 

Notice that the industry efficiency measure has a fixed cost interpretation and denotes the 

potential budgetary gains from closing down the branches indicated by zero utilization in the 

industry model. However, one must realize that in practice a host of additional considerations may 

be necessary to choose among these in defining a coherent closure policy. As already pointed at 

previously, adjusting fixed inputs may be costly both when one is owner of the office space (e.g., 

should one rent out part of the excessive office space assuming this is technically feasible, or 

should one sell of the property and buy a smaller one somewhere nearby?) and when one is renting 

these (e.g., renegotiating an existing office rental contract may be costly). Furthermore, these 

changes require time to implement (e.g., legal terms in buying and selling contracts as well as in 

rental contracts prevent changes overnight). In addition, it may be necessary to include 
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additional consideration into this decision making process. For instance, it makes a difference 

whether one closes down a branch in a town with two additional branches of the same bank or in 

a small village with no other branch around in the neighborhood. These decisions may thus need 

to be conditioned on a variety of geographical information that is currently ignored in the model.  

We now restrict attention to the non-convex methodology. Furthermore, since the effect of 

allowing for inefficiency is negligible in the non-convex case, we also limit the analysis to the case 

of full efficiency. We discuss the following three scenarios of interest that have been formally 

introduced in subsection 2.3. Firstly, the impact of adding restrictions on the number of branches 

(10) in model (9) is considered. Secondly, we investigate the influence of adding restrictions on the 

personnel transfer (13) to the short-run industry model. Finally, we evaluate the effect of imposing 

some alternative aggregate output targets (see (14)). Results for all these scenarios are reported in 

Table 6. 

< Table 6 about here > 

 

Restrictions on the number of branches 

The results of adding the constraints on the number of branches for some key reference 

values of N to the model are reported in the first five columns of Table 6. On one extreme, we 

notice that the problem becomes infeasible when limiting the number of branches to 95 or less. 

This means that we need at least 96 branches to deliver the current level of network outputs 

from given fixed inputs. On the other side of the range, we see that efficiency no longer 

improves when passing the limit of 118 branches. Furthermore, observe that in all cases, the 

number of branches used at full capacity is very close to the imposed limit N. Put differently, the 

number of branches used at partial capacity is very low (only one to two), meaning there seems 

to be little or no advantage of moving to scenarios that promote the use of partial capacities. 

Obviously, the value of the efficiency measure θ  decreases as N increases. This observation 
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corresponds with intuition since an increase in the number of branches implies using branches 

that are less efficient and/or that have less capacity. 

 

Restrictions on the personnel transfer 

Adding restrictions on the personnel transfer, the middle part of Table 6 reports the 

effect of adding such a restriction for two values of β . In particular, personnel transfer is only 

possible in integer multiples of either 0.5β =  (number of employees must change in multiples 

of one half) or 1β =  (number of employees must change in multiples of one). This scenario has 

two noticeable effects. First, the industry efficiency score increases substantially, implying that 

less fixed inputs can be economized. Second, there is a substantial move from branches working 

at full capacity to branches functioning at some partial capacity level. This actually turns out to 

be the only scenario producing such a result. 

We add two remarks on potential implementation problems. First, the transfer of 

personnel can be difficult in view of geographical distances. For instance, it would make little 

sense to reallocate a person for say about 10% of his working time (about a half day per week in 

a five day working week) to a bank branch located at 500 km from his/her initial location. The 

current model ignores this issue basically because geographical information is lacking. 

However, in principle it is possible to extend the current model by restricting patterns of 

reallocation among units within a certain geographical radius (see, e.g., Giménez-García et al. 

(2007) for an example). 

Second, the empirical model only employs aggregate information on personnel. 

Disaggregating personnel may yield more detailed results that are easier to implement and that 

have positive additional results. For instance, in Sherman and Ladino (1995) the efficiency 

results have been used to look for reductions in the number of branch managers by looking for 

possibilities to share managers for specific nearby bank branches. This again necessitates 
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detailed geographical information. In a similar vein, the efficiency and capacity results could be 

used to make sure reallocations of managers go from high performance to low performance 

branches such that these relatively more successful managers can induce best practice behavior 

throughout the branch network.  

 

Imposing alternative aggregate output targets 

The last part of Table 6 reports on some aggregate output target scenarios. In a first 

scenario, we impose a positive output target of 10% on the number of saving deposits only. As a 

result, the optimal efficiency measure increases substantially from its original value of 0.702 to 

0.775. To achieve this target, the number of branches needed at full capacity must be increased 

from 116 to 120, reducing the number of branches at zero capacity by 4. Increasing the target 

beyond 30% of current aggregate output is infeasible. For instance, using a negative reduction of 

20% on the number of saving deposits has no influence at all on the optimal solution. Clearly, 

the other output constraints prevent such a reduction. When systematically looking for output 

variables that do have an influence when imposing a, for instance, 20% negative target, we 

observe that only the number of bearer securities accounts and the number of insurance 

contracts do make a difference. This effect is valid under ceteris paribus conditions, i.e., 

assuming no targets are imposed for the other outputs. First, in the case of the bearer securities, 

the efficiency measure θ  is further reduced to 0.675, hereby using only 108 branches at full 

capacity compared to 116 originally (resulting in an increase of the number of unused branches 

from 24 to 32). Second, with respect to the number of insurance contracts, a more modest effect 

is observed: the efficiency measure only drops with 0.001. This result is obtained by utilizing 

115 branches at full capacity instead of 116 initially. The number of branches no longer used 

remains the same (24), but when looking at individual results, we notice a minor shift. One 

branch previously not used is now used partially, and simultaneously another branch previously 

used only partially is now no longer used at all. 
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4.3. Results for Individual Bank Branches: Some Examples 

In this subsection, we briefly report on the typical results at the level of individual 

observations generated from the above models. Table 7 contains results for a selection of 

individual bank branches. The columns contain the information for all input and output 

dimensions. The rows refer to specific computations and scenarios to be specified below.  

< Table 7 about here > 

We start by discussing the results for a technically inefficient unit operating below full 

plant capacity. In the first row one finds the data for the inputs and outputs of observation 71 

that is representative for this case. First, in terms of technical efficiency, observation 71 yields 

an output efficiency measure of 1.544 and 1.096 for the convex and non-convex models 

respectively. Since plenty of studies explain the meaning of technical inefficiency (see, e.g., 

Färe et al. (1994)), the reader can consult these sources and we can safely ignore it here. Second, 

for the capacity model, the same observation obtains an output efficiency measure of 2.417 and 

1.476 for the convex and non-convex models respectively. The resulting inputs and outputs at 

full capacity utilization are reported on rows 2 and 3 for the convex and non-convex models 

respectively. Unsurprisingly, capacity optimal inputs and outputs are largest in the convex case. 

For the non-convex model, observation 71 is compared to the single peer observation 103 (thus, 

row 3 simply represents the inputs and outputs of observation 103). For the convex model, the 

peers are a combination of several observations as can be identified by the optimal vector of 

activity variables ( *z ). For the fixed input “Office space”, the peers use an equal (convex case) 

or a lower amount (non-convex case). For the variable input, by contrast, the peers use more of 

the variable input “Employees” (namely, 10.2 respect. 8 instead of 4) which is consistent with 

the plant capacity definition in which the variable inputs are allowed to vary at will. At full 
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capacity, the outputs are larger than the ones produced by observation 71 and even substantially 

larger in the convex case.  

In the industry model at full efficiency, observation 71 is maintained at full capacity 

( * 1w = ) in both the convex and non-convex models. This explains the numbers in rows 4 and 5, 

which exactly duplicate rows 2 and 3. In the industry model allowing for full inefficiency, the 

observation is maintained at full capacity (* 1w = ) in the non-convex model, but it is completely 

ignored in the convex solution (* 0w = ), which explains rows 6 and 7. Thus, bank branches apt 

for closing differ markedly between the different models. 

Next, we comment upon the results for a bank branch that is technically inefficient under 

the convex model and technically efficient under non-convexity, while it does not operate at full 

plant capacity under either model. The first row in this second part of the table contains again the 

data for the inputs and outputs of observation 13, our example in this case. Ignoring the technical 

efficiency issue, the capacity model leads to an output efficiency measure of 2.745 and 1.349 for 

the convex and non-convex models respectively. For the latter model, observation 13 is compared 

to the peer observation 74. Corresponding inputs and outputs at full capacity utilization are again 

reported on rows 2 and 3. Similar remarks as to the difference between fixed and variable inputs 

apply once more. 

In the industry model at full efficiency, observation 13 is maintained at full capacity 

( * 1w = ) in both the convex and non-convex models. When allowing for full inefficiency, the 

observation is again maintained at full capacity in the non-convex model and drops out of the 

convex solution. This explains rows 4 to 7. 

Last but not least, we discuss briefly upon an observation that is efficient in both technical 

and capacity terms. In this case, the results for observation 4 can be summarized succinctly: it 

appears as it is in all industry model results. Thus, we can just list the observation itself on a single 

row to save some space. 
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5. CONCLUSIONS 

Briefly summarizing the main contributions of this work, we focus shortly on the 

methodology employed as well as on the results. The efficiency literature analyzing the financial 

sector shows that even well performing banking institutions may have technical inefficiencies 

and some excess capacities at the level of their network of bank branches. Instead of relying on 

a burgeoning literature that starts from efficiency measurements at the individual level to come 

up with reallocations of resources at the firm level, we have opted to continue in the tradition of 

the revised short-run Johansen (1972) industry model, which is firmly grounded in the 

economics literature.  

By way of example, we have analyzed the financial services supplied by a bank branch 

network of a rather large sized German savings bank (see Porembski et al. (2005)) using a 

production approach. The ordinary technical efficiency measure, the capacity-related efficiency 

measure, and the plant capacity measure have been computed using both convex and non-

convex technologies. The resulting difference between the densities of these output efficiency 

measures and the resulting ray capacity utilization measure have been tested: the Li (1996) test 

statistic reveals that the resulting densities are almost all different from one another. This 

provides strong support to opt for a non-convex production technology rather than the traditional 

convex one for frontier benchmarking purposes. 

Empirical results of the short-run industry model reveal a potential for closing down part 

of the network while maintaining current service levels, even under the most conservative 

estimates of efficiency and capacity (i.e., the ones based on a non-convex technology). Three 

additional scenarios related to the impact of adding restrictions on the number of branches on 

the one hand and on personnel transfer on the other hand, and the fixing of alternative aggregate 

output targets have also been documented.  
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Obviously, these scenarios do not exhaust the possibilities to adjust this network model 

to managerial needs. We have mentioned on several occasions the usefulness of including 

geographical information. Additional policy considerations could include local and regional 

market share considerations (competition issues in general). Obviously, while including these 

additional parameters need not be impossible, one must be aware that the inclusion of additional 

constraints lowers the potential benefits of the short-run industry model and that some 

combinations of constraints may even lead to infeasibilities. 

The implementation cost of efficiency and capacity analysis and the resulting short-run 

industry models is high for single shot exercises, but this cost becomes low once the needed data 

on inputs and outputs are integrated into the accounting system (e.g., eventually as part of an 

activity based costing (ABC) strategy: see Kantor and Maital (1999)). Furthermore, while the 

computation of efficiency measures and capacity measures is rather straightforward and 

meanwhile a host of software options are around (e.g., in GAMS: see Olesen and Petersen 

(1996); in the freeware R: see Wilson (2008); in SAS: see Emrouznejad (2005), etc.), it is clear 

that the utilization of the short-run industry model as a strategic planning tool would ideally 

require its integration into a Decision Support System (DSS). We are unaware of written 

accounts reporting on the regular use of frontier benchmarking software in organizations.5 This 

remains an important issue for future research.  

Overall, we hope this contribution has shown convincingly that there is scope to employ 

efficiency-based models to manage bank branch networks both at a strategic and operational 

level. Obviously, more research is needed to come up with more detailed branch network 

models geared towards a more complete set of managerial needs. 

 

                                                 
5 Non-convex frontier technologies have been used for years to assess credit union performance by their trade 
association (Credit Union National Association (CUNA)): see, e.g., Fried et al. (1995). CUNA recently launched 
“CU Benchmarker” as a web based, paid service for benchmarking to its member credit unions. See the CUNA 
webpage http://www.cuna.org/research/cu_benchmarker.html (consulted April 4, 2011). 



 

Table 1: Descriptive Statistics of Inputs and Outputs 

 Inputs Outputs (all in numbers) 
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Mean 5.42 297.34 1846.91 272.31 37.32 5155.47 124.14 284.68 46.53 95.89 365.73 25.74 47.46 
St. 
Dev. 4.17 213.12 1455.95 265.39 39.15 4086.80 100.01 196.27 44.45 85.79 288.29 26.67 48.81 
Skew 1.58 1.71 1.68 2.19 2.78 1.78 1.56 1.48 1.98 2.07 1.79 2.67 2.22 
Min. 1.0 64.00 432.00 31.00 0.00 1257.00 6.00 33.00 0.00 7.00 74.00 0.00 3.00 
Max. 20.89 1228.00 7851.00 1563.00 285.00 20523.00 499.00 1020.00 271.00 503.00 1673.00 185.00 293.00 
Total 769.84 42222 262262 38668 5300 732077 17628 40424 6607 13616 51934 3655 6739 
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Table 2: Descriptive Statistics for 1θ , 2θ  and eoCU  

 Convex Non-Convex 

 1θ  2θ  eoCU  1θ  2θ  eoCU  

Mean 1,533 1,147 0,801 1,086 1,002 0,939 
St. Dev. 0,556 0,204 0,170 0,171 0,016 0,107 
Min 1,000 1,000 0,343 1,000 1,000 0,565 
Max 3,475 1,982 1,000 1,873 1,133 1,000 
# Eff. Obs 33 57 32 97 139 97 
 

Table 3: Li (1996) Test Statistic for Differences in Densities 

  Convex Non-Convex 
  

1θ  2θ  eoCU  1θ  2θ  eoCU  

1θ  0.000 = 7.728 * 13.013 * 26.211 * 54.730 * 27.061 * 

2θ  7.728 *  0.000 =  12.804 * 6.672 * 26.543 * 7.693 * Convex 

eoCU  13.013 * 12.804 * 0.000 = 27.074 * 53.955 * 24.841 * 

1θ  26.211 * 6.672 * 27.074 * 0.000 =  6.205 * 0.506 = 

2θ  54.730 * 26.543 * 53.955 * 6.205 * 0.000 = 6.215 * Non-Convex 

eoCU  27.061 * 7.693 * 24.841 * 0.506 = 6.215 * 0.000 = 
H0: The two density distributions are equal. Conclusions: * : Reject H0, = : Accept H0. 
Reference values: 1.28 for 10% sign. level, 1.64 for 5% sign. level, 2.33 for 1% sign. level. 
 



 

Table 4: Descriptive Statistics of Plant Capacity Inputs and Outputs: Convex vs. Non-Convex; Full Efficiency vs. Full Inefficiency 
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Full Efficiency Convex             

Mean 8,13 296,37 2840,26 456,36 70,46 7642,41 212,73 398,15 86,95 155,05 562,67 42,14 71,86

St. Dev. 4,43 210,57 1524,33 306,12 47,83 4370,98 107,50 189,55 57,81 88,98 317,85 25,97 49,99
Min 2,00 64,00 552,00 46,00 0,00 1335,00 6,00 67,00 0,00 15,00 74,00 3,00 14,00
Max 20,89 1228,00 7851,00 1563,00 285,00 20523,00 499,00 1020,00 271,00 503,00 1673,00 185,00 293,00
 Non-Convex            

Mean 6,71 282,08 2308,20 365,72 54,79 6290,96 172,71 333,47 68,27 126,29 453,43 33,35 59,31
St. Dev. 4,95 204,79 1646,01 342,33 56,05 4695,95 124,40 191,35 71,28 98,43 329,60 29,33 52,76
Min 1,00 64,00 471,00 31,00 0,00 1335,00 6,00 57,00 0,00 14,00 74,00 0,00 3,00
Max 20,89 1228,00 7851,00 1563,00 285,00 20523,00 499,00 1020,00 271,00 503,00 1673,00 185,00 293,00



 

 

 

 

 

Full Inefficiency Convex             

Mean   2568,37 413,68 63,33 6922,23 191,76 358,87 77,81 140,60 509,14 38,37 65,72
St. Dev.   1542,24 305,14 46,58 4405,07 107,96 193,75 55,53 90,37 320,86 26,33 50,41
Min   552,00 46,00 0,00 1335,00 6,00 67,00 0,00 15,00 74,00 3,00 14,00
Max   7851,00 1563,00 285,00 20523,00 499,00 1020,00 271,00 503,00 1673,00 185,00 293,00
 Non-Convex            

Mean   2303,87 365,13 54,68 6279,34 172,24 332,71 68,17 126,06 452,57 33,27 59,14
St. Dev.   1646,57 342,48 56,01 4696,89 124,14 191,27 71,31 98,45 329,67 29,32 52,67
Min   471,00 31,00 0,00 1335,00 6,00 57,00 0,00 14,00 74,00 0,00 3,00
Max   7851,00 1563,00 285,00 20523,00 499,00 1020,00 271,00 503,00 1673,00 185,00 293,00
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Table 5: Basic Short-Run Industry Model Results: Impact of Convexity and Technical 

(In)efficiency 

 Decision Variables 
Full 

efficient 
( 0α = ) 

Full 
inefficient 
( 1α = ) 

Industry efficiency *θ  0.588 0.688 
# Full Capacity w  106  112 
# Partial Capacity w  3  2 

Convex 

# Zero Capacity w  33  28 
Industry efficiency *θ  0.702 0.705 
# Full Capacity w  116  116 
# Partial Capacity w  2  2 

Non Convex 

# Zero Capacity w  24  24 
 

 

FIGURE 1A: INDUSTRY EFFICIENCY 

MEASURE IN RELATION TO α  IN CONVEX 

CASE 

FIGURE 1B: INDUSTRY EFFICIENCY 

MEASURE IN RELATION TO α  IN NON-

CONVEX CASE 
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Table 6: Short-Run Industry Model Results: Additional Scenarios 

 N β  Aggregate output targets 
 95≤  96 100 117 118≥  0.5 1.0 S1* S2 S3 S4 

*θ  – 0.766 0.722 0.702 0.702 0.711 0.723 0.775 0.702 0.675 0.701 
# Full 
Cap. 

– 95 99 115 116 84 78 120 116 108 115 

# Partial 
Cap. 

– 1 1 2 2 47 57 1 2 2 3 

# Zero 
Cap. 

– 46 42 25 24 11 7 21 24 32 24 

* S1: Impose a target value of +10% on the number of saving deposits. 
S2: Impose a target value of -20% on the number of saving deposits. 
S3: Impose a target value of -20% on the number of bearer securities account. 
S4: Impose a target value of -20% on the number of insurance contracts. 

 
 



 

Table 7: Results for Individual Bank Branches: Some Examples 

* FE = Full efficient / FI = Full inefficient 

 

P
ersonnel 

O
ffice space 

P
rivate 

dem
and 

deposits 

B
usiness 

dem
and 

deposits 

T
im

e deposits 

S
aving 

deposits 

C
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B
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securities 

R
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guarantees 

B
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Investm
ent 

deposits 

Insurance 

C
ontributions 

to a building 
society 

Unit 71 4 310 1335 97 14 3821 72 191 23 52 324 17 21 

Capacity  C 10.20 310.00 3632.98 530.33 82.72 9234.53 273.67 461.61 128.65 175.51 783.04 41.09 66.42 

Capacity NC 8 270 2914 352 108 8567 344 282 43 98 602 36 120 

I. model C FE* 10.20 310.00 3632.98 530.33 82.72 9234.53 273.67 461.61 128.65 175.51 783.04 41.09 66.42 

I. model NC 
FE 

8 270 2914 352 108 8567 344 282 43 98 602 36 120 

I. model C FI 0 0 0 0 0 0 0 0 0 0 0 0 0 

I. Model NC FI 8.00 270.00 2658.01 321.08 98.51 7814.40 313.78 257.23 39.22 89.39 549.11 32.84 109.46 

Unit 13 2 190 575 123 11 1614 32 54 10 41 186 7 14 

Capacity  C 8.24 190.00 2417.20 478.85 96.12 5726.16 169.82 249.46 143.47 130.74 510.64 35.74 38.44 

Capacity NC 3.92 137 1537 166 27 3810 195 320 23 132 340 10 50 

I. model C FE 8.24 190.00 2417.20 478.85 96.12 5726.16 169.82 249.46 143.47 130.74 510.64 35.74 38.44 

I. model NC 
FE 

3.92 137.00 1537.00 166.00 27.00 3810.00 195.00 320.00 23.00 132.00 340.00 10.00 50.00 

I. model C FI 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

I. Model NC FI 3.92 137.00 1537.00 166.00 27.00 3810.00 195.00 320.00 23.00 132.00 340.00 10.00 50.00 

Unit 4 2 64 813 57 9 2265 39 135 22 28 162 11 20 
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Chapter 2: 

Malmquist and Hicks-Moorsteen Productivity Indices:  

An Empirical Comparison Focusing on Infeasibilities 

 

 

Abstract:  

In the literature, two main ratio-based productivity indices have been defined in terms of a 

primal technology notion. While the Malmquist productivity index has become very popular, 

it has the problem that it is not always well-defined. By contrast, the less popular Hicks–

Moorsteen productivity index is well-defined under weak conditions on technology. The 

purpose of this paper is to empirically illustrate the extent of this determinateness problem on 

some agricultural data sets under variations on the technology assumptions.  

 

Keywords: Malmquist productivity index, Hicks-Moorsteen productivity index, 

Infeasibilities. 

 

JEL classification: C43, D24, O33. 



 74 

1. INTRODUCTION 

Measuring multifactor or Total Factor Productivity (TFP) growth requires the 

construction of measures of input and output changes that incorporate changes in all 

dimensions. Two popular measures of TFP are the Törnqvist and the Fisher productivity 

indices (see, e.g., Coelli et al. (2005) or Färe, Grosskopf and Margaritis (2008)). Both use 

price information to aggregate the quantity data into quantity indices about the utilization of 

outputs and inputs. The resulting dual TFP index is a simple ratio of the thus obtained output 

and input quantity indices.  

While dual TFP indices combine price and quantity information, a primal TFP index 

relies solely on quantity information summarizing the underlying production technology of 

the firm. The technology-based, discrete-time Malmquist productivity index introduced by 

Caves et al. (1982) constructs a production frontier representing technology and uses distance 

functions evaluated at different input–output combinations for productivity comparison.1 In so 

doing, it offers a more general picture of productivity growth compared to other indices 

because: (i) the hypothesis of technical efficiency is relaxed; (ii) a decomposition is possible 

into technical efficiency changes and technology shifts (following Nishimizu and Page (1982), 

but see Zofío (2007) for further decompositions); and (iii) the computation of this index 

relative to multiple inputs and outputs technologies requires no price information (see Färe et 

al. (1995)). Meanwhile, the Malmquist productivity index has been widely applied in 

empirical research.  

Another proposal for a discrete-time primal productivity index is the Hicks-Moorsteen 

or Malmquist TFP index, which is defined as a ratio of Malmquist output and input indices 

(see Bjurek (1996)). However, it is fair to say that it is less widely used in applied research 

                                                 
1 Notice that Caves et al.  (1982) in fact concentrated on showing how the traditional Törnqvist index 
approximates the technology-based Malmquist under certain conditions. 
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than the Malmquist productivity index (see, e.g., Bjurek et al. (1998) or Nemoto and 

Goto (2005)).  

One well-known pitfall of the Malmquist index is that it is not always a TFP index 

(see Färe et al. (2008) for details). Indeed, rather quickly it was realized that its TFP 

properties are maintained under constant returns to scale, but as illustrated by Grifell-Tatjé 

and Lovell (1995) these are not preserved in the presence of variable returns to scale (i.e., a 

more general representation of technology). By contrast, Bjurek (1996) states that the Hicks-

Moorsteen productivity index has a TFP interpretation and Grifell-Tatjé and Lovell (1999) 

illustrate this numerically. Later on, it has been proven that the Malmquist and Hicks–

Moorsteen productivity indices coincide under two properties: (i) constant returns to scale, 

and (ii) inverse homotheticity (see Färe et al. (2008)). Thus, whenever these conditions are not 

satisfied in a sample or are not imposed on technology, both productivity indices diverge and 

the Malmquist index is a biased TFP measure (see O’Donnell (2008)). In the very few 

empirical applications we are aware of, both indices show a rather strong similarity, though 

they are not identical (see, e.g., Bjurek et al. (1998)). 

Another problem known since the beginning of this literature is that some of the 

distance functions constituting the Malmquist productivity index may well be undefined when 

estimated using general technologies (see Färe et al. (1995)). However, empirical studies 

often ignore reporting on this infeasibility problem. For instance, Mukherjee, Ray and Miller 

(2001) report between 1% and 3.5% of infeasibilities per Malmquist index computed over a 

two-year period in a larger sample of 201 US commercial banks observed over several years. 

Briec and Kerstens (2009) prove that infeasibilities can occur for an even more general so-

called Luenberger productivity indicator based upon more general directional distance 
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functions. Thus, even this more general indicator does not satisfy the determinateness 

property in index theory.2  

By contrast, the Hicks–Moorsteen index satisfies the determinateness axiom. This 

claim of Bjurek (1996) has been formally proven by Briec and Kerstens (2011) under mild 

conditions (i.e., mainly strong disposability of inputs and outputs).3 This determinateness 

makes it a natural candidate to adopt it for benchmarking purposes focusing on the selection 

of a unit of strategic value against which performance is compared. Recently, Epure et al. 

(2011) define a series of variations based upon the Hicks–Moorsteen index offering such a 

benchmarking perspective. 

O’Donnell (2008, 2010) has recently shown that profitability change can be decomposed 

into the product of a total factor productivity (TFP) index and an index measuring relative price 

changes. Many TFP indices can be decomposed into measures of technical change and technical 

efficiency change (following Nishimizu and Page (1982)), but furthermore into scale efficiency 

change and mix efficiency change components. Indices that can be decomposed in this way 

include the Fisher, Törnqvist and Hicks–Moorsteen TFP indices, but not the Malmquist index. 

Combined with the previously established doubts of the Malmquist index as a TFP index and the 

potential infeasibilities it may suffer from, one way to interpret it is as an index measuring local 

technical change and its components. We return to this interpretation in the concluding section. 

While this infeasibility issue received rather limited attention in the productivity index 

literature, it is important when productivity indices are used for purposes of public policy. For 

example, the implementation of incentive regulatory mechanisms (e.g., in the context of price 

cap regulation) in a variety of network industries (gas, electricity, telecom, etc.) often makes 

                                                 
2 Determinateness is one of Fisher’s (1922) original axioms. It requires that an index remains well-defined even 
when one or more of its arguments become zero or infinity. 
3 Zaim (2004, 2006) employs a Hicks–Moorsteen index to measure environmental performance. He thereby 
imposes weak disposal in the bad outputs which are jointly produced along with the good outputs. Not entirely 
surprisingly, he reports some infeasibilities of this Hicks–Moorsteen environmental performance index. 
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use of multifactor best practice efficiency measures (see, e.g., Diewert and Nakamura (1999)). 

These regulatory applications would be seriously hampered when productivity change cannot 

be measured for some of the regulated firms (see, for example, Estache et al. (2007)). 

Therefore, this contribution aims at empirically exploring the prevalence of the 

infeasibility problem and to document how the Hicks-Moorsteen index escapes from this 

problem. Section 2 provides the basic definitions of the technology, the various efficiency 

measures and distance functions, and the Malmquist and Hicks–Moorsteen productivity 

indices. Section 3 introduces the specifications of technologies used for computing these 

primal productivity indices. The next section describes the agricultural data sets employed. 

Section 5 discusses the empirical results. A final section concludes. 

 

2. DEFINITIONS OF TECHNOLOGY AND PRODUCTIVITY INDIC ES 

2.1 Technology and Distance Functions 

The production technology uses the inputs 1( ,..., ) N
nx x x += ∈ℝ to produce 

outputs 1( ,..., ) M
my y y += ∈ℝ . In each time period (t) the set of all feasible input and output 

vectors is called the production possibility set (T(t)). This production possibility set is 

formally defined as follows: 

{ }( ) ( , ) ;  can produce .t t N M t tT t x y x y+
+= ∈ℝ     (1) 

This technology satisfies the following traditional assumptions: (T.1) no outputs without 

inputs; (T.2) infinite outputs are not allowed with a finite input vector; (T.3) closedness; and 

(T.4) strong input and output disposability. Note that the rather conventional convexity 

assumption is not always imposed (just when needed). 

Debreu's (1951) coefficient of resources utilization and the efficiency measure 

introduced by Farrell (1957) are inversely related to the distance functions introduced by 
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Shephard (1970). In particular, the input-oriented efficiency measure of Debreu and Farrell 

( ) ( , )i t t
T tE x y  is the inverse the Shephard (1970) input distance function. For the input-oriented 

case, this efficiency measure ( ) ( , )i t t
T tE x y  is based upon the minimum contraction of an input 

vector by a scalar λ  to catch up with the boundary of technology: 

( ) ( ){ }( , ) ; , ( ), 0 .min
i t t t t
T tE x y x y T t

λ
λ λ λ= ∈ ≥    (2) 

In the case of an output efficiency measure, ( ) ( , )o t t
T tE x y  looks for the maximum expansion of 

an output vector by a scalar θ to catch up with the boundary of technology: 

( ){ }( ) ( , ) ; , ( ), 0 .max
o t t t t
T tE x y x y T t

θ
θ θ θ= ∈ ≥    (3) 

Notice that under constant returns to scale, already Førsund and Hjalmarsson (1979) have 

shown that input- and output-oriented efficiency measures are linked: 

1

( ) ( )( , ) ( , )o t t i t t
T t T tE x y E x y

−
 =   . 

For all { } { }( , ) , 1 , 1a b t t t t∈ + × + , the time-related version of the Farrell input- and 

output-oriented efficiency measure are given by 

( ) ( ){ }( , ) ; , ( ), 0min
i b b b b
T aE x y x y T a

λ
λ λ λ= ∈ ≥    (4) 

 and 

( ){ }( ) ( , ) ; , ( ), 0 .max
o b b b b
T aE x y x y T a

θ
θ θ θ= ∈ ≥    (5) 

Note that ( )( , )i b b
T aE x y = +∞  if the set in (4) is empty and ( ) ( , )o b b

T aE x y = −∞  if the set in (5) is 

empty. 

 

2.2 Malmquist and Hicks–Moorsteen Productivity Indices  

An input-oriented Malmquist productivity index )),(),,(( 11 ++ tttti yxyxM  can be 

defined as follows: 
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( ) ( )
( ) ( )

( ) ( )
( ) ( )

1/ 2

11 1

1 1 1 1
1

, ,
(( , ), ( , )) .

, ,

i t t i t t
T t T ti t t t t

i t t i t t
T t T t

E x y E x y
M x y x y

E x y E x y

++ +
+ + + +

+

 
 =
  

  (6) 

Its interpretation is as follows. Productivity growth (decline) is indicated by values smaller 

(larger) than unity. To avoid an arbitrary selection among base years, a geometric mean of 

period t (first ratio) and period t+1 (second ratio) Malmquist indices is taken.4  

A Hicks-Moorsteen (or Malmquist TFP) productivity index with base period t is 

defined as the ratio of a Malmquist output quantity index at base period t and a Malmquist 

input quantity index at base period t: 

1
( ) ( )1 1

( ) 1
( ) ( )

( , ) ( , )
(( , ), ( , )) .

( , ) ( , )

o t t o t t+
T t T tt t t+ t+

T t i t t i t+ t
T t T t

E x y E x y
HM x y x y

E x y E x y
=    (7) 

When the Malmquist output quantity index (ratio in numerator) is larger (smaller) than unity, 

then more (less) outputs were produced in period t+1 than in period t from a given input vector. 

When the Malmquist input quantity index (ratio in denominator) is larger (smaller) than unity, 

then less (more) inputs were needed in period t+1 than in period t to produce a given output 

vector. When the Hicks-Moorsteen productivity index is larger (smaller) than unity, then it 

indicates productivity gain (loss).  

In a similar way, a base period t+1 Hicks-Moorsteen productivity index is defined as 

follows: 

1 1 1
( 1) ( 1)1 1

( 1) 1 1 1
( 1) ( 1)

( , ) ( , )
(( , ), ( , )) .

( , ) ( , )

o t+ t o t+ t+
T t T tt t t+ t+

T t i t t+ i t+ t+
T t T t

E x y E x y
HM x y x y

E x y E x y
+ +

+
+ +

=    (8) 

Its interpretation is entirely similar to the above. A geometric mean of these two Hicks-

Moorsteen productivity indices yields:  

1 1 1 1 1 1 1/ 2
( ), ( 1) ( ) ( 1)(( , ), ( , )) [ (( , ), ( , )) (( , ), ( , ))] .t t t+ t+ t t t+ t+ t t t+ t+

T t T t T t T tHM x y x y HM x y x y HM x y x y+ += ⋅  (9) 

Again, its interpretation is entirely similar to the above.  

                                                 
4 Notice that this geometric mean version does not chain. The choice for a fixed base version can readily remedy 
this issue.  
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2.3 Short-Run Malmquist and Hicks–Moorsteen Productivity Indices  

Ouellette and Vierstraete (2004, 2010) define a short-run input-oriented Malmquist 

productivity index. To define a short-run Malmquist index, it is necessary to partition the 

input vector into a fixed and variable part ( , ,( , )t f t v tx x x= ) such that there is always at least one 

variable input dimension.  

It is now necessary to define a time-related version of the Farrell sub-vector input-

oriented efficiency measure:  

( ) ( ){ }, , ,( , ) ; , , ( ), 0min
f i b b f b v b b

T aE x y x x y T a
λ

λ λ λ= ∈ ≥    (10) 

with ( )
, , ,( , , )f i f b v b b

T aE x x y = +∞  if the set in (10) is empty. The short-run input oriented 

Malmquist productivity index can now be defined as follows: 

( )

( )

( )

( )

1/2, , , , , ,
1, , , , 1 , 1 1

, , 1 , 1 1 , , 1 , 1 1
1

( , , ) ( , , )
(( , , ), ( , , )) .

( , , ) ( , , )

f i f t v t t f i f t v t t
T t T tf i f t v t t f t v t t

f i f t v t t f i f t v t t
T t T t

E x x y E x x y
M x x y x x y

E x x y E x x y
++ + +

+ + + + + +
+

 
=  
  

(11) 

Its interpretation is similar to the input oriented Malmquist productivity index (6) defined 

above. 

However, the above-mentioned sub-vector measure is sometimes undefined, i.e. it may 

not obtain a finite value. A base period t short-run Hicks–Moorsteen productivity index that is 

feasible can now be defined as follows: 

1
( ) ( )1 1

( ) , , , , , , 1
( ) ( )

( , ) ( , )
(( , ), ( , )) .

( , , ) ( , )

o t t o t t+
T t T tf t t t+ t+

T t i f f t v t t i f f t v t+ t
T t T t

E x y E x y
HM x y x y

E x x y E x x y
=   (12) 

Its Malmquist output quantity index is identical to the one in the definition (7). But, its 

Malmquist input quantity index now focuses on reducing variable input dimensions only 

compared to fixed input and output dimensions that have the same time superscript as the 

technology (see (10) above). Analogously, a feasible base period t+1 short-run Hicks–

Moorsteen productivity index is defined as follows: 
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1 1 1
( 1) ( 1)1 1

( 1) , , 1 , 1 , , 1 , 1 1
( 1) ( 1)

( , ) ( , )
(( , ), ( , )) .

( , , ) ( , )

o t t o t t+
T t T tf t t t+ t+

T t i f f t v t t i f f t v t+ t
T t T t

E x y E x y
HM x y x y

E x x y E x x y

+ +
+ +

+ + + + +
+ +

=  (13) 

Again, its Malmquist output quantity index is identical to the one in the definition (8), but the 

Malmquist input quantity index is constructed from the feasible Farrell sub-vector input-

oriented efficiency measures in (10). A geometric mean of these two short-run Hicks-

Moorsteen productivity indices is:  

1 1 1 1 1 1 1/2
( ), ( 1) ( ) ( 1)(( , ), ( , )) [ (( , ), ( , )) (( , ), ( , ))] .f t t t+ t+ f t t t+ t+ f t t t+ t+

T t T t T t T tHM x y x y HM x y x y HM x y x y+ += ⋅ (14) 

The interpretation remains entirely similar to the above indices.5  

 

2.4. Infeasibilities in the Literature: A Selection 

While it is not the purpose to give a systematic survey of all articles mentioning 

infeasibilities, we want to discuss a selection of articles to highlight some features of this 

phenomenon as documented in the current literature.  

First, some authors are aware about the potential occurrence of infeasibilities in the 

specifications of technology they select to compute a Malmquist index, but they do not report 

any incidence about infeasibilities. For instance, Burgess and Wilson (1995) mention the 

possibility of infeasibilities in a VRS technology (page 350), but do not mention elsewhere any 

occurrence of infeasibilities affecting their bootstrap results. Similarly, Cummins and Rubio-

Misas (2006) mention in the legend to their Tables 3 and 6 (page 346 and 352) the issue of 

infeasibilities, but give no indication about their eventual prevalence. It is not clear whether 

these authors indeed did not encounter any infeasibility or simply neglected reporting any 

cases.  

Second, depending on the structure of the data the incidence of infeasibilities can 

range from extremely mild to extremely severe. For instance, Ray and Desli (1997) report just 

                                                 
5 Note that this definition of a short-run Hicks–Moorsteen productivity index that is feasible is not trivial. See 
Briec and Kerstens (2011) for a variation on this short-run Hicks–Moorsteen index that is not well-defined. 
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one infeasibility for 1 out of 17 countries (5.8%) over the period 1979-1990 for two components 

of the Malmquist index (see their p. 1037). Bjurek et al. (1998) analyze an unbalanced panel of 

in total 2274 observations of Swedish electricity retail distributors over 21 years (1970-1990). 

This study reports on the productivity of three individual observations: for one of these, the first 

10 out of 20 annual (50%) output-oriented Malmquist indices are infeasible (see Figure 5.5). 

There is no other indication in that contribution on infeasibilities in the sample. Finally, Silva 

Portela and Thanassoulis (2006) analyzed an unbalanced panel of Portuguese bank branches 

from March to December 2001 on a monthly basis. Starting with 57 branches and ending with 

52 units due to branch closures, these authors report one month for which 47 out of 52 bank 

branches (90.4%) yield infeasible solutions.  

Third, the incidence of these infeasibilities is to some extent conditioned by the 

assumptions imposed on the technology. Pastor et al. (2011) report up to 12% infeasibilities 

when using a VRS technology for a balanced panel of 93 firms over a 4 year period. Looking 

at the literature, it is striking that especially articles focusing on environmental performance 

using some combination of good and bad outputs, whereby the trade-off between both these 

outputs is modelled using a weak disposability assumption on the bad output, suffer from 

infeasible solutions. For instance, Yörük and Zaim (2005) analyze 28 countries over 16 years 

using four models with undesirable outputs. For some individual countries, these authors 

report up to 11 out of 16 (68.7%) infeasible solutions. Analyzing 41 countries over 22 years, 

Kumar (2006) states that three countries experience 2, 8 and 13 infeasible solutions, even 

when multiple year windows are used to mitigate the problem. Finally, in a study of 30 OECD 

countries from 2001 to 2002 Zhou and Ang (2008) report infeasibilities for 2 countries 

involved. The assumption of weak disposal being weaker than the traditional strong disposal 

assumption, one could conjecture that infeasibilities are somehow related to the volume of the 

technologies as resulting from the less or more demanding assumptions. 
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In the literature, it is often assumed that the imposition of constant returns to scale on 

technology guarantees feasibility of the Malmquist productivity index (see, e.g., Färe et al. 

(1994)).6 However, to our knowledge no formal proof has ever been provided for this 

conjecture. Note that the feasibility of both the input-oriented and output-oriented Malmquist 

productivity index evaluated over all input respectively output dimensions can be inferred 

from results reported in Briec and Kerstens (2009) in a more general setting.7 In the case of 

the input-oriented Malmquist productivity index, feasibility follows directly from Proposition 

3.7 in Briec and Kerstens (2009). Assuming attainability is satisfied, it states that a necessary 

and sufficient condition for feasibility is that the underlying Farrell input efficiency measures 

aim for reductions over all input dimensions. For the case of the output-oriented Malmquist 

productivity index, Proposition 3.6 in the same article guarantees feasibility when the 

underlying Farrell output efficiency measures aim for reductions over all output dimensions. 

Note that both results are independent of the convexity axiom. 

Some proposals in the literature somewhat change the discrete time nature of the 

Malmquist index by combining two or more years as a base technology. In particular, a global 

Malmquist index constructs a single global technology from all units and all time periods, 

while a biennal index just takes a time window of two (Pastor et al. (2011)) instead of several 

years (Kumar (2006)). Some of these proposals come at a serious drawback: e.g., the global 

Malmquist index requires re-computing all results whenever new time periods become 

available. The biennal index is attractive in that it always remains feasible, but in contrast to 

the fixed base period Malmquist index it is not transitive. The discussion of the relative merits 

of a fixed versus variable basis for productivity indices has been summarized in Färe et al. 

                                                 
6 The seminal contribution of Färe et al. (1995) avoids this infeasibility problem in the output Malmquist 
productivity index by imposing a technology with a restrictive returns to scale assumption (in casu, non-
increasing returns to scale). 
7 Indeed, Briec and Kerstens (2009) prove that infeasibilities may occur for the more general Luenberger 
productivity indicator based upon a directional distance function. 



 84 

(2008). To avoid mixing up several other issues, we therefore ignore these proposals in our 

further discussion.  

In conclusion, our analysis must be mainly seen in the light of this last evidence. We 

systematically explore the incidence of infeasibilities as a consequence of variations in the 

assumptions on technologies underlying the index computations. 

 

3. METHODOLOGY: SPECIFICATION OF TECHNOLOGIES  

In this section, we basically discuss the different specifications of technology relative 

to which both the Malmquist and the Hicks-Moorsteen productivity indices are computed. 

While parametric estimation of the component efficiency measures of the Malmquist index is 

possible (see, e.g., Atkinson et al. (2003) or Orea (2002)), the nonparametric estimation is far 

more popular. 

We opt for nonparametric frontier technologies that impose neither an a priori 

functional form on technology, nor any restrictive assumptions regarding input remuneration. 

Moreover, the frontier nature of these technologies allows capturing any productivity 

inefficiencies and offers a benchmarking perspective. 

Traditionally, most Malmquist productivity indices are computed relative to 

technologies imposing constant returns to scale. However, it is also possible to compute it 

with respect to a more flexible, variable returns to scale technology (see, e.g., Mukherjee et al. 

(2001)). In addition, it seems interesting to explicitly assess the impact of the traditional 

convexity hypothesis on the amount of infeasibilities in the Malmquist index. Even though 

convexity has been profoundly criticized (e.g., Briec et al. (2004)), rather few contributions 

have computed a Malmquist productivity index relative to a nonconvex technology (Tulkens 

and Malnero (1996) are among the exceptions),  
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Let K  be the number of firms/units ( { }1,...,k K∈ ). Assuming strong disposal of inputs 

and outputs and some other maintained hypotheses to be specified below, following Briec et 

al. (2004) the nonparametric inner-bound approximations of the true technology can be 

presented by the following set of production possibilities: 
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1

; 1
K

k k
k

C z z+
=

 = ∈ = 
 

∑ℝ  and 

{ }
1

; 1, 0,1
K

k k k
k

NC z z z+
=

 = ∈ = ∈ 
 

∑ℝ , and where { },CRS VRSΓ ∈ , with { }; 0CRS δ δ= ≥  

and { }; 1 .VRS δ δ= =

 

 

From activity analysis, z is the vector of intensity or activity variables that indicates 

the intensity at which a particular activity is employed in constructing the reference 

technology by forming convex or nonconvex combinations of observations constituting the 

best practice frontier. This specification is nonlinear, but as shown by Briec et al (2004) it can 

be straightforwardly linearized in the convex cases (these methods are widely known under 

the moniker Data Envelopment Analysis (DEA)). However, the nonconvex cases involve 

solving either some nonlinear mixed integer programs, or some scaled vector dominance 

algorithms (these models are sometimes referred to as Free Disposal Hull (FDH)). More 

recently, Podinovski (2004) and Leleu (2006) have obtained mixed integer and linear 

programs respectively for all nonconvex specifications.  

Thus, the calculation of each input-oriented Malmquist and the Hicks-Moorsteen 

productivity index requires efficiency measures that are computed according to four different 

approaches: convex (C) versus nonconvex (NC) technologies on the one hand, and constant 



 86 

(CRS) versus variable returns to scale (VRS) on the other hand. Furthermore, some 

computations focus on a subset of variable input dimensions, while others do not distinguish 

between fixed and variable inputs. More detailed specifications of all efficiency measures 

involved in computing the input-oriented Malmquist and the Hicks-Moorsteen productivity 

indices are found in Appendix 1. The computations for the constant returns to scale case and 

reductions over all input dimensions on both convex and nonconvex technologies are  just 

provided as a point of comparison. 

 

4. SAMPLE DESCRIPTIONS  

We employ two secondary agricultural data sets for our empirical analysis. The first 

sample is taken from Ivaldi et al. (1996) and contains an unbalanced panel of three years of 

French fruit producers. It is based on annual accounting data collected in a survey (Reseau 

d'Information Comptable Agricole (RICA)). Two criteria have been adapted in selecting 

farms: (i) the production of apples must be distinct from zero, and (ii) the productive acreage 

of the orchard must be larger than five acres. The technology combines three inputs to 

produce two outputs. The three aggregated inputs are: (i) capital (including land), (ii) labor, 

and (iii) materials. The sole fixed input dimension is capital. The two aggregate outputs are (i) 

production of apples, and (ii) an aggregate of other productions. While the years 1984, 1985 

and 1986 count 130, 135 and 140 observations respectively, in the balanced panel only 92 

observations are in common. This implies that 92 out of 184 observations or just 50% can be 

used in the index computations. Summary statistics and more details on the variable 

definitions are available in Appendix 2 in Ivaldi et al. (1996).  

The second sample is a balanced panel of 43 smallholder rice farmers in the Tarlac 

region of the Philippines observed over the years 1990 to 1997 (see Coelli et al. (2005)). 

Fundamentally, four inputs are used to generate a single output (tons of freshly threshed rice). 
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The four inputs are: (i) area planted, (ii) labor used (in man-days of family and hired labor), 

(iii) fertilizer used (in kg of active ingredients), and (iv) other inputs used (a Laspeyres 

quantity index combining the inputs seed, herbicides, tractors and animals). The sole fixed 

input dimension is again area planted. Summary statistics and details on this sample are 

available in Appendix 2 of the book by Coelli et al. (2005). 

 

5. EMPIRICAL RESULTS  

First, we discuss the incidence of infeasibilities for the input-oriented Malmquist 

productivity index. Then, we discuss the descriptive statistics of both productivity indices as 

well as their rank correlations. 

Table 1 offers descriptive statistics for the input-oriented Malmquist index as well as 

the Hicks–Moorsteen index. Part A of the table reports on the Ivaldi et al. (1996) data, while 

Part B contains the results for the Coelli et al. (2005) data. Each table is structured as follows. 

The upper part reports on the input-oriented Malmquist index, while the lower part contains 

the Hicks–Moorsteen index results. Within each part, the left-hand side of the table contains 

results for all input dimensions, while the right-hand side of the table focuses on a subvector 

of variable inputs. For each of these indices, the table distinguishes between convex and 

nonconvex on the one hand and between CRS and VRS results on the other hand.  

< TABLE 1 ABOUT HERE > 

The following tendencies are clearly apparent in terms of the incidence of 

infeasibilities for the input-oriented Malmquist productivity index. First, the amount of 

infeasibilities is greater under the VRS than under the CRS assumption. Second, the incidence 

of infeasibilities is larger under nonconvexity than under the traditional convexity hypothesis. 

Third, the number of infeasibilities is relatively higher under the subvector case compared to 

the standard index computed over all input dimensions. Notice that, by contrast, the Hicks-
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Moorsteen productivity index always remains feasible (as could be expected from the Briec 

and Kerstens (2011) result). 

These same tendencies can be illustrated using Figure 1, whereby models are indicated 

by combinations of the abbreviations for convex (C) versus nonconvex (NC), constant (CRS) 

versus variable (VRS) returns to scale, and the subvector case is denoted by "Subv". The 

percentage of infeasible observations in the input-oriented Malmquist index varies from 0% to 

23.3% for the Ivaldi et al. (1996) data, and between 0% and 49.5% in the case of the Coelli et 

al. (2005) data. As conjectured above, these variations are clearly depending on the strength 

of the production axioms and the resulting volume of the technologies resulting from these 

less or more demanding assumptions. 

< FIGURES 1 ABOUT HERE > 

Obviously, as already illustrated in section 2.4, these percentages may reveal large 

variations across time and units. Therefore, Tables 2 and 3 report detailed descriptive statistics 

on infeasibilities over the years and the observations respectively. Both tables have a structure 

identical to Table 1 (except that the median is added and the last line is dropped). To facilitate 

comparisons, descriptive statistics are reported as percentages. To be explicit, for the statistics 

across periods in Table 2, we count the infeasibilities per comparison period over all units and 

we compute statistics across the available comparison periods. For the statistics across units in 

Table 3, we count the infeasibilities per observation over all time periods and we compute 

statistics across the units. 

Starting with Table 2, recall that the Ivaldi et al. (1996) data only contain 3 years 

(hence 2 comparisons). While the standard Malmquist index shows between 3.26% and 

5.43% infeasibilities across the board, the amount of infeasibilities in the subvector case 

varies considerably, with a clear peak for the nonconvex VRS case (up to 48.91% at 

maximum). Mean and median coincide and the standard deviation is rather small. For the 
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Coelli et al. (2005) data the standard Malmquist index shows a bit more variation, but the 

subvector case is even more seriously affected compared to the first sample case (the 

maximum now even goes up to 69.77%). Mean and median diverge and the standard 

deviation is now bigger.  

Continuing with Table 3 (i.e., comparisons across units), one notices for the the Ivaldi 

et al. (1996) data that the standard Malmquist index has a lower mean than in Table 2.A, but a 

higher standard deviation and especially maximum (indeed several observations have no 

feasible solutions in the two comparison periods). For the Coelli et al. (2005) data the 

standard Malmquist index has at least an equal or higher mean than in Table 2.A, and a much 

higher standard deviation. Its maximum is again 100% (several observations have no feasible 

solutions in the seven comparison periods). In the the subvector case, the Ivaldi et al. (1996) 

data suffer on average less from infeasibilities, but its standard deviation and maxinmum is 

much higher. Exactly the same can be observed for the subvector case of the Coelli et al. 

(2005) data. Again, its maximum is 100%. 

< TABLES 2 AND 3 ABOUT HERE > 

To illustrate the large variations across years and units, we add some figures of some 

of the more extreme cases found in both data sets as follows. Figure 2 serves to illustrate the 

case of observation 18 in the Coelli et al. (2005) data that has 7 out of 7 infeasible solutions 

for the standard Malmquist index in case of a VRS assumption. Figure 2 plots the 1990 data 

represented by circles (o) and the 1991 data represented by crosses (x). The horizontal axis 

represents the first input variable (planted area), while the vertical axis shows the output (tons 

of freshly treshed rice). The black circle in the upper right position is DMU 18 in 1990. All 

frontier sections under all four technology assumptions are based on observations in 1991. 

When projecting DMU 18 in 1990 to the 1991 frontier in the input-orientation, there are 

feasible solutions for the CRS cases, while there are no feasible solutions for the VRS cases. 
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This infeasibility is due to observation 18 being situated above the VRS frontiers and the fact 

that an input-orientation has been adopted.  

< FIGURE 2 ABOUT HERE > 

The next Figure 3 illustrates the case of infeasibilities in the subvector Malmquist 

index. We have picked observation 35 of the Coelli et al. (2005) sample. From Figure 3.A, 

one notices two infeasibilities in the case of a convex VRS technology: one in the first and 

one in the last comparison periods. By contrast, in Figure 3.B four infeasibilities are observed 

in the case of a nonconvex VRS technology: one in the first and three in the comparison 

periods at the end. Each time, we contrast the subvector input Malmquist index with the 

Hicks-Moorsteen results, which do not suffer from this problem at all. Clearly, the 

infeasibility issue may complicate regulatory and managerial uses of the input-oriented 

Malmquist productivity index. 

< FIGURES 3 ABOUT HERE > 

Returning to the descriptive statistics in Table 1, we observe that on average the input-

oriented Malmquist productivity index indicates a productivity decline, while the Hicks-

Moorsteen productivity index clearly marks a productivity gain for both data sets. While the 

productivity change may seem strongest for the technology with the strongest assumptions 

with respect to returns to scale (i.e., CRS versus VRS) for the case of the input-oriented 

Malmquist index for the Ivaldi et al. (1996) data, this situation is exactly reversed for the 

Coelli et al. (2005) data. In a similar vein, while the productivity change may seem strongest 

for the technology with the strongest assumptions with respect to convexity (i.e., convexity 

versus nonconvexity) for the case of the input-oriented Malmquist index for the Ivaldi et al. 

(1996) data, this situation is again exactly reversed for the Coelli et al. (2005) data. While the 

subvector results are always slightly lower than the results on all input dimensions for the 

input-oriented Malmquist index for the Ivaldi et al. (1996) data, this situation is again exactly 
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reversed for the Coelli et al. (2005) data. Similar observations can be made for the Hicks-

Moorsteen productivity index. These observations can be explained as follows: while stronger 

(weaker) axioms lead to a larger (smaller) volume of the technology implying a clear ordering 

of efficiency measures in a static measurement, the productivity indices take ratios of 

efficiency measures in which such a clear ordering is simply absent. 

Another, more relevant question is how the different productivity indices are 

correlated with one another. Table 4 reports rank correlation matrices between the different 

models for both data sets. First, the fundamental rank correlation between input Malmquist 

and Hicks-Moorsteen productivity indices is negative, since both indices move in opposite 

directions with respect to unity. Second, rank correlations between input Malmquist and 

Hicks-Moorsteen productivity indices are higher under constant returns to scale than under 

variable returns to scale, since constant returns to scale is among the necessary conditions for 

equality between both indices. Third, under variable returns to scale the rank correlations 

between input Malmquist and Hicks-Moorsteen productivity indices are quite high when other 

assumptions are identical, but sometimes rank correlations are even higher when one of the 

indices assumes constant returns to scale. 

< TABLE 4 ABOUT HERE > 

 

6. CONCLUSIONS 

This contribution focuses on two discrete-time primal productivity indices that require 

a detailed knowledge of the underlying production technology: the Malmquist productivity 

index, and the Hicks-Moorsteen index. While the former has become immensely popular, the 

latter is still fairly little used in applied research. While the Hicks-Moorsteen productivity 

index has a TFP interpretation, it was already known that the Malmquist index is not always a 

TFP index and furthermore that the distance functions constituting it may well be undefined 
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when estimated using general technologies. The recent work of O’Donnell (2010) casts further 

doubt on the Malmquist productivity index as a TFP index.  

This contribution aims at empirically exploring the prevalence of the infeasibility 

problem for the popular Malmquist productivity index under a wide variety of assumptions on 

technology. It also has documented how the Hicks-Moorsteen index escapes from this 

problem. Apart from reviewing some of the results reported in the scant literature on this 

infeasibility issue, two agricultural data sets are employed to illustrate this issue in detail. It is 

found that the infeasibility problems seem directly linked to the strength of the assumptions 

defining the volume of the technology. Incidence varies from minor to very serious at the 

sample level. Especially at the level of individual observations the problem can be very 

severe: it can even inhibit any productivity evaluation in extreme cases. 

What are the consequences of these empirical results for the interpretation of the 

Malmquist productivity index? These results clearly further undermine any remaining status of 

the Malmquist index as a TFP index. As mentioned before, one positive way out is to consider 

the Malmquist index as an index measuring local technical change (and eventually its 

components). In this perspective, the Malmquist productivity index attempts to provide a local 

answer (i.e., based on the observations observed in both time periods), but depending on the 

strength of the assumptions one is willing to impose on technology this answer is not always 

guaranteed. Thus, the local nature of its measurement comes at the cost of it not always being 

well-defined.  

This new interpretation clearly makes the Malmquist productivity index much less 

suitable in a regulatory setting. We also expect more and more applied researchers to take an 

interest in the Hicks-Moorsteen index that suffers less from these problems and that has a 

clear TFP interpretation. It goes without saying that also other TFP indices may benefit from a 

renewed interest (see, e.g., the Fisher index in O’Donnell (2008) or in Ray and Mukherjee 
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(1996)). Another plausible consequence is that one may wonder whether it is meaningful to 

mix up these two structurally different types of productivity indices, as it has been done in 

certain methodological refinements.8 

Finally, it is good to point out some limitations of this study. First, we compared the 

productivity indices, but ignored the eventual differences in their underlying decompositions 

(see Zofío (2007) for the Malmquist index and O'Donnell (2008, 2010) for the Hicks-

Moorsteen index). Second, we have limited ourselves to productivity indices, but the same 

phenomena would most probably be observed for the pair of the Luenberger productivity 

indicator and its Luenberger-Hicks-Moorsteen counterpart (see Briec and Kerstens (2004)).  

 

APPENDIX: COMPUTING MALMQUIST AND HICKS-MOORSTEEN I NDICES: 

LINEAR PROGRAMMING PROBLEMS 

For convenience, we explicitly specify all linear programming problems involved relative 

to a convex technology with constant returns to scale. For all other specifications, please consult 

Briec et al. (2004). 

 

1. Malmquist productivity index: compute four radial efficiency measures per 

observation 0 0( , )x y  under evaluation. 

First within-period LP: 

                                                 
8 For instance, some decompositions of the Hicks-Moorsteen productivity index (e.g., Nemoto and Goto (2005)) 
include components that are based on a Malmquist type of index and hence these could be infeasible, despite the 
fact that the overall index is well-defined. In a similar vein, some decompositions of the Malmquist productivity 
index (e.g., the input and output bias components in Färe, Grosskopf and Margaritis (2008): see their section 
5.2.3) include components that are based on a Hicks-Moorsteen type of index. This situation is potentially 
confusing and probably requires some further reflection.  
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The subvector cases require specifying separate sets of constraints for fixed and variable input 

dimensions and only radially reducing the variable input dimensions. 
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2. Hicks-Moorsteen productivity index: compute eight radial efficiency measures per 

observation 0 0( , )x y  under evaluation. 

 While ( ) 0 0( )i t t
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( 1) 0 0( )i t t
T tE x ,y+ +

+  are identical to the efficiency measures in the 

Malmquist index above, ( ) 0 0( )o t t
T tE x ,y  and 1 1

( 1) 0 0( )o t t
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+  are similar to the within same time 

period efficiency measures, only differing in measurement orientation.  

 The remaining four linear programs are: 
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The subvector cases require specifying separate sets of constraints for fixed and variable input 

dimensions and only radially reducing the variable input dimensions. 
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Table 1: Input-Oriented Malmquist vs. Hicks–Moorsteen Indices: Descriptive Statistics  

 
Table 1.A. Ivaldi et al. (1996) Data 
  Input-oriented Malmquist Subvector Input-oriented Malmquist 
 Convex Nonconvex Convex Nonconvex 
  CRS VRS CRS VRS CRS VRS CRS VRS 
Mean 1.1739 1.0321 1.1498 1.0631 1.1540 1.0269 1.1831 1.0244
Stand. Dev. 0.67470.3016 0.5852 0.3582 0.6985 0.3280 0.7334 0.4089
Min. 0.0854 0.5280 0.1305 0.4210 0.0606 0.4621 0.0989 0.3734
Max. 5.2365 2.5140 4.3777 2.8566 5.2365 2.7568 5.2506 3.1692
% Infeas. Obs. 0.00%1.63% 0.00% 2.72% 1.90% 5.16% 4.62% 23.37%
  Hicks-Moorsteen Subvector Hicks-Moorsteen 
  Convex Nonconvex Convex Nonconvex 
  CRS VRS CRS VRS CRS VRS CRS VRS 
Mean 1.1502 1.1712 1.1157 1.1105 1.1881 1.1907 1.1602 1.1455
Stand. Dev. 1.02931.0082 0.7996 0.6664 1.0449 1.0129 0.8362 0.7142
Min. 0.1919 0.1925 0.2507 0.1668 0.1919 0.1925 0.2941 0.1668
Max. 11.638511.5746 7.0399 5.7377 11.6385 11.5746 7.6651 6.5508
% Infeas. Obs. 0.00%0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
 
Table 1.B. Coelli et al. (2005) Data 
  Input-oriented Malmquist Subvector Input-oriented Malmquist 
 Convex Nonconvex Convex Nonconvex 
  CRS VRS CRS VRS CRS VRS CRS VRS 
Mean 1.0472 1.0639 1.0500 1.0726 1.0862 1.1190 1.0964 1.1497
Stand. Dev. 0.4484 0.4521 0.4465 0.4398 0.5978 0.6170 0.6721 0.5337
Min. 0.2659 0.1812 0.2790 0.3044 0.1648 0.2084 0.1619 0.3461
Max. 4.6811 3.2575 5.1048 3.2741 6.6767 6.4792 8.2680 3.9235
% Infeas. Obs. 0.00% 2.33% 0.00% 2.33% 3.65%18.27% 3.65% 49.50%
  Hicks-Moorsteen Subvector Hicks-Moorsteen 
  Convex Nonconvex Convex Nonconvex 
  CRS VRS CRS VRS CRS VRS CRS VRS 
Mean 1.1024 1.0891 1.0966 1.0742 1.1077 1.0929 1.1048 1.0741
Stand. Dev. 0.4447 0.4335 0.4416 0.4156 0.4832 0.4661 0.4742 0.4549
Min. 0.2136 0.1729 0.1959 0.1664 0.2640 0.2508 0.2585 0.2576
Max. 3.7611 3.5994 3.5848 3.5483 4.4153 3.7866 4.1023 3.7126
% Infeas. Obs. 0.00% 0.00% 0.00% 0.00% 0.00% 0.33% 0.00% 0.00%
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Figure 1: Input-Oriented Malmquist Index: Infeasibi lities and Technology Assumptions  

 
Figure 1.A. Ivaldi et al. (1996) Data 
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Figure 1.B. Coelli et al. (2005) Data 
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Table 2: Input-Oriented Malmquist: Descriptive Statistics of Infeasibilities Across 

Periods 

 
Table 2.A. Ivaldi et al. (1996) Data (92 observations) 
  Input-oriented Malmquist Subvector Input-oriented Malmquist 
 Convex Nonconvex Convex Nonconvex 
  CRS VRS CRS VRS CRS VRS CRS VRS 
Mean 0.00% 3.26% 0.00% 5.43% 3.80% 10.33% 9.24% 46.74%
Median 0.00% 3.26% 0.00% 5.43% 3.80% 10.33% 9.24% 46.74%
Stand. Dev. 0.00% 0.00% 0.00% 0.00% 0.77% 0.77% 0.77% 3.07%
Min. 0.00% 3.26% 0.00% 5.43% 3.26% 9.78% 8.70% 44.57%
Max. 0.00% 3.26% 0.00% 5.43% 4.35% 10.87% 9.78% 48.91%
 
Table 2.B. Coelli et al. (2005) Data (43 observations) 
  Input-oriented Malmquist Subvector Input-oriented Malmquist 
 Convex Nonconvex Convex Nonconvex 
  CRS VRS CRS VRS CRS VRS CRS VRS 
Mean 0.00% 2.03% 0.00% 2.33% 3.65% 19.19% 3.65% 49.50%
Median 0.00% 2.33% 0.00% 2.33% 2.33% 11.63% 2.33% 46.51%
Stand. Dev. 0.00% 0.82% 0.00% 0.00% 1.83% 14.64% 1.83% 10.97%
Min. 0.00% 0.00% 0.00% 2.33% 2.33% 6.98% 2.33% 39.53%
Max. 0.00% 2.33% 0.00% 2.33% 6.98% 48.84% 6.98% 69.77%
 
 
Table 3: Input-Oriented Malmquist: Descriptive Statistics of Infeasibilities Across Units 
 
Table 3.A. Ivaldi et al. (1996) Data (2 time comparsions) 
  Input-oriented Malmquist Subvector Input-oriented Malmquist 
 Convex Nonconvex Convex Nonconvex 
  CRS VRS CRS VRS CRS VRS CRS VRS 
Mean 0.00% 1.63% 0.00% 2.72% 1.90% 5.16% 4.62% 23.37%
Median 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
Stand. Dev. 0.00% 12.70% 0.00% 15.44% 12.11% 19.22% 17.89% 38.73%
Min. 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
Max. 0.00%100.00% 0.00%100.00% 100.00% 100.00% 100.00% 100.00%
 
Table 3.B. Coelli et al. (2005) Data (7 time comparsions) 
  Input-oriented Malmquist Subvector Input-oriented Malmquist 
 Convex Nonconvex Convex Nonconvex 
  CRS VRS CRS VRS CRS VRS CRS VRS 
Mean 0.00% 2.33% 0.00% 2.33% 3.65% 18.27% 3.65% 49.50%
Median 0.00% 0.00% 0.00% 0.00% 0.00% 14.29% 0.00% 57.14%
Stand. Dev. 0.00% 15.25% 0.00% 15.25% 12.51% 24.41% 12.51% 29.14%
Min. 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
Max. 0.00%100.00% 0.00%100.00% 57.14% 100.00% 57.14% 100.00%
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Figure 2: Input-Output Section With Position of Observation 18 (Coelli et al. (2005)) 

 
Legend: Observations are related to periods 1990-1991. Observations of 1990 are 
represented by circles (o). Observations of 1991 are represented by crosses (x). The 
horizontal axis represents the first input variable (planted area), while the vertical axis shows 
the output (tons of freshly treshed rice). The black dot in the upper right position is DMU 18 
in 1990. All frontier sections are based on observations in 1991. When projecting DMU 18 in 
1990 to the 1991 frontiers in the input-orientation, there are feasible solutions for the convex 
and nonconvex CRS cases, while there are no feasible solutions for the convex and nonconvex 
VRS cases. 
 
Figure 3: Subvector Malmquist and Hicks-Moorsteen for Observation 35 (Coelli et al. 

(2005)) 
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Table 4: Input-Oriented Malmquist vs. Hicks–Moorsteen Indices: Rank Correlations  

 
Table 4.A. Ivaldi et al. (1996) Data: All Dimensions 
    Input-oriented Malmquist Hicks-Moorsteen 
   Convex Nonconvex Convex Nonconvex 
    CRS VRS CRS VRS CRS VRS CRS VRS 
Input-  Convex CRS 1.000        
oriented  VRS 0.674** 1.000       
Malmquist Nonconvex CRS 0.922** 0.590** 1.000      
  VRS 0.763** 0.705** 0.790** 1.000     
Hicks- Convex CRS -0.999** -0.672** -0.923** -0.760** 1.000    
Moorsteen  VRS -0.945** -0.706** -0.909** -0.784** 0.946** 1.000   
 Nonconvex CRS -0.909** -0.559** -0.984** -0.772** 0.909** 0.882** 1.000  
  VRS -0.887** -0.580** -0.910** -0.785** 0.886** 0.914** 0.899** 1.000 
Note: Rank correlations were computed on between 87 and 92 available observations. ** Correlation is significant at the 0.01 level (2-tailed). 
 
Table 4.B. Ivaldi et al. (1996) Data: Subvector Case 
    Input-oriented Malmquist Hicks-Moorsteen 
   Convex Nonconvex Convex Nonconvex 
    CRS VRS CRS VRS CRS VRS CRS VRS 
Input-  Convex CRS 1.000        
oriented  VRS 0.675** 1.000       
MalmquistNonconvex CRS 0.916** 0.595** 1.000      
  VRS 0.837** 0.658** 0.803** 1.000     
Hicks- Convex CRS -0.999** -0.676** -0.919** -0.825** 1.000    
Moorsteen  VRS -0.942** -0.696** -0.927** -0.806** 0.945** 1.000   
 Nonconvex CRS -0.925** -0.594** -0.960** -0.792** 0.920** 0.913** 1.000  
  VRS -0.860** -0.596** -0.883** -0.794** 0.850** 0.907** 0.887** 1.000 
Note: Rank correlations were computed on between 51 and 92 available observations. ** Correlation is significant at the 0.01 level (2-tailed). 
 



 

Table 4.C. Coelli et al. (2005) Data: All Dimensions 
    Input-oriented Malmquist Hicks-Moorsteen 
   Convex Nonconvex Convex Nonconvex 
    CRS VRS CRS VRS CRS VRS CRS VRS 
Input-  Convex CRS 1.000        
oriented  VRS 0.872** 1.000       
MalmquistNonconvex CRS 0.980** 0.848** 1.000      
  VRS 0.806** 0.870** 0.802** 1.000     
Hicks- Convex CRS -1.000** -0.872** -0.980** -0.806** 1.000    
Moorsteen  VRS -0.951** -0.884** -0.932** -0.821** 0.951** 1.000   
 Nonconvex CRS -0.980** -0.848** -1.000** -0.802** 0.980** 0.932** 1.000  
  VRS -0.873** -0.798** -0.880** -0.810** 0.873** 0.903** 0.880** 1.000 
Note: Rank correlations were computed on between 294 and 301 available observations. ** Correlation is significant at the 0.01 level (2-tailed). 
 
Table 4.D. Coelli et al. (2005) Data: Subvector Case 
    Input-oriented Malmquist Hicks-Moorsteen 
   Convex Nonconvex Convex Nonconvex 
    CRS VRS CRS VRS CRS VRS CRS VRS 
Input-  Convex CRS 1.000        
oriented  VRS 0.877** 1.000       
MalmquistNonconvex CRS 0.968** 0.839** 1.000      
  VRS 0.679** 0.780** 0.673** 1.000     
Hicks- Convex CRS -0.974** -0.864** -0.926** -0.674** 1.000    
Moorsteen  VRS -0.921** -0.854** -0.870** -0.678** 0.954** 1.000   
 Nonconvex CRS -0.936** -0.837** -0.913** -0.674** 0.974** 0.944** 1.000  
  VRS -0.802** -0.691** -0.766** -0.701** 0.835** 0.868** 0.841** 1.000 
Note: Rank correlations were computed on between 151 and 301 available observations. ** Correlation is significant at the 0.01 level (2-tailed). 
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Chapter 3: 

Scale Economies and Returns to Scale 

in Non-Parametric Models: 

Exploring the Impact of Convexity 

 

 

Abstract:  

Returns to scale and economies of scale can be determined using production and cost 

functions. This contribution focuses on testing the empirical impact of convexity using 

non-parametric frontier specifications of technology and cost functions. Empirical 

results reveal the effect of convexity on estimates of scale efficiency and cost-based 

scale efficiency, as well as on the characterization of returns to scale for individual 

observations.  

 

Keywords: Scale efficiency, Returns to scale; Economies to scale; Convexity. 

 

JEL classification: D24. 
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1. INTRODUCTION 

Efficiency and productivity analysis using frontier specifications of technology 

or value functions (e.g., cost functions) have become standard methods in the empirical 

toolbox of the applied researcher. These empirical studies serve a wide variety of 

academic, regulatory and managerial purposes. The traditional parametric and non-

parametric approaches all maintain the axiom of convexity. However, indivisibilities in 

production imply that inputs and outputs are not completely divisible (see Scarf (1986, 

1994)). Indivisibilities also put limitations on the up- or downscaling of the production 

processes. In addition, economies of scale and specialization may as well result in non-

convex technologies (see, e.g., Romer (1990) on nonrival inputs in the new growth 

theory). In addition to the well-known case of externalities, all of these features of 

technology violate the convexity of the production possibility set (see Farrell (1959) for 

more details).  

In some sectors the importance of non-convexities for cost determination has 

been clearly documented. For instance, non-convexities in electricity generation due to 

minimum up and down time constraints, multi-fuel effects, etc. leading to nonconvex 

and nondifferentiable variable costs have been documented in, e.g., Bjørndal and 

Jörnsten (2008) and Park et al. (2010). Furthermore, costs are non-convex in car 

manufacturing due to changes in the number of shifts and in the shutting down of plants 

for some time (see Copeland and Hall (2011)). It is widely acknowledged that many 

operations management problems in industry and distribution involve some form of 

indivisibilities requiring integer optimisation. However, most economic literature 

ignores such non-convexities in production.  

In the non-parametric approach to production theory, the Free Disposal Hull 

(FDH) model -introduced by Deprins et al. (1984)- was originally designed to relax the 
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convexity assumption underlying the traditional convex models (known under the 

moniker Data Envelopment Analysis (DEA)), whereby free disposal of inputs and 

outputs becomes the key assumption. A step towards extending the potential of FDH 

was initiated in Kerstens and Vanden Eeckaut (1999). These authors introduce specific 

returns to scale assumptions into the basic FDH model and propose a new goodness-of-

fit method to infer the characterization of returns to scale for non-convex technologies.14 

Another step extending the scope for non-convex production modeling is found in Briec 

et al. (2004). These authors propose non-convex cost functions that are always larger or 

equal to their convex counterparts and they relate the traditional convex decomposition 

into technical, scale, allocative and overall efficiency with its non-convex counterparts.  

The aim of this contribution is to explore the differences between technical and 

scale efficiencies based on both traditional convex and these rather new non-convex 

technology and cost function estimations. Such estimates have never been reported 

based on the cost function. More importantly, we also illustrate the eventual differences 

between the characterization of economies of scale and returns to scale for convex as 

well as non-convex cost functions and technologies. This has –to the best of our 

knowledge- never been reported in an international publication.  

If differences in technical and scale efficiencies as well as the characterization of 

economies of scale and returns to scale for individual observations turns out to be 

conditioned by the convexity assumption, then this has important consequences. For 

one, investment decisions to increase or decrease the scale of operations based on 

economies of scale or returns to scale information could be responding to the wrong 

signals. For another, some capacity notions are very closely linked with the notion of 

scale economies. For instance, economic capacity as defined by Cassel (1937) and Klein 

                                                 
14 This method was further refined for the case of convex technologies in Briec et al. (2000). Podinovski 
(2004a) extended this approach by introducing a distinction between local and global returns to scale. 
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(1960), among others, considers the outputs determined by the minimum of the long run 

average total costs as a reference to determine practical capacity utilisation ratios.  

The next section defines the technology and the cost function and introduces 

some basic efficiency decompositions. Section 3 introduces the specific production and 

cost models to be estimated and develops the method to characterize returns to scale for 

individual observations in a convex and a non-convex setting. Next, we introduce the 

data sets employed in the empirical application. Section 5 presents the empirical results 

in detail. A final section concludes.  

 

2. TECHNOLOGY, COST FUNCTION AND EFFICIENCY 

DECOMPOSITION 

2.1. Definitions of Technology and Cost Functions 

We start by defining technology and some basic notation. Denoting an n-

dimensional input vector (x ∈ ℝn
+) and an m-dimensional output vector (y ∈ ℝm

+), the 

production possibility set or technology is defined as follows: T = {(x,y)  x can produce 

y}. The input set associated with T denotes all input vectors x capable of producing a 

given output vector y: L(y) = {x  (x,y) ∈ T}. This input set L(y) associated with T 

satisfies some combination of the following standard assumptions: apart from the 

traditional regularity conditions (i.e., no free lunch and the possibility of inaction, 

boundedness, closedness, and strong disposal), the key assumptions of importance for our 

contribution are convexity or not of the input set, and constant returns to scale (see, e.g., 

Färe et al. (1994) for details). 

Since we only treat part of the static efficiency decomposition in the input 

orientation, we first define the radial input efficiency measure as: 
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{ }.)()(0,min),( yLxyxDFi ∈≥= λλλ  (1) 

This measure is simply the inverse of the input distance function and therefore offers a 

complete characterization of technology. Its properties are discussed in great detail in, for 

instance, Färe et al. (1994). Most importantly: (i) 0 < DFi(x,y) ≤ 1, with efficient 

production on the boundary (isoquant) of L(y) represented by unity; (ii) it has a cost 

interpretation.  

Turning to a dual representation of technology, the cost function is defined as the 

minimum expenditures to produce an output vector y given a vector of semi-positive 

input prices (w ∈ ℝn
+):  

C(y,w) = min {wx  x ∈ L(y)}. (2) 

The fact that non-convexity has an impact on the duality relations between 

distance functions with cost, revenue and profit functions is widely ignored. For 

instance, costs evaluated on non-convex technologies are clearly higher or equal to costs 

evaluated on convex technologies (see Briec et al (2004)). This relation simply reflects 

the property that cost functions are non-decreasing in outputs and convex (non-convex) 

in the outputs depending on whether the technology is convex (non-convex) (see 

Jacobsen (1970): Proposition 5.2). The same reasoning applies to the revenue function 

and all variations of the profit function, except of course the long run profit function 

where convexity indeed does not matter for duality. Advanced micro-economic 

textbooks ignore this issue when, for instance, discussing the properties of the cost 

function (see Jehle and Reny (2000: p. 129) or Mass-Collell et al. (1995: p. 141)). 

 

2.2. Basic Efficiency Decompositions 

Farrell (1957) was the first to distinguish between technical and allocative 

efficiency in a frontier context. In addition, Banker et al. (1984), Färe et al. (1983), and 
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Førsund and Hjalmarsson (1974, 1979) all distinguish between technical and scale 

efficiency exploiting the distinction between technologies with constant (CRS) and 

variable (VRS) returns to scale. Since technologies vary, amongst others, in terms of 

underlying assumptions regarding returns to scale, the above notation of the efficiency 

measure and cost function can be conditioned on the difference between constant and 

variable returns to scale (convention: C=CRS, V=VRS). In this subsection we also explore 

the impact of convexity on the efficiency components of convex respectively non-convex 

decompositions.  

 

Definition 1: Under the above assumptions on the input set L(y), the following input-

oriented efficiency notions can be distinguished: 

1) Technical Efficiency is the quantity: TEi(x,y) = DFi(x,yV). 

2) Overall Technical Efficiency is the quantity: OTEi(x,y) = DFi (x,yC). 

3) Scale Efficiency is the quantity: SCEi(x,y) = DFi (x,yC)/DFi(x,yV). 

4) Economic Efficiency for given scale is the quantity: OEi(x,y,wV) = C(y,wV)/wx. 

5) Overall Economic Efficiency is the quantity: OEi(x,y,wC) = C(y,wC)/wx. 

6) Cost-based Scale Efficiency is the quantity: 

.
)(

)(

)(

)(
)(

Vx,y,wOE

Cx,y,wOE

wxVy,wC

wxCy,wC
x,y,wCSCE

i

i
i 

=
 
 =  

 

First, technical efficiency (TEi(x,y)) presupposes that production occurs at the 

boundary of a VRS technology. Otherwise, a producer is technically inefficient. TEi(x,y) 

is traditionally evaluated relative to a VRS technology with strong disposability using 

DFi(x,yV). Second, overall technical efficiency (OTEi(x,y)) requires that production 

occurs on the boundary of a CRS technology. Otherwise, it is overall technically 
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inefficient. Third, scale efficiency (SCEi(x,y)) implies that the choice of inputs and 

outputs is optimal from the viewpoint of a long run CRS technology. Otherwise, a 

producer is scale inefficient. SCEi(x,y) results from comparing an observation to CRS 

and VRS technologies while maintaining strong disposability.  

Turning to the dual variation on the same decomposition, one distinguishes 

between “economic efficiency given the scale” and “economic efficiency” (in the 

terminology of Seitz (1970)) depending on whether cost efficiency is measured relative 

to a VRS or CRS technology. Overall efficiency relative to VRS (OEi(x,y,wV)) 

requires estimating a total cost function relative to a VRS technology and taking a ratio 

of these minimal to actual costs. If the optimal input mix has in fact been chosen, then 

the organisation is overall efficient; otherwise, it is overall inefficient. Overall 

efficiency relative to CRS (OEi(x,y,wC)) requires estimating a total cost function 

relative to a CRS technology and otherwise it has a similar interpretation. Finally, 

following Seitz (1970, 1971), scale efficiency can also be based on a dual 

characterisation of technology by comparing overall efficiency measures defined with 

respect to different technologies. Cost-based scale efficiency CSCEi(x,y,w) requires that 

the choice of inputs and outputs is optimal from the viewpoint of an ideal long run CRS 

cost function. Otherwise, a producer is cost-based scale inefficient. CSCEi(x,y,w) results 

from comparing an observation to CRS and VRS cost functions. 

It is possible to link these primal and dual approaches to scale efficiency. 

Decomposing CSCEi(x,y,w) into its technical and allocative components, one obtains 

that CSCEi(x,y,w) equals SCEi(x,y) times some ratio of allocative efficiency components:  

( , ) ( )
( )

( , ) ( )

( )
( )

( )

i i
i

i i

i
i

i

DF x, y C S AE x, y,wC
CSCE x, y,w

DF x, yV S AE x, y,wV

AE x, y,wC
SCE x, y

AE x, y,wV

    = ⋅   
       

 = ⋅  
  

  (3) 
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It immediately follows (Färe et al. (1994)):15 CSCEi(x,y,w) = SCEi(x,y) ⇔ AEi(x,y,wC) 

= AEi(x,y,wV). Since OEi(x,y,wC) ≤ OEi(x,y,wV) ≤ 1, the second ratio in (3) can be 

smaller, equal or larger than unity: 

[AEi(x,y,wC)/AEi(x,y,wV)] � 1. (4) 

Furthermore, since both scale efficiency components are smaller or equal to unity (i.e., 

CSCEi(x,y,w) ≤ 1 and SCEi(x,y) ≤ 1), one obtains: 

CSCEi(x,y,w) � SCEi(x,y).  (5) 

The relations between the decompositions in Definition 1 relative to convex and 

non-convex technologies can be trivially defined as follows (see also Briec et al. (2004: 

Lemma 3)).  

 

Proposition 1: Relations between convex and non-convex decomposition components are: 

1)  ( ) ( )yxOTEyxOTE NC
i

C
i ,, ≤ ; 

2) ( ) ( )yxTEyxTE NC
i

C
i ,, ≤ ; 

3) ( ) ( ), ,C NCC y w C C y w C≤ ; 

4) ( ) ( ), ,C NCC y w V C y w V≤ ; 

5) ( ) ( ), , , ,C NC
i iOE x y w C OE x y w C≤ ; 

6) ( ) ( ), , , ,C NC
i iOE x y w V OE x y w V≤ . 

 

                                                 
15 In fact, SCEi(x,y) in Färe et al. (1994: p. 84-87) is defined on technologies based on limited data, i.e., 
using information on cost data and the output vector solely. The reader can consult these authors to have 
more details on the precise conditions to be met. 
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It is worthwhile stressing that in case of CRS and a single output, relation 3) becomes: 

( ) ( ), ,C NCC y w C C y w C=  (see Briec et al. (2004): Proposition 4). Hence, under this 

condition, relation 5) turns into an equality as well: ( ) ( ), , , ,C NC
i iOE x y w C OE x y w C= . 

Notice that the scale efficiency components cannot be ordered, because they are ratios 

of other components:  

( ) ( )yxSCEyxSCE NC
i

C
i ,,

<
=
>

.  (6) 

Equally obvious, the cost-based scale efficiency components cannot be ordered, because 

they are again ratios of other components: 

( ) ( ), ,C NC
i iCSCE x y CSCE x y

>
=
<

.  (7) 

Any eventual differences between both convex and non-convex OTEi(x,y) and 

OEi(x,y,wC) components can be attributed to convexity. Thus, following Briec et al. 

(2004), one can straightforwardly define a convexity-related technical efficiency (CRTEi 

(x,y)) and cost efficiency (CRCEi (x,y,w)) component as a ratio between these convex and 

non-convex components: 

 

Definition 2: The convex and non-convex efficiency components based upon constant 

returns to scale technologies respectively cost functions can be related by: 

1) ( ) ( ) ( )yxOTEyxOTEyxCRTE NC
i

C
ii ,,, = ; 

2) ( ) ( ) ( ), , , , , ,C NC
i i iCRCE x y w OE x y w C OE x y w C= . 
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From Definition 3, it follows that 0 < CRTEi(x,y) ≤ 1 and 0 < CRCEi(x,y,w) ≤ 1. When 

CRTEi(x,y) = 1, then the hypothesis that CRS technologies are convex cannot be rejected. 

The same reasoning applies to the cost functions. These definitions allow to link 

non-convex and convex decompositions by means of an identity.16 

 

3. TECHNOLOGY AND COST FUNCTION SPECIFICATIONS 

3.1. Non-Parametric Technology and Cost Function Models 

A unified algebraic representation of convex and non-convex technologies under 

different returns to scale assumptions is possible as follows (see Briec et al (2004)): 

K K
,

k k k k k
k 1 k 1

( , ) : , , , ,T x y x x z y y z zδ δ δΛ Γ

= =
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where (i) : 0 ;

(ii) : 1 ;

(iii) : 0 1 ;

(iv) : 1 ; and

where (i) 1and 0 , and

(ii) 1and {0,1} .

z z
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δ δ

δ δ

δ δ

δ δ

=

=

Γ ≡ Γ = ≥

Γ ≡ Γ = =

Γ ≡ Γ = ≤ ≤

Γ ≡ Γ = ≥

 Λ ≡ Λ = = ≥ 
 
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 

∑

∑

 (8) 

There is one activity vector (z) operating subject to a non-convexity or convexity constraint 

and a scaling parameter (δ) allowing for a particular scaling of all observations spanning 

the technology. This scaling parameter is free under CRS, fixed at 1 under VRS, and 

smaller than or equal to 1 or larger than or equal to 1 under NIRS respectively NDRS. 

                                                 
16 In particular, CRTEi(x,y) links non-convex and convex OTEi(x,y) components by means of the identity: 

( ) ( ) ( )yxCRTEyxOTEyxOTE i
NC
i

C
i ,.,, = . 

A similar identity applies to the OEi(x,y,wC) components. 



 112 

Computing the radial input efficiency measure relative to convex technologies in 

(8) requires solving a non-linear programming problem for each evaluated observation. 

However, Briec and Kerstens (2006) show how this non-linear problem can be transposed 

into a linear programming problem. Basically, by substituting wk = δzk in (8), one can 

rewrite the sum constraint on the activity vector. Realising that the constraints on the 

scaling factor δ are in fact integrated into the latter sum constraint, the traditional linear 

program appears (see their Lemma 2.1 for details). 

For the non-convex technologies, non-linear mixed integer programs need to be 

solved. Podinovski (2004b) simplified this computational complexity by suggesting a way 

to obtain mixed integer programs for all these technologies. Leleu (2006) takes this one 

step further by formulating a strategy to obtain linear programming problems. Briec and 

Kerstens (2006) offer a strategy based on implicit enumeration and indicate that the 

computational complexity of this enumeration is advantageous compared to the recent 

proposals of Podinovski (2004b) and Leleu (2006). 

Turning to the computation of the cost function relative to convex non-

parametric technologies, it is well-known that this involves solving a linear program per 

observation being evaluated (see Färe et al. (1994)). For the cost functions relative to 

the non-convex technologies, Briec et al. (2004) have developed implicit enumeration 

algorithms (see Proposition 3).  

 

3.2. Characterising Returns to Scale Information 

Several methods have been proposed in the literature to obtain qualitative 

information regarding returns to scale. However, as argued in Kerstens and Vanden 

Eeckaut (1999) none of the existing methods is suitable for use with non-convex 

technologies.  
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Starting from the goodness-of-fit method earlier proposed by Färe et al. (1983) for 

convex technologies, Kerstens and Vanden Eeckaut (1999) generalise this method to suit 

all (including non-convex) technologies.  

 

Definition 3: Using DFi(x,y) and conditional on the optimal projection point, 

technology is locally characterised by: 

a) CRS ⇔ DFi(x,yCRS) = max{ DFi(x,yC), DFi(x,yNIRS), DFi(x,yNDRS) }; 

b) IRS ⇔ DFi(x,y | NDRS) = max{ DFi(x,yC), DFi(x,yNIRS), DFi(x,yNDRS) }; or 

c) DRS ⇔ DFi(x,y | NIRS) = max{ DFi(x,yC), DFi(x,yNIRS), DFi(x,yNDRS) }.. 

 

Simplifications of this method have been proposed in Soleimani-damaneh et al. (2006) 

and Soleimani-damaneh and Reshadi (2007). As demonstrated in Briec et al. (2000), the 

equivalent method for convex technologies can be simplified as follows (see 

Proposition 3). 

 

Definition 4: Using DFi(x,y) and conditional on the optimal projection point, a convex 

technology is locally characterised by: 

a) IRS ⇔ DFi(x,y|NDRS) = max{ DFi(x,y|NIRS), DFi(x,y|NDRS) };  

b) CRS ⇔ DFi(x,y|NDRS) = DFi(x,y|NIRS) = max{ DFi(x,y|NIRS), DFi(x,y|NDRS) }; or 

c) DRS ⇔ DFi(x,y|NIRS) = max{ DFi(x,y|NIRS), DFi(x,y|NDRS) }. 

 

Identification of local economies of scale proceeds in very much the same way. 

A goodness-of-fit method based on the inclusion of different overall efficiency 

components estimated relative to different return to scale assumptions can be used (see, 
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e.g., Grosskopf (1986) and Sueyoshi (1999) for details). The same reasoning as above 

applies to infer local scale economies for non-convex and convex technologies. 

 

3.3. Related Literature Applying Non-Convex Models 

Meanwhile, FDH is recognised as a standard technology and a variety of 

empirical applications in different economic contexts are available in the literature. In 

the public sector studies include, among others, Dervaux et al. (2009) analysing the 

performance of intensive care units in Pakistan at the individual patient level, Giménez 

and Prior (2007) analysing Spanish local government efficiency, and Mairesse and 

Vanden Eeckaut (2002) gauging museum performance in Belgium. Turning to 

performance studies in the private sector, Alam and Sickles (2000) examine time series 

of technical efficiency in the US airline industry for convergence, Cullinane et al. (2005) 

estimate technical efficiency in the world’s leading container ports, among others. FDH 

has also made an inroad in non-traditional production contexts. For instance, 

Benslimane and Yang (2007) have identified functional requirements in all phases of the 

procurement process on commercial websites whereby FDH serves to identify the most 

efficient design. As another example, in a hedonic pricing context FDH has been proposed 

as an alternative framework to evaluate the performance of heterogeneous products (see 

Chumpitaz et al. (2010)). 

Use of non-convex models including alternative returns to scale assumptions has 

been more limited. A few studies have reported efficiency levels based on these models: 

see, e.g., Destefanis (2003) and Destefanis and Storti (2002). Some studies have reported 

non-convex scale efficiencies: examples include Cesaroni (2011), De Borger and 

Kerstens (2000) and Mairesse and Vanden Eeckaut (2002). Cesaroni (2011), De Witte 

and Marques (2011) as well as Mairesse and Vanden Eeckaut (2002) report non-convex 
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returns to scale information for individual units. A few articles have reported and 

contrasted convex and non-convex cost function results: examples are Briec et al. (2004), 

Cummins and Zi (1998) and Grifell-Tatjé and Kerstens (2008).  

 

4. DESCRIPTION OF THE SAMPLES 

We employ two secondary data sets for our empirical analysis. The first sample 

is based on 16 Chilean hydro-electric power generation plants observed on a monthly 

basis for several years (Atkinson and Dorfman (2009)). Limiting ourselves to the 

observations for the single year 1997, we can safely ignore any technical change and 

specify an inter-temporal frontier. This results in a total of 192 observations. There is 

one output quantity (electricity generated) as wells as the price per unit of output. There 

are also the prices and quantities of three inputs: labour, capital, and water. Except for 

the input capital, all remaining flow variables are expressed in physical units. Prices are 

in current Chilean pesos. Basic descriptive statistics for the inputs and the single output 

are available in Atkinson and Dorfman (2009). Equally so, more details on these data 

can be found in Atkinson and Dorfman (2009). 

As a second sample we draw upon an unbalanced panel of three years of French 

fruit producers based on annual accounting data collected in a survey (Ivaldi et al. 

(1996)). Mainly two criteria were adapted to select the farms: (i) the production of 

apples must be larger than zero, and (ii) the productive acreage of the orchard must be at 

least five acres. As a technology, three aggregate inputs are combined to produce two 

outputs. The three inputs are: (i) capital (including land), (ii) labor, and (iii) materials. 

The two aggregate outputs are (i) the production of apples, and (ii) an aggregate of 

alternative products. Also input prices are available. Summary statistics and details on 

the definitions of all variables are available in Appendix 2 in Ivaldi et al. (1996). Notice 
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that the short length of the panel (only three years) justifies the use of an intertemporal 

frontier that ignores technical change to assess the technical and scale efficiency of 

these farmers. 

 

5. EMPIRICAL RESULTS 

Summary statistics for both convex and non-convex decomposition results in 

Definition 1 are presented in Table 1. To respect the multiplicative nature of the 

decomposition geometric averages are used.  

< Table 1 about here > 

First, the sources of inefficiency differ clearly between convex and non-convex 

methods. This can be systematically argued as follows. For the hydro-power plants, 

scale inefficiency is by far the most important source of poor performance under non-

convexity. In a convex setting, scale inefficiency is slightly more important than 

technical inefficiency on the production side, while a marginal reversion of this ranking 

appears on the cost side. As for the fruit producers, scale inefficiency is the most 

important source of poor performance under non-convexity, though less pronounced so 

on the cost side. Under convexity, scale inefficiency is slightly more important than 

technical inefficiency on the production side, while the reverse occurs on the cost side. 

Notice that OEi(.C) is extremely low for the hydro-power plants: this may capture 

extreme variations in the degree of capacity utilization over the year, or it may be due to 

outliers. Thus, both decompositions yield different conclusions with respect to the major 

causes of inefficiency, with slight variations between production and cost perspectives.  

Second, more observations are efficient under non-convexity, though this 

difference seems less pronounced under a cost perspective. Clearly, the number of 

technically efficient units about triples in the non-convex compared to the convex case 
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for the hydro-power plants, and it is even about nine times higher for the fruit 

producers. Also the number of efficient observations for the scale and overall technical 

efficiency components increases substantially under non-convexity, except for the cost 

perspective among the hydro-power plants (see also infra). Thus, a non-convex CRS 

model tends to be spanned by more or the same number of observations compared to a 

convex frontier.17 

Third, the relations between convex and non-convex components as defined in 

Definition 2 are clearly respected. To bridge the gap between both decompositions, a 

convexity related component is added. While CRTEi(.) and CRCEi(.) are very substantial 

for the fruit producers, CRTEi(.) is rather small and CRCEi(.) even equals unity for the 

hydro-power plants. The latter result is due to the single output and the CRS assumption 

and simply illustrates the theoretical result that ( ) ( ), ,C NCC y w C C y w C=  under these 

conditions (Briec et al. (2004)). This also explains why the number of efficient 

observations under these conditions is identical (see above). For the fruit producers, 

convexity plays an important role in explaining inefficiency. In particular, CRTEi(.) and 

CRCEi(.) amount on average to about 38% and 32% respectively. Given an average 

convex and non-convex OTEi(.) score of 0.31 and 0.50 respectively, this means that about 

19% of this difference can be entirely attributed to convexity. Thus, in a multiple output 

setting, it cannot be denied that convexity matters both from a production as well as a cost 

perspective.  

Differences between the densities of these efficiency components can be tested 

with a test statistic proposed by Li (1996) and refined by Fan and Ullah (1999). This Li 

test statistic has an important characteristic for our purpose: it is valid for both 

dependent and independent variables. Dependency is distinctive for frontier estimators, 

                                                 
17 This should normally make the non-convex models less susceptible to outliers. 
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since efficiency depends on, e.g., sample size. The null hypothesis states the equality of 

both convex and non-convex efficiency distributions for a given component. Table 2 

summarizes the results obtained per data set and per component. Comparing the convex 

and non-convex results, one observes that for all cases, except the OTEi(.) and OEi(.C) 

scores in the case of the hydro-power plants, the distributions are significantly different. 

Thus, we can reject the null hypothesis, except for the hydro-power plants on both the 

production and cost side: while the latter follows from the result in Briec et al. (2004) 

(see supra), the former may be a bit surprising. Anyway, it confirms the importance of 

multiple outputs in differentiating convex and non-convex production and cost 

approaches. Furthermore, the close similarity in the case of a single output and the CRS 

assumption may contribute to delude people in thinking this similarity is more general 

than it really is. Finally, comparing production versus cost approaches again 

distributions of each efficiency component turn out to be significantly different from 

one another. 

To study the effects on the ranking of individual observations, Spearman rank 

correlations between the components of both decompositions are computed and reported in 

Table 2. While rankings are very high for both OTEi(.) and OEi(.C), they are much lower 

for both of its components, except for the hydro-power plants evaluated from a cost 

perspective. While for the hydro-power plants SCEi(.) and CSCEi(.) components have a 

higher degree of similarity in ranking compared to TEi(.) and OEi(.V), the situation is 

mixed for the fruit producers. Finally, the correlation between production and cost 

perspectives per component is in general lower compared to the correlation between 

convex versus non-convex setting, except twice for the French fruit producers.  

< Table 2 about here > 
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Next, it is important to verify whether there exist any differences in the 

determination of returns to scale for individual observations. Table 3 summarises the 

results per decomposition. First, the majority of hydro-power plant observations are 

subjected to increasing returns to scale. The same holds true for the fruit producers. While 

for the hydro-power plants the convex cost approach reveals a non-negligible share of 

observations subject to decreasing returns to scale, for the fruit producers it is the non-

convex approach that consistently indicates such a non-negligible share. Second, there 

are more observations with constant returns to scale under non-convexity, except for the 

cost approach applied to the hydro-power plants. This is in line with expectations.  

< Table 3 about here > 

A natural question to ask is to which extent these overall results hide any 

differences between convex and non-convex approaches, which is the main focus of this 

study. Per data set and per production and cost method, we report in Table 4 the 

percentages of observations for which the returns and economies to scale classification 

coincides, as well as the ones for which these classifications diverge. First, consensus on 

the classification varies between 67.71% and 97.92%, leaving a wide to modest margin 

of conflict. The extreme case of conflict is obviously the switch from increasing returns 

(economies) to scale to decreasing returns (diseconomies) to scale, or the reverse. This 

varies from an almost negligible 0.52% to an impressive 22.40% of cases. Second, 

while production and cost methods yield an about equal amount of consensus for the 

fruit producers, both approaches differ substantially for the hydro-power plants. 

< Table 4 about here > 

Another interesting question is to which extent there exists any differences 

between classifications based upon production and cost methods conditional on the 

convexity or non-convexity assumption. Per data set and per convexity or non-
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convexity assumption, we report in Table 5 the percentages of observations for which 

the returns and economies to scale classification coincides, as well as the ones for which 

these classifications diverge. First, consensus on the classification varies between 

66.15% and 97.40%. Again, this is a wide to modest margin of conflict. The extreme 

case of conflict is obviously the switch from increasing returns (economies) to scale to 

decreasing returns (diseconomies) to scale, or the reverse. This varies from 0.00% to an 

impressive 22.92%, depending on non-convexity or not. Second, while production and 

cost methods yield a better amount of consensus for the fruit producers under convexity, 

for the hydro-power plants the highest amount of diagonal element occurs under non-

convexity. Thus, while substantial progress has been made since the first study reporting 

divergences between primal and dual approaches (Burgess, 1975), we can prudently 

conclude that these differences do not seem to be conditioned by the convexity 

assumption.  

< Table 5 about here > 

 

6. CONCLUSIONS 

This contribution is the first to empirically illustrate the differences between 

technical and scale efficiencies as well as the differences between the characterization 

of economies of scale and returns to scale based on convex and non-convex technology 

and cost function estimations. Using data on French fruit producers as well as Chilean 

hydro-power plants, we empirically observe rather substantial differences regarding the 

relative importance of technical and scale efficiencies from both a production and a cost 

perspective. The sample of hydro-power plants also serves to illustrate the theoretical 

result that convex and non-convex cost functions coincide under CRS and a single 

output. While for this sample convex and non-convex overall technical efficiency yields 
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slightly different descriptive statistics, the densities turn out to be identical. However, 

for all other components, the distributions between convex and non-convex technology 

and cost function are significantly different. Probably more notable, the characterization 

of both economies of scale and returns to scale for individual observations turns out to 

be conditioned by convexity in a non-negligible way.  

This finding has potentially important consequences for investment decisions, 

definitions of capacity utilization notions, and other key economic notions. Therefore, it 

seems important to empirically explore these differences between convex and non-

convex technologies and cost functions further in even greater detail (e.g., also focusing 

on economies of scope, the impact on mergers and acquisitions, the effect on marginal 

relationships, etc.). In conclusion, even though theoretically the impact of convexity has 

been known since at least Jacobsen (1970), it seems to be important to further explore 

the effects of convexity on key economic value relations in practice. Anyway, evidence 

has been provided that the impact is non-negligible.  
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Table 1: Non-Convex and Convex Decompositions 

Chilian Hydro-power Plants 
 Non-Convex Decomposition Convex Decomposition 
 TEi(.)

¶ SCEi(.) OTEi(.) CRTEi(.) TEi(.) SCEi(.) OTEi(.) 
Average* 0.5139 0.1439 0.0740 0.9366 0.2976 0.2328 0.0693 
Stand.Dev. 0.3247 0.2151 0.2148 0.0645 0.3309 0.2648 0.2101 
Minimum 0.1293 0.0268 0.0072 0.7438 0.0605 0.0372 0.0070 
% Effic. Obs. 30.73% 3.13% 3.13% 27.08% 11.46% 2.08% 2.08% 
 OEi(.V) CSCEi(.) OEi(.C) CRCEi(.) OEi(.V) CSCEi(.) OEi(.C) 
Average* 0.1633 0.0828 0.0000 1.0000 0.1083 0.1248 0.0000 
Stand.Dev. 0.2891 0.1722 0.1080 0.0000 0.2520 0.2174 0.1080 
Minimum 0.0144 0.0181 0.0008 1.0000 0.0085 0.0181 0.0008 
% Effic. Obs. 3.13% 0.52% 0.52% 100.00% 2.60% 0.52% 0.52% 

French Fruit Producers 
 Non-Convex Decomposition Convex Decomposition 
 TEi(.) SCEi(.) OTEi(.) CRTEi(.) TEi(.) SCEi(.) OTEi(.) 
Average* 0.8210 0.6087 0.4997 0.6200 0.5721 0.5416 0.3098 
Stand.Dev. 0.1904 0.2379 0.2804 0.1545 0.1933 0.2589 0.2194 
Minimum 0.3590 0.0789 0.0486 0.3713 0.1868 0.0728 0.0481 
% Effic. Obs. 45.68% 12.84% 12.84% 2.72% 5.43% 2.22% 2.22% 
 OEi(.V) CSCEi(.) OEi(.C) CRCEi(.) OEi(.V) CSCEi(.) OEi(.C) 
Average* 0.5754 0.5483 0.3155 0.6830 0.3939 0.5470 0.2154 
Stand.Dev. 0.2476 0.2049 0.2186 0.1399 0.1898 0.2435 0.1614 
Minimum 0.1337 0.0619 0.0393 0.5205 0.1039 0.0567 0.0364 
% Effic. Obs. 15.31% 1.98% 1.98% 13.58% 1.73% 0.49% 0.49% 
* Geometric Average 
¶ Arguments have been suppressed for all efficiency components. 
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Table 2: Spearman Rank Correlation Coefficients between Convex and Non-Convex 

Decomposition Components and between Production and Cost Perspectives 

Chilian Hydro-power Plants 
 TEi(.) SCEi(.) OTEi(.) 
Convex vs. non-convex  0.930* 0.931* 0.994* 
Li test 18.18*** 6.98***  0.43 
 OEi(.V) CSCEi(.) OEi(.C) 
Convex vs. non-convex 0.975* 0.988* 1.000* 
Li test 7.74*** 10.07*** 0 
Production vs. costs 0.843* 0.902* 0.822* 
Li test 52.38*** 18.18*** 50.22*** 

French Fruit Producers 
 TEi(.) SCEi(.) OTEi(.) 
Convex vs. non-convex 0.723* 0.786* 0.933* 
Li test 104.70*** 4.65***  24.98*** 
 OEi(.V) CSCEi(.) OEi(.C) 
Convex vs. non-convex 0.807* 0.625* 0.957* 
Li test 26.70*** 8.54***  12.62*** 
Production vs. costs 0.725* 0.631* 0.852* 
Li test 53.75*** 12.48*** 24.73*** 

* Correlation is significantly different from 0 at the 0.01 level (2-tailed). 
Li test: critical values at 1% level = 2.33 (***); 5% level = 1.64 (**); 10% level = 1.28 
(*). 
 
Table 3: Returns to Scale and Economies of Scale Results 

Chilian Hydro-power Plants 
Production IRS CRS DRS 
Non-convex 96.35% 3.13% 0.52%
Convex 96.88% 1.56% 1.56%
Cost IRS CRS DRS 
Non-convex 98.44% 0.52% 1.04%
Convex 68.23% 9.38% 22.40%

French Fruit Producers 
Production IRS CRS DRS 
Non-convex 74.07% 12.84% 13.09%
Convex 90.37% 1.73% 7.90%
Cost IRS CRS DRS 
Non-convex 73.83% 1.98% 24.20%
Convex 93.33% 0.25% 6.42%
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Table 4: Returns and Economies of Scale: Differences between Convex and Non-

Convex Methods 

Chilian Hydro-power Plants 
Production Convex   
Non-Convex IRS CRS DRS 
IRS 95.83%  
CRS 1.04% 1.56% 
DRS 0.52% 0.52% 0.52%
Diagonal elements  97.92%
Non-Diagonal elements  2.08%
Cost Convex   
Non-Convex IRS CRS DRS 
IRS 67.19%  
CRS 9.90% 0.00% 
DRS 22.40% 0.00% 0.52%
Diagonal elements  67.71%
Non-Diagonal elements  32.29%

French Fruit Producers 
Production Convex   
Non-Convex IRS CRS DRS 
IRS 74.07%  
CRS 9.38% 1.48% 
DRS 6.91% 2.22% 5.93%
Diagonal elements  81.48%
Non-Diagonal elements  18.52%
Cost Convex   
Non-Convex IRS CRS DRS 
IRS 95.83%  
CRS 1.04% 1.56% 
DRS 0.52% 0.52% 0.52%
Diagonal elements  80.49%
Non-Diagonal elements  19.51%
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Table 5: Returns and Economies of Scale: Differences between Production and Cost 

Models 

Chilian Hydro-power Plants 
Non-Convex Production   
Cost IRS CRS DRS 
IRS 96.35%  
CRS 2.08% 0.52% 
DRS 0.00% 0.52% 0.52% 
Diagonal elements  97.40%
Non-Diagonal elements  2.60%
Convex Production   
Cost IRS CRS DRS 
IRS 65.63%  
CRS 10.94% 0.00% 
DRS 22.92% 0.00% 0.52% 
Diagonal elements  66.15%
Non-Diagonal elements  33.85%

French Fruit Producers 
Non-Convex Production   
Cost IRS CRS DRS 
IRS 68.64%  
CRS 4.44% 1.98% 
DRS 6.17% 6.42% 12.35% 
Diagonal elements  82.96%
Non-Diagonal elements  17.04%
Convex Production   
Cost IRS CRS DRS 
IRS 88.15%  
CRS 0.99% 0.25% 
DRS 6.42% 0.49% 3.70% 
Diagonal elements  92.10%
Non-Diagonal elements  7.90%
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General Conclusions 

 

1. KEY CONCLUSIONS BY CHAPTER 

There is a general consensus that frontier efficiency and productivity analysis has 

offered over the past few decades valuable new measurement tools to monitor and enhance 

the performance of any organization. Nevertheless, there is always a need to push the 

knowledge frontier further and to develop new understanding ignored in preceding research. 

Also this PhD thesis illustrates the possibility to assess the performance of 

organizations from an economic and managerial point of view under some new angles. All 

methodological developments in each of the chapters as well as the empirical applications 

have been developed with a focus on managerial relevance and potential utility for future 

research. Therefore, the next three subsections offer specific conclusions for each of these 

chapters, highlight some interconnections between chapters, and list some lines for future 

research. 

 

1.1 Managing a Bank Branch Network’s Performance 

While the short-run industry model has been rather widely used for evaluating 

regulatory policies of common pool resource industries, in this chapter we have for the first 

time applied the short-run industry model based on plant capacity measures to compute the 

productive performance of bank services in a branch network and illustrated how one could 

use this model as a managerial tool to obtain better efficiency results via a reallocation plan 

regarding inputs and/or outputs across the network. By focusing on the short-run industry 

model and it plant capacity measure, we show how the efficiency at the branch level can 

change in the short run by distinguishing between excess capacity and inefficiency. In a 
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second stage, we show how managers can explore changing the input and output component 

at the branch level so as to improve the performance of the branch network either by forcing 

branches to operate at the best practice level of efficiency, or by tolerating some inefficiency. 

Obviously, performance gains are lower when inefficiencies are tolerated.  

An empirical application to the network of a German savings bank in the year 1998 

have explored the results of several scenarios using basic efficiency measures relative to both 

convex and non-convex technologies. The statistical test of Li (1996) has revealed substantial 

differences between efficiency measures measured relative to convex and non-convex 

technologies. The latter technologies fit the data better. The detailed empirical results of the 

short-run industry model at both the industry and branch level reveal a considerable potential 

for closing down part of the network while maintaining current service levels. This remains 

true even under the most conservative estimates of efficiency and capacity (i.e., the ones 

based on a non-convex technology). Additional scenarios related to the impact of adding 

restrictions on the number of branches, on personnel transfer, and the fixing of alternative 

aggregate output targets have also been documented.  

Clearly, these few scenarios among many do not exhaust the possibilities to adjust 

this network model to decision-making needs. Obviously, this model -as any theoretical 

model- has some limits and its applicability would be enhanced if, for instance, geographical 

information could be included. Meanwhile, alternative models have been explored aiming at 

essentially the same goals: improving network performance via a reallocation among units. 

For instance, Vaz et al. (2010) explore the retail store performance distinguishing between two 

different levels: the section level and the store level. Using a network DEA model the maximum 

store sales are determined allowing for reallocations of area among the sections within a store. 

Clearly, the specificities and similarities between different reallocation models remains to be 

explored.  
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1.2. Malmquist and Hicks-Moorsteen Productivity Indices: Documenting Infeasibilities 

This chapter describes the differences between the Malmquist and Hicks-Moorsteen 

(or Malmquist TFP) productivity indexes. Both are productivity indexes used to assess the 

performance of firms over a certain time span, though it cannot be denied that the former 

index is far more popular. 

Usually in the context of total factor productivity (TFP), these two indexes show 

slightly different TFP results. This difference varies according to the returns to scale 

assumption on technologies, according to the convexity hypothesis, and also according to the 

short-run nature or not of the analysis. As earlier research has shown and our empirical 

analysis confirms the Malmquist productivity index may well be undefined, as its component 

input or output distance function may be infeasible under certain data configurations. By 

contrast, the Hicks-Moorsteen productivity index is always well defined and does not lead to 

any infeasible result at all under minimal assumptions.  

Therefore, our empirical analyses illustrates how much infeasibility one can expect 

to find when using the Malmquist productivity index under some variations in production 

assumptions. Undoubtedly, more theoretical and empirical studies are needed to check the 

influence of infeasibilities on these productivity measures. For instance, in future research, it 

might be meaningful to study the impact of homotheticity on these results.  

 

1.3 Scale Economies and Returns to Scale in Non-Parametric Models 

The final chapter has further explored the rather fundamental differences between 

traditional convex and non-convex production and cost function models in terms of basic 

static efficiency decompositions While convex models are far more popular, most researchers 
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probably ignore that the traditional convexity hypothesis has both an impact on technical and 

scale efficiencies estimated based on either a production or a cost model.  

The empirical analysis has convincingly documented the differences between 

technical and scale efficiencies based on both convex and non-convex technology and cost 

function estimates. It has also exemplified the differences between the characterization of 

economies of scale and returns to scale for convex as well as non-convex cost functions and 

technologies for individual observations. Obviously, for inefficient observations such 

characterization is conditional on a chosen orientation of measurement.  

 

2. LIMITATIONS AND AVENUES FOR FUTURE RESEARCH 

As with all empirically-oriented work, there are always areas that could be improved upon. 

Such shortcomings may also reveal promising avenues for future research. Apart from some 

of the specific limitations indicated in each of the three chapters or in the three previous 

subsections, there remain a few general issues worthwhile mentioning at this concluding 

stage. 

A rather common theme throughout this work has been the impact of the traditional 

convexity hypothesis on empirical results. It is worthwhile pointing out that still lots of 

domains of empirical application of applied production analysis remain to be explored with 

regard to this crucial assumption. For instance, the effect of convexity on assessing eventual 

benefits from mergers of two or several organizations have not yet been documented in the 

literature. Equally so, if and how traditional measures of capacity utilization are affected by 

the convexity assumption remains currently totally unknown.  

Ultimately, we think such empirical studies need to be supplemented by surveys or 

discussions with practitioners (e.g., consultants, managers, etc.) to see how they perceive the 

legitimacy of the convexity hypothesis.  
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