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Estimation de l'efficience et de la productivite :
Nouvelles perspectives

pour les entreprises et 'industrie

Résumé de la thése :

Cette these se propose d’analyser a la fois théement et empiriquement I'impacte
de certaines hypotheses dans la construction desdres d’efficience sur la productivité et la
performance des organisations d’'une maniére géneésahsi que d'étudier les mécanismes
susceptibles de contréler leur efficience. Poureiadre cet objectif, on s’intéresse
particulierement dans nos applications empiriques secteurs : bancaire, énergétique, et
I'agriculture.

La vocation des frontieres d’efficience et de lasare de productivité est d’évaluer
I'inefficience existante dans les unités de prouctjue les dirigeants de I'organisation veulent
mettre dans son fonctionnement optimal. Ces méthatiévaluation de la performance
s’appliquent aussi bien au secteur privé qu’auesegbublic et leur utilisation a pour but de
comparer le comportement des organisations a sdespace et au fil du temps, ou les deux a
la fois. C’est ainsi que ces mesures sont utiligges analyser l'efficience relative des entités
de production (personnes, projets, processus, gises, industries, etc.) au sein des grandes
organisations (par exemple, des agences bancaires uhe banque). En outre, ces méthodes
principales d’analyses comparatives (benchmark)vergu étre utilisées dans une industrie
donnée ou a travers des industries, qui peuverd RBnitées au nivaux nationale ou
international, etc.

Pour ce faire, on constate que les notions d'effice et de productivité ont été

intégrées a différents nivaux dans la formulatienapolitique économique et dans différentes
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pratigues de gestion. Par exemple, ces mesure$icete€e peuvent étre utilisées dans
I'application de la réglementation par plafonnemded prix dans les services publics ou les
organismes de réglementations et les entreprisgsgfand usage de ces nouvelles techniques
pour argumenter le niveau des gains d’efficienag, dpivent étre imposées sur les firmes
individuelles ou au niveau de l'industrie. De c#,feutilisation de ces méthodes a été intégrée
dans les manuels de réglement élaborés par leguiiosts internationales a linstar de la
Banque mondiale. Les principaux travaux de reclesrcjui viennent a I'esprit lorsqu’on évoque
I'application de ces modeles pour mesurer la perémce de différentes organisations sont
ceux, entre autres, de Coelli et al. (2003), Jareastllitt (2001), et Jamasb et al. (2003).

Pour mesurer la performance de I'entreprise paoteept d’efficience, les études de
recherche montrent plusieurs méthodes qu’ont éw@lolgpées et utilisées pour réaliser cet
objectif. Littéralement, le concept d’efficience @eproduction contient différentes approches
qui estiment les frontieres de production afin digser la performance de I'entreprise par les
séries temporelles, a travers les sections, oumpganel de donnés. Ces approches utilisent les
spécifications de frontiere de la technologie quntsestimées par des méthodes paramétriques
ou non paramétriques (voir Bogetoft et Otto (20ad)Coelli et al. (2005)). Dans ce travail de
recherche, on adopte I'approche non paramétriquepgumet de déterminer les bonnes
pratiques de la technologie par I'enveloppemergatir des observations qui sont fixées sur la
limite de I'ensemble de production possible. L'esttion non paramétrique de la frontiere
utilise la programmation mathématique pour envedopges données aussi étroitement possible
sous réserve de certaines hypotheses maintenueset-on se focalise ici sur les deux célébres
méthodes d’analyse qui se basent sur I'approchepapamétrique de frontiére. La méthode
connue sous le nom FDH («I'enveloppe de libre digm») et la méthode alternative qui est
célébre sous le nom DEA («Analyse d’EnveloppemenDdnnées»). Dans le cas de FDH la

technologie de production suppose seulement urie thisponibilité d’entrées (inputs) et de
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sorties (outputs), tandis que la méthode DEA ajautette supposition I'hypothése de convexité
et permet ainsi de faire des combinaisons linéalessunités de productions observeés. Briec et
al. (2004) ont montré la difféerence entre les esteurs de technologie convexe (DEA) et non
convexe (FDH), en soulignant que l'impact de lavetité affecte les valeurs des fonctions de
colts et que le deux technologies convexe et nowex@ peuvent étre combinés avec des
différentes suppositions de rendement d’échelle.

Le principal objectif de cette these est de parveniillustrer I'importance de la
convexité dans une grande variété de frontiergzraduction. Afin d'illustrer cet objectif, trois
sujets représentent le noyau de cette disserta(ibnL’utilisation de capacité optimale et la
redistribution dans un réseau de branches bancdiessand ; (2) Une comparaison des indices
de productivité Malmquist et Hicks-Moorsteen se amorirant sur l'infaisabilité ; (3) Les

economies d’échelle et les rendements d’échells mmodeles non paramétriques.

1. La capacité d'utilisation optimale et la réalloation de ressources bancaires: le cas
de réseau d’agences bancaires d'une banque Allemand
Dans ce chapitre, on propose de mesurer la perfur@napérationnelle de réseaux
d’agences bancaires par des nouveaux indicateuperd@mance. Pour ce faire, on utilise la
notion de capacité d'utilisation sur laquelle sesebde modéle industriel de réallocations
factorielles, qui permet de déterminer la structyBmale de réseaux d’agences bancaires.
En adoptant I'approche non paramétrique, on cheaichiéeindre deux objectifs dans ce
chapitre:
1. Montrer comment le modeéle de court terme de Jomapsat étre utilisé pour développer
des scénarios qui permettent la réallocation déges (inputs) et sorties (outputs) sur un

réseau bancaire afin d'améliorer sa performance.
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2. lllustrer comment la convexité peut affecter lesuitats du modele de Johansen a court
terme.

En littérature, ce modele industriel a été utipe@r mesurer la capacité d’utilisation des
entreprises industrielles, car ce modele propogepassibilité de substitutions entre les inputs
et les outputs. C'est ainsi que ce modele peutrvietér pour optimiser la performance
opérationnelle de banques, surtout dans les cas oe peut pas changer les inputs fixes a court
terme. En outre, ce modele permet de tracer latifn@en des substitutions possibles et le
changement de technologie qui en résulte au caursnps.

L’approche adoptée dans cette étude pour mesuparfarmance opérationnelle se sert
du modele industriel qui permet de faire face awxcapacités des intrants (inputs),
particulierement celles qui sont fixes. L’applicetiempirique est menée sur un échantillon de
142 agences bancaires d'une société financierenatide durant 'année 1998. Le secteur
bancaire est un secteur particulierement intéréskapoint de vue de la répartition des centres
de décision. Aprés avoir discuté ces données, mgaayons d’appliquer notre contribution
méthodologique et de proposer de nouvelles meslggserformance opérationnelle pour ces
agences bancaires. Cette approche a pour objectiiattre a la disposition des managers en
charge du réseau bancaire de nouveaux indicatearspaiformance compréhensibles,
interprétables et robustes qui leur permettentrdedve les meilleures décisions possibles.

Dans notre approche méthodologique plusieurs mesdee performance ont été
introduites et comparées avec des mesures plusiqileas comme la mesure de l'efficience
technique. Les résultats sont obtenus aprés aafgulés les trois principaux indicateurs de
performance telle que I'indicateur de I'efficiensehnique ordinaire, l'indicateur de la capacité
d’utilisation et celui de la capacité d'utilisatidéfinie selon Johansen (1972).

Les résultats empiriques montrent que la techneldgiproduction non convexe est plus

commode et plus fiable pour détecter l'inefficienchez les agences bancaires que la
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technologie traditionnelle basée sur la convexité ept souvent adoptée dans les méthodes
d’estimation (benchmark). Le modele industriel aircaderme étant le principal indicateur
d’efficience utilisé dans cette étude propose rhfi€s scénarios susceptibles d’aider les
décideurs a améliorer la performance. Ces scénsoimsbien détaillés dans ce chapitre, ainsi
que les intéréts managériaux qui peuvent en étés.tils consistent essentiellement a une
fermeture potentielle de certaines agences de seawebancaire avec la préservation des
services offerts. Ceci est confirmé par les rémilabtenus avec ce modele pour le cas de
technologie non convexe a l'aide des autres mestdeeperformances. Plusieurs scenarios
supplémentaires sont ajoutés comme autant de aserseéeg, tel que le transfert des employées
et la fixation d’objectifs alternatifs comme I'agadion des outputs.

Du point de vue empirique, plusieurs limites petv&re mentionnées. En premier lieu,
on constate que les informations liées a I'enviesnant géographique méritent d’étre intégrées
dans le modele. En outre, l'intensité concurrelatidbit étre défini et intégré dans ce model,
sachant que pour arriver a pallier toutes les émite model utilisé peut devenir inapplicable,
vue le grand nombre de contraintes mises en place.

On peut finalement dire que I'application de la mresde I'efficience, I'analyse par la
notion de capacité d'utilisation et le modéle irtdes a court terme sont des outils fiables est
efficaces pour mesurer I'efficience qui permet ehtfier les bonnes pratiques de performance.
L'utilité de ce modeéle industriel exige qu'il soihtégré dans le systeme de décisions

stratégiques en tant que outil de planification aweaux des opérations d’agences bancaires.

2. Comparaison entre deux principaux indices de prbuctivité: Malmquist et Hicks-
Moorsteen
L'objectif de ce chapitre est d’expliciter d'un pbide vue empirique le probleme

d’infaisabilité rencontrée souvent lors de l'utilion des indices de productivité Malmquist,
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étant un indice de quantité qui mesure dans |'tateon d’inputs ou d’outputs, et Hicks-
Moorsteen, qui mesure simultanément une contracfioputs et une expansion d’outputs. Ces
deux indices qui mesurent le changement de prodigctiurant différentes périodes se fondent
dans leurs définitions sur la fonction de distatiéfnie par Shephard (1970).

L’indice de productivité de Malmquist a été largetnaitilisé dans la littérature.
Cependant cet indice de quantité a montré qu’tnf@s toujours un indice de changement de
productivité. Cet indice peut aussi souffrir degpdurs infaisabilités lors de son application, qui
sont due a ses fonctions de distances d’input®etplits qui pourraient étre parfois indéfinies.
Cette infaisabilité est rarement rapportée paetades empiriques, sauf a quelques exceptions a
I'instar de travaux de Mukherjee et al. (2001).

En revanche, lindice de productivité Hicks-Moomstea prouvé son aptitude de
mesurer le changement de productivité et cecisiudait qu’il est bien défini par les fonctions
de distance en inputs et outputs. Hélas, I'utiisatle cet indice dans les travaux de recherche
est limitée, bien qu’il soit utilisé par plusiedravaux de recherche en tant que un bon indicateur
de changement de productivité. Il convient a nqtex I'indice de Hicks-Moorsteen est dérivé a
partir de I'indice de Malmquist que Diewert (19%R)ait défini comme un ratio des indices des
quantités des outputs et des inputs qui se baseres fonctions de distance, cette idée a été
inspirée auparavant par Hicks et Moorsteen et d@péle plus tard par Bjurek (1996).

En général I'utilisation des indices de Malmquistécks-Moorsteen est relativement
facile comparée aux autres indices de productRigs@er et Torngvist qui ne sont que des cas
spéciaux des indices de Malmquist, comme Cavels @982) I'avaient montré, dans la mesure
ou les deux premier indices ne sont pas trés exigem terme d’information, par exemple les
prix ne sont pas nécessaires. Néanmoins, les deumeds indices ont 'avantage en terme de
programmation comme ils ne nécessitent pas I'ettmales fonctions de distance, mais ils

exigent les prix des inputs et des outputs poer &fculés.
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Dans ce travail, la comparaison méthodologiqueeelets deux principaux indices de
productivité, Malmquist et Hicks-Moorsteen qui ssdent dans leurs mesures sur la frontiere
d’efficience, est faite apres avoir estimés lesxdeuices en adoptant une approche non
paramétrique basée sur la programmation linéaegte@omparaison a pour objectif d’illustrer
comment les infaisabilités de l'indice de produtdivle Malmquist sont conditionnées par des
hypotheses sur la technologie, en particulierdédlyse de court terme par rapport a celle de
long terme, (ii) convexe par rapport au non-conv@ikele rendement d’échelle constant par
rapport a I'hypothese de rendements d’échellelflexi

L’application empirique dans ce chapitre est men@edeux principales catégories de
données. La premiére est un échantillon pris deidla d’lvaldi et al (1996). Il s’agit de la
quantité de fruit francais produite durant troiss.aha deuxieme catégorie correspond a la
quantité de riz cultivé dans les champs de pegitealteurs des Philippines, et ce pendant sept
annees. Apres avoir discuté ces données en détaihesures de productivité par Malmquist et
Hicks-Moorsteen ont été appliquées pour détermiénehangement de productivité sur ces deux
différentes activités. Ces différentes mesurestnestimeées selon les deux approches convexes
et non convexes, avec rendements d’échelle cosstantariables.

C’est ainsi que les résultats de chaque indice ddférents selon I'approche sous
jacente adoptée. Plus précisément, lI'indice de Malst a montré plusieurs infaisabilités dans
le cas de rendement d’échelle variable, tandisl'tqndice de Hicks-Moorsteen a donné toutes
les estimations demandées avec les différenteadtadies sans aucune infaisabilité. Par contre
le pourcentage d’infaisabilité est trés élevé,daesla mesure de changement de productivité est
prise dans le temps discret par I'indice de Malmstjuiette réalité peut étre constaté plus claire
aux niveaux des observations individuelles.

Malgré l'inexistence d’infaisabilités dans les mesu des deux indices avec la

technologie de rendement d’échelle constant, lGadie Malmquist a montré qu’il n'est pas

10
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toujours un indicateur de changement de produétattéquat. En revanche, l'indice de Hicks-
Moorsteen est apparu comme lindice le plus pratiquour estimer le changement de
productivité en tenant compte les différentes agipes.

Bien que cet indice de « Hicks-Moorsteen » soitnuaitilise, il mérite une attention
particuliere dans une perspective d’utilisationdet développements futurs. Cette conclusion
n'exclue pas l'utilisation de l'indice de Malmquisbmme mesure fiable du changement de
productivité local. Toutefois, ce dernier pouvatne&ujet aux infaisabilités, le manager sera en
possibilité de recourir a I'indice de Hicks-Moorstequi constitue une alternative pérenne de

mesure de productivite.

3. Economie d’échelle et le rendement d’échelle dahes modeles non paramétriques :

Exploration de I'impact de la convexité

En théorie de production, differentes méthodes parameétriques sont utilisées pour
mesurer I'efficience technique ainsi que I'efficdend’échelle pour des organisations de tout
genre. La méthode basée sur I'enveloppe de litgpodition (FDH), tel qu'elle est introduite
par Deprins et al. (1984), est concue pour détetuypothese de la convexité sur laquelle se
base les modeles convexes traditionnels connusleausm DEA (Analyse d’Enveloppement
de Données).

Afin I'usage potentiel de I'approche FDH, Kerstesis Vanden Eeckaut (1999) ont
introduit des hypotheses de rendement d’échelleifegpges dans sa formulation de base ; ils ont
également proposé une nouvelle méthode pour casmrtées rendements d’échelle dans les
technologies non-convexes. Briec et al. (2004)é&yatlement développé des fonctions de codt
non-convexes qui sont toujours supérieures ou ggaleurs homologues convexes. Ces auteurs
ont de surcroit comparé les différentes décompmosstiraditionnellement convexes avec leurs

équivalents non-convexes.

11
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L’idée principale de ce chapitre est d’exploreditierence entre I'efficience technique
et l'efficience d'échelle ainsi que les éventuekkérences entre la caractérisation des
économies d'échelle et des rendements d'échekedasr I'estimation de la fonction de codt et
les technologies convexes et non-convexes. Toutacgour objectif d’illustrer la fagcon dont la
convexité de la technologie et la fonction de @ftecte :

1. la décomposition entre I'efficience technique effltience d’échelle dans le contexte des
codts et celui de la production.

2. la caractérisation des économies d'échelle etatetements d'échelle pour les observations
individuelles.

Dans l'analyse empirique, nous utilisons les dosrtke producteurs francais de fruits,
ainsi que des centrales Chiliennes d’hydroéleatsquLes résultats empirigues montrent la
différence entre l'efficience technique et I'efBoice d’échelle basées sur des technologies
convexes et non-convexes, ainsi que les fonctiensalits estimées. En outre, ces résultats
illustrent les différences entre la caractérisatims économies d'échelle et des rendements
d'échelle pour les observations individuelles, anivies fonctions des codts convexes et non
convexes ainsi que les technologies. Evidemmeni; [gs observations inefficientes une telle
caractérisation est conditionnée par une orientatimisie de mesure.

Il est certain que tout ceci a des conséquencesortarges sur les décisions
d’investissement et certaines notions clés de tiénde a l'instar de la notion de d’utilisation de

capacité.

Mots-clés: Les réseaux d’agences bancaires, Hifieie Capacité, Reéallocation, Indice de
Productivité de Malmquist, Indice de Productiviggicks-Moorsteen, Infaisabilités, Efficience
d’Echelle, Rendements d’Echelle, Convexité.
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Frontier Estimation of Efficiency and Productivity:

Some New Perspectives for Firms and Industry

Summary of the PhD:

This thesis contributes to the efficiency and peiun frontier literature by adopting a
managerial focus to provide a few new solutiongn@nagers. There is in fact one recurrent
theme in this PhD: we illustrate the importancecofivexity in a wide variety of production
frontier modeling settings. Three topics represtat core of this dissertation: (1) Optimal
capacity utilization and reallocation in a Germaanlk branch network; (2) A comparison of
Malmquist and Hicks-Moorsteen productivity indicéscusing on infeasibilities; (3) Scale
economies and returns to scale in non-parametraeisoThe first chapter shows how the short
run Johansen model can be used to develop scemannanage the reallocation of inputs and
outputs over a bank branch network so as to impitsygerformance and then, we illustrate how
convexity affects these results for the short rahahsen model. The second chapter describes
how infeasibilities of the Malmquist productivitydex are conditioned by assumptions on
technology, in particular (i) short-run versus lemg analysis, (i) convex versus non-convex,
and (iii) constant versus flexible returns to sadsumptions. Finally, the third chapter explores
the difference between the technical efficiency #relscale efficiency as well as the eventual
differences between the characterization of ecoasmof scale and returns to scale based on

convex and non-convex technology and cost funagiimations.

Keywords: Bank branch network, Efficiency, Capaci®eallocation, Malmquist Productivity
Index, Hicks-Moorsteen Productivity index, Infeakiies, Scale efficiency, Returns to scale,

Convexity.
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General Introduction

1. REVIEW OF THE LITERATURE AND RECENT RESEARCH
DEVELOPMENTS

The last two decades have witnessed an unprecedeanterest in efficiency
measurement in the academic literature. This hsslall to a massive amount of publications
reporting on the efficiency and productivity growtieasures in a wide variety of industries in
the private sector as well as in the public sedix@amples of well-studied sectors for which
surveys of the literature are available includekiras (see Hughes and Mester (2008)), education
(Worthington (2001)), health care (Ozcan (2008)surance (Cummins and Weiss (2000)),
railways (Nash and Smith (2008)), water industrplgatt and Cohen (2009)), among others.

But, efficiency measurement and derived measurgzaductivity growth have also
entered the domain of policy formulation and pr@timanagement at various levels. One can
think first and foremost about the role of effignmeasurement in implementing price cap
regulation in utilities, where both regulators dimths make ample use of these new techniques
to argue about the level of the efficiency gainbeédmposed on individual forms or the industry
level. The use frontier-based efficiency and praditg notions has become integrated in the
handbooks for regulation developed by internatianatitutions like the World Bank (e.g.,
Coelli et al. (2003)). Jamasb and Pollitt (2001fepfa survey on the countries implementing
such performance benchmarking schemes in the ielgctsector, while Jamasb et al. (2003)
discuss survey results from regulators on the ggnssues that can occur when implementing
such yardstick competition.

In addition, efficiency and productivity measurembas meanwhile found its way to

management in certain industries. Because of evidgsons of discretion and secrecy, such
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implementations of frontier benchmarking are muebsl documented in published sources.
Therefore, we just mention two documented manalgapialications.

First, Fried et al. (1995) document how the tradsoaiation of USA credit unions
(CUNA) has got involved in an almost continuousodffto deliver its members monitoring
services to control the evolution of their effiodgnand productivity using simple to understand
non-convex frontier models. While access restmditemper competition among credit unions,
these frontier models help their members improvihgir strategic positioning relative to
commercial banks and other financial institution#h whom they are in competition at the
local level.

Second, Sherman and Ladino (1995) describe howadl segional bank in the USA
with a limited network has managed to use trad#idrontier benchmarking models to realize
substantial cost savings to generate the necessimal financing for a major expansion
strategy. Combined with field visits and an acyivanalysis by questionnaires, this bank in the
end managed to economize $6 million of the potéfiflanillion total expenses indicated by the

frontier methods as being wasted.

Benchmarking analysis represents a key tool inn@ss economics. Two main
activities of any manager controlling and supengsan organization are on the one hand
monitoring (assessing how the firm is doing ovend), and benchmarking (comparing firm
performance with respect to its main competitoMile both activities aim to enhance
performance, monitoring is clearly oriented towartise internal organization, while
benchmarking by definition takes an external passpe (e.g., Balk (2003)).

Benchmarking can ideally be conceived as the sdarchnd the emulation of the best
practices in an industry. Through benchmarkingrra tan deduce whether it has managed to

adapt best or worst practices. Knowing its relafpegformance, it can target to maintain its
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eventual superiority or to close the eventual gdative to its best practice competitors (Camp
(1998)). While benchmarking is probably an ageidkh, it's origin is nowadays often related
to the activities of Xerox in 1980 when it compartsdphotocopier production in the USA with

those of Fuji-Xerox in Japan. This has been quidkliowed by a widespread adaptation by

firms in search for improvements (Voss et al. (1997

Traditionally, organizations in different indussibave used some simplified efficiency
or productivity measures (e.g., partial producyiviheasures, also sometimes known as Key
Performance Indicators (KPIs)) as a basic benchimgrkool to assess the efficiency and
effectiveness of firms. While these tools offer griad of ratios or indicators indicating some
aspect of performance, it is often hard if not iisgible to aggregate this variety of ratios or
indicators into some summary measure. This way agkling measurement problems in
production is often based on the strong traditonde a variety of ratios in accounting, business
and finance (see, e.g., Bragg (2002) for an ovesfyie

More recently, some managers and policy makers dasmovered that inefficiencies
can be better identified by using frontier-baseitieincy or productivity measures, since these
allow taking into account the multidimensional matwf modern production technologies in
industries and services. The use of well-definéidiehcy measures has the double advantage of
offering a simple aggregate indication of perforcemver several dimensions and having a
measure with a meaningful economic interpretatibor instance, input-oriented efficiency
measures normally have a cost interpretation waildws results to be immediately translated

into budgetary policies.

These methods of performance assessment applg faritrate as well as to the public

sector. Furthermore, these methods are relevariidibr the production of goods and services.
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The purpose of frontier-based efficiency or produigt measures is to compare the behavior of
organizations over time, across space, or botlthEumore, this performance measurement can
be used to analyze the relative efficiency of padidun entities (individuals, projects, processes,
firms, industries, etc.) within larger organizasorfe.g., bank branches within a bank).
Furthermore, such benchmarking comparisons can dme nwithin a given industry or across
industries, can be limited to the national levelm@y even have an international character, etc.

We first quickly review the most relevant efficighand productivity notions and
explain how to make them operational. Farrell ()9bitfroduced the idea of best-practice
frontiers and provided the first measurement scheamefficiency by distinguishing between
technical and allocative efficiency. More recentrkvbas created more elaborate taxonomies by
adding scale and structural efficiencies (see, Eaye et al. (1994)).

First, technical efficiency requires productionlde situated on the boundary of the
production possibility set or technology. Technglogummarizes all possibilities of
transforming inputs into outputs. A producer isht@ically inefficient if production occurs in the
interior of technology. Second, structural effiagns a special case of technical efficiency. A
technically efficient producer is structurally efént if production is situated in the economic
(uncongested) region of production. Structural finefncy happens when production faces
some form of congestion, whereby some of the inpatge negative marginal products. Third,
scale efficiency measures the eventual divergeretevden the actual and ideal scale of
production. The ideal scale of production is repnésd by a long run competitive equilibrium
situation, whereby production satisfies constartirnss to scale. An organization is scale
efficient if its production occurs on a constanturas to scale frontier. Otherwise, it is scale
inefficient. Finally, allocative efficiency is defed by a point on the boundary of technology

satisfying a given objective of the organizationyeg certain constraints on prices and

24

© 2011 Tous droits réservés. http://doc.univ-lille1 fr



Thése de Bouye Ahmed Ould Moulaye Hachem, Lille 1, 2011

guantities. Organizations are often assumed to lemzing costs. A technically efficient

producer is then allocatively inefficient if obsed/costs are situated above minimal costs.

To estimate production frontiers, a variety of noeth have been developed for
analyzing time series, cross-section or panel daia.convenience, this discussion focuses on
cross-section data. Once frontiers are estimateafjuptivity changes can be derived from
measuring the shifts in the frontier over time. Measure performance, the literature contains
several approaches that can be used to specifyraasure the efficiency of firms. These
approaches employ frontier specifications of tedbgy that are estimated by either parametric
or non-parametric methods:

* The parametric approach assumes that the bounflaeglmology can be represented by a
particular functional form with a finite number parameters;

* The non-parametric approach directly envelops thservations in the sample while
imposing minimal regularity axioms on the technglog

These methods are different from one another imgeof the underlying behavioral
assumptions and data requirements. But more imptytahese methods differ to the extent
that these allow for random error or not:

» Stochastic methods allowing for measurement erraddition to inefficiency;

* Deterministic methods assume that observationmasesured without error.

Combining both of these distinctions yields a faway classification. Surveys of all methods

confounded are available in Bogetoft and Otto (2Gkid Coelli et al. (2005). The present PhD
focuses on non-parametric deterministic approaahésignores the other methods. Specialized
surveys focusing on the non-parametric determmigtntier estimation methods are Ray

(2004) and Thanassoulis et al. (2008), among athers
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Deterministic non-parametric methods obtain a hmsttice technology by directly
enveloping the observations on the boundary ofptleeluction possibility set. These extremal
estimators use mathematical programming to envidlepata as tightly as possible subject to
certain maintained assumptions. These productisanagtions are far less restrictive than the
ones used in other approaches. We briefly presemtfamilies of important technologies. A
production technology only assuming strong input antput disposability is known as the free
disposal hull (FDH). Strong input disposability il that any given level of outputs remains
feasible if any of the inputs increases. Strongpoutdisposability means that it is always
possible to reduce outputs with given inputs. Ateraktive production technology adds
convexity to the assumptions maintained by FDH. @amon-parametric frontiers, known as
Data Envelopment Analysis (DEA) models, allow fanelar combinations of observed
production units. Briec et al. (2004) have showat the convex technology estimators indicate
larger or equal amounts of inefficiency comparesintbn-convex technology and especially that
the impact of convexity also affects the valuesast functions: convex cost functions indicate
lower or equal values compares to non-convex aosttions. This observation is related to the
properties of the cost function in the outputs. lBBa@bnvex and non-convex families of
technologies can be combined with various assumgtiegarding returns to scale (see Briec et

al. (2004)).

Many of analysts in the economics and managemenatiure have looked at the notion
of capacity utilization and its ability to help assing the performance of organizations. In the
theoretical production literature, the capacityiorotcomes in at least two varieties: a technical
(engineering) and an economic capacity concept ésge Johansen (1968) and Nelson (1989)).

The former concept of capacity utilization consgdenly the physical information on inputs and
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outputs, while the later notion includes the piidermation and founds its measure mostly on
the cost function.

A bit surprisingly, the majority of the frontier tewmation literature has -—often
implicitly— taken a long run perspective (assumthgt all inputs and/or outputs are under
managerial control) and has almost completely igddhe capacity utilisation notion as a bridge
concept between a short-run and a long-run analysis

Johansen (1968) defined capacity utilization byngisa non-parametric production
frontier indicating the maximum potential outpuatttould be produced per unit of time with
existing plant and equipment, assuming no restrictf variable inputs. This capacity notion
has been used in several studies applying thiseptnat the industry level (e.g., Coelli et

al. (2002)).

Finally, while the overview so far has been maiktyited to a static evaluation of
performance, it is equally important to be ableevaluate performance over time. A variety of
productivity indices aim to measure the total fagiooductivity (TFP) of firms and sectors.
Rather famous productivity indexes widely used bgremic analysts are the Malmquist and
Hicks-Moorsteen productivity indices on the onedand the Fisher and Tornqvist productivity
indices on the other hand. Both the Malmquist arak$iMoorsteen productivity indexes do not
require input and output prices, but require a itbketaknowledge of the technology obtained
from combining a variety of efficiency measures. &ntrast, the other productivity indexes
need data on input and output prices to aggrepatguantity information on inputs and outputs,
but they have to make stronger assumptions thartvtbeformer productivity indexes (e.g.,
assume allocative efficiency). These different picitvity measures have been surveyed by, for

instance, Diewert (1992) or Diewert and Nakamufg).
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2. OBJECTIVES OF THE STUDY, METHODS, AND ACHIEVEMEN TS

There is in fact one recurrent theme in this Ph@:illustrate the importance of
convexity in a wide variety of production frontienodeling settings. The next subsections
describe in more details how this principal objeetis articulated into the three main chapters.
Each of these chapters aims to fill up some gaplseiditerature as well as to provide a few new

solutions to managers.

2.1.  Optimal capacity utilization and reallocatian a German Bank Branch Network

Bank management traditionally monitors the operatigperformance of its branch
network by a variety of tools. Massive amounts tfdges have assessed banking efficiency.
Fewer studies have considered bank branch netwiidkeacy, mostly within a single bank
network. Studies analyzing retail banking efficignusing frontier methods have amply shown
how bank management can monitor the operationali&ity of its central services and of its
branch network by means of these new tools (seg, ©ral and Yolalan (1990)). Rather
common managerial uses of frontier benchmarkingltegor the management of a branch
network include: efficiency measures can be usesetocost and revenue targets, to identify
branches in need of an internal audit, to selexb#st branches to train new employees to adopt
best practices, to induce learning practices byimmutogether weak and strong performers, etc.

While the measurement of the efficiency of banknbranetworks has become fairly
standard, few managerial tools are available tarope existing bank branch networks while
somehow correcting for existing inefficiencies aamttounting for targets, common resource
constraints, and policy concerns of various kir@ise can find a small literature that starts from
efficiency measures at the firm level to come uphvdome reallocation of resources at the
industry or network level. Examples among a largeety of research proposals include the

articles by Athanassopoulos (1995), Golany and Téh995), Lozano and Villa (2004), among
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others. To our knowledge, no article so far hasaged to discover a common structure in these
proposals.

To start from firm foundations, we have therefareopted to stick close to a variation
of the short-run industry model initially proposedlohansen (1972). This model received quite
a bit of discussion in the economics literaturetta time (e.g., Fgrsund and Hjalmarsson
(1983)). In particular, Dervaux et al. (2000) hdwéed this model to the frontier-literature by
introducing frontier-based estimates of capacityization. This refined short-run industry
model has been adapted to analyze excess capatifisiseries while offering a large choice of
policy options in Kerstens et al. (2006).

The chapter makes use of the sample of 142 Germak kranches in the year 1998
described in Porembski et al. (2005), the only lneda on a banking network we could lay our
hands on. Given this origin of our data, we havemce information, which limits our choice of
capacity utilization concepts drastically. Insteddneasuring some cost-based capacity notion,
we are forced to settle for a plant capacity no{sme Johansen (1968)).

This chapter’s specific objectives are to:
(i) show how the short run Johansen model can kd tsdevelop scenarios to manage the
reallocation of inputs and outputs over a bank reknso as to improve its performance, and

(i) illustrate how convexity affects the resuls the short run Johansen model.

To the best of our knowledge, these goals havbeen illustrated in the existing literature.

This chapter is joint work and has been publisinetthé following book:

Kerstens, K., B.A. Moulaye Hachem, I. Van De WoastyN. Vestergaard (2010)

Optimal Capacity Utilization and Reallocation inGerman Bank Branch Network:
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Exploring Some Strategic Scenarios, in: A. Tavideel) Progress in Economics
Research{Volume 16), New York, Nova Science, p. 35-61.

Notice that subsection 4.3 is new and has not peadrof this publication.

2.2. Malmquist and Hicks-Moorsteen Productivity Irmks and Infeasibilities

Frontier efficiency methods have been widely usedltain estimates of total factor
productivity indices in a discrete time framewoHBspecially the Malmquist productivity index
has been very popular, among others since it allmndecompose dynamic performance into
technical change (movements of the production ieonton the one hand and changes in
technical efficiency (changes in the relative gosihg with respect to the moving production
frontier) on the other hand. Some studies have rtegothat this index shows some
infeasibilities caused by its undefined underlymgput or input distance functions (the inverses
of the corresponding radial efficiency measureg)c8ntrast, the less popular Hicks-Moorsteen
productivity index is known to be feasible undegtard assumptions.

While managers are supposed to care most aboutsprbiey should also take great
interest in productivity change. Indeed, it has rbewgued that changes in total factor
productivity (TFP) are the main impetus for changes in profits. BalB03: 6) has phrased this
aptly as follows: “the most encompassing measurg@rofiuctivity change,TFP change, is
nothing but the “real” component of profitabilitghange. Put otherwise, if there is no effect of
prices then productivity change would coincide wylofitability change.” Therefore, the
continuous monitoring of the evolution of produdivshould be an implicit if not an explicit
concern for managers. The absence of such infoomaliie to infeasibilities complicates this
task.

This chapter has the specific goal to:
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illustrate how infeasibilities of the Malmquist phactivity index are conditioned by assumptions
on technology, in particular (i) short-run versusp-run analysis,
(i) convex versus non-convex, and

(iii) constant versus flexible returns to scalewsptions.

These goals have not been systematically explarethe existing literature. In the
empirical part of the chapter, we apply these thcal issues on the agriculture sector by
taking two panel data sets available from publistsedirces. The first data contains an
unbalanced panel of three years of French fruitlpecers, while the second data set concerns a
small balanced panel of smallholder rice farmethima Tarlac region of the Philippines observed

over seven years.

This chapter is joint work and an earlier versias been published as a discussion paper:
Kerstens, K., B.A. Moulaye Hachem, |. Van De Woast{2010) Malmquist and Hicks-
Moorsteen Productivity Indices: An Empirical Comipan Focusing on Infeasibilities,
Lille, LEM (Document de travail 2010-09), 25 pp.

Notice that this chapter is currently under review.

2.3. Scale Economies and Returns to Scale in NondPaetric Models: Exploring the
Impact of Convexity

Non-parametric frontier efficiency methods are dapwestimate technical and scale
efficiencies of various organisations. The FreepDsal Hull (FDH) imposes a free disposal
assumption on inputs and outputs, but relaxes thevexity assumption underlying the
traditional convex models. Kerstens and Vanden &ack1999) introduce specific returns to
scale assumptions into the basic FDH model andgs®p new goodness-of-fit method to infer
the characterization of returns to scale for nonvex technologies. Finally, Briec et al. (2004).
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also propose non-convex cost functions that areaydwlarger or equal to their convex
counterparts and they relate the traditional cordeomposition into technical, scale, allocative

and overall efficiency with its non-convex counians.

This chapter has the specific goal to:
illustrate how convexity on technology and costfiom affects
(i) the decomposition between technical and scHileiencies in a production and cost context,

(i) the characterization of economies of scale agitirns to scale for individual observations.

Again, these goals have —to the best of our knaydedot been systematically explored
in the economic or operations research literatureshis chapter we explore these differences
between technical and scale efficiencies basedotim thaditional convex and these rather new
non-convex technology and cost function estimatidmghe literature, estimates based on the
cost function have never been reported. Equallyomamt, we also point to the eventual
differences between the characterization of ecoaesmi scale and returns to scale for convex as
well as non-convex cost functions and technolofpesndividual observations. For the purpose
of empirical illustration, we apply these efficighdecomposition on the agriculture sector and
on the hydro electricity industry. The first datantains an unbalanced panel of three years of
French fruit producers, the other hydro-electrievpo generation plant data are observed on a

monthly basis for a single year.

This chapter is joint work with the PhD supervisor.
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Chapter 1:
Optimal Capacity Utilization and Reallocation
in a German Bank Branch Network:

Exploring Some Strategic Scenarios

Abstract:

Quite a few studies have considered efficiencyhatltank branch level by comparing mostly a
single branch network, while an abundance of studli@ave focused on comparing banking
institutions. However, to the best of our knowledgestudy has ever assessed performance at
the level of the branch bank network by looking feays to reallocate resources such that
overall performance improves. Here, we introdu@ bhansen-Fare measure of plant capacity
of the firm into a multi-output, frontier-based s&m of the short-run Johansen industry model.
The first stage capacity model carefully checkstha impact of the convexity assumption on
the estimated capacity utilization results. Poicgnarios considered for the short-run Johansen
industry model vary in terms of their tolerance hwitespect to existing bank branch
inefficiencies, the formulation of closure policighe reallocation of labor in terms of integer
units, etc. The application to a network of 142kbhranches of a German savings bank in the
year 1998 measures their efficiency and capaciiyzation and demonstrate that by this

industry model approach one can improve the peidioca of the whole branch network.

Keywords: Bank Branch Network, Efficiency, CapaciReallocation

JEL classification: G21, M11.

33

© 2011 Tous droits réservés. http://doc.univ-lille1 fr



Thése de Bouye Ahmed Ould Moulaye Hachem, Lille 1, 2011

1. INTRODUCTION

In today’s integrated financial markets, banks fawmeasing competition for market
share. The rapid changes in market conditions, (digintermediation and deregulation trends,
successive merger waves, new competition from threfimancial sector) raise a number of
important questions from a regulatory perspectiveua the structure of the banking industry.
But, equally important are the strategic issueateel to the management of these financial
service providers offering a wide range of increghi complex products. Against this
background, the issue of bank efficiency has becratteer prominent, since inefficient banks
may not survive these continuous challenges, ealheevhen the sector implements massive
investments in IT to foster productivity growth (noved information management, new
delivery channels, etc.). While the literature ba éefficiencies of banking institutions has been
summarized from various perspectives (see, amotgret Berger (2007), Berger and
Humphrey (1997), Goddard et al. (2001), and the&ged surveys on consolidation of Amel et
al. (2004) and Berger et al. (1999)), the literatanalyzing the drivers of performance in
financial services delivery remains rather limif@ge Harker and Zenios (2001)) as does the
literature on the management of bank branch netswsde Paradi et al. (2004) for a survey).

An abundant amount of studies has focused on congpéianking institutions, while
fewer studies have studied efficiency at the bardnth level by comparing mostly a single
branch network. However, to the best of our knogéedo study has ever assessed the
performance at the level of the branch bank netwgrlooking for ways to reallocate resources
such that overall performance of the network impsovi o put this topic in perspective, we first
briefly summarize the efficiency literature on bangkinstitutions and bank branch networks.
Then, we expand on the reasons why the managerhariiranch network requires new models

and how the short-run Johansen industry model slsowee promise in this respect.
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In view of the dual role of financial institutiores providers of transactions and as
intermediates transferring funds from savers testors, in the efficiency literature one finds
mainly two types of models to measure the flow @fvies in a given period (see Berger and
Humphrey (1997)):

* Production approach: Banks are considered as seproviders to account holders that
perform transactions and process documents forsitep® (e.g., checks, loan applications,
credit reports, etc.). Outputs are defined in teahaumbers of transactions or documents
processed. Only current expenses related to physjmats like labor and capital and their
associated costs are considered, while interesh@atg are ignored. As a consequence, only
input prices for physical inputs are considered.

* Intermediation approach: Banks are intermediatingl§ between savers and investors. The
flow of services is seen as proportional to thelstof financial value in the accounts (e.g.,
value of loans, deposits, etc.). Outputs are ddfimeterms of financial value terms. In
addition to the physical inputs, also the inpufuwsfds is considered. Costs therefore contain
current expenses and interest payments and inpréspfor physical inputs and financial
inputs are taken into account.

Both approaches have their relative advantagesa¢sga Berger and Humphrey (1997)).
The intermediation approach is more appropriate¥@uating entire banking institutions, since
interest expenses are an important part of totsiscand need to be minimized to guarantee
overall cost minimization or profit maximizationh& production approach is most suitable for
bank branches, since intermediation is organizeadtdgher level. Certain studies employ both
approaches.

Since the seminal article of Berger et al. (19%0me progress had been made in
analyzing bank branch efficiency. Some key restittsn this limited literature can be

summarized as follows. (i) There are scale econ®mig¢he branch level. But, the excess costs
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of over-branching are rather low due to the retaflatness of average cost curves. Furthermore,
additional revenues gained from the convenienceredf to the customers at the network level
probably compensate these additional costs dueate sefficiency. (i) The large dispersion of
technical inefficiencies at the branch level imgltbat technical inefficiencies at the bank level
are understated, since even efficient banks arelyliko have some inefficient branches.
(i) Bank management only imperfectly controls tleests of branch offices through its
procedures, incentives and supervision. The qualityocal management remains a crucial
determinant of branch performance. Further conchssbn bank branch efficiency are found in
the surveys of Berger and Humphrey (1997) and Pataal. (2004). International comparative
network studies are still extremely rare (see A#isaopoulos et al. (2001) or McEachern and
Paradi (2007) for exceptions)

Bank management has always monitored the operadfi@ency of its branch network
by a variety of tools to measure performance Traditional tools to measure efficiency are
based on financial ratios (such as Return on AsB&girn on Equity, or similar ratios). While
ratios provide a great deal of information abougficial performance in comparisons across
time or relative to other banks’ performance, th&sagls have well-known limitations. An
alternative approach is the use of deterministiecanometric frontier efficiency analysis using
a production approach or eventually using accogntiformation (as it turns out that financial
and production performance tends to be rather ledvect see, e.g., Elyasiaet al. (1994) or
Feroz, Kim and Raab (2003)). Some success storiessing frontier benchmarking in
evaluating branch networks have been well-docundefdee, e.g., Sherman and Ladino (1995)
or Athanassopoulos and Giokas (2000)). Straightiowuses of frontier benchmarking for
managing branch networks have equally been teastifiea variety of written sources. In
particular, efficiency scores, rankings and fronpeojections have, among others, been used as

an instrument to reformulate budgetary and reveangets; to identify branches needing a
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thorough internal audit; to rewrite internal prooess and test the implications of these reforms
on performance; to induce a learning process foeati personnel by assembling both weak and
good performers and eventually move best-practiaeagers to poor performing branches; to
train new employees at best practice branches, etc.

However, the rapid technological changes have dethe introduction of new delivery
systems (Automatic Teller Machines (ATM), electoniund transfer of point of sale
(EFTPOS), phone and internet banking, e-moneyaizdd call centers, etc) that risk to erode
away the earlier dominance of the brick-and-mdstark branch. This increasing competition of
distribution channels goes hand in hand with aremsing number of bank branches in the USA
(Thirtle (2007)), even though these branches aterbegg more concentrated in the networks of
just a few institutions (due to industry consolidaj. Though Thirtle (2007) finds no systematic
relationship between branch network size and olvarstitutional profitability, which seems to
suggest that banks somehow optimize the size af tianch network as part of an overall
strategy, her findings do suggest that banks withsized branch networks (101-500 branches)
may be at a competitive disadvantage in branchitigies relative to banks with larger branch
networks. Together with the common knowledge thatd remain unexploited scale economies
at the branch level whereby the additional cosbwérbranching” seems to be compensated by
the gains in additional revenues from providingr&xdustomer convenience (see ab)pteese
findings point to the conclusion that the managaneérbranch networks is going to remain a
major challenge for the years to come.

While measuring the efficiency of bank branch ne#sas fairly standard, few if any
managerial tools are available to optimize existvagpk branch networks while correcting for
existing inefficiencies and accounting for targetsarious kinds. A burgeoning literature exists
that starts from efficiency measurements at theviddal firm (plant or subunit) level to come

up with some reallocation of resources at the le¥éhe industry (firm). Earlgxamples of such
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articles include Athanassopoulos (1995), Feéiral. (1992), Golany and Tamir (1995), Li and
Ng (1995), among others. Meanwhile, a series ofit@t@l publications have appeared,
including, for instance, Asmileet al. (2009), Giménez-Garciat al. (2007), Korhonen and
Syrjanen (2004), and Lozano and Villa (2004). Hoeveut is difficult to see a common
structure in this large variety of research profos&urthermore, since few empirical
applications exist and experience with practicgblamentations seems absent (at least it is not
reported in publications), it is difficult to assebe relative advantages of these models from a
managerial viewpoint. To the best of our knowledyme of these reallocation models has ever
been applied to the banking sector.

We have therefore opted to stick to a short-rurustiy model initially proposed in
Johansen (1972) which received at least a minimtigiscussion in the economics literature
(see, e.g., Fgrsund and Hjalmarsson (1983) or hidldend (1981)). Furthermore, it has been
linked to the frontier-literature in Dervawet al.(2000) who introduce frontier-based estimates
of plant capacity (see Johansen (1968)) as a fawmd#or this short-run industry model,
thereby distinguishing between variations in techhefficiency and capacity utilization. This
methodological refined model has been applied myamg excess capacities in fisheries and
further extended in Kersteret al. (2006). Starting from the ex-post fixity of invesnis in
production capacities, this short-run Johansen A9viodel allows for some substitution
possibilities by reallocating inputs and outputsoam the units composing the industry while
eliminating technical inefficiencies and major &ions in capacity utilization among units.
Furthermore, over time substitution and technitenge can be traced via shifts in successive
short-run industry models. None of the other abmeationed models accounts for the notion of
production capacity or distinguishes clearly bemvéechnical inefficiency and variations in
capacity utilization. As far as we know, this sham industry model has never been applied to

banking.
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Since the goal of performance benchmarking in ¢hse is prospective (i.e., providing
management with strategic information to actualtypiove performance), there are strong
reasons to believe that many people object to werghble projection points implied by the
traditional convexity hypothesis. This is eviden@edemarks, scattered in the literature, on the
problems encountered in communicating the resuitefficiency measurement to decision
makers. We offer three examples. In a study apglgonvex nonparametric frontier methods to
measure bank branch efficiency, Parkan (1987: 8d®s: “The comparison of a branch which
was declared relatively efficient, to a hypothdticamposite branch, did not allow for
convincing practical arguments as to where thefimehcies lay.” In a similar vein, Bouhnik et
al. (2001: 243), apart from criticizing extreme I®ealing, also state: “... it is our experience
that managers often question the meaning of coroarbinations that involve what they
perceive to be irrelevant DMUs.” Finally, EpsteindaHenderson (1989: 105) report similar
experiences in that managers simply question th&lgity of the hypothetical projection points
resulting from convex nonparametric frontiers. Thasoiding convexity may facilitate the
implementation of frontier-based decision suppootels® Therefore, in this contribution a lot
of attention is devoted to testing for the impatttlee convexity assumption in estimating
capacity and in the results of the short-run ingustodel.

This contribution is structured as follows. We a@auce in Section 2 the Johansen-Fére
measure of plant capacity of the firm into a maltiput, frontier-based version of the short-run
Johansen industry model. The first stage capactglaincarefully checks for the impact of the
convexity assumption on the estimated capacityzatibn results. Policy scenarios considered
for the short-run Johansen industry model varyemms of their tolerance with respect to
existing bank branch inefficiencies, the formulataf closure policies, the reallocation of labor

in terms of integer units, etc. The data set of B42k branches of a German savings bank in the

! We thereby ignore the theoretical arguments agaimsvexity based upon, for instance, the indivisies in
production. See, e.g., Scarf (1994).
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year 1998 is introduced in Section 3. The applcatd this German network of bank branches
in Section 4 measures their efficiency and capauiiljzation and demonstrate that by this
industry model approach one can improve the peidoca of the whole branch network. A final

section concludes and tries to outline some prowgiavenues for further research.

2. METHODOLOGY

2.1. Introduction

The theory of production is based on efficient tedtbgies (production frontiers) and
their value duals (such as minimal cost functionsl anaximum profit functions) and on
envelope properties yielding cost-minimizing ingiemand functions and revenue maximizing
output supply functions. In theory, emphasis isceth on efficient production and its
consequences, and the evocative term “frontierapplied to functions characterizing these
boundaries. Using either parametric or nonparamepproaches, the standard cost structure is
typically generated by imposing a specific funcéibform on the data and by obtaining the best
fit by minimizing the deviations from the estimatsulucture. Efficiency measurement implies
comparison between actual and optimal performarns#ipned on the relevant frontier. This
frontier is called “best-practice”, since it is ampirical approximation of the true but unknown
frontier. The parametric approach is stochasticatyempting to distinguish noise from
inefficiency which requires strong assumptions, levtihe nonparametric approach does not run
the risk of misspecification of the functional fobyat noise is not taken into accodnt.

We first offer several definitions to understand thechanism of efficiency measurement. In
general, efficiency analysis can be carried ounhahy levels of aggregation (i.e., at the plant,

firm, industry or economy—wide level). The choidelevel of aggregation is determined by —

% This is of course a simply presentation, but éents the two essential differences between pttoaches. For
example, in recent years there has been a lot df wo the statistical foundation of the nonparamedpproach:
see Simar and Wilson (2008) for an overview.
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among other things — availability of data and theppse of the study. Here, we focus on the
linkages between the efficiency both at the firnmaflzh) level and the industry (branch
network) level. Economic efficiency has both a téchl and allocative component. Technical
efficiency is generally about avoiding waste, ireducing the use of inputs given output levels
or increasing outputs given input levels (see Koapsn (1951) for a formal definition).
Allocative efficiency is referring to optimal progmns in outputs and inputs connected to
prevailing relative prices.

When it comes to measurement of technical effigietite so-called Debreu (1951)-Farrell
(1957) measure is used. In an output-augmentingntation, the Debreu-Farrell measure is
defined as the maximum radial expansion in all otghat is feasible with given technology.
From an engineering capacity concept, Johanser8)18&ined plant capacity as the maximal
amount of output that can be produced per uniinoé with an existing plant and its equipment
without any restrictions on the availability of iasle inputs. Capacity arises due to fixity of one
or more inputs, and is thereby inherently a shamt-goncept. Fare (1984) formally showed the
existence of plant capacity for certain types ajdoction functions, while Fare et al. (1989)
made the concept operational by using the DebrexelFaneasure to calculate firm level
capacity levels using nonparametric frontier apprations of technology. Their approach
assumes that firms cannot exceed their use of fixetrs, but that their use of variable factors
is unconstrained. A best-practice technology ontiey is constructed and the current output of
each firm is evaluated against the maximum poteatigput at full capacity utilization, called
“capacity output”.

Summing these firm-level capacity outputs acrosadioffers an estimate of the aggregate
industry capacity output. Comparing this aggregadieistry capacity output to current industry
output provides a measure of overcapacity at tdestny level. However, neither firm-level

technical measures nor firm-level capacity leveélevafor reallocation of inputs and outputs
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across firms, precluding insight into the optimesgtructuring and configuration of the industry.
For example, the plant capacity measure impli@idgumes that production of capacity output is
feasible and that the necessary variable inputawaaéable. In many other situations, relevant
questions at the industry level are: What is théinogd firm-structure given the current
aggregate output? How should the reallocation pfiisi and outputs be performed between the
firms? How does the reallocation look like if camt@olicy issues are taken into account? And
what are the costs of pursuing these policy issneerms of allocating more inputs than
necessary?

To answer these questions, we combine the plargcdgpnotion (Johansen (1968)) at the
individual and industry levels using a multiplejoutt and frontier-based version of the short-run
Johansen (1972) sector model, a methodologicaleeient developed in Dervaux et al. (2000)
and applied in, e.g., Kerstens et al. (2006). Treetsrun Johansen (1972) sector model analyses
the industry structure resulting from underlyimy postfirm-level production structures.
Investment decisions imply a putty-clay productisinucture: while firms may eventually
choose ex ante from a catalogue of production options exhibitisgnooth substitution
possibilities, most firms face fixed coefficienéx postand have a capacity that is entirely
conditioned by the investment decision made. Thertsiuin industry model nevertheless
exhibits substitution possibilities when inputs amaputs can be reallocated across the units
composing the industry. Over time, substitution sawhnical change can be traced via shifts in
successive short-run industry models.

The revised short-run Johansen (1972) model praceedwvo phases. In a first step, the
Johansen-Fare capacity measure determines capaotyction for each individual firm at the
production frontier. Second, this firm-level capganformation is employed in the industry
model by a planning agency to select the levekatigy at which individual firm capacities are

utilized with the objective of minimizing fixed indtry inputs given total outputs and capacities
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and the current state of technology. Following e et al. (2000) and Kerstens et al. (2006),
the optimal industry or branch network configuratiman be found by minimizing the total use
of fixed inputs given that each firm cannot inceeés use of fixed inputs and the production of
the industry is at least at the current |e\/&he output level of each firm in this type of mbide

the capacity output estimated from the firm-leegbacity model.

2.2.  Definitions of Efficiency, Plant Capacity, anithe Short-Run Industry Model

To develop these production models formally, thedpction technolog$ transforms inputs

X=(X,..,% JORY into outputsu =(u,...,u, )ORY and summarizes the set of all feasible
input and output vectorsS:{(x O ORY™:  xcan pI’OdUCGL}L Let J be the number of

firms/units (] D{l,...,J}). The N-dimensional input vectox is partitioned into fixed factors
(indexed byf) and variable factors (indexed . x=(X%, X ). To determine the capacity

output or technical efficiency, a radial outputemted efficiency measure

E°(x, u):max{é? J(x,0u)d S} is computed relative to a frontier technology pdavg the

potential output given the current use of inputhere restrictions on input use determine the
precise nature of the measure.

Nonparametric inner-bound approximations of the technology can be presented by the
following set of production possibilities, assumisgong disposal of inputs and outputs and

variable returns to scal®¥RS:

® Remark that, when appropriate price informatiomvailable, the technical optimization (in termspoimal or
guantity based aspects) in both stages of the -stiordohansen industry model can be replaced leynaltive
economic capacity notions in the first stage anshemic objective functions (e.g., industry costdiions as in
Farsund and Hjalmarsson (1983), or industry revestuprofit functions) in the second stage. In thetfstage,
economic capacity notions based on, e.g, the costibn can be employed (e.g., Prior (2003)).
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SA'VRS:{(X QORM™M: %SZ zy, m™l.., M
(1)

J J
2.2% % M=looND D, z=1 7OA, Fl’---’}
j=1 =1

where AO{C,NC}, with C={zj D]Ri} and NC={zj ORY: gD{O,]}}. SMRS assumes

strong disposability of input and outputariable returns to scale, and it imposes either th
traditional convexity €) assumption or an alternative non-convexi§CJ hypothesis.From
activity analysisz is the vector of intensity or activity variabldsat indicates the intensity at
which a particular activity is employed in consting the reference technology by forming
convex combinations of observations constitutirglibst practice-frontier.

From this same technology, a plant capacity verserdefined by dropping the
constraints on the variable input factors. Thisdg#o Johansen’s model definition of plant

capacity whereby the availability of variable fastts unrestricted:

~ J
S"'VRS:{(X WORMM:y<> zy, ml., M
j=1
J | J (2)
Yzxo<sx, f=1..F Y z=1 zOA, F 1%
j=1 j=1
where A is again defined as above. To remain consistett thi2 plant capacity definition, in
which only the fixed inputs are bounded at theiseslied level, the variable inputs in the
production model (2) are allowed to vary at will &xploit the full capacity of outputs

conditioned by the fixed inputs.

The efficiency measuré, is found by solving the linear programming problmeach
firm j=12,...) relative to the production possibilities set withrestricted variable inputs
given by (2):

rgjlax{ 8 :xGuy sVl 3)
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The scalarg, informs us by how much the production of each ougs firm j can be increased.

In particular, capacity output for firmk of the m™ output is g% multiplied by the actual

productionuym Hence, capacity utilization based on observeguiusubscript ‘00’) is:
1

Cu k= —0 4

00 glk ( )

Fare et al. (1994) note that this r&W measure may be biased downwards, because
there is no guarantee that the observed outputpratkiced in a technically efficient way. The

technical efficiency measure can be obtained byuatiag each firmj=1,2,...J relative to
the production possibility se8™'*°. Theoutcome(d,) shows by how much production can be
increased using the given vector of inputs:

r;]ax{ 6) :(x Gyu)d SV . (5)

The technically efficient output vector &* multiplied by observed production for each output.
Total industry output can be found by aggregatimg firm-level technically efficient output

6,“u, of each firm. Likewise, the aggregate industry cityaoutput can be found as the sum of

firm-level capacity outputsg*u, ). The unbiased ray measure of capacity utilizatiorery
technically efficient output (subscript ‘eo’) iseth:

* k
%

CUs =—2_.
6

(6)

The focus here is on reallocation of resources éetwbranches in a network by
explicitly allowing improvements in technical efeocy and capacity utilization rates. The
model is developed in two steps as follows. Inftist step, from model (3), an optimal activity
vector Z ¥ is provided for firmk and hence capacity output and its optimal useixefdfand

variable inputs can be computed:
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3 3
u;m:zz*jkujm; )*&f:lzzk)ff; ?&ZZ? % (7)

In a second step, these “optimal” frontier figufeapacity output and capacity variable
and fixed inputs) at the branch level are usedaaarpeters in the industry model. In particular,
the industry model minimizes the industry use gédi inputs in a radial way such that the total
production is at least at the current total lewvelat a desired target level in the model extension
developed below, by a reallocation of resourcesvéen firms or branches. Reallocation is
allowed based on frontier production outputs amiia used in each branch. In the short-run, it
is assumed that current capacities cannot be eadeeither at the branch or industry level.
Define Un, as the industry output level of outputandX; (X,) as the aggregate fixed (variable)

inputs available to the sector of factdw):

J J J
U= U, Xf:zlei and szzl X, (8)
J= 1=

i=1
The formulation of the multi-output and frontierdeal short-run Johansen (1972)
industry model can then be specified as:

min @
a,w, X,

J
S.t. Un,w 22U, m=1,..,M
=1

ix’}jwj <X, f=1..F (9)

iJ=1

DXW < X, v=1..V

j=1

(])swj <1 620, j=1,.0.
Rather than reflecting a returns-to-scale hypothdbke variablesv now indicate which firms’
capacity is utilized and by how much. The composesitthe activity vectow are bounded
above at unity, such that current capacities caemiee exceeded. The first constraint prevents
total production by a combination of firm capadtieom falling below the current output levels.
The second constraint means that the total useed inputs (right-hand side) cannot be less
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than the use by a combination of firms. The thiodstraint calculates the resulting total use of
variable inputs. Note that the total amount of alle inputs is a decision variable. The objective
function is a radial input efficiency measure fdogson the fixed inputs solely. This input
efficiency measure has a fixed-cost interpretatidrihe industry levelThe activity vectow
indicates which portions of the line segments regméng the firm capacities are effectively
used to produce outputs from given inputs.

To sum up, the optimal solution to this simple Liveg the combination of firms or
branches that can produce the same or more owjilitéess or the same use of fixed inputs in
aggregaté.lt measures the combined impact of the removahgfinefficiency, the exploitation
of existing plant capacities, and the reallocabbimputs and outputdlotice that an alternative
could be to have an efficiency measure focusingherexpansion of industry outputs that has a
revenue interpretation.

From a managerial point of view, the optimal santof thisshort-run industry model
provides information at two levels. First, at tleedl of the network it indicates the aggregate
amount of variable inputs that is needed to redlwe multiple aggregate outputs from given
fixed aggregate inputs. If the optimal value of Hygregate variable inputs decision variable is
larger than the current amount of aggregate vaiabputs, then this implies additional
recruitments are needed. Otherwise, a reductistaiii levels is required.

Second, at the level of the individual productioitsi(bank branches) the model yields a
complete planning for service production. Per uoite obtains optimal fixedx(jw}) and
variable (X;w;) inputs as well as optimal outputsi;,(w;). This may imply reallocations of

inputs: fixed and variable inputs may be redistigouamong units. Obviously, adjusting fixed

inputs may be costly (e.g., renegotiating an exgstffice rental contract) and may furthermore

“In fact, this short-run industry model is geonesthy speaking a set consisting of a finite suniié segments
known as a zonotope (see Hildenbrand (1981: 1096)).
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require time to implement (e.g., legal terms ofifitc@tion prevent immediate changes). Equally
so, adjusting variable inputs may be subject terges of constraints (especially labor is under
legal protection). This plan may also imply reaflbons of outputs: this simply means that one
adjusts the output targets within the planningzmriso as to better exploit the existing capacity
of the whole network. Obviously, this may imply aogpanying policy measures that are not
necessarily part of the model (e.g., marginal ckang global and local marketing campaigns in

an effort to gear consumer demand towards theget&r

2.3.  Short-Run Industry Model: Additional Scenarios

Now, we turn to a discussion of some additionahages that extend theontier-based

short-run industry model to adapt to manageriateoms.

1. Restriction on number of branches:
Assume the number of branches should be restriotéd Since the variabley represents the

utilization of the corresponding branch, this resion can be modeled with the following

constraints:

ij <N:; (10)

b0{0,3} (j=1..J)
By adding these constraints to model (9), it becoraemixed integer program. The binary
variableb; indicates whether the corresponding branch is usdbe optimal solution or not.

The amount by which it is used can then be read frariablew;.

2. Allow for existing inefficiency

The capacity outputs and the corresponding optimal dfiyed variable inputs as
computed in (7) presuppose that all eventuallytesggechnical inefficiency can be eliminated
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in an effort to exploit the existing capacity obbduction. However, starting from trogtimal
activity vector z* =(z%,..., ) obtained from solving model (3}, is also possible to define

capacity outputs and the corresponding optimaldfiaed variable inputs while maintaining the

existing levels of technical inefficiency by comimet

. 1< . . -, . .,
IR OIS B AP0 4 1)

i1
Hence, while theoptimal fixed and variable inputs remain the sathe, capacity outputs are
maintained or scaled down by the measured amoueicbhical inefficiency ,). Referring to

the capacity output in (7) as the fully efficiemey the adjustment in (11) is called the fully
inefficient capacity output. Both these capacitypois can be considered special cases of the
1000 % inefficient capacity outpuand the corresponding optimal fixed and variabfrits that

can bedefined as:

(12)

1]
'ML.
—N;
==

- 1 J 'kk * J *k *
U, (@)=———> z“u_; = X
km( ) 1+a(62k _1)§ i 7im )&f ; % )J(f ?&

with 0<a < 1. Clearly, the 0% inefficient capacity output capends with the fully efficient
capacity output, while the 100% inefficient capgautput coincides with the fully inefficient
capacity output. When fully inefficient capacitytput are used in thghort-run industry model,

this implies that one measures the impact of reatioo only.

3. Restrictions on the personnel transfer
Assuming the number of employees is a variabletinpersonnel transfer for a given

branch with respect to the current situation isntineeasured by the difference between the

optimal variable input resulting from the industnodel and the observed variable input (i.e.,

){,jwj - X, )- It could be meaningful to allow personnel tramsnly in integer multiples of some

unit B. For instance,5=0.5 would mean that the number of employees must @ang
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multiples of one half (e.g., because the basic afrét labor contract in some countries is either a
part-time of a full-time contract). Since this chgarcan be either positive (reflecting an increase
in number of employees) or negative (referring ttearease), this condition can be modeled by
the constraint:
XW =% = B iy) (13)

with i; andi, integer variables. The difference of both integarnables measures exactly the
change in personnel expressed in unitsfof(e.g., £ =0.5 means this difference of integer
variables measures personnel change in half umiisde that adding this type of constraint

transforms model (9) to a mixed integer problem.

4. Imposing alternative aggregate output targets

If it is possible to impose alternative target wawn the outputs, then the first set of

constraints in model (9) needs to be changed to:
J *
2 UnW 2 1+, ), (14)
j=1

with y =-1. Avalue of y, 20 (implying 1+ y,, = 1) means that the aggregate outpudf the
industry model must be at leas00y,, % larger than the current industry level of output

Obviously, positive values correspond with incresasehile negative values reflect decreases

with respect to the current industry level of outpu If all y, =0, then no alternative target

values are proposed and the original model (9)btined based upon observed aggregate
outputs.

Remark that, in general, imposing a positive targelue (i.e., above the output
aggregate) additionally restricts the constraifitss leads to worse objective function values in
the case of a minimization problem. Put differentlypositive target value leads to a higher

efficiency measured. Ultimately, too large positive target values nragult in infeasibilities.
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By contrast, negative target values (i.e., below dltput aggregate) relax the corresponding
constraint, which results in a lower or equal éfilcy measure value. Whether this
phenomenon actually occurs, however, depends orsttas of the corresponding constraint
and on its relation with other constraints. Fortanse, adding a negative target value to a
nonbinding output constraint has no influence oe dptimal solution. Even if an output

constraint is binding, other binding output consitiacould prevent a reduction of the efficiency

measured when adding a negative target value.

Additional scenarios that could eventually be eiovied are: (i) limiting the range of
plant capacity utilization for the units in the opal solution (see, e.g., Kerstens et al. (2006)),
and (ii) aggregating some of the outputs to redbeenumber of dimensions (at the risk that the

required more spectacular changes are more difficunplement).

3. DATA: BANK BRANCHES OF A GERMAN SAVINGS BANK

Data are obtained from the article by Porembslale(2005). These authors analyze a
sample of 142 German bank branches in the year. 189Bis work, wemeasure the efficiency
of these branches of a German savings bank andrd#rate that by a different industry model
approach one can improve the efficiency over thelerhetwork.

German thrift institutions are owned by communities counties. Today, these
institutions participate in all types of bankingtiaities, either directly or through a central
institution that is commonly owned. These banks iadependent of each other, but share a
number of resources. An important characteristicthefse banks is that the goal of profit
maximization is conditioned by the requirement riiding services to their stakeholders (e.g.,
community or county, to small businesses, and tigdlerclass). For example, nobody who

wants to open an account can be rejected. Thesgakpharacteristics cause some serious
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problems, since, for instance, it is not allowedrastrict branches to regions with profitable
customer bases only. Moreover, increased competisofaced due to the globalization of
financial markets, the spread of internet bankiagd the increasing operational cost of
personnel, whereas interest rates and profits haea decreasing over the last few years. This
explains why these banks are very keen on incrgdbkair productivity.

The bank analyzed is among the ten largest ofyfie in Germany. Its total assets in
1998 were in the tens of billions US $. To develop bank branch industry model, we follow
Porembski et al. (2005) and basically adopt a #led;aproduction approach to defining the
transformation of banking inputs into financial \8ees. Bank branches are considered as
service providers to account holders performinggda&tions and processing documents. Outputs
are therefore normally defined in terms of the namlof transactions or documents processed.
The outputs chosen cover most of the products exdfeoy a branch and the level of
disaggregation is high (e.g., one distinguishesvéeh demand deposits for business and for
households). However, very often, and also in tdase, detailed transaction flow data are
unavailable, whence the stock of the number of atisoof various types is employed instead.
Furthermore, only physical inputs like labor angita and their associated costs are taken into
account. Actually, around 60% of the operating €@ due to personnel. Hence, the labor
input is one of the most important at the brancielleA major part of the remaining operating
costs are building and equipment costs. Since thesis are very difficult to determine (e.g., the
corresponding book value is often biased), the timgffice space serves as a surrogate input
measure

Listing the inputs and outputs constituting the duction technology in detail, the
following inputs are available:
 Employees (number);

« Office space (square meters);
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whereby the units of measurement are put in betweanes. Notice that it is common to
consider office space as a fixed input that canpetmodified in the short-run. Hence,
employees are the sole variable inputs. In additibare is information on the following 11
output dimensions:

» Private demand deposits (accounts);

* Business demand deposits (accounts);

* Time deposits (accounts);

e Saving deposits (accounts);

» Credits (accounts);

» Bearer securities (accounts);

* Recourse guarantees (accounts);

* Bonds (accounts);

* Investment deposits (accounts);

* Insurances (contracts);

» Contributions to a building society (contracts).

Descriptive statistics, including mean, varianc&evaess, the minimum and the
maximum, for these input and output dimensionsraported in Table 1. We can make the
following observations. First, there is a lot ofi@ion among these bank branches as witnessed
by the standard deviation. Furthermore, the pasiikewness of the distribution reveals the
dominance of certain large units, mainly reflectsudpstantial differences in size. Second, notice
that some branches do not seem to produce timesiigpoecourse guarantees, or insurance
since these outputs are zero at the minimum. They meveal a variety of patterns of
specialization among this sample bank brancheaddiition, the last row contains the sum of all
inputs and outputs at the level of the branch ngkwbhis serves as a benchmark to assess the

impact of the various scenarios in the industry eted
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< Table 1 about here >

4 EMPIRICAL RESULTS

First, we report extensively on the estimation ltssaf the plant capacity measure and
its underlying efficiency measures. We thereby $oon the impact of the convexity hypothesis
and the impact of correcting the capacity defimitfor the presence of technical inefficiency or
not. Thereafter, we turn to the basic results frma short-run industry model and also
investigate the implied reallocations at the leviethe individual branches. We thereby report
on a series of different scenarios. Finally, weep8ome examples of results at the individual

branch level to show the level of detail at whibbge models provide guidelines.

4.1. Estimation of Plant Capacity: Testing for Coaxity

Descriptive statistics for the capacity-relatediogdhcy measure §,), the ordinary
technical efficiency measuré), and the plant capacity measufe_,) are reported in Table

2 for both the convex and non-convex case. Fourdkesgrvations can be made: (i) the output-
oriented inefficiency measures are on average rhigiter in the convex case than in the non-
convex case; (ii) in the non-convex case all bardnthes except three are technically efficient
in contrast to just about 40% of observations @ ¢bnvex case; (iii) two thirds of all branches
(97) operate at full capacity in the non-convexecaempared to about one fifth (33) in the
convex case; and (iv) these phenomena result merdbw average measures of capacity
utilization in the convex case compared to the oomvex case.
< Table 2 about here >

The difference between the densities of the outffitiency measures obtained with the

convex and non-convex models as well as the reguily CU measurean be tested with a

statistic developed by Li (1996) and later refibgd=an and Ullah (1999). This test statistic has th
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critical advantage to be valid for dependent ardkependent variables, the former dependency
being typical for frontier estimators. The null loyppesis states the equality of both distributions.

Table 3 summarizes the obtained results. In tdiede efficiency measureg,( 8, and CU, ),

both in the convex and non-convex case, are compareby two. Notice that the symmetry of the
table immediately follows from the symmetry of test itself. The values of these test statistics
must be compared with the reference value fordtget significance level. A value higher than the
reference value leads to a rejection of the nydlofiyesis (implying that both density distributions
can be considered statistically different). Tabls® shows the conclusion depicted with symbols
when tested for a significance level of 1%: anr&ite(*) is used when the null hypothesis is
rejected (different densities) and an equality qgh flags that the null hypothesis cannot be
rejected (equal densities). We notice that all iterdistributions can be considered different,

except ford, and CU_, in the non-convex case. The latter exception a@xed by the fact that
only three observations are technically inefficiefit>1) in the non-convex case (hence, the ratio
CU,, is inevitably very close related t8). In conclusion, statistical tests indicate thHatse

efficiency measures follow different distributio®ut differently, adding the traditional convexity
hypothesis is not as innocuous as it is traditlgreEsumed.
< Table 3 about here >

Table 4 reports descriptive statistics of plant agdly inputs and outputs for two
variations: (i) convex vs. non-convex; and (ii)lfefficiency vs. full inefficiency. These results
need to be contrasted with the descriptive stesisin the inputs and outputs of the original data
in Table 1. Comparing Tables 4 and 1, one immelgiatbserves that: (i) the capacity inputs
remain on average close to the observed inputdewime choice for the output orientation of
efficiency measurement implies that capacity owt@ure quite above observed outputs; (i) this
divergence between capacity and observed output®iie substantial for the convex case than

for the non-convex case; and (iii) the differenadween capacity outputs without and with
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technical inefficiency is again largest in the cexicase. This analysis serves to underscore the
importance of the convexity axiom and, to some dessxtent, the impact of eliminating
technical inefficiency or not.

< Table 4 about here >

4.2.  Short-Run Industry Model: Basic Results and dilonal Scenarios

Instead of using the fully efficient capacity outpo the short-run Johansen industry
model formulated in (9), the fully inefficient capty output (11) as well as th&00x %
inefficient capacity output for a givemm (12) can be employed, leading to a series of trana
of this basic model. By examining these differenbdels, the impact of allowing for
inefficiency can be measured in combination witk thfference between convex and non-
convex estimates of capacity.

Table 5 summarizes exactly this impact of both esity and inefficiency on several

key decision variables. First, there is the infleceenon the optimal industry efficiency

measured . In the next row, the influence on the number rainches is reported for which full
capacity is used in realizing at least the aggeegaitputs with only a fraction of the fixed
aggregate inputs. Similarly, the next rows indidaenumber of branches that are only partially
used or not used at all to realize the set of caimds in model (9).
< Table 5 about here >

In the convex case, the effect of allowing for fr@éncy is noticeable. We observe, for
instance, an increase of the efficiency measurle it when allowing for all existing technical
inefficiency (this is a relative increase of 17%j)nce capacity outputs are lower when one
allows for inefficiency, it is harder to economiae fixed inputs and an increase of its optimal
value can indeed be expected. Furthermore, ndtatethe full efficiency case only utilizes 106

of the 142 branches. Since the number of branchispartially used is limited to only three,
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this means that 33 branches are not used at atigtement the optimal solutions obtained in
the Johansen industry model. This is quite a sobateamount (23.2% of the total number of
branches), making one doubt whether such soluteonmiplementable in practice. When
inefficiency is allowed for, then the number of sed branches is reduced to 28 (19.7%), which
remains considerable.

Remark that, contrary to what one may expect, thedhes that are no longer used in
the optimal solution remain not necessarily theesarhen moving from the fully efficient to the
fully inefficient case. Put differently, the 28 biches observed with zero capacity in the fully
efficient scenario are not necessarily containethén33 branches that are no longer utilized in
the fully efficient scenario. Examining the indivial branches, we detect 11 of the 28 branches
that are used in the fully efficient case but negdiat all in the fully inefficient scenario. Extep
for one, these are even used at full capacity.

We end by looking at the results in the non-congage. With respect to the optimal

efficiency valued , we notice only a minor increase of 0.003 (thia i®lative increase of only
0.4%) when moving from the fully efficient to thally inefficient industry model. From the
individual results per branch, it can be obsertet there is no shift in the optimal solution.
Thus, all branches used at full capacity in thdyfefficient case are also maintained at full
capacity in the fully inefficient scenario. The saimmolds true for the branches used at partial
capacity and for those that are no longer usedl.&Daly a minor change can be detected in the
capacity of two branches used at partial capadignsequently, the effect of allowing
inefficiency in the non-convex case can be negtecidne same holds for the other decision
variables reported in this case, since there idifierence at all. Intermediate inefficiency levels
for the non-convex model are therefore of limitetkrest in this particular study.

Notice that the number of unused branches redwuc2d {16.9%) which is substantially

lower compared to the convex model (33 in the fadfficient scenario and 28 in the fully
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inefficient case). From additional examination mdividual branch results, it can be noticed that
the 24 branches that are no longer used followimg mon-convex methodology are not
necessarily contained in the unused branches angotd the convex methodology. Indeed,
with respect to full efficiency, 11 branches ararfd with zero capacity in the non-convex case,
but with full capacity in the convex case. In thdéyf efficient scenario, even 13 branches can be
detected having zero capacity according to theawmvex methodology, but with full capacity
following the convex methodology. This underscdted the fundamentally different nature of
the convex and non-convex technologies may haveefanthing managerial consequences.

To complement Table 5, Figures 1a and 1b tracestbéution of the industry efficiency
measure as a function of a given for the convex and non-convex cases respectidaycould
already be anticipated from considering the extreases in Table 5, the function for the convex
case is much steeper because industry efficierayges over a wider range. The relative flatness
of this function in the non-convex case is reldatethe small amount of technical inefficiency that
can be detected under this assumption in thepfase.

< Figures 1la and 1b about here >

Notice that the industry efficiency measure hasedf cost interpretation and denotes the
potential budgetary gains from closing down thenbngs indicated by zero utilization in the
industry model. However, one must realize thatracfice a host of additional considerations may
be necessary to choose among these in definingperestt closure policy. As already pointed at
previously, adjusting fixed inputs may be costlyhbawhen one is owner of the office space (e.qg.,
should one rent out part of the excessive officgcepassuming this is technically feasible, or
should one sell of the property and buy a smatersomewhere nearby?) and when one is renting
these (e.g., renegotiating an existing office dentmtract may be costly). Furthermore, these
changes require time tmplement (e.g., legal terms in buying and sellbogtracts as well as in

rental contracts prevent changes overnight). Initiad it may be necessary to include
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additional consideration into this decision makprgcess. For instance, it makes a difference
whether one closes down a branch in a town withadditional branches of the same bank or in
a small village with no other branch around in tiegghborhood. These decisions may thus need
to be conditioned on a variety of geographicaliimfation that is currently ignored in the model.

We now restrict attention to the non-convex methagip Furthermore, since the effect of
allowing for inefficiency is negligible in the naenvex case, we also limit the analysis to the case
of full efficiency. We discuss the following thresgenarios of interest that have been formally
introduced in subsection 2.3. Firstly, the impacadding restrictions on the number of branches
(10) in model (9) is considered. Secondly, we itigate the influence of adding restrictions on the
personnel transfer (13) to the short-run industogeh. Finally, we evaluate the effect of imposing
some alternative aggregate output targets (se@ @d3ults for all these scenarios are reported in
Table 6.

< Table 6 about here >

Restrictions on the number of branches

The results of adding the constraints on the nurobéranches for some key reference
values ofN to the model are reported in the first five colsmi Table 6. On one extreme, we
notice that the problem becomes infeasible whertiignthe number of branches to 95 or less.
This means that we need at least 96 branches iedé&he current level of network outputs
from given fixed inputs. On the other side of tlenge, we see that efficiency no longer
improves when passing the limit of 118 branchesthieumore, observe that in all cases, the
number of branches used at full capacity is veogelto the imposed limN. Put differently, the
number of branches used at partial capacity is l@wy(only one to two), meaning there seems
to be little or no advantage of moving to scenatiwg promote the use of partial capacities.

Obviously, the value of the efficiency measwedecreases a¥ increases. This observation
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corresponds with intuition since an increase inrthenber of branches implies using branches

that are less efficient and/or that have less agpac

Restrictions on the personnel transfer

Adding restrictions on the personnel transfer, tmeldle part of Table 6 reports the
effect of adding such a restriction for two valwéss. In particular, personnel transfer is only
possible in integer multiples of eithg? =0.5 (number of employees must change in multiples
of one half) or =1 (number of employees must change in multiplesnaf) oThis scenario has
two noticeable effects. First, the industry effiag score increases substantially, implying that
less fixed inputs can be economized. Second, thersubstantial move from branches working
at full capacity to branches functioning at somsiglcapacity level. This actually turns out to
be the only scenario producing such a result.

We add two remarks on potential implementation |@wis. First, the transfer of
personnel can be difficult in view of geographidatances. For instance, it would make little
sense to reallocate a person for say about 10%s efdrking time (about a half day per week in
a five day working week) to a bank branch locate80® km from his/her initial location. The
current model ignores this issue basically becageegraphical information is lacking.
However, in principle it is possible to extend tberrent model by restricting patterns of
reallocation among units within a certain geograghradius (see, e.g., Giménez-Garcia et al.
(2007) for an example).

Second, the empirical model only employs aggregafermation on personnel.
Disaggregating personnel may yield more detailesdlte that are easier to implement and that
have positive additional results. For instanceSherman and Ladino (1995) the efficiency
results have been used to look for reductions ennithmber of branch managers by looking for

possibilities to share managers for specific neanbhpk branches. This again necessitates
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detailed geographical information. In a similarryeihe efficiency and capacity results could be
used to make sure reallocations of managers go frigim performance to low performance
branches such that these relatively more successfnhgers can induce best practice behavior

throughout the branch network.

Imposing alternative aggregate output targets

The last part of Table 6 reports on some aggregateut target scenarios. In a first
scenario, we impose a positive output target of Dd%the number of saving deposits only. As a
result, the optimal efficiency measure increasdsstsuntially from its original value of 0.702 to
0.775. To achieve this target, the number of brascsteeded at full capacity must be increased
from 116 to 120, reducing the number of branchezead capacity by 4. Increasing the target
beyond 30% of current aggregate output is infeasibbr instance, using a negative reduction of
20% on the number of saving deposits has no infleext all on the optimal solution. Clearly,
the other output constraints prevent such a realiciivhen systematically looking for output
variables that do have an influence when imposingprinstance, 20% negative target, we
observe that only the number of bearer securitieunts and the number of insurance
contracts do make a difference. This effect isdvalnder ceteris paribus conditions, i.e.,
assuming no targets are imposed for the other tatpust, in the case of the bearer securities,
the efficiency measur@ is further reduced to 0.675, hereby using only b@éhches at full
capacity compared to 116 originally (resulting miacrease of the number of unused branches
from 24 to 32). Second, with respect to the nunadbensurance contracts, a more modest effect
is observed: the efficiency measure only drops Wi®01. This result is obtained by utilizing
115 branches at full capacity instead of 116 ilytialhe number of branches no longer used
remains the same (24), but when looking at indigidwesults, we notice a minor shift. One
branch previously not used is now used partiallgl simultaneously another branch previously
used only partially is now no longer used at all.
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4.3. Results for Individual Bank Branches: Some Exa@les

In this subsection, we briefly report on the typicasults at the level of individual
observations generated from the above models. Tabtentains results for a selection of
individual bank branches. The columns contain th®rmation for all input and output
dimensions. The rows refer to specific computati@md scenarios to be specified below.

< Table 7 about here >

We start by discussing the results for a technicakfficient unit operating below full
plant capacity. In the first row one finds the diiathe inputs and outputs of observation 71
that is representative for this case. First, imgof technical efficiency, observation 71 yields
an output efficiency measure of 1.544 and 1.096th& convex and non-convex models
respectively. Since plenty of studies explain theaning of technical inefficiency (see, e.g.,
Fare et al. (1994)), the reader can consult theseees and we can safely ignore it here. Second,
for the capacity model, the same observation obtamoutput efficiency measure of 2.417 and
1.476 for the convex and non-convex models respaygti The resulting inputs and outputs at
full capacity utilization are reported on rows 2da® for the convex and non-convex models
respectively. Unsurprisingly, capacity optimal itgpand outputs are largest in the convex case.
For the non-convex model, observation 71 is contpbtodhe single peer observation 103 (thus,
row 3 simply represents the inputs and outputshskeovation 103). For the convex model, the

peers are a combination of several observationsaasbe identified by the optimakctor of
activity variables ¢ ). For the fixed input “Office space”, the peerg @ equal (convex case)
or a lower amount (non-convex case). For the vhriadput, by contrast, the peers use more of

the variable input “Employees” (namely, 10.2 res$p8dnstead of 4) which is consistent with

the plant capacity definition in which the variabiguts are allowed to vary at will. At full
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capacity, the outputs are larger than the onesugeatiby observation 71 and even substantially
larger in the convex case.

In the industry model at full efficiency, obserati 71 is maintained at full capacity
(w =1) in both the convex and non-convex models. This explainsuimbers in rows 4 and 5,
which exactly duplicate rows 2 and 3. In the industry modeWwatg for full inefficiency, the

observation is maintained at full capacity (=1) in the non-convex model, but it is completely

ignored in the convex solutiow{ = 0), which explains rows 6 and 7. Thus, bank branches apt

for closing differ markedly between the different models.

Next, we comment upon the results for a bank brahahis technically inefficient under
the convex model and technically efficient under-oonvexity, while it does not operate at full
plant capacity under either model. The first rowthis second part of the table contains again the
data for the inputs and outputs of observationoli8,example in this case. Ignoring the technical
efficiency issue, the capacity model leads to apuuefficiency measure of 2.745 and 1.349 for
the convex and non-convex models respectivelytii@itatter model, observation 13 is compared
to the peer observation 74. Corresponding inputiscartputs at full capacity utilization are again
reported on rows 2 and 3. Similar remarks as tadtfierence between fixed and variable inputs
apply once more.

In the industry model at full efficiency, observatid8 is maintained at full capacity
(w =1) in both the convex and non-convex models. Whémwaig for full inefficiency, the

observation is again maintained at full capacitythia non-convex model and drops out of the
convex solution. This explains rows 4 to 7.

Last but not least, we discuss briefly upon an ofag®n that is efficient in both technical
and capacity terms. In this case, the results sevation 4 can be summarized succinctly: it
appears as it is in all industry model results. Tinescan just list the observation itself on a lEng
row to save some space.
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5. CONCLUSIONS

Briefly summarizing the main contributions of thwgork, we focus shortly on the
methodology employed as well as on the results.effi@ency literature analyzing the financial
sector shows that even well performing bankingitutsbns may have technical inefficiencies
and some excess capacities at the level of thewank of bank branches. Instead of relying on
a burgeoning literature that starts from efficiemegasurements at the individual level to come
up with reallocations of resources at the firm lewe have opted to continue in the tradition of
the revised short-run Johansen (1972) industry imodbich is firmly grounded in the
economics literature.

By way of example, we have analyzed the finan@aVises supplied by a bank branch
network of a rather large sized German savings kaak Porembski et al. (2005)) using a
production approach. The ordinary technical efficiemeasure, the capacity-related efficiency
measure, and the plant capacity measure have hmwputed using both convex and non-
convex technologies. The resulting difference betwthe densities of these output efficiency
measures and the resulting ray capacity utilizatm@asure have been tested: the Li (1996) test
statistic reveals that the resulting densities @most all different from one another. This
provides strong support to opt for a non-convexdpobion technology rather than the traditional
convex one for frontier benchmarking purposes.

Empirical results of the short-run industry modaleal a potential for closing down part
of the network while maintaining current servicedis, even under the most conservative
estimates of efficiency and capacity (i.e., thesohased on a non-convex technology). Three
additional scenarios related to the impact of agld@strictions on the number of branches on
the one hand and on personnel transfer on the b#rat, and the fixing of alternative aggregate

output targets have also been documented.
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Obviously, these scenarios do not exhaust the Ipbsss to adjust this network model
to managerial needs. We have mentioned on sevecasmns the usefulness of including
geographical information. Additional policy considiéons could include local and regional
market share considerations (competition issuageireral).Obviously, while including these
additional parameters need not be impossible, ars be aware that the inclusion of additional
constraints lowers the potential benefits of #igort-run industry modebnd that some
combinations of constraints may even lead to inlééges.

The implementation cost of efficiency and capaaeitalysis and the resulting short-run
industry models is high for single shot exercises,this cost becomes low once the needed data
on inputs and outputs are integrated into the atdooy system (e.g., eventually as part of an
activity based costing (ABC) strategy: d€antor and Maital (1999) Furthermore, while the
computation of efficiency measures and capacity smes is rather straightforward and
meanwhile a host of software options are aroung.,(é GAMS: seeOlesen and Petersen
(1996) in the freeware R: see Wilson (2008); in SAS: Baeouznejad (2005), etc.), it is clear
that the utilization of the short-run industry mbds a strategic planning tool would ideally
require its integration into a Decision Support t8gs (DSS). We are unaware of written
accounts reporting on the regular use of fronterdhmarking software in organizatich$his
remains an important issue for future research.

Overall, we hope this contribution has shown coawigly that there is scope to employ
efficiency-based models to manage bank branch mk$nooth at a strategic and operational
level. Obviously, more research is needed to comewith more detailed branch network

models geared towards a more complete set of maabhgeeds.

®> Non-convex frontier technologies have been usedyéars to assess credit union performance by thae

association (Credit Union National Association (CA)N see, e.g.Friedet al. (1995. CUNA recently launched
“CU Benchmarker” as a web based, paid service &rcbmarking to its member credit uniosge the CUNA
webpagéhttp://www.cuna.org/research/cu_benchmarker.lfomhsulted April 4, 2011).

65

© 2011 Tous droits réservés. http://doc.univ-IiIIe1 fr



'S9AI9SRI SHOIP SNOJ LL0Z ©®

4y LallIl-AIuN-o0py/:dpy

Table 1: Descriptive Statistics of Inputs and Outpts

Inputs Outputs (all in numbers)
22 3o 883 B88% &84 8¢ o 8@ 53 © S 5 2 922
38 83 3833 832 383 3¢ g £E8 s8 S B¢ 5§ 8g2¢z
S =8 23% 0%3 a2 23 = =3 =S 2 . 3 5 @25s
S 3 3 72a® Fay & &< o = e a @ % 2 2 <359
- wn — Q n
Mean 542 297.34 1846.91 272.31 37.32 5155.47 124.14 284.68 46.53 95.89 365.73 25.74 47.46
St.
Dev. 4.17 213.12 145595 265.39 39.15 4086.80 100.01 196.27 44.45 85.79 288.29 26.67 48.81
Skew 1.58 1.71 1.68 2.19 2.78 1.78 1.56 1.48 1.98 2.07 1.79 2.67 2.22
Min. 1.0 64.00 432.00 31.00 0.00 1257.00 6.00 33.00 0.00 7.00 74.00 0.00 3.00
Max. 20.89 1228.00 7851.00 1563.00 285.00 20523.00 499.00 1020.00 271.00 503.00 1673.00 185.00 293.00
Total 769.84 42222 262262 38668 5300 732077 17628 40424 6607 13616 51934 3655 6739
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Table 2: Descriptive Statistics forg,, 8, and CU,_,

Convex Non-Convex
6, o, CU,, 6, 6, CU,,
Mean 1,533 1,147 0,801 1,086 1,002 0,939
St. Dev. 0,556 0,204 0,170 0,171 0,016 0,107
Min 1,000 1,000 0,343 1,000 1,000 0,565
Max 3,475 1,982 1,000 1,873 1,133 1,000
# Eff. Obs 33 57 32 97 139 97
Table 3: Li (1996) Test Statistic for Differencesn Densities
Convex Non-Convex
91 92 Cer 91 92 Cer
6, 0.000= 7.728* 13.013*|26.211* 54.730* 27.061 *
Convex 0, 7.728* 0.000= 12.804*| 6.672* 26.543* 7.693*
CU, | 13.013* 12.804* 0.000 =|27.074* 53.955* 24.841 *
6, 26.211* 6.672* 27.074*| 0.000= 6.205* 0.506=
Non-Convex 6, |54.730* 26.543* 53.955* 6.205* 0.000= 6.215*
Cu 27.061* 7.693* 24.841* 0.506= 6.215* 0.000=

eo

Ho: The two density distributions are equal. Condusi * : Reject g, = : Accept H.
Reference values: 1.28 for 10% sign. level, 1.6%6% sign. level, 2.33 for 1% sign. level.

© 2011 Tous droits réservés.
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Table 4: Descriptive Statistics of Plant Capacityrputs and Outputs: Convex vs. Non-Convex; Full Efftiency vs. Full Inefficiency

@) = Q = — g9
© F 283882 3 8¢9 o 8w 53 w 83 3 g3
s o B2553%2 g B g <58 88 3 Bg 5§ ¢SE°F
= ¢ 25252 g8 23 & & 25 & 23 3 Z235%
D 2 B o » 2 3 o @ o & » 3 2 5 9
b ﬁ. (7] — Q @
Full Efficiency Convex
Mean 8,13 296,37 2840,26 456,3¢ 70,46 7642,41 212,7 398,15 86,9t 155,05 562,67 42,1« 71,86
St. Dev. 4,43 210,57 1524,33 306,1: 47,83 4370,98 107,5( 189,55 57,87 88,98 317,85 25,9] 49,99
Min 2,00 64,00 552,00 46,0( 0,00 1335,00 6,0 67,00 0,0Cc 1500 74,00 3,0C 14,00
Max 20,89 1228,0( 7851,00 1563,0( 285,00 20523,00 499,0( 1020,00 271,0¢ 503,00 1673,00 185,0( 293,00
Non-Convex
Mean 6,71 282,0¢ 2308,20 365,7: 54,79 6290,96 172,7: 333,47 68,27 126,29 453,43 33,3t 59,31
St. Dev. 4,95 204,7¢ 1646,01 342,3: 56,05 4695,95 124,4( 191,35 71,2¢ 98,43 329,60 29,3 52,76
Min 1,00 64,0 471,00 31,0C 0,00 1335,00 6,0 57,00 0,0C 14,00 74,00 0,0C 3,00
Max 20,89 1228,0( 7851,00 1563,0( 285,00 20523,00 499,0( 1020,00 271,0C 503,00 1673,00 185,0( 293,00
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Full Inefficiency Convex

Mean 2568,37 413,68 63,33 6922,23 191,76 358,87 77,81 140,60 509,14 38,37 65,72
St. Dev. 1542,24 305,14 46,58 4405,07 107,96 193,75 55,53 90,37 320,86 26,33 50,41
Min 552,00 46,00 0,00 1335,00 6,00 67,00 0,00 15,00 74,00 3,00 14,00
Max 7851,00 1563,00 285,00 20523,00 499,00 1020,00271,00 503,00 1673,00 185,00 293,00
Non-Convex
Mean 2303,87 365,13 54,68 6279,34 172,24 332,71 68,17 126,06 452,57 33,27 59,14
St. Dev. 1646,57 342,48 56,01 4696,89 124,14 191,27 71,31 98,45 329,67 29,32 52,67
Min 471,00 31,00 0,00 1335,00 6,00 57,00 0,00 14,00 74,00 0,00 3,00
Max 7851,00 1563,00 285,00 20523,00 499,00 1020,00271,00 503,00 1673,00 185,00 293,00
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Table 5: Basic Short-Run Industry Model Results: Inpact of Convexity and Technical

(In)efficiency

Full Full
Decision Variables efficient inefficient
(a=0) (a=1)
Industry efficiencyd 0.588 0.688
# Full Capacityw 106 112
Convex . .
# Partial Capacityv 3 2
# Zero Capacityv 33 28
Industry efficiencyd 0.702 0.705
# Full Capacityw 116 116
Non Convex . .
# Partial Capacityv 2 2
# Zero Capacityv 24 24
FIGURE 1A: INDUSTRY EFFICIENCY FIGURE 1B: INDUSTRY EFFICIENCY
MEASURE IN RELATION TO @ IN CONVEX MEASURE IN RELATION TO @ IN NON-
CAse CONVEX CASE
0,707 0,706
0,681 0,7057
0,667 0,704
0 0,64 6 0,703;
0,624 0,702
0,607 0,701
0,58+ F + F + F ; F + F | 0,700
0 0,2 0,4 0,6 0,8 1 0 0,2 0,4 0,6 0,8 1
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Table 6: Short-Run Industry Model Results: Additional Scenarios

N B Aggregate output targets

<95 96 100 117 =118| 05 10| S1* S2 S3 S4

g - 0.766 0.722 0.702 0.702|0.711 0.723|0.775 0.702 0.675 0.701

éz:\:;” - 95 99 115 116 84 78| 120 116 108 115

# Partial - _ 1 1 2 2| 4 57, 1 2 2 3

Cap.

iazsro 46 42 25 24 11 7| 21 24 32 24
* S1: Impose a target value of +10% on the numlbeawving deposits.
S2: Impose a target value of -20% on the numbsgawing deposits.

© 2011 Tous droits réservés.

S3: Impose a target value of -20% on the numbéeafer securities account.
S4: Impose a target value of -20% on the numbersefrance contracts.

71

http://doc.univ-lille1.fr



'S9AI9SRI SHOIP SNOJ LL0Z ©®

1 LalII-AuN00py/:dpy

Table 7: Results for Individual Bank Branches: Somd=xamples

Q = «Q = o 8
JY) 3 wn > 5
@ s &80 382 @ g0 0 ew  §5a @ 2 3 2 g®3
%) @ T 3= T 3 0 o -og @ c8 58 o S 0 c 8 Tz
o o o D o = = > O = @ L. C
= ¢ 235 232 5 g& = 2 §5 & £z 2 &&8%§
@ o v =0 7} w 7 ® @ w3 ) a3 3
D a )]
Unit 71 4 310 1335 97 14 3821 72 191 23 52 324 17 21
Capacity C 1020  310.00  3632.98 530.33 82.72 923453 27367 1.646 12865 17551  783.04 41.09 66.42
Capacity NC 8 270 2914 352 108 8567 344 282 43 08 602 36 120
I.model C FE* 10.20  310.00  3632.98 530.33 82.72 923453 27367 1.646 12865 17551  783.04 41.09 66.42
l. mo':d':el NC g 270 2914 352 108 8567 344 282 43 08 602 36 120
I. model C FI 0 0 0 0 0 0 0 0 0 0 0 0 0
I.Model NC FI 800  270.00  2658.01 321.08 9851 781440 31378 2357  39.22 89.39 549.11 32.84 109.46
Unit 13 2 190 575 123 11 1614 32 54 10 41 186 7 14
(Da
Capacity C 824  190.00  2417.20 478.85 96.12  5726.16 169.82 .4BA9 14347 13074  510.64 35.74 38.44 8
[oR
(0]
Capacity NC ~ 3.92 137 1537 166 27 3810 195 320 23 132 340 10 50
c
<
I.model C FE 824  190.00  2417.20 478.85 96.12  5726.16 169.82 .4BA9 14347 13074  510.64 35.74 38.442
0
. moff' NC 392 13700 1537.00 166.00 27.00  3810.00 19500 .0820  23.00 132.00  340.00 10.00 50.00 3
(@)
|. model C FI  0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 000 .000  0.00 000 £
<
I.Model NC FI 392  137.00  1537.00 166.00 27.00  3810.00 19500 .0820  23.00 132.00  340.00 10.00 50.00 2
Q
<
Unit 4 2 64 813 57 9 2265 39 135 22 28 162 11 20 2
Q
* FE = Full efficient / FI = Full inefficient e
3
=
)
S
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Chapter 2:
Malmquist and Hicks-Moorsteen Productivity Indices:

An Empirical Comparison Focusing on Infeasibilities

Abstract:

In the literature, two main ratio-based producyiviidices have been defined in terms of a
primal technology notion. While the Malmquist pratiuity index has become very popular,
it has the problem that it is not always well-detin By contrast, the less popular Hicks—
Moorsteen productivity index is well-defined undseak conditions on technology. The
purpose of this paper is to empirically illustréte extent of this determinateness problem on

some agricultural data sets under variations ornetienology assumptions.

Keywords: Malmquist productivity index, Hicks-Modeen productivity index,

Infeasibilities.

JEL classification: C43, D24, O33.
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1. INTRODUCTION

Measuring multifactor or Total Factor Productivilff FP) growth requires the
construction of measures of input and output chantj@t incorporate changes in all
dimensions. Two popular measures of TFP are thedvist and the Fisher productivity
indices (see, e.g., Coelli et al. (2005) or FaresSkopf and Margaritis (2008)). Both use
price information to aggregate the quantity data guantity indices about the utilization of
outputs and inputs. The resulting dual TFP index ssmple ratio of the thus obtained output
and input quantity indices.

While dual TFP indices combine price and quantitptimation, a primal TFP index
relies solely on quantity information summarizirge tunderlying production technology of
the firm. The technology-based, discrete-time Malisigproductivity index introduced by
Caves et al. (1982) constructs a production fromépresenting technology and uses distance
functions evaluated at different input—output comaltions for productivity comparisdrin so
doing, it offers a more general picture of produtti growth compared to other indices
because: (i) the hypothesis of technical efficierscyelaxed; (ii) a decomposition is possible
into technical efficiency changes and technologftsffollowing Nishimizu and Page (1982),
but see Zofio (2007) for further decompositiong)d &iii) the computation of this index
relative to multiple inputs and outputs technolsgiequires no price information (see Fare et
al. (1995)). Meanwhile, the Malmquist productivitgdex has been widely applied in
empirical research.

Another proposal for a discrete-time primal produtt index is the Hicks-Moorsteen
or Malmquist TFP index, which is defined as a ratidMlalmquist output and input indices

(see Bjurek (1996)). However, it is fair to saytthas less widely used in applied research

! Notice that Caves et al. (1982) in fact conceattaon showing how the traditional Térnqvist index
approximates the technology-based Malmquist unelgain conditions.
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than the Malmquist productivity index (see, e.gjurBk et al. (1998) or Nemoto and
Goto (2005)).

One well-known pitfall of the Malmquist index isathit is not always a TFP index
(see Fare et al. (2008) for details). Indeed, ratipgckly it was realized that its TFP
properties are maintained under constant returrscade, but as illustrated by Grifell-Tatjé
and Lovell (1995) these are not preserved in tlesgrce of variable returns to scale (i.e., a
more general representation of technology). By restt Bjurek (1996) states that the Hicks-
Moorsteen productivity index has a TFP interpretatand Grifell-Tatjé and Lovell (1999)
illustrate this numerically. Later on, it has beproven that the Malmquist and Hicks—
Moorsteen productivity indices coincide under twopgerties: (i) constant returns to scale,
and (ii) inverse homotheticity (see Fare et alO@0). Thus, whenever these conditions are not
satisfied in a sample or are not imposed on tedgyplboth productivity indices diverge and
the Malmquist index is a biased TFP measure (sd2o®iell (2008)). In the very few
empirical applications we are aware of, both ingishow a rather strong similarity, though
they are not identical (see, e.g., Bjurek et &98)).

Another problem known since the beginning of thisrature is that some of the
distance functions constituting the Malmquist pratdaty index may well be undefined when
estimated using general technologies (see Faré. €1995)). However, empirical studies
often ignore reporting on this infeasibility probile For instance, Mukherjee, Ray and Miller
(2001) report between 1% and 3.5% of infeasibdifper Malmquist index computed over a
two-year period in a larger sample of 201 US conumébanks observed over several years.
Briec and Kerstens (2009) prove that infeasibgittan occur for an even more general so-

called Luenberger productivity indicator based upwoiore general directional distance
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functions. Thus, even this more general indicatoesd not satisfy the determinateness
property in index theor§.

By contrast, the Hicks—Moorsteen index satisfies tleterminateness axiom. This
claim of Bjurek (1996) has been formally proven Biyec and Kerstens (2011) under mild
conditions (i.e., mainly strong disposability ofpirts and outputs).This determinateness
makes it a natural candidate to adopt it for berarkimg purposes focusing on the selection
of a unit of strategic value against which perfong® is compared. Recently, Epure et al.
(2011) define a series of variations based uporHicks—Moorsteen index offering such a
benchmarking perspective.

O’Donnell (2008, 2010) has recently shown thatipability change can be decomposed
into the product of a total factor productivity HFindex and an index measuring relative price
changes. Many TFP indices can be decomposed irdsures of technical change and technical
efficiency change (following Nishimizu and Page &2y, but furthermore into scale efficiency
change and mix efficiency change components. Isdibat can be decomposed in this way
include the Fisher, Torngvist and Hicks—Moorste&i Tndices, but not the Malmquist index.
Combined with the previously established doubtthefMalmquist index as a TFP index and the
potential infeasibilities it may suffer from, on@wto interpret it is as an index measuring local
technical change and its components. We retuimgariterpretation in the concluding section.

While this infeasibility issue received rather lied attention in the productivity index
literature, it is important when productivity inei are used for purposes of public policy. For
example, the implementation of incentive regulatmgchanisms (e.g., in the context of price

cap regulation) in a variety of network industr{gas, electricity, telecom, etc.) often makes

2 Determinateness is one of Fisher’s (1922) originadms. It requires that an index remains welirsef even
when one or more of its arguments become zerdfinitin

3 Zaim (2004, 2006) employs a Hicks—Moorsteen intiexmeasure environmental performance. He thereby
imposes weak disposal in the bad outputs whichaindly produced along with the good outputs. Notirely
surprisingly, he reports some infeasibilities détHicks—Moorsteen environmental performance index.
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use of multifactor best practice efficiency measusee, e.g., Diewert and Nakamura (1999)).
These regulatory applications would be seriousipered when productivity change cannot
be measured for some of the regulated firms (seexample, Estache et al. (2007)).
Therefore, this contribution aims at empiricallypbxing the prevalence of the
infeasibility problem and to document how the Hidkeorsteen index escapes from this
problem. Section 2 provides the basic definitiohghe technology, the various efficiency
measures and distance functions, and the Malma@uidt Hicks—Moorsteen productivity
indices. Section 3 introduces the specificationgeahnologies used for computing these
primal productivity indices. The next section déses the agricultural data sets employed.

Section 5 discusses the empirical results. A fseation concludes.

2. DEFINITIONS OF TECHNOLOGY AND PRODUCTIVITY INDIC ES

2.1  Technology and Distance Functions

The production technology uses the inputs=(x,...,%x,)0R"to produce

outputsy =(¥,,..., ¥, )ARY . In each time periodt) the set of alffeasible input and output

vectors is called the production possibility s&{(t)). This production possibility set is

formally defined as follows:
T(t) ={(x‘, YVHORY™M: X can producq}} (1)

This technology satisfies the following traditionasumptions: (T.1) no outputs without
inputs; (T.2) infinite outputs are not allowed waHfinite input vector; (T.3) closedness; and
(T.4) strong input and output disposability. Noteatt the rather conventional convexity
assumption is not always imposed (just when needed)

Debreu's (1951) coefficient of resources utilizatiand the efficiency measure

introduced by Farrell (1957) are inversely relatedthe distance functions introduced by
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Shephard (1970). In particular, the input-oriengdiiciency measure of Debreu and Farrell

E}(t)(x‘, y) is the inverse the Shephard (1970) input distémeetion. For the input-oriented
case, this efficiency measutg (X, y) is based upon the minimum contraction of an input
vector by a scalad to catch up with the boundary of technology:

By (<, Y)=min{A: (A%, ¥)OT() 224 )

In the case of an output efficiency measU?.Qi)(xt, y') looks for the maximum expansion of
an output vector by a scal@to catch up with the boundary of technology:

Ero (X, ¥)=max{8: (%,6Y)0T(), 620 (3)

Notice that under constant returns to scale, ajrdamrsund and Hjalmarsson (1979) have

shown that input- and output-oriented efficiency aswes are linked:
o _ i -1
Ero (X ¥)=[ Bt M|
For all (a,b)0{tt+13 x{t,t+3}, the time-related version of the Farrell inputdan

output-oriented efficiency measure are given by

By (¢, ¥)=min{A: (A%, ¥)0T(3, 429 @)
and
B (¢, ) =max{6; (%.6Y)0 (3,624 (5)

Note thatE‘r(a)(%’, y) =+ if the set in (4) is empty anE[?(a)(xb, y’) = —oo if the set in (5) is

empty.

2.2 Malmquist and Hicks—Moorsteen Productivity Inoés
An input-oriented Malmquist productivity indesM'((x', y"),(x"™, y""™ )ran be

defined as follows:
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1/2

Eir(t) ()é’ 3}) Ef(t+1) ( )%’ )t/) ) . (6)

Mi((xt,Y),(){ﬂ’yﬂ)): i 1 (p+l t +1 G+l
Erg (X" ¥") By (X9

Its interpretation is as follows. Productivity gritw(decline) is indicated by values smaller
(larger) than unity. To avoid an arbitrary selegt@mong base years, a geometric mean of
periodt (first ratio) and period+1 (second ratio) Malmquist indices is taken.

A Hicks-Moorsteen (or Malmquist TFP) productivitpdex with base period is
defined as the ratio of a Malmquist output quanitityex at base periodand a Malmquist

input quantity index at base peribd

E'(I')(t)(xtlyt)/ = X, y*)
Er (X.¥)/ By (X7, %)

HM< (<Y, (X7,y") = (7)

When the Malmquist output quantity index (rationmamerator) is larger (smaller) than unity,
then more (less) outputs were produced in pdtid@dhan in period from a given input vector.
When the Malmquist input quantity index (ratio ien@dminator) is larger (smaller) than unity,
then less (more) inputs were needed in periddthan in period to produce a given output
vector. When the Hicks-Moorsteen productivity indexlarger (smaller) than unity, then it
indicates productivity gain (loss).

In a similar way, a base peridtll Hicks-Moorsteen productivity index is defined as

follows:

By (X)) By (XY

E+(t+1)(xt ,)}+1)/ ET(t+1)( )t<+1’ 9 1) ( )

HMT(Hl)((Xt ,yt), ()é+1,y+1)) =

Its interpretation is entirely similar to the above geometric mean of these two Hicks-

Moorsteen productivity indices yields:
HM e (V) (XY ) = THMy (X, 9), (X, V)T HM gy (%, '), (%Y O)F2 (9)

Again, its interpretation is entirely similar teetabove.

* Notice that this geometric mean version does hairc The choice for a fixed base version can headinedy
this issue.
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2.3 Short-Run Malmquist and Hicks—Moorsteen Produwty Indices
Ouellette and Vierstraete (2004, 2010) define atgtum input-oriented Malmquist

productivity index. To define a short-run Malmquistlex, it is necessary to partition the
input vector into a fixed and variable paxt € (x"*, ")) such that there is always at least one
variable input dimension.

It is now necessary to define a time-related versib the Farrell sub-vector input-

oriented efficiency measure:
O, Y)=ming A (X AR, Y)O T, A2 10
Er (X, ) FTLIn{ ( y)O T3 C} (10)
with E;(';)(x"b,%’b, y)=+c if the set in (10) is empty. The short-run inpuiented
Malmquist productivity index can now be defined@ws:

i i 1/2
ETf(Ytl)(Xf X ))) Erf(Ll)( X, X, Bt/)

Mf,i Xf’t,XV't, ’ Xf’t+1, )(,t+1’ 1 - - ") rve] 1 - T1 vl 0
(( )})( )} )) E:(,:)(Xf,t ,X/' ’y )Erf(tl+l)(){t ,Xt ,y*)

.(11)

Its interpretation is similar to the input orientdthlmquist productivity index (6) defined
above.

However, the above-mentioned sub-vector measwenetimes undefined, i.e. it may
not obtain a finite value. A base peribshort-run Hicks—Moorsteen productivity index treat

feasible can now be defined as follows:

E'(I')(t)(xtlyt)/ = X, y*)
L0 Y By (0T

HM: (XY, (X)) = (12)

Its Malmquist output quantity index is identical tioe one in the definition (7). But, its
Malmquist input quantity index now focuses on redgcvariable input dimensions only
compared to fixed input and output dimensions tteate the same time superscript as the
technology (see (10) above). Analogously, a feasitthse period+1 short-run Hicks—

Moorsteen productivity index is defined as follows:
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B ) B (XY
E: oy (O X7, Y7 By OE XY

HMy ) (XY, (X, Y1) = (13)

Again, its Malmquist output quantity index is idieal to the one in the definition (8), but the
Malmquist input quantity index is constructed frahe feasible Farrell sub-vector input-
oriented efficiency measures in (10). A geometrieam of these two short-run Hicks-

Moorsteen productivity indices is:
HM{ 1 (LY, 8L ™) = [HME (5, 9), (X, T O HM ay (%), (%, 5Y)F2.(24)

The interpretation remains entirely similar to &eve indices.

2.4. Infeasibilities in the Literature: A Selection

While it is not the purpose to give a systematicvey of all articles mentioning
infeasibilities, we want to discuss a selectionadifcles to highlight some features of this
phenomenon as documented in the current literature.

First, some authors are aware about the potenti@ireence of infeasibilities in the
specifications of technology they select to com@uMalmquist index, but they do not report
any incidence about infeasibilities. For instanBeygess and Wilson (1995) mention the
possibility of infeasibilities in a VRS technolo@gyage 350), but do not mention elsewhere any
occurrence of infeasibilities affecting their bdcap results. Similarly, Cummins and Rubio-
Misas (2006) mention in the legend to their Taldleand 6 (page 346 and 352) the issue of
infeasibilities, but give no indication about thewentual prevalence. It is not clear whether
these authors indeed did not encounter any inféisibr simply neglected reporting any
cases.

Second, depending on the structure of the datanttidence of infeasibilities can

range from extremely mild to extremely severe. iRsetance, Ray and Desli (1997) report just

® Note that this definition of a short-run Hicks—Msteen productivity index that is feasible is ntial. See
Briec and Kerstens (2011) for a variation on thisrsrun Hicks—Moorsteen index that is not wellided.
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one infeasibility for 1 out of 17 countries (5.8%4er the period 1979-1990 for two components
of the Malmquist index (see their p. 1037). Bjuetlal. (1998) analyze an unbalanced panel of
in total 2274 observations of Swedish electricétail distributors over 21 years (1970-1990).
This study reports on the productivity of threeindlal observations: for one of these, the first
10 out of 20 annual (50%) output-oriented Malmqinslices are infeasible (see Figure 5.5).
There is no other indication in that contributiom iofeasibilities in the sample. Finally, Silva
Portela and Thanassoulis (2006) analyzed an untedapanel of Portuguese bank branches
from March to December 2001 on a monthly basisti&tawith 57 branches and ending with
52 units due to branch closures, these authorgtrepe month for which 47 out of 52 bank
branches (90.4%) yield infeasible solutions.

Third, the incidence of these infeasibilities is 4ome extent conditioned by the
assumptions imposed on the technology. Pastor. €2@l1) report up to 12% infeasibilities
when using a VRS technology for a balanced pan8Bdirms over a 4 year period. Looking
at the literature, it is striking that especiallyiedes focusing on environmental performance
using some combination of good and bad outputsretdyethe trade-off between both these
outputs is modelled using a weak disposability aggion on the bad output, suffer from
infeasible solutions. For instance, Yoruk and Zg®05) analyze 28 countries over 16 years
using four models with undesirable outputs. For edndividual countries, these authors
report up to 11 out of 16 (68.7%) infeasible sa@ng. Analyzing 41 countries over 22 years,
Kumar (2006) states that three countries experiehc@ and 13 infeasible solutions, even
when multiple year windows are used to mitigategirablem. Finally, in a study of 30 OECD
countries from 2001 to 2002 Zhou and Ang (2008)orepnfeasibilities for 2 countries
involved. The assumption of weak disposal beingkeeghan the traditional strong disposal
assumption, one could conjecture that infeasibditire somehow related to the volume of the

technologies as resulting from the less or moreatehmg assumptions.
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In the literature, it is often assumed that theasifion of constant returns to scale on
technology guarantees feasibility of the Malmqustductivity index (see, e.g., Fare et al.
(1994))° However, to our knowledge no formal proof has ekeen provided for this
conjecture. Note that the feasibility of both theut-oriented and output-oriented Malmquist
productivity index evaluated over all input respeslly output dimensions can be inferred
from results reported in Briec and Kerstens (2089 more general settifign the case of
the input-oriented Malmquist productivity indexagbility follows directly from Proposition
3.7 in Briec and Kerstens (2009). Assuming attalitglis satisfied, it states that a necessary
and sufficient condition for feasibility is that thederlying Farrell input efficiency measures
aim for reductions over all input dimensions. Hoe tase of the output-oriented Malmquist
productivity index, Proposition 3.6 in the sameicéet guarantees feasibility when the
underlying Farrell output efficiency measures aon reductions over all output dimensions.
Note that both results are independent of the catwaxiom.

Some proposals in the literature somewhat changedibcrete time nature of the
Malmquist index by combining two or more years dmse technology. In particular, a global
Malmquist index constructs a single global techgglérom all units and all time periods,
while a biennal index just takes a time windowwb t(Pastor et al. (2011)) instead of several
years (Kumar (2006)). Some of these proposals cain@eserious drawback: e.g., the global
Malmquist index requires re-computing all resulthewever new time periods become
available. The biennal index is attractive in thalways remains feasible, but in contrast to
the fixed base period Malmquist index it is nohsiéive. The discussion of the relative merits

of a fixed versus variable basis for productivitgices has been summarized in Fare et al.

® The seminal contribution of Fare et al. (1995)idsathis infeasibility problem in the output Malmisgu
productivity index by imposing a technology withrestrictive returns to scale assumption (in casan-n
increasing returns to scale).

" Indeed, Briec and Kerstens (2009) prove that silgties may occur for the more general Luenberge
productivity indicator based upon a directionatalige function.
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(2008). To avoid mixing up several other issues,thnaefore ignore these proposals in our
further discussion.

In conclusion, our analysis must be mainly seeth@light of this last evidence. We
systematically explore the incidence of infeadile§i as a consequence of variations in the

assumptions on technologies underlying the indempzdations.

3. METHODOLOGY: SPECIFICATION OF TECHNOLOGIES

In this section, we basically discuss the differgpecifications of technology relative
to which both the Malmquist and the Hicks-Moorstgenductivity indices are computed.
While parametric estimation of the component edficy measures of the Malmquist index is
possible (see, e.g., Atkinson et al. (2003) or (JB&®2)), the nonparametric estimation is far
more popular.

We opt for nonparametric frontier technologies tlapose neither an a priori
functional form on technology, nor any restrictagsumptions regarding input remuneration.
Moreover, the frontier nature of these technologa®ws capturing any productivity
inefficiencies and offers a benchmarking perspectiv

Traditionally, most Malmquist productivity indicesre computed relative to
technologies imposing constant returns to scaleveyer, it is also possible to compute it
with respect to a more flexible, variable returmsctale technology (see, e.g., Mukherjee et al.
(2001)). In addition, it seems interesting to esily assess the impact of the traditional
convexity hypothesis on the amount of infeasil@gtin the Malmquist index. Even though
convexity has been profoundly criticized (e.g.,eéBriet al. (2004)), rather few contributions
have computed a Malmquist productivity index refatio a nonconvex technology (Tulkens

and Malnero (1996) are among the exceptions),
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LetK be the number of firms/unitdx(]{l,...,K} ). Assuming strong disposal of inputs
and outputs and some other maintained hypotheses specified below, following Briec et
al. (2004) the nonparametric inner-bound approxwonat of the true technology can be
presented by the following set of production pasifigs:

K
shr :{(x YORY™: y<0> 2 ¥ Ml.., M
k=1 (15)

K
3Y Z %< %, P=L..,N; zOA; o0T; k=1,...,%
k=1
K
where AD{C,NG}, with C :{zk OR,; % =1} and
k=1

K
Nc:{4DR+;Z z =1, ;D{O,i}}, and wherel {CRS VR}, with CRS={J;J=0}
k=1

andVRS={0;0=1}.

From activity analysisz is the vector of intensity or activity variabldsat indicates
the intensity at which a particular activity is doyed in constructing the reference
technology by forming convex or nonconvex combimagi of observations constituting the
best practice frontier. This specification is naehr, but as shown by Briec et al (2004) it can
be straightforwardly linearized in the convex ca@bsse methods are widely known under
the moniker Data Envelopment Analysis (DEA)). Hoeevthe nonconvex cases involve
solving either some nonlinear mixed integer progaor some scaled vector dominance
algorithms (these models are sometimes referredstéree Disposal Hull (FDH)). More
recently, Podinovski (2004) and Leleu (2006) haydamed mixed integer and linear
programs respectively for all nonconvex specifmasi

Thus, the calculation of each input-oriented Malmtuwand the Hicks-Moorsteen
productivity index requires efficiency measured thy@ computed according to four different

approaches: convex (C) versus nonconvex (NC) tdogres on the one hand, and constant
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(CRS) versus variable returns to scale (VRS) on akieer hand. Furthermore, some
computations focus on a subset of variable inpunedisions, while others do not distinguish
between fixed and variable inputs. More detailedcdfrations of all efficiency measures
involved in computing the input-oriented Malmquastd the Hicks-Moorsteen productivity
indices are found in Appendix 1. The computaticmstfie constant returns to scale case and
reductions over all input dimensions on both conaed nonconvex technologies are just

provided as a point of comparison.

4. SAMPLE DESCRIPTIONS

We employ two secondary agricultural data setsofor empirical analysis. The first
sample is taken from Ivaldi et al. (1996) and com#taan unbalanced panel of three years of
French fruit producers. It is based on annual actiog data collected in a survey (Reseau
d'Information Comptable Agricole (RICA)). Two crnite have been adapted in selecting
farms: (i) the production of apples must be digtinem zero, and (ii) the productive acreage
of the orchard must be larger than five acres. f#ohnology combines three inputs to
produce two outputs. The three aggregated inpets(grcapital (including land), (ii) labor,
and (iii) materials. The sole fixed input dimensisrtapital. The two aggregate outputs are (i)
production of apples, and (ii) an aggregate of ogreductions. While the years 1984, 1985
and 1986 count 130, 135 and 140 observations regplgc in the balanced panel only 92
observations are in common. This implies that 920684 observations or just 50% can be
used in the index computations. Summary statisind more details on the variable
definitions are available in Appendix 2 in Ivaldiad. (1996).

The second sample is a balanced panel of 43 snadihdce farmers in the Tarlac
region of the Philippines observed over the ye®801to 1997 (see Coelli et al. (2005)).

Fundamentally, four inputs are used to generategiesoutput (tons of freshly threshed rice).
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The four inputs are: (i) area planted, (ii) labsed (in man-days of family and hired labor),
(iii) fertilizer used (in kg of active ingredientsand (iv) other inputs used (a Laspeyres
quantity index combining the inputs seed, herbgjdeactors and animals). The sole fixed
input dimension is again area planted. Summarysstst and details on this sample are

available in Appendix 2 of the book by Coelli et @005).

5. EMPIRICAL RESULTS

First, we discuss the incidence of infeasibilities the input-oriented Malmquist
productivity index. Then, we discuss the descriptstatistics of both productivity indices as
well as their rank correlations.

Table 1 offers descriptive statistics for the inptiented Malmquist index as well as
the Hicks—Moorsteen index. Part A of the table regpon the Ivaldi et al. (1996) data, while
Part B contains the results for the Coelli et 2005) data. Each table is structured as follows.
The upper part reports on the input-oriented Malistgudex, while the lower part contains
the Hicks—Moorsteen index results. Within each,phe left-hand side of the table contains
results for all input dimensions, while the riglard side of the table focuses on a subvector
of variable inputs. For each of these indices, tdide distinguishes between convex and
nonconvex on the one hand and between CRS and &8s on the other hand.

< TABLE 1 ABOUT HERE >

The following tendencies are clearly apparent immg&e of the incidence of
infeasibilities for the input-oriented Malmquistgaluctivity index. First, the amount of
infeasibilities is greater under the VRS than urtlerCRS assumption. Second, the incidence
of infeasibilities is larger under nonconvexity thander the traditional convexity hypothesis.
Third, the number of infeasibilities is relativealjgher under the subvector case compared to

the standard index computed over all input dimersidNotice that, by contrast, the Hicks-
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Moorsteen productivity index always remains feasi@@s could be expected from the Briec
and Kerstens (2011) result).

These same tendencies can be illustrated usinge-igwhereby models are indicated
by combinations of the abbreviations for convex ¥€jsus nonconvex (NC), constant (CRS)
versus variable (VRS) returns to scale, and thevestibr case is denoted by "Subv". The
percentage of infeasible observations in the irpigAted Malmquist index varies from 0% to
23.3% for the Ivaldi et al. (1996) data, and betw@® and 49.5% in the case of the Coelli et
al. (2005) data. As conjectured above, these vansitare clearly depending on the strength
of the production axioms and the resulting volunighe technologies resulting from these
less or more demanding assumptions.

< FIGURES 1 ABOUT HERE >

Obviously, as already illustrated in section 2lkese percentages may reveal large
variations across time and units. Therefore, Tablasd 3 report detailed descriptive statistics
on infeasibilities over the years and the obseovatrespectively. Both tables have a structure
identical to Table 1 (except that the median iseaidand the last line is dropped). To facilitate
comparisons, descriptive statistics are reportgueasentages. To be explicit, for the statistics
across periods in Table 2, we count the infeatigmliper comparison period over all units and
we compute statistics across the available compapsriods. For the statistics across units in
Table 3, we count the infeasibilities per obsenratover all time periods and we compute
statistics across the units.

Starting with Table 2, recall that the Ivaldi et £1996) data only contain 3 years
(hence 2 comparisons). While the standard Malmgudéex shows between 3.26% and
5.43% infeasibilities across the board, the amafninfeasibilities in the subvector case
varies considerably, with a clear peak for the womex VRS case (up to 48.91% at

maximum). Mean and median coincide and the standawhtion is rather small. For the
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Coelli et al. (2005) data the standard Malmquistein shows a bit more variation, but the
subvector case is even more seriously affected aedpto the first sample case (the
maximum now even goes up to 69.77%). Mean and medigerge and the standard
deviation is now bigger.

Continuing with Table 3 (i.e., comparisons acros#s), one notices for the the Ivaldi
et al. (1996) data that the standard Malmquistxrities a lower mean than in Table 2.A, but a
higher standard deviation and especially maximunadged several observations have no
feasible solutions in the two comparison period3)r the Coelli et al. (2005) data the
standard Malmquist index has at least an equaigheh mean than in Table 2.A, and a much
higher standard deviation. Its maximum is again%a@8everal observations have no feasible
solutions in the seven comparison periods). Inttieesubvector case, the Ivaldi et al. (1996)
data suffer on average less from infeasibilitiad, its standard deviation and maxinmum is
much higher. Exactly the same can be observedh®mrstibvector case of the Coelli et al.
(2005) data. Again, its maximum is 100%.

< TABLES 2 AND 3 ABOUT HERE >

To illustrate the large variations across years @amts, we add some figures of some
of the more extreme cases found in both data sefigllaws. Figure 2 serves to illustrate the
case of observation 18 in the Coelli et al. (208&a that has 7 out of 7 infeasible solutions
for the standard Malmquist index in case of a VRSuaption. Figure 2 plots the 1990 data
represented by circles (0) and the 1991 data repted by crosses (x). The horizontal axis
represents the first input variable (planted ared)le the vertical axis shows the output (tons
of freshly treshed rice). The black circle in thgpar right position is DMU 18 in 1990. All
frontier sections under all four technology assuoms are based on observations in 1991.
When projecting DMU 18 in 1990 to the 1991 frontierthe input-orientation, there are

feasible solutions for the CRS cases, while theeena feasible solutions for the VRS cases.
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This infeasibility is due to observation 18 beirntgated above the VRS frontiers and the fact
that an input-orientation has been adopted.
< FIGURE 2 ABOUT HERE >

The next Figure 3 illustrates the case of infeditds in the subvector Malmquist
index. We have picked observation 35 of the Caatllal. (2005) sample. From Figure 3.A,
one notices two infeasibilities in the case of avax VRS technology: one in the first and
one in the last comparison periods. By contrasEigure 3.B four infeasibilities are observed
in the case of a nonconvex VRS technology: onehénfirst and three in the comparison
periods at the end. Each time, we contrast the estibr input Malmquist index with the
Hicks-Moorsteen results, which do not suffer froimst problem at all. Clearly, the
infeasibility issue may complicate regulatory anénagerial uses of the input-oriented
Malmquist productivity index.

< FIGURES 3 ABOUT HERE >

Returning to the descriptive statistics in Tablevé,observe that on average the input-
oriented Malmquist productivity index indicates eogiuctivity decline, while the Hicks-
Moorsteen productivity index clearly marks a pratlity gain for both data sets. While the
productivity change may seem strongest for theneldgy with the strongest assumptions
with respect to returns to scale (i.e., CRS veNRS) for the case of the input-oriented
Malmquist index for the Ivaldi et al. (1996) dathis situation is exactly reversed for the
Coelli et al. (2005) data. In a similar vein, whilee productivity change may seem strongest
for the technology with the strongest assumptiornth vespect to convexity (i.e., convexity
versus nonconvexity) for the case of the inputrdad Malmquist index for the Ivaldi et al.
(1996) data, this situation is again exactly resdror the Coelli et al. (2005) data. While the
subvector results are always slightly lower tha@ tésults on all input dimensions for the

input-oriented Malmquist index for the Ivaldi et €1996) data, this situation is again exactly

90

© 2011 Tous droits réservés. http://doc.univ-lille1 fr



Thése de Bouye Ahmed Ould Moulaye Hachem, Lille 1, 2011

reversed for the Coelli et al. (2005) data. Simdaservations can be made for the Hicks-
Moorsteen productivity index. These observations lma explained as follows: while stronger
(weaker) axioms lead to a larger (smaller) volurhthe technology implying a clear ordering
of efficiency measures in a static measurement, pfweluctivity indices take ratios of
efficiency measures in which such a clear ordeisraimply absent.

Another, more relevant question is how the difféergmoductivity indices are
correlated with one another. Table 4 reports ramketation matrices between the different
models for both data sets. First, the fundamertak rcorrelation between input Malmquist
and Hicks-Moorsteen productivity indices is negatigince both indices move in opposite
directions with respect to unity. Second, rank eations between input Malmquist and
Hicks-Moorsteen productivity indices are higher endonstant returns to scale than under
variable returns to scale, since constant retwrrssale is among the necessary conditions for
equality between both indices. Third, under vagatdturns to scale the rank correlations
between input Malmquist and Hicks-Moorsteen pragitgtindices are quite high when other
assumptions are identical, but sometimes rank letiosas are even higher when one of the
indices assumes constant returns to scale.

< TABLE 4 ABOUT HERE >

6. CONCLUSIONS

This contribution focuses on two discrete-time @improductivity indices that require
a detailed knowledge of the underlying productieahhology: the Malmquist productivity
index, and the Hicks-Moorsteen index. While therfer has become immensely popular, the
latter is still fairly little used in applied resea. While the Hicks-Moorsteen productivity
index has a TFP interpretation, it was already kmtlvat the Malmquist index is not always a

TFP index and furthermore that the distance funsticonstituting it may well be undefined
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when estimated using general technologies. Thenteeark of O’'Donnell (2010) casts further
doubt on the Malmquist productivity index as a Tirdex.

This contribution aims at empirically exploring tipeevalence of the infeasibility
problem for the popular Malmquist productivity indender a wide variety of assumptions on
technology. It also has documented how the Hick®egteen index escapes from this
problem. Apart from reviewing some of the resultparted in the scant literature on this
infeasibility issue, two agricultural data sets angployed to illustrate this issue in detail. It is
found that the infeasibility problems seem diredihked to the strength of the assumptions
defining the volume of the technology. Incidenceies from minor to very serious at the
sample level. Especially at the level of individudlservations the problem can be very
severe: it can even inhibit any productivity evaiomin extreme cases.

What are the consequences of these empirical sefuitthe interpretation of the
Malmquist productivity index? These results cledusther undermine any remaining status of
the Malmquist index as a TFP index. As mentionddrbe one positive way out is to consider
the Malmquist index as an index measuring locahn®al change (and eventually its
components). In this perspective, the Malmquistpativity index attempts to provide a local
answer (i.e., based on the observations observédtintime periods), but depending on the
strength of the assumptions one is willing to ingos technology this answer is not always
guaranteed. Thus, the local nature of its measureammes at the cost of it not always being
well-defined.

This new interpretation clearly makes the Malmquustductivity index much less
suitable in a regulatory setting. We also expectenamd more applied researchers to take an
interest in the Hicks-Moorsteen index that suffiess from these problems and that has a
clear TFP interpretation. It goes without sayingtthlso other TFP indices may benefit from a

renewed interest (see, e.g., the Fisher index Do@nell (2008) or in Ray and Mukherjee
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(1996)). Another plausible consequence is thatroag wonder whether it is meaningful to
mix up these two structurally different types obghuctivity indices, as it has been done in
certain methodological refinemerfits.

Finally, it is good to point out some limitation§ this study. First, we compared the
productivity indices, but ignored the eventual eliénces in their underlying decompositions
(see Zofio (2007) for the Malmquist index and O'Belh (2008, 2010) for the Hicks-
Moorsteen index). Second, we have limited ourseteegroductivity indices, but the same
phenomena would most probably be observed for #tie qf the Luenberger productivity

indicator and its Luenberger-Hicks-Moorsteen corpad (see Briec and Kerstens (2004)).

APPENDIX: COMPUTING MALMQUIST AND HICKS-MOORSTEEN | NDICES:
LINEAR PROGRAMMING PROBLEMS

For convenience, we explicitly specify all lineaogramming problems involved relative
to a convex technology with constant returns téesdzor all other specifications, please consult

Briec et al. (2004).

1. Malmquist productivity index: compute four radigfficiency measures per
observation(x,, y,) under evaluation.

First within-period LP:

8 For instance, some decompositions of the Hicks+isteen productivity index (e.g., Nemoto and Got@0&))
include components that are based on a Malmqguist ¢f index and hence these could be infeasibipitiethe
fact that the overall index is well-defined. Inien#iar vein, some decompositions of the Malmquisiductivity
index (e.g., the input and output bias componamtBare, Grosskopf and Margaritis (2008): see theation
5.2.3) include components that are based on a Hildarsteen type of index. This situation is potalhyi
confusing and probably requires some further rétiec
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The subvector cases require specifying separaegebnstraints for fixed and variable input

dimensions and only radially reducing the variabfgt dimensions.
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2. Hicks-Moorsteen productivity index: compute ¢ighdial efficiency measures per

observation(x,, y,) under evaluation.
While E;,(%.%) and E.,, (%" .%") are identical to the efficiency measures in the

Malmquist index aboveE;,(x.y%) and E7.,,(x™,%™) are similar to the within same time

period efficiency measures, only differing in me@snent orientation.

The remaining four linear programs are:

Ery (%% = max A E#(t) 6™ %) = n)lp A
K K
st D VmZ2AYn, MEL..M, s.t. Zy‘kmz‘kz Yo m=1,..,.M,
k=1
K K
D X Ze < K n=1,...,N, D XaZ S A%, n=1,..., N,
k=1 k=1
120,z >0, k=1..K 120, z =0, k=1,...K
B (%™ %) = - max A E%(m)(%v)}oﬂ):rpi? A
s.t. Zy“lz“1>/l . m=1..M, s.t. Zyﬁﬂz‘+1 ' m=1..M,
k=1 k=1
K K
DXl n=1,..., N, D Xzt < A%, n=1,...,N,
k=1 k=1
120, " =0, k=1,..K A20, 2" >0, k=1,..K

The subvector cases require specifying separaegebnstraints for fixed and variable input

dimensions and only radially reducing the variabfgt dimensions.
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Table 1: Input-Oriented Malmquist vs. Hicks—Moorsteen Indices: Descriptive Statistics

Table 1.A. Ivaldi et al. (1996) Data

Input-oriented Malmquist

Subvector Input-orientdlimquist

Convex Nonconvex Convex Nonconvex
CRS VRS CRS VRS CRS VRS CRS VRS
Mean 1.17391.032: 1.1498 1.0631 1.1540 1.0269 1.1831 1.0244
Stand. Dev. 0.67470.301¢ 0.5852 0.3582 0.6985 0.3280 0.7334 0.4089
Min. 0.0854 0.528( 0.1305 0.4210 0.0606 0.4621 0.0989 0.3734
Max. 5.2365 2.514( 4.3777 2.8566 5.2365 2.7568 5.2506 3.1692
% Infeas. Obs. 0.00%1.63% 0.00% 2.72% 1.90% 5.16% 4.62% 23.37%

Hicks-Moorsteen Subvector Hicks-Moorsteen

Convex Nonconvex Convex Nonconvex
CRS VRS CRS VRS CRS VRS CRS VRS
Mean 1.15021.171: 1.1157 1.1105 1.1881 1.1907 1.1602 1.1455
Stand. Dev. 1.02931.008: 0.7996 0.6664 1.0449 1.0129 0.8362 0.7142
Min. 0.1919 0.192¢ 0.2507 0.1668 0.1919 0.1925 0.2941 0.1668
Max. 11.638511.574¢ 7.0399 5.7377 11.638511.5746 7.6651 6.5508
% Infeas. Obs. 0.00%0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Table 1.B. Coelli et al. (2005) Data

Input-oriented Malmquist

Subvector Input-orienddimquist

Convex Nonconvex Convex Nonconvex

CRS VRS CRS VRS CRS VRS CRS VRS

Mean 1.0472 1.0639 1.0500 1.0726 1.086: 1.1190 1.0964 1.1497
Stand. Dev. 0.4484 0.4521 0.4465 0.43980.597¢ 0.6170 0.6721 0.5337
Min. 0.2659 0.1812 0.2790 0.3044 0.164¢ 0.2084 0.1619 0.3461
Max. 4.6811 3.2575 5.1048 3.2741 6.676° 6.4792 8.2680 3.9235
% Infeas. Obs. 0.00% 2.33% 0.00% 2.33% 3.65%18.27% 3.65% 49.50%

Hicks-Moorsteen Subvector Hicks-Moorsteen

Convex Nonconvex Convex Nonconvex

CRS VRS CRS VRS CRS VRS CRS VRS

Mean 1.1024 1.0891 1.0966 1.0742 1.107% 1.0929 1.1048 1.0741
Stand. Dev. 0.4447 0.4335 0.4416 0.41560.483: 0.4661 0.4742 0.4549
Min. 0.2136 0.1729 0.1959 0.1664 0.264( 0.2508 0.2585 0.2576
Max. 3.7611 3.5994 3.5848 3.5483 4.415: 3.7866 4.1023 3.7126
% Infeas. Obs. 0.00% 0.00% 0.00% 0.00% 0.00% 0.33% 0.00% 0.00%
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Figure 1: Input-Oriented Malmquist Index: Infeasibi lities and Technology Assumptions

Figurel.A. Ivaldi et al. (1996) Data
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Figurel.B. Coelli et al. (2005) Data
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Table 2: Input-Oriented Malmquist: Descriptive Statistics of Infeasibilities Across

Periods

Table 2.A. Ivaldi et al. (1996) Data (92 observasip

Input-oriented Malmquist

Subvector Input-orientdimquist

Convex Nonconvex Convex Nonconvex
CRS VRS CRS VRS CRS VRS CRS VRS
Mean 0.00% 3.26% 0.00% 5.43% 3.80% 10.33% 9.24% 46.74%
Median 0.00% 3.26% 0.00% 5.43% 3.80% 10.33% 9.24% 46.74%
Stand. Dev. 0.00% 0.00% 0.00% 0.00% 0.77% 0.77% 0.77% 3.07%
Min. 0.00% 3.26% 0.00% 5.43% 3.26% 9.78% 8.70% 44.57%
Max. 0.00% 3.26% 0.00% 5.43% 4.35% 10.87% 9.78% 48.91%

Table 2.B. Coelli et al. (2005) Data (43 observagjo

Input-oriented Malmquist

Subvector Input-orienMdimaquist

Convex Nonconvex Convex Nonconvex
CRS VRS CRS VRS CRS VRS CRS VRS
Mean 0.00% 2.03% 0.00% 2.33% 3.65% 19.19%3.65% 49.50%
Median 0.00% 2.33% 0.00% 2.33% 2.33% 11.63%2.33% 46.51%
Stand. Dev. MO0% 0.82% 0.00% 0.00% 1.83% 14.64%1.83% 10.97%
Min. 0.00% 0.00% 0.00% 2.33% 2.33% 6.98%2.33% 39.53%
Max. 0.00% 2.33% 0.00% 2.33% 6.98% 48.84%6.98% 69.77%

Table 3: Input-Oriented Malmquist: Descriptive Statistics of Infeasibilities Across Units

Table 3.A. Ivaldi et al. (1996) Data (2 time congans)

Input-oriented Malmquist

Subvector Input-orientdimquist

Convex Nonconvex Convex Nonconvex
CRS VRS CRS VRS CRS VRS CRS VRS
Mean 0.00% 1.63% 0.00% 2.72% 1.90% 5.16% 4.62% 23.37%
Median 0.006c 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
Stand. Dev. 0.00% 12.70% 0.00% 15.44% 12.11%19.22% 17.89% 38.73%
Min. 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
Max. 0.00%100.00% 0.00%100.00% 100.00%00.00% 100.00% 100.00%

Table 3.B. Coelli et al. (2005) Data (7 time congiams)

Input-oriented Malmquist

Subvector Input-orienddimquist

Convex Nonconvex Convex Nonconvex
CRS VRS CRS VRS CRS VRS CRS VRS
Mean 0.00% 2.33% 0.00% 2.33% 3.65%18.27% 3.65% 49.50%
Median 0.00% 0.00% 0.00% 0.00% 0.00%14.29% 0.00% 57.14%
Stand. Dev. 0.00% 15.25% 0.00% 15.25% 12.51%24.41% 12.51% 29.14%
Min. 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
Max. 0.00%100.00% 0.00%100.00% 57.14%00.00% 57.14% 100.00%
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Figure 2: Input-Output Section With Position of Observation 18 (Coelli et al. (2005))

== = Section of C-VRS frontier

= Section of C-CRS frontier
Section of NC-VRS frontier
Section of NC-CRS frontier

Legend: Observations are related to periods 19991190bservations of 1990 are
represented by circles (0). Observations of 199& aepresented by crosses (x). The
horizontal axis represents the first input varialyjanted area), while the vertical axis shows
the output (tons of freshly treshed rice). The kldot in the upper right position is DMU 18
in 1990. All frontier sections are based on obs#&ore in 1991. When projecting DMU 18 in
1990 to the 1991 frontiers in the input-orientatidinere are feasible solutions for the convex
and nonconvex CRS cases, while there are no feasillitions for the convex and nonconvex
VRS cases.

Figure 3: Subvector Malmquist and Hicks-Moorsteen 6ér Observation 35 (Coelli et al.

(2005))
Figure3.A. Convex VRS Technology FiguBeB. Nonconvex VRS Technology
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Table 4: Input-Oriented Malmquist vs. Hicks—Moorsteen Indices: Rank Correlations

Table 4.A. Ivaldi et al. (1996) Data: All Dimens®n

Input-oriented Malmquist Hicks-Moorsteen
Convex Nonconvex Convex Nonconvex
CRS VRS CRS VRS CRS VRS CRS VRS
Input- Convex CRS 1.000
oriented VRS 0.674** 1.000

Malmquist Nonconvex CRS 0.922** 0.590** 1.000
VRS 0.763** 0.705** 0.790** 1.000

Hicks- Convex CRS -0.999**  -0.672**  -0.923** -0.760 1.000
Moorsteen VRS -0.945**  -0.706*  -0.909**  -0.784** 0.946** 1.000
Nonconvex CRS -0.909**  -0.559**  -0.984**  -0.772** 0.909** 0.82** 1.000
VRS -0.887**  -0.580**  -0.910** -0.785** 0.886** M14** 0.899** 1.000

Note: Rank correlations were computed on betweesn872 available observations. ** Correlation igsificant at the 0.01 level (2-tailed).

Table 4.B. Ivaldi et al. (1996) Data: Subvector €as

Input-oriented Malmquist Hicks-Moorsteen
Convex Nonconvex Convex Nonconvex
CRS VRS CRS VRS CRS VRS CRS VRS
Input- Convex CRS 1.000
oriented VRS 0.675** 1.000
MalmquistNonconvex  CRS 0.916** 0.595** 1.000
VRS 0.837** 0.658** 0.803** 1.000
Hicks- Convex CRS -0.999** -0.676** -0.919** -0.825 1.000
Moorsteen VRS -0.942** -0.696** -0.927** -0.806** 0.945** 1000
Nonconvex CRS -0.925** -0.594** -0.960** -0.792** .G20** 0.913** 1.000
VRS -0.860** -0.596** -0.883** -0.794** 0.850** MO7** 0.887** 1.000

Note: Rank correlations were computed on betweeandl192 available observations. ** Correlation igsificant at the 0.01 level (2-tailed).
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Table 4.C. Coelli et al. (2005) Data: All Dimensson

Input-oriented Malmquist

Hicks-Moorsteen

Convex Nonconvex Convex Nonconvex
CRS VRS CRS VRS CRS VRS CRS VRS

Input- Convex CRS 1.000
oriented VRS 0.872** 1.000
MalmquistNonconvex  CRS 0.980** 0.848* 1.000

VRS 0.806** 0.870** 0.802** 1.000
Hicks- Convex CRS -1.000** -0.872** -0.980** -0.866 1.000
Moorsteen VRS -0.951** -0.884** -0.932** -0.821** 0.951** 1000

Nonconvex CRS -0.980** -0.848** -1.000** -0.802** .980** 0.932** 1.000
VRS -0.873** -0.798** -0.880** -0.810** 0.873** (®03** 0.880** 1.000

Note: Rank correlations were computed on betwedna2@ 301 available observations. ** Correlationsignificant at the 0.01 level (2-tailed).

Table 4.D. Coelli et al. (2005) Data: Subvectoré&as

Input-oriented Malmquist

Hicks-Moorsteen

Convex Nonconvex Convex Nonconvex
CRS VRS CRS VRS CRS VRS CRS VRS

Input- Convex CRS 1.000
oriented VRS 0.877** 1.000
MalmquistNonconvex CRS 0.968** 0.839** 1.000

VRS 0.679** 0.780** 0.673** 1.000
Hicks- Convex CRS -0.974** -0.864** -0.926** -0.674 1.000
Moorsteen VRS -0.921** -0.854** -0.870** -0.678** 0.954** 1000

Nonconvex CRS -0.936** -0.837** -0.913** -0.674** Q74** 0.944** 1.000
VRS -0.802** -0.691** -0.766** -0.701** 0.835** (B68** 0.841** 1.000

Note: Rank correlations were computed on betwedraidl 301 available observations. ** Correlationsignificant at the 0.01 level (2-tailed).
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Chapter 3:
Scale Economies and Returns to Scale
in Non-Parametric Models:

Exploring the Impact of Convexity

Abstract:

Returns to scale and economies of scale can bendeésl using production and cost
functions. This contribution focuses on testing ¢nepirical impact of convexity using
non-parametric frontier specifications of technglognd cost functions. Empirical
results reveal the effect of convexity on estimaiéscale efficiency and cost-based
scale efficiency, as well as on the characterimatid returns to scale for individual

observations.

Keywords: Scale efficiency, Returns to scale; Ecoies to scale; Convexity.

JEL classification: D24.
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1. INTRODUCTION

Efficiency and productivity analysis using frontigpecifications of technology
or value functions (e.g., cost functions) have beestandard methods in the empirical
toolbox of the applied researcher. These empirgtaties serve a wide variety of
academic, regulatory and managerial purposes. fidubtional parametric and non-
parametric approaches all maintain the axiom otegity. However, indivisibilities in
production imply that inputs and outputs are nahpletely divisible (see Scarf (1986,
1994)). Indivisibilities also put limitations ondhup- or downscaling of the production
processes. In addition, economies of scale andaation may as well result in non-
convex technologies (see, e.g., Romer (1990) omivadninputs in the new growth
theory). In addition to the well-known case of emudities, all of these features of
technology violate the convexity of the productmossibility set (see Farrell (1959) for
more details).

In some sectors the importance of non-convexitiescbst determination has
been clearly documented. For instance, non-conesxih electricity generation due to
minimum up and down time constraints, multi-fuefieefs, etc. leading to nonconvex
and nondifferentiable variable costs have been meoted in, e.g., Bjgrndal and
Jornsten (2008) and Park et al. (2010). Furthermoosts are non-convex in car
manufacturing due to changes in the number ofsshifd in the shutting down of plants
for some time (see Copeland and Hall (2011)). Wwidely acknowledged that many
operations management problems in industry andiluliéion involve some form of
indivisibilities requiring integer optimisation. M@ver, most economic literature
ignores such non-convexities in production.

In the non-parametric approach to production thetmg Free Disposal Hull

(FDH) model -introduced by Deprins et al. (1984 asnoriginally designed to relax the
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convexity assumption underlying the traditional wex models (known under the
moniker Data Envelopment Analysis (DEA)), wherelvgef disposal of inputs and
outputs becomes the key assumption. A step towexttnding the potential of FDH
was initiated in Kerstens and Vanden Eeckaut (1988¢se authors introduce specific
returns to scale assumptions into the basic FDHefaad propose a new goodness-of-
fit method to infer the characterization of retutoscale for non-convex technologfés.
Another step extending the scope for non-converyrtion modeling is found in Briec
et al. (2004). These authors propose non-convexfanstions that are always larger or
equal to their convex counterparts and they rdtseraditional convex decomposition
into technical, scale, allocative and overall ey with its non-convex counterparts.

The aim of this contribution is to explore the diinces between technical and
scale efficiencies based on both traditional conae® these rather new non-convex
technology and cost function estimations. Suchmeggés have never been reported
based on the cost function. More importantly, weallustrate the eventual differences
between the characterization of economies of saatereturns to scale for convex as
well as non-convex cost functions and technologiHss has —to the best of our
knowledge- never been reported in an internatipohblication.

If differences in technical and scale efficiencsswell as the characterization of
economies of scale and returns to scale for indalicobservations turns out to be
conditioned by the convexity assumption, then tlas important consequences. For
one, investment decisions to increase or decrdasesdale of operations based on
economies of scale or returns to scale informationld be responding to the wrong
signals. For another, some capacity notions arg sleisely linked with the notion of

scale economies. For instance, economic capacdgfazed by Cassel (1937) and Klein

% This method was further refined for the case afvex technologies in Briec et al. (2000). Podindvsk
(2004a) extended this approach by introducing indtson between local and global returns to scale.
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(1960), among others, considers the outputs detedrdy the minimum of the long run
average total costs as a reference to determinéigabcapacity utilisation ratios.

The next section defines the technology and thé fwowgtion and introduces
some basic efficiency decompositions. Section thices the specific production and
cost models to be estimated and develops the mévhduhracterize returns to scale for
individual observations in a convex and a non-cansetting. Next, we introduce the
data sets employed in the empirical applicatiorttiSe 5 presents the empirical results

in detail. A final section concludes.

2. TECHNOLOGY, COST FUNCTION AND EFFICIENCY
DECOMPOSITION
2.1. Definitions of Technology and Cost Functions

We start by defining technology and some basic tioota Denoting an n-

dimensional input vectox(C R",) and an m-dimensional output vectgr({ R™,), the

production possibility set or technology is defiredfollows:T = {(x,y) [Ix can produce
y}. The input set associated with denotes all input vectors capable of producing a
given output vectory: L(y) = {xO(x,y) O T}. This input setL(y) associated withl
satisfies some combination of the following staddassumptions: apart from the
traditional regularity conditions (i.e., no freenthh and the possibility of inaction,
boundedness, closedness, and strong disposakKeyreessumptions of importance for our
contribution are convexity or not of the input sstd constant returns to scale (see, e.g.,
Fare et al. (1994) for details).

Since we only treat part of the static efficienagycdmposition in the input

orientation, we first define the radial input eificcy measure as:
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DF.(x,y) =min{A | 120,(A ) 0L(y)}. (1)
This measure is simply the inverse of the inputadise function and therefore offers a
complete characterization of technology. Its propsrare discussed in great detail in, for
instance, Fare et al. (1994). Most importantly: Qi)< DFi(x,y) < 1, with efficient
production on the boundary (isoquant)Ldf) represented by unity; (ii) it has a cost
interpretation.
Turning to a dual representation of technology,db&t function is defined as the

minimum expenditures to produce an output vegtgiven a vector of semi-positive

input pricesw O R",):

C(y,w) = min {wxOx O L(y)}. (2)

The fact that non-convexity has an impact on thalijurelations between
distance functions with cost, revenue and profibctions is widely ignored. For
instance, costs evaluated on non-convex technaa@geclearly higher or equal to costs
evaluated on convex technologies (see Briec €2@4)). This relation simply reflects
the property that cost functions are non-decreasirgytputs and convex (non-convex)
in the outputs depending on whether the technolsggonvex (non-convex) (see
Jacobsen (1970): Proposition 5.2). The same reag@pplies to the revenue function
and all variations of the profit function, excegtamurse the long run profit function
where convexity indeed does not matter for dualiddvanced micro-economic
textbooks ignore this issue when, for instance¢udising the properties of the cost

function (see Jehle and Reny (2000: p. 129) or NGkl et al. (1995: p. 141)).

2.2. Basic Efficiency Decompositions
Farrell (1957) was the first to distinguish betwegchnical and allocative

efficiency in a frontier context. In addition, Bastket al. (1984), Fare et al. (1983), and
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Farsund and Hjalmarsson (1974, 1979) all distinglietween technical and scale
efficiency exploiting the distinction between teologies with constantGRS and
variable YRS returns to scale. Since technologies vary, antootigers, in terms of
underlying assumptions regarding returns to sdhke,above notation of the efficiency
measure and cost function can be conditioned ordifference between constant and
variable returns to scale (conventi@xCRS V=VRS. In this subsection we also explore
the impact of convexity on the efficiency composenit convex respectively non-convex

decompositions.

Definition 1: Under the above assumptions on the input set Lig)following input-
oriented efficiency notions can be distinguished:

1) Technical Efficiency is the quantity: iY) = DFi(x,y(V).

2) Overall Technical Efficiency is the quantity: Qi¢y) = DF; (x,yLIC).

3) Scale Efficiency is the quantity: SG&/) = DF; (x,y(IC)/DFi(x,yLV).

4) Economic Efficiency for given scale is the quan@(x,y,wlV) = C(y,wlV)/wx.
5) Overall Economic Efficiency is the quantity: ©&y,wlIC) = C(y,wlLIC)/wx.

6) Cost-based Scale Efficiency is the quantity:

C(y.MC)/wx _ OF, (X WC)
C(yMV)/wx  OF, (xy, W)

CSCE(x,y,W =

First, technical efficiencyTE(X,y)) presupposes that production occurs at the
boundary of a VRS technology. Otherwise, a prodigcezchnically inefficientTE(X,y)
is traditionally evaluated relative to\éRStechnology with strong disposability using
DFi(x,yLV). Second, overall technical efficienc@TE(x,y)) requires that production

occurs on the boundary of @RS technology. Otherwise, it is overall technically
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inefficient. Third, scale efficiencySCE(x,y)) implies that the choice of inputs and
outputs is optimal from the viewpoint of a long r@RStechnology. Otherwise, a
producer is scale inefficienBCE(x,y) results from comparing an observationGRS
andVRStechnologies while maintaining strong disposapilit

Turning to the dual variation on the same decontjposi one distinguishes
between “economic efficiency given the scale” armatdhomic efficiency” (in the
terminology of Seitz (1970)) depending on whethest @fficiency is measured relative
to a VRS or CRS technology. Overall efficiency tela to VRS QE(Xy,wllV))
requires estimating a total cost function relatvea VRStechnology and taking a ratio
of these minimal to actual costs. If the optimgdutmix has in fact been chosen, then
the organisation is overall efficient; otherwise, i$ overall inefficient. Overall
efficiency relative to CRSUE(x,y,wlIC)) requires estimating a total cost function
relative to aCRStechnology and otherwise it has a similar inteidren. Finally,
following Seitz (1970, 1971), scale efficiency caiso be based on a dual
characterisation of technology by comparing oveefficiency measures defined with
respect to different technologies. Cost-based seffildency CSCE{(x,y,w) requires that
the choice of inputs and outputs is optimal from ¥iewpoint of an ideal long ru@RS
cost function. Otherwise, a producer is cost-basede inefficientCSCE(X,y,w) results
from comparing an observation @R SandVRScost functions.

It is possible to link these primal and dual appl®s to scale efficiency.
DecomposingCSCE(x,y,w) into its technical and allocative components, ob#ains

that CSCE(x,y,w) equalsSCE(x,y) times some ratio of allocative efficiency compaise

CSCE( x,y,W:lZDFi(X’y:C’ SH AR X,ym/g:}

DF (%, YV, 9 | | AR x,y[wy
AEO@MNQ}
AE (X, y, i)

©)
=SCE(KV%
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It immediately follows (Fare et al. (1994)CSCE(x,y,w) = SCE(x,y) < AE(x,y,wCC)

= AE(X,y,wLV). SinceOE(x,y,wIC) < OE(x,y,wlV) < 1, the second ratio in (3) can be

smaller, equal or larger than unity:

[AE (XY WOC)AE(ywM)] = 1. (4)

Furthermore, since both scale efficiency componargssmaller or equal to unity (i.e.,
CSCHXx,y,w) < 1 andSCE(x,y) < 1), one obtains:
CSCE(xyw) = SCE(xY). (5)
The relations between the decompositions in Défimifl relative to convex and

non-convex technologies can be trivially definedad®ws (see also Briec et al. (2004:

Lemma 3)).

Proposition 1: Relations between convex and non-convex decongpositimponents are:
1) OTE*(xy)<sOTE(xy);

2)  TES(xy)<TE“(xy);

3 C(ywQ)sC(ywWd;

49 c(yuv)= oy W)

5)  OE°(xywQs OB°( xyw;

6) OE°(xywV)s OE°( xywY.

'3 1n fact, SCE(xy) in Fare et al. (1994: p. 84-87) is defined orhtexiogies based on limited data, i.e.,
using information on cost data and the output wvestdely. The reader can consult these authorave h
more details on the precise conditions to be met.
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It is worthwhile stressing that in case of CRS ansingle output, relation 3) becomes:
Cc(y, V\:{C) = C\‘C( y vvq (see Briec et al. (2004): Proposition 4). Henaajau this
condition, relation 5) turns into an equality adlw®E" ( XY, V\f C,) = OI,.'-E“C( Xy W ():

Notice that the scale efficiency components cafi@obrdered, because they are ratios

of other components:
>
SCEF (x y)=SCE"“(x,y). ©)

Equally obvious, the cost-based scale efficienapmanents cannot be ordered, because

they are again ratios of other components:
>
CSCE ( x y= CSGE( x). (7)

Any eventual differences between both convex angtaomvex OTE(xy) and
OE(x,y,wlIC) components can be attributed to convexity. THokowing Briec et al.
(2004), one can straightforwardly define a conyeselated technical efficiencyCRTE
(x,y)) and cost efficiencyGRCE (x,y,w)) component as a ratio between these convex and

non-convex components:

Definition 2. The convex and non-convex efficiency componentdbagson constant

returns to scale technologies respectively cogttions can be related by:
1) CRTE (xy)=OTE"(x,y)/OTE*(x y);

2) CRCE(xyw= OF( xyWw{ OE( x,ywk
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From Definition 3, it follows that 0 €RTE(xy) <1 and 0 <CRCE(x,y,w) < 1. When
CRTE(x,y) = 1, then the hypothesis that CRS technologiesanvex cannot be rejected.
The same reasoning applies to the cost functiomgsd definitions allow to link

non-convex and convex decompositions by means iofestity *°

3. TECHNOLOGY AND COST FUNCTION SPECIFICATIONS
3.1. Non-Parametric Technology and Cost Function Miels
A unified algebraic representation of convex and-nonvex technologies under

different returns to scale assumptions is possibl®llows (see Briec et al (2004)):

K K
T”:{(x Y x2) %0z, EY ¥ Z kﬂ/\,éDF},
k=1 k=1

1\

Y =

where ()F =r<**={5: & .
(iyr=re={s: o=1;
(i) F=r¥={a: 0<o<1};

(iv) r=r'*={s: J=1;and )

K
where (i))A =A° ={sz = landz > % ,an
k=1

1

IN

K

(i) A=A :{sz =land z O {0,1}}.
k=1

There is one activity vector)(operating subject to a non-convexity or convegagstraint

and a scaling parameted) @llowing for a particular scaling of all obseneats spanning

the technology. This scaling parameter is free ul€iRS, fixed at 1 under VRS, and

smaller than or equal to 1 or larger than or etpualunder NIRS respectively NDRS.

% 0n particular,CRTE(x,y) links non-convex and convéXTE(x,y) components by means of the identity:
OTE®(x y) =OTE"*(x y)CRTE (x y)-
A similar identity applies to th©®E(x,y,wlIC) components.
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Computing the radial input efficiency measure redato convex technologies in
(8) requires solving a non-linear programming peablfor each evaluated observation.
However, Briec and Kerstens (2006) show how thislimear problem can be transposed
into a linear programming problem. Basically, bysitutingwi = 0% in (8), one can
rewrite the sum constraint on the activity vect@ealising that the constraints on the
scaling factord are in fact integrated into the latter sum comstrahe traditional linear
program appears (see their Lemma 2.1 for details).

For the non-convex technologies, non-linear mixgdger programs need to be
solved. Podinovski (2004b) simplified this compiatadl complexity by suggesting a way
to obtain mixed integer programs for all these netbgies. Leleu (2006) takes this one
step further by formulating a strategy to obtammedr programming problems. Briec and
Kerstens (2006) offer a strategy based on impéatimeration and indicate that the
computational complexity of this enumeration is attageous compared to the recent
proposals of Podinovski (2004b) and Leleu (2006).

Turning to the computation of the cost functionatiee to convex non-
parametric technologies, it is well-known that timgolves solving a linear program per
observation being evaluated (see Fare et al. (J9Bd) the cost functions relative to
the non-convex technologies, Briec et al. (2004)ehdeveloped implicit enumeration

algorithms (see Proposition 3).

3.2. Characterising Returns to Scale Information

Several methods have been proposed in the literatnr obtain qualitative
information regarding returns to scale. However,aegued in Kerstens and Vanden
Eeckaut (1999) none of the existing methods isablat for use with non-convex

technologies.
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Starting from the goodness-of-fit method earli@pmsed by Fare et al. (1983) for
convex technologies, Kerstens and Vanden Eeck899jlgeneralise this method to suit

all (including non-convex) technologies.

Definition 3: Using DFR(x,y) and conditional on the optimal projection i
technology is locally characterised by:

a) CRS = DFi(x,ylICRS) = max{DFi(x,y[IC), DFi(x,yCINIRS), DF;(x,yCNDRS) };

b) IRS < DFi(xy | NDRS) = max{DFi(x,y(IC), DFi(x,yCNIRS), DFi(x,yONDRS) }; or

c) DRS < DFi(xy | NIRS) = max{DF;(x,yLIC), DFi(x,yCNIRS), DF;(x,yCNDRS) }.

Simplifications of this method have been propose&aoleimani-damaneh et al. (2006)
and Soleimani-damaneh and Reshadi (2007). As dematex$in Briec et al. (2000), the
equivalent method for convex technologies can bmplkiied as follows (see

Proposition 3).

Definition 4: Using DFR(x,y) and conditional on the optimal projection pipia convex
technology is locally characterised by:

a) IRS = DFi(xy][NDRS) = max{DFi(x,y|NIRS),DFi(x,y|]NDRS) },

b) CRS = DFi(xy|[NDRS) =DF;(x,y|NIRS) = max{DFi(x,y|NIRS),DF;(x,yJNDRS) }; or

c) DRS < DFi(xy|NIRS) = max{DFi(xy|NIRS),DFi(xy|NDRS) }.

Identification of local economies of scale procegdsery much the same way.
A goodness-of-fit method based on the inclusion different overall efficiency

components estimated relative to different retorsdale assumptions can be used (see,
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e.g., Grosskopf (1986) and Sueyoshi (1999) foridgta he same reasoning as above

applies to infer local scale economies for non-esrand convex technologies.

3.3. Related Literature Applying Non-Convex Models

Meanwhile, FDH is recognised as a standard teclyyoland a variety of
empirical applications in different economic corteare available in the literature. In
the public sector studies include, among othersyd@e et al. (2009) analysing the
performance of intensive care units in Pakistathatindividual patient level, Giménez
and Prior (2007) analysing Spanish local governnedfitiency, and Mairesse and
Vanden Eeckaut (2002) gauging museum performanceBetgium. Turning to
performance studies in the private sector, Alam @ic#tles (2000) examine time series
of technical efficiency in the US airline indusfor convergence, Cullinane et al. (2005)
estimate technical efficiency in the world’s leagicontainer ports, among others. FDH
has also made an inroad in non-traditional prodactcontexts. For instance,
Benslimane and Yang (2007) have identified funetioequirements in all phases of the
procurement process on commercial websites wher€ldy serves to identify the most
efficient design. As another example, in a hedpnicng context FDH has been proposed
as an alternative framework to evaluate the pedora of heterogeneous products (see
Chumpitaz et al. (2010)).

Use of non-convex models including alternative mefuo scale assumptions has
been more limited. A few studies have reportectiefficy levels based on these models:
see, e.g., Destefanis (2003) and Destefanis amtl @@02). Some studies have reported
non-convex scale efficiencies: examples includea€es (2011), De Borger and
Kerstens (2000) and Mairesse and Vanden EeckaQR)2Cesaroni (2011), De Witte

and Marques (2011) as well as Mairesse and Vandekakt (2002) report non-convex
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returns to scale information for individual unitd. few articles have reported and
contrasted convex and non-convex cost functionteesskamples are Briec et al. (2004),

Cummins and Zi (1998) and Grifell-Tatjé and Kerst€2008).

4. DESCRIPTION OF THE SAMPLES

We employ two secondary data sets for our empiaoalysis. The first sample
is based on 16 Chilean hydro-electric power germrailants observed on a monthly
basis for several years (Atkinson and Dorfman (200Rimiting ourselves to the
observations for the single year 1997, we can padglore any technical change and
specify an inter-temporal frontier. This resultsairiotal of 192 observations. There is
one output quantity (electricity generated) as sva#i the price per unit of output. There
are also the prices and quantities of three inpabsur, capital, and water. Except for
the input capital, all remaining flow variables &gressed in physical units. Prices are
in current Chilean pesos. Basic descriptive stesigor the inputs and the single output
are available in Atkinson and Dorfman (2009). Ebuab, more details on these data
can be found in Atkinson and Dorfman (2009).

As a second sample we draw upon an unbalanced patieke years of French
fruit producers based on annual accounting datkeated in a survey (lvaldi et al.
(1996)). Mainly two criteria were adapted to seldwt farms: (i) the production of
apples must be larger than zero, and (ii) the prtvdel acreage of the orchard must be at
least five acres. As a technology, three aggremgats are combined to produce two
outputs. The three inputs are: (i) capital (inchgdland), (ii) labor, and (iii) materials.
The two aggregate outputs are (i) the productioramdles, and (i) an aggregate of
alternative products. Also input prices are avddaBummary statistics and details on

the definitions of all variables are available ippendix 2 in Ivaldi et al. (1996). Notice
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that the short length of the panel (only three gearstifies the use of an intertemporal
frontier that ignores technical change to assessteébhnical and scale efficiency of

these farmers.

5. EMPIRICAL RESULTS

Summary statistics for both convex and non-convegothposition results in
Definition 1 are presented in Table 1. To respé& multiplicative nature of the
decomposition geometric averages are used.

< Table 1 about here >

First, the sources of inefficiency differ clearlgttveen convex and non-convex
methods. This can be systematically argued aswselld-or the hydro-power plants,
scale inefficiency is by far the most important e@uof poor performance under non-
convexity. In a convex setting, scale inefficienisy slightly more important than
technical inefficiency on the production side, vehél marginal reversion of this ranking
appears on the cost side. As for the fruit prodsicecale inefficiency is the most
important source of poor performance under non-erity, though less pronounced so
on the cost side. Under convexity, scale inefficiems slightly more important than
technical inefficiency on the production side, whihe reverse occurs on the cost side.
Notice thatOE(.LIC) is extremely low for the hydro-power plants: timesy capture
extreme variations in the degree of capacity @ilan over the year, or it may be due to
outliers. Thus, both decompositions yield differeahclusions with respect to the major
causes of inefficiency, with slight variations betm production and cost perspectives.

Second, more observations are efficient under movexity, though this
difference seems less pronounced under a costqurgp Clearly, the number of
technically efficient units about triples in themoonvex compared to the convex case
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for the hydro-power plants, and it is even aboutentimes higher for the fruit
producers. Also the number of efficient observaifor the scale and overall technical
efficiency components increases substantially umderconvexity, except for the cost
perspective among the hydro-power plants (see iafsa). Thus, a non-convex CRS
model tends to be spanned by more or the same mwhlb&servations compared to a
convex frontier’

Third, the relations between convex and non-cors@mponents as defined in
Definition 2 are clearly respected. To bridge tlap dpetween both decompositions, a
convexity related component is added. WRIRTE(.) andCRCE(.) are very substantial
for the fruit producersCRTE(.) is rather small an@RCE(.) even equals unity for the

hydro-power plants. The latter result is due togimgle output and the CRS assumption

and simply illustrates the theoretical result th'ﬁt( Y, vv|C) = C“C( y v1/C) under these

conditions (Briec et al. (2004)). This also exptaiwhy the number of efficient
observations under these conditions is identiceé (8bove). For the fruit producers,
convexity plays an important role in explainingffiiéency. In particular,CRTE(.) and
CRCE(.) amount on average to about 38% and 32% respacti@Ven an average
convex and non-conveTE(.) score of 0.31 and 0.50 respectively, this mehatsabout
19% of this difference can be entirely attributecconvexity. Thus, in a multiple output
setting, it cannot be denied that convexity matbets from a production as well as a cost
perspective.

Differences between the densities of these effayjezomponents can be tested
with a test statistic proposed by Li (1996) andned by Fan and Ullah (1999). This Li
test statistic has an important characteristic dor purpose: it is valid for both

dependent and independent variables. Dependertigtisctive for frontier estimators,

" This should normally make the non-convex modeis fisceptible to outliers.
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since efficiency depends on, e.g., sample size.nbilehypothesis states the equality of
both convex and non-convex efficiency distributidos a given component. Table 2
summarizes the results obtained per data set antbpgwonent. Comparing the convex
and non-convex results, one observes that foraskg, except th@eTE(.) andOE(.LIC)
scores in the case of the hydro-power plants, istelltlitions are significantly different.
Thus, we can reject the null hypothesis, excepthierhydro-power plants on both the
production and cost side: while the latter follofnem the result in Briec et al. (2004)
(see supra), the former may be a bit surprisingiway, it confirms the importance of
multiple outputs in differentiating convex and noonvex production and cost
approaches. Furthermore, the close similarity exdase of a single output and the CRS
assumption may contribute to delude people in thmkhis similarity is more general
than it really is. Finally, comparing production rses cost approaches again
distributions of each efficiency component turn tmtbe significantly different from
one another.

To study the effects on the ranking of individuéiservations, Spearman rank
correlations between the components of both decsitnmes are computed and reported in
Table 2. While rankings are very high for b@AE(.) andOE(.[IC), they are much lower
for both of its components, except for the hydrevpo plants evaluated from a cost
perspective. While for the hydro-power pla®€E(.) and GSCE(.) components have a
higher degree of similarity in ranking comparedTig(.) and OE(.LV), the situation is
mixed for the fruit producers. Finally, the corteda between production and cost
perspectives per component is in general lower ewetpto the correlation between
convex versus non-convex setting, except twicehferFrench fruit producers.

< Table 2 about here >
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Next, it is important to verify whether there exiahy differences in the
determination of returns to scale for individualketvations. Table 3 summarises the
results per decomposition. First, the majority gfto-power plant observations are
subjected to increasing returns to scale. The $enas true for the fruit producers. While
for the hydro-power plants the convex cost appraaeieals a non-negligible share of
observations subject to decreasing returns to sfml¢he fruit producers it is the non-
convex approach that consistently indicates sunbranegligible share. Second, there
are more observations with constant returns teeswadler non-convexity, except for the
cost approach applied to the hydro-power plantss iBhin line with expectations.

< Table 3 about here >

A natural question to ask is to which extent theserall results hide any
differences between convex and non-convex appresaetech is the main focus of this
study. Per data set and per production and coshadgetwe report in Table 4 the
percentages of observations for which the retungseeconomies to scale classification
coincides, as well as the ones for which thesesifieations diverge. First, consensus on
the classification varies between 67.71% and 97,988ing a wide to modest margin
of conflict. The extreme case of conflict is obwsbuthe switch from increasing returns
(economies) to scale to decreasing returns (diseoms) to scale, or the reverse. This
varies from an almost negligible 0.52% to an imgnes 22.40% of cases. Second,
while production and cost methods yield an abowtak@mount of consensus for the
fruit producers, both approaches differ substdgtfal the hydro-power plants.

< Table 4 about here >

Another interesting question is to which extentr¢hexists any differences

between classifications based upon production asd methods conditional on the

convexity or non-convexity assumption. Per data @ed per convexity or non-
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convexity assumption, we report in Table 5 the @etages of observations for which
the returns and economies to scale classificabamcles, as well as the ones for which
these classifications diverge. First, consensusthan classification varies between
66.15% and 97.40%. Again, this is a wide to modeatgin of conflict. The extreme
case of conflict is obviously the switch from inaseng returns (economies) to scale to
decreasing returns (diseconomies) to scale, oretherse. This varies from 0.00% to an
impressive 22.92%, depending on non-convexity dr 8econd, while production and
cost methods yield a better amount of consensuéoiruit producers under convexity,
for the hydro-power plants the highest amount afdnal element occurs under non-
convexity. Thus, while substantial progress haslmade since the first study reporting
divergences between primal and dual approacheggéBsy 1975), we can prudently
conclude that these differences do not seem to dmalittoned by the convexity
assumption.

< Table 5 about here >

6. CONCLUSIONS

This contribution is the first to empirically illtrate the differences between
technical and scale efficiencies as well as th&edihces between the characterization
of economies of scale and returns to scale basedmvex and non-convex technology
and cost function estimations. Using data on Frednah producers as well as Chilean
hydro-power plants, we empirically observe rathdyssantial differences regarding the
relative importance of technical and scale efficiea from both a production and a cost
perspective. The sample of hydro-power plants atgoes to illustrate the theoretical
result that convex and non-convex cost functionsmaide under CRS and a single

output. While for this sample convex and non-coneeegrall technical efficiency yields
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slightly different descriptive statistics, the diéies turn out to be identical. However,
for all other components, the distributions betweenvex and non-convex technology
and cost function are significantly different. Pabby more notable, the characterization
of both economies of scale and returns to scaléentbvidual observations turns out to
be conditioned by convexity in a non-negligible way

This finding has potentially important consequenf@sinvestment decisions,
definitions of capacity utilization notions, anchet key economic notions. Therefore, it
seems important to empirically explore these diffices between convex and non-
convex technologies and cost functions furthenienegreater detail (e.g., also focusing
on economies of scope, the impact on mergers aqsiiions, the effect on marginal
relationships, etc.). In conclusion, even thougdotktically the impact of convexity has
been known since at least Jacobsen (1970), it seeis important to further explore
the effects of convexity on key economic valuetrete in practice. Anyway, evidence

has been provided that the impact is non-negligible
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Table 1: Non-Convex and Convex Decompositions

Chilian Hydro-power Plants

Non-Convex Decomposition

Convex Decomposition

TE()" SCE() OTE() [CRTE()| TE() SCE() OTE()

Average* 0.5139 0.1439 0.0740 0.9366 0.2976 0.2328 0.0693
Stand.Dev. 0.3247 0.2151 0.2148 0.0643 0.3309 0.2648 0.2101
Minimum 0.1293 0.0268 0.0072 0.7438 0.0605 0.0372 0.0070
% Effic. Obs. 30.73% 3.13% 3.13% 27.08% 11.46% 2.08% 2.08%
OE(.V) CSCHK.) OE;(.0C)|CRCE(.)|OE(.0vV) CSCHK.) OE(.CC)

Average* 0.1633 0.0828 0.0000 1.0000 0.1083 0.1248 0.0000
Stand.Dev. 0.2891 0.1722 0.1080 0.0000 0.2520 0.2174 0.1080
Minimum 0.0144 0.0181 0.0008 1.0000 0.0085 0.0181 0.0008
% Effic. Obs. 3.13% 0.52% 0.52% 100.00% 2.60% 0.52% 0.52%

French Fruit Producers

Non-Convex Decomposition Convex Decomposition

TE() SCE() OTE() [CRTE()| TE() SCE() OTE()

Average* 0.8210 0.6087 0.4997 0.6200 0.5721 0.5416 0.3098
Stand.Dev. 0.1904 0.2379 0.2804 0.1545 0.1933 0.2589 0.2194
Minimum 0.3590 0.0789 0.0486 0.3713 0.1868 0.0728 0.0481
% Effic. Obs. 45.68% 12.84% 12.84% 2.72% 5.43% 2.22% 2.22%
OE(.[vV) CSCH.) OE(.0C)|CRCE(.)|OE(..vV) CSCHK.) OE(.CIC)

Average* 0.5754 0.5483 0.3155 0.6830 0.3939 0.5470 0.2154
Stand.Dev. 0.2476 0.2049 0.2186 0.1399 0.1898 0.2433 0.1614
Minimum 0.1337 0.0619 0.0393 0.5203 0.1039 0.0567 0.0364
% Effic. Obs. 15.31% 1.98% 1.98% 13.58% 1.73% 0.49% 0.49%

* Geometric Average
T Arguments have been suppressed for all efficienayponents.
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Table 2: Spearman Rank Correlation Coefficients beteen Convex and Non-Convex

Decomposition Components and between Production arClost Perspectives

Chilian Hydro-power Plants

TE()  SCE()

OTE()

Convex vs. nhon-convex 0.930* 0.931*

18.18**  6.98***

0.994*
0.43

OE(.Dv) CSCK)

OE(.LC)

Convex vs. non-convex 0.975* 0.988*

7.747* 10.07***

1.000*
0

Production vs. costs 0.843* 0.902*

52.38** 18.18***

0.822*
50.22***

French Fruit Producers

TE()  SCE()

OTE()

Convex vs. nhon-convex 0.723* 0.786*

104.70***  4.65***

0.933*
24.98***

OE(.Dv) CSCK)

OE(.LC)

Convex vs. non-convex 0.807* 0.625*

26.70***  8.54**

0.957*
12.62***

Production vs. costs 0.725* 0.631*

53.75***  12.48***

0.852*
24.73**

* Correlation is significantly different from O #te 0.01 level (2-tailed).
Li test: critical values at 1% level = 2.33 (***3% level = 1.64 (**); 10% level = 1.28

(*)-

Table 3: Returns to Scale and Economies of Scale féts

© 2011 Tous droits réservés.

Chilian Hydro-power Plants

Production IRS CRS DRS

Non-convex 96.35%  3.13%  0.52%

96.88% 1.56%  1.56%

IRS CRS DRS

Non-convex 98.44% 0.52% 1.04%

68.23%  9.38% 22.40%

French Fruit Producers

Production IRS CRS DRS

Non-convex 74.07% 12.84% 13.09%

90.37% 1.73%  7.90%

IRS CRS DRS

Non-convex 73.83% 1.98% 24.20%

93.33% 0.25% 6.42%
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Table 4: Returns and Economies of Scale: Differensebetween Convex and Non-

Convex Methods

© 2011 Tous droits réservés.

Chilian Hydro-power Plants

Production Convex

Non-Convex IRS CRS DRS

IRS 95.83%

CRS 1.04% 1.56%

DRS 0.52% 0.52% 0.52%

Diagonal elements 97.92%

Non-Diagonal elements 2.08%

Cost Convex

Non-Convex IRS CRS DRS

IRS 67.19%

CRS 9.90% 0.00%

DRS 22.40% 0.00% 0.52%

Diagonal elements 67.71%

Non-Diagonal elements 32.29%
French Fruit Producers

Production Convex

Non-Convex IRS CRS DRS

IRS 74.07%

CRS 9.38% 1.48%

DRS 6.91% 2.22% 5.93%

Diagonal elements 81.48%

Non-Diagonal elements 18.52%

Cost Convex

Non-Convex IRS CRS DRS

IRS 95.83%

CRS 1.04% 1.56%

DRS 0.52% 0.52% 0.52%

Diagonal elements 80.49%

Non-Diagonal elements 19.51%
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Table 5: Returns and Economies of Scale: Differensebetween Production and Cost

Models

© 2011 Tous droits réservés.

Chilian Hydro-power Plants

Non-Convex Production

Cost IRS CRS DRS

IRS 96.35%

CRS 2.08% 0.52%

DRS 0.00% 0.52% 0.52%

Diagonal elements 97.40%

Non-Diagonal element$ 2.60%

Convex Production

Cost IRS CRS DRS

IRS 65.63%

CRS 10.94% 0.00%

DRS 22.92% 0.00% 0.52%

Diagonal elements 66.15%

Non-Diagonal element$ 33.85%
French Fruit Producers

Non-Convex Production

Cost IRS CRS DRS

IRS 68.64%

CRS 4.44%  1.98%

DRS 6.17% 6.42% 12.35%

Diagonal elements 82.96%

Non-Diagonal element$ 17.04%

Convex Production

Cost IRS CRS DRS

IRS 88.15%

CRS 0.99% 0.25%

DRS 6.42%  0.49% 3.70%

Diagonal elements 92.10%

Non-Diagonal element$ 7.90%
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General Conclusions

1. KEY CONCLUSIONS BY CHAPTER

There is a general consensus that frontier efftgieend productivity analysis has
offered over the past few decades valuable new uneaent tools to monitor and enhance
the performance of any organization. Nevertheldéissre is always a need to push the
knowledge frontier further and to develop new ustierding ignored in preceding research.

Also this PhD thesis illustrates the possibility &ssess the performance of
organizations from an economic and managerial paointiew under some new angles. All
methodological developments in each of the chapsrsvell as the empirical applications
have been developed with a focus on manageriabaet® and potential utility for future
research. Therefore, the next three subsectiors effecific conclusions for each of these
chapters, highlight some interconnections betwdwapters, and list some lines for future

research.

1.1  Managing a Bank Branch Network’s Performance

While the short-run industry model has been rathately used for evaluating
regulatory policies of common pool resource indastrin this chapter we have for the first
time applied the short-run industry model basedlamt capacity measures to compute the
productive performance of bank services in a brametivork and illustrated how one could
use this model as a managerial tool to obtain beffeciency results via a reallocation plan
regarding inputs and/or outputs across the netwBykfocusing on the short-run industry
model and it plant capacity measure, we show haavetfficiency at the branch level can

change in the short run by distinguishing betwercess capacity and inefficiency. In a
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second stage, we show how managers can explorgiolgathme input and output component
at the branch level so as to improve the performariche branch network either by forcing
branches to operate at the best practice levdfiofemcy, or by tolerating some inefficiency.

Obviously, performance gains are lower when ingfficies are tolerated.

An empirical application to the network of a Gerngavings bank in the year 1998
have explored the results of several scenariogusasic efficiency measures relative to both
convex and non-convex technologies. The statistésdlof Li (1996) has revealed substantial
differences between efficiency measures measuri&divee to convex and non-convex
technologies. The latter technologies fit the dstier. The detailed empirical results of the
short-run industry model at both the industry arahbh level reveal a considerable potential
for closing down part of the network while mainiamp current service levels. This remains
true even under the most conservative estimatesffaiency and capacity (i.e., the ones
based on a non-convex technology). Additional sdesaelated to the impact of adding
restrictions on the number of branches, on perdamnaesfer, and the fixing of alternative
aggregate output targets have also been documented.

Clearly, these few scenarios among many do notwesththe possibilities to adjust
this network model to decision-making needs. Obslyputhis model -as any theoretical
model- has some limits and its applicability woblkl enhanced if, for instance, geographical
information could be included. Meanwhile, altermatmodels have been explored aiming at
essentially the same goals: improving network perémce via a reallocation among units.
For instance, Vaz et al. (2010) explore the retaite performance distinguishing between two
different levels: the section level and the stekel. Using a network DEA model the maximum
store sales are determined allowing for reallooatiof area among the sections within a store.
Clearly, the specificities and similarities betweshifferent reallocation models remains to be

explored.
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1.2. Malmquist and Hicks-Moorsteen Productivity limks: Documenting Infeasibilities

This chapter describes the differences betweeMidenquist and Hicks-Moorsteen
(or Malmquist TFP) productivity indexes. Both aneguctivity indexes used to assess the
performance of firms over a certain time span, ¢ffoit cannot be denied that the former
index is far more popular.

Usually in the context of total factor productiviff FP), these two indexes show
slightly different TFP results. This difference w& according to the returns to scale
assumption on technologies, according to the catyweypothesis, and also according to the
short-run nature or not of the analysis. As eantesearch has shown and our empirical
analysis confirms the Malmquist productivity indesay well be undefined, as its component
input or output distance function may be infeasibieler certain data configurations. By
contrast, the Hicks-Moorsteen productivity indexal&ays well defined and does not lead to
any infeasible result at all under minimal assuomi

Therefore, our empirical analyses illustrates houciminfeasibility one can expect
to find when using the Malmquist productivity indexder some variations in production
assumptions. Undoubtedly, more theoretical and ecapistudies are needed to check the
influence of infeasibilities on these productivityeasures. For instance, in future research, it

might be meaningful to study the impact of homatiggton these results.

1.3 Scale Economies and Returns to Scale in Nondhaetric Models

The final chapter has further explored the ratherdémental differences between
traditional convex and non-convex production andtdanction models in terms of basic

static efficiency decompositions While convex magdmile far more popular, most researchers
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probably ignore that the traditional convexity hifpesis has both an impact on technical and
scale efficiencies estimated based on either aystamh or a cost model.

The empirical analysis has convincingly documenthd differences between
technical and scale efficiencies based on both eomnd non-convex technology and cost
function estimates. It has also exemplified thdedénces between the characterization of
economies of scale and returns to scale for comagewell as non-convex cost functions and
technologies for individual observations. Obviouskpr inefficient observations such

characterization is conditional on a chosen ori@riaof measurement.

2. LIMITATIONS AND AVENUES FOR FUTURE RESEARCH

As with all empirically-oriented work, there arenalys areas that could be improved upon.
Such shortcomings may also reveal promising avefarefsiture research. Apart from some
of the specific limitations indicated in each oktthree chapters or in the three previous
subsections, there remain a few general issueshwbile mentioning at this concluding
stage.

A rather common theme throughout this work has khbenimpact of the traditional
convexity hypothesis on empirical results. It isrthahile pointing out that still lots of
domains of empirical application of applied prodoictanalysis remain to be explored with
regard to this crucial assumption. For instance,dfiect of convexity on assessing eventual
benefits from mergers of two or several organizegtibave not yet been documented in the
literature. Equally so, if and how traditional meges of capacity utilization are affected by
the convexity assumption remains currently totatnown.

Ultimately, we think such empirical studies needo® supplemented by surveys or
discussions with practitioners (e.g., consultamtanagers, etc.) to see how they perceive the

legitimacy of the convexity hypothesis.
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