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Il faut un certain courage pour pratiquer la pensée à long terme et prendre des

décisions hardies, courageuses, anticipatrices dès que les problèmes apparaissent et

avant qu'ils ne prennent des dimensions critiques. Il va à l'encontre de la prise de

décision réactive à court terme qui caractérise trop souvent les élus politiques.

Jared Diamond, E�ondrement (2005, page 789).
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Résumé

Depuis l'article de Zhang (1999), un nombre croissant de contributions académiques

s'atèlent à explorer les canaux par lesquels la pollution peut être la source de cycles

économiques endogènes. Nous sommes convaincus que cette ligne de recherche est

d'une grande importance pour le décideur public car elle réconcilie ses impératifs

de court terme avec le long terme qu'impose la préservation de l'environnement.

C'est pourquoi, cette thèse se propose d'explorer de nouveaux canaux par lesquels

la pollution peut induire l'apparition de cycles économiques endogènes.

Les chapitres 1,2 et 3 se basent sur des résultats empiriques récents arguant que

la pollution agit negativement sur la productivité du travail et sur l'o�re de travail.

Au travers de ces chapitres, nous montrons que de tels e�ets de la pollution peuvent

conduire à l'apparition de cycles économiques, tant déterministes que stochastiques,

au voisinage de l'état stationnaire.

Le chapitre 4 se concentre sur l'étude du système de taxe verte existant dans

laplupart des pays de l'OCDE. Nous montrons en particulier que sa régressivité par

rapport aux revenus des ménages peut conduire à l'apparition d'équilibres à tâches

solaires.

Mots-clés : Pollution, modèles OLG et à la Ramsey, bifurcations locales, indetermination

5



Abstract

Since Zhang (1999), a rising number of contributions explore channels by which

pollution can induce endogenous business cycles. We believe that this research line

is of great interest because it reconciles the short run imperative of policy leaders and

the long run imperative of environmental preservation. Consequently, the present

dissertation aims to contribute to this strand of literature by pointing out new

channels by which pollution can induce endogenous business cycles.

Chapters 1, 2 and 3 depart from some new empirical �ndings who stress non-

marginal negative e�ect of pollution on labor productivity and on labor supply.

Within those chapters, we show that such pollution e�ects can lead to deterministic

cycles as well as stochastic �uctuations around the steady state.

The chapter 4 is devoted to the study of the already existing green �scal policies

in most of OECD countries. We show in particular that their well-known regressivity,

with respect to households' incomes, may promote sunspot equilibria.

key words: Pollution, Ramsey and OLG models, local bifurcations, indeterminacy
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General Introduction

Reading of the Diamond's Collapse (2005), it appears that all past and modern

Human societies have been concerned by their ecological impacts. A good example

from the past is to be found in the ancient Easter Island society, as its collapse

seems to result from an extreme deforestation which destabilized the island ecosys-

tem. Modern societies are also facing important environmental di�culties. Indeed,

scientists are warning us about the global warming phenomenon: Earth's average

surface temperature is rising since the beginning of the industrial revolution, and

this rise will have severe consequences for Human activities. A recent report from

the World Bank (2012) evaluates the dramatical consequences of a 4◦C warmer world

(than it was before the industrial revolution). Such a con�guration will imply :

"the inundation of coastal cities; increasing risks for food production potentially

leading to higher malnutrition rates; many dry regions becoming dryer, wet re-

gions wetter; unprecedented heat waves in many regions, especially in the tropics;

substantially exacerbated water scarcity in many regions; increased frequency of

high-intensity tropical cyclones; and irreversible loss of biodiversity, including coral

reef systems." (WB 2012).
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There is an emerging consensus within the scienti�c community for imputing this

global warming to human activities such as deforestation or burning of fossil fuels

(WB 2012). Consequently, the World Bank advocates for stricter environmental

policies. Since the seminal work of Denison (1979), who shows that stricter envi-

ronmental regulations slow down the economic growth, it is a common belief that

there exists a trade-o� between growth and environmental protection. In our point

of view, such a belief neglects the feedback from this pollution to human capital,

which is the very engine of growth (Lucas 1988). This feedback on human capital is

well documented, indeed :

1. Pollution increases children mortality ( Chay and Greenstone 2003, Currie and

Neidell 2005)

2. Pollution increases school absenteeism due to illness ( Currie et al 2009, Frank

et al 2001).

3. Pollution reduces life expectancy ( Pautrel 2009, Mariani et al 2010).

4. Pollution reduces the labor supply ( Hanna and Oliva 2011, Gra� Zivin and

Neidell 2010 ).

5. Pollution reduces labor productivity ( Schlenker and Walker 2011 and Gra�

Zivin and Neidell 2012).

Those evidences show that pollution has a non marginal negative e�ect on human

health and in turn on human capital. To this respect, environmental policies should

12



rather be seen as an investment in human capital. Despite the common belief, such

policies could sustain the economic growth over the long run (Van Ewijk and Van

Wijnbergen 1995 ; Bovenberg and Mooij 1997).

Despite these long run potential bene�ts, environmental policies are not on top of

political leader's priorities. We belief that it is because they are above all concerned

by short run problematics (Nordhaus 1975). Fortunately, over the last decade, some

scholars have explored the possible short run economic e�ects of pollution. This

strand of literature, introduced by Zhang (1999), tries to explore the mechanisms by

which pollution can be a very source of business cycles. In what follows, we review

this literature.

0.1 Pollution and endogenous �uctuations

Since Ramsey (1928), it is usual to represent the economy in the form of a dynamical

system. Such a system gives many informations about how the economy approaches

a steady state. In most cases, the trajectory followed by the economy is unique and

monotonous. For example, the basic Ramsey framework (1928) is characterized by

a unique monotonous trajectory leading to a unique saddle-path stable steady state1.

However, under certain conditions, the trajectory followed by the economy can

loose its uniqueness or monotonicity. Such a change in the behavior of a dynamical

system is called a bifurcation, it de�nes a sudden change in the stability properties of

the system following an arbitrarily small perturbation of a fundamental parameter

1See Koopmans (1965) among the others.
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(Bosi and Ragot 2011).

The literature that we are concerned exploits the possible occurrence of bifur-

cation due to pollution in socio-economic systems. Regarding the literature, we

have found four channels by which pollution can induces endogenous business cycles

through a bifurcation :

1. The existence of persistent habits of environmental quality (Chen and Li 2011

or Schumacher and Zou 2008).

2. The rate of pollution emission (Seegmuller and Verchère 2004-2007 ; Cao,

Wang and Wang 2011 ; Zhang 1999 ; Antoci and Sodini 2009 ).

3. Pollution in utility function jointly with public policy. (Fernandez, Pérez and

Ruiz 2012 ; Itaya 2008 ; Pérez and Ruiz 2007)

4. The e�ect of pollution on the household's discount factor (Yanase 2011).

In what follows, we will discuss each of those channels.

0.1.1 The existence of persistent habits of environmental qual-

ity

The frameworks used by Schumacher and Zou (2008) and by Chen and Li (2011)

are very close. They develop an OLG model, in the spirit of John and Pecchenino

(1994,1995), in which pollution dynamics is seen through the evolution of an envi-

ronmental asset assumed to be a stock variable. As in most Environmental-growth
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OLG models, the representative household lives for two periods, can invest in de-

pollution but derives utility only in his old age. The main di�erence between those

two contributions rests on the fact that Schumacher and Zou (2008) consider the

pollution accumulation (P ) while Chen and Li (2011) take into account the environ-

mental quality (E). These scholars show that persistence of habits of environmental

quality does matter for the occurrence of business cycles. Indeed, following Chen

and Li (2011), the utility function (U) of an agent born at time t is de�ned by :

U = ln (ct+1) + η ln (Et+1 − ϕEt)

They show that a high ϕ implies local stability while a low ϕ induces chaos

through a �ip bifurcation if the pollution emission rate is high enough. Schumacher

and Zou (2008) show also that there exists a value of ϕ for which a limit cycle can

emerge through a Hopf bifurcation.

In addition, Chen and Li (2011) analyze the short run e�ects of a green consump-

tion tax. They �nd that such a tax reduces the likelihood of endogenous business

cycles.

0.1.2 The rate of pollution emission

In a framework very close to Chen and Li (2011) but without persistent environ-

mental habits, Antoci and Sodini (2009), Cao, Wang and Wang (2011), Seegmuller

and Verchère (2004)(2007), and Zhang (1999) have shown that the rate of pollution

emission can destabilize the economy.
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Following Seegmuller and Verchère (2004), pollution accumulates according to

the following equation :

Pt+1 = (1−m)Pt + akt − bdt

where m, a and d denote respectively the natural rate of pollution absorption,

the emission rate of pollution by unit of capital (k) and the coe�cient which cap-

ture the abatement (d) e�cacity. In this context, Seegmuller and Verchère (2004),

Cao, Wang and Wang (2011) and Zhang (1999) show that if the emission rate of

pollution (a) is su�ciently high regarding the coe�cient of abatement (d), then

two-period cycles emerge through the occurrence of a �ip bifurcation. In addition,

Seegmuller and Verchère (2007) show that when pollution is seen as a �ow (m = 0),

then a low emission rate of pollution (a) induces local indeterminacy. Zhang (1999)

insists on the possibility of chaos while Cao, Wang and Wang (2011) apply the de-

layed feedback control method to stabilize the �uctuation due to the �ip bifurcation.

The framework developed by Antoci and Sodini (2009) di�ers from the previous

mentioned contributions in the sense that it assumes a non-linear linkage between

the environment and the production level, indeed, for those authors :

Et+1 = E − η [Yt]
β

where E denotes the environmental quality without production activities (Y ).

Antoci and Sodini (2009) use this non linearity (captured by β) to show that local

indeterminacy occurs through a saddle-node bifurcation.
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0.1.3 Pollution in utility function jointly with public policy

Fernandez, Pérez and Ruiz (2012), Itaya (2008) and Pérez and Ruiz (2007) study

the dynamic properties of an endogenous growth model in which pollution is seen

as a �ow. Using a Romer's (1986) learning-by-doing model, with endogenous la-

bor supply and in which pollution is seen as a by-product of �rms' activities, Itaya

(2008) shows that the e�ect of pollution on marginal utility of consumption makes

indeterminacy more likely to occur. Indeed, since Pelloni and Waldman (2000), it is

well-known that such a model, without environmental externalities, exhibits indeter-

minacy only for an intertemporal elasticity of substitution in consumption greater

than unity. With a pollution externality, Itaya (2008) shows that indeterminacy

may well arise, even if this condition is not satis�ed. A very similar result is pointed

out by Fernandez, Pérez and Ruiz (2012).

In addition, Itaya (2008) assumes that a Government levies a lump-sum tax on

�rm's activities and shows that, if the tax revenue is used to �nance public abate-

ment expenditures, it is more di�cult for indeterminacy to emerge.

Pérez and Ruiz (2007) use a model à la Barro (1990) in which the Government

�nance, on one hand depollution expenditures and on the other hand, spendings

that increases private labor productivity. In such a framework, these authors show

that indeterminacy comes to the interaction between the two externalities, namely

the negative pollution externality (through its e�ect on the utility function) and the

positive one due to public productive services.
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0.1.4 The e�ect of pollution on the household's discount fac-

tor

Yanase (2011) develops a Ramsey model in which pollution a�ects the utility func-

tion and the individual discount factor, as in Ayong Le Kama and Schubert(2007).

The main di�erence between these two contributions rests on the fact that Ayong Le

Kama and Schubert(2007) analyze the social planner' solution while Yanase (2011)

focuses on a decentralized equilibrium. In other words, environmental e�ects on

the discount factor are not internalized by the representative household in Yanase

(2011). In this framework, the Author shows that a positive linkage between pollu-

tion and the discount factor does matter for equilibrium indeterminacy.

0.2 Objective and realizations

The previous mentioned results are of a great interest, because they reconcile the

short run thinking of policy leaders and the long run imperative of environment

preservation. This is especially true if stricter environmental policies can �ght the

volatility induced by pollution (Itaya 2008).

The present dissertation aims to contribute to this new literature by exploring

new mechanisms by which pollution can promote endogenous business cycles. It is

organized in four chapters.

Within the �rst chapter, we note that the literature, who analyzes the occurrence
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of endogenous business cycles induced by pollution in OLG economies, remains fo-

cused on the e�ects of pollution on the household' satisfaction. This observation is

quite surprising because :

1. The literature on endogenous business cycles has stressed the role of technology

in promoting deterministic as well as stochastic �uctuations in OLG economies

(Azariadis 1981, Grandmont et al 1998, Cazzavillan et al 1998).

2. As we have already underlined, there is strong empirical evidences showing the

negative e�ect of pollution on the labor productivity.

Starting from this observation, we develop a monetary OLG economy à la Samuel-

son (1958) in which pollution has a negative e�ect on labor productivity. In this

very simple framework, we �nd that under dominant income e�ects, a lower pollution

elasticity of labor productivity may promote the emergence of sunspot equilibria2

through a Hopf bifurcation. This new result shows that the Gra� Zivin and Neidell

(2012)(among the others) empirical �nding works as a destabilizing force for the

economy.

In the second and third chapters, we note a certain disconnection between theo-

retical and empirical literatures. At �rst, number of theoretical papers analyze how

pollution a�ect consumption behavior, while to the best of our knowledge, there is

2In this thesis, expectation-driven �uctuations, sunspot equiliria and local indeterminacy are

used interchangeably.
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no empirical evidence on such a phenomenon. Secondly, there is a rising number

of empirical papers studying how pollution a�ects the labor supply, while such an

e�ect is largely ignored in theoretical contributions.

From an empirical ground, the magnitude of the pollution e�ect on the labor

supply is strong. For example, Hanna and Oliva (2011) point out that a one percent

increase in air pollution results in a 0.61 percent decrease in worked hours. Departing

from this result, we investigate its short and long run macroeconomic incidences in

chapter 2 and 3.

In order to keep things simple, we choose to analyze this e�ect through a Ramsey

model with separable preferences between consumption and labor supply.

In chapter 2, we assume non separable preferences between pollution and labor

supply (separability rules out any direct e�ect of pollution on labor supply). In this

very simple framework, we �nd that a su�ciently large (negative) e�ect of pollution

on labor supply may promotes deterministic cycles (near the steady state) through

a �ip bifurcation.

In chapter 3, we assume non separable preferences between consumption and

pollution and between labor supply and pollution. Through this framework, we �nd

that the join pollution e�ects on consumption and on labor supply allows for a wide

range of dynamics and in particular, local indeterminacy through saddle-node and

Hopf bifurcations.

20



These new results indicate that the observed pollution e�ects on labor supply

promotes macroeconomic volatility through deterministic as well as stochastic �uc-

tuations.

In chapter 4, we explore the short run incidence of the existing green �scal

policies. A lot of scholars have stressed the regressive nature of those policies with

respect to households' incomes (Grainger and Kolstad (2009), Hasset, Mathur and

Metcalf (2007), West and Williams (2004) among the others). Throughout this

chapter, we develop a discrete time Ramsey economy that sustain such empirical

evidences and we found in particular that sunspot equilibria occur if and only if:

1. Pollution has a su�ciently strong positive e�ect on marginal utility of con-

sumption.

2. The ecotax regressivity is su�ciently strong.

3. The elasticity of capital-labor substitution is not too low.

It is well-known that the regressive feature of green �scal policies implies neg-

ative distributional e�ects (Grainger and Kolstad (2009)), our result add another

argument against such policies in a sense this regressivity may promote expectation-

driven �uctuations.
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Chapter 1

Demography and the e�ect of

pollution on labor productivity

1.1 Introduction

In this chapter1, we consider the dynamic interplay between demography and pol-

lution. On the one side, pollution a�ects the productivity of workers because of

its impact on health (Schlenker and Walker 2011). On the other side, demography

changes the supply of labor, its impact on growth and pollution in turn. We consider

short and long run e�ects, but the novelty mainly rests on the analysis of equilibrium

multiplicity.

The dynamic aspects of pollution have been considered either in economies à la

Ramsey or in OLG models. This chapter contributes to the OLG literature, pio-

neered by John and Pecchenino (1994) where the issue of sustainability of economic

1This chapter refers to a joint work with Stefano BOSI.
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growth was addressed.

In OLG framework à la Diamond (1965) (with capital accumulation), Seegmuller

and Verchère (2004) and Schumaker and Zou (2008) prove that, when the consumer

chooses between consumption and environmental quality, endogenous business cycles

may appear in a neighborhood of the steady state. Seegmuller and Verchere (2007)

study an OLG economy where households arbitrate between leisure, consumption

and environmental quality. Considering pollution as a �ow, these authors �nd that

a low pollution emission rate promotes the emergence of sunspot equilibria. Those

contributions insist on the role of the household's concern toward environmental

quality for explaining endogenous business cycles. But, one can raise the question

whether technology or preferences matter more in the occurrence of such endogenous

�uctuations. Even if the debate is not ended, Azariadis (1981) stresses the role of

technology in promoting equilibrium multiplicity. In this respect, Grandmont et al.

(1998) focuses on the degree of capital-labor substitution and Cazzavillan and al.

(1998) on the increasing returns to scale to demonstrate the existence of sunspot

equilibria. Conversely, the level of gross substitutability between consumption and

labor seems to play a little role to explain the equilibrium indeterminacy in OLG

economies without pollution.

To rule out any misleading interference from capital accumulation, we focus on a

simple monetary model à la Samuelson (1958) where money represents household's

savings. In addition, we consider labor supply in terms of endogenous fertility as in

Galor and Weil (1996) with an environmental dimension. In contrast to Seegmuller
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and Verchere (2007), pollution does not enter household utility, but simply lowers

labor productivity (Schlenker and Walker 2011). Moreover, we consider pollution

as a stock instead of a �ow, that is as a predetermined variable, and, in this sense,

we remain close to John and Pecchenino (1994). In this context, we study the long

run e�ects of pollution and demography on consumption. In the short run, we �nd

that, under dominant income e�ects, a lower pollution elasticity of labor productiv-

ity may promote the emergence of sunspot equilibria through a Hopf bifurcation.

In this sense, the joint e�ect of technology (through the externalities of pollution)

and preferences (through the elasticity of intertemporal substitution) seems to play

a role for the occurrence of endogenous �uctuations.

The chapter is organized as follow. In the next section, we present the model.

The market clearing conditions are given in Section 3. In Sections 4 and 5, we study

the steady state and the stability properties of equilibrium. In addition, we provide

an interpretation for the e�ects of pollution in the long run and the occurrence of

�uctuations in the short run. Section 6 concludes.

1.2 The model

The economy consists of an in�nite sequence of overlapping generations living three

periods: childhood, adulthood and the old age. Time is discrete and is indexed

by t = 0, 1, . . . Agents self-replicate and divide their income between consumption

and the number of children desired. They derive no satisfaction in childhood, they

have children in adulthood and they consume in the old age. In this economy, a
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single consumption good is produced using a technology with labor as single input.

Without capital market, the agents transfer income from adulthood to the old age

gaining currency. In addition, production generates pollution that reduces labor

productivity.

1.2.1 Producers

There are q �rms with no market power that transform a unique input ljt (labor

demand) in a unique output yjt with j = 1, . . . , q. Technology is represented by a

linear function:

yjt = Atljt

The �rm j maximizes the pro�t de�ned by :

πjt ≡ ptyjt − wtljt = ptAtljt − wtljt

Let ωt denote the real wage: ωt ≡ wt/pt. Pro�t maximization implies, at equi-

librium, that the real wage is equal to the productivity of labor:

ωt = At

The aggregate production Yt is given by

Yt ≡
q∑
j=1

yjt = At

q∑
j=1

ljt ≡ AtLt (1.1)

and depends linearly on the aggregate labor demand Lt.

1.2.2 Consumers

The economy is populated by individuals who live for three periods. Consider an

individual who is born at time t− 1.
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During childhood (period t−1), he neither works nor consumes. The introduction

of childhood does not matter in the model, but allows us to justify that an individual

makes children only in his adult period.

In the working age (period t), he supplies labor at a nominal wage rate wt, makes

nt children and saves through nominal balances mt+1 without consuming. For sim-

plicity, we assume that an individual can generate nt children alone. Rearing children

takes time: z is the constant leisure-time needed per child. So, the opportunity cost

of rearing children is given by wtznt. We normalize the endowment of leisure time

in the adult period to one. The individual labor supply turns out to be endogenous

as a result of the endogenous fertility: lt = 1− znt.

At the end of his life-cycle (period t + 1), the individual consumes the quantity

ct+1 using the monetary savings.

Money is the numeraire and the budget constraints of second and third period

become:

mt+1 ≤ wt (1− znt) (1.2)

pt+1ct+1 ≤ mt+1 (1.3)

In addition, we require nt ≤ 1/z.

Rearing children is costly, but children represent a utility for parents. For sim-

plicity, preferences are separable:

u (nt) + v (ct+1) (1.4)

and satisfy the standard neoclassical assumptions.

Assumption 1 : The utility functions u, v : R+ → R are C2, strictly increasing

and concave: u′ (nt) , v
′ (ct+1) > 0, u′′ (nt) , v

′′ (ct+1) ≤ 0 for nt, ct+1 > 0. Additional
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boundary conditions hold: u′ (0) , v′ (0) = +∞ and u′ (+∞) , v′ (+∞) = 0.

Since the utility functions are strictly increasing, the budget constraints are bind-

ing. (1.2) and (1.3) become

nt =
1

z

(
1− mt+1

wt

)
(1.5)

ct+1 =
mt+1

pt+1

(1.6)

Budget constraint (1.6) states that real balances are equal to consumption:

ct =
mt

pt
(1.7)

Replacing (1.5) and (1.6) in (1.4), we obtain an equivalent program:

max
mt+1

[
u

(
1

z

(
1− mt+1

wt

))
+ v

(
mt+1

pt+1

)]

where saving (money demand) is the unique choice variable. Maximization gives the

parity-consumption arbitrage (the lower the parity, the higher the labor income and

the consumption):

u′ (nt) =
zωt
πt+1

v′ (ct+1) (1.8)

where πt+1 ≡ pt+1/pt is now the in�ation factor.

1.2.3 Pollution

Pt denotes the aggregate stock of pollution at time t which is a pure externality. The

pollution mechanism is two-sided: (1) production a�ects the pollution stock and (2)

pollution in turn a�ects the production level.

Past pollution persists and technology is dirty. More precisely, we assume that

the current stock of pollution depends on past pollution and the past level of eco-
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nomic activity according to a linear process:

Pt = (1− α)Pt−1 + γYt−1 (1.9)

where α ∈ (0, 1] is the rate of natural absorption and γ captures the environmental

impact of economic activity (see John and Pecchenino (1994) among the others).

The aggregate externality of pollution

At = A (Pt) (1.10)

lowers the labor productivity as follows.

Assumption 2 : The productivity function A : R+ → R+ is C1 and strictly

decreasing: A′ (Pt) < 0 for every Pt ≥ 0. The following boundary conditions hold:

A (0) > 0 and A (+∞) = 0.

A pollution elasticity of production is introduced:

σ (Pt) ≡ −PtA
′ (Pt)

A (Pt)
∈ (0,+∞)

For simplicity, we do not assume a direct e�ect of pollution on consumers' pref-

erences.

1.3 Equilibrium

Let Nt−1 the size of the generation born at time t − 1. In this economy, there are

three markets: the money market, the labor market and the goods market. In the

following, we will investigate conditions for which each market is at the equilibrium.
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1.3.1 Money market

For simplicity, money supply is constant over time and equal toM . The equilibrium

in the money market requires

M = mt+1Nt−1 (1.11)

where mt+1Nt−1 represents the aggregate demand for nominal balances.

1.3.2 Labor market

Individual labor supply at time t is given by 1− znt. The size of the working class

at time t is Nt−1. Then, the equilibrium in the labor market is given by

Nt−1 (1− znt) = Lt (1.12)

We observe that the working class growth factor is endogenous and given by

nt =
Nt

Nt−1

at time t.2

1.3.3 Goods market

The aggregate supply at period t is Yt and is consumed by Nt−2 old individuals

(indeed, the old of period t are born at time t− 2). Individual consumption at time

2Don't confuse this factor with the demographic growth factor

δt+1 ≡ Nt−1 +Nt +Nt+1

Nt−2 +Nt−1 +Nt
=

1 + nt + ntnt+1

1 + nt−1 + nt−1nt
nt−1

where Nt−2 +Nt−1 +Nt is the size of population at the end of period t after the birth of children

and before the death of the old.
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t is given by ct. Equilibrium in the goods market requires

Yt = Nt−2ct (1.13)

1.3.4 Intertemporal equilibrium

Focus on the money market. (1.11) gives M = mtNt−2 = mt+1Nt−1and by consider-

ing (1.7) it follow that :

ct
ct+1

= πt+1nt−1

Focus on the real market. Budget constraints (1.5) and (1.6) give

nt =
1

z

(
1− ct+1

πt+1

ωt

)
(1.14)

while the children-consumption arbitrage (1.8) writes

πt+1

ωt
= z

v′ (ct+1)

u′ (nt)
(1.15)

Replacing (1.15) in (1.14), we obtain

v′ (ct+1)

u′ (nt)
=

1− znt
zct+1

(1.16)

by applying the Implicit Function Theorem on (1.16), we obtain that the number of

children made by the household is a function of the future consumption:

nt = n (ct+1) (1.17)

Totally di�erentiating (1.16), we get

n′ (ct+1) = − zv′ (ct+1) + zct+1v
′′ (ct+1)

zu′ (nt)− (1− znt)u′′ (nt)
(1.18)

We introduce the elasticities of intertemporal substitution:

η (nt) ≡ − u′ (nt)

ntu′′ (nt)
≥ 0

θ (ct) ≡ − v′ (ct)

ctv′′ (ct)
≥ 0
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We obtain

n′ (ct+1) =
1− θ (ct+1)

θ (ct+1)

zntη (nt)

1− znt + zntη (nt)

v′ (ct+1)

u′ (nt)
(1.19)

Since znt < 1, we have that n′ (ct+1) > 0 i� θ (ct+1) < 1 (dominant income

e�ects).

We can introduce the equilibrium elasticity of natality:

ε (ct) ≡
ctn

′ (ct)

n (ct)

Replacing (1.16) in (1.19), we obtain

ε (ct+1) =
1− θ (ct+1)

θ (ct+1)

(1− znt) η (nt)

1− znt + zntη (nt)
(1.20)

As above, ε (ct+1) > 0 i� θ (ct+1) < 1 (dominant income e�ect).

From (1.1), (1.13), (1.10) and (1.12), the equilibrium in the goods market writes

Nt−2ct = Yt = AtLt = A (Pt)Nt−1 (1− znt)

that is

ct = A (Pt)n (ct) [1− zn (ct+1)] (1.21)

Focus on pollution.

From (1.9), we have

Yt+1

Yt
=
Pt+2 − (1− α)Pt+1

Pt+1 − (1− α)Pt
(1.22)

Replacing (1.13) and (1.17) in (1.22), we obtain

n (ct)
ct+1

ct
=
Pt+2 − (1− α)Pt+1

Pt+1 − (1− α)Pt

Let us introduce the new variable

Qt ≡ Pt+1 (1.23)
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to write

n (ct)
ct+1

ct
=
Qt+1 − (1− α)Pt+1

Qt − (1− α)Pt
(1.24)

The main proposition follows:

Proposition 1 An intertemporal equilibrium with perfect foresight is a non-negative

sequence (ct, Pt, Qt)
∞
t=0 satisfying equations

n (ct)
ct+1

ct
=
Qt+1 − (1− α)Pt+1

Qt − (1− α)Pt
(1.25)

ct = A (Pt)n (ct) [1− zn (ct+1)] (1.26)

Qt ≡ Pt+1 (1.27)

We observe that Pt is a predetermined variable at time t, while Qt is non-

predetermined. In addition, ct = mt/pt is non-predetermined at time t because

pt is non-predetermined.

1.4 Steady state

At the steady state, all variables are constant, thus, ct+1 = ct and Qt+1 = Qt =

Pt+1 = Pt.Noting c and P the consumption and the the pollution at the steady state.

By regarding (1.25), it follow that :

n (c) = 1

c = (1− z)A (P )

We notice also that the elasticity of natality becomes

ε (c) =
1− θ (c)

θ (c)

(1− z) η (1)

1− z + zη (1)
(1.28)

32



Under Assumptions 1 and 2, functions nt = n (ct+1) and At = A (Pt) are invert-

ible, so c = n−1 (1). By substitution we get the steady-state value for the pollution

stock:

P = A−1

(
n−1 (1)

1− z

)
therefore, there is a unique non-trivial steady state for this economy. Noting that at

the steady-state, the demographic growth rate is 0. It is not a surprising conclusion

in an exogenous economic growth framework.3

1.4.1 Example

We consider more explicit fundamentals. Let the elasticities η (nt) and θ (ct) to be

constant, with η (nt) = 1 (logarithmic preferences for children) and θ (ct) = θ ∈

(0,+∞). More precisely, consider the following utility function:

u (nt) + v (ct+1) ≡ lnnt + β
c
1−1/θ
t+1

1− 1/θ
(1.29)

Equation (1.16) gives

nt = n (ct+1) =
1

z
(
1 + βc

θ−1
θ

t+1

) (1.30)

At the steady state, we have n (c) = 1 and, so,

c =

(
βz

1− z

) θ
1−θ

(1.31)

In addition, we know that c = (1− z)A (P ). Setting

A (Pt) ≡ BP−σ
t (1.32)

3The same conclusion holds in Eckstein, Stern and Wolpin (1988).
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we get

P =

(
B
1− z

c

) 1
σ

=

[
B (1− z)

(
1− z

βz

) θ
1−θ

] 1
σ

(1.33)

We get always meaningful interior solutions with 0 < z < 1, σ > 0 and θ ̸= 1.

Focus on the impact of parameters on the steady state. Consider the impact of

parameters β, z and σ on the stationary levels of consumption and pollution c and

P .

Proposition 2 Under Assumptions 1 and 2 and speci�cations (1.29) and (1.32),

we obtain ∂P/∂σ < 0 i� P > 1, and ∂c/∂σ = 0. In addition,

∂c

∂β
> 0,

∂c

∂z
> 0,

∂P

∂β
< 0,

∂P

∂z
< 0 i� θ < 1

Proof. Di�erentiating (1.31) and (1.33), we get

β

c

∂c

∂β
=

θ

1− θ
,
z

c

∂c

∂z
=

θ

1− θ

1

1− z
,
σ

c

∂c

∂σ
= 0

β

P

∂P

∂β
= − 1

σ

θ

1− θ
,
z

P

∂P

∂z
= − 1

σ

(
θ

1− θ
+ z

)
1

1− z
,
σ

P

∂P

∂σ
= − lnP

Proposition 2 follows.

Let us provide some intuitions for comparative statics.

Labor productivity A (P ) ≡ BP−σ decreases with σ i� P > 1. Thus, production

and pollution decrease as well.

σ has no e�ects on the consumption because the natality function n in (1.30)

does not depend on σ and n = 1 at the steady state.

When β or z increases, individuals like less the parentage (expression (1.29)).

As a general equilibrium e�ect, the relative price of children with respect to future

consumption lowers. In the case of dominant income e�ect (θ < 1), this entails an

increase in future consumption, while, in the case of dominant substitution e�ects
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(θ > 1), a reduction in future consumption. Focus now on future variables: a

higher (lower) consumption level requires a higher (lower) productivity of labor and,

eventually, a lower (higher) pollution level.

1.5 Local dynamic

Consider now the general case. In order to study the local stability, we linearize

system (1.25) to (1.27) around the steady state:

1− α

α

dPt+1

Pt+1

− 1

α

dQt+1

Qt+1

+
dct+1

ct+1

=
1− α

α

dPt
Pt

− 1

α

dQt

Qt

+ (1− ε)
dct
ct

zε
dct+1

ct+1

= −σ (1− z)
dPt
Pt

+ (ε− 1) (1− z)
dct
ct

dPt+1

Pt+1

=
dQt

Qt

This system is represented by the following Jacobian matrix:

J =


0 1 0

α− 1− ασ
ε
1−z
z

2− α α ε−1
ε

(
ε+ 1−z

z

)
−σ

ε
1−z
z

0 ε−1
ε

1−z
z

 (1.34)

What does it happens when the elasticity of natality ε is su�ciently close to one?

According to (1.28), this case corresponds to the following elasticity of intertemporal

substitution in consumption:

θ∗ =
(1− z) η

1− z + η
∈ (0, 1)

that is a case where, concerning the consumption choice, the income e�ect dominates

the substitution e�ect.

The case of dominant income e�ects is relevant on the empirical ground. The

existing literature does not provide a de�nitive estimate for the elasticity of in-

tertemporal substitution in consumption θ. Although many standard RBC models
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(Hansen (1985), King et al. (1988) among the others) consider relatively high val-

ues (around unity), more recent empirical works adopt values around 0.5 (Campbell

(1999) suggest (0.2, 0.6) as plausible interval).4

When θ = θ∗, the Jacobian matrix becomes

J∗ =


0 1 0

α− 1− ασ 1−z
z

2− α 0

−σ 1−z
z

0 0


with eigenvalues

λ∗0 ≡ 0

λ∗1 ≡ 1− α

2
− 1

2

√
α2 − 4ασ

1− z

z
(1.35)

λ∗2 ≡ 1− α

2
+

1

2

√
α2 − 4ασ

1− z

z
(1.36)

It is worthy to focus on values of θ in a neighborhood of θ∗ ∈ (0, 1) (region of

dominant income e�ects). Under the assumptions of the Groÿman-Hartman Theo-

rem (see Guckenheimer and Holmes (1983) among others)), the linearized dynamics

are topologically equivalent to the nonlinear ones in a neighborhood of the steady

state. In particular, this theorem requires det J ̸= 0 , that is θ ̸= θ∗. When θ is

close to θ∗ but di�erent from θ∗, by continuity, the eigenvalues λ0, λ1, λ2 of matrix

(1.34) lies in a neighborhood of the eigenvalues λ∗0, λ
∗
1, λ

∗
2.

Let us introduce two critical values for the pollution elasticity of production.

σ∗ ≡ α

4

z

1− z
<

z

1− z
≡ σH

4If, for instance, η = 1 and z = 1/2

θ =
1− z

2− z
=

1

3
∈ (0.2, 0.6)
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Proposition 3 Let θ be close to θ∗ (dominant income e�ects).

If 0 < σ < σ∗, then λ0, λ1 and λ2 are real with λ0 ≈ 0 < λ1 < λ2 < 1. Thus,

equilibrium indeterminacy.

If σ∗ < σ < σH , then λ0 is real while λ1 and λ2 are nonreal with λ0 ≈ 0, |λ1| < 1,

|λ2| < 1. Thus, equilibrium indeterminacy.

If σ > σH , then λ0 is real while λ1 and λ2 are nonreal with λ0 ≈ 0, |λ1| > 1,

|λ2| > 1. Thus, equilibrium determinacy.

When σ = σH , the economic system generically undergoes a Hopf bifurcation and

a limit cycle arises around the steady state.

Proof. Simply, consider expressions (1.35) et (1.36).

Woodford (1986) shows that equilibrium indeterminacy is not only a necessary

but also a su�cient condition for sunspot equilibria.

To provide an economic intuition for the emergence of self-ful�lling prophecies

in our model, focus on the case where the income e�ects dominate the substitution

e�ects. Suppose that, at time t, the economy is at the steady state and suppose

that the representative household rationally anticipates an exogenous increase in the

pollution stock at time t+1. From (1.10) and (1.1), we have that, if Pt+1 increases,

then Yt+1 decreases. Market clearing condition (1.13) implies a decrease in the future

consumption level ct+1. Since the income e�ect is supposed to be stronger than the

substitution one, we obtain a decrease in the parentage at time t and so an increase

in the time devoted to work. This higher labor supply raises the output Yt produced

at time t and, eventually, the pollution (stock) at time t + 1, making the prophecy

self-ful�lling.
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1.6 Conclusion

We have considered and OLG economy with elastic labor supply and pollution ex-

ternalities. As in John and Pecchenino (1994), but di�erently from Seegmuller and

Verchere (2007), we have treated pollution as a stock and we have characterized the

long run equilibrium and shown how sunspot equilibria can appear, under dominant

income e�ects, for su�ciently low values of pollution elasticity of labor productivity

(Schlenker and Walker 2011). Our argument takes in account technological aspects

that the existing literature on pollution externalities has failed to consider.5

5See Schumacher and Zou (2008) and Seegmuller and Verchère (2007) among others.
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Chapter 2

Pollution e�ects on labor supply and

growth

2.1 Introduction

In the last chapter1, we have shown that the negative e�ect of pollution on labor

productivity, empirically stressed by Schlenker and Walker (2011) or Gra� Zivin and

Neidell (2012), does matter for the occurrence of endogenous business cycles. In the

following chapter, we will investigate the pollution e�ects on labor supply. Indeed,

recent empirical studies have documented nonmarginal impacts of pollution on la-

bor supply (Gra� Zivin and Neidell (2010), Carson, Koundouri and Nauges (2011),

Hanna and Oliva (2011)). For example, using a recent data set for Mexico City,

Hanna and Oliva (2011) �nd that a one percent increase in air pollution results in

a 0.61 percent decrease in the worked hours. The magnitude of this phenomenon is

quite surprising and leads us to address the question of its macroeconomic incidence

1This chapter refers to a joint work with Stefano BOSI and Lionel RAGOT.
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in the short and the long run.

The literature on the interplay between pollution and growth seems to neglect

the possible in�uence of pollution on the consumption-leisure arbitrage and thereby

on the labor supply. Pollution may a�ect labor demand through negative external

e�ects on Total Factor Productivity (TFP), but the impact on labor supply is largely

ignored, at least from a theoretical point of view.

In this respect, the theoretical e�ects of pollution on labor supply seem to be am-

biguous. On the one hand, pollution may worsen working conditions (for instance,

the negative impact of global warming rests on a positive correlation between heat

and work painfulness) and give an incentive to substitute leisure to working time.

On the other hand, households like to enjoy leisure in a healthy and pleasant en-

vironment (for example, air pollution may dissuade people from going outdoor and

encourage them to work more).

Theoretical literature has pointed out the same ambiguity in the role of pollu-

tion on consumption. Keeler, Spence and Zeckhauser (1972) pioneered the class of

Ramsey models with pollution accumulation. Pollution lowers the level of welfare

as negative externality. Focusing on nonseparable preferences, they assume that

consumption and environmental quality are normal goods in order to ensure the

uniqueness of the steady state. Van der Ploeg and Withagen (1991) generalized the

Ramsey model with pollution as a stock, by assuming additively separable prefer-

ences or a negative cross derivative (a marginal utility of consumption decreasing in
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the pollution level). These conditions are su�cient for uniqueness and saddle-point

stability of the steady state. Tahvonen and Kuuluvainen (1993) removed any re-

striction on the sign of the cross derivative in a Ramsey model. The most complete

characterization of the interplay between consumption and pollution in a Ramsey

model was given by Ryder and Heal (1973)2. Satiation is possible under assumptions

on the �rst-order derivatives of the utility function and may promote the multiplic-

ity of steady states. Assumptions on second-order derivatives and intertemporally

dependent preferences may promote the occurrence of cycles through a Hopf bifur-

cation in the case of adjacent complementarity.

The e�ects of pollution on growth through the consumption channel were also

studied by Michel and Rotillon (1996) in an endogenous growth model (AK). They

�nd that a distaste e�ect of pollution on consumption (negative cross derivative) or

separable preferences are incompatible with optimal endogenous growth. Conversely,

sustained growth is optimal when the utility function exhibits a compensation e�ect

(positive cross derivative). Endogenous growth occurs in the competitive equilib-

rium regardless of the e�ects of pollution on consumption.

Surprisingly, many theoretical works have considered the pollution e�ects on con-

sumption behavior and the growth path, while, to the best of our knowledge, there

are no empirical studies on that. Conversely, a rising number of empirical works

study the pollution e�ects on labor supply, whereas these e�ects are largely ignored

2In Ryder and Heal (1973) pollution comes from consumption and it is interpreted as a habit

e�ect. Heal (1982) considers explicitly the same variable as a pollution stock.
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in theoretical papers.

Our work contributes to shed light on the interplay between pollution and labor

supply in the particular case of a productive economy with capital and pollution

accumulation. An ideal framework to carry out this task is a Ramsey model with

nonseparable preferences between pollution and labor supply (separability rules out

any direct e�ect of pollution on labor disutility and supply). Thereby, the novelty

of our analysis rests on the interchange of nonseparability assumptions: between

pollution and leisure instead of between pollution and consumption.

Our oversimpli�ed context allows us to prove that, under su�ciently large (neg-

ative) e�ects of pollution on labor supply, the economy may experience �ip and

period-doubling bifurcations, and deterministic �uctuations around the steady state.

Thus, the pollution e�ect on labor supply, empirically stressed by Hanna and Oliva

(2011), seems to promote macroeconomic volatility and destabilize the economic

dynamics.

The rest of the chapter is articulated in three sections: (1) presentation of a gen-

eral setting, (2) application to the separable case (separability between consumption

and labor), (3) conclusion.
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2.2 The model

In the following, we consider a discrete-time Ramsey economy with pollution and

capital accumulation. A representative household faces a consumption-leisure arbi-

trage by supplying a labor force to a sector of perfectly competitive �rms. These

�rms produce a single commodity working either as capital or a consumption good.

Because of the constant returns to scale, �rms can be represented by a single aggre-

gate �rm. Pollution is a by-product of industrial activities and a�ects the individual

welfare by distorting the consumption-leisure arbitrage.

2.2.1 Firms

At each date t = 0, 1, . . ., a representative �rm produces a single output Yt. Tech-

nology is represented by a constant returns to scale production function: Yt =

F (Kt, Lt), where Kt and Lt are the demands for capital and labor respectively.

Assumption 3 The production function F : R2
+ → R+ is C1, homogeneous of

degree one, strictly increasing and concave. Standard Inada conditions hold.

The �rm chooses the amount of capital and labor to maximize the pro�t taking

as given the real interest rate rt and the real wage wt. The program is correctly

de�ned under Assumption 3: maxKt,Lt [F (Kt, Lt)− rtKt − wtLt], and the �rst-order

conditions write:

rt = f ′ (kt) ≡ r (kt)

wt = f (kt)− ktf
′ (kt) ≡ w (kt)

where kt ≡ Kt/Lt denotes the capital intensity. We introduce the capital share in
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total income α and the elasticity of capital-labor substitution σ:

α (kt) ≡
ktf

′ (kt)

f (kt)

σ (kt) = α (kt)
w (kt)

ktw′ (kt)
(2.1)

In addition,

ktr
′ (kt)

r (kt)
= −1− α (kt)

σ (kt)
(2.2)

ktw
′ (kt)

w (kt)
=
α (kt)

σ (kt)
(2.3)

2.2.2 Preferences

At each date t = 0, 1, . . ., the household earns a capital income rtht and a labor in-

come wtlt where ht and lt denote the individual wealth and labor supply respectively.

Income is consumed and saved/invested according to the budget constraint:

ct + ht+1 − (1− δ)ht ≤ rtht + wtlt (2.4)

The gross investment includes the capital depreciation at the rate δ.

For simplicity, the population of consumers-workers is constant over time: N = 1.

Such normalization implies Lt = Nlt = lt, Kt = Nht = ht and ht = Kt/N = ktlt.

The representative agent takes a utility from the consumption ct and a disutil-

ity from the labor supply lt and the amount of pollution Pt, that is an aggregate

externality. The utility function ut = u (ct, lt, Pt) satis�es the following assumption.

Assumption 4 The utility function u : R3
+ → R is C2, strictly increasing in ct

and strictly decreasing in lt and Pt, and concave with respect to (ct, lt).

If consumption and leisure are both normal goods, we have ucc−ulcuc/ul < 0 and

ull − uclul/uc < 0. These inequalities hold for instance if ulc ≤ 0 that is a su�cient

condition.
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According to Michel and Rotillon (1996), pollution has a distaste e�ect on con-

sumption if ucP < 0: an increase in pollution reduces the marginal utility of con-

sumption and thereby households' propensity to consume. These authors call the

opposite e�ect (ucP > 0) the compensation e�ect. An increase in pollution raises

the propensity to consume.

This terminology can be extended to the e�ects of pollution on labor supply.

Focusing on leisure, we will call leisure e�ect the positive e�ect of pollution on labor

disutility (ulP < 0) which decreases labor supply and increases in turn leisure de-

mand. Conversely, we will call disenchantment e�ect the negative e�ect of pollution

on labor disutility (ulP > 0). In this case, leisure time decreases with pollution. As

seen in the introduction, disenchantment for leisure comes from a more polluted and

unpleasant environment.

The agent maximizes the intertemporal utility function
∑∞

t=0 β
tu (ct, lt, Pt) under

the budget constraint (2.4) where β ∈ (0, 1) is a constant discount factor. This

program is correctly de�ned under Assumption 4. The �rst-order conditions result

in a static consumption-leisure arbitrage

ul (ct, lt, Pt) = −uc (ct, lt, Pt)wt

and a dynamic Euler equation

uc (ct, lt, Pt)

uc (ct+1, lt+1, Pt+1)
= β (1− δ + rt+1)

jointly with the budget constraint (2.4) now binding.
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2.2.3 Pollution

The aggregate stock of pollution Pt is a pure externality. Technology is dirty and

pollution persists. More explicitly, we assume that the stock of pollution tomorrow

will depend on pollution and production today according to a simple linear process:

Pt+1 = aPt + bYt (2.5)

where 1− a ∈ (0, 1] captures the natural rate of pollution absorption and b > 0 the

environmental impact of production. Under Assumption 3, the process of pollution

accumulation (2.5) writes:

Pt+1 = aPt + bLtf (kt) = aPt + bltf (kt)

2.2.4 Equilibrium

Good and labor markets clear. Noticing that ht = ktlt, we �nd

ct + kt+1lt+1 = [1− δ + r (kt)] ktlt + w (kt) lt (2.6)

uc (ct, lt, Pt)

uc (ct+1, lt+1, Pt+1)
= β [1− δ + r (kt+1)] (2.7)

Pt+1 = aPt + bltf (kt) (2.8)

ul (ct, lt, Pt) = −uc (ct, lt, Pt)w (kt) (2.9)

Applying the Implicit Function Theorem to the static arbitrage (2.9), we are able

to compute the derivatives of the labor supply function lt = l (ct, kt, Pt). Indeed,

di�erentiating ul (ct, lt, Pt) + uc (ct, lt, Pt)w (kt) = 0 and keeping in mind that wt =

−ul/uc, we get

dl

dct
= −

ucl
ul

− ucc
uc

ull
ul

− ucl
uc

,
dl

dPt
= −

ulP
ul

− ucP
uc

ull
ul

− ucl
uc

,
dl

dkt
=

w′(kt)
wt

ull
ul

− ucl
uc
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These derivatives allow us to compute the second-order elasticities of the utility

function:

E ≡


εcc εcl εcP

εlc εll εlP

εPc εPl εPP

 ≡


ctucc
uc

ctucl
ul

ctucP
uP

ltulc
uc

ltull
ul

ltulP
uP

PtuPc

uc

PtuPl

ul

PtuPP

uP


Using (2.1), we �nd the elasticities of labor supply:

λc ≡
ct
lt

dl

dct
= −εcl − εcc

εll − εlc

λP ≡ Pt
lt

dl

dPt
= −εPl − εPc

εll − εlc

λk ≡
kt
lt

dl

dkt
=
α

σ

1

εll − εlc

All our economic analysis will rest on these crucial elasticities.

Replacing the labor supply l (ct, kt, Pt) in (2.6), (2.7) and (2.8), we obtain a

three-dimensional dynamic system.

Proposition 4 An intertemporal equilibrium with perfect foresight is a nonnegative

sequence (kt, ct, Pt)
∞
t=0 satisfying the dynamic system

ct + kt+1l (ct+1, kt+1, Pt+1) = ([1− δ + r (kt)] kt + w (kt)) l (ct, kt, Pt)

(2.10)

uc (ct, l (ct, kt, Pt) , Pt)

uc (ct+1, l (ct+1, kt+1, Pt+1) , Pt+1)
= β [1− δ + r (kt+1)] (2.11)

Pt+1 = aPt + bf (kt) l (ct, kt, Pt) (2.12)

We observe that this system is three-dimensional with two predetermined vari-

ables (kt, Pt) and one non-predetermined (ct).
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2.2.5 Steady state

Variables are constant over time: (kt, ct, Pt) = (k, c, P ) for every t. At the steady

state, the dynamic system (2.10)-(2.12) writes:

r (k) =
1

β
− 1 + δ (2.13)

c =

[
1− β

β
k + w (k)

]
l (c, k, P ) (2.14)

P =
b

1− a
f (k) l (c, k, P ) (2.15)

We obtain the stationary capital k from the �rst equation. Replacing k in (2.14)

and (2.15) and solving system (2.14)-(2.15), we obtain also (c, P ).

Given k, solution of (2.13), let

µ (c) ≡ l

(
c, k,

b

1− a

f (k)

f (k)− δk
c

)

Proposition 5 Let Assumptions 3 and 4 hold. If limc→0+ µ (c) > 0 and µ′ (c) < 0

for every c > 0, then there exists a unique steady state.

Proof. Under Assumption 3, k is uniquely determined by (2.13). Replacing k in

(2.14) and (2.15) we obtain a two-dimensional system in (c, P ). We observe from

(2.14) that

c

l (c, k, P )
=

1− β

β
k + w (k) = f (k)− δk > 0 (2.16)

Dividing equations (2.14) and (2.15) side by side and using (2.16), we get

P =
b

1− a

f (k)

f (k)− δk
c (2.17)

Replacing (2.17) in (2.14), we �nd

g (c) ≡ c− [f (k)− δk]µ (c) = 0 (2.18)
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a single equation in c. Under Assumption 4, we �nd limc→0+ g (c) < 0 and limc→+∞ g (c) =

+∞. Under Assumption 3, g is a continuous function. Thus, a solution of equation

(2.18) exists.

In addition, this solution is unique because, under Assumption 4, g′ (c) > 0 for

any c > 0.

We will see that, in the case of separable isoelastic preferences, the assumptions

of Proposition 5 hold and a unique steady state exists.

Corollary 6 Let Assumptions 3 and 4 hold. If consumption and leisure are normal

goods, a distaste e�ect (ucP < 0) jointly with a leisure e�ect (ulP < 0) hold and

limc→0+ µ (c) > 0, then there exists a unique steady state.

Proof. We observe that

µ′ (c) = lc + lP
b

1− a

f (k)

f (k)− δk
= lc + lP

P

c

= −
ucl
ul

− ucc
uc

ull
ul

− ucl
uc

−
ulP
ul

− ucP
uc

ull
ul

− ucl
uc

P

c
=

ucc
uc

− ucl
ul

+
(
ucP
uc

− ulP
ul

)
P
c

ull
ul

− ucl
uc

Since consumption and leisure are both normal goods, we have

ucc
uc

− ulc
ul

< 0 and
ull
ul

− ucl
uc

> 0

Thus, µ′ (c) < 0 i�

ucc
uc

− ucl
ul

+

(
ucP
uc

− ulP
ul

)
P

c
< 0 (2.19)

If a distaste e�ect (ucP < 0) jointly with a leisure e�ect (ulP < 0) hold, we get

(2.19), that is µ′ (c) < 0 for any c > 0. Eventually, Proposition 5 applies.
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2.2.6 Long run

Focus on the comparative statics. In this general section, we have not speci�ed

technology and preferences. The only parameters we consider are a, b, β and δ. We

compute their impact on c, k, P . In the isoelastic case (see below), we will consider

also the impact of technology and preferences on the endogenous variables.

Di�erentiating (2.13) and using (2.2), we obtain the usual elasticities of Modi�ed

Golden Rule:

β

k

∂k

∂β
=

σ (k)

1− α (k)

1

βr (k)
> 0 (2.20)

δ

k

∂k

∂δ
= − σ (k)

1− α (k)

δ

r (k)
< 0 (2.21)

where r (k) is given by (2.13).

Di�erentiating system (2.14)-(2.15) and using (2.20) and (2.21), we obtain:

ρ (1− λc)
dc

c
− ρλP

dP

P
=
σ2
β

dβ

β
− δ (1 + σ2)

dδ

δ

−λc
dc

c
+ (1− λP )

dP

P
= −dz

z
+
db

b
+ σ1

dβ

β
− βδσ1

dδ

δ

where z ≡ 1− a and

ρ ≡ c

kl
=

1− β

β
+

1− α

α
r

σ1 ≡
σ

1− α

α+ λk
βr

σ2 ≡ λk
σ

α
+ (1 + λk)

σ

1− α

1− β

βr

that is

 dc
c

dP
P

 =
M

1− λc − λP


dz
z

db
b

dβ
β

dδ
δ
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with

M ≡

 −λP λP λPσ1 + (1− λP )
σ2
βρ

−λPβδσ1 − (1− λP )
δ(1+σ2)

ρ

λc − 1 1− λc λc
σ2
βρ

+ (1− λc)σ1 −λc δ(1+σ2)ρ
− (1− λc) βδσ1


(2.22)

We �nd the following elasticity of comparative statics: z
c
∂c
∂z

b
c
∂c
∂b

β
c
∂c
∂β

δ
c
∂c
∂δ

z
P
∂P
∂z

b
P
∂P
∂b

β
P
∂P
∂β

δ
P
∂P
∂δ

 =
M

1− λc − λP
(2.23)

2.2.7 Short run

Focus on local dynamics. We linearize the dynamic system (2.10)-(2.12) around the

steady state:


1 + λk λc λP

εlcλk − 1−α
σ
βr εcc + εlcλc εlcλP + εPc

0 0 1




dkt+1

k

dct+1

c

dPt+1

P



=


1
β
+ (1 + ρ)λk (1 + ρ)λc − ρ (1 + ρ)λP

εlcλk εcc + εlcλc εlcλP + εPc

(1− a) (α + λk) (1− a)λc a+ (1− a)λP




dkt
k

dct
c

dPt

P


In order to study the local stability of system (2.10)-(2.12), that is the shape of

the characteristic polynomial, we assume preferences to be separable.

2.3 The separable model

In the case of separable utility: u (ct, lt, Pt) = ũ (ct)−ωv (lt, Pt), the elasticity matrix

E becomes

E ≡


εcc 0 0

0 εll εlP

0 εPl εPP

 (2.24)
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and the elasticities of labor supply lt = l (ct, kt, Pt) write:

λc =
εcc
εll

λP = −εPl
εll

λk =
α

σ

1

εll
(2.25)

When pollution does not a�ect the labor supply εPl = 0. Thus, the very dif-

ference with respect to the standard consumption-labor arbitrage is the elasticity

εPl. In the following, we will show that σ and εPl play a role in the occurrence of

endogenous business cycles.

From a theoretic point of view, the e�ect of pollution on labor supply is ambigu-

ous: λP Q 0. However, according to the recent empirical studies and, in particular,

to Hanna and Oliva (2011) work on Mexico City, a rise in pollution seems to have a

negative e�ect on labor supply: λP < 0. In the following, we will consider this case.

2.3.1 Isoelastic form

In the isoelastic case, the elasticities are constant and notation simpli�es: ε ≡ −εcc

and φ ≡ εll. We consider explicit isoelastic separable preferences:

ũ (ct) ≡
c1−εt

1− ε
and v (lt, Pt) ≡

(ltP
γ
t )

1+φ

1 + φ
(2.26)

where 1/ε ≥ 0 is the consumption elasticity of intertemporal substitution and 1/φ ≥

0 is the Frisch elasticity of intertemporal substitution.

In addition, this form allows us to express the key elasticity εPl in terms of the

structural parameters: εPl = γ (1 + φ). Since

λP = −εPl
εll

= −γ 1 + φ

φ
(2.27)

52



and, according to Assumption 4, the utility function decreases with Pt, we obtain

γ > 0 and, thus, λP < 0 or, equivalently, dl/dPt < 0 (the labor supply decreases

with pollution in turn).

From (2.27), labor disutility writes also

v (lt, Pt) ≡
l1+φt P−φλP

t

1 + φ

In this case (2.26), with an intensive production function f (kt) = Akαt , the labor

supply function explicitly becomes

lt = l (ct, kt, Pt) = m (ct, kt)P
λP
t with m (ct, kt) ≡

(
1− α

ω

Akαt
cεt

) 1
φ

2.3.2 Long run (continued)

Preferences rationalized by functions (2.26) ensure the uniqueness of the steady state.

Indeed, consumption and leisure are normal goods and a distaste e�ect jointly with

a leisure e�ect hold. More explicitly, we �nd

µ (c) =

(
1− α

ω
Akα

) 1
φ
(

b

1− a

Akα

Akα − δk

)λP

cλP− ε
φ

with λP < 0. Thus, limc→0+ µ (c) = +∞ > 0 and µ′ (c) < 0, and the assumptions of

Proposition 5 hold.

Let

λ∗P ≡ − 1

φσ

(
1 +

r − δ

δ

1 + φσ

1− α

)
< 0

Proposition 7 The the long-run e�ects of the fundamental parameters on the pol-

lution stock are given by

∂P

∂a
> 0,

∂P

∂b
> 0,

∂P

∂β
> 0
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and

∂P

∂δ
< 0 i� σ >

r−αr
r−αδε− 1
δ−αδ
r−αδε+ φ

The the long-run e�ects of these parameters on the consumption level depend on

the pollution elasticity of labor supply λP ,

∂c

∂a
< 0

∂c

∂b
< 0

∂c

∂β
> 0 i� λP > λ∗P

∂c

∂δ
< 0 i� σ <

r

δ
or

(
σ >

r

δ
and λP >

r − σδλ∗P
r − σδ

(< 0)

)

Proof. Reconsider (2.27) and the impact matrix (2.23). Notice that z ≡ 1− a and

(λc, λk) =

(
− ε

φ
,
1

φ

α

σ

)

The denominator 1− λc − λP is positive. (2.22) becomes

M ≡

 −λP λP
αδσ
βr

λP−λ∗P
r−αδ

αδ
r
r−σδ
r−αδ

(
λP − r−σδλ∗P

r−σδ

)
− ε+φ

φ
ε+φ
φ

1
φβr

α
1−α

(
1 + φσ + εσ δ−αδ

r−αδ

)
δ
φ

[
ε
ρ
− 1

r
α

1−α

(
1 + φσ + εσ δ−αδ

r−αδ

)]


We observe that r > αδ and

1

φβr

α

1− α

(
1 + φσ + εσ

δ − αδ

r − αδ

)
> 0

δ

φ

[
ε

ρ
− 1

r

α

1− α

(
1 + φσ + εσ

δ − αδ

r − αδ

)]
< 0 i� σ >

r−αr
r−αδε− 1
δ−αδ
r−αδε+ φ

The proposition follows immediately.

Corollary 8 ∂P/∂δ < 0 if

ε <
r − αδ

r − αr
(> 1)
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Corollary 9 If λP = 0 (that is γ = 0), we have

∂c

∂a
=
∂c

∂b
= 0,

∂c

∂β
> 0,

∂c

∂δ
< 0

We recover in this case the usual conclusions of the Ramsey model.

Let us provide an interpretation of Proposition 7.

Focus on equations (2.15), (2.20) and (2.25). The higher the β, the larger the

capital stock k and, in turn, the higher the labor supply l and the stock of pollution

P . The e�ect of β on c in the long run depends on λP . Since λP < 0, the households

substitutes leisure to working time. However, if this e�ect does not compensate the

positive e�ect of k on labor supply, a higher β entails a higher consumption in the

long run.

Focus now on equations (2.15), (2.21) and (2.25). The higher the depreciation

rate δ, the lower the capital stock k and, in turn, the lower the labor supply l and

and the pollution stock P . According to equation (2.21), the impact of δ on k and,

in turn, on l, depends on the elasticity of capital-labor substitution σ. A stronger

σ induces a larger negative e�ect of δ on k. Since the negative e�ect of δ on P

depends crucially on its impact on k, it follows that the negative impact of δ on P

is also magni�ed under a large elasticity σ. Notice that λP < 0. We know also that

a higher δ implies a lower P . Let the pollution elasticity of labor supply be not too

negative. In this case, under a su�ciently large σ, the e�ect of k on l dominates

the e�ect of P on l. Thus, a higher δ leads the household to substitute leisure to

working time, that is to consume less in the long run.
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2.3.3 Short run (continued)

Speci�cation (2.26) gives the following Jacobian:

J =


1 + λk λc λP

εlcλk − 1−α
σ
βr εcc + εlcλc εlcλP + εPc

0 0 1


−1


1
β
+ (1 + ρ)λk (1 + ρ)λc − ρ (1 + ρ)λP

εlcλk εcc + εlcλc εlcλP + εPc

(1− a) (α+ λk) (1− a)λc a+ (1− a)λP


with an elasticity matrix (2.24):

E =


−ε 0 0

0 φ εlP

0 γ (1 + φ) εPP


Therefore,

J =


1 + λk λc λP

−1−α
σ
βr −ε 0

0 0 1


−1


1
β
+ (1 + ρ)λk (1 + ρ)λc − ρ (1 + ρ)λP

0 −ε 0

(1− a) (α+ λk) (1− a)λc a+ (1− a)λP

 (2.28)

with:

ρ =
1− β

β
+

1− α

α
r

and

λc = − ε

φ
, λP = −γ 1 + φ

φ
, λk =

α

σ

1

φ

To know the location of the eigenvalues of the Jacobian matrix w.r.t. the unit

circle, we study the sign of the characteristic polynomial P (x) in x = −1, 0, 1.
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Tedious computations give the following values:

P (0) = (1− a)
(1− α) (1− δ) εσ

(1− α) βrλc − εσ (1 + λk)
(λP − λ1) > 0 i� λP < λ1

(2.29)

P (1) =
βrρ (1− α) (1− a) (1− λc − λP )

(1− α) βrλc − εσ (1 + λk)
< 0 (2.30)

P (−1) = (1− a)
(1− α) [βrρ+ 2εσ (2− δ)]

(1− α) βrλc − εσ (1 + λk)
(λP − λ2) > 0 i� λP < λ2

(2.31)

where

λ1 ≡ − a

1− a

1 + (1 + ρ) βλk
β (1− δ) (1− α)

< 0

λ2 ≡ −1 + a

1− a

(1− α) βr [ρ− (2 + ρ)λc] + 2εσ [1 + 1/β + (2 + ρ)λk]

(1− α) [βrρ+ 2εσ (2− δ)]
< 0

Assumption 5 a < β.

We notice that, under Assumption 5,

λP < 0 <
β − a

1− a
< λ3 ≡

β − a

1− a

1 + φσ − β (1− α) (1− δ)

φσβ (1− α) (1− δ)

Let D and T be the determinant and the trace of J respectively.

Lemma 10 Under Assumption 5, D < 1.

Proof. D < 1 is equivalent to

D = −P (0) = (1− a)
(1− α) (1− δ) εσ

εσ (1 + λk)− (1− α) βrλc
(λP − λ1) < 1

that is to λP < λ3.

Focus now on the issue of equilibrium uniqueness.

Two variables are predetermined (kt and Pt), one is nonpredetermined (ct).

P (1) < 0 implies that one eigenvalue is real and greater than one. Thus, equi-

librium determinacy (locally). The question now is whether there are zero, one or

two eigenvalues inside the unit circle.
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There are two possible cases:

(1) λ1 < λ2,

(2) λ2 < λ1.

We observe that λ1 < λ2 i�

1 + a

a
<

[1 + (1 + ρ) βλk] [βrρ+ 2εσ (2− δ)]

β (1− δ) ((1− α) βr [ρ− (2 + ρ)λc] + 2εσ [1 + 1/β + (2 + ρ)λk])

Notice that the RHS does not depend on a.

Focus on the second case (for instance, if a is su�ciently small or a = 0). In this

case, λ2 < λ1.

Proposition 11 (equilibrium uniqueness) Let a be null or su�ciently small and

Assumption 5 hold. There are three cases.

(1) λP < λ2 < λ1 < 0. The eigenvalues xi are such that x1 < −1 < 0 < x2 <

1 < x3: local overdeterminacy.

(2) λ2 < λP < λ1 < 0. The eigenvalues xi are such that −1 < x1 < 0 < x2 <

1 < x3: local determinacy.

(3) λ2 < λ1 < λP < 0. Under Assumption 5, there are two eigenvalues inside

the unit circle and one outside: |x1| , |x2| < 1 < x3. Thus, local determinacy.

When λP = λ2 the system generically undergoes a �ip bifurcation.

Proof. Consider the three eigenvalues: x1, x2 and x3. We know that x3 > 1 because

P (1) < 0.

Points (1) and (2) are immediate: simply notice that λ2 < λ1 and consider

the signs of expressions (2.29) and (2.31) in the cases λP < λ2 < λ1 < 0 and

λ2 < λP < λ1 < 0 respectively.
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Focus now on point (3). In this case, we get: P (−1) < 0, P (0) < 0 and

P (1) < 0.

Under Assumption 5, Lemma 10 applies and D = x1x2x3 < 1. Since P (1) < 0,

we have x3 > 1 and, so x1x2 < 1. There are two cases: these eigenvalues are (3.1)

real or (3.2) nonreal.

In the subcase (3.1), D < 1 implies that at least one of the two eigenvalues

x1 and x2 > x1 is inside the unit circle. Let, without loss of generality, x2 be in

the unit circle that is −1 < x2 < 1. If 0 < x2 < 1, since P (1) < 0, there exists

x̄ ∈ (0, x2) such that P (x̄) > 0. Since P (0) < 0, we have also 0 < x1 < x̄ < 1.

Thus, 0 < x1 < x2 < 1. Similarly, one can show that −1 < x2 < 0 implies

−1 < x1 < x2 < 0 because P (−1) < 0.

In the subcase (3.2), x1 and x2 are nonreal and conjugated. Thus, |x1| |x2| =

|x1x2| < 1 and, since they have the same modulus, |x1| = |x2| < 1.

Corollary 12 Under Assumption 5, there is no room for Hopf bifurcations.

Proof. We know that P (1) < 0, that is x3 > 1. Under Assumption 3, Lemma

10 applies and, therefore, D = x1x2x3 < 1. Thus, x1x2 < 1. The Hopf bifurcation

generically arises when x1 and x2 are nonreal and x1x2 = 1. Then Assumption 5 is

incompatible with the occurrence of a Hopf bifurcation.

The occurrence of deterministic �uctuations deserves an interpretation. Focus

on the case of a su�ciently small a, that is λ2 < λ1 < 0, and a su�ciently negative

impact of pollution on labor supply (λP close to λ2).

In this case, an increase in pollution lowers enough the labor supply. The penury

of labor input decreases considerably the production and pollution in turn. Thus, a

59



rise in pollution is followed by a drop in pollution at the very end: a cycle of period

two arises.

Notice that a is a measure of pollution persistence. The occurrence of cycles is

magni�ed when a is close to zero because this inertia fails, pollution becomes more

volatile and the comparative e�ect of production on the pollution process becomes

maximal.

2.4 Conclusion

We have considered an economy à la Ramsey where production pollutes and the

negative externality distorts the household's consumption-leisure choice. In this

framework, we have proved that a su�ciently large (negative) e�ects of pollution

on labor supply may promotes macroeconomic volatility (deterministic cycles near

the steady state) through a �ip bifurcation. It seems that, in the empirical case

considered by Hanna and Oliva (2011), pollution works as a destabilizing force.

In this sense, our work provides a theoretical argument in favor of environmental

friendly �scal policies.
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Chapter 3

Households' preferences, pollution

and competitive growth

3.1 Introduction

Externalities1 of pollution may a�ect the economy through their e�ects on technol-

ogy or preferences, that is on productivity of factors or utility of goods. In the case

of preferences, their in�uence can be disentangled in (1) the e�ects on consumption

demand and (2) those on labor supply.

(1) Michel and Rotillon (1996) have pointed out the ambiguous e�ect of pollution

on consumption demand. Pollution can decrease the consumption level through a

distate e�ect and increase it through a compensation e�ect. In the last three decades,

scholars have payed attention to the dynamic complexity arising from the interplay

between pollution and consumption. A seminal contribution is Heal (1982). Ryder

1This chapter refers to a joint work with Stefano BOSI and Lionel RAGOT.
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and Heal (1973) study the growth path in a Ramsey model where the marginal util-

ity of consumption is a�ected by a weighted average of past consumption demands.

Heal (1982) revisits the model by replacing the past consumption by a pollution

stock. Under the assumption of adjacent complementarity, Heal �nds that a limit

cycle may occur through a Hopf bifurcation. Within an endogenous growth model

with pollution, Michel and Rotillon (1996) recover the same dynamics under the

assumption of a strong compensation e�ect.

More recently, some authors have considered the occurrence of local indetermi-

nacy under the e�ect of pollution on consumption demand. Itaya (2008) shows that

this e�ect may promote indeterminacy and Fernandez, Pérez and Ruiz (2012) stress

the role of nonseparability between consumption and pollution in the utility function

in an endogenous growth model with elastic labor supply.

All these contributions highlight potential bene�ts from adopting environmental

policies to reduce the macroeconomic volatility.

Even if, to the best of our knowledge, there is no empirical evidence showing

a direct e�ect of pollution on consumption behavior, there is a rising numbers of

empirical studies pointing out a negative e�ect of pollution on labor supply (Gra�

Zivin and Neidell (2010), Carson, Koundouri and Nauges (2011), Hanna and Oliva

(2011)). In accordance with this evidence, we have prove in the last chapter2 that the

consumption e�ect of pollution promotes the emergence of persistent cycles through

2See also Bosi, Desmarchelier and Ragot (2013).
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a �ip bifurcation and, hence, macroeconomic volatility.

(2) Pollution may a�ect leisure demand or, equivalently, labor supply. As pointed

out in the last chapter, pollution may decrease or increase labor supply through a

leisure or a disenchantment e�ect respectively3. However, in our previous model,

pollution has no e�ect on consumption but only on labor supply. More precisely

introducing separable preferences in consumption and pollution, rule out any direct

a�ect of pollution on the marginal utility of consumption and, in turn, on consump-

tion demand. By de�nition, the distate and the compensation e�ects highlighted by

Michel and Rotillon (1996) no longer hold.

The present chapter aims at generalizing both Michel and Rotillon (1996) and

Bosi, Desmarchelier and Ragot (2013), by setting up a model where pollution jointly

a�ects the consumption demand and the labor supply. To carry out this task, we

consider a continuous-time Ramsey model with separable preferences in consump-

tion and labor but nonseparable either in consumption and pollution or in labor and

pollution.

We study the economic dynamics in the long run (steady state and other attrac-

tors) and in the short run (stability properties).

On the one hand, we prove the uniqueness of the steady state under a distate

e�ect or a weak compensation e�ect jointly with a leisure e�ect or a weak disen-

3See Bosi, Desmarchelier and Ragot (2013) for more details.
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chantment e�ect.

On the other hand, we show that a high compensation e�ect jointly with a large

leisure e�ect (empirically found by Hanna and Oliva (2011) among the others) may

promote the local indeterminacy of equilibria through a Hopf bifurcation.

The rest of the chapter is articulated in three parts: 1) presentation of the general

model , 2) the analysis of case with separable preferences and constant elasticities

and 3) conclusion.

3.2 Model

We consider a continuous-time Ramsey economy with pollution and capital accu-

mulation. A representative household faces a consumption-leisure arbitrage by sup-

plying a labor force to a sector of perfectly competitive �rms. These �rms produce

a single commodity which plays the role of capital or consumption good. Because

of the constant returns to scale, �rms can be represented by a single aggregate �rm.

Pollution is a by-product of industrial activities and a�ects the individual welfare

by distorting the consumption-leisure arbitrage.

3.2.1 Technology

At time t representative �rm produces a single output Y (t). Technology is repre-

sented by a constant returns to scale production function: Y (t) = F (K (t) , L (t)),

where K (t) and L (t) are the demands for capital and labor at time t.
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Assumption 6 The production function F : R2
+ → R+ is C1, homogeneous of

degree one, strictly increasing and concave. Standard Inada conditions hold.

The �rm chooses the amount of capital and labor to maximize the pro�t taking

as given the real interest rate r (t) and the real wage w (t). In the following, for

notational simplicity, we will omit the time argument t.

The program maxK,L [F (K,L)− rK − wL] is correctly de�ned under Assump-

tion 6 and the �rst-order conditions write:

r = f ′ (k) ≡ r (k)

w = f (k)− kf ′ (k) ≡ w (k)

where f (k) ≡ F (k, 1) is the average productivity and k = k (t) ≡ K (t) /L (t)

denotes the capital intensity at time t. We introduce the capital share in total

income α and the elasticity of capital-labor substitution σ:

α (k) ≡ kf ′ (k)

f (k)

σ (k) = α (k)
w (k)

kw′ (k)
(3.1)

In addition, we determine the elasticities of factor prices:

kr′ (k)

r (k)
= −1− α (k)

σ (k)
(3.2)

kw′ (k)

w (k)
=
α (k)

σ (k)
(3.3)

3.2.2 Preferences

The household earns a capital income rh and a labor income wl where h = h (t)

and l = l (t) denote the individual wealth and labor supply at time t. Income is
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consumed and saved/invested according to the budget constraint:

ḣ ≤ (r − δ)h+ wl − c (3.4)

The gross investment includes the capital depreciation at the rate δ.

For simplicity, the population of consumers-workers is constant over time: N = 1.

Such normalization implies L = Nl = l, K = Nh = h and h = K/N = kl.

Assumption 7 Preferences are separable in consumption and labor:

U (c, l, P ) ≡ u (c, P )− v (l, P ) (3.5)

with uc > 0, uP < 0, vl > 0, vP > 0 as �rst-order restrictions, ucc < 0, vll > 0 as

second-order restrictions, and limc→0+ uc = ∞, liml→0+ vl = 0 as a limit conditions.

We do not impose any restriction on the sign of the cross-derivatives ucP and vlP .

Even if preferences are separable in consumption and labor supply, pollution a�ects

the marginal utilities of both of them and, hence, the consumption-labor arbitrage

through a general equilibrium e�ect.

The agent maximizes the intertemporal utility function
∫∞
0
e−ρtU (c, l, P ) dt un-

der the budget constraint (3.4) where ρ > 0 is the rate of time preference. This

program is correctly de�ned under Assumption 7.

Proposition 13 The �rst-order conditions result in a static consumption-leisure

arbitrage

Uc = λ = −Ul/w (3.6)

a dynamic Euler equation λ̇ = λ (ρ+ δ − r) and the budget constraint (3.4) now bind-

ing ḣ = (r − δ)h+wl−c jointly with the transversality condition limt→∞ e−ρtλ (t)h (t) =

0.

Proof. See the Appendix.
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3.2.3 Pollution

The aggregate stock of pollution P is a pure externality. Technology is dirty and

pollution persists. We assume a simple linear process:

Ṗ = −aP + bY (3.7)

where a ≥ 0 captures the natural rate of pollution absorption and b ≥ 0 the envi-

ronmental impact of production. Since, under Assumption 6, Y = Lf (k) = lf (k),

the process of pollution accumulation (3.7) writes:

Ṗ = −aP + blf (k)

3.2.4 Equilibrium

At equilibrium, good and labor markets clear. Applying the Implicit Function The-

orem to the consumption-labor arbitrage (3.6), we obtain (c, l) as a function of

(λ, k, P ), that is c = c (λ, k, P ) and l = l (λ, k, P ). Let us introduce the following

second-order elasticities of the utility function:

E ≡


εcc εcl εcP

εlc εll εlP

εPc εPl εPP

 ≡


cUcc

Uc

cUcl

Ul

cUcP

UP

lUlc

Uc

lUll

Ul

lUlP

UP

PUPc

Uc

PUPl

Ul

PUPP

UP


Proposition 14 The matrix of partial elasticities is given by λ

c
∂c
∂λ

k
c
∂c
∂k

P
c
∂c
∂P

λ
l
∂l
∂λ

k
l
∂l
∂k

P
l
∂l
∂P

 =
M

εccεll − εlcεcl
(3.8)

where

M ≡

 εll − εlc −α
σ
εlc εlcεPl − εllεPc

εcc − εcl
α
σ
εcc εclεPc − εccεPl

 (3.9)
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Proof. See the Appendix.

In the separable case, the elasticities matrix simpli�es

E ≡


εcc 0 εcP

0 εll εlP

εPc εPl εPP

 (3.10)

and we get  λ
c
∂c
∂λ

k
c
∂c
∂k

P
c
∂c
∂P

λ
l
∂l
∂λ

k
l
∂l
∂k

P
l
∂l
∂P

 =
M

εccεll
=

 1
εcc

0 − εPc

εcc

1
εll

α
σ

1
εll

− εPl

εll

 (3.11)

Proposition 15 The equilibrium transition is represented by the following dynamic

system:

λ̇

λ
= ρ+ δ − r (k)

k̇

k
=
r (k)− δ + w(k)

k
− c(λ,k,P )

kl(λ,k,P )
− λ

l
∂l
∂λ

[ρ+ δ − r (k)]− P
l
∂l
∂P

[
b l(λ,k,P )f(k)

P
− a

]
1 + k

l
∂l
∂k

(3.12)

Ṗ

P
= b

l (λ, k, P ) f (k)

P
− a

Proof. See the Appendix.

3.2.5 Steady state

At the steady state, λ̇ = k̇ = Ṗ = 0 and system (3.12) becomes

r (k) = ρ+ δ (3.13)

c (λ, k, P ) = [ρk + w (k)] l (λ, k, P ) =
a

b
P − δkl (λ, k, P ) (3.14)

l (λ, k, P ) f (k) =
a

b
P (3.15)

because f (k) = kr (k) + w (k).
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According to Michel and Rotillon (1996), pollution has a distaste e�ect on con-

sumption if UcP < 0, that is εPc < 0; while pollution has a compensation e�ect on

consumption if UcP > 0, that is εPc > 0. According to Bosi, Desmarchelier and

Ragot (2013), pollution has a leisure e�ect in the case of positive e�ect of pollution

on labor disutility (UlP < 0), that is εPl > 0 (because, according to Assumption 7,

Ul < 0); while pollution has a disenchantment e�ect in the case of negative e�ect of

pollution on labor disutility (UlP > 0), that is εPl < 0 (because, from Assumption

7, Ul < 0).

Consider the system

c (λ, k, P )

l (λ, k, P )
= ρk + w (k) (3.16)

l (λ, k, P ) f (k) =
a

b
P (3.17)

Let

ς (λ) ≡ c (λ, k, P (λ))

l (λ, k, P (λ))
> 0 and ες (λ) ≡

λς ′ (λ)

ς (λ)

where P (λ) is implicitly de�ned by (3.17).

Proposition 16 (existence and uniqueness of the steady state) Let Assumptions 6

and 7 hold. A steady state exists. In addition, the steady state is unique if εPc < −εcc

(distate e�ect (εPc < 0) or weak compensation e�ect (0 < εPc < −εcc)) jointly with

εPl > −εll (leisure e�ect (εPl > 0) or weak disenchantment e�ect (−εll < εPl < 0)).

Proof. See the Appendix.
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3.2.6 Local dynamics

In order to study the local dynamics, we linearize the three-dimensional dynamic

system (3.12) :

λ̇ = f1 (λ, k, P )

k̇ = f2 (λ, k, P )

Ṗ = f3 (λ, k, P )

around the steady state and we obtain a Jacobian matrix :

J =


∂f1
∂λ

∂f1
∂k

∂f1
∂P

∂f2
∂λ

∂f2
∂k

∂f2
∂P

∂f3
∂λ

∂f3
∂k

∂f3
∂P

 (3.18)

Local bifurcations and local indeterminacy

In continuous time, a local bifurcation generically arises when the real part of an

eigenvalue λ (p) of the Jacobian matrix crosses zero in response to a change of

parameter p. Denoting by p∗ the critical parameter value of bifurcation, we get

generically two cases: (1) saddle-node bifurcation when a real eigenvalue crosses zero:

λ (p∗) = 0, (2) Hopf bifurcation when the real part of two complex and conjugate

eigenvalues λ (p) = a (p) ± ib (p) crosses zero. More precisely, we require a (p∗) = 0

and b (p) ̸= 0 in a neighborhood of p∗ (see Bosi and Ragot (2011, p. 76)).

System (3.12) is three-dimensional with two predetermined variables (k and P )

and one jump variable (λ). Thus, multiple equilibria (local indeterminacy) arise

when the three eigenvalues of the Jacobian matrix (3.18) evaluated at the steady

state have negative real parts: either λ1, λ2, λ3 < 0 or Reλ1,Reλ2 < 0 and λ3 < 0.
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Saddle-node bifurcation

A saddle-node bifurcation generically occurs when a real eigenvalue crosses zero:

λ3 = 0.

Focus on the Jacobian matrix J and consider the determinant, the sum of minors

of order two and the trace:

D = λ1λ2λ3

S = λ1λ2 + λ1λ3 + λ2λ3

T = λ1 + λ2 + λ3

Proposition 17 (saddle-node characterization) A saddle-node bifurcation generi-

cally arises if and only if D = 0. In the saddle-node bifurcation value p∗ = pS, we

have

λ1 (pS) =
T (pS)

2
−

√[
T (pS)

2

]2
− S (pS) (3.19)

λ2 (pS) =
T (pS)

2
+

√[
T (pS)

2

]2
− S (pS) (3.20)

These eigenvalues are nonreal if and only if T (pS)
2 < 4S (pS).

Proof. See the Appendix.

Hopf bifurcation

A Hopf bifurcation occurs when the real part of two complex and conjugate eigen-

values λ (p) = a (p) ± ib (p) crosses zero. More precisely, we require a (0) = 0 and

b (p) ̸= 0 in a neighborhood of p = 0, where p = 0 is the normalized bifurcation

value of parameter (see Bosi and Ragot (2011)).

71



Proposition 18 (Hopf characterization) In the case of a three-dimensional system,

a Hopf bifurcation generically arises if and only if D = ST and S > 0.

Proof. See the Appendix.

Local indeterminacy

In our economy, there are two predetermined variables (k and P ) and a jump variable

(λ). As seen above, indeterminacy requires the three eigenvalues with negative real

parts: either λ1, λ2, λ3 < 0 or Reλ1,Reλ2 < 0 and λ3 < 0.

Proposition 19 (local indeterminacy) In the case of system (3.22)-(3.24), if all the

eigenvalues are real, the equilibrium is locally indeterminate if and only if D,T < 0

and S > 0.

Proof. See the Appendix.

Focus on Proposition 17 and notice that λ1 (pS) and λ2 (pS) can be real or nonreal.

If they are real Reλ1 (pS) = λ1 (pS) and Reλ2 (pS) = λ2 (pS).

Proposition 20 (local indeterminacy through a saddle-node bifurcation) Let pS be

the saddle-node bifurcation value of a parameter p such that D (pS) = 0. The equi-

librium is generically locally indeterminate in a (left or right) neighborhood of pS if

and only if Reλ1 (pS) ,Reλ2 (pS) < 0, where λ1 (pS) and λ2 (pS) are given by (3.19)

and (3.20).

Proof. See the Appendix.

Corollary 21 Local indeterminacy generically occurs through a saddle-node bifur-

cation at p = pS if and only if D (pS) = 0, S (pS) > 0 and T (pS) < 0.
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Proof. See the Appendix.

Focus now on the possibility of local indeterminacy through a Hopf bifurcation.

Notice that, unfortunately, Proposition 19 is of little use because, it is di�cult to

know whether the eigenvalues are real. In the nonreal case, the necessary condition

of Proposition 19 still holds. Indeed, indeterminacy (Reλ1 = Reλ2 < 0 and λ3 < 0)

implies

D = λ1λ2λ3 =
[
(Reλ1)

2 + (Imλ1)
2]λ3 < 0

S = λ1λ2 + (λ1 + λ2)λ3 = (Reλ1)
2 + (Imλ1)

2 + 2Reλ1λ3 > 0

T = λ1 + λ2 + λ3 = 2Reλ1 + λ3 < 0

However, the su�cient condition fails: even if

D = λ1λ2λ3 =
[
(Reλ1)

2 + (Imλ1)
2]λ3 < 0

still implies λ3 < 0, conditions D,T < 0 and S > 0 do not rule out the unpleasant

case Reλ1 = Reλ2 > 0.

We provide instead another su�cient condition for local indeterminacy, that is

more restrictive.

Proposition 22 (local indeterminacy through a Hopf bifurcation) Let pH the Hopf

bifurcation value of a parameter p such that D (pH) = S (pH)T (pH) and S (pH) > 0.

If D (pH) < 0, the equilibrium is locally indeterminate for some value of p around

pH .

Proof. See the Appendix.
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3.3 Separable isoelastic case

The above conditions for local bifurcations and local indeterminacy are general and it

is di�cult to provide an economic interpretation. However, introducing more explicit

form with exogenous parameters that have an easy clear economic meaning allows

us to provide an economic intuition for local bifurcations and local indeterminacy.

The separable case (Assumption 7) is suitable for our local analysis because of

the lack of direct cross e�ects between the marginal utility of consumption and labor.

However, we need to introduce more structure for the purpose of economic analysis.

In the isoelastic case, the elasticities of matrix (3.11) are constant and have an easy

economic interpretation. Thus, we consider isoelastic separable preferences:

u (c, P ) ≡ (cP−η)
1−ε

1− ε
and v (l, P ) ≡ ω

(
lPψ

)1+φ
1 + φ

where 1/ε ≥ 0 is the consumption elasticity of intertemporal substitution, 1/φ ≥ 0 is

the Frisch elasticity of intertemporal substitution and ω > 0 is the weight of disutility

of labor in total utility. The elasticities on the RHS of matrix (3.11) appear only in

the �rst two columns of the elasticities matrix E:

Ẽ ≡


εcc εcl

εlc εll

εPc εPl

 =


cucc
uc

0

0 lvll
vl

PuPc

uc

PvPl

vl

 =


−ε 0

0 φ

(ε− 1) η (1 + φ)ψ


The elasticities in the third column of E (see (3.10)) are more complicated: they

are not merely parametric and involve all the variables: λ, k, P . Fortunately, we no

longer need them in the following. Hence, matrix (3.11) simpli�es: λ
c
∂c
∂λ

k
c
∂c
∂k

P
c
∂c
∂P

λ
l
∂l
∂λ

k
l
∂l
∂k

P
l
∂l
∂P

 =

 λcλ
c

kck
c

PcP
c

λlλ
l

klk
l

P lP
l

 =

 −1
ε

0 −η 1−ε
ε

1
φ

α
σ

1
φ

−ψ 1+φ
φ

 (3.21)
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and the dynamic system writes:

λ̇

λ
= ρ+ δ − r (k) (3.22)

k̇

k
=
ρ+ w(k)

k
− c(λ,k,P )

kl(λ,k,P )
− 1+φ

φ

(
ρ+ δ − r (k) + ψ

[
a− b l(λ,k,P )f(k)

P

])
1 + α

σ
1
φ

(3.23)

Ṗ

P
= b

l (λ, k, P ) f (k)

P
− a (3.24)

3.3.1 Steady state

Proposition 23 In the isoelastic case, a unique steady state exists if

1

ε
+

1

φ

1 + η 1−ε
ε

1 + ψ 1+φ
φ

> 0 (3.25)

Proof. See the Appendix.

According to (3.25), a unique stationary solution only when

η
ε− 1

ε
< 1 +

φ

ε

(
1 + ψ

1 + φ

φ

)
(3.26)

We observe that, according to (3.11),

P

c

∂c

∂P
= −εPc

εcc
= η

ε− 1

ε
P

l

∂l

∂P
= −εPl

εll
= −ψ1 + φ

φ

Thus, inequality (3.26) becomes

P

c

∂c

∂P
< 1 +

φ

ε

(
1− P

l

∂l

∂P

)
(3.27)

and holds if the elasticity (P/c) ∂c/∂P is negative or positive but su�ciently small.

The RHS of (3.27) becomes larger as soon as the elasticity (P/l) ∂l/∂P becomes

su�ciently negative. Thus, the steady state is unique when pollution has a negative
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impact on consumption or a moderate positive e�ect, and a large (negative) impact

on labor supply.

3.3.2 Local dynamics

System (3.22)-(3.24) writes:

λ̇ = f1 (λ, k, P ) ≡ λ [ρ+ δ − r (k)]

k̇ = f2 (λ, k, P ) ≡
(
1 +

α (k)

σ (k)

1

φ

)−1

[
ρk + w (k)− c (λ, k, P )

l (λ, k, P )
− k

1 + φ

φ

(
ρ+ δ − r (k) + ψ

[
a− b

l (λ, k, P ) f (k)

P

])]
Ṗ = f3 (λ, k, P ) ≡ bl (λ, k, P ) f (k)− aP

We linearize it around the steady state.

In the following, let

θ (k) ≡ α (k) + φσ (k)α (k)

φσ (k)
and τ (k) ≡ α (k) + φσ (k)

φσ (k)
> θ (k)

µ ≡ ψ
1 + φ

φ
, γ ≡ r

α
− δ, s ≡ r

1− α

σ

n ≡ µ
a

φ
+ γ

(
1

ε
+

1

φ

)
and ξ ≡ γ

(
µ+ η

ε− 1

ε

)

Lemma 24 Let D, S and T be the determinant, the sum of diagonal minors of

order two and the trace. Thus,

D = λ1λ2λ3 =
as

τ

[
(1 + µ)

(
n− aµ

φ

)
− ξ

φ

]
S = λ1λ2 + λ1λ3 + λ2λ3 =

3∑
i=1

detMii =
aθξ − ns

τ
− aρ (1 + µ)

T = λ1 + λ2 + λ3 = ρ− a+ aµ
θ − τ

τ

Proof. See the Appendix.
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Surprisingly and fortunately, D, S and T no longer depends on the steady state

values (λ, k, P ). However, α and σ depends on k. We will focus on functional forms

such that α and σ are constant. For instance, f (kt) = Akαt is characterized by σ = 1

and α constant.

3.3.3 Local bifurcations and local indeterminacy

Saddle-node bifurcation

Proposition 25 A saddle-node bifurcation generically occurs if and only if

ξ = ξS ≡ (1 + µ) (φn− aµ)

or, equivalently, if and only if

ηS =
ε+ φ+ φµ

ε− 1
(3.28)

Proof. See the Appendix.

We observe that (3.28) is equivalent to

P

c

∂c

∂P
= η

ε− 1

ε
= 1 +

φ

ε
(1 + µ)

In this case, a saddle-node bifurcation is not surprising. Indeed, a saddle-node

is associated to a multiplicity of steady states. We have seen before that uniqueness

requires ες (λ) < 0. But

P

c

∂c

∂P
= 1 +

φ

ε
(1 + µ) = 1 +

φ

ε

(
1− P

l

∂l

∂P

)

is equivalent to ες (λ) = 0 entailing a change in the number of steady states.
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Hopf bifurcation

Let

ηH ≡ ε

ε− 1

(
ξH
γ

− µ

)
with

ξH ≡
s (1 + µ)

(
n− aµ

φ

)
+
(
ρτ (1 + µ) + ns

a

) (
ρ− a− aµ τ−θ

τ

)
s
φ
+ θ

(
ρ− a− aµ τ−θ

τ

)
Proposition 26 (limit cycles) There exists a parameter region such that, when η

goes through ηH , the system undergoes a Hopf bifurcation.

Proof. See the Appendix.

It is interesting to see that limα→1 ηH = ε/ (ε− 1). Then, ηH > 0 iif ε > 1.

Recall that

P

c

∂c

∂P
= −η1− ε

ε

that is, in this limit case, a Hopf bifurcation occurs only under a compensation e�ect

(∂c/∂P > 0 or εPc > 0) according to Michel and Rotillon (1996).

Assume a rise of P near the steady state. Since ∂c/∂P > 0 and ∂l/∂P < 0

(matrix (3.21)), this entails an increase of c jointly with a decrease of k and a

decrease of l. These two e�ects imply a fall in the production level and, in turn, a

decrease of pollution. By this channel, deterministic endogenous �uctuations occur

near the steady state.

a represents the pollution inertia, that is, when ma is less than ρ, say a ≈ 0, P

becomes more volatile and the occurrence of cycle more likely.

It is interesting to notice that the curvature of the intensive production function

(Cobb-Douglas) can moderate or exacerbate the environmental e�ects of a variation

in the saving/investment level. Indeed, if, as before, as above a ≈ 0, the pollution
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accumulation process writes Ṗ = blAkα. Thus, when α becomes closer to zero,

a variation of k has a little e�ect on P , while when α tends to one, this e�ect is

maximal and the occurrence of cycle more likely.

Local indeterminacy

Proposition 27 (local indeterminacy through a Hopf bifurcation) If

as

τ

[
(1 + µ)

(
n− aµ

φ

)
− ξH

φ

]
< 0

then there exists a parameter region where indeterminacy occurs.

Proof. See the Appendix.

Proposition 28 (local indeterminacy through a saddle-node bifurcation) Let pS be

the saddle-node bifurcation value of a parameter p such that D (pS) = 0. If

Re

T (pS)

2
−

√[
T (pS)

2

]2
− S (pS)

 < 0

Re

T (pS)

2
+

√[
T (pS)

2

]2
− S (pS)

 < 0

then, generically, there exists a parameter region where indeterminacy occurs.

Proof. Apply Proposition 20.

The possibility of self-ful�lling prophecies rests on equilibrium indeterminacy.

Let us provide an intuition for them in our economy.

Let the economy be at the steady state and assume that any consumer expect

today an increase in the pollution level tomorrow. Since ∂c/∂P > 0 and ∂l/∂P < 0,

she wants a higher consumption demand tomorrow jointly with a lower labor supply.

She needs to save more today to �nance a larger consumption tomorrow under a
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lower labor income. The increase in capital intensity will enhance the production

level and promote an increase in the pollution stock. Hence, the expectation of

higher pollution tomorrow turns out to be self-ful�lling.

3.4 Conclusion

We have considered an economy à la Ramsey where production pollutes and the

negative externality a�ects consumption demand and labor supply.

Within this simple framework, we have found that a strong compensation e�ect

jointly with a strong leisure e�ect generates local indeterminacy through a Hopf

bifurcation. Despite the lack of empirical evidences on the pollution e�ects on con-

sumption demand, the leisure e�ect, pointed out in recent empirical contributions,

legitimates our theoretical result.
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3.5 Appendix

Proof of Proposition 13

The Hamiltonian writes H̃ = e−ρtU (c, l, P )+ λ̃ [(r − δ)h+ wl − c] and the �rst-

order conditions

∂H̃/∂λ̃ = (r − δ)h+ wl − c = ḣ

∂H̃/∂h = λ̃ (r − δ) = −λ̃′

∂H̃/∂c = e−ρtUc − λ̃ = 0

∂H̃/∂l = e−ρtUl + λ̃w = 0

jointly with the transversality condition limt→∞ λ̃ (t)h (t) = 0. Setting λ ≡ eρtλ̃, we

�nd λ̇ − ρλ = eρtλ̃′ and equations in Proposition 13. The discounted Hamiltonian

H ≡ eρtH̃ becomes H = U (c, l, P ) + λ [(r − δ)h+ wl − c].

Proof of Proposition 14

Di�erentiating the system

λ− Uc (c, l, P ) = 0

λw (k) + Ul (c, l, P ) = 0

we get

εcc
dc

c
+ εlc

dl

l
=
dλ

λ
− εPc

dP

P

εcl
dc

c
+ εll

dl

l
=
dλ

λ
+
α

σ

dk

k
− εPl

dP

P

that is  dc
c

dl
l

 =
M

εccεll − εlcεcl


dλ
λ

dk
k

dP
P
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whereM is given by (3.9). Thus, we obtain the following matrix of partial elasticities

(3.8).

Proof of Proposition 15

Let us reconsider the dynamic system:

λ̇ = λ [ρ+ δ − r (k)]

ḣ = (r − δ)h+ wl − c

Ṗ = −aP + blf (k)

We observe that h = kl and, thus,

ḣ

h
=
k̇

k
+
l̇

l

In addition, l = l (λ, k, P ) and, thus,

l̇

l
=
λ

l

∂l

∂λ

λ̇

λ
+
k

l

∂l

∂k

k̇

k
+
P

l

∂l

∂P

Ṗ

P

where the elasticities

λ

l

∂l

∂λ
,
k

l

∂l

∂k
,
P

l

∂l

∂P

are given by (3.8).

We obtain the following three-dimensional dynamic system

λ̇

λ
= ρ+ δ − r (k)

k̇

k
= r (k)− δ +

w (k)

k
− c (λ, k, P )

kl (λ, k, P )
− l̇

l

= r (k)− δ +
w (k)

k
− c (λ, k, P )

kl (λ, k, P )
− λ

l

∂l

∂λ

λ̇

λ
− k

l

∂l

∂k

k̇

k
− P

l

∂l

∂P

Ṗ

P

Ṗ

P
= b

l (λ, k, P ) f (k)

P
− a

that is system (3.12).
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Proof of Proposition 16

Focus �rst on existence.

Assumption 6 ensures that a stationary level of capital k exists according to

equation (3.13). The concavity of f ensures also that there is a unique stationary

level of capital. The di�culty consists in proving that a pair (λ, P ) satisfying system

(3.14)-(3.15) exists and is unique, given k.

We apply �rst the Implicit Function Theorem to equation (3.17) to obtain a

function P (λ) with

P ′ (λ) =
λlλ
l
l
λ

a
bf(k)

− PlP
l

l
P

Noticing that, at the steady state, l/P = a/ (bf), we get the multiplier elasticity

of pollution

ζ ≡ λP ′ (λ)

P (λ)
=

λlλ
l

1− PlP
l

Replacing P = P (λ) into equation (3.16), we �nd

ς (λ) ≡ c (λ, k, P (λ))

l (λ, k, P (λ))
= ρk + w (k) > 0

with

ες (λ) ≡
λς ′ (λ)

ς (λ)
=
λcλ
c

− λlλ
l

+ ζ

(
PcP
c

− PlP
l

)
=
λcλ
c

− λlλ
l

1− PcP
c

1− PlP
l

(3.29)

Let us prove that limλ→0 ς (λ) > ρk + w (k) > limλ→∞ ς (λ). These boundary

conditions are su�cient conditions for equilibrium existence.

From the static consumption-leisure arbitrage, we know that λ = Uc and λw (k) =

−Ul. It follows that λ → 0 implies Uc → 0 and Ul → 0 and in turn c → +∞ and

l → 0. In the same way, λ → +∞ implies that Uc → +∞ and Ul → −∞, in turn
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c → 0 and l → +∞. Therefore, limλ→0 ς (λ) = +∞ and limλ→∞ ς (λ) = 0. Then,

there exists a stationary solution.

Focus now on uniqueness.

Monotonicity of ς (λ) implies the steady state uniqueness. More precisely, since

limλ→0 ς (0) > ρk + w (k) > limλ→∞ ς (λ), the negativity of ες implies the steady

state uniqueness.

Under Assumption 7 (separability), expression (3.29) writes

ες (λ) =
λcλ
c

− λlλ
l

1− PcP
c

1− PlP
l

=
1

εcc
− 1

εll

1 + εPc

εcc

1 + εPl

εll

(3.30)

(see elasticities (3.11)) with εcc < 0 and εll > 0. Thus ες (λ) < 0 if and only if

1 + εPc

εcc

1 + εPl

εll

>
εll
εcc

Thus, a su�cient condition for ες (λ) < 0 is εPc < −εcc (distate e�ect (εPc < 0)

or weak compensation e�ect (0 < εPc < −εcc)) jointly with εPl > −εll (leisure e�ect

(εPl > 0) or weak disenchantment e�ect (−εll < εPl < 0)), we have ες (λ) < 0. In

the other cases, multiple steady state may occur.

Proof of Proposition 17

Generically, λ3 = 0 if and only if D = 0. In this case, S = λ1λ2 and T = λ1+λ2.

Solving this system of two equations for λ1 and λ2, we get (3.19) and (3.20).

Proof of Proposition 18

Necessity In a three-dimensional dynamical system, we require at the bifurcation

value: λ1 = ib = −λ2 with no generic restriction on λ3 (see Bosi and Ragot (2011)

or Kuznetsov (2004) among others). The characteristic polynomial of J is given by:

P (λ) = (λ− λ1) (λ− λ2) (λ− λ3) = λ3 − Tλ2 + Sλ−D. Using λ1 = ib = −λ2, we

�nd D = b2λ3, S = b2, T = λ3. Thus, D = ST and S > 0.
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Su�ciency In the case of a three-dimensional system, one eigenvalue is always

real, the others two are either real or nonreal and conjugated. Let us show that, if

D = ST and S > 0, these eigenvalues are nonreal with zero real part and, hence, a

Hopf bifurcation generically occurs.

We observe that D = ST implies

λ1λ2λ3 = (λ1λ2 + λ1λ3 + λ2λ3) (λ1 + λ2 + λ3)

or, equivalently,

(λ1 + λ2)
[
λ23 + (λ1 + λ2)λ3 + λ1λ2

]
= 0 (3.31)

This equation holds if and only if λ1+λ2 = 0 or λ23+(λ1 + λ2)λ3+λ1λ2 = 0. Solving

this second-degree equation for λ3, we �nd λ3 = −λ1 or −λ2. Thus, (3.31) holds if

and only if λ1 +λ2 = 0 or λ1 +λ3 = 0 or λ2 +λ3 = 0. Without loss of generality, let

λ1 + λ2 = 0 with, generically, λ3 ̸= 0 a real eigenvalue. Since S > 0, we have also

λ1 = −λ2 ̸= 0. We obtain T = λ3 ̸= 0 and S = D/T = λ1λ2 = −λ21 > 0. This is

possible only if λ1 is nonreal. If λ1 is nonreal, λ2 is conjugated, and, since λ1 = −

λ2, they have a zero real part.

Proof of Proposition 19

Necessity In the real case, we obtain D = λ1λ2λ3 < 0, S = λ1λ2+λ1λ3+λ2λ3 > 0

and T = λ1 + λ2 + λ3 < 0.

Su�ciency We want to prove that, if D,T < 0 and S > 0, then λ1, λ2, λ3 < 0.

Notice that D < 0 implies λ1, λ2, λ3 ̸= 0.

D < 0 implies that at least one eigenvalue is negative. Let, without loss of

generality, λ3 < 0. Since λ3 < 0 and D = λ1λ2λ3 < 0, we have λ1λ2 > 0. Thus,

there are two subcases: (1) λ1, λ2 < 0, (2) λ1, λ2 > 0. If λ1, λ2 > 0, T < 0 implies
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λ3 < − (λ1 + λ2) and, hence,

S = λ1λ2 + (λ1 + λ2)λ3 < λ1λ2 − (λ1 + λ2)
2 = −λ21 − λ22 − λ1λ2 < 0

a contradiction. Then, λ1, λ2 < 0.

Proof of Proposition 20

D (pS) = 0 if and only if λ3 (pS) = 0 without loss of generality.

Necessity If the equilibrium is locally indeterminate in a (left or right) neigh-

borhood of pS, then there exists ε > 0 such that Reλ1 (p) ,Reλ2 (p) , λ3 (pS) <

0 for any p ∈ (pS − ε, pS) or for any p ∈ (pS, pS + ε), and, hence, generically,

Reλ1 (pS) ,Reλ2 (pS) < 0 and λ3 (pS) = 0.

Su�ciency If Reλ1 (pS) ,Reλ2 (pS) < 0 and λ3 (pS) = 0, then there exists

ε > 0 such that Reλ1 (p) ,Reλ2 (p) , λ3 (pS) < 0 (local indeterminacy) for any

p ∈ (pS − ε, pS) or for any p ∈ (pS, pS + ε).

Proof of Corollary 21

Necessity If local indeterminacy occurs through a saddle-node bifurcation at

p = pS, that is Reλ1 (pS) ,Reλ2 (pS) < 0 and λ3 (pS) = 0 (Proposition 20), then,

in the real case, D (pS) = λ1 (pS)λ2 (pS)λ3 (pS) = 0, S (pS) = λ1 (pS)λ2 (pS) > 0 and

T (pS) = λ1 (pS)+λ2 (pS) < 0, and, in the nonreal case,D (pS) = λ1 (pS)λ2 (pS)λ3 (pS) =

0, S (pS) = λ1 (pS)λ2 (pS) = [Reλ1 (pS)]
2 + [Imλ1 (pS)]

2 > 0 and T (pS) = λ1 (pS) +

λ2 (pS) = 2Reλ1 (pS) < 0.

Su�ciency Conversely, if D (pS) = 0, S (pS) > 0 and T (pS) < 0, then D (pS) =

λ1 (pS)λ2 (pS)λ3 (pS) = 0 implies without loss of generality λ3 (pS) = 0, S (pS) =

λ1 (pS)λ2 (pS) and T (pS) = λ1 (pS)+λ2 (pS). If λ1 (pS) and λ2 (pS) are real, S (pS) >

0 and T (pS) < 0 implies λ1 (pS) , λ2 (pS) < 0, while, if λ1 (pS) and λ2 (pS) are nonreal

T (pS) = 2Reλ1 (pS) < 0, so that Reλ1 (pS) = Reλ2 (pS) < 0. Thus, in both the
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cases, Reλ1 (pS) ,Reλ2 (pS) < 0 and λ3 (pS) = 0, and Proposition 20 implies local

indeterminacy through a saddle-node bifurcation at p = pS.

Proof of Proposition 22

By Proposition 18, we haveReλ1 (pH) = Reλ2 (pH) = 0. D (pH) = [Imλ1 (pH)]
2 λ3 (pH) <

0 implies λ3 (pH) < 0. Thus, there exists ε > 0 such that, generically, we have

Reλ1 (p) ,Reλ2 (p) , λ3 (p) < 0 (local indeterminacy) for any p ∈ (pH − ε, pH) or,

alternatively, for any p ∈ (pH , pH + ε).

Proof of Proposition 23

ες (λ) ≡ λς ′ (λ) /ς (λ) and ς (λ) > 0. Expression (3.30) writes:

ες (λ) =
λcλ
c

− λlλ
l

1− PcP
c

1− PlP
l

= −1

ε
− 1

φ

1 + η 1−ε
ε

1 + ψ 1+φ
φ

We know that +∞ = limλ→0 ς (λ) > ρk+w (k) > limλ→∞ ς (λ) = 0. Thus, there

exists a unique stationary solution only when ες (λ) < 0.

Proof of Lemma 24

The Jacobian matrix (3.18) becomes:

J =


0 sλ

k
0

∂f2
∂λ

∂f2
∂k

∂f2
∂P

aλlλ
l
P
λ

a
(
α + klk

l

)
P
k

a
(
PlP
l

− 1
)


with

∂f2
∂λ

=
1

τ

k

λ

[
aµ
λlλ
l

+ γ

(
λlλ
l

− λcλ
c

)]
∂f2
∂k

=
1

τ

[
aµ

(
α +

klk
l

)
+ γ

(
klk
l

− kck
c

)
+ ρ− s

φ

]
∂f2
∂P

=
1

τ

k

P

[
aµ

(
PlP
l

− 1

)
+ γ

(
PlP
l

− PcP
c

)]
because, at the steady state,

c

kl
= γ > 0,

w

k
= r

1− α

α
and b

lf (k)

P
= a
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Using (3.2), (3.3) and (3.21), we �nd

J = (mij) =


0 sλ

k
0

n
τ
k
λ

ρ+ aµ θ
τ

− ξ+aµ(1+µ)
τ

k
P

a
φ
P
λ

aθP
k

−a (1 + µ)



Proof of Proposition 25

A saddle-node bifurcation generically occurs if and only if

D =
as

τ

[
(1 + µ)

(
n− aµ

φ

)
− ξ

φ

]
= 0

(Proposition 17).

Proof of Proposition 26

Focus on Proposition 18. We know that a Hopf bifurcation arises if and only if

D = ST and S > 0. We know that

D =
as

τ

[
(1 + µ)

(
n− aµ

φ

)
− ξ

φ

]
S =

aθξ − ns

τ
− aρ (1 + µ)

T = ρ− a+ aµ
θ − τ

τ

Thus, a Hopf bifurcation arises if and only if

as

τ

[
(1 + µ)

(
n− aµ

φ

)
− ξ

φ

]
=

(
aθξ − ns

τ
− aρ (1 + µ)

)(
ρ− a+ aµ

θ − τ

τ

)
aθξ − ns

τ
− aρ (1 + µ) > 0

that is if and only if

ξH ≡
s (1 + µ)

(
n− aµ

φ

)
+
(
ρτ (1 + µ) + ns

a

) (
ρ− a− aµ τ−θ

τ

)
s
φ
+ θ

(
ρ− a− aµ τ−θ

τ

)
ξH >

ns+ aρτ (1 + µ)

aθ
(> 0)
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A Hopf bifurcation generically occurs if the following restriction is satis�ed:

s (1 + µ)
(
n− aµ

φ

)
+
(
ρτ (1 + µ) + ns

a

) (
ρ− a− aµ τ−θ

τ

)
s
φ
+ θ

(
ρ− a− aµ τ−θ

τ

) >
ns+ aρτ (1 + µ)

aθ

(3.32)

If

s

φ
+ θ

(
ρ− a− aµ

τ − θ

τ

)
> 0 (3.33)

(3.32) becomes equivalent to

a (1 + µ) (φnθ − τρ− aµθ)− ns > 0 (3.34)

Let us show that inequalities (3.33) and (3.34) are satis�ed for some parametric

values. Consider the case a < ρ and α ≈ 1. Inequalities (3.33) and (3.34) become

lim
α→1

[
s

φ
+ θ

(
ρ− a− aµ

τ − θ

τ

)]
= θ (ρ− a) > 0

and

lim
α→1

[a (1 + µ) (φnθ − τρ− aµθ)− ns] = aρτ (1 + µ)
φ

ε
> 0

because

lim
α→1

n ≡ µ
a

φ
+ ρ

(
1

ε
+

1

φ

)

Proof of Proposition 27

Notice that

D (pH) =
as

τ

[
(1 + µ)

(
n− aµ

φ

)
− ξH

φ

]
< 0

and apply Proposition 22.
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Chapter 4

Regressive environmental taxation

and local indeterminacy

4.1 Introduction

The previous chapters have pointed out the dynamical complexity arising from the

interplay between growth and pollution externalities. In the present chapter, we

analyze the existing evironmental friendly �scal policies.

A lot of scholars have pointed out the regressive nature of environmental taxa-

tion. Grainger and Kolstad (2009), Hasset, Mathur and Metcalf (2007) or West and

Williams (2004) show evidences of carbon tax regressivity, with respect to house-

hold's incomes, for the United States and Wier et al (2005) for the Denmark. More

generally, Speck (1999) shows that carbon tax are regressive in most of OECD coun-

tries while the EEA (2011) insists on this regressivity in most of European countries.

For example, "in the United Kingdom, the sum of environmental taxes and charges

clearly has a regressive impact on households, with the proportion of income paid
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decreasing consistently as income levels rise"(EEA 2011).

Such a regressivity implies negative distributional e�ects (Grainger and Kolstad

2009) but this is possibly not the only disadvantage of such a tax scheme. Indeed,

the literature point out the ambiguous e�ects of non-linear income taxes on the

macroeconomic stability, especially when the Government faces a balanced budget

constraint. On one hand, Schmitt-Grohé and Uribe (1997) and Guo and Lansing

(1998) stress respectively the destabilizing e�ect of a regressive income tax and the

stabilizing impact of a progressive tax scheme within a Ramsey model. On the other

hand, Guo and Harrison (2001) analyze a two sectors economy and they �nd that a

regressive tax policy can prevent the economy from expectations driven �uctuations

when the investment externalities are strong enough. In addition, Bosi and Seeg-

muller (2010) show that progressive income tax can promote local indeterminacy in

a Ramsey model when the households are heterogeneous as in Becker (1980). Thus,

it appears that the (de)-stabilizing e�ect of regressive income taxes seems to depend

crucially upon the framework of analysis. Departing from this observation, one can

rise the question of the (de)-stabilizing e�ect of regressive income tax when the tax

revenues serve to �nance depollution expenditures.

To answer this important question, we develop a Ramsey economy where a pol-

lution externality comes from the capital accumulation and reduces the household's

satisfaction. The Government levies a regressive capital income tax to �nance pub-

lic depollution expenditures. Within this simple framework, we �nd that such a

regressivity may promote expectation-driven �uctuations. Such a conclusion stress
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another possible adverse e�ect of environmental taxes used in most of OECD coun-

tries.

In addition, our result contribute also to the literature on the interplay between

pollution externalities and local indeterminacy. Indeed, some scholars have already

explored the link between environmental externalities and local indeterminacy within

a Ramsey framework. In particular, Itaya (2008) have shown that a pollution ex-

ternality enhances the parameter region for which local indeterminacy occurs in an

endogenous growth model very close to Benhabib and Farmer (1994). And more

recently, Fernandez, Perez and Ruiz (2012) have stressed the role of non separability

between consumption and pollution in the utility function for the occurrence of such

dynamical phenomena. Our result complete this literature in three points: 1) we

show that local indeterminacy can occur when pollution is seen as a stock variable

while this literature remain focused on a �ow pollution externality, 2) we stress the

role of the capital-labor substitution while the literature assume in most cases a

Cobb-Douglas production function and 3) We stress the role of environmental tax-

ation to explain endogenous business cycles.

The rest of the chapter is organized as follows: 1) we present the model, 2) we

analyze the local dynamics, 3) we give some economic interpretations and 4) we

conclude the chapter.
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4.2 The model

We analyze a discrete time Ramsey economy where a pollution externality comes

from the capital accumulation and reduces the household's utility. The production

sector produces a single commodity which can be consumed/invested. A Government

levies a regressive capital income tax to �nance public depollution expenditures

according to a balanced budget-rule.

4.2.1 The households

At each time t, the household earns a wage wt from his inelastic labor supply and

receives capital income rtkt from his past saving. wt and rt are two competitive

market prices. We assume that the Government levies a capital income tax to �-

nance depollution expenditures, namely τ (rtkt). As in most European countries,

such a green tax is regressive, namely τ ′′ (rtkt) < 0. The after tax capital income is

represented by φ (rtkt), it follows that φ (rtkt) = rtkt [1− τ (rtkt)].

Assumption 8 1φ : R+ → R+, is C2 and φ (0) = 0. Moreover φ (x) ≤ x,

0 < φ′ (x) ≤ 1, lim
x→0

φ′ (x) = 0 and φ′′ (x) ≥ 0.

We de�ne by µ and η the �rst and second order elasticities of φ, namely :

(µ, η) ≡
(
xφ′ (x)

φ (x)
,
xφ′′ (x)

φ′ (x)

)
µ captures the rate of the ecotax while η captures its regressivity.

1We denote rk by x for a visibility convenience.

93



The representative household uses his incomes to consume ct and save kt+1 −

(1− δ) kt, where δ ∈ (0, 1) is the capital depreciation rate. The household's budget

constraint is then :

ct + kt+1 − (1− δ) kt = wt + φ (rtkt) (4.1)

The household's preferences are described by u (c, P ), where P is the aggregate

pollution level.

Assumption 9 u1 > 0, u2 < 0, u11 < 0, u12 ≥ 0 and lim
c→0

u1 (ct, Pt) = +∞,

lim
c→+∞

u1 (ct, Pt) = 0

We set :

(ε, ρ) ≡
(
−cu11 (c, P )
u1 (c, P )

,−Pu12 (c, P )
u1 (c, P )

)
ε is the inverse of the intertemporal elasticity of substitution in consumption

and ρ captures the impact of pollution on marginal utility of consumption. The sign

of the cross derivative u12, and in turn of ρ, is ambiguous. Following Michel and

Rotillon (1996), there is a distate e�ect if u12 < 0(ρ > 0) and a compensation e�ect

if u12 > 0(ρ < 0). Nevertheless, to the best of our knowledge, there is no empirical

evidences which can drive our investigation. We will analyze two di�erent cases

through this chapter. First, we will investigate the case where the utility function is

separable with respect to pollution and consumption, that is u12 = 0 and secondly,

we will assume a compensation e�ect, namely u12 > 0 (ρ < 0).

The household maximizes his intertemporal utility function
∑+∞

t=0 β
tu (ct, Pt)

94



with respect to his budget constraint (4.1), where β ∈ (0, 1) is a discount factor.

The �rst order conditions give the following dynamical Euler equation :

βu1 (ct+1, Pt+1) [rt+1φ
′ (rt+1kt+1) + γ] = u1 (ct, Pt) (4.2)

with γ = (1− δ), jointly with the transversality condition lim
t→+∞

βtu1 (ct, Pt) kt+1 =

0.

4.2.2 The representative �rm

At time t the representative �rm produces a single output Yt. Technology is repre-

sented by a constant returns to scale production function: Yt = AF (Kt, Lt), where

Kt and Lt are the demands for capital and labor at time t and A > 0 is a scale

parameter.

Assumption 10 The production function F : R2
+ → R+ is C1, is homogeneous

of degree one, strictly increasing and concave. Standard Inada conditions hold.

The �rm chooses the amount of capital and labor to maximize its pro�t taking

as given the real interest rate rt and the real wage wt. The program :

max
Kt,Lt

[AF (Kt, Lt)− rtKt − wtLt]

is correctly de�ned under assumption 10 and the �rst-order conditions write:

rt = Af ′ (kt) ≡ r (kt) (4.3)

wt = A [f (kt)− ktf
′ (kt)] ≡ w (kt) (4.4)
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where f (k) ≡ F (k, 1) is the average productivity and kt ≡ Kt/Lt denotes the capital

intensity at time t. For simplicity, we consider that there is no population growth

and we normalize the population size (N) to the unity, it follows that N = L = 1

and then kt = Kt. We set by α ∈ (0, 1) and σ > 0 the capital share in total income

and the elasticity of capital-labor substitution, namely :

α ≡ ktf
′ (kt)

f (kt)
(4.5)

σ ≡ −f ′ (kt)
[f (kt)− ktf

′ (kt)]

f ′′ (kt) f (kt) kt
(4.6)

4.2.3 The pollution

As in Forster (1973), pollution (P ) is an externality coming from the capital accu-

mulation (K) according to this simple linear process :

Pt+1 = (1−m)Pt + aKt − bBt (4.7)

pollution persist and its inertia is captured by m ∈ (0, 1), the natural rate of

pollution absorption. In addition, a ∈ (0, 1) and b ∈ (0, 1) capture respectively the

impact of capital accumulation on the environment and the e�cacity of depollution

expenditures (B).

4.2.4 The Government

The Government uses the tax revenues to �nance depollution expenditures according

to a balanced budget rule, namely :
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Bt = rtkt − φ (rtkt) (4.8)

4.3 The dynamical system

4.3.1 Intertemporal general equilibrium

The economy is composed by three markets : 1) the goods market, 2) the labor

market and 3) the capital market. Since the representative household supplies in-

elastically his labor and since the representative �rm maximizes its pro�t, the labor

market is always at the equilibrium. From the Walras law, if the goods market is at

the equilibrium, then all markets in the economy are at the equilibrium.

The goods market clearing condition is given by :

Yt = ct + kt+1 − (1− δ) kt +Bt (4.9)

from (4.3), (4.4) and (4.8), we can rewrite (4.9) as follows :

kt+1 = w (kt) + γkt + φ (rtkt)− ct

Proposition 29 An intertemporal general equilibrium for this economy is a non-

negative sequence {ct, kt, Pt}+∞
t=0 such that the following system is veri�ed :

u1 (ct, Pt) = βu1 (ct+1, Pt+1) [r (kt+1)φ
′ (kt+1r (kt+1)) + γ] (4.10)

kt+1 = w (kt) + γkt + φ (ktr (kt))− ct (4.11)

Pt+1 = (1−m)Pt + akt − b [ktr (kt)− φ (ktr (kt))] (4.12)
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The system formed by equations (4.10), (4.11) and (4.12) has two predetermined

variables, namely k and P , and one jump variable, namely c.

4.3.2 Steady state

Our �rst task is to ensure the existence of a steady state for the system de�ned by

equations (4.10)-(4.11)-(4.12), that is, the existence of a triplet (k, c, P ) ∈ R3
+ such

that kt+1 = kt = k, ct+1 = ct = c and Pt+1 = Pt = P .

At the steady state, equation (4.10) gives :

Af ′ (k)φ′ (Af ′ (k) k) =
1

β
− γ (4.13)

At the steady state, equations (4.11) and (4.12) imply that for every k satisfying

(4.13), there exists a unique c and a unique P . Then, the existence, the uniqueness or

the multiplicity of a steady state depends crucially upon the number of k satisfying

(4.13).

Proposition 30 Assume that there exists at least one k satisfying equation (4.13).

If η = 0, k is unique. If η > 0 jointly with σ < 1 − α, k is also unique. If η > 0

jointly with σ > 1− α, multiple k may satisfy equation (4.13).

Proof. We have to question the monotonicity of the LHS of 4.13 w.r.t k :

∂LHS

∂k
=

1

k

(
1

β
− γ

){
η

[
1−

(
1− α

σ

)]
− 1− α

σ

}

If η = 0, ∂LHS
∂k

< 0. If η > 0, the sign of ∂LHS
∂k

, depends crucially upon σ, if

σ < 1− α, then ∂LHS
∂k

< 0 and if σ > 1− α, then ∂LHS
∂k

≶ 0. Proposition 30 follows.
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Empirical evidences suggest that σ > 1−α (Du�y and Papageorgiou 2000) and in

turn that the economy possesses multiple steady state. To facilitate the exploration

of local dynamics, we choose to normalize the steady state (Cazzavillan, Lloyd-Braga

and Pintus 1998, Magris 2012).

Proposition 31 (Existence of a normalized steady state (NSS))There exists a unique

A such that k = 1.

Proof. Let us rewrite (4.13) as follows :

Af ′ (1) =

(
1

β
− γ

)
1

φ′ (Af ′ (1))
(4.14)

From assumption 8 :

lim
A→0

Af ′ (1) < lim
A→0

(
1

β
− γ

)
1

φ′ (Af ′ (1))
(4.15)

lim
A→+∞

Af ′ (1) > lim
A→+∞

(
1

β
− γ

)
1

φ′ (Af ′ (1))
(4.16)

In addition :

∂

∂A
[Af ′ (1)] > 0 (4.17)

∂

∂A

[(
1

β
− γ

)
1

φ′ (Af ′ (1)H)

]
< 0 (4.18)

From the intermediate value theorem, relations (4.15), (4.16), (4.17) and (4.18)

imply that there exist a unique A such that equation (4.14) is veri�ed.
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4.4 Local dynamics

Our aim is to analyze the stability properties of the system (4.10)-(4.11)-(4.12) near

the normalized steady state (NSS). We compute the Jacobian matrix J evaluated

at the NSS and we set λ an eigenvalue of J . Our task now is to de�ne how λ moves,

with respect to the unit circle, when η moves from 0 to +∞, that is to say when

the regressivity degree of the ecotax moves from 0 to +∞. In other words, η is our

bifurcation parameter.

When λ enters or leaves the unit circle, there is a sudden qualitative change of the

behavior of the dynamical system. In such a situation, a local bifurcation occurs2.

More precisely, when one eigenvalue is just equal to 1 a saddle-node or a transcritical

or a pitchfork bifurcation occurs depending upon the number of steady states of the

economy. We have seen in proposition 30 that the economy may experience multiple

steady states but we do not know how many. For simplicity, we will say that a

"saddle-node type" bifurcation occurs when λ = 1. When λ = −1 the economic

system undergoes two-period cycles through a �ip bifurcation. Finally, When two

complex conjugate eigenvalues cross the unit-cycle, a limit cycle appears near the

steady state through a Hopf bifurcation.

We set Φ (λ) the characteristic polynomial of J :

Φ (λ) = λ3 − Tλ2 + Sλ−D (4.19)

with, T = λ1 + λ2 + λ3, D = λ1λ2λ3 and S = λ1λ2 + λ1λ3 + λ2λ3, where λ1,

λ2 and λ3 are the three eigenvalues of J , namely the three roots of (4.19). Posing

2The reader can refer to Kuznetsov (2004) or Bosi and Ragot (2011) for a simple presentation

of one-parameter bifurcations of �xed points in discrete-time dynamical systems.
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Φ (1) = 0, Φ (−1) = 0 and Φ (D) = 0 give all the relations between T ,S and D for

which, respectively, a "saddle-node type", a �ip and a Hopf bifurcation occurs. As

it was noticed by Barinci and Drugeon (2004)(2008), for a �xed value of D, each

of these three relations de�ne a straight line in the (S, T )-plane. Figure 1 gives a

representation of this two-dimensional plane and the typology3 (namely, numbers in

brackets) of the eigenvalues with respect to all possible values of D.

Figure 1

When (S, T ) goes through (AC), λ = 1 and a "saddle-node type" bifurcation

occurs, when (S, T ) goes through (AB), λ = −1 and a �ip bifurcation emerges and

when (S, T ) goes through [BC], Φ (D) = 0 and J possesses two complex conjugate

eigenvalues with unit modulus, then a Hopf bifurcation occurs.

A variation of η de�nes a straight line (∆) in the (S, T )-plane. Its position with

respect to the ABC triangle tells us about the stability of the economic system near

the NSS.

3The reader can refer to Barinci and Drugeon (1999, 2004) for more details.
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Assumption 11 To simplify the exposition, as in Sorger (2002), we assume that

there is no capital depreciation, namely γ = 1.

The linear operator J takes the following form :

J =


β
((

1
β
− 1

)
(η (1− ω)− ω)

)
−ε −ρ

1 0 0

0 0 B
m


−1

∗


0 −ε −ρ

1 +
(

1
β
− 1

)
(1− ω) + rω −r

(
1−α
α

)
− φ 0

a− b (1− ω)
(
r −

(
1
β
− 1

))
0

(
1−m
m

)
B


With ω = 1−α

σ
, B = a+ b (φ− r) and, at the NSS φ = r (1− τ).

Remember that the dynamical system has two predetermined variables and one

jump variable, then indeterminacy can occur if and only if J possesses three eigenval-

ues lying inside the unit circle (See Grandmont 2008). At this step of the reasoning,

we can show that indeterminacy is ruled-out if the ecotax takes the form of a �at

tax, it is the meaning of the following proposition :

Proposition 32 Indeterminacy is ruled out if η = 0.

Proof. Assume that the ecotax is a �at tax (η = 0), the characteristic polynomial

evaluated for λ = 1 is de�ned by :

Φ (1) = − m

ασε
(1− β) (r (1− α) + αφ) (1− α) < 0 (4.20)

notice that there is only two pre-determined variables, since lim
λ→+∞

Φ (λ) = +∞,

relation (4.20) implies that J possesses always a real eigenvalue greater than 1. Thus,
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indeterminacy is ruled-out because the dimension of the stable manifold can never

exceed the number of pre-determined variables.

4.4.1 The separable model

Through this subsection, we investigate the case where the utility function is sepa-

rable between consumption and pollution, that is u12 = 0 (ρ = 0). The determinant

of J is given by :

D =
(1−m) [(1− α) (β (1 + r)− 1) + σ]

σβ
> 0

We can make two major comments on this expression. First of all, D does not

depend on η, then a variation of η does not modify the ABC triangle. Secondly, a

high level of natural pollution absorption implies that D ∈ (0, 1).

Proposition 33 Assume that σ > 1− α and m ≈ 1 :

If η ∈ (0, ηs), J possesses two eigenvalues4 inside and one outside the unit circle.

Thus equilibrium determinacy and the steady state is locally stable.

If η ∈
(
ηs, ηf

)
, J possesses two eigenvalues5 outside and one inside the unit

circle. Thus equilibrium determinacy and the steady state is locally unstable.

If η > ηf , J possesses two eigenvalues inside and one outside the unit circle.

Thus equilibrium determinacy and the steady state is locally stable.

When η = ηs, J possesses one eigenvalue just equal to 1 and a saddle-node type

bifurcation occur and when η = ηf , J possesses one eigenvalue just equal to −1, then

a two-periods cycle appears near the NSS through a �ip bifurcation.

4With ηs = 1−α
σ−(1−α)

5With ηf = β(1−α)(r((1−α)(1−β)+2αε)+αφ(1−β))+2αε(σ(1+β)−(1−α)(1−β))
β(1−β)(σ−(1−α))(r(1−α)+αφ)
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Proof. See Appendix.

If σ < 1− α then ηs = 1−α
σ−(1−α) < 0 but a regressive feature requires that η > 0.

In other words, the ecotax regressivity can induce a loss of stability only when

σ > 1− α.

Figure 2 gives an illustration of proposition 33:

Figure 2

In order to show the relevance of the last proposition, let us analyze a simple

numerical example. We �x a = b = 0.5, m = 0.9, r = 0.02, τ = 0.1, β = 0.99, σ = 1,

α = 0.33, ε = 2. In such a situation, ηs = 1−α
σ−(1−α) = 2.0303, we obtain the following

results :

λ1 λ2 λ3

η = 0 0.1 0.992 09 1. 024 8

η = 1 0.1 0.995 36 1. 021 4

η = 2.0303 0.1 1.0 1. 016 7

η = 4 0.1 1. 008 3− 1. 106 2× 10−2i 1. 008 3 + 1. 106 2× 10−2i
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This illustrates that the economic equilibrium loose its local stability when the

ecotax regressivity is high enough (η > ηs).

4.4.2 The non-separable model

Assumption 12 To simplify the discussion, we assume that a = b.

Through this subsection, we analyze a non-separable utility function: in what

follows, we assume a compensation e�ect, namely u12 > 0 (ρ < 0). Such a con�gura-

tion is more di�cult to handle because D′ (ρ) ̸= 0, thus the ABC triangle depends

crucially upon ρ. Surprisingly, D is a linear function of ρ :

D = −ρmb (r (1− α) + αφ) (σβ − (σ − (1− α)) (β (1 + r)− 1))

ασβεb (1 + φ− r)
(4.21)

+ (1−m)
((σ − (1− α) (1− β)) + rβ (1− α))

σβ

It appears that D′ (ρ) < 0 and fortunately, D does not depend upon the regres-

sivity degree of the tax function. Then, for a �xed value of ρ, a variation of η does

not modify the ABC triangle.

We set :

ρ∗ = −αε ((1− r) + φ)

r (1− α) + αφ

(1− β) (σ − (1− α)) + rβ (1− α)

(1− α) (β (1 + r)− 1) + σ (1− rβ)

ρ∗∗ = −αε
m

(1− r) + φ

r (1− α) + αφ

∗ (m (σ − (1− α) (1− β))− (1− β) (σ − (1− α)))− rβ (1− α) (1−m)

σ − (1− α) (1− β)− rβ (σ − (1− α))

When β ≈ 1, it follows that ρ∗ < 0, ρ∗∗ < 0 with ρ∗ > ρ∗∗.
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Proposition 34 D ∈ (0, 1) if and only if ρ ∈ (0, ρ∗∗) .

Proof. Simply remark that D′ (ρ) < 0 with D (0) ∈ (0, 1) and D (ρ∗∗) = 1.

Proposition 35 Assume that σ > 1− α and ρ ∈ (ρ∗∗, ρ∗) :

If η ∈ (0, ηs), J possesses two eigenvalues inside and one outside the unit circle.

Thus equilibrium determinacy and the steady state is locally stable.

If η ∈
(
ηs, ηH

)
, J possesses three eigenvalues inside the unit circle. There exists

a continuum of equilibrium near the steady state.

If η ∈
(
ηH , ηf

)
, J possesses two eigenvalues outside and one inside the unit

circle. The steady state is locally unstable.

If η > ηf , J possesses two eigenvalues inside and one outside the unit circle.

Thus equilibrium determinacy and the steady state is locally stable.

When η = ηs(with ηs = 1−α
σ−(1−α)), J possesses one eigenvalue just equal to 1 and a

saddle-node type bifurcation occur, when η = ηH , J possesses two complex conjugate

eigenvalues with unit modulus, then a limit cycle occurs near the NSS through a Hopf

bifurcation. Finally, when η = ηf , J possesses one eigenvalue just equal to −1, then

a two-periods cycle appears near the NSS through a �ip bifurcation.

Proof. See Appendix.

As before, it appears that ηs > 0 if and only if σ > 1−α, then sunspot equilibria

can occur only for this parametric region.

Figure 3 gives an illustration of the last proposition :
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Figure 3

Remark 36 We don't give the explicit expression of ηH due to its very complicated

expression.

If we consider the previous example, it follows that ρ∗ = −0.571 77 and ρ∗∗ =

−34. 106. First, assume that ρ > ρ∗, for example ρ = −0.2, we obtain:

λ1 λ2 λ3

η = 0 1. 020 7 0.990 45 0.105 78

η = 1 1. 017 0 0.994 09 0.105 78

η = 2.0303 1. 011 0 1.0 0.105 78

η = 4 1. 005 4 + 1. 275 8× 10−2i 1. 005 4− 1. 275 8× 10−2i 0.105 78

in this case, the stability properties of our dynamical system are the same as the

separable model.

Now, assume that ρ ∈ (ρ∗∗, ρ∗), for example, we set ρ = −2. In this case :
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λ1 λ2 λ3

η = 0 1. 004 3 0.951 02 0.161 6

η = 1 1. 002 3 0.952 96 0.161 6

η = 2.0303 1.0 0.955 13 0.161 6

η = 4 0.994 88 0.960 06 0.161 6

We can see that such a value of ρ implies local indeterminacy when η > ηs.

It is interesting to notice that for every ρ, we have always ηs = 1−α
σ−(1−α) , it implies

that a high elasticity of capital-labor substitution induces a low value of ηs. Du�y

and Papageorgiou (2000) have found empirical evidences for σ ∈ [1.24, 3.24], this

induces that ηs ∈ [0.260 7, 1. 175 4] for α = 0.33. It follows that sunspot �uctuations

are more likely when the elasticity of capital-labor substitution is high.

4.5 Economic interpretations

Within the previous section, we have found that local indeterminacy occurs if and

only if :

1. The compensation e�ect is high enough (ρ ∈ (ρ∗∗, ρ∗)).

2. The ecotax regressivity is strong enough (η > ηs).

3. The elasticity of capital-labor substitution is not too low (σ > 1− α).

Since Azariadis (1981), it is well-known that an economic interpretation of local

indeterminacy is the occurrence of self-ful�lling expectations.

Assume that the economy is at the NSS at time t and assume also that the

patient household expects rationally an increase of Pt+1. Since ρ < 0, he knows that
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he will increase ct+1. In order to do so, he has to increase his present saving, namely

kt. At this step of the reasoning, it is interesting to have in mind that :

∂ [f ′ (kt)Hkt]

∂kt
= Hf ′ (kt)

(
1−

(
1− α

σ

))
Since σ > 1−α, it follows that ∂[f ′(kt)Hkt]

∂kt
> 0. That is, an increase of kt produces

an increase of f ′ (kt)Hkt. Remember now that :

Pt+1 = (1−m)Pt + [aHkt + bφ (f ′ (kt)Hkt)]− bf ′ (kt)Hkt (4.22)

An increase of kt induces an increase of [aHkt + bφ (f ′ (kt)Hkt)] and an increase

of bf ′ (kt)Hkt. Recall that η measures the convexity of φ, from equation (4.22), it

is obvious that there exists a convexity degree, namely a regressivity degree of the

ecotax, for which the increase of [aHkt + bφ (f ′ (kt)Hkt)] exceeds the increase of

bf ′ (kt)Hkt, renders the expectations on the pollution's level self-ful�lling.

It is interesting to remark that without the ecotax, such a mechanism cannot

appear. In other work, the Government put in place an ecotax to reduce the pollution

stock, but its regressivity induces a counterintuitive e�ect by which the pollution

level increases. Such a relation looks like a green paradox (Sinn 2008, Smulders,

Tsur and Zemel 2012).

4.6 Conclusion

Throughout this chapter, we have analyzed an environmental-Ramsey model where a

Government uses a regressive capital income tax to �nance depollution expenditures.

By analyzing the dynamics around the normalized steady state, we have found
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that the regressive feature of the ecotax is a necessary condition for which local

indeterminacy occurs.

The literature have stressed the fact that a regressive ecotax, with respect to

household's incomes, has negative distributional e�ects. The present result shows

that, in addition, such ecotaxes may promote macroeconomic volatility.
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4.7 Appendix

Proof of proposition 33 :

The characteristic polynomial evaluated at λ = 1 is given by :

Φ (1) =
m

ασε
(1− β) (r (1− α) + αφ) (α− 1 + η (α− 1 + σ))

when σ > 1− α, Φ (1) < 0 if η < 1−α
σ−(1−α) , Φ (1) > 0 if η > 1−α

σ−(1−α) and Φ (1) = 0

if η = 1−α
σ−(1−α) .

Since T and S are two linear function of η, it follows that a variation of η from

0 to +∞ de�ne an half-line (∆) in the (S, T )-plane with origin at (T (0) , S (0)) and

slope (∆)′ = S′(η)
T ′(η)

. Simple computation gives :

S ′ (η) = −β (1− β) (1−m)

ασβε
(σ − (1− α)) (r (1− α) + αφ) < 0

T ′ (η) = −(1− β)

ασε
(σ − (1− α)) (r (1− α) + αφ) < 0

(∆)′ = 1−m > 0

since a saddle-node type bifurcation occur for η = 1−α
σ−(1−α) > 0, it follows that

(T (0) , S (0)) is located under (A,C). By de�nition [B,C] cuts (AC) when T =

D+2. We de�ne by Ts the value of T when η = 1−α
σ−(1−α) . Simple computation allow

us to say that :

Ts − (D + 2) =
m

σβ
((1− β) (σ − (1− α)) + rβ (1− α)) > 0

it follows that (∆) cuts (AC) at a higher point than C.

Is it possible to have a Hopf bifurcation ? For answering this important question,

we compare the slope of [BC] and the one of (∆). By de�nition, the slope of [BC]

is given by D, and it appears that :
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D − (1−m) =
1

σβ
(1−m) ((1− β) (σ − (1− α)) + rβ (1− α)) > 0

It follows that the slope of [BC] is higher than the slope of (∆) and since (∆)

cuts (AC) at a higher point than C, it follows that a Hopf bifurcation is impossible,

thus indeterminacy is ruled-out. Proposition 33 follows.

Proof of proposition 35 :

Simple computation allow us to see that ρ has no impact on ηs and has no impact

(∆)′, that is :

ηs =
1− α

σ − (1− α)

(∆)′ = 1−m

interestingly, a variation of ρ from 0 to −∞ induce an upward translation of (∆)

in the (S, T )-plane, indeed :

(∆) : S = (1−m)T +D + Ω

with Ω = − (m((1−α)(1−β)−σ(β(2−m)+1))+σβ)−(1−α)mrβ
σβ

and :

D = −ρmb (r (1− α) + αφ) (σβ − (σ − (1− α)) (β (1 + r)− 1))

ασβεb (1 + φ− r)

+ (1−m)
((σ − (1− α) (1− β)) + rβ (1− α))

σβ

In addition, D is a linear function of ρ such that D′ (ρ) < 0 (recall that ρ < 0).

Such a variation of D induces some transformation of the ABC triangle and in

particular, it induces an increase of the slope of [BC] and consequently an upward
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motion of the point C (TC , SC), indeed, TC is such that (AC) = [BC], in other words

:

−1 + TC +D = 1 + (TC −D)D

thus :

TC = D + 2

it follows that TC increase linearly when ρ move from 0 to −∞. Is there exist D

for which TC > TS ?

We begin by de�ning TS, the value of T for which (∆) = (AC) :

(1−m)TS +D + Ω = −1 + TS +D

TS =
1 + Ω

m

and TC > TS if and only if :

D + 2 >
1 + Ω

m

D >
1 + Ω

m
− 2

This appears only when ρ < −α ε((1−r)+φ)
r(1−α)+αφ

(1−β)(σ−(1−α))+rβ(1−α)
(1−α)(β(1+r)−1)+σ(1−rβ) = ρ∗. Thus when

ρ ∈ (ρ∗, 0), the situation is close to the case when ρ = 0. A necessary condition for

local indeterminacy is that :

 TC > TS

D ∈ (0, 1)

113



Following proposition 34, D ∈ (0, 1) if and only if ρ ∈ (0, ρ∗∗). Since ρ∗∗ < ρ∗,

a necessary condition for local indeterminacy is that ρ ∈ (ρ∗∗, ρ∗). Thus, when η is

slightly higher than ηs with ρ ∈ (ρ∗∗, ρ∗), the three eigenvalues of J are inside the

unit circle and then local indeterminacy occurs. Proposition 35 follows.
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General conclusion

Through this dissertation, our objective was to bring out new mechanisms under

which pollution may promotes endogenous business cycles. Within the chapter 1,

we have considered a monetary OLG economy à la Samuelson (1958) where pollu-

tion reduces labor productivity. In this very simple context, we found that a strong

negative e�ect of pollution on labor productivity may promote sunspot equilibria

through a Hopf bifurcation. This result contributes to the literature in two points :

1. It shows that pollution's feedback on technology may promote endogenous

business cycles while the existing literature insists on the pollution's feedback

on the household's preferences.

2. It shows that the Gra� Zivin and Neidell (2012) empirical �nding works as a

destabilizing force for the economy.

Within the chapters 2 and 3, we have explored the macroeconomic incidences of

the pollution e�ects on labor supply empirically stressed by Hanna and Oliva (2011)

(among the others). In chapter 2, we have developed a Ramsey economy in order to

capture those e�ects. This allowed us to introduce two new concepts (see also Bosi,

Desmarchelier and Ragot 2013) :
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1. The leisure e�ect (a negative pollution e�ect on labor supply).

2. The disenchantment e�ect (a positive pollution e�ect on labor supply).

In this simple framework, we have found that a strong leisure e�ect, empirically

stressed by Hanna and Oliva (2011) (among the others), induces two-period cycles

near the steady state through a �ip bifurcation.

In chapter 3, we have build a Ramsey model for capturing simultaneously the

pollution e�ects on labor supply and on consumption behavior. This allow us to

recover, in extreme cases, Bosi, Desmarchelier and Ragot (2013) and Michel and

Rotillon (1996). Within this framework, we have found, in particular, that a strong

leisure e�ect jointly with a strong compensation e�ect imply equilibrium indetermi-

nacy through a Hopf bifurcation.

The new results found in chapter 1, 2 and 3 could give a strong incentive to policy

makers for adopting stricter environmental policies. Indeed, by reducing pollution

levels, ecological policies inhibit a very source of business cycles. In this sense, those

new results contribute to reconcile the short run thinking of policy leaders (Nord-

haus 1975) and the long run imperative of the environment preservation (WB 2012).

Some scholars have stressed the fact that there are long-run bene�ts to adopt green

policies (Van Ewijk and Van Wijnbergen 1995 ; Bovenberg and Mooij 1997), our

results show that there are possibly also short-run bene�ts to them.
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In chapter 4, we have explored e�ects of the existing green taxes and we have

shown that their regressive nature, with respect to household's incomes, may pro-

mote sunspot equilibria and then self-ful�lling expectations on the pollution's level.

Through this result, we have stressed the fact that equilibrium indeterminacy can

be seen as a channel for a perpetual rise of the pollution stock. It follows naturally

from this �nding that not all green taxes are good for the environment.

A natural extension to this dissertation is the short-run exploration of other

green policies such as consumption taxes, especially in frameworks which takes into

account pollution e�ects on labor supply.

Models developed through this dissertation are highly stylized and then can not

describe the real world in its deep complexity. In addition, we have taken into

account only temporal e�ects, our future research line aims to capture also some

geographical aspects in order to analyze how pollution can a�ect, for example, the

location choice of a representative household throughout his life-cycle.
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