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Essais pour une mesure de productivité durable 

Résumé: 

Pour faire face à une croissance continue de la population et maintenir un haut 

niveau de développement économique, les activités de production font porter un 

fardeau de plus en plus lourd à l'environnement naturel. Aujourd’hui, l’enjeu est 

clairement de se tourner vers un développement économique durable. Par 

conséquent, l’analyse de la relation entre les activités de production et leur impact 

environnemental attire beaucoup d'attention. Cette thèse a pour objectif de 

prendre en compte les externalités négatives liées aux outputs indésirables dans 

l’estimation d’une technologie de production et cherche à étudier leur impact sur 

la performance économique en général et sur la mesure des gains de productivité 

en particulier. L’intégration des externalités négatives comme les émissions de 

carbone dans la mesure de la productivité globale des facteurs fait référence à la 

notion de « productivité durable » ou de « green productivity ». Ce travail de thèse 

s’appuie sur une définition et une estimation non paramétrique des technologies 

de production pour lesquelles les fonctions distance directionnelles sont des outils 

appropriés pour définir et mesurer des indicateurs de productivité incluant une 

notion d’efficacité environnementale. Grâce à quelques développements 

méthodologiques originaux, nous parvenons à de nouveaux indicateurs de 

productivité totale des facteurs et à l’estimation de prix implicites des émissions 

de carbone pour les différents pays développés et en développement. Sur la base 

des résultats de nos analyses empiriques, nous tentons ainsi d’apporter des 

informations utiles aux décideurs et aux pouvoirs publics pour l’évaluation des 

réglementations environnementales entre pays et pour la définition de nouvelles 

politiques économiques respectueuses de l’environnement. 

 

Mots-clés: Productivité Globale des Facteurs, Productivité Durable, 

Environnement, Outputs Indésirables, Data Envelopment Analysis, Prix 

Implicites, Emissions de Carbone.  



4 

 

Essays on Green Productivity 

General Abstract: 

As economic development and population growth, human’s production activity 

lays a heavy burden on the natural environment. In order to maintain sustainable 

development, investigating the relationship between economic development and 

environmental impact has received much attention. This thesis takes into account 

undesirable factors in production technology and tries to integrate the negative 

externality of carbon emissions into the measurement of economic performance, 

referred to as green productivity. This thesis employs a nonparametric estimation 

approach with directional distance function to analyze environmental efficiency, 

total factor productivity, and carbon shadow prices among different developed 

and developing countries at the macro level. We propose new contributions to the 

measurement and decomposition of productivity indices which capture 

environmental efficiency. Based on empirical results, we discuss the current 

environmental regulations and economic policies among countries, to provide 

useful information for decision and policy makers from an economic point of view.  

 

Keywords: Total Factor Productivity, Green Productivity, Environment, 

Undesirable Outputs, Data Envelopment Analysis, Shadow Prices, Carbon 

Emissions 
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Essais pour une mesure de productivité durable 

Résumé substantiel 

 

1. Objectif général de la thèse  

Pour faire face à une croissance continue de la population et maintenir un haut 

niveau de développement économique, les activités de production font porter un 

fardeau de plus en plus lourd à l'environnement naturel. Aujourd’hui, l’enjeu est 

clairement de se tourner vers un développement économique durable. Par 

conséquent, l’analyse de la relation entre les activités de production et leur impact 

environnemental attire beaucoup d'attention. Cette thèse a pour objectif de 

prendre en compte les externalités négatives liées aux outputs indésirables dans 

l’estimation d’une technologie de production et cherche à étudier leur impact sur 

la performance économique en général et sur la mesure des gains de productivité 

en particulier. L’intégration des externalités négatives comme les émissions de 

carbone dans la mesure de la productivité globale des facteurs fait référence à la 

notion de « productivité durable » ou de « green productivity ». Ce travail de thèse 

s’appuie sur une définition et une estimation non paramétrique des technologies 

de production pour lesquelles les fonctions distance directionnelles sont des outils 

appropriés pour définir et mesurer des indicateurs de productivité incluant une 

notion d’efficacité environnementale. Grâce à quelques développements 

méthodologiques originaux, nous parvenons à de nouveaux indicateurs de 

productivité totale des facteurs et à l’estimation de prix implicites des émissions 

de carbone pour les différents pays développés et en développement. Sur la base 

des résultats de nos analyses empiriques, nous tentons ainsi d’apporter des 

informations utiles aux décideurs et aux pouvoirs publics pour l’évaluation des 

réglementations environnementales entre pays et pour la définition de nouvelles 

politiques économiques respectueuses de l’environnement. 
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2.  Structuration de la thèse, objectifs méthodologiques et principaux 

résultats  

Cette thèse est structurée autour de cinq chapitres. Le premier expose les 

aspects théoriques et méthodologiques des modèles d’analyse d’activité à la base 

des mesures de la productivité durable. L’un des défis majeurs pour ces modèles 

est d’intégrer explicitement les externalités négatives comme les émissions de 

carbone dans l’analyse des processus de production.  

Dans un premier temps, la technologie de production est introduite grâce à 

la définition de l’ensemble des possibilités de production. Celle-ci repose sur une 

liste d’axiomes qui introduisent les conditions de régularité de l’ensemble des 

possibilités de production. Ces axiomes permettent de définir des fonctions 

distance en tant qu’instruments de mesure associés à la technologie de production. 

Les méthodes d’estimation de ces fonctions distance sont généralement réparties 

en deux grandes catégories : les approches paramétriques et non paramétriques. 

Dans cette thèse, nous avons privilégié une méthode non paramétrique 

d’estimation des fonctions distance par l’outil Data Envelopment Analysis (DEA) 

basé sur la programmation linéaire.  

Dans un deuxième temps, nous nous intéressons aux technologies intégrant 

les outputs indésirables (émissions de carbone) et à leurs prix implicites que l’on 

peut calculer à partir des liens existant entre les programmes dual et primal. Enfin, 

nous donnons quelques extensions méthodologiques permettant d’élaborer des 

indicateurs de mesure de la productivité durable comme l’indice de productivité 

de Luenberger.  

Le chapitre 2 développe une analyse de la prise en compte des aspects 

environnementaux sur le processus de croissance économique de la Chine qui 

depuis 2008 est devenu le pays émettant le plus de dioxyde de carbone au monde. 

Plus précisément, cette recherche estime les inefficacités productives de 30 

provinces chinoises et leurs prix implicites respectifs pour les émissions de 
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carbone sur une période allant de 1997 à 2010. Nous concluons qu’avec la prise 

en compte de la pollution dans les mesures de la performance productive, il existe 

un processus de convergence des prix implicites et de rattrapage technologique 

entre ces territoires économiques. Globalement au niveau de la Chine, le prix 

implicite des émissions de carbone s’est accru à un taux annuel moyen de 2,5% 

pour atteindre un niveau de 864 yuans par tonne en 2010.  

Le chapitre 3 tente d’établir si la croissance économique des pays 

développés est associée ou non à des politiques environnementales efficientes. 

Sur base des informations macroéconomiques et d’émissions de carbones 

relatives à 30 pays de l’OCDE au cours de la période 1971-2011, nous 

décomposons les gains de productivité globale des facteurs en trois éléments : 

efficience technique, progrès technique et effet de réallocation des ressources 

factorielles pour discerner lequel de ces effets exerce un effet prépondérant sur les 

gains de productivité durable. Nos résultats indiquent que l’indice traditionnel de 

productivité globale des facteurs sous-estime les gains de productivité durable et 

que celle-ci est principalement tirée par le progrès technique.  

Après les études des cas de la Chine et des pays développés, nous 

développons une analyse au niveau mondial dans le chapitre 4. Cette analyse 

s’attache à estimer les prix implicites des émissions de carbone pour 119 pays 

répartis en douze grandes zones géographiques au cours de la période 1990-2011. 

L’objectif de ces estimations est d’une part de mesurer les coûts d’opportunité 

entre croissance économique et diminution des émissions de carbone pour ces 

groupes de pays et d’autre part de voir si un processus de convergence de ces 

coûts d’opportunité existe ou non entre ces zones géographiques. Nos résultats 

empiriques indiquent qu’au niveau mondial le prix implicite des émissions de 

carbone augmente à un rythme tendanciel de 2,24% et atteint 2845 US$ par tonne 

en 2011. Un processus de sigma convergence des prix implicites du dioxyde de 

carbone est clairement identifié jusqu’en 2007 entre les groupes de pays tandis 
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qu’à partir de 2008 (début de la crise financière mondiale) un mouvement de forte 

divergence apparait.  

A titre exploratoire, le chapitre 5 propose deux extensions méthodologiques 

sur la prise en compte des externalités négatives dans les modèles d’analyse 

d’activités. La première, relative à la loi du prix implicite unique, impose un prix 

dual commun par output indésirable pour toutes les entités évaluées alors que 

l’approche traditionnelle tolère à chacune d’entre elles d’avoir un prix spécifique. 

La seconde s’intéresse aux processus de production associés stipulant qu’il existe 

à la fois une technologie de production d’outputs désirables et une technologie de 

production d’outputs indésirables. Par rapport à la formulation initiale de cette 

approche proposée par la littérature, nous proposons quelques améliorations 

techniques qui sont testées à partir de simulations préliminaires.  

 

Mots-clés: Productivité Globale des Facteurs, Productivité Durable, 

Environnement, Outputs Indésirables, Data Envelopment Analysis, Prix 

Implicites, Emissions de Carbone. 
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General Introduction 

 

1. Background of the dissertation 

In recent centuries, human activities have significantly affected the natural 

environment, due to economic productivity growth and population increase and 

the requisite need for fossil fuels. Nowadays, the green or low carbon growth is 

advocated by economists and policy makers, due to environmental deterioration 

which has a counteractive effect on the economic performance, caused by 

undesirable factors (or bad outputs or bad by-products) generating throughout 

production activity. A classical pollution indicator is carbon dioxide emissions 

which forms the main part of greenhouse gases. The global warming caused by 

greenhouse gases catches much attention throughout the world due to the threat 

of melting glaciers, extreme weather changes, flooding, and droughts. Not only 

have relevant strategies been developed by individual countries, numerous 

corresponding international organizations, negotiations and forums were also 

established for controlling this threat and risk based on the intergovernmental 

cooperation among regions and countries. Evaluation of the environmental 

productivity and costs of production activities can provide useful information for 

policy makers, who can then make justified and informed decisions for economic, 

social and environmental sustainability. 

The relationship between environmental impact and economic growth has 

attracted much attention. The Environmental Kuznets Curve (EKC) is a well-

known hypothesis which assumes an inverted U shaped evolution between 

environmental impact (pollutants) and economic growth (per capita income). In 

Figure 1, average pollutant increases initially with a rise in average income, then 

environmental quality improves when income peaks at a turning point. 
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Figure 1 Environmental Kuznets Curve 

This hypothesis postulates that environmental issues may be resolved 

automatically by the market mechanism without government interventions, and 

environmental tendency may be dependent on whether the country is on the left 

hand or right hand side of the turning point. Much literature proves the existence 

of the EKC using empirical estimations. We know that the emission right of 

carbon dioxide is similar to a public good because it is neither rivalrous nor 

excludable. One question may arise: is it possible that economic development can 

become sustainable without any government interventions for each country? If 

not, then we have to impose taxes on pollution and to introduce pollution permits. 

Then, the emission right of carbon dioxide may become a private good because it 

is both rivalrous and excludable. In fact, the agreement signings of the Kyoto 

Protocol in 1997, the Copenhagen Accord in 2009, and the Paris Climate 

Conference in 2015 confirm the necessity of government interventions and 

intergovernmental cooperation. Studying the impact of undesirable factors on 

economic performance can ensure environmental policies and regulations made 

by policy and decision makers are valid, effective and efficient. 

Incorporating undesirable factors into economic performance evaluations 

has arisen in the recent analytic literature. Ecologists and economists both 
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proposed various approaches and models to evaluate environmental efficiency, 

green productivity, and pollution abatement costs including Computational 

General Equilibrium model, Cost Benefit Analysis, Stochastic Frontier Analysis 

(SFA) and Data Envelopment Analysis (DEA). Debates have arisen in choosing 

a good approach for obtaining interpretable and rational results.  

 

2. Research objectives and thesis outline 

The methods for modeling undesirable outputs in the production process 

are at the heart of the thesis. In chapter 1, we review general economic concepts 

for modelling production technologies, defining productivity index and 

incorporating undesirable outputs into the definition of a green productivity index. 

We begin by introducing the production technology defined by production set 

which allows imposing some economic regularity conditions, referred to as 

axioms on production set. In order to assess the production set, we present 

distance functions as the measurement which is an equivalent representation of 

production technology. Estimations of distance functions are usually categorized 

into the parametric and nonparametric approaches, and DEA is a tool of linear 

programming for the nonparametric estimation employed by this thesis. We 

further discuss production technologies with undesirable outputs, and shadow 

prices of undesirable outputs based on primal and dual programs, and give 

extensions to green productivity measurement, such as the Luenberger 

productivity index. 

In order to investigate the environmental impact on economic development 

and sustainability, in chapter 2 we begin by conducting research on the most 

polluted developing country, China, which has become the largest carbon dioxide 

emitter since 2008. The aim of the first paper is to estimate regional efficiency 

gaps and carbon shadow price levels for 30 Chinese provinces. We discover that 

there is an environmental growth convergence among regions. Then, we compare 



16 

 

the results with and without incorporating carbon dioxide emissions into the 

production activity. 

In chapter 3, we examine the case of developed countries, and we choose 

30 industrialized countries from the Organization for Economic Co-operation and 

Development (OECD). These countries represent the most advanced productive 

forces in the world and environmental conditions are much better than developing 

nations. We attempt to discover whether economic growth in developed countries 

is driven by effective and efficient environmental policies, and which element 

contributes most to the aggregate green Total Factor Productivity (TFP) growth, 

from technology progress or technical efficiency or an effect of resource 

reallocation. 

Besides environmental efficiency and productivity, the shadow prices of 

undesirable outputs can also provide useful information for environmental 

regulators and policy makers, such as carbon shadow prices implies the amount 

of revenue that producers have to give up for a certain amount of carbon emission 

abatement. After exploring the cases of China and OECD countries, we extend 

the horizon to the whole world: chapter 4 is to estimate carbon shadow prices for 

119 countries from all continents in twelve large groups. The target is to determine 

the carbon shadow prices that are either convergent or dispersed among the twelve 

regions. We then discuss the effect of global environmental agreements (e.g. the 

Kyoto Protocol) on the evolution of carbon shadow prices. 

In chapter 5, we further discuss two models: one is a law of one shadow 

price model which imposes a global constraint on shadow price estimation of bad 

outputs, and another is extension of by-production model, we point out some 

possible improvements on this model and a preliminary simulation result for 

comparing with weak disposability model is included. 
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3. Summary of research papers 

3.1. Summary of Paper I 

Since the end of the 20th century, numerous studies have analyzed Chinese 

economic development to gauge whether China’s rapid growth is sustainable. 

Most of these studies focused on assessing TFP growth in Chinese mainland 

provinces but suffered from methodological weaknesses by assuming constant 

returns to scale (CRS) technology for the production frontier and/or incorrectly 

modeling variable returns to scale (VRS) technology taking into account bad 

output such as carbon dioxide emissions. This paper offers a defensible non-

parametric programming framework based on weak disposability and VRS 

assumptions to estimate environmental growth convergence among Chinese 

regions characterized by size heterogeneity. We explicitly separate regional 

efficiency gaps into two components: The first studies the technical catching-up 

process on each one (technical effect), and the second reveals convergence or 

divergence in the combinations of input and output among regions (structural 

effect). Moreover, carbon shadow price levels for provinces can be derived 

through the dual version of our activity analysis framework. Our empirical work 

focuses on 30 Chinese regions from 1997 to 2010. The results emphasize that 

environmental growth convergence among regions has mainly relied on the 

structural effect. We find that the structural effect largely depends on the pollution 

cost convergence and not on the evolution of the relative prices of capital or labor. 

The carbon shadow price is increasing at an annual rate of 2.5% and was evaluated 

around 864 yuan per ton in 2010 in China while regional estimates show 

significant disparities at the beginning of the period. 

 

3.2. Summary of Paper II 
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Most of previous research about TFP growth at the macro level only 

emphasizes technical effect and technological progress at the country level, but it 

ignores structural effect for a group of countries at the aggregate level. This paper 

attempts to measure the green productivity evolution incorporating carbon 

dioxide emissions based on the Luenberger TFP indicator for a group of 30 OECD 

countries over the period of 1971−2011. We propose a novel decomposition for 

green productivity growth at the aggregate level which separates TFP changes 

into three components: technological progress, technical efficiency change, and 

structural efficiency change. The structural effect captures the heterogeneity in 

the combination of input and output mixes among countries that can impact TFP 

growth at a more aggregate level. In the literature, this effect has not been 

quantified for a group of nations such as the OECD countries. Our results indicate 

that the traditional TFP index underestimates green growth which is motivated by 

the effective and efficient environmental policies of the OECD. The green 

productivity growth is mainly driven by technology progress which has become a 

dominant force in the 21st century. 

 

3.3. Summary of Paper III 

Unlike most previous research efforts, which have focused on estimating 

carbon shadow prices at regional or sectoral levels, this paper attempts to estimate 

carbon shadow prices at a worldwide level. A non-parametric robust framework 

estimates carbon shadow prices for 119 countries from all continents in 12 large 

groups. Our empirical results reveal that the global carbon shadow price is 

increasing by around 2.24% per annum and reached $2,845 in US dollars per ton 

in 2011. Regional carbon shadow prices present significant disparities and evolve 

within different categories over the analyzed period. We find a substantial sigma 

convergence process of carbon shadow prices among countries during 1990–2007 

while divergence appears after the global financial crisis. We then analyze the 
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relationship between carbon shadow prices and the implementation of the Kyoto 

Protocol. 
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Economy, society and environment are inextricably linked to global welfare. 

Productivity is an important indicator for assessing economic development and 

can be measured as the rate of output per unit of input. Usually, production 

technologies only include desirable outputs and inputs because people tend to 

emphasize economic growth while ignoring environmental costs. Then the 

reduction of social well-being usually forces us to reconsider about pollution 

problems when environmental costs are over economic values. In this context, 

this chapter tries to review production technologies and productivity efficiency 

measurements without/with undesirable outputs.  

First, the definition and specification of classical production technologies 

and axioms of activity analysis models are reviewed. Next, we introduce distance 

functions as the measurement tool on production possibility sets, which can be 

estimated by parametric and nonparametric approaches. In Section 2 undesirable 

outputs into production sets are introduced and environmental technologies 

focusing on nonparametric estimations are discussed. In the third section dual 

formulations of analytic models, shadow prices, and productivity indicators are 

extended. 

 

1. Modeling production technologies by production sets 

1.1. Definition and specification of the production sets 

Parametric or nonparametric approaches, whatever is applied, understanding 

theoretical production principles behind productive reality are critical to model 

production functions. The seminal works of Koopmans (1951), Debreu (1951) 

Shephard (1953), and Farrell (1957) have developed the basis of the Neo-

Walrasian production theory based on production possibility sets. We start a basic 

production technology without considering undesirable outputs. Assume that 

decision making units (DMUs) have N number of inputs (x) can be used to 
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produce M number of outputs (y). The classical production possibility set (or 

technology) can be defined as follows:  

 ( ) :  can produce N MT R 


 x,y x y  (1) 

 

Figure 1 Production possibility set 

As shown in Figure 1, the production technology is convex and can also be 

represented by an output set: all possible output combinations that can be 

produced by a given level of inputs. The output correspondence is defined as:  

  )( :( )MP R T  x y x,y  (2) 

 

Figure 2 Output correspondence 
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In Figure 2, this output correspondence is closed, and feasible output 

combinations are between two axis and frontier. Similarly, the production 

technology can be characterized by an input set, namely all possible input 

combinations that can produce a given level of outputs in Figure 3. The input 

correspondence is defined as:  

 )( :( )NL R T  y x x,y  (3) 

 

Figure 3 Input correspondence 

Both output correspondence (P(x)) and input correspondence (L(y)) are equivalent 

representation to production possibility set (T).  

 

1.2. Axioms on production sets 

In order to make sure the technology is able to satisfy reasonable economic 

assumptions, general axioms can be defined for production sets. Initially, three 

basic axioms are usually imposed on the production possibility set (Shephard, 

1953).  

1 (0,0)  and if ( ,0)   0.

2 :   closed.

3:    ,    .

:

N

A T y T then y

A T is

A For each input x R T is bounded

  



 (4) 
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A1 assumption emphasizes it is always feasible to produce nothing and moreover 

that there is no free lunch, namely outputs cannot be generated if inputs are null. 

A2 and A3 guarantee that unlimited outputs cannot be produced by given inputs 

and efficient production plan onto the frontier belong to the technology. Beside 

the latter basic axioms, three other assumptions (disposability of inputs and 

outputs, convexity and returns to scale) are often introduced into production sets. 

A Free Disposal Hull (FDH) frontier is proposed by Deprins et al. (1984), 

it is non-convex and can be figured in Figure 4.  

 4: ( , )   ( , ) T   ( , ) ( , ).A x y T then x y for all x y x yif       (5) 

 

Figure 4 Free Disposal Hull 

A4 axiom implies free (strong) disposability of inputs and outputs: given outputs 

can be produced by more inputs than is absolutely necessary, or given inputs can 

produce less outputs. A free disposability of outputs can be interpreted in Figure 

5. Alternatively, a weak disposability assumption indicates that outputs and inputs 

cannot be disposed freely but proportional decrease is allowed. A weak 

disposability of outputs is shown in Figure 6 and its axioms is discussed in Section 

2.1.2. 
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Figure 5 Free disposability of outputs 

 

Figure 6 Weak disposability of outputs  

5 :   convex. A T is  (6) 

A5 assumption adds convexity axiom to the production possibility set, for 

example if ( ) T
1 1

x ,y and ( ) T
2 2

x , y then ( ) ((1 )   1 1 2x , y x , (1 ) ) ,T 2y  

0 1  . A convex production frontier is displayed in Figure 7. 
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Figure 7 Convexity  

6 : , , ( , )    0,   ;

 0 1,  ;

 1,  ;

        .

A if T T R and x y T and if then CRS

if then NIRS

if then NDRS

if none of the above situation holds then VRS

  





  

 


 (7) 

Moreover, the axiom of returns to scale (A6) implies the rate of change in 

outputs to inputs. A constant returns to scale (CRS) assumes that all outputs are 

expended or reduced by a proportional increase or decrease in all inputs. A non-

increasing returns to scale (NIRS) shows outputs are scaled less than or equal to 

inputs. A non-decreasing returns to scale (NDRS) indicates outputs are scaled 

more than or equal to inputs. If none of these cases, the technology is characterized 

by variable returns to scale (VRS). The demonstrations of CRS, NIRS, NDRS, 

and VRS are presented in Figure 8 respectively. 
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Figure 8 Returns to scale 

 

1.3. Representation of production sets by distance functions 

Distance function is an equivalent representation of production technology and it 

is usually a measurement of production sets. To improve efficiency performance 

of production activity, there are two alternative ways: to maximize outputs at 

given inputs or to minimize the inputs at given outputs (Koopmans, 1951). 

Following Shephard (1953, 1970), the Shephard output distance function is 

formulated as:  

 ( ) min : ( / ) ( )outputD P   x,y y x  (8) 

where   is the adjustment factor measuring technical efficiency, namely the 

maximum value that outputs can be proportionally achieved at given inputs level. 

In Figure 9, the production possibility set is the area where the production 

possibility curve is connected with axis of two outputs Y1 and Y2. Points A and B 

are both on the production frontier which imply efficient DMUs, while C is 

located inside production possibility curve and represents an inefficient unit. The 

technical efficiency   is equal to 0C/0B and less than 1.  
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Figure 9 Shephard output distance function 

Similarly, as suggested by Shephard (1970), the Shephard input distance function 

is defined as:  

 max( ) : ( / ) ( )inputD L   y,x x y  (9) 

where  implies the possible decrease in inputs at given outputs level. The 

Shephard input distance function seeks the radial maximum reduction in inputs. 

As shown in Figure 10, points A, B and C have the same level of outputs, and C 

is not on the frontier thus expending more inputs than A and B. The ratio 

measures technical efficiency which is equal to 0C/0A and greater than 1. 

 

Figure 10 Shephard input distance function 
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Chambers et al. (1996) introduce the directional distance function which 

can increase outputs and reduce inputs simultaneously that is defined as:  

 ( ) max : ( )DDFD T   x y x yx,y;g ,g x-δ×g ,y+δ×g   (10) 

where ( ) 0x yg ,g and ( ) 0x yg ,g are directional vectors of inputs and outputs, δ  

measures the maximum possibility of simultaneously increasing outputs and 

decreasing inputs. Compared to Shephard distance functions, directional distance 

functions are more flexible in choosing objective directions as illustrated in Figure 

11. 

 

Figure 11 Directional distance function 

 

1.4. Estimation of distance function 

1.4.1. Parametric estimation 

Both parametric and nonparametric estimations are popular in the literature. The 

main difference between parametric and nonparametric approaches is whether 

functional forms of production technologies can be predefined or not. For the 

former two forms usually used in literature are translog and quadratic functional 

forms (Färe et al., 1993; Färe et al., 2005). The translog functional forms are often 

linked with Shephard distance function, while quadratic functional forms are 
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usually related to directional distance function. After the functional forms are 

determined, stochastic frontier analysis (SFA) can be employed to estimate 

parameters of distance functions (Zhou et al., 2014). Since this thesis we mainly 

use nonparametric estimations, we do not discuss parametric models in depth. 

Introduced by Aigner et al. (1977), and Meeusen and Broeck (1977), SFA 

requires a specific function form that parameters can be estimated by 

econometrics models, such as ordinary least squares (OLS), maximum likelihood 

or Bayesian estimations. Assume that ( )f x;β  is a production function as follows:  

( )y f 



ε

ε u - v

x;β  (11) 

where   and εβ are vector of parameters and error term. One advantage is to allow 

incorporating a statistical noise in results. Then ε can be decomposed into 

inefficiency scores v and statistical noise u.  

 

1.4.2. DEA as a nonparametric approach 

Besides parametric models, nonparametric DEA approaches are also usually 

employed to estimate the production frontier. Compared to SFA, DEA does not 

require a predefined functional form and a piecewise linear production frontier is 

created on combinations of the best observed practices, due to an optimization of 

a linear program. For example, a basic production set under CRS technology is 

defined as:  



1 1

( ) : , , , 1, , , , 1, , ,

0 1,..., ,

K K
N M m m n n

CRS k k k k

k k

k

T R R y y m M x x n N

k K

 



 

 


      


 

 x,y x y
 (12) 

where k is the intensity variable. To measure distance functions via linear 

programming, the objective is to maximize outputs or (and) minimize inputs by 

assessing the distance between observed DMUs and production frontier. Taking 
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the directional distance function as an example, we can define the linear program 

as:  

,

'

1

'

1

    ( ) max

. . , 1, ,

   , 1, ,

   0 1,...,

K
m m

k k k y

k

K
n n

k k k x

k

k

D

s t y y m M

x x n N

k K

g

g

 


 

 









  

  

 





k' k' x yx ,y ; ,g g

 (13) 

where δ  measures radial maximums reduction in inputs and expansion in outputs. 

Each of linear programs (primal) have equivalent dual formulations. The 

corresponding dual program of Equation 13 is defined as follows:  

' '
,

1 1

1 1

1 1

( ) min ( )

. . 0 1, ,

1

0 1,...,

0 1,...,

y x

N M
n n m m

x k y k

n m

M N
m m n n

y k x k

m n

M N
m m n n

y y x x

m n

m

y

n

x

D x y

s t y x k K

g g

m M

n N

 
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 

 





 

 

 

 

   

 

  

  

 

 

 

k' k' x yx ,y ; ,g g

 (14) 

where x and y  represent shadow prices of inputs and outputs. We further 

discuss about dual formulations and shadow prices in section 3.  

 

2. Environmental production technologies with bad outputs 

2.1. Introduction of undesirable outputs into production sets 

2.1.1. Modeling bad outputs as inputs 

There are two main paths to model production technologies with undesirable 

factors (e.g. Zhou et al., 2008, Leleu, 2013). The first group of modeling pollution 

is to treat bad outputs (denoted by “z”) as inputs (or costs) based on data 

transformation with classical free disposability assumptions, for instance, some 
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change values of bad outputs to their reciprocals (e.g. Lovell et al., 1995, 

Athanassopoulos and Thanassoulis, 1995), or add big enough positive numbers to 

inverse values of bad outputs (e.g. Seiford and Zhu, 2002, Wu et al., 2013). 

However, considering bad outputs as inputs may not reflect the real mechanism 

inside the production activity and as such data transformation cannot be 

reasonable interpreted (Färe and Grosskopf, 2004, Dakpo et al., 2015). 

 

2.1.2. Weak disposability axioms 

Another approach is to introduce additional axioms on production sets, such 

as weak disposability, which is introduced by Shephard (1970) and Shephard and 

Färe (1974), and null-jointness condition linked to desirable and undesirable 

outputs (e.g. Färe and Grosskopf, 2004). The production possibility set, weak 

disposability (A7), and null-jointness assumption (A8) are defined as:  

  ( ) :  can produce ( )N M J

WDT R  

 x,y,z x y,z  (15) 

 
7 :  ( )   0 1  ( ) .

8 :  ( )     .

WD WD

WD

A If and then

A If and then

T T

T

     



y,z y, z

y,z y = 0 z = 0
 (16) 

A7 reflects that a unique constraint   is imposed on desirable and undesirable 

outputs allowing proportional decreases in outputs, and output set as shown in 

Figure 12. A8 requires that undesirable outputs can be eliminated if and only if 

desirable outputs are at null level. In other words, A8 assumption suggests that 

pollution is difficult to abandon and emphasizes the symbiosis between good and 

bad outputs. Indeed, the WDA is not applicable when emissions are easily 

controlled, such as SO2, which can be soluble in water and it is possible to be fully 

disposed in the production activity.  
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Figure 12 Output correspondence of WDA 

This approach has been widely applied in nonparametric estimation.  

Kuosmanen (2005), and Kuosmanen and Podinovski (2009) argue that the 

Shephard’s model violates convexity axiom of the production set T(x,y,z), and 

they make an improvement in this model which can provide new economic 

insights to WDA. Leleu (2013) suggests a hybrid WDA model and brings a new 

economic interpretation for Shephard’s technology. 

 

2.1.3. By-production technology 

Murty and Russell (2002) and Murty et al. (2012) argue that the WDA may lead 

to unacceptable economic implications and they propose a by-production model 

including two sub technologies: one is to model a traditional production process 

for desirable outputs produced by all inputs (T1); another is to focus on a pollution 

generating process for undesirable outputs created by pollution generating inputs 

(T2). The by-production technology is defined as:  
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(17) 

where f and g are continuously differentiable functions. The free disposability is 

imposed on T1 for all inputs and desirable outputs (A9) while the cost 

disposability is added to T2 for pollution generating inputs and undesirable 

outputs (A10).  

1 1

2 2

9 : ( )   ( )    ( ) ( ).

10 : ( )   ( )    ( ) ( ).

A then for all

A then for all

T T

T T

      

   

1 2 1 2 1 2 1 2

1 2 1 2 2 2

x ,x ,y, z x ,x ,y, z x , x ,y x , x ,y

x ,x ,y, z x ,x ,y, z x , z x ,z
 (18) 

 

2.2. Estimating environmental production technologies by distance functions 

2.2.1. Distance functions with bad outputs 

From an economic point of view, good outputs bring benefit for social 

welfare thus to be increased while bad ones generate negative externalities should 

be reduced. The main shortcoming of flexibility is that the Shephard output/input 

distance functions can only simultaneously increase outputs or decrease inputs at 

the same proportion. According to Chung et al. (1997) and Färe et al. (2005), the 

directional distance function which can increase desirable outputs and reduce 

undesirable ones simultaneously is defined as:  

  ( ) max : ( )DDFD T    y z y zx,y,z;0,g ,g x,y+ g ,z- g  (19) 

where ( ) 0y z0,g ,g and ( ) 0y z0,g ,g are directional vectors of desirable and 

undesirable outputs,δmeasures the maximum possibility of increasing desirable 

outputs and decreasing undesirable ones. In Figure 13, point D is inefficient and 

projects on the segment between A and B on the piecewise production frontier. 
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The technical inefficiency δ  gauges the possible improvement space for 

increasing good outputs and abating bad ones. The detail specific properties and 

projection mapping of distance functions is available from Zhou et al. (2014). 

 

Figure13 Directional distance function with undesirable outputs 

 

2.2.2. Non-radial efficiency measurements 

The efficiency measurements are directly linked with distance functions, and we 

can find that the adjustment ratio represents a radial value that the distance as a 

ray from the original point (C) to intersect (B) on the frontier (e.g. Figure 9), and 

the ratio is same for each input or output. This means inputs/outputs are 

reduced/increased in the same proportion. In DEA methods, if one allows 

adjustments in the same proportions, efficiency scores may be overestimated if 

slacks exist. An alternative path is usually advocated to mitigate the impact of 

slacks on efficiency scores, namely using a non-radial measurement which allow 

adjustments in different proportions. The efficiency scores generated by non-

radial measurements vary to each output or input and an efficiency index is often 

used to generalize final scores. 
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For instance, Cooper et al. (2000) propose a non-radial range-adjusted 

measurement (RAM), and Sueyoshi et al. (2010, 2011, and 2012) introduce 

natural and managerial disposability models which efficiency scores are 

computed based on RAM. Their RAM efficiency index is defined as: 

1
max

zy x
jm n

y x z
m n jm n j

RAM

SS S
E

N M J RAN RAN RAN

 
  

    

     (20) 

where ,   y x z

m n jS S and S  are slacks of desirable outputs, inputs and undesirable outputs; 

,   y x z

m n jRAN RAN and RAN are ranges (differences) of maximum and minimum for 

desirable outputs, inputs and undesirable outputs. Murty et al. (2012) propose an 

improved output-oriented Färe-Grosskopf-Lovell index which can be defined as:  

11
|

2
( ) min ( ) ( )

jm jm

FGLE
M J

P



 
 

 
  

   


x,y,z y θ, γ z x  (21) 

where 1

1 1 1 1,..., ,...,( / / ) ( )m m j jy y and z z      y θ γ z  and this index is used to 

maximize the good outputs and minimize the bad ones. Similarly, Zhou et al. 

(2012) introduce a non-radial measure to include pollutions with directional 

distance function and weighted efficiency as follows: 

 ( ) max : ( )outputD T   Τ

x y z x x y y z zx,y,z;g ,g ,g W δ x δ g ,y+δ g ,z-δ g   

(22) 

where W is a normalized weighted vector and efficiency scores put directions on 

all inputs and outputs. The Shephard output distance function can also be 

formulated to expand good outputs and decrease bad ones. A hyperbolic 

measurement introduced by Färe et al. (1989) can be defined as follows: 

 ( ) min : ( / ) ( )outputD P    x,y,z y , z x   (23) 



Chapter 1: Environmental production technologies and green productivity 

 

36 

 

however the main problem it is nonlinear, Färe et al. (2016) propose a linear 

programming algorithm for the hyperbolic measurement. 

 

2.3. Parametric estimations 

The translog model meets the requirements of the linear homogeneity of Shephard 

distance function based on the WDA and can be defined as follows (Färe et al., 

1993): 

0
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  (24) 

The quadratic functional form with bad outputs can be defined as follows (Färe et 

al., 2005): 
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(25) 

By defining: ( )b x,y,z , the translation property related to directional distance 

function which can be explained as follows (e.g. Färe et al., 2005; Färe and 

Lundberg, 2006): 

 

 
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One can use SFA or linear programming to compute parameters of above distance 

functions when functional forms are determined (Zhou et al., 2014).  

2.4. Nonparametric estimations 

2.4.1. Färe-Grosskopf’s approach 

As we have discussed in Section2, the classical DEA of modeling undesirable 

outputs is based on the WDA and null-jointness conditions. The production 

possibility set under a CRS technology can be defined as: 

1 1
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(27) 

In order to compute a distance function of this technology, Färe et al. (1989) 

proposed the hyperbolic distance function initially. However, the hyperbolic 

measurement is nonlinear and the linear model with directional distance function 

suggested by Chung et al. (1997) is widely used in the literature (Leleu, 2013). In 

chapter 3, we further use this CRS technology to compute the Luenberger 

productivity indicator at aggregate level with directional distance functions.  

The misspecification issue occurs in the VRS technology because the VRS 

assumption that directly imposes constraints on intensity variable does not 

comprise the WDA. Thus the VRS model based on the WDA needs to be 

explicitly specified. The non-linear VRS technology is defined as: 
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(28) 
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where  is an uniform abatement factor linked good and bad outputs. While this 

technology is nonlinear, some authors use the following “wrong” technology: 

1 1
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(29) 

Leleu (2013) systematically summarizes incorrect linearizations applied in 

literature, for instance, Jeon and Sickles (2004), Hua and Bian (2007), Piot-Lepetit 

and Le Moing (2007), and Kjærsgaard et al. (2009). In addition to the above 

misspecified model, Färe et al. (1994) make a typing error in VRS technology of 

the WDA since only applies the uniform abatement factor to bad outputs, and 

Ferrier et al. (2006) and Clement et al. (2008) repeat this approach (Kuntz and 

Sülz, 2011). The correct linearization is proposed by Zhou et al. (2008), or Sahoo 

et al. (2011). By introducing a variation k k  , the correct VRS technology can 

be defined as: 
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(30) 

 

2.4.2. Kuosmanen’s approach 

Kuosmanen (2005), and Kuosmanen and Podinovski (2009) argue that the 

Shephard’s model violates convexity axiom which may not provide obvious 

economic interpretation. They replace the unique abatement factor   by non- 

uniform one k  and claim this model can provide new economic insights to the 
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WDA (Kuosmanen and Matin, 2011). This VRS technology based on the WDA 

is defined as: 

1 1
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(31) 

The empirical applications are available from Mekaroonreung and Johnson (2009), 

Berre et al. (2013), Berre et al. (2014), and Lee and Zhou (2015). In chapter 4, we 

use Kuosmanen’s model to analyze the global carbon shadow prices. 

 

2.4.3. Leleu’s approach 

Leleu (2013) introduces a hybrid approach which is slightly different from 

Shephard’s VRS model and the shadow prices of bad outputs are constrained, 

which implies bad outputs can only generate negative revenue (costs). Leleu 

(2013) argues that the revenue from good outputs must at least compensate the 

cost of bad outputs, and this hybrid model can bring clear economic explanations 

to the WDA approach. We further study this hybrid approach and analyze 

environmental growth convergence for Chinese regions in chapter 2. Following 

Leleu (2013), we can also propose a slightly different but equivalent approach as 

Kuosmanen’s model. Using directional distance function, one can note that 

constraint 
1

( ) 1
K

k k

k

 


   is equivalent to 
1 1

1
K K

k k

k k

 
 

    and with some simple 

algebraic transformations following primal and dual programs are obtained: 
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where x , y and z denote shadow prices of inputs, good and bad outputs 

associated to each constraint in linear programs. With such transformed programs 

the objective   is now to seek minimum profit inefficiency that must be greater 

than or equal to the difference between optimal profit for all DMUs and evaluated 

profit of DMU k’. The left hand side of second constraint ' '

1 1

M J
m m j j

y k z k

m j

y z  
 

     

can be interpreted as efficient net revenue indicating what it is possible to earn 

from production activities. The right hand side reveals cost inefficiency 

comparing evaluated cost to optimal cost. Therefore the economic content of this 

constraint is that efficient net revenue at least shall compensate cost inefficiency 

in production process. 
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In summary, the main feature of these models is that: WDA emphasizes the 

symbiosis between good and bad outputs, in other words, null level of bad outputs 

requires null level of good outputs; and this symbiosis requires an identical 

estimating technology by arranging the same intensity variable for good and bad 

outputs. Thus, WDA is more suitable to the case when pollution is difficult to 

abandon, for example CO2. However, some pollutants are easily disposed of by 

the introduction of additional equipment, such as SO2, negating the need for WDA 

methods. For additional discussions and comparisons on the WDA see (e.g. Sahoo 

et al., 2011; Dakpo et al., 2015).  

 

2.4.4. Murty et al.’s approach 

The by-production approach is a method of modeling undesirable outputs 

proposed by Murty and Russell (2002) and Murty et al. (2012). They claim that 

unacceptable economic implications may appear in classical ways of modeling 

undesirable outputs in one technology, such as WDA. Dakpo et al. (2015) argue 

that multiple frontiers methods have broader prospects in future research. By 

using two sub-technologies, one technology is for good outputs and another one 

is for modeling bad outputs, and with different intensity variables in such sub-

technology, the by-production technology can be defined as follows: 


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Source: Murty et al. (2012). 

Figure 14 Multiple frontiers in by-production CRS technology 

where 
k kand    are intensity variables for two sub-technologies in Figure 14 

which imply two technology frontiers are allowed with different benchmarks, and 

x1 and x2 denote good inputs and pollution generating inputs. In the first sub-

technology T1, all inputs are modeled in production activity to yield good outputs, 

while only pollution-generating inputs (e.g. energy consumptions) are used to 

produce bad outputs in the second sub-technology T2. The two sub-technology 

can be displayed in Figure14, T1 is to maximize good outputs and to minimize all 

inputs while T2 is to minimize bad outputs and to maximize pollution-generating 

inputs which can produce more good outputs.  
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Compared with WDA technology, by-production approach may have less 

efficient DMUs, for example in Figure 15, A, B, and C are efficient DMUs on 

WDA frontier, while only E is efficient on BP frontier and it is an artificial DMU.  

 

Source: Murty et al. (2012). 

Figure 15 Frontier comparison 

If we evaluate different countries, the USA generates the highest GDP on 

T1 frontier, while Luxembourg produces the lowest pollution on T2 frontier. One 

question may arise, can we conclude the efficient benchmark with USA’s GDP 

and Luxembourg’s pollution is a rational yardstick? Thus we argue that the 

operational meaning of by-production is not explicit and we further study this 

model in Chapter 5.  

 

2.4.5. Stochastic semi-nonparametric estimations 

Parametric and nonparametric approaches both have several shortcomings: the 

functional forms have to be predefined parametric approaches while it is difficult 

to incorporate a statistical noise into a nonparametric assessment. In order to deal 

with this problem, some approaches can be applied by mimicking the data 

generating process on resampling and creating confident intervals, such as the 

bootstrap DEA models (Simar and Wilson, 1998, 2000), and sub-sampling 
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frontiers estimations, such as the robust frontiers DEA models (Cazals et al.,2002 

and Kneip et al.,2008). The stochastic semi-nonparametric estimations (StoNED), 

proposed by Kuosmanen (2008), Kuosmanen and Johnson (2009), and 

Kuosmanen and Kortelainen (2012), is to integrate stochastic SFA and axiomatic 

DEA together and it does not require any functional forms assumptions but it is 

based on the general axioms of production technologies. Kuosmanen et al. (2013) 

argue that the StoNED method can provide the most precise results comparing 

with SFA and DEA approaches by the Monte Carlo simulations.  

In the first stage, the StoNED production function is estimated by Convex 

Nonparametric Least Squares (CNLS). Assume that all deviations attribute to 

technical efficiency without statistical noise, the deterministic production frontier 

estimation of the CNLS under the WDA assumptions can be formulated as (e.g. 

Mekaroonreung and Johnson 2012): 
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 (35) 

where , ,k k kand   are constant, parameters of input and undesirable output 

respectively. Based on the CNLS residuals, the expected efficiency with assumed 

distributions can be computed by adding additional distributional assumptions on 

efficiency and noise (Kuosmanen and Kortelainen, 2012). Alternative estimation 

strategies are available in the second stage, such as the method of moments, quasi-

likelihood estimation, and nonparametric kernel deconvolution (e.g. Kuosmanen 

et al., 2015). 

Complimenting the above approaches, some recent methods dealing with 

undesirable outputs are also available in literature, for instance, slacks based 
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model (e.g. Tone, 2001), material balance approach (e.g. Coelli et al., 2005; 

Hampf and Rødseth, 2015), natural and managerial disposability approach is 

proposed by (e.g. Sueyoshi et al., 2010). Most these models use non-radial 

efficiency measurements with inputs and outputs slacks which cannot provide a 

clear interpretation from an economic point of view, and are not discussed here in 

depth. 

 

3. Extensions: duality and productivity 

3.1. Duality and shadow prices  

Pittman (1983) analyzes multilateral productivity comparisons based on price 

information of bad outputs using a translog function. When the issue of pollution 

is not serious, policy and decision makers may not impose emission taxes on bad 

outputs. In this case, undesirable outputs do not have real prices in the market and 

price information is not available. Using the DEA approach, shadow prices of 

outputs and inputs can be deduced from marginal values related to the constraints 

in primal model based on quantity information without the information of market 

prices.  

According to Shephard (1970) Färe et al. (1993, 2005), and Hailu and 

Veeman (2000), Zhou et al. (2014) defined the revenue function as: 

 ( ) max ( ) : ( ) 1y z outputR y z D  y zx,p ,p p p x,y,z  (36) 

where ( ),( ) 0,( ) 0 y z y z y zp ,p p ,p p ,p  are real prices of outputs. The dual formulation 

on input-oriented distance function is cost function, which is defined to minimize 

cost as: 

 ( ) min : ( ) 1 x inputC D xy,z,p p x y,z,x  (37) 

where , 0, 0 x x xp p p  are the real prices of inputs. 
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The ratio of prices of bad to good outputs can be computed by the 

Lagrangian method. Based on distance functions, the ratio of prices of bad to good 

outputs are equal to: 

( ) /

( ) /

outputz

y output

D zp

p D y
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x,y, z

x,y, z
 (38)  

Equation (38) is the basis to compute the ratio of shadow prices for outputs 

whenever prices are unknown. Indeed we can obtain these values by the dual 

linear programs when we estimate the output distance function by DEA. Assume 

that the primal program is based on WDA with CRS technology and directional 

distance function, the corresponding dual program is defined as: 
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Therefore we have: 
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Equation (40) allows us to compute relative shadow prices between bad and good 

output based on the estimation of the directional distance function. 

 

3.2. Productivity indicators 

Compared to environmental efficiency scores, productivity indices can provide 

evaluation information for policy makers over time. The traditional productivity 

indicators do not include the attributes for undesirable outputs because of using 
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of the Shephard distance function, such as Malmquist index. Two popular 

environmental productivity indicators are usually employed in literature: the 

Malmquist- Luenberger productivity and Luenberger productivity indices. 

3.2.1. Malmquist productivity index 

Malmquist productivity index is a ratio-based indicator with Shephard distance 

functions. Malmquist output/input-oriented TFP indicator over the time period t 

and t+1 can be defined as follows: 

1
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This output/input-oriented indicator can be further traditionally decomposed to 

efficiency change (EC) and technology progress (TP) as follows:  
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Figure16 Malmquist productivity  

As shown in Figure16, point A and B are two evaluated DMUs in period 1 and 2. 

EC is measured by 
/

/

OF OH

OC OD
 and it implies an improvement in relative efficiency 

between two periods if EC is higher than 1. TP indicates the frontier shift over 

periods, and it is computed by 
OG

OD
 in terms of A, and 

OH

OE
in terms of B. There 

is a progress in TP over periods if 
OG OH

OD OE
 is higher than 1. 

According to our discussion in section 1, the traditional Malmquist 

productivity indicator is using the Shephard distance function which can only 

simultaneously increase or decrease desirable and undesirable outputs 

proportionately. This property does not suit social or economic expectations for 

policy makers and producers who wish to increase desirable outputs and to reduce 

undesirable ones.  

 

3.2.2. Luenberger productivity index 

Chambers (2002) introduces the Luenberger productivity indicator based on the 

directional distance functions proposed by Luenberger (1992). Compared to 
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Shephard distance functions, one advantage of the directional distance function is 

to increase desirable outputs and reduce undesirable ones simultaneously. The 

Luenberger TFP indicator over the time period t and t+1 for a DMU can be defined 

as follows: 
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Similarly, this difference-based indicator can be decomposed to EC and TP as 

follows:  
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In the same manner, Chung et al. (1997) propose the Malmquist-

Luenberger index using the directional distance function which is consistent with 

the property increasing desirable outputs and decreasing undesirable ones 

simultaneously, and it is also a ratio-based indicator in terms of Malmquist index: 
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(50) 

 

Malmquist-Luenberger has been widely applied to measure environmental 

performance in the literature. In addition, some other environmental productivity 
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indices are also available. For example, Abad (2015) proposes an innovative ratio-

based Hicks-Moorsteen productivity index and a new difference-based 

Luenberger-Hicks-Moorsteen productivity indicator. Feng and Serletis (2014) 

extend a Divisia-Luenberger productivity index by taking into account 

undesirable outputs and they parameterize the directional output distance function 

by decomposing index into technological change term and efficiency change term 

consistently. 
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In this chapter, we analyze the evolution of environmental efficiencies and carbon 

shadow prices among 30 Chinese regions. Following Leleu’s (2013a) hybrid 

WDA approach, we model carbon emissions as undesirable outputs with 

constrained shadow prices under a VRS technology, and we propose a novel 

decomposition for regional environmental efficiencies which are separated into a 

technical efficiency change, and a structural efficiency change which captures the 

heterogeneity across Chinese regions relative to their input or output 

accumulations. We also examine the environmental growth convergence process 

among Chinese regions. 

 

1. Introduction 

Recently, the rapid Chinese economic growth has attracted much attention, 

and many researchers have tried to discover whether this type of growth is 

sustainable due to the increasingly serious environmental problems. Related to the 

convergence debate, two processes lead to income convergence between regions: 

(1) capital deepening linked to the property of diminishing returns and (2) 

technological transfer/diffusion related to total factor productivity (TFP) 

differences. Assuming perfect capital mobility and identical technology, the 

neoclassical standard theory has devoted attention mostly to the first process. In 

addition, standard growth theory presumes that the technological progress is 

exogenous and is available to all at no cost, and thus says little about technology 

adoption. This was a restrictive assumption needed at that initial step of the 

advancement of growth theory (Solow, 1994). Several researchers such as 

Jorgenson (1995) and Durlauf and Johnson (1995) concluded that the identical 

production technologies assumption may not hold. Abramovitz (1986) adopted a 

less radical approach by considering a common available technology, but regions 

may differ in their ability to recognize, incorporate, and use it. He introduced 

“social capabilities” to explain productivity gaps among regions. Therefore, 
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interest in cross-regional TFP differences has become a key element for 

investigating economic growth (Islam, 2003).  

Since the end of the 1980s, many empirical studies focused on regional 

comparisons of TFP have revealed that differences in technology may contribute 

to gaps in TFP levels.1 Since TFP is an empirical measure of technology, TFP 

convergence investigates whether regions can catch up in terms of the highest 

observed TFP levels and how income convergence depends on TFP growth rates 

and initial TFP levels. For example, among others, Özyurt and Guironnet (2011) 

investigated the causes of the rapid Chinese economic growth and its 

sustainability by the parametric approach creating a stochastic production frontier 

for 30 regions between 1994 and 2006. These scholars decomposed productive 

efficiency to the technological progress and scale effect such that the latter’s 

negative values are compensated by the former. They concluded that foreign 

direct investment and foreign trade are the two main driving forces of economic 

growth. The results show an apparent trend of economic convergence among 

Chinese regions and growth sustainability for the near future.  

Christopoulos (2007) considered a data envelopment analysis (DEA) 

approach for measuring efficiency and examined the impact of human capital and 

openness on productive performance in a sample of 83 developed and less 

developed countries. His results supported the view that movements toward 

openness increase a country’s efficiency performance significantly, whereas 

human capital does not contribute to efficiency. However, his analysis relied on 

an assumption of restrictive constant returns to scale technology. Chen et al. (2008) 

measured China’s TFP growth in agricultural sector using DEA and the 

Malmquist index between 1990 and 2003. Their results show that the main source 

of productivity growth is from technical progress which is determined by 

                                                           
1 See Islam (2001) for a review of different approaches to international comparisons of TFP and the issue of 

convergence.  
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agricultural tax reduction, investment in research and development, infrastructure 

and mechanization. They argued that the deterioration in scale efficiency should 

be improved by structural adjustment facilitations. 

Most of these studies suffered from three weaknesses. First, they ignored 

environmental damage in economic outputs that might cause biased results. Other 

scholars who considered pollution mostly focused on the company level while a 

few studied the entire economy level (Zhou et al., 2014). Second, the technology 

level was evaluated with a TFP index measured as a Solow-residual indicator with 

a particular functional form with parametric approaches (Cobb–Douglas, CES, 

Translog, etc.). Third, TFP gaps may in part be due to the constant returns to scale 

assumption, which does not consider size heterogeneity across regions. Some 

papers incorrectly modeled technologies with bad outputs although the 

researchers used the VRS technology, while another modeled correctly but 

provided positive and negative shadow prices for undesirable outputs whose 

economic content is not meaningful. These methodological choices may modify 

or bias an evaluation of the technical catching-up process.  

China experienced different stages of development under the influence of 

various leaders. The first period was led by Zedong Mao from 1949 to the 1970s. 

The national economy mainly relied on outdated agriculture practices and light 

industry with a slow development rate, because he considered the class struggle 

the primary task rather than development of the economy. After his death, 

Xiaoping Deng and his reformist allies overthrew the Maoist faction, and China 

entered the second period in 1978. The reformists also proposed the primary stage 

of socialism that meant conditionally accepting capitalism during the early 

development period. True economic progress began in 1992 after political reforms 

were enacted when the leadership recognized the necessity of reform after the 

Soviet Union collapsed. This is the period on which this paper focuses. 

Disregarding pollution and taking economic construction as the central target 
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inevitably led to environmental problems. The Chinese Communist Party recently 

realized the unsustainability due to the economic slowdown no matter what 

incentives had been carried out. The growth rates of the real gross domestic 

product (GDP), energy consumption, and carbon dioxide emissions between 1997 

and 2010 were 11.32%, 7.79%, and 8.93%, respectively, and energy consumption 

is the important driving force of GDP growth (China Statistical Abstract, 2013). 

Especially, haze has emerged in most big cities, which shows the increased 

consumption of many types of energy. However, the benefit of implementing 

environmental control is debatable, since economic cooling and slowdown may 

cause massive unemployment and will bring social instability if effective and 

immediate environmental regulations are carried out. Thoughtful strategies for 

sustainable development have attracted increasing attention. More and more 

papers take into account undesirable outputs in productivity and/or efficiency 

evaluation, which can provide a comprehensive benchmark for decision making 

to identify the distance between each region’s performance and the best one.  

Empirical DEA research on dealing with undesirable outputs has two main 

alternative approaches: The first one converts the outputs into different 

transformations while the other maintains the original data but depends on a weak 

disposability assumption. Tone (2001) first proposed a slacks-based measure 

(SBM) based on the proportional decrease, but this approach cannot give a clear 

interpretation from an economic point of view. Chen (2014) used an SBM based 

theoretical model to measure the Chinese ecological TFP by simultaneously 

incorporating energy consumption and pollutions. His results reveal a 

deterioration of ecological development performance during the period from 2003 

to 2007 and he argued that China's economic development started a transition 

from resources-driven extensive model to an environment-friendly one after 

international economic crises. Sahoo et al. (2011) investigated 11 alternative DEA 

models based on weak disposability and strong disposability assumptions by 
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testing a data set of ten firms and 22 OECD countries. They argued that special 

treatment of undesirable outputs would not affect the productivity ranking in the 

final result. The researchers also concluded that there is no consensus in choosing 

a preferred model. Zhou et al. (2014) summarized the literature about estimating 

the shadow prices of undesirable outputs on parametric and non-parametric 

methods. They argued that developing countries attract increasing attention and 

research pollutants shift from early sulfur or nitrogen oxide to carbon oxide 

emissions because of global warming. 

The Malmquist-Luenberger index is a popular productivity index based on 

the directional distance function that allows incorporating undesirable outputs as 

introduced by Chung et al. (1997). Zhang et al. (2011) evaluated the 

environmental TFP using the Malmquist-Luenberger index among 30 regions in 

China during the period 1989–2008. They used an integrated environmental factor 

as the undesirable output which obtained by utilizing dimension decrease on 

various pollution indicators. The TFP index is decomposed into technical and 

efficiency changes by creating a DEA model under a weak disposability 

assumption and constant returns to scale (CRS) technology. Their results showed 

environmental productivity was lower than the traditional level and proved TFP 

growth is overestimated if undesirable outputs are ignored.  

Similarly, Chen and Golley (2014) estimated China’s green productivity in 

38 industrial sectors over the period 1980–2010. The researchers used carbon 

dioxide emissions as the undesirable output in the directional distance function 

under the CRS technology. Their results showed green TFP growth was less than 

the traditional TFP counterpart, which considered only desirable output during all 

periods. The researchers also found an unsustainable feature in the sector-level 

green TFP growth.  

Färe et al. (2012) used Luenberger TFP indicators in the Swedish 

manufacturing industry between 1990 and 2008 to test whether bad outputs should 
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be incorporated when productivity is measured. Their results showed TFP growth 

was underestimated if bad outputs are excluded and decreases in bad outputs 

should also be credited. Leleu (2013a) developed a hybrid approach of modeling 

undesirable outputs with non-positive shadow prices and argued that productive 

reasonability from the revenue of desirable outputs should exceed the cost of 

undesirable outputs, which provides an unambiguous economic interpretation of 

the weak disposability assumption. Feng and Serletis (2014) extended the Divisia-

Luenberger productivity index by considering undesirable outputs and 

parameterized the directional output distance function by decomposing the index 

consistently into the technological change term and the efficiency change term. 

The researchers used data from 15 OECD countries during 1981-2000 and showed 

biased results that included misleading ranking and incorrect conclusions if bad 

outputs were not considered. 

We used the above non-parametric programming method to focus on the 

convergence process among 30 Chinese provinces from 1997 to 2010. From a 

methodological point of view, the first contribution of this paper is to expose how 

a growth convergence process within a group, regions, and/or countries 

characterized by heterogeneous sizes is better achieved through technical 

efficiency changes based on a VRS technology than is traditionally done by 

productivity-level estimates assuming a CRS technology. Compared to previous 

studies on growth convergence, the second originality of our research is to 

separate regional efficiency changes into two components: a technical catching-

up effect (movement toward the production frontier) and a structural effect 

(homogenization of input/output combinations). The two effects can be derived 

from efficiency scores evaluated at the aggregated level and the sum of individual 

production plans. In accordance with the VRS assumption, the third contribution 

is to propose a right non-parametric framework that models individual and 

aggregate technologies. These technologies are necessarily based on weak 
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disposability in order to estimate technical catching-up effects including 

environmental damage implying non-negative shadow prices for carbon dioxide 

emissions.     

From an empirical point of view, the first outcome is to study the growth 

convergence process among Chinese regions taking into account environmental 

damage such as carbon dioxide emissions and to reveal which effect between 

technical catching-up and homogenization of input/output combined components 

prevails. The second achievement is to assess the level of pollution cost due to 

Chinese economic development through the shadow price estimates of carbon 

emissions.  

This paper is structured as follows. Using weak disposability and VRS 

assumptions to conceptualize the production frontier, in the next section, we 

discuss the measures of the two effects that may influence the convergence 

process in China (technical and structural effects). In Section 3, we analyze 

growth convergence with its driving forces and link them to the evolution of labor, 

capital, and carbon shadow prices. Conclusions appear in the final section. 

 

2. Analyzing the convergence process with directional distance functions 

including undesirable outputs 

The objective of the model is to gauge a growth convergence process 

among economic regions through a technical effect and a structural effect. While 

the former depends on social capabilities to adopt available technology, the latter 

encompasses the heterogeneity across regions relative to their input or output 

accumulations. This can be viewed as a structural component due to changes in 

input and output mixes that signal the role of an input or output deepening or 

expanding effects on productivity growth.  
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2.1. Definitions and concepts  

2.1.1. Technical catching-up process and growth convergence 

Traditionally, the applied literature about technological adoption compares 

TFP levels across regions and tests an inverse relationship between growth TFP 

rates and their initial levels. Convergence in productivity levels turns out if 

regions with the lowest initial TFP have the highest growth rates: The followers 

catch up with the leaders. This approach relies on an implicit assumption of CRS 

since the optimal TFP, used as a benchmark for all regions, is the maximum 

observed productivity. However, if the CRS assumption does not hold and the 

production technology shows increasing and/or decreasing returns to scale (VRS), 

the maximal feasible level of TFP for a specific region does not necessarily 

coincide with the maximal observed TFP among all regions but must be precisely 

gauged at its own economic size (input levels for instance). By assuming a CRS 

technology while a VRS technology prevails, some bias may be introduced in the 

analysis of technological diffusion. Indeed, a divergence in TFP levels can be 

observed while provinces, reaching their production frontier, play a part in the 

technical catch-up process as illustrated in Figure 1.  

 

Figure 1. TFP measure and its decomposition into technical and scale effects 
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In Figure 1, three provinces (A, B, and C) produce one output (Y) from one input 

(X) under a variable returns to scale technology
VRST . The observed levels of TFP 

for B are easily computed as 
0

0

B

B

y

x
 while the maximal productivity is observed 

for A, which characterizes the most productive scale size (mpss). If we consider 

this mpss as the benchmark for all other regions, we implicitly assume a CRS 

technology. In that case, if B and C come up to B* and C*, convergence TFP will 

arise since all provinces achieve the same maximal TFP level. However, under 

the true VRS technology, regions will be able at best to reach B’ and C’ as their 

respective sizes (measured in the input levels, for instance) cannot be easily 

modified. Thus, while B and C will never be observed at B* and C*, one will 

conclude that divergence of TFP levels between these two regions occurs. The 

TFP change is higher for region C than for region B even though the former was 

initially more productive than the latter, a contradiction of the TFP convergence 

hypothesis. By considering the true VRS technology of the example regions, we 

assume that the maximal feasible productivity levels evaluated at B’ and C’ on 

the production frontier are their own respective optimal benchmarks rather than 

the mpss TFP level. Thus, a decrease with time in the distances between countries 

and their respective benchmarks on the production frontier denotes such a 

catching-up process to the maximal feasible productivity levels evaluated at the 

current size of the region. Traditional sigma or beta convergence tests on TFP 

levels are unable to point out this technological adoption effect. We will introduce 

the directional distance function later to formally measure the distance of a 

production plan to the production frontier. 

In our approach, the technical catching-up process is independent from the 

usual technical change definition since we compare the observed levels of TFP to 

their current technological benchmark. Comparisons are therefore performed 

within the same period and not across time. Although shifts in the production 

frontier modify productivity levels, they do not interfere with our technical 
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catching-up measure since technical progress affects provinces and their 

benchmarks on the frontier uniformly. This is illustrated in Figure 2. While there 

is technical progress over the two periods, the distances to the frontiers have not 

changed, implying there was no technical catching-up. 

 

Figure 2. Technical progress and technical catching-up 

 

2.1.2. Structural inefficiency and convergence of output/input mixes 

We further illustrate the structural inefficiency effect in a multiple output-

input case as a subtle source of inefficiency due to heterogeneity in output and 

factor accumulation among regions. Assume that two regions are technically 

efficient and price efficient in the sense of Farrell (1957). Therefore, no 

inefficiencies arise at the individual level. However, if the regions face different 

price systems, a type of inefficiency clearly prevails in the group of provinces in 

line with the second welfare theorem. This market inefficiency is captured by a 

structural inefficiency component as shown in Figure 3a. Let us consider two 

production plans (region A and region B) that are represented in the input space 

producing the same level of outputs. Although A and B are both technically and 

price efficient, there is still inefficiency at the aggregate level. This structural 
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inefficiency comes from differences in relative input allocations among the two 

regions. In a perfect competition market, only one input price vector has to 

coordinate the two regions, and this structural effect computes the inefficient 

market allocation in the spirit of the Debreu (1951) coefficient of resource use.  

 

Figure 3a. Illustration of structural efficiency 

Measuring the respective contributions of A and B to this global structural 

inefficiency and thus to split it between them would be interesting. This can be 

done thanks to the shadow price system defined at the aggregate technology and 

then applied at each provincial production plan. As shown in Figure 3b, structural 

inefficiency evaluated at the aggregated level can be decomposed as the sum of 

individual shadow price inefficiencies. 
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Figure 3b. The measurement of structural efficiency 

Before turning to a formal presentation of the model we use to gauge the 

technical and structural effects, we briefly discuss the implications of these 

concepts for the convergence process among regions. First, a decrease in technical 

inefficiency with time appears as a technical catching-up effect. Note that we 

control for a potential region’s size bias by rejecting the CRS assumption and 

estimating the technical effects under a VRS technology. Second, the lower the 

structural inefficiency, the less heterogeneity we have in the output and input 

mixes between provinces. Therefore, a decrease in structural inefficiency over 

time (from A+B to A’+B’) reveals a convergence toward a common expansion 

path linked to an input-mix convergence effect as shown in Figure 3c. 
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Figure 3c. The measurement of structural efficiency 

 

2.1.3. Definition of a weakly disposable technology 

Using Shephard’s definition of weakly disposable technology (Färe and 

Grosskopf, 2003), let NRx  denote the vector of the inputs, MRG
y  and PRB

y   

the vectors of the desirable (good) and undesirable (bad) outputs for a region, 

respectively. Chinese regions are assumed to face the same technology 

represented by the production set T and the corresponding output set P: 

 ( ) :  can produce ( , )T  G B G B
x,y ,y x y y       (1) 

 ( ) ( ) : ( )P T G B G B
x y ,y x,y ,y        (2) 

The whole country (W) is composed of K regions (k=1,…K). The aggregate 

technology at the nation level inherits properties from the regional technology. 

Formally, we define the nation technology TW as the sum of the provincial 

technologies: 

 
1

K
W

k

T T


           (3) 
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It is possible to prove that the aggregate CRS technology is equal to the individual 

CRS technology (Li, 1995):  

 
1

K
W

CRS CRS CRS

k

T T T


           (4) 

Li (1995) also showed that if convexity holds, then the VRS aggregate technology 

is equal to K times the individual technology:  

 
1

K
W

VRS VRS VRS

k

T T K T


           (5) 

We now turn to the weak disposability axiom introduced by Shephard 

(1970) and Shephard and Färe (1974). The assumption of weak disposability 

means that inputs are freely disposable while proportional decreases in outputs 

are feasible: 

If ( ) ( )PG B
y ,y x  and0 1   then ( ) ( )P  G B

y , y x              (6) 

Meanwhile, undesirable and desirable outputs are null-joint, which means the 

former cannot be produced without generating the latter: 

If ( ) ( )PG B
y ,y x  and 0B

y   then 0G
y                 (7) 

 

2.2. Measuring overall technical and structural inefficiencies  

We now turn to the definition of the directional distance function, which 

measures the distances between the observed production plans and the boundary 

of the technology. These distances are interpreted as gaps between the observed 

TFP levels and their maximal feasible or desired levels of TFP. The function 

defined by: 
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 ( , , , ) sup : ( , , ) ,TD T


           G B G B

G B

x xy y y y
x,y y ;g g g x g y g y g   (8) 

is called the directional distance function where ( , , )G Bx y y
g g g  is a nonzero vector 

that determines the direction in which ( )TD   is defined. An analysis of the 

properties of directional distance functions can be found in Chambers et al. (1996). 

Note that ( , ) ( , , , ) 0TT D  G B

G B G B

x y y
x,y y x,y y ;g g g . Thus, it is possible to 

characterize the production set from the directional distance function.  

For estimation purposes, we follow the literature on non-parametric frontier 

estimation by specifying an operational definition of T based on a set of observed 

regions and a set of axioms that add some structure to the definition of T in (1). A 

convex production set that satisfies free disposability of the inputs and weak 

disposability for outputs following Leleu’s approach (2013a, 2013b). In this 

approach, good outputs and inputs are freely disposable, meaning that good 

outputs can be reduced while maintaining inputs. Similarly, inputs can be 

increased while maintaining the level of both good and bad outputs. On the 

contrary, bad outputs are not freely disposable as they cannot be decreased 

without affecting good outputs (see equation 6 which formalizes this jointness 

assumption). That is why bad outputs are characterized as weakly disposable.  

Under variable returns to scale, VRST  is defined as: 

 

,

1

,

1

1 1

( , ) , 1

1 ,

1 , 0 1 , 1

m

p

K
N M P G G

VRS m k k

k

K
B B

p k k

k

K K
k n

n k k k

k k

T R R R y z y m M

y z y p P

x z x n N z z k K  

  





 


           


   


           







 

G B G B
x,y y x y y

  (9) 
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Concerning the directional distance function, we use the aggregate output vector 

to construct the direction of the translation; i.e., G B

k k0, y , y
k W k W 

 
  
 
 G Bx y y

(g ,g ,g ) . 

Therefore, technical inefficiencies are computed as percentages of the aggregated 

GDP and of the total carbon dioxide emissions of the entire country. 

For a specific region ( , )o o o

G B
x ,y y  , the productivity gap is defined in relation to a 

VRS technology by ( , ;0, , )
VRST o o o

k W k W

D
 

 G B G B

k kx ,y y y y . This distance function is 

computed by the following linear programs (LPs)2: 

, ,

, , ,

,p , ,

, ,

( , ;0, , ) max

. . 1, ,

1, ,

1, ,

0 1,...,

1

VRST o o o
z

k W k W

G G G

k k m o m k m

k W k W

B B B

k k o p k p

k W k W

k k n o n

k W

k

k W

k

D

s t z y y y m M

z y y y p P

z x x n N

z

z k K

 












 

 

 







   

   

  



  



 

 

 





G B G B

k kx ,y y y y

 (LP1) 

As a result, the technical inefficiency at the country level can be measured 

by the summation of regional technical inefficiencies:  

( , ;0, , )
VRST o o o

o W k W k W

D
  

  G B G B

k kx ,y y y y   (10) 

While the overall inefficiency evaluated at the aggregated level is defined by: 

( , ;0, , )W
VRS

k k kT
k W k W k W k W k W

D
    

    G B G B

k kx , y y y y   (11) 

                                                           
2 These linear programs are the correct linearizations of the VRS technology with a weak disposable assumption 

on bad outputs as developed in Leleu (2013a). 
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and computed by the following LP.: 

, ,

, , ,

,p , ,

, ,

( , ;0, , ) max

. . 1, ,

1, ,

1, ,

0 1,...,

1

W
VRS

k k kT z
k W k W k W k W k W

G G G

k k m o m k m

k W o W k W

B B B

k k o p k p

k W o W k W

k k n o n

k W o W

k

k W

k

D

s t K z y y y m M

K z y y y p P

K z x x n N

z

z k K

 












    

  

  

 





   

   

  



  



    

  

  

 



G B G B

k kx , y y y y

 (LP2) 

Finally, the structural inefficiency part of the productivity gap is based on the 

difference between the overall and technical inefficiencies:  

( , ;0, , ) ( , ;0, , )W
VRSVRS

k k k T o o oT
k W k W k W k W k W o W k W k W

D D
       

       G B G B G B G B

k k k kx , y y y y x ,y y y y  (12) 

The overall and structural inefficiencies are computed for the entire country while 

the technical inefficiency is province-specific. 

 

2.3. Measuring non-positive shadow prices for bad outputs  

Unlike other weakly disposable technology that uses an unconstrained 

shadow price for an undesirable output that may obtain positive and negative 

values, we adopt Leleu’s approach (2013a, 2013b) that changes the equality sign 

to inequality on the constraints for undesirable outputs in order to get a positive 

shadow price. This means that the undesirable output cannot generate positive 

revenue and is considered a cost in the production process. As shown in Figure 

4a, point D is on the efficient frontier if the shadow price of the undesirable output 

is unconstrained, and point E is projected on the segment between B and D, which 
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appears as an unexpected negative value. In Figure 4b, point D becomes 

inefficient if the shadow price of the undesirable output is constrained as an 

expected positive value. The benefit of this approach is to obtain an explicit 

economic interpretation for the weak disposability assumption. Correspondingly, 

the shadow price comes from the dual program of LP1, which is determined as 

follows:  

, , ,

, , ,
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Figure 4. Unconstrained and non-positive shadow price for bad outputs 

Next, we determine the dual directional distance function under the VRS 

aggregate technology. Similarly to the correspondence between LP1 and LP3, the 

shadow price comes from the dual program of LP2, which is determined as 

follows:  
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 (LP4) 

We can allocate the overall and structural inefficiencies across regions by using 

the shadow prices derived in LP4. Indeed, it can be shown that overall inefficiency 

can be decomposed in individual effects as the countries’ price inefficiency 

(allocative + technical components) computed with the shadow prices derived 

from the aggregate technology (Briec et al., 2003). As a result, the individual 

structural inefficiency is computed by the difference between the price and 

technical inefficiencies for each region. Although the shadow prices could be 

generated from marginal values with the primal models, the dual models clearly 

reveal positive and non-positive shadow prices on good and bad outputs, 

respectively, to offer a meaningful economic interpretation.  

 

3. Efficiency convergence among Chinese regions  

3.1. Data  

The data come from the China Statistical Yearbook (National Bureau of 

Statistics of China, from 1997 to 2011) and the China Compendium of Statistics 

(National Bureau of Statistics of China, 2010). A total of 30 mainland regions 

include three economic zones: the eastern region (Beijing, Tianjin, Hebei, 

Liaoning, Shanghai, Jiangsu, Zhejiang, Fujian, Shandong, Guangdong, Guangxi, 
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and Hainan), inland region (Shanxi, Inner Mongolia, Jilin, Heilongjiang, Anhui, 

Jiangxi, Henan, Hubei, and Hunan), and western region (Sichuan, Chongqing, 

Guizhou, Yunnan, Shannxi, Gansu, Qinhai, Ningxia, and Xinjiang), respectively. 

The eastern region is relatively rich compared to the western region while the 

inland region is average. Chongqing and Sichuan were not united as a province 

until 1997, but we combined these two regions as one in the calculations.  

These data are not perfect because the local governments deliberately 

submitted overstated performance of political achievements to the central 

government. Özyurt and Guironnet (2011) argued that although there are some 

inconsistencies or accuracy issues in official Chinese statistics, they remain 

reliable reference data.  

The technology is defined with two inputs, one desirable output and one 

undesirable output, namely, capital stock, labor force, and real GDP and carbon 

dioxide emissions of region, respectively. We calculate the capital stock following 

Shan (2008) using the perpetual inventory system proposed by Goldsmith in 1951. 

In China, there is an important controversy that cannot be avoided: The labor force 

can be regarded as an input and an output from the government’s perspective. In 

certain regions, labor employment and GDP are the two main performance 

indicators simultaneously. In Xinjiang province, high unemployment among 

Uighurs caused frequent violent incidents. Ferrier et al. (2014) proposed a data-

driven parametric approach to identify inputs and outputs based on directional 

distance function. However, in our application we introduce labor as an input 

according to the traditional method of modeling a production frontier. Real GDP 

is obtained by treating regional GDP values with deflators at base year 1996. For 

undesirable outputs, we follow the Intergovernmental Panel on Climate Change’s 

(IPCC) approach to transfer them to carbon dioxide emissions. In Equation 9, the 

total carbon quantity is equal to the sum of per energy quantity (E) multiplied by 

the net calorific value (NCV) multiplied by the carbon emission factor (CEF) 

multiplied by the carbon oxidation factor (COF), and the carbon quantity accounts 
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for 12/44 in carbon dioxide emissions. We collected the energy consumption rates 

for the eight main regions and calculated the emission coefficients with Equation 

13: coal (1.978 kg, CO2/kg), coke (3.043 kg, CO2/kg), crude oil (3.065 kg 

CO2/kg), gasoline (2.985 kg, CO2/kg), kerosene (3.097 kg, CO2/kg), diesel fuel 

(3.161 kg, CO2/kg), fuel oil (2.990 kg, CO2/kg), and natural gas (2.184 kg, 

CO2/m
3). 

2

8 8

2

1 1

* * * *44 /12n

n n n n

n n

CO CO E NCV CEF COF
 

            (13) 

Table 1 displays the annual growth rates of the output and input variables 

for the mainland regions and all of China. The real GDP trends surpass 10% while 

the growth rates for CO2 emissions are nearly 9%. Consequently, slow decreases 

in CO2 emissions by GDP unit can be observed for all mainland regions. 

Compared to the GDP trends, the labor force is characterized by slow growth rates. 

As a result, labor productivity improved significantly for the 14-year period. At 

the same time, capital stocks increased with rates around or greater than 13%, 

which may be caused by national and foreign investors attracted by the financial 

opportunities and preferential policies favoring industrial development in China.  

Regions Labor Force Capital Stock Real GDP CO2 

China 1.34% 13.49% 11.32% 8.93% 

Eastern region 1.91% 12.81% 11.62% 9.25% 

Inland region 0.77% 15.30% 11.04% 8.48% 

Western region 1.09% 13.39% 10.51% 8.96% 

Notes: the Eastern Region includes Beijing, Tianjin, Hebei, Liaoning, Shanghai, Jiangsu, Zhejiang, Fujian, Shandong, 

Guangdong, Guangxi, and Hainan. The Inland Region includes Shanxi, Inner Mongolia, Jilin, Heilongjiang, Anhui, Jiangxi, 

Henan, Hubei, and Hunan. The Western Region includes Sichuan, Chongqing, Guizhou, Yunnan, Shannxi, Gansu, Qinhai, 

Ningxia, and Xinjiang. The total sample includes all above 30 regions except Tibet, Hong Kong, Macao and Taiwan in 

China. 

Source: regional dataset described in text and authors' calculation. 

Table 1 Average growth rates of inputs and outputs 

(Estimated trends over the period 1997–2010) 

 

 

3.2. Results and discussion 
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Annual production frontiers are calculated with the linear programs LP1, 

LP2, LP3, and LP4 associated with their respective directional distance functions 

to evaluate the overall, technical, and structural efficiency scores for each 

individual region or group of regions. For each year of the period, the Tianjin, 

Liaoning, Shanghai, and Fujian regions are located on the production frontier. 

This result shows that although there may be statistical evidence that the eastern 

region is a technolog ical leader at the aggregate level the provinces in the coastal 

economic zone also have high productive performances and constitute referents 

for the inland benchmark. Not only the eastern region but also several 

underdeveloped regions (friendly environment), namely, Qinhai, Ningxia, and 

Yunnan, are on the frontier. This explains that seeking a balance between 

economic development and environmental abatement is a feasible challenge. 

Before we interpret the results, we recall that the directional distance 

function is based on the summation of the total output vectors. Therefore, 

technical inefficiencies are computed as percentages of the aggregated GDP of 

the total group of regions (China). Thus, an inefficiency score of 1% means that 

the region could improve its output by 1% of the output sum of all regions. In fact, 

this improvement could represent, for example, 10% to 20% of its own output. 

We chose this directional distance function instead of the usual radial one to 

aggregate province scores and perform a meaningful catching-up analysis of the 

growth convergence for aggregated production plans for all of China or the 

eastern, inland, and western regions.  

The overall inefficiency scores are plotted in Figure 5, and the aggregated 

inefficiency scores show a convergence process mainly due to the structural 

component that predominates the technical effect. 
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Source: authors' calculation. 

Figure 5. Total inefficiency scores for China 

On average, the technical inefficiency score is almost stable about 17% for 

China (total aggregation of regions over the period) meaning that if all provinces 

adopted the best productive practices and aligned on the VRS benchmark, the TFP 

for China could improve nearly 17%. As shown in Figure 6, most of this technical 

inefficiency comes from the inland region (8.7%). According to the Chinese 

Getting Rich First (Deng’s dictum) unbalanced development strategy, the eastern 

provinces inevitably shift their polluted industries to the inland region, which has 

recently become an important industrialized zone. Given our, this zone has the 

most potential of technical catching-up as compared to the eastern provinces since 

the inland region’s technical inefficiency is significantly higher thereby 

permitting more room for improvement. Finally, Figure 6 shows that no 

significant productivity catching-up effect operates within the three mainland 

economic zones.   
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Notes: the Eastern Region includes Beijing, Tianjin, Hebei, Liaoning, Shanghai, Jiangsu, Zhejiang, Fujian, Shandong, 

Guangdong, Guangxi, and Hainan. The Inland Region includes Shanxi, Inner Mongolia, Jilin, Heilongjiang, Anhui, Jiangxi, 

Henan, Hubei, and Hunan. The Western Region includes Sichuan, Chongqing, Guizhou, Yunnan, Shannxi, Gansu, Qinhai, 
Ningxia, and Xinjiang.  

Source: authors' calculation. 

Figure 6. Technical inefficiency scores for regions 

Structural inefficiency is steadily decreasing from 25% in 1997 to 14% in 

2010 (cf. Figure 5), meaning that if all regions adopted common input or output 

mixes, the TFP level of China would improve by the correspondent amounts. This 

decrease of structural inefficiency shows that the input/output deepening effect 

plays a major role in the growth convergence process as measured by the 

significant decrease of the overall inefficiency (cf. Figure 5 and Table 2). In 

Figure 7, the structural inefficiency component is distributed among eastern, 

inland, and western regions. Our results reveal that the convergence process 

established at the macroeconomic level can be found through the decrease in 

structural inefficiency for each region as it is revealed by their respective 

statistically significant negative trends displayed in Table 2. The main reason for 

the decrease of structural inefficiency over time is directly linked to the 

convergence of the shadow price of carbon dioxide emissions among the 30 
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individual regions. This is clarified and commented below through Figures 9 and 

10.  

 

Notes: the Eastern Region includes Beijing, Tianjin, Hebei, Liaoning, Shanghai, Jiangsu, Zhejiang, Fujian, Shandong, 

Guangdong, Guangxi, and Hainan. The Inland Region includes Shanxi, Inner Mongolia, Jilin, Heilongjiang, Anhui, Jiangxi, 

Henan, Hubei, and Hunan. The Western Region includes Sichuan, Chongqing, Guizhou, Yunnan, Shannxi, Gansu, Qinhai, 
Ningxia, and Xinjiang.  

Source: authors' calculation. 

Figure 7. Structural inefficiency scores for regions 

 
Regions Overall  Technical  Structural  

 coefficient t-value coefficient t-value coefficient t-value 

China –2.24 –11.75 –0.61 –3.79 –3.71 –13.82 

Eastern region –1.34 –3.80 –1.08 –2.86 –1.46 –3.36 

Inland region –2.22 –11.02 –0.15 –1.11 –5.03 –12.39 

Western region –3.66 –11.87 –1.08 –5.42 –6.37 –11.41 
Notes: the Eastern Region includes Beijing, Tianjin, Hebei, Liaoning, Shanghai, Jiangsu, Zhejiang, Fujian, Shandong, 

Guangdong, Guangxi, and Hainan. The Inland Region includes Shanxi, Inner Mongolia, Jilin, Heilongjiang, Anhui, Jiangxi, 

Henan, Hubei, and Hunan. The Western Region includes Sichuan, Chongqing, Guizhou, Yunnan, Shannxi, Gansu, Qinhai, 

Ningxia, and Xinjiang. The total sample includes all above 30 regions except Tibet, Hong Kong, Macao and Taiwan in 
China. 

Source: regional dataset described in text and authors' calculation. 

Table 2 Average growth rates in % of inefficiency scores 

(Estimated trends over the period 1997–2010) 

The inefficiency scores computed with a technology excluding carbon 

dioxide emissions are overestimated compared to the scores obtained with LPs 1, 
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2, and 3. This comparison provides powerful proof of the necessity of including 

undesirable output to analyze convergence processes. In Figure 8, the comparison 

between overall inefficiencies with and without bad outputs for the eastern, inland, 

and western regions indicates there is a potential bias that proves the necessity of 

considering bad output in the calculations. Taking into account friendly 

environmental constraints, underdeveloped provinces such as Qinhai, Ningxia, 

and Yunnan improve their productive efficiency as they become new potential 

benchmarks for other Chinese regions even if their economic performances in 

terms of GDP per head of population are below that of the eastern region. As a 

result, without incorporating CO2, the eastern region’s inefficiencies are 

underestimated while the western and inland regions’ scores are overestimated.  

 

Notes: the Eastern Region includes Beijing, Tianjin, Hebei, Liaoning, Shanghai, Jiangsu, Zhejiang, Fujian, Shandong, 

Guangdong, Guangxi, and Hainan. The Inland Region includes Shanxi, Inner Mongolia, Jilin, Heilongjiang, Anhui, Jiangxi, 

Henan, Hubei, and Hunan. The Western Region includes Sichuan, Chongqing, Guizhou, Yunnan, Shannxi, Gansu, Qinhai, 
Ningxia, and Xinjiang. 

Source: authors' calculation. 

Figure 8. Comparison of inefficiencies with and without CO2 

As shown in Figure 9, the shadow price index of carbon dioxide emissions 

compared to the GDP price illustrates that the real cost of pollution of average 

Chinese regions is increasing at an annual trend of 2.5% annually. Although the 
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eastern region has the highest carbon shadow prices during all sample years, the 

environmental growing cost prevails in the inland region by contrast significant 

lower trends in the eastern and western regions, 7.9%, 0.8%, and 1.5%, 

respectively.  

 
Notes: the Eastern Region includes Beijing, Tianjin, Hebei, Liaoning, Shanghai, Jiangsu, Zhejiang, Fujian, Shandong, 

Guangdong, Guangxi, and Hainan. The Inland Region includes Shanxi, Inner Mongolia, Jilin, Heilongjiang, Anhui, Jiangxi, 

Henan, Hubei, and Hunan. The Western Region includes Sichuan, Chongqing, Guizhou, Yunnan, Shannxi, Gansu, Qinhai, 

Ningxia, and Xinjiang. The total sample includes all above 30 regions, except Tibet, Hong Kong, Macao and Taiwan in 
China. 

Source: authors' calculation. 

Figure 9. Shadow prices of carbon dioxide (yuan/ton) 

The average Chinese carbon shadow price is about 864 yuan/ton in 2010, 

645 yuan/ton in 2007 and 603 yuan/ton in 2004 while the regional estimates show 

a significant difference at the beginning of the sample years. As compared to other 

similar research, our estimated value is in the same order such as the carbon 

shadow prices estimated by Wang et al. (2011) and Wang and Wei (2014) are 

about 475 yuan/ton (for China in 2007) and 480 yuan/ton (for Chinese industrial 

sectors in 2010) respectively. In Wei et al. (2013) the carbon shadow price for 

Chinese thermal power enterprises is 613 yuan/ton in 2004. 
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The carbon shadow prices in the eastern region are higher than those in the 

inland region while the latter rose dramatically from 235 in 1997 to 808 in 2010 

(yuan per ton). This result is implied by the fact that polluting industries in the 

eastern region are moving to the inland region because of the national strategic 

shift. Higher environmental abatement costs in the eastern region lead to this shift, 

which is shown by the higher growth rate of capital stock in the inland region 

(Table 1). This significant difference presented during the beginning of the sample 

years, was also found by Zhang et al. (2014) and Wang and Wei (2014). Some 

researchers argue that a carbon trading scheme should be established if 

unbalanced shadow prices of carbon emissions exist among Chinese regions or 

sectors (Peng et al., 2012; Wang and Wei, 2014). The significant growth of carbon 

shadow prices suggests that recent Chinese growth is not sustainable if the costs 

of pollution exceed the economic benefits. Therefore, the central and regional 

governments must invest more in reducing pollution if they want to maintain the 

Chinese development rate. 

However, our results reveal a gradually convergence process in carbon 

shadow prices although the Chinese government never really implemented a 

trading system, and the regional carbon shadow prices are very close at the end of 

the sample years. The sigma convergence of the carbon shadow prices revealed 

by the decrease in the variation coefficient3 is clearly demonstrated in Figure 10. 

The negative trend (–3.6%) is statistically significant (t value = –9.6), revealing a 

decrease in the disparities among the carbon shadow prices in the Chinese regions 

over time. In contrast, no convergence processes can be deduced for labor or 

capital shadow prices during the end of the period as shown in Figure 11. As a 

result, the structural effect decrease relies strictly on the shadow price of bad 

output evolution compared to that of labor and capital stock.  

                                                           
3 The variation coefficient is defined as the proportion of the standard deviation to the mean. 
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Note: The total sample includes 30 mainland regions except Tibet, Hong Kong, Macao and Taiwan in China. 

Source: authors' calculation. 

Figure 10. Variation coefficient of carbon shadow price among 30 Chinese 

regions 

 

 

Note: the total sample includes 30 mainland regions except Tibet, Hong Kong, Macao and Taiwan in China. 

Source: authors' calculation. 

Figure 11. Variation coefficients of labor and capital shadow prices among 30 

Chinese regions 
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4. Conclusion 

We re-examined the convergence hypothesis at the macroeconomic level 

across most mainland provinces (or municipalities) of China based on the weak 

disposability and VRS assumptions. Compared to other studies, the substantial 

differences in our analysis are that we use an efficiency change component that 

imposes a non-positive shadow price on bad outputs but no a priori constants 

returns to scale assumption or a functional form on technology, and any restrictive 

assumptions on input price to evaluate the technical gaps and input-mix 

differences between regions.  

We argue that analyses of technological adoption derived from statistical 

tests on efficiency levels are biased if they rely on an implicit CRS assumption. 

In fact, this assumption appears too restrictive if productivity or efficiency 

comparisons are established among regions with dissimilar sizes. In that context, 

it appears crucial to model a VRS technology that explicitly includes bad outputs. 

Incorporating the latter under a VRS technology, we show that not only some 

eastern provinces but also underdeveloped regions such as Qinhai or Ningxia or 

Yunnan serve as benchmarks for China. The results show that structural 

inefficiency predominates the technical effect in the growth convergence process 

among Chinese regions. Therefore, we conclude that, regarding the convergence 

issue, the bad output deepening effect plays a major role. In fact, we find that the 

structural effect mainly depends on the pollution cost convergence but is not 

influenced by the relative prices of labor or capital stock evolution. Moreover, the 

ascending pollution cost estimated through the shadow price of carbon dioxide 

emissions implies the unsustainability of Chinese economic growth. The regional 

unbalanced carbon shadow prices indicate that the Chinese government cannot 

ignore this issue and must make concessions to seek an equilibrium point between 

economic benefits and the costs of pollution in national and regional efficiency 

improvements. 
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In this paper, the carbon shadow prices are generated from each evaluated 

Chinese region, and the individual prices vary with the provinces. Since carbon 

dioxide emission is the main element of greenhouse gas and decreasing these 

emissions is a global action, international comparative research on carbon tax and 

its trading among countries should be based on a global pricing system. To build 

a unique pricing scheme for carbon dioxide emissions, the proposed model might 

be further extended to a Law of One Shadow Price model, which means the same 

pricing for decreasing carbon must be applied to all regions. 
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Appendix: Inefficiencies scores (%) 

Regions 
Inefficiency 

scores 
1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 

Beijing 
Overall 1.13 1.12 1.06 0.98 0.93 0.70 0.53 0.43 0.38 0.14 0.07 0.08 0.00 0.00 

Technical 0.20 0.18 0.15 0.16 0.09 0.15 0.05 0.08 0.04 0.00 0.00 0.00 0.00 0.00 

Structural 0.93 0.94 0.91 0.82 0.84 0.55 0.48 0.35 0.34 0.14 0.07 0.08 0.00 0.00 

Tianjin 
Overall 1.12 1.10 1.09 1.13 1.15 0.96 0.82 0.72 0.53 0.47 0.37 0.32 0.18 0.31 

Technical 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Structural 1.12 1.10 1.09 1.13 1.15 0.96 0.82 0.72 0.53 0.47 0.37 0.32 0.18 0.31 

Hebei 
Overall 3.21 3.12 3.08 2.92 2.93 3.12 3.15 3.25 3.57 3.53 3.54 3.56 3.45 3.33 

Technical 1.79 1.87 1.92 1.92 1.92 1.96 1.96 1.98 2.07 2.09 2.18 2.31 2.37 2.30 

Structural 1.42 1.25 1.16 1.00 1.01 1.16 1.19 1.27 1.51 1.44 1.36 1.25 1.08 1.03 

Shanxi 
Overall 5.07 5.18 4.60 4.46 4.83 5.47 5.40 4.90 4.46 4.57 4.23 3.97 3.51 3.43 

Technical 1.65 1.56 1.60 1.91 1.93 1.89 1.91 1.78 1.74 1.77 1.79 1.88 1.98 2.02 

Structural 3.42 3.62 3.00 2.55 2.91 3.57 3.49 3.12 2.71 2.80 2.44 2.09 1.54 1.42 

Neimenggu 
Overall 2.03 1.83 1.86 1.87 1.94 1.86 2.05 2.21 2.27 2.41 2.50 2.93 2.87 2.93 

Technical 1.30 1.27 1.31 1.30 1.32 1.31 1.39 1.48 1.41 1.44 1.44 1.43 1.44 1.55 

Structural 0.74 0.57 0.55 0.57 0.61 0.55 0.66 0.72 0.87 0.96 1.06 1.50 1.43 1.38 

Liaoning 
Overall 3.93 3.70 3.62 3.90 3.70 3.54 3.35 3.16 2.99 3.01 2.92 2.82 2.48 2.44 

Technical 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Structural 3.93 3.70 3.62 3.90 3.70 3.54 3.35 3.16 2.99 3.01 2.92 2.82 2.48 2.44 

Jilin 
Overall 1.87 1.63 1.59 1.45 1.48 1.32 1.25 1.08 1.08 1.05 0.94 0.92 0.74 0.80 

Technical 1.08 0.85 0.83 0.80 0.75 0.80 0.72 0.76 0.77 0.80 0.76 0.76 0.67 0.70 

Structural 0.78 0.78 0.77 0.65 0.73 0.52 0.53 0.31 0.31 0.25 0.18 0.17 0.07 0.10 

Heilongjiang 
Overall 2.41 2.17 2.11 2.01 1.84 1.57 1.51 1.35 1.22 1.17 1.13 1.17 0.99 0.97 

Technical 0.66 0.77 0.69 0.76 0.70 0.64 0.61 0.51 0.44 0.40 0.45 0.43 0.42 0.45 

Structural 1.75 1.40 1.43 1.24 1.14 0.93 0.90 0.84 0.78 0.78 0.68 0.74 0.57 0.53 

Shanghai 
Overall 1.36 1.32 1.30 1.27 1.26 1.08 1.01 0.79 0.83 0.41 0.24 0.29 0.19 0.31 

Technical 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Structural 1.36 1.32 1.30 1.27 1.26 1.08 1.01 0.79 0.83 0.41 0.24 0.29 0.19 0.31 

Jiangsu 
Overall 0.92 0.86 0.71 0.48 0.36 0.41 0.44 0.72 1.25 1.13 1.06 0.98 0.79 0.87 

Technical 0.92 0.86 0.71 0.39 0.23 0.22 0.26 0.15 0.00 0.00 0.00 0.00 0.00 0.00 

Structural 0.00 0.00 0.00 0.09 0.13 0.19 0.18 0.57 1.25 1.13 1.06 0.98 0.79 0.87 

Zhejiang 
Overall 0.44 0.37 0.33 0.46 0.42 0.40 0.46 0.51 0.56 0.62 0.68 0.65 0.52 0.44 

Technical 0.44 0.37 0.33 0.46 0.42 0.40 0.46 0.51 0.52 0.57 0.63 0.57 0.50 0.41 

Structural 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.05 0.05 0.07 0.02 0.03 

Anhui 
Overall 1.44 1.53 1.51 1.50 1.55 1.42 1.35 1.10 0.83 0.85 0.90 1.05 0.98 0.84 

Technical 0.37 0.38 0.36 0.34 0.33 0.30 0.29 0.18 0.09 0.08 0.07 0.09 0.09 0.10 

Structural 1.06 1.15 1.15 1.16 1.22 1.12 1.07 0.92 0.74 0.77 0.83 0.96 0.89 0.74 

Fujian 

Overall 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Technical 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Structural 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Jiangxi 

Overall 0.82 0.80 0.79 0.77 0.79 0.63 0.58 0.58 0.52 0.42 0.41 0.38 0.31 0.38 

Technical 0.69 0.65 0.63 0.59 0.60 0.51 0.49 0.53 0.45 0.42 0.42 0.38 0.31 0.38 

Structural 0.13 0.15 0.16 0.18 0.19 0.12 0.09 0.05 0.07 0.00 0.00 0.00 0.00 0.01 

Shandong 

Overall 1.83 1.59 1.35 0.83 1.30 1.40 1.80 2.33 3.31 3.43 3.57 3.77 3.46 3.47 

Technical 1.22 1.16 1.01 0.83 1.05 1.18 1.36 1.45 1.35 1.34 1.37 1.14 0.90 0.94 

Structural 0.61 0.43 0.35 0.00 0.25 0.22 0.43 0.88 1.96 2.09 2.20 2.63 2.56 2.53 

Henan 

Overall 1.61 1.68 1.66 1.57 1.66 1.71 1.40 2.07 2.21 2.36 2.46 2.38 2.16 2.04 

Technical 1.32 1.39 1.39 1.38 1.41 1.45 1.40 1.60 1.77 2.01 2.26 2.33 2.09 2.02 

Structural 0.29 0.28 0.26 0.18 0.25 0.26 0.00 0.47 0.44 0.35 0.20 0.05 0.08 0.01 

Hubei 

Overall 1.82 1.70 1.68 1.54 1.41 1.35 1.30 1.20 1.04 1.07 1.09 0.98 0.86 0.91 

Technical 1.14 1.15 1.20 1.14 1.13 1.15 1.15 1.11 1.01 1.04 1.04 0.94 0.84 0.88 

Structural 0.68 0.55 0.48 0.40 0.28 0.20 0.15 0.09 0.02 0.03 0.05 0.04 0.02 0.03 

Hunan 

Overall 1.07 1.08 0.70 0.54 0.67 0.60 0.58 0.66 0.93 0.92 0.94 0.81 0.66 0.52 

Technical 0.74 0.73 0.62 0.54 0.63 0.60 0.58 0.66 0.75 0.76 0.73 0.65 0.55 0.51 

Structural 0.33 0.34 0.08 0.00 0.05 0.00 0.00 0.00 0.19 0.17 0.21 0.16 0.10 0.01 

Guangdong 

Overall 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Technical 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Structural 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Guangxi 

Overall 0.45 0.46 0.43 0.44 0.44 0.28 0.26 0.32 0.20 0.21 0.24 0.19 0.12 0.19 

Technical 0.33 0.32 0.27 0.26 0.24 0.17 0.13 0.25 0.20 0.19 0.19 0.14 0.09 0.20 

Structural 0.12 0.14 0.16 0.17 0.20 0.12 0.12 0.06 0.00 0.02 0.06 0.05 0.02 -0.01 

Hainan 

Overall 0.41 0.44 0.44 0.46 0.52 0.29 0.33 0.17 0.00 0.02 0.10 0.12 0.01 0.05 

Technical 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Structural 0.41 0.44 0.44 0.46 0.52 0.29 0.33 0.17 0.00 0.02 0.10 0.12 0.01 0.05 

Chongqing 

and 

Sichuan 

Overall 1.79 1.81 1.45 1.20 1.04 1.18 1.22 1.23 0.90 1.01 1.12 1.36 1.31 0.98 

Technical 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Structural 1.79 1.81 1.45 1.20 1.04 1.18 1.22 1.23 0.90 1.01 1.12 1.36 1.31 0.98 

Guizhou 

Overall 1.90 2.00 1.82 1.75 1.67 1.50 1.60 1.56 1.35 1.46 1.41 1.22 1.16 1.02 

Technical 1.46 1.52 1.40 1.37 1.29 1.26 1.33 1.31 1.19 1.22 1.14 1.00 0.98 0.91 

Structural 0.44 0.47 0.42 0.39 0.37 0.24 0.28 0.25 0.16 0.24 0.26 0.22 0.17 0.10 
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Source: authors' calculation. 

 

 

 

 

 

Yunnan 
Overall 1.03 1.00 0.89 0.83 0.89 0.86 1.01 1.08 0.98 1.04 0.97 0.95 0.86 0.76 

Technical 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Structural 1.03 1.00 0.89 0.83 0.89 0.86 1.01 1.08 0.98 1.04 0.97 0.95 0.86 0.76 

Shaanxi 
Overall 1.37 1.35 1.19 1.07 1.20 1.15 1.08 1.15 1.08 1.21 1.20 1.32 1.26 1.42 

Technical 1.28 1.24 1.04 0.90 1.04 1.06 1.01 1.12 1.07 1.21 1.20 1.31 1.26 1.42 

Structural 0.09 0.11 0.14 0.17 0.16 0.09 0.07 0.04 0.01 0.00 0.00 0.01 0.00 0.00 

Gansu 
Overall 1.42 1.42 1.40 1.41 1.41 1.24 1.14 1.05 0.90 0.82 0.81 0.80 0.64 0.68 

Technical 1.23 1.21 1.17 1.17 1.15 1.09 0.99 0.97 0.88 0.82 0.80 0.78 0.66 0.69 

Structural 0.19 0.21 0.22 0.23 0.26 0.15 0.15 0.08 0.01 0.00 0.01 0.03 -0.02 -0.01 

Qinhai 
Overall 0.63 0.65 0.68 0.65 0.71 0.52 0.40 0.28 0.14 0.14 0.09 0.15 0.04 0.06 

Technical 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Structural 0.63 0.65 0.68 0.65 0.71 0.52 0.40 0.28 0.14 0.14 0.09 0.15 0.04 0.06 

Ningxia 
Overall 0.81 0.82 0.81 0.80 1.00 0.91 0.97 0.73 0.58 0.55 0.52 0.58 0.49 0.59 

Technical 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.06 0.01 

Structural 0.81 0.82 0.81 0.80 1.00 0.91 0.97 0.73 0.58 0.55 0.52 0.58 0.43 0.58 

Xinjiang 

Overall 1.55 1.59 1.52 1.52 1.53 1.36 1.22 1.14 1.04 1.06 1.01 1.12 1.16 1.24 

Technical 0.71 0.70 0.72 0.77 0.79 0.81 0.76 0.78 0.81 0.85 0.84 0.92 1.05 1.06 

Structural 0.83 0.89 0.80 0.75 0.74 0.55 0.46 0.35 0.23 0.21 0.17 0.20 0.11 0.18 

China 

Overall 43.44 42.31 39.67 37.81 38.65 36.82 36.22 35.76 35.15 35.07 34.53 34.86 31.19 30.99 

Technical 18.54 18.17 17.34 17.00 17.04 16.96 16.85 17.23 16.55 17.00 17.31 17.06 16.26 16.54 

Structural 24.90 24.13 22.33 20.81 21.61 19.86 19.37 18.53 18.60 18.07 17.22 17.80 14.93 14.45 
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In chapter 2, we examine environmental growth convergence in China and 

separate reginal efficiency changes into technical and structural effects. Now we 

turn to analyze the environmental productivity evolution over time for 30 OECD 

countries. Compared to the case of China, OECD countries are benefit from their 

economic conditions and environmental policies. We attempt to investigate 

whether economic growth in OECD countries is motivated by their environmental 

policies. Based on WDA approach, we decompose the aggregate productivity 

growth into technology progress, technical effect and structural effect under a 

CRS technology. The structural one has not been quantified by the previous 

literature. 

 

1. Introduction 

For a long time period, income per capita has been considered to be mainly 

driven by total factor productivity (TFP) changes, but more recently standard of 

living and welfare have become important factors in regard to green economic 

growth due to the deterioration in global environmental conditions. Measures of 

TFP at macro and micro levels have attracted much attention by using different 

parametric or non-parametric frameworks. In the literature, TFP gain evaluated 

through output change not explained by input variation. This is initially attributed 

to the traditional Solow residual interpreted as technological progress (shift of the 

production frontier). Later a technical efficiency change component (movement 

to the production frontier) was added to this technical progress to explain TFP 

change. 

Based on the recent literature, our study attempts to measure the green TFP 

index for a whole group including 30 OECD countries over the period of 

1971−2011. Compared to previous studies on productivity growth, the first goal 

of our research is to measure the green productivity evolution incorporating 

carbon dioxide emissions. A second goal is to separate TFP changes into three 
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components: technological progress, technical efficiency change, and structural 

efficiency change. Although the first two elements depend on the capability of a 

particular country to reach the best technical practices and carry out innovations, 

the third element covers the heterogeneity in the combination of input intensity 

and output specialization. The structural efficiency change can be observed as a 

proxy for an input/output deepening or expanding effect associated with dynamic 

convergence or divergence of resource reallocation in the economic organization.  

The last effect is particularly relevant in the new vision of the role of 

environment in economic welfare related to global warming and the threat of 

melting glaciers. Indeed, economists have begun to pay serious attention to the 

sustainability of economic development and have emphasized savings through 

environmental protection. Moreover, various international organizations, 

negotiations, and forums have also been established for enhancing 

intergovernmental cooperation among regions and countries because pollution 

control and environmental protection must be negotiated and managed by a global 

consortium of nations and not only at the national level. Structural efficiency is 

explicitly related to the adjustments of output and/or input mixes occurring within 

a group of countries over time. In this way, this element impacts green TFP growth 

at a worldwide level. 

Compared to many other empirical applications which employ the ratio-

based Malmquist productivity index, the objective of this paper is to analyze the 

green TFP growth for an aggregation of developed countries (OECD member 

countries) and to propose a novel decomposition of the difference-based 

Luenberger productivity index. Beyond the two traditional components, namely 

technical efficiency change and technological progress, or three components with 

scale efficiency change (e.g. Kapelko et al., 2015), our decomposition captures a 

new effect called structural efficiency.  
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Numerous researches about environmental efficiency and productivity have 

arisen in the past few decades. Ecologists and economists have both proposed 

various methods and models to evaluate carbon abatement costs and their effects 

on TFP evolution. Some previous measurements use a functional form to 

characterize the production activity including pollution.  Färe et al. (1993) and 

Hailu and Veeman (2000) propose a translog distance function to include bad 

outputs in an econometric framework. To avoid specifying a functional form of 

the technology and the inefficiency distribution, data envelopment analysis (DEA) 

is a non-parametric approach which estimates the best practice frontier by 

enveloping the data. Since the initial framework was developed by Charnes et al. 

(1978), DEA has become more and more popular especially because of its 

capacity to include undesirable outputs through a weak disposable assumption and 

to decompose the Luenberger productivity index. 

The reminder of the paper is structured as follows: Section 2 offers a recent 

literature review. Section 3 reviews weakly disposable technology and proposes 

a green TFP model. By using directional distance functions, this framework is 

able to conceptualize the aggregate production frontier for the whole set of OECD 

countries and to split green TFP gain into its three components. Section 4 

introduces the data source and comments on the empirical results. Conclusions 

and future research topics appear in the final section. 

 

2. Literature review 

Using a non-parametric approach, Färe et al. (1994) analyze productivity 

growth in 17 OECD countries over the period of 1979−1988. Their productivity 

indexes are decomposed of two components, namely, technical changes and 

efficiency changes, the latter being interpreted as a catching-up effect. Relaxing 

the CRS assumption for the technology, they further separate the catching-up 

effect into two terms: one representing a pure technical efficiency change and the 
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other measuring changes in scale efficiency. The authors find that U.S. 

productivity growth is a little higher than average, while Japan obtains the highest 

productivity growth rate. Sena (2004) discovers spillover effects of high-tech 

companies on non-high-tech ones in Italy using the Malmquist index. Hoang and 

Coelli (2011) study the agricultural TFP among 30 OECD countries during 1990-

2003 and they argue that the environmental efficiency and productivity can be 

improved by changing input combinations. 

Empirical research on TFP growth is also available for developing or newly 

industrialized regions and countries. For instance, Liu and Wang (2008) analyze 

productivity growth for semiconductor firms in Taiwan to determine whether 

strategic shift is meaningful. Young (1992, 1994, and 1995) and Kim and Lau 

(1994) study sources of development for the East Asian economies and find a 

limited role of TFP growth. Interpreting the above results, Krugman (1994) 

concludes that East Asian growth has been primarily due to factor accumulation. 

In opposition to this view, Collins and Bosworth (1997) and Klenow and 

Rodriguez (1997) evaluate a more significant contribution of TFP growth for 

some East Asian economies such as that of Singapore. These last conclusions 

emphasize the role of the assimilation of new technology to explain the growth of 

the East Asian countries and are in line with the interaction between technological 

adoption and capital accumulation leading to TFP growth.  

Kumar and Russell (2002) re-examine the catching-up mechanism with a 

methodology which requires no a priori functional form on the world production 

frontier, nor any assumption about market structure. In addition, it does not 

specify a particular nation as the world leader, allowing for technical and/or 

allocative inefficiencies to arise from differences in the countries’ abilities to use 

available technology. They test for the catching-up hypothesis across 57 poor and 

rich nations, using labor productivity indexes calculated with a nonparametric 

method. To analyze the evolution of the cross-country distribution of labor 
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productivity, they focus on differences in levels of technology, technological 

changes over time, and how much of income convergence is due to technological 

diffusion or to convergence in capital/labor ratios. Their results conclude that 

there is evidence of technological catch-up, as countries have on the whole moved 

toward the world production frontier, non-neutrality of technological change and 

a predominance of capital deepening as opposed to the technological catch-up that 

contributes to both growth and income divergence of economies.  

More recently, Yörük and Zaim (2005) evaluate productivity growth in 28 

OECD countries over the period of 1983−1998 by comparing the Malmquist and 

Malmquist-Luenberger productivity indicators. They incorporate carbon dioxide, 

nitrogen oxide, and organic water into the Malmquist-Luenberger index, and their 

results show that the productivity growth is undervalued if we do not consider 

forms of pollution.  

Mahlberg et al. (2011) estimate eco-productivity with the Malmquist 

indicator for 14 countries from the European Union over the period of 1995−2004. 

They include greenhouse gas as an undesirable output by dealing with it as a form 

of input constraint. They argue that growth of the ecological Malmquist TFP is 

more motivated by environmental improvements. Kerstens and Managi (2012) 

investigate the Luenberger TFP growth and effect of convexity assumption on 

convergence issues for U.S. petroleum industry by comparing the convex and 

non-convex production technologies. Furthermore, Mahlberg and Sahoo (2011) 

analyze environmental TFP for 22 OECD countries by developing a non-radial 

decomposition of the Luenberger productivity index. They separate TFP change 

into efficiency change and technology progress where productivity growth mainly 

depends on the latter.  

However, these previous studies concerning TFP growth or TFP 

convergence still have room for improvement. First, the initial literature ignores 

undesirable outputs (such as carbon emissions) in the production process that 
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cannot provide the basis for sustainable economic development. Ananda and 

Hampf (2015) argue that the influence of including undesirable outputs in 

productivity measurement is significant. Second, even if more recent papers take 

into account pollution emissions, they emphasize technical effect and technology 

progress at the national level but disregard the structural effect at the aggregate 

level for a group of countries such as all the member countries of the OECD. Third, 

the shadow prices of undesirable outputs are not constrained in most literature. 

Berre et al. (2013) investigate the output shadow price for dairy farms, and they 

find a positive revenue can be attached to nitrogen output if its price is not 

constrained. Therefore, a constrained model that provides an unambiguous 

economic interpretation is more appropriate. 

Empirical DEA research on dealing with undesirable outputs provides two 

main alternative approaches: the first one converts the outputs into different 

transformations while the other maintains the original data but depends on a weak 

disposability assumption (Zhou et al., 2008). Leleu (2013) argues that the real 

production process cannot be revealed if the bad outputs are regarded as inputs 

based on their data transformations. 

Distance functions are also usually employed with the weak disposability 

assumption in seeking a benchmark in terms of desirable and undesirable outputs. 

Zhou et al. (2014) summarize three main types of distance functions which are 

commonly used through DEA estimations: Shephard input, Shephard output, and 

directional distance functions. In these models, undesirable outputs, such as 

carbon emissions, pollutants, and noise are explicitly considered by-products 

joined to the desirable output. Undesirable outputs should not be considered as 

freely disposable; hence, the weak disposability defined by Shepard (1970) and 

Shephard and Färe (1974) provide an alternative way of modeling inputs and 

outputs. The two key assumptions, namely weak disposability and null-jointness, 

are usually used together to incorporate undesirable and desirable outputs. The 
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former implies that the abatement of undesirable outputs will be inevitable in 

affecting the production of desirable outputs, while the latter explains that the only 

solution to producing pollution is to not produce at all.  

Chung et al. (1997) suggest a directional distance function to estimate 

productivity changes in the Swedish pulp and paper industry from 1986−1990. 

Färe et al. (2005) measure the technical efficiency of 209 electric utilities from 

1993−1997 by employing a quadratic directional output distance function. They 

use SO2 as an undesirable output and their results show that SO2 emissions can 

be abated by 4000–6000 tons, and, as a result, the shadow price of SO2 rises 

during the sample period. 

Kumar (2006) measures the Malmquist-Luenberger productivity index in 

41 developed and developing countries from 1971−199, using the directional 

distance functions and decomposing TFP into technical and efficiency changes. 

Kumar finds that the environmental TFP index value is the same as when carbon 

emissions are freely disposable. However, his results also show the two 

components of TFP change, technical change and efficiency change, are not the 

same in the two measures. 

Lin et al. (2013) measure environmental productivity in 70 countries from 

1981−2007. They incorporate undesirable output, namely carbon emissions, and 

find differences in green productivity growth across sample countries, using the 

directional distance function. They compute the Malmquist productivity index 

and decompose it into technical efficiency change, technical change, and scale 

efficiency change. Their results show that developing countries achieve higher 

growth in their average environmental productivity relative to the convergence 

growth theory. 

Woo et al. (2015) examine the environmental efficiency of renewable 

energy in 31 OECD countries by using the DEA approach and the Malmquist 

productivity index from 2004−2011. Their results show a geographical difference 
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in environmental efficiency across the OECD. The group of OECD America has 

the highest average environmental efficiency, and the group of OECD Europe has 

the largest standard deviation. They find that global financial crisis affects 

efficiency change in the United States. 

These papers have different features; most of the papers are based on the 

Malmquist productivity index, while some of the research employs the 

Luenberger productivity indicator. Boussemart et al. (2003) argue that the 

Luenberger productivity indicator is more general than the Malmquist 

productivity index. In addition, the Malmquist-Luenberger index is also a popular 

research tool which is proposed by Chung et al. (1997). Its core concept is to use 

the ratio-based decomposition of the Malmquist index but to replace the 

Shephard’s distance function with a directional one. 

 

3. Methodology 

3.1. Weakly disposable technology and directional distance functions 

Among methodologies for dealing with undesirable outputs in production 

activity, the weakly disposable technology becomes more and more popular in 

literature. Using Shephard’s definition of weakly disposable technology (Färe and 

Grosskopf, 2003), let 1( ,..., ) N

Nx x R x  denote the vector of the inputs and 

1( ,..., ) M

Mv v R v  and 1( ,..., ) J

Jw w R w   denote the vectors of the desirable (good) 

and undesirable (bad) outputs, respectively. The technology and corresponding 

output set are denoted by T and P: 

 ( ) :  can produce ( )T  x, v,w x v,w   (1) 

 ( ) ( : ( )P T x v,w) x, v,w    (2) 
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Two classical conditions namely weak disposability as introduced by Shephard 

(1970) and null-jointness proposed by Shephard and Färe (1974) are most often 

used in modeling good and bad outputs. The assumption of weak disposability (3) 

allows a proportional evolution between good and bad outputs. The null-joint 

condition (4) requires that we cannot produce desirable outputs without 

generating undesirable outputs: 

If ( ) ( )Pv,w x  and 0 1   then ( ) ( )P  v, w x  (3) 

If ( ) ( )Pv,w x  and v = 0  then w = 0    (4) 

The directional distance function measures the distance between the 

observed production plans and the frontier and can be interpreted as inefficiency. 

The directional distance function is defined as follows: 

 ( ) sup : ( ) ,T v w v wD T


    x, v,w; g ,g x , v + g ,w - g   (5) 

where ( )
v w

g ,g  is a nonzero vector that means simultaneous adjustments of both 

desirable and undesirable outputs and  is the inefficiency score. Besides the 

static scores, the dynamic evolution of shifting in technology can be measured by 

relevant productivity indexes. 

 

3.2. The Luenberger productivity index and its decompositions 

Chambers (2002) introduce the Luenberger productivity index based on the 

directional distance functions proposed by Luenberger (1992). We can define the 

technology at period t:  

 ( ) :  can produce ( , )t t t t t t tT  x , v ,w x v w   (6) 

The directional distance function is therefore defined as follows: 

 ( ) sup : ( , , ) ,
t

t t t t t t t t t t t t t t t

T v wD T


      v wx , v ,w ;g ,g x v g w g  (7) 
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Following Chambers (2002), the Luenberger TFP indicator over the time period t 

and t+1 can be traditionally decomposed for a country as follows: 

, 1 , 1 , 1

, 1 1 1 1 1 1

1 1 1 1 1 1 1

, 1 1 1 1 1

where:

1
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g

x , v ,w ;g ,g x , v ,w ;g ,g

x , v ,w ;g ,g x , v ,w g g

 (8) 

In other words, the TFP indicator at a national level is the sum of efficiency 

change (EC) and technology progress (TP). Although this decomposition captures 

EC and TP at individual levels, it still ignores the structural effect for the whole 

group of countries at the aggregate level.  

More precisely, as illustrated in Figure 1, we can see the case of countries 

A and B which are technically efficient at individual plan levels, but are inefficient 

at the aggregate plan level (A+B). This component, namely structural inefficiency, 

is due to the heterogeneity of input allocations between countries A and B and the 

convexity of the isoquant curve. This lack of coordination can be seen as a market 

inefficiency. As a result, variations of the output and input mix among countries 

over time, impacting TFP growth of the aggregate production plan via structural 

inefficiency changes. The more the countries converge to similar output and input 

mixes, the less important is the inefficiency of the aggregate production plan. As 

a result, the TFP level at the whole group level increases. This effect is of 

particular importance for the impact on the environment on a worldwide level. 
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Figure 1: Illustration of structural efficiency 

To estimate the technical inefficiency at a group level of K countries, we 

employ the aggregate output vector as this direction: 
1 1

( , ) ( , )
K K

t t t t

v w k k

k k 

  g g v w  using 

a CRS technology. As mentioned before, technical inefficiency for an aggregation 

of countries takes into account a structural component, but also includes eventual 

technical inefficiency observed for individual countries. This aggregate 

inefficiency is defined as the overall inefficiency which can be split into two 

components: technical inefficiency which is the sum of individual countries’ 

technical inefficiencies and structural inefficiency. According to the chosen 

direction, these inefficiency scores are expressed in percentages of the total group 

output. 

The overall efficiency change (OE) reveals the evolution between overall 

inefficiency scores in periods t and t+1. Therefore, the Luenberger TFP index at 

an aggregate level based on a CRS technology can be defined as the sum of OE 

and TP: 
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Furthermore, OE can be continually decomposed into a technical efficiency 

change (TE) and a structural efficiency change (SE). TE is the time-variation of 

the individual technical inefficiency scores, while SE captures the change of the 

structural component over time. This latter effect is operationally deduced through 

the difference of the two previous components:  
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Finally, one can estimate TFP growth for the whole group as the result of 

the three components’ changes over time:  

, 1 , 1 , 1 , 1t t t t t t t tTFP TE SE TP       (11) 

 

3.3. Estimations of the TFP components by linear programing for primal and dual 

DEA models 
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Each component of the , 1t tTFP   index can be estimated by a linear program 

(LP). The primal directional distance function at the individual level is figured by 

the following linear program: 
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  (LP0) 

LP0 is a traditional DEA model under a CRS technology that satisfies free 

disposability of the inputs and good outputs, as well as weak disposability for bad 

outputs. In this approach, the shadow price of bad output can be positive or 

negative. Since we consider that pollution is always a societal cost, we explicitly 

impose a negative shadow price on undesirable output by changing the equal sign 

in LP0 to inequality sign “” in LP1. 
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  (LP1) 

In LP1, we can obtain the technical inefficiency for country k’. In order to acquire 

the overall inefficiency at the aggregate level, the following LP2 is demonstrated: 
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Thus, the structural inefficiency at the aggregate level can be derived from the 

difference between overall inefficiency (LP2) and the summation of technical 

inefficiency (LP1) (Briec et al., 2003; Färe and Zelenyuk, 2003). This difference 

exists when we are dealing with quantity and technical inefficiency but disappears 

when price and profit function are used as proved by Koopmans (1957). 

Intuitively, the exact aggregation holds for a profit function which is linear in 

price and quantity terms while it is not the case for a convex technology. 

Alternatively, the overall inefficiency can be computed from LP3 which is 

the dual of LP2. 
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 (LP3) 

The main interest of LP3 is to get the contribution of each country to the 

overall inefficiency. Then, we can obtain the overall and structural inefficiencies 

for each individual country k as follows: 



Chapter 3: Aggregate green productivity growth in OECD’s countries 

 

113 

 

, , ,

1 1 1

, 1 1

1 1

M J N
t v w v

k m m k j j k n n k

m j n

t t t

k k k

K K
t t t t

k k

k k

OE v w x

SE OE TE

SE SE SE

  
  

 

 

  

 

  

  

 

 (12) 

We also provide models without incorporating undesirable output to 

compare green TFP indexes with traditional productivity indicators through 

disabling the corresponding constraints of undesirable outputs in relevant primal 

and dual models. 

 

4. Data and results  

4.1. Data  

The database is from the Penn World Table and the International Energy 

Agency. This data covers 30 OECD countries including three groups from 

1971−2011: OECD Americas (4 countries: Canada, Chile, Mexico, and the 

United States), OECD Asia-Oceania (5 countries: Australia, Israel, Japan, the 

Republic of Korea, and New Zealand), and OECD Europe (21 countries: Austria, 

Belgium, Switzerland, Germany, Denmark, Spain, Finland, France, the United 

Kingdom, Greece, Hungary, Ireland, Iceland, Italy, Luxembourg, Netherlands, 

Norway, Poland, Portugal, Sweden, and Turkey). The remaining 4 OECD 

countries (the Czech Republic, Estonia, the Slovak Republic, and Slovenia) are 

not included due to the lack of available data. We use two inputs, one desirable 

output, and one undesirable output: namely, capital stock, labor force, real GDP, 

and carbon dioxide emission, respectively. The capital stock uses the perpetual 

inventory method at current purchasing power parities in millions of 2005 US 

dollars. The labor force is the number of persons employed among 30 OECD 

countries in millions. The real GDP is output-side at current purchasing power 

parities in millions of 2005 US dollars. These three inputs and one good output 



Chapter 3: Aggregate green productivity growth in OECD’s countries 

 

114 

 

are from the Penn World Table 8.1 (Feenstra et al., 2015) provided by the 

University of Groningen. The bad output (carbon emission) is based on a sectoral 

approach from fuel combustion in millions of tons (International Energy Agency, 

2014). 

Table 1 shows the average growth rates of inputs and outputs. From Table 

1, we find that the GDP growth is driven by OECD Asia-Oceania which also 

maintains the highest increasing rates in capital stock (5.12%) and carbon 

emissions (2.10%). OECD Americas attracts a greater work force which 

maintains the highest growth rate at 1.72%. OECD Europe has the lowest trend in 

carbon emissions (only 0.07%). This low trend potentially proves that good 

policies of environmental protection or industrial technological adjustments to 

high energy consumption have been effectively executed in Europe. In Figure 2, 

the negative trend of carbon emissions per unit of GDP (-2.25%) suggests that 

low-carbon requirements of the production process improve environmental 

performance in the OECD.  

 

Table 1: Average growth rates of inputs and outputs (1971−2011) 

Regions Capital 

Stock 

Labor 

Force 

Real GDP CO2 

OECD Americas 3.19% 1.72% 2.93% 0.84% 

OECD Asia-Oceania 5.12% 0.95% 3.61% 2.10% 

OECD Europe 3.29% 0.55% 2.87% 0.07% 

Total OECD 3.57% 1.04% 3.02% 0.76% 
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Figure 2: Evolutions of input and output indexes for the OECD 

(in logarithm terms) 

 

4.2. Results and discussion 

Technical inefficiency measures gaps between the observed production 

plans and their best practices, while structural inefficiency components are 

estimated through differences between overall and technical inefficiency scores. 

Their evolution over time is displayed in Figures 3, 4, and 5, respectively. OECD 

Europe accounts for the main technical inefficiency before OECD Americas 

catches up to that level in 2004. OECD Americas dominates the primary parts of 

structural inefficiencies from 1997−2009 which leads to a falling trend in 

structural efficiency change for the all the OECD countries. For OECD Asia-

Oceania, their evolutions of technical and structural inefficiencies are both 

relatively stable compared to the other two groups. We notice that structural 

inefficiency scores of OECD Europe show an increasing tendency after 2008 

during the period of the European debt crisis. However, we note that OECD Asia-

Oceania has no similar progress in structural inefficiency scores during the period 

of the Asian financial crisis. Woo et al. (2015) argue that environmental efficiency 
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is affected by global financial crisis. In our results, we cannot confirm whether 

the structural inefficiency is directly related to the relevant financial crisis. From 

Figures 3, 4, and 5, we also detect a significant inefficiency fluctuation for OECD 

Americas which is mainly caused by the United States during the period of 

1998−2009 which is no longer a benchmark. Because the weight of the United 

States in the total sample is huge compared to the other individual countries, its 

directional inefficiency scores are therefore high and impact significantly on the 

score evolutions of OECD America.  

 
Figure 3: Technical inefficiency scores for groups 
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Figure 4: Structural inefficiency scores for groups 

 

 
Figure 5: Overall inefficiency scores for groups 

 

In Figure 6, our empirical results show that the technical efficiency 

component of the TFP indexes keeps a growth rate at around 0.1% from 

1975−2000, and then it shows a declining trend and reaches the bottom in 2005. 

In Figure 7, the structural efficiencies in 30 OECD countries show an increasing 

trend from 1973−1993 and a declining movement from 1993−2008.  
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Figure 6: Technical efficiency index for the OECD (in logarithm terms) 

 

Figure 7: Structural efficiency index for the OECD (in logarithm terms) 

 

Although these significant declines arise in the technical efficiency and 

structural efficiency in the late stage of the period, the green TFP maintains an 

increasing trend at all times, which is attributed to a weighty rise in technology 

progress as shown in Figure 8 and Figure 9. This is consistent with the empirical 
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results of Mahlberg and Sahoo (2011) who argue that productivity growth in most 

of OECD countries during the period of 1995−2004 is dependent on their 

technology progress only. Our results also reveal the lowest fluctuations for the 

TFP index and its three components (technical efficiency, structural efficiency, 

and technology progress) when undesirable outputs are explicitly included in the 

referent technology. In Figure 9, the trend of TFP index with undesirable output 

is 0.82%, which indicates that the productive performance of the OECD group is 

underestimated by the traditional approach if carbon emissions are ignored 

(0.49%). Similarly, Yörük and Zaim (2005) argue that the Malmquist indexes 

undervalue the Luenberger indicators for the OECD countries from 1983−1998. 

The green productivity growth can be attributed to improved environmental and 

technological situations in the OECD, which is consistent with Mahlberg et al.’s 

conclusions (2011). One can note a substantial decrease after 2007 in the 

traditional productivity index, while the green TFP maintains a more or less flat 

trend. This TFP gap may be due to the correlation between carbon emissions and 

GDP downturns, which, in the end, do not significantly impact the green TFP 

level but do negatively affect traditional TFP through a decline of the good output.  

 

Figure 8: Technical progress index for the OECD (in logarithm terms) 
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Figure 9: TFP index for the OECD (in logarithm terms) 

 

5. Conclusions and further work 

We attempt to employ a Luenberger productivity index incorporating 

carbon emission into TFP measures for a group of 30 OECD countries. According 

to our empirical results, several conclusions can be drawn. 

(1) The traditional TFP index without considering carbon emissions 

underestimates that of green growth as a result of effective and efficient 

environmental protection policies in OECD countries during the sample period. 

Meanwhile, the green TFP level is maintained after the financial crisis in 2008, 

while the traditional measure shows a significant drop. This green productive 

performance is motivated by upgraded environmental situations in the OECD and 

could be evidence for rational thinking about the trade-off between economic 

growth and environmental cost. 

(2) Improvements of technical and structural efficiencies mainly contributed to 

the green TFP growth from 1971−2000, while technological progress contributes 



Chapter 3: Aggregate green productivity growth in OECD’s countries 

 

121 

 

the remainder during the sample period. This result indicates that technological 

progress becomes a dominant force in productivity growth in the 21st century.  

(3) Our results reveal the presence of substantial structural effects on TFP 

evolution for the OECD that have not previously been quantified. This structural 

component captures potential improvement space of productivity growth if 

OECD countries can converge to more homogeneous input or output mixes. We 

also notice that decreases in structural efficiency from 1997−2009 are mostly 

dependent on a decline of that component for OECD Americas. The structural 

proxy can be accompanied by dynamic evolution of resource reallocation in the 

economic organization. 

In this paper, most of sample countries are developed countries, and we 

cannot identify whether the productivity evolution of other developing countries 

is also motivated by their environmental conditions. To further determine the 

value of sustainable development and ecological innovations, possible future 

work could calculate green productivity growth and carbon abatement costs for 

additional groups of developed and developing countries. Intergovernmental 

cooperation plays an increasingly important role in global environmental 

governance, such as the Kyoto Protocol proposed by the United Nations 

Framework Convention on Climate Change in 1997. A positive correlation 

between environmental performance and carbon emission protocol has been 

detected by Yörük and Zaim (2005), and it seems essential in analyzing the 

potential influence of new international treaties and intergovernmental 

negotiations. In that way, future researches could also be further extended at a 

worldwide level for countries engaged in treaties, such as the Copenhagen Accord 

or the Kyoto Protocol. 
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Carbon shadow prices indicate the amount of economic value that producers have 

to give up for a certain amount of carbon emission reduction. In this chapter, we 

concentrate our research on carbon shadow prices at a worldwide level. Following 

Kuosmanen’s (2005) WDA approach, in the first stage, we propose a robust 

estimation for global carbon shadow prices that can reduce the influence of 

potential outliers belonging to the production set. In the second stage, we attempt 

to evaluate the impact of intergovernmental environmental agreements on carbon 

shadow prices, such as the Kyoto Protocol. 

 

1. Introduction 

According to record of the U.S. National Centers for Environmental Information, 

2014 was the warmest year ever, globally. Global warming threatens the survival 

of people all over the world, and scientists attribute climate change to emissions 

of greenhouse gases, such as carbon dioxide emissions. Carbon emissions have 

no real prices, but the opportunity costs for producers can be shown by carbon 

shadow prices—the amount of revenue that producers have to give up for a certain 

amount of carbon emission abatement—which provides useful information for 

environmental regulators. Nowadays, governments make great efforts to reduce 

carbon emissions and carry out different pricing approaches for carbon taxes. A 

popular approach is to set a gradually decreasing upper limit on carbon emissions 

and to allow exchanges of emissions permits in the market (Kossoy et al., 2015). 

Thus, the right to emit carbon dioxide changes from being a public good that is 

neither rivalrous nor excludable to a private good that is both rivalrous and 

excludable. When an amount of carbon emissions has a real price, is the price 

reasonable or fair to each producer? Lee et al. (2014) find that the carbon shadow 

price increases as the abatement level increases over time in South Korean 

electricity generating plants. Molinos-Senante et al. (2015) argue that the 

estimation of the carbon shadow price for non-power enterprises can provide 
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incentives for reducing greenhouse gas emissions. The objective of this paper is 

to investigate the carbon shadow price at the worldwide level for its economic 

implications and references for global carbon pricing. 

To estimate the shadow prices of undesirable outputs, both parametric and 

non-parametric methods, such as translog and quadratic functional forms or data 

envelopment analysis (DEA), tend to be used in the literature. Zhou et al. (2015) 

compare carbon abatement costs among Shanghai industrial sectors using the 

parametric and non-parametric approaches, with both the Shephard input/output 

and directional distance functions. Their results indicate that the type of distance 

functions plays a tiny role in estimating carbon shadow prices. However, the 

choice between parametric and non-parametric approaches affects the final prices 

significantly.  

Compared to the parametric approach, a non-parametric framework based 

on activity analysis modeling makes it possible to explore the entire production 

technology, incorporating environmental elements without any particular 

specifications of functional forms. Zhou et al. (2008) classify two groups in 

modeling pollution-generating technologies among activity analysis models: one 

uses data transformation or treats undesirable outputs as inputs based on free 

disposability assumption while the other uses original data based on a weak 

disposability assumption. The latter approach is introduced by Färe et al. (1989), 

such that desirable and undesirable outputs can only be decreased proportionately 

by a uniform abatement factor. Kuosmanen et al. (2005) propose an improvement 

by setting non-uniform abatement factors for variable returns to scale (VRS) 

models; Kuosmanen and Matin (2011) develop the dual formulation for this 

model. The applications of Kuosmanen’s model is available from Mekaroonreung 

and Johnson (2009), Berre et al. (2013), Berre et al. (2014), and Lee and Zhou 

(2015).   

Recently, several pollution-generating technologies have been proposed in 

non-parametric models and debates have been generated on selecting the right 



Chapter 4: Worldwide carbon shadow prices during 1990–2011 

130 

 

way to model undesirable outputs, such as by-production technology, materials 

balance principles, and weak G-disposability, etc. Indeed, the choice of modeling 

technologies including environmental dimensions should be based on different 

criteria, according to the research question, the level of analysis (micro versus 

macro), and the types of pollution that are included in the production technology 

(SO2, CO2, NOX, …). 

In detail, weak disposability emphasizes the symbiosis between good and 

bad outputs, which suggests that pollution is difficult to abandon. Some pollutions 

are easily disposed of by the introduction of additional equipment. For example, 

most sulfides and nitrides are soluble in water, and a simple chemical treatment 

may deal with them effortlessly. Even if some of them are difficult to dissolve in 

water, they can be removed by inexpensive approaches (e.g., nitric oxide can be 

oxidized to nitric dioxide, which is soluble in water). Consequently, these 

pollutions can be at a null level in the final production. At this time, the traditional 

weak disposability assumption is not relevant, and results may not provide useful 

and precise information for environmental regulators. However, some other types 

of pollution, such as carbon dioxide, are difficult to dispose of, and therefore the 

weak disposability assumption seems more appropriate. Murty and Russell (2002) 

introduce the by-production approach, combining two sub-technologies, namely, 

intended production technology and residual generation technology. Their 

intersection indicates the right trade-offs in production activities (Murty et al., 

2012). On the basis of the laws of thermodynamics/mass conservation, material 

balance principles require the balance of materials’ bounds between physical 

inputs and outputs using weak G-disposability. These two last approaches (by-

production and material balance) require detailed data, such as pollution-

generating inputs, that may be not available for country-level analyses, which 

often retains CO2 as a bad output linked to GDP. Consequently, the weak 

disposability assumption still seems an appropriate manner to model the 

production technology at the macro level.  
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Reviews of environmental modeling technologies in a non-parametric 

framework can be found in Zhou et al. (2008), Song et al. (2012), Oude-Lansink 

and Wall (2014), Zhang and Choi (2014), and Dakpo et al. (2015), etc. Zhou et 

al. (2014) summarize the literature on shadow price estimation for undesirable 

outputs. They note that most of the previous papers focusing on the shadow prices 

of undesirable outputs are conducted at the micro level for energy plants or 

polluted firms because of data availability and that there is a lack of studies 

exploring this field across different countries at a macro level. Yörük and Zaim 

(2005) discover a positive correlation between environmental productivity and 

climate protocol among OECD countries. Wei et al. (2013) argue that carbon 

shadow prices are positively correlated with the technology level of thermal 

power enterprises. However, most papers ignore the relationship between carbon 

shadow prices and environmental protocol. 

That being so, this paper investigates the global carbon shadow prices for 

119 countries, both developed and developing, using a robust non-parametric 

model based on the weak disposability assumption in the first stage. In the second 

stage, we analyze the impact of the Kyoto Protocol on the evolution of carbon 

shadow prices. The rest of the paper is structured as follows: Section 2 reviews 

environmental production technology and proposes a robust DEA model for 

estimating carbon shadow prices; Section 3 introduces the data and presents the 

empirical results; Section 4 presents the conclusions. 

 

2. Methodology 

2.1. Model specification 

In order to measure the worldwide carbon shadow price through a model of 

pollution-generating technology, we start from the Shephard’s definition of 

weakly disposable technology (Färe & Grosskopf, 2003). Introduced by Shephard 

(1970, 1974), weak disposability and the null-joint condition are two classical 
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assumptions usually used to model a pollution-generating technology. Weak 

disposability implies that proportional decreases in good and bad outputs are 

achievable through a scaling down of production activity through the introduction 

of an abatement factor,  . From an economic point of view, desirable and 

undesirable outputs are joint outputs. In addition, the null-joint condition means 

that the desirable outputs cannot be made if the undesirable outputs are at the null 

level. 

Let 1( ,..., ) N
Nx x R x  denote the vector of inputs, and 

1( ,..., ) M
My y R y  and 1( ,..., ) J

Jz z R z  the vectors of desirable and 

undesirable outputs for a country, respectively. The technology and its 

corresponding output set are denoted by T and P: 

 ( ):  can produce ( )T  x,y,z x y,z  (1) 

 ( ) ( ):( )P T x y,z x,y,z  (2) 

Weak disposability and null-jointness assumptions can be defined as: 

If ( ) ( )Py,z x and 0 1   then ( ) ( )P  y, z x   (3) 

If ( ) ( )Py,z x and y = 0  then z = 0  (4) 

The directional distance function measures gaps between the observed 

production plans (countries) and the production frontier or the benchmark defined 

by the best practices. The inefficiency scores   estimate these distances. Based 

on the Färe and Grosskopf axiomatic (FG), the production technology and 

directional distance function for an observed sample of K decision-making units 

(DMUs or countries) are defined by: 

' '
1 1

'
1 1

ˆ ( ) : , , , , 1, , , , 1, , ,

, 1, , , 1, 0 1,..., , 0 1

K K
N M J m m j j

FG k k k k k k
k k

K K
n n

k k k k k
k k

T R R R y y m M z z j J

x x n N k K

   

   

  
 

 









       

      

 

 

x,y,z x y z

(5) 

 ( ) sup : ( )
FG

FGTD T


   y z y zx,y,z;0,g ,g x,y +δ×g ,z -δ×g   (6) 

Next, the primal non-linear program under a VRS technology is denoted as: 
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 (NLP1) 

 

The nonzero vector ( )y z0,g ,g suggested by Chung et al. (1997) is intended to 

maximize desirable outputs and to minimize undesirable outputs simultaneously. 

To measure the carbon shadow price for each country, we employ output vector 

as the direction ( ) ( )y z0, 0,y,zg ,g , starting from a country sample of K DMUs. In 

NLP1, the production technology is non-linear, and this abatement effort is 

conventionally unique, shared with all countries under the VRS assumption. The 

corresponding VRS linearization related to a uniform abatement has been 

developed correctly by Zhou et al. (2008) and Sahoo et al. (2011). In order to 

maintain the convexity of the technology, Kuosmanen (2005) proposes non-

uniform abatement factors as k . The resulting technology is given by: 

' '

1 1

'

1 1

ˆ ( ) : , , , , 1, , , , 1, , ,

, 1, , , 1, 0 1,..., ,0 1 1,...,
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
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

 

 

x,y,z x y z

 (7) 

Kuosmanen technology also leads to a straightforward linearization of Equation 

7. Using changes of variables k k k    and
k k k   , the primal linear program 

under a VRS technology is defined as: 



Chapter 4: Worldwide carbon shadow prices during 1990–2011 

134 

 

, ,

1

1

1

1

ˆ ( ) max

. . 1, ,

1, ,

( ) 1, ,

( ) 1

0 1,...,

0 1,...,

KUT

K
m m m

k k y

k

K
j j j

k k z

k

K
n n

k k k

k

K

k k

k

k

k

D

s t y y g m M

z z g j J

x x n N

k K

k K

  


 

 

 

 















   

   

   

 

  

  









y zx, y, z;0,g ,g

  (LP1) 

Kuosmanen and Podinovski (2009) argue that their model can provide new 

economic insights into weak disposability while Shephard’s model violates the 

convexity axiom. 

 

2.2. Shadow prices of undesirable outputs 

Thanks to a non-parametric DEA approach, the shadow prices of outputs 

and inputs ( y ,
x ) can be deduced from marginal values related to the constraints 

in the primal model even when the information of market prices is incomplete. 

These marginal values have no economic sense as absolute values, but their ratio 

may be interpreted as input marginal productivities, which can be derived from 

the Lagrangian method (Equation 8).  

( ) /

( ) /

Tx

y T

D x

D y





 


 

y z

y z

x,y,z;0,g ,g

x,y,z;0,g ,g
  (8) 

In the same manner, the ratio of shadow prices of carbon emissions to GDP 

can be understood as the opportunity cost of reducing one extra unit of carbon 

emissions by giving up a certain unit of GDP. This ratio may provide useful 

information for producers and regulators to make trade-offs between economic 

benefits and environmental impacts in terms of negative externality. Although the 

shadow prices of undesirable outputs can usually be obtained by using the 

Lagrangian method (cf. Equation 9), the duality can bridge the gap between the 
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production technologies and may provide more explicit economic representations 

than the primal model can.  

( ) /

( ) /

Tz

y T

D z

D y





 


 

y z

y z

x,y,z;0,g ,g

x,y,z;0,g ,g
  (9) 

Kuosmanen and Matin (2011) develop the dual formulation of LP1 to 

derive the shadow prices of bad outputs, which provides an economic 

interpretation for weak disposability. In Kuosmanen’s initial model, the shadow 

prices of bad outputs are unconstrained, allowing negative and positive values. 

Consequently, bad outputs are allowed to involve benefits or costs in production 

activity that could generate ambiguous economic signals. We therefore change 

the equality sign to inequality ( ) in the second constraint of LP1, meaning that 

bad outputs can only produce costs (negative revenues).  

Finally, we compute the corresponding constrained dual model for each 

country (k’) as: 

' ' ' ' ' '
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n N   

 (LP2) 

The shadow prices of inputs and good and bad outputs—defined by x , y , 

and z —can be directly computed from LP2 by the estimated values of x , y , 

and z  (Equations 10 and 11). In LP2, the objective function is to minimize the 

profit inefficiency of the evaluated country (k’) by minimizing the difference 

between optimal shadow profit   and the shadow profit for k’ derived from the 
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best shadow prices and observed inputs and outputs ' ' '

1 1 1

( )
M J N

m m j j n n

y k z k x k

m j n

y z x  
  

     

(Berre et al., 2013).  

( ) /ˆ

ˆ ( ) /

Tx x

y T y

D x

D y

 

 

 
 

 

y z

y z

x,y,z;0,g ,g

x,y,z;0,g ,g
  (10) 
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 

 

 
  

 

y z

y z
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x,y, z;0,g ,g
  (11) 

A methodological point deserves discussion at this stage. It is well known 

that when linear programs are degenerate, several shadow prices are obtained and 

multiple solutions exist. This is generally a problem because we cannot decide 

easily which solution must be kept. Our approach, developed in the next section, 

circumvents this obstacle through a sub-sampling approach. While a large number 

of replications are computed, we can expect that the average shadow prices 

calculated from their empirical distributions are representative. 

  

2.3. Estimation approach: A robust DEA model  

The directional distance function defined in (6) makes it possible to evaluate gaps 

between the observed production plan and the relevant production frontier defined 

by best practices. As the true frontier is unknown, this distance function in a 

general multi-output, multi-input framework is gauged through LP1 or LP2. 

Owing to their non-parametric nature, these linear programs permit the avoidance 

of eventual bias effects on efficiency scores and shadow prices resulting from the 

arbitrary choice of the functional forms of technology necessary for econometric 

methods. However, this enveloping technique has a major drawback: it is difficult 

to incorporate statistical noise into the empirical estimations. Therefore, estimated 

shadow prices may be significantly influenced by potential outliers belonging to 

the production set. This issue can be resolved through successive sub-sampling 

frontier estimations rather than only one traditional full frontier. Consequently, in 

our empirical analysis, the presence of potential outliers is taken into account by 
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applying an estimation strategy proposed by Kneip et al. (2008) and Cazals et al. 

(2002), from which consistent estimators can be derived. More precisely, partial 

frontiers are constructed from a large number of Monte-Carlo replications (

1, ,b B ), by selecting different random sub-samples of size I ( I K ) with 

replacement and based on the initial observed DMUs. Their corresponding 

production sets are now defined as:  
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(12) 

This leads to defining the directional distance function relative to each sub-sample 

(b) as: 

 ' ' ' ' ' ' ' ' '
ˆ ˆ( , , ) max : ( , , )b m j n m m j j n b

k k k k k k k k k KUy z x y y z z x T         (13) 

Finally, robust values of the shadow prices of inputs and good and bad outputs are 

obtained from their empirical distributions as:  
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This robust frontier approach is characterized by the number of replications (B) 

and the size (I) of the sub-samples. The number of the Monte-Carlo replications 

has to be large enough to check the sensitivity of the final results. If the sub-

sample size reaches infinity, one gets back to the shadow prices of LP2 because 

each country of the entire sample has a high probability of selection into the sub-

technology. By contrast, with too small values for I, the referent production set 

might be inappropriate. As a result, through a relevant choice between these two 

parameters, the robust frontier approach implies a trade-off between a pertinent 

definition of the technology and a control of the outlier bias effects.  
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3. Data and results 

3.1. Data  

In order to estimate global carbon shadow prices, we try to integrate as large 

a number as possible of country samples from all over the world. Our data covers 

119 countries in 12 groups for the period from 1990 to 2011: 20 countries from 

Africa (Angola, Benin, Botswana, Cameroon, Côte d'Ivoire, Democratic Republic 

of the Congo, Ethiopia, Gabon, Ghana, Kenya, Morocco, Mozambique, Nigeria, 

Republic of the Congo, Senegal, Sudan, Togo, Tunisia, Zambia, and Zimbabwe), 

10 countries from Asia (Bangladesh, Brunei Darussalam, Malaysia, Mongolia, 

Nepal, Pakistan, Philippines, Singapore, Sri Lanka, and Thailand), 4 countries 

from the BRI(C)S (Brazil, India, Russian Federation, and South Africa), 5 

countries from CIVET (Colombia, Egypt, Indonesia, Turkey, and Viet Nam), 11 

countries from the Middle East (Bahrain, Islamic Republic of Iran, Iraq, Jordan, 

Kuwait, Lebanon, Oman, Qatar, Saudi Arabia, Syrian Arab Republic, and 

Yemen), 14 countries from the Non-OECD Americas (Argentina, Bolivia, Costa 

Rica, Dominican Republic, Ecuador, El Salvador, Guatemala, Honduras, Jamaica, 

Panama, Peru, Trinidad and Tobago, Uruguay, and Venezuela), 21 countries from 

Non-OECD Europe and Eurasia (Albania, Armenia, Azerbaijan, Belarus, Bosnia 

and Herzegovina, Bulgaria, Croatia, Cyprus, Georgia, Kazakhstan, Kyrgyzstan, 

Latvia, Lithuania, Malta, Republic of Moldova, Romania, Serbia, Tajikistan, 

Turkmenistan, Ukraine, and Uzbekistan), 3 countries from the OECD Americas 

(Canada, Chile, and Mexico), 5 countries from OECD Asia Oceania (Australia, 

Israel, Japan, New Zealand, and Republic of Korea), 24 countries from OECD 

Europe (Austria, Belgium, Czech Republic, Denmark, Estonia, Finland, France, 

Germany, Greece, Hungary, Iceland, Ireland, Italy, Luxembourg, Netherlands, 

Norway, Poland, Portugal, Slovakia, Slovenia, Spain, Sweden, Switzerland, and 

the United Kingdom), and the two biggest carbon emitters, China, and the United 

States of America (USA), respectively.  
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We use two inputs, one desirable output, and one undesirable output: capital 

stock, labor force, real GDP, and carbon dioxide emissions, respectively. Capital 

stock is measured using the perpetual inventory method at current purchasing 

power parities in 2005 US million dollars. The labor force is measured as number 

of persons employed, in millions. Real GDP is measured as output-side at current 

purchasing power parities in 2005 US million dollars. Carbon emissions are based 

on sectoral approach in million tons. The first three are taken from the Penn World 

Table 8.1 (Feenstra et al., 2015) and the last from fuel combustion highlights 

(International Energy Agency, 2014). 

Table 1 shows the average growth rates of inputs and outputs. China, the 

Middle East, CIVET, and Asia have the top four growth rates of capital stock (all 

higher than 6%), possibly because of their proactive investment policies and good 

financing environment. We note that a negative growth in labor force appears only 

in Non-OECD Europe and Eurasia (-0.34%) and that the global trend is 

increasing, at 1.43%. The growth rates of real GDP in the Middle East, China, and 

Africa, the three highest, respectively, are all above 5%. China has the highest 

growth rate of carbon emissions (5.91%) and has been the largest emitter, rather 

than the USA, since 2008. Although the USA has a high level of carbon emissions, 

it is increasing at only 0.6%. Europe has negative growth in carbon emissions (-

0.15%) thanks to effective and efficient environmental policies. We also notice 

that Non-OECD Europe and Eurasia has a negative trend in carbon emissions (-

1.78%), reflecting the economic downturn after the collapse of the former Soviet 

Union.  
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Table 1. Average growth rates of inputs and outputs 1990–2011 

 

3.2. Empirical results 

Because we may have introduced outliers into production technology owing to 

the disparate scales of national economies and carbon emissions among countries, 

a robust frontier approach is implemented. We simulate 1000B  replications with 

a sub-sample size 90I   out of the 119 countries in the initial sample. The robust 

shadow prices are computed by the mean values of the 1000 replications in the 

first stage. 

In Figure 1, the evolution of the carbon shadow price at a worldwide level 

is measured by the average value of each group in logarithm terms. The carbon 

shadow price is significantly increasing, at an annual rate of 2.24% (t-value=6.81). 

This first result is in line with Table 1, which clearly shows that the growth rate 

of real GDP is around twice as high as that for CO2. This suggests that pollution 

Regions 
Capital 

Stock 

Labor 

Force 
Real GDP CO2 

Africa 4.95% 2.68% 5.65% 3.28% 

Asia 6.28% 2.26% 4.18% 4.62% 

BRI(C)S 2.78% 1.73% 3.95% 1.43% 

CIVET 7.24% 1.77% 3.85% 4.62% 

Middle East 7.61% 3.68% 8.49% 4.83% 

Non-OECD Americas 5.16% 2.05% 4.61% 3.17% 

Non-OECD Europe 

and Eurasia 
2.03% -0.34% 2.44% -1.78% 

OECD Americas 3.20% 1.98% 3.15% 1.78% 

OECD Asia Oceania 4.05% 0.41% 2.03% 1.52% 

OECD Europe 3.73% 0.75% 2.91% -0.15% 

China 11.05% 1.00% 6.72% 5.91% 

USA 3.73% 0.93% 2.72% 0.60% 

Total 4.68% 1.43% 3.69% 2.02% 
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issues have been taken more into account by most of countries, particularly in 

Non-OECD Europe, OECD Europe, and the USA. The worldwide carbon shadow 

price is evaluated at around 1213 US dollars per ton in 1990 and experiences a 

steady fifteen-year growth between 1991 and 2005 to around 2191 US dollars per 

ton in 2005. A significant decrease in the carbon shadow price is observed 

between 2005 and 2009, followed by a substantial rise for 2009–2011; its mean 

value is around 2845 US dollars per ton in 2011. 

 

CSP: Carbon shadow price ($/ton) 

Figure 1. Shadow prices of carbon emissions at worldwide level  

(in logarithmic terms) 

The kernel densities of carbon shadow prices are plotted in Figure 2. In 

most regions, carbon shadow prices are distributed around 600 US dollars per ton 

in 1990 and 2400 US dollars per ton in 2011. The right side shift of the kernel 

density peaks between these two periods confirms the positive growth for carbon 

shadow prices. Simultaneously, their distribution is significantly more dispersed. 
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Figure 2. Kernel density of carbon shadow prices 

For a specific group of countries, the regional carbon shadow prices show 

clustering characteristics. In Figure 3, three groups of carbon shadow prices can 

be easily identified at the beginning of the sample period. The first group includes 

Africa, Asia, and the Non-OECD Americas, presenting the highest carbon shadow 

prices. The second group contains China and the USA, which record the lowest 

carbon shadow prices. These levels indicate that their marginal abatement costs 

of carbon emission are very low. The third group contains the rest of the regions, 

with shadow prices between the first and the second groups’ levels.  

 

CSP: Carbon shadow price ($/ton) 

Figure 3. Shadow prices of carbon emissions (in logarithmic terms) 

1
9
9
0

1
9
9
1

1
9
9
2

1
9
9
3

1
9
9
4

1
9
9
5

1
9
9
6

1
9
9
7

1
9
9
8

1
9
9
9

2
0
0
0

2
0
0
1

2
0
0
2

2
0
0
3

2
0
0
4

2
0
0
5

2
0
0
6

2
0
0
7

2
0
0
8

2
0
0
9

2
0
1
0

2
0
1
1

Africa Asia BRI(C)S
CIVET Middle East Non-OECD Americas
Non-OECD Europe and Eurasia OECD Americas OECD Asia Oceania
OECD Europe China USA

CSP=1000

CSP=100

CSP=3000



Chapter 4: Worldwide carbon shadow prices during 1990–2011 

143 

 

We find that the three groups evolve into five new bunches of countries at 

the end of the sample period. First, Africa still has the highest carbon shadow 

prices. The new second group is composed of Asia, the Non-OECD Americas, 

and Non-OECD Europe and Eurasia. Their carbon shadow prices are just below 

the African level. The third group gathers OECD Europe, the Middle East, and 

CIVET. These three groups have relatively high carbon shadow prices, which 

indicates that they have less of an impact on global warming. The rest of the 

regions except China comprises the fourth group. The fourth group and China 

dominate the lowest carbon shadow prices, which implies that they contribute 

much of the world’s pollution. In other words, they produce GDP without 

considering environmental costs. However, all countries have to share the 

pollution and pay for carbon taxes.  

We note that the carbon shadow prices of the BRI(C)S, OECD Asia 

Oceania, and the OECD Americas tend to be of a similar level while OECD 

Europe is detached from the other OECD groups during this evolution. The 

growth of carbon shadow prices in OECD Europe indicates that effective and 

efficient environmental policies has been carried out. 

On the whole, developed countries have lower carbon shadow prices, 

developing regions dominate higher carbon marginal abatement costs, and BRICS 

countries have a relatively low opportunity cost of carbon abatement. This result 

is consistent with Maradan and Vassiliev (2005), who point out that the marginal 

carbon abatement cost is generally higher in developing countries than in 

developed ones even if carbon shadow prices in some developing countries are 

lower than those in high-income countries.  

The growth rates of carbon shadow prices for each region are displayed in 

Table 2. Most of the observed regions reveal significantly increasing trends in 

carbon shadow prices while the BRICS countries record negative growths. These 

results can be summarized as follows:  
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1) Favored emerging economies show rapid economic development, and 

their economic growth is essentially dependent on high energy consumption, 

implying carbon emissions;  

2) countries with higher carbon emissions have lower opportunity costs for 

reducing pollution; and  

3) shadow price distributions show substantial disparities among countries. 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2. Average growth rates of carbon shadow prices 1990–2011 

As shown in Figure 4, one can observe a sigma convergence of carbon shadow 

prices over the period 1990–2007. The decline of variation coefficient is around 

-3.6% per year and is statistically significant (t-value = -14.43). Conversely, a 

sigma divergence is detected between 2008 and 2011. This phenomenon may be 

correlated with the global financial crisis triggered in the USA. Woo et al. 

(2015) argue that environmental efficiency is being affected by the global 

Regions coefficient t-value 

Africa 1.00% 1.69 

Asia 0.79% 2.65 

BRI(C)S -0.97% -1.01 

CIVET 5.22% 12.55 

Middle East 2.28% 3.70 

Non-OECD Americas 3.10% 6.80 

Non-OECD Europe  

and Eurasia 
3.56% 2.58 

OECD Americas 0.74% 0.76 

OECD Asia Oceania 4.43% 4.25 

OECD Europe 7.01% 14.97 

China -4.81% -5.03 

USA 2.31% 3.05 

Total 2.24% 6.81 
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financial crisis. Our results show that this crisis may potentially affect carbon 

shadow prices. 

 

 

Figure 4. Variation coefficient of shadow prices 

Finally, in order to examine the impact of the Kyoto Protocol on the carbon 

shadow prices, we conduct a regression analysis. Historically, the Kyoto Protocol 

was adopted at the third session of the conference of the parties (COP 3) in 1997. 

It was open for signature from 1998 to 1999 and received 84 signatures at that 

time, but 191 states are now party to it.4 The effect of the Kyoto Protocol (KP) is 

tested in a fixed effect panel model. According to the date of entry into force, a 

dummy variable is created for each country and year (cf. Appendix). We add to 

the regression equation the ratio of carbon emissions to GDP as a control variable 

(CO2/GDP), with  denoting the error term (cf. Equation 15). Time-fixed effects 

are also introduced through parameter t . Consistent with the robust approach we 

used to compute shadow prices, our estimation strategy is to run a regression per 

sub-sampling replication and to build confidence intervals for parameters of 

interest from the empirical distribution of the fixed effects estimators. The 

                                                           
4 Sourced from the United Nations Framework Convention on Climate Change: 

http://unfccc.int/kyoto_protocol/status_of_ratification/items/2613.php 
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regression model is defined by Equation 15, and the results are presented in Table 

3 and Figure 5. 

 

0 1 2 2ln ln( / ) ( )it t it it itCSP CO GDP Du KPmmy         (15) 

Coefficient 
Mean 

estimation 

Lower bound 

(2.5%) 

Upper bound 

(97.5%) 

Significance at 5% 

level* 
 

0  6.521 5.426 7.516 Yes  

1  -0.048 -0.200 0.096 No  

2  0.198 -0.060 0.455 No  

*A coefficient is significantly different from 0 if the confidence interval does not include 0. 

Table 3. Estimates of the Kyoto Protocol equation (15) 

 

Figure 5. Kernel density of coefficient of the Kyoto Protocol 

According to our findings, we conclude that the implementation of the 

Kyoto Protocol has not a very effective impact on the evolution of carbon shadow 

prices. The kernel density of 
2  displayed in Figure 5 shows that the distribution 

of the parameters is mostly positive, but we cannot reject the finding that zero 

belongs to this distribution at the 5% level. Therefore, we have to conclude that 

the Kyoto Protocol did not significantly affect the pollution regulations of 

engaged states. This emphasizes that further cooperation and efforts at carbon 
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reduction among countries, such as the Copenhagen Accord of 2009 and the Paris 

climate conference of 2015, were necessary. 

 

4. Conclusions 

Global warming and carbon pricing were the core issues of the last 

conference of the parties (COP 21) in Paris in 2015. Most states support the idea 

of carbon pricing to bring down emissions. A remaining question is the best way 

that governments can price carbon emissions. Currently, two main types of 

mechanism can be used: emissions-trading systems, which essentially fix the 

quota for emissions, leading to an ex-post market price for carbon, and taxes that 

directly set a price on carbon without constraining ex-ante the volume of 

emissions. At the moment, given the difficulty of fixing a carbon price, 

governments favor the first option.  

Our analysis is more in line with the second mechanism and could help 

policy makers to evaluate levels of carbon pricing among different countries and 

to fix relevant carbon taxes. Through a non-parametric robust frontier, we 

estimate worldwide carbon shadow prices, incorporating desirable and 

undesirable outputs, for a sample of 119 countries. According to our empirical 

results, the carbon shadow price is increasing at a rate of 2.24% per annum, 

reaching 2845 US dollar per ton in 2011, which suggests that carbon abatement 

may become increasingly challenging at the worldwide level. However, 

significant disparities are observed among groups of countries and over time. A 

significant sigma convergence of carbon shadow prices is observed among 

regions between 1990 and 2007, while a divergence is detected over the period 

2007–2011. This means that economic fluctuations and shocks may affect carbon 

shadow prices.  

In this paper, we conclude that the Kyoto Protocol has had no significant 

impact on carbon shadow prices. Therefore, countries need to keep engaging in 

Kyoto resolutions. A new agreement was adopted at the Paris climate conference, 
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which included more countries and ambitious targets. While the necessity of 

carbon pricing is more and more commonly shared among parties, the main 

question relates to the uniqueness of the CO2 tax. Our main conclusion suggests 

that unique carbon pricing for countries with different levels of economic 

development and pollution may be unfair or unreasonable. Carbon taxes should 

be settled according to the respective social capabilities of states.  
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Appendix: Implementation dates of the Kyoto Protocol 

Country Entry into force Country Entry into force Country Entry into force 

ALBANIA 30-Jun-05 GEORGIA 16-Feb-05 PERU 16-Feb-05 

ANGOLA 6-Aug-07 GERMANY 16-Feb-05 PHILIPPINES 16-Feb-05 

ARGENTINA 16-Feb-05 GHANA 16-Feb-05 POLAND 16-Feb-05 

ARMENIA 16-Feb-05 GREECE 16-Feb-05 PORTUGAL 16-Feb-05 

AUSTRALIA 11-Mar-08 GUATEMALA 16-Feb-05 QATAR 11-Apr-05 

AUSTRIA 16-Feb-05 HONDURAS 16-Feb-05 R. KOREA 16-Feb-05 

AZERBAIJAN 16-Feb-05 HUNGARY 16-Feb-05 R. MOLDOVA 16-Feb-05 

BAHRAIN 1-May-06 ICELAND 16-Feb-05 ROMANIA 16-Feb-05 

BANGLADESH 16-Feb-05 INDIA 16-Feb-05 RUSSIAN  16-Feb-05 

BELARUS 24-Nov-05 INDONESIA 3-Mar-05 SAUDI ARABIA 1-May-05 

BELGIUM 16-Feb-05 IRAN 20-Dec-05 SENEGAL 16-Feb-05 

BENIN 16-Feb-05 IRAQ 26-Oct-09 SERBIA 17-Jan-08 

BOLIVIA 16-Feb-05 IRELAND 16-Feb-05 SINGAPORE 11-Jul-06 

BOSNIA & H. 15-Jul-07 ISRAEL 16-Feb-05 SLOVAKIA 16-Feb-05 

BOTSWANA 16-Feb-05 ITALY 16-Feb-05 SLOVENIA 16-Feb-05 

BRAZIL 16-Feb-05 JAMAICA 16-Feb-05 SOUTH AFRICA 16-Feb-05 

BRUNEI D. 18-Nov-09 JAPAN 16-Feb-05 SPAIN 16-Feb-05 

BULGARIA 16-Feb-05 JORDAN 16-Feb-05 SRI LANKA 16-Feb-05 

CAMEROON 16-Feb-05 KAZAKHSTAN 17-Sep-09 SUDAN 16-Feb-05 

CANADA 16-Feb-05 KENYA 26-May-05 SWEDEN 16-Feb-05 

CHILE 16-Feb-05 KUWAIT 9-Jun-05 SWITZERLAND 16-Feb-05 

CHINA 16-Feb-05 KYRGYZSTAN 16-Feb-05 SYRIAN A. R. 27-Apr-06 

COLOMBIA 16-Feb-05 LATVIA 16-Feb-05 TAJIKISTAN 29-Mar-09 

CONGO 13-May-07 LEBANON 11-Feb-07 THAILAND 16-Feb-05 

COSTA RICA 16-Feb-05 LITHUANIA 16-Feb-05 TOGO 16-Feb-05 

COTE D’IVOIRE 22-Jul-07 LUXEMBOURG 16-Feb-05 TRINIDAD & T. 16-Feb-05 

CROATIA 28-Aug-07 MALAYSIA 16-Feb-05 TUNISIA 16-Feb-05 

CYPRUS 16-Feb-05 MALTA 16-Feb-05 TURKEY 26-Aug-09 

CZECH R. 16-Feb-05 MEXICO 16-Feb-05 TURKMENISTAN 16-Feb-05 

D. R. CONGO 21-Jun-05 MONGOLIA 16-Feb-05 UKRAINE 16-Feb-05 

DENMARK 16-Feb-05 MOROCCO 16-Feb-05 UK 16-Feb-05 

DOMINICAN R. 16-Feb-05 MOZAMBIQUE 18-Apr-05 USA None 

ECUADOR 16-Feb-05 NEPAL 15-Dec-05 URUGUAY 16-Feb-05 

EGYPT 12-Apr-05 NETHERLANDS 16-Feb-05 UZBEKISTAN 16-Feb-05 

EL SALVADOR 16-Feb-05 NEW ZEALAND 16-Feb-05 VENEZUELA 19-May-05 

ESTONIA 16-Feb-05 NIGERIA 10-Mar-05 VIET NAM 16-Feb-05 

ETHIOPIA 13-Jul-05 NORWAY 16-Feb-05 YEMEN 16-Feb-05 

FINLAND 16-Feb-05 OMAN 19-Apr-05 ZAMBIA 5-Oct-06 

FRANCE 16-Feb-05 PAKISTAN 11-Apr-05 ZIMBABWE 28-Sep-09 

GABON 12-Mar-07 PANAMA 16-Feb-05   

Sourced from the United Nations Framework Convention on Climate Change  
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In the last chapter of thesis, we further extend research to two undiscovered areas: 

one is a law of one shadow price model which imposes a unique constraint on 

shadow price estimation of bad outputs. Another is extension of by-production 

model, we point out some possible improvements on this model and a preliminary 

simulation result for comparing with WDA model is included. 

 

1. A law of one shadow price model 

In the traditional DEA models, each DMUs has a specific set of shadow 

prices for both desirable and undesirable outputs, thus the same good may have 

different prices in the economy. Kuosmanen et al. (2006) and Leleu (2009) 

proposed a global constraint model which measures a meta-frontier for all DMUs 

simultaneously, namely a law of one shadow price model (LOOSP). This global 

constraint indicates the same shadow prices of identical goods can be applied to 

each DMUs in an efficient market. We follow Leleu’s approach (2013) and a 

traditional DEA model under a VRS technology that satisfies free disposability of 

the inputs, weak disposability for outputs and a positive shadow price for 

undesirable outputs. Primal and dual LOOSP linear programs based on directional 

distance function can be figured by: 
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 (2) 

Kuosmanen et al. (2006) argue that the LOOSP emphasizes the 

coordinating function of prices in the allocation of resources and hence naturally 

relates the efficiency of individual firms to the efficiency at the aggregate level of 

the industry or sector as a whole. By means of this one price method, we may 

adopt a unique (global) opportunity cost of undesirable outputs in terms of the 

loss of desirable outputs from environmentally friendly viewpoint. Take carbon 

emissions as an example, reducing carbon emissions is a global action, the same 

pricing scheme may help archiving an international consensus and imposing 

carbon tax for all countries. The LOOSP may become a new activity analysis 

model with bad outputs. We plan to apply this approach in the future work. 

 

2. By-production method 

Initially Murty et al. (2012) employ an improved output-oriented Färe-Grosskopf-

Lovell index to measure efficiency with a hyperbolic measurement, the original 

nonlinear primal program and a dual formulation with direction distance function 

under a CRS technology can be defined as follows: 
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(4) 

where m  and j are non-radial efficiency scores for good and bad outputs, x , 

xp , y  and z denote shadow prices of all inputs, pollution generating inputs, 

good and bad outputs associated to each constraint in linear programs. In the first 

sub-technology, it is a classical DEA model with all inputs and good outputs. In 

the second sub-technology, the disposability is inversed for the pollution 

generating inputs and bad outputs. Due to the nonlinearity with the above model 

based on a Färe-Grosskopf-Lovell index, we can extend it to a linear one with 

directional distance function as follows: 
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(6) 

We remark a potential pitfall in the Murty et al. (2012) approach. One can 

observe that efficiency scores m and j  are not constrained in the original model 

while the objective function is using Färe-Grosskopf-Lovell index at a summation 

level. Therefore it does not prevent to get negative values for the individual 

efficiency scores even if the average one is maximized. In order to avoid existence 

of negative values, we suggest a positive constraint on efficiency scores.  
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Moreover, we can detect there are two different shadow prices of pollution 

generating inputs which appear twice both in two sub-technology. Assume that 

two shadow prices of pollution generating inputs are equivalent, a constraint 

model of unique shadow prices with directional distance function can be derived 

as following steps:  
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we use non-pollution generating o

kx and pollution generating inputs p

kx  instead of 

all inputs in the first sub-technology. If we add a new constraint p p

x xp   to the 

above dual program which implies shadow prices of pollution generating inputs 

are same in both sub-technology, a new dual constraint model is derived as: 
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 (8) 

Alternatively, the corresponding primal constraint model can be also derived 

from following steps: 
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We decompose all inputs to non-pollution generating and pollution generating 

inputs and one can notice two constraints ' '
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model is derived as follows: 
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 (10) 

The primal (8) and dual (10) models are equivalent. Compared to initial by-

production model, the main feature in primal model (8) is allowing to use more 

pollution generating inputs for producing more good outputs. And the dual one 

(10) is setting identical shadow prices on pollution generating inputs. This model 

may be further studied. 
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3. Comparison between by-production and WDA 

3.1. Data 

In order to compare by-production technology with WDA model, we collect a 

dataset of two common inputs, one good output, one bad output, and one pollution 

generating input respectively: capital stock, employment, and GDP are from 

AMECO database, and energy consumptions and carbon emissions are from 

International Energy Agency statistics. This dataset includes 24 OECD countries: 

Australia, Austria, Belgium, Canada, Denmark, Finland, France, Germany, 

Greece, Iceland, Ireland, Italy, Japan, Luxembourg, Netherlands, New Zealand, 

Norway, Portugal, Spain, Sweden, Switzerland, Turkey, United Kingdom, and 

United States. The net capital stock and GDP are measured as at base year 2010 

with purchasing power parities in billions of 2010 Euros. Employment, energy 

consumptions, and carbon emissions are measured as 1000 persons, kiloton of oil 

equivalent, and million tons respectively. 

 

3.2. Estimation strategy 

We employ a directional distance function as the non-radial measurement 

based on Färe-Grosskopf-Lovell index for by-production (BP) CRS technology 

instead of initial nonlinear one. Efficiency scores are constrained for positive 

values. Alternatively, we provide a classical WDA model under a CRS technology 

as a baseline. In the WDA model, we keep equal sign for constraint of bad outputs 

and the non-radial measurement based on Färe-Grosskopf-Lovell index. The by-

production and WDA models are defined as follows: 
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Instead of comparing results based on the real dataset, we keep data of 

inputs while we simulate that of two outputs by a Cobb–Douglas production 

function. 

a b cY AK L E  (13) 

where K, L, and E are capital stock, labor, and energy consumption, a, b, and c 

are the output elasticities of capital, labor and energy, respectively. In the 

simulation, inefficiency of outputs are randomly generated and the average 

inefficiency of simulation is 18%. In order to maintain a CRS technology, we 
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force sum of a, b, and c are equal to 1. Their simulation value are estimated by an 

OLS regression on the real dataset as follows: 

lnA a b c 

0.0966 0. 5852 0. 2363 0. 1785 

 

3.3 Results comparison 

The scatterplots between inefficiency scores of by-production approach and 

inefficiency scores of simulation, and between inefficiency scores of WDA 

approach and inefficiency scores of simulation are shown in Figure1 and Figure2 

respectively.  

 

 

Figure1 Comparison of inefficiency simulation for BP 
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Figure2 Comparison of inefficiency simulation for WDA 

We can identify that WDA model has a greater degree of dispersion comparing to 

that of BP model. Compared to initial settled 18%, the average inefficiency scores 

are 15.25% in WDA model and 24.65% in BP model. Although some simulation 

inefficiencies exist in output level, WDA model underestimates inefficiency 

scores thus points are located at the horizontal axis while we do not detect the 

same situation in BP model. In this context, we may argue that BP model has a 

better performance. The further work on BP model and multiple frontiers methods 

may have broader prospects in future research. 
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General Conclusion 

 

This thesis introduces undesirable outputs to production technology and attempts 

to integrate the negative externality of pollution into economic evaluation which 

is referred to, as green productivity. A nonparametric approach DEA is employed 

to model the environmental production frontier, which analyzes the 

environmental impact on economic performance. 

The analysis begins by focusing on a developing country, China, which has 

become the largest carbon emitter since 2008. Chapter 2 re-examines the 

convergence hypothesis for 30 Chinese regions from 1997 to 2010 based on WDA 

and VRS assumptions. We propose a novel way of decomposing regional 

efficiency changes: a technical catching-up process and a structural effect which 

implies convergence or divergence in input and output mixes. The empirical result 

reveals that structural inefficiency predominates the technical effect in the growth 

convergence process, and structural inefficiency is mainly due to the pollution 

cost convergence among regions. Not only some rich regions but also 

underdeveloped areas serve as benchmarks for China. We also detect the carbon 

shadow price increases at 2.5% annually and approaches 864 yuan per ton in 2010 

in China. According to these results, we can conclude that the increasing pollution 

cost estimated through the shadow price of carbon dioxide emissions implies the 

unsustainability of Chinese current economic growth. The regional unbalanced 

carbon shadow prices suggest that the Chinese government should seek an 

equilibrium point between economic benefits and the costs of pollution in national 

and regional efficiency improvements. 

Thereafter, Chapter 3 includes the study of green productivity evolution in 

developed countries. Incorporating carbon emissions into production frontier for 

a group of 30 OECD countries over the period of 1971−2011, we propose a novel 

decomposition for green productivity growth at the aggregate level which 
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separates the difference-based Luenberger TFP changes into three components; 

technological progress, technical and structural efficiency changes. Beyond the 

traditional technical efficiency changes and technological progress, this 

decomposition captures a structural effect, which can be observed as a proxy for 

an input/output deepening or expanding effect associated with dynamic 

convergence or divergence of resource reallocation in the economic organization. 

The empirical results indicate that the traditional TFP index underestimates green 

growth. Compared to results of Chinese regions in Chapter2, the green growth in 

productivity performance is driven by the effective and efficient environmental 

policies of the OECD. 

After investigating evolutions of environmental efficiency and productivity 

in China and OECD countries, the last chapter extends the horizon to a worldwide 

level: global carbon shadow prices are estimated for 119 countries from all 

continents during 1990-2011. Our empirical results show that the global carbon 

shadow price is increasing by around 2.24% per annum and has reached 2845 US 

dollars per ton in 2011. A significant sigma convergence process of carbon 

shadow prices among countries is detected during 1990–2007. The relationship 

between carbon shadow prices and environmental protocol has not been studied 

yet, we analyze the evolution of carbon shadow prices at a worldwide level by 

using a sub-sampling approach. This robust approach may circumvent the 

obstacle of multiple solutions of shadow prices. We discover an insignificant 

effect of implementation of the Kyoto Protocol on the evolution of global carbon 

shadow prices. 

At the end of this work, we can draw some general conclusions about the 

main findings in this thesis. First, we argue that environmental elements play a 

vital role in economic performance among regions which is significantly affected 

by incorporating undesirable outputs. Not only rich regions, some poor regions 

with a fine environmental condition may also serve as benchmarks. Studying the 
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impact of environmental element on economic performance can evaluate the cost 

of the blind pursuit of economic growth, and determine economic, social and 

environmental sustainability for policy and decision makers. This thesis shows 

that environmental deterioration has a counteractive effect on the economic 

performance. Thus governments should not ignore the undesirable outputs in 

production activity, and protecting environment and reducing undesirable outputs 

will be advocated by policy and decision makers. 

Second, even if regions are technical and price efficient at the individual 

level, a certain level of inefficiency may appear at the aggregate level. This must 

be taken into account for a global environmental policy at a worldwide level. 

Defining a common carbon tax or pricing rules for carbon emission requires 

international cooperation and integrated evaluation of the impact of pollution in 

the productivity of countries. Therefore the global environmental protocol may 

provide a platform for negotiating and implementing emission reduction and 

carbon tax, such as the Kyoto Protocol, the Copenhagen Accord, and the Paris 

Climate Conference. Since carbon reduction is an interactive action, our results 

show that we still have room for structural improvement and efficient resource 

allocation. This may be beneficial to all participants and intergovernmental 

cooperation may not only improve our environmental condition but also social 

wellbeing. 

Third, the result implies that developed countries have lower carbon 

shadow prices while developing regions dominate higher carbon marginal 

abatement costs. In other words, it is difficult to reduce one unit of carbon 

emission for a poor country comparing to that for a rich one. We point out that it 

is unfair to set a unique carbon price for countries with different levels of 

economic development and pollution. Carbon taxes should be settled according 

to the respective social capabilities of states. Our research may also help policy 

and decision makers to investigate opportunity costs of carbon reduction among 
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regions and to design a rational mechanism for carbon taxes which are valuable 

to each countries. 

Finally, we argue that economic sustainable growth can be motivated by 

effective environmental policies and the green productivity growth is predicated 

to become a dominant source of economic growth in the 21st century. We believe 

that the green or low carbon growth will play a vital role in the worldwide 

economic development model which is the significance of this research. 
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