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Résumé  

 

Le processus de sélection de portefeuille peut être effectué en deux étapes: la première 

consiste à évaluer les actifs financiers et la deuxième à déterminer la combinaison d‟actifs qui 

permettrai d„allouer de façon optimale la richesse. La combinaison des actifs financiers 

retenue à la fin de ce processus se doit de répondre simultanément et de façon optimale aux 

différents objectifs de l„investisseur. Le problème de sélection de portefeuille peut être 

considéré comme un processus de décision multicritère. Dans cette thèse, plusieurs critères 

ont été analysés et on a tenté de répondre à la question de combien et où investir ?  

On a proposé une nouvelle approche multicritère basée sur la méthode d„enveloppement des 

données (DEA) et l„approche de l„efficacité croisée pour sélectionner un portefeuille d‟actifs 

financier. Afin d‟évaluer la performance des actifs financiers, la méthode d‟efficacité croisée 

basée sur DEA considère les critères à minimiser comme inputs tandis que ceux à maximiser 

comme outputs. La première méthodologie proposée consiste à incorporer la méthode 

d‟efficacité croisée dans un espace Moyenne-Variance-Skewness-Kurtosis (MVSK). Ce 

modèle a l‟avantage de considérer les moments d‟ordre supérieur dans le processus de 

sélection de portefeuille. Le deuxième modèle combine la mesure de l'efficacité croisée par 

l'enveloppement de données vue comme solution d'un jeu avec la composante risque pour 

choisir un portefeuille. Finalement, on a proposé d‟incorporer la mesure de l'efficacité croisée 

par l'enveloppement de données vue comme solution d'un jeu dans un modèle d‟arbitrage 

entre profitabilité et efficacité afin de sélectionner un portefeuille. On a appliqué les 

approches proposées à un échantillon d‟entreprises cotées sur la bourse de Paris et on a 

démontré que les portefeuilles obtenus sont plus performants du point de vue risque et 

rendement que les portefeuilles de référence, qui sont les indices de marché, et ce pour une 

période de 6 années s‟étalant de 2010 à 2015. Globalement, ces méthodes ont permis la 

discrimination entre les actifs financiers et de leur donner un classement unique dans un 

premier temps, ensuite de sélectionner un portefeuille en prenant en considération les 

préférences du décideur. 

Mots clés: sélection du portefeuille, Méthode d‟enveloppement des données, efficacité 

croisée, moments d‟ordre supérieur, bourse de Paris, décision multicritère, profitabilité 

  



4 
 

General Abstract 

 

The process of portfolio selection could be divided into two stages: the first one is the 

evaluation of financial assets and the second is to choose the best ones to construct portfolio. 

It can be considered as Multi Criteria Decision Making (MCDM) process. It consists in 

selecting a combination of financial assets that can best meet the investors‟ objective. In this 

dissertation, different criteria are analyzed and the question of where and how much money to 

allocate to each of the financial asset is processed. We propose a new multi-criteria analysis 

approach to portfolio selection based on Data Envelopment Analysis (DEA) cross-efficiency 

model. To assess financial assets performance, the DEA cross-efficiency framework considers 

the attributes to minimize as inputs and those to maximize as outputs. The first methodology 

consists in nesting the DEA cross-efficiency model into the Mean-Variance-Skewness-

Kurtosis (MVSK) space. We then cover the merit of considering higher order moments in 

portfolio selection process. The second model combines the DEA game cross-efficiency 

approach with risk component to select portfolio. Finally, we propose a model incorporating 

the DEA game cross-efficiency into Profitability-Efficiency framework. We apply the 

proposed approach to firms listed on the Paris stock Exchange, and demonstrate that the 

resulting portfolio yields higher risk-adjusted returns than other benchmark portfolios for a 6-

year sample period from 2010 to 2015. Overall, these methodologies provide more 

discrimination for financial assets by providing unique ranks in a first step and permit to 

select portfolio by underlying preferences of the decision-maker in a second step.   

Keywords: Portfolio selection, Data Envelopment Analysis, Cross-efficiency, higher order 

moments, Paris stock exchange, Multi-criteria-decision-making, profitability 
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General Introduction  

 

There is no denying that stock markets are some of the most important parts of today‟s 

global economy. One role of stock markets is to act as an intermediary for large and small 

investors seeking to make money outside the realm of standard banking institutions. Thus, a 

fundamental question in finance is how to invest? In other words, how to select portfolio?  

Portfolio selection problem is an important issue in the theory and practice of finance. 

Having considered a number of risky assets, it may be defined as the decision whereby a 

basket of the best set of financial assets is selected from many different alternatives. 

Markowitz (1952) conceived the process of portfolio selection as a two-step procedure. The 

first one starts with observation and experience and ends with beliefs about the future 

performances of available financial assets, it consists in securities performance evaluation. 

The second stage starts with the relevant beliefs about future performances and ends with 

choosing the optimal and the most attractive investment with optimal wealth allocation given 

preferences of the investor. The decision of selecting portfolio is of greater importance, since 

choosing the right assets is a significant resource allocation decision that can lead to high 

profits and in the worst case to huge losses. 

Portfolio performance has been evaluated for a long time based only on assets‟ returns. 

Afterward, the assessment has been extended to the risk component. Then, the performance 

evaluation has been based on performance measures combining information on both return 

and risk.  

According to the Mean-Variance (MV) approach introduced by Markowitz (1952), an 

investor is arbitrating between two basic conflicting objectives that are the maximization of 

the return and the minimization of the risk. Afterwards, several other models were developed 

based on the MV framework. Besides the two fundamental criteria of return and risk, a 

number of important criteria such as investor preferences, consistent returns, marketability, 

liquidity, capital growth, risk diversification, taxes planning and price earnings ratio have 

been considered through developing realistic multi-criteria models. Since the decision 

attributes may be conflicting, the portfolio selection can be considered as a Multi Criteria 

Decision Making (MCDM) process. It consists in selecting a combination of financial assets 

that can best meet the investors‟ objective. 
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In this dissertation, different criteria are analyzed and the question of where and how 

much money to allocate to each of the financial assets is processed. Thus, this work mainly 

responds to a practical need for portfolio selection and management. 

In recent years, the development of multi-criteria analysis gave rise to new ways of 

modeling portfolio management model. As an alternative MCDM tool, the application of Data 

Envelopment Analysis (DEA) has been considered as a promising tool for evaluation the 

discrete multi-criteria decision process since it does not require additional information than 

the values associated with each attribute. It has gained more attentions in the portfolio 

selection area. The methodological connection between DEA and MCDM analysis is 

established by considering the non-preferred criteria as inputs, whereas the preferred criteria 

are considered as outputs. The use of DEA as a benchmarking tool is relevant in the case of 

MCDM. It permits to consider several attributes together to present a single composite 

efficiency score, to assist in the decision making process of the investor.   

In this study, we use a cross-efficiency approach based on DEA approach to evaluate 

and discriminate among securities. Developed by Charnes et al. (1978), DEA is used to 

measure the relative efficiencies of a set of Decision Making Units (DMUs) with multiple 

inputs and outputs. It determines the efficient DMUs and generates potential improvements 

for inefficient DMUs. Moreover, DEA is a useful tool in MCDM which evaluates the 

efficiency of DMUs without any information of the relative importance of inputs and outputs. 

This leads to confirm its adequacy to resolve portfolio selection problem, given that an 

investor is not able to express a preference toward attributes at the beginning of the portfolio 

selection process.  

When we apply DEA in a MCDM context, a common problem arises, that is a 

multiplicity of 100% efficient DMUs. Thus ranking DMUs can be quite hard. Indeed, this 

further support the lack of discrimination power of this methodology and the unrealistic 

weighting scheme. Proposed by Sexton et al., (1986) and developed in Doyle and Green 

(1994a), the DEA cross-efficiency method provides a unique ordering of DMUs and 

eliminates unrealistic weights schemes. It uses DEA in a peer-evaluation instead of self-

evaluation.  

However the use of cross efficiency as such suffers from the non-uniqueness of the 

DEA optimal weights. In this dissertation we propose the DEA Game Cross efficiency 
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Framework which considers the factor of competition in ranking different assets and provides 

stable weights and Nash equilibrium efficiency scores to evaluate assets. 

Overall, The DEA cross-efficiency would be a suitable multi-criteria method to solve 

portfolio selection problem as it allows explicit tradeoffs and interactions among criteria. 

Nonetheless, in the peer-evaluation, it is likely to choose assets whose performance is 

somewhat good on all measures and exclude those whose performance is good for only a 

subset of criteria. In fact a variation in one criterion could be compensated in a director or 

opposite way by other criteria. This leads to a portfolio made of too similar financial assets 

which causes a problem of lack of diversification.  

To deal with this limitation we fit the cross-efficiency model into optimization model 

allowing us to select diversified portfolio depending on investor objectives. In this 

dissertation, we follow Markowitz portfolio selection process definition by evaluating 

financial assets considering criteria and beliefs in the first step and choosing among them in 

the second step.   

In this work, the first stage of portfolio selection process is based on the DEA cross-

efficiency approach. The second stage is based on optimization models that translate other 

investors‟ preferences.  

In the first place, we propose a portfolio selection model which takes into account the 

investors preferences for higher return moments that are skewness and kurtosis. 

Secondly, based on DEA game cross-efficiency approach, we propose that the 

maverick index (the deviation between the DMU self-appraised score and its peer-appraised 

score) of a DMU could be a consistent measure of risk degree with respect to changes in 

weights. We then select portfolio by making a tradeoff between efficiency and this novel risk 

indicator. 

Finally, as the efficiency of a financial asset may result from a good mix of criteria, 

the profitability criterion matters a lot to an investor. Since efficiency does not mean 

profitability, we consider making gains as objective in the evaluation process of financial 

asset. 

As illustrations to the developed approaches, we report case studies involving a 6-year sample 

period from 2010 to 2015 of firms listed in the Paris Stock exchange.  
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This dissertation is a compilation of articles. It is made by three articles and an 

introductive chapter that put the entire thesis into context and connecting the different papers.    

In the first chapter of the thesis, we provide an overview of the cross-efficiency as an 

extension to DEA approach, we also present a survey on the related developed literature, and 

we show the usefulness of cross-efficiency evaluation in portfolio selection area. We also 

briefly recall some criteria that could be used in portfolio selection field. We finally cover the 

merit of considering higher order moments in portfolio selection process: We present the 

theory of decision making under risk due to the original contribution of Von Neumann and 

Morgenstern (1947). In particular, we describe the necessary and sufficient conditions for the 

presentation of portfolio problem. We also provide the relationship between the MV approach 

and the expected utility approach in details and show the importance of including higher order 

moments into portfolio selection decision process.  

The second chapter consists in nesting the DEA cross-efficiency model into the Mean-

Variance-Skewness-Kurtosis (MVSK) space. The DEA cross-efficiency evaluation suggests 

that each DMU is not only to be self-evaluated but also to be peer-evaluated. Therefore, the 

cross-efficiency evaluation can guarantee a unique ordering of the DMUs. The optimal choice 

is a portfolio that performs optimally with respect to many criteria, which are the first four 

moments of returns distribution. The developed framework permits to (i) take into account 

investor attitudes, (ii) determine endogenously two tradeoffs parameters, one between the 

mean and the variance of the return‟s distribution and a second between the skewness and the 

kurtosis of that same distribution and (iii) to allocate decision maker‟s wealth in an optimal 

way to select portfolio. To illustrate how our new methodology works, we applied it on a 

sample of financial assets and we test its robustness by comparing the obtained portfolio to 

benchmark portfolios in terms of risk-return performance.   

In the third chapter, we combine the DEA game cross-efficiency approach with risk 

component to select portfolio. We evaluate performance of financial assets by providing Nash 

equilibrium efficiency scores. We suggest the maverick index as a consistent risk indicator. 

We then incorporate the game cross-efficiency into Mean-Maverick framework to select 

portfolios. The developed approach has multiple merits; it (i) gives Nash equilibrium 

efficiency scores and a unique rank to the financial assets, (ii) provides a relevant and novel 

measure of risk based on game cross-efficiency method in portfolio area, (iii) permits to select 

well-diversified portfolio. To demonstrate that the developed method could be a promising 
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tool for portfolio selection we report a case study involving 500∼508 firms from the Paris 

Stock Exchange.  

In the fourth chapter, we propose a model incorporating the DEA game cross-

efficiency into Profitability-Efficiency (PE) model by considering profitability criterion on 

one hand and efficiency resulting from a good mix of attributes to portfolio selection on the 

other hand. The developed model permits to (i) obtain game cross-evaluation scores, which 

constitute a Nash equilibrium solution to financial assets. (ii) gives the scope to make decision 

about profits. (iii) reflects investor‟ preferences, by using higher order moments of returns 

distribution as inputs and outputs to compute efficiency scores of financial assets. A large 

sample of firms listed on Paris stock exchange during the period 2010-2015 served as 

illustration of this framework. 
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Chapter 1:  On the use of Cross-efficiency approach 

to portfolio performance evaluation with higher 

order moments  

 

Markowitz, the father of modern portfolio theory, introduced the notion of two 

moment efficiency analysis, where investors should consider the variance in addition to return 

levels in their decision making process. In fact, the tradeoff between mean and veriance 

involves minimizing risk for a given level of expected return, or equivalently, maximizing 

expected return for a given level of risk. This model assumes that all agents have similar 

expectations about market condition, which leads to impose that investors have a quadratic 

utility function and asset‟s returns are normally distributed. This does not seem too realistic.  

Thus, many other critical factors and criteria which directly or indirectly influence the 

investor decision should be considered in the portfolio selection process. The portfolio 

selection is then a logical consequence of the investor‟s attitudes towards information 

concerning stocks. These factors and information may be considered together in a single 

composite Data Envelopment Analysis (DEA) efficiency score to evaluate financial asset.  

The use of DEA as a Multi Criteria Decision Making Analysis (MCDA) tool is 

established by considering the non-preferred criteria as inputs, whereas the preferred criteria 

are considered as outputs. Moreover, DEA is useful in MCDM because it permits to evaluate 

assets without any information of the relative importance of the inputs and outputs, this leads 

to confirm its adequacy to resolve portfolio selection problem, given that an investor is not 

able to express a preference toward attributes at the beginning of the portfolio selection 

process. 

However, the DEA provides each financial asset a good opportunity to self-evaluate its 

efficiency relative to other homogenous financial assets based on its favorable weights, this 

leads to a problem of unrealistic factors weights.  Furthermore, the ranking of financial assets 

can be quite hard using efficiency scores because there is a multiplicity of the 100% efficient 

DMUs. These problems are dealt with cross-efficiency framework which provides a unique 

ordering of DMUs and eliminates unrealistic weight schemes without requiring the elicitation 

of weight restrictions from the decision maker.  



20 
 

In the first section, we briefly recall criteria that have been used in portfolio selection 

field and we cover the merit of considering higher order moments in portfolio selection 

process. In the second section, we provide an overview of the cross-efficiency as an extension 

to DEA approach, we also present a survey on the related developed literature, and we show 

the usefulness of cross-efficiency evaluation in portfolio selection area.  

1. An investigation of the promising Criteria in portfolio selection 

decision making: Higher order moments  

 

According to Cook et al. (2014), if the DEA issue is a general benchmarking problem 

where it is employed as Multi Criteria Decision Making (MCDM) tool, then “the inputs are 

usually “less-the-better” type of performance measures and the outputs are usually the 

“more-the-better” type of performance measures”. In such context, inputs and outputs are 

two sets of performance attributes, where one set is non-preferred (inputs) to be minimized 

and the other is preferred (outputs) to be maximized.  

In portfolio selection problem, the investor splits his wealth amongst the most 

desirable stocks based on a given characteristics and preferences. Since the pioneering work 

of Markowitz (1952), several portfolio selection methods have been investigated based on two 

criteria that are: the profitability (expected return) and the second order risk (variance). Since 

the investor desires to minimize the portfolio risk, the variance is the criterion to minimize. 

However, the expected return is to maximize because the investor prefer getting gains. Multi-

criteria approaches build realistic models and processes by taking into consideration besides 

the two basic criteria of return and risk, a number of important desirable and undesirable 

attributes, such as solvency (Bouri et al. (2002), liquidity ( see.eg., Steuer et al. (2007) and 

Jana et al. (2009)), marketability (see.eg. Zopounidis et al. (1998) and Aouni (2009)), growth 

of the dividends  (Bower and Bower (1969)), profitability (Ballestero et al. (1996)), financial 

structure and others. (Aouni et al. (2018)) present a good work on the importance of multiple 

criteria decision aid methods for portfolio selection and a large survey on the criteria in use to 

portfolio selection. In DEA model, criteria are used as inputs and outputs. The DEA method 

offers investors the possibility to consider simultaneously a mix of attributes with direct 

control over the priority level paid to each criterion. It permits to take into account the specific 

preferences of investors.  
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Despite the significant development of portfolio selection based on MV framework, it 

has been shown that we should not neglect the higher order moments of returns. Recent 

techniques enlarge the assessment dimension to the skewness and kurtosis in order to take 

into consideration the non-normality of return distributions and the non-quadratic utility 

function of the investor. 

The MV model is established on the assumptions that investors have a quadratic utility 

function and/or the returns of the financial assets are normally distributed. The simplifying 

assumption of return normality implies that the investor can lose more than his initial wealth. 

Moreover, quadratic utility function supposes that investors are equally averse to deviations 

above the mean as they are to deviations below the mean. This means that they are averse to 

upward movements in the same way as to downward movements and that they sometimes 

prefer less wealth to more wealth. Literature has proven that these assumptions are not 

literally true. In fact, empirical evidence suggests that asset returns of financial assets exhibit 

significant departures from the normality; they have heavier tails than implied by the normal 

assumption and are often not symmetric. 

1.1    Basic utility theory for portfolio selection 

While the approaches that tradeoff risk and return have always been of particular 

interest, the expected utility approach has proven a natural framework for the analysis of 

financial decision problems.  

John von Neumann and Oskar Morgenstern developed the Von Neumann–

Morgenstern utility function, an extension of the theory of consumer preferences that 

incorporates a theory of behaviour toward risk variance in theory of Games and Economic 

Behavior (Von Neumann and Morgenstern (1947)). Utility theory shows that if an agent is 

faced with a choice of outcomes subject to various levels of probability, the optimal decision 

will be the one that maximizes the expected value of the utility derived from the choice made. 

Expected value is defined as the sum of the products of the various utilities and their 

associated probabilities. The individual is expected to be able to rank the items or outcomes in 

terms of preference, but the expected value will be conditioned by their probability of 

occurrence. The expected utility hypothesis presents the most popular approach to decision 

making under uncertainty in finance.  
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Let an individual‟s initial wealth iW
 
to be invested in portfolio  . There are N risky 

assets with proportions to invest and random returns 1 2( ... )NR r r r . At time 

0, the investor has to decide about the composition of   to be held until the period 1.  

At the end of the period 1, the final wealth 
fW  of the investor is computed as follows:  

 
1

1 1
N

f i i i i

i

W W p r W r


 
    

 


                                                                                        (1.1) 

 

Where 
1

N

i i

i

r p r



  is the portfolio return and assets‟ weights ip
 
are as 

1

1
N

i

i

p


 . 

The final wealth allows the individual to consume goods which creates him pleasure and 

utility. Thus, the utility function  .U  describes the relationship between wealth and the 

utility extracted from consuming this wealth.  The utility function varies from an investor to 

another. To solve the portfolio problem, the expected utility hypothesis assumes that an 

investor selects the portfolio by maximizing his expected utility value as follows:  

    1 0 0

1

1

max 1 1

. 1

N

i i
P

i

N

i

i

E U W E U W p r E U W r

s t p







    
            

    






                                        (1.2)

 

This expected utility function is called the Von Neumann-Morgenstern utility function. An 

expected utility function is unique up to affine transformations. This property is described as 

follows:  

   1 2. .U pU p 
                                                                                                              (1.3) 

Where  .U  is an individual utility function and 1 2, 0p p    

Let  .U be an individual utility function, 1W
 
is the income if state of the world 1 occurs with 

probability 1p  and 2W
 
is the income if state of the world 2 occurs with probability 2p .  To 

describe preferences over ex ante risky income bundles, the expected utility model is as 

follows:  

1 2( ... )NP p p p
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     1 2 1 1 2 2,U W W pU W p U W   where 1 2, 0p p 
                                                           (1.4)

 

In fact, the investor chooses between risky bundles based on the expected utility to get 

from them. If he expects to extract more utility from one bundle than another he will choose 

this bundle rather than the other.  

Moreover, the Von Neumann-Morgenstern utility function is characterized by a positive 

marginal utility. This property means that “the more is always better”. It is the rate at which 

total utility increases as the level of income rises. That is the positivity of the first partial 

derivative of the utility function with respect to income W . 

 
 ' 0

U W
U W

W


 


                                                                                                           (1.5) 

1.1.1 Risk aversion and expected utility analysis  

Let U be the strictly increasing utility function of an agent. Assuming that U  is 

continuous and continuously differentiable, the risk aversion is equivalent to having a concave 

function i.e. 0U   . To derive this result, we use the utility premium tool suggested by 

Friedman and Savage (1948) which measure the degree of pain or harm implied in adding 

risk. While the usefulness of the utility premium concept in comparison between agents, it 

presents a promising tool for analyzing choices made by agents.  

For a random risk , the utility premium is defined as follows:  

   ( ) ( )V W E U W U W  
                                                                                             (1.6)

 

V  presents the additional utility amount involved by adding the risk  . If the agent is risk-

averse, his utility decreases by adding risk, thus ( ) 0V W  . 

Note that an individual is called risk-averse if at any wealth level; he dislikes every lottery 

with an expected payoff of zero. He prefers receiving the expected outcome of a lottery with 

certainty rather than the lottery itself i.e.    E U W U W W and       where 

 Z E Z    is a random outcome and  is a zero-mean random variable.  

A risk-averse individual is an individual who dislikes zero-mean risks. He may like risky 

lotteries if the expected payoffs that they yield are large enough.   
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In a general view, Rothschild and Stiglitz (1970) defined risk aversion as an aversion to 

mean-preserving spreads.  It has been shown by Jensen‟s inequality that the necessary and 

sufficient condition for risk aversion is the concavity of the expected utility function, i.e. 

  0U W W   . In the context of portfolio selection problem, the utility function must be 

decreasing and concave.  

Following Eeckhoudt and Schlesinger (2006), we present risk aversion as preferences 

over lottery pairs.  Let W  be a positive initial wealth. We assume that an agent prefers more 

wealth to less wealth. Let 1k  and 2k  be two positive constants. In lottery  2 1 2,B W k W k   , 

the agent has equally likely payoffs  1W k  or 2W k  payoffs. He has a 50-50 chance of 

either receiving a sure loss 1k  or the other sure loss 2k . However, in lottery

 2 1 2,A W W k k   , the agent has a 50-50 chance of either receiving both losses (“harms”) 

together 1 2k k or receiving neither one. An agent is defined as risk-averse if he prefers 2B  to 

2A , i.e. ( 2 2B A ) for every arbitrary positive parameter values 1 2,W k and k . In fact, a risk-

averse agent prefers to disaggregate sure losses 1 2k and k  across states of the world. This risk 

aversion behavior describing disaggregating harms is defined by Eeckhoudt and Schlesinger 

(2006) as the concept of risk apportionment. This preference is equivalent to concavity of 

utility function 0U   . Moreover, within utility approach, the lottery 2B is less risky than the 

lottery 2A in the sense of Rothschild and Stiglitz (1970) since 2A  may be seen as a simple 

mean-preserving spread of 2B . 

The certainty equivalent or the cash equivalent as introduced by Pratt (1964) is the 

certain level of wealth obtained in the „good‟ state of nature („no sickness‟) that yields the 

same level of satisfaction as the expected utility. 

Since a risk-averse investor does not like zero-mean risks, we can measure the risk 

aversion by the amount which the investor is willing to pay to avoid a zero-mean risk . We 

call this amount as the risk premium  and presented as follows:  

   E U W U W                                                                                                         

(1.7) 




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The risk premium is the amount that an individual would pay to achieve the same expected 

total utility when he replaces the lottery with its expected value (Eeckhoudt and Hammitt 

(2001)). 

The risk premium is always a function of the utility function , the initial wealth  and 

the distribution of zero-mean risk . 

Considering a very small risk , we approximate the Equation (1.7) by a first order and a 

second order Taylor approximation of the left-hand and the right hand side as follows:  

                                                             (1.8)

 

Where  is the variance of . 

Substituting into Equation (1.7), we find:  

                                                                                                                        (1.9)
 

Where  is the Arrow-Pratt measure of absolute risk-aversion or a measure 

of the utility function concavity‟s degree. Moreover, dividing by the first derivative of the 

utility function shows that the Arrow-Pratt measure of absolute risk aversion is 

independent of affine transformations of the utility function and therefore the preference 

ordering would not been changed.  

The absolute risk aversion and the risk premium should be decreasing functions of the 

initial wealth, i.e. 0
W





or equivalently  0

A

W





, which mean   0A W W   . 

According to the global risk aversion theorem (Pratt (1964)), an investor A is more risk-

averse than an investor 2 if for the same initial wealth amount, they have 1 2 and W    , 

 .U
0W





       

   
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 

 
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
 



 U W
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or    1 2A W A W W   or equivalently where is a strictly increasing 

concave function and  and  are the utility functions of investor 1 and 2 respectively. 

While  measures the absolute risk aversion,

 

 
 

 

U W
W A W W

U W


  


 is the 

relative risk aversion measure (Kimball (1990)).

 

Note that the first derivative of the absolute risk aversion is as follows: 

  
     

 

2

2

U W U W U W
A W

U W

  
  


                                                                              (1.10)

 

Since   0A W  , the third partial derivative of the utility function  U W
 
must be strictly 

positive.   

1.1.2 Correspondences between Mean-Variance analysis and expected 

utility theory  

1.1.2.1 Mean-variance preferences  

According to MV analysis process, investors attempt to make more efficient 

investment choice by maximizing expected return for a given level of variance or minimizing 

variance for a given level of expected return. To determine the efficient set of portfolios, 

Markowitz framework is based on means and variances of returns and covariance between 

assets returns. It assumes that investor‟s preferences are described by preference function 

 ,   over the mean   and the standard deviation   of the portfolio return. The first 

derivative of   with respect to the mean should be positive, i.e.
 ,

0

 




  


 ; 

whereas with respect to the standard deviation, it should be negative, i.e.
 ,

0

 




  


. 

Assuming that the variance is a risk measure, the above hypotheses are interpreted as risk 

investor conditions. That means the investor prefers realize gains and dislikes risk. 

Nonetheless, in general, the MV model is not necessarily equivalent to the expected utility 

approach. It has been proven by literature that in order to make MV evaluation reconcilable 

with the expected utility approach, we must make assumptions either about the quadratic 

utility function of the investor or about the assets returns distribution.  

    1 2U W G U W G

1U 2U

 
 

 

U W
A W

U W


 


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1.1.2.2 Restricting the utility function: Quadratic utility  

In order to match the expected utility approach and the MV framework, we must 

assume that the investor‟s expected utility function is quadratic. Since the expected utility 

functions are unique only up to an affine transformation, the most general form of quadratic 

utility may be given by  

  2 , 0
2

b
U W W W b  

                                                                                                  (1.11)
 

Note that the marginal utility function   1U W bW   is positive for 
1

W
b

 . If not the 

marginal utility function becomes negative. In addition, the risk aversion is foolproof if the 

second derivative of utility function   U W b  
 
is negative, that means for 0b  .  

The expected utility function is given as follows  
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 

 
     

 

    

  

 
                                                                       (1.12)

 

Where  ,   is the preference function mean   and standard deviation  .   The first 

derivative of the preference function with respect with the mean 
 ,

1 0b

 





    


 

for 
1

b
   . Moreover, the first derivative of the function with respect to the standard 

deviation 
 ,

0b

 





    


 for 0b  . 

Finally, as shown by Pratt (1971) the quadratic utility assumption involves that 

wealthier agents invest less in risky investments, which is conflicting with intuition and the 

logic. In fact, the quadratic utility function requires globally increasing absolute risk aversion 

 
 

  1

U W b
A W

U W bW


  

 
                                                                                                (1.13) 
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The Arrow-Pratt risk aversion measure  A W is increasing in b  
2

1

b
A W

bW

 
   

 
 , which is 

reasonable but contradicts the fact.   

1.1.2.3 Restricting the return distribution: Normality  

The normality of return‟s distribution implies the correspondence between the 

expected utility theory and the MV approach. A portfolio return (or wealth) is normally 

distributed if assets‟ returns have a normal distribution. Given that the wealth is normally 

distributed, the expected utility function is given as follows:  

   
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                                                           (1.14)

 

Where  W is the normal density and  ,   is the MV preference function.  

The marginal utility is positive since the first derivative of   with respect to the mean is 

positive, 
 

   
,
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   .Morevoer, as  ,   is symmetric 

we have 
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                    (1.15)

 

If the investor is risk-averse (   0U W W   ), we find   

    0U W U W for W          
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Thereby the first derivative of preference function with respect to the standard deviation is 

negative 0  .  

In total, individuals prefer maximizing expected returns and dislike return volatility 

(variance). Studies have shown that normality of returns simplifying assumption does not 

hold.  

1.2   The parallel development of the expected utility theory and the modern 

portfolio theory  

Since uncertainty governs the portfolio selection decision, the theory of choice under 

risk is important in financial investment process. While Bernoulli (1738/1954), Arrow (1965) 

and Pratt (1964) have proven the universal importance of risk aversion, Leland (1968), 

Sandmo (1970), Kimball (1990) and Kimball (1993) demonstrated that the higher-order risk 

attitudes prudence and temperance complement significantly risk aversion attitude. For 

example, in the saving behavior area, risk averse agent prefers smoothing consumption over 

time (Modigliani and Ando (1957)), prudence manages the change of saving behavior when 

future income becomes riskier that is defined by Kimball (1990) as the precautionary saving, 

and temperance define the sensitivity of saving behavior to changes in macroeconomic risks 

such as interest rate risk (Eeckhoudt and Schlesinger (2008)). Agents‟ prudence and 

temperance degrees have significant involvement on a wide range of financial and economic 

works such as healthcare field (see for example, Courbage and Rey (2006), Bui et al. (2005) 

and Eeckhoudt et al. (2007)), bargaining (White (2008)), sustainable development and climate 

change (Bramoullé and Treich (2009)), rent seeking (Treich (2010)), insurance holding 

(Eisenhauer and Halek (1999)), competitive firm underprice uncertainty (Wong (2004)), labor 

supply (Flodén (2006)) and portfolio choice (Briec and Kerstens (2010)) among other fields.  

Literature shows that portfolio selection decisions depend crucially on higher order 

risk attitudes. Within the expected utility approach, prudence and temperance are properties of 

the third and fourth derivatives of the utility function.  In fact, as termed by Kimball (1990), 

prudence is defined by a convex first derivative of the utility function (convex marginal 

utility) and has direct implications for saving behavior that is greater savings in response to an 

increase in background risk. Based on precautionary saving theory, prudence is positively 

correlated with saving motives, whereas temperance is defined by a concave second 

derivative of the utility function and is negatively correlated with the riskiness of portfolio 

choices.  



30 
 

In the following subsection, we define prudence and temperance concepts, we show 

how they are equivalent to signing derivatives of the utility function within an expected utility 

framework and we develop preferences over lotteries that correspond to prudence and 

temperance. We finally relate these higher order risk concepts to preferences in portfolio area. 

1.2.1 On the direction of preference of higher order moments than the 

variance for portfolio selection  

1.2.1.1 About the prudence 

The notion of prudence in determining precautionary savings demand was firstly noted 

by Leland (1968) and Sandmo (1970). Then, Kimball (1990) has coined the prudence term as 

equivalent to a precautionary demand for savings. He defined prudence as “the sensitivity of 

the optimal choice of a decision variable to risk”; likewise it is “meant to suggest the 

propensity to prepare and forearm oneself in the face of uncertainty, in contrast to „risk 

aversion‟, which is how much one dislikes uncertainty and would turn away from uncertainty 

if possible”, in consumption-saving decision, it is defined as “the intensity of the 

precautionary saving motive” which means uncertainty about future incomes implies the 

reduction of the current consumption in favor of the increase of the current saving.   

Gollier (2001) defines “an agent as prudent if adding an uninsurable zero-mean risk to his 

future wealth rises his optimal saving.” 

Within the expected utility approach, the sign of every derivative of the Von Neumann 

Morgenstern utility function has some economic interpretation. In fact, classifying individuals 

as prudent and temperate may be based on the signs of the derivatives of their utility functions  

(Eeckhoudt and Schlesinger (2006)).  

Let W  be a risky investment,  W E W  is its expected value and U  is the VNM 

utility function, the condition    E U W U W    implies the convexity of U  , i.e. prudence 

attitude. An agent is called prudent if his marginal utility is convex.  

Much earlier, Menezes et al. (1980) relate the sign of third derivative of expected utility 

function to aversion to downside risk which is equivalent to prudence. A pure rise in 

downside risk does not vary the mean or the variance of a risky wealth prospect, but it does 

decrease the skewness.   

In fact, Eeckhoudt and Schlesinger (2006) used the utility premium ( )V W to show the 

relationship between the expected utility approach and the prudence concept. The derivative 

of the utility premium with respect to wealth is as follows:  
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   ( ) ( )V W E U W U W    
                                                                                         (1.16)

 

Using Jensen‟inequality, we find that ( )V W is positive whenever U   is convex function i.e.  

0U   . Since   0V W  , we interpret   0V W   as meaning that the size of the utility 

premium gets smaller as initial wealth W  increases. A prudent agent prefers taking on an 

unavoidable risk in a relatively high income state of the nature.  

Eeckhoudt and Schlesinger (2006) define prudence notion as a type of preference over 

lotteries. It is a type of preference for disaggregating two risks. A prudent agent is more 

willing to accept an extra risk when wealth is higher than when wealth is lower.  Let W  be a 

positive initial wealth. Let k  be a positive constant and   be a zero-mean random variable. 

Following Eeckhoudt and Schlesinger (2006), the third-order risk attitude of prudence (or 

downside risk aversion) is presented in lottery. Losing k  and adding the random variable   

present the pair of harms in this lottery case. A prudent agent prefers disaggregating these two 

harms across different states of the world. He prefers  3 ,B W k W     over 

 3 ,A W W k  
 
for all wealth levels W , sure wealth contraction k  and zero-mean risks 

 . In other words, the individual is prudent if he prefers adding the zero-mean variable   to 

the state of the nature with the higher wealth W  than with the state with lower wealth W k . 

In the same way, a prudent agent prefers attaching the sure loss k  to the state with no risk 

than to the state of the world with the random risk  . In overall, an unavoidable risk preferred 

when wealth is higher. In terms of risk apportionment, as mentioned by Eeckhoudt and 

Schlesinger (2006) “a prudent individual prefers to apportion the two harms by placing one 

in each state.”  

The prudence premium   is defined by Kimball (1990) and  Bleichrodt and 

Eeckhoudt (2005) as the solution of the following equation:  

   E U W U W                                                                                                      (1.17) 

The prudence premium indicates how much of initial wealth has to be reduced by agent in 

order to maintain its expected marginal utility constant. It represents the degree of prudence. 

Higher prudence premium leads to higher saving. 

The index of absolute prudence represents the strength of the precautionary saving 

motives according to Kimball (1990) and is presented as follows:  

   
 

 
,

U s
P W c P s

U s


  


                                                                                                 (1.18)
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Where the amount of saving s W c   is the difference between the wealth W  and the 

consumption c .   

According to Kimball (1990), the index of relative prudence is presented as follows:  

   
 

 
,

U s
W P W c W P s W

U s


     


                                                                              (1.19)

 

1.2.1.2 Theoretical background about the temperance 

Temperance behavior was first introduced by Kimball (1991) as the sense of 

moderation in accepting risks. Logically, an investor should hedge against a risk that is 

correlated with the risk that he is already exposed.  In presence of an unavoidable risk, a 

temperate agent reduces exposure to another risk even if these two risks are statistically 

independent.  

Temperance is also defined by Eeckhoudt and Schlesinger (2006) as a type of preference for 

disaggregation of two independent zero-mean risks. Temperance was explained in terms of 

utility as a negative fourth derivative of the utility function. Let W  be a risky investment, 

 W E W  is its expected value and U  is the VNM utility function, the condition 

   E U W U W     is equivalent to concavity of U  and thus temperance behavior. 

Indeed, Eeckhoudt and Schlesinger (2006) used the utility premium ( )V W  to show the 

relationship between the expected utility approach and the temperance concept. The second 

derivative of the utility premium with respect to wealth is as follows:  

   ( ) ( )V W E U W U W    
                                                                                        (1.20)

 

Using Jensen‟inequality, we find that ( )V W is negative whenever U   is concave function 

i.e.  '''' 0U  . That concavity of the utility premium is equivalent to a preference for risks 

disaggregating. Since we have a decreasing utility premium, we interpret   0V W   as 

meaning that the rate of decrease in the utility premium lessens as wealth increases.   

Moreover, Menezes and Wang (2005) show “that temperance can be interpreted as 

aversion to outer risk. Temperate individuals dislike relocations of dispersion from the center 

of a distribution to its tails”. Thus, temperate agent dislikes kurtosis in the same way of risk-

averse person dislikes higher variance.  

Besides the equivalence between temperance behavior and negative fourth derivative of utility 

function, the temperance attitude was defined by Eeckhoudt and Schlesinger (2006) as a type 

of preference over lotteries. It is a type of preference for disaggregating two risks.   Let W  be 
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a positive initial wealth. Let 1  and 2  be two independent and distinct zero-mean random 

variables. A temperate individual prefers  4 1 2,B W W    over  4 1 2,A W W     . He 

prefers to apportion the two harms by placing one in each state of the nature.  

The temperance premium is defined by Kimball (1990) and Bleichrodt and 

Eeckhoudt (2005) as the solution of the following equation: 

   E U W U W                                                                                                      (1.21)
 

Introduced by Eeckhoudt et al. (1996) , the index of absolute temperance is as follows :  

 
 

 

''''

'''

U W
T W

U W
   

As shown by Eeckhoudt and Schlesinger (2006) and Wang and Li (2010), the index of 

relative temperance is presented as follows:  

 
 

 

''''

'''

U W
W T W W

U W
  

                                                                                                    (1.22)

 

 

As conclusion, Kimball (1991) has shown that a prudent individual responds to risk by 

accumulating more wealth however a temperate agent responds to an unavoidable risk by 

reducing exposure to other risk even when risks are statistically independent.  

We summarize measurement details of risk aversion, prudence and temperance in Table 1.1. 
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Table 1.1: Summary Table on risk attitudes 

Attitude Utility 

function 

Lottery preference Absolute measure Relative  measure Premium 

Risk 

aversion 

0U    , ,1 2 1 2W k W k W W k k           
 

 

 

U W
W A W W

U W


  


  

 

 

U W
A W

U W


 


 

   E U W U W       

Prudence 0U       , ,W k W W W k      
   

 

 
,

U s
P W c P s

U s


  


    

 

 
,

U s
W P W c W P s W

U s


     


 

   E U W U W        

Temperance '''' 0U   , ,1 2 1 2W W W W              
 

 

 

''''

'''

U W
T W

U W
    

 

 

''''

'''

U W
W T W W

U W
    

   E U W U W        
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1.2.2 On prudence, temperance and portfolio optimization  

 

As assumed by Eeckhoudt and Schlesinger (2006), an agent dislikes two states of the 

world: a certain diminution in wealth and adding a zero-mean independent noise random 

variable to the distribution of the wealth. Prudence is defined as a way of preference for 

disaggregation of these two untoward states of the world.  Replacing the certain reduction in 

wealth with a second independent zero-mean risk, temperance is defined as a type of 

preference for disaggregation of these untoward events. In other words, prudent agent prefers 

adding an unavoidable zero-mean risk to a state in which income is high, rather than adding it 

to a state in which income is low. However, temperate agent prefers disaggregating two 

independent zero-mean risks across different states of the world, rather than facing them at the 

same time in a single state. As we have shown, if W  is a risky investment,  W E W  is its 

expected value and U  is the VNM utility function, then the condition    E U W U W    

involves concavity of U , i.e. risk aversion behavior. The condition    E U W U W   

implies the convexity of U  , i.e. prudence attitude. The condition    E U W U W     is 

equivalent to concavity of U  and thus temperance behavior. 

As Levy (1989) pointed out, the MV and the Von-Neumann expected utility function 

models identify the same efficient sets of assets when the investor is risk-averse.  In fact, 

investors choose exactly the same random prospects when their preferences are characterized 

by a quadratic utility function or when financial asset returns are random variables with fixed 

expected return and variance. A concave quadratic utility function is characterized by positive 

first order and negative second order derivative and null higher order derivatives. This 

assumption is a major source of criticisms of the MV framework. Indeed, it has been 

repeatedly shown that financial asset returns are not normally distributed, and we should not 

ignore empirical evidence that extreme value distribution characterize them. This strongly 

suggests that moments larger than the second do matter in financial problems. In fact, 

assuming investors to have quadratic utility function is equivalent to assume that the market is 

efficient.  The Efficient Market Hypothesis (EMH) formulated by Fama (1970) suggests that 

“a Market in which prices always „fully reflect‟ available information is called „efficient‟”.  

Nonetheless, information included in the stock prices reflect other relevant information, the 

likes of political, social and economic events among others, in addition to financial 

information.  
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Ambiguous factors usually exist in stock prices and investors need to consider not 

only random conditions but also ambiguous and subjective conditions for portfolio selection 

problems (Urrutia (1995)). Therefore, recent studies enlarge the evaluation dimension to the 

third and fourth distribution moment. 

The literature shows that portfolio selection decisions depend crucially on higher order 

risk attitudes. Within the expected utility approach, prudence and temperance are properties of 

the third and fourth derivatives of the utility function.   

In an uncertain environment, an investor seeks usually to maximize his risk premium 

 .  According to Eeckhoudt and Hammitt (2001), the risk premium presents the amount that 

an individual would pay to achieve the same expected total utility when he replaces the lottery 

with its expected value.  It is presented as follows:  

                                                                                                (1.23) 

Where W is the end-of-period wealth and  .E  is the expectation operator.  

As developed by Arrow (1965) and Pratt (1964), the first order Taylor expansion of 

 about W, is given by 

          1
U E W U E W U E W                                                                           (1.24) 

While the higher order Taylor expansion is as follows:  

    
            

       

       
       

       

2

1 2

3 4

3 4

5

2!

3! 4! !

k

k

k

W E W
U W U E W W E W U E W U E W

W E W W E W W E W
U E W U E W U E W

k






   

  
  

 (1.25)    

Where 
 i

U  corresponds to the 
thi  derivative of the utility function with respect to the final 

wealth.  

Substituting Equation (1.23) in Equation (1.25) we obtain:  

           
  

    

     
    

  
    

2

1 2

3 4

4

5

2!

3! 4! !

k

k

k

E W E W
E U W U E W E W E W U E W U E W

E W E W E W E W E W E W
U E W U E W

k





 
          

       
       

      (1.26) 

Where 
  

    
5 !

k

k

k

E W E W
U E W

k





 
 

 is the remainder term of the Taylor expansion, that  is 

of small order and negligible (Jondeau and Rockinger (2006) and Garlappi and Skoulakis 

(2011)).  Moreover, it is suggested by Berenyi (2001), among others, that the fourth term 

    U E W E U W    

  U E W 
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could improve substantially the quality of the approximation of the expected utility function.  

Therefore, we may choose to truncate the Taylor series after the fourth term since the 

remainder is negligible and the fourth order term improves the approximation and allows us to 

introduce explicitly the skewness and kurtosis in the analysis of portfolio selection.  

Eventually, the expected utility function may be expressed as follows:  

                   2 3 432 4
( )( ) ( )

2! 3! 4!

m Wm W m W
E U W U E W U E W U E W U E W               (1.27) 

Where 2 ( )m W , 3( )m W and 4 ( )m W  are the second to the fourth order moment of the final wealth 

W . 

This is equivalent to  

        
 

  
 

  

 
  

2 3(2) (3)

4 (4)

2 3!

4!

m W m W
U E W U E W U E W U E W U E W

m W
U E W

    


                    (1.28) 

From which the expression of the premium , that an investor wish to maximize, is 

presented as follows: 

    
    

    
  

    
  

 

     
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2 3 4

(1) (1)1

2 3 4

2 3! 4!

1 1 1

2 6 24

U E W U E W U E Wm W m W m W

U E W U E WU E W

m W m W m W



  

     
         
         

  

          (1.29)            

Where 

    
    

2

1

U E W

U E W
    is the absolute risk aversion measure, 

  
  

(3)

(1)

U E W

U E W
   is the 

coefficient of appetite toward symmetry (the third centered distribution moment) and  

  
  

(4)

(1)

U E W

U E W
    is the coefficient of aversion to leptokurticity (distribution tail thickness).1  

According to the previous development, an investor dislikes variance and kurtosis and likes 

skewness.  

Note that the final wealth of the investor may be expressed as follows: 

 0 1W W R                                                                                                                       (1.30) 

                                                           
1
 For more detail, see (Courtois 2012). 


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Where 0W  is the initial wealth (equal to the unity by simplification2) and  0 0R W W W   is 

the portfolio return.  

Thereby the final wealth and its expectation are as follows: 

1W R                                                                                                                               (1.31) 

   1E W E R                                                                                                                  (1.32) 

Which give :  

   W E W R E R                                                                                                           (1.33) 

Substituting Equation (1.33) in Equation (1.26) truncated after the fourth term we find  

           
  

    

     
    

2

1 2

3 4

4

2!

3! 4!

E R E R
E U R U E R E R E R U E R U E R

E R E R E R E R
U E R

 
          

    
    

                   (1.34)

 

 

Let hr  be a random variable representing the rate of return of the asset h  and hw  be the 

weight of the asset h .  The rate of portfolio return, ( )R r w , is a function of the portfolio 

weights 1( ,..., )nw ww  and is given by: 

1

( )
n

h h

h

R r w w r


                                                                                                                (1.35)                       

The mean of the individual returns,  h hE r  , the vector of the means is given by [ ]h                                                                                          

The mean, variance, skewness and kurtosis of the portfolio return ( )r w , denoted ( )w , ( )v w , 

( )s w and ( )w  respectively, are defined as follow: 
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                (1.36)                                                                                                        

Where  

                                                           
2
 Scaling the initial agent wealth to one is commonly used in the investor preference literature since it ensure the 

complete equivalence between the expected utility expressions both in terms of return and end-of-period wealth  

(see for more details Jondeau and Rockinger (2006) and Brockett and Golden (1987)).  
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 2 ( )( ) 'h j hjM E r r         is the  variance-covariance matrix,                                                                                         

      
' '

3 h j k hjkM E r r r s        
  

 is the  skewness co-skewness matrix, 

        
' ' '

4 h j k l hjklM E r r r r            
  

 is the  3,n n  kurtosis co-kurtosis 

matrix, , , , 1,...,h j k l n  and the sign  standing for the symbol of the kronecker product.       

The utility of an investor is a function of the rate of return, so we can write the investor‟s 

preferences as ( ( ))U r w .  The Taylor expansion of ( ( ))U r w  around ( )w  up to the fourth 

moment is given by:  

(2)
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2

( ( )) ( ( ))
( ( ) ( )) ( ( ) ( ))

3! 4!

U w
U r w U w U w r w w r w w

U w U w
r w w r w w


   

 
 

    

   

                     (1.37)                                                                                                                                             

This implies  
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(1.38) 

where 
 i

U  is the 
thi  derivative of  U r w   .  

Following Benishay (1992), Joro and Na (2006) and Jurczenko, Maillet and Merlin 

(2006), we focus on terms up to the fourth, so we approximate the expected utility by the 

following preference function   

 
(2) (3) (4)

(1) ( ( )) ( ( )) ( ( ))
( ( )) ( ( )) ( ) ( ) ( )

2 3! 4!

U w U w U w
E U r w U w v w s w k w

  
                    (1.39)                       

In the case of two-asset portfolio, the  2,2  variance-covariance matrix is illustrated as 

follows:  
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 
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3
2

n n
  distinct elements in the above matrix as follows 
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12 21

22

,

,

.



 



  

The  22,2  skewness co-skewness matrix is presented as follows:  

( , )n n

 2,n n
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The  32,2  kurtosis co-kurtosis matrix is as follows: 
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Under Scott and Horvath (1980) conditions, the expected utility depends positively on 

the expected return and skewness and negatively on the variance and kurtosis of the portfolio.  

As a complex multi-criteria problem, portfolio selection has seen the investigation of 

various methods and procedures and an important number of criteria with additional to the 

mean, the variance and the higher moments of returns.   

The process of portfolio selection could be divided into two stages: the first one is the 

evaluation of financial assets and the second one is to choose the best ones to construct 

portfolio. As it has been listed by Aouni et al. (2018) the Multi Criteria Decision Analysis 

(MCDA) techniques applied in security analysis/evaluation phase are the Analytic Hierarchy 

Process (AHP), TOPSIS, VICOR, ELECTRE, MACBETH, UTADIS based, Fuzzy multi-

criteria Expert Systems. However, the MCDA techniques applied in portfolio construction or 

optimization stage are the Goal programming, Compromise programming,  ε-Constraint 

method, PROMETHEE V, Reference Point Method, MAUT, weighting approach, 

Reservation level driven Tchebycheff procedure, Interactive methods, IPSSIS, ADELAIS and 

Fuzzy Mathematical Programming.  
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Yet, it is well proved that actual assessment criteria may be more complicated and 

differ extensively from theoretical formulations. Not only are there several criteria to take into 

account and each one being associated with a priority level, but also these criteria and their 

importance level (weight) are usually quite specific to each decision maker. The need to 

consider simultaneously multiple criteria while considering investors‟ own preferences is 

obvious since they have not always the same objective function, attitude toward the risk, 

wealth and utility function among other specifications. From such perspectives, the Data 

Envelopment Analysis approach (DEA) seems to be an impressive multi-criteria tool. In fact, 

it has the merit to consider many criteria at the same time, together with a direct control over 

the weights (importance level) paid to each criterion by means of an optimization program 

developed by Charnes et al. (1978).  Given these merits in performance gauging, the DEA 

approach has been widely used in portfolio evaluation field (see for example, Basso and 

Funari (2001), Edirisinghe and Zhang (2007) and Chen et al. (2018)).    

While DEA can provide a solution to the problem of aggregating multi-performance 

measures into one key indicator, DEA suffers from high flexibility thus allowing for a weak 

discrimination among Decision Making Units (DMUs). In fact, we may have more than 100% 

efficient DMU. As a result, ranking DMUs can be quite hard. Thereby, the cross-efficiency 

method, proposed by Sexton et al. (1986) and investigated by Doyle and Green (1994a) 

provides a unique ordering of DMUs and eliminates unrealistic weight schemes through peer 

evaluation.   

2. Improving discrimination in DEA: From DEA cross-efficiency to 

DEA game cross-efficiency and Nash equilibrium 

2.1    DEA Cross-efficiency: Derivations, meanings and uses  

The DEA efficiency score is a weighted sum of a DMU outputs divided by a weighted 

sum of its inputs. Despite the effectiveness of DEA method in identifying the best practice 

frontiers, its flexibility in weighting inputs and outputs presents a major limitation. In fact, 

DEA technique permits to determine these weights as a linear program by allowing each 

DMU to appear in the best possible light (maximize its own measured efficiency relative to 

the other DMUs) given a minimal set of constraints on the weights. Introduced by Sexton et 

al. (1986) and investigated by Doyle and Green (1994a), the DEA cross-efficiency could 

present a solution to this weights flexibility problem. The main idea was to use the optimal 

factor (inputs and outputs) weights found for a particular DMU, using DEA, to compute the 
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cross-efficiency of each of the other DMUs, as seen by the original DMU.  Repeating this 

procedure for all DMUs we obtain a matrix of cross-efficiencies, row-by-row. The simple 

efficiencies (self-evaluation) scores for each DMU are found in the leading diagonal of this 

matrix. Whereas, the other values in the matrix are the peer-evaluation scores.   

 Given a set of n  DMUs where a ( 1,..., )jDMU j n chooses its own weights 
jy  (for 

'j s 
thy  output O ) and 

jx  (for 'j s 
thx  input I ). Using the weights that j  has chosen, the 

cross-efficiency of DMU m  is jm my jy mx jx

y x

E O I   . Following Doyle and Green 

(1994a), we present the matrix of cross-efficiencies for n  DMUs in Table 1.2 as follows:  

Table 1.2 : Cross-efficiency matrix 

Rating DMU 

 

Rated DMU Averaged 

appraisal of 

peers 1 2   n  

1 
11E  12E   

1nE  1A  

2  
21E  22E   

2nE  2A  

      

n  
n1E  n2E   

nnE  nA  

 
1e  2e   

ne   

 

The simple efficiency (self-evaluation) may be interpreted as a special case of cross-

efficiency; it is when a DMU rates itself.  The overall cross-efficiency scores 
je  is obtained by 

averaging down column j . Instead of the average, we can use the median, the minimum, the 

maximum, the variance or even the range of ratings to obtain the overall cross-efficiency 

scores. There are two principal merits of the cross-efficiency approach: its discrimination 

power by providing a unique ordering among DMUs and the elimination of unrealistic weight 

schemes without requiring the elicitation of weight restrictions from the decision maker.   

Given these advantages, cross-efficiency method has been used in various applications 

such as health care (Sexton et al. (1986), Lam (2010) and Lozano (2012)), R&D projects 

(Oral et al. (1991) and Shang and Sueyoshi (1995)), preference voting and project ranking  

(Green et al. (1996), Wu et al. (2009c), Liang et al. (2008a) and Chen and Zhu (2011)), 
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Scheduling problem (Chai et al. (2013)), transportation (Ruiz (2013) and Sarkis (2000)), 

Energy and environement (Chen (2002), Lu and Lo, (2007), Rezaee et al. (2012), Liu et al. 

(2017b) and Chen et al. (2017a)), supply chains (Yu et al. (2010), Ho et al. (2010) , Wang and 

Li (2014), Ma et al. (2014b), Gregoriou et al. (2005a), Sun et al. (2016) and Falagario et al. 

(2012)), education field (Yang et al. (2013), Yang et al. (2012), Doyle and Green, (1994b), 

Wu et al. (2012) , Oral et al. (2015) and Liu et al. (2017a)), Banking (Zerafat et al. (2013), Li 

et al. (2018) and Ma et al. (2014a)), Manufacturing (Sun and Lu (2005), Wei and Wang 

(2017), Wang and Wang (2013), and Jahanshahloo et al. (2011b)), sport competition (Wu et 

al. (2009a), Oukil and Amin (2015), Roboredo et al. (2015), Gutiérrez and Ruiz (2013), Wu et 

al. (2009b) and Aizemberg et al. (2014)) and portfolio performance (Mashayekhi and Omrani 

(2016), Sanei and Banihashemi (2013), Sanei and Banihashemi (2014), Banihashemi and 

Sanei (2015) and Lim et al. (2014)). 

However, DEA cross-efficiency suffers from the problem of non-uniqueness of the 

DEA optimal weights as noted by Doyle and Green (1994a). In fact, cross-efficiency scores 

depend on the generated optimal solutions by the DEA linear program in use. More 

specifically, it depends on the resolution of the used software (Despotis (2002)). Sexton et al. 

(1986) and Doyle and Green (1994a) propose the implement secondary goals to deal with the 

non-uniqueness problem. They present aggressive and benevolent model formulations. The 

idea of the benevolent model is to identify the optimal weights that not only maximize the 

efficiency of a particular DMU under evaluation, but at the same time, maximize the average 

efficiency of other DMUs. In the case of the aggressive model, one seeks weights that 

minimize the average efficiency of those other DMUs. Afterwards, a wide literature has been 

developed to improve the robustness of cross-efficiency approach.  

Cross-efficiency approach is identified by Liu et al. (2016) as one of the four research 

fronts in DEA. Due to its democratic process and powerful discrimination ability, the method 

has seen several theoretical developments and was successfully applied to a wide real world 

problem. Table 1.3 presents most of these works. 

Table 1.3 : Summary of literature on cross-efficiency method 

Work  Cross-efficiency extension Topic  Research 

area  

Sexton et al. (1986) DEA Cross-efficiency Efficiency of nursing 

home evaluation 
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Lam (2010)  Mixed-integer linear programming 

(MILP) to determine suitable 

weight sets for cross-evaluation 

Efficiency of 

hospitals evaluation  

 

Health care 

Lozano (2012) Cooperative DEA game cross-

efficiency 

Hospitals (illustrative 

example) 

Jahanshahloo et al. 

(2011a) 

Aggressive and benevolent cross-

efficiency  

Nursing home 

(illustrative example) 

Oral et al. (1991) DEA Cross-efficiency R&D Project 

Evaluation 

 

 

 

 

 

Preferences 

voting and 

R&D Projects 

Selection 

Shang and Sueyoshi 

(1995) 

Analytic Hierarchy Process 

(AHP)+ DEA cross-efficiency  

selection of a 

Flexible 

Manufacturing 

System 

Green et al. (1996) Benevolent cross-efficiency 

Aggressive cross-efficiency 

DEA cross-efficiency  

Performance of R&D 

projects  

Liang et al. (2008a) DEA game cross-efficiency  Preference Voting 

and R&D Projects 

Selection 

Chen and Zhu (2011) Bootstrapped DEA game cross-

efficiency  

R&D Project 

Budgeting 

Chai et al. (2013) Free disposal hull (FDH) cross-

efficiency  

The scheduling 

problem 

Ruiz (2013)  

 

Cross-efficiency evaluation with 

Directional Distance Functions 

(DDF) 

Performance of 

International airlines 

 

Transportation 

Sarkis (2000) Aggressive cross-efficiency  

DEA cross-efficiency 

Airports  

Chen (2002)  

 

DEA cross-efficiency + cluster 

analysis 

Electricity 

distribution sector  

 

 

 

 

Energy 

Lu and Lo (2007)  Cross-efficiency  economic-

environmental 

performance 

Rezaee et al. (2012) Bargaining DEA game efficiency 

+ cross-efficiency  

evaluation of thermal 

power plants 

Liu et al. (2017b) DEA cross-efficiency evaluation 

considering undesirable output and 

ranking priority 

eco-efficiency 

analysis of coal-fired 

power plants 
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Chen et al. (2017b) Game cross-efficiency  electric energy 

efficiency 

Oukil and Amin (2015) Maximum appreciative cross-

efficiency in DEA 

baseball players   

 

 

Games  

Roboredo et al. (2015) DEA game cross-efficiency  the Brazilian football 

championship 

Gutiérrez and Ruiz 

(2013) 

DEA cross-efficiency  Performance of 

Players in the 

Spanish Handball 

League  

Aizemberg et al. 

(2014)  

 

DEA game cross-efficiency Basketball teams 

Yu et al. (2010)  

 

DEA cross-efficiency  Supply chains  

 

 

 

 

Supply chains 

Wang and Li (2014) Nash bargaining game model 

+ cross-efficiency 

Supply chain  

Ma et al. (2014b) DEA Game Cross-efficiency Supplier selection  

Gregoriou et al. 

(2005a) 

Simple and cross-efficiency  commodity trading 

advisor 

Sun et al. (2016) DEA game cross-efficiency  Public Infrastructure 

Investment 

Falagario et al. (2012) DEA cross-efficiency  public procurement 

tenders (supplier 

selection) 

Jahanshahloo et al. 

(2011b) 

Cross-efficiency with data are 

Intervals  

Network problem 

Baker and Talluri 

(1997)  

Cross-efficiency Industrial robot 

selection  

 

 

 

 

 

Manufacturing 

Sun and Lu (2005) Cross-efficiency profiling  evaluating robot 

performance 

Liu et al. (2017a) An aggressive DEA game cross-

efficiency  

evaluating robot 

performance 

Wang and Wang 

(2013) 

Approaches to determining the 

relative importance weights for 

cross-efficiency aggregation in 

data envelopment analysis 

evaluating robot 

performance 

Talluri and Yoon Cross-efficiency  justification of 

advanced 
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(2000) manufacturing 

technology 

Ertay and Ruan (2005) Cross-efficiency  determination of the 

best labor assignment 

in a cellular 

manufacturing 

system 

Zerafat et al. (2013)  Cross-efficiency + cross ranking 

approaches 

Bank branches   

Banking 

Ma et al. (2014a) Game Cross-Efficiency for 

Systems with Two-Stage 

Structures 

Commercial banks  

Li et al. (2018) DEA game cross-efficiency  Bank branches  

Doyle and Green 

(1994b) 

Cross-efficiency Higher education  

 

   Education  
Oral et al. (2015) Cross-efficiency in DEA: A 

maximum resonated appreciative 

model 

faculty 

Wang et al. (2011a) Neutral DEA cross-efficiency Departments of 

university 

Wang et al. (2011b) Cross-efficiency evaluation based 

on ideal and anti-ideal decision 

making units 

 

 

 

 

 

 

Numerical examples 

Wang and Chin (2011) Using OWA operator weights for 

cross-efficiency aggregation 

Ramón et al. (2011) A „„peer-restricted‟‟ cross-

efficiency evaluation to reduce 

differences between profiles of 

weights 

Ramón et al. (2010) DEA cross-efficiency with slacks  

Alcaraz et al. (2013) Cross-efficiency evaluation with 

ranking range  

Du et al. (2014) Fixed cost and resource allocation 

based on DEA cross-efficiency 

Wang and Chin 

(2010a) 

Alternative model for cross-

efficiency (minimizing or 

maximizing the total deviation 

from the ideal point) 

Wu et al. (2011) Determination of weights for 

ultimate cross-efficiency using 

Shannon entropy 
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Wang et al. (2012) DEA models for minimizing 

weight disparity in cross-efficiency 

evaluation 

Wang and Wang 

(2013) 

Approaches to determining the 

relative importance weights for 

cross-efficiency aggregation in 

data envelopment analysis 

Bao et al. (2008) Slack-Based Ranking Method: 

cross-efficiency 

Liang et al. (2008b) 

 

Alternative secondary goals in 

cross-efficiency: Minimizing total 

deviation from the ideal point, 

Minimizing the maximum d-

efficiency score, Minimizing the 

mean absolute deviation 

2.2  Portfolio selection: from DEA cross-efficiency approach to Nash equilibrium  

Despite its effectiveness in multi-criteria analysis, the cross-efficiency approach has 

been rarely investigated in portfolio performance assessment. Sanei and Banihashemi (2013) 

work was the first to evaluate securities and to select portfolio using cross-efficiency 

approach considering negative data. They consider the variance of assets as input, whereas the 

expected return and skewness are considered as output. To illustrate and prove the robustness 

of the approach, they used a sample of Iranian stock companies. The second work was of 

Sanei and Banihashemi (2014), it prove that the cross-efficiency evaluation is an effective 

way of ranking and evaluating portfolios and asset selection. While the most widely used 

approach is to evaluate the efficiencies in each row or column in the cross-efficiency matrix 

with equal weights into an average cross-efficiency score for each DMU and consider it as the 

overall cross-efficiency  measurement of the DMU, Sanei and Banihashemi (2014) propose 

the use of Ordered Weighted Averaging (OWA) operator weights for cross-efficiency 

evaluation. The OWA operator weights are generated by the minimax disparity approach and 

allow investor to select the best assets that are characterized by an orness degree. They used 

risk (variance) as input and the return as output and illustrated the approach using a sample of 

mutual funds. The third work was of Lim et al. (2014), it proposes to incorporate the DEA 

cross-efficiency evaluation in Mean-Variance (MV) space to portfolio selection. The 

approach permits to select well-diversified portfolios in terms of their performance on 

multiple evaluation criteria, and to alleviate the „„ganging together‟‟ phenomenon of DEA 

cross-efficiency evaluation in portfolio selection. The proposed approach was illustrated to 
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stock portfolio selection in the Korean stock market. 16 financial metrics indicating 

profitability, asset utilization, liquidity, leverage, and growth performance perspective are 

employed as input and output variables.   

The fourth application to the portfolio selection area was Banihashemi and Sanei 

(2015) paper, which focuses on the evaluation of efficiency of assets using the cross-

efficiency matrix with negative data and proposes the use of ordered weighted averaging 

(OWA) operator weights for cross-efficiency evaluation. An application to Iranian stock 

companies was performed using the variance as input and the expected return as output.  

To the best of our knowledge, the last work is of Mashayekhi and Omrani (2016). This 

research propose a novel multi-objective model for portfolio selection by incorporating the 

DEA cross-efficiency into Markowitz mean-variance model taking into account the return, 

risk and efficiency of the portfolio. Also, in order to take uncertainty in the proposed model, 

the asset returns are considered as trapezoidal fuzzy numbers. Due to the computational 

complication of the proposed model, the second version of non-dominated sorting genetic 

algorithm (NSGA-II) is applied. An empirical illustration is performed using 52 firms listed in 

stock exchange market of Iran. 

Despite the robustness of the cross-efficiency approach as a multi-criteria analysis 

method, its application in portfolio management remains very rare. This has mainly motivated 

our research work in this thesis. According to Liang et al. (2008a), the simple use of cross-

efficiency method suffers from the issue of the instability and the unpredictability of 

efficiency scores and propose the game cross-efficiency as solution to provide a Nash 

equilibrium efficiency scores to evaluate DMUs. 

As the portfolio selection process is the logical consequences of the investor‟s 

preferences towards information concerning stocks. Choosing between assets puts them in 

competition in the eyes of investors. To consider the factor of competition in ranking different 

assets, we propose to use DEA game cross-efficiency approach proposed by Liang et al. 

(2008a). Specifically, each DMU is viewed as a player that looks for maximizing its own 

efficiency, under the condition that the cross-efficiency of each of the other DMUs does not 

deteriorate. The average game cross-efficiency score is obtained when the DMU‟s own 

maximized efficiency scores are averaged. The DEA game cross-efficiency approach has 

been used to evaluate organizations in a competitive context such as banks (Ma et al. 

(2014a)), supply chain (Wang and Li (2014)), preference voting and R&D projects selection 
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preference (Chen and Zhu (2011)) among others. To the best of our knowledge, the DEA 

game cross-efficiency approach has not been investigated to evaluate financial assets and to 

select portfolio.  

While the DEA frontier can be interpreted as a production frontier, it may be seem as 

efficient frontier where the best practice or benchmarks are lying. In fact, the DEA method is 

considered as a tool for multiple-criteria evaluation issues where DMUs (securities) are 

alternatives and each DMU is represented by its performance in multiple criteria which are 

coined as DEA input and output variables. Multi-criteria DEA analysis may resolve the 

inherent multi-criteria nature of the portfolio selection problem. 
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Chapter 2  

Optimal Portfolio Selection Under Higher Moments: 

DEA Cross-Efficiency Approach   

 

1. Introduction 

The process of selecting a portfolio might be understood as the result of two basic stages.  The 

first stage consists in financial assets performance gauging and the second chooses the 

optimal investment among them with optimal wealth allocation, given the investor‟s 

preferences.  This paper deals with these two stages at the same time.  Markowitz (1952) was 

the first to propose a quantitative approach to identify the optimal tradeoff between return and 

risk.  In order to do this, he introduced the Mean-Variance (MV) model, which involves 

minimizing risk for a given level of expected return, or equivalently, maximizing expected 

return for a given level of risk.  This amounts to define an efficient frontier concept as a 

Pareto-optimal subset of portfolios.  That is, these are portfolios whose expected return cannot 

increase unless their variance increases.  The Markowitz efficient frontier is defined as the 

MV efficient set of financial assets, given the knowledge of the true multivariate normal 

distribution of share returns.  The major issue in portfolio performance evaluation is the 

appropriate benchmark to be used for comparison.  It is difficult to identify benchmarks when 

multiple performance metrics exists.  The portfolio frontier approach assesses the 

performance of a portfolio by measuring its distance to the efficient portfolio frontier.  The 

major limitation of Markowitz model is that it maintains strong assumptions on the 

probability distributions and uses the Von Neumann-Morgenstern utility functions.  In 

addition, another major problem at the time was the computational cost of solving quadratic 

programs.  These limitations of the Markowitz model have triggered many developments, in 

particular equilibrium models, such as the capital asset pricing model (CAPM).  This model 

assumes that all agents have similar expectations about the market conditions.  This leads to 

impose that investors have quadratic utility functions, which does not seem too realistic.  

Afterwards, several empirical extensions have been developed using other parametric 

approaches to analyze portfolio performance (see, e.g., Yao, Lai, and Hao (2013), Chiu and 
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Wong (2014), Shen, Zhangand and Siu (2014), Bernard and Vanduffel (2014), Palczewski 

and Palczewski (2014) and Yao, Li and Chen (2014)).  

In this paper, we extend the MV efficient frontier to include skewness and kurtosis in 

the analysis, leading to the Mean-Variance-Skewness-Kurtosis (MVSK) efficient frontier 

model.  We then determine the best practice assets to include in the portfolio depending on 

the preferences of the investor.  We construct an efficient frontier using nonparametric 

methods.  Indeed, nonparametric approaches are a robust alternative to parametric methods in 

the portfolio management area, as they do not require a specific functional form for the 

portfolio efficiency frontier.  Sengupta and Barbara (1989) were the first to propose a 

nonparametric approach for the specification and estimation of a portfolio efficiency frontier.  

Afterwards, Morey and Morey (1999) presented two basic quadratic programming 

approaches, risk contraction and mean-return augmentation, that are benchmarking efficiency 

frontier methods based on  Data Envelopment Analysis (DEA) concepts.  It has been shown 

that DEA could be a good tool to evaluate financial assets performance and help investors 

make their portfolio selection.3  In fact, DEA provides each decision making unit (DMU) a 

good opportunity to self-evaluate its efficiency relative to other homogenous DMUs.  

Nevertheless, the DEA approach suffers from a major intrinsic drawback in its lack of 

discrimination power (Berger and Humphrey (1997)).  That is, the self-evaluation lets each 

DMU rates its efficiency based on the most favorable weights computed by the DEA 

algorithm.  That is, inputs and outputs favorable to a particular DMU are heavily weighted, 

while those not favorable to the DMU are assigned a small weight or simply ignored.  Thus, 

the weights determined by the self-evaluation may sometimes be unrealistic.  Furthermore, 

more than one DMU might be deemed efficient and as the method works it is not possible to 

discriminate between them.   

One way to address these limitations is the DEA cross-efficiency approach, proposed 

by Sexton (1986) and examined by Liang et al. (2008a), Doyle and Green (1994a), Lim 

(2012) among others.  This approach is an extension of the DEA method.  DEA cross-

efficiency evaluation suggests that each DMU is not only to be self-evaluated but also to be 

peer-evaluated.  Therefore, the cross-efficiency evaluation can guarantee a unique ordering of 

the DMUs.  This framework has several advantages.  Firstly, the optimal choice is a DMU 

that performs better than the others with respect to many criteria (i.e. the first four moments of 

                                                           
3
 See, e.g., Murthi, Choi and Desai (1997),  Basso and Funari (2001) and Gregoriou et al. (2005b). 
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returns distribution).  Secondly, cross-efficiency evaluation eliminates unrealistic weight 

schemes without inputs and outputs weight restrictions.4  Finally, our framework is developed 

based on DEA cross-efficiency approach, which allows us not only to peer-evaluate stocks 

but also to return a unique ordering of them.  

While DEA cross-efficiency approach permits to discriminate further among DMU, it 

suffers from the non-uniqueness of DEA solutions.  In fact, the cross-efficiency scores are 

computed through a weight structure that is not necessarily unique.  That is, there are 

potentially many input and output optimal weights that would satisfy the conditions for a 

solution to the DEA problem.  Furthermore, not all softwares treat the optimal solution the 

same way, so the results are sensitive to the algorithm used (Despotis (2002)). 

As cross-efficiency evaluation is mainly based on the calculation of cross-efficiency 

matrix and since the cross-efficiency score is the arithmetic average of peer-evaluations and 

self-evaluation, weights of scores are used equally in cross-efficiency aggregation.  The equal 

weights for cross-efficiency aggregation (  1 n  if there are n  DMUs to be evaluated) 

presents a limitation of the method.  The problems are that it pays little attention to the 

aggregation of cross-efficiency scores and the self-evaluation score is of little importance in 

the final overall assessment and ranking (Wang and Chin (2011)).  Consequently, the 

subjective preferences of decision maker on the best relative efficiencies in the final overall 

evaluation are ignored.   

In spite of this limitation, but mainly due to its discrimination power between DMUs, the 

cross-efficiency evaluation has been widely used in the DEA literature.  Nonetheless, only 

very few applications in portfolio selection used used this method, namely Pätäri et al (2012), 

Lim, Oh and Zhu (2014) and Mashayekhi and Omrani (2016).  For portfolio selection, the 

performance measures are obtained using Multi Criteria Decision Making (MCDM) DEA 

approach where criteria (inputs and outputs) weights are determined exogenously and the 

effect of each criteria can not be considered alone and must always be seen as a tradeoff with 

respect to other criteria.  These weights may not remain the same over time and may vary 

considerably depending on the changing environment.  Any change in each input or output 

variables can change the decision priorities for other variables.  This argument supports the 

use of cross-efficiency evaluation instead of the standard DEA model.  In fact, the DEA 
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 The model can be restructured to allow for weight restrictions if necessary (Baker and Talluri (1997)). 
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cross-efficiency would be a suitable method for multi-criteria portfolio selection problem 

since it allows explicit tradeoffs and interactions among criteria.  In the peer-evaluation, it is 

likely to choose DMUs whose performance is somewhat good on all measures and exclude 

those whose performance is good for only a subset of the criteria.  Variation in one criterion 

could be compensated in a direct or opposite way by other criteria.  Nonetheless, this leads to 

portfolio made of “too” similar DMUs.  This is the “ganging together” problem (Tofallis 

(1996)) and the resulting lack of diversification of the portfolio  (Lim et al (2014)).  A 

diversified portfolio is made of weakly correlated assets and as a consequence is less risky 

than each individual component of the portfolio.  In other words, adding a highly volatile 

asset does not necessarily increase the aggregate risk of the portfolio if the asset is weakly 

correlated with other components of the portfolio.  Therefore, the more diversified a portfolio 

is, the smaller its risk is.  A portfolio of risky assets can have a low overall risk, since it is 

made of weakly correlated assets.  Hence, an investor generally looks for a diversified 

portfolio in MV space.5 
 The use of DEA cross-efficiency as such is irrelevant to portfolio 

selection because it does not discriminate on the asset risk correlation dimension of the 

portfolio selection.  To deal with this problem, specific to portfolio selection using DEA 

cross-efficiency method, Lim et al (2014) incorporate the DEA cross-efficiency into the MV 

formulation.  

While the simultaneous maximization of return and minimization of risk of second-order 

(variance) seems quite straightforward, this risk is not the only risk that has been considered 

as “bad” in the literature.  In fact, the variance does not convey the necessary information to 

determine if the deviations from the mean return are below or over the mean; it does not 

discriminate between the upward and downward shifts.  In fact, using only the variance 

amount to assume implicitly that investor dislike any changes, including upward shits of the 

returns.  This is not realistic, but the discrimination between these asymmetric shifts can be 

taken into account with higher moments of the distribution (in particular skewness and 

kurtosis).  In fact, neglecting higher moments may present a major drawback in portfolio 

selection.  To deal with this limitation, we fit cross-efficiency model into the MVSK space.  

The framework we introduce here allows us to select diversified portfolio, depending to 

investor‟s attitude with respect to risk aversion, prudence and temperance.  The model 

captures investor attitude toward risk aversion, prudence and temperance.  To do this, we use 

MV tradeoff and Skewness-Kurtosis (SK) tradeoff parameters.  Using econometric tools, the 
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 “What exactly is diversification? It simply means: do not put all your eggs in one basket! “ 
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tradeoff parameter between the mean and the variance may be estimated with mixing data 

sampling (MIDAS) estimator (Ghysels, Santa-Clara and Valkanov (2005)) or with 

overlapping data inference (Hedegaard and Hodrick (2016)) among other tools.  It may be 

also defined arbitrarily (see for example Lim et al (2014)).  Nonetheless, to the best of our 

knowledge, the SK tradeoff parameter has never been specified in previous works.  Here MV 

and SK tradeoff parameters are determined endogenously using DEA cross-efficiency 

framework.  Finally, our approach returns the stocks with the best performance but also the 

exact optimal proportions to invest in each individual stock.  In order to build the optimal 

portfolio and the optimal weights we use the stocks first four moments and we use the odd 

moments as inputs and the even moments as outputs.  To illustrate how this framework 

works, we apply it to 21 assets listed in Paris stock exchange during the period 2010-2015.  

We obtain well-diversified portfolios and we show the robustness of our framework using 

Ledoit and Wolf (2008) Sharpe test.  

2. The utility analysis of choice in terms of higher order moments and 

portfolio selection problem 

As Levy (1989) pointed out, the MV and the Von-Neumann expected utility function models 

identify the same efficient sets of assets when the investor is risk-averse.  In fact, investors 

choose exactly the same random prospects when their preferences are characterized by a 

quadratic utility function or when financial asset returns are random variables with fixed 

expected return and variance.  A concave quadratic utility function is characterized by 

positive first order and negative second order derivative and null higher order derivatives.  

This assumption is a major source of criticisms of the MV framework.  Indeed, it has been 

repeatedly shown that financial asset returns are not normally distributed, and we should not 

ignore empirical evidence that extreme value distribution characterize them.  This strongly 

suggests that moments larger than the second do matter in financial problems.  In fact, 

assuming investors to have quadratic utility function is equivalent to assume that the market is 

efficient.  The Efficient Market Hypothesis (EMH) formulated by Fama (1970) suggests that 

“a Market in which prices always „fully reflect‟ available information is called „efficient‟”.  

Nonetheless, the information included in the stock prices reflect other relevant information, 

the likes of political, social and economic events among others, in addition to financial 

information.  

Ambiguous factors usually exist in stock prices and investors need to consider not 

only random conditions but also ambiguous and subjective conditions for portfolio selection 
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problems (Urrutia (1995)).  Therefore, recent studies enlarge the evaluation dimension to the 

third and fourth distribution moment in order to take into account the non-normality of return 

distributions (see, eg., Gregoriou et al. (2005b) and Pendaraki (2012)).  It can be argued that 

investors have a positive preference for odd moments and a negative preference for even 

moments (see, eg., Scott and Horvath (1980),  Brockett and Kahane (1992), Brockett and 

Garven (1998) and Jondeau and Rockinger (2006)).  Yet, it is shown that investors‟ utility 

function with positive third derivative have a preference for distributions with a higher 

skewness, while a negative fourth derivative indicates a preference for distributions with a 

lower kurtosis.  The signs of the third and fourth derivatives of the utility function have 

defined respectively prudence and temperance notions (Scott and Horvath (1980)).  Notice 

that the third moment of the distribution is often related to „downside risk‟, it is called the risk 

of extreme losses, and corresponds to values of the returns located on the “left” of the 

distribution.  “Prudence” as defined by Kimball (1991) is a “precautionary save motive” that 

can cause an agent to respond to a risk by accumulating more wealth”.6  This is contrasted to 

risk aversion that suggests how much one dislikes uncertainty and wants to avoid it. Kurtosis 

aversion is the consequence of a negative fourth derivative of the Von Neumann–Morgenstern 

utility function, this is known as “temperance”.  It is defined by Kimball (1991) as “the desire 

to moderate total exposure to risk”.7  Temperance “can cause an agent to respond to an 

unavoidable risk by reducing exposure to other risks even when the other risks are 

statistically independent of the first”.
 8  It is the sense of moderation in accepting risks.  

The literature shows that portfolio selection decisions depend crucially on higher order 

risk attitudes.  Within the expected utility approach, prudence and temperance are properties 

of the third and fourth derivatives of the utility function.  Our model requires that we state and 

present some results from the expected utility theory and the modern portfolio theory.   

The investor‟s preferences are over wealth, in general.  However, we may express them over 

the rate of return on the wealth.  Note that the final wealth of the investor may be expressed as 

 0 1W W R   where 0W  is the initial wealth and  0 0R W W W   is the portfolio return. 

Suppose that we normalize the wealth,9 then 1W R  ,    1E W E R  , and 
 

                                                           
6
Kimball (1991). precautionary motives for holding assets. NBER Workin Papers Series NO 3586. Page 1 

7
Ibid 

8
Ibid 

9
 For sake of simplicity we normalize W0 = 1. Scaling the initial agent wealth to one is commonly used in the 

investor preference literature since it ensure the complete equivalence between the expected utility expressions 

both in terms of return and end-of-period wealth  (see for more details Jondeau and Rockinger (2006) and 

Brockett and Golden (1987)).  
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   W E W R E R   .  Consequently, we assume that the investor has preferences on the 

wealth rate of return, U(R).  We wish to find a relationship between this utility function and 

the moments of the returns.  In order to do so, consider the following Taylor expansion of 

U(R) about E(R):  
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where  i
U  corresponds to the 

thi  derivative of the utility function with respect to the final 

wealth.  Taking expectation on both sides gives:  
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 
  , is the remainder term of the Taylor expansion.  

Berenyi (2001), among others, claims that the fourth term plays a substantial role in the 

Taylor expansion of the expected utility function.  Combining this with the fact that the 

remainder is of small order and negligible (Jondeau and Rockinger (2006) and (Garlappi and 

Skoulakis (2011)), we may choose to truncate the Taylor series after the fourth term.  Doing 

so allows us to introduce explicitly the skewness and kurtosis in the analysis of portfolio 

selection.  That is, the expected utility function may be expressed as follows:  

    
      

      
      2 3 42 3 4

2! 3! 4!

m R m R m R
E U R U E R U E R U E R U E R      ,    (2.3) 

where 
2 ( )m R , 

3( )m R and 
4 ( )m R  are the second, third, and fourth order moment of the rate of 

return on wealth, R.   

Now, to understand how these moments are related to preferences note that, as in 

Eeckhoudt and Hammitt (2001), we may define the risk premium as the amount that an 

individual is willing to pay on the expected return to bring her utility to the lottery‟s expected 

value,     U E R E U R     .  A first order Taylor expansion gives 

          1
U E R U E R U E R    .  Using these results we obtain: 

         1
E U R U E R U E R             (2.4) 
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Using Equations (2.3) and (2.4) and rearranging leads to the following expression:  
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Where 
         2 1

U E R U E R    is the absolute risk aversion measure, 

         3 1
U E R U E R    is the coefficient of appetite toward symmetry (the third 

centered distribution moment) and 
         4 1

U E R U E R    is the coefficient of 

aversion to leptokurticity (distribution tail thickness).10  The even number derivatives of the 

utility function are negative while the odd number derivatives are positive.  It means that the 

risk premium would increase with variance of kurtosis while it would decrease with 

skewness.  This confirms the standard theories that tell us that an investor dislikes variance 

and kurtosis and likes skewness.   

 The overall return R is for a portfolio.  Let hr  be a random variable representing the 

rate of return of the asset h  and hw  be the weight of the asset h .  Given the individual rate of 

returns, rh, the portfolio rate of return, ( )R r w , is a function of the weights 1( ,..., )nw ww , 

and is given by: 
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 Given the mean of the individual returns,  h hE r  , the vector of the means is given 

by [ ]h
.
.  The mean, variance, skewness and kurtosis of the portfolio rate of return ( )r w , 
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 For more detail, see COURTOIS (2012). 
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where  2 ( )( ) 'h j hjM E r r         is the  variance-covariance matrix, 

      
' '

3 h j k hjkM E r r r s        
  

 is the  skewness co-skewness matrix, 

        
' ' '

4 h j k l hjklM E r r r r            
  

 is the  3,n n  kurtosis co-kurtosis 

matrix, , , , 1,...,h j k l n  and   denotes the kronecker product.  Note that 2M contains 

 1 2n n    distinct elements, while 3M  and 4M  contains respectively   1 2 6n n n   

and    1 2 3 24n n n n      distinct elements.   

Using Equation (2.3), the expected utility of an investor as a function of the assets rate 

of return, denoted ( ( ))U r w , is given by:   
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           (2.8) 

Under Scott and Horvath (1980) conditions, the expected utility depends positively on  

expected return and skewness and negatively on variance and kurtosis of the portfolio.  This 

shows that the skewness and kurtosis are an integral part of the investors‟ decision-making 

process, and we just have to implement these concepts into our empirical decision model.  

3. DEA cross-efficiency evaluation  

The use of DEA for the evaluation of financial assets allows us to determine the set of all best 

practices (our benchmarks) observed on the market and the potentially feasible practices 

(assuming some conditions characterizing the technology).  This set is what we call the 

efficient frontier.  From a production perspective, a best practice is the one that convert the 

given inputs into the maximum levels of output (or the minimum levels of input for an 

observed output).  From the benchmarking perspective, inputs are the attributes to minimize 

and/or outputs are the criteria to maximize (Stewart (1996)).  The main idea of the cross-

efficiency is to consider not only the self-evaluation inherent in conventional DEA analysis, 

but also to consider peer-evaluation.  Self-evaluation means that a given DMU is allowed to 

choose the most favorable input-output weights freely to achieve its best possible relative 

efficiency, while peer-evaluation means that the DMU is evaluated using other DMU weights.  

A typical cross-efficiency analysis is implemented as a two-stage process: In the first stage, 

( , )n n

 2,n n
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classical DEA method is performed in a self-evaluation and the optimal weights of inputs and 

outputs are computed for each DMU.  Then in the second stage, we use the weights obtained 

in the first stage to calculate the peer-evaluation for each other DMUs. 

In the first stage, the standard CCR model of Charnes, Cooper and Rhodes (1978) is 

used to induce the best possible relative efficiency for a specific .  To be specific, we 

assume that   uses  inputs  to produce s outputs 

.  The efficiency score of a given DMUh under evaluation is the optimal value 

of the following problem 

         (2.9) 

where  and  are the weights assigned to input i and output r, respectively, to be 

determined by optimizing the model. 

In the second stage, we use the optimal solutions to problem (2.9) to compute the 

cross-efficiencies.  Specifically, if  and  are an optimal solution to (2.9) 

for a given , then the cross-efficiency of ,  using the optimal weights 

of DMUh, namely , can be computed as follows: 

                           (2.10) 

where  is the peer-evaluation of  by .  
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Collecting all cross-efficiencies of all DMUs, a matrix of cross-efficiencies is 

constructed such that the element in the diagonal  is the efficiency score for each  

using problem (2.9).  The other elements, , are the cross-efficiency of one  using 

the optimal weights of .  A cross-efficiency score for  is defined as the average 

of all  cross-efficiencies. 

 .                   (2.11) 

It returns a peer-evaluation of .  This score is used to rank the DMUs. 

4. Optimal Mean-Variance-Skewness-Kurtosis portfolio  

A tradeoff is when you have to give up something to get something else.  In the field of 

portfolio management, a tradeoff between risk and return is a situational decision that 

involves diminishing risk to increase the return on an asset.  There are various ways to 

approach this tradeoff empirically.  Ghysels, Santa-clara and Valkanov (2005) estimate a risk-

return parameter by a quasi-maximum likelihood method.  In behavioral models, the tradeoff 

between the mean and the variance is determined by models that account for individual 

differences (Libby and Fishburn (1977)).  For portfolio selection, Lim et al (2014) propose a 

set of arbitrary values of return-risk tradeoff parameter to take into account the individual 

differences between investors.  Because there exists a positive preference for skewness and a 

negative preference for kurtosis, it has been suggested that a skewness-kurtosis tradeoff may 

be required (Scott and Horvath (1980)).  Based on the duality between the indirect utility 

function of investor and the shortage function, Briec and Kerstens (2010) have defined 

parameters representing the degree of absolute risk-aversion, prudence and temperance.  To 

solve the problem of mean-variance-skewness-kurtosis conflicting objectives, Lai, Yu and 

Wang (2006) and Davies, Kat and Lu (2008) construct a polynomial goal programming 

model.  

Our approach is different and consists in obtaining the optimal solution to the 

following models.  Let  be a portfolio of assets and  be the optimal MVSK portfolio to 

be identified.  In this section, we present a procedure for selecting the assets to put in portfolio 

 and to determine the optimal share of each asset.  The basic idea of the procedure is to use 

hhe hDMU
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cross-efficiency scores given the decision makers‟ preferences over its aversion to risk, 

prudence and temperance.  

In a nutshell, the algorithm to find the optimal portfolio works as follows.  First we 

compute the DEA cross-efficiency scores.  Then, in Step 2, we use the scores computed in 

Step 1 to derive the first four statistical moments.  Step 3 determines the optimal SK tradeoff 

parameter and determines efficiency of optimal SK portfolio.  Finally, in Step 4, we 

determine an optimal MV tradeoff parameter to select the optimal MVSK portfolio.  

Formally, we have: 

Step 1. For each  solve model (2.9) and obtain an optimal weights for each . 

Let  and  be the optimal weights of .  Use these weights to 

compute the cross-efficiency scores, , of  defined in (2.10), and average cross-

efficiency scores, , defined in (2.11), for . 

Step 2. Let the decision variable 
jw  be the weight of 

jDMU   inside the portfolio  ,  and let 

 1,...,
n

nw w  w  be the weight vector. The portfolio‟s return, variance, skewness and 

kurtosis are defined as follow:  

- 2.1 Use 
 
obtained in Step 1 to define the portfolio return as the weighted 

sum of the average cross-efficiency .  

- 2.2 Use  to construct the variance of portfolio , 

.  This is the weighted sum of the 

variances of each individual DMU„s cross-efficiencies  and the covariance 

of each pair of DMU‟s cross-efficiencies .  

- 2.3 Use M3 to construct the skewness of portfolio , 

.  This is the 

weighted sum of the skewness of each individual DMU„s cross-efficiencies 
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 and the co-skewness of each pair of DMU‟s cross-efficiencies 

.  

- 2.4 Use M4 to construct the kurtosis of portfolio , 

- 

 

4 4 3 3 2 2

1 1 1, 1, 1 1,

4
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.

This is the weighted sum of the kurtosis of each individual DMU„s cross-efficiencies 

 and the co-kurtosis of each pair of DMU‟s cross-efficiencies 

. 

Step 3. Let  be a portfolio with individual DMUs weighted using a weight vector, , 

where 0, 1,...,iw i n  .  It means that an asset cannot be short in the portfolio.11  Let 

 to preserve the budget constraint.  Then, set the number of the SK parameter to Z, 

and for each SK tradeoff parameter value, , solve the following problem:  
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                (2.12) 

Where  is the smallest kurtosis of the asset series, and   is a vector of ones.  

We find, for each value of , an assets weights matrix  that allows us to 

compute the pseudo-outputs matrix  where  

for r=1,…,s.  These pseudo output can be combined with the initial inputs, to solve the 

                                                           
11

 Sometimes it is possible to sell an asset that we do not own.  This is called short selling.  It presents an usual 

regulated type of market transaction.  It consists in selling assets that are borrowed in expectation of a fall in the 

assets‟ price.  When and if the price declines, the investor buys an equivalent number of assets at the new lower 

price and returns to the lender the assets that were borrowed.  
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problem defined in equation (2.9) to compute the DEA efficiency scores of DMUh, . For 

each , we compute an average DEA scores, .  Then choose the optimal SK 

tradeoff parameter as the value of delta that maximizes the cross-efficiencies.  That is 

.  

Using  we solve the following problem for the optimal weights: 
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Max S

s t K K



  

 



w

w

w

                      (2.13) 

The optimal assets weights  returns the optimal SK-portfolio, 

denoted . The efficiency score of the optimal-SK portfolio  is .  

Step 4. To determine the optimal MV tradeoff parameter , use .  Let F  be the number 

of arbitrary MV tradeoff parameter, for each value of
 
solve the following 

problem  
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For each , use the critical assets weights matrix  to compute 

pseudo-outputs matrix  where  for 

r=1,…,s, and use (2.9) to compute DEA scores .  Use these results to compute the average 

cross-efficiency, .  The optimal MV tradeoff parameter is the one that maximizes 

the average cross-efficiency.  That is . 
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Given  and , the optimal weights are obtained by solving the following problem: 
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             (2.15) 

The solution to problem (2.15) returns the optimal assets weights  

defining the MVSK-portfolio . 

5. Empirical illustration: application to portfolio selection in the Paris 

stock market 

To illustrate how our new methodology works, we propose apply it on stock values to create a 

new portfolio based on the MVSK-method.  To test its robustness we compare our portfolio to 

market portfolios in terms of return-risk performance.  Our sample contains 21 assets from the 

French CAC40 index between January 2010 and December 2015.  This sample contains 

observations on 72 monthly returns.12  For all these assets the first four centered moments 

have been computed for each year in the sample year.  

5.1   Variables and data 

As discussed above, rational investor looks for mean and skewness expansion and kurtosis 

and variance contraction.  Consequently the variance and the kurtosis work as inputs, and 

outputs are the mean and skewness.  We calculate for each asset h  the monthly return

 1 1ht ht ht htR P P P   , where  is the current closing price of h  in the last day in the month 

and  is its current closing price in the first day in the month.  We present computational 

details and interpretation of the input and output variables in Table 2.1. 

Table 2.1: Inputs and outputs 

Variables Investor attitude Formulas Signification 

Input1: 

Variance 
Risk-aversion 

 
22
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1 T

h ht h
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The basic measure of variability is the standard 

deviation, also known as the volatility, or the 

variance. For a stock, the variance is used to 

measure the variability of daily returns presenting 
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 Data stock price are available using www.euronext.com website.  
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the total risk of stock price. 

Input 2: 

Kurtosis 
Temperance 

4

1

1
3

T
ht h

t h

R R
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 
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Kurtosis is a measure of peakness degree (fourth 

central moment minus 3 is called excess kurtosis). 

When the data has more peakness than the normal 

distribution (long tails), kurtosis is greater than 

three (leptokurtosis) while in the case we have 

lower peak we have platy kurtosis (bounded 

distribution). The normal distribution has Kurtosis 

equal to three. 

Output1: 

Mean 
Return 

1

1 T

h ht
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R R
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   
The arithmetic mean is a basic measure of stock 

price return.  

Output 2: 

Skewness 
Prudence 
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Skewness is a measure of the symmetry of 

distribution and refers to the “third moment” of 

frequency distribution. Normal distribution has zero 

skewness. When skewness is positive (skewed to 

the right) then the frequency distribution has a long 

“right tail”, while when we have negative skewness 

(skewed to the left), then large negative returns are 

more common than large positive returns and the 

tail distribution is heavier on the left 

 

 West, Finch and Curran (1995), Glosten, Jagannanthan and Runkle (1993) and 

Bekaert, Erb, Harvey and Viskanta (1998) among others proposed the departure from 

normality as a definition of excess kurtosis (negative or positive).  For practical reasons, 

excess kurtosis is used instead of kurtosis when examining historical returns of stocks or 

portfolios.  In fact, the larger the excess kurtosis, the more likely it is that future returns will 

be either extremely large or extremely small.  This is why rational investors prefer negative 

excess kurtosis.  

The mean, skewness and kurtosis can assume negative values, and this is not 

compatible with DEA models, so we have to ensure the “positivity” of these variables.13  A 

common method to manage the problem of negative values in DEA is the addition of a 

sufficiently large positive constant to the input or output that assumes negative values.  It is 

shown that data rescaling or translation adjustment is neutral with respect to the DEA results.  

In fact, Pastor (1996) and Ali and Seiford (1990)  have shown that data translation does not 

alter the efficient frontier for certain DEA formulations; this is the “translation invariance 

property”.  In our case, to tackle the negative values problem, we add to the variable one plus 

the absolute value of the smallest value it assumes.  This transformation does not affect the 

input oriented analysis (Annaert, van den Broeck and Vander Vennet (2003) and Daraio and 

Simar (2006)).  The descriptive statistics of the inputs and outputs are reported in Table 2.2.   

The average variance goes from 0.0032 in 2014 to 0.0076 in 2011.  In addition, the minimum 

                                                           
13

 Charnes et al  (1991) provides a model to relax this requirement, but we prefer not to use it in our case.  
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variance is about 0.0008 in 2013.  The maximum variance is about 0.0225 in 2012.  The mean 

ranges from -0.472 in 2010 to 0.412 in 2011 for the excess kurtosis.  The minimum of the 

excess kurtosis is -1.695 in 2012 and its maximum is 4.41 in 2014.  The mean of the returns 

has an average ranging between -0.01037 in 2011 and 0.012 in 2013, with minimum at -0.054 

in 2015 and maximum at 0.056 in 2014.  The average skewness goes from -0.097 in 2012 to 

0.38 in 2015.  The minimum of the skewness is -1.5 in 2012 and its maximum is 1.81 in 2014. 

  

Table 2.2 : Descriptive statistics 

Variable Year Mean S.D. Max Min 

Input 1 2010 0.00603709 0.004916135 0.02164537 0.000985535 

  2011 0.00764214 0.004803425 0.015996088 0.001865065 

  2012 0.00615885 0.004799163 0.022598138 0.001026176 

  2013 0.00347891 0.00224609 0.008620316 0.000809397 

  2014 0.00322455 0.001703077 0.006588672 0.001187213 

  2015 0.00673249 0.004011608 0.017444435 0.002400661 

Input 2 2010 -0.47208317 0.841237405 2.081882074 -1.655713539 

  2011 0.41292556 1.077362214 2.652507873 -1.147394676 

  2012 0.28945254 1.351959409 3.013296757 -1.695651783 

  2013 -0.19044926 1.119469009 3.804748344 -1.353898004 

  2014 0.1069616 1.366988813 4.412316814 -1.467494395 

  2015 0.01442134 0.944876734 1.642490042 -1.40581694 

Output 1 2010 -0.00108483 0.018095024 0.032987937 -0.026540006 

  2011 -0.01037581 0.016655136 0.035365136 -0.041128174 

  2012 0.00707787 0.017712834 0.032315892 -0.03227863 

  2013 0.01201687 0.014324896 0.045403072 -0.012852251 

  2014 0.01035713 0.014744475 0.056078123 -0.016688947 

  2015 0.00927307 0.01780523 0.036006252 -0,054797973 

Output 2 2010 0.26628261 0.467892968 1.213646859 -0.736964265 

  2011 0.29567929 0.414843924 0.991517498 -0.425979966 

  2012 -0.09733502 0.772366629 1.605113048 -1.505251044 

  2013 0.14264504 0.626717795 1.185324356 -1.191236189 

  2014 0.27881626 0.688277817 1.810356949 -1.020627594 

  2015 0.3833061 0.438620753 1.278311448 -0.293172269 

 

In our application, we use the smallest value of the excess kurtosis for each year, 

denoted , to solve models (2.12) and (2.13) in Step 3 of the algorithm.  These values 

are reported in the Table 2.3. 

 

 min hk
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Table 2.3 : The smallest Kurtosis values 

Year  hMin k  

2010 -1.655713539 

2011 -1.147394676 

2012 -1.695651783 

2013 -1.353898004 

2014 -1.467494395 

2015 -1.40581694 

5.2  Cross-efficiency as a complement or alternative to simple efficiency  

The results for the DEA scores, the cross-efficiency scores and asset ranks are reported in 

Table 2.4.  The table contains for every year and each stock, its DEA efficiency score (the 

self-evaluation score), the cross-efficiency score (the peer-evaluation score) and for each 

method the rank of the asset.  The means of DEA efficiency scores are 62.14%, 57.23%, 

49.52%, 71.95%, 69.24% and 69.47% for the years 2010 through 2015, respectively.  

Whereas those for the DEA cross-efficiency scores are in comparatively smaller.  That is, the 

average scores are 53%, 43.66%, 36.42%, 56.38%, 51.95% and 54% for the years 2010 

through 2015, respectively.  A low dispersion of the efficiency scores (DEA and cross-

efficiency) shows a typical behavior shared by all financial assets.  The efficient stocks 

change over time.  In 2010, DANONE, L‟OREAL and ENGIE were efficient and ranked first 

while BNP PARIBAS ACT,A were the worst performer based on the DEA scores.  Using 

Cross-efficiency scores we found that DANONE (with a score of 100%) is the best performer, 

ENGIE (83%) is second, L‟OREAL (74%) is third while MICHELIN (30%) is the worst 

performer.  In 2011, AIR LIQUIDE (100%) was the only efficient DMU and ARCELOR-

MITTAL (23%) was the worst performer whatever the method we used.  In 2012, DANONE 

and L‟OREAL were the only two DEA efficient DMUs, and were both ranked first.  Using 

cross-efficiency score, L‟OREAL (100%) is the most efficient DMU, followed by DANONE 

(62%).  In 2013, using DEA scores to rank the DMUs, AIRLIQUID and LEGRAND were the 

best performers, while ORANGE was the worst performer with a DEA score equal to 41%.    

However, using the peer-evaluation method, the best performer was LEGRAND (94%), the 

second DMU was AXA (88%) and the worst performer DMU was PUBLICS GROUPE SA 

with cross-efficiency score equal to 18%.  In 2014, there were four DEA efficient firms, they 

were BNP PARIBAS ACT,A, DANONE, KERING and L‟OREAL.  Using Cross-efficiency 

evaluation, DANONE (65%) was ranked first, BNP PARIBAS ACT,A (92%) was  second, 

ARCELOR-MITAL (75%) was third, and the fourth was KERING (58%).  In 2015, BNP 
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PARIBAS ACT,A and BOUYGUES were the best performers using the CCR self-evaluation.  

However, with the peer-evaluation method, BNP PARIBAS ACT,A (98%) performed better 

than BOUYGUES (79%).  These results show the discrimination power of cross-efficiency 

evaluation.   
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Table 2.4: Efficiency, cross-efficiency and stocks returns 

YEAR 2010 2011 2012 2013 2014 2015 

DMU DEA
14

  RANK CE
15

 RANK DEA RANK CE RANK DEA RANK CE RANK DEA RANK CE RANK DEA RANK CE RANK DEA RANK CE RANK 

ACCOR 0.53 13 0.49 10 0.28 20 0.24 20 0 .52 8 0.39 6 0.58 17 0.51 14 0.81 7 0.61 6 0.55 16 0.41 18 

AIRBUS GROUP 0.43 20 0.39 12 0.46 14 0.43 11 0.31 19 0 .21 19 0.63 14 0.55 10 0.68 10 0.43 13 0.87 4 0.53 9 

AIR LIQUIDE 0.50 17 0.47 19 1.00 1 1.00 1 0.82 3 0.37 7 1.00 1 0.86 3 0.67 11 0.38 14 0.70 12 0.56 8 

ARCELORMITTAL 0.71 5 0.58 6 0.23 21 0.20 21 0.71 4 0.51 3 0.93 4 0 .58 9 0.98 5 0.75 3 0.40 19 0.26 21 

AXA 0.72 4 0.59 5 0.52 12 0.39 14 0.42 11 0.31 13 0.96 3 0.88 2 0.89 6 0.68 5 0.86 6 0.68 5 

BNP PARIBAS ACT,A 0.36 21 0.31 20 0.70 8 0.43 10 0.47 9 0.33 11 0.52 18 0.45 16 1.00 1 0.92 2 1.00 1 0.98 1 

BOUYGUES 0.67 7 0.64 4 0.48 13 0.39 13 0.31 18 0.23 18 0.66 13 0.52 13 0.43 20 0.29 21 1.00 1 0.79 2 

CAP GEMINI 0.58 10 0.43 17 0.73 6 0.56 3 0.43 10 0.33 10 0.81 9 0.70 5 0.53 15 0.47 11 0.86 5 0.50 13 

CARREFOUR 0.48 18 0.45 15 0.67 9 0.52 6 0.34 16 0.27 16 0.58 16 0.40 17 0.56 14 0.47 10 0.75 8 0.70 4 

CREDIT AGRICOLE 0.56 11 0.44 16 0.66 10 0.50 8 0.40 13 0.27 15 0.43 20 0.38 18 0.50 16 0.36 17 0.39 20 0.37 19 

DANONE 1.00 1 1.00 1 0.78 4 0.51 7 1.00 1 0.62 2 0.81 8 0.60 8 1.00 1 0.96 1 0.61 15 0.45 14 

ENGIE 1.00 1 0.83 2 0.74 5 0.54 4 0.29 20 0.20 20 0.69 11 0.54 11 0.72 9 0.51 9 0.73 9 0.51 12 

KERING 0.51 16 0.47 11 0.34 17 0.31 16 0.38 14 0.35 8 0.69 10 0.52 12 1.00 1 0.74 4 0.49 18 0.42 17 

KLEPIERRE 0.70 6 0.58 7 0.43 15 0.35 15 0 .57 7 0.25 17 0.60 15 0.49 15 0.80 8 0.58 7 0.71 11 0.51 11 

LEGRAND 0.52 14 0.41 18 0.43 16 0.28 17 0.34 15 0.31 12 1.00 1 0.94 1 0.50 17 0.35 18 0.97 3 0.77 3 

L'OREAL 1.00 1 0.74 3 0.80 3 0.47 9 1.00 1 1.00 1 0.82 7 0.65 7 1.00 1 0.57 8 0.54 17 0.42 16 

LVMH 0.63 9 0.57 8 0.30 19 0.26 18 0.40 12 0.34 9 0.89 6 0.72 4 0.60 13 0.33 19 0.67 13 0.52 10, 

Michelin 0.46 19 0.30 21 0.53 11 0.41 12 0.18 21 0.14 21 0.91 5 0.68 6 0.47 18 0.38 15 0.71 10 0.64 6 

ORANGE 0.51 15 0.45 14 0.94 2 0.54 5 0.31 17 0.28 14 0.41 21 0.33 20 0.45 19 0.37 16 0.63 14 0.43 15 

PUBLICIS GROUPE SA 0.53 12 0.52 9 0.70 7 0.60 2 0.59 6 0.50 4 0.52 19 0.18 21 0.36 21 0.32 20 0.80 7 0.62 7 

RENAULT 0.65 8 0.47 13 0.30 18 0.24 19 0.61 5 0.44 5 0.67 12 0.36 19 0.63 12 0.44 12 0.35 21 0.27 20 

Mean 0.62   0.53   0.57   0 .44   0.50   0.36   0.72   0.57   0.69   0.52   0.70   0.54   

S.D 0.18 
 

0.17   0.22 
 

0.18   0.23 
 

0.18   0.19 
 

0.19   0.22 
 

0.19   0.19 
 

0.18   

Min 0.36 
 

0.30   0.23 
 

0.20   0.18 
 

0.14   0.41 
 

0.18   0.36 
 

0.29   0.35 
 

0.26   
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 DEA score 
15

 Cross-efficiency score 
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Max 1.00   1.00   1.00   1.00   1.00   1.00   1.00   0.94   1.00   0.96   1.00   0.98   
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To measure the false positiveness of firms, we compute the maverick index, also 

called the False Positive Index (FPI) in the literature (Baker and Talluri (1997)).  The 

maverick index is suggested by Doyle and Green (1994a) to measure the percentage 

increment of the simple efficiency score when it moves from its peer-evaluation to its self-

evaluation.  A firm presents a maverick case if it is considered efficient under self-evaluation 

but fail to be benchmark for inefficient firms.  The false positive index is defined as follows: 

,                                                                                                                                  (2.16) 

where is the self-appraisal of  determined by optimizing the CCR model (2.9) and 

 is the average of all cross-efficiency scores , that is the peer-appraisal of .  A low 

maverick index means that the firm is all-round performer, however a firm with high 

maverick index does not perform well on most of the agreed upon best factors.  

The maverick index estimations are presented in Table 2.5.  MICHELIN, ORANGE, 

KLEPIERRE, PUBLICS GROUPE SA and CAP GEMINI are the DMUs with the largest 

false positive index values for the years 2010 through 2015 respectively, with respective 

maverick indexes equal to 53.33%, 74.07%, 128%, 188.89%, 76.32% and 72%.  These firms 

make strong cases for maverick firms.  We find these results and interpret them as maverick 

cases because the DEA model allows each DMU to be assessed as efficient by using the most 

favorable inputs/outputs weights, that is the optimal weights select a single or few inputs 

and/or outputs to appear efficient, while the cross-efficiency take into account all inputs and 

outputs.  DANONE, AIR LIQUIDE, L‟OREAL, BNP PARIBAS ACT.A have the smallest 

FPI indexes, 0%, 0%, 0%, 6.38% and 4.17% and 2.04% respectively, for the period 2010 

through 2015.  A low FPI for an asset indicates that it benefits the least when moving from 

peer-appraisal to self-appraisal and so these DMUs are good overall firms.  Selection portfolio 

with cross-efficiency evaluation leads to selecting stocks robust with respect to the risk of 

change in inputs/outputs weights. 

 

 

 

 

 j jj j jFPI e e e 
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Table 2. 5 : Maverick index 

 Maverick index (%) 

 2010 2011 2012 2013 2014 2015 

ACCOR 8.16 16.67 33.33 13.73 32.79 34.15 

AIRBUS GROUP 10.26 6.98 47.62 14.55 58.14 64.15 

AIR LIQUIDE 6.38 0.00 121.62 16.28 76.32 25.00 

ARCELORMITTAL 22.41 15.00 39.22 60.34 30.67 53.85 

AXA 22.03 33.33 35.48 9.09 30.88 26.47 

BNP PARIBAS ACT.A 16.13 62.79 42.42 15.56 8.70 2.04 

BOUYGUES 4.69 23.08 34.78 26.92 48.28 26.58 

CAP GEMINI 34.88 30.36 30.30 15.71 12.77 72.00 

CARREFOUR 6.67 28.85 25.93 45.00 19.15 7.14 

CREDIT AGRICOLE 27.27 32.00 48.15 13.16 38.89 5.41 

DANONE 0 52.94 61.29 35.00 4.17 35.56 

ENGIE 20.48 37.04 45.00 27.78 41.18 43.14 

KERING 8.51 9.68 8.57 32.69 35.14 16.67 

KLEPIERRE 20.69 22.86 128.00 22.45 37.93 39.22 

LEGRAND 26.83 53.57 9.68 6.38 42.86 25.97 

L'OREAL 35.14 70.21 0.00 26.15 75.44 28.57 

LVMH 10.53 15.38 17.65 23.61 81.82 28.85 

MICHELIN 53.33 29.27 28.57 33.82 23.68 10.94 

ORANGE 13.33 74.07 10.71 24.24 21.62 46.51 

PUBLICIS GROUPE SA 1.92 16.67 18.00 188.89 12.50 29.03 

RENAULT 38.3 25.00 38.64 86.11 43.18 29.63 

 

The simple use of cross-efficiency evaluation suffers from the ganging together 

phenomenon (Tofallis (1996)) and therefore induces a problem of insufficient diversification 

of the portfolio (Lim et al (2014)).  In fact, under peer-evaluation, DMUs are highly ranked 

since their performance is at least moderately good on all measures or factors (inputs and 

outputs).  Comparatively, DMUs that are lowly ranked perform well on only a subset of 

measures.  The problem here is that DMUs with similar factors “vote” for each other.  This 

leads to selection of a specialized portfolio made of similar DMUs and consequently with 

little diversification.  
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Table 2.6 : Inputs vs. Efficiency and cross-efficiency scores (year 2012) 

Year 2012 

DMU Input 1 Input 2 DEA  Cross  Rank 

ACCOR 0.00702495 1.92015577 0.5239 0.3926 6 

AIRBUS GROUP 0.00886475 3.23406096 0.3076 0.2106 19 

AIR LIQUIDE 0.00125788 4.05385983 0.8185 0.3725 7 

ARCELORMITTAL 0.00686456 1.44946974 0.7101 0.5107 3 

AXA 0.01037369 2.36999844 0.4237 0.3114 13 

BNP PARIBAS ACT, A 0.01012075 2.11883596 0.4739 0.3282 11 

BOUYGUES 0.0059614 5.00052744 0.3084 0.2265 18 

CAP GEMINI 0.0064478 2.34574152 0.4293 0.3298 10 

CARREFOUR 0.00734413 2.91206268 0.3406 0.2694 16 

CREDIT AGRICOLE 0.02259814 2.68218982 0.3995 0.2724 15 

DANONE 0.00102618 2.42775931 1.0000 0.6168 2 

ENGIE 0.00713514 5.22131654 0.2890 0.2042 20 

KERING 0.00347499 2.72760608 0.3788 0.3530 8 

KLEPIERRE 0.00185422 5.37093407 0.5677 0.2518 17 

LEGRAND 0.00320158 3.2045444 0.3406 0.3125 12 

L'OREAL 0.00108997 1 1.0000 0.9961 1 

LVMH 0.00362291 2.4758752 0.4030 0.3429 9 

MICHELIN 0.00605979 5.70894854 0.1829 0.1413 21 

ORANGE 0.00337631 3.10506461 0.3091 0.2765 14 

PUBLICIS GROUPE SA 0.00258371 1.68150939 0.5935 0.5031 4 

RENAULT 0.00905303 1.67673046 0.6077 0.4403 5 

 

This shortcoming is illustrated using the 2012 results presented in Table 2.6 and 

plotted in Figure 2.1.  We have created a scatter plot to examine the diversification level on 

the input and output space of the cross-efficiency framework.  We select the first seven shares 

(one third of the sample) having the highest scores in 2012 (L‟OREAL, DANONE, 

ARCELORMITAL, PUBLICS GROUPS SA, ACCOR and AIR LIQUIDE) and we include 

them in a portfolio.  These firms are identified as black circles on the figure, while the other 

DMUs are white circle.  It is obvious that the selected stocks have relatively similar inputs 

and therefore are relatively similar.  In fact, they are clustered around the central position.  

This makes the selected portfolio badly diversified in terms of its performance on the multiple 

input-output factors and thus vulnerable to weights change risk on these two inputs.  
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Figure 2.1 : Inputs versus portfolio selection with DEA cross-efficiency (year 2012) 

 

5.3  Mean-Variance-Skewness-Kurtosis framework results 

For every SK tradeoff parameter,  , for which values are chosen in the unit interval 

, we solve the SK tradeoff problem (12).  We note a relative slight 

sensitivity of portfolio selection, resources allocation and thus portfolios efficiency to this 

parameter variation.   To solve the MV tradeoff, we solve problem (2.14) for every   chosen 

in the unit interval, . We find that the MV tradeoff parameter changes over 

time.  Table 2.7 provides the optimal SK and MV tradeoff parameters values over the period 

of the study.  

Table 2.7: Optimal SK and MV tradeoff parameters values 

Year 
*  

*  

2010 0.9 0.5 

2011 0.9 0.5 

2012 0.5 0.5 

2013 0.5 0.2 

2014 0.5 0.9 

2015 0.5 0.3 

 

By setting the tradeoff parameters that characterizes investor aversion to risk 

(prudence and temperance) optimally, our framework allows us to generate a better set of 

shares to invest in each stock than what was used to be done in the literature and it obviously 

returns the optimal wealth allocation.  Table 2.8 presents the optimal composition of the 

portfolio using MVSK cross-approach for the whole period.  

 0.1,0.2,...0.9 

 0.1,0.2,...,0.9 
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Table 2.8: Optimal resources allocation with MVSK approach (in percent) 

DMU 2010 2011 2012 2013 2014 2015 

       

ACCOR 1.65 5.771 3.21 - - - 

AIRBUS GROUP 4.296 5.824 6.51 - 20.698 - 

AIR LIQUIDE 4.652 5.603 2.337 - - - 

ARCELORMITTAL - 4.891 - 8.959 - 30.129 

AXA - 2.047 4.598 - - - 

BNP PARIBAS ACT. A 5.533 6.854 4.978 - - - 

BOUYGUES - 4.499 11.073 - 19.066 - 

CAP GEMINI 10.178 2.098 4.483 - - 15.119 

CARREFOUR 6.299 2.071 5.588 - - - 

CREDIT AGRICOLE - 2.122 4.326 - 23.091 - 

DANONE - 6.908 17.331 - - - 

ENGIE - 2.968 10.229 - - 5.501 

KERING 4.343 5.058 5.909 - - - 

KLEPIERRE - 4.394 - - - - 

LEGRAND 13.225 2.94 5.737 - 18.677 - 

L'OREAL 14.2 5.16 - 38.054 18.466 - 

LVMH 5.26 6.67 3.502 - - - 

Michelin 19.113 3.041 4.248 - - - 

ORANGE 0.979 8.386 3.393 - - - 

PUBLICIS GROUPE SA 7.606 8.239 0.595 29.173 - - 

RENAULT 2.668 4.456 1.953 23.813 - 49.249 

*E


 0.4602 0.4431 0.3379 0.4382 0.3994 0.315 

*V


 0.0186 0.0214 0.0341 0.0209 0.0131 0.0128 

*  0.5 0.5 0.5 0.2 0.9 0.3 

*  0.9 0.9 0.5 0.5 0.5 0.5 

 

To illustrate how the procedure works, let us use the year 2013 as an example.  For the 

optimal value  and , the optimal portfolio put weights 38.054%, 29.173%, 

23.813% and 8.959% on L‟OREAL, PUBLICS GROUP SA, RENAULT and ARECLOR-

MITTAL stocks respectively.  This portfolio achieves a cross-efficiency score equal to 0.4382 

and has a variance equal to 0.0209.  

To show that our approach allows us to select a well-diversified portfolio, we use an 

example based on the results for 2012, as plotted in Figure 2.2 and presented by Table 2.6.  

We select the first four shares with the highest proportions, DANONE (17.331%), 

BOUYGUES (11.073%), ENGIE (10.229%) and AIRBUS GROUP (6.51%)) to create a new 

portfolio.  The selected assets corresponds to the black circles on Figure 2.2, the other stocks 

* 0.2  * 0.5 
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are represented with white circles.  It is obvious that the selected stocks have relatively 

distinct inputs and outputs mixes and are not similar.  They are relatively scattered and 

dispersed over the input space, and clearly not clustered around a central position.  This 

makes the selected portfolio well diversified, more efficient, and less risky.   

  

Figure 2.2: Inputs versus portfolio selection with MVSK cross-efficiency (year 2012) 
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Figure 2.3: DEA cross-efficiency vs. MVSK cross-efficiency: Diversification in portfolio selection 

DEA cross-efficiency MVSK cross-efficiency 

Year 2010 

  

Year 2011 

  

Year 2013 

  

Year 2014 

  

Year 2015 
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On Figure 2.3, we plot the same type of results for the remaining years to show the 

effectiveness of MVSK cross framework to select diversified portfolios relatively to the 

simple use of DEA cross-efficiency framework.  In 2013, the selected stocks with DEA cross-

efficiency portfolio are LE GRAND, AXA, AIRLIQUIDE, LVMH, CAP GEMINI, 

MICHELIN and L‟OREAL and are all clustered around the central position.  These DMUs 

have relatively similar inputs and therefore are relatively similar.  This is very different than 

the results obtained from the MVSK cross-efficiency, the portfolio would include 

ARECLORMITAL, L‟OREAL, PUBLICS GROUP SA and RENAULT, which are scattered 

and dispersed in the input space.  This is a good indication that portfolios selected when 

higher order moments are included in the DEA cross-efficiency method are more diversified 

so very likely less risky and more efficient than portfolio constructed using the simple DEA 

cross-efficiency method.  

The MVSK DEA cross-efficiency method allows investors to allocate their wealth 

optimally and in precise proportions taking into account prudence, temperance and risk 

aversion 

5.4  Portfolio performance: Robustness check  

To check for the robustness of our method, we make the following experiment.  We use the 

solution to the MVSK cross-efficiency model to select an optimal portfolio called the “MVSK 

cross”.  Suppose this portfolio is kept an investment horizon of 1 year.  At the end of the year, 

we revise the portfolio stock composition with new stocks proportions.  We repeat this 

procedure whenever we start a new investment period.16  We compare this procedure with the 

standard portfolio selection using a simple DEA cross-efficiency method, and we call that 

portfolio “DEA cross”.  This portfolio is made of seven assets (the first seven shares).  Then 

we test the performance of these portfolios with the Sharpe ratio. 

 

 

 

 

                                                           
16

 We ignore transaction costs in our analysis. 
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Table 2.9: Portfolios annual excess return (%) and performance comparison 

Year MVSK 

Cross 

CAC40 AEX BEL20 PSI20 DEA 

cross 

2010 12.7 -8.56 0.01 -2.78 -15.14 -11.9 

2011 -21.48 -22.15 -16.32 -23.99 -31.84 -21.05 

2012 9.3 10.75 5.93 14.85 -1.47 16.84 

2013 27.77 12.62 12.3 13.81 10.42 17.5 

2014 3.22 0.24 5.33 13.22 -28.36 -3.01 

2015 14.36 8.05 3.63 11.76 8.44 14.38 

Geometric average annual excess 

return mean  

6.5 -0.65 1.39 3.4 -11.24 0.97 

Annualized volatiliy 16.41 13.44 9.74 15.41 18.27 16.52 

Sharpe ratio 0.3959 -0.0483 0.1431 0.2207 -0.6153 0.0585 

 

The Sharpe ratio has been one of the most referenced measures of risk to return 

 /risk return  measures in the finance literature.  It describes how much excess return 

received for the extra volatility that investor endure for holding a riskier asset.  It is defined as 

the portfolio geometric average annual excess return over the risk-free return divided by the 

annualized excess return volatility.  The common benchmark used to represent a risk-free 

return in France is the interest rate of 10-year treasury bond (OAT), which range from 0.995% 

to 3.35% per year over the sample period.17  

We compare the risk-adjusted performance of “MVSK cross” portfolio with 

benchmark portfolios (AEX index, BEL20 index and PSI20 index), these indexes are chosen 

for comparison because they have dimension „closed‟ to “MVSK cross” portfolio.  We 

compare also the “MVSK cross” portfolio to the “DEA Cross” portfolio made of the seven 

cross-efficiency‟ best-performer stocks.  Results are presented in Table 2.9.  We find that the 

“MVSK cross” portfolio reaches the highest geometric average annual excess return (6.5%) 

and the largest Sharpe ratio (0.3959), followed by BEL20 index then AEX index.  “DEA 

cross” portfolio is performing better than the CAC40 index and the PSI20 index.  

Unfortunately, the standard deviation type procedures like the Sharpe ratio do not account for 

extreme returns.  In fact, this performance measure is not valid when returns have tails heavier 

than the normal distribution, so we have to explore other robustness checks.  Consequently, 

we use the studentized circular block bootstrap (SCBB) developed by Ledoit and Wolf 

(2008).  This test takes into account the skewness, kurtosis and autocorrelation effects when 

                                                           
17

 We use the rate of 31 December day of each year.  
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comparing two Sharpe ratios for the differences between performances of derived portfolios 

with benchmark indexes are statistically significant. 

The SCBB procedure is a two-sided hypothesis test formulated as follows:  

 

 Table 2.10 presents the test results.18  is rejected at 6% 

(p-value = 0.06).  This means that the Sharpe ratio of MVSK cross portfolio is significantly 

greater than AEX index Sharpe ratio (the difference is equal to 0.28).  The test, 

 
is not rejected (p-value=49.6%) indicating that corresponding 

two Sharpe ratios are not significantly different.  This result dims a little the performance of 

our procedure, but we have already shown that it performs better on the risk side of the 

problem. 

Table 2.10 : Sharpe ratios using Ledoit-Wolf (2008) test 

 

 

 

 

 Overall, these results show that MVSK cross-efficiency approach is a promising tool 

for stock portfolio selection leading to better wealth allocation.  We have demonstrated that 

DEA cross-efficiency with higher moments is more effective than using the simple DEA 

cross-efficiency.  

6. Conclusion  

The framework developed by Lim et al (2014)  introduced a new way of using DEA cross-

efficiency evaluation in portfolio selection in the Mean-Variance space.  In this paper we have 

extended this method to allow investors to improve wealth allocation in the Mean-Variance-

Skewness-Kurtosis space.  Our procedure computes the optimal proportions of shares to 

invest in a portfolio.  It also deals with the problem of non-uniqueness of cross-efficiencies, 

the poor diversification problem caused by the ganging-together phenomenon associated with 

                                                           
18

 We used the R package of Ledoit and Wolf (2008) using the default parameter settings. 

0

0

1: : ( . ) : ( ) ( ) 0

2 : : ( . ) : ( ) ( ) 0

Test H MVSK vs DEA cross Sharpe ratio MVSK Sharpe ratio DEA cross

Test H MVSK vs AEX index Sharpe ratio MVSK Sharpe ratio AEX index

 

 

0 : ( )H MVSK vs AEX index

0 : ( . )H MVSK vs DEA cross

Null hypothesis                                                                         Difference                   P-value 

   

   

H0: Sharpe ratio (MVSK cross)=Sharpe ratio (DEA  cross)        0.3372             0.496 

H0: Sharpe ratio (MVSK cross)=Sharpe ratio (AEX index)        0.28             0.06 
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the standard DEA cross-efficiency evaluation.  Furthermore, it allows us to take into account 

investor risk aversion, prudence and temperance at the same time.  The MV tradeoff 

parameter and SK tradeoff parameter are endogenously determined using a nonparametric 

framework.  We have applied our approach to a sample of firms from the French CAC40 

index for a period of 6 years.  We use rational investor‟s preference for positive odd moments 

and low even moments of stocks returns as outputs and inputs respectively in a DEA frontier 

estimation framework.  We find that portfolio selection is slightly sensitive to tradeoff 

parameters values.  Our results confirm the intuition that higher order moments can 

significantly change the optimal portfolio selection.  Our findings show the effectiveness of 

our approach to overcome the lack of diversification problem in portfolio selection associated 

to the simple use of DEA cross-efficiency approach in portfolio selection, thereby 

contributing to improve the performance of such DEA cross-efficiency approaches.  Our 

results are robust when tested using the Ledoit and Wolf (2008) Sharpe test against a 

benchmark portfolio.  There is a caveat however, because the developed MVSK model is 

quartic, its application on large sample could not be easily performed.  It may be possible to 

resolve the model by employing a heuristic approach, however, but this is beyond the scope 

of this paper.  
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Chapter 3 

 

A Mean-Maverick Game Cross-Efficiency Approach 

to Portfolio Selection: An Application to Paris Stock 

Exchange 
 

1. Introduction  

Portfolio selection is the decision whereby the best set of financial assets is selected 

from many different alternatives. Even though various tools and sophisticated techniques 

were developed to handle investment problems, uncertainties still govern the process. This is 

still problematic even for the most qualified experts. Indeed, evaluating and comparing the 

performance of financial assets present an important issue for managers and investors. Hence, 

there is a pressing need for a trustful assessment tool to evaluate and discriminate in a better 

way among different listed firms. Recently, many techniques dealing with problem of assets 

evaluation and portfolio selection have been proposed by the literature, such as heuristic 

algorithms to solve Markowitz model proposed by Soleimani et al. (2009),  particle swarm 

optimization suggested by Deng et al. (2012) for solving the Cardinality Constraints 

Markowitz Portfolio Optimization problem, P-Spline clustering analysis proposed by Iorio et 

al. (2018) among others. Selecting portfolios is an important and recurring task for investors 

and managers managing clients‟ assets. It is the resulting process of how investors make 

investment decisions. A rational investor has certainly special insights and preferences, that 

must be translated into optimization model or/and algorithm to serve his investment decision 

making process. In this paper, we propose a novel method for portfolio selection based on 

Data Envelopment Analysis (DEA) game cross-efficiency approach using the maverick index, 

as a consistent risk measure.  

The DEA, as non-parametric programming, measures the relative efficiency of peer 

many-input and many-output decision making units (DMUs). The efficiency of a DMU is a 

ratio of weighted sum of its output divided by a weighted sum of its inputs. According to 

Emrouznejad and Yang (2017) study, there is 9577 articles on DEA models during the period 

1978-2016. Recently, DEA has seen an exponential growth in the number of publications 

related to theory (see for example, Wei and Wang (2017) and Wen et al.(2017)). The wide 

range of DEA applications enforces its rapid development. DEA has been applied to DMUs in 
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various forms, such as environment field (see for example Deilmann et al.(2016), Chen et al. 

(2017a) and Deilmann et al. (2018)), financial institutions performance (Rahman et al. (2016), 

Kaffash and Marra (2017) and (Du et al. 2018), education area (Tüselmann et al. (2015) and 

Sagarra et al. (2017)), Agriculture area (Bojnec and Latruffe (2008) and Atici and Podinovski 

(2015)), health care (Khushalani and Ozcan (2017) and Asandului et al. (2014)), and so on. 

The applications of DEA to the evaluation of portfolio‟s performance have become more and 

more numerous in the last years. From a perspective of evaluation based on endogenous 

benchmarks, Zhao et al. (2011) propose two quadratic-constrained DEA models to evaluate 

mutual funds‟ performance and show that the ranking of mutual funds depends mostly on 

system risk control. Using DEA framework, Liu et al. (2015) work introduces the notion of 

like allocation efficiency and the scale efficiency among other into evaluation of portfolio. 

Sanei et al. (2016) estimate the Markowitz efficient frontier using DEA model and consider 

the variance and the value at risk as risk measure. Branda (2016) introduces a new 

diversification consistent DEA model based on directional distance measure and considers the 

value at risk as risk indicator to assess efficiency of investment opportunities available on 

financial markets. Tarnaud and Leleu (2017) define the financial production process as the 

generation of a distribution of returns by an initial investment, and consider the return‟s 

distribution as input/output variables to evaluate portfolio performance with DEA method. 

Zhou et al. (2017) extend DEA model to a general return-risk model to assess mutual funds‟ 

performance. They build portfolio rebalancing strategies which are able to show sustainability 

in future investment. Rezaee et al. (2018) propose an integrating dynamic fuzzy c-means, data 

envelopment analysis, and artificial neural network to clusters and evaluates listed companies. 

While DEA can provide a remedy to the issue of aggregating multi performance measures 

into a key indicator, DEA suffers from high flexibility thus allowing for weak discrimination 

among DMUs. In fact, we may have more than 100% efficient DMU. As a result, ranking 

DMUs can be quite hard. Thereby, the cross-efficiency method, proposed by Sexton, 

Silkman, and Hogan (1986) as an extension to DEA and investigated by (Doyle and Green 

1994a), provides a unique ordering of DMUs and eliminates unrealistic weight schemes 

through peer evaluation.  

Presenting a good alternative to DEA self-evaluation, the DEA cross-efficiency 

evaluation considers simultaneously self-appraisal and peer-appraisal, exhibiting an enhanced 

discriminative power. In fact, cross-efficiency is a democratic process with less of the 

arbitrariness of additional weight restrictions, as opposed to the DEA externally imposed 
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weights and the self-evaluation process. Cross-efficiency evaluation approach identifies good 

overall performs and ranks DMUs. Liu et al. (2016) identify DEA cross-efficiency approach 

as one of the four research fronts in DEA. Due to the democratic process and powerful 

discrimination ability, the cross-efficiency evaluation has been applied in a wide variety of 

areas such as the application of Oral et al. (1991) to industrial R&D projects, Shang and 

Sueyoshi (1995),  Sun (2002) and Song and Liu (2018) to manufacturing organization, Dotoli 

et al. (2015) to healthcare system, Liu et al. (2017b) to environment area and the work of Wu 

et al. (2017) to banking system evaluation. Even though cross-efficiency was successfully 

applied to multiple real world problems, it still has some issues as the non-uniqueness of the 

DEA optimal weights which may reduce its usefulness. Specifically, there is possibility of 

multiple optimal weights in the DEA model depending on the used optimization software 

(Despotis (2002)). Thereby, avoiding the non-uniqueness of DEA solutions on the one hand 

and unrealistic DEA weighting schemes on the other hand, several approaches have been 

developed. Various secondary goals (benevolent and aggressive formulations) have been 

developed  by Sexton et al. (1986) and Doyle and Green (1994a) to choose the weights among 

optimal solutions. These formulations are extended by Liang et al. (2008b). They introduced a 

number of alternative secondary goals for the cross-efficiency approach. In a single input 

situation, Anderson et al. (2002) derived and demonstrated that cross-efficiency applies an 

implicit fixed weighting scheme to each and every DMU, which is a weighted-average of the 

weights used by all of the DMUs in the sample. Sun and Lu (2005) presented a cross-

efficiency profiling model to improve discrimination power of DEA. Lim (2012) proposed 

aggressive and benevolent formulations of cross-efficiency in DEA, where a Minimax or a 

Maximin type secondary objective is incorporated. Liang et al. (2008a) generalized the 

original DEA cross-efficiency concept to game cross-efficiency and showed that the optimal 

game cross-efficiency scores constitute a Nash equilibrium point. In their work, cross-

efficiency evaluation has been examined in the context of cooperative game. In fact, DMUs 

are viewed as players and the cross-efficiency scores as payoffs. Also, each DMU may choose 

to take a non-cooperative game stance to boost its efficiency scores given a weight selection 

strategy. Liang et al. (2008a) developed an algorithm converging to Nash equilibrium. Due to 

these advantages, DEA game cross-efficiency evaluation has been recently applied in 

performance evaluation of Olympic ranking (Roboredo et al. (2015)), supplier performance 

(Ma et al. (2014)), the infrastructure investment (Sun et al. (2016)), University‟ departments 

and international passenger airlines (Wang and Chin (2010)), R&D project selection and 

budgeting (Chen and Zhu (2011)), and so on. This work involves the game cross-efficiency 
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approach in portfolio selection field. In fact, a direct competition may exist among financial 

assets and the decision to invest in one asset and not the other is crucial. As there are 

competitions existing among financial assets, it is rational to use the DEA game cross-

efficiency model to evaluate the comprehensive efficiency of each stock and to discriminate 

among them in order to select portfolio.  

Several models have been suggested as a remedy to the cross-efficiency issue in 

portfolio selection area (see,e.g., Lim et al. (2014), Mashayekhi and Omrani (2016) and Wu et 

al. (2016)). Indeed, a naive usage of DEA cross-efficiency in portfolio selection is the 

selection of the best performer stocks with the highest efficiency score. Even though this 

simple use yielded a better result than simple DEA, Lim et al. (2014) pointed out a major 

limitation of cross-efficiency application in portfolio selection, which is the lack of portfolio 

diversification. As a remedy to this issue, Lim et al. (2014) developed a mean-variance (MV) 

framework, using cross-efficiency scores and their variance. A similar method was developed 

by Chen and Zhu (2011) proposing the bootstrap game cross-efficiency distributions to gather 

information regarding efficiency variations and correlations, and then adopting the MV 

formulation to obtain a risk-minimizing resource allocation portfolio. Indeed, the variance 

was always considered as the most common metric to assess volatility and relative risk of 

potential investment. However, it is still irrelevant for asymmetrical return distributions for 

which MV models punish the upside potential in the same fashion as the downside risk 

(Grootveld and Hallerbach (1999)). In fact, it has been shown that the market portfolio is 

highly and significantly inefficient. Thus, asset returns cannot be described by the mean and 

the variance only. Thereby, MV criterion was replaced with a more general efficiency 

criterion that accounts for higher-order central moments, particularly skewness and kurtosis 

(Nalpas et al. (2017) and Neumann and Skiadopoulos (2013)), and lower partial moments 

such as the Value at Risk (Lwin et al. (2017) and Zhang and Gao (2017)), the expected 

shortfall (Broda et al. (2017)) and semi-variance metrics (Lobato et al. (2017)). Nevertheless 

these risk measures present several practical limitations. In fact, there are several approaches 

to measure the Value at Risk and the Expected Shortfall that can lead to different results with 

the same portfolio (Krause (2003)). Furthermore, the semi-variance measurement cannot be 

an objective measure of risk (Levy (1998)). Moreover, the main problem of considering 

higher order moments in portfolio optimization is rather the computational aspect which is not 

an easy task.  



 

88 
 

In this work, we try to solve the problem of the instability and the unpredictability of 

the cross-efficiency method. In fact, the Nash equilibrium efficiency scores provided by the 

game cross-efficiency serve to evaluate and rank financial assets performance. In addition, 

derived from the DEA game cross-efficiency method, we attempt to develop a novel risk 

indicator in the portfolio area. This method provides a relevant and novel measure of risk. 

Indeed, the maverick index, named also the False Positive Index (FPI) presents the sensitivity 

level to environmental changes; or further a good indicator of risk degree. It measures the 

deviation of (DMU) self-evaluation score from its Nash equilibrium score. This indicates the 

risk degree for change in performance of the different factors. Furthermore, by making a 

tradeoff between efficiency and risk we select a very well-diversified portfolio. As an 

illustration of our approach, we report a case study involving 500 508  firms from the Paris 

Stock Exchange. We use actual financial data from 2010 to 2015. We demonstrate that our 

approach can represent a promising tool for financial assets portfolio selection by showing 

that the resulting portfolio yields higher risk-adjusted returns than other benchmark portfolios 

for a 6-year sample period. Furthermore, we show that the formed portfolio is well-

diversified, superior to some portfolios based purely on game cross-efficiency and on simple 

cross-efficiency. This indicates the effectiveness of our approach as a reliable tool to portfolio 

selection.  

The contribution is structured as follows. The next section reviews DEA, cross-

efficiency and game cross-efficiency approaches. Section 3 provides a discussion on the 

maverick index and the risk degree issue. Section 4 develops the proposed approach. Section 

5 presents an empirical application on a large sample of firms listed in Paris Stock exchange. 

Finally, section 6 summarizes the key results. 

2. DEA game cross-efficiency evaluation and portfolio efficiency 

Portfolio selection is the logical consequences of the investor‟s attitudes towards 

information concerning stocks. Choosing between stocks puts them in competition in the eyes 

of investors.  To consider the factor of competition in ranking different assets , we use the  

DEA game cross-efficiency approach of Liang et al. (2008a). In fact, ranking different stocks 

in a more efficient manner may obviously enrich the decision aids.  

Given a set of n DMUs where a ( 1,2,..., )jDMU j n  that utilizes a set of m inputs 

( 1,2,..., )ijx i m to produce s outputs ( 1,2,..., )rjy r s  where , 0ij rjx y  , the standard input-
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oriented Charnes et al. (1978) model (CCR), for any given DMUd under evaluation, in linear 

format, can be represented as follow: 
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Where r  and i  are the set of output and input weights, respectively to be determined 

through solving the above model. Upon solving this model, an efficiency score of dDMU  is 

obtained from which a cross-efficiency score 
djE

 
for each of the other  1n  DMUs will be 

determined based on dDMU „s optimal weights. 

, 1,2,..., ( 1)

s
d

r rj

r
dj m

d

i ij

i

y

E j n

x





  



                                                                                         (3.2) 

Where d denote the optimal weights of dDMU . Finally, each DMU‟s cross-efficiency score  

jE  will be determined through averaging its peer ratings as follows: 

1 n

j dj

d

E E
n

                                                                                                                          (3.3) 

DEA gives much flexibility to each DMU. Indeed, letting each DMU choose its own 

set of weights will actually lead to unrealistic weights scheme. In fact, the DMU under 

evaluation heavily weighs few favorable inputs/outputs and completely ignores the other to 

maximize its own performance score. Under a Multi Criteria Decision Making (MCDM) 

context and more specifically portfolio selection, this can be a serious problem. Furthermore, 

under an MCDM context the weights are better determined exogenously. Hence, each DMU 

is subjected to risk change in weights given the surrounding environment (Lim et al. (2014)). 

This consideration justifies the use of cross-efficiency evaluation. However, the latter method 
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suffers from major shortcoming residing in the non-uniqueness of weights depending on the 

used software (Despotis (2002)). For this reason, the use of game cross-efficiency is justified 

as it provides more stable weights and a Nash equilibrium evaluation score. The game cross-

efficiency model was developed by (Liang et al. (2008a)) through the addition of a second 

goal to the basic DEA model.  

Given an agent dDMU
 with an efficiency score d , the other player 

jDMU
 
tries to 

select a set of strategies (weights selection) to maximize its own efficiency while ensuring 

that d  would not decrease. Formally we have, 
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                                                                            (3.4) 

We note that 1d 
  initially takes the value 

dE  from (3.3). It is the average cross-efficiency 

of dDMU , when the algorithm converges, this d  becomes the game cross-efficiency. In 

addition, the constraint 0
m s

d d

d ij id rj rd

i r

x y     
 

in model (3.4) is equivalent to 

/
s m

d d

rj rd ij id d

r i

y x   

 

which implies the restriction of dDMU  initial score to ensure that it 

would not deteriorate. The above model is solved once for each dDMU
 and hence n  times.  

In addition, the optimal value of model (4) will represent a game cross-efficiency with respect 

to dDMU . In fact, the average game cross-efficiency score for 
jDMU  would be 

*1
( )

n s
d

j rj d rj

d r

y
n

     where *( )d

rj d   is an optimal solution of model (3.4).  

 Liang et al. (2008b) present the steps to determine Nash equilibrium efficiency score. 

In the following algorithm, t

j  represents the efficiency of 
jDMU
 
at iteration t. 
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Require:    

Step 1. Set t=1. For each dDMU . Calculate the average cross-efficiency 
dE  and set 

 1,...,t

d dE d n    . 

Step 2. For each pair of DMUs d and j, solve model (4) and obtain 
djE   

Step 3. Set 1 1 n
t

d dj

d

E
n

     

Step 4. If for some d, 
1t t

d d      , then return to step 2. Otherwise 1t

d
  is the optimum 

game cross-efficiency of dDMU and the algorithm stops. 

The game cross-efficiency determined by solving the proposed algorithm above is a Nash 

equilibrium point of the DEA game. Thus, it presents a stable solution. Therefore, the results 

and decisions based upon game cross-efficiency analysis are reliable. 

 

3. The maverick index: a consistent measure of risk to financial assets  

An effective way to measure the false positiveness of financial assets is by computing the 

maverick index. Developed by Doyle and Green (1994b), the index measures the deviation 

between the DMU self-appraised score and its peer-appraised score. The higher the value of 

the index, the more the financial asset is considered as maverick. The maverick index score 

can fit the benchmarking process, by which the stocks considered efficient under self-

evaluation but fail to appear in the reference sets of inefficient stocks will mostly achieve a 

high maverick index value. The stocks achieving a low index are in general all-round 

performers and are frequently both self and peer efficient. Lim et al. (2014) show that because 

the variances of mavericks‟ cross-efficiency are very likely to be significantly large, 

mavericks units should not be selected in a portfolio. Under game cross-efficiency evaluation, 

all players (DMUs) are assigned their Nash equilibrium scores. While DMUs are highly 

ranked due to their good performance on all measures, they are not always the least maverick. 

Here comes the advantage of the maverick index to analyze performance of financial assets. 

Considering the game cross-efficiency framework, the maverick index measures the relative 

difference between DEA self-evaluation and the Nash equilibrium score. We define the 

maverick index score 
jM  of 

jDMU
 
as follows:  

 j j

j

j

CCR
M






                                                                                                                 (3.5) 
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Where 
jCCR  is the self-appraisal score and 

j  is the relevant optimum game cross-efficiency 

of 
jDMU .  

With the cross evaluation approach, we are in what might be a democratic vote, where 

a set of factors is voted to be of high importance by the majority of DMUs while the rest are 

of low importance. Indeed, a high maverick index 
jM
 

of 
jDMU
 

represents a higher 

deviation from the equilibrium efficiency score, which is an extreme case representing a 

highly performing DMU only on few of the agreed upon factors. In other words, the least 

mavericks are those DMUs who perform well on most of the agreed upon best factors; but 

what about those who perform extremely well on few of the agreed upon best factors?  

In fact, some of those can reach top players with moderately high efficiency score due 

to that high level of focus on some of the agreed upon factors. These DMUs when self-

evaluating themselves, they set some pretty high weights on few factors of the voted best 

factors (the population evaluation standards). A typical maverick that will reach the top 

players with a high score would then outweigh very few criteria, which make its ranking and 

score very sensitive to the changes in the environment. Such sensitivity would make DMUs 

with high maverick values strongly risk intense. In addition, we can conclude that the 

maverick index can measure the risk level and variation in the input and output space. For this 

reason, we can propose the maverick index of a DMU as a measure of its risk degree with 

respect to changes in weights. The higher the maverick value of a portfolio, the more risky is 

the portfolio. 

We have noted that the round player with the highest game cross-efficiency (or simple 

cross- efficiency score) does not have the least risk level (maverick score). Indeed, this can be 

troublesome in the context of portfolio selection as it may result in a portfolio that is highly 

sensitive to the environment changes. This, motivates our development of a Mean-Maverick 

(MM) framework of portfolio selection based on DEA game cross-efficiency evaluation. In 

this context, we seek to minimize the overall risk degree. This will be detailed in the 

subsequent section. 

4. A Mean-Maverick framework of portfolio selection based on game 

cross-efficiency evaluation 

Any transaction with an element of uncertainty as to its future outcome carries an 
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element of risk which is related to uncertainty, volatility and complexity. In the development 

framework, the measure for risk is defined in terms of sensitivity to the volatility or change in 

the environment. The portfolio is therefore selected to minimize the portfolio risk subject to a 

given level of efficiency.  

As demonstrated in the previous section, while the simple use of DEA game cross-

efficiency approach can result in moderately risk-consistent portfolio, especially for 

individual risks, it does not take into account the risk level of each DMU. To address this 

issue of tradeoff between efficiency and risk degree, we develop a MM framework of 

portfolio selection based on game cross-efficiency. To perform portfolio selection, we assume 

that there is no stock which is combination of other stocks, no taxes, no transaction costs, and 

no short sales. We also assume perfect liquidity and the assumption about imperfect 

correlation of stocks.  

Given a stock j , the efficiency and risk degree characteristics are defined as its game cross- 

efficiency score
j  and its maverick index score 

jM , respectively.  

Let a portfolio   of n  stocks being equally weighted. The vector  1 2... nw w ww  is 

the vector of all ones where 1 , 0jw if j   otherwise (when the stock is not selected in 

the portfolio). Let K  represents the size of the desired portfolio where 
n

j

j

w K . In our 

analysis, we choose 30K   stocks. The efficiency is the weighted average efficiency of the 

assets that comprises the portfolio 
1
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portfolio is defined as the weighted average risk of the shares forming the portfolio 
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An optimal portfolio *  is determined by solving the following linear optimization model: 
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Where   is the return-risk tradeoff parameter and mE  represents the maximum achievable 

efficiency, that is the highest game cross-efficiency value detected among stocks in the 

sample. The simple use of game cross-efficiency evaluation for portfolio selection can be 

effective in reducing the change risk. However, it fails to consider its intensity level. In 

contrast, our approach based on model (3.6) can reduce both parts, resulting in a consistent 

tradeoff between risk degree and efficiency. Model (3.6) minimizes the portfolio risk degree 

(the level of sensitivity to changes in the environment) while imposing a lower bound on the 

portfolio efficiency. To prove the empirical effectiveness of the above-described model, we 

report a case study involving firms from the Paris stock Exchange. 

5. An application to stock portfolio selection in the Paris stock Exchange  

5.1  Data and input/output variables 

We have illustrated empirically the above models on data of the Paris stock exchange. 

We have considered the monthly returns of 500 508  listed firms‟ stocks
20

. We have used 

actual financial data from 2010 to 2015. To form the sample, we have included only those 

firms without missing values in the sample. Data have been collected from the Euronext Paris 

website. We use the current closing price that are indicated at the first and the last day of each 

month to compute monthly returns. The return of the share i  in the month t  is calculated with 

the following formula:  

1

1

it it
it

it

P P
R

P






                                                                                                                 (3.7) 

Where itP  is the current closing price of the last day in the month and 1itP   is the current 

closing price of the first day in the month.  

In the first part of the empirical analysis, we try to select portfolios using DEA, DEA 

cross-efficiency, DEA game cross-efficiency and Mean-Maverick game cross-efficiency 

frameworks. Then, we evaluate the performance of the obtained portfolios. Thirdly, we 

examine the diversification level of the Mean-Maverick portfolio. In the last part of the 

analysis, we prove the robustness of our developed approach from volatility-return 

perspective.  

                                                           
20

 The sample changes from year to year beacause the entry, exit and survival of firms listed on the Paris Stock exchange.  
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DEA has received much attention in portfolio area for modeling preferences of 

investor. To define the financial efficient frontier in portfolio performance evaluation, several 

inputs and outputs have been proposed in the literature. Using the efficiency ratio, each share 

will seek to maximize its desirability for investment through weighting different attributes 

(inputs and outputs). We cast the problem of portfolio selection in a financial production 

process (Tarnaud and Leleu (2017)) by taking the criteria to be minimized as inputs and those 

to be maximized as outputs. For this reason, we will model the different attributes as investor 

preference or aversion. We use the four first moments of the returns „distribution as inputs 

and outputs. Following  Scott and Horvath (1980),  Kimball (1990), Kimball (1991) and Briec 

et al. (2007), a rational decision maker prefers odd moments (mean and skewness) and dislike 

even ones. On the one hand, an investor prefers maximize gain, approximated by the 

arithmetic mean return (Markowitz (1952)). A positive skewness is preferred by the investor 

since it implies a low probability of obtaining large negative returns (Crainich and Eeckhoudt 

(2008)). On the other hand, he seeks to minimize the volatility approximated by the variance 

(Pratt (1964)). And as shown by (Menezes and Wang (2005)), the investor must be  averse to 

kurtosis in terms of transfer of actuarially neutral noise from the center of a distribution to its 

tail. Indeed, when data has more peakdness than the normal distribution (long tails), kurtosis 

is greater than three. While in case we have lower peak we have platy kurtosis (bounded 

distribution).  For practical reasons, the excess kurtosis is used in this work to examine 

historical returns of a stock (West et al. (1995)). In order to evaluate portfolio adopting DEA 

model, several studies adopted the use of higher order moments to define inputs and outputs 

(see for example Gregoriou et al. (2005b), Joro and Na (2006) and Nguyen-Thi-Thanh (2006) 

among others)). 

Considering the monthly return itR  of a stock i  in the month , ( 1... )t t T , we present 

computation details of inputs and outputs per year in Table 3.1.  

Table 3.1: Inputs/outputs matrix 

Inputs Outputs 

 Input1: Variance =  
22
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In Table 3.2, we report the descriptive statistics for the four input/output variables. The 

variance variable has an average between 0.01170 in 2012 and 0.02802 and in 2010, with a 

minimum of about 10
-7

 and maximum of about 8.09. The average kurtosis goes from 0.69328 

in 2010 to 1.07229 in 2014. The minimum kurtosis is about -2.06950. The maximum kurtosis 

is about 11.95180. Regarding the outputs, the mean variable has an average between -0.00920 

in 2011 and 0.02041 in 2013, with a minimum of about -0.21863 and a maximum of about 

1.32518. The average skewness is between 0.17172 in 2011 and 0.48392 in 2015, with a 

minimum of about -3.43831and a maximum of about 3.45448. 

Table 3.2: Descriptive Statistics 

 
Years 

 
  2010 2011 2012 2013 2014 2015 

Number of firms 505 508 500 500 502 501 

Input 1:  

Variance 

  

  

  

  

Mean 0.02802 0.01417 0.01170 0.01370 0.01353 0.01429 

SD 0.36103 0.03445 0.01645 0.04856 0.03348 0.03354 

Median 0.00605 0.00677 0.00632 0.00449 0.00549 0.00557 

Min 0.00007 0.00020 0.000001 0.00001 6.19261 0.00005 

Max 8.09060 0.48306 0.16850 0.78392 0.43569 0.34032 

Input 2: 

Kurtosis 

  

  

  

  

Mean 0.69328 0.82682 0.88967 0.83699 1.07229 0.83599 

SD 2.04623 2.03163 2.10029 2.12155 2.33403 2.16771 

Median 0.13780 0.28155 0.28374 0.17542 0.35323 0.17618 

Min -1.86712 -1.94858 -1.73831 -1.91877 -1.83729 -2.06950 

Max 11.95180 11.58814 11.87129 10.34938 11.94657 10.20691 

Output 1: 

Mean return  

  

  

  

  

Mean 0.00990 -0.00920 0.00636 0.02041 0.01107 0.01409 

SD 0.05037 0.03753 0.03432 0.07296 0.03811 0.04000 

Median 0.00704 -0.01048 0.00709 0.01283 0.00935 0.01187 

Min -0.19268 -0.20662 -0.16219 -0.21808 -0.18535 -0.21863 

Max 0.75259 0.28533 0.28464 1.32518 0.40305 0.24052 

Output 2: 

Skewness 

  

  

  

  

Mean 0.30745 0.17172 0.23793 0.33719 0.46271 0.48392 

SD. 0.87636 0.90296 0.93395 0.90963 0.92997 0.85872 

Median 0.26992 0.12013 0.15933 0.29090 0.40561 0.38977 

Min -2.86149 -2.66648 -3.43831 -2.70227 -2.45524 -1.98872 

Max 3.45448 3.38537 3.17121 3.11380 3.45373 3.10527 

 

To estimate scores efficiency we use the model (1), which is the CCR model. The 

usage of the distribution moments leads to the rise of negative values both in the inputs and 

outputs. Considering that DEA model cannot be used with negative data, it would be 

appropriate to use data transformation. Indeed, As developed by Charnes et al. (1978), the 

CCR model requires strict positivity of all input and output values, given that a CRS 

assumption imposes that any movement can be radially expanded or contracted to form other 
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feasible movement and thereafter any proportion of an efficient unit must be also efficient 

(Portela et al. (2004).  Applying data transformation when CCR model are used, would result 

in altering the efficiency values. However, in the context of our analysis we seek a 

benchmarking DEA approach among the stocks. Therefore, based on the translation 

invariance property in DEA (Ali and Seiford (1990)) and since the efficiency classification is 

persevered, portfolio construction would not be affected. In order to deal with negative data, 

we use the following formula to transform negative inputs and outputs to positive ones: 

 min , 1,...,k k k

jW V V j n                                                                                        (3.8) 

Where kW  is the transformed variable of input or output k, kV  is an input or output variable 

and min k

jV is the smallest input/output value.  

 

5.2   Mean-Maverick game cross-efficiency selection strategy and empirical 

results  

In order to construct the different portfolios, we consider a buy-and-hold strategy. The 

constructed portfolio is held for an investment horizon of one year and revised (new stock 

selection based on model solutions) for each new investment horizon. For each investment 

horizon, we choose the top 30 stocks (about 6% of the sample) to form the portfolio the AP 

and GCP portfolios. Thus, the portfolio size is fixed at K=30 with equally weighted stocks. 

More specifically, at the beginning of each investment horizon the set of stocks will be 

selected through solving models already mentioned. The arbitrary portfolio (AP) is the 

portfolio selected using DEA cross-efficiency method (model 3.1 - 3.3). The game cross 

portfolio (GCP) is selected through solving the DEA game cross-efficiency model (model 

3.4). The Mean-Maverick portfolio (MM) is the portfolio selected using the developed Mean-

Maverick DEA game cross-efficiency model (model 3.6). To test the sensitivity of the results 

to investor‟ attitude, we examine the MM model for different return-risk tradeoff parameter 

values  5%,10%,15%,20%,25%,30%  . Once a portfolio is selected, we assume that the 

same dollar amount will be invested in each of the stocks constituting the portfolio with no 

more transaction to be made until the end of the investment horizon. This strategy will imply 

that investment cost will only be incurred only at the end of each investment horizon.  

Table 3.3 shows the AP portfolio composition during the whole period of study and 

the cross-efficiency scores of the best performers shares. Results highlight the discrimination 
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power of cross-efficiency method. A unique order of firms is given. Firms are ranked in a 

descending order of performance. EUTELSAT COMMUNIC. (0.9736), SES (0.9563), 

L‟OREAL (0.9575), EULER HERMES GROUP (0.979), MERCK AND CO INC (0.975) and 

ALTAREIT (0.9788) are the best performers for the period 2010 to 2015 respectively. The 

worst practices stocks are BAINS MER MONACO (0.4701), KORIAN (0.4911), DANONE 

(0.2447), INTERPARFUMS (0.4193), EULER HERMES GROUP (0.4779) and FONCIERE 

DE PARIS (0.3755) for the years 2010-2015 respectively. The average cross-efficiency score 

goes from 0.4043 in 2012 to 0.6840 in 2011.  

However, using the DEA game cross-efficiency, the average efficiency score is 

between 0.4335 in 2012 and 0.7332 in 2011. The best performers firms are similar to those 

found with the AP except for the year 2011. MAROC TELECOM is the best practitioner with 

game cross-efficiency score equal to 0.9975, followed by SES (0.9966). FDL (0.5521), 

ANF IMMOBILIER (0.539), UNIBAIL-RODAMCO (0.261), IRDNORDPASDECALAIS 

(0.4781), ARCELORMITTAL (0.5487) and FIDUCIAL OFF.SOL. (0.4349) are the worst 

performers in the selected GCP portfolio during the period from 2011 to 2015 respectively. 

GCP composition and the cross-efficiency scores are presented in Table 3.4.  

Tables 3.5 to 3.10 present the selected MM portfolios, the game cross-efficiency 

scores and maverick index scores when  5%,10%,15%,20%,25%,30%   respectively. 

Portfolios include the 30 best performers shares. The ( 5%)MM    portfolio has average 

game cross-efficiency scores equal to 0.68, 0.7, 0.41, 0.58, 0.63 and 0.51 and average 

maverick scores equal to 0.22, 0.03, 0.02, 0.1, 0.12 and 0.2. At  10%   level, the highest 

average game cross-efficiency score (0.66) and the smallest maverick score (0.02) are 

recorded in 2011. The ( 15%)MM   portfolio has the highest average game cross-efficiency 

score (0.62) and the smallest maverick score (0.01) in 2011. Similarly for the MM portfolio at 

20%, 25% and 30% return-risk tradeoff parameter level, the greatest efficiency score and the 

smallest maverick score are obtained in 2011. Whatever the return-risk tradeoff parameter 

value, the smallest average efficiency score is recorded in 2012. However, the greatest 

average efficiency score is obtained in 2011.   
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Table 3.3: AP portfolio selection and DEA cross-efficiency scores 

SHARES 2010 SHARES 2011 SHARES 2012 SHARES 2013 SHARES 2014 SHARES 2015 

EUTELSAT COMMUNIC. 0.9736 SES 0.9563 L'OREAL 0.9575 EULER HERMES GROUP 0.979 MERCK AND CO INC 0.975 ALTAREIT 0.9788 

DANONE 0.9024 MAROC TELECOM 0.9495 IVALIS 0.9557 MAROC TELECOM 0.7624 DANONE 0.8362 CFAO 0.7314 

DASSAULT AVIATION 0.8661 TIPIAK 0.946 CNIM CONSTR.FRF 10 0.7365 TURENNE INV 0.7453 BNP PARIBAS ACT.A 0.7291 CRCAM NORM.SEINE 0.5922 

ESSO 0.8525 FDL 0.8894 SABETON 0.7353 VIEL ET COMPAGNIE 0.6872 LE NOBLE AGE 0.7256 CHARGEURS 0.5718 

L'OREAL 0.7493 ESSILOR INTL. 0.8763 VILMORIN 0.6828 HI-MEDIA 0.6616 SIGNAUX GIROD 0.6738 SELECTIRENTE 0.5378 

ST DUPONT 0.7053 CA TOULOUSE 31 CCI 0.8584 SOFRAGI 0.6793 RUBIS 0.6099 SABETON 0.6561 CHAUF.URB. 0.525 

FREY 0.7029 BONDUELLE 0.8575 ZODIAC AEROSPACE 0.4392 VETOQUINOL 0.6008 PAREF 0.6457 INSTALLUX 0.5138 

RAMSAY GEN SANTE 0.6968 EUROSIC 0.854 TFF GROUP 0.3554 CIC 0.5784 EXEL INDUSTRIES 0.6305 PRECIA 0.4755 

ESSILOR INTL. 0.6823 SODEXO 0.7551 BERNARD LOISEAU 0.3551 QUANTEL 0.57 CRCAM TOURAINE CCI 0.6292 CRCAM LANGUED CCI 0.4686 

SELECTIRENTE 0.6576 BOLLORE 0.725 LEBON 0.353 PROCTER GAMBLE 0.563 NETBOOSTER 0.6081 LINEDATA SERVICES 0.4587 

STEF 0.6364 EUTELSAT COMMUNIC. 0.716 MERCIALYS 0.3469 LEGRAND 0.5572 GROUPE EUROTUNNEL 0.6012 FLEURY MICHON 0.4584 

MERCK AND CO INC 0.6342 BIC 0.7153 DASSAULT SYSTEMES 0.3422 UNIBAIL-RODAMCO 0.5434 SOFRAGI 0.5986 SAINT GOBAIN 0.4451 

BIC 0.6321 HOPSCOTCH GROUPE 0.7134 SES 0.3406 EUROGERM 0.5397 ALES GROUPE 0.5859 COURTOIS 0.4326 

FONCIERE EURIS 0.5942 ITS GROUP 0.7061 GAMELOFT SE 0.3308 SELECTIRENTE 0.5322 CFAO 0.585 EUROMEDIS GROUPE 0.4302 

ROTHSCHILD 0.5675 PARFEX 0.6581 BRICORAMA 0.3245 AXA 0.5247 MONTEA C.V.A. 0.5771 SMTPC 0.4279 

PLANT ADVANCED 0.5448 AGTA RECORD 0.649 INSTALLUX 0.3192 AIR LIQUIDE 0.5178 BIOMERIEUX 0.5771 EFESO CONSULTING 0.4238 

CATERING INTL SCES 0.5419 AIR LIQUIDE 0.6256 SARTORIUS STED BIO 0.3161 ATOS 0.5109 ADL PARTNER 0.5731 VEOLIA ENVIRON. 0.4222 

VIEL ET COMPAGNIE 0.5353 PLANT ADVANCED 0.619 PERRIER (GERARD) 0.3138 HOPSCOTCH GROUPE 0.5091 TFF GROUP 0.5596 TURENNE INV 0.4208 

CA TOULOUSE 31 CCI 0.5342 SANOFI 0.6181 STEF 0.3103 SCOR SE 0.5037 BIC 0.5405 CRCAM SUD R.A.CCI 0.4145 

IRDNORDPASDECALAIS 0.5238 MONTEA C.V.A. 0.5799 ADL PARTNER 0.3032 AFFINE R.E. 0.4997 DASSAULT SYSTEMES 0.5313 NEURONES 0.4115 

FROMAGERIES BEL 0.5119 MR BRICOLAGE 0.5664 TRILOGIQ 0.2814 GROUPE PARTOUCHE 0.4993 BERNARD LOISEAU 0.5294 LAFUMA 0.4109 

GRAND MARNIER 0.5066 SCBSM 0.5632 HOTELS DE PARIS 0.2809 CRCAM ATL.VEND.CCI 0.4708 SELECTIRENTE 0.5241 EURAZEO 0.406 

SANOFI 0.5045 IGE   XAO 0.5323 SIDETRADE 0.2798 BOURBON 0.4683 COURTOIS 0.5219 SCBSM 0.4042 

KORIAN 0.4971 RADIALL 0.5304 RAMSAY GEN SANTE 0.2701 NATUREX 0.4616 HSBC HOLDINGS 0.5159 SALVEPAR 0.3902 

FONCIERE INEA 0.4909 TFF GROUP 0.5275 ENVIRONNEMENT SA 0.2696 NETBOOSTER 0.4513 PROCTER GAMBLE 0.5138 ATOS 0.3839 

SOMFY SA 0.4837 TURENNE INV 0.5253 ICADE 0.2623 VDI GROUP 0.4451 ESPERITE 0.5035 PATRIMOINE ET COMM 0.3824 

TURENNE INV 0.478 O2I 0.5239 BIC 0.2509 FONCIERE LYONNAISE 0.4378 SIMO INTERNATIONAL 0.4911 GROUPE EUROTUNNEL 0.3814 
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TOUPARGEL GROUPE 0.4755 MERCIALYS 0.501 BONDUELLE 0.2492 GIORGIO FEDON 0.4342 SAFT 0.4889 TERREIS 0.3793 

GROUPE FLO 0.4744 RUBIS 0.4925 PRODWARE 0.2453 ESSO 0.4259 CASINO GUICHARD 0.4788 THERMADOR GROUPE 0.376 

BAINS MER MONACO 0.4701 KORIAN 0.4911 DANONE 0.2447 INTERPARFUMS 0.4193 EULER HERMES GROUP 0.4779 FONCIERE DE PARIS 0.3755 

MEAN 0.6141 MEAN 0.6840 MEAN 0.4043 MEAN 0.55032 MEAN 0.5961 MEAN 0.4676 

 

Table 3.4: GCP portfolio selection and DEA game cross-efficiency scores 

SHARES 2010 SHARES 2011 SHARES 2012 SHARES 2013 SHARES 2014 SHARES 2015 

EUTELSAT COMMUNIC. 0.999 MAROC TELECOM 0.9975 L'OREAL 0.993 EULER HERMES GROUP 1 MERCK AND CO INC 1 ALTAREIT 1 

DASSAULT AVIATION 0.9689 SES 0.9966 IVALIS 0.9918 MAROC TELECOM 0.8447 DANONE 0.9069 CFAO 0.8052 

DANONE 0.9372 TIPIAK 0.9823 CNIM CONSTR.FRF 10 0.7985 TURENNE INV 0.8299 BNP PARIBAS ACT.A 0.824 CRCAM NORM.SEINE 0.6544 

ESSO 0.9122 FDL 0.9468 SABETON 0.7843 VIEL ET COMPAGNIE 0.8093 LE NOBLE AGE 0.8238 CHAUF.URB. 0.6528 

L'OREAL 0.8475 ESSILOR INTL. 0.9422 SOFRAGI 0.7544 HI-MEDIA 0.7232 SIGNAUX GIROD 0.783 CHARGEURS 0.6453 

FREY 0.8365 BONDUELLE 0.9138 VILMORIN 0.7304 RUBIS 0.6736 EXEL INDUSTRIES 0.7515 PRECIA 0.6102 

RAMSAY GEN SANTE 0.8283 CA TOULOUSE 31 CCI 0.8948 ZODIAC AEROSPACE 0.4704 VETOQUINOL 0.6512 SABETON 0.7219 SELECTIRENTE 0.6009 

ESSILOR INTL. 0.7836 EUROSIC 0.89 TFF GROUP 0.3853 QUANTEL 0.643 PAREF 0.7202 INSTALLUX 0.6008 

ST DUPONT 0.7745 SODEXO 0.7923 BERNARD LOISEAU 0.3796 EUROGERM 0.641 CRCAM TOURAINE CCI 0.7132 CRCAM LANGUED CCI 0.5616 

BIC 0.7707 HOPSCOTCH GROUPE 0.7909 DASSAULT SYSTEMES 0.3699 UNIBAIL-RODAMCO 0.6238 NETBOOSTER 0.696 EUROMEDIS GROUPE 0.5429 

PLANT ADVANCED 0.7608 AGTA RECORD 0.7688 MERCIALYS 0.3694 CIC 0.6146 SOFRAGI 0.6766 COURTOIS 0.5219 

SELECTIRENTE 0.7453 BOLLORE 0.7563 LEBON 0.3693 PROCTER GAMBLE 0.6016 ADL PARTNER 0.6615 FLEURY MICHON 0.5089 

STEF 0.7405 BIC 0.7516 SES 0.3603 AIR LIQUIDE 0.5899 GROUPE EUROTUNNEL 0.6562 TURENNE INV 0.5008 

MERCK AND CO INC 0.7147 PLANT ADVANCED 0.7474 STEF 0.3603 LEGRAND 0.5884 CFAO 0.6492 BRICORAMA 0.4976 

IRDNORDPASDECALAIS 0.7126 EUTELSAT COMMUNIC. 0.7469 GAMELOFT SE 0.3505 GROUPE PARTOUCHE 0.5833 MONTEA C.V.A. 0.6434 VEOLIA ENVIRON. 0.4959 

ROTHSCHILD 0.6679 ITS GROUP 0.7374 BRICORAMA 0.3496 NETBOOSTER 0.5736 ALES GROUPE 0.6387 MALTERIES FCO-BEL. 0.4897 

BAINS MER MONACO 0.6638 PARFEX 0.7086 INSTALLUX 0.3392 SCOR SE 0.5694 BIOMERIEUX 0.6217 SCBSM 0.4872 

FONCIERE EURIS 0.6633 AIR LIQUIDE 0.6542 SARTORIUS STED BIO 0.338 AXA 0.5556 TFF GROUP 0.6166 SMTPC 0.4828 

FONCIERE INEA 0.6632 SANOFI 0.645 PERRIER (GERARD) 0.3335 ATOS 0.5547 BERNARD LOISEAU 0.6077 LINEDATA SERVICES 0.4787 

TURENNE INV 0.6118 MONTEA C.V.A. 0.633 ADL PARTNER 0.3286 SELECTIRENTE 0.5537 SELECTIRENTE 0.5895 EFESO CONSULTING 0.478 

KORIAN 0.6012 MR BRICOLAGE 0.6093 SIDETRADE 0.3113 HOPSCOTCH GROUPE 0.5537 COURTOIS 0.5886 SAINT GOBAIN 0.4734 
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CATERING INTL SCES 0.5989 TFF GROUP 0.5895 TRILOGIQ 0.3031 AFFINE R.E. 0.5469 DASSAULT SYSTEMES 0.5826 CRCAM SUD R.A.CCI 0.4719 

VIEL ET COMPAGNIE 0.5946 SCBSM 0.5877 HOTELS DE PARIS 0.3008 BOURBON 0.5371 BIC 0.5798 LAFUMA 0.4688 

FROMAGERIES BEL 0.5928 TURENNE INV 0.5823 RAMSAY GEN SANTE 0.2928 NATUREX 0.5215 ESPERITE 0.5788 NEURONES 0.4618 

CA TOULOUSE 31 CCI 0.5914 IGE   XAO 0.5811 ICADE 0.2891 VDI GROUP 0.5155 PROCTER GAMBLE 0.5774 EURAZEO 0.4617 

IGE   XAO 0.5899 RADIALL 0.5565 ENVIRONNEMENT SA 0.2846 FONCIERE LYONNAISE 0.5134 SAFT 0.5665 SALVEPAR 0.4615 

GRAND MARNIER 0.5883 O2I 0.5549 BIC 0.2709 CRCAM ATL.VEND.CCI 0.5077 SIMO INTERNATIONAL 0.5661 PATRIMOINE ET COMM 0.4434 

TOUPARGEL GROUPE 0.5557 MGI DIGITAL GRAPHI 0.5533 BONDUELLE 0.268 ESSO 0.4919 CASINO GUICHARD 0.5498 CAPELLI 0.4401 

TOUAX 0.5543 MERCIALYS 0.5489 DANONE 0.2672 MEDIA 6 0.4799 HSBC HOLDINGS 0.5493 ATOS 0.4356 

FDL 0.5521 ANF IMMOBILIER 0.539 UNIBAIL-RODAMCO 0.261 IRDNORDPASDECALAIS 0.4781 ARCELORMITTAL 0.5487 FIDUCIAL OFF.SOL. 0.4349 

MEAN 0.71405 MEAN 0.7332 MEAN 0.4335 MEAN 0.6123 MEAN 0.6663 MEAN 0.5389 

 

Table 3.5: ( 5%)MM     portfolio selection, game cross-efficiency and mavericks scores 

2010 GAM MAV 2011 GAM MAV 2012 GAM MAV 2013 GAM MAV 2014 GAM MAV 2015 GAM MAV 

EUTELSAT COMMUNIC. 1,00 0,03 SES 1,00 0,00 L'OREAL 0,99 0,01 EULER HERMES GROUP 1,00 0,00 MERCK AND CO INC 1,00 0,00 ALTAREIT 1,00 0,00 

DANONE 0,94 0,05 MAROC TELECOM 1,00 0,00 IVALIS 0,99 0,01 MAROC TELECOM 0,84 0,18 DANONE 0,91 0,06 CFAO 0,81 0,24 

DASSAULT AVIATION 0,97 0,15 TIPIAK 0,98 0,02 CNIM CONSTR.FRF 10 0,80 0,03 TURENNE INV 0,83 0,20 BNP PARIBAS ACT.A 0,82 0,07 CRCAM NORM.SEINE 0,65 0,15 

ESSO 0,91 0,09 FDL 0,95 0,06 SABETON 0,78 0,01 VIEL ET COMPAGNIE 0,81 0,12 LE NOBLE AGE 0,82 0,21 CHARGEURS 0,65 0,55 

L'OREAL 0,85 0,19 ESSILOR INTL. 0,94 0,06 VILMORIN 0,73 0,02 HI-MEDIA 0,72 0,15 SIGNAUX GIROD 0,78 0,17 SELECTIRENTE 0,60 0,23 

ST DUPONT 0,77 0,42 CA TOULOUSE 31 CCI 0,89 0,01 SOFRAGI 0,75 0,05 RUBIS 0,67 0,12 SABETON 0,72 0,24 CHAUF.URB. 0,65 0,53 

FREY 0,84 0,34 BONDUELLE 0,91 0,09 ZODIAC AEROSPACE 0,47 0,05 VETOQUINOL 0,65 0,08 EXEL INDUSTRIES 0,75 0,19 INSTALLUX 0,60 0,33 

RAMSAY GEN SANTE 0,83 0,36 EUROSIC 0,89 0,03 TFF GROUP 0,39 0,03 CIC 0,61 0,05 CRCAM TOURAINE CCI 0,71 0,10 PRECIA 0,61 0,48 

ESSILOR INTL. 0,78 0,25 SODEXO 0,79 0,05 BERNARD LOISEAU 0,38 0,01 QUANTEL 0,64 0,26 NETBOOSTER 0,70 0,16 CRCAM LANGUED CCI 0,56 0,42 

SELECTIRENTE 0,75 0,23 BOLLORE 0,76 0,01 LEBON 0,37 0,01 PROCTER GAMBLE 0,60 0,04 GROUPE EUROTUNNEL 0,66 0,20 LINEDATA SERVICES 0,48 0,01 

STEF 0,74 0,28 EUTELSAT COMMUNIC. 0,75 0,01 MERCIALYS 0,37 0,01 LEGRAND 0,59 0,05 ALES GROUPE 0,64 0,05 FLEURY MICHON 0,51 0,19 

MERCK AND CO INC 0,71 0,18 BIC 0,75 0,05 DASSAULT SYSTEMES 0,37 0,03 UNIBAIL-RODAMCO 0,62 0,31 CFAO 0,65 0,30 SAINT GOBAIN 0,47 0,07 

BIC 0,77 0,42 HOPSCOTCH GROUPE 0,79 0,14 SES 0,36 0,01 SELECTIRENTE 0,55 0,02 BIOMERIEUX 0,62 0,16 SMTPC 0,48 0,25 

FONCIERE EURIS 0,66 0,15 ITS GROUP 0,74 0,01 BRICORAMA 0,35 0,02 AXA 0,56 0,03 ADL PARTNER 0,66 0,20 EFESO CONSULTING 0,48 0,24 
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ROTHSCHILD 0,67 0,29 PARFEX 0,71 0,12 INSTALLUX 0,34 0,02 AIR LIQUIDE 0,59 0,17 BIC 0,58 0,01 VEOLIA ENVIRON. 0,50 0,35 

CATERING INTL SCES 0,60 0,13 AIR LIQUIDE 0,65 0,01 SARTORIUS STED BIO 0,34 0,01 ATOS 0,55 0,09 DASSAULT SYSTEMES 0,58 0,10 CRCAM SUD R.A.CCI 0,47 0,21 

CA TOULOUSE 31 CCI 0,59 0,16 SANOFI 0,65 0,01 PERRIER (GERARD) 0,33 0,03 HOPSCOTCH GROUPE 0,55 0,08 BERNARD LOISEAU 0,61 0,11 LAFUMA 0,47 0,18 

FROMAGERIES BEL 0,59 0,29 MR BRICOLAGE 0,61 0,03 ADL PARTNER 0,33 0,03 SCOR SE 0,57 0,18 HSBC HOLDINGS 0,55 0,06 EURAZEO 0,46 0,14 

GRAND MARNIER 0,59 0,28 SCBSM 0,59 0,01 TRILOGIQ 0,30 0,02 AFFINE R.E. 0,55 0,10 ESPERITE 0,58 0,12 ATOS 0,44 0,20 

SANOFI 0,55 0,11 RADIALL 0,56 0,01 HOTELS DE PARIS 0,30 0,02 CRCAM ATL.VEND.CCI 0,51 0,09 CASINO GUICHARD 0,55 0,17 PATRIMOINE ET COMM 0,44 0,23 

KORIAN 0,60 0,38 O2I 0,55 0,02 RAMSAY GEN SANTE 0,29 0,03 NATUREX 0,52 0,18 EULER HERMES GROUP 0,52 0,05 TERREIS 0,41 0,05 

SOMFY SA 0,55 0,23 RUBIS 0,52 0,01 ENVIRONNEMENT SA 0,28 0,01 GIORGIO FEDON 0,46 0,02 ARCELORMITTAL 0,55 0,11 THERMADOR GROUPE 0,41 0,12 

TOUPARGEL GROUPE 0,56 0,26 KORIAN 0,51 0,02 BONDUELLE 0,27 0,03 ESSO 0,49 0,13 VIRBAC 0,53 0,13 FONCIERE DE PARIS 0,42 0,19 

GROUPE FLO 0,52 0,11 ARGAN 0,52 0,02 PRODWARE 0,26 0,01 INTERPARFUMS 0,45 0,07 JC DECAUX SA. 0,53 0,13 SYNERGIE 0,42 0,15 

MEDICREA INTERNAT. 0,52 0,22 CRCAM LANGUED CCI 0,51 0,02 COFIDUR 0,25 0,02 EURO DISNEY 0,44 0,03 AKKA TECHNOLOGIES 0,50 0,06 ROBERTET 0,41 0,06 

PHARMAGEST INTER. 0,50 0,11 MALTERIES FCO-BEL. 0,50 0,01 VALEO 0,22 0,01 IDI 0,45 0,07 CRCAM NORM.SEINE 0,51 0,06 MAKHEIA GROUP 0,41 0,12 

PHILIP MORRIS INTL 0,53 0,29 ESPERITE 0,50 0,03 SI PARTICIPATIONS 0,20 0,01 CAP GEMINI 0,43 0,08 ORPEA 0,49 0,05 SES 0,40 0,04 

HEURTEY PETROCHEM 0,51 0,24 IMPRIMERIE CHIRAT 0,48 0,01 OCTO TECHNOLOGY 0,20 0,01 FONCIERE EURIS 0,43 0,11 WENDEL 0,52 0,12 OBER 0,39 0,04 

ALTAREA 0,49 0,15 EXPLOS.PROD.CHI.PF 0,47 0,01 RIBER 0,18 0,01 EIFFAGE 0,39 0,03 THALES 0,48 0,02 HARVEST 0,39 0,08 

STORE ELECTRONICS 0,48 0,20 ROTHSCHILD 0,44 0,01 FREY 0,16 0,01 INFOTEL 0,36 0,03 ESI GROUP 0,46 0,04 GEVELOT 0,38 0,05 

MEAN 0,68 0,22 MEAN 0,70 0,03 MEAN 0,41 0,02 MEAN 0,58 0,10 MEAN 0,63 0,12 MEAN 0,51 0,20 

 

Table 3.6: ( 10%)MM   portfolio selection, game cross-efficiency and mavericks scores 

2010 GAM MAV 2011 GAM MAV 2012 GAM MAV 2013 GAM MAV 2014 GAM MAV 2015 GAM MAV 

EUTELSAT COMMUNIC. 1,00 0,03 SES 1,00 0,00 L'OREAL 0,99 0,01 EULER HERMES GROUP 1,00 0,00 MERCK AND CO INC 1,00 0,00 ALTAREIT 1,00 0,00 

DANONE 0,94 0,05 MAROC TELECOM 1,00 0,00 IVALIS 0,99 0,01 MAROC TELECOM 0,84 0,18 DANONE 0,91 0,06 CFAO 0,81 0,24 

DASSAULT AVIATION 0,97 0,15 TIPIAK 0,98 0,02 CNIM CONSTR.FRF 10 0,80 0,03 TURENNE INV 0,83 0,20 BNP PARIBAS ACT.A 0,82 0,07 CRCAM NORM.SEINE 0,65 0,15 

ESSO 0,91 0,09 FDL 0,95 0,06 SABETON 0,78 0,01 VIEL ET COMPAGNIE 0,81 0,12 LE NOBLE AGE 0,82 0,21 SELECTIRENTE 0,60 0,23 

L'OREAL 0,85 0,19 ESSILOR INTL. 0,94 0,06 VILMORIN 0,73 0,02 HI-MEDIA 0,72 0,15 SIGNAUX GIROD 0,78 0,17 CHAUF.URB. 0,65 0,53 

ST DUPONT 0,77 0,42 CA TOULOUSE 31 CCI 0,89 0,01 SOFRAGI 0,75 0,05 RUBIS 0,67 0,12 EXEL INDUSTRIES 0,75 0,19 INSTALLUX 0,60 0,33 

FREY 0,84 0,34 EUROSIC 0,89 0,03 TFF GROUP 0,39 0,03 VETOQUINOL 0,65 0,08 CRCAM TOURAINE CCI 0,71 0,10 LINEDATA SERVICES 0,48 0,01 

RAMSAY GEN SANTE 0,83 0,36 SODEXO 0,79 0,05 BERNARD LOISEAU 0,38 0,01 CIC 0,61 0,05 NETBOOSTER 0,70 0,16 FLEURY MICHON 0,51 0,19 
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ESSILOR INTL. 0,78 0,25 BOLLORE 0,76 0,01 LEBON 0,37 0,01 PROCTER GAMBLE 0,60 0,04 GROUPE EUROTUNNEL 0,66 0,20 SAINT GOBAIN 0,47 0,07 

SELECTIRENTE 0,75 0,23 EUTELSAT COMMUNIC. 0,75 0,01 MERCIALYS 0,37 0,01 LEGRAND 0,59 0,05 ALES GROUPE 0,64 0,05 SMTPC 0,48 0,25 

STEF 0,74 0,28 BIC 0,75 0,05 SES 0,36 0,01 SELECTIRENTE 0,55 0,02 BIOMERIEUX 0,62 0,16 EFESO CONSULTING 0,48 0,24 

MERCK AND CO INC 0,71 0,18 ITS GROUP 0,74 0,01 BRICORAMA 0,35 0,02 AXA 0,56 0,03 ADL PARTNER 0,66 0,20 CRCAM SUD R.A.CCI 0,47 0,21 

BIC 0,77 0,42 AIR LIQUIDE 0,65 0,01 INSTALLUX 0,34 0,02 AIR LIQUIDE 0,59 0,17 BIC 0,58 0,01 LAFUMA 0,47 0,18 

FONCIERE EURIS 0,66 0,15 SANOFI 0,65 0,01 SARTORIUS STED BIO 0,34 0,01 ATOS 0,55 0,09 DASSAULT SYSTEMES 0,58 0,10 EURAZEO 0,46 0,14 

ROTHSCHILD 0,67 0,29 MR BRICOLAGE 0,61 0,03 PERRIER (GERARD) 0,33 0,03 HOPSCOTCH GROUPE 0,55 0,08 BERNARD LOISEAU 0,61 0,11 ATOS 0,44 0,20 

CATERING INTL SCES 0,60 0,13 SCBSM 0,59 0,01 ADL PARTNER 0,33 0,03 AFFINE R.E. 0,55 0,10 HSBC HOLDINGS 0,55 0,06 PATRIMOINE ET COMM 0,44 0,23 

CA TOULOUSE 31 CCI 0,59 0,16 RADIALL 0,56 0,01 TRILOGIQ 0,30 0,02 CRCAM ATL.VEND.CCI 0,51 0,09 ESPERITE 0,58 0,12 TERREIS 0,41 0,05 

GRAND MARNIER 0,59 0,28 O2I 0,55 0,02 HOTELS DE PARIS 0,30 0,02 GIORGIO FEDON 0,46 0,02 EULER HERMES GROUP 0,52 0,05 THERMADOR GROUPE 0,41 0,12 

SANOFI 0,55 0,11 RUBIS 0,52 0,01 RAMSAY GEN SANTE 0,29 0,03 ESSO 0,49 0,13 ARCELORMITTAL 0,55 0,11 FONCIERE DE PARIS 0,42 0,19 

SOMFY SA 0,55 0,23 KORIAN 0,51 0,02 ENVIRONNEMENT SA 0,28 0,01 INTERPARFUMS 0,45 0,07 AKKA TECHNOLOGIES 0,50 0,06 SYNERGIE 0,42 0,15 

GROUPE FLO 0,52 0,11 ARGAN 0,52 0,02 PRODWARE 0,26 0,01 EURO DISNEY 0,44 0,03 CRCAM NORM.SEINE 0,51 0,06 ROBERTET 0,41 0,06 

MEDICREA INTERNAT. 0,52 0,22 CRCAM LANGUED CCI 0,51 0,02 COFIDUR 0,25 0,02 IDI 0,45 0,07 ORPEA 0,49 0,05 MAKHEIA GROUP 0,41 0,12 

PHARMAGEST INTER. 0,50 0,11 MALTERIES FCO-BEL. 0,50 0,01 VALEO 0,22 0,01 NEOPOST 0,44 0,11 WENDEL 0,52 0,12 SES 0,40 0,04 

ALTAREA 0,49 0,15 IMPRIMERIE CHIRAT 0,48 0,01 SI PARTICIPATIONS 0,20 0,01 CAP GEMINI 0,43 0,08 THALES 0,48 0,02 OBER 0,39 0,04 

EXPLOSIFS PROD.CHI 0,46 0,16 EXPLOS.PROD.CHI.PF 0,47 0,01 OCTO TECHNOLOGY 0,20 0,01 EIFFAGE 0,39 0,03 ESI GROUP 0,46 0,04 HARVEST 0,39 0,08 

SOLVAY 0,41 0,13 ORCHESTRA PREMAMAN 0,47 0,02 RIBER 0,18 0,01 SWORD GROUP 0,37 0,03 NEURONES 0,43 0,06 GEVELOT 0,38 0,05 

GROUPE OPEN 0,40 0,14 EUROGERM 0,46 0,02 FREY 0,16 0,01 VINCI 0,37 0,06 M.R.M 0,44 0,03 NEURONES 0,46 0,23 

ESI GROUP 0,37 0,11 MANUTAN INTL 0,45 0,02 STREAMWIDE 0,16 0,01 INFOTEL 0,36 0,03 EUROFINS SCIENT. 0,41 0,04 ALTAMIR 0,36 0,06 

MGI DIGITAL GRAPHI 0,31 0,07 ROTHSCHILD 0,44 0,01 KERING 0,15 0,01 S.E.B. 0,35 0,05 OENEO 0,36 0,00 SQLI 0,35 0,11 

DALENYS 0,26 0,03 EXPLOSIFS PROD.CHI 0,42 0,01 CLASQUIN 0,15 0,01 LISI 0,34 0,03 COHERIS 0,35 0,01 KORIAN 0,32 0,02 

MEAN 0,64 0,19 MEAN 0,66 0,02 MEAN 0,39 0,02 MEAN 0,55 0,08 MEAN 0,60 0,09 MEAN 0,49 0,15 

 

Table 3.7: ( 15%)MM     portfolio selection, game cross-efficiency and mavericks scores 

2010 GAM MAV 2011 GAM MAV 2012 GAM MAV 2013 GAM MAV 2014 GAM MAV 2015 GAM MAV 

EUTELSAT COMMUNIC. 1,00 0,03 SES 1,00 0,00 L'OREAL 0,99 0,01 EULER HERMES GROUP 1,00 0,00 MERCK AND CO INC 1,00 0,00 ALTAREIT 1,00 0,00 

DANONE 0,94 0,05 MAROC TELECOM 1,00 0,00 IVALIS 0,99 0,01 MAROC TELECOM 0,84 0,18 DANONE 0,91 0,06 CFAO 0,81 0,24 
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DASSAULT AVIATION 0,97 0,15 TIPIAK 0,98 0,02 CNIM CONSTR.FRF 10 0,80 0,03 TURENNE INV 0,83 0,20 BNP PARIBAS ACT.A 0,82 0,07 CRCAM NORM.SEINE 0,65 0,15 

ESSO 0,91 0,09 FDL 0,95 0,06 SABETON 0,78 0,01 VIEL ET COMPAGNIE 0,81 0,12 LE NOBLE AGE 0,82 0,21 SELECTIRENTE 0,60 0,23 

L'OREAL 0,85 0,19 CA TOULOUSE 31 CCI 0,89 0,01 VILMORIN 0,73 0,02 HI-MEDIA 0,72 0,15 SIGNAUX GIROD 0,78 0,17 INSTALLUX 0,60 0,33 

FREY 0,84 0,34 EUROSIC 0,89 0,03 SOFRAGI 0,75 0,05 RUBIS 0,67 0,12 EXEL INDUSTRIES 0,75 0,19 LINEDATA SERVICES 0,48 0,01 

RAMSAY GEN SANTE 0,83 0,36 SODEXO 0,79 0,05 BERNARD LOISEAU 0,38 0,01 VETOQUINOL 0,65 0,08 CRCAM TOURAINE CCI 0,71 0,10 FLEURY MICHON 0,51 0,19 

ESSILOR INTL. 0,78 0,25 BOLLORE 0,76 0,01 LEBON 0,37 0,01 CIC 0,61 0,05 NETBOOSTER 0,70 0,16 SAINT GOBAIN 0,47 0,07 

SELECTIRENTE 0,75 0,23 EUTELSAT COMMUNIC. 0,75 0,01 MERCIALYS 0,37 0,01 PROCTER GAMBLE 0,60 0,04 ALES GROUPE 0,64 0,05 EFESO CONSULTING 0,48 0,24 

STEF 0,74 0,28 ITS GROUP 0,74 0,01 SES 0,36 0,01 LEGRAND 0,59 0,05 BIC 0,58 0,01 CRCAM SUD R.A.CCI 0,47 0,21 

MERCK AND CO INC 0,71 0,18 AIR LIQUIDE 0,65 0,01 BRICORAMA 0,35 0,02 SELECTIRENTE 0,55 0,02 DASSAULT SYSTEMES 0,58 0,10 LAFUMA 0,47 0,18 

FONCIERE EURIS 0,66 0,15 SANOFI 0,65 0,01 INSTALLUX 0,34 0,02 AXA 0,56 0,03 BERNARD LOISEAU 0,61 0,11 EURAZEO 0,46 0,14 

ROTHSCHILD 0,67 0,29 MR BRICOLAGE 0,61 0,03 SARTORIUS STED BIO 0,34 0,01 ATOS 0,55 0,09 HSBC HOLDINGS 0,55 0,06 ATOS 0,44 0,20 

CATERING INTL SCES 0,60 0,13 SCBSM 0,59 0,01 TRILOGIQ 0,30 0,02 HOPSCOTCH GROUPE 0,55 0,08 ESPERITE 0,58 0,12 TERREIS 0,41 0,05 

CA TOULOUSE 31 CCI 0,59 0,16 RADIALL 0,56 0,01 HOTELS DE PARIS 0,30 0,02 AFFINE R.E. 0,55 0,10 EULER HERMES GROUP 0,52 0,05 THERMADOR GROUPE 0,41 0,12 

SANOFI 0,55 0,11 O2I 0,55 0,02 ENVIRONNEMENT SA 0,28 0,01 CRCAM ATL.VEND.CCI 0,51 0,09 ARCELORMITTAL 0,55 0,11 FONCIERE DE PARIS 0,42 0,19 

SOMFY SA 0,55 0,23 RUBIS 0,52 0,01 PRODWARE 0,26 0,01 GIORGIO FEDON 0,46 0,02 AKKA TECHNOLOGIES 0,50 0,06 SYNERGIE 0,42 0,15 

GROUPE FLO 0,52 0,11 KORIAN 0,51 0,02 COFIDUR 0,25 0,02 INTERPARFUMS 0,45 0,07 CRCAM NORM.SEINE 0,51 0,06 ROBERTET 0,41 0,06 

MEDICREA INTERNAT. 0,52 0,22 ARGAN 0,52 0,02 VALEO 0,22 0,01 EURO DISNEY 0,44 0,03 ORPEA 0,49 0,05 MAKHEIA GROUP 0,41 0,12 

PHARMAGEST INTER. 0,50 0,11 CRCAM LANGUED CCI 0,51 0,02 SAFRAN 0,20 0,02 IDI 0,45 0,07 THALES 0,48 0,02 SES 0,40 0,04 

ALTAREA 0,49 0,15 MALTERIES FCO-BEL. 0,50 0,01 SI PARTICIPATIONS 0,20 0,01 EIFFAGE 0,39 0,03 ESI GROUP 0,46 0,04 OBER 0,39 0,04 

EXPLOSIFS PROD.CHI 0,46 0,16 IMPRIMERIE CHIRAT 0,48 0,01 OCTO TECHNOLOGY 0,20 0,01 SWORD GROUP 0,37 0,03 SARTORIUS STED BIO 0,45 0,07 HARVEST 0,39 0,08 

SOLVAY 0,41 0,13 EXPLOS.PROD.CHI.PF 0,47 0,01 LECTRA 0,18 0,02 VINCI 0,37 0,06 NEURONES 0,43 0,06 GEVELOT 0,38 0,05 

COURTOIS 0,42 0,17 ROTHSCHILD 0,44 0,01 RIBER 0,18 0,01 INFOTEL 0,36 0,03 M.R.M 0,44 0,03 ALTAMIR 0,36 0,06 

ILIAD 0,38 0,13 NEURONES 0,43 0,01 FREY 0,16 0,01 S.E.B. 0,35 0,05 EUROFINS SCIENT. 0,41 0,04 SOLUCOM 0,36 0,12 

BIOMERIEUX 0,38 0,13 CHAUF.URB. 0,42 0,01 STREAMWIDE 0,16 0,01 LISI 0,34 0,03 SUEZ ENVIRONNEMENT 0,38 0,04 SARTORIUS STED BIO 0,34 0,08 

ESI GROUP 0,37 0,11 EXPLOSIFS PROD.CHI 0,42 0,01 KERING 0,15 0,01 TESSI 0,33 0,05 OENEO 0,36 0,00 CRCAM NORD CCI 0,33 0,08 

MGI DIGITAL GRAPHI 0,31 0,07 CRCAM NORM.SEINE 0,40 0,01 OENEO 0,15 0,01 DOM SECURITY 0,25 0,02 COHERIS 0,35 0,01 KORIAN 0,32 0,02 

INTERPARFUMS 0,29 0,09 SOMFY SA 0,39 0,01 CLASQUIN 0,15 0,01 CRCAM ALP.PROV.CCI 0,23 0,02 CAP GEMINI 0,32 0,02 COHERIS 0,28 0,02 

DALENYS 0,26 0,03 KINDY 0,35 0,01 VETOQUINOL 0,15 0,01 BIC 0,22 0,01 INSTALLUX 0,31 0,04 GASCOGNE 0,27 0,03 

MEAN 0,61 0,16 MEAN 0,62 0,01 MEAN 0,37 0,02 MEAN 0,52 0,06 MEAN 0,57 0,07 MEAN 0,46 0,12 
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Table 3.8: ( 20%)MM    portfolio selection, game cross-efficiency and mavericks scores 

2010 GAM MAV 2011 GAM MAV 2012 GAM MAV 2013 GAM MAV 2014 GAM MAV 2015 GAM MAV 

EUTELSAT COMMUNIC. 1,00 0,03 SES 1,00 0,00 L'OREAL 0,99 0,01 EULER HERMES GROUP 1,00 0,00 MERCK AND CO INC 1,00 0,00 ALTAREIT 1,00 0,00 

DANONE 0,94 0,05 MAROC TELECOM 1,00 0,00 IVALIS 0,99 0,01 MAROC TELECOM 0,84 0,18 DANONE 0,91 0,06 CFAO 0,81 0,24 

DASSAULT AVIATION 0,97 0,15 TIPIAK 0,98 0,02 CNIM CONSTR.FRF 10 0,80 0,03 VIEL ET COMPAGNIE 0,81 0,12 BNP PARIBAS ACT.A 0,82 0,07 CRCAM NORM.SEINE 0,65 0,15 

ESSO 0,91 0,09 CA TOULOUSE 31 CCI 0,89 0,01 SABETON 0,78 0,01 RUBIS 0,67 0,12 SIGNAUX GIROD 0,78 0,17 SELECTIRENTE 0,60 0,23 

L'OREAL 0,85 0,19 EUROSIC 0,89 0,03 VILMORIN 0,73 0,02 VETOQUINOL 0,65 0,08 CRCAM TOURAINE CCI 0,71 0,10 LINEDATA SERVICES 0,48 0,01 

FREY 0,84 0,34 BOLLORE 0,76 0,01 BERNARD LOISEAU 0,38 0,01 CIC 0,61 0,05 NETBOOSTER 0,70 0,16 FLEURY MICHON 0,51 0,19 

ESSILOR INTL. 0,78 0,25 EUTELSAT COMMUNIC. 0,75 0,01 LEBON 0,37 0,01 PROCTER GAMBLE 0,60 0,04 ALES GROUPE 0,64 0,05 SAINT GOBAIN 0,47 0,07 

SELECTIRENTE 0,75 0,23 ITS GROUP 0,74 0,01 MERCIALYS 0,37 0,01 LEGRAND 0,59 0,05 BIC 0,58 0,01 CRCAM SUD R.A.CCI 0,47 0,21 

STEF 0,74 0,28 AIR LIQUIDE 0,65 0,01 SES 0,36 0,01 SELECTIRENTE 0,55 0,02 DASSAULT SYSTEMES 0,58 0,10 LAFUMA 0,47 0,18 

MERCK AND CO INC 0,71 0,18 SANOFI 0,65 0,01 BRICORAMA 0,35 0,02 AXA 0,56 0,03 BERNARD LOISEAU 0,61 0,11 EURAZEO 0,46 0,14 

FONCIERE EURIS 0,66 0,15 MR BRICOLAGE 0,61 0,03 INSTALLUX 0,34 0,02 ATOS 0,55 0,09 HSBC HOLDINGS 0,55 0,06 TERREIS 0,41 0,05 

ROTHSCHILD 0,67 0,29 SCBSM 0,59 0,01 SARTORIUS STED BIO 0,34 0,01 HOPSCOTCH GROUPE 0,55 0,08 EULER HERMES GROUP 0,52 0,05 THERMADOR GROUPE 0,41 0,12 

CATERING INTL SCES 0,60 0,13 RADIALL 0,56 0,01 TRILOGIQ 0,30 0,02 AFFINE R.E. 0,55 0,10 ARCELORMITTAL 0,55 0,11 SYNERGIE 0,42 0,15 

CA TOULOUSE 31 CCI 0,59 0,16 O2I 0,55 0,02 HOTELS DE PARIS 0,30 0,02 CRCAM ATL.VEND.CCI 0,51 0,09 AKKA TECHNOLOGIES 0,50 0,06 ROBERTET 0,41 0,06 

SANOFI 0,55 0,11 RUBIS 0,52 0,01 ENVIRONNEMENT SA 0,28 0,01 GIORGIO FEDON 0,46 0,02 CRCAM NORM.SEINE 0,51 0,06 MAKHEIA GROUP 0,41 0,12 

GROUPE FLO 0,52 0,11 ARGAN 0,52 0,02 PRODWARE 0,26 0,01 INTERPARFUMS 0,45 0,07 ORPEA 0,49 0,05 SES 0,40 0,04 

PHARMAGEST INTER. 0,50 0,11 MALTERIES FCO-BEL. 0,50 0,01 COFIDUR 0,25 0,02 EURO DISNEY 0,44 0,03 THALES 0,48 0,02 OBER 0,39 0,04 

ALTAREA 0,49 0,15 IMPRIMERIE CHIRAT 0,48 0,01 VALEO 0,22 0,01 IDI 0,45 0,07 ESI GROUP 0,46 0,04 HARVEST 0,39 0,08 

EXPLOSIFS PROD.CHI 0,46 0,16 EXPLOS.PROD.CHI.PF 0,47 0,01 SAFRAN 0,20 0,02 EIFFAGE 0,39 0,03 ZODIAC AEROSPACE 0,46 0,09 GEVELOT 0,38 0,05 

SOLVAY 0,41 0,13 EUROGERM 0,46 0,02 SI PARTICIPATIONS 0,20 0,01 SWORD GROUP 0,37 0,03 SARTORIUS STED BIO 0,45 0,07 ALTAMIR 0,36 0,06 

GROUPE OPEN 0,40 0,14 MANUTAN INTL 0,45 0,02 OCTO TECHNOLOGY 0,20 0,01 VINCI 0,37 0,06 NEURONES 0,43 0,06 SQLI 0,35 0,11 

COURTOIS 0,42 0,17 ROTHSCHILD 0,44 0,01 LECTRA 0,18 0,02 INFOTEL 0,36 0,03 M.R.M 0,44 0,03 SARTORIUS STED BIO 0,34 0,08 

ILIAD 0,38 0,13 NEURONES 0,43 0,01 RIBER 0,18 0,01 S.E.B. 0,35 0,05 EUROFINS SCIENT. 0,41 0,04 CRCAM NORD CCI 0,33 0,08 

BIOMERIEUX 0,38 0,13 CHAUF.URB. 0,42 0,01 FREY 0,16 0,01 OENEO 0,35 0,05 VRANKEN-POMMERY 0,38 0,05 KORIAN 0,32 0,02 

ESI GROUP 0,37 0,11 PROCTER GAMBLE 0,42 0,02 STREAMWIDE 0,16 0,01 LISI 0,34 0,03 SUEZ ENVIRONNEMENT 0,38 0,04 SWORD GROUP 0,31 0,08 

MGI DIGITAL GRAPHI 0,31 0,07 EXPLOSIFS PROD.CHI 0,42 0,01 KERING 0,15 0,01 TESSI 0,33 0,05 OENEO 0,36 0,00 BELIER 0,31 0,07 

INTERPARFUMS 0,29 0,09 CRCAM NORM.SEINE 0,40 0,01 OENEO 0,15 0,01 DOM SECURITY 0,25 0,02 COHERIS 0,35 0,01 COHERIS 0,28 0,02 
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DALENYS 0,26 0,03 SOMFY SA 0,39 0,01 CLASQUIN 0,15 0,01 SIGNAUX GIROD 0,26 0,02 CARREFOUR 0,33 0,04 GASCOGNE 0,27 0,03 

ENCRES DUBUIT 0,23 0,06 KINDY 0,35 0,01 ALES GROUPE 0,13 0,01 CNIM CONSTR.FRF 10 0,24 0,02 CAP GEMINI 0,32 0,02 LE NOBLE AGE 0,27 0,03 

BUSINESS ET DECIS. 0,19 0,04 DELTA PLUS GROUP 0,33 0,01 IPSEN 0,12 0,01 CRCAM ALP.PROV.CCI 0,23 0,02 S.E.B. 0,29 0,03 GL EVENTS 0,26 0,03 

MEAN 0,57 0,14 MEAN 0,59 0,01 MEAN 0,35 0,01 MEAN 0,49 0,05 MEAN 0,53 0,06 MEAN 0,43 0,09 

 

Table 3.9: ( 25%)MM   portfolio selection, game cross-efficiency and mavericks scores 

2010 GAM MAV 2011 GAM MAV 2012 GAM MAV 2013 GAM MAV 2014 GAM MAV 2015 GAM MAV 

EUTELSAT COMMUNIC. 1,00 0,03 SES 1,00 0,00 L'OREAL 0,99 0,01 EULER HERMES GROUP 1,00 0,00 MERCK AND CO INC 1,00 0,00 ALTAREIT 1,00 0,00 

DANONE 0,94 0,05 MAROC TELECOM 1,00 0,00 IVALIS 0,99 0,01 VIEL ET COMPAGNIE 0,81 0,12 DANONE 0,91 0,06 CFAO 0,81 0,24 

DASSAULT AVIATION 0,97 0,15 TIPIAK 0,98 0,02 CNIM CONSTR.FRF 10 0,80 0,03 RUBIS 0,67 0,12 BNP PARIBAS ACT.A 0,82 0,07 CRCAM NORM.SEINE 0,65 0,15 

ESSO 0,91 0,09 CA TOULOUSE 31 CCI 0,89 0,01 SABETON 0,78 0,01 VETOQUINOL 0,65 0,08 CRCAM TOURAINE CCI 0,71 0,10 SELECTIRENTE 0,60 0,23 

L&#039;OREAL 0,85 0,19 EUROSIC 0,89 0,03 VILMORIN 0,73 0,02 CIC 0,61 0,05 ALES GROUPE 0,64 0,05 LINEDATA SERVICES 0,48 0,01 

ESSILOR INTL. 0,78 0,25 BOLLORE 0,76 0,01 BERNARD LOISEAU 0,38 0,01 PROCTER GAMBLE 0,60 0,04 BIC 0,58 0,01 FLEURY MICHON 0,51 0,19 

SELECTIRENTE 0,75 0,23 EUTELSAT COMMUNIC. 0,75 0,01 LEBON 0,37 0,01 LEGRAND 0,59 0,05 DASSAULT SYSTEMES 0,58 0,10 SAINT GOBAIN 0,47 0,07 

STEF 0,74 0,28 ITS GROUP 0,74 0,01 MERCIALYS 0,37 0,01 SELECTIRENTE 0,55 0,02 BERNARD LOISEAU 0,61 0,11 EURAZEO 0,46 0,14 

MERCK AND CO INC 0,71 0,18 AIR LIQUIDE 0,65 0,01 SES 0,36 0,01 AXA 0,56 0,03 HSBC HOLDINGS 0,55 0,06 TERREIS 0,41 0,05 

FONCIERE EURIS 0,66 0,15 SANOFI 0,65 0,01 BRICORAMA 0,35 0,02 ATOS 0,55 0,09 EULER HERMES GROUP 0,52 0,05 THERMADOR GROUPE 0,41 0,12 

CATERING INTL SCES 0,60 0,13 SCBSM 0,59 0,01 INSTALLUX 0,34 0,02 HOPSCOTCH GROUPE 0,55 0,08 ARCELORMITTAL 0,55 0,11 ROBERTET 0,41 0,06 

CA TOULOUSE 31 CCI 0,59 0,16 RADIALL 0,56 0,01 SARTORIUS STED BIO 0,34 0,01 CRCAM ATL.VEND.CCI 0,51 0,09 AKKA TECHNOLOGIES 0,50 0,06 MAKHEIA GROUP 0,41 0,12 

SANOFI 0,55 0,11 O2I 0,55 0,02 ENVIRONNEMENT SA 0,28 0,01 GIORGIO FEDON 0,46 0,02 CRCAM NORM.SEINE 0,51 0,06 SES 0,40 0,04 

GROUPE FLO 0,52 0,11 RUBIS 0,52 0,01 PRODWARE 0,26 0,01 INTERPARFUMS 0,45 0,07 ORPEA 0,49 0,05 OBER 0,39 0,04 

PHARMAGEST INTER. 0,50 0,11 MALTERIES FCO-BEL. 0,50 0,01 COFIDUR 0,25 0,02 EURO DISNEY 0,44 0,03 THALES 0,48 0,02 HARVEST 0,39 0,08 

ALTAREA 0,49 0,15 IMPRIMERIE CHIRAT 0,48 0,01 VALEO 0,22 0,01 IDI 0,45 0,07 ESI GROUP 0,46 0,04 GEVELOT 0,38 0,05 

EXPLOSIFS PROD.CHI 0,46 0,16 EXPLOS.PROD.CHI.PF 0,47 0,01 SI PARTICIPATIONS 0,20 0,01 EIFFAGE 0,39 0,03 SARTORIUS STED BIO 0,45 0,07 ALTAMIR 0,36 0,06 

BOUYGUES 0,44 0,18 ROTHSCHILD 0,44 0,01 OCTO TECHNOLOGY 0,20 0,01 SWORD GROUP 0,37 0,03 NEURONES 0,43 0,06 SARTORIUS STED BIO 0,34 0,08 

SOLVAY 0,41 0,13 NEURONES 0,43 0,01 LECTRA 0,18 0,02 VINCI 0,37 0,06 M.R.M 0,44 0,03 CRCAM NORD CCI 0,33 0,08 

GROUPE OPEN 0,40 0,14 CHAUF.URB. 0,42 0,01 RIBER 0,18 0,01 INFOTEL 0,36 0,03 TOUAX 0,41 0,07 KORIAN 0,32 0,02 

ILIAD 0,38 0,13 EXPLOSIFS PROD.CHI 0,42 0,01 FREY 0,16 0,01 S.E.B. 0,35 0,05 EUROFINS SCIENT. 0,41 0,04 SWORD GROUP 0,31 0,08 
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BIOMERIEUX 0,38 0,13 CRCAM NORM.SEINE 0,40 0,01 STREAMWIDE 0,16 0,01 OENEO 0,35 0,05 VRANKEN-POMMERY 0,38 0,05 BELIER 0,31 0,07 

ESI GROUP 0,37 0,11 SOMFY SA 0,39 0,01 KERING 0,15 0,01 LISI 0,34 0,03 SUEZ ENVIRONNEMENT 0,38 0,04 COHERIS 0,28 0,02 

MGI DIGITAL GRAPHI 0,31 0,07 KINDY 0,35 0,01 CLASQUIN 0,15 0,01 TESSI 0,33 0,05 OENEO 0,36 0,00 GASCOGNE 0,27 0,03 

INTERPARFUMS 0,29 0,09 SI PARTICIPATIONS 0,33 0,01 ALES GROUPE 0,13 0,01 FIDUCIAL REAL EST. 0,27 0,03 COHERIS 0,35 0,01 LE NOBLE AGE 0,27 0,03 

DALENYS 0,26 0,03 DELTA PLUS GROUP 0,33 0,01 AUGROS COSMETICS 0,12 0,01 DOM SECURITY 0,25 0,02 CARREFOUR 0,33 0,04 GL EVENTS 0,26 0,03 

CHAUF.URB. 0,23 0,07 GROUPE JAJ 0,30 0,01 IPSEN 0,12 0,01 SIGNAUX GIROD 0,26 0,02 CAP GEMINI 0,32 0,02 AXA 0,24 0,04 

ENCRES DUBUIT 0,23 0,06 ALTAREA 0,29 0,01 PSB INDUSTRIES 0,08 0,01 PERNOD RICARD 0,23 0,02 S.E.B. 0,29 0,03 M.R.M 0,23 0,02 

BUSINESS ET DECIS. 0,19 0,04 PERRIER (GERARD) 0,24 0,01 BOURBON 0,06 0,01 CRCAM ALP.PROV.CCI 0,23 0,02 ARKEMA 0,28 0,04 PHARMAGEST INTER. 0,22 0,01 

INNELEC MULTIMEDIA 0,19 0,06 INDLE FIN.ENTREPR. 0,21 0,01 COIL 0,05 0,01 BIC 0,22 0,01 ORANGE 0,24 0,01 EXEL INDUSTRIES 0,21 0,01 

MEAN 0,54 0,13 MEAN 0,55 0,01 MEAN 0,33 0,01 MEAN 0,46 0,05 MEAN 0,50 0,05 MEAN 0,40 0,07 

 

Table 3.10: ( 30%)MM    portfolio selection, game cross-efficiency and mavericks scores 

2010 GAM MAV 2011 GAM MAV 2012 GAM MAV 2013 GAM MAV 2014 GAM MAV 2015 GAM MAV 

EUTELSAT COMMUNIC. 1,00 0,03 SES 1,00 0,00 L'OREAL 0,99 0,01 EULER HERMES GROUP 1,00 0,00 MERCK AND CO INC 1,00 0,00 ALTAREIT 1,00 0,00 

DANONE 0,94 0,05 MAROC TELECOM 1,00 0,00 IVALIS 0,99 0,01 VIEL ET COMPAGNIE 0,81 0,12 DANONE 0,91 0,06 CFAO 0,81 0,24 

DASSAULT AVIATION 0,97 0,15 TIPIAK 0,98 0,02 CNIM CONSTR.FRF 10 0,80 0,03 VETOQUINOL 0,65 0,08 BNP PARIBAS ACT.A 0,82 0,07 CRCAM NORM.SEINE 0,65 0,15 

ESSO 0,91 0,09 CA TOULOUSE 31 CCI 0,89 0,01 SABETON 0,78 0,01 CIC 0,61 0,05 CRCAM TOURAINE CCI 0,71 0,10 CHARGEURS 0,65 0,55 

L'OREAL 0,85 0,19 BOLLORE 0,76 0,01 VILMORIN 0,73 0,02 PROCTER GAMBLE 0,60 0,04 ALES GROUPE 0,64 0,05 SELECTIRENTE 0,60 0,23 

ESSILOR INTL. 0,78 0,25 EUTELSAT COMMUNIC. 0,75 0,01 BERNARD LOISEAU 0,38 0,01 LEGRAND 0,59 0,05 BIC 0,58 0,01 CHAUF.URB. 0,65 0,53 

SELECTIRENTE 0,75 0,23 ITS GROUP 0,74 0,01 LEBON 0,37 0,01 SELECTIRENTE 0,55 0,02 DASSAULT SYSTEMES 0,58 0,10 INSTALLUX 0,60 0,33 

MERCK AND CO INC 0,71 0,18 AIR LIQUIDE 0,65 0,01 MERCIALYS 0,37 0,01 AXA 0,56 0,03 HSBC HOLDINGS 0,55 0,06 PRECIA 0,61 0,48 

FONCIERE EURIS 0,66 0,15 SANOFI 0,65 0,01 SES 0,36 0,01 ATOS 0,55 0,09 EULER HERMES GROUP 0,52 0,05 CRCAM LANGUED CCI 0,56 0,42 

CATERING INTL SCES 0,60 0,13 SCBSM 0,59 0,01 BRICORAMA 0,35 0,02 HOPSCOTCH GROUPE 0,55 0,08 AKKA TECHNOLOGIES 0,50 0,06 LINEDATA SERVICES 0,48 0,01 

CA TOULOUSE 31 CCI 0,59 0,16 RADIALL 0,56 0,01 SARTORIUS STED BIO 0,34 0,01 GIORGIO FEDON 0,46 0,02 CRCAM NORM.SEINE 0,51 0,06 FLEURY MICHON 0,51 0,19 

SANOFI 0,55 0,11 RUBIS 0,52 0,01 ENVIRONNEMENT SA 0,28 0,01 INTERPARFUMS 0,45 0,07 ORPEA 0,49 0,05 SAINT GOBAIN 0,47 0,07 

GROUPE FLO 0,52 0,11 MALTERIES FCO-BEL. 0,50 0,01 PRODWARE 0,26 0,01 EURO DISNEY 0,44 0,03 THALES 0,48 0,02 SMTPC 0,48 0,25 

PHARMAGEST INTER. 0,50 0,11 IMPRIMERIE CHIRAT 0,48 0,01 VALEO 0,22 0,01 IDI 0,45 0,07 ESI GROUP 0,46 0,04 EFESO CONSULTING 0,48 0,24 

ALTAREA 0,49 0,15 ROTHSCHILD 0,44 0,01 SI PARTICIPATIONS 0,20 0,01 EIFFAGE 0,39 0,03 NEURONES 0,43 0,06 VEOLIA ENVIRON. 0,50 0,35 
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EXPLOSIFS PROD.CHI 0,46 0,16 NEURONES 0,43 0,01 OCTO TECHNOLOGY 0,20 0,01 SWORD GROUP 0,37 0,03 M.R.M 0,44 0,03 CRCAM SUD R.A.CCI 0,47 0,21 

SOLVAY 0,41 0,13 CHAUF.URB. 0,42 0,01 RIBER 0,18 0,01 VINCI 0,37 0,06 EUROFINS SCIENT. 0,41 0,04 LAFUMA 0,47 0,18 

ILIAD 0,38 0,13 EXPLOSIFS PROD.CHI 0,42 0,01 FREY 0,16 0,01 INFOTEL 0,36 0,03 VRANKEN-POMMERY 0,38 0,05 EURAZEO 0,46 0,14 

BIOMERIEUX 0,38 0,13 CRCAM NORM.SEINE 0,40 0,01 STREAMWIDE 0,16 0,01 S.E.B. 0,35 0,05 SUEZ ENVIRONNEMENT 0,38 0,04 ATOS 0,44 0,20 

ESI GROUP 0,37 0,11 SOMFY SA 0,39 0,01 KERING 0,15 0,01 LISI 0,34 0,03 OENEO 0,36 0,00 PATRIMOINE ET COMM 0,44 0,23 

MGI DIGITAL GRAPHI 0,31 0,07 KINDY 0,35 0,01 CLASQUIN 0,15 0,01 TESSI 0,33 0,05 COHERIS 0,35 0,01 TERREIS 0,41 0,05 

INTERPARFUMS 0,29 0,09 SI PARTICIPATIONS 0,33 0,01 ALES GROUPE 0,13 0,01 FIDUCIAL REAL EST. 0,27 0,03 CARREFOUR 0,33 0,04 THERMADOR GROUPE 0,41 0,12 

DALENYS 0,26 0,03 DELTA PLUS GROUP 0,33 0,01 AUGROS COSMETICS 0,12 0,01 DOM SECURITY 0,25 0,02 CAP GEMINI 0,32 0,02 FONCIERE DE PARIS 0,42 0,19 

CHAUF.URB. 0,23 0,07 PRECIA 0,31 0,01 IPSEN 0,12 0,01 SIGNAUX GIROD 0,26 0,02 INSTALLUX 0,31 0,04 SYNERGIE 0,42 0,15 

ENCRES DUBUIT 0,23 0,06 GROUPE JAJ 0,30 0,01 PSB INDUSTRIES 0,08 0,01 CNIM CONSTR.FRF 10 0,24 0,02 S.E.B. 0,29 0,03 ROBERTET 0,41 0,06 

BUSINESS ET DECIS. 0,19 0,04 ALTAREA 0,29 0,01 FERM.CAS.MUN.CANNE 0,08 0,01 PERNOD RICARD 0,23 0,02 TOTAL 0,27 0,03 MAKHEIA GROUP 0,41 0,12 

INNELEC MULTIMEDIA 0,19 0,06 VINCI 0,29 0,01 BOURBON 0,06 0,01 CRCAM ALP.PROV.CCI 0,23 0,02 ARKEMA 0,28 0,04 SES 0,40 0,04 

JC DECAUX SA. 0,18 0,06 PERRIER (GERARD) 0,24 0,01 COIL 0,05 0,01 BIC 0,22 0,01 ORANGE 0,24 0,01 OBER 0,39 0,04 

LAURENT-PERRIER 0,18 0,07 AUSY 0,22 0,01 TRAQUEUR 0,02 0,01 BNP PARIBAS ACT.A 0,22 0,03 TRILOGIQ 0,24 0,02 HARVEST 0,39 0,08 

TOUR EIFFEL 0,12 0,04 INDLE FIN.ENTREPR. 0,21 0,01 MEMSCAP REGPT 0,02 0,01 RIBER 0,14 0,01 O2I 0,21 0,02 GEVELOT 0,38 0,05 

MEAN 0,50 0,11 MEAN 0,51 0,01 MEAN 0,30 0,01 MEAN 0,43 0,04 MEAN 0,47 0,04 MEAN 0,51 0,20 
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Table 3.11 presents cross-efficiency scores 
1 n

j jj

j

E w E
K

    
and risk measurement 

1 n

j j

j

I w M
K

    
for each portfolio over the whole period of study where 

jjE  is the cross-

efficiency score of share j  making part of the selected portfolio and 
jM is the maverick index 

score of asset j . As assets are equally weighted in the selected portfolio, 1 , 1...jw j n  . 

Hence, the efficiency of portfolio is the sum of individual stocks‟ efficiency and the risk of 

the portfolio is the sum of the individual shares‟ risk.   

Table 3.11: Selected portfolios: Efficiency Vs. Risk 

Selected portfolios  Efficiency ( E
) Risk ( I ) 

AP 0.71405 0.3875 

GCP 0.71405 0.3875 

( 5%)MM    0.67863 0.21929 

( 10%)MM    0.6428 0.1855 

( 15%)MM    0.60736 0.1607 

( 20%)MM    0.5714 0.1422 

( 25%)MM    0.5361 0.1259 

( 30%)MM    0.49987 0.1115 

 

The selected portfolios AP and GCP have a slightly higher efficiency score (0.714) 

than (MM) portfolio (from 0.49987 to 0.67863). However, MM portfolios are much less 

riskier than AP and GCP. In addition, we note that the higher the tradeoff parameter, the less 

risky is the MM portfolio and therefore the less efficient.  

It is recognized that the most effective strategy to minimize risk is diversification. 

Note that diversification is the practice for mixing a wide variety of shares within a portfolio. 

To examine diversification level, we have created a scatter plot on the input and output space 

of the developed model at each return-risk tradeoff level. Figure 3.1 shows that the portfolio 

components of the GCP and AP form a highly dense arc in the lower left of the input space 

and a dense ellipse in the upper left of the output space. These populated areas employ similar 

weights which result in higher arbitrary cross and game cross-efficiencies leading to a poorly 

diversified portfolio. In contradiction to the MM results, Figures 3.2 through 3.4 demonstrate 

that MM model provides a more diversified portfolio whatever the tradeoff parameter value in 

terms of performance on multiple input and output factors are.  Moreover, the figures show 

that the increase in the level of diversification is positively related to   value. Our model 
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provides a more diversified portfolio figures (3.2-3.4) show very well spread components on 

the input and output space; especially for 30%  . This result is further confirmed by the 

decrease on the risk degree 11.62552I   of GCP to 3.345269I   for 30%  . 

 
Figure 3.1 : AP Vs GCP, Input & output space 

 
 
 

Figure 3.2 : 5% ( 0.678, 0.21929)E I     10% ( 0.6428 0.1855)E I      

 
 
  

Figure 3.3 : 15% ( 0.60736 0.1607)E I     20% ( 0.5714 , 0.1422)E I      
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Figure 3.4 : 25% ( 0.5361 , 0.1259)E I     30% ( 0.49987, 0.1115)E I      

 
 

Moreover, we examine the 6-year performance of the portfolio MM generated by the 

model (3.5) and compare it to those of the four market indexes, CAC40, AEX, BEL20 and 

PSI20 over the study period starting from 2010 to 2015. These benchmark indexes are the 

main national indices of the stock exchange group Euronext.  The intent of this comparison is 

to show that the selected model outperforms the best Euronext indices and beat that of GCP 

and AP.  Figures 3.5 through 3.10 present cumulative return curves of portfolios when 

5%,10%,15%,20%,25% and 30%   compared to AP and GCP and benchmark portfolios. 

MM portfolios have the highest growth of hypothetical initial investment over the 6 years of 

study when the return-risk tradeoff parameter is higher than 20% (see Figures 3.8, 3.9 and 

3.10). However, when 5%,10% and15%  , the MM portfolios derived from the developed 

approach have higher cumulative returns than that of the index market (see Figures 3.5, 3.6 

and 3.7). It follows that the bigger the tradeoff parameter, the greater the cumulative return of 

the portfolio (Figure 3.11). In fact, the black curve of MM portfolios grows exponentially and 

the cumulative return reaches more than 90% in December 2015 when 30%  . However, 

other curves are less than 60% during the whole period (Figure 3.10). Market indices have the 

smallest cumulative returns during the period 2010-2015 as compared to other portfolios.  
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Figure 3.5 : Cumulative return curves ( 5%   ) 

 

Figure 3.6 : Cumulative return curves ( 10%  ) 

 
  
  

Figure 3.7 : Cumulative return curves ( 15%   ) 

 

Figure 3.8 : Cumulative return curves ( 20%  ) 

 
  

  

Figure 3.9 : Cumulative return curves ( 25%   ) 

 

Figure 3.10 : Cumulative return curves ( 30%  ) 

 
 

According to losses analysis, Figures 3.12 to 3.17 present the drawdown curves of 

portfolios when the tradeoff parameter is equal to 5%, 10%, 15%, 20%, 25%, and 30% 

respectively. In all cases, MM portfolios have a minimum drawdown in comparison with 

market indices, indicating the minimum amount of loss during the period. Losses are then 

between zero and 10%. Moreover, MM portfolios, game portfolio and arbitrary portfolio have 

lower and more stable drawdown compared to market indices. Finally, conclusions can not be 
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drawn about proportionality between portfolio losses and different levels of return-risk 

tradeoff parameter levels (see Figure 3.18). 

  

Figure 3.11 : Cumulative return curves of MM portfolio 

 

Figure 3.12 : Drawdown curves ( 5%   ) 

 
  
  

Figure 3.13 : Drawdown curves ( 10%   ) 

 

Figure 3.14 : Drawdown curves ( 15%  ) 

 
  
  

Figure 3.15 : Drawdown curves ( 20%   ) 

 

Figure 3.16 : Drawdown curves ( 25%   ) 
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Figure 3.17 : Drawdown curves ( 30%   ) 

 

Figure 3.18 : Drawdown curves of MM portfolios 

 

 

Since our contribution is to develop a novel risk-return model, it is important to 

compare the developed MM framework to MV portfolio model, which was first formulated 

by Markowitz (1952). The optimal MV portfolio is determined through resolving the 

following optimization program: 
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                                                                                                 (3.9) 

Where   is a portfolio with n  different assets,  iR  is the return of asset  i  , 
ij  is the 

covariance between iR  and 
jR . iw  is the relative amount of the value of the portfolio 

invested in asset i ,   is a return-risk tradeoff parameter (fixed at 30% in this analysis) and 

*R is the greatest return in the asset series. It consists of minimizing the portfolio variance  for 

a given level of return. Table 3.12 provides MV model results. The MV portfolio consists of 

only 2, 8, 7, 4, 7 and 11 stocks during the study‟ years respectively. The MV portfolio is 

therefore badly-diversified. In fact, according to Evans and Archer (1968), a well-diversified 

portfolio must include 10 or more stocks. 
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Table 3.12: MV portfolio selection and shares’ weights 

2010 2011 2012 2013 2014 2015 

SHARES jw  
SHARES jw  

SHARES jw  
SHARES jw  

SHARES jw  
SHARES jw  

LEGRAND 0,662942 LECTRA 0,636974677 VDI GROUP 0,623093 EASYVISTA 0,672095 EASYVISTA 0,46741 STEF 0,487589 

HOLOSFIND 0,337048 LEXIBOOK LINGUIST. 0,096901178 NICOX 0,132048 LIONAX 0,224088 GENFIT 0,295013 CELLECTIS 0,128088 

    AVANQUEST 0,086051509 BD MULTI MEDIA 0,119943 REWORLD MEDIA 0,079049 GEVELOT 0,105842 PARROT 0,074382 

    VDI GROUP 0,071133934 MEMSCAP REGPT 0,068593 CHINA SUPER POWER 0,024762 VDI GROUP 0,089707 GROUPIMO 0,074215 

    EUROLAND CORPORATE 0,046701452 LE TANNEUR 0,04041     CELLECTIS 0,026875 DEXIA 0,058749 

    GRAINES VOLTZ 0,031575546 TOUAXBSAR0316 0,010044     EUROLAND CORPORATE 0,007633 SODITECH ING  0,055152 

    FONC. PARIS NORD 0,03016757 TRAQUEUR 0,005857     VERNEUIL PARTICIP  0,007509 VET AFFAIRES 0,045096 

    ST DUPONT 0,000489075             OXIS INTL 0,034267 

                    RECYLEX S A  0,020376 

                    ARTEA 0,017002 

                    SPOREVER 0,005072 
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To take into account volatility and return together, we use the Sharpe ratio to examine 

the risk-adjusted performance of portfolios. We define the Sharpe ratio SR of portfolio   

developed by Sharpe (1963) as the earned excess average return of the risk-free rate per unit 

of volatility The higher the ratio, the more reward an investment provides for the risk    

incurred. It is determined using the following formula:  

 fR R
SR










                                                                                                             (3.10) 

Where R  is the geometric average return, 
fR is the risk-free return approximated by the 

Interest Rates of Government Securities & Treasury Bills for France (INTGSTFRM193N) 

monthly rates and   is the standard deviation of the portfolio return.  

Table 3.13 shows the annual excess return  fR R  of each portfolio   over the 6-

year study period. For 5%,10%,15%,20%,25%   and 30% , the MM portfolios attain the 

highest geometric mean excess return of 10.44%, 7.74%, 7.24%, 6.31% and 5.72% 

respectively, which are quite higher than those of the CAC40 (0.66%), AEX (2.56%), BEL20 

(4.48%), PSI20 (-9.39%), AP (4.70%) and GCP (4.89%). Moreover, whatever the tradeoff 

parameter level is, MM portfolios keep a volatility level lower than that of each benchmark 

index. In addition, the MM portfolios have the highest Sharpe ratios over the period of study, 

which means that portfolios derived from the model MM are the most performing in terms of 

risk and profitability. In fact, the MM portfolios for 30%,25%,20%   and 15%  attain 

respectively the highest Sharpe ratios of 1.895, 1.036, 1.0242, 0.9175 levels respectively 

succeeded by that of AP (0.9059), GCP (0.8961), MM portfolio when 10%   (0.8784), MM 

portfolio when 5%   (0.7196), BEL20 (0.3379), AEX (0.1674), CAC40 (0.0395) and 

PSI20 (-0.4884). For the same return-risk tradeoff parameter value (30%), the MM portfolio 

has a higher geometric average excess return (10.44) than that of the MV portfolio (4.027). 

Furthermore, while the volatility of the MV portfolio is smaller than that of the MM portfolio, 

we find that the Sharpe ratio of the MM portfolio is higher than that of the MV portfolio. In 

overall, the MM portfolio has a better risk-adjusted return than the MV portfolio.  
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Table 3.13 : Portfolios performance 

  γ=0.05 γ=0.1 γ=0.15 γ=0.2 γ=0.25 γ=0.3 CAC40 AEX BEL20 PSI20 AP GCP MV 

Ret (%) 2010 1.91 1.90 1.89 1.82 3.86 8.49 -2.44 -2.33 -8.56 0.01 -2.78 -15.14 1.42 

Ret (%) 2011 -9.31 -6.08 -9.04 -7.31 -4.57 -3.55 -4.10 -4.01 -22.15 -16.32 -23.99 -31.84 8.77 

Ret (%) 2012 8.57 8.09 8.28 8.31 5.24 11.89 12.60 13.27 10.75 5.93 14.85 -1.47 10.94 

Ret (%) 2013 8.55 13.01 13.89 17.63 17.41 15.73 5.87 2.72 12.62 12.30 13.81 10.42 1.11 

Ret (%) 2014 9.44 11.69 12.50 11.09 12.49 14.69 10.99 10.78 0.24 5.33 13.22 -28.36 4.66 

Ret (%) 2015 12.40 10.41 15.82 16.60 16.18 19.60 12.32 13.53 8.05 3.63 11.76 8.44 5.98 

A. G Ret 4.43 5.72 6.31 7.24 7.74 10.44 0.66 2.56 4.48 -9.39 4.70 4.89 4.027 

A. SD 6.15 6.51 6.88 7.07 7.47 8.78 16.61 15.28 13.27 19.23 5.19 5.45 3.928 

Sharpe Ratio 0.7196 0.8784 0.9175 1.0242 1.036 1.1895 0.0395 0.167 0.3379 -0.4884 0.9059 0.8961 1.025 

Ret: Excess return  

A.G Ret: Annualized geometric excess return 

A. SD: Annualized standard deviation 

 

Since Sharpe ratio does not take into account how returns are distributed, this 

performance measure could be not valid when returns are not normally distributed. Thus, we 

examine the statistical significance of the difference between two Sharpe ratios (MM 

portfolios compared to each of the other market indices). We use the studentized circular 

block bootstrap (SCBB) developed by Ledoit and Wolf (2008), which takes into consideration 

the skewness, kurtosis and autocorrelation effects when comparing two Sharpe ratios. We 

focus on the MM portfolios at six levels of return-risk tradeoff parameter   and we formulate 

42 two-sided hypotheses. For each level of   we test the following hypothesis: 

0

0

0

0

0

0

: ( ) ( ) 0

: ( ) (G ) 0

: ( ) (CAC 40) 0

: ( ) (AEX) 0

: ( ) (BEL 20) 0

:

H Sharpe ratio MM Sharpe ratio AP

H Sharpe ratio MM Sharpe ratio P

H Sharpe ratio MM Sharpe ratio

H Sharpe ratio MM Sharpe ratio

H Sharpe ratio MM Sharpe ratio

H Sharpe rati

 

 

 

 

 

0

( ) (PSI 20) 0

: ( ) ( ) 0

o MM Sharpe ratio

H Sharpe ratio MM Sharpe ratio MV

 

 

                                                            (3.11) 

We use the R implementation of Ledoit and Wolf (2008) to test the above hypotheses. We 

apply the test on pairs of monthly excess returns. Table 3.14 summarizes the test statistics 

resulting from the R code using the default parameter setting with B=10. 
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Table 3.14: Two-sided Sharpe difference test: The SCBB (B=10. M=4999) 

 
CAC 40 AEX BEL20 PSI20 GCP AP MV 

γ=5% 
Difference  0.1772 0.1428 0.0978 0.3322  -0.051 -0.0484 -0.7326 

P value (0.195) (0.3838) (0.327)  (0.0446) ** (0.5628)  (0.4512)  (0.492) 

γ=10% 
Difference  0.2212 0.1868 0.1419 0.3762  -0.007  -0.0044 -0.5059 

P value (0.1376) (0.2) (0.1696) (0.0214) ** (0.9478) (0.9542)  0.662 

γ=15% 
Difference  0.2321 0.1977 0.1527 0.3871 0.0038 0.0064 -0.6269 

P value (0.0766) * (0.1798) (0.0988) * (0.017) ** (0.9644) (0.9372) 0.002*** 

γ=20% 
Difference  0.2611 0.2267 0.1818 0.4161 0.0329 0.0355 -0.5499 

P value (0.0668) * (0.1248) (0.0518) *  (0.0112) ** (0.7262)  (0.6774) 0.728 

γ=25% 
Difference  0.2643  0.23  0.185 0.4194  0.0361 0.0387 -0.5499 

P value (0.0572) * (0.0942) * (0.03) ** (0.0054) *** (0.731) (0.6954)  0.728 

γ=30% 
Difference  0.3052 0.2708 0.2258 0.4602  0.077 0.0796  0.3988 

P value (0.0148) ** (0.0648) * (0.0294) ** (0.003) *** (0.5076) (0.4924)  0.734 

GCP 
Difference  0.2282 0.1938 0.1489 0.3832 --------- 0.0026 -0.0015 

P value (0.087) *  (0.2244) (0.1722) (0.0788) ** --------- (0.9398)  0.232 

AP 
Difference  0.2256 0.1912 0.1463 0.3806 -0.0026 --------- -1.9252 

P value  (0.0768) * (0.175) (0.167) (0.0482) ** (0.9392) --------- 0.008*** 

Significance level 1%***, 5%**, 10%* 

Table 3.14 shows that for 10% significance level, the Sharpe ratio of the MM portfolio 

when 30%   and 25%   is significantly greater than all those of the market indices, 

while for 20%   and 15%  , the Sharpe ratios exceed only those of CAC40, BEL20 & 

PSI20. Finally, for 10%   and 5%   the ratios exceed only that of PSI20. We fail to 

prove the significance of the Sharpe ratio differences of our developed model compared to 

that of AP and GCP. Moreover, we show that the MV portfolio has a significant better risk-

adjusted return at 1% level (P-value=0.008) than the AP portfolio. However, the positive 

difference (0.3988) between the MM portfolio 30%  and the MV portfolio is not 

significant.  

The results above demonstrate and support the effectiveness of our approach as 

promising tool for portfolio selection. Our results also show that the Mean-Maverick game 

cross-efficiency approach is more effective than the one based on the simple use of cross-

efficiency and game cross-efficiency approaches; at least for this particular study. 

6. Concluding Remarks 

In this paper, the methodology DEA game cross-efficiency proposed by Liang et al. 

(2008a) is suggested to evaluate the performance of financial assets. The maverick index, 

which is the deviation from the Nash equilibrium score is considered as a risk indicator in this 

work. We incorporate the game cross-efficiency into Mean-Maverick framework to select 
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portfolios. This development is motivated by the observation that the traditional simple use of 

cross-efficiency scores in portfolio selection per se does not incorporate the risk level of 

individual stocks. More specifically, it does not account for the sensitivity level to changes in 

the input/output environment. This problem is mainly due to the democratic vote 

characteristic of DEA game cross-efficiency evaluation known as the ganging up effect which 

also results in poorly diversified portfolio. We have found that this issue arises because the 

simple use of game cross-efficiency evaluation in portfolio selection fails to the sensitivity 

level of environmental changes of the constituting firms. Moreover, our approach permits to 

select well diversified portfolios. We use Ledoit and Wolf (2008) Sharpe test to prove the 

robustness of our methodology. The formed portfolio beats all Benchmark portfolios in the 

Paris Stock exchange. Finally, it would be of great interest to opt for our approach to select 

portfolios using another large data set and taking into consideration taxes and transaction 

costs. 
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Chapter 4  

On DEA game cross-efficiency approach to portfolio 

selection: Does profitability criterion help or hurt?  

1. Introduction  

A critical aspect of portfolio management is the decision whereby the best set of stocks, or 

financial assets, is selected from many different alternatives. In many cases, the stakes are 

high because selecting the right assets is a significant resource allocation decision that can 

lead to high profits and in the worst case to a huge loss. This work attempts to solve this 

question of portfolio selection by supporting profitability criterion on the one hand and 

efficiency of financial assets on the other hand. In fact, in early portfolio theory, performance 

of portfolio was commonly measured only in terms of returns. Afterwards, risk has been 

recognized as important criterion for investment decisions. The main problem in modern 

portfolio theory was finding the stock portfolio which may achieve the highest possible return 

for a given level of risk or a minimum possible risk for a given level of return (Markowitz 

(1952)). Besides the modern portfolio theory, a huge literature has started to evaluate 

portfolios in a Mean-Variance (MV) framework. Studies on portfolio performance have been 

developed based on only the first two moments of returns‟ distribution (see for example, 

Murthi et al. (1997), Morey and Morey (1999), Briec et al. (2004), Levy and Ritov (2011), 

Liu and Yong-jun (2014) and Shigeta (2017)). However, since Mandelbrott (1963), many 

works have shown that returns of financial assets are usually not normally distributed. Thus, 

using higher moments of returns allow taking into consideration the higher order utility 

function of investor and the non-normality of returns‟ distribution to assess performance of 

portfolios (Briec et al. (2007), Ghysels and Pereira (2008) and Glawischnig and 

Sommersguter-Reichmann (2010)). An investor‟s choice of a portfolio is then a function of 

various criteria.  In fact, selecting assets to invest from many assets is a crucial decision for 

investors and managers, where efforts must be made to evaluate and choose optimal sets of 

assets to be undertaken. The most significant criteria that have to be considered in the 

portfolio selection process are investor‟s preferences, which may be multiple and often 

conflicting. To tackle this problem, various decision making approaches have been proposed 

in the literature such as mathematical programming (Tsionas (2018), analytic hierarchy 

process (Maghsoud et al. (2015)), machine learning techniques (Oh et al. (2005)) and the Data 
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Envelopment Analysis (DEA) (see, e.g., Mehlawat et al.(2018), Rezaee et al. (2018), Branda 

(2016), Tarnaud and Leleu (2017)). Various models based on DEA could deal with the 

problem of portfolio selection. Indeed, using DEA permits to analyze financial assets based 

on the production theory or the benchmarking theory. From a production perspective, DEA 

model evaluates efficiency of Decision Making Units (DMUs) which consume a fixed 

number of inputs in order to produce a fixed number of outputs. However, as mentioned by 

Cook et al. (2014), the use of DEA as a benchmarking tool is relevant in the case of Multi 

Criteria Decision Making (MCDM). It permits to consider several attributes together to 

presents a single composite efficiency score to assist in the decision making process of the 

investor.  Developed by Charnes et al. (1978), DEA is used to measure the relative 

efficiencies of a set of DMUs with multiple inputs and outputs. In fact, a single score is 

simpler to interpret than interpreting various factors. DEA framework considers higher order 

moments in financial assets performance evaluation through taking the attributes to be 

minimized as inputs (even moments: variance and kurtosis) and that to be maximized as 

outputs (odd moments: mean and skewness). The derived DEA efficiency score is obtained as 

the maximum of a ratio of weighted outputs to weighted inputs. However, while the 

efficiency of a financial asset may result from a good mix of attributes (mean, variance, 

skewness and kurtosis of returns), the profitability criterion matters a lot to an investor. A risk 

averse and prudent investor seeks to minimize variance and maximize skewness of financial 

asset returns, respectively. A temperate investor looks to maximize the kurtosis. Thus 

obviously efficiency does not mean profitability. Thereby, considering profitability as 

objective in the evaluation process of financial asset may be very important for an investor 

looking for gains by acquiring efficient assets. This work introduces a new methodology for 

performance analysis by arbitrating between profitability and efficiency in DEA game cross-

efficiency framework. 

Applying DEA in a MCDM context, a common problem rose, that of multiplicity of 100% 

efficient DMUs. Thus ranking DMUs can be quite hard. Indeed, this further support the lack 

of discrimination power of this methodology (Berger and Humphrey (1997)) and the 

unrealistic weighting scheme. Proposed by Sexton et al. (1986) and developed in Doyle and 

Green (1994a), the DEA cross-efficiency method provides a unique ordering of DMUs and 

eliminates unrealistic weights schemes. It uses DEA in a peer-evaluation instead of self-

evaluation. Liu et al. (2016) identified DEA cross-efficiency method as one of the four 

research fronts in DEA. In fact, this approach has been widely used to rank DMUs in many 
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various areas. See, among others, the application in Wang and Chin (2011) to industrial 

robots, in Dotoli et al. (2015) to healthcare systems, in Liu et al.(2017b) to coal-fire power 

plants in energy field, in Wu et al. (2016) to R&D projects. Even though cross-efficiency was 

applied successfully to multiple real world problems, it still has some shortcomings as the 

non-uniqueness of the DEA optimal weights (Despotis 2002), which may reduce its 

usefulness. Several models have been suggested as a remedy to the cross-efficiency issue. The 

most known solution that has been suggested is to introduce a secondary goal to resolve the 

ambiguity of which alternative solution to the Linear program (LP) to use. The well-known 

models using multiple objective LP are the aggressive and benevolent formulations (Sexton et 

al. (1986), Doyle and Green (1994a) and Wu et al. (2016)). However, the various cross-

efficiency scores proposed with secondary goals lead to different average cross-efficiencies 

and different rankings. To solve this issue, Liang et al. (2008a) adopted a non-cooperative 

game approach in which DMUs are competing among each other. In fact, DEA game-cross 

evaluation scores are considered as payoffs and each DMU may choose to take a non-

cooperative game stance to the extent that it will attempt to maximize its worst possible 

payoff. The set of strategies played by each DMU would be weights selection. The obtained 

game cross-efficiency scores are unique and constitute Nash equilibrium point. DEA game 

cross-efficiency assessment has received much attention in the related literature (see, for 

example, Wu et al. (2009a), Wang and Chin (2010b), Chen and Zhu (2011), Roboredo et 

al.(2015), Wu and Liang (2012), Chen et al. (2017b) and Liu et al. (2017a)). Despite the 

effectiveness of DEA cross-efficiency evaluation, works involving this method are still rare 

especially in portfolio management. Lim et al. (2014) was the first to propose a MV DEA 

cross-efficiency to portfolio selection, succeeded by Mashayekhi and Omrani (2016) work 

which introduces a multi-objective Markowitz–DEA cross-efficiency model with fuzzy 

returns for portfolio selection. Combining DEA cross-efficiency technique and Analytic 

Hierarchy Process, Danesh et al. (2017) develop a method to portfolio selection. In portfolio 

area, the DEA cross-efficiency assessment is a democratic process with combining the self-

assessment and the peer-assessment. However, the non-uniqueness of the average cross-

efficiency scores reduces the robustness of the framework. In this work, we propose the use of 

DEA game cross-efficiency to portfolio performance assessment. We deal with the problem 

of non-uniqueness of optimal weights when using the simple cross-efficiency approach. The 

DEA game cross-efficiency evaluation discriminates in a better way among financial assets. 

Therefore, the stocks efficiency evaluation and rankings based upon DEA game cross-

efficiency method are more reliable and will benefit the investor (Essid et al. (2018)). Our 
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approach gives also the scope to make decision about profits. In fact, investor may make a 

tradeoff between efficiency which is a result of a set of attributes in the one hand and gains in 

the other hand. In order to reflect investor‟ preferences, we use higher order moments of 

returns distribution as inputs and outputs to compute efficiency scores of financial assets. 

Firms listed on Paris stock exchange serves as illustration of this framework. 

The paper is organized as follows. Section 2 reviews the DEA game cross-efficiency 

model and the problems arising in the simple use of such method as an evaluation tool; 

section 3 describes the development of the proposed approach, followed by the case study in 

section 4. Section 5 concludes.  

2. DEA Game cross-efficiency evaluation  

DEA is commonly used to evaluate the relative efficiency of a number of financial assets. 

It allows every DMU to pick its own particular weights so as to amplify its own overall 

ratings subject to certain conditions. The problem of measuring efficiency is formulated as a 

LP which is solved for each DMU under evaluation. The analysis in this section requires the 

definition of Charnes et al. (1978) DEA model. Given a set of n DMUs where a 

 1,2,...,jDMU j n  utilizes a set of m inputs  1,...,ijx i m  to produce s outputs 

 1,...,rjy r s  where , 0rj ijy x  . The standard input-oriented constant returns to scale (CRS) 

DEA model can be represented as follows: 
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                                                                           (4.1) 

Where r  and i   are the set of output and input weights respectively to be determined 

through solving the above model. DEA framework permits to have more than 100% efficient 

DMU. Thus, discrimination among all DMUs is problematic and ranking DMUs can be quiet 

hard. Furthermore, the flexibility in weight selection provided by this method can lead to 

unrealistic weights scheme as the DMUs under evaluation heavily weights few favorable 

inputs/outputs to maximize its own performance score. In order to solve such issues, cross-
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efficiency was developed by Doyle and Green (1994a). This approach is based on the idea of 

peer-evaluation upon solving model (4.1), an efficiency score of dDMU  is obtained from 

which a cross-efficiency score 
djE  for each of the other  1n  DMUs will be determined 

based on dDMU „s optimal weights. 

1,..., ( 1)

s
d

r rj

r
dj m

d

i ij

i

y

E j n

x





  



                                                                                            (4.2) 

Where d denote the optimal weights of dDMU . Finally, each DMU‟s cross-efficiency score 

jE  will be given through averaging its peer ratings as follows: 

1 n

j dj

d

E E
n

                                                                                                                           (4.3) 

Even though this methodology provides more discrimination for DMU ranking, its 

main shortcoming is the non-uniqueness of weights obtained from solving the DEA model 

(4.1), resulting in arbitrary efficiency score depending on the optimal solution generated by 

the software in use (Despotis (2002)).  For this reason, the use of game cross-efficiency is 

justified as it provides more stable weights and a Nash equilibrium evaluation score. The 

game cross-efficiency model was developed by Liang et al.(2008a) through the addition of a 

secondary goal to the basic DEA model. Furthermore, the authors developed an algorithm to 

find the Nash equilibrium.  

Given an agent dDMU  with an efficiency score d , the other 
jDMU  tries to select a 

set of strategies (Weights selection) to maximize its own efficiency while ensuring that d  

won‟t decrease. 
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Note 1d   which takes initially the value dE  from (4.3), is the average cross-efficiency of 

dDMU , when the algorithm converges, this d  becomes the game cross-efficiency. In 

addition, the constraint 0
m s

d d

d ij id rj rd

i r

x y      in model (4.4) is equivalent to 

s
d

rj rd

r
dm

d

ij id

i

y

x











 which implies the restriction of dDMU

 initial score to ensure that it won‟t 

deteriorate. The above model is solved once for each dDMU thus n  times, in addition the 

optimal value to model (4.4) will represent a game cross-efficiency with respect to dDMU . 

Indeed, the average game cross-efficiency score for 
jDMU would be 

 *1 n s
d

j rj d rj

d r

y
n

     where  *d

rj d   is an optimal solution to model (4.4). Under game 

cross-efficiency evaluation, all players (DMUs) are assigned their Nash equilibrium scores. 

3.  Profitability Game cross-efficiency evaluation approach to portfolio 

selection 

We consider the problem of an investor selecting a portfolio among a set of risky assets. 

While the simple use of game cross-efficiency can result in moderately consistent portfolio 

compared to the market indices it still lacks the control over the minimum achievable return. 

For this reason, we seek to develop a profitability game cross-efficiency model in which we 

seek to maximize the overall efficiency of the portfolio subject to given level of profit to be 

set by the investor.   
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In fact, under a cross-evaluation approach we are in what might be a democratic vote, 

where a set of factors are voted to be of high importance by the majority of DMUs while the 

rest are of low importance. Moreover, as we are in a multi-criteria context, we are in a 

tradeoff between the different attributes or criteria. Indeed, the round players in game cross-

efficiency are not necessarily the one holding the highest return in that time horizon, given 

that the fact of having high return does not imply good performance on the other attributes. 

The developed model maximizes the portfolio overall efficiency subject to a minimum 

achievable return set by the investor. The annual return 
jr  of a stock j  in the year t  is 

determined as follows: 
1( ) ( )jt jt j tr Log P Log P    where 

jtP  is the stock price in the year t  

and 
1j tP 
is the stock price in the year 1t  .  

Given the annual return 
jr  and the DEA game cross-efficiency score 

je  of a stock 

( 1... )j j n  , for a portfolio   we define the portfolio return R  and the portfolio 

efficiency E  as follows: 
1

1 n

j j

j

R w r
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1

1 n

j j

j

E w e
K
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w K
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  and  1...K n  is the size of the portfolio, i.e. the number of stocks in a portfolio.  

An optimal “PE portfolio” is determined by solving the following linear optimization model: 
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         (4.5)

 

where   is the Profitability-Efficiency (PE) tradeoff parameter and Rm  represent the 

minimum achievable return to be fixed by the investor.  

In the empirical illustration of our approach (model (4.5)), among n  stocks we set 

30K   for the “PE portfolio” that is about 6% of the sample size. We also select a “CCR 

portfolio” containing the 30 best performer stocks based on DEA approach (model (4.1)), 

“Game portfolio” which includes the 30 best performer stocks according to the DEA game 

cross-efficiency framework (model (4.4)) and the “Arbitrary cross portfolio” which holds the 
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30 best performer stocks according to the DEA cross-efficiency approach (model (4.3)). 

Furthermore, to consider various investor preferences, we will explore the results at three 

different arbitrary PE tradeoff level: 10%, 20%, and 30%. 

4. An application to portfolio selection in the Paris stock exchange  

4.1   Data and input/output matrix  

Several criteria have been proposed in the literature regarding the choice of input and 

output and consequently the definition of financial efficient frontier in portfolio analysis. To 

assess financial assets efficiency, we use DEA under benchmarking approach (Tarnaud and 

Leleu (2017)). We choose criteria relating the inferred behavior of investor towards input or 

output variables from what is assumed to be their preference or aversion to these variables. 

Our approach is underlying preferences of the decision-makers only. In fact, we identify 

which variables are to be maximized and which variables are to be minimized instead of 

identifying which variables produce or produced by the others. Any variable “less-the-better” 

type according to the terminology used by Cook et al. (2014) or “small preferred” 

performance measures in Wilkens and Zhu (2001) ought to be considered as input. Whereas 

any variable of the “more-the-better” type or the “large-preferred” performance measures 

ought to be considered as output. Then, we use the four first moments of the distribution of 

returns in the analysis, considering variance and kurtosis as inputs and skewness and mean as 

outputs. Indeed, investors make their investment choices by considering the returns 

approximated by the mathematical mean return and the risk measured by the return dispersion 

represented by the variance (Basso and Funari (2001)). The variance is used to measure the 

variability of returns, presenting the total risk of financial asset. Because of non-normality of 

return distribution, recent studies enlarge the analysis dimension to the skewness or/and 

kurtosis. In fact, investors prefer positive skewness since it implies a low probability of 

obtaining a large negative return (Gregoriou et al. (2005b)). When distribution is skewed to 

the right, then the frequency distribution has a long right tail while when it is skewed to the 

left, then large negative returns are more common than large positive returns and the tail 

distribution is heavier on the left. As to kurtosis aversion, Menezes and Wang (2005) define 

outer risk in terms of transfer of actuarially neutral noise from the center of a distribution to 

its tail. In fact, when data has more peakdness than the normal distribution (long tails), 

kurtosis is greater than three. While in case we have lower peak we have platy kurtosis 

(bounded distribution).  
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As an illustration of our approach, we report a case study involving 500 ~ 508 firms
21

 

from the Paris Exchange. We have used actual financial data from 2010 to 2015. Our 

approach is applied as mean for stocks selection to portfolio. To form the sample, we check 

the completeness of the monthly stock return information and include only those firms 

without missing values. It contains 72 monthly return22 observations in common for all assets 

on which the first fourth centered moments have been calculated by year. Table 4.1 presents 

computation details and descriptive statistics of input/output variables.  

Table 4.1: Descriptive statistics 

 
    2010 2011 2012 2013 2014 2015 

 

Variables  Number of firms 505 508 500 500 502 501 

 

Inputs 
Variance 

  

 
2 2

1

1
( )

T

jt j

t

r r
T




    

  

 

Mean 0.02802 0.01417 0.01170 0.01370 0.01353 0.01429 

SD 0.36103 0.03445 0.01645 0.04856 0.03348 0.03354 

Median 0.00605 0.00677 0.00632 0.00449 0.00549 0.00557 

Min 0.00007 0.00020 0.00000 0.00001 6.19261 0.00005 

Max 8.09060 0.48306 0.16850 0.78392 0.43569 0.34032 

Kurtosis 

  

 

4

1

1
3

T
jt j

t j

r r

T 

  
       

  

  

Mean 0.69328 0.82682 0.88967 0.83699 1.07229 0.83599 

SD 2.04623 2.03163 2.10029 2.12155 2.33403 2.16771 

Median 0.13780 0.28155 0.28374 0.17542 0.35323 0.17618 

Min -1.86712 -1.94858 -1.73831 -1.91877 -1.83729 -2.06950 

Max 11.95180 11.58814 11.87129 10.34938 11.94657 10.20691 

 

Outputs 

 

  

Mean
 

1

1 T

j jt

t

r r
T 

    

  

  

Mean 0.00990 -0.00920 0.00636 0.02041 0.01107 0.01409 

SD 0.05037 0.03753 0.03432 0.07296 0.03811 0.04000 

Median 0.00704 -0.01048 0.00709 0.01283 0.00935 0.01187 

Min -0.19268 -0.20662 -0.16219 -0.21808 -0.18535 -0.21863 

Max 0.75259 0.28533 0.28464 1.32518 0.40305 0.24052 

Skewness 

  

 

3

1

1 T
jt j

t j

r r

T 

 
   

 
  

  

  

Mean 0.30745 0.17172 0.23793 0.33719 0.46271 0.48392 

SD. 0.87636 0.90296 0.93395 0.90963 0.92997 0.85872 

Median 0.26992 0.12013 0.15933 0.29090 0.40561 0.38977 

Min -2.86149 -2.66648 -3.43831 -2.70227 -2.45524 -1.98872 

Max 3.45448 3.38537 3.17121 3.11380 3.45373 3.10527 

 

We compute for each firm the monthly return and we select variance and kurtosis as 

inputs on the one hand and skewness and mean returns as outputs on the other hand. To 

eliminate the problem of negative values in DEA, we add to the variable one plus the absolute 

value of the smallest value it assumes.In fact, according to “the translation invariance 

property” for DEA formulations, the above transformation would conserve each variable scale 

                                                           
21 The sample changes from year to year beacause the entry, exit and survival of firms listed on the Paris Stock exchange. 
22

 Data stock price are available using www.euronext.com website.  

http://www.euronext.com/


 

130 
 

without impacting efficiency classification (Ali and Seiford (1990)).  

4.2   Results and discussion  

In order to select portfolios, we consider a buy-and-hold strategy, where this year optimal 

portfolio is selected through solving CCR, cross-efficiency, game cross-efficiency or PE DEA 

game cross-efficiency approaches. Then, we compare the performance of these portfolios in 

terms of volatility and returns. Each portfolio is held for an investment horizon of one year 

and revised each new investment horizon. For each investment horizon, the portfolio sizes are 

fixed to a certain level (30 stocks) with equally weighted stocks. More specifically, at the 

beginning of each investment horizon the set of stocks are ranked based on each model‟s 

solution in a decreasing order of efficiency. Once a portfolio is selected, we assume that the 

same dollar amount is invested in each of the stocks belonging to the portfolio with no more 

transaction or taxes to be made until the end of the investment horizon. This strategy implies 

that investment cost will only be incurred only at the end of each investment horizon. The 

results of the analysis of CCR, arbitrary cross-efficiency and game cross-efficiency scores are 

summarized in Table 4.2.  

Table 4.2: Statistical description of efficiency scores using CCR, DEA cross-efficiency, DEA Game cross-efficiency 
approaches 

  

2010 2011 2012 2013 2014 2015 

CCR CROS GAME  CCR CROS GAME  CCR CROS GAME  CCR CROS GAME  CCR CROS GAME  CCR CROS GAME  

Mean  0 .262 0.203 0.234 0.243 0.209 0.226 0.140 0.110 0.121 0.273 0.204 0.232 0.300 0 .219 0.251 0.255 0.179 0.207 

Median 0.207 0.170 0.189 0.193 0.164 0.179 0.103 0.084 0.092 0.237 0.178 0.203 0.258 0.185 0.213 0.222 0.163 0.187 

Min  0.001 0.000 0.000 0.006 0.006 0.006 0.009 0.007 0.008 0.029 0.010 0.016 0.024 0.012 0.014 0.023 0.012 0.015 

Max 1 0.973 0.999 1 0.956 0.997 1 0.957 0.993 1 0.979 1 1 0.975 1 1 0.978 1 

 

Analyzing the efficiencies of firms from a self-evaluation point of view (CCR model), 

only five of 505, nine of 508, five of 500, six of 500, six of 502 and six of 501 are evaluated 

as efficient for the year 2010, 2011, 2012, 2013, 2014 and 2015 respectively. The median 

analysis shows that more than half of the financial assets got efficiencies that are smaller than 

0.207, 0.193, 0.103, 0.237, 0.258 and 0.222 over a 6 year period from 2010 to 2015. 

Moreover, the average DEA efficiency scores of firms are 0.262, 0.243, 0.140, 0.273, 0.300 

and 0.255 for the study period which are higher than the respective median efficiency score 

values. These results prove that most of firms listed on Paris stock exchange did not perform 

well and some actions need to be taken to improve efficiency of these firms. 
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Table 4.3-4.7 contain results23 about portfolios composition for the years 2010, 2012, 

2014 and 2015. The 30 best-performer assets using self-evaluation method are presented in 

Table 4.3. A portfolio composed from these stocks have the average DEA scores (0.8322, 

0.8156, 0.5702, 0.7486, 0.8482, 0.7466) over the study years respectively. 

Table 4.3: Portfolio selection based on CCR framework 

DMU 2010 CCR* DMU 2012 CCR DMU 2014 CCR DMU 2015 CCR 

PLANT ADVANCED 1.0000 IVALIS 1.0000 LE NOBLE AGE 1.0000 CFAO 1.0000 

EUTELSAT 

COMMUNIC. 
1.0000 VALTECH 1.0000 PAREF 1.0000 CHARGEURS 1.0000 

DASSAULT 

AVIATION 
1.0000 

CHINA SUPER 

POWER 
1.0000 AFONE 1.0000 

FIDUCIAL 

OFF.SOL. 
1.0000 

ST DUPONT 1.0000 LOREAL 1.0000 
IRDNORDPASDE

CALAIS 
1.0000 CHAUF.URB. 1.0000 

IRDNORDPASDECA

LAIS 
1.0000 

FIDUCIAL 

OFF.SOL. 
1.0000 

FIDUCIAL 

OFF.SOL. 
1.0000 ALTAREIT 1.0000 

BAINS MER 

MONACO 
0.9906 

CNIM 

CONSTR.FRF 10 
0.8216 

MERCK AND CO 

INC 
1.0000 BRICORAMA 1.0000 

RAMSAY GEN 
SANTE 

0.9483 SABETON 0.7942 SOFRAGI 0.9689 PRECIA 0.9032 

DANONE 0.9466 SOFRAGI 0.7933 DANONE 0.9593 
MALTERIES 

FCO-BEL. 
0.8584 

FREY 0.9413 
IRDNORDPASDE
CALAIS 

0.7768 
FONCIERE 
LYONNAISE 

0.9335 
EUROMEDIS 
GROUPE 

0.7991 

ESSO 0.9257 VILMORIN 0.7447 SIGNAUX GIROD 0.9155 INSTALLUX 0.7988 

FONCIERE INEA 0.9031 EUROGERM 0.6763 SABETON 0.8978 
CRCAM 

LANGUED CCI 
0.7952 

BIC 0.8963 GAMELOFT SE 0.5180 
EXEL 

INDUSTRIES 
0.8957 COURTOIS 0.7624 

L&#039;OREAL 0.8952 
ZODIAC 

AEROSPACE 
0.4936 

BNP PARIBAS 

ACT.A 
0.8819 

CRCAM 

NORM.SEINE 
0.7536 

ESSILOR INTL. 0.8527 
FONCIERE DE 

PARIS 
0.4301 MONTEA C.V.A. 0.8534 SELECTIRENTE 0.7389 

STEF 0.8160 STEF 0.4214 CFAO 0.8438 
IRDNORDPASD

ECALAIS 
0.7166 

SELECTIRENTE 0.8089 VIDELIO 0.4150 COURTOIS 0.8372 SCBSM 0.7105 

ALTAREIT 0.7962 
BIGBEN 

INTERACTIVE 
0.4124 NETBOOSTER 0.8108 TURENNE INV 0.6923 

VIEL ET 
COMPAGNIE 

0.7816 FONCIERE INEA 0.3990 ADL PARTNER 0.7940 
VEOLIA 
ENVIRON. 

0.6684 

FDL 0.7582 TFF GROUP 0.3963 SELECTIRENTE 0.7906 

SI 

PARTICIPATIO
NS 

0.6649 

IGE   XAO 0.7479 
BERNARD 

LOISEAU 
0.3840 PRECIA 0.7886 CAPELLI 0.6516 

MERCK AND CO 
INC 

0.7466 EUROSIC 0.3828 
GROUPE 
EUROTUNNEL 

0.7873 SIDETRADE 0.6077 

TURENNE INV 0.7439 
DASSAULT 

SYSTEMES 
0.3819 

CRCAM 

TOURAINE CCI 
0.7841 SMTPC 0.6055 

ROTHSCHILD 0.7305 LEBON 0.3745 TFF GROUP 0.7721 SALVEPAR 0.6052 

DEMOS 0.7213 MERCIALYS 0.3740 ROTHSCHILD 0.7356 
MR 
BRICOLAGE 

0.6036 

KORIAN 0.6877 FONCIERE EURIS 0.3658 INFOTEL 0.7234 
FLEURY 

MICHON 
0.6033 

FONCIERE EURIS 0.6849 SES 0.3640 BIOMERIEUX 0.7192 
EFESO 
CONSULTING 

0.5912 

TOUAX 0.6763 BRICORAMA 0.3562 
PROCTER 

GAMBLE 
0.7111 ROUGIER S.A. 0.5740 

FROMAGERIES BEL 0.6605 INSTALLUX 0.3463 SAFT 0.6881 NEURONES 0.5691 

PROCTER GAMBLE 0.6578 
PERRIER 

(GERARD) 
0.3426 

SIMO 

INTERNATIONAL 
0.6777 

CRCAM SUD 

R.A.CCI 
0.5687 

                                                           
23

 Results of years 2011 and 2013 are not reported in tables for reason of presentation and are available upon request. 
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GRAND MARNIER 0.6468 
SARTORIUS 

STED BIO 
0.3425 

BERNARD 

LOISEAU 
0.6768 LAFUMA 0.5552 

Mean 0.8322 Mean 0.5702 Mean 0.8482 Mean 0.7466 

*
CCR: DEA efficiency score  

Table 4.4 presents the best 30 performers stocks in the sample using DEA cross-

efficiency analysis. The peer-evaluation gives a unique order proving the discrimination 

power of cross-efficiency evaluation. In fact, only two firms (EUTELSAT COMMUNIC and 

DANONE) in  2010, three firms (SES, MAROC TELECOM and TIPIAK) in 2011, two firms 

(L‟OREAL and IVALIS) in 2012, one firm (EULER HERMES GROUP) in 2013, one firm 

(MERCK AND CO INC) in 2014 and one firm (ALTAREIT) in 2015 got a cross-efficiency 

scores higher than 0.9. Moreover, 50% of assets have cross-efficiency scores less than 0.1705, 

0.1646, 0.0840, 0.1788, 0.1853 and 0.1633 for the respective study years. Among them, the 

worst performer stock is HOLSFIND with a cross-efficiency score equal to 0.0006 in the year 

2010. These results are quite similar to the CCR results. Therefore, it is of urgent need for 

these firms to take action to improve their efficiency.  

Table 4.4: Portfolio selection based on DEA cross-efficiency evaluation 

DMU 2010 Cross*  DMU 2012 Cross DMU 2014 Cross DMU 2015 Cross 

EUTELSAT 

COMMUNIC. 
0.9736 LOREAL 0.9575 

MERCK AND CO 

INC 
0.975 ALTAREIT 0.9788 

DANONE 0.9024 IVALIS 0.9557 DANONE 0.8362 CFAO 0.7314 

DASSAULT 

AVIATION 
0.8661 

CNIM 

CONSTR.FRF 10 
0.7365 

BNP PARIBAS 

ACT.A 
0.7291 

CRCAM 

NORM.SEINE 
0.5922 

ESSO 0.8525 SABETON 0.7353 LE NOBLE AGE 0.7256 CHARGEURS 0.5718 

LOREAL 0.7493 VILMORIN 0.6828 SIGNAUX GIROD 0.6738 SELECTIRENTE 0.5378 

ST DUPONT 0.7053 SOFRAGI 0.6793 SABETON 0.6561 CHAUF.URB. 0.525 

FREY 0.7029 
ZODIAC 
AEROSPACE 

0.4392 PAREF 0.6457 INSTALLUX 0.5138 

RAMSAY GEN 

SANTE 
0.6968 TFF GROUP 0.3554 

EXEL 

INDUSTRIES 
0.6305 PRECIA 0.4755 

ESSILOR INTL. 0.6823 
BERNARD 
LOISEAU 

0.3551 
CRCAM 
TOURAINE CCI 

0.6292 
CRCAM 
LANGUED CCI 

0.4686 

SELECTIRENTE 0.6576 LEBON 0.353 NETBOOSTER 0.6081 
LINEDATA 

SERVICES 
0.4587 

STEF 0.6364 MERCIALYS 0.3469 
GROUPE 
EUROTUNNEL 

0.6012 
FLEURY 
MICHON 

0.4584 

MERCK AND CO INC 0.6342 
DASSAULT 

SYSTEMES 
0.3422 SOFRAGI 0.5986 SAINT GOBAIN 0.4451 

BIC 0.6321 SES 0.3406 ALES GROUPE 0.5859 COURTOIS 0.4326 

FONCIERE EURIS 0.5942 GAMELOFT SE 0.3308 CFAO 0.585 
EUROMEDIS 

GROUPE 
0.4302 

ROTHSCHILD 0.5675 BRICORAMA 0.3245 MONTEA C.V.A. 0.5771 SMTPC 0.4279 

PLANT ADVANCED 0.5448 INSTALLUX 0.3192 BIOMERIEUX 0.5771 
EFESO 
CONSULTING 

0.4238 

CATERING INTL 

SCES 
0.5419 

SARTORIUS STED 

BIO 
0.3161 ADL PARTNER 0.5731 

VEOLIA 

ENVIRON. 
0.4222 

VIEL ET 
COMPAGNIE 

0.5353 
PERRIER 
(GERARD) 

0.3138 TFF GROUP 0.5596 TURENNE INV 0.4208 

CA TOULOUSE 31 

CCI 
0.5342 STEF 0.3103 BIC 0.5405 

CRCAM SUD 

R.A.CCI 
0.4145 

IRDNORDPASDECA 0.5238 ADL PARTNER 0.3032 DASSAULT 0.5313 NEURONES 0.4115 
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LAIS SYSTEMES 

FROMAGERIES BEL 0.5119 TRILOGIQ 0.2814 
BERNARD 

LOISEAU 
0.5294 LAFUMA 0.4109 

GRAND MARNIER 0.5066 
HOTELS DE 
PARIS 

0.2809 SELECTIRENTE 0.5241 EURAZEO 0.406 

SANOFI 0.5045 SIDETRADE 0.2798 COURTOIS 0.5219 SCBSM 0.4042 

KORIAN 0.4971 
RAMSAY GEN 

SANTE 
0.2701 HSBC HOLDINGS 0.5159 SALVEPAR 0.3902 

FONCIERE INEA 0.4909 
ENVIRONNEMEN
T SA 

0.2696 
PROCTER 
GAMBLE 

0.5138 ATOS 0.3839 

SOMFY SA 0.4837 ICADE 0.2623 ESPERITE 0.5035 
PATRIMOINE 

ET COMM 
0.3824 

TURENNE INV 0.478 BIC 0.2509 
SIMO 
INTERNATIONAL 

0.4911 
GROUPE 
EUROTUNNEL 

0.3814 

TOUPARGEL 

GROUPE 
0.4755 BONDUELLE 0.2492 SAFT 0.4889 TERREIS 0.3793 

GROUPE FLO 0.4744 PRODWARE 0.2453 
CASINO 
GUICHARD 

0.4788 
THERMADOR 
GROUPE 

0.376 

BAINS MER 

MONACO 
0.4701 DANONE 0.2447 

EULER HERMES 

GROUP 
0.4779 

FONCIERE DE 

PARIS 
0.3755 

Mean 0.6142 Mean 0.4044 Mean 0.5961 Mean 0.4676 

*
Cross: the DEA cross-efficiency score

  

To measure the percentage increment of a stock j  when shifting from peer-evaluation 

to self-evaluation, we compute the maverick index 
jM  proposed by Green et al. (1996) as 

follows: 

 j jj j jM E E E                                                                                                                (4.7) 

Where 
jjE  is the CCR score of stocks j  determined through resolving model (1) and 

jE is 

the average of all cross-efficiency scores
djE determined by equation (4.3). A financial asset 

with a low maverick index benefits the least when moving from peer-evaluation to self-

evaluation. Hence, a higher maverick index yields a poor performance. The maverick index of 

the thirty best performer assets using cross-efficiency evaluation are presented in Table 4.5. In 

2010, ALTARAEIT which has 0.7962 self-evaluation has a low average score of only 0.2222 

and at the same time the highest maverick index
 
of 258.333%. It presents the percentage 

improvement when moving from peer-appraisal to self-appraisal. Such firm is called 

maverick or “false positive”. Indeed, besides providing a unique ranking among assets cross-

efficiency analysis can be used to identify the maverick assets. We find that PLANT 

ADVANCED, GAMELOFT SE, NETBOOSTER, SOFRAGI and CHAUF.URB are cases of 

strong Mavericks with high values of 61.55%, 56.58%, 121.58%, 61.85% and 90.48% in 

2010 to 2015 respectively. These firms don‟t perform well.   
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Table 4.5: Maverick index based on cross-efficiency evaluation 

DMU 2010 jM * 

DMU 2012 jM  
DMU 2014 jM  

DMU 2015 jM  

PLANT 

ADVANCED 0.8355 LOREAL 0.0444 

MERCK AND CO 

INC 0.0256 ALTAREIT 0.0217 

EUTELSAT 

COMMUNIC. 0.0271 IVALIS 0.0464 DANONE 0.1473 CFAO 0.3672 

DASSAULT 

AVIATION 0.1546 

CNIM 

CONSTR.FRF 10 0.1156 

BNP PARIBAS 

ACT.A 0.2096 

CRCAM 

NORM.SEINE 0.2725 

ST DUPONT 0.4178 SABETON 0.0801 LE NOBLE AGE 0.3782 CHARGEURS 0.7489 

IRDNORDPASDEC

ALAIS 0.9091 VILMORIN 0.0907 SIGNAUX GIROD 0.3587 SELECTIRENTE 0.3739 

BAINS MER 
MONACO 1.1073 SOFRAGI 0.1679 SABETON 0.3684 CHAUF.URB. 0.9048 

RAMSAY GEN 

SANTE 0.3610 

ZODIAC 

AEROSPACE 0.1238 PAREF 0.5487 INSTALLUX 0.5548 

DANONE 0.0490 TFF GROUP 0.1150 

EXEL 

INDUSTRIES 0.4207 PRECIA 0.8995 

FREY 0.3391 

BERNARD 

LOISEAU 0.0813 

CRCAM 

TOURAINE CCI 0.2462 

CRCAM 

LANGUED CCI 0.6969 

ESSO 0.0859 LEBON 0.0609 NETBOOSTER 0.3333 

LINEDATA 

SERVICES 0.0552 

FONCIERE INEA 0.8396 MERCIALYS 0.0781 

GROUPE 

EUROTUNNEL 0.3095 

FLEURY 

MICHON 0.3161 

BIC 0.4180 

DASSAULT 

SYSTEMES 0.1160 SOFRAGI 0.6185 SAINT GOBAIN 0.1403 

L&#039;OREAL 0.1947 SES 0.0686 ALES GROUPE 0.1414 COURTOIS 0.7624 

ESSILOR INTL. 0.2497 GAMELOFT SE 0.5658 CFAO 0.4424 

EUROMEDIS 

GROUPE 0.8576 

STEF 0.2822 BRICORAMA 0.0978 MONTEA C.V.A. 0.4787 SMTPC 0.4151 

SELECTIRENTE 0.2301 INSTALLUX 0.0848 BIOMERIEUX 0.2462 
EFESO 
CONSULTING 0.3950 

ALTAREIT 2.5833 

SARTORIUS 

STED BIO 0.0834 ADL PARTNER 0.3854 

VEOLIA 

ENVIRON. 0.5830 

VIEL ET 
COMPAGNIE 0.4601 

PERRIER 
(GERARD) 0.0916 TFF GROUP 0.3798 TURENNE INV 0.6453 

FDL 0.8744 STEF 0.3581 BIC 0.0866 

CRCAM SUD 

R.A.CCI 0.3719 

IGE   XAO 0.6083 ADL PARTNER 0.1121 

DASSAULT 

SYSTEMES 0.2042 NEURONES 0.3830 

MERCK AND CO 

INC 0.1772 TRILOGIQ 0.1010 

BERNARD 

LOISEAU 0.2785 LAFUMA 0.3511 

TURENNE INV 0.5562 
HOTELS DE 
PARIS 0.0923 SELECTIRENTE 0.5086 EURAZEO 0.2934 

ROTHSCHILD 0.2872 SIDETRADE 0.1857 COURTOIS 0.6041 SCBSM 0.7578 

DEMOS 0.7814 

RAMSAY GEN 

SANTE 0.1132 HSBC HOLDINGS 0.1313 SALVEPAR 0.5511 

KORIAN 0.3834 
ENVIRONNEME
NT SA 0.0667 

PROCTER 
GAMBLE 0.3840 ATOS 0.3631 

FONCIERE EURIS 0.1527 ICADE 0.1545 ESPERITE 0.2930 

PATRIMOINE ET 

COMM 0.4238 

TOUAX 0.5107 BIC 0.1114 
SIMO 
INTERNATIONAL 0.3799 

GROUPE 
EUROTUNNEL 0.3888 

FROMAGERIES 

BEL 0.2902 BONDUELLE 0.1044 SAFT 0.4074 TERREIS 0.1264 

PROCTER 
GAMBLE 0.6387 PRODWARE 0.0751 

CASINO 
GUICHARD 0.3487 

THERMADOR 
GROUPE 0.2317 

GRAND MARNIER 0.2767 DANONE 0.1467 

EULER HERMES 

GROUP 0.1441 

FONCIERE DE 

PARIS 0.3277 
*

jM : The maverick index  

 Doyle and Green (1994a) propose the cross-efficiency evaluation to maximize 

discrimination among DMUs. However, it has been argued that cross-efficiency is not unique 

and secondary goals may be imposed. Liang et al. (2008b) show that whatever the secondary 
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goal in use (arbitrary, aggressive or benevolent), the cross-efficiency scores leads to the same 

game cross-efficiency scores that is the Nash equilibrium solution. Using model (4.4), we 

compute the DEA game cross-efficiency scores of firms and we present the 30 best performer 

firms in Table 4.6. 

 

Table 4.6 : Portfolio selection based on game cross-efficiency evaluation 

DMU 2010 Game* DMU 2012 Game DMU 2014 Game DMU 2015 Game 

EUTELSAT 

COMMUNIC. 
0.999 LOREAL 0.993 

MERCK AND CO 

INC 
1 ALTAREIT 1 

DASSAULT 

AVIATION 
0.9689 IVALIS 0.9918 DANONE 0.9069 CFAO 0.8052 

DANONE 0.9372 
CNIM 

CONSTR.FRF 10 
0.7985 

BNP PARIBAS 

ACT.A 
0.824 

CRCAM 

NORM.SEINE 
0.6544 

ESSO 0.9122 SABETON 0.7843 LE NOBLE AGE 0.8238 CHAUF.URB. 0.6528 

LOREAL 0.8475 SOFRAGI 0.7544 SIGNAUX GIROD 0.783 CHARGEURS 0.6453 

FREY 0.8365 VILMORIN 0.7304 
EXEL 
INDUSTRIES 

0.7515 PRECIA 0.6102 

RAMSAY GEN 

SANTE 
0.8283 

ZODIAC 

AEROSPACE 
0.4704 SABETON 0.7219 SELECTIRENTE 0.6009 

ESSILOR INTL. 0.7836 TFF GROUP 0.3853 PAREF 0.7202 INSTALLUX 0.6008 

ST DUPONT 0.7745 
BERNARD 

LOISEAU 
0.3796 

CRCAM 

TOURAINE CCI 
0.7132 

CRCAM 

LANGUED CCI 
0.5616 

BIC 0.7707 
DASSAULT 

SYSTEMES 
0.3699 NETBOOSTER 0.696 

EUROMEDIS 

GROUPE 
0.5429 

PLANT 

ADVANCED 
0.7608 MERCIALYS 0.3694 SOFRAGI 0.6766 COURTOIS 0.5219 

SELECTIRENTE 0.7453 LEBON 0.3693 ADL PARTNER 0.6615 
FLEURY 

MICHON 
0.5089 

STEF 0.7405 SES 0.3603 
GROUPE 

EUROTUNNEL 
0.6562 TURENNE INV 0.5008 

MERCK AND CO 

INC 
0.7147 STEF 0.3603 CFAO 0.6492 BRICORAMA 0.4976 

IRDNORDPASDE
CALAIS 

0.7126 GAMELOFT SE 0.3505 MONTEA C.V.A. 0.6434 
VEOLIA 
ENVIRON. 

0.4959 

ROTHSCHILD 0.6679 BRICORAMA 0.3496 ALES GROUPE 0.6387 
MALTERIES 

FCO-BEL. 
0.4897 

BAINS MER 
MONACO 

0.6638 INSTALLUX 0.3392 BIOMERIEUX 0.6217 SCBSM 0.4872 

FONCIERE 

EURIS 
0.6633 

SARTORIUS STED 

BIO 
0.338 TFF GROUP 0.6166 SMTPC 0.4828 

FONCIERE INEA 0.6632 
PERRIER 
(GERARD) 

0.3335 
BERNARD 
LOISEAU 

0.6077 
LINEDATA 
SERVICES 

0.4787 

TURENNE INV 0.6118 ADL PARTNER 0.3286 SELECTIRENTE 0.5895 
EFESO 

CONSULTING 
0.478 

KORIAN 0.6012 SIDETRADE 0.3113 COURTOIS 0.5886 SAINT GOBAIN 0.4734 

CATERING INTL 

SCES 
0.5989 TRILOGIQ 0.3031 

DASSAULT 

SYSTEMES 
0.5826 

CRCAM SUD 

R.A.CCI 
0.4719 

VIEL ET 

COMPAGNIE 
0.5946 HOTELS DE PARIS 0.3008 BIC 0.5798 LAFUMA 0.4688 

FROMAGERIES 

BEL 
0.5928 

RAMSAY GEN 

SANTE 
0.2928 ESPERITE 0.5788 NEURONES 0.4618 

CA TOULOUSE 

31 CCI 
0.5914 ICADE 0.2891 

PROCTER 

GAMBLE 
0.5774 EURAZEO 0.4617 

IGE   XAO 0.5899 
ENVIRONNEMENT 

SA 
0.2846 SAFT 0.5665 SALVEPAR 0.4615 

GRAND 

MARNIER 
0.5883 BIC 0.2709 

SIMO 

INTERNATIONAL 
0.5661 

PATRIMOINE ET 

COMM 
0.4434 

TOUPARGEL 

GROUPE 
0.5557 BONDUELLE 0.268 

CASINO 

GUICHARD 
0.5498 CAPELLI 0.4401 

TOUAX 0.5543 DANONE 0.2672 HSBC HOLDINGS 0.5493 ATOS 0.4356 
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FDL 0.5521 
UNIBAIL-

RODAMCO 
0.261 

ARCELORMITTA

L 
0.5487 

FIDUCIAL 

OFF.SOL. 
0.4349 

Mean 0.7140 Mean 0.4335 Mean 0.6663 Mean 0.5389 

*
Game: DEA game cross-efficiency score 

The average efficiency level of the sample firms is about 0.2342, 0.2260, 0.213, 

0.2323, 0.2510 and 0.2070 for the respective study years. The year 2010 is marked by the 

lowest level of game cross-efficiency score (0.0008) registered by HOLSFIND, however the 

highest efficiency level is equal to one and was recorded by EULER HERMES GROUP, 

MERCK AND CO INC and ALTAREIT for 2013, 2014 and 2015 respectively.  

In Table 4.7, we present Mavericks index based on game cross-efficiency evaluation

jMG . It measures the percentage increment of a stock j  when shifting from game cross-

efficiency peer-evaluation to self-evaluation. We compute the 
jMG as follows: 

 j jj j jMG E                                                                                                                (4.8) 

Where 
jjE  is the CCR score of stocks j  determined through resolving model (4.1) and 

j  is 

the average game cross-efficiency score of 
jDMU determined by resolving the model (4.4). 

As defined by Essid et al. (2018), the maverick index based on game cross-efficiency 

evaluation is the percentage increment when shifting from game cross-efficiency evaluation to 

self-evaluation. BAINS MER MONACO, MGI DIGITAL GRAPHI, GAMELOFT SE, 

IRDNORDPASDECALAIS, SOFRAGI and FIDUCIAL OFF.SOL are cases of strong “false 

positive” with high values of 49.24%, 34.61%, 85.35%, 43.20% and 129.94% in 2010 to 2015 

respectively. In mostly, mavericks using cross-efficiency are higher than mavericks using 

game cross-efficiency. Then, game cross-efficiencies can be used to overcome the problem of 

mavericks in a best way. 

Table 4.7: Maverick index based on Game cross-efficiency evaluation 

DMU 2010 jMG
* 

DMU 2012 jMG  DMU 2014 jMG  DMU 2015 jMG  

EUTELSAT 

COMMUNIC. 
0.0010 LOREAL 0.0070 

MERCK AND CO 

INC 
0.0000 ALTAREIT 0.0000 

DASSAULT 
AVIATION 

0.0321 IVALIS 0.0083 DANONE 0.0578 CFAO 0.2419 

DANONE 0.0101 
CNIM 

CONSTR.FRF 10 
0.0290 

BNP PARIBAS 

ACT.A 
0.0703 

CRCAM 

NORM.SEINE 
0.1516 

ESSO 0.0148 SABETON 0.0126 LE NOBLE AGE 0.2139 CHAUF.URB. 0.5319 

LOREAL 0.0563 SOFRAGI 0.0516 SIGNAUX GIROD 0.1692 CHARGEURS 0.5497 

FREY 0.1253 VILMORIN 0.0196 EXEL INDUSTRIES 0.1919 PRECIA 0.4802 
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RAMSAY GEN 

SANTE 
0.1449 

ZODIAC 

AEROSPACE 
0.0492 SABETON 0.2437 SELECTIRENTE 0.2297 

ESSILOR INTL. 0.0881 TFF GROUP 0.0285 PAREF 0.3885 INSTALLUX 0.3296 

ST DUPONT 0.2912 
BERNARD 
LOISEAU 

0.0115 
CRCAM TOURAINE 
CCI 

0.0995 
CRCAM 
LANGUED CCI 

0.4159 

BIC 0.1630 
DASSAULT 

SYSTEMES 
0.0324 NETBOOSTER 0.1649 

EUROMEDIS 

GROUPE 
0.4720 

PLANT 
ADVANCED 

0.3144 MERCIALYS 0.0124 SOFRAGI 0.4320 COURTOIS 0.4609 

SELECTIRENTE 0.0854 LEBON 0.0141 ADL PARTNER 0.2003 FLEURY MICHON 0.1855 

STEF 0.1020 SES 0.0102 
GROUPE 

EUROTUNNEL 
0.1998 TURENNE INV 0.3824 

MERCK AND CO 
INC 

0.0447 STEF 0.1696 CFAO 0.2998 BRICORAMA 1.0096 

IRDNORDPASDE

CALAIS 
0.4033 GAMELOFT SE 0.4778 MONTEA C.V.A. 0.3264 

VEOLIA 

ENVIRON. 
0.3478 

ROTHSCHILD 0.0937 BRICORAMA 0.0190 ALES GROUPE 0.0471 
MALTERIES FCO-
BEL. 

0.7528 

BAINS MER 

MONACO 
0.4924 INSTALLUX 0.0209 BIOMERIEUX 0.1568 SCBSM 0.4584 

FONCIERE 

EURIS 
0.0326 

SARTORIUS 

STED BIO 
0.0132 TFF GROUP 0.2522 SMTPC 0.2542 

FONCIERE INEA 0.3617 
PERRIER 

(GERARD) 
0.0272 

BERNARD 

LOISEAU 
0.1138 

LINEDATA 

SERVICES 
0.0112 

TURENNE INV 0.2159 ADL PARTNER 0.0261 SELECTIRENTE 0.3412 
EFESO 
CONSULTING 

0.2368 

KORIAN 0.1439 SIDETRADE 0.0658 COURTOIS 0.4223 SAINT GOBAIN 0.0721 

CATERING INTL 

SCES 
0.0233 TRILOGIQ 0.0222 

DASSAULT 

SYSTEMES 
0.0982 

CRCAM SUD 

R.A.CCI 
0.2050 

VIEL ET 
COMPAGNIE 

0.3145 
HOTELS DE 
PARIS 

0.0200 BIC 0.0129 LAFUMA 0.1842 

FROMAGERIES 

BEL 
0.1141 

RAMSAY GEN 

SANTE 
0.0269 ESPERITE 0.1248 NEURONES 0.2323 

CA TOULOUSE 
31 CCI 

0.0464 ICADE 0.0475 PROCTER GAMBLE 0.2316 EURAZEO 0.1374 

IGE   XAO 0.2678 
ENVIRONNEME

NT SA 
0.0105 SAFT 0.2146 SALVEPAR 0.3115 

GRAND 
MARNIER 

0.0994 BIC 0.0293 
SIMO 
INTERNATIONAL 

0.1971 
PATRIMOINE ET 
COMM 

0.2279 

TOUPARGEL 

GROUPE 
0.0763 BONDUELLE 0.0269 

CASINO 

GUICHARD 
0.1745 CAPELLI 0.4805 

TOUAX 0.2201 DANONE 0.0501 HSBC HOLDINGS 0.0625 ATOS 0.2013 

FDL 0.3733 
UNIBAIL-

RODAMCO 
0.0451 ARCELORMITTAL 0.1085 

FIDUCIAL 

OFF.SOL. 
1.2994 

*

jMG : The maverick index based on game cross-efficiency evaluation  

As we have already mentioned, the arbitrary cross-efficiency approach is unstable and 

unpredictable depending on the software in use and the problem context compared to the 

Nash equilibrium score provided by the game cross-efficiency. Results of Wilcoxon Signed-

Rank test presented in Table 4.8 proves that there are a significant difference between ranking 

derived by the DEA game cross-efficiency and the ranking obtained by the arbitrary cross-

efficiency approaches. 

Table 4.8 : Wilcoxon Signed-Rank test "Game cross-efficiency ranking” vs. “Arbitrary cross-efficiency ranking” 

Wilcoxon  2010 2011 2012 2013 2014 2015 

Statistic  127760
*** 

129290
*** 

125250
*** 

125250
*** 

126250
*** 

125750
*** 

P-value 2.20E-16 2.20E-16 2.20E-16 2.20E-16 2.20E-16 2.20E-16 

Significance level 1%***. 5%**. 10%* 
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However, in portfolio selection field, a major drawback of game cross-efficiency 

approach is the lack of investor control over the expected portfolio return. Indeed, a rational 

investor would have a reserve utility, in other words he would want to set a minimum 

expected profit level. Wilcoxon Signed Rank test conducted between game cross-efficiency 

ranking and annual return based ranking allows drawing the conclusion that ranking based on 

return is significantly different than that based on game cross-efficiency (Table 4.9). That 

means the efficient stock may not be gainful and vice versa. This motivates our development 

of a PE DEA game cross framework to portfolio selection, in which we seek to maximize the 

overall portfolio efficiency score subject to a specific level of expected return. 

Table 4.9: Wilcoxon Signed-Rank test "Game cross-Efficiency ranking" vs. "Annual return based ranking" 

Wilcoxon  2010 2011 2012 2013 2014 2015 

Statistic  92509
*** 

118340
***

 82225
*** 

74464
*** 

97264
*** 

77298
*** 

P-value 2.20E-16 2.20E-16 1.331E-09 0.0002497 2.20E-16 8.649E-06 

Significance level 1%***. 5%**. 10%* 

 

To present different investor‟s preferences, we use three PE parameter levels (10%, 

20% and 30%). We select the thirty best practices that compose an optimal portfolio from the 

point of view gains and efficiency at the same time. This portfolio achieves the higher average 

efficiency at the year 2014 whatever the PE tradeoff parameter value. Then, results are not 

sensitive enough to tradeoff parameter change. In Table 4.10, we present the portfolio 

selection results of PE DEA game cross-efficiency framework when the tradeoff24 parameter 

is equal to 30%.  

Table 4.10: Portfolio selection based on PE_30% evaluation 

DMU2010 PE _30%* DMU2012 PE _30% DMU2014 PE _30% DMU2015 PE _30% 

EUTELSAT 

COMMUNIC. 
0.999 LOREAL 0.993 

MERCK AND 

CO INC 
1 ALTAREIT 1 

DANONE 0.9372 IVALIS 0.9918 DANONE 0.9069 CFAO 0.8052 

DASSAULT 

AVIATION 
0.9689 

CNIM 
CONSTR.FR

F 10 

0.7985 
BNP PARIBAS 

ACT.A 
0.824 CHARGEURS 0.6453 

ESSO 0.9122 SABETON 0.7843 LE NOBLE AGE 0.8238 CHAUF.URB. 0.6528 

L&#039;OREAL 0.8475 VILMORIN 0.7304 
SIGNAUX 

GIROD 
0.783 PRECIA 0.6102 

ST DUPONT 0.7745 SOFRAGI 0.7544 SABETON 0.7219 
LINEDATA 
SERVICES 

0.4787 

ESSILOR INTL. 0.7836 

ZODIAC 

AEROSPAC
E 

0.4704 
CRCAM 

TOURAINE CCI 
0.7132 

FLEURY 

MICHON 
0.5089 

BIC 0.7707 TFF GROUP 0.3853 NETBOOSTER 0.696 
VEOLIA 

ENVIRON. 
0.4959 

                                                           
24

 Results of PE DEA Game cross-efficiency framework when 10%   and 20%   are given upon  request.  
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FROMAGERIES 

BEL 
0.5928 

DASSAULT 

SYSTEMES 
0.3699 

GROUPE 

EUROTUNNEL 
0.6562 ECA 0.4077 

SOMFY SA 0.5508 
SARTORIUS 

STED BIO 
0.338 ALES GROUPE 0.6387 

SARTORIUS 

STED BIO 
0.3388 

ACTEOS 0.2375 STEF 0.3603 MONTEA C.V.A. 0.6434 BENETEAU 0.1559 

LECTRA 0.0229 

MGI 

DIGITAL 
GRAPHI 

0.2359 ADL PARTNER 0.6615 
GROUPE 

GORGE 
0.1491 

HOLOSFIND 0.0008 ESKER 0.2254 SAFT 0.5665 SAFT 0.064 

PHILIP MORRIS 

INTL 
0.5293 VDI GROUP 0.0765 VDI GROUP 0.1389 STEF 0.0839 

BURELLE 0.2385 EASYVISTA 0.0703 EASYVISTA 0.0637 LECTRA 0.0608 

VDI GROUP 0.0368 
PERNOD 

RICARD 
0.1323 CELLECTIS 0.0378 CAPELLI 0.4401 

EVERSET 0.0264 
TOUAXBSA
R0316 

0.0147 PAREF 0.7202 TRIGANO 0.1798 

FREY 0.8365 
BERNARD 

LOISEAU 
0.3796 

EXEL 

INDUSTRIES 
0.7515 FAURECIA 0.1051 

RAMSAY GEN 
SANTE 

0.8283 LEBON 0.3693 SOFRAGI 0.6766 MASTRAD 0.0287 

SELECTIRENTE 0.7453 MERCIALYS 0.3694 BIOMERIEUX 0.6217 
CRCAM 

NORM.SEINE 
0.6544 

MERCK AND CO 
INC 

0.7147 SES 0.3603 BIC 0.5798 
SELECTIRENT
E 

0.6009 

ROTHSCHILD 0.6679 
GAMELOFT 

SE 
0.3505 SELECTIRENTE 0.5895 INSTALLUX 0.6008 

PLANT 
ADVANCED 

0.7608 INSTALLUX 0.3392 
PROCTER 
GAMBLE 

0.5774 COURTOIS 0.5219 

GRAND 

MARNIER 
0.5883 

PERRIER 

(GERARD) 
0.3335 CFAO 0.6492 

EFESO 

CONSULTING 
0.478 

TOUAX 0.5543 TRILOGIQ 0.3031 TFF GROUP 0.6166 

CRCAM 

LANGUED 

CCI 

0.5616 

FONCIERE 
EURIS 

0.6633 
BRICORAM
A 

0.3496 
DASSAULT 
SYSTEMES 

0.5826 
SAINT 
GOBAIN 

0.4734 

CATERING INTL 

SCES 
0.5989 

ADL 

PARTNER 
0.3286 

BERNARD 

LOISEAU 
0.6077 

EUROMEDIS 

GROUPE 
0.5429 

IRDNORDPASDE
CALAIS 

0.7126 
HOTELS DE 
PARIS 

0.3008 COURTOIS 0.5886 NEURONES 0.4618 

FONCIERE INEA 0.6632 
RAMSAY 

GEN SANTE 
0.2928 ESPERITE 0.5788 EURAZEO 0.4617 

BAINS MER 

MONACO 
0.6638 BIC 0.2709 

SIMO 
INTERNATION

AL 

0.5661 
MALTERIES 

FCO-BEL. 
0.4897 

Mean 0.6076 Mean 0.4026 Mean 0.6194 Mean 0.4352 

*
 PE _30% : the  game cross-efficiency score of stocks  comprising the PE portfolio when PE tradeoff parameter 

is equal to 30% 

This type of analysis does not allow taking into account the couple return and 

volatility that is essential to the decision making of the investor. Thus, in the next section we 

use the Sharpe ratio, developed by Sharpe (1963), to evaluate the performance of the 

constructed portfolios based on each model. The Sharpe ratio SR  of a portfolio  describes 

how much excess return received for the extra volatility that investor endure for holding a 

riskier asset. It is determined as follow: 

 fSR R R                                                                                                                               (4.9) 

Where R is the portfolio geometric average annual return, 
fR is he risk-free return and  is 
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the annualized excess return volatility. Nevertheless, the standard deviation as used in the 

Sharpe ratio does not account for extreme returns. Thus, we use the Studentized Circular 

Block Bootstrap (SCBB) developed by Ledoit and Wolf (2008), which takes into 

consideration the skewness, kurtosis and autocorrelation effects when comparing two Sharpe 

ratios to test whether the differences between performances of derived portfolios are 

statistically significant.  

4.3   Why Profitability-Efficiency DEA game cross-efficiency approach instead of 

other frameworks ?  

In a multi-criteria analysis, an investor who has a specific attitude towards risk, a degree 

of prudence and temperance looks undoubtedly to make profits. While efficient portfolio 

means the interference of minimizing the variance (risk) and kurtosis (temperance) on the one 

hand and maximizing the return (profit) and the skewness (prudence) on the other hand, a 

given level of portfolio profitability still not guaranteed via the DEA game cross-efficiency 

approach. Hence, we incorporate the portfolio efficiency in a PE framework (model 5). In this 

paragraph, we show that the PE methodology can be a promising tool for portfolio selection. 

In fact, we examine the 6-year performance of the portfolio generated through the PE DEA 

game cross-efficiency, the DEA game cross-efficiency and the arbitrary cross-efficiency. We 

compare the performance of different derived portfolios to the performance of benchmark 

portfolios that are four market indexes: (CAC4025, AEX26, BEL2027 and PSI2028) over the test 

period starting from 2010 to 2015. These benchmark portfolios are the main national indices 

of the stock exchange group Euronext. The intent of this comparison is to show that the 

portfolio selected via the developed model outperforms the best Euronext indices and beat 

that of arbitrary model. It has also the highest level of gains and the minimum losses.  

We present in Table 4.11 the geometric annualized excess return  fR R   of each 

portfolio over the 6-year study period. The “PE portfolio” with tradeoff parameter equal to 

10%, 20% and 30% attains the highest geometric mean excess return respectively, 122.94%, 

91.94% and 68.24%, which is quite higher than those of the CAC40 (0.66%), AEX (2.56%), 

BEL20 (4.48%), PSI20 (-9.39%), “arbitrary portfolio” (4.89%) and “game portfolio” (4.7%). 

                                                           
25

 The CAC40 is the index of top 40 performing stocks traded in Paris Exchange. 
26

 The AEX (Amsterdam Exchange index) is a stock market composed of 25 securities, the most traded on the exchange. 
27

 BEL20 is performing index of the best 20 companies traded at the Brussels Stock Exchange. 
28

 PSI20 is performing index of the best 20 companies listed at stock exchange of Portugal. 



 

141 
 

Furthermore, the respective Sharpe ratios of the PE portfolio” (5.8942, 5.1616, and 4.0720) 

are quite higher than that of the market indices, CAC40 (0.0395), AEX (0.1674), BEL20 

(0.3379) and PSI20 (-0.4884) on the one hand, and higher than Sharpe ratios of “arbitrary 

portfolio” (0.8961) and “game portfolio” (0.9059) on the other hand. 

Table 4.11: Sharpe ratios of portfolios 

 
PE_10% PE_20% PE_30% CAC.40 AEX BEL20 PSI20 Game cross Arbitrary cross 

Annualized Return 1.2294 0.9194 0.6824 0.0066 0.0256 0.0448 -0.0939 0.0470 0.0489 

Annualized Std Dev 0.2086 0.1781 0.1676 0.1661 0.1528 0.1327 0.1923 0.0519 0.0545 

Annualized Sharpe  5.8942 5.1616 4.0720 0.0395 0.1674 0.3379 -0.4884 0.9059 0.8961 

 

Moreover, we use the R implementation of Michael Wolf to test hypothesis presented 

in appendix B. We apply the test on pairs of monthly excess returns of portfolios. Table 4.12 

summarizes the statistical tests resulting from the R code using the default parameter setting. 

Based on SCBB P-values results, we reject the null hypotheses which indicate that the Sharpe 

ratio of the “game portfolio” is significantly greater than that of CAC40 and PSI20 at 5% 

significance level and greater than that of BEL20 and AEX at 10% significance level. 

However, we fail to reject that versus the “arbitrary portfolio” with a P-value=0.3446 even 

though the rank test proves that the “game cross-efficiency ranking” and “arbitrary cross-

efficiency ranking” are not identical for the test period as shown in Table 4.11. These further 

supports claim that the “game portfolio” outperforms some of Euronext benchmark market 

indices and provide a more stable and meaningful ranking that incorporate firms‟ behavior.  

Table 4.12: Two sided Sharpe difference test: the Studentized Circular Block Bootstrap (B=10. M=4999) 

 

CAC 40 AEX BEL20 PSI20 Game cross Arbitrary cross 

PE_γ=10% 

Difference 1.1383 1.1039 1.059 1.2933 0.9101 0.9127 

P-value (0.0016) *** (0.004) *** (0.0078) ***  (0.0018) *** (0.008) ***  (0.0098) *** 

PE_γ=20% 

Difference 1,0804 1,046 1,0011 1,2354 0,8522 0,8548 

P-value (0.0104) ** (0.0204) ** (0.0258) **  (0.0084) *** (0.0346) *  (0.0598) * 

PE_γ=30% 

Difference 0.9011 0.8667 0.8218 1.0561 0.6729 0.6755 

P-value (0.1258)  (0.1826) (0.332)  (0.0692) ** (0.378) (0.3938) 

Game cross 

Difference 0.2282 0.1938 0.1489 0.3832 --------- 0.0026 

P-value (0.087) *  (0.2244) (0.1722) (0.0788) ** --------- (0.9398) 

Arbitrary cross 

Difference 0.2256 0.1912 0.1463 0.3806 -0.0026 --------- 

P-value  (0.0768) * (0.175) (0.167) (0.0482) ** (0.9392) --------- 

Significance level  1%***. 5%**. 10%* 
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Table 4.12 proves the statistical significant difference between the performance of PE 

portfolio and other portfolios. In fact, based on the P-values we find that the Sharpe ratios of 

the “PE portfolio” when the PE tradeoff parameter is equal to 10% or 20% are significantly 

greater than the Sharpe ratios of all the market indices, “arbitrary portfolio” and “game 

portfolio”. However, we fail to prove the significance of difference between the Sharpe ratio 

of “PE portfolio” when γ=30% and benchmark portfolios. We can infer from the failure to 

reject the null hypothesis that the Sharpe ratio difference for γ=30%, that as we increase the 

PE tradeoff parameter, we approach similar portfolio‟s characteristics to that of game and 

arbitrary portfolios. In order to deepen the analysis of portfolios‟ performance, we illustrate 

cumulative returns and losses in figures. We find that whatever the value of PE tradeoff 

parameter, the portfolio derived from the developed approach has the highest growth of 

hypothetical initial investment over the 6 years of study. Figures 4.1-4.3 present cumulative 

returns curves of PE portfolio comparing to other portfolios. It is obvious that PE portfolios‟ 

cumulative return is a lot larger than other portfolios including game and arbitrary cross 

portfolios. In fact, the black curve of PE portfolio grows exponentially and cumulative return 

reaches 120%, 50% and 20% in December 2015 when the PE tradeoff parameter is equal to 

0.1, 0.2 and 0.3 respectively. However, other curves are close to zero during the whole period.  

Figure 4.2: Cumulative return curves of portfolios ( 20%  ) 
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Figure 4.3: Cumulative return curves of portfolios ( 30%   ) 

 

To analyze losses, we present the drawdown curves and we find that whatever the PE 

parameter level, the PE portfolio has the less drawdown, thereafter the minimum amount of 

losses during the whole period of study. Figures 4.4-4.6 presents the drawdown curves of 

portfolios and the black one is the curve of PE portfolio when the tradeoff parameter. It is 

close to zero during the whole period except the period between May and September 2011 

when it recorded a loss of about less than 10%. Moreover, game cross-efficiency portfolio has 

lower and more stable drawdown compared to arbitrary portfolio on the one hand, and it has 

the minimum amounts of loss and volatility compared to market portfolios on the other hand.  

Figure 4.4: Drawdown curves of portfolios ( 10%  ) 
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Figure 4.5: Drawdown curves of portfolios ( 20%   ) 

 

 

Figure 4.6: Drawdown curves of portfolios ( 30%   ) 

 
 

Our results show that the game cross-efficiency approach is more effective and stable than 

the one based on the simple use of cross-efficiency in portfolio evaluation area. Furthermore, 

whatever the investor‟ attitude, findings demonstrate the effectiveness of the developed PE 

DEA game cross-efficiency approach as tool to portfolio selection.  

5. Conclusion  

The most well-known two-moment decision model is that of modern portfolio theory 

which employs mean-variance analysis. Since that, there has been an ongoing debate as to the 

necessity of including higher moments of return distributions into the decision making 

process of investor. Therefore, several studies have investigated the efficiency of portfolio 
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based on a multi-criteria analysis, whether variance, skewness and Kurtosis. However, while 

the efficiency of a portfolio guarantees a reasonable mediation between different criteria, it 

cannot in mostly guarantee a satisfactory level of profitability for the investor. Indeed, 

investors are interested in getting high returns but at the same time reducing their risks, but 

the financial assets that have the potential of bringing high returns typically also carry high 

risks of losing money. In this study, we have introduced profitability criterion in decision 

making process based on game cross-efficiency approach to portfolio selection. The 

developed model permits to investor to select financial assets ensuring an efficient portfolio 

with a certain level of gain. The empirical application has demonstrated that cross-efficiency 

approach is unstable and unpredictable depending on the software and problem context 

compared to the Nash equilibrium efficiency score provided by the game cross-efficiency. 

This problem is mainly due to DEA flexibility and the nature of the model which is fractional. 

We also provide novel way of selecting a PE portfolio and illustrate the proposed approach by 

applying it to financial asset portfolio selection in the Paris stock exchange and show that the 

selected portfolio yielded higher efficiency adjusted returns over other benchmark portfolios 

for 6-year sample period. The research can be extended by considering another criterion than 

that the profitability. Then, it would be a great interest to employ the proposed approach using 

another large data and taking into consideration taxes and transaction costs.  
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Conclusion and prospects for future research 

 

Since the prediction of stock price returns is central to portfolio selection decision-

making, many quantitative models have been proposed in the literature to aid the investor 

make the decision about investment, based on historical data.  

Data Envelopment Analysis (DEA) models have been extensively used in performance 

appraisal in financial area. In the financial applications of DEA methodology, one particularly 

appealing idea is to gauge stock efficiency by using its higher order moments. In this 

dissertation, the developed models are based on stocks returns statistic distribution. In fact, 

DEA as a benchmarking tool can be used to work on historical data, which is used in portfolio 

analysis as an instrument for performance measurement.  

While DEA provides each decision making unit (DMU) a good opportunity to self-

evaluate its efficiency relative to other homogenous DMUs, DEA cross-efficiency evaluation 

suggests that each DMU is not only to be self-evaluated but also to be peer-evaluated. It can 

guarantee a unique ordering of the DMUs. Moreover, cross-efficiency evaluation eliminates 

unrealistic weight schemes without inputs and outputs weight restrictions. Despite the 

advantages of DEA cross-efficiency, it still rarely used in portfolio selection field. In this 

dissertation, we have built optimization models based on cross-efficiency approach and we 

have shown the effectiveness of these approaches as a tool for portfolio selection.  

Basically, we contribute to literature by proposing a DEA cross-efficiency as a 

promising tool to portfolio selection.   

Firstly, we incorporate the cross-efficiency approach into a Mean-Variance-Skewness-

Kurtosis (MVSK) space to select portfolio, we determined two Mean-variance (MV) and 

Skewness-Kurtosis (SK) tradeoff parameters endogenously. We then took in consideration 

aversion degree, temperance and prudence of the investor. The developed methodology 

permits to obtain a well-diversified portfolio, which beats all benchmark portfolios. In fact, 

our findings confirm the intuition that higher order moments can significantly change the 

optimal portfolio selection. We also have shown that our framework is robust when tested 

using the Ledoit and Wolf (2008) Sharpe test against a benchmark portfolio. However, 

because the developed MVSK model is quartic, its application on large sample could not be 
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easily performed.  It may be possible to resolve the model by employing a heuristic approach 

in future research. Moreover, as we showed that investor has a general preference for odd 

moments and an aversion to even moments, a possible extension of the model to the fifth or 

higher order moments can be of great interest for future research.  

Secondly, we proved that DEA game cross-efficiency could be a promising tool for 

evaluating financial assets by providing Nash equilibrium efficiency scores. In addition, arose 

from the DEA game cross-efficiency method, we developed a novel risk indicator in the 

portfolio area: the Maverick index. It presents the sensitivity level to environmental changes.   

We examine the 6-year performance of the portfolio generated by the developed model and 

we compared it to those of the four market indexes, CAC40, AEX, BEL20 and PSI20 over the 

study period starting from 2010 to 2015. Using Ledoit and Wolf (2008) Sharpe test we proved 

the robustness of our methodology. We have shown that incorporating DEA game cross-

efficiency into Mean-Maverick space permits to obtain a well-diversified portfolio that is 

superior to all market portfolios. Further research can be performed using the developed 

framework by relaxing assumptions about taxes and transaction costs.  

Finally, we attempted to solve the question of portfolio selection by supporting 

profitability criterion on the one hand and efficiency of financial assets on the other hand. We 

incorporated DEA game cross-efficiency model into Efficiency-Profitability space and we 

have shown that it presents a reliable framework to portfolio selection. We find that the 

derived portfolio has the highest growth of hypothetical initial investment and the minimum 

drawdown in comparison with market indices over the period. We have also shown that our 

portfolio beats all Benchmark portfolios in the Paris Stock exchange. The research can be 

extended by considering another criterion than that the profitability such as liquidity or 

marketability. 

In overall, these methodologies provide more discrimination for financial assets by 

providing unique ranks in a first step and permit to select portfolio by underlying preferences 

of the decision-maker in a second step.   

Despite the consistency of the developed models, further investigation on cross-

efficiency evaluation based on directional distance functions (DDF) instead of DEA could be 

explored to portfolio performance evaluation. Thus, the cross-efficiency DDF aims at 

providing a peer-evaluation of financial assets based on measures that account for the 

inefficiency both in inputs and in outputs simultaneously. Furthermore, a peer-appraisal Free-
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Disposal-Hull (FDH) cross-efficiency approach could be used to evaluate securities in future 

research.  

Note that although the non-parametric deterministic frontier models rely on very few 

assumptions, they are very sensitive to extreme values and to outliers.  Further investigation 

on the assessment of the statistical precision of the DEA cross-efficiency estimators could 

also be led, by implement the concept of the expected minimum input level (or output level) 

of order m of Cazals et al. (2002).  

We also suggest for future investigation an hybrid analysis using DEA cross-

efficiency approach and machine learning techniques to evaluate financial assets and to select 

portfolio.  
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